
A

~ ,::. =~ ~ ' .. / ! ~ \ ' " ,: .', ,'--.
._. _, 4; l ~ .~: '1 ; '; ,'-.. ..."

4x4 Capability
Processor and Storage
Programmer Reference

.~----, I "1l UNIVAC
~ • .- •• '11. t -'---1~'''''' ""':;,--

; COMPUTER SYSTEMS

UP-8604 Rev, 1

8804 Rev.1 . I SPERRY UNIVAC 1100/80 Systems
_~~~X4 Capability Processor and Storage Programmer Reference

Section

Covllf'/Dlsclaime.'

PSS;

Contents

1

2

3

4

5

6

7

8

Appendix A

Appendix B

Applndlx C

Apptndix 0

Appendix E

Ind.,x

UMt~ Comment

Sheiltt

TOUII: 420 pig"

and cover

Pages

1

1 thru 14

1 thru 11

1 thru 4

1 thru 21

1 thru 28

1 thru 78

1 thru 71

1 thru 35

, thru 13

1 thru 10

1 thru 14

1 thru 21

1 thru 8

1 thru 77

1 thru 18

Update

I

Page Status Summary

Issue: UP-8604 Rev. 1

Section Pages Update Section

U"I)ATI LEVEL

Pages

PSS-1
PAGI

Update

8804 ReY.1 I Sf tERRY UNIVAC 1100/80 Systems
_~~~1(4 Capability Processor and Stor3ge Programmer Reference

Paige Staltus Summary

Cc)ntents.

1. Introduction

1. 1. Cieneral

1.2. System Components and Configurations
1.2. 1. Central Processor Unit
1.2.2. Storage System
1.2.3. Input/Output Unit
1.2.4. System Console
1.2.5. System Transition Unit (STU)
1.2.6. Subsystem Availability Unit (SAU)
1.2.7. Svstem Maintenance Unit (SMU)
1.2.S. Auxiliary Storage and Peripheral Subsystems
1.2.9. Destandardized Subsystems
1.2.10. Minin\um Peripheral Complement

2. ProcE!ssing Unit

2. 1. Cieneral

2.2. Control Section
2.2. 1. Control Section Operation
2.2.2. Instruction Repertoire
2.2.3. Control Registers
2.2.4. Data Shift/Complement/Store Operation

2.3. Arithmetic Section

2.4. Maintenance Section

2.5. Input/Output Unit (IOU)

2.S. System Status Word

UP'OA n: LEVEl.
Contents--1

'AGI

Contents

1-1

1-1

1-1
1-2
1-7
1-7
1-8
1-9
1-10
1-10
1-10
1-11
1-1 1

2-1

2-1

2-1
2-1
2-1
2-2
2-2

2-2

2-2

2-3

2-3

8eo~ Rev.1
~

SPERRY UNIVAC 1100/80 SY8Iem.
4x4 Capability Processor and Storage Programmer Reference

3. Storage S'ystem

3. 1. General

3.2. Main Storage Unit
3.2. 1. Write Data Error Detection
3.2.2. Panial Write Error Detection
3.2.3. EeC Write Check Disable
3.2.4. Write Control Parity Checking
3.2.5. Address Parity Checking
3.2.S. Refresh Fault
3.2.7. Fixed Address Assignments

3.3. Storage Interface Unit
3.3. 1. Functional Characteristics
3.3.2. Tag and Data Buffer
3.3.3. Main Store Interface Stack
3.3.4. Invalidate Interface
3.3.5.. Error Detection and Reponing
3.3.S. Storage Interleave
3.3.S.1. Addressing Modes
3.3.6.2. Partitioning of Storage Configurations
3.3.7. Storage Configurations

3.4. Control Storage
3.4. 1. Control Register Selection Designator
3.4.2. Control Register Address Assignments
3.4.2.1. Storage for MSR Value - 0143 .
3.4.2.2. User Index (X) Registers - 0001-0017
3.4.2.3. User Accumulator (A) Registers - 0014-0033
3.4.2.4. Uner Unassigned Registers - 0034-0037
3.4.2.5. Executive Bank Descriptor Table Pointer Register - 0040
3.4.2.6. Immediate Storage Check Interrupts - 0041-0042
3.4.2.7. Normal Interrupts - 0043-0044
3.4.2.8. User Bank Descriptor Table Pointer Register - 0045
3.4.2.9. Bank Descriptor Index Registers - 0046-0047
3.4.2.10. Quantum Timer - 0050
3.4.2. 11. Guard Mode - 005 1-0053
3.4.2.12. Immediate Storage Check Status - 0054
3.4.2.13. Norma. Status - 0055
3.4.2.14. IOU Error Interrupts - 0056-0057
3.4.2.15. Unassigned Registers - 0060-0067
3.4.2. 16. Jump History Stack - 0070-0077
3.4.2. 17 . Real-Time Clock Register (RO) - 0100
3.4.2. 18. User (R 1) Repeat Count Register - 0101
3.4.2. 19. User (R2)1Mask Register - 0102
3.4.2.20. User (R2-R5)/Staging Registers (SR 1-SR3) - 0103-0105
3.4.2.21. User (R8-R9)/ J-Registers (JO-J3) - 0106-0111
3.4.2.22. User R-Registers (R 1 O-R 15) - 0112-0117
3.4.2.23. Executive (RO) R-Register - 0120
3.4.2.24. Executive (R 1) Repeat Count Register - 0121

- 3.4.2.25. Executive (R2)1Mask Register - 0122
3.4.2.26. Executive (R3-R5)/Staging Registers (SR 1-SR3) - 0123-0125
3.4.2.27. Executive (R6-R9)/J-Registers (JO-J3) - 0126-0131
3.4.2.28. Executive R-Registers (R 1 O-R 15) - 0132-0137

Content.--2
,AGE

3-1

3-1

3-1
3-2
3-2
3-3
3-3
3-3
3-3
3-4

3-5
3-6
3-7
3-8
3-8
3-8
3-9
3-10
3-14
3-15

3-15
3-15
3-16
3-16
3-17
3-18
3-18
3-18
3-18
3-18
3-18
3-18
3-18
3-18
3-19
3-19
3-19
3-19
3-19
3-19
3-19
3-20
3-20
3-20
3-20
3-20
3-20
3-20
3-20
3-20
3-21

8804 Rev.l I SPERRY UNIVAC 1100/80 Systems
~ __ ~ 4)1~4 Capability Processor and Storage Programmer Reference UPOATI LML

Contents-,3
PAGI

3.4.2.2!~. Executive Index Regist9rs (X1-X15) - 0141-0157 3-21
3.4.2.30. Executive Accumulator Registers (AO-A 15) - 0154-0173 3-21
3.4.2.31. Executive Unassigned Registers - 0140, 0174-0177 3-21
3.4.2.32. Control Register Protection 3-21

4. CPU Arithmetic and Control 4-1

4.1. General 4-1

4.2. Arithmetic Section 4-1
4.2. 1. General Operation 4-1
4.2.1.1. Data Word 4-1
4.2. 1.2. Data Word Complement 4-2
4.2. 1.3. Absolute Values 4-2
4.2.2. Microprogrammed Control 4-2
4.2.3. Main Adder Characteristics 4-2
4.2.4. Fixed-Point Single- or Double-Precision Add or Subtract Overflow and 4-3
Carry
4.2.4.1. Overflow 4-3
4.2.4.2. Carry 4-3
4.2.4.3. Arithmetic Interrupt 4-4
4.2.5. Fixed-Point Division 4-4
4.2.6. Fixed-Point Multiplication 4-4
4.2.7. Floating-Point Arithmetic 4 ... 4
4.2.8. Floating-Point Numbers and Word Formats 4-5
4.2.8.1. Single-PreciSion Floating-Point Numbers 4-7
4.2.8.2. Double-Precision Floating-Point Numbers 4-7
4.2.8.3. Negative Floating-Point Numbers 4-7
4.2.8.4. Residue 4-8
4.2.9. Normalized/Unnormalized Floating-Point Numbers 4-8
4.2.10. Floating-Point Characteristic Overflow/Underflow 4-8
4.2. 10. 'I. Floating-Point Characteristic Overflow 4-8
4.2.10.2. Floating-Point Characteristic Underflow 4-9
4.2.10.:3. Floating-Point Divide Fault 4-9
4.2. 11. Fixed-Point to Floating-Point Conversion 4-9
4.2. 12. Floating-Point Addition 4-10
4.2. 13. Double-Precision Floating-Point Addition 4-10
4.2. 14. Floating-Point Subtraction (Add Negative) 4-10
4.2. 15. Floating-Point Multiplication 4-1 0
4.2. 16. Floating-Point Division 4-10
4.2. 17. Floating-Point Zero 4-1 1
4.2. 18. Byte Instruc~ions 4-1 1

4.3. Clontrol Section 4-1 1
4.3. 1. Instruction Word Format 4-1 1
4.3.2. Instruction Word Fields 4-12
4.3.2.1. Use of the f-Field 4-12
4.3.2.2. Description of the j-Fiefd 4-12
4.3.2.2.1. Use of the j-Field as an Operand Qualifier 4-12
4.3.2.2.2. Use of the j-Field to Specify Character Addressing 4-15
4.3.2.2.3. Use of j-Field as Partial Control Register Address 4-20
4.3.2.2.4. Use of j-Field as Minor Function Code 4-20
4.3.2.3. Uses of the a-Field 4-20
4.3.2.3. 1. Use of the a-Field to Reference an A-Register 4-20
4.3.2.3.2. Use of the a-Field to Reference an X-Register 4-21

1104 Rev. l'
tJII-MIIII8I

SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference

4.3.2.3.3. Use of the a-Field to Reference an R-Register .
4.3.2.3.4. Use of the a-Field to Reference a Jump Key
4.3.2.3.5. Use of the a-Field to Reference Halt Keys
4.3.2.3.6. Use of the a-Field as Minor Function Code
4.3.2.4. Use of the j- and a-Fields to Specify GRS Control Register Address
4.3.2.5. Use of the x-Field
4.3.2.6. Use of the h-Field
4.3.2.7. Use of the i-Field
4.3.2.8. Description of the u-Field
4.3.2.8. 1. Use of the u",:,Field as an Operand Address Designator
4.3.2.8.2. Use of the u-Field as an Operand Designator
4.3.2.8.3. Use of the u-Field as a Shift Count Designator
4.3.2.S.4. Restrictions on the Use of the u-Field

5,. Instruction Repertoire

5. 1 .. General

5.2. Load Instructions
5.2.1. Load A - loLA 10
5.2.2. Load Negative A - LN,LNA 11
5.2.3. Load Magnitude A - LM,LMA 1 2
5.2.4. Load Negative Magnitude A - LNMA 13
5.2.5. Load R - L,LA 23
5.2.6. Load X Modifier - LXM 26
5.2.7. Load X - loLX 27
5.2.S. Load X Increment - LXI 46
5.2.9. Double Load A - DL 71, 13
5.2.10. Double Load Negative A - DLN 71, 14
5.2. 11. Double Load Magnitude A - DLM 71, 15

5.3. Store Instructions
5.3. 1. Store A - S,SA 01
5.3.2. Store Negative A - SN,SNA 02
5.3.3. Store Magnitude A - SM,SMA 03
5.3.4. Store R - S,SR 04
5.3.5. Store Constant Instructions - XX 05; a - 00-07
5.3.S. Store X - S,SX 06
5.3.7. Double Store A - OS 71, 12
5.3.S. Block Transfer - BT 22

5.4. Fixed-Point Arithmetic Instructions
5.4.1. Add to A - A,AA 14
5.4.2. Add Negative to A - AN,ANA 15
5.4.3. Add Magnitude to A - AM,AMA 16
5.4.4. Add Negative Magnitude to A - ANM,ANMA 17
5.4.5. Add Upper - AU 20
5.4.S. Add Negative Upper - ANU 21
5.4.7. Add to X - A,AX 24
5.4.S. Add Negative to X - AN,ANX 2.5
5.4.9. Multiply Integer - MI 30
5.4.10. Multiply Single Integer - MS. 31
5.4. 11. Multiply Fractional - MF 32
5.4. 12. Divide Integer - 01 34
5.4. 13. Divide Singl. Fractional - D5F 35

4.:..21
4-21
4-21
4-21
4-22
4-22
4-23
4-23
4-24
4-25
4-25
4-25
4-26

5-1

i::-1

5-2
5-2
5-2
5-2
5-2
5-3
5-3
5-3
5-3
5-3
5-3
5-4

5-4
5-4
5-4
5-4
5-5
5-5
5-5
5-5
5-6

5-6
5-7
5-7
5-7
5-7
5-8
5-8
5-8
5-8
5-8
5-8
5-9
5-9
5-3

8804 Rev.1
~MHR

I SPERRY UNIVAC 1100/80 Systems
~'X4 Capability Processor and Storage Programmer Reference

5.4.14,. Divide Fractional - DF 36
5.4. 15. Double-Precision Fixed-Point Add - DA 71, 1 0
5.4. 1 6. Double-Precision Fixed-Point ,Add Negative - DAN 71, 1 1
5.4.17. Add Halves - AH 72,04
5.4.18. Add Negative Halves - ANH 72,05
5.4.19. Add Thirds - AT 72,06
5.4.20. Add Negative Thirds - ANT 72,07

uJIOAn LEVU
Content~6

PAGE

5-10
5-10
5-10
5-10
5-10
5-11
5-11

5.5. Floating-Point Arithmetic Instructions 5-11
5.5.1. Floating Add - FA 76,00 5-11
5.5.2. Floating Add Negative - FAN 76,01 5-12
5.5.3. Double-Precision Floating Add - DFA 76,10 5-12
5.5.4. Double-Precision Floating Add Negative - DFAN 76,11 5-13
5.5.5. Floating Multiply - FM 76,02 5-13
5.5.8. Double-Precision Floating Multiply - DFM 78,12 5-14
5.5.7. Floating Divide - FD 76,03 5-15
5.5.S. Double-Precision Floating Divide - DFD 76,13 5-15
5.5.9. Load and Unpack Floating - LUF 76,04 5-16
5.5.1(). Double Load and Unpack Floating - DFU 76,14 5-16
5.5.1 'I. Load and Convert tQ Floating - LCF 76,05 5-17
5.5. 1;t Double Load and Convert to Floating..;. DFP, DLCF 76,15 5-17
5.5.1:3. Floating Expand and Load - FEL 76,16 5-18
5.5. 14. Floating Compress and Load - FCL 76,17 5-18
5.5.1 !5. Magnitude of Characteristic Difference to Upper - MCL1U 76,Oe 5-19
5.5.16. Characteristic Difference to Upper - COU 76,07 5-19

5.S. $earch and Masked-Search Instructions 5-20
5.6.1., Search Equal - SE 62 5-21
5.6.2.. Search Not Equal - SNE 63 5-22
5.6.3" Search Less Than or Equal/Search Not Greater - SLE,SNG 64 5-22
5.6.4. Search Greater - SG 65· 5-23
5.6.5. Searcn Within Range - SW 66 5-23
5.6.6, Search Not Within Range - SNW 67 5-24
5.6.7. Masked Search Equal - MSE 71,00 5-24
5.6.S. Masked Search Not Equal - MSNE 71,01 5-25
5.6.9. Masked Search Less Than or Equal/Not Greater - MSLE,MSNG 71,02 5-25
5.6.10. Masked Search Greater - MSG 71,03 5-25
5.6.11. Masked Search Within Range - MSW 71,04 5-26
5.6.12. Masked Search Not Within Range - MSNW 71,05 5-26
5.6. 13. Masked Alphanumeric Search Less Than or Equal - MASL 71,06 5-27
5.6.14. Masked Alphanumeric Search Greater - MASG 71,07 5-28

5.7. Test (or Skip) Instructions 5-28
5.7.1. Test Even Parity - TEP 44 5-28
5.7.2. Test Odd Parity - TOP 45 5-29
5.7.3. Test Less Than or EqualITest Not Greater Than Modifier - TLEM,TNGM 47 5-29
5.7.4. Test Zero - TZ 50 5-29
5.7.5. Test Nonzero - TNZ 61 5-30
5.7.S. ' Test Equal - TE 52 5-30
6.7.7. Test Not Equal - . TNE 53 5-30
5.7.EI. Test Les, Than or EqualITest No't Greater - TLE,TNG 54 5-30
5.7.9. Test Greater - TG 55 5-31
5.7.10. Test Within Range - TW 56 5-31
5.7.11. Test Not Within Range - TNW 57 5-31
5.7. '12. Test Positive - TP 80 5-32

8104 Rev.1
Ufl-MII ••

SPERRY UNIVAC 1100/80 Syttems
4x4 Capability Processor and Storage Programmer Reference

5.7.13. Test Negative - TN 61
5.7. 14. Double-Precision Test Equal - DTE 71, 17

5.S. Shift Instructions
5.8. 1. Single Shift Circular - SSC 73,00
5.8.2. Double Shift Circular - DSC 73,01
5.S.3. Single Shift Logical - SSL 73,02
5.S.4. Double Shift Logical - DSL 73,03
5.S.5. Single Shift Algebraic - SSA 73.04
5.8.6. Double Shift Algebraic - DSA 73,05
5.8.7. Load Shift and Count - LSC 73.08
5.S.8. Double Load Shift and Count - DLSC 73,07
5.S.9. Left Single Shift Circular - LSSC 73,10
5.S. 1 O. Left Double Shift Circular - LOSC 73, 11
5.S.11. Left Single Shift Logical - LSSL 73, 12
5.S.12. Left D9uble Shift Logic~1 - LOSL 73. 13

72,01
74,13

5.9. Unconditional Jump Instructions
5.9. 1. Store Location and Jump - SW
5.9.2. Load Modifier and Jump _. LMJ
5.9.3. Allow All Interrupts and Jump - AAIJ 74,07

5.10. Bank Descriptor Selection Instructions
5. 10. 1. Load Bank and Jump - LBJ 07,17
5.10.2. Load I-Bank Base and Jump - LIJ 07, 13
5.10.3. Load D-Bank Base and Jump - LOJ 07, 12

5. 11. Conditional Jump Instructions
5.11. 1. Jump Greater and Decrement - JGD 70
5. 11.2. Double-Precision Jump Zero - DJZ 71.16
5. 11.3. Jump Positive and Shift - JPS 72,02
5.11.4. Jump Negative and Shift - JNS 72,03
5. 11.5. Jump Zero - JZ 74,00
5.11.S. Jump Nonzero - JNZ 74,01
5.11.7. Jump Positive - JP 74,02
5. 11.8. Jump Negative - IN 74.03
5.11.9. Jump/Jump Keys - J,JK 7~,04
5. 11. 10. Halt Jump/Halt Keys and Jump - HJ,HKJ 74,05
5.11.11. Jump No Low Bit - JNB 74,10
5.11.12. Jump Low Bit - JB 74.11
5. 11. 13. Jump Modifier Greater and Increment - JMGI 74, 12
5.11.14. Jump Overflow - JO 74,14; a - 0
5.11.15. Jump Floating Underflow - JFU 74,14; a - 1
5. 11 ~ 18. Jump Floating Overflow - JFO 74, 14; a - 2
5.11.17. Jump Divide Fault - JDF 74.14; a - 3
5. 11. 18. Jump No Overflow - JNO 74, 15; a - 0
5.11. 19. Jump No Floating Underflow - JNFU 74,15; a - 1
5. 11.20. Jump No Floating Overflow - JNFO 74. 15; a - 2
5.11.21. Jump No Divide Fault - JNDF 74,15; a - 3
5. 11.22. Jump Carry - JC 74,1 a
5. 11.23. Jum" No Carry - JNC 74, 17

5. 12. Logical Instructions
5. 12. 1. Logical OR - OR 40
5. 12.2. Logical Exclusive OR - XOR 41

UPOATI LIVIl.
Contents-6

PAGI

5-32
5-32

5-32
5-34
5-34
5-34
5-35
5-35
5-35
5-35
5-36
5-36
5-36
5-36
5-37

5-37
5-37
5-37
5-38

5-38
5-38
5-39
5-39

5-39
5-40
5-40
5-40
5-40
5-40
5-41
5-41
5-41
5-41
5-41
5-42
5-42
5-42
5-42
5-43
5-43
5-43
5-43
5-43
5-43
5-44
5-44
5-44

5-44
5-45
5-45

8804 Aev.1 I SI:IIERRY UNIVAC 1100/80 Systems
_~~~K4 Capability Processor and Storage Programmer Reference

5.12.3., Logical AND - AND 42
5. 12.4., Masked Load Upper - MLU 43

5. 13. Miscellaneous Instructions
5. 13. 1. Load OR Designators - LPo 07, 14
5.13.2. Store DR Designators - SPO 07,15
5.13.3., Execute - EX 72,10
5.13.4. Executive Request - ER 72,11
5.13.5. Test and Set - TS 73,17; a =- 0
5.13.6. Test and Set and Skip - TSS 73,17; a=-1
5.13.7., Test and Clear and Skip - TCS 73,17; a - 2
5.13.8. Test and Set Alternate - TSA 73,17; a - 4
5.13.9. Test and Set and Skip Alternate - TSSA 73,17; a =- 5
5. 13. 1 ~J. No Operation - NOP 74,06
5.13.11. Store Register Set - SRS 72,16
5.13.1 :2. Load Register Set - LRS 72,17
5.13.13. Test Relative Address - TRA 72.15
5. 13. 14. Increase Instructions - XX 05; a = 10-17

5. 14. Byte Instructions
5. 14. 1. Byte Move - BM 33,00
5. 14.2., Byte Move With Translate - BMT 33,01
5. 14.3. Byte Translate and Compare - BTC 33,03
5. 14.4. Byte Compare - BC 33,04
5. 14.5. Edit - EDIT 33,07
5. 14.5. 1. Function Byte
5.14.5.2. Subfunction Byte
5. 14.6. Byte to Binary Single Integer Convert - BI 33,10
5. 14.7. Byte to Binary Double Integer Convert - Bol 33, 11
5.14.8. Binary Single Integer to Byte Convert - IB 33,12
5.14.9. Binary Double Integer to Byte Convert - DIB 33,13
5. 14. 1 O. Byte to Single Floating Convert - BF 33, 14
5.14.11. Byte to Double Floating Convert -' BDF 33,15
5.14.1 :2. Single Floating to Byte Convert - FB 33,16
5. 14. 13. Double Floating to Byte Convert - DFB 33, 17
5.14.14. Byte Add - BA 37,06
5.14.15. Byte Add Negative - BAN 37,07

5.15. Executive Instructions
5.15.1. Prevent All Interrupts and Jump - PAIJ 72.13
5.15.2. Load Dayclock - LOC 73,14,10
5.15.3. Enable/Disable Oayclock - EOC,OOC 73,14, 11-12
5.15.4. Select Daycfock - SOC 73,14, 13
5.15.5. Select Interrupt Locations - SIL 73,15, 00
5.15.6. Load Breakpoint Register - LBRX 73,15, 02
5.15.7,. Store Processor 10 - SPfD 73,15, 05
5. 15.8.. Load Quantum Timer - LQT 73, 15, 03
5. 15.9.. Load Base - LB 73, 1 s: 1 0
5.15.10. Load Limits - LL 73,15, 1 '1
5.15.11. Load Addressing Environment·· LAE 73,15, 12
5 .. 15.12. Store Quantum Time - SQT 73,15, 13
5.15.13. Load Designator Register - LD 73,15, 14
5.15.14. Store Designator Register - SO 73,15, 15
5.15.15. User Return - UR 73,15, 16
5.15.16. Reset Auto-Recovery Timer - RAT 73,15, 08

UPDATE LIVIL
Contents--7

!tAOI

5-46
5-46

5-46
5-46
5-47
5-47
5-47
5-48
5-48
5-48
5-48
n-48
5-49
5-49
5-49
5-49
5-51

5-51
5-54
5-56
5-57
5-58
5-58
5-59
5-60
5-64
5-64
5-64
5-65
5-65
5-67
5-67
5-68
5-68
5-69

5-69
5-69
5-70
5-70
5-70
5-70
5-73
5-74
5-74
5-74
5-74
5-74
5-75
5-75
5-75
5-75
5-76

8104 Rev.1 SPERRY UNIVAC 1100/80 Systems
4x4 Capability ProCAssor and Storage Programmer Reference

5.15.17. Toggle Auto-Recovery Path - TAP 73,15, 07
5. 15. 18. -Store System Status - SSS 73,15, 17
5.15.19. Initiate Interprocessor Interrupt - III X 73,15, 04
5.15.20. Diagnostics - 73,14, 14 - 17
5. 15.21. Initiate Maintenance Interrupt - IMI 72,00
5. 15.22. Input/Output Instructions

5. 16. Invalid Function Codes

«3. Input/Output

6. 1. General

6.2. Functional Characteristics
6.2. 1. Channels
6.2.2. Subchannels

6.3. Control of Input/Output Devices
6.3. 1. Input/Output Device Addressing
6.3.2. States of the Input/Output System
6.3.3. Condition Codes
6.3.4. Instruction Format and Channel Address Word
6.3.5. Instruction Operation

6.4. I/O Instructions
6.4.1. Operation Code - 75,00
6.4.2. Start I/O Fast Release - SIOF 75,01
6.4.2.1. Byte or Block Multiplexer Channel Operation
6.4.2.2. Word Channel Operation
6.4.3. Operation Code ~ 75,02

.6.4.4. Test Subchannel - TSC 75,03
6.4.4. 1. Byte or Block Multiplexer Channel
6.4.4.2. Word Channel Operation
6.4.5. Halt Device - HDV 75,04
6.4.5. 1. Byte or Block .Multiplexer Channel Operation
6.4.5.2. Word Channel Operation
6.4.6. Halt Channel - HCH 75,05
6.4.6. 1. Byte or Block Multiplexer Channel Operation
6.4.6.2. Word Channel Operation
6.4.7. Load Channel Register - LCR 75,10
6.4.7. 1. Byte and Block Multiplexer Channel
6.4.7.2. Word Channel Operation
6.4.8. Load Tabl. Control Words - LTCW 75,11
6.4.8. 1. Byte and Block Multiplexer Channel
6.4.8.2. Word Channel Operation

6.5. execution of I/O Operations
6.5. 1. Channel Command Word
6.5.2. CCW Completion

6.6. Command Code
6.6. 1. Transfer in Channe' Command - TIC
8.6.2. Store Subchannel Status Command - SST

5-76
5-76
5-76
5-76
5-77
5-77

5-77

6-1

6-1

6-1
6-3
6-5

6-5
6-5

. 6-6
6-9
6-14
6-15

6-16
6-16
6-17
6-17
6-18
6-18
-6-19
6-19
6-19
6-20
6-20
6-21
6-21
6-21
6-22
6-22
6-22
6-23
6-23
6-23
6-24

6-25
6-25
6-28

6-35
6-36
6-37

8804 Rev.' I f;PERRY UNIVAC' 100/80 Systems
Uf'-HUMIH ~'x4 Capability Processor and Storage Programmer Reference

6.7. Data Transfer
6.7.1. Format Flags (E, A, B, and C)
6.7.2. Skip Data - SK
6.7.3. Data Address Decrement - DAD
6.7.4. Data Address Lock - DAL

6.S. Chaining Operations
6.S.1. Data Chaining
6.S.2. Command Chaining
8.S.3. EI Chaining (ESI Word Interface Only)
6.S.4. Truncated Search
6.S.S. Truncated Search Restrictions

6.9. ~nterrupt Generation Flags
6.9. 1. Progra.m Controlled Interrupt - PCI
6.9.2. Monitor - MON (Word Channel Only)

6.10. Status

6.11. Instruction Status

6. 12. Status Table

6. 13. Store Subchannel Status - SST

6. 14. Subchannel Status
6. 14. 1. SIOF Device Check (Byte or Block Multiplexer Channels Only)
8. 14.2. SIOF-EI Collision (Word Channel Only)
8. 14.3. Interface Control Check
6. 14.4. Channel Control Check
6. 14.5. Channel Data Check
6.14.EI. A Format Stop Code (Block Multiplexer Channel Only)
6. 14.7. Program Check
6. 14.2. Monitor (Word Channel Only)
6.14.9. Incorrect Length (Byte or Block Multiplexer Channels Only)
6. 14. 10. Program Controlled Interrupt

6.15. Device Status

6. 1 6. Data Chaining Precautions

6. 17. Subchannel expansion Feature and Channel Base Register

6. 1 S. Interrupt Mask Register

6. 1 9. Initial load

6.20. Back-to-Back Operation (Word Channel Only)

6.2 1. Priorities

6.22. Basic Programming Procedure

UPOATI LIYIL
Contents-9

PAGI

6-37
6-37
6-38
6-38
6-38

6-38
6-39
6-39
6-40
6-41
6-42

6-44
6-44
6-44

6-45

6-50

6-51

6-53

6-53
6-53
6-53
6-53
6-54
6-54
6-54
6-54
6-55
6-55
6-56

6-56

6-57

6-64

6-64

6-66

6-66

6-67

6-67

8804 Rev.1 SPERRY UNIVAC 1100/80 Systema
4x4 Capability Processor and Storage Programmer Reference

6.23. Programming Examples

7. Interrupts

7. 1. General

7.2. Interrupt Sequence
7.2.1. Program Status
7.2.2. Addressing Status
7.2.3. Interrupt Status

7.3. Interrupt Types
7.3. 1. Program Exception Interrupts
7.3.2. Arithmetic Exception Interrupts
7.3.3. Program-lnitiated Interrupts
7.3.4. Interprocessor Interrupt
7.3.5. Clock Interrupts
7.3.S. Storage Check Interrupts
7.3.6. 1. Immediate Storage Checks
7.3.6.2. Delayed Storage Check Interrupts
7.3.6.2. 1. Internal SIU Check
7.3.6.2.2. SIU/MSU Interface Check
7.3.6.2.3. SIU/MSU Read or Partial Write ECC Check
7 .3~ 7. Power Check Interrupt
7.3.8. Byte Status Code
7.3.9. Multiprocessor Interrupt Synchronization

7.4. Input/Output Interrupts
7.4. 1. Machine Check Interrupts
7.4.2. Normal InterruptS
7.4.3. TAbled Interrupts

7.5. Interrupt Errors
7.5.1. Processor Interrupt Errors
7.5.2. Input/Output Interrupt Errors
7.5.2. 1. Cause of Even/Odd I/O Interrupt Errors
7.5.2.2. Operation of Even/Odd I/O Interrupts
7.5.2.3. Software Action on Even/Odd I/O Interrupts
7.5.2.4. Logging

U. Executive Control

8. 1. General

8.2. Processor State
8.2. 1. Designator Register
8.2.2. Dayciock

8.3. Introduction to Addressing
8.3. 1. Main Storage Organization
8.3.2. Program ~egmentation
8.3.3. General Theory of 1100/80 Addressing
8.3.4. Bank Descriptor
8.3.5. Umits
8.3. S. Control Information

Contenta-10
,AGI

6-68

7-1

7-1

7-3
7-3
7-4
7-5

7-5
7-5
7-6
7-8
7-9
7-10
7-10
7-11
7-12
7-13
7-14
7-16
7-17
7-18
7-18

7-19
7-19
7-21
7-29

7-32
7-32
7-33
7-33
7-33
7-33
7-35

8-1

8-1

8-1
8-1
8-7

8-8
8-8
8-8
8-8
8-9
8-9
8-9

8804 ADv.1 . I SP'ERAY UNIVAC 1100/80 Systems
~_~,4 Capability Processor and Storage Programmer Reference

8.3.7. Bank Descriptor Registers
8.3.8. Address Generation
S.3.9. P-Capturing Instructions

Appendbc: A. Abbreviations, Definitions, and Symbols

Appendbc: B. Summary of Word Formats

Appendix C. Instruction Repertoire

Appendix D. Code Conversions .

D. 1. ASCII and Fieldata Code Conversion Tables

0.2. Special Characters in ASCII

Appendix E. Storage Configurations

E.1. General

E.2. Dt3finition of Terms

E.3. Address Interleave
E.l. 1.)~ddress Interleaving in Segment/Cabinet Storage Configur~ltions
E.l. 1. 1. One Segment/One Bank
E.3.1.2. One SegmentITwo Banks
E.l.l.3. Two SegmentslTwo Banks
E.l.l.4. Two SegmentslThree Banks - Basic
E.l.l.S. Two Segments/Three Banks - Alternate
E.l.l.6. Two Segments/Four Banks
E.l. 1.7. Trrae Segments/Six Banks
E.3.1.8. Four Segments/Eight Banks
E.3. 1.8. 1. Partitioned by Storage Halves
E.3.1.8.:2. Partitioned Across Storage Halves
E.3.1.9. Eight Segments/Eight Banks
E.l.2. Address Interleaving in Segment/Bank Storage Configurations
E.J.2.1. Four Segments/Four Banks
E.3.2.2. Degraded Mode - Failed Segment
E.3.2.3. Degraded Mode - Failed Bank

E.4. S.!tgmentiCabinet Storage Configurations
E.4.1. (Jne-Segment Configurations
E.4.1.1. One Segment/One Bank
E.4.1.2. One SegmentlTwo Banks
E.4.2. Two-Segment Configurations
E.4.2.1. Two-Segments/Two Banks - Basic
E.4.2.2. Two Segments/Two Banks - Alternate
E.4.2.3. Two Segments/Three Banks - Basic
E.4.2.4. Two Segments/Three Banks - Alternate
E.4.2.S. Two Segments/Four Banks - Basic
E.4.2.6. Two Segments/Four Banks - Alternate
E.4.3. 'rhree-Segment Configurations
E.4.l.1. Three SegmentslThree Banks
E.4.J.2. Three Segments/Four Banks
E.4.l.3. Three Segments/Five Banks

Contents-1 1
IIAGE

8-9
8-10
8-13

A-l

B-1

C-1

0-1

0-1

0-6

E-l

E-1

E-2
E-3
E-J
E-4
E-S
E-6
E-7
E-8
E-9
E-10
E-l1
E-12
E-13
E-15
E-15
E-16
E-17

E-18
E-18
E-18
E-19
E-20
E-20
E-21
E-22
E-23
E-24
E-25
E-26
E-26
E-27
E-28

8804 Rev.1
~

SPERRY UNIVAC 1100/80 Syttema
4x4 Capability Processor and Storage Programmer Reference

E.4.3.4. Three Segments/Six Banks
E.4.3.4.1 .. Partitioned by SIU halves
E.4.3.4.2. Partitioned Across SIU Halves
E.4.4. Four-Segment Configurations
E.4.4.1. Four SegmentslTwo Banks - Dual Cluster
E.4.4.2. Four Segments/Three Banks - Dual Cluster
E.4.4.3. Four Segments/Four Banks
E.4.4.4. Four Segments/Four Ban,ks - Dual Cluster
E.4.4.5. Four Segments/Six Banks
E.4.4.6. Four Segments/Eight Banks
E.4.5. Six-Segment Configurations
E.4.S.1. Six SegmentslThree Banks - Dual Cluster
E.4.S.1.1. Partitioned by Cluster and SIU Halves
E.4.5.1.2. Partitioned by Cluster Across SIU Halves
E.4.5.1.3. Partitioned Within Cluster and SIU Halves
E.4.5.2. Six Segments/Four Banks - Dual Cluster
E.4.5.3. Six Segments/Five Banks - Dual Cluster
E.4.5.3.1. Partitioned by Cluster
E.4.5.3.2. Partitioned by Cluster by SIU Halves
E.4.5.3.3. Partitioned by Cluster Across SIU Halves
E.4.5.4. Six Segments/Six Banks - Dual Cluster
E.4.6. Eight-Segment Configurations
E.4.6.1. Eight Segments/Four Banks - Dual Cluster
E.4.6.1.1. Par~itioned by Cluster and SIU Halves
E.4.6.1.2. Par:itioned by Cluster Across SIU Halves
E.4.6.1.3. Partitioned Within Cluster by SIU Halves
E.4.6.1.4. P~rtitioned Within Cluster Across SIU Halves
E.4.6.1.5. Minimal Storage Partitioned Out
E.4.6.2. Eight Segments/Six Banks - Dual Cluster
E.4.6.2.1. Partitioned by Cluster
E.4.6.2.2. ~artitioning One MSU Out
E.4.6.3. Eight Segments/Eight Banks - Dual Cluster
E.4.6.3.1. Partitioned by Cluster Across SIU Halves
E.4.6.3.2. Partitioned by Cluster by SIU Halves

E.5. Segment/Bank Storage C&nfigurations
E.S. 1. One Segment/One Bank
E.5.2. Two SegmentslTwo Banks
E.S.2.1. Degraded Mode - Failed Segment
E.5.2.2. Degraded Mode - Failed Bank
E.5.3. Three SegmentslThree Banks
E.5.3.1. Degraded Mode - Failed Lower Segment
E.5.3.2. Degraded Mode - Failed Upper Segment
E.S.3.3. Degraded Mode - Failed Lower Bank
E.S.3.4. Degraded Mode - Failed Upper Bank
E.5.4. Four Segments/Four Banks
E.5.4.1. Degraded Mode - Failed Segment
E.5.4.2. Degraded Mode - Failed Bank
E.5.4.3. Partitioned by SIU Halves
E.5.4.4. Partitioned Across SIU Halves

U..oATi L.IVIL
Contenta-' 2

"AGE

E-29
E-30
E-31
E-32
E-32
E-34
E-35
E-36
E-38
E-39
E-40
E-40
E-41
E-42
E-43
E-44
E-46
E-47
E-48
E-49
E-50
E-52
E-52
E-53
E-54
E-55
E-56
E-57
E-58
E-59
E-60
E-61
E-62
E-63

E-64
E-64
E-65
E-66

. E-67
E-68
E-69
E-70
E-71
E-72
E-73
E-74
E-75
E-76
E-77

8604 Rev.1 I SPERRY UNIVAC 1100/80 Systems
~~--L 4x4 Capability Processor and Storage Programmer Reference UItOATE lIV£L

Index

User Comment Sheet

Fiigures

Figure 1-1. SPERRY UNIVAC 1100/82 2x2 System Segment/Cabinet Configuration
Figure 1-2. SPERRY UNIVAC 1100/82 2x2 System Segment/Bank Configuration
Figure 1-3. SPERRY UNIVAC 1100/84 4x4 System Segment/Cat1inet Configuration
Figure 2-1. System Status Word Format
Figure 3-1. First Level Storage Interleave
Figure 3-2. Second Level Storage Interleave
Figure 3-3. Configurations for Addressing Modes
Figure 4-1. Data Transfers from Storage
Figure 4-2. Data Transfers to Storage
Figure 4-3: J-Register Format for Character Addressing Mode
Figure 4-4. Byte Selected for Valid Combinations of BL and Ob Field Values
Figure 5-1. J-Register Format
Figure 5-2.. Select Interrupt Locations
Figure 6-1. 1100/80 Input/Output Unit
Figure 6-2. Byte or Block Multiplexer Channel and Word Channel Configuration
Figure 6-3,. Block Multiplexer Channel Example CCW List
Filgure 6-4. Word Channel 151 Interface Example CCW List
Fiigure 7-1. Format of Guard Mode Interrupt Status
Fiigure 7-2 .. Format of Addressing Exception Interrupt Status
Fiigure 7-3. Format of Breakpoint Interrupt Status
Fiigure 7-4. Format of Interprocessor Interrupt Status
Fiigure 7-5" Format of Immediate Storage Check Interrupt Status
Fiigure 7-6. Internal SIU Check Format
Fiigure 7-7. SIU/MSU Interface Check Format
Fugure 7-8. SIU/MSU Read or Partial Write ECC Check Format
Fiigure 7-9. Power Check Interrupt Status Word
Fiigure 8-2. Bank Descriptor and BOT Pointer Formats
Fiigure 8-3. Base Value Selection

Tables

Contenlts-1 3
'AGE

1-3
1-4
1-5
2-4
3-9
3-10
3-12
4-13
4-14
4-16
4-17
5-52
5-71
6-2
6-4
6-69
6-71
7-7
7-8
7-9
7-10
7-12
7-13.
7-14
7-16
7-18
8-10
8-12

Table 1-1. Minimum/Maximum Functional Configurations 1-6
Table 3-1" Fixed Address Assignments 0200-0237 3-4
Table 3-2. Fixed Address Assignments 0240-0277 3-5
Table 3-3. System Addressing Modes 3-1 1
Table 3-4. MSU Address Generation 3-13
T'able 3-5" SIU/MSU Address Bit Manipulation 3-14
T'able 3-6. GRS Register Assignments 0 Through 63 3-16
T'able 3-7" GRS Register Assignments 64 Through 127 3-17
T'able 4-1" Instructions Thot Condition the Carry and Overflow Designators 4-3
T'able 4-2, Sign Bit Combinations Which Set Carry Designator 4-4
T'able 4-3, Single-Precision Floating-Point Characteristic Values and Exponent Values 4-6
T'able 4-4. Double-Precision Floating-Point Characteristic Values and Exponent Values 4-6
l'able 4-5. Explanation of J-Register Fields for Character Addressing Mode 4-16
"abls 4-6. Output Ob Values Produced When BL == 0 4-18
Table 4-7. Output Ob Values Produced When BL == 1 4-19
"able 4-8. Output Ob Values Produced When BL == 2 4-19
"able 4-9. Output Ob Values Produced When BL =- 3 4-20

8804 Rev.1
UP-NUMIIR

SPERRY UNIVAC 1100/80 Syatems .
4x4 Capability Processor and Storage Programmer Reference

Table 4-10. Summary of Use of i-Field
Table 5-1. Truth Table for Logical OR, XOR, and AND
Ta,ble 5-2. J-Register Increment Field Values
Table 5-3. Byte Status Word
Table 5-4. Byte String Sign Codes
Table 5-5. Function Byte Interpretation
Table 5-6. Subfunction Byte Interpretaion
Table 5-7. Summary of Staging Register and J-Register Fields
Table 5-8. General Input' Format for Byte-to-Floating Instructions
Table 5-9. Invalid Function Codes
Table 6- t . Device Addressing ,
Table 6-2. Channel, Subchannel, and Device States
Table 6-3. I/O System Composite State vs Condition Codes
Table 6-4. I/O Instruction Condition Codes for Byte or Block Multiplexer
Channels
Table 6-5. I/O Instruction Condition Codes for Word Channels
Tabie 6':'6. MSU Data Format - 36-Bit Format, Forward Operation
Tcable 6-7. MSU Data Format - 36-Bit Format, Backward Operation
Table 6-8. Format Flags vs Type of Channel
Tuble 6-9. CCW Flags vs Termination Conditions on Byte or Block Multiplexer
Channel
Table 6-10. CCW Flags vs Termination Conditions on Word Channel
Table 6-11. CCW Command Code
Table 6-12. I/O Statu~
T~Jble 6-13. IOU Fixed Addresses
Table 6-14. Byte Data I'acking on Abnormal Boundaries
TiJble 6-15. Scratch Pad Formats for Subchannel Expansion Feature
Table 6-16. Interrupt Mask Register
Table 7-1. Interrupt Priority
Table 7-2. Internal SIU Check
T'Clble 7-3. SIU/MSU Interface Check
TiBbie 7-4. SIU/MSU Read or Partial Write ECC Check'
Table 7-5. Machine Check lAW Bit Description
T,able 7-6. Normal Interrupt lAW Bit Description
T,able 7-7. Normal Interrupt CSW Bit Description
Table 7-8. Tabled Interrupt lAW Bit Description
Table 7-9. Tabled Interrupt CSW Bit Description
Table C-1. Mnemonic/Function Code Cross-Reference
Table C-2. Instruction Repertoire
Table C-3. Octal vs Mnemonic Instruction COde
Table 0-1. Fieldata to ASCII Code Conversion
Table 0-2. ASCII to Fieldata Code Conversion

Content .. 1 4
"AGI

4-24
5-45
5-53
5-55
5-56
5-59
5-61
5-63
5-66
5-78
6-8
6-9
6-10
6-11

6-13
6-30
6-31
6-32
6-33

6-35
6-36
6-46
6-49
6-69
6-66
6-66
7-2
7-13
7-15
7-16
7-20
7-22
7-24
7-30
7-32
C-1
C-4
C-20
0-2
0-4

8804 Rev. 1
UI'-MIMHR

I SIJERRY UNIVAC 1100/80 Systems
~X4 Capability Processor and Storage Programmer Reference

1. 1. General

UPOATI LEVEL
1-1

PAGE

1. Introduction

This manual provides information on the SPERRY UNIVAC 1100/80 Systems central processor unit
(CPU), main storage unit (MSU), buffer storage interface unit (SIU), and input/output unit (IOU).

ThEt SPERRY UNIVAC 1 100/80 Systems are high-performance, software compatible, extensions to
the proven SPERRY UNIVAC Series 1100 Systems. The 1100/80 Systems enhance the efficiency
of 1the Serie:s 1100 Systems by offering dependable and highly effective processing in real-time,
dernand, and batch modes and excel in multiprocessing applications.

Although the Series 1100 Systems may differ in hardware design, .software compatibility is
maintained. All components of the 1100/80 Systems (CPUs, IOUs, MSUs, SIUs, and peripherals~ are
corltrolled by the SPERRY UNIVAC Series 1100 Operating System. Industry standard language
processors and application software are provided. The flexibility of the 1100/80 Systems allows the
USElr to selec:t a sy~tem to best meet his individual requirements.

1.2~. System Components and Configurations

ThE. 1100/80 Systems configurations range from a 1 x 1 (one CPU and one IOU) system up to a 4x4
(follr CPUs and four IOUs~ system. Other system components include: main storage units, storage
intEtriace units, system console, system transition unit system maintenance unit, and
motor/alternators. Table 1-1 lists all fully supported configurations. Processor organization is
baslicaUy that of a multitask processor that operates in a multiprogramming environment. A 2x2
configuration is shown in Figure 1-1 and Figure 1-2. Figure 1-3 shows a 4x4 configuration.

ThEt expansion capabilities of the 1100/80 Systems units are:

• Main storage - expandable in 524K word increments to a maximum of 4194K words.

• Storagn interface unit - expandable in 4K word increments to a maximum of 16K words. Two
SIUs are the maximum for any configuration, one per cluster.

• Central processor unit - one to three CPUs' may be added to the system to form clusters of two
CPUs nrtaximum. Each cluster has access to main storage through its own SIU. Each CPU in
a clust~tr can access only the fOUs within the same cluster (i.e., no ring configurations).

• Input/C)utput unit - one to three IOUs may be added to the system to form clusters with the CPUs.
No mo,.e than two IOUs may be present in a cluster. Each IOU can contain up to eight channel
modules which gives a total of 32 channel modules for a maximum system.

8eo4 Rev.1 SPERRY UNIVAC 1100/80 SysUtrm
4x4 Capability Processor and Storage Programmer Reference UPDAlI LEYIL

1-2
'AGI

• System transition unit - the system transition unit (STU) may be expanded to control and partition
SIU segments, MSU banks, CPUs, and IOUs, into two smaller independent systems called
applications, or offline for maintenance.

• System console - one or more system consoles may be added to the system, depending on
configuration requirements and user requirements.

• System maintenance unit - up to two system maintenance units (SMUs) may be configured in
a 2x2 system, and up to four SMUs may be configured in a 4x4 system.

• Motor/alternator - one to three motor/alternators may be used with the system, depending up'on
system power requirements and upon degraded mode operation requirements.

The 1100/80 System can also include a subsystem availability unit which, when used in conjunction
W'ith a byte channel transfer switch, can be used for partitioning both byte and word subsystems from
a remote location.

1.2. 1. Central Processor Unit

Tne CPU is the central element of a large-scale system that is capable of serving both business and
scientific applications in batch, demand, and real-time environments. The CPU provides compatibility
with prior Series 1100 Systems at the user object code level, depending on internal code selections,
p'8ripheral configurations, and software implementation of hardware enhancements and user
irtterlaces.

The basic CPU consists of the following components:

I' A control and arithmetic section that includes fixed-point and floating-point arithmetic:
byte-oriented instruction handling; logical data manipulation; instruction, interrupt, and
arithmetic control and control storage.

II A maintenance section which acts as a device and a control during offline maintenance
procedures initiated, by the maintenance processor. ,-

I. Interfaces for two IOUs, one SIU, one SMU, one STU, and the system interrupt network.

'''e CPU has the following general characteristics:

.. A complete set of arithmetic, logical, manipulative, data transfer, and sequence control
instructions.

• A comprehensive relative addressing mechanism providing program segmentation and storage
protection.

H An absolute addressing range of 16 million 36-bit words.

H A basic instruction fetch period of 200 nanoseconds.

• A general purpose microprogrammed arithmetic section.

.. A scientific accelerator module (SAM) feature that increases the execution speed of scientific
floating-point type programs.

8804 Rev. 1 I SIIIERRY UNIVAC 1100/80 Systems
IJI'.MIMIID _~X4 Capability Processor and Storage Programmer Reference

STORAGE 0 ,-_._----.,.-------,
1 I 1
1 1 ,
1 262K 1 262K
I 1

t282K 262K

MMA MMA

STORAGE 1
,-------.,. -------,
1 I I
1 , I
1 262K I 262K I , 1 I

262K 262K

MMA MMA

j-------------

STORAGE 2
i - - - - - -.,. - - - - - --I
1 I I
I I I
I 262K 1 262K I
1 I I
I-------..L-------I
til

I 262K I 262K 1
1 1 I
1 I I
r - - -- - - '1' - - -- - --I
1 1 I
1 MMA I MMA 1
t I I
1- _ -,. ___ 1. ___ 1_ - - ..!

l-------.J
1
1

--__ ~. __ I

UPDATI LIYIL

STORAGE 3

--------~-------1 I I I
I I I

262K I 262K I
I I I

~-------~-------: I I I

: 262K : 262K ~
I I I

~-------r-------, I I I

: MMA : MMA :
I I I

l ___ ~------------, ' j ______ .J

, , ,
t

StU 1 r------------------------------~

Ii
I

--

[

4K 4K

MMA MMA

I

CPU

0

~

-------,
I

IOU IOU I
I

0 EXP. I
I _------

SYST~M
TRANSITlON

UNIT (1)

NOTES:

I

t
_I ~

4K 4K

MMA MMA

CPU
1

I I -------,
I

IOU IOU I
I

1 EXP. I
1 .-,-_ ... _---

400 Hz
MOTOR! ALTERNATOR

(2)

1. Option.' .xp8n.ion.

2. MM.4 - Multi-modul. 8t:C ••• unit

SYSTEM

MAINTENANCE

UNIT (1 or 2)

SYSTEM

CONSOLES

(2 or more,

Figur. 1-1. SPERRY UNIVAC 1100/82 2x2 S~tfIm S.gmtHfr/C8b;n.t Configur8tion

SPeRRY UNIVAC 1100/80 System.
4x4 Capability Processor and Storage Programmer Reference

STORAGE 0
r'------.,.-------,
I I I
I I I
I 262K I 262K I
I I I

262K 262K

MMA MMA

:

SIU

,-

4K 4K

MMA MMA

I

CPU
0

~

-------,
I

IOU IOU I
I

0 EXP. I , ------ ,.

SYSTEM
TRANSITION

UNIT (1)

NOTES:

I

STORAGE 1 1"'------.,.-------,
I I I
I I I
I 262K I 262K I
I I I

262K 282K

MMA MMA

..
~ ·····r

4K 4K

MMA MMA

CPU
1

·1 I -------,
I

IOU IOU I
I

1 EXP. ,
I ----_ .. .-..

400 Hz
MOTOR/ALTERNATOR .

(2)

1. Option'" .xPMJMNI.
2. MMA - Multi-modultl ~ .. unit

j

SYSTEM
MAINTENANCE
UNIT (1 or 2)

3. S~Mt/B"'k CDIIflguntion • .,. ,.ltrict~ to singltl t:lu.,., .,.,.",. only.

SYSTEM
CONSOLES
(2 or more.

4. RmundMJt intwfM:n only M:titI.tm if til. om., HglNnt i. mung from til •• pplic.tion.

Flgurtl 1-2. SPERRY UNIVAC' '00/12 b2 S~ S~""t/B"'k Conliguntion

080 .. R.v.1
Uf'.HUMBSl b PERRY UNIVAC 1100/80 Systems .

. 4)1~4 Capability Processor and Storage Programmer Reference -----

STORAGE 0 STORAGE 1
, - _. - - - - i - .. - - - - -, ,-- -- - - i - - - - - --,
I
I
I
I

I

"-

I , , I
~~62K I 262K ,

I I

:~62K 282K

MMA MMA

l SIU 0

4K 4K

MMA MMA

I I

CPU

0 .

J
I ---._-,

IOU IOU
,
I

0 EXP.
I
I
I -.-----

TRANsmON
i sys'"E]:M

~(11
NOTES:

I ,
I I , 262K I 262K
I I

282K 282K

MMA MMA

I I I
I

4K 4K

MMA MMA

J

CPU

1

I
IOU

1

-----,
IOU

t
I

EXP.
I
I
I _ .. _---

400 Hz

MOTOR/ALTERNATOR

(2)

1. Option.' eXfMnsion.

2. MMA - Multi-module M:ceu unit

, ,
t
I

STORAGE Z ,------,-------,
I ,
I
I

-

,
I

262K I 262K
I

262K 282K

MMA MMA

J

·1

4K 4K

MMA MMA

I I

CPU

2

J
IOU

2

-----,
IOU

I
t

EXP.
I
I
I ------

SYSTEM

MAINTENANCE

UNITS (2 to 4)

,
I
I
I

3. Sto".gII interfllce units must ellch contllin lin sqUill lIf'Itount of storllge.

SIU 1

I

I

UPDATE LEVEL

STORAGE 3

1-5
PAGI

,------, ------ -, , ,.
t I
I 262K I 262K
I I

262K 282K

MMA MMA

I I
I

r
4K 4K

MMA MMA

I I

CPU

3

-----,
IOU IOU

I
I

3 EXP.
I
I
I ------

SYSTEM

CONSO,LES

(4 or more.

I
I
I
I

Figun, 1-3. SPERRY UNIVAC 1100/84 4x4 5",.", Seg",."t/Cebinet Configul'lltion

T=!JI= 1- I. Minimu/p'/Ahximut" Function.1 Configur.tio,,~

System Configurations
Components

lxl lx2 2x1 2x2 2(lxl) 2x3 2x4 3x2 3x3 3x4 4x2 4x3 4x4

CPU 1 1 2 2 2 2 2 3 3 3 4 4 4

IOU 1 2 1 2 2 3 4 2 3 4 2 3 4

Main Storage 262K- 262K- 624K- 624K- 624K- 624K- 624K- 624K- 624K- 624K- 624K- 624K- 624K-
Words 4194K 4194K 4194K 4194K 4194K 4194K 4194K 4194K 4194K 4194K 4.194K 4194K 4194K

SIU 1 1 1 1 2 2 2 2 2 2 2 2 2

SIU 4K- 4K- 4K- 4K- 8K- 8K- 8K- 8K- 8K- 8K- 8K- 8K- 8K-
Words 16K 16K 16K 16K 32K 32K 32K 32K 32K 32K 32K 32K 32K

System Console l-N 2-N 1-N 2-N 2-N 3-N 4-N 2-N 3-N 4-N 2-N 3-N 4-N

STU 1 1 1 1 1 1 1 1 1 1 1 1 1

SMU 1 1 1 1-2 2 2 2 2-3 2-3 2-3 2-4 2-4 2-4

MotorlAlt. 1-2* 1-2* 1-2* 2-3* 2-3* 2-3* 2-3* 2-3* 2-3* 2-3* 2-3* 2-3* 2-3*
~----~ .. _- '------ -- --

NOTES:

* A rlJdundanl motor/lllttlfnlltor may blJ configuftld only as a static unit.

1. This chart includes the minimum configurations which can be supported in degraded operations.

2. N equals any number required.

3. Configurations greater than a 2x2 muSI be configured as two clusters (e.g., a 2x3 is configured 81 8 1x 1 and a 1x2).

4. The number of motor/ahernalor. configured dependl on system load and motor/alternator power rating and on site degraded mode operating requirements.

i:
~C4

~m
&>~
'Oc
QlZ
2:<

f~
"11-

g~
(I CD
.0 -en
~1
~;
a.-
en
S
Q1

cO
(D

"11 a
cQ
Q1
3
3
CD
~

::D
CD
;-
~
~
n
(D

!
~

i_
~

8804 Rev.1
UP-HUMIIR

I SPERRY UNIVAC 1100/80 Systems
~'x4 Capability Processor and Storage Programmer Reference

1.~~.2. Stolrage System

UIIOATI L&VEL
1-7

PAGE

Th.~ 1100/80 Systems storage system consists o,f large capacity, low cost, main storage units (MSUs);
inttHfaced by moderate cal)acity, high speed storage buffers located in a separate cabinet called a
storage interface unit (SIU). The high-speed storage buffers are used to achieve increased
pe,'formance from the relatively low-speed MSUs. Each MSU can be divided into two separate banks.
Eac:h SIU contains from one to four logically independent storage buffers called segments. A main
storage bank has a 2-port multimodule access (MMA) unit which allows access by two SIU segments,
and providel; a means for common accessing of main storage. The SIUs also provide the main storage
intfltrface to the system" requesters (IOUs and CPUs). This interface is provided by 8-port MMA units
ass~ociated with each segment of the SIU.,

An SIU buffer segment is a set associative buffer having four words per block and four blocks per
set. The interface between an SIU and main storage provides a 4-word wide transfer on a single
reald reques'r, and a 1-word wide transfer on a write request. When a word is required from a block
of data not ,already resident in the SIU, the request is made to the MSU and the new 4-word block
of data is brought in. During the wait for this new block, the SIU segment is free to service other
reCluests. On a write operation, the storing of a full word or hr:llf word consists of modifying the word
in the buffer segment (if present), and also storing the word in the MSU. On a partial-word write,
thE' word in the buffer segment (if present) is invalidated, and the partial write is made into the MSU.
A '"ext request for this invalidated word will cause its 4-word block to be brought in from the MSU.

Operation of the SIU buffers is transparent to software, although performance of the main storage
is dependent on the organization of the software. This is true to the extent that software organization
aff:ects the miss rate. or percentage of instructions or operands not located in the buffer when first
rec~uested. ,

The minimum system contains 524K words of storage located in a single cabinet. This can be
expanded tC) t-048K words in the cabinet, and up to four storage cabinets may be employed to provide
a total of 4194K words of main storage. Three or more MSUs are required in a system larger than
a :2x2.

The basic SIU contains 4K words of buffer storage and can be expanded by adding ,one to three
lo~~ically independent 4K buffers, giving a maximum buffer size of 16K in the SIU. Two SIUs are
required for all systems having more than two CPUs, aHowing a maximum of 32K words of buffer
st4)rage in the system.

A detailed description of the SJU/MSU configuration assignments is given in Section 3. Figures 1-1,
1··2, and ,·-3 show the different configurations.

1.2.3. Input/Output Unit

AI' 1100/8:0 Systems configuration includes at least one IOU: The IOU controls all transfers of data
btttween the peripheral devices and main storage. Transfers are initiated by a CPU under program
ccmtrol. The! IOU includes independent control paths to the CPU and data paths to main storage. The
mode of I/O transmission is through either byte channels or word channels.

The IOU consists of two sections: a control section and a section containing three or four input/output
channel modules. An IOU expansion allows up to four additional channel modules to be added to
the IOU. The word 1/0 channel module provides four independent word I/O channel interfaces and
ol:cupies one channel module position. A second IOU with identical expansion capabilities can be
added to each CPU cluster.

The control section includes all logic associated with the tra'nsfer of function, data, and status words
'between ",ain storage and the subsystems." It also services I/O requests from either one or both of

8SO .. Rev. 1 SPERRY UNIVAC 1100/80 Systeme 1-8
,AGI 4x4 Cap-9bility Processor and Storage Programmer Reference

the CPUs (in a multiprocessor system) and routes interrupts to one of the two CPUs. Interrupt routing
may be specified by program.

Sorne capabilities of the IOU are:

• I/O transmission through byte channels or word channels

• Channel transfer rates at.

1.67 x 106 bytes per second (maximum) on a block multiplexer channel;

200 x 103 bytes per second (maximum) on a byte multiplexer channel; or

500 x 103 words per second aggregate for a word channel module.

• Externally specified index (ESI) and internally specified index (151) transfer modes on the word
channels.

• Channel buffering

• Interrupt tabling

• Parity generation/checking capability on all 151 channels and byte channels.

1.:t4. System Console

The system console provides the means for operator communications with the Executive System. The
basic console consists of the following major components:

• The CRT/keyboard consists of a UNISCOPE 200 Display Terminal. The display format is 24 lines,
with 64 characters per line. The 7-bit ASCII character set, consisting of 95 characters plus the
space. is used. The keyboard provides all of the operator controls to use the UNISCOPE display
terminal and communicate with the CPU. .

• The incremental printer operates at 30 characters per second and provides a hard copy of
console messages. (Five additional incrementa. printers may be connected to a console.)

• Maintenance interface for remote console operation by means of the system maintenance unit
and a remote maintenance system.

• The fault indicator, located on the incremental printer, provides the operator with a visual
indication of a fault condition in a major system component. The actual component and nature
of the fault may then be determined from indicators on the operator/maintenance panel on the
system transition unit.

• A standard byte .multiplexerchanne' interface.

8804 Rev.1 I SPERRY UNIVAC 1100/80 Systems
UI'-NUMID ~'X4 Capability Processor and Storage Programmer Reference

1.:tS. System Transition Unit (STU)

U~T1! L!VII.
1-9

!fAGE

Thi9 STU contains the controls and indicators required for control and assignment of the system units.
Thi9 functions controlled by the STU are:

• Partitioning

The STU partitioning function provides the ability to assign the individual central complex units
(CPUs, IOUs, SIU segments. and MSU banks) of a system to either one or two independent
smaller systems (applications 0 or 1), or to isolate a unit from either application for offline
concurrent maintenance.

The partitioning function also indicates the operational status of each central complex unit.
These status conditions are available to system software for configuration control.

The ability to partition peripheral subsystems is provided by the subsystem availability unit
(SAU), controls on the individual subsystems and, optionally, for some subsystems by software
comm2lnd. In addition, a form of partitioning is provided in that the STU has the capability of
partitioning at the channel module level in the IOU. Each channel module may be placed offline
or onlil1e by toggling a switch on the STU.

• Initial Load

InitiallcJad provides the ability to set module select register (MSR) values, select initial load paths,
and initiate the initial load operation for either one of two applications. The MSR selects the
section of main storage where the instruction execution sequence is initiated on an initial load.

• Automl!tic Recovery

Automi3tic recovery provides the system, specified in Application 0 or 1, with an automatic
. system recovery capabifity. When automatic recovery is enabled, and the system software does
not reset tne automatic recovery timer within the preset time interval, the STU ctears, reloads,
and reinitiates the system. The system provides two recovery paths. If the two recovery paths
are within the same application and the first recovery path fails, the alternate recovery path is
automcltically initiated. If only one recovery path is in the application, and the first recovery
attempt fails, the same path is tried once more. If recovery again fails, an indicator on the STU
panel is lit and no more. recovery attempts are made. The recovery function provides for
software resetting of the automatic recovery timer and for selection of the automatic recovery
path tel be used by the next recovery attempt (two paths in the application).

• Proces:sor and Input/Output Unit Controls

This palnel provides the controls and indicators required for manual control of up to four CPUs,
four IOUs, eight SIU segments, and eight MSU banks.

• Interface with SAU

The interface with the SAU is used to convey IOU application information to the SAU for the
purpose of word channel subsystems partitioning.

8104 Rev.1
IJILM

SPERRY UNIVAC 1100/80 System.
4x4 Capability Processor and Storage Programmer Reference

1.2.6. Subsystem Availability Unit (SAU)

UPDATI LIVIL

The SAU provides the 1100/80 System with the ability to partition word subsystems. and byte
subsystem strings by means of 'an operator-controlled panel. Word subsystems and byte subsystem
strings may also be placed offline. The SAU also provides subsystem partitioning status. Partitioning
of major system components is still accomplished at the partitioning panel on the STU.

The SAU is the primary device used to control partitioning of peripheral subsystems within a
multiprocessor system. The SAU contains the controls for partitioning word control units (CUs) by
application. The CUs must have a UNIVAC Shared Peripheral Interface (SPI) for the SAU to exercise
this controL The SAU allows the word subsystems with SPls, to be assigned to Application 0,
Application 1, or offline. The SAU provides a status word to the Operating System, through one word
channel per IOU, which contains CU path partitioning selection information.

1.:2.7. System Maintenance Unit (SMU)

The SMU provides for diagnostic checkout and fault isolation of the CPU, IOU, and SIU by the
automatic comparison of logic status against known correct data. The SMU includes a maintenance
pr,ocessor, card tester, communications capability, UNISCOPE 200 Display Terminal, and peripherals.

1.2.8. Auxiliary Storage and Peripheral Subsystems

The 1100/80 Systems offer a full range of auxiliary storage and peripheral subsystems to provide
the capability to satisfy many requirements. The standard SPERRY UNIVAC Subsystems include:

• SPERRY UNIVAC 8405/8430/8433/8434/8450/8470 Disk Subsystems

• SPERRY UNIVAC 8425 Disk'Subsystem

• UNIVAC FH-432/FH-1782 Drum Subsystem

• UNISERVO 30 Group Magnetic Tape Subsystems

• UNISERVO 22/24 Magnetic Tape Subsystem

•. UNISERVO 14 Magnetic Tape Subsystem

• UNISERVO 20 Magnetic Tape Subsystem

.; UNIVAC 0716 Card Reader Subsystem

• UNIVAC 0604 Card Punch Subsystem

• UNIVAC 0768 Printer Subsystem

• UNIVAC 0770 Printer Subsystem

• SPERRY UNIVAC 0776 Printer Subsystem

• SPERRY UNIVAC Telcon System

.. SPERRY UNIVAC General Communications Subsystem (GCS)

8804 Aft.1
UlLMIMI ...

SF'ERRY UNIVAC 1100/80 SYiternl
4,,4 Capability Processor and Storage Programmer Reference

1-11
'AGE

• SPERRY UNIVAC UTS 400 Display Terminal

• SPERRY UNIVAC UTS 400 Text Editor

• SPERRY UNIVAC BC/7 System

• UNISCQPE 200 Display Terminal

•• UNISCQPE 100 Display Terminal

• UNIVAC OCT 500 Series Data Communications Terminals

• Remote SPERRY UNIVAC 90/30 Subsystem

1.2.9. DestcJndardized Subsystems

Some auxiliary storage and peripheral subsystems used on earlier model Series 1 100 <;ystems can
be c1onfigured, but Sperry Univac will not enhance any of the existing Series 1100 software for these
dest:andardizEld subsystems.

1.2.10. Minimum Peripheral Complement

The 'following list of peripheral equipment is the minimum for the 1100/80 Systems. This minimum
has Ibeen est~tblished to ensure an adequate complement for Sperry Univac customer engineering
and software support.

Minimum Complement

1. One 0716 Card Reader and one 0770
High SpI,ed Printer Subsystem

2. 8450 Di:sk Subsystem with one control
unit and two 8450 Disk Storage Units

3. Magnetic: tape subsystem with one
control unit and four UNISERVO 30, 32,
34, or 316 Magnetic Tape Units

Alternate

One 0716 Card Reader and one 0776 or 0768
High Speed Printer Subsystem

8470 Disk Subsystem with one control unit and
two 8470 Disk Storage Units: or
8430/8433/8434 Disk Subsystem with one
control unit and two 8430, 8'433, or 8434 Disk
Storage Units; or 8425 Disk Subsystem with one
control unit and two 8425 Disk Storage Units

Magnetic tape subsystem with one control unit
and four UNISERVO 22, 24 Magnetic Tapl! Units.
or one control unit and four UNISERVO 20
Magnetic Tape Units; or one control unit and four
UNISERVO 14 Magnetic Tape Units

S804 Rev.l
Ul'-MJ ~peRRY UNIVAC 1100/80 Systems

4x4 Capability Processor and Storage Program~er Ref.rence uflDAn LIVEL
2-1

IIAG& -----

2. Processing Unit

2. 1. General

The! 1100/80 Systems central processor unit (CPU) contains a conuol section, an arithmetic section,
a maintenanl:e section, a general register stack, and interfaces through which it is connected to other
equipment. The IOU controls all data transfers between peripheral devices and storage. Transfers
are initiated by a CPU under program control.

2.2. Contrc)1 Section

The' control section of the CPU interprets instructions and directs all processor operations except
certain I/O clperations. It is discussed briefly in this section and in more detail in 4.2.

2.2. 1. Con'trol Section Operation

The! program instruction words are sequentially loaded into the control section. Each instruction word
is interpreted by the control section which generates the signals necessary to perform the instruction.
The! instruction words are located in main storage and the data words (operands) are located either
in main storlJge or in the addressable control registers which are part of the control section. The
con,trol sectilon includes an address formation segment which generates the absolute main storage
addresses tCI obtain the instruction words.

Thel instruction word is divided into fields. These fields specify to the control section the function
to be performed, which portion of the operand is to be used, a control register, indexing, index register
modification, indirect addressing, and an operand address.

).2 .. 2. Instl'uction Repertoire

Thel instruction repertoire includes fixe~oint and floating-point arithmetic. logical functions, byte
opElrations, block transfers, comparisons, tests, 1/0 control, and special purpose instructions. There
are over 200 basic instructions in the repertoire. 'Partial-word data transfers and repetitive operations
are .included in the instruction repertoire. Indexing capability is provided with all instructions. Indirect
addressing capability is also provided and is usable to any level with full indexing capability at each
leV4tl.

Ins1tructions such as data transfers. singJe-precision flxed-point adds, and certain logical functions,
require less'than 250 nanoseconds for complete execution. Indexing (18-bit) does not add to the
exe!cution tirne of an instruction. Details of the instruction repertoire are found in Section 5.

8804 Rev.1 SPERRY UNIVAC 1100/80 Systema
4x4 Capability Processor and Storage Programmer Reference

2-2
ftAGI

2.:Z.3. Control Registers

The 128 addressable control registers in the general register stack (GRS) of the control section are
integrated-circuit registers. These control registers are addressed either explicitly or implicitly by
thtt instructions. They fall into four categories: index registers, arithmetic registers, special registers,
and unassigned registers.

The control registers are discussed in detail in Section 3.

2.,2.4. Data ShiftiComplemerit/Store Operation

The CPU includes circuitry which permits the various. store instructions to bypass the arithmetic
se'ction. This circuitry includes the shifting capability needed for storing partial words in main
storage, the sign testing capability needed for the St~re Magnitude A instruction, and the·
complementing capability needed for the Store Negative A and Store Negative Magnitude A
instructions.

2.3. Arithmetic Section

All arithmetic computation is microprogram controlled and is performed using the nonaddressable
re'gisters of the arithmetic section. These arithmetic processes can be performed in either fixed-point
or floating-point mode. Fixed-point arithmetic instructions provide for single-precision,
double-precision, half-word, and third-word addition and subtraction, and for fraction and integer
m1ultiplication and division. Floating-point instructions provide for both single-precision and
double-precision operation. The arithmetic section also performs certain logical operations such as
shifting and comparisons. The instruction word may be used to specify the transfer of any chosen
portion of a word (half, third, quarter, or sixth) to the arithmetic section. The ability to transfer only
the selected portion of a word minimizes the number of masking and shifting operations required.

A shift matrix in the arithmetic section permits the completion of an entire single word shift operation
in one main storage cycle time. By use of the matrix, the shift operation can shift a singte or double
w'ord operand in either direction up to 72 bit positions.

A scientific accelerator module (SAM) will enhance the performance of the following arithmetic
instructions:

Add

Multiply (Fixed point)

Divide (Fixed point)

All floating-point instructions, both single and double precision

Details on the operation of the arithmetic section are found in 4. 1.

2.4. Maintenance Section

The maintenance section performs all diagnostic tests using its own repertoire of commands. It
operates only when the CPU is in maintenance mode. In this mode the processing system can be
operating either online or offline. When online, the processing system and the maintenance system
operate concurrently. In this case the maintenance system is connected to and operating on the byte
bus, and the processing system operates normally, except that the processing operation is suspended

8804 Rev.1 I SPERRY UNIVAC 1100/80 System.
~ ~Jx4 Capability Processor and Storage Programmer Reference

whenever the maintenance system needs to use the processor data and control paths for executing
a flnaintenance function.

2.fS. Input/Output Unit (IOU)

The IOU is j~ separate functional entity. I/O activity is initiated when the interpretation of certain
instructions by the CPU causes signals to be sent to the IOU. Once an I/O operation is initiated. the
10lJ and the subsystem control the input and output transfers. The IOU operates with a wide variety
of peripheral devices, and it requires minimal attention from the CPU.

Once an I/O operation is initiated by the program, I/O activity is independent of program control. The
1/01 data flows between main storage and the peripheral subsystem through an I/O channel. Each
1/01 channel consists of 36 input data lines. 2 input parity lines, 36 output data lines, 2 output parity
lintts, and v~Jrious control signal lines. All data word bits are transmitted in parallel to or from the
subsystem.

The! IOU has five interfaces: a storage interface, a processor interface, a control unit-peripheral
intl!rface, a system transition unit interface, and a maintenance interface.

De'tails of the IOU are presented in Section 6.

2.Et System Status Word

The, system status word, which originates in the system transistion unit (STU), indicates to the system
software thl!t partitioning status of each unit and also system status. This status information is
transferred to each storage interface unit (SIU) segment where it can be read by a CPU through a
spEtclal command code. The status information is not interpreted by the SIU. The power status in
eac:h unit will be indicated on the partitioning panel of the STU, and loss of dc power in a unit will
force the stl3tus of that unit to be offline.

The!!! system status word is divided into two 36-bit words (System Status Word 0 and System Status
W()rd 1). Figure 2-1 shows how the status words are divided into fields. Each word contains two
fields of data, one for application information and the other for load path information. Each system
component has two application bits that are translated as follows:

Applic~.tion 0 Application

() o - Offline

() = Application 0

o - Application 1

- No System Transition Unit

8104 "".1
~MI_

SPERRY UNIVAC 1100/80 Syama
4x4 Capability Processor and Storage Programmer Reference

N

0
LOAD PATH 0 APPliCATION 0

R T F AUTO M MSU sau IOU PROC

I A C P A

T U U L S I R N P P I

S L U I 0 0 L H H N

M E T S U U C P 1 0 T

0 7 IS.. 3 2 1 0 7 1 S .. 3 2 1 032 1 032 1 0

•• 35 3. 33 32 31 30 28 28 27 21 25 24 23 22 21 20 18 18 17 11 1 S 14 13 12 11 10 9 8 7 1 5 4 3 2: 1 0

LOAD PATH 1 APPUCATION 1

F AUTO M MSU SIU IOU PAOC

NOT A C P A

USED U L S I R N P P I

.L U I 0 0 L H H N

T S U U C P 1 0 T

715 .. 3 2: 1 o 7 e 5 .. 3 2 1 032 1 032: 1 0

•• 31 34 33 32 31 30 29 28 27 21 25 24 23 22 21 20 18 18 17 1 IS 1!5 14 13 12 11 10 9 8 7 1 5 4 3 2: 1 0

MAINT - Maintenance Mode 1 - One or more system components In that Ippllcation are in maintenance mode.

R/T M - R .. I TIme Mode 1 - Real Time Mode

AUTO - Auto Recovery

HLP - 1 - Load Plth·1 next if both laid pathl in the same word Ire in auto recovery mode.

PH 1 - 1 - Load Path 1 is enabfed II In auto recovery load path for thlt application.
PHO - 1 - Load Path 0 il enabled 81 an auto recovery load path for thlt application.

LOAD PATH

- 1 - Indic~ that 10ld path ha. failed.
- 1 _ Indieat .. that the following thr .. components Ire in Cluater 1.

- 1 - IndiC8tH sau upper il in the load path.

-IOU - 1 - Indicat .. the odd IOU i. in the load path.
·PAOC - 1 - IndicatH the odd PAOC Is in the load path.

NOTES:

• Th ... ItJgit: ,.".. rwuIt 1ft.,. • #iQnM invwsion ., th. SIU • .. .,.". bit poMion 01 the mtw won:J .. • ent by the SIU 6egmen, to the eN.

860. Rev.1 I SPERRY UNIVAC 1100/80 Systems
• UI'-NIJMe8I_~X4 Capability Processor and Storage Programmer Reference UPDATI LI\1L

3-1
"AGE

3. Storage System

3. 1. Genef'al

ThEt storage system comprises up to 4,194,304 words of main storage, up to 32,768 words of
high-speed buffer storage, and 128 addressable control registers.

Main storag'8 consists of one to four main storage units. depending on user requirements. Main
storage provides the storage for the instruction and data words. The high-speed buffer storage
corlsists of elne or two storage interface units, depending on user requirements. The high speed
buffer stora~Je provides accelerated response between main storage and the central processor units,
and between main storage and the input/output units. The 128 addressable control registers are
loc,ated in the control section of each central processor unit. These registers provide fast access
storage for data and control words.

ThEt storage interlace unit (SIU) high-speed storage buffers are grouped in sets of four blocks of four
words each. A set is addressed directly by selected bits of a 24-bit absolute address. The remaining
bitn are used to make a comparison with the 4 block addresses to determine if the required block,
and hence word, is present in the set. When a word is required from a block of data not resident
in the SIU buffer, the SIU makes a request to main storage and the new block of data is loaded into
the buffer.

3.~~. Main Storage Unit

Th4t main stl)rage unit (MSU) consists of two independent banks. Each bank contains 262K 43-bit
words consisting of 36 data bits and 7 error correction code (ECC) bits. Each bank is expandable
to CI maximulm of 524K words. The MSU bank js accessible via a two port multi-module access (MMA.)
module.

Thlt MSU contains an internal exerciser for offline operation in the maintenance mode. The exerciser
USEtS much ()f the logic contained in the interface section of the MSU. and is capable of operating
in ~In offline mode with either bank while the other bank is online. The maintenance mode is switch
selectable at the MSU. Online availability is indicated to the SIU by the presence of the MSU
AVAILABLE signal.

The! MSU is capable of performing read, write, and partial write operations. Data is transferred from
thel MSU on a read operation and to the MSU on a write or partial write operation. A description
of the open.tions performed within the MSU follows:

leo .. Rev.1
...... 1UIIIt

SPERRY UNIVAC 1100/80 System.
4x4 Capability Processor and Storage Programmer Reference

3-2
ftAQI

• Read - The MSU reads a full block of data consisting of four contiguous words (172 bits, 144
data and 28 ECC bits) from storage and transfers the information to the SIU via a 4-word
interface in one data transfer.

• Write - The MSU writes one word (36 data and 7 ECC bits) of new information into the specified
storage location.

• Partial Write - The MSU reads a data block (four contiguous words) from storag~. Only that
portion of the addressed word (one of the four words) which is enabled by the write control lines
is modified with new write data. A new ECC is generated for the combined read and new write
data. Then both the new word and the ECC bits are stored.

• Refresh - The MSU is a volatile storage device and requires a refresh cycle to maintain the data.
Each MSU bank generates its own refresh cycle. Refresh signals are generated at 24
microsecond intervals. The refresh cycle is continually sequenced through the storage bank
such that 1/128 of the bank is refreshed during each refresh cycle.

3 .. 2. 1. Write Data Error Detection

The requester (the SIU) sends 36 bits of write data plus a 7-bit ECC to the MSU. The MSU generates
a 7-bit ECC from the 36 data bits received and then compares that code with the 7-bit code received.
If ill single bit error or multiple error is detected. the reference is executed, the special ECC is stored
in the addressed location to indicate corrupt data on future requests to that location, and a WRITE
D)~ TA CHECK signal is sent to the requester. All 144 read data lines and all 28 ECC lines from the
M:SU to the requester remain inactive during a write cycle.

3.2.2. Partial Write Error Detection

On a partial write request. the MSU 'retrieves the data word to be modified from storage and compares
the 7-bit ECC retrieved from storage with the 7-bit ECC generated from the read data by the MSU.
If no errors are detected on the data word retrieved from storage or on the write data to be written,
the word is modified and a new ECC is stored. If errors are detected on the data during a partial
write. the MSU responds as follows:

• If a single bit error is detected on the data word retrieved from storage. the data bit in error is
corrected. the word modified. and a new ECC is stored.

• If a multiple bit uncorrectable error or the special ECC is detected on the data word retrieved
from storage. the word is not modified and the stored ECC is retained.

• If the MSU detects a single bit error or a multiple bit uncorrectable error on write data. the data
word is modified and the special ECC is stored-in the ECC bits. The MSU sends a WRITE DATA
CHECK signal to the requester.

• If the MSU detects both a single bit error on the data word retrieved from storage and a single
bit error or multiple bit un correctable error on the write data. the word is modified and the special
ecc stored in the ecc bits. The MSU sends a WRITE DATA CHECK signa. to the requester.

.. If the MSU detects both a multiple bit uncorrectable error or the special ECC on the data word
retrieved from storage and a single bit error or multiple bit uncorrectable error on the write data
to be written. the word is not modified and the ECC is retained as stored. The MSU sends a
WRITE OAT A CHECK signal to the requester.

8104 RIIY.1
\JNIUIIIJI

I SPERRY UNr/AC 1100/80 Systems
~X4 Capability Processor and Storage Programmer Reference UPDATI LIYB.

3.2,.3. ECC Write Check Disable

When the EC:C WRITE CHECK DISABLE signal is activated by the requester, the MSU writes the data
anell the ECC as received for either a full-word write or a partial write. The WRITE DATA CHECK signal
is not transfttrred and the special ECC is not stored in the ECC bits if a write data error is detected.
Thel specia' I:CC is stored, however, if the MSU detects a write-control parity error. When the ECC
wri1te-check disable operation is performed, the stored data must be restored to correct the ECC by
either software or by the MSU offline exerciser before returning the bank to an online condition.

3.2.4. Write Control Parity Checking

Thel requestEtr sends nine write-contro' plus one write-contro' parity signals. The MSU checks for
odd parity. If a write-control parity error is detected, the MSU performs a partial write function and
the special ECC is stored in the location to indicate corrupt data on future requests to that location.
Thel MSU sends a WRITE CONTROL CHECK signa' to the requester.

3.2.5. Address Parity Checking

Thel requestEtr sends 21 address bits plus one address parity bit. The MSU checks for odd parity.
If the MSU detects an address parity error, the MSU responds as follows:

• If the request is for a read, the data block is transferred and the MSU sends an ADDRESS CHECK
signal to the requester. Future requests are accepted by the MSU.

• If the rEtquest is for a write. the word is stored with the new ECC bits at the location selected.
The MSU notifies the requester via the ADDRESS CHECK signal and the system transition unit
(STU) via the write address check line. The MSU does not accept further requests to the bank
in which the address parity error was detected until any requester partitioned to that bank sends
a system CLEAR signal. The WRITE ADDRESS CHECK signal sent to the STU is maintained by
the MSU until ,cleared manually at the MSU.

• If the request is for a partial write. the data word selected is modified and a new ECC is stored.
The MSU notifies the requester via the ADDRESS CHECK signal and the STU via the write
address check line. The MSU does not accept further requests to the bank in which the address
parity error was detected until a requester partitioned to that bank sends a system CLEAR signal.
The Wf~ITE ADDRESS CHECK signal sent to the STU is maintained by the MSU until cleared
manually at the MSU.

3.2~.6. Refr'esh Fault

If al refresh fault is detected, theMSU completes the cycle upon which it is operating. Upon
cOl'1npletion ()f the cycle, the MSU . stops and no further requests are honored. A signal is sent to the
STU to indicate an error; also, the error is indicated at the MSU. To clear a refresh fault from a bank
of l~torage r4tquires one of the following:

• powerh,g down that bank and powering. back up,

• . going from an offline condition to an online condition at the STU, or

• performing a check reset at the MSU maintenance panel while the bank is offline.

8804 Aw.1 ..,.... SPERRY UNIVAC 1100/80 Syaema
4x4 Capability Processor and Storage Programmer Reference

3.,2.7. Fixed Addr~ss Assignments

The interrupt subroutine entrances and certain status words are assigned fixed'iocations in main
storage as shown in Tables 3-1 and 3-2. The listed addresses are relative to the contents of the
7-bit module select register (MSR) and the position of the MSR ACTIVE UPPER/LOWER switch. MSR
may be manually loaded by sening the desired combination of the seven MSR switches and the MSR
ACTIVE UPPER/LOWER switch on the STU partitioning panel. When an initial load operation is
performed, the value in the MSR identifies the main storage area in which the incoming data is to
be stored. During an externally specified index input/output (ESI-1I0) operation the value in the MSR
identifies the high order bits of the address of the main storage locations from which the ESI access
control words and chain pointer words are obtained.

Octal
200
201
202
203
204
206
206
207
210
211
212
213
214
215
216
217
220
221
222
223
224
225
226
227
230
231
232
233
234
236
238
237

NOTE:

Decimal
128
129
130
131
132
133
134
136
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

r.bl.3-1. FiXH Add,... AuignmtMttI 020O-<J237

As i slgnment
Reserved for Hardware Default
Unassigned
Even Number I/O Interrupt {;irror
Odd Number I/O Interrupt Error
110 Normal Status Interrupt
110 Tabled Status Interrupt
I/O Machine Check Interrupt
Unassigned
Quantum Timer Interrupt
Real Time Clock Interrupt
Unassigned
Unassigned
Unassigned
Unassigned
Dayclock Value
Dayclock Interrupt
Immediate Storage Check Interrupt
Invalid Instruction
Executive Request Interrupt
Guard Mode Interrupt
Test and Set Interrupt
Characteristic Underflow Interrupt
Characteristic Overflow Interrupt
Divide Check Interrupt
Addressing Exception Interrupt
Breakpoint Interrupt
Interprocessor Interrupt
Power Check Interrupt
Delayed Storage Check Interrupt
Jump History Stack Interrupt
Emulation Interrupt
Unassigned

All flx«J ~ .,.. rtII.tin to th. MSR.

S804 Rev. 1 I SPERRY UNIVAC 1100/S0 SyReml
.~~~X4 Capability Processor and Storage Programmer Reference

Octal Decimal Assignment
240 160 Processor 0 Channel Address Word 0
241 161 Processor 0 Channel Address Word 1
242 162 Unassigned
243 163 Unassigned
244 164 Processor 1 Channel Address Word 0
245 165 Processor 1 Channel Address Word 1
246 166 Unassigned
241 167 Unassigned
250 168 Processor 2 Channel Address Word 0
251 169 Processor 2 Channel Address Word 1
2Ei2 110 Unassigned
2'Ei3 111 Unassigned
2Ei4 172 Processor 3 Channel Address Word 0
255 113 Processor 3 Channel Address Word 1
2Ei6 174 Unassigned
257 175 Unassigned
2EiO 116 Processor 0 Interrupt Address Word
2Ei 1 117 Processor 0 Channel Status Word 0
2Ei2 178 Processor 0 Channel Status Word 1
2ES3 179 Processor 0 Channel Status Word 2
2ES4 180 Processor 1 Interrupt Address Word
265 181 Processor 1 Channel Status Word 0
2ES6 182 Processor 1 Channel Status Word 1
267 183 Processor 1 Channel Status Word 2
270 184 Processor 2 Interrupt Address Word
271 185 Processor 2 Channel Status Word 0
272 186 Processor 2 Channel Status Word 1
273 187 Processor 2 Channel Status Word 2'
274 188 Processor 3 Interrupt Address Word
275 189 Processor 3 Channel Status Word 0
276 190, Processor 3 Channel Status Word 1
277 191 Processor 3 Channel Status Word 2

NOTE:

3.~1. Storage Interface Unit

UP'OATI LEYIL
3-5

flAGE

Thtt storage interface unit (SIU) is composed of two identical and independent halves,' an upper half
and a lower half. Each SIU half consists of one or two high-speed buffer segments of 4,096 36-bit
words each. Each SIU half is capable of addressing 2 million 36-bit words in two MSUs. Each SIU
se~Jment interfaces with at least one MSU bank, but not more than two MSU banks. The MSU
intfarfaces with at least one SIU segment, but not more than two SIU segments.

Thl! SIU high-speed buffer storage reduces the overall storage access time by automatically allowing
the~ majority of storage references to be fetched from the SIU rather than the MSU. Storage reQuests
from the ce'1tral processor unit (CPU) and the input/output unit (IOU) are usually satisfied from data
resident in the SIU buffer. These requests are categorized as "hits" and the storage access time is
thslt of the buffer. A request for nonresident data generates a "miss· and requires the SIU to make
a reference to main storage. The reference to main storage transfers a 4-word block of data into

SPeRRY UNIVAC 1100/80 S.,..m.
4x4 Capability Processor and Storage Programmer Reference

the SIU from the MSU when a word from that block is read by the CPU or IOU. The block becomes
one of many blocks remaining resident in the SIU until being displaced by a more current block.

3.3. 1. Functional Characteristics

The SIU employs a set associative buffer. The 4K minimum buffer is organized into 256 sets, each
seit consisting of four blocks with four data words per block. The main storage is also divided into
258 sets. If the main storage contains 524K words, each set in main storage would contain 512
bl,ocks of four words. For a particular set, anyone of the blocks of four words in the main storage
may be placed in anyone of the four blocks in the corresponding SIU set. For a read operation, a
4--word block of data on fixed 4-word boundaries is transferred from main storage to the SIU during
a single main storage cycle. For a write operation, one word of data is transferred from the SIU to
the main storage during a single main storage cycle.

The storage requests made by the CPUs and IOUs are seen only by the SIU. Direct address selection
is used to address-the one of 256 sets in which the required word is located. This causes the SIU
to· simultaneously read the address of each of the four blocks currently resident in the set and to
compare each with the requested block address. If one of the four block addresses matches the
requested address, the appropriate word is read from that block and presented to the requester or
written into the appropriate word of the matched block. If none of the four block addresses match
on a read operation, a request is made by the SIU to main storage for the entire block which contains
the required word. A reque$t is always made by the SIU to main storage on a write operation. When
read data arrives from main storage, it is stored in the least recently used block location as determined
by the SIU, and the appropriate word is sent by the SIU to the original requester to complete the cycle.
Each time a match reference (hit) is made in the SIU, the SIU reorders the block ages in the set by
making the referenced block age 0 (most recently used) and the remaining three blocks one age older,
unless an unmatched block was older than the matched block. Priority not only depends on history
between IOUs and between CPUs (rotational), it also depends on first in/first out between ports for

. a CPU.

Each SIU segment uses an 8-port MMA with pre-emptive priority on ports 4 through 7 and non
pre-emptive priority on ports 0 through 3. Within a given priority type, rotational priority e?,ists. Ports
4 and 5 are IOU ports; ports 0 through 3 are CPU ports; and port 6 is reserved for future expansion.
Port 7 is used for communications between two SIUs in a two cluster system. Specifically, that port .
is used by a segment which is altering a word within a given main storage address range to notify
the corresponding other segment using that address range that the copy of that word, if resident in
the other segment. is no longer valid and the validity bit for the corresponding block should be
cleared. Then, if a subsequent request for a word in that invalidated block is made, the SIU segment
must replace the invalidated copy with fresh valid data from the main storage.

T'he interlace between the SIU and main storage provides· a 4-word-wide read transfer on a single
request and a 1-word-wide write transfer. When a word is required from a block of data not resident
in the SIU, the request is made to main storage and the segment is free to handle other requests.
On a read request, all four worda and error correction code (ECC) bits are transmitted from the main
storage to the requesting SIU segment intact. The requesting SIU segment will then correct any
single bit errors and detect any double bit errors with indications of the uncorrectable error provided
to the SIU segments requester. The ECC bits are not stored in the SIU, but parity bits are generated
81nd stored. The ECC error syndrome bits (code bits produced by decoding the comparison of stored
ECC bits and the ECC generated from the stored data) are sent to the CP'Us via storage check
interrupts.

'flYhen a new block is brought in from main storage and the SIU segment is full, an existing block
in the corresponding segment must be displaced. The displacement algorithm used is least recently
used (LRU). The storing of full- or half-word modified data is accomplished by using a store-through
algorithm which modifies the word plus parity in the SIU, generates the ECC for the half or full word,

8804 Rev.1
UP.- 4x4 Capability Processor and Storage Programmer Reference

3-7
'AGI -----~IPeRRY UNIVAC 1100/80 Systems

ancl initiates a write to main storage (36 data bits plus 7 ECC bits). The storing of a partial-word
(exf:luding half-word) modified data uses a store-past algorithm which invalidates the word in the
buffer, generates the ECC for the partial word received from the requester, and initiates a partial write
to Imain storage. In both cases, full- and partial-word writes, the segment must send a message
(sy~stems with two clusters) to the corresponding segment of the other cluster to inform it that the
cOJ)Y, if resident, is no longer valid. Requester writes (except writes with segment lock) are early
ac.mowledged to allow the requester to continue on without waiting for the actual write to take place.

On write da1ta requests, only one word (36-data bits and 7 ECC bits) is transmitted from the SIU to
main storage. Full- and half-word write requests are write-throughs (written in the--SIU and main
st01rage), and partial-word write requests, other than half-word writes, are write-past (invalidated in
thEt SIU and written in main storage). On full- and half-word writes, the addressed word is updated
if the address for that request is resident in the SlUe For partial- word writes, other than half-word
writes, the ctddressed word is invalidated if the address for that request is resident in the SIU. For
palrtiaJ-word writes, a data block comprising four contiguous words is read from storage. Only the
portion of the addressed word (one of the four) that is enabled is modified with new write data. A
new ECC is generated for the combined read and new write data. Both the new word and the ECC
bits are stored in main storage.

The minimum SIU consists of 4096 words. This unit interfaces with up to 1 048K words of main
storage. An SIU may be expanded by adding one to three more logically independent 4K word
segments (for a maximum of 16K words) which may interface to an additional 3146K worcis of main
stc)rage. With the addition of CPUs and 10Us to configure greater than a 2x2, more 4K word segments
mlList be added to the system which will provide dual access with the other SIU to the main storage.
Thus, a maximum system can contain 32,768 words of SIU storage, 16,384 words of which are
dedicated to each 2x2 cluster. The maximum main storage is 4194K words which can be accessed
b" either o'f the SIUs. Each 2x2 ctuster .must have an equal amount of Stu storage.

The SIU allows read-by/write-by degraded operation. The SIU array failures at a 4-word block level
ar'e reported and dynamically degraded by the hardware. Software control for degradation of t~e
SIIU at a 4-·word block level is also available. This is a fault tolerant capability which allows an SIU
SEtgment tC) continue operations even though it has interrupt storage faults.

3~3.2. Tag and Data Buffer

The SIU SEtgments have storage capacity for a data buffer of 4096 words (38 bits). A parity bit is
s1tored with each 18-bit half word. The 4096 data storage words are handled as 1024 four-word
blocks. TIlere are four blocks per set and 256 sets per segment. Each data set is associated with
a specific portion of main storage. For the maximum addressing range there are 4096 blocks
associated with each set. At anyone time only four of the 4096 blocks associated with a set can
be resident in the SIU data buffer. A request 'to a word in one of these four resident sets results in
a -hit.-

iul addition to data storage, each SIU segment has a tag buffer. The tag buffer has. storage capacity
f·or 256 de)uble words (72 bits). Eighteen bits of a tag buffer word define the block address, invalid
bit. degrade bit. and the two age bits for one block. There is a direct relationship between a data
buffer address and a tag buffer address. The set address, requester address bits 10-03, references
2.11 of the tag buffer and the upper eight bits of the data buffer. The lower two bits of the data buffer
uddress come'from the requester address bits 01-00. This is a total of 10 address bits for the data
buffer. Ten address bits can address a maximum of 1024 words, but the data buffer contains 4096
words. The data buffer, however, has a 4-word interface. Therefore. each of the 1024 addresses
,·eference a ~ord block, one word from each of the four blocks represented by the set address.

'The word address, bits 01-00 of the requester address, determines which of the four words of each
block is ~)resented at the data buffer interface.

8804 Rev.1

..... - SPERRY UNIVAC 1100/80 Syaems
4x4 Capability Processor and Storage Programmer Reference

The SIU uses the write through algorithm for store requests. This means that all store requests to
the SIU will initiate a store request to the MSU via the main store interface stack (see 3.3.3). The
SIU will replace resident data blocks based on the least recently used (LRU) algorithm.

3,,3.3. Main Store Interface Stack

If the SIU receives a read or write request for nonresident data, the request will be placed on the
SIU/MSU interface. The response time of the MSU to a request from the SIU is approximately 700
nanoseconds. If the SIU waited in an idle state until the request to the MSU was completed, the SIU
would waste time which might otherwise be used to service other. requests. The main store interface
(MSI) stack frees the SIU to service other requests during the MSU response time.

The MSJ stack is four words deep and 86 bits wide. Request data for the requests that must be
presented to the MSU are transferred from the requester interface to the MSI stack by the SIU.
Control is then directed to the requester interface while the MSU is responding to the request in the
MSI stack. In the event that other requests are present at the requester interface, the SIU will accept
the highest priority request and service it. These other requests may require that a request be made
to the MSU. These requests will be loaded into the MSI stack to wait for completion of the request
to the MSU that is at the top of the MSI stack. Up to three such requests will be accepted by the
MSI stack, at which time the requester interface will be disabled until a response is received from
the MSU.

3.3.4. Invalidate Interface

In systems configured in two clusters, the common point for storage references made by the two
clusters is at the MSU. This means that any write request from either cluster will result in a change
of data only at the MSU. If that data were resident in the other SIU, it will no longer be valid, having
been superseded by the write. The invalidate interface insures the validity of data in the system. The
invalidate interface is between SIU segment pairs, such as 0 and 1, or 2 and 3, etc. The invalidate
interface invalidates data which may have been resident in the other segment of a segment pair.
Segment pairs are those segments which interface to the same MSU address range. There are two
invatidate interfaces per segment pair. Write requests that go through segment 0 must invalidate
data resident in the same MSU address in segment 1, and write requests that go through segment
1 must invalidate data resident in the same MSU address in segment O. A two-word-deep
25-bit-wide invalidate stack is associated with each invalidate interface.

3.3.5. Error Detection and Reporting

1ne SIU error detection and reporting scheme helps detect and isolate failing components. Detected
faults are immediately isolated and are not propagated through the SIU-MSlJ-reQuester complex.
When an error is detected, the error information is stored in one of four registers reserved for this
purpose and a storage check interrupt status request (SCISR) is generated. The error information is
then passed via the read data bus to the processor that acknowledges the interrupt request.

SCISR has a low prioity at the processor. The SCISR stack is four words deep and 37 bits wide. The
SCISR stack will hold up to four status words, 36 data (status~ bits, and one occupied bit for
transmission to a processor. Status words will be placed on the requester interface in the same order
as they are entered into the SCISR stack. The status word at the top of the SCISR stack will be placed
c)n the requester read data lines if the requester interface operator (storage check status reference)
is true during a request to the SIU.

880 .. Rev.1
Ufl'-NUMIM

I S;PERRY UNIVAC 1100/80 Systems
~X4 Capability Processor and Storage Programmer Reference

3.~1.6. Stolrage Interleave

UP'l)ATI LEVEL

Stc~rage interleave is the alternating of requests to storage. The 1 100/80 Systems have two levels
of ~~torage interleave. This interleave depends on the configuration assignments of the StU segments
and the MsrJ banks (see Appendix E). The two levels of interleave operate independently of each
other. A particular system may have both levels of interleave. either one of the two levels of interleave,
or Ino level ()f interleave.

Th.t first levol of interleave exists when the two segments in an SIU half are in the same application.
When this condition exists. the requests from CPUs and IOUs alternate to the segments. depending
on the setting of address bit 2. When address bit 2 is not set. the request goes to the lower numbered
se~lment in the SIU half. When address bit 2 is set. the request goes to the higher numbered segment
in the SIU half. This means that adjacent 4-word blocks are handled by alternate SIU segments.
When the MfO segments in an SIU half are not in the same application. there is no storage interleave.
Figure 3-1 ~shows first level configurations for interleave and non-interleave applications.

APPLICATION 0 APPLICATION 0

r~--------A---------\
(~ ________ A _________ \

CPU.]
.

IOU. CPUs 10Us

~.--J I ~

APPUCATION 1

~
APPLICATION APPLICAT1

1 1

11' 11'
ON

seG sea sea . seG seG seG SEG SEG
0 2 4 6 0 2 4 6

'---y---""'-) \.
Y

A
Y

.J

SIU HA,LF SIU HALF SIU HALF SIU HALF
) '- --y) \.

Y

SIU SIU

INTERUiAVE CONF1GURA T10N NON-4NTERLEAVE CONF1GURATION

1st LEVEL 1st LEVEL

The:. second level of interleave exists when the two storage banks in an MSU are in the same
apl)lication. When this condition exists. the SIU segment directs requests to the banks, depending
on the setting of address bit 3. When bit 3 is not set. the request is directed to the lower (even
nUlmbered) bank in the MSU. When bit 3 is set. the request is directed to the higher (odd numbered)
bat,k in the MSU. Figure 3-2 shows configurations of second level interleave and non-interleave
aplolications. When the two banks of an MSU are not in the same application, there is no storage
intlerleave;

8eo4 Rev.1
IJII=NIlI_

SPERRY UNIVAC 1100/80 Svat.,.,.
4x4 Capability Processor and Storage Programmer Reference

APPUCATlON

o

SIU

SEG

o

i-'--- ---------~-- I

I I
I I
I I
I MSU MSU I

: BANK BANK:
I 0 1 I
I I
I I
I I
I I

------------------~
MSU

INTERLEAVE CO~FIGURAnON

2nd LEVEL

3.3.6. 1. Addressing Modes

APPLICATlON

o

SIU

seG
o

L
r----- ---

MSU
BANK

o

MSU

APPUCAnON

SIU

SeG
1

J

MSU
BANK

1

NO~NTERLEAVE CONFIGURATlON

2nd LEVEL

3-10
'AGI

The interleave of addressing as described takes place above address 8,388K or below address
8,3SSK or both above and below. Address bit 23 is used by the requesters to direct requests to the
MSU above or below address S,38SK. When bit 23 is not set, the requests go to the lower SIU half;
when bit 23 is set, the requests are directed to the upper SIU half, which is the upper address range.
The requester address format is as follows:

U
/
L

2322

Bit
Position

23
22 thru 11
10 thru 3

2
0,1

Block Address Set Address

11 10

Description

Selects upper or lower SIU half
Selects a 4-word block address
Selects 1 of 256 sets
Selects SIU segment
Determines which of the four words of each block
is presented at the data buffer interface.

S Word e
Addrs g

321 o

8804 Rev.1 I SI'ERRY UNIVAC 1100/80 Systema
,~_~x4 Capability Processor and Storage Programmer Reference UPDATI LEVIL .

3-11
"AGE

Four addressling modes are possible in the address ranges above and below address a,38SK. The
modes are determined by the levels of interleave within the address ranges. Table 3-3 and Figure
3-3, define the four modes.

I~ddressing Level of Interleave SIU Segments MSU Banks Per
Mode* Per SIU Half SIU Segment

1 st Level 2nd Level

1** Yes Yes 2 2

2*· No Yes 1 2

3 Yes No 2 1

4 No No 1 1

• These mlxte. depend on the configuration al partitioned and running at any given time .

•• Not available when configured in the limited -segment/bank- conflguration.

Addresses tel an SIU half are interleaved across the four MSUs in blocks of four words. Addresses
0-~.8 are located in MSU 0; 4-78 in MSU 2; 10-138 in MSU 1; and 14-178 in MSU 3. Therefore,
Sill segment 0 will ~andle addresses 0-38 and 10-138; SIU·segment 2 will handle addresses 4-78
and 1 4-1 7 8. '

For' the maximum configuration, requester address bit 2 is the SIU segment select bit, and bit 3 is
the- MSU select bit. Due to this preselection, bits 2 and 3 are not used as part of the MSU address.
SIU halves. however, may be configured with other SIU/MSU combinations.

Manipulatioln of the requester address bits sent to the MSU is based on the addressing mode. Tables
3.-~ and 3-E) show where the different requester address bits (particularly bits 2 and 3) are inserted
in the MSU address for each addressing mode.

leo4 AIIv.1

..... '- SPERRY UNIVAC 1100/80 Syaema
4x4 Capability Processor and Storage Programmer Reference

cpu. IOU. cPU.

I
I
I I I

SIU SIU SIU
SEG 0 SEG 2 SEG 0

I

I I t I
MSU MSU MSU MSU MSU MSU
BANK BANK BANK BANK BANK BANK

0 1 2 3 0 1

MSU 0 MSU 1

MODe 1 MODe 2

cPU. IOU. cPU.

I
I
f I I

SIU SIU I
SEG 0 SEG 2

SIU
SEG 0

-I

I
MSU MSU MSU
BANK BANK BANK

0 2 0

MSU 0 MSU 1

MODe 3 MODe ..

IOU.

T

IOU.

I

3-12
'AGE

8804 Rev.1 I SPERRY UNIVAC 1100/80 Systems
~~X4 Capability Processor and Storage Programmer Reference

Table 3-4. MSU AddrtJU GentN.tion

Requester X SIUs MSU Address Bits
J~ddress EUt X MSUs Mode 1 Mode 2 Mode 3

23* X X X
22 20 X X
21 19 20 20
20 18 19 19
19 17 18 18
18 16 17 16
17 15
16 14
15 13
14 12
13 11
12 10

. 11 09
10 08
09 07
08 06
07 05
06 04
05 03
04 02
03 X X 17
02 X 16 X
01 01
00 00

UJlDATI LIYIL
3-13

'AGI

Mode 4
X
X
X
20
19
18

17
16

In mi. rabIe, the requ •• tiH .dd,.. .. bit8 .,.. liMed in the column on the I.ft. Th. MSU .dd,.... bit8 th.t UH NCh requnt.r
.d4rJ,.... bit fof' .M:h of the four addr ... ing mod •• (SH Tabl. 3-3) .,. shown in th. column. on the right Th. MSU add,..u
bit.,6hown in the column undtN fIX SIU'. X MSU'." UH a panicul., rtHIu •• ttN .ddrtla bit ind.""ndenr of the .dd,..aing modu.
An ·X· in. column .ft.r. reque.t.,. Mid, ... bit indlcat •• th.t the rtHIu •• ,.,. addl'U/l bit i. not uHd in formulating the MSU

6ddt'HII in th" addr.tllling mode.

• Wh.n bit 2.1 i. not .Nt MSU Mid,... bit6 , 7-20 .,. compl.",.nttJd in the SIU.

leo. AIw.1 _,

MSU

speRRY UNIVAC 1100/80 SyaerM .
4x4 Capability Processor and Storage Programmer Reference

X SIUs ReQuester Address Bit
. Address Bit X MSUs . Mode 1 Mode 2 Mode 3

20~ 22 21 21
19* 21 20 20
18· 20 19 19
17* 19 18 03
16 18 02 18
15 17
14 16
13 15
12 14
11 t3
10 12
09 11
08 10
07 09
06 08
05 07
04 06
03 05
02 04
01 01
00 00

NOTES:

Mode 4
20
19
18
03
02

I

In thi. tabl.. th. MSU Mid,... bit. a,. /I.ttld in th. column on th. 1.1t. Th. rtHIu .. ,., .ddf'H6 bit6 that .,. uMHI to erNr.
th. MSU MltJr ... fiN • .:h Of th. fou, add"";ng mod •• ,UtI Tabl. 3-3) a,. mown In th. column. on th. right Th. rtHIuHtM'

a.1d,... b;" shown in th. column unt/.,. ·X SIIJ. X MSU.· .,. "..n6fMNt/ to • ".nicul., MSU Mid,.... bit ind.".nd."t of th.

MIthtJaIng·mode.

• BIt!I , 1-20 will btl comp/Mrf."tM/ wh." wing SIU Ioww.

3.3.6.2. Partitioning of Storage Configurations

The SIUs are partitioned on a segment level. A segment can be assigned to either application 0,
application 1, or offline. When an application resides in two clusters. the assignment of segments
tel that application must be the same in both SIUs. If the first two lower numbered segments in SlU
o are in application O. then the first two segments in SIU 1 must be in application O. For an application
which resides only in one cluster. segments are assigned to it from only one SIU.

