
 1

 Classification: 000/0
 Date: 5/1/78
 Doct=1 Vers=2

 Lecture 1

 The first section covers pieces and the relationships
 between system components, the basic interface, and some common
 tables. This section will not cover the internal details of any
 one interface or any one piece; they will be covered later.
 Thus, for example, some of the SVCs in the task-to-supervisor
 interface will be mentioned, but not necessarily all of them.

 Looking at the system as a whole, the first question is
 "who’s in control?" Usually the answer is, "The supervisor."
 But the supervisor, doesn’t seem to have any entry point--it
 never begins and ends. "How does the supervisor get entered?"
 An I/O interrupt or a program interrupt occurs. Who causes the
 interrupts? A task that’s running. Who starts a task? It’s the
 supervisor. It’s the chicken-egg problem. Essentially, the
 whole system is interrupt-driven. Someone initiates things,
 usually the operator pressing the request key on the console
 typewriter.

 This section is an overview of what could be called the
 Steady State System. In other words, it is assumed that the
 system is there, loaded and running. How the system is built,
 how it is loaded from disk once it has been built, and things
 like that will be covered later.

 Figure 1 is the picture around which discussion in this
 section will revolve. Most of the items here are covered in
 detail in later sections. For now they will be treated as black
 boxes and only the connections discussed. The connecting lines
 are the interfaces, and the numbers on each line are solely to
 identify the interface for discussion.

 At the bottom of this picture is the hardware machine.
 Above this is a box called supervisor. Note that this picture is
 carefully stratified in a number of manners. At this point, note
 the boundary indicated at the left between supervisor state at
 the bottom and, above it, problem state. Problem state and
 supervisor state refer to the hardware definition of the
 supervisor state and problem state for the 360 and 370.

 This means that the supervisor, or anything else below that
 line, runs in supervisor state and nobody else does. That,
 essentially, is the definition of the supervisor, although one
 usually considers the supervisor to be a particular assembly
 listing. There are, however, other things below the line.
 There’s a series of what will be called supervisor subroutines
 which the supervisor causes a task to call. For example, there’s
 one called JBRP, which stands for Job Request Processor, called
 in the process of task initiation. The interface (2) between the
 supervisor and the supervisor subroutines is that the supervisor

 2

 causes the task to start there before going about its business by
 virtue of setting the task’s PSW to the entry point of the
 subroutine before dispatching the task. There’s another entity
 which lives below the line which is hard to classify exactly
 where it belongs in the system. This is the machine check
 recovery code which as its name suggests, gets control when a
 machine check occurs.

 The interface labelled "1" between the supervisor and
 hardware is well defined by the Principles of Operations manual
 and it means that the supervisor owns the PSWs for the old and
 new various interrupt states. It gets entered whenever an I/O
 interrupt or external interrupt occurs, etc.

 Above the supervisor in this diagram are the tasks in the
 system. In order to describe the interface and say a few things
 about the historical wording or terminology that occurs, a simple
 task will be discussed first.

 The task used will be the REWIND task, and the interface
 between it and the supervisor (labelled "3") is the one being
 discussed. [At this point a slight digression is necessary.
 Back at the time this all started (1966), we obtained from
 Lincoln Labs a small supervisor called LLMPS which managed jobs
 of this variety. The terminology they picked used "job program"
 to represent the code in the machine, and "job" to represent an
 activation of that, and there may be several activations of that
 if it’s a re-entrant job program. Since then, computer
 terminology has evolved so that normally "task" is used for
 "job". But for the purposes of this manual, jobs and tasks are
 used interchangeably, for terminology.]

 On this interface (3) there are three areas to cover. One
 is getting started, in other words, how does it start a task?
 Another is how it obtains services while it’s running, and third
 is how it terminates.

 This discussion is applicable to all tasks in the system,
 although the example is relatively simple. MTS has a job
 program. It’s started many times and it has the same interface,
 although the job program is larger than most. The main interrupt
 that starts everything is the request button on the operator’s
 console typewriter, pressed because the operator wants to start
 something. Every line entered by the operator is a request to
 start a task. There is no command language at the supervisor
 level--it only starts jobs.¹ The first thing that the operator
 types in is the name of the job he’s starting. As a slight
 digression, one might ask how do you stop a task, once it’s
 started? There’s a job called STOP. If the operator wants to
 stop a job he presses the REQUEST button and enters "stop" and a

 ¹ That’s actually not quite the truth. Lines beginning with $ _____
 are passed to HASP as commands, and lines beginning DIS,MOD,SE,
 or TRCTP are swallowed by the supervisor as actual supervisor
 commands. But everything else starts a job.

