
 UM D6.0

 DDDDDDDDD IIIIIIIIII SSSSSSSSSS KK KK
 DDDDDDDDDD IIIIIIIIII SSSSSSSSSSSS KK KK
 DD DD II SS SS KK KK
 DD DD II SS KK KK
 DD DD II SSS KK KK
 DD DD II SSSSSSSSS KKKKKKK
 DD DD II SSSSSSSSS KKKKKKK
 DD DD II SSS KK KK
 DD DD II SS KK KK
 DD DD II SS SS KK KK
 DDDDDDDDDD IIIIIIIIII SSSSSSSSSSSS KK KK
 DDDDDDDDD IIIIIIIIII SSSSSSSSSS KK KK

 April 1987

 (I n t e r n a l D o c u m e n t a t i o n)

 D6.0 Disk system documentation, February, 1988

 Table_of_Contents _____ __ ________

 DISK GENERAL REFERENCE DATA 1
 Console Error Messages .. 9
 UNIT CHECK ERROR MESSAGE CODES 10
 Structure Of The Catalog .. 12
 Structure Of Line Files ... 22
 Structure Of Sequential Files 30
 Structure Of Shared File Table 33
 AMALCOMP .. 40
 CATSCAN - Catalog Scan And Count Utility 43
 CCATL - Catalog Creation Utility 45
 CHKVTOC ... 48
 CHONID - Program To Change File Owner 50
 DASDI - Disk Pack Initialization 51
 Disaster Recovery ... 55
 DISKCOPY - Copy Disk Packs 69
 DSK - Disk Table Utility .. 71
 FM - File Move Utility .. 74
 FSTEST - Testing The File Routines 77
 PM - Obtain A Pack Map .. 84
 TABLMOD - Shared File Table Utility 86
 Validate - Validate Files 88
 VAMREC - Error Recovery Program 90
 VNTD - Catalog Utility .. 99
 VTOCUTIL - VTOC Utility ...101

 D6.0 Disk system documentation, February, 1988 1

 ______________________Disk_General_Reference_Data______________________ ____ _______ _________ ____

 The MTS file system works with two general types of disks: count-key-
 data format and fixed-block format. The two formats differ in the
 details of how each file system record is accessed, but the size of
 each record is the same for both types--4096 bytes. A 4096 byte
 record, also known as a page, is the unit of data which is read or
 written by the file system.

 Independent of the type of disk which is used, the file system
 considers each disk to be a linear vector of 4096 byte records. Every
 record is accessed by the file system by specifying a device where the
 record is and a relative record number (starting with zero) on the
 device. (This abstraction comes from the TSS operating system, and is
 called the VAM2 format. It has been augmented by MTS and is known as
 VAMX in this form.)

 Every file system disk adheres to the following conventions:

 - there is a structure called the PAT (Page Assignment Table) which _ _ _
 describes how every page on the disk is being used. The beginning of
 the PAT is pointed to by the volume label. The PAT is a linear
 vector of bytes, with each byte in one-to-one correspondence with a
 page on the disk. Hence, the PAT is as large as the number of pages
 on the disk. Since it must be written in 4096 byte chunks just like
 any other file system data, the PAT size is always an integral
 multiple of 4096 bytes. The remaining space at the end of the PAT in
 the last page is used for relocation entries (see below).

 Every page fits into one of the following five categories:
 -data page
 -free page
 -bad page or special page
 -PAT page
 -DSCB page

 The PAT entry codes used in MTS are:
 -X’00’ means free page
 -X’01’ means data page
 -X’80’ means DSCB page (<12 slots used)
 -X’82’ means DSCB page (12-15 slots used)
 -X’83’ means DSCB page (all slots used)
 -X’C0’ means bad page, or special page
 -X’7F’ means PAT page
 -X’FF’ means end of PAT entries

 The last page in either a single- or double-density pack contains
 the regular PAT data plus relocation entries. Relocation entries
 describe pages which have been found bad during previous disk
 operations and whose data has been moved to another page on the
 pack. The bad pages are marked as error pages, and relocation

 Disk General Reference Data

 D6.0 Disk system documentation, February, 1988 2

 entries are placed at the end of the PAT describing which pages were
 bad and where they have been reassigned to. Whenever a disk page is
 read or written, the relocation entries are checked to see if the
 page is in the list of relocated pages. If so, the relocated page
 replaces the originally assigned page in the channel program
 constructed to effect the disk operation.

 The format of relocation entries follows. If there are no relocation
 entries the last word of the PAT will be zero. If there are
 relocation entries the last word of the PAT will appear as:
 -bits 0-15 contain number of relocation entries
 -bits 16-31 contain X’FFFF’.
 The relocation entries themselves are eight bytes in length and
 start at the penultimate fullword in the last PAT page and work
 backwards. The format of a relocation entry is:
 -bytes 0-3 contain number of error page
 -bytes 4-7 contain number of new page

 - the first few pages (generally the first track’s worth of pages but
 at least three) on every pack contain IPL data and the volume label
 (this is an IBM convention). They are marked in the PAT as bad
 pages. The last 3 pages of every pack are always marked as bad also
 (again an IBM convention).

 - the format of the data area of the volume label for VAMX is as
 follows:

 CL4’VOL1’ ID
 CL6 VOLUME LABEL (E.G: MTS001)
 XL1’F0’ SECURITY CODE
 FL2 PAT RELATIVE PAGE ADDRESS (NOT ALIGNED)
 CL4’3330’ DEVICE TYPE¹
 XL1’20’ VOLUME STATUS INDICATOR²
 H PVN (PUBLIC VOLUME NUMBER)
 XL1’00’
 10C’ ’ MANUFACTURER NAME
 10C’ ’ ASA NUMBER
 10C OWNER ID
 CL2’VX’ VOLUME FORMAT (VAMX)
 CL9’ ’ NOT USED, BLANK
 XL1’00’ VTOC RELIABILITY INDICATOR - IF LOW ORDER
 BIT IS 1, SPACE ALLOCATION INFORMATION ON
 THE PACK IS INCONSISTENT
 XL4 POINTER TO CATALOG (IF PVN=1)
 FL4 MAXIMUM RELATIVE PAGE NUMBER ON THE PACK
 CL9’ ’ NOT USED, BLANK

 ¹Can be any of: 2311, 2314, 3330, 333B, 3340, 3344, 3350,
 3370, 3375, 3380, 3390, or 6280.
 ²Can be any of X’00’ (private), X’20’ (public), X’40’
 (paging).

 The volume label is record 3 on cylinder 0, head 0, of every count-

 Disk General Reference Data

 D6.0 Disk system documentation, February, 1988 3

 key-data type pack (this track is not page formatted), and has a key
 value of C’VOL1’. On a fixed-block pack the label is at block 1.

 - the IPL information on a disk is located in records 1, 2, and 4 of
 track zero. The disk hardware implements a READ IPL command which
 causes track zero record one to be read. Record 1 is a 24 byte
 record initially written by the MTS DASDI program. It is a no-op
 record and causes the machine to go into wait state if IPLed.
 IPLINIT will replace this with something more reasonable. It changes
 it to a record for bootstrapping record 2. Record 2 is a standard
 record for bootstrapping record 4, which is the machine code image
 for the IPLBOOT program. (Continuing the IPL, IPLBOOT then reads in
 IPLREAD, which is located in a sequential file called *IPLAREA but
 which is not in the catalog. *IPLAREA is described by DSCBs,
 however.) Records 1 and 2, like the volume label, are unusual in
 that they have keys of IPL1 and IPL2, respectively.

 - DSCB (Data Set Control Block) pages contain 16 DSCB slots -- DSCBs _ _ _ _
 are always 256 bytes long. DSCBs tell where files are on the disk.
 They contain a file name and a list of where all the pages
 comprising the file reside. DSCBs come in two flavors: type E and
 type F. Each file has exactly one type-E DSCB associated with it. If
 the file is greater than 38 pages then it will also have one or more
 type-F DSCBs associated with it (the type-Fs are chained from the
 type-E). The format of the DSCB’s is documented elsewhere (see
 DSCBDSCT macro).

 - the hardware characteristics for each type device differ, but their
 general character is summarized here.

 Disk packs look like a stack of phonograph records, and are read by
 a comb-like access mechanism which sticks between the platters. Each
 tooth of the comb has one or more read/write heads on it dedicated
 to accessing a given platter’s surface. The platters are thin
 aluminium substrate with magnetic oxide on both sides. Data is
 stored on each surface as a series of magnetized bits in concentric
 rings starting at the outside edge and going inward towards the
 spindle. Each ring is known as a cylinder, and each platter in a
 ring is known as a track.

 Depending on the type of disks, this stack of platters may or may
 not be removable. The different types have different numbers of
 platters. Data is not necessarily written on every platter. For
 example, removable disks (2311s, 2314s, and 3330s) which are not
 shrouded (like 3340s) do not use either the top nor the bottom
 surface to record data (they are protective). Other surfaces may be
 dedicated to servo information, used by the access mechanism to
 position itself properly in order to read or write data. Newer model
 disks have this servo information magically encoded within the data
 and do not require a dedicated servo surface.

 The hardware only knows how to access data based on cylinder and
 track. Fixed-block disks are smarter in that they need only be told

 Disk General Reference Data

 D6.0 Disk system documentation, February, 1988 4

 a relative block number on the device and do the conversion to
 cylinders and tracks themselves.

 Since the rotation speed of the disk determines how fast data can be
 transferred to or from the device, the rotational rate and data
 recording density determine the data transfer rate. These vary
 depending on the disk type and manufacturer (all the following are
 IBM advertised values):

 ┌──────┌────────┌────────┌─────────────┐ ─ ─ ─
 | type |rev. per| latency|transfer rate|
 | | minute | (msec) | (Mb/sec) |
 └──────┼────────┼────────┼─────────────┐ | |
 | 2311 | 2400 | 25 | 0.156 |
 | 2314 | 2400 | 25 | 0.312 |
 | 3330 | 3600 | 16.7 | 0.806 |
 | 3340 | 3000 | 20.24 | 0.885 |
 | 3350 | 3600 | 16.7 | 1.198 |
 | 3370 | 3000 | 20.2 | 1.859 |
 | 3375 | 3000 | 20.2 | 1.859 |
 | 3380 | 3600 | 16.7 | 3.0 |
 | 3390 | 4250 | 7.1 | 4.2 |
 | 6280 | 4000 | 15.2 | 1.859 |
 └──────┘────────┘────────┘─────────────┘ ─ ─ ─

 - disk capacity table:

 ┌──────┌─────────┌──────┌──────┌────────┌──────────┌───────┐ ─ ─ ─ ─ ─ ─
 | type |cylinders|tracks|pages |capacity| default |default|
 | | | |/track| (pages)|pat start |pat len|
 └──────┼─────────┼──────┼──────┼────────┼──────────┼───────┐ | |
 | 2311 | 203 | 10 | <1 | 1624 | 800 | 1 |
 | 2314 | 203 | 20 | 2+ | 6496 | 3200 | 2 |
 | | 406 | | | 12992 | 6400 | 4 |
 | 3330 | 411 | 19 | 3 | 23427 | 11400 | 6 |
 | | 815 | | | 46455 | 22800 | 12 |
 | 3340 | 349 | 12 | 2 | 8376 | 4200 | 3 |
 | | 698 | 12 | 2 | 16752 | 8400 | 5 |
 | 3344 | 698 | 12 | 2 | 16752 | 8400 | 5 |
 | 3350 | 560 | 30 | 5+ | 74480 | 37240 | 19 |
 | 3370 | 959 | 12 | 7+ | 69750 | 4? | 18 |
 | 3375 | 959 | 12 | 8 | 92064 | 46032 | 23 |
 | 3380 | 886 | 15 | 10 | 132900 | 66400 | 33 |
 | | 1771 | 15 | 10 | 265650 | 132835 | 65 |
 | | 2656 | 15 | 10 | 398400 | 199200 | 98 |
 | 3390 | 1113 | 15 | 12 | 200340 | 100170 | 49 |
 | | 2226 | 15 | 12 | 400680 | 200340 | 98 |
 | 6280 | 840 | 20 | 6 | 100800 | 50400 | 25 |
 └──────┘─────────┘──────┘──────┘────────┘──────────┘───────┘ ─ ─ ─ ─ ─ ─

 Note that the capacity figures only represent the maximum number of
 pages which could be fit onto a disk pack. The actual values are
 lower due to the information on track zero which is not page

 Disk General Reference Data

 D6.0 Disk system documentation, February, 1988 5

 formatted, and the pages which are occupied by the PAT.

 - A summary of disk format on the various disk types follow.

 2311: Each group is five tracks, comprising eight records and
 defining four pages.

 record 1 track 0 is a bytes of page 1
 record 1 track 1 is 4096-a bytes page 1
 record 2 track 1 is b bytes of page 2
 record 1 track 2 is 4096-b bytes of page 2
 record 2 track 2 is c bytes of page 3
 record 1 track 3 is 4096-c bytes of page 3
 record 2 track 3 is d bytes of page 4
 record 1 track 4 is 4096-d bytes of page 4.

 2314: Each group is five tracks, comprising twelve records and
 defining eight pages.

 record 1 track 0 is page 1
 record 2 track 0 is 2920 bytes of page 2
 record 1 track 1 is 1176 bytes of page 2
 record 2 track 1 is page 3
 record 3 track 1 is 1592 bytes of page 4
 record 1 track 2 is 2504 bytes of page 4
 record 2 track 2 is page 5
 record 3 track 2 is 207 bytes of page 6
 record 1 track 3 is 3889 bytes of page 6
 record 2 track 3 is 3136 bytes of page 7
 record 1 track 4 is 960 bytes of page 7
 record 2 track 4 is page 8.

 3330: Each group is one track, comprising five records and
 defining three pages.

 record 1 is page 1
 record 2 is a 102 byte gap
 record 3 is page 2
 record 4 is a 102 byte gap
 record 5 is page 3

 3340/3344: Each group is one track, comprising two records and
 defining two pages.

 record 1 is page 1
 record 2 is page 2

 3350: Each group is eleven tracks, comprising fifty-nine records
 and defining nineteen pages.

 record 1 track 0 is page 1
 record 2 track 0 is page 2
 record 3 track 0 is page 3

 Disk General Reference Data

 D6.0 Disk system documentation, February, 1988 6

 record 4 track 0 is page 4
 record 5 track 0 is 1945 bytes of page 5
 record 1 track 1 is 2151 bytes of page 5
 record 2 track 1 is page 6
 record 3 track 1 is page 7
 record 4 track 1 is page 8
 record 5 track 1 is 3890 bytes of page 9
 record 1 track 2 is 206 bytes of page 9
 record 2 track 2 page 10
 record 3 track 2 is page 11
 record 4 track 2 is page 12
 record 5 track 2 is page 13
 record 6 track 2 is 1554 bytes of page 14
 record 1 track 3 is 2542 bytes of page 14
 record 2 track 3 is page 15
 record 3 track 3 is page 16
 record 4 track 3 is page 17
 record 5 track 3 is 3499 bytes of page 18
 record 1 track 4 is 597 bytes of page 18
 record 2 track 4 page 19
 record 3 track 4 is page 20
 record 4 track 4 is page 21
 record 5 track 4 is page 22
 record 6 track 4 is 1163 bytes of page 23
 record 1 track 5 is 2933 bytes of page 23
 record 2 track 5 is page 24
 record 3 track 5 is page 25
 record 4 track 5 is page 26
 record 5 track 5 is 3108 bytes of page 27
 record 1 track 6 is 988 bytes of page 27
 record 2 track 6 page 28
 record 3 track 6 is page 29
 record 4 track 6 is page 30
 record 5 track 6 is page 31
 record 6 track 6 is 772 bytes of page 32
 record 1 track 7 is 3324 bytes of page 32
 record 2 track 7 is page 33
 record 3 track 7 is page 34
 record 4 track 7 is page 35
 record 5 track 7 is 2717 bytes of page 36
 record 1 track 8 is 1379 bytes of page 36
 record 2 track 8 page 37
 record 3 track 8 is page 38
 record 4 track 8 is page 39
 record 5 track 8 is page 40
 record 6 track 8 is 381 bytes of page 41
 record 1 track 9 is 3715 bytes of page 41
 record 2 track 9 is page 42
 record 3 track 9 is page 43
 record 4 track 9 is page 44
 record 5 track 9 is 2326 bytes of page 45
 record 1 track 10 is 1770 bytes of page 45
 record 2 track 10 page 46

 Disk General Reference Data

 D6.0 Disk system documentation, February, 1988 7

 record 3 track 10 is page 47
 record 4 track 10 is page 48
 record 5 track 10 is page 49.

 3375: Each group is one track, comprising eight records and
 defining eight pages.

 record 1 is page 1
 record 2 is page 2
 record 3 is page 3
 record 4 is page 4
 record 5 is page 5
 record 6 is page 6
 record 7 is page 7
 record 8 is page 8.

 3380: Each group is one track, comprising ten records and
 defining ten pages.

 record 1 is page 1
 record 2 is page 2
 record 3 is page 3
 record 4 is page 4
 record 5 is page 5
 record 6 is page 6
 record 7 is page 7
 record 8 is page 8
 record 9 is page 9
 record 10 is page 10.

 6280: Each group is one track, comprising six records and
 defining six pages.

 record 1 is page 1
 record 2 is page 2
 record 3 is page 3
 record 4 is page 4
 record 5 is page 5
 record 6 is page 6.

 3370: There are eight blocks per page. Though the disk is not
 count-key-data, the position of each record on the disk
 is determined for slot sorting to optimize access order.
 There are 62 blocks on each track. Each group is four
 tracks, comprising 248 blocks and 31 pages.

 blocks 0-7 track 0 are page 1
 blocks 8-15 track 0 are page 2
 blocks 16-23 track 0 are page 3
 blocks 24-31 track 0 are page 4
 blocks 32-39 track 0 are page 5
 blocks 40-47 track 0 are page 6
 blocks 48-45 track 0 are page 7

 Disk General Reference Data

 D6.0 Disk system documentation, February, 1988 8

 blocks 56-61 track 0 are 3072 bytes of page 8
 blocks 0-1 2 track 1 are 1024 bytes of page 8
 blocks 2-9 track 1 are page 9
 blocks 10-17 track 1 are page 10
 blocks 18-25 track 1 are page 11
 blocks 26-33 track 1 are page 12
 blocks 34-41 track 1 are page 13
 blocks 42-49 track 1 are page 14
 blocks 50-57 track 1 are page 15
 blocks 58-61 track 1 are 2048 bytes of page 16
 blocks 0-3 track 2 are 2048 bytes of page 16
 blocks 4-11 track 2 are page 17
 blocks 12-19 track 2 are page 18
 blocks 20-27 track 2 are page 19
 blocks 28-35 track 2 are page 20
 blocks 36-43 track 2 are page 21
 blocks 44-51 track 2 are page 22
 blocks 52-59 track 2 are page 23
 blocks 60-61 track 2 are 1024 bytes of page 24
 blocks 0-5 track 3 are 3072 bytes of page 24
 blocks 6-13 track 3 are page 25
 blocks 14-21 track 3 are page 26
 blocks 22-29 track 3 are page 27
 blocks 30-37 track 3 are page 28
 blocks 38-45 track 3 are page 29
 blocks 46-53 track 3 are page 30
 block 54-61 track 3 are page 31.

 3390: Each group is one track, comprising 12 records and
 defining 12 pages.

 record 1 is page 1
 record 2 is page 2
 record 3 is page 3
 record 4 is page 4
 record 5 is page 5
 record 6 is page 6
 record 7 is page 7
 record 8 is page 8
 record 9 is page 9
 record 10 is page 10
 record 11 is page 11
 record 12 is page 12.

 Disk General Reference Data

 D6.0 Disk system documentation, February, 1988 9

 Console Error Messages

 Whenever a fatal error occurs, the 3330-compatible unit check routine
 (UCDISK) produces a message on the operator’s console. Disk error
 messages have the following format:

 CL4 DEVICE NAME (E.G.: D261)
 C’ ’
 CL6 VOLUME LABEL (E.G.: MTS004)
 C’ ERROR ’
 C ERROR CODE (SEE NEXT PAGE)
 C’ ’
 CL8 FLAGS
 C’ ’
 CL2 GLOBAL SENSE FLAG (SHOULD BE X’01’)
 C’ ’
 CL53 SENSE DATA (24 BYTES)
 C’ ’
 CL8 CCCCHHHH (CYLINDER AND HEAD)
 C’ ’
 CL2 FAILING CCW OPERATION CODE

 See an operator manual for an interpretation of the sense data.

 The ’flags’ word is the input and output flag bits to UCDISK - of
 interest only to programmers using the unit check routines.

