

 M T S

 The Michigan Terminal System

 Volume 8: LISP and SLIP in MTS

 June 1976

 Updated February 1979 (Update 1)

 Updated January 1983 (Update 2)

 The University of Michigan Computing Center

 Ann Arbor, Michigan

 1

 DISCLAIMER

 The MTS Manual is intended to represent the current state of the

 Michigan Terminal System (MTS), but because the system is constantly

 being developed, extended, and refined, sections of this volume will

 become obsolete. The user should refer to the Computing Center _________ ______

 Newsletter, Computing Center Memos, and future updates to this volume __________

 for the latest information about changes to MTS.

 Copyright 1979 by the Regents of the University of Michigan. Copying is

 permitted for nonprofit, educational use provided that (1) each repro-

 duction is done without alteration and (2) the volume reference and date

 of publication are included. Permission to republish any portions of

 this manual should be obtained in writing from the Director of the

 University of Michigan Computing Center.

 2

 MTS 8: LISP and SLIP in MTS

 June 1976

 PREFACE _______

 The software developed by the Computing Center staff for the

 operation of the high-speed processor computer can be described as a

 multiprogramming supervisor that handles a number of resident, reentrant

 programs. Among them is a large subsystem, called MTS (Michigan

 Terminal System), for command interpretation, execution control, file

 management, and accounting maintenance. Most users interact with the

 computer’s resources through MTS.

 The MTS Manual is a series of volumes that, when completed, will

 describe in detail the facilities provided by the Michigan Terminal

 System. Administrative policies of the Computing Center and the

 physical facilities provided are described in a separate publication

 entitled Introduction to the Computing Center. ____________________________________

 The MTS volumes now in print are listed below. The date indicates

 the most recent edition of each volume; however, since volumes are

 updated by means of CCMemos, users should check the Memo list, copy the

 files *CCMEMOS or *CCPUBLICATIONS, or watch for announcements in the

 Computing Center Newsletter, to ensure that their MTS volumes are fully ____________________________

 up to date.

 Volume 1: The Michigan Terminal System, December 1979 ____________________________

 Volume 2: Public File Descriptions, April 1982 ________________________

 Volume 3: System Subroutine Descriptions, April 1981 ______________________________

 Volume 4: Terminals and Tapes, November 1980 ___________________

 Volume 5: System Services, April 1980 _______________

 Volume 6: FORTRAN in MTS, December 1978 ______________

 Volume 7: PL/I in MTS, September 1982 ___________

 Volume 8: LISP and SLIP in MTS, June 1976 ____________________

 Volume 9: SNOBOL4 in MTS, September 1975 ______________

 Volume 10: BASIC in MTS, December 1980 ____________

 Volume 11: Plot Description System, August 1978 _______________________

 Volume 12: PIL/2 in MTS, December 1974 ____________

 Volume 14: 360/370 Assemblers in MTS, August 1978 _________________________

 Volume 15: FORMAT and TEXT360, April 1977 __________________

 Volume 16: ALGOL W in MTS, September 1980 ______________

 Volume 17: Integrated Graphics System, December 1980 __________________________

 Volume 18: The MTS File Editor, September 1982 ___________________

 Other volumes are in preparation. The numerical order of the volumes

 does not necessarily reflect the chronological order of their

 appearance; however, in general, the higher the number, the more

 specialized the volume. Volume 1, for example, introduces the user to

 MTS and describes in general the MTS operating system, while Volume 10

 deals exclusively with BASIC.

 3

 MTS 8: LISP and SLIP in MTS

 June 1976

 The attempt to make each volume complete in itself and reasonably

 independent of others in the series naturally results in a certain

 amount of repetition. Public file descriptions, for example, may appear

 in more than one volume. However, this arrangement permits the user to

 buy only those volumes that serve his or her immediate needs.

 Richard A. Salisbury,

 General Editor

 4

 MTS 8: LISP and SLIP in MTS

 June 1976

 Contents ________

 Preface 3 Error Atoms, Error Forms,

 and Error Expressions . . . 56

 Overview of List-Processing System Error IOARGs 57

 Languages in MTS 7 (BREAK <S>) 57

 (RES <N>) 58

 LISP 9 (DUMP <N <SW>>) 58

 Introduction 9 (UNEVAL STACKID <S>) . . . 60

 The LISP Language 9 (GETFN FN) 61

 Atoms, Buffers, and Arrays 9 (DISPLAY STACKID <B,F,L>

 S-Expressions 12 <A>) 61

 The LISP Interpreter . . . 14 (MODIFY STACKID <B,F> <A>

 Basic LISP Functions . . . 16 S) 62

 N-Type Functions in LISP . 29 (ERR S) 63

 More About Functions 35 (STEP N1 <N2>) 63

 LAMBDA-Expressions 35 (TRACE A1...AN) and

 The No-Spread Form of a (UNTRACE A1...AN) 63

 LAMBDA 36 Error Codes 64

 Other Forms of Special features 66

 LAMBDA-Expressions 37 The STATUS Function 66

 Named LAMBDA-Expressions The OBJECT LIST 73

 (LABEL-Expressions) 38 The Parameter List 74

 Accessing Defined The TIMER Function:

 Functions 38 (TIMER ID SW) 75

 Defining New Functions in The Garbage Collector . . . 76

 LISP 39 (CHECKPOINT A <S>) and

 BUG 41 (RESTORE A) 76

 Arrays 42 Automatic Restoration of

 Calling External Routines LISP Functions 78

 from LISP 43 Creating a LISP Library . . 78

 A Note on Recursion in Direct Memory

 Function Specification . . 45 Modification: (STATUS (0

 Input/Output in LISP 46 N A)) 79

 Default I/O Operations . . 46 (LTR S SW) 79

 I/O Data Types 47 (MTS <A>) 80

 Buffer and File Prefix The Transport System . . . 80

 Characters 49 The LISP Compiler:

 Buffer Overflow (COMPILE A1...AN) 82

 Interception 50 Other Special Features . . 87

 End-of-File Processing . . 50

 READMACRO and PRINTMACRO The LISP Editor 89

 Functions 51 Introduction 89

 Description of Optional Commands that Print the

 I/O Parameters 53 Current Expression 90

 Input/Output Functions . . 54 Commands that Specify the

 Error Recovery and Current Expression 91

 Debugging Procedures 56 Commands that Modify the

 Current Expression 94

 5

 MTS 8: LISP and SLIP in MTS

 June 1976

 Commands for Error Recovery . 97 Processes Affecting the

 Miscellaneous Commands . . . 99 Available Space120

 Adding Cells and Data to

 LISP Debugging Facilities . . .101 Lists122

 Introduction 101 Retrieving Data from Lists 123

 BREAKFUNCTION101 Retrieving Data from

 Break Commands 103 SLIP-Cells 124

 Context Commands 104 More Routines Concerning

 Backtrace Commands 106 List Cells 125

 Break Package107 How to Make Comments on

 How to Set a Break 107 Lists128

 Error Package109 List Marks and

 Description Lists128

 SLIP 111 The Reader Mechanism and

 Introduction and Historical the Advance Functions . . .131

 Notes111 Recursion136

 Basic Concepts of List Input/Output Operations . .140

 Processing 111 Types of SLIP Functions . . .141

 Conventions116 New SLIP Functions 142

 Fundamental SLIP Operations .117 Summary of 360 SLIP

 SLIP Data Elements 117 Functions and Subroutines . .144

 Programming Conventions How to Use SLIP147

 (SLIP with FORTRAN IV) . .118 References 148

 Index148.1

 6

 MTS 8: LISP and SLIP in MTS

 June 1976 Page Revised February 1979

 OVERVIEW OF LIST-PROCESSING LANGUAGES IN MTS __

 This volume contains the language descriptions of the two major

 list-processing languages that are supported in MTS, namely, LISP and

 SLIP.

 LISP is a programming language designed mainly for list-processing

 applications. The principal applications have been in artificial

 intelligence research. LISP was originally developed by J. McCarthy in

 the early 1960s as a formal language based on Church’s lambda calculus.

 The syntax was, and still is, extremely simple. The language has been

 greatly extended by the addition of many special functions and is now a

 very powerful and efficient system when used for the appropriate

 applications. An important feature of LISP is that programs and data

 are represented by list structures so that one function can create or

 modify other functions, or even modify itself.

 LISP programs are normally executed interpretively and require no

 translation. A compiler is also available which translates LISP

 programs into machine language. There are also two other LISP subsys-

 tems available that are described in this volume--a data structure

 editor and a debugging package.

 Many different extended versions of LISP are now available throughout

 the country and there is no standardization across versions. A LISP

 program from another system will normally have to be modified to make it

 run properly on the MTS LISP system.

 The MTS LISP system and the description in this volume were produced

| by Bruce Wilcox and Carole Hafner of the Mental Health Research

 Institute at the University of Michigan. It is based on LISP systems

 currently in use at the Massachusetts Institute of Technology and

 elsewhere.

| SLIP (Symmetric List Processor) is a set of subroutines to allow list _ __ _

 structures to be easily built and maintained in higher-level languages

 that do not have list-processing capabilities (e.g., FORTRAN). SLIP may

 be used with almost any application involving list structures, e.g.,

 computer graphics data structures, memory lists for data base management

 systems, and mathematical applications involving lists of terms. The

 SLIP user can build both simple and complicated list structures using

 the same basic building blocks. Primitives are provided to read down a

 list, perform insertion, deletion, list copying, and sublist creation

 operations.

 The description of SLIP in this volume was produced by Bertram

 Herzog, formerly of the Department of Industrial and Operations Engi-

 neering at the University of Michigan.

 Overview of List-Processing Languages in MTS 7

 MTS 8: LISP and SLIP in MTS

 Page Revised February 1979 June 1976

 8 Overview of List-Processing Languages in MTS

 MTS 8: LISP and SLIP in MTS

 June 1976 Page Revised February 1979

 LISP ____

 INTRODUCTION ____________

 LISP is a programming language that combines a very simple syntactic

 structure with an extremely powerful and flexible semantic structure.

 This makes LISP unlike most other programming languages and places a

 great burden on the programmer to use the language carefully.

 In the design of LISP, an attempt was made to embody the logical

 power of LISP in a language which is economical enough to be useful to

 many people. Many of the user options, input/output capabilities, and

 debugging features that programmers expect to find in any programming

 language have been added to LISP.

 Throughout this section, various mnemonics have been used to repre-

 sent LISP elements in describing the formats of basic LISP operations.

 A, A1, and A2 represent atoms; N, N1, and N2 represent numeric atoms; L,

 L1, and L2 represent lists. S, S1, and S2 represent any LISP structure;

 LA, LA1, and LA2 represent lists whose elements are literal atoms; and

 FN, FN1, and FN2 represent function specifications. S1...SN indicates

 that any number of expressions of that type may be given, and Si denotes

 any one of these expressions. <S> indicates that an expression of that

 type is optional, and <A,LA> indicates that the user has a choice of one

 or the other.

 The development and implementation of LISP was supported in part by

 National Science Foundation Grant Number GJ-31339X. For a formal

 definition of the original LISP language, see J. McCarthy, et al., LISP ____

 1.5 Programmer’s Guide, M. I. T. Press, 1962. ______________________

 THE LISP LANGUAGE _________________

 Atoms, Buffers, and Arrays __________________________

 The primitive data structures of LISP, called atoms, are similar in

 form to variables in other languages.

 PNAME of an Atom

 Atoms are created implicitly and referenced through their PNAMEs,

 or print names. The PNAME of an atom may be any character string

 up to 255 characters long.

 LISP 9

 MTS 8: LISP and SLIP in MTS

 Page Revised February 1979 June 1976

 For example, when the atomic string "BOOK" first appears in the

 input stream, an atomic structure with the PNAME "BOOK" is

 automatically created. Any future references to the atom BOOK

 reference the same structure. The system OBJECT LIST maintains

 pointers to all atomic structures, and each atomic string which

 appears in the input stream is checked against this list.

 Types of Atoms

 There are two types of atoms in LISP: literal atoms and numeric

 atoms. When an atom name appears in the input stream, the form of

 the name and the current input number base determine the type of

 the atom.

 If the input number base is 10 (the default case), then FORTRAN-

 type integers and single-precision floating-point numbers are

 treated as decimal numbers and become numeric atoms. All other

 character strings become literal atoms.

 If the input number base is 16 (the user may change the number base

 by calling the STATUS function), FORTRAN-type floating-point num-

 bers are still treated as decimal numbers and become numeric atoms.

 However, any character string beginning with a decimal digit (0-9)

 and containing only hexadecimal digits (0-9, A-F) are treated as a

 hexadecimal number and become a numeric atom with the value of that

 hexadecimal number.

 If the input number base is 0, then all character strings are

 interpreted as literal atom names, and no numeric atoms are

 created.

 Unlike literal atoms, numeric atoms are not stored on the system

 OBJECT LIST; instead, a new atom is created each time a number

 appears in the input stream. Thus, two occurrences of the atomic

 string "17" produce references to two distinct structures.

 VALUE of an Atom

 Atoms can have VALUEs, which may be any LISP structure. The VALUE

 of a literal atom is undefined (set to the special system atom

 UNDEF) until a value is given to it. All numeric atoms, by

 convention, have themselves as their VALUEs. The VALUE of an atom

 is the CAR of the atomic structure (see the discussion of CAR and

 CDR below).

 Property-Lists

 Besides a VALUE, a literal atom can have any number of properties,

 and each property has a property-value. For example, the atom BOOK

 may have a property COLOR with property-value BLUE, and a property

 PAGES with property-value 367. The name of a property is referred

 to as the property indicator, or IND, and the property-value is

 referred to as the PVAL.

 10 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976 Page Revised February 1979

 Associated with each literal atom is a property-list (PLIST) of

 indicators and values. If an atom has no properties, then its

 PLIST is NIL. Numeric atoms do not have PLISTs. The PLIST of an

 atom is the CDR of the atomic structure.

 Special Atoms

 There are several special atoms in LISP, with predefined VALUEs.

 One of these special atoms is NIL, used throughout the system to

 indicate a null list, or a truth value of false. The VALUE of NIL

 is NIL. The atom T is also a special atom which is used throughout

 the system to indicate a truth value of true. The VALUE of T is T.

| An attempt to alter the VALUE or PLIST of NIL or the VALUE or PLIST

 of any numeric atom generates a "BAD ATOMIC ARGUMENT" error

 message.

 The following are the predefined atoms of LISP and their values:

 NIL (Program Logic) = NIL

 T (Program Logic) = T

 LISPIN (Input/Output) = (Input Buffer . SCARDS)

 LISPOUT (Input/Output) = (Output Buffer . SPRINT)

 ERRIN (Input/Output) = (Error Input Buffer . GUSER)

 ERROUT (Input/Output) = (Error Output Buffer . SERCOM)

 ERR (Error Processing) = (DUMP)

 ATTN (Error Processing) = (DUMP)

 PGNT (Error Processing) = (DUMP)

 All numeric atoms = themselves

 Autoload atoms - see the subsection "Automatic Restoration

| of LISP Functions."

 Buffers

 LISP supports a data type called BUFFERS. Although buffers are

 atoms, they may not be given VALUEs or PLISTs. The PNAME of a

 buffer is the current contents of the buffer. Character represen-

 tations of LISP structures can be placed in a buffer by calling the

 system print functions. New atoms whose PNAMEs are the contents of

 a buffer can be created by calling the READ function. All

 input/output in the system takes place by printing the contents of

 a buffer onto an MTS file or device, and by reading a record from

 an MTS file or device into a buffer.

 Whenever a buffer is passed as an argument to a function, it is

 actually a buffer pointer structure (called an IOARG) which is

 passed, rather than the buffer itself. A full description of

 buffers is given in the subsection "I/O Data Types."

 LISP 11

 MTS 8: LISP and SLIP in MTS

 Page Revised February 1979 June 1976

 Arrays

 LISP also supports arrays, where the value of an array element can

 be any LISP structure. The subsection "Arrays" describes the

 creation and use of arrays.

 S-Expressions _____________

 The basic LISP structure is a binary tree with atomic terminal nodes.

 To represent these trees syntactically, symbolic expressions, called

 S-expressions, are used. An S-expression consists of one of the

 following:

 (1) an atom,

 (2) a dotted pair of S-expressions (S1 . S2), or

 (3) a list of S-expressions (S1...SN)

 Examples:

 Syntax Tree Structure ______ ______________

 (1) A .A

 (2) (A . B) *

 . .

 A. .B

 (3) ((A . B) . (C . (D . E))) *

 . .

 * *

 A. .B C. *

 . .

 D. .E

 CAR and CDR

 For any S-expression, the CAR is defined to be its entire lefthand

 branch and its CDR to be its entire righthand branch. Thus the CAR

 of ((A . B) . (C . (D . E))) is (A . B) and its CDR is (C . (D .

 E)). Similarly, the CAR of (A . B) is A and its CDR is B. The

 CAR of an atom is its VALUE, and the CDR of a literal atom is its

 PLIST.

 Lists

 The list notation defined in LISP provides a convenient shorthand

 which allows a subset of binary trees to be viewed as a list

 structure. The prototype of a LISP list is the following

 structure:

 12 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976

 *

 . .

 A. *

 . .

 B. *

 . .

 C. .NIL

 This represents the list (A B C). According to the definitions

 given of CAR and CDR, the CAR of a list is always its first

 element, and the CDR of a list is always the rest of the list. The

 end of a list is always signified by a CDR of NIL, which indicates

 that there are no more elements. Of course, an element of a list

 need not be an atom; thus, the structure

 *

 . .

 A. *

 . .

 * *

 B. * D. .NIL

 . .

 C. .NIL

 represents the list (A (B C) D). The CAR of this list is A. The

 CDR is ((B C) D).

 It should be noted that the dotted-pair notation for (A B C) is

 (A . (B . (C . NIL))), and that these two LISP expressions are

 entirely equivalent. Any list can be written as a dotted pair;

 however, the converse is not true.

 For structures similar to lists that have terminating atoms which

 are not NIL, a special syntax is available. The structure:

 *

 . .

 A. *

 . .

 B. *

 . .

 C. .D

 is represented by the expression (A B C . D).

 Note: In general, the expression "element" refers to a top-level

 element of a list, "sublist" refers to a substructure which may be

 obtained by repeated CDRs, and a "substructure" indicates any

 subtree of the LISP structure. For example, the elements of the

 list (A B (C (D E)) F) are A, B, (C (D E)), and F. The sublists

 are (B (C (D E)) F), ((C (D E)) F), etc. The substructures,

 LISP 13

 MTS 8: LISP and SLIP in MTS

 June 1976

 however, include C, (D E), and all of its sublists, as well as all

 the sublists of the top-level list.

 NIL

 The list of zero elements () is equivalent to the atom NIL within

 the LISP system. Thus, the CDR of (A) is (), or NIL. The result

 of this dual interpretation is that NIL is treated as an atom for

 most purposes, and as a list for some other purposes. For example,

 the CONC function which accepts only list arguments, and the COPY

 function, whose argument may be a list or an atom, both treat NIL

 as the null list ().

 The LISP Interpreter ____________________

 LISP is an interpretive language. The system reads one S-expression,

 or form, from its input stream, evaluates it, and prints out the value

 computed, then reads another S-expression, etc. Since the top-level

 controller calls READ to get an S-expression, EVAL to evaluate it, and

 PRINT to print out the result, the top level function of LISP is often

 referred to as a READ-EVAL-PRINT loop.

 Input to LISP

 Input to LISP is free format, with blanks, commas, periods,

 parentheses, angle brackets (< and >), and ends-of-line acting as

 separators. Any time a separator appears, it may be surrounded by

 any number of blanks. Extra right parentheses may be inserted at

 the beginning or the end of a top-level form; they are ignored.

 For example:

)) (A B C D)))) = (A B C D)

 If a semicolon (;) appears anywhere in an input line, the system

 ignores the remainder of the line, and skips to the next line.

 Thus, the semicolon is equivalent to an end-of-line. This allows

 the user to put comments in his input file without the expense of

 making an atom from every word.

 Warning: The semicolon is an MTS carriage-control character which

 causes a line printer to skip to a new page if it is the first

 character in an output line.

 Note: An exception is made to the treatment of the period as a

 separator when it occurs in a legal floating-point number. In that

 case, the period is interpreted as part of the number. To make a

 dotted pair of two numbers, the period must be surrounded by

 blanks. For example, (123.456) is a list of a single numeric atom,

 while (123 . 456) is a dotted pair of two integers.

 14 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976

 A special feature of LISP which is not strictly part of the LISP

 syntax is the angle bracket. Any time a left angle bracket (<)

 occurs, it is treated as a normal left parenthesis, and the level

 at which it occurred is remembered. When a right angle bracket (>)

 occurs, it has the effect of inserting enough right parentheses to

 close out the most recent left angle bracket. A left angle bracket

 may not be closed out by a normal right parenthesis. If angle

 brackets are not balanced correctly, an error is generated.

 In order to allow the incorporation of separator characters into

 atom PNAMEs, LISP defines a special input convention. If a quote

 character (") occurs at the beginning and the end of an atom name,

 all characters which occur between the quotes are treated as the

 PNAME of a single atom. The closing quotes must be part of the

 same input line as the opening quotes; the quotes are not part of

 the PNAME of the atom. For example, if the input stream contains

 the atom name

 "AB CD.EF"

 an atom with the PNAME AB CD.EF is created.

 If two quotes in a row appear within a quoted string, they are

 interpreted as a literal quote. If quotes appear at the beginning

 of an atom name, however, this generates a syntax error. For

 example, if "ABC""DE" is read in, the literal atom ABC"DE is

 created.

 Quotes which appear strictly within an atom name have no special

 significance, and are treated like any other character.

 Operation of EVAL

 Evaluation of LISP expressions is done by the function EVAL. If

 the form being EVALed is an atom, then the value of the form is the

 VALUE of the atom.

 If the form is not an atom, it must be a list. The first element,

 or the CAR of the list, specifies a function to be called. The

 remaining elements of the list, or the CDR, represent the arguments

 of the function. If the CAR of the form is an atom, then LISP

 interprets it as the name of a function, and calls that function.

 (It will be seen later that there are ways of invoking functions

 other than a direct call.) For example, if the form read by LISP

 is (ADD X Y), then the function ADD is called with the VALUE of X

 as its first argument, and the VALUE of Y as its second argument.

 Notice that, as in other languages, it is not the name of the

 argument which is passed to the function, but its value. For this

 reason, elements which actually appear in the form are referred to

 as argument-designators, and the term "argument" is reserved for

 the values which are actually passed to the function.

 LISP 15

 MTS 8: LISP and SLIP in MTS

 June 1976

 Since EVAL calls itself in order to determine the values of the

 argument-designators, the argument-designators do not have to be

 atoms, but can be any LISP form which will evaluate to the desired

 argument. For example, if the VALUE of X is 2 and the VALUE of Y

 is 3, then EVALing the form

 (ADD X (ADD Y 1))

 causes the function ADD to be invoked twice--the first time with

 arguments 3 and 1, and the final time with arguments 2 and 4.

 Naturally, the VALUEs of X and Y are not altered by this operation.

 There are a number of built-in LISP functions which are invoked by

 a direct call as described above. In addition, the user can define

 new functions by composing these built-in functions in various

 ways, and then the user-defined functions can also be invoked by

 name.

 Output and Termination: (STOP) and (MTS)

 Whenever a LISP form is EVALed, a resulting value is returned.

 When the system reads and EVALs a form, it prints its (top-level)

 value before reading the next form. When it is said that only the

 top-level value is printed, this means that the evaluation of

 arguments, which may involve intermediate function calls, does not

 cause anything to be printed. For example, if a user enters the

 form

 (ADD X (ADD Y 1))

 where the VALUE of X is 2 and the VALUE of Y is 3, the system EVALs

 this entire expression and prints the resulting value of 6.

 Evaluating the form (STOP) at any level terminates execution of

 LISP. Evaluating the form (MTS) returns control to MTS command

 mode from which the user may subsequently restart LISP via the

 $RESTART command.

 Basic LISP Functions ____________________

 (QUOTE S) and ’S

 It is important to remember that when a LISP form appears as an

 argument-designator in a function call, this signifies that the

 value of the form is to be the argument of the function. However,

 many times LISP users wish to specify directly what an argument to

 a function should be. In order to facilitate this process, the

 function QUOTE is available. The value of (QUOTE A) is the atom A.

 The value of (QUOTE (CAR (A B C))) is the list (CAR (A B C)).

 16 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976

 If a user enters (CONS X Y) from the input stream, the system will

 call the function CONS with the respective VALUEs of X and Y as

 arguments. If the user enters (QUOTE (CONS X Y)), the system will

 echo (CONS X Y), since that structure is the value of the input

 form. If the user enters (CONS (QUOTE X) (QUOTE Y)), the system

 will execute CONS, but its arguments will be the atoms X and Y

 rather than their respective VALUEs. To make QUOTEing more

 convenient, a shorter notation for QUOTE is defined in the system.

 This is the ’ character.

 Examples:

 ’A is equivalent to (QUOTE A).

 ’(A (B C) D) is equivalent to (QUOTE (A (B C) D)).

 Basic LISP Predicates

 In general, a LISP predicate will return either the atom T,

 indicating that it is true, or NIL, indicating that it is false.

 Examples of these predicates follow each description.

 (ATOM S) Returns T if its argument is an atom; other-

 wise, returns NIL.

 (ATOM ’A)=T

 (ATOM ’(A B C)) = NIL

 (NOT S) Returns T if its argument is NIL; otherwise,

 returns NIL.

 (NOT (CAR ’(A NIL B))) = NIL

 (NOT (CAR (CDR ’(A NIL B)))) = T

 (EQUAL S1 S2) Returns T if its arguments have the same LISP

 structure or represent the same number; other-

 wise, returns NIL.

 (EQUAL ’(A B C) ’(A A B C)) = NIL

 (EQUAL ’(A B C) (CDR ’(A A B C))) = T

 (EQUAL 8 (TIMES 2 4)) = T

 (EQ S1 S2) Returns T if its arguments are the same LISP

 structure; otherwise, returns NIL. Since

 there are frequently multiple structures which

 represent the same S-expression, not every

 pair of elements which are EQUAL are EQ; in

 particular, numeric atoms which represent the

 same number are not generally EQ. EQ is

 almost always used with literal atomic argu-

 ments, since there is only one copy of each

 atomic name on the OBJECT LIST.

 LISP 17

 MTS 8: LISP and SLIP in MTS

 June 1976

 (EQ ’A ’A) = T

 (EQ ’(A B) ’(A B)) = NIL

 (EQ 8 8) = NIL

 (EQNAME A1 A2) Returns T if its arguments are literal atoms

 or buffer atoms which have the same PNAME;

 otherwise, returns NIL. EQNAME is equivalent

 to EQ for normal atoms which are on the OBJECT

 LIST. However, for buffer atoms and atoms

 created by GENSYM, EQNAME provides a new and

 useful function.

 (EQNAME ’TEST ’TEST) = T

 (EQNAME ’ANINPUTLINE IOARG) = T

 if the buffer associated with IOARG has

 as its contents "ANINPUTLINE".

 (NUMBER A) Returns T if its argument is a numeric atom;

 otherwise, returns NIL.

 (NUMBER 3) = T

 (SORT A1 A2) Returns T if the PNAME of its first argument

 is less than or equal to its second argument

 in standard EBCDIC collating sequence; other-

 wise, returns NIL. A1 and A2 must be literal

 atoms or IOARGs.

 (SORT ’ABC ’ABB) = NIL

 (SORT ’ABB ’ABB) = T

 (SORT ’AB ’ABB) = T

 (NULL S) NULL is equivalent to NOT.

 List-Searching Operations

 The functions in this section enable the user to break down LISP

 structures into component structures in various ways. The result

 will frequently depend on some particular substructure being found.

 Examples of these functions follow each description.

 (CAR L) Returns the CAR of any structure (i.e., the

 first element of any list or the VALUE of an

 atom).

 (CAR ’((B C) D (E F))) = (B C)

 (CDR L) Returns the CDR of any structure (i.e., the

 list of remaining elements of any list or

 PLIST of a literal atom). An attempt to take

 the CDR of a numeric atom will generate a type

 0 error.

 18 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976

 (CDR ’((B C) D (E F))) = (D (E F))

 (C...R L) These 28 functions perform all combinations of

 up to four instances of CARs and CDRs.

 (CAAR L) = (CAR (CAR L))

 (CAAAAR L) = (CAR (CAR (CAR (CAR L))))

 (CADADR L) = (CAR (CDR (CAR (CDR L))))

 (CDDDR L) = (CDR (CDR (CDR L))))

 (MEMBER S1 L) The list L is searched to see if S1 is EQUAL

 to any element. If so, the sublist of L

 starting with S1 is returned. If that element

 is not EQUAL to any element of L, NIL is

 returned.

 (MEMBER ’A ’((A B) C (D E) G)) = NIL

 (MEMBER ’(D E) ’((A B) C (D E) G)) = ((D E) G)

 (ASSOC S1 L) The list L is searched to see if S1 is EQUAL

 to the CAR of any element. If so, then that

 element is returned. If S1 is not EQUAL to

 the CAR of any element, NIL is returned.

 (ASSOC ’A ’((A B) (C D) (E G))) = (A B)

 (FIND S L <N>) The structure L is searched for any substruc-

 ture (subtree) whose CAR is EQUAL to S. If N

 is given, the Nth such substructure is return-

 ed. If N is not given, the first such

 substructure is returned. If N is zero or

 negative, FIND will return the last such

 substructure. If the substructure specified

 is not found, FIND returns NIL.

 (FIND ’B ’(A B C)) = (B C)

 (FIND ’A ’(A (B (A C) D))) = (A (B (A C) D))

 (FIND ’A ’(A (B (A C) D)) 2) = (A C)

 (FIND ’(A C) ’(A (B (A C) D))) = ((A C) D)

 (FIND ’(A C) ’(A (B (A C) D)) 2) = NIL

 (NTH L N) Returns the sublist of L beginning with the

 Nth element of L. If N is zero or negative,

 NTH will return the last cell of L. If N is

 greater than the number of elements of L, NTH

 will return NIL.

 (NTH ’(A B C) 1) = (A B C)

 (NTH ’(A B C D) 3) = (C D)

 (NTH ’(A B C D) 0) = (D)

 (NTH ’(A B C D) 100) = NIL

 LISP 19

 MTS 8: LISP and SLIP in MTS

 June 1976

 Functions That Create New LISP Structures

 This section includes functions that create new LISP structures as

 well as returning a value. Frequently, the value returned from a

 function in this section is precisely the new LISP structure which

 was created. Examples of these functions follow each description.

 (CONS S1 S2) Returns the dotted pair of S1 and S2.

 (CONS ’A ’B) = (A . B)

 (CONS ’(A B C) ’(D E F)) = ((A B C)

 .(D E F)) = ((A B C) D E F)

 (CONS ’A ’(B C (D E))) = (A B C (D E))

 (LIST S1...SN) Returns the list of S1 through SN.

 (LIST ’A ’B) = (A B)

 (LIST ’(A B C) ’(D E F)) = ((A B C) (D E F))

 (LIST ’A ’(B C D)) = (A (B C D))

 (EVLIS L) Evaluates each element of L and returns a list

 of the values.

 (EVLIS ’((ADD 3 1) (ADD 5 6))) = (4 11)

 (CONC L1...LN) Returns a concatenated list of copies of lists

 L1 through LN.

 (CONC ’(A B C) ’(D E F)) = (A B C D E F)

 (CONC ’(A B C) NIL ’(D E F)) = (A B C D E F)

 (APPEND L S1...SN) Returns a copy of the list L, with S1 through

 SN appended as elements to the end.

 (APPEND ’(A B C) ’D ’E ’F) = (A B C D E F)

 (APPEND ’(A B C) ’(D E) ’F) = (A B C (D E) F)

 (APPEND NIL ’C ’D ’E) = (C D E)

 (REVERSE L) Returns a list of the (top-level) elements of

 L, in reverse order.

 (REVERSE ’(A (B (C D)) E)) = (E (B (C D)) A)

 (COPY S1 <S2 <S3>>) Returns a copy of structure S1. If arguments

 S2 and S3 are given, each substructure of the

 original structure (S1) which is EQUAL to S2

 will be replaced by S3 in the copy. S2 need

 not be a top-level element, but may be an

 element at any level. If S2 appears without

 S3, then all occurrences of S2 in the original

 structure (except as the CDR of a dotted pair)

 will be deleted in the copy. If the first

 argument to COPY is a literal atom other than

 20 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976 Page Revised February 1979

 NIL, the value of COPY will be a new atom,

 which is not found on the OBJECT LIST, with

 the same PNAME as the original atom. The

 value of (COPY NIL) is NIL.

 (COPY ’(A B C)) = (A B C)

 (EQUAL L (COPY L)) = T

 (EQ L (COPY L)) = NIL

 (COPY ’(A (B) C) ’B) = (A NIL C)

 (COPY ’(A B C (D B) E) ’B) = (A C (D) E)

 (COPY ’(A B C (D B) E) ’D ’(L K)) =

 (A B C ((L K) B) E)

 (COPY ’A) = A

 (EQ (COPY ’A) ’A) = NIL

 (UNION L1 L2) Returns a list of the elements of L1 and the

 elements of L2. No duplicate elements will

 appear in the list returned, i.e., no two

 elements will be EQ. The order of the ele-

 ments in the resulting list will be L1 fol-

 lowed by elements of L2 not in L1. Note:

| (UNION L NIL) may be used to generate a

| top-level copy of the list L, but all dupli-

| cate EQ entries will be deleted.

 (UNION ’(A B C) ’(A B C D)) = (A B C D)

 (INTERSECT L1 L2) Returns a list of the elements of L1 which are

 EQ to elements of L2. No duplicate elements

 will appear in the list returned. The order

 of the resulting list will be the same as that

 of L2.

 (INTERSECT ’(A B B A) ’(A C)) = (A)

 (EXCLUDE L1 L2) Returns a list of the elements of L2 which are

 not EQ to elements of L1. No duplicate

 elements will appear in the list returned.

 The order of the resulting list will be the

 same as that of L2.

 (EXCLUDE ’(A B B A) ’(A C)) = (C)

 (GENSYM <A>) Returns a unique atom. If no argument is

 given, GENSYM creates atoms G1, G2, ..., etc.

 Each time GENSYM is called, the GENSYM counter

 is incremented by one. If a literal atom or

 an IOARG is given to GENSYM, the PNAME of that

 atom or of the buffer associated with the

 IOARG will be used. This will be followed by

 the current GENSYM counter. If the buffer

 portion of the IOARG is NIL, the current

 system output buffer will be used.

 LISP 21

 MTS 8: LISP and SLIP in MTS

 Page Revised February 1979 June 1976

 The GENSYM counter can be reset by using the

 STATUS function.

 Note: An atom created by GENSYM is not placed

 in the system OBJECT LIST. Thus, if an atom

 with the same PNAME is created during a READ,

 it will not refer to the same atom which was

 created by GENSYM. The user may remove any

 atom from the OBJECT LIST by calling the

 function REMOB.

 (SET ’GENSET (GENSYM ’ATOM)) = ATOM1

 (EQ GENSET ’ATOM1) = NIL

 (EQNAME GENSET ’ATOM1) = T

 (EXPLODE A) Returns a list of the single-character atoms

 of the PNAME of A. A must be a literal atom,

 or an IOARG, in which case the PNAME of its

 associated buffer will be used. If the buffer

 portion of an IOARG is NIL, the system output

 buffer will be used.

