
(

• UNISYS System V
User's
Reference Manual

Volume 1
Copyright © 1989 Unisys Corporation
All rights reserved.
Unisys is a registered trademark of Unisys Corporation.

Priced Item

October 1989

Printed in U S America
UP-15525
Update A

The names, places, anellor events used in this publication are not intended to correspond to
any individual, group, or association existing, living, or otherwise. Any similarity or likeness of
the names, places and/or events with the names of any individual living or otherwise, or that
of any group or association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product
and related material disclosed herein are only furnished pursuant and subject to the terms and
conditions of a duly executed Program Product License or Agreement to purchase or lease
equipment. The only warranties made by Unisys, if any, with respect to the products described
in this document are set forth in such Ucense or Agreement Unisys cannot accept any financial
or other responsibility that may be the result of your use of the information in this document or
software material, including direct, indirect. special or consequential damages.

You should be very careful to ensure that the use of this information anellor software material
complies with the laws, rules, and regulations of the jurisdictions with respect to which it is
used.

The information contained herein is subject to change without notice. Revisions may be issued
to advise of such changes anellor additions.

Diablo is a registered trademark of Xerox Corporation.
Documenter's Workbench is a trademark of AT&T.
Hewlett-Packard is a registered trademark of Hewlett-Packard.
IBM is a registered trademark of International Business Machines Corporation
IBM Sl370 is a trademark of International Business Machines Corporation.
TEKTRONIX is a trademark of TEKTRONIX Inc.
TELETYPE is a registered trademark of AT&T.
TRENDATA is a trademark of Trendata.
UNIX is a registered trademark of AT&T in the USA and other countries.
Versatec is a registered trademark of Versatec Corporation.
XENIX is a registered trademark of Microsoft Corporation.
Zerox is a trademark of Xerox Corporation.

e 1989 by AT&T.

ii UP-15525 V1 A

About This Document

Purpose

This manual is intended to supplement information contained in the
Administrator's Reference Manual and the Programmer's Reference Manual to
provide an easy reference volume for those who must use a Unisys System V
operating system.

Scope
This manual describes the user commands of the operating system.

Audience
The audience for this manual is users, programmers, analysts, and system support
personnel.

Prerequisites
The user of this manual should be familiar with System V or another operating
system derived from a UNIX@ operating system.

UNIX is a registered trademark of AT&T in the USA and other countries.

UP-15525 V1 iii

About This Document

iv

This discussion provides the basic information you need to get started on your
system: how to log in and log out, how to communicate through your terminal,
and how to run a program. (See the User's Guide for a more complete
introduction to the system.)

Logging In

You must connect to the operating system from a full-duplex ASCII terminal.
You must also have a valid login id, which may be obtained (together with how to
access your operating system) from the administrator of your system. Common
terminal speeds are 120,240,480,960, and 1920 characters per second (1200,
2400,4800,9600, and 19,200 baud). Some operating systems have different ways
of accessing each available terminal speed, while other systems offer several
speeds through a common access method. In the latter case, there is one
preferred speed; if you access it from a terminal set to a different speed, you are
greeted by a string of meaningless characters (the login: message at the wrong
speed). Keep hitting the break, interrupt, or attention key until the login:
message appears.

Most terminals have a speed switch that should be set to the appropriate speed
and a half-/full-duplex switch that should be set to full-duplex. When a
connection has been established, the system types login:. You respond by typing
your login id followed by the return key. If you have a password, the system asks
for it but will not print, or echo, it on the terminal. After you have logged in, the
return, new-line, and line-feed keys all have equivalent meanings.

Make sure you type your login name in lowercase letters. Typing uppercase
letters causes the operating system to assume that your terminal can generate
only uppercase letters and treats all letters as uppercase for the remainder of
your login session. The shell prints a $ on your screen when you have logged in
successfully.

When you log in, a message-of-the-day may greet you before you receive your
prompt. For more information, consult login (1), which discusses the login
sequence in more detail, and suy(1), which tells you how to describe your
terminal to the system. profile(4) (in the Programmer's Reference Manual)
explains how to accomplish this last task automatically every time you log in.

UP-15525 V1

About This Document

Logging Out

There are two ways to log out:

• If you've dialed in, you can simply hang up the phone.

• You can log out by typing an end-of-file indication (ASCn EOT cha"acter,
usually typed as < Ctrl > D) to the shell. The shell terminates, and the
login: message appears.

How to Communicate Through Your Terminal

When you type to the operating system, your individual characters are being
gathered and temporarily saved. Although they are echoed back to you, these
characters will not be given to a program until you type a return (or new-line) as
described above.

Operating system terminal input/output is full duplex. It has full read-ahead,
which means that you can type at any time, even while a program is being
executed. Of course, if you type during output, your input characters have output
characters interspersed among them. In any case, whatever you type is saved and
interpreted in the correct sequence. There is a limit to the amount of read
ahead, but it is generous and not likely to be exceeded.

The character @ cancels all the characters typed before it on a line, effectively
deleting the line. (@ is called the line kill character.) The character # erases
the last character typed. Successive uses of # erases characters back to, but not
beyond, the beginning of the line; @ and # can be typed as themselves by
preceding them with \ (thus, to erase a \, you need two #s). These default erase
and line kill characters can be changed; see stfJ'(l).

< Ctrl > S (also known as the Ascn DC3 character) is typed by pressing the
control key and the alphabetic s simultaneously and is used to stop output
temporarily. It is useful with CRT terminals to prevent output from disappearing
before it can be read. Output is resumed when a < Ctrl > Q (also known as
DC1) is typed. Thus, if you had typed cat yourfile and the contents of yourfile
were passing by on the screen more rapidly than you could read it, you would
type < Ctrl > S to freeze the output for a moment. Typing < Ctri > Q allows
the output to resume its rapid pace. The < Ctrl > S and < Ctrl > Q
characters are not passed to any other program when used in this manner.

UP-15525 V1 v

About This Document

vi

The ASCn < Del > (a.k.a. rubout) character is not passed to programs but
instead generates an interrupt signal, just like the break, interrupt, or attention
signal. This signal generally causes whatever program you are running to
terminate. It is typically used to stop a long printout that you do not want.
Programs, however, can arrange either to ignore this signal altogether or to be
notified and take a specific action when it happens (instead of being terminated).
The editor ed(1), for example, catches interrupts and stops what it is doing,
instead of terminating, so an interrupt can be used to halt an editor printout
without losing the file being edited.

Besides adapting to the speed of the terminal, the operating system tries to be
intelligent as to whether you have a terminal with the new-line function, or
whether it must be simulated with a carriage-return and line-feed pair. In the
latter case, all input carriage-return characters are changed to line-feed
characters (the standard line delimiter), and a carriage-return and line-feed pair
is echoed to the terminal. If you get into the wrong mode, the stty(l) command
rescues you.

< Tab > characters are used freely in operating system source programs. If
your terminal does not have the tab function, you can arrange to have tab
characters changed into spaces during output, and echoed as spaces during input.
Again, the stty(1) command sets or resets this mode. The system assumes that
tabs are set every eight character positions. The tabs(l) command sets tab stops
on your terminal, if that is possible.

How to Run a Program

When you have successfully logged into the operating system, a program called
the shell is communicating with your terminal. The shell reads each line you
type, splits the line into a command name and its arguments, and executes the
command. A command is simply an executable program. Normally, the shell
looks first in your current directory (see "The Current Directory" that follows) for
the named program and, if none is there, then in system directories, such as /bin
and /usr/bin. There is nothing special about system-provided commands except
that they are kept in directories where the shell can find them. You can also
keep commands in your own directories and instruct the shell to find them there.
See the manual entry for sh (1), under the sub-heading Parameter Substitution,
for the discussion of the SPATH shell environment variable.

UP-15525 V1

About This Document

The command name is the first word on an input line to the shell; the command
and its arguments are separated from one another by space or tab characters.

When a program terminates, the shell ordinarily regains control and give you
back your prompt to indicate that it is ready for another command. The shell has
many other capabilities, which are described in detail in sh(l).

The Current Directory

The operating system has a file system arranged in a hierarchy of directories.
When you received your login id, the system administrator also created a
directory for you (ordinarily with the same name as your login id, and known as
your login or home directory). When you log in, that directory becomes your
current or working directory, and any file name you type is, by default, assumed to
be in that directory. Because you are the owner of this directory, you have full
permissions to read, write, alter, or remove its contents. Permissions to enter or
modify other directories and files have been granted or denied to you by their
respective owners or by the system administrator. To change the current
directory, use cd(l).

Pathnames

To refer to files or directories not in the current directory, you must use a
pathname. Full pathnames begin with I, which is the name of the root directory
of the whole file system. After the slash comes the name of each directory
containing the next sub-directory (followed by a I), until finally the file or
directory name is reached (e.g., lusr/ae!filex refers to file filex in directory ae,
while ae is itself a subdirectory of usr, and usr is a subdirectory of the root
directory). Use pwd(l) to print the full pathname of the directory you are
working in. See intro(2) in the Programmer's Reference Manual for a formal
definition of pathname .

If your current directory contains subdirectories, the pathnames of their
respective files begin with the name of the corresponding subdirectory (without a
prefixed I). A pathname may be used anywhere a file name is required.

Important commands that affect files are cp(l), mv (see cp(l», and nn(l), which
respectively copy, move (i.e., rename), and remove files. To find out the status of
files or directories, use Is(l). Use mkdir(l) for making directories and nndir (see
nn(l» for removing them.

UP-15525 V1 vii

About This Document

Text Entry and Display

Almost all text is entered through an editor. Common examples of operating
system editors are ed(l) and vi(l). The commands most often used to print text
on a terminal are cat(l), pr(l), and pg(l). The cat(l) command displays the
contents of ASCII text files on the terminal, with no processing at all. The pr(l)
command paginates the text, supplies headings, and has a facility for multi
column output. The pg(l) command displays text in successive portions no larger
than your terminal screen.

Writing a Program

Once you have entered the text of your program into a file with an editor, you
are ready to give the file to the appropriate language processor. The processor
accepts only files observing the correct naming conventions: all C programs must
end with the suffix.c, and FORTRAN programs must end with .f. The output of
the language processor is left in a file named a.out in the current directory, unless
you have invoked an option to save it in another file. (Use mv(l) to rename
a.out) If the program is written in assembly language, you may need to load
library subroutines with it (see ld(l) in the Programmer's Reference Manual).

When you have completed this process without provoking any diagnostics, you
may run the program by giving its name to the shell in response to the $ prompt.
Your programs can receive arguments from the command line just as system
programs do; see aec(2) in the Programmer's Reference Manual. For more
information on writing and running programs, see the Programmer's Guide.

Communicating with Others

viii

Certain commands provide inter-user communication. Even if you do not plan to
use them, it would be well to learn something about them because someone else
may try to contact you. mail(l) or mailx(l) leave a message whose presence is
announced to another user when he or she next logs in and at periodic intervals
during the session. To communicate with another user currently logged in,
write(l) is used. The corresponding entries in this manual also suggest how to
respond to these two commands if you are their target.

See the tutorials in the User's Guide for more information on communicating
with others.

UP-15525 V1

About This Document

How to Use This Document
The commands appear as follows:

1. Commands and Application Programs

The section begins with a page labelled intro. Entries following the intro page are
arranged alphabetically and may consist of more than one page. Some entries
desaibe several routines, commands, etc. In such cases, the entry appears only
once, alphabetized under its primary name. An example of such an entry is
chown(1), which also describes the chgrp command.

References with numbers other than those mentioned previously are contained in
the appropriate section of another manual. References with a (1M) or (7)
following the command name mean that the man page is contained in the
Administrator's Reference Manual. References with a (1) or (1G) can be found
in either the User's Reference Manual or the Programmer's Reference Manual.
All other refyrenced commands including (2), (3), (3C), (3X), (3M), (3S), (3W),
(3N), (4) and (5) can be found in the Programmer's Reference Manual.

Some man pages are unique to the International Enhancements (IE) utility and
some have been modified to work with the IE utility. In both instances, these
utilities are shown in the Table of Contents with the letters IE following their
name.

Organization
This manual contains the following sections:

Pennuted Index

This index is derived from the Table of Contents (which lists both primary and
secondary command entries and gives an abstract of each command). The
Permuted Index is used by searching the middle column for a key word or
phrase. The right column contains the name of the manual page that contains
the command The left column contains additional useful information about the
command

UP-15525 V1 ix

About This Document

Section 1. Commands and Application Programs

The entries in Section 1 describe programs intended to be invoked directly by the
user or by command language procedures, as opposed to subroutines, which are
called by the user's programs. These include general utility commands,
commands used in communicating with other systems, and commands used for
graphics and computer-aided design. Commands generally reside in the
directory /bin (for binary programs). In addition, some programs reside in
/usr/bin. These directories are searched automatically by the command
interpreter called the shell. UNIX systems running on Unisys computers also
have a directory called /usr/lbin, containing local commands.