Main storage is partitionable on an MSU bank level. The MSU banks can be assigned to either
alpplication O. application 1. or offline. The changing of assignment of any given MSU bank can have
In effect on the other banks associated with that half of main storage because of the inteneaving
of addressing which can exist between banks. If an MSU bank is added to an application to which
another bank in the same half of storage is assigned. interleave of addresses in that SIU half changes.
If an MSU bank is removed from an application to which another bank in the same half of storage
il assigned. inteneave of addresses in that SIU half changes. To make the change in assignment.
i't is necessary to temporarily bring the SIU half offline. make the desired change, then bring the SIU
half back online. The procedures for partitioning are defined in 1100/80 Systems, 4x4 Capability,
Central Group. Operator Reference. UP-8599 (current version).

leo .. Rev.1
fJI'oNUMIIR

SPERRY UNIVAC 1100/80 Systems
4)(4 Capability Processor and Storage Programmer Reference UP'OATI LIVIL

3-15
PAGE

3.3.7. Storage Configurations

The 1 100/80 Systems have two types of configuration assignments for the SIU segments and MSU
banks: segment/bank configuration applicable to single cluster systems only, and segment/cabinet
configuration applicable to single and double cluster systems. (Refer to Appendix E for storage
canfigurations.)

Thel segment/bank configuration consists of unique cabling between the SIU and MSUs and allows
for configuring with fewer MSU cabinets for a given amount of SIU segments. The segment/bank
cO"lfiguratiotn is restricted to single cluster systems. The segment/bank configuration can be
converted to a segment/cabinet configuration through a cabling change.

Seument/bank configurations, because of the MSU/SIU relationship, limit the main storage to a
ma.ximum of two cabinets. Segment/cabinet configurations have a different MSU/SIU relatio'nship
and therefore allow up to four MSU cabinets in a system. The MSU/SIU relationship for the
se~,ment/bank configuration is one MSU bank interfacing with one SIU segment. The
se~,ment/cabinet configuration is one MSU cabinet interfacing with one SIU segment. The
rehnionship is controlled by cabling options which are possible between the MSUs and SIUs.

Th~8 directing of storage requests in the segment/bank configuration is essentially the same as for
thet segment/cabinet configuration. The directing of requests to upper and lower SIU storage is based
on the condition of address bit 23, and the directing of requests between SIU segments Within a half
is [based on address bit 2. This is the same as in the segment/cabinet configurations.

The directing of requests between the StUs and MSUs is different. In the segment/cabinet
configuration, requests are directed to both banks, and bit 3 determines which bank responds. In
th4. segment/bank configuration, requests from the SIU segments to MSUs are directed to one MSU
bank only. In the segment/bank configuration, bit 3 is not used to direct requests to MSU banks,
since each SIU segment directs the requests to just one MSU bank.

One situation exists for the segment/bank configuration where address bit 3 is used to direct requests
to both banks in a -MSU cabinet. The situation is a degraded mode operation in which one SIU
segment is unavailable to the system. In this case, the compani,on segment in the sfu half directs
requests to both banks in the MSU cabinet. alternating between the two banks based on the condition
of bit 3. This is performed the same way in the segment/cabinet configurati,"'.Ins.

3,,4. Control Storage

The control section of the CPU includes a general register stack (GRS) comprising 128 addressable
cc)ntrol registers that can be independently referenced in parallel with main storage. Each control
register stc)res a word consisting of 36 information bits. The control registers are addressable by
the a- and x-fields of the instruction word, and by the value U developed in the index subsection
o·f the CPU's control section. The details of control register addressing are explained in Section 4.
Tables 3~; and 3-7 summarize the control register address assignments.

3:.4. 1. Control Register Selection Designator

"he 1 28 addressable control registers inctude one set of registers for use by the user program, and
another set for use by the Executive program. The general register selection designator (06) in the
Clesignator register defines which set of registers is addressed by the a- and x-designators of an
ilnstruction word. When 06 - 0, the user program set of control registers is addressed; when 06
.. 1, theE~ecutive program set of control registers is addressed. The contents of 06 has no effect
em the choice of a control register for any particular value of U.

8104 Rev.1
WoM

SPERRY UNIVAC 1100/80 SyatetM
4x4 Capability Processor and Storage Programmer Reference UPDATI LIV!L

3.4.2. Control Register Address Assignments

Operand addresses 08 through 1778 are assigned to the control registers. The following paragraphs
define the various uses and related address assignments for the control registers.

3.4.2. 1. Storage for MSR Value - 0143

. During initial load of the system the value in the module select register (MSR) is loaded into GRS by
the hardware. This one time load makes the MSR value available for referencing by software.

Octal
0000
0001

I
0011
0012
0013
0014
0015
0016
0017
0020
0021

I
0033
0034

I
0037
0040
0041
0042
0043
0044
0045
0046
0047
0050
0051
0052
0053
0054
0055
0056
0057
0060

I
0067
0070

I
0077

Decimal
o
1
I
9
10
11
12
13
14
15
16
17
I

27
28
I

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
I

55
56
I

83

R egister A . sSignment
Unassigned
User Xl

User X9
User Xl0
User Xll
User X12/AO
User X 13/A 1
User X14/A2
User X15/A3
User A4
User A5

User A 15
Unassigned

Unassigned
Executive BOT Pointer
Immediate Storage Check Program Return Address
Immediate Storage Check Designator Register
Normal Program Return Address
Normal Designator Register
User BOT Pointer
~ BDI0'IEl21Q-Ol BOl2
ElllO-01 BOil J§3~ BDI3
Quantum Timer
Guard Mode Program Return Address
Guard Mode Designator Register
Guard Mode Interrupt Status
Immediate Storage Check Status
Normal Status
P-Capture (IOU Error Interrupt)
Designator Capture (IOU Error Interrupt)

*
*
* Jump History Stack

Jump History Stack

• Note th.t locations eo,' through 87. are uMd .. t.mporlry working Ito,..g. loe.tionl bv the proeeuor, and
their contents therefore unQtedH:t8b1e. O •• ..,.d sto,..g. checks are cl ... ed as norma' int.rruptl (0.3.0 ••).

8804 Rev. 1 I SftERRY UNIVAC 1100/80 SystemS
.~a.!!..-.~X4 Capability Processor and Storage Programmer Reference

Oerts.
0100
0101
0102
01'03
0104
0105
0106
0107.
0110
0111
0112

I
0117
0120
0121
0122
0123

I
0137
0140
0141

I
0'143

I
0'153
0'154

I
0'157
0'160

I
0'/73
0'174

I
0'177

Decima.
64
65·
66
67
68
69
70
71
72
73
74
I
79
80
81
82
83
I
95
96
97
I
99
I

107
108

I

I
111
112
I

123
124
I

127

Register Assignment
Real-Time Clock
User R 1/Repeat Count
User R2/Mask Register
User R3/Staging Register 1
User R4/Staging Register 2
User RS/Staging Register 3
User R6/JO
User R7/J'1
User RS/J2
User RS/J3
User R10

User R15
Executive RO
Executive R 1/Repeat Count
Executive R2/Mask Register
E.cutive R3/Staging Register 1 .
Executive R 1 5
Unassigned
Executive X 1

Executive X3 Initial Load MSR Value

Executive X 1 1
Executive X 1 2/ AO

Executive X 1 5/ A3
Executive A4

Executive A 1 5
Unassigned

Unassigned

3.~~.2.2. User Index (X) Registers - 0001-0017

UIIOATI LIYIL
3-t7

'AGe

Thn index registers. referred to as X-registers. provide the programmer with address modification
ca~)ability (indexing).

An index register contains a modifier field (Xm), which is used to modify the operand address
(indexing), 21nd an increment field (Xi), which is used· to modify the modifier field (automatic
incrementataon). If the relocation and storage suppression designator register bit 7 (07) and the i-bit
of iln instruction are one, 24-bit index register mode is specified. !n this mode, Xm is the lower 24
bit!1 of the iI,dex register (bits 23-0), and Xi is the upper 12 bits of the index register (bits 35-24),
In .111 other c:ases, 18-bit index register mode is selected. In this mode. Xmis the lower 18 bits of
thel index re'gister (bits 17-0), and Xi is the upper 18 bits of the index register (bits 35-18).

SPERRY UNIVAC 1100/80 System8
4x4 Capability Processor and Storage Programmer Reference

3.4.2.3. User Accumulator (A) Registers - 0014-0033

3-18
'AGI

The A-registers store arithmetic operands and results. The actual computation or logical function
is performed in the arithmetic section, and the results are stored in the A-register or registers
specified by the instruction. Four of the A-registers (addresses 14a - 17 a) overlap. registers assigned
as X-registers. This affords additional versatility in the use of A-registers and X-registers.

3.4.2.4. User Unassigned Registers. - 0034-0037

Two of these unassigned registers (348 and 35s) serve as an extension of the set of user A-registers
when 06 == 0 and an instruction which requires more than one user A-register is being performed.
All four of these unassigned registers can serve as general purpose registers.

3.4.2.5. Executive Bank: Descriptor Table Pointer Register - 0040

n,e word at this location is read when the Executive bank descriptor pointer is specified.

3.4.2.6. Immediate Storage Check Interrupts ~ 0041-0042

When an interrupt occurs, these registers temporarily store the captured program return address and
dttsignators, respectively.

3.4.2.7. Normal Interrupts - 0043-0044

When an interrupt occurs, these registers store the normal captured program return address and
dlBsignators, respectively.

3.4.2.8. User Bank Descriptor Table Pointer Register - 0045

The word at this location is read when the user bank descriptor pointer is specified.

3.:4.2.9. Bank Descriptor Index Registers - 0046-0047

The control register at address 46a is used al a holdi.,g register for bank descriptors 0 and 2. The
register at address 47 a is used as a holding register for bank descriptors 1 and 3.

3.4.2.10. Quantum Timer - 0050

'4IVhen an interrupt occurs, the captured quantum timer value is stored in this register.

:1.4.2.11. Guard Mode - 0051-OQ53

When a guard mode fault interrupt occurs; the program return address is captured in address 5 18,
the designators are captured at address 528, and the status is captured at address 53a.

8e04 Rev.1
......... IMII:R -----~PERRY UNIVAC 1100/80 Systems

4x4 Capability Processor and Storage Programmer Reference

3.4.2. 12. Immediate Storage Check Status - 0054

When an Immediate Storage Check interrupt occurs, the status is stored in this register.

3.4.2.13. Normal Status - 0055

3-19
'AGe

Address 558 stores all processor-generated interrupt status except Immediate Storage Check status
and Guard Mode status.

3.4.2.14. IOU Error Interrupts - 0056-0057

Address 56 11 provides a location in GRS for P-Capture, and address 578 provides a location in GRS
for Designator Capture. These two address locations in the GRS allow software to recover when one
of these lOlJ errors occurs.

3.4.2.15. Unassigned Registers - 0060-0067

The unassigned registers are not assigned to a specific use and may be used as temporary storage
lo(:ations. Some of the unassigned registers may be used in the performance of the instructions that
operate with a double word or triple word operand.

3.4.2. 16. Jump History Stack - 0070-0077

The jump history stack consists of eight general register locations (708 to 778) that hold recent 24-bit
absolute jump instruction addresses. Bit 35 of each entry contains a pass flag indicating whether
th~1t entry was stored on an odd or even pass through the stack. Entry stacking is activated by a Load
Breakpoint Register (LBRX) instruction, according to the conditions specified in the breakpoint
re'gister. Unless te,rminated by one of these conditions, the process continues in a wraparound
m,Elnner, and older entries are subsequently overwritten by new· entries.

3.4.2. 17 . Real-Time Clock Register (RO) - 0100

n,e contents of the lower half (bit positions 1 7-00) of the real-time clock (RTe) register is decreased
b" one every 200 microseconds, independent of program control or supervision. The +0 is
dftcremented to -1. A Real-Time Clock interrupt occurs if the RTC value in the lower half of the RTC
re,gister is zero when a decrementation cycle is initiated. The upper half (bit positions 35-18) of the
R'rC registl!r should not be used.

3.4.2. 18. User (R 1) Repeat Count Register - 0101

Tine contents of the repeat counter register define the number of times a "repeated instruction is
e:l(ecuted. During execution of a repeated instruction, the contents of the lower half of the repeat
clount regi!!ter is decreased by one each time the repeated instruction is executed. If an interrupt
occurs during the sequence of repeated executions of an instruction, the repeat sequence is
sluspendecl to process the interrupt, and the current count is left in R 1. The repeated sequence may
be resumed after the interrupt has been processed. The final value of the count after the repeat
sequence terminates is always available in R 1. If the contents of the repeat count register is zero.
the repeated instruction is not executed and the execution of the next instruction is initiated. Zero
in defined as all zeros or all ones in the lower half of the word (bit pOSitions 17-00); the upper half
(bit positiclns 35-18) of the repeat count register should not be used.

810 .. Aw.1 - SPERRY UNIVAC 1100/80 System.
4x4 Capability Processor and Storage Programmer Reference

3.4.2. 19. User (R2)/Mask Register - 0102

3-20
"AGE

The bits in the mask register specify the fields of operands to be operated upon in certain instructions.
A logical ~ is performed with the operand and the mask and/or its complement. The portions of
the operand so selected are then used in the instruction operation.

3.4.2.20. User (R2-R5)/Staging Registers (SR 1-SR3) - 0103-0105

The three staging registers are used for holding operand information and operation status for byte
instruction execution.

3.4.2.21. User. (R6-R9)/J-Registers (JO-J3) - 0106-0111

When tl'!e character addressing mode designator register bit 4 (04) is one, j-field values of four
through seven specify registers R6.through R9. respectively, instead of partial-word selections. These
registers provide character addressing and indexing in a manner that is similar to. and in addition
to, the word indexing function of the X-registers.

~1.4.2.22. User R-Registers (R 1 O-R 15) - 0112-0117

These registers are unassigned and serve as general purpose registers. When 06 = 0, each of these
registers can be implicitly addressed by one of the values 128 through 178 in the a-field of a load
A or Store R instruction.

:1.4.2.23. Executive (RO) R-Register - 0120

This register is unassigned and serves as a general purpose register. When 06 = 1. this register
is implicitly addressed when the a-field of a load R or Store R instruction equals zero.

3.4.2.24. Executive (R1) Repeat Count Register - 0121

When 06 - 1, this register has the same function and format as the user R 1 repeat count register.

3.4.2.25. Executive (R2)/Mask Register - 0122

'When 06 - 1, this register performs the same function as the user R2 mask register.

3.4.2.26. Executive (R3-R5)/Staging Registers (SR 1-SR3) - 0123-0125

When 08 - 1, thes. registers perform the same function as the user SR 1-SR3 staging registers.

3.4.2.27. Executive (R6-R9)/J-Registers (JO-J3) - 0126-0131
•

When 06 =- 1, these registers perform the same function as the user Jo-J3 registers.

8804 Rev.1 , I SPeRRY UNIVAC 1100/80 Systems
~t4 Capability Processor and Storage Programmer Reference

3.4.2.28. Executive R-Registers (R 1 O-R 15) - 0132-0137

UPOATI LIYB.
3-21

'AGE

Thelse registers are unassigned and serve as general purpose registers, When 06 = 1, each of these
regi:sters can be implicitly addressed by one of the values 128 through 178 in the a-field of a Load
R or' Store R instruction.

3.4.2.29. Executive Index Registers (X1-X15) - 0141-0157

WhEtn 06 == 1, these registers perform the same functions as the user index registers.

3.4.2.30. E.xecutive Accumulator Registers (AO-A 15) - 0154-0173

WhEtn 06 - 1, these registers perform the same function as the user A-registers.

3.4.2.31. E,xecutive Unassigned Registers - 0140, 0174-0177

WhEtn 06 == ", these registers are used in the same manner as the unassigned registers at addresses
348,-378,

3.4.2.32. Control Register Protection

Wh~.n operating in guard mode (02 == 1), a Guard Mode interrupt will occur if an attempt is made
to e,xecute a privileged (Executive~ instruction or to store data into an Executive GRS location.

8eo .. Rev.1
~

I SPE:RRY UNIVAC 1100/80. Syetems
~4 Capability Processor and Storage Programmer Reference UfI'OAlI LIYa.

4. CPU Arithmetic and Control

4. 1. General

The 1100/80 Systems central processor unit (CPU) comprises an arithmetic section, control section,
maintenance section, general register stack, and interfaces for communicating with other units in the
systlltm.

The arithmetic and con'trol sections are discussed in this section. The general register stack (GRS)
is discussed in Section 3. A brief discussion of the maintenance section is in Section 2.

4.2. Arithmetic Section

4.2.,1. Gennral Operation

Durilng the e;~ecution of logical and arithmetic instructions. the following steps are performed:

1. Transfer input data from instruction-word-specified storage locations or control registers to
input registers in the arithmetic section. During the transfer, the input data are processed by
the main control section to provide absolute values.

2. Perform the arithmetic operations of addition, subtraction (add negative), multiplication, division,
byte. m~,"ipulation, skip detection, etc., as speCified by the instruction word.

3. Transfer final results from the arithmetic section to temporary holding registers, general register
storage, or indicate skip condition.

4.2,. 1. 1. Delta Word

Thet highest order binary bit represents the sign of the value contained in the remaining bit positions.
If the sign bit contains a zero, the word is positive and ", in the remaining bit positions represent
sigl"'ificant data. If the sign bit contains a one, the word is negative and O's in the remaining bit
po!~itions re~)resent significant data. A binary data word containing all zeros is referred to as positive
zer,o (+0). A binary data word containing all ones is referred to as negative zero (-0).

8804 Rtw.1
IJII>.NUMIBI

I SPERRY UNIVAC 1100/80 Systems
~J Capability Processor and Storage Programmer Reference UIlDATi LiYIL

4.2.4. Fixed·-Point Single- or Double-Precision Add or Subtract Overflow and Carry

4-3
IIAG.

In fix1ed-point arithmetic. the execution of certain instructions can result in an overflow or a carry
condi:tion. During execution, the overflow designator (01) and the carry designator (DO) bits are
clear.,d to zeros; the overflow and carry conditions set bits 01 and DO. respectively. in the designator
regis1ter. These bits can be sensed by certain other instructions. Each of these designators, when
set t(J1 one, remains in the set condition until the next time anyone of the instructions in Table 4-1
is ex.tcuted or until the Load Designator Register instruction is executed.

4.2.4~. 1. Overflow

An overflow cc)ndition is detected when one of the 10 instructions in Table 4-1 is executed and the
numeric value of the result obtained exceeds the maximum numeric value that can be contained in
the r.!tgister hc)lding the final result. Under this condition the resulting sign will be incorrect. an
overflow enable is generated and sent to control, and 01 is set.

Function Code (Octal) Instruction

f. 14, j -= 00-17 Add to A

f- 15, j == 00-17 Add Negative to A

f. 16, j • 00-17 Add Magnitude to A

f • '17. j ::I 00-17 Add Nega'tive Magnitude to A

f.20. j - 00-17 Add Upper

f -= 21. j - 00-17 Add Negative Upper

f - 24, j - 00-17 Add to X

f - :ZS, j - 00-17 Add Negative to X

f - '71, j- 10 Double-Precision Fixed-Point Add

f == '71, j- 11 Double-Precision Fixed-Point Add Negative

4.2.4.2. Caf'ry

A calrry condition is detected when an end-around carry occurs during the execution of an instruction
listed in TablEt 4-1. The detection of a carry condition indicates that a carry was propagated out of
the !Sign bit position and automatically added into the low-order bit position. The detection of the
car", condition is significant when programming multiple-precision routines. In ones complement
subtractive arithmetic, the carry condition can be equated to the no borrow condition, and the no carry
condition to the borrow condition.

The condition of the carry designator can be tested by executing either the Jump Carry or Jump No
Carry instructions. Table 4-2 lists the sign combinations for which the carry designator would be
set to 1 indicating that a carry has occurred.

8104 Rev.1
~ ... SPERRY UNIVAC 1100/80 SyMema

4x4 Capability Processor and Storage Programmer Reference

Operation Input Operand Sign

Augend Addend

+ -
- +

Addition

- -
- -

Minuend Subtrahend

+ +

Subtraction - -
(add negative)

- +

- +

Resultant Sign

+

+

+

-

+

+

+

-

4.2.4.3. Arithmetic Interrupt

Thl! arithmetic section cannot cause a system interrupt. But, when an arithmetic fault occurs, it
gel,erates a fault condition signal which allows the control section to set the appropriate designator
bit. Other processor 'conditions in conjunction with those arithmetic fault conditions determine
whether or not control generates an interrupt.

4.2.5. Fixed-Point Division

The process of dividing one fixed-point number by another consists of,transferring the numbers to
the, arithmetic section, performing a series of trial subtractions to form a quotient and a remainder,
transferring the properly signed quotient to a register and, if the remainder is to be saved, transferring
the properly signed remainder to another register. All divide operations use the main adder and
shifter.

~I

4.2.6. Fixed-Point Multiplication

The arithmetic section contains a fast multiplier unit to handle multiplications. The main adder and
shifter are used only in the beginning and 'ending cycles for input and output data adjustments.

4.2.7. Floating-Point Arithmetic

Floating-point arithmetic handles the scaling problems which arise in computations involving
numbers which vary widely in range. In floating-point arithmetic, the numbers are represented in
a :special format so that the computer can automatically handle the scaling.

8804 Rev.1
4x4 Capability Processor and Storage Programmer Reference UflDATi LIYIL -------UPE:RRY UNIVAC 1100/80 Systems

4.2.EI. Floating-Point Numbers and Word Formats

Floatling-point numbers in the instructions are represented in single-precision format as a 27-bit
fractional qual1tity multiplied by the appropriate power of two, or in the double-precision format as
a 60--bit fractional quantity multiplied by the appropriate power of two. The power of two is called
the exponent. In machine representation, the exponents are biased to make them lie in the range
of positive nurnbers or zero. These biased exponents are called characteristics. The fractional part
is referred to ctS the mantissa. The two format types, single-precision and double-precision, are as
follows.

~_'_~_~_._ri_'U_·C __ ~~ _______________________ M_a_n_ti_~ ________________________ ~
3534 2725 o

Ooub'.-Pr.cision Flollting-Point Formst

~ Chara ristic Mantissa

71 70 6059 36

~ MantisSl L-_______ ___
35 o

.An e,Kpianation of the sign bit, characteristic, and mantissa follows:

• Sign - "he sign bit expresses the sign (5) of the numerical quantity represented by the
floating-point number.

If S - 0, the numerical quantity ;s positive (+).

If S - 1, the numerical quantity is negative (-).

• Characteristic - The characteristic represents both the numerical value and the sign of the
exponent.

1. Single-Precision Characteristic - The a-bit characteristic of a single-precision
floating-point number represents an exponent value in the range + 127 through -128. The
characteristic is formed by adding a bias of + 128 (2008) to the exponent. Table 4-3 shows
the range of characteristic values and corresponding exponent values.

8104 Rev.1 SPERRY UNIVAC 1100/80 SyatetM
4x4 Capability Processor and Storage Programmer Reference

Decimal Values Octal Values

Characteristic Unbiased Characteristic
Exponent

" -'

255 +127 377

128 000 200

000 -128 000

Unbiased
Exponent

+177

000

-200

2. Double-Precision Characteristic - The 11-bit characteristic of a double-precision
floating-point number represents an exponent value in the range + 1023 through -1024.
The characteristic is formed by adding a bias of + 1024 (2000a) to the exponent. Table
4-4 shows the range of characteristic values and the corresponding exponent values.

Decimal Values , Octal Values

Characteristic Unbiased Characteristic Unbiased
ExpQnent Exponent

2047 +1023 3777 +1777

1024 0000 2000 0000

0000 -1024 0000 -2000

• Mantissa - The mantissa portion of a floating-point number represents the fractional part of the
number. . In the instructions, the fractional part is normalized so that the absolute values
represented are greater than or equal to 1/2. but less than one. Zero cannot be represented
in this range: it is considered to be normalized as it stands. The binary point of a floating-point
number is assumed to lie between the last bit of the characteristic and the first bit of the
mantissa. The mantissa of a single-precision floating-point number contains 27 bits: for a
double-precision floating-point number. the mantissa contains eo bits. The mantissa need not
be normalized for all instructions.

8104 Rev.1
~

I SPEI.RY UNIVAC 1100/80 Sytteml
~, Capability Processor and Storage Programmer Reference

4.2.8. 1. Single-Precision Floating-Point Numbers

UPDATI LIYIL

, A sinule-precielion floating-point number can be derived from a positive decimal number as follows:

Examlple:

t3iven nUlnber == + 1210

I. Sign - + =- 0

I. Characteristic == exponent + bias

- 00 000 1002 + 10 000 0002

- 10 000 1002

1. Mantissa =- .110000 0002

:. The format for the floating-point number is as shown (sign included):

In Characteristic Mantissa

10 000 100 1100 0 - 2048000000008

2128 o

4.2J~.2. Double-Precision Floating-Point Numbers

A double-prec:ision floating-point number can be derived from a positive decimal number following
the Siame ste~ts that were used for single-precision with these two exceptions:

• A bias value of 20008 is added to the exponent to form the characteristic. For single-precision
the valuo is 2008,

• The mantissa is 60 bits instead of 27 bits.

4.2.B.3. Negative Floating-Point Numbers

A flctating-point number can be derived to represent a given negative number as follows:

• Represent the given number as a positive floating-point number.

• Form th4t ones complement of the entire positive floating-point number.

Exarnple:

Given number =- -12,0

8804 Rev.1 SPERRY UNIVAC 1100/80 Syateml
UP-MJ ••• 4x4 Capability Processor and Storage Programmer Reference

• The single-precision floating-point number .for + 12'0 (including sign) is 204 600 000 OOOs.

• The single-precision floating-point number for -12,0 (including sign) is 573 177 777 777 s.

4.2 .. 8.4. Residue

During single-precision floating-point Add or Add Negative, the bits shifted off the right end of the
register during alignment of the mantissas is not included in the addition but saved, becoming the
residue. After the addition is performed, the sum and the residue are each packed into floating-poi~t
format, the sum is stored, and the residue is stored if the floating-point residue store enable
designator (0 1 7) is one.

When the two 36-bit input operands for an Add or Add Negative instruction are transferred to the
arithmetic section, their characteristics are examined, and the mantissa of the input operand with the
smaller characteristic is right-shifted a number of bit positions equal to the difference between the
characteristics. The bits shifted out of the 36-bit arithmetic register are saved in an auxiliary ,·egister.
The portion of the mantissa saved in the auxiliary register is used to form the residue and is not
included in the algebraic addition. After completion of th" addition and any shifting necessary to
normalize the sum, the sum and the residue are packed into single-precision floating-point format
and transferred to two consecutive A-registers.

4.2.9. Normalized/Unnormalized Floating-Point Numbers

A floating-point number is normalized when the leftmost bit of the mantissa is not identical to the
sign bit or when all bits of the mantissa are identical to the sign bit. A floating-point number is not
normalized when aU bits of the mantissa are not sign bits and the leftmost- bit of the mantissa is
id,entical to· the sign bit.

AU floating-point operations produce a normalized result when the input operands are normalized.
The sums produced by Floating Add and Floating Add Negative instructions and the result produced
by the Load and Convert to Floating instruction are always normalized. regardless of whether or not
the input operands are normalized. When either or both input operands are not normalized, the result
obtained may be less accurate than if normalized input operands had been used.

Normalized input operands must be used for the Floating Multiply, Divide, Compress and Load, and
Expand and Load instructions. If normalized input operands are not used for these instructions, the
results are undefined.

4.2.10. Floating-Point Characteristic Overflow/Underflow

Floating-point characteristic overflow/underflow occurs when the characteristic does not lie in the
range represented in the number of bits allowed for the characteristic.

When any of the Floating-Point Add, Add Negative, Multiply, Divide, or Load and Convert instructions.
or the Compress and Load instruction are performed, overflow or underflow may occur.·

4.2. 1 O. 1. Floating-Point Characteristic Overflow

Single-precision floating-point characteristic overflow occurs when the 8-bit characteristic of the
resultant most significant single-precision floating-point word represents a number greater than
3778 and the associated mantissa is not zero.

SPERRY UNIVAC 1100/80 Systems
UP'DATI LEVEL 4x4 Capability Processor and Storage Programmer Reference

--~------~----------------~----------~---------

Doublle-precision floating-point characteristic overflow occurs when the l1-bit characteristic of the
resultant double-precision floating-point number "epresents a number greater than 37778 and the
associated mantissa is not zero.

Wher11 overflo,-" is detected, the action taken depends on the arithmetic exception interrupt designator
(020),. The characteristic overflow designator (022) is always set.

4.2.10.2. Floating-Point Characteristic Underflow

Singlct-precisi()n floating-point characteristic underflow occurs when the resultant floating-point
word represents a negative number and the associated mantissa of the result is not zero. This means
that the exponent of the result is Jess than -2008, thus the attached sign (positive - because absolute
value is used) c:hanges due to the borrow. If the characteristic of the residue (Floating Add, Floating
Add Negative), remainder (Floating Divide}, or the least significant single-precision word of the
product (Floating Multiply) represents a negative number, this fact by itself does not result in
undel"flow. Instead, the residue, remainder, or least significant word of the product is cleared to all
zero bits or set to all one bits (to reflect the appropriate sign).

Double-precision floating-point characteristic underflow occurs when the 11-bit characteristic of the
result: represents a negative number, i.e., the exponent of the result is ,less than 20008, the mantissa
of thu reSUlt is not zero, and the double-precision underflow designator (05) is cleared.

Wher, underflc)w is detected, the characteristic underflow designator (021) is always set and the
action taken by the CPU depends on the state of 020.

4.2.10.3. Flc)ating-Point Divide Fault

For single- or double-precision floating-point division, a divide fault condition will be detected when
the mantissa I:)f the divisor is zero. The action taken depends on the floating-point zero format
selection desi~Jnator (08, for single-precision floating-point division only) and 020. The divide check
designator (023) is always set.

4.2. 11 1. Fixed-Point to Floating-Point Conversion

Conversion of a fixed-point number to floating-point number is performed in the arithmetic section.
The first input operand contains a characteristic (biased exponent) which defines the location of the
binary point fc)r the fixed-point number with respect to the standard position of the binary point for
a fl02lting-point number. The second input operand is the signed fixed-point number to be converted.

The (:onversion process consists of transferring the two operands to the arithmetic section, shifting
the 1fixed-point number, jf necessary, to position its bits as the mantissa for a normalized
floatiing-point number. Modify the characteristic to reflect the magnitude and direction of the
normlalizing shift. Pack the shifted fixed-point number (mantissa~ and the modified characteristic in
float.ing-point format. Load the packed results in a register (conversion to single-precision
floati!ng-point format) or into two consecutive registers (conversion to double-precision floating-point
form,at).

(

SPERRY UNIVAC 1100/80 SyttefM
4x4 Capability Processor and Storage Programmer Reference

4.2.12. Floating-Point Addition

UPDATI LIYIL
4-10

'AU

The process of adding two floating-point numbers consists of loading the numbers into the arithmetic
section, determining the difference between the characteristics of the two numbers, shifting (right)
the mantissa of the number having the smaller characteristic, adding the mantissas, combining the
results in floating-point format, and transferring the resulting floating-point numbers to GRS.

The input operands for floating-point addition need not be normalized numbers. For single-precision
addition, the sum (most significant word produced) is always a normalized number. The residue word
mayor may not be a normalized number. For double-precision addition, the sum is always a
nOITnatized number.

4.2. 1 3. Double-Precision Floating-Point Addition

The steps performed for double-precision floating-point addition are similar to those for the
single-precision addition with these six differences:

1. Each of the two operands occupy two 3S-bit r&gisters in the arithmetic section. In
single-precision addition both operands are contained in two 36-bit registers.

2. The mantissa sum can contain a maximum of 60 bits in double-precision addition. instead of
27 bits as in single-precision addition.

3. The bits that are shifted out of the right end of the 36-bit register when the operands are lined
up prior to addition are lost. There is no residue.

4. Oouble-precision characteristic overflow occurs when the characteristic is greater than 37778
and the mantissa is not zero.

5. Double-precision underflow occurs when the exponent is less than -20008 and the mantissa
is not zero. In single-preC'ision the value is -2008'

6. The sum is stored in two consecutive registers, A and A+ 1. No residue is stored.

4.2. 14. Floating-Point Subtraction (Add Negative)

Floating-point subtraction (both single-precision and double-precjsion) uses the same routine as for
the Floating-point Add operation.

4 .. 2. 15. Floating-Point Multiplication

The process of multiplying two floating-point numbers consists of loading normalized mput operands
into the arithmetic section, unpacking, multiplying the mantissas, adding the characteristics, packing
the rHults into floating-point format, and transferring the result to GRS. The results obtained for aU
cases in which either or both input operands are not normalized numbers are undefined.

4.2. 16. Floating-Point Division

The process of dividing one floating-point number by another consists of loading the normalized input
operands into the arithmetic section, unpacking, dividing one mantissa by the other, subtracting the
characteristics. packing the results into floating-point format. and transferring the result to GRS. The
results obtained for all cases in which either or both input operands are not normalized numbers are
undefined.

8804 Rev. 1 I SPERiRY UNIVAC 1100/80 Systems
UfI..MUMI8i ~~ Capability Processor and Storage Programmer Reference

4.2. 17. Floating-Point Zero

UPDATE L.EVB.
4-11

'MI

Ffoatif'llg-point zero can be defined as a floating-point number having all mantissa bits identical to
the si~~n bit.

4.2. 1 ~a. Byte Instructions

This cllass of im;tructions is designed to permit transference, translation, comparison, and arithmetic
computation of data in the form of predetermined bit patterns (e.g., half words, third words, Quarter
words, and sixth words) referred to as bytes.

There are a total of 1 5 distinct instructions that perform the various multiword (byte string) operations
noted above. "rhese instructions may be arranged under three functional groups:

1. iIr,structions that involve byte transfers and manipulations between one storage location and
sinother;

2. instructions that permit the mutual transference and manipulation of data among storage and
~rarious ccmtrol and arithmetic registers; and

3. instructions that perform decimal arithmetic addition and subtraction operations.

Twelve of the byte instructions are performed in the arithmetic section. The remaining three
instructions (3=3,00 - Byte Move; 33,01 - Byte Move with Translate; and 33,07 - Edit) are performed
in the' main control section.

4.3. Control Section

4.3. 1. Instru1ction Word Format

During the running of a program in the 1100/80 Systems CPU, instructions are transferred from main
storalge locations to the control section of the CPU. The instructions are transferred from sequentially
addrEtSsed main storage locations until the sequence is broken by the program or interrupted by the
control section's reaction to some special condition or event. Each instruction is a coded directive
to th~B control section; the control section initiates a sequence of steps necessary to perform the
partic:ular operation prescribed by the instruction. The 36-bit instruction word, illustrated below, is
subd:ivided into seven fields.

35 30 29 2825 2221 18 17 18 15 o

whef~e:

f - Function Code

j - Op~9rand Qualifier, Character Addressing, Partial Control Register Address, or Minor
Furlction Code

8eo .. Rev.1 SPERRY UNIVAC '.100/80 Syttem8
4x4 Capability Processor and Storage Programmer Reference 1.~12

a =- A-, X-, or R-register; Channel Number, Jump Key or Stop Keys Number; Minor Function
Code; Partial Control Register Address

x = Index Register

h .. Index R~gister Incrementation Control

i-Indirect Addressing Control, Base Register Suppression Control, 24-Bit Indexing Control,
or Operand Basing Selector

u =- Operand Address or Operand Base

4.3.2. Instruction Word Fields

Tho following paragraphs describe the manner in which the CPU's control section reacts to the
cor1tents of each of the seven fields of an instruction word.

4.3.2. 1. Use of the f-Field

The f-field is used to define the basic operation to be performed for all legal values of f less than
or equal to 708 (except 078, 338, and 378), When the f-field is 078, 338, 378 or greater than 708,
the f- and j-fields are combined to form a 1O-bit field used to define the basic operation. For 11
of these f, j combinations, the value in the a-field is used to define variations of the basic operation.
All function codes are defined in Section 5 and listed in Appendix C.

4.3.2.2. Description of the j-Field

When f is less than 708 (except 07 8, 338, and 3'1 8), the j-field is used as an operand qualifier or to
identify a J-reglster used in the character addressing mode. When f is equal to 708, the j-field is
used as part of a control register address. When f is 078, 338, 378 or greater than 70s, the j-field
and the f-field are used to define a basic operation; in this instance, the j-field operates as a minor
function code.

4.3.2.2. 1. Use of the j-Field as an Operand Qualifier

When the f-field of an instruction contains a value in the range 0 1s through 678 (except 078, 33s'
and 378) and the character addressing mode designator (04) =- 0, the j-field is used as an operand
qualifier which specifies the data transfer pattern to or from main storage, except as specified in
4.3.2.2:2.

The j-field can contain values ranging from 0 through 178, Each value, except 48 through 78,
determines a specific data transfer pattern. Each of the j-field values 48 through 78 may specify either
of two different data transfer patterns. or character addressing with the choice dependent on the
contents of the quarter word mode selector (010) and 04 of the designator register (see S.2. 1). If
04 - 1. character addressing is specified and each of the j-field values 48 through 78 specify a
J-register as explained in 4.3.2.2.2. Figures 4-·1 ,and 4-2 illustrate all the possible data transfer
patterns which can be specified by the j-field when 04 - O.

8804 Rev.1 I SPERRY UNIVAC 1100/80 System.
~ ___ ~, Capability Processor and Storage Programmer Reference UIIOATI LEVEL

4-13
PAGE

.. , . QU2lrter-Word c> (Octal) Designator* Storage Location Arithmetic Register

(I o or 1 135 O~35 01

1 o or 1 I 1,7 0~i!5-_-_-_;~~~-_~-_~~1'7 01

~~ o or 1 1315 181 ~i~~~~;~~~-_-_-_~131'7 01

~I o or 1 I 1,7 0~i~~~~;~~~~-_~~~1'7 01

4 .. '. 0 136 1s1 ~;5---;i;~S---~81'7 1.: ___________
01

5 .. ·• 0 I 1, 1 0~i!5~~~~~;~;_;~-_~~~~~1,1 01

8 .. ·• 0 I 123 121
~;;----;i;~,--·---~21,1 1.:: _______________

01'

7",. 0 35 241
~;5-----;i;~'----·-~21,1 1.: _______________

01

4 .. ·• 1 126 1s1
~;;-----;e~;s-------9Is

I.:~----------------
01

5 .. ·• 1 Is
0~;5- - - - - - ;e;;,- - - - - - -91s 1.:: _________________

01

8 .. ·• 1 1,7 91
~;5------;.;;s-------918 1.:: _________________

01

7 .. ·• 1 135 271
~;5------;.~,-------918 1.:: _________________

01

110 o or 1 I Is o~;;------~;;;-------~ 1.:: ___________________

11 o or 1 1,1 81 ~;;------~;;;-------8~ 1.:: ___________________

12 o or 1 1,7121
~;;------~~;;-------~ 1.:: ___________________

13 o or 1 1231s1
~;5-------;.;;s--------~ 1.: ___________________

14 o or 1 129241
~;;------~;~--------~ 1.:: ___________________

1IS o or 1 1315301
~;;------;;~--------~ 1.: ___________________

18"~ •• o or 1 I 1,7 0~i!5~-_-J~~;~~~~~1,7 01

17., •• o or 1 I 1,7 0~i!5~-_~;~;~~-_-_~~!1,7 01

• Th. Quan.r-Word Mod. D •• lgnltor bit (010) I. held in the d •• ignltor regi.ter.

*. Chlract.r Addr ng Mod. OHignator bit (04) wlllimpty J-fegister usege for instruction cod •• leas than f - 70 (except
07, 33, 37) for chlrlet.r or byte manipu'ation. D4 ov.rrid .. D 1 O. *.. If x _ 0, the h, i, and u are transferred. If x is not equet to zero, then u + (X) is transferred.

8104 "".1 SPERRY UNIVAC 1100/80 System.
4x4 Capability Processor and Storage Programmer Reference

J Quarter-Word ¢> (Octal) Designator· . Arithmetic Register Storage Location

0 Oor1 135 0~3!5 01

1 o or 1 I 117 0t--@-1 117 01

2 o or 1 I 117 ot--@-136 181 I
3 o or 1 1,7 0t--@-1 117 01

4** 0 1,7 0t--@-13!5 181 I
5** 0 111 0f--@-1 1,1 01

1** 0 111 0f--@-1 123 121 I
7** 0 111 of--@-135 241 I
4** 1 18 o~ 128 181 I
5** , 18 O~ 18 01

8** 1 Is O~ 1,7 91 I
7** 1 18 0~36 271 1

10 o or 1 115 oH!)--1 115 01

11 Oor1 , I 115 0H!)--1 1,1 &1 I
12 o or 1 15 0H!)--1 1,7121 I
13 o or 1 15 oH!)--1 123181 I
14 Oor1 15 Ol---C!H 129241 I
15 Oor1 15 oH!)--135301 I
11 o or 1 No O.ta T ... nsfer

17 Oor1 No O.ta Tr.nsfe,

* The Quanet-Word Mode Oeaign.tor bit (010) is hefd in the dHign.tor regilte,.

** Cher8cter Addrenmg Mode OHignetor bit (0.) will imply .kegiltet uaege for in.tructton code. I ... then f - 70 (except
07. 33. 37) for ch.,.cter or byte m.nipuI8tion. 04 overTidH 010.

880. Rev. 1 I SPE~rRY UNIY AC 1100/80 Systems
~~ Capability Processor and Storage Programmer Reference

• Operand qualification when f == 10s through 67 a (except 338 and 37 8)

4-15
PAGI

1"hese instructions require the transfer of a full 36-bit word or a partial word to the arithmetic
election.

11. If j :III 0a' the full 36-bit word addressed by U is transferred to the arithmetic section.

:!. If j =1 0 1a through 15s and U specifies a main storage location (U ~ 2008), a partial word
is trllnsferred to the arithmetic section. In the arithmetic section, the partial word is
extended to a full 36-bit word, either by zero fill or by sign bit fill from the leftmost bit
position of the partial word, as illustrated in Figure 4-1.

:3. If j :III 168 or 17 s, an la-bit partial word is transferred to the arithmetic section. Details
on the formation of this partie' word and its extension are given in 4.3.2.8.2.

Wherl j =- 0 '8 through 15s arid U specifies a control register (U ~ 1778), the j-field is treated as
jf it clontained Os and the full 36-bit word is transferred from the control register to the arithmetic
sectic»".

• IOperand qualification for store and block transfer instructions

'The full 36-bit word in the control register specified by the a-field (see 4.3.2.3.1) is transferred
to a nonaddressable register in the data shift/complement/store section (f==O '8 through 048
and 06"s)" The nonaddressable register, is cleared to 0 when f-05 s'

1. If j •• Os' the full 36-bit word is transferred from the nonaddressable register to the location
(main storage or control register) specified by U.

2. If j := 018 through 15s and U specifies a main storage location (U ~ 20°8), a partial word
is transferred from the least significant bit positions of the nonaddressable register to the
main storage location as shown in Figure 4-2. The contents of the remaining bit positions
of the main storage location are not changed. Partial word writes of a third word, quarter
word, or sixth word increase the storage cycle time to 200 nanoseconds.

3. If j :a: 16s or 1 78, data is never transferred from the nonaddressable register to any storage
Joc~.tion (main storage or control register).

When j - 018 through 15a and U specifies a control register (U ~ 1778), the j-fieJd is treated as
if it Icontainecl Os' and the full 36-bit word is transferred to the control register,

4.3.2.2.2. Ltse of the j-Field to Specify Character Addressing

WhEtn the f-field of an instruction contains a value in the range 01 through 678 (except 078, 338,
and 378), 04 (the character addressing mode selector) - 1, and j - 48, 5s, 6s, or 78, the character
addt'essing mode is specified. When the character addressing mode is specified, a j-field value of
4, 5, 6, or 7 lspecifies JO, J 1, J2, or J3, respectively, in the GRS, as the register defining character
or byte size, the position of the byte within a word, and other details. When the GRS selection
designator (06) - 0, the J-register is selected from the set of four J-registers at GRS locations 106
through 11' 8, When 06 - ',the J-register is selected from the set of four J-registers at GRS
locations 12~5 through 131 8, The format of a J-register word as used in the character addressing
mode is shown in Figure 4-3 and explained in Table 4-5.

8804 Rev.1 SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference

4-18
,AGI

Iw Ib Ow

31S U 33 32 31 2120 1817 3 2 0

Bit Positions J-Register Interpretation
Field Identifier

35 I The l-bit of the J-Register, in conjunction with the h-bit of the
instruction, specifies whether or not the contents of the Ow- and
Ob-fields are modified when the instruction is performed as
follows:

• I - 0 or h - 0 specifies no J-register mOdification*

• I =- h - 1 specifies modification of Ow and Ob by Iw
and Ib, respectively.

34,33 Bl Specifies the byte length, as follows:

• Bl =- 0 specifies a 9-bit byte

• Bl - 1 specifies an 18-bit byte

• Bl - 2 specifies a 6-bit byte

• Bl - 3 specifies a 12-bit byte

32 E Specifies the bit used to extend the byte to 36 bits, if necessary,
as follows:

• E - 0 specifies extension with 0 bits

• E - 1 specifies extension with the high order bit of the
byte

31-21 Iw Iw specifies the increment (or decrement) in words. Ib specifies
the increment (or decrement) in bytes. If I - 0, or h - 0 these
two values are ignored.

20-18 Ib If I - 1 and h - 1, the· values in the Iw- and Ib-fields are added
to the values in the Ow- and Ob-fields, and the sums are stored
in the Ow- and Ob-fields after the initial values in these two fields
are used to form the absolute address of a word and select a byte
within the word.

8104 "",1
Uf\ooMJMIIft

I SPE:RRY UNIVAC 1100/80 Systems
~, Capability Processor and Storage Programmer Reference UIIDATI UYIL

Tabl. 4-6. Explanation of ./-R-rJist.r Fields for Characttlr Addressing Modtl (continutld)

Bit I~ositions J-Register Interpretation
Field Identifier

17-3 Ow The offset in words. This value is used to form the relative
address U and the absolute addresses 51 and SO.

2-0 Ob The offset in bytes. This value is used to select a particular byte
within the selected word. The valid values of Ob for the possible
values of BL are shown in Figure 4-4. Other byte selections are
not defined.

... If I _ O. h _ V in the instruction word specifi .. inde. register modification when x , O.

BL == 0 Ob - 0 Ob = 2 Ob = 4 Ob = 6
(9-bit bytes)

38 2728 18 17 9 8 0

BL - 1 Ob - 0 Ob - 4
(1 8-bit bytes)

38 18 17 0

BL = 2 I Ob ... 0 1 Ob - 1 1 Ob ... 21 Ob - 31 Ob - 41 Ob = 51
(6-bit bytes)

35 3029 2423 18 17 12 t 1 IS 5 0

BL - 3 Ob - 0 Ob =- 2 Ob == 4
(1 2-bit bytes)

38 2' 23 12 1 t 0

The Iidditions performed when I - and the h-bit of the instruction - 1 are symbolized by

lOb + Ib - Ob

and

IOw+lw-Ow

The ,,'alues in the Ow- and Ob-fields are always treated as positive values in these additions. The
high .lrder bit in the Iw-field (bit 31 of the specified J-register) is applied as the sign of both the 'w
and Ib-fields. If this sign is a zero bit, forward modification of Ow/Ob is performed. Forward
modi1fication permits incrementing the Ow- or Ob-field value (or both) to produce new Ow- and

8804 Mev.1 SPERRY UNIVAC 1100/80 Sy8tem8
4x4 Capability Processor and Storage Programmer Reference ' UPOATI LIYIL

4-18
"AGE

Ob-field values to select any desired byte in lower order bit positions of the same word or select any
desired byte in any word having a higher address. If the sign bit applied to the Iw- and Ib-fields is
a lOne bit. backward modification of Ow/Ob is performed. Backward modification permits
decrementing the Ow- and Ob-field value (or both) to produce new Ow- and Ob-field values to select
any desired byte in higher order bit position of the same word or select any desJred byte in any word
having a ·lower address.

The result produced for the addition Ob + Ib ... Ob is dependent on the two values used as inputs.
the sign in the Iw-field, and tt,e value in the BL- field. as shown in Tables 4-6 through 4-9. The valid
combinations of Ob and Ib are shown in these tables. The result produced when any other
combination is used is undefined.

Tba addition Ow + Iw ... Ow is performed in an 1 8-bit ones complement subtractive adder after
extending the 15-bit Ow-field to 18 bits with three high order zero bits and extending the 11-bit
Iw-field to 18 bits with seven high order bits identical to the sign bit in the Iw-field. A carry-or borrow
generated in the addition Ob + Ib ... Ob also enters the Ow + Iw ... Ow addition. The sum is stored
in the Ow-field of the specified J-register after the initial value in the Ow-field is used to form the
relative and absolute addresses needed for the instruction.

If the value in the Ow-field is modified by adding a positive Iw value to produce an 1 8-bit sum greater
than 0777778 or by adding a negative Iw value to produce a negative 18-bit sum, the 15-bit value
stored in Ow is undefined. Producing a negative 18-bit sum is a common programming error which
can be avoided by choosing an artificially high-initial value for Ow and reducing the initial value of
Xm by a like amount.

If t.he value U produced by the addition u + Xm + Ow (see 4.3.2.S) for an instruction which specifies
the character addressing mode is less than 200a, a register in the GRS is not referenced. Instead.
thll values 51 and SO are produced, and if U passes the storage limits test, an attempt is made to
reference main storage.

Valid Input Ob Values
BL - 0 (9-8it Number of Valid 0 2 4 6

Bytes) Bytes Ib
Forward or Value
Backward

Forward 0 o· 0 2 4 6
Modification 1 2 2 4 6 Oc

(J31 - 0) 2 4 4 6 Oc 2c
3 6 6 Oc 2~ 4c

Backward 0 .7 0 2 4 6
Modification 1 5 6R 0 2 4

(J31 ill: 1) 2 3 4a 68 a 2
3 1 2R 4R 6R 0

For valid Ob/lb input combinations

C - Carry (+ 1) to Ow + Iw ... Ow addition

B - Borrow (-1) to Ow + Iw ... Ow addition

sea .. Rev.1
UI4tUMIIII

SPERRY UNIVAC 1100/80 S.,.-tems
4x4 Capability Processor and Storage Programmer Reference UI'OATI LIVIL

r.bl.4-7. Output Ob Valun Productld Whtln 8L - 1

Valid Input Ob Values
BL - 1 (18-Bit Bytes) Number of Valid 0 4

Bytes Ib
Forward or Value
Backward

Forward 0 0 0 4
Modification (J~ 1 == 0) 1 4 4 Or.

Backward 0 7 0 4
Modification (J':I1 == 1) 1 3 4R 0

For Vali~ Ob/lb Input Combinations

C - Carry (+ 1) to Ow + Iw - Ow addition

B - Borrow (-1) to Ow + Iw - Ow addition

Valid Input Ob Values
BL - 2 (6-Uit Number of Valid Ib 0 1 2 3 4

Bytes) 'Bytes Value
Forward or
Backward

0 0 0 1 2 3 4
Forward 1 1 1 2 3 4 5

M,odification 2 2 2 3 4 5 Or.
(.J31 - 0) 3 3 3 4 5 Or. 1r.

4 4 4 5 Or. 1r. 2c
5 5 5 Or. 1t" 2t" 3t"
0 7 0 1 2 3 4

nackward 1 6 5g 0 1 2 3
Modification 2 5 4R 5A 0 1 2

(.J31 - 1) 3 4 3A 4R 5. 0 1
4 3 2R 3R 4" 59 0
5 2 '9 2R 3R 4" 5A

For villid Ob/lb combinations

C - Carry (+ 1) to Ow Iw'" Ow addition

B - ISorrow (-1) to Ow Iw ... Ow addition

5

5
Or.
1~
2c
3c
4~
5
4
3-
2
1
0

4-19
III4GI

8804 Rev.1 SPERRY UNIVAC 1100/80 System. 4-20
'AGE \MLNI ... 4x4 Capability Processor and Storage Programmer Reference

Valid Input Ob Values
BL =- 3 (12-Bit Number of Valid Ib 0 2 4

Bytes) Bytes Value
Forward or
Backward

Forward 0 0 0 2 4
Modification 1 2 2 4 Oc
(J~t .. 0) 2 4 4 O~ 2c
Backward 0 7 0 2 4

Modification 1 5 49 0 2
(J~, .. 1) 2 3 2ft 4ft 0

For valid Ob/lb combinations

C :II Carry (+ 1) to Ow Iw - Ow addition

B == Borrow (-1) to Ow lw - Ow addition

4.:3.2.2.3. Use of j-Field as Partial Control Register Address

When f =- 708, the most significant bit of the j-field is ignored by the hardware, and the three
low-order bits are combined with the contents of the 'a-field to form a 7 -bit control register address.

4.3.2.2.4. Use of j-Field as Minor Function Code

When f == 0.78, 33a,· 37 a' or 71a through 76a, the value in the j-field is a minor function code
delsignator. An explanation of the details of each of these instructions is given in Section 5. They
are summarized in Appendix C.

4.3.2.3. Uses of the a-Field

The contents of the &-field of an instruction word has a number of uses. The exact use is dependent
on the instruction being performed and, in many cases, on the contents of the designator register.

4,,3.2.3. 1. Use of the a-Field to Reference an A-Register

Fc)r most of the instructions, the value in the a-field references one of the A-f'egisters. When the A-,
X··, and R-register set selector, 06, is equal to 0, each value in the range 0 through 17 a in the a-field
retferences one of the user A-f'egisters in the range of control register addresses 14a through 33a,
retspectively. When 06 - 1, each value in the range 0 through 17 a in the &-field references one
of the Executive A-registers in the range of control register addresses 154a through 173a,
rEtspectively. In some instructions, the value in the a-field references two or three A-registers. When
two or three A-registers are referenced, the value in the a-field explicitly references register Aa, and
innplicitly references registers Aa+ 1 and Aa+2.

'Tine unassigned control registers at addresses 34a, 35a• 1748, and 175a can be used as extensions
01f the two sets of 16 A-f'egisters. For example, when a - 1 7 a and the instruction requires referencing
three A-registers (Aa, Aa + 1, and Aa + 2) then:

8604 Rev.1 I SPERRY UNIVAC 1100/80 Systemt .
\JINfUMUJt _~~ Capability Processor and Storage Programmer Reference

• Ilf 06 ::II 0, the last user A-register (address 338) is referenced for Aa, the first user unassigned
,control register at address 348 is referenced for Aa+ 1, and address 358 is referenced for Aa + 2.

• a 06 ::II 1, the last Executive A-register at address 1738 is referenced for Aa, the following
'Executive unassigned control register at address 1 748 is referenced for Aa + 1, and address
1 75 8 is referenced for Aa + 2.

4.3.~~.3.2. Use of the a-Field to Reference an X-Register

For certain ins,tructions, the value in the a-field references one of the X-registers. When 06 ::II 0,
each value in the range of 018 through 1 78 in the a-field references one of the user X-registers in
the nlnge of c()ntrof register addresses 018 through 178, respectively; if a ::II 0, the user nonindexing
X-re~Jister at control register address 0 is referenced. When 06 == 1, each value in the range of 018
through 1 78 in the a-field references one of the Executive X-registers in the range of control register
addrEtsses 1418 through 1578, respectively; if a ::II 0, the Executive nonindexing X-register at control
regis1ter address 1408 is referenced.

4.3.:~.3.3. Use of the a-Field to Reference an R-Register

For certain instructions. the value in the a-field references one of the R-registers. When 06 - 0,
each value in the range of 0 through 1 78 in the a-field references one of the user R-registers at control
register addresses 1008 through 1178, respectively. When 06 == 1. each value in the range of 0
thro\Jlgh 178 i., the a-field references one of the Executive R-registers at control register addresses
120~1 through 1378, respectively.

4.3.:!.3.4. Use of the a-Field to Reference a Jump Key

For a Jump Kety i"struction, each value in the range of 0 18 through 178 in the a-field references one
of this 15 select jump control circuits in the CPU. These circuits may be individually set and cleared
via switches on the operator/maintenance panel on the system transition unit (STU).

4.3.:2.3.5. Use of the a-Field to Reference Halt Keys

For ~I Halt Keys and Jump instruction, each of the four bit positions in the a-field references one of
the four selec:t stop control circuits in the CPU. These circwt5 may be individuaUy set and cleared
via switches ()n the STU.

4.3.2.3.6. Use of the a-Field as Minor Function Code

The value in the a-field specifies a particular variation of the basic operation initiated by the f, j
combination of the following instructions:

• load Brt!akpoint Register/Store Jump Stack

• load Pr()cessor State Register

• Initiate Iinterprocessor Interrupt/Enable Second Day Clock/Enable Day Clock/Disable Day Clock

• Test and Set/Test and Set and Skip/Test and Clear and Skip

UNAlMIIIt

SPERRY UNIVAC 11oo/aO Systems
4x4 Capability Processor and Storage Programmer Reference

4-22
'AGI

a804 Rev. 1 ~
- ----~------

• Jump Overflow/Jump Floating Underflow/Jump Floating Overflow/Jump Divide Fault

• Jump No Overflow/Jump No Floating Underflow/Jump No Floating Overflow/Jump No Divide
Fault

4.3.2.4. Use of the j- and a-Fields to Specify GRS Control Register Address

For' the Jump on Greater and Decrement instruction, the values in the j-field and a-field combine to
form a 7-bit address (the leftmost bit of the j-field is ignored). The 7-bit address specifies which
On4!' of the 128 addressable GRS control registers is to be used as the counter for the instruction.

4.:t2.S. Use of the x-Field

An indexing operation which utilizes a ones complement subtractive adder occurs for every
ins,truction. If the A-, X-, and R-register set selector, 06, is equal to 0, each x-field value in the range
018 through 178 references one of the user X-registers at control register addresses 018 through
178, respectively. If 06 = 1, each x-field value in the range 018 through 178 references one of the
Executive X-registers at control register addresses 1418 through 1578, respectively. When the value
in 'the x-field is not zero, the value in the Xm-field of the X-register specified by the x-field is added
to the extended contents of the u-field to form the relative operand address or an operand. This
indexing operation is symbolized by the notation: u + Xm =- U except for instructions which specify
the character addressing mode (see 4.3.2.2.2) and for most byte instructions (see 4.2.18). In these
caises it is symbolized by the notation u + Xm + Ow =- U. Xm is an 1 8-bit field unless 24-bit indexing
is specified.

When the value in the x-field is zero, no index register is referenced. An indexing operation, however,
does occur. It consists of adding an 18-bit half word of all zero bits to the extended u-field value
to form the relative operand address or operand. This indexing operation is symbolized by the
no,tation: u + 0 = U or u + 0 + Ow = U.

An indexing operation never produces a U value consisting of all one bits. This applies when U is
a relative address and also when U is extended with zero bits (j = 168) or with sign bits (j = 178)
fall' use as an immediate operand.

Ex,ample:

If j 1. 16 or 178, u =- 000001 8, and Xm =- 777776a

then

u + Xm = U = 0000018 + 777776a :II 0000008

Example:

If f == 10-67 a (except 33 and 37 a), j =- 16 or 178

and

h = i = 0, u = 1777778, and Xm = 6000008,

then

u + Xm =- U = 1777778 + 6000008 .r 0000008

8804 Rev.'
UJJt.oNUM8IR

I SPEI~RY UNIVAC 1100/80 Systems
~ Capability Processor and Storage Programmer Reference·

Example:

If f == 1 ()..·67 8 (except 33 and 37 8), j = 16 or 178,

and

h == i == 'I, u = 1777778, and x == 0,

then

h, i, u + ~) - U == 7777778 == 0 == 0000008

4.3.2.6. Use of the h-Field

UfIOATI LEVEL
4-23

PAGE

If the x-field of an instruction contains a nonzero value, the h-bit determines whether or not the
contelnts of the X-register specified by the x-field of the instruction or the Ow- and Ob-fields of an
instrulction specifying the character addressing mode are modified.

After the indexing operation is complete, if h == 1, and x t 0 for an instruction which does not specify
the character addressing mode, or an instruction which specifies the character addressing mode and
a J-register containing I == 0 (see 4.3.2.2.2), the contents of the Xi-field of the specified X-register
is addled to thn contents of the Xm-field of the same register, and the sum is stored back in the
Xm-fi<eld. The process is Xm + Xi - Xm. If the· relocation and storage suppression designator (07)
or i ==: 0, the addition is performed in an 18-bit ones complement subtractive adder. If 07 = i ==
1, the addition is performed in a 24-bit ones complement subtractive adder.

The olnly time irndex register modification produces an output of -0 occurs when both inputs are -0;
that i!l, -0 + -0 == -0.

After 1the indexing operation is complete for an instruction which specifies the character addressing
mode and a J-registereontaining 1- 1, if h == 1, the contents of the Iw- and Ib-fields of.the J-register
are aclded to the contents of the Ow- and Ob-fields, respectively, as explained in 4.3.2.2.2. In this
case :(m is not modified.

The mlodificatic)O of Xm or of Ow and Ob is performed without increasing instruction execution .time.

If h .. 0, neither Xm nor the Ow- or Ob-field is modified; the l-bit is ignored in this case.

4.3.2.7. Use of the i-Field

The i-.field can be used to specify normal addressing, indirect addressing, absolute addressing, or
to extend the u-field of an instruction.

If i - 1 and 0'7 == 0, indirect addressing occurs for all instructions except when f == 0 1a through
06" '108 through 328, 348 through 368, 408 through 678_ and j - 168 or 178, For the exception,
x t: 0 is also a reQuired condition for indirect addressing.

Indirect addressing will not occur it.

• f - 018 through 06a, 108 through 328, 348 through 368, 408 through 678, j == 168 or 17 a'
ilnd x - O. (Then the i-field. is used as an extension of the u-field.)

8804 Rev.1
~.

SPERRY UNIVAC 1100/80 Syaem.
4x4 Capability Processor and Storage Programmer Reference

• 07:= 1 (Then i =- 1 specifies absolute addressing, i := 0 spe,cities normal address generation
of u + Xm.)

Th.e above cases are summarized in Table 4-10.

Exceptions
i 07 All Instructions f is less than 70 (Except 07, 33 and 37) and

j=-16 or 17 and:
x t 0 X := 0

0 0 Normal Addressing
Operand is (u + Xm) .

0 1 Normal Addressing
Operand is h, i, u

1 0 Indirect Addressing Indirect Addressing .

1 1 Absolute Addressing Operand is (u + Xm)
(Xm - 24 Bits)

~/hen indirect addressing is specified, it is initiated after calculating the relative address and the
absolute address in the index subsection, even it U ~ 1778, The contents of bit positions 21 through
o of the main storage location addressed is transferred to the control section of the CPU, replacing
the x-, h-, i-, and u-field values of the current instruction. The modified instruction is then performed
it.st as if the whole instruction word were initially obtained in its modified form from main storage.
Indexing and index register incrementation (if specified) are performed in the normal manner for both
the original and the modified instruction. If the modified instruction also specifies indirect addressing,
the whole process of indirect addressing is repeated. The repetition or cascading of indirect
addressing continues until the modified instruction contains a 0 bit in the i-field, or contains all 0
bits in the x-field for the f, j combinations which lead to the use of i to extend the u-field, at which
time indirect addressing ceases and the modified instruction is performed.

11f f - 018 through 678 (except 078, 338, and 37 B)' j - 168 or 178, and x - 0 in an instruction as
i,t is initially obtained from main storage or as it is modified as a result of an indirect addressing
operation, indirect addressing does not occur even if i - 1. In this case, the i-field is used as an
extension of the u-field.

4.3.2.8. Description of the u-Field

-rhe ultimate use of the u-field depends on the values in the f and j-fields of the instruction.

I~or most f, j combinations. u is used to form an operand address. The indexed extension of the value
jln the u-field of the instruction is used as the relative address of a main storage location or as the
;Iddress of a GRS location.

IFor certain f, j combinations. the indexed extension of the value in the u-field of the instruction (or
'of a modified instruction in the case of indirect addressing) is used as the operand for some

8804 Rev.1
UfL.MJMlSt

I SPERRY UNIVAC 1100/80 Systems
~~ Capability Processor and Storage Programmer Reference UPOATI LEYIL

4-26
JlAGI

instrUictions, or as a count in the case of shift instructions. For other f, j combinations, the value in
the u·-field ha!1 no effect on the result ,of the instruction.

4.3.2:.8. 1. U~;e of the u-Field as an Operand Address Designator

Wherl the value in the u-field of an instruction is an operand address designator because of the f,
j combination or the specifying of indirect addressing, the 16-bit u value is extended to 18 bits with
two high order' zero bits to fo'rm one input to the index adder. Xm is the other input. U, the 18-bit
outPUIt of the index adder, is used as the relative address of a main storage location if U ~ 2008'

If U ~::: 2008, U is normally used as the absolute address of a GRS location. If U < 2008 and the
instruction spe'cifies indirect addressing, a jump to address, or the address for an Execute instruction
(see Ei. 13.3), U is the relative address of a main storage location rather than the absolute address of
a GRS location.

For allY given IJ-field value, a value can be chosen for the Xm portion of the specified index register
which will produce any desired value of U in the range 0000008 through 7777768, (It is not possible
to prc)duce thE. value 777777 a')

Certain instruc:tions use U to reference both U and U+ 1 as a doubl~ength (72-bit) word. In this
case, U is the <Iddress of the most significant 36 bits and U+ 1 is the address of the least significant
36 bits.

4.3.2.8.2. U~le of the u-Field as an Operand Designator

The value in the u-field of an instruction (or a modified instruction) is an operand ingredient rather
than ,an operand address ingredie(1t if indirect addressing is not specified and:

• jf == 07a, and j == 148;

• jf == 1°8 through 67 a (except 338 and 37 a), and j == 16a or 17 s; or

• '738 and ,j == 08 through 068 or 1°8 through 138 (all shift instructions).

Wherl the value in the u-field of an instruction (or a modified instruction resulting from an indirect
addretssing sequence) is an operand designator. the 1 6-bit value in the u-field is extended to 18 bits
to pre.vide one of the inputs to the index adder for an indexing operation. This 18-bit value normally
consists of 0 bits in the two leftmost bit positions and the 16-bit value from the u-field in the
remaiining bit positions. If f == 108 through 678 (except 338 and 37 a), j =- 16a or 17 a. and x =- 0;
however, the bits in the hand i-fields are used in the two leftmost bit positions in place of the 0 bits.
When hand i are both 1 bits and they are used to extend a u-field whose value is all 1 bits, the output
of thu index adder is all 0 bits rather than aU 1 bits.

The '18-bit index adder output is normally sent to the arithmetic section where it is extended to
becoll1e a 36-bit operand by O-bit fill (j =- 16s) or by filling with bits identical to the leftmost bit of
the irldex add4!tr output (j - 1 78),

4.3.~~.8.3. Use of the u-Field as a Shift Count Designator

The value in the u-field of an instruction (or a modified instruction) is a shift count designator if f =-
73s, and j =- C) through 058 or 10 through 13s- In these cases the 1 a-bit u-value is extended to 18
bits with high order zero bits and added to Xm to form the 18-bit value U. The appropriate low order
bits ()f U are lIsed as the shift count.

/

810. Rev.1 SPERRY UNIVAC 1100/80 Sv-tem.
4x4 Capability Processor and Storage Programmer R.ference

4.3.2.8.4. Restrictions on the Use of the u-Field

W'hen indirect addressing is not specified. certain instructions require the value in the u-fietd to be
zero. These instructions are:

• Enable Day Clock

• Disable Day Clock

If this restriction is. violated. the results produced are undefined.

8804 Rev.1 I SPEI~RY UNIVAC 1100/80 Syateml
~~_~ Capability Processor and Storage Programmer Reference U'l)ATI LI.VB.

5. Instruction Repertoire

5. 1. General

This s~ection d."cribes the operation performed by each instruction in the 1 100/80 Systems user
repertoire. These descriptions are grouped by types of instructions.

An in1troduction to each group presents information that is common to all instructions in the group.
The detailed descriptions of the individual instruction have the following format

• Instruction name Mnemonic code Octal function code

• Symbolic description of the operation performed by the instruction. The symbology used is
defined in Appendix A.

• "rextual dl9scription of the operation performed by the instruction.

• l;equentiClllly numbered notes which provide special information related to the instruction, if
clppropriate.

For aU instructions, any possible value may be used in the a-, X-, h-, 1-, and u-fields unless an
excer:ltion to this rule is stated in the notes. Any possible value may be used in the j-field except
when j is a minor-function-code designator or when an exception is stated in the notes.

If the value of the" j-field is 01 6 and 017 (an immediate operand specification) and the value of the
x-field is zero, the h-bit, i-bit, and u-field make up the 1 8-bit operand. If the h- and i-bits are one
and the value of the u-field is 0177777, however, the resulting operand is zero. not all ones. A
nega1:ive zero can be generated as an immediate operand only by load negative instructions using
x-, h-., i-, and u-fields of zero.

If the value of the a-field of the instruction is 017 (A 15) and the instruction makes use of more than
one alrithmetic register (A+ 1 or A+2), those registers are located at general register stack (GRS)
location 034 and 035, or 0174 and 0175, depending on the value of the GRS selection designator
(06). If autom,atic index register incrementation occurs, the value of Aa or Xa is not affected. The
value of U or U+ 1 (if U < 0200) or A+ 1 (for two pass instructions, which require both U and U+ 1)
may be affectEtd; however, if Xx is referenced as one of these operands, the updated index value is
used.

leo. R4w.1

....... - SPERRY UNIVAC 1100/80 Syetema
4x4 Capability Processor and Storage Programmer Reference

5.2. Load Instructions

The single-precision load instructions transfer data to the arithmetic section where a 36-bit word
is always formed. The 36-bit word is then transferred to the register specified by the a-field of the
instruction. 5ingle-precision data-word transfers from storage to the arithmetic section are controlled
by the value in the j-field.

For the double-precision load instructions, the j-field is a minor function code and full 72-bit data
transfers result.

5.2.1. Load A - L,LA 10

(U) A

The contents of U is transferred under j-field control to the arithmetic section and then to Aa.

5 .. 2.2. Load Negative A - LN,LNA 11

-(U) A

The contents of U is transferred under j-field control to the arith~etic section. The ones complement
01f the value in the arithmetic section is transferred to Aa.

5.2.3. Load Magnitude A - LM,LMA 12

The contents of U is transferred under j-field control to the arithmetic section. If the sign bit (bit 35)
of the value in the arithmetic section is a 1 bit, it is complemented: if the sign bit is a 0- bit, it is not
complemented. The final value (always positive) is transferred from the arithmetic section to Aa.

For j-field values 0, 3-7 (quane, word not set) and 17, sign bit 35 is controlled by sign extension.

1. This instruction is the same as Load A (see 5.2.1) for j - H1, H2. Q1-Q4, or 51-56.

5.2.4. Load Negative Magnitude A - LNMA 13

The contents of U is transferred under j-field control to the arithmetic section. If the sign bit (bit 35)
of the value in the arithmetic section is a 0 bit. it is complemented: if the sign bit is a 1 bit. it is not
complemented. The final value (always negative) is transferred from the arithmetic section to Aa.

For j-field values 3-7 (quaner word not set) and 17, sign bit 35 is controlled by sign extension.

'I. This instruction may be used to load -0 into an A-register by using j - 168 or 178, and x :III

h - i - u - O.

:2. This instruction is the same as Load Negative A (see 5.2.2) for j - H 1, H2, Q 1-04, or 51-58.

UPEI.RY UNIVAC 1100/80 Systems .
4x4 Capability Processor and Storage Programmer Reference ------- UflDATi LIYIL

5.2.5. Load I~ - L,LR 23

(U) - Ra

The c:ontents of U is transferred under j-field control to the arithmetic section and then to the
Ra-register sp.!cified by the a-fiekJ.

1. If the pro'cessor is in user mode, an attempt to Load RO causes a Guard Mode interrupt.

5.2.6. Load)(Modifier - LXM 26

(U) - Xa'17-o; Xa315-18 unchanged

The contents of U is transferred under j-field control to the arithmetic section; the low-order 18 bits
of thEt value in the arithmetic section is transferred to the lower half (bits 17-0) of the X-register
speci1fied by the a-field; the upper half (bits 35 through 18) of the X-register remains unchanged.

1. 'rhis instruction loads only the low-order 18 bits of the specified X-register, even if the
(relocation and sto'1'age suppression designator (07).= i - 1 to specify 24-bit indexing.

5.2.7'. load'x - L,LX 27

l!U) - Xa

The c:ontents of U is transferred ~nder j-field control to the arithmetic section and then to the
X-re~,ister specified by the a-fietd.

5.2.8~. Load X Increment - LXI 46

·(U) - Xa35-18; Xa 17-0 unchanged

The c:ontents c)f U is transferred under f-field control to the arithmetic section; the low-order 18 bits
of th.t value in the arithmetic section are transferred to the upper half (bits 35-18) of the X-register
specified by the a-field. The lower half (bits 17-0) of the X-register remains unchanged.

1. This instlruction loads the full high-order 1 8 bits of the specified X-register, even if the
r.locatiol' and storage suppression designator (07) - i - t to specify 24-bit indexing.

5.2.S~. Doub~e Load A - Dl 71, 13

(U,U+ 1) - A,A+ 1

The Ic:ontents of U and U+ 1 are 'transferred to the arithmetic section and then to Aa and Aa+ 1,
respnctivefy.

5.2.'10. Double Load Negative A - DlN 71, 14

-(U.U+ 1) - A,A+ 1

The contents of U and U+ 1 are transferred to the arithmetic section where the 72-bit value is
COmll)Iemented and then transferred to Aa and Aa+ 1, respectively.

8e04 Rev.1
U~

SPERRY UNIVAC 1100/80 S¥ltems
4x4 Capability Processor and Storage Programmer Reference

5.2. 11. Double Load Magnitude A.. DLM 71,15

I (U.U+ 1) I - A.A+ 1

UPDATI LIYIL

The contents of U and U+ 1 are transferred to the arithmetic section. If the sign bit (bit 35) of U is
a 1 bit, the 72-bit value in the arithmetic section is complemented; if the sign bit is a 0 bit, the 72-bit
vallJe is not complemented. The final value (always positive) is transferred from the arithmetic section
to Aa and Aa + 1.

5.3. Store Instructions

Tho single-length store instructions transfer data from a control register specified by the a-field to
the storage location or control register addressed by U. Exceptions to this are the Store Constant
ins'tructions. (See 5.3.5.)

. ,

Single-length data-word transfers to storage are controlled by the j-field. If j :=II 16s or 178, no data
is stored. A Guard Mode interrupt will occur, however, if U < 2008 and an Executive register is
spocified in user mode, or if U. ~ 0200s and a storage-Umlts or write-protection violation occurs.

Indexing, index incrementation/decrementation, and indirect addressing function normally in all
cases.

5.:3. 1. Store A - S,SA 01

(A) - U

The contents of Aa is transferred under j-field control to location U.

1. If j = 168 or 178, no data is stored.

5.3.2. Store Negative A - SN,SNA 02

~A) - U

The complement of the value of Aa is transferred under j-field control to location U.

1. If j.=- 16s or 178, no data is stored.

5.3.3. Store Magnitude A SM,SMA 03

I (A)I- U

If the sign bit (bit 35) of the value of Aa is one, the value is complemented. The final value (always
pc)sitive) is transferred under j-field control to location U.'

1" If j = 168 or 178_ no data is stored.

8804 Rev.1
IJI'.NUMIIIII

I SPERRY UNIVAC 1100/80 Systems .
~ Capability Processor and Storage Programmer Reference U.-oATI LIYIL

5.3.4. Store I~ - S,SR 04

(Ba) - U

The cctntents of the R-register specified by the a-field is transferred under j-field control to location
U.

1. If: j = 1 6a or 178, no data is stored.

5.3.5. Store Constant Instructions - XX a5; a == 00-07

C:onstant .- U

A constant value specified by the a-field is transferred under j-field control to location U. The
following octal constant values may be stored:

SZ a - 0 000000 000000 Zero

SNZ a=-1 777777 777777 Ones

SP1 a=-2 000000 000001 Plus One

SN1 a-3 777777 777776 Minus One

SFS a ::II 4 050505 050605 Fieldata Blanks

SFZ a - 5 606060 606060 Fieldata Zeros

SAS a=-6 040040 .040040 ASCII Blanks

SAZ a=-7 060060 060060 ASCII Zeros

5.3.6. Store X - S,SX 06

(.Xa) - U

The ctontents 0" the X-register specified by the a-field is transferred under j-field control to location
U.

1. If j =- 161s or 178, no data is stored.

5.3.7. Ooubl~9 Store A - OS 7 1, 1 2

(A.A+ 1) .-. U,U+ 1

The contents (tf Aa and Aa+ 1 are transferred to locations U and U+ 1, respectively.

8104 Rev.1 SPERRY UNIVAC 1100/80 System.
4x4 Capability Processor and Storage Programmer Reference

5.3.8. Block Transfer - BT 22

(Xx + u) - Xa + u, repeat k times; k = the initial count in the repeat count register

A source word is transferred under j-field control to the arithmetic section, and then under j-field
control to a destination word-location. The repeat count is decreased by 1. The
source-to-destination transfer step is repetitively performed until the repeat count has been
decreased to O. The x-field specifies the X-register used with the u-field to determine the effective
source word-address. The a-field specifies the X-register used in determining the effective
destination word-address.

1. A word containing the desired repeat count in the rightmost 18-bit positions must be loaded
in the repeat count register (R 1) befor'e performing the Block Transfer instruction.

2. If the initial repeat count is :to, no data is transferred. If -0, then +0 is written into bits 17-0
of the repeat count.

3. If j = 168 or 178, no data is transferred; however, the repeat count is decreased to zero.

4. If the x-field is zero, no data is transferred. The contents of the X-regi~ter specified by the a-field
remain unchanged, regardless of the contents of the a- and h-fields.

5. If an interrupt occurs before tt1e repeat,count has decreased to zero, the termination pass occurs
at the conclusion of the currently active data transfer. The remnant repeat count is stored in
R 1. When the interrupt is honored, the captured P value is the address of the Block Transfer
instr\Jction or the address of the Execute instruction which led to the Block Transfer instruction.
Thus, this address can be preserved and, when the interrupt has been processed, it is possible
to return to the Block Transfer instruction and continue executing this instruction at the point
where it was terminated for the interrupt. If the Block Transfer instruction was entered by means
of an Execute instruction, the h-field of the Execute instruction must be zero so that, when the
program returns to the Execute instruction, the effective U address will again lead to the Block
Transfer instruction. If the Block Transfer instruction specifies indirect addressing (i = 1), the
h-field must be zero to enable the program to return to the same effective U address and
complete the Block Transfer instruction in the event of an interrupt.

6. If there is no indirect addressing (i = 0), the h-field is normally one. If h = 0, no
incrementation/decrementation of the index registers occurs. When h - 0, the source and
destination addresses are the initial contents of the index registers used repetitively for every
transfer performed. Thus, no more than one data transfer is effectively performed.

7. If the x-field is not zero, but the a-field is zero, the a-field references index register- zero (XO),
and proper operation occurs. '

!i.4. Fixed-Point Arithmetic Instructions

1"he fixed-point arithmetic instructions perform integer or fractional addition, subtraction,
multiplication, and division. In a single-precision arithmetic instruction, the transfer of data from
location U in storage to the arithmetic, section is under the control of the contents of the j-field of
the instruction. For double-precision and parallel half-word and third-word arithmetic operations,
the value in the j-field is a minor function code.

':or all arithmetic instructions, indexing, index incrementation/decrementation, and indirect
~Iddressing function normally.

aeo4 Rev.1
UfL.NU ... ------U PI:RRY UNIVAC 1100/80 Systeml

4x4 Capability Processor and Storage Programmer Reference UPDATI LIVIL
5-7

PAGE

The overflow lInd carry designators are set according to the results of the operation for all add and
ad~~negative instructions except add and add-negative halves and thirds.

The lsign of the result is determined by the rules of algebra except for add and add-negative
instn,ctions where both operands are zero. In this case, the result is positive zero, except for add
instructions where both operands are negative zero, and add-negative instructions where the
minurend (Aa) is negative zero and the subtrahend (U) is, positive zero.

5.4.11. Add to A - A,AA 14

(A) + (U) A

The c:ontents c)f U is transferred under j-field control to the arithmetic section. The 36-bit value in
the arithmetic section is added algebraicaUy to the contents of Aa. The sum is stored in Aa.

5.4.~~. Add Negative to A - AN,ANA 15

(A) - (U) .- A

The c:ontents ()f U is transferred under j-field control to the arithmetic section. The 36-bit value in
the arithmetic section is subtracted algebraically from the contents of Aa. The difference is stored
in Aa.

5.4.~1. Add Magnitude to A - AM,AMA 16

(A) + I (U) I - A

The Clontents c)f U is transferred under j-field control to the arithmetic section. If the sign bit (bit 35)
of th.t 3S-bit value in, the arithmetic section is one. the value is complemented; if the sign bit is zero,
the value is not complemented. The final 3S-bit value in the arithmetic section (always positive) is
added algebraically to the contents of Aa. The sum is stored in Aa.

Only valid for j == 3-7, 17.

1. This instruction is the same as Add to A (see 5.4.1) for j - H 1, H2. Q 1-04, or S 1-SS.

5.4.4. Add Negative Magnitude to A - ANM,ANMA 17

(A) - I (U) I - A

The contents c)f U is transferred under j-field control to the arithmetic section. If the sign bit (bit 35)
of th., 36-bit value in the arithmetic section is one. the value is complemented: if the sign bit is zero,
the value is not complemented. The final 36-bit value in the arithmetic section (always positive) is
subtracted algebraically from the contents of Aa. The difference is stored in Aa.

Only valid for j =- 3-7. 17.

1. This instf'u.ction is the same as Add Negative to A (see 5.4.2) for j :. H 1, H2. Q 1-04, or S 1-S6.

8804 Rev,1

UfI'o.NUMIER
SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and St.orage Programmer Reference

5..4,5, Add Upper - AU 20

(A) + (U) - A+ 1

U..oATI LEVIL

The contents of U is transferred under j-field control to the arithmetic section. The 36-bit value in
the arithmetic section is added algebraically to the contents of Aa. The sum is stored in Aa + 1. The
contents of U and Aa remain unchanged.

5.4.6. Add Negative Upper - ANU 21

(A) - (U) - A+1

The contents of U is transferred under j-field control to the arithmetic section. The 36-bit value in
the arithmetic section is subtracted algebraically from the contents of Aa. The difference is stored
in Aa+ 1. The contents of U and Aa remain unchanged.

5.4.7. Add to X - A,AX 24

(Xa) + (U) - Xa

The contents of U is transferred under j-field- control to the arithmetic section. The 36-bit value in
the arithmetic section is added algebraically to the contents of the X-register specified by the a-field.
T'he sum is stored in the X-register specified by the a-field.

5.4.8. Add Negative to X - AN,ANX 25

(Xa) - (U) - Xa

"he contents of U is "transferred under j-field control to the arithmetic section. The 36-bit value in
the arithmetic section is subtracted algebraically from the contents of the X-register specified by toe
a-field. The difference is stored in the X-register specified by the a-field.

5.4.9. Multiply Integer - MI 30

(A) x (U) - A,A+ 1

The contents of U is transferred under j-field control to the arithmetic section. The contents of Aa
is multiplied algebraically by the 36-bit value in the arithmetic section. producing a 72-bit product.
The most significant 36 bits of the product (including sign bits) are stored in Aa. The least significant
:36 bits of the product are stored in Aa+ 1.

1. Bit positions 71 and 70 of the product are always sign bits. The product of any two 35-bit
positive integers cannot exceed a 7O-bit positive integer.

5.4.10. Multiply Single Integer - MSI 31

(A) x (U) - A

'The contents of U is transferred under j-field control to the arithmetic section. The contents of Aa
,is multiplied algebraically by the 36-bit value in the arithmetic section. producing a 72-bit product.
'The least significant 36 bits of the product are stored in Aa. The most significant 36 bits of the
product are lost.

8804 Rev.1 I SPEFlAY UNIVAC 1100/80 Systems
~~_~ 'Capability Processor and Storage Programmer Reference UPOATI LEVEL

5-9
flAGE

1. "he 36-bit result stored in Aa does not represent the product as a signed number if the leftmost
~17 bits of the 72-bit product formed in the arithmetic section are not identical.

5.4,11. Multiply Fractional - MF 32

(A) x (U) -. A,A+ 1

The celntents o'f U is transferred under j-field control to the arithmetic section. The contents of Aa
is multiplied al,~ebraically by the 36-bit value in the arithmetic section, producing a 72-bit product
which is shifted left circularly one bit position. The leftmost 36 bits of the shifted product, including
the sif3n bit, are stored in Aa. The rightmost 36 bits are stored in Aa+ 1.

1. "his instruction performs an operation identical to the Multiply Integer instruction (see 5.4.9)
8ixcept that the 72-bit result of the multiplication process is shifted left circularly one bit position
JJlrior to storing it in Aa and Aa + 1.

2. 1'he rightmost bit of the·result in Aa+ 1 is a sign bit and it is identical to the leftmost bit of the
r'9sult in Aa.

5.4.1:2. Divide Integer - 01 34

(J~,A+ 1) f (U) - A; remainder - A+ 1

The cc)ntents of U is transferred under j-field control to the arithmetic section. The 72-bit signed
numbcsr in Aa and Aa+ 1 is divided algebraically by the 36-bit value in the arithmetic section. The
36-bi1: signed Cluotient is stored in Aa. The remainder retains the sign of the dividend (the leftmost
bit of the initial contents of Aa~ and is stored in Aa+ 1,

1. 1rhe absolute value of the 72-bit signed dividend (Aa,Aa+ 1) should be less than the absolute
value of the divisor (j-determined portion of U) multiplied by 235, If this relationship is not
satisfied and the arithmetic exception interrupt designator (020) is zero, Aa and Aa+ 1 are
c:teared to zero and the divide check designator (023) is set to one. If this relationship is not
satisfied and 020 is one, Aa and Aa+ 1 remain unchanged, the divide check designator (023)
iss set to one, and a Divide Check interrupt results. This includes the case in which the divisor
8 iquals zero.

5.4.1:3. Divide Single Fractional - DSF 35

(i~) f (U) -. A+ 1

The Cllntents o;f U is transferred under j-field control to the arithmetic section. The contents of Aa
is divided algebraically by the 36-bit value in the arithmetic section. The 3S-bit signed quotient is
storedl in Aa+ 'I. The remainder is lost. The contents of Aa remains unchanged.

1. '"he absolute ,value of the dividend (Aa) shou~d be less than the absolute value of the divisor
Oi-determined portion of U). If this relationship is not satisfied and the arithmetic exception
ilnterrupt designator (020) is zero, Aa+ 1 is cleared to zero and the divide check designator (023)
ill set to one. If this relationship is not satisfied and 020 is one, Aa+ 1 remains unchanged, 023
ils set to one, and a Divide Check interrupt results. This includes the case in which the divisor
e.quals zer'o.

2. '''is instruction performs an operation like that of divide integer, except that the quotient
alppears to be shifted one bit to the right. .

8804 Rev.1
UI'oMIMIEIt'

SPERRY UNIVAC 1100/80 SyRem8
4x4 Capability Processor and Storage Programmer Reference UIIOATI LIY!L

5-10
'AGE

5.4. 14. Divide Fractional - DF 36

(A,A+ 1) f (U) - A; remainder - A+ 1

The contents of U is transferred under j-field control to the arithmetic section. The 72-bit signed
number in Aa and Aa+ 1 is 'divided algebraically by the 36-bit value in the arithmetic section. The
36-bit signed quotient is stored in Aa. The remainder retains the sign of the dividend (the leftmost
bit of the original contents of Aa) and is stored in Aa+ 1.

1. The absolute value of the leftmost half of the dividend (Aa) should be less than the absolute value
of the divisor (j-determined portion of U). If this relationship is not satisfied and the arithmetic
exception interrupt designator (020) is zero, Aa and Aa+ 1 are cleared to zero and the divide
check designator (023) is set to one. If this relationship is not satisfied and 020 is one, Aa and
Aa+ 1 remain unchanged, 023 is set to one, and a Divide Check interrupt results. This includes
the case in which the divisor equals zero.

2. This instruction performs an operation identical to divide integer, except that the- quotient
appears to be shifted one bit to the right.

5,,4. 15. Double-Precision Fixed-Point Add - DA 71, 10

(A,A+ 1) + (U.U+ 1) :- A,A+ 1

The 72-bit signed number from U and U+ 1 is added algebraically to the 72-bit signed number from
A4!l and Aa+ 1. The 72-bit sum is stored in Aa and Aa+ 1.

5 .. 4. 16. Double-Precision Fixed-Point Add Negative - DAN 71, 11

(A,A+ 1) - (IJ.U+ 1) - A,A+ 1

The 72-bit signed number from U and U+ 1 is subtracted algebraically from the 72-bit signed
number from Aa and Aa+ 1. The 72-bit difference is stored in Aa and Aa+ 1.

5.4.17. Add Halves - AH 72,04

(A)35-18 + (U)31S-18 - A 35-18;

(A),7-O + (U)17-O - A,7-O

The contents of each half (18-bit portion) of U is added algebraically to the contents of the
c1orresponding half of Aa. The sums are stored in the corresponding halves of Aa~

1. There is no interaction between the upper and lower halves of the operands. A carry from bit
position 17 is propagated to bit 0, rather than bit 18. A carry from bit position 35 is propagated
to bit 18, rather than bit O.

5.4.18. Add Negative Halves - ANH 72,05

(A)35- t 8 - (U)35-18 - A 35-18;

(A)'7-O - (U)'7-O - A'7-O

8804 Rev.1
UNiMIIIR

I SPE:RRY UNIVAC 1100/80 Systems
~, Capability Processor and Storage Programmer Reference UPDATI LEYIL

5-11
"AGE

The c:ontents elf each half (18-bit portion) of U is subtracted algebraically from the contents of the
corresponding half of Aa. The differences are stored in the corresponding halves of Aa.

1. 'There is no interaction between the upper and lower halves of the operands. A borrow from
bit position 17 is propagated to bit 0, rather than bit 18. A borrow from bit position 35 is
propagated to bit 1 8, rather than bit O.

5.4.119. Add Thirds - AT 72,06

(A)315-24 -+ (UbS-24 - A35- 24;

(A)23-12 -+ (U)23-12 - A23-12;

(A), 1-0 .,.. (Ul, 1-0 - A, 1-0

The contents of each third (1 2-bit portion) of U is added algebraically to the contents of the
corre'sponding third of Aa. The sums. are stored in the corresponding thirds of Aa.

1. A carry from bit position 11, 23, or 35 is propagated to bit 0, 12, or 24,:respectively, rather
than to bit 12, 24, or O.

5.4.:~0. Add Negative Thirds - ANT 72,07

(A)36-24 .• (U)36-24 - A36-24;

(A)23-12 .• (U)23-12 - A23-12;

(A), 1-0 - (U), 1-0 - A,,-o

The c:ontents of each. third (12-bit portion) of U is subtracted algebraically from the contents of the
corrEtspondin~J third of Aa. The differences are stored in the corresponding thirds of Aa.

1. A borrow from bit position 11, 23, or 35 is propagated to bit 0, 12, or 24, respectively, rather
than to bit 12, 24, or O.

5.5. Floating-Point Arithmetic Instructions

Floating-point arithmetic operations allow for efficient computation involving numerical data with a
wide! range of magnitudes. Indexing, index incrementation/decrementation, and indirect addressing
function normally in all floating-point arithmetic instructions.

The greatest precision is obtained in floating-point arithmetic operations when the floating-point
inpu't operands are normalized numbers. Certain floating-point operations produce undefined results
if nClrmalized input operands are not used. The supporting notes indicate which instructions are
affec:ted.

5.5. 1. Floating Add - FA 76,00

(A) + (U) - A; residue - A+ 1 if 017 -

The single-precision floating-point number from location U is added to the sing'e-precision
floating-point number from Aa. The resulting sum is normalized and then stored in single-precision

8804 Rev.1
Ul4tUMIER

SPERRY UNIVAC 1100/80 SystelM
4x4 Capability Processor and Storage Programmer Reference U..oATi LIYIL

5-12
'AGE

floating-point format in Aa. If the floating-point residue store enable designator (017) = 1, the
residue in single-precision floating-point format is stored in Aa+ 1.

1. The result stored in Aa is a normalized number, even if either or both of the input operands are
not normalized. No attempt is made to normalize the residue stored in Aa+ 1.

2. A Floating-Point Characteristic Overflow/Underflow interrupt may occur.

3. If the mantissa of the most significant word of the result is :: O. the word stored depends on the
floating-point zero format selection designator (OS).

4. The sign of the most significant w9rd of the result is the sign of the large input operand. The
sign of the other operand is assigned to the residue.

5.5.2. Floating Add Negative - FAN 76,01

(A) - (U) - A; residue - A+ 1 if 0 1 7 = 1

The single-precision floating-point number from location U is subtracted from the single-precision
floating-point number from Aa. The resulting difference is normalized and then stored in
single-precision floating-point format in Aa. If the floating-point residue store enable designator
(017) =- 1, the residue in single-precision floating-point format is stored in Aa+ 1.

1.. The result stored in Aa is a normalized number, even if either or both of the input operands are
not normalized. No attempt is made to normalize the residue stored in Aa+ 1.

2. A Floating-Point Characteristic Overflow/Underflow interrupt may occur.

3. If the mantissa of the most significant word of the result is ! 0, the word stored depends on the
floating-point zero format selection designator (OS).

4. The Floating Add Negative operation is identical to the Floating Add operation described in
5.5.1, except that the ones complement of the contents of location U is used as the second
operand.

5. The sign of the most significant word of the result is the sign of the large input operand. The
sign of the other operand is assigned to the residue.

5.5.3. Double-Precision Floating Add DFA 76,10

(A.A+ 1) + (U,U+ 1) - A,A+ 1

"he double-precision floating-point number from locations U and U+ 1 are added to the
double-precision floating-point number from Aa and Aa+ 1. The resulting sum is normalized and
then stored in double-precision floating-point format in Aa and Aa+ 1.

1" The result stored is a normalized number, even if either or both of the input operands are not
normalized.

2. A Floating-Point Characteristic Overflow/Underflow interrupt may occur.

:t If the exponent value of the sum is less than -1024 and the double-precision underflow
designator (05) and the arithmetic exception interrupt designator (020) are one. a Floating-Point
Characteristic Underflow interrupt does not occur. Instead. +0 is stored in Aa and Aa+ 1. If
020 is zero, 05 is ignored.

8804 Rev.'
UII'--NUMIER 4x4 Capability Processor and Storage Programmer Reference UPOATI LIVIL

5-13
fIIMI -----~PERRY UNIVAC 1100/80 Systems

4. j.f the mantissa produced is floating-point zero, the result stored is +0 regardless of the signs
lind charclcteristics of the input operands.

5.5.4. Double-Precision Floating Add Negative - DFAN 76,11

~:A,A+ 1) •• (U,U+ 1) - A,A+ 1

The double-precision floating-point number from locations U and U + 1 are subtracted from the
doublle-precision floating-point number from Aa and Aa+ 1. The resulting difference is normalized
and then stored in doubte-precision floating-point format in Aa and Aa + 1.

1. 'The result stored is a normalized number, even if either or both of the input operands are not
Inormalized.

2. ,~Floating-Point Characteristic Overflow/Underflow interrupt may occur.

3. If the exponent value of the difference is less than -1024 and the double-precision underflow
designator (05) and the arithmetic exception interrupt designdtor (020) are one, a Floating-Point
Characteristic Underflow interrupt does not occur. Instead, +0 is stored in Aa and Aa+ 1. If
020 is ol1e and 05 is zero, the interrupt occurs. If 020 is zero, 05 is ignored.

4. . 'The Double-Precision Floating Add Negative operation is identical to the Double-Precision
Floating Add process' described in 5.5.3, except that the ones complement of the contents of
U and U+ 1 is used as the second operand.

5. If the mantissa produced is floating-point zero, the result stored is +0, regardless of the signs
and char:acteristics of the input operands.

S.S.EL Floating Multiply - FM 76,02

(A) x (U) - A (and A+ 1 if 01 7 = 1)

The single-precision floating-point number from Aa is multiplied by the single-precision
floating-point number from location U. The resulting double-length product is packed into two
single-precision floating-point numbers. The most si,gnificant. portion of the product in
singI1e-precisic)n floating-point format is stored in Aa. If the floating-point residue store enable
desi~Jnator (0 'I 7) = 1, the least significant portion of the product in single-precision floating-point
form,at is stor49d in Aa+ 1.

1. If either or both input operands are not normalized numbers, the results are undefined. The
\ followinSI notes apply only if both input operands are normalized numbers.

2. A Floating-Point Characteristic Overflow/Underflow interrupt may occur.

3. The portion of the product stored in Aa is a normalized number. No attempt is made to normalize
the number stored in Aa+ 1. -

4. The algebraic rule for signs applies to the portions of the product stored in Aa and Aa+ 1.

5. If the mantissa of either or both input operands is zero, the following applies:

a. A Floating-Point Characteristic Overflow/Underflow interrupt never occurs, regardless of
the values of the characteristics of the input operands.

8804 R..,.1
~

SPERRY UNIVAC 1100/80 Systems . .
4x4 Capability Processor and Storage Programmer Reference

b. If the floating-point zero format selection designator (08) is zero, the result stored in Aa
is +0, regardless of the signs of the input operands.

c. If 08 is one and if the exponent value is in the range -'28 through + 127, the most
significant product-word will reflect the magnitude of the characteristic produced and the
sign produced by the mantissa arithmetic.

d. If the exponent value of the most significant product-word is greater than +'27 or less
than -128, the result stored in Aa is :0, whichever would reflect the signs of the input
operands.

6. The value of 08 has no effect on the least significant product-word. When the mantissa for the
least significant product-word is zero, it is packed with the appropriate characteristic. If the
characteristic of the residue is less than -128, the result stored in Aa+ 1 is :0, whichever would
reflect the signs of the operands.

A characteristic overflow of the most significant word can occur; however, the characteristic of
the residue could be in the range 000 through 377. In this case, the result stored in Aa is :0
depending on the algebraic rule of the sign, and the resid'Je is packed with the appropriate
characteri$tic and stored in Aa + 1.

~r. If the characteristic of the number stored in Aa is greater than or equal to 27, the cha:-acteristic
of the number stored in Aa+ 1 is 27 less than the characteristic in Aa.

5.S.S. Double-Precision Floating Multiply - DFM 76,12

(A,A+ 1) x (U,U+ 1) - A,A+ 1

'rhe double-precision floating-point number from Aa and Aa+ 1 is multiplied by the double-precision
floating-point number from locations U and U+ 1. The product is normalized and stored in
double-precision floating-point format in Aa and Aa+ 1.

1. If either or both input operands are not normaHzed numbers, the results are undefined. The
following notes apply only if both operands are normalized numbers.

2. A Floating-Point Characteristic Overflow/Underflow interrupt may occur.

3. The result .stored in Aa and Aa+ 1 is always a normalized number.

4. The algebraic rule for signs applies except for the special cases covered in notes 5b and 6.

5. If the mantissa of either or both input operands are zero, the following applies:

a. A Floating-Point Characteristic Overflow/Underflow interrupt never occurs, regardless of
the values of the characteristics of the input operands.

b. The result stored in Aa and Aa+ 1 is +0 regardless of the signs of the input operands.

6. If the exponent value of the product is less than -1024 and the double-precision underflow
designator (05) and the arithmetic exception interrupt designator (020~ are one, a Floating-Point
Characteristic Underflow interrupt does not occur. Instead +0, regardless of the signs of the
input operands, is stored in Aa and Aa+ 1. If 020 = 1 and 05 = 0, the interrupt occurs. If
020 ~ 0, 05 is ignored.

8804 Rev.1
utt-NUMIPl 4x.' Capability Processor and Storage Programmer Reference --------~PE:RAY UNIVAC 1100/80 Systems

5.5. j'. Floating Divide - FD 76,03

I[A) T (U)- A; remainder - A+ 1 if 01 7 ..

The single-precision floating-point number from Aa is divided by the single-precision floating-point
number from location U. The quotient is stored in Aa in single-precision floating-point format. If
the flc;ating-pclint residue store enable designator (01 7) = 1, the remainder is stored in Aa + 1 in
singlt~recision floating-point format.

1. If either ()r both input operands are not normalized numbers, the results are not defined. The
'following notes apply only if both operands are normalized numbers.

2. .A Floatinlg-Point Characteristic Overflow/Underflow interrupt may occur.

3. If the mantissa of the divisor (U) is zero, a Divide CHeck interrupt occurs.

4. The quotient stored in Aa is a normalized number. No attempt is made to normalize the
remainder that is stored in Aa+ 1 when 017 = 1.

5. The algebraic rule for signs applies to the quotient stored in Aa. The sign of the dividend is
assigned to the remainder stored in Aa+ 1.

6. If the mantissa of the dividend (Aa) is zero but not the divisor (U), the following applies:

a. A Floating-Point Characteristic Overflow/Underftow interrupt never occurs, regardless of
the characteristics of the operands.

b. If the floating-point zero format selection designator (08) =- 0, the quotient stored in Aa
is +0, regardless of the signs of the operands.

c. If 08 = 1 and the exponent value of the quotient is greater than + 128 or less than -128,
the quotient stored in Aa is :: 0, whichever would reflect the signs of the input operands.

7. If the exponent value of the remainder is less than -128, the remainder stored in Aa+ 1 is :0,
whichevEtr would reflect the sign of the dividend from Aa.

8. If the characteristic of the dividend from Aa is greater than or equal to 27, then the characteristic
of the number stored in Aa+ 1 for the remainder is 27 or 26 less than the characteristic of the
dividend ..

5.5.1~. Double-Precision Floating Divide - DFD 76,13

(A,A+ 1) T (U,U+ 1) - A,A+ 1

The double-precision floating-point number from Aa and Aa + 1 is divided by the double-precision
floating-point number from locations U and U+ 1. The quotient is stored in Aa and Aa+ 1 in
double-precision floating-point format. The remainder is not retained.

1. If either or both of the input operands are not normalized numbers, the results are undefined.
The following notes apply only if both operands are normalized numbers.

2. A Floating-Point Characteristic Overflow/Underflow interrupt may occur,

3. If the mantissa of the divisor is zero, a Divide Check interrupt occurs.

8804 Rev.1 SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference UfIOATi LEYB.

4. The result stored in Aa and Aa + 1 is always a normalized number.

5. The algebraic rule for signs applies, except for the special cases explained in notes 6b and 7.

6. If the dividend mantissa (Aa, Aa+ 1) is zero and the divisor mantissa (U,U+ 1) is not zero, the
following applies:

a. A Floating-Point Characteristic Overflow/Underflow interrupt never occurs, regardless of
the values of the characteristics of the input operands.

b. The result stored in Aa and Aa+ 1 is +0, regardless of the signs of the operands.

7. If the exponent value of the quotient is less than -1024/ and the double-precision underflow
designator (05) and the arithmetic exception interrupt designator (020) are one, a Floating-Point
Characteristic Underflow interrupt does not occur. Instead +0/ regardless of the signs of the
input operands, is stored in Aa and Aa+ 1. If 020 :II 1 and 05 :II 0, the interrupt occurs. If
020 == 0, 05 is ignored. .

5.5.9. Load and Unpack Floating - LUF 76,04

I (U) 134-27 - A7-o, zero fill;

(U)26-0 - A+ 1 26-0' sign fill

The single-precision floating-point number from location U is transferred to the arithmetic section
and unpacked. The absolute value of the biased characteristic of the input operand is transferred
tel bits 7 through 0 of Aa; bits 35 through 8 of the Aa are filled with 0 bits. The mantissa of the input
operand is transferred to bits 26 through 0 of Aa+ 1; bits 35 through 27 of Aa+ 1 are filled with bits
identical to the sign of the floating-point number in U.

1. No attempt is made to normalize the operand.

5.5.10. Double Load and Unpack Floating - DFU 76/14

I (U,U+ 1>70-60 1 - A 10-0' zero fill;

(U,U+ 1)59-38 - A+ '23-0' sign fill:

(U,U+ 1)35-0 - A+2

1rhe double-precision floating-point number from locations U and U + 1 is transferred to the
arithmetic section and unpacked. The absolute value of the biased characteristic of the input operand
is transferred to bits 10 through 0 of Aa; bits 35 through 11 of Aa are filled with 0 bits. The leftmost
24 bits of the mantissa, (U)23-0' are transferred to bits 23 through 0 of Aa+ 1; bits 35 through 24
()f Aa+ 1 are filled with bits identical to the sign of the floating-point number in locations U and U+ 1.
-rhe rightmost 36 bits of the mantissas (U+ 1) are transferred to Aa+2.

1. No attempt is made to normalize the operand.

8604 Rev.1
Ult-HUMIU

I SPER:AY UNIVAC 1100/80 Systems
~ Capability Processor and Storage Programmer Reference

5.5.1 '1. Load and Convert to Floating - LCF 76,05

(lJ)35 - A+ 135; [normalized (U)]26-0 - A+ 126-0;

if (U)35 . == 0: (Ah-O :: normalizing count - A+ 134- 27;

UflDATI L£VIt.

if (U)35 - 1: ones complement of [(A)7-O :!: normalizing count] - A+ 134-27

5-17
"AGE

The fb:ed-point number from location U is sent to the arithmetic section where it is shifted right or
left, aSi required, .to normalize it. The normalizing shift count is added to the characteristic from the
rightmost eight bits of Aa if a normalizing right-shift is required. It is subtracted from the
charac:teristic if a normalizing left-shift is required. The adjusted characteristic (complemented if U
is negiative) is J)acked with the normalized value from U to form a single-precision floating-point
numbElr. The packed result is stored in Aa+ 1. The contents of Aa remain unchanged.

1. A Floating,-Point Characteristic Overflow/Underflow interrupt may occur.

2. The 28 lef1most bits from Aa are ignored: (Aah-O must be prebiased.

3. If the resultant mantissa is zero, the following applies:

a" If the floating-point zero format selection designator (08) == 0, the result stored in Aa is
+0.

b. If 08 == 1, and the resultant characteristic is in the range 000 through 377, the
characteristic is packed with the zero mantissa and stored in Aa.

c. If 08 - 1, and the resultant characteristic is a negative number, to is stored in Aa.
depending on the sign of the input operand.

5.5.1 :~. Double Load and Convert to Floating - DFP, DLCF 76,15

(lJ)35 - A+ 13S; [normalized (U,U+ 1)]59-0 - A+ 123-0 and A+2;

if (U)35 .. 0: (Aho-o :!: normalizing count - A+ 134-24;

if (U)35 - 1: ones complement of [(A),o-o :!: normaHzing count] - A+ 134-24

The dCtuble-precision fixed-point number from locations U and U + 1 is sent to the arithmetic section
where it is shifted right or left, if necessary. to normalize it. The normalizing shift count is added to
the characteristic from the rightmost 11 bits of Aa if a normalizing right-shift is required. It is
subtracted frorr, the characteristic if a normalizing left-shift is required. The adjusted characteristic
(compllemented if U is negative) is packed with the normalized value from U and U + 1 to form a
doublEt-precision floating-point number, and the packed result is stored in Aa+ 1 and Aa+2. The
conterats of Aa remain unchanged.

1. A~ Floating-Point Characteristic Overflow/Underflow interrupt may occur.

2. The 25 leftmost bits from Aa are ignored; (Aah 0-0 must be prebiased.

3. If: the 72-bit input operand from U and U+ 1 is :0, the result stored is +0, regardless of the
sign of th4t 72-bit operand.

4. If: the adjusted characteristic represents a negative number when the arithmetic exception
interrupt designator (020) and the double-precision underflow designator (05) - 1. a

8804 Rev.1
~

SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference UPOATI LIVIL

5-18
ftAGI

Floating-Point Characteristic Underflow interrupt does not occur. Instead +0, regardless of the
sign of the 72-bit operand, is stored.

5.5.13. Floating Expand and Load - FEL 76,16

If (U)36 == 0: (U)35-27 + 1600s - A35- 24;

if (U)35 .. 1: (U)36-27 - 1 600s - A3S- 24;

(U)28-3 - A23-0;

(U)2-o - A+ 135-33;

(Ubs - A+ 132-0

The single-precision floating-point input operand from location U is transferred to the arithmetic
section. The three fields of the operand are expanded to form a double-precision floating-point
number as follows:

• The sign bit is stored in bits 71 and 32 through O.

I' The a-bit characteristic, which includes a bias of 2008, is modified to an 11-bit characteristic.
which includes a bias of 2000s, and is stored in bits 70 through 60.

It The 27-bit mantissa is stored in bits 59 through 33.

T'he result is transferred to Aa and Aa+ 1.

1. If the operand is not in the normalized single-precision floating-point format, the result stored
is undefined. The following notes apply only if the input operand is a normalized number.