 (IMPLODE LA) Returns an atom whose PNAME is the concatena-

 tion of the PNAMEs of the elements of LA. The

 atom returned is not on the OBJECT LIST.

 Functions That Modify Existing LISP Structures

 (SET A1 S1...AN SN) The VALUE of Ai is set to Si for each "i", and

 the value returned from SET is the last Si.

 (SET ’X ’A ’Y ’(B C)) = (B C),

 The VALUE of X is set to A, the VALUE of

 Y to (B C).

 (RPLACA S1 S2) Replaces the CAR of S1 with S2 and returns the

 new structure.

 (RPLACA ’(A B C) ’(E F)) = ((E F) B C)

 (RPLACD S1 S2) Replaces the CDR of S1 with S2 and returns the

 new structure.

 (RPLACD ’(A B C) ’(D E)) = (A D E)

 Note: RPLACA and RPLACD actually modify the

 structures sent to them as arguments, unlike

 functions such as CONC, APPEND, and COPY,

 which create entirely new structures with the

 desired properties. Because of this, RPLACA

 and RPLACD should be used with great caution.

 It is very easy to create circular LISP

 22 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976

 structures using these functions, and attempts

 to process such structures can cost a great

 deal before the user discovers the program is

 in an infinite loop. For example, if L =

 (A B), then (RPLACA L L) creates the

 structure:

 ...*

 |.. .

 *

 B. .NIL

 (DELETE S L <N>) Deletes up to N occurrences of expression S

 from the list L. If no N is given, all

 occurrences are deleted. S must occur as a

 top-level element of the list L. DELETE

 returns the new list L.

 (DELETE ’C ’(A B C D C D C D) 2) =

 (A B D D C D)

 (DELETE ’C ’(A B C D (C D) C D)) =

 (A B D (C D) D)

 If the VALUE of L is (A B C), then (DELETE

 ’B L) = (A C), and the VALUE of L is (A C).

 However, (DELETE ’A L) = (B C), but the VALUE

 of L is still (A B C). Thus, DELETEing the

 CAR of a list L is equivalent to taking the

 CDR of L, but DELETEing any other element will

 cause an actual change in the list structure.

 If multiple occurrences of an element are

 DELETEd from a list, it is as though multiple

 DELETE operations had been performed, each one

 on the result of the previous one. Thus, if

 the VALUE of L is (A A A B), then (DELETE

 ’A L) = (B). Note that the VALUE of L remains

 (A A A B), since nothing has occurred to alter

 the list structure (A A A B).

 (GRAFT L1...LN) Creates a concatenated list of L1 through LN

 by actually modifying list Li so that it

 becomes Li...LN. Thus, list LN is "grafted"

 onto the end of list L(n-1), and then list

 L(n-1) is grafted onto the end of list L(n-2),

 etc. The value of GRAFT will be the (modi-

 fied) list L1.

 For example, if the VALUE of X is (A B), the

 VALUE of Y is (C D), and the VALUE of Z is

 (E F), then (GRAFT X Y Z) = (A B C D E F), and

 the VALUE of Z is (E F), the VALUE of Y is

 LISP 23

 MTS 8: LISP and SLIP in MTS

 June 1976

 (C D E F), and the VALUE of X is

 (A B C D E F).

 Note: The same changes in structures occur in

 GRAFT as in RPLACA and RPLACD. Thus, the

 warnings given in the note above apply to

 GRAFT as well.

 Operations on Property-Lists

 Although the property-list of an atom is often treated as an

 unordered collection of property-indicators and property-values, in

 fact the PLIST of an atom is a normal LISP list of the form

 (IND1 PVAL1...INDN PVALN). Examples of these operations follow

 each description.

 (PUT <A,LA> IND <PVAL>)

 Gives the atom A, or all the atoms in the list

 LA, the property IND with property-value PVAL.

 If PVAL is omitted, a system default of T is

 used. If an atom already has property IND on

 its PLIST, then the previous PVAL associated

 with property IND is replaced by the new PVAL.

 The value returned from PUT is PVAL.

 (PUT ’(A B) ’INCL ’X) = X

 The property INCL with property-value X

 is put on the PLIST of A and B.

 (GET A IND) Returns the property-value associated with the

 indicator IND on the PLIST of A. If A does

 not have a property EQUAL to IND, GET returns

 NIL.

 (PUT ’A ’INCL ’(X Y)) = (X Y)

 (GET ’A ’INCL) = (X Y)

 (GET ’A ’NOTON) = NIL

 Assumes NOTON is not on the PLIST of A.

 (REM <A,LA> IND <N>) Removes up to N occurrences of the property

 IND from the PLIST of the atom A, or all the

 atoms in the list LA. If N is not given, all

 occurrences are removed. The value of REM is

 NIL.

 (PUT ’A ’INCL ’(X Y)) = (X Y)

 (GET ’A ’INCL) = (X Y)

 (REM ’A ’INCL) = NIL

 (GET ’A ’INCL) = NIL

 24 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976 Page Revised February 1979

 (GETL A L) Finds the first indicator on the PLIST of A

 which is a member of the list L. Returns the

 sublist of the PLIST of A, starting with the

 indicator which was found. If no such indica-

 tor is found, GETL returns NIL.

 For example, if the PLIST of BOOK is (COLOR

 BLUE SIZE 367 TOPIC MATH), then

 (GETL ’BOOK ’(WEIGHT TOPIC SIZE)) =

 (SIZE 367 TOPIC MATH)

| (GETL ’BOOK ’(TOPIC)) = (TOPIC MATH)

| (GETL ’BOOK ’(WEIGHT)) = NIL

 (ADDPROP <A,LA> IND <PVAL>)

 Operates like PUT with the exception that a

 new instance of IND is always placed on the

 PLIST of A, or on the PLIST of each of the

 atoms in LA. Thus, by using ADDPROP, it is

 possible to have duplicate instances of one

 property on the PLIST of an atom. Using

 ADDPROP in conjunction with (REM A IND 1), the

 user may operate a push-down stack of

 property-values for a particular property.

 (PUT ’A ’INCL ’X) = X

 (ADDPROP ’A ’INCL ’Y) = Y

 (GET ’A ’INCL) = Y

 (REM ’A ’INCL 1) = NIL

 (GET ’A ’INCL) = X

 Basic Numeric Predicates

 (GREATER N1...NN) Returns T if N1...NN is a strictly decreasing

 sequence; otherwise, returns NIL.

 (LESS N1...NN) Returns T if N1...NN is a strictly increasing

 sequence; otherwise, returns NIL.

 (ZERO N) Returns T if N=0; otherwise, returns NIL.

 (EVEN N) Returns T if N is an even integer; otherwise,

 returns NIL.

 (INTEGER N) Returns T if N is an integer; otherwise

 returns NIL. N must be a numeric atom.

 Basic Numeric Operations

 (LENGTH L) Returns the length of the list L. LENGTH of

 an atom is 0.

 LISP 25

 MTS 8: LISP and SLIP in MTS

 Page Revised February 1979 June 1976

 (PLEN A) Returns the length of the PNAME of the atom A.

 A must be a literal atom or IOARG.

 (ADD1 N) Returns N+1. N must be an integer.

 (SUB1 N) Returns N-1. N must be an integer.

 (MINUS N) Returns -N. N must be an integer.

 (ABS N) Returns the absolute value of N. N must be an

 integer.

 (FIX N) Returns the integral (truncated) part of N.

 (FLOAT N) Returns the floating-point equivalent of N.

 (MAX N1...NN) Returns the algebraic maximum of N1...NN.

 (MIN N1...NN) Returns the algebraic minimum of N1...NN.

 (ADD N1...NN) Returns the sum of N1...NN.

 (SUB N1 N2) Returns N1-N2.

 (TIMES N1...NN) Returns the product of N1...NN.

 (DIVIDE N1 N2) Returns the quotient of N1 and N2. Floating-

 point division is performed.

 (REMAIN N1 N2) Returns the remainder of N1/N2. N1 and N2

 must be integers.

 (IDIVIDE N1 N2) Returns the integer quotient of N1 and N2. N1

 and N2 must be integers.

 (ADDRESS S) Returns a numeric atom equal to the address of

 the LISP structure S.

 (SHIFT N1 N2) Returns the number N1, shifted N2 bits to the

 left. N1 and N2 must be integers. If N2 is

 negative, the effect is a shift to the right.

 (SHIFT 32 -1) = 16

 (SHIFT 3 2)= 12

 (LAND N1 N2) Returns the result of a bitwise logical AND of

 N1 and N2. N1 and N2 must be integers.

 (LAND 3 5)=1

 (LOR N1 N2) Returns the result of a bitwise logical OR of

 N1 and N2. N1 and N2 must be integers.

 26 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976

 (LOR 3 5)=7

 (LXOR N1 N2) Returns the result of a bitwise logical

 EXCLUSIVE-OR of N1 and N2. N1 and N2 must be

 integers.

 (LXOR 3 5)=6

 (LXOR -1 3) = -4

 Basic Control Functions

 This section includes the functionals, which take as their argu-

 ments definitions of functions to be invoked. Also included are

 EVAL and PROGN, which control the evaluation of forms in LISP.

 Examples of these functions follow each description.

 (EVAL S) Evaluates S and returns the result.

 For example, if the VALUE of X is (A B C), and

 the VALUE of A is VALA, then (EVAL (CAR X)) =

 VALA.

 (PROGN S1...SN) Evaluates S1 through SN and returns the value

 of SN, its last argument. This function is

 useful when the user wants to do several

 different things in one step, and wants only

 the last result returned. For example, at the

 top level, the user may wish to embed a number

 of forms in a PROGN in order to suppress

 printing of all but the last result.

 (PROGN S1...SN ’DONE) = DONE

 (REPEAT S N <EQUFAIL>)

 Evaluates form S N times, or until the value

 of S is EQUAL to EQUFAIL. REPEAT returns the

 last computed value of S. If N is 0, REPEAT

 does not evaluate S, but only returns NIL.

 (SETQ N 1)

 (REPEAT ’(SETQ N (ADD1 N)) 12) = 13, and

 N = 13

 (REPEAT ’(SETQ N (ADD1 N)) 12 2) = 2, and

 N = 2

 (APPLY FN L) Causes the function FN to be invoked, where L

 is a list of its arguments. FN may be any

 LISP function specification.

 (APPLY ’CAR ’((A B C))) = A

 (APPLY ’CONS ’ (X Y)) = (X.Y)

 LISP 27

 MTS 8: LISP and SLIP in MTS

 June 1976

 (APPLY1 FN S1...SN) Causes the function FN to be invoked, where

 S1...SN are the arguments of FN. FN may be

 any LISP function specification.

 (APPLY1 ’CAR ’(A B C)) = A

 (APPLY1 ’CONS ’X ’Y) = (X.Y)

 (MAP FN L1...LN) Causes the function FN to be called, with

 L1...LN as its arguments, and then again with

 (CDR L1)...(CDR LN) as its arguments, and then

 to be called again with (CDDR L1)...(CDDR LN)

 as its arguments, etc., until the shortest

 list is exhausted. Thus, when MAP is used,

 the arguments of FN will always be lists,

 never atoms.

 MAP returns NIL.

 (MAPC FN L1...LN) Works like MAP except the CAR of each succes-

 sive list is used as the argument to FN.

 Thus, MAPC calls FN with (CAR L1)...(CAR LN)

 as its arguments, and then with (CADR L1)...

 (CADR LN), etc.

 MAPC returns NIL.

 (MAPLIST FN L1...LN) Causes the function FN to be called with

 L1...LN as its arguments, and then with (CDR

 L1)...(CDR LN), etc., just as in MAP. How-

 ever, the value returned from MAPLIST is the

 list of all the successive values returned

 from FN.

 (MAPCAR FN L1...LN) Works like MAPLIST except the CAR of each

 successive list is used as the argument to FN.

 MAPCAR returns a list of all the successive

 values returned from FN.

 (MAPCON FN L1...LN) Causes the function FN to be called with

 L1...LN as its arguments, and then with (CDR

 L1)...(CDR LN), just as in MAP. However, the

 value returned from MAPCON is a concatenated

 list of all the values returned from FN.

 (MAPCAN FN L1...LN) Works like MAPCON except the CAR of each

 successive list is used as the argument to FN.

 MAPCAN returns a concatenated list of all the

 values returned from FN.

 Note: The user should be aware that the

 values returned from FN, when called via

 MAPCON or MAPCAN, must be lists, or an error

 will result.

 28 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976

 Warning: The user should be aware that MAPCON

 and MAPCAN call GRAFT to create the concate-

 nated list of values returned from FN. Thus,

 the actual structures returned from FN will be

 modified by MAPCON and MAPCAN. The possibili-

 ties for creating circular lists are the same

 as for GRAFT, RPLACA, etc.

 Let the VALUE of X be ((D 7) (A 6) (N 5)),

 then

 (MAPLIST ’REVERSE X) = (((N 5)

 (A 6) (D 7)) ((N 5) (A 6)) ((N 5))

 (MAPCAR ’REVERSE X) = ((7 D) (6 A) (5 N))

 (MAPCON ’REVERSE X) = ((N 5) (A 6)

 (D 7) (N 5) (A 6) (N 5))

 (MAPCAN ’REVERSE X) = (7 D 6 A 5 N)

 N-Type Functions in LISP ________________________

 There are a number of LISP functions which have the effect of

 automatically QUOTEing their argument-designators. That is, the argu-

 ments which are passed to the function by the LISP system are the

 argument-designators themselves, rather than their values. The function

 called can then evaluate the arguments selectively by calling EVAL.

 This is the mechanism used by LISP to implement conditional execution,

 or conditional evaluation.

 (SETQ A1 S1...AN SN) Sets arguments A1...AN to the values of argu-

 ments S1...SN, respectively.

 (SETQ X (CAR ’(B C)) Y ’A) = A, and the VALUE

 of X becomes B, and the VALUE of Y becomes A.

 Note: If the VALUE of X is VALX, then (SET ’X

 ’(B C) ’Y X) = VALX, and X is set to (BC), and

 Y is set to VALX, since the arguments to SET

 are EVALed before SET is called. However,

 (SETQ X ’(B C) Y X) = (B C), and X is set to

 (BC), and Y is set to (B C), since the SETQ

 performs an EVAL-SET-EVAL-SET... loop.

 (UNCONS L A) Returns the CAR of the VALUE of L, and also

 sets A to the CDR of L.

 (UNCONS ’(A B C) X) = A, and the VALUE of X

 becomes (B C).

 If the VALUE of L is (A B C), then (SETQ M

 (UNCONS L L)) = A, and the VALUE of L becomes

 (B C), and the VALUE of M becomes A.

 LISP 29

 MTS 8: LISP and SLIP in MTS

 June 1976

 (SETA ARR-ELT S) Sets the array element specified by ARR-ELT to

 the value of S. ARR-ELT is an array element

 specification of the same form used to get an

 array element. SETA returns the value of S.

 (SETA (B 3 4) ’(X Y) = (X Y), and the array

 element (B 3 4) is set to (X Y).

 (SETA (B (ADD 2 2) (SUB1 5)) (B (ADD 1 1) 3))

 will return the value of (B 2 3), and the

 array element (B 4 4) will be set to this

 value.

 (AND S1...SN) Evaluates the arguments S1 through SN in turn

 until some Si has a value of NIL. AND then

 stops evaluating and returns NIL. If no Si

 has a value of NIL, AND returns the value of

 SN.

 (AND (CAR Z) (SETQ Z A) (SETQ X ’DONE)) has

 the following effect: if (CAR Z) is NIL, AND

 merely returns NIL; otherwise, Z is set to the

 VALUE of A, and if the VALUE of A is NIL, then

 AND returns NIL; otherwise, X is set to DONE,

 and DONE is returned.

 (OR S1...SN) Evaluates the arguments S1...SN until a value

 which is not NIL is found. OR then returns

 that value. If all of the arguments evaluate

 to NIL, then OR returns NIL.

 (OR (CAR Z) (SETQ Z A) (SETQ X ’DONE) (SETQ Y

 NIL)) has the following effect: if ((CAR Z))

 is non-NIL, returns CAR Z; otherwise, sets Z

 to the VALUE of A. If the VALUE of A is

 non-NIL, then returns that value. If the

 VALUE of A is NIL, then sets X to DONE, and

 returns DONE. Y will never be set to NIL.

 (COND

 (P1 <S1...SN>)

 (P2 <T1...TN>)

 .

 .

 (PN <U1...UN>)) This the basic conditional execution format

 for LISP. The arguments to COND are one or

 more COND-expressions of the form

 (P <S1...SN>)

 COND starts with the first COND-expression,

 and evaluates P, which may be any LISP form.

 If the value of P is non-NIL, COND will

 30 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976

 evaluate S1...SN successively, and the value

 returned from COND will be the value of SN.

 If no Si is given, COND only returns the value

 of P.

 If the value of P IS NIL, then COND will go on

 to the next COND-expression and repeat the

 process. If the value of P for the last

 COND-expression is NIL, then COND returns NIL.

 It is seen that the functions AND and OR are

 merely subcases of COND.

 (AND S1...SN) = (COND

 ((NOT S1) NIL)

 ((NOT S2) NIL)

 .

 .

 ((NOT S(N-1)) NIL)

 ((SN)))

 (AND S1...SN) = (COND

 (S1 (COND

 (S2 (COND...

 .

 .

 (COND(S(N-1)SN))...)))))

 (OR S1...SN) = (COND

 (S1)

 (S2)

 .

 .

 (SN))

 (SELECT EQUTHING

 (E1 <S1...SN>)

 (E2 <T1...TN>)

 .

 .

 (EN <U1...UN>)

 FAIL) This function is similar to COND, except the

 values of E1...EN are tested to see if they

 are EQUAL to the value of EQUTHING. If so,

 then S1 through SN are evaluated, and the

 value of SN is returned as the value of

 SELECT.

 If E1 does not match EQUTHING, then SELECT

 goes on to (E2 <T1...TN>, etc. If E1 matches

 EQUTHING, and no Si is given, then SELECT only

 returns the value of E1.

 LISP 31

 MTS 8: LISP and SLIP in MTS

 June 1976

 If no Ei matches EQUTHING, then FAIL is

 evaluated, and its value is returned. It is

 important to understand that the last argument

 of SELECT is always treated as a form to

 evaluate in case of failure, and never as a

 (E1 S1...SN) type of expression. Thus, a FAIL

 expression must be given.

 (SELECT (GET ’BOOK ’COLOR)

 (’BLUE (BLUEFN ’BOOK))

 (’RED (REDFN ’BOOK))

 (’GREEN (GREENFN ’BOOK))

 (PROGN (PRINT ’(ERROR: BOOK ILLEGAL COLOR))

 (ERRCOLOR ’BOOK)))

 (PROG LA S1...SN)

 (GO A) The PROG function allows the LISP user to

 write subroutine-like sequences of LISP code,

 with branching, and with the ability to exit

 and return a value at any point.

 LA is a list of local or PROG variables. The

 PROG variables are bound to NIL upon entry to

 the PROG, and unbound to their previous values

 upon exit from the PROG. Thus, the PROG

 variables may be used within a PROG as though

 they were distinct from anything outside the

 PROG. Note that this "protection" of PROG

 variables applies only to their VALUEs. If

 the property list of a PROG variable is

 changed within a PROG, the change will not be

 undone upon exit from the PROG. The PROG

 variable list may be NIL, but it may not be

 omitted.

 S1...SN is a sequence of forms to be evaluated

 in order. However, if any of these forms are

 atoms, they are not evaluated, but rather are

 interpreted as statement labels. If a form

 (GO A) appears in the PROG, and A is used as a

 statement label in the PROG, then evaluating

 (GO A) causes the flow-of-control to be trans-

 ferred to the form which appears after the

 label A.

 If the flow-of-control "drops through" the

 last form of the PROG, then the value of that

 form will be returned as the value of the

 PROG. However, if the last form of the PROG

 is an atom, then the atom itself, rather than

 its VALUE, is returned as the value of the

 PROG.

 32 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976

 If at any point within a PROG, a form (RETURN

 S) is evaluated, then PROG immediately exits,

 and returns the value of S.

 Note: GO is, like PROG , an N-type function.

 Thus, (GO A) will cause a branch to the form

 labeled by the atom A. However, if GO is

 given a nonatomic argument, it will EVAL this

 argument, and then attempt to branch to the

 result.

 (GO (CAR A)) will evaluate (CAR A), and if the

 result is an atom, will branch accordingly.

 If the result is not an atom, GO will EVAL it

 in turn, and continue the process until an

 atom is found.

 (RETURN S <STACKID>) The RETURN function can be used in two modes.

 When (RETURN S) is evaluated and no second

 argument is given, it will cause an immediate

 return from the dominating PROG, and the value

 of the PROG will be S. If a return of this

 type is evaluated, but there is no dominating

 PROG, an error will be generated.

 (RETURN S STACKID) allows the user to return

 from any dominating LISP evaluation, and the

 value returned will be S. If STACKID is a

 positive integer N, the return will be made

 from the EVAL level N deep, starting at the

 top level of LISP. Thus, (RETURN ’A 1) will

 always cause a return to the top level of

 LISP, and A will be printed. If STACKID is a

 negative integer -N, the return will be made

 from the Nth previous EVAL level, starting

 with -1 at the level before the call to

 RETURN. Thus, (CAR (CDR (CAR (CDR (RETURN ’(A

 B) -3))))) = A.

 If STACKID is not a number, then all outstand-

 ing EVAL forms will be examined, from most

 recent to least recent, and the return will be

 made from the first form found whose CAR is

 EQUAL to STACKID. Thus, (RETURN S ’PROG) has

 the same effect as (RETURN S).

 If STACKID does not identify an existing EVAL

 form, either because it is too large a number

 or because it does not match the CAR of any

 outstanding form, an error will be generated.

 The following example program searches a list for atoms and prints

 out each atom, along with its syntactic depth of occurrence. The

 LISP 33

 MTS 8: LISP and SLIP in MTS

 June 1976

 function (READ) is called, and returns one S-expression which it reads

 from the system input device, SCARDS.

 Program Description (in an algebraic-type programming language)

 RESTLIST = ((READ-IN-ARGUMENT . 0));

 DO WHILE RESTLIST ¬= NIL;

 LIST = (CAAR RESTLIST);

 DEPTH = (CDAR RESTLIST);

 RESTLIST = (CDR RESTLIST);

 IF (LIST IS ATOM) THEN DO;

 PRINT "ATOM" ":" LIST ", DEPTH" DEPTH;

 END;

 ELSE DO;

 TEMP = (CAR LIST);

 LIST = (CDR LIST);

 IF LIST ¬= NIL THEN

 RESTLIST = (CONS (CONS LIST DEPTH) RESTLIST);

 ELSE;

 RESTLIST = (CONS (CONS TEMP DEPTH+1) RESTLIST);

 END;

 END;

 Program:

 (PROG (LIST DEPTH TEMP RESTLIST)

 (SETQ RESTLIST (LIST (CONS (READ) 0)))

 A (COND

 ((NOT RESTLIST) (RETURN ’DONE))

 (T (SETQ LIST (UNCONS (UNCONS RESTLIST

 RESTLIST) DEPTH))

 (COND ((ATOM LIST)

 (MAPC ’PRIN1 (LIST ’ATOM ’: LIST ’"," ’DEPTH DEPTH))

 (TERPRI))

 (T (SETQ TEMP (UNCONS LIST LIST))

 (COND (LIST

 (SETQ RESTLIST (CONS(CONS LIST DEPTH) RESTLIST))))

 (SETQ RESTLIST (CONS (CONS TEMP

 (ADD1 DEPTH)) RESTLIST))

))))

 (GO A))

 Recursive Implementation of the Same Program:

 (PROG NIL (

 (LABEL ATOMPRINT (LAMBDA (RESTLIST)

 (COND ((NOT RESTLIST) (RETURN ’DONE))

 ((ATOM (CAAR RESTLIST)) (MAPC ’PRIN1

 (LIST ’ATOM ’: (CAAR RESTLIST)

 ’"," ’DEPTH (CDAR RESTLIST)))

 (TERPRI)

 (ATOMPRINT (CDR RESTLIST)))

 (T (ATOMPRINT (GRAFT

 34 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976 Page Revised February 1979

 (LIST (CONS (CAAAR RESTLIST) (ADD1 (CDAR RESTLIST))))

 (AND (CDAAR RESTLIST) (LIST (CONS (CDAAR RESTLIST)

 (CDAR RESTLIST))))

 (CDR RESTLIST)))))))

 (LIST (CONS (READ) 0))))

 Output from Program with Input:

 (A (B C) (D (E F (G H (I) J K) L))))))

 ATOM : A , DEPTH 1

 ATOM : B , DEPTH 2

 ATOM : C , DEPTH 2

 ATOM : D , DEPTH 2

 ATOM : E , DEPTH 3

 ATOM : F , DEPTH 3

 ATOM : G , DEPTH 4

 ATOM : H , DEPTH 4

 ATOM : I , DEPTH 5

 ATOM : J , DEPTH 4

 ATOM : K , DEPTH 4

 ATOM : L , DEPTH 3

 DONE

 MORE ABOUT FUNCTIONS ____________________

 LAMBDA-Expressions __________________

 As we noted earlier, the CAR of a form being EVALed is interpreted as

 a function specification and an atomic CAR is interpreted as the name of

 a function to be called.

 However, the CAR of a form to be EVALed need not be an atom. It can

 be an explicit function specification, called a LAMBDA-expression. The

 basic form of a LAMBDA-expression is

 (LAMBDA (A1...AN) S1...SN)

 When a LAMBDA-expression appears as a function specification, it is

 treated as a function where A1...AN are the dummy arguments, and S1...SN

 is the body of the function. The dummy arguments A1...AN are bound to

 the arguments which are passed to the function; in turn, S1...SN are

 EVALed. Finally, A1...AN are unbound to their original VALUEs.

 The value of the LAMBDA-expression is the value of SN.

 A LAMBDA-expression may appear whenever a function specification is

 required, for example, as the first argument of APPLY, MAP, MAPLIST,

 etc. For example,

 LISP 35

 MTS 8: LISP and SLIP in MTS

 Page Revised February 1979 June 1976

| ((LAMBDA (X) (CDR X)) ’(A B C)) = (B C)

 Note: When it is stated that an atom is bound to some value, this

 means that its present VALUE is saved, and it is set to the new value.

 When the atom is unbound, its previous VALUE is restored. Within the

 scope of a LAMBDA-expression, the dummy arguments have as their VALUEs

 the arguments of the function. For example, within the LAMBDA-

 expression above, the VALUE of X is (A B C).

 Note: The number of arguments to a LAMBDA-expression, as for any

 other function, must be the same as the number of dummy arguments, or an

 error will result. The dummy argument list may be NIL, in which case

 the function takes no arguments, but it may not be omitted.

 The No-Spread Form of a LAMBDA ______________________________

 Another form of LAMBDA-expression which takes an indefinite number of

 arguments may be defined. The basic form of the no-spread LAMBDA-

 expression is

 (LAMBDA A S1...SN)

 Here the dummy argument list is replaced by a single non-NIL atom.

 When a no-spread LAMBDA is executed, the dummy argument A is bound to

 the number of arguments which were given.

 The value of any particular argument may be obtained by calling the

 function ARG, with the number of the desired argument. Thus, (ARG 1)

 returns the first argument, (ARG 3) the third argument, etc. Calling

 ARG with a number greater than the given number of arguments will

 generate an error.

 Because a no-spread LAMBDA-expression may occur within the scope of

 another no-spread LAMBDA-expression, the function ARG takes an optional

 second argument which, if given, must be EQ to the dummy argument of a

 dominating no-spread LAMBDA. For example,

 ((LAMBDA A (ARG 1 ’A)) ’(C D)) = (C D)

 If no second argument is given to ARG, then the immediately dominating

 no-spread LAMBDA is implied.

 The following function will return a list of the CARs of all of its

 arguments.

 (LAMBDA C (PROG (X N)

 (SETQ N 1)

 A (COND ((GREATERP N C) (RETURN X))

 ((SETQ X (APPEND X (CAR (ARG N))))))

 (SETQ N (ADD1 N))

 (GO A))

 36 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976

 Other Forms of LAMBDA-Expressions _________________________________

 There are two other alternate forms of LAMBDA-expressions, which

 allow the user to give explicit definitions of N-type functions.

 The first of these is the NLAMBDA-expression. The basic spread and

 no-spread forms of NLAMBDA-expresssions are as follows:

 (NLAMBDA (A1...AN) S1...SN)

 (NLAMBDA A S1...SN)

 The NLAMBDA-expression operates like an ordinary LAMBDA. The only

 exception is that the argument-designators themselves, rather than their

 values, are used as the arguments to the NLAMBDA. For example,

 ((NLAMBDA (X) (CDR X)) (A B C)) = (B C)

 ((NLAMBDA A (CAR (ARG 1))) ’(A B C)) = QUOTE

 The second alternate form of LAMBDA-expression is the FLAMBDA. The

 basic forms of FLAMBDA-expression are as follows:

 (FLAMBDA (A) S1...SN)

 (FLAMBDA A S1...SN)

 The argument-passing conventions for FLAMBDA-functions are slightly

 different than for LAMBDA and NLAMBDA-expressions. The FLAMBDA-

 expression must always have exactly one dummy argument. In the case of

 a spread-type FLAMBDA, this single argument is bound to a list of all

 the argument-designators. In the case of a no-spread type FLAMBDA, the

 dummy argument is always bound to the number 1, and the function (ARG 1)

 will return the list of all the argument-designators. For example,

 ((FLAMBDA (A) A) X Y Z) = (X Y Z)

 ((FLAMBDA A (ARG A)) X Y Z) = (X Y Z)

 It is important to be aware of the effect of applying or mapping the

 three types of functions. The argument-designators to APPLY and APPLY1

 are always EVALed before being passed to these functions, and will not

 be evaluated again. Thus, for the purposes of APPLY, APPLY1, MAP, etc.,

 the differences between LAMBDA and NLAMBDA-functions disappear. How-

 ever, for FLAMBDA-type functions, the arguments given are made into a

 list when used with APPLY1, or left in their list form in the case of

 APPLY. Thus, when these functions are APPLYed they always receive a

 single argument. The following examples illustrate the process:

 (APPLY ’(LAMBDA (X Y Z) (LIST X Y Z)) ’(A B C)) = (A B C)

 (APPLY ’(NLAMBDA (X Y Z) (LIST X Y Z))

 ’(A B C)) = (A B C)

 (APPLY ’(FLAMBDA (X) (LIST X))

 ’(A B C)) = ((A B C))

 LISP 37

 MTS 8: LISP and SLIP in MTS

 June 1976

 Note: In general, the term "LAMBDA-expression" is a generic term

 including the NLAMBDA and FLAMBDA-expressions.

 Named LAMBDA-Expressions (LABEL-Expressions) __

 LISP provides a special syntax for writing LAMBDA-expressions which

 are capable of calling themselves. This is the LABEL-expression. The

 basic form of a LABEL-expression is:

 (LABEL NAME LAMBDA-EXP)

 where NAME may be any atom. NAME is first bound to the LAMBDA-

 expression which is the second argument of the LABEL-expression. The

 evaluation continues as though the LAMBDA-expression had been given.

 The effect is that NAME is temporarily defined as the LAMBDA-expression,

 provided that NAME is not already defined as a function within the

 system.

 Thus, within the LAMBDA-expression, explicit calls to NAME may be

 made, which will invoke the LAMBDA-expression recursively. For example,

 ((LABEL COUNT (LAMBDA (L N)

 (COND ((NOT L) N)

 ((COUNT (CDR L) (ADD1 N))))))

 ’(A B C D E) 0) = 5

 This LABEL-expression temporarily defines a function COUNT, which will

 return the sum of its second argument and the number of elements in its

 first argument.

 Accessing Defined Functions ___________________________

 When an atom is to be used as a function name, a link to the function

 definition is maintained on the property-list of that atom. The

 following special system indicators are used to mark function

 definitions:

 SUBR

 NSUBR

 FSUBR

 EXPR

 BUG

 SUBR, NSUBR, and FSUBR are indicators which mark the three types of

 built-in LISP functions. SUBRs take their arguments EVALed, like

 LAMBDA-functions; NSUBRs take their arguments without evaluation as do

 NLAMBDA-functions, and FSUBRs take their arguments in a list, like

 38 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976

 FLAMBDA-functions. The property-values associated with these indicators

 are pointers to the machine code for those functions. An attempt to

 print out one of these links will merely cause an asterisk (*) to be

 printed.

 EXPR and BUG are the indicators used to mark the two types of

 user-defined functions. The property-value associated with an EXPR

 indicator will be a function specification (usually but not necessarily

 a LAMBDA-expression) which will be invoked when the "parent" atom is

 used as a function name.

 If several special system indicators are on the property-list of the

 same atom, the first (and most recent) one will be used as the function

 definition for that atom.

 Note: There is nothing to prevent the user from modifying or

 destroying the special system properties on the PLIST of an atom. In

 fact, since the PLIST of an atom is the CDR of the atom, the user may

 access this list just as any other list. This may often be a good

 method of making corrections to a user-defined function. However,

 modifying or destroying the links to built-in LISP functions should be

 done carefully, if at all.

 Defining New Functions in LISP ______________________________

 DEFUN and DEFINE are two functions for defining new functions in

 LISP.

 DEFUN is an N-type function which provides an easy way for the user

 to define one new LISP function by the usual method of putting a

 LAMBDA-expression on its property-list. The basic form of DEFUN is:

 (DEFUN NAME <TYPE> ARGLIST S1...SN)

 NAME is the name of the function being defined. TYPE must be EXPR,

 NEXPR, or FEXPR. If TYPE is omitted, EXPR is assumed. ARGLIST is a

 list of dummy arguments, or NIL, for a spread-type function; or a single

 atom for a no-spread-type function. S1...SN is the body of the

 function.

 If TYPE is EXPR, a LAMBDA-expression is created.

 If TYPE is NEXPR, an NLAMBDA-expression is created.

 If TYPE is FEXPR, an FLAMBDA-expression is created.

 DEFUN always places the created LAMBDA-expression on the property-list

 of NAME under the indicator EXPR. The value returned from DEFUN is the

 atom NAME. If TYPE is omitted, then ARGLIST may not be EXPR, NEXPR, or

 FEXPR. For example,

 LISP 39

 MTS 8: LISP and SLIP in MTS

 June 1976

 (DEFUN SAMPLE C (PROG (X N)

 (SETQ N 1)

 A (COND ((GREATERP N C) (RETURN X))

 ((SETQ X (APPEND X (CAR (ARG N)))))

 (SETQ N (ADD1 N))

 (GO A)))

 This creates a function called SAMPLE, which returns a list of the CARs

 of all of its arguments. SAMPLE takes an indefinite number of

 arguments, or no arguments.

 (SAMPLE) = NIL

 (SAMPLE ’(S R T) ’(P Q) ’(R)) = (S P R)

 DEFINE is the basic function for defining and naming new LISP

 functions. The basic form of DEFINE is:

 (DEFINE (NAME <TYPE> DEFN)...(NAME <TYPE> DEFN))

 DEFINE is an N-type function which takes an indefinite number of

 definitions, DEFN, as arguments. NAME is always an atom, which is the

 name of the entity being defined. TYPE may be EXPR, BUG, ARRAY, SUBR,

 NSUBR, or FSUBR, or may be omitted, in which case EXPR is assumed.