 If an abbreviated message appears on the console (just consisting of
 the device name and the error code), this indicates that CMDSTAT drop
 areas are full. Cmdstat may not be running, or it may be running but
 unable to reach the the disk. To start the CMDSTAT task (if it has
 stopped running) issue an MTS *CMD command at the console.

 Console Error Messages

 D6.0 Disk system documentation, February, 1988 10

 _____________________Unit_Check_Error_Message_Codes____________________ ____ _____ _____ _______ _____

 ? - invalid parameters¹

 0 - insufficient sense data (less than the full 24 bytes)

 1 - all relevant sense bits are zero

 2 - equipment check

 3 - command reject¹

 4 - file mask violation (unexpected)¹

 9 - bus-out check

 A - uncorrectable data check

 B - overrun - 10 tries

 C - unwanted track overflow¹ (CKD) or block size exception¹
 (FBA)

 D - unexpected end of cylinder¹

 E - intervention required (2301 or 3805)

 F - overflow incomplete

 G - unable to find define extent parameters (FBA)

 H - check data error (FBA)

 I - incorrect length

 J - invalid device type¹

 K - no record found¹

 L - channel detected error: program check, protection check,
 channel protect check, interface control check, or offline
 control unit

 M - low spares on 3805 or 3825

 P - track condition check (3340 or 3344)

 Q - intent violation (3380)

 R - seek check (3340 or 3344)

 S - PCI fetch mode and correctable data check¹ - everything

 Unit Check Error Message Codes

 D6.0 Disk system documentation, February, 1988 11

 except 2301s

 T - intervention required

 U - channel data check

 V - chaining check

 W - environmental data presented

 X - truncation error during data check correction

 Y - program interrupt looking at user’s CCW list¹

 Z - incremented seek address past a cylinder boundary and the
 file mask forbids seeks¹

 # - regular recording of buffered log of activity on this disk

 ¹Probably a software problem, not flakey hardware.

 Unit Check Error Message Codes

 D6.0 Disk system documentation, February, 1988 12

 Structure of the Catalog

 The CATALOG in MTS is composed of a number of FILES (special, to be _______ _____
 sure) named *MASTER.CATALOGn where n=0, 1, 2, ...255. These special
 files are also called EXTENTS. These extents may all be on the same ________
 disk VOLUME or they may be scattered across different disk volumes.
 For reasons of efficiency, they should be scattered across volumes
 (and even control units). Each *MASTER.CATALOGn is linked to the next
 *MASTER.CATALOGn+1. The above structure is generally determined at the
 time the catalog is initially built, and except for facilities
 provided to dynamically expand when necessary,¹ this structure does
 not change. Thus, it is important if one is building the catalog to
 know ahead of time on what volume(s) one wants the catalog to reside
 and to "direct" the building process in that direction.

 In general, each catalog file (extent) has the following structure.
 The first PAGE² or RECORD of each extent is the EXTENT_HEADER. This ____ ______ ______ _______
 header contains a 4 byte id ("*EH*"), a 4 byte count of the number of

 pages in this extent (maximum of 816), a 4 byte link to the next

 extent,³ and a 4 byte data set control block (DSCB) type E address⁴
 for this *MASTER.CATALOGn.

 The remainder of the extent header is composed of a variable number of

 FREE_SEGMENT_DESCRIPTORS. The number of free segment descriptors is ____ _______ ____________

 equal to the number of pages in the extent. The free segment

 descriptor indicates which segments (as defined below) in the

 corresponding page are available for use. A free segment descriptor is

 composed of a 4 byte page address followed by a 1 byte bit map

 describing the free segments.

 ¹The expansion is open-ended in the sense that the catalog will always
 create a new *MASTER.CATALOGn+1 (given available space, of course).

 ²The catalog uses 4096 byte page size physical records as does the
 regular file system.

 ³Catalog addresses take the form of a 12 bit public volume number and
 a 20 bit relative page number (starting at zero) within the volume.

 ⁴The DSCB type E is not used by the catalog routines.

 Structure of the Catalog

 D6.0 Disk system documentation, February, 1988 13

 The remaining pages in the extent have the following structure. Each
 page has a 16 byte PAGE__HEADER, also called a RECORD_HEADER, ____ _______ ______ _______
 containing a 4 byte id ("*RH*"), the 4 byte address of the extent

 header, a 4 byte relative page number within this extent (starting at

 1 since page 0 is used for the extent header), and the 4 byte address

 of this page. The remainder of the page is broken up into 6 SEGMENTS, _________

 each 680 bytes long.

 Each segment has a 20 byte SEGMENT_HEADER containing the following: _______ ______

 the 4 byte userid to whom the segment has been assigned, a 4 byte link

 to the next segment assigned to this userid,⁵ a 1 byte count of the
 maximum number of DESCRIPTORS (see below) that can be contained in ___________

 this segment, a 1 byte descriptor length, and 10 unused bytes.

 A segment can be assigned to the MASTER_INDEX,_SYSTEM_FILE_CATALOG, ______ ______ ______ ____ ________

 SCRATCH_FILE_CATALOG, or a USER_CATALOG. If a segment is assigned to _______ ____ ________ ____ ________

 the master index, it may contain a maximum of 55 MASTER_INDEX ______ _____

 DESCRIPTORS each 12 bytes long. If a segment is assigned to the system ___________

 file catalog, the scratch file catalog, or a user catalog, it may

 contain a maximum of 10 FILE_DESCRIPTORS and/or SHARING_DESCRIPTORS ____ ___________ _______ ___________

 each 66 bytes long.

 The master index contains a descriptor for every userid that has

 permanent private files in the system. This master index descriptor

 contains a 1 byte flag, a 4 byte userid, a 4 byte address of the first

 segment of the user catalog for this userid, and 3 unused bytes. The

 master index is generally searched only once per userid per session at

 the first reference to a userids private files to obtain the address

 of the userids catalog. Thereafter, MTS remembers where the userids

 catalog is to speed up subsequent references.

 When a user creates his first private file, an entry is made in the

 master index and the user is assigned an available segment.⁶
 Furthermore, as is the case every time a file is created, a file

 descriptor is placed in the users catalog.

 ⁵The segment number (0-5) within the page is indicated in the high
 order 4 bits of the address (as with DSCB addresses). Segments of a

 user catalog need not be on the same volume.

 ⁶Segment 5 of each page is not assigned to new users for their first
 segment. This segment is reserved as an overflow segment for existing

 catalogs.

 Structure of the Catalog

 D6.0 Disk system documentation, February, 1988 14

 The FILE DESCRIPTOR contains a 1 byte flag (to distinguish it from
 sharing descriptors), 1 byte of owner access, 1 byte of global
 access,⁷ 1 byte of flags indicating a) the version of the file system
 catalog, b) if the file should be saved by FILESAVE, c) if it is a
 privileged file, and d) the type of file, the 16 byte filename, the 4
 byte address of the DSCB type E for the file, a 4 byte owner ID, an 8
 byte STCK value of the last time the file was closed, a 2 byte
 creation date, a 2 byte last reference date, a 4 byte usage count, one
 byte of flags indicating if the file is to have program product
 charging applied, a 2 byte last change date, and a 12 byte program
 key.

 In addition, if the file has been permitted (via $PERMIT) to specific

 userids, projects, or program keys, the file descriptor will have a 6

 byte sharing descriptor linked to it.⁸

 The SHARING DESCRIPTOR is composed of a 1 byte flag, a variable number

 of variable length SHARING_DESCRIPTOR_ENTRIES and, if necessary, the 6 _______ __________ _______

 byte link⁸ to the next sharing descriptor. Each sharing descriptor
 entry is composed of the one byte IBM length of the userid, project

 number,or program key, a 1 byte flag indicating first whether the

 entry is a userid, project number, program key, qualified userid-

 program key or a qualified project number-program key and second, what

 type of access is allowed this userid, project number,or program key,⁹
 and the actual userid, project number, or program key.

 The algorithm for determining access is (generally) as follows. The

 sharing descriptors are scanned checking for a "match" against the

 userid, project number, and program key in question. Since it is

 possible to "match" the same userid (or project number or program key)

 against more than one sharing descriptor entry, (by permitting access

 to subsets of userids, e.g., all userids whose first n characters are

 ...) the access of the most specific match is the one allowed.

 Furthermore, userid access has higher priority than project number

 access and project number access has higher priority than

 (unqualified) program key access so that if a userid and a project ___

 number both "match", the userid access is used, regardless of the ____

 number of characters matched. (Access permitted to a program key

 "qualified" by a userid has higher priority than access permitted to

 just the userid, and access permitted to a program key "qualified" by

 a project number has higher priority than access permitted to just the

 ⁷Access allowed to others.

 ⁸This 6 byte link has the form, a 12 bit public volume number and
 segment number, a 20 bit relative page number, and a 2 byte offset

 into the segment. Thus descriptors need not be on the same volume.

 ⁹The types of access currently allowed are no access, read access,
 write expand, write change & empty, renumber & truncate, rename &

 destroy, permit, or any combination thereof.

 Structure of the Catalog

 D6.0 Disk system documentation, February, 1988 15

 project number). Finally, if no specific access applies, then the
 global access is used.

 Structure of the Catalog

 D6.0 Disk system documentation, February, 1988 16

 When a user overflows his first segment with more than 10 file and/or
 sharing descriptors, a new segment is allocated and the first segment
 is linked to it. An attempt is made to allocate the next segment on
 the same page as the previous segment (i.e., segment 5). In any event,
 a new segment will be allocated even if it becomes necessary to
 dynamically expand the catalog in the process.

 As would be expected, whenever a user destroys a file, the
 corresponding file descriptor is removed from the user catalog (as
 well as any sharing descriptors attached to the file descriptor).
 Finally, when DEADUCATDES, a special procedure, is run (usually once a
 month) to remove expired userids from the system, the master index
 descriptor is removed from the master index, and all segments
 allocated to the expired user catalog are returned.

 It should be noted here that the system file catalog and the scratch
 file catalog are identical to the user catalogs except, of course,
 they never expire.

 One further note; the extent header of *MASTER.CATALOG0 contains in
 addition to the normal extent header information and free segment
 descriptors, the name of the last *MASTER.CATALOGn created, and the
 addresses of the beginnings of the master index, the system file
 catalog, the scratch file catalog, and the first user catalog. These
 pointers are read in and remembered when the operating system is
 initialized for reasons of efficiency. (The name of the last
 *MASTER.CATALOGn is needed for expansion.) In addition, proper manual
 setting of these pointers at the time the catalog is being built can
 in most cases guarantee that sufficient contiguous space will be
 available to the master index, system, and scratch file catalogs for
 expanding. This will be the case since user catalogs are allocated
 "down from" the first user catalog only. Again this is an efficiency
 move and is not necessary (though quite desirable).

 Finally, there exist two resident subroutines which may be of use to
 system programmers interested in extracting information from the
 catalog about the file system. GETCINF returns file descriptor (and
 optionally sharing descriptor information) about any or all of the
 files in the users catalog. READCAT reads the catalog sequentially and
 returns information on a page by page basis. Since the calling
 sequences to these routines are rather nonstandard to say the least,
 the appropriate listings should be consulted.

 Structure of the Catalog

 D6.0 Disk system documentation, February, 1988 17

 Catalog Format _______ ______

 Extent_Header (page 1 of each *MASTER.CATALOGn file -- also called ______ ______
 "file header")
 ┌──┐
 | | | | | |
 | 0-3 | 4-7 | 8-11 | 12-15 | 16- |
 | | | | | |
 └──┘
 | | | | |
 | | | | |
 | number of | DSCB |
 | pages | type E |
 | this | address |
 | extent | |
 ID (816 link to free seg-
 "*EH*" max) next ment de-

 extent scriptors

 5 byte/

 Notes: page

 (1) Free segment descriptors 4 byte page

 indicate status of each page address

 in this *MASTER.CATALOGn extent. 1 byte bit

 (2) DSCB type E address is not used map as

 currently by the catalog follows

 routines. 20--seg 5 in

 (3) All page addresses are in the use

 form 12 bit public volume #, 10--seg 4 in

 20 bit relative page #. use

 08--seg 3 in

 use

 04--seg 2 in

 use

 02--seg 1 in

 use

 01--seg 0 in

 use

 Structure of the Catalog

 D6.0 Disk system documentation, February, 1988 18

 Page_Header or Record_Header (16 bytes) ____ ______ ______ ______
 ┌───┐
 | | | | |
 | 0-3 | 4-7 | 8-11 | 12-15 |
 | | | | |
 └───┘
 | | | |
 | | | |
 ID pointer relative page
 "*RH*" to extent page # address
 header (starting this page
 at 1)

 The remainder of every page is divided into six segments, each 680
 (decimal; hex 2A8) bytes in length. The segments are numbered 0-5. The
 starting relative address of each segment within a page is:

 segment 0: X’010’
 segment 1: X’2B8’
 segment 2: X’560’
 segment 3: X’808’
 segment 4: X’AB0’
 segment 5: X’D58’

 Segment_Header (20 bytes) _______ ______
 ┌──┐
 | | | | | |
 | 0-3 | 4-7 | 8 | 9 | 10-19 |
 | | | | | |
 └──┘
 | | | | |
 | | | | |
 userid | # of de- | unused

 to whom this | scriptors |

 segment link to length of

 assigned next descriptor

 segment

 The userid above may also be one of "*MIX" (master index), or "*SYS"

 (public file catalog), or "<SF>" (scratch file catalog).

 The high order bits of the public volume number (in the link to the

 next segment) contain the segment number (similar to DSCB addressing).

 For example, 20404DCF refers to the third segment on page 4DCF on

 MTS004.

 The next segment does not have to be on the same volume.

 Structure of the Catalog

 D6.0 Disk system documentation, February, 1988 19

 Master_Index_Descriptor (12 bytes) ______ _____ __________
 ┌───┐
 | | | | |
 | 0 | 1-4 | 5-8 | 9-11 |
 | | | | |
 └───┘
 | | | |
 | | | |
 flag | pointer to |
 08-mid | user |
 | catalog |
 userid unused

 File_Descriptor (66 bytes) ____ __________
 ┌──┐
 | | | | | |
 | 0 | 1 | 2 | 3 | 4-19 |
 | | | | | |
 └──┘
 | | | | |
 | | | | |
 flag | global | filename
 X’80’=>fd | access |
 owner file org
 access and version
 20--permit number
 10--destroy/ |
 rename |
 08--renumber/ bits 0-2: version number
 truncate (old device type)
 04--write-change/ X’C0’--3330 (disk)
 empty X’A0’--3350 (disk)
 02--write-expand X’80’--2321¹ (datacell)
 01--read X’40’--2314 (disk)
 X’20’--Version 1
 (Change time info incl.)
 X’00’--2311 (disk)
 bits 3-4: file organization
 X’18’--sequential
 X’10’--seq. with line numbers
 X’00’--line file
 bit 5: on if NOSAVE file
 bit 6: on if privileged file
 bit 7: on if file has been changed
 (save it)

 ────────────────────
 ¹Currently not supported by the file system.

 Structure of the Catalog

 D6.0 Disk system documentation, February, 1988 20

 File_Descriptor -- continued ____ __________
 ┌──┐
 | | | | |
 | 20-23 | 24-27 | 28-35 | 36-37 |
 | | | | |
 └──┘
 | | | |
 | | | |
 DSCB | last data creation
 type E | change time date
 address | (STCK value)
 for this ownerid
 file

 File_Descriptor -- continued ____ __________

 ┌───┐
 | | | | | | | |
 | 38-39 | 40-43 | 44-55 | 56 | 57 | 58-59 | 60-65 |
 | | | | | | | |
 └───┘
 | | | | | |
 | | | flags | |
 last | program | last |
 reference | key | changed |
 date use count X’80’-PPCharge date link to
 sharing
 descriptor

 Notes:
 (1) Link to sharing descriptor is 6 bytes:
 12 bit public volume number,
 20 bit relative page number,
 2 byte offset into segment
 (once again the segment number is in the high order bits of
 the public volume number).
 (2) All dates are Julian, that is, based on March 1, 1900.

 Structure of the Catalog

 D6.0 Disk system documentation, February, 1988 21

 Sharing_Descriptor (66 bytes) _______ __________

 | (sharing descriptor entry) |
 ┌───┐
 | | | | | | |
 | 0 | 1 | 2 | 3- | | 60-65 |
 | | | | | | |
 └───┘
 | | | | | |
 | | | | | |
 flag | access | additional |
 40-sd | and | variable |
 | flag | length |
 | x’80’-userid | sharing |
 | x’40’-pkey | descriptor |
 | x’c0’-qpkey | entries |
 | x’00’-prjno | terminated |
 | | by X’FF’ |
 length of userid link to
 userid prjno or next
 prjno or pkey sharing
 pkey descriptor

 Notes:
 (1) See note number 1 above concerning format of link to next
 sharing descriptor.
 (2) For qualified pkeys, the format is:
 <len>’8x’<ccid><len>’Cx’<pkey>

 Structure of the Catalog

 D6.0 Disk system documentation, February, 1988 22

 Structure of Line Files

 THE INTERNAL STRUCTURE OF LINE FILES IN MTS

 A line file has two basic components, the line-hole_directory and the _________ _________
 data__section. Logically, the line directory is an array of 8-byte ____ ________
 entries, one for each line in the file; each entry contains the line
 number, plus a pointer (relative page number and offset) into the data
 section, where further information about the line is stored. This
 array is ordered from smallest to largest line number, which makes
 both sequential operations and indexed operations relatively
 efficient. The format of a line directory entry is:

 LDELNUM BYTES 0-3: line number
 LDEPAG# BYTES 4-5: relative page number (1-32767)

 LDEDISP BYTES 6-7: displacement within the page (0-4095)

 The contents of the data section are unordered, and are allocated and

 freed dynamically, using a hole_directory. The hole directory is an ____ __________

 array of four byte entries; there is one entry for each page of the

 data section, giving its relative page number, preceded by an entry

 for each contiguous block of available space on that page, giving its

 offset and length. Each such group of entries is ordered from highest

 to lowest offset, to facilitate recombination of available blocks. No

 particular order is imposed on the groups themselves, however. The

 relative page number entry appears last in each group because the hole

 directory is scanned in reverse order. The format of a hole directory

 page number entry is:

 HDEPAG# BYTES 0-1: relative page number (1-32767)

 HDEFLAG BYTES 2-3: zero, which flags this type of entry

 and the format of an available block entry is:

 HDEDISP BYTES 0-1: displacement to beginning of block (0-4095)

 HDELEN BYTES 2-3: length of available block. (1-4095)

 We next describe the manner in which these pieces are mapped onto the

 physical pages of the file. The line directory array is divided into

 blocks of 510 or fewer entries; each such block is stored on a

 separate page, and these pages are chained together on a two-way

 linked list, in increasing line number order. The first page in the

 chain is always page one of the file. The hole directory follows the

 line directory in the same chain; only one page may contain both hole

 directory and line directory entries at the point where they join.

 The data section normally occupies a set of pages distinct from the

 line-hole directory chain. If the file is small enough to be stored in

 one page, however, the data section occupies part of page one.

 Structure of Line Files

 D6.0 Disk system documentation, February, 1988 23

 The following is the general format of a line or hole directory page:

 PHLDSO BYTES 0-1: offset to start of line-hole directory;
 this will be either X’0028’ or X’0BE0’ in
 page one, and X’0010’ in all other pages

 PHLDL BYTES 2-3: line directory length (bytes) (0-4080)

 PHHDL BYTES 4-5: hole directory length (bytes) (0-4080)

 PHSID BYTES 6-7: relative page number of this page (1-32767)

 PHFWDP BYTES 8-9: forward pointer (relative page number of
 next page in hole-line directory chain)
 (0-32767 0=end of list)

 PHBWDP BYTES 10-11: backward pointer (0-32767 0=end of list)

 PHLNTP BYTES 12-13: line number table index (see later) 8-byte-
 slot number in line number table (0-8180)

 BYTES 14-39: global file information - page one only -
 in other pages the line or hole directory
 starts at byte 16, and bytes 14-15 are
 unused.

 BYTES 40-3039: data section for a one page file. In larger
 files the line directory starts at byte 40
 of page one. There is room here for 3000
 bytes of data.

 BYTES 3040-4095: line directory starts here in a one page
 file. Room here for 131 lines and two hole
 entries.

 We next describe the contents of the data section of the file. For
 lines shorter than 128 bytes, and many longer lines as well, the line
 occupies a contiguous block of storage in the data section of the
 file; the first two bytes of the block give the length of the line,
 and the remainder is the line itself. A line longer than 128 bytes may
 be broken into at most 16 pieces, none of which (except possibly the
 last) may be shorter than 128 bytes; clearly none will be larger than
 a page. If the line is broken up, the block pointed to by the line
 directory entry contains a table of pointers and lengths for the
 remaining blocks, followed by the first piece of the line. The
 structure of the line_block_table is as follows: ____ _____ _____

 Structure of Line Files

 D6.0 Disk system documentation, February, 1988 24

 LINBKTB BYTES 0-1: BITS 0-3 - number of pieces minus 1 (0-15)
 BITS 4-15 - length of first piece - does
 not include length of table (1-4094)

 LINPAG# BYTES 2-3: relative page number (1-32767)

 LINDISP BYTES 4-5: offset (0-4095)

 LINPLEN BYTES 6-7: length of this piece (1-4096)

 BYTES 8... up to 14 6-byte entries in the format of

 bytes 2-7, one for each piece, followed by

 the first piece of the line.

