
·c .. -. /

c

~._~ .. ~ .. y. ~.~ _______________________ INTEIICOtIIIII,,"ICATION

TOI Commerc i al Branch Managers

CAR.OMS' Corrmercial Regional Managers
J. L~ Sturdevant

fROM (N"ME): H. L. Hughes

LOCATION & DATE: King of Prussia, Jan. 17,. 1965

OE~AItTIIDff: UDPD i vis ion EDUCAT ION

SuaJECT: ·UNI VPC 1005' EMPLOYEE TRAI NI NG

Product Marketing, Systems Programming, and the Curricula Development
section of Education have cooperated in developing a UNIVAC 1005 Manual.
It is structured to aid in easy learning. We have made every effort to
organize the material in a sound teaching format.

Final typing, illustrating, editing, printing, collating and distribution
will require some additional time.

As an aid to you in providing your Sales Representatives and Systems
Analysts training on the 1005, we have made copies of. the rough draft.
THI SIS I NTENDED FOR I N-BRAI'CH USE ONLY AND .SHOULD BE DESTROYED WHEN
THE FINISHED MANUAL IS RECEIVED BY YOU.

In order to insure complete accuracy of the finished manual, any errors
should be reported by mail immediately to Mr. Art Levin, UNIVAC Product
Marketing, P.O.Box 500, BlueBell, Pennsylvania. Questions concerning
the Assembly System or the UNIVIC. 1005 should also be directed to
Mr. Levin.

H. L. Hughes

hlh/len

Attachment

·" ~.".'.' /-

"~.'." \~/

..
OPERATH·TG PROCEDURE FOR 1005 ASSEMBLY

Machine Set up

Printer
Punch
Processor -

Pass #1

Small Stock pape
Blank 5081s.
1005 Control Panel

1. Alteration Switch #1 on

2. Place 1005 assembly Deck followed by Source Deck in
Processor.

3. Press start, Clear, Feed and Run (1005 wi1L.1oad assembly
Deck and Halt with Ind 1 on).

4. Turn off Alteration Switch #1 and Press Run

(1005 will now punch cards for Pass #2)

5. When Processor stops (Reader hopper Empty) Press Run
then StoE,.

6. Hold Source deck for Progra~ner.

*Pass #2

1. Remove cards from punch.

2. Place 1005 assembly Deck fo1101'led by cards (Pass 2, step 1)
in Processor.

3. Press Start clear feed and Run (1005 will punch out cards
for Pass #3 and print out listing of Pass #2)

4. When processor halts (Reader hopper empty)
press Run then Step.

5. Seperate Assembly deck from Pass #2 cards and discard
Pass #2 cards.

*Pass #3 Final Pass

1. Remove Cards from punch.

2. Place 1005 assembly deck, followed by cards removed
from punch, in Reader from Step 1 pass #3.

3. Press clear Start Feed and Run. (1005 will now punch
out Final object deck and print out of program).

4. When processor halts press Run then Stop.

•

..
-2-

*Pass 1f3 Final Pass (Continued)

5. Scperate Assembly deck from Pass #3 dec~.

6. Discard cards used to punch out pass #3.

7 . Reinove cards from punch.

8. Put Run # on first card of assemb).ed program deck.

9. R.eturn source I Final object deck and listing to'
prograrmner.

*If machine jams, check light on punch stops processor or any
other reason machine halt's during pass #2 or #3, that pass
mUs-t be restarted with a RESTART CARD in Front of Assembly
deck. There is one Restart Pass 2 card and one Restart Pass 3
card. If Restart Pass 2 card is used Remove it before starting
Pass 3.

(

I

ROUGH DRAFT

COMPANY CONFIDENTIAL

UNIVAC 1005 ASSEMBLY SYSTEM

January 1%6

Data Processing Division
Education

@
1966 Sperry Rand Corporation

(
TABLE OF CONTENTS

SECTION PAGE

1.0 Introduction to the UNIVAC 1005 and Internally Stored
Prograrmling 1

1.1 Addressing Technique 1

1.2 Basic Logic and Format 4

1.3 Control Section Operation 5

1.4 Other Instruction Formats 7

1.5 Storage Allocation and Use 8

1.6 Ihdirect Addressing. 9

1.7 Other Special Registers 13

1.8 Special Register Locations 14

(1.9 Addressing and Use of Column 32 15

2.0 Introduction to Assembly Systems 16

2.1 Purpose of Assembly Systems 16

2.2 Mnemonic Coding 17

2.3 .Symbo 1 i c Cod i ng 18

2.4 Relative Coding 19
/

2.5 Memory Mapping 20

2.6 Declarative Instructions 22

2.7 Assembler Processing 23

3.0 ' I ntroduction to the UNI VAC 1005 Assembly System 25

3.1 Terminology Definitions 25

3.2 Coding Form 25

3.3

3.4

3.5

3.2.1

3.2.2

3.2.3

3.2.4

3.2.5

3.2.6

label

Operation

Operand 1

3.2.3.1

3.2.3.2 .

Operand 2

3.2.4.1

3.2.4.2

Remarks

Card Number

IA

Field A·

+ Inc

lA, Field B, ± Inc

Field C, ::t Inc.

Operand 1 Address Specification

3.3.1

3.3.2

3.3.3

3.3.4

3.3.5

Symboiic Address (Label) Specification

Increments to Symbolic Addresses

Decimal Addressing

Rowand Column Addressing

Instruct i on Locat i on C'ouriter (I LC)
Addressing

Operand 2 Address Specification

3.4.1

3.4.2 .

Operand 2, Field C, Blank Addressing

Operand 2 Indirect Addressing

Summary of Field A, Pie1d-B, and Field C
Specifications

3.5.1

3.5.2

3.5.3

Field A

Field B

Field C

25

27

28

28

28

28

29

29

29

30

30

31

31

33

34

34

36

37

37

39

41

41

41

41

c

(~

(/

3.6 Standard Systems Labels

4.0 UNIVAC 1005 Assembly Instructions

4.1

4.2

4.3

4.4

Legend

Length of Operands

Transfer Instructions

4.3.1

4.3.2

4.3.3

.4.3.4

4.3.5

4.3.6

4.3.7

Transfer Descending

Transfer Ascending

Transfer Clear

Transfer Numeric

Transfer Constant

4.3.5.1

4.3.5.2

4.3.5.3

Symbolic Address Substitution

Row/Column and Decimal
Addressing

Binary Coded Constants

Transfer to Register X

. Translate

Addition and Subtraction

4.4.1

4.4.2

4.4.3

4.4.4

4.4.5

Add Algebraic

Subtract Algebraic

Absolute Add

Absolute Subtract

Add Constant

42

44

44

49

49

52

55

56

57

61

62

63

66

68

71

73

75

76

77

78

4.6

4.7

4.8

4.9

4.10

Compar@ I ndr ions

4 .. 5.1

4.5.2

4.5.3

4.5.4

Compare Numeric

Compare Absolute

Compare Alphanumeric

Compare Constant

Condition Indicators

4.6.1

4.6.2

Set Condition

Stop

Sequence Control Instructions

4.7.1

4.7.2

4.7.3

4.7.4

4.7.5

4.7.6

4.7.7

Count

Jump Condition

Jump Test

Unconditional Jump

Jump Return

Jump Compare

Jump Loop

Jump I nd i reet

Edit Instructions

4.9.1

4.9.2

4.9.3

4.9.4

Edit Logical

Edit Erase

Edit Superimpose

Edit

Declarative Instructions

4.10.1

4 .. 10.2

Define Instruction Location Counter

Defi ne Area

4.10.2.1

4.10 .. 2.2

Define Sub-field

Redefine Standard Label

81

83

85

87

89

92

93

97

98

99

105

108

109

113

116

120

122

125

127

130

131

132

139

141

144

147

149

f'
\~_/

c'
I
I

(
4.10.3 Define Constant 151

4.10.3.1 In-line Constant 154

4.10.3.2 In-line COlTment 155

, 4.10.4 Defi ne I ndi rect Address Constant '157

4.10.5 Define End 161

r 4.11 MUltiplication Instructions 162

4.11.1 Multiply 164

4.11.2 Multiply (Long) 167

I 4.12 Divide Instruction 169

4.12.1 Divide 171

4.13 Input au~put Instructions 174

4°.13.1 Shortened General Commands 175

(
... 4.13.2 General Commands 176

4.13.3 Read Magnetic Tape 182

4.13.4 Wrtte Magnetic Tape 184

4.13.5 Receive Data Line 186

4.13.6 Send Data U ne 187

4.13.7 Receive Interface 189

4.13.8 Send Interface 191

5.0. Operating Instructions 193

o

1

f
I

j

I
! '

INTRODUCTION TO THE UNIVAC 1005

AND I NTERNALLY SHRED FROffiArvM I NG

1.0 The UNIVAC 1005 is classified as a general purpose, stored program,

digital computer. The main store consists of either two or four banks

of core memory with 1024 locations per bank. In addition to providing

storage for instructions and data, two types of Special Registers are

provided in core memory to control the operation of the UNIVAC 1005.

The special registers are addressable and in some cases can be used

as additional data storage.

1.1 ADDRESSING TECHNIQUE

Each bank of core memory consists of a 32 row by 32 column

matrix of 6-bit memory locations. Each location is addressed by

specifying its Rowand Column coordinates. For example; the

first memory location has an address of Row 1, Column 1; the

last memory location has an address of Row 32, Column 32. These

address designations are abbreviated to R1/C1 and R32/c32.

In order to store the address of a single location in

memory, the six bits of two adjacent memory locations are required.

Five of the six bits of the left-hand location are used to specify

the Row coordinate, and five of the six bits of the right-hand

location are used to specify the Column coordinate. A combination

of the sixth bits of both locations is used to specify which of

the four possible banks of memory is involved.

I

The UNIVAC 1005 utilizes a special 5-bit concept which operates on

a logical rather than a binary arithmetic basis. Special combinations

of these fiVe bits are employed for the values 1 to 31 used as row

or column coordinates. These 5-bit combinations, plus the sixth

bit required for bank designation, correspond to the 64 characters of

the UNIVAC 1005. Thus, the address of any location in any bank of

core memory can be specified by the proper selection of two of these

6-bit characters.

The foregoing description indicates the similarity and compatibility

of the memory of the UNIVAC 1005 and the UNIVAC 1004.

For the purpose of stored-programming, the main store of the UNIVAC

1005 should be considered as 1922 (or 3844) consecutively numbered,

decimally addressed memory locations enclusive of the Special Registers

and Column 32 of card row. The physical arrangement of main store

is then no longer a concern of the programmer. Using this method,

the main store of the UNIVAC 1005 takes on the following appearance:

Banks 1 and 2
1 100
101 200
201 300

BANKS 1 and 2 .- ~
'\ ; :>

H· --~.-

(

r- J---

)

1701 1800
1801 1900
1901 -1.m.]

o

o

o

(~

c

--11923 2000 1 --
i . .2~ ____ . 2100

2100 2200 .-----

BANKS 3 and 4
S <;

~

~)
.. J

~ --- ---

3601 - 3700
3701 _______ 3800
3801 3844 I

Decimal addressing would then produce the following facility

for programming:

First location of Read Input Storage (Card Col. 1)

Last location of Read Input Storage (Card Col. 80)

First location of Print Storage (Print POSe 1)

Last locafion of Print Storage (Print POSe 132)

First location of Punch Storage (Card Col. 1)

Last location of Punch Storage (Card Col. 80)

Decimal Adr.
1

80

161

292

293

372

Since Print Position 1 is located at address 161, Print Position

23, for example, is located 22 positions away at address 183.

This same convenience IS extened to the addressing of the programmer's

data areas as well as to the other reserved areas of Input Output

storage. A complete description of decimal addressing as provided

by the UNIVAC 1005 Assembly System appears in Section of

this manual.

3

1.2 BASIC LOGIC AND FORMAT

The UNIVAC 1005 operates on a basic two address instruction logic.

A UNIVAC 1005 instruction contains the a'ddress of two pieces of

information called Operands, and an operation code for the process

to be performed with these Operands. The Operands are defined by

specifying the address of the most significant location

(abbreviated MSL), or the address of the least significant

location (abbreviated LSL), or both, depending on the operation

to be performed. Operations are specified by a one character code.

The majority of the UNIVAC 1005 instructions reqUIre Seven character

locations in the following format:
OP I A I B I C 1. OP is

a single character which specifies the operation to be performed.

A is the two character address of the location of either the MSL or

the LSL of Operand 1. B is the two character address of the

location of the MSL of Operand 2. C is the two character address

of the location of the LSL of Operand 2.

o

o

(

Instructions are executed in ascending (LSL to MSL) or descending

(MSL to LSL) mode. If the operation is performed in ascending

mode, the A portion specifies the LSL of Operand 1. If the

operation is performed in descending mode, the A portion specifies

the MSL of Operand 1. The use of UNIVAC 1005 character codes to

specify operation codes and addresses is called absolute coding

or machine coding. A table of these codes and their equivalents IS

shown in Appendix __ • As will be explained in succeeding sections

of this manual, the UNIVAC 1005 Assembly System provides a

convenient method of specifying these codes. The output of the

Assembler processing IS a deck of punched cards containing

instructions in machine code. These cards are read by the UNIVAC

1005 and the instructions stored in core memory under the control

of a Load program which is provided for the UNIVAC 1005. The Load

program is initiated by a special header card which is placed in

the front of the instruction cards.

1.3 CONTROL SECTION OPERATION

After the program has been loaded, operation of the UNIVAC 1005

proceeds under the control of the Instruction Control Counter(ICC).

The ICC is one of the Special Registers located in core memory.

The ICC IS a two character register which contains the address

of the MSL of the instruction to be performed next by the UNIVAC

1005. As each instruction IS accessed for execution, the contents

of the ICC are incremented by the number of characters in the

instruction--usually seven. This increment is first added to

the right hand character of the ICC, the Column address portion.

When the Column count passes 31, an increment of one is added

to the Row address portion of the ICC, and the Column portion

is returned to 1. Memory Bank specification is also advanced as

the Column count passes 31. Thus the access and execution of

instructions proceeds in a sequential manner. Instructions are

Row 32 provided to vary this sequential operation when required.

0 1

and Column 32 addresses are not included in the sequential advance of the ICC.

As each instruction. is accessed, according to the address in

the ICC, it is transferred to the Instruction Register (IR).

The IR is a seven character Special Register which is used to

examine the instruction. The bit configuration of the one character

Operation code is analyzed by the circuitry which establishes and

controls the functions necessary to perform the required operation.

The address portions of the IR are transferred to the internal

storage address controls for OP 1 and OP 2. The norma~ operation

of the UNIVAC 1005 when executing instructions is to access the

first character from either the LSL or the MSL of OP 1, and the

corresponding character from OP 2 (LSL or MSL) and perform the

process. The determination of whether the LSL or the MSL is used

is based on the mode--ascending or descending--of the instruction.

After operating on the first characters from OP 1 and OP 2, the

operation proceeds with successive corresponding characters of OP 1

and OP 2 until the processing of the last character location of

OP 2 has been completed. This signals the end of the instruction.

During the execution of each instruction, the contents of the ICC

~re incremented according to the number of characters in the

instruction itself. When the end operation signal is generated,

the new address in the ICC is used to control the access of the

o

(~ ..

"

next instruction eNI). The execution of the program proceeds in

this manner to direct the UNIVAC 1005 to accomplish the desired

results.

1.4 OTHER INS1RUCTION FORMATS

The instruction repertoire of the UNIVAC 1005 includes a complete

set of commands for control of the operation of the system. In

addition to the type of commands previously mentioned--seven

characters, with an OP 1 and an OP 2 address--there is a second

type of co~mand which provides for flexibility and ease

of control of the programming requirements necessary to internally

stored program operation.

The second type of instruction 1S five characters 1n length and

has the following format:

OP A B

Where:

OP = a one character operation code

A = a two character constant whose value is used or whose

bit configuration is used to perform special functions

B = a two character address of the location in memory where

these operations and functions are performed.

As is the case with ~ost stored program computers, there are

special commands in the UNIVAC 1005 with a format that does not

precisely conform to these two basic formats. These special

commands will be either five or seven characters in length, and

the format variation will be indicated along with a complete

description of the operation~

7

1.5 STORAGE ALLOCATION AND USE

The main st.ore of t.he UNIVAC 1005 is separat.ed ~ ~ hardware int.o

t.wo major'areas--input. out.put. st.ore, and working store. Input output

st.ore consist.s of selected port.ions of memory reserved f6r the

informat.ion received from and t.ransferred t.o t.he inpu\l6ut.put.

devices. When a reserved area is not. required for a device

as input/output. st.ore due t.o t.he operat.ions being performed, t.he

area can be used by t.he programmer for st.orage of inst.ruct.ions

Qr dat.a. The working st.ore consist.s of ·t.hose portions of memory

not. reserved for input.;6ut.put. informat.ion--t.he remainder of

core memory.

The working store is separat.ed ~ ~ proerammer into t.wo t.ypes

of areas according t.o his programming requirement.s. A portion of

working st.ore is est.ablished by t.he programmer t.o store t.he

informat.ion (other than inpu~ut.put.) t.o be processed. The re-

mainder of working st.ore is used t.o st.ore the program inst.ruct.ions.

A not.e should be made at. this point. that t.he addressing capability

of the instruction address ext.ends to all of main store. This

means t.hat the content.s of any memory locat.ion or locat.ions can be

accessed as dat.a t.o be processed. This includes t.hose locat.ions

used by t.he programmer to store inst.ruct.ions. The use of this

capability t.o operat.e on inst.ruct.ions as if t.hey were dat.a IS

an import.ant. technique of internally st.ored programming.

0 , . '

c
8

1.6

(--

INDIRECT ADU~ESSING

Another facility provided by the UNIVAC 1005 is the ability to

perform Indirect Addressing. In the UNIVAC 1005, Indirect

Addressing is the ability to specify in the address portion of

an instruction the address of the memory location which contains

not the data to be processed, but a secondary address which

specifies the location of the data to be processed. From a hard

ware standpoint, this is accomplished by using the primary address-

the address in the instruction--to control the transfer of the

secondary address to the IR where it is then used as the

address of the data to be processed.

From a programming standpoint, Indirect Addressing allows

the programmer to establish one series of instructions which

perform a programming operation on separately stored but related

items of information. This is accomplished by programming the

instructions once using primary addresses, and changing the

secondary address to refer to the proper item for each uSe of

the series of instructions. For example: a detail card contains

four twenty-column transaction items. Each item contains four

five-column fields. The program IS written using primary

addresses which refer to a table of secondary addresses. The

table is set up to refer to the address of the fields within

an item. A series of addresses in the form of constants is

created by the programmer and stored in a portion of working

store. There is a series of addresses for each of the transaction

"I

items as they will appear in Read Input Storage. Before processing o
the first transaction item, the program transfer the series ,of

addresses which refer to this item to the secondary address

table locations referred to by the primary addresses in the

instructions. The first item is then processed. At the con-

elusion of the processing of the first item, the program then

transfers the series of addresses which refer to the second

transaction to the table of secondary addresses. The series of

instructions is then executed again, only this time, the table

of secondary address references the locations of the fields of

the second transaction item causing it to be processed. The

program action of changing the contents of the secondary address

table is then repeated for the processing of the third and

fourth transaction items. An explanation of this example is

shown in Figure ____ •

o
10

(-

READ INPUT STORAGE
TRANSACTION ONE

: FIELD 2: FIELD 3 : FIELD 4
TRANSACT ION TWO

i FIELD 2 ;

~ __ -4-~ __ ..!...!1 O.-:..J...:..1 __ ---"~~:-:-:-~~~=~..p...:..~::.....--~3Q 31 __

3: FIELD 4 I
___ ~~~ __ ~~~~~~_~5Q~j __ ~~5~~~5~6 __ ~6~d~6~1 ___ _

- - - - - - -- - - - - - - - - - - - - - - - -- -- -

SECONDARY ADDRESS TABLE
ENTRY 2 ENTRY 3 ENTRY 4

Am. OF ADR. OF ADR. OF
FIELD 2 FIELD 3 FIELD 4

MSL LSL MSL LSL
1234 1234

- -- -- - - - -- -- - - - - ;." -- - - - - -- - - - - - - - - - ---
"...

"",.---- --------
" I

'\ ,
\
\ ,

I
J

I • __ _

''''''; CONST ANT STrn AGE '
EN~Y 1 { I

ENTRY 2

ENTRY 3

ENTRY 4

\ ,
ADR. OF
FD. 1. ITEM 1 Am: -o"F- --- -
FD 1. ITEM 2
ADR. OF
FD. 1. ITEM 3
Am. OF
FD 1 ITEM 4

Process i ng Requ ires:

Am. OF
FD 2. ITEM 1
Am7"DF -- - -
FD 2. ITEM 2
Am. OF
FD 2. ITEM 3
Am. OF
FD 2 ITEM 4

Am. OF Am. OF
£D 3~ ITEM 1 ill 4 iTEM 1
-A"Ili.-or-- - - - ~. OF
FD 3" ITEM 2 FD 4 ITEM 2
Am. OF Am. OF
FD. 3. ITEM 3 FD. 4, ITEM 3
Am. OF Am. OF
FD 3 ITEM 4 FD 4 ITEM 4

Calculate the sum of Fields 1, 2, and 3. Subtract the sum from

Field 4. Do this for each transaction •.

1/

Instr. 1

2

3

4

5

6

",

INSTRUCTIONS REQUIRED Oi
The * indicates Indirect Addressing

o PER AT ION FIELD A FIELD B FIELD C

TRF-D MSL of Entry MSL of LSL of Sec
1 in constant Sec Adr Adr Table
storage Table

ADD-ALG *ADR of Loc 3 *ADR of *ADR of Loc
Entry 1, Sec Loc 1 3 Entry 2
Adr Table Entry 2, SecAdr
(LSL Field) Sec Adr (LSL Fd 2)

(MSL Fd 2)

ADD-ALG *Affi of Loc 3 *ADR of Loc *Affi of Loc
Entry 2, Sec 1 Entry 3 3 Entry 3
Adr (LSL Fd 2) Sec Adr Sec Adr

(MSL Fd. 3)(LSL Fd 3)

SUB-ALG *ADR of Loc 3 *Am of *ADR of Loc
Entry 3, Sec Loc 1 3 Entry 4
Adr (LSL F d 3) Entry 4, Sec Adr

Sec Adr (LSL Fd 4)
(MSL Fd 4)

TRF-D MSL of Entry MSL of Sec LSL of Sec
2, then 3, then Adr Table Adr Table
4, in constant
storage

Return to
Instruction
2

ACTION

The MSL and LSL addresses
of the Fields of Trans
action One are transferred
to the Sec Adr Table

The primary address in the
A position of the instruc
tion refers to the lower
2 characters of Entry 1
in the Sec Adr Table.
These two characters are
then used as the A address
of this instruction. The
primary addresses i~ the
Band C positi6ris similar
ly refer to the Sec Adr
Table Entry 2, and address
substitution occurs.

Same as for Instruction
except that substitutes
are made from Entry 2
and Entry 3.

Same as for Instruction 3
except that substitutions
are made from Entry 3 am
Entry 4

The addresses of the next
item are set up in the
Sec Adr T",ble

Transfer control to
instruction 2 to initiate
processing of the next
item.

NOTE: Additional programming techniques are necessary to control the
number of times these instructions are to be executed for each
card read. They are not involved with the USe of Indirect
Addressing, and were omitted in order to confine the example
to the discussion. They will be covered along with the UNIVAC
1005 Operations which are used for the additional techniques.
(See the JL and the CC instructions if desired.)

c
ldo

---- --------- -------------

I

1

('

. ,

The normal use of Indirect addressing is with data which

contains a multiple item format similar to the punched card

format in the preceding example. The multiple item concept IS

generally used for magnetic tape master and detail files. The

use of the Indirect addressing capability of the UNIVAC 1005 is

not restricted to the multiple item concept.

Other UNIVAC 1005 Operations and capabilities designed to implement

stored programming techniques are described in this manual along

with an example of the application of the technique.
:;. .

1.7 OTHER SltC I AL REG I STrnS

There are two Special Registers In addition to the Instruction

Control Counter and the Instruction Register. These are the

Multiply/Divide Register (MDR), and a multi-purpose register

called Register X (rX).

The MDR is 31 locations in length, and is used by the Multiply

and Divide instructions. i~hen not required for this purpose, the least

significant 22 locations ~ay be used for intermediate programming results.

Register X is 31 locations in length and is used primarily when

Add or Subtract operations involve Operands of unequal length.

When not required for this purpose, rX can be used for intermediate

results of programming operations.

I~

-- --------~---~~

A thorough explanation of the use of rX and the MDR is given in

this manual where the Operations which reference them are discussed.

It should be remembered that all Special Registers are located in

core memory, are explicitly addressable, and are in addition to

the basic two or four banks of main store.

1.8 SPECIAL REGISTER LOCATIONS

The Instruction Register (IR), the Instruction Control Counter

(ICC), and the Multiply/Divide Register (MDR) constitute 'an

extra row of core memory--ROW 32. This set of special registers

is in ROW 32 of BANK 1.

1
ROW

1 COLUMN 31

IR IICCI MOO
32~~~~1~~~

1 7 8 9 10 31

BANK 1

Register X constitutes an extra row of core memory-~OW 32 of BANK 2.

1
ROW

1 COLUMN 31

rX
32 ~ _____ ---"

1 31

BANK 2

When the ICC is incremented for sequential access of instructions,

it advances from R31/C31 of Bank 1 and Bank 2, to R1/C1 of Bank 2

and Bank 3 respectively, thus bypassing the special registers. The

use of decimal addressing does not include the specification of the

addresses of the Special Registers. They can be addressed using the

Row/Column addressing provision of the UNIVAC 1005 Assembly System.

o

o

o
IlJ

1.9

r

ADffiESSING AND USE OF COLU:~N 32

Each of the 32 Rows of memory contains 32 columnar positions.

The allocation of memory by the Assembler program is made on

the basis of 31 Rows and 31 Columns per Bank. As described

in Section 1.8, Row 32 of Bank 1 and Bank 2 are excluded from

Assembler allocation and are used for the Special Registers.

The explanation of the advance of the Rowand Column portions

of the Instruction Control Counter indicates that not only is

ROW 32 of memory bypassed, but also COLUMN 32 of each Row of

memory IS also excluded f~ Assembler allocation.

Column 32 of each Row in Bank 2, 3, and 4 become a series of

one characler locations whkh can be used by the programmer for

such things as single character constants, control settings,

program switches, etc. Decimal addressing does not include the

addressing of any Column 32. The Row/Column addressing provision

of the UNIVAC 1005 Assembly System provides the means of addressing

each of these single character locations.

NOTE: Column 32 of each of the Rows in Bank 1 are
reserved for hardware/software control purposes
and must not be used by the programmer.

Row 32 of Bank 3 and Bank 4 are also not included in the allocation

processing of the Assembler program. Row 32 of Bank 3 and Bank

4 can be used by the programmer for the storage of data and

intermediate results of processing.

J('

INTRODUCTION TO ASSEMBLY SYSTEMS c
2.0 NEED FOR ASSEMBLY SYSTEMS

Control of an internally stored program computer is accomplished by

providing the computer wrth a set of instructions which have

been designed to produce the desired results. These instructions
,
i

are created by the programmer according to the specific requirements

and capabilities of the computer. The 'instructions must be entered

,
in the computer memory in a specific sequence using a precise

set of characters. This set of characters constitutes the

vocabulary or language of the machine. Machine languages are

dictated by the design characteristics of the computer and seldom

bear any relationship to human language. Furthermore, machine

languages seldom follow any logical pattern that a person could

use when writing a program. In addition to the language barrier,

there are many clerical-type functions which a programmer must

perform when writing a program.

2. 1 PLR POSE OF ASSEMBLY SYSTEMS

In order to overcome the language barrier, and to provide the

programmer with clerical-type assistance, an assembly system

is usually provided as part of the software of an internally stored

program computer.

The assembly system allows the programmer to use a machine-

oriented language which is also human oriented. The programmer

o
Ii:>

----~-- ---~-------------~

[c

!
t

c-

writes the instructions in assembly language according to the

rules of the assembly system. These instructions are punched

into cards and are read into the computer under the control of

a program called the assembler program. The assembler program

analyzes the assembly language instructions and translates or

converts this language into the precise machine language of the

computer. An output deck of punched cards is produced by the

assembler processing which contains the machine language

instructions. This deck of cards is then read into the computer

under 'the control of a load program which stores the instructions

in the required sequence. The computer is then instructed to

execute the program.

The deck of cards which contains the instructions written in

assembly language is called the source deck. The output deck of

cards which contains the instructions in machine language is

called the object deck. In some cases, the assembly language is

referred to as the source language or source code, and the

machine language is referred to as the object language or object

code.

2.2 MNEMONIC CODING

The terms mnemonic, symbolic, and relative coding are sometimes

erroneously used as synonyms. Each term has a specific meaning,

and each one constitutes an important characteristic of an

assembler.

/'7

An assembly language usually contains a set of mnemonic codes

which represent the Operation codes of the computer. These

mnemonic codes are established to help the programmer remember

the code to be used for the Operation needed.

In addition to the mnemonic codes which correspond to the specific

commands of the computer, an assembler usually provides a set of

mnemonic codes for pseudo-operations. The pseudo-operations are

established for the stored-programming functions which t~e

programmer normally needs to implement his problem solution.

These pseUdo-operations usually represent options of computer

Operation codes and are glven mnemonics which make it easier

for the programmer to specify his needs. In some cases the

pseUdo-operation represents a combination of two or more computer

instructions which are needed to implement a stored programming

technique.

2.3 SYMBOLIC CODING

Symbolic codes are a usual provision of' an assembly language to

allow the programmer to assign meaningful names to important

information within his program. For example, the fields of data

in a payroll card are known to the programmer by the type of

information they contain, such as Employee Number, Department,

Gross Pay, etc. There is normally a limitation on the length of

a symbolic name. However, this length is usually enough to permit

meaningful abbreviations or contractions. In the example above,

the Employee Number field could be named EMPNO; the Department

o

o

o
If

I

lc field could be named DEPT.; the Gross Pay field could be named

GAPAY. As will be discussed in the section on memory mapping, the

actual addresses of these fields in memory are assigned· by the

assembler program. When the name or label appears anywhere in

the source language instructions, the assembler program will use

the assigned actual address in the object language instruction.

