
M T S

The Michigan Terminal System

MTS Command Extensions and Macros

Volume 21

Reference R1021

April 1986

Updated February 1991

University of Michigan
Information Technology Division
Consulting and Support Services

DISCLAIMER

The MTS manuals are intended to represent the current state of the Michigan Terminal System (MTS),
but because the system is constantly being developed, extended, and refined, sections of this volume
will become obsolete. The user should refer to the U-M Computing News and other ITD
documentation for the latest information about changes to MTS.

Copyright 1991 by the Regents of the University of Michigan. Copying is permitted for nonprofit,
educational use provided that (1) each reproduction is done without alteration and (2) the volume
reference and date of publication are included.

2

MTS 21: MTS Command Extensions and Macros

Revised February 1991

CONTENTS

Preface .. 7

Preface to Volume 21 .. 9

Tutorial Section .. 11
Introduction .. 13

Overview .. 13
On-Line EXPLAIN Facility ... 15
The Macro Flag Character ... 15
Comments .. 16
System Variables ... 16
User Variables ... 17
Expressions .. 18
Built-In Functions ... 20
The IF Command ... 21
Macros .. 23
Input and Output ... 27
Iteration ... 29
Testing and Debugging Macros ... 32
Macro Libraries .. 35
System Macro Library ... 37

Reference Section ... 39
General Comments .. 41

I/O Stream Macro Processor Overview ... 41
The EXPLAIN Facility .. 42
Macro Flag Character .. 43
Error Messages .. 43

Variables and Expressions ... 45
Variables .. 45

Defining a Variable .. 45
Types .. 46
Aggregates: Arrays and Structures .. 46

Arrays .. 46
Structures ... 46
Static Use .. 47
Dynamic Use ... 47

Named Constants .. 47
Scope .. 47

Order of Resolution ... 48
Overriding the Default .. 48

Disposing of Variables ... 48
Using Variables ... 48
Setting Values ... 49

3

MTS 21: MTS Command Extensions and Macros

Revised February 1991

Displaying Values ... 49
Expressions .. 51

Operators ... 51
Variables .. 55
Constants ... 56
Built-In Functions ... 57

ABS .. 57
ABSTIME .. 57
ARRAY .. 58
CAN_CONVERT ... 58
CONTROL ... 58
COST ... 59
CUINFO .. 59
DOUBLE ... 60
DUPL ... 60
EVAL ... 60
FILE .. 61
FILE_INFO ... 61
FILES .. 62
FIND_CHAR ... 62
FIND_STRING ... 63
GUINFO .. 63
IGNORE_CHAR ... 63
INTEGER_PART .. 64
LOCK ... 64
LOWERCASE ... 64
LPAD ... 64
LTRIM ... 65
MAX ... 65
MAX_SUBSCRIPT ... 65
MICROSECONDS .. 65
MIN ... 66
MIN_SUBSCRIPT .. 66
QUOTE .. 66
RELTIME .. 66
REPLACE ... 67
REVERSE ... 67
RPAD ... 67
SENSE ... 68
SIZE ... 68
SUBSTITUTE ... 68
TRIM ... 68
UPPERCASE .. 69
VARIABLE .. 69

System Variables ... 69
BATCH .. 69
CLS_NAME ... 70
CPU_TIME .. 70
CS_CODE .. 70
CS_ORIGIN .. 70
CS_SUMMARY ... 70
DATE ... 70

4

MTS 21: MTS Command Extensions and Macros

Revised February 1991

FULL_SCREEN_POSSIBLE ... 70
HOST_NAME ... 70
INSTALLATION ... 70
INSTALLATION_CODE .. 71
INSTALLATION_NAME ... 71
LAST_SIGNON ... 71
NONNULL .. 71
NULL ... 71
PROJECT .. 71
RATE ... 71
RUNRC .. 71
SIGNONID .. 71
TASKNBR ... 71
TERMTYPE .. 71
TIME ... 72

How Expressions Are Formed ... 72
Automatic Type Conversions in Expressions ... 73

Control Structures ... 73
Labels ... 73
Transfer of Control .. 74
Conditionals .. 74
Iteration ... 75
Iteration Exits ... 77

Comments .. 77
Continuation Lines .. 78

Command Macros ... 79
How to Invoke .. 79
Where the Definition Comes From .. 79

Sources ... 79
Search Order .. 80
Scope .. 81

Defining a Macro .. 81
Macro Parameters ... 82

Positional Parameters .. 82
Keyword Parameters .. 82
Valueless Keyword Parameters .. 83

Detailed Syntax of the Macro Prototype ... 83
Invocation of a Macro ... 84
Lists and Sublists ... 86

Detailed Syntax of the Macro Call .. 86
Exiting a Macro or User-Defined Function ... 88

Exiting a Macro ... 88
Exiting a User-Defined Function .. 88
Common to Both .. 88

Control and Monitoring ... 88
MACROECHO Option .. 89
MACROTRACE Option ... 89
The @CHECK Option .. 89

Input and Output From Macros .. 90
Input .. 90
Output .. 92

User-Defined Functions .. 93

5

MTS 21: MTS Command Extensions and Macros

Revised February 1991

Macro Libraries .. 95
Using a Macro Library ...95
Multiple Libraries ... 96
Form of a Macro Library .. 96
Constructing a Macro Library ... 96
System Macro Library ... 96

Editing Macros ... 97
Special Cases .. 97

Emitting Lines ... 97
Generating Unmentionables ... 98

Filters ... 98
Multiple Definitions .. 99
Editing ... 99

Appendix A: MACRO and MACRO_FLAG_REQUIRED Modifiers ... 100
Appendix B: Interactions of Flag Characters and Modes ...101
Appendix C: CSGET and CSSET Subroutine Descriptions .. 102
Appendix D: Macro Library Utilities ... 105
Appendix E: Examples ... 107
Appendix F: Macro Definition and Expansion .. 114
Appendix G: Input Time Conversion ... 118
Appendix H: Additional Built-In Functions .. 121

BITAND, BITNOT, BITOR ... 121
EXTERNAL ... 121
HEX ... 121
INTEGER_FORMAT .. 122
SHIFT_LEFT, SHIFT_RIGHT ... 122
TIME_FORMAT ... 122
TIME_WAIT .. 123
TRANSLATE .. 124
USE_AS ... 124

Appendix I: Integer Picture Formats .. 125
Appendix J: Time Picture Formats ... 127
Appendix K: Subroutines to Access Macro Variables ... 131
Appendix L: Symbol Index ... 133

Index ... 139

6

MTS 21: MTS Command Extensions and Macros

Revised February 1991

PREFACE

The software developed by the Information Technology Division (ITD) technical staff for the
operation of the high-speed IBM 370-compatible computers can be described as a multiprogramming
supervisor that handles a number of resident, reentrant programs. Among them is a large subsystem,
called MTS (Michigan Terminal System), for command interpretation, execution control, file
management, and accounting maintenance. Most users interact with the computer’s resources
through MTS.

The MTS Volumes are a series of manuals that describe in detail the facilities provided by the
Michigan Terminal System. Administrative policies of ITD and the physical facilities provided are
described in other publications.

The MTS Volumes now in print are listed below. The date indicates the most recent edition of each
volume; however, since volumes are periodically updated, users should check the file
*CCPUBLICATIONS, or watch for announcements in the U-M Computing News, to ensure that their
volumes are fully up to date.

Volume 1: The Michigan Terminal System, Reference R1001, November 1988
Volume 2: Public File Descriptions, Reference R1002, January 1987
Volume 3 System Subroutine Descriptions, Reference R1003, April 1981
Volume 4: Terminals and Networks in MTS, Reference R1004, July 1988
Volume 5: System Services, Reference R1005, May 1983
Volume 6: FORTRAN in MTS, Reference R1006, October 1983
Volume 7: PL/I in MTS, Reference R1007, September 1982
Volume 8: LISP and SLIP in MTS, Reference R1008, June 1976
Volume 9: SNOBOL4 in MTS, Reference R1009, September 1975
Volume 10: BASIC in MTS, Reference R1010, December 1980
Volume 11: Plot Description System, Reference R1011, August 1978
Volume 12: PIL/2 in MTS, Reference R1012, December 1974
Volume 13: The Symbolic Debugging System, Reference R1013, September 1985
Volume 14: 360/370 Assemblers in MTS, Reference R1014, May 1983
Volume 15: FORMAT and TEXT360, Reference R1015, April 1977
Volume 16: ALGOL W in MTS, Reference R1016, September 1980
Volume 17: Integrated Graphics System, Reference R1017, December 1980
Volume 18: The MTS File Editor, Reference R1018, February 1988
Volume 19: Tapes and Floppy Disks, Reference R1019, October 1989
Volume 20: Pascal in MTS, Reference R1020, December 1985
Volume 21: MTS Command Extensions and Macros, Reference R1021, April 1986
Volume 22: Utilisp in MTS, Reference R1022, May 1988
Volume 23: Messaging and Conferencing in MTS, Reference R1023, February 1991

The numerical order of the volumes does not necessarily reflect the chronological order of their
appearance; however, in general, the higher the number, the more specialized the volume. MTS

Volume 1, for example, introduces the user to MTS and describes in general the MTS operating system,
while MTS Volume 10 deals exclusively with BASIC.

7

MTS 21: MTS Command Extensions and Macros

Revised February 1991

The attempt to make each volume complete in itself and reasonably independent of others in the
series naturally results in a certain amount of repetition. Public file descriptions, for example, may
appear in more than one volume. However, this arrangement permits the user to buy only those
volumes that serve his or her immediate needs.

Richard A. Salisbury
General Editor

8

MTS 21: MTS Command Extensions and Macros

April 1986

PREFACE TO VOLUME 21

MTS Volume 21: MTS Command Extensions and Macros, combines Computing Center Memo 464,
Introduction to MTS Command Extensions and Macros, and the document Command Extensions and

Macros, which was written by Donald W. Boettner of the University of Michigan Information
Technology Division.

This volume is divided into two sections, a tutorial section and a reference section. The tutorial
section presumes only a basic knowledge of the MTS command language. However, the material
presented in the reference section presumes that the reader has a fundamental knowledge of computer
programming languages.

9

MTS 21: MTS Command Extensions and Macros

April 1986

10

MTS 21: MTS Command Extensions and Macros

April 1986

TUTORIAL SECTION

Tutorial Section 11

MTS 21: MTS Command Extensions and Macros

April 1986

12 Tutorial Section

MTS 21: MTS Command Extensions and Macros

April 1986

INTRODUCTION

OVERVIEW

The MTS command extension and macro processor is a special set of system programs that act as an
interface between the user and MTS. The processor has the following capabilities:

(1) Provides a series of command extensions which allow the setting and displaying of system
variables that describe the current status of MTS.

(2) Provides conditional commands that allow flow control depending on the results of
previous commands, programs, or system variables.

(3) Allows the user to create procedures (or macros).

The macro processor is enabled by issuing the MTS command

$SET MACROS=ON

Once the macro processor is enabled, the command extensions, which are accessed by macro
commands, may be used. The remainder of this description assumes that the macro processor has
been enabled unless otherwise indicated.

When the macro processor is enabled, it looks at all lines that are read from the terminal
(*SOURCE*). Lines that are macro commands, identified by a “>” character in column 1, are
processed by the macro processor. Lines that are not macro commands are passed onto the system for
normal processing (this includes MTS commands, file editor commands, program data lines, etc.).

Macro commands can be used in two ways:

(1) they can be executed immediately, or

(2) they can be stored in macro definitions, where execution is deferred until the macro is
invoked.

Except when defining a macro, macro commands are executed immediately when entered from a
terminal or read from a $SOURCE file (or a sigfile, a special type of source file that is processed at
signon time). For example, entering the macro command

>DISPLAY SYSTEM_VARIABLES

displays the list of predefined system variables available with the macro processor, while entering the
macro commands

>DISPLAY VALUE(SIGNONID)
>DISPLAY VALUE(PROJECT)

displays the current contents of the system variables SIGNONID (user signon ID) and PROJNO (user
project ID). The following example illustrates how a series of macro commands may be used to
customize a shared sigfile for a specific user:

Tutorial Section: Introduction 13

MTS 21: MTS Command Extensions and Macros

April 1986

$SET MACROS=ON

>*

>* Execute for all users

>*

$MESS RETRIEVE NEW HEADER ALL

$SET AUTOHOLD=ON

$SET INITFILE(EDIT)=WABC:EDIT.INITF

>*

>* Execute only for Ontel terminals

>*

>IF TERMTYPE='OP/VIS ', $CONTROL *MSOURCE* PAD=PFKEYS

>*

>* Set the user's name for $MESSAGE system

>*

>IF SIGNONID='WABC'

$SET NAME='Marlou Smith'

$SET ROUTE=UNYN

>ELSEIF SIGNONID='WXYZ'

$SET NAME='John Brown'

$SET ROUTE=NUBS

>ENDIF

For further information on the use of sigfiles, see MTS Volume 1, The Michigan Terminal System.

A macro is a user-defined command or procedure. A macro has a name which is associated with a
single command or a sequence of commands that make up its definition. Once the macro is defined, it
can be subsequently executed by simply entering the macro name with any necessary parameters.
For example, a simple one-command macro may be defined as follows:

>MACRO PAGEPR file

$RUN *PAGEPR SCARDS={file} PAR=PORTRAIT,PAPER=PLAIN

>ENDMACRO

This defines a macro named PAGEPR to run the *PAGEPR program. It has one parameter called
“file” which specifies the file to be printed. The PAGEPR macro may be executed by giving the
command

>PAGEPR DOCUMENT

This is equivalent to issuing the MTS command

$RUN *PAGEPR SCARDS=DOCUMENT PAR=PORTRAIT,PAPER=PLAIN

The following example defines a macro to be used for compiling and executing a Pascal/VS program:

>MACRO PASCAL source object

$RUN *PASCALVS SCARDS={source} SPUNCH={object}

>IF RUNRC > 0, EXIT

$RUN {object}

>ENDMACRO

The macro may be executed by giving the command

>PASCAL PROB1SOU PROB1OBJ

The macro first compiles the Pascal source code in the file PROB1SOU. If the compilation is
successful, the object code placed in the file PROB1OBJ is then executed; otherwise, the macro is exited

14 Tutorial Section: Introduction

MTS 21: MTS Command Extensions and Macros

April 1986

(stops) without running the object program. This example illustrates the power that macros have for
making decisions based on the results of previous commands.

Macros that will be used for most or all sessions can be defined directly in the user’s sigfile. The
macro processor also provides a more sophisticated facility for creating and maintaining macro
libraries which allows the user to selectively define macros for each session depending upon what tasks
are to be performed within the session. This facility is explained later.

ON-LINE EXPLAIN FACILITY

The macro processor has an on-line EXPLAIN facility which is activated by issuing the command

>EXPLAIN item

where “item” specifies the subject to be explained. By entering

>EXPLAIN

the first time through, the user will be given a brief tutorial on the use of the EXPLAIN facility. By
entering

>EXPLAIN CONTENTS

the user will be given a menu of items for which explanations are available. Once the user has invoked
the EXPLAIN facility, subsequent explanations are produced by entering only the item to be explained
in response to the prompt

Explain?

For example by responding with DISPLAY, an explanation of the DISPLAY macro command will be
produced. The EXPLAIN facility is terminated by entering STOP. An end-of-file will also terminate
the EXPLAIN facility.

THE MACRO FLAG CHARACTER

The macro flag character “>” indicates that an input line is a macro command or a macro invocation.
Normally, all input lines read from *SOURCE* are inspected for macro commands and invocations.
Lines read from *SOURCE* include lines entered at the user’s terminal, cards read in a batch job, and
lines read from a file that has been $SOURCEd.

If a line contains a macro flag character “>” in column 1, it is treated as a macro command or macro
invocation. If the line is a valid macro command, it is processed by the macro processor; if the line is
an invalid macro command, an error message is generated. For example, the macro command

>DISPLAY MACROS

will display the names of all user-defined macros. There are two common cases in which the “>” is not
recognized as a macro flag character—lines read by the MTS file editor in insertion mode and lines read
by the message system as message text are never treated as macro commands regardless of the
presence of the “>” in column 1.

Tutorial Section: Introduction 15

MTS 21: MTS Command Extensions and Macros

April 1986

The flag character “>” is optional for lines within a macro definition (however, the flag character is
required for the MACRO and ENDMACRO commands that delimit the definition). When the macro is
invoked (executed), all lines comprising the definition are normally inspected for macro commands and
invocations regardless of the presence of the flag character. If the line contains a valid macro
command, it is processed as such; otherwise, it is passed on for normal processing. For example, the
PASCAL macro illustrated above could have been defined as

>MACRO PASCAL source object

$RUN *PASCALVS SCARDS={source} SPUNCH={object}

IF RUNRC > 0, EXIT

$RUN {object}

>ENDMACRO

The macro flag character is also optional for macro invocation lines. For example, the above PASCAL
macro could be invoked as

PASCAL PROB1SOU PROB1OBJ

Throughout the remainder of this description, all macro invocations will be given without the macro
flag character.

COMMENTS

Comment lines can be used to document the purpose of macro command lines. A comment line is
indicated by placing the characters “>*” in columns 1 and 2. For example, the above PAGEPR macro
could have been defined with comments as follows:

>MACRO pagepr file

>*

>* Run *PAGEPR program in portrait mode

>*

$RUN *PAGEPR SCARDS={file} PAR=PORTRAIT,PAPER=PLAIN

>ENDMACRO

The three comment lines are used only for internal documentation of the macro definition are not
printed by the macro processor during macro invocation.

SYSTEM VARIABLES

A variable is used to store information and has both a name and a value. The value may remain the
same or may change (vary) during the course of the session. There are two types of variables that can
be used with the macro processor, system variables and user variables. System variables are
described below while user variables are described later.

System variables are used to store information that describes the status of the system. System
variables are predefined, that is, they are created by the macro processor. Their values are
automatically set by the system. Some of the more useful system variables are

BATCH is TRUE for a batch job and FALSE for a terminal job.
CS_CODE is the termination code set by the last command or program (zero is normal

return, nonzero is error return).
DATE is the current date (day mon dd/yy)

16 Tutorial Section: Introduction

MTS 21: MTS Command Extensions and Macros

April 1986

PROJECT is the current project number.
RUNRC is the return code from the last $RUN command.
SIGNONID is the current signon ID (in uppercase).
TERMTYPE is the 8-character terminal type.
TIME is the current time (hh:mm.ss zon).

The value of a system variable can be displayed by issuing the command

>DISPLAY VALUE(name)

where “name” specifies the name of variable to be displayed. For example, issuing the command

>DISPLAY VALUE(DATE)

will display the date. The complete list of system variables can be obtained by issuing the command

>DISPLAY SYSTEM_VARIABLES

USER VARIABLES

User variables are defined (created) by issuing the macro command

>DEFINE name

where “name” specifies the name of the variable being defined. The name can be from 1 to 255
characters in length; it can contain only alphanumeric characters (A–Z, 0–9, plus the underscore “_”),
and the first character must be alphabetic. Lowercase letters in variable names are automatically
converted to uppercase during processing. Some legal user variable names are:

ALPHA

Beta (same as BETA)

VAR_1

A value can be initially assigned to the variable by issuing the DEFINE command in the form

>DEFINE name=value

For example, the following command will define the variable N and assign it an initial integer value of
1:

>DEFINE N=1

The data type of the variable is automatically set to match the data type of the value assigned to it each
time its value changes. Thus, a single variable can be initially assigned to a value of any data type and
later reassigned to a value of any other data type. The most common data types are:

Type Example Values

Integer 1, 25, 0, −5, 15000
String "Seven", 'ABCDEF', "" (null string)
Boolean True, False
Hexadecimal X'6D', X'00FFFFFF'

Tutorial Section: Introduction 17

MTS 21: MTS Command Extensions and Macros

April 1986

Line Number (Real) 1.5, .333, −25.75

Boolean variables can only have the values TRUE and FALSE; they are often used in conditional
expressions within the IF command (described later). Line-number variables are real values that
take the form of an MTS line number—up to three positions to the right of the decimal point are
allowed.

The SET macro command can be used to assign a value to an existing variable. The command is
given in the form

>SET VAR name=value

For example, the variable N defined and initialized above may be reassigned to the integer value 2 by
giving the command

>SET VAR N=2

The variable N could be assigned to a character string value by giving the command

>SET VAR N='Two'

The current value of N can be displayed by giving the command

>DISPLAY VALUE(N)

The complete list of currently defined user variables can be obtained by issuing the command

>DISPLAY USER_VARIABLES

By default, the scope of user variables defined within macros is local, that is, they can be used only
within the context of the macro and are automatically destroyed when execution of the macro is
terminated. The scope of all other user variables is global, that is, they can be used at any time either
within or outside of a macro and they continue to exist until explicitly destroyed by the user. A global
user variable can be destroyed (forgotten) by issuing the command

>FORGET name

Other types of user variables can be defined. These include arrays, structures, and named
constants. These variable types are described in the reference documentation.

Several examples illustrating the use of user variables are given later in the discussion of macros.

EXPRESSIONS

An expression is a formula indicating how a value is to be computed. There are several types of
expressions that may be used with the macro processor. This section describes arithmetic expressions,
string expressions, and logical expressions. Other types of expressions are available and are discussed
in the reference documentation.

Arithmetic expressions are used to generate numeric values. The following arithmetic operators

may be used:

18 Tutorial Section: Introduction

MTS 21: MTS Command Extensions and Macros

April 1986

− (unary) negation
+ addition
− (binary) subtraction
* multiplication
/ division

The rules for forming arithmetic expressions are same as those used in most programming languages.
Parentheses are used to indicate the precedence of operators. Examples using these operators are

-5

I + 1

2*N - 6

(A+B+C)/10

System variables, user variables, and constants all can be used in expressions. The presence of blanks
surrounding the operators is optional.

Arithmetic expressions can commonly used with the SET command to assign values to variables.
For example, the value of N can be incremented by 1 by giving the command

>SET VAR N=N+1

String expressions are used to perform string operations. The following string operators may be
used:

|| concatenation
string(beg|len) substring
string(beg...end) substring

The concatenation operator joins (concatenates) two strings to form a new and longer string. The
substring operators return the portion of a string specified by either the beginning index and the length
or the beginning and ending indices. Examples of string expressions are

"ABCDEF" || "GHI" (returns "ABCDEFGHI")

ALPHA || BETA

"ABCDEF"(1|4) (returns "ABCD")

"ABCDEF"(1...4) (returns "ABCD")

ALPHA(2...6)

Logical expressions (or Boolean expressions) are expressions that evaluate to either true or false
using the common rules of logic. The simplest logical expressions are those consisting of a single
variable that has a Boolean data type. However, most logical expressions make use of one of the
following relational operators:

= equal to
¬= not equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to

Examples of logical expressions are

BATCH

Tutorial Section: Introduction 19

MTS 21: MTS Command Extensions and Macros

April 1986

SIGNONID='WABC'

CS_CODE ¬= 0

RUNRC >= 8

Var1 + 1 = Var2

ALPHA || BETA = "ABCDEF"

Arithmetic and string operators may be used within logical expressions.

Two special relational operators are provided for use with the FILE and VARIABLE built-in
functions:

EXISTS is nonnull
DOESNT EXIST is null

The following logical operators can also be used to create more complex expressions:

NOT logical not
AND logical and
OR logical or

Examples of expressions using these operators are

NOT BATCH

RUNRC=8 AND RUNRC=12

I = 1 OR J = 1

(I=1 OR J=1) AND 2*K=0

BUILT-IN FUNCTIONS

Several functions are provided to return information to the user or to perform certain operations.
These functions are built into the macro processor, that is, they are predefined and always are
available for use. Some of the more useful built-in functions are

UPPERCASE(string) returns the supplied string in uppercase, e.g., UPPERCASE("abc") or
UPPERCASE(INPUT).

LOWERCASE(string) returns the supplied string in lowercase, e.g., LOWERCASE("ABC")
or LOWERCASE(INPUT).

INTEGER_PART(nbr) returns the integer portion of the number supplied, e.g.,
INTEGER_PART(2.5) or INTEGER_PART(COUNT/5).

SIZE(string) returns the length of the string, e.g., SIZE("ABC") or SIZE(INPUT).
VARIABLE(string) takes a string as an argument and returns the null string if there is

no user variable of that name or returns the variable data type
otherwise, e.g., VARIABLE("ALPHA").

FILE(string) takes a string as an argument and returns the null string if there is
no file of that name or returns the file name otherwise, e.g.,
FILE("DATA1").

FILES(string) takes a FILESTATUS pattern as an argument and returns a list of
files that match the pattern, e.g., FILES("?") or FILES("?.S").

GUINFO(item) takes an GUINFO item name or numerical index and returns the
associated information, e.g., GUINFO("RCPRINT") or GUINFO(23).
See MTS Volume 3, System Subroutine Descriptions, for a list of the
GUINFO items available.

20 Tutorial Section: Introduction

MTS 21: MTS Command Extensions and Macros

April 1986

Each of the above functions takes an argument and returns a value. These functions are normally
used in expressions. For example, the following command

>IF UPPERCASE(INPUT) = "YES", $SIGNOFF

will execute the $SIGNOFF command if the uppercase conversion of input is “YES”, that is, “YES”,
“yes”, and “Yes” all will match “YES”. The following command

>IF N/3=INTEGER_PART(N/3), ...

can be used to test whether the value of N is a multiple of 3 (e.g., if N=6, the expression reduces to 2=2
which is TRUE, but if N=7, the expression reduces to 2.333=2 which is FALSE). The IF command is
described in more detail in the next section.

Other examples of using built-in functions are given in the remaining text. A complete list of all of
the available built-in functions is given in the reference documentation.

THE IF COMMAND

The IF macro command allows the user to conditionally execute a command or a sequence of
commands. The most elementary form of the IF command is

>IF bexp, statement

where “bexp” is a Boolean expression that evaluates to either TRUE or FALSE and “statement” is a
single command to be executed if the expression is TRUE. For example, the command

>IF SIGNONID='WABC', $SET NAME='Marlou Smith'

will set the user’s name to Marlou Smith if the current signon ID is WABC.

A second form of the IF command which executes a sequence of commands is

>IF bexp
statement

... These executed if “bexp” is TRUE

...
statement

>ENDIF

In this case if the expression “bexp” is TRUE, the set of specified statements is executed. For example,
the command

>IF SIGNONID='WABC'

$SET NAME='Marlou Smith'

$SET ROUTE=UNYN

>ENDIF

will set the user’s name to Marlou Smith and route all output to the UNYN batch station if the signon
ID is WABC.

Tutorial Section: Introduction 21

MTS 21: MTS Command Extensions and Macros

April 1986

A variation of this form of the IF command, which executes an alternative sequence of commands if
the expression is FALSE, is

>IF bexp
statement

... These executed if “bexp” is TRUE

...
statement

>ELSE
statement

... These executed if “bexp” is FALSE

...
statement

>ENDIF

In this case if the expression “bexp” is TRUE, the first set of statements are executed; otherwise, the
second set of statements are executed. For example, the command

>IF SIGNONID='WABC'

$SET NAME='Marlou Smith'

$SET ROUTE=UNYN

>ELSE

$SET ROUTE=CNTR

>ENDIF

will set the user’s name to Marlou Smith and route all output to the UNYN remote station if the signon
ID is WABC; otherwise (when the signon ID is not WABC and therefore the expression is FALSE), all
output will be routed to the Computing Center station.