 For an EXPR or BUG, the DEFN given is put on the PLIST of NAME

 exactly as it appears. Thus, to DEFINE an EXPR, the entire LAMBDA-

 expression must be written out. The form and meaning of BUG definitions

 will be explained in the next subsection.

 The ARRAY and SUBR definitions require special parameters which

 respectively define LISP arrays and create linkage to external subrou-

 tines. The form and meaning of these definitions is explained in the

 subsections "Arrays" and "Calling External Routines from LISP."

 The value returned from DEFINE is the name defined if only one

 definition was given, or a list of the names defined if more than one

 was given. For example,

 (DEFINE (TEST EXPR (LAMBDA (Y) (PRINT Y)))) = TEST

 This defines a function TEST which merely prints its argument.

 Note: DEFUN and DEFINE, which place properties on the PLISTs of

 atoms, do not work in the same way as PUT. They compare the current

 indicator being placed on the PLIST with the first indicator already on

 the PLIST; if they are the same, the PVAL of that indicator is replaced

 with the new definition. If the current indicator does not match the

 first one on the PLIST, the new property is merely placed in front of

 it. This process guarantees that the most recent function definition of

 an atom will be the active one.

 40 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976

 BUG ___

 In order to facilitate the writing of debugging routines in LISP, a

 new facility called a BUG has been added to LISP/MTS. A BUG is a

 pseudofunction definition which can be placed on the property-list of an

 atom already defined as a function. BUG will cause an interception of

 the function upon entry and upon exit. The user can display the

 arguments sent to the function or any other LISP structures, can test

 entry conditions, and can display the value returned from the function.

 The basic form of a BUG definition is as follows:

 (DEFINE (A BUG (DEFN1 . DEFN2)))

 DEFN1 is a function specification (usually a LAMBDA-expression) which

 must either be an FLAMBDA-function or have the same number of arguments

 as the function A. Immediately prior to calling the function A, DEFN1

 will be called. If it is an FLAMBDA-function, its dummy argument will

 be bound to a list of the arguments of A. If it is a LAMBDA or NLAMBDA

 function, its dummy arguments will be bound to the arguments of A. For

 the purposes of BUGs, LAMBDA and NLAMBDA functions are identical.

 After DEFN1 is called, A will be invoked as if the BUG were not

 present. DEFN1 does not have the ability to alter the arguments sent to

 A (except, of course, by physical modification of the argument struc-

 tures), but it can abort the call entirely. (See the subsection "Error

 Recovery and Debugging Procedures.")

 Upon returning from the function A, DEFN2 is called. DEFN2 may be a

 LAMBDA or NLAMBDA function of one argument, in which case that argument

 will be bound to the value returned from A. If DEFN2 is an FLAMBDA, its

 dummy argument will be bound to a list of the value returned from A.

 Notes:

 (1) When a BUG is placed on the property-list of an atom, and,

 subsequently, a new function definition is placed on the same

 property-list, the BUG will be ignored when the function is

 called. In other words, BUGs must precede other system indica-

 tors on a property-list in order to be effective. Thus, in a

 call to DEFINE which defines a function and a BUG for the same

 atom, the function definition must precede the BUG definition.

 (2) One or more BUGs appearing on the property-list of an atom A,

 which has no function definition, will generate an error if A is

 invoked as a function.

 (3) Multiple BUGs appearing on the property-list of an atom,

 followed by a function definition, will be treated as "stacked"

 and invoked in order. The input BUG functions will be executed

 from first to last, followed by the function itself, and finally

 the output BUG functions, from last to first.

 LISP 41

 MTS 8: LISP and SLIP in MTS

 June 1976

 (4) If either DEFN1 or DEFN2 is NIL, then that portion of the BUG

 will be ignored and the function A will be invoked or exited

 without intervention.

 Example:

 A BUG is put on the function COUNT, to trace the entry and exit,

 and to print out the arguments.

 (DEFUN COUNT (L N) (COND ((NOT L) N)

 ((COUNT (CDR L) (ADD1 N)))))

 (DEFINE (COUNT BUG ((FLAMBDA (ARGS)

 (PRINT ’ENTRY-TO-COUNT)

 (PRIN1 ’ARGUMENTS:)

 (PRIN1 ARGS) (TERPRI))

 .(LAMBDA (RET)

 (PRINT ’EXIT-FROM-COUNT)

 (PRIN1 ’VALUE:) (PRIN1 RET)

 (TERPRI)))))

 Arrays ______

 The basic form of a LISP array definition is

 (DEFINE (A ARRAY (A1...AN) <FILL>))

 This is the basic form of a LISP array definition. In this example, A

 will be defined as an N-dimensional array with subscript bounds A1...AN.

 A1...AN must be atoms whose VALUEs are integers. If a fourth argument,

 FILL, is given, the initial value of each element in the array will be

 set to that structure. Otherwise, each element in the array is

 initially set to NIL.

 An array definition associated with an atom operates like a function

 definition for that atom. A pointer to the appropriate access code is

 stored on the property-list of the atom, under the indicator SUBR. The

 value of an array element is obtained by invoking the "function", with

 the appropriate subscripts as arguments. For example,

 (A 1 (ADD 3 5) (CADR ’(B 3)))

 will evaluate to the array element A(1,8,3). It should be noted that

 since an atom may be defined as a function in only one way at a time,

 defining A as an array will negate any other function definition A may

 have had, and defining A as a function will negate the definition of A

 as an array.

 To set the value of an array element, the SETA function is used:

 42 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976 Page Revised February 1979

 (SETA (A 2 (ADD 2 2) 2) ’(B C D))= (B C D)

 and the array element A(2,4,2) will be set to the list (B C D).

 The value of an array element may be any LISP structure.

 Note: The user may conveniently define an array and use his own

 hash-coding algorithm to compute the subscripts as follows:

 (DEFINE (A ARRAY (8000)))

 To obtain an element of A:

 (A (HASHFN CODE1...CODEN))

 To set an element of A:

 (SETA (A (HASHFN CODE1...CODEN)) VALUE)

 HASHFN may be any LISP function which returns a numeric atom as its

 value, or may be an external routine called from LISP.

 Calling External Routines from LISP ___________________________________

 LISP provides the option of calling user-written or library subrou-

 tines. The major purpose of this feature is to allow the use of complex

 numeric functions, hash functions, etc., which would be slower if

 written in LISP.

 The basic form used to define external subroutines in LISP is:

 (DEFINE (FN <SUBR,NSUBR,FSUBR> (N FILENAME <ENTRY-NAME>)))

 FN is an atom which will become the LISP name of the external function.

 FILENAME is the name of an MTS file from which the external code is to

 be loaded. ENTRY-NAME specifies which entry point in an object file, or

 which subroutine in a library file, is to be associated with the LISP

 function name FN. If no ENTRY-NAME is given for an object file, the

 default MTS entry point will be used (see the loader description in MTS

 Volume 5 for a description of entry point determination). If no

 ENTRY-NAME is given for a library file, an error will be generated. If

 the ENTRY-NAME given is already in memory, nothing will be loaded, and

 the LISP function FN will be defined to be the ENTRY-NAME function. N

 specifies the type of calling conventions to be used, and must be set at

 0, 1, 2, 3, or 4.

 N=0 signifies that LISP internal SUBR calling conventions will be

 used. Any number of arguments may be given, and these may be

 any LISP structures. This external mode is for the use of

 system programmers who might wish to write extensions of the

 LISP 43

 MTS 8: LISP and SLIP in MTS

 Page Revised February 1979 June 1976

 LISP interpreter, and requires familiarity with the internal

 structures of LISP.

 N=1 signifies FORTRAN function calling conventions, with a

 floating-point value. Any number of arguments may be given,

 and they must be numeric atoms. If an argument is a

 floating-point numeric atom, it will be passed to the function

 as a double-precision floating-point number. (This allows the

 user to call both single- and double-precision external

 functions, although LISP numbers have only single-precision

 significance.) If the argument is an integer numeric atom, it

 will be passed to the function as a fullword integer. (Note

 that the number represented by the atom is passed, and not the

 atomic structure.)

 Upon return from the function, floating-point register 0 will

 be treated as a single-precision value of the function, and a

| numeric atom with that value will be returned. No changes to

| any arguments will occur.

 N=2 signifies FORTRAN function calling conventions, with an inte-

 ger value. Any number of arguments may be given, and their

 interpretation will be the same as for N=1.

 Upon return from the function, general register 0 will be

 treated as an integer return value from the function, and a

| numeric atom with that value will be returned. No changes to

| any arguments will occur.

 N=3 signifies FORTRAN subroutine calling conventions. Any number

 of numeric arguments may be given, and their interpretation

 will be the same as for N=1 or N=2.

 For this type of external function, the arguments may be

 modified by the function, just as if they were the values of

 FORTRAN variables.

 Upon return from the subroutine, general register 15 is

 checked first. If the return code is nonzero, then the value

 returned from the LISP function will be NIL. If the return

 code is zero, then a list of the argument values (which may

 have possibly been modified) will be returned as the value of

 the LISP function. Note that a FORTRAN program which modifies

 the values of its arguments does not alter the value of any

 LISP structure. The only effect of the modification is that

 some new numeric atoms are returned as part of the value of

 the LISP function.

 An argument which was originally passed as an integer will be

 interpreted upon return as an integer. An argument which was

 originally passed as a floating-point number will be inter-

 preted upon return as a single-precision floating-point

 number.

 44 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976 Page Revised February 1979

 N=4 signifies the same calling conventions as N=0; however, if the

 system is CHECKPOINTed, the external code will also be

 CHECKPOINTed. (Normally, an external routine is reloaded

 after each RESTORE.)

 Calls to the MTS functions STOP and ERROR while executing an external

 routine are trapped by LISP. STOP causes a return from the external

 function with a value of NIL. ERROR generates a call to the LISP

 function ERR.

 A Note on Recursion in Function Specification ___

 The CAR of a form being EVALed has a unique status in LISP. It has

 been previously stated that the CAR is interpreted as a function

 specification, and we have given some examples of typical function

 specifications. If the CAR is a LAMBDA-expression, the LAMBDA-function

 will be applied to the rest of the form being EVALed. Some of the other

 possibilities will now be described in more detail.

 If the CAR of the form being evaluated is an atom, then EVAL looks

 for one of the special system indicators on the property-list of the

 atom. If one is found, it will either be one of the built-in system

 function indicators, in which case LISP goes off to execute that

 function, or it will be one of the user-defined function indicators. If

 it is one of the latter, then the property-value associated with the

 indicator is merely substituted for the atom, and the evaluation process

 continues.

 (DEFINE (NEWCAR EXPR CAR))

 (NEWCAR ’(A B C)) = A

 Assume, for a moment, that the CAR of the form being EVALed is an

 atom which has no system indicator on its property-list. In this case,

 EVAL searches for a system indicator, fails to find one, and substitutes

 the VALUE of that atom for the atom itself, and the process continues.

 In this manner, an atom NAME can have a function definition temporarily

 associated with it during execution of a LABEL-function. However, the

 VALUE need not be a LAMBDA-expression, but may be another atom, or any

 other "function specification."

 Finally, if the CAR of the form being EVALed is not an atom and not a

 LAMBDA-expression, it is then interpreted as an "indirect" function

 specification. It is itself EVALed, its value is substituted for

 itself, and the process continues.

 (SETQ A ’(CONS))

 (SETQ B ’CAR)

 ((B A) ’X ’Y) = (X . Y)

 LISP 45

 MTS 8: LISP and SLIP in MTS

 Page Revised February 1979 June 1976

 INPUT/OUTPUT IN LISP ____________________

 Default I/O Operations ______________________

 In the simplest application of LISP input/output, all input is read

 from the system input device SCARDS, and all output is directed to the

 system output device SPRINT. I/O is always treated as a stream, with

 the syntactic boundaries between S-expressions, rather than physical

 records, constituting the divisions between I/O operations. Thus,

 several S-expressions may be read from one input line; one S-expression

 may span several input lines. Similarly, the basic print function PRIN1

 will "stream" output S-expressions into a single output buffer until it

 overflows. Contents of the buffer will be printed, and the remainder of

 the current expression will be continued as a new buffer.

 (READ) Calling READ with no arguments causes one

 S-expression to be read from the system input

 device. The structure represented by the

 S-expression will be returned.

 (READCH) Gets the next character from the current input

 stream. Blanks, periods, parentheses, etc., as well

 as alphanumeric characters, are returned as one-

 character atoms.

 (READLINE) Causes a new line to be read from the system input

 device into the system input buffer. The previous

 contents of the buffer are destroyed, and the next

 READ will begin with the new line. The value

 returned from READLINE is a pointer to the buffer,

 which is described in the next subsection.

 (PRIN1 S) Causes the list or S-expression form of the LISP

 structure S to be "printed" into the system output

 buffer. Each S-expression printed will be preceded

 by a blank. When the buffer is full, its contents

 will be printed on the system output device, and

 printing of the remainder of the print name of S

 will be continued at the beginning of the empty

 buffer.

 The value returned from PRIN1 is S.

 (TERPRI) Terminates the system output buffer, causing its

 current contents (if any) to be printed, and the

 buffer to be cleared. If there is nothing in the

 buffer, TERPRI has no effect. The value of TERPRI

 is NIL.

 (PRINT S) Operates like (PROGN (TERPRI) (PRIN1 S) (TERPRI)),

 except that the value returned from PRINT is S.

 46 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976

 (TAB N) Causes the pointer for the system output buffer to

 be moved to position N. (Position 1 is the first

 position.) Any spaces skipped are filled with

 blanks, and buffer contents skipped on a TAB to the

 left are destroyed. The value returned from TAB is

 the current buffer.

 (SKIP N) Causes the pointer for the system output buffer to

 be moved N spaces to the right. If N is negative,

 the pointer moves to the left. Any spaces skipped

 in a shift to the right are filled with blanks, and

 buffer contents skipped over in a shift to the left

 are destroyed. The value returned from SKIP is the

 current buffer.

 Note: TAB and SKIP cannot move a buffer pointer outside the buffer

 range. If a TAB or SKIP indicates a move too far to the right or left,

 an error will be generated.

 Example:

 (PROGN (PRIN1 ’THIS) (PRIN1 ’IS) (PRIN1 ’A) (PRIN1 ’TEST:) (TAB

 35) (PRIN1 ’"THAT’S ALL") (TERPRI)) = NIL.

 The following line will be printed:

 THIS IS A TEST: THAT’S ALL

 I/O Data Types ______________

 LISP provides the option of a more flexible (and more complicated)

 input/output scheme than the defaults described above. The basic data

 structures involved in this scheme are the I/O destination atom, the

 buffer, and the file.

 I/O Destination Atoms

 An I/O destination atom is a pointer atom whose VALUE is a

 buffer/file pair to be used in an I/O operation. All of the I/O

 functions described in the previous section accept such a pair as

 an optional argument, and if given, the buffer/file pair are used

 for that operation. Such a buffer/file pair is called an I/O

 argument, or IOARG.

 If an IOARG is given on input, data is read from the specified

 buffer rather than the system input buffer; if the buffer is used

 up, a new line is read from the specified file. On output, data is

 printed into the specified bufer rather than the system output

 buffer; if an overflow occurs (or the operation is a PRINT), data

 is printed on the specified file.

 LISP 47

 MTS 8: LISP and SLIP in MTS

 June 1976

 Specifically, an IOARG (the VALUE of an I/O destination atom) is a

 dotted pair (BUFFER . FILE), which may be used to direct input/

 output operations, and may also be used as a buffer pointer for

 performing operations on buffers, e.g., EXPLODE, etc. If either

 component of an IOARG is NIL, then the appropriate system buffer or

 file is used. The VALUE of the I/O destination atom LISPIN is the

 dotted pair of the default system input buffer and system input

 file. The VALUE of the I/O destination atom LISPOUT is the dotted

 pair of the default system output buffer and system output file.

 If the user changes the system default buffers or files using the

 STATUS function (the equivalent of a read- or write-select opera-

 tion), he may still have access to the original system IOARGs

 through LISPIN and LISPOUT.

 Buffers

 A buffer is an atomic structure with a variable PNAME, which is

 accessed through one or more IOARGs. New buffers may be created

 and linked to I/O destination atoms by calling the OPEN routine.

 Buffers are used for input/output, and may also be viewed as

 character strings.

 The maximum size of a buffer is 255 characters.

 Any PRINT operation into a buffer will cause a representation of

 the argument to be placed in the buffer. Any READ operation from a

 buffer will create and return the LISP structure represented by the

 next S-expression in the buffer.

 Instead of the buffer itself, the IOARG whose CAR is the buffer is

 always passed as an argument to a function. For example, functions

 such as EXPLODE, which forms a list of one-character atoms from the

 characters in a buffer, or GENSYM, which creates an atom whose

 PNAME begins with the current contents of the buffer, expect an

 IOARG to be passed rather than the buffer itself. The FILE portion

 of the IOARG is ignored. Thus, the IOARG also serves as a buffer

 pointer throughout the system. However, when functions such as

 READLINE, TAB, and SKIP return buffer pointers, it is the actual

 buffer structure and not the IOARG which is returned.

 The atomic structure of a buffer extends only to its PNAME.

 Buffers may not be given VALUEs and PLISTs by the user. However, a

 buffer may be part (or all) of the list-structure argument to a

 PRINT or PRIN1. For printing purposes, a buffer is treated like

 any other literal atom, and its PNAME is inserted into the output

 buffer.

 For example, if (PRIN1 (CAR LISPIN) BUF1) appears as an input line

 under normal conditions of operation, the character string " (PRIN1

 (CAR LISPIN) BUF1)" is placed in the buffer associated with I/O

 destination atom BUF1.

 48 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976 Page Revised January 1983

 Files

 The FILE is an atomic structure which has no significance to the

 user except that it serves to direct input and output calls to MTS

 files and devices. A FILE may reference any MTS file or device

 name, logical I/O unit name, or logical I/O unit number.

 Several files can be attached to a single buffer by creating

 several IOARGs with the same buffer component. If these IOARGs are

 used for output, data printed will all go to the same buffer.

 However, if the buffer overflows, the file for that I/O operation

 is used as the output file. Similarly, several buffers can be

 attached to the same file by creating several IOARGs with the same

 file component. In that case, output from all the attached buffers

 is interleaved in the file.

 Buffer and File Prefix Characters _________________________________

 Any LISP buffer may have a prefix of up to 255 characters, which may

 be set or reset by calling the STATUS function. The purpose of the

 buffer prefix is to allow prefix strings to precede output lines. All

 PRINT operations, including TAB and SKIP, treat a buffer with an active

 prefix as though it begins after the prefix. Prefix characters use up

 character positions at the beginning of the buffer, and are included in

 the buffer size limit of 255 characters. Since READ operations do not

 recognize buffer prefixes, a physical read operation into a buffer with

 a prefix destroys or replaces the prefix.

 A file prefix character may be attached to any LISP file by calling

 the STATUS function. This has the effect of calling the MTS subroutine

 SETPFX which causes any input from or output to the terminal to be

 prefixed by the prefix character. For example, the following is a

 sample run in which a buffer is created, given a prefix, the prefix is

 used, and is then disabled. Lines which are not indented are entered by

 the user. Lines which are indented are responses from LISP.

 (OPEN (ABUF 132)) A buffer is created with length 132.

 ABUF is the I/O destination atom.

 The file portion of the IOARG created

 will be NIL.

 NIL

 (READ ABUF) Causes a line to be read from the

 system input device into ABUF, and

 the first S-expression found to be

 returned as the value of READ.

 THIS IS A TEST Here is the input line.

 LISP 49

 MTS 8: LISP and SLIP in MTS

 Page Revised January 1983 June 1976

 THIS

 (STATUS (10 ABUF T)) Makes the current contents of ABUF a

 prefix.

 0

 (TERPRI ABUF) This has no effect since the prefix

 is not treated as buffer content.

 NIL

 (PRINT ’PRINT2 ABUF)

 THIS IS A TEST PRINT2

 PRINT2

 (STATUS (10 ABUF NIL)) Disables the prefix.

 14

 (PRINT ’PRINT3 ABUF)

 THIS IS A TEST The first TERPRI prints buffer con-

 tents (no longer a prefix).

 PRINT3

 PRINT3

 (PRINT ’PRINT2 ABUF)

 PRINT2

 PRINT2

 Buffer Overflow Interception ____________________________

 The user may, on an I/O call, specify a read or print intercept

 function as an optional argument. The intercept must be a function

 which takes one argument. If an intercept function is specified in a

 call to READ, READLINE, or READCH, on any attempt to do a physical read

 into the buffer, the intercept function will be called first. The IOARG

 for that READ will be passed to the intercept function as its argument.

 If an intercept function is specified in a PRINT, PRIN1, or TERPRI

 call, on any attempt to do a physical write from the buffer, the

 intercept function will be called first. The IOARG for that PRINT

 operation is passed as the argument to the intercept function.

 Upon return from an intercept function, the LISP system will complete

 the I/O operation.

 End-of-File Processing ______________________

 Each LISP file has an EOF function, which will be called if an

 end-of-file is encountered while reading from that file. An EOF

 function may be attached to a file by calling the STATUS function.

 50 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976

 An EOF function must be a function of one argument. When the

 function is called, the IOARG for the READ operation will be passed to

 it.

 All files initially use the system EOF function, called EOF, which

 causes the file to be closed. Whenever a file is closed, it is changed

 to reference *MSOURCE*. An end-of-file encountered on *MSOURCE* in

 conversational mode will cause the user to be prompted to continue. In

 batch mode, an end-of-file on *MSOURCE* causes immediate termination of

 execution. The value of the function EOF is NIL.

 The action which should be taken on return from an EOF function is

 determined by the value returned from the function. If the value

 returned is non-NIL, the READ is aborted, and that value is returned as

 the value of READ. If the value returned from the EOF function is NIL,

 then the READ will be tried again.

 READMACRO and PRINTMACRO Functions __________________________________

 It is possible for the LISP user to define functions which will be

 called whenever a particular atom or character is encountered in the

 input stream, or whenever a particular atom appears in the output

 stream. A READMACRO or PRINTMACRO function must be a function with one

 dummy argument, which will be bound to the current IOARG when the

 function is called. An atom is defined as a READMACRO or PRINTMACRO by

 calling the STATUS function with the appropriate arguments.

 READMACRO Atoms

 (STATUS (2 HIT T)) defines the atom HIT as a READMACRO. If HIT is

 encountered in the input stream during a READ operation, the

 function associated with HIT will be invoked immediately.

 Upon return from the HIT function, the following action will be

 taken:

 (1) If the value returned from HIT is an atom, then HIT will

 simply be "spliced out" of the input stream, and the READ will

 continue.

 (2) If the value returned from HIT is a list, then the elements of

 that list will be "spliced in" to the input stream in place of

 HIT, and the READ will continue.

 The READMACRO function may itself call READ, in which case the

 S-expression immediately following the atom HIT in the input stream

 will be returned. For example,

 (DEFUN HIT (X) (COND ((ATOM (SETQ X (READ)))

 (LIST (LIST X ’HIT)))

 LISP 51

 MTS 8: LISP and SLIP in MTS

 June 1976

 ((LIST (MAPCAN ’(LAMBDA (A)

 (LIST A ’HIT)) X)))))

 (STATUS (2 HIT T))

 (READ)

 (A B C HIT (D E F) G)

 will return

 (A B C (D HIT E HIT F HIT) G)

 and

 (READ)

 (A B C HIT D E F)

 will return

 (A B C (D HIT) E F)

 PRINTMACRO Atoms

 (STATUS (4 HIT T)) defines HIT as a PRINTMACRO atom. Whenever an

 attempt is made to print the atom HIT, the HIT function will be

 called instead. The value returned from the HIT function is

 ignored, since the HIT function itself has complete access to the

 current buffer. After return from the HIT function, the rest of

 the PRINT operation will be completed.

 The READMACRO Character Characteristic

 A single-character READMACRO atom may be given the additional

 characteristic of a READMACRO character by altering its disposition

 in the READ scan table. A READMACRO character need not occur as an

 atom, but may occur at the beginning of any S-expression. However,

 a READMACRO character which is strictly embedded in an atom, or

 which occurs at the end of an atom, will not be recognized as a

 macro (unless STATUS was used to alter the system READ tables--see

 codes 22-24 in subsection "The STATUS Function").

 For example, redefine the character Q as a READMACRO equivalent to

 the system ’ substitution function:

 (DEFUN Q (X) (LIST (LIST ’QUOTE (READ))))

 (STATUS (5 Q 28) (2 Q T))

 QA = A

 Q(A B C) = (A B C)

 QQ(A B C) = (QUOTE (A B C))

 52 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976

 Description of Optional I/O Parameters ______________________________________

 IOARG

 The IOARG parameter, if present in an I/O call, defines the

 buffer-file pair to be used. It must be the value of an I/O

 destination atom created by OPEN, one of the system I/O destination

 atoms (LISPIN, LISPOUT, ERRIN, ERROUT), or NIL.

 If either the buffer or file portion of the IOARG is NIL, then the

 appropriate system default buffer will be used. Thus, a user who

 wishes to specify the IOSW or FN parameters but not the IOARG can

 specify a NIL IOARG, and the system defaults will be used.

 IOSW

 The IOSW parameter is used as a switch to control system I/O

 parameters. The values below can be added together to specify

 several nondefault options on one I/O call. The default for all

 codes is 0.

 Code Meaning if Nonzero ____ __________________

 01 Disable all I/O macro processing for this operation.

 02 Suppress insertions of a blank character before each

 S-expression on output (meaningful only for PRINT and

 PRIN1).

 04 If an atom to be printed contains any break characters (such

 as blanks, primes, etc.), then insert a quote character

 before and after the atom in the output buffer. This option

 allows the user to produce file output which can be read in

 at a later time (meaningful only for PRINT and PRIN1).

 08 Print in "terse mode," that is, print only the first line of

 the S-expression which is to be printed (meaningful only for

 PRINT AND PRIN1).

 16 Double-space the first output line of this print.

 FN

 The FN parameter, if specified, is the intercept function for the

 operation. It must be a LISP function specification. The opera-

 tion of the intercept function is described above in the subsection

 "Buffer Overflow Interception."

 LISP 53

 MTS 8: LISP and SLIP in MTS

 June 1976

 Input/Output Functions ______________________

 (OPEN (IODA BUFFER <FILE>)...IODA BUFFER <FILE>))

 This function establishes any number of new I/O destination atoms.

 IODA must be a literal atom; its VALUE will be set to the new

 buffer-file pair which is created. BUFFER must be an integer

 between 1 and 255, a previously defined I/O destination atom, or

 NIL. If it is an integer, a new buffer will be created with that

 initial size. If BUFFER is an I/O destination atom, the buffer

 attached to that atom will be used. If it is NIL, then the buffer

 portion of the IOARG created will be NIL, and the system input and

 output buffers will be used whenever that IOARG is specified in an

 I/O call.

 FILE must be an atom, a list of a single atom, or a previously

 defined I/O destination atom. If it is a non-IODA atom, then that

 atom is interpreted as an MTS file or device name. If FILE is a

 list of a single atom, then that atom is interpreted as a logical

 I/O unit number or name. If FILE is a previously created I/O

 destination atom, then the FILE portion of that atom will be used.

 This feature allows the user to associate multiple buffers with one

 file. If the FILE argument is omitted, then the file portion of

 the IOARG will be NIL; when the IOARG is specified in an I/O call,

 the system default file will be used.

 OPEN is an N-type function which takes its arguments unevaluated.

 The value returned from OPEN is NIL.

 (EOF IOARG)

 This function closes the file associated with IOARG and reassigns

 it to *MSOURCE*. An end-of-file on *MSOURCE* will cause a

 "CONTINUE?" prompt in conversational mode, and termination of

 execution in batch mode.

 (READ <IOARG <IOSW <FN>>>)

 READ causes the next S-expression in the current buffer to be read

 (beginning with the next atom or left parenthesis), and the

 corresponding LISP structure to be returned as the value of READ.

 If the current buffer is exhausted, a new line is read from the

 current file, and the operation continues.

 (READCH <IOARG <IOSW <FN>>>)

 READCH is similar to READ, except that each character in the buffer

 is treated as a separate S-expression, and is returned as a

 one-character atom. Commas, parentheses, periods, quotes, blanks,

 and other special characters are treated like any other characters,

 and simply formed into single-character atoms.

 54 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976

 READCH, like READ, automatically reads a new input line if it runs

 out of characters. The user may, however, supply an intercept

 function (FN) and use RETURN to abort the READCH.

 Warning: The user should beware of single-character READ macros

 which will be activated by READCH if the character appears, even

 incorporated in a character string. This can be suppressed by the

 IOSW parameter. Similarly, multiple-character READ macros cannot

 be activated by READCH.

 (READLINE <IOARG <IOSW <FN>>>)

 READLINE causes a new line to be read into the current buffer. The

 previous contents of the buffer are destroyed. No LISP structures

 are created.

 If an intercept form (FN) is supplied, it will always be called

 before the line is read.

 The value of READLINE is the buffer containing the line that was

 read, or NIL, if an end-of-file occurs.

 (PRINT S <IOARG <IOSW <FN>>>)

 S is the S-expression that is to be printed. PRINT will perform a

 TERPRI, print the expression into the current buffer, and will

 perform another TERPRI. The value returned from PRINT is S.

 (PRIN1 S <IOARG <IOSW <FN>>>)

 PRIN1 places the print-name of S in the current buffer, following

 any previous contents of the buffer. If the buffer overflows, its

 contents are printed on the current file, and the operation

 continues. The arguments of PRIN1 have the same meaning as those

 of PRINT.

 (TERPRI <IOARG <IOSW <FN>>>)

 TERPRI causes the contents (if any) of the current buffer to be

 printed in the current file. If the buffer is empty, TERPRI does

 nothing. The value of TERPRI is NIL.

 If an intercept function (FN) is supplied, it will be called

 whenever the buffer is printed.

 (TAB N <IOARG <FILL>>)

 TAB causes a tab operation to position N in the current buffer.

 (The first position in a buffer is 1; thus (TAB 1) will clear a

 buffer without printing it.) If the buffer has a prefix, TAB

 operates relative to the prefix. If N is nonpositive, or larger

 than the buffer size, an error is generated.

 LISP 55

 MTS 8: LISP and SLIP in MTS

 June 1976

 IOARG identifies the current buffer for the tab operation. If

 IOARG is not given, or is NIL, the system output buffer is used.

 The file portion of IOARG is ignored.

 FILL, if given, must be an atom or a buffer pointer (IOARG). The

 PNAME of FILL will be used as a filler for any positions skipped

 during a tab operation to the right.

 (SKIP N <IOARG <FILL>>)

 SKIP causes a skip operation to be performed N spaces to the right.

 If N is negative, the skip will be to the left. An attempt to SKIP

 outside the buffer will generate an error.

 IOARG identifies the current buffer for the skip operation. If

 IOARG is not given, or is NIL, then the system output buffer is

 used. The file portion of IOARG is ignored.

 FILL, if given, must be an atom or an buffer pointer (IOARG). The

 PNAME of FILL will be used as a filler for any positions skipped

 during a skip operation to the right.

 Note: TAB and SKIP affect the value of the buffer length for

 output only. These routines cannot be used for the purpose of

 skipping around in a buffer to READ various positions.

 ERROR RECOVERY AND DEBUGGING PROCEDURES _______________________________________

 Error Atoms, Error Forms, and Error Expressions ___

 There are a number of different errors that are recognized by the

 LISP system. When an error of type N occurs, the error message for that

 type becomes the "current" error message. The expression which generat-

 ed the error (e.g., the illegal argument) becomes the "current" error

 expression, and the error form associated with that type is evaluated.

 After the error form is evaluated, LISP is restarted at the top level.

 The error form for an error number is accessed through an atom,

 called the error atom. A call to the STATUS function will associate an

 error number with a given atom. After this, whenever that error type

 occurs, the VALUE of that atom will be used as the error form.

 At present, there are three predefined error atoms within the LISP

 system. The atom *ATTN* is the error atom for error number 1, which

 occurs whenever an attention interrupt is generated. The atom *PGNT* is

 the error atom for error number 0, which occurs whenever a nonnumeric

 program interrupt occurs. The atom *ERR* is the error atom for all

 other errors.

 56 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976 Page Revised January 1983

 ATTN, *PGNT*, and *ERR* are initially set to the form (DUMP 7).

 See the description of the dump program later in this subsection.

 Note: When certain errors occur from which the system cannot

 recover, the message "ABORT N" is printed and the MTS subroutine ERROR

 is called. The abort codes which may be printed have the following

 significance:

 1 - bad parameter on $RUN command (batch only)

 2 - registers demolished

 3 - stack expand failure

 4 - freespace expand failure

 5 - input line longer than 255 characters

 6 - end-of-file from *MSOURCE* (batch only)

 7 - BREAK called (batch only)

| 8 - program interrupt when a lock is set

| 9 - garbage collection disabled (see STATUS - code 49)

 System Error IOARGs ___________________

 It has been stated that there are initially two buffers maintained by

 the LISP system, the system input and output buffers. The two IOARGs

 LISPIN and LISPOUT initially point to these buffers (in their paired

 form with the system I/O files). There are also two system error

 buffers maintained by the LISP system; the two IOARGs ERRIN and ERROUT

 initially point to these buffers (in their paired form with the system

 error I/O files).

 The system default error input file is GUSER, and the default error

 output file is SERCOM.

 Whenever a BREAK loop is entered, the system error IOARGs are used

 instead of the normal IOARGs for the READ-EVAL-PRINT loop and for all

 user-generated I/O operations which do not specify their own IOARGs.

 (BREAK <S>) ___________

 Calling BREAK causes the system to enter a break loop. A break loop

 is a READ-EVAL-PRINT loop identical to the top-level loop of LISP,

 except that the ERRIN and ERROUT buffers and files are used for reading

 and printing, respectively. After exiting from the break loop, execu-

 tion continues normally.

 S is an optional argument which, if given, will be evaluated before

 the break loop is entered.

 LISP 57

 MTS 8: LISP and SLIP in MTS

 Page Revised January 1983 June 1976

 The way to exit from a break loop is to evaluate NIL at the break

 level (i.e., simply enter NIL). The value returned from BREAK is always

 NIL.

 Note: The file prefix characters for LISPIN and LISPOUT are * and >,

 respectively. The file prefix characters for ERRIN and ERROUT are ?

 and +, respectively. Thus, the user can easily tell whether or not he

 is in a break loop.

 A call to BREAK in batch mode causes execution to terminate.

 (RES <N>) _________

 RES is the LISP internal restart function, and may be called to

 continue the current evaluation after an attention interrupt, a timer

 interrupt, or a STEP error (see the description of the STEP function

 later in this subsection). These interrupts are processed by LISP as

 follows: a single attention interrupt will cause a flag to be set, and

 when LISP reaches a state from which it can be restarted, the interrupt

 will be processed, and the error form associated with a type 1 error

 will be evaluated.

 If a second attention interrupt is issued before the first one is

 processed, it will be recognized immediately and the error form will be

 EVALed. However, when this occurs, no restart is possible.

 Assuming that only one interrupt has been issued, a call to RES with

 no arguments will cause execution to be resumed at the point where it

 was interrupted. If the argument N is given, it must be a positive

 integer, and the Nth previous outstanding interrupt will be restarted.

 Timer interrupts are always deferred until the system reaches a state

 from which it can be restarted. However, upon receiving a timer

 interrupt, the system immediately prints a comment on *MSINK* acknow-

 ledging the timer interrupt. At that point, the user may interrupt if

 he so desires. If an attention interrupt is issued while a timer

 interrupt is still pending, it will be processed immediately (and no

 restart will be possible).