Symbolic labels are also assigned to instructions In the program

which are referenced by'other instructions in the.program. When

a non-sequential transfer of control is required from one series

of instructions to another, the programmer must specify the point

to which control is to be transferred. Since actual addresses are

assigned by the assembly program, the programmer cannot provide

the actual address. By labelling the instruction to which control

is to be transferred, he.can use the symbolic address for the

same purpose.

2.4 RELATIVE CODING

Relative coding is another assembly system technique which

allows the programmer to specify the location of instructions and

data, even though the actual addresses are assigned by the

assembly program. To use the relative coding technique, the

programmer must have a thorough understanding of the memory

mapping operation of the assembler program. Once this is

understood, relative coding is a simple yet powerful stored

programming technique. In the preceding section on symbolic

coding is an explanation of the assembler program assignment of

1'1

2.5

V addressAto symbolic labels. This creates a common fixed point

of reference between the programmer and the assembler program.

By using this common fixed point of reference (the label) as a

base, the programmer can specify other locations by their position

relative to the base. For example, if the memory location

which is to contain the information from card column 1 has been

given a label of DETCD, then the memory location which is to con-

tain the information from card column 5 would be 4 locations away.

By specifying an Operand label of DETCD + 4, the programmer causes

the assembler program to assign the actual address of the operand

by mathematically adding the increment of 4 to the actual address

of DETCD. The assembly system usually provides for decrements to

symbolic labels as well as increments.

MEMORY MAPPING

In order to assign the location of instructions and data, the

assembler program must keep track of the locations that are used

as the assembler processing is performed. To do this, the

assembler program contains an Instruction Location Counter (ILC).

This is a program created device, not a piece of hardware. The

loading of the assembler program itself usually sets the ILC to

the actual address of the first memory location. The assembler

program then causes the reading of the first source language in~

struction. This instruction is assigned to an actual address

according to the present value of the ILC (in this case, the

first memory location). After the machine language for the

1

oj

~
I

o

o

(-

c

instruction has been created by the assembler processing, a card

is punched containing the machine language instruction. The

number of locations that will be required to store the instruction

is added by the assembler program to the ~alue of the ILC creating

a new value in the ILC. The assembler program then causes the

next source language instruction card to be read. This instruction

is assigned to an actual address according to the present value

of the ILC. Assume that the actual address assigned to the

preceding instruction had been R25/C1 and that the instruction

was seven characters in length. (R25/C1 becomes the address of

the MSL of the instruction.) The assembler program would then

add seven (the number of locations for the fi rst instruction)

to the machine code equivalent stored in the ILC, and arrive at

the machine code equivalent of R25/C8. This IS the actual address

assigned to the second instruction assembled.

The use of this procedure by the assembler program insures that

the assignment of addresses to instructions follows the sequential

access of the instructions by the computer w~en the object program

is executed.

In addition to an ILC, an assembler program may contain a Data

Location Counter (DLC). The DLC provides the programmer with the

ability to assign locations to his data in an area of memory other

than the area to be used for instructions. Instructions are

usually assigned to locations starting with the first memory address

Clow-numbered locations) and proceeding in ascending sequence.

Data is usually assigned to locations starting with the last memory

address (high-numbered locations) and proceeding In descending sequence.

2.6 DECLARATIVE INSTRUCTIONS

An assembly system with an ILC and a DLC usually provides a set

of pseudo-operations which allow the programmer to establish and

modify the value in the location counters. In addition to the

pseudo-operations which manipulate the ILC and the DLC, there

are usually other pseudo-operations which are required to instruct

the assembler program as to the manner in which the assembly

processing is to take place. These pseudo-operations are called

declarative instructions. Unlike the previously mentioned

pseudo-operations, declarative instructions, which are included

in the source language deck, do not produce instructions in

the object language deck. The declarative instructions are for

the use of the assembler program during the assembly processing,

and not for the computer as part of the object program.

An example of a declarative instruction would be one that updates

the DLC. Assume the problem called for storing the contents

of a header card to print headings on each new page. The

programmer would label the source language instruction line, write

the mnemonic pseudo-operation code that decrements the DLC, and

indicate the value of the decrement (the number of locations to

be reserved for the data). Such a line of source code might

appear as

Label
HDRCD

OP Code
DA

of Locations
80

(stands for Define Area)

F-'. I I','
."L/.

1
I

~

1 ,

c

(

When this line of source coding is encountered, the DA tells the

assembler progra~ to refer to the DLC. The contents of the

DLC are decremented by the number of locations to be reserved.

The new value of the DLC is assigned as the address of HDRCD. In

order to reference the information .in the HORCD area, the programmer

can use relative coding.

2~7 ASSEMBLER FROCESSING

An assembler program consists of a set of machine code instructions

designed to produce specific results. As is the case with any

computer program, the assembler program is designed to receive

specific information prepared in a precise format. It is the

responsibility of the programmer to prepare the source language

program deck according to the rules of the assembly system. Any

errors in the source language will produce incorrect results from

the assembler processing.

In order to produce a complete object program, the assembler program

must read-the entire source program before producing any object

instruction cards. During the reading of the source cards, the

assembler program performs a preliminary· analysis and converts

or translates from source language to object language wherever

possible, eg: the mnemonic operation codes. As each source card

is read and the mnemonic operation code IS translated, the

assembler program determines the length of the instruction. The

instruction is assigned to an actual address, and the ILC is

updated. If the source lang~age instruction has been assigned a

symbolic address by the programmer, the label and the 3.ctu3.1

address are stored in a table. When these labels appear in

the source language instructions as Operand addresses, the

assembler program searches the label table using the symbolic

address as the key, and secures the actual address assigned to

the label. The actual address is substituted for the programme?s

symbolic operand address.

The assembler program contains many other tables which it

references for conversion of the source language to object

language. After complete analysis and conversion of the source

language, the assembler program causes the object program to be

listed and punched.

o

1(,

c

3.0

INTRODUCTION TO THE UNIVAC 1005 ASSEMBLY SYSTEM

Most of the programs for the UNIVAC 1005 will be written in

the language of the UNIVAC 1005 Assembly ~ystem. The UNIVAC 1005

Assembly System provides the programmer with the necessary

functions and convenience described in the preceding section.

The use of instruction forms not described in this manual deviates

fro~ UNIVAC recommendations and must be the user's responsibility.

3.1 TERMINOLOGY DEFINITIONS

3.2

3.2.1

Alphabetic means a letter from the English alphabet (A through Z)

Numeric means an Arabic numeral (0 through 9)

Alphanumeric means the entire 64 character set of the UNIVAC 1003
which includes letters, numbers, and spe~ial characters.

COD I NG FffiM

A coding form to be used to record the programmers instruction

for subsequent key punching and processing by the UNIVAC 1005

Assembler program is shown in Figure ____ • The coding form IS

set up in the same format as the punched card, and contains an

indication of the card columns to be used for each field.
LABEL

LABEL Columns 1 through 5
5

.~. .. ! .. L.

This field is provided for the symbolic Labels which are assigned

to those lines of coding which are referenced by the object

program instrudio'ns. A label may consist of from one to five...-

characters (inclusive) and must begin in column 1 of the field.

The first (left-most) character of a Label must be an alphabetic

character. The remainder of the characters in a Label can be

alphabetic or numeric. There is no limit to the number of Labels

in a source program. However, if more than 40 Labels are used,

extra processing is required by the Assembler program. This is

fully explained in the section on Operating the Assembler System.

Five positions are provided in the Label field to allow meaningful

assignment of programll'3r names. However, only the left-most three

positions of a Label are significant to Assembler processing. The

first three positions of each Label must be unique within a

program. Extreme care should be taken when creating Labels.

Labels used in a single program must be unique and may appear

only once in the Label field. Labels will be used in the

Operand address portion of instruction lines and may appear there

as often as necessary. The explanations in this manual of the

use of the relative coding technique of increments and decrements

to Labels should enable the programmer to address the data in his

program without an excess of Labels.

The Label of a line of coding becomes the symbolic' address for

the left-most (MSL) position of the instruction, and is used

whenever the instruction is referenced. Labels are also used for

the lines of coding which define data areas, and become

the symbolic address for the left-most (MSL) position of the

area set aside for data.

o

~ (

r

(

Since not all lines of coding require a label, the field may be left

blank. Some examples of labels are: LABEL

3.2.2 OFtRAT ION Columns 6 through 10
~PERATION

6 1D

--L--L-L.-.L

This field IS for the mnemonIC operation codes provided by the

Assembler. Operation codes are usually alphabetic. The majority

of Assembler Operation codes are two characters in length, and

must begin in column 6.

Some examples of Operation codes are:
PERAT I or~

:·6 10

: f\:». I !

;5 Iv.. I I !

~
E..I~:D. I ~

OPERAND 1

~ FIELD A + INC
:* .12 '16 18 ?C

3.2.3 OPERAND 1
~l

This is a heading for those columns which are normally used to

specify the address of the MSL or LSL of OP 1 depending on the

ascending or descending mode of the instruction. This portion of

the coding form is also used for other purposes, since not all

Operations involve an Operand 1. The following description of

the OPERAND 1 fields is based on the normal use to specify OP 1

addresses. A complete explanation of Operand 1 addressing

begins In Section ~.

3.2.3.1 IA Column II

This column is used to indicate Indirect Addressing. When the

OP 1 of an instruction is a primary address, an asterisk (*) is

placed in this column. It must be' left blank at all other times. \

3.2.3.2 FIELD A Columns 12 through 16

This field of the form will normally contain a programmer's symbolic

address for the location of instructions and data within his

program. Any Labels which appear here must also appear in the

LABEL field of some line of coding. Field A is a five position

field for OP 1 Labels which normally begin in column 12.
+

3.2.3.3 - INC Columns 17 through 20

These columns are normally used to indicate an increment to the

address assigned to a Label. Increments are shown in decimal

numbers. If column 17 contains a plus sign (+) the increment is

added. If column 17 contains a minus sign (-) the increment becomes

o
as

I

•
l ,
I

1

•

a decrement and is subtracted from the Label address. Increments

must be left-justified (begin in column 18). OPERAND 1

Some examples of OPERAND 1 addresses are: FIELD A
* 2 16

I J i

--_ ... - --_ ..
OPERA In 2

3.2.4. OPERAND 2 I~ FIELD B + INC FIELD C ... INC
* 22 26 -- 28 30 32 36 -be /10

. I J _I ~L J
This is a heading for those columns which are normally used

to specify the MSL and LSL addresses of Operand 2 in the instruction.

This portion of the form is also used for other purposes. The

following description of the OPERAND 2 fields is based on the

normal use to specify OP 2 addresses. A complete description of

OPERAND 2 addressing IS found in Section 3.3.

3.2.4.1 lA, FIELD B;tINC Columns 21 through 30

These fields are normally used to specify the most significant

location (MSL) of OP 2. The description of the contents of

these fields is the same as the description of the contents of

OPERAND 1.

3.2.4.2 FIELD C, ± INC Columns 32 - 40

These fields are normally used to specify the least significant

location (LSL) of OP 2.

NOTE: The indication for OP 2 Indirect Addressing is
in column 21: only. Column 31 is not used as pad of
the specification for OP 2 LSL.

The description of FIELD C and! INC is the same as the

3.2.5 COMMENTS Columns 41 through 56
C.·~~M't~

1141 ~, ~'

correspondinQ fields of OPERAND 1.

t l _ J--..l._L .J .. L-J._LL. I I I I I I 11
This PQ~tion of the form is provided to allow the programmer

to include pertinent remarks as to the purpose of the line or

lines of coding. The remarks are not considered by the Assembler

processing and merely pass through to the printed and punched

output. These columns are also used to indicate constant values

which are to be included in the object program. This use is

described In the section which covers Constants. If the RDMfl;I(S (j\)M~f.M'S
.e.

exceed)(positions, a COMMENT line of coding may be used.

(See Sect ion ___ .)

3.2.6. CM D NUMBER Columns 62 throuah 66
::>

This portion of the form is subdivided into three fields--

PAGE NUMBER, LINE NUMBER, and INSERT NUMBER. These colu~ns are

used to indicate the number of the page of coding, and the number

of the line from which the key punched card was produced.

The Card Number field will assist the key punching effort as well

as provide for the re-sequencing of the cards in the event the

original sequence is disturbed. For proper assembly proceSSIng,

. it is necessary that the cards be read by the Assembler program in the

sequence in which they appear in the source program. The Card Number

field is used for external control purposes only. The Assembler program

does not check the sequence as it reads the card.

---- --------

30

i
,£', !
L,,' f:

o

,
~

•

, ,

(~

3.2.7

The INSERT NUMBER colu~n is provided as a facility to insert

additional lines of coding in a source program, after the

initial effort, without disturbing the sequence established by

Page and Line Number.

During the assembly processing, the Assembler program assigns

a consecutive number to the output cards in the object program

deck. The Assembler assigned card number is punched into

colu~ns 62 though 65. Column 66 is blank In the o~tput card.

The remainder of the card columns are not examined by the

Assembler program, and are available for whatever use the

programmer may determine. Such things as Job Number, Programmer's

Initials, and Date may be included on a repetitive punching basis.

These items will not appear in the object deck. Card Columns 67

through 73 are used for the object language instructions, and

columns 74 through 80 are used for instructions to the Load

program •
.

3.3 OPERAND 1 ADDRESS SPECIFICATION

There are several methods of specifying operand addresses in the

UNIVAC 1005 Assembly System. A description of the three most

used methods follows below. The remainder of the methods are

described in Appendix ____ •

3.3.1 SYMBOLIC ADDRESS (Label) SPECIFICATION

A definition of a symbolic address and so~e examples of Labels

have been given in preceding sections. In the UNIVAC 1005

Assembly System, when a Label is used on a line of coding which

31

defines a data area, that line of coding also includes the length

of the area to be allocated to the data. The Label is then

used to specify the MSL of the data area. By placing a plus sign

(+) as a prefix to the Label when it is used as an operand address,

the programmer can specify the LSL of the data area.

Example:

of

ROW

A Declarative has been used to establish a data area
of six positions with a Label NAME. Assume the data
area has been allocated in memory as:

COLUMN
I 1 I 2 I 3 I 4 I 5 l6 L1 I !J 9 I 1 0 1:2:!J 1 2 I

NMAE

The following use of the Label NA~E as an Operand 1
address of a TRF-D instruction wo~ld then cause a
substitution of R25/C6, since a Label specifies the
MSL of the area.

----.-.-
LABEL PPERATION OPERAND 1

~ FIELD A + Hie
1 5 6 10 * 12 16 -118 2(;

_.L.....a __ ~_L_ tr~-L- --~~k '-- LL._LJ

The use of the plus sign (+) prefix to the Label NA~E
as an Operand 1 address in a TRF-A instruction would
then cause a substitution of R25/C11, the LSL of the area.

LABEL

NOTE: The plus sign (+) can be used as a prefix to 5 character
Labels by coding t~e ~i~st 4 characters only. The first
3 characters are significant to the Assembler program.

Labels must be coded starting in the left-hand position of Field A
(column 12). If the plus sign (+) prefix is used, it must appear in
column 12, and the Label starts in column 13.

ct
1
~

j
I

o

(-

3.3.2 INCREMENTS TO SYMBOLIC ADDRESSESS

"

When a Label has been placed on a line of coding, the programmer

knows that the Assembler program is going to allocate the num~er

of memory locations required by that line of coding, and will also

assign an actual address to the Locations. The programmer does

not know the actual address which will be assigned, but he knows

that the use of the same Label will cause the Assembler program

to substitute whatever actual address was assigned. Based on

this knowledge, the programm~r is then able to specify the address

of locations relative to his line of coding. This is accomplished

by indicating an increment or decrement to the Label in the
+
-, INC field of the Coding form.

Assume that allocation has been made according to the previous

example. The following coding would cause the Assembler program

to produce these substitute addresses:

OPERAND 1

FIELD A
* 12 16

= address R25/C7 (MSL + 1)

= address R25/C11 (MSL + 5 = LSL)

= address R25/C10 (LSL - 1)

= address R25/C6 (LSL - 5 = MSL)

= address R25/C3 (Outside of area)

= address R25/C12 (Outside of area)

It should be noted that the use of increments is
not restricted to addresses within the area
allocated by the line of coding 33

When an increment is used, a plus or minus sign must appear in column 17,
and the amount of the increment (in decimal numbers) must start in
column 18.

3.3.3 DECIMAL ADDRESSING

As mentioned Section 1.1, decimal addressing is provided by the UNIVAC
1005 Assembly System. This technique allows the programmer to consider
the layout of Input Output, instructions, and data in a consecutive
sequential manner. This eliminates the problems associated with
advancing that takes place in Rowand Column addressing.

When a decimal address is specified to the Assembler program, the
decimal number is converted to the two-character address required 1n
the object language.

Decimal addresses take the following form:

N through NNNN

N through NNNN

= the special character lozenge which indicates
to the Assembler program that what follows
is a decimal number.

= a decimal number which must be left-justified.

Indirect Addressing is allowed with decimal addressing.

Examples of decimal addressing

OPERAND 1
FIELD A

* 12

= First location of Read Input Storage (R1/C1, Bank 1)

= Last location of Read Input Storage (R3/C18, Bank 1)

= First location in Bank 2 CR1/C1, Bank 2)

= Last location in Bank 2 (R31/C31, Bank 2)

When decimal addressing is used, the lozenge () must appear in column
12. The decimal number must begin in column 13. The deimal number cannot
exceed 4 digits, since the maximum address is 3844 (four bank system).

3.3.4 ROW AND COLUMN ADDRESSING

Rowand Column addressing is used when the programmer knows the actual
address of the data. An actual or absolute address in the UNIVAC 1005 1S
specified by two 6-bit characters which are converted by the computer
circuity into Row, Column and Bank. Rowand Column addressing

o

in the UNIVAC 1005 Assembly $ystem allows o

J

(

the programmer to specify Row, Column, and Bank eliminating

the need to memorize or reference tables of the two-character

codes required in the object program.

The following format is used to specify Rowand Column address: .

Example:

~RCCBn

$ is the indication to the Assembler program that what
follows is a Rowand Column address

RR = the numeric Row Number (1 - 32)

CC = the numeric Column Number (1 - 32)
+

B must be placed in the - column of the OPERAND field

n = the numeric Bank Number (1 - 4)

MSL of Read Input

LSLof Read Input

LSL of rX

Indirect Addressing can be specified with machine-oriented addresses

by placing an asterisk (*) in the appropriate column (11 or 21)

of the form.

The $ must appear in column 12, 22, or 32, and the letter B must

appear in column 18, 28, or 38. Increments to Rowand Column

address are not allowed.

Rowand Column address is also used to specify the address of the

Special Registers.

3.3.5

- --~----~----

INSTRUCTION LOCATION COUNTER (ILC) ADDRESSING

The ILC is the counter in the Assembler program which keeps

track of the allocation of memory locations to instru~tions.

The use of the current value of the ILC for addressing purposes

is provided by the UNIVAC 1005 Assembly System. Proper use of

this technique is based on the programmer's knowledge of the

memory mapping process of the Assembler program. (See Section 2.5).

The $ character, alone, In the left-hand position of Field A, Field

B, and Field C of the coding form, instructs the Assembler

program to use the current value of the ILC as the address for

the A, B, or C portion of the object instruction. An increment

or decrement to the address currently in the ILC can also be
+

specified in the - INC fields for each address. This increment

or decrement does not change the value of the ILC itself. The

maximum increment or decrement is 961.

FXamDip. 1: Assume the valup. of the ILC is tt 745 (R25/C1. B1)
at the time the fOllowing descending transfer instructi~n
IS to De assemDled.

LABEL

I

(

c

3.4.

(-

3.4.1

$ + 7 produces an address of 752 (745 + 7) which is the address

which will be assigned to the next instruction. Transfer will

begin at the MSL of the next instruction.

Example 2: The. fol.10wing coding of a descending trans.f~.r Jr:LsJr~..s;!J.9.r:'I
will cause the instruction it~elf t~ be transferred.

_ .. -.
LABEL OPERATION OPERAND 1

~ FIELD A + INC
1 5 6 10 * 12 16 - 18 ZJ

--L..o.-..J. _. _. _~_ ... J.,

~.
1

OPERAND 2 ADDRESS SPECIFICATION

The rules for OPERAND 1 address·specification.(Section 3.3) apply

to OPERAND 2 address specification.

OPERAND 2, FIELD C, BLANK ADIRESS ING

The majority of UNIVAC 1005 Operations require the specification

of an A address (OP 1 MSL or LSL), a B address (OP 2, MSL), and

a C address(OP 2 LSL). The UNIVAC 1005 Assembly System

allows the programmer to leave the Field ·C pod ion of the source

language instruction blank when a symbolic address IS used in

Field B. When a Label is used in the Field B portion of the

instruction, the Assembler program references the Label Table

to acquire the MSL address of the area it has assigned to the

Label. The same reference to the Label Table will also produce

the LSL address of the assigned area which the Assembler p-ogram

will then automatically include in the object instructions as

the C address.

If Field S of the instruction does not contain a Label, automatic

(blank) addressing will not be performed. If the Field C portion

of the instruction contains any information, automatic (blank)

addressing will not be performed, and the address specified in

Field C will be used. If the LSL of the area indicated by the

Label in Field B is not to be used, the programmer must specify

the desired address in Field 8.

For the following examples, DATA is the Label of a 6 character
field assigned by the Assembler program
to R25/C1, B1 (MSL) through R25/C6, B 1 (LSL)

Example 1:

Example 2:

Example 3:

----------- ------------

+ INC
- '8'10

I I I I

The Assembler program wi 11 automat ica11 y
assign R25/C6, B 1 as the C address.

FIELD C
32 36

+ INC
fiO

I I

The coding in Field B specifies that the LSL
of DATA (+ prefix) is to be the MSL of the
instruction. The blank Field C specifies
that the LSL of DATA is to be the LSL of the
instruction. This coding produces a one
character operand with an MSL and LSL of
R25/C6, B 1.

+ INC
/iO

I I

Field B specifies that the MSL of D~TA plus
3 locations (R25/C4, B1) is the MSL of OP 2.
Again the blank Field C will automatically
p.roduce the LSL of DATA (R25/C6, B1) as the
LSL of OP 2. OP 2 is a 3 character operand.

31

(-

(

Example 4:
FIELD C ... INC

32 36 - 8 fiO

Field B specifies that the LSL of DATA
(+ sign) -3 (R25/C3, B1) is to be used.
as OP 2, MSL. The presence of information
in Field C prevents the automatic (blank)
addressing of OP 2, LSL. Field C
specifies that the LSL of DATA (+ sign)
-1 (R25/C5, B1) is to be used as the LSL
of OP 2. OP 2 is a 3 character operand.

3.4.2 OPERAND 2 INDIRECT ADDRESSING

As explained in Section 1.6, Indirect Addressing utilizes a primary

address in the instruction which specifies the location of a

secondary address in memory which contains the address of the data

to be used in the Operatio~.

When Indirect Addressing is used for OP 2 of an instruction, the

primary address in the instruction must refer to the MSL of a

4 character location that contains the seco~dary address. A 4

character secondary address is necessary due to the fact that OP 2

of the object instruction must specify a 2 character MSL address

and a 2 character LSL address.

The specification of Indirct Addressing will cause the UNIVAC 1005,

at object execution time, to perform a 4 location descending

transfer from the address specified In the B portion of the

instruction to the Band C portions of the Instruction Register.

The OP 2 will then be accessed based on the new addresses in the

'Instruction Register.

If a Label is used with OP 2 Indirect Addressing, the Label is

specified in Field B, and Field C is blank. The Label in Field

B must specify an assigned area of 4 characters which contain a

B and a C address. The UNIVAC 1005 Assembly System provides a

pseudo-operation which is used for this purpose. (See the DI

Operation, Section __ .) OP 2 Indirect Addressing is specified

by an asterisk (*) In the IA Field of OPERAND 2 (Column 21). No

indication is made In Column 31, since the Indirect Address

functions for both the MSL and LSL of OP 2.

Example: Label JOE has been defined as the primary address for the
secondary address DATA. DATA has been defined as a 6
character area. JOE has been assigned to locations .t{
801 through t(804. DATA has been assigned to locations
}(745 through ~ 750. Thus, in locat ion !(801 and ~

802 is the machine code equivalent ofjt745, and in location
t!803 andt(804 is the machine code equivalent of.tC 750.

The following coding will produce a correct Indirect
Address reference to DATA as the OP 2 of an instruction •

. --...... .. - ._ ..

OPERArlD 2
l~ F !ELD B + INC FIELD C + INC
* 22 26 - 28 30 32 36 - 38 ciO

~ :r().~ .J_ • . , _.! .. __ l~ ____ . __ .'_ . I
When decimal or Row/Column Indirect Addressing is used, Field 8

must specify the MSL of the location of the 4 character secondary
•

address. aAa Fidel Q M 8!!88if) .. 1:0 lel uP LI:c 1 d:a: Iup~er aaauss

Example 1: r-----"'.~.------- -------"""1
F'ELD B

26
FIELD C + INC

3(, - -;0

Example ~ _________________________ _

Same as above

R25/C25, B1 = 801

~i)J~~Mff~I=m~::~~~t:~ +1eS"82~; 81 8~

4
I

o
LID

: (- 3.5

3.5.1

SUMMARY OF FIELD A, FIELD B, AND FIELD C SPECIFICATIONS

FIELD A

Field A of the source language instruction may specify:

1. LSL address of OP 1
2. MSL address of OP 1
3. Decimal digits
4. Octal digits
5. Test bit conditions
6. Destination address of JUMP TEST Operation
7. Two machine language characters

3.5.2 FIELD B

Field B of the source language instruction may specify:

1. MSL address of OP 2
2. MSL address of OP 1
3. Set condition bits
4. Decimal digits
5. Octal digits
6. Destination address of JUMP Operations
7. Two·machine language characters

3.5.3 FIELD C

Field C of the source language instruction may specify:

1~ LSL address of OP 2
2. Two machine language characters

NOTE: Those specifications not previously explained will be
covered in the Section with the instructions that
require or allow the specification.

til

3.6 STAND~D SYSTEM LABELS

In addition to the programmer assigned symbolic Labels previously

discussed, the UNIVAC 1005 Assembly System provides 15 Standard

Labels for predesignated areas of main store. These Standard

Labels are not counted in with the number of Labels assigned by

the programmer. The purpose of the Standard Labels is to provide

uniformity of assignment of these predesignated areas, and reduce

the processing time of the Assembler program for handling

'" repetitive references to these areas.

(~ .. ~f\ \~\
~ The Standard Label8{\and predes ignated areas are:

~ (JfsNDIRD LABEL

@ $i1

~ ~2

$lic

$PR

$P1

$P1

$P2

$PC

$Z1

$Z2

FREDES I GNATED /REA

so Column Read Input

2nd Half of 160 Col. Read
Code Image

160 Colum.") Read Code Image

132 Column Print Storage

SO Column PUNCH Storage

SO Column Read/Punch Read
Storage

SO Column Read/Punch Punch
Storage

160 Column Code Image
Punch Storage

160 Column Read/Punch
Code Image Read Storage

160 Column Read/Punch Code
Image Punch Storage

DEC I MAL ADm ESS 'ROW/COLUMN ADmESS

~ 1 - 1t SO R1/C1-R3/C1S, 81

)(,S1 -)::(160 R3/C19-R6/C5, 81

l:(1 - l1. 160 R1/C1-R6/C5, 81

It 161 - tf 292 R6/C6-R10/C13, 81

lt 293 - .Jt 372 R10/C14-R12/C31, 81

)t 293 -)(372 R10/C14-R12/C31, 81

11: 373 - t(452 R13/C1-R15/C1S, 81

t!293 - l!452 R10/C14-R15/C1S, 81

}:(293 -):(452 R10/C14-R15/C1S, 81

Jt 453 - l(612 R15/C19-R20/C23, 81

'1z,

-.--.~----------.-----------

,

J

i

t

0
V

0

STANDARD LABEL PREDESIGNATED AREA DECIMAL ADffiESS

1(613 'Hw

ROW/COLUMN ADffiESS

R20/C24, B1 $BM

$IR

$Cc

$XR

$TR
.1/",

First Location beyond Input
Output Storage

Instruction Register

Instruction Control Counter

Register X

None

None

None

R32/C1-R32/C7, B1

R32/C8-R32/C9, B1

R32/C1-R 32/C31 , B2

') Translation Table I,.):t 1859 - t(1922 R29/C30-R31/C31, B2
.'~ c v< \'\Vt4,!\~,,<,c 4 ~ (I'l.)t\ ~r l(3781 - l(3844 or R 29/C30-R 31 /C31, B4

'--"'---
~ ,~::;. \ ,~l. ~

'.\ \ cthe Assembler processing associated with Standard Labels is the

same as for the Labels assigned by the programmer. That is, the use

of a Standard Label as an address specification within a line of

coding will cause the Assembler program to substitute the MSL

of the area ident ified by the Standard Label. The LsL address is

also specified and substituted in the same manner as for programmer's

Labels.

The Standard Label $TR refers to the,required locatio~ for

translation tables when the hardware translate option of the

UNIVAC 1005 is part of the object system.

UNIVAC 1005 ASSEMBLY SYSTEM INSTRUCTIONS

4.0 This section of the manual covers the instruction repertoire

of the UNIVAC 1005 as programmed through the language of the

UNIVAC 1005 Assembly Systems and the declarative instructions which

direct the processing of the Assembler program.

4.1 LEGEND

The following abbreviations are used in the description of the

UNIVAC 1005 Assembly~ S~!.tLw.

1L = Operand 1, LSL
1M = Operand 1, MSL
2L = Operand 2, LSL
2M = Operand 2, MSL
K = any alphanumeric character
o = any numeric character

CC = characters whose bit positions represent Condition Indicators
NI = the next sequential instruction
() = contents of the area specified within the parenthesis
~ = transfer to

i5 = a blank column, (space code), used to establish
positional notation

IA = Indirect Addressing

NOTE: For a description of Operand 1, Operand 2, and the
UNIVAC 1005 machine language instructions, see
Section 1.2.

4.2 LENGTH OF OPERANDS

The length of the Operand(s) In a UNIVAC 1005 instruction is

normally defined by the addresses of Operand 2. An instruction

is normally terminated when the last location (LSL if descending mode,

MSL if ascending mOde~~a~ been handled. This means that the number

of locations in OP 1 must ~ ~ same as the number of locations

In OP 2.