The complete form of the IF command, which allows the testing of several expressions, is

>IF bexp1
statement

... These executed if “bexp1” is TRUE

...
statement

>ELSEIF bexp2
statement

... These executed if “bexp1” is FALSE

... and “bexp2” is TRUE
statement

>ELSE
statement

... These executed if “bexp1” is FALSE

... and “bexp2” is FALSE
statement

>ENDIF

In this case if the expression “bexp1” is TRUE, the first set of statements are executed; otherwise, if the
expression “bexp1” is FALSE and the expression “bexp2” is TRUE, the second set of statements are
executed; otherwise (when both “bexp1” and “bexp2” are FALSE), the last set of statements are
executed (note that only one set of statements is executed). For example, the command

22 Tutorial Section: Introduction

MTS 21: MTS Command Extensions and Macros

April 1986

>IF SIGNONID='WABC'

$SET NAME='Marlou Smith'

$SET ROUTE=UNYN

>ELSEIF SIGNONID='WXYZ'

$SET NAME='John Brown'

$SET ROUTE=NUBS

>ELSE

$SET ROUTE=CNTR

>ENDIF

will set the user’s name to Marlou Smith and route all output to the UNYN remote station if the signon
ID is WABC; or, if the signon ID is WXYZ, will set the user’s name to John Brown and route all output
to the NUBS remote station; otherwise (when the signon ID is neither WABC nor WXYZ and therefore
both expressions are FALSE), all output will be routed to the Computing Center station.

Additional ELSEIF sections can be inserted into the IF command structure to test other conditions.

MACROS

A macro is a user-defined command that consists of a series of commands or steps. The power of a
macro lies in its ability to combine a sequence of commands into a single procedure that can be executed
by a single command.

Before a macro can be used, it must be defined by the user. The most elementary form of a macro
definition is

>MACRO macro-name
statement

...

...
statement

>ENDMACRO

where “macro-name” is the name of the macro being defined and the “statements” are lines to be
produced when the macro is invoked. The lines can be macro commands which are used to control the
execution of the macro, or they can be program data lines, MTS commands, or other types of commands
(e.g., $EDIT commands or $MESSAGE commands) which are emitted by the macro processor for
processing by programs or other command processors. The rules for forming macro names are the
same as for defining variable names.

The following commands define a macro to run the *PAGEPR program.

>MACRO pagepr

$RUN *PAGEPR SCARDS=DOCUMENT PAR=PORTRAIT,PAPER=PLAIN

$RELEASE *PRINT*

>ENDMACRO

The file DOCUMENT will contain the output to be printed using the PORTRAIT font with PLAIN
(unpunched) paper. After the file is printed, *PRINT* will be automatically released. The macro
may be executed by issuing the command

PAGEPR

Tutorial Section: Introduction 23

MTS 21: MTS Command Extensions and Macros

April 1986

which is equivalent to issuing the MTS commands

$RUN *PAGEPR SCARDS=DOCUMENT PAR=PORTRAIT,PAPER=PLAIN

$RELEASE *PRINT*

One major difficulty with a macro defined in this manner is that it is not very flexible. That is, a
separate macro must be defined for each different output file that is to be printed. Also, if other fonts
or other types of paper stock are desired, separate macros will have to be defined.

These limitations can be overcome by the use of positional parameters, which allow the user to
specify variations that can be made to the commands executed when the macro is invoked. Positional
parameters are declared in the MACRO prototype statement by appending them after the macro name,
i.e.,

>MACRO macro-name par1 par2 ...

where “pars” specify the positional parameters. For example, a more flexible definition of the
PAGEPR macro using three positional parameters is

>MACRO pagepr file font stock

$RUN *PAGEPR SCARDS={file} PAR={font},PAPER={stock}

$RELEASE *PRINT*

>ENDMACRO

In this case, the positional parameters “file”, “font”, and “stock” specify variations to the $RUN
*PAGEPR command. In the $RUN *PAGEPR line of the above definition, the three parameters must
be enclosed in braces to indicate that values are to be substituted for them during execution. A further
discussion about parameter substitution and the use of braces is given below.

When the macro is invoked, the values to be substituted into the definition are given on the invoking
command (in the same position (order) as they are declared in macro prototype statement). For
example, the macro invocation

PAGEPR DOCUMENT PORTRAIT PLAIN

executes the $RUN *PAGEPR command as

$RUN *PAGEPR SCARDS=DOCUMENT PAR=PORTRAIT,PAPER=PLAIN

while the macro invocation

PAGEPR DOCUMENT LANDSCAPE 3HOLE

executes the $RUN *PAGEPR command as

$RUN *PAGEPR SCARDS=DOCUMENT PAR=LANDSCAPE,PAPER=3HOLE

If a positional parameter is omitted during invocation, the macro processor will prompt for it.

Keyword parameters also can be used to specify variations to the manner in which a macro is
executed. Keyword parameters are declared in the MACRO prototype statement, i.e.,

>MACRO macro-name keyname1=value keyname2=value ...

24 Tutorial Section: Introduction

MTS 21: MTS Command Extensions and Macros

April 1986

where “keyname” is the name of the keyword parameter and “value” is its default value if it is not
specified on invocation. Both positional and keyword parameters can be used in the same macro
definition. For example, the PAGEPR macro could be defined to use one positional parameter and two
keyword parameters:

>MACRO pagepr file font=portrait stock=plain

$RUN *PAGEPR SCARDS={file} PAR={font},PAPER={stock}

$RELEASE *PRINT*

>ENDMACRO

In this case, the macro invocation

PAGEPR DOCUMENT

executes the $RUN *PAGEPR command as

$RUN *PAGEPR SCARDS=DOCUMENT PAR=PORTRAIT,PAPER=PLAIN

using the defaults of PORTRAIT and PLAIN specified in the macro prototype statement, while the
macro invocation

PAGEPR DOCUMENT FONT=LANDSCAPE STOCK=3HOLE

executes the $RUN *PAGEPR command as

$RUN *PAGEPR SCARDS=DOCUMENT PAR=LANDSCAPE,PAPER=3HOLE

Keyword parameters can be given in any order on invocation.

Macro commands as well MTS commands can be used in the definition of a macro. A variation of
the earlier PASCAL macro definition allows the user to specify the error-return level from
*PASCALVS above which object program execution will be suppressed.

>MACRO PASCAL source object rc

$RUN *PASCALVS SCARDS={source} SPUNCH={object}

IF RUNRC > rc, EXIT

$RUN {object}

>ENDMACRO

For example, the macro invocation

PASCAL SOU OBJ 0

will terminate macro processing whenever a compilation return code greater than 0 is generated by the
*PASCALVS compiler, while

PASCAL SOU OBJ 4

will terminate macro processing whenever the return code from *PASCALVS is greater than 4 (that is,
program execution will not be suppressed if only compiler warning messages are generated).

Normally, the statements of a macro are executed in sequence until the last statement has been
executed. The EXIT statement can be used to halt execution at an earlier time as illustrated in the
above example.

Tutorial Section: Introduction 25

MTS 21: MTS Command Extensions and Macros

April 1986

The above example further illustrates the use of braces in a macro definition. In general, braces
are not required whenever a parameter is used within a macro command in the definition (in this case,
the >IF command). However, the braces are required for all other types of commands that are
emitted, that is not directly processed by the macro processor but sent on to the system for processing.

Macros also can contain commands other than MTS commands or macro commands. The following
example illustrates how a small file editor macro can be defined to shift a file an arbitrary number of
column positions to the left or right.

>MACRO SHIFT file direction count

$EDIT {file}

SHIFT /F {direction} {count} @NV

STOP

>ENDMACRO

In this case, the macro processor emits to the system the three commands comprising the definition.
The $EDIT command is processed by MTS and the SHIFT and STOP commands are processed by the
file editor. The file DOCUMENT could be shifted to the right by 2 columns by giving the command

SHIFT DOCUMENT RIGHT 2

The following macro could be defined to retrieve all new messages from the message system:

>MACRO MSGS

$MESSAGE

RETRIEVE NEW ALL

STOP

>ENDMACRO

Like the previous example, one command is processed by MTS and two commands are processed by
another command processor, in this case the message system. This example could be enhanced to
allow the user to route the retrieved messages to a file instead of printing them at the terminal by
including the message command SET OUTPUT=FDname in the definition. However, a potential
conflict arises at this point since the SET command is also a valid macro command and would be
executed as such by the macro processor when the macro was invoked. To avoid this conflict, the
EMIT command can be used to force the command to be emitted to the system instead of being executed
by the macro processor. The EMIT command has the form

EMIT "statement"

The MSGS macro thus could be defined as follows:

>MACRO MSGS OUTPUT=*SINK*

$MESSAGE

EMIT "SET OUTPUT={output}"

RETRIEVE NEW ALL

STOP

>ENDMACRO

If the macro were invoked by the command

MSGS

the retrieved messages would be printed at the terminal, but if the macro were invoked by the
command

26 Tutorial Section: Introduction

MTS 21: MTS Command Extensions and Macros

April 1986

MSGS OUTPUT=*PRINT*

the messages would be printed on *PRINT*.

INPUT AND OUTPUT

The macro commands READ and WRITE can be used to perform input and output. They can be
executed immediately or can be used in macro definitions.

The READ command is used to read an input line and is given in the form

READ variable [FROM FDname]

where “variable” specifies a user variable that the input line is to be read into and “FROM FDname”
specifies where the input is being read from. If the FROM clause is omitted, the line is read from the
SOURCE (normally the user’s terminal).

The WRITE command is used to write an output line and is given in the form

WRITE expression [ON FDname]

where “expression” specifies an expression to be written and “ON FDname” specifies where the output
line is to be written. If the ON clause is omitted, the expression is written to *SINK* (normally the
user’s terminal).

The following example is a variation of the above PASCAL macro which prompts the user whether
or not to execute the object program when there is an error during compilation:

>MACRO PASCAL source object

$RUN *PASCALVS SCARDS={source} SPUNCH={object}

IF RUNRC > 0

DEFINE ANSWER

WRITE "Compilation error"

WRITE "Enter OK to continue"

READ ANSWER

IF UPPERCASE(ANSWER)¬="OK", EXIT

ENDIF

$RUN {object}

>ENDMACRO

In this example, the variable ANSWER is used to read the user’s response to the prompting message.
Since this is a user variable, it must be defined by the DEFINE command before it is used. The
response to the prompt will be read from *SOURCE* since the FROM FDname clause is omitted from
the READ command. The built-in function UPPERCASE returns the value of ANSWER in uppercase
letters so that all case forms of “OK” (i.e., OK, Ok, oK, ok) can be checked for in the prompt response.

The following IF-command segment illustrates how the sigfile example presented at the beginning
of this description could be enhanced with READ and WRITE commands:

>IF SIGNONID='WABC'

$SET NAME='Marlou Smith'

$SET ROUTE=UNYN

>ELSEIF SIGNONID='WXYZ'

$SET NAME='John Brown'

Tutorial Section: Introduction 27

MTS 21: MTS Command Extensions and Macros

April 1986

$SET ROUTE=NUBS

>ELSE

> DEFINE NAME

> DEFINE SITE

> WRITE 'Enter name:'

> READ NAME FROM *MSOURCE*

> $SET NAME='{NAME}'

> WRITE 'Enter output site:'

> READ SITE FROM *MSOURCE*

> $SET ROUTE={SITE}

>ENDIF

In this example, two points must be noted. First, the FROM *MSOURCE* clause must be specified on
both READ commands so that the input lines are read from the user’s terminal (*MSOURCE* always
refers to the user’s terminal regardless of the setting of *SOURCE*). If FROM *MSOURCE* were not
specified, the input lines would be read from *SOURCE* (the default) which in this case would be the
next line of the sigfile (remember that a sigfile is a special case of a $SOURCE file and therefore
SOURCE refers to the lines of the sigfile). The second point is that the macro flag character must be
used to denote all macro commands in the ELSE clause since these commands are not a part of a macro
definition (as opposed to the PASCAL macro definition above).

When the ELSE clause is executed in the above example, the user will be prompted in the form

Enter name:

?

Enter output site:

?

with the responses being entered on the lines following the prompting messages. A more elegant form
of prompting can be produced by using the PREFIX clause on the READ command, which is given in
the form

READ variable [FROM FDname] [PREFIX=string]

where PREFIX=string specifies a prompting prefix to be used when reading the line. Normally, this
prefix is a character string and must be enclosed in quotes or primes. The input sequence of the above
example could be rewritten as

...

>ELSE

> DEFINE NAME

> DEFINE SITE

> READ NAME FROM *MSOURCE* PREFIX="Enter name:"

> $SET NAME='{NAME}'

> READ SITE FROM *MSOURCE* PREFIX="Enter output site:"

> $SET ROUTE={SITE}

>ENDIF

In this case, the user will be prompted with

Enter name:

Enter output site:

The responses are entered on the same line as the prompting messages.

28 Tutorial Section: Introduction

MTS 21: MTS Command Extensions and Macros

Revised February 1991

Two other clauses to control end-of-file and attention-interrupt processing can be specified with the
READ command. They are given in the following form

READ variable [FROM FDname] [EOF−>var1] [ATTN−>var2]

where “var1” and “var2” specify user variables that are set to the value TRUE whenever an end-of-file
or an attention interrupt occurs during the read operation and FALSE otherwise. For example, the
first READ command of the above example could be altered so that the $SET NAME and $SET ROUTE
commands are skipped if the user responds to the name prompt with an end-of-file:

...

>ELSE

> DEFINE NAME

> DEFINE SITE

> DEFINE ENDF

> READ NAME FROM *MSOURCE* PREFIX="Enter name:" EOF->ENDF

> IF NOT ENDF, EXIT

> $SET NAME='{NAME}'

> READ SITE FROM *MSOURCE* PREFIX="Enter output site:"

> $SET ROUTE={SITE}

>ENDIF

ITERATION

The LOOP command can be used to perform iteration within a macro. The basic form of the LOOP
command is

LOOP [how]
statement
...
...
statement
ENDLOOP

The statements in the loop are executed repeatedly until the loop is terminated, either by an
EXITLOOP statement or by satisfying the conditions specified by the “how” clause. For example, the
following macro may be defined to compact a series of files.

>MACRO COMPACT

DEFINE FILENAME

DEFINE ENDF

IF FILE("TEMP") EXISTS

WRITE "File TEMP already exists"

EXIT

ENDIF

LOOP

READ FILENAME EOF->ENDF

IF ENDF, EXITLOOP

$DUPLICATE {FILENAME} AS TEMP

IF CS_CODE¬=0

WRITE "Duplication of {FILENAME} unsuccessful"

EXIT

ENDIF

$DESTROY {FILENAME} OK

$RENAME TEMP AS {FILENAME} OK

IF CS_CODE¬=0

Tutorial Section: Introduction 29

MTS 21: MTS Command Extensions and Macros

Revised February 1991

WRITE "Renaming of {FILENAME} unsuccessful"

EXIT

ENDIF

ENDLOOP

>ENDMACRO

In this example, the user will be prompted repeatedly to enter file names for compaction until an
end-of-file is entered at which point the variable ENDF becomes TRUE and the EXITLOOP statement
is executed to terminate the looping. A slightly more sophisticated example of a file compaction macro
is given below. In this example, the $FILESTATUS command is executed to list all of the user’s files
into a temporary file −X. When the loop is then executed, the individual file names are read from −X
and compacted. An error exit is included to exit the macro if an error occurs during the compaction
operations.

>MACRO COMPACTALL

DEFINE FILENAME

DEFINE ENDF

IF FILE("TEMP") EXISTS

WRITE "File TEMP already exists"

EXIT

ENDIF

$EMPTY -X

$FILESTATUS ? OUTPUT=-X

LOOP

READ FILENAME FROM -X EOF->ENDF

IF ENDF, EXITLOOP

$DUPLICATE {FILENAME} AS TEMP

IF CS_CODE¬=0

WRITE "Duplication of {FILENAME} unsuccessful"

EXIT

ENDIF

$DESTROY {FILENAME} OK

$RENAME TEMP AS {FILENAME} OK

IF CS_CODE¬=0

WRITE "Renaming of {FILENAME} unsuccessful"

EXIT

ENDIF

ENDLOOP

>ENDMACRO

The “how” clause can be specified in several ways. A simple loop counter can be specified by giving
the form

LOOP FROM beg-exp TO end-exp

With this form, an internal variable (counter) is established to control the number of iterations of the
loop. The counter is incremented starting with the value specified by the beginning expression
“beg-exp” up to the value specified by the ending expression “end-exp” (by default, the counter is
incremented by 1). For example, a version of the PAGEPR macro may be defined to print a specified
number of copies of output:

>MACRO PAGEPR FILE COPIES=1

LOOP FROM 1 TO COPIES

$RUN *PAGEPR SCARDS={FILE} PAR=PORTRAIT,PAPER=PLAIN

ENDLOOP

$RELEASE *PRINT*

>ENDMACRO

30 Tutorial Section: Introduction

MTS 21: MTS Command Extensions and Macros

April 1986

In this case, the value specified for the COPIES keyword parameter on the macro invocation is
substituted into the TO clause of the LOOP command to set the upper limit for the number of copies
wanted. If COPIES is omitted on the invocation, the count is set to one and the loop is executed once.

One limitation of this form of the FROM-TO clause is that the value of the loop counter cannot be
accessed within the statements of the loop, for example, tests cannot be made for intermediate values.
This limitation can be overcome by using the FOR clause in the form

LOOP FOR var FROM beg-exp TO end-exp

where “var” specifies a user variable that is used for the counter. For example, the above PAGEPR
macro could be rewritten to release *PRINT* after every 10 jobs is printed by *PAGEPR:

>MACRO PAGEPR FILE COPIES=1

DEFINE CNTR

LOOP FOR CNTR FROM 1 TO COPIES

$RUN *PAGEPR SCARDS={FILE} PAR=PORTRAIT,PAPER=PLAIN

IF CNTR/10=INTEGER_PART(CNTR/10), $RELEASE *PRINT*

ENDLOOP

$RELEASE *PRINT*

>ENDMACRO

INTEGER_PART(exp) is a built-in function that returns the integer portion of its argument. The
left-hand side of the IF-command expression CNTR/10 will be integral whenever the value of CNTR is a
multiple of 10 and thus equal to the result returned by INTEGER_PART(CNTR/10).

Instead of incrementing a counter, a list of elements can also be used to control the looping. The
form

LOOP FOR var OVER list

specifies a list of elements, each of which will be assigned to the variable “var” during iteration. The
first element of the list will be assigned to “var” during the first iteration, the second element will be
assigned to “var” during the second iteration, etc. The number of elements in the list specifies the
total number of iterations of the loop.

The above COMPACTALL macro example can be rewritten to take advantage of the OVER clause.
The FILES(“?”) built-in function returns a list of all the user’s files. The OVER clause will assign to
the variable FILENAME each of the file names in the list in succession as it iterates over the list.

>MACRO COMPACTALL

DEFINE FILENAME

IF FILE("TEMP") EXISTS

WRITE "File TEMP already exists"

EXIT

ENDIF

LOOP FOR FILENAME OVER FILES("?")

$DUPLICATE {FILENAME} AS TEMP

IF CS_CODE¬=0

WRITE "Duplication of {FILENAME} unsuccessful"

EXIT

ENDIF

$DESTROY {FILENAME} OK

$RENAME TEMP AS {FILENAME} OK

IF CS_CODE¬=0

WRITE "Renaming of {FILENAME} unsuccessful"

Tutorial Section: Introduction 31

MTS 21: MTS Command Extensions and Macros

April 1986

EXIT

ENDIF

ENDLOOP

>ENDMACRO

Two other forms of the “how” clause can be used to control looping while or until a specified condition
is satisfied. These forms are

LOOP WHILE bexp

which continues the loop while the expression “bexp” remains TRUE, and

LOOP UNTIL bexp

which continues the loop until the expression “bexp” becomes TRUE. In both of these forms (as well in
all the above forms), the expression is evaluated only at the top of the loop (the LOOP statement),
which means that if the condition becomes satisfied during the execution of the statements within the
loop, the looping will not terminate until beginning of the next iteration. In general, the WHILE and
UNTIL forms are used whenever the looping condition becomes TRUE or FALSE as a result of the
statements executed within the loop. The previous COMPACT macro could be rewritten (albeit less
efficiently) to use the UNTIL clause as follows:

>MACRO COMPACT

DEFINE FILENAME

DEFINE ENDF=FALSE

IF FILE("TEMP") EXISTS

WRITE "File TEMP already exists"

EXIT

ENDIF

READ FILENAME EOF->ENDF

IF ENDF, EXIT

LOOP UNTIL ENDF

$DUPLICATE {FILENAME} AS TEMP

IF CS_CODE¬=0

WRITE "Duplication of {FILENAME} unsuccessful"

EXIT

ENDIF

$DESTROY {FILENAME} OK

$RENAME TEMP AS {FILENAME} OK

IF CS_CODE¬=0

WRITE "Renaming of {FILENAME} unsuccessful"

EXIT

ENDIF

READ FILENAME EOF->ENDF

ENDLOOP

>ENDMACRO

In this case, the loop will continue to execute until the Boolean variable ENDF becomes TRUE as a
result of an end-of-file on input. Also, the clause WHILE NOT ENDF could have been used instead of
UNTIL ENDF in the above example.

TESTING AND DEBUGGING MACROS

The current definition of a particular macro can be displayed by issuing the command

32 Tutorial Section: Introduction

MTS 21: MTS Command Extensions and Macros

April 1986

>DISPLAY MACRO=macro-name

The display will list each of the statements of the definition along with its line number. The following
example illustrates the output from a macro display:

#>DISPLAY MACRO=COMPACT

#MACRO COMPACT

1: DEFINE FILENAME

2: DEFINE ENDF=FALSE

3: IF FILE("TEMP") EXISTS

4: WRITE "File TEMP already exists"

5: EXIT

6: ENDIF

7: READ FILENAME EOF->ENDF

8: IF ENDF, EXITLOOP

9: LOOP UNTIL ENDF

10: $DUPLICATE {FILENAME} AS TEMP

11: IF CS_CODE¬=0

12: WRITE "Duplication of {FILENAME} unsuccessful"

13: EXIT

14: ENDIF

15: $DESTROY {FILENAME} OK

16: $RENAME TEMP AS {FILENAME} OK

17: IF CS_CODE¬=0

18: WRITE "Duplication of {FILENAME} unsuccessful"

19: EXIT

20: ENDIF

21: READ FILENAME EOF->ENDF

22: ENDLOOP

A macro can be checked out on a “dry-run” basis by appending the @CHECK modifier to the modifier
name when it is invoked:

macro-name@CHECK par1 par2 ...

When the macro is executed, all lines that would normally be emitted for processing by the macro
processor or the system are instead printed on *SINK*, prefixed with the character string “*C_”. For
example, the COMPACT macro defined above could be checked out by issuing the following command:

COMPACT@CHECK

The output from the check-run will appear as follows:

#COMPACT@CHECK

?DATA1

#*C_ $DUPLICATE DATA1 AS TEMP

#*C_ $DESTROY DATA1 OK

#*C_ $RENAME TEMP AS DATA1 OK

?DATA2

#*C_ $DUPLICATE DATA2 AS TEMP

#*C_ $DESTROY DATA2 OK

#*C_ $RENAME TEMP AS DATA2 OK

The execution of a macro can be traced by issuing the macro command

>SET MACROTRACE=ON

When tracing is in effect, all lines generated by the macro invocation and all lines that have parameter

Tutorial Section: Introduction 33

MTS 21: MTS Command Extensions and Macros

April 1986

substitution in them are printed on *SINK*, prefixed by a string of the form

*<macro-name>(macrolinenbr) <flag>

where “macro-name” is the macro name, “macrolinenbr” is the line number of statement in the
definition that was executed, and “flag” is “g” for macro-generated lines, “s” for substitution lines, or
“xxx” for skippped lines. The following example illustrates the output for a trace of the COMPACT
macro:

#>set macrotrace=on

#compact

#*COMPACT(1)g DEFINE FILENAME

#*COMPACT(2)g DEFINE ENDF=FALSE

#*COMPACT(3)g IF FILE("TEMP") EXISTS

#*COMPACT(4)g XXX WRITE "File TEMP already exists"

#*COMPACT(5)g XXX EXIT

#*COMPACT(6)g XXX ENDIF

#*COMPACT(7)g READ FILENAME EOF->ENDF

?data1

#*COMPACT(8)g IF ENDF, EXITLOOP

#*COMPACT(9)g LOOP UNTIL ENDF

#*COMPACT(10)g $DUPLICATE {FILENAME} AS TEMP

#*COMPACT(10)s $DUPLICATE data1 AS TEMP

$DUPLICATE data1 AS TEMP

File "DATA1" has been duplicated as "TEMP"; ...

#*COMPACT(11)g IF CS_CODE¬=0

#*COMPACT(12)g XXX WRITE "Duplication of {FILENAME} ...

#*COMPACT(13)g XXX EXIT

#*COMPACT(14)g XXX ENDIF

#*COMPACT(15)g $DESTROY {FILENAME} OK

#*COMPACT(15)s $DESTROY data1 OK

$DESTROY data1 OK

File "DATA1" has been destroyed.

#*COMPACT(16)g $RENAME TEMP AS {FILENAME} OK

#*COMPACT(16)s $RENAME TEMP AS data1 OK

$RENAME TEMP AS data1 OK

File "TEMP" has been renamed as "DATA1".

#*COMPACT(17)g IF CS_CODE¬=0

#*COMPACT(18)g XXX WRITE "Renaming of {FILENAME} ...

#*COMPACT(19)g XXX EXIT

#*COMPACT(20)g XXX ENDIF

#*COMPACT(21)g READ FILENAME EOF->ENDF

?{end-of-file}

#*COMPACT(22)g ENDLOOP

When macro tracing is in effect, all macro invocations are traced. Macro tracing can be combined with
the the @CHECK modifier to produce a trace of a check-run. Macro tracing may be disabled by issuing
the command

>SET MACROTRACE=OFF

A macro that has been defined can be edited (redefined) by the MTS file editor:

$EDIT
EDIT MACRO macro-name
...
...

34 Tutorial Section: Introduction

MTS 21: MTS Command Extensions and Macros

Revised February 1991

STOP

Once the file editor has been invoked for the macro, all of the usual edit commands (including the visual
mode) can be used to alter the definition of the macro (only the statements can be edited, not the
prototype line). The changes take effect immediately, that is, the macro is redefined as it is edited.

Note that if a defined macro is edited by the above sequence, any copies of the macro that are
contained in a macro library are not changed.

MACRO LIBRARIES

Macro definitions may be saved in a macro library which is a file containing several macro
definitions and a directory in a special format.

Once a macro library file is attached (established), the macro processor will define the macros
contained in the file as they are needed, that is, the definition of a macro will be retrieved from the file
when the user invokes it for the first time. Until the macro is invoked, it will remain undefined. This
is particularily efficient when the user has a file containing a large number of macros, but only needs a
few at a time.