 There are no alignment restrictions on blocks in the data section. The

 data blocks for a line may have a total length up to 32767 bytes. The

 data blocks for the line number table (described later) may have a

 total length up to 65444 (4096*16-2-15*6), leaving room for 8180 8-

 byte slots.

 If a line or hole directory page becomes empty, normally because all

 the lines it points to have been deleted, it is removed from the line

 directory chain and added to the free page chain, which is a one-way

 linked list of available pages, chained through the normal forward

 pointer field. The pointer to the first such page, if any, is

 contained in the global file information in page one of the file.

 Pages on the free page chain can be used either as data pages or line

 directory pages. Once a page has been used as a data page, however, it

 will never be used as a line directory page. Pages beyond the number

 of pages in use (R1NPGS) are not chained.

 To improve the efficiency of indexed operations on line files, a line ____

 number__table is added to the file. The line number table is an array ______ _____

 containing a one-way linked list of 8 byte entries, one for each line

 or hole directory page, with the following structure:

 LTELNUM BYTES 0-3: Line number of first line in page

 LTENEXT BYTES 4-5: Index of next entry in list (0-8180 0=end

 of list)

 LTEPAG# BYTES 6-7: Relative page number of corresponding page

 1-32767

 These entries are chained in exactly the same order as the

 corresponding line or hole directory pages. The pointers are entry

 indices, and page one always has index zero. If a line directory page

 contains neither lines nor holes (a condition which should only occur

 for page one), the line number table entry contains X’80000000’. If a

 page contains only holes, the entry contains X’7FFFFFFF’. Recall that

 each line directory page also contains the index of the corresponding

 line number table entry.

 The line number table is stored in the data section of the file, in

 exactly the same format as a normal data line. The pointer to this

 "line" is part of the global file information in page one.

 Corresponding to the free page chain for line directory pages, there

 Structure of Line Files

 D6.0 Disk system documentation, February, 1988 25

 is a free entry chain for the line number table, chained through bytes
 4-5, as usual, and starting from the global file information.

 With the exception of the global file information, whose format is
 given below, this completes the description of the internal structure
 of line files.

 Global file information:

 R1FTYPE BYTE 14: file type - always X’00’. The first
 nibble=0 flags that this is line file
 format; the second nibble=0 because it is
 unused.

 R1HDRL BYTE 15: header length - always
 X’28’=FL1’40’=AL1(LNEFHDRL)

 R1NPGS BYTES 16-17: number of pages in use (truncated size) (1-
 32767)

 R1NLDR BYTES 18-19: number of line-hole directory pages (1-
 8180)

 R1NAB BYTES 20-23: number of available bytes in line-hole
 directory

 R1MFS BYTES 24-25: maximum file size - file will not be
 expanded beyond this size (1-32767)

 R1MLL BYTES 26-27: maximum line length - length of the longest
 line written (0-32767)

 R1LLDR BYTES 28-29: last line-hole directory page number (1-
 32767)

 R1FPC BYTES 30-31: free page chain pointer (0-32767 0=none)

 R1LNTP BYTES 32-35: line number table pointer, 2-byte page
 number (1-32767) & 2-byte offset (0-4095)

 R1LNTFL BYTES 36-37: line number table free entry list (0-

 8180, 0=NONE)

 R1FXF BYTES 38-39: file expansion factor

 Structure of Line Files

 D6.0 Disk system documentation, February, 1988 26

 File Pages for LINE Files ____ _____ ___ ____ _____

 File pages consist of Page One (special), Line Directory
 pages (:::) and Hole Directory pages (%%%) chained in a

 doubly-linked list, and Data pages.

 Page1 Page2 ___ ... ___ Page m Data pages ___ ___ ___ ___ ___

 | | --> |:::| --> |:::| --> |:::| --> |%%%| | | | | . .

 |___| <-- |:::| <-- |:::| <-- |%%%| <-- |%%%| |___| |___| ___ ___ ___ ___

 1) Page One of a multi-page line file

 0___________2___________4___________6__________ _ _ _ _

 X’00’ | Offset to | Line Dir | Hole Dir | Rel pg# |

 | LH Dir. | length | length | of page |

 |_(X’0028’)_|_(0-4056)__|_(0-4056)__|_(X’0001’)_| _________ ________ ________ _________

 X’08’ | Pg# of | Pg# of | Line Num | |headr|

 | next LH pg| prev LH pg| Tab. indx | 00 | len |

 |_(0-32767)_|_(X’0000’)_|_(0-8180)__|_____|X’28’| _________ _________ ________ _____

 X’10’ |*Num pages*| Num LH | Num of available |

 |* in use *| Dir pages | bytes in Line-Hole |

 |*(2-32767)*|_(1-8180)__|__Directory____________| ___________ ________ _________

 X’18’ | Maximum | Maximum |*Last LH *|*Free page*|

 | filesize | Line len |*Dir pg# *|*chain ptr*|

 |_(2-32767)_|_(0-32767)_|*(1-32767)*|*(0-32767)*| _________ _________ ___________ ___________

 X’20’ | Line Num Table ptr |*Line Num *| File |

 | (2 byte | (2 byte |*Tab free *| expansion |

 |__page_#)__|__offset)__|*chain_ptr*|__factor___| ____ __ _______ ______ ____ ______

 X’28’ | Bytes X’28’ - X’FFF’ |

 | (Bytes 40 - 4095) |

 | |

 | Line and/or Hole Directory |

 | |

 |___|

 Notes:

 1) The information in bytes X’0E’ - X’27’ is known as

 Global File Information. This info is updated from the

 FCB at the time of a CLOSE operation.

 2) Byte X’0E’ consists of a high-order nibble 0 which

 indicates this is a LINE file format and a low order

 nibble which is unassigned (set to 0).

 3) The fields marked with asterisks are the critical

 fields. That is, if these are incorrect, the file can be

 very messed up and inconsistent.

 Structure of Line Files

 D6.0 Disk system documentation, February, 1988 27

 2) Line/Hole Directory; Page n of a multi-page line file (n > 1)

 0___________2___________4___________6__________ _ _ _ _
 X’00’ | Offset to | Line Dir | Hole Dir | Rel pg# |
 | LH Dir. | length | length | of page |
 |_(X’0010’)_|_(0-4080)__|_(0-4080)__|_(2-32767)_| _________ ________ ________ _________
 X’08’ | Pg# of | Pg# of | Line Num | |
 | next LH pg| prev LH pg| Tab. indx | (unused) |
 |_(0-32767)_|_(1-32766)_|_(0-8180)__|___________| _________ _________ ________
 X’10’ | Bytes X’10’ - X’FFF’ |
 | (Bytes 16 - 4095) |
 | |
 |____________Line_or_Hole_Directory_____________| ____ __ ____ _________

 3) Data Section; Page n of a multi-page line file (n > 1)

 X’00’ | Bytes X’00 - X’FFF’ |
 | (Bytes 0 - 4095) |
 | |
 | File Data (Data Section blocks) |
 |___|

 4) A One-page file (contains header, global file info, data, and
 Line/Hole Directories all in one page).

 0___________2___________4___________6__________ _ _ _ _
 X’00’ | Offset to | Line Dir | Hole Dir | Rel pg# |
 | LH Dir. | length | length | of page |
 |_(X’0BE0’)_|_(0-1048)__|_(0-1048)__|_(X’0001’)_| _________ ________ ________ _________
 X’08’ | Pg# of | Pg# of | Line Num | |
 | next LH pg| prev LH pg| Tab. indx | X’0028’ |
 |_(X’0000’)_|_(X’0000’)_|_(X’0000’)_|___________| _________ _________ _________
 X’10’ | Num pages | Num LH | Num of available |
 | in use | Dir pages | bytes in Line-Hole |
 |_(X’0001’)_|_(X’0001’)_|__Directory____________| _________ _________ _________
 X’18’ | Maximum | Maximum | Last LH | Free page |
 | filesize | Line len | Dir pg# | chain ptr |
 |_(1-32767)_|_(0-32767)_|_(X’0001’)_|_(X’0000’)_| _________ _________ _________ _________
 X’20’ | Line Num Table ptr | Line Num | File |
 | (X’01’ = | (2 byte | Tab free | expansion |
 |__page_#)__|__offset)__|_chain_ptr_|__factor___| ____ __ _______ _____ ___ ______
 X’28’ | Bytes X’28’ - X’BDF’ |
 | (Bytes 40 - 3039) |
 | DATA SECTION |
 |___|
 X’BE0’ | Bytes X’BE0’ - X’FFF’ |
 | (Bytes 3040 - 4095) (Total of X’420’ bytes)|
 | Line Directory |
 | and Hole Directory |
 |___|

 Structure of Line Files

 D6.0 Disk system documentation, February, 1988 28

 Line Directory ____ _________

 The Line Directory consists of 8-byte records ordered from
 smallest to largest line number. There is one entry for each
 line in the file.

 0_____1____2____3____4____5____6____7__ _ _ _ _ _ _ _ _
 | MTS |Relative | Page | Bytes 4 - 7:
 | line number |page num |displacmt| Pointer to a block
 | |___________________|(1-32767)|(0-4095)_| in the DATA _________ ________
 |smaller _______________________________________ SECTION
 | to | MTS |Relative | Page |
 |larger | line number |page num |displacmt|
 | line |___________________|(1-32767)|(0-4095)_| _________ ________
 |numbers .
 | .
 V __________________.____________________ _
 | MTS |Relative | Page |
 | line number |page num |displacmt|
 |___________________|(1-32767)|(0-4095)_| _________ ________

 Hole Directory ____ _________

 The Hole Directory consists of one 4-byte page marker for ____ ______
 every data page in the file. If one of those data pages
 contains holes, then the page marker will be preceded by one
 or more 4-byte hole descriptors (one for each hole in ____ ___________
 that page).

 _0_____1____2_____3_ 0______1___2_____3__ _ _ _ _ _ _ _ _
 |Displacmt| Hole | |Relative | |
 |to start | size | |page num | 0000 |
 |of_hole__|(1-4095)_| |(1-32767)|_________| __ ____ ________ _________
 A Hole Descriptor A Page Marker

 The file routines scan the Hole Directory from the end of
 the LH page toward the beginning. Therefore the Hole Directory
 entries are arranged "from right to left" rather than from left
 to right as the Line Directory entries are. E.g.,
 __
 |(a LH page) |
 | |
 | | | | | | | | |
 |_______<--_|_HD3_|_HD2_|_HD1_|_PM3_|_PM2_|_HD1_|_PM1_| ___ ___ ___ ___ ___ ___ ___ ___

 where PM1 is the page marker for the lowest numbered data page,
 HD1 is the hole descriptor with the smallest displacement, HD3
 is the hole descriptor with the largest displacement value, etc.
 Note that the page described by PM2 has no holes.

 Structure of Line Files

 D6.0 Disk system documentation, February, 1988 29

 Data Section ____ _______

 The Data Section consists of pages of nonaligned blocks. A
 block always has a halfword length followed by data, line block
 table entries, or line number table entries. Possible blocks are:

 1) Contiguous storage for a line LE 128 bytes (sometimes longer)

 0____1_______________________ _ _
 | HW line| |
 | length | |
 |________| |
 | Line Data |
 | |
 |_____________________________|

 2) Line Block Table for a line GT 128 bytes that is described in ____ _____ _____
 pieces.

 0_______1_____2_____3____4____5____6_____7__ _ _ _ _ _ _ _ _
 | |Len of |Rel pag of|Offset in| Len of |
 |#-1|1st piece|line data | page |2nd piece| >

 |___|(1-4094)_|(1-32767)_|(0-4095)_|(0-4096)_| > Up to 15 ________ _________ ________ ________

 > more "extra

 . . . > piece"

 ______________________________ > descriptors

 |Rel pag of|Offset in| Len of |

 |line data | page |Ith piece|

 |(1-32767)_|(0-4095)_|(0-4096)_| "#" = number _________ ________ ________

 | | of pieces t

 | Data for 1st piece of line | line is

 | | chopped int

 |______________________________|

 3) Only one Line Number Table exists in the data section. ____ ______ _____

 _0____1___2____3____4____5___6____7_____8____9___ _ _ _ _ _ _ _ _ _ _

 | HW len | Line number of |Index of |Rel pg# of|

 |of table| the first line |next entry|corresp pg|

 | (8*m) |__on_Line_Dir_page|(0-8180)__|(1-32767)_| _____ __ ____ ___ ____ ________ _________

 .

 m entries for m LH Dir pages

 .

 __

 | Line number of |Index of |Rel pg# of|

 | the first line |next entry|corresp pg|

 |__on_Line_Dir_page|(0-8180)__|(1-32767)_| __ ____ ___ ____ ________ _________

 Note: Bytes 0-3 contain X’80000000’ for Page One if it has neither

 Lines nor Holes and X’7FFFFFFF’ for Hole-only Directory pages.

 Structure of Line Files

 D6.0 Disk system documentation, February, 1988 30

 Structure of Sequential Files

 Internal Structure of Sequential Files
 in MTS

 The organization of sequential files (with or without line numbers) is
 quite simple when compared to line files. In general, the first "n"

 bytes of the first physical record is used as a header by the ______

 sequential file routines in which pertinent information about the

 sequential file is retained.¹

 Immediately following this header information are the lines of

 information stored in the sequence in which they were received by the

 sequential file routines. Since these lines may be up to 32,767 bytes

 long, and since the physical_records on the disk are 4096 bytes (1 ________ _______

 page) long,it is quite possible that a line will have to be broken up

 and stored on more than one physical record. This is quite likely even

 if only "short" lines are written into a sequential file since the

 lines are packed end to end using up all of one physical record before

 going onto the next physical record. Thus, it turns out that even

 short lines may be broken up across physical record boundaries.

 For this reason, it is convenient to refer to a segment of a line as _______

 that part of the line which resides on a physical record. Furthermore,

 we can refer to the first, intermediate, and last segments of a line,

 remembering that in fact these descriptions may all denote one segment

 (identical to the line) or they may denote two or more distinct

 segments, depending on the size of the line and how the line "fell"

 with respect to physical record boundaries.

 The first 4 bytes in the sequential file header are the length of the

 header, following this is the 4 byte last_pointer associated with this ____ _______

 sequential file. This pointer is composed of a 2 byte relative record

 number within the file and a 2 byte offset into the corresponding

 physical record. This pointer is used to determine where the next line

 of information should be written and where the logical end of the file

 is.²

 The next full word in the header following the last pointer contains

 the line__number__of_the_last_line written, and is maintained only if ____ ______ __ ___ ____ ____

 this is a sequential file with line numbers. Its sole function is to

 insure that lines are written with increasing line numbers. The next

 halfword in the header is the size of the longest_line in the file. ____ _______ ____

 This is updated (if necessary) after every write operation. The last

 ¹Currently n=16

 ²A more detailed description of how this pointer and others are
 manipulated by the file routines may be found in an appendix to Volume

 1, "Details on Using Sequential Files in MTS".

 Structure of Sequential Files

 D6.0 Disk system documentation, February, 1988 31

 two bytes in the header are the maximum expandable size of this
 sequential file.

 Each segment of a line in a sequential file has either 10 or 6 bytes
 of overhead associated with it depending on whether it is in a
 sequential file with or without line numbers. The 6 bytes common to
 both organizations is split up as 3 bytes before and after each
 segment. The first of the three bytes at the beginning of each segment
 is a flag byte indicating whether this is the first, intermediate, ____
 and/or last segment of the line, and whether this segment (i.e., the
 line) has a line number associated with it. The next two bytes are a
 count of the current segment length plus the previous segment lengths
 for this line. If this is a sequential file with line numbers, the
 next 4 bytes contain the line number associated with this segment. The ____ ______
 three bytes at the end of the segment are similar (but not identical)
 to those at the front, i.e., the first two bytes are a count of the
 total line length minus all previous segment lengths, and the last
 byte is the one byte flag. The lengths kept at the front and the back
 of the segments are somewhat obscure but make possible the backwards
 reading of sequential files. Due to the judicious definition of these
 lengths, it is the property that: 1. For the first segment of a line, _____
 a) the leading count contains the length of the first segment, and b)
 the trailing count contains the total line length; 2. For the last ____
 segment of a line, a) the leading count contains the total line
 length, and b) the trailing count contains the length of the last
 segment. This is precisely the information required for forwards and
 backwards reading of the file.

 As was mentioned earlier, lines are packed sequentially onto physical
 records end to end, and are broken up into segments if necessary so
 that whenever possible all space on the physical record is used.
 Sometimes, however, because of the overhead associated with each
 segment, up to 6 or 10 bytes at the end of each physical record may be
 unusable. If such is the case, the physical record is filled out with
 the necessary number of a unique dummy byte. This, along with the _____ ____
 length at the end of each segment, as previously mentioned, allows the
 backward reading capability of sequential files.

 As concerns size limitations on sequential files, lines are restricted
 to 32,767 bytes in length. And, the total number of physical pages in
 a sequential file can be no greater than 32,767. Finally, as with line
 files, all records of the file must reside on the same volume.

 Structure of Sequential Files

 D6.0 Disk system documentation, February, 1988 32

 HEADER -- (16 BYTES) ______
 ┌───┐
 | | | | | | |
 | 0-3 | 4-5 | 6-7 | 8-11 | 12-13 | 14-15 |
 | | | | | | |
 └───┘
 | | | | | |
 | | | | | |
 header | last | maximum |
 length | pointer- | line |
 | offset | length |
 last if SEQWL- |
 pointer- last maximum
 relative line # file size
 record if SEQ-
 file expansion
 factor in bytes
 8-9

 SEGMENT _______

 | length n |
 ┌───┐
 | | | | | | |
 | 0 | 1-2 | 3-6 | 7-(7+n-1) |(7+n)-(8+n)| 9+n |
 | | | | | | |
 └───┘
 | | | | | |
 | | | | | |
 flag | line segment | flag
 40-- | number of line | (same as
 first | (only if seqwl) | front)
 seg- | |
 ment | |
 20-- | |
 last | |
 seg- | |
 ment | |
 08-- | |
 no | |
 line | |
 num- | |
 bers | |
 sum of |
 this total line
 segment length minus all
 plus all pre- previous segments
 vious segments

 Structure of Sequential Files

 D6.0 Disk system documentation, February, 1988 33

 Structure of Shared File Table

 THE INTERNAL STRUCTURE OF THE SYSTEM WIDE
 SHARED FILE TABLE IN MTS

 In a shared file environment, before any operation (reading, writing,
 emptying, etc.) can be performed on a file, guarantees must be made to
 ensure that concurrent usage of the file at any particular point in
 time will not endanger the integrity of the file.

 To accomplish this, files are "locked" at one of three inclusive
 levels (read, modification, or destroy) before any specific file
 operation is performed. In addition, checks are made before locking is
 allowed to ensure that certain rules of concurrent usage will not be
 violated.

 It should be noted that the problems of determining allowable
 concurrent usage of a file are separate and not related to the problem
 of determining allowable access to a file. It is assumed that by the
 time the system wide shared file table is interrogated, it has been
 determined that access appropriate to the locking request has been
 "permitted".

 In order to determine who may concurrently use a file and how at any
 given point in time, MTS maintains a table (in shared VM) indicating
 at any given point in time, all the files currently open and/or
 locked, how they are locked, and by what task (job); as well as what
 tasks are currently waiting to lock the file and how they are waiting.

 This table is necessary to determine (with the aid of the rules of
 concurrent usage) whether, at any given point in time, a particular
 type of opening and/or locking can be allowed.

 The rules of concurrent usage are as follows:

 1) Any number of tasks can have a file locked for reading at the
 same point in time as long as no other task has the file
 locked for modification or destroying.

 2) Only one task can have a file locked for modification
 (writing, emptying, truncating, etc.) at any given point in
 time, and then only if no other task has the file locked for
 reading or destroying.

 3) Only one task can have a file locked for destroying (renaming
 or permitting) at any given point in time, and then only if
 no other task has the file open, locked for reading, or
 locked for modification.

 If it is determined, via the rules of concurrent usage, that a file
 cannot be locked as requested, the task is (optionally) queued to wait

 Structure of Shared File Table

 D6.0 Disk system documentation, February, 1988 34

 on the file. (Internally this is accomplished via an SVC sleep.)
 Before a task is queued to wait on a file, however, checks are made to
 determine whether queueing a task to wait on the file will result in a
 deadlock situation whereby two or more tasks will wait indefinitely on
 their respective queues.

