

 M T S

 The Michigan Terminal System

 Volume 13: The Symbolic Debugging System

 September 1985

 The University of Michigan Computing Center

 Ann Arbor, Michigan

 1

 DISCLAIMER

 The MTS Manual is intended to represent the current state of the

 Michigan Terminal System (MTS), but because the system is constantly

 being developed, extended, and refined, sections of this volume will

 become obsolete. The user should refer to the Computing Center _________ ______

 Newsletter, Computing Center Memos, and future Updates to this volume __________

 for the latest information about changes to MTS.

 Copyright 1985 by the Regents of the University of Michigan. Copying is

 permitted for nonprofit, educational use provided that (1) each repro-

 duction is done without alteration and (2) the volume reference and date

 of publication are included. Permission to republish any portions of

 this manual should be obtained in writing from the Director of the

 University of Michigan Computing Center.

 2

 MTS 13: The Symbolic Debugging System

 September 1985

 PREFACE _______

 The software developed by the Computing Center staff for the

 operation of the high-speed processor computer can be described as a

 multiprogramming supervisor that handles a number of resident, reentrant

 programs. Among them is a large subsystem, called MTS (Michigan

 Terminal System), for command interpretation, execution control, file

 management, and accounting maintenance. Most users interact with the

 computer’s resources through MTS.

 The MTS Manual is a series of volumes that describe in detail the

 facilities provided by the Michigan Terminal System. Administrative

 policies of the Computing Center and the physical facilities provided

 are described in a separate publication entitled Introduction to ________________

 Computing Center Services. _________________________

 The MTS volumes now in print are listed below. The date indicates

 the most recent edition of each volume; however, since volumes are

 updated by means of CCMemos, users should check the Memo List, copy the

 files *CCMEMOS or *CCPUBLICATIONS, or watch for announcements in the

 Computing Center Newsletter, to ensure that their MTS volumes are fully ____________________________

 up to date.

 Volume 1: The Michigan Terminal System, January 1984 ____________________________

 Volume 2: Public File Descriptions, April 1982 ________________________

 Volume 3: System Subroutine Descriptions, April 1981 ______________________________

 Volume 4: Terminals and Networks in MTS, March 1984 _____________________________

 Volume 5: System Services, May 1983 _______________

 Volume 6: FORTRAN in MTS, October 1983 ______________

 Volume 7: PL/I in MTS, September 1982 ___________

 Volume 8: LISP and SLIP in MTS, June 1976 ____________________

 Volume 9: SNOBOL4 in MTS, September 1975 ______________

 Volume 10: BASIC in MTS, December 1980 ____________

 Volume 11: Plot Description System, August 1978 _______________________

 Volume 12: PIL/2 in MTS, December 1974 ____________

 Volume 13: The Symbolic Debugging System, September 1985 _____________________________

 Volume 14: 360/370 Assemblers in MTS, May 1983 _________________________

 Volume 15: FORMAT and TEXT360, April 1977 __________________

 Volume 16: ALGOL W in MTS, September 1980 ______________

 Volume 17: Integrated Graphics System, December 1980 __________________________

 Volume 18: The MTS File Editor, August 1985 ___________________

 Volume 19: Tapes and Floppy Disks, February 1983 ______________________

 Other volumes are in preparation. The numerical order of the volumes

 does not necessarily reflect the chronological order of their

 appearance; however, in general, the higher the number, the more

 specialized the volume. Volume 1, for example, introduces the user to

 3

 MTS 13: The Symbolic Debugging System

 September 1985

 MTS and describes in general the MTS operating system, while Volume 10

 deals exclusively with BASIC.

 The attempt to make each volume complete in itself and reasonably

 independent of others in the series naturally results in a certain

 amount of repetition. Public file descriptions, for example, may appear

 in more than one volume. However, this arrangement permits the user to

 buy only those volumes that serve his or her immediate needs.

 Richard A. Salisbury

 General Editor

 4

 MTS 13: The Symbolic Debugging System

 September 1985

 PREFACE TO VOLUME 13 ____________________

 The September 1985 revision reflects the changes that have been made

 to the Symbolic Debugging System since November 1980.

 5

 MTS 13: The Symbolic Debugging System

 September 1985

 6

 MTS 13: The Symbolic Debugging System

 September 1985

 Contents ________

 Preface 3 ALTER 56

 AT 57

 Preface to Volume 13 5 ATTRIBUTE 59

 BREAK 60

 Debug Mode 9 CLEAN 62

 Basic Concepts 11 COMMENT 63

 Storage Reference CONTINUE 64

 Expressions 12 DEACTIVATE 65

 Keyword Modifiers 17 DEBUG 66

 Predefined Symbols 20 DISPLAY 67

 Indirection 20 DROP 68

 SDS Constants 22 DUMP 69

 Output Conversion 26 END 72

 SDS Relational and FORGET 73

 Logical Expressions 27 FULLDISPLAY 74

 Current Symbol Character . 28 GOTO 75

 Program Returns, Dynamic HELP 76

 Loading, and Interrupt HEXDISPLAY 77

 Processing 29 IF 78

 Breakpoint Processing 31 IGNORE 80

 The SDS Simulator 32 INCLUDE 81

 Control Section Processing . 34 LIST 82

 Debugging Assembler MAP 83

 Language Programs 36 MCMD 85

 Debugging FORTRAN-G Programs 38 MODIFY 86

 Debugging FORTRAN-H Programs 40 MTS 88

 Debugging VS FORTRAN ON 89

 Programs 41 PARLIST 92

 Debugging PL/I Programs . . . 42 QUALIFY 93

 Organization of a PL/I RESET 94

 Program 42 RESTORE 95

 Data Variable RETURN 96

 Specification 44 RUN 97

 Special Data SCAN 99

 Specifications 45 SDS101

 Debugging PL360 Programs . . 48 SET102

 Miscellaneous Concepts . . . 50 STEP 109

 Terse Mode 50 STOP 110

 Automatic Error-Dumping SYMBOL 111

 in Batch 50 TIMETALLY112

 Using SDS Without a TRACE116

 Loaded Program 51 UNDO 120

 Initializing, Resetting, USING121

 and Terminating SDS WHEN 122

 Processing 52

 Debug Command Definitions . . 53 Using Errordumps and Load Maps 127

 ACTIVATE 55 Index133

 7

 MTS 13: The Symbolic Debugging System

 September 1985

 8

 MTS 13: The Symbolic Debugging System

 September 1985

 DEBUG MODE __________

 The Symbolic Debugging System (SDS) is a conversational facility for

 testing and debugging programs. This facility was originally provided

 for 360/370-assembler language programs, but it has been extended to

 include FORTRAN, PL/I, and PL360 programs. SDS enables the user to

 initiate the execution of a program and monitor its performance by

 displaying or modifying instructions and data at strategic points in the

 program.

 SDS may be invoked in an explicit manner with the MTS command

 $DEBUG FDname

 where "FDname" is the file or device containing the program to be

 debugged. The parameters to the $DEBUG command are the same as those

 for the $RUN command; hence, if the program refers to logical I/O units

 or has a PAR field, these also may be included on the $DEBUG command,

 i.e.,

 $DEBUG program SCARDS=input SPRINT=output PAR=options

 The user communicates with SDS by entering debug commands from his _____ ________

 terminal. SDS prints the prefix character "+" when it is requesting a

 command. This prefix character also precedes all SDS messages and

 diagnostics. Initially, debug commands are read from the pseudodevice

 SOURCE and SDS output messages and error diagnostics are written on

 SINK. Commands may be entered in either upper- or lowercase.

 When the program has been successfully loaded, SDS prints

 +Ready

 +

 at which point SDS is ready for its first command. Debug commands may

 be used to execute a portion (or all) of the program being debugged, to

 establish special conditions that SDS should recognize, or to request

 that specific storage locations be displayed or modified. For instance,

 the RUN command initiates execution of the program, and the MAP command

 lists relevant information about each loaded section. The BREAK command

 is provided to insert breakpoints at strategic locations in the program.

 If a program interrupt occurs during execution, or if a breakpoint is

 encountered, control is returned to SDS which explains why the program

 has stopped running and requests another command. The DISPLAY command

 may then be used to selectively examine specific locations in memory or

 the contents of the general and floating-point registers. Changes to

 data and instructions may be made with the MODIFY command. The program

 may be restarted with the CONTINUE command. In this manner, the user

 Debug Mode 9

 MTS 13: The Symbolic Debugging System

 September 1985

 may "step" through the program and monitor its performance. A complete

 description of the debug command language appears at the end of this

 section.

 Logical I/O unit assignments and PAR field information may be

 specified on the $DEBUG command in the same format as with the $RUN

 command. If the user has omitted these assignments from the $DEBUG

 command or desires to change or reset any of the assignments, this may

 be done by the SET debug command. For example, after issuing the MTS _____

 command

 $DEBUG -LOAD

 the debug command

 SET 5=DATA 6=RESULTS PAR=LIST

 assigns the files DATA and RESULTS to logical I/O units 5 and 6,

 respectively, and sets the PAR field to the character string LIST. This

 is the same as if the MTS command

 $DEBUG -LOAD 5=DATA 6=RESULTS PAR=LIST

 had been issued originally.

 Assigning logical I/O units with the SET command may be used to

 rewind sequential or line files or to assign new line number ranges for

 line files but will not affect the status of other types of pseudo-

 devices (such as *SOURCE* and the position of tapes). The PAR option

 must be the last parameter specified since the remainder of the input

 line is taken as the PAR field.

 Alternatively, SDS may be invoked implicitly by entering the MTS

 command

 $SET DEBUG=ON

 All programs loaded after this point are processed by SDS. The MTS

 commands $RUN and $START/$RESTART do not start execution of the program

 directly, but transfer control to SDS with an implicit debug command of

 RUN or CONTINUE (respectively). SDS will intercept any error that

 occurs, print an error comment, and return to the caller (normally MTS

 command mode). At this point the user may explicitly enter debug

 command mode with the MTS command

 $SDS

 to determine what went wrong with his program. This mode of operation

 may by disabled by the MTS command

 $SET DEBUG=OFF

 10 Debug Mode

 MTS 13: The Symbolic Debugging System

 September 1985

 The default for the DEBUG option is OFF. When the DEBUG option is

 ON, all user programs, language translators, and other publicly avail-

 able programs are processed by SDS; hence, the user should be aware of

 which programs he does and does not want SDS to process. Normally, when

 the user is not running one of his own programs, the DEBUG option should

 be OFF.

 The user may specify a local time limit on the $DEBUG command, e.g.,

 $DEBUG program T=s

 The time limit specified applies only to the execution time of the _________ ____ __ ___

 user’s program; time spent in processing SDS commands is not included. ______ _______

 When the local time limit is exceeded, execution of the user’s is

 suspended. The user may subsequently resume execution with the CONTINUE

 command. When execution is resumed, a new local time limit is

 established which is the time limit specified by the MTS TIME option;

 the default is no time limit.

 BASIC CONCEPTS ______________

 The most useful feature of SDS is the ability to selectively refer to

 locations in the program being debugged. Locations referenced may be

 either locations within the executable code (e.g., the entry point to a

 subroutine) or locations that contain data. Storage locations may be

 referenced symbolically, by relative address, or by absolute (virtual)

 address. In the symbolic mode, a location is referred to by the symbol

 assigned to that location at program translation time.

 Symbolic referencing is possible only with those language processors

 which generate a symbol table with the object programs they produce.

 This symbolic information is contained in SYM records in the object

 module. Currently, SYM records are generated by the 360/370 Assembler-H

 (*ASMH), the FORTRAN-G and FORTRAN-H compilers (*FTN), the VS FORTRAN

 compiler (*FORTRANVS), the PL/I-F compiler (*PL1F), and the PL360

 compiler (*PL360). With these processors, the TEST or SYM parameter

 must be specified for the processor to produce symbol table information.

 The formats are:

 $RUN *ASMH SCARDS=source SPUNCH=object PAR=TEST

 $RUN *FTN SCARDS=source SPUNCH=object PAR=TEST

 $RUN *FTN SCARDS=source SPUNCH=object PAR=OPT=H,TEST

 $RUN *FORTRANVS SCARDS=source SPUNCH=object PAR=SYM

 $RUN *PL1 SCARDS=source SPUNCH=object PAR=TEST

 Debug Mode 11

 MTS 13: The Symbolic Debugging System

 September 1985

 $RUN *PL360 SCARDS=source SPUNCH=object PAR=TEST

 When referencing by relative or virtual addresses, SDS will process

 most other loaded programs which were produced by a language translator

 that generates an object module. This excludes interpretive translators

 such as WATFIV, IF, and SNOBOL4.

 Storage Reference Expressions _____________________________

 Since the principle function of SDS is to provide a convenient means

 of debugging programs, a powerful and flexible method for specifying

 storage locations must be available. The means for specifying storage

 locations must have the capability of resolving potential ambiguities

 that may arise when character strings may be interpreted as symbols or

 as hexadecimal numbers or when strings of hexadecimal digits may be

 confused with strings of decimal digits. The constructs that are used

 to refer to storage locations are call storage reference expressions. _______ _________ ___________

 Throughout this description of SDS, the terms "location" and "storage

 reference expression" are used interchangeably.

 The general form of as SDS storage reference expression is

 S(i)±j

 where "S" may be

 (1) a symbolic location in the source language program,

 (2) a relative address within an object module assigned at assembly

 or compilation time, or

 (3) an absolute (virtual) address corresponding to a location within

 the loaded program.

 "i", an optional index, is, in its simplest form, a signed or unsigned ________

 decimal integer, and "j", an optional displacement, is a hexadecimal _______ ________ ___________

 integer. In determining the location to be referenced, the index

 specifies the ith element (e.g., data item, instruction) of an array _

 relative to the base "S" and the displacement specifies the number of

 bytes to be added to (or subtracted from) the location indicated by

 S(i).¹ A storage reference expression is terminated by a blank.

 Examples of valid storage reference expressions are:

 ¹The complete specification for the components of a storage reference

 expression are more complex than the simple definitions given here.

 The complete definition is given later in this subsection.

 12 Debug Mode

 MTS 13: The Symbolic Debugging System

 September 1985

 Expression Form __________ ____

 ALPHA S

 ALPHA(4) S(i)

 ALPHA(-3) S(i)

 BETA+1C S+j

 BETA(24)+10 S(i)+j

 When specifying the "S" component of a storage reference expression, it

 may be necessary to distinguish explicitly between a symbolic, relative,

 or absolute address. For example, "A14" could be interpreted as the

 symbol A14 or the relative or absolute address A14 (hex). By default,

 an "S" component beginning with a letter is treated as a symbol; if it

 is not a defined symbol within the program, an attempt is made to treat

 it as a hexadecimal relative or absolute address. If the "S" component

 begins with a decimal digit (0-9), the symbol is always treated as a

 relative or absolute address. Furthermore, an "S" component that does

 not begin with a letter is treated by default as a relative hexadecimal

 address if its value is less than 100000 (hex) and is treated as an

 absolute hexadecimal address if its value is equal to or greater than

 100000 (hex). The following table provides several examples of default

 interpretation.

 Expression Interpretation __________ ______________

 A14 symbol or relative address

 0A14 relative address

 B1234 symbol or relative address

 5B1234 absolute address

 XYZ symbol only

 When it is necessary to override the default interpretation, one of the

 modifiers @Q, @R, or @A, may be appended to the expression to force

 interpretation as a symbol, relative address, or absolute address,

 respectively. Thus, 0A14 and A14@R both specify a relative hexadecimal

 address location and B1234@A specifies an absolute hexadecimal address.

 As stated above, the simplest forms for indices and displacements are

 decimal and hexadecimal constants, respectively. When it is more

 convenient to represent an index using a hexadecimal constant or a

 displacement using a decimal constant, the modifiers @X and @D may be

 appended to the constant to force interpretation as a hexadecimal or

 decimal number, respectively. Thus,

 BETA(18@X)+16@D

 is equivalent to

 BETA(24)+10

 For FORTRAN or PL/I arrays, the index "i" may be a series of indices

 separated by commas. Multiple indices may specified, corresponding to

 the

 Debug Mode 13

 MTS 13: The Symbolic Debugging System

 September 1985

 A(6)

 B(4,3)

 C(0,0,0,-1)

 To provide further generality in the specification of storage

 references, both indices "i" and displacements "j" may be storage

 reference expressions. An index may be given in the form S(i) and a

 displacement may be given in the form S(i). Displacements may not be

 used on recursive storage reference expressions. When an index or

 displacement is expressed as a storage reference rather than as a simple

 numeric constant, the contents of the location specified is used for the

 index or displacement. As many levels of recursion as desired may be

 specified. For example, the expression

 A(K)

 specifies that the contents of the location whose symbolic reference is ________

 K is to be used as the index of the array A in computing the actual

 location referenced. Similarly,

 B(A(K))

 is a storage reference using two levels of recursion. Indices and

 displacements are treated as numeric constants where possible. Thus,

 ALPHA+A

 refers to the location ALPHA plus ten bytes since displacements are

 normally treated as hexadecimal constants, but

 ALPHA+A@Q

 refers to the location ALPHA plus a displacement specified by the

 contents of the location whose symbol is A (@Q forces symbolic

 interpretation) and

 ALPHA+A@R

 refers to the location ALPHA plus a displacement specified by the

 contents of location whose relative address within the program is 00000A

 (hex). Multiple symbolic indices may be used for FORTRAN and PL/I

 arrays.

 In addition, "i" and "j" may also be arithmetic expressions using the

 operators +, -, *, and / and any necessary levels of parentheses to

 achieve the desired order of computation. Elements in these arithmetic

 expressions may be constants or storage reference expressions. For

 example,

 ALPHA(I+2)

 ALPHA(I*2+1)

 ALPHA((I+10)/2)

 14 Debug Mode

 MTS 13: The Symbolic Debugging System

 September 1985

 ALPHA+7A0-16

 ALPHA+(1C+20)*2

 Numeric constants used in indices are treated as decimal while numeric

 constants used in displacements are treated as hexadecimal unless

 overridden by the @X or @D modifiers, respectively.

 The following 360/370-assembler language program illustrates the use

 of storage reference expressions.

 000000 PROG CSECT

 000000 USING *,15

 000000 5810 F014 L 1,ALPHA

 000004 5A10 F018 AD A 1,C

 000008 5010 F014 ST 1,ALPHA

 00000C 58A0 F01C L 10,VSYS

 000010 07FA BR 10

 000014 0000000A ALPHA DC F’10’

 000018 00000014 C DC F’20’

 00001C 00000000 VSYS DC V(SYSTEM)

 000020 GAMMA DS 20F

 000070 1C022C333C1C022C DELTA DC 2P’1,22,333’

 END

 To display the current contents of a location, the DISPLAY command

 may be used, e.g.,

 DISPLAY ALPHA

 converts the contents of ALPHA according to its type and length (as

 determined by information provided by SYM records) and prints the

 result. The type refers to the format in which it is displayed (e.g.,

 fixed-point, floating-point, character, hexadecimal, etc.) and the

 length refers to the number of bytes that are displayed. If ALPHA (a

 fullword integer) from the above program is displayed (before the

 program is executed), the result is

 ALPHA FL4’+10’

 The length is given for types E, F, P, and Z. Similarly,

 DISPLAY C

 would produce

 C FL4’+20’

 Locations may also be referred to by the relative addresses assigned

 at translation time. To display the contents of the relative location

 C, as opposed to the symbolic location C, the command

 DISPLAY 0C

 Debug Mode 15

 MTS 13: The Symbolic Debugging System

 September 1985

 or

 DISPLAY C@R

 may be used. This displays the instruction at location 00000C in the

 form

 AD(3) I: L 10,X’1C’(0,15)

 The @R modifier is used to indicate a relative address. If no symbol

 table was provided at translation time, the contents of the location is

 printed in hexadecimal format as

 0000000C X’58A0F01C’

 The user may display any addressable location in his virtual memory

 by specifying an absolute (virtual) address. To display the contents of

 the absolute location 816A28, the command is

 DISPLAY 816A28

 If possible, the contents of 816A28 are converted according to type and

 length and displayed on the user’s terminal. If the address given

 specifies an illegal, an unreferenced, or a protected page, an error

 message is produced.

 A special form of storage reference expression, the block storage _____ _______

 reference (or simply the storage block), is provided to specify a range _________

 of locations. A storage block is represented by two storage reference

 expressions separated by exactly three periods (no embedded blanks are

 allowed). The general form is

 S(i)±j...S(i)±j

 For example, to display the linear array GAMMA of dimension 20, the

 command is

 DISPLAY GAMMA(1)...GAMMA(20)

 If the symbol for the upper-bound address is identical to that of the

 lower-bound address, it may be omitted, e.g.,

 DISPLAY GAMMA(1)...(20)

 Blocks may be used to specify any range of addresses as shown in the

 following examples:

 DISPLAY ALPHA...GAMMA(2)

 DISPLAY 9C0...A28@R

 DISPLAY 816000...816A28

 The upper-bound address must be greater than the lower-bound address.

 16 Debug Mode

 MTS 13: The Symbolic Debugging System

 September 1985

 Keyword Modifiers _________________

 It is often useful to override the implied or assumed type and length

 attributes of a referenced location. SDS provides a set of keyword

 modifiers which temporarily override the attributes by explicitly

 specifying new attributes. A keyword modifier consists of the modifier

 character "@" followed by a keyword describing the modifier.

 SDS recognizes the following keyword modifiers:

 @TYPE=xLi sets the type and length attributes to "x" and "i", _

 respectively. The length attribute may be omitted. "x"

 may be any of the type-codes defined below; "i" may be

 any length attribute as defined with the LENGTH modifier

 below.

 x Type Attribute _ ____ _________

 A A-type address constant

 B binary

 C character (EBCDIC)

 D floating-point (long)

 E floating-point (long or short)

 F fixed-point integer

 G varying character string

 H fixed-point integer (halfword)

 I instruction

 L logical (FORTRAN)

 M complex (FORTRAN)

 N floating-point (extended precision)

 P packed decimal

 S S-type address constant

 V V-type address constant

 W channel command word

 X hexadecimal

 Y Y-type address constant

 Z zoned decimal

 @LENGTH=i sets the length attribute to "i", where "i" is an _

 unsigned decimal integer. "i" may range from 1 to

 65535. The standard default is 4; this is the value

 used when there is no symbol information associated with

 the specified address.

 @CSECT=cs restricts the storage reference to the control or common _

 section "cs". If the symbol is not found in the section

 specified, the search is extended to the entire program;

 if the symbol is found in another section, that occur-

 rence is used and the warning message

 "nnnnnnnn" definition used from section xxxxxxxx

 Debug Mode 17

 MTS 13: The Symbolic Debugging System

 September 1985

 is printed. This extended search may be suppressed by

 the SET FULLSEARCH=OFF command.

 @GEN=i restricts the storage reference to generation "i" of the _

 current control section.

 @DSECT=ds restricts the storage reference to the dsect "ds". If _

 the symbol is not found in the section specified, the

 search is extended to the entire program; if the symbol

 is found in another section, that occurrence is used and

 the warning message under "@CSECT" is printed.