A macro library file is attached by issuing the command

>SET VAR MACLIB(n)="filename"

where the subscript “n” is an index specifying the ordinal number of macro library being attached and
“filename” is the file containing the library. The subscript allows more than one macro library to be
attached at the same time. Normally, “n” will be 1 if only one macro library is being used.

The format of a macro library file is as follows:

The directory starts at line 1. Each line of the directory has the name of a macro and the line
number of the file at which its definition starts. The line number is separated from the macro
name by one or more blanks and must be an integer. The directory is terminated by a /END
line.

The remainder of the file contains the macro definitions. Each definition begins with the
MACRO prototype line and ends with an ENDMACRO line.

The following example illustrates the composition of a macro library file named MACDEFS, which
contains definitions for the PAGEPR, PASCAL, and COMPACT macros.

1 PAGEPR 1000

2 PASCAL 1100

3 COMPACT 1200

4 /END

1000 MACRO PAGEPR file COPIES=1

1001 LOOP FROM 1 TO COPIES

1002 $RUN *PAGEPR SCARDS={file} PAR=PORTRAIT

1003 ENDLOOP

1004 $RELEASE *PRINT*

1005 ENDMACRO

1006

1100 MACRO PASCAL source object

Tutorial Section: Introduction 35

MTS 21: MTS Command Extensions and Macros

April 1986

1101 $RUN *PASCALVS SCARDS={source} SPUNCH={object}

1102 IF RUNRC > 0

1103 DEFINE ANSWER

1104 WRITE "Compilation error"

1105 WRITE "Enter OK to continue"

1106 READ ANSWER

1107 IF UPPERCASE(ANSWER)¬="OK", EXIT

1108 ENDIF

1109 $RUN {object}

1110 ENDMACRO

1111

1200 MACRO COMPACT

1201 DEFINE FILENAME

1202 DEFINE ENDF

1203 IF FILE("TEMP") EXISTS

1204 WRITE "File TEMP already exists"

1205 EXIT

1206 ENDIF

1207 LOOP

1208 READ FILENAME EOF->ENDF

1209 IF ENDF, EXITLOOP

1210 $DUPLICATE {FILENAME} AS TEMP

1211 IF CS_CODE¬=0

1212 WRITE "Duplication of {FILENAME} unsuccessful"

1213 EXIT

1214 ENDIF

1215 $DESTROY {FILENAME} OK

1216 $RENAME TEMP AS {FILENAME} OK

1217 IF CS_CODE¬=0

1218 WRITE "Renaming of {FILENAME} unsuccessful"

1219 EXIT

1220 ENDIF

1221 ENDLOOP

1222 ENDMACRO

Small macro libraries can be constructed by hand using the file editor. For larger macro libraries, the
user can run the program MAC:LIBGEN, which is described in the reference documentation. By
convention, the macro definitions start on line 1000, but this is not a strict requirement. The only
requirement is that the first definition start after the end of the directory. Most macro generation
programs including MAC:LIBGEN start the directory at line 1000 so that there is sufficient room to
expand the directory without reformatting the file.

The above macro library may be attached by issuing the command

>SET VAR MACLIB(1)="MACDEFS"

The above macro library may be revoked by issuing the command

>SET VAR MACLIB(1)=""

When a macro library is revoked, all of the macros that were defined from the library become
undefined.

The MACLIB subscript may be used to attach several macro libraries at the same time. For
example, the commands

>SET VAR MACLIB(1)="MACDEFS1"

>SET VAR MACLIB(2)="MACDEFS2"

36 Tutorial Section: Introduction

MTS 21: MTS Command Extensions and Macros

April 1986

>SET VAR MACLIB(3)="MACDEFS3"

will attach the macro libraries in the files MACDEFS1, MACDEFS2, and MACDEFS3. If a macro of
the same name is present in more than one macro library, the definition is taken from the macro library
attached with the subscript.

A macro library file that has been attached by the “SET VAR MACLIB” command may be edited by
the file editor. However, for any of the macros in the file that are currently defined, their current
in-line definitions remain unchanged regardless of any changes made to the library file. The revised
definitions in the file may be made the current definitions by reissuing the SET command.

SYSTEM MACRO LIBRARY

One macro library is always supplied by default, and is attached to MACLIB at subscript 0 so it will
be searched last. This macro library is in the file *CMDMACLIB. It currently contains only one
macro, MACROLIB, which is used to attach other macro libraries. This macro is more convenient
than the notation is given earlier because it keeps track of the indices and requires less typing; it offers
no more power. Thus, instead of typing in

SET VAR MACLIB(1)="MACDEFS"

one can just say

MACROLIB MACDEFS

In addition,

MACROLIB LIST

will produce a list of the libraries currently attached.

Tutorial Section: Introduction 37

MTS 21: MTS Command Extensions and Macros

April 1986

38 Tutorial Section: Introduction

MTS 21: MTS Command Extensions and Macros

April 1986

REFERENCE SECTION

Reference Section 39

MTS 21: MTS Command Extensions and Macros

April 1986

40 Reference Section

MTS 21: MTS Command Extensions and Macros

April 1986

GENERAL COMMENTS

The items mentioned herein are available only if the MTS SET command option MACRO has been
set ON:

$SET MACRO=ON

Note that all other SET commands in this document are macro SET commands, not MTS SET
commands.

I/O STREAM MACRO PROCESSOR OVERVIEW

One approach used in describing the macro processor is to present it as an automatic $SOURCE-file
generator. For many standard operations $SOURCE-files are good enough in MTS. However
$SOURCE-files are not very flexible. Say, for example, you have a repetitive process that you have to
go through for a number of different files: Update file A, producing file B, compile it into file C, then
linkedit into file D. You cannot write a “generic” $SOURCE-file that will work for any set of files
(A,B,C,D). Or say you would like to run program X, then depending on the outcome run either
program Y or Z. None of these things work well with $SOURCE-files, and that is the problem the
Macro Processor is meant to solve. It creates the “$SOURCE-file” line-by-line, on the fly, as successive
lines are needed from *SOURCE*, using the instructions you give it in the form of a macro definition.

Without diving into the internal details of MTS too much, another useful way to view the macro
processor is as a black box sitting just behind *SOURCE*. In the normal course of events, data is read
from *SOURCE* in many ways: MTS reads commands from *SOURCE*; CLSs read commands from
SOURCE; user programs also get data from *SOURCE* either explicitly (3=*SOURCE*) or
implicitly (SCARDS defaults to *SOURCE*). But if the macro processor is active it takes a look at
everything coming in from *SOURCE*. Depending on the situation it may transform lines,
completely swallow lines, or produce new lines.

If the macro processor is activated, it gets first crack whenever anybody requests data from
SOURCE. If it is in the middle of a macro expansion it just conjures up a line of data and gives it to
MTS which returns it to whoever requested the data in the first place (i.e., READ, SCARDS, etc.). If
the macro processor did not have anything ready, MTS goes ahead and gets a data line from whatever
SOURCE is attached to. Usually this is the user’s terminal, but it might be a file, tape, etc. Then
the macro processor gets another crack. It takes a look at the line the user just read in and does a
number of things. If it is the beginning of a macro definition (e.g., >MACRO QQSV) the macro
processor swallows the line and reads in the rest of the macro definition, then tells MTS to get another
line of data before returning. If it recognizes the line as a macro invocation (e.g., QQSV) it replaces the
data with the first expansion line and returns that to the user. The remaining lines are then returned
in subsequent *SOURCE* calls.

If none of the above made sense, maybe an example will help. Here is an example of the definition
and use of a simple macro. Appendix F of this document describes in nitty-gritty detail what MTS
goes through to do this. It will be discussed at a higher level here:

set macros=on

>macro hasplog

? $run unsp:hasplog

? l u w164

Reference Section: General Comments 41

MTS 21: MTS Command Extensions and Macros

April 1986

? stop

? >endmacro

hasplog

Execution begins

: JOB: 674553 (4917317) USERID:W164 S 07-08-82

: JOB: 674559 (4917323) USERID:W164 S 07-09-82

Execution terminated

Here macro HASPLOG is defined to run program UNSP:HASPLOG. This example is so trivial that it
could just as well be done with a simple $SOURCE-file, but hopefully you will get the idea.

In the second line, MTS was prompting for an MTS command with a “#”—that is, it called SCARDS
(more or less) to get a new command line. But the macro processor recognized the “>macro hasplog”
line (see the section, “Macro Flag Character”, for an explanation of the “>”) as something IT needed, so
that line never made it back to MTS. (The process is similar to what happens if you stick a “%” device
command on the front of a line.) The macro processor then proceeded to swallow up everything
through the “>endmacro” line. The line finally given back to MTS was the null line that was typed
immediately after the “>endmacro” line.

The “hasplog” line illustrates the reverse, macro expansion, process. MTS called “SCARDS”, and
“hasplog” was typed—but that never made it back to MTS. The macro processor recognized “hasplog”
as something IT wanted, swallowed it, and gave back in its place the “$run unsp:hasplog” line of the
HASPLOG macro. On subsequent calls to “SCARDS”, the macro jumped in and supplied “l u w164”
and “stop” without the user ever being asked to type in anything on the terminal.

THE EXPLAIN FACILITY

There is an EXPLAIN command which will provide information about the command extensions.

Syntax──┐

EXPLAIN [phrases]
│ │
│ │
│ │
└───┘

When you enter

>EXPLAIN

you begin talking to an explain program. This is indicated by the input prefix, which becomes
“Explain?”. If your initial line had no parameters on the command, you get a general explanation of
the explain facility. If you gave one or more phrases, it looks them over to see if it can recognize them
as something it has an explanation for, and then starts with that explanation. If you enter a null line
at any time, it continues with the next paragraph of explanation of whatever it was presenting, or if it
had finished that, it goes on to the “next” thing. Entering STOP or an end-of-file will get you out of the
explain processor.

42 Reference Section: General Comments

MTS 21: MTS Command Extensions and Macros

April 1986

MACRO FLAG CHARACTER

In most cases, most lines that are to be inspected by the macro processor for macro invocations or
macro commands must be prefixed with a flag character, which is “>”. This includes substitution: only
lines that are macro commands or macro invocations are inspected for substitution (as signalled by { }).

The rules are currently as follows:

• If a line has a > in column 1 and not in column 2, the line is destined for the macro
processor and must contain a valid macro invocation or macro command. (Note here et
seq. that if the line is being read in MTS command mode, edit command mode, or similar,
then any optional leading $ is removed first, and then the resultant column 1 ... is
inspected.)

• If a line has > in both columns 1 and 2, then the leading > is removed and the remainder of
the line is transmitted unchanged.

• Lines coming from a macro expansion are normally inspected for substitution, macro
invocation, and macro commands. Such line do not require a flag character but may
have one.

• Lines not coming from an expansion (as for example, lines typed in at the terminal) that
are to be interpreted as macro commands must always have a flag character.

• Lines not coming from an expansion, but being read by a command processor (MTS or
EDIT, etc.) that are to be interpreted as a macro invocation may have a flag character, but
do not have to.

• Lines not coming from an expansion and not being read by a command processor (for
example, lines read by a program that is getting input from the source stream) that are to
be interpreted as a macro invocation must normally have a flag character.

See Appendix A for a description of the @MACRO and @MFR modifiers that control this.

See Appendix B for an example of interaction between MTS command flag characters “$”, macro
command flag characters “>”, and various CLSs (MTS and EDIT).

ERROR MESSAGES

All messages produced by the “macro facility package” start with the three characters “*>*” in order
to clearly identify who is issuing the message.

Reference Section: General Comments 43

MTS 21: MTS Command Extensions and Macros

April 1986

44 Reference Section: General Comments

MTS 21: MTS Command Extensions and Macros

April 1986

VARIABLES AND EXPRESSIONS

These are items for the command language which can occur outside macros and which should
appear to the user as independent of macros.

All of the commands described in this document are macro commands, not MTS commands, and
hence may need to be prefixed with a macro flag character as described in the previous section.

The items described in this chapter consist of commands and expressions that may appear as
parameters to those commands. Expressions may also be used to generate parts of emitted MTS
commands. Since the most common form of an expression is a simple variable name, variables are
discussed first. Then general expressions are covered, and the finally commands that use variables
and expressions.

VARIABLES

There are two types of variables, user variables and system variables.

User and system variable names are comprised of 1 to 255 alphanumeric characters with the first
character being alphabetic. Here “alphabetic” means only the uppercase alphabet, to which is added
the underscore character “_”. Lowercase letters are automatically converted to uppercase.

Defining a Variable

All user variables must be defined before they are used. Normally, this is done explicitly although
some some user variables are automatically defined when a macro is invoked (see the section,
“Macros”). System variables always exist and do not need to be defiined.

The command for defining a simple user variable is:

Syntax──┐

DEFINE var[=initvalue] [attributes]
│ │
│ │
│ │
└───┘

It is illegal to define a variable that already exists. The optional “attributes” may include:

GLOBAL
CONSTANT

Without any attributes, the DEFINE command defines a local variable whose scope is at the current
level. That is, if given outside of a macro expansion, it is a global variable; if given within a macro, it is
a variable local to that macro.

Reference Section: Variables and Expressions 45

MTS 21: MTS Command Extensions and Macros

April 1986

Types

Variables are automatically typed (as, for example, is done within the SNOBOL programming
language). This means that as the type of the variable changes (e.g, from string to integer) the system
keeps track of the change. What happens when an operator is applied to data items depends on the
type of the values involved, and not on the type associated with a variable name as in typed
programming languages. Internal types of the variables include character string, integer, Boolean,
and line number. All command-language communication is done in character strings.

Aggregates: Arrays and Structures

An aggregate is a collection of multiple data items associated with one name. There are two basic
types of aggregates available. One is the array, either indexed by integers in the traditional manner,
or used as an associative array, where the selecting value is arbitrary instead of being restricted to
integers. (This latter form is called a “table” in SNOBOL.) The other type of aggregate is a one-level
structure, which may be used either in a static manner or may be used to create dynamic instantiations
of the structure form.

Arrays

Arrays are specified in the traditional manner. The form of the definition is:

Syntax──┐

DEFINE array-name(dimension1,dimension2,...)
│ │
│ │
│ │
└───┘

where each of the items in the list separated by commas specifies the form for that dimension of the
array. The possible forms for each dimension are

(1) null Example: DEFINE A()
(2) integer Example: DEFINE A(10)
(3) integer...integer Example: DEFINE A(0...10)
(4) string-constant Example: DEFINE A("NAME")

The first case specifies that that subscript must be numeric but no bounds checking is done. The
second case specifies that the subscript must be an integer between 1 as the low value and the number
given as the upper value. The third case specifies that the subscript must be an integer between the
two values given. The fourth case specifies that the subscript may be anything (the value of the string
constant should have some mnemonic significance to whatever use is to be made of that subscript, but
does not affect the definition otherwise).

One-dimensional arrays of cases 1, 2, or 3 above, and with lower subscript 1, will be automatically
converted to and from strings as required.

Structures

Structures consist of a fixed number of named fields. The form of definition is:

46 Reference Section: Variables and Expressions

MTS 21: MTS Command Extensions and Macros

April 1986

Syntax──┐

DEFINE structure-name(field1,field2,...)
│ │
│ │
│ │
└───┘

There must be at least one field name. Each of the field names must be different within one structure
definition, but a given structure definition may have a field with the same name as another structure
definition. But while a field may have the same name as a field of a different structure, it may not
have the same name as any other object.

Static Use

Each DEFINE statement creates a structure of that name. The fields of this structure are
referenced in the form “structure-name:field-name”. For example,

DEFINE NAME(FIRST,LAST)

defines a structure NAME with two fields, FIRST and LAST. Values may be set and extracted, for
example,

SET VAR NAME:FIRST="Hortense"

SET VAR NAMELENGTH = SIZE(NAME:FIRST)

Dynamic Use

Additional copies of the structure may be obtained by using the structure name as a function with
arguments being initial values for the fields. The value of this function is a copy of that structure with
fields as specified, and this copy may be accessed using the “:” operator. For example,

DEFINE NAME2=NAME("John","Psmith")

will make a NAME and it can be used

DEFINE INVERTED = NAME2:LAST || ", " || NAME2:FIRST

Named Constants

Named constants can be defined by specifying CONSTANT as an attribute on the DEFINE
command. In this case, an initial value is required. This is the same as an initialized variable except
that its value can not be changed. The variable can, however, be undefined with the FORGET
command. For example,

DEFINE ON=1 CONSTANT

DEFINE OFF=0 CONSTANT

Scope

The “scope” of variable specifies “under what cases is which definition of a variable used.” In other
words, in how many different cases can the same variable be defined. There are three categories, user
global, user local, and system, in which a variable may appear. User local means it was defined inside
a macro definition. A given variable name may have several local definitions due to its use at several
levels of macro call, but only the definition in the currently active macro level, if any, is accessible.

Reference Section: Variables and Expressions 47

MTS 21: MTS Command Extensions and Macros

April 1986

Order of Resolution

The following precedence of variable scope occurs, with top to bottom being first to last:

(1) local user
(2) global user
(3) system

Overriding the Default

If there is a local version of a variable, the global version is hidden until the local one is eliminated.
However, the system definition may be specified instead of the user definition by attaching the modifier
@SYSTEM to the variable reference.

Disposing of Variables

The definition of a variable may be removed with the command

Syntax──┐

FORGET variable
│ │
│ │
│ │
└───┘

Local variables are automatically undefined as the macro level pops at the termination of a macro’s
expansion. Changes of mode from one CLS to another do not affect any variables.

Using Variables

Both system and user variables may be used at any point in a macro command, as well as at any
point in an MTS command emitted by a macro. In emitted MTS commands, a variable reference must
be indicated by surrounding it with the substitutable-quantity-delimiters (SQD) which are
preferentially the braces “{ }”, for example

$RUN PROG SCARDS={INPUT} SPRINT=*PRINT*

These delimiters may be used as well in macro commands where symbolic substitution is wanted.
However, normally in macro commands the parameters are treated as expressions, so variables may
just be used as normally in expressions.

Alternatively, the form “&(var&)” may be used in place of “{var}”.

$RUN PROG SCARDS=&(INPUT&) SPRINT=*PRINT*

The construct “&(” is treated as syntactically equivalent to “{”, and “&)” is equivalent to “}”, so the left
and right delimiters can be of different notations.

The substitution is a string substitution, that is, it acts as if the characters from the left delimiter
through the right delimiter were physically replaced by the contents of the variable (converted to
characters if necessary).

48 Reference Section: Variables and Expressions

MTS 21: MTS Command Extensions and Macros

April 1986

The scan for substitution goes left to right, and after each item is substituted, continues with the
first character after the last one substituted (i.e., the default is no rescan).

The substitution can be nested, and the evaluation is done from inside to outside.

Substitution is done before the line is ever submitted to whatever is inspecting its content, and so, in
particular, before string delimiters are recognized. Thus, putting quotes around a brace does not
protect it from being treated as a substitution delimiter. To get a literal brace in a line, it must be
doubled.

Setting Values

Command variables can be assigned values via the command language by using the SET command:

Syntax──┐

SET VAR var=expr
│ │
│ │
│ │
└───┘

Note that because a name rather than a value is expected to the left of the “=” in a substitution, SQDs
are not placed on the variable reference. Also, because this is a case where an expression is expected,
then as is shown in the next section, the SQDs on any variables in the expression may be omitted.
Thus, it is possible to write

SET VAR I=I+1

as well as

SET VAR I={I}+1

Displaying Values

The values of variables and expressions may be displayed by using the DISPLAY command:

Syntax──┐

DISPLAY ARRAY(var) or DISPLAY ARRAY=var
DISPLAY FUNCTIONS
DISPLAY MACLIB(index)
DISPLAY MACLIB("name")
DISPLAY MACRO(var) or DISPLAY MACRO=var
DISPLAY MACROS
DISPLAY STRUCTURE(var) or DISPLAY STRUCTURE=var
DISPLAY SYMBOLS
DISPLAY SYSTEM_VARIABLES
DISPLAY USER_VARIABLES
DISPLAY VALUE(expr) or DISPLAY VALUE=expr
DISPLAY VARIABLES

│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
└───┘

Reference Section: Variables and Expressions 49

MTS 21: MTS Command Extensions and Macros

April 1986

If “var” is the name of an array, its prototype and all non-null elements may be displayed with

DISPLAY ARRAY(var)

To display the names of user-defined functions that are defined in-line (i.e., not from macro libraries),

DISPLAY FUNCTIONS

A list of the macro names in a macro library may be displayed either by using its MACLIB index or its
name, that is,

DISPLAY MACLIB(index)

or

DISPLAY MACLIB("name")

To find out what macro libraries are active, display the contents of the array MACLIB,

DISPLAY ARRAY(MACLIB)

To display the names of macros defined in-line (i.e., not from macro libraries),

DISPLAY MACROS

If “var” is the name of a macro, its definition may be displayed with

DISPLAY MACRO(var)

If “var” is the name of a structure or structure-instance, its prototype and the values of its fields may be
displayed with

DISPLAY STRUCTURE(var)

To display the names of system-defined symbols,

DISPLAY SYSTEM_VARIABLES

To display the names of user-defined symbols (this includes macros),

DISPLAY USER_VARIABLES

To display both user-defined and system symbols,

DISPLAY VARIABLES

If “var” is the name of a variable, its value may be displayed with

DISPLAY VALUE(var)

In addition, all of the above plus the meta-command names and the operators (usually a long list) may
be displayed with

50 Reference Section: Variables and Expressions

MTS 21: MTS Command Extensions and Macros

April 1986

DISPLAY SYMBOLS

EXPRESSIONS

An expression is a formula indicating how a value is to be computed. There are three kinds of
expressions. The simplest object that is an expression is a constant, since the object is just the value
written out. The next simplest is a variable, and the value is its contents. The last kind of expression
is one that produces a value from other (simpler) expressions by combining them. These combinations
are either composed of an operator and one or two operands, or else a function-name and zero or more
operands, depending on the function-name involved. In this latter case, the operator is really that of
function-call.

An expression, as defined in this section, may occur in macro commands (such as IF) described later
in this volume, and inside the braces in a {...} construct.

Unlike the MTS command language, in an expression blanks may be used between items to improve
readability, since other syntactic constructs are used to parse things. However, blanks may usually be
left out if wished.

Operators

The operators are largely borrowed from “standard” programming languages. They may be
grouped according to the types of objects they operate on.

(1) Numeric Operators:

These take integers or line numbers, or character strings whose contents express an
integer or line number.

Addition: +
Subtraction: − [binary]
Multiplication: *
Division: /
Negation: − [unary]

The operands for addition, subtraction, multiplication, and division must be integers, line
numbes, or strings whose contents can be converted to integers or line numbers. The
result for addition, subtraction, and multiplication is an integer if both operands were
integers; otherwise, it is a line number. The result for division is always a line number
(thus, 3/2 is 1.5).

The unary “−” produces the negation (the same value but opposite sign) of its operand.

(2) String Operators:

Concatenation: ||
Substring: string(beg...[end]) or string(beg|len)

Both operands of the concatenation operator must be strings or capable of being
converted to strings. The result is a string whose contents are the value of the first

Reference Section: Variables and Expressions 51

MTS 21: MTS Command Extensions and Macros

April 1986

operand followed by the value of the second operand.

The substring operation is a specialized form of subscription. There are two ways of
specifying:

string(beg...end)

where “beg” and “end” are the beginning and ending subscripts for the substring desired,
assuming the first character of “string” has subscript 1, and

string(beg|len)

where “beg” is again the beginning subscript, and “len” is the length of the substring
desired. If the rest of the string starting at “beg” is wanted, the “end” may be omitted
from the first form:

string(beg...)

The beginning and ending subscripts must be integers.

(3) Comparatives:

Less-than: <
Equal-to: = or IS
Greater-than: >
Less-than-or-equal-to: <=
Not-equal-to: ¬= or ISNT
Greater-than-or-equal-to: >=
[The “Fortran” form of writing the comparatives (.LT. et al.) is also available.]

If both operands are numeric, a numeric comparison is done. If one of the operands is
numeric and the other operand is a string which can be successfully converted to a
number, it will be so converted and the comparison will proceed numerically. If both
operands are strings and both can be converted to numbers, both will be converted and
the comparison will proceed numerically. Otherwise, a string comparison will be done.
The result of these operators is always Boolean (true or false).

The forms IS and ISNT are provided for readability, so one may write “IF ZNORF IS 4”.
The IS and ISNT forms require one or more blanks both before and after the operator
name; if this is not desired or not allowable, the dotted forms .IS. and .ISNT. may be used.

For additional ease in writing “readable expressions” in conjunction with the FILE and
VARIABLE built-in functions, the following are provided:

DOES is same as IS,
DOESNT is the same as ISNT,
The EXIST operand is the same as NONNULL, and
The EXISTS “operator” is the same is as IS NONNULL.

NONNULL is a special version of the system variable NULL which causes the operator it
is associated with to be reversed. Thus, IS NONNULL becomes ISNT NULL. All of
which leads to “... EXISTS” means “... ISNT NULL” and “... DOESNT EXIST” means

52 Reference Section: Variables and Expressions

MTS 21: MTS Command Extensions and Macros

April 1986

“... IS NULL”. See the description of the built-in functions FILE and VARIABLE for
examples of use.

(4) Logical Connectives:

AND
OR
NOT

The AND operator performs the logical “and” of its two operands. Both operands must
be Boolean (i.e., true or false), and the result is Boolean. The result is true if and only if
both operands are true.

The OR operator does the logical “or” of its two operands. Both operands must be
Boolean (i.e., true or false), and the result is Boolean. The result is true if and only if one
or both operands are true.

The NOT operator does the logical “not” of its operand. The operand must be Boolean
(i.e., true or false), and the result is Boolean. The result is true if and only if the operand
is false.

Whenever an AND or OR operator is evaluated, the left operand is evaluated first. If
this determines the value of the operation (since if the left operand of an AND is false the
value will be false, or if the left operand of an OR is true the value will be true), then the
right operand is not evaluated. This is usually referred to as “McCarthy evaluation” or
“McCarthy AND and OR”. This allows writing such expressions as

IF VARIABLE("A") EXISTS AND A=42, ...

whereas otherwise one would have to write

IF VARIABLE("A") EXISTS

IF A=42, ...

ENDIF

(5) Substitution:

=
+=
−=
||=

Each of these operators takes a left-hand side which is a name and a right-hand side
which is an expression.

The “=” (substitution) operator stores the value of the expression in the item the name
specifies.

The “+=” (plus-and-becomes) operator is similar to the substitution operator except that
the right-hand side is added to the current value of the left-hand side. Thus, a statement
of the form

Reference Section: Variables and Expressions 53

MTS 21: MTS Command Extensions and Macros

April 1986

name += expression

is treated as if it was

name = name + (expression)

The “−=” (minus-and-becomes) operator is similar to the substitution operator except that
the right-hand side is subtracted from the current value of the left-hand side. Thus, a
statement of the form

name −= expression

is treated as if it was

name = name − (expression)

The “||=” (append) operator is similar to the substitution operator except that the
right-hand side is concatenated onto the end of the current value of the left-hand side.
Thus, a statement of the form

name ||= expression

is treated as if it was

name = name || (expression)

In substitution cases (i.e., SET VAR v=e), only the leftmost “=” at zero-level nesting depth
(with respect to parentheses) is treated as substitution; all others at zero level are treated
as comparatives. Thus,

SET VAR A=B=C

sets variable A to true, if B=C, and false otherwise.