 3

 parameter designating what is to be stopped. This starts the
 STOP job whose purpose is to stop another job. Hopefully, it
 gracefully stops by itself to eliminate cascading problem?

 To get back to starting a job, the first thing the
 supervisor does is allocate a job table entry for this
 invocation. This is a fixed-length area where all variable
 information pertaining to a job (or else a pointer to same) is
 kept. For example, the job’s registers are stored here when it
 is not executing. At the front of the job table are stored task
 number and the 8-character task name (MTS, HASPLING,...). [A
 task number of zero means this job table entry is not in use.]

 Two items relating to the initiation of jobs must now be
 discussed. The Job Header is information attached to the front
 of the job program. The Job List Entry is essentially a "symbol-
 table" entry to the list of job programs in the system specifying
 the name of the job program and where its code is to be found.

 Each job program is prefixed by a job header. The job
 header specifies the location in the job program of the first
 instruction to be executed, the number of preallocated devices
 and buffers which the job requires, the device type required for
 each device, and the size of each required buffer. The format of
 the job header is:

 4

 ┌─────────────────────────────────┐
 | |
 |Location of First Job Instruction|
 | |
 └────────────────┌────────────────┐ | ─ |
 | | |
 | NJBDVU | NJBBFU |
 | | |
 └────────────────┘────────────────┐ | ─ |
 | |
 |Names of required Devices |
 | (4 Bytes) |
 | ... |
 | ... |
 | ... |
 | |
 └─────────────────────────────────┐ | |
 | |
 |Sizes of Required Buffers |
 | (4 bytes) |
 | ... |
 | ... |
 | ... |
 └─────────────────────────────────┘

 NJBDVU = Number of Devices Used

 NJBBFU = Number of Buffers Used

 An illustrative 360 coding sequence of a job using two devices
 and three buffers is shown below.

 JOB START 0
 DC A(BEGADR)
 DC H’2’
 DC H’3’
 DC CL4’PTR’
 DC CL4’7TP’
 DC F’128’
 DC F’2048’
 DC F’2048’
 .
 .
 .
 BEGADR DS 0H

 The number of required devices are specified in the field
 NJBDVU and the number of required buffers are specified in the
 field NJBBFU. The device types for each required device must be
 given in the full words following the word specifying the number
 of devices. The size of each required buffer must be given in
 the full words following the device types. Device types,
 specifying the device requirement, are four characters, left
 justified, with trailing blanks.

 The order in which the device names are specified determines

 5

 a logical device number (LDN) for each device, where the first
 device specified is logical device one. When a job program
 issues a supervisor call, the device to which the call is
 associated is indicated by the logical device number. In this
 way a job program can be written independently of the physical
 address of a device.

 This preallocation of devices and storage is used only by
 small jobs (such as REW). The MTS job-program obtains its
 devices and storage dynamically. The MTS job header specifies no
 preallocation. Thus, all items entered by the operator after
 "MTS" are considered parameters and are stashed away for MTS to
 look at when it’s given control.

 Entry to a Job Program _____ __ _ ___ _______

 When a job program is successfully initiated from the
 console typewriter, control is passed to the first instruction as
 specified in the Job Header. Three locations in the Job Table
 associated with the job are placed in General Registers 0, 1, and
 2: General Register 0 contains the address of the pseudo Sense
 Switches, General Register 1 contains a pointer to the list of
 buffer addresses, and General Register 2 contains a pointer to
 the list of input parameters. If an input parameter is
 alphanumeric, it is right justified with leading blanks. If an
 input parameter is a decimal integer, it is converted to a four
 byte signed binary number. The list of input parameters is
 terminated with a fence of FFFFFFFF. If there are no input
 parameters, the first word of the parameter list will be the
 fence.

 The Job List ___ ___ ____

 For each Job which is to be run under the supervisor, there
 must be an entry in the Job List. The job List consists of a
 collection of fixed-length (16 byte) Job List Entries. The Job
 List Entry indicates whether the job is re-entrant and whether it
 runs relocatable, and gives the location of the job. Each Job
 List Entry is assembled as a separate subprogram, and contains
 the entry name of the job program as an Extern in the Job List
 Entry subprogram. The format of a job list entry is:

 6

 ┌──────────────────────────────────────┐
 | 8 CHARACTER |
 | JOB NAME |
 └────────┌─────────┌───────────────────┐ | ─ ─ |
 |VERS NO | BITS | JOB NUMBER |
 └────────┘─────────┘───────────────────┐ | ─ ─ |
 | JOB PROGRAM ADDRESS |
 └──────────────────────────────────────┘