All entries are presented using the following format (though some of these
headings might not appear in every entry):

• NAME gives the primary name (and secondary name(s), as the case may be)
and briefly states its purpose.

• SYNOPSIS summarizes the usage of the program being described. A few
explanatory conventions are used, particularly in the SYNOPSIS:

• Boldface strings are literals and are to be typed just as they appear.

• Italic strings usually represent substitutable argument prototypes and
command names found elsewhere in the manual.

• Square brackets [] around an argument prototype indicate that the
argument is optional. When an argument prototype is given as name or
file, it always refers to a file name.

• Ellipses ••• are used to show that the previous argument prototype may
be repeated.

• A finaI convention is used by the commands themselves. An argument
beginning with a minus (-), plus (+), or an equal sign (=) is often taken
to be some sort of flag argument, even if it appears in a position where a
file name could appear. Therefore, it is unwise to have files whose
names begin with -, +, or =.

• DESCRIPTION provides an overview of the utility. The Internationalization
sub-section includes modifications that allow it to work with the International
Enhancements utility.

x UP-15525 V1

About This Document

• EXAMPLE(S) gives example(s) of usage, where appropriate.

• FILES contains the file names that are referenced by the program.

• EXIT CODES discusses values set when the command terminates. The value
set is available in the shell environment variable n?n (see sh(l)).

• RETURN VALUES identifies values which are returned during the execution
of a command and/or program.

• NOTES and CAVEATS gives information that may be helpful under the
particular circumstances described.

• SEE AlSO offers pointers to related information.

• DIAGNOSTICS discusses the error messages that may be produced.
Messages that are intended to be self-explanatory are not listed.

• WARNINGS discusses the limits or boundaries of the respective commands.

• BUGS lists known faults in software that have not been rectified.
Occasionally, a suggested short-term remedy is also described.

• RESTRICTIONS provides known restrictions and deficiencies. Occasionally,
the suggested fix is also described.

• SUPPORT STATUS points out commands that may not be supported in
future releases.

Related Product Information
Programmer's Reference Manual
Administrator's Reference Manual
User's Guide

UP-15525 V1 xi

I

"

Contents

(The following are contained in two volumes.)

1. Commands and Application Programs

intro(l) introduction to commands and application programs
300, 3OOs(l) ... handle special functions of 300s terminals
4014(1) .. paginator for 'I'EK'l'RONIX 4014 terminal
450(1) .. handle special functions of 450 terminal
acctcom(l) .. search and print process accounting files
asa(l) ... interpret ASA carriage control characters
assist(l)•.•.....•..•...•....•..•••...••......•..•..••...•.•....••..•..... System V command assistance
at, batch(l) ... execute commands at later time
awk(l) IE ... pattern scanning and processing language
banner(l) IE .. make posters
basename, dirname(l) .. deliver portions of pathnames
bc(1) •..•...........•............•.......•......•..•....•.......•..•. arbitrary-precision arithmetic language
bdiff(l)•..........•.......••.•..........•......................•....... big differential file comparator
bfs(l) IE ... big file scanner
calC 1) •.•........•...•..•.....•....••......•••...•••.•...•••••...•••..........•......•.•......•..•........•...... print calendar
calendar(l) .. reminder service .
cat(l) IE ... concatenate and print files
cd(l) .. change working directory
chmod(l) ... ~ change mode
chown, chgrP(l) .. change owner or group
clear(l)•...•..•.•....•.•.•••••.••.•...•..•••••..••.•....•...••.•..•.......•......•..•.. clear terminal saeen
aJlp(l) •...........•.•.................••..•...•••.•.....••...•..............•.....•..................... compare two files

IE: Indicates carmands that are either unique to the International Enhancements (IE)
utility or that have been modified to work with the IE utility.

UP-15525 V1 A iii

Contents

iv

col(1) ... filter reverse line-feeds
comm(l) .. select/reject lines common to two sorted files
copy(l) .. copy groups of files
cp, In, mv(l) ~... copy/move or link files
cpio(l) IE ... copy file archives
aontab(l) ~ .. user aontab file
aypt(1) ... encode/decode
csh(1) .. invoke shell command interpreter
csplit(1) .. context split
ct(le) .. spawn getty to remote terminal
cu(1C) .. call another system
cut(1) ... cut out selected fields of file
cw, checkcw(l) .. prepare constant-width text
date(1) .. print and set date
dc(1) .. desk calculator
deroff(l) .. remove constructs
diff(1) ... differential file comparator
diff3(1) .. 3-way differential file comparison
diffi:nk(l) .. mark differences between files
dirCDlp(1) ... directory comparison
echo(1) ... echo argum.ents
cd, red(l) ... _ ... text editor
edit(1) .. text editor
egrep(1) ... search. file for pattern using expressions
enable, disable{l) ... enable/disable printers
env(l) IE ... set environment
eqn, neqn, checkeq(l) .. format mathematical text
eucset(1) IE .. set or get EUC code set width
ex(l) IE ... text editor
expand, un~d(1) .. expand tabs to spaces
expr(1) ... evaluate argum.ents
exstr(1) IE ... -.... ~.................... extract strings
factor(l) ... obtain prime factors of number
fgrep(l) IE ... search file for character string
file(1) IE .. determine file type
find(1) IE ... find files

IE: Indicates comnands that are either unique to the International Enhancements (IE)
utility o~ that have been modified to work with the IE utility.

UP-15525 V1 A

Contents

finger(l)•......•..•.............•........•...•.........•••....••...•.... user information lookup program
fold(l)••.....••.•...•.....................•..•.•.•....•••...•.•.••..•......•........................... fold long lines
fsinfo(l) .. report file statistics
fsize(l) ... report file size
gencat(l) IE ... generate formatted message catalog
getopt(l) IE ••• analyze command options
getopts, getoptCYt(l) IE ... analyze command options
gettxt(l) IE •• _ _ retrieve text string
glossary(l) ; System V definitions of terms and symbols
graph(lG) .. draw a graph
greek(l) .. select terminal filter
grep(l) IE ... search file for pattern
gsar(l)•..•..•...•.....•.....•......•...•.......••••.•.•...•..........• grapbical system activity reporter
he(1) .. hex calculator
hd(l) ... display files in hexadecimal format
head(l)•.......••...•......•........••....•.•..•...••.•...•................................ give first few lines
help(l) ... help facility
hp(l) .. handle functions of Hewlett-Packard terminals
hpio(l) .. Hewlett-Packard tape file archiver
hyphen(l) .. find hyphenated words
iconv(l) IE ••• code set conversion
ipam(l) .. remove message queue
iPCS(l) •••••.•••.••••••.•••.••••••••••.••.••••••.•••••.••••••• report inter-process communication status
isastream(l) IE ••••••••••••••••••••••••••••• _ ••••••••••••••••••• test for STREAMS device special file
-"'(1) • ··alize d • . 1 I Y\ ••• lDlti an m81D.tain vo ume
join(l) IE •• relational data base operator
kbdcomp(l) IE •• compile kbd tables
kbdpipe(l) IE ••• use kbd module in pipeline
kbdset(l) IE ... attach kbd mapping tables
keepopen(l) IE ••• open file and keep it open
kill(l) ... terminate a process
Iast(lB) ... : ; indicate last logins
line(l) .. read one nne
locate(l) ... identify System 'v" command
login(l) ~... sign on
logname(l) .. get login name

IE: Indicates coomands that are either unique to the International Enhancements (IE)
util ity or that have been modified to work with the IE uti lity.

UP-15525 V1 A v

Contents

vi

look(IB) ... find lines in list
lp, cancel(l) IE .. send/cancel requests to print
Ips(l) ... set parallel printer
lpstat(l) IE .. print status of printer
Is, lc(l) IE ... list directory contents
machid(l) IE .. get processor type truth value
mail, rmail(l) ...••..•.................. send/read mail
mai1x(1) IE ••• message processing system.
makekey(l) •.•.•..•...............................•.•.......•...............••......•..... generate enayption key
man(l)•••.....•...•............................••.........•....•••............•...•..... print entries in manual
mesg(l)••...............................•......•.•............••.............. permit/deny messages
mkdir(l)•...•..........•.•......•.........•.............. make directories
mkivdesc(l) ...•.....•....•.............•. generate desaiption file
mklanginfo(l) IE .. generate language dependent information
mm, osdd, checkmm(l) .. print/cb.eck documents
mmt, mvt(l)•..•....................•......................•..........•......................... typeset documents
more(l)•........•.........................•...........•.•.• ! ••• view file
nawk(l) .. pattern scanning and processing language
newform(l) IE ••• change format of file
news(l) ... print news items
nice(l) •...•............ run command at low priority
nl(l) IE •• line-numbering filter
nlspipe(l) IE ••• aeate STREAMS pipe
nohup(l) ... run command immune to hangups
nroff(l) ... format text
od(l) .. octal dump
osversion(l) ... display operating system version number
pack, peat, unpack(l) ... compress and expand files
passwd(l) •..•...•...•.......................................•......•......................... change login password
paste(l) IE ••• merge lines of files
path(l) •.....•...•..•..............•......... locate executable file
pg(l) IE ... ; •••• ; file perusal filter
pr(l) ••.•..........•..•.................................•...............•.........•..•...................•............... print files
ps(l) •.•.......•......•.................................•..•...•......•....••........................ report process status
ptx(l) ••.......•.•..•..........••....................... permuted index
pwd(l) •...•.••......•.. working directory name

IE: Indicates cOlJlJlands that are either unique to the International Enhancements (IE)
utility or that have been modified to work with the IE utility.

UP-15525 V1 A

Contents

random(l)•...•........•.•.•.•...•.•...............•....•.•....••.•......•....•. ~ generate random number
rev(lB) ... reverse lines of file
rID, rmdir(l) ... remove files or directories
sag(lG) ... system activity graph
sar(l) .. system activity reporter
saipt(l) ... make typesaipt of terminal session
sdiff(l) IE •• side-by-side difference program
sed(l) IE •• STREA.M editor
setn1s(l) IE .. set/report international encbancement options
setpgrp(l) ...•......•.••...••.....••••••••.•.....••.........•.•...•..•.•.......•..••..•.•.••.••...•••••.•..•... set group ID
setterm(l) IE ••• build STREAM on tty line
settime(l) ... change file access
sh, rsh(l) IE .. standard command programming language
shl(l) IE .. shell layer manager
sleep(l) .. suspend execution
sort(l) IE .. sort and/or merge files
spell, hashmake, spellin, hashcheck(l) ... find spelling errors
spline(lG) ..•...........•.......•.....•..........•...•..............•..•....•........••.. interpolate sm.ooth curve
split(l) .•...•.•.........•...••.....•.••.••.•.•..•..••...•.•.......•........•••......•.••.••..•.•••...•••••....•........•.. split file
ssP(lB)••.••..•........•••......••.......................•...•.....•..............•.• make output single spaced
starter(l) operating system information for beginning users
startup(l) ... single-user to multi-user mode
startuprfs(l) .. moves to level for RFS use
strings(l)•..........•......••........•••••..••.....•••.•......•....•..•........•.....•••.•.. find printable strings
strlocate(l) IE .. locate STREA.MS module on a STREA.M
strlook(l) IE ••• name top STREA.M module
strpop(l) IE ... remove top module from a STREA.M
strpush(l) IE .. place module onto STREA.M
stty(l) .. set terminal options
sum(l)••..............••...•.••••..•.••.•....•.........•..•........•.....•.•....•..•...•••••.••••.... print checlcsum
tabs(l)•................••.•.••..•.•...........................•..•.....•.••..•...•••.•••.•••••••••..••.....•..•.. set tabs
taiI(l) IE ... ; ••••••••••••••••••• display tail of file
talk(l) ... talk to another user
tar(l) ... file archiver
tbl(l) .. _ format tables
tc(l) .. phototypesetter simulator

IE: Indicates comnands that are either unique to the International Enhancements (IE)
utility or that have been modified to work with the IE utility.