 (DUMP <N <SW>>) _______________

 DUMP is the LISP system dumping and traceback program. DUMP can be

 called in two modes. The first mode occurs when no second argument is

 given. In this mode, the value of N indicates what error recovery

 actions should be performed. The code values described below should be

 added together to specify the actions desired. The numbers in parenthe-

 ses after the action description specify the relative order of perfor-

 mance of the various actions. The default value of N is 7.

 58 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976 Page Revised January 1983

 Code Action ____ ______

 1 Print current error message and expression which generated

 the error (1).

 2 Print a traceback of EVAL forms. The number of levels to be

 printed is determined by the system traceback number (5).

 4 Call BREAK (6).

 8 Print PSW and contents of general registers (2).

 16 Dump 32 bytes of memory starting 16 bytes before PSW

 location (3).

 32 Dump LISP stack data (4).

 (DUMP), the default form for all errors, causes the error message and

 error-generating form to be printed, a traceback to be given, and a

 break loop to be entered.

 There are three internal parameters controlling the traceback pro-

 duced by DUMP. These may be altered by calling STATUS. The first

 parameter is the terse printout switch. Ordinarily, only the first

 output line of each expression is printed by dump, in order to eliminate

 long tracebacks. By calling STATUS the user may reset this parameter

 and receive full traceback printout. The second parameter controls the

 printing of arguments. Ordinarily the CAR function specification and

 CDR argument list of each form in the traceback will be printed. The

 user may, by calling STATUS, suppress the printing of the argument list

 and receive a traceback of function specifications only. The third

 parameter controls how many forms will be traced. This defaults to 3,

 but may be set to any number.

 (DUMP 0) is a special code which causes a traceback of all

 outstanding EVAL forms to be printed.

 Note: DUMP codes (other than 1 and 4) begin the dump at the location

 of the most recent error block on the stack. These dump codes should be

 used only within an error block.

 The second mode of DUMP operation occurs when a SW argument is given.

 If SW is an integer, then that number of bytes, starting at address N,

 will be dumped in hexadecimal form (SW is rounded to a multiple of 16).

 If SW is not a number, then N is assumed to be the address of a LISP

 structure, and that structure is printed.

 DUMP always returns NIL.

 Note: The user can very easily generate a type 0 error (program

 interrupt) by asking DUMP to print a LISP structure, and giving it an

 address which is not a LISP structure. This will not do any harm,

 however.

 LISP 59

 MTS 8: LISP and SLIP in MTS

 Page Revised January 1983 June 1976

 (UNEVAL STACKID <S>) ____________________

 UNEVAL allows the user to look back on the system stack and trace the

 path that was followed by the system to get to its current position. It

 may be used from an error form or break loop to restart from any given

 point.

 Each time EVAL is called internally, a block of information called an

 EVAL block is stored on the stack. The EVAL block contains the form

 which is to be EVALed, plus all relevant information needed to restart

 at that level.

 When the first argument to UNEVAL is a negative integer, it refers to

 the Nth previous EVAL block on the stack. When the first argument to

 UNEVAL is a positive integer, it refers to the Nth EVAL block on the

 stack, beginning with the top-level form.

 For example, if the program is in a break loop, and the user enters

| (UNEVAL -1), the last form sent to EVAL will be returned. This will be

 (BREAK) if the program entered the break loop by calling BREAK directly,

 or (DUMP N) if the break loop was entered as part of a dump operation.

 (UNEVAL ignores its own EVAL block.)

 If the first argument to UNEVAL is an expression S which is not an

 integer, then the argument refers to the most recent call to EVAL for

 which the CAR of the form to be evaluated was equal to S. For example,

 if (UNEVAL ’ASSOC) is evaluated, UNEVAL will return the most recent

 outstanding EVAL-form which has ASSOC as its CAR.

 If the first argument to UNEVAL is a number larger than the current

 EVAL depth, or if it is a structure which is not equal to any function

 specification on the stack, an error is generated.

 Once UNEVAL identifies the correct EVAL block, the second argument

 determines the action to be taken. If no second argument is given,

 UNEVAL returns the form that was sent to EVAL at that level. Thus, a

 call to UNEVAL with no second argument does not change the current level ___

 of execution. If the second argument to UNEVAL is T, then execution is

 restarted at that level. Thus, if (UNEVAL ’ASSOC T) is evaluated, the

 system will exit from its current level, unbind all bindings back to the

 point where ASSOC was called, and restart the call to ASSOC.

 If the second argument to UNEVAL is anything other than T, then

 execution is restarted at the indicated level, but the form given as the

 second argument is substituted for the form which was originally sent to

 EVAL. Thus, if the user evaluates (UNEVAL -4 ’(APPEND X Y)), the system

 will unbind to the fourth previous EVAL block, and will then proceed to

 evaluate (APPEND X Y) in place of the form which was originally given.

 Note: The user should be aware that unbinding to a previous LISP

 level restores only the values of variables bound in LAMBDA or PROG

 60 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976

 expressions, and will not restore altered data structures, property-

 lists, or VALUEs of free variables changed via SET or SETQ.

 (GETFN FN) __________

 GETFN allows the user to inspect the function definition associated

 with a form. GETFN will consider its argument as a function specifica-

 tion, and will simulate the action of EVAL in determining how to apply

 it. If FN is a LAMBDA or LABEL expression, then the value returned from

 GETFN is FN itself. If FN is an atom which is currently defined as a

 SUBR, FSUBR, or NSUBR, then the PVAL associated with the SUBR, FSUBR, or

 NSUBR indicator is returned as the value of GETFN. (This PVAL will be

 generally be a SUBR or ARRAY type atom.)

 If FN is an atom which is currently defined as an EXPR and the PVAL

 associated with the EXPR property is a LAMBDA-expression, then the

 LAMBDA-expression is the value returned from GETFN.

 If FN is an atom which is currently defined as an EXPR but the PVAL

 associated with the EXPR property is not a LAMBDA-expression, then the

 PVAL will be substituted for FN and the search will continue.

 If FN is an atom without a SUBR or EXPR type function definition, or

 if FN is any other S-expression, then FN is EVALed, its value is

 substituted for itself, and the search continues.

 GETFN generates an error if it encounters an atom with no function

 definition whose value is itself or *UNDEF*.

 For example,

 (GETFN ’(LAMBDA (X) X) (LAMBDA (X) X)

 (GETFN ’CAR) = * .

 (DEFUN EX (X Y) (CONS X Y)) = EX

 (SETQ A EX) = EX

 (GETFN ’A) = (LAMBDA (X Y) (CONS X Y))

 The SUBR atom will be printed as an asterisk, but it may be dumped,

 compared to other addresses, or transferred to the PLISTs of other

 atoms. This example assumes A has no function definition on its PLIST.

 (DISPLAY STACKID <B,F,L> <A>) _____________________________

 The DISPLAY function allows the user to locate a position on the

 stack with reference to an EVAL block, and then display one of the

 following:

 LISP 61

 MTS 8: LISP and SLIP in MTS

 June 1976

 (1) The first bound value of a particular atom A that occurred after

 that EVAL block was created.

 (2) If the EVAL block is a COND, PROG, SELECT, AND, OR, or a

 LAMBDA-expression, or any function specification which eventual-

 ly produced a LAMBDA-expression to be applied, then DISPLAY will

 return the next COND or SELECT expression to be processed, the

 next PROG expression to be EVALed, or the next subform of the

 LAMBDA to be EVALed.

 (3) The level of the EVAL block (starting with depth 1 for the

 top-level form).

 The first argument to DISPLAY has the same significance as the first

 argument of UNEVAL. If it is an integer, it refers to the Nth or

 Nth-previous EVAL block. If it is not an integer, it refers to the most

 recent EVAL block which has STACKID as its CAR. As in UNEVAL, a

 negative integer references the Nth previous form. If the EVAL block

 referenced does not exist, an error will be generated.

 The second argument to DISPLAY is: B for binding (option 1 above), F

 for form (option 2 above), and L for level (option 3 above).

 The third argument to DISPLAY is given whenever the second argument

 is B. It is the atom whose binding is to be found. If A was never

 bound after the EVAL block referenced was created, then the current

 VALUE of A is returned. If a binding of A is found, then the VALUE

 stored on the stack will be returned. (This is the old VALUE of A, that

 is, the VALUE which was saved away to be restored on exit from a PROG or

 LAMBDA.)

 Note: In DISPLAY mode F, it is possible to find a COND, SELECT,

 PROG, AND, OR, or a LAMBDA block on the stack which is not yet being

 executed. This will occur if the user issues an attention interrupt

 during the binding of the PROG-variables, or during evaluation of the

 arguments of a LAMBDA function. In this case, there is no "next form"

 defined for that block, and an error will be generated.

 DISPLAY is an N-type function, and its arguments are not EVALed.

 (MODIFY STACKID <B,F> <A> S) ____________________________

 The MODIFY function allows the user to modify one of the bindings or

 expressions accessible from DISPLAY.

 The argument of MODIFY have the same significance as those of

 DISPLAY, except that S will replace the saved value of A (in B mode) or

 the next expression to be processed (in F mode).

 62 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976 Page Revised February 1979

 MODIFY, like DISPLAY, is an N-type function. However, S will be

 EVALed and its VALUE will be used as the replacement binding or

 expression.

 The VALUE returned from MODIFY is the value of S.

 (ERR S) _______

 This function generates a type 15 error (see the later subsection

 "Error Codes"), with S treated as the expression which generated the

 error (error expression). In addition, the atom ERR is set to S.

 (STEP N1 <N2>) ______________

 The STEP function causes subsequent entries to EVAL, exits from EVAL,

 or both, to be counted. When this count reaches N1, an error is

 generated. The error message "STEP DONE - IN" or "STEP DONE - OUT" will

 be printed. The error form will be the argument to EVAL for "IN", and

 the value being returned from EVAL for "OUT".

 Under standard error processing, a traceback will be printed and a

 break loop entered. The user may, however, substitute other actions by

 defining his own error functions for the STEP errors.

 If N2 is 1, STEP will count only the number of times EVAL is entered;

 is N2 is 2, it will count only the number of times EVAL is exited. If

 N2 is 3, STEP will count both entries to and exits from EVAL. N2

 defaults to 1. Any error which occurs under step control will terminate

 the counting process.

 (STEP NIL) causes step control to terminate.

 (TRACE A1...AN) and (UNTRACE A1...AN) _____________________________________

 The TRACE function allows the user to put an internal trace indicator

 on an atom. Whenever that atom is called as a function, the atom and

 its arguments will be printed on entry, and the VALUE returned will be

 printed on exit. UNTRACE removes the internal trace indicator.

 System tracing can be disabled globally by calling UNTRACE with no

 arguments. Any call to TRACE will cause system tracing to be in effect

 again, e.g., (TRACE).

 LISP 63

 MTS 8: LISP and SLIP in MTS

 Page Revised February 1979 June 1976

 By putting an internal trace indicator on the atom T, i.e., (TRACE

 T), the user can cause all trace output to be in terse mode; that is,

 for each entry to or exit from a traced routine, only one line of trace

 output will be printed. Removing the trace indicator from T, i.e.,

 (UNTRACE T), causes tracing to revert to normal mode.

 TRACE and UNTRACE are both N-type functions, and their argument-

 designators are not EVALed.

| The following functions may not be traced or BUGged: LAMBDA,

 NLAMBDA, FLAMBDA, LABEL, and all arrays.

 Error Codes ___________

 Following is a list of the errors recognized by the system. Each

 type of error sets up an error message and an error expression, which

 may be obtained (or altered) by calling STATUS, or which may be printed

 by calling DUMP. Since the default error form for all errors is (DUMP

 7), which includes a printout of the current error message and error

 expression, these will normally be printed every time an error occurs.

 Error types 0, 1, 3, and 4 use NIL for their error expression. Other

 errors use as an error expression the argument which caused the error,

 unless otherwise noted.

 Code Meaning ____ _______

 0 Program interrupt. Likely to be caused by a CDR operation

 on a numeric atom. For this error only, an attention

 interrupt which occurs during the printing of the error

 message will cause an immediate return to MTS.

 1 Attention interrupt.

 2 Timer interrupt.

 3 A function was called with too few arguments.

 4 A function was called with too many arguments.

 5 Numeric operation failure--numeric overflow, division by 0,

 etc.

 6 An array specification contained too few or too many

 subscripts.

 7 An atom used as a function specification had a SUBR, NSUBR,

 or FSUBR property on its PLIST, but the PVAL was not a LISP

 subroutine.

 64 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976 Page Revised January 1983

 8 A list was required as an argument, but something else was

 given.

 9 An atom was required as an argument, but something else was

 given.

 10 A numeric atom was required as an argument, but something

 else was given.

 11 An integer atom was required as an argument, but something

 else was given.

 12 A buffer (IOARG) was required as an argument, but something

 else was given.

 13 A file (IOARG) was required as an argument, but something

 else was given.

 14 An array name was required as an argument, but something

 else was given.

 15 A call to the ERR function has occurred.

 16 An atom is undefined or a function definition is missing.

 17 Infinite EVAL loop--the function specification in process by

 EVAL is an atom which has no system function definition on

 its property-list, and which has itself as its VALUE.

 18 Syntax error detected by READ. The error expression is the

 contents of the READ buffer.

 19 Attempt to OPEN a buffer with a size which is nonpositive or

 greater than 255 characters.

 20 Invalid request code number in a call to STATUS.

 21 Invalid error number given in a STATUS code 1 call.

 22 Attempt to set a "get-only" STATUS code.

 23 Attempt to reset a buffer to a size less than its current

 contents.

 24 The number of steps specified in a STEP call have been

 completed.

 25 A dummy argument of a PROG or LAMBDA, or the function name

 of a LABEL, was not an atom.

 26 An atomic argument to GO was not the name of any current

 GO-label.

 LISP 65

 MTS 8: LISP and SLIP in MTS

 Page Revised January 1983 June 1976

 27 ARG was called where there is no outstanding no-spread

 function, or ARG was called with two arguments, where the

 second argument is not the name of any outstanding no-spread

 dummy argument.

 28 ARG was called with a number which is nonpositive or greater

 than the number of arguments passed to the no-spread

 function.

 29 An attempt to define an external SUBR with an illegal type

 specification.

 30 LISP could not find or could not load an external routine

 which was defined. The error expression is the file name or

 entry point name which was given.

 31 A subscript in an array specification was nonpositive or

 exceeded the limits of that subscript position.

 32 GETWORLD was called with an argument which is not a valid

 ticket.

 33 A call to RES was attempted when there was no outstanding

 attention, timer, or STEP error, or the attention error at

 that level was an immediate (double) attention.

| 34 A call to CHECKPOINT or RESTORE which did not specify a line

 file, or a call to RESTORE which specified a file which was

 not produced by the current CHECKPOINT.

 35 The number of steps specified in a STEP call have been

 completed.

 36 A call to RETURN, UNEVAL, DISPLAY, or MODIFY tried to

 reference an EVAL block which did not exist.

 37 A call to DISPLAY or MODIFY, which specified F mode,

 identified an EVAL block which was not an executing PROG,

 COND, SELECT, or function with a LAMBDA definition.

 38 Unbalanced angle brackets were encountered.

 SPECIAL FEATURES ________________

 The STATUS Function ___________________

 The STATUS function is used for two purposes--to get and to set the

 values of system switches and parameters. There are two types of status

 calls. The first interrogates the system and returns the value of a

 66 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976

 system parameter, and the second supplies a value which is to replace

 the system parameter.

 The various system parameters are identified by status codes. Type I

 status codes are used to get and set parameters associated with buffers,

 files, arrays, and atoms. To get one of these parameter values, the

 argument to STATUS will be of the form:

 (STATUS-CODE NAME)

 where NAME is the appropriate I/O destination atom, array, or atom.

 To set one of these parameters, the argument to STATUS will be of the

 form:

 (STATUS-CODE NAME VALUE)

 where VALUE is the new value for the parameter.

 Type II status codes are used for general system switches and

 parameters. To get and set these parameters, the argument to STATUS

 will be of the form:

 STATUS-CODE Gets parameter values.

 (STATUS-CODE VALUE) Sets parameter values.

 Whether getting or setting a system parameter value, the previous

 value will be returned from STATUS. If more than one argument to STATUS

 is given, a list of the previous values of all the parameters used in

 the call will be returned.

 Note: In a call to STATUS, the status code parameter may be any

 atom, and its value (which must be a legal status code) will be used as

 the actual status code. This allows mnemonic definitions to be given to

 status codes, e.g.,

 (STATUS (SETPFX ABUF NIL))

 where the VALUE of SETPFX is 10.

 In addition, where a status code is set to some numeric value, the

 VALUE it is set to may also be any atom, and the VALUE of the atom will

 be used. For example,

 (STATUS (SETGC GCBIG))

 where the VALUE of SETGC is 45, and the VALUE of GCBIG is a numeric

 atom.

 LISP 67

 MTS 8: LISP and SLIP in MTS

 June 1976

 Type I Status Codes--Buffer, File, Array, and Atom Characteristics __

 Code Meaning ____ _______

 1 This status code is used to get or set the error atom

 associated with a particular error number. (See the subsec-

 tion "Error Recovery and Debugging Procedures" above for an

 explanation of the error atom.) The get form is (STATUS (1

 N)), which will return the error atom associated with error

 number n. The set form is (STATUS (1 N A)), which will set

 A to be the new error atom associated with error number N.

 From that time on, a type N error will cause the value of A

 to be used as the error form.

 2 This status code is used to get or set the READMACRO switch

 for an atom. Its argument must be an atom. If the

 READMACRO switch is NIL, then the atom will not be recog-

 nized as a READMACRO. If the switch is non-NIL, then

 whenever the atom appears as part of an S-expression which

 is read in, it will be treated as a READMACRO as described

 in the subsection "READMACRO and PRINTMACRO Functions." The

 initial value of this parameter for all atoms is NIL.

 3 (Reserved.)

 4 This status code is used to get or set the PRINTMACRO switch

 for an atom. It has the same significance as the READMACRO

 switches, except that if this switch is enabled, whenever

 the atom is printed into a buffer, the atom will be treated

 as a PRINTMACRO as described in the subsection "READMACRO

 and PRINTMACRO Functions."

 5 This status code is used to get or set the disposition of

 characters in the READ scan table. It allows the user to

 alter LISP syntax. The argument must be a literal atom.

 The parameter value given will replace the scan table value

 for the first character of that atom. The legal scan table

 values, and their significance to READ, are as follows:

 0 Insignificant characters (e.g., blanks).

 4 Left parenthesis "(".

 8 Right parenthesis ")".

 12 End-of-line (or semicolon).

 16 Period. Signifies dotted-pair or number.

 20 Plus sign "+". Signifies beginning of a number.

 24 Minus sign "-". Signifies beginning of a number.

 28 Single character atom (for READMACRO characters.)

 32 Quote character. Special processing.

 36 Number starter (0-9).

 40 Literal starter (A-Z).

 44 Quote character. Special processing.

 48 Left angle bracket "<".

 52 Right angle bracket ">".

 68 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976

 6 This status code is used to get or set the disposition of

 characters in the READ literal break table. The argument

 given must be a literal atom. The parameter value given

 will replace the break table value for the first character

 of that atom. The literal break table values are:

 0 May be part of a literal atom’s PNAME.

 1 Break character--end of literal PNAME.

 7 This status code is used to get or set the disposition of

 characters in the READ number break table. The argument

 given must be a literal atom. The parameter value given

 will replace the break table value for the first character

 of that atom. The number break table values are as follows:

 0 Numeral (0-9).

 1 Normal end of a number (blank, comma, end-of-line,

 etc.).

 2 Floating-point period.

 3 Hexadecimal digit (A-F).

 4 Neither a break character nor part of a number. Back

 up and process this atom as a literal atom.

 Note: Codes 0, 2, and 3 must be used only with the

 characters listed after them. Attempts to do numeric

 conversion after improper use of these codes will generate

 numeric exceptions.

 8 This status code is used to get the number of dimensions of

 an array. Its argument must be an array name.

 9 This status code is used to get or set the size of a buffer

 (i.e., the right margin). The buffer size includes the

 buffer prefix (if any), and may not exceed 255 characters.

 10 This status code is used to get or set the length of the

 buffer prefix for a buffer. Evaluating the function (STATUS

 (10 IODA T)) freezes the current contents of the buffer

 associated with IODA as a prefix, and returns the length of

 the previous prefix. Evaluating the function (STATUS (10

 IODA NIL)) releases the prefix. At that point, the prefix

 will be treated as the contents of the buffer, and will

 appear at the beginning of the next output line, unless a

 (TAB 1) or (TERPRI) is performed to get rid of it.

 11 This status code is used to get or set the current READ

 pointer for a buffer. The argument given must be an I/O

 destination atom. The value of this parameter is not

 computed relative to any prefix which may exist. It is not

 affected by doing print operations into the buffer, but it

 is reset to zero whenever a TERPRI or a physical write

 operation is performed. A TAB or SKIP to a smaller number

 will reset the pointer to the smaller number.

 LISP 69

 MTS 8: LISP and SLIP in MTS

 June 1976

 12 This status code is used to get or set the EOF function for

 a LISP file. The argument given must be an I/O destination

 atom. If an end-of-file is encountered on a read operation

 from the file, the EOF function will be invoked. For a

 description of the form of the EOF function and the

 significance of the value returned from it, see the subsec-

 tion "End-of-File Processing."

 The initial value of this parameter for all files is the

 system function EOF.

 13 This status code is used to get or set the echo characteris-

 tic for a LISP file. The argument given must be an I/O

 destination atom. If the parameter value is non-NIL, all

 I/O to or from the file will be echoed on *MSINK*. If the

 value is NIL, echoing will not occur. The global echo

 switch overrides the individual file switches if the global

 switch is NIL. Otherwise, the individual file switches

 control echoing.

 The initial value of this parameter for all files is NIL.

 14 This status code is used to get or set the file prefix

 character for a LISP file. The argument given must be an

 I/O destination atom. The parameter must be a literal atom,

 whose first character will be used as the file prefix

 character for the file. The value returned will be an

 integer between 0 and 255, which represents the byte value

 of the prefix character.

 15 This status code is used to get or set the line number for a

 LISP file. The argument given must be an I/O destination

 atom. The parameter value must be an integer atom which

 represents the line number parameter to be used in the next

 I/O operation involving the file.

 16 This status code is used to get or set the modifier word for

 a LISP file. The argument given must be an I/O destination

 atom. The parameter value must be an integer atom which

 represents the modifier word to be used in all subsequent

 I/O operations involving the file (that is, until this

 parameter is changed). See the section, "Files and

 Devices," in MTS Volume 1, for a description of the

 significance of modifier values.

 The initial value of this parameter for all files is 0.

 17 This status code is used to get the maximum output line

 length for the MTS file or device attached to a LISP file.

 The argument given must be an I/O destination atom.

 18-19 (Reserved).

 70 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976

 Type II STATUS Codes--System Switches and Parameters __

 Code Meaning ____ _______

 20 Default standard input IOARG. Initially set to the dotted-

 pair of the system input buffer (size 255 characters) and

 SCARDS.

 21 Default standard output IOARG. Initially set to the dotted-

 pair of the system output buffer (size 70 characters) and

 SPRINT.

 22 Default error input IOARG. Used in break loops in place of

 standard input IOARG. Initially set to the dotted-pair of

 the system error input buffer (size 255 characters) and

 GUSER.

 23 System error output IOARG. Used in break loops in place of

 standard output IOARG. Initially set to the dotted-pair of

 the system error output buffer (size 70 characters) and

 SERCOM.

 Note: These initial IOARGs may be obtained by calling

 STATUS. They are also the initial values of the atoms

 LISPIN, LISPOUT, ERRIN, and ERROUT (for the user’s

 convenience).

 24 Input number base (10, 16, or 0). 0 signifies no numerics.

 Initially 10.

 25 Output number base (10 or 16). Initially 10.

 26 Number of levels of forms to print on EVAL form traceback.

 (0 = none, -1 = all). Defaults to 3.

 27 Traceback argument switch. Zero specifies only function

 specifications (i.e., CAR of EVAL form) are to be printed on

 EVAL form traceback. Any number greater than zero specifies

 both CAR and CDR of form (i.e., both function specification

 and arguments) are to be printed. The switch is initially

 set to 1.

 28 Most recent expression which generated an error (get only).

 29 Error number of most recent error (get only).

 30 Terse traceback switch. Zero specifies traceback output in

 terse mode should be printed (only one line is printed for

 each expression.) Any number greater than zero specifies

 that a full traceback should be printed. Initially 0.

 31 Global switch for echoing input lines on *MSINK*. T

 specifies echo, and NIL specifies no echo. Initially NIL.

 LISP 71

 MTS 8: LISP and SLIP in MTS

 June 1976

 32 System message switch.

 0 No messages.

 1 Print garbage collection messages (see the later

 subsection "The Garbage Collector").

 2 Print "CHECKPOINT DONE" messages (see the later

 subsection "(CHECKPOINT A <S> and RESTORE").

 4 Print "FREE SPACE EXPAND" messages (see the later

 subsection "The Parameter List").

 Initially 7.

 33 Batch/terminal switch. 4 specifies batch, 0 specifies

 terminal.

 34 Interrupt trap switch. Initially 0 (all traps on).

 1 Disable program interrupt trap.

 2 Disable attention interrupt trap.

 4 Alternate error atom control (used for writing debug-

 ging packages).

 35 Step count. The value of this parameter is the number of

 steps remaining before a "STEP DONE" error will occur. It

 is meaningful only when running under STEP control.

 36 Value of GENSYM counter.

 37 Initialization call for TIME (get form only).

 38 CPU time used, relative to previous initialization (milli-

 seconds, get only).

 39 Elapsed time, relative to previous initialization (milli-

 seconds, get only).

 40 Supervisor state time, relative to initialization (timer

 units, get only). A timer unit is about 13.3 microseconds.

 41 Problem-state time, relative to initialization (timer units,

 get only).

 42 Time of day. Returns literal atom AA:BB:CC where AA = hour,

 BB = minutes, CC = seconds (get only).

 Note: The atom returned is not on the OBJECT LIST.

 43 CHECKPOINT switch. 0 specifies exit after CHECKPOINT. 1

 specifies automatic restore after CHECKPOINT. Initially 1.

 44 This status code is used to get or set the current value of

 the FCS parameter.

 72 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976 Page Revised January 1983

 45 This status code is used to get or set the current value of

 the GC# parameter.

 46 This status code is used to get the current number of pages

 of freespace in use by the system.

 47 This status code is used to get or set the value of the

 internal integer array. The value of the second parameter

 must be an array atom, where the elements or the array form

 an increasing sequence of integer atoms. When this status

 number is set, the first and last array elements are used to

 reset the limits of fast number access.

 48 This status code is used to control the =FL linking option

 of the compiler (see the later subsection "The LISP Compil-

| er: (COMPILE A1...AN)"). Initially T.

 49 This status code enables or disables the garbage collector.

 Initially NIL (GC allowed).

 The OBJECT LIST _______________

 LISP maintains a system list of atoms called the OBJECT LIST. The

 purpose of the OBJECT LIST is to allow references to atoms by name on

 input. Thus, whenever a literal atom is read, READ compares the atom

 with the atoms on the OBJECT LIST. If they match, then the pointer

 which was created references the atom already on the OBJECT LIST, and no

 new atom is created. If there is no match, a new atom is created, and

 placed on the OBJECT LIST.

 There may be atoms in the system which are not on the OBJECT LIST.

 For example, atoms created by GENSYM are guaranteed to be unique since

 they are not on the OBJECT LIST. A reference by PNAME to an atom which

 is not on the OBJECT LIST will cause a new atom to be created with the

 same PNAME, and the original atom will not be referenced.

 Atoms on the OBJECT LIST are considered active structures by the

 garbage collector, and are preserved.

 (OBLIST)

 The function (OBLIST) with no arguments returns a (long) list of

 all the atoms which are on the OBJECT LIST.

 (REMOB A1...AN)

 The function REMOB removes literal atoms from the OBJECT LIST.

 Once an atom is REMOBed, it may no longer be referenced by PNAME,

 and will be destroyed during the next garbage collection, if it is

 not referenced by any active LISP structures. REMOB is an N-type

 function and its arguments are not EVALed.

 LISP 73

 MTS 8: LISP and SLIP in MTS

 Page Revised January 1983 June 1976

 (PUTOB A1...AN)

 The function PUTOB places literal atoms on the OBJECT LIST. If

 PUTOB finds an atom on the OBJECT LIST with the same PNAME as one

 of its arguments, an error will be generated.

 The Parameter List __________________

 LISP, like many other MTS programs, accepts various control parame-

 ters via the PAR field of the $RUN command. The keyword parameters may

 appear in any order, and there may be any number of keywords given. The

 keyword parameters recognized by LISP, and their significance, are

 described below.

 FCS=N N specifies the number of pages of initial free-

 space. If space is needed beyond this amount, a

 garbage collection will be performed. The default

 value is 25 pages. Increasing the value of this

 parameter to the maximum space needed will eliminate

 the necessity for garbage collection.

 GC#=N After a garbage collection, the system will get more

 space unless N LISP cells are available. Setting N

 to a large number will tend to increase the amount

 of memory used by the system and decrease the

 frequency of garbage collections. The default value

 is 4000.

 ERR=N N indicates the initial status of interrupt traps

 (see status code 34). The default value is 0 (all

 traps on).

 OBJ=N N indicates the number of hash buckets for the

 literal atom OBJECT LIST. The greater the number of

 buckets, the faster resolution of atomic references

 should be. An odd number is recommended. The

 default value is 69.

 INT=N1[,N2] If the form INT=N1 is specified, all integer atoms

 from 0 to N1 will be stored in an internal array

 where they can be accessed quickly. Alternatively,

 if the form INT=N1,N2 is specified, all integer

 atoms from N1 to N2 will be stored in an internal

 array where they can be accessed quickly.

 The user can access the INT array by calling STATUS.

 The INT array can also be changed by creating a new

 array containing any set of consecutive integer

 atoms, and calling STATUS with that array as an

 argument.

 74 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976 Page Revised February 1979

 The TIMER Function: (TIMER ID SW) __________________________________

 The TIMER function allows the user to set up his own interrupts after

 a specified amount of either CPU or real time has elapsed. The ID

 argument allows different timer interrupts to be distinguished. ID may

 be any LISP structure.

 The significance of the SW argument is as follows:

 SW ID Meaning __ __ _______

 0 < N < 1001 Any non-NIL structure Set up an interrupt structure

 identified by ID, to generate a

 timer interrupt error in N sec-

 onds of real time. When the

 TIMER error occurs, the error

 form which will be printed is ID.

 The value returned from TIMER is

 ID.

 1000 < N Any non-NIL structure Set up an interrupt structure

 identified by ID, to generate a

 timer interrupt error in N micro-

 seconds of CPU time. When the

 TIMER error occurs, the error

 form which will be printed is ID.

 The value returned from TIMER is

 ID.

 T Any non-NIL structure If there is an outstanding struc-

 ture TIMER request with an ID

 which is EQ to ID, then TIMER

 returns the clock time remaining

 in that request. Otherwise TIMER

 returns NIL.

 NIL NIL Cancel all outstanding TIMER

 requests.

 The value of TIMER is NIL.

 NIL Any non-NIL structure Cancels the pending structure

 interrupt request, if any, asso-

 ciated with ID.

 The value of TIMER is the remain-

 ing clock time in that request.

 LISP 75

 MTS 8: LISP and SLIP in MTS

 Page Revised February 1979 June 1976

 Examples:

 (TIMER ’X 1.E6) = X

 A timer interrupt is set up with the ID X for one second of CPU time.

 (TIMER T 20) = T

 A timer interrupt is set up with the ID T. The interrupt will occur

 after 20 seconds of elapsed time.

 (TIMER T NIL) = XX

 The interrupt is canceled, and the remaining time is returned.

 DEFUN TCOUNT (X Y) (TIMER T Y) (EVAL X)

 (SUB Y (TIMER T NIL)))

 Here a function TCOUNT is defined. TCOUNT takes a form X to be

 evaluated, and a number Y which is the maximum time allowed to it.

 TCOUNT will either generate a TIMER error, or return the time it took to

 EVAL the form (plus a small amount of overhead).

 The Garbage Collector _____________________

 This section only briefly describes the garbage collection routine in

 the LISP system. This routine is activated when a job runs out of space

 needed to create new LISP structures. The garbage collector reuses

 space which is occupied by unreferenced structures, allocates more space

 if necessary, and notifies the user if the maximum allowable space is

 exceeded.

 The user may optionally receive a message at the end of each garbage

 collection (see the STATUS function) indicating that the garbage

 collection has occurred.

 Two attention interrupts issued during garbage collection will cause

 an immediate return to MTS. A restart from MTS will return to the

 garbage collector and continue execution.

 (CHECKPOINT A <S>) and (RESTORE A) __________________________________

 CHECKPOINT and RESTORE allow the user to save a "snapshot" of his

 current system, and restore the same system at a later time. A

 checkpointed system takes up less space on disk, and requires considera-

 bly less time to load than a LISP system stored in source (S-expression)

| form. In addition, checkpointing often is much less expensive than

| garbage-collecting a large program if the collection can be anticipated.

 76 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976 Page Revised February 1979

| (CHECKPOINT A) saves the current system in the MTS file A. Both

| sequential and line files are supported; however, line files are more

| efficient for storing many checkpoints.

 (RESTORE A) restores the LISP system previously saved by CHECKPOINT

 in MTS file A.

 (CHECKPOINT A S) checkpoints only the LISP structure S. On a restore

 of the file A, the system will be augmented by structure S.

 Note: The arguments to CHECKPOINT and RESTORE are not IOARGs. They

 are actual MTS file names. The user should not attempt to open a file

 for the purpose of CHECKPOINT and RESTORE.

 A call to CHECKPOINT may occur at any level of LISP. However, a

 restore of the entire system always returns to the top level. ______ ______

 When CHECKPOINT terminates, a message is printed on *MSINK* which

 informs the user of the number of pages of memory used by his program.

 In addition, (CHECKPOINT A), which destroys freespace, immediately

 initiates a restore of the system which it just checkpointed. However,

 if the appropriate status code is set, CHECKPOINT will not initiate a

| restore, but will terminate execution. Upon termination of a RESTORE, a

| message is printed on *MSINK* indicating what was restored and when it

| was last checkpointed.

 CHECKPOINT and RESTORE are N-type functions which do not have their

 arguments evaluated.

 Notes:

 (1) On a restore of a specific structure S, it may be the case that

 an atom A occurs in the structure to be restored, and there is

 already an atom A on the system OBJECT LIST. In general, the

 VALUE and PLIST of the existing atom A will be modified to the

 VALUE and PLIST of A at the time of the checkpoint, and this

 atom will be referenced by the structure being restored. Thus,

 structures which referred to A before the restore was performed

 will find that the same atom has been given a new VALUE and

 PLIST by RESTORE. However, the user may reverse this priority

 by setting the PLIST of an atom to *UNDEF* before he performs

 the checkpoint. In that case, when the restore takes place, if

 there is no atom A on the OBJECT LIST, then A will be created,

 and both its VALUE and PLIST will be *UNDEF*. If there is an

 atom A, however, the checkpointed structure will reference it,

 but its VALUE and PLIST will not be altered.