 BIT 0 INDICATES THE JOB IS RE-ENTRANT
 BIT 1 INDICATES THE JOB IS RELOCATABLE

 The job list entry for the REW job is:

 ARM5 START 0
 EXTRN JBREW ENTRY
 DC CL8’ REW’ JOB NAME
 DC C’1’ VERSION
 DC X’80’ REENTRANT
 DC H’0’ NUMBER
 DC A(JBREW) ENTRY ADDRESS
 END

 The byte labeled Version can be used to indicate that a
 modification has been made to the job program. In the REW coding
 above, Version 1 is indicated. The "Bits" byte specifies whether
 the job is re-entrant and/or relocatable. Job programs may be
 written as re-entrant, whereby a single copy of a job program can
 be active for more than one task. If a job is re-entrant, the
 left-most bit of the "Bits" byte is set to 1. If the job-
 program’s activation is to run in relocate mode, the second left-
 most bit is set to 1. MTS is an example of a job-program which
 is both reentrant and runs relocatable.

 Associated with every active job is a task number which is
 used to identify the particular activation of the job throughout
 the system. If a job is not re-entrant, it can be active for
 only a single task. To indicate that a non re-entrant job is
 active, the task number is inserted in a field of the job list
 entry.

 The Job List Entries are all collected together and
 sandwiched between a first-job (JOBLST), which defines the
 beginning of the "table", and a dummy last job (LSTJOB). The
 dummy last job has a blank name and version, and an all-ones job
 program address:

 LSTJOB START 0 LAST ENTRY IN JOB LIST
 DC CL9’ ’
 DC 7X’FF’
 END

 One thing should be mentioned about the parameter scan at
 this point. There are 14 words in the job table for parameters.
 The supervisor scans the input line from the operator; it doesn’t
 just put four characters into a word in the job table; it

 7

 actually scans for blanks as delimiters. If it finds (between
 the blanks) any characters that are non-numeric it assumes it’s a
 character string and it takes the last four characters and puts
 it in the word (right-justified with leading blanks). If it
 finds something that is all numeric, assumes it’s a decimal
 number and it converts it, and puts it into the next word of
 parameters. If there are long names (such as *INIT) to feed to
 the program that’s receiving these, such as MTS, they can’t be
 entered directly. If five characters are typed in a row, the
 last four characters, ("INIT") are stuffed into the parameter.
 The characters must be separated:
 *INI T,,,

 The supervisor will put the characters into two contiguous words
 in the parameters. Trailing commas are used since MTS treats
 these as FDname delimiters. Trailing commas on the "T" are
 needed because otherwise the supervisor, (bless his heart), would
 right-justify it with leading blanks. [Another anomaly, device
 names in the system are left-justified with trailing blanks.
 Device types are right-justified with leading blanks.] This
 splitting is rarely used because it’s such an annoyance that most
 of the pertinent file names are four characters, like *RST. [The
 string that HASP issues to start up an MTS batch job is rather
 astonishing.]

 When the job is started the base register is established,
 and it suddenly finds itself at the front of its code. Three
 registers are set up: GR0 points to switches in the job table,
 GR1 points to the series of words which keep track of the storage
 buffers requested, and GR2 points to the first word of the
 parameters. Requested devices are referred to as logical devices
 1, 2, and 3, for example. It’s strictly in order of which they
 were specified and hence, the order of the parameters.

 A job gets services -- that’s the line marked "3" -- from
 the supervisor, by issuing SVC instructions, which cause an
 interrupt in the supervisor. That’s the only way to get to the
 supervisor. The supervisor then processes the request and
 restarts the task. Anything that the task wants the supervisor
 to do is done by means of an SVC. There are about 100 SVCs now.
 The original Lincoln Lab supervisor has 20. A couple have since
 disappeared, and things have grown.

 A job terminates by using an SVC. There’s an SVC EXIT which
 says "I’m done." The supervisor calls a subroutine to clean up
 things, release things, and so forth. There’s another SVC to
 intercept job stoppages (which includes SVC EXIT). MTS uses this
 SVC for maintaining control of things. Therefore, issuing an SVC
 EXIT does not always mean the job is stopping. For example, if
 the subroutine SYSTEM is called, the the first thing it does is
 issue an SVC EXIT, because the code to save all the registers,
 change state, and everything else is rather complex. Thus, there
 is only one copy of the code, and the first thing that happens on
 entry to SYSTEM is an SVC EXIT. The next thing MTS knows is that
 it is entered through the intercepted-exit section of code, and
 it finally discovers that someone did an SVC EXIT with a

 8

 particular address. Therefore, it calls SYSTEM.