UP-15525 V1 A vii

Contents

viii

tee(l) .. pipe fitting
test(l) IE ... condition evaluation command
time(l)•..............•................••..•...............•....•.............. time a command
timex(l) ... report process data and system activity
touch(l)•.•...••..•......•..•...........•..••.•.......•.... update modification times of file
tplot(lG) ... graphics filters
tput(l) IE ••• initialize terminal
tr(l) IE •• translate characters
troff(l) ... typeset text
true. false(l) •....•..•....••.••..•...•..•.•......•.....•...••••....•......•..•.............•..... provide truth values
tset(l) .. provide information to .set terminal modes
tsiocd(l) ..•..•......•..•.....•...•.•.......................•.••....•.•...•.......... facilitate usage of tape drive
tty(l) .•................••........•.............••.•.......•......•.•...•.•......•..•................• get name of terminal
ul(l)••...........•.....•........•...•.••.•.•..........•.•.•......•....•..•..........•...........•.......•...... underlining
umask(l) ... set file-aeation mode mask
uname(l)•.............•........•...•..•....•........................... print name of system
uniq(l) IE ••• report repeated lines in file
units(l) ..•...•...........••.......•...•.•....•...•........•.•.••...•.....•.•..•...••................ conversion program
usage(l) •...•.••.•..•.........•..•...•.•......•........•..•.•.••..•.•••••....••.•. retrieve command desaiption
uucp, uulog. uuname(lC) IE •• system copy
uuencode. uudecode(l) ... encode/decode binary file
uustat(lC) ... uucp status inquiry and job control
uuto, uupick(IC)••••.•••.•••..•.•.•.•.•..........•.•.••..•..••.•..•.......•. system to system file copy
uux(IC) •.....•...•..••....•..••.•••..•..............•.••......•..•... system to system command execution
vi, view, Vedit(l) IE .. visual display editor
wait(l) ..•.......•.....•..•.•.•....••...•...•..•...•..............•...•.•..••.......... await completion of process
wall(l) .. write to users
Wc(l) IE ••• word count
whereis(lB)•....•.....•.•••.•.................••..•.•..••••.•......•.•........... locate source for program
who(l) .. who is on system
write(l) •.............••..••...•.•••.••...••...••....•.....•..••••••..•.•.•....•.•..•.............. write to another user
xargs(l) .•..........•..•.•.•....••••.•......•••...•...•.•.••.•..•••.••....•••......... : construct argument lists
xs(l) IE ••• string extraction compiler
xsar(l) IE •• message archive maintainer
xscc(l) IE ••• common usage compiler
xsld(l) IE •••••••••••••••••••••••• 0 ••• message file linker

IE: Indicates coomands that are either unique to the International Enhancements (IE)
utility or that have been modified to work with the IE utility.

UP-15525 V1 A

I

"

f

Contents

xsnoxs(l) IE .. aeate dummy message file
yes(l) .. repeatedly print string

IE: Indicates conmands that are either unique to the International Enhancements (IE)
utility or that have been modified to work with the IE utility.

UP-15525 V1 A Ix

Permuted Index

/handle spec1al functions of

/pag1nator for TEKTRONIX
/handle spec1al funct10ns of

/change fne
/search and pr1nt process

/syste.
Igraphlcal syste.

Isyst ..
/report process data and s1st ..

/sort
11ntroduct10n to coaaands and

language
lalessage

IHewlett-Packard tape fne
Ifne

/copy f11e
lconstruct

lecho
/evaluate

larb1 trary-prec 1s 10n
ISystem V cOllllllnd

Irelat10nal data
/operat1ng syste. 1nf01'llllt10n for

I encodel decode

Idesk
Ihex

Ipr1nt

11nterpret
Igenerate f01'lllltted lieS sage

Isearch fne for
/1nterpret carr1age control

Itranslate
Ipr1nt

UP-15525 V1 A

300s ter.1nals •••••••••••••••••••••••••••••••••••• 300, 300s(1)
3-way d1fferent1al fne COIIpar1son •••••••••••••••• 0 ••• d1ff3(1)
4014 ten1nal • 0 0 ••••••••••••••••••••••• 0 ••••••••••••••• 4014(1)
450 ter.1nal ••• 0 •••••••••••••••••••••• 0 •••••••••••••••• 0 450(1)
access •• 00.00 •• 00.0 •••• 0 0 ••• 0.0 •• 0 •• 00 ••••••••• 0000 sett1.(1)
account1ng f11es 000 •••••••••••••••••• 000.0.00.0 •• 0 0 0 acctcOll(l)
act1v1ty graph o. 0 0 00.0 •••••••• o. 0 •••••••••••••••••••••• sag(lG)
act1v1ty reporter •••••••••• 0 •••••••••••• 0 ••• 0.000 •••• o. gsar(l)
act1v1ty reporter ••••••••••• o. 0 •••••• 0 ••• 0 •• 0 ••••• 0.0 ••• sar(l)
act1v1ty • 0 ••••• 0 •• 000 •••• 0 •••• 00 •••• 000. 0 •••••••• 0 ••• t1111eX(1)
analyze cOlllllllnd opt10ns ••••• 0 ••• 0 0 0 ••• 00 •• 00. 0.000000 getopt(l)
analyze comand opt10ns ••••• 0 0 0 •••• 0 o. 00' getopts, getoptcvt(1)
and/or .rge f11es 0 •••• 0.0 •• 0.00 •••• 0 •••• 0 ••• 00 •• 000000 sort(l)
app11cat10n prograas 00 •• 0 ••• 0 ••• 0 •••••• 0 ••••••• 0 o. 0 0.0 1ntro(1)
arb1trary-prec1s10n ar1thlllet1c 0 ••••• 0.0 •• 00. 0.0000 ••• 0.0. bc(1)
arch1ve .1nta1ner 0 ••••••••••••••••••••••••••• 0 ••••• 0" xsar(l)
arch1ver •••• 0. 0 ••••••••••••••••••••••••••••••••••••••• hp10(1)
arch1ver ••••••••••••••••••••••••••••••••••••• 0 ••••••••• tar(l)
arch1ves •• 0 •• 0 ••• 0 •••••••••••••• 0 ••••••••••••••••••••• cp10(1)
argu.ant 11sts ••• 0 •••••••••••••••••• 0 ••••••••••• 0 •• 00. xargs(l)
argu.nts •• 0 ••••••••••••••••••••••• 0 ••••• 0 ••• 0 ••• 0 ••• 0 echo(l)
arguments 0 ••••• 0 •••••• 00 0 0 •••• 0.000.0 •• 0 •• 00 •• 000000 •• expr(l)
ar1th.t1c language ••••• 0 ••• 0 ••••• 0 0.0 ••••••• 0.0 •••• 0. 0 0 0 bc(l)
ass1stance • 0 0.00. 0.0 ••• 0 0 •••• 00.00 •• 0 0 0 •• 000 •• 00000. ass1st(1)
attach kbd IIIIpp1ng tables ••••• 0 •••• 0.0 ••••• 0 ••• 0.000. kbdset(1)
awa1t complet10n of process 00 ••• 0.0000 •• o. 0.0 •••• 0000.0 wa1t(1)
base operator ••• 0 0 ••••••• 0.0 ••••• 0 •••••• 0 ••••••• 0 •••• 0 0 j01n(1)
beg1nn1ng users 0.0 •••••• 0. 0 0 ••••••••• 0.0000 •••• 0.000 starter(l)
b1nary f11e •••••••••• 0 ••• 0 •• 0.0 •• 0 •••• 00. uuencode, uudecode(l)
bu11d STREAM on tty 11ne o. 0 ••• 00 ••••••• 0 •••••••••••• setten(l)
calculator .0 •• 0 •••••••••• ° ••• ; ••••••••• 0.0 ••••••• 0.0 ••••• dc(l)
calculator • 0 ••••• 0.000 •••••• 0 ••••••• 0 •••••• 0 •••••• 00. 0 •• hc(l)
calendar •••••••• 0 •••••••••• 0 •••••••••• 0 •••••••• 0 ••••••• cal(l)
call another syst •••• 0 ••••••• 0 •••••••••• 0 ••• 0 ••••• 0 0 0 0 0 cu(lC)
carr1age control characters 000 •••• 0 •• 0.000000000. 0 0 0 0.00 asa(l)
catalog 00000. o. 0 0" 0 0 •• 00 ••• 0 ••• 0 0 0 •• 0000 ••• 0.0.0000 genat(l)
character str1ng 00 •• 00 •• o •• 0 ••• 0 0 0 0 0 o. 0 0 •••• 0 • 0 0 000 •• 0 fgrep(l)
characters •••• 0 •• 0 • 0 • 0 • 0 ••• o. 0 0 0.' 0 0 •• 0 • 0 • 0 •• 0 0 • o. 0 0 0 o. asa(l)
characters 0 0 • 0 0 0 0 •••••• 0 • 0 • 0 ••••••••••••• 0 •••••••••••• 0 0 tr(l)
checksu. • ••••••••••••••••••• 0 •• 0 ••••••••• 00. 0 ••••••• 000 su.(l)
clear ter.1nal screen ••••••••••••••••••••••• 0 •• 0 •• 0. o. clear(l)
code set convers10n • 0 •••••••••••••••••••••••••• 0 •••• O. 1conv(1)

xi

Permuted Index

/set or get code set width ••••••••••••••••••••••••••••••••••••••• eucset(l)
/S15.t .. V cOlllllilnd assistance ••••••••••••••••••••••••••••••••••• ass1st(l)

/run cOlllllllnd at low priority •••••••••••••••••••••••••••••••• n1ce(l)
/retr1eve COlllllllnd description ••••••••••••••••••••••••••••••••••• usage(l)

/syst. to S15tH cOllllllnd execution •••••••••••••••••••••••••••••••••••••• uux(IC)
/run cOllllland 1-..ne to hangups nohup(l)

/1nvoke shell cOllllllnd interpreter ••••••••••••••••••••••••••••••••••••• csh(l)
/1dent1fy Syst .. V cOlllllllnd ... locate(l)

/analyze COlllllllnd options •••••••••••••••••••••••••••••••••••••• getopt(l)
/analyze COlllllllnd options •••••••••••••••••••••••••• getopts, getoptcvt(1)

/standard comand programing language •••••••••••••••••••••••• sh, rsh(1)
/condit1on evaluation cOllllllnd ••• test(l)

/t1M a cOllllllnd ••• ti.a(l)
/introduction to cOllllllnds and application progrlllS ••••••••••••••••••••• 1ntro(1)

/execute cOlllllllnds at later t1J111 •••••••••••••••••••••••••••• at, batch(1)
/select/reject lines cOlllllOn to two sorted files ••••••••••••••••••••••••••••• coaa(1)

cOlllllOn usage compiler •••••••••••••••••••••••••••••••••• xscc(l)
/report inter-process coamInication status ••••••••••••••••••••••••••••••••••• ipcs(1)

/big differential file cOlllparator ••• bdiff(l)
/differential file comparator •• diff(l)

cOlllpare two files ••••••••••••••••••••••••••••••••••••••• CIIp(I)
/3-way differential fne comparison ••• diff3(1)

/directory comparison •• d1rcmp(l)
compile kbd tables kbdcomp(l)

/str1ng extraction colllpiler •• xs(l)
/cOfllfllJn usage compiler •• xscc(l)

/await completion of process •••••••••••••••••••••••••••••••••• wait(l)
compress and expand files •••••••••••••••• pack, peat, unpack(1)
concatenate and print files ••••••••••••••••••••••••••••• cat(l)
condition evaluation c01llllllnd ••••••••••••••••••••••••••• test(l)

/prepare constant-width text ••••••••••••••••••••••••••••• cw, checkcw(l)
construct arguJDent lists •••••••••••••••••••••••••••••• xargs(1)

lremve constructs •• deroff(l)
/list directory contents ••• ls, lc(l)

context split •• aplit(1)
/intorpret carriage control characters asa(l)

/uucp status inquiry and job control •• uustat(lC)
/code set conversion ••• iconv(l)

conversion progru •••••••••••••••••••••••••••••••••••• units(l)
copy file archives cpio(l)
copy groups of files ••••••••••••••••••••••••••••••••••• copy(l)

/s15t.. copy ••••••••••••••••••••••••••••••••••• uucp, uulag, uuname(lC)
/s15t .. to syst811 fne copy ••••••••••••••••••••• ; ••• ~ •••••••••••••••• uuto, uupick(IC)

copy/mve or link files •••••••••••••••••••••••••• cp, ln, 1IV(1)
/word count ••• we(l)

create dulDY .ssage file •••••••••••••••••••••••••••• xsnoxs(l)
create STREAHS pipe ••••••••••••••••••••••••••••••••• nlspipe(l)

/user crontab file •• crontab(l)
/interpolate smoth curve •• spline(IG)

cut out selected fields of file ••••••••••••••••••••••••• cut(1)
/report process data and syst .. activity •••••••••••••••••••••••••••••• tilleX(1)

/relational data base operator ••••••••••••••••••••••••••••••••••••• join(l)
/print and set date •• date(l)

definitions of teMlS and s_ols ••••••••••••••••••• glossary(l)

xii UP-15525 V1 A

Permuted Index

del1ver portions of pathnue •••••••••••••• basenue, d1rnlllll(1)
/generate language dependent 1nfo t1on •••••••••••••••••••••••••••• IIklang1nfo(1)

/generate description fne ••••••••••••••••••••••••••••••••••• lt1Ydesc(1)
/retr1eve c~d description •• usage(l)

desk calculator •• de(l)
detel'll1ne file type •••••••••••••••••••••••••••••••••••• file(l)

/test for STREAMS device special fne ••••••••••••••••••••••••••••••• isastrea(1)
/s1de-by-side difference progra •••••••••••••••••••••••••••••••••••• sd1ff(1)

/aark differences beblHn files •••••••••••••••••••••••••••• d1ff.(1)
/b1g differential file cOllplrator •••••••••••••••••••••••••• bd1ff(1)

differential file cOllplrator diff(l)
/3-way differential fne COIIpIr1son •••••••••••••••••••••••••• diff3(1)
/_e directories ••• dir(l)