If the lengths of the Operands (as defined by the programmer) to be

c

o

c

processed In an instruction are not the same, special programming

involving the use of Register X is required. The "Transfer to

rX" (TX) command allows the programmer to specify OP1, MSL and

OP 1, LSL, thus defining the length of OP 1. (See Section

for complete description of TX.) The destination (OP 2) of the

TX command is rX (31 positions). The TX instruction performs an

Ascending Transfer of OP 1 torX, beginning at the LSL of each.

When the OP 1, MSL (as specified in the instruction) has been

transferred to rX, access of OP 1 is terminated. The TX instruction

continues, transferring space codes into the excess positions of

rX until the MSL of rX has been filled. This signals the end of

the instruction.

Aft.er transferring the smaller of the two Operands to. rX, the

program:ner then uses the appropriate location in rX as the OP 1

address of the instruction which does the required processing.

This insures the use of space codes in the locations which are

added to make the length of OP 1 equal the length of OP 2. This

condition is particularly important for the Arithmetic, the Compare,

and the Transfer instructions.

Following is an example of the incorrect use of unequal length

Operands and the erroneous result produced, as well as an example

of the use of the TX command to produce correct results.

OP 1
Given :.

[i! i! 6T X I i?x! X ill y I y 1 Locations It 703 - 'l:(708
~7-0-=1...J...~-L7-='O":"'3+--~'-"';'~-L..-~7~O:-:-8+---=7-1 O~ conta i n the OP 1 da ta

(6 locations).

OP 2
--------/,~--------~ r-'- -I -. ~ Locat ions t(' 801 - j(808 is to

1-+---~.-'~--L.-~--4-_+-~I-j be the OP 2 (8 Locat ions)

Example 1:

801 808

If an Ascending Transfer of OP 1 to OP 2 is executed,
the results in the OP 2 locations would be

Iz I l I X I X I X I xl XI xl
801 808

since the length of OP 2 (8 Locations) determines the
length of the Operand 1.

Example 2: If a Descending Transfer of OP 1 to OP 2 IS executed, the
results in the OP 2 locations would be

~X I X I X I X I X I y I y I
801 808

since the length of OP 2 (8 Locations) determines the
length of Operand 1.

In Examples 1 and 2, extraneous locations (the l's and V's) which

are not part of OP 1 would be transferred. If an Arithmetic

instruction was executed using the same operands, the locations con-

taining the Zls would become part of the OP 1 and would be combined

with the values in):(801 and l:t802, producing an erroneous result.

Using the same conditions glven for the preceding examples, the

following example methods can be used to produce correct results.

Exam?le 3: I nstruct ion 1. Transfer OP 1 to rX us i ng the TX
command. The TX command provides for specification of
OP 1, MSL and LSL.

OP 1

1 X I X I xCi X I X I xl
703 708

R 32 , B 1 I 111 <t- [I \
1

rX
\ I I I I I I I I I ~I 11 I X I X X

25 26
X X xl

31

o

I nstruct ion 2: Ascending Transfer specifying the LSL of
rX ($323181) as OP 1, LSL to the
destination OP 2 (t(801 -)::(808). The
length of the OP 2 (8 locations) will cause
the low-order 8 locations of rX to be
transferred. This will produce the following
results in OP 2.

I ,W I W I X Lxi X 1 X I X I X 1

801 808

Example 4: In order to perfrom Arithmetic instructions on Operands
of unequal length, the type of operation performed in
Instruction 1, Example 3 would establisr OP 1 in rX. The
length of the OP 2 of the Arithmetic instruction would then
control the nu~ber of locations to be used from rX
(including high order spaces).

Instruction 1: Transfer OP 1 to rX

I 5 I 5
703 708

Row 32, B 1U1H---F+ / I I I I I I I-+-~ kI' I 5 I 5 I 5 I 5 I 5 I 5 I

Row 32, 8' 1

Example 5:

1 25 26 31

I nstruct ion 2: Assume a~~ ADD-ALG instruction
OP 1

~I I I I I 1 I 1 .. 1 ~I iir I 5 5 5 5 I 5
1 24

Original OP 2 = t 2 I 2 12 2 2 2 1 2
801

Final OP 2 = 18~1 12 17 7 7 7 I '1

In order to perfrom a Descending Transfer producing a result
of the smaller OP 1 left-justified (in the most significant
locations) in OP 2 and spaces in the remaining low-order
positions of OP 2, two instructions are required.

I

I

Instruction 1: Descending Transfer, specifying the portion of
the OP 2 locations which are to receive the significant data, _
as the OP 2 of the TD instruction.

OP 1

t~_lx [xliI X I xl
708 703

5 I
31

2 I
808

'1 I
808

OP 2

fx r x I x Ix l x I x l wik link I
801 806 807 808

Instruction 2: Use the Transfer Constant (TK) instruction
to transfer space codes to the low-order

I x I X I X
801

positions of OP 2. (See Section ____ for a
description of the TK instruction.) This
will produce the desired result.

o

(\
I :
'''-../

o

4.3 TRANSFER INSTRUCTIONS

4.3.1 TRANSFER DESCENDING

MNEMONIC: TD MODE: DESCENDING LENGTH: 7 I A: YES

LABEL PPERATION OPERAND 1 OPFRA If) ?

~ FIELD A + iNC I~ i="" 'ELD B + INC FIELD C ... I r~C
1 5 6 10 * 1,! 16 - .. 212 ~t- 22 2fj -- .,

3C ,n k - 3: L
.. L. .- 5':'

l .. .L...-"-_ l IT.D L-L-l- 1M • • .J __ ~M.. • I ~,L, . • •
FUNCTION: Transfer descending beginning from OP 1 - MSL specified by

Field A; to OP 2 - MSL specified by Field B, until OP 2 - LSL

specified by Field C has been filled.

Example 1:

Given: A 6 location area with the Label CAT has been
allocated to R31/C1 through R31/C6 in Bank 1
(J::t 931. through):t 93').

Problem: Transfer Descending the data from card columns
4 through 9 to the area CAT.

LABEL OPERA I ION OPERAND 1 OPERArIf) ?

·Cl

I

~ FIELD A + INC IA riELL .J + IN(.: FIELD C ... INC
1 5 6 10

_ J T». . •
FIELD A; OP 1, MSL:

* 12 16 .. 20 * 22 26 -- 2~ 30 32 3(, - Y

al~'i., • It ;Llc.. C;A:r. . I I _ . .1 .. .1 J .1._

The Standard Label $R1 specifies the MSL of
Read Input Storage (the location of card column 1).
The increment of +3 causes the MSL of this OP 1
to be the location of card column 4. :rile t5tee ef
$0104B1 or ~4 can be used to specify the same OP 1,
MSL since the location is known to the programmer.

:iO

I

FIELD B; OP 2, MSL: The programmer's Label CAT specifies the MSL of the ~i

area assigned to CAT by the Assembler program.

NOTE: $3101 B1 or)t 930 could not be used since the
programmer does not know the actual address
which will be assigned to area CAT.

FIELD C; OP 2, LSL: Blank addressing will cause the Assembler program

to use the LSL address of the area specified by the

Label in Field B. The programmer can also use CAT + 5,

or +CAT in Field C and produce the same result.

Example 2:
Given: The same area with the Label CAT from example 1. Also,

A 6 location area with the Label DOG has been

LABEL

1

P bl ro em:
PPERATION

'"

allocated to R1/01 through R 1 /C6 of Bank 2 ():(962
through }:(967).

T rans f D er esc en d' Ing e 0 th (CAT) t DOG .
OPERAND -1 nPFRArIn ?
FIELD A + INC .~ F! ELD B + INC FIELD C ... INC

5 6 10 * 1 ') 1(; - . -- 2C * 22 2(, -- 2 30 32 3(; - l:r: ,)0 '--

Tb
----L..a.-__ i I I I . . C,,~, I . I fl'o (x-

I •• . I I I I I I I I
FIELD A; OP1, MSL: The Label CAT specifies the MSL address of the area

assigned to CAT.

FIELD B; OP 2, MSL: The Label DOG specifies the MSL address of the area

assigned to DOG.

FIELD C; OP 2, LSL: Blank addressing will cause the Assembler program

to use the LSL address of the area specified by the

Label In Field B. The programmer can also use

DOG + 5, or + Dog in Field C and produce the same result.

NOTE: Row/Column or Decimal Addressing can not be used
for any of the addresses, since the actual
locations of the data are not known by the
programmer.

{o

I~
-'-/

o

Example 3:

Problem: Transfer the entire contents of the card in Read
Storage to the first 80 print positions of Print
Storage.

LABEL ~PERATION OPERAND 1 OPERArJD ;/
~ FIELD A + iNC I~ F'ELD B + INC FIELD C + INC

1 5 6 10 * 12 16 - . - Ie * 22 26 .. 2- 30 32 3L - 13:' :iO

I 1r,D. I~~~ . • I J:PR . 1 1 a~J~ . + '7QI

FIELD A; OP 1, MSL: The Standard Label $1 sgeci fies the MSL of the
Read I nput Storage area.' $0101 B1 or l(1 could
have been used.

FIELD B; OP 2, MSL:

FIELD C; OP 2, LSL:

Example 4:

Problem:

lABEL tJPERATION
Ifl

The Standard Label $PR specifies the MSL of the
Print Storage area $0606B1 or ~ 161 could have
been used.

Blank addressing can not be used, since this would
cause the Assembler program to use the LSL of $PR,
the last column of the Print Storage area. $PR + 79
is the address of Print position 80 which should be the
LSL of OP 2. $0823B1 or ;:r 240 could have been used.

Transfer the data from column 80 of an input card
to column 80 of an output card.

OPERAND 1 OPERMJD 2
FIELD A + iNC ,~ FIELD B + INC FIELD C .. INC

-10 * 12 16
- ... 2C * 22 26 .. 2~ 30 32 3(; l3 .. ;0 1 5 6 -

. T) •

FIELD A; OP 1, MSL:

FIELD B; OP 2, MSL:

FIELD C; OP 2, LSL:

+"t1 t ",Ji,~ .i I I I

The plus sign (+) prefix to the Standard Label $R1
specifies the LSL of Read Input Storage as the MSL
of OP 1. $0318B 1 or !(80 cou 1 d have been used.

The plus sign (+) prefix to the Standard Label $P 1
specifies the LSL of Punch Storage as the MSL of
OP 2. $1231B1 orJt372 could have been used.

I

Blank addressing in Field C specifies the LSL of the
area whose Label is in Field B. (The plus sign in
Field B does not constitute part of the Label. It
instructs the Assembler erogram to use the LSL address
of the labelled area.) $1231B1 or ~ 372 could have
been used.

NOTE: Since OP 2, MSL and OP 2, LSL speci fy the
same address, a one location Operand is produced.

~I

4.3.2 TRANSFER ASCENDING

MNEMONIC: TA MODE: ASCENDING LENGTH: 7 I A: YES

LABEL OPERATION OPERAND 1 OPEfiArID 2
~ FIELD A + 'NC I~ r'ELf' B + I rJC F It.LD C + iNC

1 :; 6 10 * '2 16 - .. ?2 ;(. 22 2r:) . - 2-)(', 32 ::1 . - 3· ;U

-....L~ • T.AL • [i.l • • ..L ~'M
_ ~..a_ L_l .. _. ~ __ ...1.. •• L)"L. I

FUNCTION: Transfer ascending beginning from OP 1 - LSL specified by

Field A; to OP 2 - LSL specified by Field C, until OP 2- MSL

specified by Field B has been filled.

Example 1:

Given: A 6 location area with the Label CAT has been allocated
to R31/C1 through R 31 /C6 in Bank 1 ()1930 through l(935).

LABEL

Problem: Transfer Ascending the data from =ard columns 4
through 9 to the area CAT.

PPERATION OPERAND 1 OPERAnD /
~ FIELD A + ! NC I~ r TLD B + Il\le F ItLD C + iNC

1 5 6 10 *- '2 16 - - 2C ~ 22 2(, .- 2- :50 J2 3C - b ',0 ..

• TA &l.i.. Ii i I C:~:r. . 1 I , ! , .. LL..

FIELD A; OP 1, LSL:

FIELD 3; OP 2, MSL:

$R1 is the Standard Label for the MSL of Read Input
Storage (the location of card column 1). The
increment of +8 causes the LSL of this OP 1 to be
the location of card column 9. $0109B1 or n 9
can be used to specify the same OP 1, LSL since the
locat ion is known to the progr·ammer.

The programmer's Label CAT specifies the MSL of the
area assigned to CAT by the Assembler program.

NOTE: $3101B1 or lt930 could not be used since the
programmer 'does not knoN the actual address
which will be assigned to area CAT.

FIELD C; OP 1, LSL: Blank addressing will cause the Assembler program to
use the LSL address of the area specified by the
Label in Field B. The programmer can also use
CAT + 5, or + CAT in Field C and produce the same
resul t.

c

Exalll;:>le 2:

LABEL

Given: The same area with the Label CAT from Example 1.
Also, a 6 location area with the Label DOG has
been allocated to R1/C1 through R1/C6 of Bank 2
(t(962 through rt967).

Problem: Transfer Ascending the (CAT) to DOG
.-

OPERATION OPERAND 1 OPERAI JD 2
IA FiELD A + 'NC 111 F'ELD B + INC FIELD C 1- INC

1 5 G 10 'I- '2 16
- ,". ')(\

-Y- ;Z2 2(, -- 2-- W
,-, 31 - 3-(I.. ' -----'L

I . TA, . tIC~~ I ~,O.~ 1 I I --L-.l

FIELD A; OP 1, LSL: The Label CAT with a plus sign (+) prefix specifies
the LSL of the area assigned to CAT.

FIELD B; OP 2, MSL: The Label DOG specifies the MSL of the area assigned
to DOG.

FIELD C; OP 2, LSL: Blank addressing will cause the Assembler program
to use the LSL address of the area specified by the
Label in Field B. The programmer can also use

Example 3:

DOG +5, or +DOG in Field ~ and produce the same
result •

NOTE: Row/Colu~n or Decimal Addressing can not be
used for any of the addresses, since the
actual locations of the data are not known by
the programmer.

Given: A 7 position location with the Label XT 1 is the last
instruction of a subroutine.

Problem: Transfer Ascending the previous 7 character
instruction to the exit line XT 1 of the subroutine.

LABEL OPERATION OPERAND 1 OPERM ID ?
IA FIELD A + INC 111 FIELD B + INC FIELD C 1- I ~~C

.-: CJ

I

1 5 6 10 * '2 16 - , - 2C * 22 26 -- '2: 3U 32 3C - 8~ iO

I I TA, •

FIELD A; OP 1, LSL:

I'. . -Ii 1 n~_~ _____ J

$-1 instructs the Assembler program to use the
current value of the ILC minus one as the address
of OP 1, LSL of this instruction. The current
value of the ILC is the MSL of this instruction.
The MSL of this instruction minus one is the LSL of
the previous instruction.

I

FIELD B; OP 2, MSL: The label XT 1 specifies the MSL of the locations
assigned to that instruction by the Assembler
program.

FIELD C; OP 1, LSL: Blank addressing will cause the Assembler program
to use the LSL of the locations assigned to the
instruction stored at XT 1.

c

4.3.3 TRANSFER CLEftR

MNEiVlON IC: TC MODE: ASCENDING LENGTH: 7 IA: YES

LABEL IOPERATION OPERAND 1 OPFRAr lD /
~ FIELD A + ! NC III F 'ELD B + I ~JC FIELD C 1" INC

1 5 G 10 'I< 12 16 - . - 2C -;\:. 2~~ " .' -- 2- Y' 32 3C - 13: ;0 ':0 . c;

I .. 1.
T--,-C. . ilL 1 I~~ I I l~h I

FUNCTION: Transfer ascending beginning from OP 1 - LSL specified by

Field A; to OP 2 - lSL specified by Field C, until OP 2 -

MSL specified by Field B has been filled. Clear the OP 1

locations to space ",odes durio~ the process.

This instruction performs exactly the same as a TA (Transfer Ascending)

instruction. The only difference is that as the characters are

accessed from t.he OP 1 locations, they are not returned to the OP 1

locations. The effect of this instruction le~~es the OP 1 characters

cleared to space codes.

The rules for coding a TC instruction are the same as the rules for

coding the TA instruction (See Section 4.3.2.)

I

4.3.4 TRANSFER ONLY NUMERIC BITS

MNEMON I C: TN MODE: ASCENDING LENGTH: 7 IA: YES
'

LABEL OPERATION OPERAND 1 OP1="RMIIJ ')

~ FIELD A + INC I~ F 'EL[' 8 + I Nr FI::LD C ... INC
1 :) 6 '0 * 12 - I"

- ... ;X' "* 2~ 2()' .. 2·· .~ r ~ 32 - J .. Ir; ~ y ,~

• . TN 1.l I ~IM. . . I I J..Ll I .J

FUNCTION: Transfer ascending beginning from the OP 1 - LSL specified

by Field A; to OP 2 - LSL specified by Field C, until OP 2 -

MSL specified by Field B has been filled. Delete the X

and Y bit-positions of the data delivered to OP 2.

This instruction performs exactly like the TA (Transfer Ascending)

instruction. The only difference is that before the characters are

;0

I

stored in the OP 2 locations, the zone bits (X and Y bit-positions) are

stripped off (set to binary zero). The contents of OP 1 remain unchanged.

The rules for coding a TN instruction are the same as the rules for

coding the TA instruction (See Section 4.3.2.)

{b

C, " , I

c

4.3.5 TRANSFER CONSTANT

1

•

MNEMONIC: TK MODE: ASCENDING LENGTH: 7. IA: YES

LABEL PPERATION OPERAND 1 OPFRArm ? I
JfI FIELD A + ' NC III FIELD B + INC FIELD C ... INC

5 6 10 * '2 16 - . - a: * 22 26 -- 2- 30 32 3(; - 13: ;0

. "" . \~~ I ~:M --.~ ~L. . I
- ..

FUNCTION: Transfer ascending beginning from location 3 of the

Instruction Register (IR); to OP 2 - LSL specified by

Field C, until OP 2 - MSL specified by Field B has been

filled. Transfer a maximum of 2 locations (KK) from the

I.R. If OP 2 is more than two locat ions In length, space-

fill the unentered high-order locations of OP 2.

When a TK instruction is brought to the IR for execution, the two

alphanumeric characters KK will occupy locations 2 and 3 of the IR.

These two locations are used similar to an OP 1 in an Ascending

Transfer. However, the Operation code (TK) will cause the transfer

from OP 1 to cease after the second transfer. The execution of the

instruction wjll continue until OP 2, MSL has been filled. If there

are more than two locations in OP 2, the excess high-order locations

of OP 2 will be filled with space codes. If there are exactly two

locations In OP 2, the instruction will transfer locations 2 and 3

of the IR (the constant KK). If there is only one location in OP 2,

only position 3 of the IR will be transferred.

NOTE: The character)((lozenge) may not be used as the
first character of a constant in Field A of this
instruction. Code in its bit configuration. (See
Section 4.3.5.3)

•

1

Example 1:

Problem: Store the letters OR in the last (low-order)
two locations of Print Storage.

LABEL PPERATION OPERAND 1 nPFRArm ?

~ FIELD A + INC ~~ F TLD B + INC FIELD C ... INC
5 6 10 * 12 16 - 2C * 22 26 - 2: 30 32 36 - G::

ttK • 1c.1t . I +~S.P.R I- i I I ••

FIELD A; KK: The leHers CR.

FIELD B; OP 2, MSL:- $ffi is the Standard Label for the Print Storage
area. The plus sign instructs the Assembler
program to use the LSL of Print Storage, and

flO

I

the minus one causes the address of Print position
131 to become the MSL of this instruction.

FIELD C; OP 2, LSL: Blank addressing will cause the Assembler program
to use the LSL address of the area specified by

I

the Label in Field B. The use of the plus sign and
the increment in Field B have no effect on this
Assembler program procedure.

.r,
,~/

Example 2: f'-~

1

LABEL

Problem: Store a minus sign (-) in the LSL of the 10
character area assigned to FOX. Clear the high
order 9 locations of FOX to spaces.

-... -OPERATION OPERAND ~ nPFRArm ?
If! FIELD A + INC I~ FIELD B + INC FIELD C ... INC

5 6 10 * 12 16 - ~ .. 2C * 22 26 - 2: 30 32 36 - 3:: 40 --

. n< Ji.-. .. . I f;()~ . I _.100 I . I .
FIELD A; KK:

" 0.., -
The M (space code) becomes location 2, and the minus sign
(-) becomes location 3 of the IR. After they are trans
ferred, the remainder of FOX is space filled.

FIELD B; OP 2, MSL: The MSL of the area assigned to FOX becomes the
MSL of this instruction.

FIELD C; OP 2, LSL: Blank addressing causeS the Assembler program to use
the LSL of the area assigned to the Label in Field
B (FOX) as the LSL of this instruction.

NOTE: See Example 5 for a description of negative
constants.

I

\ ~
"'--""

c)

Example 3:

LABEL

1

S,I.CZ.1f.
,

I . ,

Given: Several fields of the print line are to have a
printed sign of plus (+) or minus (-) based on a
condition developed by the program.

Problem: Store the proper sign indication in each of the
fields using the TK instruction with Indirect
Addressing.

PPERATION OPERAND 1 OPERAI JD 2
II! FIELD A + INC I~ F'ElD B + INC FIELD C + INC

5 6 10 '* 12 16 - ':'; 3J * 22 26 -- 2- 30 32 36 - 8:: dO

If.\<. ll' ~l.~~ 1. I t·fJt1 J.I I - -~ . ,
T.\(. . \.J I.L~~C I: l-It I F.})~, • I • I I7'\; -
T,\<. , l.w l.l.'!Iit.~ -11. I 1+.~~.3 I I I~ I ••

Solution: The location immediately preceding the instruction labelled
SIGN has been established as the secondary address location
for the Indirect Addressing to be performed in the
instruction SIGN.

The processing in the program will previously determine the
sign requirements of the printed fields. This same portion of
the program will then transfer the appropriate character to
location SIGN - 1, and execute a Jump instruction which
transfers control to SIGN.

The instruction in SIGN is then brought to the Instruction
ReRister. Before it is executed the instruction is examined
by-the hardware to see if it calls for Indirect Addressing.
In this case,· it does.

The hardware then automatically uses the address in the A
pod ion of the I R as the MSL of a two location transfer from
memory to the A portion of the IR. The hardware then examines
the Operation code and performs the TK instruction using the
"new" conten-ts of the A portion of the IR as the two
character constant KK.

Field B specifies that the LSL of FD 1 is to be used as the
MSL of the instruction. Blank addressing in Field C will
cause the same address to be the LSL of the instruction thus
creating a one character OP 2. Each of the instructions will
then transfer the appropriate sign indication to the LSL of
each of the print fields.

Example 4: ~

Problem: Clear Bank 2 to space codes.

[JPFRA io? - .. -.-..
I LABEL ~PERATION OPERAND :

+ INC FIELD B INC FIELD C ... INC ~ FIELD A iUI +
1 ':) 6 10 * 12 16 - , 21')(- 22 26 .. 2- JO 32 3(. -0 'iel - ..

TI\~""'" U. I~q,b~ I It.1. ct~~ , J • - •. - . .. - 0" . .

FIELD A; KK: The blank columns In the Field A will cause KK to become
space codes.

- ,

FIELDB; OP 2, MSL: t1 962 is the decimal address for the first
location in BaQk 2, which becomes the MSL of OP 2.

I

FIELD C; OP 2, LSL: tt 1922 is the decimal address of the last location
in Bank 2, which becomes the LSL of OP 2.

Solution: This instruction will first transfer the two space codes, and
then space-fill the remainder of OP 2---the rest of Bank 2.

If the KK portion of a TK instruction is to contain a negative constant,

the minus sign (-) is used as a prefix to the two decimal digit constant.

The Assembler program will place an X-bit over both of the numerals

in KK. If the negative constant is to be a value from -1 through -9,

a zero must be coded between the minus sign and the decimal numeral.

If the KK portion of a TK instruction IS to contain a positive constant,

no SIgn indication is required.

Example 5:

Problem: Store a -1 In the 2 location area as~igned to COUNT. --...... ~~~~~~~-....,.------::::~~-~.- ~
LABEL ~PERAT ION OPERAND: OPERAI m ?

~ FIELD A + INC ,~ FIELD B ... INC FIELD C
':) 6 10 * 1 2 16 - .~. 2C * 22 26 .. 2:: 30 32 36

--1-.'

FIELD A; KK:

. _ .• L

The minus sign causes the Assembler program to place a
binary 1 in the X bit position of both the 0 and the 1 In
the object language instruction. (See Section 4.4)

(Po

I ,

J

c

(-

FIELD B; OP 2, MSL: The address of the MSL of the area assigned to
COUNT is used as the MSL of this instruction.

FIELD C; .OP 2, LSL: Blank addressing causes the Assembler program to
use the address of the LSL of the area assigned to
COUNT as the LSL of this instruction.

NOTE: The minus sign C-) symbol can not be used as
the first character of a constant in the TK
instruction. Code in its bit configuration:
(See 4.5.3.)

4.3.5.1 SYMBOLIC ADDRESS SUBSTITUTION

The TK instruction can also be used to change the A, B, or C address

of an instruction. The UNIVAC 1005 Assembly System provides for source

language coding of Labels in the Field A protion of a TK instruction.

These Labels are converted to the two character machine language address

assigned by the Assembler program and stored as KK in the A portion of

the object language TK instruction.

The symbol colon C:) is used In coll{mn 1.2 as a prefix to the Label

whose assigned address is to become KK.

Example lac
Problem: Change the A address portion of a TA instruction

stored in DOG to refer to CAT.

FIELD A; KK: The symbol colon (:) informs the Assembler program that a ()
Label appears in Field A of this TK instruction. The ~
plus sign (+) prefix instructs the Assembler to use
the LSL address of the area assigned to CAT as KK in this
instruction. (The LSL is required due to the ascending
mode of the TA instruction.)

FIELD B; OP 2, MSL: The MSL of the TA instruction stored at DOG contains
the Operation code. Therefore, the MSL of the A
portion of that instruction is stored at DOG +1,
which becomes the MSL of the TK instruction.

FIELD C; OP 2, LSL: DOG +2 is the address of the LSL of the A portion of
. the TA instruction stored at DOG. This address IS

used as the LSL of OP 2 of the TK instruction.

NOTE: If the symbol colon (:) is to be used as the
constant K, it must be coded in its bit
configuration. (See Section 4.3.5.3 below.)

4.3.5.2 ROW/COLUMN· and DECIMAL ADDRESSING

Row/Column and Decimal Addressing can also be used to cause a machine

language address to be placed in the A portion of the TK instruction. ,
Example if:

Problem: Store the machine language of decimal location
~1~OOO as the LSL of a 7 character instruction

stored in FOX.

I LABEL PPERATION OPERAND 1 OPERA~1D 2 --"1
i

~ FIELD A + INC ~A FIELD B + INC FIELD C + INC I
1 5 6 10 * 12 16 - -t", 3J * 22 26 - 2~ 30 32 36 - I3s 40 ::

1t.1JJ.~rJ 'F·oX bl I _I . . In<. • I 1+ I I I
. - - -- '-- >

FIELD A; KK: The Assembler program will use the two character code for
address It 1~OOO as KK in this instruction.

FIELD B; OP 2, MSL:

FIELD C; OP 2, LSL:

FOX is the MSL address of the 7 character instruction.
The LSL address portion (the C portion) of FOX is
therefore FOX +6, which will be used is the OP 2
MSL of this instruction.

Blank addressing will cause the Assembler program
to use the LSL of the area assigned to FOX as the
OP 2, LSL of this instruction. This is the LSL of
the C portion of FOX.

..

o

(/

C·
/

,
Example $':

,

I

LABEL

1

1000 is the decimal address of R2/C8, B~nk 2. The
coding for Example 7 could have read as follows, and
produce the same result.

-
PPERATION OPERAND 1 OPERA JD ')

~ FIELD A + INC IA F 'ELI' B + INC F! ELD C
* '2 16 - . - ;1' * 22 26 -- ") 3U 32 3(5 6 10 - c:-

~,_~JI~I _ lh.lf,~, g ~~ I ~.X~~ I+~, I • --

4.3.5.3 BINARY CODED CONSTA~TS

The basic level of machine code is a series of binary bits. In the

~--

+ INC
- lL ,0

1

UNIVAC 1005, 6 binary digits (bits) are stored in each memory location.

The UNIVAC 1005 Assembly System allows the programmer to use binary

indications, if necessary, to code his program.

In order to reduce the number of source language columns required

for bin~ry indication, the UNIVAC 1005 Assembly System provide~ fo~

octal coding. An octal code is made up of three adjacent binary

digits. Thus two octal digits can be used to express the contents of

one UNIVAC 1005 location. To determine the octal equivalent of the

6-bit binary code, the following is suggested.

UNIVAC 1005 bit position

,,/U(.~

ttl) (~ <.0

X Y 8

Odal Digit #1

<,lJ.) c..~) <.1>
4 2 1

Odal Digit #2

Add the binary ~ of the bits in the 4, 2, and i-bit positions

(maximum sum := 7) to create Odal Digit #2. Using the same values

(4, 2, 1) add the'sum of the X, Y, and 8-bit positions (maximum 7)

to create Octal Digit #1. Write as a two place number.

For example: the bit configuration of the letter A equals

x Y 8 4 2 1
a 1 a 1 a J

Position 1 = a

2=0

4 = 1-
sum 4 equals Octal Digit·2

Position 8 = a

Y = 2

X = a
sum 2 equals Octal Digit~1

Thus the octal form of the leHer A is 24. In the same manner, any

SIX bit configuration can be shown by uSing the two digit octal form.

The symbol for number (#) IS used as a prefix to indicate the Assembler

program that

Example ~
q\

octal coding has been used, followed by four octal digits.

Problem: Store two lozenge symbols (li U) in the least
significant locations of the area assigned to
RAT. (Reminder, the lozenge symbol cannot
be used for KK in the TK instruction.) = 111 101

~--I LABEL PPERATION OPERAND "1 OPERAllD ? .. FIELD A + INC ,~ FIEL.D B + INC FIELDS 1- INC
11 5 6 10 * 12 16 - ~ .. a; * 22 26 -- 2:: 30 32 3(, - lk 110

I -• - ~ T\(I __ L~ • f.7.s'.7.' . I ~~.Ar._ 1. I I •

FIELD A; KK: The number symbol (#) indicates to the Assembler program
that what follows is octal coding. The Assembler program
then forms the two characters KK.

FIELD 8; OP 2, MSL: + RAT -1 is the second least significat location
of RAT.