 @PRO=xxx restricts the storage reference to the external proce- _

 dure "xxx" (PL/I programs only).

 @BLOCK=i restricts the storage reference to block level "i" of an _

 external procedure (PL/I programs only).

 @INV=i restricts the storage reference to invocation "i" of a _

 recursive procedure or controlled data variable (PL/I

 programs only).

 @#nn specifies the compilation statement number for the data

 variable (PL/I programs only).

 Keyword modifiers may be appended either to commands or to storage

 reference expressions. If they are appended to a command, they apply to

 all storage reference expressions appearing in the command; if they are

 appended to a storage reference expression, they apply only to that

 expression. A keyword modifier appended to a storage reference expres-

 sion overrides a keyword appended to a command.

 For example, the user may wish to display a symbol in its hexadecimal

 representation. In the following example, the TYPE keyword modifier is

 appended to the symbol ALPHA. The code following the "=" is the type

 code for hexadecimal formatting, as defined below. The command

 DISPLAY ALPHA@TYPE=X

 displays the contents of ALPHA (from the previous program) as

 ALPHA X’0000000A’

 If a length attribute of 8 were also applied, the command would be

 DISPLAY ALPHA@TYPE=XL8

 and the symbol would be displayed as

 ALPHA X’0000000A 00000014’

 Only the first letter of any keyword modifier need be entered; hence,

 the preceding example could be given as

 18 Debug Mode

 MTS 13: The Symbolic Debugging System

 September 1985

 DISPLAY ALPHA@T=XL8

 If both ALPHA and BETA are to be displayed using a length attribute

 of 8, the TYPE modifier may be appended to the command, e.g.,

 $DISPLAY@T=8 ALPHA BETA

 As many keyword modifiers as needed may be appended to a parameter.

 For blocks, the TYPE and LENGTH modifiers may be appended to either the ______

 upper-bound or lower-bound address, e.g.,

 DISPLAY 816000@T=FL4...816020

 or

 DISPLAY 816000...816020@T=FL4

 It is often desirable to restrict the use of an SDS parameter to a

 single control or common section by the use of the CSECT keyword

 modifier. This is normally done when a symbol or relative address is

 defined in more than one section. For example,

 DISPLAY BETA@C=SUBR

 displays the contents of location BETA in the section SUBR. The CSECT

 modifier may be applied to either the lower- or upper-bound address of a

 block parameter.

 The symbol BLANK may be used for referring to blank-named common

 sections. For example, in a FORTRAN program, the variable A in a

 blank-named common section may be displayed by

 DISPLAY A@C=BLANK

 If the program already has a control section or common section by the

 name of BLANK, the SET command may be used alter the blank-named common

 symbol. The use of BLANK as a blank-named common symbol will not

 interfere with the use of BLANK for other symbols in the program.

 If a control section of a given name appears more than once in the

 program, the GEN keyword modifier can be used to specify the desired

 occurrence of that section. The first time a control section of a given

 name is loaded, it is assigned the generation number 1, the second time

 it is loaded, it is assigned the generation number 2, etc. The command

 DISPLAY BETA@C=SUBR@G=2

 displays the contents of location BETA in the second occurrence of

 section SUBR.

 The DSECT keyword modifier can be used to restrict an SDS parameter

 to a particular dummy control section, or dsect, when that symbol is

 defined in both a control section and a dsect.

 Debug Mode 19

 MTS 13: The Symbolic Debugging System

 September 1985

 The modifier character may be changed by the SET MODCH=x command, so

 that symbols containing an "@" character can be referred to in SDS

 parameters.

 Predefined Symbols __________________

 SDS predefines a small number of "useful" symbols. For instance, to

 display the contents of all of the general registers, the predefined

 symbol "GRS" is used, e.g.,

 DISPLAY GRS

 To refer to the ith general register, the symbol "GRi" is used, where _

 "i" is the register number, ranging from 0-15 (decimal), or 0-9 and A-F

 (hex).

 Similarly, to refer to the floating-point registers, the symbol "FRS"

 is used. To refer to the jth floating-point register, the symbol "FRj" _

 is used, where "j" is 0, 2, 4, or 6.

 The @T=F and @T=E modifiers may be applied to GRS and FRS,

 respectively, to obtain fixed-point and floating-point conversion of the

 general and floating-point registers.

 To refer to the current program status word (PSW), the symbol "PSW"

 is used.

 To refer to a program-defined location with the same name as an SDS

 predefined symbol, the @Q modifier must be appended to the symbol.

 Thus, to display the program-defined symbol GR7, the command is

 DISPLAY GR7@Q

 whereas, to display general register 7, the command is

 DISPLAY GR7

 Indirection ___________

 A level of indirection through any storage reference may be achieved

 by placing the indirection character "$" at the front of the storage

 reference. The storage reference is assumed to contain a four-byte

 address which is used by SDS as the effective address. For example, to

 display the contents of the location whose address is contained in

 general register 6, the command is

 20 Debug Mode

 MTS 13: The Symbolic Debugging System

 September 1985

 DISPLAY $GR6

 whereas, to display the contents of general register 6, the command is

 DISPLAY GR6

 As many levels of indirection as needed may be achieved by placing the

 appropriate number of indirection characters at the front of the

 parameter. For example, to display the location whose address is

 contained in the location pointed to by general register 2, the command

 is

 DISPLAY $$GR2

 SDS stops at the first illegal address encountered and reports the

 indirection level. An illegal address is an address which specifies a

 protected page, an unreferenced page, or a nonexistent page. The chain

 of indirection need not be contained in SDS-processed control sections.

 By convention, the indirection operator applied to the PSW, i.e.,

 DISPLAY $PSW

 displays the location addressed by the current PSW.

 The indirection operator has higher precedence than "±" used to add a

 displacement, e.g., the expression $ADDR+4 takes the contents of ADDR

 and then adds 4 to form a new address, whereas the expression $(ADDR+4)

 adds 4 to the address of ADDR to form the address used for the

 indirection. A storage reference may be parenthesized to any desired

 level to cause the indirection operator to be applied to the desired

 part. The indirection operator normally applies to a symbol and its

 index (but not the displacement). The following table shows how

 parenthesizing may be used.

 Parameter Part Operated on by $ _________ _____________________

 $ADDR+4 ADDR

 $(ADDR+4) ADDR+4

 $ADDR(2) ADDR(2)

 $(ADDR)(2) ADDR(2)

 ($ADDR)(2) ADDR

 $ADDR(2)+4 ADDR(2)

 $(ADDR(2)+4) ADDR(2)+4

 The indirection character may be changed by the SET INDCH=x command,

 so that symbols beginning with a "$" can be referred to in SDS

 parameters.

 Debug Mode 21

 MTS 13: The Symbolic Debugging System

 September 1985

 SDS Constants _____________

 SDS constants may be specified with the MODIFY and SCAN commands,

 i.e.,

 MODIFY S(i)±j constant

 SCAN S(i)±j constant

 In addition, they may be elements in SDS relational and logical

 expressions (see the subsection "SDS Relational and Logical

 Expressions").

 The format of the SDS constant allows the inclusion of type and

 length attributes on the constant expression (in a manner similar to the

 360/370-assembler language). The prototype is

 xLi’nnnn’

 where "x" is the type, "Li" is the length, and "nnnn" is the constant;

 the type and length attributes may be omitted. The values for "x" and

 "i" may be any of the values that are legal with the @T=x and @L=i

 modifiers. If the type and length attributes are omitted, the standard

 defaults are assumed. Examples of SDS constants are

 A’LABEL’

 AL2’LABEL2’

 C’A ’ or CL3’A’

 F’3’

 FL2’10’

 X’4D56’

 E’4.6’

 When used with the MODIFY and SCAN commands, explicit type and length

 attributes will override the implicit or explicit attributes of the

 first argument of the MODIFY or SCAN commands.

 MODIFY ALPHA CL8’ABCDEFGH’

 MODIFY ALPHA@T=CL8 ’ABCDEFGH’

 The above two commands are synonymous.

 The rules for forming each type of SDS constant are given below.

 A-type adcon - If the length of the parameter is three or four

 bytes, the constant may be any legal virtual

 address, relative address, or program-defined sym-

 bol. If the address is less than 100000 (hex), the

 current section base and relocation factor are added

 to produce a virtual address. If the length of the

 parameter is one or two bytes, the constant is

 treated as a fixed-point decimal integer of length

 one or two, respectively. The example below modi-

 22 Debug Mode

 MTS 13: The Symbolic Debugging System

 September 1985

 fies the location ADDR to contain the address of the

 symbol LOOP.

 MODIFY ADDR A’LOOP’

 Binary - A binary constant is a string consisting of the

 characters 0, 1, and *. The characters 0 and 1

 indicate that the corresponding bit positions are

 taken as 0 and 1, respectively. The character *

 indicates that the corresponding bit position is to

 be ignored. For the MODIFY command, * means that

 the corresponding bit position is left unchanged.

 For the SCAN command, * means that the corresponding

 bit position is taken as 0. For an SDS relational

 expression, * means that the corresponding bit

 position is not tested in the relation. The maximum

 length for a binary constant is 64 bits. In the

 following example, bits 1 and 2 of the variable SWS

 are modified to 1 and 0, respectively; all other

 bits are left unchanged. (Bits are numbered left to

 right starting with bit zero.)

 MODIFY SWS B’*10*****’

 Character - Any of the valid EBCDIC characters may be designated

 in a character constant. Only one character con-

 stant may be specified in the second operand to the

 MODIFY command. Special attention must be given to

 representing primes as characters; each single prime

 desired as a character in the constant must be

 represented as a pair of primes. The maximum length

 of a character constant is 256 bytes. Two consecu-

 tive primes are counted as one character. If the

 number of characters given is less than the speci-

 fied length, the constant is padded on the right

 with blanks.

 MODIFY CHAR C’ABCDE’

 MODIFY CHAR2 CL8’A’

 CCW - Channel command words are treated as hexadecimal

 constants of length 8.

 Complex - A complex constant consists of a pair of floating-

 point constants, separated by a comma or a blank.

 The first constant is the real part and the second

 constant is the imaginary part. If only one con-

 stant is specified, only the real part is used. The

 length of the entire complex constant is 8 or 16

 bytes. Complex constants are used primarily in

 FORTRAN programs. In the examples below, the loca-

 tion COMP1 is modified to contain 3.0 and 4.0 for

 the real and imaginary parts of a complex number,

 Debug Mode 23

 MTS 13: The Symbolic Debugging System

 September 1985

 respectively, and the location COMP2 is modified to

 contain 5.0 as the real part with the imaginary part

 being unchanged. When only the real part is being

 modified, the E (floating-point) qualifier must be

 used.

 MODIFY COMP1 M’3.0,4.0’

 MODIFY COMP2 E’5.0’

 Fixed-point - A fixed-point constant is written as a signed or

 unsigned decimal number. A fixed-point constant may

 vary in length from one to four bytes. Fixed-point

 constants are right-justified and padded with lead-

 ing zeros. In the example below, the location FIX

 is modified to the constant 2.

 MODIFY FIX F’2’

 Floating-point - A floating-point constant is written as a decimal

 number. As an option, a decimal exponent may

 follow. The number may be an integer, a fraction,

 or a mixed number. If the length of the constant is

 4 bytes or less, the constant is treated as a

 short-precision constant; otherwise, it is treated

 as a long-precision constant. The format of the

 constant is as follows:

 (1) The number is written as a signed or unsigned

 decimal value. The decimal point can be placed

 before, within, or after the number. If it is

 omitted, the number is assumed to be an integer.

 A positive number is assumed if an unsigned

 constant is specified.

 (2) The exponent is optional. If specified, it is

 written immediately after the number as En,

 where "n" is an optionally signed decimal value

 specifying the exponent of the factor 10. The

 value of the constant may be in the range of

 .723700515E+76 to .539760535E-78. If an

 unsigned exponent is specified, a plus sign is

 assumed.

 In the following examples, the parameter XY is

 modified to 46.415.

 MODIFY XY E’46.415’

 MODIFY XY E’46415E-3’

 MODIFY XY E’+.46415E2’

 Hexadecimal - A hexadecimal constant consists of one or more of

 the hexadecimal digits 0-9 and A-F. Only one

 hexadecimal constant may be specified in the second

 operand for the MODIFY command. The maximum length

 24 Debug Mode

 MTS 13: The Symbolic Debugging System

 September 1985

 of a hexadecimal constant is 256 bytes. Constants

 that contain an even number of digits are translated

 as one byte per pair of digits. If an odd number of

 digits is specified, a leading zero is assumed to

 provide an even number of digits. If the number of

 digits given is less than an explicit specified ________

 length, the constant is padded on the right with

 zeros; otherwise, there is no padding. In the

 example below, the location HEX1 is modified to the

 hexadecimal constant C1C2C3C4C5.

 MODIFY HEX1 X’C1C2C3C4C5’

 Instruction - An "instruction" constant consists of a 360/370-

 assembler mnemonic and a hexadecimal operand of the

 appropriate length. The operand is separated from

 the mnemonic by one or more blanks; blanks may be

 included within the operand, but not the mnemonic.

 Extended mnemonics (such as BNM) may be used, in

 which case the extended mnemonic will include the

 mask digit of the BC or BCR instruction. The length

 of the instruction constant need not agree with the

 length of the instruction being modified. In the

 first example below, the location INS1 is modified

 to the instruction "SR 1,2".

 MODIFY INS1 I’SR 12’

 MODIFY INS2 I’BL 0 B098’

 Logical - Logical constants consist of the constants ".TRUE."

 and ".FALSE.", which are converted internally to the

 fixed-point numbers 1 and 0, respectively. If

 neither ".TRUE." nor ".FALSE." is specified, the

 constant is treated as a character string. Logical

 constants are used primarily in FORTRAN programs.

 In the examples below, the location LOG1 is modified

 to the constant ".TRUE." and the location LOG2 is

 modified to the character A.

 MODIFY LOG1 L’.TRUE.’

 MODIFY LOG2 L’A’

 Packed & zoned - A packed or zoned decimal constant is written as a

 signed or unsigned decimal value. If the sign is

 omitted, a plus sign is assumed. The existence of a

 decimal point in no way affects the conversion of a

 decimal constant. The decimal point is ignored.

 The maximum length of a decimal constant is 16

 bytes.

 For packed decimal conversion, each pair of decimal

 digits is packed into one byte. The rightmost digit

 and the sign are translated into the rightmost byte.

 Debug Mode 25

 MTS 13: The Symbolic Debugging System

 September 1985

 If an even number of packed digits is specified, the

 leftmost four bits in the leftmost byte are set to

 zero and the rightmost four bits contain the first

 digit. If the constant requires fewer bytes than

 the length of the parameter, the constant is padded

 on the left with zeros.

 For zoned decimal conversion, each decimal digit is

 translated into one byte. The rightmost byte con-

 tains the sign as well as the rightmost digit. If

 the constant requires fewer bytes than the length of

 the parameter, the constant is padded on the left

 with zeros.

 MODIFY PACK1 P’23’

 MODIFY ZONE1 Z’-44’

 S-type adcon - Not supported.

 V-type adcon - V-type adcons are treated as A-type adcons. In the

 example below, the location VCON is modified to the

 virtual address 812600.

 MODIFY VCON V’812600’

 Y-type adcon - Y-type adcons are treated as fixed-point decimal

 constants whose length depends on the length of the

 parameter being modified. In the example below, the

 location YCON is modified to the integer constant 2.

 MODIFY YCON Y’2’

 Output Conversion _________________

 All of the conversion types listed with the description of the TYPE

 keyword modifier are supported by the SDS output-conversion routines.

 In addition, the symbol "#" is used to specify assembler-generated

 spaces. The following conventions are used when SDS attempts to display

 illegal data:

 Character - If a hexadecimal code is encountered which has no

 character equivalent, a question mark is

 substituted.

 Floating-point - If the length of the number exceeds 8 bytes, the

 number is printed in hexadecimal format.

 Fixed-point - If the length of the number exceeds 8 bytes, the

 number is printed in hexadecimal format.

 26 Debug Mode

 MTS 13: The Symbolic Debugging System

 September 1985

 Instruction - If the opcode field of an instruction does not

 correspond to a machine operation, the instruction

 is printed as two hex digits surrounded by

 asterisks. The instruction is assumed to be 2 bytes

 in length (RR type).

 Packed & zoned - If the length of the number exceeds 16 bytes, the

 number is printed in hexadecimal format. If an

 illegal packed or zoned digit is encountered, a

 question mark is substituted.

 SDS Relational and Logical Expressions ______________________________________

 SDS relational and logical expressions are designed for use with the

 IF and WHEN commands to control conditional SDS processing of the user’s

 program.

 Relational expressions are formed by combining two SDS parameters or

 constants with a relational operator. The six relational operators are

 as follows:

 Relational Operator Definition ___________________ __________

 .GT. or > Greater than

 .GE. or >= Greater than or equal to

 .LT. or < Less than

 .LE. or <= Less than or equal to

 .EQ. or = Equal to

 .NE. or ¬= Not equal to

 The relational expressions express a condition that can be either true

 or false. Examples of relational expressions are

 ALPHA.GT.BETA

 ALPHA(2).EQ.F’4’

 SWS = B’11**0000’

 If one side of a relational expression is a constant which has the type

 attribute omitted, the type attribute from the other side of the

 expression is assumed, e.g.,

 ALPHA = ’1’

 is equivalent to

 ALPHA = F’1’

 if ALPHA is defined as a fixed-point integer.

 Debug Mode 27

 MTS 13: The Symbolic Debugging System

 September 1985

 The following logical operators may be used to form logical

 expressions:

 Logical Operator Definition ________________ __________

 .AND. or & Logical and

 .OR. or | Logical or

 .XOR. Logical exclusive or

 .NOT. or ¬ Logical not

 Each operand for the logical operator must be a relational or logical

 expression (the negation operator has only a right-hand operand).

 Examples of logical expressions are

 ¬ALPHA > BETA

 ALPHA = F’3’ & BETA ¬= F’6’

 (ALPHA.EQ.BETA.OR.GAMMA.GT.F’10’).AND.DELTA.LE.F’1’

 Parenthesizing may be used where necessary to achieve the desired

 operator precedences. Embedded blanks in the expression are legal only

 around the relational or logical operators.

 The precedence hierarchy for SDS operators is as follows (the highest

 precedence operators are at the top):

 $ indirection

 +,- unary operators

 *,/ multiplication and division

 +,- addition and subtraction

 .xx. relational operators

 .GT.,.GE.,.LT.,.LE.,.EQ.,.NE.

 .NOT. negation

 .AND. and

 .OR.,.XOR. or and exclusive or

 Current Symbol Character ________________________

 The current symbol character "*" can be used to represent the last

 location specified in a debug command. This is most useful in debug

 command sequences such as

 DISPLAY ABC

 MODIFY * F’1’

 which displays the contents of location ABC and then modifies that

 location to the constant ’1’.

 The current symbol character may have a displacement and/or modifiers

 appended to it, but not an index. For example,

 28 Debug Mode

 MTS 13: The Symbolic Debugging System

 September 1985

 DISPLAY ABC *@T=XL8

 displays the contents of location ABC according to its type and length,

 and then displays ABC in hexadecimal format with a length of 8 bytes.

 DISPLAY ABC(10) *+4

 displays the locations ABC(10) and ABC(10)+4. (Note: this is not an

 example of a storage reference block.)

 For the case of block parameters, the current symbol will be the

 lower-bound symbol. For example, ___________

 DISPLAY ALPHA...BETA *@T=X

 displays the range from ALPHA to BETA, then the contents of ALPHA in

 hexadecimal format.

 Note: Many debug commands refer to storage locations and, therefore,

 will change the value of the current symbol character. Hence, the user

 should be aware of the value that the current symbol character is

 representing.

 PROGRAM RETURNS, DYNAMIC LOADING, AND INTERRUPT PROCESSING __

 Whenever the user’s program returns to the system, or calls the

 subroutines SYSTEM, MTS, MTSCMD, or ERROR, SDS intercepts the return and

 returns control to debug command mode. For a return to the system or a

 call to SYSTEM, the program may not be continued with the CONTINUE

 command; for the other subroutine calls, the program may be continued.

 For a call to MTSCMD, the MTS command specified will have been executed.

 Whenever the user’s program dynamically loads another section via a

 call to the subroutines LINK, LOAD, or XCTL, SDS may intercept the call

 and return control to debug command mode. The sections specified in the

 subroutine calls will have been loaded at this point, but not entered.

 The user may then set breakpoints before continuing the program. An

 intercept may also be made on calls to the UNLOAD subroutine and on

 returns from programs that have been called via LINK and XCTL. This

 intercept feature may be enabled by the debug command

 SET XFR=ON

 Normally, all sections which are dynamically loaded by calls to LINK,

 LOAD, and XCTL are entered into the symbol table. If the debug command

 SET LLX=OFF

 is given, these dynamically loaded sections are omitted from the symbol

 table, thus reducing its size. The setting of the LLX option is

 independent of the setting of the XFR option.

 Debug Mode 29

 MTS 13: The Symbolic Debugging System

 September 1985

 Whenever a program interrupt, an attention interrupt, a timer

 interrupt, or an I/O error occurs during the execution of the program,

 SDS normally intercepts the error condition and returns control to debug

 command mode.

 In the case of a program interrupt, the location of the instruction

 causing the interrupt is printed. The user’s program may be restarted

 by the CONTINUE command.

 In the case of an attention interrupt, the location at which the

 interrupt occurred is printed. The user’s program may be restarted by

 the CONTINUE command.

 In the event that the user’s program has called the system subrou-

 tines PGNTTRP or ATTNTRP, SDS may or may not regain control depending on

 what the user’s interrupt routines do. However, the user may disable

 his own interrupt routines by entering the debug command

 SET PGNT=SDS ATTN=SDS

 When the interrupt is taken, control is returned immediately to SDS. If

 the user restarts his program with the CONTINUE command, execution is

 restarted at the instruction at which the interrupt was taken. The

 user’s interrupt routines are not called. Normal interrupt processing

 may be resumed by setting the PGNT or ATTN options to USER.

 In the case of a timer interrupt, the location at which the interrupt

 occurred is printed. The exceeding of a local time limit is the only

 type of timer interrupt that returns control to debug mode unless the

 user-program timer interrupt exit routine returns to the system.

 In the case of an I/O interrupt, a system error message (if any) is

 printed. If the user has suppressed the intercept of the I/O error

 either by calling the subroutines SETIOERR or SIOERR or by specifying

 the ERRRTN I/O modifier on the I/O call, control is not returned to

 debug mode.

 If the user’s program causes an MTS program interrupt (often caused

 by passing an illegal parameter to an I/O subroutine), control is

 returned to debug mode and the message

 Execution prematurely terminated at xxxxxxxx

 is printed.

 Whenever a program interrupt, an attention interrupt, an I/O inter-

 rupt, a timer interrupt, or an intercepted call to LINK, LOAD, XCTL, or

 UNLOAD occurs, SDS changes its input source to read from *MSOURCE* and

 its output sink to write on *MSINK*.