/r.1VI files or directories ••••••••••••••••••••••••••••••••••••••• I'll tr(l)
/change tIIOrktng dtrectory ••• cd(l)

dtrectory cOIIpartson ••••••••••••••••••••••••••••••••• dtl'Clllp(l)
/ltst dtrectory contents ••••••••••••••••••••••••••••••••••• ls. lc(l)

/tIIOrktng directory na.e •• pwd(l)
/vtsual dtsplay edttor •••••••••••••••••••••••••••••• vt. vtew, vedit(l)

dtsplay files in hexadectaal fOJ'llllt •••••••••••••••••••••• hd(1)
nuJllber dtsplay operattng syst .. verston •••••••••••••••••• osverston(1)

dtsplay tan of ftle ••••••••••••••••••••••••••••••••••• tatl(l)
/prtnt/check docu .. nts ••••••••••••••••••••••••••••••••• _, osdd, check_(l)

/typeset docu .. nts •• _. M(l)
draw a graph ••• graph(IG)

/fac11ttate usage of tape drtve •• tstoctl(l)
/create dullll\Y IIISsage ftle ••••••••••••••••••••••••••••••••••• xsnoxs(l)
/octal dUlllp •• odell

echo argulllllts ••• echo(1)
/text ed1tor •• edit(l)
/text edttor •• ed. red(l)
/text ed1tor ' •• ex(l)

/STRENI edttor ••• sed(l)
/vtsual dtsplay edttor •••••••••••••••••••••••••••••••••••••• vt. vtew, vedtt(l)

enable/dtsable printers ••••••••••••••••••••• enable, dtsable(1)
/set/report tnternat10nal enchancement opt10ns ••••••••••••••••••••••••••••••••• setnls(1)

encode/decode btnary file •••••••••••••••• wencode, uUdecode(1)
encode/decode •• crypt(l)

/generate encryptton key •••••••••••••••••••••••••••••••••••••• lIIlkekey(l)
/prtnt entrtes 1n .nual ... n(l)

/set envtron_nt •• env(l)
/ftnd spentng errors •••••••••••••••••• spell, hashaake, spentn, hashcheck(1)

evaluate argu.ants •••••••• : •••••••••••••••••••••••••••• expr(l)
/condttton evaluat10n COIIIIIInd ••••••••••••••••••••••••••••••••••••• test(l)

/locate executable f11e •• peth(l)
execute c~s at later tt ••••••••••••••••••••• at, batch(1)

/suspend executton •• sleep(l)
/syst. to systell ~d execut10n ••• uux(IC)

/cf1lll(Jress and expand files ••••••••••••••••••••••••••••• pack, peat, unpeck(l)
expand tabs to spaces •••••••••••••••••••••• expand, unexpand(l)

/search ftle. for pattern ustng express10ns •• egrep(l)
extract strtngs ••••••••••••••••••••••••••••••••••••••• exstr(l)

/strtng extract10n cOlptler •••••••••••••••••••••••••••••••••••••• xs(l)
facil1tate usage of tape drtve •••••••••••••••••••••• ts1octl(1)

UP-15525 V1 A xiii

Permuted Index

xiv

/obta1n prime
/change

/open
/Hewlett-Packard tape

/copy
/b1g differential

/d1fferent1al
/3-way differential

/system to systa
/user crontilb

/cut out selected fields of
/search
/search
/search

/test for STREAMS device special
/message

/generate description
/v1ew

/change fOl'lllllt of
/locate executable

/reverse l1nes of
/b1g

/report
/spl1t

/report
/d1splay tan of

/update JDDd1f1cat1on times of
/determ1ne

/report repeated l1nes in
/encode/decode binary
/create dulllllY lllessage

/set
/search and print process accounting

/concatenate and print
/cOJlfJare two

11 nes cOlllllDn to two sorted
/copy groups of

/copY/lIDve or l1nk
/.rt. differences between

/f1nd
/d1splay
/rellDve

/cOlllpress and expand
/Illerge l1nes of

/pr1nt
/sort and/or lllerge

/select terminal
/l1ne-numer1ng

/f11e perusal

/graph1cs

factors of nulllber factor(l)
file access o 0 •• 0 sett1JDe(I)
fl1e and keep it open keepopen(1)
file arch1ver '" hp1o(l)
file arch1ver ... tar(l)
file archives .. cp1o(l)
file cOlllPlrator bd1ff(l)
file cO!llpllrator .. d1ff(l)
file cOlllpllr1soll d1ff3(1)
file copy uuto, uup1ck(lC)
file ... crontab(l)
file ... cut(l)
f11e for character string fgrep(1)
file for pattern grep(l)
fne for pattern using expressions egrep(1)
file ... 1sastreu(l)
file linker .. xsld(l)
file .. mk1vdesc(l)
file .. more(l)
file ... newform(l)
file .. path(l)
file perusal filter pa(l)
file .. revelS)
file scanner .. bfs(l)
file size ... fs1ze(l)
file ... spl1t(l)
file statistics fs1nfo(l)
file .. ta11(l)
file ... touch(l)
file type .. f11e(1)
file .. un1q(l)
file uUencode, uudecode(l)
file .. xsnoxs(l)
file-creation De IIIlsk •••••••••••• 0 •••••••••••••••••• ulIIlsk(l)
files .. acctcOlD(l)
files 0 cat(l)
files .. CIIP(l)
files /select/reject cOIIII(l)
files ... copy(l)
files .. cp, ln, 1IV(1)
files ... diffmk(l)
files ... f1nd(l)
files in hexadec11111 fOl'lllllt hd(l)
files or directories rm, l'11C11r(l)
files pack, pcat, unpack(l)
files .. paste(l)
files ... pr(l)
files ... sort(l)
filter ... greek(l)
filter .. nl(l)
filter .. pa(l)
fl1ter reverse line-feeds col (1)
filters ... tplot(16)
find files ... f1nd(l)

UP-15525 V1 A

Ip1pe

Id1splay fnes in hexadec1.1

UP-15525 V1 A

Ichange

Igenerate
lremve top IIOdu le

lhandle special
Ihandle special

tena1uls Ihandle

1nfol'1lllltion

Iset or

Ispawn
Idraw a

Isystem activity

Ichange owner or
Iset

Icopy
terminals
te1'lllinals
terminal

lrun cOllllllnd 1-..ne to

Ihandle functions of

Id1splay fnes in
If1nd

Iset group

lrun comand
lpenuted

luucp status
Iset/report

Permuted Index

find hyphenated words •••••••••••••••••••••••••••••••• hyphen(l)
find lines in list •••••••••••••••••••••••••••••••••••• look(ll)
find printable strings •••••••••••••••••••••••••••••• str1ngs(1)
find spelling errors •••• spell, hashake, spell1n, hashcheck(1)
fitting •• tee(l)
fold long lines •• fold(l)
fo ... t .. hd(l)
fonaat .th_t1cal text ••••••••••••••••• eqn, neqn, checkeq(l)
fOl'llllt of file newfol'll(l)
fOl'1llllt tables ••• tbl(l)
fOl"llllt text ••• nroff(l)
fOl'1lllltted IlleSsage catalog •••••••••••••••••••••••••••• gencat(l)
f1'Oll a STREAM .. strpop(l)
functions of 300s tena1nals ••••••••••••••••••••••• 300, lOOs(1)
functions of 450 tel'll1nal ••••••••••••••••••••••••••••••• 450(1)
functions of Hewlett-Packard ••••••••••••••••••••••••••••• hp(l)
generate description fne •••••••••••••••••••••••••• dt1vdesc(l)
generate encryption key ••••••••••••••••••••••••••••• llakakey(l)
generate formatted message catalog ••••••••••••••••••• gencat(1)
generate language dependent •••••••••••••••••••••• IItlang1nfo(1)
generate randOli numer ••••••••••••••••••••••••••••••• randOll(l)
get code set width ••••••••••••••••••••••••••••••••••• eucset(l)
get login n_ •••••••••••••••••••••••••••••••••••••• logn_(l)
get nlllll8 of tena1nal •••••••••••••••••••••••••••••••••••• tty(l)
get processor type truth value ••••••••••••••••••••••• IIIlch1d(1)
getty to 1'8IIIOte te1'll1ul •••••••••••••••••••••••••••••••• ct(lC)
graph •••• • • •• • •• • • •••••••• • • .. • ••• • •• • • • ••• • ••• ••• •• graph(lS)
graph • •• • •• •• •• ••• ••••••••• • ••• •••• • • •• • ••• • •••••••• •• sag(lS)
graphical system activity reporter ••••••••••••••••••••• gsar(1)
graphics filters ••••••••••••••••••••••••••••••••••••• tplot(lS)
group .. chown, chgrp(l)
group identification setpgrp(l)
groups of files .. copy(l)
handle functions of Hewlett-Packard hp(l)
handle special functions of 300s •••••••••••••••••• 300, 3OOs(l)
handle special functions of 450 ••••••••••••••••••••••••• 450(1)
hangups .. nohup(l)
help facility .. help(l)
Hewlett-Packard tape fne archiver ••••••••••••••••••••• hp1o(1)
Hewlett-Packard te1'll1nals •••••••••••••••••••••••••••••••• hp(l)
hex calculator ... hc(l)
hexadec11111 fOl'1llllt ••••••••••••••••••••••••••••••••••••••• hd(l)
hyphenated words ••••••••••••••••••••••••••••••••••••• hyphen(l)
identification ••••••••••••••••••••••••••••••••••••• setpgrp(l)
identify System V cOllllllld •••••••••••••••••••••••••••• locate(1)
1 ... ne to hanpps ••••••••••••••••••••••••••••••••••••• nohup(l)
1 ndex •• ptx(l)
indicate last log1ns •••••••••••••••••••••••••••••••••• last(ll)
1n1t1al1ze and .1nta1n volu •••••••••••••••••••••••••••• 1v(1)
initialize tel'll1nal •••••••••••••••••••••••••••••••••••• tput(l)
inquiry and job control ••••••••••••••••••••••••••••• uustat(lC)
international enchancement options ••••••••••••••••••• setnls(1)
interpolate smoth curve spl1ne(lS)
interpret carriage control characters asa(1)

xv

Pennuted Index

xvi

11nvoke shell cOIDIInd interpreter •• csh(l)
lreport inter-process ca.ln1cat1on status ••••••••••••••••••••• 1pcs(1)

appl1cat1on progrus introduction to coaaands and •••••••••••••••••••••••••• 1ntro(1)
invoke shell COIDIInd interpreter •••••••••••••••••••••••• csh(1)

Ipr1nt news it_ ••• news(l)
lattach kbcl upping tables ••••••••••••••••••••••••••••••••••• kbclset(l)

luse kbd mclule in pipeline •••••••••••••••••••••••••••••• kbclp1pe(1)
ICOllp11e kbcl tables •• kbclcOllp(I)

Igenerate enaypt10n key •• lIIIIkekey(l)
lpattern scann1na end processing language ••• _(I)
larb1trary-prec1s1on ar1t_t1c language •• be(l)

1generate language dependent 1nforat1on •••••••••••••••••••• 1eng1nfo(1)
lpattern scanning and processing language •• nN(l)

Istandard ~d progr_1ng language •• sh. rshCl)
Ishell layer .Dllger ••• shl(l)

IlIOves to level for RFS use •••••••••••••••••••••••••••••••• startuprfs(l)
lread one line •• 11ne(l)

Ibu11d STREAM on tty line ••• settel'll(l)
If11ter reverse line-feeds ••• col(l)

11ne-nuItIer1ng filter •••••••••••••••••••••••••••••••••••• nl(l)
Iselect/reject 11nes cOla)n to two sorted fnes ••••••••••••••••••••••• coaa(l)

Ifold long lines ••• fold(l)
Ig1ve first few lines ••• head(l)

lreport repeated lines in file •• un1q(l)
If1nd lines in list ••• look(IB)

lreverse lines of file •• rev(IB)
I-rge lines of files •• paste(l)

Icopy/wove or link files ••••••••••••••••••••••••••••••••••••••• CPo In. 1IV(1)
I .. sage file linker •• xsld(l)

list directory contents •••••••••••••••••••••••••••••• 1st lc(l)
If1nd lines in list ••• look(IB)

Iconstruct arguJllellt lists •• uras(l)
locate executable file ••••••••••••••••••••••••••••••••• path(l)
locate source for progra •••••••••••••••••••••••••• where1s(IB)
locate STREAHS aule on a STREAM ••••••••••••••••• strlocate(1)

Iget login n_ •• lognaJDeCl)
Iellange login password ••••••••••••••••••••••••••••••••••••••• pasM(I)

11nd1cate last log1ns ••••••••••••••••••••••••• • • •••••• ••• •• •••••• • •• last(IB)
Ifold long lines ••• fold(l)

luser 1nfol'Mt1on lookup progr ... f1nger(l)
lrun cCllllllDd at low priority ••• n1ce(l)