. I

o

c

c

FIELD C; OP 2, LSL: Blank add~essing causes the Assembler program to
use the LSL of the area assigned to RAT as the
LSL of this instruction.

NOTE: Octal coding can also be used as a method
for addressing in the UNIVAC 1005 Assembly
System. See Appendix ___ for a complete
description.

4.3.6 TRANSFER TO REGISTER X

J

MNEMON I C : TX MODE: ASCENDING LENGTH: 5 IA: NO ... - PPERATI'O~N'~ ~OPERAND
- "--- .. - - ..

. OPERA ID 2 i LABEL 1

~ FIELD A + INC .~ FIELD B + INC FIELD C
11 10 * 12 16 - ... 20 * 22 26 - 2~ 30 32 5 6 -..

-._ ;.~_tr..L. 1.l. ... I- I I ~.~._., • I I

FUNCTION: (OP 2 in the TX command is rX.) Transfer ascending

beg i nn i ng from OP 1 - LSLi 1= Da: I c:.; cont i nu i ng unt i 1

OP 1 - MSL has been transferred. Space fill any un-

36

. .

entered high order positions of rX. Maxim~m OP 1 operand

length is 31 locations. (See Section 4.2 for further

information.)

+ .-

This instruction has an implied OP 2 ofrX, which is indicated by the

Operation code. The purpose of this instruction is to provide for

INC
3: 40

I

the handling of unequal length operands. Complete specification of the

length of OP 1 is made in Field A and Field B (two addresses), and rX

is OP 2. The TX instruction is a 5 character instruction.

Example 1:

........ .
LABEL

Problem: Transfer the 5 characters from card columns 1
thru 5 to the 8 character field assigned to CAT.
NOTE: This requires two instructions •

PPERATION OPERAIID 2 OPERAND 1
~ FIELD A + INC ,~ FIELD B + INC FIELD C +

1 5 6 10 * 12 16 - .:; 20 * 22 26 - 2~ 30 32 36 -

• . ,oX . ~({i .. 1- III: 1 1Rt. • I • I ••

• • • • T.A. ,.~~ ~.1. ~ ~I ~.~:T J .

I~C
[3[' :: 40

I

I

o

(

(

Instruct ion 1 TX

FIELD A.; OP 1, LSL: The Standard Label $R1 + 4 specifies that the address
of the fifth position of Re~d Input storage is
to be the LSL of this instructio~.

FIELD B; OP 1, MSL: The Standard Label $R1 specifies that the address
of the first position is to be the MSL of this
instruction.

FIELD C; Ignored

Instruction 1 transfers locations 1 through 5 of Read Input
storage to the low order 5 locations of rX (R32/C27, Bank 2
through R32/C31, Bank 2). The remainder of rX (R32/C1, Bank
2 through R32/C26, Bank 2) is filled with space codes.

I nstruct ion 2 TA

FIELD A; OP 1, LSL:

FIELD B; OP 2, MSL:

F!ELD C; OP 2, LSL:

$3231B2 specifies that the LSL of rX is to be used
as the OP 1, LSL of this instruction.

The MSL address of the area assigned to CAT is to
be used as the OP 2, MSL of this instruction.
•
Blank addressing specifies that the LSL address of
the area assigned to CAT is to be used as the OP 2,
LSL address of this instruction.

The ascending transfer in Instruction 2 calls for an 8 location transfer

(the length of OP 2, CAT). Th~ low order 5 locations of CAT will

contain the 5 characters from the card which were transferred to the low

order positions of rX by Instruction 1. The 3 high order positio~s of

CAT will contain space codes from the un-entered portion of rX.

4.3.7 TRANSLATE (OPT I aNAL)

NOTE: The Translate instruction can only be used if the
UNIVAC 1005 system f.gr, which the program is being
assembled has the hardware translate option.

MNEMONIC: TR MODE: DESCENDING LENGTH: 7 IA: YES

'LASE L --.., WE R A TT ON
,.-_._ •. -t.

If-Tf<MiD 2 OPERAND 1

--
FIELD A + iNC .-- F'aO B + INC FIELD

10 * 12 16 - ;r· * 22 26 .- 2- 30 .32 1 5 6 ..

iT.R . I • • I .u.\ .1 I ~'\..I
-- - . . - .

C 1- INC
::t - Ll· iO

I I
.. .. .

FUNCTION: Translate each of the characters in the field defined as OP 2
(except the LSL) according to the Translation Table storeu in
the last 64 locations of memory (exclusive of Special Registers).
Return the translated character to OP 2.

:he use of the Translate option on the UNIVAC 1005 requires that the

translated characters be returned to the same locations from which the

characters to be translated were obtained. Thus 2M and 2L not only

define OP 2, they also define OP 1. Furthermore, the Translate option

also requires that OP 2 be one location longer than OP 1 at the LSL end of

OP 2. 2M specifies both OP 1 and OP 2 MSL. 2L specifies the OP 2 LSL, and

the hardware automatically uses 2L-1 as the OP 1, [SL.

The Translation Table contains the code configuration of the "new"

characters arranged according to the ascending octal sequence of the

equivalent "old" characters. For example: assume the following "old"

codes are to be translated to UNIVAC 1005 XS-3.

Space
A
B

Binary

080 000
0:)0 001
000 010

00
01
02

(

("

The Translation Table sequence would be

Location)(S-3 6- illary Char

MSL (00) 000 000 Space
MSL + 1 (On 010 100 A
MSL + 2 (02) 010 101 B

The Translation Table must be stored In locations R29/C30, Bank 2 (MSL)

through R31/C31, Bank 2 (LSL) of a 2 bank UNIVAC 1085 system; or In

R29/C30, Bank 4 (MSL) through R31/C31, Bank 4 of a 4 bank UNIVAC 1005

system. More than one Translation Table can be used in a "program

provided that the program transfer the proper set of translation

• codes to the Translation Table locations prior to each change in use.

Example 1:

Given: A field of 80 characters received in a communication
code stored in an 80 location area assigned the Label
INMSG.

LABEL ~PERATION
~

A table of XS-3 codes arranged in communication code
sequence stored in a 64 location area assigned the
Label XS3.

A table of communication codes arranged in XS-3
code sequence stored in a 64 location area assigned
the Label COMCD.

OPERAND : OPFRArID ?
FIELD A + INC ~~ FIELD B + INC FIELD C + INC

--

1 5 6 10 * 12 16 - ,
~ ;:D * 22 26 -- 2: 30 32 36 - 3~ iiO

I . . ~ . lx.s'3 1 I&TR . I I •

• I I I ir.R 1 • -' • I I tr .. ~c.~ I I i-,.. ~ +

Instruction. 1 TD

FIELD A; OP 1, MSL: The Label XS3 specifies that the MSL address of
the XS-3 table is to De used as OP 1, MSL.

. I

Ii. I

FIELD B; OP 2, MSL: The Standard Label $TR specifies that the MSL of ~
the area required for the Translation Table is to

FIELD C; OP 2, LSL:

be used as OP 2, MSL of this instruction.

Blank addressing specifies that the LSL of the area
specified by $TR is to be used as the LSL of this
instruct ion.

Instruction 1 loads the Translation Table with the correct translation

characters.

Instruction 2 TR

FI~LD A; Isnored ~

FIELD B; OP 1 and OP 2 MSL: The characters to be translated must be
obtained from and replaced in the same
locations by the translated characters.
address of the MSL of the area assigned
INMSG will be used as OP 1 and OP 2 MSL
of this instruction.

The
to

FIELD C; OP 2, LSl: This must specify the location +1 of the last
character to be translated. The character in th is f'\
location is not distur.bed +INMS (four characters of i.J
the INMSG) specifies the address of the LSL of the
characters to be translated. +INVlS +1 specifies
the correct OP 2, LSL for this instruction.

If the results of processing are to be translated from XS-3 to

Communication code, two similar instructions could be used. Instruction

1 would load the Translation Table locations from the COMCD table, and

Instruction 2 would cause the translation.

LABEL

1

10
o

4.4 ADDITION AND SUBTRACTION

Addition is accomplished In the UNIVAC 1005 in ascending mode using

a one character adder. The LSL of OP 1 is placed in the adder. The

LSL of OP 2 is then added, and the sum digit is returned to the LSL

of OP 2. The adder circuitry retains the presence of a carry, if any.

The next corresponding locations are added from OP 1 and OP 2 (and

the preceding carry, if any) and the sum digit is returned to OP 2.

This process continues until the sum digit has been returned to the

MSL of OP 2. Thus OP 2 defines the length of both Operands. Sub-

traction is accomplished by adding the tens compleme~t of OP 1 to OP 2.

There are tWb types of addition and subtraction in the UNIVAC 1005--

Algebraic and absolute.

For Algebraic Add and Subtract operations, the presence of a binary
~\"~lGS£

1 in the X bit position ofl\an Operand indicates a negative value •.

A negative result will have a binary 1 in the X bit position of both

the MSL and the LSL. A zero result will have a binary 1 .in the Y bit

position of the MSL and will have the sign of OP 2. Spaces in OP 1 and

OP 2 are treated as zeroes, and zeroes will be placed in result locations

which do not contain 1 through 9.

For Absolute Add and Subtract, the slgns of OP 1 and OP 2 are ignored.

Absolute Add can produce only a positive result. Absolute Subtract is

performed by complemented addition and may produce a negative result.

However the negative sign indication is not stored. A zero result will

have a binary 1 in the Y bit of the MSL.

l'

Associated with the adder circuitry is a Sign Comparator. As a result

of every arithmetic operation, the Sign Comparator~ is set to one of

three conditions--plus, minus, or zero. The condition of the Sign

Comparator can be tested, for sequential control purposes. (See

Section __ , JC instruction.)

In the event that a carry is produced as a result of adding the OP 1

and OP 2 MSL, an Overflow indicator is set. This condition can also

be tested. (See Section _ _ , JC instruction.)

The conditions of the Sign Comparator and the Dverflow indicator are set

following every arithmetic operation, and must be tested, if required,

before the next arithmetic operation.

-Mt
If the Operands for a required arithmetic operation are~of equal length,

the shorter of the two must be transferred to rX using the TX instruction.
,..X
~ can then be used as OP" 1 fl elll 1)(.

o

(, 4.4.1

•

ADD ALGEBR A I C

MNEMONIC: AD MODE: ASCENDING LENGTH: 7 IA: YES

LA6t.L hPERATION OPERAND 1
--

1 I OPFRAND ?

~

~ FIELD A + INC I'~ F!ELD B + INC FIELD C ... INC
1 5 6 ~O * 12 16 - - 2C * 22 26 .-

2~ 30 32 3G - [i:- 'iO

I IT~ . tl I ~ I ~,l . I
'-"'" " """ .- - ... ~ --

--'
~- .~.- - .-

FUNCTION: Condition the adder circuitry according to the sign bits
of OP 1 and OP 2. Ascending add the OP 1-LSL specified by
Field A to the OP 2-LSL specified by Field C; replacing
OP 2-LSL with the sum digit. Continue until a sum digit
has been placed in OP 2-MSL specified by Field B. Set the
Sign Comparator. Set the Overflow indicator, if necessary.
The arithmetic is performed according to the rules for
algebraic addition.

Example 1

''''r-~ __ .~.'.''

LABEL

1 5

. .

EQUAL LENGTH OPERANDS

Problem: Aid Quantity 1 from card columns 1 through 5 to
Quantity 2 from card columns 6 through 10. Store
the result in the Quantity 2 locations.

PPth' .- ,-;~~,
--~~ ... ' _'.". ... -.... - - , ..

OPFRAiJD ? M' ! vi ~ \J"t:RAND ~

~ FIELD A + iNC ~ F!ELD B + INC FIELD C ... INC
6 10 * 12 16 - - aJ * 22 26 - 2: 30 32 36 - lr: tiD .-

A;1). . li~ . I ~~. . I l1..1.0. I I
",,"'_ -r'" _ -
FIELD A; OP 1, LSL: J:t 5 IS the decimal address for the LSL of Quantity 1.

FIELD B; OP 2, MSL: ~6 is the decimal address of the MSL of Quantity 2.

FIELD C; OP 2, LSL: n 10 is the decimal address of the LSL of Quantity 2.

Example 2 UNEQUAL LENGTH OPERANDS

LABEL

Given: Input Amount is in card columns 61 through 65.
TOTAL is the Label assigned to an area of 10 locations.

Problem: Add Input Amount to TOTAL

+ INC
-- 2 ~ 30

FIELD C ... ! NC
32 3(, - :'iO

t

Instruction 1 TX

FIELD A; OP 1, ~L: !(6(is the dec imal address of the \lsL of Input
Amount in Read Input Storage.

FIELD B; OP 1,~SL: t(6£ is the decimal address of the_SL of Input
Amount in Read Input Storage.

FIELD C; Ignored

Instruction 2 AD

FIELD A; OP 1, LSL:

This instruction transfers the 5 character Input

Amount field to the low order 5 locations of rX.

high order locations of rX are space filled.

$XR is the Standard Label for the MSL of rX. +$XR
specifies the LSL of rX.

The

FIELD B; OP 2, MSL: The Label TGTALspecifies the MSL of the area assigned
to TOTAL.

FIELD C; OP 2, LSL: Blank addressing causes the Assembler program to use

C

the LSL of the ar'1!!a ass igned to TOTAL. ~--'\
\ , ,=" This instruction specifies a 10 character OP 1 and OP 2.

The 10 character OP 1 will consist of the 5 low order

locations of rX that were transferred from Input

Amount, and the next 5 locations of rX known to

contain space codes.

,t(. 0

I

. i

I

,

4.4.2 SUBTRACT ALGEBRAIC

MNEMON I C: SU MODE: ASCENDING LENGTH: 7 IA: YES
.--- -

LABEL PPERATION OPERAND 1 OPERA'lD 2
~ FIELD A + INC ~~ F'ELD B + INC FIELD C ..

10 * 12 16 - of·· 2C * 22 26 - 2: 30 32 36 -1 5 6 ~

• S.u. 11 I I~ I I I~L. •

FUNCTION: This instruction performs exactly the same as ADD ALGEBRAIC
(Section 4.4.1).

NOTE: OP 1 is subtracted from OP 2 and the result is
delivered to OP 2.

INC
13: 40

. I
-

4.4.3 ABSOLUTE ADD (ADD MAGNITUDE)

MNEMONIC: AM MODE: ASCEND I NG LENGTH: 7 I A: YES

OPERATiON
-- .. -- _ ... - .. -,--- . -

OPFRAlln ? LABEL OPEFiM.:::' ~

~ FIELD A + 'OC ., F'ELD B .. ItJC FlELD C
1 5 6 10 * 12 16 - - a: *1?2 26 - ..,r 32 3(- ~: .J";..,

• . . lAM. ItL • I ~M. . I ~L . .
'". --~~ -..... " -. - .

FUNCTION: Ignore the signs of OP 1 and OP 2. Ascending add the
OP 1-LSL specified by Field A to the OP 2-LSL specified
by Field C, replacing OP 2-LSL with the sum digit.
Continue until a sum digit has been placed in OP 2-MSL
specified by Field B. Set the Sign Comparator. Set the
Overflow indicator if necessary.

This instruction performs the same as Algebrai'c Add except the sign

bits of OP 1 and OP 2 are ignored during the process. The X bit of

OP 2, LSLis not changed by this instruction.

... -

"

U£
[3:: 40

. I

r"
'G'l

I ,

1(--

(

4.4.4 ABSOLUTE SUBTRACT (SUBTRACT MAGNITUDE)

MNEMONIC: SM MODE: ASCENDING LENGTH: 7 IA: YES

PPERATION
-- ---

OPE:RMJD ;::> LABEL OPERAND 1 .. FIELD A + : NC fA F 'ELD B + INC FIELD C '+ INC
1 5 6 10 * 12 16 - - - 2l: * 22 26 -- 2- .30 32 36

I ~M.. tL I ~~ I I~\., .. I I

- --

FUNCTION: This instruction performs exactly the same as ADD
MAGNITUDE (Section 4.4.3).

NOTE: OP 1 is subtracted from OP -2 and the result IS
delivered to OP 2.

- t~ :

Although the signs are ignored for the processing if a negative result

is produced, it will be stored In true (not ~g~l~~~) form in OP 2.

For example: OP 1 = 7, OP 2 = 3, 3-7=4 which is the result stored In
OP 2. The X bit of the original OP 2, LSL remains
unchanged.

77

/;0

I

4.4.5 ADD CONSTANT

MNEMONIC: AK
~

MODE: ASCENDING LENGTH: 7 IA: YES,
. '. __ --.------- .- - - •... - ... - -

L ~.8EL CF~J-,';i I (jl~ OPEP,AND 1 ~P£B.Al1fr 2 j
If:4 F I" . + I rJC l~ r' EL [, B + INC FIELD C + INC ,~L", r\

1 5 6 10 * . 2 "6 - ;:t Ie 22 -- 2- .30 32 36 ,- tr· - c.~'- ~.

. IAl< tl.:h. . • I)..,~ I ~,L.
..-- , . - --

FUNCTION: Add algebraic ascending beginning with location 3 of the
Instruction Register; to the OP 2-LSL specified by Field C,
until OP2-MSL specified by Field B has received a sum
digit. Add a maximum of 2 locations (DD) from the IR. If
OP 2 is more than two locations in length, spaces are
considered as a prefix to DD. Set the Sign Comparator Set
the Overflow indicator if necessary.

DD mus,t always appear as a two digit constant. If the value of DD 15

less than ten, place a0 in column 12. The maximum value of DD.is 99.

Negative constants are specified by placing a minus sign (-) in cqlumn

12 followed by a two digit DD. The Assembler program will use this

indication to place a binary 1 in the X bit position of both digits.

The X bit over the right hand digit becomes the sign of the constant

DD. The X bit over the left hand digit is ignored in the A~ instruction.

Example 1

LABEL

Problem: Add 1 to the value of a 4 location area assigned to
COUNT

..... -- ... ~. ~~- . ~ .. ~.- -.-~--.--.- --.. -"'-_.-
PPERATION OPERAND 1 ,'PEf-{NJD 2

,'10

I

. ---

'"
FIELD A + INC IR F'ELDR + INC FIELD I" ... INC I.J

1 5 6 10 * 12 16 - ...
aJ * 22 26 - 2- 30 32

.. , .- J_ 40 ~ ')c -

, ,. I ~K ~1. I Ito .\1."'.' • I I . .1
--- ,. - '-- --, --- -~'" ' --.~ -. ,- -- -.. . --

7& C

(-

(-

FIELD A; DD: 0 1 becomes the two characters in locations 2 and 3 of the
IR when this instruction is executed.

FIELD B; OP 2, MSL:

FIELD C; OP 2, LSL:

The address of the MSL of the area assigned to
COUNT is used as the OP 2, MSL of this instruction.

Blank addressing causes the Assembler program to
use the address of the LSL of COUNT as the OP 2,
LSL of this instruction.

When the addition IS performed, it operates the same as the Add Algebraic

(AD) instruction, except that if the OP 2 is more than two locations in

length (as In Example 1), space codes are added to the excess locations.

The carry, if any, also is added in the excess locations. The AK

instruction terminates when a sum digit has been delivered to the

MSL of OP 2.

Example 2

LABEL

Problem: Subtract 1 from the value of a 4 location area
assigned to COUNT.

bPERATION

NOTE: Subtraction is performed by adding a negative
constant.

-

OPERAND 1 OPERAriD 2
~ FIELD A + INC 111 FIELD B + INC FIELD C 1- INC

1 5 6 10 * 12 16 - 3J * 22 26 - 2: 30 32 36 - 3: --

L..-c-+-'-_ A,~ • -.e.1. • I tlJ U 1'Il:'r I I I

FIELD A; DD:

--- --- ---

The minus sign (-) prefix to the constant 8 1 (DD) causeS
the Assembler program to place a binary 1 in the X bit
positions of locations 2 and 3 of this instruction. The
X bit of position 3 is the sign of the constant DD. The
X bit of position 2 is ignored in the AK instruction.

FIELD B; OP 2, MSL: The address of the MSL of the area assigned to
COUNT is used as the OP 2, MSL of this instruction.

C 11

·w

I

FIELD C; OP 2, LSL: Blank addressing causes the Assembler program
to use the address of the LSL of COUNT as the OP 2,
LSL of this instruction.

Space codes will be subtracted from the two high order locations of

COUNr, and borrows will occur, if any.

~o 0

4.5

(

c

COMPARE INSTRUCTIONS

Comparison in the UNIVAC 1005 may be considered to consist of two

phases--performing the comparison, and testing the result of that

comparison. The first phase--performing the comparison is accomplished

through use of one of the Compare instructions. The purpose of a

Compare instruction is to establish (set) a condition in the

Comparator based on the relationship of the Operands which are compared.

The condition of the Comparator is then tested by means of a Jump

Test instruction. The Comparator which is set and tested by the Compare

and Jump Test instructions should not be confused with the Sign

Comparator which is set and tested by the Arithmetic and Jump

Condition instructions.

The condition of the Comparator is set as a result (the only result)

of the execution of a Compare instruction. The contents of OP 1

and OP 2 remain unchanged by a Compare instruction. The condition of

the Comparator will not change until another Compare instruction IS

executed. The Comparator may be tested as often as required.

The Compare instructions operate in ascending mode. In the event of a

signed comparison, this enables the circuitry to first examine the sIgn

bits, which are located in the LSL of the Operands. Except for

sign considerations, the result condition of the Comparator is based

on the last difference, if any, encountered during the comparison.

The Operands in a Compare instruction must be of equal length. For

signed comparison of unequal length Operands, the shorter of the two

should be transferred to rX using the TX instruction (Section 4.3.6). In 0
signed Compare instructions, space codes are considered equal to zeroes.

Mge

The maximum Operand length In a Compare instruction is 961 locations.

I,,!,

4.5.1

f

SIGNED COMPARISON COMPARE NUMER I C

MNEMONIC: CN MODE: ASCENDING LENGTH: 7 .
LABEL PPERATION OPERAND 1

II FIELD A + INC ~~ FIELD B

I A: YES
--

OPERAriD 2
+ INC FIELD C + INC

1 5 6 10 * 12 16 - .". a; * 22 26 -- 2 ~ 30 32 36 - 8: 1\0 -..

; _1-, :_...! .2.:.... ~,N ItL I ~tIt I I.)..L. • - - ~. .." -- -.

FUNCTION: Compare ascending the OP 1-LSL (including sign) specified
by Field A, to the OP 2-LSL (including sign) specified by
Field C. Continue until the OP 2-LSL specified by Field B
has been compared. Ignore the X and Y bit positions of
OP 1 and OP 2 (except sign). Set the Comparator to one of
three conditions:

OP 1 '> OP 2; OP 1 < OP 2: OP 1 = OP 2.

. I

When a signed comparison IS performed, the relationship of OP 1 and OP 2

can be established if the signs (X bit position of LSL) are not alike.

If the signs are alike, the ~alues of OP 1 and OP 2 are then

automatically compared to determine the result.

If the signs are alike and both plus, the Operand with the larger

absolute value is the greater. If the signs are alike and both minus,

the Operand with the larger absolute va.1ue is the least. If the signs

are not alike, the Operand with the plus sign is the greater. Only

if the signs are alike and the absolute values are the same is the

result ~.

In Compare Numeric (CN), the zone bits eX and Y positions) of OP 1

and OP 2 are ignored (except for the consideration of the sign bits).

Space codes are compared as equal to zeroes.

III Q8"'~8:1 e ~11N"'el Ie (Q~J), tile zelle bib!' 0< &lId 'I pUSliOiiS) uP ep 1 aild

88~e8 8:1 e ee"'~al e~ 8e e~~al Le zeldes.

The result of a CN instruction is set in the Comparator, and must be

tested by a JT instruct ion (Sect ion ____) before the execut ion of

any subsequent Compare instruction.

Example 1

LABEL

Problem: Compare Total Deductions from card columns 5 through
10 to the Gross Pay in a 6 character area assigned
to GRPAY.

PPERATION OPERAND 1 OPERAND 2
IfII FIELD A + INC ~ FIELD B + INC FIELD C .. INC

1 5 6 10

CN
l

--

FIELD A; OP 1, LSL:

FIELD B; op 2, MSL:

FIELD C; op 2, LSL:

---- ------ - -------------- --- -------

* 12 16 - ~ .. a; * 22 26 - 2: 30 32 3(, -

u11ft. l l I t;:~ ~ _~~ I l I •

~ 10 is the decimal address of the LSL of Total
Deductions (column 10 of Read Input Storage).

8: 40

I --.

The Label GRPAY specifies the MSL address of the area
assigned to GRPAY.

Blank addressing causes the Assembler program to use
the LSL of the area assigned to GRPAY as the LSL
of this instruction.

1) If Total Deductions (OP 1) is more than Gross Pay
(oP 2), the Comparator is set to Greater Than.
op 1 7 op 2.

2) If Total Deductions (OP 1) 1S the same as Gross
Pay (OP 2), the Comparator 1S set to Equal.
op 1 = OP 2.

3) If Total Deductions (OP 1) 1S smaller than Gross
Pay (oP 2), the Comparator 1S set to Less Than.
op 1 (op 2.

(..

(--

,/

4.5.2 COMPARE ABSOLUTE (MAGNITUDE) UNSIGNED COMPARISON

MNEMON I C: CM MODE: ASCENDING LENGTH: 7 I A: YES

lABEL OPERATION OPERAND "1 OPERArID 2
IfII FIELD A + INC ,~ FiELD B + INC FIELD C ... INC

1 5 6 10 * 12 16 - 2J * 22 26 -- 2~ 30 32 36 - l3:.: 40

• ~ ~ t.N\ I 1.1~ I .1 _.tL ~~ I I ~LI _ . .J_ I J -

FUNCTION: Compare ascending the OP 1-LSL (excluding sign) specified by
Field A, to the OP 2-LSL specified by Field C. Continue
until the OP 2-MSL specified by Field B has been compared.
Ignore the X and Y bit positions of OP 1 and OP 2 including
the sign bits. Set the Comparator to one of three conditions:

OP 1 > OP 2; OP 1 < OP 2; OP 1 = OP 2.

The comparison is made on the absolute magnitude of the numeric (8, 4, 2, 1)

values OP 1 and OP 2. The X bit positions of OP 1, LSL and OP 2, LSL

(sign bits) are also excluded from consideration. Thus a plus 3 would

compare equal to a minus 3. Space codes are compared as equal to zeroes.

The result of a CM instruction is set in the Comparator, and must be

tested by a JT Instruct ion (Sect ion ____) before the execut ion of

any subsequent Compare instruction.

Example 1

Problem: Compare Actual Tolerance from the area assigned to
ACTOL (5 locations) to the Allowed Tolerance in the
area assigned to ALTOL (5 locations) •.

' ... --_ .. _ ... ,-...... _ " . ..• --,_. -.~
lABEL OPERATION

1 5 6 10

I eM. ,

FIELD A; OP 1, LSL:

OPERAND 1 OPERAI'D 2
IfII FIELD A + INC ~~ FiELD B + INC FIELD C ... INC
* 12 16 - ~-. 2J * 22 26 - 2: 30 32 36 - 3:': 40 --.
+'~~:r.o I 1\:\..1' O,L. I I .' I l- .• I • 1

The plus sign (+) prefix to the Label ACTO causes tffi
Assembler to use the address of the LSL of the area
assigned to ACTOL.

FIELD B; OP 2, MSL: The address of the MSL of ALTOL 1S used as the
MSL of OP 2.

FIELD C; OP 2, LSL: Blank addr;essing causes the Assembler program to use
the address of the LSL of ALTOL as LSL of OP 2.

FIELD +
Tolerances are usually - n. If ALTOL contains n, the Actual Tolerance

(ACTOL) could have been calculated to a plus or minus value. The CM

instruction will ignore the signs, and compare to determine if the

absolute value of the Actual Tolerance is greater than the Allowed

Tolerance.

1) If the Actual Tolerance (OP 1) is more than the Allowed
Tolerance (OP 2), the Comparator is set to Greater Than.
OP 1 > OP 2.

2) If the Actual Tolerance (OP 1) is the same. as the Allowed
Tolerance (OP 2), the Comparator is set to Equal.
OP 1 = OP 2.

3) I f the Actual Tolerance (OP 1) is smaller than the
Allowed Tolerance (OP 2), the Comparator is set to Less
Than. OP 1 < OP 2.

+
If the Allowed Tolerance 1S 5, an Actual Tolerance of - 4
would compare Less Than.

4.5.3 COMPARE ALPHANUMERIC UNSIGNED COMPARISON

MNEMONIC: CA MODE: ASCENDING LENGTH: 7 IA: YES

LABEL ~PERATION OPERAND 1 OPERAI"ID 2
~ FIELD A + INC .~ FIELD B + INC FIELD C ... INC

1 5 6 10 * 12 16 3J * 22 26 - 2~ 30 32 36 - tk 40 -

• . .. CI~ • LL. I)..,~ I I I~l.. I I
-

FUNCTION: Compare ascending the bit pattern of OP 1-LSL specified by
Field A, to the bit pattern of OP 2-LSL specified by Field C.
Continue until the bit pattern of OP 2-MSL specified by Field

I

B has been compared. Exclude sign considerations, but include
sign bit positions. Set the Comparator to one of ~ conditions.
OP 1~OP 2; OP 1 1 (unequal to) OP 2.

The purpose of the CA instruction is to determine if all bits in OP 1 are

exactly the same as all bits in OP 2. There are only two results: all

the bits of OP 1 are exactly the same (equal condition), or they are not

the same (unequal condition). Spaces do not equal zeroes.

the comparison is performed on an ascending basis USIng the X Y 8 4 2 1

bits of each corresponding location of OP 1 and OP 2 beginning with the

LSL. The determination of the condition which exists between the two

Operands is made as soon as any difference is detected between characters

In corresponding locations. If all locations have been compared and

no difference IS detected, an equal condition exists.

Example 1

Given: Employee Number (5 locations) and Employee Name, last
name first (24 locat ions) from a Payroll Master Card
have been stored in two adjacent areas assigned to
MNUM and MNAME.

I M~U:~--l ""NAMe. --- ------l
Detail cards containing the Employee Number in columns
1 t~rough 5 and the first four letters of the last name
of the employee are in columns 6 through 9.

(f~'

Problem: Compare Employee Number and Name from the detail ~
card to MNUM and the first four locations of MNAME.

LABEL PPERATION OPERAND 1 OPFRA ID ?

~ FIELD A + INC ~. FiELD B + INC FIELD C .. INC
1 5 6 10 * 12 16 - ,,-' ::D * 22 26 - 2: 30 32 .36 - 13: LlO -..