 The simplest form of deadlock is the "single file" situation. For
 example, suppose both task A and task B have FILEX locked for reading,
 and then task A requests that FILEX be locked for modification. Since
 someone else (task B) also has the file locked, task A will be queued
 to wait on FILEX. Then suppose task B requests that FILEX be locked
 for modification. MTS realizes not only that someone else (task A) has
 the file locked, but also that queueing task B to wait on FILEX would
 result in both tasks A and B waiting indefinitely for the other to
 unlock the file. In this situation, MTS will not queue task B to wait,
 but will return an error indication instead.

 A "single file" deadlock is fairly easy to detect, more complicated
 forms of deadlocks can occur when multiple files are concerned. The
 method MTS uses to detect "multiple file" deadlocks is as follows:

 1) Define a relation B (Blocking) as follows:
 TASKA is in relation B to TASKB
 (TASKA B TASKB iff)

 TASK A has a file open and/or locked in such a way that TASK
 B is blocked from using that file.

 Blocking is defined as follows:
 A) A task with a file open blocks a task waiting to destroy
 the file.
 B) A task with a file locked to read blocks a task waiting
 to modify or destroy the file.
 C) A task with a file locked to modify blocks a task
 waiting to read, modify, or destroy the file.
 D) A task with a file locked to destroy blocks a task
 waiting to open, read, modify or destroy the file.

 2) Build the M by M Matrix representing relation B where M is
 the total number of tasks either (a) with files open and/or
 locked blocking another task or (b) being blocked.

 3) The transitive closure relation B+ of relation B is defined
 as follows:

 TASKA B+ TASKB iff

 There exists N tasks TASKi 1≤i≤N such that

 TASKA B TASK1 B...B TASKN B TASKB

 (i.e., there exists a "chain" relating TASKA to TASKB).

 Structure of Shared File Table

 D6.0 Disk system documentation, February, 1988 35

 4) Using Warshalls algorithm, (see Gries--Compiler Construction
 for Digital Computers) compute the M by M Matrix which
 represents the transitive closure relation.

 5) Now see if there exists an i such that

 TASKi B+ TASKi

 If so, then a deadlock situation exists.

 A necessary condition for a "multiple file" deadlock is that the task
 being queued to wait on a file must have some other file open and/or
 locked and some other task must be waiting on that file. This check
 can easily be made to determine if it is really necessary to build the
 matrix.

 Once a task is queued to wait on a file, it "sleeps" until the task(s)

 which have the file locked, unlock the file. At that point, the

 unlocking task determines if any task(s) sleeping on the wait queue

 can be "awakened". The unlocking task makes its decision using the

 same rules of concurrent usage described above.

 The basic format of the system wide shared file table is as follows.

 The first 2 bytes at the beginning of the table are used by tasks to

 "wayt" when the table is full. 1 byte is used to "wayt" for space for

 a file entry, and 1 is used to "wayt" for space for an open or waiting

 element. The next 2 bytes are a pointer to the chain of open and/or

 locked file entries. Then follows 2 bytes which are a pointer to a

 chain of available file entries (each 24 bytes). After that 2 bytes

 which are a pointer to a chain of available open or waiting elements

 (each 6 bytes). The next two bytes are a count of the number of open

 and/or locked files. After this is a 2 byte count of the number of

 matrix computations performed and a 2 byte count of the number of

 deadlocks detected. These last 6 bytes are maintained for

 informational purposes only.

 Initially the table contains only available entries. As open or

 waiting elements are needed, a 24 byte available entry is broken up

 into 4-6 byte available elements. Eventually, when the open or waiting

 elements are returned, the 4-6 byte available elements will be

 "re-grouped" into a 24-byte available entry.

 The 24-byte open and/or locked file entry consists primarily of the

 16-byte name and a 2-byte link to the next open and/or locked file in

 the chain. In addition, 1 byte is used to indicate whether the file is

 being modified or destroyed. 2 bytes are used as a pointer to the

 chain of open and/or locked elements (tasks with the file open and/or

 locked), and 2 bytes are used as a pointer to the chain of waiting

 elements (tasks waiting to lock the file).

 Structure of Shared File Table

 D6.0 Disk system documentation, February, 1988 36

 The 6-byte open/locked element consists primarily of a 2-byte task
 number indicating the task that has the file open and/or locked and a
 1-byte flag indicating whether the task has the file open or not and
 if locked, how the task has the file locked. In addition, of course, a
 2 byte pointer to the next open and/or locked element is necessary.

 The 6-byte waiting element is identical to the 6-byte open element
 except that the flag byte indicates how the task is waiting to lock
 the file. The flag byte also indicates whether the wait has been
 cancelled. Finally, the flag byte contains the bit on which the
 waiting task "sleeps" and correspondingly is "awakened".

 Structure of Shared File Table

 D6.0 Disk system documentation, February, 1988 37

 System_Wide_Shared_File_Table_Format ______ ____ ______ ____ _____ ______

 Table_Header _____ ______
 ┌───┐
 | | | | | | |
 | 0 | 1 | 2-3 | 4-5 | 6-7 | 8-9 |
 | | | | | | |
 └───┘
 | | | | | |
 | | | | | |
 | flag: | pointer to | open/locked
 | ff--waiting | available | file count
 | on element | entry list |
 | | |
 flag: pointer to pointer to
 ff--waiting open/locked available
 on entry file entry element list
 list

 ┌────────────────────┐
 | | |
 | 10-11 | 12-13 |
 | | |
 └────────────────────┘
 | |
 | |
 | matrix
 | computations
 | performed
 |
 deadlocks
 detected

 Structure of Shared File Table

 D6.0 Disk system documentation, February, 1988 38

 File_Entry (24 BYTES) ____ _____
 ┌───┐
 | | | | | | |
 | 0-1 | 2-17 | 18 | 19 | 20-21 | 22-23 |
 | | | | | | |
 └───┘
 | | | | | |
 | | | | | |
 | filename unused | pointer to |
 | | open/locked |
 | | element |
 | | list |
 pointer to flag: pointer to
 next open/ 80--being des waiting
 locked file entry 40--being mod element
 (or available list
 entry if not
 in use)

 Structure of Shared File Table

 D6.0 Disk system documentation, February, 1988 39

 OPEN/LOCKED_ELEMENT (6 bytes) ___________ _______
 ┌───┐
 | | | | |
 | 0 | 1 | 2-3 | 4-5 |
 | | | | |
 └───┘
 | | | |
 | | | |
 | offset to | pointer to
 | beginning | next
 | of entry | open/locked
 | | element (or
 | | forward
 | | pointer to
 flag: | available
 80--lock des | element if
 40--lock mod | not in use)
 20--lock read |
 10--open |
 02--invalid task number
 01--in use (or backpointer
 to available
 element if not
 in use)

 WAITING_ELEMENT (6 bytes) _______ _______
 ┌───┐
 | | | | |
 | 0 | 1 | 2-3 | 4-5 |
 | | | | |
 └───┘
 | | | |
 | | | |
 | offset to | pointer to
 | beginning | next waiting
 | of entry | element (or
 | | forward
 | | pointer to
 flag: | available
 80--wait des | element if
 40--wait mod | not in use)
 20--wait read |
 10--wait open |
 04--cancel wait task number
 02--sleep bit (or backpointer
 01--in use to available
 element if not
 in use)

 Structure of Shared File Table

 D6.0 Disk system documentation, February, 1988 40

 AMALCOMP

 Purpose: To amalgamate and compare the lists of files during recovery _______
 from a disk disaster, and so produce lists of files for further
 recovery actions.

 Availability: Use the AMALCOMP macro in file:cmdmaclib to run this ____________
 program on the standard list files. This macro takes the
 following parameters:

 fdir= the online filesave directory (rstr:filedir.mas), or a
 copy of it.

 time= the time of the disaster. This should be specified in a
 form acceptable to the PLUS time and date routines, for
 example "Sep 18 10:45". If specified, this time is used to

 select which versions of files to restore from the filesave

 tapes. Specifically, no version which is more recent than

 the given time will be used. If the time is not specified,

 the most recent versions are used. This time parameter is

 useful if a file save has been done since the damage

 occurred. By specifying the time of the disaster, corrupted

 versions of files which have been saved on tape since the

 damage will not be used to "restore" the files.

 I/O_units_used: ___ _____ ____

 SERCOM - Serious errors which affect further processing and

 informational progress reports.

 Unit 0 - The list of user ids which have suffered catalog

 damage.

 Unit 1 - The list of files which have lost data. This is "list

 1" of the disaster recovery writeup and is the output of the

 VTOCUtil program.

 Unit 2 - The list of files which have lost sharing information.

 This is "list 2" and is the output of the FIXSD program.

 Unit 3 - The list of all (non-scratch) files in the catalog.

 This is "list 3" and is the output of the Catlist program.

 Unit 4 - The list of all (non-scratch) files in the VTOCs. This

 is "list 4" and is the output of the VTOClist program.

 Unit 5 - RSTR:FILEDIR.MAS (or a copy of it). This is used to

 find the tape copies of files to be restored.

 Unit 15 - The list of files to be destroyed because they are

 AMALCOMP

 D6.0 Disk system documentation, February, 1988 41

 missing some DSCB or data that can’t be restored. This is
 "list 5" and is input to the CALLDR program.

 Unit 16 - The list of files to be recataloged because they are
 missing an FD that can’t be restored. This is "list 6" and
 is input to the RECAT program.

 Unit 17 - The list of files whose data pages are to be released
 because they are not in the catalog and there hasn’t been
 any catalog damage. This is "list 7" and is the input to
 RELDSK.

 Unit 18 - The input to FASTRESTORE, used to restore various
 parts of files. This is "list 8".

 Unit 19 - The input to *FILES, used to tell users what happened
 to their files. This is "list 9".

 Return_Codes: ______ _____

 0 - Everything worked, except possibly errors affecting only
 individual files.

 4 - Serious errors occurred.

 12 - Invalid PAR field.

 AMALCOMP

 D6.0 Disk system documentation, February, 1988 42

 Decision__Table: In this table Y means yes, - means no, and ? means ________ _____
 don’t care.

 l
 l o m
 o s u
 c s l i o t l
 a t o i n n t a
 t s n u c
 d t v t s v t
 b a c t a e e i
 a t s a o p r r o
 d a i t c e s s n

 Y Y - - Y Y ? - fd si data
 - Y - - Y Y Y - fd si data list0
 Y Y - - Y - ? - note reldsk
 - Y - - Y - Y - note reldsk
 ? Y - Y Y Y ? ? data
 ? Y - Y Y - ? ? destroy
 Y Y Y Y Y Y ? ? si data
 Y Y Y Y Y - ? ? destroy
 Y - Y Y - Y ? ? si dscb data
 Y - Y Y - - ? ? destroy
 Y - Y Y Y Y ? ? si
 Y - Y Y Y - ? ? note si
 ? - - Y Y ? ? ? nothing
 Y - - - - Y ? - fd si dscb data
 Y - - - - - ? - note cat
 - - - - - Y Y - fd si dscb data list0
 - - - - - Y - - nothing
 ? - - Y - Y ? ? dscb data
 ? - - Y - - ? ? destroy
 Y - - - Y Y ? - fd si
 Y - - - Y - ? - recat
 - - - - Y Y Y - fd si list0
 - - - - Y - Y - recat list0
 - ? - - Y ? - - reldsk
 ? ? - - Y ? ? Y reldsk

 Note that the correct functioning of this program depends
 on a subtle use of the "Mult Vers" test - namely that if

 there are multiple versions which appear only in the

 VTOCs, then the first one will NOT have the Mult Vers test

 true. Also if there is a version in the catalog, then Mult

 Vers will be on for all versions and further there will

 not be multiple versions in the catalog.

 AMALCOMP

 D6.0 Disk system documentation, February, 1988 43

 CATSCAN - Catalog scan and count utility

 The catalog scan program CATSCAN is used to scan the catalog and
 report counts of various occurences in the catalog.

 To run the program,

 macrolib file:cmdmaclib
 catscan [listoutput]

 The program begins with a prompt for parameters. The parameters which
 it accepts and their meanings are:

 FILES - Output a count of all files.

 LINE - Output a count of all line files.

 SEQWL - Output a count of all "sequential with line numbers" files.

 SEQ - Output a count of all sequential files.

 SHAREDFILES - Output a count of all files which are shared.

 OTHERS - Output a count of all files which are permitted to "others".

 PROTOFF - Output a count of all files which have PROT=OFF.

 NOSAVE - Output a count of all files which have NOSAVE set.

 CHANGED - Output a count of all files which have changed since the

 last file save. (CHANGED bit is set).

 SPECIFIC - Output a count of all files which are permitted

 specifically somehow (have sharing descriptors) and also output

 counts for sharing descriptors for: users, projects

 (departments), program ids, user and program id, project and

 program id, private program id, *MTS.RUN, *EDIT, other public

 program id.

 PKEY - Output a count of all files which have a program key (id).

 NAMES - Output a count of files by length of file name, and for each

 character the number of file names which begin with it and the

 number of file names which contain it. Only the twelve character

 user file name is used for these counts.

 BADCHARS - Output a count of the files that have at least one illegal

 character in their file names.

 UNLIMO - Output a count of files that are permitted UNLIM OTHERS.

 CATSCAN - Catalog scan and count utility

 D6.0 Disk system documentation, February, 1988 44

 FULLO - Output a count of files that are permitted FULL OTHERS.

 PERMITO - Output a count of files that are permitted PERMIT OTHERS.

 PPC - Output a count of files that are marked for program product
 charging.

 ALL - Output all of the above counts.

 LIST - list on unit 0 those file names selected by setting LINE, SEQ,
 SEQWL, PROT, NOSAVE, CHANGED.

 This program takes a long elapsed time to run, since it labouriously
 scans the entire catalog.

 CATSCAN - Catalog scan and count utility

 D6.0 Disk system documentation, February, 1988 45

 CCATL - Catalog Creation Utility

 The following describes how to create the file system catalog from
 scratch.

 macrolib mts:cmdmaclib
 macrolib file:cmdmaclib
 ccatl tptype=<type> tpdev=<device name> tpname=<volume name>

 CCATL first prints out:

 Catalog build program, March 87.
 Enter all numbers in decimal.

 and then prompts you to

 Enter size of master index in pages.

 to which you might reply

 24 (which is the size used last time at UM in Nov. 1975 and on UB in
 Mar. 1985).

 Then CCATL will print

 First extent of the catalog must be on public volume 1

 Then CCATL will read the label on PVN 1 and prompt you:

 How does MTS001 sound "OK"?

 because that is the label on PVN 1. If that’s right, you reply

 OK .

 Then CCATL prompt you to

 Enter number of pages to allocate for this extent:
 Remember, 1 page per extent used by extent header.

 The standard reply is

 25 (which means the master index will fit exactly in the first extent _______
 since the first page is used for the extent header and the
 other 24 is the size you specified above).

 Then CCATL asks you to

 CCATL - Catalog Creation Utility

 D6.0 Disk system documentation, February, 1988 46

 Enter size of system file catalog in pages

 to which a reasonable reply is

 10 (which was used at UM in Nov. 1975. A value of 20 was used for the
 UB system in Mar. 1985).

 Since the first extent of the catalog was completely pre-allocated to
 the master index (intentionally), another extent must be allocated for
 the catalog at this time. If one wanted the master index and possibly
 the system catalog, scratch file catalog and first part of the user
 catalog all on the first extent, the size in pages of the first extent
 should have been specified as greater than or equal to the combined
 sizes of the individual catalogs.

 In any event, CCATL now notifies you that the

 Requested size has overflowed this extent
 Enter "ok" to allocate another extent
 "NO" means reprompt for current catalog size .

 If you enter "OK", then CCATL will ask that you

 Enter public volume number for next extent of catalog

 to which your reply might be

 2 .

 Then CCATL will ask you

 How does MTS002 sound (ok)?

 and you can say

 OK .

 Then as before, CCATL prompts:

 Enter number of pages to allocate for this extent.
 Remember, 1 page per extent used by extent header.

 You reply as before

 11 (because you want the system file catalog also to be on a single
 extent on a separate volume all by itself. A value of 21 was
 used for the UB system, Mar. 1985.)

 In a similar fashion you will be asked to

 CCATL - Catalog Creation Utility

 D6.0 Disk system documentation, February, 1988 47

 Enter size of scratch file catalog in pages
 (15 was the value used for the UB system, Mar. 1985.)

 and

 Enter size of (first part of) user catalogs in pages
 (200 was the value used for the UB system, Mar. 1985.)

 As before if the requested size of the catalog overflows the current
 extent, a new extent will be allocated of the proper size and on the
 volume requested.

 When CCATL finishes, it prints out the location of the beginning of
 each of the catalogs (as a fullword hex disk address).

 CCATL - Catalog Creation Utility

 D6.0 Disk system documentation, February, 1988 48

 CHKVTOC

 PURPOSE: To verify the correspondence between DSCB’s and the PAT, to _______
 correct to the PAT where possible, and to verify and correct
 the label.

 USE: macrolib mts:cmdmaclib ___
 macrolib file:cmdmaclib
 chkvtoc

 Accepts input on GUSER and in the PAR field, with the
 following formats:

 MTSxxx - Verification only, on volume MTSxxx.
 Inconsistencies are listed.

 CHECKALL - Verification only, but for all public volumes.
 Inconsistencies are listed as the above
 command does.

 MTSxxx FIX - Verification, plus PAT inconsistencies will be
 corrected, all bad DSCBs will be
 deallocated, and the volume label will be
 fixed.

 MTSXXX PTYPE P1,P2,...,Pn - Verification, plus prints one
 line of information about each (decimal)
 page number in the list. If SPUNCH is
 assigned when this option is used, an entry
 is put out on it for each page given in the
 list, giving the file name and the file’s
 DSCB type E location on the pack.

 MTSXXX PDSCB F1,F2,...,FN - Verification, plus the DSCB type
 E locations of each of the files F1 thru FN
 are output on SPUNCH if it is assigned.

 MTSXXX FINDDSCBS - Verification, plus a pattern match on all
 unallocated pages to find DSCB pages.

 MTSxxx FINDDSCBS FIX Identical to the above option, except
 the PAT is fixed in the following ways: a)
 all discovered DSCB pages pat bytes are set
 properly; b) all data pages discovered as a
 result of their DSCB being found are
 flagged as in use in the PAT. After CHKVTOC
 does its thing, it should be rerun with the
 verify option to really figure out what
 happened, because the PAT will still not be
 fully consistent if any of the pages
 described by the discovered DSCBs were

 CHKVTOC

 D6.0 Disk system documentation, February, 1988 49

 re-allocated. When they show up next time
 as being doubly-allocated, then it’s your
 ball game--.

 CHKVTOC

 D6.0 Disk system documentation, February, 1988 50

 CHONID - Program to Change File Owner

 PURPOSE: To change the owner ID associated with a file. ________

 USE: macrolib mts:cmdmaclib ____
 macrolib file:cmdmaclib
 chonid

 Input data consists of filenames (internal format, starting
 in column 1) followed by an ID (also internal format). Pairs
 of filenames and IDs are read from GUSER until an end of
 file is encountered.

 For example,

 # macrolib mts:cmdmaclib
 # macrolib file:cmdmaclib
 # chonid
 Filename and new ID? *files mts.
 *FILES owner was FILE; now is MTS.

 Filename and new ID? end of file
 #EXECUTION TERMINATED

 The above run changes the owner ID associated with the file
 "*FILES" to ccid MTS.

 The ID MTS has unique access privileges. The ID MTS has

 "read" access to all files on the system, and also has

 access to all of a file’s sharing information (this enables

 the FM (filemove) program to copy access information - if it

 is run under the ID MTS).

 CHONID - Program to Change File Owner

 D6.0 Disk system documentation, February, 1988 51

 DASDI - Disk Pack Initialization

 PURPOSE: To label, re-label, or format disk packs according to either ________
 the VAM2 or VAMX conventions. The following devices can be
 DASDI’ed: 2301, 2311, 2314, 3330-I, 3330-II, 7330, 3340,
 3344, 3350, 3370, 3375, 3380, 3390, 6280, 9332, 9335, VM
 minidisks.

 USE: macrolib mts:cmdmaclib ____
 macrolib file:cmdmaclib
 dasdi

 Input data consists of the following operands starting in
 column 1:

 Dxxx MTSxxx {VX|V2} {pvn#|PAGING|PRIVATE} [optional pars]

 Parameter descriptions follow. In any place a number is
 called for, a decimal number may be given, or X’hex-number’.

 pvn --> public volume number (if it is to be a
 public volume)

 PAGING --> if it is to be a paging volume.