2. If the mantissa of the input operand is :0, the result stored in Aa and Aa+ 1 is +0, regardless
of the sign of the operand.

3. A Floating-Point Characteristic Overflow/Underflow interrupt will not occur as a result of this
instruction.

!i.5.14. Floating Compress and Load - FCL 76,17

If (U)38 .. 0: (U)35-24 - 16008 - A36- 27;

if (U)35 =- 1: (U)35-24 + 16008 - A35-27; .

(U)23-0 - A2fS-3;

(U + 1)35-33 - A2-o

The double-precision floating-point operand from locations U and U + 1 is transferred to the
2arithmetic section. The three fields of the operand are compressed to form a single-precision
noating-point number as follows:

8804 Rev. 1 I SPI:RRY UNIVAC 1100/80 Systems
UI'-MUMIU _~4 Capability Processor and Storage Programmer Reference

• The sign bit is stored in bit 35.

5-19
~AGE

• The 11-bit characteristic, which includes a bias of 20008' is modified to an a-bit characteristic,
which inc:ludes a bias of 200s• and is stored in bits 34 through 27.

• The 27 htftmost bits of the mantissa (bits 23 through a from location U, and bits 35 through
33 from location U+ 1) are stored in bits 26 through O.

The result is transferred to Aa.

1. The following notes apply only if the operand is a normalized number.

2. If the arithmetic exception interrupt designator (020) =- 1, a Floating-Point Characteristic
Overflow interrupt occurs if the characteristic of the operand is greater than + 127, and a
Floating-Point Characteristic Underflow interrupt occurs if the characteristic of the operand is
less than -128. The characteristic underflow designator (021) is set when an underflow
condition is detected, and the characteristic overflow designator (022) is set when an' overflow
condition is detected.

3. 'The contl"nts of U + 132-0 is ignored.

4. If the operand is not a normalized number or is equal to :!: 0, the result stored in Aa is +0,
regardless of the characteristic of the input operand.

5.5. 15. Magnitude of Characteristic Difference to Upper - MCDU 76,06

I I (AI13!-27 - I (UI136-27 I - A+ 18-0; zeros - A+ 13!-9

The albsolute value of the characteristic of the single-precision floating-point number from location
U is !tubtracted from the absolute value of the characteristic of the single-precision floating-point
number from As.

The 81bsolute ,-'alue of the 9-bit difference is stored in bits a through 0 of Aa+ 1. Bits 35 through
9 of Aa+ 1 arn zero filled. The contents of Aa is not changed.

1. 'The mantissas from location U and from As are ignored.

5.5.16. Char'acteristic Differenc~ to Upper - CDU 76,07

1 (A) 135-21 -I (U) 138-27 - A+ 1 ~ sign bits to A+ 138-9

The albsolute value of the characteristic of the single-preciSion floating-point number from location
U is nubtracted from the absolute value of the characteristic of the single-precision floating-point
number from Aa. The 9-bit signed difference is stored in bits 8 through 0 of Aa+ 1. Bits 35 through
9 of ~,a+ 1 are filled with bits identical to the sign of the difference. The contents of As is not changed.

1. 'The mantissas from location U and from Aa are ignored.

8604 Aft.1
UP-HUMIEII

SPeRRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference UPDATI LEVEL

5-20
'AGE

5.t;. Search and Masked-Search Instructions

Th,ere are six search instructions, each of which compares the contents of either one or two
A-registers with the contents of storage locations or control registers. There are eight masked-search
instructions, each of which compares contents of predefined bit positions of either one or two
A-registers with the contents of the corresponding bit positions of storage locations or control
registers.

These are all multistage instructions. The various stages required to perform these instructions are
as follows:

• An initial stage

• Repeated test stages (18 , repeat count , 7777768)

• Termination stage

If indirect addressing is specified, it proceeds prior to initiation of the first test stage.

The initial stage prepares the control section and the arithmetic section for the test stages. The
following steps are performed during the initial stage:

• The contents of the repeat count register (R 1) is read from GRS.

• The content~ of the specified A-registers are transferred to the arithmetic section.

• The contents of the mask register (R2) is transferred to the arithmetic section for a
masked-search instruction.

These steps are performed only during the initial stage and are not repeated during the test stages.

The rightmost 18 bit positions of R 1 contain the repeat count; that is, the maximum number of test
stages to be performed. R 1 must be loaded with the desired repeat count prior to initiating a search
or masked-search instruction. If the initial repeat count is !: 0, the R 1 location is written to +0 and
proceeds to the next instruction. If the initial repeat count is not:: 0, the search instruction continues.

Ouring each test stage. the value U is formed in the index subsection. For the search instructions,
an input operand is transferred to the arithmetic section under j-field control. The inputs to the test
process are the values obtained using the effective U address and the A-register or registers specified
by the instruction.

For the masked-search instructions, the contents of the j-field is a minor function code. The inputs
to the test process are:

• the logical product of the mask from R2 and the input operand addressed by U and,

• the logical products of the ,!,ask and. the specified A-registers.

Ealch bit of the logica' product is the logical product of the contents of corresponding bit positions
of the two words. The logical product of two bits gives the same results as the Logical ~.

The search and masked-search instructions include algebraic and alphanumeric comparisons.
During an algebraic comparison. the leftmost bit of each of the 36-bit values is considered to be a
sign bit; a positive number is always recognized as being greater than a negative number. During
an alphanumeric comparison. the leftmost bit of each of the 36-bit values is considered to be a
ntJlmeric bit rather than a sign bit.

8604 Rev.1
U,.......,MIER

I SPERRY UNIVAC 1100/80 Systems
~ Capability Processor and Storage Programmer Reference UPDATI LIVEL

5-21
'AGE

For each test process, the repeat count is decreased by one. If the test process shows that the
speci'fied conditions are met, the termination stage is initiated and the next instruction is skipped.
If th'e specified conditions are not met and the repeat count is not zero, another test stage is normally
initiated. If th~~ repeat count is zero, the search instruction is terminated. It should be noted that if
Xn - 0, Xi (the increment portion of the X-register) = 0, or h = 0, the value of U will not change.

Interrupts are detected during the test stages if the repeat count is greater than 1 and the instruction
does not indicnte a skip condition. The instruction terminates and stores the remaining repeat count
in R 1. The correct return address is captured.

If the search or' masked-search instruction is entered by means of an Execute instruction, the h-field
of the Execute instruction should be zero (that is, no incrementation) so that when the program returns
to thet Execute instruction after an interrupt, the effective U address will again lead to the search or
maskiltd-search instruction.

If the search ()r masked-search instruction specifies indirect aqdressing (i-field ,- 1), the h-field
should be zero to enable the program to return to the same effective U address and resume the search
or mSlsked search after an interrupt.

For e(~uality searches (SE, SNE, MSE, MSNE), +0 does not equal-O; for arithmetic searches (SLE, SG,
SW, :$NW, MSLE, MSE, MSW, MSNW), +0 is greater than -0; for alphanumeric searches (MASL,
MAS G), -0 is greater than +0.

When a search or masked-search is resumed after an interrupt, the initial stage is again performed
to prf!pare the control section for the remaining test stages and to transfer the contents of the
specilfied A-renister to the arithmetic section for the comparisons performed in the test stages. When
h -, 11 (that is, index register incrementation is specified), if the a- and x-fields reference the same
contrt::»1 registel~, the contents of that register will have been altered by the index incrementation which
occurred before the search or masked search was interrupted. As a result, when the search or masked
search is resumed, the value referenced by the a-field to be used in the test stages is no longer the
original test value used before the interrupt occurred. Therefore, when h = 1, the a-field and x-field
should not specify the same control register so that the search or masked-search instruction can be
resun'ed in tho event of an interrupt.

5.6. 1. Search Equal - SE 62

:Skip NI if (U) - (A), else repeat

During the initial stage, the contents of the repeat count register (R 1) is transferred to the index
subSEtction, the contents of Aa is transferred to the arithmetic section, and the P-register is
incremented.

If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
count is decrellsed and the contents of U is transferred to the arithmetic section under j-field control.
This "alue frorn U is compared with the value from Aa and:

• 'If (U) = (Aa), the termination stage is initiated. This stage stores the remnant repeat count and
iincrements the P-register.(Skip to NL)

. • Ilf (U) = (Aa~ and the repeat count is not zero, another test stage is initiated.

• Ilf (U) = (A ••) and the repeat count is zero, the termination stage stores zero as the remnant repeat
Icount and the P-register is not incremented.

ae04 Rev.1 ..,...,.,... SPERRY UNIVAC 1100/80 Syatema
4x4 Capability Processor and Storage Programmer Reference

1. +0 is not equal to -0.

5.6.2. Search Not Equal - SNE 63

Skip NI if (U) -: (A), else repeat

5-22
'AGI

During the initial stage, the contents of the repeat count register (R 1) is transferred to the index
subsection, the contents of Aa is transferred to the arithmetic section, and the P-register is
inlcremented.

If the initial repeat count is zero, the next instruction (Nt) is initiated.

If the initial repeat count is not zero. the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section under j-field ·control.
The value from U is compared with the value from Aa and:

• If (U) -: (Aa). the termination stage is initiated. The termination stage stores the remnant repeat
count and increments the P-register. (Skip Nt.)

• If (U) - (Aa) and the repeat count is not zero. another test stage is initiated.

• If (U) =- (Aa) and the repeat count is zero, the termination stage is initiated. The termination stage
stores zero as the remnant repeat count and the P-register is not incremented.

1. +0 is not equal to -0.

5.6.3. Search Less Than or Equal/Search Not Greater - SLE,SNG 64

Skip NI if (U) ~ (A), else repeat

During the initial stage, the contents of the repeat count register (R 1) is transferred to the index
subsection. the contents of Aa transferred to the arithmetic section. and the P-register is incremented.

If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
cctunt is decreased and the contents of U is transferred to the arithmetic section under j-field control.
nte value from U is compared with the value from Aa and:

• If (U) ~ (Aa); the termination stage is initiated. The termination stage stores the remnant repeat
count and increments the P-register. (Skip Nt)

• If (U) > (Aa) and the repeat count is not zero, another test stage is initiated.

• If (U) > (Aa) and the repeat count is zero, the termination stage is initiated. The termination stage
stores zero as the remnant repeat count and the P-register is not incremented.

1. +0 is greater than -0.

~peRRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference -------

5.6.4. Search Greater - SG 65

:Skip NI if: (U) > (A), else repeat

5-23
I'AGI

During the initial stage, the contents of the repeat count register (R 1) is transferred to the index
subSEtction, the contents of Aa is transferred to the arithmetic section, and the P-register is
incremented.

If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
count is decree.sed and the contents of U is transferred to the arithmetic section under j-field control.
The \/'alue from, U is compared with the value from Aa and:

• Ilf (U) > (Aa), the termination stage is initiated. The termination stage stores the remnant repeat
Icount and increments the P-register. (Skip NI.)

• Ilf (U) ~ (Aa) and the repeat count is not zero, another test stage is initiated.

• ilf (U) ~ (Aa) and the repeat count is zero, the termination stage is initiated. The termination
:stage stores zero as the remnant repeat count and the P-register is not incremented.

1. +0 is grt!ater. than -0.

5.S.Ei. Search Within Range - SW 66

Skip NI if (A) < (U) ~ (A+ 1), else repeat

During the initial stage, the contents of the repeat count register (R 1) is transferred to the index
subs.tction, tht! contents of Aa and Aa+ 1 are transferred to the arithmetic section, and the P-register
is inc:remented.

If thel initial repeat count is zero, the next instruction (NI) is initiated.

If the initial re"eat count is not zero, the first test stage is initiated. During each test stage, the repeat
coun't is decreased and the contents of U is transferred to the arithmetic section under j-field control.
The "alue frorn U is compared with the value from Aa and:

• If (U) > (J~a) and (U) , (Aa+ 1), the termination stage is initiated. The termination stage stores
the remnant repeat count and increments the P-register. (Skip Nt.)

• If (U) ~ (As) or (U) > (Aa + 1), and the repeat count is not zero, another test stage is initiated.

• If (U) , (Aa) or (U) > (Aa+ 1), and the repeat count is zero, the termination stage is initiated.
The termination stage stores zero as the remnant repeat count and the P-register is not
incremented.

1. +0 is greater than -0.

2. Normallv', (As) < (Aa+ 1). However, if (Aa) ~ (Aa+ 1), there is no value from U which can satisfy
the conditions (Aa) < (U) ~ (Aa + 1).

8804 Rev.1
IJII.NUMIIR

SPERRY UNIVAC 1100/80 System, .
4x4 Capability Processor and Storage Programmer Reference

5 .. 6.6. Search Not Within Range - SNW 67

Skip NI if (U) ~ (A) or (U) > (A+ 1), else repeat

During the initial stage, the contents of the repeat count register (R 1) is transferred to the index
subsection. the contents of Aa and Aa + 1 are transferred to the arithmetic section, and the P-register
is incremented.

If the initial repeat count is zero. the next instruction (NI) is initiated.

If the initial repeat count is not zero, the firsttest stage is initiated. During each test stage. the repeat
count is decreased and the contents of U is transferred to the arithmetic section under j-field control.
The value from U is compared with the value from Aa and:

• If (U) ~ (Aa) or (U) > (Aa+ 1), the termination stage is initiated. The termination stage stores
the remnant repeat count and increments the P-register. (Skip NI.)

• If (U} > (Aa) and (U) ~ (Aa+ 1), and the repeat count is not zero, another test stage is initiated.

• If (U) > (Aa) and (U) ~ (Aa+ 1), and the repeat count is zero, the termination stage is initiated.
The termination stage stores zero as the remnant repeat count and the P-register is not
incremented.

1. Normally, (Aa) < (Aa+ 1). If, however, (Aa) ~ (Aa+ 1), there is no value from U which will not
satisfy the conditions (U) ~ (Aa) or (U) > (Aa + 1).

2. +0 is greater than -0.

5.6.7. Masked Search Equal - MSE 71,00

Skip NI if (U) ~ (R2) == (A) ~ (R2), else repeat

During the initial stage, the contents of the repeat count register (R 1) is transferred to the index
siubsection, the contents of Aa and R2 are transferred to the arithmetic section, the logical product
of the values from Aa and R2 is formed, and the P-register is incremented.

If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section. (U) g (R2) is
compared to (Aa) g (R2) and:

.. If (U) ~ (R2) - (Aa) g (R2), the termination stage is initiated. This stage stores the remnant
repeat count and increments the P-register (skip NI).

.. If (U) g (R2) = (Aa) g (R2) and ~he repeat count is not zero, another test stage is initiated.

.. If (U) ~ (R2) = (Aa) g (R2) and the repeat count is zero, the termination stage stores zero
as the remnant repeat count and the P-register is not incremented.

11. +0 is not equal to -0.

8604 Rev. 1 I SPERRY UNIVAC 1100/80 Systems
~~ __ ~~ Capability Processor and Storage Programmer Reference

5.S.S:. Maskud Search Not Equal - MSNE 71,01

Skip NI if (U) ~ (R2) -: (A) IANCj (R2), else repeat.

5-25
PAGE

During the initial stage, the contents of the repeat count register (R 1) is transferred to the index
SubSElction, th4! contents of Aa and R2 are transferred to the arithmetic section, the logical product
of th4t values f:rom Aa and R2 is formed, and the P-register is incremented.

If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
coun1t is decreased and the contents of U is "transferred to the arithmetic section. (U) ~ (R2) is
comp,ared' to (Aa) IANij (R2l and: .

• If (U) ~ (R2) -: (Aa) IANet (R2l, the termination stage is initiated. This stage stores the remnant
repeat count and increments the P-register (skip NI).

• If (U) ~I (R2l = (Aa) ~ (R2) and the repeat count is not zero, another test stage is initiated.

• If (U) JANDt (R2) = (Aa) ~ (R2) and the repeat count is zero, the termination stage stores zero
as the remnant repeat count and the P-register is not incremented.

1. +0 is not equal to -0.

5.6.S" Masked Search Less Than or Equal/Not Greater - MSLE,MSNG 71,02

Skip NI i·f (U) IANQ (R2) ~ (A) ~ (R2), else repeat

During the initial stage, the contents of the repeat count register (R 1) is transferred to the index
SUbS4!ction, the contents of Aa and R2 are transferred to the arithmetic section, the logical product
of this values 'from Aa and R2 is formed, and the P-register is incremented.

If thet initial repeat count is zero. the next instruction (NI) is initiated.

If the initial repeat count is not zero. the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section. (U) ~ (R2) is
compared to (Aa) ~ (R2) and:

• If (U) ~ (R2l ~ {Aa~ ~ (R2), the termination stage is initiated. This stage stores the remnant
repeat cc)unt and increments the P-register (skip NI).

• If (U) ~ (R2) > (Aa) ~ (R2) and the repeat count is not zero, another test stage is initiated.

• If (U) ~j (R2) > (Aa) ~ (R2) and the repeat count is zero, the termination stage stores zero
as the remnant repeat count· and the P-register is not incremented.

1. +0 is greater than -0.

5.6.10. Mas.ked Search Greater - MSG 71,03

Skip NI if (U) ~ (R2) > (A) ~ (R2), else repeat

Durililg the initial stage, the conter:'lts of the repeat count register (R 1) is transferred to the index
subs,ection, the contents of Aa and R2 are transferred to the arithmetic section, the logical product
of the values from Aa and R2 is formed, and the, P-register is incremented.

8804 Rev.1 SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference 1"':-28

If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section. (U) IANC4 (R2) is
compared to (Aa) ~ (R2) and:

• If (U) ~ (R2) > (Aa) ~ (R2), the termination stage is initiated. This stage stores the remnant
repeat count and increments the P-register. (Skip NI.)

• If (U) ~ (R2) ~ (Aa) ~ (R2) and the repeat count is not zero, another test stage is initiated.

II If (U) ~ (R2) ~ (Aa) ~ (R2) aod the repeat count is zero, the termination stage stores zero
as the remnant repeat count and the P-register is not incremented.

1. +0 is greater than -0.

5.6. 11. Masked Search Within Range - MSW 71,04

Skip NI if (A) ~ (R2) < (U) ~ (R2) ~ (A+ 1) ~ (R2), else repeat.

During the initial stage, the contents of the repeat count register (R 1) is transferred to the index
subsection, the contents of Aa, Aa+ 1, and R2 are transferred to the arithmetic section, the logical
products of the values from Aa and R2 and the values from Aa+ 1 and R2 are formed, and the
F'-register is incremented; If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section. The logical products·
are compared and:

II If (U) ~ (R2) > (Aa) ~ (R2) and (U) ~ (R2) ~ (Aa+ 1) ~ (R2) the termination stage is
initiated. This stage stores the remnant repeat count and increments the P-register. (Skip NI.)

• If (U) ~ (R2) ~ (Aa) ~ (R2) or (U) ~ (R2) > (Aa + 1) IANC4 (R2) and the repeat count is not
zero, another test stage is initiated.

.. If (U) ~ (R2) ~ (Aa) ~ (R2) or (U) ~ (R2) > (Aa+ 1) ~ (R2) and the repeat count is zero,
the termination stage stores zero as the remnant repeat count and the P-register is not
incremented.

'1. Normally, (Aa) ~ (R2) < (Aa+ 1) ~ (R2). If, however, (Aa) ~ (R2) ~ (Aa+ 1) lANa (R2),
no possible value of U will satisify the search condition.

2. +0 is greater than -0.

5.S.12. Masked Search Not Within Range - MSNW 71,05

Skip NI if (U) ~ (R2) ~ (A) ~ (R2) or (U) ~ (R2l > (A+ 1) lANa (R2), else repeat

lOuring the initial stage, the contents of the repeat count register (R 1) is transferred to the index
subsection, the contents of Aa and R2 are transferred to the arithmetic section, the logical products
of the values from Aa and R2 and the values from Aa+ 1 and R2 are formed, and the P-register is
lincremented.

8804 AeY.1 I SPERRY UNIVAC 1100/80 System.
~_~ Capability Processor and Storage Programmer Reference

If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial reJ:leat count is not zero, the first test stage is initiated. During each test stage, the repeat
count: is decre~lsed and the contents of U is transferred to the arithmetic section. The logical products
are cI)mpared and:

• I:f (U) ~I (R2) ~ (Aa) Iamj (R2) or (U) Iamj (R2) > (Aa + 1) Iamj (R2) the termination stage is
initiated. This stage stores the remnant repeat count and increments the P-register. (Skip NI.)

• I:f (U) Iamj (R2) > (Aa) Iamj (R2) and (U) Iamj (R2) ~ (Aa+ 1) Iamj (R2) and the repeat count is
"ot zero, another test stage is initiated. .

• Ilf (U) Iamj (R2) > (Aa) Iamj (R2) and (U) Iamj (R2) ~ (Aa-1) Iamj (R2) and the repeat count is zero,
1the termination stage stores zero as the remnant repeat count and the P-register is not
ilncremen'ted. .

1. I~ormally, (Aa) Iamj (R2) < (Aa+ 1) Iamj (R2). If, however, (Aa) Iamj (R2) ~ (Aa+ 1) Iamj (R2),
livery poslsible value of U will satisfy at least one of the following conditions:

(U) l6Jm (IR2) ~ (Aa) lANa (R2)

(U) Iamj (R2) > (Aa+ 1) Iamj (R2)

2. +0 is greater than -0.

5.S.13. Masf<ed Alphanumeric Search Less Than or Equal - MASL 71,06

:Skip NI if (U) Iamj (R2) ~ (A) Iamj (R2), else repeat

During the initial stage, the contents of tl1e repeat count register (R 1) is transferred to the index
subSEtction, thu contents of Aa and R2 are transferred to the arithmetic section, the logical product
of thu values from Aa and' R2 is formed, and the P-register is incremented.

If the initial repeat couot is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
coun1t is decreased and the contents of U is transferred to the arithmetic section. (U) Iamj (R2) is
comlJlared alphanumericaUy to (Aa) Iamj (R2), and:

• If (U) g (R2) ~ (Aa) l6Jm (R2), the termination stage is initiated. This stage stores the remnant
repeat cClunt and increments the P-register. (Skip Nt)

• If (U) ml (R2) > (Aa) Iamj (R2) and the repeat count is not zero, another test stage is initiated.

• If (U) gl (R2) > (Aa) Iamj (R2) and the repeat count is zero, the termination stage stores zero
as the remnant· repeat count and the P-register is not incremented.

1. .-0 is gre,lter than +0.

8804 Rev.1
UI4IIlMIa

SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference UfIOATi LIYIL

5-28
I'AGI

5.6. 14. Masked Alphanumeric Search Greater - MASG 71,07

Skip NI if (U) ~ (R2) > (A) ~ (R2), else repeat

During the initial stage, the contents of the repeat count register (R 1) is transferred to the index
subsection, the contents of Aa and R2 are transferred to the arithmetic section, the logical product
of: the values from Aa and R2 is formed, and the P-register is incremented.

If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each test stage. the repeat
cc)unt is decreased and the contents of U is transferred to the arithmetic section. (U) ~ (R2) is
compared alphanumericaUy to (Aa) ~ (R2), and:

• If (U) ~ (R2) > (Aa) ~ (R2), the termination stage is initiated. This stage stores the remnant
repeat count and increments the P-register (skip NI).

• If (U) ~ (rl2) ~ (Aa) ~ (R2) and the repeat count is not zero, another test stage is initiated.

• If (U) ~ (R2) ~ (Aa) ~ (R2) and the repeat count is zero, the termination stage stores zero
as the remnant repeat count and the P-register is not incremented.

1. -0 is greater than +0.

5.7. Test (or Skip) Instructions

Test instructions are used to read one or more words from storage or control registers and test for
certain conditions. The result of the test is used to determine whether the instruction addressed by
the incremented contents of the P-register (next instruction) should be performed or skipped.

The next instruction (NI) is always read from storage. If the decision is made to skip NI, it is discarded,
the P-register is incremented a second time. and the contents of the P-register is then used to address
the following instruction.

Indirect addressing, indexing, and index register incrementation/decrementation operate normally.

5.7. 1. Test Even Parity - TEP 44

Skip NI if (U) ~ (A) has even parity.

The value from U is transferred to the arithmetic s8Ot10n under j-field control. where it is used with
the contents of Aa to form a 36-bit logical product.

If (U) ~ (Aa) has an even number of 1 bits. the next instruction (NI) is skipped and the instruction
following NI is performed.

If (U) ~ (Aa) has an odd number of 1 bits, NI is performed.

8804 AeY.l I SPERRY UNIVAC 1100/80 Systems
Uf'..,MIER _~~ Capability Processor and Storage Programmer Reference

5.7.2. Test Odd Parity - TOP 45

Skip NI if (A) ~ (U) has odd parity.

UIIOATI LEVEL
5-29

flAGI

The contents of U is transferred to the arithmetic section under j-field control. where it is used with
the cc)ntents of Aa to form a 36-bit logical product.

If (U) I~ (Aa) has an odd number of 1 bits. the next instruction (NI) is skipped and the instruction
following NI is performed.

If (U) :~ (Aa) has an even number of 1 bits, NI is performed .

. 5.7.3. Test Less Than or EquallTest Not Greater Than Modifier - TLEM,TNGM 47

Skip NI if (U), 7-0 ~ (Xa), 1-0; always (Xa), 1-0 + (Xa) 35-18 - Xa 11-0

The clontents of U is transferred to the arithmetic section under j-field control. The contents of the
index register addressed by the a-field (Xa) is transferred to the arithmetic section. The rightmost
18 bi1ts of the value from U is subtracted from the rightmost 18 bits of the value from Xa (this is
performed as if the leftmost 1 8 bits of each operand were zeros).

If (U)11-O ~ (Xa)17-O (the sign of the difference is positive), the next instruction is skipped and the
instrulction follc)wing NI is performed.

If (U),1-O > (X~ilh 7-0 (thiS sign of the difference is negative), NI is performed.

In either case. the leftmc)st 1 8 bits from Xa are added to the rightmost 18 bits from Xa. and the sum
is stored in the rightmost 18 bit positions of Xa. The leftmost 18 bit positions of Xa are not changed.

1. I~f a ::II 0, index register zero (XO) is referenced.

2. +0 is les!1 than -0.

3. Eloth Xa 17-0 and the value from U are considered to be 18-bit numeric values with a positive
s,ign impli,ed.

4. ()nly the rightmost 18 bits of the value from U are involved in the operation. Values of O. 1.
clr 3 in the j-field yi.tld the same results. Values of 1 6a or 178 in the j-field yield the same result.

5. 1if h - 1 alnd a = ", the specified index register is incremented or modified only once.

5.·7.4" Test Zero - TZ 50

Sikip NI if (U) - :0.

The Cl3ntents of U is transferred to the arithmetic section under j-field control.

If the value tralnsferred is !: 0, the next instruction is skipped and the instruction following Nt is
performed.

If the value transferred lis not :0, NI is performed.

SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference

1. . The contents of the a-field is ignored.

5.7.5. Test Nonzero - TNZ 51

Skip NI if (U) = :!: O.

The contents of U is transferred to the arithmetic section under j-field control.

If: the value transferred is not:!: 0, the next instruction is skipped and the instruction following NI is
performed.

If: the value transferred is :!: 0, NI is performed.

1. The contents of the a-field is ignored.

5.7.6. Test Equal - TE 52

Skip NI if (U) -. (A).

The contents of U is transferred to the arithmetic section under j-field control. The contents of Aa
is also transferred to the arithmetic section.

If (U) - (Aa), the next instruction is skipped and the instruction following NI is performed.

If (U) = (Aa). Nt is performed.

1!. +0 is not equal to -0.

E>'7.7. Test Not Equal - TNE 53

Skip Nt if (U) = (A).

1ne contents of U is transferred to the arithmetic section under j-field control. The contents of Aa
i:s also transferred to the arithmetic section.

If (U) ~ (As), the next instruction is skipped and the instruction following NI is performed.

If (U) - (Aa), Nt is performed .
•

'1. +0 is not equal to -0.

!5.7.S. Test Less Than or EquallTest Not Greater - TLE,TNG 54

Skip Nt if (U) ~ (A).

"lne contents of U is transferred to the arithmetic section under j-field controJ. The contents of Aa
iiS also transferred to the arithmetic section.

Ilf (U) ~ (Aa), the next instruction is skipped and the instruction foHowing NI is performed.

IIf (U) > (Aa). NI is performed.

'1. +0 is greater than -0.

8e04 Aev.1
UI'-MJMIM

I SPI:RRY UNIVAC 1100/80 Systems
~4 Capability Processor and Storage Programmer Reference

5.7.9. Test Greater - TG 55

Skip NI if (U) > (A).

5-31
I'M.

The contents of U is tl'ansferred to the arithmetic section under j-field control. The contents of Aa
is also transferred to the arithmetic section.

If (U') > (Aa), the next instruction is skipped and the instruction following NI is performed.

If (U) ~ (Aa), Nt is performed.

1. +0 is greater theJn -0.

5.7 .. 1 O. Tes~t Within Range - TW 56

Skip NI if (A) < (U) ~ (A+ 1).

The contents of U is transferred to the arithmetic section under j-field control. The contents of Aa
and Aa+ 1 al'e also transferred to the arithmetic section.

If (Aa) < (U) ~~ (Aa+ 1), the next instruction is skipped and the instruction following NI is performed.

If (UI) ~ (Aa) or (U) > (Aa+ 1), NI is performed.

1. +0 is greater ,th~Jn -0.

2. Normally, (Aa} < (Aa+ 1). If, however, (Aa) ~ (Aa+ 1), there is no value of U that can satisfy the
condition (Aa) < (U) ~ (Aa + 1).

5.7" 11. Te~it Not Within. Range - TNW 57

Skip NI if (U) ~ (A) or (U) > (A+ 1).

The contents of U is transferred to the arithmetic section under j-field control. The contents of Aa
and Aa+ 1 are also transferred to the arithmetic section.

If (Ul ~ (Aa) or (U) > (Aa+ 1), the next instruction is skipped and the instruction following NI is
perf:ormed.

If (tI) > (Aa) and (U) ~ (Aa+ 1), Nl'is performed.

1. +0 is greater than -0.

2. Normally, (Aa) < (Aa+ 1). If, however, (Aa) ~ (Aa+ 1), every. possible value of U will satisfy at
least one of the following conditions:

(U) ~ (Aa)

or

(U)-> (Aa+ 1)

880 .. Rev.1
Ufl-NUMia

SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference

5.7.12. Test Positive - TP 60

Skip NI if (U)35 :=II: O.

"he contents of U is transferred to the arithmetic section under j-field control.

I'f the sign bit (bit 35) of the value from U is a 0 bit. the next instruction is skipped and the instruction
following NI is performed.

,If the sign bit is a 1 bit, NI is performed.

1. The contents of the a-field is ignored.

:2. Always skip when j = H 1, H2, Q 1-04, or S 1-S6.

5.7.13. Test Negative - TN 61

Skip NI if (Ubs = 1.

The contents of U is transferred to the arithmetic section under j-field control.

If the sign bit (bit 35) of the value from U is a 1 bit, the next instruction is skipped and the instruction
following NI is performed.

If the sign bit is a 0 bit, NI is performed.

1. The contents of the a-field is ignored.

2. Never skip when j = H 1, H2, Q 1-04, or 51-56.

5.7. 14. Double-Precision Test Equal - DTE 71,17

5kip NI if (U. U+ 1) - (A, A+ 1).

The contents of U. U+ 1, Aa, and Aa+ 1 are transferred to the arithmetic section. U, U+ 1 and Aa,
Aa + 1 are 72-bit operands.

If (U. U+ 1) - (Aa, Aa+ 1). the next instruction is skipped and the instruction following NI is performed.

If (U. U+ 1) = (Aa. Aa+ 1), NI is performed.

'1. +0 is not equal to -0.

5.8. Shift Instructions

each shift instruction transfers either one or two words to the arithmetic section, moves or shifts the
bits of the words. and stores the shifted word or words in one or two control registers.

The following basic types of shifts are provided for both single-word (36-bit input operand) and
double-word (two 38-bit words treated as a 72-bit input operand) operations:

880<4 Rev.1 I SPERRY UNIVAC 1100/80 Systems
~~ ___ ~ Capability Processor and Storage Programmer Reference

• Flight circular

UftOATi LIVIL
5-33

"AGI

F:or a right-circular shift, a shift count of n moves the contents of all bit positions of the register
holding the input operand n bit positions to the right. Bits shifted out the right end'of the register
alppear in the leftmostlbit positions vacated by the shift.

• l.eft circular

F:or a left-circular shift, a shift count of n moves the contents of all bit positions of the register
holding the input operand n places to the'left. Bits shifted out the left end of the register appear
iln the rightmost bit positions vacated by the shift.

F:or example: A shift count of 6 for a right-circuJar shift applied to 7654321012348 as the input
clperand produces 3476543210128 as the result. The same result is produced using a shift
c:ount of 30 for a left-circuJar shift.

F:or a single-word circular shift, a shift count of 72 or 36 produces the same result as a shift
count of 0 (no shift). A shift count of 37 produces the same effect as a shift count of 1, a shift
c:ount of ~i8 produces the same effect as a shift count of 2, and so on.

• Hight logical

For a right-logical shift, a shift count of n moves the contents of all bit positions of the register
holding the input operand n places to the right. Bits shifted out the right end of the register
~Ire lost. The leftmost bit positions vacated by the shift are zero filled.

F:or exam~)le: A shift count of 6 for a right-togical shift applied to 7654321012348 as the input
()perand ~)foduces 0076543210128 as the result.

• l.eft logic:al

'=or a left·~ogical shift, a shift count of n moves the contents of all bit positions of the input
()perand register n places to the left. Bits shifted out the left end of the register are lost. The
rightmost bit positions vacated by the shift are zero filled,

':or example: A shift count of 6 for a left-logical shift applies to 7654321012348 as the input
c)perand produces 5432101234008 as the result.

• I~ight algttbraic

I=or an algebraic shift (right only, since no left algebraic shift is provided), a shift count of n moves
the contents of all bit positions of the register holding the input operand n places to the right.
IBits shiftEld out the right end of the register are lost. The bit positions vacated by the shift are
jfilled with bits identical to the leftmost bit (sign bit) of the original input operand.

IFor example: A shift count of e for an algebraic shift applied to 7654321012348 as the input
loperand produces 7776543210128 as the result.

The two Load Shift and Count instructions are basically left circular shift instructions. The shift count
is determined by the configuration of the bits of the input operand. If the two leftmost bits are not
identiical, the !ihift count is zero. If the two leftmost bits are identical, the operand is shifted left
circuliar by the' minimum amount to position the bits of the input operand so that the two leftmost
bits alr8 not identical. The shift count is the count of the number of bit positions shifted. If all bits
of an input operand are identical, no amount of circular shifting will position its bits so that the two
left-most bits are not identical. In this instance, the shift count is 35 (single-word operand) or 71
(double-word operand). The shift count is stored in a control register.

8e04 Rev.1
IJII..M

SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference

For all shift instructions, except the two Load Shift and Count instructions. the input operands are
specified by one or two A-registers, and the shift count is specified by bits 6 through 0 of the effective
LI. Indirect addressing, indexing, and index register incrementation/decrementation operate normally
flor all shift instructions.

The shift count can be any number between <;> and 72. If a shift count of 73 to 127 (1118 through
1778) is specified, the result produced is undefined. The value in the u-field of the shift instruction
and the value of Xm (if x = 0) must be chosen accordingly.

For the two Load Shift and Count instructions, the effective U specifies the input operand address
just as for the other load instructions. The scaled result is loaded in the specified A-register (A, A+ 1
for Double Load Shift and Count instruction). The number of shifts required for scaling is stored in
the next consecutive register A+ 1 (or A+2 for Double Load Shift and Count instruction).

5.S.1. Single Shift Circular - SSC 73,00

Shift (A) right circularly U places.

'rhe contents of Aa is transferred to the arithmetic section. The shift count from bits 6 through 0
of U is transferred to the arithmetic section. The value from Aa is shifted right circularly by the number
of bit positions specified by the shift count. The shifted value is stored in Aa.

1. The result stored is not defined for shift counts greater than 72.

2. If 36 ~ n ~ 72, a shift count of n produces the same result as a shift count of n-36.

5.S.2. Double Shift Circular - DSC 73,01

Shift (A. A+ 1) right circularly U places.

The contents of Aa and Aa+ 1 are transferred to the arithmetic section. The shift count from bits
6 through 0 of U is transferred to the arithmetic section. The 72-bit value from Aa and Aa+ 1 is shifted
right circularly the number of bit positions specified by the shift count. The shifted value is stored
in Aa and Aa+ 1. -

1. The result stored is not defined for shift counts greater than 72.

5.S.3. Single Shift Logical - SSL 73,02

Shift (A) right U ptaces, zero fill.

The contents of Aa is transferred to the arithmetic section. The shift count from bits 6 through 0
of U is transferred to the arithmetic section. The value from Aa is right shifted the number of bit
positions specified by the shift count. Bits shifted out of the rightmost bit positions are lost; the
vacated leftmost bit positions are zero filled. The shifted value is stored in Aa.

1. The result stored is not defined for shift counts greater than 72.

- 2. If 36 ~ U ~ 72, the result stored in Aa is +0.

8804 Rev. 1 u......,... -----~PERRY UNIVAC 1100/80 Systems
4x4 CapabiUty Processor and Storage Programmer Reference

5.8.4. Double Shift Logical - DSL 73,03

:Shift (A,A+ 1) right U places, zero fill.

U.-oATi LIVIL
5-315

'AGI

The c:ontents ()f Aa and Aa+ 1 are transferred to the arithmetic section. The shift count from bits
6 thrc.ugh 0 of U is transferred to the arithmetic section. The 72-bit value from Aa and Aa+ 1 is right
shifted the nurnber of bit positions specified by the shift count. Bits shifted out of the rightmost bit
positions are lost; the vacated leftmost bit positions are zero filled.

1. 'rhe result stored is not defined for shift counts greater than 72.

5.8.5. Single Shift Algebraic - SSA 73,04

:Shift (A) r'ight U places. sign fill.

The contents c)f Aa is transferred to the arithmetic section. The shift count from bits 6 through 0
of U is transferred to the arithmetic section. The value from Aa is right shifted the number of bit
positions specified by the shift count. Bits shifted out of the rightmost bit positions are lost; bits
identical to the content of bit 35 of the initial value from Aa appear in the vacated leftmost bit
positi,ons. The shifted count is stored in Aa.

1. 'rhe resul1t stored. is not defined for shift counts greater than 72.

2. If 35 ~ LJ ~ 72, all bits of the result stored in Aa are identical to the leftmost bit of the input
()perand fTom A.a.

5.8.6. Doublle Shift Algebraic - DSA 73,05

Shift (A, J~+ 1) right U places, sign fill.

The contents of Aa and Aa+ 1 are transferred to the arithmetic section. The shift count from bits 6
throu~gh 0 of U is transferred to the arithmetic section. The 72-bit value from Aa and Aa+ 1 is right
shifted the number of bit positions specified by the shift count. Bits shifted out of the rightmost bit
positions are 14)$t; bits identical to the contents of bit 35 of the initial value from Aa appear in the
vacatlsd leftmost bit positions. The shifted value is stored in Aa and Aa+ 1.

1. 'lne result stored is not defined for shift counts greater than 72.

5.8.7. Load Shift and Count - LSC 73,06

~:U) - A; :shift (A) left circularly until (A)3!5 = (A)34; number of shifts - A+ 1.

The contents of location U is transferred to a nonaddressable 36-bit register in the arithmetic section
and then shiftetd left circularly the minimum number of bit positions which will make bit 35 unequal
to bit 34. Thel resultant scaled number is transferred to Aa and the shift count to Aa + 1.

1. Ilf bit 35 ()f the value from location U is not equal to bit 34, the number is already scaled and
Ino shift Olccurs: (U) - Aa; +0 - Aa+ 1.

2. Ilf the value from location U is :0: (U) - Aa, the shift count is 35, and 438 - Aa+ 1.

8804 Rev.1
~D

SPERRY UNIVAC 1100/80 Syst.m.
4x4 Capability Processor and Storage Programmer Reference

5.8.8. Double load Shift and Count - DlSC 73,07

UllDAl1 LIVIL

(U, U+ 1) - A, A+ 1; shift (A, A+ 1) left circularly until (A, A+ 1),1 = (A,A+ 1),0; number of shifts
-A+2.

The' contents of U and U+ 1 are transferred to a nonaddressable 72-bit register in the arithmetic
sec'tion and then shifted left circularly the minimum number of bit positions which will make bit 71
une'Qual to bit 70. The resultant scaled number is transferred to Aa and Aa+ 1 and the shift count
to Aa+2.

1. If bit 71 of the value from U and U + 1 is not equal to bit 70, the double length number is already
scaled and no shift occurs: (U) - Aa; (U+ 1) - Aa+ 1; +0 - Aa+2.

2. If the double-length value from locations U and U + 1 is:: 0: (U) - Aa; (U + 1) - Aa + 1; the shift
count is 71; 1078 - Aa+2.

5.81.9. left Single Shift Circular - LSSC 73,10

Shift (A) left circularly U places.

The contents of Aa is transferred to the arithmetic section. The shift count from bits 6 through 0
of U is transferred to the arithmetic section. The value from Aa is shifted left circularly the number
of bit positions specified by the shift count. The shifted value is stored in Aa.

1. The result stored is undefined for shift counts greater than 72.

2. If 36 ~ n ~ 72, a shift count of n produces the same result as a shift count of n-3S.

5J3. 1 O. left Double Shift Circular - lDSC 73,11

Shift (A, A+ 1) left circularly U places.

The contents of Aa and Aa+ 1 are transferred to the arithmetic section. The shift count from bits
6 through 0 of U is transferred to the arithmetic section. The 72-bit value from Aa and Aa+ 1 is shifted
left circularly the number of bit positions specified by the shift count. The shifted value is stored in
Aa and Aa+ 1.

1. The result stored is undefined for shift counts greater th'n 72.

5.8.11. left Single Shift logical - lSSL 73,12

Shift (A) left U places, zero fill.

The contents of Aa is transferred to the arithmetic section. The shift count from bits S through 0
of U is transferred to the arithmetic section. The value from Aa is left shifted the number of bit
positions specified by the shift count. Bits shifted out of the leftmost bit positions are lost the vacated
ri~Jhtmost bit positions are zero filled. The shifted value is stored in Aa.

1: The result stored is undefined for shift counts greater than 72.

2. If 36 ~ U ~ 72. the result stored in Aa is +0.

a8Q4 Rev.1
U"-HUMIIER -----~PERRY UNIVAC 1100/80 Systems

4x4 Capability Processor and Storage Programmer Reference

5.8.12. Left Double Shift Logical - LDSL 73,13

:Shift (A, A+ 1) left U places, zero fill.

5-37
'AGI

The contents (.f Aa and Aa+ 1 are transferred to the arithmetic section. The shift count from bits 6
throu1gh 0 of U is transferred to the arithmetic section. The 72-bit value from Aa and Aa+ 1 is left
shifted the nurnber of bit positions specified by the shift count. Bits shifted out of the leftmost bit
positions are lost; the vacated rightmost bit positions are zero filled. The shifted value is stored in
Aa arId Aa+ 1.

1. 'rhe result stored is undefined for shift counts greater than 72.

5.9. Unconditional Jump Instructions

A jump is a ch~lnge in the sequence in which instructions are executed. It is accomplished by placing
a new value in the program address register (P-register). Each unconditional jump instruction
performs a, unique operation in addition to the common operation of placing a new value in the
P-register.

If the relative "jump to" address is less than 200s, the next instruction is taken from the storage
location addressed by the value rather than from a control register.

The Jump KeY!1 instruction can be used to specify either a conditional or an unconditional jump. The
Halt .. lump/Halt Keys and Jump instruction specifies an unconditional jump, but the halt portion is
conditional. Both of these instructions are included in the section on conditional jump instructions
(see f5. 11).

5.9. 1. Store Location and Jump - SW ~ 72,01

.Relative F)+ 1 -, U17-O; jump to U+ 1

The ft-register is incremented. An l8-bit relative return address is stored in the rightmost 18 bits
of thf~ locatioTi specified by the operand address. The value of the operand address plus one is
trans1ferred to the P-register as the "jump to" address. The upper half of the operand is unchanged.

1. 'The contlants of the a-field is ignored.

2. If U < 2C)Os, the l8-bit relative return address is stored in the rightmost 18 bits of the control
register addressed by U, and the leftmost 18 bit positions of that control register are unchanged.

3. The la-bit address always represents a relative address. Therefore, executing this instruction
in absolute addressing mode may produce erroneous results.

4. The relative return address is stored in the low-order 18 bits of a word. If this la-bit relative
return address is larger than 16 bits, the two high-order bits will be interpreted as hand i bits
if the address is used in an instruction. The instruction may produce erroneous results.

S.9.:L Load Modifier and Jump - LMJ 74,13

Relative P+ 1 - Xa17-O; jump to U

The I;I-registef' is incremented. An 18-bit relative return address is stored in the rightmost 18 bits
of the index register specified by the a-field. The leftmost 1 8 bits of that index register are not
affected. The value of the operand is transferred to the P-register as the "jump to" address.

8804 Rev.1
UP-HUMIIR

SPERRY UNIVAC 1100/80 Svaem.
4x4 Capability Processor and Storage Programmer Reference U.-oATI LEVEL 1."':-38

1. If the GRS selection designator (06) = 0 and the value in the a-field is zero, the relative return
address is stored in index register zero (XO).

2. If index register incrementation is specified, the relative return address is stored in the index
register specified by the a-field after the new value for Xm is stored in the index register
specified by the x-field. As a consequence, if the value in the a-field is not zero and it is the
same as the value in the x-field, it makes no difference whether the value in the h-field is zero
or one.

5.9.3. Allow All Interrupts and Jump - AAIJ 74,07

Allow all interrupts and jump to U.

This instruction allows interrupts prevented by the occurrence of an interrupt or the execution of a
'Prevent All Interrup~s and Jump inst~ction.

1. The contents of the a-field is ignored.

2. The Allow All Interrupts and Jump instruction does not affect the Oayclock interrupt when it is
disabled by the Disable Dayclock instruction and enabled by the Enable Dayclock instruction.

5.10. Bank Descriptor Selection Instructions

Each program may be composed of or associated with a large number of program or data segments;
of these. up to four may be active at any given time. Bank Descriptor selection instructions allow
a program to select which segments are among the four that are currently active.

5 .. 10. 1. Load Bank and Jump - LBJ 07,17

The LBJ instruction loads the bank descriptor register selected by bit position 34 and 3;3 of the index
re.gister specified by the a-field of the instruction word (Xa) with a new bank descriptor, stores the
old bank descriptor indexing information and relative program address in Xa as return information,
and then jumps to the location specified by the operand address. The new bank descriptor is located
by adding the bank descriptor index contained in bit positions 18 through 29 of Xa to the bank
descriptor table pointer selected by bit position 35 of Xa. If bit 35 is zero, the user pointer and table
are selected: if bit 35 is one, the Executive pointer and table are selected. An Address Exception
interrupt occurs when bit 35 is one and the EXEC bank descriptor table pointer enable designator
(019) is zero. An Address Exception interrupt also occurs if the bank descriptor index value exceeds
the length of the table.

Before the new bank descriptor values are actually loaded, the old bank descriptor is . located and
the use-count field is decreased by one under storage lock. An Addressing Exception interrupt occurs
if the C-flag of the old bank descriptor is one and the use count is decreased to zero, or if the use
cc)unt is decreased from zero to aU ones. The new bank descriptor is loaded in the bank descriptor
register, the P-flag is transferred to the privileged instruction, GRS protect, and interrupt lockout
detect designator (02), and the W-flag of the new bank descriptor is placed in the appropriate
w'rite-protection bit of the bank descriptor register designator bits (013 through 016).

~/hen the new bank descriptor is located, the associated use count field is increased by one under
storage lock. and an Addressing Exception interrupt occurs if the R-flag of the bank descriptor is one,
if there is a V-flag violation, or if the use count field is increased from all ones to zero.

8804 fWv.1
UNAlMIIR UII'OA TE LIV!L

5-39
"AGE -----DPE:RRY UNIVAC 1100/80 Sv-tems

4x,4 Capability Proc~ssor and Storage Programmer Reference

The Etppropriate bank descriptor indexing information is copied from the GRS processor state area
into the upper half of Xa, the relative program address is copied into the lower half of Xa, and the
new bank descriptor indexing information is stored in the appropriate half word of GAS 468 or 47 8,
The (»perand alddress is formed and a jump to that location is effected. If both an address exception
and jiump address guard mode limits violation occur during the execution of this instruction, the
addmss exception will be taken.

The f:ollowing are the formats of Xa before and after execution of the instruction:

~O ___ ·_O~I __________ ~ __ W __ B_Df ________ ~ _______________ N_ot_U_~ ___________________ ~
35 34 33 32 30 29 18 17 o

~_O_-__ O~I ___________ O_ld __ BD_' ________ ~ __________ R_ef_aw_'_e_p_rog __ ra_m __ A_dd_r_e_ •• _________ ~
31 3. 33 32 30 29 18 17 o

6.101.2. Load I-Bank Base and Jump - LlJ 07, 13

The 11..IJ instruction is executed as a special case of the lBJ instruction. Bit positions 34-33 of Xa
are i~lnored; if the BOA selector designator (0 12) is zero, BOAO is loaded and the BOR field (bits 34-33)
of the bank djascriptor index is written to 08; and if 012 is one, BOR 1 is loaded and the BOA field
is wr'itten to 18,

5. 1 CI.3. Load D-Bank Base and Jump - LDJ 07, 12

The Il.DJ instruction is executed as a special case of the lBJ instruction. Bit positions 34-33, of Xa
are i~~nored; if the BOA selector designator (0 12) is zero, BOR2 is loaded and the BOR field (bits 34-33)
of the bank dl9scriptor index is written to 28; and if 012 is one, BOR3 is loaded and the BOR field
is written to ~J8'

5.11. Conditional Jump Instructions

Each of the conditio'nal jump instructions performs a test for a specific condition (or set of conditions).
If the. condition is satisfied, the value U is transferred to the P-register, and the instruction addressed
by U is performed next. If the condition is not ~atisfied, the next instruction (Nt) is performed.

S804 Rev. 1
UNtUMIER

SPERRY UNIVAC 1100/S0 System,
4x4 Capability Processor and Storage Programmer Reference UPDATE LIVIL

5~0
'AGI

5. 11. 1. Jump Greater a':1d Decrement - JGD 70

Jump to U if (control register)ja > 0'; go to NI if (control register)ja ~ 0; always (controlregister)ja
-1 - control registerja'

If the 36-bit signed number in the control register addressed by the rightmost 7 bits of the ja-field
is greater than zero (bit 35 contains a 0 bit and the number does not consist of all 0 bits), the
instruction at location U is executed next. If the number is less than, or equal to, zero (bit 35 contains
a 1 bit or the number consists of all 0 bits), the next instruction· is performed. In either case, the
number is decreased by one and the difference is stored in the control register addressed by the
ja-field.

1. A Guard Mode interrupt occurs (if guard mode is set) when the ja-field specifies a value in the
range 40s through 1008, or 120s through 1778 if the privileged instruction, GRS protect, and
interrupt lockout detect designator (02) := 1. This is true regardless of the value of the GRS
selection designator (06).

2. The leftmost bit in the j-field is ignored.

5. 11.2. Double-Precision Jump Zero - DJZ 71, 16

Jump to U if (A,A+ 1) = :0; go to NI if (A.A+ 1) ~ :0.

If the 72-bit operand contained in Aa and Aa+ 1 is: 0, the instruction at location U is performed next.
If the operand is not: O. the next instruction (NI) is performed.

5. 11.3. Jump Positive and Shift - JPS 72,02

Jump to U if (A}35 =- 0; go to NI if (A)3! =- 1; always shift (A) left circularly one bit position.

If bit 35 of Aa contains a 0 bit, the instruction at location U is performed next. If bit 35 contains
a 1 bit, the next instruction is performed. The contents of Aa is always shifted left circularly one bit
position.

'I. The bit shifted out of bit 35 of Aa is shifted to bit a of Aa.

!5.11.4. Jump Negative and Shift - JNS 72,03

Jump to U if (A)3! .. 1; go to NI if (A)3! =- 0; always shift (A) left circularly one bit position.

If bit 35 of Aa is a 1 bit, the instruction at location U is performed next. If bit 35 is a 0 bit, the next
instruction is performed. The contents of Aa is always shifted left circularly one bit position.

1. The bit shifted out of bit 35 of Aa is shifted to bit 0 of Aa.

5. 11.5. Jump Zero - JZ 74,00

Jump to U if (A) .. :0; go to NI if (A) = :0.

If (Aa) is ! 0, the instruction at location U is performed next. If As does not contain ! 0, the next
instruction is performed.

8804 Ftev.1
UNfUM8IIl

I SPERRY UNIVAC 1100/80 Systems
~, Capability Processor and Storage Programmer Reference UPOATI LEVEL

5. 11 ,.6. Jump Nonzero - JNZ 74,01

.Jump to U if (A) = :!: 0; go to NI 'if (A) ::I :!: O.

If (Aa~ is not:!: 0, the instruction at location U is performed next. If (Aa) is :: 0, the next instruction is
performed.

5.11.7. Jump Positive - JP 74,02

,Jump to U jf (A)35 - 0; go to NI if (A)35 ::I 1.

If bit 35 of Aa is a 0 bit, the rnstruction at location U is performed next. If bit 35 is a 1 bit, the next
instruction is Ilerformed.

5. 11.8. Jump Negative - IN 74,03

Jump to U if (A)35 = 1; go to NI if (Ab5 ::I O.

If bit 35 of Aa is a 1 bit, the instruction at location U is performed next. If bit 35 is a a bit, the next"
instruction is performed.

5.11.9. Jump/Jump Keys - J,JK 74,04

Jump to U if a - 0 or if a - set JUMP SELECT switch; go to NI if neither is true.

If the a-fiefd contains all 0 bits, the instruction at location U is performed next. If the a-field contains
a value in the range of 1 through 15 (18 through 178) and the correspondingly numbered JUMP
SELE,CT switch/indicator is set. the instruction at location U is performed next; if the correspondingly

. numbered JUMP SELECT switch/indicator is not set. the next instruction is performed.

1. The indic:ator for each of the 15 JUMP SELECT switch/indicators is turned on by pressing that
JUMP SIELECT switch/indicator. Each is turned off by pressing the associated clear switch.
Either can be done while the central processor unit (CPU) is running.

2. Care should be exercised in using a value other than aU 0 bits in the a-field if the program is
to run concurrently with onear more other programs. Any other program may include a Jump.
Keys ins'truction with the same value in the a-field and specify that it is to be run with the
corresponding JUMP SELECT switch/indicator set.

5. 111. 1 O. Halt Jump/Halt Keys and Jump - HJ,HKJ 74,05

. Stop if [aaO IQBI if (a lANa set STOP SELECT switches) = 0] g 02 .. 0; on restart or
continuation jump to U.

If th~!t a-field contains all 0 bits, the execution of program instruction halts. If the a-field contains
a 1 bit in a bit position which corresponds to a lit STOP SELECT switch/indicator, the program halts.
A m~mual restart causes the instruction at location U to be executed next unless the program address
regi~~ter was manually changed while the CPU was halted.

Whetn the privileged instruction, GRS protect.and interrupt lockout detect designator (02) :. 1 and
the Ihalt conditions are satified. the jump is executed without halting.

SPERRY UNIVAC 1-100/80 Svst.ms
4x4 Capability Processor and Storage Programmer Reference UfIOATi LIVIL

1. The indicator for each of the four STOP SELECT switch/indicators is turned on by pressing one
of the STOP SELECT switch/indicators. They are turned off by pressing the associated clear
switch.

2. If the program address register is manually changed while the CPU is halted, program execution
will resume at the new address when the CPU is restarted.

5.11.11. Jump No Low Bit - JNB 74,10

Jump to U if (A)o = 0; go to NI if (A)o = 1.

If bit 0 of Aa is a 0 bit~ the instruction at location U is performed next. If bit 0 is a 1 bit, the next
i"struction is performed.

1. If the Jump No Low Bit instruction is used to determine whether the value in Aa is an even or
an odd integer, consideration must be g.iven to the sign of the value.

5. 11. 12. Jump Low Bit - JB 74, 11

Jump to U if (A)o = 1; go to NI if (A)o == O.

If bit 0 of Aa is a 1 bit, the instruction at location U is performed next. If bit 0 is a 0 bit. the next
h1struction is performed.

1. If a Jump Low Bit instruction is used to determine whether the value in Aa is an even or an odd
integer, consideration must be given to the sign of the value.

5.11.13. Jump Modifier Greater and Increment - JMGI 74,12

Jump to U if (Xah7-O > 0; go to NI if (Xah7-O ~ 0;· always (Xa)17-O + (Xa)35_18 - Xa17-O'

I'f the signed number in bits 17 through 0 of the X-register specified by the a-field is greater than
zero (bit 17 is a 0 bit and the number does not consist of aU 0 bits), the instruction at location U is
~)erformed next. If the number is less than or equal to zero (bit 1 7 is a 1 bit or the number consists
of all 0 bits), the next instruction is performed. In either case, the signed number in bits 35 through
'18 of the X-register is added to the signed number in bits 17 through 0, and the sum is stored in
bits 17 through 0 of the X-register.

" . The number in Xa 17-0 before the addition is tested, rather than the number resulting from the
addition.

:Z. If a - x and h - 1, the specified index register is effectively modified only once for each
execution of the instruction.

5.11.14. Jump Overflow - JO 74,14; a == 0

Jump to U if 01 - 1; go to NI if 01 ... O.

Where' the a-field is an extention of the f- and j-fields.

If the overflow designator (01) is one, the instruction at location U is performed next. If 01 is zero,
the next instruction is performed.

8804 ~eY.1
Ufl-HUMIEIt

I SPIERRY UNIVAC 1100/80 Systems
~4 Capability Processor and Storage Programmer Reference

1. Performing the Jump Overflow instruction does not change 01.

5. 11.15. Jump Floating Underflow - JFU 74, 14; a = 1

Jump to U if 021 == 1, clear 021; go to NI if 021 == O.

5-43
PAGE

If thel characteristic underflow designator (021) is one, the instruction at location U is performed next
and 021 is cleared by the instruction. If 021 is zero, the next instruction is performed.

5. 11. 16. Jump Floating Overflow - JFO 74, 14; a = 2

Jump to U if 022 - 1, clear 022; go to NI if 022 - O.

If thEI charactEtristic overflow designator (022) is one, the instruction at location U is performed next
and 022 is cleared by the instruction. If 022 is zero, the next instruction is performed.

5.11.17. Jump Divide Fault - JDF 74,14; a = 3

Jump to U if 023 == 1, clear 023; go to NI if 023 == O.

If thEt divide fault designator (023) is one, the instruction at location U is performed next and 023
is c'Etared by the instruction. If 023 is zero, the next instruction is performed.

!

5.11.18. Jump No Overflow - JNO 74,15: a = 0

Jump to U if 01 == 0; go to NI if 01 == 1.

If thEI overflow designator (01) is zero, the instruction at location U is performed. If 01 is one, the
next instructicm is performed.

1. Executing the Jump No Overflow instruction does not change 01.

5. 11. 19. Jump No Floating Underflow - JNFU 74, 15; a -= 1

Jump to U if 021 =- 0; go to NI if 021 =- 1; clear 021.

If the! characteristic underflow designator (021) is zero, the instruction at location U is performed next.
If 02: 1 is one, the next instruction is performed. 021 is cleared by the instruction.

5. 11.20. Jump No Floating Overflow - JNFO 74, 15; a = 2

Jump to U if 022 =- 0; go to NI jf 022 =- 1; clear 022.

If thEI charactElristic overflow designator (022) is zero, the instruction at location U is performed next.
If 02~2 i$ one, the next instruction (NI) is performed. 022 is cleared by the instruction.

8804 ArI.1
tJI'..NtJMIrR

SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference

5. '11.21. Jump No Divide Fault - JNDF 74, 15; a == 3

Jump to U if 023 = 0; go to NI if 023 =- 1; clear 023.

If the divide fault designator (023) is zero, the instruction at location U is performed. If 023 is one,
tho next instruction is performed. 023 is cleared by the instruction.

5. 11.22. Jump Carry - JC 74, 16

Jump to U if DO = 1; go to NI if DO = O.

If the carry designator (00) is one, the instruction at location U is performed next. If DO is zero, the
next instruction is performed.

1 . The contents of the a-field is ignored.

2. Performing the Jump Carry instruction does not cha"ge ~O.

5. 11.23. Jump No Carry - JNC 74,17

Jump to U if DO ::1111' 0: go to NI if DO = 1.

If the carry designator (DO) is zero, the instruction at location U is performed next. If DO is one, the
nEtxt instruction is performed.

1. The contents of the a-field is ignored.

2.. Performing the Jump No Carry instruction does not change ~O.

5.12. Logical Instructions

The three logical operations are the Logical Inclusive OR (referred to as the Logical OR and symbolized
by iQE). the Logical Exclusive OR (symbolized by IXORU; and the Logical AND (symbolized by ~). Each
01f these instructions uses two input operands. One input operand is obtained from location U and
the other from an A-register. Table 5-1 lists the four possible combinations of the two bits from any
bit position of the two input operands and the result produced for that bit position for each of the
three basic operations.

8804 Rev. 1
Ufl-NUMlEli

I SPERRY UNIVAC 1100/80 Systems .
~t C.apability Processor and Storage Programmer Reference

Tabl. 5-1. Truth TlJbl. for Logical OR, XOR, and AND

Input Bits Output (Result) Bit
First Op-arand Second Operand OR XOR

0 0 0 0
0 1 1 1
1 0 1 1
1 1 1 0

I 5-46

~

AND

0
0
0
1

The Masked Lc)ad Upper instruction performs a compound logical operation; the contents of selected
bit pClsitions of one operand are merged with the contents of the remaining bit positions of a second
openlnd.

5. 12. 1. Logical OR - OR 40

I[A) (QE] (U) - A+ 1

The contents of Aa is transferred to the arithmetic section. The contents of U is transferred to the
arithrnetic section under j-field control. A 36-bit result is formed in the arithmetic section, as follows:

• ''''e result contains a 1 in each bit position for which the corresponding bit position of either
I[or both) of the input operands contains a 1.

• 'The result contains a 0 in each bit position for which the corresponding bit position of both input
operands contains a O.

The resu It is stored' in Aa + 1.

5. 12.2. Logical Exclusive OR - XOR 41

(A) [QE] (U) - A+ 1

The c:ontents ()f Aa is transferred to the arithmetic section. The contents of U is transferred to the
arithrnetic section under j-field control. A 36-bit result is formed in the arithmetic section, as follows:

• 'The result contains a 1 in each bit position for which the corresponding bit position of either
[but not both) of the input operands contains a 1.

• The result contains a 0 in each bit position for which the contents of the corresponding bit
position elf the input operands are both 0 or both 1.

The f'esult is stored in Aa + 1.

8804 Rev.l
UNIUMIIIt

SPERRY UNIVAC 1100/80 Syaems
4x4 Capability Processor and Storage Programmer ·Reference UP'OATI LIYIL

5-46
I'AGi

5. '12.3. Logical AND - AND 42

(A) ~ (U) - A+1

The contents of Aa is transferred to the arithmetic section. The contents of U is transferred to the
arithmetic section under j-field control. A 36-bit result is formed in the arithmetic section, as follows:

• The result contains a 1 in each bit position for which the corresponding bit position of both input
operands contains a 1.

• The result contains a 0 in each bit position for which the corresponding bit position of either
(or both) of the input operands contains a O.

The result is stored in Aa + 1.

5. 12.4. Masked Load Upper - MLU 43

[(U) ~ (R2)] fQBJ [·(A) ~ NOT (R2)] - A+ 1

The contents of Aa and R2 are transferred to the arithmetic section. The contents of U is transferred
to the arithmetic section under j-field control. A 36-bit result is formed in the arithmetic section,
as follows:

• The result contains a 1 in each bit position for which the corresponding bit position of the
operand from U and the operand from R2 both contain 1 bits.

• The result contains a 1 in each bit position for which the corresponding bit position of the
operand from Aa and the ones complement of the operand from R2 both contain 1 bits.

• The result contains 0 bits in the remaining bit positions.

The result is stored in Aa + 1.

1. The desired value must be loaded in R2 (mask register) by an instruction preceding the Masked
Load Upper instruction.

5. 13. Miscellaneous Instructions

Each of the eight following instructions is classed as miscellaneous.

5. 13. 1. Load DR Designators - LPO 07, 14

Us,S.3-0 - Designator register:

Bit a - 04 Bit 3 - 010

Bit 1 - 05 Bit 5 - 017

Bit 2 - 08 Bit 6 - 020

B,its 0, T, 2, 3, 5, and 6 of U are transferred to the designator register bits (see 8.2.1); 04, 05. 08.
010, 017, and 020, respectively. These are the only designator bits which can be changed by a
user program.

I SPERRY UNIVAC 1100/80 Systems
~ Capability Processor and Storage Programmer Reference

5.13.2. Stort! DR Designators - SPO 07,15

I)esignatc.r register bits - Us-o; zeros - U, 7-7

1)4 - Bit 0 012 - Bit 4

1)5 - Bit 1 017 - Bit 5

1)8 ... Bit 2 020 - Bit 6

1)10 ... Bit 3

UPDATI LEVIL .
5-47

PAGE

020, 017, 012, 010, 08, 05, and 04 of the designator register (see 8.2.1) are transferred to bit
positi,ons 7-0 of U, respectively. The upper half of the operation location is unaffected.

5.13.3. Execute - EX 72,10

I:xecute the instruction at U.

The P-register is incremented provided the instruction was addressed by the contents of the
P-register. The instruction at location U is transferred to the control section to replace the Execute
onstruction as 1the next instruction to be performed.

1. ~rhe contents of the a-field are ignored.

2. -rhe remote instruction, specified by U, is always obtained from a storage location.

3. I:xecute instructions may be cascaded; that is, the instruction in the remote location may be an
l:xecute instruction.

4. "rhe P-register is incremented only once, when the original Execute instruction is obtaineq for
Itxecution.

5. Generally, an interrupt cannot occur between the time an Execute instruction is started and the
instructioln (or instructions) it leads to has been completed except when an Execute instruction
leads to a repeated instruction (see 5.3·.8 and 5.6). An interrupt cannot occur between the start
I)f the Execute instruction and the completion of the initial stage of the repeated instruction. The
interrupt, however, can cause initiation of a termination stage immediately following completion
13f the initial stage or any time thereafter in order to permit the interrupt to occur.

6. Ilf an Exec:ute instruction leads to a repeated instruction, index register incrementation should
Irtot be specified for the Execute instructions or for any indirect addressing sequence involved
~:see 5.3.S. note 6, and 5.6).

5. 13 .. 4. Executive Request - ER 72. 11

IGenerate Executive Request interrupt

An EJtecutive nequest interrupt is generated.

1. ',~ Guard Mode/Storage Limits interrupt will occur if indirect addressing is specified (i = 1, the
,relocation and storage suppression designator, 07 =- 0) and the operand address causes a
:storage limits violation.

8604 Rev.1
U~

SPERRY UNIVAC 1100/80 Syatems
4x4 Capability Processor and Storage Programmer Reference U~TllIVIl.

2. The contents of the a-field is ignored.

5,.13.5. Test and Set - TS 73,17; a = 0

If (U)30 = 1, Generate Test and Set interrupt; if (U)30 = 0, go to NI, if U ;;, 200,

then 018 - U36- 30; (U)29-0 unchanged.

An operand fetch (from GRS if U < 200; from storage if U) 200) is initiated to read the operand
sllecified by the operand address. If bit 30 of the operand is zero, the next instruction is performed.
If U) 200 and bit 30 of the operand is zero, then a 18 is written into bits 35 through 30 of the storage
operand. Bits 29 through 0 at location U are neither examined nor altered. When U < 200 no write
b,ack wiU occur.

5.13.6. Test and Set and Skip - TSS 73,17; a = 1

If (U)30 = 1, go to NI; if (Ubo .. = 0, skip NI, if U) 200, then 018 - U35- 30; (U)29-0 unchanged . .
A,n operand fetch (from GRS if U < 200; from storage if U) 200) is initiated to read the dperand
specified by the operand address. If bit 30 of the operand is zero, the next instruction is skipped.
If bit 30 of the operand is one, the next instruction is performed. If U) 200 and bit 30 of the operand
is zero, then 01a is written into bits 35 through 30 of the storage operand. Bits 29 through a at
location U are neither examined or altered. When U < 200 no write back will occur.

5.13.7. Test and Clear and Skip - TeS 73,17; 'a = 2

If (Ubo = 0, perform Nt; if (Ubo = 1, skip NI, if U) 200 clear (U) 35-30; (U)29-0 unch~nged.

An operand fetch (from GRS if U < 200; from storage if U) 200) is initiated to read the operand
specified by the operand address. If bit 30 of the operand is zero, the next instruction is performed.
If bit 30 of the operand is one, the next instruction is skipped. If U) 200 and bit 30 of the operand
is one, then bits 35 through 30 of the storage operand are cleared. Bits 29 through a at location
U are neither examined or altered. When U < 200 no write back will occur.

5.13.8. Test and Set Alternate - TSA 73,17; a = 4

The TSA instruction is intended to allow access to data under test and set. The instruction is like
Test and Set except that bit position 14 is tested, and bits 0 through 14 are set to one. An interrupt
occurs if bit 14 is one when the test is performed. If U < 200a, bit 14 of the GRS word is tested
as above; however, the word is not modified. This instruction is used only with 494 mode capability.

Ei. 13.9. Test and Set and Skip Alternate - TSSA 73,17; a = 5

"he TSSA instruction is like Test and Set Alternate except that the next instruction is skipped if bit
14 is zero. The next instruction is not skipped if, bit 14 is one, rather than causing an interrupt. In
this respect, the TSSA instruction is like the Test and Set and Skip instruction. If U < 200s• bit 14
of the GRS word is tested as above; however, the word is not modified. This instruction is used only
with 494 mode capability.

8604 Re".1 I SPERRY UNIVAC 1100/S0 Systems
~~_~, Capability Processor and Storage Programmer Reference

5. 13. 1 O. No Operation - NQP 74,06

Proceed to next instruction.

UIlDATE LML
5-49

'AGI

The NOP instruction ensures that there is an interval between the end of the instruction that precedes
it and the start of the one that follows it.

1. The contents of the a-field is ignored.

2. The only effects that the values in the x-, h-, i-, and u-fields can have on the operation is the
index register incrementation obtained when x = 0 and h = 1, and the indirect addressing delay
introducEld when i == 1 and the relocation and storage suppression designator (07) == O. Indirect
addressing can cause a guard mode if the relative address generated from X and U does not
fall within limits on any of the bank descriptors.

5. 13. 11. Stc)re Register Set - SRS 72,16

Aa c()ntains an address and count for each of two GRS areas. These areas are stored consecutively,
starting at the location specified by the operand address of the instruction, If either or both count
valUEtS are zero, no transfer occurs to the respective area(s). Relative addresses less than 2008 are
treatlEtd as storage addresses, not GRS addresses.

The ifollowing is the format of Aa for this instruction:

Are. 2 Area 2 Area 1
00

Area 1

Count
00 00

Count Address Address

363433 2721 25 24 18 17 t815 98 78 o

5. 1 ~1. 12. Load Register Set - LRS 72,17

The format of Aa and the operation of· the instruction are like that of SRS, except that information
is tralnsferred from the location specified by the operand address to the area specified by Aa. Relative
addr'esses less than 200s are treated as storage addresses, not GRS addresses.

5.1:t 13. Test Relative Address - TRA 72, 15

The TRA instr'uction provides a means to determine whether a specific relative address is within a
given relative addressing range. The operand address is the first word of a 4-word packet defining

ae04 Rev.1
U~MIIIl

SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference UPOATlLML

5-50
'AGE

art addressing environment to be used in testing the relative address. The packet contains a
designator register, bank descriptor table pointer, four bank descriptor indexes, and E bits. in the
following format:

Designator Register

WOl'd 0

Bank Oucriptor Table Pointer

WOlrd 1

E ignored BOlO E ignored BOl2

Word 2 0 2

E
BOI 1

E
ignored BOI 3

1
ignored

3

3b 34 30.29 181718 12 11 o

The four E bits within the packet determine whether the BOT pointer in the packet (E == 0) or the EXEC
BOT pointer (E == 1) is to be used with the appropriate BOI to reference the respective bark descriptor.

The relative address to be tested is contained in Xa 17-0' This relative address is translated into an
absolute address within the addressing environment specified by the above packet. Relative
addresses less than 2008 are treated as storage addresses, not GAS addresses. There.is no check
for table length violation.

To determine the order of descriptor usage during testing, the bank descriptor register (BOR) selector
designator (012) is used. When 012 == 1, the order is 1. 3, 0, 2. When 012 == 0, the order is 0,
2, 1, 3. These orders are followed regardless of 035. 012 is obtained from the current 012 in the
hardware designator register if the address for the designator register is 448 (U =- 448); otherwise,
012 is obtained from the designator register in the packet.

"he results of this instruction are stored in Xa and indicated by skip or no skip. If the relative address
tlBsted is within limits, the number of the bank descriptor register within whose limits the relative
address exists. is stored in Xa 34-33' and the absolute address produced is stored in Xa23-00' If the
relative address does not fall within any limits, Xa is cleared to zero and the next instruction is
executed. If the relative address tested is within limits, the write protect bit of the bank descriptor
within whose limits the relative address exists is tested. If it is zero, the next instruction is skipped;
H it is one. the next instruction is executed.

The bank descriptors which are fetched from storage are loaded, one at a time. into hardware BORa
where the limits check is done. Since these test bank descriptors are loaded into BORO, the resident
bank descriptor will be destroyed. The BORO must be returned to the original values once all the
testing is done. To do this the hardware will fetch the current BOO from storage using the current
index values and pointers in the GRS at the start of the TRA. Once the current BOO comes from
storage, it is loaded into GRS addresses 66 and 67. Then at the end of the TRA, these GRS addresses
care read up and loaded into BORO.

8804 ReY.1
UP-oIIIUMISI

I SPEFtRY UNIVAC 1100/80 Systems .
~ Capability Processor and Storage Programmer Reference

5. 13. 14. Increase Instructions - XX 05; a = 10-17

UPOATI lEVEL
5-61

"AGE

The operand s~)ecified by the operand address is transferred under j-field control to the a.rithmetic
section, increa~.ed by a value specified by the a-field control to the arithmetic section, and stored
under j-field c()ntrol in the location specified by the operand address; the operation is performed
under storage lock (test and set). If the initial operand or the result is zero, the next instruction is
executed; othelwise, the next instruction is skipped. If 077 + 1 (per j transfer) is not equal to zero,
a skip does n01t occur. The following values may be selected by the a-field:

!!"nemonic~ !::!!!!!! increase value

INC 10 +1

DEC 11 -1

INC2 12 +2

DEC2 13 -2

ENZ 14-17 o (-0 is changed to +0 for sign-extended
operands)

The inlcrease and zero test operations depend on the j-field values to some degree. Certain j-field
valuesi extend or interpret the sign of the operand (W, XH 1-XH2, T1-T3); for these values, the increase
is a Olr'les complement, sign-extended operation, and either positive zero or negative zero satisfies
the zero test. "he remaining j-field values do not consider the sign of the operand (H 1-H2, a 1-04,
S 1-5«;); for these values, the increase is a twos complement, field-size operation, and only positive
zero satisfies the zero test.

5. 14. Byte In~jtructio.ns

This c:lass of instructions is designed to permit transference. translation, comparison, testing, and
arithmetic computation of data in the form of predetermined bit patterns (e,g., half words, third words,
QuartEtr words, and sixth words) referred to as bytes.

There are a totelll of 15 distinct instructions that perform the various multiword (byte string) operations
noted above. 'rhese instructions may be arranged under three functional groups:

1. Instructions that involve byte transfers and manipulations between one storage location and
2lnother.

2. Instructions that permit the mutual transference and manipulation of data among storage and
"arious control and arithmetic registers.

3. Instructiol's that perform decimal arithmetic addition and subtraction operations.

Thesel instructions operate on strings of characters (byte strings) under control of J-registers and
stagir1lg registers. The J-registers are implicitly addressed by the instruction and are used to index
throu.~h the byte strings. One J-register is ·provided for each of four possible byte strings used by
an ins~truction. These registers. JO through J3, are located in GRS addresses 1068 - 1118 for user
prognlms, or 1 :268 - 131 8 for Executive programs. Figure 5-1 shows the J-register format, including
the function of the various fields.

Stagitr"lg and c()ntrol information necessary to handle the byte .strings are held in staging registers.
Three R-registers (R3, R4, and Rs of GRS), designated as SR 1, SR2, and SR3, respectively, are used

8804 Rev.1
~

SPERRY UNIVAC 1100/80 System,
4x4 Capability Processor and Storage Programmer Reference

5-62

II'"

for this purpose. The information stored in these registers provides the capability of interrupting the
performance of certain instructions. The actual information stored may vary from one instruction to
tho next. See the individual instructions for use of the staging registers.

Byte string addressing is accomplished through use of the instruction's u-field, index registers
sp,ecified by the x-field of the instruction, and the Ow (offset in words) field of the appropriate
J-rQgister. The address of byte string 0 (designated SJO), for example, is given by summing the
contents of u, Xx, and the Ow field of JO (U + Xx + JOOw)' The address of byte string 1 (SJ 1) would
be given by (U + Xx + 1 + J 1 Ow), etc. A particular byte within the word of a byte string is pointed
to by the Ob-field (offset in bytes) of the J-register. Byte strings may begin on any word-fraction
boundary compatible with byte size; i.e., strings of 6-bit bytes must be located on sixth-word
boundaries, 9-bit bytes on Quarter-word boundaries, etc. The length of a byte string, in number of
bytes, is stored in staging register SR3. The length of byte string 0 (designated WO) is stored in bit
locations 35-27 of SR3, the length of byte string 1 (W 1) in bit locations 26-18 of SR3, and the length
of byte string 2 (W2) in bit locations 17-9 of SR3. Any, aU, or none of these values may apply for
a particular instruction.

31 34 33 32 31

M

w

E

Iw Ib Ow Ob

21 20 18 17 3 2 0

Function

J-register modifier bit; used with the h-bit of the instruction to control J
(1== 1) or X(I==O) register modification.

Mode 6/9-bit modulus: 0 == 9-bit mode (ASCJI)

- 6-bit mode (Fieldata)

Width 6-12 or 9-18 bits: 0 - 6/9 bits

1 - 1 2/1 8 bits

a) for 33,03
E - Translate:

o == translation

1 - no translation

b) for all other byte instructions E must be zero.

c) for character addressing (non-byte instructions):

o == no sign. extension

1 - sign extension

8804 Rft.1 I SPERRY UNIVAC 1100/80 Systems
~~ ___ ~ Capability Processor and Storage Programmer Reference

Iw Increment in words

Ib Increment in bytes

Ow Offset in words

Ob Offset in bytes

UPDATI LIYIL
5-63

!tACH

The dilrection in which each instruction progresses through its operand byte strings is specified per
instruc:tion in the J-register. The increment word (Iw) and increment byte (Ib) fields of the J-register
are aSled durinG' instruction execution to update the effective byte address. The effective value of
Iw and! Ib may be either! 1, the actual value loaded into the register by the program depends on the
byte letngth being used. The value of Iw must be ! 0 and have the same sign as lb. Therefore, Iw
is effe,ctively Ib sign-extended (Iwb).

Table 15-2 gives, the values of Iwb for + 1 and -1 effective increments for 6, 9, 12, and la-bit bytes.

Some of the extended-sequence byte-manipulation instructions are designed to permit their
interruption dU"ing their execution. However. interrupts are accepted only following the store or
compslre phase of the instruction. As the instruction comoletes each of these phases, a check is made
to see if an interrupt is waiting to be processed. If an interrupt request is current, it is acknowledged
and processed immediately. When the instruction is again activated, the interrupt control bits are
decodred, and control is returned to the appropriate phase of execution. There are three bits (29-27)
in SR 1 that are available for interrupt control. thus providing up to 7 types of interrupt classification
within an instruction.

F:or ~ Byte Length And an Effective Increment of The Value of Ib Must be
of

6 bits +1 +1
6 - 1 - 1
9 +1 +2
9 - 1 -2

12 +1 +2
12 - 1 -2
Ul +1 +4
18 - 1 =4

There are seven restrictions on byte- addressing that should be noted:

1. "he result of an instruction performed on overlapping byte strings is undefined.

2. ~~ byte string may not wrap around its J-register offset field; i.e., Ow cannot be incremented
through itlS maximum value of 77777 ~ or decremented through its minimum value of OOOOOs·

3. Normal acldress limits violation detection and interrupt will be in effect.

4. ~,II instruc:tions utilizing the J-registers must have their operands located in storage.

5. rhe h-field of all byte instructions must be set to 1. This is set automatically by the assembler
~"hen a byte mnemonic is encountered.

8804 Rev.1
~

SPERRY UNIVAC 1100/80 System. .
4x4 Capability Processor and Storage Programmer Reference UfI'OATI LIYIL

5-54
IIAQI

6. The I-field of all J-registers used must ~e set to 1.

7. The E-field of all J-registers used must be set to 0 for all byte instructions except 33, 03.

The 33, 03-04; 33,10-11; 33,14-15; and 37,06-07 instructions will store a 7-bit status word in
SR3,7_9 either upon successful completion of the instruction or upon detection of an error condition
which prevents completion of the instruction. A definition of the 7 status bits is contained in Table
5-3.

Successful completion of an instruction will result in the storing of an all-zero word, except for the
cases of a decimal-add overflow (37, 06-07) or a missing mantissa field (33, 14-15) or roundup
status (33, 16-17).

When dealing with 9-bit bytes, the ASCII format shall be accepted and only ASCII is generated when
usttd for operations involving signed numeric-byte strings. An ASCII byte is the eight lowest-order
bits in a quarter word. The byte is divided into a 4-bit zone and a 4-bit digit; the zone is the most
siglnificant part of the byte. The sign convention adopted for a byte string is called "trailing-included
sigln format." i.e., the sign of the byte string is contained in the zone (Z) portion of the least significant
byte.

Th'sre are three exceptions to the "trailing-included sign convention". The Byte-ta-Single Floating
Conversion (fj == 33, 14) and Byte-ta-Double Floating Conversion (fj == 33, 15) instructions use a
seloarate non-included sign byte with the byte string. This byte is simply a "+" or "_It character.

Table 5-4 gives the binary coding for the plus and minus signs to be used in ASCII and Fieldata
coding. The hardware checks for a minus sign in arithmetic operations. If the sign of the arithmetic
operations is not minus, then the result is assumed to be plus. The types of signs accepted and
generated by each of the byte-manipulation instructions are listed in the table.

5. 14. 1. Byte Move - 8M 33,00

Transfer W 1 bytes from source string to receiving string. Truncate or fill.

The BM instruction transfers 1-.1 1 bytes from a source string starting at address SJO to a receiving
string starting at address SJ 1. The byte string at address SJO contains WO bytes; the byte string
at address SJ 1 contains W 1 bytes. If W 1 is less than WO, the move will be truncated when W 1
bytes have been transferred. If W 1 is greater than WO, then (W 1-WO) fill bytes will be added in
the trailing positions of the byte string located at address SJ 1. The contents of SR2'7-O are used
as the fill byte.

When byte strings of different byte size are transferred, the receiving string determines how many
bits from each source string byte will be accepted. For example, if SJ 1 is in the 9-bit mode and SJO
is in 6-bit mode, the three leading bits of the SJ 1 byte are made zero. If SJ 1 is in the 6-bit mode
and SJO is in the 9-bit mode, only the six least significant bits of the SJO byte are accepted, the rest
being lost.

Tab/II 6-3. Bytll Status Word

Status Type of Error Instruction Condition Detected
Bit

Bit 0 Set format Error 33-10,11 Byte not digit or blank (checked on aU but last byte) or least significant 4 bits of last byte
greater than 9.

31-08,01 Byte not digit (checked on aU but first byte) or least lignificant 4 bits or first bytes greater
than 9.

33-14,16 a. Two signa in string not separated by at least one non-blank character.
b. Two decimal points in mantissa
c. Significant character not found.
d. Illegal character in string.

e. Illegal character in exponent.

l Decimal point last character and no digit in string.

Bit 1 Set Underflow 33-14 Magnitude 01 input too small to repr~sent in single-precision floating-point number.
33-16 Magnitude of input too small to represent in double-precision floating-point number.
33-14,16 Exponent negative and power of ten too small to represent double-precision floating-point

format.
Bit 2 Set Overflow 33-10 Magnitude of input too large to represent in 35 binary bits.

33-11 Magnitude of input too large to represent in 11 binary bits.
31-08.01 Decimal-add overflow.
33-14 Magnitude of input too large to repreunt in single-precision floating-point.
33-16 Magnitude of input too large to represent in double-precision floating-point.
33-14,16 Mantissa interpreted as integer too large to represent in 60 binary bits.

Bit 3 Set Decimal Point Error 33-14,16 a. Decimal point count greater than 31.
b. Two decimal points in mantissa.
c. Decimal point last character and no digit in string.

Bit 4 Set No Significant Character 33-14.16 a. Bits 0, 3 let and significant character not read yet.
found b. Mantissa field does not contain at least one digit (note that a blank following a decimal

point is considered a digit).
c. String does not contain at least one nonblank and nonsign character.

Bit 5 Set Exponent Found or Byte 33-14,16 a. Bits 0, " 2. 3 set and exponent field detected.
Roundup 33-16.11 b. Byte 10 (33,16) or 19 (33.11) is greater than four.

Bit 6 Set Mode Error 33-10.11 6- or 9-bit mode not selected fN bit) on one of the following instructions.
33-.14.16

Bit 1 Set Byte Compare 33-03.04 Set if non-compare encountered during instruction.

I

I~ ..
I
! !
I: • S:.D

I ~

f;fn
><;R
J:Io:u

O~
&»
"DC
QJZ
CT_.<

~~
-g
ag
n' CDOD
UtO
Uta)

~l
&»
::J3
~.

(J)

5
Ql

CO
CD

"'D a
co
QJ

3
3
CD
::0
CD -CD
CD
::J
n
CD

c
~ a
i

i
MUI

I
(JI

UI

8804 Rev.1
~

SPERRY UNIVAC 1100/80 System.
4x4 Capability Processor and Storage Programmer Reference UP'DATI LIVIL

5-66
"AM

B01th the values W 1 and WO are reduced by one following each byte move. This instruction is
terminated when the value of W 1 equals zero (W 1 = 0).

1. This instruction is interruptible after each store operation.

2. The Iwb fields in JO and J 1 must be loaded with effective values of :!: 1, depending on mode
and width.

3. The desired fill byte must be loaded in SR2,7-O'

T.bI. 5-4. Byte String Sign Codes

Sign Conventions
Character Code Formats + -

1. ASCII Included (Zone ponion) 1010 1011
2. Fieldate Included 11 10
3. ASCII Separated (Entire byte) 00101011 00101101
4. Fieldat. Separate 100010 100001

5. 14.2. Byte Move With Translate - BMT 33,01

Translate and transfer W 1 bytes from source string to receiving string. Truncate or fill.

The BMT instruction translates and transfers W 1 byte from byte string SJO to byte string SJ 1. The
translation and transfer process uses byte string SJ2 as a translation table for byte string SJO. That
is, each byte of the string SJO is used as an index to a byte in string SJ2. The SJ2 byte thus addressed
is transferred to the byte string SJ 1. If the value of W 1 is less than WO, the transfer terminates when
LI1 bytes have been processed. If the value W 1 is greater than WO, then (W 1-W0) translated fill
bytes are placed in the trailing positions of SJ 1. The contents of SR2'7-O are used to index the fill
byte.

When byte strings of different byte size are transferred, the receiving string determines how many
bilts from each byte of the source string will be accepted. If SJ 1 is in·the 6-bit mode and SJ2 is
inl the 9-bit mode, only the six least significant bits of SJ2 byte are accepted, the rest being '9st.

The translation table pointer register, J2, must be in the 9- or 18-bit mode. This restriction does
n40t prevent Fieldata translations, but it requires that the translation table bytes are either 9- or 18-bit
entries. Both the values W 1 and WO are decreased by one following each byte translation. When
the value of W 1 is equal to zero (W" - 0), the instruction is t~rminated.

The fill byte referenced by SR2 17-O must be preloaded left shifted one bit if MW = 0 in JO (see Figure
5,-1), indicating the source string is 9-bit bytes, and must be preloaded left shifted two bits if BL =-
1 in JO, indicating the source string is 18-bit bytes.

1. This instruction is interruptible after each byte store operation.

2. The Iwb fields of JO and J 1 must be loaded with effective values of ! 1, depending on mode
and width.

8804 Aev.1
IJII-WMIIR -------

I

~
peRIRY UNIVAC 1100/80 Systems

4x4 Capability Processor and Storage Programmer Reference

5. 14.:~. Byte Translate and Compare - BTC 33,03

Optionally, translate and compare WO bytes from SJO with LJ 1 bytes from SJ 1 ; terminate the
instruction on not equal or when both WO and W 1 equal zero; when:

(A) > 0; string SJO > SJ 1

(A) == 0; string SJO == SJ 1

(A) < 0; string SJO < SJ 1

The B-rC instruc:tion optionally translates and compares WO bytes of string SJO with the optionally
transl~lted W 1 bytes of string SJ 1. String SJ2, starting at address (u+(X+2}+J2ow)' is used as the
translcltion table for strings SJO and SJ 1 when the corresponding E-bit is zero. A one in the
corresponding E-bit inhibits translation. Thus. a translation can be made on either or both strings.
If no translation is desired, the Byte Compare instruction (33,04) should be used. The comparison
is madle by subt.racting the optionally translated SJ 1 byte from the optionally translated SJO byte and
storin,~ the result in register Aa. If the contents of Aa is zero (Aa == 0), then the next pair of bytes
are tralnslated or not, according to the content of (E) and compared. If the contents of Aa is not zero
(Aa :. (», or if both of th'e strings SJO and SJ 1 have a value of W 1 == 0 and WO == 0, then the instruction
is terminated. The values of W 1 and WO are always decreased by one, and the JO- and J 1-registers
are inlcreased c)r decreased by one, depending upon the direction addressed.

When the instruction termination occurs, the relative value of an SJO string in respect to the value
of an SJ 1 string may be determined as follows:

• I~f the contents of the Aa-register is positive (A > 0), then the SJO string is greater than the SJ 1
sitring (after optional translations).

• I'f the contents of the Aa-register is zero (Aa =: 0), then the SJO string is equal to the SJ 1 string
(,after optional translations).

• If the contents of "the Aa-register is negative (Aa < 0), then the SJO string is less than the SJ 1
!itring (after optional translations).

1. If either S1tring SJO or string SJ 1 is depleted before the other, trailing fill characters are added
to the sh()rter string.

2. The fill byte for string SJO is contained in SA 1,7-0 and the fill byte for string SJ 1 is contained
in SA235-.t8'

3. 'rhe fill bytes in SA2 must be preloaded left shifted one bit if MW == 0 in JO indicating the source
lltring is 9-bit bytes and must be preloaded left shifted two bits if MW - 1 in JO indicating the
:Iource string is 18-4lit bytes (see Figure 5-1).

4. 'This instruction is interruptible after each test.

5. 'The Iwb-:fields of JO and J 1 must be loaded with effective values of :!: 1, depending on mode
,and width (see Table 5-2).

6. If the byte strings do not compare, then bit '1 of the byte status word is set (see Table 5-3).

880 .. Rev.1
~ SPERRY UNIVAC 1100/80 Systems

4x4 Capability Processor and Storage Programmer Reference UfIOATI LIVIL
5-58

PAGI

5. '14.4. Byte Compare - Be 33,04

Compare WO bytes from string SJO with W 1 bytes from string SJ 1; terminate instruction on
not eQual or when both WO and W 1 are zero.

The corresponding string SJ 1 byte is subtracted from the string SJO byte, the result is stored in Aa,
and a zero test is performed. The value of W 1 and WO are always decreased by one, and the JO
and J 1-registers are updated. If the contents of the Aa is zero, the next pair of bytes are tested. If
the value of Aa is nonzero, or both W 1 and WO are zero (i.e., the longer string has been depleted),
the BC instruction is terminated.

When the instruction termination occurs, the relative value of an SJO string in respect to the value
of an SJ 1 string may be determined as follows:

• If the contents of the Aa-register is positive (Aa > 0), then the SJQ- string is greater than the
SJ 1 string.

• If the contents of the Aa-register is zero (Aa = 0), then the SJO string is equal to the SJ 1 string.

• If the contents of the Aa-register is negative (Aa < 0), then the SJO string is less than the SJ 1
string.

1. If either string SJO or string SJ 1 are depleted before the other, trailing fill characters are added
to the shorter string. The fill byte for the string SJO is contained in SR2 17-o and the fill byte
for string SJ 1 is contained in SR235_18•

2. This instruction is interruptible ,after each compare.

3. The Iwb-fields of JO and J 1 must be loaded with effective values of ! 1, depending on mode
and width (see Table 5-2).

4. If the byte strings do not compare, then bit 7 of the byte status word is set (see Table 5-3).

5. 14.5. Edit - EDIT 33,07

Edit byte string SJO and transfer to string SJ 1 under the control of string SJ2.

A source byte string (string SJO) specified by the u-field of the Edit instruction, using registers Xx
and JO, is edited into a receiving byte string (string SJ 1) specified by the u-field of the instruction,
X(x+ 1), and J 1. Specific editing commands are coded within a control byte string (string SJ2) whose
location is designated by the J2 register, the u-field of the instruction, and the register X(x+2). The
control stream commands are designed to duplicate all of the functions of the P1CTURE clause of the
COBOL compiler. Therefore, the main use of the Edit instruction is to make the appropriate editing
changes to a numeric byte string for output to the printer. For example, blanking-out the leading
zeros, adding a "S· character or the appropriate sign code, inserting commas or a decimal point within
the number, or appending a descriptor word such as "CR· or "DB. It

The following information describes and summarizes the basic operational steps of the Edit
instruction.

A typical field in the control stream (string SJ2) will contain the following elements:

Function Byte Skip Count
(Table 5-5) (optional)

Subfunction
(Table 5-6)

Subfunction
(or Text)

Flag Byte
(End-of-Field)

8004 Rev.1
IJPi-NUMIP

I SPERRY UNIVAC 1100/80 Svstems
~ Capability Processor and Storage Programmer Reference

5-59
~AG.

The function byte specifies control information for the whole field following it (see Table 5-5). One
functi()n of this byte is to specify whether there is a skip count or not. If there is a skip count, it is
given in the next byte. The rest of the field contains a series of subfunction bytes and text bytes.
The· sllbfunctioln bytes are those described in Table 5-6 and specify operations to be performed as
the source string is edited into the receiving string. The text bytes are bytes similar to the soure'!
string bytes which may be edited into the receiving string. The last subfunction byte in the field is
the flag byte which establishes the end-of-file action. The flag byte may be followed by another field
starting with a function byte, or a second flag byte indicating termination of the Edit instruction.

Operation of the Edit instruction is based on performing a sequence of field "microprograms" defined
by the control s'tring. A field scan is established when the instruction is initiated or when the initiation
of a nletw field ctccurs and results in certain "function initiation" actions based on the contents of the
functic:m byte. The first control stream byte must be the function byte. It will be stored in staging
regist.!tr SR 128-.18' If a skip count is required. as indicated by the function byte, the second control
strean1 byte contains the skip count and is transferred from the control stream to staging register
SR 1, .,'-9' Next. the J 1-register is saved in J3. This saves the position of ·the first byte of the receiving
string for use iit the "blank-if-zero" command (bit 0 of function byte is set) is required when the end
of the field is Etncountered. Finally, the skip count (SR 1,7- 9) is used to skip the indicated number
of bytll:ts in the I'eceiving string. This is done by updating J 1 position Owb as many times as the value
in SR 117- 9 (skip count).

When the function initiation actions are completed for this field, the first subfunction byte is
transferred frorn the control stream to SR 18-0 for interrogation. The subfunction byte is transferred
from the control stream to SR 18-0 for interrogation. The subfunction and text bytes are sequentially
interrclgated until a "flag" (end-of-field) subfunction byte is encountered. At this point the end-of-field

. actio"l is completed and another function is initiated. This proceS$ continues until two "flag" bytes
are encounterEtd together indicating termination of the instruction. A detailed description of the
function byte, ~subfunction, and text bytes follows.

5. 14.5. 1. Function Byte

The irlterpretation of the function byte is given in Table 5-5. A more detailed descripton of each bit
positi1on follows:

Function Byte

!Bit 0 1 -
5 No Skip Count Skip Count Follows
4 Fixed Sign Floating Sign
3 Fixed Symbol Floating Symbol
2 Sign - Minus or Fill Sign - Minus or Plus
1 Edit - No Sign Action Sign Action on Edit
0 Normal Edit Blank if Zero

8804 Rev.1
Ull-NUMIIR

SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference

5-60
!tAU

• Function Bit 5 - A skip mechanism is included tha"t allows the programmer the option of ignoring
a series of bytes in the receiving string. "The skip count is placed in position SR 117- 9 during
function initiation and specifies the number of bytes to be skipped in the receiving string before
the first subfunction byte is interrogated. The maximum value allowed is 63,0 for either the
6- or 9-bit mode.

• Function Bit 4 - If fixed sign is indicated, an appropriate sign byte (as specified by function bit
2) is placed in the receivif'lg string position specified by SA23S_l8 ' SA235_18 must be loaded
by the subfunction "sign-position indicator" discussed in 5.14.5.2. If floating sign is indicated,
an appropriate sign byte is placed in the receiving string position specified by SA2,7-O'
SR2 ,7-O is loaded by the subfunctions ttdigit select" or "significance start indicator" as discussed
in 5. 14.5.2. In either case, a fill byte is transferred to the receiving string where the sign will
be. The sign bytes are specified by the programmer in SR3 and are transferred to the receiving
string when a "flag" subfunction byte is interrogated (end-of-field action). This bit has no
meaning unless function bit 2 (sign action on edit) is set to 1.

• Function Bit 3 - If this bit is a 1 bit, the symbol specified by the programmer in SR3s-o is
transferrred to the receiving string at the position specified by SR2 17-o. Position SR2 17-o is
loaded the same way as for "froating sign" above. If both function bits 3 and 4 are set to one,
the floating sign will be inserted and the floating symbol ignored. As with the sign codes, the
symbol is actually inserted during end-of-field action. If function bit 3 is a zero there is no symbol
inserted during end-of-field action. A symbol may still be inserted into the receiving string
during subfunction interrogation with a "symbol-position indicator" subfunction (described in
5.14.5.2).

• Function Bit 2 - If function bit 2 is a 0, the sign code inserted into the receiving string is either
a minus or a fill, as appropriate. If function bit 2 is a 1 bit, the sign code is either a minus or
a plus. The plus, minus, and fill bytes are specified by the programmer in SR3 ,7_9, SR326-18'
or SR335-27' respectively. This bit has no meaning unless function bit 1 (sign action on edit)
is set to one.

• Function BIt 1 - U function bit 1 is a 1, the sign action indicated by bits 4, 2, and the sign of
the source string is taken (i.e., a plus, minus, or fill byte is inserted into the receiving string). If
bit 1 is zero, no plus or minus bytes are inserted into the receiving string. The only effect bit
4 (floating sign) would have is to insert a fill byte in the position where the floating sign byte
should be.

• Function Bit 0 - The programmer has the option of leaving an all-zero receiving field or replacing
it with fill bytes. The field is considered to be all-zero until a nonzero byte has been transferred
from the source string by a "digit select" subfunction. Position SR 13 1 is set to one when the
first nonzero digit is transferred. S R 131 is not set to one by any subfunction other than "digit
select." The entire receiving string field is replaced with fill bytes during end-of-field action (see
"flag" subfunction in 5.14.5.2) if function bit 0 and SR 131 are both set to 1. The start and end
of the field are indicated by J3 (loaded during function initiation) and J 1, respectively.

5.14.5.2. Subfunction Byte

lne interpretation of the subfunction byte is given in Table 5-6 and discussed in the following
paragraphs.

860 .. Rev. 1 I SPERRY UNIVAC 1100/80 Systems
~~ ___ ~Capability Processor and Storage Programmer Reference 1.~-61

Tabl. 5-8. $ubfunction Byts Intsrprstllion

Byte Subfunction I Fieldata Symbol

000 000 011 Pass Byte #
000 101 111 Significance Start Indicator \
'000 100 110 Digit Select &
1000 111 110 Symbol Position Indicator c
000 111 010 Sign Position Indicator . (apostrophe)
000 101 001 Trailing Text Start Indicator (
000 111 111 Flag (End-of-Field) = .

• PI!lSS Byte - If the subfunction of the control stream byte is a "pass byte," the byte currently
pf)inted at by the source field pointer is transferred to the receiving string intact.

• Siignificance Start Indicator - If the subfunction of the control stream is a "significance start
b'(te," the "significance trigger" SR 134 is set to one. Also, if either floating sign (function bit 4
SEtt) or a filoating symbol (function bit 3 set) will be required, then the receiving field pointer,
J1-registel', is stored in SR2 17-1J' and a fill byte SR33S_27 is inserted in the receiving field. This
fill byte is ,'eplaced by the appropriate sign byte in end-of-field processing as indicated by the
fUlnction byte bit settings. If the "significant trigger" has already been set to one, this byte is
ignored.

• Digit Select - If the subfunction of the control stream is a "digit select byte," the byte currentJy
pl)inted ~t by the source field pointer and the significance trigger are examined, according to
the following criteria:

1" If the significance trigger is off, and the source byte has a zero digit portion, the receiving
field will have a fill character (SR3 35_27) inserted into it.

2.. If the significance trigger is off and the source byte is not a zero,

a. the significance trigger is set on, and

b. if either floating sign or floating symbol will be required, the receiving field pointer
(J 1) is stored in SR2 17-1J' and a fill byte, (SR338-27) is inserted in the receiving string.
This fill byte is replaced by the appropriate sign byte in end-of-field processing as
indicated by the function byte bit settings. The receiving field pointer (J 1) is
incremented. and

c. the source byte is transferred to the receiving string.

3" If the significance trigger is "on," then the source byte is transferred to-the receiving field.

4" If this is the first nonzero digit to be transferred from the source string, the C bit, SR 131
is set to one for use when interrogating the "blank-if-zero" function bit in end-of-field
processing.

5" The appropriate zone code, as prescribed by the receiving string pointer (J 1), is always
written into the receiving string.

An exception to the "digit-select" transmission exists if the zone portion of the byte is negative
sign (sign c)verpunch). In this case, the "N" bit is turned "on· (SR 132) and the negative sign bits
alre replacttd by the appropriate zone code. '

8e04 Rev.1
UNtUMIIII

SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference

5-62
flAGI

• Symbol Position Indicator - If the subfunction of the control stream is a "symbol position
indicator," the symbol byte (SR3s-o) is stored in the receiving field. The setting of function bit
3 does not affect the operation of this subfunction byte.

• Sign Position Indicator - If the subfunction of the control stream is a "sign position indicator."
the receiving field poielter, contained in the J 1-register, is copied into the fixed-sign position
pointer (SR236-1S)' and the fill character (SR336_27) is transmitted to the receiving field. This
fill byte is replaced by the appropriate sign byte in end-of-field processing as indicated by the
function byte bit settings. This subfunction byte must be used to indicate the position of the
fixed sign if the function bit 4 is 0 (fixed sign).

• Trailing Text Start Indicator -If the subfunction of the control stream is a "trailing text start" byte,
the trailing text trigger SR 133 is set to one. If a negative sign has been detected in the source
string scan (SR 132 set to one), any text information encountered in the control string is now
transferred to the receiving string. If SR 132 equals zero, fill bytes (SR335_27) are transferred to
the receiving field rather than the text bytes.

• Flag Byte (End-of-Field) - If the subfunction of the control stream is a "flag" byte, then the
end-of-field action will be established. At this point the appropriate sign insertion and
·blank-if-zero· command actions are done as indicated by the function byte. The net control
stream byte is either a function byte starting a new field or another flag byte terminating the
Edit instruction.

If the subfunction of the control stream is none of the subfunction bytes of Table 5-6, it is assumed
to be a text byte. If either SR1 33 and SR1 32 are set (see Table 5-7), or SR1 34 is set and SR1 33 is
not set. the text will' be transferred to the receiving field. In all other cases, the fill byte (SR336-27)
will be transferred to the, receiving field.

A summary of staging register (SR 1-SR3) and J-register (JO-J3) usage are given in Table 5-7.

1. The Iwb-fields of JO,J 1, and J2 must be loaded with effective values of + 1, depending on mode
and width (see Table 5-2).

2. SR3 must be loaded with the desired codes.

3. This instruction is interruptible.

Tablll 6-7. Summary of Staging Rsgistllr and J-RlJgistlJr Filllcis

Field Position Function

CMP (Complement Mode)
5T (Significance Trigger)
T (Trailing Text Trigger)
N (Negative Bit)
C (Control Bit)

l (Skip Bit)
I (Interrupt Bits)
Function
Skip Count
5ubfunction
Fixed-Position Pointer

Floating-Position Pointer

Fill Byte
Negative-Sign Byte
Plus-Sign Byte
Symbol Byte
Source Pointer
Receiving Pointer
Control Pointer
Start-of-Field Pointer

SR1 36 (BTO)
5R1 34 (BTl)
5R133 (BT2)
5R1 32 (OT3)
SR1 31 (OT4)

SR1 30 (BT5)
5R 129-21 (OT6-8)
5R1 26-18 (BS2)
SR 111-9 (053)
5R18-O (BS4)
SR236- 18 (OHO)

SR2 11-O (OH 1)

SR3 36-21 (BBO)
5R328-18 (BB 1)
5R3 11_9 (BB2)
SR38-o (BB3)
JO
J1
J2
J3

No complement if 0, complement if 1.
Set to 1 if the control byte is a "significant start byte."
Set to 1 when a trailing text start indicator has been detected.
Set to 1 when a negative sign has been detected.
Set to 1 when the first nonzero digit is transferred from the source string
by the "digit select" subfunction.
Set to 1 if a skip is in progress.
Controls return after instruction interrupt.
Contains active Edit field function. <I

Contains skip count to bypass receiving field.
Contains active Edit subfield function or text.
Acts as index modifier for pointing to byte' in receiving string which will
receive fixed sign or symbol. Receives contents of J 1-register position
Owb.
Acts as index modifier for pointing to byte in receiving string which will
receive floating sign or symbol. Receives contents of J l-register position
Owb.
Byte used when fill is called for.
Byte used when negative sign insertion is' specified.
Byte used for positive sign insertion.
Byte used for symbol insertion.
Points at source byte for Edit action.
Points at byte to receive edited byte.
Acts as index modifier for pointing to control string (byte).
Copy of contents of J l-register at start of field. Used to control
blank-ii-zero action.

I~ r
I,
!II ~

f;cn
x"Q
~m ::u
o~
Qa
-oC
mZ
0-_.<

~~
~-

g~
CDC»
.0
.(1)
0<
... ~
m
:23
0.-
en
S
Q1
ca
CD

a
ca
Q1
3
3
CD ...
:XJ
CD
G'
a;
::J
n
CD

~ a
J

. Ii
"(II

~
Co)

8804 Rev.1
UP-MUMHft

SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference

5. 14.6. Byte to Binary Single Integer Convert - BI 33,10

U'l)AT'I LIY!L

Convert WO byte in string SJO into a signed binary integer in register A.

5-64
'AGE

The BI instruction converts byte string SJO composed of WO bytes, coded in either ASCII or Fieldata,
into a signed binary integer in the Aa-register. The JO-register initially points to the leftmost byte
in the string and is set for left-to-right incrementation. The sign must be represented in the zone
of the least significant byte.

A 7,-bit status word is stored in the low-order bits of SR3 17_9. An all zero word indicates successful
completion of the instruction. Bit 0 set indicates a format error and is set if one of the input bytes
is not a digit or a blank (checked on all but the last byte~, or the least significant 4 bits of the last
bytt3 are greater than 9. Bit 2 set indicates an overflow condition and is set if the magnitude of the
inplut string SJO is too large to be represented by 35 ,binary bits.

1. This instruction is not interruptible.

2. The Iwb-field of JO must be loaded with effective value of + 1, depending on mode and width
(see Table 5-2).

3. J 1, J2, and J3 are not used in this instruction.

5. 14.7. Byte to Binary Double Integer Convert - BOI 33, 11

Convert WO bytes in string SJO into a signed binary integer in registers A and A+ 1.