. . C~ ~.q . I 1M.t-l.\)..M • I IM,N,A-.~ t 1~~3. I . . -. . -.
FIELD A; OP 1, LSL: 119 is the decimal address of the Read Input

Storage location which contains the information
from card column 9.

FIELD B; OP 2, MSL: The Label MNUM causes the address of the MSL of the
area assigned to MNUM to be used as the MSL of
this instruction.

FIELD C; OP 2, LSL: MNAME + 3 is the address of the location of MNAME
that contains the fourth letter of last name stored
from the master card. This address becomes the
LSL of the CA instruction.

Solution: The 5 locations of MNUM and the first 4 (high order) locations
of MNAME become a 9 location OP 2, and are compared to the
information from card columns 1 through 9 in Read Input
Storage. The assignment of the two Labelled Storage areas
(MNUM and MNAME) to adjacent memory locations is accomplished
by proper use of Declarative instructions.

The result of the CA instruction is set in the Comparator and
can be tested in the next or .some subsequent i nstr uct ion
(provided no intervening Compare instruction is executed).

(7 .)
)J

I'
!

UNSIGNED COMPARISON 4.5.4 COMPARE CONSTANT

MNEMON I C : CK MODE: ASCENDING LENGTH: 1

LABEL OPERATION OPERAND 1

IA: YES

OPFRAIID ? .. FIELD A + INC ~ F!ELD B + INC FIELD C + INC
1 5 6 10 * 12 16 - -'I" 20 * 22 26 - 2:: 30 32 36 - 3E:

• C.l<' \(\(-'- . • I ~ • I i\.L. •
"

FUNCTION: Compare alphanumeric ascending the bit pattern of KK specified
in Field A; beginning with the bit pattern stored in the
location 2L specified by Field C; continuing until the bit
pattern stored in the location 2M has been compared. Compare
all bits. If 2M and 2L specify the same address; a one
character comparison is made. If 2M and 2L specify more than
a 2 location OP 2, space codes (binary zeroes) are compared
to.the excess positions of OP 2. Set the Comparator to one
of two conditions: KK = OP 2; KK ~ OP 2.

When a CK instruction is brought to the IR for execution, the two

alphanumeric characters (KK) will occupy locations 2 and 3 of the IR.

These two locations are used similar to an OP 1 in a Compare Alphanumeric

instruction (Section 4.5.3).· However, the Operation code CK will cause

the comparison to con~inue a~er the second character comparison has

been made. Space codes are compared to any additional locations of OP 2.

The CK instruction IS an unsigned bit-for-bit compare instruction.

Spaces do 'not equal zeroes, and sign considerations are ignored. OP 2

will usually be a one or a two character operand.

40

I

The instruction is to be used to test for the presence of whole characters

in storage location. (The Jump Compare (JK) instruction (Section)

can be used to test for the presence of specific bits in a storage

location.) Binary coding (Section 4.3.5.3) may be used, but should

not be necessary, since this is a character comparIson.

Example 1

Problem: Test the information in card column SO for a 3.

LABEL PPERATION OPERAND 1 OPERA ID 2
~ FIELD A + INC ~ FIELD B + INC FIELD C + INC

1 5 6 10 * 12 16 - 2{) * 22 26 - 2:: 30 32 36 - 13;; ~

• C~. • ~13 I ~gJJ, • I IliS JIJ .•
.- _ .. -.

FIELD A; KK: The ~ 3 in the KK positions of Field A will be in locations
2 and 3 of the IR when this instruction is executed.

FIELD B; OP 2, MSL: ~ SO is the decimal address of the location in
Read Input Storage which contains the information
from card column SO.

FIELD C; OP 2, LSL: 11 SO is the decimal address of the location in
Read Input Storage which contains the information
from card column SO.

Solution: Since the OP 2-MSL and OP 2-LSL specify the same location,

Example 2

LABEL

a one character comparison is made, using the 3 from location
3 of the IR (the right-hand K). The space code (~) is
required to position the 3 so that it is in the right-hand
K position (column 13 of the form). If card column SO
contained only a 3 punch, the Comparator is set to equal. If
card column SO contained any other punches (or none at all),
the Comparator is set to unequal. The Comparator is tested
by use of the Jump Test (JT) instruction.

Given: A two location counter is being arithmetically
reduced by 1. The counter is stored in the two
locations assigned to COUNT.

Problem: Test the value of COUNT to see if it is equal to
zero.

OPERATION OPERAND 1 J)EffiAj III 2

40

I

.. FIELD A + INC lA FIELD B + INC FIELD C + INO
1 5 6 10 * 12 16 - ... -. d) * 22 26 - 2-':' 30 32 36 - I3s 40

• Ic.\{ . ?~fi1 . I I "O.u,1'4 :T I i .. I -- - -- -. -

40 o

(~

(

c

FIELD A; KK: The characters ?0 in the KK positions of Field A become
locations 2 and 3 of the IR when this instruction is
executed.

FIELD B; OP 2, MSL: The address of the MSL of the area assigned to
COUNT is used as the OP 2, MSL of this instruction.

FIELD C; OP 2, LSL: Blank addressing causes the Assembler program to
use the address of the LSL of the area assigned to
COUNT as the OP 2, LSL of this instruction.

Solution: The contents of COUNT are being arithmetically reduced by
1. When the value qf COUNT is reduced to zero, the operation
of the Arithmetic un~ of the UNIVAC 1005 will cause a Y bit
to be placed over the MSL of the result. The internal code
for the question mark (?) is the same as an XS-3 zero with
a Y bit. The CK instruction performs a bit-for-bit
comparison. When COUNT is reduced to zero, this CK
instruction will set the 6ompari~ to equal.

NOTE: Addresses can also be specified in the KK portion of a
CK instruction by using the same notation described in
Sections 4.3.5.1; 4.3.5.2; and 4.3.5.3.

4.6 CONDITION INDICATICRS

The UNIVAC 1005 provides for two program controlled sensing switches,

Sense #1 and Sense #2. By using the Set Condition (SC) instruction,

the programmer can turn these switches ON (Set to 1) or OFF (reset to

0) during the execution of a program. The condition of the Sense

switches can be used to control the sequence of the execution of

instructions during the program through us.e of the Jump Cond i tion (JC)

instruction. The Jump Condition instruction is used to test for the ON

condition of the switches. If the Sense switch be)ng tested is ON.(Set),

the transfer of control will occur. If the Sense switch being tested

is OFF (reset), the program proceeds with the next sequential instruction

(N I).

There are other uses for the Set Condtion and Jump Condition instruction.

A complete description of both instructions is given below.

c

4.6.1 SET CONDITION

MNEMONIC: SC TYPE: SPECIAL

LABEL Pf'ERATION OPERAND 1

LENGTH: 5 fA: NO

OPERAIID ?
Ii FIELD A + INC ~ F'ELD B + INC FIELD C + INC

1 5 6 10 *12 16 - .II~' 3) * 22 26 - 2-':: 30 32 36 - ~~ 40 '""'

I . ~L. . c.c., . . I . • I • I . . I
.-. -

FUNCTION: Set or reset the £onditions or Controls which correspond to
each bit position of CC which contains a binary 1 as specified
in Field A.

Each of the bit postiions of CC correspond to a Condition Indicator or

a Control setting. The presence of a binary 1 in a bit position of CC

will cause the Condition or Control to be set or reset by the SC

instruction. The presence of a binary zero In a bit position will not

change the status of a Condition or Control.

Although coded in Field A (to assist the key punching operati~n), the

bit patterns of CC occupy locations 4 and 5 (the B portion) of the

instruction. Locations a and '3 are ignored by the UNIVAC 1005, and

should be blank. Locations 4 and 5 constitute bit positions 19 through

24 and 25 through 30 of the instruction.

The Conditions and Controls which corres~ond to the bit position of CC

are as follows:

BIT POS TION

19 (X) ~-
. \. 20 (y) ;~ ¥ 21 (8) ~

, 22 (4)- J\ i.l
23 (2) ... ~
24 (1) ~

, \1-
25 (X)

~ 26 (y)
~ ... (0 27 (8)
~- 28 (4)

29 (2)
30 (1)

CONDITION/CONTROL

SET ODD PPR ITY (See Section __)
SET EVEN PNi I TY
SET SENSE 2 (ON)
SET SENSE 1 (ON)
RESET SENSE 2 (OFF)
RESET SENSE 1 (OFF)

(Reserved)
(Reserved)
SET SERVO 2
SET SERVO 1
SET CONSOLE
SET CONSOLE

(See Sect ion ___)
(See Section)

INDICATOR 2 (ON) and HALT
INDICATOR 1 (ON) and HALT

. The Condition Indicators and Controls can be set (or reset) individually

or in multiples as the programmer requires.

NOTE: - Caution should be used when coding multiple bits in C~ in
order to prevent illogical bit pattersn which require the
UNIVAC 1005 to establish opposing conditions. The results
of such a conflict are unpredictable.

Binary coding is normally used to specify a multiple bit pattern for CC'-/

(See Section 4.3.5.3). Field A must always contain a number sign (#) in

column 12 followed by four octal digits for binary coding.

The UNIVAC 1005 Assembly System provides the following mnemonic

Switch Names if only a sinele Condition or control is to be set (or reset)

by the SC instruction. A number sign (#) must appear in column 12

followed by the two-place mnemonic Switch Name in columns 13 and 14.

SWITCH NAME . BIT POS I T ION CONDITION/CONTROL

#SO (alpha) 19 ~ET QDD PIR ITY
#SE 20 SET EVEN PNi lTV
#+2 21 SET SENSE .2 (ON)
#+-1 22 SET SENSE 1 (ON)
#-2 23 RESET SENSE 2 (OFF)
#-1 24 RESET SENSE I (OFF)

#S2 27 SET ~ERVO .2
#S1 28 SET ~ERVO 1
#rl2 29 CONSOLE INDICATOR .2 and HALT
#H1 30 CONSOLE INDICATOR 1 and HALT

ql/-

C

It should be noted that the Switch Names for the Sense switches have
~

a plus sign (+) for~(ON) and a minus sign (-) for reset (OFF); the

Controls for magnetic tape operations have a prefix of the letter S;

and the Halt and Console Indicators have a prefix of the letter H.

Example 1

Problem: Set Sense 1 (ON)

LABEL PPERATION OPERAND 1 OPFRArJD?

'" FIELD A + INC ~ F!ElD B + INC FIELD C + INC
1 5 6 10 * 12 16 - -'I" aJ ~ * 22 26 - 22 30 32 36 - BE: 40

• . . S.c... •. +.1. . • I . I • I • • I -

FIELD A; CC: The Switch Name ~1 causes the Assembler program to create
a binary 1 in bit position 22, and binary zeroes in all
other bit positions of CC.

NOTE: The octal coded constant #04~~ would produce the
same CC.

FIELD Band C Blanks

Example 2

LABEL

Problem: Reset Sense 2 (OFF) and Halt the UNIVAC 1005 with
Conso 1 e I nd ica tor #1 ON.

PPERATION OPERAND 1 OPFRAIJD?

'" FIELD A + INC ~ FiELD B + INC FIELD C + INC
10 * 12 16 - " .. aJ * 22 26 - 22 30 32 36 - BE: 40 1 5 6 .~

• Sc • tll.;A. rJ.t I . I I • . I

FIELD A; CC: The bit pattern of the octal constant #0201 will cause a
binary 1 in bit positions 23 and 30, and binary zeroes In
all other bit positions of CC.

NOTE: Switch Names cannot be used since multiple bits are
required.

(
4.6.2 STOP (HALT)

Mt£MON I C: STOP

LABEL PPERATION

MODE: S~C I AL

OPERAND 1

LENGTH: 5 IA: NO

OPERArID 2

'" FIELD A + iNC ~ FiELD B + INC FIELD C ... INC
1 5 6 10 *12 16 - 2) * 22 26 - 2~ 30 32 36 - BE: 40 . ':

• . . is:T.iP. (s..u..~ I~ V~ ~ • .1 I • • . I

FUNCTION: The STOP command is a variation of the SC instruction
(Section 4.6.1) provided in the UNIVAC 1005 Assembly System~
enable the programmer to easily specify and rapidly recognize
those instructions which STOP (HALT) the operation of the
UNIVAC 1005 during the execution of the object program.
Permissable specifications in Field A are Switch Names #H1 or
1M2.

4.7 SEQUENCE CONTROL

Instructions in the UNIVAC 1005 are stored accessed, and executed in

serial sequence. This sequential operation is used as long as the

program does not require branching.

The accessing of instructions is under the control of the Instruction

Control Counters~ There are two counters; one for Row, and one for

Column. The Column Counter is automatically incremented by five or

seven as each instruction is transferred to the Instruction Register.

The increment is determined by instruction type. The Row Counter is

advanced by one each time the Column Counter advances beyond thirty-one

and returns to one. Bank specification is also modified when the Row

Counter passes 31. The Instruction Control Counters provide the Control

Unit with the address of the next instruction (NI).

JUMP instructions are used in the UNIVAC 1005 to vary the normal

instruction sequence. The JUMP instructions change the contents of

the Instruction Control Counters only if conditions specified by the

JUMP instruction are present. If not, the contents of the Instruction

Control Counters remain unchanged, and the normal execution sequence

(NI) is followed.

The UNIVAC 1005 instruction repertoiere contains seven Jump instructions

for sequence variation.

4.7.1

(~-

JUMP CONDITION

MNEMONIC: JC MODE: SPECIAL

LABEL OPERATION OPERAND 1

LENGTH: 5 IA: NO

ili'EBA11D ?
WI FIELD A + INC ~ F!ELD B + INC FIELD C

1 5 6 10 * 12 16 - .iI~' 3) * 22 26 - 2::: 30 32 '36 .-

• . ~.c. • C~~ •• .1 ~~ i1 il - " , "

FUNCTION: If any of the conditions are met which correspond to
binary 1 bits of CC specified by Field A; transfer
control (JUMP) to the Jump Address (JA) specified by
Field B. ,Otherwise, execute the next s~quential
instruction (NI).

NOTE: In some cases, the in,dicators
specified by 1 bits in CC are
reset by this instruction.

The JA specified by Field B must be the address of the MSL

or the in'strudion to which control is to be transferred if the

Jump occurs. Since instruction addresses are assigned by the

Assembler program, Field B will normally contain a programmer's

Label. The curre~t value of the ILC maintained by the Assembler

program during assembly processing can also be used by specifying
I

the dollar sign symbol ($) with Increment. The JA occupies loca-

tions 4 and 5 of the instruction.

The bit patterns of CC occupy locations 2 and 3 of the JC

instruction. Locations 2 and 3 constitute bit positions 7 through

.

12 and 13 through 18 of the.instruction. If a binary 1 bit appears
~c-lSf~A;~

in any of t~e bit positions of CC and theAcondition (indicator)

is set (ON), the Jump will occur. If multiple 1 bits are present
J""

in CC and any one of th~M:~~1nt~~~ (ind'icators) is set (ON), the

Jump will occur. Otherwise, ,the next sequential instruction is

executed.

+ INC
- 3S 40

I

The conditions and indicators which correspond to the bit

positions of CC are as follows:

BIT POSI TION

7(X)

8(Y)

NOTE:

7 and 8(X,Y)

9(8)

10 (4)

CONDITION/INDICATOR

Form Overflow. Form Overflow is ~
when the Form Overflow position of
the Forms Control Tape is sensed by
the carriage.

Form Overflow i§ reset when tested.

Arith~etic Overflow. Arithmetic
Overflow is ~ when the result of
an Ar i thmet i c ADD or SUBTRACT i n
struction exceeds the capacity of
OP2.

Arithmetic Overflow i§ DQi reset when
tested.

Form Overflow and Ari~~ Overflow
cannot be tested in th~JG -instruction.
(See below)

End of Ta~e. End of Tape is ~
when that condition is detected by
a Uniservo. The presence of binary
1's in bits 7 and 8 of CC constitute
a specific test for End of Tape.
If both bits are present, Form Over
flow and Arithmetic Overflow are
not tested or changed.

End of Tape __ 1 __ _ reset when
tested.

Sense 2. The Sense 2 Indicator IS

~ by the SC instruction.

Sense 2 i§ n2i reset when tested.

Sense 1. The Sense 1 Indicator IS

~ by the SC instruction.

Sense 1 i§ D2i reset when tested.

100
c

11 (2)

12 (1)

13 (X)

(
1"4 (y)

15 (8)

16 (4)

Alternate Hold 2. Alternate Hold 2
is set (ON) when the Alternate Hold
Switch #2 console light is turned ON
by depression of the switch.

Alternate Hold 2 i§ ll2i reset when
tested.

Alternate Hold 1. Alternate Hold 1
is set (ON) when the Alternate Hold
Switch #1 console light is turned ON
by depression of the switch.

Alternate Hold 1 i§ ll2i reset when
tested.

Interru~t. Interrupt is ~ when the
UNIVAC 1005 receives an Interrupt.
Signal from a peripheral li~it~~,

Interrupt i§ ll2i reset when tested.

Unit Alert. Unit Alert is set when
a peripheral Unit is in an abnormal
condition.

Unit Alert ~ ll2i reset when tested.

Parity Error. Parity Error is set
when a parity error is detected.

Parity Error i§ reset when lested.

Sign Comparator Plus. The Sign
Comparator is ~ to Plus when the
result of an Arithmetic instruction
is positive, and not zero.

The Sign Comparator ~ ll2i reset when
tested.

/0/

17 (2) Sign Comparator Zero. The Sign
Comparator is set to Zero when the
result of an Arithmetic instruction
is zero.

The Sign Comparator ~ DQi reset when
tested.

18 (1) Sign Comparator Minus. The Sign
Comparator is set to Minus when the
result of an Arithmetic instruction
is negative.

The Sign Comparator ~ llQl reset when
tested.

The conditions may be tested individually or in multiples

(except Form Overflow and Arithmetic Overflow) as the programmer

requires. Binary coding is normally used to specify a multiple

bit pattern for CC (See Section 4.3.5.3.). Field A must always

contain a number sign (#) in column 12 followed by four octal

digits for binary coding.

The UNIVAC 1005 Assembly System provides the following

mnemonic Condition Names if only a single condition is to be

tested by the JC instruction. A number sign (#) must appear In

column 12 followed by the two-place mnemonic Condition Name in

columns 13 and 14.

Jo~
o

(-

(""--

._./

CONDITION NAME

#fF

#AF

#+-2

#+1

#-2

#-1

#IN

INA
#PE

#AP

#AZ

BIT POSITION

7

8

9

10

11

12

13

14

15

16

CONDI TlON

Form Overflow

Ar i thmet i c Over flow

Sense 2

Sense 1

Alternate Hold 2 (ON)

Alternate Hold 1 (ON)

Interrupt

Unit Alert

Parity Error

Sign Comparator Plus

Sign Comparator Zero

#AM 18 Sign Comparator Minus

#ET 1 and 8 End of Tape

When the JC command is executed by the UNIVAG lUU~ at Object

time, and the jump is to occur, locations 4 and 5 of the IR are

transferred to the I nstruction Control Counter. Locations 4 and 5

of the I R conta i n the jump address speci fi ed in the JC command.

These two characters become the address used by the ICC to control

the access of the next instruction.

/V"3J

Example 1

LABEL

Problem: Transfer control to the instruction labelled
FOF if Form Overflow has occurred.

PPERATION OPERAND 1 OPFRA In ?

~ FIELD A + INC ~~ FIELD B + INC FIELD C ... INC
1 5 6 10 * 12 16 - ..,-' d) * 22 26 - 2:]0 32 36 - 13:: 40 ~ -

I • ~t. ... ~.ff I IF-of • 1 . • •

FIELD A; CC: #FF is the Condition Name for Form Overflow and causes
the Assembler program to place a binary 1 in position

~7, and binary zeroes in all other positions of CC.
'1r4,0P'¢1K would produce the same paHern for CC.

FIELD B;

Example 2

LABEL

JA: The programmer's label FOF causes the Assembler
program to use the address of the MSL of that instruc
tion as the JA of this instruction. If Form Overflow
has been sensed, the jump will occur.

Problem: Do ll2i jump to the instruction labelled
ERROR if the last previously executed Arith
metic instruction produced a positive result
without Arithmetic Overflow. . -

'JPERl\~m ? PPERATION OPERAND 1

'" FIELD A + INC ~~ FIELD B + INC FIELD C
1 5 6 10 * 12 16 - ..,-' d) * 22 26 - 2:]0 32 36

• . it ."" . ~;).JI.PI.~ . I I~ 'Q.. Q_Q.R • 1 • I • •
... - • •• ¥ --- -

FIELD A; CC: The octal coding will produce. binary 1~to test
Arithmetic Overflow, Sign Comparator Zero, and
Sign Comparator Minus.

FIELD B; JA: The address of the MSL of the instruction labelled
ERROR will be used as the jump address in this
i nstr,uct ion.

Solution: The jump will occur if ~ of the three conditions tested
does exist. The jump will llQi occur if ~ of the
three conditions tested exists.

• ,I'

"

... INC
- 13:: 40

. I

~\
i :
~

,/

o

(-

4.7.2

(-

C:

JUMP TEST

MNEMONIC: JT MODE: SPECIAL LENGTH: 5 IA: NO

LABEL ~PERATION OPERAND 1 OPERArm ?
FIELD A + INC PII FIELD B + INC FIELD C ... INC ~

1 5 6 10 * 12 16 - ". 3) * 22 26 - 2~ 30 32 36 - 13: tJO .-

I . . 1:r.1', r.r.~.i.. I tr.~. __
I I

- - .- - --

FUNCTION: Test the condition established in the Comparator by
the last previously executed Compare instruction. If
equal, transfer control to instruction JA1 specified
by Field A. If less than (or unequal, for alphanu
meric comparison), transfer control to instruction
JA2 specified by Field B. - If greater than, allow
control to pass to the next sequential instruction
(NI).

The result of a Compare instruction is the setting of the

Comparator based on the relationship of OP1 to OP2. If the

Compare was a numeric comparison, the Comparator is set to one

of three conditions: equal, less than, or greater than. If the

Compare was an alphanumeric comparison, the Comparator is set to

•

one of -two conditions: equal,or unequal. The Comparator remains

set until another Compare instruction is executed.

The purpose of the JT instruction is to test the seHing of

the Comparator, and transfer control to the addresses specified

in the JT instruction, based on the setting. There are three

possible settings of the Comparator as a result of a numeric

comparison, and only two addresses in the JT instruction. The

necessary "third" address is implied, and is the instruction which

immediately follows the JT instruction. If the previously executed

comparison was an alphanumeric comparison, only two settings are

/
)O~

I

o
possible. Thus the JT instruction will always jump to one of the

two addresses specified in the instruction, ~~IA.~~ ~""~~ c.oWfll-ft~
Since the Assembler program assigns addresses to instructions,

the addresses specified in the JT instruction will usually be

programmer's labels. The current value of the ILC maintained by

the Assembler program during Assembly processing can also be used,

by specifying the dollar sign symbol ($) with increment.

Example 1

lABEL

Given: A comparison has been made of the Quantity
Ordered (OP1) to the Quantity on Hand (OP2).

Problem: If the Quantity Ordered is equal to Quantity
on Hand, transfer control to the instruction
labelled SAME. If the Quantity Ordered is
less than the Quantity on Hand,transfer
control to the instruction labelled SHIP.
(If the Quantity Ordered is greater than the
Quantity on Hand, control will automatically
pass to the next instruction.)

PPERATION OPERAND 1 OPFRMID .~

WI FIELD A + INC ... FiELD B + INC FIELD C
1 5 6 10 * 12 16 - -'I~' 20 * 22 26 - 25 30 32 36 . '::

• 3":\", ~ S~~~ E:- . I !\~~:~~. I I .
. - - -

... -

FIELD A; JA1 (equal): If the Comparator is set to equal, the
address of the MSL of the instruct i on labelled
SAME, locations 2 and 3 of the JT instruction,
is transferred to the ICC.

FIELD B; JA 2 (less than): If the Comparator is set to less than,
the address of the MSL of the instruc
tion labelled SHIP, locations 4 and 5
of the JT instruction, is transferred
to the ICC.

INC
35 40

. I .

o

Example 2

LABEL

Given: The Employee Name from a detai 1 card (Opn
has been compared to the Employee Name from
a Master Card.

Problem: If the Names are equal, transfer control
to the address which follows the LSL of
the JT instruction. If the names are
unequal, transfer control to the instruc
tion labelled ERROR.

PPERATION OPERAND 1 OPFRArlD ?

~ FIELD A + INC ~ FiELD B + INC FIELD C
1 5 6 10 *12 16 - JI"~ aJ * 22 26 - 25 30 32 36 .::

• . :\.'T
, . '" IS': 1 E.:i.R.o.~ . I • .

FIELD A; JA1 (equal): The dollar sign symbol ($) causes the
Assembler program to use the current
value of the Instructio~ Location Counter
with an increment of 5 ~S the JA1 address
of the JT instruction.

FIELD B; JA2 (unequal): The address of the MSL of the instruction
labelled ERROR is used as the JA2 address.

Solution: The source language instruction taken from
the card which immediately follows the JT
instruction during the Assembly processing,
will be assigned to the address which fol
lows the LSL~of the JT instruction. During
the Assembly processing of the JT instruc
tion, the ILC contains the address which is
assigned to the JT instruction MSL. The JT
instruction will occupy that location, and
4 more. Thus the ILC ($) plus an increment
of 5 will be the same address that will be
assigned to the instruction which is as
sembled after the JT.

... INC - Gt :0

. I

J 07

4.7.3 UNCONDITIONAL JUMp

MNEMONIC: J MODE: SPEC I AL l.ENGTH: 5 I A: NO

LABEL PPERATION OPERAND 1 OPERArill ?
III FIELD A + INC .~ FIELD B + INC FIELD C

1 5 6 10 *12 16 - ~~' a:J * 22 26 - 2-:; 30

• • ~ . trA . I I - .

FUNCTION: Transfer control to instruction JA specified by
Field A.

32 36

. ••

When this instruction is executed, an unconditional transfer

is made of the JA to the ICC. Thus the address specified In

Field A becomes the address of the next instruction to be executed.

In many cases, a J instruction will be the last instruction of

a sub-routine which has been entered through use of the JR instruc-

tion.

The JA address occupies locations 4 and 5 in the instruction.

\ O~

-------------~-.~---. ---~-~ ... ~---~~-

1

O~

.. INC - 32 40

I 1
I

o

o

If

(

4.7.4 Jl.MP RETURN

MNEMONIC: ~ MODE: SPEC I AL LENGTH: 7 IA: NO

LABEL PPERATION OPERAND 1 OPERAIID 2
~ FIELD A + INC ~ F!ELD B + INC FIELD C + INC

1 5 6 10 * 12 16 - .. -. d) * 22 26 - 2~ 30 32 36 - tr ...

I II triA. . . I ~L • I lRAI ..
FUNCTION: Transfer ascending, locations 3 and 2 of the IR (RA)

specified by Field C; beginning with the address 2L specified
by Field B. Then transfer the JA specified by Field A to the
ICC.

The object language instruction produced from a source language JR

instruction has the format and will appear in the Instruction Register

as follows:

IR Locat ions 1
..R

23
BA

45
JA

67
2L

The two characters produced from the RA (Retrun Address) are stored In

locations 2 and 3. The two characters produced from the JA are stored

in locations 4 and 5. The two characters produced from 2L are stored

in locations 6 and 7. These location numbers refer to the positions

of the object instruction as it is stored in memory, and to the positions

the instruction will occupy in the Instruction Register (IR) when the

instruction is executed.

When the instruction IS executed, the following operations are auto-

matically performed:

1. Locations 2 and 3 of the IR are transferred (ascending)
beginning at the memory location whose address is in
positions 6 and 7 of the IR.

2. Locations 4 and 5 of the IR are transferred to the
Instruction Control Counter (ICC) and are used to control
the access of the instruction to be executed next.

\O~

40

I

The purpose of the JR instruction is to provide a simple method of

interrupting the sequential execution of instructions In order to

execute a special subroutine. After the execution of the special

subroutine, control is to be returned to the instruction which

sequentially follows the JR instruction.

The special subroutine is called a closed subroutine. This means that

the entrance (the first instruction executed) is closed as far as the

initiation of the subroutine by the sequential advance of the LCC. It

also means that the exit (the last instruction executed) is closed to

prevent resumption of the program through the sequential advance of the ICC.

A closed subroutine normally has the following form:

1. The first instruction to be executed (the entrance line)
has a label which is the name of the subroutine.

2. The last instruction to be executed (the exit line) has
a label, and is usually an unconditional jump instruction
(Operation J).

3. If there are multiple points within the subroutine from
which exit might occur, they must transfer control to
the exit line.

Using this form for closed subroutines, the JR instruction is then set

up as follows:

FIELD A; JA:

FIELD B; 2L:

FIELD C; RA:

contains the label of the entrance line of the subroutine.
L

contains the address of the L~ of the exit line of the
subroutine.

contains the label of the address of the MSL of the
instruction to which control is to be transferred after
the subroutine_has been executed.

ol

o

Example 1

LABEL

NOTE: If the return address (RA) of the JR instruction is
to be the address of the instruction stored sequentially
following the JR instruction ($ + 7), Field C of the
JR instruction may be left blank. The Assembler program
will automatically insert the address equivalent .
of $ + 7 in locations 2 and 3 of the object instruction.
If the return address (RA) of the JR instruction is
to be anything other than $ + 7, the required address
must be coded in Field C according to the rules for
Assembly System addressing.

Given: A subroutine has been established to calculate
square root. The entrance line is labelled SQRT.
The exit line is a J instruction labelled EXIT.

Problem: Execute the subroutine, and return control to the
next sequential instruction.

~ERATION OPERAND 1 OPFRAID ?

~ FIELD A + INC ~ FIELD B + INC FIELD C + INC
1 5 6. 10 *12 16 - ' aJ * 22 26 - 2:= 30 32 36 - t1S 40

• l".R _. IS~G.t.T I 1+'E..~t=r .1 • • . . . -

FIELD A; JA: The address of the MSL of SQRT is used in Locations 4 and
5 of the object instruction.

FIELD B; 2L: The plus ,sign (+) prefix to the label EXIT causes the
address of the LSL of that instruction to be used as
the locations 6 and 7 of this instruction.

I

FIELD C; RA: Blanks in Field C cause the Assembler program to use the
current value of the ILC (the address of the JR instruction)
plus 7 as the address RA in locations 2 and 3 of this
instruct ion.