 PRIVATE --> if it is to be a private volume.

 LO or
 LABELONLY --> if the volume is to only be labelled or
 re-labelled (as opposed to being
 formatted).

 IPL or
 IPL=nnn --> if it is desired to leave "nnn" pages of

 IPL area starting at the front of the pack

 (as well as formatting the pack). The

 IPLINIT program can place a core image of

 the IPLREADER program in these pages.

 (IPLREADER is the program which decides

 which system to load and loads it into the

 bare machine.) The area is reserved by

 generating the necessary DSCBs to describe

 the IPL pages, writing them onto the disk,

 and marking the DSCB and IPL area pages

 properly in the PAT. If "nnn" is not

 specified, the maximum number of pages

 which can be described by a single full

 DSCB page is allocated - 968 (=38+15*62).

 DASDI - Disk Pack Initialization

 D6.0 Disk system documentation, February, 1988 52

 IPLSTART=nnn --> used in conjunction with the IPL keyword,
 the "nnn" value determines at what page the
 IPL pages should begin. This defaults to
 the first available page on the pack if not
 specified.

 PAGES=nnn --> format the pack as if it had only "nnn"

 pages.

 PATA=nnn or

 PATSTART=nnn --> PAT should start at the given page address.

 CLEARPAT --> construct and write PAT and IPL DSCBs -

 useful only with the LO option.

 NOSLOW --> override the PAR=SLOW (see below) option

 for this DASDI operation only. This is the

 default

 SLOW --> perform a 50 millisecond wait between

 formatting writes. This gives other tasks

 access to the disk’s control unit and

 allows a pack to be DASDI’d on a running

 system.

 The following parameters should only be used for special

 situations:

 WHA --> read and write "home addresses" on the

 volume. This is almost never necessary on

 "modern" disks and is very dangerous to do

 since it may cause information essential to

 proper error recoverey to be lost. This

 parameter is necessary on brand new disks,

 however, to insure that the alternate

 tracks are correctly formatted. If this

 parameter is not given, then the VIRGIN and

 the ALTERNATES parameters are illegal.

 WR0 --> write "record zero" on the volume. This

 defaults ON, is necessary on new disks, and

 never hurts. However, VM does not allow

 guest machines to write record zero (or

 home addresses) on minidisks (except

 dedicated packs and full-pack minidisks).

 Therefore NOWR0 is required when formatting

 VM minidisks. Normally, the minidisk should

 have been formatted under CMS using the CMS

 FORMAT command with the BLKSIZE 4K option.

 This program should then be run (under MTS)

 with the NOWR0, LO, and CLEARPAT options.

 VIRGIN --> try to read "home addresses" but don’t

 DASDI - Disk Pack Initialization

 D6.0 Disk system documentation, February, 1988 53

 complain if they can’t be found. If the
 label is unreadable when this option is
 specified, DASDI will continue on.

 ALTERNATES=nnnnn
 ALTERNATES=(nnnnn,mmmmm)
 ALTERNATES=NORMAL
 ALTERNATES=KEEP
 ALTERNATES=NONE (the default)
 --> DASDI will also format tracks which are
 marked as alternate tracks in the home
 address, even though MTS__does__not__use ___ ____ ___ ___
 alternate_tracks. _________ _______

 The first and second forms designate the
 range of the relative track numbers
 (starting at relative track 0) for tracks
 to be assigned as alternates. Note that if
 "ALTERNATES=KEEP" is also given, then any
 other track which is already an alternate
 will be kept as an alternate in addition to
 the track range explicitly specified.

 You cannot explicitly specify alternates
 for 3340/3344/3350/3370 devices. You can
 either specify "ALTERNATES=KEEP" or
 "ALTERNATES=NONE" for these devices.

 You cannot specify anything other then
 "ALTERNATES=NONE" unless you also specify
 "WHA".

 "ALTERNATES=NORMAL" means that the track
 range for the alternates is as is found in
 the relevant component description.

 EXAMPLE: $RUN FILE:DASDI ________

 Execution begins

 MTS DASDI program (EB265). Enter input line:

 Dddd llllll Vx #/PAGING/PRIVATE pars ...

 D354_MTS009_VX_9 ____ ______ __ _

 D354 CURRENTLY LABELLED AS "OLD009". PLEASE CONFIRM.

 OK __

 PAT TO BE WRITTEN ON PAGES X’yyyyyy’ THRU X’zzzzzz’

 Enter next input line:

 Dddd llllll Vx #/PAGING/PRIVATE pars ...

 D355_UNUSED_V2_PRIVATE ____ ______ __ _______

 LABEL IS UNREADABLE. ENTER "OK" TO CONTINUE.

 OK __

 PAT TO BE WRITTEN ON PAGES X’yyyyyy’ THRU X’zzzzzz’

 Enter next input line:

 Dddd llllll Vx #/PAGING/PRIVATE pars ...

 D340_SPOOL1_V2_PRIVATE_LO ____ ______ __ _______ __

 DASDI - Disk Pack Initialization

 D6.0 Disk system documentation, February, 1988 54

 D340 CURRENTLY LABELLED AS "OLDSPL". PLEASE CONFIRM.

 OK __

 Enter next input line:

 Dddd llllll Vx #/PAGING/PRIVATE pars ...

 $endfile ________

 Execution terminated

 The underlined portion represents responses entered by the

 user.

 DASDI - Disk Pack Initialization

 D6.0 Disk system documentation, February, 1988 55

 Disaster Recovery

 Procedure for Recovering From

 Arbitrary Lost Pages

 (or Tracks or Volumes)

 0. Some general hints:

 a. Do a %BUFFER=32.

 b. $LOG on some permanent file.

 c. Always $LIST the output files from each step so that they

 will appear in both the conversation buffer and in the $LOG

 output. This makes it a whole lot easier to back up if

 something screws up. (Actually, you really don’t want to _____

 list either "list3" or "list4", and "listvntd1" and

 "listvntd2" are listed by the macros.)

 d. $Empty list? . If any steps can be skipped, then there is

 no risk of having lists of files from the last disaster.

 e. If the disaster has damaged files which are needed for the

 recovery (or the basic running of the system), then the

 recovery must be done from a backup system. Many of the

 macros take a "tables=" parameter to provide a set of

 alternate tables describing the desired file system. The

 object deck supplied via this parameter should be just the

 UMMPS tables, with all disks as NODMGR volumes and no fake

 devicelist. If you want to also use a non-standard set of

 file routines, then use the "frtns=" parameter in addition

 to the tables parameter.

 f. $set ebm=h and etm=h so times will be recorded in the log

 g. Keep a log on paper of what is going on so that the "next

 shift" programmers will know what has been done.

 h. There are references sprinkled throughout these

 instructions to files like "list1, list2", etc. These are

 the names which the macros will use by default. The prefix

 used by the macros can be set using the "set_default"

 macro, q.v.

 i. Turn macros on and attach FILE:CMDMACLIB.

 Disaster Recovery

 D6.0 Disk system documentation, February, 1988 56

 1. Reformat and zero all damaged pages (or appropriately redefined ____
 alternate pages). One way to accomplish this is by using the
 VAMREC program. Remember to release the volume from the Disk
 Manager before running VAMREC. Another way is to re-dasdi a new
 volume using the DASDI program and copy the bad pack to the
 just-dasdi’d pack using the DISKCOPY program. Record the damaged
 page numbers reported by VAMREC or DISKCOPY for use with
 VTOCUTIL in step 15.

 1.5 Run CHKVTOC and check all the volumes. This provides a basis for
 comparison on the state of the disk subsystem.

 2. Use the VNTD program (T,C-trace the catalog-) to check to see if
 extent header of catalog was lost. If so, rebuild extent header
 from DSCB if possible (non-existent program) or restore extent
 header from filesave tape (currently not saved).

 3. Use the FIXEH macro to run the FIX EXTENT HEADER program which
 reads all catalog pages in each extent to find zeroed catalog
 pages and rebuilds the record headers. (This program also has
 the capability for deallocating the zeroed segments in the
 extent header, but this function is not needed in the disaster
 recovery process.) If "pre-allocated" parts of the master index,

 system file catalog or scratch file catalog have been lost, this

 program should probably rebuild record and segment headers and

 relink the segments (currently it doesn’t).

 4. Use the VNTDOUT1 macro to run the VNTD program (V,C-verify the

 catalog-) to find out which catalog segments have bad pointers

 (to lost segments) or which catalog segments are no longer

 chained to some user catalog (because of a lost segment in the

 chain or a lost master index). This will produce the file

 "listvntd1", which is the input to the next step.

 5. If the output from VNTD in step 4 indicates that any part of the

 chain of master index catalog segments has been broken, then

 skip ahead to step 8.

 6. Use the LIST0 macro without a "par=" to run the FIX CATALOG

 program to chain catalog segments back together. This program

 uses the file "listvntd1" from VNTD (V,C) as input. It looks at

 the userid and link field in each affected segment to figure out

 how to chain the segments back together and which segment is the

 first in the chain. For every resultant chain of orphaned

 segments, FIX CATALOG attempts to find a home in the catalog for

 it. This must be the end of a chain of good segments starting at

 a master index entry since the master index is undamaged. If no

 Disaster Recovery

 D6.0 Disk system documentation, February, 1988 57

 chain of segments for this userid was discovered ruptured by
 VNTD (in step 4), then the chain of segments must be truly
 orphaned due to an inopportune system crash. In this case, the
 segments are verified to be empty of file or sharing descriptors
 and if so are deallocated in the extent header. If there are
 descriptors of some sort in the chain, a message is produced
 identifying the first segment in the chain so that it can be
 manually re-chained after examination.

 This macro generates the "list0" file of userids whose catalog
 was damaged. This list of userids is input to the AMALCOMP
 program in step 19. VNTD can be run at this point with the V,C
 option for verification purposes. No errors should result.

 7. Skip ahead to step 11, since the master index needed no fixing.

 8. This (and the following two steps) are only used if VNTD
 indicated in step 4 that the master index was damaged. Use the
 LIST0 macro with PAR=FMI to recover any corrupted master index
 segments. (FIX CATALOG will complain if this is not done.) This
 will ensure that all retrievable portions of the master index
 are chained back together so that step 10 does not: 1) rechain
 the master index after it possibly expanded as a result of the
 disaster making it appear to have been properly terminated when ______
 in fact it was damaged, or 2) re-create a master index entry
 when in fact it may exist on a section of the master index which
 was orphaned as a result of the disaster and thus was not found
 by the catalog verify program.

 9. Use the VNTDOUT1 macro to again find out which catalog segments
 have bad pointers or which segments are no longer in some user
 catalog. This produces a new version of the "listvntd1" file for
 use by FIXCAT in the next step.

 10. Use the LIST0 macro with PAR=LMI to again run FIX CATALOG, this
 time to fix the user catalogs. This will add userids to the
 "list0" file which was produced by step 8. Since PAR=LMI has

 been specified, FIXCAT may create an entirely new master index

 entry if the master index for a userid was lost. (If it has to

 recreate a master index entry, it calls a special entry to

 CRECAT, (RECRECAT) in the file system to do such.)

 The VNTD program can be run at this point with option V,C to

 verify that the catalog segment chaining is now fixed.

 11. Use the VNTDOUT2 macro to run the VNTD program to verify the

 affected user catalogs to find out what sharing descriptors are

 no longer pointed to by file descriptors and which file

 Disaster Recovery

 D6.0 Disk system documentation, February, 1988 58

 descriptors point to lost sharing descriptors. This uses the
 V,U,*SYS and V,U,*ALL options.

 12. Use the LIST2 macro to run the FIX SHARING DESCRIPTOR program
 which reads the output from VNTD (file "listvntd2") and zeros

 sharing descriptors not pointed to by file descriptors. (These

 files will get their catalog information restored if the DSCB is

 OK or get completely restored if DSCB is bad. The AMALCOMP

 program will discover this fact.) This program will also zero

 the chain pointer in the last good sharing descriptor of any

 good file descriptor and add the name of the file to the file

 "list2". This file contains the names of files which should have

 sharing information restored from the filesave tapes.

 The LIST2 macro also sorts list2.

 VNTD may be run again at this point with the V,U,*ALL option for

 verification purposes. No errors should result.

 13. If you have "only" lost one or more entire volumes then create

 an empty "list1" file and skip ahead to step 17. Otherwise

 proceed to fix the VTOCs on the affected volumes via steps 14

 through 16.

 14. Run the VTOCUTIL program using the VTOCUTIL macro.

 14a. If you know a PAT page has been damaged, use the FINDDSCBS

 and FIX option to rebuild the PAT. The FINDDSCBS and FIX

 option will succeed reliably if (and ONLY if) bad PAT pages

 are zeroed. It should ONLY be used if you know a PAT page

 has been damaged.

 14b. If VTOCUTIL indicates that there are problems with the DSCB

 chains for any file (or if a DSCB page was zeroed in step

 1), use the FIX option to deallocate any DSCB’s that have

 lost a Type E or Type F somewhere in their chain. VTOCUTIL

 will also update the PAT to reflect the data pages

 reclaimed due to deallocated DSCB’s. (The AMALCOMP program

 will note these files as being in the catalog but missing

 from the volume, so they won’t be lost without a trace.)

 15. Use the the LIST1 macro to run the VTOCUTIL program to determine

 which files were affected by the damage to the records

 discovered in step 1. For each affected volume, enter the volume

 name to VTOCUTIL. VTOCUTIL should find no errors on the volume.

 (Step 14 should have fixed them.) Then enter the damaged pages

 as PAGE commands, as instructed by the macro. This produces the

 file "list1", a list of files and DSCB-E locations which need

 their data restored. If the output from VTOCUTIL indicates that

 Disaster Recovery

 D6.0 Disk system documentation, February, 1988 59

 any *IPLAREA file has been damaged, then it should be replaced
 by using the *IPLINIT program.

 Use the SORTLIST1 macro to remove any duplicates (and any
 *IPLAREA or *??ASTER.CATALOG?? files) and sort the "list1" file.

 16. Use the VALIDATELIST1 macro to find out which files on "list1"

 are still consistent. Note that this must be done from the id

 MTS, since validate requires you to have read access to the

 file. You should also $SET FILEREF=OFF before doing this, to

 prevent the references from being recorded. Remove the

 consistent files from "list1" by manually editting the file.

 These are files which only had an unused data page damaged and

 are still valid. I think the VALIDATE program cannot be run from

 a backup system. If some consistent file is not removed from

 "list1", then it will be unnecessarily restored.

 17. Use the LIST3AND4 macro to run the CATLIST program to produce

 "list3" (a list of all non-scratch files in the catalog) and to

 run the VTOCLIST program to produce "list4" (a list of all

 non-scratch files in the VTOCs). Note - if you are running on

 the damaged system no files should be created between the

 production of "list3" and "list4".

 18. Determine whether the two key online filesave directories were

 affected by the disk problem. (These files are named

 "RSTR:FILEDIR.MAS" and "RSTR:TAPEDIR".) If not, proceed with

 step 19.

 18a. Check whether the master filesave directory,

 "RSTR:FILEDIR.MAS" has been damaged. If not, skip to step

 18b. If the master filesave directory, "RSTR:FILEDIR.MAS"

 has been damaged, check to see whether the file

 "RSTR:FILEDIR.NEW" has also been damaged. If it hasn’t,

 $RENAME RSTR:FILEDIR.NEW AS RSTR:FILEDIR.MAS to get the

 previous version. (The file save merge program leaves the

 previous version of the master filesave directory in

 RSTR:FILEDIR.NEW after it has built a new version.) If

 neither "RSTR:FILEDIR.MAS" or "RSTR:FILEDIR.NEW" is

 available, the previous version of "RSTR:FILEDIR.MAS" must

 be restored off of a file save tape, using *RST. (Maybe we

 should avoid the possibility of losing these directories by

 saving copies of them on particular tapes after each run of

 the file save merge program.) If FSTEST is used to move

 either directory onto the test pack, SPUNCH must be

 specified @I@⁻TRIM.

 18b. Check whether the filesave tape directory, "RSTR:TAPEDIR"

 has been damaged. If not, skip to step 18c. If it has, the

 most recent version of this file must be restored from a

 Disaster Recovery

 D6.0 Disk system documentation, February, 1988 60

 file save tape using *RST. Next, it must be determined
 which tapes have been written by filesave since the last
 time the directories were saved (this is determined by
 scanning back over the operators logs). The tape directory
 entries for these tapes must be deleted for the proper
 running of the REGENERATE program in step 18c. (To delete
 the entry for a tape, just delete the line in the file
 corresponding to the tape’s tape number, e.g. line .057 has
 the entry for tape number 57.)

 18c. Find the file save tapes written by file save since the
 time which the file and/or tape directories were restored
 from. Then run the REGENERATE program with the options
 appropriate to the disaster. REGENERATE will rebuild tape
 directory entries for these tapes if PAR=TAPE is supplied,
 file directory entries for the files saved on these tapes
 if PAR=FILE is supplied, or both by giving PAR=BOTH.

 18d. If PAR=FILE or PAR=BOTH have been specified, REGENERATE
 will create files of the name RSTR:FILEDIRnn which must be
 merged with the old master file restored in step 12a. This
 should be done by running the file save MERGE program with
 the option PAR=RECONSTRUCT. (This inhibits MERGE from
 declaring that files are destroyed if they are not present
 in the catalog. Since the catalog is being reconstructed at
 this point, and some files are lost but will be restored
 later, declaring them destroyed at this point would be
 wrong.) After MERGE has finished, proceed with step 13.

 19. Use the AMALCOMP macro to run the AMALCOMP program. This program
 compares lists zero through four and the online filesave
 directory (RSTR:FILEDIR.MAS). It produces lists five through
 nine, which are the input to the subsequent steps. If you do not
 want to restore from the most recent tape versions, (perhaps
 because the disk problem occurred before the most recent file
 save), then you should specify a time= parameter on the amalcomp
 macro. It has to be in a form acceptable to the PLUS time and
 date routines, for example "Sep 17 10:45". For the details of

 what AMALCOMP does, see the decision table presented later under

 the heading "File information lost and final file status".

 19a. Use SORTLIST8 if there are a lot of files to be restored.

 (See note below)

 20. $Signon to RSTR. Create an empty file to use as a checkpoint

 file, say "checkpoint". Use the RESTORELIST8 macro with

 UNIT0=checkpoint to run the FAST RESTORE program to restore data

 and/or catalog for affected files. This reads "list8" from the

 AMALCOMP program and asks that the appropiate filesave tapes be

 mounted. For efficiency, this program uses a special entry to

 CREATE, (RSTRCRE) which 1) does not initialize page 1 of the

 file and 2) which returns the page map buffer.

 Disaster Recovery

 D6.0 Disk system documentation, February, 1988 61

 Note: If you have lost a very large number of files, say
 several volumes worth, it may be faster to use multiple streams
 to do the restoration. Use the SORTLIST8 macro to sort "list8"

 into tape order. Then split "list8" into several pieces at tape

 boundaries and use the FASTRESTORE macro for each stream.

 Time passes ... for any disaster worth its salt.

 21. At this point you should be able to run on the production
 system.

 22. Use the RECATLIST6 macro to run the RECATALOG program to
 recatalog files from scratch using "list6" from AMALCOMP. This

 program also fixes the file type appropriately.

 23. Use the DESTROYLIST5 macro to run CALLDR to destroy files with

 lost DSCB or data using "list5" from AMALCOMP. CALLDR will

 generate an error message for files whose DSCB was lost, which

 should be ignored.

 24. Use the RELDSKLIST7 macro to run CRELDSK to destroy files on

 "list7" from AMALCOMP. These files have lost catalog and data

 (but not DSCB) and no file save information is extant, or these

 files were uncataloged before the disaster.

 25. Use the ACCUPDATE macro to update users disk accounting.

 Additional Notes:

 1) There is a program (*FILES) which takes as input "list9" from

 AMALCOMP and tells a user how she personally was affected by all

 of this.

 2) Files lost without our knowledge are those created after the

 last filesave which lost both DSCB and catalog. (In general, we

 know about the userid and can tell the user to beware, unless:

 (1) we lost the user’s master index entry; (2) we lost all of

 the user’s catalog segments; and (3) there are none of that

 user’s files in the file save directory.)

 3) This procedure has the disadvantage that it may restore some

 files which were destroyed since the last online filesave. This

 can only happen if catalog segments associated with that user ID

 Disaster Recovery

 D6.0 Disk system documentation, February, 1988 62

 has been damaged or if master index has been lost, however.

 4) Losing a whole volume causes no particular problems (other than
 the amount of information lost). If MTS001 is lost one would
 have to initialize an empty master index. If other extents of
 the catalog are lost the extent headers must be rechained.