Isend/read .. 11 .. 11. l'1li11(1)
11n1t1al1ze end .. 1nta1n vol_ ••••••••••• ~ •••••••••••••••••••••••••••••• 1v(l)

Irressage archive .. 1nta1ner •• xsar(l)
lIIke directories ••••••••••••••••••••••••••••••••••••••• d1r(l)
lIIke output s1nale spaced •••••••••••••••••••••••••••••• ssp(IB)
lIIke posters ••• banner(l)
lIIke typesa1pt of terll1nal session •••••••••••••••••• scr1pt(1)

Ishell layer .. nager •• shl(l)
Ipr1nt entries in .anual ••• IIIn(l)

lattach kbd .. pp1ng tables ••••••••••••••••••••••••••••••••••••••• kbdset(l)
.ark differences between fnes ••••••••••••••••••••••• d1ff.(1)

Iset file-creation aMle .. sk ••• IIIIIsk(l)
Iforrat .. theut1cal text eqn. neqn. eIIeckeq(1)

UP-15525 V1 A

Pennuted Index

Isort andlor merge files •• sort(l)
I118rge lines of files •••••••••••••••••••••••••••••••••• paste(l)
_ssage archive J111nta1ner ••••••••••••••••••••••••••••• xsar(l)

Igenerate fOrllltted JlleSsage catalog •••••••••••••••••••••••••••••••••••••• gencat(l)
message file linker •••••••••••••••••••••••••••••••••••• xsld(l)

Icreate du_ I118Ssage file ••• xsnoxs(l)
.. sage processing syst ••••••••••••••••••••••••••••••• 11x(l)

IrtlflJlJve Essage queue ••• 1pcnl(l)
IpeJ'll1t/deny IIISsages .. g(l)

Ichange _e ••• chlDd(l)
Iset file-creation DOCIe alst ••• u.ask(l)

Is1ngle-user to .. lt1-user .ode ••• startup(l)
/prov1de 1nfOl'llllt1on to set teJ'll1nal .odes ••• tset(l)

lupdate lIOd1f1cat1on t1 ... of fne •••••••••••••••••••••••••••• touch(1)
IrewJve top aule fl"Oll a STREAM ••••••••••••••••••••••••••••••••• strpop(l)

luse kbd _ule in p1pel1ne •••••••••••••••••••••••••••••••••• kbdp1pe(1)
Ilocate STREAHS metule on a STREAM •••••••••••••••••••••••••••••••• strlocate(l)

Iplace module onto STREAM •••••••••••••••••••••••••••••••••• strpush(l)
In_ top STREAM aule ••• strlook(l)

moves to level for RFS use ••••••••••••••••••••••• startuprfs(1)
Is1ngle-user to IllUlt1-user.ode ••••••••••••••••••••••••••••••••••••• startup(l)

Ipr1nt news it ... news(l)
obtain prime factors of nulllber ••••••••••••••••••••••• factor(l)
octal dullp ••• od(l)

/place module onto STREAM ••• strpush(l)
open fne and keep it open ••••••••••••••••••••••••• teepopen(l)

lopen file and keep it opea •• keepopen(l)
beginning users operating system 1nfol'lllltion for •••••••••••••••••••• starter(1)

Id1splay operating syste. version numer ••••••••••••••••••• osvers1on(l)
Irelat10nal data base operator •• jo1n(l)

lanalyze coaDlUld optiOns ••• getopt(l)
lanalyze co.and options •••••••••••••••••••••••••••••••••• getopts, getoptcvt(l)

/set/report international enchancement options ••• setnls(1)
Iset teJ'll1nal options ••• stty(l)

Ime output Single spaced ••••••••••••••••••••••••••••••••••• ssp(lS)
Ichange owner or group ••••••••••••••••••••••••••••••••• chown, chgrp(l)

pag1nator for TEKTRONIX 4014 tel'll1nal •••••••••••••••••• 4014(1)
Iset parallel printer •• lps(l)

Ichange login password •• pasSlld(I)
Idel1ver portions of pathnlJlleS ••••••••••••••••••••••••••••••••• basena., d1m_(l)

Isearch file for pattern ••• grap(l)
language pattern scanning and processing ••••••••••••••••••••••••• -(1)
language pattern scanning and procesSing •••••••••••••••••••••••• n_(1)

Isearch fne for pattern using expressions ••••••••••••••••••••••••••••• egrap(1)
pen1t/deny messages ••••••••••••••••••••••••••••••••••• mesg(l)
permted index •• pu(l)

If11e perusal filter ••• pa(l)
phototypesetter s1B11ator •••••••••••••••••••••••••••••••• te(l)
pipe fitting •• tee(l)

Icreate STREAHS pipe ••• nlsp1pe(l)
luse kbd aule in pipeline ••• kbdp1pe(l)

Ideliver portions of pathn basenue, d1rnue(1)
Ime posters ••• banner(l)

prepare constant-w1dth text ••••••••••••••••••••• cw, checkcw(l)

UP -15525 V1 A xvii

Permuted Index

/obtain pri. factors of numer •••••••••••••••••••••••••••••• factor(1)
print and set date date(l)
print calendar .. cal(l)
print checksu ... su_(l)
print entries in IIInual IIIln(l)

/concatenate and print files ... cat(l)
print files .. pr(l)

/send/cancel requests to print .. lp. cancel(l)
print naJBe of systell un_(l)
print news it.. news(l)

/search and print process accounting fnes acctco.(l)
print status of printer lpstat(1)

/repeatedly print strtllf .. yes(l)
/find printable strings str1ngs(1)

pr1nt/check docu.nts _, osdd, check_ell
/set parallel pr1nter .. lps(l)

/print status of pr1nter ... lpstat(l)
/enable/d1sable pr1nters enable, disable(1)

/run ~d at low pr10r1ty .. nice(l)
/search and print process account1ng fnes acctCOll(1)

/report process data and syst .. act1vity •••••••••••••••••••••• timex(1)
/ter.1nate a process ... k111(1)

/report process status ... ps(l)
/await cOlllPlet10n of process ... wa1t(1)

/pattern scann1ng and process1ng language _(1)
/pattern scann1ng and process1ng lallfuage nawk(1)

/JDeSsage process1ng syste. 1IIl11x(1)
/get processor type truth value IIIIch1d(1)

/standard cOllllllld progr_1ng language sh, rsh(1)
lIIOdes prov1de 1nfol'llllt10n to set ter.1nal tset(1)

prov1de truth values true, false(l)
/ret/JlJYe JDeSsage queue .. 1pcl'II(1)

/generate randOil nuJllber •• randOll(l)
read one 11ne .. 11ne(1)
relat10nal data base operator j01n(1)
rem1nder serv1ce calendar(l)

/spawn getty to te te1'1l1nal ... ct(lC)
1'IIIIDYe constructs deroff(l)
..... ve fl1es or director1es r., ral1r(1)
..... ve JDeSsage queue 1pcl'II(1)
remove top .adule fro. a STREAM strpop(1)

/report repeated lines 1n f11e un1q(1)
repeatedly pr1nt str1ng ... ; yes(l)
report f11e s1ze fs1ze(1)
report fne statist1cs fs1nfo(1)

status report 1nter-process COIIIIIIn1cat1on 1pcs(1)
act1v1ty report process data and syst t1mex(1)

report process status ps(l)
report repeated 11nes 1n ftle un1q(1)

/graph1cal systell act1v1ty reporter •• gsar(l)
/syst. act1v1ty reporter ... sar(l)

/send/cancel requests to pr1nt lp, cancel(1)
retr1eve cOlllllnd descript10n usage(1)
retr1eve text str1ng ••••••••••••••••••••••••••••••••• gettxt(l)

xviii UP-15525 V1 A

Permuted Index

If11ter reverse line-feeds .•.......•. .•• •••.••.....••••.•.•.•.•• col(l)
reverse lines of file ••••.•.•••••••••••...•...••..•.•.. rev(ll)

Imvu to level for RFS use •••.•••••••••.•...•.•••..••••......•.. •... startuprfs(l)
run coaaand at low priority ..••.••.•••••..•••..•.•..•.• n1ce(l)
run coaaand 1_ne to hangups •..••••.••••••.•...••.•.. nohup(1)

Ib1g file scanner ••••••••••.••.•••.•.•..• ...•••..•..•.••..••..••• bfs(l)
lpattem scanning and processing language ••..•••.•...•.•..•.••.•. aw(1)
lpattem scanning and processing language •.•.••.••.••• ••........ naw(1)

Iclear ten1nl screen ..•.•••••.•••.•••.•••. ...••••.••...... .••••.••. clear(l)
f11es search and print process accounting •••••••.•........ acctcOll(l)

search f11e for character string •••.••••••.•.••...•••. fgrep(1)
search file for pattern •.•.•••.•••••••••••••..••.•..•.• grep(l)

expressions search f11e for pattern ISing ••••.••••••••.•.....•.••. egrep(l)
select tel'll1nal filter •••••..••.••••••••.......••....• greek(lj

lcut out selected fields of f11e •.•...•..••.•••..•..•.••..••••••• cut(l)
sorted fnes select/reject l1nes cOllllK)n to tw•.............. ca.(1)

send/cancel requests to print •••••••....•..•..... lp, cancel(1)
send/read .11 •••.•.•.•.••••...•••.••••.•....•.. • 11, 1'IIIl11(1)

Ime typescript of temnl session ••••.•••••...•..•••..•••••••..••.•.•.•..••..• sa1pt(l)
options set/report international enchanc_nt •••. ..•.•..••••. setnls(1)
11nvoke shell comand interpreter•.•...•.........•••. ••... csh(l)

shell layer .nager ••.••••.•.•..••..••.••.... ..••...•... shl(l)
s1de-by-s1de difference progrlll •....•...•..........••. sd1ff(1)
sign on .••••••••••..•..•.•....••..••.....•.••••...•.•• log1n(l)

Iphototypesetter s1,,'ator .• •••.•••...••••...•••...........••••..... .•••. te(l)
Ime output single spaced ••••••••..•••••.••.••..•...•.••....••••.•• ssp(ll)

single-user to .'t1-user ae •.•.•...•.••.•.•.....• startup(1)
lreport file size •••..•..••••.•••••••••......••••..•••..••.••..•.• fs1ze(l)
11nterpolate SIIOOth curve •••••.•••••••.•..••••.••.•.••••.••...... spl1ne(IG)

sort and/or .rge files ••.•.. .••••.•••..•.....•.••.•.•. sort(l)
Iselect/reject lines CGIIIIOn to bID sorted fnes •••••••••••••••.•.•..•.•••.••••••.•.• .••... c:c.(I)

Ilocate source for progra •.••..•.•...•••••.••..•.•...•.••. wIIere1s(ll)
I_e output single spaced •.••.•••••.•.••.•.••.••••••...•.........•..••.•. ssp(ll)

lexpand tabs to spaces ••.•••••••••••.••••.••...• ••.••..•... expand, unexpand(l)
spawn getty to relDOte ten1nal •.••..•••.•••..••..••.•.•. ct(IC)

If1nd spell1ng errors ..••••... spell, hashme, spell in, hashcheck(1)
Icontext split ••.•...•..•.••••.••.•••.•••.•.••..•.•.....•.••• cspl1t(l)

split file ••••••.••••.••.••••••....•. .•••.•....••••... spl1t(l)
standard COIIIIIIlnd progrllDl1ng language ••...........•. sh, rsh(1)

lreport file statistics •.••••.•....•.••••••.•••.•.•. .•..•..• fs1nfo(l)
luuep status inquiry and job control .•••...••.•.•......•.• uustat(IC)

lreport inter-process CCIIIUn1cat1oD status •••••••••••••••.••••..•..••...•...••. ••••...•..• 1pcs(l)
Ipr1nt status of printer •••.••••• -••. ; .•••• •.•.••••.•.••.••.. lpstat(l)

lreport process status .••••••••••••••.••..•.••.••..••.•..•.•.••••••••••• ps(l)
STREAM editor •••••••.•.••.••.•.•..••••..••.•••.••••••••• sed(l)

Inl'llll! top STREAH mdule ...•••••••••..••.••.••....••••...•..•.• strlook(l)
Ibu11d STREAH on tty line ••••••••..••••••....••.•.••..•.••• settel'll(l)

Ilocate STREAMS aule on a STREAM •••.••••••••••••••....•..•••..•.•.•..•.•.•• strlocate(l)
IrerJlJve top .adule fro. a STREAH ••••••••••••••••••••••••••••••••••••••• ••••••• strpop(l)

Iplace aule onto STREAM •.••••••.•••••••••.•.•.••. •••.....•..•...•••. strpush(l)
Itest for STRENtS device special f11e .••.••.•.••..•.....•.•• 1sastreu(1)

Ilocate STRENtS mdule on a STREAM •••...•••••....•.•..•.•• strlocate(l)
laeate STRENtS pipe ••••••.••••••••.......•.••......•.•.•••. nlsp1pe(l)

string extraction COIIp11er ••.••.•.....•.......•..••.••.•• xs(l)