(6) Function Call and Array Subscription:

The function call operation and the array subscription operation are both expressed in the
form of “variable followed by parenthesized list”. If an element of an array is itself an
array, the elements of the second array may be accessed via another parenthesized list of
subscripts following the first, as for example A(5)(3) (which note is not the same as A(5,3)).

A function call is signalled by a left parenthesis that is immediately preceded by a
variable name where the value of that variable is a built-in function or a user-defined
function. The parameters to this function call form a list of expressions, separated by
commas, between the left parenthesis and its matching right parenthesis. If there are
no parameters, the parentheses are still needed. The result of this operation is the value
returned by the function.

Subscription is signalled by a left parenthesis that is immediately preceded by a variable
name where the value of that variable is an array or something that can be converted to
an array. The subscripts to this array reference form a list of expressions, separated by
commas, between the left parenthesis and its matching right parenthesis. There must

54 Reference Section: Variables and Expressions

MTS 21: MTS Command Extensions and Macros

April 1986

be at least one subscript given. The result of this operation is the selected array element.
If that array element is itself another array, then another list of subscripts, surrounded
by parentheses, may be appended to select the element of that array, and so forth.
Finally, a “subscript” which is a range specification may be given to produce a substring.

(7) Field Selection:

:

The colon operator is used to select a field from a structure or a structure-copy. The left
operand must have a structure as value and the right operand must be the name of a field
of that structure. The result is the selected field of that structure.

Variables

A command variable, when used “normally” as a variable in an expression may be given without the
substitutable quantity delimiters (SQDs), although the delimiters may be used. If, however, the value
of a variable is to be used to construct some or all of some item that is to be subsequently evaluated in
the expression, then the variable must be delimited with the “{ }” (or equivalent).

In other words, in an expression there are two stages of processing. First, all substitutable
quantities are substituted in as a string substitution. Then what is left is evaluated as an expression.

Note that substitution processing of a line is done before it is ever inspected for content, and thus
any variables whose values are to be substituted into the line must be defined and have values before
the line is processed. On the other hand, expression evaluation occurs (if it occurs) during processing
of the line. Thus,

LOOP FOR I FROM 1 UNTIL PAR_{I}>3

will not do what the writer probably wanted. For this case, the command will have to be broken up
into two commands, with

LOOP FOR I FROM 1

as the first command, and then

IF PAR_{I}>3, EXITLOOP

as the second command.

In expressions, " and { are approximately opposites. Thus, if ZVR is a variable,

WRITE ZVR

and

WRITE "{ZVR}"

usually do the same thing. However, if the contents of ZVR are A"B, then

WRITE ZVR

Reference Section: Variables and Expressions 55

MTS 21: MTS Command Extensions and Macros

April 1986

will successfully write out A"B, whereas

WRITE "{ZVR}"

becomes after substitution

WRITE "A"B"

which is invalid.

Note also that outside of expressions the “{...}” construct is not unexpected, since in that case {...} is
needed to force an expression.

Constants

These are constants for the new constructs. However, these are intended to blend in with
constants as used in existing MTS commands.

(1) Character Constants

Character constants consist of a string of delimited characters. The delimiter is the
double-quote (") or the prime ('). The terminal delimiter of the string must be the same
character as the initial delimiter, and if this character is to be represented in the body of
the string, it must be doubled.

The delimiters are merely for grouping. They do not prevent substitution as flagged by
the “{ }” or “&(” or “&)”. To get the character “{” in a string you must double it (“{{”);
likewise for “&(” and “&)”. (Note: An ampersand followed by a character that is not a
parenthesis is just an ordinary character and not a delimiter.)

(2) Integer Constants

Integers, as usual, consist of digits optionally preceded by “+” or “−”. The resultant
number must be in the range −9223372036854775808 to 9223372036854775807.

(3) Line-Number Constants

Line-number constants follow the usual conventions for numeric line numbers: a number
in the range −2147483.648 to 2147483.647 with up to three digits after the decimal point.

(4) Boolean Constants

The Boolean constants are TRUE and FALSE.

(5) Hexadecimal Input

The hexadecimal form of a constant may be entered as X'...' or X"...". It is considered as
“typeless” until it is combined with operands of other types (or used in operations that are
type-specific), at which point it is treated as the type concerned. Use of hexadecimal
input form is not recommended unless you are knowledgeable about the internal form of
the various data types.

56 Reference Section: Variables and Expressions

MTS 21: MTS Command Extensions and Macros

April 1986

(6) Array Denotations

One-dimensional arrays with fixed-bounds (or unbounded) and a lower-bound of 1 can be
expressed as a string whose contents are a parenthesized list with the elements separated
by commas, for example, “(A,B,C,(D,E))”. In this example, the fourth element is itself
another array.

Built-In Functions

Built-in functions are system-provided entities that take one or more arguments and produce a
result. They are invoked by using

function-name(arg1,arg2,...)

in an expression where a constant or variable might be used. “function-name” is the name of the
function; “arg,...” are the arguments, separated by commas and the whole argument list enclosed in
parentheses. For certain built-in functions, a final “argument” of the form “RC−>variable” may be
specified to cause a return code to be stored instead of a error message occurring in the case that an
error condition was detected. See the specific function descriptions for details.

The built-in functions provided are:

ABS

Syntax───┐

number = ABS(number)
│ │
│ │
│ │
└──┘

ABS returns the absolute value of its argument.

ABSTIME

Syntax───┐

absolute time = ABSTIME(integer)
absolute time = ABSTIME(string)

│ │
│ │
│ │
│ │
└──┘

For integer arguments, ABSTIME takes the value of its argument as the number of
microseconds since 00:00:00 March 1, 1900, local time. If the argument is a string, it is
assumed to be the character representation of a time/date. In both cases, the value is returned
is of type “absolute time”. For example,

"2:35 pm Mar 7, 1985"

"NOW"

"12-06-79"

See Appendix G for a description of the legal forms of a time/date.

Reference Section: Variables and Expressions 57

MTS 21: MTS Command Extensions and Macros

April 1986

ARRAY

Syntax───┐

array = ARRAY(string)
│ │
│ │
│ │
└──┘

ARRAY takes a string as argument and returns an array as a result. The string’s contents
should be the same as what would be between the parentheses in an equivalent DEFINE
command. For example, SET VAR X = ARRAY("") will set variable X to an unbounded
one-dimensional array.

CAN_CONVERT

Syntax───┐

Boolean = CAN_CONVERT(value,string)
│ │
│ │
│ │
└──┘

CAN_CONVERT returns TRUE if “value” can be converted as requested by “string”. Legal
values for “string” are:

INTEGER
LINENUMBER
NUMBER
STRING
ARRAY

For example,

SET VAR X = CAN_CONVERT(Y,"INTEGER")

CONTROL

Syntax───┐

result = CONTROL(string,string)
result = CONTROL(fdubptr,string)

│ │
│ │
│ │
│ │
└──┘

CONTROL takes two arguments: if the first argument is a string, it is assumed to be an
FDName and a new FDUB is obtained for this call to the CONTROL subroutine and released
afterwards. A “fdubptr” is something acquired from the FDUB−>x construct on a READ or
WRITE command. The second argument is the string passed to the CONTROL subroutine.

The result is 0 if the CONTROL subroutine gave return code 0. If the subroutine returned a
non-zero return code, the DSR return code is returned as value if no message string was
available. If both DSR return code and DSR message were returned, the value is the string
“(n,message)” which is a list containing the two items. This allows callers to test, for example,

58 Reference Section: Variables and Expressions

MTS 21: MTS Command Extensions and Macros

April 1986

given

SET VAR X=CONTROL("*MSOURCE*",CMD)

one can test the result

IF X(1)=0

and then either print the value of X, or test the DSR return code in X(1) and optionally do
something with the DSR message in X(2) if it exists (use MAX_SUBSCRIPT).

Note that since macro built-in functions cannot change the value of their parameters, this macro
CONTROL cannot be used to get the sense data. For this, the SENSE built-function must be
used.

COST

Syntax───┐

integer = COST("CC")
line-number = COST("$")

│ │
│ │
│ │
│ │
└──┘

COST returns the cost of the current session as obtained from the system COST subroutine.
The first form returns the quantity in integer centicents (one-hundredth of one cent); the second
form returns it in a “dollars.cents” form, rounded to the nearest cent, as a line-number.

CUINFO

Syntax───┐

old-value = CUINFO(item,new-value[,RC->variable])
│ │
│ │
│ │
└──┘

CUINFO takes two arguments. The first argument is either integer-valued (specifying the
index) or string-valued (specifying the name). (Note: A numeric string, such as "23", is
considered integer-valued in this case.) The system subroutine GUINFO is then called with
this argument, and the “old-value” is the value returned by this call. Then the system
subroutine CUINFO is called, for the same item, giving it the “new-value”.

The value depends on which item is asked for, and is usually string or integer. Old values are
returned and new values are expected in their internally stored form, as specified in the
GUINFO description in MTS Volume 3, System Subroutine Descriptions. Thus, for example,

CUINFO("RCPRINT",4)

is correct, but not

CUINFO("RCPRINT","NONZERO")

If the system subroutines GUINFO or CUINFO detect an error and the optional “RC−>variable”

Reference Section: Variables and Expressions 59

MTS 21: MTS Command Extensions and Macros

April 1986

has been specified, then the return code from the system subroutine is stored in the variable
given (which must be a simple variable, not an element of an array or structure). In this case
the value returned by CUINFO is unspecified, so the only safe thing to do is to store it in a
variable until the return code can be inspected to see if it is safe to use it. If the system
subroutines GUINFO or CUINFO detect an error and there is no “RC−>variable” specification,
then an error message is printed and macro processing is aborted.

DOUBLE

Syntax───┐

string = DOUBLE(string1,string2)
│ │
│ │
│ │
└──┘

DOUBLE takes two arguments: first is the string to be worked on, the second is the string of
characters to be doubled. The result is a string which is the same as the first argument, except
that every character in it which is also in the second argument is doubled.

DUPL

Syntax───┐

string = DUPL(string,integer)
│ │
│ │
│ │
└──┘

DUPL takes two arguments: first is the string to be duplicated and the second is the integer
count of the number of copies wanted. The result is a string containing the number of copies
requested of that particular string.

EVAL

Syntax───┐

value = EVAL(string)
│ │
│ │
│ │
└──┘

EVAL takes a string as argument, evaluates it as an expression, and returns its value. Thus, if
we have

DEFINE P2=4

DEFINE J=2

compare

WRITE "P"||J||"+3"

which writes

P2+3

60 Reference Section: Variables and Expressions

MTS 21: MTS Command Extensions and Macros

April 1986

with

WRITE EVAL("P"||J||"+3")

which writes

7

FILE

Syntax───┐

string = FILE(string)
│ │
│ │
│ │
└──┘

FILE takes a string as argument and returns the null string if there is no file of that name or
returns the file name otherwise. For example,

IF FILE("ZMWQ") EXISTS, ...

(Note that currently “doesn’t exist” means either “doesn’t exist” or “you have no access”)

FILE_INFO

Syntax───┐

value = FILE_INFO(string1,string2[,RC->variable])
│ │
│ │
│ │
└──┘

FILE_INFO takes a string specifying a simple file name as the first argument and a string
specifying an item of information from the list below as the second argument, and returns the
information requested. Information is obtained by calling the system subroutines GFINFO or
CHKFILE.

The items available and the type of information returned are:

OWNER string
VOLUME string
USECOUNT integer
TYPE_NUMBER integer value returned by GFINFO
TYPE string LINE, SEQ, SEQWL, or ?
LOC_NUMBER integer value returned by GFINFO
LOC string 2311, 2314, CELL, 3330, 3350, 3370, 3280, 3340,

3375, 3380, or ????
NOSAVE Boolean
PRIV Boolean
PKEY string
EMPTY Boolean
BKWDOK Boolean
SIZE integer
TRUNCSIZE integer

Reference Section: Variables and Expressions 61

MTS 21: MTS Command Extensions and Macros

April 1986

MINSIZE integer
MAXSIZE integer
FIRST line-number
LAST line-number
MAXLEN integer
LINES integer
HOLES integer
USED integer
AVAIL integer
MAXHOLE integer
EXPFAC integer
ACCESS integer value 0 to 63, bits of access byte
READ_ACCESS Boolean
WRITE_ACCESS Boolean
READ_WRITE_ACCESS Boolean
DESTROY_ACCESS Boolean
PERMIT_ACCESS Boolean
UNLIM_ACCESS Boolean
CREATE absolute time
LASTCAT absolute time
LASTDATA absolute time
LASTREF absolute time

The access items are the values returned by CHKFILE for the current signon ID, current
project, current pkey combination. For additional information on the other items, see the
description of items of the same name for the FILESTATUS command in MTS Volume 1, The

Michigan Terminal System.

FILES

Syntax───┐

string = FILES(string)
│ │
│ │
│ │
└──┘

FILES takes a string which is a “FILESTATUS pattern” as argument and returns a list (i.e.,
array) of the names that match. For example,

LOOP FOR X OVER FILES("?.S")

(FILE and FILES are actually two names for the same built-in function, but it seemed easier to
present the two aspects separately.)

FIND_CHAR

Syntax───┐

integer = FIND_CHAR(string1,string2)
│ │
│ │
│ │
└──┘

62 Reference Section: Variables and Expressions

MTS 21: MTS Command Extensions and Macros

April 1986

FIND_CHAR takes two strings as arguments. It searches the first string for the first character
which is also in the second string and returns the integer index at which it was found. If not
found, a value of zero is returned.

FIND_STRING

Syntax───┐

integer = FIND_STRING(string1,string2)
│ │
│ │
│ │
└──┘

FIND_STRING takes two strings as arguments. It searches the first string for the first
occurrence of the second string and returns the integer index at which it was found. If not
found, a value of zero is returned.

GUINFO

Syntax───┐

value = GUINFO(argument[,RC->variable])
│ │
│ │
│ │
└──┘

GUINFO takes a single argument which is either integer-valued (specifying the index) or
string-valued (specifying the name). (Note: A numeric string, such as "23", is considered
integer-valued in this case.) The system subroutine GUINFO is then called with this
argument. The value depends on which item is asked for, and is usually string or integer.
Values are returned in their internally stored form, as specified in the GUINFO description in
MTS Volume 3, System Subroutine Descriptions. Thus (assuming the default setting),
GUINFO("RCPRINT") will return the integer 4, not “NONZERO”, for example.

If the system subroutine GUINFO detects an error and the optional “RC−>variable” has been
specified, then the return code from the GUINFO subroutine is stored in the variable given
(which must be a simple variable, not an element of an array or structure). In this case the
value returned by the function is unspecified, so the only safe thing to do is to store it in a
variable until the return code can be inspected to see if it is safe to use it. If the system
subroutine GUINFO detects an error and there is no “RC−>variable” specification, then an error
message is printed and macro processing is aborted.

IGNORE_CHAR

Syntax───┐

integer = IGNORE_CHAR(string1,string2)
│ │
│ │
│ │
└──┘

IGNORE_CHAR takes two strings as arguments. It searches the first string for the first
character which is not in the second string and returns the integer index at which it was found.
If all characters in the first string are also in the second, a value of zero is returned.

Reference Section: Variables and Expressions 63

MTS 21: MTS Command Extensions and Macros

April 1986

INTEGER_PART

Syntax───┐

integer = INTEGER_PART(number)
│ │
│ │
│ │
└──┘

INTEGER_PART returns the integer part of the argument supplied. If the argument is integer
to start with, it is returned as value; if the argument is a line number, the integer part of the line
number is returned.

LOCK

Syntax───┐

Boolean = LOCK(string,how)
Boolean = LOCK(fdubptr,how)

│ │
│ │
│ │
│ │
└──┘

LOCK takes two arguments, where the first argument is the same as for CONTROL. The value
of the second parameter should be a string with one of the values: “READ”,“MOD” or “MODIFY”,
“DES” or “DESTROY”, or “OFF”. The value of the function is TRUE if the locking was done as
requested. If the locking cannot be done now (LOCK subroutine produced RC=20) the value is
FALSE. If the LOCK subroutine detected any error conditions (file does not exist, ...) an error
message is printed and macro processing is aborted.

If you want to intercept all return codes from the LOCK subroutine, then a “final parameter” of
the form RC−>x must be used. In this case, if the value of the LOCK built-in function is
FALSE, then the value of “x” will be the return code from the LOCK subroutine. For example,

SET VAR Z=LOCK("BARPHEE","MOD",RC->W)

LOWERCASE

Syntax───┐

string = LOWERCASE(string)
│ │
│ │
│ │
└──┘

LOWERCASE takes a string as an argument and returns that string with all the uppercase
letters converted to lowercase.

LPAD

Syntax───┐

string = LPAD(string,integer[,padstring])
│ │
│ │
│ │
└──┘

64 Reference Section: Variables and Expressions

MTS 21: MTS Command Extensions and Macros

April 1986

LPAD requires two arguments: the first is the string to be padded and the second is the integer
number of columns wanted for the final result string. An optional third argument is the string
to be used for padding. If not given, the pad string defaults to a single blank. If the string is
shorter than the number of columns wanted, it is padded on the left with the appropriate
characters; otherwise the result string is the same as the argument string.

LTRIM

Syntax───┐

string = LTRIM(string)
│ │
│ │
│ │
└──┘

LTRIM returns as a value the argument string, trimmed of all leading blanks.

MAX

Syntax───┐

number = MAX(number1,number2)
│ │
│ │
│ │
└──┘

MAX returns as a value the largest of its two arguments.

MAX_SUBSCRIPT

Syntax───┐

integer = MAX_SUBSCRIPT(array)
│ │
│ │
│ │
└──┘

MAX_SUBSCRIPT takes a fixed-bounds array as argument and returns the maximum value for
the first subscript as integer value. If given an unbounded array, the value returned is the
largest subscript set so far.

MICROSECONDS

Syntax───┐

integer = MICROSECONDS(absolute time)
integer = MICROSECONDS(relative time)

│ │
│ │
│ │
│ │
└──┘

MICROSECONDS returns the number of microseconds that the absolute or relative time
represents. For an absolute time, this is the number of microseconds since 00:00:00 March 1,
1900, local time.

Reference Section: Variables and Expressions 65

MTS 21: MTS Command Extensions and Macros

April 1986

MIN

Syntax───┐

number = MIN(number1,number2)
│ │
│ │
│ │
└──┘

MIN returns as a value the smallest of its two arguments.

MIN_SUBSCRIPT

Syntax───┐

integer = MIN_SUBSCRIPT(array)
│ │
│ │
│ │
└──┘

MIN_SUBSCRIPT takes a fixed-bounds array as argument and returns the minimum value for
the first subscript as integer value. If given an unbounded array, the value returned is the
smallest subscript set so far.

QUOTE

Syntax───┐

string = QUOTE(string)
│ │
│ │
│ │
└──┘

QUOTE returns as a value its argument string, surrounded by double-quotes, and with any
interior double-quotes doubled. That is, QUOTE could be defined in terms of the DOUBLE
built-in function as follows:

FUNCTION QUOTE(STRING)

EXIT '"'||DOUBLE(STRING,'"')||'"'

ENDFUNCTION

RELTIME

Syntax───┐

relative time = RELTIME(integer)
relative time = RELTIME(string)

│ │
│ │
│ │
│ │
└──┘

For integer arguments, RELTIME takes the value of its argument as the number of
microseconds of relative time. If the argument is a string, it is assumed to be the character
representation of a time interval. In both cases, the value returned is of type “relative time”.
For example,

"1 week"

66 Reference Section: Variables and Expressions

MTS 21: MTS Command Extensions and Macros

April 1986

"3 days"

See Appendix G for a description of the legal forms.

REPLACE

Syntax───┐

string = REPLACE(string1,string2,string3)
│ │
│ │
│ │
└──┘

This is the same as the SNOBOL function of the same name. The second and third arguments
are treated as parallel sets of characters and must be the same length. The output string is the
same as “string1” with all occurrences of characters found in the second string replaced by
characters in the third string. For example,

REPLACE("abcdef","bd","xy")

yields

"axcyef"

REVERSE

Syntax───┐

string = REVERSE(string)
│ │
│ │
│ │
└──┘

This is the same as the SNOBOL function of the same name. The output string is the same as
the input string turned end for end.

RPAD

Syntax───┐

string = RPAD(string,integer[,padstring])
│ │
│ │
│ │
└──┘

RPAD requires two arguments: the first is the string to be padded and the second is the integer
number of columns wanted for the final result string. An optional third argument is the string
to be used for padding. If not given, the pad string defaults to a single blank. If the string is
shorter than the number of columns wanted, it is padded on the right with the appropriate
characters; otherwise the result string is the same as the argument string.

Reference Section: Variables and Expressions 67

MTS 21: MTS Command Extensions and Macros

April 1986

SENSE

Syntax───┐

result = SENSE(string,integer)
result = SENSE(fdubptr,integer)

│ │
│ │
│ │
│ │
└──┘

SENSE takes two arguments, the first of which is the same as for the CONTROL built-in
function. The second is an integer giving the number of bytes of sense data wanted, up to a
maximum of 255. The result is an array of two elements: the first gives the return code from the
system subroutine that was called. If it is zero, the second element is the sense data. Note
that this will be exactly the length of the second argument; the number of bytes that are
meaningful depends on the system device-support routine ultimately called: it is supplied the
length of the region but does not pass back the length it used, so it is not possible to set the
correct length. If the return code is non-zero, the second element is the error message involved.

SIZE

Syntax───┐

integer = SIZE(string)
│ │
│ │
│ │
└──┘

SIZE takes a string as an argument and returns an integer specifying the number of characters
in that string.

SUBSTITUTE

Syntax───┐

string = SUBSTITUTE(string)
│ │
│ │
│ │
└──┘

SUBSTITUTE takes a string as an argument and returns that string with all string
substitutions, as flagged by “{...}” (or their equivalent), performed.

TRIM

Syntax───┐

string = TRIM(string)
│ │
│ │
│ │
└──┘

TRIM returns as a value the argument string, trimmed of all trailing blanks.

68 Reference Section: Variables and Expressions

MTS 21: MTS Command Extensions and Macros

April 1986

UPPERCASE

Syntax───┐

string = UPPERCASE(string)
│ │
│ │
│ │
└──┘

UPPERCASE takes a string as an argument and returns that string with all the lowercase
letters converted to uppercase.

VARIABLE

Syntax───┐

string = VARIABLE(string)
│ │
│ │
│ │
└──┘

VARIABLE takes a string as argument and returns the null string if a user variable of that
name does not exist, or returns its type otherwise. For example,

IF VARIABLE("I") DOESNT EXIST, DEFINE I=0

The function VARIABLE may be used to enquire about the elements of arrays. For example,

VARIABLE("A(I)")

In this case, the pieces of the expression must be defined or an error will occur. For the
example, A must exist and be an array, I must exist, and I must have a value which is a valid
subscript for the array A.

System Variables

A list of system variables may be obtained with

Syntax──┐

DISPLAY SYSTEM_VARIABLES
│ │
│ │
│ │
└───┘

In addition, the commands are actually variables, although not printed to reduce the size of the list
and to reduce confusion.

System variables that are not names of built-in functions are:

BATCH

BATCH is TRUE or FALSE (Boolean) depending on if this is a batch or terminal session.

Reference Section: Variables and Expressions 69

MTS 21: MTS Command Extensions and Macros

April 1986

CLS_NAME

CLS_NAME is the name of the active CLS (command language subsystem). The value is a
string.

CPU_TIME

CPU_TIME is the amount of CPU time consumed by the task since some unspecified time before
the user signed on, expressed as a relative time.

CS_CODE

CS_CODE is the code set by last command or program executed. The value is an integer (zero
is normal termination; non-zero is an error termination). See Appendix C for a description of
the CSSET and CSGET subroutines.

CS_ORIGIN

CS_ORIGIN is the origin set by the last command or program executed (this specifiies where the
CS_CODE came from). The value is an integer (−1 means unspecified; 1 means MTS set it).
See Appendix C for a description of the CSSET and CSGET subroutines.

CS_SUMMARY

CS_SUMMARY is the summary of the status set by the last command or program executed.
The value is an integer (0 is normal; 1 is warning; 2 is error). See Appendix C for a description
of the CSSET and CSGET subroutines.

DATE

DATE is the current date, in same form as the MTS command DISPLAY DATE produces. The
form is “Www Mmm DD/YY”, where Www is the weekday, Mmm is the month, DD is the day of
month, and YY is the last two digits of the year. For example, “Wed Dec 14/83”.

FULL_SCREEN_POSSIBLE

FULL_SCREEN_POSSIBLE is True if the user is running at a terminal that is supported by the
Full-Screen Support Routines, and False otherwise. This variable is evaluated only at the time
the macro processor is initialized, e.g., when the $SET MACROS=ON command is given.

HOST_NAME

HOST_NAME is the name of the system, at the current installation, that the user is signed on
to. For the University of Michigan, the two possibilities are UM and UB.

INSTALLATION

INSTALLATION is a string-valued code for the installation. For the University of Michigan, it
is “UM”.

70 Reference Section: Variables and Expressions

MTS 21: MTS Command Extensions and Macros

April 1986

INSTALLATION_CODE

INSTALLATION_CODE is an integer-valued code for the installation. For the University of
Michigan, it is 1.

INSTALLATION_NAME

INSTALLATION_NAME is a string giving a name for the installation. For the University of
Michigan, it is "MTS Ann Arbor".

LAST_SIGNON

LAST_SIGNON is the time/date of the last signon, expressed as an absolute time.

NONNULL

NONNULL is the null string with operator reversal.

NULL

NULL is the null string.

PROJECT

PROJECT is the 4-character project number for the current signon ID. The value is a string.

RATE

RATE is the current rate-class. The value is a string (“LOW”, “NORMAL”, “DEFERRED”, or
“MINIMUM”).

RUNRC

RUNRC is the return code of last program execution completed. The return code is the value
left in register 15 if the program terminated by returning. The value is an integer (if the
program terminated by calling the subroutine SYSTEM, the value is set to 0; if it called ERROR,
the value is set to 8; other terminations and suspensions of execution leave it set at −1).

SIGNONID

SIGNONID is the 4-character current signon ID. The value is a string.

TASKNBR

TASKNBR is the number of the current task. The value is an integer.

TERMTYPE

TERMTYPE is the 8-character terminal type (the contents of bytes 48–55 of a the data returned
from a SENSE command to MSOURCE). The value is a string.

Reference Section: Variables and Expressions 71

MTS 21: MTS Command Extensions and Macros

April 1986

TIME

TIME is the current time, in same form as the MTS command DISPLAY TIME produces. The
form is “HH:MM:SS ZZZ”, where HH is hours, MM is minutes, SS is seconds, and ZZZ is the
time-zone. For example, “21:09:07 EST”.

These variables are all set automatically by the system.

How Expressions Are Formed

Expressions follow the standard rules of most programming languages for expressions.
Parentheses may be used to force the order of evaluation, and when the parentheses are omitted, the
order of evaluation depends on the precedence of the operators concerned.

Precedence of operators is as follows. The operators in a given entry have a higher precedence (i.e.,
they are done first) than the ones in the entries that follow it. All operators listed in the same entry
have the same precedence. If the operators in an expression are of equal precedence, they are
performed left to right.