 If the user’s program explicitly calls the subroutine TRACER, or if,

 on a call to the elementary function library, the traceback program is

 implicitly called due to the occurrence of an error condition, the

 30 Debug Mode

 MTS 13: The Symbolic Debugging System

 September 1985

 traceback program is invoked. An error message may be printed and the

 prefix character ":" will appear. This prefix character indicates that

 the traceback program is in control. At this point, the user may enter

 any of several TRACER commands. Only two are discussed here: the MTS

 command and the RETURN command. The remainder of the TRACER commands

 are described in CCMemo 218, "The Traceback Program." If an MTS command

 is entered, control returns to debug mode. The PSW and registers at

 this point reflect their status in the traceback program. A CONTINUE

 debug command returns control to the traceback program instead of

 resuming execution of the user’s program. If a RETURN "name" command is

 entered, where "name" is the name of the subroutine or library function

 which caused the traceback program to be invoked, a normal return is

 made by that subroutine to its calling program. Program execution then

 proceeds.

 BREAKPOINT PROCESSING _____________________

 SDS provides the user with the facility of setting several different

 types of breakpoints in strategic locations in his program. When

 encountered during program execution, these breakpoints cause SDS to

 assume control of the program and take a certain course of action. Each

 breakpoint inserted in the user’s program is a X’00’ code which replaces

 the opcode of the instruction at which it is inserted and which causes a

 special program interrupt and returns control to SDS. The opcode of the

 instruction that is replaced by the breakpoint code is saved for later

 execution when the program resumes execution. The different types of

 breakpoints that are currently available are described below.

 Global Breakpoints ______ ___________

 A global breakpoint returns control to debug command mode. The

 user may then enter any debug command. Global breakpoints are set

 by the BREAK command, e.g.,

 BREAK LOC1

 sets a global breakpoint at location LOC1. For further details of

 global breakpoint processing, see the description of the BREAK

 command below.

 Local Breakpoints _____ ___________

 A local breakpoint returns control to debug command mode. Local

 breakpoints are set by the parameters to the RUN and CONTINUE

 commands, or the second and successive parameters to the GOTO

 command, e.g.,

 RUN LOC1

 Debug Mode 31

 MTS 13: The Symbolic Debugging System

 September 1985

 sets a local breakpoint at location LOC1 and then initiates

 execution of the user’s program at the entry point. If more than

 one local breakpoint is set, the first one encountered returns

 control to debug command mode. Local breakpoints are in effect

 only for the duration of the current command that set them; they ____

 are automatically deleted before the user enters the next command.

 At-points _________

 An at-point causes SDS to process a list of prestored debug

 commands. This list of prestored commands is set up by the AT

 command (see the description of the AT command).

 Breakpoints may not be set at an instruction which is the object of

 an execute instruction, or at an instruction which will be modified or

 referenced by the program. For execute instructions, the breakpoint

 should be set at the execute instruction itself. If the location

 specified is not halfword-aligned, the breakpoint is not set. A warning

 is issued if the user sets a breakpoint in a data item.

 The BREAK command also may be used to set breakpoints in resident-

 system storage regions. When the breakpoint is set, a message will be

 printed indicating that the breakpoint is a "simulator breakpoint." In

 order for this type of breakpoint to be taken, the program must be

 simulated at the point of the breakpoint. Simulation of resident-system

 storage may be achieved by specifying the SIM and WHENSIM options on the

 SET command, e.g., SIM=ON and WHENSIM=LIB. This feature may be used for

 setting breakpoints in <EFL> (Elementary Function Library), <FIX>

 (FORTRAN I/O Library), or PL1SYM (Resident-System PL/I Library). If the

 WHENSIM option is ALL, resident-system subroutines in LCSYMBOL also will

 be simulated. Warning: Care must be taken in setting breakpoints in

 other areas of resident-system storage since it cannot be guaranteed

 that execution of the program may be properly restarted. Note: It is

 not necessary to set the WHENSIM option if the breakpoint is set at an

 exact address specified in LCSYMBOL, <EFL>, <FIX>, or PL1SYM; in this

 case, it is only necessary to set SIM=ON.

 Global breakpoints and at-points are restored by the RESTORE or CLEAN

 commands. The LIST command lists all current breakpoints and at-points.

 The IGNORE command is used to ignore a breakpoint or an at-point a

 specified number of times. The command

 SET BREAK=OFF AT=OFF

 is used to ignore all breakpoints and at-points without restoring them.

 THE SDS SIMULATOR _________________

 A program simulator is provided by SDS to allow the user to step

 through his program one or more instructions at a time. All instruc-

 32 Debug Mode

 MTS 13: The Symbolic Debugging System

 September 1985

 tions that are stepped through are simulated by SDS instead of being

 executed normally.

 The simulator is invoked by the STEP command specifying the number of

 instructions to be stepped, e.g.,

 STEP 3

 causes the next three instructions to be simulated. If no step count is

 given, a step of 1 is assumed. Stepping starts with the current address

 contained in the PSW. Upon completion of the stepping, control is

 returned to debug command mode.

 If an abnormal condition occurs during stepping, the stepping is

 terminated at the current instruction and control returns to debug

 command mode. If the program branches to a legal low-core symbol such

 as SCARDS or SPRINT, the routine is executed instead of being simulated

 and stepping resumes upon the return from that routine. The execution

 of the routine does not count as a step. If the program branches to an

 address less than 800000 which does not correspond to a legal low-core

 symbol, stepping is terminated and a warning message is printed. The

 user may restart the program with either a CONTINUE or GOTO command.

 If a program interrupt or attention interrupt occurs and the user has

 specified an exit routine via the PGNTTRP or ATTNTRP subroutines, these

 routines are also simulated until the specified stepping count is

 exhausted. This may be overridden by the PGNT and ATTN options of the

 SET command.

 The cost of simulating a portion of a program compared to executing

 it normally is approximately 100 to 1. Any local time estimates set by

 the user or any timer interrupts set by the program will be affected by

 program simulation since the overhead of simulating the program is taken

 as a part of the program execution time.

 FORTRAN and PL/I users should note that the STEP command specifies

 machine language instructions in the count. If it is desired to step a _______ ________

 specified number of FORTRAN or PL/I instructions, the CONTINUE command

 should be used specifying local breakpoints.

 The SIM option may be used to specify that the program is to be

 simulated. If the SIM option is ON, any command that starts program

 execution will invoke the simulator to simulate the program. Resident-

 system subroutines will not be simulated; instead, they will be executed

 normally and simulation will resume when the subroutine returns.

 The WHENSIM option may be used to specify that resident-system

 subroutines are to be simulated in addition to the user program. If the

 WHENSIM option is LIB, calls to <EFL> (Elementary Function Library),

 <FIX> (FORTRAN I/O Library), and PL1SYM (Resident-System PL/I Library)

 will be simulated. If the WHENSIM option is ALL, calls to the

 resident-system subroutines in LCSYMBOL will also be simulated. Note:

 The SIM option must also be ON for the WHENSIM option to be effective.

 Debug Mode 33

 MTS 13: The Symbolic Debugging System

 September 1985

 CONTROL SECTION PROCESSING __________________________

 When a program consisting of one or more modules¹ is initially loaded

 by SDS, the control sections, common sections, and dummy control

 sections of the modules are entered into the SDS map in the order in

 which they appear in the load module(s). These modules comprise a

 single map control block within the SDS map. If, during execution, the

 program calls the loader to load more modules, these also are processed

 by SDS and entered into the SDS map in a new map control block.

 A separate map control block is created for each call on the loader.

 Hence, the sections that comprise each map control block have a unique

 storage index number.

 The first time a control section name appears in the SDS map, it is

 assigned a generation number of 1. If a control section is loaded which

 has the same name as a previously processed control section in an

 earlier map control block, that section is assigned a new generation

 number one greater than the last previous generation number used for a

 section by that name; hence, for each subsequent occurrence of a control

 section for a given name, there is assigned to it a unique generation

 number. This generation number can be used via the GEN keyword modifier

 to distinguish between the different occurrences of control sections

 with the same name. Dummy control sections (dsects) do not have

 generation numbers assigned to them.

 Initially, the entire SDS map is open. This means that the entire

 map is available for the searching for a symbol. The first section in

 the map also becomes the current section. This means that the first

 section is available for the searching for a relative address.

 The order of searching through the SDS map for a symbol is as

 follows:

 (1) If the symbol is a predefined symbol, the search terminates

 immediately.

 (2) If only one module of the map is open (see below), only that

 module is initially searched. The search covers all control

 sections, common sections, and defined dsects of that module.

 If the search is unsuccessful, the search is then extended to

 the entire map, and if the symbol is found, that occurrence is

 used and the message

 "nnnnnnnn" definition used from section xxxxxxxx

 is printed. The extended search may be suppressed by the SET

 FULLSEARCH=OFF command.

 ¹A module is defined as a sequence of load records up to and including

 an END record. For FORTRAN programs, each main program and subroutine

 produces a separate object module.

 34 Debug Mode

 MTS 13: The Symbolic Debugging System

 September 1985

 (3) If the entire map is open, all sections may be searched. If a

 match is found in any section, the remainder of the map is

 searched for a duplicate symbol. If none is found, the search

 terminates; otherwise a warning is printed and the first match

 is used. If a match is found in an undefined dsect, the search

 continues for a match in a defined section. If such a match is

 found and no further duplication exists, the search is terminat-

 ed with no warning message.

 The CSECT option of the SET command provides a means of specifying a

 new current module. The module containing the section named by the

 command becomes the new current module and the remaining modules are

 closed; that is, checking for multiply-defined symbols is suppressed

 and, if a symbol cannot be located in the current module, no further

 searching takes place. If the section specified is a control section or

 dsect, all control sections and dsects in that module are open for

 searching. For example, the command

 SET CSECT=SUBR

 specifies the module containing the section SUBR as the current module.

 If the command

 SET CSECT=i

 is entered, where "i" is an unsigned decimal integer, the module

 containing the ith blank-named control section in the SDS map becomes _

 the current module. This is the only way to refer to blank-named

 (private) control sections in the map. A blank-named common section may

 be referred to by the blank-name common symbol BLANK.

 If the command

 SET CSECT=*

 is entered, the first module in the SDS map again becomes the current

 module and the remaining modules are opened. The open-map character "*"

 may be changed by the SET OMAPCH=x command.

 Object modules composed of multiple assemblies may have name con-

 flicts between control sections, common sections, and dsects. SDS

 observes the following conventions when such conflicts occur within a

 single map control block: ______ ___ _______ _____

 Situation Action Taken _________ ____________

 A csect has the same name The original csect is retained and

 as a previously defined the duplicate csect is ignored,

 csect. unless it is a blank-named csect.

 A csect has the same name The symbols of the csect are

 as a previously defined merged with the symbols of the common

 common section. section.

 Debug Mode 35

 MTS 13: The Symbolic Debugging System

 September 1985

 A csect has the same name Both the csect and the dsect

 as a previously defined are retained.

 dsect.

 A common section has the The csect is marked as a common

 same name as a previously section in the SDS map, and the

 defined csect. symbols in the common section are

 merged with the symbols of the csect.

 A common section has the The original common section is

 same name as a previously retained and the symbols of each

 defined common section. are merged.

 (SET COMMON=OFF)

 A command section has the Both common sections are

 same name as a previously retained as separate sections.

 defined common section.

 (SET COMMON=ON)

 A common section has the Both the dsect and the common

 same name as a previously section are retained.

 defined dsect.

 A dsect has the same name Both the dsect and the csect

 as a previously defined are retained.

 csect.

 A dsect has the same name Both the dsect and the common

 as a previously defined section are retained.

 common section.

 A dsect has the same name The original dsect is retained

 as a previously defined and the symbols of each are

 dsect in the same module. are merged.

 A dsect has the same name Both dsects are retained.

 as a previously defined

 dsect in a different

 module (SET DSECTS=ON).

 A dsect has the same name The original dsect is retained

 as a previously defined and the duplicate dsect is

 dsect in a different ignored.

 module (SET DSECTS=OFF).

 DEBUGGING ASSEMBLER LANGUAGE PROGRAMS _____________________________________

 To generate a 360/370-assembler language object module with SYM

 records, the Assembler-H (*ASMH) should be invoked with the TEST option

 using a command of the form:

 36 Debug Mode

 MTS 13: The Symbolic Debugging System

 September 1985

 $RUN *ASMH SCARDS=source SPUNCH=object PAR=TEST

 The symbolic information produced by the assembler is as follows:

 Labeled data variables

 Unlabeled data variables

 Labeled instructions

 Relocatable EQUs

 Assembler-generated spaces (for instruction or data alignment)

 The assembler excludes information for the following data types:

 Unlabeled instructions

 Absolute EQUs

 When processing indices in SDS parameters for assembler programs,

 zero duplication factors and assembler-generated spaces are ignored. In

 the example below, HW(2) refers to the same location as CH; HW(3) and

 CH(2) both refer to the same location as FW.

 000020 0009 HW DC H’9’

 000028 DS 0D

 000028 C1C2C3C4C540 CH DC C’ABCDE ’

 000030 00000005 FW DC F’5’

 000034 0010 DC H’16’

 Assembler-generated spaces are inserted by the assembler at locations

 000022 and 00002E, since the zero duplication factor 0D and the fullword

 specification for FW require doubleword and fullword alignment,

 respectively.

 Addressability for dummy control sections (dsects) must be specified

 by the USING command. The base address specified by the USING command

 may be static or dynamic. If a location is specified, the base address

 is static; if a general register is specified, the base address is

 dynamic, i.e., the base address changes when contents of the register

 changes. If a general register is to be used as a static base, the

 indirection operator must be applied to the register. For example,

 USING DAREA GR1

 specifies that GR1 contains the base address for the dsect DAREA

 (dynamic addressability), while

 USING DAREA $GR1

 specifies that the current contents of GR1 (when this command is issued)

 is the base address for DAREA (static addressability). The DROP command

 can be used to remove the addressability of a dsect. For example,

 DROP GR1

 Debug Mode 37

 MTS 13: The Symbolic Debugging System

 September 1985

 specifies that all dsects addressed by GR1 lose their addressability.

 See the descriptions of the USING and DROP commands for further details

 of addressing dsects.

 The @D keyword modifier can be used to refer to a location in a

 particular dsect when that location is defined in both a control section

 and a dsect. For example,

 DISPLAY ALPHA@D=DAREA

 displays the location ALPHA in the dsect DAREA. If a dsect of the same

 name is defined in several different assemblies, the desired dsect can

 be specified by appending the @C keyword modifier immediately after the

 @D modifier. For example,

 DISPLAY ALPHA@D=DAREA@C=SUBR

 displays the location ALPHA in the dsect DAREA that is defined in the

 control section SUBR.

 DEBUGGING FORTRAN-G PROGRAMS ____________________________

 To generate a FORTRAN-G object module with SYM records, FORTRAN-G

 compiler should be invoked with the TEST option using a command of the

 form:

 $RUN *FTN SCARDS=source SPUNCH=object PAR=TEST

 Statement labels may be specified either by using the source-listing

 statement number (internal format) or the user-defined statement number

 (external format), if present. The prefix "IS#" must precede a

 source-listing statement number, e.g.,

 IS#10

 is the source-listing statement number 10. The prefix "#" must precede

 a user-defined statement number, e.g.,

 #10

 is the user-defined statement number 10. Only those statement numbers

 that define executable FORTRAN statements may be used. An executable __________

 statement is defined as a statement which is from one of the following

 categories:

 (1) Assignment statements

 (2) Control statements

 (3) I/O statements

 38 Debug Mode

 MTS 13: The Symbolic Debugging System

 September 1985

 All others, such as those defining DIMENSION, REAL, INTEGER, DATA,

 COMMON, SUBROUTINE, FUNCTION, ENTRY, EQUIVALENCE, and FORMAT statements

 are undefined. Both source-listing and user-defined statements must be

 specified without leading zeros. _______ _______ _____

 The following data type codes are used for variables in FORTRAN

 programs.

 E Real (floating-point)

 D Real (floating-point, 8-byte)

 F Integer (fixed-point)

 H Integer (fixed-point, 2-byte)

 L Logical

 M Complex

 X Hexadecimal

 Arguments to FORTRAN subroutines and functions may be one of two

 types:

 (1) reference by value, or

 (2) reference by location.

 When an argument is passed as a reference by value argument, the

 actual value of the variable is passed by the calling program to the

 subprogram. Therefore, there is a copy of that variable in both the

 calling program and the subprogram. Scalar (undimensioned) arguments

 are normally passed in this manner. The subprogram uses its own copy of

 the argument for any calculations done. Upon return of the subprogram

 to the calling program, the argument is passed back to the calling

 program and the calling program’s copy is updated. Therefore, when

 displaying an argument of this type, it is important to keep in mind

 where the variable is located and when it is displayed.

 When an argument is passed as a reference by location argument, only

 the address of the argument is passed by the calling program to the

 subprogram. Therefore, only one copy of the argument exists and it is

 located in the calling program (or a common section). Array arguments

 are always passed in this manner. The subprogram uses the copy of the

 argument in the calling program for its calculations. When displaying

 an argument of this type, either the variable name from the calling

 program or the variable name from the subprogram argument list may be

 used. Both refer to the same variable. When using the name from the

 subprogram argument list, the address passed to the subprogram is used

 to locate the variable in the calling program. Therefore, the subpro-

 gram must have been called at least once for this address to be valid.

 If the address is invalid, an error comment is produced in the form

 xxxxxxxx specifies an illegal address.

 FORTRAN users should note that the STEP command specifies machine _______

 language instructions in its count. If it is desired to step a ________

 specified number of FORTRAN statements, the CONTINUE command should be

 used specifying local breakpoints.

 Debug Mode 39

 MTS 13: The Symbolic Debugging System

 September 1985

 The symbol BLANK may be used to refer to blank-named common sections

 in FORTRAN programs. For example,

 DISPLAY ALPHA@C=BLANK

 displays the variable ALPHA from the blank-named common section.

 DEBUGGING FORTRAN-H PROGRAMS ____________________________

 To generate a FORTRAN-H object module with SYM records, the FORTRAN-H

 compiler should be invoked with the TEST option using a command of the

 form:

 $RUN *FTN SCARDS=source SPUNCH=object PAR=OPT=H,TEST,options

 Because of the optimizing features of the FORTRAN-H compiler, the

 symbol table information provided may be of limited use. This is due to

 several possible transformations which may be performed on the object

 module by the compiler during optimization. For example, the compiler

 often moves operations from within a statement to the beginning of the

 block of statements in which that statement resides if it does not

 affect the logical operation of the program. This makes it quite

 difficult to follow the exact execution flow of the program using SDS.

 For instance, a breakpoint may be set at a statement label, and when the

 breakpoint is reached, the statement may have already been executed

 because its text has been moved to the beginning of the block.

 Furthermore, it is not uncommon for the compiler to move the entire text

 of a statement, leaving only the label. When this happens to two

 adjacent labeled statements, both labels reference the same location and

 SDS does not treat them as distinct (since, in fact, they are not).

 Another difficulty posed by optimization is the fact that variable

 values are often kept in registers for large ranges of instructions

 without updating the memory location. This often happens within

 DO-loops. Since SDS knows only which memory location corresponds to

 which symbol (and not which register), displaying a variable from SDS

 may not yield the current value of the variable.

 The problems of optimization are eliminated if the program is

 compiled at optimization level 0 or 1. Unfortunately, most of the

 advantages of using FORTRAN-H are also eliminated at optimization level

 0 or 1. In general, it is probably better to debug a program using

 FORTRAN-G, and then recompile it in FORTRAN-H after a working version is

 obtained. The use of SYM records with FORTRAN-H should be restricted to

 those cases where this is not possible, or when hidden bugs emerge at a

 later time.

 The FORTRAN-H compiler only produces symbol table information for

 external (user-defined) statement labels; no information is produced for

 internal (source-listing) statement labels. As with FORTRAN-G, the

 label is preceded by "#", e.g., statement label 100 is the symbol #100.

 40 Debug Mode

 MTS 13: The Symbolic Debugging System

 September 1985

 DEBUGGING VS FORTRAN PROGRAMS _____________________________

 To generate a VS FORTRAN object module with SYM records, the VS

 FORTRAN compiler should be invoked with the SYM option using a command

 of the form:

 $RUN *FORTRANVS SCARDS=source SPUNCH=object PAR=SYM

 The VS FORTRAN compiler is an IBM program product and is not under

 the direct control of the Computing Center. Because of this situation,

 the amount of symbolic debugging information is not as complete as, for

 example, the information available when using the FORTRAN-G compiler.

 Specific shortcomings are primarily related to displaying arrays and

 variables within loops.

 Single-dimension arrays, although different, will behave as expected

 when used in storage reference expressions. Multidimensional arrays,

 however, will only be defined one-dimensionally for as many elements as

 required for all of the elements in all of the dimensions. Therefore,

 when accessing the elements of a multidimensional array, it is necessary

 to convert from a multiple subscript to a subscript formula. The

 formula for accessing a particular element of a two-dimensional array is

 "i+(j-1)*n", where "i" represents the first subscript, "j" represents

 the second subscript, and "n" represents the number of elements in the

 first dimension. For example, assume a two-dimensional array called

 DATA dimensioned as DATA(4,12). To display the element (3,5) of the

 array, the command would be

 DISPLAY DATA(3+(5-1)*4)

 The formula for a three-dimensional array is "i+(j-1)*n+(k-1)*n*m",

 where "k" represents the third subscript and "m" represents the number

 of elements in the second dimension. To display element (3,5,7) of

 DATA(6,8,10) the command would be

 DISPLAY DATA(3+(5-1)*6+(7-1)*6*8)

 When debugging optimized programs, variable values in storage may not

 necessarily reflect the current true value being maintained (in general

 registers) by the program. At optimization level 0, the variable values

 contained in program storage are correct. However, at higher optimiza-

 tion levels, the program may not maintain up-to-date copies of certain

 variables in storage. In fact, the compiler may choose to eliminate

 certain variables completely.

 In most other respects, debugging a VS FORTRAN program should not

 present any particular difficulty and standard methods should work quite

 well.

 Debug Mode 41

 MTS 13: The Symbolic Debugging System

 September 1985

 DEBUGGING PL/I PROGRAMS _______________________

 To generate a PL/I object module with SYM records, the PL/I compiler

 should be invoked with the TEST option using a command of the form:

 $RUN *PL1 SCARDS=source SPUNCH=object PAR=TEST,options

 Organization of a PL/I Program ______________________________

 This section describes the basic organization of a PL/I external

 procedure. Knowledge of this will aid the user in displaying program

 data variables and managing his program.

 An external procedure has several control sections, the most per-

 tinent of which are described below.

 The program control section is the first control section and _______ _______ _______

 contains all machine language instructions for the procedure. The

 name of this section is the first label of the external procedure

 statement. If the label is longer than seven characters, the first

 four and last three characters of the label are used to form the

 section name. This is the control section in which breakpoints and

 at-points are set by the user.

 The static internal control section is the second control section ______ ________ _______ _______

 and contains storage for all static internal variables and con-

 stants. The section name is that of the program control section,

 extended on the right with a single letter A and padded on the left

 with asterisks to eight characters, e.g., for the procedure name

 PROG, the static internal control section name is ***PROGA.