ThE. BOI instruction converts byte string SJO composed of WO bytes, coded in either ASCII or Fieldata,
intc) a signed binary integer in the As- and Aa + 1-register. The JO-register initially points to the
leftmost byte in the string and is set for left-to-right incrementation. The sign must be represented
in the zone of the least significant byte.

A 1-bit status word is stored in the low-order bits of SR3,7_9' An all zero word indicates successful
cornpletion of the instruction. Bit 0 set indicates a format error and is set if one of the input bytes
is not a digit or a blank (checked on all but the last byte), or the least significant 4 bits of the last
byte are greater than 9. Bit 2 set indicates an overflow condition and is set if the magnitude of the
input string SJO is too large to be represented by 72 binary bits.

1. This instruction is not interruptible.

2. The Iwb-field of JO must be loaded with effective value of + 1, depending on mode and width
(see Table 5-2).

3. J 1, J2, and J3 are not used in this instruction.

5. 14.8. Binary Single Integer to Byte Convert - IB 33,12

Convert the binary integer in A to byte format and store in string SJO.

The IB instruction converts the binary integer contained in the Aa-register to a byte format and stores
th«' results in string SJO. String SJO is WO bytes long and the rightmost byte has the sign in the
zOlne portion.

The converted number is right-justified and zero filled (60a - Fieldata 0) in the string. If string SJO
is not long enough to accommodate the converted number, the remaining bytes will be truncated.
The JO-register must be set for negative incrementation and point to the rightmost byte.

8e04~ey.,~
Uf'-HUMlIR

--~----------~---------,

SpeRRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference

'I. The Iwb-fiElld of JO must be loaded with effective value of -1, depending on mode and width
(sE~e Table 5-2).

2. J 1, J2, and J3 are not used in this instruction.

:t This instru(:tion is not interruptible.

5. 14.9. Binary Double Integer to Byte Convert - OIB 33, 13

CClnvert th«t binary integer in A and A+ 1 to byte format and store in string SJO.

The ollB instruction converts the binary integer contained in the Aa- and A+ 1-registers to a byte
format in string SJO. String SJO is WO bytes long, and the rightmost byte has the sign in its zone
portion.

'rhe converted number is right-justified and zero filled (60s - Fieldata 0) in the string. If string SJO
is not long enough to accommodate the converted number, the remaining bytes will be truncated.
The JO-registerli must be set for negative incrementation and point to the rightmost byte of string
SJO.

1. Iwb-field of JO must be loaded with effective value of -1, depending on mode and width (see
Tcible 5-2),.

2. J '1, J2, and J3 are not used in this instruction.

3. This instruction is not interruptible.

5. 14. 1: O. Byte to Single Floating Convert - SF 33,14

Convert WO bytes in string SJO into a single-length floating-point format in register A.

The BF: instructilJn converts byte string SJO composed of WO bytes, coded in either ASCII or Fieldata,
into a single floating-point number in register Aa.

String SJO may have either a leading plus-sign character (+) or a leading minus-sign character (-)
that indicates the sign of the mantissa. In the absence of either a plus or minus sign, the mantissa
is assumed to be positive. The mantissa must be representable in 30 binary bits if interpreted as
an intElger and mayor may not contain a decimal point character. If the mantissa does not contain
a decimal point character, this character is assumed and its position is contained in SR328-18' If the
decimlal point character is present, this condition overrides the effect of SR328-1S' The general input
format is shaWl' in Table 5-8.

The elC:ponent, if present, follows the least significant digit of the mantissa. An exponent is indicated
by an E or 0 character followed by a minus sign and then the digits, if the exponent is negative. If
the eXIPonent is positive, the E or 0 character is followed by the digits alone or by a plus sign followed
by the digits. '"he E or 0 character may be optionally omitted. In this case, either a plus sign or a
minus sign mU!lt precede the digits of the exponent. The exponent must be limited to two digits. If
.an exponent is not present, 100 will be assumed.

A 7-biit status word is stored in the low-order bits of SR3 19-7' An all zero word indicates succassful
completion of the instruction. For possible error conditions and status word indications see Table
5-3.

8804 Rev.1
UN«IMIIR

SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference

1. This instruction is not interruptible.

2. Iwb-field of JO must be loaded with effective value of + 1, depending on mode and width (see
Table 5-2).

3. J 1, J2, and J3 are not used in this instruction.

4. 'SR3 positions 26-18 are the number of digits to the right of the decimal point.

- Byte String
Fields: B MS M ED ES E

Valid Characters: AAA ... !: Digit, DAAA ... or !: Digits or
Decimal ~AA ... AAtl ...
Point, or
AAA ...

where:

B Leading blank (A) characters. Blanks in this field will be ignored.

MS Mantissa sign: field may include one plus (+) or minus (-) character.

M Mantissa: first digit or decimal point character indicates start of field. Blanks in this field
will be interpreted as zeros.

ED Exponent delineator. field may include either a 0 or E character followed by blanks. Blanks
in this field will be ignored.

ES Exponent sign: field may include one plus (+) or minus (-) character.

E Exponent: field may include digits or blanks. Blanks in this field will be interpreted as zeros.

NorE:

Any of the fields may be included or omitted in the input byte stn'ng subject only to the limitations
listed below:

1.

2.

4.

,.
,).

The valid characters indicated for each field are the only allowable characters.

The mantissa sign (MS) and the exponent sign (ES) must be separated by at least one nonblank
character.

The last character in the string cannot be a sign character.

Overflow will occur if the number is too large to represent in single-precision format for the Byte
to Single Floating Convert (f,j:.33, 14) instruction or in double-precision format for the Byte to
Double Floating Convert (f,j-33, 15) instruction.

Underflow will occur if the number is too small to represent in single-precision format for the
Byte to Single Floating Convert (f,j-33, 14) instruction or in double-precision format for the Byte
to Double Floating Convert (f,j:=33, 15) instruction.

8804 ReY.1
U ER

I SPERI~Y UNIVAC 1100/80 Systems
~Capability Processor and Storage Programmer Reference UftOATI LEVEL

5-81
PAGE

6. Underflow will occur if tne exponent alone is too small to represent in double-precision
fl.oating-point format.

7. The mantissa must be representable in 60 binary bits when it is interpreted as an integer; Le.,
iglnoring the decimal point.

8. Tine decimal point count (number of digits or blanks to the right of the decimal point) must not
biB greater than 31.

9. Two decimal points in the mantissa will be detected as an error.

10. At least one non blank and one nonsign character must be included in the string.

11. If the last character is a decimal point, it must be preceded by at least one nonblank and one
nonsign character.

5. 14 .. , 1. By tEl to Double Floating Convert - BDF 33, 15

Convert 1-10 bytes in string SJO into a double-length floating-point format in registers A and
A+1.

The BIOF instruction converts byte string SJO composed of WO bytes, coded in either ASCII or
Fielda1ta, into a double-precision floating-point number in registers Aa and Aa+ 1. The general input
format is shown in Table 5-8.

The S.JO string may have either a leading plus-sign character (+) or a leading minus-sign character
(-) tha1: indicatels the sign of the mantissa. In the absence of either a plus or minus sign, the mantissa
is assumed to be positive. The mantissa must be representable in 60 binary bits if interpreted as
an int4tger and mayor may not contain a decimal point character. If the mantissa does not contain
a decimal point character, this character is assumed and its position is contained in SR3 26_18• If the
decimal point character is present, this condition overrides the effect of SR326_18.

If the EtXpOnent is present, it follows the least significant digit of the mantissa. The exponent is formed
according to the sa'me rules that apply to the Byte to Single Floating-Point instruction (see 5.14.10),
excep't that there may be up to three digits in the exponent.

A 7-bltt status word is stored in the low-order bits of SR3,9_7' An aU zero word indicates successful
completion of the instruction. For possible error conditions and status word indications see Table 5-3.

1. F:loating-r:l)oint interrupts (characteristic underflow/overflow) may occur during the instruction.

2. Iwb-field flf JO must be loaded with effective value of + 1, depending on mode and width. (See
'-able 5-2 ..)

3. ..11, J2. and J3 are not used in this instruction ..

4. ~)R3 position 26-18 is the number of digits to the right of the decimal point.

5. 14. 12. Single Floating to Byte Convert - FB 33,16

Convert the single-tength floating-point number in A to byte format and store in string SJO,

The FB instruction converts a single-tength floating-point number contained in the Aa-register to a
byte :string starting at address SJO. The format of the resulting string SJO contains two numbers.

8804 Rev.1
u.-...MIIJt

SPERRY UNIVAC 1100/80 System.
4x4 Capability Processor and Storage Programmer Reference

The first number is a 9-byte decimal fraction that has its sign in the zone part of the least significant
byte. The second number is a 2-byte exponent with its sign in the zone portion of the least significant
byte. No error termination is possible for this instruction. Bit 5 of the byte status word is set to one
if 1the tenth byte of the calculated mantissa would have been five or greater (see Table 5-3).

1. The Iwb-field of JO must be loaded with effective value of + 1, depending on mode and width.
(See Table 5-2.)

.. 2. J 1, J2, and J3 are not used in this instruction.

3. This instruction is not interruptible.

6. 14. 13. Double Floating to Byte Convert - DFB 33,17

Convert the double-length floating-point number in A and A+ 1 to byte format and store in string
S~O.

The DFB instruction converts a double-length floating-point number contained in the Aa- and
Aa+ 1-registers to a byte string starting at address SJO. The format of the resulting string is similar
to that of the Single Floating to Byte Convert (see 5. 14. 12.) instruction except that the first number
is equivalent to an la-byte string and the second number is equivalent to a 3-byte string. The first
number is the mantissa and the second number is the exponent. Each number has its sign in the
zone portion of the least significant byte. No error termination is possible for this instruction. Bit
5 of the byte status word is set to one if the nineteenth byte of the calculated mantissa would have
bt~en five or greater (see Table 5-3).

1.. The Iwb-field of JO must be loaded with effective value of + 1, depending on mode and width.
(See Table 5-2.)

2. J 1, J2, and J3 are not used in this instruction.

6.14.14. Byte Add - BA 37,06

Add the WO bytes in string SJO to the W 1 bytes in string SJ 1 and place the results in string
SJ2.

The BA instruction adds byte string SJO (of length WO) to byte string SJ 1 (of length W 1) and stores
the results in byte string SJ2 (of length W2). Only 6-bit Fieldata or 9-bit ASCII formats may be used.
The sign of the SJO and SJ 1 strings must be stored in the zone portion of the least significant byte.
If the length of the resultant byte string is smaller that W2 digits, then the SJ'2 string will be zero
filled. The J-registers must point to the least significant digit and should be set for right-to-left
incrementation.

1. This instruction is interruptible.

2.. The Iwb-fields of JO, J 1, and J2 must be loaded with the effective value of -1, depending on
mode and width. (See Table 5-2.)

~PEFIRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference -------

8804 Rev,1
Ulll-HUMIIJI

5.14.15. Byte Add Negative - BAN 37,07

UPDATE LEVIL
5-89

'AGI

S;ubtract the WO bytes in string SJO from the W 1 bytes in string SJ 1 and place the results in
string SJ2 ..

The BI~N instruction subtracts byte string SJO (of length WO) from byte string SJ 1 (of length W 1)
and stores the results in byte string SJ2 (of length W2). Only 6-bit Fieldata or 9-bit ASCII format
may be used. The sign of the SJO and SJ 1 strings should be stored in the zone portion of the least
significant byte. If the length of the resultant byte string is smaller that W2 digits, then string SJ2
will bei zero filled. The J-registers must point to the least significant digit and shou,ld be set for
right-1to-left inc:rementation.

, . "his instruction is interruptible. ,
2. '"he ·'wb-fvelds of JO, J 1, and J2 must be loaded with effective value .of -1, depending on mode

.Blnd width. (See Table 5-2.)

5. 15. Executive Instructions

The instructions in this group are intended for use by the Executive system. When designator register
bits 35 and 2 l3re zero. the Executive repertoire is selected. This allows execution of all Executive
(privilciged) instructions in addition to those of the 'user repertoire. The Executive repertoire includes
instru1ctions fOl' control of the processor state, interrupts, input/output. and instrumentation.

The Executive control instructions defined for the CPU are described in the following paragraphs.

5. 15. 1. PreV4!nt All Interrupts and Jump - PAIJ 72,13

The CPU will not recognize certain interrupt requests received following the completion of the PAIJ
instruction nor will it react to interrupt requests received following the start of the execution of the
instruction. .

The following interrupts may be prevented by the PAIJ instruction:

• I~II I/O interrupts. including those for Normal Status, Tabled Status. and Machine Check
interrupts.

• .Jump History Stack interrupts.

• Ilnterprocl!tssor interrupts.

• iDayclock and Real-Time Clock interrupts.

• Storage Check interrupts caused as the result of transfers from the storage interface unit (SIU)
'to Storage Units.

• Power Check interrupts.

Non::

This instruction does not cause the darc/ock rsgister to be replaced.

8604 Rev.1 SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference UfIOATI LML

5-70
flAGE

5.'15.2. Load Dayclock - LDC 73,14,10

The LOC instruction causes the internal dayclock register value of the CPU to be replaced at the start
of the next update cycle with the value in the dayclock location in fixed storage. (See 8.2.2 for a
description of the dayclock.)

5.15.3. Enable/Disable Dayclock - EDC,DDC 73,14, 11-12

The EDC and DOC instructions enable and disable, respectively, the internal dayclock of the CPU.
When a dayclock is enabled, if the dayclock is also selected, the dayclock value is stored in the
da'Vclock location in fixed storage during each update cycte, and a dayctock interrupt request may
be generated by the dayclock.

5.15.4. Select Dayclock - SOC 73, 14, 13

Each CPU contains an internal dayclock. One dayclock in each application may be selected at any
given time to store its value in the dayclock location in fixed storage. The operand address of the
SOC instruction specifies the CPU number whose dayclock is selected for this function; note that the
selected dayclock must also be enabled (via EDC).

5. 15.5. Select Interrupt Locations - SIL 73, 15, 00

Biits 22 through 16 of the operand are transferred to the module select register (MSR) specified by
bit 23. If bit 23= 1, transfer is to the MSA in StU upper half; if bit 23=0, transfer is to the MSA in
Stu lower half.

The MSR is used as the base for all fixed address assignment references, and there is a separate MSA
for the lower half of the addressing range (0-8M) and the upper half of the addressing range (a-16M);
the load path selection of the system transition unit determines which is to be used for fixed
references.

In addition to the normal function of modification of the MSR value and activation/deactivation of
the MS·R ACTIVE signal, the SIU recognizes the remaining bits in the SIL data word for various error
reporting modes, error injection, and diagnostic functions.

For the basic function of modifying the interrupt location (changing the MSR value), it must be
remembered that in the SIU each segment is completely independant and, therefore, has its own MSR
register and MSR ACTIVE signal. This means that if two segments are operating together
(interleaving) within a half, an SIL instruction must be directed to each segment in order to
activate/deactivate the MSR in that segment. This is accomplished by using bits 23 and 2 of the
SIL data word (see Figure 5-2) as the segment select bits (bit 23 :=II upper/lower half select and bit
2 - segment select within a half). These bits in the SIL data word must always reflect the segment
desired for the SIL function. The following is a breakdown of aU SIL functions:

• If SIL data bit 25 is set, and SIL data bit 24 is set, the addressed segment loads SIL data bits
22-16 as an MSR value and activates the MSR ACTIVE control signal for that segment .

• 1 If SIL data bit 25 is set and SIL data bit 24 is clear, the MSR ACTIVE control signal for the
addressed segment is deactivated.

• If SIL data bit 27 is set. and SIL data bit 26 is set. a SCISR interrupt is generated with
maintenance read miss mode status bit set each time a read miss operation is executed.

8804 Rev. 1 I Sf'ERRY UNIVAC 1100/80 Systems
~~ ___ ~ Capability Processor and Storage Programmer Reference UP'DATI LML

D D
S A L

E E
B S S

M M A A 5 5 , MSR N N
M M V V M M M M H MRFC MR DATA G ,
E D

E B B
E 0 E 0 E 0 5

VALUE U U

E 0 D
S

35 34 33 32 31 30 29 28 27 28 25 24 23 22 18 115 14 13 11 10 3 2 1 0

35 NU NOT USED

34 DME DUMMY MSU ENABLE

33 DMD DUMMY MSU DATA

32 SBEE ALL SINGLE BIT ERROR DATA

31 ASBD ALL SINGLE BIT ERROR DATA

30 LSBD UMITED SINGLE BIT ERROR DATA

29 evE ECC VERIFICATION ENABLE

28 EVD ECC VERIFICATION DATA

27 MME MAINTENANCE READ MISS ENABL!

26 MMD. MAINTENANCE READ MISS DATA

25 AME ACTIVATE MSR ENABLE

24 AMD ACTIVATE MSR DATA

23 SHS sau HALF SELECT

22-16 MSR VALUE

15-14 NU NOT USED

13-11 MRFC' MAaNTENANCE AND RElIAalUTY FUNCTION CODE

10-03 MR DATA MAINTENANCE AND RELIABILITY DATA

02 SGS SIU SEGMENT SELECT

01-00 NU NOT USED

Figurtl 5-2. StlltlCt Inttlnvpt Lac_tions

• 111 SIL datl~ bit 27 is set. and SIL data bit 26 is clear, the maintenance read miss mode is
deactivated in the addressed SIU segment.

• Ifl SIL data bit 29 is set, and SIL data bit 28 is set. the ECC verification mode is activated in the
addressed SIU segment. In error correction code (ECC) verification mode the main storage unit
(MSU) on each write request disables the write data ECC check and stores the ECC code
plresented by the SIU.

• I1f SIL data bit 29 is set. and SIL data bit 28 is clear, the ECC verification mode is deactivated
it1 the addressed SIU segment.

• lif SIL data bit 32 is set, and SIL data bit 31 is set. the reporting of all single bit errors on MSU
r'sad operations via the SC1SR interrupt is activated.

• 11f SIL data bit 32 is set. SIL data bit 31 is clear, and bit 30 is set, then the reporting of limited
s;ingle bit errors on MSU read operations via SCISR int.rrupt is activated.

• I'f SIL data bit 34 is set, and SIL data bit 33 is clear, then du'mmy MSU mode is activated. Dummy
MSU mode disables the SIU/MSU interface and provides verification of SIU functional operation
without an MSU by turning the last four words of write data and the associated ECC codes
Blround as read data and the associated ECC codes.

8804 Rev.1
u........,

SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference UPOATI LIVIL

5-72
flAGI

• If SIL data bit 34 is set, and SIL data bit 33 is clear, then dummy MSU mode is deactivated.

• If SIL data bits 13-11 equals 08, no maintainability and reliability is performed.

• If SIL data bits 13-11 equal 18, SIL data bits 09-03 are saved and any bits which are set will
corrupt (invert) the corresponding ECC bit (06-00) that will be loaded into the main storage
interface registers on the next- write request. If the SIU is not in dummy MSU mode, the ECC
syndrome will be, checked by the MSU during execution of the next write request. If the SIU
is in dummy MSU mode, the ECC syndrome will be checked by the SIU during the next read
miss request.

• If SIL data bits 13-11 equal 28, then SIL data bit 03 being set forces an address parity error
on the invalidate interface on the next invalidate request.

.• If SIL data bits 13-" 1 equal 28, then SIL data bit 04 being set forces the next tag address that
is loaded into the tag buffer to be Joaded with incorrect parity. This is done only when a read
mis~ has been completed without encountering an error.

• If SIL data bits 13-11 equal 28, then SIL data bit C5 being set forces a tag control parity error
the next time a read miss has been completed without encountering an error.

• If SIL data bits 13-11 equals 28, then SIL data bit 06 being set forces a write control parity error
on the next main storage request.

• If SIL data bits 13-11 equal 28, then SIL data bit 07 being set forces an address parity error
on the next main storage request.

• If SIL data bits 13-11 equals 28, then SIL data bits 09-08 force the four data words loaded into
data buffer on the next read miss operation to be loaded with incorrect parity according to the
following:

1. SIL data bit 08 being set forces the lower half word of all four data words on a read miss
operation to be loaded into the buffer with incorrect parity.

2. SIL data bit 09 being set forces the upper half word of all four data words on the read miss
operation to be loaded into the buffer with incorrect parity.

NOTE:

Tile f.ollowing two function$ require the CPU - SIU address buss to be preconditioned to the SET
ADDRESS (10-03) desired for this operation. This is accomplished by storing and 8xecuting the SIL
data word in main store rather than GRS. The set addr8ss aff8cted will then correspond to the set
address at which the SIL data word was stored.

• If SIL data bits 13-11 equal 48, SIL data bits 10-03 are loaded as the age bits on the next read
or write hit or read miss, according to the following:

1. SIL data bit 03 replaces the age bit for block A, bit O.

2. SIL data bit 04 replaces the age bit for ,block A; bit 1.

3. SIL data bit 05 replaces the age bit for block e, bit O.

4. SIL data bit 06 replaces the age bit for block e, bit 1.

8804 Rev.1
UNIUMI ...

SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference

5. SIL data bit 07 replaces the age bit for block C, bit O.

6. SIL data bit 08 replaces the age bit for block C, bit 1.

8. SIL data bit 10 replaces the age bit for block 0, bit 1.

5-73
MGI

• If SIL data bits 13-11 equal 58' SIL data bits 10-03 control the upgrading and degrading of
th'9 SIU blocks according to the following:

1. If SIL data bit 03 is set, block A is degraded.

2. If SIL data bit 03 is clear, blo~k A is upgraded (set to the invalid state).

3. If SIL data bit 04 is set, block B is degraded.

4. If SIL data bit 04 is clear. block B is upgraded (set to the invalid state).

5. If SIL data bit 05 is set, block C is degraded.

6. If SIL data bit 05 is clear. block C is upgraded (set to the invalid state).

7. If SIL data bit 06 is set, block 0 is degraded.

8~ If SIL data bit 06 is clear, block 0 is upgraded (set to the invalid state).

The set being degraded is selected by bits 10-03 of the data address presented with the MSR
reference request.

S.1S.Ei. Load Breakpoint Register - LBRX 73,15, 02

The operand specified by the operand address is transferred to the breakpoint register. This
establiishes the modes of operation for the breakpoint mechanism, and activates and establishes the
modes of operation for the jump history stack.

~EEI3 R W C RESERVED ABSOLUTE BREAKPOINT ADDRESS

3i534 33 32 31 30 2928 24 23 o

Bit 35

Bit 34

The H-bit specifies that the CPU will stop on a breakpoint match condition; an
interrupt request will not be generated. If H is zero, a Breakpoint interrupt will occur
on a breakpoint match condition. The H-bit is ignored in real time mode and does
not affect interrupts caused by the jump history stack.

The S-bit speCifies that when the jump history stack is full (an entry is made in the
last location), entry stacking is disabled and a Jump History Stack interrupt is
generated. If the S-bit is zero, entry stacking wraps around from the last to first
location in the stack without causing ·'an interrupt. The S-bit should not be set
unless the C-bit is also set.

The B-bit specifies that entry stacking is disabled when any interrupt occurs. If the
B-bit is zero. entry stacking is not affected by interrupts, except as provided by the
S-bit.

8804 Rev.1

UNfUMIIR
SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference

Bit 32

Bit 31

Bit 30

Bit 29

Uf'OATI LIYIL

The P-bit allows a breakpoint match to occur on an instruction address produced
from the program address register or a jump or EXECUTE operand instruction.

The R":'bit allows a breakpoint match to occur on an operand address during a read
operation.

The W-bit allows a breakpoint match to occur on an operand address during a write
operation.

The C-bit specifies that the GRS locations 070-077 be cleared to zero and
sequential jump history stacking begin at 070.

Bits 28-24 Reserved for future use.

Bits 23-0 The absolute breakpoint address is the value compared to the 24-bit absolute
instruction or operand address.

5.15.7. Store Processor 10 - SPIO 73,15, 05

The binary serial number is stored in the first third of the operand, the 2-character Fieldata revision
lell/el is stored in the second third of the operand, the CPU features provided are stored in the fifth
sixth of the operand (bit 9 for 4x4 STU, SIU, and MSU; bit 8 for byte-oriented instructions; bit 7 for
floating-point instructions) and the binary CPU number is stored in the last sixth of the operand.

5.15.8. Load Quantum Timer - LQT 73,15, 03

The full-word operand specified by the operand address is placed in the quantum timer.

5" 15.9. Load Base - LB 73,15,10

Bits 17 through 0 of the operand specified by the operand address are placed in the base-value field
of the bank descriptor register specified by bits 34 and 33 of Xx. If the x-field of the instruction
is zero, BORO is implicitly specified.

NOTE:

EXecution of an LS instruction invalidates the Sank Descriptor specification in GRS 046 or 047 and
tl7e SOT pointer in GRS 040 or 045 for the specified base.

5.15.10. Load Limits - LL 73,15, 11

Slits 35 through 24 and 23 through 15 of the operand specified by the operand address are placed
in the upper and lower limits fields, respectively, of the bank descriptor register specified by bits
34-33 of Xx. If the X-field of the instruction is zero, BORO is implicitly ,pecified.

5.15.11. Load Addressing Environment - LAE 73,15, 12

The double-word operand specified by the operand address contains four bank descriptor
specifications in the following format

8804 Rev. 1 I SPEFIRY UNIVAC 1100/80 Systems
~~~ Capability Processor and Storage Programmer Reference

IE XX ign- BOlO E ign-

0 ored 2 xx orad

IE XX ign- BOtl E XX ign-, ored . 3 ored

3115 34 33 32 30 29 1817181514 1211

8012

8013

I 5-75
".OE

o

This olperand is placed in GRS locations 046 and 047, and the limits and base values of the four bank
descriptors specified by this operand are placed in the respective bank descriptor registers. The bank
descriptor table length check is not performed on the bank descriptor index supplied by the
instruc:tion. Bank descriptor flags and use counts are neither interpreted nor altered by LAE.

5. 15. 12. Store Quantum Time - SQT 73, 15, 13

•
The current value of the quantum timer is stored at the operand address, which may be in GRS or
storage. Execution of this instruction has no effect on 029.

5. 15. 13. Load Designator Register - LD 73, 15, 14

The full-word ()perand specified by the operand address is placed in the designator register. All
designator register specifications are in effect at the completion of this instruction.

5.15.14. Store Designator Register - SO 73, 15, 15

The Cllntents of the designator register is stored at the location by the operand address.

5. 15. 15. User Return - UR 73, 15, 16

This it,structiorl provides an orderly mechanism for returning to a user program. The instruction
effectiively combines LO and jump, except that the component operations are performed with the
correc:t repertoire, addressing, and register set.

The d.ouble-word operand specified by the operand address contains the relative program address
and dlBsignator register value that establish the user operating state.

The s.tcond word of the operand is placed in the designator register, and aU specifications are put
in effnct. The lower 24 bits of the first word of the operand then becomes the relative program
addrelss. If the relative program address is subsequentfy found to be out of limits, the interrupt will
captu,'e the new P-value.

Bit positions 2:~ through 18 of the relative address and the A-flag (bit position 35 of the same word)
should be zero, unless base register suppression (035 = 0, 07 - i - 1) is intended or was in effect
when the address was stored as the result of an interrupt.

8604 Rev.1
UP-MUMHI't '

SPERRY UNIVAC 1100/80 Systems .
4x4 Capability Processor and Storage Programmer Reference

5.15.16. Reset Auto-Recovery Timer - RAT 73,15, 06

5-78
'AQI

This instruction resets the timer in the auto-recovery section of the STU. This must be done within
an interval specified by the auto-recovery timer in order to prevent an automatic initial I.oad from
being initiated, if auto recovery is enabled in the STU. The timer interval can be set from 1 to 1 5
seconds in increments of 1 second.

5.15.17. Toggle Auto-Recovery Path - TAP 73,15, 07

The system allows for two auto-recovery paths (CPU/IOU/SIU Half combinations). Each time an
aut()-recovery is attempted, the path selection is toggled. When a successful recovery does occur,
this instruction allows the software to return the auto-recovery selection to the successful path.

5.15.18. Store System Status - SSS 73,15, 17

This instruction stores two words of system status at the location specified by the operand address.
System status includes partitioning information relating to each CPU, IOU, SIU, and MSU. (See 2.6)

5. 15~ 19. Initiate Interprocessor Interrupt - IIIX 73, 15, 04

The' operand address value specifies the number of the processor to be interrupted. Any processor
in the application, including the one generating the interrupt, may be interrupted.

5.15.20. Diagnostics - 73,14, 14 - 17

The MOA (73,14,14) and MOB (73,14,15) instructions test a large portion of the arithmetic hardware
and a smaller portion of the control section hardware. They generate specific operands, cause the
arithmetic section to manipulate these operands, and store the arithmetic results into specific
loc~itions in GRS. Since the results should always be the same, these results can be compared against
known good data. The operands generated and the results stored for the MOA instruction are as
follows:

Operand A
Operand A+1
Operand U
Operand U+1
Result A
Result A+ 1

= 070707070707
== 070707070707
- 070707070622
== 252525252525
= 000372706711 Stored in GRS 62
= 256171354400 Stored in GRS 63

The operands generated and the results stored for the MOB instruction are as follows:

Operand A
Operand A+1
Operand U
Operand U+1
Result A
Result A+1

= 070707070707
== 070707070701
== 070707070600
- 070707070707
= 771177117711 Stored in GRS 62
== 777777776677 Stored in GRS 63

The result of each arithmetic iteration of the MOA instruction and final result of the MOB instruction
are internally checked in the hardware of the processor against a known result. If a miscompare
occurs, the processor will enable an interna~ flag indica'ting a MOA or a MOB failure, and an arithmetic
parity PROM error will be generated. Otherwise, the result of the MOA and MOB instruction
operations are .stored in GRS locations 62. and 63, and are available for software compare.

8604 Rev.1
Ufl'-NUMI!R

I SPEFIRY UNIVAC 1100/80 Sv-tems
~ Capability Processor and Storage Programmer Reference

5-77
flAG!

If a sc.ftware test of the results. which are stored in GRS 62 & 63. yields a miscompare. a faulty
arithmetic section is indicated and further diagnostics should be performed.

Function codes 73.14,16. and 17 are undefined and will no-op.

5. 15.:21. Initiate Maintenance Interrupt - IMI 72,00

Send Iiln attention interrupt to the maintenance processor if in maintenance mode. otherwise no-op.

5. 15.:22. Input/Output Instructions

The I/O instructions are described in detail in Section 6.

For each I/O instruction, the operand address specifies the IOU, channel, and device number, if
applicable. For certain instructions, the index register specified by the a-field of the instruction (Xa)
contains a parameter associated with the operation. generally an address. Each I/O instruction skips
the next instruction if the operation was initiated properly, and a condition code of zero is stored in
the upper sixth-word of, register Xa.

If the next instruction is executed. the upper sixth-word of register Xa contains a code that describes
one o1f three c(mditions: 020 == status is available. 040 == busy. and 060 == not operational; the
remainder of Xa is not disturbed.

The Input/Output instructions are:

• Start liD Fast Release (SIOF-75. 01): Xa contains the first channel command word (CCW)
address.

• T'est Subchannel (TSC-75, 03)

• Hlalt Oevice (HDV~75, 04)

• Hlalt Cham,el (HCH-75, 05}

• Load Channel Register (LCR-75. 10): Xa contains the value to be loaded.

• Load Table Control Words (LTCW-75, 11): Xa contains the first CCW address.

NOT£'

Because of the single intB"Upt address word (IA If1.1 and channel status word (CSW) locations for a
CPU, IVO instructions that may alter these locations must be executed with inte"upts locked out.

5. 16. Invalid Function Codes

A number of function codes are invalid and cause an Invalid Instruction Fault interrupt to address
2218 to occur. These function codes are listed in Table 5-9.

8804 Rev.1, ... SPERRY UNIVAC 1100/80 Sv-tems
4x4 Capability Processor and Storage Programmer Reference

Function Code (Octal)
f j Result

00 00-17
07 00-11, 1 e
37 10-17
7:Z 12, 14
73 14

(a =- 00-07)
73 15

(a - 01)
73 16 Invalid codes cause Invalid Instruction Fault
73 17 interrupt to address MSR + 221 8,

(a =- 03, 06-17)
7·4 14

(a =- 04-17)
74 15

(a =- 04-17)
7'5 06, 07, 12-17
7'7 00-17

5-78
fIIAGI

8804 Rev. 1
U"-HUMIER -----~PERRY UNIVAC 1100/80 Svstems .

4x4 Capability Processor and Storage Programmer Reference

6. 1. General

6-1
"AGE

6. Input/Output

The inlput/output unit (IOU) provides a means of communications between the central processor unit
(CPU) and its external media. Under CPU ~ontrol, the IOU handles all transfer of data and status
betwelen peripherals and main storage. It minimizes CPU involvement in input/output operations, yet
provides a flexible method of controlling and interrogating input/output activity. This section
describes the IOU's system philosophy, functional characteristics, various hardware and software
optiorts, and overall operation.

6.2. Functional Characteristics

The I()U has five interfaces: a storage interface unit (SIU) interface, a system transition unit (STU)
interfc~ce, a CPU interface, a system maintenance unit (SMU) interface, and a control unit or peripheral
interfc~ce. Each iOU consists of one control module and from three to eight channel modules. (See
FigurEt 6-1.) The control module handles all the interfacing with the storage unit STU control lines
and either one or two CPUs. The control module to processor(s) interface initiates instructions and
handles interrupts. The control module to storage interface transfers data, input/output control
word!s. and stcltuS between the channel modules and the storage interface. The control module
establlishes a clata handling and interrupt priority among the eight channel modules.

,"

PROCESSOR 0
_ INTERFACE

...,..;;;-

PROCESSOR 1
_ INTERFACE
~

SYSTEM
TRANSITION UNIT

1. Partitioning
STORAGE INTERFACE UNIT

I~ 1. All Data Transfers
~~

2. Initial load Path 2. All Control Word Transfers

I
'II 1U

- MAINT. - -SECTION
CONTROL
MODULE --

~ ~ ~ -'" ~ ~~ J~
r------------- J I I I I

I I I I
I r-------- J I I I
I I I I
I I

_____ 1 I I , I I I I
I I I I I 111

IOPT·t IOPT .. fOPT-I 1OPT.t fOPT·t r----- r---- ... r---- ... r----- r----- C C • C M: IC M: .C M: • C M: ,C M: M M
:H O. :H 0' :H 0' :H 01 :H 0' H .0 H 0
IA 0 1 IA 0 1 ,A 0 1 IA 0 1 IA 0' A 0 A 0
I N I I N I I N I I N I I N I N
I U I I U I I U I , U I , U I N· U U
IN l' IN II IN l' IN l: IN l, N l N l I I I I I I I I E lEE I lEE I lEE I : EEl lEE I E E E
I l I I l I I l I I l I I l I l l "--l,._J __ !_J _-!-_' __ !, __ I --1..--'

j ~ "\
CI I

• 01 I
N:N
TIT
R: E
OIR
l: F :A
UIC
Nt E .:
TI I

I I
I I ,II ,~
~ ~ 't 'f 'f

Figure 6- I. 1100/80 Input/Output Unit

111

C M
H 0
A 0
N U N l E E
l

JI\

C
0 I
N N
T T
R E
0 R
l F

A
U C
N E
I
T

W

-... SYSTEM
MAINTENANCE

UNIT

Ii

~(/)
)("11
~m m
o~
c»
'Oc
c»Z
tT-
=~
~.~
"'tI-
a8 n
GGa
Ut°
Ut(/)

~l
~3
0.-
CJ)

o .,
m
ca
CD

"'tI a ca .,
m
3
3
CD .,
:D
CD -G

~
:::J
n
G

c:

!
-
i
-f

N

8804 Rev. 1 I SPERRY UNIVAC 1100/80 Systems
Ufl-NUMtEft -L 4x4 Capability Processor and Storage Programmer Refer:ence

6.2. 1. Ch,snnels

UPDATe LEV&L
6-3

PAGE

The channel handles all interfacing with the control units. The channel executes input/output
inlstructions, formats and transfers data, generates interrupts and status, and establishes priority
among input/output instructions, data transfers, and interrupts. Each channel is designated by
feiature to be either a byte multiplexer channel, a block multiplexer channel, or a Series 1100
co'mpatible word channel.

A Ichannel provides a standard interface for communicating with control units. A control unit provides
thl9 logical ~:apabiJjty necessary to adapt the standard form of control provided by the channel to the
characteristics of an input/output device. A control unit may be housed separately and connected
to one or many devices, or it may be physically and logically integrated with an input/output device.
InlPut/output devices provide external storage and a means of communications for a processing
system. Magnetic tape units, printers, storage devices such as disks and drums, consoles, and card
reiaders are examples of input/output devices.

Priority among devices is established by the control units. Priority among control units is determined
by', the logical connection to the channel. Each word channel has a maximum of four parallel
inlout/output interfaces, each of which is the equivalent of one Series 1100 word channel on another
SEtries 1 100 System, each with an assigned priority. (See Figure 6-2.)

Each word I:hannel can connect to up to four control units, one to each of the four parallel interfaces.
The interfac:es may be either externally specified index (ESI) or internally specified index (151) in the
fOlllowing combinations:

• 0 ESt and 4 151 • 1 ESI and 1 151
• 0 ESt and 3 151 • 1 ESI and 0 151
• 0 ESI and 2 151 • 2 ESI and 2 151
• 0 ESI and 1 151 • 2 ESI and 1 151
• 1 ESI and 2 151 • 2 ESI and 0 151

Each byte or block multiplexer channel has one input/output interface, and up to eight control units
can be connected to the interface in daisy chain fashion, but only one control unit at a time is logically
cOlnnected to the channel. (See Figure 6-2.) The channel polls the control units serially, and the
hil~hest priority control unit requiring service logically connects to the channel. A byte multiplexer
channel connects to a control unit for the length of time to transfer one byte of data. A block
mlultiplexer channel connects to a control unit for the length of time to transfer a block of data. No
other device can communicate over the interface during the time a block is being transferred.

CONTROL

UNIT

A

CONTROL

UNIT

C

CONTROL

UNIT

E

CHANNEL

MODULE

BYTE OR BLOCK

MULTIPLEXER

CHANNEL

CONTROL

UNIT

B

CONTROL

UNIT

D

CONTROL

UNIT

CONTROL I L-!
UNIT

G CONTROL

UNIT

H

CONTROL

UNIT

A

CHANNEL MODULE

WORD CHANNEL

CONTROL

UNIT

B

CONTROL

UNIT

Figurll 6-2. Bytll or Block Multiplsxsr Channsl and Word Channsl Configuration

CONTROL

UNIT

~ I
I, -

~(I)
)(""0
~m :at
O~
At
-aC .. z
2:<

~~
-0-

g~
CDCIO
ca O
.(1)

~l
1»:J3
0.-
en ...
o
OJ

CO
CD

-0 ...
o
cO
iil
3
3
CD ...
l ;-
c;
:::I
n
CD

c:

!
j

it

8804 Rev.1
UI"-WMIIEft

I SpenAY UNIVAC 1100/80 Systems
~ Capability Processor and Storage Programmer Reference

6.2.2. Subchannels

UfIOATI LML
6-6

"AGE

A subchannel is defined "as a set of control words that manages input/output operations. Each set
of control words contains a data address, a data count, the mode of the subchannel, the storage
address of the next control word, and special flags. Subchannels may be either shared or nonshared.
A sub.:::hannel is referred to as shared if two or more devices use the same subchannef.for input/output
operations. Or. a shared subchannel only one device at a time can transfer data. A subchannel is
refemed to as nonshared if it is associated with and can be used only with a single input/output
devic.,. On a word channel, 151 subchannels are shared and ESI subchannels are nonshared. On a
byte lT1ultiplexl3r channel, all subchannels are shared: while on a block multiplexer channel, all
subchannels al'e nonshared.

An IOU channel has the capability of maintaining eight resident subchannels. The basic IOU channel
provides that all eight resident subchannels are shared. In word channel modules with the
subchannel expansion feature (F1654-00) and option 0 (C 1655-00), there are two resident lSI shared
subchannels, four resident ESI nonshared subchannels, and 124 nonresident, nonshared
subchannels. With the subchannel expansion feature and option 1 (C 1655-01), there are eight
residElnt ESI nc)nshared subchannels and 120 nonresident, nonshared subchannels. Nonresident,
nonshared subchannels are kept in main storage. With the subchannel expansion feature and option
1, the eight most recently active nonshared subchannels are held in the channel. The remaining 120
subchtannels af'e held in main storage. If the channel receives a request for a nonshared subchannel
that is not re~.ident in the channel, the least recently used resident nonshared subchannef is
determined and then moved into main storage. The requested nonshared subchannel is then moved
from Inain stori~ge to the channel, and the request is handled. With the subchannel expansion feature
and option 0, each channel has four shared subchannels a~d 128 nonshared subchannels. The four
most recently tllctive nonshared subchannefs are kept resident in the channel, and the remaining 124
nonshared subchannels are heJd in main storage.

6.3. Control of Input/Output Devices

The CPU controls I/O operations by means of six I/O instructions: Start I/O Fast Release (SIOF), Test
Subchannel (TSC), Hait Device (HDV), Halt Channel (HCH), Load Channel Register (LCA). and Load
Table Control Words (LTCW). The LCA instruction addresses either the control module or a channel.
The HlCH and L,TCW instructions address only a channel; they do not address an I/O device. All other
instructions address a channel and subchannel.

6.3. 1. Input/Output Device Addressing

An I/t:) device and its associated channel module and control module are designated by a 13-bit I/O
addrelss. The I/O address has an 8-bit device address in bits 00-07, a channel address in bits 08-11,
and 21n IOU number in bit 12. Because the maximum configuration allows for only eight channel
modules, bit 1 'J of the channel address is ignored and bits 08-10 are used to select a channel module.
Of thiS 8-bit'device address for a word channel, bit 07 specifies whether the selected subchannel
is sh~~red or nonshared. Device addresses with bit 7 equal to zero specify nonshared subchannels.
and device addresses with bit 7 equal to one specify shared subchannels. Each nonshared
subchannel is identified by a unique device address allowing a maximum of 128 nonshared
subchannels per channel. On a word nonshared subchannel, bit 06 of the device address specifies
the E:SI interfac:e. If bit 06 equals zero, ESI interface 0 is selected; and if bit 6 equals one, ESI interface
1 is ~ielected. Byte multiplexer channels are limited to shared subchannel operation; therefore, bit
07 must be a one. All 256 subchannefs on a block multiplexer channel are nonshared.

For shared subchannels on a byte or block multiplexer channel, bits 04-06 of the device address
select one of 4tight shared subchannels and its associated control unit. Bits 00-03 select one of a
maximum of 16 devices. This allows a maximum of eight shared subchannels and 128 devices per

8804 Rev.1
. UI4tUMIIR

SPERRY UNIVAC 1100/80 Syateml
4x4 Capability Processor and Storage Programmer Reference

byt., or block multiplexer channel. There is a maximum of four shared subchannels and four
associated lSI interfaces on a word channel. Bits 05-06 of the device address select the subchannel
and the lSI interface. Bit 04 must be zero, and bits 00-03 are ignored. On word channels, the device
address selects only a subchannel and an interface. The device is selected by an external function
wOf-d.

Each channel can accommodate a different number of devices, depending upon the type of channel
(byte or block multiplex~r or word) and the option selected (all shared, subchannel expansion feature
- option 0, or subchannel expansion feature - option 1) (See Table 6-1). Except for the rules
described, the assignment of channel and device addresses is arbitrary.

6.3.2. States of the Input/Output System

ThE. result of an I/O instruction is determined by the collective state of the channel, subchannel, and
device selected by the I/O address. Depending on the type of channel and the I/O instruction being
executed, different combinations of the channel, subchannel, and device will be interrogated to
determine the response t,o an I/O instruction. When the response to an I/O instruction is determined
by the state of the channel, the subchannel and device are not interrogated. If the response to an
I/O instruction is determined by the state of the subchannel, the device is not interrogated. On a
word channel the device is never interrogated to deter mine an I/O instruction response.

Thf! channel, subchannel, and device can each be in one of four states. (See Table 6-2.) There are
13 composite -states that cover all the conditions detected by an I/O instruction. In the following
paragraphs each composite state is identified by three letters. The-three letters indicate the state
of the channel, subchannel, and device selected by the I/O address of the I/O instruction. There are
two exceptions:

1. For the L TCW instruction, the second letter indicates the state of the status table subchannel.

2. For the LCR instruction, the second letter indicates whether the channel has the feature installed
to handle the LCR instruction.

The symbol X in place of a letter indicates that the state of the corresponding component is not
significant for the execution of an instruction. Unless specifically noted, the composite state applies
to any type of channel. A description of each composite state follows:

• Channel Available (AXX): (Byte and block multiplexer channels only.) The channel is available.
The states of the subchannel and device are not significant. This condition is detected only by
a HCH instruction.

• Subchannel Available (AAX): The addressed channel and subchannel are operational, not busy
executing a previous command. and not holding status. The state of the device is not significant.
On a word channel a device is never interrogated to determine the response to an I/O instruction.

• Device Available (AAA): (Byte and block multiplexer channels only) The addressed channel,
subchannel, and device are operational. not busy executing a previous command. and not
holding status.

• Interrupt Pending in Device (AAI) or Device Working (AAW): (Byte and block multiplexer
channels only) The addressed channel and s'ubchannel are available. The addressed control
unit or I/O device is executing a previously initiated operation or is holding status. The following
situations are possible:

1. The control unit is executing an operation on the addressed device or on another device
associated with the same control unit.

8604 Rev. 'I I SPERRY UNIVAC 1100/80 Systems
--!!:..~ ___ ~Capability Processor 'and Storage Programmer Reference UPOATI LML I

6-7
PAGI

2.. The device or control unit is executing an operation on another channel or subchannel.

3.. The device or control unit is holding status for the addressed device or another device
associated with the same control unit.

,. Device Not Operational (AAN): (Byte and block multiplexer channels only) The addressed
channel and subchannel are available. The addressed I/O device is not operational. This occurs
when the (:ontrol unit for the addressed device is not installed or not online.

• Inlterrupt Pending in Subchannel (AIX): The addressed channel is available. The addressed
subchannElI is holding -status from either a previously initiated operation or the present
instruction attempting to be initiated. The subchannel is ready to store its status in a channel
s1:atus word (CSW). The status can be for the addressed device or another device on the
subchannel. The state of the addressed device is not significant.

• Subchannel Working (AWX): The addressed channel is available. The addressed subchannel
is busy ex.~cuting a previously executed operation. The state of the device is not significant.

• Subchannl91 Not Operational (ANX): The addre:lsed channel is available. The addressed
subchanne,1 is not operational. This occurs when the channel is not equipped to handle that
subchannel because of the particular typ~ of channel and features selected.

• lr'lterrupt Pending in Channel (IXX): This condition is never detected because channel status is
retported by an independent interrupt mechanism. Channel status is not detectable or retrievable
b'f way of I/O instruction. (See 7.4.1, Machine Check Interrupts.)

• Channel Working (WXX): (Block multiplexer channel only) The addressed channel is operating
inl burst mode (transferring a block of data). The states of the subchannel and device are not
significant. The TSC and LCR instructions do not penetrate a channel in a working state and
alre not executed. A HDV instruction penetrates a working channel only if the channel is working
with the addressed device. The HCH instruction always penetrates a working channel and halts
the device that has control of the channel interface at the time that the HCH instruction is
rEtceived. ·"'e SIOF instruction always penetrates a working channel. The response to the SIOF
instruction is determined by the state of the subchannel.

• Channel Not Operational (NXX): An addressed channel is not operational when it is not installed
in the system or is not online. The states of the addressed subchannel and device are not
significant"

• Hardware Fault (XXX): If the IOU detects a hardware fault before the channel is selected, the
irlstruction is terminated and a machine check interrupt is generated. The state of the 110 system
is! inSignificant.

Table 6-1. Device Addressing

Byte Multiplexer Block Multiplexer
Channel Channel Word Channel

Device Eight Shared 256 Nonshared Four Shared Subchannel Subchannel
Addresses Subchannels Resident Subchannels . Expansion Expansion
(Hexadecimal) Subchannels Feature Option 0 Feature Option 1
0O-3F Not used Nonshared Not Used Nonshared ESI Nonshared ESI

Interface A * Interface A*
40-7F Not Used Nonshared Not Used Nonshared ESI Nonshared ESI

Interface B* Interface B *
80-8F Shared 0** Nonshared Shared 0 151 Not Used Not Used

Interface A
90-9F Shared 1 Nonshared Not Used Not Used Not Used
AO-AF Shared 2 Nonshared Shared 2 151 Not Used Not Used

Interface 8
BO-BF Shared 3 Nonshared Not Used Not Used Not Used
CO-CF Shared 4 Nonshared Shared 4 151 Shared 4 151 Not Used

Interface C Interface C
~O-OF Shared 5 Nonshared Not Used Not Used Not Used
EO-EF Shared 6 Nonshared Shared 6 151 Shared 6 151 Not Used

Interface 0 Interface 0
FO-FF Shared 7 Nonshared Not Used Not Used Not Used
Number and type 8 Shared o Shared 4 Shared 2 Shared o Shared
of Subchannels o Nonshared 256 Nonshared o Nonshared 128 Nonshared 128 Nonshared

---~ -~ ---- --- - - --

it ESllnterface A has 64 device addrellel 00-3F. and ESI interface B has 64 device addreSles 40-1F.

it. This number designates which of the eight channel hardware register. are associated with which device addresses. For nonshared subchannels. option

o uses hardware register. O. 1. 2, and 3; option 1 uses hardware registers 0, 1, 2, 3, 4. 6, 6, and 1.

I

i~
... cn
)("11
... !;
~~
'Oc
QJZ

~~
~n
-0::: as
n' CD CD
_0 -(I)
~1
QJ.
::13
0.-
(I)

S ...
QJ
Ul
CD

-0 ...
o
Ul ...
QJ

3
3
CD ...
:D
CD ;-
~
::I
n
CD

c
CJ a
J

it

8604 Rev.1
UIll-NUMlIR 4x4 Capability Processor and Storage Programmer Reference UfIOATI LEVIL -----~PERRY UNIVAC 1100/80 Systems

Tablll 6-2. Channtll, Subchanntll, and Olll/;ce StatB.

State Abbreviation Definition

Channel

Available A Ready to accept a non penetrating or
penetrating instruction.

Inter'rupt Pending I Not defined.

Worlcing W Operating in burst mode (block
multiplexer channel only), and can
accept and execute only penetrating
instructions . .

Not Operational N Not installed or offline.

Subc:hannel

Availlable A Ready to accept new command.

Inter'rupt Pending I Holding status.

Wor:king W Busy executing previous command.

Not Operational N Not installed.

Device

Available A Ready to accept new command.

Intel'rupt Pending I Holding status.

Working W Busy executing previous command.

Not Operational N Not installed or not operational.

6,3.31. Condition Codes

The result of an I/O instruction is reported by a 2-bit condition code. The condition code is stored
by the processor in bits 34-35 of the Xa register at the time the execution of the instruction is
com~lleted. The condition code is determined by the composite state of the I/O system selected by
the I/O instruction. Tables 6-3, 6-4, and 6-5 show the relationship between the condition code for
each instruction and the composite state of the I/O system. Special conditions affecting the condition
code are also indicated.

8804 Rev.1
UP-NUMIIR

SPERRY UNIVAC 1100/80 System,
4x4 Capability. Processor and Storage Programmer Reference

Composite Condition Byte Multiplexer Block Multiplexer Word Channel
State Code Channel Channel
AAA* 0, 1 HOV HOV (1)

AAI 1· HOV HOV (1)
AAW 1 HOV HOV (1)
AAN 3 HOV HOV (1)
AAX 0,0, 1 LCR, LTCW, TSC LCA, TSC, SIOF HOV, LCR, LTCW,

TSC,SIOF
AIX 1, 2 (a) HOV, LTCW, SIOF, HOV, SIOF, TSC HOV, LTCW, SIOF,

TSC TSC
AWX 0, 1,2 HOV, LTCW, HOV, HOV, HOV, SIOF, TSC HOV, LTCW, SIOF,

SIOF, TSC TSC
ANX 3 HOV, LCR, LTCW~ OHV, LCA, SIOF, TSC HOV, LCR, LTCW,

SIOF, TSC SIOF, TIO, TSC
AXX 0 HCH HCH (2)
IXX - (2) (2) (2)

WXX 0, 2 (3) HCH, HCV,TSC, LCA (4)
WAX 0 (3) SIOF (3)
WIX 1,2 (3) SIOF, StOF, HEV, TSC (3)

WWX 0, 2 (3) HOV, HOV, SIOF, TSC (3)
WNX 3 (3) HOV, LCA, SIOF, TSC (3)
NXX 3 HCH, HOV, LCA, HCH, HOV, LCR, HCH, HOV, LCR,

LTCW, SIOF, TSC LTCW, SIOF, TSC LTCW, SIOF, TSC
XXX 2, 3 HCH, HOV, LCR, HCH, HOV, LCR, HCH, HOV, LCR,

LTCW, SIOF, TSC, LTCW, SIOF, TSC, LTCW, SIOF, TSC

A •• Ayailable I - Int.rrupt P.nding W - Working N - Not AYaiiabl.

x .. Any of the aboYe stat ..

• The thrH letters, from I.ft to right, indicat. the state of the channel, subchannel. and device sel.ct.d by the 1/0 addr ...

with two exceptions: at For the LeR Instruction. the second letter indicate. whether the channal ha. the faature inmlled
tet hanole the LCR instruction. b~ For the L TCW inlttUCtion. the second lener indicate. the state of the status tabl. subchannel.

(at Special conditions in the ch8nnel determine whether a condition code of 1 or 2 will be p nt.d. Th ... special

conditions are covered in Table s-..

(1) A word channel never interrogat .. I device to determine I respon .. to an 1/0 instruction.

(2) Thi, condition i, not detectable by Iny 110 inltrUCtion.

(3) Byte channel. and word channe .. do not tranafe, blocks of date. only byte. or word •• and thUi can never be in the

wonting stat ..

(4) The word channel i, never in th~ working state.

r.bI..... va instruction Condition Coo.. ;or Byte or Block MuitipillXlIF Cb.nne/.

State- Channel Conditions SIOF (a) 1SC HDV HCH Len L1CW

AAA Block - - - 0 - - -
MI Byte, Block - - - 1 - - -
AAW Byte, Block - - - 1 - - -
AAN Byte, Block - - - 3 - - -
AAX Byte, Block - 01 1 (c) 0 0 - 0 0
AIX Byte, Block U) and (3) 1 1 1 - - 1
AIX Byte, Block (1) and (4) 2 2 2 - 0 2
AIX Byte. Block (2) 2 1 2 - - -
AWX Byte, Block - 2 2 1 - - 0
ANX Byte, Block - 3 3 3 - 3 3
AXX Byte, Block - - - - 0 - -
IXX Byte, Block - - - - - - -
WXX Block - - 2 - 0 - -
WAX Block - OIl (c) - 2 - 2 -
WIX Block (It and (3) 1 - 2 - - -
WIX Block (2) or (4) 2 - 2 - - -
WWX Block - 2 - 1/2 (b) - - -
WNX Block - 3 3 3 - 3 -
NXX Byte. Block - 3 3 3 3 3 3
XXX Byte, Block (5) 2 2 2 2 2 2
XXX Block (6) - - - - - -

Byte, Block (7) 2 - - - - -

States: A = Available I = Interrupt Pending W =: Working N = Not Available X = Any of the state.

It The three letters, from left to right. indicate the state of the channel, subchannel. and device selected by the 110 address with two exceptions: a) for the LeR

instruction. the second letter indicates whether the channel has the feature installed to handle the LeR instruction. b) for Ihe L Tew instruction, the second

lener Indicates the state of the status table subchannel.

I

II i
If

~'" -
)(;1
-I:I;.:u

~~
"Oc:
mZ
2:<

~~
-0

g~
CDC»
.0
.(1)

~l
m
:23
Q.-

UJ -o
aJ

CO
CD

-0 a
CO ...
C»

3
3
CD ...
:D

~
~
:2
n
CD

!
J

i mf

8804 Rev.1 SPERRY UNIVAC 1100/80 System. 6-12
'AGE UI4IIX •• 4x4 Capability Processor and Storage Programmer Reference UPOAlI LIYIL

r.bI. 6-4. va IfJ6tTUt:tIon Condition Cod .. for Byr. or Block MultiplutH' Ch.nn". (condnu«J)

Foomot .. for Tlble 8-4 Ire I. follows:

(at If the SIOF queue i. full, or the chlnnel is in working state. the SIOF instrUction will unconditionally receive I condition

code of 2.

(b) If the channel i, working (operating in bum mode) with the addressed deYice, the operation is terminated and the

condition code equal, 1. If the channel is working, but not with the addressed deYice, the condition code equals 2.

(c) If I hardware or software error il detected when retrieving the seco~d word of the channel addre.1 word (CAW), a

channel statu. word (CSW) i. stored Ind the instruction receiYe. a condition code of 1. If no hardware or software

error i. detected, the InstrUction receiv .. a condition code of O.

(1) Subchannel i, holding statu. for addressed deYice.

(2) Subchannel i. holding statu. for a deYice other than the addressed deyice.

(3) Interrupt cancellation wa. not attempted or wa. attempted Ind completed successfully.

(4) Interrupt cancellation w .. attempted and wa. unsuccHlful.

(5) Hardware fault wa, detected when reading first word of the CAW Ind Mlchine Check interrupt was generated.

(e) Unit Check statui had not been pr ... nted via interrupt or instrUction.

(7) The channel i, in working state.

Tllbla 6-6. VO Instruction Condition Cods. for Word Chllnnsls

State* Channel Conditions SIOF 1SC HDV HCH

AAX Word - 0 0 0 -
AIX Word (It 1 1 1 -
AIX Word (2) 2 2 2 -
AWX Word - 2 2 0 -
ANX Word - 3 3 3 -
AXX Word - - - - -
IXX Word - - - - -
WXX Word - - - - -
NXX Word - 3 3 3 -
XXX Word (3t 2 2 2 2
XXX Word (4) - - - 3

- ~ - -- --- --.--~ --

State.: A = Available I = Interrupt Pending W = Working N = Not Available X = Any of the states

* The three lettera. from left to right. indicate the state 0' the channel, subchannel. and device. respectively.

(I) Interrupt cancellation was not attempted or was attempted and completed successfully.

(2) Interrupt cancellation was attempted unsuccessfully.

(3) Hardware fautt was detected when reading first word of the CAW and Machine Check interrupt was generated.

(4) The Halt Channel instruction is not accepted on a word channel.

lCR l1CW

0 0
- 1
- 2
0 0
3 3
- -
- -
- -
3 3
2 2
- -

Li ..
Ii

r;;-cn
)C;H
~:u

O~
OJ
llC
c»Z

g;~
~.~
-0-

g~
CDeD
(1)0
mm
g!
m-
&.a
en
8
QJ
ca
CD

-0 a
ca
a:
3
3
CD ...
:u
CD
;-
;
:::J
n
CD

I
J
ow

If ...
w

8804 Rev.1 SPERRY UNIVAC 1100/80 System, 8-14
'AGE IM'-M'II •• 4x4 Capability Processor and Storage Programmer Reference

6.3.4. Instruction Format and Channel Address Word

All I/O instructions have an f = 758, The j value specifies the particular I/O instruction to be initiated:

j :;II 018 = Start I/O Fast Release

j - 038 := Test Subchannel

j := 048 == Halt Device

j = 058 := Halt Channel

j = 10s = Load Channel Register

j =- 118 == Load Table Control Words

(SIOFl

(TSC)

(HDV)

(HCH)

(LCR)

(LTCW)

Bits 00-12 of u + Xm specify the I/O address (the IOU, channel, and device numbers). Bits 00-23
of Xa consist of either the starting address of the channel command word (CCW) or status table
control word (STCW) list or the register input data for the LCR instruction. Upon detection of an I/O
ins;truction, the CPU builds a channel address word (CAW) in a fixed location of low-order storage.
Tbe CAW is for hardware use only and consists of two 36-bit words, CAW 0 and CAW 1. The j-value
is stored in CAW 0, bits 26-29. Bits 00-12 of u + Xm (the I/O address) are stored in CAW 0, bits
00--12. Bits 00-23 of Xa (the first cew or STeW address or register input data) are :;tored in CAW
1, bits 00-23. The IOU refers to the CAW only during the execution of an I/O instruction. The
pertinent information thereafter is stored in the channel. Instruction word and CAW format is as
follows:

f - 78 a x u

35 3029 21S 25 2221 18 17 18 15 o

Specifies 1/0 instruction

a Address of register holding first CCW address

x u + Xm bits 0-12 equal I/O address .

CAWO

Not Operation IOU Channel Devic.
Used Cod. Not UHd Numbe, Add, •• , Add,. ..

35 3029 21S 25 14 13 12 11 87 o

CAW 1

Not UMd Add,", of first CCW 0' STCW

71 8058 38

leo4 Rev. 1
~

I SPERRY UNIVAC 11 00/80 S~.
~ Capability Processor and Storage Programmer Reference

6-15
',AGI

where bits:

71-60 Must be zeros except when operation code specifies LCR; then it may contain data
to be transferred to the register.

59-36 Specifies the double word address storage location which contains the first CCW in
the channel' program if the operation code specifies SIOF (operation code 01), or the
double word storage location of the first STCW in the Status Table channel program
if the operation code specifies L TCW (operation code 11), or the data to be transferred
lto the channel if the operation code specifies LCR (operation code 10).

35-30 Must be zeros

. 29-26 Operation code (octal); specifies the 1/0 operation to be performed:

01 Start I/O Fast Release

03 Test Subchannel

04 Halt Device
\

05 Halt Channel

10 Load Channel Register

11 Load Table Control Words

25-14 Must be zeros

13-12 IOU Number - bits 13 and 12 select the IOU:

Bit 13 Bit 12

0 0 .IOU 0
0 1 -IOU 1
1 0 .IOU 2
1 1 =-IOU 3

11-8 Channel Address - since eight channel modwes is the maximum allowed, bit 11 is
ignored and bits 10 through 8 select the channel module.

7'-0 Device Address - specifies address of the device, if any, on which the operation is
to be performed .

. 6.3.5., Instruction Operation

Upon detection of an 1/0 instruction, the CPU builds the CAW and then initiates the IOU via the
CPUIIOU interfac~. The IOU establishes instruction priority between the two CPUs (CPU 0 has priority
over CPU 1) and reads CAW O. If the IOU detects a hardware fault in reading CAW 0, the instruction
is imnraediately terminated. a Machine Check interrupt is generated, and a condition code of 2 is
presel1ted to the CPU

If no hardware fault is detected, the IOU then executes the instruction. Depending on the I/O
instru~ction, the IOU use. the state of the channel. the states of the channel and subchannel, or the
states of the channel, subchannel, and device to determine the condition code. When the IOU has

8804 Rev.1 SPERRY UNIVAC 1100/80 Systema
4x4 Capability Processor and Storage Programmer Reference

6-16
I'AGI

completed the I/O instruction, the CPU clears bits 30-33 of Xa and stores the condition code in bits
34··35 of Xa. Bits 00-29 of Xa are left unchanged. If the condition code equals 0, the CPU skips
the next instruction in the program. If the condition code equals 1, 2, or 3, the CPU executes the
nele:t instruction.

NOTE:

An I/O instruction may cause a channsl status word (CSW) to be storsd. To prevent. the contents
of t.he CSW storsd by the instruction from being destroyed by an immediately following I/O interrupt
intj,rrupts must be locked out before issuing the I/O instruction and must remain locked out until the
information in the CSW provided by the instruction has besn acted upon or stored elsewhere for later
us~,.

6.4. I/O Instructions

Tho 1/0 instructions can be classified as penetrating or nonpenetrating. A penetrating I/O instruction
is always executed even if the channel is in a working state. (Note that only a block multiplexer
chitnnel can be in a working state.) A nonpenetrating I/O im:truction always receives a busy response
(condition code = 2) when attempted on a channel in a working state. The Start 1/0 Fast Release
and Halt Channel instructions are penetrating instructions and are always executed even on working
channels. A Halt Device instruction is executed only if: a) the channel is working with the addressed
device, or b) the channel is in the available state.

FOI' any I/O instruction a condition code of 0 indicates that the instruction was completed
successfully. A condition code of 1 always indicates that a valid CSW has been written into low-order
storage and the instruction was not executed. A subchannel is always returned to the available state
after being relieved of status by an instruction or an interrupt. A condition code of 2 indicates that
the 1/0 instruction was not executed. A condition code of 3 indicates that the instruction was not
eXEtcuted because either the channel, subchannel, or device was not operational. Use Tables 6-4
and 6-5 to determine what the condition code response to an I/O instruction means.

After each instruction, the condition codes and the conditions causing each condition code are listed.

6.4.1. Operation Code - 75,00

An 1/0 instruction with an operation code of 00 is not available on the byte multiplexer channel, the
block multiplexer channel, or the word channel.

• Condition Code ::II 0

Not Used

• Condition Code =-

Not Used

• Condition Code - 2

Operation terminated due to machine check

• Condition Code - 3

Instruction not available

I SPeRRY UNIVAC 1100/80 S.,.-tems
~ Capability Processor and Storage Programmer Reference

6.4.2. Start I/O Fast Release - SIOF 75,01

UPOATllIYIL
8-17

I'AGI

If the addressed subchannel of an SIOF instruction is available, the second word of· the CAW that
contains the address of the first CCW is retrieved and stored in the subchannel. If the channel is
not in the working state and no hardware or software errors are detected. the device address is placed
in an SIOF queue, and a condition code of 0 is presented to the CPU. If a software or hardware error
is detetcted during retrieval of the address of the first CCW, subchannel status is generated. a CSW
is stored, and ~I condition code of 1 is presented to the CPU.

When~etver the channel becomes available, the device addresses of successfully executed StOFs
(condi'tion code of 0) are fetched from the queue on a first in/first out basis. When a device address
is fetched from the queue, the first CCW specified 'for that device address is retrieved from storage
and the operation specified by that CCW is .initiated at the device if the device is available. If the
devicel is not a'failab'e, the operation is not initiated, and the software is notified via interrupt.

The subchannel is set to an active state at the time that the device address associated with that
subch,unnel is placed in the SIOF queue. The subchannel remains in an active state until either
termination status is detected or the operation is terminated by an I/O instruction. Only one SIOF
instruc:tion per subchannel and 64 SIOF instructions per channel can be held in the queue at one
time.

6.4.2 .. 1. Byte or Block Multiplexer Channel Operation

• Condition Code = 0

1. The c:hannel was operational, and the subchannel was available. The first CCW address
was ,.ead from the CAW and stored in the subchannel successfully, and the device address
was loaded in the S10F queue.

• Condition Code = 1

1. The ~subchannel was holding status from a previous operation on the addressed device
(check the device and subchannel status fields of the CSW).

~~. A software or hardware error was detected when attempting to fetch the address of the
first CCW from the CAW (check the subchannel status field of the CSW).

• Condition Code .. 2

11.

.. ~

4.

I· .).

The ~,ubchannel was holding status for the addressed device, but was busy presenting the
status by way of interrupt.

The llubchannel was busy holding status for or executing a previously initiated operation
on a device other than the addressed device.

The subchannel was busy executing a previously initiated operation with the addressed
devic=e.

The SIOF queue was full. The channel had 64 pending SIOFs to be initiated at the device
level.

A hardware fault was detected when fetching the first word of the CAW.

• C:ondition Code .. 3

'I. The addressed channel or subchannel was not operational.

8804 Rev.1
~

SPERRY UNIVAC 1100/80 Syttemt
4x4 Capability Processor and Storage Programmer Reference U~T1u:va.

6-18
PAGI

6.4.2.2. Word Channel Operation

• Condition Code :II 0

1. The channel was operational, and the subchannel was available. The first CCW address
was read from the CAW and stored in the subchannel successfully, and the subchannel
address was loaded in the SIOF queue.

• Condition Code :III 1

1. A software or hardware error was. detected when attempting to fetch address of the first
CCW from the CAW (check the subchannel status field of the CSW).

• Condition Code :II 2

1. The subchannel was holding status, but was busy presenting the status by way of interrupt.

2. The subchannel was busy executing a previously initiated operation.

3. The SIOF queue was full. The cttannel had 64 pending SIOFs to be initiated at the device
level.

4. A hardware fault was detected when fetching the first word of the CAW.

5. The subchannel was holding status from a previous operation (check the device and
subchannel status fields of the CSW).

• Condition Code :III 3

1. The channel or subchannel was not operational.

6.4.3. Operation Code - 75,02

An I/O instruction with an operation code of 02 is not available on the byte multiplexer channel, the
block multiplexer channel, or the word channel.

• Condition Code = 0

Not Used

• Condition Code ::II

Not Used

• Condition Code ::II 2

Operation terminated due to machine check

• Condition Code == 3

Instruction not available

8104 Rev.1 I SPERRY UNIVAC 1100/80 System.
~~_~ Capability Processor and Storage Programmer Reference UPDATI LIYIL

6.4~4" Test Subchannel - TSC 75,03

The 1'est Subchannel instruction interrogates the channel and subchannet specified by the I/O
addre!.s. The clddressed device is not affected. The subchannel is not interrogated if the channel
is in al working state.

6.4.4.1. Byte or Block Multiplexer Channel

• Condition Code =- 0

'I. The channel and subchannel are available.

• Condition Code - 1

'I. The llubchannel was holding status from a previously initiated operation (check the device
and subchannel status fields of the CSW).

• Condition Code =- 2

'1. The lsubchannel was holding status, but was busy presenting the status by way of interrupt.

:Z. The subchannel was busy executing a previously initiated operation.

:3. On SI block multiplexer channel only, the channel was busy operating in burst mode.

d'. A h!lrdware fault was detected in fetching the first word of the CAW.

• !Condition Code - 3

1. The channel or subchannel was not operational.

6.4A~.2. WOI"d Channel Operation

• Condition Code == 0

1. The channel and subchannel are available.

• Conditiort Code - 1

1. The subchannel was holding status from a previously initiated operation (check the device
and subchannel status fields of the CSW).

• Condition Code - 2

1. The subchannel was holding status. but was busy presenting the status by way of interrupt.

2. The subchannel was busy executing a previously· initiated operation.

3. On a block multiplexer channel only, the channel was busy operating in burst mode.

4. A hardware fault was detected in fetching the first word of the CAW.

leo .. Rev.1
UlLMM

SPERRY UNIVAC 1100/80 System.
4x4 Capability Processor and Storage Programmer Reference

• Condition Code =: 3

1. The channel or subchannel was not operational.

6.4.5. Halt Device - HDV 75,04

6-20
IIAGI

The Halt Device instruction terminates the current operation on the channel and subchannel specified
by the I/O address. The operation on the specified subchannel is terminated immediately, and the
device is notified of the termination when the device references the channel.

NOTE:

The Halt Device instruction is intended for use only as a recovery mechanism for software or hardware
faults because the capability of an HDV instruction is limited for two reasons:

1. A Halt Device instruction does not penetrate a working block multiplexer channel and is rejected
unless the channel ;s working with the addressed device.

2. The rssultant state of the device on a byte or block multiplexer channel after receiving a Halt
Device instruction is unpredictable. The device mayor may not still be active and mayor may
not eventually present status via interrupt or instruction.

6.4.5. 1. Byte or Block Multiplexer Channel Operation

• Condition Code =: 0

1. The channel, subchannel. and device were in the available state.

~ 2. The channel was available. The operation that was being executed by the subchannel with
either the addressed device or another device on that subchannel has been terminated.
The device has been signaled to terminate the operation. At a later time the device, after
having completed termination of the operation, may present status by way of interrupt or
instruction. The subchannel has been returned to the a~ailable state.

• Condition Code =: 1

1. The channel and subchannel were available. The control unit was busy executing a
previously initiated operation on either the addressed device or another device (check the
device status field of the CSW).

2. The subchannel was holding status from a previous operation on the addressed device
(check the device and subchannel status fields of the CSW).

3. The channel and subchanne' were busy operating in burst mode with the addressed device.
The operation has been terminated and the device has been signaled to terminate the
operation. At a later time the device, after having completed termination of the operation,
may present status by way)of interrupt or instruction. The subchannel has been returned
to the available state.

• Condition Code = 2

1. The subchannel was holding status for the addressed device, but was busy presenting the
status by way of interrupt.

8804 Rev.1
UNUIIIII -----~pelRRY UNIVAC 1100/80 Systems

4x4 Capability Processor and Storage Programmer Reference

:Z. The subchannel was holding status for a device other than the addressed device.

6-21
'AGI

:3. On 21 block multiplexer channel, the channel was operating in burst mode with a device
other than the addressed device.

14. A hardware fault was detected when fetching the first word of the CAW.

• Conditi.on Code == 3

1. The channel, subchannel, or device was not operational.

6.4.5.2. Wor'd Channel Operation

• ICondition Code == 0

1. The addressed channel was operational, and the addressed subchannel was in the
available state.

:2. The addressed channel was operational. The operation that was being executed by the
addressed subchannel has been terminated. The subchannel has been returned to the
available state.

• Condition Code == 1

1. The subchannel was holding status from a previously initiated operation (check the device
and subchanne' status fields of the CSW).

• Condition Code == 2

1. The subchannel was holding status, but was busy presenting the status by way of interrupt.

2. A h~trdware fault was detected when fetching the first word of the CAW.

• Conditio", Code == 3

1, The channel or subchannel was not operational.

6.4.EI. Halt C:hannel - HCH 75,05

The Halt Channel instruction terminates the current operation on the channel specified by the I/O
addrnss. The Halt Channel instruction is intended to be used to recover a byte or block multiplexer
chanlnel that hIlS become inoperative during peripheral interface sequencing because of a control unit
interface error', The Halt Channel instruction is not accepted on a word channel.

6.4.Et 1. Byte! or Block MultipleKer Channel Operation

• Condition Code == 0

1. The channel was available.

2. The channel was busy operating in burst mode or was in a hung condition because an
interface error has resulted in the suspension of normal sequencing, The operation on the
sublchannel that had control of the channel interface has been terminated, and the device

SPERRY UNIVAC 1100/80 System,
4x4 Capability Processor and Storage Programmer Reference

6-22
"AGE

has been signaled to terminate the operation. At a later time, when the device has
completed terminating the operation, it may present status by way of interrupt. The
subchannel has been returned to the available state.

• Condition Code ==

Impossible

• Condition Code =- 2

1. A hardware fault was detected when fetching the first word of the CAW.

• Condition Code == 3

1. The channel was not operational.

6.4.6.2. Word Channel Operation

• Condition Code =- 0

Impossible

• Condition Code ==

Impossible

• Condition Code = 2

1. A hardware fault was detected when fetching the first word of the CAW .

• : Condition \,;ode = 3

1. The channel was a word channel.

6.4.7. Load Channel Register - LCR 75,10

The Load Channel Register instruction is used to load the interrupt mask register in the IOU control
module or the channel base register in the channel specified by the I/O address. The operation to
be performed is specified by bit 00 of the I/O address field. If bit 00 of the CAW is a zero, the channel
base register of the addressed channel is loaded with the contents of bits 36 through 50 of the CAW.
If bit 00 of the CAW is a one, the interrupt mask register is loaded with the contents of bits 36-71
o·f the CAW. The use of the channel base register is described in 6.17, and the use of the interrupt
mask register is described in 6. 18.

6.4.7. 1. Byte and Block Multiplexer Channel

I. Condition Code - 0

1. The interrupt mask register or channel base register was loaded successfully.

II Condition Code =- 1

8804 Rev.1
I

I SP!lRRY UNIVAC 1100/80 System.
~4 Capability Processor and Storage Programmer Reference

Impossible

8-23
'AGI

• Condition Code = 2

1. A hctrdware fault was detected when fetching the first word of the CAW.

2. The channel was operating in burst mode (loading the channel base register on a block
multiplexer channel only).

• Condition Code .. 3

1. The channel was not operational or did not have the subchannel expansion feature installed
(Ioaeling the channel base register only).

6.4.7' .2. WOl'd Channel Operation

• Condition Code =- 0

1,' The interrupt mask register or channel base register was loaded successfully.

• Condition Code -

Impossible

• Condition Code .. 2

'1. A ha,rdware fault was detected when fetching the first word of the CAW.

• Condition Code - 3

'I. The c:hannel was not operational or did not have the subchannel expansion feature installed
(loading the channel base register only).

6.4.8. Load Table Control Words - LTCW 75,11

The l.Ioad TablEt Control Words instruction loads the status table subchannel in the IOU and channel
specified by the 1/0 address. The status table subchanne' controls the tabling of communication
intern,pt status as described in 6. 12. The L TCW instruction initiates the execution of a CCW list by
the st,atus tablEt subchannel on the IOU and channel selected by the I/O address. Bits 36-59 of the
CAW contain the address of the first status table control word (STCW) of the STCW list. A STCW
contalins the data count and the starting address for the status table. Even if the status table
subchannel is lIctive (has a valid data count), a new L TeW instruction is accepted, a new STeW list
is initiiated, and the status table subchannel is loaded with the first STeW of the new list.

8.4.8.1. Byte and Block Multiplexer Channel

• Condition Code .. 0

'I. The lJddressed channel was operational, and the status table subchannel was available or
active. The first STeW has been fetched, and the status table subchannel has been initiated
successfully.

8804 Rev.1
UlLoM ...

SPERRY UNIVAC 1100/80 System.
4x4 Capability Processor and Storage Programmer Reference

5-24
'AGI

• Condition Code == 1

1. The status table subchannel was holding status because of a software or hardware error
on a previous operation (check the subchannel status field of the CSW).

2. A software or hardware error was detected when attempting to fetch either the address
of the first STCW from the CAW or the first STCW from storage (check the subchannel
status field of the CSW).

• Condition Code == 2

1. The status table subchannel was holding status from a previous operation, but was busy
p.resenting the status by way of interrupt.

2. A hardware fault was detected when fetching the first word of the CAW.

• Condition Code =- 3

1. The channel was not operational or did not have the feature installed allowing it to handle
communication interrupt status or it was a block multiplexer channel.

6.4.8.2. Word Channel Operation

• Condition Code = 0

1. The addressed channel was operational and the status table subchannel was available or
active. The first STCW has been fetched and the status table subchannel has been initiated
successfully.

• Condi.tion Code =
1. The status table subchannel was holding status because of a software or hardware error

on a previous operation (check the subchannel status field of the CSW).

2. A software or hardware error was detected when attempting to fetch either the address
of the first STCW from the CAW or the first STCW from storage (check the subchannel
status field of the CSW).

• Condition Code - 2

L The status table subchannel was holding status from a previous operation, but was busy
presenting the status by way of interrupt.

2. A hardware fault was detected when fetching the first word of the CAW.

• Condition Code - 3

1. The channel was not operational or did not have the feature installed allowing it to handle
communication interrupt status or it was a block multiplexer channel.

81004 Rev.1
~

I SPEFIRY UNIVAC 1100/80 Syntms
~ Capability Processor and Storage Programmer Reference

6.5. Execution of I/O Operations

A channel can execute seven commands: Write, Read, Read Backward (only on a byte or block
multi~llexer channef), Sense (only on a byte or block multiplexer channel), Control, Transfer in Channel
(TIC), and Store Subchannel Status. Each command except Transfer in Channel and Store
Subchannel Status initiates a corresponding I/O operation. The initiation and execution of a
command issu4td to a subchannel and device is termed an -I/O operation.-

A seriles of I/O operations on the same device (byte or block multiplexer channels) or on the same
subchannel (w()rd channel) is executed under control of a set of channel command words (CCWs).
The eleecutlon 4)f a set of channel command words (CCW list) is initiated by a SIOF instruction. For
an SI()F instruction, the address of the first CCW is stored in the channel, and a condition code is
presented to the CPU. At an idle time in the channel sequencing, the first CCW is fetched and the
specified I/O operation is initiated. The CCWs can be located anywhere in main storage. Fetching
of a CCW by th., channel does not affect the contents of the locatfon in main storage. Each additional
CCW in the CC'N list is obtained when the operation has progressed to the point where the additional
CCW is needed.

6.5.1" Channel Command Word

A chalnnel command word specifies the command to be executed, and for commands initiating I/O
opera1tions' it d~,signates the storage area associated with the operation, the amount of data to be
transfl9rred, the formatting of data that is to be done, and the action to be taken when the operation
is con1pleted.

The CCW has the following format

[

Not

Used

Command Coda Oata Addra ..

3231 2423 o

Not CCW Flaos Format Not 08ta Count -
Used Flaol Used

C C S S P T 0 D
0 C L I(C S A A E A B C , , 0 L

'.

.. e7 ee es e4 e3 82 e 1 eo 59 5. 57 se 55 5251 38

Command Coda

I=: I Data Add,...

:., 3231 3029 2127 2423 o

8804 Rev.1 ·UNII._

71

SPERRY UNIVAC 1100/80 SyatelM
4x4 Capability Processor and Storage Programmer Reference

Not CCW Flags Not Used Data Count
Used

C C E S P M D 0 E
0 C t Ie C 0 A A 0

C I N 0 L T

se S7 sa IS 14 13 52 a 1 50 59 58 52 51

6-28
'AGE .

3S

where bits:

0-23 Data address bits contain the storage address of the first data word to be transferred
unless the command code is Transfer in Channel or Store Subchannel Status. For
the Transfer in Channel command, the field contains the new CCW address; and for
the Store Subchannel ·Status command, the field contains the address where status
is to be stored.

24-31 Command Code bits specity the operation to be performed by the device or channel.

28-29 Format Control bits are interpreted only on ESI word subchannels. In quarter-word
mode format control bits 29 and 28 specify the location of the first quarter word
within the first word of data for each CCW.

Bits 29 and 28

00

01

10

11

Description

Specifies that the first quarter word be selected from bits 27
through 35 of the first data word.

Specifies that the first quarter word be selected from bits , 8
through 26 of the first data word.

Specifies that the first quarter word be selected from bits 09
through 17 of the first data word.

Specifies that the first quarter word be selected from bit 00
through 08 of the first data word.

In half-word mode format control bit 28 specifies the location of the first half word
within the first word of data for each CCW.

Bit 28

o

32-36 Not used.

Description

Specifies that the first half word be selected from bits 00 through
1 7 of the first data word.

Specifies that the first half word be selected from bits 18 through
35 of the first data word.

36-61 Data Count bits specify the number of bytes, words, half words. or quarter words
transferred to or from storage.

8804 Rev.t I SPERRY UNIVAC 1100/80 Systems
~_~ Capability Processor and Storage Programmer Reference

8-27
"AGE

52-55

56-67

UPDATI LIYIL

Not used.

Bits 56-67 contain flags that specify data formats. special handlin'g of an operation
by the channel, and the action to be taken once the present operation is completed.

67 Chain Data (CD) specifies that upon completion of the portion of a data transfer
operation being controlled by the current CCW. a new CCW is to be read from
storage and the operation is to be continued under control of the new CCW.

66 Chain Command (CCl specifies that upon completion of the operation, a new
CCW is to be read from storage and the operation specified by the new
command code is to be initiated. If the chain data flag is set. the chain command
flag is ignored.

65 Suppress Length Indication (SLI), for byte and block multiplexer channels only.
specifies that if command chaining conditions are present. a command chain
operation be initiated regardless of the residual byte count. The absence of the
suppress length indication bit specifies that if command chaining conditions are
present. a command chain operation be initiated only if the residual byte count
equals zero. or the previous command was an immediate command. If these
conditions are not met. the execution of the CCW list is terminated and an
"interrupt is generated. The suppress length indication flag is ignored jf the
Truncated Search flag is set in the same CCW.

NOTE:

Comm6nd ch6ining conditions arB defined as Channel End and Device End
status, the command chain flag set, and the data chain flag clear in the active
CCW.

External Interrupt Chain (EIC). for word channel and ESI subchannels only,
specifies that upon completion of the operation at the ESI word channel device.
the operation specified by the new command is to be initiated. The external
interrupt presented by the device is stored in the status table prior to chaining.
and a tabled interrupt request is presented to the CPU.

The external interrupt chain is not executed if:

1. The status tabl. subchannel is not active.

2. A hardware error is detected when entering the external interrupt in the
status table,

3. A hardware or software error is detected during the retrieval of the new
CCW from storage, or

4. The subchannel was not in an active state before receiving the external
interrupt.

The EI chain flag is not interpreted on lSI word channels.

84 Skip Data (SK) specifies that data will not be written in storage for input
operations. The device and subchannel, however, are handled in the same
manner as during conventional input operation. For all other operations, the skip
data flag is ignored.

8804 Rev.1 SPERRY UNIVAC 1100/80 System.
4x4 Capability Processor and Storage Programmer Reference

8-28
'AGE

68-71

UPOATlLML

63 Program Controlled Interrupt (PCI) specifies that the channel shall store a PCI
subchannel status indication and generate an interrupt as soon as possible after
a CCW containing this flag is obtained.

62 Truncated Search (TS), for block multiplexer channels only, specifies that a
special chaining operation is to be executed. The channel saves the command
in the CCW with the truncated search flag and also saves the command from
the preceding CCW. These two commands are then reissued to the control unit
during a truncated search operation. See 6.8.4. for a detailed description of
truncated search operations.

Monitor (MaN), for word channels only, specifies that the channel shall store
subchannel status and generate an interrupt when the data count in the final
CCW has been exhausted.

61 Data Address Decrement (DAD) specifies that the data .address be decreased by
one for each full data word transferred under control of the current CCW. This
flag is ignored if the data address lock (DAL) flag is set. If neither the DAD or
DAl flags are set, the data address win be incremented by one for each full data
word transferred.

60 Data Address Lock (DAL) specifies that the contents of the data address field
remain unchanged for each word transferred under control of the current CCW.

59 End of Transmission (EaT), for word channels only, specifies that an EaT bit (a
one-bit in bit position 9 of the output data word) be transmitted with the last byte
that is transferred under control of that CCW. The EOT bit is not set and not
transmitted to the peripheral if the data chain flag in the CCW is set. The EOT
flag is used only on ESI Quarter word channel interfaces and is ignored on all
other channels including 151 word channel interfaces.

Emulation Mode (E), for byte and block multiplexer channels only, when equal
to zero, specifies Series 1100 mode for data transfer operations and the 36-bit
data packing format is selected. E equals one if invalid.

On word channels the E-bit is ignored and the mode of operation is specified
by patch wire. Each word channel Series 1100 ESI interface operates via patch
wire in either Quarter-word mode or half-word mode.

58 Format Flags A, S, and C (byte and block multiplexer channels only) specify the
57 packing format of data bytes. (See Tables 6-6, 6-7, and 6-8.) Format A or
56 format S must be selected on the byte multiplexer channel. The format flags are

ignored on a word channel.

Not used.

6 .. 5.2. CCW Completion

A CCW operation can be terminated by the channel or by the device. A CCW operation may also
be terminated by the HDV or HCH instructions. Termination by the HCH and HDV instructions is
cc)vered in the instruction descriptions. A channel terminates the operation when the data count is
eJehausted. A device terminates the operation by presenting status. When a CCW operation is
terminated, either a new CCW is fetched and a new operation is initiated, or an interrupt is generated.
Unfortunately. a subchannel on a word channel may, instead of fetching a new CCW or generating
an interrupt. return to the available state with no other action being taken. This occurs when the data
cc)unt for the current oDeration is exhausted. the data chain. command chain, and monitor flags are

81504 Rev.1
~

I SPt!:RRY UNIVAC 1100/80 Systems
~, Capability Processor and Storage Programmer Reference UP'DATlI.!VIL

6-29
IIAGE

all cillared, and the device does not present an external interrupt. This condition can be prevented
by setting the monitor flag. The monitor flag set and the data chain and command chain flags cleared
specify that an interrupt is to be generated when the data count of the present operation is exhausted.

When an operation is terminated, the action taken by the subchannel is determined by the condition
that c:aused the operation to be terminated and by the chain data, chain command, truncated search,
SLI, lEI chain, PCI, and monitor flags of the CCW flag field. Tables 6-9 and 6-10 illustrate the
relati10nship btttween the CCW flags and the action taken.

8804 Aev.1
~

SPERRY UNIVAC 1100/80 Sywtems
4x4 Capability Processor and Storage Programmer Reference UPDATE LEVEL

I 8-30
flAGE

34 32 30 28 26 24 22 20 18 18 14 12 10 8 8 4 2 o

34 32 30 28 28 24 22 20 18 18 14 12 10 8 8 o

Form.t C

34 32 30 28 ~6 24 22 20 18 16 14 12 10 8 8 4 2 o

• For input operations. bits with an .sterisk will be written to zero by thelQU. For output operations. bits with an asterisk
are ignored.

<D The letters indicate the order in which bits are transferred. ~ indicat .. the first byte transferred. ! indicat .. the second
byte transferred. £ indicates the third byte transferred. etc. The subscripts Indicate the bit position in the byte. A!
is the most significant bit in the byte. a ! il the second moat significant bit in the byte. a ! il the third most significant
bit in the byte. etc.

8804 Rev.1 I SPERRY UNIVAC 1100/80 System.
~~_~~ Capability Processor and Storage Programmer Reference U.-oATllIYIL

r6bl. 8-7. MSU 06(6 Format - 36-8lt Format. Backward Operation

o

FormatB

Format C

8 4 2 0

Forma' C (continutld,

~121'
;34 32 30 28 28 24 22 20 18 18 14 12 10 8 8 4 2 0

• I:or Input operettons. bits with an aateri,k will be written to zero by the IOU. For output operations, bits with an .sterisk

lire ignored ..

<D ilbe letters Indicate the order in which are transferred. ~ indicates the first byte transferred, ! indicate, the second

byte transferred, £ indicat .. the third byte transferred, etc. The subscripts indicate the bit position in the byte. A 1.
i. the most laigntficant bit in the byte, a ! i, the second moat significant bit in the byte, • ! i, the third most signiflcant

IMt in the ~rte, etc.

8804 Aft.1

Emulate

X

0

0

0

X

SPERRY UNIVAC 1100/80 Sv-tems .
4x4 Capability Processor and Storage Programmer Reference

6-32
'AGe

Format Format Format Type of Result
A B C Channel

X X X Word The e, A, B, and C flags are ignored on a
word channel. The mode (36-bit) is

. determined by hardware feature.

1 0 0 Byte/Block 36-bit quarter-word format (4 bytes per
word)

0 1 0 Byte/Block 36-bit 6-bit packed format (6 bytes per
word)

0 0 1 Block only 36-bit a-bit packed format (4-1/2 bytes
per word)

0 0 1 Byte only The operation is not initiated and the
Program Check subchannel status bit is
set.

All other combinations Byte/Block The operation is not initiated and the
Program Check subchannel status bit is
set.

x .. Can be either 0 or 1.

Tabl.8-9. CCW Flags vs TBrmination Conditions on BytB or Block MultiplBxlJ(' ChannBI

CD CC Chain TS Sli Data Data Count Data Count Data Count Not
Chain Command Truncated Suppress Count Exhausted - Exhausted - Exhausted -
Data Search length Exhausted Chaining Terminate Status Chaining Status

indication - No I Status
Device
Status

0 0 0 0 Stop End End End.ll
0 0 0 1 Stop End End End
0 0 1 0 Stop End End Truncated Search
0 0 1 1 Stop End End Truncated Search
0 1 0 0 Wait Command End End,ll

Chain
0 1 0 1 Wait Command End Command Chain

Chain
0 1 1 0 Wait Command End Truncated Search

Chain
0 1 1 1 Wait Command End Truncated Search

Chain
1 0 0 0 Data * * End. Il

Chain
1 0 0 1 Data * * End.ll

Chain
1 0 1 0 Data * * Truncated Search

Chain
1 0 1 1 Data * * Truncated Search

Chain
1 1 0 0 Data * * End, II Search

Chain
1 1 0 1 Data * * End.ll

Chain
1 1 1 0 Data * * Truncated Search

Chain
1 1 1 1 Data * * Truncated Search

Chain ,-- --- ----- ------ -------

Data
Count

Not
Exhausted

-
Terminate

Status
End,ll

End
End,ll

End
End,ll

End

End,ll

End

End.ll

End,ll

End,ll

End,ll

End,ll

End,ll

End,ll

End,ll

---- --~--

Ii;

~ 1~5
-:II

o~ c» -a C
c»Z
g~
~.~
-0-

g~ .t» :0
0(1) .,1
AI
::J3
0.-
en
S
;
fQ •
"'0 a

fQ

;
3
3
CD .,
~
CD
i' • ::J
n •

!
~

i lilt
Co)

8804 Rev.1 SPERRY UNIVAC 1100/80 Syatems
4x4 Capability Processor and Storage Programmer Reference

End

IL

Chain Command

Truncated Search

ChaiM1 Data

•

UPOATI LML

The operation is terminated. If the operation is immediate and hal been specified by the first

CCW auociated with a S.n .. Rel.a .. instruction, a condition code of 1 is set, and the status

portion of the CSW is stored al part of the execution of the Senle Release inltruction. In all

other ca.e., an interrupt is generated in the subchanne' when the channel accepts device

status.

The device i. signaled to terminate tranlfer of data, but the subchannel remains in the working

state until device status i. accepted; at this time an interrupt is generated in the subchannel.

The device il signated to terminate transfer of data, but the subchannel remains in the working

state until device statuI il accepted: if the device statUI il chaining statuI"a command chain

operation il initiated; if the device status i, terminate status, an interrupt is generated.

Incorrect length subchanne' statuI is indicated with the interrupt or condition code of 1.

The channel initiatel a command chain operation upon receipt of Device End.

The channel initiates a truncated seerch operation.

The channel immediately fetches a new CC~ for the same operation.

The situetion where the count il zero but data chaining il indicated at the time the device

provide. status cannot validly occur. When data chaining il indicated. the channel fetches

the new CCW after transferring the last byte of data designated by the current CCW but before

the davice provides the next request for data or status transfer. As a r.sult. the channel

recogniz .. the status from the device only after it has fetched the new CCW. which cannot
contain a count of zero unle •• a programming error has been made.

880 .. Rev.1
UP-oM

I SPERiAY UNIVAC 1100/80 Systems
~ Capability Processor and Storage Programmer Reference UPDATI LIVIL

Tllbl. 6- to. CCW FllIgs V$ Ttlrminlltion Condition. on Word Chllnntll

Flaas
C C E* M P

Termination Condition 0 C I 0 C
C N I

Data Count Exhausted

0 0 X O. 0 (1)
0 0 X X 1 (2)
0 0 X 1 X (2)
1 X X X X Data Chain
Q 1 X X X Command Chain

Data Count Not Exhausted and External Interrupt**

X X 0 X X (2)
2S ~ 1 X X EI Chain and Tabled Interruot

(11) No action is taken. The subchannel is returned to the available state.

(~!) Th. o,..,..tion is terminated and an Int.rrupt is g.nerated

.' EI Chain Flag i, vatid oniy on ESI IUDchann

• '. Th. "ftUatlon where the data count i, zero and an external interrupt is detected cannot validly occur. When the
data count is exhausted. the flags are immediately inspected and the appropriate action is taken betore the

external Interrupt is accepted.

6.6. Command Code

The cc)mmand code specifies to the channel, and on a byte or block multiplexer channel also to the
devicEt, the operation to be performed. The command code assignment is listed in Table 6-11. The
symbc)1 X indicates that the bit position is ignored by the channel: M identifies a modifier bit used
by the~ control unit or device on the byte or block multiplexer channels. The M bits are ignored on
a word channel.

8804 Rev.1
~

SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference

Byte or Block Multiplexer Channel

Command

Invalid

Sense

Tlransfer in Channel (TIC)

Store Subchannel Status

-Read Backward '

Write

Read

Control

x == Not Used

UP'DAlI LEYB.

Tabl" 8- t t. CCW Command Cod"

Word Channel

Code Command

XXXX 0000 Invalid

MMMM 0100 Invalid

XXXO 1000 Transfer in Channel (TIC)

XXX1 1000 Store Subchannel Status

MMMM 1100 Invalid

'MMFF MM01 Write

MMFF MM10 Read

MMMM MM11 Forced External Function

M == Not Used (Word Channel)
M == Modifier (Byte or Block Multiplexer Channel)
F s Format Control (Word Channel)
F == Modifier (Byte or Block Multiplexer Channel)

On a byte or block multiplexer channel, commands that initiate I/O operations (Write, Read, Read
Elackward, Control, and Sense) cause all eight bits of the command code to be transferred to the I/O
clevice. The modifier bits specify to the device how the operation is to be performed. '

VVhenever the channel detects an invalid command code during the initiation of a command. the
Ftrogram Check bit in the subchannel status field is set and the operation is terminated. If the first
C:CW designated by the CAW contains an invalid command. the operation is terminated. the Program
Check subchannel status bit is set and reported by either a condition code of 1 and an associated
CSW or an interrupt. When the invalid code is detected during command chaining. the new operation
is not initiated. and an interrupt is presented with the Program Check bit in the subchannel status
field set. The command code is ignored during data chaining, unless the Transfer in Channel
command is specified.

S.6.1. Transfer in Channel Command - TIC

"rhe Transfer in Channel command provides an unconditional branching function in the channel. The
'rlC command provides for chaining between CCWs not located in sequential storage locations. This
allows command and buffer loops. A new CCW is fetched from the location designated by the data
address field of the TIC command. A new CCW and CCW list are immediately initiated. The TIC
command can occur during data chaining or command chaining. The data count field. the format
flags. and the CCW flags of a TIC command are not interpreted. The data chain or command chain
loperation is carried through the Transfer in Channel CCW to the new CCW.

If consecutive TIC commands are detected or if the CCW address of a TIC command is not on a double
'Word boundary, the execution of the CCW list is terminated. and an interrupt is presented with the
Program Check bit of the subchannel status field set.

8804 Rev.l
tll4MIMIU

I SPI:RRY UNIVAC 1100/80 Systems
~4 Capability Processor and Storage Programmer Reference UfIOATI LIVIL

6-37
PAGE

6.6.:t Store Subchannel Status Command - SST

The Store Subchanne' Status command provides a means of obtaining the data count of a subchannel
within a CCW list without having to terminate the execution of the CCW list. When an SST command
is detected, a double word CSW is stored at the location specified by the data address field of the
Stant Subchannel Status CCW. The device and subchannel status fields of the CSW will always be
invalid. The device address and next CCW address of the CSW will be valid, and the data count will
be the residue data count from the previous CCW. After storing the CSW, the execution of the CCW
list hs continul9d.

The data count field, the format flags, and all the CCW flags of an SST command are not interpreted.
The SST command is detected only during command chaining.

If thE. data address field does not specify a double word boundary, the execution of the CCW list is
terminated. The Program Check bit of the subchannel status field is set and reported by either a
condition code of 1 and an associated CSW or an interrupt.

6.7. Data Transfer

Data transfers are controlled by the data address and data count fields of the CCW. The data address
field contains the storage address of the first data to be transferred. The data count field of a CCW
specifies the number of bytes or words to be transferred. On a byte or block multiplexer channel,
the data count specifies the number of bytes to be transferred. On a word channel lSI interface. the
data count splecifies the number of 36-bit words to be transferred. On a word channel ESI interface.
the data count specifies the number of quarter words or half words to be transferred.

6.7. 1. Format Flags (E, A, a, and C)

On at word channel the format flags E, A, B, and C are not interpreted. Emulation mode on a word
channel is determined on a channel basis by hardware patch wire. No formatting of data is done
on al word channel. All transfers of 151 and ESI data are compatible with Series 1100 I/O data
trantsfers for 36-bit operations.

On al byte or block multiplexer channel, the emulation flag (E) and the format flags (A. B, and C) control
the jformatting of data. If the emulation flag is zero, the data word width is 36 bits. An emulation
flag of one is invalid.

The format flags select either the quarter-word format (A), the 6-bit packed format (B), or the
8-bit-packed format (C). Tables 6-6 and 6-7 illustrate the data formats for forward and backward
opel"ations with the 36-bit mode.

Unused bits in format A are zero filled on input operations. With the 36-bit mode of operation. when
bytels are transferred to bits 0-7, 9-16, 18-25, and 27-34, the respective bits 8. 17, 26. and 35 will
be written to zero.

If an input operation is not completed on an address boundary. leftover bytes and bits within a word
are not affected in format A. On the block multiplexer channel with formats Band C, leftover bytes
and partial bytes within a full word are zero filled and only futl words are written into storage. On
the byte multiplexer channel with format B. leftover bytes and bits within a word are left unchanged.
With format A, individual quarter words (9 bits) are written for the 36-bit mode of operation.

Forrnats A arId B (36-bit mode) are the only valid formats on a byte multiplexer channel. If format
C is selected on a byte multiplexer channel or if more than one format is selected. the operation is
terminated and the Program Check bit in the subchannel status field is set

8804 Rev.1
UII'o«JMIIII

SPERRY UNIVAC 1100/80 System,
4x4 Capability Processor and Storage Programmer Reference

8-38
"AGE

6.7 .. 2. Skip Data - SK

The skip data flag in the CCW when set specifies that no data is to be transferred to storage. The
skip data flag is defined only for read, read backward, and sense operations. The skip data flag is
ignored in all other .operations. Skipping affects only the handling of data by the channel. The
operation at the I/O device proceeds normally, and data is transferred to the channel. The channel
keeps updating the data count, but does not place the information in main storage. When the data
count is exhausted, a new CCW is obtained if either the command chain or the data chain flag is set.

Each CCW is controlled by its individual skip data flag. Thus skipping, when combined with data
chaining, permits the program to place throughout storage selected portions of a block of data from
an I/O device.

6.7.3. Data Address Decrement - DAD

The data address decrement flag in the CCW when set specifies that the data address when being
updated is to be decremented rather than incremented. The DAD flag is valid for all data transfer
operations. The DAD flag affects only the handling of data by the channel. The operation at the I/O
dev,ice proceeds normally. When the data count is ex~austed, a new CCW is obtained if either the
command chain or the data chain flag is set, and the new CCW is under the control of its DAD flag.

6.7.4. Data Address Lock - DAL

The data address lock flag in the CCW when set specifies that the data address is never updated.
The DAL flag is valid for all data transfer operations. The DAL flag affects only the handling of data
by the channel. The operation at the I/O device proceeds normally. When the data count is exhausted,
a new CCW is obtained if either the command chain or the data chain flag is set, and the new CCW
is under the control of its DAL flag.

6.8. Chaining Operations

When a channel has performed the transfer of data specified by a CCW, it can continue the activity
initiated by the SIOF instruction by fetching a new CCW (chaining). Chaining occurs only between
CCWs located in successive double word locations in storage. A CCW listis executed in an ascending
order of addresses. The address of a new CCW is obtained by adding two to the address of the current
CCW. Two CCW lists in noncontiguous storage locations can be connected for chaining purposes
by a TIC command. On a byte or block multiplexer channel, all CCWs. of a CCW list apply to the I/O
device specified in the Original SIOF instruction. On a word channel, all CCWs of a CCW list apply
to the subchannel specified in the original SIOF.

Three types of chaining are provided: data chaining, command chaining, and EI chaining (valid only
on an ESI subchannel). The specification of chaining is effectively propagated through a TIC
command. When in the process of chaining a TIC command is detected, the CCW designated by
the ·TIC is used for the type of chaining specified in the CCW preceding the TIC CCW.

A chaining operation is initiated when the operation on the present CCW is completed. A CCW
operation is completed when either the data count is exhausted or the device presents status. The
combination of the data count, device status, chain data flag, chain command, and El chain flags
determine what type of chaining, if any, occurs. Tables 6;..9 and 6-10 outline what action is taken
under all the combinations of CCW flags and termination conditions.

8804 Rev.1
UNtUMIIR

I SPElRRY UNIVAC 1100/80 Syat.,.,. .
~4 Capability, Processor and Storage Programmer Reference

6.8. 'I. Data Chaining

UPOATI LIVIL
6-39

PAGE

Data chaining provides software with the capability of changing the data address at any time during
the tt'ansfer of a block of data. Data chaining may be used to rearrange information as it is transferred
between main storage and an 110 device. Data chaining permits blocks of information to be
tranSiferred to or from noncontiguous areas of storage, and when used with the skip data flag, data
chaining allows the software to place selected portions of a block of data in main storage. If an output
data transfer in A format is terminated by a stop code bit, data chaining will not occur.

For elata chairaing, the new CCW fetched by the channel defines a new storage area for the original
1/0 ()peration. Execution of the operation at the 110 device is not affected. The contents of the
comlrnand code field of the new CCW is ignored unless it specifies a TIC command.

Data chaining on the byte multiplexer channel and on word ESI subchannels is executed immediately
after the last byte or partial word under control of the current CCW has been transferred to storage
or tOI the device. The old CCW is replaced by the new CCW before another data request from the
devi.:e is handled. If the device presents status after exhausting the count of the current CCW, but
before transferring any data to or from the storage area designated by the new CCW, the action taken
by the channell is controlled by the new CCW flags. If a hardware or software error is detected when
fetching the new CCW, the operation is terminated and an interrupt is generated. The channel status
word (CSW) or tabled status word (TSW) associated with the interrupt will indicate why the operation
was terminatc!d.

On the block multiplexer channel and on word 151 subchannels, data chain CCWs are prefetched by
the channel hardware. Each block multiplexer channel and each word 151 subchannel has an
eight-word data bUffer in the channel hardware to decrease the probability of data overruns. During
outPlut operations, a data chain is executed immediately after the last byte or word under control of
the c:urrent CI:W has been transferred to the data buffer. The old CCW is replaced by- the new CCW,
and the data buffer is now kept full under control of the new CCW. During input operations, the
channel hardware prefetches one data chain CCW ahead during channel idle time. After the last byte
or word under control of the current CCW has been transferred from the device to the data buffer,
the channel continuts to accept data under control of the new CCW if the new CCW has been
prefetched. If a hardware or software error is detected when fetching the new CCW, the operation
is terminated and an interrupt is generated. The CSW associated with the interrupt will indicate why
the operation was terminated.

During data chaining, the channel hardware prefetches only one CCW ahead and the data associated
with that CCW. If the byte count or word count in a data chain CCW is smaller than th. data buffer
(8 ~'ords~, the. buffering provided is limited to the size of the byte count or word count. For example,
if a data chain CCW contains a byte count of one, only one byte of data buffering will be provided
for that CCW. When transferring data to or from time-dependent devices, the use of data counts
smalUer than the buffer size increases the probability of data overruns; the smaller the data count,
the higher the probability of a data overrun.

NOTE:

Lllt4' acknowledges can occur from chaining short buffers on high-speed peripherals.

6.8.2. Command Chaining

A s,ubchannlel executes a command chain operation by retrieving a new CCW and beginning
execution of the command specified by that CCW. The subchannel is activated and begins executing
the new command. On a byte or block multiplexer channel, the new command is also passed directly
to the devic... An A format stop code termination does not prevent command chaining.

8804 Aft.1 ,.... SPERRY UNIVAC 1100/80 System.
4x4 Capability Processor and Storage Programmer Reference

Command chaining makes it possible for software to initiate the transfer of multiple blocks of data
by Ineans of a single SIOF instruction. It also allows a subchannel to initiate the execution of auxiliary
functions and data transfer operations without software interference at the end of each operation.
On a byte or block multiplexer channel, command chaining, in conjunction with the status modifier
cOf1ldition, allows the channel to modify the normal sequence of operations in response to signals
provided by the I/O device.

OUl'jng command chaining, the new CCW fetched by the channel specifies a new I/O operation. On
a byte or block multiplexer channel, command chaining occurs only when the I/O device presents
chaining status. the command chain flag is set, and the data chain flag is not set, and either the byte
count equals zero or the SLI flag is set. On a word channel, command chaining occurs only when
the data co~nt of the current operation is exhausted, the command chain flag is set, and the data
ch2ain flag is not set. When command chaining takes place, the completion of the current operation
dOt!s not cause an interrupt. The data count indicating the amount of data transferred during the
current operation can be obtained by using an SST command as part of the command chain.

COlmmand chaining takes place and the new operation is initiated only if no hardware error has been
detected during the current operation. If a hardware error has been detected, the operation is
immediately terminated and an interrupt is generated. Also, if a hardware or software error is
detected when trying to initiate the new CCW of a command chain, the operation is terminated and
an interrupt is generated.

An exception to the sequential chaining of CCWs occurs on a byte or block multiplexer channel when
the I/O device presents the status modifier condition along with chaining status. When command
chaining is specified, the combination of chaining status and the status modifier condition causes
the channel to fetch and chain to the CCW whose main storage address is four higher ttlan that of
the current CCW.

6.13.3. EJ Chaining (ESI Word Interface Only)'

The EI chaining flag is interpreted only on an ESI subchannel. A subchannel executes an EI chain
operation by placing the external interrupt in the status table if the status table subchannel is active,
retrieving a new CCW from a storage address four higher than the storage address of the current
CCW, and executing the command specified by that CCW. An El chain is executed only if all of the
following conditions are met

1 ~ .. The EI chain CCW flag is set.

2. An ESI external interrupt is presented.

3. The status table subchannel is active.

4. No hardware error is detected when making an entry into the status table for the external
interrupt.

5. The subchannel is active.

NOTE:

If the data count on a word subchannel is fJxhausted and neither data chaining nor command
chaining is specified, the subchannel is immediately changed from active mods to either status
psnding or idltl mods.

-"\

8150 .. Rev.1 I SPEnRY UNIVAC 1100/80 Systems
~ ___ ~ Capability Processor and Storage :Programmer Reference

6. No hardware or software error is detected when retrieving the new CCW.

Extrerne care must be taken if the EI chain flag is set along with the chain data and/or chain command
flags. If the channel detects exhaustion of the data count first. the data chain or command chain
will bIt performed. and any subsequent EI chain will be under the control of the Elchain flag in the
new CCW. If the channel detects the external interrupt first, an EI chain will be performed if the EI
chain flag in the current CCW is set. The new CCW used by the channel is different, depending on
whether the chain is an EI chain, a data chain, or a command chain. If a data chain or command
chain is executed, a new CCW whose storage address is two higher than that of the current CCW
is executed. If an EI chain is executed, a new CCW whose storage address is four higher than that
of the! current CCW is executed.

If a s(lftware or hardware error is detected when trying to initiate the new CCW during an EI chain,
the oS:leration is terminated, a TSW indicating why the operation was terminated is stored in the status
table, and a tabled interrupt request is generated. The subchannel is returned to th"e available state.

6.8.4. Truncated Search

The tr'uncated search capability provides software with a simple yet effective method of reading or
writing multiplu records on a disk control unit. A truncated search operation is executed under control
of the truncated search CCW flag. A block multiplexer channel executes a truncated search operation
by rei:ssuing thIS command in the preceding CCW and the command in the current CCW when proper
statu!~ is recei"ed from the device before the data count is exhausted.

The fl:)lIowing is an example of a truncated search operation:

COMMAND

Search command (This CCW has the CC flag set.)

2 TIC command (TIC back to CCW 1.)

3 Read or Write command (This and only this CCW must have the truncated search flag
set.)

The c:hannel rE.meves CCW 1 and issues the Search command and search bytes to the device. If
the dClvice does make a compare on the search bytes, device status of Channel End and Device End
is presented tc, the channel. The channel executes a command chain~ retrieves the TIC command,
and then retrieves the Search command and reissues the Search command to the device. This loop
continues until the device makes a compare (finds the correct record) and presents device status of
Chanlnel End, Device End, and Status Modifier. Because of the specia' device status. the channel skips
the nlext CCW (CCW 2) and executes CCW 3. The Read or Write command is issued to the device
and the devie •• begins transferring data.

Whefl the device detects the end of a record. device status of Channel End and Device End is
prese1nted to the channel. The channel checks the device status, and detects the truncated search
CCW flag. Thta channel begins the truncated search operation by reissuing the previous command
(the Search command from CCW 1) and responding to the first request for data with the ·command

.- out- ilnterface line. The device automatically makes a compare and presents device status of Channel
End. Device End, and Status Modifier. The channel reissues the Read or Write command and data
trans'fer is ini'tiated starting with the residual data count and data address from the previous
read/write opttration. This procedure is repeated at the end of each record until the byte count is
exha'Jsted.

8804 Rev.'
UfL.NUMIa

SPERRY UNIVAC 1100/80 Synems
4x4 Capability Processor and Storage Programmer Reference

Data chaining after the byte count is exhausted is allowed; however, further truncated search
operations are executed only if the active CCW has the truncated search flag set. Command chaining
after the byte count is exhausted is also allowed. See Table 6-9 to determine what action the channel
takl!s when either the byte count is exhausted or device status is presented.

ThE. channel unconditionally sets the most significant bit (the M-bit) of the Search command every
time the Search command is issued to the device as part of a truncated search operation. The M-bit
set allows the disk device to switch heads when an index mark is detected.

6.8.5. Truncated Search Restrictions

There are several programming restrictions for truncated search operations:

1. The truncated search flag is valid only for the block multiplexer and bus extension block
multiplexer channels. If the truncated search flag is set in a CCW for a byte multiplexer channel,
the operation is terminated immediately and program check subchannel status is presented to
the software.

2. Split status from the control unit (only Channel End for Device Status) immediately terminates
execution of the subchannel program. If the truncated search flag is set and a control unit splits
status, the channel does not execute the truncated search operation.

3. In any CCW the suppress length indication flag is ignored if the truncated search flag is set.
When the truncated search flag is set in a CCW, a command chaining operation is initiated only
if the control unit presents Channel End and Device End status, the chain data flag is clear, the
chain command flag is set, and the byte count for that CC has been exhausted.

NOTE:

A command chaining operation retrieves a new eew and begins executing the command
specified by that eew. A truncated search chaining operation reissues the previous search and
read commands.

4. Data chaining during truncated search operations is allowed. The truncated search flag needs
to be set only in each CCW containing the original read or write command and not in any
subsequent CCW's connected to it by data chaining. Thus, the state of the truncated search
flag in the original read or write CCW governs truncated search operations for aU CCW's
connected to it via ,data chaining.

5. One truncated search operation is defined by the CCW containing the search command, the
CCW containing the TIC comman'd (optional), the CCW containing the read or write command,
and all the CCW's connected to the original read or write CCW via data chaining~ For all CCW's
defining a truncated search operation in 36-bit mode, the byte count for each CCW except the
search command CCW record length for each record must be on a byte boundary. Otherwise
the byte count for each CCW except the search command CCW must be on a word boundary
and the record length must be on an even word boundary. Allowable byte and word boundary
CCW byte counts and record lengths for each format are given in the following tabtes.

aeo4 ReY.1 I SPEFIRY UNIVAC 1100/80 Syatems
__ Ulll._ ____ ~ Capability Processor and Storage Programmer Reference

Format Allowable Byte Boundary Allowable Word Boundary
Byte Counts Byte Counts

36-Bit Format A Any Byte Count 4,8,12,16,20,24,28 ...

36-8it Format B Any Byte Count 6,12.18,24,30,36,42 ...

36-Blt Format C Any Byte Count 5,9,14,18,23,27,32 ..•

Format Allowable Byte Boundary Allowable Word Boundary
Record Lengths Record Length

36-Bit F=ormat A Any Byte Count 4,8,12,16,20,24,28 ...

36-Bit F=ormat B Any Byte Count 6,12,18,24,30,36,42 ...

36-Bit F:ormat C Any Byte Count 9,18,27,36,45 ...

6. In additicln to the governing of byte boundary record lengths, the byte count of each record,
added to the accumulative total of all previous records, must be on a byte boundary.

Example:
ABC 0

• AsslUme one CCW will be used to transfer data to all four (A-O) records.

• The length of Record A (in bytes) must be a byte boundary.

• The length of Record B (in bytes), added to the length of Record A (in bytes), must be a
byttt boundary.

• The length of Record C (in bytes), added to the length of Record B (in bytes), added to the
length of Record A (in bytes), must be a byte boundary.

7. In order to insure adherence to Items 5 and 6, Data Chaining within record boundaries is
restricted to word boundaries only.

NOTE:

Items 5, 6, and 7 ~pply to 36 bit format C only. Truncated search record lengths on mixed word
and byt., boundsrie$ are allow.,;i in 36 bit formats A and S.

8804 Rev.1
Uf'.MIMIIIII

SPERRY UNIVAC 1100/80 System.
4x4 Capability Processor and Storage Programmer Reference UPDATI LIVIL

6-44
PAGt

6.9. Interrupt Generation Flags

The program controlled interrupt (PCt) flag and the monitor (MON) flag (word channel only) are
interrupt generation flags that cause the subchannel to generate an interrupt. The PCI flag generates
an interrupt with the PCI bit set in the subchannel status field and the MON flag generates an interrupt
wi'th the MON bit set in the subchannel status field.

6.9. 1. Program Controlled Interrupt - PCI

The program controlled interrupt provides the software with a means of causing an I/O interrupt
during the execution of a CCW list. The PCI flag can be in any CCW of a CCW list, but is ignored
on a TIC command or an SST command. Neither the PCI flag nor the associated interrupt affects
the execution of the CCW list.

The channel attempts to interrupt the program whenever the PCI bit of the CCW flags is detected
during a data transfer. On all shared subchannels and nonshared block multiplexer subchannels. if
the channel is presenting an interrupt for another subchannel, no action is taken. The channel will
then interrupt the program when the PCI flag is detected during a data transfer and no channel
in'terrupt request is outstanding. Nonshared subchannels on a byte multiplexer or word channel will
attempt to table the interrupt after a data transfer. If the status table is valid, a TSW for that
subchannel is stored in the status table. If the status table is not valid. no status is presented and
the PCI flag is cleared.

A CSW containing the PCI bit may be stored by an interrupt while the operation is still proceeding
or by a completion interrupt. Also, the PCI bit of the subchannel statuS' field may accompany other
valid subchannel and device status. The PCI condition cannot be detected by an instruction while
the subchannel is in the working state.

If chaining occurs before the interrupt (due to the PCI flag) has been handled, the PCI condition is
curried over to t"e new CCW. This carry-over occurs on both data and command chaining, and in
either case, the condition is propagated through the TIC and SST commands. The PCI conditions
af'e not stacked; if another CCW is fetched with the PCI flag set before the interrupt (due to the PCI
flag of the previous CCW) has been handled. only one interrupt takes place. Thus, multiple PCI flags
inl a CCW list may result in only one interrupt.

6.9.2. Monitor - MON (Word Channel Only)

The monitor (MON) flag specifies that an interrupt be generated with the Monitor subchannel status
bit set. The interrupt is not presented until the CCW operation with the MON flag is completed. The
Monitor bit of the subchannel status field may accompany other valid subchannel and device status.
The MON flag is interpreted only in the final CCW of a CCW list. If the data chain or command chain
flag is set in a CCW, the MON flag is ignored and no interrupt is presented. If the EI chain and MON
flags are set in a CCW or an ESI subchannel. the execution of the operation determines the
subchannel's response. If the data count is exhausted before the external interrupt is received, an
interrupt with Monitor subchannel status is generated. If an external interrupt is presented later, the
external interrupt will be stored in the status table, but the EI chain will not be executed. If the data
count is not exhausted when the external interrupt is received, the external interrupt will be stored
in the status table and the EI chain will be executed.

8804 Rft.1
~ 4x4 Capability Processor and Storage Programmer Reference UPDATE LIVIL -------UPERRY UNIVAC 1100/80 System.

6. 10. Status

.1/0 status' can be separated into the following four categories:

1. Channel Status - Hardware error that cannot be associated with a particular device or
subchannel.

2. Status felr Noncommunications Subchannels - Status caused by a device, CCW flags, or a
hardware or software error on block multiplexer subchannels, byte multiplexer shared
subchannels, and word 151 subchannels •.

3. Status fer Communications Subchannels - Status caused by a device, CCW flags. hardware
error, or software error on byte multiplexer nonshared subchannels, and word ESI subchannels.

4. Status for Status Table Subchannel - Status caused by the PCI CCW flag. hardware error, or
software error on the status table subchannel.

1/0 !~tatus is I)resented either by instruction, SST command, status table, or interrupt. (See Table
6-1 ~~.) A standard channel status word (CSW) or tabled status word (TSW) is generated in all five
cases. The fc)rmat is:

CSW"r rsw

~~~~ I ..u Device Add ..... 