 (2) After a total system checkpoint file is restored, the system

 will begin reading from the current input buffer (usually

 LISPIN). If the user wants some initialization performed after

 a restore, he can checkpoint the initialization form into his

 file by putting it on the same input line, e.g., (CHECKPOINT

 MYFILE) (REINIT).

 LISP 77

 MTS 8: LISP and SLIP in MTS

 Page Revised February 1979 June 1976

 (3) A call to CHECKPOINT with a specific structure S will not do an

 automatic restore operation after the checkpoint is completed,

 but rather will always terminate execution. This is necessary

 because there may be references to the checkpointed structure

 which no longer exists.

 (4) Two attention interrupts occurring during a checkpoint or

 restore will cause an immediate return to MTS. A restart from

 MTS will return to CHECKPOINT or RESTORE and continue execution.

 (5) The user of CHECKPOINT and RESTORE should be aware that if the

 LISP I/O units have been modified before a checkpoint was

 performed, then the same modifications will be in effect

 immediately after a restore is performed.

 Automatic Restoration of LISP Functions _______________________________________

 Since the VALUE of an atom which has no function indicator on its

 PLIST will be EVALed when the atom is used as a function specification,

 setting the VALUE of an atom to a RESTORE form can have the effect of

 making that atom a "load-on-call" function.

 For example, if the atom FN is set to the form (RESTORE FN), and FN

 is a proper checkpoint file (but not a total system checkpoint file),

 then the structures in FN will be automatically restored the first time

 FN is called. The newly restored function property of the atom FN will

 be found and used, making the restore process transparent to the user.

 The following functions have values initially set to RESTORE forms

 which will cause large packages of functions and structures to be loaded

 from the public file *LISPLIB:

 COMPILE SET2

 EDIT SETA2

 DEBUG GRAFT2

 NEWWORLD DELETE2

 GETWORLD PUT2

 REALWORLD REM2

 RPLACA2 ADDPROP2

 RPLACD2 UNCONS2

 SETQ2

 Creating a LISP Library _______________________

 A special feature of LISP allows the user to create a library of

 checkpointed structures in a single MTS file. The operations to

 accomplish this take the following form:

 78 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976 Page Revised February 1979

 (CHECKPOINT (FILENAME . ENTRYNAME) <S>)

 (RESTORE (FILENAME . ENTRYNAME))

 Whenever a simple (CHECKPOINT FILE) or (RESTORE FILE) is executed,

| ENTRYNAME is given a default value of LISPSTD. Thus, (RESTORE A) =

| (RESTORE (A . LISPSTD)).

 Note: An attempt to recheckpoint an ENTRYNAME into a file where that

 ENTRYNAME was already checkpointed will cause the original version of

| ENTRYNAME to be replaced; however, if the file is a sequential file, any

 other checkpoint entries which occur after ENTRYNAME in the file will be

| destroyed. The use of line files is recommended.

 Direct Memory Modification: (STATUS (0 N A)) ___

 This special status code permits the user to alter up to seven

 consecutive bytes of memory to any value. Obviously, this is done at

 the user’s own risk.

 N must be an atom whose VALUE is a numeric atom representing the

 first address which will be modified. A is an I/O destination atom

 whose associated buffer contains the data to be inserted in memory,

 starting at address N. The first character in the buffer must be the

 character X. This must be followed by an even number of hexadecimal

 digits, up to a maximum of 14, representing half the number of bytes to

 be modified. Alternately, A may be a literal atom whose PNAME has the

 same form as the buffer contents described above.

 Example:

 (SETQ MODA (ADDRESS ’ZAP))

 (STATUS (0 MODA TBUF))

 If the buffer TBUF contains the characters "X00000000", then the VALUE

 of the atom ZAP will be set to 0. An attempt to evaluate (CAR ZAP) will

 generate a program interrupt.

 (LTR S SW) __________

 The LTR function may occasionally be useful for altering the normal

 process of evaluating lists, e.g., argument lists. Its effects may be

 confusing, and its use is recommended only for advanced users. It may

 be invoked any time the LISP system is doing an iterated EVAL through a

 list of S-expressions, in particular, during a LAMBDA, PROG, or the

 "S1...SN" portion of a COND. It may also be invoked during evaluation

| of a sequence of arguments to be passed to a function. Its purpose is

 to allow conditional evaluation of arguments.

 LISP 79

 MTS 8: LISP and SLIP in MTS

 Page Revised February 1979 June 1976

 S is the value to be returned from LTR.

 SW is a switch which determines what will happen to the rest of the

 forms in the list, which would be iteratively evaluated if the LTR were

 not present.

 Value Meaning _____ _______

 SW = NIL Do not evaluate any more forms. S is then

 effectively the last value in the list.

 SW = T Continue normally through the list.

 SW = anything else In this case, SW must be a new list of forms,

 which will be substituted for the rest of the

 original list, and evaluation will continue.

 Example:

 (REM (READ) (LTR (READ) X) (READ))

 If X is NIL, then the effect of this function is (REM (READ) (READ)).

 If X is T, then the effect of this function is (REM (READ) (READ)

 (READ)). If X is (S), then the effect of this function is (REM (READ)

 (READ) S).

 LTR stands for "list terminate or redirect."

 (MTS <A>) _________

 The MTS function, besides allowing the user to return to MTS with the

 option to restart by calling (MTS), also allows execution of a single

 MTS command, with an automatic restart. This allows the LISP programmer

 (as distinct from the user of the program) to execute MTS commands

 without the user’s knowledge.

 A must be a literal atom or IOARG. The PNAME of the atom, or the

 contents of the buffer associated with the IOARG, is executed as an MTS

 command, and an automatic restart is performed.

 MTS always returns NIL.

 The Transport System ____________________

 LISP incorporates a simple mechanism for creating and altering data

 structures "hypothetically," for backing up to a previous state of the

 data structures, and for maintaining several alternative structures at

 once and switching back and forth among them.

 80 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976 Page Revised February 1979

 This mechanism, called the transport system, is useful for LISP

 implementations of problem solving, game playing, and automatic program-

 ming algorithms.

 If the state of all LISP structures at a particular moment is

 considered to be a possible world, then the transport system allows the

 user to obtain a "ticket" which will return him to that world at a later

 time.

 Within the transport system, there is always one unique world which

 has the status of reality. This is the state of LISP structures before

 any "hypothetical" changes have been made. A system of hypothetical

 worlds can be pictured as a tree structure, with reality at the root.

 World A dominates world B if the user started in world A and, by making

 various hypothetical changes in his data structures, reached world B.

 Thus, all worlds are dominated by reality.

 The tickets which are created by the transport system are actually

| lists of alterations of a LISP structure. When the user returns to a

 dominating world, the alterations he has performed are undone, or

 reversed. If he returns to a world which does not dominate the world he

 is currently in, alterations are reversed until the closest common

 dominating world is reached, and then the alterations which were

 performed to get to the desired world are repeated.

 Creating Hypothetical Worlds:

 All reversible alterations of a LISP structure must be made using

 special functions defined for that purpose. These functions are

 part of the transport system RESTORE package. When any function

 that is part of the transport system is called, the entire system

 is restored from *LISPLIB.

 The functions listed below work exactly like the corresponding LISP

 system functions except that the alterations they make to a LISP

 structure are reversible.

 The functions are:

 RPLACA2 SETQ2

 RPLACD2 SET2

 GRAFT2 SETA2

 DELETE2 PUT2

 ADDPROP2 REM2

 UNCONS2

 Note: The functions MAPCAN and MAPCON do not have transport system

 duplicates, even though they alter LISP structures.

 (NEWWORLD <<T,NIL>>)

 The NEWWORLD function has three uses. (NEWWORLD) returns a ticket

 to the current state of LISP structure. By calling NEWWORLD, a

 LISP 81

 MTS 8: LISP and SLIP in MTS

 Page Revised February 1979 June 1976

 state becomes a reachable world in the transport system. For

 example, (SETQ EARTH (NEWWORLD)) saves the ticket as the VALUE of

 EARTH. (NEWWORLD T) returns a ticket to reality. This is provided

 in case the user wishes to return to reality, but has not saved a

 ticket to get there. (NEWWORLD NIL) returns a ticket to the

 closest reachable world which dominates the current state. NEW-

 WORLD does not cause a transfer to any other world. Its purpose is

 to create tickets.

 (GETWORLD S)

 The GETWORLD function performs the transportation in the system.

 Its argument must be a valid ticket (an error will be generated if

 not), and it causes a transfer to the world identified by that

 ticket. For example,

 (GETWORLD EARTH)

 (REALWORLD)

 REALWORLD, the most amazing function of all, takes the current

 state of LISP structure, and causes it to become reality. What was

 once reality is now lost forever, and all previously created

 tickets will no longer be valid.

| The LISP Compiler: (COMPILE A1...AN) _____________________________________

 For each atom Ai, the LISP compiler finds the EXPR property on its

 PLIST and, if it is a LAMBDA-expression, translates it into machine code

 to perform the same computation. This machine code program, in the form

 of a LISP "SUBR atom," is put on the PLIST of the atom Ai under the

 appropriate indicator (SUBR for LAMBDAs, NSUBR for NLAMBDAs, FSUBR for

 FLAMBDAs), and the EXPR property is removed.

 COMPILE is an FLAMBDA function which takes its arguments unEVALed.

 When COMPILE is called, the compiler will be loaded automatically

 from *LISPLIB. Evaluating the form (=EXCISE) will remove it.

 Compiler Features

 Declarations--(DECLARE <A,LA> IND <PVAL>)

 The function DECLARE, an NSUBR, is used to control the various

 compiler options described below. The arguments to declare

 take the form:

 (DECLARE <A,LA> IND <PVAL>)

 82 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976

 where the property IND with property value PVAL (or T if PVAL

 is omitted) will be put on the PLIST of the atom A or the

 atoms in LA. For example, (DECLARE (A B) =SPECIAL)

 Declarations may be made before compiling a function, or may

 be made during the process of compilation by inserting a

 (DECLARE...) as a top level form of a LAMBDA or PROG. The

 declaration will not cause any code to be produced, and will

 be in effect until it is overridden by another declaration.

 Variable Types

 Normally, a variable which occurs as an argument, a PROG

 variable, or a LAMBDA-variable within a compiled function is

 assumed to be local to that function. Its value is set when

 the variable is first bound, and may be changed using SETQ or

 UNCONS, but the variable has no relation to the LISP atom of

 the same name. However, if such a variable is declared to be

 special: (DECLARE X =SPECIAL) all references to it are

 assumed to refer to the LISP atom of that name, and the value

 of the atom will be updated accordingly.

 References to variables which are not arguments, PROG varia-

 bles, or LAMBDA-variables (i.e., FREE variables), are assumed

 to refer to LISP atoms in the usual way. Warning: All

 references to atoms which occur in QUOTEd expressions, includ-

 ing the arguments to N-type and F-type functions that are

 implicitly QUOTEd, will refer to LISP atoms and not to local

 variables of the same name. A user who wants to pass a local

 variable to an FSUBR must APPLY the FSUBR, or declare the

 variable to be special.

 Setting the variable =SPECIAL to T causes all variable

 references to be compiled as if the variable had been declared

 =SPECIAL.

 Function Types

 All external functions called by compiled programs are assumed

 to be SUBR or LAMBDA-type EXPRs unless they are declared

 otherwise. The function-type declarations which are available

 are:

 (DECLARE F =TYPE FLAMBDA)

 for FSUBRS or FLAMBDA-type EXPRs,

 (DECLARE G =TYPE NLAMBDA)

 for NSUBRS or NLAMBDA-type EXPRs, and

 (DECLARE H =TYPE =ARRAY)

 LISP 83

 MTS 8: LISP and SLIP in MTS

 June 1976

 for arrays.

 An atom may also be declared to be an array name with the

 following declaration:

 (DECLARE H =ARRAY)

 Interpreter functions which are N-type or F-type functions are

 already declared correctly within the compiler.

 Number Types

 The LISP compiler assumes that no floating point numbers will

 ever be generated, and therefore compiles all numeric calcula-

 tions to perform integer arithmetic.

 The user can change this assumption with the declaration:

 (DECLARE =SYSFLAG =INTEGERS NIL)

 in which case all functions that allow floating-point argu-

 ments will be compiled as calls to the interpreter.

 Block Compiling

 Within a compiled program, any internal LAMBDA-expression is

 defined to be a separate "block," and each compiled program

 consists of one primary block and zero or more secondary

 blocks.

 In addition, external functions which are defined as LAMBDA-

 expressions may be declared to be "macros," and the compiler

 will replace the function name with the LAMBDA definition, and

 compile the LAMBDA-expression as an internal block.

 The important property of an internal block is that it has

 access to the local variables defined in the block which

 called it (and all higher blocks).

 For example, suppose function A calls function B, and

 (DECLARE B =MACRO)

 was in effect when A was compiled. Then the SUBR code for A

 contains a compiled "copy" of B. If X is a local variable

 within A, all free references to X within the copy of B will

 refer to that local variable.

 The number of blocks compiled and the length (in bytes) of

 code produced for each block may be obtained via a printed map

 on LISPOUT by setting the variable =MAP to T before compiling.

 84 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976 Page Revised January 1983

 The Fixed-Link Option

 The linkage from a compiled function to another compiled

 function that it calls, or an array that it accesses, may be

 declared to be "fixed-linked" (=FL), provided that the defini-

 tion of the called function or array will not change after the

 first time it is accessed by the calling function.

 The first time the =FL call is executed, the pointer to the

 atom that is the =FL function or array name is replaced by a

 pointer to the actual SUBR code or array area. This replace-

 ment eliminates the property-list search of the function or

 array name on all subsequent executions of the call.

 A function or array is declared to be fixed-linked as follows:

 (DECLARE F =FL)

 If, on the first execution of a =FL linkage, the system cannot

 find a SUBR property, or if STATUS code 48 is set to NIL, the

 system uses a normal linkage, and the =FL declaration is

 ignored for that call.

 Setting the variable =FL to T causes all function and array

 references to be compiled as fixed-linked, unless the function

 or array has been declared =SL as follows:

 (DECLARE F =SL)

 Note: Only compiled functions and arrays may be declared =FL.

 Note: It is virtually impossible to debug a large LISP system

 that is heavily fixed-linked, since =FL calls do not generate

 any evidence on the stack, or in the trace-back. When an

 error occurs, the user has no way to determine which of his

 =FL functions was being executed. Therefore, when compiling a

 large system, the following procedure is recommended:

 (1) Compile all functions with =FL declarations in their

 final form.

 (2) Excise the compiler.

 (3) CHECKPOINT the system before performing any execu-

 tions. The =FL linkages will not yet be resolved.

 (4) Set STATUS code 48 to NIL to suppress completion of

 fixed links.

 (5) Test the system thoroughly.

 (6) RESTORE the original unexecuted system, set STATUS

 code 48 to T, and proceed.

 The =CHECK Option

 If a function has been declared to be a =CHECK function as

 follows

 LISP 85

 MTS 8: LISP and SLIP in MTS

 Page Revised January 1983 June 1976

 (DECLARE F =CHECK)

 then when it is compiled, the generated code will include a

 test to check that the correct number of arguments was passed

 to the function, and various other error checks (for valid

 atomic, list, or numeric arguments, etc.) will be made.

 Normally, little or no error checking is performed by compiled

 programs.

 If the variable =CHECK is set to T, all functions will be

 compiled as if they had been declared =CHECK.

 Functions Known to the Compiler

 The following functions have fixed definitions within compiled

 code:

 ABS ADD ADD1 AND APPLY APPLY1 ARG ASSOC ATOM C...R COND CONS

 IDIVIDE EQ EQUAL EVAL EVEN GET GO GRAFT GREATER LAND LESS

 LENGTH LIST LOR LXOR MAP MAPC MAPCAN MAPCAR MAPCON MAPLIST MAX

 MEMBER MIN MINUS NOT NTH NUMBER OR PROG PROGN PUT QUOTE REMAIN

 REPEAT RETURN REVERSE SELECT SET SETA SETQ SHIFT SUB SUB1

 TIMES UNCONS ZERO

 The following functions are declared to be fixed-link functions:

| CHECKPOINT, COPY, DECLARE, DEFUN, DISPLAY, LABEL, MODIFY,

| NEWWORLD, OBLIST, OPEN, REALWORLD, REM, REMOB, SETA2, SETQ2,

| STATUS, TRACE, UNTRACE,

 Limitations and Warnings

 (1) General Warning:

 Compiled functions do a minimum of error checking, so users are

 advised to debug their programs before compiling them. Unless

 the =CHECK option is used, the normal checks for undefined

 variables, bad atomic, list, and numeric arguments, array

 dimensions exceeding legal limits, etc., do not occur in

 compiled code.

 (2) Since fixed-link functions are not executed under control of

 EVAL, debugging features such as TRACE, BUG, and STEP cannot be

 used with them.

 (3) An APPLY of a no-spread macro or LAMBDA-expression cannot be

 compiled. (Use APPLY1 instead.)

 (4) Functions used as macros may not be recursive. An attempt to

 compile a recursive MACRO will generate an error.

 86 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976 Page Revised January 1983

 (5) Each internal block must be less than one page in length. If

 the compiler finds that a block is too long, it will terminate

 with an error message. The user can then break the program

 downinto smaller blocks and recompile. Note: Experience indi-

 cates that about 50-75 lines of LISP code (uninterrupted by

 internal blocks) will compile into one page.

 (6) The total number of blocks in one compiled routine cannot exceed

 150.

 (7) The number of bytes in the first block of a program, plus the

 number of special variables, times four, must be less than 4096.

 (8) The number of local variables defined at one time cannot exceed

 1020.

 (9) The compiler occupies 40 pages of memory, and compilation of

 even a small program is likely to increase storage to 50 pages.

 After EXCISing (using the =EXCISE function described above) the

 compiler, the user may want to compress his core usage by

 performing a CHECKPOINT.

 (10) Functions which depend on calls to EVAL, such as UNEVAL and

 RETURN with a second argument, may not operate in the same

 manner when called from a compiled program, since many function

 calls are compiled directly and do not generate calls to EVAL.

 (11) The compiler does not process the LABEL function, hence the use

 of LABELs in compiled programs is not recommended. If a LABEL

 is encountered, the compiler generates a call to the

 interpreter.

 Other Special Features ______________________

 The functions EDIT and DEBUG provide access to a LISP editor and

 debugging package. These features are documented in the sections "The

 LISP Editor" and "LISP Debugging Facilities" in this volume.

 LISP 87

 MTS 8: LISP and SLIP in MTS

 Page Revised January 1983 June 1976

 88 LISP

 MTS 8: LISP and SLIP in MTS

 June 1976

 THE LISP EDITOR _______________

 INTRODUCTION ____________

 The LISP editor is a LISP program designed to examine and modify LISP

 data structures, especially function definitions, as they exist within

 the LISP interpreter. It does not edit MTS files, although there are

 LISP editor commands which will read and write files on request. In the

 following section, the term "expression" refers to any LISP data

 structure (which is also known as an S-expression, denoting its external

 representation).

 The LISP editor has been checkpointed into the public file *LISPLIB.

 It is automatically restored and invoked, using a command of the form

 (EDIT fn)

 The value of EDIT is NIL. The argument "fn" determines the expression

 to edited as follows:

 (1) If "fn" is an atom with an EXPR on its property list, then the

 value of the EXPR property (normally a LAMBDA expression) is the

 expression to be edited. This is the normal method of editing

 function definitions.

 (2) Otherwise, "fn" itself is the expression to be edited. Since

 EDIT is an FSUBR, "fn" is not evaluated. Thus, the above form

 is not normally useful for editing arbitrary structures. APPLY

 or APPLY1 should be used instead, e.g.,

 (APPLY1 ’EDIT list)

 where the value of "list" is the expression to be edited.

 The editor has its own command language; one or more commands may be

 entered on each line, separated by blanks. There are several variable

 length commands which must be separated from any subsequent commands on

 the same line by a colon (:). These are INSERT, DELETE, EXTRACT, ML,

 MR, BI, and BO, and are described in the subsection "Commands that

 Modify the Current Expression." Commands are read from *SOURCE* using

 the prefix character period (.), and output is written on *SINK*, using

 the prefix colon.

 All editor commands operate on a subexpression of the original

 argument to EDIT; this subexpression is called the current expression. _______ __________

 There are several commands available for specifying the current expres-

 sion. They are described in later in this section.

 The LISP Editor 89

 MTS 8: LISP and SLIP in MTS

 June 1976

 Ignoring dotted pairs for the moment, any proper subexpression of a

 LISP expression (hence any current expression) must be one of the

 following:

 (1) An atom.

 (2) A list which is an element of some higher level list.

 (3) A proper sublist, which will be referred to as the tail of a ____

 list.

 For example, given the expression (A (B C) D), the atoms are A, B, C,

 and D; the list (B C) is an element of the top-level list; the tails of

 (A (B C) D) are ((B C) D) and (D); and the tail of (B C) is (C).

 Dotted pairs (expressions whose CDR are atoms other than NIL) have

 not been adequately described, and indeed, the behavior of the editor is

 erratic at best when it encounters a dotted pair.

 For the purpose of this description, editor commands are divided into

 five major groups: printing commands, commands specifying the current

 expression, commands modifying the current expression, commands undoing

 previous modifications, and miscellaneous commands.

 COMMANDS THAT PRINT THE CURRENT EXPRESSION __

 Command: P [n]

 The P command prints the current expression up to level "n". The

 optional argument n defaults to 2. To avoid excessive output,

 lists at level n are printed as the character ampersand (&). A

 current expression which is a tail of some list is indicated by

 ellipsis marks (...) preceding the expression.

 A P command is assumed at the end of every line unless a P, ?, or

 PP command is the last command on the line.

 Command: ?

 The ? command is equivalent to a P 1000 command; it effectively

 prints the entire current expression. This command is used in most

 of the examples in this section.

 Command: PP

 The PP command also prints the entire current expression, but in an

 indented format which makes the structure more clearly visible.

 The PP command does not print ellipsis marks for tails of lists.

 90 The LISP Editor

 MTS 8: LISP and SLIP in MTS

 June 1976 Page Revised February 1979

 Examples:

 .?

 :(LAMBDA (X) (COND ((NULL X) NIL) (T (CONS X X))))

 .P

 :(LAMBDA (X) (COND & &))

 .P 3

 :LAMBDA (X) (COND (& NIL) (T &)))

 .PP

 :(LAMBDA (X)

 : (COND ((NULL X) NIL)

 : (T (CONS X X))))

 COMMANDS THAT SPECIFY THE CURRENT EXPRESSION __

 Command: [±]n

 A positive integer "n" or "+n" selects the nth element of the

 current expression, counting from the left, and makes it the

 current expression. A negative integer "-n" operates in the same

 manner except that it counts from the right. Users should note

 that zero is a separate command, described later in this section.

 Examples:

 .?

 :(LAMBDA (X) (COND ((NULL X) NIL) (T (CONS X X))))

 .3 ?

 :(COND ((NULL X) NIL) (T (CONS X X)))

 .2 1 ?

 :(NULL X)

 Command: UP

 If the current expression is an element of a higher-level list, the

 UP command specifies the tail of the higher-level list beginning

 with the current expression, as the new current expression.

 Otherwise, the UP command has no effect. Note that if the current

 expression is the first element of a higher-level list, the UP

 command produces the entire list, rather than just a tail of the

 list.

 Examples:

 .?

 :(LAMBDA (X) (COND ((NULL X) NIL) (T (CONS X X))))

 .3 ?

| :(COND ((NULL X) NIL) (T (CONS X X)))

 The LISP Editor 91

 MTS 8: LISP and SLIP in MTS

 Page Revised February 1979 June 1976

 .UP ?

 :... (COND ((NULL X) NIL) (T (CONS X X))))

 .?

 :... (COND ((NULL X) NIL) (T (CONS X X))))

 .1 ?

 :(COND ((NULL X) NIL) (T (CONS X X)))

 .1 UP

 :(COND ((NULL X) NIL) (T (CONS X X)))

 Command: !0

 The !0 command is similar to the UP command, except that it

 produces the entire higher-level list, rather than a tail of that

 list. In addition, if the current expression is a tail of some

 list (in which case the UP command has no effect), the !0 command

 specifies the entire list as the new current expression.

 Examples:

 .?

 :(LAMBDA (X) (COND ((NULL X) NIL (T (CONS X X))))

 .3 UP ?

| :... (COND ((NULL X) NIL) (T (CONS X X))))

 .!0 ?

 :(LAMBDA (X) (COND ((NULL X) NIL)(T (CONS X X))))

 .3 !0 ?

 :(LAMBDA (X) (COND ((NULL X) NIL)(T (CONS X X))))

 Command: 0

 The 0 (zero) command has an effect somewhere between UP and !0.

 Since its precise effect defies description, its use is not

 recommended.

 Commands: NX, BK

 The NX command specifies the next element to the right of the

 current expression as the new current expression. It is equivalent

 to the command sequence UP 2. The BK command is the inverse of NX;

 it specifies, as the current expression, the next element to the

 left.

 Examples:

 .?

 :(LAMBDA (X) (COND ((NULL X) NIL) (T (CONS X X))))

 .1 ?

 :LAMBDA

 .NX ?

 :(X)

 .NX ?

 :(COND ((NULL X) NIL) (T (CONS X X)))

 92 The LISP Editor

 MTS 8: LISP and SLIP in MTS

 June 1976 Page Revised February 1979

 .1 ?

 :COND

 .NX ?

 :((NULL X) NIL)

 .NX ?

 (T (CONS X X))

 .BK ?

 :((NULL X) NIL)

 .BK ?

 :COND

 Command: !NX

 The NX command fails if the current expression is the last element

 of a list. The !NX command is similar to the NX command, but it

 moves to a higher level if necessary to reach an element which is

 not the last in a list.

 Example:

 .?

| :(LAMBDA (X) (COND ((NULL X) NIL) (T (CONS X X))))

 .3 2 1 ?

 :(NULL X)

 .NX ?

 :NIL

 .NX ?

 :YOU’RE AT THE END

 .!NX ?

 :(T (CONS X X))

 Command: #

 The # command specifies the original argument to EDIT as the new

 current expression.

 Command: ¬P

 The ¬P command restores the current expression to what it was at

 the next-to-last P command. It is useful for switching back and

 forth between two expressions.

 Example:

 .P

 :(LAMBDA (X) (COND & &))

 .F NULL P ¬P

 :(NULL X)

 :(LAMBDA (X) (COND & &))

 The LISP Editor 93

 MTS 8: LISP and SLIP in MTS

 Page Revised February 1979 June 1976

 Command: F s

 The F command finds the first occurrence, in print order, of an

 element in the current expression which is EQUAL to the

 S-expression "s". This element becomes the current expression. If

 s is an atom, the F command is implicitly followed by an UP

 command.

 Examples:

 .?

 :(LAMBDA (X) (COND ((NULL X) NIL) (T (CONS X X))))

 .F X ?

 :(X)

 .# F NULL ?

 :(NULL X)

 .# F COND ? F X ?

 :(COND ((NULL X) NIL) (T (CONS X X)))

 :... X)

 .!0 ?

 :(NULL X)

 .UP UP ? F CONS ?

 :... ((NULL X)NIL) (T (CONS X X)))

 :(CONS X X)

 .# F (NULL X) ?

 :(NULL X)

 COMMANDS THAT MODIFY THE CURRENT EXPRESSION ___

 All of these structure-modifying commands require a location specifi-

 cation to determine the element(s) to be modified. This location

 specification must be a sequence of S-expressions, where each

 S-expression is either:

 (1) Any command (except F) from the above subsection, or

 (2) Anything else, in which case an F command is implied with the

 S-expression as argument.

 These location specification "commands" are executed in the order

 specified, beginning with the current expression, to determine the

 expression to be modified. However, the location specification does not

 determine a new current expression. A location specification is

 indicated in the following subsection by "p1...pn" or "q1...qn".

 Since all of the commands in this subsection, except EMBED, are of

 variable length, they must be followed by a colon if further commands

 are entered on the same line.

 94 The LISP Editor

 MTS 8: LISP and SLIP in MTS

 June 1976

 Command: INSERT s1...sn {BEFORE|AFTER|FOR} p1...pn

 The INSERT command, which may be abbreviated to I, inserts the

 sequence of S-expressions "s1...sn" before, after, or in place of,

 the element determined by the location specification "p1...pn".

 Examples:

 .?

 :(LAMBDA (X) (COND ((NULL X) NIL) (T (CONS X X))))

 .INSERT (A B C) AFTER X : ?

 :(LAMBDA (X) (A B C) (COND ((NULL X) NIL) (T (CONS X X))))

 .INSERT B BEFORE X 1 : ?

 :(LAMBDA (B X) (A B C) (COND ((NULL X) NIL) (T (CONS X X))))

 .F NULL ? INSERT B FOR X : ?

 :(NULL X)

 :(NULL B)

 .INSERT ABC D AFTER B : ?

 :(NULL B ABC D)

 Command: DELETE p1...pn

 The DELETE command removes the element designated by "p1...pn" from

 the structure. This command may be abbreviated to D.

 Examples:

 .?

 :(LAMBDA (Q X) (A B C) (COND ((NULL X) NIL) (T (CONS X X))))

 .DELETE Q 1 : ?

 :(LAMBDA (X) (A B C) (COND ((NULL X) NIL) (T (CONS X X))))

 .DELETE (A B C) : ?

 :(LAMBDA (X) (COND ((NULL X) NIL) (T CONS X X))))

 .DELETE NIL ?

 :(LAMBDA (X) (COND ((NULL X) (T (CONS X X))))

 Command: EMBED p1...pn IN s

 The EMBED command replaces every occurrence of the atom "*" in the

 S-expression "s" with the element designated by "p1...pn", and then

 replaces the element designated by "p1...pn" with the result. The

 EMBED command may be abbreviated to EM.

 The LISP Editor 95

 MTS 8: LISP and SLIP in MTS

 June 1976

 Examples:

 .?

 :(COND ((NULL X) NIL) (T (CONS X X)))

 .EMBED NULL IN (PRINT *) ?

 :(COND ((PRINT (NULL X)) NIL) (T (CONS X X)))

 Command: EXTRACT p1...pn FROM q1...qn

 The EXTRACT command replaces the element designated by "q1...qn"

 with the element designated by "p1...pn". The element designated

 by "p1...pn" must be a substructure of that designated by "q1...qn

 UP". EXTRACT may be abbreviated to EX.

 Examples:

 .?

 :(COND ((NULL (CAR X)) NIL) (T (CONS (CAR X)(CADR X))))

 .EXTRACT CAR FROM NULL : ?

 :(COND ((CAR X) NIL) (T (CONS (CAR X) CADR X))))

 .EXTRACT CONS FROM COND : !0 ?

 :(LAMBDA (X) (CONS (CAR X) (CADR X)))

 The remaining commands in this section move elements to higher or

 lower levels in the structure. In the printed form, this appears to

 have the effect of adding, removing, or shifting parentheses.

 Commands: ML ±n p1...pn

 MR ±n p1...pn

 The ML command moves the left parenthesis of the element designated

 by "p1...pn" ±n elements to the right. The MR command moves the

 right parenthesis in the same way. "p1...pn" must designate a

 nonatomic element.

 Examples:

 .?

 :(A B C (D E F) G H I)

 .ML -1 4 : ?

 :(A B (C D E F) G H I)

 .ML 3 C : ?

 :(A B C D E (F) G H I)

 .MR 2 F : ?

 :(A B C D E (F G H) I)

 .MR -1 F : ?

 :A B C D E (F G) H I)

 96 The LISP Editor

 MTS 8: LISP and SLIP in MTS

 June 1976

 Command: BI p1...pn THRU q1...qn

 The BI command (mnemonic for Both In) adds parentheses around the _ _

 sequence of elements beginning with the element designated by

 "p1...pn" and ending with the element designated by "q1...qn". The

 designated elements must be members of the same list, and "p1...pn"

 must precede "q1...qn".

 Examples:

 .?

 :(A B C D E F)

 .BI B THRU E : ?

 :(A (B C D E) F)

 .BI C THRU D : ?

 :(A (B (C D) E) F)

 .BI 1 NX THRU -1 BK : ?

 :(A ((B (C D) E)) F)

 Command: BO p1..pn

 The BO command (mnemonic for Both Out) removes parentheses from the _ _

 element designated by "p1...pn". This element must be nonatomic.

 Examples:

 .?

 :(A ((B (C D) E)) F)

 .BO C : ?

 :(A ((B C D E)) F)

 .BO 2 : ?

 :(A (B C D E) F)

 .BO 1 NX : ?

 :(A B C D E F)

 COMMANDS FOR ERROR RECOVERY ___________________________

 Each time a structural change is made using a command that modifies

 the current expression, the LISP system keeps a record of the changes

 made so that they can later be reversed. It is always possible to

 reverse any changes made since the invocation of the LISP editor. This

 feature allows the user to experiment without fear of permanent damage;

 such experimentation is encouraged.

 Command: ??

 The ?? command prints a list of the structure modification

 commands which have been executed, in inverse order of their

 execution.

 The LISP Editor 97

 MTS 8: LISP and SLIP in MTS

 June 1976

 Command: UNDO [command]

 The UNDO command reverses the last structure-modifying command. If

 the optional argument "command" is given, it is compared with the

 name of the command to be reversed, and reversal takes place only

 if they are the same.

 UNDO is itself a structure-modifying command, and may be UNDOne,

 but UNDO commands are normally skipped by subsequent UNDO commands

 unless a reversal is requested explicitly by UNDO UNDO.

 Examples:

 .?

 :(A B C D E F)

 .DELETE C : DELETE D : ?

 :(A B E F)

 .UNDO

 :DELETE UNDONE

 .?

 :(A B D E F)

 .UNDO

 :DELETE UNDONE

 .?

 :(A B C D E F)

 .UNDO

 :NOTHING SAVED

 .??

 :UNDO UNDO

 .UNDO UNDO

 :UNDO UNDONE

 .?

 :(A B D E F)

 Commands: TEST, !UNDO, UNBLOCK

 These three commands can be used to make a set of tentative changes

 to a structure. All of these changes can subsequently be reversed

 at once. The TEST command places a block in the list of _____

 structure-modifying commands. A block stops the execution of the

 !UNDO command, which reverses all structural changes made since the

 block (i.e., since the TEST command). If there is no block in the

 list the !UNDO command reverses all changes made since the

 invocation of the LISP editor. The UNBLOCK command removes the

 most recent block from the list.

 Note: A block also blocks the UNDO command. The UNDO command

 skips the !UNDO command unless it is explicitly requested, but

 !UNDO reverses all commands, including UNDO and !UNDO.

 98 The LISP Editor

 MTS 8: LISP and SLIP in MTS

 June 1976

 MISCELLANEOUS COMMANDS ______________________

 Command: OK

 The OK command causes the EDIT function to return to its caller.

 Command: E form

 The E command evaluates the S-expression "form". If an error

 occurs during evaluation, the editor may be reentered by evaluating

 (UNEVAL ’EDITONE NIL) in the break loop.

 Command: S atom

 The S command saves the current expression on the property list of

 "atom". It may be retrieved by using "## atom" in the "s1...sn"

 sequence of the INSERT command.

 Example:

 .?

 :(LAMBDA (X) (COND ((NULL X) NIL) (T (CONS X X))))

 .F NULL P S QREG # ?

 :(NULL X)

 :(LAMBDA (X) (COND ((NULL X) NIL) (T (CONS X X))))

 .INSERT ## QREG FOR CONS : ?

 :(LAMBDA (X) (COND ((NULL X) NIL) (T (NULL X))))

 Command: EXCISE

 The EXCISE command removes all editor-related atoms from the object

 list, thereby making the editor available for garbage collection.