 IHEMAIN is a 4-byte control section which contains the address of _______

 the main procedure. IHEMAIN is produced only if there is an

 external procedure with the option MAIN specified.

 IHENTRY is a 12-byte control section which is the entry point to _______

 the program. IHENTRY is always produced if there is an external

 procedure. This section immediately transfers to one of six

 library routines which initialize the PL/I environment before the

 start of execution in the main procedure.

 Static external variables are control section entries if they are ______ ________ _________

 initialized, or common section entries if they are not. All

 variables which are declared as external by the program are in

 separate sections, one section allocated for each variable

 declared.

 The program control section is subdivided into units called blocks. ______

 Each block is a delimited sequence of statements that constitutes a

 42 Debug Mode

 MTS 13: The Symbolic Debugging System

 September 1985

 section of the program. There are two kinds of blocks: procedure

 blocks and begin blocks.

 Blocks within an external procedure are either active or inactive.

 Each time a block is entered, a dynamic storage area (DSA) is allocated

 for that block; a block is considered active after its DSA has been

 allocated and before an exit has been made from the block. The DSA

 contains the control information and the automatic variable storage for

 the block. When the block is exited, the DSA is released and the block

 becomes inactive. At this point the automatic storage for the block is

 released and variables declared as automatic are no longer available to

 the program or SDS. The DSAs for all blocks that are active within the

 procedure are chained together. This chaining of DSAs allows SDS to

 access all of the program’s currently allocated automatic data variables

 at one time.

 The following four SDS modifiers are used for specifying the location

 and block level of program data variables.

 The @P=xxx keyword modifier, where "xxx" is the name of an external ________

 procedure, may be used to refer to a variable within a particular

 external procedure. The scope of "xxx" includes all of the control

 sections of the procedure, all of the internal procedures and

 blocks contained in the procedure, and all of the static, auto-

 matic, based, and controlled data variables declared within the

 procedure. External variables which are stored in common sections

 are not included in the scope of "xxx".

 The @B=i keyword modifier, where "i" is a block level number, may

 be used to refer to a variable within a particular block of an

 external procedure. Each block within an external procedure has a

 block level number associated with it; this number is given in the

 compilation listing under the level column. In order for a

 reference to a particular block to be valid, the block must be

 active, i.e., the block must have been entered and a DSA must be

 currently allocated for it.

 The @#nn keyword modifier, where "nn" is the compilation statement

 number of the statement in which the variable was declared, may be

 used to refer to any variable that was explicitly declared in a

 DECLARE statement. This modifier is necessary in those cases where

 there are multiple occurrences of automatic variables of the same

 name at the same block level or where there are multiple occur-

 rences of static variables of the same name in the same external

 procedure.

 The @I=i keyword modifier, where "i" is an invocation number, may

 be used to refer to separate invocations of recursive procedures or

 controlled data variables. The use of this modifier is discussed

 in more detail below.

 Debug Mode 43

 MTS 13: The Symbolic Debugging System

 September 1985

 Data Variable Specification ___________________________

 All PL/I data variables exist in either static, automatic, based, or

 controlled storage. The conventions for specifying these different data

 types are given below.

 Static variables

 Static variables (either external or internal) are always available

 within the program and may be displayed at any time before, during,

 or after program execution. The @P modifier may be used to specify

 a particular procedure for an internal variable; the @C modifier

 may be used to specify a particular common section for an external

 variable if the specification would otherwise be ambiguous, e.g.,

 DISPLAY SDATA@P=FIRST (for internal SDATA)

 DISPLAY SDATA@C=SDATA (for external SDATA)

 Automatic variables

 Automatic variables may be displayed only when the blocks declaring

 them are active. If the block is inactive, the variables are

 assumed to be unallocated. When the same automatic variable has

 been declared within several active blocks, the declaration associ-

 ated with the most recently entered block is assumed unless

 overridden by the @B modifier, e.g.,

 DISPLAY ADATA@B=2

 displays the value of ADATA associated with the second block level.

 If ADATA was declared in block level 2 at statement 15, the command

 DISPLAY ADATA@#15

 could also be used to display its value.

 If a block has been entered recursively, the automatic variables

 associated with the latest entry will be assumed unless overridden

 by the @I modifier, e.g.,

 DISPLAY RDATA@I=1

 displays the value of RDATA associated with the first invocation of

 the block in which it was declared.

 Based variables

 Based variables may be displayed only when they are active, i.e.,

 after they are allocated by an ALLOCATE statement and before they

 are released by a FREE statement in the program. If the variable

 is not currently allocated, a message is printed to that effect.

 Each allocation of a based variable has a pointer variable

 44 Debug Mode

 MTS 13: The Symbolic Debugging System

 September 1985

 associated with it. If no pointer variable is specified, the

 pointer variable given with the declaration statement is assumed.

 This may be overridden by specifying another pointer variable using

 the standard PL/I "->" notation, e.g.,

 DISPLAY PTR->BDATA

 displays the value of BDATA which has PTR as its pointer variable.

 The pointer variable name may be qualified with the @P, @B, @#, and

 @I modifiers to obtain the desired base address; the based variable

 name may be qualified with the @P modifier to obtain the desired

 base attributes.

 Controlled variables

 Controlled variables may be displayed only when they are active,

 i.e., after they are allocated by an ALLOCATE statement and before

 they are released by a FREE statement in the program. If the

 variable is not currently allocated, a message is printed to that

 effect. When the same controlled variable has been allocated

 several times, the most recent allocation is assumed unless it is

 overridden by the @I modifier, e.g.,

 DISPLAY CDATA@I=1

 displays the value of the first invocation of the controlled

 storage variable CDATA.

 The following data type codes are used for variables in PL/I

 programs:

 E Float Decimal and Binary Real (floating-point)

 M Float Decimal and Binary Complex (floating-point)

 P Fixed Decimal (packed decimal)

 F Fixed Binary (fixed-point)

 C Character string

 B Bit string

 A Pointer and Label Data

 X Area Data and File Data

 Special Data Specifications ___________________________

 The following paragraphs describe special considerations that must be

 followed for certain data variable classifications.

 Arrays

 Array variables in a PL/I program must be specified with sub-

 scripts. An array element specified without a subscript will

 generate an error message.

 Debug Mode 45

 MTS 13: The Symbolic Debugging System

 September 1985

 Label Variables

 Label variables are normally displayed as A-type address constants.

 If they are displayed in hexadecimal format, they are displayed as

 8-byte elements.

 Fixed Decimal Variables

 Fixed decimal variables are currently displayed in packed decimal

 format with no scaling performed. A fixed decimal variable ____ __ _______ _________

 declared as

 DECLARE FDATA FIXED DECIMAL (7,2) INITIAL(6)

 is displayed in the format

 FDATA PL4’+0000600’

 Varying Length Character Strings

 Varying length character strings are displayed at their current

 length. This may range from zero to the maximum length declared

 for the string.

 Bit Strings

 Bit string variables are displayed as binary constants. An

 asterisk is used to indicate the offset of the variable within the

 first byte, e.g.,

 BITDATA B’****1110’

 indicates a four-bit variable beginning at bit position 4 (bit

 positions are numbered 0 through 7). Varying length bit strings

 are displayed at their current length. This may range from zero to

 the maximum length declared for the string.

 Picture Data

 Pictured data variables are displayed as character string data

 using the internal format of the variable. A pictured variable

 declared as

 DECLARE PICDATA PICTURE ’$ZZ9V.99’ INITIAL(’12.34’)

 is displayed in the format

 PICDATA C’$ 12.34’

 Structures

 A structured variable must be specified using its fully qualified

 name even though a partially qualified name is unique within the

 46 Debug Mode

 MTS 13: The Symbolic Debugging System

 September 1985

 program. Currently, the total length of the fully qualified name

 may not exceed 31 characters; if the name is longer than 31

 characters, only the first 31 characters are retained in the symbol

 table and may be used. For structured array elements, all

 subscripts must appear at the end of the variable name, e.g.,

 DISPLAY X.Y.Z(1,2)

 must be used to display the variable even though X(1).Y.Z(2) might

 be valid within the program syntax.

 Statement Labels

 Statement labels may be specified either by using a symbolic

 statement label name or by using the statement number given in the

 compilation listing. Only statement labels for executable PL/I

 statements may be specified. Statements such as DECLARE, FORMAT,

 PROCEDURE, and ENTRY are not defined. Statement numbers are

 specified in the form "#nn", where "nn" is the compilation listing

 statement number, e.g.,

 BREAK #27

 sets a breakpoint at statement number 27 in the program.

 Area Variables and Offsets

 Based area variables may be displayed using either their pointer

 variables or offsets within the area. When using an offset, the

 offset must be added to the address of the area variable to form a

 pointer, i.e.,

 (area+offset)->variable

 For example, consider the following sequence of instructions:

 DECLARE BAREA AREA(256) BASED(APTR),

 1 BAS BASED(BPTR),

 2 OFF OFFSET(BAREA),

 2 VALUE FIXED DECIMAL(6,2),

 QPTR POINTER;

 ALLOCATE BAREA;

 ALLOCATE BAS IN (BAREA);

 ALLOCATE BAS IN (BAREA) SET(QPTR);

 BAS.OFF = QPTR;

 BPTR -> VALUE = 25;

 QPTR -> VALUE = 50;

 After execution of these instructions, a structured link list is

 constructed in which the first element has the value 25 and the

 second element has the value 50. Either of the following commands

 may be used to display the first element:

 Debug Mode 47

 MTS 13: The Symbolic Debugging System

 September 1985

 DISPLAY BAS.VALUE

 DISPLAY BPTR->BAS.VALUE

 Any of the following commands may be used to display the second

 element:

 DISPLAY QPTR->BAS.VALUE

 DISPLAY (BAREA+BAS.OFF)->BAS.VALUE

 DISPLAY (BAREA+(BPTR->BAS.OFF))->BAS.VALUE

 File Variables

 File variables are displayed in hexadecimal format. The region

 displayed for the file variable is the declare control block

 (DCLCB) which specifies the attributes of the file. The name of

 the file is at location 19 (hex) within the DCLCB.

 DEBUGGING PL360 PROGRAMS ________________________

 To generate a PL360 object module with SYM records, the PL360

 compiler should be invoked with the TEST option using a command of the

 form:

 $RUN *PL360 SCARDS=source SPUNCH=object PAR=TEST,options

 The following paragraphs describe the basic organization of a PL360

 program. Knowledge of this will aid the user in displaying program data

 variables and managing his program.

 A PL360 program is divided into procedures. Each of these procedures

 is further divided into units called segments. Each segment constitutes

 a control section, common section, or dummy control section (dsect).

 There are two types of segments:

 A program segment is a control section that contains the machine _______ _______

 language instructions and the literal pool for the procedure. The

 name of the control section is the name given with the PROCEDURE

 statement. Each global procedure, and segment procedure generates

 a separate control section; local procedures do not generate

 separate control sections. Program segments are the control

 sections in which breakpoints and at-points are set by the user.

 A data segment is a control section, common section, or dummy ____ _______

 control section that contains storage for the data variables

 referenced by a program segment. The name of a data segment is the

 name given with the data segment declaration statement; if no name

 is supplied, a name is generated by the compiler. The names

 generated by the compiler are given in the program source listing

 or may be displayed by the MAP debug command. Each procedure may

 reference several data segments.

 48 Debug Mode

 MTS 13: The Symbolic Debugging System

 September 1985

 The following data type codes are used for variables in PL360

 programs:

 E Real (floating-point)

 D Long Real (floating-point, 8-byte)

 F Integer (fixed-point)

 H Short Integer (fixed-point, 2-byte)

 X Byte (hexadecimal)

 Array variables in a PL360 program may be specified with subscripts.

 The first element of the array has the subscript 1.

 Statement labels must be referenced by the label used in the program.

 If the label is used both as a statement label name and a data variable

 name, the @C modifier should be used to specify the correct occurrence,

 e.g.,

 STMT1@C=MAIN

 specifies the statement label STMT1 from the segment MAIN.

 The compiler generates four special labels which correspond to BEGIN

 statements, END statements, DSECTS, and the end of the segment. The

 labels are of the form

 #Bxxxx

 #Exxxx

 #Dxxxx

 #ENDxxxx

 where "xxxx" is the source-listing statement number. Leading zeros are __________________

 required. For example, a BEGIN statement at statement number 4 and an ________

 END statement at statement number 8 would have the labels

 #B0004

 #E0008

 generated by the compiler. These generated labels may be used for

 setting breakpoints or displaying instructions. Dsect labels may be

 used with the USING command to establish addressability for the

 corresponding dsect. The END label generated for the end of the segment

 corresponds to the beginning of the literal pool at the end of the

 segment.

 Debug Mode 49

 MTS 13: The Symbolic Debugging System

 September 1985

 MISCELLANEOUS CONCEPTS ______________________

 Terse Mode __________

 SDS provides a terse mode of operation which eliminates or shortens

 many of the confirmation and diagnostic messages printed. Terse mode is

 enabled by the command

 SET TERSE=ON

 and is disabled by the command

 SET TERSE=OFF

 If the TERSE option is MTS (the default), the current setting of the MTS

 TERSE option will be used as the setting for the SDS TERSE option.

 The following messages are eliminated in terse mode:

 (1) Ready. This message is often printed when SDS is requesting a

 command.

 (2) Done. This message is often printed after SDS has taken some

 action such as setting or restoring a breakpoint.

 (3) Verification by the MODIFY command. The MODIFY command normally

 verifies the modification by printing both the old and new

 values of the location.

 The following messages are shortened in terse mode:

 (1) The breakpoint and at-point interrupt messages give only the

 address of interruption and do not identify the type of

 interruption.

 (2) The call to SYSTEM, ERROR, MTS, and MTSCMD messages do not give

 the GR14 return address.

 The BRIEF option (which is a synonym for TERSE) or the VERBOSE option

 (which is an antonym for TERSE) may also be used to control terse mode.

 The WARNMSG option may be used to control certain warning messages. If

 the WARNMSG option is ON, all messages concerning addresses outside of

 control section bounds or subscripts outside of array bounds are

 suppressed.

 Automatic Error-Dumping in Batch ________________________________

 An automatic error-dumping facility similar to that provided by the

 MTS $ERRORDUMP command is provided for batch users. In the event that

 an error condition occurs during the execution of the program, a

 symbolic dump of the program is given. This dump includes the PSW, the

 50 Debug Mode

 MTS 13: The Symbolic Debugging System

 September 1985

 general and floating-point registers, and all of the data storage

 locations in the program. Instructions and other areas not covered by

 the symbol table are excluded. This facility may be enabled by the

 command sequence

 $SET DEBUG=ON ERRORDUMP=ON

 $RUN FDname

 where "FDname" is the file or device containing the user program to be

 executed. Note that the MTS $RUN command has been given instead of the

 $DEBUG command. The error-dump facility may be disabled by the command

 $SET ERRORDUMP=OFF

 Terminal users may obtain a symbolic dump by the DUMP debug command.

 A sample of the symbolic dump is given with the DUMP command

 description.

 Using SDS Without a Loaded Program __________________________________

 Several of the debug commands may be used successfully even if SDS

 has not processed the loaded program or if there is no currently loaded

 program. The user may use the output conversion facilities of SDS to

 display selected locations of virtual memory. For example, the debug

 command

 DISPLAY 816260@T=CL32

 displays in character format the 32 bytes starting at location 816260,

 if it is a valid virtual address. The input conversion facilities may

 be used to modify selected storage, e.g., the debug command

 MODIFY 816260 CL8’ABCDABCD’

 modifies the 8 bytes starting at location 816260 to be the character

 string ABCDABCD.

 The above command may be given from MTS command mode in the form of a

 single $SDS command, e.g.,

 $SDS MODIFY 816260 CL8’ABCDABCD’

 After the single command is executed, control is returned to MTS command

 mode.

 Debug Mode 51

 MTS 13: The Symbolic Debugging System

 September 1985

 Initializing, Resetting, and Terminating SDS Processing ___

 When SDS is initialized, an area of system storage is assigned to SDS

 and all of the default SDS options are set. SDS is initialized under

 any of the following conditions:

 (1) If DEBUG=OFF is specified (the default), SDS is initialized with

 the first $DEBUG or $SDS command in the job or after SDS has

 been previously terminated (see below).

 (2) If DEBUG=ON is specified, SDS is initialized with the first

 $DEBUG, $RUN, $RERUN, $LOAD, $START, $RESTART, or $SDS command

 in the job or after SDS has been previously terminated.

 When SDS is reset, all of the loaded program symbol table information

 (if any) is released and certain SDS tables are released. The basic SDS

 work storage remains and the SDS SET options remain in effect (except

 for the INPUT, OUTPUT, ENTRY, PAR, and logical I/O unit assignments).

 Input commands are read from *SOURCE* and output is written on *SINK*.

 SDS is reset under any of the following conditions:

 (1) During initialization (see above).

 (2) With each $DEBUG, $RUN, $RERUN, and $LOAD command if $SET

 DEBUG=ON is specified.

 (3) With each $DEBUG command if $SET DEBUG=OFF is specified.

 When SDS is terminated, all of the loaded program symbol table

 information (if any) is released and the basic SDS work storage is

 released. SDS is terminated under any of the following conditions:

 (1) The STOP debug command is given.

 (2) The $SET DEBUG=OFF command is given.

 (3) The $UNLOAD CLS=SDS command is given.

 (4) A $RUN, $RERUN, $LOAD, or $UNLOAD command is given (if $SET

 DEBUG=OFF is specified).

 52 Debug Mode

 MTS 13: The Symbolic Debugging System

 September 1985

 DEBUG COMMAND DEFINITIONS _________________________

 On the following page is a list of the debug commands available for

 SDS. Parameters for each command should be separated by blanks. Some

 of the parameter terms used are:

 (1) location - these are storage references of the form S(i)±j.

 (2) section - these are control section, common section, or dsect

 names.

 The following notation conventions are used in the prototypes of the

 commands:

 lowercase - represents a generic type which is to be replaced by

 an item supplied by the user.

 uppercase - indicates material to be repeated verbatim in the

 command.

 brackets [] - indicates that material within the brackets is

 optional.

 braces {} - indicates that the material within the braces repre-

 sents choices, from which exactly one must be select-

 ed. The choices are separated by vertical bars.

 ellipsis ... - indicates that the preceding syntactic unit may be

 repeated.

 underlining - indicates the minimum abbreviation of the command or

 parameter. Longer abbreviations are accepted.

 Debug Mode 53

 MTS 13: The Symbolic Debugging System

 September 1985

 Summary of Debug Command Prototypes ___________________________________

 Commands Parameters ________ __________

 ACTIVATE {name|FLOW|CHANGES} ... __ _ _

 ALTER location {constant|location} __

 AT location ... [;command] __

 ATTRIBUTE location ... ___

 BREAK location ... _

 CLEAN [option ...] __

 COMMENT [text] ___

 CONTINUE [location ...] [T=x] _

 DEACTIVATE {name|FLOW|CHANGES} ... ___ _ _

 DEBUG filename [I/O units] [limits] [PAR=parameters] ___

 DISPLAY location[...location] ... _

 DROP {section|location} ... __

 DUMP [{PSW|GRS|FRS|section} ...] __

 END __

 FORGET SI#={nn|ALL} __

 FULLDISPLAY location ... __

 GOTO location [location ...] [T=x] _

 HELP [command] ___

 HEXDISPLAY location[...location] ... ___

 IF expression [;command] __

 IGNORE breakpoint-label {i|location} __

 INCLUDE filename ___

 LIST [option ...] _

 MAP [{FULL|DSECT}] __

 MCMD MTS-command __

 MODIFY location {constant|location} __

 MTS [MTS-command] __

 ON on-condition [;command] __

 PARLIST location [count] ____

 QUALIFY location ... _

 RESET [on-condition ...] ____

 RESTORE [{location|name} ...] ___

 RETURN [MTS-command] ___

 RUN [location ...] [T=x] __

 SCAN [{section|location1...location2|*} {constant|location}] __

 SDS __

 SET option ... __

 STEP [i [BRANCH]] ___ _

 STOP ___

 SYMBOL location ... __

 TIMETALLY {ON|OFF|PRINT|RESET|CLEAR} [option ...] __

 TRACE trace-option [location ...] __

 UNDO __

 USING {section|symbol} location __

 WHEN {expression|location CHANGES} [;command] _ _

 54 Debug Mode

 MTS 13: The Symbolic Debugging System

 September 1985

 ACTIVATE ________

 Debug Command Description

 Prototype: ACTIVATE {name|FLOW|CHANGES} ... __ _ _

 Action: If "name" is specified, the corresponding when-condition

 is activated. This may be used to reactivate a when-

 condition that has been explicitly deactivated by the

 DEACTIVATE command or implicitly deactivated after its

 condition has been satisfied during program execution.

 See the description of the WHEN command for further

 details.

 If FLOW or CHANGES is specified, then flow or change

 tracing, respectively, is activated. See the description

 of the TRACE command for further details of tracing.

 ACTIVATE Debug Command 55

 MTS 13: The Symbolic Debugging System

 September 1985

 ALTER _____

 Debug Command Description

 Prototype: ALTER location {constant|location} __

 Action: The ALTER command is identical to the MODIFY command.

 See the description of the MODIFY command.

 56 ALTER Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 AT __

 Debug Command Description

 Prototype: (a) AT location ...[;command] __

 (b) AT location ... __

 command

 command

 .

 .

 END

 where "location" specifies the location for an at-point

 to be inserted in the user’s program and "command" is a

 single debug command or a part of a list of debug

 commands to be executed in sequence when the at-point is

 reached in the program. With the single command proto-

 type (a), the command is separated from the at-point

 symbol list by a semicolon. With the command list

 prototype (b), SDS enters into command insertion mode

 (indicated by the "?" prefix character) and reads debug

 commands until an END command is given.

 Action: An at-point is established at each specified location by

 replacing the opcode of the instruction with X’00’; the

 original opcode is saved for later execution when execu-

 tion of the program is resumed or when the at-point is

 restored or otherwise removed.

 With the command list prototype (b), SDS enters into

 command insertion mode. All commands entered during

 command mode are saved in a command list for later

 processing. When an end-of-file or an END command is

 entered, SDS resumes normal command processing. AT

 commands (and their respective command lists) may be

 nested in other IF or WHEN command lists. AT commands

 may not be nested in other AT command lists; a second AT

 command will terminate the first AT command list and

 begin a new command list. If the user enters a null

 command line during command insertion mode, the previous-

 ly entered command is deleted from the list of saved

 commands.

 When an at-point is encountered during the execution of

 the user’s program, each of the commands in the command

 list for that at-point is executed in sequence. When the

 END command is executed, control returns to the user’s

 program and normal execution is resumed (unless a break-

 point has been encountered during the execution of the

 AT Debug Command 57

 MTS 13: The Symbolic Debugging System

 September 1985

 command list). If control is to be returned to debug

 command mode rather than to the program, the SDS command

 should appear immediately before the END command since

 the SDS command terminates the processing of the command

 list. The processing of the command list is also

 terminated in the event of an abnormal condition occur-

 ring in the program.