~----------------------------------------------------------~ 

Next CCW Addre •• 

35 :5.2 31 2423 o 

I u~ ~ ____ oe_V_ic_e_S_tn __ d ____ ~_S_U~ __ h_.n_n_e_'S_t_a~ __ .~ _________ R_e._id_U_a_'o_._U_c_ou_n_t _______ ~ 
71 eee7 5251 38 

I Extern. Intomopt Slltul Word (Word Chann.11 Only) L-____ --------' 
107 

whetre bits: 

24-31 

0-23 

12 

Contains the device number associated with the status information. On the status 
table subchannel, this number has no meaning. 

Contains the value of the next CCW address field at the time the status information 
was stored. Because of prefetching conflicts, the next CCW address field of a CSW 
or TSW may point at a CCW specified by a TIC command. For example. assume a 
CCW list with a CCW at 20 data ci:tained to a TIC CCW at address 22. The TIC points 
to a CCW at. address 54. The next CCW address field of a CSW or TSW for this CCW 
list could contain 20, 22, 54, or 56. The next CCW address field of a CSW or TSW 
is invalid if either the program check subchannel status bit or channel control check 
subchannel status bit is set in that CSW or TSW. 



T.bltl 6-'2. VO Statu. 

Type of Status Status Generated 

Channel Status 1. Hardware error on the channel to 
device interface that cannot be 
associated with a particular device or 
subchannel. 

2. Storage error that cannot be 
associated with a particular device or 
subchannel. 

Status for Noncommunications 1. Device 
Subchannels 2. CCW flags (PCI or MON) 
a. All block multiplexer subchannels 3. Software error 
b. Byte multiplexer subchannels 4. Hardware error 
c. Word channel lSI subchannel 5. Store Subchannel Status command 

Status for Communications Subchannels 1. Device 
a. Byte multiplexer subchannels 2. CCW flags (PCI or MON) 
b. Word channel ESI subchannels 3. Software error 

4. Hardware error 
5. Store Subchannel Status command 

Status for Status Table Subchannel, 1. CCW flag (PCI) 
2. Software error 
3. Hardware error 

Status Presented to Software 

1. Machine Check interrupt 

1. Instruction. or 
2. Normal interrupt 

3. Store subchannel status operation 

1. Instruction. or 
2. Status Table Entry and Table 

interrupt 

3. Store subchannel status operation 

1. l TeW Instruction, or 
2. Normal interrupt with bit 24 of the 

lAW set 

i: 
~(I) 
)C"'O 

~g; 
o::D c..-< 
'Oc 
mZ 

~~ 
~~ 
"'D-as 
n' (DCD 
.0 
·en 
~l 
~3 
0.-
Ul -o a: 
co 
CD 

"'D a 
co 
~ 
C» 

3 
3 
CD 
~ 

::D 
CD ;-
~ 

CD 
:J 
n 
CD 

c 

! 
J 

it 
CJ) 



8004 Aev.1 ........... f SPERRY UNIVAC 1100/80 Systems 
~, Capability Processor and Storage Programmer Reference U~TlLIVIL 

32-35 Not Used. 

36-51 Contains the value of the data count existing at the time the status information was 
stored. 

152-59 Contains a subchannel generated status byte if one or more of the following 
conditions is detected. 

152 SIOF Check (Byte and block multiplexer channels) 
SIOF/EI Collision (Word channel) 

53 Interface Control Check 

54 Channe' Control Check 

55 Channel Data Check 

56 Format A Stop Code (Block multiplexer channel only) 

57 Program Check 

58 Incorrect Length (Byte and block multiplexer channels) 
Monitor Interrupt (Word Channel) 

59 Program Controlled Interrupt 

80-67 Contains a device-gener8ted status byte if one or more of the following conditions 
is detected and reported by the device. 

60 Unit Exception 

61 Unit Check 

62 Device End 

63 Channel End 

64 Busy 

85 Control Unit End 

86 Status Modifier 

87 Attention 

88-71 Not Used. 

Byte and block multiplexer channels only 

Byte and block multiplexer channels only 

Byte and block multiplexer channels only 

Byte and block multiplexer channels only 

Byte and block multiplexer channels only 

Byte and block multiplexer channels only 

Byte and block multiplexer channels only 

In word channels used to indicate the presence of 
external interrupt information in the third word of 
the CSW. 

72-107 On a byte or block multiplexer channel, the device status field contains the actual 
status presented by the device. On a word channel, the only valid device status bit 
is the Attention bit (bit 87). On a word channel, the Attention bit set indicates that 
bits 72-107 of the CSW contain an external interrupt status word. The Attention bit 
cleared indicates that bits 72-107 of the CSW are invalid. 



8804 Rev.1 SPERRY UNIVAC 1100/80 System. 
4x4 Capability Processor and Storage Programmer Reference 

ThE_ TSW extension word contains the External Interrupt Status Word presented by the device. The 
format is: ' 

rsw Extension (ESI Only) 

Not 
Not Used Interrupt Status Used ESI Addr"_ 

107 9998 90 89 87 815 72 

Not Used 

143 108 

When an I/O interrupt is acknowledged by the CPU, an interrupt address word (lAW) is stored in a 
fixed location of low order storage. For any I/O interrupt the standard lAW format is: 

lAW 

Machine Check Not IOU Channel D.vice 
Not Used StatUI·· Used Number Addr ... Addr ••• • 

35 215 25 115 15 14 13 12 11 87 o 

• For a machine check lAW, the Device Address is valid only if bit 21 in the status code field 
is set. 

•• Bit 24 of the field is meaningful o'n non-table status requests only. Bits 16 through 23 and 
25 are used with Machine Check status requests only. 

Ea'ch one of a possible four CPUs has one reserved address for the lAW and three reserved addresses 
fol' the CSW (See Table 6-13). Status is presented to the CPU that caused a CSW or lAW to be stored. 
For example, if CPU 0 executes an I/O instruction and receives a condition code of 1, the CSW is 
stored in the reserved CSW address locations of CPU O. Or if CPU 3 acknowledges an I/O interrupt, 
the lAW and CSW are stored in the reserved lAW and CSW address locations of CPU 3. Status is 
reported only once and only through one path. If a subchannel that is holding status and presenting 
an interrupt request is then interrogated by an I/O instruction, it will present that status to either the 
int.errupt or the I/O instruction, but not both. The channel attempts to cancel the interrupt. If the 
'interrupt cancellation is successful, the status will be presented to the instruction and the condition 
code will equal 1. If the interrupt cancellation fails, the status will be presented to the interrupt. The 
I/O instruction will then receive a condition code of 2. 

The Machine Check status bits indicate the following conditions. 

25 Used wit~ bit 21 -Indicates that multiple storage errors occurred when the channel module 
attempted to write one of the 128 nonshared subchannels into storage. 

24 The CSW contains status information from the status table subchannel. 

23 A storage error occurred when the IOU control module attempted to read the first word 
of the CAW. 



8eo .. Rev.1 .....,.... i SPeRFIY UNIVAC 1100/80 System. 
~~Capability Processor and Storage Programmer Reference 

2:Z A storage error occurred when the IOU control module attempted to read the second word 
of the' CAW during a Load Channel register operation. 

2 1 A stol'age error occurred when the channel module attempted to write one of the 1 28 
nonshared subchannels into storage. 

210 A storage error occurred when the channel was attempting to write the preceding Interrupt 
AddrElss Word. 

19 A storage error occurred when the ch,annel attempted to write a Channel Status Word for 
a tabled interrupt. 

18 A stOlrage error occurred when the channel attempted to write a Channel Status Word for 
a non-tabled interrupt or an I/O ~nstruction. . 

17 A storage error occurred while attempting to read the second word of the CAW during a 
Load Channel register operation. 

1 6 An interface control signal error or device address parity error prevented subchannel 
identlification during a control unit initiated selection sequence. This bit is not used on a 
word channel. 

Octal Decimal Assignment 
240 160 Processor 0 Channel Address Word 0 
241 161 Processor 0 Channel Address Word 1 _. 
242 162 Unassigned 
243 163 Unassigned 
:l44 164 Processor 1 Channel Address Word 0 
:l45 165 Processor 1 Channel Address Word 1 
:Z46 166 Unassigned 
247 167 Unassigned 
250 168 Processor 2 Channel Address Word 0 
251 169 Processor 2 Channel Address Word 1 
252 170 Unassigned 
253 171 Unassigned 
254 172 Processor 3 Channel Address Word a 
255 173 Processor 3 Channel Address Word 1 
256 174 Unassigned 
257 175 Unassigned 
260 178 Processor a Interrupt Address Word 
281 177 Processor 0 Channel Status Word 0 
282 178 Processor 0 Channel Status Word 1 
283 179 Processor 0 Channel Status Word 2 
264 180 Processor 1 Interrupt Address Word 
285 181 P~ocessor 1 Channel Status Word 0 
266 182 Processor 1 Channel Status Word 1 
267 183 Processor 1 Channel Status Word 2 
270 184 Processor 2 Interrupt Address Word 
271 185 Processor 2 Channel Status Word 0 
272 186 Processor 2 Channel Status Word 1 
273 187 Processor 2 Channel Status Word 2 



8804 Rev.1 .....,...,. SPERRY UNIVAC 1100/80 Sv-tem. 
4x4 Capability Processor and Storage Programmer Reference 

r.bl. 6-13. IOU F;xtJd Addr •••• (continutJd) 

Octal Decimal Assignment 
274 188 Processor 3 Interrupt Address Word 
275 189 Processor 3 Channel Status Word 0 
276 190 Processor 3 Channel Status Word 1 
277 191 Processor 3 Channel Status Word 2 

UItDATI LiVB. 
8-60 

flAGI 

6. 11. Instruction Status 

If the addressed subchannel or, in the case of a HOV instruction, the addressed device is in the 
interrupt pending state for an I/O instruction, or if the execution of the I/O instruction generates status 
conditions, the channel stores a CSW in the proper reserved storage addresses and presents a 
condition code of 1. There are two exceptions: a CSW is not stored for a subchannel in the interrupt 
pending state if an interrupt request for that subchannel has been presented to the CPU and 
cancellation of that interrupt request was unsuccessful. Also, a CSW is not stored if the addressed 
subchannel is holding status for a device other than the addressed "device. Note that a TSC instruction 
addresses only a subchannel and not a device. 

The response of a condition code of 1 to an I/O instruction always indicates that a CSW has been 
stored by the channel, and that the addressed subchannel has been set to the available state. The 
status in the CSW may pertain to either a previous operation or the attempted execution of the present 
instruction. 

Not 

Used O.vic. Addr ... 

35 3231 2423 

Not 

CSW for va In.truction 

. 
Next CCW Addr •• s 

Used Dftice Status Subchannef Statua Residue. Oata Count 

71 8887 8CHII 52 151 

o 

38 

On word channels, bits 60-66 will be cleared. Bit 67 will be set only if bits 72-107 of the CSW 
contain an external interrupt. 

External Interrupt Stltu. Word (Word Chlnn.1 Only) 

107 72 



I SPERRY UNIVAC 1100/80 Systems 
~ Capability Processor and Storage Programmer Reference 

6. 12. Status 'Table 

6-51 
PAGE 

The It,Btus tab'-t subchannel controls the status table .. The status table subchannel is loaded by an 
L TCW instructic)n. An L TeW instruction initiates the execution of a status table control word (STCW) 
list by the status table subchannel. Bits 36-59 of the CAW contain the address of the first STCW 
of the STCW IilSt. An STCW contains the data count and the starting address for the status table. 
The clommand code field is checked only for a TIC command. Any other command code value 
activa1tes the status table subchannel. The chain data (CD) and program controlled interruption (PCI) 
flags itre the orlly valid flags in an STCW. All the other STCW flags are ignored. Even if the status 
table !Iubchannel is active, a new L TCW instruction is accepted, a new STeW list is initiated, and the 
'status table subchannef is loaded with the first STeW of the new list. 

After each entry (TSW) stored in the status table, the data address field of the status table is 
incref1nented by two (byte multiplexer channel) or four (word channel), and the data count is 
decremented by two (byte multiplexer channel) or four (word channel). If the status table subchannel 
detects a data c:ount of zero or a hardware error when attempting to make an entry in the status table, 
the op,eration of'the status table subchannel is terminated and a normal interrupt request is generated. 

[

Not 

UHd 

, [ 
71 

35 

Not 

Used 

Not 

UHd 

Devic. Addr ... 

3231 

Device Status 

eu 87 

3231 

I u~ EI 0000000 

71 ea e7 ee 

2423 

Subchannel Statu. 

eoS9 

2423 

Subchannel Status 

8058 

EI - 0 means bits 72-107 are meaningless 

Nut CCW Addr ••• 

Residua. Data Count 

5251 

Ned CCW Addr ... 

Residual Data Count 

52 51 

- 1 means bits 72-107 contain external interrupt status word 

o 

38 

o 

38 



1804 A4w.1 SPERRY UNIVAC 1100/80 Systems . 
4x~ Capability Processor and Storage Programmer Reference 

External Interrupt StatuI Word if Bit 87 is Set 

107 

Not UHd 

14 .. 

UJlDATI LIYIL 
8-52 

JtMI 

72 

108 

Oln a word channel, the status table subchannel must be active before any ESI device requests for 
either data or status are handled. This restriction prevents ESI device requests from corrupting initial 
load operations. 

Status from the status table subchannel is reported via I/O instruction or normal interrupt. The device 
status field of a status table subchannel CSW will always be zero filled. The only valid subchannel 
status bits and the conditions generating the particular subchannel status bit are the following: 

1., Channel Control Check (Bit 54) 

a. A hardware fault was detected during retrieva! of a status table control word. 

2. Channel Data Check (Bit 55) 

a. A hardware fault was detected when making an entry in the status table. 

3. Program Check (Bit 57) 

a. The status table CAW first STeW address did not specify a double word boundary. 

b. The original STeW data count field equaled zero and the command was not Transfer in 
Channel. 

c. The Transfer in Channel command was specified in successive STCWs. 

d. The STeW address specified by a Tle command is not on a double word boundary. 

e. The byte multiplexer channel STeW data address did not specify a double word boundary. 

f. The ESI word channel status table eew data address did not specify a Quadruple word 
boundary. 

g. The byte multiplexer channel STeW data count was not a multiple of two. 

h. The ESI word channel STeW data count was not a multiple of four. 

i. The channel attempted to read STeW from a location outside of available storage. 

j. The STeW data address specified a location outside the available storage. 

k. The STeW data count field was decreased to zero and data chaining was not indicated. 



8804 Rev.1 
UP-HUMlIR 

I SF'ERAY UNIVAC 1100/80 Systems 
~(4 Capability Processor and Storage Programmer Reference 

6.1:3. Store Subchannet Status - SST 

UfIOATi LEVEL 
6-63 

PAGI 

The only useful status resulting from an SST command will be the residual data count. The device 
and subchannel status fields will always be zero. Valid device status, subchannel status, or external 
intelrrupt statlUs cannot be presented by way of an SST command. This status is reported only by 
way of interrlupt, instruction, or the status table. 

CSW for the Store Subchllnnel Statu. Commllnd 

MJ\I Oeyice Addre •• Next CCW Addre •• [~~~~ 
--------------~------------------------------------------------32:11 2423 o 

[u':: I 00000000 00000000 Residual Data Count 

71 6867 6059 15251 38 

6. 14. Subchannel Status 

The :subchannel status bits are set when particular CCW flags are set or when a hardware or software 
erro,' is detected by the channel. Subchannel status indications are presented to the software in the 
subc:hannel status field of a CSW or TSW. 

6. 14. 1. SIOF Device Check (Byte or Block Multiplexer Channels Only) 

The SIOF Device Check (bit 52) subchannel status bit indicates that a device that was to be initiated 
by a previously issued SIOF instruction is not operational (not installed or offline). 

6. 14~.2. SIOF-EJ Collision (Word Channel Only) 

The SIOF/EI Collision (bit 52) subchannel status indication is provided only on subchannels 
connolling w()rd peripheral interfaces. When set, this bit indicates that an external interrupt was 
receilved on a word interface whose subchannel was holding a pending channel program from a 
previiously ext.cuted SIOF instruction. The queued\operation has been removed from the channel 
hardware and will not be initiated at the device. 

6. 14.3. Interface Control Check 

The Interface Control Check (bit 53) subchannel status bit indicates that a hardware error in the 
channel to device interface was detected by the channel. The hardware error was detected during 
one lof the following operations: 

1. A byte 0" block multiplexer channel detected a device interface parity error during the transfer 
of devicEt status. 



1804 Rev.1 
UfL-NII.,. 

SPERRY UNIVAC 1100/80 SystemS , 
4x4 Capability Processor and Storage Programmer Reference 

2. A word channel detected a device interface parity error during the transfer of an external 
interrupt status word. ' 

3. A byte peripheral device responded with an address other than the address specified by the 
channel during a channel initiated selection sequence. 

4. A byte peripheral device became non-operational during a command chaining. 

5. A byte peripheral interface presents a combination of control signals that cause improper 
sequencing in the channel. 

6. 14.4. Channel Control Check 

The Channel Control Check (bit 54) subchannel status bit indicates that a hardware error was detected 
by the channel when attempting to read or write a control word from storage. The hardware error 
was detected during one of the following operations: 

1. The channel was attempting ~o read the second word of the CAW for an SIOF instruction. 

2. The channel was attempting to read a CCW or STCW. 

3. The channel was attempting to store a status word for the store subchannel status command. 

4. The channel was attempting to read from main storage a control word for one of the 128 
nonshared subchannels. 

6. '14.5. Channel Data Check 

The Channel Data Check (bit 55) subchannel status bit indicates that a hardware error was detected 
during the transrer of data from the device to the channel, from the channel to main storage, or from 
melin storage to the channel. 

6. 14.6. A Format Stop Code (Block Multiplexer Channel Only) 

The A Format Stop Code (bit 56) subchannel status bit indicates that a one was detected in the most 
significant bit of an A format quarter word and the operation in progress was terminated. The residual 
byte count mayor may not be zero. If data chaining was specifed in the active CCW, it will be ignored. 

6.14.7. Program Check 

The Program Check (bit 57) subchannel status bit is set in a CSW when the hardware detects an error 
in the information provided by software in a ccW, STCW or CAW. The program check bit is also 
set if the CCW, STCW or CAW to be fetched is in nonavailable storage. If a CSW is reported as a 
re:lult of a program check, the residue count is unpredictable. The command address field of the 
CSW will only indicate which CAW or group of data chained CCWs or STCWs contained the word 
that caused the program check. The following is a list of conditions that will cause program checks: 

1. The CAW first CCW address did not specify a double word boundary. 

2. The status table CAW first STCW address did not specify a double word boundary. 



S804 RaY.1 
Uf'.MI .... ~PE:RRY UNIVAC 1100/80 Systems 

4x4 Capability Processor and Storage Programmer Reference ,-----, UJIIOATE LiVEL 
6-55 

PAGE 

3. A eew or STeW contained an invalid command for an operation other than a data chain. 

4. 'The eew or STCW data count equaled zero and the command was neither Transfer in Channel 
nor Store Subchannel Status. 

5. 'The Tran:sfer in Channel command'was specified in successive CCWs or STeWs. 

6, An ESI. word channel eew contained the Forced EF command with a data count not equal to 
[one. 

7. 'The CCW or STCW address specified by a TIC command was not on a double word boundary. 

8. 'The Store Subchannel Status command data address field did not specify a double word 
boundary. 

9. 'rhe truncated search (TS) flag was specified in a byte multiplexer eew. 

1 O. I~ny byte multiplexer channel cew or a block multiplexer channel command eew did not 
lspecify only one format. 

11. J~ byte multiplexer channel ecw specified format e. 

12. 'rhe byte multiplexer channel STCW data address field did not specify a double word boundary. 

13. 'rhe ESI word channel status table CCW data address field did not specify a quadruple word 
boundary. 

14. ~rne byte multiplexer channel STeW data count field was not a multiple of two. 

15. 'rhe ESI word channel STeW data count field was not a multiple of four. 

16. irhe channel attempted to read a eew or STeW from a location outside of available storage. 

17. J~ eew Olr STeW data address specified a location outside the available storage. 

18. 'rhe STe'JV data count field was decreased to zero and data chaining was not indicated. 

S.14.8. Monitor (Word Channel Only) 

The Monitor (bot 58) subchannel status bit indicates that a eew list on a word subchannel has been 
complleted. Thi! Monitor subchannel status bit is set and an interrupt is generated when an operation 
is completed on a CCW that has the monitor ecw flag set and does not have either the data chain 
flag Sl9t or the command chain flag set. If a ecw has either the data chain or the command chain 
flag .SI8t, the monitor flag is not interpreted and no interrupt is generated. 

6. 14.9. Incorrect Length (Byte or Block Multiplexer Channels Only) 

The Irlcorrect L.ength (bit 58) subchannel status bit indicates that the number of bytes specified in 
the ecws for ian I/O operation was not equal to the number of bytes requested or offered by the 
devic.t. The incorrect length indication is presented only if the active CCW has neither the truncated 
search flag nor the suppress length indication flag set, and the data chain flag is not set. The incorrect 
length indication is also suppressed on immediate commands. Detection of an incorrect length 
condidon causes the operation to be terminated and an interrupt to be generated. See Table 6-9 
for th(9 affect clf the CO, ee, SLI, and TS flags on the indication of incorrect length. 



8804 Rev.1 
~ ..... SPERRY UNIVAC 1100/80 Syatema 

4x4 Capability Processor and Storage Programmer Reference 

6. 14. 1 O. Program Controlled Interrupt 

UPDAl1 LIYIL 

When the channel detects the PCI flag during a data transfer, an interrupt and/or a table entry in 
the status table is attempted for that subchannel. The PCI (bit 59) subchannel status bit indicates that 
a PCI flag had been detected in a CCW or STCW list. Because the program controlled interruption 
does not affect the execution of a eew or STCW list. the detection of several PCI flags in a CCW 
or STeW list may result in only one interrupt with the PCI subchannel status bit set. Each PCI flag, 
however, never generates more than one interrupt or one TSW entry. 

6. 15. Device Status 

If the device presents termination status on a byte multiplexer shared subchannel or a block 
multiplexer subchannel. the operation is terminated and an interrupt is generated if an interrupt from 
an()ther subchannel is not already being presented. If an interrupt is being presented, the status is 
stacked in the device. When the interrupt mechanism becomes available, the status is accepted from 
the device, and an interrupt is generated. If the device presents termination status on a byte 
multiplexer nonshared subchannel, the operation is terminated, and a status table entry is executed 
if the status table subchannel is active. If the status table subchannel is inactive, no status table entry 
is made, and the device status is lost. 

When a device on a byte or a block multiplexer channel presents chaining status. a command chain 
is performed only if the command chain flag is set and the data chain flag is not set. Otherwise, the 
opisration is terminated. and an interrupt is presented as previously explained. 

On: a word channel lSI interface, an external interrupt terminates the operation and generates an 
interrupt. On a word channel ESI interface, an external interrupt terminates the operation and 
generates a status table entry if the status table is active. If the status table is inactive, no table entry 
is made, and the extema' interrupt is lost. There is one exception for terminating an operation. An 
external interrupt will generate an entry into the status table and cause an EI chain to be performed 
if the operation is still active. the EI chain flag is set, and the status table subchannel is active. 

The byte or block multiplexer channel device status bits are: 

Status Codes ~ 

1'000 0000 Attention 

0100 0000 Status Modifier 

0010 0000 Control Unit End 

0001 0000 Busy 

0000 1000 Channel End 

0000 0100 Device End 

0000 0010 Unit Check 

0000 0001 Unit Exception 

For the word channel, the device status field will always be zero with the exception of bit 67. If bit 
87 of the CSW or TSW is set. bits 72-107 contain an external interrupt status word. If bit 67 is 
cleared. bits 72-107 of the CSW or TSW are meaningless. 



8804 Rev.1 I SPERRY UNIVAC 1100/80 Systems 
__ ~_~~ Capability Processor and Storage Programmer Reference UPOATI LEVEL 

6-57 
"AGE 

After presenting an interrupt with any device status or any subchannel status other than the PCI bit, 
the subchannel is returned to the available state. The associated device, however, may not be 
availslble because device status may have split or the device may have not presented status by the 
time 1the interrupt was acknowledged. After initiating a CCW list, the software may have to handle 
any nlumber of interrupts before both the subchannel and device are available. 

All bits of the $ubchannel status and device status fields must be investigated for each CSWor TSW, 
because several device status bits and/or several subchannel status bits may be set in one CSWor 
TSW.: 

6. 16,. Data Chaining Precautions 

TherEt are several precautions that should be taken during data chaining operations. Data chaining 
with Ismail datcJ counts on high-speed devices that are capable of data overruns' should be avoided. 
The f1ollowing precautions should also be noted when data chaining on the byte or biock multiplexer 
channels: 

1. IOn the byte multiplexer channel, switching of the byte packing formats (the E. A. a, and C CCW 
~flags) is <allowed between data chained CCWs and command chained CCWs. On the block 
multiplexer channel, the format flags in the command CCW specify the format for the entire data 
Ichained CCW list. On the block multiplexer channel, the format flag field in 311 data chained 
CCWs is ignored, and the format flags can only be changed by executing a command chained 
CCW. 

2. iFormat A (36-bit mode) -If a CCW byte count for an operation is not completed on a full word 
boundary, leftover bytes in the final data word are unaffected. 

3. Byte multiplexer channels - Format a (36-bit mode) -If a CCW byte count for an input operation 
is not co~pleted on a full word boundary, leftover bytes in the final data word are unaffected. 

4. Block mUlltiplexer channels - Format B (36-bit mode) -If a CCW byte count for an input operation 
is not completed on a full word boundary, leftover bytes in the final data word are zero filled. 
Only full 36-bit words are transferred to main storage in format a on the block multiplexer 
,channel. 

5. Formats A and B (36-bit mode) -If a CCW byte count is not completed on a full word boundary 
and data chaining is indicated, the first byte transferred under control of the new CCW is stored 
in or read from the initial byte position for that format. 

6. Format C (36-bit mode) -If a CCW byte count for an input operation is not completed on a full 
word boundary, the leftover bytes and partial bytes to complete only that word are zero filled. 
Only full words are transferred to storage in format C. The one exception is partial byte 
remainders. See item 7. 

7. Format C (36-bit mode) - If a CCW byte count is exhausted on a partial byte boundary (a 
boundary that requires the final byte to be split into two words for input, or a boundary that 
requires part of the final byte to be taken from another word for output) and data chaining is 
not indicated, the partial byte remainder is thrown away on input. On output the final output 
byte is formed as described in Table 6-14 for the applicable 36-bit format C forward operation. 

8. Format C (36-bit mode) - If a CCW byte count is not completed on a full word boundary and 
data chaining is indicated, the first byte transferred under control of the new CCW is stored or 
read fron, the initial byte position for format C. There is one exception. If a CCW byte count 



8804 Rev.1 ......... SPERRY UNIVAC 1100/80 Systema 
4x4 Capability Processor and Storage Programmer R.f.rence 

8-68 
ftAGI 

is exhausted on a partial byte boundary and data chaining is indicated, the packing or unpacking 
of data continues as if the data chain never occured. For example, on input the first part of the 
final byte (the byte that is on the partial byte boundary) is transferred to storage und,er control 
of the original CCW. The partial byte remainder is then transferred to storage under control of 
the new' CCW. It should be noted that when the final data chained CCW byte count is exhaused 
on a partial byte/9N+5 boundary, the- partial byte is not transferred to storage on input. On 
output the final output byte is formed as described in Table 6-14 for the applicable 36-bit format 
C forward operation. 

9: Block multiplexer channel and 151 word interfaces - Because the channel prefetches one CCW 
ahead during data chaining, there is one restriction on dynamically modifying CCW lists during 
input data chaining operations. If a channel is executing CCW A and data chaining to CCW B 
is specified. CCW B cannot be part of the data buffer being retrieved by CCW A because the 
channel may have prefetched CCW B before CCW B was transferred to storage as part of the 
data buffer of CCW A. 

10. Word channels : Certain chaining operations can be executed by either a data chain or 
command chain. In these situations always use data chainin'g. 

See Table 6-14 for examples .of the above items. 



8804 Rev.1 
~ ~Pel.RY UNIVAC 1100/80 System. 

4x4 Capability Processor and Storage Programmer Reference -------

$tDlag. Addr ... Specified by CCW2 

8 

Byte count = 2 Data chained to a byte count of 2 

$10I'6ge Add,.... S/HIcified by CCW1 

~. 
:34 32 30 28 28 24 22 20 18 16 14 12 10 8 

Byte count - 2 or status after 2 bytes 

* I:lit positioma wfth an .at ..... k will be writt.n into on input and ignored on output. 

o 'r'heM bit pc:JSittona set to z.ro by h.rdwar. on input and ignored on output. 

8 4 

8 4 

2 

2 

0 

0 

6-59 
PAGE 

<D 'rh. I.tt .... indlcat. the ord.r in which bita .r. transferred. ~ indicat •• the first byte transferred. ! indicates the second 
lityte transferred. £ indicat .. the third byte transf.rred. etc. Numbers indicate the bit position in the byt.. A!' is the 

IMat significant bit in the byt ••• ! is the second most significant bit in the byte, a ! is the third most significant bit 
lin the byt., .tc. . 



8104 Aw.1 ........... SPERRY UNIVAC 1100/80 Syetema 
4x4 Capability Processor and Storage Programmer Reference 

36-Bit Format B - Forward Operation 

Stt:Jng_ Add,.... S(J«:ifI~ by CCW2 

34 32 30 28 25 24 22 20 18 US 14 12 10 8 

Byte count - 4 Data chain to byte count - 2 

St~ Add,.. Sf»CifI~ by CCW, 

34 32 30 28 26 24 22 20 18 18 14 12 10 8 

Byte count - 2 or status after 2 bytes 

o Th ... bit poaitiOM a,.. Ht to zero by Mrdwa,.. on Input and ignored on output. 

8 2 o 

4 2 o 



8804 AIIY.1 
UNNMIM 

I SPIEARY UNIVAC 1100/80 Systems 
~4 Capability Processor and Storage Programmer Reference 

36-Bit Format C - Forward Operation 

34 32 30 28- 28 24 22 20 18 10 8 

Datla count === 4 or status after 4 bytes 

StoI'8(J. Addr ... S".,:ili«J by CCW1 (9N+5 Bound6ry) 

34 32 30 28 26 24 22 20 18 16 14 12 10 8 

Datla count === 5 and status after five bytes 

E3 to Eo are not transferred to storage on input 

E3 to Eo are created from A, to A4 on output (invalid data) 

"- OR-

Oatis count > 5 and status after five bytes 

E3 to Eo are not transferred to storage on input 

E3 to Eo are transfered to the device on output (valid data) 

o Th ... bit positions set to zeto by hardware on input and are ignored on output. 

UPDATI LEVEL 

e 4 2 o 

e 4 2 o 



leo .. Rev.1 ......... SPERRY UNIVAC 1100/10 SystemS 
4x4 Capability Processor and Storage Programmer Reference 

36-Bit Format C - Forward Operation 

34 32 30 28 2., 24 22 20 18 18 14 12 10 8 8 4 2 0 

34 32 30 28 28 24 22 20 18 18 14 12 10 8 ., 4 2 0 

Data count .. 9 

34 32 30 28 28 24 22 20 18 18 14 12 10 8 8 4 2, 0 

34 32 30 28 28 24 20 18 18 14 12 10 8 e 4 2 0 

s~ Addtwl Sp«ill«J by CCW2 

Data count .. 4 Data chained to data count .. 9 

o TheM bit positiOM ...... t to zero by h.rdw .... on input .nd ignored on output. 



ael04 Rev.1 
UNtUMIIR 

I SPERRY UNIVAC 1100/80 Systems .LE Capability Processor and Storage Programmer Reference 

36-Bit .Format C - Forward Operation 

:34 32 30 28 28 24 22 20 18 18 14 12 10 8 

34 32 30 24 18 14 12 10 8 

$ttJf'6gt1 Add,.. .. $P«#fi«/ by CCW2 

Dati' count =- 6 Data chained to data count == 4 

o Thnl bit poaitloM at. set to zero by hardware en input and ignored on output. 

I ~3 
"AGE 

8 4 2 o 

.. 



leo .. Rev.1 ......... SPERRY UNIVAC 1100/80 SyMema 
4x4 Capability Processor and Storage Programmer Reference 

6. '17. Subchannel Expansion Feature and Channel Base Register 

UPOATI t.ML 

As described in 6.2.2 and 6.3.1, the subchannel expansion feature enables the channel to. maintain 
the control words for the four or eight (depending on the option) most recently active subchannels 
in the channel while storing the control words of the remaining 120 or 124 subchannels in main 
storage. Four storage addresses per subchannel and 512 addresses per channel must be reserved 
for each channel with the subchannel expansion feature. These addresses are a hardware scratch 
pad and are for hardware use only and should not be interrogated or changed by software except 
during initialization or error recovery. During system initialization, the software must initialize these 
addresses by setting equal to 1,6 bits 24-27 of every fourth address (each address with bits 0 and 
1 equal to 0). The format of the control words held in storage is shown in Table 6-15. 

If the mode bits 27-24 - 0001 2, all four words are not used. All other values of the mode bits 
indicate a hardware fault. 

Each channel that has the subct1annel expansion feature has a channel base register that consists 
of 15 bits. The channel base register specifies the locati,on of the 5 1 2 addresses that are the 
channel's scratch pad. The channel base register provides bits 09 through 23 of the storage 
addresses that are used when swapping subchannel c.ontrol words between main storage and the 
channel. 

6. 1 8. Interrupt Mask Register 

The interrupt mask register is loaded with the contents of bits 36-71 of the CAW during an LCR 
instruction that has bit 0 of the CAW set. One interrupt mask register is provided in each IOU. This 
register provides the capability of determining which channel modules are allowed to present 
communications or noncommunications interrupts. It also provides a means of selecting to which 
Cf'U or CPUs the interrupts are to be sent. The register is divided into four bytes. Two bytes for 
each CPU. These two bytes are then separated into communications or noncommunications 
in1terrupts. The interrupt mask register has the format shown in Table 6-1 6. A set bit suppresses 
in'terrupts of the specified type from the corresponding channel 'module to the corresponding CPU; 
i.e., a one bit in position 39 suppresses the reporting of noncommunications interrupts on channel 
m,odule 3 to CPU O. If bit position 57 is also set. the reporting of noncommunications interrupts on 
channel module 3 is completely suppressed. An interrupt that is completely suppressed will be 
reported when either of the corresponding mask bits is later changed to O. Any interrupts that are 
currently being presented to the CPU when an LCR instruction is received will be reported before 
the interrupt mask takes effect. In a unit CPU system, software must mask out both communications 
and noncommunications interrupts to the nonexistent CPU during system initialization and each time 
the LCR instruction is used. . 



8804 Rev.1 
UP-NUMIM 

I . SPEFtRV UNIVAC 1100/80 Systems 
~ Capability Processor and Storage Programmer Reference 

Tabls 6- 15. Scratch Pad Formats for Subchann" Expansion Feature 

[u': I ~::: Modo Data Addres. 

35 32 31 28 27 24 23 o 

[U~d I , ____ C_cw ___ F�_a_gs ____ ~I __ Fo_FI_:;_:_t __ I~_U_:_~_t __ ~ _____________ D_at_._c_o_u_n_t ____________ ~ 
35 3231 

Used 

Device 

Addre •• 

2423 2019 18 15 o 

Next CCW Addre .. [
.;Jot 

,--------------~--------------------------------------------------~ 35 3231 2423 o 

[ Not Used 

,-------
35 o 

J=ormat above for: Mode Bits 27-24 == 00102 or 10002 or 1001 2 or 10102 or 11002 

@I Not Device 

Used Mode Address Not Used 

35 3231 2827 2423 18 15 0 

@I Subchannel 

Used Device StatuI StatuI Data Count 

35 3231 2423 18 115 0 

@I Device 

Add ..... Next CCW Addre .. 

31 323'J 2423 0 

[ Not Used 

35 0 

Format above for: Mode Bits 27-24 :II 00002 or 00.112 



8804 Rev.1 SPERRY UNIVAC 1100/80 System. 
4x4 Capability Processor and Storage Programmer Reference UPDATI LIVIL 

Processors 1 and 3 

Bit Positions of the 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 
CAW 

Channel Module * 7 6 5 4 3 2 1 0 * 7 6 5 4 3 2 1 0 
Number 

Interrupt Type Communications Noncommunications 

Processors 0 and 2 

e'it Position of the 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 
CAW 

Channel Module * 7 6 5 4 3 2 1 0 * 7 6 5 4 3 2 1 0 
Number . . 
Interrupt Type Communications Noncommunications 

* Not u6t1d 

6. '19. Initial Load 

Th'8 initial load capability is included in each channel. The initial load operation is performed in only 
the 36-bit mode of operation. On a byte or block multiplexer channel, format C (8-bit packed) is 
specified, the starting data address is set to MSR, and the byte count is set to 4608 ,0, On a word 
channel, the starting Ciata address is set to MSR and the word count is set to 1024 ,0, The size of 
the initial load boot block is determined by the channel and the device. The channel ~iII terminate 
the operation after 1024,0 full 36-bit words have been loaded into storage. If the device presents 
status before 1024,0 words have been loaded. the channel immediately terminates the operation and 
presents an interrupt to the CPU 

6.20~ Back-to-Back Operation (Word Channel Only) 

The word channel back-to-back capability will allow the software to execute block transfers or 
scatter/gather operations via an I/O channel. Two lSI interfaces on the same channel are required, 
an output interface and an input interface. The back-to-back interfaces must be initialized after the 
IOU is master cleared, after any hardware or software error on the back-to-back interfaces. or after 
a back-to-back operation that did not have the output buffer data count equal to the input buffer data 
count. The back-to-back interfaces are initialized by using the following procedure: 

1. To the output interface, issue an SIOF instruction that initiates the execution of one CCW. The 
CCW must have a forced external function command and a data count of one. 

2. Handle the external interrupt from the input interface. This external interrupt was generated 
by the forced external function operation on the output interface. 



lle04 Aw.1 
~ ~pelRAY UNIVAC 1100/80 Systems 

4x4 Capability Processor and Storage Programmer Reference -----, UfIOATI LIVEL 

To execute a back-to-back operation the following procedure must be followed: 

1. Issue an SIOF instruction to the input interface to' activate the input buffer. 

2. Issue an SIOF instruction to the output interface to activate the output buffer .. 

Once the back·-ta-back interfaces are initialized, many back-ta-back operations may be performed 
by fol!lowing the above procedure for each operation. Data chaining is allowed on both the output 
and irlput interfaces for each back-to-back operation, but the total output buffer data count must 
equal the total input buffer data count. The use of the DAD, SK, OAL, PCI, and MON CCW flags is 
allowEtd, but cc)mmand chaining is prohibited. 

6.2 1. Priorities 

The c.~mtrol module establishes data handling priority among the eight channel modules. Channel 
modul!e 0 has the highest priority and channel module 7 has the lowest priority. The channel module 
gives highest priority to data transfers, second highest priority to interrupts, and lowest priority to 
instruc:tions. Word channel data handling priority is a homing priority with interface A having the 
highent priority, then interfaces S, C, and 0, with interface 0 having the lowest priority. 

6.22. Basic Programming Procedure 

The p,'ogrammer should use the following basic procedure in order to execute a series of operations 
on a byte or block multiplexer device or a word subchannel: 

1. B:uild the list of CCWs, making sure that the correct flags in each CCW are set. and build any 
necessary external function words or data buffers . 

. 2. Load the clddress of the first CCW in Xa bits 0-23. 

3. Load the u and Xm registers such that u + Xm bits 0-12 specifies the IOU, channel, and device 
numbers. 

4. Clisable IIC) interrupts. 

5. II~sue the lSIOF instruction. 

e. Test the condition code to determine the result of the SIOF instruction. (Note that the next 
instruction is skipped if the condition code equaled 0 and the CPU did not timeout the 
instruction.) 

7. If the instrluction is not timed out by the CPU and a condition code of 0 is received, enable I/O 
irlterrupts and continue with the CPU program. If another condition code is received or the 
irtstruction is timed out, the appropriate action should be taken. 

8. Vlllait for the 1/0 interrupt or interrupts. Use the resultant status to determine if the CCW list 
~ras executed successfully. If the CCW list was terminated before it was comp'eted, the status 
will conta;', enough information to determine how much of the CCW list was executed, and why 
the CCW list was terminated before it was completed. 



1804 Rev.1 .......... SPIRRY UNIVAC 1 100/10 S~ 
4x4 Capability Processor and Storage Programmer Reference 

6.23. Programming Examples 

IJIIDATI LIVIL 

For an example of the block multiplexer channel CCW list see Figure 6-3. The execution of this CCW 
list is initiated by an SIOF instruction with a CCW address of BO 18' The CCW list is executed as 
follows: 

1. The channel reads the first CCW and issues the Read command to the device. 

2. Nine bytes are transferred from the device to the channel, but none of the bytes are written into 
storage because the skip data flag is set. 

3. The device presents Channel End and Device End status (chaining status). 

4. The channel initiates the command chain and issues the Write command to the device. 

5. Thirty-Six bytes are transferred from the channel to the device. All the bytes are transferred from 
the same storage address because the data address lock flag is set. 

6. The channel executes a data chain and transfers two bytes from storage address FO 18 and two 
bytes from storage address EF 18 because the data address decrement flag is set. 

7. The device presents Channel End and Device End status (chaining status). 

8. The channel initiates the command chain and executes the Store Subchannel Status command. 
A two word CSW is stored at storage address 44 18, In the CSW, the next CCW address field 
equals B8, the data count field equals zero, and the subchannel ~nd device status fields equal 
zero. 

9. The channel continues the command chain and issues the read backward command to the 
device and then terminates the operation because an illegal combination of format flags is 
detected. 

10. The device presents Channel End and Device End status. 

11. The channel accepts the device status and presents an interrupt request to the CPU. 

1 :2. The interrupt is acknowledged and a CSW is written with the next CCW address field equal to 
BA,8' the data count field equal to 118, the Program Check and PCI subchannel status bits set, 
and the Channel End and Device End device status bits set. 



~P£IRRY UNfVAC 1100/80 Systeml 
4x4 Capability Processor and Storage Programmer Reference ,-----

Bits 
Read Command 
~ 

Modifier Bits 
,.-~ Write Command 

~ 
1 0 o 0 0 1 0 0 0 o 0 o 0 o 0 0 0 0 0 0 0 o 1 

O~ O~ [X 1 1 , 0 O~ 0: ~ ~ 0 0 0 0 0 0 0 0 0 

I~~ Format A 
)ata Chain 30 bit 

- Data Address Lock 

1 0 0 0 0 

o 1 0 o 1 

1 1 

0 0 

6-69 
'.141 

o 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 B4
16 

o 0 0 0 0 0 0 0 0 0 0 0 0 , 0 0 B516 

Data Address Decrement 
.. Command Chain 
~ore Subchannel Status Command 

Modifior Bits 
I r- Read Backward Command 

,.-~ I .. \ 

1m 10' 1 0 0 0 0 0 o 0 o 0 1 1 0 0 0 o . 1 0 o 1 1 1 1 1 1 1 1 

0 0 0 0 1 0 1 ,X X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 1 

C8J Don't C~lre bit 
~ Illegal Secause Two Formats are Specified 



8804 Rev.1 
~ 

SPERRY UNIVAC 1100/80 System. 
4x4 Capability Processor and Storage Programmer Reference UPDATE LlYIL 

8-70 
"AGI 

The interrupt mechanism was assumed to be busy during the execution of this CCW list, causing the 
PCts to be overlaid. 

For an example of the word channel lSI interface CCW list see Figure 6-4. The execution of this CCW 
list is initiated by an SIOF instruction with a CCW address of A2. The CCW list is executed as follows: 

1. The channel reads the first CCW and issues the forced external function to the device. The 
forced external function contains a Write command for the device. 

2. The channel then executes the command chain. The TIC command is executed and the CCW 
address- field is changed to 54,8' . 

3. The channel continues the command chain and executes the Write command by activating the 
output data buffer. 

4. Four words are transferred from the channel to the device. All the words are transferred from 
the same storage address because the data address lock flag is set. 

5. The channel executes a data chain and transfers three words from storage addresses 29 18, 

28 18, and 27 18 because the data address decrement flag is set. 

6. The channel executes a command chain and issues a forced external function to the device. The 
forced external function contains a Read command for the device. 

7. The channel executes the Read command by activating the input buffer. 

8. Two words are transferred from the device to the channel but not to storage because the skip 
data flag is set. 

9. The channel terminates the operation and presents an interrupt request to the CPU when the 
interrupt mechanism is free. 

10. The interrupt is acknowledged and a CSW is written with the next CCW address field equal to 
62,8' the data count field equal to zero, and the Monitor and PCI subchannel status bits set. 

The interrupt mechanism was assumed to be busy during the execution of the CCW list, causing the 
PCls to be overtaid. The device was assumed to be non-fnterrupting. On an 151 interface, an external 
interrupt immediately terminates the execution of a CCW list. 



I SPIERRY UNIVAC 1100/80 Systems 
~t4 Capability Processor and Storage Programmer Reference UllOA 11 L&VIL 

8-71 
PAGI 

Command Chain 

TIC Command 
,---A-. 

o 0 0 0 0 0 0 0 001 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 A3 

o 0 0 0 0 0 0 0 0 0 0 0 001 0 

o 0 000 000 000 0 0 1 0 0 

A4 

AS 

54 

55 

Checked only for TIC Command 

Command Chain 
Forced EF Command 

t-'-. 

Command Chain 
Read Command 

,,-A-., 

o 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 56 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 57 

o 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 58 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 59 

L8J Don't Care Bit 

60 

61 





se04 Rev." 
UfI..wMIM --------U!PERRY UNIVAC 1100/80 Systems 

4x4 Capability Processor and Storage Programmer Reference 

7.1. General 

UPOATI t.EV!L 
7-1 

PAGE 

7. Interrupts 

An intt9rrupt causes the current instruction sequence to be suspended and an instruction sequence 
starting at a fixed storage location to be initiated; the fixed address replaces the value in the program 
addrens register. The fixed storage address is associated with the event or condition that caused 
the interrupt to be generated. and thereby allows switching to a program to respond to thet condition 
or event. Excepting those instructions that are explicitly named as interruptible, such as repeated 
instruc:tions like Block Transfer, the central processor units (CPU) honors interrupts only after the 
currenlt instruction is completed and only if the interrupt to be honored is allowed. Table 7-1 shows 
the interrupts and their priorities. The interrupts are categorized by levels of priority. The following 
interrupts are always allowed: 

• A~U program exception interrupts, including Guard Mode and Addressing Exception interrupts. 

• A~1I arithmotic exception interrupts. including Characteristic Overflow. Characteristic Underflow, 
81nd Divid«t Check interrupts. 

• Certain program initiated interrupts. including Executive Request, Test and Set. Quantum Timer, 
Elreakpoint. and Emulation interrupts. 

• Storage Check interrupts caused as the result of transfers between the CPU and storage 
ill1terface unit (SIU). 

Certain interruJ)ts are disallowed between the execution of a Prevent All Interrupts and Jump (PAIJ) 
instrulction or the occurrence of an interrupt. and the execution of an Allow All Interrupts and Jump 
(AAIJ) instructiCln or User Return (UR) or Load Designator Register (LD) instruction that sets the allow 
intermpts desi1~nator (03). These include the following: 

• )~II I/O interrupts, including those for Normal status. Tabled status. and Machine Check 
interrupts.. 

• f'ower Check interrupts 



leo4 Rev.1 \,ILM._ SPERRY UNIVAC 1100/10 SyReml 
4x4 Capability Processor and Storage Programmer Reference 

NOTES: 

Priority Level 

o 

2 

3 
4 
5 
e 
7, 

8 
9 
10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Interrupt Type 

Immediate Storage Check (oper port) 
Immediate Storage Check (inst port) 
Guard Mode (oper port) 
Guard Mode (inst port) 
IOU 0 ERR 
IOU 1 ERR 
Addressing Exception 
Invalid Instruction 
Executive Request 
Test and Set 
Characteristic Overflow 
Characteristic Underflow 
Divide Check 
Emulation 
Breakpoint 
Quantum Timer 
Jump History Stack 
Power Restored 
Power Loss 
Real, Time Clock 
Dayclock 
Delayed Storage Check Upp1er 
Delayed Storage Check Lowler 
IOU 0 Machine Check 
IOU 1 Machine Check 
IOU 0 Normal Status 
IOU 1 Normal Status 
IOU 0 Tabled Status 
IOU 1 Tabled Status 
IPI P 
IPt P+ 1 or P-3 
IPt P+2 or P-2 
IPt P+3 or P-1 

1. I'rforlty I.".,. 0 thl'OUgh 6 Nfl int",.,," int.,-rupts. which c.n "- ntlith.,. lod:«I (Jut nfJl' 
_,.". (Mw~ .,IowtId). 

2. Priority Iw./. 6 thtOUgh 20 .,.. .t.,.".' intMnlpt8, which c.n ". both loct«l (JUt .nd 
d.,.,.,-.d. 

3. For in~nMH' intMnlpn. Pi. th. CPUnumlHl' (Jf th. CPU btling ;ntllmJpted~ FfJI' priority 

I".". , S, '9,.nd 20 UMI t"- tMm th« g;" ••• n IPI numbM from 0 to po.itiI'f. 3. 



8804 Aev.1 
UNIIU .... 

I SPEflAY UNIVAC 1100/80 Systems 
~ Capability Processor and Storage Programmer Reference 

• InterprocElssor interrupts (IPls) 

NOTE:' 

UPDA TI I.IVE1. 
7-3 

"AGE 

If int~'rrupts are locked out and the CPU is stopped via Halt Jump (HJ) instruction, Inter processor 
interrupts and Power Check restoration interrupts are allowed; and if the CPU is stopped in the cleared 
state, in additicm to Interprocessor interrupts, I/O normal status interrupts are allowed if the CPU has 
been selected for initial load. (The I/O normal status interrupts are not allowed until software has 
sent ~, function to the channel or word channel interface.) 

• [)ayclock and Real-Time Clock interrupts. 

• Storage Check interrupts caused as the result of transfers from the SIU to storage units. 

• Jlump History Stack interrupts. 

7.2. Interrupt Sequence 

When the CPU honors an interrupt request, the following ttvents occur: 

• ,'heprocessor state is stored in the general register stack (GRS) in three groupings: program 
s,tatus (041-044, 050-052, and 056-057), addressing status (040 and 045-047 not actually 
s,tored during interrupt), and interrupt status (053-055). 

• ,l~1I designator register bits are set to zero except the GRS selection designator (06) and the 
r·elocation and storage suppression designator (07), which are set to one, and the BOR selector 
OIesignatolr (01 2), which is not altered. 

• E~ternal irlterrupts are prevented from occurring until allowed by an AAIJ. UR, or LD instruction. 

• Control is transferred to the associated interrupt location. Note that this instruction must be an 
unconditional jump, but need not be a Load Modifier and Jump (LMJ) instruction. LMJ may 
c:apture the wrong relative address because of the processor state change (e.g., LBJ interrupt). 

7.2. 1.. Program Status 

Progmm status is stored for all interrupts, and includes the following information: 

• FJrogram Return Address - GRS Location 043 for Normal interrupts 

GRS Location 05 1 for Guard Modes 

GRS Location 04 1 for Immediate Storage Checks 

GRS Location 056 for IOU Error Interrupt 

• (luantum Timer Value - GRS Location 050 for all interrupts. 

• [)esignator Register Value - GRS Location 044 for Normal interrupts 

GRS Location 052 for Guard Modes 
, 

GRS Location 042 for Immediate Storage Checks 



a804 Rev.1 ............. SPERRY UNIVAC 1100/80 System. 
4x4 Capability Processor and Storage Programmer Reference 

GRS Location 057 for IOU Error Intttrrupt 

A program return address is the address of the instruction following the last instruction that was fully 
executed; program control would normally be returned at this point for reco-,,'erable errors. The 
program return address stored in GRS locations 041, 043, 051, and 056 is in the following format: 

[ ~A~I ________ N_ot_U_H __ d ________ ~ ______________ ._~_o_g_~_m __ R_.t_u_m_Ad __ d_r~ ________________ ~1 
35 34 24 23 o 

The' program return address value will vary depending on the operation being pEtriormed at the time 
of interrupt 

• If an incomplete block transfer, search instruction, or byte instruction is in1:errupted, the return 
address will be P. 

• If a satisfied (the condition specified by the instruction exists) skip instructicln is interrupted, the 
return address will be P + 2. 

.. If a satisfied (the condition specified by the instruction exists) jump instruction is interrupted, 
the return address will be U. 

• If an instruction other than the above is interrupted, the return address will be P+ 1. 

The contents of the program address register is changed only by a jump instruc:tion (including User 
Return) or interrupt. Instruction references following a jump instruction are m~lde under the same 
addressing constraints that conditioned the operand address of the jump instruc:tion that began the 
straight line instruction stream. 

Bit position 35 of the. first word of the 2-word program status packet contains iii flag that identifies 
the correct program addressing mode. The two modes of program address generation include 
absolute (A-1), corresponding to 035-0 and 07-i.1, and relative (A-O), corresponding to 
035.1, or 034, or i-O. 

Bit positions 18 through 23 of the relative:: rogram address are zero unless absolute 24-bit indexing 
mode is selected. For straight line instrUction sequencing, the relative program ~.ddress is increased 
by one for each instruction that is executed or skipped. This increase is acc:omplhshed by twos 
complement addition with wraparound at 18 or 24 bits, depending on the vallue of the A-flag. 

7.2.2. Addressing Status 

Addressing status is not actually stored during the inte"upt sequence. The inflormation within this 
group is placed in GRS by the software either directly (load, store~ or indirectly (LI,ad Bank and Jump, 
LB,J; Load Addressing Environment. LAE) and is used from GRS by the CPU for addressing operations. 
Addressing status includes the following information: 

• Executive bank descriptor table pointer. 

• user bank descriptor table pointer. 



~PEIFtRY UNIVAC 1100/80 S~ 
4x4 Capability Processor and Storage Programmer Reference -----, 

• I~ank descriptor specifications in the following format: 

lEO 00 () - 0 BOlO E2 1 0 0-0 801 2 

IE 1 o 1 () - 0 8011 E3 1 1 0-0 BOI 3 

:II 34 33 32 30 29 '8 17 " 15'4 12 11 o 

7.2.3. Interrupt Status 

IntemJpt status is information associated with a particular type of interrupt, and is stored only when 
its tyJl~e of interrupt occurs. Immediate Storage Check status is stored in GRS-location 054, Guard 
Mode status is stored in GRS location 053, all other CPU-generated interrupt status is stored in the 
Normlill status location, GRS 055. Interrupt status is associated with the following types of interrupts: 

• Immediatft Storage Check interrupts 

• C;uard Mode interrupt 

• E:xecutive Request, Test and Set, and Invalid Instruction interrupts 

• C)elayed Storage Check interrupts 

• Breakpoint and EmuJation interrupts 

• F'ower Check interrupt 

• ~~ddressing Exception interrupt 

• Itrtterprocessor interrupt 

7.3. Interrupt Types 

The CPU provides 20 interrupt priorities. The interrupt types are listed in Table 7-1. 

7.3. 1. Program Exception Interrupts 

Invalid Instruction - This interrupt occurs when the CPU attempts to execute an instruction with an 
invalid function code. The operand address of the instruction (24 bits of U) is stored in GRS as 
interrupt status. 

Guard Mode - This interrupt occurs in the following cases: 

• VVhen the privileged instruction, GRS protect, and interrupt lockout detect designator (02) equals 
one, and the execution of a privileged instruction is attempted, or interrupt lockout period is 
exceeded. 

• VVhen the storage limit fails and either 07 is zero or the i-bit of the instruction word is zero. 



8eo4 Rev.1 
UNIJUMIIR 

I 

SPERRY UNIVAC 1100/80 System. 
4x4 Capability Processor and Storage Programmer Reference UlIIOATI LIYIL 

• When any reference is made to an SIU that has its interface to the CPU disabled. 

• When attempting to store in GRS locations other than those allowed for thu user (40a· through 
100a, and 1208 through 1778, when 02 is one). 

• When attempting to write into a storage area specified by bank descriptOlr register (BORO, 1, 
2, or 3) for which the corresponding write protection designator bit (013 through 016) is one. 

See Figure 7-1 for the format of the Guard Mode interrupt status stored in GRS during the interrupt 
sequence. 

Addressing Exception - This interrupt occurs in the following cases: 

• E-bit violation -If the E-bit (bit 35) from Xa of an lBJ, load I-Bank Base and Jump (UJ) or load 
O-Bank Base and Jump (lOJ) instruction is one and the exEC bank desc:riptor table ,pointer 
enable designator (0 1 9) is zero. 

• Table length violation -If a bank descriptor index value from Xa of an lBJ, ll.J, or lOJ instruction 
is greater than the selected BOT pointer length valu~. 

• Residency interrupt - If the R-flag of the new bank descriptor is one. 

• Entry point violation - If the V-flag of the new bank descriptor is one. 

• Use count overflow on lBJ, UJ. or lOJ new bank descriptor. 

• Use count underflow on lBJ, llJ, or LOJ old bank descriptor. 

• Use count decreased to zero and C-flag was one. 

Seo Figure 7-2 for the format of the Addressing Exception interrupt stored in GRS during the interrupt 
sequence. The program return address stored for this interrupt is P+ 1 for E: bit or table length 
vio~ations. and the jump to address for all other violations. 

7.3.2. Arithmetic Exception Interrupts 

An interrupt occurs in the following cases only if the arithmetic exception interrupt designator (020) 
is ()ne. 

Ch:aracteristic Overflow - Occurs when the exponent value of a floating-point result is greater than 
+ 127 10 (single precision) or + ~ 023 10 (double precision). When this condition is detected, the 
characteristic overflow designator (022) is set to one. . 

Characteristic Underflow - Occurs when the exponent value of a floating-poirlt result is less than 
-128.,0 (single precision) or -1024,0 (doubte precision). When this condition is detected, the 
characteristic underflow designator (021) is set to one. 

Divide Check - Occurs when the magnitude of the quotient exceeds the range of the specified register. 
When this condition is detected. the divide check designator (023) is set to one. 



SPEltRY UNIVAC 1100/80 Systems 
4x4 Capability Processor and Storage Programmer Reference 

Zeros 

:15 3" 3332 31 30 29 28 27 28 

Elit 35 Write protection violation. 

Elits 34-33 BDR number associated with write protection violation. 

Elit 32 Storage limits violation. 

EUt 31 Reference to disabled storage. 

Elit 30 Is zero. 

Elit 29 In~errupt lockout exceeded. 

Elit 28 Control register violation. 

Elit 27 Privileged instruction violation 

Elits 26-0 Are zeros. 

7-7 
'AGE 

o 



8804 Rev.1 
UI'-fIUMIIIIl 

SPERRY UNIVAC 1100/80 SysteIM 
4x4 Capability Processor and Storage Programmer Reference 

New BOI Old BOt 

31 34 33 32 31 30 29 18 17 18 15 14 13 12 11 o 

Bit 35 New bank descriptor E-flag specification from Xa. 

Bit 34 The V-flag indicates an entry point violation on the new bcllnk descriptor. 

Bit 33 The E-flag indicates an E-bit violation on the new bank dellcriptor. 

Bit 32 The R-flag indicates the residency flag of the new bank descriptor was one. 

Bit 31 

Bit 30 

Bits 29-18 

Bit 17 

Bits 16-15 

Bit 14 

Bit 13 

Bit 12 

Bits 11-0 

NOTE: 

The CO-flag indicates a use count overflow on the new bank descriptor. 

The T -flag indicates a table length violation on the new bank descriptor. 

New bank descriptor BDI specification from Xa. 

Old bank descriptor E-flag specification from GRS. 

The bank descriptor register specification from Xa. 

Is zero. 

The CU-flag indicates a use count underflow on the old bunk descriptor. 

The CZ-flag indicates the old bank descriptor use count was decreased from one 
to zero and the C-flag was one. 

Old bank descriptor BDI specification from GRS. 

Thi.'nt«TUpt ,..ul,. only from die exHution 01." LBJ, LIJ, (JIf' LDJ In<<nH:tion. The new /unit dHCl'iPttH' $l»CiRt:6tion. 
Me conmintHi in X .. beft:Jtw MtH:Ution: the old unit dacrlptOl' .".ciflc6tiDn •• ,.. CtltrUined i" GRS ,,,"tion. 046 MJd 

047, MId .,.. pJM:tld in X .. during Met:Ution • 

7.3.3. Program-Initiated Interrupts 

Executive Request - This interrupt occurs as a result of executing an Exelcutive Request (ER) 
instruction. This instruction allows a worker program to release control of the CPU to the Executive 
System. The operand address of the instruction (24 bits of U) is stored in GRS (055) as interrupt 
status. The CPU interrupts to fixed storage location MSR+222. 

Test and Set - This interrupt occurs as a result of executing a Test and Set (TS) instruction if bit 30 
of the operand is one. or as a result of executing a Test and Set Alternate (TSA) instruction. The 
operand address of the instruction (24 bits of U) is stored in GRS (055) as interrupt status. The CPU 
interrupts to fixed storage location MSR+224. 



~~_)4~~._.1 1 ____ S_Pe_R_R._Y_U_N_'_VA_C __ 1_1_00_/_8_0_S_~ __ e_m_I ______ ~ __ ~ __________________ ~ __ ~~ ____ ~~7~-_9 ____ ___ _ ..... -.. 4x4 Capability Processor and Storage Programmer Reference UI"OATlI.iVEL PAGI 

Breakp,oint - This interrupt occurs when an equality comparison is made between the contents of 
the breakpoint register and an instruction or operand address. The breakpoint interrupt condition 
will be discarded if a higher priority internal interrupt occurs within the same instruction. See Figure 
7-3 fo,' the format of the Breakpoint interrupt status. 

Jump History Stack - This interrupt occurs when the jump history stack is full, if the S-flag (bit 34) 
of the breakpoint register is one. 

Absolute Breakpoint Address 

315 33 32 ,31 30 29 2423 o 

Bits 35-3~1 Are zeros. 

Bit 32 The P-flag indicates an instruction address breakpoint. 

Bit 31 The R-flag indicates an operand address breakpoint during a read operation. 

The W-flag indicates an operand address breakpoint during a write operation. 

Slit 29-24 Are zeros . 
• 

Elits 23-0 The absolute breakpoint address. 

NOTE: 

I~or both instnlction addrs .. breakpoints (P-flagJ and opef'llnd addrs" breakpoints (R- or W-flags), the instruction is 

.,xtreut«l and ths program rerum addre" is captured. 

Figure 7-3. Format of 8reskpoint Interrupt Status 

7.3.4. Interplrocessor Interrupt 

This iinterrupt occurs when a CPU in a system executes an Initiate Interprocessor Interrupt (III) 
instruction. When a CPU detects a Function Programmable Read Only MeMury (PROM) parity error 
or an Interrupt PROM parity error, an Interrupt Request is sent to: (1) itself if the error does not exist 
upon a second read of PROM data (the status word contains error history, bits 35 and 34, and the 
number of the requesting CPU), or (2) another CPU in the same application if the error exists upon 
a sec,ond read of PROM data. The interrupting CPU number can be determined from the status word 
stored in GRS address during the interrupt sequence. (See Figure 7-4 for format of the status word.) 



8eo .. Rev.1 
~ 

SPERRY UNIVAC 1100/80 Sv-temt 
4x4 Capability Processor and Storage Programmer Reference 

Zeros 

3il ~ 33 

Bit 35 The F-flag indicates Function PROM parity error detected. 

Elit 34 The I-flag indicates J'nterrupt PROM parity error detected. 

Bits 33 - 2 Are zeros. 

Bits 1 - 0 Interrupting CPU Number 

'''OTE: 

7 .3.5. Clock Interrupts 

2 1 0 

7-10 
ftAGI 

Quantum Timer - A Quantum Timer interrupt occurs when the Quantum timer value reaches zero. 

Real-Time Clock - This interrupt occurs when the contents of the lower 18 bits of the real-time clock 
(RTe) register (GRS address 100a) is decreased through zero. The value of +0 is decremented to 
-1. The value contained in the RTC is decreased by one every 200 microseconds. The RTC oscillator 
is accurate to :.!: 0.02 percent. 

Dayclock - This interrupt request is made to all processors in the system once every 6.5536 seconds. 
Onlly one processor may honor each request. The dayclock value is increased by one. every 200 
microseconds. (See 8.2.2 for a description of the daycfock.) 

7.3.6. Storage Check Interrupts 

Storage Check interrupts are caused by conditions that are divided into two groups: immediate 
interrupt conditions. which are related to the current CPU storage reference. and delayed interrupt 
conditions. which mayor may not be related to the current operation. Immediate interrupt conditions 
inc,tude check conditions that occur on transfers between the CPU andSIU. They may terminate the 
instruction and cannot be prevented by an interrupt or PAIJ instruction. Delayed interrupt conditions 
inc:tude internal SIU checks and check conditions that occur on transfers from the SIU to main storage 
units. These conditions do not affect the current instruction and may be deferred by an interrupt or 
PAIJ instruction. 

/' 



0804 Aft.! 
............... ,-----UPERRV UNIVAC 1100/80 System. 

4x4 Capability Processor and Storage Programmer Reference 

7 .3.fi. 1. Immediate Storage Checks 

UPDATE LIVB. 

Immeldiate Storage Check interrupt status word is shown in Figure 7-5. An immediate check interrupt 
OCCUI'S: 

• ilf the SIU detects a parity error on the address, controls, or write data from the CPU. 

• ilf the CPU detects a parity error on the read data from the SIU. 

• 111 the SIU detects an address that references a non-available storage location. 

The Immediattt Storage Check interrupt status word provides information to assist in performing 
softW'are instruction retry (no retry is actually done by hardware). The retry information is provided 
only 'IS a result of an Immediate Storage Check interrupt. On all Immediate Storage Checks the P 
value captured is P of the instruction having the error plus one, regardless of whether the error 
occulTed on the instruction or on its operand(s). Two bits are used to define retry status, bit 25 defines 
whether the check occurred on an instruction fetch or an operand read/write. If bit 25 == 1, the check 
occuf'red on an instruction fetch, and retry can be done by decrementing P by one and returning to 
that point without further analysis. If bit 25 == 0, the check occurred on an operand read/write and 
furthftr analysis is required. 

In gelneral, bit 25 - 0 analysis must determine if the instruction on whose operand cycle the check 
occulTed had the indirect bit or incrementation bit set. If indirection was specified. retry will not be 
succetssful sine:e one or more cycles of indirection may have occurred. If h was set, incrementation 
will have occurred, and will occur again if retry is attempted. 

Bit 2.' defines the state of execution at the point of immediate check on an operand cycle. If bit 24 
- 0, the initial values are intact (except as described above for indirect and increment) and retry can 
be attempted. If bit 24 == 1, execution will have procee(ied to a state where retry is not possible. 



8804 Aft.1 
\JP-NU...,. 

SPERRY UNIVAC 1100/80 System. 
4x4 Capability Processor and Storage Programmer Reference 

Abaolut. Addr ... 

315 3. 33 32 31 30 29 28 27 28 25 2. 23 o 

7-12 
"AGI 

Bit 35 Indicates that the Immediate Storage Check interrupt occurred while fetching an 
instruction from ~ny interrupt entrance fixed address. 

Bit 34 Is zero. 

Bit 33 Indicates an address parity check. 

Bit 32 Indicates a control parity check. 

Bit 31 Indicates a write data parity check. 

Bit 30 Indicates a parity check on read data received by the CPU. 

Bit 29 Specifies that the addressed storage is not available. 

Bits 28-26 Are zero. 

Bit 25 (Retry 1) - 0 Immediate check on operand. 

=- 1 Immediate check on instruction. 

Bit 24 (Retry 2) == 0 Retry possible on operand check. 

=- 1 Retry not possible 

Bits 23-0 * Absolute address associated with check condition . 

• When Bit 35 i. a 1, the abaotute add ..... don not contein the MSR value, but i. the fixed add ..... relativ. to MSR. 

7.3.6.2. Delayed Storage Check Interrupts 

Delayed checks are associated with internal SIU, SIU/MSU or internal main storage unit (MSU) errors 
whi~h are reported via a STORE CHECK INTERRUPT STATUS REQUEST (SCISR) signal. Delayed 
stc)rage checks are a ctass of interrupts which results from the detection of fault conditions as 'follows: 

1. During internal SIU operation. 

2. During data transfer operations between an SJU and an MSU. 

3. During internal MSU operation. 

The SIU uses three SCISR formats to transfer error information to the processing and software level 
of the system. 



8804 Rev.1 
Uf\.NUMIIft 

I SPERRY UNIVAC 1100/80 Systems 
~ Capability Processor and Storage Programmer Reference 

7.3.6.,2. 1. Internal SIU Check 

The inlternal SIU check format is shown in Figure 7-6, and Table 7-2 describes the bits. 

B B B I 0 0 T A S Abso.ute Address if 

C B A A C C B G H bit 24 is not set 

0 0 0 C U L C E I Lower 1 5 bits of AGE bits if 24.1 I 
(DO 1.DOO,CO 1 ... AO 1 ,AOO) Absolute Address 

3115 34 3332 31 30 29 28 21 28 25 24 23 22 

Blits 

35-314 

33 (SSO) 

32 (UDD) 
31· (UCO) 
30 (UBO) 
29 (UAO) 

Function 

Format Indicator 

Storage Check Interrupt 
Status Request Stack 
Overflow 

B,Iock D Degraded 
Block C Degraded 
Block B Degraded 
Block A Degraded 

15 14 o 

Description 

Specifies format for the status word and equals 00. 

Common to all SCISR formats and indicates a SCJSR 
stack overflow condition. Bit will be set when the 
SIU attempts to generate a fifth SCISR interrupt 
before the CPU acknowledges the first SCISR 
interrupt. Will stay set until the CPU accepts the first 
interrupt indicating to the software that one more 
SCISR status words have been lost. 

Bits 32-29 set to 1 indicate which particular block 
or blocks have been degraded as a result of errors 
detected by the SIU. 

-----.----~-------------------------~--,-----------------------.---------------~ 
28 (I.AC) 

27 ([)CU) 
28 (()Cl) 

Invalidate Address Check 

Data Check Upper Half Word 
Data Check Lower Half Word 

Set conditions indicate the SIU has detected an 
address parity check on the invalidate interface 
from the parallel SIU. So, the receiving SIU 
invaHdates aU resident data, since it cannot 
determine which address has been modified in the 
paraUel SIU. 

This interface is only active in a 4x4 configuration 
where two SIUs are sharing and communicating 
with the same MSU. Any data altered in one SIU 
must be marked invalid in the other SIU if it is 
resident. 

Either bit set to 1 indicates the SIU has detected a 
pari~check on data resident in the SIU and has 
degraded the blocks (bits 32-29) in which the data 
was stored. The bad data is passed to the requester 
and an Immediate Check indicating a read data 
error will be generated by that component also. 



1104 Rev.1 

UNII'" 
SPERAY UNIVAC 1 100/80 Systema 
4x4 Capability Processor and Storage Programmer Reference 

Bits 

25 (TBC) 

24 (AGE') 

23 (SHI) 

22-00 

22-15 
14-00 

Function 

Tag Buffer Check 

Duplicate Age Check 

SJU Half Indicator 

Absolute Address if bit 24 is 
not set 
AGE bits if bit 24 is set 
Absolute Address. lower 15 
bits 

7.3.6.2.2. SIU/MSU Interface Check 

Description 

Set condition indicates that the SIU has detected on 
the requested set address either: bad parity on a 
block address that has been marked valid, or an 
illegal combination of the three control bits (Par, 
Invalid, Oegraded) for a block address. 

Either error will also set the associated block 
degrade bits (32-29) of this SCJSR, indicating the 
block on which the error occurred. This error 
prevents the SIU from getting a match on the block 
in error. Therefore, requests to other blocks 
proceed as normal; or if to the bad block, it proceeds 
as a "miss" operation. 

Set conoition indicates the SIU has detected one or 
more duplicate ages at the requested set address. 
All four block degrade bits (32-29) will set unless 
one or more of the blocks has been previously 
degraded. The failing age bits are bits 22-15 of the 
SeJSR. The request will proceed as a normal read 
or write. All future requests to this set address will 
generate misses since aU four blocks have been 
degraded. 

Indicates which SJU half (0 - SIU lower, 1 - SJU 
upper) caused the error condition. 

Requester address at the time the SIU detected the 
error if bit 24 (AGE') is not set. If bit 24 is set, the 
failing ages are captured in bits 22-1 5 and the 
remainder of the address bits reflect the requester 
address. 

The SIU/MSU interface check format is shown in Figure 7-7, and Table 7-3 describes the bits. 

Abaolute Addr ... 

313" 33 32 a 21 27 2. 21 24 23 o 

FlguIW 1-1. SIU/MSU '''''''tH:. Ch«1c Form., 



.804 Rev.1 
U ... oHUMIIII 

I SPeRI:n' UNIVAC 1100/80 Systems 
~ Capability Processor and Storage Programmer Reference I 7-15 

PAGE UPOATlI.IVB. 

Tabl.7-3. SIU/MSU InterfaclI Check 

Silts Function 

35-34 Format Indicator 

33 (SSO) S~orage Check Interrupt 
S1tatus Request Stack 
Overflow 

32-29 Nrot Used 

28 (MRM) Maintenance Read Miss 

27 (R:OR) Rlaad Request 

28 (VVDC) Write Data Check 

25 (ADC) Address Check 

Description 

Specifies format for the status word and equals 01. 

Common to all SCISR formats and indicates a SCISR 
stack overflow condition. Sit will be set when the 
SIU attempts to generate a fifth SCISR interrupt 
before the CPU acknowledges the first SCISR 
interrupt. Will stay set until the CPU accepts the first 
interrupt indicating to the software that one or, more 
SCISR status words have been lost. 

Always 0 

Set condition indicates the MSU executed a read 
miss. 

Set condition indicates that the error causing the 
SCISR to be generated occurred during a read 
operation. 

Set condition indicates that the MSU detected a 
s;ngle or multiple bit error on the data and error 
correction code (ECC) bits the SIU was attempting 
to write. The MSU writes tne Special ECC 
Syndrome at the addressed location denoting that 
address as containing known corrupted data. Any 
attempt to read that address will result in an 
immediate ADDRESS NOT AVAILABLE signal to the 
requester. The only way of clearing the Special ECC 
Syndrome is by successfully executing a full word 
write with good ECC to the particular address. 

Set condition indicates that the MSU detected a 
parity error on the address field sent by the SIU. In 
the case of a read request, the SIU will present an 
immediate ADDRESS NOT AVAILABLE signal to the 
requester and notify the software via this SCISR of 
the error. In the case of a write, request, the MSU 
will fail to respond to a further request to protect 
against the undetected corruption of data. This 
condition will cause the system to freeze if more 
requests are pending for that MSU. This 
necessitates manually downing these units and 
rebooting. 

-----.----+-------------------------~--------------------------------------~ 
24 (\~CC) Write Control Check Set condition indicates that the MSU detected a 

parity error on the write control field sent by the S I U. 
The MSU writes the Special ECC Syndrome at the 
address location denoting it as containing known 
corrupted data. If the error occurs on a read, the 
requester will receive an immediate ADDRESS NOT 
AVAILABLE signal and the software will be notified 



8104 Rev.1 
UILoM"-

Bits 

SPERRY UNIVAC 1100/80 SyaterM 
4x4 Capability Processor and Storage Programmer Reference 

7-18 
"AGE 

Function Description 

via this SCISR. If the error occurred on a write, only 
the SCISR will be generated. 

Absolute Address Address on which the error occurred. 

7.:3.6.2.3. SIU/MSU Read or Partial Write ecc Check 

The SIU/MSU read or partial write ECC check format is in Figure 7-8, and Table 7-4 describes the 
bit functions. 

35 34 33 32 3' 30 

ICC 
Syndrome 

2423 

Absolute Address 

o 

Flgu,. 7-8. SIIJ/MSU RHd 0' PMri., WI7'te Eec ChllCk Form., 

Bits Function 

:35 Format Indicator 

;34 (RDR) Read Request 

Description 

Set condition indicates the SIU/MSU read or partial 
write ECC check format. 

Set condition indicate. that the information relates 
to errors encountered on a read request. Clear 
condition relates to errors on partial writes. On each 
write request, the MSU presents the word to be 
altered and the associated ECC code to the SIU. The 
StU checks the word for single and multiple bit 
errors. If the SIU detects a multiple bit 
uncorrectable error (MUE), a SCISR is generated. At 
the same time the MSU will either correct a single 
bit error or detect an MUE. When it corrects the 
single bit error, the partial write is executed and the 
dorrect data word and ECC are stored back. If an 
MUE is detected, the MSU aborts the partial write 
and stores the special ECC code at the addressed 
location, flagging that location as having known 
corrupted data. Any read of that location will result 
in an immediate ADDRESS NOT AVAILABLE signal 
to the requester. . 



8804 Rev.1 
Ul'-!NUMIP 

I SPERRY UNIVAC 1100/80 Systems 
~Capability Processor and Storage Programmer Reference 

rabl. 7-4. SIU/MSU Read or Partial Writ. ECe Check (continued) 

Bits Function 

33 (SSO) Storage Check Interrupt 
Status Request Stack 
Overflow 

32 Not Used 

31 (MUE) Multiple Bit Uncorrectable 
El'ror 

30-24 ECC Syndrome 

23-(jlO A.bsolute Address 

Description 

Common to all SCISR formats and indicates a SCISR 
stack overflow condition. Bit will set when the SIU 
attempts to generate a fifth SCISR interrupt before 
the CPU acknowledges the first SCISR interrupt. 
Will stay set until the CPU accepts the first interrupt 
indicating to the software that one or more SCISR 
status words have been lost. 

Always 0 

Set condition indicates that the ECC syndrome is a 
multiple bit uncorrectable error. Any MUE 
encountered by the SIU on a read miss is reported 
via this SCISR. and if the MUE occurs on the word 
requested by the requester, an immediate ADDRESS 
NOT AVAILABLE signal will be returned. If the 
request is for a word other than the word in error, 
the requester will be given the correct data and 
released. If the MUE occurs on a partial write. only 
the SCISR will be generated. 

Bits 30-24 contain the ECC syndrome detected by 
the SIU. 

Address on which the error occurred. 

7.3.7. Power Check Interrupt 

A Power Check occurs when a system or CPU power check condition is detected due to a power 
servicl9 interruption or failure. Power Check interrupt status is stored in GR.S during the interrupt 
sequence. 

The fc.rmat of the Power Check interrupt status word is shown in Figure 7-9 and provides for early 
warnilrtg power loss detection and power restoration indication. 



8804 Rev.1 ........... SPERRY UNIVAC 1100/80 Systems 
4x4 Capability Processor and Storage Programmer Reference 

Zeros 

31 2 1 0 

7-18 
'AGI 

Bits 35-2 Are zeros. 

Bit 1 

Bit 0 

NOTE: 

The L-bit indicates that a power loss condition has been detected and CPU 
power will drop after a 100ms grace period, unless within that period the power 
loss condition is removed (power restoration has occurred). 

The R-bit indicates that power has been restored following a power loss 
indication, but within the lOOms grace period. This interrupt condition is not 
locked out when the CPU is stopped following a Power Check power loss 
interrupt. 

" both L .nd R ",. one. it mHn. tIt.t .mother power loa th.t h.rd not yet bHn reponed occurred .h.,. • recovery. 

F/(JU" 7-9. Power Ch.ck Interrupt St.ru. Word 

7.3.8. Byte Status Code 

A 7-bit status code is stored in the BB2 field of Staging Register 3 (SR3), either upon completion 
of the instruction or upon detection of an error condition which prevents completion during the 
execution of the following instructions: 

• Byte-ta-Binary Single Integer Convert (33, 10) 
• Byte-ta-Binary Double Integer Convert (33, 11) 
• Byte-ta-Single Floating Convert (33, 14) 
• Byte-to-Oouble Floating Convert (33, 1 5) 
• Byte Add (37,06) 
• Byte Add Negative (37, 07) 

Successful completion of an instruction results in the storing of an all zero status word except for 
a decimal overflow for the byte Add and Add Negative instructions (37,06 and 37,07) or a missing 
mantissa field for the byte-ta-floating instructions (33, 14 and 33, 15). 

7,,3.9. Multiprocessor Interrupt Synchronization 

AU external interrupt requests, for example those generated by IOUs, are presented to each CPU in 
the cluster where the interrupt was generated. Therefore, an interlocked synchronization mechanism 
is provided to assure that only one CPU actually accepts the interrupt request. This interlock is 
provided as part of the interprocessor interrupt network and consists of four lines: one incoming 
select line. one incoming select acknowledge, one outgoing select line, and one outgoing select 
ac:knowledge. 

The outgoing lines of one CPU are connected to the incoming select lines of another CPU, forming 
a ring. A CPU is allowed to honor an interrupt request ~etween the time the incoming select is 



8804 ReY.l I SPERRY UNIVAC 1100/80 Systems 
~~_~ Capability Processor and Storage Programmer Reference 

7-19 
PAGE 

acknclwledged and the time the outgoing select is propagated. The time available for honoring 
interrupt requests is sufficient to allow examination of requests but not so long that system interrupt 
response time is impaired. An acceptable value is between 800 and 2000 nanoseconds per CPU. 
If a dElcision is made by the CPU to honor an interrupt request, the propagation of the outgoing select 
is del,ayed until the interrupt request is acknowledged and the interrupt request is dropped. 

A CPlJ will retain the interrupt interlock by not passing the interrupt select in a unit processor system; 
also in a multiprocessor system where the other CPU is offline or powered down, and if, during initial 
load, 'that CPU is selected for taking the initial load interrupt. The system transition unit will provide 
the ir1iformation to each unit. Each cluster in a multiprocessor system has its own independent 
interrlupt synchronization mechanism. 

7.4. Input/Output Interrupts 

There are threle classes of I/O interrupts: normal interrupts, tabled interrupts, and machine check 
interrupts. Status conditions for the status table subchannel, all shared subchannels, and nonshared 
subchannels 011 a block multiplexer channel are reported by the normal interrupt mechanism. Status 
conditions for nonshared subchannels on a byte multiplexer cha,nnel or word channel are reported 
by thc! tabled interrupt mechanism. IOU or channel sta:us conditions are reported by the Machine 
Checl~ interrupt mechanism. IOU or channel status is any status not associated with a particular 
subchannel or device. 

7.4.1. Machine Check Interrupts 

If thel control module or a channel detects status not associated with a particular device or 
subchannel, a Machine Check interrupt request is generated. When the Machine Check interrupt is 
acknclwledged, an Interrupt Address Word (lAW) is stored in the fixed lAW address of the CPU that 
acknclwledged the interrupt. Bits 8-13 of the lAW specify the channel module number and IOU 
number, respectively, associated with the Machine Check interrupt. Bits 16-25 of the lAW are master 
bitteol to indic:ate the condition or conditions that caused the Machine Check interrupt to be 
generated. A description of the Machine Check lAW bit positions is is given in Table 7-5. 

Machine Check Not IOU Chenne' 
Not UMd Indicator Bits Used Number Addr", Not Uled-

35 2828 1815 1413 12 11 8 7 o 

" Bit positions 7-0, Device Addr •• , field, valid on.y when bit 21 is set to 1. 



8804 Rev.1 ......,..,... 

Bit 
Position 

SPERRY UNIVAC 1100/80 System. 
4x4 Capability Processor and Storage Programmer Reference 

Function Description 

7-20 
'AGI 

35 - 26 Not used 

25 - 16 Machine 

25 - 24 

23 

22 

21 

20 

19 

18 

·17 

16· 

15 - 14 

13 - 12 

Check 
Indicator Bits 

IOU Number 

Not used 

A storage error occured when the IOU control module attempted 
to read the first word of the CAW. 

A storage error occurred when the IOU control module 
attempted to read the second word of the CAW during .. a Load 
Channel Register operation. • 

A storage error occurred when the channel module attempted to 
write a control word for one of the 128 nonshared subchannels 
into storage. 

A storage error occurred when the channel was attempting to 
write the preceding Interrupt Address Word. 

A storage error occurred when the channel attempted to write a 
Channel Status Word for a Tabled Interrupt. 

A storage error occurred when the channel attempted to write a 
Channel Status Word for a Nontabled Interrupt or an I/O 
instruction. 

A storage error occurred when the channel attempted to read 
the second word of the channel address word (CAW) during a 
Load Channel Register operation. 

An. interface control signAl error or device address parity error 
prevented subchannel identification during a controi-unit-tnitiated 
selection sequence. This bit is not used on a word channel. 

Not used 

Bit 13 12 
.. 

0 0 - IOU 0 

0 1 - IOU 1 

1 0 - IOU 2 

1 1 -IOU 3 



8604 Rev.1 
Ull-HUMIIR 

I SPERRY UNfV AC 1100/80 Systems 
~~ Capability Processor and Storage Programmer Reference I 7-21 

UIIOATI! LiVlL PAGE 

Table 7-5. Machine Check fA W 8it aescription (continued) 

IBit Function Description 
Po~sition 

11 - 8 Channel The IOU can contain up to 8 channel modules. Only bits 10-8 
Address of this 4-bit field are used to designate one of eight modules. If 

bit 11 is ever set to a 1, the IOU has malfunctioned but it will 
not impact the system. Therefore, bit 11 can be ignored 
without compromising the system in any way. 

7 - 0** IJevice Not used unless bit 2 1 is set to 1. 
AQdress (only 
if bit 2 1 is set 
to 1) 

• If bit 1 e of the Machine Check lAW is set. each device on the channel module must be label checked because the 

linterrupt could be related to a device reporting attention status for a disk or tape changes. 

•• If bit 21 of the Machine Check lAW is set, the subchannel identified by bits 7-0 of the lAW must be halted by a Halt 

Device (HOY) instruction. 

7.4.~~. Norma! Interrupts 

If the status table subchannel, any shared subchannel, or a block multiplexer nonshared subchannel 
detec~ts status conditions, a Normal interrupt request is generated. When the Normal interrupt is 
acknc)wledged. an lAW and Channel Status Word (CSW) are stored in the fixed lAW and CSW 
addrEtSSes of the CPU that acknowledg~d the interrupt. Bits 25-35 of the lAW are meaningless for 
a NOl'mal interrupt. If bit 24 of the lAW is set, the interrupt is for the status table subchannel in the 
IOU '!llnd channel specified by bits 8-13 of the lAW. The device address field (bits 0-7) is not 
interpreted. The associated CSW contains status from the status table subchannel. If bit 24 of the 
lAW is not set, bits 8-13 contain the IOU and channel address associated with the interrupt. On a 
byte lor block multiplexer channel, the device address field (bits 0-7) specifies the device. On a word 
chanlnel, the d4!tvice address field specifies only the subchannel. The associated CSW contains status 
for the device or subchannel specified by the device address field of the lAW. A description of the 
Norrrial Interrupt lAW and CSW bit positions is given in Tables 7-6 and 7-7, respectively. 

No"".' Interrupt IA W 

0 IOU Channel Oevice 
lot Used or Not Used Number Address Addr.ss 

1 

35 14 13 12 11 8 7 o 



8804 R.".1 
~III 

Bit 
Position 

35 - 25 

24 

23 - 14 

SPERRY UNIVAC 1100/80 Syatema 
4x4 Capability Processor and Storage Programmer Reference 1 . ...:-

22 

r.bl. 7-8. NormllllntllrruPt,IAW Bit O •• cription 

Function Description 

Not used 

0- Indicates a Normal Interrupt lAW. 

1 - Indicates an interrupt for the status table subchannel. (See 
7.4.3). 

Not used 

13 - 12 IOU Number Bit 13 12 

11 - 8 

7-0 

Channel 
Address 

Device' 
Address 

o 0 =- IOU 0 

o 1 ::II IOU 1 

1 0 =- IOU 2 

1 1 ::II IOU 3 

The IOU can contain up to 8 channel modules. Only bits 10-8 
of this 4-bit field are used to designate one of eight modules. If 
bit 11 is ever set to a 1, the IOU has malfunctioned, but it will 
not impact system operation. Therefore, bit 11 can be ignored 
without compromising the system in any way. 

The field should be interpreted as follows: 

• If bit 24 of the lAW is equal to 1, the interrupt is for the 
Status Table Subchannel for the channel module indicated 
in this lAW and this field should be ignored. 

• If bit 24 of the lAW is zero. the interrupt is for a byte or 
block multiplexer channel or an internally specified index 
(lSI) word channel interface. 

• On byte or block multiplexer channels. bits 7-0 are used to 
indicate Device Address. 

• For lSI Word Channel interfaces, the Device Address field 
is broken down as follows: 

- Bits 7-4 indicate 151 interface (channel) presenting the 
interrupt. , The valid values for this field are: 

BIT 765 4 

Interface (Channel) A - 1 0 0 0 



8804 Rev.! 
Ul'-NUMIIR 

SPERRY UNIVAC 1100/80 Systems 
4x4 Capability Processor and Storage Programmer Reference 

Tabls 7-8. Normal IntsMJpt 1.1. W Bit OtJ6cription (continutJd) 

UJlDATI LML 
7-23 

I'AGI 

f~it 

Pos,ition 
Function Description 

[ 

Oevice Add ..... 

35 32 31 

Not 

Used Device Status· 

71 88 57 

Interface (Channel) B-1 0 1 0 

Interface (Channel) C - 1 1 0 0 

Interface (Channel) 0 - 1 1 1 0 

Bit 7 is always 1 and bit 4 is always O. Bits 5 and 6 
indicate the binary channel number (0-3). If any other than 
the above vaUd values are presented. they should be 
ignored since they indicate an IOU malfunction which will 
not affect operation in any way. 

- Bits 3-0 are meaningless for Word Channel Module 
interrupts. 

Next CCW Address 

24 23 

Subchannel Status Residual Oat~ Count 

eo 58 52 51 

o 

38 

• Table 7-7 explains differencH in the use of this field. 

[ Not Used·· 

,--------' 
107 72 

•• Extamal Interrupt status word if bit 87 is set. 



8104 Rev.1 
UNttJIIIIIIIt 

Bit 
I'osition 

107 - 72 

'11 - 68 

67 - 60 

67 

66 

65 

64 

63 

62 

61 

60 

SPERRY UNIVAC 1100/80 Syttema 
4x4 Capability Processor and Storage Programmer Reference 

7-24 
I'AGI 

Function 

Device Status 

UPDATI LEVEL 

Description 

Bit positions 107-72 contain the External Interrupt status 
for word channel operation if bit 67 is set to 1. If bit 67 is 
o and the channel is a word interface channel. there is no 
Extemal Interrupt status and the reason for the interrupt is 
cOf'tained in the Subchannel Status field. . 

For a byte or block multiplexer channel. bit positions 
107-72 are not used. 

Not used 

Used for byte or block multiplexer channels only, with 
exceptions noted. 

Byte or Block Multiplexer Channel Word Channel 

Attention Attention 

NOTE: 

On WOld channel., if bit 87 «111M. 1, bit6 107-72 will indicat. an 

Ex,.",. InttImJpt statu. wOI'd. 

Status Modifier Not Used 

Control Unit End Not Used 

Busy Not Used 

Channel End Not Used 

Device End Not Used 

Unit Check Not Used 

Unit Exception Not Used 

NOTES: 

t. If Channel Control ChtH:k (CSW bit 54) or Interfac. Control 

Ch.ck (CSW bit 53) Me Ht to on., the o.wc. SUtu. field i. 
not vMid,- I. .. , th.,.. may h.ve bHn an MTOI' on rllPO/Ting of 

til. statra by tile CU Of' $toring of the natu. by the IOU. 

2. If til.,. i. a $ubchannel Statu6r om.,. than tho .. bit6 in nDttl 

" both field., Subchannel Statu. and o.vk:tI StatW. .,. .,alid. 
On WOf'd channel modul •• tIN An.ntion bit (bit (17) alwa.,. 

indica,.. wh.th.,. bit6 107-72 hllW valid EI.,atu., Me."t in 

til. cua li.ad in not. 1. 



880<4 Rev.1 
~ 

I SPERRY UNIVAC 1100/80 Systems . 
~4 Capability Processor and Storage Programmer Reference I 7-25 

"AGE 

Bit 
PtJsition 

5!i - 52 

59 

58 

57 

T6ble 7-7. Norm611nttlrrupt CSW Sit Description (continued) 

Function 

; 
Subchannel Status 

Program Controlled 
Interrupt 

Monitor/Incorrect 
Length 

Program Check 

Description 

3. If thtl inttlrrupt is for thtl Status Tabltl Subch6nne/, the Dtlvics 

Status fitlld is mtlaningltls$. 

4. If the Otltlice Status field and Subch6nntll St6tus field are 

both zero, the status is trellted as a device error. 

Indicates that a Program Controlled Interrupt flag was 
encountered by the channel module when processing a 
channel program. 

Word Channel 

Indicates that a channel program has been completed. 

NOTE: 

In CCWs that hlllle both chllining (command and data) bit$ set and monitor 

Stlt. the monitor will btl ignortld and no inttlrrupt wt1l occur. 

Byte and Block Multiplexer Channel 

This bit indicates that the number of bytes specifed in the 
cew for the I/O operation on the subchannel indicated 
was not equal to the number of bytes requested or offered 
by the device. Detection of an incorrect length condition 
causes the operation to be terminated and an interrupt to 
be generated. The DC, ce, SLI, and TS CCW flags affect 
the incorrect length indication. 

This bit indicates that an error was detected by the 
channel, which indicates one of the following conditions: 

• The CAW first cew address did not specify a double 
word boundary. 

• The status table CAW first STCW address did not 
specify a double word boundary. 

• A CCW or STCW contained an invalid command for, 
and operation other than, a data chain. 

• The CCW or STCW data count equalled zero and the 
command was neither a Transfer in Ch&nnel or a 
Store Subchannel Status. 



8804 Rev.1 
IJIL.M IMIIII 

Bit 
Position 

SPERRY UNIVAC 1100/80' Sv-tema . 
4x4 Capability Processor and Storage Programmer Reference 

7-28 
IIAGE 

Function Description 

• The Transfer in Channel command was specified in 
successive channel command words (CCWs) or status 
table control words (STCWs). 

• For an Start I/O Fast Release (SIOA or STeW 
instruction, the channel attempted to read the second 
word of the CAW from a location outside of available 
storage. 

• Truncated search record lengths were specified on 
mixed word and byte boundries. 

• An externally :;pecified index (ESI) word channel ecw 
contained the Forced FF command with a data count 
not equal to one. 

• The ecw or STeW address specified by a Transfer in 
Channel (TIC) command was not on a double word 
boundary. 

• The Store Subchannel Status command data address 
field did not specify a double word boundary. 

• The Truncated Search (TS) flag was specified in a byte 

'" multiplexer ecw. 

• Any byte multiplexer ecw or a block multiplexer 
command CCW did not specify only one format. 

• A byte multiplexer CCW specified Format C. 

• The ESI word channel status table CCW data address 
field did not specify a Quadruple word boundary. 

• The ESI word channel STCW data count field was not 
a multiple of four. 

• The channel attempted to read a ecw ·or STCW from 

. a location outside of available storage . 

• A hard channel control word (HCCW) or hard status 
table control word (HSTCW) data address specified a 
location outside the available storage. 

The HSTCW data count field was decreased to zero 
and data chaining was not indicated. 

NOTE: 



8604 Rev.1 
UPI.oNUMIBt ~PERRY UNIVAC 1100/80 System. 

4x4 Capability Processor and Storage Programmer Reference ----- UPOATI L!VEL 
7-27 

PAGE 

E,Ut 
Position 

56 

55 

54 

53 

rsbltl 7-7. Normsl Inttlrrupt CSW Sit Description (continutld) 

Function 

Channel Data 
Check 

Channel Control 
Check 

Interface Control 
Check 

Description 

Add,.,," out-of-rsngtl conditions rtlpontld by this bit may btl ClluStld by 

hardwaftl failure .. 

Not used 

This bit indicates that an error has been detected during 
the transfer of data from the device to the channel, from 
the channel to storage, or from storage to channel. 

This bit indicates that a hardware error was detected by 
the channel when attempting to read or write a control 
word from storage. The hardware error was detected 
during one of the following operations: 

• The channel was attempting to read the second word 
of the CAW for an SIOF instruction. 

• The channel was attempting to read a CCW or STCW. 

• The channel was attempting to store a status word for 
the store subchannel status command. 

• The channel was attempting to read from main 
storage a control word for one of the 128 nonshared 
subchannels. 

NOTE: 

Whtln this bit is Stlt the OtIVictI Status field is ignortld (not uHd) 

This bit indicates that a hardware error in the channel to 
device interface was detected bV the channel. The 
hardware error was detected during one of the foHowing 
operations: 

• A byte or block multiplexer channel detected a device 
interface parity error during the transfer of device 
status. 