Solution: At the time the JR instruction is assembled, the ILC contains
the address assigned to the JR instruction. The implied
$ + 7 is the same as the value which will be in the ILC
when the Assembler program assigns an address to the next
instruction. At execution time, this two character address
of the next instruction is transferred automatically in
ascending mode, from locations 3 and 2 of the IR to the
LSL and LSL minus one of the instruction EXIT. These two
locations of the instruction EXIT constitute the JA of an
unconditional jump (J) instruction.

/11

After setting up the RA in the exit line, the two characters
from locations 4 and 5 of the JR instruction are automatically
transferred to the lec. This causes the instruction stored
at SQRT to become the next instruction executed.

After the execution of the instructions in the subroutine,
the instruction EXIT will be executed. The J instruction
stored at EXIT now contains a JA address set up by the JR
instruction. This JA address is the address of the instruction
stored sequentially following the JR instruction. Thus
control is returned to the main chain of the program.

When the square root subroutine IS reused at another point in the

program, the entry is also made by a similar JR instruction. This JR

instruction will set up a new RA in the exit line (EXIT) which will

return control to the instruction which follows the new JR instruction.

The effect of the JR instruction can be produced by using a TK instruction

f 11 0 owe d b)y a J' t t' Ins ruc Ion.
LABEL PPERATION OPERAND 1 OPERAIID '2

~ FIELD A + INC pij F!ELD B + INC FIELD C .. INC
1 5 6 10 * 12 16 - ,..~

~ * 22 26 - 25 30 32 36 13s 40 ',,":

• . T.~ .. ~~, .. I~ I~I If Erw..I:..'T -1. I "'.E.. ~.l:. '\ I

, • I I • 1 . .. S.QctT. . I . . • t I I
-

The instruction which is to follow the execution of the square root

subroutine is the one which will be coded and assembled following the

J instruction. The address which will be assigned to that instruction

is the value of the ILC at the time the TK is assigned, plus 7 for the

length of the TK instruction, plus 5 for the length of the J instruction--

$ + 12.

The use of the IR instruction thus saves the memory locations required

for the J instruction, the access time of the J instruction, and the

programmer time to calculate the return address.

, (~

o

o

4.7.5 JUMP COMPARE

MNEMONIC: JK MODE: SPECIAL LENGTH: 7 -IA: NO

LABEL OPERATION OPERAND 1 OPERAIID 2 .. FIELD A + INC ~ FIELD B + INC FIELD C
1 5 6 10 *12 16 - 2D * 22 26 - 2~ 30 32

-- ~ . ~ ::r~ .. l~ I lA t I I~l -

FUNCTION: Using the bit positions of K, specified in Field A,.
which contain binary 1 bits; test the corresponding
bit positions of the memory location whose address is
specified by 2L in Field C. If the bit positions of
2L which correspond to binary 1 bit positions of K

36

•

... INC - 8s 40

I

gll contain binary 1 bits, transfer control to the JA address
specified in Field B. If ~ of the bit positions of 2L
which correspond to binary 1 bit positions of K do not con
tain a binary 1 bit, proceed with the next sequential In-
struction (NI). -

NOTE: Bit positions of 2L which correspond
to binary zero positions of K are
ignored by the test and may-contain
binary zero or binary one.

The purpose of the JK instruction is to perform a test for

bitCs) present in the contents of a memory location. If K contains

only a"single binary 1 in the X bit position, and the contents of

the memory location specified by Field C also contains a binary 1

in the X bi t posi t ion, the jump to JA wi 11 occur. I f the memory

location specified by Field C does not contain a binary 1 in the X

bit position, the jump will not occur, and the program continues

with the next sequential instruction (NI). The presence or absence

of binary 1 in the other bit positions of 2L are not involved in

the nperation, and have no effect on the result.

If K contains multiple binary 1 bits, then each corresponding

bit position of 2L must also contain a binary 1, or the jump will

not occur.

\ \ ~

Example 1

lABEL

Problem: Test the information stored from column 80
for the presence of a binary 1 in the X bit
posi t ion. I f present, transfer control to
CRDT.

PPERATION OPERAND 1 OPERAIID 2
IA FIELD A + INC ~ F!ElD B + INC FIELD C

1 5 6 10 * 12 16 - ., .. 20 * 22 26 - 2:: 30 32 36 . ,-

"S,\<.
.,

I eR ~'r I a'g,O. I . i .,

FI ELD A; K: The apostrophe (I) is the UNIVAC 1005 character wnich
conta ins a b i nar y 1 in on 1 y the X bit posi t ion.

FIELD B; JA: The address of the MSL of the instruction labelled
CRDT is used as the JA of this instruction.

FIELD C; JA: 1180 is the decimal address of the location which
contains the information from card column 80 of Read
Input. ..

Solution: If the information stored from card column 80 contains
a binary 1 in the X bit position, the jump to CRDT will
occur.

Example 2

lABEL

Problem: If card column 25 contains only the letter D,
transfer control to DED. If card column 25
contains anything other than the letter D,
transfer contr~l to NOTO.

D = 010 111

PPERATION OPERAND 1 OPERArID '2
~ FIELD A + INC IA F!ElD B + INC FIELD C

1 5 6 10 * 12 16 -~:.; 20 * 22 26 - 2:: 30 32 36

!,~
f'

No~ • I ~(. I . . • I L I I t

I I I l".K S;, • • I ".0 :\Lb.. .L 1 ~(.

• '. I
1';\(I tD. I . I l.~~ ... 1 Ilt~(

~,QTh • . '. • I ,. .I • • ~ 1 • I

T INC - BS 40

I

T INC - BE: 40

I

• I

I

• I

c

(

(--

Instruction 1: If card column 25 contains a binary 1 in the X bit
position, it does ngi contain only the letter D,
and control is transferred to NaTO.

Instruction 2: If card column 25 contains a binary 1 in the 8 bit
position (X53 code fo~ 5), it does not contain only
the letter D, and control is transferred to NOTD.

Instruction 3: The previous two instructions have eliminated the
possibility of the presence of binary 1 in the X
bit and the 8 bit positions, If the remaining
positions all contain binary 1 bits, this instruc
tion will transfer control to DED. If card column
25 did not contain a D, this instruction will n2i
jump, and control will sequential pass to the next
instruction--which is NaTO.

The character K will appear in location 2 of the object in-

struction. Location 3 is not used. Locations 4 and 5 will contain

the JA address. Locations 6 and 7 will contain the address of the

location to be tested.

NOTE: Octal coding may be used in Field A to specify
K of the JK instruction. Column 12 must contain
a number sign e#), and columns 13 and 14 must
contain two octal digits whose bit pattern will
produce the required K •. Columns 15 ,and 16
must conta:i n 00.. L-ocat i on 3 of too JK
instruction is ignored.

.r
) (~

4.7.6

"1f

JUMP LOOP

MNEMONIC: JL MODE: SPECIAL LENGTH: 7 I A: NO _,.r_
lABEL PPERATION OPERAND 1 OPERA! ID 2

~ FIELD A + INC ~ FiELD B + INC FIELD C
1 5 6 10 * 12 16 - "'-. ::D * 22 26 - 2~ 30 32 36 ' ~

• . "Il. . ~) I l"A I J l~L . . - "

FUNCTION: Subtract 1 from locations 2 and 3 of the IR (which
will contain DD specified by Field A) leaving DD
unchanged in memory. Transfer ascending the result from
locations 2 and 3 of the IR to 2L specifi~d Q~ Field C.
I f the re'su It is pos it ,i v~ or .~er'?" tr'~~sfer ~fer
control to the JA soeclfledln ~leld~. It the result
is negative l proceed with the, next sequential in-
struct ion. - - --

+ - INC
BS 40

. I

NOTE: 2L usually specifies $ + 2, the ad-dress of the l~ast
significant D. If Field C is blank, the address of $ + 2,
is placed in the object language instruction. Maximum DD = 99.

The purpose of the JL instruction is to provide a means to

control the number of times a series of instructions are to be

repetitively executed. The series of instructions is called a

loop.

A loop is established to perform a common operation on each of

a set of similar data, thus eliminating the need for a separate

series of instructi ons for each ef ike set of data.

A loop consists of four sections

1. Intialization

2. Processing

3. Modification

4. Control

If

(-

(

The Intialization section prepares the loop to be used for the

first of the repetitive executions. The Processing section consists

of the operations to be performed on the data. The Modification

section changes the addresses in the Processing instructions to

refer to the next set of data. The Control section determines when

the loop has been executed the required number of times.

The Control section of a loop in the UNIVAC 1005 will usually

consist of.a single JL instruction~ The DD portion of the JL

instruction must be set to a beginning condition in the Initialization

section, due to the fact that DD is changed during the execution

of the loop. Assume a loop is to be executed three times. DD wi 11

be ~2 in the JL instruction at load time. After the execution of

the Processin~ and Modification sections, the JL instruction is

executed for the first time. 2L specifies the memory address of
..

DD. DD is reduced by 1 in the fR and the result (f;J1) is stored at

2L, replacing the ~2. The result is not negative, so

the jump occurs to JA)which usually specifies the first instruction

in the Processing section~ After the execution of the Processing

and Modi fi,cat ion sect ions, theJL instruction is executed t.he second

time. DD, which now is 01, is again reduced by one in the IR,

and the result (~0) is stored at 2L, replacing the ~1. The result

is not negative, so the jump occurs to JA. After the

execution of the Processing and Modification sections, the JL in-

struction is executed the third time. DD, which now is ~1, is again

reduced by one in the IR, and the result (-~l) is stored at 2L,

replacing the ~0. This time, the result is negative. There

fore the jump to JA does not occur, and the program continues

with the instruction (NI) which sequentially follows the JL instruc-

tion. The "number of times" minus one is used as DD--two in

this example. Howeve~, the value of DD in the stored JL instruc

tion has been changed by the execution of the loop and now reads

-~ Before the loop is executed again, the value of DD must be

re-stored to the correct number of times the loo~ is to be exe

cuted. This is usuallY'accomplished in the Intialization section

by using a TK instruction with KK equal to the initial value of DD.

The 2M and 2L of the TK instruction specifies the address of the DD

portion of the JL instruction.

A skeleton example of the coding for the previously described

loop is as follows:

LABEL PPERATION OPERAND 1 OPFRArID? .. FIELD A + !NC I~ F!ELD B + INC FIELD C
5 6 12 16 - . -- 3J * 22 26 - 25 30 32 36 1 10 * . ,~

-r,..:L:T'. IT.\<. a Qa , I i.N T.R\.. It 11.1 c..'~,\.\\.\.
I- -' I ,-, • , ;--r a - I , , -I •

l~ lRaO.e.S --:- ~
~ ,- - -I , i-' ":" "'1 :-r r-r"" -, '":'-r'

~
, - -- -I I I I .. -, -a -,- , r ~ --. """'"r"". -: ,

lM.olh.f,~ --- l-
..r- "T I "'i'-. .- .
~ .- - ,- -I I • • t- -',-;- , -~, f'" ~ . . a -: 1, I I a

C-.tol \'.R. \.. IIL, a lB a I ~.R.OL& I 1t.N.T.R..L - - - j'.--- -

-- -- ------------ - ~~~- --- -------~-- -------- ---------

... -
1-+

1+

cl

j
I

~

INC
35 40

I~ I

I I

, I

I

I

, I

I;).. I

G

('~ .. '

./

The loop is entered by executing the instruction labelled
.

INIT. This set DD equal to 0:l in the JL instruction, labelled

CNTRL. There are usually other operations required in the Initiali

zation section. The fact that DD is ~when loaded, and is reset

to ~ for the first use of the loop should not be of concern.to the

programmer. Notice that Field C specifies the address of DD in

memory.

The Modification section will usually ·involve the use of the

COUNT (CC) instruction, which is explained in Section 4.8.

Section 1.6 (page 12) on Indirect Addressing contains an example

of the use ~f a loop. In the example, Instruction 6 would be a JL

instruction with a DD of ~ and a JA of the address of Instruction 1,

the first instruction of the Proces~ing section. Instruction 5 would

be replaced by the instructions necessary to perform the Modification

section requirements. Instruction 1 would be preceded by the Initial-,

ization section instructions including a TK instruction which sets

theDD of the JL instruction to 01.

4.7.7 JUMP INDIRECT

MNEMONIC: JI MODE: SPECIAL LENGTH: CV IA: YES
-

LABEL PPERATION OPERAND 1 OPFRArlD 2

'"
FIELD A + INC ~ F!ELD B + INC FIELD C

1 5 6 10 *12 16 - -'1~' 20 * 22 26 - 2~ 30 32 ::

• I In,- I tt;-r." I I I .
FUNCTION: Transfer descending two locatjons beginning with the

IJA (Indirect Jump Address) specified in Field A to
the Instruction Control Counter (ICC).

NOTE: If Indirect Addressing is specified
(asterisk in column 12) two levels of IJA
wi 11 occur.

Field A of a Jump instruction (J) specifies the address to

which control is to be transferred. Field A of the Jump Indirect

instruction (JI) specifies the address of the address to which

control is to be transferred.

The JI instruction is a pseudo-operation In the UNIVAC 1005

Assembly System. The JI instruction produces a TD command which

has an OP 1 of the IJA, and an OP2 of the ICC. OP1 contains the

36

I

address of an instruction (2 characters). When these two characters

are transferred to the ICC, they are used to control the access of

the next instruction. Thus control is transferred, not to the IJA,

but to the address stored in the locations specified by the IJA.

Assume there are several points in a closed subroutine at

which the processing is concluded. Each one of these points must

return control to the instruction which follows the JR instruction

used to enter the closed subroutine. This can be accomplished by

---------.--.----.-~~----.~

.. INC
- BE 40

I --

tc
coding a Jump (J) instruction at each of the ending points in

the subroutine which transfers control to the exit instruction. The

JA of the exit instruction was set up by the JR instruction to

transfer control to the instruction following the JR instruction.

However, by coding a Jump Indirect (JI) instruction at each of the

ending points with an IJA that refers to the JA portion of the exit

instruction, the execution of the second jump is eliminated.

Assume that EXIT is the label -of the exit instruction of a

closed subroutine. Each of the ending pOInts would conclude with

the following instruction:

LABEL OPERATION OPERAND
...... -

1 OPERArln?
!If' FIELD A + INC ItA F'ELD B + INC FIELD C

1 5 6 10 * 12 16 - 2D * 22 26 - 2:: 30 32 36

• . l-Sl . IE. 't.'l. ,. ~ 3 I . ,1- __ --1._ I .
- - .-- --. -- "-. . r -

When the JI instruction is executed, the two character address

stored in locations 4 and 5 of EXIT, by the JR instruction, are

transferred to the ICC. This effectively transfers control to the

instruction following the JR instruction.

... INC - 8:: 40

I
-~

4.8 COUNT

MNEMON I C: CC MODE: SPEC I AL LENGTH: 5 IA: NO
--LABtL PPERATION OPERAND 1 OPERArlD 2

~ FIELD A + INC ~ FiELD B + INC FIELD C ... INC
1 5 6 10 * 12 16 - ~ .~, 20 * 22 26 - 2~ 30 32 36

• f~C. Ii.. ~~, I btM I I --L • I - . - ,- •. -
FUNCTION: Using address arithmetic, modify by DD~specified in Field

A; the two character Row, Column, and Bank address stored
beginning at 2M~specified by Field B.

The purpose of the CC instruction is to provide a means of address

modification according to the special logic of row, column, and bank

- 3E

addressing employed in the UNIVAC 1005. Addresses are specified by the

full 6 bit positions of two adjacent characters. The Arithmetic Unit bf

the UNIVAC 1005 operates on a 4 bit numeric basis. Thus the Add and

Subtract instruct ions cannot be used for addressl.ffiod i ficat iQn.-

The CC instruction operates on the full 6 bits of the two character

address stored in the locations specified by 2M using the decimal

value of DD as the modifier. If the address is to be decremented, a

mInus sign (-) is placed in column 12 of Field A, and DD is placed in

columns 13 and 14. If the address IS to be incremented, DD is placed

in columns 12 and 13 and assumed to be plus. DD must always be two

digits (00 through 99 maximum), If DD is less than ten, a 0 is placed

in column 12. When DD is a decrement, the Assembler program places

an X bit over both .of the numeric digits in the object instruction.

2M usually specifies the addr.ess of the MSL of the A portion of another

instruction which is to be modified to reference a new set of data.

40

I

.".~
(

\"t~/J

o

(

/

f

/

Section 2.6 (page 12) on Indirect Addressing contains an example of .

the use of a loop. The Modification section of the loop would consist

of a single CC instruction that would replace Instruction 5. The CC

instruction would modify the A portion of Instruction 1 by the number

of locations required for each entry in constant storage. Since two

characters are required for MSL and two for the LSL of each of the

four fields' in a Transaction, the value of DD must be 16.

Assume that Entry 1 of the constant storage area was labelled ENT 1, and

the Secondary Address Table was labelled SECAT. Instruction 1

would be:

LABEL OPERAND
FIELD A + INC

16 - '2 3)

The first execution of this instruction will cause a descending transfer

beginning with the MSL of ENT 1 (Entry 1 of constant storage) to the

MSL of SECAT (the Secondary Address Table). The transfer will

cant i nue unt i I the LSL of ~:r;:(b=);:-!::iil~ 19 i a C) has been

filled. The remainder of the processing will then operate on

Transaction 1.

Before Instruction 1 is executed the second time, the two characters

in locations 2 and 3 of Instruction i must be modified to transfer

from Entry 2 of constant storage to the Secondary Address Table. The

following CC instruction would be used to modify PROCS (Instruction 1,

locations 2 and 3).

LABEL OPERATION OPERAND 1 OPERA to 2
~ FIELD A + INC ~~ FIELD B + INC FIELD C .. INC

1 5 6 10 *12 16 - ~-. 20 * 22 26 -- 2: 30 32 36 - 8:: 40 ~ --

I •. .1. lCut. .i I~b ... I PR O.c...S +11. J .i.J. , I --

Each time this ee instruction is executed, the OP 1-MSL address in

FROCS is incremented by 16. This will cause successive transfers of

each of the entries in constant stora2e. However, after the last

execution of the loop, the A portion of FROeS will have an address of

the location which follows the last location of constant storage. The

Initialization section must then contain the follo,wing TK instruction

which is executed before FROes:

LABEL ~PERATION OPERAND 1 J)PEBA In 2
IA FIELD A + INC ,~ F 'ELD B + INC FIELD C ..

1 5 6 10 * 12 16 20 * 22 26 - 2: 30 32 36 --

• • rrj{ :.E.ttT .1 ..L 1 P~O~.s 104- ~ 1 ~-,-R.J. 0 ,'-IS ~ -- -

I

INC
8:: 40

l.l- J

The use of the colon C:) will cause the Assembler to use the address of

ENT 1 as KK in the TK instruction. These two characters are transferred

to locations 2 and 3 of PROCS, so that each first execution of

FROeS will refer to Entry 1 of constant storage.

The complete coding for the loop is as follows:

o

4.9

c

EDIT INSTRUCTIONS

The UNIVAC 1005 instruction repertoire includes two types of

instructions which perform editting and logical operations. The

logical operations provide for the deletion (erasing) of 1 bits and

the-insertion (superimposing) of 1 bits on the bit positions of a

memory location. The edit instruction provides for the preparation

of output data for printing and punching. The edit functions include

such things as zero suppression, character insertion, asterisk

fill, etc.

The erase function performs logical (or binary) mUltiplication of

the corresponding bit positions of a constant and the contents of a

memory location and stores the bit by bit product back in the same

memory location. A binary zero il either or both corresponding bit

positions of the constant or the contents.of a memory location will

produce a zero bit in the product. Only if both bit positions contain

a binary 1 ~ill the product bit be binary 1. Thus 0 x 0 = 0,0 x 1 = 0,

1 x 0 = 0, 1 x 1 = 1

The superimpose function performs logical (or binary) addition)without

carry,of the corresponding'bit positions of a constant and the contents

of a memory location, and stores the bit by bit sum back in the same

memory location.. A binary 1 In either or both corresponding

bit positions of the constant or the contents of a memory location

will produce a binary 1 as the sum. Only if both bit positions contain

a binary zero will the sum be a binary zero. Thus 0 + 0 = 0,

0+1 = 1, 1 + 0 = 1, 1 + 1 = 1.

The edit instruction requires the use of a pattern of characters

called a mask to control the alteration of a field or fields of data for

output. The mask pattern must be transferred to rX before the

execution of the edit instruction.

o

-----~------

l(
4.9.1 ED IT LOG I CAL

MNEMONIC: EL MODE: SPECIAL

LABEL PPERATION OPERAND 1
~ FIELD A +

LENGTH: 7 IA: NO

OPERAIID?
INC • FIELD B + INC FIELD C ... INC

1 5 6 10 * 12 16 - ~ LD *" 22 26 - 2~ 30 32 36 - G5 40 .. -
• . IE.L . I\(\(• I 1tM. .1 i,lM • . I

FUNCTION: Erase the bit positions of the contents of location 1M
specified in Field B which correspond to the bit positions
of location 2 of the IR (the left hand K) which contain binary
zero. Then, superimpose a binary 1 on the bit positions of
2M specified in Fi~ld C which correspond to bit positions
of location 3 of the IR (the right hand K) which contain
a binary 1.

NOTE: If 1M and 2M specify the same~tion, the erase
precedes the super impose, O'W lA~.

The two characters (KK) in the A portion are used individually. The

instruction uses the left hand character (which appears in location 2 of

the IR when the instruction is executed) as the bit pattern for the

erase function. The right hand character (which appears in location

3 of the IR) is used as the bit pattern for the superimpose function.

The erase function is performed on the character in the location (1M)

specified In Field B. The superimpose function is performed on the

character In the location (2M) specified in Field C. The erase and

superimpose can be performed on the same character by specifying the

same location in 1M and 2M.

NOTE: The UNIVAC 1005 Assembly System provides an
instruction to erase only (EE) and an instruction
to superimpose only (ES).

The character whose zero bits are used to'erase IS coded in column 12.

The character whose one bits will be superimposed is coded in column 13.

l~l

Example 1

lABEL

Given: A card field in columns 6 through 9 will contClin
an X punch over column 9 if it is negative. This
field will be transferred to print position 66"
through· 69. All of Print storage has been cleared
as a result of the previous PRINT, EXECUTE command.

Problem: Provide the instruction which will print a minus
sign from print position 70, and delete the X
bit over the information from card column 9.

PPERAT.ION OPERAND 1 OPFRAIID 2
~ FIELD A + INC ~. F!ElD B + INC FIELD C + INC

1 5 6 10 * 12 16 - "''-' a) * 22 26 - 2:: 30 32 36 - 82 40 ',:;

• . . IE.~ ... =.-:. .. , I ~9 . I I',P,R. I ... lo~1

FIELD A; KK:

FIELD B; 1M:

The bit configuration of the equal sign (=) in column 12
is 011 111. The bit configuration of the minus sign (-)
is 000 010.

11 9 is the decimal address of the location in Read
storage which contains the information from card column
9. This becomes the erase address.

FIELD C; 2M$PR is the Standard label for the MSL of Print storage.
$PR + 69 is the address of print position 70. This becomes
the superimpose address.

Solution: The binary zero 'in the X bit position of the equal sign will
erase the X bit position of Read storage for column 9. The
binary 1 in each of the other bit positions of the equal
sign will prevent the erase of the corresponding bit
positions of Read storage for column 9.

The fact that Print storage is cleared after a PRINT, EXECUTE
allows the superimpose of the binary 1 in the 2 bit position
of the minus sign.on the binary zero in the 2 bit position of
print position 70. If print position 70 was not known to be
all binary zeroes, two steps would be required to solve this
problem.

NOTE: The TK instruction can be used to replace a single
character in memory, rather than erase with space and
superimpose with the character.

o

(-

c

Odal coding can be used to specify the bit configuration of KK

in the EL instruction. The number sign (#) is coded in column 12

followed by four octal digits. The coding for the previous solution

in octal would be:

LABEL OPERAND 1
FIELD A + INC

16 - .,~ d)

The binary configuration of octal 37 is 011 111. The binary configuration

of octal 02 is 000 010.

4.9.2 EDIT ERASE

MNEMONIC: EE MODE: SPEC I AL LENGTH: 7

LABEL PPERATION OPERAND 1
Ii" FIELD A + INC IIA FIELD B

5 6 10 *12 16
- .JI,-- a) * 22 26 1 .,:;

I .. EsE . I\(. I itM. --

fA: NO

OPERAND?
+ INC FIELD C ... INC

25 30 32 36 - 35 ·40

. I • I I I I I

FUNCTION: Erase th~ bit positions of the character stored at 1M s~LLQ
by Field B which correspond to bit positions of K,
specified in 901umn 12 of Field A, which contain binary
zero.

This instruction is a ~seudo-operation provided by the Assembly System

which is a variation of the EL instruction. The operation code EE

causes the assembler program to automatically use the address of 1M In

locations 4 and 5, and 6 and 7 (2M of an EL instruction). The blank

column 13 will produce binary zeroes so that no bits are superimposed •.

ff octal coding is used, the number sIgn followed by four octal digits

must be specified)and the last two must be 00.

NOTE: ff a memory location is to be cleared to binary
zeroes, use a TK with KK equal to ~~.

)30 c
!

I

(

(.

4.9.3 EDIT SUPERIMPOSE

MNEMONIC: ES MODE: SPECIAL LENGTH: 7

LABEL PPERATION OPERAND 1
IN FIELD A + INC ~ FIELD B

10 * 12 16 - ""-. d) * 22 26 1 5 6 .~

. . 11:.5;. IK ... • I l;lM . . ""

IA: NO

OPFRMID· 2
+ INC FIELD C 't
- 2S 30 32 36 -

. , . . - - . "

FUNCTION: Superimpose the binary 1 bit positions of K, specified in
column 12 of Field A, on the corresponding bit position of
the character stored in 2M specified in Field B.

This instruction is a pseudo-operation provided by the Assembly System

which is a variation of the EL instruction. "The operation code ES

causes the Assembler program to automatically use the address of 2M

in locations 4 and 5 (1M of an EL instruction), and 6 and 7. The

Assembler program also automatically places K in location 3, and puts

all binary 1's in location 2 so that no bits are erased.

If octal coding is used, the number sign followed by four octal digits

must be specified, and the first two must be 77.

I ~ l

INC
3f 40

I

4.9.4 EDIT

MNEMONIC: ED MODE: DESCENDING

LABEL PPERATION OPERAND 1

LENGTH: 7 IA: YES

ClPi=RArID '/

~ FIELD A + INC ~ F!ELD B + INC FIELD C
1 5 6 10 *12 16

_ ..., H

2D * 22 26 - 2:: 30 32

IEr:h liM .
I I~ . I ~\.

FUNCTION: Transfer descending beginning at OPI-MSL specified
ih Fi"eld A; according to the manner specified by the
corresponding special characters in the edit mask in
rX; t9 the OP2-MSL specified in Field B. Continue
until: the OP2-LSL has been filled; ~ a sentinel
(i) i~ detected in the edit mask; . ~ the LSL of rX
has been handled.

NOTE: The maxi~um length of the edited
data delivered to OP2 is 31 loca
ti ons.

The Edit (ED) instruction performs a location by location

transfer of the charact~rs from OP1 to the locations of OP2
•

according to the edit functions specified by special characters

placed in corresponding locations of rX. The lengt~ of OP 2 is

dictated by the length of the mask in rX (31 locations maximum).

The result character to be stored in OP2 will be either the

36

•

character from OP1 processed according. ~o the edit action specified

by the special characters in the mask; or a character to be in-

serted from the mask. The mask is usually stored as a constant

and is transferred to rX before the execution of the ED instruction.

The mask is not changed by the ED instruction, and can be used
.

repetitively for identical edit operations.

... INC
- BS 40

I

o

(

Indirect Addressing can be specified for the address of the

data to be edited (OP1) and for the destination of the edited

output (OP2).

The following symbols are used as special characters In the

mask to specify the edit action:

" (Backward Slash). When this special character is detected
in the mask, it will cause ieroes and
spaces from OP1 to be replaced with
asterisks (*) until a character which is
not a zero or a space is recognized from
OP1. The asterisk fill operation started
by the backward slash can be restarted
during the ED instruction by placing
additional backward slashes in the mask.

~ (Delta symbol). When this special character is detected
in the mask, it will cause zeroes and
spaces from OP1 to be replaced with space
codes (binary zeroes) until a character
which is not a zero or space is recognized
from OP1. The zero suppress operation
started by the Delta symbol can be re
started duri"ng the.ED instruction by
placing additional Delta symbols in the
mask.

NOTE: If a comma appears in the mask and
a previously started asterisk fill
or zero suppress function has not
detected a significant character,
the comma will be replaced by an
asterisk or a space code.

~ (Lozenge) When this character is detected in the
mask, it allows the current correspond
ing character from OP1 to be trans-
ferred to OP2. If asterisk fill or zero
suppress has been previously started, the
character from OP1 is handled accordingly.

t (Unequal symbol). When this character is detected in the mask
it will terminate the ED instruction.
The current character from OP1 will not
be transferred.

All ch~racter.s other than backward slash, Delta, lozenge,

and unequal which appear in the mask will be inserted in OP2

prior to the current character from OP1.

The function of the ED instruction when executed is to first
• f

examine the MSL of rX. At this precise point in time, the current

character from OP1 is OP1-MSL. What happens next is based on

the characfer in the MSL of r',x. Basically, one of two possibili-

ties exist: the character in the MSL of rX is not one of the

four special characters, or it is one of the four special characters.

If the character in the MSL ofrX is n2i one of the four special

characters, the character from rX will be inserted in the MSL of

OP2. The next character in the mask will then be examined. At

this point in time, the current character from OP1 is still the

OP1-MSL. If the second character in the mask is not one of the

four special characters, it will also be inserted. This examination

and insertion will continue until one of the four special characters

is detected. (If the mask d~es not contain a backward slash, a

Delta, or a lozenge, the ED becomes a TD of rX to OP2.) c

(

When a special character is detected in the mask (other than

the unequal symbol), the current character from OP1 (which in this

example is still the OP1-MSL) IS transferred to the next most

significant location of OP2. When this occurs, the next most

significant character of OP1 becomes the current character from OP1.

Mask examination is also advanced to the next most significant

location of rX. This operation is continued until the first of the

following occurs: 1. The mask examination detects the unequal signal.
The ED instruction terminates, and the current
character from OP1 is hot handled.