(1) subscription
function call
substring
:

(2) − [unary]

(3) *
/

(4) +
− [binary]

(5) <
= [comparative]
>
<=
>=
¬=
IS
ISNT

(6) NOT

(7) AND

(8) OR

(9) || [concatenation]

(10) = [substitution]
+=

72 Reference Section: Variables and Expressions

MTS 21: MTS Command Extensions and Macros

April 1986

−=
||=

Automatic Type Conversions in Expressions

Essentially what happens is that conversion is done only when necessary. Integer can always be
converted to character. Integers that are not too large or too small can be converted to line-numbers.
Line-numbers of integral value can be converted to integer. Line-number, integer and Boolean can go
to character. Characters can be automatically converted to integers, line numbers, and Boolean,
depending on the contents of the character string.

Character strings can be converted to arrays (if forced by subscription). The string is treated as a
list denotation and converted to a one-dimensional fixed bounds array. Sublists become subarrays.
If the string does not start with a left paren, it is converted to an array of one element. Arrays can be
converted to strings if they are one-dimensional and fixed-bounds or unbounded, with lower-bound
being 1. (These conversions are provided to allow handling lists and sublists, although they are
generally available; see examples in the section, “Macros”.)

Some operators, such as “+”, require numeric operands and so the operands will be so converted.
For the comparison operators, however, the comparison could be either numeric or character.
However, the arguments to macros are always strings. For example,

ZMF 5 10

is the same as

ZMF "5" "10"

and if a comparison was done inside the macro, you would not expect the first argument to be greater
than the second in the example above. So normally for comparison, if only one of the operands is a
string but it can be successfully converted to a number, it will be so converted and the comparison will
proceed numerically. If both operands are strings and both can be converted to numbers, both will be
and the comparison will proceed numerically. Otherwise, a string comparison will be done.
(Exception: a LOOP FOR iteration will force the iteration variable to be numeric, and if it contains a TO
clause the terminating comparision will have the operands forced to numeric.) Note that in a macro
the dummy variables that represent the arguments on a call are always strings, even if the calling
argument is composed only of numeric characters.

CONTROL STRUCTURES

Labels

Labels are used to allow one to refer to a specific command. The label is defined by making it the
only parameter on a LABEL command:

Syntax──┐

LABEL label
│ │
│ │
│ │
└───┘

Reference Section: Variables and Expressions 73

MTS 21: MTS Command Extensions and Macros

April 1986

Labels may only be defined in macros; they may not be defined in “open code.”

Transfer of Control

A command is available to transfer unconditionally from one point of command interpretation to
another. It is hoped that the other control structures offered will allow users to not use this except
rarely. But if they want to, here it is:

Syntax──┐

GOTO label
│ │
│ │
│ │
└───┘

The label specified must belong to the same level (with regard to loop and conditional nestings) as the
GOTO command. The GOTO command may be used only in macros; it may not be used in “open code.”

Conditionals

The conditional exists in both the simple and compound form. The simple form is:

Syntax──┐

IF bexp, command
│ │
│ │
│ │
└───┘

where “bexp” is a Boolean expression. The “command” is executed if the expression is true.

The compound form is:

Syntax──┐

IF bexp
.
.
.

[ELSEIF bexp]
.
.
.

[ELSE]
.
.
.

ENDIF

│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
└───┘

In this case, if the first “bexp” is true, the first block of commands (up to the next ELSEIF, ELSE, or
ENDIF at that nesting level) is executed and then control is transferred to following the corresponding

74 Reference Section: Variables and Expressions

MTS 21: MTS Command Extensions and Macros

April 1986

ENDIF. If the first “bexp” is false, then if the next “bexp” (in the first ELSEIF) is true, its block of
commands is executed,... In other words, at most one block of commands is executed and it is the first
one whose Boolean expression is true. The ELSE command is considered to be equivalent to ELSEIF
TRUE.

Iteration

All of the forms of iteration can be used only in macro definitions, not in “open code.” The iteration
structure has the common basic form:

Syntax──┐

LOOP how
.
.
.

ENDLOOP

│ │
│ │
│ │
│ │
│ │
│ │
│ │
└───┘

The “how” consists of zero or more optional clauses, each introduced by a keyword. The full prototype
of the command is as follows:

Syntax──┐

LOOP [FOR variable] [,]
[FROM initial-value] [,]
[BY increment-value] [,]
[TO final-value] [,]
[WHILE boolean-value] [,]
[UNTIL boolean-value] [,]
[OVER array-or-string-value]

│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
└───┘

None of the clauses have to be present. The only restriction is that if the OVER clause is given, the
FROM, BY, and TO clauses may not, and vice versa. Multiple FROM/BY/TO clauses may be given
and are processed sequentially in the order given. Multiple WHILE/UNTIL clauses may be given, and
all are processed every time through the loop.

The expressions given for the FROM/BY/TO clauses are evaluated before entry to the loop and are
never reevaluated. The expressions given for WHILE/UNTIL clauses are reevaluated at the front of
the loop, every time through the loop.

If multiple termination conditions are given, the first one that is true will cause termination of the
loop.

The commas between clauses are usually not required: the rule is that they may always be given,
and are required preceding a keyword only if there is a user variable defined with the same name as the
keyword.

Reference Section: Variables and Expressions 75

MTS 21: MTS Command Extensions and Macros

April 1986

Explanation of the various clauses is as follows:

(1) OVER expr

This form is usually used in a macro definition to iterate over the elements of a list
provided as one of the parameters. If “expr” is a list of elements, then the number of
times through the loop is the number of elements, and each time through the loop, the
iteration variable gets set to the next element in the list.

For, example, if the user calls a macro

BARF (A,B,C+D) Z

and the macro was defined with two positional parameters, ARG1 and ARG2, and in the
definition is found

LOOP FOR V OVER ARG1

SET ARG2=ARG2+V

ENDLOOP

the loop will be processed three times, the first time with V inside the loop having the
value A, the second time B, and the third time C+D.

(2) WHILE bexp

In this case the iteration continues as long as the Boolean expression “bexp” is true. If
“bexp” is false when the LOOP statement is first encountered, then the commands in the
scope of the loop will not be executed.

(3) UNTIL bexp

In this case the iteration continues until the Boolean expression “bexp” is true. If “bexp”
is true when the LOOP statement is first encountered, then the commands in the scope of
the loop will not be executed.

(4) FOR var

This clause specifies the name of the iteration variable to be used. If this clause is not
present, an internal variable will be used. FOR is normally used along with
FROM/BY/TO or OVER. A FOR clause is ignored if only WHILE or UNTIL clauses have
been used.

(5) [FROM beg-expr] [BY incr] [TO end-expr]

This is a standard “increment variable” iteration. “beg-expr”, “incr”, and “end-expr”
must all be expressions with numeric values. “beg-expr” is the value the iteration is to
begin with and defaults to 1 if not given. “incr” indicates the increment to be used and
defaults to 1 if not given. “end-expr” indicates the ending value and defaults to the
maximum positive integer. More than one FROM/BY/TO set may be given on a single
iteration. The second and subsequent sets are indicated by additional occurrences of the
FROM clause. If multiple sets are given, they are processed sequentially: after the first
is exhausted, the second is begun, and so on, and the iteration does not terminate until

76 Reference Section: Variables and Expressions

MTS 21: MTS Command Extensions and Macros

April 1986

after the last has ended (or some other termination condition has occurred). Thus,

LOOP FOR I FROM 1 TO 3, FROM 5 TO 7

will result in one iteration, with I taking on values of 1, 2, 3, 5, 6, and 7 on successive times
through the loop.

This form of the iteration is a “shorthand” for writing the following:

SET VAR var = beg-expr

SET VAR termination = end-expr

SET VAR increment = incr

GOTO L1

LABEL L2

SET VAR var=var+increment

LABEL L1

IF var>termination, GOTO L3

.

.

.

GOTO L2

LABEL L3

(6) (no clauses at all given)

This is an infinite loop. Use of an EXITLOOP within the scope of this loop is therefore
advisable.

Iteration Exits

In addition, the command

Syntax──┐

NEXTLOOP
│ │
│ │
│ │
└───┘

may be used to force the next iteration, and

Syntax──┐

EXITLOOP
│ │
│ │
│ │
└───┘

will cause transfer of command interpretation to the command following the ENDLOOP.

COMMENTS

Comments may be placed in macros and user-defined functions (and open-code) by placing them in a
line that starts with “>*”. As with all such “macro commands”, the “>” must be the first character in
the line and the first non-blank character following it must be the asterisk. Currently the “>” is

Reference Section: Variables and Expressions 77

MTS 21: MTS Command Extensions and Macros

April 1986

required, even in macro definitions: lines that begin with only an asterisk are just emitted by the macro
processor. In MTS command mode they will be treated as MTS comments, so the net effect will be the
same, albeit somewhat more expensive. However, if a program is reading the lines, it probably will
not know what to do with them. Also, since user-defined functions can not currently emit lines, any
such asterisk-only lines appearing in function definitions will cause a warning message for each such
line encountered.

CONTINUATION LINES

The macro processor does not currently provide any way for a macro command to occupy more than
one line. Please note that although certain of the examples in this document may have a macro
command spread across more than one printed line, this is due to the formatting requirements of the
document, and they should be viewed as really occupying only one line.

78 Reference Section: Variables and Expressions

MTS 21: MTS Command Extensions and Macros

April 1986

COMMAND MACROS

A command macro is a series of commands stored under a name and invoked using that name.
Arguments may be provided, and other statements used to affect the flow of control.

Note: The current version implements source macros, but not yet general I/O stream macros. If
$SET MACRO=ON has occurred, then all reads from *SOURCE* (or copies thereof) will go through the
macro processor, unless the @NOMACRO modifier is used. (see Appendix A for a description of the
@NOMACRO modifier). Appendix E has several complete examples of macros.

HOW TO INVOKE

A command macro invocation from MTS command mode looks like an MTS command invocation,
that is, an optional “$” followed by the “command name”, which is the macro name in this case followed
by any associated arguments.

Similarly, a command macro invocation from EDIT command mode looks like an edit command.
Note that in this case, putting a “$” on the front may cause different behavior, since the “$” means
switch to MTS command mode before expanding the macro (see Appendix B for an example).

Arguments may be of the positional form, the keyword form, or the valueless keyword form. If any
positional argument is to contain the characters blank, comma, equal-sign, or the “−>” digraph, then
the argument must be surrounded with quotes. Likewise, if the value of a keyword argument is to
contain any of those characters, then the value must be quoted.

If the last argument of a call is of the form

RC−>variable

this indicates that the return code from the macro is to be stored in the variable specified. The
variable must be a simple variable (i.e., not an element of an array or structure). Specifying the RC−>
in the call will suppress any call to the system subroutine CSSET to set the CS_SUMMARY and
CS_CODE variables that would otherwise occur if an explicit return code was produced by the macro.

WHERE THE DEFINITION COMES FROM

Sources

Definitions can be provided in two ways:

(1) In-line

A macro definition may appear in the SOURCE stream read by the MTS command
processor.

(2) From a file set up as a macro library

Reference Section: Command Macros 79

MTS 21: MTS Command Extensions and Macros

April 1986

A library of command macro definitions, set up with a directory like an assembler macro
library, may be set up using an FDname with the SET command:

SET VAR MACLIB(n)="FDname"

A macro library may be removed by using the null string with the SET command:

SET VAR MACLIB(n)=""

Search Order

The order of search is as implied above. To be precise, a “command name” provided by the user is
inspected to see if

(1) it is a macro defined inline,

(2) it is defined in a macro library, looking first at that macro library attached at the highest
MACLIB index, and then proceeding down toward zero,

(3) it is a macro command, or

(4) it is unrecognized, and hence emitted. If the line was being read in MTS command mode,
then MTS looks to see if

(a) it is an MTS command,
(b) otherwise, it is an invalid MTS command.

If the @SYSTEM modifier is attached to the command name, then user definitions (1 and 2 above)
are skipped. If the command name is the same as the name of the macro currently being expanded,
then the @SYSTEM modifier is assumed implied unless the user explicitly overrides this with the
@RECURSIVE modifier. This last condition applies only to macros used in “command” manner, not to
macros used as user-defined functions. In functional use, it is assumed recursion is intended if a
function calls itself.

To override the scoping due to a CLS (command language subsystem) or PKEY (program key) filter
so that the macro definitions can be displayed from MTS command mode no matter how they are
defined, one of the constructs

@CLS=xxx

or

@PKEY=xxx (or @PKEY="xxx")

may be applied to the symbol (the "xxx" form for PKEY is required only if the pkey contains special
characters). Note that the meaning of this override is “assume for this use of the symbol that the CLS
(or pkey) is ...”. Thus,

>DISPLAY MACRO(MAYBE@CLS=EDIT)

when issued from MTS command mode will use the definition of MAYBE that is visible in EDIT mode.
Note that this also allows the invocation of the “wrong” definition if desired, as for example entering

80 Reference Section: Command Macros

MTS 21: MTS Command Extensions and Macros

April 1986

MAYBE@CLS=EDIT

in MTS command mode.

Scope

Macro definitions, like open-code user variables, are global in scope by default. For each macro
name there is a global user variable of that name whose contents is the macro definition. A
redefinition of a macro will automatically get rid of the previous definition; it is not necessary to
FORGET it first.

Since it is a variable name, it can be used to a limited extent in expressions: it can be copied. Thus,
abbreviations and synonyms may be provided by making copies under the names wanted.

For example, if there exists a macro called CREATE_OR_EMPTY:

MACRO CREATE_OR_EMPTY FILE

. . .

ENDMACRO

then

DEFINE COE=CREATE_OR_EMPTY

will make COE a synonym for the longer name, and so use of either name will invoke the same macro.

DEFINING A MACRO

A definition is signalled with the MACRO command:

Syntax──┐

MACRO name [parameters] [defnmod]
.
.
.

ENDMACRO [name]

│ │
│ │
│ │
│ │
│ │
│ │
│ │
└───┘

where “name” is the name of the macro. This creates a variable of type macro, and thus the same
name cannot be used for both a macro and another variable. “parameters” is a list of items, which is
discussed in the next section, and “defnmod” is a list of definitional modifiers (each beginning with an
“@”), which is discussed later. Items of the list may be separated by either blanks or a comma. A
definition is terminated with an ENDMACRO command:

Definitions may be nested, however, an inner macro is not defined until the outer macro has been
called. If a definition is being processed and an ENDMACRO without a name or an ENDMACRO with
the name of the definition being processed is encountered, the definition is terminated. An
ENDMACRO with a different name is stored as part of the definition.

Reference Section: Command Macros 81

MTS 21: MTS Command Extensions and Macros

April 1986

Macro Parameters

The parameters specified in the MACRO command are local variables to the macro that are set up
by MTS when a call to that macro is made. They are set up to have values either specified by the caller
in the argument list or default values specified in the MACRO command.

There are three types of parameters: positional, keyword, and valueless keyword.

Positional Parameters

Positional parameters appearing in the MACRO command parameter list require that the user of
the macro substitute some value for each of them when the macro is invoked.

MTS will prompt the user for any that are missing, unless the MACRO command specifies the
definitional modifier @NOPROMPT, in which case the missing items will have a null character string
as the value. The definitional modifier may be overridden for specific parameters by attaching
@PROMPT or @NOPROMPT to the parameter. The default case (which is to prompt) may be changed
by use of the MACROPROMPT parameter on the SET command (values are ON or OFF).

The caller of the macro can give more positional parameters than the definition specifies. While
these excess parameters may not be referred to by name (since they have none), they may be accessed
by ordinal position, as in fact may the ones that do have names. A local one-dimensional array,
POSITIONAL_PAR, is defined to allow this. {POSITIONAL_PAR(1)} will refer to the first parameter,
{POSITIONAL_PAR(2)} is the second, etc. The local variable NBR_POSITIONAL_PAR is created and
set to the number of positional parameters that actually occurred on the macro call. In addition to the
parameters, the local variable PARSTRING is set to a value which is the entire set of parameters,
starting with the first non-blank character of the first parameter.

The extraneous material on a macro call may be referred to as a single item with the name ETC.
This includes excess positional parameters, as well as any excess keyword parameters if the @ETC
definitional modifier was given.

The positional parameters are specified on the MACRO command by giving their names, as for
example

MACRO GNURRS COME

which defines the macro GNURRS to have a single positional parameter named COME. When the
macro is invoked, the value the user specified in the call is assigned as the value of the local variable
COME.

Keyword Parameters

Keyword parameters are specified in the MACRO command as a name followed by an equal-sign “=”,
optionally followed by a value which is the default to be used if the user chooses not to specify this
parameter when the macro is invoked. If this default value is to have break characters (e.g., blanks,
commas) in it, it must be enclosed in quotes. For example,

MACRO GNURRS COME,FROM=VOODVORK

or

MACRO GNURRS COME,FROM="THE VOODVORK"

82 Reference Section: Command Macros

MTS 21: MTS Command Extensions and Macros

April 1986

Valueless Keyword Parameters

A valueless keyword parameter is a word the user may or may not supply and all that is to be known
is whether or not it is present. For example, in the MTS command

$RUN OBJPROG MAP

the word MAP is such a parameter.

These parameters are specified in the MACRO command by giving their name enclosed in quotes, to
indicate that the only thing the user can specify is that string or its negation. When the macro is
invoked, if the user specified the keyword, the value of that local variable is set to PRESENT. If the
user specified the keyword prefixed by “NO”, “¬”, or “−”, the value is set to NEGATED. If the user did
not mention it, the value of the local variable is set to ABSENT. For example, extending the example
given above with the valueless keyword OUT, we have

MACRO GNURRS COME,FROM="THE VOODVORK","OUT"

and when the macro is invoked, the local variable OUT is set to PRESENT, NEGATED, or ABSENT,
depending on whether or not the user said OUT, NOOUT, or ¬OUT or −OUT, or did not mention it in
the invocation. The test for matching is performed in a case-independent manner, i.e., an
all-uppercase copy of the definition is compared with an all-uppercase copy of the parameter.

If the valueless keywords are to be matched up only after all positional parameters are satisfied,
then the positional parameters should come first on the MACRO command. If the valueless keywords
are to take precedence over the positional parameters, then the valueless keywords should be first on
the MACRO command. The processing is done left to right on the MACRO command specification,
thus, for example, given

MACRO GLORP A,"TO",B

the first parameter the user specifies will match the positional parameter A. The second parameter
the user enters will either match the TO (if that is what was entered) or else match positional
parameter B.

Detailed Syntax of the Macro Prototype

Syntax──┐

verb<bl>name[<di>par[<dm>par...]<dt>] [<bl>@defnmod[<bl>@defnmod...]]
│ │
│ │
│ │
└───┘

where

verb is either MACRO or FUNCTION

<bl> is one or more blanks

name is the name of function or macro being defined

Reference Section: Command Macros 83

MTS 21: MTS Command Extensions and Macros

April 1986

<di> is the initial delimiter of either one or more blanks, or else a left parenthesis
followed by zero or more blanks

par represents zero or more parameters, each of which is of one of the following forms:

(1) identifier
(2) string whose value is identifier
(3) identifier=characters
(4) identifier=string

where “characters” means zero or more consecutive characters, terminated by a
blank, comma, or right parenthesis, and “string” means zero or more consecutive
characters surrounded by either primes before and after or else double quotes
before and after (whichever character is used as delimiter is represented within
the string as two consecutive ones).

Form 1 represents a positional parameter, form 2 a valueless keyword parameter,
and forms 3 and 4 represent keyword parameters. For keyword parameters, form
4 may always be used instead of form 3. Form 4 must be used instead of 3 if the
character string contains blanks, commas, or right parentheses.

<dm> is medial delimiter of either one or more blanks, or else zero or more blanks
followed by a comma followed by zero or more blanks

<dt> is trailing delimiter. If initial delimiter was a left parenthesis followed by zero or
more blanks, then this must be a right parenthesis followed by zero or more blanks,
otherwise it must be zero or more blanks.

defnmod is zero or more definitional modifiers: ETC, PROMPT, NOPROMPT, CLS=,
PKEY=, or RAW.

INVOCATION OF A MACRO

When a macro call is made, all variables named in the definition list on the MACRO command are
defined as local variables for the macro call, and are given initial values from the macro call parameters
as follows:

The parameters in the macro call are assumed delimited by blanks or zero-level commas. If a
parameter’s value is to contain blanks, zero-level commas, equal-signs, or the “−>” digraph, then the
value must be enclosed in string delimiters. These delimiters are removed before the value is
assigned to the appropriate variable. A null string value may be supplied for a positional parameter
by either putting an explicitly delimited null string (e.g., "") in the parameter list or else by providing
multiple commas as delimiters.

The macro calling parameter list is processed left to right. Positional parameters are matched to
ones on the defined list. Missing positional parameters are given null values or are prompted for, as
requested. Excess positional parameters are ignored. Keyword parameters are assigned values
found in the calling list, or if not present, the default from the definition is used. Keyword parameters
present in the call but not in the definition are ignored (but added to ETC) if the @ETC definitional
modifier was used and are illegal otherwise. Missing valueless keyword parameters are assigned the
value ABSENT.

84 Reference Section: Command Macros

MTS 21: MTS Command Extensions and Macros

April 1986

In addition, all positional parameters present on the call are defined as elements of the local
variable one-dimensional array POSITIONAL_PAR under their ordinal numbers, so
{POSITIONAL_PAR(1)} represents the first, etc.

The variable NBR_POSITIONAL_PAR is assigned the number of positional parameters that
actually occurred on the call.

The variable ETC represents all calling parameters that were not assigned to formal parameters.
This includes both excess positional parameters and unknown keyword parameters, the latter only if
the @ETC definitional modifier was used in defining the macro (the default case is that unknown
keyword parameters are illegal.).

The variable PARSTRING is set up to have as a value the entire unparsed parameter string,
starting with the first character of the first parameter.

The variable MACRO_NAME (or FUNCTION_NAME, if a function is being defined) is assigned as
value the name of the macro (or function) being defined.

If the definitional modifier @RAW is specified on the definition of a parameterless macro, no
processing of the call into separate parameters will occur. In addition, for top-level calls (i.e., calls not
from within another macro), no substitution (as specified with braces) will occur. None of the
above-mentioned variables will be set up except for PARSTRING, which will be set to the untouched
remainder of the input line starting with the first non-blank character following the macro name.
This is the only way that arbitrary text can be passed on the call.

As an example of the interactions of name and value on calls, consider the following two macro
definitions

MACRO CON1 A B MACRO CON2 A B

WRITE {A}||{B} WRITE {A||B}

OUTPT {A}||{B} OUTPT {A||B}

ENDMACRO ENDMACRO

where, in each case, OUTPT is a macro that merely writes out its argument:

MACRO OUTPT A

WRITE A

ENDMACRO

Now set up a few preliminary variables

DEFINE Z = 5

DEFINE X = 2

DEFINE ZX = 3

and call each macro with the same set of arguments, and compare results. First use constants

CON1 5 2 CON2 5 2

52 52

5||2 52

and the second time use variables whose values are those same constants

CON1 Z X CON2 Z X

52 3

Reference Section: Command Macros 85

MTS 21: MTS Command Extensions and Macros

April 1986

Z||X ZX

LISTS AND SUBLISTS

Macro parameters (or any variable whose value is a string) that have the “traditional list” form may
be processed by treating the parameter as an array and subscripting it to obtain the desired element.
If, for example, parameter ZMF has value

(A,B,C,(D,E))

then ZMF(1) will extract A, ZMF(4) will extract (D,E), and ZMF(4)(2) will extract E.

The built-in function MAX_SUBSCRIPT may be used to obtain the number of elements. If a
parameter has the form “A”, this is assumed the same as “(A)” when being subscripted (i.e., any
parameter can be subscripted, but if it is not a list then it only has one element). Note that if

DEFINE Z = "ABC"

then Z(1) has the value ABC,
and Z(2) does not exist.

The substring notation must be used if the second character of Z is desired:

Z(2|1)

or

Z(2...2)

Now, however, if

DEFINE Z = "(A,B,C)"

then Z(2) has the value B,
whereas Z(2|1) has the value A,
and Z(2...2) has the value A.

Detailed Syntax of the Macro Call

Syntax──┐

name[<di>par[<dm>par...]<dt>]
│ │
│ │
│ │
└───┘

where

name is name of function or macro being called

<di> is initial delimiter of either one or more blanks, or else a left parenthesis followed
by zero or more blanks

86 Reference Section: Command Macros

MTS 21: MTS Command Extensions and Macros

April 1986

par represents zero or more parameters, each of which is of one of the following forms:

(1) identifier=characters
(2) identifier=string
(3) identifier
(4) NOidentifier
(5) ¬identifier
(6) −identifier
(7) characters
(8) string
(9) RC−>identifier

where “characters” means zero or more consecutive characters, terminated by a
blank, comma, or right parenthesis, and “string” means zero or more consecutive
characters surrounded by either primes before and after or else double quotes
before and after (whichever character is used as delimiter is represented within
the string as two consecutive ones).

Forms 1 and 2 are for keyword parameters. With keyword parameters, form 2
may always be used instead of form 1. Form 2 must be used instead of 1 if the
character string contains blanks, commas, or right parentheses. Forms 3 through
6 are for valueless keyword parameters. Using form 3 will cause the appropriate
variable to have value PRESENT; using forms 4, 5, or 6 will cause a value of
NEGATED. Forms 7 and 8 are for positional parameters. Form 8 may always be
used; form 8 must be used if the characters contains one or more blanks, commas,
or equal signs, or if you want to prevent it from matching a valueless keyword
parameter of that name. Form 9 may only appear as the last “parameter” and
indicates return code capture.

<dm> is medial delimiter of either one or more blanks, or else zero or more blanks
followed by a comma followed by zero or more blanks

<dt> is trailing delimiter. If initial delimiter was a left parenthesis followed by zero or
more blanks, then this must be a right parenthesis followed by zero or more blanks,
otherwise it must be zero or more blanks.

When macros or user-defined functions are called as functions, the call is from within an expression
and must use the parenthesized list (with comma separators) form. When macros or user-defined
functions are called as macros, either form may be used. Note, however, that with a macro call in
parenthesized form, the following two are not the same

Z(A,B)

Z (A,B)

Although both invoke the macro Z, in the first case it will be called with two arguments, A and B,
whereas in the second case it will be called with one argument, “(A,B)”.

Reference Section: Command Macros 87

MTS 21: MTS Command Extensions and Macros

April 1986

EXITING A MACRO OR USER-DEFINED FUNCTION

Exiting a Macro

The EXIT command is used to exit a macro:

Syntax──┐

EXIT [CODE=exp]
│ │
│ │
│ │
└───┘

The “exp” specifies the return code. The expression must result in an integer or be convertable to
one. If not specified via the CODE keyword, an implicit return code of zero is supplied.

Exiting a User-Defined Function

The EXIT command is used to exit a user-defined function:

Syntax──┐

EXIT value[,CODE=exp]
│ │
│ │
│ │
└───┘

The “exp” specifies the return code. The expression must result in an integer or be convertable to
one. If not specified via the CODE keyword, an implicit return code of zero is supplied.