UP-15525 V1 A xix

Permuted Index

Isearch ftle for chlrlcter strtng ••• fgrep(l)
lretrteve text strtng •• gettxt(l)

lrepeatedly prtnt strtng ••• yes(l)
lextract strtngl •• exstr(l)

Iftnd prtntable strtngs •• strtngs(l)
suspend executton ••••••••••••••••••••••••••••••••••••• sleep(l)

Ideftntttons of tel'llS Ind s_ols ••• glossl'1(l)
ICCllllptll kbd tables ••• kbdcCllllp(l)

Iittach kbd .. pptng tables •• kbdset(l)
Iforwat tables ••• tbl(l)

Iset tabs •• tabs(l)
lexpend tabs to spIICIS ••••••••••••••••••••••••••••• expend, unexpand(l)

Idtsplay tatl of ftle ••• tatl(l)
talk to another user ••••••••••••••••••••••••••••••••••• tllk(l)

Iflctlttate ullge of tape drtve .. tstoctl(l)
IHewlett-Plcklrd tape fne Irclatver hpto(l)

lpagtnator for TEKTRONIX 4014 tel'lltnal •••••••••••••••••••••••••••••••• 4014(1)
lpagtnator for TEKTRONIX 4014 tel'lltnll •• 4014(1)

Ihlndle spectll functtons of 450 tel'lltnll ••• 450(1)
Ispawn getty to remote tll'lltnll ••• ct(le)

Iselect tel'lltnll ftlter ••••••••••••••••••••••••••••••••••••••• greek(l)
Iprovtde tnf01'lllltton to set tll'lltnll lIDdes ••• tset(l)

Iset termtnll opttons ••••••••••••••••••••••••••••••••••••••• stty(l)
Iclelr tenltnll screen ••••••••••••••••••••••••••••••••••••••• clelr(l)

I_e typescrtpt of tenltul sesston ••••••••••••••••••••••••••••••••••••• scrtpt(l)
Itntttiltze te1'lltnll •• tput(l)

Iget nllll of te1'lltul ••• tty(l)
Ihlndle spectll functtons of 300s te1'lltnlls ••• 300, 300s(1)

/handle fUncttons of Hewlett-Plcklrd te1'lltnlls ••• hp(l)
termtnlte I process •••••••••••••••••••••••••••••••••••• ktll(l)

/deftntttons of tel'llS Ind sytllbols •••••••••••••••••••••••••••••••••• glossl'1(I)
test for STREAMS devtce spectal fne •••••••••••••• tsut (1)

Iprepare constant-width text •• cw, checkcw(l)
text edttor •• edtt(l)
text edttor ••• ed, red(l)
text edttor •• ex(l)

Iforat _the.attcal text ••••••••••••••••••••••••••••••••••••• eqn, neqn, checkeq(l)
If01'llllt text ••• nroff(l)

lretrteve text strtng •• gettxt(l)
Itypeset text ••• troff(l)

tt. I ~ ••• tt_(l)
/execute comands at liter tt ••• at, bltch(l)

/updlte IIDdtftcatton ttmes of fne ~ •••••••••••••••••••••••• touch(1)
lremove top IIIOdule f1'Oll I STREAK ••••••••••••••••••••••••••••• strpop(l)

In_ top STREAM mdule ••••••••••••••••••••••••••••••••••• strlook(l)
trlnslate charlcters ••••••••••••••••••••••••••••••••••••• tr(l)

/get processor type truth value ••• chtd(l)
Iprovtde truth values •••••••••••••••••••••••••••••••••••• true, false(l)

Ibutld STREAM on tty ltne •• settenl(l)
Idetel'lltne ftle type •• ftle(l)
Iget processor type truth vllue •••••••••••••••••••••••••••••••••••••• chtd(l)

Irate typescrtpt of tentnal sesston ••••••••••••••••••••••• scrtpt(1)
typeset dOCUlllllts •••••••••••••••••••••••••••••••••• lilt, m(l)
typeset text •• troff(l)

xx UP-15525 V1 A

Pennuted Index

underlining ••••••••.•..•••••••••••••••••.••.••...•.•.••. ul(l)
update "ification ti.s of fl1e .•••••••••••••.•••.•. touch(1)

ICa.Jn usage cOIIpiler ••••••••••••••••••.•••••••••••••.••.•••.• Xlce(l)
Ifacl1itate usage of tape drive ••••••••.•••••••••••••••••••.•••• tsioctl(1)

user crontab file ••••.•••••••••••••••••••••••.••.••. crontab(l)
user infol'lllltion lookup progr finger(1)

ltalk to another user •••.•••••••••••.•••.••••••••••••••..••..•...•.•.•• talk(l)
Iwrite to another user •••••••••.•.••••..•••••.•••••••••.••••••..•.•••.. write(l)

syst. inforaation for beginning users loperating ••••••••••....•••••••.••.•••.•..••• starter(l)
Iwrite to users .••••••••••••••.•••••••..•••••••••.••••.•..•••••• wall(l)

Iseareb f11e for pattern using expressions ••••••••••••••••••••••••••••••••••..• egrep(1)
uucp statas inquiry and job control ••••• •••••••.•.•• uustat(1C)

15yst. V ~nd assistance •......................... .•••••.. assist(l)
lidentify 5yst. V co.and ••••• •••••••••••••••• •••••••••••.•••.•.••.•• locate(l)

Iget processor type truth value ••••••••••••••••••••••••••••••••••.•••••..••.•• IIIChid(l)
Iprovide truth values .••••••••••••••• ••••• ••••••••••••••••••... true, false(l)

Idisplay operating syst.. version nulllber •••••••••.••••••••••••••.•.••.••••.. osversion(l)
view file ••••••••••.••.•. •••••••••••••••••••.•..••••••• IIOre(l)
visual display editor ••••••••••••••••••••••• vi, view, vedit(1)

linitialize and .intain vola. ••••••••••••••••••••••••••••••••••.••••••••••••••• iv(l)
who is on syst •••••.••..•••••••••••••••••••••..••.•.•.. who(l)

Iset or get code set width ••••••••••••.•.•••.•••.•••••••••.•••••••.••...• eucset(l)
Ichange working directory •••••••••••••••.•••••••••.•••.••••.••••• cd(l)

working directory ••••••••••••...•••..•.•.•.••.• pwd(l)
write to another user ••..••.•••••••••••..•.••.....•..• write(l)
write to users •••••••••••••.••••••••.•••••.•.•...•••••• wall(1)

UP-15525 V1 A xxi

,

INTRO(1)

NAME
intro - introduction to commands and application programs

DESCRIPTION
This section describes, in alphabetical order, commands available for your
computer. The commands in this section should be used along with those listed
in Sections 1, 2, 3, 4, and 5 of the Programmer's Reference Manual. References
of the form name(1), name(2), name(3), name(4), and name(S) refer to entries in
the Programmer's Reference Manual. References of the form name(lM),
name(7) refer to entries in the Administrator's Reference Manual. References of
the form name (1), name(1C), name (1G) refer to entries in this manual. Certain
distinctions of purpose are made in the headings.

The following Utility packages are delivered with the computer:

Base System
Editing Package
Extended Terminal Interface
Crypt Utilities Package
2 Kilobyte File System Utility Package
Network Support Utilities Package
Remote File Sharing Utilities Package

Command Syntax Standard: Rules
These command syntax rules are not followed by all current commands, but all
new commands use them. The getopts (1) command should be used by all shell
procedures to parse positional parameters and to check for legal options. It
supports Rules 3-10 in the following list. The enforcement of the other rules
must be done by the command itself.

1. Command names (name as described previously) must be between

2.

3.

4.

5.

6.

UP-15525 V1

two and nine characters long.

Command names must include only lowercase letters and digits.

Option names (option as desaibed previously) must be one character
long.

All options must be preceded by a "_ n •

Options with no arguments may be grouped after a single -.

The first option-argument (optarg as described previously) following
an option must be preceded by white space.

Page 1

INTRO(1)

7. Option-arguments cannot be optional.

8. Groups of option-arguments following an option must either be
separated by commas or separated by white space and quoted (e.g.,
-0 xxx,z,yy or -0 "xxx z yy").

9. All options must precede operands (cmdarg as described previously)
on the command line.

10. -- may be used to indicate the end of the options.

11. The order of the options relative to one another should not matter.

12. The relative order of the operands (cmdarg as described previously)
may affect their significance in ways determined by the command with
which they appear.

13. - preceded and followed by white space should only be used to mean
standard input.

DIAGNOSTICS
Upon termination each command returns two bytes of status, one supplied by the
system and giving the cause for termination and (in the case of normal
termination) one supplied by the program [see wait(2) and exit (2)]. The former
byte is 0 for normal termination; the latter is customarily 0 for successful
execution and non-zero to indicate troubles such as erroneous parameters or bad
or inaccessible data. It is called variously exit code, exit status, or return code
and is described only where special conventions are involved.

WARNINGS
Some commands produce unexpected results when processing files containing
null characters. These commands often treat text input lines as strings and
therefore become confused upon encountering a null character (the string
terminator) within a line.

Page 2 UP-15525 V1

r

300(1}

NAME
300, 300s - handle special functions of DASI 300 and 300s terminals

SYNOPSIS
300 [+ 12] [-0] [-dt,l,c]

3008 [+ 12] [-0] [-dt,l,c]

DESCRIPTION
The 300 command supports special functions and optimizes the use of the DASI
300 (GSI 300 or DTC 300) terminal; 300s performs the same functions for the
DASI 300s (GSI3OOs or DTC 3OOs) terminal. It converts half-line forward, half
line reverse, and full-line reverse motions to the correct vertical motions. In the
following discussion of the 300 command, it should be noted that unless your
system contains the DOCUMENTER'S WORKBENCH Software, references to
certain commands (e.g., nro/f, neqn, eqn, etc.) will not work. It also attempts to
draw Greek letters and other special symbols. It permits convenient use of
12-pitch text. It also reduces printing time 5 to 70 percent. The 300 command
can be used to print equations neatly, in the sequence:

neqn file ••• I nroff I 300

WARNING: If your terminal has a PLOT switch, make sure it is turned on
before 300 is used.

The behavior of 300 can be modified by the optional flag arguments to handle
12-pitch text, fractional line spacings, messages, and delays.

+ 12 permits use of 12-pitch, 6 lines per inch text. DASI 300 terminals
normally allow only two combinations, 10-pitch, 6 lines per inch, or
12-pitch, 8 lines per inch. To obtain the 12-pitch, 6 lines per inch
combination, the user should turn the PITCH switch to 12, and use the
+12 option.

-0 controls the size of half-line spacing. A half-line is, by default, equal
to four vertical plot increments. Because each increment equals 1/48
of an inch, a 10-pitch line-feed requires eight increments, while a 12-
pitch line-feed needs only six. The first digit of n overrides the default
value, thus allowing for individual taste in the appearance of subscripts
and superscripts.

-dt, ~ c controls delay factors. The default setting is -d3,90,30. DASI300
terminals sometimes produce peculiar output when faced with very
long lines, too many tab characters, or long strings of blankless, non
identical characters. One null (delay) character is inserted in a line

UP-15525 V1 Page 1

300(1)

for every set of t tabs, and for every contiguous string of c non-blank,
non-tab characters. If a line is longer than I bytes, 1 + (total
length)/20, nulls are inserted at the end of that line. Items can be
omitted from the end of the list, implying use of the default values.
Also, a value of zero for t (c) results in two null bytes per tab
(character). The former may be needed for C programs, the latter for
files like /etc/passwd. Because terminal behavior varies according to
the specific characters printed and the load on a system, the user may
have to experiment with these values to get correct output. The-d
option exists only as a last resort for those few cases that do not
otherwise print properly. For example, the file /etc/passwd may be
printed using -d3,30,5. The value -dO, 1 is a good one to use for C
programs that have many levels of indentation.

Note that the delay control interacts heavily with the prevailing
carriage return and line-feed delays. The stty(1) modes nlO cr2 or nlO
cr3 are recommended for most uses.

The 300 command can be used with the nroff -s flag or .rd requests, when it is
necessary to insert paper manually or change fonts in the middle of a document.
Instead of hitting the return key in these cases, you must use the line-feed key to
get a response.

In many cases, the following sequences are equivalent:

nroff -T300 files ••• and nroff files ••• I 300
nroff -T3oo-12 files ••• and nroff files ••• I 300 + 12

The use of 300 can thus often be avoided unless special delays or options are
required; in a few cases, however, the additional movement optimization of 300
may produce better aligned output.

SEE ALSO
450(1), mesg(1), graph(lG), stty(1), tabs(1), tplot(1G), greek(l)

BUGS
Some special characters cannot be correctly printed in column 1 because the
print head cannot be moved to the left from there.

If your output contains Greek anellor reverse line-feeds, use a friction-feed platen
instead of a forms tractor; although good enough for drafts, the latter has a
tendency to slip when reversing direction, which distorts Greek characters and
misaligns the first line of text after one or more reverse line-feeds.