2. A character has been stored in the LSL of OP2
(specified in Field C) before the LSL of rX
has been examined. The ED instruction is then
terminated.

3. The act i on followi ng the exami nat ion of the
LSL of rX has resulted in a character being
stored in OP2. The ED instruction is then
terminated.

The length of OP2 cannot be greater than the length of the mask

(maximum 31 locations). If OP2 is smaller than the mask, the excess

positions of the mask are not examined. If the mask is less than 31

characters in length, the unequal sign should be used as the least

significant character in the mask, but is not counted In the length

of the mask or the length of OP2 •
•

The length of OP1 is determined by the number of locations in the

mask which contain special characters other than the unequal sign;.

presuming that the length of OP2 and the mask are the same. The

presence of any of the special characters in OP1 will not change the

operation of the ED instructi·on.

Example 1

Given: A ten location operand labelled SUM which
contains dollars and cents.

Problem: Print the contents of SUM as follows:

Contents of SUM:

Constant stored at MASK:

Instructions:

LABEL

1

1. Precede with a dollar sign.
2. Zero suppress
3. Insert commas
4. Insert the decimal point
5. Print the word "TOTAL" two print

positions to the left of the dollar
sign, and ~~ting in print position l~1.

14 15 16 17 18 19

Instryction 1. The mask is transferred from MASK to the high order
end of rX.

o

(
Instruction 2 (See Figure). The MSL of SUM becomes the current

character from OP1. The MSL of rX
contains the letter "T" which is not
a special character. The ''T'' is
therefore inserted in the MSL of
OP2--print position l~l. The next
position of the mask (rX) is examined,
and the letter "0" is transferred to
the next position of OP2. The examina
tion and transfers continue until the
dollar sign ($) has been transferred
to OP2. The MSL of OP1 is still the
current character of OP1 •

Delta (locati6n 9) is the next
character in the mask. This starts
the zero suppress function, and
causes the transfer of the current
character from OP1. The ~ from OP1-
MSL is changed to a space code, and
transferred to the next location of
OP2. The next position of the mask
(location l~) contains a lozenge,
which causes the new current character
from OP1 (location 2) to be transferred
to OP2 (with zero suppression). The
next position of the mask (location 11)
is examined and is found to contain a
comma. Since zero suppress is still
active, the comma is changed to a
space which is inserted in OP2.
The next location of the mask (loca
tion 12) contains a lozenge which causes
the transfQr of the current character
from OP1 (location 3) to be trans
ferred to OP2 (with zero suppression).
The next position of the mask (location
13) contains a lozenge which causes the
current character from OP1 (location 4)
to be transferred to OP2. However, the
current character from OP1 is not a
zero or a space. This terminates
the zero suppress function. Trans-
fers of OP1 to OP2 conti~ue ·for the
next two locations. At this point the
location in the mask (location 15)
contains a comma. Since zero suppress

\?J 1

o
is no longer active, the comma is c~
inserted in OP2. The next three loca-
tions from OP1 (locations 6, 7, and 8)
are transferred to OP2. The next
location of the mask (location 15)
contains a period, which is inserted
in OP2. The next two locations from .
OPI (locations 9 and 10) are trans-
ferred to OP2. At this point, the
LSL of OP2 has been filled, thus
terminating the ED instruction.

16 17 18 19 20 21 22 23 24/ 25 26 27 28 29 30 31

OP1 '.

o rX

..
,- 0 T A \... '>6 >0 i\\ I~ I~ ii ¥ 1. d. " ~ ~ i q ~ , I • -
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19' 20 Zl 22 23 24 25 26 27 28 29 I ~o 31

OP2

Figure __

o

(-- 4.10 DECLARATIVE INSTRUCTIONS

Declarative instructions are instructions from the programmer

to the Assembler program to control its operation during assembly

processing. No object language instructions are produced from a

source language Declarative. However the source language information

is carried through to the object deck, in the event re-assembly is

desired at a later time.

Declrative instructions include provision for establishing

constants in the object program. The output from a Declarative which

sets up a constant will include the ~onstant, and instructions to the

Load routine for loading the constant.

The Assembler program maintains two counters which control

the assignment of memory locations and addresses of the instructions)

and the working storage for the object program. The Instruction

Location Counter (ILC) is incremented by the Assembler program when

allocating memory for instructions and in-line constants. The Data

Location Counter (DLC) is decremented by the Assembler program when

allocating memory for working storage and Declarative constants.

These counters are not hardware, but are program locations

established and updated by the operation of the Assembler program.

When the Assembler program is loaded, the ~tial value of the ILC is
p~

set to address of the first location following the Read/Punch~torage

area--Row 20, Column 24, Bank 1. Unless otherwise specified, this will

be the address assigned to the MSL of the first object language instruc-

tion assembled. A Declarative instruction is provided which allows

the programmer to place a new value in the ILC.

The initial value of the DLC is the address of the last location

in memory--Row 31, Column 31, Bank 2 for a two bank system, or Row 31,

Column 31, Bank 4 for a four bank system. No provision is made for

specifically placing a new value in the DLC. The value of the DLC

is decremented as working storage areas and Declarative constant

are c.lled for by the iourse language program.

140
c

4.10.1 DEFINE INSTRUCTION LOCATION COUNTER

MNEMON I C : DL

LABEL OPERATION OPERAND 1 OPEBArID 2
If! FIELD A + INC ~ FIELD B + INC FIELD C

1 5 6 10 *12 16 - -4-- aJ * 22 26 - 2:: 30 32 .~

I I ~\.., x:'l~.Xl .1. L ..."I._._..J. __ ...I._I. I 1 ~ 1

FUNCTION: Set the value of the Instruction Location Counter to
the ~ address specified in Field A.

NOTE: A plus or minus increment may also
be used.

When the current (or initial) value of the ILC is not the

address desired by the programmer for the allocation of the next

instructIon, the DL Declarative is used to establish a new value

36

I

in the ILC before the next instruction is allocated. Caution must

be exercized by the programmer when changing the value of the ILC to

-t -

insure that an address is not assigned more than once by the Assembler

program.

Example 1

LABEL

1 5

I I

Given: The Read/punch Unit is not used by the object
program.

Problem: Start the allocation of instructions in the
first location following the Print storage area •

. ~,

PPERATION OPERAND 1 OPERArID 2
~ FIELD A + INC ~~ FIELD B + INC FIELD C -t

6 10 * 12 16 aJ * 22 26 .. 2: 30 32 36 -.-

~.L I tJ.?i I I • I I • 1 I
..

I ~~c
BE: :0

I I

INC
3i: 40

I I

Field A: $P1 is the Standard Label for the MSL of the Punch
(Read/punch Read) storage area.

Solution: This card must be the first source language input card
which effects the ILC. The known value of the Standard
Label $P1 (RHo, C14, Bl) is stored by the Assembler
program in the ILC, and is used as the address of the
first instruction assembled. $1~14Bl or)(293 could also
have been used in Field A to produce the same value in the
ILC.

Example 2

LABEL

.
NOTE: Programmer's labels cannot be used in

Field A.

Given: Code Image and Punch storage are not used by
the object program.

Problem: Use these areas for instructions
PPERATION OPERAND 1 OPERA ID 2

~ FIELD A + INC ~ F !ELD B + INC FIELD C .
1 5 6 10 * 12 16 - ~ -. Z) * 22 26 - 2:: 30 32 36 .. ~

• [l)l • ~~.1. • I · I I . I

~:rA,R.\ '1- I I I I I • • t .
.... ~ ~- I I I I I · --. I •

I • ';'-f -
• I I . '. • . .' • I

• • • ~ • ~\>.~ I · I I ...l • • •

• I • tb.LI • I IIIE>.~ I I ·J.. I l' I • • •

• • • • I I • I • I · .. • I I I ••

.,,-..
~~. I II · . I '. I' .. • • • .. ' I

... -

Instruction 1. This instruction sets the value of the ILC to the
address of the first location following Read Storage.

INC
BS 40

· I
I I

• I

• I

• 1

· I
I I

I

I

,~\
''\...0.>/

c

(
Instructions 2 through n. These lines of coding beginning at START

are assigned to addresses beginning with
J:(8l and conti nu i ng accor ding to the number
and length of the instructions. The pro-,
grammer must determi ne when the I LC ~ """"" ~A,
been incremented to the point where it
contains the value which is six less than
the value of the first location of Print
storage. At that point he must code the
J instruction to prevent the sequential
advance of the ICC at object time from
securing instructions from the Print
storage area. He must then code the
second DL declarative to prevent the ILC
from assigning instructions to addres~in
Print storage dur·ing Assembly processing.

4.10.2 DEFINE AREA

MNEMON I C : DA

LABEL PPERATION OPERAND 1 OPFRArm ?
ifill FIELD A + INC ~ FIELD B + INC FIELD C ... INC

1 5 6 10 *12 16 - -'1-- a) * 22 26 - 2:: 30 32 36 -l3s

• . . ~A . I)(u • I • • I • I

FUNCTION: Allocate an area of working storage with a length as
specified in Field A. Subtract the number of locations
in the area from the value of the DLC. Use the new value i"1.
of the DLC as the MSL of the area.

NOTE: This instruction will usually have a Lapel
to be used for referencing by the programmer.

The loading of the Assembly program sets the initial value of

the DLC to the last Location of memory--R31/C31, 82 or R3l/C31, 84.

When an area of working storage is required, the programmer uses the

DA declarative to cause the Assembler program to allocate the re

quired number of locations. This allocation begins at the last

location of memory and ~ proceeds toward the first location of

memory. by decrementi ng the value of the DLC by the si ze of the area

required.

The number of locations to be allotted by the DA declarative is

coded in columns 12, 13, and 14 of Field A. The maximum number of

locations which can be allotted by a single DA instruction is 961.

The use of the DA declaratives to allocate working storage does

not prevent the same locations from being assigned to instructions.

In the event of a lengthy program, the assignment of instructions

may increment the value of the ILC until it is greater than the value

40

I

(-

of the DLC. The programmer can recognize whether or not this situation

has occurred by examination of the object printout from the Assembly

processing.

The DA declaratives should be coded on a separate page of coding

paper. This will enable the programmer to obtain a "picture" of

the full area of working storage. It will also enable the programmer

to assess the possibility of exceeding the total memory capacity

for working storage and instructions. The number of instructions
'ItI\M.cL c.ouU, ~

times 7 is the maximum number of locationsArequired for instructions.

That product added to the starting value of the ILC will produce the

maximum value of the ILC. The sum of the numbers in Field A of the

OA and DC declaratives subtracted from the starting value of the

OLC will produce the lowest value of the DLC. The number of loca-

tions set aside for in-line constants and Indirect Address constants,

if any, should be included.

The Define sub-field declarative is used In conjunction with

the DA declarative to provide definition and labelling of sub-fi~ds

within the locations allocated by a OA declarative (See Section

4.10.2.1.)

The contents of the memory locations allocated by a DA declara-

tive are not entered at object load time.

Example 1 C
Problem: Establish a working storage area of ten

locations, to be used in the accumulation of
a total.

LABEL PPERATION OPERAND ~ OPEMlIn .2
~ FIELD A + INC ~ F'ELD B + INC FIELD C

1 5 6 10 *12 16 - ~ .. aJ * 22 26 - 22 30 32 36

\:oT.At L\)_A
• 1 iii I • • I _ ..

Solution: Assume that this is the first DA declara
tive to be assembled for an object program
to be run on a two bank UNIVAC 1005. The
loading of the Assembly program set the
initial value of the DLC to "1922. The area
TOTAL would be assigned to locations):t19l3
to It 1922 inclusive. The label mTAL is then
used to specify the MSL of this 19 location
area throughout the p'rogram. The new value
of the DLC is .1912 (t(1922 minus 19)

... INC - BS 40

. I

o
i

I'

4.10.2.1 DEFINE SUB-FIELD

The Define Sub-field declarative can only be used following a

DA declarative. The Define Sub-field declarative does 02i change

the value of either the ILC or the DLC. It does Q2! allocate

memory.

The purpose of the Define Sub-field declarative is to establish

labels for fields within an area that has been allocated by the

immediately preceding DA declarative. The address assigned to

the label of a Define Sub-field declarative is determined by the

Assembler program by calculating its location relative to the MSL

of the area allocated by the DA declarative.

The Define Sub-field declarative is specified by placing a

minus sign (-) in column 6. Complete specification of the Define

sub-field declarative is as follows:

LABEL PPERATION OPERAND 1 OPERAIID 2
~ FIELD A + INC .11 FIELD B + INC FIELD C

1 5 6 10 *12 16 .,:; ;:D * 22 26 - 2:: 30 32

- I~'t.'t • I l'l'l.Y . I

Where XXX is the number of the least significant location of the
sub-field.

VVV is the number of locations within the sub-field.

36

In order to define the sub-fields within an area allocated by a
.

1--

DA declaratfve, definition shoUld begin with the MSL of the area and

INC
13c 40

I

proceed to the LSL of the area. Overlapping sub-fields may be defined.

1 Lt1

Example 1

lABEL

Given: A master card is to be read and transferred to
working storage for the subsequent processing of
deta i 1 car ds •

Problem: Define an 8~ location area with sub-fields
according to the following master card format;

PPERATION
~

Card Columns 1 through 7

OPERAND l'
FIELD A + INc

8 through 30
31 through 40
41 through 50
51 through 60
61 through 70
71 th h 80 ro~

~ FiELD B +

Stock Number
Description
Balance on Hand
Shipped to Date
Shipped this Week
On Order

Inlmum eve M" L 1
J)E>ffiA ill 2

INC FIELD C ... INC
1 5 6 10 * '12 16 - -1 ~~ 2) * 22 26 - 2S 30 32 36 - BS 40 . '':

~~:ti l\.A, • 1£« .•. • I
, -1J --Li ____ " I

S:r.~ -.' . 1'1 • I. I tl " _______
1 I 1 • 1 t

,f=_v 2 -I 1 ~ .. , .I ... 1 ~l.

J I I

'LL\ ~I\'" - . '. 141- I 11.11. I -1....l ' I I

(~' .. 11.t>: _______ -

rr,nl\ 4..i - I & • J , ... J I I ' , I

l-r~~~" - ••• I '~d. .. .I J IU. I I, 1 • , , I

In-LlMb
- I • ,I711i • I till. I I 'I 1 ____ " • I

"'.'I.. r-. 'I • 1.-.,. I" • J
u:~ ____

'-1 J - I 1 .1 .• 1 1
'.

Solution: The DA instruction allocates an area of 80 locations with
an MSL identiC.ied by the label MASTR. When the Master card
is to be transferred from Read Input storage, the following
single instruction can be used to transfer all 80 columns.

lABEL

1
FIELD C ... INC

?2, 36 - S 40

Subsequent coding can then refer to the MSL of the fields in
the Master card by using the labels of the Define sub-field
declarati ves.

J

c

(

(

4.10.2.2 REDEFINE STANDARD LABELS

There is.a second use of the DA declarative which ~ not

allocate working storage area. The purpose of this second use

of the DA declarative is to enable the programmer to establish

his own labels for the areas of memory which have been assigned

Standard Labels. Since these areas are "known" to the Assembler

program, llQ allocation is made by the DA declarative.

The DA declarative specifies a Standard Label In Field A,

and is followed by Define sub-field declaratives. The Define

sub-field declaratives are used to redefine the area assigned

to the Standard Label according to the field configuration

required by the programmer. The labels assigned by the programmer

to the Define sub-field declaratives can then be used to reference

these fields. ~ '\I~ ,,~ ~ 1)\"c" ~ Mt t.f.tvo.;.J..,~~,

Example I

Given: A card format as follows:

Card Columns 1 through 10 ID Number
11 through 20 Quantity 1
21 through 40 Quanti ty 2
41 through 60 Quanti ty 3
61 through 80 Quanti ty 4

Problem: Redefine Read Input storage giving labels
to the card fields •

LABEL PPERATION OPERAND '1 OPERAND 2
IfII FIELD A + INC ~~ FiELD B + INC FIELD C 1- INC

1 5 6 10 * 12 16 - .II"' dl * 22 26 -- 2:=' 30 32 36 - 8:: flO --,
l. . . l).A. • 11~1.. . I I I

~I •• -...L
....L ~ .. • I I!Jlj . .1 I 1 I

[to.i. .. - ..l b\.Jl{' I I 11.i1. • I 1 I

~ II -.l • I LI.RJ. I I~. I • I

ICl~ . - ~ I. I l~-,- . 1 I -' --'- I • •
Q.4r •• -... I&~~ I I IAA • I· 1 • I

There is no restriction to the number of times an area

assigned to a Standard Label may be redefined in this manner.

o

4.10.3

(

DEFINE CONSTANT

MNEMON I C: DC

LABEL OPERATION OPERAND 1 OPERArID ?
IfII FIELD A + INC ~ FIELD B + INC FIELD C

1 5 6 10 * 12 16 - -"I" a; * 22 26 - 2~ 30 32 36

T -'- -.1 • •),e. ~l>.b -Ic.c.c. If_ It I --I ~.
- -

The purpose of the DC declarative is to enter constant

values in the object program at load time. The DC declarative

usually has a label that is used to specify the MSL of the con-

stant. The address assigned to the constant is determined by

subtracting the number of locations in the constant, specified

by Field A, from the current value of the DLC plus 1. The

Assembler output card in the object deck will contain the con

stant, and the instruction to the Load routine to enter the

constant in the assigned address.

The constant is coded beginning in column 18 of the coding

form. The sign of the constant (plus or minus) is coded in

column 17 and is not included in the length of the constant. The

maX1mum length of a negative constant is 25 locations. The

maX1mum number of characters which can be specified in a single

card for a positive constant is 44.

Provision is made for the continuation of a positive con-

stant of more than 44 characters by placing a comma C,) in column

6 of the next card, and continuing the characters in column 18.

A maximum of 961 characters can be entered as a signle constant
tWo

in ~ manner. The length of the constant 1S specified in only

the DC card.

} (\

+ INC - 3:: 40

-.... T'"-

The action of the Load program is to use the length specified

In Field A to determine the number of the columns,beginning at

column 1S.~ to be stored (as punched) in memory. If the number
~

of characters punched as the constant ~not agree with the number

In Field A, the number of columns specified by Field A is used.

Example I

MASK is the constant used as the mask in Example I of the ED
i nstr \Jct ion.

HEAD might be used to print the headings on an inventory report.
(The actual constant would continue through column 61 before
starting again in column 18 of the continuation card.

LIMIT is a 7 digit. constant with a value of minus 9999999 which
would be stored as 999999R.

If it is desired, the DC declarative can be used to allocate

a working storage area whose initial contents should be space codes.

FIELD C + INC
32 36 - 5 40

---- .. - .. --~---.. ---- ---

The area assigned to TOTAL will be entered with the l~

space codes from columns 18 through 27 of the DC card. Caution

should be exercized by the programmer when using this technique

due to the fact that the area will not be cleared if a re-start IS

required.

If the programmer codes the constants on a separate page and

enters the source language cards for constants after the cards

from the ~ page, a single TK instruction can be used to clear all

of working storage to spaces.

Example 3

LABEL

Given: The above recommended procedure is followed,
and the last source language D" card has a
label of LAST.

Problem: Clear working storages to space codes.
... _.-

PPERATION OP~P.AND 1 OPERA JD 2 -
IIA FIELD A + iNC ~~ FIELD B + INC FIELD C + INC

1 5 6 10 * 12 16 - .". 22 * 22 26 -- 2~ 30 32 36 -13:: 40 ~

• T.K '~.A7. . ___ .1 _ L ILAS~. • I Ilt1..q.~~

Solution: The allocation of "all preceding'DA cards began with a
DLC value of 1922 (two bank system). The value of the
DLC was reduced by each DA card including the card
labelled LAST. Thus the MSL of all of working storage is
also the MSL of LAST. The 2 space codes from the TK are
transferred beginning at the LSL of OP2, (ti1922). Since
OP2 is larger than two locations, the remainder of OP2 is
cleared to spaces.

NOTE: If the Translate option is to be used in the
object program, a DC instruction is used to
establish the translat~ table, and must
be the first ~~~~language instruction
assembled which effects the value of the DLC.

I

4.10.3.1 I N-LI NE CONSTANTS

The term in-line constant refers to the allocation of a constant

in the portion of memory usually allocated to object language,

i nstr uct ions.

The UNIVAC 1005 Assembly System ~rovides for in-line constants

through use of the asterisk (*) in column 6 of the coding form. The

reaminder of the in-line constant format is the same as for a DC

declarative. No continuation cards may be used for in-line constants.

The in-line constant is allocated based on the current value of the

ILC, and usually carries a label for identification.

LABEL PPERATION OPERAND 1 OPFRA In ?

~ FIELD A + INC ., FIELD B + INC FIELD C + INC
1 5 6 10 * 12 16 - .'I.' 2J * 22 26 - 2:: 30 32 36 - 132 40

1*. Ilb ... !It.t.le.. Ie. lc.-- ~ . I ~

The maximum length (DO) of a negative in-line constant is 25
W~

length (DO) of a positiveAconstant is 44 locations. The maximum

locations.
&0

The in-line constant maYAbe used to enter constants in the memory

locations between Read Input storage and Print storage. The in-line

constants should be preceded by a DL with a Field A ofJlSI and

-:-I

followed by a DL with a Field A of the Address for the first instruction
.

to be assembled. These cards must then precede the first instruction

when assembling.

c

4.10.3.2 IN-LINE COMMENTS
{b

Col·umns 41 through H of the codi ng form are headed "Gomments"

and can be used by the programmer to make notes regarding the lines

of coding. These comments will also appear on the final printout of

the Assembly processing. They provide an excellent assist to good

documentation.

As a further means to good documentation, the UNIVAC 1005

Assembly System provides for in-line comments. An in-line comment

allows the programmer to use most of the columns of the form for

headings and notes. The in-line comment is not allocated to memory

in the object program. It is merely printed and punched by the

Assembly program. The in-line comment may appear anywhere in the

•· .. ·_r_··r._ '."
LABEL IOPERATION OPERAND 1 OPFRAIJD ?

FIELD A + iNC ~~ FIELD B + INC FIELD C 1- INC ~
1 5 6 10 * 12 16 - -~ -, 3J * 22 26 - 2: 30 32 36 - 13: !~O -

• Xc. c C Ir Ic..-----·- ~ --r ---- r--. -;, t- • 4._. ___ - ..

• . . .
The in-line Comment is specified by placing a period (.) in

column 6 followed by a blank (space) in column 7. The Comment

. f·

itself may appear anywhere in the coding line from columns 8 through

61. If the required comment is longer than 54 characters, additional

in-line Comments should be coded with a period in column 6 and a

space in column 7.

1-, •

In order to assist In the documentation, it is suggested that
~~I,ow!.'\oCI

theAin-li~e comments be used as the first card or cards of the

program to be assembled.

Example

Problem: Print the Program Name, Author's Name,
and Date Written as the heading of the
Assembler printout.

G

c

4.10.4 DEFINE INDIRECT ADDRESS CONSTANT

Mt£MON I C: D I

LABEL PPERATION OPERAND 1 OPERArlD 2
~ FIELD A + INC ~~ F! ELD B + INC FIELD C i' INC

1 5 6 10 *12 16 - , . 2C * 22 26 .- 2: 30 32 36 - 13~ ---

J • J ... [l):r liA-A. I rLA. -] • I lAl-'~ ..
The purpose of the DI address constant is to provide the programmer with

the means to allocate, identify, and establish the initial contents of

a secondary address. An instruction which calls for Indirect Addressing

contains a primary address for the A or the Band C portions of the

instruction. The locations referred to by the primary address must

contain a secondary address which IS the address of the data to be

processed by the instruction.

Indirect Addressing is specified In an instruction by placing an

asterisk (*) in column 11 for OP 1)or column 21 for OP 2 (or both, if

required). The asterisk causes the Assembler program to place a binary

1 in the X bit position of location 6 for OP 1 IAJor location 7 for OP 2

,IA (or both). At object time, when the instruction is transferred to

the Instruction Register, the UNIVAC 1005 first examines these two bit

pos i tions.

If the X bit of location 6 contains binary 1, a two location descending

transfer is made beginning at the address in the A portion of the IR,

to locations 2 and 3 (the A portion) of the IR. If the X bit of

location 7 contains a binary 1, a four location descending transfer IS

40

I

made beginning at the address in the B portion (locations 4 and 5) of

the IR, to locations 4 through 7 (the B and C portions) of the IR. After

performing these functions, the instruction is then executed using

the addresses currently in the IR. The contents of the instruction

as stored in memory remain unchanged.

In order to provide the locations in the object program for secondary

addresses, the DI constant declarative is used as follows:

FIELD A:

FIELD B:

FIELD C:

Example 1
LABEL

The specification of an address in Field A establishes a two
location secondary address in the object program. The initial
contents of the two location secondary address will be the
machine language code for the specified address.

The specification of an address in Field B establishes a four
location secondary address in the object program. The
initial contents of the four location secondary address will
be established according to the rules for Assembly System
OP 2 addressing. If Field B contains a label (Standard or
programmer), the two character address of the MSL of the
area assigned to the label will be used as the initial
contents of the left hand two locations of the secondary address.
If Field B contains a label, Field C may be left blank, and
the two character address of the LSL of the area assigned
to the label will be used as the initial contents of the
right hand two locations of the secondary address.

If Field B does not contain a label, or if the LSL address
of the area assigned to the label in Field B is not to be
used as the initial value of the right hand two locations
of the secondary address, Field C must contain an address.

NOTE: The DI constant will usually have a label which is used
as the primary address i"n the instruction which calls
for Indirect Addressing.

F ! ELD B + I NC FIELD C
* 22 26 - 25 30 32 36 -

) C'~

(

CAT

FOX

COW

MOVE

~ ~~ ~cbc.i..wcJ,

becomes the MSL address of a two location secondary address
which initially contains the MSL address of the area assigned
to DOG. CAT may then be used as the primary address in the
A portion of an instruction. When that instruction is
executed, the address stored in CAT replaces the address of
CAT in the IR.

becomes the MSL address of a four location secondary address
which initially contains the MSL and the LSL address of the
area assigned to RAT.

becomes the MSL address of a ~ location constant which
initially contains (from left to right) the address of the
MSL of the area assigned to PIG, the address of the MSL of
the area assigned to ANT, and the address of the LSL of the
area assigned to ANT.

becomes the MSL address of a SIX location constant which
initially contains (from left to right) the address of decimal ~1,
location 124, the address of decimal location 733.

The Assembler processing for the allocation of locations to the DI

constants is the same as for the allocation of the DC and {he DA

declaratives. This means that the locations assigned to the DI constants

in the previous example will be in the reverse sequence in which they

are assembled. The characters within each constant will appear in the

correct sequence.

Assume the value of the DLC is 1700 when CAT is to be assembled. The

addresses assigned to the lables in the example would be as follows:

CAT 1699
FOX 1695
COW 1689
MOVE 1683

This condition may have an effect on the sequence of coding DI

constants when establishing a table of Indirect Address'~ In the

example of Indirect Addressing (page 11), a table of secondary address~

was established with a label of SECAT. The coding to establish the

table is as follows:

LABEL PPERATION OPERAND ~--
1 OPJ:kAf" '-",

~ FIELD A + INC ~~ FIELD B + INC FIELD C .. INC
1 5 6 10 * 12 16 - ~ .. 20 * 22 26 - 2~ 30 32 36 -.:;

• a I
}::t,.

I I I I • I tt 1..fo .1 l{.~

• • • • • Cb:r. . .. I • • I
w.1.~ , • f It.1... ~I

I .. . ~~. I • . • I I 121.1., • • I 1l ~..d ..
IS$-j' A-f])::t:.. . I . . • I M.!.. .• I 1'U,{. I •

Using this sequence causes SECAT to be the address of the MSL of the

Secondary Address Table. The LSL of the table is SECAT + 19. Refer

to the coding of the loop in Section 4.8 for the use of an Indirect

Address table. (The constant storage referred to in the example on

Page 12 would also be set up in the same manner.)

82 40

. I

• I

I I

I I

\~O

(

(

4.10.5 DEFINE END

MNEMONIC: END

LABEL PPERATION
~

OPERAND 1

FIELD A + ! NC
OPERAIID ?

~~ F TLD B + INC FIELD C + INC
1 5 6 10 * 12 16 - .' - T, * 22 26 -- 2: 30 32 36 - [3: 40 _. '-~

• • E.\.l.l. . li't.x.. . I I ••

The purpose of the Define End declarative is to provide for the

automatic start of the object program when it is loaded by the Load

routine.

Field A specifies the address of the MSL of the first instruction to

be executed in the object program. Field A usually contains a

programmer's label. No allocation is made, and the address in Field

A is not stored in memory.

E~ample 1

LABEL K>PEh,l\' ION OPGi,;r;,:, '\ OPERAriD 2
FIELD A + !NC IF F'ELD B + INC FIELD C

. I

+ INC ~
1 5 6 10 * 12 16

- ~". 22 * 22 26 -- 2: 30 32 36 - 13:: !jQ . -_.

• . . t.f't] .. S:1.~.R.--r I • I • -- -

START is the label of the source language irstruction which is to be

executed first at the time the object program is loaded. The source

language instruction START need not be the first instruction assembled.

NOTE: The Assembler output card produced from the END
declarative must be the last card loaded by the
Load routine, and .should be followed immediately
by the input data to be processed.

I

4.11 MULTIPLICATION

Multiplication In the UNIVAC 1005 is performed uSing fixed length operands

for the multiplier, the multiplicand, and the product. When a Multiply

instruction is executed by the UNIVAC 1005, the fixed length multiplier

and multiplicand are transferred from memory to positions in Row 32,

Bank 1 where they are then operated upon to produce the product--also

in Row 32, Bank 1. The product is then automatically transferred from

Row 32, Bank 1 to memory. During the execution, the locations in

Row 32, Bank 1 normally reserved by the IR and the ICC are used in the

calouiati6n of the product. The contents of the ICC are preserved and

are restored to the ICC automatically, to initiate the next instruction.

Multiplication is performed using the absolute (unsigned) values of the

multiplier and multiplicand, producing an absolute (unsigned) value as

the product. Locations in the product which do not contain a significant

digit (1 through 9) will contain a zero (I). Values are treated as

integers.

Since there are three operands in multiplication, the multiply command

of the UNIVAC 1005 utilize a 3 address logic: OP 1 is the multiplicand,

OP 2 is the multiplier, and OP 3 is the product.

There are two multiply instructions in the command structure of the

UNIVAC 1005, Multiply (MU) and Multiply Long (ML). The difference

between the two is the size of the fixed length multiplier, multiplicand

and product.