The “value” is an expression which specifies the value to be returned from a user-defined function.
If it is not specified, an “undefined value” is used.

Common to Both

Falling out of the bottom of a macro or user-defined function definition will also cause an automatic
return, with an implicit return code of zero, and (if a function) a value of “undefined value”.

If a return code is explicitly given on the EXIT command, and the macro call did not specify (via
“RC−>variable”) the capture of the return code, then the system variables CS_SUMMARY and
CS_CODE will be set: CS_CODE will be set to the return code value and CS_SUMMARY will be set to 2
(unless the value is zero, in which case CS_SUMMARY also will be set to zero).

CONTROL AND MONITORING

Monitoring the progress of a macro can be done by means of options on the macro SET command or
by using the @CHECK modifier when invoking the macro.

88 Reference Section: Command Macros

MTS 21: MTS Command Extensions and Macros

April 1986

MACROECHO Option

Syntax──┐

SET MACROECHO={OFF|ERROR|ON|ALL}
│ │
│ │
│ │
└───┘

where OFF means never echo,
ERROR means echo any command that produces RC>4, as well as its error message,
ON means echo all non-control-flow (existing) commands,
ALL means echo everything

MACROTRACE Option

Syntax──┐

SET MACROTRACE={ON|OFF}
│ │
│ │
│ │
└───┘

If ON, all lines generated by a macro call and all lines that have symbolic substitution in them are
printed (on SINK), prefixed with a header of the form:

*<macro-name>(<macro-linenumber>)<flag> <flow>

where “flag” is

“g” for macro generated lines,
“s” for lines that have been substituted into,

and “flow” is

“XXX” for lines processed while skipping is in effect,
“...” for derived lines, and
null otherwise.

The @CHECK Option

If the @CHECK modifier is appended to the macro name when a macro is invoked, then any lines
that this macro would have emitted are instead printed on SINK. The lines are prefixed by “*C_”. If
a macro is invoked in check mode, then any macros it calls are also processed in check mode.

COMPILE@CHECK MYPROG LISTING

Reference Section: Command Macros 89

MTS 21: MTS Command Extensions and Macros

April 1986

INPUT AND OUTPUT FROM MACROS

There are two commands, READ and WRITE, for doing I/O from macros. Note that currently all
expressions on the READ and WRITE commands (only) must have no blanks in them (except inside of
string constants).

Input

Input is done using the READ command, which has the form:

Syntax──┐

READ [invar]
[FROM {fdname|FDUB=var}]
[{MODS=mm|MODIFIERS=mm|@mm}]
[{LNR|LINENUMBER}{=lexp|->lvar}]
[PREFIX=sexp|*]
[FDUB->fvar]
[ATTN->bvar]
[EOF->bvar]
[ERR->bvar [ERRMSG->svar]]
[ERRRC->ivar]
[[AND] RELEASE]

│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
└───┘

In general, items specified with “name=value” describe values that are fetched, and those specified
with “name−>var” describe values stored in the appropriate variables.

“invar” is the variable to be read into. It may be a simple variable name or an array element or a
structure field. If it is not present then no input is done. In this case either the RELEASE or FDUB
clauses are required (otherwise it would be an expensive nothing, which always looks suspicious).

The FROM clause specifies where the input is coming from. If omitted, the input is read from
SOURCE. If present, it specifies either a file name or else a variable containing a FDUB-pointer
(which was obtained via a FDUB clause earlier).

The MODIFIERS clause is used to force the read to be done with certain I/O modifiers (for example,
INDEXED, i.e., read a particular line number). The modifier name may be given as the value of the
keyword MODIFIERS (or MODS) or may be preceded by an at-sign “@” and used as a separate
(positional) parameter. More than one modifier may be specified by using multiple MODIFIERS
keywords (or equivalent), each specifying a different modifier. The complete list of I/O modifiers
available is as follows:

I (or INDEXED)
BIN (or BINARY)
SP (or SPECIAL)
UC (or CASECONV)
NOCC ¬CC
IC

90 Reference Section: Command Macros

MTS 21: MTS Command Extensions and Macros

April 1986

¬IC
TRIM
¬TRIM
ENDFILE
¬ENDFILE
LOG
¬LOG

The LINENUMBER clause either supplies an expression “lexp” to be used as the line number for the
indexed read (if MODIFIERS specified indexed), or else provides a variable that will be set to the line
number of the incoming line from a sequential read.

The PREFIX clause sets the prefix to be printed prefixing the read operation (the prefix specified
will be truncated to 32 characters if it is longer). “sexp” is a string constant or an expression that can
be converted to a string. If the PREFIX clause is not given, PREFIX="?" is assumed. If the prefix
clause is given as PREFIX=*, then the prefix is not changed from whatever it was before.

The FDUB−> clause saves the FDUB pointer used for the I/O operation in the specified variable, so
it can be used in the FDUB clause in subsequent I/O commands.

The ATTN, EOF, and ERR clauses specify Boolean variables that are set to TRUE if the respective
condition (attention interrupt, end-of-file, or error return) occurred on the read operation, and are set to
FALSE otherwise. If one of these conditions occurs and the respective clause was not present in the
command, then an error message is printed and macro processing is aborted.

If both the ERR and ERRMSG clauses are present, then if an error occurs the variable specified by
the ERR clause is set to TRUE and the variable specified by the ERRMSG clause is set to contain the
error message, if one was available.

The ERRRC clause specifies a variable whose values is set to the return code resulting from the I/O
operation.

The RELEASE clause is used to explicitly release the FDUB acquired for the I/O operation for both
the “fdname” and FDUB cases. Normally, when the first read or write is made to a given FDname, a
FDUB is acquired at that point, and retained for subsequent I/O operations using the same FDname.
This FDUB is normally released only when back at “zero-level” of macro invocation. The FDUB may
be explicitly released after the I/O operation by appending the AND RELEASE clause. For example,

READ DIRLINE FROM ETC:MSGFILE MODS=INDEXED LNR=IX AND RELEASE

and an example using FDUB variables:

macro copyfile fn

define z

define end

define l

read from {fn} fdub->z

loop

read l from fdub=z eof->end

if end, exitloop

write l

endloop

read from fdub=z release

endmacro

Reference Section: Command Macros 91

MTS 21: MTS Command Extensions and Macros

April 1986

Output

Output is done using the WRITE command, which has the form:

Syntax──┐

WRITE [exprs]
[ON {fdname|FDUB=var}]
[{MODS=mm|MODIFIERS=mm|@mm}]
[{LNR|LINENUMBER}=lexp]
[PREFIX=sexp|*]
[FDUB->fvar]
[ATTN->bvar]
[ERR->bvar [ERRMSG->svar]]
[ERRRC->ivar]
[[AND] RELEASE]

│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
└───┘

In general, items specified with “name=value” describe values that are fetched, and those specified
with “name−>var” describe values stored in the appropriate variables.

“exprs” is the expression to be written out. If it is not present then no output is done. In this case
either the RELEASE or FDUB clauses are required (otherwise it would be an expensive nothing, which
always looks suspicious).

The ON clause specifies where the output is going to. If omitted, the output is written on SINK. If
present, it specifies either a file name or else a variable containing a FDUB-pointer (which was
obtained via a FDUB clause earlier).

The MODIFIERS clause is used to force the write to be done with certain I/O modifiers (for example,
INDEXED, i.e., write a particular line number). The modifier name may be given as the value of the
keyword MODIFIERS (or MODS) or may be preceded by an at-sign “@” and used as a separate
(positional) parameter. More than one modifier may be specified by using multiple MODIFIERS
keywords (or equivalent), each specifying a different modifier. The complete list of I/O modifiers
available is as follows:

I (or INDEXED)
BIN (or BINARY)
SP (or SPECIAL)
UC (or CASECONV)
NOCC
¬CC
IC
¬IC
TRIM
¬TRIM
ENDFILE
¬ENDFILE
LOG
¬LOG

92 Reference Section: Command Macros

MTS 21: MTS Command Extensions and Macros

April 1986

The LINENUMBER clause supplies an expression (“lexp”) to be used as the line number for the
indexed write (if MODIFIERS specified indexed).

The PREFIX clause sets the prefix to be printed prefixing the write operation. (The current version
will truncate the prefix specified to 32 characters if it is longer.) “sexp” is a string constant or an
expression that can be converted to a string. If the PREFIX clause is not given, PREFIX=" " is
assumed. If the prefix clause is given as PREFIX=* then the prefix is not changed from whatever it
was before.

The FDUB clause saves the FDUB pointer used for the I/O operation in the specified variable, so it
can be used in the FDUB clause in subsequent I/O commands.

The ATTN and ERR clauses specify Boolean variables that are set to TRUE if an attention interrupt
or error return (respectively) occurred on the write operation, and are set to FALSE otherwise. If an
attention interrupt occurs and the ATTN clause was not present or an error return occurs and the ERR
clause was not present, then an error message is printed and macro processing is aborted.

If both the ERR and ERRMSG clauses are present then if an error occurs, the variable specified by
the ERR clause is set to TRUE and the variable specified by the ERRMSG clause is set to contain the
error message, if one was available.

The ERRRC clause specifies a variable whose values is set to the return code resulting from the I/O
operation.

The RELEASE clause is used to explicitly release the FDUB acquired for the I/O operation for both
the “fdname” and FDUB cases. Normally, when the first read or write is made to a given FDname, a
FDUB is acquired at that point, and retained for subsequent I/O operations using the same FDname.
This FDUB is normally released only when back at “zero-level” of macro invocation. The FDUB may
be explicitly released after the I/O operation by appending the AND RELEASE clause.

WRITE " MZB019I Questionable use of question mark?"

USER-DEFINED FUNCTIONS

A “user-defined function” is a macro which returns a value instead of emitting lines as output. Its
definition may be exactly like the definition of macros given above, with the difference being the value
returned, which is specified by giving an expression on the EXIT command. Preferably, the prototype
line of the definition should be expressed with parentheses and commas in the traditional functional
manner, with the definitional commands being FUNCTION and ENDFUNCTION instead of MACRO
and ENDMACRO.

Syntax──┐

FUNCTION name([parameters]) [defnmod]
.
.
.

ENDFUNCTION [name]

│ │
│ │
│ │
│ │
│ │
│ │
│ │
└───┘

Reference Section: Command Macros 93

MTS 21: MTS Command Extensions and Macros

April 1986

Calling a user-defined function is exactly like calling a built-in function: the name of the function
followed by a parenthesized list of expressions which are the arguments is used where the value of the
function is wanted in an expression.

See Appendix E for several complete examples of user-defined functions. For example, the
following macro computes (the hard way) the sum of the two arguments:

FUNCTION ADD(A,B)

EXIT A+B

ENDFUNCTION

and a sample use of this is

IF ADD(ARG1,ARG2) ISNT 0, BARF

As another example, the infamous Ackermann’s function is

FUNCTION ACKER(M,N)

IF M=0

EXIT N+1

ELSEIF N=0

EXIT ACKER(M-1,1)

ELSE

EXIT ACKER(M-1,ACKER(M,N-1))

ENDIF

ENDFUNCTION

with sample calls of

WRITE ACKER(0,0)

WRITE ACKER(1,0)

WRITE ACKER(1,1)

User-defined functions and macros are really the same things and can be used interchangeably.
The only major difference is that using a macro or function as a function returns a value whereas using
a macro or function as a macro emits lines (usually). However, the invocation of a function occurs only
in an expression, wherein identifiers in the argument list are treated as names, whereas in a macro
invocation, all arguments are strings.

If we have

DEFINE Z = "ZZ"

DEFINE X = "XX"

and now define an ambidextrous macro

MACRO CONC A B

WRITE A||B

EXIT A||B

ENDMACRO

Now if we call it as a macro

CONC(Z,X)

we get

94 Reference Section: Command Macros

MTS 21: MTS Command Extensions and Macros

April 1986

ZX

but if we use it as a user-defined function

WRITE CONC(Z,X)

we get

ZZXX

ZZXX

MACRO LIBRARIES

A macro library is a file containing several macro definitions and a directory, in a specific format.
Providing the macros in this form rather than $SOURCEing to a file containing their definitions allows
the system to defer reading in the definition of a macro until it is needed. This is particularly useful if
the library contains a large number of macro definitions and only a few (or maybe none) are needed
during a session.

The preferred method of using the macro processor is to set up a macro library file and then place in
the sigfile the MTS command

$SET MACRO=ON

followed by the macro command to establish this file as the macro library (see below). This way all of
the macros will be set up each time the user signs on.

Using a Macro Library

A file is established as a macro library by setting its name as an element in the system array
MACLIB:

Syntax──┐

SET VAR MACLIB(n)="filename"
│ │
│ │
│ │
└───┘

where “n” is an integer (use 1 if only one macro library is being established).

When the SET VAR MACLIB command is entered, the directory at the front of the specified file is
read. Every symbol in the directory is defined as a macro whose definition is not present, except that if
any of the symbols is already defined, the current definition is not changed. When (or if) one of these
symbols whose definition is not present is referred to, the definition is read in at that time.

Note that because of the structure of a macro library, a given name can occur only once. Hence to
have two different macros with the same names but different filters they must be in different macro
libraries.

If a SET VAR MACLIB(n)="" command is later entered, all symbols that were defined by reading the
macro library directory earlier are now forgotten, except that any symbol whose value has been
changed between then and now is not removed.

Reference Section: Command Macros 95

MTS 21: MTS Command Extensions and Macros

April 1986

Multiple Libraries

Multiple macro libraries can be used simultaneously. The global system variable MACLIB (an
array) keeps track of them. If a symbol is not found in the global user symbol table, then the library
set up under the highest subscript of MACLIB is searched next, then the next-highest, and so on down.
The element MACLIB(0) is pre-assigned to *CMDMACLIB, which is the system macro library.

To turn off a macro library at any index, assign a null string to MACLIB. For example,

SET VAR MACLIB(1)=""

Note that DISPLAY MACROS displays only the in-line macros, which go in the global user symbol
table. To find out the names of the macros at a given level, MACLIB may be displayed either by name
or index, for example

DISPLAY MACLIB(1)

or

DISPLAY MACLIB("zilch")

To find out what macro libraries are active, the contents of the array MACLIB may be displayed:

DISPLAY ARRAY(MACLIB)

Form of a Macro Library

The form of a macro library that is specified with a SET VAR MACLIB(n)="FDname" command is as
follows:

The directory starts at line 1. Each line has the name of a macro and the line number at which its
definition starts, separated by one or more blanks. The line number must be an integer. The
directory is terminated with an end-of-file, a line consisting of “/END”, or the terminator “00000000”.
The remainder of the file contains the definitions, each beginning with MACRO or FUNCTION and
ending with ENDMACRO or ENDFUNCTION. The line the directory entry points to must be the
MACRO line.

Constructing a Macro Library

A macro library can be constructed by hand, using the editor. For larger libraries, use of the
LIBGEN utility program is recommended. A description of LIBGEN is given in Appendix D.

System Macro Library

One macro library is always supplied by default, and is attached to MACLIB at subscript 0 so it will
be searched last. This macro library is in the file *CMDMACLIB. It currently contains only one
macro, MACROLIB, which is used to attach other macro libraries. This macro is more convenient
than the notation in given earlier because it keeps track of the indices and requires less typing; it offers
no more power. Thus, instead of typing in

SET VAR MACLIB(1)="ZILCH"

96 Reference Section: Command Macros

MTS 21: MTS Command Extensions and Macros

April 1986

one can just say

MACROLIB ZILCH

In addition,

MACROLIB LIST

will produce a list of what libraries are currently attached.

EDITING MACROS

The body of a macro definition is stored in an editor virtual file, and hence the editor can be used to
modify it by issuing the editor command (not the MTS command):

EDIT MACRO x

You cannot edit a macro that is being expanded, nor can you expand (or forget) a macro that is being
edited. You can change only the text of the macro, not the prototype.

A macro definition in a macro library can be edited in that macro library file up to the time at which
that macro is first expanded. After that, a new SET VAR MACLIB(n) must be issued to force the new
definition to be read in on the next invocation.

SPECIAL CASES

Emitting Lines

If a line present in a macro definition is not recognized by the macro processor as a macro command,
it is emitted. So any lines you want the macro to generate can usually be just placed in the definition.
If, however, you want to emit a line that would normally be recognized by the macro processor as
something it should handle, then you can use the EMIT macro command.

Syntax──┐

EMIT expression
│ │
│ │
│ │
└───┘

where “expression” is what you want emitted. Thus, to have a macro produce an MTS command “SET
ENDFILE=NEVER”, the following could occur in the definition

EMIT "SET ENDFILE=NEVER"

Reference Section: Command Macros 97

MTS 21: MTS Command Extensions and Macros

April 1986

Generating Unmentionables

There are several things one might like a macro to generate that are “unmentionable” in the sense
that they cannot be written. These include generating null lines, end of files, and attention interrupts.
These can be produced using the GENERATE command.

Syntax──┐

GENERATE ENDFILE
│ │
│ │
│ │
└───┘

will cause the macro processor to cause MTS to generate a real end-of-file (return code of 4) for the next
“input line” it is asked to fetch from *SOURCE*.

Syntax──┐

GENERATE NULL
│ │
│ │
│ │
└───┘

will cause a null line (a line of zero length) to be emitted

Syntax──┐

GENERATE ATTN
│ │
│ │
│ │
└───┘

will cause MTS to behave as though an attention interrupt had occurred.

FILTERS

A filter is a restriction on a macro definition which provides further limitations on when that symbol
(and its definition) will be recognized. A filter may require that a given CLS is or is not in control, or
that the current program key is or is not a specified pkey. This restriction is specified by a definitional
modifier on the macro prototype line, in one of the forms:

@CLS=cname
@CLS¬=cname
@PKEY=pkey
@PKEY¬=pkey

where “cname” is a CLS name, and “pkey” is a program key. If the program key contains
non-alphanumeric characters, then its value should be quoted, as in “@PKEY="ABCD:PROG"”

For example, suppose we want to have a macro PRINT that is to be used in MTS command mode,
but when we are in the editor we want PRINT to mean the editor’s PRINT command. We could define

MACRO PRINT Z @CLS=MTS

. . .

98 Reference Section: Command Macros

MTS 21: MTS Command Extensions and Macros

April 1986

ENDMACRO

which will define a macro named PRINT, but this symbol will be recognized only in MTS command
mode. We could also define it as

MACRO PRINT Z @CLS¬=EDIT

. . .

ENDMACRO

and then it would be defined everywhere except in edit mode.

Note that this filtering spplies to all uses of the symbol, not just macro invocation. Using the above
example, if you entered a “DISPLAY MACRO(PRINT)” command while in the editor, it would tell you
that symbol PRINT does not exist, whereas if you issued the same command from MTS command mode
you would get a listing of the macro.

To override this, the symbol may be qualified with “@CLS=cname” or “@PKEY=pkey”, which may be
interpreted meaning “for this use of the symbol, assume the CLS is ‘cname’ (or the program key is
‘pkey’) instead of what it really is.”. Thus a “DISPLAY MACRO(PRINT@CLS=MTS)” command will
list the macro even if issued from editor mode.

Multiple Definitions

If you want to have, say, a COAGULATE macro which has one definition in MTS command mode
and another in EDIT mode, be aware of the following:

(1) Macros defined inline are global user symbols, and there can be only one definition for a
given name. If you try to enter both definitions inline, the second will just quietly
replace the first.

(2) In each macro library, a given symbol can be defined at most once.

Hence to have two different definitions active at once, either one may be defined inline and the other in
a macro library, or (more likely) the two definitions must be put in two different macro libraries.

Editing

If multiple definitions of a given macro are active, then all the definitions will be in the same virtual
file, but each will start at a line number 10000 higher than the previous.

Reference Section: Command Macros 99

MTS 21: MTS Command Extensions and Macros

April 1986

APPENDIX A

MACRO AND MACRO_FLAG_REQUIRED MODIFIERS

The macro processor in MTS functions as an I/O preprocessor on lines being read by MTS itself,
commands, utilities, and user programs. Whether the macro processor gets called and what it expects
on lines it sees is controlled by two I/O modifiers.

@MACRO and @NOMACRO control whether the processor is called at all to interpret lines for
invocations or macro commands. It has no effect on the generation of lines: once a macro is invoked,
the lines are generated for successive reads whether or not those reads have @MACRO or @NOMACRO
applied.

@MACRO_FLAG_REQUIRED (or @MFR) and @NOMACRO_FLAG_REQUIRED (or @NOMFR)
control whether the macro flag character “>” is required on lines to be inspected for macro invocations.
It does not control lines to be inspected for macro commands; these always require the flag character.

The default for the *SOURCE* FDUB and all of its copies is @MACRO@MFR, but when MTS or any
of the CLS's command processors read a command, they read @NOMFR. So to get the same effect
when running a program, one could say “SCARDS=*SOURCE*@NOMFR” on the RUN command.

These modifiers may be applied to FDnames, as in

RUN PROGR SCARDS=*SOURCE*@NOMACRO

These modifiers may also be specified by setting the appropriate bits on the call to the READ or
SCARDS subroutines. The bits are in the second word of modifiers, so the first word of modifier bits
must have X'01000000' set to indicate that there is a second word of bits following the first word. The
relevant bits in the second word are as follows:

Bit 29 NOMACRO X'00000004'
Bit 28 MACRO X'00000008'
Bit 27 NOMFR X'00000010'
Bit 26 MFR X'00000020'

100 Reference Section: Appendix A

MTS 21: MTS Command Extensions and Macros

April 1986

APPENDIX B

INTERACTIONS OF FLAG CHARACTERS AND MODES

Consider the following instructive (albeit contrived) example. We have defined a macro D as
follows:

MACRO D N

COPY {N}

ENDMACRO

This is the way it would appear in a macro library. If we were entering this in-line, we would have to
put macro flag characters “>” on the MACRO and ENDMACRO commands.

Now let us enter the following four lines from MTS command mode

(1) D 17

(2) $D 17

(3) >D 17

(4) $>D 17

All four of these will cause same thing to happen: the macro D will be invoked, and the line “COPY 17”
will be emitted and interpreted as an MTS COPY command to copy the file named “17” to *SINK*.

Secondly, let us enter “EDIT −T” and then enter the same four lines again. Again, in all four
examples the macro D is invoked. But in cases (1) and (3) it is invoked from EDIT command mode, and
the line “COPY 17” that is emitted will be interpreted by the editor as an editor copy command to copy
line 17 to the current line, whereas in cases (2) and (4), the “$” causes the editor to pass the line to MTS
to be interpreted, and so it is invoked in MTS command mode, and the “COPY 17” that is emitted is
treated as the MTS COPY command to copy the file named “17” to *SINK*.

Thirdly, let us return to MTS command mode, enter “COPY *SOURCE* *SINK*”, and then enter
the same four lines again. Because the COPY command is reading with the default modifiers of
@MACRO@MFR, the first, second, and fourth lines will be copied without change, but the third line will
cause the macro to be expanded, so the following will appear:

D 17

$D 17

COPY 17

$>D 17

Finally, enter “>FORGET D” to get rid of our macro definition, and then enter the same four lines
again. Now the first and second lines will be interpreted as (illegal) MTS DISPLAY commands and
the third and fourth lines will be interpreted as (illegal) macro DISPLAY commands.

Reference Section: Appendix B 101

MTS 21: MTS Command Extensions and Macros

April 1986

APPENDIX C

CSGET AND CSSET SUBROUTINE DESCRIPTIONS

CSSET

This routine is used to set a current command status. The command status currently consists of three
parts: summary, code, and origin. Once set, the command status is accessible via subroutine CSGET,
the macro processor, or the COMMAND subroutine.

All parameters are fullword integers.

Parameters (S-type):

Summary: Error/status summary.

0 (CS_NORMAL) Normal command status
1 (CS_WARNING) Warning or informational message
2 (CS_ERROR) Command error

Code: This gives the status in more detail. Currently the only assigned numbers are for
global-level errors issued by MTS, and for error conditions flagged by the MOUNT
command. Other commands use −1 (unknown) in the interim.

User programs calling CSSET may select their own set of codes; the values must be
non-negative.

Codes used by MTS are:

1 (CS_ATTN) Untrapped attention interrupt
2 (CS_PGNT) Untrapped program interrupt
3 (CS_SVC) SVC error
4 (CS_SVCEXIT) SVC EXIT happened
5 (CS_TIMER) Untrapped timer interrupt
100 (CS_CMD_SYNTAX) Command syntax error
101 (CS_RUNONLY) Not legal with run-only program
102 (CS_LSSMODE) Not legal in LSS mode
103 (CS_STAFF_CMD) Only legal from Computing Center staff ID
104 (CS_PRIV_CMD) Only legal from privileged ID
105 (CS_CLS_LOADING_ERROR)

Error occurred trying to load CLS
106 (CS_CLS_ERROR_RETURN)

Error return from CLS
200 (CS_GETSPACE) Unable to obtain space
201 (CS_CANCEL) User responded to prompt with CANCEL

Origin: Originator of the error/status information (optional).

102 Reference Section: Appendix C

MTS 21: MTS Command Extensions and Macros

April 1986

If this parameter is omitted on a call to CSSET, the originator is set to −1
(indicating an undefined or undeclared state). Currently, only MTS sets the
originator code, and it sets it to 1. In the future, each CLS and many public
programs will have their own unique originator codes. For the present, user
programs should either omit this parameter or else set it to −1 when calling
CSSET.

The following constraints on parameter values exist: “Summary” can be zero if and only if “Code”
is zero too. “Summary” must be one of (0,1,2). “Code” must be >= −1. “Origin” must be >= −1.

Eventually there may be other parameters, so the VL-bit is checked for to make sure more
parameters can be added later.

Return codes:

0 – Status information set successfully.
4 – Illegal summary/code values; bad parameter list; no VL bit; etc.

Reference Section: Appendix C 103

MTS 21: MTS Command Extensions and Macros

April 1986

CSGET

This routine is used to retrieve the current command status (i.e., whatever was set on the last call to
CSSET).

This command status information is useful primarily in two situations:

(1) User programs that have called the COMMAND subroutine may call CSGET to
determine whether the MTS command executed properly. The three values obtainable
by calling CSGET are also available by specifying additional parameters on the
COMMAND subroutine call.

(2) MTS command macros may be constructed to determine whether an MTS command
executed properly. The three values that the CSGET subroutine returns are available
within the macro processor as the system variables CS_SUMMARY, CS_CODE, and
CS_ORIGIN.

Parameters (S-type):

Summary: Error/status summary.
See subroutine CSSET for details.

Code: This gives the command status in more detail.
See subroutine CSSET for deatils.

Origin: (optional) Error/status originator.
See subroutine CSSET for details.

Eventually there may be other parameters, so set the VL-bit.

Return codes:

0 – Status information retrieved successfully.
4 – Problems; bad parameter list; no VL bit, etc.

104 Reference Section: Appendix C

MTS 21: MTS Command Extensions and Macros

April 1986

APPENDIX D

MACRO LIBRARY UTILITIES

There are two utility programs which may be of use in maintaining macro libraries. They are
currently under the signon ID MAC.

LIBGEN: MACRO LIBRARY GENERATOR

The program MAC:LIBGEN is a simple program to generate or recreate a macro library. It is
invoked with an MTS command of the form

$RUN MAC:LIBGEN [logical-units] [PAR=option]

The following logical units may be specified on the RUN command:

0 Specifies a file containing an existing macro library, or a sequence of macros.

1 Specifies a file in which a new macro library is to be built.

SERCOM is used to display messages issued by the program.