Page 2 UP-15525 V1

4014(1)

NAME
4014 - paginator for the TEKTRONIX 4014 terminal

SYNOPSIS
4014 [-t] [-0] [-eN] [-pL] [file]

DESCRIPTION
The output of 4014 is intended for a TEKTRONIX 4014 terminal; 4014 arranges
for 66 lines to fit on the screen, divides the screen into N columns, and
contributes an eight-space page offset in the (default) single-column case. Tabs,
spaces, and backspaces are collected and plotted when necessary. TELETYPE
Model 37 half and reverse line sequences are interpreted and plotted. At the
end of each page, 4014 waits for a newline (empty line) from the keyboard before
continuing on to the next page. In this wait state, the command !cmd will send
the cmd to the shell.

The command line options are:

-t Do not wait between pages (useful for directing output into a file).

-0 Start printing at the current cursor position and never erase the screen.

-eN Divide the screen into N columns and wait after the last column.

-pL Set page length to L; the L accepts the scale factors i (inches) and I (lines);
default is lines.

SEE ALSO
pr(1), tc(1)

UP-15525 V1 Page 1

4014(1)

[This page left blank.]

Page 2 UP-15525 V1

NAME
450 - handle special functions of the DASI 450 terminal

SYNOPSIS
450

DESCRIPTION

450(1)

The 450 command supports special functions of, and optimizes the use of, the
DASI 450 terminal, or any terminal that is functionally identical, such as the
Diablo 1620 or Xerox 1700. It converts half-line forward, half-line reverse, and
full-line reverse motions to the correct vertical motions. It also attempts to draw
Greek letters and other special symbols in the same manner as 300(1). It should
be noted that, unless your system contains DOCUMENTER'S WORKBENCH
Software, certain commands (e.g., eqn, nroff, tbl, etc.) will not work. Use 450 to
print equations neatly, in the sequence:

neqn file ... Droff 450

WARNING: Make sure that the PLOT switch on your terminal is on before 450
is used. The SPACING switch should be put in the desired position (either 10-
or 12-pitch). In either case, vertical spacing is 6 lines per inch, unless
dynamically changed to 8 lines per inch by an appropriate escape sequence.

Use 450 with the nroff -s flag or .rd requests when it is necessary to insert paper
manually or change fonts in the middle of a document. Instead of hitting the
return key in these cases, you must use the line-feed key to get a response.

In many cases, the use of 450 can be eliminated in favor of one of the following:

Droff -T450 files ...
or

Droff -T450-12 files ...

The use of 450 can often be avoided unless special delays or options are
required; in a few cases, however, the additional movement optimization of 450
may produce better aligned output.

SEE ALSO
300(1), mesg(l), stty(l), tabs(l), graph(lG), tplot(lG), greek(l)

BUGS
Some special characters cannot be correctly printed in column 1 because the
print head cannot be moved to the left from there.

UP-15525 V1 Page 1

450(1)

H your output contains Greek and/or reverse line-feeds, use a friction-feed platen
instead of a forms tractor; although good enough for drafts, the latter has a
tendency to slip when reversing direction, which distorts Greek characters and
misaIigns the first line of text after one or more reverse line-feeds.

Page 2 UP-15525 V1

ACCTCOM(1)

NAME
acctcom - search and print process accounting file(s)

SYNOPSIS
acctcom [[options] [file]] ...

DESCRIPTION
The acctcom command reads file, the standard input, or /usr/adm/pacct, in the
form described by acct(4), and writes selected records to the standard output.
Each record represents the execution of one process. The output shows the
COMMAND NAME, USER, TIYNAME, START TIME, END TIME, REAL
(SEC), CPU (SEC), MEAN SIZE(K), and optionally, F (the fork/exec flag: 1 for
fork without exec), STAT (the system exit status), HOG FACTOR, KCORE MIN,
CPU FACTOR, CHARS TRNSFD, and BWCKS READ (total blocks read and
written).

The command name is prepended with a # if it was executed with superuser
privileges. If a process is not associated with a known terminal, a ? is printed in
the TIYNAME field.

If no files are specified, and if the standard input is associated with a terminal or
/dev/null (as is the case when using & in the shell), /usr/adm/pacct is read;
otherwise the standard input is read.

If any file arguments are given, they are read in their respective order. Each file
is normally read forward; that is, in chronological order by process completion
time. The file /usr/adm/pacct is usually the current file to be examined; a busy
system may need several such files of which all but the current file are found in
/usr/admlpacct? The options are:

-a

-b

-c

-h

UP-15525 V1

Show some average statistics about the processes selected. The
statistics will be printed after the output records.

Read backwards, showing latest commands first. This option has
no effect when the standard input is read.

Print the fork/exec flag and system exit status columns in the
output.

Instead of mean memory size, show the fraction of total available
CPU time consumed by the process during its execution. This
''hog factor" is computed as:

(total CPU time)/(elapsed time).

Page 1

ACCTCOM(1)

-i

-k

-m

-r

-t

-v

-I line

-u user

-ggroup

-s time

-e time

-s time

-E time

-npattem

-q

-oofile

-H/actor

-Osee

Page 2

Print columns containing the I/O counts in the output.

Instead of memory size, show total kcore-minutes.

Show mean core size (the default).

Show CPU factor (user time)/(system-time + user-time).

Show separate system and user CPU times.

Exclude column headings from the output.

Show only processes belonging to terminal/dev/ line.

Show only processes belonging to user that may be specified by: a
user ID, a login name that is then converted to a user ID, a #,
which designates only those processes executed with super-user
privileges, or ?, which designates only those processes associated
with unknown user IDs.

Show only processes belonging to group. The group may be
designated by either the group ID or group name.

Select processes existing at or after time, given in the format
hr [min [:sec]].

Select processes existing at or before time.

Select processes starting at or after time.

Select processes ending at or before time. Using the same time
for both -s and -E shows the processes that existed at time.

Show only commands matchingpattem that may be a regular
expression as in ed(l) except that + means one or more
occurrences.

Do not print any output records, just print the average statistics as
with the -a option.

Copy selected process records in the input data format to ofile;
suppress standard output printing.

Show only processes that exceed/actor, where factor is the "hog
factor" as explained in option -h above.

Show only processes with CPU system time exceeding sec
seconds.

UP-15525 V1

ACCTCOM(1)

-c sec Show only processes with total CPU time, system plus user,
exceeding sec seconds.

- I chars Show only processes transferring more characters than chars •

Listing options together has the effect of a logical AND.

FILES
fetc/passwd
fusrfadmJpacct
fetc/group

SEE ALSO
ps(l)
acct(lM), acctcms(lM), acctcon(lM), acctmerg(lM), acctprc(lM), acctsh(lM),
runacct(lM), su(lM) in the Administrator's Reference Manual
acct(2), acct(4), utmp(4) in the Programmer's Reference Manual

BUGS
The acctcom command only reports on processes that have terminated; use ps(l)
for active processes. If time exceeds the present time, time is interpreted as
occurring on the previous day.

UP-15525 V1 Page 3

ACCTCOM(1)

[This page left blank.]

Page 4 UP-15525 V1

ASA(1)

NAME
asa - interpret ASA carriage control characters

SYNOPSIS
asa [files]

DESCRIPTION
The asa command interprets the output of FORTRAN programs that utilize
ASA carriage control characters. It processes either the files whose names are
given as arguments or the standard input if no file names are supplied. The first
character of each line is assumed to be a control character; their meaningc; are:
, ,

o
1

(blank) single new line before printing

double new line before printing

new page before printing

+ overprint previous line.

Lines beginning with other than the above characters are treated as if they began
with' '. The first character of a line is not printed If any such lines appear, an
appropriate diagnostic will appear on standard error. This program forces the
first line of each input file to start on a new page.

To view correctly the output of FORTRAN programs which use ASA carriage
control characters, asa could be used as a filter as follows:

a.out I asa I lp

and the output, properly formatted and paginated, would be directed to the line
printer. FORTRAN output sent to a file could be viewed by:

asa file

UP-15525 V1 Page 1

ASA(1)

[This page left blank.]

Page 2 UP-15525 V1

ASSIST(1)

NAME
assist - assistance using System V commands

SYNOPSIS
assist [-s] [-c [name]]

DESCRIPTION
The assist command invokes the ASSIST menu interface software for the System
V. The ASSIST menus categorize System V commands according to function in
a hierarchy. The menus lead to full-screen forms that aid you in the execution of
a syntactically correct System V command line.

If you type assist without options, you enter at the top of the menu interface
hierarchy. New users may select an introductory tutorial explaining how to use
the ASSIST software.

There are two options for ASSIST:

-c name This option invokes a command form in the user's current directory.
Name is an ASSIST-supported System V command or the name of a
walkthrough.

-s This option rein vokes the ASSIST setup module to check/modify your
terminal variable. You can also access the introductory information
about ASSIST by using -so

When you invoke assist, you perform operations within the program by using
assist commands. To see a list of the assist commands, press the Control-A key
combination when you are in assist. When you do this, a list of the commands is
printed on the terminal screen.

EXAMPLE
This example illustrates how to go directly to a particular command form. In this
case, mkdir is the desired command form.

assist mkdir

SEE ALSO
astgen(l) in the Programmer's Reference Manual
ASSIST Software User's Guide

UP-15525 V1 Page 1

ASSIST(1)

[This page left blank.]

Page 2 UP-15525 V1

NAME
at, batch - execute commands at a later time

SYNOPSIS
at time [date] [+ increment]
at -r job ...
at -I [job ...]

batch

DESCRIPTION

AT(1)

The at and batch commands read commands from standard input to be executed
at a later time. The at command allows you to specify when the commands
should be executed, while jobs queued with batch execute when the system load
level permits. The at command may be used with the following options:

-r Removes jobs previously scheduled with at.

-I Reports all jobs scheduled for the invoking user.

Standard output and standard error output are mailed to the user unless they are
redirected elsewhere. The shell environment variables, current directory, umask,
and ulimit are retained when the commands are executed. Open file desaiptors,
traps, and priority are lost

Users are permitted to use at if their name appears in the file
/usr/lib/croD/at.aIIow. If that file does not exist, the file /usr/lib/croD/at.deny is
checked to determine if the user should be denied access to at. If neither file
exists, only root is allowed to submit a job. If at.deny exists and is empty, global
usage is permitted. If at.allow exists and is empty, no usage is permitted. If
at.aIlow exists, at.deny is ignored. The allow/deny files consist of one user name
per line. These files can only be modified by the superuser.

The time may be specified as one, two, or four digits. One and two digit numbers
are taken to be hours, four digits to be hours and minutes. The time may
alternately be specified as two numbers separated by a colon, meaning
hour: minute. A suffix am or pm may be appended; otherwise, a 24-hour clock
time is understood. The suffix zulu may be used to indicate GMT. The special
names noon, midnight, now, and next are also recognized.

An optional date may be specified as either a month name followed by a day
number (and possibly year number preceded by an optional comma) or a day of
the week (fully spelled or abbreviated to three characters). Two special days,
today and tomorrow are recognized. If no date is given, today is assumed if the
given hour is greater than the current hour and tomorrow is assumed if it is less.

UP-15525 V1 Page 1

AT(1)

If the given month is less than the current month (and no year is given), next year
is assumed.

The optional increment is simply a number suffixed by one of the following:
minutes, hours, days, weeks, months, or years. (The singular form is also
accepted.)

Thus legitimate commands include:

at 0815am Jan 24
at 8:15am Jan 24
at now + 1 day
at 5 pm Friday

The at and batch commands write the job number and schedule time to standard
error.

The batch command submits a batch job. It is almost equivalent to "at.now."

The at -r command removes jobs previously scheduled by at or batch. The job
number is the number given to you previously by the at or batch command. You
can also get job numbers by typing at -I. You can remove only your own jobs
unless you are the superuser.

EXAMPLES
The at and batch commands read from standard input the commands to be
executed at a later time. The sh (1) command provides a different way of
specifying standard input. Within your commands, it may be useful to redirect
standard output.

This sequence can be used at a terminal:

batch
sort filename > outJile
< control-D > (hold down control and depress D)

This sequence, which demonstrates redirecting standard error to a pipe, is useful
in a shell procedure (the sequence of output redirection specifications is
significant):

batch < <!
sortfilename 2>&1 >outJile I mailloginid
!

To have a job reschedule itself, invoke at from within the shell procedure by
including code similar to the following within the shell file:

Page 2 UP-15525 V1

echo Ash shellftle" I at 1900 thursday next week

FILES
/usrllib/aon
/usrllib/aon/at.allow
/usrllib/aon/at.deny
/usrllib/aon/queue
/usr/spooVaon/atjobs

SEE ALSO

main aon directory
list of allowed users
list of denied users
scheduling information
spool area

kiIl(l), mall(l), nice(l), ps(l), shell, sort(l)
aon(lM) in the Administrator's Reference Manual

DIAGNOSTICS
Diagnostics include various syntax errors and times out of range.