·C·~··' , ,

j~

(

c

Multiply utilizes a multiplier of exactly SIX digits, a multiplicand

of exactly four digits, and produces a product of exactly ten digits.

Multiply Long utilizes a multiplier of exactly eleven digits, a

multiplicand of exactly nine digits; and produces a product of exactly

twenty digits.

If the programmers multiplier and multiplicand do not conform exactly

to the requirements of one or the other of the multiplication instructions,

a Multiply Working Storage (MWS) should be established by the programmer

(using DA declaratives) for a multiplier, multiplicand, and product of

these lengths. The programmer should then transfer his variable length

operands to the MWS before executing a multiply instruction. The

transfers to MWS should be made via rX using the TX instruction. An
R~~$

example of the use ofAMWS is included in the explanation of each of the

multiplication instructions.

4.11.1 MULTIPLY

MNEMON I C: MU MODE: SPEC I AL

LABEL PPERATION OPERAND 1

LENGTH: 7 IA: NO

OPFRA'ln ?
If! FIELD A + iNC .R FIELD B + INC FIELD C i' INC

1 5 6 10 * 12 16 - .~ .. 22 * 22 26 - 2: 30 32 36 - l3i: --

• .M.\.l I1.L . I liff\ I 3,L . . -
FUNCTION: Transfer ascending the four digits beginning at the LSL

specified in Field A to the multiplicand positions of Row
32,. Bank 1. - Transfer descending the ili digits beginning
at the MSL specified in Field B to the multiplier positions
of Row 32, Bank 1. Multiply. Transfer ascynding from the
product positions of Row 32, Bank 1 to the ten locations
beginning with the LSL specified in Field C.

NOTE:

Example 1

Given:

After completion of the MU instruction, the product
is also avai lable in Row 32, Column 21 through Row 32,
Column 30 of Bank 1, until the execution of another
multiplication or division instruction.

A four digit Quantity in card columns 1 through 4.
A six digit Price in columns 5 through 1~. _

LiG

I

Problem: Multiply Quantity times Price and store the product
in the ten location area labelled AMT.

LABEL OPERATION OPERAND 1 OPERAND 2

'"
FIELD A + INC lR FIELD B + INC FIELD C i' INC

1 5 6 10 *12 16 - 2) * 22 26 - 2~ 30 32 36 - l3c 40

• . IMau. . lai. I I IlitlS I I ~A,N\". I

FIELD A: ~ 1 is the decimal address of the MSL of Quantity

FIELD B: ~ 1~ is the decimal address of the LSL of Price

FIELD C: +AMT is the address of the LSL of the area assigned to AMT.

------------ -----------

c

(

In the event the size of the operands are not the exact length required

by the MU command, rX (Row 32, Bank 2) can be used as a Multiply

Working Storage. The multiplicand (4 digits or less) is transferred to

rX using a TX command. This fills the high order positions of rX with

space codes. A TA command is used to transfer the multiplier to rX

as follows: Field A contains the LSL address of the multiplier in

memory; Field C specifies $32 27 B2; and Field B specifies a location

in rX based on the actual length of the programmer's mUltiplier. If

the multiplier is 5 digits, the Field B address would be $32 23 92.

The high order positions of the fixed length multiplicand and multiplier

will then contain space codes.

$32 21 B2 can be used as the LSL of the fixed length product of the

MU command. The programmer can then transfer from rX the actual number

of digits In his product.

Example 2

Given: A three digit Hours in columns 9 through 11 in the
form XX.X. A five digit Rattin columns 12 through
16 in the form X.XXXX.

Problem: Multiply Hours times Rate and store the half
adjusted Gross in Punch storage positions for
columns 21 through 25 in the form XXX.XX.

At the completion of the execution of the MU instruction, rX had the

following appearance.

PRODUCT MULTI PUCAND

MULTI PLiER

(-
4.11.2 MULTIPLY (LONG)

MNEMON I C : ML MODE: SPECIAL

LABEL 5PERA'ION OPERAND ~

LENGTH: 7 IA: NO

OPFRArID ?
III! FIELD A + ~JC .R rTLD B + INC FIELL C ... iNC

1 5 6 -0 * -2 ~6 - , - ')""\
7'- 22 26 .- 2:=: 3D 32 36 - t3: :jQ '-~

• • • M,L. . i.t 1 1l..M. . I 3 L. . . I
" .- ..

FUNCTION: Transfer ascending the ~ digits beginning at the LSL
specified in Field A to the multiplicand positions of Row 32,
Bank 1. Transfer descendine the eleven digits beginning at
the MSL specified in Field B to the multiplier positions of
Row 32, Bank 1. Multiply. Transfer ascendine from the, product
positions of Row 32, Bank 1 to the twenty locations beginning
with the LSL specified in Field C.

NOTE: After completion of the rvL instruction, the product
is also available in Row 32, Column 11 through Row 32,
Column 30 of Bank 1, until the execution of another
mUltiplication or division instruction.

The ML instruction is performed in the same manner as the MU instruction

except for the provision of longer values. The use of rX described in

the preceding Section 4.11.1 for the MU must be modified to take into

account the longer operands.

The TX instruction specifies the actual length of the multiplicand. The

TA instruction has an OP 2-LSL of $32 22 B2 and an OP 2-MSL predicated

on the actual length of the multiplier. Since the total number of digits

In the ML instruction multiplier, mUltiplicand and product exceeds 31

(the capacity of rX), the LSL of OP 3 of the ML instruction can specify
II

$32 3X B1. This will cause the product to be transferred to the

identical locations in which it was developed.

Example 1

1

Given: A six digit Quantity in columns 1 through 6. A seven
digit Unit Cost in columns 7 through 13.

Problem: Multiply Quantity times Cost.

(f"
\"-_J

,(" "
. __ -r

4.12

c

C~

" J

DIVIDE INSTRUCTION

Division in the UNIVAC 1005 IS performed using fixed length

operands for the divisor, the dividend, and the quotient. When

the Divide instruction is executed by the UNIVAC 1005, the fixed

length divisor is transferred to certain positions in rX (Row 32,

Bank 2), and the fixed length dividend is transferred to positions

in Row 32, Bank 1, where they are operated upon to produce the

quotient and the remainder--also in Row 32, Bank 1. The fixed

length quotient is then automatically transferred from Row 32,

Bank 1 to memory. During the execution of the Divide instruction,

the locations in Row 32, Bank 1 normally reserved by the IR and

the ICC are used in the calculation of the quotient. The contents

of the ICC are preserved, and are restored to the ICC automatically,

to initiate the next instruction.

Division is performed using the absolute (unsigned) values of

the divisor and the dividend, producing an unsigned value as the

quotient. Locations in the quotient and remainder which do not

contain a significant digit (1 through 9) will contain a zero (~).

Values are treated as integers.

Since there are three operands In division, the Divide instruc-

tion of the UNIVAC 1005 utilizes a 3 address logic: OP1 IS the

,divisor, OP2 is the dividend, and OP3 is the quotient.

The Divide instruction utilizes a divisor of exactly six

digits, a dividend of exactly eight digits, and produces a quotient

of exactly eight digits. If the length of the programmer's divisor,

dividend and quotient do not all conform exactly to the requirements

of the Divide instruction, a Divide Working Storage CDWS) should be

established by the programmer for a divisor, dividend, and quotient

of these lengths. The programmer shoUld then transfer his variable

length operands to the DWS before executing the Divide instruction.

An example of the use of Divide Working Storage is given following

the explanation of the Divide instruction.

\10

4.12.1

(~ .. ~

/

DIVIDE

MNEMON I C : DV MODE: SPECIAL LENGTH: 7 IA: YES

LABEL PPERATION OPERAND 1 OPFRA ID / .,. FIELD A + INC ~A F!ELD B + INC FIELD C
1 5 6 10 * '2 16 - ~". 2D * 22 26 -- 2: 30 32 36 -..

• tD~ iL I ~ I t5.\.. ..
. .. -_.

FUNCTION: Transfer ascending the ~ digits beginning at the LSL
specified in Field A to the Divisor -positions of rX
(Row 32, Bank 2). Transfer descending the ~ digits
beginning at the MSL specified in Field B to the Dividend
positions of Row 32, Bank 1. Divide. Transfer ascending
from the Quotient positions of Row 32, Bank 1 to the
~ locations beginning with the LSL specified in

Example 1

LABEL

Field C.

NOTE: After completion of the Divide instruction,
the Remainder is available in Row 32,
Column 18 through Row 32, column 23 of
Bank 1, until the execution of another
multiply or divide instruction.

Given: An eight digit Total Cost in card columns
9 through 16. A six digit Total Units in
card columns 1 through 6.

Problem: Divide Total Cost by Total Units, and store
the quotient in the eight location area
labelled UNI T.

- .. .
OPERATION OPERAND 1 OPERArlD 2

..
-

~ FIELD A + INC ~A FIELD B + INC FIELD C ..
1 5 6 10 * '2 16 - , - 2D * 22 26 .- 2: 30 32 36 -

•
(by . ~, I ~'t. I +.\l.N:r.,

- -

FI ELD A: ~ 6 is the decimal address of the LSL of Total Units
(the divisor).

FIELD B: J:l9 is the decimal address of the MSL of Total Cost
(the dividend).

\11

INC
8: 40

. I

INC
8: /iO

. I
~ -- ~--

FIELD C: +UNIT is the address of the LSL of the area assigned
to UNIT (the quotient).

NOTE: If the divisor is equal to zero,
the quotient is all zeroes and
the remainder is all zeroes. If
the dividend is all zeroes, the
quotient is all zeroes and the
remainder is all zeroes. If the
dividend is all spaces, the quo
tient is all zeroes and the re
mainder is all spaces, If the
divisor is greater than the divi
dend, the quotient is all zeroes
and the remainder is the least
significant six digits of the
dividend.

In the event the sIze of the operands in the program are not

the ~ length required by the DV command, rX (Row 32, Bank 2)

can be used as a Divide Working Storage. The dividend is trans

ferred to rX using a TX command. This fills the high order positions

of rX with space codes. A TA command is used to transfer the

divisor to rX as follows: Field A specifies the LSL address of

the divisor in memory; Field C specifies $XR + 15; and Field B

specifies a location in rX based on the actual length of the pro-

grammer's divisor. For example, if the actual length of the divisor

is 5 digits, the Field B address would be $XR + 11. The high order

positions of the (ixed length dividend and divisor would then con

tain space codes. $XR + 7 can be used as the LSL of the fixed

length quotient produced by the DV instruction.

NOTE: If rX is used as DWS, the locations indicated
above must be used for the divisor.

----,~-.~-~-- ---- -~-~--.. " --~~---

\,~

Example 2

(,

Given: A seven digit Total Revenue in card columns
11 through 17. A four digit Total Tons in
columns 5 through 8.

Problem: Divide Total Revenue by Total Tons and store
the maximum 7 digit quotient in a 7 location
area labelled RPT.

\1~

4.13 INPUT OUTPUT INSTRUCTIONS

There are several types of input/output instructions 'in the

UNIVAC 1005 Assembly System. Each type is tailored to the require-

ments and the operating mode of the input/output device.

One type of input/output instruction is used for the devices

which transfer data to or from fixed areas in memory reserved for

that purpose, or for commands to an input/output device which do

not involve a data transfer (eg. Space 1, Stacker Select, etc.)

This type IS called General Command.

Each of the devices which do not have a reserved area for

input/output data transfers has its own type of command (eg. Magnetic

Tape, DLT, etc.) Each type is named for the device it controls.

In the case of the General Command, certain of the uses of

this command have been selected as Assembler pseudo-operations in

order to provide the programmer with a rapid method of specifying

often used commands. These pseudo-operations are called Shortened

General Commands.

\1Lf,

o

4.13.1

(-

SHORTENED GENERAL COMMANDS '

MNEMONIC: GCn MODE: I/O LENGTH: 7 IA: NO

-----OPFRAIJD _•... _--
LAbEL ~PERATION OPERAND 1 ?

~ FIELD A + INC IiA FIELD B + INC FIELD C + INC
1 5 6 10 * 12 16 - , .. 3) * 22 26 .- 2: 30 32 36 ~

• • ~ " I I . I I ..

FUNCTION: Execute Reader, Printer and Punch input/output commands
specified by n, where n means the fOllowing:

1. Read, Execute

2. Test Punch, Punch, Clear

3. Combines GCI and GC2

4. Space 1, Print, Execute

5. Combines GCI and GC4

6. Combines GC2 and GC4

7. Combines GCI, GC2, and GC4

The GCn operations are pseudo-operation codes which select

specific Reader, Printer, and Punch operations from the structure

-l:k

~

of the GC coded operations. When any of the specific input operations

indicated above are required, the GCn may be used.

Fields A, B, and C must be blank, in the GCn instruction.

\l~

40

I

4.13.2 GENERAL COMMANDS

•

MNEMON I C : GC MODE: I/O LENGTH: 7 IA: NO
~_-~ ... _ -'t"'!F'''''-''''N''._ ___

LABEL ~PERATION OPERAND 1 OPERA ID 2
~ FIELD A + INC ~R FIELD B + INC FIELD C -t INC

1 5 6 10 * 12 16 2{) * 22 26 -- 2: 30 32 36 - 3: 40 --

• • &t, ~C • _ -J __ I t:c. I I 1C.c..

The bit positions of locations 2 through 7 of the GC instruction

correspond to functions of the UNIVAC 1005 input/output devices which

have an implied data address, or which do not require a data address.

A thorough knowledge of the various input/output devices of the UNIVAC

1005 is required for proper use of the GC command.

Since the desired input/output functions are indicated by bit positions

of the least significant six locations of the GC instruction, octal

coding is used to specify CC in Fields A, B, and C. All three Fields

must be specified.

Octal coding is specified by the number sign (#) followed by four

octal digits. The bit configuration for the required input/output

- operations is used to determine the four octal digits.

NOTE: Caution should be exercised by the programmer to avoid
specification of bits which correspond to conflicting
input/output operations.

. I

The following is a brief description of the input/output functi6nswhich

correspond to the bit positions in the GC instruction. The functions

are listed by the type of function. A table is also provided which indicates

the corresponding bit position in the GC instruction •

--~~- -----~--~-~-- -~--.----

(.

(. -

.'

CARD AND PAPER TAPE

Card Read This bit sets the Read F.F. Card will be
read when Execute is given.

Auxiliary Card Read This bit must occur in the same GC as Execute
to cause card reading ••

Read Punch Read This bit sets the Read Punch Read F.F. Read
will occur when Punch Hold or Punch Clear is
given.

Paper Tape Read-Block This bit must occur in the same GC as Execute.
Will cause the reading of 80 characters from
paper tape.

Paper Tape Read-Character This bit must occur in the same GC as
Execute. Will cause the reading of I
character from paper tape.

End Read on All Bits This bit must occur in the same GC as Execute
and the bitswhich cause reading. During the
read, each character is tested for all I
bits. i~ ili8~ liI~iF&d...... If detected, reading
1 s term i nated.

Execute

PRINTING

Pr int

End Print at 90
Characters

Space 1

Space 2

This bit causes the devices to execute those
functions signalled, by various of the other
bits, either prior to or simUltaneous with
Execute.

This bit sets the Print F.F. A line will be
printed when Execute is given.

This bit must occur in the same GC as Execute.
The Print function must be signalled prior to or
simultaneous with End Print.

This bit will cause an immediate line space unless
accompanied by Print, Execute. When accompanied
by Print, Execute, the line is printed before
spacing occurs.

This bit will cause two immediate line spaces
unless accompanied by Print, Execute. When ac
companied by Print, Execute, the line is printed
before spacing occurs.

\11 ..

Skip 1, 2 and 3 Any combi~ation of these three bits will
initiate an immediate forms skip unless
accompanied by Print, Execute. ~hen accompanied
by Print, Execute, the line is printed before
skip occurs.

CARD AND PAPER TAPE PUNCHING

Punch Hold

Punch Clear

Punch Test

Punch Paper Tape
Block

Punch Paper Tape -
Character

Punch Odd Parity
Paper Tape

This bit causes an immediate punch cycle. The
punch storage area is n2i cleared following
punching.

This bit causes an immediate punch cycle. The
~unch storage area is cleared following punch
Ing.

This bit causes a test to determine if the punch
storage area is still in use by the last punch
operation. If it is in use, further execution
of UNIVAC 1005 instructions is inhibited, until
not in use.

This bit must occur in the same GC as Punch Hold·::or
Punch Clear. When accompanied by Punch Hold or
Punch Clear, it causes 80 characters to be
punched in paper tape.

This bit must occur in the same GC as Punch Hold
. or Punch Clear. When accompan i ed by Punch Ho 1 d

or Punch Clear it causes 1 character to be punched
In paper tape.

If this bit occurs in the same GC which causes paper
tape punching, Odd Parity punching will occur.

PROCESSER INPUT/OUTPUT MODE

Code Image Read

'Code I mage Punch

This bit must occur in the same GC which causes
read i ng. When accompan·i ed by the bit or bits
which cause reading, it causes card and paper
tape reading in Code Image.

This bit must occur in the same GC whioh causes
punching. When accompanied by the bit or bits
which cause punching, it causes card and paper
tape punching in Code Image.

c

c

CARD SELECTION

Punch Stacker Select
or

Punch Even Parity
Paper Tape

Auxiliary Reader
Stacker Select 1

Auxiliary Reader
Stacker Select 2

DATA LINE CONTROL

Request to Transmit

MAGNETIC TAPE CONTROL

Rewind Magnetic Tape

Back Space Magnetic
Tape

Erase Fl i p Flap

If this bit occurs in the same GC which
causes ~ punching, it causes the card
being punched to be placed in the Select
Stacker on the next Punch cycle. If this
bit occurs in the sameGC which causes paper
tape punching, Even Parity punching will
occur.

This bit must occur in the same GC which
causes reading in the Auxiliary Reader. It
causes the previous card read to be placed in
Stacker 1.

This bit must occur in the same GC which causes
reading in the Auxiliary Reader. It causes
the previous card read to be placed in Stacker
2.

This bit sets a F.F. that requests data line
transmission. The F.F. must be set prior to
the execution of the instruction (SD) which
causes data transmission.

This bit causes an immedi-ate rewind of tape
on the Servo last set by the Set Condition
eSC) instruction.

This bit causes an immediate backward movement
of tape, to the preceding inter-record gap,
on the Servo last set by the Set Condition
eSC} instruction.

This bit causes the Erase F.F. to be set.
When the next write tape (WT) instruction is
executed, 5.04 inches of tape will be erased
prior to writing the block of tape.

\l~

The bit positions which correspond to the previously listed

functions are shown in Figure ____ • The bit positions are indicated

by the Location within the GC instruction, on the left hand side of

the name of the function. On the right hand side of the function is

the value of the bit for octal coding purposes. At the bottom of each

Value column is a box for indicating the sum of the circled values.

These boxes are identical to the position of the octal digits in

each of the fields of the GC source language instructlon.

c:

o
\<LO

I
I

LOCATION 2 LOCATION 3
,

BITS VALUE BITS VALUE BITS VALUE BITS VALUE

(
,

NOT USED 4 4 SPACE 1 4 X NOT USED 4 4 READ AUX.· 4

Y RESERVED 2 2 READ 2 Y SELECT 2 2 READ 2
STACK 2 PU~H READ
AUX. READ

8 PRINT 1 1 EXECUTE 1 8 SELECT 1 1 READ CODE 1
STACK 1 IMAGE PAPER
AUX. READ TAPE OR

CARD

FIELD A CC = # o o D o
LOCATION 4 LOCATION 5

BITS VALUE BITS VALUE BITS VALUE BITS VALUE

X END READ ON 4 4 PAPER TAPE 4 X NOT USED 4 4 SKI P 1 4
ALL BITS READ

BLOCK

Y PAPER TAPE 2 2 PAPER TAPE 2 Y SKIP 4 2 2 SPACE 2 2
PUf\CH ODD PU~H CHAR

(
-~

PARITY

8 PAPER TAPE 1 1 PAPER TAPE 1 8 SKIP 2 1 1 END PRI NT 1 '
PU~H READ CHAR AT 90
BLOCK

FIELD B CC ~ # 0 D D D
LOCAT I ON 6 LCCAT ION 7

BITS VALUE BITS VALUE BITS VALUE BITS VALUE

X NOT USED 4 4 BACK SPACE 4 X NOT USED 4 4 PU~H CLEAR 4
MAGNETIC
TAPE

Y REWIND 2 2 SET 2 Y PUI\CH 2 2 PUf\CH TEST 2
MAGNETIC IijEQUEST TO STACKER
TAPE TRANSMIT SELECTCR

PT PUI\CH EVEN
PARITY

8 SET ERASE .~ 1 ~S5RVED 1 8 PUf\CH HOLD 1 1 PUI\CH COOE 11
FLI P FLOP IMAGE PAPER

." TAPE OR
CARD (

FiElD C CC = # 0 o D D
FIGURE_ ,\\

4.13.3 READ MAGNETIC TAPE

MNEMONIC: RT MODE: DESCENDING LENGTH: 7 fA: NO

LABEL PPERATION OPERAND 1 OPERMID ?

~ FIELD A + INC ~ FIELD B + INC FIELD C
10 * '2 16 - . 22 * 22 26 -- 2: 30 32 36 1 5 6 ~

I R:T. . I • I I, I I~ • I • I •
~ .". _. - --. -.

FUNCTION: Read forward, transfer descending from magnetic tape to
memory beginning at 2M specified in Field B. Continue
read and transfer until an inter-record gap is detected.

NOTE: The Servo on which reading will occur is
the Servo last set by a Set Condition
(SC) instruction. '

Field B specifies the address of the MSL of an area of memory

which is to receive the block of data from tape. Once initiated by

the'RT comrrand, reading will continue until the inter-record gap,

recorded on tape when it was written, is detected by the Servo.

The area set aside should be at least as long as the longest block

to be read into memory plus one location.

NOTE: The information stored in memory will be the data
read from tape plus an additional space code as
the last character stored.

Example 1

LABEL

Given: TPIN is the label of a DA declarative which
established a 221 location area. The longest
block of tape expected is -'.2Q characters.

Problem: Read a block of magnetic tape beginning at
TPIN.

OPERATION OPERAND 1 OPERAIID ? .. FIELD A + INC IiA FIELD B + INC FIELD C
1 5 6 10 * '2 16 -, 22 * 22 26 -- 2: 30 32 36

.. ;. . IR:T. .,1.." I ..L.' tr~P.I..M. . I • I .. ,. ,.-*-<-l .. ,

.. INC - [1: 40

I

.. INC - 8: 40

I
' .

c

(-

(

The machine language instruction produced by the RT source

language instruction will have the address of the MSL of the input

area (TPIN) in locations 4 and 5. Locations 2, 3, 6, and 7 will

be blank.

+ TPIN will contain a space code if a 250 character block is

read.

NOTE: If the 4 bit position of location 3 contains
a binary 1, reading is performed at high gain.
This is specified by placing #0004 in Field A.
If Field A is blank, reading occurs at normal
gaIn.

4.13.4 WRITE MAGNETIC TAPE

MNOONIC: WT l{)DE: DESCEND I NG LENGTH: 7 IA: NO

LABEL

1

FUNCTION: Write forward, transfer descending beginning at
OP1-MSL specified in Field B until OP1-LSL
specified in Field A has been transferred.
Also! simultaneously transfer descending beginning
at OPI-MSL to OP2-MSL which is the same address as
OP1-MSL. Transfer ends at the location of OP2 which
coincides with OP1-LSL. The WT instruction continues
unti 1 OP2-LSL speci fied inField C has been cycled.
OP2-LSL must be OP1-LSL "lys 3 •.

The OP1-LSL must be two locations beyond the last data character

to be written on tape. The characters in these two extra locations of ,~

OPl are D2i written on tape and are not disturbed in memory. The

contents of the 3 locations to the right of OP1-LSL are not disturbed.

Thus the five locations to the right of the location which contains

the last data character to be recorded on tape are included in the

machine function, but remain unchanged by the function.

Example 1

LABEL

1

Given: TPOUT is the label of a DA declarative which
established a 400 location area.

Problem: Write a block of magnetic tape from TPOUT.

OPERAND 1

FIELD A + INC
16 - ~.:: aJ

I;,

(

(

c

Consideration need not be given to the contents of the five

locations to the right of the LSL of TPOUT, since they are not

changed by this instruction.

NOTE: The Servo on which writing will occur is the Servo
last set by a Set Condition (SC) instruction.

A Servo must be set by an SC instruction before the first

magnetic tape operation is given. Console Clear leaves no Servo

set.

4.13.(RECE I VE DATA II NE

MNEMON I C: RD MODE: DESCENDING LENGTH: 7 IA: NO

LABEL
... INC

16 - -:: 40

FUNCTION: Receive from the Data Line. Store descending beginning at
OP 2-MSL specified in Field B, continuing until OP 2-LSL
specified in Field C has been filled. The last two
characters stored in OP 2 will be the End of Message
character and the Longitud inal Pari ty Character. The
preceding characters will be the Data characters.

OP 2-MSL is automatically used as OP 1-MSL. Field A which specifies

OP 1-LSL should contain the same address as Field B. Thus OP 1 becomes

a one character location. There must be an OP 1 in an RD function for

control purposes.

Example 1

Given:

Blank addressing should not be used in Field C.

)A
RDIN is the label of aAdeclarative which established
an 82 location area.

Problem: Receive the contents of the card transmitted.

l-ABEL

The contents of the transmitted card will be stored in RDIN through

RDIN + 79 •. RDIN + 80 will contain EOM. RDIN + 81 (iRDIN) will contain

the LPG.

c
I

I:

4.13., SEND DATA LINE

MNEMONIC: SD MODE: DESCENDING LENGTH: 7 IA: NO

LABEL
l' INC

E: 40

FUNCTION: Send via the Data Line. Transfer descending to the Data Line,
the information beginning at the MSL of OP 1 specified in
Field B, continuing until the LSL of OP 1 specified in Field
A has been transferred to the Data Line. Simultaneously
transfer descending, the same information toOP 2: The OP 1-
MSL is used as the OP 2-MSL. OP 2-LSL specified in Field C
must be the same as OP 1-lSL specified in Field A. Blank
addressing should not be used.

The information to be transfer.red from memory to the Data Line consists

of Transmission Control Characters, and the data; in the following format:

OP 1, MSL to OP 1, MSL + 3 Four synchronizing characters

OP 1, MSL + 4 Space code

OP 1, MSL + 5 to n Data

OP 1, LSL - 3 Turn off Request to Transmit--right hand (~
. parenthesis)

OP 1, LSL - 2 End of Message Code

OP 1, LSL - 1 and OP 1, LSL Space codes

Example 1

Problem: Transmit the contents of a card.
~~~~~~~~~ --------------,----~ 



Solution: .The DC and DA declaratives allocate a message area of 
storage which contains t~ 5 constant preamble (PREAM), 
the data (DATA), and the "constant trailer. These are 
allocated in reverse sequence to the order assembled. 

The TD transfers the card data from Read Input storage to the 
data port Lon of the message area. The GC sets Request to 
Transmit. The SD does the sending. 

c 
i' 



4.13.' 

( 

(/ 

RECEIVE INTERFACE 

MNEMONIC: RF MODE: LENGTH: 7 IA: NO 

. lABEL OPERATION OPERAND 1 OPF:RA: ID 2 .. FIELD A + INC M F'ElD B + INC FIELD C 
1 5 6 10 * 12 16 

- , . 3J * 22 ')' -- 2·· 30 32 ~ ,-b 

I . ~ . Itt. . I ~ • I IL . 
FUNCTION: Receive data from the Unit selected by bits in CC 

specified in Field A, and store in the area whose 
MSL is specified in Field B, and LSL is specified 
in Field C. 

36 

The address specified In Field B becomes OP1-MSL and OP2-MSL, 

and the address specified in Field C becomes OP1-LSL and OP2-LSL 

during the RF function. The M address occupies locations 4 and 5, 

and the L address occupies location 6 and 7. 

The bit positions of CC appear in locations 2 and 3 and are 

used to indicate Unit Number, Input Control, and Output Control. 

Octal coding is used to specify the bit pattern of CC. The num

ber sign (#) followed by four octal digits is required to specify 

octal coding. 

The bit positions of CC and corresponding Unit Number and 

Input/Output Control are as follows: 

Location 2 Location 3 

X not used X not used 
Y Output Control 3 Y Input Control 3 
8 Output Control 2 8 Input Control 2 

4 Output Control 1 4 I nput Control 1 
2 Unit 4 2 Unit 2 
1 Unit 3 1 Unit 1 

... INC 
- 3~ !lO 

I' 
'--. 



Example 1 

1 

Problem: Receive an 80 column record from Unit 1 
through Input Control 1 and store in an 
80 location area labelled IN1. 

Solution: #{)005 is octal for 0~fl flfl~ flflfl101, which selects 
Unit 1 and I nput Control 1. 



4.13.' 

c 

SEND INTERFACE 

MNEMONIC: SF MODE: LENGTH: 7 IA: NO 
'~' ... 

LABEL bPERATION OPERAND 1 J)~1n 2 
~ FIELD A + INC ~ FIELD B + INC FIELD C 

1 5 6 10 * 12 16 - ~"' d) * 22 26 -- 2: 30 32 -
. . S.F ~~ • I MJ- . I IL. I 

FUNCTION: Send data to the Unit Selected by bits in CC specified 
in Field A; from the area whose MSL is specified in 
Field B, and LSL is specified in Field C. 

The address specified in Field B becomes the OP 1-MSL and 

OP 2-MSL~and the address specified in Field C becomes the 

OP 1-LSL and OP 2-LSL during the SF function. The M address 

occupies locations 4 and 5, and the L address occupies locations 

6 and 7. 

36 

. 

The bit positions of CC appear in locations 2 and 3 and are 

used to indicate Unit Number, Input Control, and Output Control. 

Octal coding is used to specify the bit pattern of CC. The number 

sign (#) followed by four octal digits is required to specify octal 

coding. 

The bit positions of CC and corresponding Unit Number and 

Input/Output Control are listed in the section on Receive Interface 

(Section 4.13.5). 

+ -

\ f\\ 

INC 
8: 1j0 

I 



Example 1 

LABEL 

1 5 6 

s 

Problem: Send to Unit 2 through Output Control 1 
the information stored jn a 160 location 
area labelled OU2. 

Solution: ~4g2 is octal for ggg 19~ ~g~ ~l~ which selects 
Unit 2 and Output Control 1. 