The PAR field may specify either or both of the options

BUILDDIR (abbreviation BUILD) indicates that the input from unit 0 has no directory,
so one should be built from the information on the MACRO or FUNCTION
lines in the input.

SORTDIR (abbreviation SORT) means that the macro names in the output library
should be sorted alphabetically, rather than preserving the order from the
input directory.

The input on unit 0 is intended to be an existing macro library, possibly with extra macros that are
not in the directory. The program finds all MACRO and FUNCTION lines in the input file, and uses
the names from these to build the output library.

Line numbers in the input file are ignored completely. The order of all macros in the input
directory, will be preserved in the output library (unless SORTDIR is specified).

LIBLIST: MACRO LIBRARY LISTER

The program MAC:LIBLIST is a simple program that can be used to produce a listing of a macro
library. If a macro cannot fit in the space remaining on the current page, a new page will be started.
It is invoked with an MTS command of the form

Reference Section: Appendix D 105

MTS 21: MTS Command Extensions and Macros

April 1986

$RUN MAC:LIBLIST [logical-units] [PAR=option]

The following logical units may be specified on the RUN command:

SCARDS specifies the macro library to be listed.

SPRINT specifies the file or device on which the listing is to be produced.

The output is intended to be suitable for the Xerox 9700 in two-sided portrait mode. The page
numbers and titles are alternated for front/back pages. The parameter ONESIDED may be specified
in the PAR field to prevent alternation of page numbers.

106 Reference Section: Appendix D

MTS 21: MTS Command Extensions and Macros

April 1986

APPENDIX E

EXAMPLES

Here are several examples of functions and macros, borrowed from actual user’s macro libraries.

Two versions of functions to prompt the user:

>Function Confirmation Prompt_String

>*

>* Description: Confirmation

>* This function is used to confirm things.

>* You say things like

>* "if confirmation('Signoff now?'), emit '$Signoff'".

>*

define Attn_Flag

define Eof_Flag

define Response

write "&"||Prompt_String on *Msink*

read Response from *Msource*@UC attn->Attn_Flag eof->Eof_Flag prefix=" "

if not (Attn_Flag or Eof_Flag)

if (Response = "Y") or (Response = "YES") or (Response = "OK")

or (Response = "!") or (Response = "O.K."), exit True

endif

exit False

>Endfunction

>Function Prompt(where,what)

>*

>* This macro writes out a prompt string on the unit designated

>* by 'where' and reads a reply from it. The prompt string is

>* given by the 'what' parameter.

>*

>define response

>define Eof

write what on {where}

loop

read response from {where} prefix='?' eof->Eof

if Eof, exit FALSE

set var response = uppercase(response)

if response = 'OK' or response = 'YES' or response = 'O.K.'

or response = 'Y'

exit TRUE

elseif response = 'NO' or response = 'N'

exit FALSE

endif

write 'Type OK or YES to confirm, NO to decline.' on {where}

endloop

exit False

>endfunction

Reference Section: Appendix E 107

MTS 21: MTS Command Extensions and Macros

April 1986

A macro to create or empty a file:

>MACRO Crorem WhichFile Size="10p" "OK"

>*

>* Crorem -- Create or Empty a file. Takes a file size and either

>* creates it or empties it depending on its previous existence.

>* If a confirmation is given, it passes it along to the empty

>* command.

>*

DEFINE Confirmation=""

IF OK = "PRESENT", SET VAR Confirmation = "OK"

IF FILE(WhichFile) EXISTS

$EMPTY {WhichFile} {Confirmation}

$CONTROL {WhichFile} SIZE={Size}

ELSE

$CREATE {WhichFile} SIZE={Size}

ENDIF

>ENDMACRO

A function to sort an array alphabetically:

Function Sort Arr

>*

>* Sorts the array "Arr" into ascending order.

>*

>* The algorithm is the original Shell sort from CACM 2,7 (1959)

>* as modified by Frank and Lazarus.

>*

Define N

Define M

Define I

Define J

Define K

Define Temp

Set var N = Max_Subscript(Arr)

Set var M = N

Loop while M>1

Set var M = 2*Integer_Part(M/4)+1

Set var K = N-M

Set var J = 1

Loop while J<=K

Set var I = J

Loop while I>0

If Arr(I) <= Arr(I+M), Exitloop

Set var Temp = Arr(I)

Set var Arr(I) = Arr(I+M)

Set var Arr(I+M) = Temp

Set var I = I-M

Endloop

Set var J = J+1

Endloop

Endloop

Exit Arr

>EndFunction

108 Reference Section: Appendix E

MTS 21: MTS Command Extensions and Macros

April 1986

Extending commands to take lists:

The following two macros go together; the first calls the second.

>Macro cmd @etc

>*

>* This macro scans its arguments for a parenthesised list and

>* emits a series of commands--one for each of the items in

>* parentheses. The parenthesised item must be separated by at

>* least one blank from the other text of the line.

>*

define parameters=' ' || parstring || ' '

define i

define j

define string

define text

>*

set var i=find_string(parameters(1...size(parameters)),' (')

set var j=find_string(parameters(i+1...size(parameters)),') ')

if i = 0 or j = 0

Cmd_with_pat {"'"||parstring||"'"}

endif

>* Have a parenthesised string--just one level deep--now break

>* this up into component parts.

set var j = j + i

loop for string over parameters(i+1...j)

if i = 1

set var text=string

else

set var text=parameters(1...i) || string

endif

if j ¬= size(parameters)-1, set var text=

text || parameters(j+1...size(parameters))

Cmd_with_pat {"'"||text||"'"}

endloop

>endmacro

>Macro Cmd_with_pat Parameters

>*

>* This macro checks its argument for containing a question mark.

>* If it contains one, the question mark is expanded into a file

>* name, and the string is emitted as a command.

>*

Define i

Define j

Define text

Define string

>*

>* Check for question marks and assume that they are in a file name.

>*

set var i=find_string(parameters(1...size(parameters)),'?')

if i = 0

emit parameters

exit

endif

>*

>* Question mark found. Search backwards from that point to

>* locate first preceding blank

>*

Reference Section: Appendix E 109

MTS 21: MTS Command Extensions and Macros

April 1986

set var j=find_string(parameters(i...size(parameters)),' ')

if j = 0

set var i = size(parameters)

else

set var i = i + j - 2

endif

set var j=find_string(reverse(parameters(1...i)),' ')

if j = 0

set var j = 1

else

set var j = i - j + 2

endif

if j = 1

define text_front = ''

else

define text_front = parameters(1...j-1)

endif

if i = size(parameters)

define text_rear = ''

else

define text_rear = parameters(i+1...size(parameters))

endif

loop for string over files(parameters(j...i))

set var text = text_front || ' ' || string || ' ' || text_rear

emit text

endloop

>Endmacro

Archiving by subject in the message-system:

The following three macros go together:

>Macro Ark "IN" Subject "NOTE" Note_Text@NOPROMPT

Message="Active" Archive_File=CCID:Archive

>* This macro is meant to be used in $MESSAGESYSTEM mode to archive

>* messages according to a subject heading. It uses the file

>* "ARCHIVE" to maintain a directory of message subjects, which is

>* read in the first time the macro is invoked. Subsequently, the

>* directory is added to as new subjects are incorporated.

>*

>* Subject - A one word subject to classify the item under. If it

>* is not present in the directory, then the macro prompts for

>* confirmation of the addition and allows a display of current

>* subject categories.

>* Note_Text - A header which is placed at the front of the message.

>* It may be later scanned for using the editor.

>* Message - An explicit message number which is to be archived. If

>* left off, this is the active message.

>*

If CLS_NAME ISNT "MESS"

Write "Only in $MESSAGE..."

Exit

Endif

>*

Define Subj_Pair

Define Subj_Item

Define Temp

110 Reference Section: Appendix E

MTS 21: MTS Command Extensions and Macros

April 1986

Define Junk

Define String

>*

>* See if the directory has been read yet during this invocation of

>* the macro processor. If not, read it in.

>*

Read_Subj_Index Archive_File={Archive_File}

>*

>* Archive subjects are now read in. See if the new subject is in

>* the current directory of names.

>*

Define New_Index = Find_Subject(Subject)

If New_Index = 0, Exit

>*

>* Now, the first line number of the subject category is in the

>* variable New_Index. Look in the file for a free message

>* position for the message, making sure that the message does not

>* exceed the range for it

>*

Define Flag

Loop for Temp from New_Index by 1 Until Temp > New_Index+999

Read String FROM FDUB=Subj_Fdub EOF->Flag LNR=Temp MODS=INDEXED

If Flag, Exitloop

Endloop

If NOT Flag

Write " Sorry - No room in that subject category."

Else

Define Msg_Index=Temp

Emit "Display {Message} History=full

Output={Archive_File}({Msg_Index},{Msg_Index}.999,.001)

Header Subject Recipients Text"

If Note_Text ISNT "" OR Note = "PRESENT" AND Note_Text IS ""

>*

>* A note to append to the message. Gyrations are undergone to

>* put the note text following the header generated by the

>* messagesystem. This is done by scanning for the blank line

>* which it follows the header with, and renumbering the file

>* to make room for the note line.

>*

Loop for Temp from Msg_Index+.001 by .001 to Msg_Index+.05

Read String FROM FDUB=Subj_Fdub EOF->Flag LNR=Temp

MODS=INDEXED

If Flag OR String=" ", Exitloop

Endloop

If Flag OR String ISNT " "

Write " Sorry - Couldn't append the note text"

Write " (Flag={Flag}, String='{String}', Lnr={Temp})"

Exit

Endif

Define Note_Index=Temp

Define Note_Line(10)

Define Note_Lines

If Note_Text IS ""

Write " Note text:"

Loop for Temp from 1 until Temp > 10

Set var Note_Line(Temp)=""

Read Note_Line(Temp) EOF->Flag

If Flag or Note_Line(Temp)="", Exitloop

Endloop

Set var Note_Lines=Temp-1

Else

Reference Section: Appendix E 111

MTS 21: MTS Command Extensions and Macros

April 1986

Set var Note_Line(1)=Note_Text

Set var Note_Lines=1

Endif

Emit "$RENUMBER {Archive_File} {Note_Index} {Msg_Index+.999}

{Note_Index+(Note_Lines/1000)} .001"

If CS_Code ISNT 0

Write " Sorry, couldn't put in the note text"

Exit

Endif

Write " Note: "||Note_Line(1) ON FDUB=Subj_Fdub

LNR=Note_Index MODS=INDEXED

Loop for Temp from 2 Until Temp > Note_Lines

Write " "||Note_Line(Temp) ON FDUB=Subj_Fdub

LNR=Note_Index+(Temp-1)/1000 MODS=INDEXED

Endloop

Endif

Endif

>Endmacro

>Function Find_Subject(Subject)

If Variable("Subj_Index('" || Uppercase(Subject) || "')") doesnt exist

Define Temp

Define Junk

Define String

Define Junk2

Loop

Write "This subject category isn't defined. OK to define it?"

ON *MSINK*

Read String from *MSOURCE* EOF->Temp

If Temp, Exit

Set var String=UPPERCASE(TRIM(String))

If String = "NO", Exit 0

If String = "OK" or String = "YES", Exitloop

If String = "LIST" or String = "?"

>* LIST - Give a list of all the subject names

Set var String = " Subjects: "

Loop for Temp over Subj_Names

If Size(String) > 50

Write String

Set var String = " "

Endif

Set var String = String || Temp || " "

Endloop

Write String

Endif

If Variable("Subj_Index('" || Uppercase(String) || "')") exists

Write "Already defined, try again"

Nextloop

Endif

Endloop

Define New_Index=-999

Loop for Temp over Uppercase(Subj_Names)

Set var Junk = Temp(1)

If Subj_Index(Junk) > New_Index

Set var New_Index={Subj_Index(Junk)}

Endif

Endloop

Set var New_Index=Integer_Part((New_Index+1000)/1000)*1000+1

>* Make up and write the new index out.

Set var Temp="(" || Subject || "," || New_Index || ")"

112 Reference Section: Appendix E

MTS 21: MTS Command Extensions and Macros

April 1986

Set var Subj_Index(Uppercase(Subject))=New_Index

If Subj_Names = "()"

Set var Subj_Names="(" || Temp || ")"

Else

Set var Subj_Names=Subj_Names(1|Size(Subj_Names)-1) ||

"," || Temp || ")"

Endif

Write Subj_Names ON FDUB=Subj_Fdub MODS=INDEXED LNR=0

Set var Temp=" New subject '" || Subject || "' defined."

Write Temp

Else

Define New_Index=Subj_Index(Uppercase(Subject))

Endif

Exit New_Index

>Endfunction

>Macro Read_Subj_Index Archive_File=

If VARIABLE("Subj_Index") DOESNT EXIST

Define Subj_Index("Subject_Name") GLOBAL

Define Subj_Names GLOBAL

Define Subj_Fdub GLOBAL

Define Temp

Define Junk

Define Subj_Pair

>*

>* Read archive directory (at line 0) and build up a variable which

>* contains the archive names. The format of the directory is:

>* "((subject,line#),(subject,line#),...)"

>*

Read Subj_Names FROM {Archive_File} MODS=INDEXED LNR=0

FDUB->Subj_Fdub EOF->Temp

If Temp, Set var Subj_Names="()"

Loop for Subj_Pair over Subj_Names

Set var Junk = Uppercase(Subj_Pair(1))

Set var Subj_Index(Junk) = Subj_Pair(2)+0

Endloop

Endif

>Endmacro

Reference Section: Appendix E 113

MTS 21: MTS Command Extensions and Macros

April 1986

APPENDIX F

MACRO DEFINITION AND EXPANSION

Here is a more detailed description of the macro definition and expansion process intended for
someone interested in learning exactly how the macro processor has been hooked into MTS. The same
“HASPLOG” example discussed earlier (in section O.1) is discussed in greater detail.

First a digression about how MTS does its I/O: Programs obtain data from *SOURCE* by calling the
various I/O subroutines: READ, SCARDS, etc. Inside MTS all the I/O subroutines sit in the DSRI
assembly (DSR-Interface). DSRI always obtains its data from DSRs: the file DSR, a terminal DSR, a
tape DSR, etc. DSRI can nicely be divided into three parts:

(1) Prefix

check out the modifiers, open files if necessary, process line ranges, etc.

(2) DSR

Call the DSR to get the data (the FDUB says which DSR to call)

(3) Postfix

Clean up, do logging, return to the user.

It was mentioned earlier that when something is being read from *SOURCE*, MTS checks in with
the macro processor before and after it gets a data line. Stated in these internal terms, MTS calls the
macro processor from DSRI in the Prefix before just before calling the DSR, and it calls the macro
processor in the Postfix just before returning to the user.

Let us look at the same example as before:

set macros=on

>macro hasplog

? $run unsp:hasplog

? l u w164

? stop

? >endmacro

hasplog

Execution begins

: JOB: 674553 (4917317) USERID:W164 S 07-08-82

: JOB: 674559 (4917323) USERID:W164 S 07-09-82

Execution terminated

Here is what happens in all its gory detail:

(1) MTS (IN subroutine) calls SOURCIN to get a command.

114 Reference Section: Appendix F

MTS 21: MTS Command Extensions and Macros

April 1986

(2) It gets “set macros=on” and invokes the $SET command which calls the macro processor’s
“open” entry. Macro processing is now enabled.

(3) MTS (IN subroutine) calls SOURCIN to get another line.

(4) Macro processor call at DSRI-prefix: nothing to do.

(5) DSRI reads from the terminal DSR: “macro hasplog”.

(6) Macro processor call at DSRI-postfix: switch to macro definition mode and tell DSRI to go
backto the prefix.

(7) Macro processor call at DSRI-prefix: nothing to do.

(8) DSRI reads from the terminal DSR: “$run unsp:hasplog”.

(9) Macro processor call at DSRI-postfix: insert “$run unsp:hasplog” as the 2nd line in macro
HASPLOG. Tell DSRI to go back to prefix.

(10) Macro processor call at DSRI-prefix: nothing to do.

(11) DSRI reads from the terminal DSR: “l u w164”.

(12) Macro processor call at DSRI-postfix: insert “l u w164” as the 2nd line in macro
HASPLOG. Tell DSRI to go back to prefix.

(13) Macro processor call at DSRI-prefix: nothing to do.

(14) DSRI reads from the terminal DSR: “stop”.

(15) Macro processor call at DSRI-postfix: insert “stop” as the 3rd line in macro HASPLOG.
Tell DSRI to go back to prefix.

(16) Macro processor call at DSRI-prefix: nothing to do.

(17) DSRI reads from the terminal DSR: “endmacro”.

(18) Macro processor call at DSRI-postfix: recognize the ENDMACRO command and switch
out of macro insertion mode. Tell DSRI to go back to the prefix.

(19) Macro processor call at DSRI-prefix: nothing to do.

(20) DSRI reads from the terminal DSR: "" (user typed a null line).

(21) Macro processor call at DSRI-postfix: nothing to do.

(22) Return from the SOURCIN call at (3) with a null line with the macro processor having
defined macro HASPLOG in the interim.

(23) MTS ignores the null line and calls SOURCIN again.

Reference Section: Appendix F 115

MTS 21: MTS Command Extensions and Macros

April 1986

(24) Macro processor call at DSRI-prefix: nothing to do.

(25) DSRI reads from the terminal DSR: “hasplog”.

(26) Macro processor call at DSRI-postfix: The macro invocation is recognized and the we
switch to macro expansion mode. Tell DSRI to go back to the prefix.

(27) Macro processor call at DSRI-prefix: the first line of macro HASPLOG is produced: “$run
unsp:hasplog”. Tell DSRI to skip the DSR-call.

(28) Macro processor call at DSRI-postfix: nothing to do (if there was another macro XXXX,
and the line just produced was “XXXX” then then we’d push into expansion mode for
XXXX and go back to DSRI-prefix; this is how recursion works.)

(29) Return from the SOURCIN call at (23) with “$run unsp:hasplog”.

(30) MTS starts up the $Run processor and loads up UNSP:HASPLOG. (Actually, first the
macro processor checks to see if “run” is a macro, which it is not in this example.) This
involves much traffic through DSRI, but since none of it involves the SOURCE-stream the
macro processor is not invoked.

(31) UNSP:HASPLOG eventually calls SCARDS, which defaults to *SOURCE*, to get a
command.

(32) Macro processor call at DSRI-prefix: it is still in macro expansion mode and retrieves line
two of the HASPLOG macro: “l u w164”. Tell DSRI to skip the DSR call.

(33) Macro processor call at DSRI-postfix: nothing to do.

(34) Return from SCARDS call at (31) with: “l u w164”.

(35) UNSP:HASPLOG processes the LOCATE command printing out two lines on SPRINT.

(36) UNSP:HASPLOG calls SCARDS for another command line.

(37) Macro processor call at DSRI-prefix: return next line of the macro expansion: “stop”. Tell
DSRI to skip the DSR call.

(38) Macro processor call at DSRI-postfix: nothing to do.

(39) Return from SCARDS call at (36) with: “stop”. Since the macro processor has just given
out the last line in macro HASPLOG, it switches out of macro expansion mode.

(40) UNSP:HASPLOG processes the STOP command and unloads.

(41) The $Run command unloads the EXEC CLS, prints the “Execution Terminated” message,
and returns to IN, then IN calls SOURCIN to get another command; ...and off we go
again...

This level of detail is probably more than most users are interested in, but for those who have been
wondering how macro expansion works, it is hoped this trace has clarified things a bit. It looks like an

116 Reference Section: Appendix F

MTS 21: MTS Command Extensions and Macros

April 1986

awful lot of work just to process a simple macro, but if you go to a low enough level with anything, it will
look complicated.

Reference Section: Appendix F 117

MTS 21: MTS Command Extensions and Macros

April 1986

APPENDIX G

INPUT TIME CONVERSION

The ABSTIME and RELTIME built-in functions, if given a string as an argument, interpret that
string as specifying a time in terms that people normally use. Following are the rules for that
specification, extracted from the document UBC PLUS TIME. Any of the forms below may be used as
input to ABSTIME; only the forms under “Time Intervals” may be used as input to RELTIME.

Input Time Components

Time/date input conversion is driven by a grammar that attempts to accept most styles of time/date
presentation that are commonly used. It generally requires that the components specified be
meaningful and unambiguous.

An input time may be composed of the following pieces. They may be put together in most
meaningful combinations, using commas and blanks as conventional separators.

Year A year is a two-digit number in the range 32 to 99, inclusive, or a four-digit
number in the range 1900 to 1999, inclusive. In some unambiguous
contexts, a two-digit number in the range 0 to 31 will also be recognized as a
year.

Month A month is one of “January”, “February”, ..., “December”. Month names
may be abbreviated to their first three characters.

Day The day of the month is specified by a number in the range 1 to 31, inclusive.

Time Times are integer strings containing “:” and/or “.” and/or followed by “AM” or
“PM” (or “A.M.” or “P.M.”) A fully specified time appears as
"23:22:05.67835".

The time must specify the hours and minutes, with the seconds and
microseconds components optional. The minutes component may also be
omitted if “AM” or “PM” appears.

Thus, the following are all allowed:

12 AM
23:59
00:01:35.5

Day of Week Days of the week are specified as “Monday”, “Tuesday”, ..., “Sunday”. They
may be abbreviated to the first three characters of the day name (“Mon”,
“Tue”, etc.).

The day-name is just checked for correctness with respect to the other date

118 Reference Section: Appendix G

MTS 21: MTS Command Extensions and Macros

April 1986

components. Currently, a day-name cannot be used by itself.

MM−DD−YY For compatibility with older date input and output routines the
MM−DD−YY form of month, day and year is supported (it may also be
specified as MM/DD/YY). For example, "11-06-79" is November 6, 1979.

This form is not recommended because of its ambiguity. Depending on
where you live, the convention may be MM−DD−YY, DD−MM−YY, or
YY−MM−DD. This package supports the MM−DD−YY form because that
form has been the MTS standard.

IBM For compatibility with certain IBM software, the form YY.DDD is
supported, where YY is a two- or four-digit year number and DDD is the day
number in the year. For example, "79.103" is April 13, 1979.

Miscellaneous Forms
The following strings are recognized, with the obvious meanings.

TODAY
YESTERDAY
TOMORROW
NOW

The first three forms represent a date only, and may be combined with a
time specification. The form “NOW” represents the current time (to the
microsecond level).

Time Intervals Times may alternatively be specified in terms of a number of time units in
the future from the present time (for ABSTIME) or in terms of a number of
time units without a base (for RELTIME). This specification is of the form

<integer> <unit>

where “unit” may be one of

MICROSECONDS
MILLISECONDS
SECONDS
MINUTES
HOURS
DAYS
WEEKS
MONTHS
YEARS

and some appropriate abbreviations.

For arguments to RELTIME, since the base is not known, a month is
assumed to be 30 days and a year 365 days.

For example, if the specification "2 weeks" is given when the time is
15:40:06.23572 January 4, 1984, the result will be "15:40:06.23572 January

Reference Section: Appendix G 119

MTS 21: MTS Command Extensions and Macros

Revised February 1991

18, 1984".

Time-zone A time-zone specification may be any of the standard three-letter time-zone
codes defined in the MTS system table of time-zone names. “GMT”, which
is not in that table, is also accepted.

Defaults

It is not necessary to specify all the components of the time (year through microsecond). The input
conversion routines will default unspecified components in many cases.

When converting, the defaulting is performed with respect to the current time. Any unspecified
low-order components are always set to the beginning of the interval. Unspecified high-order
components are copied from the current time. For example, if it is currently any time in 1984, then
"Jan 25" is equivalent to "00:00:00.0 Jan 25/84". However, low-significance date components will not
be defaulted. That is, "Oct 79" is not valid as a single time; the user must specify the day.

120 Reference Section: Appendix G

MTS 21: MTS Command Extensions and Macros

Revised February 1991

APPENDIX H

ADDITIONAL BUILT-IN FUNCTIONS

The following built-in functions were added in June 1990.

BITAND, BITNOT, BITOR

Syntax───┐

integer = BITAND(integer,integer)
integer = BITOR(integer,integer)
integer = BITNOT(integer)

│ │
│ │
│ │
│ │
│ │
└──┘

The BITAND, BITOR, and BITNOT functions provide bitwise-logical functions. The
arguments must be only integer (or long integer); to process operands of other types use the
USE_AS function.

EXTERNAL

Syntax───┐

>SET VAR x = EXTERNAL("EDIT","y")
>SET VAR EXTERNAL("EDIT","y") = value

│ │
│ │
│ │
│ │
└──┘

The first form is used to get the value of the MTS File Editor’s variable “y” and put it into “x”.
The second form is used to set the value of the File Editor’s variable “y” to “value”. The first
argument must currently be “EDIT” and it specifies the editor CLS invocation. Any editor
variables to be set must already exist (they will not be created automatically). The only two
predefined editor variables that can be set are ED_VRULER and ED_WORK. When getting an
editor variable, the variable must be of integer, line-number, or string types. When setting an
editor variable, the value given must be coercible into an integer (not a long integer), a line
number, or a string.

HEX

Syntax───┐

string = HEX(x)
│ │
│ │
│ │
└──┘

The HEX function provides a means of displaying the actual bit patterns (in hex) of the primitive

Reference Section: Appendix H 121

MTS 21: MTS Command Extensions and Macros

Revised February 1991

data types used by the macro processor.

The value specified as argument must be of type integer (or long integer), line-number, Boolean,
abstime, reltime, or string (or the internal type called hex).

For example,

HEX("ABC")

has value “C1C2C3”.

INTEGER_FORMAT

Syntax───┐

string = INTEGER_FORMAT(integer,string)
│ │
│ │
│ │
└──┘

The INTEGER_FORMAT function converts the integer first argument to a string, formatted
according to the characters in the second string. See Appendix I for the definition of the
formatting string.

For example,

INTEGER_FORMAT(42,"999")

has value “042”.

SHIFT_LEFT, SHIFT_RIGHT

Syntax───┐

y = SHIFT_LEFT(x,amount)
y = SHIFT_RIGHT(x,amount)

│ │
│ │
│ │
│ │
└──┘

where “x” must be an integer (or long integer) or a line number and is the quantity to be shifted.
“y” will be of the same type as “x”. “amount” must be an integer and is the number of bits to
shift. This is a logical shift, not an arithmetic shift. If the shift amount is negative, the shift
goes in the reverse direction.

122 Reference Section: Appendix H

MTS 21: MTS Command Extensions and Macros

Revised February 1991

TIME_FORMAT

Syntax───┐

string = TIME_FORMAT(absolute time)
string = TIME_FORMAT(absolute time,string)
string = TIME_FORMAT(absolute time,integer)
string = TIME_FORMAT(absolute time,string,string)
string = TIME_FORMAT(absolute time,integer,string)

│ │
│ │
│ │
│ │
│ │
│ │
│ │
└──┘

The TIME_FORMAT function converts the time first argument to a string, formatted according
to characters in the second (string) argument. If the second argument is missing, an integer 0
is assumed.