 Command: DSKIN FDname

 The DSKIN command reads S-expressions from the MTS file or device

 "FDname". Each S-expression is saved on the property list of

 FDname for later use in the DSKOUT command, and then is evaluated.

 The result of the evaluation is ignored.

 Command: DSKOUT FDname

 The action of the DSKOUT command depends on "FDname" as follows:

 (1) If "FDname" has been used previously in the DSKIN command,

 the list of expressions read by that command is retrieved

 from the property list of "FDname", and the user is

 prompted for another "FDname", on which this list of

 (possibly changed) expressions are written. This second

 "FDname" may be the same as the first "FDname" given in the

 command, but in any case must be a file name, since it is

 The LISP Editor 99

 MTS 8: LISP and SLIP in MTS

 June 1976

 emptied before writing.

 (2) If "FDname" has not been used previously in the DSKIN ___

 command, the user is prompted for an S-expression designat-

 ing the items to be written on "FDname". This S-expression

 is evaluated, and returns a list of items which are treated

 as follows:

 (a) If an item is an atom, it is assumed to be a function

 name, and must have a LAMBDA expression as an EXPR on

 its property list. The appropriate DEFUN form is

 written to "FDname".

 (b) If an item is nonatomic, it is written to "FDname" as

 is.

 "FDname" is emptied before it is written.

 100 The LISP Editor

 MTS 8: LISP and SLIP in MTS

 June 1976

 LISP DEBUGGING FACILITIES _________________________

 INTRODUCTION ____________

 Debugging a collection of LISP functions involves isolating problems

 within particular functions and/or determining when and where incorrect

 data are being generated and transmitted. There are three facilities

 available which augment the facilities of the interpreter for monitoring

 a LISP program. One of these is the error package, which takes control

 whenever an error occurs in a program, and which allows the user to

 examine the environment at the time of the error. The other two

 facilities, BREAKF and TRACEF, allow the user to modify selected

 function definitions temporarily so that the flow of control in the

 program may be followed. All of these facilities use the same LISP

 function, BREAKFUNCTION, as the user interface.

 BREAKF and TRACEF together are called the Break Package.

 BREAKF modifies the definition of a function "fn", so that if a break

 condition (defined by the user) is satisfied, the evaluation is halted

 temporarily on a call to "fn". The user can then interrogate the state

 of the world, perform any computations, and continue or return from the

 call. For a more complete description of BREAKF, see the subsection

 "Break Package."

 TRACEF modifies a definition of a function "fn" so that whenever "fn"

 is called, its arguments (or some other values specified by the user)

 are printed. When the value of "fn" is computed it is printed. For a

 more complete description of TRACEF, see the subsection "Break Package."

 BREAKFUNCTION _____________

 BREAKF and TRACEF redefine functions in terms of BREAKFUNCTION. When

 an error occurs control is passed to BREAKFUNCTION.

 Whenever LISP types a message of the form:

 n: DEPTH= m DEBUGGING fn

 the user is "talking to" BREAKFUNCTION, and is said to be in a break.

 "n" is the number of active calls to BREAKFUNCTION, "m" is the number of

 function calls on the pushdown stack, and "fn" is the function last

 called before BREAKFUNCTION (normally the function for which BREAKF was

 issued). BREAKFUNCTION allows the user to interrogate the state of the

 LISP Debugging Facilities 101

 MTS 8: LISP and SLIP in MTS

 June 1976

 world and affect the course of the computation. It uses the prompting

 character (=) to indicate it is ready to accept input for evaluation, in

 the same way as the top level of LISP uses "*". The user may type in an

 expression for evaluation and the value will be printed out, followed by

 another (=). Or the user can type in one of the commands described

 below which are specifically recognized by BREAKFUNCTION. Since BREAK-

 FUNCTION puts all of the power of LISP at the user’s command, anything

 that can be done at the top level of LISP can be done with BREAKFUNC-

 TION. For example, one can define new functions or edit existing ones,

 set breaks, or trace functions. The user may evaluate an expression,

 see that the value was incorrect, call the editor, change a function,

 and evaluate the expression again, all without leaving the break.

 It is important to emphasize that once a break occurs, the user is in

 complete control of the flow of the computation, and the computation

 will not proceed without specific instruction. Only if the user gives

 one of the commands that exits from the break (GO, OK, RETURN, FROM)

 will the computation continue. The computation can also be aborted

 (using # or ##, which are defined later in this section).

 Note that BREAKFUNCTION is just another LISP function, not a special

 system feature like the interpreter or the garbage collector. It has

 arguments and returns a value, like any other function. A call to

 BREAKFUNCTION has the form

 (BREAKFUNCTION BREAKEXPR BREAKWHEN BREAKFN BREAKCMDS BREAKTYPE)

 BREAKWHEN This argument is a LISP function which is evaluated to

 determine if a break will occur.

 BREAKEXPR BREAKEXPR is a form to be evaluated by BREAKFUNCTION.

 If BREAKWHEN returns NIL, BREAKEXPR is evaluated and

 returned as the value of the break. If BREAKWHEN

 returns any other value, a break occurs. After a

 break occurs, the commands GO, OK, and EVAL (see

 command descriptions) cause BREAKEXPR to be evaluated.

 BREAKFN This argument is the name of the function being

 broken. BREAKFN is used to print the above message

 when a break occurs.

 BREAKCMDS This argument is a list of command lines which are

 executed immediately, in the event of a break. The

 command lines on BREAKCMDS are executed before com-

 mands are accepted from the terminal, so that if one

 of the commands on BREAKCMDS causes a return, a break

 occurs without the need for user interaction.

 BREAKTYPE This argument identifies the type of break. It is

 used primarily by the Error Package. In all cases the

 user can use BREAK for this argument.

 102 LISP Debugging Facilities

 MTS 8: LISP and SLIP in MTS

 June 1976

 The value returned by BREAKFUNCTION is called "the value of the

 break." The user can specify this value explicitly by using the RETURN

 command described below. In most cases, however, the value of the break

 is given implicitly, via a GO or OK command, and is the result of

 evaluating "the break expression," BREAKEXPR.

 BREAKEXPR is, in general, an expression equivalent to the computation

 that would have taken place had no break occurred. In other words, one

 can think of BREAKFUNCTION as a fancy EVAL, which permits interaction

 before and after evaluation. The break expression then corresponds to

 the argument to EVAL. For BREAKF and TRACEF, BREAKEXPR is a form

 equivalent to that of the function being traced or broken. For errors,

 BREAKEXPR is the form which causes the error.

 Break Commands ______________

 Once in a break, in addition to evaluating expressions, the user can

 ask BREAKFUNCTION to perform certain useful actions by issuing atomic

 items as "break commands." The following commands can be entered

 directly by the user or may be put on the BREAKCMDS list.

 GO This command releases the break and allows the compu-

 tation to proceed. BREAKFUNCTION evaluates BREAKEXPR,

 prints and returns the value, as the value of the

 break.

 OK This command operates in the same manner as GO except

 that the value of BREAKEXPR is not printed.

 EVAL This command causes BREAKEXPR to be evaluated. The

 break is maintained and the value of the evaluation is

 printed and bound on the variable BREAKVALUE. Neither

 GO nor OK will cause reevaluation of BREAKEXPR follow-

 ing EVAL, but another EVAL will. EVAL is a useful

 command when the user is not sure whether the break

 will produce the correct value and wants to be able to

 correct it if it is wrong.

 RETURN form The "form" is evaluated and its value is returned as

 the value of the break. For example, one might RETURN

 (REVERSE BREAKVALUE).

 FROM form This permits the user to release the break and return

 to a previous context with "form" to be evaluated.

 For details, see the subsection "Context Commands."

 USE expr For use either with UNDEFINED ATOM error or UNDEFINED

 FUNCTION error. USE replaces the expression (using

 RPLACA, the change is permanent) containing the error

 with expr (not the value of "expr") e.g.,

 LISP Debugging Facilities 103

 MTS 8: LISP and SLIP in MTS

 June 1976

 + ***16 UNDEFINED ATOM

 + Q

 +

 * 1 : CAR BROKEN

 USE XX

 changes Q to XX in the form (CAR Q), which caused the

 error.

 # This aborts the break. This is a useful way to unwind

 to a higher-level break. All other errors, including

 those encountered while executing the GO, OK, EVAL and

 RETURN commands, maintain the break.

 ## This returns control directly to the top level of

 LISP.

 ARGS This prints the names and the current values of the

 arguments of the function at BREAKPOINTER. In most

 cases, these are the arguments of the broken function.

 <FORM> This is EVALed if not a break command.

 Context Commands ________________

 All information pertaining to the evaluation of forms in LISP is kept

 on the push-down stack. Whenever a form is evaluated, the form is

 placed on the push-down stack. Whenever a variable is bound, the old

 binding is saved on the push-down stack. The context (the bindings of

 free variables) of a function is determined by its position in the

 stack. When a break occurs, it is often useful to explore the contexts

 of other functions on the stack. BREAKFUNCTION allows this by means of

 BREAKPOINTER, which is a context pointer into the push-down stack.

 BREAKFUNCTION commands move the context pointer and evaluate atoms or

 expressions relative to their positions in the stack. For the purpose

 of this document, when moving through the stack, "backward" is consid-

 ered to be toward the top level or, equivalently, towards the older

 function calls on the stack.

 F arg1 arg2 ... argN

 This command resets the variable BREAKPOINTER, which

 establishes a context for the commands USE, ARGS, AT,

 FROM and the backtrace commands described below.

 BREAKPOINTER is the position of a function call on the

 push-down list. It is initialized to the function

 just before the call to BREAKFUNCTION.

 F takes the rest of the input line as its list of

 arguments. Each argument may be either a function

 104 LISP Debugging Facilities

 MTS 8: LISP and SLIP in MTS

 June 1976

 name, in which case the stack is searched for the most

 recent occurrence of the function preceding BREAK-

 POINTER, or a number [±]n. If negative, the number

 "n" specified causes BREAKPOINTER to move back (i.e.,

 towards the top level) the appropriate number of

 calls. If positive, the number "n" specified causes

 BREAKPOINTER to move forward.

 For example, if the push-down stack consists of:

 BREAKFUNCTION (13)

 FOO (12)

 SETQ (11)

 COND (10)

 PROG (9)

 FIE (8)

 COND (7)

 FIE (6)

 COND (5)

 FIE (4)

 COND (3)

 PROG (2)

 FUM (1)

 then

 F FIE COND sets BREAKPOINTER to (7)

 F COND sets BREAKPOINTER to (5)

 F -2 moves BREAKPOINTER to (3)

 TOP resets BREAKPOINTER to (12)

 F can be used on BREAKCMDS. In that case, the next

 element of the list is treated as the list of

 arguments to F, e.g., (F (FOO FIE FOO)).

 TOP TOP repositions BREAKPOINTER to a stack position just

 before BREAKFUNCTION.

 EDIT arg1 arg2 ... argn

 EDIT uses its arguments to reset BREAKPOINTER in the

 same manner as the F command. The form at BREAKPOINT-

 ER is then given to EDIT. This command can often save

 the user the trouble of calling EDIT and finding the

 expression that he needs to edit.

 AT arg1 arg2 ... argn

 This command is used to display the values of varia-

 bles at position BREAKPOINTER. If the user types:

 AT X (CAR Y)

 LISP Debugging Facilities 105

 MTS 8: LISP and SLIP in MTS

 June 1976

 the value of X and the value of (CAR Y) are printed.

 The difference between using AT and entering X and

 (CAR Y) directly into BREAKFUNCTION is that AT evalu-

 ates its input as of BREAKPOINTER. This provides a

 way of examining variables or forms at a particular

 point on the stack. For example,

 F FOO -1 FOO

 AT X

 allows the user to examine the value of X in an

 earlier call to FOO.

 AT can also be used on the BREAKCMDS list. The next

 element of the BREAKCMDS list is then treated as the

 list of arguments. For example, if BREAKCMDS is (EVAL

 AT (X (CAR Y) GO), BREAKEXPR will be evaluated, values

 of X and (CAR Y) will be printed, and the function

 will be exited after its value has been printed.

 FROM [form] FROM exits the break by undoing the push-down stack

 back to BREAKPOINTER. If "form" is not specified,

 reevaluation continues with the form on the push-down

 stack at BREAKPOINTER. If "form" is specified, the

 function call on the push-down stack at BREAKPOINTER

 is replaced by "form", and evaluation continues with

 "form" which is evaluated in the context of BREAK-

 POINTER. There is no way of recovering the break

 because the push-down stack has been undone. FROM

 allows the user to return a particular value for any

 function call on the stack. To return 1 as the value

 of the previous call to FOO:

 :F FOO

 :FROM 1

 Backtrace Commands __________________

 The backtrace commands print information about function calls on the

 push-down list. The information is printed in reverse order to that in

 which calls were made. All backtraces start at BREAKPOINTER.

 BKF BKF gives a backtrace of the CARs of forms that are

 still pending.

 BKE BKE gives a backtrace of the expressions which called

 functions still pending (i.e., it prints the function

 calls themselves instead of only the names, as in

 BKF).

 106 LISP Debugging Facilities

 MTS 8: LISP and SLIP in MTS

 June 1976

 BK BK gives a full backtrace of all expressions still

 pending. It evaluates the form (DUMP 0). Output is

 in the form:

 function name

 list of arguments

 function name

 list of arguments

 (etc.)

 BKF and BKE may be followed by an integer. If the integer is

 included, it specifies how many blocks are to be printed. The limiting

 point of a block is a function call. This form is useful when working

 on an IBM 3270-type terminal.

 By specifying an integer with BKF or BKE and issuing an F command,

 the user can display any contiguous part of the backtrace.

 BREAK PACKAGE _____________

 How to Set a Break __________________

 In order to access any of the following functions, the user must be

 sure the DEBUG package has been loaded. This may be accomplished by

 calling the DEBUG function (see the subsection "Error Package").

 The following functions are useful for setting and unsetting BREAKs

 and TRACEFs.

 Both BREAKF and TRACEF use a function BREAKO to do the actual

 modification of function definitions.

 BREAKF BREAKF is an FLAMBDA. For each atomic argument, ______

 BREAKF breaks the function named each time it is

 called. For each argument that is a list of the form

 (FN1 IN FN2), it breaks only those occurrences of FN1

 which appear in FN2. This feature is very useful for

 breaking a function that is called from many loca-

 tions, but where one is only interested in the call

 from a specific function, e.g., (RPLACA IN FOO),

 (PRINT IN FIE), etc. For each argument that is

 neither atomic nor a list in the above form, BREAKF

 assumes that the CAR is a function to be broken; the

 CADR is the break condition. When the function is

 called, the break condition is evaluated. If it

 returns a non-NIL value, the break occurs. Otherwise,

 computation continues without break and the CADDR is a

 list of command lines to be performed before an

 interactive break is made (see BREAKWHEN and BREAKCMDS

 of BREAKFUNCTION) or NIL. For example,

 LISP Debugging Facilities 107

 MTS 8: LISP and SLIP in MTS

 June 1976

 (BREAKF FOO1 (FOO2 (GREATERP N 5) (ARGS)))

 breaks all calls to FOO1 and all calls to FOO2 when N

 is greater than 5 after first printing the arguments

 of FOO2.

 (BREAKF ((FOO4 IN FOO5) (MINUSP X) NIL))

 breaks all calls to FOO4 made from FOO5 when X is

 negative.

 Examples:

 (BREAKF FOO)

 (BREAKF ((GET IN FOO) T (GO)))

 TRACEF TRACEF is an FLAMBDA. For each atomic argument, it

 TRACEFs the function named each time it is called.

 For each list in the form (FN1 IN FN2), it TRACEFs

 only those calls to FN1 that occur within FN2.

 For example, (TRACEF FOO1 (SETQ IN FOO3) causes both

 FOO1 and SETQ in FOO3 to be traced.

 Note: The user can always call BREAKO himself to

 obtain combinations of options of BREAKFUNCTION not

 directly available with BREAKF and TRACEF (see section

 on BREAKO below). These functions merely provide

 convenient ways of calling BREAKO, and will serve for

 most uses.

 UNBREAK UNBREAK is an FLAMBDA. It takes a list of functions

 modified by BREAKF or TRACEF and restores them to

 their original state. Its value is NIL. (UNBREAK T)

 will unbreak the function most recently broken.

 (UNBREAK) will unbreak all of the functions currently

 broken.

 If one of the functions, say FN, is not broken,

 UNBREAK prints "FN NOT BROKEN" for that function and

 no changes are made to FN.

 UNTRACEF UNTRACEF is an FLAMBDA. It is the similar to UNBREAK.

 BREAK0 [fn when coms]

 BREAK0 is an EXPR. It sets up a break on the function

 "fn" by redefining "fn" as a call to BREAKFUNCTION

 with BREAKEXPR a form equivalent to the definition of

 "fn", and "when", "fn", and "coms" as BREAKWHEN,

 BREAKFN, and BREAKCMDS, respectively (see BREAKFUNC-

 108 LISP Debugging Facilities

 MTS 8: LISP and SLIP in MTS

 June 1976 Page Revised February 1979

 TION). BREAK0 also adds "fn" to the front of the list

 BROKENFNS. Its value is "fn".

 If "fn" is nonatomic and of the form (fn1 IN fn2),

 BREAK0 first calls a function which changes the name

 of "fn1" wherever it appears inside of "fn2" to that

 of a new function, fn1-IN-fn2, which is initially

 defined as "fn1". Then BREAK0 proceeds to break on

 fn1-IN-fn2 exactly as described above. This procedure

 is useful for breaking on a function that is called

 from many places, but where one is only interested in

 the call from a specific function, e.g., (RPLACA IN

 FOO), (PRINT IN FIE), etc. This only works in

 interpreted functions.

 ERROR PACKAGE _____________

| The error package is enabled by EVALing (DEBUG T). When an error

 occurs during the evaluation of a LISP expression, control is turned

 over to the error package. The idea behind the error package is that it

 may be possible to "patch up" the form in which the error occurred and

| continue. Or, at least, the user may find the cause of the error more

 easily if he can examine the state of the world at the time of the

 error. Basically, what the error package does is call BREAKFUNCTION

 with BREAKEXPR set to the form in which the error occurred. This puts

 the user "in a break" around the form in which the error occurred.

 BREAKFUNCTION acts just like the top level of the interpreter with some

 added commands (see the section on BREAKFUNCTION). The main difference

| when the error package is enabled is that the variable bindings that

 were in effect when the error occurred are still in effect. Further-

 more, the expressions that were in the process of evaluation are still

| pending. While the error package is enabled, variables may be examined

 or changed, and functions may be defined or edited just as if the user

 were at the top level. In addition, there are several ways in which the

 user can abort or continue from the point of error. In particular, if

 the error can be patched up, entering "OK" will cause the program to

 continue. If the error can’t be fixed, # will cause the program to exit

 from the break. When the error package is being used, the prompt

 character is (=); this is preceded by a level number. Note: If for

 some reason, the error package is not to be invoked, it can be disabled

| by evaluating (DEBUG NIL).

 LISP Debugging Facilities 109

 MTS 8: LISP and SLIP in MTS

 Page Revised February 1979 June 1976

 110 LISP Debugging Facilities

 MTS 8: LISP and SLIP in MTS

 June 1976

 SLIP ____

 INTRODUCTION AND HISTORICAL NOTES _________________________________

 This description is a user’s guide for the double-precision version

 of SLIP installed in MTS. This version of SLIP is compatible with

 FORTRAN IV and can be used in conjunction with programs that are able to

 call FORTRAN routines. Most of this version of SLIP is written in

 FORTRAN with a small portion, the SLIP primitives, written in 360/370-

 assembler language. Complete citation for the references noted are

 included in the last subsection "References."

 The definitive paper on SLIP by Weizenbaum (3) was published in 1963.

 That paper is not a user’s guide, but achieves a general description of

 SLIP by defining the available data structuring functions together with

 implementational details. The paper is novel in that it includes a

 listing of the FORTRAN code. Two letters to the Communications of ACM _______________________

 (4,5) add information for SLIP implementors and users. Subsequently a

 book by Findler, Pfaltz, and Bernstein (6) that is a readable and useful

 reference for users was published. Another book by Waite (7) offers

 constructive criticisms, some of which are employed in this implementa-

 tion. However, these are directed mainly to the student of high-level

 list-processing systems for FORTRAN IV and thus perpetuate the policy of

 Weizenbaum’s paper. User functions, together with implementational

 details, are presented.

 This description attempts to minimize emphasis on implementational

 details and concentrates instead on the user functions.

 The literature indicates that many versions of SLIP, for a variety of

 machines, exist. Here, every attempt has been made to maintain the

 spirit of the original version of SLIP and the names and assignments of

 its functions. This attempt has not been entirely successful. New or

 alternate functions were required for this implementation. Care has

 been exercised to state where deviation from the original version was

 necessary. Essentially deviations arise from limitations obtained from

 the IBM System/360/370 32-bit word size.

 Basic Concepts of List Processing _________________________________

 The following are the nine basic operations that can be performed on

 a list consisting of "n" elements (synonymous terms for element are node ____

 or item). ____

 SLIP 111

 MTS 8: LISP and SLIP in MTS

 June 1976

 (1) Access the kth element (1<k<n).

 (2) Insert a new element before or after the kth.

 (3) Delete the kth element.

 (4) Concatenate (i.e., chain together) two or more simple lists.

 (5) Split a list into two or more lists.

 (6) Make a copy of a list in terms of its contents and structure.

 (7) Count the number of elements on a list.

 (8) Sort the elements according to some criterion; for example, in

 ascending order of the integers in a given field of the

 elements.

 (9) Search for an element that has a particular value.

 Special reference is usually made either to the first (top) or the

 last (bottom) element (i.e., when k=1 or k=n). There is even a

 particular terminology dealing with list processing: inserting a new

 element to the top is called pushing down the list, and deleting an

 element from the top is called popping up the list. Although these

 terms are completely acceptable in automata theory, they may be

 misleading in programming, as we will see later, since the elements

 below the top element do not in fact change location.

 To achieve ease and flexibility in the above-mentioned nine basic

 operations, the usual sequential structure of the memory, as in FORTRAN,

 must be given up. In other words, elements that are consecutive

 logically on the list may not be consecutive geometrically in the

 computer hardware memory. Nothing is novel about this. For example,

 when we store the elements of a two-dimensional array column-wise, the

 row-wise neighboring elements are no longer adjacent in the essentially

 one-dimensional memory. However, if we know the location of the first

 element, the dimensions of the array, and the so-called mapping function

 (i.e., the algorithm of storing the array), we can easily determine the

 geometrical location of any element. Some similar arrangement is needed

 in the case of lists, and the solution is provided by links or, using

 another term, by pointers. A part of the space representing the list

 element is occupied by the name of the next element. This name field

 links with, or points to, the neighboring element, which in fact may be

 in any part of memory.

 Let us now consider one more concept, that of the Available Space

 List for free storage, before seeing how the nine basic operations are

 carried out. The Available Space List is essentially a reservoir of

 free space from which we draw when a new cell is needed and to which we

 return cells no longer needed, in order not to run out of free space too

 soon. Similarly, the SLIP system can automatically draw cells from or

 return cells to this reservoir. This dynamic memory allocation enables

 us to omit specifying in advance how long a list is going to be. In

 fact, we can create, change the size of, and erase lists during

 execution time.

 The importance of the Available Space List cannot be overemphasized,

 particularly in nonnumeric computations.

 112 SLIP

 MTS 8: LISP and SLIP in MTS

 June 1976

 Generally, dynamic memory management becomes indispensable whenever

 data are interrelated in a complex manner, and especially when process-

 ing causes data to be dynamically reorganized in an unpredictable way as

 part of the solution to the problem.

 Many of the problems that require these facilities are partly or

 wholly symbol-manipulating in nature, such as projects in artificial

 intelligence, analysis and synthesis of natural languages, computer

 graphics, simulation of cognitive processes, information retrieval, etc.

 However, the study of many numerically oriented problem areas is also

 greatly helped by list-processing techniques. The representation and

 manipulation of sparse matrices is an obvious example of this case.

 The initial objection to using list-processing languages was based on

 the apparent waste of memory space occupied by pointers. As we can see,

 in the problem of sparse matrices, just the opposite is often true.

 There are, of course, other arguments in favor of list-processing

 languages.

 Let us now turn back to the basic list processes. Operations 2 to 5

 amount to managing the relative linkings of certain cells. The name of

 the top cell is always contained in a special word, the symbolic name of

 which is FAVSLC. We can say the word points to the top of Available

 Space List.

 We can now discuss the rest of the basic operations.

 (1) Accessing the kth element consists of going along the links and

 increasing a counter of the elements passed by until k is

 reached.

 (2) Described above.

 (3) Described above.

 (4) Concatenating two lists amounts to simply overwriting the

 end-of-list symbol of the first list with the name of the top

 cell of the second list.

 (5) Splitting a list into two is the opposite of the above process.

 The symbolic name of the new list is identified by SLIP with the

 name of its top cell and is output in a standard manner.

 (6) Copying a list is straightforward. The name of the new list is

 usually output according to some convention. The name is output

 also when a new empty list is created. A single cell with an

 empty symbol field and no link is considered an empty list.

 (7) Counting the elements of a list consists of going down the list

 via the linking pointers, always adding one to a counter until

 the end-of-list symbol is encountered.

 (8) Sorting consists of systematically comparing "keys" and manipu-

 lating the link fields whenever necessary.

 (9) Searching for a special element on a list is accomplished again

 by a sequence of comparisons. The result can be either a simple

 yes/no answer concerning the success of the search, or the name

 of the matching element when found. In case of failure, a

 special symbol, such as zero, is output.

 SLIP 113

 MTS 8: LISP and SLIP in MTS

 June 1976

 Data types more complex than simple lists are also needed. A list

 structure consists of a main list and a hierarchy of sublists. The

 elements on the main list, and also on its sublists, are either data or

 names of sublists. In the cases of self-referencing by a list or

 cross-referencing between two lists, special care must be taken, of

 course, to avoid an infinite loop in processing.

 Rings and ring structures are analogous to lists and list structures,

 respectively. However, in rings and ring structures a link connects the

 last and first cells. This is why the term circular list is also used.

 The first cell of every ring must be marked; otherwise, the processing

 of elements would again go on indefinitely. The information structures

 in SLIP are of this type. Distinction can be made as to whether one- or

 two-directional pointers connect neighboring elements. The latter

 arrangement, also used by SLIP, offers certain processing advantages at

 the price of an extra link field in every node.

 Data representations present problems of external (user’s) and

 internal (inside the computer) representation. The solution to the

 problems of external representation is, of course, idiosyncratic to the

 language and will not be discussed here. Higher-level and more recent

 languages tend to be more convenient for the user.

 Depending on the amount of information stored in each cell and on the

 word length of the machine on which the list processing language is

 implemented one, two, or sometimes a higher varying number of computer

 words are used for a cell. The lists need not contain the actual

 information but may contain only links that point to a centralized data

 table. The referencing to data can be direct or manifold indirect

 (pointer to pointer to ... pointer to data). If a list contains data

 of different modes, special markers are needed to indicate the type of

 information in each cell.

 Description Lists contribute to the power of SLIP. These lists

 consist of a sequence of attribute-value pairs and can provide further

 information about lists. Suppose, for example, a list structure

 describes the current position on a chessboard. It has 64 sublists, one

 for each square. Each sublist has a Description List with attributes:

 occupancy status (the possible values are the 32 men and "empty"), your

 own men defending the square (the value is a list of men, possibly

 empty), opponent’s men attacking the square (the value is as before),

 etc. As we can see, in general the value can be symbolic or numeric, a

 single unit of data or a list of data. Also, a Description List itself

 can have a Description List and so on.

 If a list or list structure is copied or erased (i.e., returned to

 Available Space List), its Description Lists undergo the same treatment.

 An elegant and often very important list-processing technique

 involves the use of recursive computations. A recursive subroutine is

 one that calls itself. The input parameters of the subroutine called

 later normally depend on the intermediate results of the same subroutine

 114 SLIP

 MTS 8: LISP and SLIP in MTS

 June 1976

 called earlier. Since these parameters all can contribute to the

 overall final result, they have to be preserved on push-down stacks.

 An example should clarify the idea. Instead of referring to the

 hackneyed recursive computation of the factorial function N!, let us

 consider the following.

 Suppose there is a subroutine R, which simplifies symbolic formulae.

 It carries out the addition/subtraction of identical terms; performs the

 multiplication/division of numeric coefficients; reduces A⁰ to 1, A+0 to
 A, A*0 to 0, A*1 to A; gives warning messages in cases of 0/0 and

 infinity/infinity, etc. We call R for a complex, heavily parenthesized

 expression. (For the sake of explanation, let us forget that the

 computer representation of formulae is usually in a parenthesis-free,

 so-called Polish notation. The technique, however, is basically the

 same in any form of representation.) So, R first simplifies the

 expression as if one single symbol were inside the outermost pair of

 parentheses. R then turns to treat the expression therein by calling

 itself again. As it goes further and further inside, peeling off pairs

 of parentheses, it calls itself again and again. Finally, the parenthe-

 ses disappear and further simplifications may have to be done. R has to

 substitute the last result into the next to last, this result into the

 one before that, and so on until it arrives back at the highest level of

 expression. The intermediate results or, rather, pointers to the

 intermediate results, are popped off a stack whenever they are needed.

 Although most, if not all, recursive computations can be transformed

 into iterative ones, recursion is always elegant and often more

 efficient.

 The last topic to be discussed in this section is the problem of

 memory management. We saw earlier that the dynamic memory allocation

 scheme enables the system to use only the currently necessary amount of

 storage area. It is obvious, however, that during the execution of the

 program many cells, lists, and list structures may no longer be needed.

 We would soon run out of even the largest memories available today if

 somehow the storage areas occupied by unnecessary information were not

 returned to Available Space List. This process is called garbage

 collection and is of extreme importance.

 We can distinguish between three methods of memory management as far

 as garbage collection is concerned. First, it can be completely under

 the programmer’s control, for example, IPL. See Newell, et al. (1) and

 Sammet (2).

 The SLIP System uses a second type of garbage collection. In SLIP

 one list may have several superlists. There is, therefore, a so-called

 reference counter at the head of every list that indicates the number of

 times that list is referred to by other "live" data structures. Every

 time a list is erased the reference counters of its sublists are

 decreased by one. If a reference counter reaches zero, that sublist is

 also returned to Available Space List. Self-referencing and cross-

 SLIP 115

 MTS 8: LISP and SLIP in MTS

 June 1976

 referencing lists obviously require special attention; otherwise they

 would never be erased, or infinite processing loops could develop. The

 programmer may, therefore, override the control role of the counters and

 return to Available Space List, or keep alive, any list.

 The third technique is completely automatic, relieving the programmer

 of all housekeeping duties. The LISP system lets the program run until

 almost all free space is exhausted. Two phases of garbage collection

 are then called into action. In the first phase, all those lists are

 marked that can be accessed from (i.e., named by) other lists. The

 nonaccessible data are returned to Available Space List in the second

 phase, and the marks are eliminated so that another cycle of garbage

 collection can take place at a later stage.

 Obviously, this is a very time-consuming method. It excludes the

 possibility of using the language in "real time." With most large-scale

 projects, the frequency of garbage collection goes up rapidly as the

 program progresses, and the number of liberated cells per action

 diminishes at the same time. To stop nonsensical oscillations of this

 kind, the programmer can prespecify in some systems the termination of

 the run if a garbage collection cycle results in less than a certain

 number of cells being returned to Available Space List.

 Conventions ___________

 The basic element of SLIP is a SLIP-cell. Each such cell is divided

 into two parts. The first part, the linkword, is occupied with linking

 and bookkeeping information useful in linking each cell with its

 relatives as required by SLIP. The second part occupying the second

 half of the cell is a datum. This datum contains the user’s informa-

 tion. A datum may be any bit configuration such as integer, real,

 character strings, etc. A datum may also have the value of a SLIP-name

 which is the name of a list. It is in this manner that a list becomes a

 sublist of another list.

 Every list has one cell, the Header, which is equivalent to the "name

 of that list." This Header cell’s space is completely devoted to

 information regarding the state of the list. No space in this cell is

 available for the user. However the user, through SLIP functions, has

 access to this information; one may inquire if the list is empty, i.e.,

 there is a Header but no other cells are attached to the Header.

 Each SLIP cell has as a name an INTEGER value specifying its location

 in the SLIP memory. In this description, CADR refers to this name or

 cell address.

 Even in the original version of SLIP it was necessary to provide two

 names for certain functions to be compatible with FORTRAN and to prevent

 undesirable conversions. This problem is further aggravated in this

 116 SLIP

 MTS 8: LISP and SLIP in MTS

 June 1976

 version and consequently additional functions are provided to shelter

 the user from this nonproductive concern.

 It is preferred, as a matter of style, to speak of cell names rather

 than machine addresses of cells. The particular conversion from cell

 name to machine address ought not to be a user’s concern. However, we

 are at the mercy of our wish to remain as compatible as possible with

 the tradition of SLIP and thus we retain previously defined mnemonics

 emphasizing the machine address of a word or cell. We have, however,

 added functions to make the user’s lot comfortable.

 However, now particular attention must be paid to the mode declara-

 tion of functions to insure compatibility with FORTRAN IV and its

 implicit mode conversion policies. To assist the user, a complete

 tabulation of the policy is provided as is a complete tabulation of the

 proper mode declaration for functions; see the subsection "Summary of

 360 SLIP Functions and Subroutines."

 FUNDAMENTAL SLIP OPERATIONS ___________________________

 For a readable introduction to the principles of list processing, and

 SLIP in particular, see Findler, et al. (4).

 The data structures of the Symmetric List Processor (SLIP) consist of

 bidirectional rings. Each element is connected by pointers to both its

 left and right neighbors. (Sometimes we will use the synonymous terms

 above and below instead of left and right respectively.) Also, the last _____ _____ ____ _____

 cell points back to the beginning of a ring.

 In the following discussion we will use the more customary terms list ____

 and list structure rather than ring and ring structure, since no ____ _________ ____ ____ _________

 misunderstanding can arise from this substitution.

 SLIP Data Elements __________________

 The first word of a SLIP cell, the linkword, contains the list-

 linking information and is not directly needed by the user. The second

 word of a SLIP-cell contains some datum.

 The DATUM field is one word or 32 bits long. It may contain anything

 which can be represented by 32 bits.

 The cell name of the Header is called the name of the list. If more ____

 than one FORTRAN word has the list name, the list is said to have

 several aliases. If two aliases are established for a list that does _______

 not imply that it has been referenced twice.

 SLIP 117

 MTS 8: LISP and SLIP in MTS

 June 1976

 Before we consider the various operations in SLIP, several points

 must be discussed.

 Programming Conventions (SLIP with FORTRAN IV) __

 A FORTRAN subroutine-type subprogram does not return values other __________

 than those of the variables, either in COMMON or in the list of the

 subroutine arguments. A function-type subprogram, on the other hand, ________

 returns, in addition, a single value, that of its name, as if the name

 were a variable. This represents the main programming advantage of

 functions: they can be nested in arbitrary depth in the argument list

 of other subprograms (no recursive calls). Further, a function can be _____

 CALLed like a subroutine, in which case the returned value is, of

 course, lost. Finally, the results of the processes in a subroutine can

 be obtained by including the subroutine name in a FORTRAN arithmetic

 statement as if it were a function. A function must always have at

 least one dummy argument lest it be mistaken for a variable.