• A ~ord channel detected a device interface parity 
error during the transfer of an External Interrupt status 
word. 

• A byte peripheral device responded with an address 
other than the address specified by the channel during 
a channel-initiated selection sequence. 

• A byte peripheral device became nonoperational 
QvAAg oommand chaUlia.g. 



8S04 Rev.1 

Bit 
fJosition 

52 

!51 - 38 

:35 - 32 

SPERRY UNIVAC 1100/80 S~I 
4x4 Capability Processor and Storage Programmer Reference 

7-28 
flAGI 

Function 

SIOF Device Check 

Residual Data 
Count 

UPOATI LIVIL 

Description 

• A byte peripheral interface control signal sequence 
error was detected. 

This bit indicates that a device that was to be initiated by a 
previously issued SIOF instruction is not operational (not 
installed or offline). 

A count of the number of words or bytes specified in the 
CCW which were not transferred by the channel. 

Not used 

:31 - 24 Device Address The Device Address field should De interpreted as follows: 

• If bit 24 of the lAW is equal to' 1, the interrupt is for 
the Status Table 5ubchannel for the channel module 
indicated in this lAW and this field should be ignored. 

• If bit 24 of the lAW is zero, the interrupt is for a byte 
or block multiplexer channel or an 151 word channel 
interface. 

• On byte or block multiplexer channels, bits 31-24 are 
used to indicate Device Address. 

• 

~ 

For 151 Word Channel interfaces, the Device Address 
field is defined as follows: 

Bits 31-28 indicate 151 interface (channel) presenting 
the interrupt. The valid values for this field are: 

BIT 31 30 29 28 

Interface (Channel) A-1 0 0 0 

Interface (Channel) B-1 0 1 0 

Interface (Channel) C - 1 1 0 0 

Interface (Channel) 0-1 1 1 0 

Bit 31 is always 1, and bit 28 is always O. Bits 
30-29 indicate the binary channel number (0-3). If 
any other than the above valid values are presented, 
they should be ignored since they indicate an IOU 
malfunction which will not affect operation in any way. 

Bits 27-24 are meaningless for Word ~hannel Module 
interrupts. 



8804 Rev.1 

U,."''''' 
I SPERRY UNIVAC 1100/80 Systems 
~Capability Processor and Storage Programmer Reference 

T6bl. 7-7. Normsllnterrupt CSW Sit Oescn'ption (continued) 

Bit Function Description 
Position 

UPOATI LEVEL 
7-29 

PAGE 

23 - 0 Next CCW Address This field contains the 24-bit absolute address of the next 
CCW. 

7.4.3. Tabled Interrupts 

Status for a nonshared subchannel on a byte multiplexer channel or word channel (communications 
status) is stored in a status table under the control of the status table subchannel. There is one status 
table :subchannel per channel. If the status table subchannel is not active when the nonshared 
subch~!lnnel status conditions are detected, the status is lost and the communications subchannel is 
returnc:td to the available state. If the status table subchannel is active, a tabled status word (TSW) 
contailning the communications subchannel status is stored at the address specified by the status 
table nnd a Tabled interrupt request is genEVated. If another communications subchannel detects 
status conditiorts before the Tabled interrupt is acknowledged, its status is stored in a TSW at the 
addref;s specifi~!d by the status table. The Tabled interrupt request is reset. Thus, a single Tabled 
interrtJlpt reque~it may report several entries (TSWs) in the status table. When the Tabled interrupt 
is acknowledged, an lAW and CSW are stored in the fixed lAW and CSW addresses of the processor 
that ac:knowledged the interrupt. Bits 14-35 of the lAW are meaningless for a Tabled interrupt. Bits 
8-13 ~specify the IOU and channel. Bits 0-7 specify the device address of the last entry in the status 
table. The ass()ciated CSW contains the status of the status table. The subchannel status field of 
the CSW is cleared. A description of the Tabled Interrupt lAW and CSW bit positions is given in 
Table!1 7-8 and 7-9, respectively. 

TsbltHi Interrupt IA W 

[ IOU Channel Device 
Not Used Number Addres. Address· 

35 14 13 12 11 8 7 o 

t~ Device address is address of device that most recently made an entry in the status table. 



8804 Rev.1 
.~ 

Bit 
I'osition 

:15 - 14 

SPERRY UNIVAC 1100/80 Syaema 
4x4 Capability Processor and Storage Programmer Reference 

Function Description 

Not used. 

UflDATi LIYIL 
7-30 

'AGI 

'13 - 12 IOU Number Bit 13 12 

11 - 8 

7-0 

Channel 
Address 

Device 
Address 

o 0 =- IOU 0 

o 1 = IOU 1 

1 0 - IOU 2 

1 1 =- IOU 3 

The IOU can contain up to 8 channel modules. Only bits 10-8 
of this 4-bit field are used to designate one of eight modules. If 
bit 11 is ever set to a 1, the IOU has malfunction-.d, but it will 
not impact system operation. Therefore, bit 11 can be ignored 
without compromising the system in any way. 

The Device Address field should be interpreted as follows: 

• If bit 24 of the lAW is equal to 1, the interrupt is for the 
Status Table Subchannel for the channel module indicated 
in this lAW and this field should be ignored.· 

• If bit 24 of the lAW is zero, the interrupt is for a byte or 
block multiplexer channel or an 151 word channel interface. 

• On byte or block multiplexer channels bits 7-0 are used to 
indicate Device Address. 

• For 151 Word Channel interfaces, the Device Address field is 
broken down as follows: 

- Bits 7-4 indicate 151 interface (channel) presenting the 
interrupt. The valid values for this field are: 

BIT 7 e 5 4 

Interface (Channel) A - 1 0 0 0 

Interface (Channel) B-1 0 1 0 

Interface (Channel) C - 1 1 0 0 

Interface (Channel) D - 1 1 1 0 

Bit 7 is always 1, and bit 4 is always O. Bits 5 and 6 
indicate the binary channel number (0-3). If any other than 
the above valid values are presented. they are to be 



8804 Rev.1 
UP-NUMIiA 

I SPERRY UNIVAC 1100/80 Systems 
~ Capability Processor and Storage Programmer Reference UJIOATI LIVEL 

Table 7-8. Tabltld Interrupt lAW 81t Description {continutldj 

Elit Function Description I 

Position 

ignored. 

- Bits 3-0 are meaningless for Word Channel module 
interrupts. 

Device Address Next CCW Addre •• of the Status Table Subchanne' [

Not 

Used ,_'---------.J-_____ --' 

35 32 31 24 23 o 

[ Not Residual Data Count 

Used (Forced to Zerost Subchanne' Status (StatuI Table Subchannel) 

71 8887 eo 59 52 51 38 

[ Not Used 
_______ -----1 

107 72 



leo4 Rev.1 .......... SPERRY UNIVAC 1100/80 SysterM 
4x4 Capability Processor and Storage Programmer Reference 

Bit 
Position 

10'7 - 72 

'71 - 68 

Function 

IS 7 - 60 (Forced to 
Zeros) 

59 - 52 Subchannel 
Status 

51 - 36 Residual Data 
Count 

35 - 32 

31 - 24 Device 
Address 

23 - 0 Next CCW 
Address 

7.5. Interrupt Errors 

Description 

Not used 

Not used 

In normal CSWs, bits 67-60 comprise the Device Status field. 
For tabled interrupt status words, however, this field is forced to 
zeros by the hardware. It is therefore meaningless and should 
be ignored. 

Contains a subchannei-generated status byte. (See Table 7-7 
for a description of each of the Subchannel Status bits 59-52.) 

Contains the value of the data count existing at the time status 
information was stored. 

Not used 

Contains the device address associated with the status 
information. (See Table 7-7 for a description of the Device 
Address bits 31-24.) 

Contains the value of the next CCW address existing at the time 
the status information was stored, if the CCW address check 
subchannel status bit is set to zero. If the CCW address check 
bit is set to 1, the value of the next CCW address plus two is 
stored. 

Interrupt errors are errors detected on interrupt status information. The type of errors detected are 
slJlch that it is not possible for the system to process the data which was being reported when the 
error occurred. Errors can be detected on processor or Input/Output interrupts and when detected 
force the processor to specific fixed address locations. 

7,,5.1. Processor Interrupt Errors 

Pl'ocessor interrupt errors occur when the interrupt type information is lost during the execution of 
a processor interrupt. The condition is that the processor has been interrupted but the information 
indicating the type of interrupt, guard mode, etc., has been lost. This condition forces the processor 
to fixed address 2008 (Hardware Default). This is an unrecoverable condition for the system and it 
is brought to a stop. .. 



8804 Rev.1 
Uf'-HUMIIfI 

I SPERRY UNIVAC 1100/80 Systems 
~ Capability Processor and Storage Programmer Reference 

7 .5.2.. Input/Output Interrupt Errors 

UPOATI L.ML 
7-33 

"AGI 

Input/Output (I/O) interrupt errors indicate that an error has been detected which was associated with 
an 1/01 interrupt or status for an I/O instruction. On the detection of this type o'f error, the I/O activates 
interrupt error interlace lines to the processors. The interrupt error interlace lines being activated 
cause the processors to go to fixed addresses 2028 (Even Number I/O Interrupt Error) or 2038 (Odd 
Number 1/0 In1terrupt Error), depending on which IOU in the cluster had an error. 

7.5.2. 1. CaU!ie of Even/Odd I/O Interrupt Errors 

If the IOU attempts to store an lAW or CSW and that word is rejected by the StU because of bad 
parity, then the IOU raises an interface signal to tell the CPU that one of the words does not contain 
good data. The SIU will not store the bad data with good parity. 

As th l9 IOU stores CSWs during both an I/O interrupt sequence and during a Condition Code == 
situation when an I/O instruction is being executed, the CPU must detect and act upon the interlace 
signal during two sequences which both have I/O interrupts locked out. For this reason, the EvenlOdd 
I/O interrupt is penetrating. As penetrating interrupts are presented to both CPUs connected to the 
IOU. lit is a po!;sibility that the CPU not directly involved in the error will also pick up and act upon 
the interlace slignal because it happens to be in one of the sequences described. 

7 .5.~L2. OpElration of Even/Odd I/O Interrupts 

Captured P and D-bits for the EvenlOdd I/O interrupt are saved in GRS locations 56 and 57. The 
P ca,)tured will depend upon the sequence being executed at the time that the interlace signal is 
detec:ted. ThE. cases are as follows: 

1. During another Interrupt 

Captured P == The fixed address for the interrupt. 

2. During An I/O Instruction 

Capturecl P == The I/O instruction + 1 if the condition code is nonzero. 

Captured P == Th& I/O instruction +2 if the condition code is zero. 

Non:: 

In c.~,. " the originlll intemJpt willll',...dy h.v. uvlld P lind 0 bir. in its own GRS 'oclltions, so it will btl pos.,bltl for scftw.re 

to subHquently return control to th. originlll intMnJptlld M:tivity. 

7.5.2.3. SO'ftware Action on Even/Odd I/O Interrupts 

Software actnon will depend upon the contents of GRS locations 56 and 57 to determine which 
sequence detected the error and to direct the subsequent recovery action. The cases are as follows: 

1. P-204/2051206 

The error occurred during an I/O interrupt sequence. probably the one which caused the CSWs 
to be stored. As this data is suspect, control cannot be given to the 1/0 interrupt handlers. 
Details of the error will be logged and control will be given to the original interrupted activity 
whose 1:1 and 0 bIts had baen Ulled in GBS lacatiOIlS 43 and 44. 



8104 Rev.1 
............... SPERRY UNIVAC 1100/80 Sv-tem. 

4x4 Capability Processor and Storage Programmer Reference 1 . .aZ-34 

As this is effectively discarding an interrupt, the result may be a software "timeout" due to loss 
of that interrupt. 

2. P:II202/203 

This is a multiple Even/Odd I/O interrupt case where the CPU has detected the interface error 
while already handling one. As captured P and 0 bits are overwritten by the second interrupt, 
this is unrecoverable and the system will EXERR (Error Exit). 

3. 200, P < 240 and P ~ 202 thru 206 

The error signal was detected during an interrupt not associated with I/O. so control will be given 
back to the interrupt handler so that software processing of it may be initiated. The original 
environment is still good as P and 0 bits have been saved in: 

• GRS 41 and 42 Immediate Storage Check 
• GRS 51 and 52 Guard Mode Violation 
• GRS 43 and 44 Normal Interrupts 

Details of the error will be logged prior to returning to the interrupt handler. 

4. P ~ Fixed Memory and P-1 is an I/O Instruction 

The error occurred as a result of a Condition Code = 1 condition on this instruction. Details 
of the error, including the addressed subchannel, will be logged and the CSWs in storage will 
be corrupted to an illegal recognizable value. Control can then be returned to P and 0 bits to 
process the results of the I/O instruction. 

5. P ~ Fixed Memory and P-1 is not an I/O Instruction 

This is an I/O instruction sequence which was executed correctly, but just happened to pick up 
the error signal from the IOU. The error will be logged and control given to the captured P and 
D bits. 

6. Captured D-bits have 07 - 0, 02 .. 

As neither interrupt nor I/O sequences take place in this state, it is assumed that the CPU is 
malfunctioning and the environment is suspect. The system will EXERR. 

7. P:II 0 

This CPU does not have the necessary hardware changes to recover from the error. The original 
interrupt (if there was one) will have stored P in GRS 41, 43, or 51 .. The Even/Odd I/O interrupt 
will store its captured D-bits in GRS 44. 

NOTE: 

SIne. ."..,. doHn', know which of caN , thf'OUgh 6 it h ... th.,. i. no .... .,,·to nnum control from th. Ev.n/Odd I/O 

~pt. Th.~"'" will EXERR. 



8804 ReY.1 I SPERRY UNIVAC 1100/80 Systems 
UNtUMIIII -L. 4x4 Capability Processor and Storage Programmer Reference 

7.5.2.4. L.ogging 

DEttails to be logged by I/O error interrupt handling will include the following: 

• Captured P and 0 bits 

• lAW and CSWs for the CPU - These are suspect. of course. 

• Even (202) 'or (203) IOU 

• Addressed subchannel in condition code 1 cas!) 

7-35 
PlAGI 





8804 Rev. 1 ... ..,....,. I SPE,.RY UNIVAC 1100/80 Systems 
~ Capability Processor and Storage Programmer Reference 

8. Executive Control 

8.1. General 

The 1: 100/80 Systems central processor unit (CPU) operates under the control of an Executive.
progr.am which controls and coordinates the activities of the combined hardware and software' 
systems and he's exclusive use of certain control capabilities. By the 'use of bank descriptors, it can 
relocclte any program in main storage. It provides storage protection through the use of storage limits 
registers. The bank descriptor specifications are contained in the general register stack (GRS). The 
bank descriptors are controlled by the Executive program for itself and for user programs. However, 
the u~ser progrl:tms, through the Load Bank and Jump (LBJ), Load I-Bank Base and Jump (LIJ), and 
load D-Bank Sase and Jump (LDJ) instructions, are allowed to modify part of the designator register 
from a table prepared by the Executive program. The user programs are also allowed to modify 
sever;al of the control bits by using the Load DR Designators instruction (lPO, see 5.13.1). The 
operations related to and affected by the contents of the bank descriptors are explained in this 
secticln. 

8.2. Processor State 

The processor state is defined as information contained in the CPU and required to describe a 
program activi1t'f. This includes the bank descriptor information, the designator register, the relative 
program address. and the GRS. The processor state is automatically saved in GRS when an interrupt 
occur's. The dSs1gnator register and relative program address can also be ~tored by instruction. Each 
.'emftnt of the processor state can be loaded by instruction, and certain elements may be loaded in 
grouf='s to facilitate the orderfy sequencing of program control. 

8.2. 1. Designator Register 

The diesignator register contains information controlling functional characteristics of the CPU. The 
designator register may be loaded by instruction, although certain bit combinations are not vaUd or 
may not be a'vailable to the user. In general, no hardware checks are made for these invalid 
combinations. When an interrupt occurs, the current value of the designator register is stored in GRS, 
and the registftr is cleared. unless otherwise specified in the following paragraphs. to establish the 
prOpEtr interrupt handling environment. The format of the designator register is: 

035 029 R ... rved 023 

35 29 28 24 23 o 



035-
034 

033 

032-
030 

029 

028-
024 

023 

SPERRY UHfVAC 1100/80 System. 
4x4 Capability Processor and Storage Programmer Reference 

Must be zero 

Reserved 

Must be zero 

Quantum Timer Enable 

8-2 
'AGI 

When this designator is one, the quantum timer value is decreased by one for every 
100 nanoseconds period that the CPU is actually executing instructions. When the 
Quantum timer value is zero, a Quantum TImer interrupt is generated. When 029 is 
zero. the Quantum timer value is not altered. 

Reserved 

Divide Check Designator 

This designator is set to one when the ma\Jnitude of the Quotient exceeds the range 
of the specified register. 

022 Characteristic Overflow Designator 

This designator is set to one when the characteristic of a floating-point result is 
greater than 177s (single-precision) or 1777 S (double-precision). 

021 CharaCteristic Underflow Designator 

This designator is set to one when the characteristic of a floating-point result is less 
tnan -200s (singte-preciSion) or -2000s (double-precision). 

020 Arithmetic Exception Interrupt Designator 

When this designator is zero, if an arithmetic exception occurs (023,022, or 021 set 
to one), the specified A-registers are cleared to zero and no interrupt occurs. When 
020· is one, if an arithmetic exception occurs, the specified A-registers are left 
unchanged (except as specified by 05), and an interrupt occurs. When 020 is one, 
aU instructions that can caus. an arithmetic exception are executed without 
instruction overlap (i.e .• completely executed prior to beginning the execution of the 
next instruction). 

019 EXEC Bank Descriptor Tat?le Pointer Enable 

When this designator is zero, only the user bank descriptor table (BOT) pointer may 
be selected during execution of the LBJ, LIJ or LOJ instructions. If an attempt is made 
to reference the EXEC bank descriptor table, an Addressing Exception interrupt is 
generated. When 019 is one, either the EXEC or user BOT pointer may be selected 
during execution of an LBJ, LIJ, or LOJ instruction. 

o 1 8 Reserved 



8804 Rev. 1 
UI'uNUMI8t 

I SPERRY UHfV AC 1100/80 Systems 
~ Capability Processor and Storage Programmer Reference UPOA T! I.£VIl. 

IJ 17 Floating-Point Residue Store Enable 

Enables residue store for single-precision floating-point instructions. 

ID 16 BOR3 Write Protection 

8-3 
"AGE 

When this designator is one, a Guard Mode interrupt will occur if an attempt is made 
to write into the storage area specified by BOR3, and either 07 or the i-bit is zero. 

:015 BOR 1 Write Protection 

When this designator is one, a Guard Mode interrupt will occur if an attempt is made 
to write' into the storage area specified by BOA 1, and either 07 or the i-bit is zero. 

01 4 BOR2 Write Protection 

When this designator is one, a-Guard Mode interrupt will occur if an attempt is made 
to write into the storage area specified by BOR2, and either 07 or the i-bit is zero. 

013 BORO Write Protection 

When this designator is one, a Guard Mode interrupt will occur if an attempt is made 
to write into the storage area specified by BORO, and either 07 or the i-bit is zero. 

012 BOR (Bank Descriptor Register) Selector 

When this designator is one, BOR 1 and BOR3 are selected as the primary pair of bank 
descriptor registers: when 012 is zero, BOAO and BOR2 are selected as the primary 
pair. The primary pair is selected over the secondary pair if the storage limits overlap. 
o 12'will be toggled during the execution of a jump instruction if the jump operand 
address falls exclusively within the limits of the secondary pair. 012 is not altered 
when an interrupt occurs. 

D 11 Ignored when 035 is zero. 

D 1 0 Quarter-Word Mode Designator 

When this designator is zero, for instructions with function codes less than 708 (not 
including 07,33, and 37), the j-field values of 4,5,6, and 7 are interpreted as follows: 

j - 4 

j-5 

j == 6 

j == 7 

Specifies half-word (18-bit) transfers to or from bits 35 through 18 of the 
operand. 

Specifies third-word (12-bit) transfers to or from bits 11 through 0 of the 
operand. 

Specifies third-word (12-bit) transfers to or from bits 23 through 12 of the 
operand. 

Specifies third-word (12-bit) transfers to or from bits 35 through 24 of the 
operand. 

When D 1 0 is one, for instructions with function codes less than 70s (not including 
07, 33, and 37), the j-field values of 4, 5, 6, and 7 are interpreted as follows: 



8104 Aft.1 
.."....,...,. UflDATI LIY8. 

SPERRY UNIVAC 1100/80 System. 
4x4 Capability Processor and Storage Programmer Reference 

j = 4 Specifies quarter-word (9-bit) transfers to or from bits 26 through 18 of 
the operand. 

j :II 5 Specifies quarter-word (9-bit) transfers to or from bits 8 through 0 of the 
operand. 

j - 6 Specifies quarter-word (9-bit) transfers to or from bits 17 through 9 of the 
operand. 

j :II 7· Specifies quarter-word (9-bit) transfers to or from bits 35 through 27 of 
the operand. 

The value of 010 has no effect on an instruction in the following circumstances: 

• When the f-field of the instruction contains a value in the range 708 through 
778, or 07, 33, or 37. 

• When 04 is one. 

• When the j-field contains a value other than 4, 5, 6, or 7. 

09 Reserved 

08 Floating-Point Zero Format Selection 

This designator affects Floating Point Add, Floating Point Add Negative, Floating Point 
Multiply, Floating Point Divide, and Load and Convert to Floating (only single 
precision) instructions. When 08 is zero, and if the mantissa of the most significant 
word of a single-precision floating point result is : 0, the entire word is stored as all 
zeros. When 08 is one, and if the mantissa of the most significant word of a 
si"gle-precision floating-point result is ::0, the most significant word is packed and 
stored with the appropriate characteristic. 

07 Relocation and Storage Suppression 

07 controls 1 1 00 mode index register length, relocatabitity, and limit violation 
checking. If 07.0, index registers are 18 bits long, relocation is performed through 
basing, and a limits violation will cause a Guard Mode interrupt. If 07 -= 1, the same 
functions are dependent upon the i-bit of the instruction currently executing: if i=-O, 
operation proceeds as if 07.0; if i- 1, index registers are 24 bits long, relocation is 
not performed (a base value is not added to the relative- address), and relative 
addresses (which are not identical to absolute addresses) are not checked for limit 
violations. 

Program addresses following a jump instruction are formed under the same 07 and 
i-bit conditions that were in effect for the jump instruction. That is, if an absolute jump 
occurred (035-0, 07.i- 1), subsequent instruction references will be absolute; if a 
relative jump occurred (07 or i-a), subsequent instruction references will be 
relocated according to the current addressing control designators and BOR values. 
07 is set to one on master clear or when an interrupt occurs. 

De General Register Stack (GRS) Selection Designator 

When De is zero, the GRS addresses below are assigned for use by the user program 
and can be referenced by the a- and x-fields of the instruction. 



8804 Rev. 1 I SPERRY UNIVAC 1100/80 Systems 
1JlNftI __ Ml_I!R ___ ~;4 Capability Processor and Storage Programmer Reference 

Index (X) Registers 

..cXccumulators (A-Registers) 

Special (R) Registers 

000 1 8 - 00 1 78 

00148 - 00338 

0101 8 - 01178 

UPDATE LEVEL 
8-5 

11401 

When 06 is one, the GRS addresses below are assigned for use by the Executive 
program and can be referenced by the a- and x-fields of the instruction. 06 is set to 
one when an interrupt occurs. 

Index (Xl Registers 

Accumulators (A-Registers) 

SpeciaJ (R) Registers 

05 Double-Precision Underflow Designator 

01418 - 01578 

01548 -01738 

01208 -01378 

When 05 is zero, a Floating-Point Characteristic Underflow interrupt occurs if 
characteristic underflow is detected during the execution of a double-precision 
floating-point instruction. The contents of the specified A-registers remain 
unchanged. When 05 is one, the interrupt does not occur; however, the contents of 
the specified A-registers are cleared to zeros and the normal instruction sequence is 
continued. 

04 Character Addressing Mode 

When 04 is one, character addressing may be used by instructions for which the 
j-field is an operand qualifieF (01-06, 10-32, 34-36, 40-67). Character addressing 
involves the utilization of J-registers which are selected by j-field values of 4, 5, 6, 
or 7. Note that character addressing for byte-oriented instructions that use 
J-registers (33 and 37, 06-07) does not depend on 04. The J-field functions 
specified by 034 and 010 are overridden by 04. 

03 Allow Interrupts Designator 

When 03 is one, external interrupts are allowed; when 03 is zero, external interrupts 
are locked out. 03 may be altered by UR and LO, is set by AAIJ, and is cleared by 
P'AIJ a'nd the interrupt sequence. 

02 Privileged Instruction, GRS Protect, and Interrupt Lockout Detect 

When 02 is one, a Guard Mode interrupt will occur if an attempt is made to execute 
a privileged (Executive) instruction, or to store into an Executive GRS location. 

02 equal to one also enables checking the length of the period during which interrupts 
are locked out by 03 equal to zero (whether 03 became zero by instruction execution 
or by taking an interrupt) or by a string of Execute Remotes or Indirects. A total of 
256 storage references (only those made by the CPU are counted) are allowed during 
this locked-out period. Additional references will cause a Guard Mode interrupt. This 
checking occurs whether or not an interrupt is actually being locked out. 

o 1 8& [)O Overflow Designator (01) and Carry Designator (DO) 

These designators are similar and so are defined together. 



8eo4 Rft.1 ............. SPERRY UNIVAC 1100/80 Syttema 
4x4 CapabilitY Processor and Storage Programmer Reference 

For the following instructions. 00 and 01 are cleared and then set according to the 
results of the operation: 

A ( 14) Add to A 

AN ( 15) Add Negative to A 

AM ( 16) Add Magnitude to A 

ANM ( 17) Add Negative Magnitude to A 

AU (20) Add Upper 

ANU (21) Add Negative Upper 

AX (24) Add to X 

ANX (25) Add Negative to X 

OA (71. 10) Oouble-Precision Fixed Point Add 

DAN (71. 11)' Double-Precision Fixed Point Add Negative 

D 1 is set to one if an overflow condition is detected during execution of any of the 
above instructions, and 00 is set to one if a carry condition is detected. When 00 
or 0 1 are set, they remain so until another one of the above instructions is executed, 
or until the designator bits are directly altered by the program. 

Figure 8-1 shows three basic conditions of the Designator Register. 

NOTE: 

o 16-0 13 are independent of 02. 



8804 Rev.1 
~ 

I SPEI~AY UNIVAC 1100/80 Systems 
~ Capability Processor and Storage Programmer Reference UJIIOATI LIV!L 

8-7 
flAGE 

User Mode 

o 0 o 0 0 0 0 o 0 0 0 0 0 0 0 
0 0 1 Reserved 23 22 21 20 19 o 17 18 13 12 0 10 0 8 o 0 5 .. 1 1 1 0 

35 30 29 28 24 23 22 21 20 19 18 17 18 13 12 11 10 9 8 7 8 IS 4 3 2 t 0 

Interrupt Mode 

o 

35 29 28 24 23 13 12 11 10 & 8 7 8 5 o 

ExllCuti"e Mode 

0 
0 

Reserved 023 020 1 0 
0 0 0 0 0 0 

0 
0 0 0 0 0 0 0 0 0 

29 17 16 15 14 13 12 10 
0 

8 7 5 4 3 
0 

1 0 6 

35 30 29 28 24 23 20 . 19 18 1 7 18 15 14 13 12 t 1 10 9 8 7 8 5 4 '3 2 1 0 

8.2.,2. Oayclock 

The internal dayclock register of each CPU is updated every 200 microseconds, whether the CPU 
is running or stopped (and power is applied). The dayclock is disabled, but not cleared, by master 
clealr. 

It is cleared ctnly upon powerup or programmed reset to zero. Master clear prevents any dayclock 
upd.!ltes until the processor is running and has been defined to have control of the dayclock. Once 
the l)rOCessor' has been defined to have control of the dayclock. it will continue to update the dayctock 
untill it is mastercleared, even though it may be in a stop condition. The dayclock value is a single 
36-bit binary number without separately identified digits of time. 

The dayclock value is stored in a fixed storage location (module select register (MSR) + 2 1 ~8) when 
the dayclock has been both selected (via Select Oayclock .Jnstruction) . and enabled (via Enable 
Oayclock instruction~. If either condition is not true, the dayclock location is not altered by the 
day1clock. Only one dayclock can be selected in an application. That is, only one dayctock in a 
multiprocessor system can be selected unless the CPUs are partitioned into two applications. 

The value in the dayclock location is kept current regardless of I/O waits or execution of extended 
instruction, e.g., block transfer, byte, etc. 

Thel dayclocl( register value is replaced at the start of the next update cycle with the value in the 
day'clock loc;Btion in fixed storage if the dayclock has been loaded (via the load Oayclock instruction) 
since the laSlt update cycle. If neither has occurred. the internal value is used for the update. 

A dayclocft:. interrupt request will be set every 6.5536 seconds if the dayclock has been both selected 
and enabled. The interrupt may be honored by any CPU in a multiprocessor system if in the same 
apJ)lication, ,and it will occur only if interrupts are allowed and if the dayclock is enabled on that CPU. 



8804 Aft.1 
~ 

SPERRY UNIVAC 1100/80 Sv-terns 
4x4 Capability Processor and Storage Programmer Reference UPOATI LIY!L 

8.:3. Introduction to Addressing 

The CPU's hardware provides for relocating the instructions and/or data for any program in main 
stcnage. and the ability to specify that all areas of main storage not assigned to a program are locked 
out to that program for read, write, and jump references. The main storage areas which may be 
assigned to a program are specified in 64-word granules beginning on any 5 12-word boundary and 
enlding on any 64-word boundary. 

8.3, 1. Main Storage Organization 

The 1100/80 Systems are designed as modular systems, permitting a variety of main storage 
configurations. The minimum main storage configuration comprises one 524K word basic cabinet 
containing two 262K banks. The storage capacity can be expanded to 4 MSUs in 524K word 
increments to a maximum of 4,194,304 words. 

The 2-word bank descriptor register (BoR) provides the CPU with the flexibility for allocating storage 
for a program segment. The base value in conjunction with a relative address determines the absolute 
storage location. The upper and lower limits define the range of relative addresses within a program 
sngment. with the upper limit specified in 64-word in:rements and the lower limit specified in 
5 1 2-word increments. 

8.3.2. Program Segmentation 

A program may be written in segments which may be relocated in main storage. When the program 
is loaded into main storage, the Executive program determines the number of 64-word granules and 
a:ssigns them in contiguous blocks. Any unfilled portion of a granule is unavailable to another 
program if it is to be run with guard mode/storage limits protection. 

8.3.3. General Theory of 1100/80 Addressing 

Normal 1100/80 Systems programs are constructed without consideration for the phYSical area of 
storage they will occupy during execution. As the program is constructed, each address is mapped 
into a set of addresses called relative addresses. A relative address is actually used in an instruction 
within the program which references other locations or words in the program. Proper conversion from 
these relative addresses to the physical locations of the program will occur during execution using 
the bank descriptor register mechanism of the 1100/80 Systems. The range of relative addresses 
is from 0 to 282, 143. 

Relative address (U) is composed of the sum of the u-field' of the instruction. the modifier field of the 
Xx-register, and in certain cases, the word offset (Owt field of the Jj-register. A negative zero (all 
c)Oes~ cannot be generated as a relative address. For shift instructions, I/O instructions, or immediate 
operands (j - 1 8 or 1 7), t"e relative address is generally used directty as an operand. If a relative 
address is less than 0200, it is generally used to reference GRS. If the relative address is greater 
than 0200, it is converted to an absolute address and used to reference storage. 

An absolute address is normally composed of the sum of a relative address and a base value selected 
from one of the four available bank descriptor registers. It is also possible to have U generated as 
lin absolute address and used directly to reference storage without being altered by addition of a 
base. 



8804 Rev.1 
IJf'.MJMIIR 4x4 Capability Processor and Storage Programmer Reference 

8-9 
flAGI -----~iFteRRY UNIVAC 1100/80 Systems 

8.3.4. Bank Descriptor 

A bank descriptor (BO) is a 2-word set of data defining storage allocation for a program segment. 
Barlk descriptors are held in a bank descriptor table (BOT) which is located and defined by the bank 
des,criptor table pointer (BOT?). The table address in the BOT? is the absolute address of the first 
WOlrd of the first BD in the BOT. The table length in the BOT? is in units of descriptors, not words. 
ThEI BOs within the BOT are located by adding a bank descriptor index (BOI) to a BOT? without adding 
the bases. l'herefore, the Guard Mode interrupt that may be produced is when the request is made 
to cln SIU th~lt has its interface disabled to the CPU. The BOI is also in units of descriptions. A table 
lenlgth value of zero defines a BOT containing only one BD. The BOT has a maximum length of 4K 
BOls (8K ~ords). The BOT is expected to reside in storage (i.e., not in GAS). The BOT? and BO formats 
are shown in Figure 8-2. 

8.~1.5. Limiits 

Thn upper and lower limits define the range of relative· addresses within a program segment. The 
ChEtck of a relative address against limits is inclusive, i.e., a relative address is within limits if it is 
grelster than, or equal to, the lower limit; or less than, or equal to, the upper limit. The lower limit is 
in increments of 51 2 words, the upper limit is in increments of 64 words. Therefore, a program may 
contain any multiple of 64 words, beginning on any 512-word boundary and ending on any 64-word 
boundary. 

8.:J.6. COl1ltrol Information 

Th~Et flag and use count fields of the BD provide control pertaining to the relative space (segment) 
deifined by the BO and a count of the activity or usage of this BO. 

This A-flag indicates that an addressing exception interrupt is to occur if a reference is made to the 
se~~ment through the new bank descriptor of an LIJ, LDJ, or LBJ instruction. 

This W-flag indicates that a Guard Mode interrupt indicating write protection violation is to occur if 
a write is attempted into the segment. 

The P-flag value is transferred to the privileged instruction, GAS protect, and interrupt lockout detect 
de:signator (02) during the execution of an LBJ, LIJ, or LDJ instruction. 

The V-flag indicates that entry point validation must be performed. This is accomplished by assuring 
thnt the rel~.tive operand address of the LBJ, LIJ, or LDJ instruction (jump address) that references 
thn bank descriptor is equal to the bank descriptor lower limit value extended with low-order zeros 
(bi'ts 8 through 0). This relative operand address must also select the BOA that is being loaded. If 
th.tse conditions are not met and V is one, an addreSSing exception interrupt will occur. If the relative 
operand address is not within any limits, a Guard Mode interrupt will occur. 

The C-flag indicates that an interrupt is to occur if the use count is decreased to zero. 

8.3.7. Bank Descriptor Registers 

A bank descriptor register (BOR) contains the upper limit, lower limit, and base of a bank descriptor; 
thlsse allow relative address limits checking 'for protection, base selection, and absolu,te address 
fOlrmation. Four bank descriptor registers, BORO, BOA 1, BOA2, and BOR3, are provided in the CPU. 
The BOAs are loaded by the Load Addressing Environment (LAE), Load Limits (LL), or Load Base (LB) 
in:structions. These instructions do not test the flags or change the use count. 



SPeRRY UNIVAC 1100/80 Systeml 
4x4 Capability Processor and Storage Programmer Reference 

Tabl. Length Table AddreSl 

3& 2.. 23 

Bits 35-24 Bank Descriptor Table Length (No. of Descriptors) 

Bits 23-0 Bank Descriptor Table Address (Absolute) 

R ... rved for Software 

Upper Umit 

2.. 23 

First Word: Bits 35-18 
Bits 17-0 

Second Word: Bits 35-24 
Bits 23-15 
Bit 14 

, Bit 13 
Bit 12 
Bit 11 
Bit 10 
Bit 9 
Bits 8- 0 

~3.3.8. Address Generation 

.-

8 ... Valu. 

I 
Low.r Umit Rlw p V * C 

18 17 U5 14 13 12 11 10 9 8 

Reserved for software· 
Base value for relocation 

Storage protection upper limit value 
Storage protection lower limit value 
Residency flag 
Write protection flag 
Privileged protection flag 

• Validate entry point flag. 
* Reserved for software 
Use count interrupt on zero flag 
Use count value 

o 

U .. Count 

o 

8-10 
flAQI 

If base suppress conditions exist. the relative address is used as the absolute address. otherwise an 
absolute address is generated. To generate an absolute address. a relative address is added to a 
base value selected from those available in the four bank descriptor registers. To select which of 
the base va'ues to use, a limits check is made between the relative address and the upper and lower 
nmits. BoR se'ector designator (012) determines the order of BOR use as follows: 



8eo4 Rev.1 
~..,.... 

I· SPEI~RY UNIVAC 1100/80 Systems 
~ Capability Processor and Storage Programmer Reference 

Use (in order of preference) 

012 = 0 BORO, BOR2, BoR1, SoR3 

012 - 1 BOR1, BDR3, BORO, BoR2 

UP'OATI LIVEL 
8-11 

"AGE 

The Ic)wer limit (9 bits) of a BOR is checked against U, 7-9' and the upper limit (12 bits) is checked 
against U 17-8' The first BOR passing the limits check is used for absolute address generation. Figure 
8-3 sihows the base value selection in flow chart form. If a relative address is not within limits of 
any EIOR, a storage limits violation occurs. If a relative address is within limits, then the base 
corre!sponding to those limits is used to convert the relative address to an absolute address with which 
to ref:erence storage. Base values may be assigned in 64-word increments. 

The base addi'tion is done with base and relative address alignments shown below: 

iRelative 21ddress zeros 17 - 6 5 -- 0 

Base value 17 - 12 11 - 0 zeros 

Absolute address 23 ---------- 0 

The base addition is end off; i.e., a carry produced out of bit 23 is not propagated into bit O. 



8804 Rev. 1 
UI4I" .... 

SPERRY UNIVAC 1100/80 Syetems 
4x4 Capability Processor and Storage P.rogrammer Reference 1,":-12 

Define BO-B3. B4-87 

Define BASE SUPPRESS 

Define 1100/80 ADRS 

Define 494 ADRS 

Define INST REF 

No No 

as - (Used in 494 mode.) 

Use Rei 
Adrs as 

Abs Adrs 

as - 035-0 * 07-1 * i-1 * NOT P-Fetch OR A-FJag * P-Fetch 

as - 035-0 NOT (D34=-1 * 07== 1 * i-O * NOT inst ref) 

as - NOT 1100/80 AORS 

as - P-Fetch OR Jump Operand OR Execute Operand 



8804 RttY.1 I SPERRY UNIVAC 1100/80 Systems 
IJfI-HU __ MHR ___ ~4 Ca~ability Processor and Storage...etogrammer Reference 

8.3J~. P-Capturing Instructions 

U..oATI t.IVIL 
8-13 

!lAG! 

The program return address value (P) is the address of the instruction that is currently being executed. 
The P-capturing instructions are: Store Location and Jump (SW), and Load Modifier and Jump (LMJ). 

A de:scription of the P-capturing instructions (Store Location and Jump, and Load Modifier and Jump) 
is gi"en in 5.9.1 and 5.9.2, respectively. 





8804 Rev.1 
UNfUMIfJt 

I SPERRY UNIVAC 1100/80 Systems 
~4 Capability Processor and Storage Programmer Reference 

A-1 
PAGE 

A 

Aa 

A+'I 
Aa+1 

Abslolute 
Address 

a-fhtld 

ASCII 

Bank 

BO 

BOI 

BOI Register~s 

UII'OATI LEVB. 

Appendix A. Abbreviations, Definitions, and Symbols 

An arithmetic register. GRS addresses 14-338 and 154-1738, Registers at 
addresses 34, 35, 174, and 1758 can be used either as general purpose 
registers or as extensions of the sets of A-registers. In some cases A is used 
to mean Aa. 

The A-register specified exp,licitly by the a-field of an instruction word. 

An A-register having an address one greater than the address of the A-register 
specified by the a-field of an instruction word. 

An A-f'egister having an address of two greater than the address of the 
A-register specified by the a-field of an instruction word. 

A 36-bit address which identifies a specific location in main storage, as opposed 
to the relative address. 

A-register designator (bits 25-22) of an instruction word. The a-field is 
interpreted in one of several ways, depending on the instructiOn word function 
code. The a-field may specify an A-register, an R-register, or an X-register. For 
the function code 708 (JGD instruction), the j-field and a-field are combined to 
specify a GRS address. The a-field also is used to specify the I/O channels, a 
jump key, stop keys, or as an extension of the function code of the instruction. 

logical product 

American Standard Code for Information Interchange (seven bits) 

A set of main storage locations having consecutive addresses. Defined by a bank 
descriptor word (BOWl. Bank addressing is achieved by loading a base value 
in a designator register to be added to each bank relative address to produce 
the corresponding absolute address. 

Bank descriptor is a 2-word set of data defining storage allocation for a program 
segment. 

Bank descriptor index. An integer value used as an index into a BOT. 

The two locations in the GRS which contain the BOis (total of 4) for the banks 
currently addressable by the CPU. GRS locations 46 and 47 8, 



860. Rev.1 I SPERRY UNIVAC 1100/80 Systems 
IJIIo.NUMNR ~ Capability Processor and Storage Programmer Reference I 

BDR 

BOT 

BDTP 

Block 
MUltiplexer 

Byte Count 

Byte Multiplexer 

CAW 

C:CW 

<:hannel 

Channel Base 
I~egister 

Characteristic 

Cluster 

Condition Code 

Control Word. 

Control Module 

Command 
Chaining 

CPU 

CSW 

Data Chaining 

D-8ank 

UIIOATI LIVIL 

Bank descriptor register. 

Bank descriptor table. 

Bank descriptor table pointer 

A block multiplexer channel has multiple subchannels and always forces the 1/0 
device to transfer data in multibyte mode. 

A unit of information which consists of eight bits of data. 

The number of bytes of data to be transferred to or from storage. 

The byte multiplexer channel contains mUltiple subchannels and operates in 
either single or multi-byte mode. 

The channet" address word contains the instruction, IOU and CPU number, 
channel address, device address and the address of the first CCW. 

Channel command word. A control word located anywhere in storage (location 
specified by the CAW) used for channel operations. The CCW specifies the 
device command, data address, CCW flags, format flag, and data count. 

An 110 channel provides the hardware control a'nd data paths required to direct 
the flow of data between a peripheral device and storage. 

The contents of the channel base register are used' to address control words in 
upper storage. 

Biased exponent portion of a floating-poiAt number. 

A group of units consisting of one SIU plus the CPUs and IOUs associated 
directly with it. 

Indicates the channels response during the execution of an instruction. 

Refer to CAW and CCW. 

The control module handles all 110 instructions and resolves storage request and 
interrupt conflicts for up to eight channel modules. 

Allows execution of a new channel command word whenever the present 
operation is complete at the device level. This will result in the specification of 
a new operation with the same device without program intervention. 

Central processor unit. 

Channel status word. The channel stores status detected or received during 
execution of an 110 instruction and ending status associated with 
noncommunication subchannels and the status table subchannel in the CSW. 

Specifies a new buffer area in storage and permits continuous operation of the
i 

device without program intervention. 

A bank based on BO. 



0804 Rev.1 
u,~Ut 

I SPERRY UNIVAC 1100/80 Systems 
~J Capability Processor and Storage Programmer Reference 

Oesi~,nator Bits 
o bit:s 

UPDATll.IVEl. 

These bits are used to establish and provide control of the CPU operations and 
to report status. (See 8.2.1) 

DO 

01 

02 

03 

04 

05 

06 

07 

08 

09 

010 

011 

012 

013 

014 

015 

016 

017 

018 

019 

020 

021 

022 

023 

024-028 

029 

carry designator 

overflow designator 

privileged instruction, GRS protect, and interrupt 
lockout detect 

allow interrupts. designator 

character addressing mode 

double-preGision underflow designator 

GRS selection designator 

relocation and storage suppression 

floating-point zero format selection 

reserved 

quarter-word mode designator 

ignored when 035 is zero 

BOR selector 

BoRO write protection 

BoR2 write protection 

BoR 1 write protection 

BoR3 write protection 

floating-point residue store enable 

reserved 

EXEC BoTP enable 

arithmetic exception interrupt designator 

characteristic underflow designator 

characteristic overflow designator 

divide check designator 

reserved 

quantum timer enable 



8804 Rev.1 
\JNllUMl1II 

SPERRY UNIVAC 1100/80 Syttems 
4x4 Capability Processor and Storage Programmer Reference 

Device Address 

Double Word 
Boundary 

E·-bit 

ECC 

EF 

. EI 

E:Si 

ESI Interface 

f·-field 

Granule 

(3RS 

HCCW 

!1-field 

lHSTCW 

lAW 

Ib 

030-032 must be zero 

033 reserved 

034-035 must be zero 

A basic peripheral unit from or to which data is transferred in a system. 

An address generated !n the CPU during an I/O instruction and by the control 
unit to indicate the address of the currently selected device. This is used to 
associate a particular device with a subchannel operation. 

Any even-numbered storage address. 

Bit 35 of the word in Xa for an LlJ/LOJ instruction and bits 35 and 17 of the 
BDI registers. 

Error correction code. 

External function. A control signal sent by an IOU to a peripheral control unit 
to identify the word on the output data lines as a function word rather than an 
output data word. 

External interrupt. A control signal sent to an IOU by a peripheral control unit 
which identifies the word on the input word lines as a status word rather than 
an input data word. 

Externally specified index. 

. Word channel interface capable of addressing up to 64 communications devices 
on one I/O interface. 

Function code designator (bits 35-30) of an instruction word. The" f-field 
specifies the particular type of operation or function to be performed. The j- and 
a-fields serve as minor function codes on certain instructions. 

Any group of 64 contiguous words in main storage having addresses in the range 
XXXXXOOO. through XXXXX777a. 

General register stack. A group of 112 addressable 36-bit control registers. The 
CPU uses these high-speed registers for holding intermediate results, indexing, 
and a variety of special functions such as repeat counting and holding status 
words. 

Hard channel control word. 

Index register incrementation designator (bit 1 7) of an instruction word. The 
h-field controls index register modification and J-register modification. 

Hard status table control word. 

Interrupt address word 

Increment in bytes. Bits 20-18 of a J-register. Used by byte instruction and 
other instructions operating in the character addressing mode (04 = 1). 



8804 Rev.1 
UP-MJMHR 

I SPERRY UNIVAC 1100/80 Systems ' 
~4 Capabifity Processor and Storage Programmer Reference 

A-!5 
PAGE 

I-bank 

i-field 

Immediate 
COrTlmand 

Instruction 
WO"d 

I/O 

IOU 

151 

lSI ilnteriace 

Iw 

J 

j-fhtld 

K 

Wei 
W1 
w:;! 

Main Storage 
Range (Half) 

Main Storage 
Unlit (MSU) 

MSU Bank 

UP'OATI LEYEL 

A bank based on the I-bank base value of the bank descriptor register. 

Indirect addressing designator (bit 16) of an instruction word. The i-field 
normally controls indirect addressing. It may be used instead to specify base 
register suppression/24-bit indexing or use of the utility base for operands, 
depending on the values of 07, 

An operation which will result in the subsystem generating an immediate status 
condition upon receipt of the command code. 

The leftmost 18 bits (12 bits if 09 = 07 = i - 1) of an index register. Symbolized 
by Xi. 

A statement that specifies an operation and the values or locations of its 
operands. 

Input/output 

Input/output unit 

Internally specified index 

A word channel interface which communicates with one peripheral control unit. 

Increment in words. Bits 31-21 of a J-register. Used by byte instructions and 
by instructions operating in the character addressing mode (04 = 1). 

J-register (JO-J3) at GRS addresses 106-111 8 or 126-131 8, Used by byte 
instructions and by instructions operating in the character addressing mode (04 
=- 1). 

Operand qualifier, partial GRS address, or minor function code designator (bits 
'29-26) of an instruction word. 

Used for notational convenience to replace the three low order digits of an 
integral power of 2 or an integral multiple thereof. Thus, 262K is used to 
represent 262,144(2 '8). 

Indicates the number of bytes in string SJO. SJ 1, and SJ2, respectively. Stored 
in SR335-27' SR32e-18' and SR3 ,7-8' respectively. Maximum value is 511. 

Consists of the main storage associated with upper or lower StU segments but 
not both. It is the amount of main storage addressable above address 8 million 
or below address 8 million. Though it is referred to as a half, it is not necessarily 
half of main storage. 

A free-standing storage cabinet made up of one to four 262K word modules of 
storage per unit. One to four units per system. 

Essentially one half of an MSU cabinet and made up of 1 or 2 modules of storage 
with common address and central logic. There are 1 to 8 MSU banks per system. 
A bank is a partitionable component on the STU. 



8804 Aev.1 
UNtI ....... 

SPERRY UNIVAC 1 100/80 Syeteml 
4x4 Capability Processor and 'Storage Programmer Reference 

MSU Module 

Major Function 
Code 

Mllntissa 

Minor Function 
Code 

MSR 

Mue 

Multi-Byte Mode 

N~ 

N,onresident 
Subchannel 

Nonshared 
Subchannel 

Normalize 

Ob 

Option 0 

Option 

Ow 

UPOATlUYEL 

The smallest increment of expansion of main storage, consisting of 262K words. 
There are· from 1 to 16 MSU modules per system. 

The f-field of an instruction word. 

The fractional part of a floating-point number. 

A portio", of an instruction word used with the f-field to specify the operation 
to be performed. For all instructions for which f .. 07, 33, or 378 or for which 
f is greater than 7081 the j-field contains a minor function code. For some 
instructions for which f is greater than 708, the a-field also contains a minor 
function code. 

The rightmost 18 bits (24 bits if 07 - i = 1) of an index register. Symbolized 
by Xm. It is added to the l6-bit address in the u-field of an instruction to 
produce a relative address (Xm is 18 bits) or absolute address (Xm is 24 bits). 

Module select register 

Multiple bit uncorrectable error. 

A type of operation available on the byte channel which permits a control unit 
to transfer several bytes of data before releasing the channel. 

Next instruction 

A set of control words held in reserve storage. 

A subchannel intended to operate with communications type peripheral devices. 
These subchannels allow concurrent access in an interleaving manner by a 
multiple number of devices through a multiplexing control unit to main storage. 

To normalize a number in floating point format, the mantissa is shifted left or 
right until the leftmost bit of the mantissa· is not identical to the sign bit. 

Offset in bytes. Bits 2-0 of a J-register. Used by byte instructions and by 
instructions operating in the character addressing mode (04 - 1). 

Used with the subchannel expansion feature to provide four resident 
subchannels, four resident nonshared subchannels and 124 nonresident 
nonshared subchannels. 

Provides 128 nonshared subchannels. The eight most recently active are held 
in the channel. The remaining 120 subchannels are held in main storage. 

Logical inciusive OR 

Offset in words. Bits 17-3 of a J-register. Used by byte instructions and by 
instructions operating in the character addressing mode (04 - 1). 

, The program address or P-register 



8804 Rev.1 I SPERRY UNIVAC 1100/aO Systems 
~~Eft _~~ Capability Processor and Storage Programmer Reference I 

A-7 

Paritv Bit 

PCI 

Prog,ram 
Controlled 
Interlrupt 

R 

Ra 

Relative Addmss 

Rela1~ive P + 1 

Resident 
Subc:hannel 

Residue 

RTC 

RO 

R1 

R2 

R3-IR5 

RS-R9 

S 

so 

UPDATfI.ML PAQI 

The P-register contains the address of the instruction that is currently being 
executed. 

A binary digit appended to a group of bits to make the number of one bits always 
odd or always even. 

Program cont~olled interrupt. (See 6.9.1.) 

A program controlled bit in a CCW. When set. an interrupt and/or a table entry 
in the status table is made for that subchannel. 

A special purpose control register specified explicitly or implicitly by an 
instruction word. GRS addresses 100a - 117 a and 120a - 137 a' 

The R-register specified by the a-field of an instruction word. 

Normally. the address (U) formed by the addition of u, the address field of an 
instruction, and Xm, the modifier p".)rtion of the index register specified by the 
instruction (U = u + Xm). For byte instructions and instructions performed in 
the character addressing mode, the relative address is U = u + Xm + Ow. A 
relative address is not produced for instructions performed with base register 
suppression. 

An 18-bit relative address captured by certain jump instructions. Formed by 
subtracting the active PSRs BI or BO value which corresponds to the value used 
to develop the absolute jump to address for the most recent previous jump 
instruction from the address of the instruction following the current jump 
instruction. 

A set of control words held in the channel module. 

The least significant result word produced by a single-precision Floating Add or 
Floating Add Negative instruction. 

Real time clock 

Real time clock register at GRS address 100a• or the control register at GRS 
address 1 20a. 

Repeat count control registers at GRS addresses 101 and 12 la. They are used 
during Block Transfer, search. and masked search instructions. 

Mask control registers at GRS addresses 102 and 1228, They are used during 
masked search instructions and the Masked Load Upper instruction. 

Staging Register 1-3 (SR 1-SR3). Used by byte instructions. 

J-registers JO-J3. One or more of these registers are used by byte instructions 
and by instructions operating in the character addressing mode (04 = 1). 

Sign bit or bit position 

The 24-bit O-bank absolute address developed through addition: SO = (u + BO) 
+ Xm or SO .. (u + BO) + Xm + Ow. 



8eo4 Rev.1 
UJI-NUMIP 

SPERRY UNIVAC 1100/80 Syetems 
4x4 Capability Processor and Storage Programmer Reference 

Shared 
Subchannel 

SI 

SI:OF Queue 

. S.JO 

SJ 1 

SJ2 

SK 

SR1 

SR2 

SR3 

STew 

SIU 

SIU Half 

SIU Segment 

STU 

Subchannel 

Subchannel 
F.xpansion 
f:eature 

Subsystem Clear 

System Reset 

A subchannel is shared if two or more devices use the same subchannel fOI I/O 
operations. On a shared subchannel only one device at a time can transfer data. 

The 24-bit I-bank absolute address developed through addition: 51 == (u + 81) 
+ Xm or 51 s (u + 81) + Xm + Ow. 

Used for storing the device address for SIOF instructions presented by the CPU 
but not yet excuted by the IOU. 

A byte string whose starting word address is formed by summing the u-field of 
the instruction, the modifier of the index register specified by the instruction 
word, and the Ow-field of register JO. The Ob-field of JO points to a byte within 
a word. 

A byte string based on J 1, X + 1, and Ow in the same manner as SJO is based 
on JO, X, and Ow. 

A byte string based on J2, X+2, and Ow in the same manner as SJO is based 
on JO, X. and Ow. 

Skip data (See 6.5.1) 

Staging register 1 (R3), GRS addresses 1038 or 1238, 

Staging register 2 (R4), GRS addresses 1048 or 1248, 

Staging register 3 (R5), GRS addresses 105s or 1258, 

Status table control word 

Storage interface unit, a free-standing cabinet made up of one to four 4K word 
segments of high-speed buffer storage. One unit required for each cluster 
configured. 

The segments in an SIU which are associated with the lower address range or 
with the upper address range. There are 1 or 2 SIU segments in a half. 

A 4K word module of high-speed intermediate storage. There are 1 to 8 SlU 
segments per system. A segment is a partitionable component on the STU. 

. System transition unit 

A subchannel is an organization of uniquely addressable access paths which are 
capable of independently sustaining a single I/O operation concurrent with other 
I/O operations; Le., a set of contra' words. 

Provides the capability for a channel module to operate with nonshared 
subchannels. (Refer to Option 0 and Option 1 for an explanation.) 

An I/O CLEAR signal originating at the IOU goes out on all 24 channels of that 
IOU. 

Clears all' IOU registers and control designators. resets all peripheral subsystems 
and initialiZes all resident subchannels to idle mode. 



8604 Rev.1 
UI~ ------UPERRY UNIVAC 1100/80 Systems 

4x4 Capability Processor and Storage Programmer Reference UPDATI LIVEL 
I A-9 

"AGE 

TIC 

TSW 

U 

u-field 

W-fiftld 

Word Interface 

X 

Xa 

Xi 

x-field 

Xm 

Xx 

( ) 

( r 

Transfer in Channel. A command stored as part of the CCW to perform a branch 
between noncontiguous CCWs. 

Tabled status word 

The 18-bit value produced in the index subsection by adding the rightmost 18 
bits (Xm-field) of the index register specified by the x-field of the instruction (or 
by adding 0 if X == 0) to the 1 6-bit value in the u-field of the instruction (u-field 
is extended to 18 bits). U = u + Xm or U == u + Xm + Ow. 

The contents of bit positions 15-0 of an instruction word. 

The relative address contained in bits 17-Q of an 151 or ESI access control word. 

The count field of an access control word. For lSI operations. the W-field is bits 
33-18. For half-word ESI operations, the W-field is bits 32-18. For 
quarter-word ESI operations, the W-field is bits 29-18. 

A set of cable drivers and receiver!: for communicating with one peripheral 
control unit. 

Index register. GRS addresses 18-17 8 and 141 8-1578, 

An index register having an address one greater than the address of the index 
register specified by the x-field of an instruction word. 

An index register having an address two greater than the address of the index 
register specified by the x-field of an instruction word. 

The X-register specified by the a-field of an instruction word. 

Normally, bits 35-18 of an index register (bits 35-24 when 07 = i = 1). Used 
to increment or decrement Xm (the modifier) when specified by the instruction 
word. 

Index register designator (bits 21-18) of an instruction word. 

Normally, bits 17-0 of an index register (bits 23-0 when 09 = 07 = i = 1.). 

Logica' exclusive OR 

The X-register specified by the x-field of instruction word. In some cases X is 
used to mean Xx. 

Two words, one word, or a field consisting of all 0 bits. 

Two words, one word. or a field consisting of all 1 bits. 

The contents of the register or location identified by the symbol within the 
parentheses. 

The ones complement of the register or location identified by the symbol within 
the parentheses. 

The contents of bit position n of the register or location identified by the symbol 
within the parentheses. For example, (Abs means the contents of bit position 
35 of A. 



8804 Aft. 1 
Uf'-NUMIIJI 

( )n-m 

SPERRY UNIVAC 1100/80 Sye1etnS 
4x4 Capability Processor and Storage-Programmer Reference 

A-10 
'AGE 

The contents of bit positions n'through m of the register or location identified 
by the symbol within the parentheses. For example, (X) 17-0 means the contents 
of bit position 17 through 0 of X. 

Absolute value or magnitude 

Direction of data flow 



8804 Rev.1 
UP-NUMIM ,------UPE:RRY UNIVAC 1100/80 Systems -

4,,4 Capability Processor and Storage Programmer Reference UPDATI LEVIL 

Appendix B. Summary of Word Formats 

See 2.6 for the following: 

N 

0 
Load Path 0 Application 0 

R t F Auto M MSU SIU IOU PROe 

/ ,I e P A 

T U u L S I R N P P I 

s I U I 0 0 L H H N 

M • t S U U e p 1 0 T 
d 7 e 5- .. 3 2 1 0 7 8 5 .. 3 2 1 0 3 2 , 0 3 2 1 0 

353433:123130292827262524232221201918171818141312" 109878543210 

S~t.", St6tu6 Word 1 

Load Path 1 Application 1 

F Auto M MSU SIU IOU PROe 

Not a e P A 

Used u L S I R N P P I 

I U I 0 a L H H N 

t S U U e P 1 0 T 
7 e 5 .. 3 2 1 0 e 5 4 3 2 , 0 3 2 1 o 3 2 1 0 

35 34 33 32 31 30 29 28 27 28 25 24 23 22 21 20 19 18 17 18 15 14 13 , 2 11 10 9 8 7 8 5 .. 3 2 1 0 



8104 Rev.1 .........,... SPERRY UNIVAC 1100/80 Systemt 
4x4 Capability Processor and Storage Programmer Reference 

See 4.2.8 for the following: 

lsi Chl_IIlc Mantissa 

3534 27 215 

Doubltl-!'rfICi.ion Flo.ting-Po;nr Form., 

CharltCteristic Manti, .. 

71 70 80 59 

Mantissa 

35 

S,ee 4.3. 1 for the following: 

Innruction Woni Form.t 

I lC 

35 3029 215 25 22 21 18 17 18 15 

See 4.3.2.2.2 for the following: 

Iw Ib Ow 

3534 333231 21 20 18 17 

:See 5. 1 O. 1 for the following: 

IUPOATlLML 

u 

New BDI Not Used 

31 34 33 32 30 29 18 17 

I B-2 
!tAGE 

o 

38 

o 

o 

3 2 0 

o 



8804 Aw.l 
UfI-HUMISI ------~.:tERAY UNIVAC 1100/80 Sy81eml 

4;(4 Capability Processor and Storage Programmer Reference 

Xa Aft",. &tilCution 

UP'DATI LIVEL 
8-3 

"AGE 

~_O_-_O~I __________ O_I_d_8_0_1 _________ ~ _________ R_e_,a_t_iv_e_p_ro_g_r_a_m_A_d_d_r_es_a _______ ~ 
3534 3332 3029 18 17 o 

See 5. 13. 1 f for the following: 

Aa Form.t lor Sto",' R"gi6tllr Slit 

IT Ar •• 2 a 0 
Area 2 

0 a Are. 1 
0 0 

Area 1 

Count Addr ... Count Addr ... 

35 34 33 27282524 18 17 1815 98 78 o 

.. 
See 5. 13. 13 for the foUowing: 

r".r RtllatiVII Addr .. 

Oestonator Regilter 
Word 0 

Bank Descriptor Table Pointer 
Word 1 

e ignored 8010 E ignored 801 2 

Word 2 0 2 

E ignored BOI' E ignored 8013 
1 3 

3534 3029 18 17 18 12 11 0 

See 5. 14 for the following: 

J-R.,,;.tM Form.t 

I+Hel Iw Ib Ow Ob 

35 34 33 32 31 21 20 18 17 3 2 0 



8804 Rev.1 
UP-NUMaIIt 

SPERRY UNIVAC 1100/80 Systems 
4)(4 Capability Processor and Storage Programmer Reference 

See 5. 1 5.5 for the following: 

S./ecr InttHTUpt Loclltions 

S A L 
E E M D D M A A S 

N 8 S S MSR N 
M M V V M M M M H MRFC 

U E 8 8 VALUE U 
E D E D E D E D S 

E D 0 

35 34 33 32 31 30 29 21" 27 28 25 2 •. 23 22 18151.'3 1110 

See 5.15.6 for the following: 

MR DATA 

H S B P RW C RESERVED ABSOLUTE BREAKPOINT ADDRESS 

35 34 33 32 31 30 29 28 2423 

See 5. 1 5. 1 0 for the following: 

E XX ign- 8010 E ign- Bol2 
0 oreet 2 XX ored 

e XX ign- 8011 e XX ign- BOl3 
1 orad 3· oreet 

3534 3332 3029 18 17 HI 15 14 12 11 

See 6.3.4 for the following: 

I/O In.rroction Formllt 

f - 75 a x I hi i I u 

35 3029 2825 2221 18 17 18 15 

S 
N 

G 
U 

S 

3 2 1 0 

o 

0 

0 



8804 Rev.1 
UII-MIMIER •~Pf:RRY UNIVAC 1100/80 System. 

4x,4 Capability Processor and Storage Programmer Reference -----

See 6.3.4 for the following: 

CAWO 

Operation IOU Chennel 
led Code Not Used Number Addre •• 

35 3029 28215 14 13 12 11 

See 6.3.4 for the following: 

CAW' 

87 

C NotUoed Addres. of first CCW or STCW 

71 . 80159 

See 6.5.1 for the following: 

ByM or Block MultipIMlH' ChlllJnlll CCW 

UIlDATi LIYEL 

Device 

~ddres. 

o 

o 

I U~ ~1 __ c_o_m_m_a_n_d_C_o_d_e __ ~ _____________________ o_a_g __ Ad __ d_r._s_. ____________________ ~ 
35 ~12 31 2423 o 

Not CC'W Flag. Formac Noc oag Count 

Used Flag. . Used 

C C S S P T 0 0 
0 C L K C S A A E A 8 C 

I , 0 L 

71 6887 8e 815 84 83 82 81 eo 59 51 57 se 55 5251 o 

See 6.5.1 for the following: 

Wonf Ch6nnM CCW 

r-::- I Command Code 

~~ __ ~I~~=:=::~=~I~I __ ~..._ ___________________ D_M __ a_A_d_d_~_._. ____________________ ~ 
315 :1231 30 29 2127 2.23 o 



leo4 Rev.1 SPERRY UNIVAC 1100/80 System. 
4x4 Capability Processor and Storage Programmer Reference UPOATI LIYIL 

Not CCW Flega Not UMd OeUi Count 

Used 

C C e s p M 0 0 e 
D C I K C 0 A A 0 

C I N 0 L T 

71 II 17 II eI 84 13 82 11 eo 58 58 5251 

See 6.10 for the following: 

Not 
UMd 

Not 

Device- Addre .. 

3231 

CSWorTSW 

Next CCW Addre.s 

2423 

UMd Device Statu8 Subchennel St.tu. RHiduel Data Count 

71 1117 52 51 

Extemel Interrupt Sgtu. Word (Word Channel, Onlv. 

107 

Se. 6. 10 for the following: 

lAW 

Not IOU Channel 
Not UMd Machine ChecK St.tu, UMd Number Addr ... 

2121 11 11 14 13 , 2 1 t 

See 6.11 for the following: 

CSW for' I/O In6trUt:tiDn 

31 

Not 

UMd 

3231 

Device Add,... Next CCW Addr ... 

2423 

Devic. 
Addr ... 

• 7 

o 

o 

38 

72 

o 

o 



I SPERRY UNIVAC 1100/80 Systems 
~l Capability Processor and Storage Programmer Reference UPDATE LIVIL 

Not 

Used Device StatuI Subchanne' Status Residua. Data Count 

71 ell 87 6059 5251 38 

Extema. Interrupt Status ~ord (Word Channel Only) 

107 72 

See 15. 1 2 for the following: 

TSW fol' Nonsh.1'1Hi 8.". MultlpltlxtII' $ubch.nne/s 

r--;:-u~~: L ______ ___ ~~ice Addre.. Next CCW Address 

315 3231 2423 o 

I u~ ~ ____ D_eY_~_e __ S_ta_tu_s ____ ~_S_u_bc __ ha_n_"_e_'_S_ta_tu_s __ ~ _________ R_" __ id_u_a_._D_at_a_c_o_u_"_t ________ __ 

71 e1887 8059 5251 3e 

See 6. 12 for the following: 

TSW fol' ESI Word Subch.nntlls 

~u~~~ J------a. ___ .-.I 
~~ Addr... Next CCW Addre .. 

35 :1231 2423 o· 

I ~ ~_EI~ __ O_O __ O_O __ O_O __ O __ ~ __ S~ ___ h_a_"ne __ '_S_~_tu __ s __ ~ _________ R_"_i_du_a_._D_a_ta __ C_oU_"_t ________ ~ 
71 8187 ee lOst 5251 38 

I Extern .. Interru.,. S_ Word if Bit &7 i. Set L-____ ~ 
107 72 



8804 "".1 
~ 

SPERRY UNIVAC 1100/80 Systems 
4x4 Capability Processor and Storage Programmer Reference UfIOATi LEVa. 

See 6. 13 for the following: 

315 

71 

Not 

Used 

Not 

Used 

Dey,ce Addr", 

3231 

00000000 

8a 87 

See 6. 1 7 for the following: 

Not 

I 
Format 

I 
Mode 

Used Control 

31S 3231 2827 

Not CCW Flags 

Used 

315 323'-

Not Device 

UMd Add,. .. 

31 3231 

315 

Not Used 

I Next CCW Addr ... 

2~ 23 

00000000 Residuel Date Count 

eo 59 5251 

Date Addr ... 

2~ 23 

I 
Format 

I 
Not Date Count 

Flags UMd 

2~ 23 2019 1815 

Next CCW Add,. .. 

2423 

Not Used 

10a 

o 

38 

o 

o 

o 

o 



8804 Rev.1 
tJI'.HUMIIR 

I SPE:RRY UNIVAC 1100/80 Systems . 
~, Capability Processor and Storage Pro~rammer Reference UPDATE I.IVB. 

Not Used 

8-9 
'AGE 

r-;:-I Not Mode Device 

~_~_U_I_ed __ ~ ______ ~ ______ A_d_d_~_S_' ____ ~ ______________________________ ~ 
35 3231 2827 2423 1815 o 

~I Device Status Subchannel Data Count 

StatuI 

35 31231 2423 18 15 o 

~I Device Next CCW Address 

Addresa 

35 ~12 31 2423 o 

C Not Used 

35 o 

See 7.2. 1 for the following: 

Progr.m Rtltum Add,... 

~ ____ N_o_t_U_s_e_d ________ ~ ________________ pr_o_g_~_m __ A_etu __ m __ Ad_d_r_ •• _a ________________ ~ 
3534 2423 o 

See 7.2.2 fol' the following: 

EO 00 0-0 BDIO E21 0 0-0 BDI 2 

E1 o 1 0-0 BDI1 E3 1 1 0-0 BOl3 

35 34 33 32 30 29 11 17 18 15 14 12 11 o 

Seet 7.3.2 for the following: 

35 34 33 32 31 30 29 21 27 28 o 



8804 Rev.l 
~ 

SPERRY UNIVAC 1100/80 S'fItems 
4x4 Capability Processor and Storage Programmer Reference 

Form.t of Addreuing Exception Interrupt St.rus 

New BOI 

31 34 33 32 31 30 29 18 17 18 115 ,. 13 12 11 

See 7.3.3 for the following: 

Old BOI 

0-0 I+H 0-0 Absolute Bre.kpoint Addre .. 

31 33 32 31 30 21 2423 

See 7.3.4 for the followirtg: 

Zeros 

35 34 33 

See 7.3.6.1 for the ·following: 

Absolute Addr ... 

31 34 33 32 31 30 2. 21 27 28 25 Z4 Z3 

See 7.3.6.2. 1 for the following: 

I",.",., SIU ChtH:k Fotmllt 

S 8 8 8 B I 0 0 T A S 
Absolute Add ..... if 

o 0 s 0 C 8 A A C C B G H 
bit 2" is not set 

0 0 0 0 0 C U L C E I AGE bits if 24.1 I Lower 1 5 bits of 

(DO 1.DOO,CO 1 .. .AO 1.AOO) Absolute Addr ••• 

31 34 33 32 31 30 Z' 21 27 28 25 Zot 23 22 115 10t 

8-10 
'AGI 

o 

o 

2 1 0 

o 

o 



1804 Rev.1 
UNeUMIIIt 

I SPE:RRY UNIVAC 1100/80 Systems 
~4 Capability Processor and Storage Programmer Reference 

See 7.3.6.2.2 for the following: 

29 28 27 28 25 24 23 

See 7.3.6.2.3 for the following: 

UPOATI LIYEL 
B-11 

"AGe 

o 

111:1~1',_)~I~_E~I __ . __ S_~_E~_~_m_. ____ ~ ___________________ Ah_~ __ IU_~ __ A_dd_r_._u ________________ ~ 
35 34 33 32 31 30 2423 o 

See 7.3.7 for the following: 

PotNt' Ch.ck Interrupt St.tu8 Word 

Z.ros 

315 2 1 0 

See 7.4. 1 for the following: 

Machine Check Not IOU Chan,* 
Not Used Indicator Bits Used Number Addr ... Not Used 

31 21215 11 15 ,. 13 12 11 8 7 o 



8804 Aft.1 
UfL.NIfMIa 

SPeRRY UNIVAC 1100/80 Sytteml 
4x4 Capability Processor and Storage Programmer Reference 

See 7.4.2 for the following: 

3& 

3& 

71 

Not Used 

Not 

Used 

Not 

Used 

3231 

81 87 

107 

0 
or 
1 

252423 

Device Addr ... 

Device Status 

See 7.4.3 for the foHowing: 

2423 

so 59 

Not Used 

35 

Not Device 

Used Add,.... 

3231 2423 

Not (Forced to 

Used ZeroI. 
71 8187 

IOU Channel Device 
Not Used Number Addr ... Addre .. 

14 13 12 11 a 7 

Next CCW Addre .. 

Subchannel Statu. Residual Data Count 

5251 

Not UMd 

r.blfId Inr.rrupt lAW 

I N~~~r I Chann" 
Add,... 

Device 
Add,... 

14 13 12 11 a 7 

T6blfId In,.,,-upt CSW 

Next CCW Addr ... of the Statu. rable Subchannel 

Subchannel R .. idue Data Count 

Statu. (Statui rable Subchannel) 

52 51 

8-12 
IIAGI 

o 

o 

. 38 

72 

o 

o 

38 



I SPEI~RY UNIVAC 1100/80 Systems 
~ Capability Processor and Storage Programmer Reference 

Not Used 

101 

See n.2.1 for the following: 

035 029 Re .. rved 023 

35 2928 2423 

See li.2. ,. for the following: 

BIl.it: O.6ignlltol' Rllgi.t.1' Stilt". 

u • .,. Mod. 

o 0 o 0 0 0 0 o 0 0 
0 0 1 Re .. rved 23 22 21 20 19 o 17 16 13 12 0 10 0 

UIIOATI LIVEL 

0 0 0 
8 o 0 5 4 1 

0 
1 1 

8-13 
PAQI 

72 

o 

0 
0 

35 30 29 28 24 23 22 21 20 19 18 11 18 13 12 11 10 9 8 7 e 5 4 3 2 1 0 

Int.1'1'Upt Mod. 

35 2928 2423 13 12 11 10 9 8 7 e 5 o 

UlICutiv" Mod. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 

0 0 
0 Reserved 023020 1 0 o 10 0 

29 17 16 15 14 13 12 8 7 6 5 4 3 1 0 

35 302928 2423 20 19 18 1 7 1 8 15 14 13 12 1 1 10 9 8 7 t 5 4 3 2 1 0 

See 8.3.4 for the following: 

C r_longlll Tabl. Addre .. 

35 2423 o 



8104 "".1 .....,.- SPERRY UNIVAC 1100/80 Syaema 
4x4 Capability Processor and Storage Programmer Reference 

See 8.3.4 for the following: 

ReMrv~ for Software Ba .. V.'u. 

Upper Umit Lower Umit RW p·v • C 

311 2423 18 17 111 14 13 12 11 10 9 8 

u .. Count 

8-14 
'AGE 

o 



8804 Rev. 1 
U.-...uMUA 

I SPI:RRY UNIVAC 1100/80 Systems 
~4 Capability Processor and Storage Programmer Reference UPDATE LIYB. 

C-1 
PAGE 

Appendix C. Instruction Repertoire 

Table C-I. Mnemonic/Function Code Cross-Relefence 

Function Function 
Code (Octal) Code (Octal) 

Mnemonic f j Paragraph Mnemonic f j Paragraph 
Reference Reference 

A,AA 14 5.4.1 DOC 73 14 5.15.3 
A,AX 24 5.4.7 a = 12 
AAIJ 74 07 5.9.3 DEC 05 00-17 5.13.14 
AH 72 04 5.4.17 a= 11, 13 
AM,AMA 16 5.4.3 OF 36 5.4.14 
AN,ANA 15 5.4.2 DFA 76 10 5.5.3 
AN,ANX 25 5.4.8 oFAN 76 1 1 5.5.4 
ANI:> 42. 5.12.3 DFB 33 17 5.14. 13 
ANH 72 05 5.4.18 oFO 76 13 5.5.8 
ANM,ANMA 17 5.4.4 OFM 76 12 5.5.6 
AN"r 72 07 5.4.20 OFP,OlCF 76 15 5.5.12 
ANIJ 21 5.4.6 OFU 76 14 5.5.10 
AT 72 06 5.4.19 01 34 5.4.12 
AU 20 5.4.5' DIS 33 13 5.14.9 
BA 37 06 5.14.14 OJZ 71 16 5.11.2 
BAN 37 07 5.14.15 Ol 71 13 5.2.9 
BC 33 04 5.14.4 OlM 71 15 5.2.11 
BOI= 33 15 5.14.11 OlN 71 14 5.2.10 
BOI 33 11 5.14.7 OlSC 73 07 5.8.8 
BF 33 14 5.14.10 OS 71 12 5.3.7 
BI 33 10 5.14.6 OSA 73 05 5.8.6 
aM 33 00 5.14.1 
BM'T 33 01 5.14.2 
aT 22 5.3.8 

OSC 

I 

73 01 5.8.2 
OSF 35 5.4.13 
OSl 73 03 5.8.4 

BTC 33 03 5.14.3 OTE 71 17 5.7.14 
ceu 76 07 5.5.16 EOC 73 14 5.15.3 
oA 71 10 5.4.15 a =- 1 1 
DAN 71 11 5.4.16 EOIT 33 07 5.14.5 



8804 Rev. '1 
~MlER 

: 
I 

SPERRY UNIVAC 1100/80 Systems 
4x4 Capability Processor and' Storage Programmer Reference U.-oATI LEVEl. 

C-2 
PAGE 

rable C-I. Mnemonic/Function Code Cross-Reference (continued) 

Function Function 
Code (Octal) Code (Octal) 

Mnemonic f j Paragraph Mnemonic f j Paragraph 
Reference Reference 

ENZ 05 00-17 5.13.14 JPS 72 02 5. 11.3 
a == 14-17 JZ 74 00 5.11.5 

ER 72 11 5.13.4 L,LA 10 5.2.1 
EX 72 10 5.13.3 L,LR 23 I 5.2.5 
FA 76 00 5.5.1 L,LX 27 5.2.7 
FAN 76 01 5.5.2 LAE 73 15 5.15.11 
FB 33 16 5.14.12 a == 12 
FCL 76 17 5.5.14 LB 73 15 5.15.9 
FD 76 03 5.5.7 a== 10 
FEL 76 16 5.5.13 LBJ 07 17 5.10.1 
FM 76 02 5.5.5 LBRX 73 15 5.15.6 
HCH 75 05 6.4.6 ' a == 02 
HDV 75 04 6.4.5 LCF 76 05 5.5.11 
HJ,HKJ 74 05 5. 11. 1 0 LCR 75 10 6.4.7 
IB 33 12 5.14.8 LD 73 15 5.15.13 
lUX 73 15 5.15.19 a == 14 

a == 04 LDC 73 14 5.15.2 
IMI 72 00 5.15.21 a== 10 
INC 05 00-17 5.13.14 LOJ 07 12 5. 1 0.3 

a== 10,12 LOSC 73 11 5.8.10 
J,JK I 74 04 5.11.9 
JB 74 1 1 5. 11. 1 2 

LOSL 73 13 5.8.12 
L1J 07 13 5.10.2 

JC 74 16 5. 11.22 LL 73 15 5.15.10 
JDF 74 14 5.11.17 a == 1 1 

a == 03 LM,LMA 12 5.2.3 
.JFO 74 14 5. 11. 16 LMJ 74 13 5.9.2 

a == 02 LN,LNA 11 5.2.2 
JFU "'74 14 5.11'.15 LNMA 13 5.2.4 

a == 01 LPD 07 14 5.13.1 
JGO 70 5.11. 1 LaT 73 15 5.15.8 
JMGI 74 12 5.11.13 a == 03 
IN 74 03 5.11.8 LRS 72 17 5.13.12 
JNB 74 10 5.11. 11 LSC 73 06 5.8.7 
JNC 74 17 5.11.23 LSSC 73 10 5.8.9 
JNDF 74 15 5.11.21 LSSL 73 12 5.8.11 

a == 03 LTCW 75 11 6.4.8 
JNFO 74 15 5.11.20 LUF 76 04 5.5.9 

a =- 02 LXI 46 5.2.8 
JNFU 74 15 5.11.19 LXM 26 5.2.6 

a == 01 MASG 71 07 5.6.14 
JNO 74 15 5.11.18 MASL 71 06 5.6.13 

a == 00 MCOU 76 06 5.5.15 
JNS 72 03 5.11.4 MDA 73 14 5.15.20 
JNZ 74 01 5.11.6 a= 14 
JO 74 14 5.11.14 

a == 00 
JP 74 02 5.11.7 

MOB 73 14 15.15.20 
a== 15 

MF 32 5.4.11 



I SPERRY UNIVAC 1100180 Systems 8804 Rev. 1 
U'-',ffUM8ER ~ Capability ~rocessor and Storage Programmer Reference UPOATI LEVEL 

C-3 
PAGE 

rable C- 1. Mnemonic/Function Code Cross-Reference (continued) 

Function 1 

Code (Octal) 
Function 

I Code (Octal) 
Mnemonic f j Paragraph 

Reference 
Mnemonic I f j I Paragraph 

I Reference 
MI 30 5.4.9 
MLLI 43 5.12.4 

SPIO 73 15 
I 

5.15.7 
a = 05 

MSe: 71 00 5.6.7 SP1 05 00-17 5.3.5 
MSCi 71 03 5.6.10 a = 02 
MSI 31 5.4.10 SaT 73 15 5.15.12 
MSl.E,MSNG 71 02 5.6.9 a = 13 
MSNE 71 01 5.6.8 SAS 72 16 5. 13. 11 
MSNW 71 05 5.6.12 SSA 73 04 5.8.5 
MS\N 71 04 5.6.11 SSC 73 00 5.8.1 
NOFI 

I 
74 06 5.13.10 

• OR 40 5.12.1 
PAI .. I I 72 13 5.15.1 
RAT 73 15 5.15.16 

SSL 73 02 5.8.3 
5SS 73 15 5.15. 18 

a = 17 
SW 66 5.6.5 

a = 06 SZ 05 00-17 5.3.5 
S,5J~ 01 5.3.1 a = 00 
S,5J~ 04 5.3.4 TAP 73 15 5.15.17 
5,5;( I 06 5.3.6 a =- 07 
SAS 05 00-17 5.3.5 TCS 73 17 5.13.7 

a = 06 a :II 02 
SAZ 05 00-17 5.3.5 TE 52 5.7.6 

a = 07 
SO 73 15 5.15. 14 

a = 15 
SOC: 73 14 5.15.4 

a = 13 ! 

SE 62 1 5.6. 1 
SFS 05 00-17 5.3.5 

TEP 44 lti. 7 .1 
TG 55 5.7.9 
TLE,TNG 

I 

54 5.7.8 
I TLEM,TNGM 47 5.7.3 

TN 61 5.7.13 I 

TNE 53 5.7.7 
TNW 57 5.7.11 

a =: 04 TNZ 51 5.7.5 
5FZ: 05 00-17 5.3.5 TOP 45 5.7.2 

a :II 05 TP 60 5.7.12 
SG 65 5.6.4 TRA 72 15 5.13.13 
SIL 73 15 5.15.5 , TS 73 17 5.13.5 

a = 00 a = 00 
SIOF 75 01 6.4.2 TSA 73 17 5.13.8 
SLE:.SNG 64 5.6.3 a = 04 
SLJ 72 01 5.9.1 TSC 75 03 6.4.4 
SM"SMA 03 5.3.3 TSS 73 17' 5.13.6 
SN,SNA 02 5.3.2 a = 01 
SNI: 63 5.6.2 TSSA 73 17 5.13.9 
SN'N 67 5.6.6 a = 05 
SN~~ 05 00-17 5.3.5 TW 56 5.7.10 

a == 01 TZ 50 5.7.4 
SN1 05 00-17 5.3.5 

I a = 03 
I SP[,_) _____ ~ __ 0_7 ____ 1~5~_5_.1~3_.2 ____ ~ 

UR 73 15 5.15.15 

I a = 16 
I XOR 41 5.12.2 



8804 Rev.1 
~ 

I 

SPERRY UNIVAC 1100/80 Systems 
4x4 Capability Processor and Storage Programmer Reference 

Tabl. C-2. Instruction Repertoire 

Function 
Code 
(Octal) 

f j Mnemonic Instruction Description 

00 0-17 - Invalid Code Causes Invalid Instruction Fault interrupt to 
MSR + 2218 

01 0-15 S.SA 'Store A (Aa) - U 

02 0-15 SN.SNA Store Negative A - (Aa) - U 

03 0-15 SM,SMA Store Magnitude I (Aa) 1- U 
A 

·04 0-15 S.SR Store R (Ra) - U 

05 0-17 SZ Store Zero Store constant 000000 000000, zeros. in 
a =- 00 location specified by operand address 

05 0-17 SNZ Store Negative Store constant 777777 777777, all ones, in 
a =- 01 Zero location specified by operand address 

05 0-17 SP1 Store Postive Store constant 000000 000001, postive one, 
a = 02 One in location specified by operand address 

05 0-17 SN1 Store Negative Store constant 777777 777776. negative one. 
a =- 03 One in location specified by operand address 

05 0-17 SFS Store Fieldata Store constant 050505 050505, Fieldata 
a =- 04 Spaces spaces. in location specified by operand 

address 

05 0-17 SFZ Store Fieldata Store constant 606060 606060, Fieldata 
a - 05 Zeros zeros, in location specified by operand address 

05 0-17 SAS Store ASCII Store constant 040040 040040. ASCII spaces, 
a - 06 Spaces in location specified by operand address 

05 0-17 SAl Store ASCII Store constant 060060 060060. ASCII zeros. 
1-07 Zeros in location spe~ified by operand address 

05 0-17 INC Increase Operand Increase operand by one. If initial operand or 
a- 10 by One result is zero. execute NI; if not zero, skip NI. 

05 0-17 DEC Decrease Decrease operand by one. If initial operand or 
a =- 11 Operand by One result is zero, execute NI; if not zero, skip Nt. 

05 0-17 INC2 Increase Operand Increase operand by two. If initial operand or 
a =- 12 by Two result is zero, execute NI; if not zero, skip Nt. 



leo .. Rev.1 
IJIf-HuMIU 

I SPIERRY UNIVAC 1100/80 Syetems 
~4 Capability Processor and Storage Programmer Reference UIIOATI LIVI1. 

Tablll C-2. Instruction R.ptlftOir. (continutHil 

Function 
Code 

(IOctal) 

f j Mnemonic Instruction Description 

05 0-17 DEC2 Decrease Decrease operand by two. If initial operand or 
a =- 13 Operand by Two result is zero, execute NI; if not zero, skip NI. 

05 0-17 ENZ Increase ·Operand Increase operand by zero. If initial operand or 
a - 14-17 by Zero result is zero execute NI; if not zero, skip NI. 

06 0-15 S,SX Store X (Xa) - U . 
07 .0-11 - Invalid Code Causes Invalid Instruction Fault interrupt to 

MSR + 221.8 

07' 12 LOJ Load D-Bank Ignore Xa bit positions 34-33; if 012 - 0, 
Base and Jump select BOR2; if 012 =- 1, select BOR3 

07' 13 LJJ Load I-Bank Ignore Xa bit positions 34-33; if 012 - 0, 
Base and Jump select BORO; if 01 2 - 1, select BOR 1 

07' 14 LPO Load DR Ue.5.3-0 - Designator Register 
Designators Bit 6 - 020 Bit 2 - 08 

Bit 5 - 017 Bit 1 - 05 
Bit 3 - 010 Bit 0 - 04 . 

07' 15 SPO Store DR Designator Register D-bits - Us-o 
Designators 020 - Bit 6 08 - Bit 2 

017 - Bit 5 05 - Bit 1 
012 - Bit' 4 04 - Bit 0 

i 010 - Bit 3 

Ojr 16 - Invalid Code Causes Invalid Instruction Fault interrupt to 
MSR + 2218 

O'4r 17 LBJ Load Bank and Load BOR; jump to location specified by the 
Jump operand address 

1() 0-17 L,LA Load A (U) -A 

1 'I 0-17 LN,LNA Load Negative A - (U) - A 

1 :l 0-17 LM,LMA Load Magnitude· 1 (U) 1 - A 
A 

13 0-17 LNMA Load Negative -I (U) 1 - A 
Magnitude A 

144 0-17 A,AA Add to A (A) + (U) - A 



8804 Aw.1 
UfII..HUMIp 

SPERRY UNIVAC 1100/80 System. 
4x4 Capability Processor and Storage Programmer Reference 

Function 
Code 

(Octal) 
\ 

f j Mnemonic Instruction Description 

15 0-17 AN,ANA Add Negative To (A) - (U) - A 
A 

I 16 0-17 AM,AMA Add Magnitude (A) + I (U) I - A 
To A 

17 0-17 ANM,ANMA Add Negative (A) - I (U) I - A 
Magnitude to A 

20 0-17 AU Add Upper (A) + (U) - A+l 

21 0-17 ANU Add Negative (A) - (U) - A+ 1 
Upper 

22 0-15 BT Block Transfer (Xx + u) - Xa + u; repeat k times 

23 0-17 L.LR Load R (U) - Ra 

24 0-17 A,AX Add to X (Xa) + (U) - Xa 

25 0-17 AN,ANX Add Negative to (Xa) - (U) - Xa 
X 

26 0-17 LXM Load X Modifier (U) - Xa17-O; Xa35-18 unchanged 

27 0-17 L,LX Load X (U) - Xa 

30 0-17 MI Multiply Integer (A) x (U) - A, A + 1 

I 31 0-17 MSI Multiply Single (A) x (U) - A 
Integer 

32 0-17 MF Multiply (A) x (U) - A, A+ 1, left circular one bit 
Fractional 

33 00 BM Byte Move Transfer WO bytes from source string to 
receiving string. Truncate or fill receiving 
string as required 

33 01 BMT Byte Move With Translate and transfer WO bytes from source 
Translate string to receiving string. Truncate or fill 

receiving string as required 

33 02 BTT Byte Translate Translate and test N bytes against (A); if not 
and Test equal, terminate instruction with JO pointing to 

unequal byte and N -: O. (This instruction 
simulated by library procedures and routines.) 



El404 Rev.1 
~ 

I SPERRY UNIVAC 1100/80 Svstems 
~~ Capability Processor and Storage Programmer Reference C-7 

ftAGE 

Tablll C-2. Instruction Rllpllrroirll (continulld) 

Function 
Code 
()ctal) 

f j Mnemonic Instruction Description 

33 03 BTC Byte Translate Translate and compare WO bytes from string 
and Compare SJO to W 1 bytes from string SJ.1; terminate 

instruction on not equal or if both WO and W 1 
are zero, when: 
(Aa) > 0; string SJO > SJ 1 
(Aa) = 0; string SJO == SJ 1 
(Aa) < 0; string SJO < SJ 1 

33 04 BC Byte Compare Compare WO bytes from string SJO to W 1 
bytes from string SJ 1; terminate instruction on 
not equal or if both WO and W 1 are zero 

33 05 BPD Byte to Packed Convert N bytes in string E to packed decimal 
Decimal Convert in string F. (This instruction simulated by 

library procedures and routines.) 

33 06 POB Packed Decimal Convert N packed decimal digits in string E to 
to Byte Convert bytes in string F. (This instruction simulated by 

library procedures and routines.) 

33 07 eDIT Edit Edit string SJO and transfer to string SJ 1 
under the control of string SJ 2 

33 10 BI Byte to Binary Convert WO bytes in string SJO to a signed 
Single Integer binary integer in register A 
Convert 

33 11 BOI Byte to Binary Convert WO bytes in string SJO to a signed 
Double Integer binary integer in registers A and A+ 1 
Convert 

33 12 18 Binary Single Convert signed binary integer in A to byte 
Integer to Byte format and store in string SJO 
Convert 

33 13 OIB Binary Double Convert the binary integer in A and A+ 1 to 
Integer to Byte byte format and store in string SJO 
Convert 

331 14 BF Byte to Single Convert WO bytes in string SJO to a single 
Floating Convert length floating point format in register A 

3~1 15 BOF Byte to Double Convert WO bytes in string SJO to a double 
Floating Convert length floating point format in registers A and 

A+1 



8804 Rev.1 
~ 

SPERRY UNIVAC 1100/80 Systems . 
4x4 Capability Processor and Storage Programmer Reference 

C-8 
PAGE 

Function 
Code 
(Octal) 

f j Mnemonic Instruction 

33 16 FB Single Floating 
to Syte Convert 

33 17 DFB Double Floating 
to Byte Convert 

34 0-17 01 

35 0-17 DSF 

36 0-17 OF 

37 00 as 

37 01 BO 

37 02 aSH 

37 03 SHa 

37 04 aoB 

Divide Integer 

Divide Single 
Fractional 

Divide Fractional 

Quarter Word 
Byte to Binary 

. Compress 

Binary to Quarter 
Word Byte 
Extend 

Quarter Word 
Byte to Binary 
Halves Compress 

Binary Halves to 
Quarter Word 
Byte Extend 

Quarter Word 
Byte to Double 
Binary Compress 

UII'DATI LIVIL 

Description 

Convert the single length floating point number 
in A to byte format and store in string SJO 

Convert double length floating point number in 
A and A+ 1 to byte format and store in string 
SJO 

(A, A+ 1) divided by (U) - A; REMAINDER -
A+1 

[(A, 36 sign bits) right algebraic shift 1 place] 
divided by (U) - A + 1 

[(A, A+ 1) right algebraic shift 1 place] divided 
by (U) - A; REMAINDER - A+ 1 

Discard (A)3S' (A)26' (A)17' and (A)a; place the 
remaining bits in A31-O; (A)31 - A35-32' (This 
instruction simulated by library procedures and 
routines.) 

Discard (Ab5-32; place the remaining bits in 
A34-27' A25-1S' A , 6-9' and A7-O; zero fill A3B• 
A26• A ,7• and Aa. (This instruction simulated 
by library procedures and routines.) 

Discard (A)3S' (A)27' (A), 7' and (A)a; place the 
remaining bits in A3l-18 and A'5-O; (Ab3 -
A35-34; (A),5 - A17- US ' (This instruction 
simulated by library procedures and routines.) 

Discard (A)35-34 and (A)17-16; place the 
remaining bits in A34-27' A25-1a. A,e-9' and 
A7-o; zero fill A3B• A26• A,7• and As· (This 
instruction simulated by library procedures and 
routines.) 

Discard A35• A26• A'7' Aa. A+ 135, A+ 126, 
A+ 1 ,7, and A+ ls; place the remaining bits in 
A27-O and A+ 1; (A)27 - A3B- 2a. (This 
instruction simulated by library procedures and 
routines.) 



8804 Rev.1 
~ 4x4 Capability Processor and Storage Programmer Reference -----L!PI:RRY UNIVAC 1100/80 Systems 

r.bltJ C-2. In6truction RtJptJnoirtJ (continutJd) 

Function 
Code 

(Octal) 

f j Mnemonic Instruction Description 

37 05 DBQ Double Binary to Discard (A)35-2S; place the remaining bits from 
Quarter Word. A and A+ 1 in A34-27' A2!-18' A uS- 9' and A7-o. 
Byte Extend A+ 134-27' A+ 125-18' A+ 118-9' and A+ 17-0; 

zero fill A3!. A28• A'7' A8• A+ 136, A+ 128, 
A+ 117, and A+ 18, (This instruction simulated 
by library procedures and routines.) 

37 06 BA Byte Add Add the WO bytes in string SJO to the W 1 
bytes in string SJ 1 and store the results in 
string SJ2 

37 07 BAN Byte Add Subtract the WO bytes in string SJO from the 
Negative W 1 bytes in string SJ 1 and store the results in 

string SJ2 

37 10-1j - Invalid Code Causes Invalid Instruction Fault interrupt to 
MSR + 2218 

40 0-17 OR Logical OR (A) m (U) - A+1 

41 0-17 XOR Logical Exclusive (A) IXQBI (U) ... A+ 1 
OR 

42 0-17 AND Logical AND (A) g (U) ... A+1 

43 0-17 MLU Masked Load [(U) ~ (R2)] IQBI 
Upper [(A) N NOT (R2)] - A+ 1 

44, 0-17 TEP Test Even Parity Skip NI if (U) g (A) has even parity 

45, 0-17 TOP Test Odd Parity Skip NI if (U) g (A) has odd parity 

481 0-17 LXI Load X (U) ... (Xa)35-18; (Xah 7-0 unchanged 
Increment 

47' 0-17 TLEM Test Less Than Skip NI if (U) 17-0 ~ (Xa), 7-0; always (Xah 7-0 
or Equal to + (Xa)35-18 - Xa17-o 
Modifier 

TNGM Test Not Greater 
Than Modifier 

5C~ 0-17 TZ Test Zero Skip NI if (U) == to 

51 0-17 TNZ Test Nonzero Skip Nt if (U) ~ to 

5~~ 0-17 TE Test Equal Skip Nt if (U) - (A) 



8eo. Rev.l 
UILNU_ER 

I 

SPERRY UNIVAC 1100/80 System. 
4x4 Capability Processor and Storage Programmer Reference C-10 

PAGI UPOATI LIVEL 

Tab/e C-2. /nmvction Repertoire (continued) 

Function 
Code 

(Octal) 

f j Mnemonic Instruction Description 

53 0-17 TNE Test Not Equal Skip NI if (U) : (A) 

54 0-17 TLE Test Less Than Skip Nt if (U) ~ (A) 
or Equal 

TNG Test Not' Greater 

55 0-17 TG Test Greater Skip Nt if (U) > (A) 

56 0-17 TW Test Within Skip Nt if (A) < (U) ~ (A+ 1) 
Range 

57 0-17 TNW Test Not Within Skip NI if (U) ~ (A) or (U) > (A+ 1) 
Range 

60 0-17 TP Test Positive Skip Nt if (U)35 = 0 

81 0-17 TN Test Negative Skip Nt if (U)36 . = 1 

62 0-17 SE Search Equal Skip Nt if (U) == (A), else repeat 

63 0-17 SNE Search Not Equal Skip NI if (U) ~ (A), else repeat 

64 0-17 SLE Search Less Skip NI if (U) ~ (A), else repeat 
Than or Equal 

SNG Search Not 
Greater 

65 0-17 SG Search Greater Skip NI if (U) > (A), else repeat 

66 0-17 SW Search Within Skip NI if (A) < (U) ~ (A+ 1), else repeat 
Range 

67 0-17 SNW Search Not Skip Nt if (U) ~ (A) or (U) > (A+ 1), else repeat 
Within Range 

70 0-17 JGD Jump Greater Jump to U if (Control Register)ja > 0; go to NI 
and Decrement if (Control Register)j. ~ 0; always (Control 

Register)j. -1 - Control Registerja 

71 00 MSE Masked Search Skip NI if (U) g (R2) - (A) g (R2), else 
Equal repeat 

71 01 MSNE Masked Search Skip Nt if (U) g (R2l : (A) g (R2), else 
Not Equal repeat 

71 02 MSlE Masked Search Skip NI if (U) g (R2) ~ (A) g (R2), else 
Less Than or repeat 
Equal 



8604 Rev.1 
UP-NUMBM -----b p'5RRY UNIVAC 1100/80 System. 

4x4 Capability Processor and Storage Programmer Reference UPDATI l.E'm. 
C-l1 

PAGE 

r"bl. C-2. Instruction RtlpMtoirtl (continued) 

FUlnction 
Code 
(Octal) 

f j Mnemonic Instruction Description 

MSNG Masked Search 
Not Greater 

71 03 MSG Masked Search Skip NI if (U) ~ (R2) > (A~ ~ (R2), else 
Greater repeat 

71· 04 MSW Masked Search Skip NI if (A) ~ (R2) < (U) ~ (R2) ~ 
Within Range (A+ 1) ~ (R2), else repeat 

71 05 MSNW Masked Search Skip NI if (U) ~ (R2) ~ (A) ~ (R2) or (U) 
Not Within ~ (R2) > (A+ 1) ram3 (R2), else repeat 
Range 

71 06 MASL Masked Skip NI if (U) ~ (A2) ~ (A) ~ (R2), else 
Alphanumeric repeat 
Search Less 
Than or Equal 

71 07 MASG Masked Skip Nt if (U) ~ (R2) > (A) ~ (R2), else 
Alphanumeric repeat 
Search Greater 

71 10 OA Double-Precision (A, A+1) + (U, U+1) - A, A+1 
Fixed-Point Add 

71 11 DAN Double-Precision (A, A+ 1) - (U, U+ 1) - A, A+ 1 
Fixed-Point Add 
Negative 

71 12 OS Double Store A (A. A+ 1) - U, U + 1 

71 13 Dl Doub'e Load A (U, U + 1) - A, A+ 1 

71 14 DLN Double Load - (U, U + 1) - A, A+ 1 
Negative A 

71 15 DlM Double Load I·(U, U+1) I - A, A+1 
Magnitude A 

711 16 DJZ Double-Precision Jump to U if (A, A+ 1) - : 0; go to NI if (A, 
Jump Zero A+ 1) : !: 0 . 

7;1 17 OTE Double-Precision Skip NI if.(U < U+ 1) - (A, A+ 1) 
Test Equal 

7:~ 00 IMI Initiate Send Attention Interrupt to Maintenance 
Maintenance Processor, if in Maintenance Mode, otherwise 
Interrupt NO-OP 

; 



8804 Rw.1 ......... 

I 

Function 
Code 

(Octal) 

f j 

72 01 

72 02 

72 03 

72 04 

72 05 

72 06 

72 07 

72 10 

72 11 

72 12 

72 13 

72 14 

72 15 

12 16 

12 17 

73 00 

SPERRY UNIVAC 1100/80 System. 
4x4 Capability Processor and Storage Programmer Reference C-12 

'AGI 

r.ble C-2. In.truction Repenoire (continued) 

Mnemonic Instruction Description 

SW Store Location Relative P + 1 - U17-O; jump to U+ 1 
and Jump 

JPS Jump Positive Jump to U if (A)35 = 0; go to NI if (A)35 = 1; 
and Shift always shift (A) left circularly one bit position 

JNS Jump Negative Jump to U if (A)35 - 1; go to NI if (A)35 :II: 0; 
and Shift always shift (A) left circularly one bit position 

AH Add Halves (A)36-18 + (U)36-18; - (A)35-18; (A),7-O + . (U)17-O - A17-O 

ANH Add Negative (A)36-18 - (U}35-18 - (A)35-18; (A)17-O - (U)17-O 
Halves - A17-O 

AT Add Thirds (A)36-24 + (U)35-24 - A35-24; (A)23-12 + 
(U)23-12 - A23-12; (A)11-O + (U), 1-0 - A11-O 

ANT Add Negative (A)35-24 - (U)35-24 - A35-24; (A)23-12 -
Thirds (U)23-12 - A23-12; (A),,-o - (U)l1-O - A l1 -O 

EX Execute Execute the instruction at U 

ER Executive Interrupt to MSR + 2228 
Request 

- Invalid Code Causes Invalid Code Fault interrupt to MSR + 
2218 

PAIJ Prevent All Prevent all interrupts and jump to U 
Interrupts and 
Jump 

- Invalid Code Causes Invalid Code Fault interrupt to MSR + 
221 8 

TAA Test Relative Used to determine whether a relative address 
Address is within a given relative addressing range 

. I 

SRS Store Register Transfer GRS areas defined in Aa to storage 
Set starting at address U 
.. 

LRS Load Register Transfer from storage starting at location U to 
Set areas defined in Aa 

SSC Single Shift Shift (Al right circularly U places 
Circular 



880 .. RIw.1 
UI'-NUMIIIt ,-----D PERRY UNIVAC 1100/80 Systems 

4)1:4 Capability Processor and Storage Programmer Reference C-13 
'AG! 

Tab/II C-2. Innruction R"".rtoirtl (continuttd) 

Function 
Code 

(IOctal) 

f j Mnemonic Instruction Description 

73 01 DSC Double Shift Shift (A, A+ 1) right circularly U places 
Circular 

73 02 SSL Single Shift Shift (A) right U places, zero fill 
Logical 

73 03 DSL Double Shift . Shift (A, A+ 1) right U places, zero fill 
logical 

73 04 SSA Single Shift Shift (A) right U places. sign fill 
Algebraic 

73 05 DSA Double Shift Shift (A, A+ 1) right U places. sign fill 
Algebraic 

73: 06 LSC Load Shift and (U) - A; shift (A) left circularly until (A)3! = 
Count (A)3"; number of shifts - A+ 1 

73: 07 DlSC Double load (U, U+1) - A, A+1; shift (A. A+1) left 
" 

Shift and Count circularly until (A, A+ 1h1 = (A, A+ 1ho; 
number of shifts - A+ 2 

7:31 10 LSSC Left Single Shift Shift (A) left circularly U places 
Circular 

7:31 11 LDSC Left Double Shift Shift (A. A+ 1) left circularly U places 
Circular 

7~1 12 LSSl Left Single Shift Shift (A) left U places. zero fill 
Logical 

7~l 13 lDSL Left Double Shift Shift (A, A+ 1) left U places. zero fill 
Logical 

7~1 14 a - 00-07 Invatid Code Causes Invalid Instruction Fault interrupt to 
MSR +,221 8 

I 

7~1 14 LOC load Daycfock Replace dayclock register value with fixed 
a .10 storage value at start of next update cycle. 

7:. 14 EDC Enable Day Clock Enable the internal davclock of the processor. 
a - 11 

7:1 14 DOC Disable Day Disable the internal dayclock of the processor. 
a • 12 Clock 



8804 Rev.1 
~ 

Function 
Code 
(Octal) 

f j 

73 14 

73 14 

73 14 

73 14 

73 15 

73 15 

73 15 

73 15 

173 15 

73 15 

13 15 

73 15 

SPERRY UNIVAC 1100/80 Systems 
4x4 Capability Processor and Storage Programmer Reference UPOATlLEVB. 

r.ble C-2. In$truction Repertoire (continued) 

Mnemonic Instruction Description 

SOC Select Day Clock Select internal dayclock 
a =- 13 

MDA Diagnostics 'Generates A and A+ 1 operands, U ope.rand, 
a - 14 U+ 1 operand, Store results A, A+ 1 in GRS 

addresses 62 and 63. 

MOB Diagnostics Generates A and A+ 1 operands, U operand, 
a == 15 U+ 1 operand, Store results A, A+ 1 in GRS 

addresses 62 and 63. 

a= 16,17 Diagnostics Undefined, will NO-OP 

SIL Select Interrupt (U)a-o - MSR 
a =- 00 Locations 

- Invalid Code Causes Invalid Instruction Fault interrupt to 
a =- 01 MSR + 2218 

LBRX Load Breakpoint Transfer operand to Breakpoint Register 
a =- 02, Register 

LQT Load Quantum P,lace full-word operand in Quantum Timer 
a =- 03 Timer 

III X Initiate Interrupt processor specified by operand 
a - 04 Interprocessor address value 

Interrupt 

SPIO Store Processor Store: binary serial number in first third; 
a - 05 10 2-character Fieldata revision level in second 

third; processor features in the fifth sixth; 
processor number in last sixth of operand 

RAT Reset Reset auto-recovery timer in system transition 
a - 06 Auto-Recovery unit 

Timer 

TAP Toggle Toggle path selection after each auto-recovery 
a - 07 Auto-Recovery attempt 

Path 



S804 Rev.1 
'If'-HUMIIJI 

I SPERRY UNIVAC 1100i80 Systems 
~, Capability Processor and Storage Programmer Reference 

C-16 
PAGI 

r.bltl C-2. Instruction Rtlptlnoirtl (continutldJ 

Function 
Code 

((:lctal) 

f j Mnemonic Instruction Description 

73 15 LB Load Base Place operand bits 0 through 17 in base value 
a~ 10 field of BDR specified by bits 33 and 34 of Xx 

, 

73 15 LL Load Limits Place operand bits 15 through 23 and 24 
a- 11 through 35 in BOR limits fields specified by Xx 

bits 33 and 34 

73 15 LAE Load Addressing Place the double-word operand in GRS 
a- 12 Environment location 046 and 047 and place the limits and 

base values of the four Bank Descriptors 
specified by this operand in four respective 
Bank Descriptor Registe'rs 

73, 15 SQT Store Quantum Store Quantum Timer value at the operand 
a - 13 Time address location. Executing this instruction 

has no effect on 029. -
73: 15 LD Load Designator Place full-word operand in Designator Register 

a- 14 Register 

731 15 SO Store Designator Store Designator Register contents at location 
a- 15 Register specified by operand 'address 

7~1 15 UR User Return (U + 1) - Designator Register; jump to address 
a- 16 specified by (U)23-o using new register set 

7:1 15 SSS Store System Store two system status words at the location 
a- 17 Status specified by operand address 

7:! 16 - Invalid Code Causes Invalid Instruction Fault interrupt to 
MSR +2218 

7:~ 17 TS Test and Set If (U)30 - 1, Generate Test and Set interrupt: if 
a - 00 (U)30 =- 0, go to ,NI, if U ) 200, then 018 -

U35-30; (U)29-0 unchanged 

7:3 17 TSS Test and Set and if (U)30 - 1, go to NI; if (U)30 - 0, skip NI, if 
a - 01 Skip U ) 200, then 01 8 - U3t5-30; (U)29-0 

unchanged 

7:3 17 TCS Test and Clear If (U)30 - 0, perform NI; if (U)30 - 1. skip NI. 
a - 02 and Skip if U ) 200 clear (U)3t5-30; (U)29-0 unchanged 



8804 Rev.1 
~ 

I 

Function 
Code 

(Octal) 

'. f j 

! 73 17 

73 17 

73 17 

73 17 

74 00 

74 01 

74 02 

74 03 

74 04 

74 05 

74 06 

74 07 

74 10 

74 11 

74 12 

74 13 

SPERRY UNIVAC 1100/80 Systems 
4x4 Capability Processor and Storage Programmer Reference UIIOATllEVIL 

C-16 
PAGE 

Mnemonic Instruction Description 

a - 03 Invalid Code Causes Invalid Instruction Fault interrupt to 
MSR + 2218 

TSA Test and Set Test bit position 14; if (U),4 =- 1, interrupt; if 
a - 04 Alternate (U), 4 - 0, take next instruction and set bits 00 

through 1 4 to one. 