 Comments: At-points are automatically announced if the command list

 causes an output message to be generated (e.g., the

 output from the DISPLAY command), or if there is no

 command list for the at-point. The COMMENT command may

 be used for comments or announcements of at-points when

 no output messages would otherwise be generated.

 An at-point should not be set at an instruction which

 will be modified or referenced by the program. A warning

 is issued if the user sets an at-point in a data item.

 At-points may be removed by either the RESTORE or the

 CLEAN commands.

 Examples: AT LABEL;SDS

 In the above example, when the at-point at location

 LABEL is reached, control is returned to debug

 command mode.

 AT LABEL1

 DISPLAY GRS

 SDS

 END

 In the above example, when the at-point at location

 LABEL1 is reached, the general registers are dis-

 played and control is returned to debug command

 mode.

 AT LABEL2

 MODIFY ALPHA F’2’

 GOTO LABEL3

 END

 In the above example, when the at-point at location

 is reached, the location ALPHA is modified to the

 value 2. Execution is then resumed at location

 LABEL3.

 58 AT Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 ATTRIBUTE _________

 Debug Command Description

 Prototype: ATTRIBUTE location ... ___

 Action: The attributes for each parameter in the list are

 displayed; these include:

 the loaded absolute address,

 the relative address,

 the section name,

 the section generation number (if different from 1),

 the type,

 the length,

 the duplication factor (if different from 1),

 the dimension number (if a FORTRAN or PL/I array).

 The one-character codes for the type are defined with the

 description of the TYPE keyword modifier.

 If a symbolic location is specified without the CSECT

 keyword modifier and all sections in the map are open

 (the SET CSECT option has not been specified), all

 occurrences of the location are displayed.

 Example: ATTRIBUTE GAMMA

 The attributes of GAMMA are displayed as

 GAMMA:

 LA=814020 RA=000020 Section=PROG Type=F Len=4 Dup=20

 ATTRIBUTE Debug Command 59

 MTS 13: The Symbolic Debugging System

 September 1985

 BREAK _____

 Debug Command Description

 Prototype: BREAK location ... _

 Action: A global breakpoint is established at each location

 specified by replacing the opcode of the instruction with

 X’00’ or X’81’; the original opcode is saved for later

 execution when execution of the program is resumed or

 when the breakpoint is restored or otherwise removed.

 When the program being debugged attempts to execute the

 instruction at the breakpoint, control is returned to SDS

 which announces the location of the breakpoint and

 prompts for its next command. The instruction at the

 breakpoint has not yet been executed. The status of the ___ ___ ____ ________

 program is preserved and may be examined and modified

 with the appropriate commands. Execution may be resumed

 with the CONTINUE or STEP commands which execute the

 instruction at the breakpoint and resume normal sequenc-

 ing. To restart at some other point, the GOTO command

 may be used.

 Breakpoints may be removed with either the RESTORE or the

 CLEAN commands.

 A breakpoint should not be set at an instruction which

 will be modified or referenced by the program. A warning

 is issued if the user sets a breakpoint in a data item.

 For FORTRAN and PL/I programs, the user may set break-

 points by specifying the external (user-defined) or

 internal (source listing) statement numbers. The "#"

 must be used to prefix a FORTRAN external statement

 number or a PL/I internal statement number, e.g.,

 BREAK #10

 and "IS#" must be used to prefix a FORTRAN internal

 statement number, e.g.,

 BREAK IS#10

 Note: Only those statement numbers which define execut- _______

 able FORTRAN or PL/I statements may be used. All others, ____

 such as those defining DIMENSION, DATA, COMMON, SUB-

 ROUTINE, FUNCTION, ENTRY, EQUIVALENCE, FORMAT, or DECLARE

 statements are undefined.

 60 BREAK Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 The BREAK command also may be used to set breakpoints in

 resident-system storage regions. When the breakpoint is

 set, a message will be printed indicating that the

 breakpoint is a "simulator breakpoint." In order for

 this type of breakpoint to be taken, the program must be

 simulated at the point of the breakpoint. Simulation of

 resident-system storage may be achieved by specifying the

 SIM and WHENSIM options on the SET command, e.g., SIM=ON

 and WHENSIM=LIB. This may be used for setting break-

 points in <EFL> (Elementary Function Library), <FIX>

 (FORTRAN I/O Library), or PL1SYM (Resident-System PL/I

 Library). If the WHENSIM option is ALL, resident-system

 subroutines in LCSYMBOL may also be simulated. Note: It

 is not necessary to set the WHENSIM option if the

 breakpoint is set at an exact address specified in

 LCSYMBOL, <EFL>, <FIX>, or PL1SYM; in this case, it is

 only necessary to set SIM=ON.

 Example: BREAK LOOP 206 803100

 Global breakpoints are set at the symbolic location

 LOOP, the relative location 206, and the absolute

 location 803100.

 BREAK Debug Command 61

 MTS 13: The Symbolic Debugging System

 September 1985

 CLEAN _____

 Debug Command Description

 Prototype: CLEAN [option ...] __

 Action: The action specified by "option" is taken. "option" may

 be any one of the following:

 AT All at-points set by the AT command are _

 deleted.

 BREAK All breakpoints (except simulator break- _

 points) set by the BREAK command are

 deleted.

 CALLS Call tracing is disabled and the call list __

 is deleted.

 CHANGES Change tracing is disabled and the change _

 list is deleted.

 COUNT Count tracing is disabled and the count __

 list is deleted.

 FLOW Flow tracing is disabled. _

 LABEL Label tracing is disabled. _

 ONS All on-conditions set by the ON command _

 are deleted.

 REF Reference tracing is disabled and the _

 reference list is deleted.

 SIM All simulator breakpoints set by the BREAK _

 command are deleted.

 WHENS All when-conditions set by the WHEN com- _

 mand are deleted.

 If no parameter is specified, all breakpoints and at-

 points are deleted.

 Example: CLEAN A

 All at-points are removed from the program.

 62 CLEAN Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 COMMENT _______

 Debug Command Description

 Prototype: COMMENT [text] ___

 Action: If the user has entered the command in command-insertion

 mode, the comment is printed when the command list is

 processed.

 In debug command mode, the COMMENT command has no effect.

 Example: AT LOOP

 COMMENT SKIP 2 INSTRUCTIONS AT LOOP

 GOTO LOOP(3)

 END

 At the location LOOP, the comment "SKIP 2 INSTRUC-

 TIONS AT LOOP" is printed; then, execution resumes

 at location LOOP(3).

 COMMENT Debug Command 63

 MTS 13: The Symbolic Debugging System

 September 1985

 CONTINUE ________

 Debug Command Description

 Prototype: CONTINUE [location ...] [T=x] _

 Action: Execution of the program is resumed from the point of the

 last interrupt. If a breakpoint was encountered, execu-

 tion begins with the instruction at the breakpoint. If

 an attention interrupt or program interrupt had been

 taken, execution begins at the location specified by the

 PSW.

 If a location is specified, a local breakpoint is set at

 the location specified. This breakpoint code is an X’00’

 or X’81’ which replaces the opcode of the instruction.

 When the program encounters a local breakpoint, control

 is returned to debug command mode. Local breakpoints are

 in effect only for the duration of the command, and are

 automatically erased before the user enters his next

 command.

 The CONTINUE command may be used to initiate execution of

 the program if the initial values of the registers and/or

 PSW have been modified.

 The parameter T=x allows the user to specify a local time

 limit of "x" seconds. When the time limit is exceeded,

 the program will be interrupted, the message

 Local time limit exceeded at nnnnnnnn in section xxxxxxxx

 will be printed, and control will be returned to debug

 command mode. The user may resume execution of the

 program by specifying another local time limit, e.g.,

 CONTINUE T=10

 In this case, a 10-second local time limit is estab-

 lished. If no local time limit is specified, the system

 default is used; the system default is set by the MTS

 TIME option and defaults to no limit.

 Example: CONTINUE LOC2

 A local breakpoint is set at location LOC2 and

 execution of the program is resumed.

 64 CONTINUE Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 DEACTIVATE __________

 Debug Command Description

 Prototype: DEACTIVATE {name|FLOW|CHANGES} ... ___ _ _

 Action: If "name" is specified, the corresponding when-condition

 is deactivated. See the description of WHEN command for

 further details.

 If FLOW or CHANGES is specified, then flow or change

 tracing, respectively, is deactivated. See the descrip-

 tion of the TRACE command for further details of tracing.

 DEACTIVATE Debug Command 65

 MTS 13: The Symbolic Debugging System

 September 1985

 DEBUG _____

 Debug Command Description

 Prototype: DEBUG filename [I/O units] [limits] [PAR=parameters] ___

 Action: The current program being debugged is unloaded and a new

 program is loaded from "filename". This command may be

 used to reload the current program being debugged.

 The I/O units, limits, and PAR field specifications are

 the same as for the MTS $DEBUG command (this command is

 implemented by passing the entire command line to MTS for

 processing).

 Example: DEBUG -LOAD SCARDS=DATA

 The program in the file -LOAD is loaded for

 debugging.

 66 DEBUG Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 DISPLAY _______

 Debug Command Description

 Prototype: DISPLAY location[...location] ... _

 Action: Each location (or element in the storage block) is

 displayed in the format required by its type and length

 and printed along with a one-character code which indi-

 cates the location’s type. The type codes are defined

 with the description of the TYPE keyword modifier.

 If the type and length attributes of a location are

 unknown, or if a location specifies an address which is

 incorrectly aligned with respect to its type, the con-

 tents of the byte specified by the location, and the

 contents of the next three bytes, are printed in hexadec-

 imal format.

 All global breakpoints and at-points are temporarily

 restored before each location is displayed.

 Examples: DISPLAY ALPHA

 The location ALPHA is displayed according to its

 type and length attributes.

 DISPLAY ALPHA...BETA

 Each location in the range of ALPHA to BETA is

 displayed according to its type and length.

 DISPLAY Debug Command 67

 MTS 13: The Symbolic Debugging System

 September 1985

 DROP ____

 Debug Command Description

 Prototype: DROP {section|location} ... __

 Action: If "section" is specified, that dsect loses its addressa-

 bility (see the description of the USING command).

 If "location" specifies a general register, all dsects

 covered by that register are no longer addressable by SDS

 (i.e., symbols and relative addresses within that dsect

 cannot be accessed). If "location" specifies a storage

 address, all dsects based at the virtual address corre-

 sponding to that location lose their addressability.

 If the parameter may be interpreted both as a dsect name

 and as a symbol, it is assumed to be a dsect name.

 Example: DROP GR1

 The dsects covered by GR1 are released and are no

 longer addressable.

 68 DROP Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 DUMP ____

 Debug Command Description

 Prototype: DUMP [{PSW|GRS|FRS|section} ...] __

 Action: A symbolic dump of the sections specified is given. The

 dump includes only the variable storage of the section;

 instructions and areas not covered by the symbol table

 are excluded.

 For each item dumped, the relative address, the symbolic

 name, the data type, the converted value, and the

 hexadecimal value (if the data type is not X) is dumped.

 If PSW is specified, the hexadecimal and symbolic address

 forms are given.

 If GRS is specified, the general registers are dumped in

 hex, fixed-point decimal, and symbolic address format.

 If FRS is specified, the floating-point registers are

 dumped in hexadecimal and floating-point decimal format.

 If no parameter is specified, the PSW, the registers, and

 all sections are dumped.

 Comment: Since the output from this command may be extensive,

 terminal users should set the output device to a file or

 PRINT via the SET OUTPUT=FDname command.

 The DUMP option may be used to obtain an abbreviated

 symbolic dump where all FORTRAN and PL/I arrays are

 omitted except for the first element in the array. This

 option may be enabled by setting DUMP=SHORT with the SET

 command; the default is FULL.

 For batch users, an automatic symbolic dump may be

 obtained in the event of an abnormal program termination

 via the SET ERRORDUMP=ON debug command. This facility is

 similar to the $ERRORDUMP command in MTS command mode

 which produces a hexadecimal dump of a program in the

 event of an abnormal program termination.

 Example: SET OUTPUT=*PRINT*

 DUMP

 A symbolic dump of the PSW, the registers, and all

 loaded sections is produced on *PRINT*.

 DUMP Debug Command 69

 MTS 13: The Symbolic Debugging System

 September 1985

 70 DUMP Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 DUMP Debug Command 71

 MTS 13: The Symbolic Debugging System

 September 1985

 END ___

 Debug Command Description

 Prototype: END __

 Action: If the command is entered in command-insertion mode, the

 current sequence of commands being entered into command

 list associated with the AT, IF, or WHEN command is

 terminated, and control is returned to debug command

 mode.

 In debug command mode, the END command has no effect.

 Example: AT LOOP

 DISPLAY GR1

 END

 The command list for the at-point at location LOOP

 is terminated by the END command and control is

 returned to debug command mode.

 72 END Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 FORGET ______

 Debug Command Description

 Prototype: FORGET SI#={nn|ALL} __

 Action: If SI#=nn is specified, all user-program symbols associ-

 ated with storage-index level "nn" are deleted from the

 SDS symbol table. IF SI#=ALL is specified, all user-

 program symbols are deleted from the SDS symbol table.

 Example: FORGET SI#=81

 All user-program symbols associated with storage-

 index level 81 are deleted from the SDS symbol

 table.

 FORGET Debug Command 73

 MTS 13: The Symbolic Debugging System

 September 1985

 FULLDISPLAY ___________

 Debug Command Description

 Prototype: FULLDISPLAY location ... __

 Action: This command displays everything known about "location".

 The information displayed is a combination of the infor-

 mation given by the SYMBOL, ATTRIBUTE, DISPLAY, and

 HEXDISPLAY commands.

 Example: FULL CHARS

 The information displayed about CHARS would be given

 as

 CHARS:

 Synonyms: STRING, STRNG, LETRS

 LA=802018 RA=002018 Section=TESTPGM Type=C Len=10

 Value: C’ABCDEFGHIJ’

 X’C1C2C3C4 C5C6C7C8 C9D1’

 74 FULLDISPLAY

 MTS 13: The Symbolic Debugging System

 September 1985

 GOTO ____

 Debug Command Description

 Prototype: GOTO location [location ...] [T=x] _

 Action: Execution of the program is resumed at the specified

 location. The location must specify a halfword-aligned

 address.

 If more than one location is specified, local breakpoints

 are set at the second, third, etc., locations. This

 breakpoint code is an X’00’ or X’81’ which replaces the

 opcode of the instruction. When the program encounters a

 local breakpoint, control is returned to debug command

 mode. Local breakpoints are in effect only for the

 duration of the command, and are automatically erased

 before the user enters the next command.

 The parameter T=x allows the user to specify a local time

 limit of "x" seconds. When the time limit is exceeded,

 the program will be interrupted, the message

 Local time limit exceeded at nnnnnnnn in section xxxxxxxx

 will be printed, and control will be returned to debug

 command mode. The user may resume execution of the

 program by specifying another local time limit, e.g.,

 CONTINUE T=10

 In this case, a 10-second local time limit is estab-

 lished. If no local time limit is specified, the system

 default is used; the system default is set by the MTS

 TIME option and defaults to no limit.

 The GOTO command may be used to initiate the execution of

 the program if a different entry point is desired.

 Example: GOTO LOC1 LOC2

 A local breakpoint is set at location LOC2 and

 execution of the program is resumed at location

 LOC1.

 GOTO Debug Command 75

 MTS 13: The Symbolic Debugging System

 September 1985

 HELP ____

 Debug Command Description

 Prototype: HELP [command] ___

 Action: The HELP command provides information about the use of

 the Symbolic Debugging System. If "command" is speci-

 fied, information about a specific debug command is

 provided.

 Help information normally will be provided in a full-

 screen format for those terminals that support full-

 screen operations. If line format output is desired, the

 debug command SET HELP=LINE may be given for force output

 to be written directly to the terminal.

 76 HELP Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 HEXDISPLAY __________

 Debug Command Description

 Prototype: HEXDISPLAY location[...location] ... ___

 Action: Each location is displayed in a hexadecimal format

 similar to that used by the SDUMP subroutine (see the

 description of the SDUMP subroutine in MTS Volume 3,

 System Subroutine Descriptions). For storage blocks, the ______________________________

 entire block is displayed.

 Global breakpoints and at-points are not restored before

 those locations are displayed.

 Example: HEXDISPLAY 8002A0...8002EC

 The storage block starting at location 8002A0 is

 dumped in hexadecimal format.

 HEXDISPLAY Debug Command 77

 MTS 13: The Symbolic Debugging System

 September 1985

 IF __

 Debug Command Description

 Prototype: (a) IF expression; command __

 (b) IF expression __

 command

 command

 .

 .

 END

 where "expression" is a relational or logical expression

 and "command" is a single debug command or a part of a

 list of debug commands to be executed in sequence.

 With prototype (a), the single debug command is executed

 if the value of the expression is true; otherwise, the

 command is not executed. The command is separated from

 the expression with a semicolon. With the command list

 prototype (b), if the value of the expression is true,

 SDS enters into command insertion mode (indicated by the

 "?" prefix character) and reads debug commands until an

 END command is given; when the END command is given, the

 entire sequence of commands is then executed. If the

 value of the expression is false, command insertion mode

 is not entered.

 IF commands (and their respective command lists) may be

 nested in other IF, AT, or WHEN command lists. Each

 nested command list must be individually terminated by an

 END command (unless a single command form is used). If

 an IF command and its associated command list is nested

 in another command list, and if the value of the

 expression is false, the associated command list is

 skipped.

 Verification that an expression is true will be given

 only if the IF command is executed from another IF or AT

 command list. This verification is suppressed in terse

 mode.

 The IF command is designed to test a static condition in

 the user’s program (as opposed to a dynamic condition

 which is tested by the WHEN command). Since this

 condition is tested when the IF command is executed, the ________

 most common use for the IF command is in conjunction with

 the AT command for patching programs or testing program

 conditions.

 78 IF Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 Examples: IF ALPHA > F’4’; GOTO LABEL2

 In the above example, execution of the user’s

 program transfers to location LABEL2 if ALPHA has a

 value greater than 4.

 IF ALPHA = F’6’

 MODIFY BETA F’0’

 MODIFY GAMMA F’100’

 END

 In the above example, BETA and GAMMA are modified if

 ALPHA has the value 6.

 AT LABEL

 IF ALPHA ¬= F’0’

 MODIFY BETA F’0’

 GOTO LABEL4

 END

 END

 In the above example, when the at-point LABEL is

 reached in the user’s program, the AT command list

 is executed. If ALPHA is not equal to the value 0,

 BETA is modified and the program resumes execution

 at location LABEL4. Note that there must be an END

 command for both the IF command list and the AT

 command list.

 AT LABEL3

 IF ALPHA < F’0’ & BETA > F’0’

 MODIFY ALPHA F’0’

 IF BETA > F’10’; MODIFY BETA F’10’

 END

 DISPLAY GRS

 END

 In the above example, when the at-point LABEL3 is

 reached in the user’s program, the AT command list

 is executed. If ALPHA is less than 0 and BETA is

 greater than 0, ALPHA is modified. In addition if

 BETA is greater than 10, BETA is modified. After

 all modifications are made (if any), the general

 registers are displayed and the program resumes

 execution. Note that the first IF command (of

 prototype (b)) has a second IF command (of prototype

 (a)) nested in its command list.

 IF Debug Command 79

 MTS 13: The Symbolic Debugging System

 September 1985

 IGNORE ______

 Debug Command Description

 Prototype: IGNORE breakpoint-label {i|location} __

 Action: Ordinarily, when control reaches a global breakpoint or

 an at-point in the program, execution is interrupted and

 control returns to SDS. The IGNORE command provides a

 means of suppressing this interruption each time control

 reaches the breakpoint, for a total of "i" times, where

 "i" is either a decimal integer or the contents of the

 location specified. The i+1st time control reaches the ___

 breakpoint, the interruption is taken as usual.

 If a location is specified, the type of the storage

 location may be fixed-point (fullword or halfword),

 floating-point (long or short), or hexadecimal (4 bytes

 or less). A location that is in the form of a relative

 address must have the @R modifier appended.

 The ignore count must be positive and may not exceed

 65535.

 Example: IGNORE LOOP 10

 The breakpoint at the location LOOP will be ignored

 10 times.

 80 IGNORE Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 INCLUDE _______

 Debug Command Description

 Prototype: INCLUDE filename ___

 Action: The symbols that are contained in the object file

 "filename" are included in the SDS symbol table. If a

 symbol table does not currently exist, one is con-

 structed. Only SYM, ESD, and END records are processed;

 all other types of loader records are ignored. The

 loaded addresses of external symbols are obtained from

 the system loader map; hence, the MTS SYMTAB option must

 be ON.

 Examples: $RUN filename initiate program execution

 .

 .

 USER PROGRAM INTERRUPT. PSW = xxxxxxxx xxxxxxxx

 $SDS enter debug mode

 INCLUDE filename build SDS symbol table

 SYM $PSW display interrupt address

 . begin debugging session

 .

 The above sequence of commands illustrates how the

 INCLUDE command can be used for initiating a debug-

 ging session after an unexpected error is detected

 in a program.

 INCLUDE filename include dsect symbols

 USING dsect address set dsect base address

 DISPLAY symbol

 .

 .

 The above sequence of commands illustrates how the

 INCLUDE command can be used for displaying selected

 areas of dynamically allocated storage for programs

 that were not processed by SDS at load time. In

 this case, "filename" contains SYM records that were

 generated for the dsect.

 INCLUDE Debug Command 81

 MTS 13: The Symbolic Debugging System

 September 1985

 LIST ____

 Debug Command Description

 Prototype: LIST [option ...] _

 Action: The action specified by "option" is taken. "option" may

 be any one of the following:

 AT All at-points set by the AT command are _

 listed.

 BREAK All breakpoints (except simulator break- _

 points) set by the BREAK command are

 listed.

 CALLS The status of call tracing is given. __

 CHANGES The status of change tracing along with _

 the change list is given.

 COUNT The current counts recorded by count trac- __

 ing are listed.

 FLOW The status of flow tracing is given. _

 LABEL All label points specified for label trac- _

 ing are listed.

 MODS All program modifications made by the _

 MODIFY command are listed (except modifi-

 cations made in an at-command list).

 ONS The status of all on-conditions set by the _

 ON command are listed.

 REF The status of reference tracing along with _

 the reference list is given.

 SIM All simulator breakpoints set by the BREAK _

 command are listed.

 WHENS The status of all when-conditions set by _

 the WHEN command are listed.

 If no parameter is specified, all breakpoints and at-

 points are listed.

 Example: LIST A

 A listing of all the currently set at-points is

 produced.

 82 LIST Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 MAP ___

 Debug Command Description

 Prototype: MAP [{FULL|DSECT}] __

 Action: A map is produced, listing each control section and

 common section in the user’s program. The map includes

 the section name, section type, the section length, the

 loaded address, the relocation factor, and the storage

 index number. If the storage index number is omitted,

 then it is the same as the storage index number of the

 previous section.