 Disaster Recovery

 D6.0 Disk system documentation, February, 1988 63

 APPENDIX

 Programs: ________

 1. VNTD - catalog verification;
 GUSER=input commands
 SPRINT=output

 2. VTOCUTIL - PAT/DSCB verification and fixing;
 SCARDS=input commands
 SPRINT=output

 3. FIXEH - fix extent header
 no input or output

 4. FIXCAT - fix catalog segments and master index
 SCARDS=VNTD output from V,C
 0=list of userids whose catalog was affected (list 0)

 5. FIXSD - fix sharing descriptor
 SCARDS=VNTD output from V,U,*ALL or V,U,....
 SPUNCH=list of files which lost some sharing information
 (list 2)

 6. CATLIST - list files in the catalog
 SERCOM=errors
 0=list of files in the catalog

 7. VTOCLIST - list files in the VTOCs
 SERCOM=errors
 0=list of files in the VTOCs

 8. AMALCOMP - generates input for FASTRESTORE.
 reads
 0=list 0
 1=list 1
 2=list 2
 3=list 3
 4=list 4
 5=RSTR:FILEDIR.MAS (or a copy of it)
 writes
 15=list 5
 16=list 6
 17=list 7
 18=list 8
 19=list 9

 9. FASTRESTORE - restore data and/or recatalog file from filesave
 tapes.
 SCARDS=input, list 8 produced by AMALCOMP
 0=checkpoint (both read and added to - initially should be
 assigned to an empty file)

 Disaster Recovery

 D6.0 Disk system documentation, February, 1988 64

 10. RECATALOG - recatalog files from scratch
 SCARDS=list 6 output from AMALCOMP

 11. CALLDR - call DESTRYR to destroy files
 SCARDS=list 5 output from AMALCOMP

 12. CRELDSK - call RELDSK to destroy uncataloged files.
 SCARDS=massaged list 7 from AMALCOMP

 13. *VALIDATEFILE - Validate internal consistency of files
 GUSER=file name list, each line having a file name and
 options for that file (probably only ZEROCHECK for disaster
 recovery use)
 SERCOM=error messages

 Auxiliary_Programs: _________ ________

 1. REGENERATE - file save file and tape directory rebuilding
 2. MERGE - file save file directory updating
 3. *FILES - informational program to allow users to determine which
 of their files were affected by a disk disaster and print
 out a bulletin concerning the disaster.

 Disaster Recovery

 D6.0 Disk system documentation, February, 1988 65

 Macros: ______

 accupdate: runs *accrestore to update users’ disk accounting. Uses as
 input suitable massaged data from lists 5, 6, 7, and 8.

 amalcomp : runs amalcomp program to read lists zero through four and
 the online filesave directory and produce lists five through
 nine.
 fdir= online filesave directory
 time= time of disaster

 destroylist5 : destroys the files on list 5 by running the CALLDR
 program. It asks for confirmation.

 fastrestore : runs the fast restore program.
 tables= alternate tables
 frtns= alternate file routines
 scards= input list of files to restore
 unit0= checkpoint file

 fixeh : runs the fix extent header program.
 tables= alternate tables
 frtns= alternate file routines
 par= null to fix up the record headers, DEALLOCATE to deallocate
 incorrect segments. For disaster recovery, you should not
 specify this parameter.

 list0 : runs the FIXCAT program which fixes segment chain pointers and
 produces "list0", the list of userids with damaged catalogs. It

 reads "listvntd1", produced by the vntdout1 macro.

 tables= alternate tables

 frtns= alternate file routines

 par= nothing (if no master index damage), FMI to fix master

 index, LMI to fix user catalogs when there has been master

 index damage.

 list1 : runs the VTOCUTIL program to produce "list1", the list of

 files which have damaged data pages.

 list2 : runs the FIXSD program to produce "list2", the list of files

 which have damaged sharing information. It also fixes any

 invalid sharing descriptor pointers. It reads "listvntd2",

 produced by the vntdout2 macro. This also sorts "list1" and

 removes any duplicates.

 tables= alternate tables

 frtns= alternate file routines

 list3and4 : runs the CATLIST program to produce "list3", the list of

 all permanent files in the catalog, and runs the VTOCLIST

 program to produce "list4", the list of all permanent files in

 the VTOCs. It also sorts these lists.

 tables= alternate tables

 frtns= alternate file routines

 Disaster Recovery

 D6.0 Disk system documentation, February, 1988 66

 recatlist6 : recatalogs the files on "list6" by running the RECAT
 program. It asks for confirmation.

 reldsklist7 : releases the disk space for files on "list7" by running
 the CRELDSK program. It asks for confirmation.

 restorelist8 : restores the files on list "list8" by running the fast
 restore program.

 sortfile : sorts a file.
 in= input file (must be a single line file)
 out= output file
 keystart= start column of key (default 1)
 keylen= length of key
 lrecl= record length (default 255)
 blksize= block size (default lrecl)
 par= other sort parameters

 sortlist0 : sorts "list0". It also removes duplicates.

 sortlist1 : sorts "list1". This removes duplicates and *IPLAREA and

 anything matching "*??ASTER.CATALOG??".

 sortlist8 : sorts "list8", the list of files to be restored, into tape

 sequence order. This is handy if you want to do multiple restore

 streams.

 validate : runs the line file validation program.

 guser= input file names

 par= one-shot file name

 validatelist1 : validates each file on "list1" with the ZEROCHECK

 option. This does not update "list1", that has to be done

 manually.

 vntd : runs the VNTD program.

 tables= alternate tables

 frtns= alternate file routines

 vntdout1 : produces "listvntd1" by running the VNTD program with input

 V,C.

 tables= alternate tables

 frtns= alternate file routines

 vntdout2 : produces "listvntd2" by running the VNTD program with input

 V,U,*ALL and V,U,*SYS.

 tables= alternate tables

 frtns= alternate file routines

 vtocutil : runs the VTOCUTIL program.

 Disaster Recovery

 D6.0 Disk system documentation, February, 1988 67

 Files: _____

 listvntd1 : output from VNTD V,C
 Output from VNTD
 Input to FIXCAT

 listvntd2 : output from VNTD V,U,*ALL V,U,*SYS
 Output from VNTD
 Input to FIXSD

 list0 : Userids which lost catalog segments
 Output from FIXCAT
 Input to AMALCOMP

 list1 : Files to have data restored - data lost, DSCB ok
 Output from VTOCUTIL
 Input to AMALCOMP

 list2 : Files to have sharing information restored
 Output from FIXSD
 Input to AMALCOMP

 list3 : Files in the catalog
 Output from CATLIST
 Input to AMALCOMP

 list4 : Files in the VTOCs
 Output from VTOCLIST
 Input to AMALCOMP

 list5 : Files whose data was lost and must be destroyed by calling
 DESTRYR
 Output from AMALCOMP
 Input to CALLDR

 list6 : Files whose FD was lost and must be recataloged
 Output from AMALCOMP
 Input to RECAT

 list7 : Uncataloged files which must be destroyed by calling RELDSK.
 Output from AMALCOMP
 Input to CRELDSK

 list8 : Files to restore (data and/or DSCB and/or FD and/or SD). This
 list also contains location of files on filesave tapes.
 Output from AMALCOMP
 Input to FASTRESTORE

 list9 : Files and userids affected
 Output from AMALCOMP
 Input to *FILES

 Disaster Recovery

 D6.0 Disk system documentation, February, 1988 68

 Decision_Table_for_AMALCOMP_Program: ________ _____ ___ ________ ________

 In this table Y means yes, - means no, and ? means don’t care.

 l
 l o m
 o s u
 c s l i o t l
 a t o i n n t a
 t s n u c
 d t v t s v t
 b a c t a e e i
 a t s a o p r r o
 d a i t c e s s n

 Y Y - - Y Y ? - fd si data
 - Y - - Y Y Y - fd si data list0
 Y Y - - Y - ? - note reldsk
 - Y - - Y - Y - note reldsk
 ? Y - Y Y Y ? ? data
 ? Y - Y Y - ? ? destroy
 Y Y Y Y Y Y ? ? si data
 Y Y Y Y Y - ? ? destroy
 Y - Y Y - Y ? ? si dscb data
 Y - Y Y - - ? ? destroy
 Y - Y Y Y Y ? ? si
 Y - Y Y Y - ? ? note si
 ? - - Y Y ? ? ? nothing
 Y - - - - Y ? - fd si dscb data
 Y - - - - - ? - note cat
 - - - - - Y Y - fd si dscb data list0
 - - - - - Y - - nothing
 ? - - Y - Y ? ? dscb data
 ? - - Y - - ? ? destroy
 Y - - - Y Y ? - fd si
 Y - - - Y - ? - recat
 - - - - Y Y Y - fd si list0
 - - - - Y - Y - recat list0
 - ? - - Y ? - - reldsk
 ? ? - - Y ? ? Y reldsk

 Note that the correct functioning of this program depends on a
 subtle use of the "Mult Vers" test - namely that if there are

 multiple versions which appear only in the VTOCs, then the first

 one will NOT have the Mult Vers test true. Also if there is a

 version in the catalog, then Mult Vers will be on for all

 versions and further there will not be multiple versions in the

 catalog.

 Disaster Recovery

 D6.0 Disk system documentation, February, 1988 69

 DISKCOPY - Copy disk packs

 PURPOSE: To copy disk packs from pack to pack or to or from tapes. ________
 All disks which can be DASDI’d can be DISKCOPY’d with the
 following exceptions: 2311s and 2314 would need appropriate
 Unit Check routines to be developed first; DISKCOPY will not
 write track 0 (the label) for FBA devices.

 USE: macrolib mts:cmdmaclib ____
 macrolib file:cmdmaclib
 diskcopy

 All input is read from GUSER and all prompts and error
 messages are written to SERCOM. Every line read by diskcopy
 which begins with a "$" is interpreted as an MTS command

 (passed to CMDNOE). Parameters are separated by one or more

 blanks. All input requests are preceded by prompts

 indicating the expected keywords or parameters. The top

 level of input processing is for copy requests. At the top

 level prompts are made for identifying the input device

 type, the output device type and options to apply to the

 copy operation. An end of file at this level causes a

 (normal) return to MTS.

 A lower level command loop exists for acquiring a particular

 device. For disks, the device name and corresponding volume

 label are requested. For tapes, one or more (up to four)

 fdnames are expected, in the order of their use. If during

 the course of the copy the list of tapes is exhausted this

 command loop will be reentered (an end of file at this

 point, in the middle of a copy will kill the copy and the

 program). If a tape is rejected, any following tapes in the

 list are ignored and the tape request loop reentered.

 Options for the copy are:

 SLOW Causes a 50 millisecond real time wait before most

 disk operations. If SLOW is not specified on a

 disk-disk copy, the affected control units will be

 tied up almost continuously.

 IPL Causes track zero IPL records to be copied. This

 option is forced on for copies to tapes.

 SWAP Causes volume labels to be changed. For disk-disk

 copies the volume labels (and volume serial numbers)

 are interchanged and the file system is notified of

 this occurrence. Before the actual interchange is

 DISKCOPY - Copy disk packs

 D6.0 Disk system documentation, February, 1988 70

 done, DISKCOPY will ask for verification. If there
 has been some troble with the copy, it can be aborted
 safely at this point. For tape to disk copies, the
 volume label and serial number on the tape replace
 the disk volume label and serial number. This option
 has no effect on disk to tape copies -- the tape
 always receives an exact copy of the disk label
 record.

 AUTORETRY
 Causes fail page reads from a disk to be retried 5
 times before admitting failure.

 EXAMPLE: ________

 macrolib mts:cmdmaclib
 macrolib file:cmdmaclib
 diskcopy

 Enter "FROM" device type (DISK/TAPE):

 disk ____

 Enter device name and volume label (Dxxx MTSyyy):

 D008_MTS493 ____ ______

 Enter "TO" device type (DISK/TAPE):

 TAPE ____

 Enter tape device or pseudo-device name(s):

 *T1*_*T2*_*T3* ____ ____ ____
 Enter options (SLOW, SWAP, IPL, AUTORETRY):
 slow ____
 Volume copied: 29453 data pages copied, 2 relocations
 Enter "FROM" device type (DISK/TAPE):

 $ENDFILE ________

 EXECUTION TERMINATED

 The underlined portions represent user input.

 DISKCOPY - Copy disk packs

 D6.0 Disk system documentation, February, 1988 71

 DSK - Disk Table Utility

 PURPOSE: To manipulate the table of disk volumes. Disks may be ________
 dynamically added and removed, as well as allowing the drive
 address to be forgotten.

 USE: Enter MTS *DSK on the operator’s console, or run SYS:DSK. ____

 The commands are:

 ADD MTSxxx
 MOUNT MTSxxx
 to add "MTSxxx" to the system. This should be used to

 add a new MTS volume to a running system when it

 becomes necessary to expand the available disk space.

 CATALOG MTSxxx ___

 NOCATALOG MTSxxx _____

 these commands affect whether the file system catalog

 is permitted to expand onto the designated volume.

 DELETE MTSxxx ___

 DISMOUNT ____

 REMOVE MTSxxx ___

 to make the volume "MTSxxx" unavailable to MTS. Doing

 this on a running system will cause all jobs which

 reference the pack to receive "Hardware error or

 software inconsistency" errors. This should only be

 used on a running system in cases of extreme panic.

 DMGR MTSxxx

 NODMGR MTSxxx

 these commands control whether the Disk Manager is to

 be used to manage the specified volume. These

 commands should NOT be used unless the Disk Manager ___

 is installed in your version of MTS. Also, if you are

 using the version of the PDP which pages through the

 Disk Manager, you should not remove the Disk Manager

 from any volume which contains a paging extent.

 EXPLICIT MTSxxx ____

 NOEXPLICIT MTSxxx ______

 these commands affect whether files will be created

 on the designated volume. If a volume is designated

 EXPLICIT, nothing will be created on the volume

 unless explicitly specified via the VOLUME= parameter

 on the MTS $CREATE command. NOEXPLICIT removes this

 designation.

 DSK - Disk Table Utility

 D6.0 Disk system documentation, February, 1988 72

 FORGET MTSxxx ___
 to forget the device address of an MTS volume. This
 causes the file routines to re-initialize the disk
 table entry for the specified volume on the next
 reference to it, which is useful if a program such as
 VAMREC has been used to change information in the
 volume’s PAT which the file routines need to know
 about (e.g., the pack’s relocation entries).

 LIST
 DISPLAY ___
 To list all currently defined volumes in the table.
 Useful for determining which volumes are on which
 drives. This will also summarize the total amount of
 space and the total amount of free space in the
 system.

 LIST MTSxxx
 DISPLAY MTSxxx ___
 to list the DSKTAB information for the volume
 "MTSxxx".

 POLR MTSxxx

 NOPOLR MTSxxx

 These commands control whether the volume should be

 considered one of last resort for the creation of

 files. If it is, no files will be created on it

 unless insufficient space is available on the other

 MTS volumes. NOPOLR resets this designation.

 SCRATCH MTSxxx

 NOSCRATCH MTSxxx

 These commands control whether temporary files can be

 created on this pack in spite of the EXPLICIT flag. A

 SCRATCH EXPLICIT disk will be treated as NOEXPLICIT

 when creating temporary files.

 SPACE ____

 AVAILABLE ____

 to summarize the total amount of space and the total

 amount of free space in the system.

 STOP ____

 END ___

 DONE to end the run. An end-of-file may also be used. ____

 A single command may be specified in the PAR field of the

 $RUN command.

 For those commands that accept a volume name, a list of

 volume names may also be given, eg.

 LIST MTS001 MTS002

 DSK - Disk Table Utility

 D6.0 Disk system documentation, February, 1988 73

 EXAMPLES: POLR MTS009 _________
 ADD MTS099
 NODMGR MTS008

 DSK - Disk Table Utility

 D6.0 Disk system documentation, February, 1988 74

 FM - File Move Utility

 PURPOSE: To move files from the current file system to a file system ________
 on a test pack. The program calls the regular MTS READ
 subroutine to read files, and the file routine entry points
 to create, write, and permit files.

 USE: macrolib mts:cmdmaclib ____
 macrolib file:cmdmaclib
 setdefault tpdev <test pack device name>
 setdefault tptype <test pack device type>
 setdefault tpname <test pack volume name>
 filemove

 FILEMOVE checks that alternate file system routines are
 loaded by comparing the V-con "INITCAT" with CNFGINFO

 information.

 Input to FILEMOVE is read from SCARDS, and consists of lines

 of the form:

 <source filename> [<target filename>] [<options>]

 <source filename>

 is the name of the file to be moved from the current

 system. If it is ***DESTROY*** then <target filename>

 is required and FILEMOVE will destroy that file on

 the test pack. If a private file is to be destroyed

 in this manner its ccid prefix must be specified.

 <target filename>

 is the name which the file will have when moved to

 the test system. If the name has a ccid, that id is

 used as the owner id of the file created in the test

 system. If the second name designates a public file,

 a user id may also be prefixed, which designates that

 user id as the owner of the target file. <target

 filename> may also be specified as "userid:" in which

 case the user id becomes the owner of the file in the

 test system. If <target filename> is omitted it is

 implied to be identical to <source filename>.

 <options> is one or more of:

 NODATA*

 DATA=NO

 requests that FILEMOVE create a file with attributes

 of <source filename> (size, type, owner, pkey,

 FM - File Move Utility

 D6.0 Disk system documentation, February, 1988 75

 access, ...) but that no data should be moved into
 it. (The size of this file is reduced to 25 pages if
 it is larger, unless the SIZE= keyword is specified,
 qv.)

 LSTCHG=<date>
 requests that FILEMOVE check to see if the <source
 filename> has been changed since the specified date
 and print a warning if so. <date> can be any
 date/time recognized by the Plus time and date
 routines.

 VOLUME=xxxxxx
 requests that FILEMOVE create <target filename> on
 the specified volume.

 SIZE=n requests that <target filename> be created at the
 specified size. This option is ignored unless
 NODATA is also specified.

 OWNER=ccid
 requests that <target filename> be created with the
 specified owner. This is exactly the same as
 specifying it with <target filename> it just looks a
 little less weird than ccid:*name.

 If CREATE fails because the file already exists in the test
 system, FILEMOVE asks if it is ok to destroy the file by
 reading from GUSER. A response of OK lets it go ahead. A
 response of ALLOK tells FILEMOVE not to prompt again, but
 just go ahead and destroy any files it feels like. FILEMOVE
 may be run with PAR=ALLOK to tell it to never prompt before _____
 destroying files.

 All error messages are written on SERCOM.

 For example,

 # setdefault tpdev d104
 # setdefault tptype 3380
 # setdefault tpname mts600
 # filemove
 hasp.tst seg2:hasp vol=MTS601
 OK to destroy "SEG2:HASP"?
 ok
 SEG2:HASP destroyed.
 TSTP:HASP.TST copied to SEG2:HASP.
 end of file
 + User program return

 causes the file HASP.TST to be moved to the file SEG2:HASP
 on volume MTS601 in a test system.

 FM - File Move Utility

 D6.0 Disk system documentation, February, 1988 76

 Additional examples of FILEMOVE input:

 file1
 file1 VOL=xxxxxx
 file1 ***NODATA***
 file1 data=no
 file1 VOL=xxxxxx ***NODATA***
 ccid:file1
 *file1
 file1 file2
 file1 file2 VOL=xxxxxx LSTCHG=07/22/81
 file1 file2 ***NODATA*** VOL=xxxxxx
 file1 ccid:file2
 file1 ccid:*file2
 file1 ccid:
 file1 owner=ccid
 DESTROY file2
 DESTROY ccid:file2
 DESTROY ccid:*file2
 tstp:pag001 pdp.:*pag001 ***nodata*** size=5000p

 FM - File Move Utility

 D6.0 Disk system documentation, February, 1988 77

 FSTEST - Testing the File Routines

 This program provides a simple-minded command language for generating
 calls to most of the standard file system routines. It may be run with
 the segment two file routines, or with a private copy. To run with the
 regular file system, use:

 macrolib file:cmdmaclib
 fstest [debug]

 To run with private file routines, use:

 macrolib file:cmdmaclib
 fstest frtns=<file routines> [debug]

 If the optional "debug" parameter is given, FSTEST is loaded via a
 $DEBUG command, rather than a $RUN command. You may want to load fake

 DSACC routines also.

 Logical I/O units referenced:

 GUSER: Command input

 SERCOM: Timing and error comments

 SPRINT: DISPLAY, GETFINF, FCB, and BCBS output.

 If private file routines are used, the first command issued must be

 INITCAT. FSTEST is often used to move files between the current

 catalog and a test pack. The following example shows how to move the

 file MTS.:TPFILE from the test pack labelled MTS511 on D011, a 3330
 device, to the file CURFILE on the current system.