 HASP communicates in approximately the same way. HASP is
 initiated by the operator typing HASP and giving as parameters,
 possible drive names for disk packs, which theoretically should
 have disk packs mounted on those drives. When HASP starts off,
 it actually does a little more than the standard "3" interface
 and issues an SVC to tell the supervisor that HASP is running.
 This SVC gives the location of some special words in HASP since
 the supervisor sometimes has to make a special entry to HASP. If
 the operator types in a line beginning with a dollar sign, it’s
 considered a command to HASP and the supervisor just passes it on
 by chaining it to a chain of messages for HASP to process,
 setting the appropriate flag bytes and posting HASP. If HASP is
 well behaved, it will look at the messages. So there’s a slight
 additional interface here. That will be discussed more in the
 sections about HASP and HASPLING.

 It was decided at the time HASP was being installed, that we
 would create a little entity called a HASPLING. HASP is not re-
 entrant. It multiprograms within itself, but there’s only one
 HASP job running. It has lots of code that represent the "job
 programs" and it has something akin to a job table, which are
 called processor control elements. The HASPLING is a job program
 which is re-entrant, and one is activated for every device that
 HASP has doing things for it; i.e., one for each reader, printer,
 punch, remote SDA line, etc. There’s also one for each HASP disk
 and one to handle messages to the operator’s console (from HASP
 to the operator’s console). The interface between the HASPLING
 and the supervisor is the standard one (3), and consists mainly
 of an SVC to start an I/O operation and a SVC to wait until the
 I/O operation is complete. HASP is the one that starts the
 HASPLING, by issuing an SVC which starts a task. The
 communication between the two (interface "4") is that HASPLING
 gets passed as parameters in the job request, the name of the
 device to manage and the location in HASP of some control
 information, a lock byte, and some pointers. This lock byte and
 buffer pointers is how the HASPLING gets its information of when
 it’s supposed to write things out, or read things in. And that’s
 also how HASP tells the HASPLING to go away, if it’s through with
 it.

 When the HASPLING has nothing to so, it does a variant of
 the SVC WAYT type of wait, SVC SLEEP. Both types wait for some
 bits to change to 0, and a return from that SVC does not occur
 until all the bits specified are 0. But for the SVC WAYT, the
 job has to stay on the CPU queue, and every time the supervisor
 goes to dispatch anybody, it checks those bits to see if they
 have changed, which is expensive. So, the SLEEP and AWAKE
 mechanism was generated. The SVC SLEEP says "we’re doing a WAYT
 type of suspension, but take me off the CPU queue because someone
 will do an explicit type of interrupt to get me started again".
 When HASP wants to initiate something on a HASPLING it takes the
 task number and it does an SVC AWAKE which tells the supervisor
 to put that task back into the CPU queue. It also zeros the WAYT
 byte, of course, before it can go on.

 9

 The PDP (Paging Drum/disk Processor) interfaces with the
 supervisor (interface 10). It runs in absolute mode; it can’t
 page itself. It runs in problem state as an absolute task, so it
 behaves like any other task, except that for efficiency there are
 some special things done in the supervisor. It uses a lot of
 standard SVCs, but there are some added exclusively for
 interfacing with the paging drum processor. It has a number of
 SVC’s only it uses because it has to get information about where
 the queues are, which the supervisor is keeping. It’s not re-
 reentrant.

 There’s also the JOBS program (now called SSRTN) which is
 really an external scheduler to the system. HASP and MTS get
 information from it, but don’t pass information to it (interface
 6). There is a region in storage with bits and numbers which
 HASP looks at to decide to start a new batch job, and MTS looks
 at for limited service state determination. The Jobs program
 performs the external scheduling (i.e., when should a task be
 started), and the supervisor does the internal scheduling.

 The right hand side of Figure 1 shows the separation between
 absolute and relocatable. An interface between absolute and
 relocatable is necessary, and complex. This interface is
 supervisor assisted, in the sense that there’s a series of SVC’s
 to perform the moving across that boundary. This interface is
 less used now that HASP and the HASPLINGs are relocatable.