 Blank-named (private) control sections are specified by

 unsigned decimal integers assigned according to their

 order in the SDS map. This integer is the only way to

 refer to a blank-named control section. A blank-named

 common section is specified in the map as a blank symbol.

 The blank-name common symbol (initially BLANK) is used to

 refer to a blank-named common section.

 The pseudoregister name symbol (initially PRAREA) is used

 to refer to the pseudoregister area.

 If the FULL parameter is specified, the map also includes

 all dsects and library-loaded sections. If the dsect is

 undefined, the address field is blank; if the dsect is

 defined, the address field contains the current address

 definition for that dsect. Addresses 000001 through

 00000F are used to indicate that the dsect is defined by

 the current contents of GR1 through GRF (GR15),

 respectively.

 If the DSECT parameter is specified, the map only

 includes the currently defined dsects; control sections,

 common sections, and undefined dsects are omitted.

 The symbols used for the map type are:

 CS control section definition

 CM common section definition

 DS dsect definition

 PR pseudoregister area

 LCS library control section definition

 LCM library common section definition

 LDS library dsect definition

 MAP Debug Command 83

 MTS 13: The Symbolic Debugging System

 September 1985

 Example: MAP FULL

 A full map is printed as follows:

 Name Type Length Address Reloc SI#

 MAIN CS 000268 8034C8 8034C8 0080

 COM1 CM 000070 803730 803730

 DSEC1 DS 0000F4

 COM2 CM 000020 8037A0 8037A0

 SUBR CS 000228 8037C0 8037C0

 DSEC2 DS 00002C 000009

 SQRT LCS 000032 8039F0 8039F0

 84 MAP Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 MCMD ____

 Debug Command Description

 Prototype: MCMD MTS-command __

 Action: Control returns to MTS command mode where the specified

 MTS command is executed. After the command is executed,

 control returns immediately to debug command mode.

 As an alternative, any input line beginning with a dollar

 sign "$" is also executed as an MTS command.

 Example: MCMD $DUMP ON *PRINT*

 In the above example, control returns to MTS command

 mode where a hexadecimal dump of the user’s program

 is taken.

 MCMD EDIT PROGRAM.SOU

 edit commands

 .

 .

 MTS

 In the above example, the MTS file editor is invoked

 directly from debug command mode. After the file

 PROGRAM.SOU has been edited, control returns to

 debug command mode. In this manner, the user may

 update his program source file while debugging his

 program object file.

 MCMD Debug Command 85

 MTS 13: The Symbolic Debugging System

 September 1985

 MODIFY ______

 Debug Command Description

 Prototype: MODIFY location {constant|location} __

 Action: The first parameter specifies the location that is to be

 modified and the second parameter specifies the value to

 be used for the modification.

 constant specifies a list of one or more constants ________

 delimited by blanks or commas. The entire list is

 enclosed in primes. The constant or list of constants is

 placed in the specified location(s). If no attributes

 are specified for the constants, they are converted

 according to the type and length attributes of the first

 parameter.

 If the second parameter specifies a storage location,

 then the hexadecimal contents of that location is used

 for the modification. The length used is the length

 attribute of the first parameter.

 If the second parameter is a hexadecimal constant, the

 length of the constant, rather than the length of the

 parameter being modified, is used when SDS makes the

 modification.

 Verification of the modification is given by printing

 both the old value and the new value of the location

 modified. Verification may be suppressed by entering

 terse mode (see the TERSE option in the SET command

 description). A listing of all modifications made to the

 program (except modifications made in an at-command list)

 may be obtained by using the LIST command, e.g.,

 LIST MODS

 Global breakpoints and at-points are temporarily restored

 before the modification if the breakpoint address is

 equal to the modification address.

 The UNDO command may be used to undo the effect of the

 MODIFY command, i.e., the modified location will be

 restored to its previous contents.

 Examples: MODIFY BETA(1) F’10,20,30,40’

 The first four locations starting with BETA(1) are

 modified to the constants 10, 20, 30, and 40,

 respectively.

 86 MODIFY Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 MODIFY DELTA X’0000003E’

 DELTA is modified in hexadecimal format to the

 constant 0000003E.

 MODIFY GR1 GR3

 The contents of general register 3 are copied to

 general register 1. GR3 is unchanged.

 MODIFY Debug Command 87

 MTS 13: The Symbolic Debugging System

 September 1985

 MTS ___

 Debug Command Description

 Prototype: MTS [MTS-command] __

 Action: Control returns to the caller (normally MTS command

 mode). The MTS command $SDS may be used to return

 control to debug command mode, from which the user can

 then resume debugging his program. An optional MTS

 command may be specified, which is executed before

 control is returned to the caller.

 The effect of this command is identical to that of the

 RETURN command.

 Example: MTS $DUMP ON *PRINT*

 In the above example, control returns to MTS command

 mode where a hexadecimal dump of the user’s program

 is produced.

 88 MTS Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 ON __

 Debug Command Description

 Prototype: (a) ON on-condition; command __

 (b) ON on-condition __

 command

 command

 .

 .

 END

 where PGNT, ATTN, IOERR, LOCAL, or XFR specifies a

 program on-condition and "command" is a single debug

 command or a part of a list of debug commands to be

 executed in sequence.

 With the single command prototype (a), a single debug

 command is specified, separated from the on-condition by

 a semicolon. If the condition occurs during program

 execution, the debug command is executed.

 With the command list prototype (b), SDS enters into

 command insertion mode (indicated by the "?" prefix

 character) and reads debug commands until an END command

 is given. If the condition occurs during program execu-

 tion, the debug command list is executed.

 The following on-conditions may be specified:

 PGNT Program interrupt _

 ATTN Attention interrupt _

 LOCAL Local time estimate exceeded _

 TIMN Timer interrupt _

 XFR Call to subroutine LINK, LOAD, XCTL, or UNLOAD _

 MTS Call to subroutine MTS _

 MCMD Call to subroutine MTSCMD __

 SYSTEM Call to subroutine SYSTEM _

 ERROR Call to subroutine ERROR _

 RETURN Program return to system _

 If PGNT is specified and a program interrupt occurs

 during program execution, the single debug command or

 command list is executed. If the program has called the

 subroutine PGNTTRP, the command list is executed before

 the PGNTTRP exit routine is called.

 If ATTN is specified and an attention interrupt occurs

 during program execution, the single debug command or

 ON Debug Command 89

 MTS 13: The Symbolic Debugging System

 September 1985

 command list is executed. If the program has called the

 subroutine ATTNTRP, the command list is executed before

 the ATTNTRP exit routine is called.

 If LOCAL is specified and a local time estimate is

 exceeded during program execution, the single debug

 command or command list is executed.

 If TIMN is specified and a timer interrupt occurs during

 program execution, the single debug command or command

 list is executed.

 If XFR is specified and the program calls the system

 subroutines LINK, LOAD, XCTL, or UNLOAD, the single debug

 command or command list is executed. For calls to LINK,

 LOAD, and XCTL, the sections specified will have been

 loaded, but not entered, at the time the command list is

 executed. For calls to UNLOAD, the sections specified

 will have been unloaded at the time the command list is

 executed. The command list is also executed when sec-

 tions that have been loaded by calls to LINK and XCTL are

 unloaded.

 If MTS, MCMD, SYSTEM, or ERROR is specified and a call is

 made to one of the subroutines MTS, MTSCMD, SYSTEM, or

 ERROR, the single debug command or command list is

 executed.

 If RETURN is specified and the program returns to the

 system (via the instruction BR 14), the single debug

 command or command list is executed.

 The RESET and CLEAN commands may be used to delete

 on-conditions. The prototype for the RESET command is

 RESET on-condition ... ____

 The prototype for the CLEAN command is

 CLEAN ONS __ _

 The LIST command may be used to list all of the current

 on-conditions. The prototype for the LIST command is

 LIST ONS _

 Examples: ON PGNT; GOTO LABEL2

 In the above example, execution of the user’s

 program transfers to location LABEL2 if a program

 interrupt occurs.

 90 ON Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 ON PGNT

 IF GR15.EQ.F’0’

 COMMENT Skip subroutine SUBRX

 GOTO $GR14

 END

 END

 The above example illustrates how the ON command can

 be used to bypass the execution of an unloaded or

 unavailable external subroutine. For example, as-

 sume that the following two instructions are used to

 call the subroutine SUBRX:

 L 15,=V(SUBRX)

 BALR 14,15

 If, after the calling program is loaded, the symbol

 SUBRX remains undefined, the literal V(SUBRX) will

 have a value of zero and a program interrupt will

 occur when a call to SUBRX is attempted. The above

 ON command list will test for such a program

 interrupt condition. If this type of program inter-

 rupt occurs, the comment "Skip subroutine SUBRX"

 will be printed and execution will be resumed at the

 next instruction following the BALR instruction. If

 general register 15 is nonzero, normal program

 interrupt processing will occur. Note that there

 must be an END command for both the IF command list

 and the ON command list.

 ON Debug Command 91

 MTS 13: The Symbolic Debugging System

 September 1985

 PARLIST _______

 Debug Command Description

 Prototype: PARLIST location [count] ____

 Action: The PARLIST command may be used to display the contents

 of a parameter list in symbolic form with each parameter

 converted according to its data type. The address of the

 parameter list is specified by "location". The number of

 parameters to be displayed in the parameter list is

 specified by "count"; if omitted, parameters are display-

 ed until the parameter list is exhausted or until an

 illegal parameter list adcon is encountered.

 For each parameter in the parameter list, the following

 information is displayed:

 the address of the parameter,

 the symbolic name of the parameter, and

 the value of the parameter.

 If "location" contains the address of the system parame-

 ter list, the system parameter list is displayed in a

 special character format.

 Example: PARLIST $GR1

 The parameter list pointed to by general register 1

 is displayed.

 92 PARLIST Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 QUALIFY _______

 Debug Command Description

 Prototype: QUALIFY location ... _

 Action: The type and length attributes of a symbol are changed

 according to the type and length modifiers appended to

 that symbol.

 If the length attribute of a symbol is changed, any

 nonzero duplication factor associated with the symbol is

 automatically set to one; e.g., if a symbol is assembled

 with a type and length 256C is qualified with a length of

 256, it in effect becomes CL256.

 Predefined symbols or PL/I symbols may not be qualified.

 Example: QUALIFY ABC@T=X

 The type attribute of ABC is changed to X

 (hexadecimal).

 QUALIFY Debug Command 93

 MTS 13: The Symbolic Debugging System

 September 1985

 RESET _____

 Debug Command Description

 Prototype: RESET [on-condition ...] ____

 Action: If no parameter is specified, all SDS SET options are

 reset to their default values. A list of these defaults,

 and the corresponding SET command options to change their

 values, is presented below.

 Parameter Command Default _________ _______ _______

 At-point processing AT ON

 Attention interrupt processing ATTN USER

 Blank-named common symbol BLANK BLANK

 Breakpoint processing BREAK ON

 Duplicate common processing COMMON OFF

 Duplicate dsect processing DSECTS OFF

 Dump command processing DUMP FULL

 SDS command source echoing ECHO MTS

 Errordump facility ERRORDUMP OFF

 Full scan option FULLSCAN OFF

 Full search option FULLSEARCH ON

 Indirection character INDCH $

 Indexing INDEX ON

 SDS command source INPUT *MSOURCE*¹

 Default length LEN 4

 LINK,LOAD,XCTL,UNLOAD processing LLX ON

 Modifier character MODCH @

 Open-map character OMAPCH *

 SDS output sink OUTPUT *MSINK*¹

 Program interrupt processing PGNT USER

 Pseudoregister area name PRAREA PRAREA

 Default relocation factor RF 0

 Automatic simulation SIM OFF

 Terse mode TERSE MTS

 Timer interrupts TIMN USER

 Default type TYPE X (hex)

 Warning messages WARNMSG ON

 Low-core simulation WHENSIM OFF

 LINK,LOAD,XCTL,UNLOAD intercept XFR OFF

 ¹Initially, the command source and the output sink are

 SOURCE and *SINK*, respectively.

 If PGNT, ATTN, LOCAL, TIMN, XFR, MTS, MCMD, SYSTEM, _ _ _ _ _ _ __ _

 ERROR, or RETURN is specified, the corresponding on- _ _

 condition is deleted. The other SDS SET options are not

 reset.

 94 RESET Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 RESTORE _______

 Debug Command Description

 Prototype: RESTORE [{location|name} ...] ___

 Action: If "location" is specified, either

 (1) the breakpoint or at-point is deleted and the

 original instruction is restored if it was speci-

 fied by the BREAK or AT command, or

 (2) the location is removed from the change or

 reference trace list if it was specified by the

 TRACE command.

 If "name" is specified, the corresponding when-condition

 is deleted.

 If no parameter is specified, the most recently entered

 global breakpoint or at-point set by the BREAK or AT

 command is deleted and the original instruction is

 restored.

 "location" must be specified to restore a simulator

 breakpoint.

 Example: RESTORE LOC2

 The breakpoint or at-point at location LOC2 is

 removed from the program.

 RESTORE Debug Command 95

 MTS 13: The Symbolic Debugging System

 September 1985

 RETURN ______

 Debug Command Description

 Prototype: RETURN [MTS-command] ___

 Action: Control returns to the caller (normally MTS command

 mode). An optional MTS command may be specified, which

 is executed before control is returned to the caller.

 The $SDS command returns control to debug command mode.

 The effect of this command is identical to that of the

 MTS command.

 96 RETURN Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 RUN ___

 Debug Command Description

 Prototype: RUN [location ...] [T=x] __

 Action: Control is transferred to the entry point of the program

 and execution is started. General registers 1, 13, 14,

 and 15 are set to the following values:

 GR1 points to the PAR field character string.

 GR13 points to a system save area.

 GR14 contains the return address.

 GR15 contains the entry point address.

 The other registers and the floating-point registers are

 set to zero. The program mask and condition code are set

 to zero. The entry point and the PAR field may be

 changed by the ENTRY and PAR options of the SET command.

 If a location is specified, a local breakpoint is

 established at the specified location by replacing the

 opcode of the instruction with X’00’ or X’81’. When the

 program encounters a local breakpoint, control will be

 returned to debug command mode. Local breakpoints are in

 effect only for the duration of the command, and are

 automatically deleted before the user enters the next

 command.

 The parameter T=x allows the user to specify a local time

 limit of "x" seconds. When the time limit is exceeded,

 the program will be interrupted, the message

 Local time limit exceeded at nnnnnnnn in section xxxxxxxx

 will be printed, and control will be returned to debug

 command mode. The user may resume execution of the

 program by specifying another local time limit, e.g.,

 CONTINUE T=10

 In this case, a 10-second local time limit is estab-

 lished. If no local time limit is specified, the system

 default is used; the system default is set by the MTS

 TIME option and defaults to no limit.

 For programs that are serially reusable, i.e., capable of

 being rerun several times without being reloaded, the RUN

 command may be used to restart the program at its entry

 point. Programs that are serially reusable are either

 RUN Debug Command 97

 MTS 13: The Symbolic Debugging System

 September 1985

 reentrant or they do not modify their constant areas.

 User program storage that is dynamically acquired is not

 automatically released by SDS when the program is rerun.

 The CONTINUE, GOTO, and STEP commands also may be used to

 initiate execution of the program without altering the

 general or floating-point registers.

 Example: RUN LOC2

 A local breakpoint is set at location LOC2 and

 execution of the user’s program is initiated.

 98 RUN Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 SCAN ____

 Debug Command Description

 Prototype: SCAN [{section|location1...location2|*} __

 {constant|location}]

 Action: If "section" is specified, the named section is searched

 for the value specified. If "location1...location2" is

 specified, the area bounded by "location1" and "loca-

 tion2" is searched. If "*" is specified, all loaded

 control sections, common sections, and defined dsects are

 searched. In all cases, all unreferenced or protected

 pages are skipped without comment.

 If a constant is specified, the value of the constant is

 used as the argument for the scan; if a location is

 specified, the contents of that location is used as the

 argument.

 If the type specified is hexadecimal, character, or

 packed or zoned decimal, the length of the constant

 specified is taken as the length of the value to scan

 for; otherwise, the default type and length attributes

 are used for the scan if no TYPE and LENGTH modifiers are

 specified on the first parameter.

 If no parameter is specified, then the search resumes

 starting at the first location beyond the previous match

 from the previous SCAN command.

 The search for the specified value is performed with

 respect to the appropriate boundary alignment of the

 value specified, i.e., instructions are scanned for on

 halfword boundaries, character constants on byte boun-

 daries, etc.

 The address parameter may contain unreferenced or pro-

 tected pages within its range; e.g.,

 SCAN 800000...8FFFFF C’ABCDEF’

 scans all of the user’s referenced virtual memory in

 segment 8 for the character string ABCDEF; all unre-

 ferenced or protected pages within this range are ignored

 without comment.

 The FULLSCAN option may be used to scan the address range

 for all occurrences of the argument instead of stopping

 after the first occurrence. This may be enabled by

 SCAN Debug Command 99

 MTS 13: The Symbolic Debugging System

 September 1985

 setting FULLSCAN=ON with the SET command; the default is

 OFF.

 Examples: SCAN MAIN D’3.33762’

 The section MAIN is scanned for the double-precision

 floating-point constant 3.33762.

 SCAN 816100...8162DB C’OUTPUT’

 SCAN

 The region 816100...8162DB is scanned for the char-

 acter constant OUTPUT. Then the remainder of the

 same region is scanned for a second occurrence of

 OUTPUT. If the first SCAN command is terminated

 without encountering a successful match, the second

 SCAN command has no effect.

 100 SCAN Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 SDS ___

 Debug Command Description

 Prototype: SDS __

 Action: If an AT, IF, or WHEN command list is being processed,

 the command list processing is terminated and control is

 returned to debug command mode. The SDS command is

 normally given as the command preceding the END command

 in the command list.

 In debug command mode, the SDS command has no effect.

 This command is not the same as the MTS $SDS command

 which is used to enter debug command mode from MTS

 command mode.

 Example: AT LOC5

 DISPLAY A(1)...(9)

 DISPLAY FRS

 SDS

 END

 After the AT command list for the at-point at

 location LOC5 is processed, control is returned to

 debug command mode.

 SDS Debug Command 101

 MTS 13: The Symbolic Debugging System

 September 1985

 SET ___

 Debug Command Description

 Prototype: SET option ... __

 Action: The SET command is used to alter the status of various

 SDS options, default attributes, or default characters.

 The valid keyword parameters are as follows:

 AT={ON|OFF} If the option is OFF, all current

 at-points are ignored and program

 execution are automatically con-

 tinued. The at-points are not ___

 restored; if an IGNORE command is in

 effect for the at-point, its count is

 decremented as usual each time it is

 encountered. The default is ON.

 ATTN={USER|SDS} If the option is SDS, user attention

 interrupt exit routines set up by

 calls to the subroutine ATTNTRP are

 disabled; SDS will process all atten-

 tion interrupts. The option may be

 set to SDS before or after the user’s

 program has called the subroutine

 ATTNTRP. The option may be set to

 USER to restore normal attention

 interrupt processing by the program.

 The default is USER.

 BLANK=name The blank-named common symbol used to

 refer to blank-named common sections

 is set to name. The symbol may not ____

 begin with the current indirection

 character "$", and may not contain

 any of the following characters:

 ()+-,.=’*/ or the current modifier

 character "@". The default value is

 BLANK.

 BREAK={ON|OFF} If the option is OFF, all current

 global breakpoints are ignored and

 program execution are automatically

 continued. The breakpoints are not ___

 restored; if an IGNORE command is in

 effect for the breakpoint, its count

 is decremented as usual each time it

 is encountered. The default is ON.

 102 SET Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 BRIEF={ON|OFF|MTS} If the option is ON, SDS enters terse

 mode which eliminates many confirma-

 tion and diagnostic messages. If the

 option is OFF, complete message pro-

 cessing occurs. BRIEF is a synonym

 for TERSE and an antonym for VERBOSE.

 The default is the setting of the

 corresponding MTS BRIEF option.

 COMMON={ON|OFF} If this option is OFF, the symbols of

 all multiple occurrences of common

 sections of the same name with the

 same storage index number are merged,

 thus reducing the size of the symbol

 table. If this option is ON, the

 symbols are kept separate; this is

 useful for checking whether each

 occurrence of a common section of the

 same name is identical in length and

 symbol order. The default is OFF.

 CSECT={section|i|*} If "section" is given, the module

 containing the section named becomes

 the new current section (module) and

 the remaining modules are closed

 (i.e., searching for a symbol is

 initially restricted to that module).

 All control sections, common sec-

 tions, and defined dsects in the

 module are available for the search.

 If the symbol is not found in the

 current module, the search is then

 extended to the entire program; if

 the symbol is found in another

 module, that occurrence is used.

 This extended search may be sup-

 pressed by the SET FULLSEARCH=OFF

 command. If "i" is given, the module

 containing the ith blank- named con- _

 trol section loaded becomes the cur-

 rent module and the remaining modules

 are closed. If the open-map charac-

 ter "*" is given, the first module

 loaded again becomes the current

 module and the remaining modules are

 opened.

 To specify a module containing a

 dsect as the current module, "sec-

 tion" must be specified as

 dsect@C=csect

 SET Debug Command 103

 MTS 13: The Symbolic Debugging System

 September 1985

 where "csect" is the name of the

 control section with which the dsect

 was assembled. The dsect must be

 previously defined with a USING

 command.

 DSECTS={ON|OFF} If the option is OFF, all multiple

 occurrences of dsects of the same

 name with the same storage index

 number are ignored, thus reducing the

 size of the symbol table. This op-

 tion must be set to OFF before the

 program is loaded. The default is

 OFF.

 DUMP={SHORT|FULL} If this option is SHORT, an abbrevia-

 ted symbolic dump is produced by the

 DUMP command; this dump omits all

 FORTRAN and PL/I arrays except for

 the first element in the array; all

 other data variables are included.

 If this option is FULL, the symbolic

 dump contains all data variables.

 The default is FULL.

 ECHO={ON|OFF|MTS} If the option is ON, input commands

 to SDS are echoed on the current

 output file or device if it is dif-

 ferent from the input file or device.

 The default is the setting of the

 corresponding MTS ECHO option.

 ENTRY=location The entry point to the user’s program

 is set to the location specified; it

 may be a symbolic, relative, or vir-

 tual address.

 ERRORDUMP={ON|OFF|FULL}

 If the option is ON and the user is

 running in batch mode, a symbolic

 dump is automatically given in the

 event of an abnormal program termina-

 tion; library-loaded sections are ex-

 cluded from the dump. If this option

 is FULL, library-loaded sections are

 included in the dump. The default is

 OFF.

 FULLSCAN={ON|OFF} If this option is ON, the SCAN com-

 mand scans for all occurrences of the

 argument in the specified address

 range instead of stopping after the

 104 SET Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 first occurrence. The default is

 OFF.

 FULLSEARCH={ON|OFF} If this option is ON, the scope of

 the CSECT and DSECT modifiers and the

 CSECT command is extended to the

 entire program if the search is

 unsuccessful in the specified sec-

 tion. If this option is OFF, the

 extended search is suppressed. The

 default is ON.