 # macrolib file:cmdmaclib
 # fstest frtns=file:filertns debug
 + set spunch=curfile@I
 + mod dsktab+12 CL6’MTS511’
 + mod tables CL8’3330D011’
 + break telloper
 + run
 - INITCAT
 - USERID MTS.
 - OPEN MTS.TPFILE
 - READI
 - STOP
 + stop

 FSTEST - Testing the File Routines

 D6.0 Disk system documentation, February, 1988 78

 There are a lot of commands available. They can be abbreviated by any
 unique initial substring. The shortest abbreviation is underlined in
 the following list. The parameters to the various commands may be:

 1. Hexadecimal string, e.g. AB01
 2. Unsigned decimal number
 3. Positive line numbers, internal form, e.g. 1000 is line 1.000
 4. Character string, e.g. ON
 5. Filename, internal form, e.g. <SF>0086T for -T
 6. Page number. In the DISPLAY, MODIFY, CLEAR, DUMP, and REWRITE
 commands, the page parameter may be any of the following: ____

 a. A decimal number.
 b. "X" followed by a hexadecimal number.

 c. "F" followed by a relative page number (as in a. or b.) in

 the current open file.

 d. "*", which denotes the same page specified in the last such

 command. The page is not re-read if * is specified. ___

 There is an internal file control block, with an initial maximum

 buffer count of five, which may be displayed with the FCB and BCBS

 commands. Additional BCBS up to the maximum are allocated by the OPEN,

 WRITE, and COPY commands in more or less the same way MTS does it. The

 maximum buffer count may be changed by the MAXBUFS command.

 All commands which call file system routines will also print the

 supervisor state and problem state CPU times (in that order), in

 milliseconds per call. Any non-zero return codes from file routines

 will be printed as "RC= n".

 Commands:

 BCBS _

 Displays the internal buffer control blocks.

 CLEAR page offset count [value] ___

 Modifies the specified page at the specified offset with count ____ ______ _____

 bytes containing the two-digit hex number value, whose default is _____

 zero. Other parameters are as in DISPLAY, except that count is in

 bytes, not words, and is required.

 CLOSE __

 The current open file is "closed" (i.e. CLOSER will be called).

 Note: Different paths through the file routines will be taken

 depending on whether the file has been changed (written) or not.

 COPY external-filename _

 Calls GETFD and READ in the regular system and writes the lines

 FSTEST - Testing the File Routines

 D6.0 Disk system documentation, February, 1988 79

 to the open file. Reading is done @-trim@-ic, and line numbers
 are preserved. The entire file is copied, unconditionally. This
 command is useful for copying files to a test pack.

 CREATE internal_filename [size] [maxsize] [SEQ] __

 Size and maxsize are decimal numbers. The defaults are a size of ____ _______ ____
 one page, and a maxsize of 255 pages. A line file will be created _______
 unless SEQ is specified.

 DDUMP [HDR] [DATA] [ON fdname] [page [count]] __

 Dumps count line directory pages starting at relative page no. _____
 page in the current open file. This command is similar to the ____
 FDUMP command, except it follows the chain through the line
 directory page headers rather than sequential page numbers in the
 file. If the initially designated page isn’t a line directory
 page, the dump will terminate. Use of the HDR option will cause
 the LH directory page header information for each page in the
 chain requested to be printed in symbolic format. Use of the DATA
 option will cause the LH directory page to be dumped in hex
 format. DATA defaults ON unless HDR is specified. Both HDR and
 DATA may be specified in which case the data is dumped in both
 formats. The DDUMP command is provided to dump the contents of
 the line directory of a file.

 DESTROY internal_filename __

 DISPLAY page {offset [count] | HDR} _ ___

 Prints count fullwords in hex, at offset into the specified page. _____ ______
 Offset is in hex, and count is decimal, and the default count is ______ _____ _____
 1. Use of the HDR option will print out the page header ___
 information if the page specified is a Line/Hole Directory page
 or if it is Page One.

 DUMP [ON fdname] [page [offset [count]]] __

 This command behaves like display, with the following exceptions:
 1) the output format is that of STDDMP; 2) an fdname may be
 specified, and, if omitted, *PRINT* is used; 3) other parameters
 may be omitted - the default values for page, offset, and count ____ ______ _____
 are *, 0, and 1024, respectively.

 EMPTY _

 Empties the open file.

 $ENDFILE

 End-of-file yields execution terminated.

 FSTEST - Testing the File Routines

 D6.0 Disk system documentation, February, 1988 80

 FCB _

 Displays the internal file control block.

 FDUMP [HDR] [DATA] [ON fdname] [page [count]] __

 Dumps count pages starting at relative page no. page in the _____ ____
 current open file. Use of the HDR option will cause the header
 information for each line hole directory page to be printed in
 symbolic format. Use of the DATA option will cause all pages to
 be dumped in hex format. DATA defaults ON unless HDR is
 specified. Both HDR and DATA may be specified in which case the
 data is dumped in both formats. The default fdname is *PRINT*, ______
 and the default for page is 1, and for count is 1 if page is ____ ____
 specified, and all used pages in the file otherwise.

 GETFINF [count] [CHEAP] _

 Calls GETFINF for the current open file, and displays the result
 (in hex of course). Count is the number of bytes to be returned _____
 and displayed. 20 or less is a short call. The default is 42.
 CHEAP indicates only the cheap file information is to be
 returned; all "expensive" information is made zero.

 HELP _

 Prints a list of available commands (but no explanation)

 INITCAT _

 Calls this file system entry. Useful only if running with a

 private copy of file routines, and in that case should be issued

 before any other file system calls.

 MAXBUFS count __

 Changes the maximum buffer count in the internal file control

 block to count and allocates or frees buffers if necessary. The _____

 default maximum buffer count is 5.

 MODIFY page offset data _

 Modifies the specified page at the specified offset with the

 specified hex data, which may be arbitrarily long, and may

 contain embedded blanks or commas. Page and offset are the same ____ ______

 as in the DISPLAY command. If the DISPLAY or MODIFY commands

 specify a file page, neither the FCB nor the BCBS will be

 changed, but the MODIFY command also changes the in-core copy if

 there is one.

 MTS __

 Returns to MTS command mode. FSTEST made be $Restarted.

 FSTEST - Testing the File Routines

 D6.0 Disk system documentation, February, 1988 81

 NOTE _

 Calls NOTE and prints out the current values of the read, write,
 and last pointers, and the last line number in the currently open
 file. A bad return code is issued if the file is not sequential.
 Note that the last line # is meaningful only for
 sequential-with-line-number files.

 OPEN internal_filename _

 The specified file is opened so that commands which require an
 open file will work. If a file is already open it is closed
 first.

 PKEY progkey __

 Changes the program key used in file system calls to progkey. The ________
 default program key is *EXEC.

 POINT [read ptr [write ptr [last ptr [last line #]]]] _

 All arguments are hex values which modify the values of the given
 arguments in the currently open file. A zero value given for any
 of the arguments causes the corresponding pointer to be reset to
 the front of the file. A value of FFFFFFFF causes the
 corresponding pointer value to remain unchanged. An error return
 results if the open file is not sequential.

 PROJNO pno _

 Changes the project number used in file system calls to pno. The ____
 default project number is the one FSTEST is running under.

 READI [flag [line [count [truncation length] [scrwd]]]] _____

 Reads count lines from a line file, starting with line. Flag is _____ _____ ____
 the one-byte value passed to READI to determine the nature of the
 read. The default is x’08’ (last op bkwd, this op fwd, not
 indexed, not skip, no truncation). The "this op" direction bit is

 copied to the "last op" bit for operations after the first. If

 indexed is specified, only one op is done, regardless of count. ______

 If skip is specified, the write to SPUNCH is also skipped.

 Defaults are line=-infinity, count=+infinity. Lines are written ____ _____

 on SPUNCH with the line number parameter as returned from the

 read, so that @I can be specified if desired. If the output

 truncation flag is set, the truncation_length parameter should be __________ ______

 specified, which defines the maximum amount of bytes which will

 be transferred from the file buffer to the output area. The real

 length of the last line read is given if this truncation flag bit

 is asserted. If scrwd is specified, it is a hex value which _____

 updates the scratch word parameter, which otherwise is left

 unchanged. The scratch word is implicitly zeroed by the OPEN and

 EMPTY commands.

 FSTEST - Testing the File Routines

 D6.0 Disk system documentation, February, 1988 82

 The flag values are combinations of ____
 x’01’ => indexed
 x’02’ => skip
 x’04’ => next line file op given
 x’08’ => sets last op type
 x’10’ => truncate

 READS [flag [count [truncation length]]] _____

 Reads lines from a sequential file. Reads count lines, starting _____
 with the read pointer (as set by POINT. The read pointer is
 zeroed implicitly following an OPEN or EMPTY command.) If flag ____
 asserts that truncation of output is to be done, the truncation __________
 length parameter should be specified. Default flag is zero (this ______ ____
 op forwards, no skip, no truncaton.) The read pointer is updated
 according to the operation. Lines read from the file are copied
 to SPUNCH in a similar fashion to READI.

 RENAME internal_filename1 internal_filename2 ___

 RENUMBER [first [last [beginning [incr]]]] ____

 Renumbers the open file. Defaults are first=-infinity, last _____ ____
 =+infinity, beginning=1000, incr=1000. _________ ____

 REWRITE [page] ___

 Writes the current contents of the internal buffer into the
 specified page. The default for page is *. ____ ____

 STOP __

 Terminates execution.

 TRUNCATE _

 Truncates the open file.

 USERID id _

 Changes the userid used in the file system calls to id. The ___
 default userid is the one FSTEST is running under.

 VOLUME n _

 Specifies a public volume number to be used in subsequent display
 and modify commands. If no VOLUME command is given, public volume
 1 is used.

 WRITE line [count [length [incr]]] _

 Writes count lines, length bytes long, starting at line, _____ ______ _____

 FSTEST - Testing the File Routines

 D6.0 Disk system documentation, February, 1988 83

 incrementing by incr. The write is done to the open file, and _____
 WRITES or WRITEI is called, depending on file type. Length should ______
 not exceed 32767. The defaults are count=1, length=10, incr=1000. _____ ______ ____
 The line written is length initial characters from the repeated ______
 string "0123456789".

 FSTEST - Testing the File Routines

 D6.0 Disk system documentation, February, 1988 84

 PM - Obtain a Pack Map

 PURPOSE: To obtain a pack map consisting of: ________

 -volume label dump
 -PAT dump
 -relocation entries listing
 -file ordered map
 -page ordered map

 Approximately 150 pages of output are produced.

 USE: For use with the current system, ____

 macrolib file:cmdmaclib
 packmap

 This program reads input from GUSER, prints error messages on
 SERCOM, prints output on SPRINT, and accepts a PAR= field
 which must be either "HEX" or "DEC".

 Input currently consists of public volume names only. An

 end-of-file terminates execution. The PAR= field defaults to

 "HEX" and it determines whether output is in hex or decimal.

 Items which are always hex or decimal are marked (HEX) or

 (DEC) in the listing.

 The relocation entries are listed giving the old relative

 page number followed by the new (relocated) relative page

 number. The actual old disk address and the new disk address

 follow in parentheses. Disk addresses consist of

 cylinder/head/record.

 File_Ordered_Listing ____ _______ _______

 The file ordered listing is an alphabetical listing of all

 files on the pack. Each entry consists of a filename,

 followed by the relative DSCB type-E page location, followed

 by the relative DSCB type-E disk location in parentheses,

 followed by the data page range associated with the DSCB

 expressed in relative page numbers, followed by the data page

 range expressed as disk addresses in parentheses, followed by

 the first relative DSCB type-F page location if there are

 more than 38 data pages in the file, and so on.

 PM - Obtain a Pack Map

 D6.0 Disk system documentation, February, 1988 85

 For example,

 *ACCOUNTING1 6060009c(2/E/1) 11D-142(5/0/1-5/C/3)

 7060009C(2/E/1) 143-158(5/C/5-6/0/5)

 ...is interpreted to mean that the DSCB type-E for
 ACCOUNTING1 is located at relative page number 9C on public
 volume number 6. In fact it is the seventh DSCB in that page
 -- there are 16 DSCB slots in every DSCB page. The actual
 disk address of page 9C is cylinder 2, head E, record 1. Note
 that the three pages on each track are actually record
 numbers 1, 3, and 5. The data page range for ACCOUNTING1
 defined by this DSCB type-E is relative page numbers 11D
 through 142 (or cylinder 5, head 0, record 1 through cylinder
 5, head C, record 3). The first (and only in this case) DSCB
 type-F for ACCOUNTING1 is also located at relative page
 number 9C on public volume number 1, and so on.

 Page_Ordered_Listing ____ _______ _______

 Each entry for the page ordered listing takes one of two
 forms. For data pages, the entry consists of the data page
 range expressed in relative page numbers, followed by the
 data page range expressed as disk addresses in parentheses,
 followed by the filename. For DSCB pages, the entry consists
 of the page range expressed in relative page numbers,
 followed by the page range expressed as disk addresses in
 parentheses, followed by the string "DSCB".

 PM - Obtain a Pack Map

 D6.0 Disk system documentation, February, 1988 86

 TABLMOD - Shared File Table Utility

 PURPOSE: UMMPS job program to display and modify the in-core open ________
 file table. If signons or signoffs become impossible, one
 should do an "LSTAT FILE filename" to see if someone has one
 of the accounting files or *STATISTICS locked.

 USE: At the operators’ console: ____

 tablmod

 From an MTS task:

 macrolib file:cmdmaclib
 tablmod

 Commands are read until an end-of-file is entered. The
 following commands are available:

 VERIFY verifies (entry and element) allocations are
 consistent by chasing through various chains in
 shared file table. Also prints # open files, # matrix

 computations, # deadlocks detected.

 TRACE prints the entire shared file table. Each entry

 consists of a filename, job number, open status

 ("OPEN" or "NOTO", possibly "INVLD"), lock status

 ("LOCKR", "LOCKM", or "LOCKD"), and wait status

 ("WAITO", "WAITR", "WAITM", or "WAITD").

 LSTAT prints the information associated with a single file

 ("LSTAT FILE filename") or a single job ("LSTAT JOB

 nn") in the same format as the DUMP command.

 LOCATE prints the halfword offset into the in-core table for

 the entry associated with a particular file ("LOCATE

 FILE filename").

 CLEAN takes the specified job ("CLEAN JOB nn") off all open

 or locked and waiting lists.

 CLEANF same as CLEAN except for one file only ("CLEANF JOB

 nn FILE filename").

 DEQ takes the specified job ("DEQ JOB nn") off all

 waiting lists.

 DEQF same as "DEQ" except for one file only ("DEQF JOB nn

 FILE filename").

 TABLMOD - Shared File Table Utility

 D6.0 Disk system documentation, February, 1988 87

 HOGL lists the top three jobs using the InCore File table.

 TABLMOD - Shared File Table Utility

 D6.0 Disk system documentation, February, 1988 88

 Validate - Validate Files

 PURPOSE: To validate line and sequential files. This program is used ________
 to determine whether a file has been damaged as a result of
 a hardware or software failure. VALIDATEFILE is normally
 used to determine whether a file has been damaged by a
 software failure. It also has features which are used during
 disk disaster recovery, however, and it is this particular
 usage which is described here.

 USE: $RUN *VALIDATEFILE {PAR=options} ____

 Input is read from GUSER, error output is produced on

 SERCOM, and bulk output from the DUMP or FLAG options (see

 below) is produced on SPRINT. The PAR field keyword options

 may be separated by blanks or commas. The keywords are:

 filename - This is the name of the file to be validated. If

 present, this must be the first parameter. If a

 file name is given, no input is read from GUSER,

 and when validation of this file is complete, the

 program terminates.

 DUMP - The contents of the file’s line directory and hole

 directory is dumped in a formatted fashion. Each

 line of the dump describes an item in the file--a

 data line, the line number table line, or a

 hole--which consumes space in the data portion of

 the file. The lines contain: 1) "HOLE" if the item

 is a hole, or "LNT" if the item is a part of

 file’s line number table, or the line number of

 the data line which this item is a part of; 2) the

 location of the item in the line directory pages

 of the file, in the form of a relative page number

 and offset within the page; 3) the segment number

 of the item in case it is part of a data line too

 long to entirely fit within one file page and

 therefore is segmented into smaller chunks; 4) the

 amount of space in the data page which the item

 describes; 5) the location of the designated

 space, in the form of a relative page number and

 offset within the page; 6) the offset within the

 page where the next item should reserve space for;

 7) comments which describe what (if anything) is

 improper about this item.

 FLAG - This option causes only the items which are improper

 to be dumped, in the format described above.

 FIX - This option is only valid for the user ID FILE. It

 causes VALIDATEFILE to call MTS when it encounters

 an invalid directory page header. Occasionally it

 Validate - Validate Files

 D6.0 Disk system documentation, February, 1988 89

 is desirable to manually repair this header in VM
 to continue with the validation of the file. SDS
 or the MTS $MODIFY command may be used to do this,

 then the program can be restarted to continue

 validation.

 ZEROCHECK - This option causes VALIDATEFILE to read in every

 data page occupied by a data line and check the

 page for being zeroed. The disaster recovery

 procedures begin by zeroing pages which are

 damaged, and these pages may belong to files. The

 pages may, however, belong to a file but may not ______

 currently be in use by the file and so the file

 would not require restoration. VALIDATEFILE

 provides this feature to isolate this case.

 Any of the above options may be given as the right hand side

 to the OPTIONS= keyword. If more than one is desired, the

 right hand side may be a parenthesized list of options. If

 the OPTIONS= keyword appears in the PAR field without a file _______

 name, this defines the default values for those options for

 the duration of the VALIDATEFILE run.

 VALIDATEFILE establishes the default options from the PAR

 field. If a file was specified there, the file is validated

 and the program stops. If a file name was not given in the

 PAR field, a file name and options are prompted for on

 GUSER. A file name and options (as described above) may be

 given, and the file is validated according to the specified

 options. An end-of-file stops the program.

 RETURN_CODES: ______ ______

 0 => File was checked and is consistent

 4 => File was checked and is inconsistent

 8 => File could not be checked (no access, nonexistent, ...)

 EXAMPLES: _________

 $RUN *VALIDATEFILE GUSER=filelist -

 PAR=OPTIONS=ZEROCHECK

 $RUN *VALIDATEFILE PAR=*ACCOUNTING FLAG

 $RUN *VALIDATEFILE SPRINT=dump PAR=OPTIONS=DUMP

 badfile1
 badfile2 FIX
 end-of-file

 Validate - Validate Files

 D6.0 Disk system documentation, February, 1988 90

 VAMREC - Error Recovery Program

 VAMREC is a utility program which allows the user to attempt error
 recovery after disk errors. It is similar in function to DISKMOD
 except that it is easier to use (perhaps a bad thing?) and it expects
 the disk format to be VAMX. The program reads commands from GUSER,
 puts prompts and error messages on SERCOM, and uses SPRINT for some of
 its output.

 The program uses the following prompts:
 1. VOLUME:
 2. VOLUME NOT FOUND, RESPECIFY OR GIVE DEVICE NAME:
 3. ERROR ON LABEL READ, GIVE PAT PAGE NUMBER:
 4. ACTION:
 5. WRITE OPERATION. CONFIRM:
 6. CMD:

 When prompts 4 or 6 are issued the response of "?" or HELP will print
 out a list of allowed command verbs.

 For 1 or 2 a six character volume name or a four character device name
 is required. Either may be followed by the option "NOPAT", in which

 case no attempt is made to read or validate the PAT (useful for packs

 from foreign systems). An end-of-file terminates execution.

 Specification of a drive by device address rather than volume label

 bypasses the label check on the pack.

 A decimal (or hexadecimal number in quotes) page number is the

 expected response to 3. An end of file results in prompt 1.

 Prompt 4 is caused by the occurence of an error while reading the PAT.
 The legal responses are:
 STOP --- execution terminated _
 CHECK --- check the current PAT page for illegal characters __
 MTS --- return to MTS __
 FINISH --- terminate reading of the PAT and use what has been _
 read up to this point as the PAT contents.
 IGNORE --- pretend there was no error and continue to read PAT _
 pages
 COMMAND --- don’t read any more PAT pages, give CMD: prompt. ___
 $mtscommand --- the MTS command is executed.

 An end of file results in prompt 1.

 Prompt 5 is given when a command needs to do a write operation for its
 completion. Positive responses are: OK, YES, and !. check all your

 previous work before you give a positive response!!!

 VAMREC - Error Recovery Program

 D6.0 Disk system documentation, February, 1988 91

 VAMREC will harass you if it thinks you may be doing something wrong.
 If messages like "CAN’T;..." or "WARNING:..." appear, make sure you

 are confident of what you are doing before proceeding.

 Command mode is indicated by the prompt CMD:. Optional portions of the

 command prototypes are given in braces ({ }). Just about any place

 where a decimal number can be given, a hex number may be provided

 instead by enclosing the hex value in primes, e.g. ’FF’ is decimal

 255. The commands are:

 ADD _

 This command makes the volume available to users. It results

 in a call to VOLREL with an "add" code.