If the second argument is an integer in the range 0 to 7, then those represent eight predefined
time patterns. The optional third argument is a time zone, if the time is to be converted
according to a time zone different from the one currently in effect.

When the second argument is a string, it is copied to the output string with various substitutions
being performed. Substitutions are indicated in the string by codes surrounded by “<” and “>”.
See Appendix J for a description of the codes.

Examples:

>dis value(time_format(abstime("now"),0))

time_format(abstime("now"),0): 23:00:40.989436 Sun Apr 1/90 EDT

>dis value(time_format(abstime("now"),0,"est"))

time_format(abstime("now"),0,"est"): 22:01:09.497042 Sun Apr 1/90 EST

TIME_WAIT

Syntax───┐

integer = TIME_WAIT(reltime)
integer = TIME_WAIT(abstime)

│ │
│ │
│ │
│ │
└──┘

The TIME_WAIT function provides a means of doing a real-time wait. The “value” of this
function is currently the return code from the system routine TWAIT, which should be zero.

Examples:

SET VAR X=TIME_WAIT(RELTIME("10 SECONDS"))

SET VAR X=TIME_WAIT(ABSTIME("11:30pm Jul 13"))

Warning: There is currently no way to interrupt out of a real-time wait; an attention interrupt
will not take effect until after the time wait is up.

Reference Section: Appendix H 123

MTS 21: MTS Command Extensions and Macros

Revised February 1991

TRANSLATE

Syntax───┐

string = TRANSLATE(string,"ASCEBC")
string = TRANSLATE(string,"EBCASC")

│ │
│ │
│ │
│ │
└──┘

The string argument is translated according to the system translate tables, from ASCII to
EBCDIC or from EBCDIC to ASCII, respectively.

USE_AS

Syntax───┐

string = USE_AS(x,"STRING")
integer = USE_AS(x,"INTEGER")
linenumber = USE_AS(x,"LINENUMBER")

│ │
│ │
│ │
│ │
│ │
└──┘

The USE_AS function provides a means of type-cheating. It does no conversion of its
arguments, but just tells the macro processor to treat them as if they had a different type. This
allows you, for example, to give a 4-character string as a “line number” to a READ or WRITE, or
to take apart pieces of sense data (the SENSE function returns its result as a string, although
parts of that “string” are usually integers, etc.).

The original type of “x” must be either integer (or long integer), line number, or string. If a
string “x” is to be treated as a line number, the string must be 4 characters long. If a string “x”
is to be treated as an integer, the string must be from 0 to 8 characters long: a zero-length string
has value 0; strings of lengths 2, 4, or 8 are treated as signed integers (or long integers); strings
of lengths 1, 3, 5, 6, or 7 characters are unsigned integers, right-justified with leading zeros.

124 Reference Section: Appendix H

MTS 21: MTS Command Extensions and Macros

Revised February 1991

APPENDIX I

INTEGER PICTURE FORMATS

For conversion of integers from internal form to printable form using the INTEGER_FORMAT
built-in function, the form of the output string is described by a “picture” specification similar to those
of COBOL or PL/1.

The number is first converted to a sequence of digits, which is then edited under control of the
picture. Pictures can be used to effect scaling, left-or-right zero suppression, comma and decimal
point insertion, and fixed or varying field width of the converted item.

Pictures

A picture is a sequence of characters describing the format desired for the converted string. The
characters forming the picture may be any of the following:

9 specifies the position is to be occupied by a digit.

blank used in place of “9” to indicate replacement of leading or trailing zeros with blanks.

Z, z used in place of “9” to indicate suppression of leading or trailing zeros.

. specifies literal insertion of a “.”, if the position is followed by a digit. That is,
decimal does not appear if it is passed over by right zero suppression. If it is
preceded or followed by a blank, it will be replaced by a blank.

D, d specifies literal insertion of a “.”, even if there is no following character.

, specifies literal insertion of a comma into a sequence of digits; no comma is inserted
if the position in the output string is not both preceded and followed by a digit. If
this position is preceded or followed by a blank, it will be replaced by a blank.

V, v indicates the position at which to align the decimal point of the number being
converted (i.e., the right-hand end of the number). If this is omitted, it is assumed
to be at the right-hand end of the picture. The “V” has the effect of scaling the
value.

P, p is used to allow a “V” to appear past the last digit character of the picture. “P”s
may appear only at the right of the picture. They have the effect of discarding the
rightmost digits.

A valid picture may have a format like

(Z)(blank)(9)[.(9)(blank)(Z)(P)]

where (?) indicates 0 or more occurrences of the “?”, and everything in [] is optional. Commas may

Reference Section: Appendix I 125

MTS 21: MTS Command Extensions and Macros

Revised February 1991

appear anywhere in the picture, and a “D” may appear instead of “.”. One “V” may appear, with the
restriction that “Z”, blank, and “P” are not allowed to the right of the “V”.

If the number is negative, a sign will be placed in the rightmost unused “Z” or “ ” position left of the
decimal. The pattern must provide at least one “Z” or blank if the number might be negative.

Examples

The following table indicates the results returned for some possible combinations of value and
picture.

Value Picture Result

123456 "999999" "123456"

123456 "ZZZZZ9" "123456"

123456 "ZZ,ZZ9.99" "1,234.56"

123456 " 9.ZZZ" " 123.456"

123456 "ZZZ .ZZZ" "123.456"

123456 "" See note 1

123456 "ZZZZ" See note 1

123456 " .PPPV" " 123 "

0 "999999" "000000"

0 "ZZZZZ9" "0"

0 "Z,ZZZ,9.99" "0.00"

0 " 9.ZZZ" " 0"

0 "Z .ZZZ" " "

0 "" ""

0 "ZZZZ" ""

0 " .PPPV" " "

-1 "999999" See note 2

-1 "ZZZZZ9" "-1"

-1 "Z,ZZZ,9.99" "-0.01"

-1 " 9.ZZZ" " -0.001"

-1 "Z .ZZZ" "-.001"

-1 "" See note 1

-1 "ZZZZ" "-1"

-1 " .PPPV" " - "

3000 " 9.999" " 3.000"

3000 " 9. " " 3 "

3000 "ZZZZZZZ9DZZZ" "3."

3000 "ZZZZZZZ9.ZZZ" "3"

-123 "999V" See note 2

-123 "999" See note 2

-123 " 999" "-123"

-123 "Z999" "-123"

Note 1: Produces the error message “Number too big for picture”.

Note 2: Produces the error message “No room for sign”.

126 Reference Section: Appendix I

MTS 21: MTS Command Extensions and Macros

Revised February 1991

APPENDIX J

TIME PICTURE FORMATS

For the TIME_FORMAT built-in function, the second argument is either a string giving a format or
else an integer specifying a predefined format.

STRING second argument

When the format is directly given, it is a string (usually a constant), which is copied to the output
string with various substitutions being performed. Substitutions are indicated in the string by
codes surrounded by “<” and “>”. If a “<” is to be copied to the output string, it appears in the
format as “<<”. The codes used to indicate substitutions are defined below.

Conversion Codes

Each substitution in the format string is indicated by an element of the form

<item,width,type>

where all but the first component are optional.

“item” is a code for the time/date element to be substituted. It may be one of:

DAY day number.

MONTH month.

YEAR year.

DAYNAME day name (i.e., Monday, Tuesday, etc.).

DAYOFYEAR day number relative to the beginning of the year.

HOUR24 hour in 24-hour (number from 0 to 23) form.

HOUR12 hour in 12-hour format (number from 1 to 12).

AMPM “am” or “pm” as appropriate.

MINUTES minutes.

SECONDS seconds.

MICROSECONDS number of microseconds.

Reference Section: Appendix J 127

MTS 21: MTS Command Extensions and Macros

Revised February 1991

TIMEZONE time-zone code.

FTZ time-zone spelled out.

“width” indicates an output length for the converted value. It will be padded to at least this
length. Padding may be on left or right and may be with blanks or zeros, depending on the item
being converted and the conversion type. The default is generally the minimum number of
positions in which the value will fit. Some items will be truncated if the converted value is
longer than “width”. Each item has a minimum below which it will not be truncated. Month
and day names may be truncated to three or more characters; years may be truncated to two
characters. Time zones may be truncated to two characters.

“type” indicates the type of output desired; it may be one of

NUMERICZERO The item is to be output as an integer with zero-padding to the
field width (e.g., January as “1” or “01”).

NUMERICBLANK The item is to be output as an integer with blank-padding to
the field width (e.g., January as “1” or “ 1”).

ALPHABETIC The item is to be output as mixed-case alphabetic (e.g.,
January as “January”).

UCALPHABETIC The item is to be output as uppercase only alphabetic (e.g.,
January as “JANUARY”).

The default depends on the item being converted. It is NUMERICZERO for all time
components, NUMERICBLANK for day and year, and ALPHABETIC for AMPM,
DAYNAME, MONTH and TIMEZONE.

Example:

The standard MTS format could be represented by the format string

"<H>:<M>:<S>.<MIC> <DN> <MO> <D>, <Y>"

which gives

15:41:32.123456 Monday December 2, 1982

INTEGER second argument

When the second argument is an integer in the range 0 to 7, it specifies use of one of the following
eight predefined formats:

value 0:

The format string is

"<H>:<M>:<S>.<Mic> <Dn,3> <Mo,3> <D>/<Y,2> <Tz>"

which produces output in the form

128 Reference Section: Appendix J

MTS 21: MTS Command Extensions and Macros

Revised February 1991

23:00:40.989436 Sun Apr 1/90 EDT

value 1:

The format string is

"<Y,2> <Mo,3> <D> <H>:<M>:<S> <Tz>"

which produces output in the form

90 Apr 1 23:01:25 EDT

value 2:

The format string is

"<Y,2>.<Dy,3> <H>:<M>:<S> <Tz>"

which produces output in the form

90.091 23:01:41 EDT

value 3:

The format string is

"<H>:<M>:<S> <Dn,3> <Mo,3> <D>/<Y,2> <Tz>"

which produces output in the form

23:01:53 Sun Apr 1/90 EDT

value 4:

The format string is

"<H>:<M>:<S> <TZ>"

which produces output in the form

23:02:05 EDT

value 5:

The format string is

"<DN,3> <MO,3> <D,2>/<Y,2>"

which produces output in the form

Sun Apr 1/90

value 6:

Reference Section: Appendix J 129

MTS 21: MTS Command Extensions and Macros

Revised February 1991

The format string is

"<H>:<M>:<S> <TZ>, <DN,3> <MO,3> <D,2>/<Y,2>"

which produces output in the form

23:02:24 EDT, Sun Apr 1/90

value 7:

The format string is

"<H>:<M>:<S> <FTZ>"

which produces output in the form

23:02:44 Eastern Daylight Time

Note: For values 0, 1, and 3, “<y,2>” will be “<y,4>” if the year is >2000.

130 Reference Section: Appendix J

MTS 21: MTS Command Extensions and Macros

Revised February 1991

APPENDIX K

SUBROUTINES TO ACCESS MACRO VARIABLES

There are two subroutines available to get and set the value of macro variables. The subroutines
are actually designed for any variables, not just macro variables, but the current implementation only
handles macro variables. The names are GETEXVAR (alternate name is GTXVAR) and SETEXVAR
(alternate name is STXVAR), for “Get/Set External Variable”. These are gated (user-callable) entries.
Note that if the set entry is called for a variable that does not exist, it will create one and then set its
value as requested.

The calling sequences are:

GETEXVAR(who,varname,varnamel,vartype,varvalue,varvaluel)

SETEXVAR(who,varname,varnamel,vartype,varvalue,varvaluel)

where

who Must be either the 4-character string “MTS ” or else a fullword binary zero, both
of which specify the macro processor variables. (In the future, this may be
allowed to be something else, e.g., “EDIT”, to specify a different set of variables.)

varname Location of first character of variable name.

varnamel Location of fullword length of variable name.

vartype Location of fullword integer specifying the type of the value:

1 means integer
2 means linenumber
3 means string
4 means Boolean

GETEXVAR: This parameter will be set by the subroutine to indicate what
it put into the parameter “varvalue”.

SETEXVAR: User must set this parameter before the call to indicate what
“varvalue” contains.

varvalue GETEXVAR: Location of the first byte of where the value is to be placed.

SETEXVAR: User must set the new value starting at this location.

varvaluel Location of fullword length of variable value:

Reference Section: Appendix K 131

MTS 21: MTS Command Extensions and Macros

Revised February 1991

GETEXVAR: User must set this to the length of the area provided in
“varvalue”. For integers, it must be 1, 2, 4, or 8; for line
numbers, it must be 4; for Boolean, 1 or 4. For strings, upon
return from the subroutine it will have been set to the actual
length returned. If the area is not big enough, it will be set to
the length required and a return code of 16 given.

SETEXVAR: User must set this to the length of the value provided in
“varvalue”. For integers, it must be 1, 2, 4, or 8; for line
numbers, it must be 4; for Boolean, 1 or 4; for strings, the
length.

The return codes are:

0 Successful return.

4 GETEXVAR: Variable not found.
SETEXVAR: Variable not found and it was unable to create a global variable of

that name (i.e., name syntactically bad).

8 GETEXVAR: Value not exportable (i.e., it cannot be converted to integer,
linenumber, Boolean, or string).

SETEXVAR: Type code is less than 1 or greater than 4.

12 GETEXVAR: Not allowed to get value of that variable.
SETEXVAR: Not allowed to set value of that variable.

16 GETEXVAR: Length in “varvaluel” not big enough. “varvaluel” has been set to
length required.

SETEXVAR: Cannot get enough space to set variable to value that large.

20 Entity named by “who” parameter (i.e., the macro processor) is not active.

24 Value of “varvaluel” parameter is unreasonable (i.e., negative or greater than 32767).

28 At least one of the parameters is unaddressable or (for parameters the subroutine has to
change) is in a protected (unchangeable) location.

132 Reference Section: Appendix K

MTS 21: MTS Command Extensions and Macros

Revised February 1991

APPENDIX L

SYMBOL INDEX

− operator... 51

¬= operator .. 52, 53

... operator ..51

.AND. operator .. 53

.EQ. operator ... 52

.GE. operator ... 52

.GT. operator.. 52

.IS. operator ... 52

.ISNT. operator.. 52

.LE. operator.. 52

.LT. operator .. 52

.NE. operator ... 52

.NOT. operator... 53

.OR. operator ... 53

< operator... 52
<= operator .. 52

+ operator... 51
+= operator .. 53

|| operator .. 51
||= operator .. 53

* operator ... 51

/ operator.. 51

> operator... 52
>= operator .. 52

: operator.. 55

@CHECK ...89
@CLS ..80
@ETC ... 82, 84
@NOPROMPT ...82
@PKEY ...80
@PROMPT ...82
@RAW ..85

Reference Section: Appendix L 133

MTS 21: MTS Command Extensions and Macros

Revised February 1991

@RECURSIVE ...80
@SYSTEM ...80

= operator... 52, 53

ABS ..57
ABSENT ..83
ABSTIME ..57
AND operator .. 53
ARRAY... 50, 58
ATTN ...98

BATCH ..69
BITAND ...121
BITNOT ...121
BITOR ..121
BY ..76

CAN_CONVERT ...58
CLS_NAME ...70
CODE ...88
CONTROL ...58
COST ...59
CPU_TIME ..70
CS_CODE ..70
CS_ORIGIN ...70
CS_SUMMARY ...70
CUINFO ..59

DATE ...70
DEFINE ... 45, 46, 47
DISPLAY ... 50, 51
DOES operator .. 53
DOESNT operator ... 53
DOUBLE ...60
DUPL ...60

ELSE ..74
ELSEIF ..74
EMIT ..97
ENDFILE ..98
ENDFUNCTION ...93
ENDIF ...74
ENDLOOP ...75
ENDMACRO ...81
ETC .. 82, 84
EVAL ...60
EXIST operator ... 53
EXISTS operator ... 53
EXIT ...88
EXITLOOP ..77
EXTERNAL ...121

134 Reference Section: Appendix L

MTS 21: MTS Command Extensions and Macros

Revised February 1991

FILE ...61
FILE_INFO ...61
FILES ..62
FIND_CHAR ...62
FIND_STRING ..63
FOR ..76
FORGET ..48
FROM .. 76
FULL_SCREEN_POSSIBLE ...70
FUNCTION ...93
FUNCTION_NAME ..85
FUNCTIONS ...50

GENERATE ..98
GETEXVAR ...131
GOTO ...74
GUINFO ..63

HEX ...121
HOST_NAME ..70

IF ..74
IGNORE_CHAR ..63
INSTALLATION ...70
INSTALLATION_CODE ..71
INSTALLATION_NAME ..71
INTEGER_FORMAT .. 122, 125
INTEGER_PART ..64
IS operator ... 52
ISNT operator.. 52

LABEL ...73
LAST_SIGNON ...71
LOCK ...64
LOOP ...75
LOWERCASE ..64
LPAD ...64
LTRIM ...65

MACLIB .. 50, 95
MACRO .. 50, 81
MACRO_NAME ..85
MACROECHO ...89
MACROPROMPT ..82
MACROS ...50
MACROTRACE ...89
MAX ...65
MAX_SUBSCRIPT ..65
MICROSECONDS ..65
MIN ..66
MIN_SUBSCRIPT ..66

Reference Section: Appendix L 135

MTS 21: MTS Command Extensions and Macros

Revised February 1991

NBR_POSITIONAL_PAR ... 82, 85
NEGATED ...83
NEXTLOOP ...77
NONNULL .. 53, 71
NOT operator... 53
NULL ... 53, 71, 98

OR operator ... 53
OVER... 76

PARSTRING ... 82, 85
POSITIONAL_PAR ... 82, 84
PRESENT ..83
PROJECT ..71

QUOTE ..66

RATE ...71
RAW ...85
RC ..79
READ ...90
RELTIME ..66
REPLACE ..67
REVERSE ..67
RPAD ...67
RUNRC ..71

SENSE ...68
SET .. 49, 89, 95
SETEXVAR ...131
SHIFT_LEFT ..122
SHIFT_RIGHT ..122
SIGNONID ..71
SIZE ...68
STRUCTURE ..50
SUBSTITUTE ...68
SYMBOLS ...51
SYSTEM_VARIABLES ...50

TASKNBR ...71
TERMTYPE ...71
TIME ..72
TIME_FORMAT .. 122, 127
TIME_WAIT ..123
TO ..76
TRANSLATE .. 124
TRIM ..68
TRUE ...56

UNTIL ...76
UPPERCASE ...69
USE_AS ...124

136 Reference Section: Appendix L

MTS 21: MTS Command Extensions and Macros

Revised February 1991

USER_VARIABLES ..50

VALUE ..50
VAR ..49
VARIABLE ..69
VARIABLES ..50

WHILE ...76
WRITE ...92

Reference Section: Appendix L 137

MTS 21: MTS Command Extensions and Macros

Revised February 1991

138 Reference Section: Appendix L

MTS 21: MTS Command Extensions and Macros

Revised February 1991

INDEX

−, 72
− operator, 51

¬=, 72, 73
¬= operator, 52, 53

flag character, 43
field selection, 55
... operator, 51

.EQ. operator, 52

.GE. operator, 52

.GT. operator, 52

.IS., 52

.IS. operator, 52

.ISNT., 52

.ISNT. operator, 52

.LE. operator, 52

.LT. operator, 52

.NE. operator, 52

<, 72
< operator, 52
<=, 72
<= operator, 52

+, 72
+ operator, 51
+=, 73
+= operator, 53

||, 72
|| operator, 51
||=, 73
||= operator, 53

&(, 48
&), 48

*, 72
* operator, 51
>, 43
*C_, 89

Index 139

MTS 21: MTS Command Extensions and Macros

Revised February 1991

*CMDMACLIB, 96

/, 72
/ operator, 51
/END, 96

>, 72
> operator, 52
>*, 77
>=, 72
>= operator, 52

:, 47, 72
: operator, 55

@CHECK, 89
@CLS, 80
@ETC, 82, 84
@MACRO, 100
@MACRO_FLAG_REQUIRED, 100
@MFR, 100
@NOMACRO, 79, 100
@NOMACRO_FLAG_REQUIRED, 100
@NOMFR, 100
@NOPROMPT, 82
@PKEY, 80
@PROMPT, 82
@RAW, 85
@RECURSIVE, 80
@SYSTEM, 48, 80

=, 72, 73
= operator, 52, 53

{, 48

ABS, 57
ABSENT, 83, 84
ABSTIME, 57
addition, 51
aggregates, 46
AND, 72
AND operator, 53
array, 46, 50, 58
array denotations, 57
array subscription, 54
attention interrupt, 91, 93, 98
ATTN, 91, 93, 98

BATCH, 69
BITAND, 121
BITNOT, 121

140 Index

MTS 21: MTS Command Extensions and Macros

Revised February 1991

BITOR, 121
Boolean, 46
Boolean constants, 56
BY, 76

CAN_CONVERT, 58
character constants, 56
character string, 46
CLS, 48
CLS_NAME, 70
CODE, 88
comments, 77
comparatives, 52
concatenation, 51, 72
CONSTANT, 45, 47
constants, 56
continuation lines, 78
CONTROL, 58
COST, 59
CPU_TIME, 70
CS_CODE, 70, 88
CS_ORIGIN, 70
CS_SUMMARY, 70, 88
CUINFO, 59

DATE, 70
definitional modifier, 82
DEFINE, 45, 46, 47
DISPLAY ARRAY, 50
DISPLAY FUNCTIONS, 50
DISPLAY MACLIB, 50
DISPLAY MACRO, 50
DISPLAY MACROS, 50, 96
DISPLAY STRUCTURE, 50
DISPLAY SYMBOLS, 51
DISPLAY SYSTEM_VARIABLES, 50, 69
DISPLAY USER_VARIABLES, 50
DISPLAY VALUE, 50
DISPLAY VARIABLES, 50
division, 51
DOES operator, 53
DOESNT operator, 53
DOUBLE, 60
DUPL, 60

EDIT, 97
ELSE, 74
ELSEIF, 74
EMIT, 97
end-of-file, 91, 96, 98
ENDFILE, 98
ENDFUNCTION, 93

Index 141

MTS 21: MTS Command Extensions and Macros

Revised February 1991

ENDIF, 74
ENDLOOP, 75
ENDMACRO, 81
EOF, 91
equal to, 52
ERR, 91, 93
ERRMSG, 91, 93
error messages, 43
error return, 91, 93
ERRRC, 91, 93
ETC, 82, 84
EVAL, 60
EXIST operator, 53
EXISTS operator, 53
EXIT, 88
EXITLOOP, 77
EXPLAIN, 42
expression, 55
EXTERNAL, 121

FALSE, 56
FDUB, 90, 91, 92, 93
FILE, 61
FILE_INFO, 61
FILES, 62
FIND_CHAR, 62
FIND_STRING, 63
FOR, 73, 76
FORGET, 48
FROM, 76, 90
FULL_SCREEN_POSSIBLE, 70
FUNCTION, 93
function call, 54, 72
FUNCTION_NAME, 85
FUNCTIONS, 50

GENERATE, 98
GETEXVAR, 131
GLOBAL, 45
GOTO, 74
greater than, 52
greater than or equal to, 52
GUINFO, 63

HEX, 121
hexadecimal input, 56
HOST_NAME, 70

IF, 74
IGNORE_CHAR, 63
in-line macros, 96
input, 90

142 Index

MTS 21: MTS Command Extensions and Macros

Revised February 1991

INSTALLATION, 70
INSTALLATION_CODE, 71
INSTALLATION_NAME, 71
integer, 46
integer constants, 56
INTEGER_FORMAT, 122, 125
INTEGER_PART, 64
IS, 72
IS operator, 52
ISNT, 72
ISNT operator, 52
iteration, 75

}, 48

LABEL, 73
LAST_SIGNON, 71
less than, 52
less than or equal to, 52
LIBGEN, 105
LIBLIST, 105
line number, 46
line-number constants, 56
LINENUMBER, 91, 93
LNR, 91, 93
LOCK, 64
logical connectives, 53
LOOP, 75
LOOP FOR, 73
LOWERCASE, 64
LPAD, 64
LTRIM, 65

MAC:LIBGEN, 105
MAC:LIBLIST, 105
MACLIB, 50, 80, 95
MACRO, 50, 81
macro flag character, 43
macro library, 95
MACRO_NAME, 85
MACROECHO, 89
MACROPROMPT, 82
MACROS, 50
MACROTRACE, 89
MAX, 65
MAX_SUBSCRIPT, 65, 86
MICROSECONDS, 65
MIN, 66
MIN_SUBSCRIPT, 66
MODIFIERS, 90, 92
MODS, 90, 92
multiplication, 51

Index 143

MTS 21: MTS Command Extensions and Macros

Revised February 1991

NBR_POSITIONAL_PAR, 82, 85
NEGATED, 83
negation, 51
NEXTLOOP, 77
NONNULL, 53, 71
NOT, 72
not equal to, 52
NOT operator, 53
NULL, 53, 71, 98
numeric operators, 51

ON, 92
OR, 72
OR operator, 53
output, 92
OVER, 76

PARSTRING, 82, 85
POSITIONAL_PAR, 82, 84
PREFIX, 91, 93
PRESENT, 83
PROJECT, 71

QUOTE, 66

RATE, 71
RAW, 85
RC, 57, 59, 63, 79
READ, 90
RELEASE, 91, 93
RELTIME, 66
REPLACE, 67
return code, 57, 59, 63, 79
REVERSE, 67
RPAD, 67
RUNRC, 71

scope, 47
SENSE, 68
SET, 89
SET VAR, 49, 95
SETEXVAR, 131
SHIFT_LEFT, 122
SHIFT_RIGHT, 122
SIGNONID, 71
SIZE, 68
SQD, 48, 49
string operators, 51
string substitution, 48, 55
structure, 46, 50
subscription, 72
SUBSTITUTE, 68

144 Index

MTS 21: MTS Command Extensions and Macros

Revised February 1991

substitution, 53, 73
substring, 51, 72
subtraction, 51
SYMBOLS, 51
SYSTEM_VARIABLES, 50, 69

table, 46
TASKNBR, 71
TERMTYPE, 71
TIME, 72
TIME_FORMAT, 122, 127
TIME_WAIT, 123
TO, 73, 76
TRANSLATE , 124
TRIM, 68
TRUE, 56
types, 46

UNTIL, 76
UPPERCASE, 69
USE_AS, 124
USER_VARIABLES, 50

VALUE, 50
VAR, 49
VARIABLE, 69
variables, 45, 50, 55

WHILE, 76
WRITE, 92

00000000, 96

Index 145

MTS 21: MTS Command Extensions and Macros

Revised February 1991

146 Index

MTS 21: MTS Command Extensions and Macros

Revised February 1991

Reader’s Comment Form
--

MTS Command Extensions and Macros

Revised February 1991

--

Errors noted in publication:

--

Suggestions for improvement:

--

Date ___

Name __

Address __

Your comments will be greatly appreciated. Please fold the completed form as shown on the reverse
side, seal or staple, and drop in Campus Mail or in the Suggestion Box at any Campus Computing Site.

147

MTS 21: MTS Command Extensions and Macros

Revised February 1991

fold here

--

Documentation Group
ITD Consulting and Support Services
The University of Michigan
611 Church, 2nd Floor
Ann Arbor, Michigan 48104-3056
USA

--
fold here

148