 The FORTRAN mode conventions need to be explained. Many SLIP

 subprograms disregard the mode of the subprogram arguments but they are

 concerned with addressing conventions. To avoid unwanted conversions,

 the functions REALS and INTGER may be used for the output of ill-named

 functions. For example, as we will see later, the subprogram TOP(LST)

 retrieves the datum of the top cell of the list with alias name LST.

 The cell’s datum may contain a list alias. If TOP is called as a

 function, it delivers the contents of the top cell as its value. If

 this value is an integer, we do not want it to be converted into a

 floating-point number. To avoid this we use assignment statement

 I=INTGER(TOP(LST))

 to obtain the integer stored in the datum. Similarly, the function

 REALS (REAL-short) delivers the single-precision REAL value without

 conversion.

 Let us consider a significant difference between FORTRAN and SLIP.

 In FORTRAN, we manipulate contents of words that have symbolic names.

 For example, the instruction

 A = B+C

 adds the contents of the words with symbolic addresses B and C and

 places the sum into a word with symbolic address A. In SLIP, both the

 contents and the addresses of words can be operands.

 The following notation will be used uniformly in the arguments of

 SLIP subprograms.

 118 SLIP

 MTS 8: LISP and SLIP in MTS

 June 1976

 Symbol Meaning Remark ______ _______ ______

 X FORTRAN variable Symbolic address of a computer word of

 any contents, mode, or format.

 LST Alias name of a Symbolic address of a DOUBLE PRECISION

 list computer word that contains, in re-

 peated form the cell name of the first

 word of the Header cell.

 CADR or FORTRAN variable Symbolic address of a computer word or

 MADR that contains, in integer format, the

 name of a SLIP cell. CADR is an

 INTEGER variable. Note that a name,

 either in list name format or as an

 integer in the left-word can be

 offered as a MADR, a DOUBLE PRECISION

 variable. [Note a MADR can always be

 offered where a CADR is expected. The

 converse is not true.]

 KADR FORTRAN variable Symbolic address of a computer word

 that contains, in integer format, the

 machine address of another word.

 NRD Alias name of a Symbolic address of a computer word

 reader that contains, in integer format, the

 name of the top cell of a Reader

 stack.

 A list notation which will often be convenient to represent list

 structures is the so-called string format. For example, the following

 two sets of strings are equivalent. On one hand

 List A: (S3,Q1,(R2,R4),T1,(),(S1,T2))

 List B: (U2,(V3,V1,(W0,Q2)),S2)

 and on the other

 List A: (S3,Q1,List C,T1,List D,List E)

 List B: (U2,List F,S2)

 List C: (R2,R4)

 List D: ()

 List E: (S1,T2)

 List F: (V3,V1,List G)

 List G: (W0,Q2)

 As shown above, parentheses delimit lists and sublists; commas (or,

 according to another notation, spaces) separate elements on a list,

 which are written horizontally in a sequential manner. Direct input of

 lists and list structures is similar to this in format (see RDLSTA and

 PRLSTS).

 SLIP 119

 MTS 8: LISP and SLIP in MTS

 June 1976

 Initialization. SLIP requires that the program first call the

 subroutine INITAS which sets up 10 public lists with the symbolic

 aliases W(1), W(2), ..., W(10). The subroutine has two arguments,

 INITAS (SPACE,NDIM), that refer to the name and the dimension of the

 one-dimensional array of free space. If we intend to use these public

 lists then we must first declare¹

 COMMON/PUBLIC/W(10)

 The variables SPACE and W must be declared DOUBLE PRECISION.

 The argument SPACE is the name of a DOUBLE PRECISION linear array of

 dimension NDIM. In our system the user need not make of this space

 assignment if he sets NDIM to a negative integer; the magnitude of this

 integer will be used as an estimate of the number of pages of memory

 initially assigned. The integer is rounded up, modulo 4096. In any

 event space is acquired as needed. Under these conditions SPACE does

 not have to be dimensioned but must be declared DOUBLE PRECISION.

 Alternately, if SPACE is dimensioned NDIM, and NDIM is positive, then

 this will be the assigned space for the available space list of NDIM/2

 SLIP cells. Should all the available space be exhausted SLIP will

 abruptly terminate execution with announcements when additional space is

 sought.

 Another point to be noted here, but which has no effect on the user,

 is that in our SLIP system the available space list is a linked list of

 one-directional pointers whose starting and ending names are stored in

 FAVSLC and LAVSLC respectively.

 Processes Affecting the Available Space _______________________________________

 A basic operation, creating a list, is done by the function

 LIST(LST)

 Both its returned value and the value of its argument are the aliases of

 the newly created empty list. We can, for example, write

 DM2 = LIST(STACK)

 and refer to the same list by the names DM2 and STACK. We are, of

 course, also permitted to put

 ¹Normally AVSL and W were maintained in unlabeled COMMON; we have
 elected to use FAVSLC and LAVSLC for AVSL and labeled common PUBLIC, a

 deviation from the early SLIP implementation. Also only 10 public

 lists are created in this version of SLIP; early SLIP implementations

 use 100.

 120 SLIP

 MTS 8: LISP and SLIP in MTS

 June 1976

 DN4 = LIST(DN4)

 Further, if the argument is the numeral 9, a "local" sublist is created

 with a reference counter 0 rather than the usual 1. If the name of this

 list is put on another list, the sublist is automatically erased at the

 time the superlist is returned to the available space list. (Sometimes

 this kind of list is called temporary, as opposed to permanent lists

 that are created with non-9 aliases.)

 Another function

 J = IRALST(LST)

 returns the list with alias LST to the available space list. This

 return takes place only if the list’s reference counter is 1; otherwise

 the counter is decremented by 1. J is always the value of the reference

 counter after the operation. If it is 0, the list has been erased. The

 functions

 DELETE(CADR)

 or

 DELETE(MADR)

 should be employed to erase a list cell. They erase any list cell

 except the Header and should be employed to return a cell no longer

 needed to the available space list. These functions insure that the

 link fields are properly rewritten. The value of the functions is the

 datum of the cell returned. When accidentally a Header cell is named by

 CADR or MADR, the value is 0, a warning message is given, and no action

 is taken.

 Another function of direct help to the programmer is

 MTLIST(LST)

 The function returns to the available space list all cells of the list

 LST except its Header and its Description List, if any. Its returned

 value is the alias of the just-emptied list.

 It is noteworthy that, because of the postponed clean-up operation in

 the returned cells, the time required by MTLIST is completely independ-

 ent of the length of the list in question. The operation affects the

 same number of link fields, i.e., those in the boundary cells, each

 time.

 The function

 LPURGE(LST)

 deletes all recursive references to lists from a list structure with the

 alias LST. Its returned value is the number of times names were

 SLIP 121

 MTS 8: LISP and SLIP in MTS

 June 1976

 deleted. The purpose of this function is to eliminate any circularity

 within a list structure, such as cross-referencing and self-referencing.

 If the programmer does not wish to thus modify a list structure, but

 still wishes to process each element on it, he can make a copy of the

 list structure and subject the copy to LPURGE before processing. A

 similar technique employs marking of processed sublists and final

 unmarking at the end. See Findler, Pfaltz and Bernstein (4).

 Adding Cells and Data to Lists ______________________________

 Most of the subprograms here appear in pairs because of the symmetric

 nature of SLIP lists.

 NXTLFT(X,CADR)

 or

 NXTLFT(X,MADR)

 and

 NXTRGT(X,CADR)

 or

 NXTRGT(X,MADR)

 are functions that insert a new cell to the left and right, respective-

 ly, of the cell with name CADR or MADR. The contents of X are then

 placed into the datum word of the inserted cell. When these routines

 are called as functions, the delivered value is the name of the newly

 inserted cell, an integer.

 For example

 IDUM=NXTRGT(LIST(9),LIST(L1))

 creates a list with alias L1 and puts on it the name of an empty

 sublist. The functions

 NEWTOP(X,LST)

 and

 NEWBOT(X,LST)

 add a new cell to the top and bottom, respectively, of the list with

 alias LST and put the contents of X into the datum of the new cell. The

 remarks made concerning the previous two routines also apply here.

 These functions perform the push-down operation with the piece of datum

 122 SLIP

 MTS 8: LISP and SLIP in MTS

 June 1976

 X at either end of the named list. As can be seen, none of the original

 cells are shifted in the memory. Therefore, the terms push-down and,

 similarly, pop-up must be interpreted accordingly.

 The datum of the top and bottom cells, respectively, can be replaced

 (as opposed to the preserving push-down operation) by the functions

 SUBSTP(X,LST)

 and

 SUBSBT(X,LST)

 The remarks made above concerning NXTLFT and NXTRGT are valid here, too,

 except that the returned value, when SUBSTP or SUBSBT is called as a

 function, is the old contents of the cell being overwritten with X.

 The function

 SUBST(X,CADR)

 replaces the contents of the datum of the SLIP-cell, of cell name CADR,

 with the contents of X. The returned value is the old contents of the

 cell.

 Another REAL function, STRDAT, has a similar purpose; it is invoked

 by

 RDUM=STRDAT(X,CADR)

 and RDUM will contain the value of X upon return.

 Block insertions are performed by the functions

 INLSTR(LST,CADR)

 and

 INLSTL(LST,CADR)

 They decapitate the list LST (i.e., leave its Header as an empty list)

 and insert the rest of the list to the right and left, respectively, of

 the cell with name CADR.

 Retrieving Data from Lists __________________________

 Two types of operations fall into this category. Data can be

 accessed either without changing the list or coupled with destroying

 (i.e., returning to the Available Space List) the cell that contains the

 information being retrieved. Accordingly, the functions

 SLIP 123

 MTS 8: LISP and SLIP in MTS

 June 1976

 TOP(LST)

 and

 BOT(LST)

 deliver the datum of the top and bottom cells, respectively, of the list

 with alias LST without changing the list. The programmer should first

 test whether the list is empty. If it is, the returned value is the

 contents of the datum word of the Header, essentially garbage.

 The equivalent functions, that also destroy the cell involved, are

 POPTOP(LST)

 and

 POPBOT(LST)

 In case LST refers to an empty list, 0 is returned and a warning message

 is given.

 More general retrieval routines, affecting the inner part of lists,

 are discussed in connection with the Reader mechanism (see the subsec-

 tion "The Reader Mechanism and Advance Functions").

 Retrieving Data from SLIP-Cells _______________________________

 The twin functions

 DATUM(CADR)

 or

 DATUM(MADR)

 and

 IDATUM(CADR)

 or

 IDATUM(MADR)

 have similar roles; they return the contents of the datum part of the

 cell whose name is in CADR or MADR. Again the duplication is provided

 to overcome the FORTRAN mode-conversions in unwanted cases. Specifical-

 ly DATUM returns the full double word contents of the datum in DOUBLE

 PRECISION mode while IDATUM returns only the first word of the datum in

 INTEGER format. Should that first word be wanted in REAL format then

 one can employ

 124 SLIP

 MTS 8: LISP and SLIP in MTS

 June 1976

 REALS(DATUM(CADR))

 Note that

 IDATUM(CADR)

 is equivalent to

 INTGER(DATUM(CADR))

 More Routines Concerning List Cells ___________________________________

 The following two functions split lists in two.

 NULSTR(CADR, LST)

 and

 NULSTL(CADR, LST)

 create new lists. The new list is formed of a block of cells taken from

 the original list with alias LST. The block consists of the cell with

 name CADR and all cells to its right or left, respectively. These cells

 are, of course, removed from the original list. The schematic diagram

 in Figure 1 makes these operations clear. The returned value of the

 functions is the name of the new list.

 SLIP 125

 MTS 8: LISP and SLIP in MTS

 June 1976

 ┌──┐ ┌ ┌
 | | Original New | Original New |

 | Original | list list | list list |

 | | changed with | changed with |

 | List | after new | after new |

 | | NULSTR Header | NULSTL Header |

 |────────────┼────────────────────────┼────────────────────────| ┌ ┘
 | ┌────────┐ | ┌────────┐ ┌────────┐ | ┌────────┐ ┌────────┐ |
 | | | | | | | | | | | | | |

 | | HEADER | | | HEADER | | HEADER | | | HEADER | | HEADER | |

 | | | | | | | | | | | | | |

 | └────────┘ | └────────┘ └────────┘ | └────────┘ └────────┘ |
 | | | |

 | ┌────────┐ | ┌────────┐ | ┌────────┐ |
 | | | | | | | | | |

 | | | | | | | | | |

 | | | | | | | | | |

 | | | | | | | | | |

 | | | | | | | | | |

 | |────────| | └────────┘ ┌────────┐ | |────────| | ┌ ┘ ┌ ┘
 | | | | | | | | | |

 | | | | | | | | | |

 | |────────| | |────────| | ┌────────┐ └────────┘ | ┌ ┘ ┌ ┘
 | | | | | | | | | |

 | | | | | | | | | |

 | | | | | | | | | |

 | | | | | | | | | |

 | | | | | | | | | |

 | └────────┘ | └────────┘ | └────────┘ |
 | | | |

 └──┘ ┘ ┘

 Figure 1: The Result of NULSTR and NULSTL Operations

 The function

 LSTEQL(LST1, LST2)

 compares two list structures with aliases LST1 and LST2. If the two are

 identical in structure and content, the returned value is 0; otherwise

 it is -1. Description Lists and List Marks (see the subsection "List

 Marks and Description Lists") are not compared.

 The function

 LSSCPY(LST)

 creates a copy of the list structure with alias LST. Its returned value

 is the name of the new list structure. Description Lists and List Marks

 are not copied.

 The function

 126 SLIP

 MTS 8: LISP and SLIP in MTS

 June 1976

 LISTMT(LST)

 tests whether the list with alias LST is empty. If so, it delivers 0

 value; otherwise it delivers -1. Note that an empty list can have a

 nonempty Description List.

 The following functions return cell names.

 MADLFT(CADR)

 and

 MADRGT(CADR)

 yield the names of the cell to the left and right, respectively, of the

 one specified in the argument. The value is returned in INTEGER mode.

 If it refers to the Header the SLIP name format is used. If the integer

 input argument is the cell name of a Header of a list, the names of the

 bottom and top cells, respectively, are obtained.

 For this version of SLIP two functions CADLFT and CADRGT whose

 purpose is similar to the above have been added.

 CADLFT(CADR,IFLAG)

 and

 CADRGT(CADR,IFLAG)

 yield the names of the cell to the left and right, respectively, of the

 one specified in the argument. The value is always in INTEGER mode. If

 the value refers to the Header, IFLAG is -1, otherwise IFLAG is 0.

 Therefore, for example

 DAT = DATUM(MADRGT(LST))

 or

 DAT = DATUM(CADRGT(LST,IFLAG))

 and

 DAT = TOP(LST)

 are equivalent.

 MADNTP(LST,N)

 and

 MADNBT(LST,N)

 SLIP 127

 MTS 8: LISP and SLIP in MTS

 June 1976

 return the cell name of the Nth cell from the top and bottom,

 respectively. If fewer than N cells are on the list, the counting is

 circular. The Header is included in the count, but the first cell (N =

 1) from the top is the top cell. Therefore, if the list contains M

 cells, including the Header, we can obtain the cell name of the first

 cell by writing either

 MADHD = MADNTP(LST, M + 1)

 or

 MADHD = MADNBT(LST,M+1)

 The datum, say an integer, can be retrieved from the Ith cell by

 INT = INTGER(DATUM(MADNTP(LST,I)))

 or

 INT = IDATUM(MADNTP(LST,I))

 HOW TO MAKE COMMENTS ON LISTS _____________________________

 List Marks and Description Lists ________________________________

 It is often necessary to attach additional information to lists. If

 this information is restricted to designating four different classes of

 lists, list marks are used. More extensive comments require Description

 Lists.

 The function

 MRKLST(N,LST)

 places the integer N(=0,1,2, or 3) as a List Mark for the list with

 alias LST. The returned value of the function is the list name (in list

 name format).

 The function

 MRKLSS(N,LST)

 performs the same operation for a whole list structure. The returned

 value is the list name (in list name format).

 The function

 LSTMRK(LST)

 128 SLIP

 MTS 8: LISP and SLIP in MTS

 June 1976

 delivers as its value the List Mark found in the Header cell of the list

 with alias LST.

 The processing of a complex list structure with interwoven auto- and

 cross-referencing is greatly enhanced by the List Mark facility.

 Description Lists are "associated" with the corresponding lists, as

 opposed to the "subordination" of sublists. However, a particular list

 can be both a Description List and a sublist of several lists--if it

 makes sense. This close relation betweeen a list and its Description

 List also means that erasing a list automatically erases its Description

 List as well.

 To erase the Description List only, we can use

 IDUM=IRALST(NAMEDL(LST))

 where the function

 NAMEDL(LST)

 delivers as its value the alias of the Description List associated with

 list LST.

 Each Description List contains an even number of SLIP-cells, repre-

 senting attribute-value pairs. An attribute can be any type of _________

 characteristic of the list, in a format determined by the programmer.

 The value of the attribute occupies the second cell and can be a number, _____

 characters, or even the alias of a value list.

 Several subprograms facilitate the use of Description Lists.

 The function

 LISTAV(LST)

 creates an empty Description List for the list with alias LST. If a

 Description List already exists for this list, it is not erased but is

 replaced with the new empty Description List. The function returns as

 its value the alias of the new Description List.

 The function

 MAKEDL(LST1,LST2)

 causes the list with alias LST1 to become the Description List of list

 LST2. If the latter already has a Description List, it is first erased.

 The function returns the value LST2.

 The function

 LDATVL(AT,VAL,LST)

 SLIP 129

 MTS 8: LISP and SLIP in MTS

 June 1976

 either adds to an existing Description List of the list LST or creates

 one and places onto it the attribute-value pair AT and VAL. It does not

 check whether the given attribute is already on an existing Description

 List. The returned value is the alias of the Description List.

 The function

 NEWVAL(AT,VAL,LST)

 on the other hand, searches the Description List of list LST for the

 attribute AT. If the attribute is found, the function assigns the new

 VAL to it and returns the old one. Otherwise both AT and VAL are added

 to the Description List. If the Description List does not exist, an

 empty one is created first. When either AT is not found or there is no

 Description List, the value of the function is set to 0. Of course, if

 distinction must be made between "no previous attribute AT" or "0

 previous value of AT," a corresponding test should precede the use of

 NEWVAL. Also, note the difference in the operation and in the returned

 values between LDATVL and NEWVAL.

 The function

 NOATVL(AT,LST)

 removes the attribute AT and its associated value from the Description

 List of LST. The deleted value is the value returned by the function.

 If either LST has no Description List, or the attribute AT is not on it,

 the returned value of NOATVAL is 0, and no action is taken. Again, a

 distinction must be made between "no previous attribute AT" and "0

 previous value of AT."

 The function

 ITSVAL(AT,LST)

 delivers as its value, the value associated with the attribute AT. If

 the latter is not found, 0 is returned.

 The function

 MTDLST(LST)

 empties the Description List of list LST if there is one; otherwise, no

 action is taken. It returns the alias, LST, of the list.

 The function

 MADATR(AT,LST)

 returns the name of the cell on the Description List that contains the

 attribute AT. If the latter is not found, the function delivers -1.

 130 SLIP

 MTS 8: LISP and SLIP in MTS

 June 1976

 The above retrieval routines call the subroutine

 DERROR(LST)

 if they fail to find the required Description List. The routine prints

 the name of the Header cell and a warning message.

 The Reader Mechanism and the Advance Functions __

 The Reader is a one-directional stack, the elements of which refer to

 the branch points at which descents were made into sublists.

 The following subprograms are useful when working with Readers.

 The function

 LRDROV(LST)

 appoints a Reader for the list with alias LST. It is a single

 SLIP-cell. A fatal error message is sent if LST is not a list alias.

 The cell name of the Reader is the returned value.

 The function

 IRARDR(NRD)

 does the opposite--it erases the whole Reader stack whose name is, in

 integer format, in NRD. The returned value indicates the current depth

 of the Reader’s descent into the associated list structure.

 The following three routines unpack the information in the top cell

 of the Reader stack.

 The function

 LPNTR(NRD)

 returns the name of the cell, CADR, to which the Reader currently

 points.

 The function

 LOFRDR(NRD)

 delivers the name of the list to which the Reader is appointed.

 Finally, the function

 LCNTR(NRD)

 SLIP 131

 MTS 8: LISP and SLIP in MTS

 June 1976

 yields the depth to which the Reader has descended into the associated

 list structure.

 Other routines include the function

 REED(NRD)

 which returns as value the contents of the SLIP-cell to which the Reader

 NRD points. It can be considered a null advance function compared to

 the following three routines.

 The function

 LVLRVT(NRD)

 causes the Reader NRD to ascend back to the main list from any current

 position in a list structure. After the execution of this routine, the

 Reader points to that SLIP-cell on the main list from which the descent

 originated. If the Reader initially points to a main-list element no

 action is taken. When LVLRVT is used as a function the returned value

 is that of the argument. Thus, LVLRVT can be nested within another

 function that also requires the NRD argument.

 The function

 LVLRV1(NRD)

 has a similar role, but it makes the Reader ascend only one level.

 Again, no action is taken if the Reader initially points to the main

 list.

 The function

 INITRD(NRD)

 goes linearly along the list it is currently pointing to until it hits

 the Header cell.

 A Reader can be initialized from any state by

 IDUM=INITRD(LVLRVT(NRD))

 Here LVLRVT brings the Reader to the "surface" (i.e., to the main list),

 and INITRD makes it point to the Header of that list.

 There is no theoretical limitation concerning the number of Readers

 appointed to and traversing concurrently the same list structure. A

 copy of the Reader can be made by using the function

 LRDRCP(NRD)

 The name of the new Reader is delivered as its value.

 132 SLIP

 MTS 8: LISP and SLIP in MTS

 June 1976

 The function

 LSTPRO(LST,NRD)

 searches the Reader stack with alias NRD until it finds a cell that is

 associated with, or appointed to, the list LST. The returned value is 0

 if the search is successful; otherwise it is -1.

 This function is needed when a sublist references itself or a

 higher-level list. Clearly, in this case, structural advancing would

 never terminate. The function LSTPRO discovers such a situation. Note

 that the advance functions described below do not use LSTPRO and,

 therefore, fail in the case of recursive list structures.

 The best schema to define the advance functions is

 |E|

 |L| | | |L|

 ADV | | |N| | | (NRD,IFLAG)

 |S| | | |R|

 |W|

 One letter from each column must be chosen to derive an advance

 function. ADVLWR and ADVSWL are representative of the twelve possible

 cases. In each case, the Reader designated by NRD, which was set up

 beforehand, is made to point to the next unit. The advancement is

 linear (L) or structural (S); the next unit is a datum element (E), a

 sublist name (N), or a word containing either of these two types of

 elements (W); finally, the direction is to the left (L) or right (R).

 The returned value of these functions is the datum of the SLIP-cell

 to which the advanced Reader points. The INTEGER parameter IFLAG stays

 0 as long as the advancement does not reach a Header. With linear

 advancement, when a Header is reached, IFLAG assumes the value -1. With

 structural advancement, when a Header is reached, the Reader ascends

 into a superlist if it can. When the Reader already points to the main

 list, no further ascent is possible; and IFLAG becomes -1. Thus,

 advancement is not terminated unless the whole list (linear case) or the

 whole list structure (structural case) has been systematically and

 selectively traversed. When IFLAG = -1, the returned values are the

 contents of the datum word of the Header cell and, therefore, are

 essentially garbage.

 The following program segment searches a list structure with alias

 LST determining whether any of its elements are identical with the

 FORTRAN word SYMBOL.

 DOUBLE PRECISION ADVSER,DATUM,SYMBOL

 LRDR=LRDROV(LST)

 10 CONTINUE

 DATUM=ADVSER (LRDR,IFLG)

 IF (IFLG.NE.0) GO TO 20

 IF (DATUM.NE.SYMBOL) GO TO 10

 SLIP 133

 MTS 8: LISP and SLIP in MTS

 June 1976

 WRITE (6, 100) SYMBOL

 100 FORMAT (5X,A8,15H IS IN LIST LST)

 GO TO 30

 20 CONTINUE

 WRITE (6,110) SYMBOL

 110 FORMAT (5X,A8,19H IS NOT IN LIST LST)

 30 CONTINUE

 CALL IRARDR (LRDR)

 As can be seen, the use of the advance functions must be preceded by

 the creation of the Reader. Similarly, after the task has been

 accomplished, the programmer should erase the Reader.

 Suppose we wish to write a subroutine that searches a list structure

 with alias LST for all occurrences of the symbol S. If found, S is

 removed; otherwise nothing happens.

 SUBROUTINE SEARCH (LST,S)

 DOUBLE PRECISION ADVSWL,ADVSWR,X,S,LST

 LSTRDR = LRDROV (LST)

 100 CONTINUE

 X = ADVSWR (LSTRDR,IFLG)

 IF(IFLG.NE.0) GO TO 200

 IF(X.NE.S) GO TO 100

 IPOINT = LPNTR (LSTRDR)

 CALL ADVSWL (LSTRDR,IFLG)

 CALL DELETE (IPOINT)

 GO TO 100

 200 CONTINUE

 CALL IRARDR(LSTRDR)

 RETURN

 END

 Note that the second call to the advance function in the opposite,

 left, direction is necessary because of the DELETE operation.

 The following three examples illustrate the use of these functions.

 WHATS = ADVLWR(KADR1,IFLAG1)

 modifies the LPNTR field of the Reader with alias KADR1 to point to the

 cell immediately to the right of the one it pointed to before execution

 of the function. If this new cell is the Header of the list involved,

 IFLAG1 is set to -1, and WHATS is essentially garbage. Otherwise,

 IFLAG1 is 0, and WHATS contains the datum of the SLIP-cell currently

 pointed to by the Reader. Note that no descent is made to a sublist

 even if a reference to it is encountered.

 The statement

 IUP = INTGER(ADVSNL(NRD2,IFLAG2))

 134 SLIP

 MTS 8: LISP and SLIP in MTS

 June 1976

 assigns to IUP the next accessible alias, if available, on the list

 structure with Reader NRD2. If the Reader originally points to one, a

 descent is made. If the original level corresponds to a terminal list

 with no more sublists, an ascent is made. IFLAG2 stays 0 as long as the

 assignment is successful. When the Reader finally points to the Header

 of the main list, IFLAG2 becomes -1. The advances are made in the left

 direction.

 Finally,

 THERIN = ADVSER(NRD3,IFLAG3)

 produces the next nonname datum to the right. Descents and ascents are

 made whenever needed. IFLAG3 is 0 until the Reader no longer points to

 the Header of the main list. It then becomes -1.

 In addition to the Reader and the advance functions, another simpler,

 less time-consuming, and in some applications completely satisfactory,

 technique is available. The sequence operations, the basis of this

 technique, use a Sequence Reader, which is a single FORTRAN word, rather

 than a stack of special SLIP-cells. Single-level traversal and descent

 to arbitrary depth are possible; but since no historical record of the

 descents is kept, no ascent can take place.

 The function SEQRDR via the code

 SRDR = SEQRDR(LST)

 sets up a single INTEGER computer word SRDR as a Sequence Reader for the ________ ______

 list LST. This Sequence Reader contains the cell name of the SLIP-cell

 currently pointed to by the Reader. A sequence advance operation

 indicates the cell name to which the advanced Sequence Reader points

 next.

 The returned value of the sequence functions is again the datum of

 the SLIP-cell being examined. The linear sequence functions

 SEQLR(SRDR,IFLAG)

 and

 SEQLL(SRDR,IFLAG)

 are analogous to the linear advance functions ADVLWR and ADVLWL,

 respectively. SRDR is the Sequence Reader. IFLAG is set to -1, 0, or

 +1 if the retrieved SLIP-cell contains a datum, contains a sublist name,

 or is a Header cell, respectively.

 The structural sequence functions

 SEQSR(SRDR,IFLAG)

 SLIP 135

 MTS 8: LISP and SLIP in MTS

 June 1976

 and

 SEQSL(SRDR,IFLAG)

 resemble ADVSER and ADVSEL, respectively. They never terminate on a

 name cell; rather, they descend into the sublist. When they arrive at a

 terminal sublist (i.e., one that has no more sublists), they assume the

 role of the above two linear sequence functions, SEQLR and SEQLL, at

 that level. Therefore, IFLAG can only be -1 for datum cells and +1 for

 Header cells.

 Recursion _________

 Recursion is one of the most powerful techniques in list processing.

 SLIP also has this facility although its level of elegance is well below

 that of LISP.

 Let us first consider a few subprograms.

 The subroutine

 PRESRV(N)

 preserves (i.e., pushes down and duplicates) the top cell of the first

 N(≤10) public lists, the Ws, which are described in the subsection
 "Programming Conventions (SLIP with FORTRAN IV)."

 The subroutine

 RESTOR(N)

 does the opposite. It deletes the top cell from each of the first

 N(≤10) public lists.

 The function PARMT has two similar forms of implementation. In our

 version of SLIP

 PARMT2(A,B)

 places A and B on the top of the first two public lists, W(1) and W(2)

 respectively.

 However

 PARMT(N,ARG)

 puts the first N(≤10) arguments, ARG(1)...ARG(N), in the top cell of the
 first N public lists. In both versions of PARMT, the returned value is

 the new contents of W(1). If an attempt is made to put values on more

 than the allowable public list an error comment is printed and the

 program is terminated.

 136 SLIP

 MTS 8: LISP and SLIP in MTS

 June 1976

 Now we can return to the problem of recursion. Obviously, if a

 FORTRAN routine calls itself before control is yielded back to its

 superroutine, the linkages pointing to the superroutine are overwritten

 and errors arise. In a similar manner, the values of the arguments to

 be transferred are also lost.

 If we could, however, store the return locations and the argument

 values in push-down stacks, we could solve our problem. Every new call

 of a routine would add new top layers to the appropriate stacks

 (linkages and argument values), and a return to a superroutine (or

 higher-level use of the same routine) would be associated with popping

 off the top of the stacks. These push-down and pop-off operations are

 performed by the function VISIT and TERM, respectively.

 Actually, SLIP provides the facility for using a recursive loop _________ ____

 within a subroutine rather than the more general recursive call of

 routines. The function VISIT transfers to the first statement of the

 loop and provides the arguments for it. The subroutine TERM terminates

 the loop and returns control to the last VISIT function executed. It is

 possible to go through loops within loops. The format for this is

 VISIT(INSNAM)

 and

 TERM(Y)

 where INSNAM is an instruction name to which a statement number was

 previously assigned by a FORTRAN ASSIGN statement. Control is trans-

 ferred to this statement by VISIT. The return linkage stack, internal

 to VISIT, is also pushed down.

 The value, Y, delivered by VISIT is actually provided by TERM after

 the calculation in the loop is completed.

 This action completes VISIT, and control is transferred to the next

 statement.

 A relatively simple example, using the calculation of N factorial,

 gives the best explanation. Using its recursive definition,

 N! = N* (N - 1)!

 0! = 1

 we can code it as follows.

 FUNCTION IFACT(N)

 COMMON/PUBLICE/ W(100)

 DOUBLE PRECISION AVSL,W

 DOUBLE PRECISION TOP,NEWTOP,REALL

 IF(N.GT.0) GO TO 10

 IFACT = 1

 RETURN

 SLIP 137

 MTS 8: LISP and SLIP in MTS

 June 1976

 10 CONTINUE

 ASSIGN 20 TO LOOP

 M = N

 IFACT = INTGER(VISIT(LOOP,NEWTOP(REALL(M),W(1))))

 RETURN

 C

 C recursive loop

 C

 20 CONTINUE

 M = M-1

 IF(M.EQ.0) GO TO 40

 IFACT = INTGER(VISIT(LOOP,NEWTOP(REALL(M),W(1))))

 IFACT = IFACT*INTGER(TOP(W(1)))

 30 CONTINUE

 CALL TERM (REALL(IFACT),RESTOR(1))

 40 CONTINUE

 IFACT = 1

 GO TO 30

 END

 The first VISIT function enters the loop at statement 20. The

 decreasing values of N are pushed down on the argument stack by

 consecutive executions of the second VISIT function. When finally, with

 N = 0, TERM passes the control back to the first VISIT function, the

 stacks have been popped off and all housekeeping duties accomplished.

 Another illustrative example of recursion is the SLIP function

 LSTEQL(LA,LB). In the following sample program, it checks whether two

 list structures are identical. The function PARMT2(A,B) is used. It

 places A and B on the top of public lists W(1) and W(2) and delivers the

 value A.

 FUNCTION LSTEQL(LISTA,LISTB)

 DOUBLE PRECISION PARMT2,TOP,ADVLWR,REALL

 DOUBLE PRECISION A,W,LISTA,LISTB,DATUMA,DATUMB

 INTEGER VISIT,READLA,READLB

 COMMON /PUBLIC/ W

 DIMENSION W(100)

 C

 C... Recoded by B. Herzog, May 1974

 C

 C

 C The two input parameters to this function are both

 C names of list structures. The objective of this

 C function is to determine whether or not these

 C list structures are equal. If they are, the value

 C of the function is zero, otherwise it is nonzero.

 C The two list structures are equal if they have

 C identical structures, i.e., sublist names

 C appearing in corresponding places within both

 C structures, and if corresponding elements

 C appearing in both structures are identical.

 C

 138 SLIP

 MTS 8: LISP and SLIP in MTS

 June 1976

 LSTEQL=0

 ASSIGN 100 TO L100

 LSTEQL=VISIT(L100,PARMT2(LRDROV(LISTA),LRDROV(LISTB)))

 RETURN

 100 CONTINUE

 READLA=INTGER(TOP(W(1)))

 READLB=INTGER(TOP(W(2)))

 C...

 200 CONTINUE

 IF (LSTEQL.NE.0) GO TO 800

 C... Advance the readers on both lists.

 DATUMA=ADVLWR(READLA,IFLAGA)

 DATUMB=ADVLWR(READLB,IFLAGB)

 C... Inquire if the structures are the same.

 C... IFLAGA or IFLAGB will be nonzero if a HEADER

 C... is encountered on the corresponding list.

 IF (IFLAGA.NE.IFLAGB) GO TO 600

 C... So the structures are the same. Have the readers

 C... returned to the HEADER?

 IF (IFLAGA.NE.0) GO TO 500

 C... No. Now examine the DATUM returned from each list.

 C... Are they list names?

 C... NAMTST yields zero if Datum is name of a list.

 IF ((NAMTST(DATUMA).EQ.0)

 .AND.(NAMTST(DATUMB).EQ.0)) GO TO 300

 C... Not list names! But does DATUMA.EQ.DATUMB?

 IF (DATUMA.NE.DATUMB) LSTEQL=-1

 GO TO 400

 300 CONTINUE

 C... So both are list names; keep advancing.

 CALL PARMT2(LRDROV(DATUMA),LRDROV(DATUMB))

 LSTEQL=VISIT(L100)

 IF (LSTEQL.EQ.0) GO TO 100

 GO TO 400

 400 CONTINUE

 500 CONTINUE

 GO TO 700

 600 CONTINUE

 C... Arrive here if the list structures are not equal.

 LSTEQL=-1

 GO TO 700

 700 CONTINUE

 800 CONTINUE

 IF ((LSTEQL.EQ.0).AND.(IFLAGA.EQ.0)) GO TO 900

 C....