 ASSUME ON __

 ASSUME OFF __

 If ON is given, no checking is done to see if a page in a

 READ or WRITE command really corresponds to a valid page on

 the device byte for the page or the track address). If OFF

 is give I the checking is done (as is initially the case).

 CALL routinename text ____

 The CALL command invokes a subroutine previously loaded by

 the LOAD command. The subroutine is called with an OS S-type

 calling sequence, with the following parameters:

 (1) the address of the in-core buffer continaing the last
 record read from disk
 (2) the fullword length of the record
 (3) the address of the text following the routine name on
 the CALL command
 (4) the fullword length of the text.

 COUNT BLOCK {NOT} values _____ __
 COUNT LABEL {NOT} values _____ ___
 COUNT PAGE {NOT} values _____ ___
 COUNT PAT {NOT} values _____ ___
 COUNT RECORD {NOT} values _____ ___

 Counts occurrences of the specified "values" in the
 specified area. One or more of the following values may be
 specified, separated by blanks: DSCB,_PAT,_END,_DATA,_FREE, _____ ____ ____ _____ _____
 ERROR, ’x’, or "c" where x is a one-byte hex value and c is ___

 one character. Use of the NOT operand will find the set

 complement of the values specified.

 Example: COUNT PAT NOT FREE will provide a page usage

 profile.

 DASDI - see FORMAT __

 DISPLAY LABEL __ _

 DISPLAY {SHORT} x y __ _

 VAMREC - Error Recovery Program

 D6.0 Disk system documentation, February, 1988 92

 DISPLAY {SHORT} PAT x y __ _ _
 DISPLAY RELOCATION __ _

 The SHORT operand, if given, causes the display output to be
 formatted with at most 16 hexadecimal bytes displayed per
 line. Otherwise, 32 hex bytes maximum will be displayed.
 The LABEL parameter results in the volume label displayed in
 EBCDIC and in hexadecimal.
 "X" is the displacement into the designated area (the buffer

 containing the current record’s contents, or the PAT as a

 contiguous chunk) of the beginning of the data to be

 displayed.

 "y" is the number of bytes that is to be displayed and will

 default to 4 if omitted. The numbers are assumed to be

 decimal unless there are quotes around them. The display is

 in hexadecimal.

 The RELOCATION parameter causes all the relocation entries

 on the volume to be printed out in a formatted fashion.

 ERRORCHECK {TRACK} _ _

 ERRORCHECK PAT _ _

 ERRORCHECK HEAD _ _

 ERRORCHECK ALL (this does 100% checking) _ _

 ERRORCHECK COMPARE _ _

 ERRORCHECK RANDOM _ _

 TRACK (or just ERRORCHECK) results in a seek to every track

 and a search for and read of the first full page on every

 track. In case of a unit check, the sense information plus

 the page number and seek address are printed on SERCOM.

 PAT results in a hexadecimal dump of all relocation entries.

 The entries are checked for consistency among themselves

 also (e.g., a bad page should not have itself as the

 relocating page, etc.).

 HEAD causes a read of every page accessed with the specified

 head number to be read. This is useful for checking out a

 surface on a disk if it is suspect. If an error results, the

 sense information and page number are displayed.

 COMPARE results in a seek to and read of the page

 corresponding to the "bad" address of each relocation entry.

 A line is printed for each such page.

 ALL results in reading each and every page on the pack (as

 long as the pat byte for the corresponding page does not

 indicate it to be an error page). This action is followed by

 the action one would get with the COMPARE variant of

 ERRORCHECK.

 RANDOM results in reading each and every page on the pack

 (as long as the PAT byte for the corresponding page does not

 indicate it to be an error page). Pages are read randomly.

 When all pages have been read (they are read only once per

 pass), the message PASS FINISHED is printed and the next

 pass begins.

 RPS will be used for seeking if it can be.

 VAMREC - Error Recovery Program

 D6.0 Disk system documentation, February, 1988 93

 FIND BLOCK {NOT} values ____ __
 FIND LABEL {NOT} values ____ ___
 FIND PAGE {NOT} values ____ ___
 FIND PAT {NOT} values ____ ___
 FIND RECORD {NOT} values ____ ___

 Scans the specified area for the values requested. One or
 more of the following values may be specified, separated by
 blanks: DSCB,_PAT,_END,_DATA,_FREE, ERROR, ’x’, or "c" where _____ ____ ____ _____ _____ ___
 x is a one-byte hex value and c is one character. Use of the
 NOT operand will find the set complement of the values
 specified.
 Example: FIND PAT ERROR PAT END finds the overhead bytes in
 the PAT.

 FORGET ____
 This command instructs the system to forget where the given
 volume is located so that the next non-VAMREC reference to __________
 it will cause the volume’s label and PAT to be re-read. It
 is useful if any relocation entries have been generated by
 VAMREC to force the system to become cognizant of them.

 FORMAT CYLINDER cc
 FORMAT GROUP x
 FORMAT TRACK cc hh
 DASDI CYLINDER cc
 DASDI GROUP x
 DASDI TRACK cc hh
 FORMAT RETRY cc hh

 The FORMAT ASDI commands issue formatting write commands
 (write count-key-and-data) on a given track, a group of
 tracks (as defined by the device type--groups are record
 collections which occupy integral numbers of tracks), or a
 full cylinder. The difference between a DASDI operation and
 a FORMAT one is that DASDI will rewrite the home address on
 the track and record zero, whereas FORMAT will not. To be
 formattable, the affected records must be marked as either
 free, allocated, or error pages in the PAT. If marked free,
 a warning will be issued.
 The FORMAT RETRY option specifies a track on which a special
 record will be written that will be read by the READ RETRY
 command (2305, 3330 only). The PAT bytes for all pages on
 such a track must be X’C1’.

 FREE _

 This command cancels the effect of a KEEP and will free the
 device/volume.

 INITIALIZE _

 VAMREC - Error Recovery Program

 D6.0 Disk system documentation, February, 1988 94

 This command changes all data and DSCB entries in the PAT to
 available entries. It zeroes the relocation entry count and
 flag. It then rewrites all the PAT pages. A data entry in
 the PAT is defined as a byte which does not have bits 0 and ___
 1 on simultaneously (i.e., B’11XXXXXX’) nor does it have
 bits 1 thru 7 on simultaneously (i.e., B’X1111111’). This
 excludes any PAT-page bytes and any kind of error pages.

 KEEP _
 This command causes the volume evice given in response to
 the VOLUME query to be acquired, its PAT to be read, and a
 bit is set so that it will not be freed as is normally done ___
 between commands Therefore, at the end of the execution of
 this command, VAMREC’s knowledge and control of the disk
 volume is complete and up-to-date.

 KEYS ON _
 KEYS OFF _

 This command affects the operation of record-oriented READ
 or WRITE commands. If KEYS ON has been given, the channel
 commands issued read and write the key field of the record.
 The default, KEYS OFF, cause only the data portion of the
 records to be operated upon. The key field is not touched by
 commands which are page-oriented.

 LABEL __
 RELABEL ____

 The label is rewritten with the contents of the label
 buffer.

 LOAD routine fdname __

 The LOAD command loads a subroutine from the FDname
 specified. This subroutine may subsequently invoked by using
 the CALL command (described above) to manipulate a disk
 record in memory, or perform some other function.

 MODIFY LABEL x c _ _
 MODIFY x c _
 MODIFY PAT x c _ _

 "x" is the displacement in the specified buffer (neither

 LABEL nor PAT specified indicates the current page). "x" is

 assumed to be decimal unless enclosed by quotes. "c" is the

 character string to be placed at "x". It must be enclosed by

 quote-marks (for a hex string) or double-quotes (for an

 EBCDIC string --- successive double-quotes within the EBCDIC

 string denote a single double-quote). The length of the

 string (if hex) must be even.

 VAMREC - Error Recovery Program

 D6.0 Disk system documentation, February, 1988 95

 MTS __
 A return to MTS.

 PAGE c h r ____

 The relative page number of record "r" on track (head) "h"

 of cylinder "c" is printed, if the record is a page.

 PRINT {SHORT} _ _

 PRINT {SHORT} DSCB _ _ _

 PRINT {SHORT} PAT _ _ _

 The SHORT parameter is optional and behaves as with the

 DISPLAY command.

 With no parameters this command results in a hexadecimal and

 EBCDIC dump of the current page on SPRINT. The parameter

 DSCB results in a dump of all DSCB pages on the pack (many ____

 pages of output). The PAT parameter results in a dump of the

 PAT pages.

 READ page# _

 READ BLOCK block# _ __

 READ BUFFEREDLOG _ __

 READ HOMEADDRESS (or HA) {c h} _ __ __

 READ PAGE page# _ _

 READ RECORD c h r _ _

 READ RETRY c h _ ___

 This command reads the record specified by the parameters.

 "page#" is a page number and "block#" a block number for a

 fixed-block device (quotes for hexadecimal), "c" is the

 cylinder number, "h" is the head number, and "r" is the

 record number.

 When RECORD is specified, the seek address must specify a

 legal page number, but the check for a legal page may be

 overridden by the ASSUME command (see above). The amount of

 data read defaults to 4096 bytes, but may be changed by the

 IOLEN command (see above, also).

 When RETRY is specified, record R1 is "read" by a
 SPACE-COUNT command to force the control unit into command
 retry (correctable error in the key field). The record so
 read is the one written by the "FORMAT RETRY c h" command.

 The PAT bytes corresponding to all pages on such a track ___

 must be X’C1’.
 The BUFFEREDLOG operand allows the buffered log (2305, 3330,
 3350) to be read and displayed (note that this resets the
 log).
 The BLOCK operand is only valid for 3370 or other
 fixed-block devices.

 RECORD n ___
 The cylinder, head, record address for relative page "n" is
 printed.

 VAMREC - Error Recovery Program

 D6.0 Disk system documentation, February, 1988 96

 RELOCATE ___
 RELOCATE PAT ___ _

 If no parameter is specified, the current page (the page
 last processed by a READ command) is relocated. If the PAT
 byte for this page is B’11XXXXXX’ indicating it is bad, or
 if the PAT byte for this page is B’00000000’ indicating that
 the page is available, the PAT byte is merely set to
 B’11000000’ (X’C0’) and the PAT is rewritten. Otherwise, the
 PAT byte is flagged as bad (X’C0’), a free page is found in
 the PAT, it is flagged with the same PAT byte as the old
 page, a relocation entry is added to the PAT, the contents
 of the record buffer are written to the new page address,
 and the PAT is rewritten. If the parameter PAT is specified,
 the PAT is relocated. The old PAT pages are flagged as not
 available (i.e., X’C0’) and a new block of free space is
 located. The first PAT page address is set in the label. The
 label is rewritten and then the PAT pages are rewritten. No
 additional relocation entries are generated.
 Remember to flush the Disk Manager Cache before doing this.

 REMOVE ___
 The command which makes the volume unavailable to other
 users. It results in a call to VOLREL with a "remove" code.

 STOP _

 The normal way to terminate execution.

 VERIFY _

 VERIFY PAT _ _

 VERIFY DSCB _ _

 The PAT parameter or no parameter causes all bytes in the

 PAT buffer to be checked for illegal characters (this check

 is also done whenever the PAT is rewritten.) If an illegal

 character is found, its location in the PAT is displayed

 along with a query as to whether to continue or not. OK,

 YES, or ! will cause continuation of the verification,

 anything else will not. The DSCB parameter causes all DSCB

 pages to be read and all the checksums of the DSCB’s to be

 verified. If incorrect, the expected checksum value will be

 printed also.

 WRITE _

 WRITE {PAGE} x _ ___

 WRITE PAT _ _

 Write LABEL _

 If no parameter is given, this command causes the contents

 of the record buffer to be written back to the same address

 as the previous READ command. If the buffer has been

 implicitly changed, or the page address has, an error

 message or warning will be issued.

 VAMREC - Error Recovery Program

 D6.0 Disk system documentation, February, 1988 97

 If the PAT parameter is given, the PAT pages are re-written
 from the PAT buffer.
 If the PAGE operand is given, the contents of the record
 buffer are written at the given page. Thus to move pages,
 one would do a "READ x" followed by a "WRITE PAGE y".

 The LABEL parameter causes the label to be rewritten to the

 disk from the contents of the label buffer.

 ZAP x c n _

 ZAP PAT x c n _ _

 The PAT parameter results in the PAT buffer being modified;

 else the current page is modified. The "x" is the

 displacement in the buffer, the "c" is the one byte fill ___

 character, and the "n" is the number of times the character

 is to be placed in the buffer.

 VAMREC - Error Recovery Program

 D6.0 Disk system documentation, February, 1988 98

 Some examples of the commands.

 DISPLAY ’100’ 10
 DISPLAY 256 ’A’
 DISPLAY LABEL
 DISPLAY PAT ’1000’ ’30’
 MODIFY PAT ’2000’ ’7F7F7F7F’
 MODIFY LABEL 4 "TMTS02"
 ZAP PAT 50 ’41’ 100
 FORMAT GROUP 2
 READ BUFFEREDLOG
 KEEP
 FORMAT RETRY ’20’ 0
 READ RETRY ’20’ 0

 Note: HELP or "?" gives a list of valid commands. A command

 starting with a "$" is passed on to MTS. All commands can be

 abbreviated to the minimum number of characters required to

 distinguish them. The order of recognition is as printed by the

 HELP command.

 Before any relocation is done, the KEEP command should be used.

 The FORGET--FREE command combination then results in MTS

 discovering the new state of the pack at the next non-VAMREC

 access of the pack.

 VAMREC uses the resident unit check routines, except when reading

 the funny record with READ RETRY. All write operations are read

 checked.

 VAMREC - Error Recovery Program

 D6.0 Disk system documentation, February, 1988 99

 VNTD - Catalog Utility

 PURPOSE: To verify, trace, and/or dump the file system catalog. This ________
 program will verify, trace, and/or dump the entire catalog,
 a particular user catalog, or a particular user file.

 USE: macrolib file:cmdmaclib ____
 vntd

 The program accepts input on SCARDS if no PAR= field is
 given. An end-of-file terminates the program. SPRINT and
 SERCOM are used for output.

 Parameters must be separated by blanks or commas and must be
 given in the following order:

 (1.) any, all, or none of the following:
 "V" - verify

 "T" - trace

 "D" - dump

 "L" - use STDDMP format for dump output

 (2.) at most, one of the following:

 "C" - the entire catalog (the default)

 "U" - a particular user catalog

 "F" - a particular user file

 if "U" is given, then a legal MTS userid must be the

 next parameter. if "F" is given, then a legal

 internal filename must be the next parameter. if

 "...,U,*ALL" is entered then all user catalogs are

 processed. if "...,F,*ALL,ID" is entered then all

 files corresponding to the specified user ID are

 processed.

 EXAMPLES: $Run FILE:VNTD+Copy:SYSDEFS PROT=OFF _________

 PAR=T,C

 $Run file:vntd+copy:sysdefs prot=off

 par=v,t,d,l,u,w045

 $Run file:vntd+copy:sysdefs prot=off

 par=d,f,w045fyle

 OUTPUT: VERIFY _______ ______

 Verifying the entire catalog will validate segment

 allocation as well as error checking record and segment

 headers. Presently the catalog can only be verified when

 VNTD - Catalog Utility

 D6.0 Disk system documentation, February, 1988 100

 segments are not being allocated or deallocated, ie: when no
 one else is using the system. Verifying the entire catalog
 will take >30 minutes.

 Verifying a user catalog will error check record and segment
 headers as well as file descriptors. In addition, it will
 check that file descriptors point to sharing descriptors in
 the same catalog and that all sharing descriptors are
 accounted for.

 Verifying a file checks file descriptors & sharing

 information for reasonableness.

 TRACE _____

 Tracing the catalog will print out the file header locations

 and the number of pages in each file.

 Tracing a user catalog will print out the segment locations

 for each segment assigned to the user catalog.

 Tracing a file will print out file and sharing descriptor

 locations.

 DUMP ____

 Dumping the catalog will dump (via SDUMPor STDDMP - as

 selected by the "L" parameter) each file header.

 Dumping a user catalog will dump each segment assigned to

 the user catalog.

 Dumping a file will dump the file descriptors and sharing

 descriptors associated with the file in the catalog.

 VNTD - Catalog Utility

 D6.0 Disk system documentation, February, 1988 101

 VTOCUTIL - VTOC Utility

 Purpose: A general utility for examination, verification and fixing of _______
 the label/PAT/DSCB structure of a disk volume.

 Availability: Use the VTOCUTIL macro in file:cmdmaclib. It takes as ____________
 parameters:

 tables= alternate UMMPS tables - defaults to system tables

 frtns= alternate file routines (without tables) - defaults to
 system tables if tables= wasn’t specified, otherwise to
 file:filertns, the current file routines.

 scards= command input - defaults to *source*

 If any extra parameters are given, then VTOCUTIL is run in a
 "one-shot" mode, with the extra parameters passed as the only

 command.

 Commands_are: ________ ___

 MTS - goes to MTS command mode

 MCmd <command> or $<command> - execute MTS command

 STop - stops

 Help - for help

 TRACE {ON | OFF | FULL} - trace the command parsing

 Files <filenames> (<foptions>) - print info about files

 Pages <pagenumbers> (<poptions>) - print info about pages

 BIGger (than) <int> (pages) (ON <fdname>) - print names of files

 which are bigger than <int> pages

 DISContinuities - Print information about discontiguous pages

 within files

 SUMMARY {ALL | <volname>} - Print usage summary for specified

 volume or all volumes

 ALL <options> - process all volumes

 <volname> <options> - process named volume

 VTOCUTIL - VTOC Utility

 D6.0 Disk system documentation, February, 1988 102

 where <options> are:

 (NO)FINDdscbs - to pattern match for DSCB pages (default NO)

 (NO)PATTERNmatch - synonym for FINDdscbs

 (NO)CHECK - to check VTOC consistency (default CHECK)

 (NO)FIX - to fix some of the errors found (default NOFIX)

 <filenames> can be:

 one or more names separated by blanks, in id:name form or in
 "internal" form.

 LIST=<fdname> where <fdname> specifies a file containing one or

 more filenames, one per line.

 <foptions> are:

 ON <fdname> to write the output on <fdname>.

 WITH Pages to print the page numbers of the pages in the files.

 <pagenumbers> are separated by blanks and can be in hex by enclosing

 in primes (eg ’0010’). They can also be in cylinder/head/record
 form by separating with slashes (eg 16/5/3 or ’10’/’5’/’3’ or
 ’10/5/3’). Also ranges are accepted by separating with a dash
 (eg 16/5/3-3000).

 <poptions> are:

 ON <fdname> to write the filename and its DSCB-E on <fdname>.

 EXTERNAL to have the DSCB-E written (via ON <fdname>) in
 hexadecimal characters, instead of internal form.

 The PAGES, FILES, and BIGGER commands apply to the volume or volumes
 last specified in a <volname> or ALL command. super

 VTOCUTIL - VTOC Utility

 D6.0 Disk system documentation, February, 1988

 Index _____

 AMALCOMP ...40
 Catalog,creating ...45
 Scan ...43
 Structure ..12
 Utility ..99
 CATSCAN - Catalog Scan And Count Utility43
 CCATL - Catalog Creation Utility45
 CHKVTOC ..48
 CHONID - Program To Change File Owner50
 Codes ...9
 Console Error Messages ..9
 Console Error Msgs ..9
 Copying Disks ..69
 DASDI - Disk Pack Initialization51
 Disaster, Low Level Recovery90
 Disaster Recovery ..55
 DISKCOPY - Copy Disk Packs ...69
 Disk Table, Changing ...71
 DSK - Disk Table Utility ...71
 Dumps ..84
 Errors ..9
 File, Moving ...74
 FM - File Move Utility ...74
 Format, Catalog ..12
 Line Files ...22
 Sequential Files ...30
 Shared File Table ..33
 FSTEST - Testing The File Routines77
 In-core Table ..33
 Utility ..86
 Line Files, Structure ..22
 Maps ...84
 Moving Files ...74
 Owner Of File, Changing ..50
 PAT ..84
 PM - Obtain A Pack Map ...84
 Recovering From A Disk Disaster55
 Sequential Files, Structure ..30
 Shared File Table, Format ..33
 Utility ..86
 Stop Codes ..9
 Structure Of Line Files ..22
 Structure Of Sequential Files30
 Structure Of Shared File Table33
 Structure Of The Catalog ...12
 TABLMOD - Shared File Table Utility86
 Validate - Validate Files ..88
 VAMREC - Error Recovery Program90
 VNTD - Catalog Utility ...99
 VTOCUTIL - VTOC Utility ...101
 Index