 HELP={SCREEN|LINE} If SCREEN is specified, help informa-

 tion is presented in full-screen for-

 mat if the terminal supports full-

 screen operations; otherwise, it is

 presented in line format. If LINE is

 specified, help information is pre-

 sented in line format. The default

 is SCREEN.

 INDCH=char The indirection character becomes the

 character specified by "char". The

 default is "$".

 INDEX={ON|OFF} If the option is OFF, only displace-

 ments from the nearest symbolic loca-

 tion are used to display an address.

 If this option is ON, both indexes

 and displacements are used. The de-

 fault is ON.

 INPUT=FDname SDS reads subsequent commands from

 the file or device specified by

 "FDname". If an end-of-file is

 detected from the new command stream,

 or if an attention interrupt, a pro-

 gram interrupt, or a breakpoint (not ___

 an at-point) is encountered, SDS re-

 turns to *MSOURCE* for its commands.

 LEN=i The default length attribute is set

 to "i", where "i" is an unsigned

 decimal integer between 1 and 65535.

 Initially, the default length attri-

 bute is 4.

 LLX={ON|OFF} If the option is OFF, all sections

 which are dynamically loaded by calls

 to the subroutines LINK, LOAD, or

 XCTL are not entered into the symbol

 table, thus reducing the size of the

 symbol table. The default is ON.

 SET Debug Command 105

 MTS 13: The Symbolic Debugging System

 September 1985

 Note that this option is independent

 of the setting of the XFR option

 which controls the intercepting of

 calls to the LINK, LOAD, XCTL, or

 UNLOAD subroutines.

 LIOunit=FDname Logical I/O unit assignments for the

 user’s program may be given for both

 input and output units. This may be

 used to rewind sequential or line

 files but will not affect the status

 of other types of pseudodevices (such

 as *SOURCE* and the position of

 tapes).

 MODCH=char The modifier character becomes the

 character specified by "char". The

 default is "@".

 OMAPCH=char The "open-map" character becomes the

 character specified by "char". The

 default is "*".

 OUTPUT=FDname SDS writes subsequent output lines to

 the file or device specified by

 "FDname". If an attention interrupt,

 a program interrupt, or a breakpoint

 (not an at-point) is encountered, SDS ___

 switches its output to *MSINK*.

 PAR=text The PAR field is replaced by the

 character string specified by "text".

 Since "text" includes the remainder

 of the input line, the PAR option

 must be the last option specified on

 the SET command.

 PGNT={USER|SDS} If the option is SDS, user program

 interrupt exit routines set up by

 calls to the subroutine PGNTTRP are

 disabled; SDS processes all program

 interrupts. The option may be set to

 SDS before or after the user’s pro-

 gram has called the subroutine

 PGNTTRP. The option may be set to

 USER to restore normal program inter-

 rupt processing by the program. The

 default is USER.

 PRAREA=name The pseudoregister area symbol used

 to refer to the pseudoregister area

 is set to "name". The symbol may not

 begin with the current indirection

 106 SET Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 character "$", and may not contain

 any of the following characters:

 ()+-,.="*/ or the current modifier

 character "@". The default value is

 PRAREA.

 SIM={ON|OFF} If this option is ON, any command

 that starts program execution calls

 the SDS simulator to simulate the

 program. The default is OFF.

 TERSE={ON|OFF|MTS} If the option is ON, SDS enters terse

 mode which eliminates many confirma-

 tion and diagnostic messages. If the

 option is OFF, complete message pro-

 cessing occurs. TERSE is a synonym

 for BRIEF and an antonym for VERBOSE.

 The default is the setting of the

 corresponding MTS TERSE option.

 TIMN={USER|SDS} If the option is SDS, timer inter-

 rupts set by the user program are

 ignored and program execution con-

 tinues. The default is USER.

 TYPE=x The default type attribute is set to

 "x", where "x" is any of the SDS type

 codes described with the description

 of the TYPE keyword modifier. Ini-

 tially, the default type attribute is

 X (hexadecimal).

 VERBOSE={ON|OFF|MTS}

 If the option is OFF, SDS enters

 terse mode which eliminates many con-

 firmation and diagnostic messages.

 If the option is ON, complete message

 processing occurs. VERBOSE is an

 antonym for BRIEF and TERSE. The

 default is the setting of the corre-

 sponding MTS VERBOSE option.

 WARNMSG={ON|OFF} If the option is OFF, all warning

 messages concerning addresses outside

 of csect bounds and subscripts out-

 side of array bounds are suppressed.

 The default is ON.

 WHENSIM={OFF|LIB|ALL}

 If this option is LIB, subroutines

 that reside in the low-core symbol

 tables <EFL>, PL1SYM, and <FIX> are

 simulated. If this option is ALL,

 SET Debug Command 107

 MTS 13: The Symbolic Debugging System

 September 1985

 all low-core subroutines are simu-

 lated. If this option is OFF, these

 subroutines are executed instead of

 simulated when called by the SDS

 simulator as is always the case for

 subroutines residing in LCSYMBOL.

 The default is OFF.

 XFR={ON|OFF} If the option is ON, SDS intercepts

 all calls to the subroutines LINK,

 LOAD, XCTL, and UNLOAD, and LINK-

 returns and return to debug command

 mode. The modules specified in sub-

 routine calls to LINK, LOAD, and XCTL

 are loaded and the registers are set

 up for the execution of the loaded

 modules (in the case of LINK and

 XCTL). For XCTL, the calling program

 is unloaded and its symbols are

 purged from the SDS map. For UNLOAD

 and LINK-return, the module is

 unloaded and its symbols are purged

 from the SDS map. If the option is

 OFF, SDS does not intercept the sub-

 routine calls. The default is OFF.

 Note that this option is independent

 of the setting of the LLX option

 which controls the symbol table pro-

 cessing of modules dynamically loade-

 dby calls to the LINK, LOAD, or XCTL

 subroutines.

 Examples: SET LEN=8 TYPE=C TERSE=ON

 This command sets the default length attribute to 8

 bytes, the default type attribute to C (character),

 and sets terse mode ON.

 SET SCARDS=INPUT SPRINT=OUTPUT PAR=EXEC

 This command sets SCARDS and SPRINT to the files

 INPUT and OUTPUT, respectively, and replaces the

 current PAR field with the character string EXEC.

 108 SET Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 STEP ____

 Debug Command Description

 Prototype: STEP [i [BRANCH]] ___ _

 Action: The next "i" machine language instructions in the user’s _______ ________

 program are simulated before control returns to SDS. If

 "i" is not specified, only the next instruction is

 simulated.

 If BRANCH is specified, the user’s program is simulated

 until either "i" instructions are executed or a success-

 ful branch is executed. If simulation is terminated due

 to a successful branch, the number of unexecuted instruc-

 tions remaining in the step count "i" is printed in the

 form

 Remaining step count = x

 Comments: If the user attempts to STEP past a branch instruction,

 the branch is taken as usual unless the program is

 transferring to a legal low-core symbol such as SCARDS or

 SPRINT. In this case, the routine is executed, not

 simulated, and stepping resumes at the return address.

 The instructions executed in the routine are not counted

 in the stepping count.

 If the branch address is in resident-system storage and

 does not correspond to the entry point of a legal

 low-core symbol, simulation is terminated and a warning

 message is printed. The user must restart his program

 with either a CONTINUE or GOTO command.

 If STEP is used instead of RUN to initiate program

 execution, registers 1, 13, 14 and 15 are loaded with the

 appropriate values (see the RUN debug command

 description).

 FORTRAN and PL/I users should note that the STEP command

 specifies machine language instructions in the count. If _______ ________

 it is desired to step a specified number of FORTRAN or

 PL/I instructions, the CONTINUE command should be used

 specifying local breakpoints.

 Example: STEP 10

 The next 10 instructions in the program are

 simulated.

 STEP Debug Command 109

 MTS 13: The Symbolic Debugging System

 September 1985

 STOP ____

 Debug Command Description

 Prototype: STOP ___

 Action: SDS processing is terminated and control is returned to

 the caller (normally MTS command mode).

 All loaded-program symbol table information and SDS work

 storage are released.

 If the user’s program was loaded via the $DEBUG command,

 the program is unloaded; if the program was loaded via

 the $RUN, $RERUN, or $LOAD commands, the program is not

 unloaded.

 If STOP is encountered in an AT, IF, or WHEN command

 list, it is interpreted as an SDS command and control is

 returned to debug command mode.

 110 STOP Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 SYMBOL ______

 Debug Command Description

 Prototype: SYMBOL location ... __

 Action: The symbolic name for the specified location is printed.

 If no symbol table is present, the relative address and

 section name are printed. If this cannot be done, the

 corresponding virtual address is printed.

 If a location has more than one symbolic name, all of its

 names are printed.

 Examples: SYMBOL ALPHA+4 $GR14 816020

 This example displays the above locations in the

 following form:

 ALPHA+4 = VSYS in section SUBR

 $GR14 = RETRN(8) in section SUBR

 816020 = BETA in section MAINPROG

 816020 = BMARK in section MAINPROG

 In this example, the location 816020 has two symbol-

 ic names.

 SYMBOL Debug Command 111

 MTS 13: The Symbolic Debugging System

 September 1985

 TIMETALLY _________

 Debug Command Description

 Prototype: TIMETALLY {ON|OFF|PRINT|RESET|CLEAR} [option ...] __

 Action: The TIMETALLY command may be used to monitor the execu-

 tion of a program and to produce a histogram depicting

 the distribution of CPU or real time within the program,

 i.e., to show where the program spends its time.

 The TIMETALLY algorithm is a technique of random sampling

 of program execution to determine the distribution of CPU

 activity.

 When TIMETALLY is invoked, an internal data structure is

 constructed representing the various control sections and

 entry points in the program. Each of the control

 sections is divided into partitions of a fixed size and a

 counter is established for each partition. A timer

 interrupt is set up to occur after a specified number of

 milliseconds of user program execution. When the timer

 interrupt occurs, the data structure is scanned to

 determine in which partition the interrupt occurred, and

 its counter is incremented by one. Another timer inter-

 rupt is set up for the same interval and program

 execution is resumed. Each time a timer interrupt

 occurs, the appropriate counter is incremented and a new

 timer interrupt is set up. This pattern is continued

 throughout program execution. When the TIMETALLY results

 are printed, a determination of the total number of

 interrupts taken is made on a partition-by-partition

 basis and a histogram depicting the partition percentages

 is printed.

 TIMETALLY intercepts calls to MTS resident-system subrou-

 tines (those defined in LCSYMBOL, <EFL>, <FIX>, and

 PL1SYM) and saves, for each call, the name of the

 subroutine and the point from which the subroutine was

 called. This enables the determination of the time spent

 within system subroutines as a function of the points

 from which they were called.

 A special partition ?SYSTEM is established for counting

 the number of timer interrupts taken in MTS and the

 supervisor for which the cause is not apparent. One

 common cause of this problem is terminal output. Since

 terminal output may be overlapped with program execution,

 the asynchronous handling of the completion of an output

 operation represents system CPU activity for which the

 cause is not apparent.

 112 TIMETALLY Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 A special partition ?USER is established for counting the

 number of timer interrupts taken at addresses outside of

 MTS and the supervisor, but which are not contained in

 any of the partitions defined for the user program. A

 program which dynamically acquires a region of storage,

 moves instructions into it, and proceeds to execute them,

 may produce such interrupts. Intercepts established in

 user storage by TIMETALLY to intercept calls to system

 subroutines may also generate counts under ?USER.

 The following options may be specified on the TIMETALLY

 command. More than one option may be specified on the

 command. The first five options control the enabling and

 disabling of the TIMETALLY facility.

 ON This option invokes TIMETALLY and enables

 the collection of TIMETALLY data during

 program execution. Execution of the program

 may be started by the RUN debug command.

 OFF This option disables the collection of data.

 This is needed only if the user desires to

 collect data in a smaller portion of the

 program.

 PRINT This option prints the accumulated TIMETALLY

 data collected during program execution.

 RESET This option resets the accumulated data

 collected to zero. This is needed only if

 the user desires to issue a subsequent RUN

 command without reloading the program.

 CLEAR This option terminates the TIMETALLY facili-

 ty and releases all TIMETALLY data and

 storage. This storage is also automatically

 released when the program is unloaded.

 The remaining options control the behavior of the TIME-

 TALLY facility.

 OUTPUT=FDname

 This option specifies the file or device on

 which the data results are to be printed.

 If this is omitted, the results are printed

 on the current output file or device.

 ORL=n This option specifies the maximum line

 length (output record length) of the histo-

 gram. If this option is omitted, a value of

 132 or the maximum output record length of

 the file or device specified by the OUTPUT

 option is assumed, whichever is smaller.

 TIMETALLY Debug Command 113

 MTS 13: The Symbolic Debugging System

 September 1985

 Atleast one line of the histogram will be of

 maximum length. "n" must be in the range 33

 ≤ n ≤ 132.

 PSIZE=n This option sets the size (in bytes) of the

 partitions into which the control sections

 are divided. If this option is omitted, a

 partition size of 256 bytes is assumed.

 DELTAT=dd

 DTDEV=ee These options set the interval to be used

 for scheduling timer interrupts during exe-

 cution of the program. Timer interrupts are

 scheduled with an interval time that is

 uniformly distributed over the interval

 "dd±ee" milliseconds. The purpose of the

 uniform random distribution is to avoid

 unwanted correlation between sampling fre-

 quencies and cyclic program execution. If

 DELTAT is not specified, a value of 1.5 is

 assumed. If DTDEV is not specified, a value

 of DELTAT/2 is assumed. The values speci-

 fied must be such that dd-ee > 0.4.

 {CPUTIME|REALTIME}

 This option specifies whether the timer

 interrupts are to be based on CPU time or

 real time. If CPUTIME is specified, the

 timer interrupts are based on CPU time using

 the value specified by DELTAT. If REALTIME

 is specified, the timer interrupts are based

 on real time using a DELTAT value of 200

 milliseconds. The default is CPUTIME.

 SYS={NONE|NORMAL|FULL}

 This option specifies the manner in which

 timer interrupts that occur in system stor-

 age (segments 0-5) are to be handled. The

 default is NORMAL.

 If NONE is specified, timer interrupts

 occurring in system storage are ignored;

 this enables estimates of "nonsystem" timing

 only.

 If NORMAL is specified, information is reco-

 rded indicating the name of the resident-

 system subroutine called and the point from

 which the subroutine is called.

 If FULL is specified, in addition to record-

 ing the information specified by NORMAL,

 segments 0 through 5 are treated as large

 114 TIMETALLY Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 control sections and information is recorded

 giving the location where the timer inter-

 rupt occurred. Since the timing statistics

 produced by the FULL option are in terms of

 virtual addresses, the user must have an MTS

 system load map in order to interpret this

 output. In addition, knowledge of the in-

 ternal structure of MTS is needed to mean-

 ingfully use this option.

 The TIMETALLY facility may be used while the program is

 being actively debugged. However, data is not collected

 if the program is being simulated, e.g., when the STEP or

 WHEN commands are being used.

 Example: The following example illustrates the use of the TIME-

 TALLY facility in SDS. Input from the user is in

 uppercase; output from SDS is in lowercase.

 #DEBUG PROGRAM 5=INPUT 6=OUTPUT

 +ready

 +TIMETALLY ON

 +done

 +RUN

 program execution

 +user program return.

 +TIMETALLY PRINT

 TIMETALLY results

 +done

 +STOP

 #

 TIMETALLY Debug Command 115

 MTS 13: The Symbolic Debugging System

 September 1985

 TRACE _____

 Debug Command Description

 Prototype: (a) TRACE FLOW __ _

 (b) TRACE LABEL location ... __ _

 (c) TRACE CALLS [location ...] __ __

 (d) TRACE COUNT location ... __ __

 (e) TRACE {LINKAGE|STACK|SAVEAREA} [count] __ __ __ _

 (f) TRACE CHANGES location ... __ _

 Action: Prototype (a) is used to specify flow tracing of the

 program. With flow tracing, each time the program makes

 a branch, both the new and old instruction locations and

 the current condition code are printed in the form:

 newlocation from oldlocation (CC=x)

 Prototype (b) is used to specify label tracing of the

 program. With label tracing, each time the program

 passes through one of the specified locations, a message

 is printed in the form:

 *** At label location

 Prototype (c) is used to specify subroutine call and

 return tracing. A special call intercept is established

 at all control section bases and entry points and any

 optionally specified locations in the program. When a

 call intercept is encountered, a message is printed in

 the form

 subroutine called from address

 and a return intercept is established using the address

 contained in GR14. When the return intercept is encoun-

 tered, a message is printed in the form

 subroutine returns to address

 and the return intercept is removed. Warning: Call and

 return tracing will only work properly for programs that

 call subroutines using the standard MTS subroutine lin-

 kage conventions.

 116 TRACE Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 Prototype (d) is used to count the number of times an

 instruction at a specified location is executed. No

 confirmation of instruction execution is printed during

 program execution. The LIST command may be used to list

 the accumulated counts for each location, i.e.,

 LIST COUNTS _ __

 Prototype (e) is used to display the current savearea

 chain or subroutine linkage chain. If SAVEAREA speci-

 fied, the contents of the current savearea chain is

 displayed starting from the current savearea and going

 back to the entry point of the program. If LINKAGE or

 STACK is specified, the contents of the registers at each

 subroutine call is printed starting from the current

 subroutine call and going back to the entry point of the

 program.

 An optional trace-level "count" may be given, in which

 case the trace will terminate after the specified number

 of levels have been traced back rather than going all of

 the way back to the entry point of the program.

 Prototype (f) is used to specify location change and

 reference tracing. With CHANGE tracing, each time the

 value of one of the locations specified is changed to a

 different value, the new value is printed along with the _________

 location at which it was changed in the form:

 symbol value location

 FLOW or CHANGE tracing is either active or inactive. An

 active trace condition forces any command that starts

 program execution to call the SDS simulator to simulate

 the program. An inactive trace condition does not force

 program simulation. Trace conditions may be activated or

 deactivated by the ACTIVATE and DEACTIVATE commands.

 LABEL, CALL, COUNT, SAVEAREA, and LINKAGE tracing do not

 force program simulation.

 A trace condition is initially active; for flow tracing,

 each branch instruction is tested for a successful

 branch. When a branch is made, the appropriate trace

 message is printed. For change tracing, each location

 specified is tested after every instruction in the user’s

 program for changes. When a change is made, the appro-

 priate trace messages are printed.

 Several trace conditions may be active at any one time,

 although the more conditions and symbols being tested

 after every instruction step, the more expensive the use

 of the command will be.

 TRACE Debug Command 117

 MTS 13: The Symbolic Debugging System

 September 1985

 The ACTIVATE and DEACTIVATE commands may be used to

 control the range of tracing. The prototypes for these

 commands are:

 ACTIVATE {FLOW|CHANGES} ... __ _ _

 DEACTIVATE {FLOW|CHANGES} ... __ _ _

 An example of the use of these commands is given below.

 The CLEAN command is used to delete trace conditions (and

 their corresponding location lists, if any) from the SDS

 tables. The prototype for the CLEAN command is

 CLEAN {FLOW|LABEL|CALLS|COUNT|CHANGES}... __ _ _ __ __ _

 The RESTORE command is used to delete specified locations

 for change and reference trace conditions. The prototype

 for the RESTORE command is

 RESTORE location ... _

 The LIST command may be used to list all of the current

 trace and their corresponding location lists. The list

 includes the trace condition name, location list, and

 current status. The prototype for the LIST command is

 LIST {FLOW|LABEL|CALLS|COUNT|CHANGES} ... _ _ _ __ __ _

 An example of the LIST command is:

 LIST FLOW CHANGES

 The listing output is in the following form:

 Flow tracing (active)

 Change tracing (active)

 ALPHA BETA

 Examples: TRACE FLOW

 The above example produces output in the following

 form:

 MARK1 in section MAIN from MARK0 (CC=0)

 MARK4 from MARK3 (CC=2)

 MARK6 from MARK5 (CC=2)

 SUBR in section SUBR from MARK8 (CC=0)

 As seen in the above set of trace messages, the name

 of the section is printed only when it changes from

 the previous section.

 118 TRACE Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 TRACE CHANGES ALPHA BETA

 The above example produces output in the following

 form:

 ALPHA FL4’+2’ MARK2 in section MAIN

 ALPHA FL4’+3’ MARK4

 BETA EL4’1.’ MARK6

 TRACE FLOW

 DEACTIVATE FLOW

 AT MARK4; ACTIVATE FLOW

 AT MARK10; DEACTIVATE FLOW

 In the above example, the ACTIVATE and DEACTIVATE

 commands are used in conjunction with the AT command

 to restrict the range over which flow tracing is

 active. Flow tracing is active and the program is

 simulated in the range of MARK4 to MARK10; other-

 wise, flow tracing is inactive and the program is

 not simulated.

 TRACE Debug Command 119

 MTS 13: The Symbolic Debugging System

 September 1985

 UNDO ____

 Debug Command Description

 Prototype: UNDO __

 Action: The effect of the previous MODIFY command is undone,

 i.e., the location modified is restored to its previous

 contents.

 120 UNDO

 MTS 13: The Symbolic Debugging System

 September 1985

 USING _____

 Debug Command Description

 Prototype: USING {section|symbol} location __

 Action: The section (normally a dsect) named by "section" may be

 assigned an address in two ways:

 (1) "location" is a storage location which is used as

 a static base address for the section.

 (2) "location" is a general register, the contents of

 which is used as a dynamic base address for the

 section (i.e., the base address varies with the

 contents of the register). If the address is

 given in the form of $GRx, the current contents

 of the register is used as a static base for the

 section.

 A section may be redefined by subsequent USING commands.

 The section length may be redefined by specifying

 "section@L=i" or "location@L=i". If the section is not a

 dsect, a warning message is printed when it is redefined.

 If the section is a dsect and occurs in more than one

 assembly or if there is a csect and dsect of the same

 name, the @D and @C keyword modifiers may be used to

 specify the desired dsect.

 "symbol" may be specified to assign an address for a

 dsect at an offset from the dsect base. Only symbols

 contained in dsects are valid.

 The DROP command may be used to undefine a dsect.

 Examples: USING DSECT1 GR1

 The section DSECT1 becomes dynamically addressable

 by the contents of general register 1.

 USING DSECT2 816200

 The section DSECT2 becomes statically addressable by

 the base address 816200.

 USING WORKAREA@C=SUBA $WADDR

 The dsect WORKAREA from the assembly which contains

 the section SUBA becomes statically addressable by

 the current contents of the location WADDR.

 USING Debug Command 121

 MTS 13: The Symbolic Debugging System

 September 1985

 WHEN ____

 Debug Command Description

 Prototype: (a) WHEN [name] {expression|location CHANGES}; command _ _

 (b) WHEN [name] {expression|location CHANGES} _ _

 command

 command

 .

 .

 END

 where "name" is an optional name of the form "/xxx" to be

 assigned to the when-condition (for subsequent referenc-

 ing of the condition), "expression" is a relational or

 logical expression, "location" is a storage reference

 location, and "command" is a single debug command or a

 part of a list of debug commands to be executed in

 sequence.