 CALL IRARDR(TOP(W(1)))

 CALL IRARDR(TOP(W(2)))

 CALL TERM(REALL(LSTEQL),

 RESTOR(2))

 900 CONTINUE

 GO TO 200

 END

 SLIP 139

 MTS 8: LISP and SLIP in MTS

 June 1976

 Input/Output Operations _______________________

 In addition to the powerful FORTRAN I/O facilities, the following

 routines are available in the SLIP system.

 Instead of generating a list structure by program, a somewhat

 cumbersome operation, we can read it in from cards.

 The function

 RDLSTA(DUMMY)

 has a dummy argument, DUMMY, and returns the name of the list or list

 structure generated. Lists and sublists are delimited by parentheses;

 elements (always in Hollerith format) are separated by a comma or left

 parenthesis delineating a sublist. All columns are read up to the

 current though arbitrary limit of 72. A list structure can be punched

 on several consecutive cards. It starts with an open parenthesis and is

 terminated after the last matching closed parenthesis or a terminating

 asterisk (*). Blanks can be used freely to improve readability, but

 they will be squeezed out of the string read in, even from within

 elements. Characters are stored and may be printed in A-format.

 If an element is longer than four characters, it is truncated to four

 characters. If it is shorter than four characters, it is left justified

 and filled with blanks. All blank elements are ignored.

 The subroutine

 PRLSTS(LST,M)

 prints out the datum of every nonname SLIP-cell of a list structure with

 alias LST. M can assume three values according to the following table.

 M Mode Format _ ____ ______

 1 Integer 5X,I14

 2 Real F19.8

 3 Double Precision D19.8

 4 Alphanumeric A8

 5 Hexadecimal 3X,Z16

 The subroutine prints text lines to mark the beginning and end of the

 main list and sublists (empty or nonempty) and a line for each element,

 in one of the above formats. Description Lists are not printed.

 Recursive list structures must be avoided since no testing in that

 regard is included.

 For example, if the list structure to be printed M1 is in the string

 format

 140 SLIP

 MTS 8: LISP and SLIP in MTS

 June 1976

 (1,(2,3,(4,())),(5,6,7),8,9,10)

 the use of

 CALL PRLSTS(M1,1)

 produces the following.

 BEGIN LIST

 1

 BEGIN SUBLIST

 2

 3

 BEGIN SUBLIST

 4

 BEGIN SUBLIST

 EMPTY SUBLIST

 END SUBLIST

 END SUBLIST

 END SUBLIST

 BEGIN SUBLIST

 5

 6

 7

 END SUBLIST

 8

 9

 10

 END LIST

 TYPES OF SLIP FUNCTIONS _______________________

 As noted before, many SLIP quantities and functions should be

 declared DOUBLE PRECISION. Several functions have values which are

 normally used as integer numbers, so these functions must be declared

 INTEGER. Several other functions may be declared DOUBLE PRECISION or

 INTEGER and are usually used as integers. These include XMASK, all

 partial word functions. Several other functions may be used as integers

 but should normally be used as double-precision quantities.

 Flags are returned by many routines, including SEQLL, ADVLWR, etc.,

 and are returned as integers.

 A complete listing of functions and their modes and the modes of

 their arguments appears in the subsection "Summary of 360 SLIP Functions

 and Subroutines."

 SLIP 141

 MTS 8: LISP and SLIP in MTS

 June 1976

 New SLIP Functions __________________

 Several functions have been added to the SLIP repertoire for the IBM

 SYSTEM/360/370 version:

 DATUM(A) and IDATUM(A)

 These functions are identical; the two names making it convenient

 for INTEGER/REAL conventions. DATUM should normally be declared

 DOUBLE PRECISION and IDATUM should be declared INTEGER. The value

 of DATUM is the datum contained in the SLIP cell whose cell name is

 A. The value of IDATUM(A) is the contents of the leftmost word of

 the datum in the SLIP cell whose cell name is A.

 REALL(Y)

 This function is similar in purpose to INTGER. Y is assumed to be

 a fullword quantity (integer or real). The value of REALL(Y) is a

 doubleword consisting of Y in the left word and 0s in the right

 word.

 REALS(D)

 This function is similar in purpose to INTGER and REALL. The

 argument is assumed to be DOUBLE PRECISION (but could be REAL or

 INTEGER). The mode of the function is REAL and it returns the

 leftmost word of the argument without conversion.

 SLPDMP

 This subroutine gives a dump of all SLIP storage in a format

 oriented toward the SLIP structure. It is considerably easier to

 use than a regular memory dump.

 SETRAC

 This function, whose arguments are the same as those of INITAS,

 sets the SLIP system to give a dump (via SLPDMP) if an error

 requiring program termination is detected (e.g., exhausting the

 available SLIP storage).

 F4TRBK

 This subroutine should be used as an error exit. A function and

 subroutine traceback and a SLIP dump may be obtained.

 MRK(D)

 This function retrieves the MRK field of the doubleword D.

 142 SLIP

 MTS 8: LISP and SLIP in MTS

 June 1976

 SETMRK(I,A)

 This function sets the mark I in the MRK field of the SLIP cell

 whose name is A.

 A series of functions, called partial word functions, which obtain parts

 of words have been implemented. The values of these functions may be

 treated as integer (the normal situation) or double-precision quanti-

 ties. In all cases, the value returned is right-justified.

 C1(A) and CHR1(A)

 These functions are identical and return the contents of the first

 character (first byte or 8 bits) of the word A. A may be a

 fullword or doubleword quantity.

 C2,CHR2,C3,CHR3,C4,CHR4

 These are similarly defined.

 C5,CHR5,...,C8,CHR8

 These are similarly defined except they must have a doubleword

 argument.

 Q1(A) and QTR1(A)

 These functions are identical and return the first (leftmost)

 quarter (two bytes or 16 bits or half-word) of A.

 Q2,QTR2,Q3,QTR3,Q4,QTR4

 These are appropriately defined. A must be a doubleword for

 Q3,QTR3,Q4 and QTR4.

 H1(A) and HLF1(A)

 These functions are identical and return the leftmost word of A.

 H2(A) and HLF2(A)

 These functions are identical and return the rightmost word of the

 (doubleword) quantity A.

 For example, consider the number X = 0102030405060708 (in

 hexadecimal):

 Fullword Doubleword ________ __________

 C1(x) is 00000001 0000000000000001

 C3(X) is 00000003 0000000000000003

 Q3(X) is 00000506 0000000000000506

 SLIP 143

 MTS 8: LISP and SLIP in MTS

 June 1976

 See Figure 2 below.

 ┌───────────────────────────────────────┐ ┌ ┌ ┌ ┌ ┌ ┌ ┌
 |BYTE|BYTE|BYTE|BYTE|BYTE|BYTE|BYTE|BYTE|

 |────┼────┼────┼────┼────┼────┼────┼────| ┌ ┘
 |CH1 |CH2 |CH3 |CH4 |CH5 |CH6 |CH7 |CH8 |

 |─────────┼─────────┼─────────┼─────────| ┌ ┘ ┘ ┘ ┘ ┘
 | Q1 | Q2 | Q3 | Q4 |

 |───────────────────┼───────────────────| ┌ ┘ ┘ ┘
 | H1 | H2 |

 |───────────────────┼───────────────────| ┌ ┘
 | IDATUM | |

 |───────────────────────────────────────| ┌ ┘ ┘
 | DATUM |

 └───────────────────────────────────────┘

 Figure 2.

 SUMMARY OF 360 SLIP FUNCTIONS AND SUBROUTINES ___

 The list below gives only those SLIP functions for application

 programs, what they expect for arguments, and what they return as

 values. Omitted from this list are those SLIP functions that manipulate

 the link word of the cells.

 Symbols _______

 beginning _________

 with represent ____ _________

 A Cell names, INTEGER (compare to CADR). Note that

 whenever an A is expected as an argument a DA may be ________

 offered.

 AT Attribute of description list, DOUBLE PRECISION

 D Any datum, DOUBLE PRECISION

 DA Listname or cell name in name or cell name format

 but DOUBLE PRECISION (compare to MADR). Note that

 whenever a DA is expected as an argument it is not ___

 proper to offer an A.

 F Flag, INTEGER (-1, 0, or 1)

 L List name, DOUBLE PRECISION (compare to LST)

 I INTEGER

 LR List reader, INTEGER

 R A fullword, REAL

 S Sequence reader (sequencer), INTEGER

 V Value of an attribute, DOUBLE PRECISION

 X Any value

 Y Any fullword (INTEGER or REAL) value

 The following table lists the 360 SLIP functions and subroutines and

 their values.

 144 SLIP

 MTS 8: LISP and SLIP in MTS

 June 1976

 Value Routine and Arguments _____ _____________________

 D ADVLEL(LR,F)

 D ADVLER(LR,F)

 D ADVLNL(LR,F)

 D ADVLNR(LR,F)

 D ADVLWL(LR,F)

 D ADVLWR(LR,F)

 D ADVSEL(LR,F)

 D ADVSER(LR,F)

 D ADVSNL(LR,F)

 D ADVSNR(LR,F)

 D ADVSWL(LR,F)

 D ADVSWR(LR,F)

 D BOT(L)

 A CADLFT (A,F)

 A CADRGT (A,F)

 I or D C1(X)

 I or D C2(X)

 I or D C3(X)

 I or D C4(X)

 I or D C5(D)

 I or D C6(D)

 I or D C7(D)

 I or D C8(D)

 I or D CHR1(X)

 I or D CHR2(X)

 I or D CHR3(X)

 I or D CHR4(X)

 I or D CHR5(D)

 I or D CHR6(D)

 I or D CHR7(D)

 I or D CHR8(D)

 D DATUM(A or DA)

 D DELETE(A)

 - DERROR(L)

 - F4TRBK

 I or D H1(X)

 I or D H2(D)

 I or D HLF1(X)

 I or D HLF2(D)

 I IDATUM(A or DA)

 - INITAS(D,I)

 LR INITRD(LR)

 L INLSTL(L1,A)

 L INLSTR(L1,A)

 I INTGER(X)

 I IRALST(L)

 I IRARDR(LR)

 V ITSVAL(AT,L)

 SLIP 145

 MTS 8: LISP and SLIP in MTS

 June 1976

 Value Routine and Arguments _____ _____________________

 V LCNTR(LR)

 L LDATVL(AT,V,L)

 L LIST(L1 or 9)

 L LISTAV(L1)

 L LISTMT(L)

 L LOFRDR(LR)

 A LPNTR(LR)

 I LPURGE(L)

 LR LRDRCP(LR1)

 LR LRDROV(L)

 L LSSCPY(L1)

 F LSTEQL(L1,L2)

 I LSTMRK(L)

 F LSTPRO(L,A)

 LR LVLRV1(LR)

 LR LVLRVT(LR)

 A MADATR(AT,L)

 DA MADLFT(A)

 A MADNBT(L,I)

 A MADNTP(L,I)

 DA MADRGT(A)

 L MAKEDL(L1,L2)

 I MRK(D)

 L MRKLSS(I,L1)

 L MRKLST(I,L1)

 L MTDLST(L1)

 L MTLIST(L1)

 L NAMEDL(L)

 A NEWBOT(D,L)

 A NEWTOP(D,L)

 D NEWVAL(AT,V,L)

 A NXTLFT(D,A or DA)

 A NXTRGT(D,A or DA)

 AT NOATVL(AT,L)

 L NULSTL(A,L1)

 L NULSTR(A,L1)

 - PARMT2(X1,X2)

 - PARMTn(X1,X2,...,Xn)

 D POPBOT(L)

 D POPTOP(L)

 - PRESRV(I)

 - PRLSTS(L,I)

 I or D Q1(X)

 I or D Q2(X)

 I or D Q3(D)

 I or D Q4(D)

 I or D QTR1(X)

 I or D QTR2(X)

 I or D QTR3(D)

 I or D QTR4(D)

 146 SLIP

 MTS 8: LISP and SLIP in MTS

 June 1976

 Value Routine and Arguments _____ _____________________

 L RDLSTA(-)

 D REALL(X)

 R REALS(X)

 D REED(LR)

 - RESTOR(I)

 D SEQLL(S,F)

 D SEQLR(S,F)

 S SEQRDR(L)

 D SEQSL(S,F)

 D SEQSR(S,F)

 - SETMRK(I,A)

 - SLPDMP(D,I)

 - STRDAT(D,A)

 D SUBSBT(D1,L)

 D SUBST(D1,A)

 D SUBSTP(D1,L)

 - TERM(0.0D0 or 0 or D)

 D TOP(L)

 - VISIT(0 or I)

 HOW TO USE SLIP _______________

 All error comments and the SLIP dump, obtained via DMPSVM or SLPDMP

 are dispatched to device 16. If an error dump is to be sent to a

 terminal printer then the user should note that the current format

 requires 92 printing columns. It is, therefore, best to assign 16 to a

 temporary file which can be examined with the editor and perhaps

 eventually printed by copying to *PRINT*. Alternately 16 can be

 assigned to *PRINT* directly.

 Note: In the near future, the device for error comments will be

 different from the one for dumps.

 Thus, typical $RUN commands would be:

 $RUN yourprogram+*SLIP 16=*PRINT* ...

 or

 $RUN yourprogram+*SLIP 16=-BUG ...

 or it may be useful, for debugging runs from a terminal, to source a

 file containing the following:

 $CREATE -BUG

 $EMPTY -BUG

 $DEBUG yourprogram+*SLIP 16=-BUG ...

 $CONTINUE WITH *MSOURCE*

 SLIP 147

 MTS 8: LISP and SLIP in MTS

 June 1976

 Note: These instructions are subject to change--please contact the

 Computing Center staff if you encounter any difficulties.

 REFERENCES __________

 (1) Newell, A., et al., eds., Information Processing Language-V _________________________________

 Manual, 2nd ed., Englewood Cliffs: Prentice-Hall, 1965. ______

 (2) Sammet, J. E., Programming Languages: History and Fundamentals, __

 Chapter 6, Engelwood Cliffs: Prentice-Hall, 1969.

 (3) Weizenbaum, J., "Symmetric List Processor," Communications of __________________

 the ACM, Volume 6, No. 9, pp. 524-544, September 1963. _______

 (4) Russel, D. B., Letter to the Editor, Communications of the ACM, _________________________

 Volume 8, No. 5, p. 263, May 1965.

 (5) Weizenbaum, J., Letter to the Editor, Communications of the ACM, _________________________

 Volume 8, No. 5, pp. 263-264, May 1965.

 (6) Findler, N. V., Pfaltz, J. L., and Bernstein, H. J., Four ____

 High-Level Extensions of FORTRAN IV: SLIP, AMPOL-II, TREETRAN, __

 SYMBOLANG, New York: Spartan Books, 1972. _________

 (7) Waite, William M., Implementing Software for Non-Numeric Appli- ___

 cations, Series in Automatic Computation, New York: Prentice- _______

 Hall, 1973.

 148 SLIP

 MTS 8: LISP and SLIP in MTS

 June 1976 Page Revised January 1983

 INDEX _____

 ATTN atom, 11, 56 Atoms, I/O destination, 47

 ERR atom, 11, 56 Available space list, 112, 115,

 *LISPLIB, 78, 89 121

 PGNT atom, 11, 56 FAVSLC, 113, 120

 *SLIP, 147 LAVSLC, 120

 ¬P editor command, LISP, 93 BI editor command, LISP, 97

 BK debug command, LISP, 107

 ? editor command, LISP, 90 BKE debug command, LISP, 106

 ?? editor command, LISP, 97 BKF debug command, LISP, 106

 BO editor command, LISP, 97

 # debug command, LISP, 104 BOT function, SLIP, 124

 # editor command, LISP, 93 BREAK function, LISP, 57

 ## debug command, LISP, 104 BREAKF function, LISP, 101

 Buffers, 11, 48-49

 ABS numeric operation, LISP, 25 BUFFERS data type, 11

 ADD numeric operation, LISP, 25 BUG system indicator, 38, 41

 ADDPROP function, LISP, 25 BX editor command, LISP, 92

 ADDRESS numeric operation, LISP,

 25 C...R functions, LISP, 19

 ADD1 numeric operation, LISP, 25 CADLFT function, SLIP, 127

 Advance functions, 131 CADRGT function, SLIP, 127

 ADVLEL function, SLIP, 133 CAR function, LISP, 18

 ADVLER function, SLIP, 133 CAR, righthand branch, 12

 ADVLNL function, SLIP, 133 CDR function, LISP, 18

 ADVLNR function, SLIP, 133 CDR, lefthand branch, 12

 ADVLWL function, SLIP, 133 Cells, 116

 ADVLWR function, SLIP, 133 CHECK option, 85

 ADVSEL function, SLIP, 133 CHECKPOINT function, LISP, 76

 ADVSER function, SLIP, 133 CHRn function, SLIP, 143

 ADVSNL function, SLIP, 133 Cn function, SLIP, 143

 ADVSNR function, SLIP, 133 COMPILE function, LISP, 82

 ADVSWL function, SLIP, 133 Compiler, LISP, 82

 ADVSWR function, SLIP, 133 CONC function, LISP, 20

 AND function, LISP, 30 COND function, LISP, 30

 APPEND function, LISP, 20 CONS function, LISP, 20

 APPLY function, LISP, 27 COPY function, LISP, 20

 APPLY1 function, LISP, 28, 89

 ARGS debug command, LISP, 104 Data elements, 117

 Arrays, 12, 42 DATUM function, SLIP, 124, 142

 ASSOC function, LISP, 19 Debugging, LISP, 41, 56, 101

 AT debug command, LISP, 105 DEFINE function, LISP, 39

 ATOM predicate, LISP, 17 DEFUN function, LISP, 39

 Atoms, 9 DELETE editor command, LISP, 95

 148.1

 MTS 8: LISP and SLIP in MTS

 Page Revised January 1983 June 1976

 DELETE function, LISP, 23 ATOM, 17

 DELETE function, SLIP, 121 BREAK, 57

 DERROR function, SLIP, 131 BREAKF, 101

 Description lists, 114, 128, 129, C...R, 19

 130 CAR, 18

 DISPLAY function, LISP, 61 CDR, 18

 DIVIDE numeric operation, LISP, 25 CHECKPOINT, 76

 DSKIN editor command, LISP, 99 COMPILE, 82

 DSKOUT editor command, LISP, 99 CONC, 20

 DUMP function, LISP, 58 COND, 30

 CONS, 20

 E editor command, LISP, 99 COPY, 20

 EDIT debug command, LISP, 105 DEFINE, 39

 EDIT function, LISP, 89 DEFUN, 39

 EMBED editor command, LISP, 95 DELETE, 23

 EOF function, LISP, 50, 54 DISPLAY, 61

 EQ predicate, LISP, 17 DUMP, 58

 EQNAME predicate, LISP, 18 EDIT, 89

 EQUAL predicate, LISP, 17 EOF, 54

 ERR function, LISP, 63 EQ, 17

 ERR parameter, LISP, 74 EQNAME, 18

 ERRIN atom, 11 EQUAL, 17

 Error codes, LISP, 64 ERR, 63

 ERROUT atom, 11 EVAL, 14, 15, 27

 EVAL debug command, LISP, 103 EVLIST, 20

 EVAL function, LISP, 14, 15, 27 EXCLUDE, 21

 EVEN numeric predicate, LISP, 25 EXPLODE, 22

 EVLIST function, LISP, 20 FIND, 19

 EXCISE editor command, LISP, 99 GENSYM, 21

 EXCLUDE function, LISP, 21 GET, 24

 EXPLODE function, LISP, 22 GETFN, 61

 EXPR system indicator, 38 GETL, 25

 External routines, LISP, 43 GETWORLD, 82

 EXTRACT editor command, LISP, 96 GRAFT, 23

 IMPLODE, 22

 F debug command, LISP, 104 INTERSECT, 21

 F editor command, LISP, 94 LABEL, 38

 FAVSLC, 113, 120 LAMBDA, 35

 FCS parameter, LISP, 74 LIST, 20

 File prefix characters, 49 LTR, 79

 FIND function, LISP, 19 MAP, 28

 FIX numeric operation, LISP, 25 MAPC, 28

 Fixed-Link option, 85 MAPCAR, 28

 FLOAT numeric operation, LISP, 25 MAPCON, 28, 28

 FROM debug command, LISP, 103, 106 MAPLIST, 28

 FSUBR system indicator, 38 MEMBER, 19

 Functions, LISP, MODIFY, 62

 ADDPROP, 25 MTS, 16, 80

 AND, 30 NEWWORLD, 81

 APPEND, 20 NLAMBDA, 37

 APPLY, 27 NOT, 17

 APPLY1, 28, 89 NTH, 19

 ASSOC, 19 NULL, 18

 148.2

 MTS 8: LISP and SLIP in MTS

 June 1976 Page Revised January 1983

| NUMBER, 18 ADVSNL, 133

 OBLIST, 73 ADVSNR, 133

 OPEN, 54 ADVSWL, 133

 OR, 30 ADVSWR, 133

 PRINT, 14, 46, 55 BOT, 124

 PRINTMACRO, 51 CADLFT, 127

 PRIN1, 46, 55 CADRGT, 127

 PROG, 32 CHRn, 143

 PROGN, 27 Cn, 143

 PUT, 24 DATUM, 124, 142

 PUTOB, 74 DELETE, 121

 QUOTE, 16 DERROR, 131

 READ, 14, 46, 54 F4TRBK, 142

 READCH, 46, 54 HLF1, 143

 READLINE, 46, 55 HLF2, 143

 READMACRO, 51 H1, 143

 REALWORLD, 82 H2, 143

 REM, 24 IDATUM, 124, 142

 REMOB, 73 INITAS, 120

 REPEAT, 27 INITRD, 132

 RES, 58 INLSTL, 123

 RESTORE, 76 INLSTR, 123

 RETURN, 33 INTGER, 118, 125

 REVERSE, 20 IRALST, 121

 RPLACA, 22 IRARDR, 131

 RPLACD, 22 ITSVAL, 130

 SELECT, 31 LCNTR, 131

 SET, 22 LDATVL, 129

 SETA, 30 LIST, 120

 SETQ, 29 LISTAV, 129

 SKIP, 47, 56 LISTMT, 127

| SORT, 18 LOFRDR, 131

 STATUS, 66, 79 LPNTR, 131

 STEP, 63 LPURGE, 121

 STOP, 16 LRDRCP, 132

 TAB, 47, 55 LRDROV, 131

 TERPRI, 46, 55 LSSCPY, 126

 TIMER, 75 LSTEQL, 126

 TRACE, 63 LSTPRO, 133

 TRACEF, 101 LVLRVT, 132

 UNCONS, 29 LVLRV1, 132

 UNEVAL, 60 MADATR, 130

 UNION, 21 MADLFT, 127

 UNTRACE, 63 MADNBT, 127

 Functions, SLIP, MADNTP, 127

 ADVLEL, 133 MADRGT, 127

 ADVLER, 133 MAKEDL, 129

 ADVLNL, 133 MRK, 142

 ADVLNR, 133 MRKLSS, 128

 ADVLWL, 133 MRKLST, 128, 128

 ADVLWR, 133 MTDLST, 130

 ADVSEL, 133 MTLIST, 121

 ADVSER, 133 NAMEDL, 129

 148.3

 MTS 8: LISP and SLIP in MTS

 Page Revised January 1983 June 1976

 NEWBOT, 122 H1 function, SLIP, 143

 NEWTOP, 122 H2 function, SLIP, 143

 NEWVAL, 130

 NOATVL, 130 IDATUM function, SLIP, 124, 142

 NULSTL, 125 IDIVIDE numeric operation, LISP,

 NULSTR, 125 25

 NXTLFT, 122 IMPLODE function, LISP, 22

 NXTRGT, 122 IND, property indicator, 10

 PARMT, 136 INITAS function, SLIP, 120

 PARTMT2, 136 INITRD function, SLIP, 132

 POPBOT, 124 INLSTL function, SLIP, 123

 POPTOP, 124 INLSTR function, SLIP, 123

 PRESRV, 136 INSERT editor command, LISP, 95

 PTLSTS, 140 INT parameter, LISP, 74

 Qn, 143 INTEGER numeric predicate, LISP,

 QTRn, 143 25

 RDLSTA, 140 INTERSECT function, LISP, 21

 REALL, 142 INTGER function, SLIP, 118, 125

 REALS, 118, 125, 142 IRALST function, SLIP, 121

 REED, 132 IRARDR function, SLIP, 131

 RESTOR, 136 ITSVAL function, SLIP, 130

 SEQLL, 135

 SEQLR, 135 LABEL function, LISP, 38

 SEQRDR, 135 LAMBDA function, LISP, 35

 SEQSL, 136 LAMBDA-Expressions, 35

 SEQSR, 135 LAND numeric operation, LISP, 25

 SETMRK, 143 LAVSLC, 120

 SETRAC, 142 LCNTR function, SLIP, 131

 SLPDMP, 142 LDATVL function, SLIP, 129

 STRDAT, 123 LENGTH numeric operation, LISP, 25

 SUBSBT, 123 LESS numeric predicate, LISP, 25

 SUBST, 123 Library, LISP, 78

 SUBSTP, 123 LISP editor, 89

 TERM, 137 LISP input, 14, 46

 TOP, 124 LISP interpreter, 14

 VISIT, 137 LISP output, 46

 F4TRBK function, SLIP, 142 LISPIN atom, 11

 LISPOUT atom, 11

 Garbage collector, LISP, 76 LIST function, LISP, 20

 GC parameter, LISP, 74 LIST function, SLIP, 120

 GENSYM function, LISP, 21 List marks, 128

 GET function, LISP, 24 List-Searching operations, LISP,

 GETFN function, LISP, 61 18

 GETL function, LISP, 25 LISTAV function, SLIP, 129

 GETWORLD function, LISP, 82 LISTMT function, SLIP, 127

 GO debug command, LISP, 103 Lists, 12

 GRAFT function, LISP, 23 LOFRDR function, SLIP, 131

 GREATER numeric predicate, LISP, LOR numeric operation, LISP, 25

 25 LPNTR function, SLIP, 131

 LPURGE function, SLIP, 121

 Header cells, 116 LRDRCP function, SLIP, 132

 HLF1 function, SLIP, 143 LRDROV function, SLIP, 131

 HLF2 function, SLIP, 143 LSSCPY function, SLIP, 126

 148.4

 MTS 8: LISP and SLIP in MTS

 June 1976 Page Revised January 1983

 LSTEQL function, SLIP, 126 ADD, 25

 LSTMRK function, SLIP, 128 ADDRESS, 25

 LSTPRO function, SLIP, 133 ADD1, 25

 LTR function, LISP, 79 DIVIDE, 25

 LVLRVT function, SLIP, 132 FIX, 25

 LVLRV1 function, SLIP, 132 FLOAT, 25

 LXOR numeric operation, LISP, 27 IDIVIDE, 25

 LAND, 25

 MADATR function, SLIP, 130 LENGTH, 25

 MADLFT function, SLIP, 127 LOR, 25

 MADNBT function, SLIP, 127 LXOR, 27

 MADNTP function, SLIP, 127 MAX, 25

 MADRGT function, SLIP, 127 MIN, 25

 MAKEDL function, SLIP, 129 MINUS, 25

 MAP function, LISP, 28 PLEN, 25

 MAPC function, LISP, 28 REMAIN, 25

 MAPCAN function, LISP, 28 SHIFT, 25

 MAPCAR function, LISP, 28 SUB, 25

 MAPCON function, LISP, 28 SUB1, 25

 MAPLIST function, LISP, 28 TIMES, 25

 MAX numeric operation, LISP, 25 Numeric predicates, LISP, 25

 MEMBER function, LISP, 19 EVEN, 25

 MIN numeric operation, LISP, 25 GREATER, 25

 MINUS numeric operation, LISP, 25 INTEGER, 25

 ML editor command, LISP, 96 LESS, 25

 MODIFY function, LISP, 62 ZERO, 25

 MR editor command, LISP, 96 NX editor command, LISP, 92

 MRK function, SLIP, 142 NXTLFT function, SLIP, 122

 MRKLSS function, SLIP, 128 NXTRGT function, SLIP, 122

 MRKLST function, SLIP, 128

 MTDLST function, SLIP, 130 OBJ parameter, LISP, 74

 MTLIST function, SLIP, 121 OBJECT LIST, 10, 73

 MTS function, LISP, 16, 80 OBLIST function, LISP, 73

 OK debug command, LISP, 103

 n editor command, LISP, 91 OK editor command, LISP, 99

 N-Type functions, 29 OPEN function, LISP, 54

 NAMEDL function, SLIP, 129 OR function, LISP, 30

 NEWBOT function, SLIP, 122

 NEWTOP function, SLIP, 122 P editor command, LISP, 90

 NEWVAL function, SLIP, 130 PARMT function, SLIP, 136

 NEWWORLD function, LISP, 81 PARMT2 function, SLIP, 136

 NIL atom, 11, 14 PLEN numeric operation, LISP, 25

 NLAMBDA function, LISP, 37 PLIST, property-list, 11

 NOATVL function, SLIP, 130 PNAME, print name, 9

 NOT predicate, LISP, 17 POPBOT function, SLIP, 124

 NSUBR system indicator, 38 POPTOP function, SLIP, 124

 NTH function, LISP, 19 PP editor command, LISP, 90

 NULL predicate, LISP, 18 Predicates, LISP, 17

 NULSTL function, SLIP, 125 ATOM, 17

 NULSTR function, SLIP, 125 EQ, 17

 NUMBER predicate, LISP, 18 EQNAME, 18

 Numeric operations, LISP, 25 EQUAL, 17

 ABS, 25 NOT, 17

 148.5

 MTS 8: LISP and SLIP in MTS

 Page Revised January 1983 June 1976

 NULL, 18 SEQSR function, SLIP, 135

 NUMBER, 18 Sequence reader, 135

 SORT, 18 SET function, LISP, 22

 PRESRV function, SLIP, 136 SETA function, LISP, 30

 PRINT function, LISP, 14, 46, 55 SETMRK function, SLIP, 143

 PRINTMACRO function, LISP, 51 SETQ function, LISP, 29

 PRIN1 function, LISP, 46, 55 SETRAC function, SLIP, 142

 PRLSTS function, SLIP, 140 SHIFT numeric operation, LISP, 25

 PROG function, LISP, 32 SKIP function, LISP, 47, 56

 PROGN function, LISP, 27 SLIP input, 140

 Property-Lists, 10, 24 SLIP output, 140

 PUT function, LISP, 24 SLPDMP function, SLIP, 142

 PUTOB function, LISP, 74 SORT predicate, LISP, 18

 PVAL, property value, 10 STATUS function, LISP, 66, 79

 STEP function, LISP, 63

 Qn function, SLIP, 143 STOP function, LISP, 16

 QTRn function, SLIP, 143 STRDAT function, SLIP, 123

 QUOTE function, LISP, 16 SUB numeric operation, LISP, 25

 SUBR system indicator, 38

 RDLSTA function, SLIP, 140 SUBSBT function, SLIP, 123

 READ function, LISP, 14, 46, 54 SUBST function, SLIP, 123

 READ-EVAL-PRINT loop, 14 SUBSTP function, SLIP, 123

 READCH function, LISP, 46, 54 SUB1 numeric operation, LISP, 25

 Readers, 131 System indicators, LISP, 38

 READLINE function, LISP, 46, 55 BUG, 38, 41

 READMACRO function, LISP, 51 EXPR, 38

 REALL function, SLIP, 142 FSUBR, 38

 REALS function, SLIP, 118, 125, NSUBR, 38

 142 SUBR, 38

 REALWORLD function, LISP, 82

 Recursive processing, SLIP, 114, T atom, 11

 136 TAB function, LISP, 47, 55

 REED function, SLIP, 132 TERM function, SLIP, 137

 REM function, LISP, 24 TERPRI function, LISP, 46, 55

 REMAIN numeric operation, LISP, 25 TEST editor command, LISP, 98

 REMOB function, LISP, 73 TIMER function, LISP, 75

 REPEAT function, LISP, 27 TIMES numeric operation, LISP, 25

 RES function, LISP, 58 TOP debug command, LISP, 105

 RESTOR function, SLIP, 136 TOP function, SLIP, 124

 RESTORE function, LISP, 76 TRACE function, LISP, 63

 RETURN debug command, LISP, 103 TRACEF function, LISP, 101

 RETURN function, LISP, 33

 REVERSE function, LISP, 20 UNBLOCK editor command, LISP, 98

 RPLACA function, LISP, 22 UNCONS function, LISP, 29

 RPLACD function, LISP, 22 UNDO editor command, LISP, 98

 UNEVAL function, LISP, 60

 S editor command, LISP, 99 UNION function, LISP, 21

 S-expressions, 12 UNTRACE function, LISP, 63

 SELECT function, LISP, 31 UP editor command, LISP, 91

 SEQLL function, SLIP, 135 USE debug command, LISP, 103

 SEQLR function, SLIP, 135

 SEQRDR function, SLIP, 135 VALUE of atom, 10

 SEQSL function, SLIP, 136 VISIT function, SLIP, 137

 148.6

 MTS 8: LISP and SLIP in MTS

 June 1976 Page Revised January 1983

 ZERO numeric predicate, LISP, 25

 0 editor command, LISP, 92

 148.7

 MTS 8: LISP and SLIP in MTS

 Page Revised January 1983 June 1976

 148.8

 Reader’s Comment Form

 LISP and SLIP in MTS

 Volume 8

 June 1976

 (January 1983 Reprint)

 Errors noted in publication:

 Suggestions for improvement:

 149

 Your comments will be much appreciated. The completed form may be sent

 to the Computing Center by Campus Mail or U.S. Mail, or dropped in the

 Suggestion Box at the Computing Center, NUBS, or BSAD.

 Date ────────────────────

 Name ───

 Address ──

 ──

 ──

 Publications

 Computing Center

 University of Michigan

 Ann Arbor, Michigan 48109

 150

 Update Request Form

 LISP and SLIP in MTS

 Volume 8

 June 1976

 (January 1983 Reprint)

 Updates to this manual will be issued periodically as errors are noted

 or as changes are made to MTS. If you desire to have these updates

 mailed to you, please submit this form.

 Updates are also available in the memo files at both the Computing

 Center and NUBS; there you may obtain any updates to this volume that

 may have been issued before the Computing Center receives your form.

 Please indicate below if you desire to have the Computing Center mail to

 you any previously issued updates.

 Name ───

 Address ──

 ──

 ──

 Previous updates needed (if applicable):──────────

 The completed form may be sent to the Computing Center by Campus Mail or

 U.S. Mail, or dropped in the Suggestion Box at the Computing Center,

 NUBS, or BSAD. Campus Mail addresses should be given for local users.

 Publications

 Computing Center

 The University of Michigan

 Ann Arbor, Michigan 48109

 Users associated with other MTS installations (except the University of _______________________

 British Columbia) should return this form to their respective installa-

 tions. Addresses are given on the reverse side.

 151

 Addresses of other MTS installations:

 Publications Clerk

 352 General Services Bldg.

 Computing Services

 The University of Alberta

 Edmonton, Alberta

 Canada T6G 2H1

 Information Officer, NUMAC

 Computing Laboratory

 The University of Newcastle upon Tyne

 Newcastle upon Tyne

 England NE1 7RU

 Rensselaer Polytechnic Institute

 Documentation Librarian

 310 Voorhees Computing Center

 Troy, New York 12181

 Simon Fraser University

 Computing Centre

 User Services Information Group

 Burnaby, British Columbia

 Canada V5A 1S6

 Wayne State University

 Computing Services Center

 Academic Services Documentation Librarian

 5950 Cass Ave.

 Detroit, Michigan 48202

 152