TSSA Test and Set and If (U),4 == 1, take next instruction; if (U)14 == 0, 
a - 05 Skip Alternate skip next instruction and set bits 00 through 

14 to one. 

a - 06-17 Invalid Code Causes Invalid Instruction Operation Fault 
interrupt to MSR + 22 18 

JZ Jump Zero Jump to U if (A) == :: 0 go to NI if (A) : :: 0 

JNZ Jump Nonzero Jump to U if (A) : :: 0; go to NI if (A) == :: 0 

JP Jump Positive Jump to U if (A)3S == 0; go to NI if (A)3S == 1 

JN Jump Negative Jump to U if (A)35 == 1; go to NI if (Abs == 0 

J Jump Jump to U if a == 0 or if a == set JUMP 
JK Jump Key SELECT control circuit; go to NI !f neither is 

true 
HJ Halt Jump Stop if a=-O or if [a-field ~ set STOP 
HKJ Halt Keys and SELECT control circuits] t 0; on restart or 

Jump continuation jump to U 

NOP No Operation . Proceed to next Instruction 

AAIJ Allow All Allow all interrupts and jump to U 
Interrupts and 
Jump 

JNB Jump No Low Bit Jump to U if (A)o =- 0; go to Nt if (A)o =- 1 

JB Jump Low Bit Jump to U if (A)o - 1; go to Nt if (A)o = 0 

JMGI Jump Modifier Jump to U if (Xa), 7-0 > 0; go to NI if (Xa), 7-0 
Greater and ~ 0; always (Xah7-O + (Xa)35-18 - Xa,7..o 
Increment 

LMJ Load Modifier Relative P + 1 - (Xa)17".o; jump to U 
and Jump 



8e04 Rev." 
Uf'.HUMIIR 

I SPERRY UNIVAC 1100/80 Syatems 
~Capability Processor and Storage Programmer Reference 

C-17 
'AGE 

Function 
C()de 

(Oc:tal) 
t--r-.'--~ 

f j 

74 14 

74 14 

74 14 

74 14 

74 

74 

74 

I 

74 

74 

74 

74 

74 

14 

15 

15 

15 

15 

15 

16 

17 

75 00 

75 01 

r.bl. C-2. In6vuction RepelTtJi,.. (continued' 

Mnemonic Instruction 

JO Jump Overflow 
21 - 00 

.. IFU 
21 - 01 

.. 'FO 
a =: 02 

JOF 
il = 03 

il =- 04-17 

.JNO 
.:1 =- 00 

.JNFU 
;s =- 01 

JNFO 
a - 02 

JNOF 
a - 03 

a - 04-17 

JC 

JNC 

SIOF 

Jump Floating 
Underflow 

Jump Floating 
Overflow 

Jump Divide 
Fault 

Invalid Code 

Jump No 
Overflaw 

Jump No 
Floating 
Underflow 

Jump No 
Floating Overflow 

Jump No Divide 
Fault 

Invalid Code 

Jump Carry 

Jump No Carry 

Invalid Code 

Stan I/O Fast 
Release 

Description 

Jump to U if 01 =- 1; go to NI if 01 =- 0 

Jump to U if 021 = 1, clear 021; go to NI if 
021 - 0 

Jump to U if 022 =- 1, clear 022; go to NI if 
022 - 0 

Jump to U if 023 = 1, clear 023; go to Nt if 
023 =- 0 

Causes Invalid Instruction Fault interrupt to 
MSR + 2218 

Jump to U if 01 -= 0; go to NI if 01 =- 1 

Jump to U if 021 = 0; go to NI if 021 - 1; 
clear 021 

Jump to U if 022 = 0; go to NI if 022 -= 1; 
clear 022 

Jump to U if 023 == 0; go to NI if 023 =- 1; 
clear 023 

Causes Invalid Instruction Fault interrupt to 
MSR + 2218 

. Jump to U if 00 =- 1; go to NI if 00 - 0 

Jump to U if 00 - 0; go to NI if DO - 1 

Causes IOU to return a condition code of 3 to 
the CPU, indicating instruction not available 

Initiates operation on subchannel specified by 
bit 00 through 15 of CAW 



8104 Rev.1 
UNAIMIIR 

SPERRY UNIVAC 1100/80 Sytteml 
4x4· Capability Processor and Storage Programmer Reference C-18 

fIIAGE 

r.ble C-2. Instruction Repertoire (continued) 

Function 
Code 

(Octal)') 

f j Mnemonic Instruction Description 

75 02 - Invalid Code Causes IOU to return a condition code of 3 to 
the CPU, indicating instruction not available 

75 03 TSC Test Subchannel Interrogates the channel and subchannel 

75 04 HDV Halt Device Terminates current operation on channel and 
subchannel 

75 05 HCH Halt Channel Terminates current operation on channel 

75 06,07 - Invalid Code Causes Invalid Instruction Fault interrupt to 
MSR + 2218 

75 10 LCR Load Channel Load the interrupt mask register or load the 
Register channel base register 

75 11 LTCW Load Control Loads the status table subchannel 
Words 

75 12-1 i - Invalid Code Causes Invalid Instruction Fault interrupt to 
MSR + 2218 

76 00 FA Floating Add (A) + (U) - A; RESIDUE - A+ 1 if 017 = 1 

7'6 01 FAN Floating Add (A) - (U) - A; RESIDUE - A+ 1 if 017 = 1 
Negative 

76 02 FM Floating Multiply (A) x (U) - A (and A+ 1 if 017 = 1) 

76 03 FD Floating Divide (A) divided by (U) - A; REMAINDER - A+ 1 if 
017 - 1 

76 04 LUF Load and Unpack I (U) 134-27 - A7-O' zero fill 
Floating {U)26-00 - A+ 126-00' sign fill 

(Ul35 - A+ 135 

-"6 05 LCF Load and (U)35 - A+ 135, [NORMALIZED (U)h6-0 -
Convert to A+ 125-0; if tUbs =- 0, (A),-O t NORMALIZING 
Floating COUNT - A+ 134-27; if tUbs == 1, ones 

complement of [(A) 7-0 t NORMALIZING 
COUNT] - A+ 134-27 

16 06 MCOU Magnitude of II (A) 135-27 -I (U) 135-27 I - A+ 18-0; zeros -
Characteristic A+ 135-9 
Difference to 
Upper 



~_"~A~.I 1 ___ S_P_ER_R_.Y_U_N_'V_A_C __ 11_00 ___ /S_O_s_~ __ ._m_.-... ___________________________ ~ ___________ ~_~ __ 19 ____ ___ __ 4x4 Capability Processor and Storage Programmer Reference UPDATI LIYIL flAGE 

r.bl. C-2. Instruction R.p.rto;r. (continutJd) 

Function 
Code 
(Oc~tal) 

f j Mnemonic Instruction Description 

76 t07 CDU Characteristic 1 (A) 135-27 - I (U) 135-27 - A+ 18-0; sign bits -
Difference to A+ 135-9 
Upper 

76 10 DFA Double-Precision (A, A+1) + (U, U+1) - A, A+1 
,Floating Add 

76 11 DFAN Double-Precision (A, A+1) - (U, U+1) - A, A+1 
Floating Add 
Negative 

76 12 DFM Double-Precision (A, A+1) x (U, U+1) - A, A+1 
Floating Multiply 

76 13 DFD Double-Precision (A, A+ 1) divided by (U, U+ 1) - A, A+ 1 
Floating Divide 

76 14 O'FU Double Load and I (U, U+ 1) r70-80 - A,Q-O, zero fill; (U, 
Unpack Floating U+1hs9-36 - A+1 23-0' sign fill; (U, U+1)35-0 

-A+2 ) 

76 15 DFP, DLCF Double Load and (Ubs - A+ 13S; [NORMALIZED (U, U+ 1)]69-0 
Convert to - A+ 123-0 and A+2; if (U)35' (Aho-o ! 
Floating NORMALIZING COUNT - A+ 134-24; if (Ula5 = 

1, ones complement of [(A) 1 0-0 : 

NORMALIZIN.G COUNT] - A+ 134-24 

76 16 FEl Floating Expand If (U)3S - 0; (U)36-27 + 16008 - A35-24' If 
and Load (U)3S - 1; (U)35-27 - 16008 - A35-24 (U)28-3 

- A23-0; (U)2-O - A+ 135-33; (U)3S - A+ 132-0 

76 17 FCL Floating If (Ubs - 0; (U)35-24 - 1 600s - A35-27' If 
Compress and (Uba - 1; (U)35-24 + 16008 - A3!5-27 (U)23-O 
Load - A28-3; (U + 1 )315-33 - A2-O 

77 0-17 •. Invalid Code Causes Invalid Instruction Fault interrupt to 
MSR + 2218 



8804 Rev.1 
tJP-NIJMaIt 

: 

SPERRY UNIVAC 1100/80 Systeml 
4x4 Capability Processor and Storage Programmer Reference 

r.bl. C-3. 0".,., vs Mn.monic In6truction Cod. 

First Digit Function Code - Second Digit 
0 1 2 3 4 5 

0 S SN SM S (1 ), 
SA SNA SMA SR 

1 l LN lM LNMA A AN 
LA lNA LMA AA ANA 

2 AU ANU BT L A AN 
LR AX ANX 

3 MI MSI MF Bytes 01 DSF 
(see 

below) 
4 OR XOR AND MLU TEP TOP 

5 TZ TNZ TE TNE TlE TG 
TNG 

6 TP TN SE SNE SlE SG 
SNG 

7 JGD See Below 

Funct. First j Second j Digit 
Code Digit 

0 1 2 3 4 
07 0 

1 lDJ llJ LPO 
33 0 BM BMT BTT BTC BC 

1 BI BDI IB olB BF 
37 0 OB Ba OHB BHQ aDB 

1 
71 0 MSE MSNE (2) MSG MSW 

1 OA DAN OS OL oLN 
72 0 IMI SW JPS JNS AH 

1 EX ER PAIJ 
73 0 sse oSC SSL oSL SSA 

1 lsse lose lSSl loSl (3) 
74 0 JZ JNZ JP IN J.JK 

1 JNB JB JMGI LMJ (6) 
75 0 SIOF TSC HDV 

1 lCR lTCW 
76 0 FA FAN FM FO LUF 

1 oFA oFAN OFM OFD DFU 

NdTES: 

t. SZ SNZ, SPt, SNt, SFS. sn. $AS. SAZ INC. DEC. INC2. DEC2, ENZ 

2. MSLE. MSNG 

3. LDC. EDC, DOC, SOC. MDA, MOB 

UP'DAT! LIVIL 
C-20 

'AGE 

6 7 
S (see below) 

SX 
AM ANM 

AMA ANMA 
LXM L 

LX 
OF Bytes (see 

below) 

LXI TlEM' 
TNGM 

TW TNW 

SW SNW 

5 6 7 

SPo LBJ 
BPo PoB EDIT 
BOF FB DFB 
DBa BA BAN 

MSNW MASL MASG 
oLM OJZ OTE 
ANH AT ANT 
TRA SRS LRS 
DSA LSC DlSC 
(4) (5) 

HJ,HKJ NOP AAIJ 
(7) JC JNC 

HCH 

lCF MCDU CDU 
(8) FEl FCL 



~., 1 ____ Sp_e_R_RV.~U_N_W_A_C __ '_'00 __ 1_8_0_S_~ __ ._m_. ____________________________ ~ __________ ~~_C_-_2_' ____ __ 4x4 Capability Processor and Storage Programmer Reference UfIIMTi LIYIL 'AGI 

4. S"L. LBRX, Ll'JT, 111)(, SPIO, RAT, TAp, LB, LL. LA£. SOT, LD, SO, UR. SSS 

5. T.S. TSS, TC~~ TSA, TSSA 

8. JjO. JFU, JFO, JDF 

7. JlVO, JNFU, .INFO, JNDF 

I. ()~FP, DLCF 





8604 Rev.1 ~PERIRY UNIVAC 1100/80 Systems 
u......,.. ... ; 4)(4 Capability Processor and Storage Programmer Reference ---,----

0-1 
!'AGE 

Appendix D. Code Conversions 

D. 1. ASCII and Fieldata Code Conversion Tables 

Code!I,"Which ,.'so represent collating se$luence, are given in octal in Tables 0-1 and 0-2. 

ASCII codes from 008 to 378 are used for communications. They are format, separator, and control 
chara4::ters. These are not converted into Fieldata. 

The ~ISCII symbols represented by codes 408 to 1378 are converted into the identical Fieldata 
symbc)ls, except that the quotation marks symbol (428) is converted into a lozenge (768), the 
circunraffex (13E58) is converted into a delta (048), underscore (1378) is converted into a not equal sign 
(778), 

There are no remaining unique Fieldata symbols into which to convert the balance of the ASCII 
symbc)ls, reprelsented by codes 1408 to 1778, (these codes are shown boxed in Table 0-2), so most 
of these codes are "folded" over codes 1008 to 1378 (by clearing bit 5, which amounts to subtracting 
408), This means that ASCII codes 101 8 (A) and 14 1 8 (a), for example, are both translated as if they 
were Icode 101 8 (converted to Fieldata 068 for A). Two exceptions to this general rule are the ASCII 
opening brace (1738) and closing brace (1758) which are converted to Fieldata question mark (548) 
and exclamaticln point (558), respectively, to satisfy overpunch sign considerations. The Operating 
System folds all codes from 1408 to 1778, 



8104 Rev.1 
UNIMI .... 

SPERRY UNIVAC 1100/80 Syateml 
4x4 Capability Processor and Storage Programmer Reference 

r.bltl 0- t. Fitlld.t. to ASCII Codtl Convtlrsion 

Fieldata Code Fieldata Symbol Octal Code 
(Octal) SO-Column 

Card Code 

00 7-8 @ 100 
01 12-5-S [ 133 
02 11-5-8 ] 135 
03 12-7-8 # 43 

04 11-7-8 A 136 
05 (blank) (space) 40 
06 12-1 A 101 
07 12-2 B 102 

10 12-3 C 103 
11 12-4 0 104 
12 12-5 e 105 
13 12-6 F 106 

14 12-7 G 107 
15 12-8 H 110 
16 12-9 I 111 
17 11-1 J 112 

20 11-2 K 113 
21 11-3 L 114 
22 11-4 M 115 
23 11-5 N 116 

24 11-6 0 117 
25 11-7 P 120 
26 11-8 Q 121 
27 11-9 R 122 

30 0-2 S 123 
31 0-3 T 124 
32 0-4 U 125 
33 P-5 V 126 

34 0-6 W 127 
35 0-7 X 130 
36 0-8 y 131 
37 0-9 Z 132 

40 12-4-8 ) 51 
41 11 - (minus) 55 
42 12 + 53 
43 12-6-8 < 74 

44 3-8 - 75 
45 6-8 > 76 

UPOATI LIVIL 

ASCII 
Symbol 

@ 

[ 
] 
# 
.. 

(space) 
A 
B 

C 
0 
E I 

F 

G 
H 
I 
J 

K 
L 
M 
N 

0 
P 
a 
R 

S 
T 
U 
V 

W 
X 
Y 
Z 

) 
- (minus) 

+ 
< 

:Ill 

> 



~~~_4~~~~t I_!" __ S_P_E_R~.~ __ U_N_IV_A_C ____ "_00 ____ /a_o_s_va __ .m_. ___________________________ ~ ________ ~ ___ ~_3 ____ __ --:Jt --.--J '4x4 Capability Processor ,and Storage Programmer Reference UPOATI LIVIL PlAGI 

r.b/II 0-1. Fill/d.,. to ASCII Code Convllrsion (continued)

ASCII
Fieldata Cc.de Fieldata Symbol Octal Code Symbol

(Octal) SO-Column
Card Code

46 2-8 8& 46 &
47 11-3-8 $ 44 $

50 11-4-8 - * 52 * 51 0-4-8 (50 (
52 0-5-8 % 45 %
53 5-8 : (colon) 72 : (colon)

54 12-0 ? 77 ?
55 11-0 ! 41 !
56 0-3-8 ,(comma) 54 ,(comma)
57 0-6-8 \ 134 \

60 0 0 eo 0
61 1 1 61 1
62 2 2 62 ~

63 3 3 63 3

64 4 4 64 4
66 5 5 65 5
66 6 6 66 6
67 7 7 67 7

70 8 8 70 S
71 9 9 71 9
72 4-8 '(apostrophe) 47 '(apostrophe)
73 11-6-8 ; 73

74 0-1 / 57 /
75 12-3-8 .(period) 56 .(period)
76 0-7-8 42 " CI

77 0-2-8 = or stop 137

81041 Rev.1 SPERRY UNIVAC 1100/80 Syetemt
4x4 Capability Processor and Storage Programmer Reference

ASCII System Console
Octal Symbol Keyboard CRT Incremental
Code Symbol Symbol Printer Symbol

40 SP (space bar) (space) (space)
41 ! ! ! !
42 It It It It

43 # # # #

44 S S S S
45 % % % %
46 & & & &
47 • (apos.) • (apos.) • (apos.) • (apos.)

50 ((((
51))))
52 * * * * 53 + + + +
54 , (comma) , (comma) , (comma) • (comma)
55 - (minus) - (minus) - (minus) - (minus)
56 . (period) . (period) . (period) . (period)
57 / / / /

60 0 0 0 0
61 1 1 1 1
62 2 2 2 2
63 3 3 3 3

64 4 4 4 4
65 5 5 5 5
66 6 6 6 6
67 7 7 7 7

70 8 8 8 8
71 9 9 9 9
72 : (colon) : (colon) : (colon) : (colon)
73 ; ; ; ;

74 < < < <
75 - - - =:II

76 > > > >
77 1 1 7 1

100 @ @ @ @

101 A A A A
102 B B B B
103 C C C C

104 0 0 0' D
105 E E E E
106 F F F F
107 G G G G

UPOAT1 LIYIL

Fieldata
Octal Symbol
Code
05 (space)
55 !
76 c
03 =IF

47 S
52 %
46 &.
72 • (apos.)

51 (
40)
50 * 42 +
56 , (comma)
41 - (minus)
75 . (period)
74 /

60 0
61 1
62 2
63 3

64 4
65 5
66 6
67 7

70 8
71 9
53 : (colon)
73 ,

43 <
44 :=

45 >
54 7

00 @

06 A
07 B
10 C

11 0
12 E
13 F
14 G

8e04 Rev.1
IJP.oMJMIM 4x4 Capability Processor and Storage Programmer Reference ~PERRY UNIVAC 1100/80 System.

ASCII
Octal Symbol
Code

110 H
111 I
112 J
113 K

114 L
115 M
116 N
117 0

120 P
121 Q
122 R
123 S

124 T
125 U
126 V
127 W

130 X
131 Y
132 Z
133 [

134 \
135]
136 ..
137 -
140
141 a*

through through

172 z*
173 I

174 :
175 I
176 -
177 OEL

* Ilowercase alphabet
.* Uppercase alphabet

r.bl. 0-2. ASCII to Fitlld.t. Cod. COnlltlFS;On (continu~)

System Console
Keyboard CRT Incremental
Symbol Symbol Printer Symbol

H H H
I I I
J J J
K K K

L L L
M M M
N N N
0 0 0

P P P
Q Q Q
R R R
S S S

T T T
U U U
V V V
W W W

X X X
Y Y Y
Z Z Z
[[[

\ \ \
]]]

- - -
@

A·· a* A··

through through through

Z·· z· Z··
I I [

.. : \
I I] .. - -

(no key) '/. -

Fieldata
Octal Symbol
Code

15 H
16 I
17 J
20 K

21 L
22 M
23 N
24 0

25 P
26 Q
27 R
30 S

31 T
32 U
33 V
34 W

35 X
36 y
37 Z
01 [

57 \
60]
04 f.l
77 t

00 @

06 A*·

through through

37 Z·*
54 ?

57 \
55 !
04 t:,.

77 f.

1804 Rev.1
UfLMIMIIR

SPERRY UNIVAC 1100/80 Systems I

4x4 Capability Processor and Storage Programmer Reference

0.2. Special Characters in ASCII

The special characters in ASCII are:

SP designates space, which is normally nonprinting.
DEL designates delete, and has a code of all 1 bits. This code eliminates the previous character

- even on paper tape or other nonerasable medium.

Definitions of the 32 ASCII control characters, codes 008 to 378:
00 NUL Null - all zero character which may serve as time fill
01 SOH Start of heading
()2 STX Start of text
()3 ETX End of text
()4 EaT End of transmission
05 ENQ Enquire - ·Who Are You?-
06 ACK Acknowledge - ·Yes·
07 BEL Bell - human attention required
10 BS Backspace
11 HT Horizontal tabulation
12 LF Line feed
13 VT Vertical tabulation
1 4 FF Form feed
1 5 CR Carriage return

format effectors for
printing or punching

16 SO Shift out - nonstandard code follows
17 SJ Shift in - return to standard code
20 OLE Data link escape - change limited data communication control

21 DC1 }
22 OC2 Device control for turning on or off auxiliary devices
230C3
24DC4
25 NAK Ne9at!ve acknowledge - RNa"
26 SYN. Synchronous idle - from which to achieve synchronism
27 EST End of transmission block - relates to physical communication block
30 CAN Cancel previous data
31 EM End of medium - end of used, or wanted. portion of information
32 SUB Substitute character for one in error
33 ESC Escape - for' code extension - change some character interpretations
34 FS File separator } These information separators are ordered in
35 GS Group separator descending hierarchy_ They are followed by
36 RS Record separator ASCII 408 (space), which can also be thought
37 US Unit separator of as a word separator.

I SPERfN' UNIY AC 1100/80 Systems
~ Capability Processor and Storage Programmer Reference

Appendix E. Storage Configurations

E.1. General

The 1100/80 Systems with 4x4 capability allow expansion to three or four processor configurations.
These! configurations require a system transition unit (STU) and a storage system having different
chara,cteristics than those used in systems whose maximum configuration cannot be expanded
beyond two processors.

The rnaximum storage configuration consists of eight partitionable storage interface unit (SlU)
segml9nts and eight partitionable main storage unit (MSU) banks. With this number of components
there is a wide variety of possible storage configurations. Illustrations and data presented in this
Appet1dix provide a better understanding of the flexmbility and restrictions of these configurations. The
instaillation may use this information as a reference, as a guide to storage configuration options, as
a guide to partitioning, and as an aid to reconfiguring for multiple applications or to recover after the
loss clf a storalge component.

The 11100/80 Systems storage system consists of large capacity, low cost MSUs: interfaced by
moderate capacity, high speed storage buffers located in the SlU. The high speed storage buffers
are u~sed to achieve increased performance from the relatively low speed MSUs. Each MSU can be
dividftd into two separate banks. Each SIU contains from one to four logically independent storage
buffelrs called segments. A main storage bank has a 2-port multi module access (MMA) unit which
allows access by two Stu segments and provides a means for common accessing of main storage.

AU pc»ssible stc)rage configurations are not shown in this subsection; however, any combination not
shown can be derived from the information presented in this subsection.

E.2. Definition of Terms

Terms pertaining to the storage configurations are defined in the following listing.

Application

Cluster

This term is used in the STU sense. i.e., it is an operable partition of
the total configuration at a site.

Standard system components are grouped into clusters 0 and 1.
Cluster 0 components are central processor unit (CPU) 0, CPU 1,
input/output unit (IOU) 0, IOU 1, SIU segments 0, 2, 4 and 6. Cluster
1 components are CPU 2, CPU 3, IOU 2, IOU 3 and SIU segments 1,
3, 5, and 7. MSUs are not cluster-oriented.

leott Rev.1
UNII ...

SPERRY UNIVAC 1100/10 Systema
4x4 Capability Processor and Storage Programmer Reference

E-2
'AGI

Failure

Loss

MSU

MSU Bank (also Bank)

F'emoval

Segment/bank

~;egment/ cabinet

StU-Generated MSR .

SIU Half
l(a180 Half)

StU Segment
(also Segment'

Unusable Addresses

E..3. Address Interleave

UfllDATI LEVEL

Failure of a storage component refers to a hardware condition such
that the component is not usable in the application, i.e., it is offfine or
otherwise inaccessible.

Refers to either removal or failure of a component.

Main storage unit. A storage cabinet containing one or two banks.

A portion of main storage which is partitionable at the STU.

Removal or addition of a storage component refers to a planned event.

Qne SIU segment interfacing with one MSU bank. Applicable to single
cluster system only.

One Stu segment interfacing with one MSU cabinet. A cabinet
contains two banks. Applicable to both single and double cluster
systems.

The system hardware allows the s_etting of module select register
(MSR) to be hardware generated rather than manually set at the STU.
This is not usable for bootstrap into SIU lower when unusable
addresses exist in the lower half. MSR must then be set manually.

This is two interleavable Stu segments (0 and 2, 4 and 6, 1 and 3, or
5 and 7). A half can exist, however, with only one of the SIU segments.
An SIU half represents an address range. either those words above
40Ma (SIU upper) or below 40Ma (SIU lower).

A unit of cache memory containing 4K words, partitionable at the STU,
which may service one MSU which may have one or two MSU banks.

It is possible to configure an application in which interleaved
components are of unequal sizes, and addresses in one part are not
satisfied by corresponding addresses in the other part of the
interleave. This occurrence is referred to as unusable addresses.

The following examples illustrate the octal address distribution for vario'us storage configurations.
There are two basic options for storage configurations. The first is a segment/cabinet storage
configuration with examples in E.3. 1, and the second is a segment/bank storage configuration with
examples in E.3.2.

The addresses shown in the MSU bank configurations are the lower absolute address bits, in octal,
which represent the distribution of the storage addresses. Absolute addresses consist of 24 bits.
labeled bit positions 23-0, in which bit 0 is.the least significani Address interleaving between the
requesters and the SIU segments is controlled by the contents of bit position 2. Address interleaving
between the SIU segments and the MSU banks is controlled by the contents of bit position 3. The
contents of bit position 23 is used by the requesters to determine whether the request is sent to SIU
upper or SIU lower. This divides the addressing range into addresses below 40Ma (SIU lower) and
addr"ses above 40Ma (SIU upper). Note that there is no interleave between SIU halves, and that
the address ranges do not have to be of equal size in two SIU halves.

8004 Rev.l I SPERRY UNIVAC 1100/80 System.
~ ____ .~ Capability Processor and Storage Programmer Reference

E.3.1. Address Interleaving in Segment/Cabinet Storage Configurations

E.3. 1. 1. One Segment/One Bank

.- LOWER

SEG~ENT 1

EIANK 0
All

Addr

NOTE.~:

CLUSTER 0

2. Unuubl • .,dd,...... do not occur.

E-3
flAG.

8S04 Rev.1
UNIUMI8I

SPeRRY UNIVAC 1100/80 Sv-te"'- .
4x4 Capability Processor and Storage Programmer Reference

E.3.1.2. One Segment/Two Banks

CLUSTER 0

- LOWER

SEGMENT
o

BANKO
0-7

20-27

NOTES:

BANK 1
10-17
30-37

2. Th. b6nks m,,,SI ~ ~u., in siz. 01' unus.bl •• ddfW ... S occur. If th.y .,.. not ~u., in siz •• nd .1'. in th. low.,. h.d,

MSR c6nnot ~ S« to SIU g.net8ttHJ fOl' boot6tMp into th. low.I' h." 6nd would h ... to ~ m.nu.'1y Ht on th. STU.

8804 ArI.1
UNtU

SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference

E.3.1.:3. Two Segments/Two Banks

CLUSTER 0

-- LOWIeR

~eG~ENT SEG~ENT

NOTES:

BANK 2
4-7

14-17

1.~-6

2. T'I,. blinks must btl equill in siz. or unuubl. IIddl'.utlJl occur, If thtl,!II1'. not tlquill in siztl lind "I'tI in thtl lowtll' hlllf,

MSR Cllnnot btl 'tlt to SIU gtmtll'lItlHllol' bootstf'lIp into thtl lowtlf' hilI! lind would hllve to b. mllnulIlI'! •• t on thtl STU.

1804 Rev.1 SPERRY UNIVAC 1100/80 SystfHM
4x4 Capability Processor and Storage Programmer Reference

E.3.1.4. Two SegmentsIThree Banks - Basic

CLusnR 0

- LOWER

SEGMENT SEGMENT

o 2

BANKO

0-3
20-23

NOTES:

BANK 1

10-13
30-33

BANK 2
4-7

14-17
24-27
34-37

3. T'htI two Nnlt. conn.ctMJ to the ume H(/mtlnt mu., btl tItIU1I1 ln size lind the bank conntICt«i to the othe, segment

mu" h..,. a 6iztI «IuIII to the tot III 0' the othlll' two blink. or unuuble addr occur. If unuuble addre"e. occur
and the b."k6 a,. ln the lowtlt' hlllf, MSR cannot be set to SIU I1t1ntll'lltwJ for bootstrllP into the lower half and would

hllfltl to be mMUllily Stlt on the STU.

S804 Rev.1

~a

SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference

E.3.1.:I. Two SegmentsIThree Banks - Alternate

CLUSTER 0

-- LOWER

~EG~ENT SEG~ENT

BAI~K 0

01-3
101-13
201-23
301-33

NOTES:

BANK 2

4-7
24-27

BANK 3

14-17
34-37

UPDATlI.IYEL
E-7

PAGE

3. mil two bani,. cDnnllCt«l to mil UtrN ugm""t mu.t bll tHlUM in siZII and thtl bank conntICtN to thll Oth.f .lIgm"nt

mUIIt hll.,. a ~rizll tHlU61 tD m" tOrM of mil Othllf two blink. or unuubltl .ddT occur. "'unuubltl .dd,.u". OCCUf

a/td mil bank •• f. in thll low.,. hMf, MSR unnot btl Ht to SIU 9"".,.at«l fOf bootstrap into mtl IOW.f half and would

h4WII to bll mllnulllly .lIt on mil STU.

8804 Rev.1
UN«JMII1II

SPERRY UNIVAC 1100/80 Syfteml .
4x4 Capability Processor and Storage Programmer Reference IJIIOATI LIYIL

E-a
'AQI -

E.3.1.S. Two Segments/Four Banks

CLUSTER 0

- LOWER

SEGMENT SEGMENT

o 2

BANK 0

0-3
,20-23

BANK 1

10-13
30-33

BANK 2

4-7
24-27

BANK 3
14-17

34-37

NOTES:

1'.

-,
.oil ..

3.

IntlJrle..,. berwHn H(Jmenr. 0 .nd 2 on bit 2.

All b6ltt6 mU6t I» equ.' in .w QI' unuubl. MldrtJaft occur. If unuuble .dd,.".... Qt:t:u, snd the IMnk6 .,.. in the
10M1M' hMf. MSR unnot I» Ht to SIU genenr.d for boot6tnp into the IOWM hslf .nd would h..,. to I» msnu.lly Ht
on the STU.

E-9
'AGE

880~Rev.1 SPeRRY UNIVAC 1100/80 Systems
U~MIIER 4x4 Capability Processor and Storage Programmer Reference

'--~----------~----------

E.3.1.'7. ThreEt Segments/Six Banks

CLUSTER 0

-- LOWER -- --- uppeR

[SEG~ENT SEG~ENT SEG~ENT

BANKO

0-3
2'0-23

NOTES:

BANK 1

10-13
30-33

BANK 2

4-7
24-27

BANK 3

14-17
34-37

BANK 4

0-7
20-27

BANK 5

10-17
30-37

3. I.r.nk$ 0, 1, :Z •• nd 3 must be of tlqu.' size. 4nd benk. " 6nd 5 mu.t be of (#qu.' ./Z. Of' unuuble ~df'''''. occur. It
;Ir m:c.pt.bl., fOf' IMnk. " .nd 5 to cont4in m",e ", I".. 6ttJr8ge then the othtlf' b8nk.. "unuubl. 4ddf' OCCUf' .nd
tfJe b.nk • • ,. in the lowtlf' h.11. MSR c.nnot b. $lit to SIU g.nef'.ted fof' boo,."..p into the low.,. h." md would h6t1t1

to be m.nu.,I/y •• t on the STU,

1104 Rev.1 SPeRRY UNIVAC 1100/80 System.
4x4 Capability Processor and Storage Programmer Reference

E.3.1.8. Four Segments/Eight Banks

CLUSTER 0

- LOWER -- --- UPPER --

SEGMENT SEGMENT SEGMENT SEGMENT
o 2 4 8

BANK 0
0-3 .

20-23

"'OTES:

BANK 1

10-13
30-33

BANK 2
4-7

24-27

BANK 3
14-17
34-37

BANK 4

0-3
20-23

BANK 5

10-13
30-33

BANK 8
4-7

24-27

E-10
'AG!

BANK 7
14-17
34-37

• .,. S.nkll O. t. Z. MId 3 mUlIt b. of tHlulII •• MId Nnu II. 6. 8, .nd 7 mwt b. of tHlu61 •• or unu •• bI •• ddr.sufl occur.
If unuabl.Mld,...... occur Mtd tit. /unkfl .,. in tIt.'owtll' h./f. MSR c.nnot ~ fllIt to SIU glHltll'.t6d for boot!ltrllp into

tIt.'tItNf hMf md would h.~ to ~ m.nulll/~ •• t on tit. STU.

8eo .. Rev.1
I.Ifl-NUMIP ~PE~IRY UNIVAC 1100/80 Systems

4x4 Capability Processor and Storage Programmer Reference --------

E.3. 1.8. 1. Partitioned by Storage Halves

CLUSTER 0

._- LOWER -- --- UPPER --

SEGMENT SEGMENT SEGMENT SEGMENT

024 8
Appl.O

!tANK 0

0-3
20-23
I~ppl. 0

NOTE'S:

Appl.O

BANK 1
10-13
30-33
Appt.O

Appl.1

BANK 2

4-7
24-27
Appl. 0

Appl. 1

BANK 3

14-17
34-37
Appl. 0

BANK 4

0-3
20-23
Appl. 1

t. Interi .. ". b.twHn ugm.nts 0 MId 2 on bit 2 in Appliclltion O.

2. In,,,, •• ,,. betwe." bllnlc$ 0 lind t, lind 2 lind 3 on bit 3 in Application O.

3. Inter/.IIV. ~twHn ugm.nts 4 lind 8 on bit 2 in Appliclltion 1.

BANK 5
10-13
30-33
Appl.1

UllOA TI L!YIL

BANK 8

4-7

24-27
Appl.1

E-l1
PAGE

BANK 7

14-17

34-37
Appl. 1

8804 AtIv.1
~

SPERRY UNIVAC 1100/80 Svatema
4x4 Capability Processor and Storage Programmer Reference

E.3.1.8.2. Partitioned Across Storage Halves

CLUSTER 0

- LOWER -- --- UPPER --

SEGMENT SEGMENT SEGMENT SEGMENT
02.. e

Appl.O

BANK 0
0-7

20-27
AppL 0

NOTES:

Appl. 1

BANK 1
10-17
30-37
Appl.O

Appl.1

BANK 2
0-7

20-27
Appl.1

Appl.O

BANK 3

10-17
30-37
AJ)p1. 1

BANK 4

0-7
20-27
Appl.1

I. Inr"'.lVe btltwHlf /Un •• 0 .nd 1, MId 8 .nd 7 on bit 3 in Appliution O.

BANK 5
10-17
30-37
Appl.1

BANK 8
0-7

20-27
Appl.O

E-12
I'AGI

BANK 7
10-17
30-37
Appl.O

880-4 Rev.1 I SPER,RY UNIVAC 1100/80 Systems
Uf'-lltUMla _____ ~ Capability Processor and Storage Programmer Reference

E-13
,AGI

E.3.1.9. Eight Segments/Eight Banks

CLUSTER 0

.- LOWER --- UPPER --

SEGMENT SEGMENT SEOMENT SEGMENT

024 8

ISANK 0

0-3
20-23

NOn~:

BANK 1

10-13
30-33

BANK 2
4-7

24-27

BANK 3
14-17
34-37

CLUSTER 1

- LOWER UPPER --

SEGMENT SEGMENT SEGMENT SEGMENT
357

BAi~K 4

0-3
20-23

BANK 5
10-13
30-33

BANK 8
4-7

24-27

BANK 7
14-17
34-37

2. Interieetle between banks 0 and 1, 2 and 3, 4 and 5, and 6 and 7 on bit 3.

3. Sanks 0, " 2, and 3 must be of Mlua' size and banb 4, 5, 8, and 7 must be of Mlua' size", unuuble addresses occur.
If unU$8bl., .ddr occur and the Nnks MW in the lower h.,1, MSR t;6nnot be Ht to SIU gene,.ttld for boo,."..p into

the 10WfH' h." and would h..,e to be manuelly HI on the STU.

8804 Rev.1
UP-M ...

SPeRRY UNIVAC 1100/80 SyRem8
4x4 Capability Processor and Storage Programmer Reference

E-14
ItAGI

The following configuration is an eight segment/eight bank configuration partitioned by cluster
ac:ross MSU storage halves.

CLUSTER 0

- LOWER -- - UPPER --

SEGMENT SEGMENT SEGMENT SEGMENT

024 8
Appl. 0 App'. 0 Appl. 0 App'. 0

BANK 0
0-3

. 10-13
AppL 0

NOTES:

BANK 1

0-3
10-13

Appl.1

BANK 2
4-7

14-17
Appl. 0

BANK 3

4-7
14-17

Appl.1

CLUSTER 1

-- LOWER -- --- UPPER --

SEGMENT SEGMENT SEGMENT SEGMENT

357
App'.1

BANK 4

0-3
10-13

Appl.O

Appl. 1

BANK !5

0-3
10-13

Appl.1

Appl. 1

BANK 6
4-7

14-17

Appl. 0

Appl. 1

BANK 7

4-7

14-17
Appl.1

~_~.~~~.1 1 ____ S_PE_R_RY. __ U_N_'_VA_C __ 1_'_00_1_8_0_S_~ __ ._m_I ______ ~ ______________________ ~ __________ ~_E_-_'_5 ____ __ __ __ 4x4 Capability Processor and Storage Programmer Reference UIlDATlI.EVIL IIAG!

E.3.2. Address Interleaving in Segment/Bank Storage Configurations

E.3.2.1. Four Segments/Four Banks

CLUSTER 0

-- LOWIER -- --- UPPER --

[SEG~eNT SeG~ENT SeG~eNT SeG~ENT

NOTES:

BANK 1

4-7
14-17

BANK 2

0-3
10-13

BANK 3
4-7

14-17

1. 1"r.rltHI"" b.,twHn ugmllnts 0 and 2. and 4 and 6 on bit 2.

2. Sank!l 0 and 1 mu!lt bll of IIqua' size and bank. 2 and 3 mu!lt ". of 6qua' !liz" or unuublll addr(!JSH!I occur. If th"y
are not equlJ'l in !lizll IJnd IJt'II In th" IOWII,. hIJ11, MSR cIJnnot IH Ht to SIU gllnllntlld fOf boDtstmp into th" lower half

IJnd WDuld h6tl1l to be mIJnually !lilt on thll STU.

8804 Rev.1
Ufl-NUMIIJt

SPERRY UNIVAC 1100/80 Svateml
4x4 Capability Processor and St!lrage Programmer Reference

E.3.2.2. Oegraded Mode - Failed Segment

CLUSTER 0

- LOWER -- --- UPPER --

SEGMENT

SEGMENT 2 SEGMENT SEGMENT

o

BANK 0
0-7

20-27

NOTES:

FAILED

FFLINE

BANK 1
10-17
30-37

BANK 2

0-3
10-13
20-23

8

BANK 3
4-7

14-17
24-27

30-33 34-37

1. InterlellVe betwHII _gmenr. 4 end 8 on bit 2.

2. Interl.elltl ".tween benk. 0 end 1 on bit 3.

UPDATI LIYEL
E-18

!tAG!

8604 Rev. 1 I SPERRY UNIVAC 1100/80 Systems
UP-MI~ 4x4 Capability Processor and Storage Programmer Reference I E-17

'AGE

E.3.2;3. Degraded Mode - Failed Bank

CLUSTER 0

--- LOWER UPPER --

SEGMENT SEGMENT SEGMENT SEGMENT

0
2

4 6
OFFLINE

BANK 2 BANK 3
BANte: 0

BANK 1 0-3 4-7
ALL.

FAILED 10-13 14-17
LOWER

OFFLINE 20-23 24-27
ODREsse

30-33. 34-37

NOTES:

2. Unu;s6bltl lIddrtlSH6 do not occur.

8eo4 Rev.1
UNtUMi.

SPERRY UNIVAC 1100/80 System,
4x4 Capability Processor and Storage Programmer Reference

E.4. Segment/Cabinet Storage Configurations

UIIOA'TI LIVB.
E-18

PAGE

The following examples illustrate some of· the possible segment/cabinet storage configurations.
These configurations are not, in any way, being recommended over other usable configurations. They
are configurations that could be used in a situation where a configuration is needed for partitioned
operation or for degraded-mode operation. The data in this section provides a better understanding
of system storage configuration.

E.4.1. One-Segment Configurations

E.4. 1 '. 1. One Segment/One Bank

-- LOWER

SEGMENI

0'

BANK 0

NOTES:

1.. No in"" •• " •..

CLUSTER 0

2. UnuNbi. Mldt'HN. do not occur.

8104 Rtw.1
UNIUMaIR

SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage I;'rogrammer Reference

E.4.1.2. One SegmentiTwo Banks

-- LOWER

SEGMENT

o

BANK 0

NOTES:

BANK 1

CLUSTER 0

1. Intllrl...,. b.twHII !J6nlcs 0 md , on bit 3.

I E-19
'AGI

2. Th. b.nlcs "'ust b. ~u.1 in size or unusable "dd,.e .. e .• occur. If they are not _qual in size and are in the lower half,

MSR cannot be $lit to SIU gen.ated for boot$tt'Bp into the lowe,. half and would havtl to be ",anually set on the STU.

I ~20
'AGE

SPERRY UNIVAC 1100/80 SysterM
4x4 Capability Processor and Storage Programmer Reference

E.4.2. Two-Segment Configurations

E.4.2.1. Two-SegmentslTwo Banks - Basic

CLUSTER 0

- LOWER

SEGMENT SEGMENT

o 2

BANK 0 BANK 2

NOTES:

1. IntMle..,. betw.." ugments 0 6nd 2 on bit 2.

2. The IMnk. must 1M «Iu.' in sa. 0' unuM"' •• dd,." occur. If they .,.. not «Iu61 in .iz. end .,. in til. low./' h611,

MSR c.nnot be .et to SIU gene'6r.d for boo,."..p into the 10WtI' helf .nd would hl.,e to be m6nuelly .et on til, STU.

3. LON of 6 .egment re.ults in bringing down the 6pplit:ltion. The .pplic.tion m.." be rebooted with the ""'Iining

s.gment.

4. Loa of b."k rwults in bringing dawn the 6pplicltion 6nd loa of thll b.nk:t s.gtrHlnt Th. spplic.tion mly btl rtlbootH

with the "","-ning lMnk end ugment.

8804 Rev.l
Ufl-HUMHJt

SPERRY UNIVAC 1100/80 Syateml
4x4 Capability Processor and Storage IProgrammer Reference

E.4.2.2. Two Segments!Two Banks - Alternclte

-- LOWER

I I SEG~ENT

BANK 0

NOTES:

CLUSTER 0

----- UPPER

SEGMENT

4

BANK 4

I E-21
.. AGE

3. Lo •• of a H{JMtMt iN b."k in a half which conta,"'. th. r.sid""t EXEC brings thll appliution down. "thll rll.id"nt EXEC
;. rHtrictN to onll half of sttH'6gll, rtlmoval of a HIIm"nt iN blllflc in th" om.r half do". not ntICllUitat" 8 rebDDt, but

a failurll in thi. om., half will protMbly "un • rtIbDlrJt.

8e04 Rev.1 SPERRY UNIVAC 1100/80 Systems
4x4 Capability ~rocessor and Storage Programmer Reference ' • ...:-22

E.4.2.3. Two Segments/Three S"anks - Basic

CLUSTER 0

- LOWER

SEGMENT SEGMENT
o 2

BANK 0 BANK 1 BANK 2

NOTES:

3. 17M two INInn conn.ct«J to the a",. $#gm."t mu" btl «Iu.' in size .nd the b.nk conntlCttld to the oth., s-r/ment
mllft hwe • lize «Iu.' to the ttJtIII of m. oth", two bMQ 01' unuable M/tIrH$.. occur. If unuUbie .ddre •• ". occur
Mfd the bMIc • • ,.. in the low", h.lf, MSR c.nnot be .t to SIU gen",.ttld for boomnp into the lower h.1f .nd would
hw. to btl m.nu.11y .. t on the STU.

·4. L~ of • MfII"Mt /WUIr. in bringing down thfI .pplic.tion. The .pplic.tion m.y btl reboottld with the r"",.ining
.."",."t

6. LDa of • /Mnlc raul,. in bringing down the .pplic."On. If the banlc i. the only one connected to • segment, m"
~pllutJon m~ be tWbootMJ wfth the oth", .egment .nd i,./Mnlc.. If the tMnlc "'./1 one of two conntICted to • ugmtllJt,
the .ppllution m.y be rwbooMd with both ugmen,. MId the r.",.ining two b.nlc ..

8eo4 "".1 SPERRY UNIVAC 1100/80 System.
4x4 Capability Processor anc;j Storage Programmer Reference

E.4.2.4. Two SegmentslThree Banks - Alternate

NOTES;~

CLUSTER 0

----- UPPER

BlANK 1

SEGMENT
4

2. Llnus.bltl add,..u .. do not occur for ontl b.nk in a h.,l.

BANK 4

E-23
"AGE

3. J~OI' two btlnl~s in a htllf, tnil junks mullt IHI tlqu.' in sizlI or unus.bltl add,.,,"tI. occur. If thllY a,.. not "utll in size and
.I"" in thilltltJ~'" h.,f, MSR c.nnot btlHt to SIIJ I/tlntlrstlld for /xx1t$tT.p into thelowtl' half and would h.llil ttl btl manually

,~t on thtl STU.

4. Loa 0/ ,mfHIt or bank in a haN which cont.ins thil rHidfHIt EXEC brln,gs tntl .ppllc.tion down. If mil r.sidtlnt EXEC
i.. I'Htrlt:t«I to on. half 01 $'tOragtl, ,.",01161 01 a HgmfHlt Of' btlnk in m. othtH hllli dOtls not n«lI#it6ttl a rMJoot, but

4' filii ... in til;. othtll' "." will proIMbIy QUa a rtlboot.

I. 1'1 a IMnk Itnt i. th. only on. conntICttld to 6 ugmfHIt, m. application may b. rMx»tlld with m. oth., stlgmfHIt and
i,. bank.. /'I th. bMlk W .. ontl Qf two conntlCt«i tQ a .lI(JmfHI" m. appliC6tion may b. ,..bootlld with both stlgmtlfl"

4",d mtl ,..",tI,,,ing two b""ks.

8804 Rev.1
Uf'.NUMIIII

SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference

EA.2.S. Two Segments/Four Banks - Basic

CLUSTER 0

-- LOWER

SEGMENT SEGMENT

o 2

BANK 0 BANK 1 BANK 2 BANK 3

NOTES:

2. Int,",.I1". b.tM(".n blink. 0 lind f, lind 2 lind 3 an bit 3.

UPDATI LIYIL
E-24

'AGI

3. All blinks must "- tKlUM in !Iiu 01' unUNbl. Mid,...... tJt:CUr. If unuubltl .ddfft6H occur .nd thtl blinks .,.. in the

ItJWIIt' hilI!, MSR c.nnQt ~ Nt to SIU g.".,..te for boat6tTllp into the lower hillf lind WtJuld h..,tI to "- mllnulllly •• t

on the STU.

4" Loa tR II ugmMlt ,...u". in bringing down the IIppliudon. Th. IIppliution m~ b. rebooted with the r",,"ining
.."",.,,1.

$., Loa af II blink r .. ul,. in bringing down the lIpp1iclltion. Th. IIppl/utian m." ~ rtIbooted with the twO ugm.",. lind

"",,"ining thrH blink. (UII E. 4.2.3. Not. 3) or with MO ugm.",. IItId two blinks

8804J~ev., SPERRY UNIVAC 1100180 System, E-2S
UNdUMBER 4x4 Capability Processor and Storage Programmer Reference \WOATI LIYIL "AGI _____ __ ___________________________ ~ __ ~ ______________ ~~~~~ __ L_~ ____ _____

E.4.2.EL Two Segments/Four Banks - Alternate

BANK 0

NOTES:

CLUSTER 0

----- UPPER

BANK 1

SEGMENT
4

t. Ill'''''' •• ''. "-twHn b.nlcs 0 and t, and 4 and 5 on bit 3~

BANK 4 BANK !5

2. S"mlc. 0 and 1 must be of fHlual size and banlcs 4 and 5 must be of fHlual siz. or unuubl. addresses occur. If they

a4'. not fHluS' in size and are in the lowIN hslf, MSR csnntJt be set ttJ SIU g~erated lor bootstrap inttJ the lower hlllf

ajIJd would hI"'. to b. fNnu.lly set on the STU.

3. L,Ct. of a segment tJr b.nlc in s half which cont.ins the resid~t EXEC brings the application down. /I the resident EXEC

i,: reMrict«i to one hlllf of Stof'Q •• remo..," tJf augment 01' b.nk in th. om.,. h.1f do.s not ntICeaitat. a rMJoot. but

a f.ilur. in thi. tJth.,. half will prob6blJl CIJII$ • • rMJoot.

SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference

E.4.3. Three-Segment Configurations

E.4.3.1. Three SegmentslThree Banks

CLUSTER 0

-- LOWER - -- UPPER

SEGMENT SEGMENT SEGMENT

o 2 4

BANK 0 BANK 2 BANK 4

N'OTES:

1.. In"""", IHItwHnHgments 0 .nd 2 on bit 2.

UfIIOATi LIVIL
E-26

PAGE

3. FOI' two.unlt. in e he/f. the b6nb mU6t be «Iuel in liZ. 01' unu.ebl •• ddr occur. If they ere not «Iue' in size .nd
.re in the lower hMf, MSR cennot be set to SIU 11",.,..t«i for boo,."..p into th.low.,. helf end would helle to be menu./ly
Ht on the STU.

4. Loa of. Hflment DI' b.nlt in • h.1f which conr.in. the ,..sid."t EXEC bring6 the epplic.tion down. "th. rHident EXEC
i. f'Ntrlcted to on. he" of stor.g •• '.",0,,(1/ of. segm."t or benlt in the oth.,. h.1f doe. not nee."it.te e reboot. but
• '.'ure in this oth", h.1I will prob8bly c.uu e reboot

6. The ."",ic.tion mey be rebooted with the r.",eining Hgm.",.. /I e two Hgment h." w •• downed dyn.mice/ly, it mey
". ,.."t.,-.d into the epplicet;on with the on. ,.",eining segment

~_~.1 1_· ___ S_PE_R_RY. __ U_N_I_V_A_C_'_'_00_1_8_0_S_~ __ ~_m_. ______ ~ __ ~ __________________ ~~~~~ __ ~~e-_2_7 ____ __ 4x4 Capability Processor and Storage Programmer Reference UfIOATI\.IVIt. ,.AGE

E.4.3.2. Thre~~ Segments/Four Banks

CLUSTER 0

-- LOWER - -- UPPER

[SEG~ENT SEG~ENT SEG~ENT

B,ANK 0 BANK 2 BANK 4 BANK 5

NOTE~~

3. Sanle!l 0 and 2 mU$t b. of «/wl !liz. and banle!l " and 5 mu.t b. of lHIual !liztl 0' unuubltl IIddrtl!l!ltl!l occur. If thtl'l
.,.. not «/utll in siz •• nd .r. in til. low., htllf, MSR cannot btl !ltlt to SIU g"".,.lIttld 10' boOt8t'IIP into thtl lowe, hll/f

."d WtJUld hav. to btl mllnually !I.t on tlltl STU.

III. Ftx two btI/rJle!l in HCh htl/f, loa of. bllnle in tI h.1f which cont6in!l til. ,Hid"", EXEC bring!l thtl .ppllctltion down. If

til. ,Hid.", EXEC I!I fHtrit:tH to on. hillf of !ItOf'tIgtl, 'tlmQlltll of. btlnlc in tlltl om.,. h.1f dOH not ntICtlaittlttl • ,eboot

but tI ,.;JUl. In til;' om., Mil will pI'tJInbIy CtlUH tI rtIboot.

6. If til. btlnle 1000t w •• til. only one conntlCttld to tI !ltlflmtlllr, tlltl tlpp/lt:6tion mtIY b. 'tlboottld with thtl 'tlfnllining .tlgment
(Inti I»nle In mtlt htl" lind thtI untlHtlCttld htllf. If til. btlnlc 10« Wtl. on. of two conntICttld to (I !ltIgIfI""t the application

mtIY btl tWboottld wffh til. ,..",tlining thfH btlnu MKI thf'H !ltlgm""rs

8804 R.".1
~ ... SPERRY UNIVAC 1100/80 System.

4x4 Capability Processor and Storage Programmer Reference

E.4.3.3. Three Segments/Five Banks

CLUSTER 0

-- LOWER -- --- UPPER

SEGMENT SEGMENT SEGMENT

024

BANKO BANK 1 BANK 2

NOTES:

BANK 3

2. Intllrlllatlll ""twe"" banks 0 and 1, and 2 .nd 3 on bit 3.

3. Unu.abl •• dd,." do not occur for on. bank in a hilif.

BANK 4

UfllDATlLIYIL
E-28

!'AGE

4!. For four bank. in ahlllf, ." bllnkllmust bll tJqual in siz. or unuNbl. sddrtl occur. If unuNblll.dd,." occu, .nd

th. bank • • ,." in thll low.,. half, MSR CIInnot /HI .lIt to SIU g"".,."ttld for bootstrap into thll 10MIfIf' half and would hlltlll

to b. mllnulllly Nt on th. STU.

5. Loa of a ugmfHtt or blink in a hilif which contains th. tWid.nt EXEC brin(/$ th •• ppl/ution down. If th. , •• idllnt EXEC
ill ,ntricttHi to on. hilif of nofWgfI. remottM of • Mgm.nt Of blink in th. oth.,. half dolls not ntIClluitatll • 1WHH1t. but

II failurll in this oth., hilif will probably CIIUIUI • r«Joot.

8. Thll IIPpl/r:"ation may b. rtlboot«J with th. r.",aining MgmfHtts. If II two tUlf/mllnt hilif wa. downtHi dynamicII/1y. it mllY

btl rHfltflr«i into th. IIppiiClltion with th. on. rllmllining IUlgmtlfft.

;r. If the blink lo.t Willi thll only on. In th. hlllf, thll appl/Clltion may'" IWbootlHl with th. om., hilI/. If th. blink wa. Dnll

of fOUl' in • half, thll IIPpl/ution may /HI r.bootlHl with th. unaHect«J half .nd tlith., th. ,.",aining th, .. banks and

two Hgmtlfl" in th •• H«:ttld half 'flIH E.4.2.3, Nor. 3} Of' two banks IItfd two stlf/mfHt,. in th •• HtICltHi half.

8804 Rev.1
UMlUMlm

SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference I ~29

PAGE

E.4.3.4. Three Segments/Six Banks

CLUSTER 0

-- LOW1:R -- --- UPPER

~EG~ENT SEG~ENT SEG~ENT

B.A.NK 0 BANK 1 BANK 2 BANK 3 BANK 4 BANK 5

NOTES:

1. ''''''''tlWtl betw.." s'f1ments 0 and 2 on bit 2.

2. Imerltlatle ttetween banks 0 and " 2 lind 3, and 4 and 5 on bit 3.

3. B'anks 0, 1, :1 and 3 must be of "qual siz. and Nnk. 4 and 5 mu.t btl of "qual size or unu.abl. addr."e. occur. If

unuuble addre" •• occur and the banks artl in th. low., half, MSR clInnot b. Stlt to SIU gtlntlrat«l for bootstrllp into

t1'l. low.,. hl/f lind would hatl. to b. manually Ht onth. STU.

4. Lou of a segmfHIt 01' tunic in a half which contains th. rHidtllJt EXEC bring. th. IIpplication down. If th. , •• id.nt EXEC

iA' rHtrict«i to on. half of stor.g •• ,.motllll of a .-gmtllJt or blink in th. oth.,. half do •• not n.ctlUitat. II 'tlboot. but

II' failure in this oth., half will prolJMJJly c .. a ,.boot.

5. '71. lippI/clition may b. ,eboottld with th. ,.maining ugments. If II two s.gm.nt hllif wa. down«l dyn.miclllly, it mlly

t .. ,.."t(Jf(J(f into th. appliClltion with th. on. ,..",aining ugmMlt.

6. 'if th. blnk lost WIIS ontl of two in II hall, th. application may btl reboot«l with th. oth.,. half and th. remaining blink

lind .'f1m.nt in the afftlcttKI half. If th. /Mnk w ... on. of four in II half. til. application may b. r.boottKI with th. other
",.,f and tlith.,. two Ngmtlnts and thrH bank. in til. affflCt«/ half (... E. 4.2.3, Note 3) or two S'f1mtllJl$ and two banks.

8104 Rev.1 SPERRY UNIVAC 1100/80 SY1IteIM
4x4 Capability Processor and Storage Programmer Reference

E.4.3.4.1. Partitioned by SIU halves

CLUSTER 0

- LOWER UPPER

SEGMENT SEGMENT SEGMENT
02.

Appl.O

BANK 0
Appt. 0

!..fOTES:

Appl.O

BANK 1

~pl.O

Appl. 1

BANK 2
Appl.O

BANK 3
Appt. 0

BANK 4
Appt. 1

BANK 5
Appl.1

UItOATi LIVIL
E-30

'AGI

<4'. In Appliution 0. Iou of a Hgm."t ,...ul,. in bringing down the application. ,.". appliution may be reboot~ with the
tWnaining Hgmtlflt.

~r. In Appllution 0, loa of. IHInk in a half which t:Dntllin. the retJidM' EXEC bring. the application down. If the resident

EXEC 1.1'Htrir:t«J to one half of ftOnge. ,..",o"al of a bank In ",. odt.,. half do.. not n.cHSitate a ,..btJot but a failu"
in m;. om.,. hall will pt'Obably QUM a r~oot .",. appliCltlon may be ,eboo_ with two $-rJm.",. and the rtHrt,;ning
tit,.. bank ..

I'. In Appliutlon 1. loa of a Hgmtlfl' 'Hults in loa of the application. No reboot option ..

,7. In AppllCltion t. I".. of a IMnlt /'HUn. in bringing down the application. T?te application may be rtIboor.d with the
,.",aining banlt.

~., 1 ___ S_P£ __ R_R_Y_U_N_'V_A_C_1_1_00 __ /8_0 __ S~ ___ m_I ____________________________ ~ __________ ~ __ E_-_3_1 ____ _ 4x4 Capability Processor and Storage Programmer Reference UIIOATI LEVB. flAG!

E.4.3.4.2. Partitioned Across SIU Halves

CLUSTeR 0

-- LOW1:R -- --- UPPER

rsEG~ENT SEG~ENT SEG~ENT
L AppL 0 Appl. 1 Appl. 0

BA,NK 0
Ac:tpl.O

NOTES:

BANK 1
Appl. 0

BANK 2
Appl.1

BANK 3
Appl.1

BANK 4
Appl.O

1. 1",,,,fI •• ..,. b.twHlf ~nks 0 and " and 1# and 5 on bit 3 in Application O.

2. I",t""e • .,e b"tween banks 2 and 3 on bit 3 in Application 1.

BANK 5
Appl. 0

3. I" Application 0, loa of II stlgmtmt or bank In a half which contllins the ,esident EXEC brings the application down.

IIr the fftid.nt EXEC i. r •• trictfld to one half of .torllge. r"",o.,al of a segment or blink in the othe, half doe. not

mJt:"";Ute 4' ,..boo1. but a f.i/ure in thi. om", half will prob.bly c.uu a ,.boo1.

4. I" AppIlulion 0, the .ppllution mil., be l'tlbootfld with the ugment in the oth.,. hllif. For lou of a ~nk, the appllcation

nrey I» rtJboDtfld with two 6tlgfntlntJI and the rem.ining thr. benks

•• I" ApplIcMiD'It t, loa of a HflmMtt ruuIf6 in loa of the .ppliutitltt. No rtIboot options.

8. 11'1 AppliutiDn " loa of a ~nlc fHUir. In bringing down the IIppliulion. The application mil., b. rtlboottHJ with the

n""lIinlng b4,nlt.

880 .. Rev.1
IJII-HUMIIIII

SPERRY UNIVAC 1100/80 Syatema
4x4 Capability Processor and Storage Programmer Reference UPOATI LIYIL

E.4.4. Four-Segment Configurations

E.4.4.1. Four Segments/Two Banks - Dual Cluster

CLUSTER 0 CLUSTER 1

- LOWER

SEGMENT SEGMENT

o 2

BANK 0 BANK 2

-- LOWER

SEGMENT SEGMENT

3

E-32
'AGE

2. The bMllts must btl «Iulll in size or unuuble .dd,. «CUI'. If they sre not «Iusl in siz. snd s'" in the 10WtH hs/f,

MSR CMfnot be set to SIU 9en.,.st«l fOl' boo~p into the 10wtH' hs" .nd would hs.", to 1M msnuslly ut on the STU.

3. Loa of s stlf1mfltrt 'Hults in bringing down the sppllc.tion. The applicstion m~ btllWHJotlld in s $ingle clust.,. with

the two ugmtllfts fOl' the c/ullt.,-, protlidlld th., this cluster h .. ." IOU. If it isnlboattHJ in this msnn.,-, ." bMJb ,em';n
..,s/lsbl. f",. UH but procH6ing powtll' i. 1....,,1Id.

The .pplic.tion msy S/SD b. reboot«l •• dusl clustlH' with on. segment in e.ch clu6tel'. ." it is ,.bootlld in this mllnn.,-,

b."lt. connecttHJ to the two ugmen,. """t1tIIKi .'" not ..,.ilsble fOl' IIH.

4.. Loa of • b.nlt brings the .ppliC6tion down. Th. spplicstion msy be ,.bootlld with the ,.",sining bsnlt 6nd its two
segments.

~M 4x4 Capability Processor and Storage Programmer Reference
E-33

.. AGE
860~Rev.' SPeRRY UNIVAC 1100/80 Systems

---- ---~----------~----------......

The following is an example of a partitioned configuration.

CLUSTER 0

-- LOWI:R

rSEG~ENT SEG~ENT
L Appl. 0 OFFUNE

NOTES:'

BANK 2

Appl. 1

2. Llnuubl. IIddrllu •• do not occur.

CLUSTER 1

-- LOWER

SEGMENT SEGMENT
1 3

OFFLINE Appl. 1

SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference UfIOATi LIYII.

E.4.4.2. Four SegmentslThree Banks - Dual Cluster

CLUSTER 0 CLUSTER 1

-- LOWER

SEGMENT SEGMENT
o 2

BANK 0 BANK 1 BANK 2

NOTES:

2. /nttHIHtltl tt.twHfl bllnlts 0 lind 1 on bit 3.

-- LOWER

SEGMENT SEGMENT
3

E-34
'AGE

3. Thll two blln*- connectMJ to mil umll NgmfllJt mint btl «lUll' in ';ZII lind thll blink conn.cttld to th. oth., slIgmllnt

muM hWII • $U" «lUll' to th" tot.' of thtI otft.,. two blinks 01' unuub'" .ddr,,"n occur. If unuHbl1l addr,,"". occur
lind th" btlnks II,. in th. low.,. hlllf, MSR cllnnot b. Slit to SIU glln",lIttld lor boot6tTllP into thll low", hll/f and would

h..,. to btl mllnu.'Iy Nt on m. STU.

II. Loa 01 II .-gm""t 'Hu1't8 in bringing down thll lippi/Clition. Thll IIPpliclltion mil" bll ,"boottld in • sing/II clusttN with

",. two Hf11"M" fIN th" clustM", pt'OtfidIHi milt thi. dumr hn ." IOU. If It Is flIboDtMJ in this mllnntH', 811 blinks ,,,,,"in

wllil.bl. fIN UH but pt'Ot:tIUing pow.r is ,...."tId.

Thll liPpi/ClItion mq lliso btl ,..bootH .. dUIII t:/U$ttIr with on" NgmfllJt in flllCh c/usttH: If it is r.bootMJ in this mllnnllr,

/JMk. t:DfIntlCttld to m" two stl(Jm""" tWmtItItId .,.. not """il,,blll lor UN.

6. Loa of II b."k brinf/$ thll lippi/Clition down. If th" b""k wn th. only on" conn«tMJ to two Hgm"",., thll s".tllm /TIlly

btl ,.boottld with thll """"ining two btlnn lind thtlir two sll9m",,'" If thll blink w". on. of two conntlCt..-i to two

.tlgllltIIJtS th" Ng"""" mq btl r"minMJ with thll om.r bllnlts 101' m" ,"boot (Notll thllt lor 10 •• of 1 of 4 ""nits, Notll
3 /n E. 11.2.3 mIIY IIPP/Y.,

8804 Rev.1
UP-NUMIM 4x4 Capability Processor and Storage Programmer Reference

E-35
PAGE --------~PERflY UNIVAC 1100/80 System.

E.4.4.3. Four Segments/Four Banks

CLUSTER 0

-- LOWER -- - UPPER

BANK 2 BANK 4 BANK 6

NOTES':

2. j~"'ks 0 and 2 must b" of equal siz" and 4 and 6 must b" of "qual size or unusable addr"S$". occur. If thtly ar" not
4Jqual in size and an in the lower half, MSR cannot be .et to SIU gtme,attld for bootstrap into the lower half and would

I',,,,,e to be manually $lit on the STU.

3. j~OU of a H;gtrI"nt or bank in a half which contsins the r,,';dtMt EXEC bring. th" application down. If thll f'II.id"nt EXEC

l. ,.,,6tri~t«i to ontl half of sto,..g., r.mDflsl of a segmtlnt or bank in the om", half dOli. not n.ctl .. it.ttl a ,."boot. but

.1 ,,,ilu,.,, in thi" Om., h,,1f will probsbly CHH a rtlboot

4. The spplia"ion m"y be f'tIboDNd with the r.",.ining u(JmtHfts. If. two $tI(Jm.nt hsll wa. downtlld dynamically, it may

,tHI r..",.,.d into th. appllt:6tion with tIN one ,..",";nin(J ~t.

8804 Rw.l
UNIUMIIR

SPERRY UNIVAC 1100/80 Systems
4x4 Capabifity ProCessor and Storage Programmer Reference UPDATE LIVIL

E.4.4.4. Four Segments/Four Banks - Dual Cluster

CLUSTER 0

-- LOWER

SEGMENT SEGMENT

o 2

BANK 0 BANK 1 BANK 2 BANK 3

NOTES:

CLUSTER 1

LOWER

SEGMENT SEGMENT

3

E-38
I'AGI

3., All benks must ~ tJqUM in siD or unuuble .dd,...... oet:ur. If unu .. bl •• ddr occur .nd the b6nIc:J .,.. in the
lower h61f. MSR t:6nnot be set to SIU gen.r6ttld IOf' btJomr6p into the lowtN' h61f .nd would h6ve to b. m6nu61/y •• t
on the STU.

4. Loa of • Hgm""t ,nul,. in bringing down the .pplit:6tion. The .pplit:6tion m6Y ~ ,eboot.d in 6 singl. cluster with

th. two ugm.n,. 1M rh. clus,.,., provid«l th.t thl" clu6tllf h.s MlIOU. If it is r.tHJDt«l in this mMrn.r, 611 b.nb '''''6in
..,.iI""e I", UN but proCllaing potWf is l.u.n.

Th. 6pplit:6tion m.y .1." ~ r.tJoot«l.s du.' clu.,.,. with on. $lI(1ment in uch clu6ttH'. If It is fWbtx1ttId in this m.nn.r,

b""ks conntlCtrld to th. two Hgm",," '"",ovtld .r. not ..,.il.bl. lor us..

5. Loa 01. b.nlt brings th. 6pp/ic.tion down. If th. b.nk we. the only one conn6Ct«l to two ugmlHla. th. ~r.m mey
~ rllbtJotfld with th. """.ining two b.nlcs .nd th';r two segments. If the b.nlc w •• one of two conn6Ct«i to two
ugmlMft£ m. ugfNn,. mey ~ fWuin«l with th. other IMnlcs /()I' th. ,.boot (Nor. th.t lor loa of 1 01 4 b.nlc .. Nor.
3 in £4.2.3 mq 6I)p/y.)

SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference

The following i~5 an example of a configuration partitioned by cluster.

CLUSTER 0

-- LOWER

[SEG~ENT SEG~ENT
Appl. 0 OFFLINE

NOTES!:

"ANK 1
Appl. 0

BANK 2
Appl. 1

BANK 3

Appl. ':

CLUSTER 1

LOWER

SEGMENT SEGMENT
1 3

OFFLINE Appl. 1

E-37
,AGE

4. l.ou of a b •• nk ,nul,. in bringing down the ."pliclltlon. The application mll'l be reboottKi with the ,.",aining blink.

880~ Rev.1
~

SPERRY UNIVAC 1100/80 Systeml
4x4 Capability Processor and Storage Programmer Reference

E.4.4.S. Four Segments/Six Banks

CLUSTER 0

LOWER -- --- UPPER --

SEGMENT SEGMENT SEGMENT SEGMENT

024 8

BANK 0 BANK 1 BANK 2 BANK 3 BANK 4

NOTES:

UI'OATI LIVIL

BANK 6

E-38
fIIAGI

3. Slinks 0, ',2. lind 3 must b. 01 «Iu" siz •• nd b~1cs 4 .nd 8 mun tJ. 01 «Iu.' Sizll or unus.bl. addrll$Us occur. If

unuubl. Midr «CUI' Mtd m. bMlks ar. in mil lottI1M' hllH, MSR cllnnot btl s.t to SIU g.".rllttld for bootstrll" into

m. IOWM hMf lind would hllV. to b. mllnulIl/y ut on m. STU.

4. Loa ofll ugmllllt 0' blink in II hllif which cont.ins m. mid""t EXEC brings m. 1I""liclltion down. If mil ,.s,dllnt EXEC
is ""';ct«l to on. hMf 01 stong •• '''''0,,111 of II ugm."t or blink in th. oth.,. hllil dOllS not ntIClluitll'lI " ,.boor. but

II '.ilu,. in this oth.,. hll'li will proIMbly CMlS. II ftIboot

5. Th. 1I""liclltion mil., btl r.bootH with th. rllm"ining s~mllnts. If II two ugmlll1t h"lf WIIS downH dynllmiclllly, it mllY

H r.."tlllWd into th.lI"pliution with th. 0". ,.",.ining StlgmMt

6. /I th. blink 10" wu on. of two in • h./f, th •• ",,'iC6tion mllY b. reboottHi with m. unllffllctH hllif lind the ''''''"ining

b.nk Mtd its s~m."t in th. ilffKtlld h,,1f. "m. ank 106t wu on. of four in II hili!, m. IIPpliClltion mllY be ,lIbootlld
with thII un"ffllCt«l hllif lind .;dI.,. th,... blinks MId two .."",.",. in m. IIfftICtH hllif (s". E. 4.2.3, Notll 3) or two blinks

lind two ugm.",. in m. IIff«:ttHi hll/f.

~~;.~., . 1 ___ S_PE_R_RV __ U_N_~ __ A_C_1_1_00_1_8_0_S_~ ___ m_. ____ ~ ____ ~' ________________ ~~~~----~~~e--3_9 ____ __ __ _ 4x4 Capability Processor and Storage Programmer Reference UIIOATI L1VEL PAGE

E.4.4.Si. Four Segments/Eight Banks

CLUSTER 0

LOWE:R -- --- UPPER --

BA,NK 0 BANK 1 BANK 2 BANK 3 BANK 4 BANK 5 BANK 6 BANK 7

NOTES:

t. II'ItMl .. .,. b9twHn .~.nt8 0 and 2. and 4 and 6 on bit 2.

2. '''''''''.11.,. b •• twe.n ban/c$ 0 and " 2 and 3, 4 and 5, and 6 and 7 on bit 3.

3. 6rank. 0, 1, .7, lind 3 must be of «Iual .ize and bank. 4, $, 6, and 7 mu.t be of flqulIl size or unusable addre •• e. occur.
It unuuble 4Idd,. occur and the bank. are in the 10wtH' half. MSR cannot be .et to SIU gen"rated for bootstrap into

t."e low./' h.rlf and would ha.,e to be manually set on th" STU.

4. t.oa of a ... 1ment or bank in a half which contain. the r_dent EXEC bring. the application down. If the re';dent EXEC
,:, r .. tricted to one half of storage, rtlmOtlM of a segment or blink in the other half doe. not necessitate a reboot, but

4' failure In dli. oth., half Wl11 pf'O/Mbly C.UH a reboot.

5. ~""e appliudon m~ btl rebootlld with the ,,,,,,aining .egment& If a two .egment half w .. downed dynamically, it may
~.,. r..,.,rer.d into tIN application with the one ,..",aining Hgment.

S. I~ I".. of " bank, the application may btl ffibooted ..wtlt the oth.,. half and "ith.,. two $tI(/tnents and thl'H bank. in

Ime aff«:t«l ha" (... E.4.2. 3, No,. 3J or two ..""."" and two /»nk ..

880 .. Rev.1
U'-*IMIIJII

SPERRY UNIVAC 1100/80 Syltetnl .
4x4 Capability Processor and Storage Programmer Reference UPDATI LIYB.

E.4.S. Six-Segment Configurations

E.4.S.1. Six SegmentslThree Banks - Dual Cluster

CLUSTER 0

-- LOWER UPPER

SEGMENT SEGMENT SEGMENT

024

BANK 0 BANK 2

NOTES:

1.. 'nrerlelltle between Hgments 0 lind 2. and 1 a"d 3 on bit 2.

CLUSTER 1

-- LOWER UPPER

SEGMENT SEGMENT SEGMENT

3 5

BANK 4

E-40
I'AGI

3~ Slinks 0 lind 2 must be equlIl in size or unuuble Ilddresses occur. If they lI,e not «lUll' in size lind lire in the low.r

hllif. MSR cllnnot be Ht to SIU gen",lIted for btJDtstnIp into the 'Owtit' hlllf lind would hll"e to be mllnu.lly set on the

STU.

41. Lou of II Illlg",."t ()I' bsnk in II hslf which contll"'s the rnident EXEC brin~ the IIppllClltion down. If the rHident EXEC
i. I'Htricted to one hlllf of 6'tDng .. removIII of II Ngmllflt or blink in the othtH' hllif doe. not nfICH6itlltll II 1WHxJt. but

II flli/uTe in this omtH hslf will probllbly CIlUN • reboot.

~r. The IIppliClltiDn mllY be rebooted in II flingle clu .• t.,. with the thrH ugment1l lor thll cluntN, proflid«i thllt this clulttH

h .. lin IOU. If it is rebooted in this mllnntlf'. II" blinks remllin 1I"lIilllbie for u .. but procasing pow", is ,...."tHi. 11Ie
spplicstion mllY lllso bll rebootlld II. dUM cluswr with two S#lgments in ellt:h cluster. If it is rebooted in this msnn.,.,

blinks connt/lC1fHl to the two segment1l ,..",ovtICf lire not 1I"lIl'lllbis for uu.

86~OR.Y" SPeRRY UNIVAC 1100/80 Systems E-41
IJI'.MIMIER 4x4 Capability Processor and Storage Programmer Reference UP'DATlLIYU "AGI

--------------------------------~----------------------~----------~----------

E.4.S.1.1. Partitioned by Cluster and SIU Halves

CLUSTER 0

-- LOWER -- --- UPPER

['SEG~ENT SEG~ENT SEG~ENT
Appl: 0 Appl. 0 OFFUNE

NOTES:'

BANK 2
Appl. 0

CLUSTER 1

;:===...;;.LO.;;.W.;...;,.;;:E;.;.R __ ==-_--,..-:..-===.-.;:U;.;..;PPER

SEGMENT SEGMENT SEGMENT

OFFLINE

BANK 4
Appl.1

3 5
OFFLINE Appl. 1

1. '''tsr's.vs b4,twHn MlgmMt6 0 and 2 on bit 2 in Application O.

2. Alo interl.8v,~ in Application 1.

3. It, AppliuticJ'n 0, lou of a s~m."t rIJ6ults in bringing down the application. Ths application may blJ rebootH with the

",m.ining slJflment.

4. /,., Application 0, lou of II blink results in bringing down thlJ application and 106$ of ths bank's ugment ThIJ appliclltion

m.y btt r.bc'DtH with ths ,.",.ining b.nk .nd segment

6. Llnu .. bI •• dd,...... do not OC:CUl' in Appllt:6tion 1.

a804 ReY.1 SPEARY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference

E.4.S.1.2. Partitioned by Cluster Across SIU Halves

CLUSTER 0

- LOWER -- --- UPPER

SEGMENT SEGMENT SEGMENT

o
Appl.O

BANK 0
Appl. 0

NOTES:

2
OFFUNE

4
Appl.O

BANK 2

Appl. 1

2. Unuubl. IIddrHM16 do not occur in BithlH IIPpliclltion.

CLUSTER 1

- LOWER -- --- UPPER

SEGMENT SEGMENT SEGMENT
1 3 5

OFFUNE Appl. 1 OFFLINE

B,o.NK 4

Appl. 0

_1. Loa of II ugm.t 01' blink in App/lclltion 0 in II h.,f which contllin. til. r •• ,'d.nt EXEC bnng. til. IIppliclltion down.

If til. TtI.d.t EXEC i. r • .mctlld to. on. hllif of $tDf'6gtl. """0'*'111 of II •• gmtHJt or blink in til. otll.r hllif dOB. not

nt#CllNitllt. II 1'tIboo'L but II 'llilur. in til,. oth.r hllif w"" probllbly CIIU •• II rtlboot

.,. FtN loa of II HgmtIM. til • ."pllution mllY btl ,.bootlld with til. MJgmtlnt in til. othtlr hllif in Appliclltion O.

6. For loa of II blink. m. IIppHution m.., btl rtlbootlld with til. blink lind .lIfII'HHIt in til. unllffet:ttld hlllf in AppliC6tion

0.

~. Loa of II ugmtIM (N blink in AppliClltion 1 r •• ulr. in lou of th. IIppliution. No r.bt:Jot options.

I SPERFrf UNIVAC 1100/80 Syttema
~Capability Processor and Storage Programmer Reference UfIOATI LEVEL

E.4.S.1.3. Partitioned Within Cluster and SIU Halves

CLUSTER 0

-- LOWER -- --- UPPER

[

SEG:ENT SEG~ENT SEG~ENT
Appl. 0 Appl. 0 Appl. 1

B,ANK 0

AIPPI.O

NOTE~t·

BANK 2

Appl.O

CLUSTER 1

;:=== __ LO_W~E.;..;.R_==-:...,..~-::==....;;U;.;...;PPER

SEGMENT SEGMENT SEGMENT

Appl. 0

BANK 4
Appl. 1

3 5
Appl.O Appt. 1

t. In''''"", tlfltwHn flllgm"",. 0 .nd 2 • • nd t .nd 3 on bit 2 in Applia.tion O.

2. No intflrl •• IY. in Application 1.

3. In Application O. the bMlks must In «/u.1 in siz. or unuubl •• ddr s OCCUI'. If they Ill'll nor equill in size lind lire
in the/owego half. MSR cannot b. s.t to SIU gMerattld for boot8tnp into the lower hMf lind would halle to b. manually

/HI' on the ,STU.

4. Loa of • s-r/m.", or bank rHU/tlI in bringing down Application O.

6. ApplIcation 0 may be f'fIbotJtN in a single c/uMtJI' with the' two MI(1IfJMr. "" the clun.r, fNOtIidtld that thl. clwtM' hn
." IOU. If it i. reboDtlld in this tnMIntw, MI blinks r.",ain WllliMJle fIN ,.. but prot:e.ing PDW.tII' is l..-ntld. The
application may alMJ be reIJootlld a. dUM clwrtH with one Sll{/mMt in HCh clU6tel'. lilt is rMJlJIJttId in this m.nntll',

bMtu ctNI".,;rtld to the two HgmtllllS r~ .,. not /IIIaHabie 'Of' u ...

7. Unuuble ~'dd,..... do not Ot:CUI' in Application t.

8. In Applit:tJc", t, loa of /I segment IN bMllt fUlJIts In bringing down the application. The application may b" reboottld
in a llingle cluster with the on. tWmaining s,.gm""" ",."v;dlld th.t th;s clusr.r has In IOU.

8804 Rev.1
~MIIR

SPERRY UNIVAC 1100/80 System.
4x4 Capability Processor and Storage Programmer Reference

E.4.S.2. Six Segments/Four Banks - Dual Cluster

- LOWER

CLUSTeR 0

--- UPPER

SEGMENT SEGMENT SEGMENT
024

BANK 0 -BANK 2

NOTES:

1. ImMl .. .,. /HItwHn segments 0 .rnd 2. .rnd 1 .rnd 3 on bit 2.

2. IntMl • .rve b.twHn b.rnb·4 .rnd 5 on bit 3.

CLUSTeR 1

-- LOWER UPPER

SEGMENT SEGMENT SEGMENT
3 5

BANK 4 BANK 5

3. S.rnk. 0 .rnd 2 must btl of tlqUM .a. MId b.rnk6 4 .rnd 5 mu6t /HI of tlqu.rl siztI or unuubltl Mid,.. .. ". occur. If th"y
.rr. not tlqUM in .atl .rnd .r,.. in thtl low", h.rlf. MSR unnot /HI $lit to SIU g.".,..tlld for btJtJt6tnp into th. lowtlt' h.rlf

.rnd would h...,. to /HI m.rnu.rlly •• t on th. STU.

4.. L.t:ta of.r Hgm"", tH' b."k in .r h.r/f which conuins th. tWid"", EXEC brings th • .rppliution down. If th" "';d"nt EXEC
i. r..mcttHJ to on" hMf of stor.rgtl, removM of.r Hgment or /HInk in the om", h.rlf don not n.clltl6lt.,. .r rtlbDot. but

.r f.rilure in this othtN h.rlf will pt'f)/Mbly CMJH .r t'IIboot.

5: The .rpplic.rtltJn mlly/HI ,..bootlJd in II singl. CIU6"" with the thfH H(Jmllftts for the clu6tlH', providlld thllt thi. clu6t1H
hll • .rn IOU. If it i6 fIIbotJ~ in this mllnn." MI bMr/a """.rin 1tI,,;llIbIe for u .. but PfOCH.;ng ptIWIIf' i. 1 • ..."tId. Thtl
.rppllc.rtltJn mlly M60 I» ftIIJootlld •• dUIII dust", with two • ."m.nts in HCh c/U6t1lT. II it i6 ,..btJtJtlld in thi. m.nn""

bIIn/a connected to the two H(Jments removlld .,.. not .rvllil.bl. for UA.

tlt If rhII bMlk 1M' W .. 'htl only ontl connllCtlld to two Mgments, thtl .rppliution mllY b. f'IIbotJtIId with mil rllm.rining th,..

blink • .rnd four Hgm"nts. If thll bMtk Wll6 one of two connllCtlld to • .-gm""t. thll .rppliution m.y/HI rebtJtJtIId with

the remllining th,.. b.rnks .nd MI six H(Jmllnts.

~~?~~.1 1 ____ SP_e_R_R,_Y_U_N_'V_A_C __ 1_1_00_1_8_0_S_~ ___ m_. ____________________________ ~ __________ ~~_E_~ __ 5 ____ __ _ ~ 4x4 Capability Processor and Storage Programmer Reference UPDAn LIY8. 'AGE

The following is an example of a configuration partitioned by cluster.

CLUSTeR 0

-- LOWIER -- --- UPPER

['$EG~ENT SEG~ENT SEG~ENT
App'. 0 Appl. 0 Appl. 0

B~,NK 0

At:»pl.O

NOTES.~

BANK 2
Appl.O

CLUSTeR 1

-- LOWER -- --- UPPER

SEGMENT SEGMENT SEGMENT
135

OFFLINE OFFLINE Appl. 1

BANK 4

Appf. 0

BANK 5

Appl.1

4. i~oa of a 6t1gm."t at' Innle in a half which contain. tit. t'.lIid.nt EXEC bnngs tit. application down. If tit. r".id.nt EXEC

i. ,..8trlctlld to an. half of ""'8(1 •• remoffM of a .egm.nt 01' /)MIle in the om.t' half do •• nat nee.aitat. a ,.boat but

4' failut'. in thl. am.,. half will prt1bab/~ caUH a reboat

5. I=ot'loa of •• egment. applic.tlon 0",., btll'tIbDottld with the """';ning .."",.",.. If a two .."",."t "." w .. dawn.d
.1ynamlcally. it ma~ b. ,.HtltfHfH/ into ",. appJic.tiDII with the one ,..",.;n;ng ugm."t Far lou of aNnie, the appliutian

tna~ btl rebCHlttld wl'm th. remalmng two bank. and their Ml(Jm.",..

8804 ""'.1
~

SPERRY UNIVAC 1100/80 S'f8'C8rM
4x4 Capability' Processor and Storage Programmer Reference

E.4.S.3. Six Segments/Five Banks - Dual Cluster

CLUSTER 0

,.-___ LO W..,...E_R_==_-_------U_.PPER

SEGMENT SEGMENT SEGMENT
024

BANKO BANK 1 BANK 2

NOTES:

BANK 3

CLUSTER 1

-- LOWER UPPER

SEGMENT SEGMENT SEGMENT
3 5

BANK 4

I E-48
PAGE

4'. Sank. O. to 2 • ."d 3 mwt b. of «IUM .u. ", unUMbl. Mldr occur. If unuNbi. «Jd,.. occur and th. bank •

.,.. in th.,oww hall, MSR c.nnot H Ht to StU g.".,..t«1 for booutrap into th.,ow," hall and would hw. to b. manually

HI on th. STU.

I. Loa of a HfII"."t", blnk in • h." whit:h cont"" th. rftid.", EXEC brin~ th. applludon down. If th. fNid.nr EXEC

i. ~ct«I to on. hMf of .ror.g •• r.",tW6I of a HgI1HInt tN I»nk in th. othw' hMf tIM. not n«:H$it.,. a "'boot. but
a ;lIiIur. in thi. om.r half will pt'Ob.6b/t/ CWH a rWJoot.

~,. .,.". appliunon mq ". ",boot«J in a 6ingJ. clU6t", with th. thrH ugmllll" I", th. clu.,.,., providH that thi. clU$t.r

h .. ." IOU. If it i. IWbDDtlHl in thi. mann." all banD ,..",ain ."ailabl. for uu but proc •• 61ng pow., ,. ' ntld. Th.
appliution mq alMJ ". rwboot«1 a. dUM c/,.,.,. wffh two Hgm.",. in .ach clu.,.,.. If it i. r.tJoottHJ in this mann.,.,

b."k. conn«:t«J to th. two Hgmtm" ,.",Ott«/ a", not nailabl. fIN u ...

7. /I th. IMnk IDIII w .. th. only on. in lb. h6/l, lb •• pplic«ion may'" r.boDt«J wr'th th. unaH«:t«J half. If th. IMnk wa.

on. DI four in a hMf, lb. appliution may'" rMNJDt«l with lb. unaH.ct«l half and "ith", lb. ,.",.ining thf'H bank.
and four HgmM" in th. aff.ct«l half (IN £.4.2.3. Not. 3} or two bank •• nd four ugm.nt .. in th. affllCt«J half.

8804 Rev.1
Uf'o.NUMIIIIt

SPERFIY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference

E.4.S.3.1. Partitioned by Cluster

CLUSTER 0

-- LOWER -- --- UPPER

[SEG~eNT SEG~ENT SEG~ENT
Appl. 0 Appl. 0 Appi. 0

NOTES.:

ElANK 1

Appt. 1

BANK 2

Appl.O

BANK 3

AppL 1

CLUSTER 1

;:=== __ LO;.W.;..;,.;;E_R_==-_---.--:.::==....;:U;.;...;PPER

SEGMENT SEGMENT SEGMENT

Appl.1

BANK 4

Appl.O

3 5
Appl. 1 OFFLINE

t. Imtll'lHWI "',twHn Mlgment6 0 MId 2 on bit 2 in Applicnion O.

E-47
PAGE

3. /,,, AppliC6tiCJn 0, loa of • Mlgm."t Of' btlnk in a htlll which conta,n. the ,.~dtmt EXEC bring. the application down.

If the ,.,;,J"nt EXEC i. ,..rrlcted tD one htllf af .torage, rtlmotlal of a .egment or bank in the other half dOH not

".eaittlle a rtlboot, but a failure in th, .. odt.,. hall will probably C6use a ,..boot.

4. the applluJ'ion may btll'tlbootMJ with the """tlining Hgments. If a twO Hgm.", hall Wtl. downMJ dyntlrn;C6l1y, it mtly

~)(I r..",IIfWi into the applit:6tion with the one "",,(lining ugrn."t.

6. Jln AppllcMic"lt I, . lou of a NflmlHlt rnull8 in lou of the app/ic:stion. The applit:6tion may be ,.booted with the ,emaining

~JtIf1trNttt.

1. J~oaof a btlfllc ,.1JU118 in bringing down the tlpplication tlnd lou of the bsnk's HgmlHlr. The tlpplictltion may be reboot«l

t'Wlth the ,.,,"';ning bMlk tlnd Hgm"'r.

SS04 Rev.1
~

SPERRY UNIVAC 11oo/S0 Syete,.,.
4x4 Capability Processor and Storage Programmer Reference U.-oATI LIYIL

E.4.5.3.2. Partitioned by C~uster by SIU Halves

-- LOWER

CLUSTER 0

----- UPPER

SEGMENT SEGMENT SEGMENT
024

Appl. 0 Appt. 0 OFFUNE

BANK 0

~pt.O

NOTES:

BANK 1
Appl. 0

BANK 2
Appl. 0

BANK 3

~pl.O

CLUSTER 1

,..-__ ..;;;;LO;;;.W.;;.;,;;;E,;.;,R __ - __ -:.-:.::=--U..;",;PPER

SEGMENT SEGMENT SEGMENT
1 3 5

OFfliNE OFFUNE Appl. 1

BANK 4
Appl.1

2. InttJrl •• .,. o.twHn b.nk. 0 MId 1 • • nd 2 lind 3 on bit 3 in Applit:6tion O.

E-4S
'AGI

3. LD66 of • NgmtHIt f'Hu'" in bringing down Appl/clltion O. Th. lippI/ClItion mil,! bIJ r.bootlJd with th. """.ining

Ml(JtJttHlt&

" LD66 of II /Mnk /WUItt in bringing dDwn m. IIppliution. Th •• ppI/Clltion mil,! b. ",boottld with th. two ugmlJl1" lind
,.",#lining th,... b."k. (NIl £'''.2.3, No,. 3) Of' with two NgmtHlts lind two bMQ.

5: No intlJrl • ..,. in Appllution 1. UnuabIIJ Mid,...... do not oct:U1'.

6. Loa of II MgmIJl1' 0' blink in Appliution 1 1WIJIt:t in loa of th. IIppllClltion. No rtIboot option&

SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference

E.4.S.:3.3. Partitioned by Cluster Across SIU Halves

CLUSTER 0

-- LOWIER - -- UPPER

[C)EG~ENT SEG~ENT SEG~ENT
Appl. 0 OFFLINE Appl. 0

B~~NK 0
A,)pl.O

NOTES;'

BlANK 1

Appl. 0

BANK 2
Appl. 1

BANK 3
Appl. 1

CLUSTER 1

-- LOWER UPPER

SEGMENT SEGMENT SEGMENT
1 3 5·

OFFLINE Appl. 1 OFFLINE

BANK 4

Appl. 0

E-49
JlAGE

3. In Applic6tir..n O. loa of a stI(Jmsnt or bsnk in s hslf which contsin~ ths ,."-dsnt EXEC brings ms aplicstion down. If

tft. ,.sid."t EXEC is ,s.trictN to ons half of sto,ags. femoval of a ssgmsnt or blink in ths oms' hslf dOH not nscsssitate

" ,..boot. but II failure in this other hslf will probably csu •• a ,eboot

6. I,' th. bllnlt Irost i. ms only on. connsctN to II Hgmtlflt. ms appHution mst' bs ,.boot. with m. om", stlgmtlflt and
it. 1NInIts. II' ms bsnk ws. ""s of two connt/ICtMJ to s ssgm."t. ms sppliution mst' btl ,sbootsd with both HgmtH1t$

.,nd ms rsmsining two blinks. .

8. l'nttlrl...,. bHWHn bsnks 2 snd 3 on bit 3 in Applicstion 1.

7. I'.DIU of II Hgm."r in Applicstion 1 fnul,. in loa of ms spplic6tion. No rsboot option ..

8. 4'.Da of s IMnk in App/i'ut;on 1 ,nulf$ in loa of ms sppliution. Th. sppllutlon mst' btl rebootMJ with th. f.msining

j""/t.

8804 Rev.1
UP-NUMIIII

SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmar Reference UPDAT! LEVEL

E.4.S.4. Six Segments/Six Banks - Dual Cluster

- LOWER

CLUSTER 0

----- UPPER

SEGMENT SEGMENT SEGMENT

o 2 4

BANK 0 BANK 1 BANK 2

NOTES:

BANK 3

CLUSTER 1

;:=== ___ L ... O_W E R ____ -_ -_-..,.==:_-_U~P-.PER

SEGMENT SEGMENT SEGMENT

3 5

BANK 4 BANK 5

E-50
PAGE

2. S.nks 0, T. 2. 3 mu6t be of tlqu.lsize 6nd b.nb 4 .nd 6 must be 01 tlqual $iztl or unUNble .ddre"'$ occur. If unuubltl

.tid,...... occur .nd the banks a", in the lowtlr half. MSR cannot be .et to SIU gentlr.ttld lor bootstrap into thtl lowtlr

half .nd would h..,. to be manually s.t on the STU.

3. Lou 01. Hgment or b.nk in a h./f which contains the midMft EXEC brings the .pplication down. If th" r"sid"nt EXEC

i. """';cted to one half 01 $tor6g., '''''O~M 01 a .~Mft Dr b.nk in the oth",. half do.s not ntICtluirar • • reboot. but
a Ipur. in this oth",. hM/ will prolMbly uus. a reboot.

4. Th •• ppllcltion ",., be IWbooted in a ';ngl. clustM with the thfH Hgm.nts foI' the clU6tM, provided thllt this clus"".

ha .n IOU. /I it Is IWHJotH in thl. m."nM, .11 banks r.m.in availabl. lor 1J6. but proc.aing pow.,. ;$ 1 • ..."lId. The

.pplic.tion m.y MMJ be ,~ttld .. dUM clusttlf' with two ugmMfts in ,,6Ch cJu.ttlf'. If it is rtlboottld in this m.nn.r,

b6nlcs connected to the two Hgm.",. """otltld .1'. not .v.il.bI. lor UMI.

5. 1/ the bMlk 1061 Wft on. 01 two in 6 half, the application may btl rtlboottKi with the oth",. half 6nd th. ,,,,,,.ining b."k

and two Hgm"''' In thtI MfB.t:tHh/llf. If the b.nk w •• on. of four in • h.1I, the 6ppllcation m.y btl reboor.d with th.
unaffflCted h.1I and .ith.,. thrH NnU 6nd four _gm."ts in the 6f1t1Cttld h.1f (SH £4.2.3, Noftl 3) or four Hgm.nts

and two b.nlc ..

~~_.1 1.~ __ SP_E_R_~._~_U_N_I_V_A_C_1_1_00 __ /8_0 __ S_v.d __ .m __ . ______ ~ ______________________ ~ __________ ~ __ .E_-_6_1 ____ __ _ 4x4 Capability Processor and Storage, Programmer Reference UflDATI LIVEL flAGE

The following is an example of a configuration partitioned by cluster.

CLUSTER 0

-- LOWI:R -- --- UPPER

fseG~eNT SEG~ENT SEG~ENT
L "",pI. 0 Appl. 0 Appl. 0

SA,HK 0

AlltP': 0

NOTES:

BANK 1
Appl. 1

SANK 2

Appl. 0

SANK 3
Appl.1

CLUSTER 1

-- LOWER -- --- UPPER

SEGMENT SEGMENT SEGMENT

Appl.1

BANK 4

Appl. 0

3 5
Appl. 1

SANK 5
Appt. 1

Appl. 1

1. Ir.ttllrlll"" ~twHn ugmllnt8 0 .nd 2 on bit 2 in Appliclltion O.

2. ImtlrlHvII ""twe." s~mlln" 1 lind 3 on bit 2 in Application 1.

3. /..CtU of II SllQmllnt 01' b.nk in II h.1f which contll'n. mil rll~dllnt EXEC bn'ngs mil lippI/clition down. If mil rUldent EXEC
i,r l'Htf'icttKJ to on. h.1f of sttH'llgll. I'llmowl of II ugm.,,' 01' bllftk in th. othM hlllf do •• not nllClluitlltll • rllboot. but

• f.i/ufW in this om",. h.1f will pro/Mbly CIlUH II rtlboot

4. E'lthlll' .pplic.tion m." bll ,"boottKI with tlllI r.",.inl'ng H(Jmllnt!l. If. two $~mllnt h.,f WI. downtKJ dynllmiclllly, it

mil, I» I'Hlftlll'tId into tlllI IIPplic.tJon with mil on. ,-.mMning M(Jmlll7r.

8804 Rev.1
U~

SPERRY UNIVAC 1100/80 System.
4x4 Capability Processor and Storage Programmer Reference UfIOATi LIVIL

E-62
'AG.

E.4.S. Eight-Segment Configurations

E.4.B.1. Eight Segments/Four Banks - Dual Cluster

CLUSTER 0

-- LOWER -- --- UPPER --

SEGMENT SEGMENT SEGMENT SEGMENT

024 8

BANK 0 BANK 2

CLUSTER 1

-- LOWER -- --- UPPER --

SEGMENT SEGMENT SEGMENT SEGMENT

357

BANK 4 BANK e

NOTES:

T. •

2. SMlb 0 6nd 2 mu.t be 01 Mlu61 .a. .nd b."ks 4 .nd 5 mUM I» 01 Mlu.' lize or unuNble .dd,.".... occur. If they
.,.. not MlUM in size .nd IIr. in the IOWM h.,f. MSR C6nnot b. Ht to SIU f/MM.t«i for boot6tr11p into the lower hilif

.nd would h..,. to btl m.nuelly •• t on the STU.

3.. Loa 0111 Hgment 01' blink in II hell which conteins the rHidtlnt EXEC brings thtIllppllution down. If the rnidllnt EXEC

is rHtrit:t«1 to one hell of nong., remo". 01 e HQmMt 01' blink in the oth., hMf dOH not n«: ... ite,. e ,..boot. but

II f.,uIW in this othe, h." will probllbly uuu II 1Wboot.

4~ The .ppliclltitJn mey be rebootfld in • singl. clufttH' with the four Hgmenr. for the clusttH', provid«i th.t thi. cluntll'

hu .n IOU. "it i. rtlbootMJ in this mMln.,., .11 b6nlcs 'emein .".illlble for UH but proceuing power i. I n«l.

Th • ."pliution me., ./so be tWIoot«i .s • duM clu.'" with thrH ugment8 in .6ch cluner. If it i. ,..booted in this

menn.,., blink. conn«:t«l to the two Stlf/men,. ,.",Otl'tld .re not ."eil.ble fOl' us..

5. FOI'lou of. benk, the IIpplic.tion m.., I» f'tIboottHI with the un.ff.a«i h." .nd the r.",~ning blink .nd't8 two ugmen,.

in the .ff«:rtHI h.1/.

8804 Rev.1 I SPERRY UNIVAC 1100/80 Systems
u......uM~ 4x4 Cal)ability Processor and Storage Programmer Reference

E-53
PAGI

E.4.6. 1. 1. Partitioned by Cluster and SIU Halves

CLUSTeR 0

--.-- LOWER -- - UPPER --

I SEG:ENT SEG~ENT SEG~ENT SEG~ENT
Ajppl. 0 Appl. 0 OFFUNE OFFLINE

BANK 0

Appl.O

NOTES:

BANK 2
Appl. 0

CLUSTER 1

- LOWER UPPER --

SEGMENT SEGMENT SEGMENT SEGMENT
1 357

OFFUNE OFFUNE Appl. 1 Appt 1

BANK 4

Appl. 1
BANK 8

Appl.1

3. Loa of a $~m."t re.ults in lou of t"- applicltion. The application may be ,."booted with the remlining Hgment.

4. LOIN of a banI', bring6 the appl'ution down. The applt'cltion mlY be rebODttId with the remlining bank and Hgment.

8104 Rev.1
UNiIIUMIIIl

SPiRRY UNIVAC 1100/80 Systeml
4x4 Capability Processor and Storage Programmer Reference

E-64
PAGI

E.4.S.1.2. Partitioned by Cluster Across SIU Halves

CLUSTER 0

- LOWER --- UPPER --

SEGMENT SEGMENT SEGMENT SEGMENT

024 8
Appl. 0 OFFLINE' Appl. 0 OFFUNE

BANKO
Appl.O

NOTES:

1. No int"""""

BANK 2
Appl.1

2. Unuubl. MidI'ft6 •• do not occur.

CLUSTER 1

-- LOWER UPPER --

SEGMENT SEGMENT SEGMENT SEGMENT

1 351
OFFUNE Appl. 1 OFFLINE Appl. 1

BANK 4
Appl.O

BANK 6
Appl.1

3. Loa 01. ugmwrt iN IMnIt in • h." which cont.in. the rHidtHIt EXEC bring. the .pp!Ic.tion down. If the re.,dent EXEC
i.,ntrictMJ to one h." of .tonge. removel of e ugmtHIt or benlt'in the tJth.- h61f doe. not nee'-t.te e reboot but
e IMlUIW in mi. other he" will prol»bIy ~u .. 6 rtIboot.

SPERRV UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference

E.4.6. '1.3. Partitioned Within Cluster by SIU Halves

E-65
PAGE

CLUSTER 0 CLUSTER 1

-- LOWI:R -- --- UPPER --

rqEG~ENT SEG~ENT SEG~ENT SeG~eNT
L At>I>J. 0 Appt. 0 Appl. 1 Appl. 1

BA,NK 0

A~,pl. 0

NOTES:

BANK 2
Appt. 0

-- LOWER UPPER --

SEGMENT SEGMENT SEGMENT SEGMENT
357

App"O

BANK 4

Appt. 1

Appt. 0 Appl.1

BANK 6

Appl.1

Appt. 1

f. 1",ttIrl.w. ""rwHn $tIf1mttn,. 0 and 2. and 1 and 3 on bit 2 in Applic6tion O.

2. I"t.rl.av. b4ttwe." s~m.n,. 4 and 6. and 5 and 7 on bit 2 in Application 1.

3. L.oa of a s."mttnt 'Hults in bringing down th. application; Th" application may b. rtlboottld in a singl. clusttlr with
tJ,. two $tIfInHlllts fIN til. clust.,., protlidtld that this clu.,.,. has an IOU. If it is r.boottld in this'mann.,., all banlc6 remain

a~.il.bl" for us. but pl'DCnsing pow., is l...."tId. Th" application may al$D b. r.boottld .s dual clust.r witll on.

s.tgmttnt In ."ch clum" If it is r.bootH in this mann"" banks ConnllCtH to til. two sllgm""ts ,..".,o~tId ar. not .~ailabl"

fc" UN.

4. Loa g/ a IM"k brin~ th. application down. Th. appllution may 1M 1'tIbocIr.d with th. """aining ank and its two

.,~I&

8804 Rev.1
lJIl-NUM8IIt

SPERRY UNIVAC 1100/80 Sy8tem8
4x4 Capability Processor and Storage Programmer Reference UPDATE LIYIL

E-56
PAGE

E.4.S.1.4. Partitioned Within Cluster Across SlU Halves

CLUSTER 0

- LOWER -- --- UPPER --

SEGMENT SEGMENT SEGMENT SEGMENT
024 6

Appl. 0

BANKO
Appt. 0

NOTES:

Appl. 1 Appl.O

BANK 2
Appl.1

2. Unuubl. sdd,..u.. do not occur.

Appl. 1

CLUSTER 1

- LOWER UPPER --

SEGMENT SEGMENT SEGMENT SEGMENT
357

Appl.O

BANK 4
Appl. 0

Appl. 1 Appl.O

BANK 6
Appl. 1

Appl. 1

3. Lo .. of ••• gm.", 0' b.nk in • h.If which cont.in. th. ,..~d."t EXEC bring. th •• ppllc.tion down. If th. 'Hid.nt EXEC

i. ,.MrictH to on. h.1f of nang., ,..",ov.' of • Mlgm."t or b.nk in th. oth", hMf do •• not n.CHIIit.t • • reboot. but

• f.ilure in thi. oth", h.If will prob6bly c.uu • reboot

-tI. Th •• ppliution m.y b. ,.bootH in • Mngl. c/u.ttH with th. two Hgm.nt8 for th. c/u.,." providtld th.t th,. c/u.t",

h ••• n IOU. If it i. r.tJoot«J in thi. m.nnM, ." b.nk. r.",.in .v.ilM». for UH but proc.66ing POWIH' i. '.611.,,«1. Th •

• ppliution m~ .,." btl rflboottld •• dUM c/U6ttII' with on. ugmMl, in NCh clwtM. "it i. fWbooltld in mi. mMtnM,

IHHtk. connllCtH to th. two Hgm."t8 r.",owd .,.. not w.iI.bI. for UH.

8804~. .1 SPERRV' UNIVAC 1100/80 Systems IE-57
u........,..... 4x4 Capability Processor and Storage Programmer Reference UIIOATI L.IVS. PAGE

--~----------~------------

E.4.S. '1.5. Minimal Storage Partitioned Out

CLUSTER 0

-- LaWleR -- --- UPPER --

~
';EGMo ENT SEGMENT SEGMENT SEGMENT

246
Appt. 0 Appl. 0 Appf. 0 OFFUNE

NarES;'

BANK 2
Appl. 0

CLUSTER 1

-- LOWER UPPER --

SEGMENT SEGMENT SEGMENT SEGMENT
357

Appl.O

BANK 4

Appl.O

Appl.O Appl.O

BANK 6

Appt.1

Appl. 1

1. Im.rl •• ". b.,rwe." ugm.nr. 0 and 2. and 1 and 3 on bit 2 In ~ppllcation O.

2. L.o .. of a ."gment or bank in a half which contains the r •• id.nt EXEC brlng!l the application down. If the r.,ident EXEC
iJr fHtrit:ted to on. half of .torag •• r.mo"tli of a s~m.nt or bank in the other half do •• not neclH!litat. a r.boot, but
., fMlure in ''his oth.,. htllf will probably cau .. a reboot.

3. Application ,0 ma., be rebooted in a !lingle clust.' with the th,.. segmen,. for the clust.r. pro"ided that this clustllr ha.
4,n IOU. If it l!l ftIbootlld in thi. mann.,., tI/I ban" rem.in a"ailabl. for u .. but proclluing pow.r ,. I.Ullntld. Thll
4,ppllcation mq al$O ". r.booted a. dual clust.,. with two !lll(Jm."r. in .lICh clu.tel'. If it i!l reboor.d in thi. manniif'.
~UIIIQ conmH:ttld to thll two IIIIfImlltr,. ,..",owd a,.. not tI"anabie for ,...

6. No intBI in Appllatlon to

s. ~~oa of a !I4'f/m."t or bank in Application 1 fHUlts in loa of the application. No ,..boot options.

8804 Rw.1
U~

SPERRY UNIVAC 1100/80 Systems
4x4 Capability Processor and Storage Programmer Reference Ufl'DATU.lVB.

E-58
flAGE

E.4.S.2. Eight Segments/Six Banks - Dual Cluster

-- LOWER

CLUSTER 0

-- UPPER

SEGMENT SEGMENT SEGMENT SEGMENT

o 2 8

BANKO BANK 1 BANK 2 BANK 3

NOTES:

CLUSTER 1

LOWER UPPER

SEGMENT SEGMENT SEGMENT SEGMENT

357

BANK 4 BANK e

.1. Sank. 0, ',2, and 3 must b. of «Iual size lind /Mnb 4 and 8 mU!lt ~ of tH/ual siztl or unuubl. addr." •• occur. If

unuubltl add,.. occur lind th. /Mnk. II,.. in thtl lowtN' half, MSR Cllnnot btl s.t to SIU g.n.rattld for bootstrll" into

th. lowtlt' half and would hatl. to ~ manually Ht on STU.

'.. I.Da of a ugm."t in a half which contain. th. rHid.", EXEC bn"g. th. application down. If th. rHid."t EXEC is
r"";ctH to on. half of !ltorag .. ,.",otlal of a ugmMlt or bank in th. oth",. half dOH not ntIC.uit.t. a r.boot but a

IMlu,.. in thi. oth., half will probMJ/y C6USB a rtIboot.

5. Th. ap"liut/on m.., b. reboottJd in a singl. cJwt",. with th. lour stI(Jm.,," for th. clust",., "fOtlidtld that this clu."'"
h_ an IOU. If it i. rebtJDtH in this mann." all b.,.k. """ain atlailabl. for USB but proc.uing pow.r i. 1 nBd. Th •

• ""lit:6tion may .Iso ~ rBbootH a. dual clu/lt",. with six ugm.nts in Hch clu/ltBl'. If it i. rBbootH in thi. mann.,.,

bank. eonntICtH to th. two ssgmMtts removH .,.. not atlai/abla for uu.

8. LDa of a bank in a half which eom.,,,. tha r.d.", EXEC brinp tha a"pliC6tion down. If tha r.sid.nt EXEC i. r •• met.d

to ona half of $'I",ag., rtHrlOtlai of II bank in tha oth",. half doH not ntIC.Uitat. II r.boot but. failur. in this othtH' half

will probably t:6UH • rBboDt.

1. If th. /Mnk lost wa on. of two in II hBlf, th •• ""Iication may ~ fBbootBd with th. untlffsct.d half lind th. ,,,,,"ining
/Mnk lind i,. two ugm.nts in th •• fftICtH half. If tM bank WH on. of four in II half, tha 1I""liclltion mllY b. r.boot.d

whit th. unlflKtBd h.1f lind Bith., th. r.maining thr .. blink. lind lou, $Bgm.",. (... E.4.2.3, Not. 3) or two blinks
.. nd lou, $tl(Jm.",. in th • .IffllCttld half.

:::~.~_.1 1 ___ S_PE __ R_R._~_U_N_'V_A_C __ 1_'OO __ I_8_0_S_yn __ ._m_. ____________________________ ~ _______________ E_-_69 ____ ~. 4x4 Capability Processor and Storage Programmer Reference UPOATI L&VB. "AGE

E.4.S.:t 1. Partitioned by Cluster

CLUSTER 0

-- LOWI:R -- - UPPER --

fsEG~ENT SEG~ENT SEG~ENT SEG~ENT
L Appl. 0 Appl. 0 AppL 0 Appl. a

NOTES~'

SANK 1

Appl. 1

BANK 2
Appl.O

BANK 3

Appl.1

CLUSTER 1

-- LOWER UPPER --

SEGMENT SEGMENT SEGMENT SEGMENT

357
Appl. 1

BANK 4

Appl. 0

Appl. 1 OFFUNE

BANK 6

Appl. 0

OFFLINE

2. Lou 01. Hgmtlnt 0' b.nk in a half which cont.inll th. 'tlllid.nr EXEC bn'ngll th" application down. If the rtlsident EXEC

i:, ,tWtrictfld to on. h.1f of IItorage, remo".1 of a stlgm"nr or bank in the othe, half aoell not neeeuit.te a 'eboot. but

" lailu,. in this othtN' half will probably causa a reboot

3. Application ,0 may btl rtlboottld with thll rwmaim'ng IItlgmtlnts. If. two $lI(Jment h.1f wall aowntKJ ayn.mically, it may

t." """"~f into the .pplication with the one remaining .tlgment.

4. J:'" loa 01. bank, the .ppllcltion ",.., be rtlbootlld with the unaHIICttId half and the ,.",';ning bank and Hgment in

Itte a~h.1f.

6. ~~oa of a MgmtMt rHuM in bringing down the .ppliClltion. The application may btl I'tIbODttld with thtl remaining

~Jtlgm""t.

7. ~,.... oIa bank reMJ/ts ill bringing down the applk:ation and lou 01 the bank'. s.gmMlt. The application may btl reboot.a

lwith the fW,.,.mng bank and ugmIMt.

8604 Rev.1
Ull-NUMHR

SPERRY UNIVAC 1100/80 Syttems
4x4 Capability Processor and Storage Programmer Reference UPOATllE'IB.

E-60
"AGE

E.4.S.2.2. Partitioning One MSU Out

CLUSTER 0

-- LOWER -- --- UPPER --

SEGMENT SEGMENT SEGMENT SEGMENT

o 2 4 6
Appl. 0

BANK 0 .
Appl. 0

NOTES:

Appl. 1

BANK 1
Appl.O

Appl.1

BANK 2
Appl.1

Appl. 1

BANK 3
Appl. 1

f. Int.r/ •• ". ~twHn banlc. 0 .nd 1 on bit 3 in Application O.

6. Int"'"". b.twHn banb 2 and 3 on bit 3 in Application 1.

CLUSTER 1

- LOWER -- --- UPPER --

SEGMENT SEGMENT SEGMENT SEGMENT

357
OFFLINE

BANK 4

Appl. 1

Appl. 1 Appl.1

BANK 6
Appf.1

Appf.1

8. In Application 1, lou of a .~."t rx /»nk in a half which con,.in. the ,...u:t.nt EXEC brin~ the applit:4tion down.

If the ,.,,"-dent EXEC ,. r •• tn'ct«J to OM half of .ror.ge, '«riOt/III of • 6t1(/1nM1t Dr bank in the oth", half· dOH not

n.c#lUitate a ,eboot, but a failure in mi. oth", half will prowbly caUH • r-"«Jt

7. Th. appl;cation m.ylM f'tIbootfld in a "-ngl. c!U.tllf with the thfH 6egm.",. frx the clu$f",., pf'DtlidMJ that thi. clu6t",

hu an IOU. If it i. f'tIbootMJ in mi. mann." ,,11 banlc. r.main a"ailabl. for u •• but procH6ing POWtit' i. 1 nfHi. The
application may al$O be rMJootfld .. duM clU$ltIt' with two ugmMts in eM:h clusttll'. /I it i. ,../NHJted in thi. mann.,.,

bllnu connKtIld to the two Hl(/m.",. ,..".,owd ",. not ..,a,1MJ1. for UH.

8. If the /»nk 1D$f wn the only one connKttlll ttl two H(/ment6, the application may b. rl/lbootMJ with the rtlmaining th,..

bank. and four H(/ments. "the bMtk wa. on. of two connectMJ to a 6egmtmt, the application may be r""ootH with

the '.",aining thr .. IMnlcs and all .uc segm.nts.

· S804 Rev.l I SPERRY UNIVAC 1100/80 Systems I I E-61
U~ 4x4 Capability Processor and Storage Programmer Reference UP'OATI LEVEL PAGe

---------------------------------.----------------~----------~~-------

E.4.S.:3. Eight Segments/Eight Banks - Dual Cluster

CLUSTER 0

-- LOWI:R -- --- UPPER

['1EG~ENT SEG~ENT SEG~ENT SEG:ENT

BANK 1 BANK 2 BANK 3

NOTES:

CLUSTER 1

-- LOWER UPPER

SEGMENT SEGMENT SEGMENT SEGMENT

357

BANK 4 BANK 5 BANK 6 BANK 7

2. Ime"ea,," ht;tween banks 0 lind ,1. 2 .nd 3, 4 and 5. lind 6 lind 7 on bit 3.

3. S.nks O. ',2. and 3 must be of equal sizil .nd banks 4, 5, 6, .nd 7 must be of equal size or unusable IIddreSSlls occur.

It unusable atidrllSUS occur and the banks a,.. in thil 10wII' half, MSR cllnnot bll Stlt to StU gllnerlltlld for bootstrap into

tI'e lowllr h.1f and would hll"" to bll mllnually set on the STU.

4. L,,," of II ullm.", tN blink in II half which contains thll rssidlln, EXEC brings the IIppliclltion down. If the rnidlmt EXEC

I~t ratrict«J .to onll half of ~~, rllm".,al of II slltlm."t or bank in mil om.,. hall dOllS not necllun.tll II reboot but

a failu", in this om.,. half will probably CIIUH a f'f#boot.

5. The appliclltion ma" bll rebooted in II ';n9'. clwt/lt' with thll four segmtmts lor the clust.r, pro"ided thllt this clustllr

has an IOU. If it is rtlboot.d in this mllnn." 1111 banlcs remllin a"ailable for uu but procllUing pow.,. is 1 • ...,,«1. Th •

• "plicllt;"" may also be r.bootlld u dUIII clustlll" with six stlgmllnts in .ach cluster. If it is reboot«l in this mllnn."

b,.nks connt'Ctild to the two ugm.nts rtHnOVH a", not a"lIilllbl. lor us ..

8. PM loa ola blink, thll IIpplication mllY be rebooted with thll unllffllCttld half lind eith.,. thr .. blln/c6 and foul' Sfl(Jmllnts

~JH £4.2.3. Notll 3) or foul' sttgmlltrts lind two benks in the afflICted half.

8804 Rev.1 SPERRY UNIVAC 1100/80 System.
4x4 Capability Processor and Storage Programmer Reference

E-62
PAGE

E.4.S.3.1. Partitioned by Cluster Across SIU Halves

CLUSTER 0

- LOWER --- UPPER --

SEGMENT SEGMENT SEGMENT SEGMENT
024 6

Appl. 0 Appl. 0 Appl. 0 Appl. 0

BANK 0 BANK 1 BANK 2 BANK 3
Appl. 0 Appl. 1 AppL 0 Appl. 1

NOTES: •

CLUSTER 1

-- LOWER UPPER --

SEGMENT SEGMENT SEGMENT SEGMENT
357

Appl. , Appl. 1. Appl. 1 Appl. 1

DANK 4 BANK 5 BANK 8 BANK 7
Appt. 0 Appl. 1 Appl. 0 Appl. 1

1. 1m"'""" btl,.",,,.,, ugmtInt8 0 and 2, .nd 4 .nd 6 on bit 2 in Applie4tJon O.

2. Interle."" NtwllfllJ Hgm~" 1 and 3, and 5 and 7 on bit 2 in Application 1.

3.. LDa of. ugment iN /Mnlt in a half whiclt contain. the ,Hid."t EXEC bn'ngll the application down. If the fHident EXEC

ill ,..mcted to one half of smr.ge,. ,emoval of a Mlf/ment Of banlt in the oth.,. half don not n.ce.t.,. a ,eboot. but

a failure in thill at/J",. ha" will probably c.u.e a reboot

4. The app/ic4tion may be rebooted with the femaining HgmMl,.. If a two Hgm.m half wa. downtld dynamically, it may

H ",."ttInId into the application with tIN one ,..",aining segmMt

6~ FtN I"". of a /unit. tIM application may btl ,eboottld with the unaffecttld hMf and the remaining banlt and ugmem in

the afftH:t1ld h.1f.

'04 Rev.1 I SPER:AY UNIVAC 1100/80 Systems
'-fMIIIIR _~ Capabili1ty Processor and Storage Programmer Reference I E-63

PAGE

E.4.B.3.2. Partition~d by Cluster by SIU Halves

CI.USTER 0 CLUSTER 1

- LOWER -- - UPPER - -- LOWER -- - UPPER --

SEGMEfllT SEGMEINT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT

024 6 135 1
Appl. () Appl. 0 OFFUNE OFFLINE OFFUNE OFFUNE Appl. 1 Appl. 1

BANK 0
Appf. 0

NO res:

BANK 1
Appl. ()

BANK 2
Appf. 0

BANK 3
Appl.O

B"NK 4
Appl.1

t. Int"'I''''. b.tween $lIf1men,. 0 lind 2 on bit 2 in Appliclltion O.

2. Int." •• .,. "etwl!'en bllnk$ 0 lind 1, lind 2 lind 3 on bit 3 in Appliclltion O.

3. Interlell.,e betwttfln $egmen,. 5 lind 7 on bit 2 in Application T.

4. Int.,1 • ..,. b.rw,Hn banks 4 lind 5. lind 6 and 7 on bit 3 in Application 1.

BANK 5
Appt. 1

BANK 8
Appl. 1

BANK 7

Appl.l

6. LO$I.' 01 II s~",ent r.sul,. in bringing down the IIppliC6tion. Th. IIppliclltian mllY b. r.baotN with the femllining

M1gm."t

6. Lon 01 II blink fHIII,. in bringing down the IIpplication. Th. lippI/clition mllY ". rM300tlld with the two segmen,. lind

ftHItsining th,.. blinks ($/HI £4.2.3. Not. 3) 01' with two s.gm"n,. lind two blink$,

8804 Rev.1
UNtUMIIR

SPERRY UNIVAC 1100/80 Sv-tema
4x4 Capability Processor and Storage Programmer Reference

E.fi. Segment/Bank Storage Configurations

E-84
fIIAGI

The following examples illustrate some of the possible segment/bank storage configurations which
can be used only in systems involving single clusters. These configurations are different from
segment/cabinet configurations in that they require different printed circuit card placement in the
STU and different cable routing between the SIU and the MSUs. These configurations cannot be
expanded beyond one SIU and two MSUs.

E.S. 1. One Segment/One Bank

-- LOWER

SEGMENT

o

BANK 0

IYOTES:

,. No inttlrl..., ..

CLUSTER 0

3. Loa of • ugmMlt 01' "-nit fHUI,. in IDa of th •• ppliC6tion. No fMHxJt option ..

8604 Rev.1 I SPERRY UNIVAC 1100/80 Systems I I e 65
~~~ ___ 4_X_4 __ C_.a_p __ a_b_il_j~ __ P_r_o_c_e_s_s_o_r_a_n_d __ S_t_O_r_a~g_e_P_r_O_g~r_a_m_m __ e_r_R __ ef_e_r_e_n_c_e ____ ~U~.~ __ An __ ~ ______ ~P_AG_i_-______ ___ 

E.S.2. Two Segments/Two Banks 

CLUSTER 0 

-- LOWER 

~EG~ENT SEG~ENT 

BANK 0 BANK 1 

NOTES: 

2. n'e banks must be equal in size or unusable sddr.sses occur. If thllY are not equal in sizlI snd sre in the lowllr half. 