 With the single command prototype (a), a single debug

 command is specified, separated from the expression by a

 semicolon. When the expression is satisfied during

 program execution, the debug command is executed.

 With the command list prototype (b), SDS enters into

 command insertion mode (indicated by the "?" prefix

 character) and reads debug commands until an END command

 is given. When the expression is satisfied during

 program execution, the debug command list is executed.

 The expression that must be satisfied during program

 execution may be either a relational or logical expres-

 sion or a single location in the form

 location CHANGES _

 If a single location is specified, the expression is

 satisfied when the location specified changes in value.

 When-conditions are either active or inactive. An active

 when-condition forces any command which starts program

 execution to call the SDS simulator to simulate the

 program. An inactive when-condition does not force

 program simulation.

 The when-condition is initially active; its expression is

 tested before the first instruction and subsequently

 after every instruction in the user’s program is executed

 122 WHEN Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 until it is satisfied. When the expression is satisfied,

 the single command or list of commands specified is

 executed automatically and the when-condition is deacti-

 vated. When a when-condition is satisfied, confirmation

 is given by printing the expression and the address of

 the next instruction to be executed in the program. This

 confirmation is suppressed in terse mode.

 Several when-conditions may be active at any one time,

 although, the more expressions that are being tested

 after every instruction step, the more expensive the use

 of the command will be.

 If a "name" is specified with the command, it must be

 given in the form of "/xxx", where "xxx" is an arbitrary

 string of one to three characters. If the name is

 omitted, SDS assigns a name to the when-condition. This

 name is used for subsequent activating, deactivating, or

 deleting the condition from the SDS tables.

 WHEN commands (and their respective command lists) may be

 nested in other WHEN, IF, or AT command lists. Each

 nested command list must be individually terminated by an

 END command (unless a single command form is used).

 The ACTIVATE and DEACTIVATE commands may be used to

 control the range of condition testing. The prototypes

 for these commands are:

 ACTIVATE name ... __

 DEACTIVATE name ... __

 where "name" is the name of the when-condition to be

 activated or deactivated. The ACTIVATE command may be

 used to reactivate a when-condition that has been explic-

 itly deactivated by the DEACTIVATE command or implicitly

 deactivated after its expression is satisfied during

 program execution.

 The RESTORE and CLEAN commands may be used to delete

 when-conditions from the SDS tables.

 The prototype for the RESTORE command is

 RESTORE name ... _

 where "name" is the name of the when-condition to be

 deleted.

 The prototype for the CLEAN command is

 CLEAN WHENS __ _

 WHEN Debug Command 123

 MTS 13: The Symbolic Debugging System

 September 1985

 The LIST command is used to list all of the current

 when-conditions. The list includes the name, expression,

 and activity status for each when-condition. The proto-

 type for the LIST command is

 LIST WHENS _ _

 Users should be aware that the use of the WHEN command is

 rather expensive in terms of processing time. This is

 due to the fact that while when-conditions are active,

 the program is being simulated and considerable testing

 of the program is being performed to determine when the

 expressions specified are satisfied. Hence, users should

 use the WHEN command with restraint and only for those

 parts of the program that are being debugged. The

 ACTIVATE and DEACTIVATE commands will aid in restricting

 the use of the WHEN command to reasonably small portions

 of the program.

 The cost of simulating a portion of a program compared to

 executing it normally is approximately 100 to 1. This

 ratio becomes larger as when-conditions are activated.

 The upper limit of this ratio depends on the following:

 (1) The number and complexity of when-conditions that

 are active at any one time.

 (2) The number of times the expressions must be

 tested during the simulation of the program.

 Expressions involving the general registers are

 tested each time the specified register changes

 value. Expressions involving floating-point reg-

 isters are tested each time any floating-point

 register changes value. Expressions involving

 program locations (variables) are tested each

 time a program location within the lower and

 upper bounds of all program locations being

 tested changes value; that is, if the expression

 being tested is

 ALPHA = BETA & DELTA = GAMMA

 where ALPHA, BETA, DELTA, and GAMMA are locations

 in the program in order of increasing address,

 then each time any location between ALPHA and ___

 GAMMA changes value, the expression is tested.

 Examples: WHEN ALPHA = F’6’; SDS

 In the above example, execution of the user’s

 program halts when the value of ALPHA becomes 6;

 control is returned to debug command mode.

 124 WHEN Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 WHEN ALPHA CHANGES; SDS

 In the above example, execution of the user’s

 program halts when the value of ALPHA changes to a

 new value; control is returned to debug command

 mode.

 WHEN GR5 <= X’0000FFFE’

 MODIFY GR5 X’0000FFFF’

 GOTO LABEL2

 END

 In the above example, when the value of general

 register 5 becomes less than or equal to 0000FFFE,

 the register is modified to 0000FFFF and program

 execution is resumed at location LABEL2.

 WHEN /ABC ALPHA = F’0’; SDS

 DEACTIVATE /ABC

 AT LOC3; ACTIVATE /ABC

 AT LOC4; DEACTIVATE /ABC

 In the above example, the ACTIVATE and DEACTIVATE

 commands are used in conjunction with the AT command

 to restrict the range over which the when-condition

 /ABC is active. The when-condition is active and

 the program is simulated in the range of LOC3 to

 LOC4, and the expression is tested during this time;

 otherwise, the condition is inactive and the program

 is executed rather than simulated.

 WHEN Debug Command 125

 MTS 13: The Symbolic Debugging System

 September 1985

 126 WHEN Debug Command

 MTS 13: The Symbolic Debugging System

 September 1985

 USING ERRORDUMPS AND LOAD MAPS ______________________________

 When running in batch mode, a hexadecimal dump and a load map may

 provide useful information for debugging a program. If the program ends

 abnormally and a map and dump have not been requested, only the program

 status word (PSW) and the general and floating-point registers may be

 obtained. However, these may not provide enough information to find out

 where and why the program produced the error.

 The user may use the command $SET ERRORDUMP=ON command to obtain the

 contents of the virtual memory, as well as the other information, if the

 program is terminated abnormally. The user may also use the command

 $SET ERRMAP=ON to obtain a load map if the program terminates abnormally

 (the default). If the program terminates normally, no dump or map is

 generated. Before running the program, the command

 $SET ERRORDUMP=ON ERRMAP=ON

 should be given (the default is OFF for ERRORDUMP and ON for ERRMAP).

 If the MAP parameter to the $RUN command is given, the map is produced

 regardless of how the program terminated.

 The map is printed immediately after the program has terminated

 abnormally. All the numbers in the map are hexadecimal. The "ENTRY=

 xxxxxx" is the address of the first instruction to be executed.

 "SIZE=xxxxxx" is the sum of the lengths of all the control sections

 loaded. The map is divided into three sections. The first section,

 which is printed only if the PRMAP option of the $SET command is ON (the

 default is OFF), is for pseudoregisters (normally only used by a PL/I

 program). Each symbol has four attributes: the name, the storage index

 number, the value, and the length. The name is the name of the external

 symbol, the storage index number is the storage index number assigned to

 that symbol by the loader, the value is the displacement of the symbol

 in the pseudoregister vector, and the length is the length of the

 pseudoregister. The second section, which is printed only if the PDMAP

 option of the $SET command is ON (the default is OFF), is for the

 predefined symbols (those symbols which are resolved from the low-core

 symbol directory). Each symbol has three attributes: the name, the

 storage index number, and the value. The name is the name of the

 external symbol, the storage index number is the storage index number

 assigned to that symbol by the loader, and the value is the actual

 address of the symbol. The third section of the map is for the section

 definitions. In addition to the three attributes for predefined

 symbols, there are three more attributes: the relocation factor, the

 type, and the length. The relocation factor is the number which must be

 added to an instruction or data address in the assembly listing to get

 the virtual memory address. The type is the type indication for the

 symbol: L is for library control section, C is for common section, E is

 Using Errordumps and Load Maps 127

 MTS 13: The Symbolic Debugging System

 September 1985

 for entry point, and blank is for user control section. The length

 gives the length of the section (control sections and common sections

 only).

 The first line of the dump contains the date and time of the dump

 initiation. The second line contains the program status word (PSW).

 This contains information about the status of the program; a full

 description is given in the IBM publication IBM System/370 Principles of ____________________________

 Operation, form GA22-7000. Only those parts of the PSW most commonly _________

 used for debugging are explained here. The last three bytes of the PSW

 (last six hexadecimal digits) contain the address in virtual memory of

 the instruction following the one being executed at the time of the _________

 interruption; the symbolic representation of this address is given to

 the right of the PSW. In the case of a program interrupt, the second

 and third bytes (last four hexadecimal digits of the first word) contain

 the interruption code which gives the reason for the program interrupt.

 The interruption codes are summarized in the section "Abnormal Condi-

 tions" in this volume. The condition code and instruction length code

 are also occasionally useful. The instruction length code contains the

 length of the last instruction executed. It occupies bits 0 and 1 of

 the fourth byte¹ of the PSW. The condition code is set by comparisions

 and by a number of other program conditions. It occupies bits 2 and 3

 of the fourth byte of the PSW. Its values are 0, 1, 2, and 3 and these

 correspond to values of 8, 4, 2, and 1, respectively, in the mask of the

 branch-on-condition instructions. The values of the instruction length

 code and the condition code are given in the dump below the PSW.

 Program Status Word

 ┌──┐ ┌ ┌ ┌
 | | | | Interruption Code |

 └──┘ ┘ ┘ ┘
 0 7 8 11 12 15 16 31

 ┌──┐ ┌ ┌ ┌
 | ILC | CC | | Instruction Address |

 └──┘ ┘ ┘ ┘
 32 33 34 35 36 39 40 63

 See Principles of Operation for the complete _______________________

 description of the program status word.

 Following the PSW are sections giving the contents of the general

 registers and the floating-point registers. The general registers are

 given in hexadecimal, fixed-point decimal, and symbolic address format.

 The floating-point registers are given in hexadecimal and floating-point

 decimal format. Information which may be verified from the contents of

 the registers includes the correct value of the base register, the last

 location from which a subroutine call was made (general register 14),

 ¹Bytes of the PSW are numbered 0-7, and bits within a byte are numbered
 0-7 (from the left).

 128 Using Errordumps and Load Maps

 MTS 13: The Symbolic Debugging System

 September 1985

 the location of the current save area (general register 13), the return

 code from the last subroutine call (general register 15), and the values

 of computation involving general and floating-point registers.

 Finally, those parts of virtual storage being used by the program are

 displayed. (This does not include parts of MTS being used by the

 program.) The number at the left-hand side of each line is the address

 of the first byte displayed on the line. (At the beginning of a block

 of storage, the first bytes of the line may not be printed.) Each line

 is divided into eight four-byte (i.e., eight hexadecimal digits) words.

 The use of a load map and errordump is illustrated in the following

 example. The assembly language subroutine in the file TEST contains an

 intentional error for illustrative purposes. This subroutine is

 assembled and the object module is placed into the file QUAD. The

 program in the file TESTCALL is a simple calling program to test the

 subroutine; the program is assembled and the object is placed into the

 file QUADCALL. The commands to assemble and run the sample program

 described below are:

 $RUN *ASMH SCARDS=TESTCALL SPUNCH=QUADCALL 0=*SYSMAC

 $RUN *ASMH SCARDS=TEST SPUNCH=QUAD 0=*SYSMAC

 $SET PDMAP=ON ERRORDUMP=ON

 $RUN QUADCALL+QUAD

 Figure 1 shows the assembler output; and Figure 2 shows the $RUN

 command, interrupt message, map, and dump. The program is a subroutine

 named QUAD which takes five arguments. The first three arguments are

 coefficients A, B, and C of the quadratic equation

 A*X**2+B*X+C=0

 The fourth and fifth arguments will contain the real roots of the

 quadratic equation when the subroutine returns. Complex roots are not

 permitted. Since there was a program interrupt, there is obviously an

 error. The interrupt code in the PSW is 5, an addressing exception.

 This type of interrupt occurs when an instruction specifies an illegal

 address, i.e., an address which is not available in the system. This is

 separate from a protection exception which occurs when an instruction

 specifies an address which is legal in the system, but which is

 protected against access by the user’s program. The Principles of _____________

 Operation summarizes the reasons why each of the interrupt codes might _________

 occur. The interrupt message gives the address of the interrupt as

 QUAD+5C in the section QUAD. In the assembler listing for the section

 QUAD, 5C is the address of the SE instruction in statement 38. The

 address of the interruption can also be computed from the instruction

 address in the PSW and the map. Remember that the address in the PSW is

 the address of the instruction following the instruction causing the

 interrupt. Therefore, the instruction that actually caused the inter-

 ruption was the STE instruction in statement 37.

 To check the reason for an addressing exception, it is necessary to

 compute the address from the base, displacement, and index. There is no

 Using Errordumps and Load Maps 129

 MTS 13: The Symbolic Debugging System

 September 1985

 index and the displacement is zero; so the entire address is the

 contents of general register 9. The general register display in the

 dump shows that register 9 contains FFFFFFFF. This is certainly not a

 legal system address; therefore, it is not legal as an address for a

 floating-point store instruction. Either the contents of the register

 are wrong or the base specification is wrong. The program is supposed

 to be storing the value of the second root. Looking at statement 11 in

 the assembler listing, it is seen that the addresses of the five

 arguments are in general registers 2 through 6. Therefore, the address

 of the fifth argument, which is the storage location of the second root,

 is in register 6, not register 9. Changing the instruction in statement

 37 to

 STE 4,0(,6)

 should correct the problem.

 Before rerunning the program, the user should check to ensure that

 everything is correct up to that point, to avoid the "toss it in, maybe

 it’ll work" syndrome. Looking first at register 14, it is seen from the

 map that 8004EA is in QUAD. Subtracting the relocation factor gives 4A.

 The address 4A in the assembler listing is that of the instruction after

 the call on SQRT. Consequently, SQRT was the last subroutine called.

 Register 15 contains the return code from SQRT, which is zero.

 It can be verified that register 13 points to the save area in QUAD.

 The QUAD save area can be used to find the save area of the calling

 program. The convention for the save area is that the second word

 points to the previous save area, that is, the save area of the calling

 program. Looking at location 800568 in the dump, it can be seen that

 the previous save area is at location 800444. From the map, the

 previous save area is in the program with a blank name, or in other

 words, the test calling program.

 Having found the previous save area, the user can now determine what

 the arguments were for QUAD. Registers 14 through 12 at the time of

 entry into QUAD are stored, starting with word 4 of the save area.

 Therefore, register 1, which points to the list of argument addresses,

 is in word 7. This list address is 80041C. Looking at 80041C, it is

 seen that the five argument addresses are 800430, 800434, 800438,

 80043C, and 800440. That is, the value of A is at 800430, the value of

 B is at 800434, and the value of C is at 800438. Checking these

 locations in the dump shows that

 A=2.0 B=5.0 C=-12.0

 At the time of the interrupt, the value of the second root is in

 floating-point register 4. From the quadratic formula, the solutions

 for the above values of A, B, and C are 1.5 and -4.0. The contents of

 floating-point register 4 is -4.0; therefore, the second root is

 correct. Likewise, the values of the discriminant and 2A can be

 verified from floating-point registers 0 and 2, respectively. Having

 checked these details, it is reasonable to assume that the program

 130 Using Errordumps and Load Maps

 MTS 13: The Symbolic Debugging System

 September 1985

 contained only the one error already defined. After reassembling QUAD,

 the program should proceed to completion without error.

 Figure 1: Sample Assembler Program

 Using Errordumps and Load Maps 131

 MTS 13: The Symbolic Debugging System

 September 1985

 Figure 2: Sample Program Run, Map, and Dump

 132

 MTS 13: The Symbolic Debugging System

 September 1985

 INDEX _____

 #nn modifier, 18, 43 DSECT, 18

 GEN, 18

 A modifier, 13 INV, 18, 43

 ACTIVATE debug command, 55, 116, LENGTH, 17

 122 PRO, 18, 43

 ALTER debug command, 56 Q, 13

 AT debug command, 57 R, 13

 AT option, 32, 102 TYPE, 17

 At-point, 32, 62, 80, 82, 95 X, 13

 Attention interrupt, 30 DEBUG option, 10

 ATTN option, 29, 102 Debugging, 127

 ATTRIBUTE debug command, 59 Displacement, 12

 DISPLAY debug command, 15-21, 67

 BLANK option, 102 DROP debug command, 37, 68

 BLOCK modifier, 18, 43 DSECT modifier, 18

 Block storage reference, 16 DSECTS option, 36, 104

 BREAK debug command, 60 Dump, 127

 BREAK option, 32, 102 DUMP debug command, 69

 Breakpoint, 31, 60, 62, 64, 75, DUMP option, 69, 104

 80, 82, 95, 97 Dynamic loading, 29

 BRIEF option, 50, 103

 ECHO option, 104

 CLEAN debug command, 62 END debug command, 72

 COMMENT debug command, 63 ENTRY option, 104

 COMMON option, 103 ERRMAP option, 127

 Condition code, 128 ERRORDUMP command, 127

 CONTINUE debug command, 64 ERRORDUMP option, 51, 69, 104, 127

 Control section processing, 34 Errordumps, 51, 127

 CSECT modifier, 17

 CSECT option, 35, 103 Floating-point register, 128

 Current symbol character, 28 FORGET debug command, 73

 FORTRAN-G debugging, 38-40

 D modifier, 13 FORTRAN-H debugging, 40

 DEACTIVATE debug command, 65, 116, FULLDISPLAY command, 74

 122 FULLSCAN option, 99, 104

 DEBUG command, 9, 10 FULLSEARCH option, 34, 105

 Debug command prototypes, 54

 DEBUG debug command, 66 GEN modifier, 18

 Debug modifier, General register, 128

 #nn, 18, 43 Global breakpoint, 31, 60, 62, 82,

 A, 13 95

 BLOCK, 18, 43 GOTO debug command, 75

 CSECT, 17

 D, 13 HELP debug command, 76

 Index 133

 MTS 13: The Symbolic Debugging System

 September 1985

 HELP option, 105

 HEXDISPLAY debug command, 77 Q modifier, 13

 QUALIFY debug command, 93

 I/O error interrupt, 30

 IF debug command, 78 R modifier, 13

 IGNORE debug command, 80 Relative address, 12

 INCLUDE debug command, 81 Relocation factor, 127

 INDCH option, 21, 105 RESET debug command, 94

 Index, 12 RESTORE debug command, 95

 INDEX option, 105 RETURN debug command, 96

 Indirection, 20 RUN debug command, 97

 INPUT opton, 105

 Instruction length code, 128 SCAN debug command, 22, 99

 Interruption code, 128 SDS command, 10

 INV modifier, 18, 43 SDS constant, 22

 IS option, 105 SDS debug command, 101

 SDS logical expression, 27

 LEN option, 105 SDS relational expression, 27

 LENGTH modifier, 17 SDS simulator, 32, 109, 116, 122

 LIST debug command, 82 SET debug command, 10, 102

 LLX option, 29, 105 SIM option, 33, 107

 Load maps, 127 STEP debug command, 33, 109

 Local breakpoint, 31, 64, 75, 97 STOP debug command, 110

 Local time limit, 11, 64, 75, 97 Storage reference expression, 12

 Logical I/O unit, 9, 10, 106 Summary,

 Debug command prototypes, 54

 Map, 127 SYM parameter, 11, 41

 MAP debug command, 83 SYM record, 11

 MAP parameter, 127 SYMBOL debug command, 111

 MCMD debug command, 85 Symbolic location, 12

 MODCH option, 20, 106

 MODIFY debug command, 22, 86 T option, 11, 64, 75, 97

 MTS debug command, 88 TERSE option, 50, 107

 TEST parameter, 11, 36, 38-40, 40,

 OMAPCH option, 35, 106 42, 48

 ON debug command, 89 Timer interrupt, 30

 On-condition, 89, 94 TIMETALLY debug command, 112

 OUTPUT option, 106 TIMN option, 107

 TRACE debug command, 116

 PAR option, 106 TYPE modifier, 17

 PARLIST debug command, 92 TYPE option, 107

 PDMAP option, 127

 PGNT option, 29, 106 UNDO debug command, 120

 PL/I debugging, 42-47 USING debug command, 37, 121

 PL360 debugging, 48-49

 PRAREA option, 106 VERBOSE option, 50, 107

 Predefined symbol, 20 Virtual address, 12

 PRMAP option, 127 VS FORTRAN debugging, 41

 PRO modifier, 18, 43

 Program interrupt, 30 WARNMSG option, 107

 Program return, 29 WHEN debug command, 122

 Program status word, 128 When-condition, 122

 PSW, 128 WHENSIM option, 33, 107

 134 Index

 MTS 13: The Symbolic Debugging System

 September 1985

 X modifier, 13

 XFR option, 29, 108

 360/370-Assembler debugging, 36

 Index 135

 MTS 13: The Symbolic Debugging System

 September 1985

 136 Index

 Reader’s Comment Form

 The Symbolic Debugging System

 Volume 13

 September 1985

 Errors noted in publication:

 Suggestions for improvement:

 137

 Your comments will be much appreciated. The completed form may be sent

 to the Computing Center by Campus Mail or U.S. Mail, or dropped in the

 Suggestion Box at the Computing Center, NUBS, UNYN, or BSAD.

 Date ────────────────────

 Name ───

 Address ──

 ──

 ──

 Publications

 Computing Center

 University of Michigan

 Ann Arbor, Michigan 48109

 138

 Update Request Form

 The Symbolic Debugging System

 Volume 13

 September 1985

 Updates to this manual will be issued periodically as errors are noted

 or as changes are made to MTS. If you desire to have these updates

 mailed to you, please submit this form.

 Updates are also available in the memo files at both the Computing

 Center and NUBS; there you may obtain any updates to this volume that

 may have been issued before the Computing Center receives your form.

 Please indicate below if you desire to have the Computing Center mail to

 you any previously issued updates.

 Name ───

 Address ──

 ──

 ──

 Previous updates needed (if applicable):──────────

 The completed form may be sent to the Computing Center by Campus Mail or

 U.S. Mail, or dropped in the Suggestion Box at the Computing Center,

 NUBS, UNYN, or BSAD. Campus Mail addresses should be given for local

 users.

 Publications

 Computing Center

 The University of Michigan

 Ann Arbor, Michigan 48109

 Users associated with other MTS installations (except the University of _______________________

 British Columbia) should return this form to their respective installa-

 tions. Addresses are given on the reverse side.

 139

 Addresses of other MTS installations:

 Publications Clerk

 352 General Services Bldg.

 Computing Services

 The University of Alberta

 Edmonton, Alberta

 Canada T6G 2H1

 Information Officer, NUMAC

 Computing Laboratory

 The University of Newcastle upon Tyne

 Newcastle upon Tyne

 England NE1 7RU

 Rensselaer Polytechnic Institute

 Documentation Librarian

 310 Voorhees Computing Center

 Troy, New York 12181

 Simon Fraser University

 Computing Centre

 User Services Information Group

 Burnaby, British Columbia

 Canada V5A 1S6

 Wayne State University

 Computing Services Center

 Academic Services Documentation Librarian

 5925 Woodward Ave.

 Detroit, Michigan 48202

 140