 Proceeding further in Figure 1, on top of MTS, we have the
 collection of the device support routines. These do all the I/O
 to and from the MTS tasks, particularly terminal support, tape
 support, etc. That’s the interface labeled "7". There’s also
 another set of interfaces, the Command language Subsystem
 interface (12). One of these interfaces is the user program. A
 CLS is just a program but each CLS can be run independently of
 the others. For example, there’s no distinction between the
 editor and a user program. The editor is written as a program,
 and it runs as a program but independently from the user
 execution program. A special case is one CLS, namely SDS, which
 has hooks into the user program CLS, since it has to monitor what
 is going on. There are a number of real CLS’s plus two more.
 Level 0 CLS is MTS itself, the command mode, 1 is the user
 program, and 2 on up are the actual CLSs. (Editor, SDS,...) For
 symmetry’s sake, it was made all the same.

 Another interface is with the file routines. MTS calls the
 file DSR which communicates with the file routines (interface 8).
 They are designed so they could be called by an absolute task,
 although that’s not done yet. MTS also calls some of the file
 routines directly (interface 9).

 The loader is also called from MTS (interface 11), although
 it’s also called when running the system from scratch and there
 isn’t anything around but the boot-strap loader to load the
 loader. Then the loader loads everyone else. The loader
 interface is such that anybody can call it since it is entirely

 10

 self-contained. The loader looks at what it’s given, decides if
 it’s a good record and shoves it into storage.

 For user programs, there are some SVC’s that the user
 program will issue by means of a macro. These are the time of
 day, etc. But generally this type of interface is not used very
 much. The majority of supervisor services are obtained through
 MTS. (The DSR’s however call the supervisor.)

 This represents the minimum overall view of the system.
 Eleven subcomponents and several other things are included.

 11

 | ┌────┐┌─────┐ |
 | ┌────────────┐HASP||OTHER| | |
 | | ┌─────┐ ┌┘────┘┘─────┘┐ | ─ ── ─
 | | | | | | RELOCATABLE
 | | |CLSs | | DSRs | |
 | | | | | | |
 | | └────┌┘ └─┌────┌────┌─┘┌─┐ ┌────┐ | ─ ─ ─ ─
 | ┌┘┐ ┌┘─┐ ┌┘┐ |FILE└──┐8└─┐FILE| | ─ ─ ─ | | | |
 | |5| |12| |7| └────┘ └─┘ | | |
 | └┌┘ └─┌┘ └┌┘ |RTNS| | ─ ─ ─
 | ┌────────┐ ┌──┘─┐ ┌┘───┘┐ ┌─┐| | | ─ ─ ─
 | | |┌─┐| | | └────────────┐9└┐ | | | | ||
 | |HASPLING└┐4└┐HASP└─┐ | MTS |┌──┐┌──────┐└─┘└────┘ | || || |
 PROBLEM | |└─┘| | | | └┐11└┐ | V || ||
 STATE └───┌────┘ └─┌──┘ | └┌──┌─┘└──┘|LOADER| ─────── ─ ─ ─ ─
 | | | ┌┘┐ ┌┘┐ | | | A ─ ─
 | | | |6| |6| | └──────┘ |
 | ┌──────┐ | | └┌┘ └┌┘ | ABSOLUTE ─ ─
 | ┌┘─────┐| | | | ┌───┘┐ | ┌───┐ | ─ ─
 | |OTHERS└┘ | | | | | | | | ┌────┐ | | | | |
 | ┌┘─────┐| | | └─┐JOBS| | |PDP| |SUPR| ┌───────┐ | ─ |
 | |REWIND└┘ | | | | | | | |SUBR| | | | |
 | └─────┌┘ | | └─┌──┘ | └─┌─┘ └─┌──┘ |MACHINE| | ─ ─ ─ ─
 V ┌┘┐ ┌┘┐ ┌┘┐ ┌┘┐ ┌┘┐ ┌┘─┐ ┌┘┐ | | | ─ ─ ─ ─ ─ ─ ─
 ─────── |3| |3| |3| |3| |3| |10| |2| | CHECK | |
 A └┌┘ └┌┘ └┌┘ └┌┘ └┌┘ └┌─┘ └┌┘ | | | ─ ─ ─ ─ ─ ─ ─
 | ┌┘────────┘──────────┘────────┘────┘───┘┐ | |HANDLER| | ─ ─ ─ ─ ─ ─
 | | | | | | |
 | | SUPERVISOR └─────┘ | | | |
 SUPERVISOR| | └───────┘ |
 STATE └─┌─────────────────────────────────────┘ | ─
 | ┌┘┐ | ─
 | |1| |
 | └┌┘ | ─
 | ┌────┘────────────────────── . . . | ─
 V | HARDWARE V

 FIGURE 1