M,SR cannot be set to ~/U generatlld for bootstrap into the lower half snd would have to be msnually set on the STU. 

3. L~lu of s SBflment results in bringing down the application. The application may be rebooted with the ,ems;ning 

segment snd two banks. 



8804 Rev.1 
Uft-HUMIIII 

SPERRY UNIVAC 1100/80 System. 
4x4 Capability Processor and Storage Programmer Reference 

E:.S.2.1. Degraded Mode - Failed Segment 

CLUSTER 0 

- LOWER 

SEGMENT 

o SEGMENT 

FAILED 2 

BANK 0 BANK 1 

NOTES: 

2. Thtl bMlt. mun btl tKlu.' in siz. 01' unuubl •• ddrBU.S occur. If th.y .", not equ.' in siztl .nd .rtl in m. low", helf. 

MSR unnot btl •• t to SIU g.ntlnttld for /Joo,.tnp into th. 10WtIf' he" .nd would helltl to btl menu.",! s.t on thtl STU. 



E-67 
PAGE 

88(~" Rev.1 SPERRY UNIVAC 1100/80 System. 
Ufl-HUMIP 4x4 Capability Processor and Storage Programmer Reference 

--------~----------------------------------------------~----------~----------

E.5.2.:2.. Degr;:lded Mode - Failed. Bank 

CLUSTER 0 

-- LOWER 

['3EG~ENT SEGMENT 

OFFLINE 2 

81~NI( 0 

F/"LED 
Of:FLINE 

NOTES: 

flANK 1 

1. /110 intefttN"e. 

2. /'Jnu.sble tf(tdf'(Jue. do not OCCUI'. 

3. j~D" of s $egment or bsnlt re.ults in /0" of the spplicstion. No reboot option •. 



8eo4 Rev.l 
UNIUMIIII 

SPERRY 'UNIVAC 1100/80 Syatem8 
4x4 Capability Processor and Storage Programmer Reference 

E.S.3. Three SegmentsIThree Banks 

CLUSTER 0 

- LOWER - - UPPER 

SEGMENT SEGMENT' SEGMENT 

024 

BANKO BANK 1 BANK 2 

NOTES: 

UPOATI UYIL . 
e-8a 

'AU 

3. S.nks 0 6nd , mu.t b" of ."uM $;a 01' unuNbltl 6dd", .... occur. II mtly .,. not «1u61 in .. • nd 6,.. in thtl low.,. 
h./f, MSR CMlnot b. $_ to SIU g.".,..tlHi 10,. boo,.".p into thtl low.,. h.1f 6nd would h6.,. to be m6nu.lly Nt on til" 

STU. 

·4. Loa of 6 $.gmtIM 01' b.nk in 6 h.1f whlc/l cont.in. th. rHid.", EXEC brinl16 th. 6pplic.don down. "thtl , • .HJtlnt EXEC 
i. fNtrit:t«J to on. h." of $ton~. ,.",twM of 6 MIgm."t 01' benk in th. oth.,. h.1f doH not nM:H6ir.t • .. ,Hoot but 

6 IMlul'tl in thi. om.,. htlif will prob.bly CIIUH 6 ffIboot 

5. /I thtl $tlgmtlflt w •• tIHI only on. in th.t htl/f, th. 6pp1lution m.y be rtIboottJd with thtl un6fftICttJd h.1f. If th. ugm.nt 
.... a on. of two in 6 h./f, thtl $~ mlY ". ,.bootfld with th. untlfftlCttld htllf .nti th. ,.m6ining ugm."t 6nd two 

b.nu in thtl ."-crtld h.1f. 



8804 Rev.1 
U ...... tUMIE" 

SPERRY UNIVAC 1100/80 Systems 
4x4 Capability Processor and Storage Programmer Reference 

E.S.3.1. Degrc!ded Mode - Failed Lower Segment 

CLUSTER 0 

-- LOW1:R -- --- UPPER 

[

SEGMENT 

SEGM

o 
ENT 2 SEGMENT 

FAILED 4 

BANK 1 BANK 2 

NOTES: 

,. Imtlrleavtl be'tween banks 0 and 1 on bit 3. 

2. I)nullllbitl addrenell do not occur for one bank in a half. 

E-69 
PAGE 

3. the bankll mUllt be equal in size or unullilble IIddrtllllleS occur. If they are not equal in size and are in the lower half, 

MSR Cllnno, be ser to SIU gtln.rllttld for bootstrap into the towel' half and would have to be manulIlI." set on the STU. 

4, Lou of II segment or bank in a half which containll the resident EXEC brings the application down. If th. rellidtmt EXEC 

i~r rHtricrtld to one half 01 storage, . ,emoval of II IItl(Jmtlnt or bank in the other half doell not nec.uitate II r.boot but 

.' '"ilure in t,hill other hllll will probllbl." CIIUH a reboot. 

6. I" the bank '0$' WN the only one in a hlllf, the appliclltion mar btl reboo't«l Wf'th the unaHtteted half. If the blink Willi 

c,ne of two in a half, the appliC6tion ma." be 'tlbootH with the unaHttetH half and the remaining bank and segment 

;4" the aHeeted half. 



8eo4 Rw.1 SPERRY UNIVAC 1100/80 SyatemS 
4x4 Capability Processor and Storage Programmer Refttrence 

E.5.3.2. Oegraded Mode - Failed Upper Segment 

CLUSTER 0 

-- LOWER -- --- UPPER 

SEGMENT SEGMENT 

o 2 

BANKO BANK 1 

SEGMENT .. 
FAILED 

BANK 2 

OFFLINE 

... 

2. The b.nks must be tlqu.1 in size or unuubl •• dd,.. .... occur. If the." .r. not tlqu.' in si,e .nd .re in the lower h.lf. 
MSR CMtnot b. s.t to SIU g.n.,..,H for boot8tnp into th. low.r h." .nd would h."" to be menu.lI." HI on the STU. 

3. Loa of • ugment ,...ulr. in bringing down th •• pP/iC6tion. The .pplicltion m • ." b. r.boottJd with the rem.ining 
U(1mMft MId two b6nks. 



8804 Rev.1 
IJIl-NUMIIR 

SPERR'I( UNIVAC 1100/80 Svst .. ". 
4x4 Capability Processor and Storage Programmer Reference 

E.S.3.:I. Degraded Mode - Failed Lower Bank 

CLUSTER 0 

-- LOWI:R -- --- UPPER 

~EG~ENT SEGMENT SEGMENT 

L OFFLINE 2 4 

B~\NK 0 

F~"LED 

OFFLINE 

NOTES;' 

BANK 1 

t. No intMl.II"", 

BANK 2 

2. Llnuubl. atJ'dr~S$flS do not occur for onll Junk in II h/llf. 

I E-71 
IIAGE 

! 

3. /.,0" of /I ugm.nt or b/lnk in /I h/l" which cO"'lIins thll resident EXEC bring. the appliclltion down. "the re$idllnt EXEC 
~, ,...tricrlld to one hllll of $torllgll, rllmov61 of. ugmllnt or b.nk in thll other h/llf dOlls not neclluitllte II reboot, but 

" f/li/ure in "hi$ omllr h/lll will probllbly CIIU •• II reboot 



SPERRY UNIVAC 1100/80 Systems 
4x4 Capability Processor and Storage Prog.rammer Reference 

E.S.3.4. Degraded Mode - Failed Upper Bank 

CLUSTER 0 

LOWER -- --- UPPER 

SEGMENT 
SEGMENT SEGMENT 4 

o 2 OFFUNE 

BANK 0 

NOTES: 

BANK 1 
BANK 2 

FAILED 
OFFUNE 

UPOATI LIYIL 
E-72· 

'AU 

2~ The b.nlcs mus, be eqUIII in size 0' unuuble .ddIWUH occur. If the,! s,.. not squ.1 in size 8nd s,.. in the low.,. h8lf, 
MSR csnnot b. s.t to SIU g.".,.tlHi fo, bootsusp into the low.,. hs" snd would hs"e to /HI msnusll'! s.t on the STU. 

3. Lou of • Stlgment ,"ults in bringing down the sppllution. Th. spplicstion mq be ,lIbootlHi with th., """.ining 
segment snd two bsnks. 



8e04~fIV.1 SpeRFrf UNIVAC 1100/80 Systems E-73 
U'~UM'ER 4x4 Capability Processor Ctnd Storage Programmer Reference UPDATE LEVIL 'AGE 

------------------------------------~----------------~----------~------------

E.S.4. Four Segments/Four Banks 

CLUSTER 0 

-- LOWI:R -- - UPPER 

ISEGM
o 

ENT SEGMENT SEGMENT SEGMENT 

L, 2 4 8 

BANK 2 BANK 3 

NOTE5~' 

1. lnterllla"e between sflgments 0 lind 2. lind 4 lind 8 on bit 2. 

2. 19anks 0 lind 1 must be of IIqulll size and blinks 2 and 3 must be of equal size or unusabl", addreS$e$ occur. If thllY 

,If. not lHIu,.' in siz. and ar. in thll lower half, MSR cannot be Slit to SIU generat.d for bootstrap into th. lower half 

lind would ha". to be mllnually Slit on the STU. 

3. Lo .. of II segment or blink in II half which contains the resident EXEC brings thll appliclltion down. If the , •• ident EXEC 
,. restricttJd to one hllif of storllge, 'IImo".1 of II segment or bank in the other half dOllS not nllee .. itat. II reboot, but 

., faitul'll in this other half will probsbly cause a reboot. 

4. For 1D$6 of s sBgmsnt, the application mS'lH rtlboot«l with the unaHsctBd half lind the remsining segment and two 

bMks in the sHIICtBd hslf. 



1804 Rev.1 
~ 

SPERRY UNIVAC 1100/10 System. 
4x4 Capability Processor and Storage Programmer Reference 

E.S.4.1. Degraded Mode - Failed Segmen.t 

CLUSTER 0 

-- LOWER -- --- UPPER --

SEGMENT 

SEGMENT 2 SEGMENT SEGMENT 

o FAILED 4 8 

BANK 0 BANK 1 BANK 2 BANK 3 

NOTES: 

E-74 
PAGE 

2. Th. bank. ",u.t b. tHlual in !liz. or unu.abl •• dd,.. .... occur. If th.y .1'. not equal in Mz. and .,.. in the low.,. h.,f. 
MSR cannot b ••• t to SIU 9.n",.ted fOf' boo,."..p into the lower half .nd would ha". to b. manually Nt on thll STU. 

3. Lou of II Hgment or bank in a half which contain. the rll.dent EXEC brinrP thll application down. If thll rHident EXEC 
,. rBtricted to on. half of .toIWg •• remo".1 of. Hgment 01' bank in the oth.,. h.1f do •• not neell.tat. a reboot. but 

a failure in this oth., half will {H'OIMbly caUH a tWboot 

II. If the ugment wa. the only on. In th., half. the appl/Clltion may b. rtlbooted with thll unaffeeted hlllf. If tItll .tlgmtll7t 

""n on. of two in a half, the ~ may be I'f#IHxJted with the unafftIt::ttHI hlllf and the r.",aining •• gment and two 
/»tIk. in the afftH:ted half. 

5. II the bMrk 1tW/ ""a on. of two connflCted to a .(lgment. the application may be rebooted w;m the remaining thrH banks 
and .11 th,... Hgments. If the bilnk ""a. the only on. connllcted to a $tlgm.nt. the applic.tion may In rllbaotN with 
the "",,"-n;nl/ tit,.. blinks and thei, two s.gmen,., 



8804 Rev.l 
UNUiIa 

I SPER"V UNIV A.C 1100/80 Systems 
~Capability Processor and Storage Programmer Reference 

E.S.4.2. Degraded Mode - Failed Bank 

CLUSTER 0 

-- LOWER -- --- UPPER 

[ 

SEGMO ENT SEGMENT SEG~ENT SEGMENT 

2 OFFLINE 8 

BlANK 0 BANK 1 

NO~S: 

BANK 2 

FA.ILED 

OFFLINE 

BANK 3 

2. Unusable addresses do not occur for one bank in a half. 

E-75 
IIAG! 

3. The banks must be «Iual in size or unuubl. addrsue. occur. If they are not squal in size and are in the lowe, half, 

MSR cannc7t be set to SIU generatttd for bootstrap into the lowe, half and would ha"e to be manually SlIt on the STU. 

4. Lou of a ugment or bank in a half which contains the 'e$ident EXEC bring6 th. application down. If the 'Hident EXEC 

i$ fHtrlcred to one hllif of storage, 'emo"al of B Hgmen, or bank in the other half doe. not nee.aitate a reboot, but 

II faIlure in this om., half will probably C6U •• II reboot. 

6. If the ugment w .. the only one in thM half, the a"pliC6tion m .... be IWbootlld with the unaffected half. If the segment 
..,a. one of two in a half, the system may be reboot«J with the unafflJCttHi half and th. remaining segment and two 

bana in the afftICttHi half. 

6. For lou of a bank, the appliution m .... be reboottHi with the ,,,,,,ain;ng two bank. and their segments. 



SPERRY UNIVAC 1 100/80 Svaem. 
4x4 Capability Processor and Storage Programmer Reference 

E.S.4.3. Partitioned by SIU Halves 

CLUSTER 0 

- LOWER UPPER --

SEGMENT SEGMENT SEGMENT SEGMENT 

024 8 
Appl. 0 Appl. 0 Appl. 1 Appl. 1 

BANK 0 BANK 1 BANK 2 BANK 3 
Appl. 0 Appl. 0 Appl. 1 Appl. 1 

;VOTES: 

.2. Int.rl • ...,. btlrwefHI Hgmllnr. " .nd 8 on bit 2 in Applic.tion 1. 

3. Th. bIn". mu.t btl «lull in size IN unuNbl •• ddl' ..... OCCUT. If th.y .,.. not «Iu.' in .iz •• nd .1'. in th" low",. hIli, 
MSR Clnnot btl •• t to SIU gen.,..tMl for boot8tnJp into the 10Ml' h.1f .nd would h",," to btl mlnu.'/y .t on the STU. 

4. Loa of • Hgm""t rHu1t8 in bringing down m. Ipp/iCMion. Th •• ppllc.tion ml, btl rtlbootMi with thll rtlmllining 
.egm""t .nd two blink .. 



8604 Rev.1 
UP-NllJMIIR i 4x4 Capability Processor and Storage Programmer Reference 

E-77 
PAGE ------~PERFIY UNIVAC 1100/80 Systems 

E.S.4.4. Partitioned Across SIU Halves 

CLUSTER 0 

-- LOWER -- --- UPPER --

r 

l
· ,sEGMO ENT SEGMENT SEGMENT SEGMENT 

246 
Appl. 0 Appl. 1 Appl. 0 Appl. , 

BANI< 0 

AII:lPI. 0 

NOTES.~ 

BANI< 2 

Appl. 0 

2. Unusable lI,fdreue$ do not occur. 

BANK 3 

Appl. 1 

3. L.oss of a s(fI(Jment or bank in a half which contains the rBsidllf7t EXEC brings thtl application down. If thll rtlsidllnt EXEC 

;" rllsmcttld to ontl half 01 storagll. rllmoval of a segment Of' bank in the other half dOtls not nllClluitattl a reboot but 

~, failuTtI in this omll' half will probably caustl a reboot 

4. jr"htl appliClltion may bll rtllboot«J with thtl unafffICttld half. 





8604 Rev. 1 

UP-HUM8EA 

SPERRY UNIVAC 1100/80 Systems . 
4x4 C.lpability Processor and Storage Programmer Reference 

Term Reference. Page Term 

Add Thirds instruction 

A Add to A instruction 

Abbrevii3tions. definitions. Add to X instruction 
and symbols Appendix A 

Add Upper instruction 
Absolutf~ address 8.3.3 8-8 

Addition 
AbsolutISt values 4.2.1.3 4-2 double-precision 

floating-point 
Accumulator regasters 3.4.2.30 3-21 floating-point 

3.4.2.3 3-18 
Address assignments 

Add Hallves instruction 5.4.17 5-10 control register 
fixed 

Add Magnitude to A 
instruction 5.4.3 5-7 ADDRESS CHECK signal 

Add Negative Halves Address generation 
instruction 5.4.18 5-10 

. Address interleave 
Add Negative Ml:lgnitude to 

A instruction 5.4.4 5-7 Address parity checking 

Add Negative Thirds Addressing 
instruction 5.4.20 5-11 character 

device 
Add Negative to A modes 

instruction 5.4.2 5-7 theory 

Add Negative to X Addressing Exception 
instrl.llction 5.4.8 5-8 interrupt 

Add Ne'gative Upper Addressing modes 
instruction 5.4.6 5-8 

UIIOATlI.EVEL 

Reference 

5.4.19 

5.4:1 

5.4.7 

5.4.5 

4.2.13 
4.2.12 

3.4.2 
3.2.7 

3.2.5 

8.3.8 

E.3 

3.2.5 

4.3.2.2.2 
6.3.1 
3.3.6.1 
8.3.3 

7.3.1 

3.3.6.1 

Index-1 
PAGE 

Index 

Page 

5-11 

5-7 

5-8 

5-8 

4-10 
4-10 

3-16 
3-4 

3-3 

8-10 

E-2 

3-3 

4.,.15 
6-5 
3-10 
8-8 

7-5 

3-10 



8804 Rev. 1 
~ 

SPERRY UNIVAC 1100/80 Systems 
4x4 Capability Processor and Storage Programmer Reference UI'OA1'E L£YEL 

Term Reference Page Term Reference 

AUow All Interrupts and Bank descriptor registers 
Jump instruction 5.9.3 5-38 control information 8.3.6 

format 8.3.7 
Arithmetic exception 

interrupts Bank descriptor selection 
Characteristic instructions 

Overflow 7.3.2 7-6 Load Bank and Jump 5.10.1 
Characteristic Load D-8ank Base and 

Underflow 7.3.2 7-6 Jump 5.10.3 
Divide Check 7.3.2 7-6 Load I-Bank Base and 

Jump 5.10.2 
Arithmetic instructions 

fixed-point 5.4 5-6 Base value selection Figure 8-3 
floating-point 5.5 5-11 

Binary Double Integer to 
A,rithmetic interrupt 4.2.4.3 4-4 Byte Convert instruction 5.14.9 

Arithmetic section Binary Single Integer to 
absolute values 4.2.1.3 4-2 Byte Convert instruction 5.14.8 
carry 4.2.4.2 4-3 
data word 4.2.1.1 4-1 Block multiplexer channel 6.2.1 
data word 

complement 4.2.1.2 4-2 Block transfer 5.3.8 
general operation 4.2.1 4-1 
microprogrammed Breakpoint interrupt status 7.3.3 

control 4.2.2 4-2 Figure 7-3 
overflow 4.2.4.1 4-3 

Byte Add instruction 5.14.14 
ASCII to Fieldata code 

conversion Table 0-2 0-4 Byte Add Negative 
instruction 5.14.15 

Automatic recovery 1.2.5 1-9 
Byte Compare instruction 5.14.4 

Auxiliary storage 
subsystems 1.2.8 1-10 Byte data packing formats 6.16 

Table 6-14 
a-field 4.3.2.3 4-20 

Byte instructions 
A-registers Binary Double Integer 

Executive 3.4.2.30 3-21 to Byte Convert 5.14.9 
user 3.4.2.3 3-18 Binary Single Integer 

to Byte Convert . 5.14.8 

B 
Byte Add 5.14.14 
Byte Add Negative 5. 14. 15 
Byte Compare 5.14.4 

Back-to-back operation 6.20 6-66 Byte Move 5.14.1 
Byte Move With 

Bank descriptor 8.3.4 8-9 Translate 5.14.2 
Byte to Binary Double 

Bank descriptor index Integer Convert 5.14.7 
registers 3.4.2.9 3-18 Byte to Binary Single 

Integer Convert 5.14.6 

Inde~-2 
"AGE 

Page 

8-9 
8-9 

5-38 

5-39 

5-39 

8-12 

5-65 

5-64 

6-3 

5-6 

7-8 
7-9 

5-68 

5-69 

5-58 

6-57 
6-59 

5-65 

5-64 
5-68 
5-69 
5-58 
5-54 

5-56 

5-64 

5-64 



86()4' Rev. 1 
UI4JUMIEIII 

SPERRY UNIVAC 1100/80 Systems 
4x4 Capability Processor and Storage Programmer Reference UItDATt LEVEL 

Index-3 
PAGE 



8604 Rev. 1 
~M8Eft 

SPERRY UNIVAC 1100/80 Systems . 
4x4 Capability Processor and Storage Programmer Reference 

Term Reference Page Term 

Conditional jump Control section 
instructions 

Double-Precision Control storage 
Jump Zero 5.11.2 5-40 

Halt Jump/Halt Keys 
0 and Jump 5.11.10 5-41 

Jump Carry 5.11.22 5-44 
Jump Divide Fault 5.11. 17 5-43 Data chaining 
Jump Floating 

Overflow 5.11.16 5-43 Data chaining precautions 
Jump Floating 

Underflow 5.11.15 5-43 Data transfer 
Jump Greater and 

Decrement 5.11. 1 ·5-40 Data transfers from storage 
Jump Low Bit 5.11. 12 5-42 
Jump Modifier Greater Data transfers to storage 

and Increment 5.11.13 5-42 
Jump Negative 5.11.8 5-41 Data word formats 
Jump Negative and 

Shift 5.11.4 5-40 Dayclock 
Jump No Carry 5.11.23 5-44 
Jump No Divide Fault 5. 1 1.21 5-44 Delayed storage check 
Jump No Floating interrupts 

Overflow 5.1 1.20 5-43 
Jump No Floating Designator register 

Underflow 5.1 1.19 5-43 
Jump No Low Bit 5.1'.11 5-42 Device addressing 
Jump No Overflow 5.11.18 5-43 
Jump Nonzero 5.11.6 5-41 Device states 
Jump Overflow· 5. 11. 14 5-42 
Jump Positive 5.11. 7 5-41 
Jump Positive and Device status 

Shift 5.11.3 5-40 
Jump Zero 5.11.5 5-40 Diagnostics instruction 
Jump/Jump Keys 5.11.9 5-41 

Divide fault 
Configuration assignments 3.3.7 3-15 

Divide Fractional instruction 
Configurations 

general 1.2 1-1 Divide Integer instruction 
segment/bank E.5 E-64 
segment/cabinet E.4 E-18 Divide Single Fractional 

instruction 
Control register address 

assignments 3.4.2 3-16 Division 
fixed-point 

Control register protection 3.4.2.32 3-21 floating-point 

Control register selection Double Floating to Byte 
designator 3.4.1 3-15 Convert instruction 

Control registers 3.4 3-15 Double Load A instruction 

Reference 

4.3 

3.4 

6.8.1 

6.16 

6.7 

Figure 4-1 

Figure 4-2 

Table 6-6 

8.2.2 

7.3.6.2 

8.2.1 

6.3.1 

6.3.2 
Table 6-2 

6.15 

5.15.20 

4.2.10.3 

5.4.14 

5.4.12 

5.4.13 

4.2.5 
4.2.16 

5.14.13 

5.2.9 

Index-4 
PAGE 

Page 

4-11 

3-15 

6-39 

6-57 

6-37 

4-13 

4-14 

6-30 

8-7 

7-12 

8-1 

6-5 

6-6 
6-9 

6-56 

5-76 

4-9 

5-10 

5-9 

5-9 

4-4 
4-10 

5-68 

5-3 



8604 Rev. 1 I SPERRY UNIVAC 1100/80 Systems 
up~u~ 4x4 Capability Processor and Storage Programmer Reference UPOAT! L&V!L 

Term Reference Page Term Reference 

Double Load and Convert Double-Precision Test Equal 
to Flclating instruction 5.5.12 5-17 instruction 5.7.14 

Double Load and Unpack 
E Floating instruction 5.5.10 5-16 

Double Load Magnitude A ECC 3.2 
instrLlction 5.2.11 5-4' 

Edit instruction 
Double Load Shift and function byte 5.14.5. 1 

Count instruction 5.8.8 5-36 subfunction byte 5.14.5.2 

Double Shift Algebraic EI chaining 6.8.3 
instruction 5.8.6 5-35 

Enable/Disable Dayclock 
Double Shift Circular instruction 5.15.3 

instruction 5.8.2 5-34 
Error correction code 3.2 

Double Shift Logical 3.3.1 
instruction 5.8.4 5-35 

Error detection and 
Double Store A instruction 5.3.7 5-5 reporting 3.3.5 

Double-Load Negative A Execute instruction 5.13.3 
instruction 5.2.10 5-3 

Executive registers 
Double-Precision A-registers 3.4.2.30 

Fixed-Point Add Index registers 3.4.2.29 
instruction 5.4.15 5-10 J-registers 3.4.2.27 

R-registers 3.4.2.23 
DoublEt-Precision 3.4.2.24 

Fixed-Point Add 3.4.2.25 
Negative instruction 5.4.16 5-10 3.4.2.26 

3.4.2.27 
DoubIE~-Precision Floating 3.4.2.28 

Add instruction 5.5.3 5-12 X-registers 3.4.2.29 

Doublf!-Precision Floating Executive bank descriptor 
Add NegativI3 instruction 5.5.4 5-13 table pointer register 3.4.2.5 

Doubll3-Precisi(m Fleating Executive control Section 8 
Divide instruction 5.5.8 5-15 

Executive instructions 
Doubl'e-Precisic)n Floati ng Diagnostics 5.15.20 

Mulltiply instruction 5.5.6 5-14 Enable/Disable 
Dayclock 5.15.3 

Double-precision Initiate Interprocessor 
floclting-point Interrupt 5.15.19 

clddition 4.2.13 4-10 Initiate Maintenance 
Interrupt 5.15.21 

Oouble-Precision Jump Input/Output 5.15.22 
Zero instruction 5.11.2 5-40 

Index-5 
'AGI 

Page 

5-32 

3-1 

5-59 
5-60 

6-40 

5-70 

3-1 
3-6 

3-8 

5-47 

3-21 
3-21 
3-20 
3-20 
3-20 
3-20 
3-20 
3-20 
3-21 
3-21 

3-18 

5-76 

5-70 

5-76 

5-77 
5-77 



8604 Rev. 1 
UP-NUMIIR 

SPERRY UNIVAC 1100/80 Systems 
4x4 Capability Processor and Storage Programmer Reference 

Term Reference Page Term 
.. 

load Base 5.15.9 5-74 Add Negative to A 
load Breakpoint Add Negative to X 

Register 5.15.6 5-73 Add Negative Upper 
Load Dayclock 5.15.2 5-70 Add Thirds 
Load Designator Add to A 

Register 5.15.13 5-75 Add to X 
load limits 5.15.10 5-74 Add Upper 
Load Quantum Timer 5.15.8 5-74 Divide Fractional 
Prevent All Interrupts Divide Integer 

and Jump 5.15.1 5-69 Divide Single 
Reset Auto-Recovery Fractional 

Timer 5.15.16 5-76 Double-Precision 
Select Dayclock 5.15.4 5-70 Fixed-Point Add 
Select Interrupt Double-Precision 

Locations 5.15.5 5-70 Fixed-Point 
Store Designator Add Negative 

Register 5.15.14 5-75 Multiply Fractional 
Store Processor 10 5.15.7 5-74 Multiply Integer 
Store Quantum Time 5.15.12 5-75 Multiply Single Integer 
Store System Status 5.15.18 5-76 
Toggle Auto-Recovery Fixed-point division 

Path 5.15.17 5-76 
User Return 5.15.15 5-75 Fixed-point multiplication 

Executive Request Fixed-point to 
instruction 5.13.4· ·5-47 floating-point conversion 

Externally specified index Floating Add instruction 
(ESI) 1.2.3 1-8 

6.2.1 6-3 Floating Add Negative 
instruction 

F Floating Compress and 
Load instruction 

Fieldata to ASCII code 
conversion Table 0-1 0-2 Floating Divide instruction 

Fixed address assignments 3.2.7 3-4 Floating Expand and Load 
Table 3-1 3-4 instruction 
Table 3-2 3-5 

Floating Multiply instruction 
Fixed-point arithmetic 

division 4.2.5 4-4 Floating-point 
multiplication 4.2.6 4-4 Addition 

Arithmetic instructions 
lFixed-point arithmetic Division 

instructions Multiplication 
Add Halves 5.4.17 5-10 
Add Magnitude to A 5.4.3 5-7 Floating-point arithmetic 
Add Negative Halves 5.4.18 5-11 instructions 
Add Negative Characteristic 

Magnitude to A 5.4.4 5-7 Difference to 
Add Negative Thirds 5.4.20 5-11 Upper 

Reference 

5.4.2 
5.4.8 
5.4.6 
5.4.19 
5.4.1 
5.4.7 
5.4.5 
5.4.14 
5.4.12 

5.4. 13 

5.4.15 

5.4.16 
5.4.11 
5.4.9 
5.4.10 

4.2.5 

4.2.6 

4.2. , 1 

5.5.1 

5.5.2 

5.5.14 

5.5.7 

5.5.13 

5.5.5 

4.2.12 
5.5 
4.2.16 
4.2.15 

5.5.16 

Index-6 
'AGE· 

Page 

5-7 
5-8 
5-8 
5-11 
5-7 
5-8 
5-8 
5-10 
5-9 

5-9 

5-10 

5-10 
5-9 
5-8 
5-8 

4-4 

4-4 

4-9 

5-11 

5-12 

5-18 

5-15 

5-18 

5-13 

4-10 
5-11 
4-10 
4-10 

5-19 



SPERRY UNIVAC 1100/80 Systems 
4x4 Capability Processor and Storage Programmer Reference . UPDATE LEVEL 

Term Reference Page Term Reference 

D,)uble LOcld and 
Convert to Floating 5.5.12 5-17 Function byte 5.14.5.1 

Dc:)uble Load and 
Unpack Floating 5.5.10 5-16 Function code 

Dc)ubfe-PrEtcision cross-reference Table C-1 
Floating Add 5.5.3 5-12 

D4)uble-Precision f-field 4.3.2.1 
Floating Add 

Negative 5.5.4 5-13 
G DfDuble-PrEtcision 

Floating Divide 5.5.8 5-15 
OIDuble-Precision General configurations 1.2 

Floating Multiply 5.5.6 5-14 
Floating Add 5.5.1 5-11 General register stack 3.4 
Floating Add Negative 5.5.2 5-12 
Floating Compress and GAS register assignments Table 3-6 

Load 5.5.14 5-18 Table 3-7 
Floating Divide 5.5.7 5-15 
Floating Expand and Guard Mode interrupt 7.3.1 

Load 5.5.13 5-18 Figure 7-1 
Floating Multiply 5.5.5 5-13 
L()ad and Convert to Guard mode register 3.4.2.11 

Floating 5.5.11 5-17 
Lc)ad and Unpack 

H Floating 5.5.9 5-16 
Magnitude of 

Charactc~ri~tic Halt Channel instruction 6.4.6 
Difference to 

Upper 5.5.15 5-19 Halt Device instruction 6.4.5 

Floating-point numbers Halt Jump/Halt Keys and 
characteristic Jump instruction 5.11.10 

overflow/underflow 4.2.10 4-8 
divide fault 4'.2.10.3 4-9 h-field 4.3.2.6 
division 4.2.16 4-10 
dou ble-prt!cision 4.2.8.2 4-7 
double-pmcision 

addition 4.2.13 4-10 
multiplication 4.2.15 4-10 Immediate storage check 
negative numbers 4.2.8.3 4-7 interrupt registers 3.4.2.6 
normalized 4.2.9 4-8 
fI!sidue 4.2.8.4 4-8 Immediate storage check 
single-precision status register 3.4.2.12 

addition 4.2.12 4-10 
single-precision 4.2.8.1 4-7 Increase instructions 5. 13. 14 
subtraction 4.2.14 4-10 
word formats 4.2.8 4-11 Index registers 

Executive 3.4.2.29 
Floating-point ;zero 4.2.17 4-11 user 3.4.2.2 

Format flags Table 6-8 6-32 Initial load 1.2.5 
6.7.1 6-37 6.19 

Index-7 
PAGE 

Page 

5-59 

C-1 

4-12 

1-1 

3-15 

3-16 
3-17 

7-5 
7-7 

3-18 

6-21 

6-20 

5-41 

4-23 

3-18 

3-19 

5-51 

3-21 
3-17 

1-9 
6-66 



8604 Rey. 1 
UIl-MUMHft 

SPERRY UNIVAC 1 100/80 Systems 
4x4 Capability Processor and Storage Programmer Reference UPOATI LEVEl 

Term Reference Page Term Reference 

Initiate Interprocessor Instruction ~ord fields 
Interrupt instruction 5. 15. 19 5-76 a-field 4.3.2.3 

f-field 4.3.2.1 
Initiate Maintenance h-field 4.3.2.6 

Interrupt instruction 5.15.2 , 5-77 i-field 4.3.2.7 
j-field 4.3.2.2 

Input/Output device u-field 4.3.2.8 
addressing 6.3.1 6-5 x-field 4.3.2.5 

Input/Output interrupts Instruction word format 4.3.1 
Machine Check 7.4.1 7-19 
Normal 7.4.2 7-21 Internal SIU check interrupt 7.3.6.2.1 
TC!bled 7.4.3 7-29 

Internally specified index 
Input/Output system states 6.3.2 6-6 (151) 1.2.3 

6.2.1 
Input/Output unit 1.2.3 1-7 

Section 6 Interprocessor interrupt 7.3.4 

Instruction mnemonic Interrupt address word 6.10 
cross-reference Table C-1 C-1 

Interrupt errors 7.5 
Instruction repertiore 

summary Appendix C Interrupt generation flags 6.9 

In:struction repertoire Interrupt mask register 6.18 
bank descriptor 

selection Interrupt priority Table 7-1 
instructions 5.10 5-38 

byte instructions 5.14 5-51 Interrupt seQuence 7.2 
conditional jump 

instructions 5. 11 5-39 Interrupt types 
Executive instructions 5.15 5-69 arithmetic exception 7.3.2 
fixed-point arithmetic clock 7.3.5 

instructions 5.4 5-6 input! output 7.4 I 
floating-point interprocessor 7.3.4 

arithmetic power check 7.3.7 
instructions 5.5 5-11 program exception 7.3.1 

load instructions 5.2 5-2 program-initiated 7.3.3 
logical instructions 5.12 5-44 storage check 7.3.6 
miscellaneous 

instructions 5.13 5-46 Interrupts Section 7 
search and 

masked-search Invalid function codes 5.16 
instructions 5.6 5-20 

shift instructions 5.8 5-32 Invalid Instruction 
store instructions 5.3 5-4 interrupt 7.3.1 
test (or skip) 

instructions 5.7 5-28 Invalidate interface 3.3.4 
unconditional jump 

instructions 5.9 5-37 IOU error interrupt register 3.4.2.14 

Index-8 
PAGE 

Page 

4-20 
4-12 
4-23 
4-23 
4-12 
4-24 
4-22 

4-11 

7-13 

1-8 
6-3 

7-9 

6-45 

7-32 

6-44 

6-64 

7-2 

7-3 

7-6 
7-10 
7-19 
7-9 
7-17 
7-5 
7-8 
7-10 

5-77 

7-5 

3-8 

3-19 



8804 Rev. 1 I SPERRY UNIVAC 1100/80 Svstems 
UP-HUM~ 4x4 Capability Processor and Storage Programmer Reference UPDATE L!VEL 

Term Reference Page Term Reference 

IOU functional Jump Negative and Shift 
characteristics instruction 5.11.4 

channels 6.2.1 6-3 
subchannehs 6.2.2 6-5 Jump Negative instruction 5.11.8 

i-field 4.3.2.7 4-23 Jump No Carry instruction 5. 11.23 

1/0 instlruction format 6.3.4 6-14 Jump No Divide Fault 
instruction 5. 11.2 1 

I/O inst:ruction operation 6.3.5 6-15 
Jump No Floating Overflow 

I/O instruction status 6.11 6-50 instruction 5.11.20 

I/O instructions Jump No Floating 
Halt Device 6.4.5 6-20 Underflow instruction 5.11. 19 
Lo,ad Channel Register 6.4.7 6-22 
LOiad Table Control Jump No Low Bit 

Words 6.4.8 6-23 instruction 5.11.11 
Start 1/0 Fast Release 6.4.1 6-16 
Te~st Subchi:Jnnel 6.4.4 6-19 Jump No Overflow 
Word Channel instruction 5.11.18 

Operation 6.4.5.2 6-21 
Jump Nonzero instruction 5.11.6 

I/O operations 6.5 6-25 
Jump Overflow instruction 5.11.14 

I/O status 6.10 6-45 
Table 6-12 6-46 Jump Positive and Shift 

instruction - 5.11.3 

J Jump Positive instruction 5.11.7 

Jump Carry instruction 5.11.22 5-44 Jump Zero instruqtion 5.11.5 

Jump Divide Fault Jump/Jump Keys 
instruction 5. 11. 17 5-43 instruction 5.11.9 

Jump Floating Overflow j-field 4.3.2.2 
instruction 5.11.16 5-43 

J-register 4.3.2.2.2 
Jump Floating Und&rflow fields Table 4-5 

instruction 5.11.15 5-43 format Figure 4-3 

Jump Greater and 
L Decrlement im»truction 5.11. 1 5-40 

Jump history stack 3.4.2.16 3-19 Left circular shifting 5.8 

Jump L.ow Bit instruction 5.11.12 5-42 Left Double Shift Circular 
instruction 5.8.10 

Jump Modifier Greater and 
Incre~ment instruction 5. 11. 13 5-42 

Index-9 
PAGE 

Page 

5-40 

5-41 

5-44 

5-44 

5-43 

5-43 

5-42 

5-43 

5-41 

5-42 

5-40 

5-41 

5-40 

5-41 

4-12 

4-15 
4-16 
4-16 

5-32 

5-36 



8804 Rev. 1 
UP-NUMIIIt 

SPERRY UNIVAC 1100/80 Systems 
4x4 Capability Processor and Storage Programmer Reference UI'OATl LML 

Term Reference Page Term Reference 

Load A 5.2.1 
Left Double Shift Logical Load Magnitude A 5.2.3 

instruction 5.S.12 5-37 Load Negative 
Magnitude A 5.2.4 

Left logical shifting 5.S 5-32 Load R 5.2.5 
Load X 5.2.7 

Left Single Shift Circular Load X Increment 5.2.8 
instruction 5.S.9 5-36 Load X Modifier 5.2.6 

Left Single Shift Logical Load I-Bank Base and 
iinstruction 5.S.11 5-36 Jump instruction 5.10.2 

Limits 8.3.5 8-9 Load Limits instruction 5.15.10 

Load A instruction 5.2.1 5-2 Load Magnitude A 
instruction 5.2.3 

Load Addressing 
Environment instruction 5. 15. 11 5-74 Load Modifier and Jump 

instruction 5.9.2 
Load and Convert to 

Floating instruction 5.5.11 5-17 Load Negative A instruction 5.2.2 

Load and Unpack Floating Load Negative Magnitude A 
instruction 5.5.9 5-16 instruction 5.2.4 

Load Bank and Jump Load Quantum Timer 
instruction 5.10.1 5-38 instruction 5.15.8 

Load Base instruction 5.15.9 5-74 Load R instruction 5.2.5 

Load Breakpoint Register Load Register Set 
instruction 5.15.6 5-73 instruction 5. 13. 12 

Load Channel Register Load Shift and Count 
instruction 6.4.7 6-22 instruction 5.8.7 

Load Dayclock instruction 5.15.2 5-70 Load Table Control Words 
instruction 6.4.8 

Load Designator Register 
instruction 5.15.13 5-75 Load X Increment 

instruction 5.2.8 
Load DR Designators 

instruction 5.13.1 5-46 Load X instruction 5.2.7 

Load D-Bank Base and Load X Modifier instruction 5.2.6 
Jump instruction 5.10.3 5-39 

Logical AND instruction 5.12.3 
Load instructions 

Double Load A 5.2.9 5-3 Logical Exclusive OR 
Double Load instruction 5.12.2 

Magnitude A 5.2.11 5-4 
Double-Load 

Negative A 5.2.10 5-3 

Inde)t-10 
PAGE 

Page 

5-2 
5-2 

5-2 
5-3 
5-3 
5-3 
5-3 

5-39 

5-74 

5-2 

5-37 

5-2 

5-2 

5-74 

5-3 

5-49 

5-35 

6-23 

5-3 

5-3 

5-3 

5-45 

5-45 



SPERRY UNIVAC 1100/80 Systems 
4x4 Capability Processor and Storage Programmer Reference UPDATE \.lV£L 

Term Reference Page Term Reference 

Logical instructions Masked Load Upper 
LClgical AND 5.12.3 5-45 instruction 5.12.4 
Logical Exclusive OR 5.12.2 5-45 
Logical OR 5.12.1 5-45 Masked Search Equal 
Masked Load Upper 5.12.4 5-46 instruction 5.6.7 

Logical OR instruction 5.12.1 5-45 Masked Search Greater 
instruction 5.6.10 

M Masked Search Less Than 
or Equal/Not Greater 

Machine check interrupts 7.4.1 7-19 instruction 5.6.9 

Magnitude of Characteristic Mask~d Search N'ot Equal 
DiffEtrence to Upper instruction 5.6.8 

instruction 5.5.15 5-19 
Masked Search Not Within 

Main storage organization 8.3.1 8-8 Range instruction 5.6.12 

Main storage unit Masked Search Within 
address generation Table 3-4 3-13 Range instruction 5.6.11 
address parity 

checkinl~ 3.2.5 3-3 Miscellaneous instructions 
ECC write check Execute 5.13.3 

disable 3.2.3 3-3 Executive Request 5.13.4 
fbted addrf~ss Increase 5.13.14 

assignments 3.2.7 3-4 Load DR Designators 5.13; 1 
partial write error Load Register Set 5.13.12 

detection 3.2.2 3-2 No Operation 5.13.10 
partitioning 3.3.6.2 3-14 Store DR Designators 5.13.2 
rE~fresh fault 3.2.6 3-3 Store Register Set 5. 13. 11 
write control parity Test and Clear and 

checking 3.2.4 3-3 Skip 5.13.7 
write data error Test and Set 5.13.5 

detection 3.2.1 3-2 Test and Set Alternate 5.13.8 
Test and Set and Skip 5.13.6 

Main store interlace Test and Set and Skip 
(MSI) stack 3.3.3 3-8 Alternate 5.13.9 

Test Relative Address 5.13.13 
MaintEtnance SEtction 2.4 2-1 

Mode, addressing 3.3.6.1 
Mask register 3.4.2.19 3-20 

3.4.2.25 3-20 Module select register 3.2.7 
5.15.5 

Maskeld Alphanumeric 
Sealrch Greater Monitor 6.9.2 

i"structions 5.6.14 5-28 
MSR 3.2.7 

Masketd Alphanumeric 
Sealrch Less Than or Multiplication 

E:qual instruction 5.6.13 5-27 fixed-point 4.2.6 
floating-point 4.2.15 

Index-11 
PAGE 

Page 

5-46 

5-24 

5-25 

5-25 

5-25 

5-26 

5-26 

5-47 
5-47 . 
5-51 
5-46 
5-49 
5-49 
5-47 
5-49 

5-48 
5-48 
5-48 
5-48 

5-48 
5-49 

3-10 

3-4 
5-70 

6-44 

3-4 

4-4 
4-10 



8804 Rev. 1 
UP-NUMiER 

SPERRY'UNIVAC 1100/80 Systems 
4x4 Capability Processor and Storage Programmer Reference UPDATE L£Vn 

Term Reference Page Term Reference 

Multiply Fractional Processing unit 
instruction 5.4.11 5-9 arithmetic section 2.3 

control section 2.2 
Multiply Integer instruction 5.4.9 5-8 maintenance section 2.4 

Mlultiply Single Integer Processor interrupt errors 7.5.1 
instruction 5.4.10 5-8 

Processor state 8.2 
Multiprocessor interrupt 

synchronization 7.3.9 7-18 Program Controlled 
interrupt 6.9.1 

·N Program exception 
interrupts 

Nc:> Operation instruction 5.13.10 5-49 Address Exception 7.3.1 
Guard Mode 7.3.1 

Normal interrupt registers 3.4.2.7 3-18 Invalid Instruction 7.3.1 

Nlormal interrupts 7.4.2 7-21 Program initiated interrupts 
Breakpoint 7.3.3 

Normal status register 3.4.2.13 3-19 Executive Request 7.3.3 
Jump History Stack 7.3.3 

Normalized floating-point Test and Set 7.3.3 
numbers 4.2.9 4-8 

Program segmentation 8.3.2 

0 P-capturing instructions 8.3.9 

Octal vs mnemonic 
Q instruction code Table C-3 C-20 

Overflow 4.2.4.1 4-3 Quantum timer register 3.4.2.10 

P R 
Parity checking 3.2.4 3-3 Real-time clock interrupts 7.3.5 

Partitioning 1.2.5 1-9 Real-time clock register 3.4.2.17 
3.3.&.2 3-14 

Relative address 8.3.3 
Peripheral subsystems 

destandardized 1.2.9 1-11 Repeat count register 3.4.2.18 
minimum complement 1.2.10 1-11 3.4.2.24 
standard 1.2.8 1-10 

Reset Auto-Recovery Timer 
Power Check interrupt 7.3.7 7-17 instruction 5.15.16 

Figure 7-9 7-18 
Residue 4.2.8.4 

Prevent All Interrupts and 
Jump instruction 5.15.1 5-69 Right algebraic shifting 5.8 

I Ind •• -12 
PAGE 

Page 

2-2 
2-1 
2-2 

7-32 

8-1 

6-44 

7-5 
7-5 
7-5 

7-8 
7-8 
7-8 
7-8 

8-8 

8-13 

3-18 

7-10 

3-19 

8-8 

3-19 
3-20 

5-76 

4-8 

5-32 



8604 Rev. 1 

U' ....... 'M8ER 

SPERR" UNIVAC 1 tOO/80 Syster'ls 
4x4 Capability Processor and Storage Programmer Reference UPOA TE I.&VEl. 

Term Reference Page 

I 
Term Reference 

Right circular shifting 5.8 5-32 Search Equal instruction 5.6.1 

Right .Iogical shifting 5.8 5-32 Search Greater instruction 5.6.4 

R-regis1ters Search Less Than or 
Executive 3.4.2.23 3-20 . Equal/Search Not 

3.4.2.24 3-20 Greater instruction 5.6.3 
3.4.2.25 3-20 
3.4.2.26 3-20 Search Not Equal 
3.4.2.27 3-20 instruction 5.6.2 
3.4.2.28 3-21 
3.4.2.18 3-19 Search Not Within Range 

user 3.4.2.18 3-19 instruction 5.6.6 
3.4.2.19 3-20 
3.4.2.20 3-20 Search Within Range 
3.4.2.22 3-20 instruction 5.6.5 

S 
Segment/bank storage 

configurations 3.3.7 
E.5 

Scientific accelEtrator 
module 2.3 2-2 Segment/cabinet storage 

configurations 3.3.7 
Search and ma~~ked-search E.4 

instructions 
Masked Alphanumeric Select Oayclock instruction 5.15.4 

Search Greater 5.6.14 5-28 
Masked Alphanumeric Select interrupt locations Figure 5-2 

Search Less Than 
or Equal 5.6.13 5-27 Select Interrupt Locations 

Masked SE~arch Equal 5.6.7 5-24 I instruction 5.15.5 
Masked SE~arch 

Greater 5.6.10 5-25 Shift count 4.3.2.8.3 
Masked S4~arch Less 

Than or Equal/Not Shift instructions 
Greater 5.6.9 5-25 Double Load Shift and 

Masked Search Not Count 5.8.8 
Equal 5.6.8 5-25 Double Shift Algebraic 5.8.6 

Masked Search, Not Double Shift Circular 5.8.2 
Within Range 5.6.12 5-26 Double Shift Logical 5.8.4 

Masked Slearch Within Left Double Shift 
Range 5.6.11 5-26 Circular 5.8.10 

S;earch Equal 5.6.1 5-21 Left Double Shift 
Search Greater 5.6.4 5-23 Logical 5.8.12 
Search Less Than or Left Single Shift 

Equal/Search Not Circular 5.8.9 
Greater 5.6.3 5-22 Left Single Shift 

Search Not Equal 5.6.2 5-22 Logical 5.8.11 
Search N(lt Within Load Shift and Count 5.8.7 

Range 5.6.6 5-24 Single Shift Algebraic 5.8.5 
Search Within Range 5.6.5 5-23 Single Shift Circular 5.8.1 

Single Shift Logical 5.8.3 

Inclex-t 3 
PAGE 

Page 

5-21 

5-23 

5-22 

5-22 

5-24 

5-23 

3-15 
E-64 

3-15 
E-18 

5-70 

5-71 

5-70 

4-25 

5-36 
5-35 
5-34 
5-35 

5-36 

5-37 

5-36 

5-36 
5-35 
5-35 
5-34 
5-34 



SPERRY UNIVAC 1100/80 Systems 
4x4 Capability Processor and Storage Programmer Reference U!tOATI LIVEL 

Term Reference Page Term Reference 

partitioning 3.3.6.2 
Shifting storage interleave 3.3.6 

left circular 5.8 5-32 tag and data buffer 3.3.2 
left logical 5.8 5-32 
right algebraic 5.8 5-32 Storage interleave 3.3.6 
right circular 5.8 5-32 
right logical 5.8 5-32 Storage system 1.2.2 

S~ction 3 
SIL data word Figure 5-2 5-71 

Store A instruction 5.3.1 
Single Shift Algebraic 

instruction 5.8.5 5-35 Store Constant instructions 5.3.5 

S;ingle Shift Circular Store Designator Register 
instruction 5.8.1 5-34 instruction 5.15.14 

Single Shift Logical Store DR Designators 
instruction 5.8.3 5-34 instruction 5.13.2 

SIU/MSU interface check Store instructions 
interrupt 7.3.6.2.2 7-14 Block Transfer 5.3.8 

Double Store A 5.3.7 
SIU/MSU read or partial Store A 5.3.1 

write ECC check Store Constant 
interrupt 7.3.6.2.3 7-16 instructions 5.3.5 

Store Magnitude A 5.3.3 
Staging registers 3.4.2.20 3-20 Store Negative A 5.3.2 

3.4.2.26 3-20 Store R 5.3.4 
Store X 5.3.6 

Start I/O Fast Release 
instruction 6.4.2 6-17 Store Location and Jump 

instruction 5.9.1 
Status table 6.12 6-51 

Store Magnitude A 
Storage check interrupts instruction 5.3.3 

Delayed Storage 
Check 7.3.6.2 7-12 Store Negative A 

Immediate Storage instruction 5.3.2 
Check 7.3.6.1 7-11 

Store Processor 10 
Storage configurations 3.3.7 3-15 instruction 5.15.7 

Appendix E 
Store Quantum Time 

Storage interface unit instruction 5.15.12 
addressing modes 3.3.6.1 3-10 
error detection and Store R instruction 5.3.4 

reporting 3.3.5 3-8 
functional Store Register Set 

characteristics 3.:l.1 3-6 instruction 5. 1 3. 11 
general 3.3 3-5 
invalidate interface 3.3.4 3-8 Store Subchannel Status 
main store interlace command 6.6.2 

stack 3.3.3 3-8 6.13 

Index-14 
!lAGE 

Page 

3-14 
3-9 
3-7 

3-9 

1-7 

5-4 

5-5 

5-75 

5-47 

5-6 
5-5 
5-4 

5-5 
5-4 
5-4 
5-5 
5-5 

5-37 

5-4 

5-4 

5-74 

5-75 

5-5 

5-49 

6-37 
6-53 



8604 Rev. 1 
UI'oMIMIP ~peR"Y UNIVAC 1100/80 Systems 

4x4 Capability Processor and Storage Programmer Reference -------

Term Reference Page Term 

Store System Status Test and Set Alternate 
instlruction 5. 15. 18 5-76 instruction 

Store X instruction 5.3.6 5-5 Test and Set and Skip 
Alternate instruction 

Subchannel expan~on 
feature channel base Test and Set and Skip 

r.,gister 6.17 6-64 instruction 

Subchannel states 6.3.2 6-6 Test and Set instruction 
Table 6-2 6-9 

Test Equal instruction 
Subchannel status 6.14 6-53 

Test Even Parity instruction 
Subchannels, IOU 

fun.:tional Test Greater instruction 
characteristics 6.2.2 6-5 

Test Less Than or 
Subfunction byte 5.14.5.2 5-60 Equal/Test Not Greater 

instruction 
Subsystem availability unit 1.2.6 1-10 

T est Less Than or 
System consoh~ 1.2.4 1-8 Equal/Test Not Greater 

Than Modifier 
System maintenance unit 1.2.7 1-10 instruction 

System minimum/maximum Test Negative instruction 
configurations Table 1-1 1-6 

Test Nonzero instruction 
System status word 2.6 2-3 

Figure 2-1 2-4 Test Not Equal instruction 

Systelm transition unit 1.2.5 1-9 Test Not Within Range 
instruction 

T Test Odd Parity instruction 

Tabled interrupts 7.4.3 7-29 Test Positive instruction 

Tabled status word 6.10 6-45 Test Relative Address 
instruction 

Termination conditiorts 
byte or block Test Subchannel instruction 

multiplc!xer 
. channel Table 6-9 6-33 Test Within Range 

word channel Table 6-10 6-35 instruction 

Test clnd Clear and Skip Test Zero instruction 
instruction 5.13.7 5-48 

Test (or skip) instructions 
Double-Precision Test 

Equal 

Reference 

5.13.8 

5.13.9 

5.13.6 

5.13.5 

5.7.6 

5.7.1 

5.7.9 

5.7.8 

5.7.3 

5.7.13 

5.7.5 

5.7.7 

5.7.11 

5.7.2 

5.7.12 

5.13.13 

6.4.4 

5.7.10 

5.7.4 

5.7.14 

Index-15 
'AGE 

Page 

5-48 

5-48 

5-48 

5-48 

5-30 

5-28 

5-31 

·5-30 

5-29 

5-32 

5-30 

5-30 

5-31 

5-29 

5-32 

5-49 

6-19 

5-31 

5-29 

5-32 



8804 Rev. 1 
\JNIIU ...... 

SPERRY UNIVAC 1100/80 Systems 
4x4 Capability Processor and Storage Programmer Reference 

T«trm Reference Page Term 

Test Equal 5.7.6 5-30 R-registers 
Test Even Parity 5.7.1 5-28 
Test Greater 5.7.9 5-31 
Test Less Than or 

EQual/Test Not X-registers 
Greater 5',7.8 5-30 

Test Less Than or yser bank descriptor table 
Equal/Test Not pointer register 

Greater Than 
Modifier 5.7.3 5-29 User Return instruction 

Test Negative 5.7.13 5-32 
Test Nonzero ' 5.7.5 5-30 u-field 
Test Not Equal 5.7.7 5-30 
Test Not Within Range 5.7.11 5-31 

W Test Odd Parity 5.7.2 5-29 
T est Positive 5.7.12 5-32 
Test Within Range 5.7.10 5-31 Word channel 
Test Zero 5.7.4 5-29 termination conditions . 

Theory, addressing 8.3.3 8-8 Word formats 

Toggle Auto-Recovery Path WRITE DATA CHECK signal 
instruction . 5.15.17 76-5 

Transfer in Channel 
X command 6.6.1 6-36 

Truncated search 6.8.4 6-41 x-field 

Truncated search X-registers 
restrictions 6.S.5 6-42 Executive 

user 

U 
Unconditional jump 

instructions 
Allow All Interrupt and "1 

Jump 5.9.3 5-38 
Load Modifier and 

Jump 5.9.2 5-37 
Store Location and 

Jump 5.9.1 5-37 

User registers 
A-registers 3.4.2.3 3-18 
Index registers 3.4.2.2 3-17 
J-registers 3.4.2.21 3-20 

Reference 

3.4.2.18 
3.4.2.19 
3.4.2.20 
3.4.2.22 
3.4.2.2 

3.4.2.8 

5.15.15 

4.3.2.8 

Index-16 
'AGE 

Page 

3-19 
3-20 
3-20 
3-20 
3-17 

3-18 

5-75 

4-24 

Table 6-10 6-35 

Appendix B 

3.2.1 3-2 
3.2.2 3-2 

4.3.2.5 4-22 

3.4.2.29 3-21 
3.4.2.2 3-17 



35 34 33 32 18 17 o 

ESI ACCESS CONTROL WORD (QUARTER WORD) 

35 34 33 32 31 30 29 18 17 o 

BYTE MANIPULATION STAGING REGISTER 1 

BT 

BS2 BS3 BS4 
0 1 2 3 4 5 6 7 8 

315 27 26 18 17 9 8 0 

BYTE MANIPULATION STAGING REGISTER 2 

[ BHO BH1 

:'15 18 17 0 

BYTE MANIPULATION STAGING REGISTER 3 

[ _______ B_B_O ______ ~ _______ B_B_1 ______ ~ ________ BB_2 ______ ~ ________ B_B3 ____ ,~ 
35 27 26 18 17 9 8 o 

J REGISTER 

~'5 34 33 32 31 21 20 18 17 320 

163 



Appendix C. Instruction Repertoire and Instruction Times 

The estirnated im.truction times given below are a subset of the actual execution times, Actual 
execution times are a function of SIU conflicts, storage spigot conflicts, internal CPU instruction 
sequencing conflicts, register conflicts, timing between CPU and storage, and interrupt processing, 
Also, system parameters which affect actual execution times are instruction storage access, storage 
characteristics (i.e" cycle time, storage refresh time, access time, and service time) and cable lengths, 
See AppE~ndix A for notational conventions used in the description column, and the notes at the end 
of the table for additional information on the instruction times, For the meaning of the symbol '*' 
(used in the Mnemonic column), and the symbols 'a' and 'b' (used in the Instruction Time column, see 
the end of the table, 

Functicm Mnemonic Instruction Description Instruc-
Code tion 

(Octal) Time (in 
ns) 

f ji 

00 0-117 - Invalid Code Causes Invalid Instruction interrupt to address 1150 

221 8 

01 0-~17 S, SA Store A (A.) - U 200 

02 0-'17 SN,SNA Store Negative A - (A.) - U 200 

03 0-'17 SM, SMA Store Magnitude A I (A.) I - U 200 

04 0-'17 S, SR Store R (R.) - U 200 

05 0-'17 SZ Store Zero 000000 000000 - U 200 

(a=O) 

164 



Function Mne~monic 

Code 
(Octal) 

-
f j 

05 0-17 SNZ 

(a= 1) 

05 0-17' SP1 

(a=2) 

05 0-17' I SN1 

(a=3) 

05 0-17 SFS 

(a=4) 

05 0-17 
I 

SFZ I 
(a=5) 

05 0-17 SAS 

(a=6) 

05 0-17 SAZ 

(a=7) 

05 0-17 INC 

(a= 10) 

05 0-17 DEC 

(a= 1'1) 

05 0-17 INC 2 

(a= 1:~) 

05 0-1'1 DEC 2 
(a= 1 :3) 

Instruction Description 

Store Negative Zero 777777 777777 - U 

Store Positive One 000000 000001 -u 

Store Negative One 777777 777776 - U 

Store Fieldata Blanks 050505 050505 - U 

Store Fieldata Zeros 606060 606060 - u 

Store ASCII Blanks 040040 040040 - U 

Store ASCII Zeros 060060 060060 - U 

ilncrease (U) + 1 - U. If initial or final value of U=O, 

execute N; else skip NI 

Decrease (U) - 1 - U. If initial or final value of U=O, 

execute NI; else skip NI 

Incr~~se by 2 (U) + 2 - U. If initial or final value of U=O, 

execute NI; else skip NI 

Decrease by 2 (U) - 2 - U. If initial or final value of U=O, 

execute NI; else skip NI 

Instruc-
tion 

Time (in 
ns) 

200 

200 

200 

200 

200 

200 

200 

5501750 

5501750 

5501750 

5501750 

165 

, 'c <G 
-.~ '9'" .'" / /" 

I 



Function 
Code 

(Octal) 

f j 

06 0-17 

06 0-·17 

07 0-11 

07 12 

07 13 

07 14 

07 15 

07 16 

07 "7 

10 ()'-17 

166 

Mnemonic 

ENZ 

(a== 14-17) 

s. SX 

LOJ 

LlJ 

LPO 

SPO 

(a == 0) 

LBJ 

L. LA 

Instruction 

Eliminate Negative 

Zero 

Store X 

Invalid Code 

Load 0 Bank Base 

and Jump 

Description Instruc
tion 

Time (in 
ns) 

Negative 0 is changed to positive 0 for 650 

sign-extended operands 

(X.) - U 200 

Causes Invalid Instruction interrupt to address 1 15Q 

221 8 

Select BOR specified by 012; if 012=0 select 2550 

BOR2; if 012= 1 select BOR3; load BOR with 

new BO located by BOI and BOTP specified in 

(X.); old BOI and P+ 1 - X.; jump to address 
U 

Load I Bank Base and Select BOR specified by 012; if 012=0 select 2550 

Jump 

Load Designators 

Store Designators 

Invalid Code 

BORO; if 012 = 1 select BOR 1; load BOR with 

new BO located by BOI and BOTP specified in 

(X.); old BOI and P+ 1 - X.; jump to address 

U 

(U)e.&.3-0 - Designator Register: 

(Ulo - 04 (U)3 - 010 

(U)1 - 05 (U)& - 017 

(U)2 - 08 (Ule - 020 

Designator Register O-bits - Us-o' zeros -
U

17
_
7

: 

04 - Uo 012 - U4 

05 - U 1 017 - Us 
08 - U2 020 - Us 

010 - U3 

Causes Invalid Instruction interrupt to address 

221 8 

Load Bank and Jump Load BOR specified by (X.l34•33 with new BO 

located by BOI and BOTP specified in (X.); old 

BOI and P+ 1 - X.; jump to address U 

Load A (U) - A. 

600 

200 

1150 

2550 

200 



Function Mnl~monic Instruction Description Instruc-
Code tion 

(Octal) Time (in 
ns) 

f j 

11 0-17 LN. LNA Load Negative A -CU) - A. 200 

12 0-17 LM. LMA Load Magnitude A I (U) ! - A. 200 

13 0-17 LNM. LNMA Load Negative -! (U) I-A. 200 
Magnitude A 

14 0-1'7 A.AA Add to A (A.)+(U) - A. 200 

15 0-1'7 AN. ANA Add Negative To A (A.) - (U) - A. 200 

16 0-1'7 AM. AMA Add Magnitude To A (A.)+I (U) I - A. 200 

17 0-1'7 ANM. ANMA Add Negative (A.) - I (U) I - A. 200 
Magnitude To A 

20 0-1'7 AU Add Upper (A.)+(U) - A.+ 1 250 

21 0-1'7 ANU Add Negative Upper (A.) - (U) - Aa+ 1 250 

22 0-1!5 BT Block Transfer. (X. + u) - X. + u; repeat K times 1050 + 
Repeat 200K 

23 0-17 L. LR Load R (U) - R. 200 

24 0-17 A.AX Add To X (X.)+(U) - X. 200 

25 0-17 AN.ANX Add Negative To X (X.) - (U) - X. 200 

26 0-17 LXM Load X Modifier (U) - X. 17-o; X.35- 18 unchanged 200 

27 0-1'7 L. LX Load X (U) - X. 200 

/ 

30 0-17 MI Multiply Integer (A.)·(U) - A •. A.+ 1 1150 + 

100b 

31 0-17 MSI Multiply Single (A.)'(U) - A. 1100 + 
Integer 100b 

32 0-1'7 MF Multiply Fractional (A.)·(U) - A •. A.+ 1 1250 + 
100b 

b - Numb43r of arithmetic loops 

167 



Function Mnemonic Instruction Description Instruc-
Code tion 
(Octal) Time (in 

ns) 

f ,i 

33 00 BM Byte Move Transfer N bytes from source string to 2100 + 
receiving string. Truncate or fill receiving 500N 

string as required 

33 01 BMT Byte Move With Translate and transfer N bytes from source 2100 + 
Translate string to receiving string. Truncate or fill 1200N 

receiving string as required 

33 02 BBT* Byte Translate and Translate and test N bytes against (A); if not 

Test equal, terminate instruction with JO pointing 

to unequal byte and Nt 0 

33 03: BTC Byte Translate Translate and compare N bytes from string E 1600 + 
and Compare to M bytes from string F; terminate instruction 2000N 

on not equal or when both M and N have 

been reduced to zero; when: 

(A.) > 0; string E > F 

(A.) = 0; string E == F 

(A.) < 0; string E < F 

33 04 BC Byte Compare Compare N bytes from string E to M bytes 1600 + 
from string F; terminate instruction on not 2000N 

equal or when both M and N are zero 

33 05 BPD* Byte to Packed Convert N bytes in string E to packed decimal -
Decimal Convert in string F 

33 0~3 PDB* Packed Decimal to Convert N packed decimal digits in string E to -
Byte Convert bytes in string F 

33 0~7 EDIT Edit Edit byte string E and transfer to byte string F 

under the control of string G (see Note 2 (b)) 

Skip 4600 + 
500N, 

Editing action 4600 + 
2300N2 

Blank if zero 4600 + 
1000N2 

• - Simulated in software by the Executive System. 

168 



Function F-monic 
I 

Instruction 
Code I I 

(Octal) ! I 
I 

i 
i 

'fl' I I 
j I ! 

! 

33 10 BI Byte to Binary 

Single Integer 

Convert 

33 i 11 BDI : Byte to Binary 
! Double Integer 
I i Convert 

33 12 IB Binary Single Integer 

to Byte Convert 

I 
33 13 DIB Binary Double Integer ! 

I 

I I to Byte Convert 
i 

33 14 BF Byte to Single 
I , 

I 
, 

Floating Convert 
I : 

: 

I : 
33 15 BDF I Bytp. to Double 

I 
i Floating Convert 
I 

I 
33 16 FB Single Floating to 

i Byte Convert 

i ! 

I : 

I 33 17 OrB Double Floating to 

I 
I i Byte Convert 

i i 
I 

34 0-17 01 Divide Integer 

I 

35 0-17 DSF Divide Single 

Fractional 

36 0-17 OF Divide Fractional 

37 I 00 OB* Ouarter-Word Byte 
I 

i 

37 01 BO* Binary to Ouarter-

Word Byte Extend 

\ 

• - Simulatlsd in software by the Executive System. 

b == Number- of arithmetic loops 

I 
Description Instruc-

tion 
I Time (in 
i ns) 
; 

i 

Convert N bytes in string E into a signed 1800 + 

binary integer ·in register A. 750N 

I Convert N bytes in string E into a signed 1950 + 

binary integer in registers A. and A. + 1 750N 

Convert the binary integer in A. to byte format 8850 + 

and store in string E SOON 

Convert the binary integer in A. and A. + 1 to 9100 + 

byte format and store in string E SOON 

Convert N bytes in string E into a single 13,850+ 

length floating point format in register Aa 1050N 

Convert N bytes in string E into a double 13,850+ 

length floating point format in registers Aa, 1050N 

As+ 1 

Convert the single length floating point 5150 + 

number in As to byte format and store in 1050N 

string E 

Convert the double length floating point 5150 + 
I number in As and A. + 1 to byte format and 
I 

1050N 

I store in string E 
I 

i 
i (As' A. + 1 ~ (U) - As: REMAINDER - Aa+ 1 1400 + I 

100b 

(Aa)f(U) - A.+ 1 5800 

(A., As+ 1)f(U) - Aa, REMAINDER ~ As+ 1 5800 

Discard (A)35' (A)26,(A)17' and (A)s: place the -
remaining bits in A31 -O: (A)31 - A35-32 

I 

Discard (A)35-32; place the remaining bits in -
I A 34-27, A25- 1S' A ,6_9 , and A7-O: zero fill A35, 

I A26, A 17, and As 
I 

169 



Function Mnemonic Instruction Description Instruc-
Code tion 
(Oct~JI) Time (in 

ns) 

f j 

37 02 OBH* Ouarter-Word Byte to Discard (A)35' (A)2e' (A)17' and (A)8; placa the 
Binary Halves remaining bits in A33- 18 and A'5-O; (A)33 -
Compress AU - 34; (A),5 - A 17_18 

37 03 BHO* Binary Halves to Discard (A)35-34 and (A)17_1e; place the -
Ouarter- Word Byte remaining bits in Au -27• A25- 18• A18-9. and 
Extend A7-o; zero fill A35• A28• A 17• and As 

37 04 ODB* Ouarter-Word Byte to Discard A35• A28• A17• A8• A+ '35' A+ '28' -
Double Binary A+ 117, and A+ 's; place the remaining bits in 
Compress A27-O and A+ 1; (A)27 - A35-2S 

37 05 DBO* Double Binary to Discard (A)35-2S; place the remaining bits from -
Ouarter-Word Byte A and A+ 1 in A34-27• A25- 18- A uS- 9' A7-01 
Extend A+ 134-27, A+ 125- 18, A+ 118-91 and A+ '7-0; 

zero fill A35• A281 A17• As. A+ 135, A+ 126-

A+ 117, and A+ 18 

37 06 BA Byte Add Add the N bytes in string E to the M bytes in 1300 + 
string F and place the result in string G (see 15001 

Note 7) 2500N 

37 07 BAN Byte Add Negative Subtract the N bytes in string E from the M 1300 + 

bytes in string F and place the result in string 15001 

G (see Note 7) 2500N 

37 10-17 - Invalid Code Causes invalid instruction interrupt to address -
221 8 

40 0-17 OR Logical OR (A.) rem (U) - A.+1 250 

41 0-17 XOR Logical Exclusive OR (A.) ImBI (U) - A. + 1 250 

42 0-17 AND Logical AND (A.) rAfm (U) - A. + 1 250 

43 0-17 MLU Masked Load Upper [(U) AND (R2)] OR [(A.) AND (R2)'] - A.+1 550 

44 0-17 TEP Test Even Parity Skip NI if (U) AND (A.) has even parity 450/650 

45 0-17 TOP Test Odd Parity Skip NI if (U) AND (A.) has odd parity 450/650 

46 ()"'17 LXI Load X Increment (U) - (X.)35-18; (X.),7-O unchanged 200 

• - Simulated in software by the Executive System. 

170 



Function Mnemonic Instruction Description Instruc-
Code! tion 

(Octall) Time (in 
ns) 

f ,j 

47 0-'17 TLEM Test Less Than or Skip NI if (U) ( (X.)17-O; always (X.) 17-0 + (X.) 600/800 
Equal to Modifier 35-18 - X. 17-O 

TNGM Test Not Greater Alternate mnemonic for TLEM instruction 

Modifier 

50 0-17 TZ Test Zero SkQP NI if (U)=t 0 350/550 

51 0-17 TNZ Test Nonzero Skip NI if (U) tt 0 350/550 

52 0-17 TE Test Equal Skip NI if (U)=(A.) 350/550 

53 0-17 TNE Test Not Equal Sk:ip NI if (U) t (A.) 350/550 

54 0-17 TLE Test Less Than or Skip NI if (U) ( (A.) 450/650 
Equal 

TNG Test Not Greater 

55 0-17 TG Test Greater Skip NI if (U»(A.) 450/650 

56 0-17 TW Test Within Range Skip NI if (A.)«U) ( (A.+ 1) 5001700 

57 0-17 TNW Test Not Within Skip NI if (U) ( (A.) or (U»(A. + 1) 5001700 
Range 

60 0-17 TP Test Positive Skip NI if (U)3S=0 350/550 

61 0-17 TN Test Negative Skip NI if (U)35= 1 350/550 

62 0-17 SE Search Equal Skip NI if (U)=(A.), else repeat 1050 + 

200a 

63 0-'17 SNE Search Not Equal Skip NI if (U) t (A.), else repeat 1050 + 

200a 

64 0-'17 SLE Search Less Than or Skip NI if (U) ( (A.), else repeat 1050 + 
Equal 200a 

SNG Search Not Greater Alternate mnemonic for SLE instruction 

65 0-17 SG Search Greater Skip NI jf (U) > (A.), else repeat 1050 + 

200a 

a - Number of words 

171 



Function Mnemonic Instruction Description Instruc-
Code tion 

(Octal) Time (in 
ns) 

_. 

f j 

66 0--1 '7 SW Search Within Range Skip NI if (A.)«U) , (A.+ 1). else repeat 1100 + 

200a 

67 0--17 SNW Search Not Within Skip NJ if (U) , (A.) or (U»(A.+ 1). else repeat 1100 + 
Range 200a 

70 0--17 JGD Jump Greater and Jump to U if (Control Registerj.»O; go to NI if 200/300 
Decrement (Control Registerj.) , 0; always (Control 

Registerj.) -1 - Control Registerj• 

71 00 MSE Mask Search Equal Skip NI if (U) ~ (R2) - (A.) ~ (R2). else 1050 + 
repeat 200a 

71 01 MSNE Mask Search Not Skip NI if (U) ~ (R2) ~ (A.) ~ (R2). else 1050 + 
Equal repeat 200a 

71 02 MSLE Mask Search Less Skip NI if (U) ~ (R2) , (A.) ~ (R2). else 1050 + 
Than or Equal repeat 200a 

MSNG Mask Search Not Alternate mnemonic for MSLE instruction 

Greater 

71 03 MSG Mask Search Greater Skip NI if (U) mm (R2) > (A.) mm (R2). else 1050 + 
repeat 200a 

71 04 MSW Masked Search Skip NI if (A.) mm (R2) < (U) mm (R2) , 1100 + 
Within Range (A. + 1) mm (R2). else repeat 200a 

71 05 MSNW Masked Search Not Skip NI if (U) mm (R2) , (A.) mm (R2) or (U) 1100 + 
Within Range mm (R2) > (A.+ 1) ~ (R2). else repeat 200a 

71 06 MASL Masked Alpha- Skip NI if (U) m (R2) , (A.) mm (R2). else 1050 + 
numeric Search Less repeat 200a 
Than or Equal 

71 07 MASG Masked Skip NI if (U) m (R2) > (A.) mm (R2). else 1050 + 
Alphanumeric repeat 200a 

Search Greater 

71 10 DA Double Precision (A •• A. + 1) + (U. U + 1) - A •• A. + 1 450 
Fixed-Point Add 

• - NUrT'lber of words 

172 



Function Mnemonic Instruction Description Instruc-
Code tion 

(Octal) Time (in 
ns) 

f j 

71 11 DAN Double Precision (A., A.+ 1) - (U,U+ 1) - A., A.+ 1 450 

Fixed-Point Add 

Negative 

71 12 OS Double Store A (A., A.+ 1) - U, U+ 1 400 

71 .13 Dl Double load A (U, U+1) - A., A.+1 400 

71 14 DlN Double load - (U, U+1) - A., A.+1 400 
Negative A 

71 15 DlM Double load I (U, U+ 1) I - A., A.+1 400 

Magnitude A 

71 16 DJZ Double Precision Jump to U if (A., A.+ 1) = :to; go to NI if (A., 250/350 
Jump Zero A.+ 1) ~:!:O 

71 17 DTE Double Precision Skip NI if (U, U+1) = (A., A.+1) 5501750 
Test Equal 

72 00 IMI Initiate Maintenance Send Attention interrupt to Maintenance 200 
Interrupt Processor if in maintenance mode, otherwise 

NOP 

72 01 SlJ Store location and (p~Base Address Modifier - U , '-O; jump to 400 

Jump U+1 

72 02 JPS Jump Positive and Jump to U if (A.)35=0; go to NI if (A.)35= 1; 200/300 
Shift always shift (A.) left circularly one bit position 

72 03 JNS Jump Negative and Jump to U if (A.)35= 1; go to NI if (A.)35=0; 200/300 
Shift always shift (A.) left circularly one bit pOSition 

72 04 AH Add Halves (A.)35_ 1 S + (U)35_ 1 e - (A.)35-1S; (A.)17-O+ 500 
-

(U) 17-0 - A. 17-O 

72 05 ANH Add Negative Halves (A.)35-1e- (U)35-1S - (A.)35-1a; (A.)17-O- (U)17-O 500 

- A. ,7-O 

72 06 AT Add Thirds (A.)35-24+(U)35-24 - A.35-24; 800 

(A.)23-12+(U) 23-12 - A.23-12 

173 



Function Mnemonic Instruction Description Instruc-
Code tion 

(Octal) Time (in 
ns) 

f j 

(A.)11-O +(U)11-O - A. 11-O 

72 07 ANT Add Negative Thirds (A.)35-2 .. - (U)35-24 - Ad5- 24 ; 850 

(A.)23-12- (U)23-12 - A.23- 12; 

(A.), 1-0- (U) 11-0 - A.11-O 

72 10 EX Execute Execute the instruction at U 300 

72 1 'I ER Executive Request Causes Executive Request interrupt to address 1250 

2228 

72 12 - Invalid Code Causes Invalid Instruction interrupt to address 1150 

221 8 

72 13 PAIJ Prevent all Interrupts Disable all interrupts and jump to U 300 
and Jump 

72 14 - 'nvalid Code Causes Invalid Instruction interrupt to address 1150 

221 8 

72 15 TRA Test Relative Address Test a given relative address against limits 20501 
(see Note 8) 2850 

72 16 SRS Store Register Set Transfer GRS areas defined in A. to storage 800 + 
starting at address U 200a 

72 1'7 LRS Load Register Set Transfer from storage starting at location U to 800 + 
GRS areas defined in A. 200a 

73 OlD SSC Single Shift Circular Shift (A.) right circularly U places 350 

73 01 DSC Double Shift Circular Shift (A., A. + 1) right circularly U places 400 

73 02 SSL Single Shift Logical Shift (A.) right U places; zero fill 200 

73 03 DSL Double Shift Logical Shift (A.- A. + 1) right U places; zero fill 300 

73 04 SSA Single Shift Algebraic Shift (A.) right U places; sign fill 200 

73 05 DSA Double Shift Shift (A._ A.+ 1) right U places; sign fill 300 

Algebraic 

a - Number of words 

174 



Function Mnemonic Instruction Description Instruc-
Code tion 

(Octal) Time (in 
ns) 

f j 

73 06 LSC Load Shift and Count (U) - A., shift (A.) left circularly until (A.i35 t. 550 

(A.)34; NUMBER OF SHIFTS - A.+ 1 

73 07 DlSe: Double load Shift (U,U+ 1) - A., A.+ 1; shift (A., A.+ 1) left 1350 

and Count circularly until (A., A. + 1)71 t. (A., A. + 1 )70; 

NUMBER OF SHIFTS - A.+2 

73 10 LSSC Left Single Shift Shift (A.) left circularly U places 350 

Circular 

73 11 LOSe Left Double Shift Shift (A., A. + 1) left circU"Hly U places 400 

Circular 

73 12 lSSl. Left Single Shift Shift (A.) left U place; zero fill 200 

Logical 

73 13 LDSL. left Double Shift Shift (A., As + 1) left U places; zero fill 300 

logical 

73 14 lDC load Dayclock (MSR + 2168) - dayclock at start of next 200 

(a== 10) update cycle 

~ 

73 14 EDC Enable Dayclock Enable dayclock 200 

(a== 11) 

73 14 DOC Disable Dayclock Disable dayclock 200 

(a== 12) 

73 14 SOC Select Dayclock Select dayclock in processor number U 200 

(a== 13) 

73 14 MDA Diagnostics A Generates A, A+ 1 and U, U+ 1 operands to 4850 

(a== ~ 4) test arithmetic; stores results, 

A=00372706711 and A+ 1 = 

256171354400 in GRS addresses 628 and 

638 

73 14 MOB Diagnostics B Generates A. A+ 1 and U, U+ 1 operands to 4850 

(a='15) test arithmetic; stores results, 

A=771177117711 and 

A+ 1 =777777776677 in GRS addresses 628 

and 638 

175 



Functlion Mnemonic Instruction Description Instruc-
Code tion 

(Octnl) Time (in 
ns) 

f j 

73 14 NOP No Operation Proceed to NI 200 

(a=:16.17) 

73 15 SIL Select Interrupt (U)22-1e - MSR specified by (U)23 600 
(a=:O) Location 

73 15 - Invalid Code Causes Invalid Instruction interrupt to address 1150 

(a= 1) 221 8 

73 15 LBRX Load Breakpoint (U) - Breakpoint Register (see Note 9) 5501750 

(a=2) Register 

73 15 LOT Load Ouantum Timer (U) - Quantum Timer 500 

(a=3) 

73 15 III Initiate Interprocessor Interrupt CPU specified by U 200 

(a=4) Interrupt 

73 15 SPIO Store Processor 10 Store processor serial number. revision level. 200 

(a=5) features provided. and system number in U 

73 15 RAT Reset Auto-Recovery Set auto-recovery timer to zero 200 

(a=6) Timer 

73 15 TAP Toggle Toggle auto-recovery path selection after each 200 

(a=7) Auto-Recovery Path attempt 

73 15 LB Load Base (U),7-O - BOR specified by (Xx)34.33 600 

(a=10) 

73 15 LL Load Limits (U)35-24 and (U)23-15 - BOR limits fields 600 
(a= 11) specified (Xx)34,33 

176 



Function Mnemonic Instruction Description Instruc-
Code tion 

(Octal) Time (in 
ns) 

f j 

73 15 LAE Load Addressing (U,U+ 1) - BDI Registers in GRS locations 1850 

(a.12) Environment 468 and 478: BD limits and Base Values to 

BDRs. 

73 15 SQT Store Quantum Timer (Quantum Timer) -U 200 

(a-13) 

73 15 LD Load Designator (U) - Designator Register 650 
(a-14) Register 

73 15 SO Store Designator (Designator Register) - U 450 
(a-15) Register 

73 15 UR User Return (U + 1) - Designator Register; jump to 850 
(a-16) address specified by (U)23-O using new 

register set 

73 15 SSS Store System Status System Status - U,U+l 1050 
(a-17) 

73 16 - Invalid Code Causes Invalid Instruction interrupt to address 1150 

221 8 

73 17 TS Test and Set If (U)30- 1, interrupt: if (U)30.0. go to NI, and 1450/400 

(a-O) if U )I 200 set (U)36-30 to 018 

73 17 TSS Test and Set and If (U)30- 1. go to NI; if (U)30 - O. skip. and if 400/600 
(a-1) Skip U ;> 200 set (U)36-30 to 018 

73 17 TCS Test and Clear and If (U)30-0. go to NI; if (U)30- 1, skip. and if U 400/600 
(a-2) Skip-· ;> 200 clear (U)36-30 

73 17 TSA Test and Set If (U)'4- 1 interrupt; if (U)'4-0 go to NI; 1450/400 
(a-4) Alternate always set (U)'4-O to ones 

177 



Function Mnemonic Instruction Description Instruc-
Code tion 

(Octal) Time (in 
ns) 

f j I 

73 17 TSSA Test and Set and If (U)'4-1 go to NI, if (U)'4-0 skip NI; aiways 400/600 

(a-51 Skip Alternate set (U), 4-0 to ones 

74 00 JZ Jump Zero Jump to U if (A.) - :t 0; go to NI if (A.) 'I. ± 0 200/300 

74 01 JNZ Jump Nonzero Jump to U if (A.) 'I. ± 0; go to NI if (A.) - ± 0 200/300 

74 02 JP Jump Positive Jump to U if (A')35-0; go to NI if (A.I35 = 1 200/300 

74 03 JN Jump Negative Jump to U if (A.)3S= 1; go to NI if (A.135-0 200/300 

74 04 J Jump Jump to U 300 

(a-Ol 

74 04 JK Jump Keys Jump to U if a-lit SELECT JUMP indicator 200/300 

(atOI 

74 05 HJ Halt Jump Jump to U and halt Halt 

(a=OI 

74 05 HKJ Halt Keys and Jump Jump to U; stop if a mm lit SELECT STOP 200/Hait 

(at. 01 indicators 'I. 0 

74 06 NOP No Operation Proceed to N I 200 

74 07 AAIJ Allow All Interrupts Allow all interrupts and jump to U 300 

and Jump 

74 10 JNB Jump No Low Bit Jump to U if (A.lo-O; go to NI if (A.lo- 1 200/300 

74 11 JB Jump Low Bit Jump to U if (A.lo= 1; go to NI if (A.lo=O 200/300 

74 12 JMGI Jump Modifier Jump to U if (X.I17-O>O; go to NI if (X.I17-O ( 200/300 

Greater 0; always (X.I, 7-0 + (X.135-O - X. ,7-O 

and Increment 

74 .113 LMJ Load Modifier and (P) - Base Address Modifier - (X.I'7-O; jump 300 
Jump to U 

178 



Function Mnemonic 1_. Instruction Description Instruc-
Code tion 

(Octal) Time (in 
ns) 

f j 

74 14 JO Jump Overflow Jump to U if 01=1; go to NI if 01=0 200/300 

(8=0) 

74 14 JFU Jump Floating Jump to U if 021 = 1; go to NI if 021 =0; 200/300 

(8=1) Underflow clear 021 

I 

74 14 JFO Jump Floating Jump to U if 022= 1; go to NI if 022=0; 200/300 

(a=2) Overflow clear 022 

74 14 JOF Jump Divide Fault Jump to U if 023= 1; go to NI if 023=0; 200/300 
(a=3) clear 023 I 

I 

74 15 JNO Jump No Overflow Jump to U if 01 =0; go to NI if 01= 1 200/300 

(a=O) 

74 15 JNFU Jump No Floating Jump to U if 021 =0; go to NI if 021 = 1. 200/300 
(a=1) Underflow clear 021 

74 15 JNFO Jump No Floating Jump to U if 022=0; go to NI if 022= 1; 200/300 
(8=2) Overflow clear 022 

74 15 JNOF Jump No Divide Fault Jump to U if 023=0; go to NI if 023= 1; 200/300 
(8=3) clear 023 

I 
74 16 JC Jump Carry Jump to U if 00= 1; go to NI if 00=0 200/300 

74 17 JNC Jump No Carry Jump to U if 00=0; go to NI if 00= 1 200/300 

75 00 - Invalid Code Causes IOU to return a condition code of 3 to -
the CPU indicating instruction not available 

75 01 SIOF Start I/O Fast Release (U.U+ 1) - CAW; initiate operation defined in 1150 

CCW at address (CAW)S9_36 on device 

spe,cifiedby (CAW)'6-00 

179 



function Mnemonic Instruction Description Instruc-
Code tion 

(Octal) Time (in 
ns) 

f j 

75 02 - .nvalid Code Causes IOU to return a condition code of 3 to -
the CPU indicating instruction not available 

75 03 TSC Tesl Subchannel (U,U+ 1) - CAW; interrogate subchannel 1150 

specified by (CAW)15-O 

75 04 HDV Halt Device (U,U+ 1) - CAW; terminate current operation 1150 

on subchannel and device specified by 

(CAW)15-O 

75 05 HCH Halt Channel (U,U+ 1) - CAW; terminate current operation 1150 

on channel specified by (CAW)'5-O 

75 06,07 - Invalid Code Causes Invalid Instruction interrupt to address 1150 

221 8 

75 10 lCR Load Channel (U,U+ 1) - CAW; if (CAW)o=O, (CAW)50-36 1150 

Register - CBR; if (CAW)o= 1, (CAW)71_36 - interrupt 

mask register 

75 11 LTCW Load Table Control (U,U+ 1) - CAW; load HCAW and HSTCW in 1150 

Words channel specified by (CAWhs_8; (CAW)59_36 

- HCAW; STCW at address specified by 

(CAW)S9_38 - HSTCW 

75 12-17 - Invalid Code Causes Invalid Instruction interrupt to address 1150 

221 8 

76 00 FA Floating Add (A.)+(U) - A.; RESIDUE - A. + 1 if 017 = 1 800/1050 

76 01 FAN Floating Add (A.)-(U) - A.; RESIDUE- A.+1 if 017=1 800/1050 

Negative 

76 02 FM Floating Multiply (A.)'(U) - A.(and A.+1 if 017=1) 1350 + 

100b 

76 03 FD Floating Divide (A. Ii (U) - A.; REMAINDER - A.+ 1 if 48001 

017= 1 4850 

76 04 LUF Load and Unpack 1 ,U) 134- 27 - A.7-O,zero fill; (U)26-O - A.+1 300 

Floating 28-0' sign fill 

b .. Number of arithmetic loops 

180 



Function :LnoniC Instruction Description Instruc-
Code tion 

(Octal) Time (in 
ns) 

f j 

76 05 LCF Load and Convert (U)35 - A. + 135, [NORMALIZED 550 

to Floating (U)]u-o - A.+ 126-0; if (U)35=0, 
(A.)7-o± NORMALIZING COUNT] -

A.+ 134-27; if (U)35-1, ones complement 

of [(A.)7-O ± NORMALIZING COUNT] -

A.+ 134-27 

76 06 MCDU Magnitude of I (A.) 136-27- 1 (U) 135-271 - (A. + 1 )8-0 350 

Characteristic ZEROS - A. + 135_9 
Difference to Upper 

76 07 CDU Characteristic 1 (A.) 136-27- 1 (U) 136-27 - A. + 18-0; SIGN BITS 350 

Difference to Upper - A.+ 135-9 

76 10 DFA Double Precision (A., A.+ 1) + (U, U+ 1) - A., A.+ 1 950 

Floating Add 

76 11 DFAN Double Precision (A., A.+ 1) - (U, U+ 1) - A., A.+ 1 950 

Floating Add 

Negative 

76 12 DFM Double Precision (A., A.+ 1)' (U, U+ 1) - A., A.+ 1 2450 

Floating Multiply 

76 13 DFD Double Precision (A., A.+ 1r.(U, U+ 1) - A., A.+ 1 9850 

Floating Divide 

76 14 DFU Double Load and 1 (U,U + 1 )70-50 1 - A. 1 0-0, zero fill; 850 

Unpack Floating (U,U+ 1)59-38 - A. + 123-0' sign fill; 

(U,U+ 1)36-0 - A.+2 

76 15 DLCF, [.FP Double Load and (U)35 - A. + 135; [NORMALIZED 700/1100 

Convert to Floating (U, U+ 1)]59-0 - A.+ 123-0 and 

A.+2; If (U)36=0, (A.),a-o± 
NORMALIZING COUNT -

A. + 134-24: If (U)35 = 1, ones 
complement of [(A.)'0-0 ± NORMALIZING 

COUNT] - A.+ 134-24 (see Note 10) 

76 16 FEL Floating Expand (Ui26_3 - A.23-O; (U)2-O - A. + 136-33; 450 

and Load 

181 



Function Mnemonic Instruction Description Instruc-
Code tion 

(Octal) Time (in 
ns) 

f j 

(U)35 - A. + 132-0; If (U)35 - 0, (U)36-27 + 

16008 - Ae36-24; If (U)35 - 1, (U)35-27 -
, 6008 - Ae36-24 

76 17 FCL Floating Compress (U)23-O - A.28-3; (U+ 1)36-33- A.2-o 700 

and Load if (U)35.0 (U)36-24 + 16008 
- A.36_27if (lJ)36 -1, (U)36-24 + 16008 -
A.36-27 

77 0-17 - Invalid Code Causes Invalid Instruction interrupt to address 1150 

221 8 

182 



NOTES: 

1. The timing estimlltions use only whole word stores with the exception of the byte instructions which must use panial 

stores. 

2. Repeated instruction times can be estimated by these formulas: 

8. Total time - set up + number of repeats (K or N) x basic time. 

b. Edit in the byte instruction is estimated by N, =: skip count. N2 =: number of control bytes. 

3. Instruc:tion set up times are special sequences to condition the control for repeated sequences and are added to the 

total tiime required for the repeated instruction. 

4. Test or skip instruction times are stated as xxx/yyy. The first number is th~_!~'!.!.!..!o!..~kip not .~.~~~~ the second is for 

skip tltken . 
..... --._--

5. Condi1tional jump times are stated as xxx/yyy. The first ~~~~! is time for jump not taken, the second for. jump taken. 

6. Byte instruction times are, in general, data dependent as well as string length dependent; therefore, times given 

repres.ent a given set of data but could change for different data. 

7. For the 37-06, 07 (Byte Add and Add Negative) instructions, the greater time applies if a refetch is required. 

8. For th·e 72-15 (Test Relative Address) instruction, the lesser time applies if the address tested is within the first pair 

of limlits used in the test. 

9. For thle 73-15 (LI)ad Breakpoint) instruction, the greater time applies when bit 29 of the operand specifies clear jump 

histonf stack. 

, O. For this 76-15 (Double Load and Conven to Floating) instruction, the greater time applies when 020= 1 (no instruction 

overlap). 

11. The times given for the I/O instructions are processor times. Add 200 ns if skip, and wait-time for IOU to respond. 

183 




	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	5-73
	5-74
	5-75
	5-76
	5-77
	5-78
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	6-62
	6-63
	6-64
	6-65
	6-66
	6-67
	6-68
	6-69
	6-70
	6-71
	6-72
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	E-20
	E-21
	E-22
	E-23
	E-24
	E-25
	E-26
	E-27
	E-28
	E-29
	E-30
	E-31
	E-32
	E-33
	E-34
	E-35
	E-36
	E-37
	E-38
	E-39
	E-40
	E-41
	E-42
	E-43
	E-44
	E-45
	E-46
	E-47
	E-48
	E-49
	E-50
	E-51
	E-52
	E-53
	E-54
	E-55
	E-56
	E-57
	E-58
	E-59
	E-60
	E-61
	E-62
	E-63
	E-64
	E-65
	E-66
	E-67
	E-68
	E-69
	E-70
	E-71
	E-72
	E-73
	E-74
	E-75
	E-76
	E-77
	E-78
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15
	Index-16
	_163
	_164
	_165
	_166
	_167
	_168
	_169
	_170
	_171
	_172
	_173
	_174
	_175
	_176
	_177
	_178
	_179
	_180
	_181
	_182
	_183
	_184