UP-15525 V1

AT(1}

Page 3

AT(1)

[This page left blank.]

Page 4 UP-15525 V1

AWK(1)

NAME
awk - pattern scanning and processing language

SYNOPSIS
awk [-Fc] [prog] [parameters] [files]
awk [-Fre] [parameter ...] rprog'] [·f progfiIe] [file ...]

DESCRIPTION
The awk language scans each inputfile for lines that match any of a set of
patterns specified in prog. With each pattern in prog there can be an associated
action that will be performed when a line of a file matches the pattern. The set
of patterns may appear literally as prog, or in a file specified as -ffile. The prog
string should be enclosed in single quotes (') to protect it from the shell.

The parameters, in the form X= ... y= ... etc., may be passed to awk.

Files are read in order; if there are no files, the standard input is read. The
filename - means the standard input. Each line is matched against the pattern
portion of every pattern-action statement; the associated action is performed for
each matched pattern.

An input line is made up of fields separated by white space. (This default can be
changed by using FS; see the following text). The fields are denoted $1, $2, ... ;
$0 refers to the entire line.

A pattern-action statement has the form:

pattern { action }

A missing action means print the line; a missing pattern always matches. An
action is a sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement]
while (conditional) statement
for (expression ; conditional ; expression) statement
break
continue
{ [statement] ... }
variable = expression
print [expression-list] [> expression]
printf format [, expression-list] [> expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

UP-15525 V1 Page 1

AWK(1)

Statements are terminated by semicolons, newlines, or right braces. An empty
expression-list stands for the whole line. Expressions take on string or numeric
values as appropriate, and are built using the operators +, -, *, /, %, and
concatenation (indicated by a blank). The C operators + +, --, + =, -=, *=,
/ =, and % = are also available in expressions. Variables may be scalars, array
elements (denoted xli), or fields. Variables are initialized to the null string.
Array SUbscripts may be any string, not necessarily numeric; this allows for a
form of associative memory. String constants are quoted (j.

The print statement prints its arguments on the standard output (or on a file if
> expr is present), separated by the current output field separator, and
terminated by the output record separator. The printf statement formats its
expression list according to the format [see printf(3S) in the Programmer's
Reference Manual).

The built-in function length returns the length of its argument taken as a string,
or of the whole line if no argument is present. There are also built-in functions
exp, log, sqrt, and into The last truncates its argument to an integer;
substr(s, m, n) returns the n-character substring of s that begins at positionm.
The function sprintf(fmt, expr, expr, .•.) formats the expressions according to the
printf(3S) format given by fmt and returns the resulting string.

Patterns are arbitrary Boolean combinations (!, II, &&, and parentheses) of
regular expressions and relational expressions. Regular expressions must be
surrounded by slashes and are as in egrep [see grep(l»). Isolated regular
expressions in a pattern apply to the entire line. Regular expressions may also
occur in relational expressions. A pattern may consist of two patterns separated
by a comma. In this case, the action is performed for all lines between an
occurrence of the first pattern and the next occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where relop is any of the six relational operators in C, and matchop is either
- (for contains) or!- (for does not contain). A conditional is an arithmetic
expression, a relational expression, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before
the first input line is read and after the last. BEGIN must be the first pattern,
END the last.

Page 2 UP-15525 V1

AWK(1)

A single character e may be used to separate the fields by starting the program
with:

BEGIN { FS = e }

or by using the -Fe option.

Other variable names with special meanings include NF, the number of fields in
the current record; NR, the ordinal number of the current record; FILENAME,
the name of the current input file; OFS, the output field separator (default
blank); ORS, the output record separator (default newline); and OFMT, the
output format for numbers (default %.6g).

InternationaIization
In addition to the ASCII character set, characters from supplementary code sets
can be used in pattern-action statements and comments.

The field separators specified with option -F and the environment variables OFS,
ORS and Fs can be characters from supplementary code sets.

In regular expressions, pattern searches are performed on characters, not bytes
similarly to ed's pattern processing.

The values returned by the built-in function, length(s), and the arguments n of
the built-in function, substr(s, m, n), are the length of the EUC in bytes.

EXAMPLES
Print lines longer than 72 characters:

length> 72

Print first two fields in opposite order:

{ print $2, $1 }

Add up first column, print sum and average:

{s+=$l}
END {print "sum is", S, " average is", s/NR }

Print fields in reverse order:

{ for (i = NF; i > 0; --i) print $i }

Print all lines between start/stop pairs:

/start/, /stop/

UP-15525 V1 Page 3

AWK(1)

Print all lines whose first field is different from the previous one:

$1 ! = prev { print; prev = $1 }

Print file, fi1Iing in page numbers starting at 5:

/Pagel { $2 = n+ +; }
{ print}

command line: awk -f program n= 5 input

NOTE
The implementation of awk in MNLS 3.2 is based on nawk in System V Release
3.2.

SEE ALSO
grep(1), sed(1), nawk(1)
lex(1), printf(3S) in the Programmer's Reference Manual

BUGS
Input white space is not preserved on output if fields are involved.

There are no explicit conversions between numbers and strings. To force an
expression to be treated as a number, add 0 to it; to force it to be treated as a
string, concatenate the null string ("") to it.

Page 4 UP-15525 V1

BANNER(1)

NAME
banner - make posters

SYNOPSIS
banner strings

DESCRIPTION
The banner command prints its arguments (each up to 10 characters long) in
large letters on the standard output. Spaces can be included in an argument by
surrounding it with quotes. The maximum number of characters that can be
accommodated in a line is implementation-dependent; excess characters are
simply ignored.

InternationaIization
This command has no international functionality.

SEE ALSO
echo(1)

UP-15525 V1 Page 1

BANNER(1)

[This page left blank.]

Page 2 UP-15525 V1

NAME
basename, dirname - deliver portions of pathnames

SYNOPSIS
basename string [suffix]
dimame string

DESCRIPTION

BASENAME (1)

The basename command deletes any prefix ending in / and the suffix (if present
in string) from string, and prints the result on the standard output. It is normally
used inside substitution marks (' ') within shell procedures.

The dimame command delivers all but the last level of the pathname in string.

EXAMPLES
The following example, invoked with the argument /usr/src/cmd/cat.c, compiles
the named file and moves the output to a file named cat in the current directory:

cc $1
mv a.out 'basename $1 '\.c ' ,

The following example sets the shell variable NAME to /usr/src/cmd:

NAME = ' dirname /usr/srclcmdlcat.c '

SEE ALSO
sh(1)

UP-15525 V1 Page 1

BASENAME (1)

[This page left blank.]

Page 2 UP-15525 V1

BC(1)

NAME
bc - arbitrary-precision arithmetic language

SYNOPSIS
be [-c] [-I] [file ...]

DESCRIPTION
The be command is an interactive processor for a language that resembles C but
provides unlimited precision arithmetic. It takes input from any files given, then
reads the standard input. The be (1) utility is actually a preprocessor for de (1),
which it invokes automatically unless the -c option is present. In this case the de
input is sent to the standard output instead The options are as follows:

-c Compile only. The output is send to the standard output.

-I Argument stands for the name of an arbitrary precision math library.

The syntax for be programs is as follows; the L means letter a-~ E means
expression, S means statement.

Comments

Names

are enclosed in /* and */.

simple variables: L
array elements: L [E]
the words ibase, obase, and scale

Other operands
arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt(E)
length (E) number of significant decimal digits
scale (E) number of digits right of decimal point
L(E, ... ,E)

Operators
+ - * / % A. (% is remainder; A. is power)
+ + -- (prefix and postfix; apply to names)
- - < = > = != < >
= = + =_ =* =/ =% = A.

Statements
E
{S; ..• ; S}

UP-15525 V1 Page 1

BC(1)

if(E)S
while (E) S
for (E ; E ; E) S
null statement
break
quit

Function definitions
define L (L , .. ., L) {

auto L, ... , L
S; ... S
retwn (E)

}

Functions in ·1 math library
s(x) sine
c(x) cosine
e(x) exponential
l(x) log
a(x) arctangent
j(n,x) Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator
is an assignment. Either semicolons or newlines may separate statements.
Assignment to scale influences the number of digits to be retained on arithmetic
operations in the manner of dc(1). Assignments to ibase or obase set the input
and output number radix, respectively.

The same letter may be used as an array, a function, and a simple variable
simultaneously. All variables are global to the program. Auto variables are
pushed down during function calls. When using arrays as function arguments or
defining them as automatic variables, empty square brackets must follow the
array name.

EXAMPLES
scale = 20
define e(x){

Page 2

auto a, b, C, i, s
a=1
b=1
s = 1
for(i=1; 1= =1; i+ +){

Up·15525 V1

}
}

a = a*x
b = b*i
c = alb
if(c = = 0) return(s)
s = s+c

BC(1)

defines a function to compute an approximate value of the exponential function
and

for(i = 1; i < = 10; i + +) e(i)

prints approximate values of the exponential function of the first ten integers.

FILES
lusr/lib/lib.b mathematical library
lusrlbinldc desk calculator proper

SEE ALSO
dc(1)

BUGS
The be command does not yet recognize the logical operators, && and II.
The/oT statement must have all three expressions (E's).
The quit is interpreted when read, not when executed.

UP-15525 V1 Page 3

BC(1)

[This page left blank.]

Page 4 UP-15525 V1

BDIFF(1)

NAME
bdiff - big diff

SYNOPSIS
bditT filel file2 [n] [-s]

DESCRIPTION
The bdiff command is used in a manner analogous to diff(l) to find which lines
in two files must be changed to bring the files into agreement. Its purpose is to
allow processing of files which are too large for diff.

The parameters to bdiff are:

filel (file2)
The name of a file to be used Iffilel (file2) is -, the standard input is read.

n The number of line segments. The value of n is 3500 by default. If the
optional third argument is given and it is numeri~ it is used as the value for
n. This is useful in those cases in which 3500-line segments are too large
for dif/, causing it to fail.

-s Specifies that no diagnostics are to be printed by bdiff (silent option).
Note, however, that this does not suppress possible diagnostic messages
from diff(l), which bdiff calls.

The bdiff command ignores lines common to the beginning of both files, splits the
remainder of each file into n -line segments, and invokes diff upon corresponding
segments. If both optional arguments are specified, they must appear in the
order indicated in the SYNOPSIS.

The output of bdiff is exactly that of diff, with line numbers adjusted to account
for the segmenting of the files (that is, to make it look as if the files had been
processed whole). Note that because of the segmenting of the files, bdiff does
not necessarily find a smallest sufficient set of file differences.

FILES
/tmplbd?????

SEE ALSO
diff(l)

UP-15525 V1 Page 1

BDIFF(1)

[This page left blank.]

Page 2 UP-15525 V1

BFS(1)

NAME
bfs - big file scanner

SYNOPSIS
bfs [•] name

DESCRIPTION
The bfs command is similar to ed(l) except that it is read only and processes
much larger files. Files can be up to 1024K bytes and 32K lines, with up to 512
characters per line, including newline. The bfs command is usually more efficient
than ed(l) for scanning a file, since the file is not copied to a buffer. It is most
useful for identifying sections of a large file where csplit(l) can be used to divide
it into more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of any file
written with the w command. The optional· suppresses printing of sizes. Input
is prompted with *, if P and a carriage return are typed, as in ed(l). Prompting
can be turned off again by inputting another P and carriage return. Note that
messages are given in response to errors if prompting is turned on.

All address expressions described under ed(l) are supported, with the exception
of the range constructions (...). In addition, regular expressions may be
surrounded with two symbols besides I and ? ; the > sign indicates downward
search without wrap-around, and < indicates upward search without wrap
around. There is a slight difference in mark names; only the letters a through z
may be used, and all 26 marks are remembered.

The e, g, v, k, p, q, w, =, ! and null commands operate as described under ed(l),
except that the default command list for g and v is the null command, not p.
Commands such as ._-, + + +-, + + + =, .12, and +4p are accepted. Note that
1,10p and 1,10 will both print the first ten lines. The f command only prints the
name of the file being scanned; there is no remembered filename. The w
command is independent of output diversion, truncation, or crunching (see the
xo, xi, and xc commands in the following text). The following additional
commands are available:

xlfile Further commands are taken from the namedfile. When an
end-of-file is reached, an interrupt signal is received or an error
occurs; reading resumes with the file containing the xl. The xl
commands may be nested to a depth of 10.

m List the marks currently in use (marks are set by the k command).

UP-15525 V1 Page 1

BFS(1)

Page 2

xo [file]
Further output from the p and null commands is diverted to the
namedfile, which, if necessary, is created in mode 666 (readable and
writable by everyone), unless your umask setting [see umask(l)]
dictates otherwise. If file is missing, output is diverted to the
standard output. Note that each diversion causes truncation or
creation of the file.

: label
This positions a label in a command file. The label is terminated by
newline, and blanks between the : and the start of the label are
ignored. This command may also be used to insert comments into a
command file, since labels need not be referenced.

(• , •) xblregular expression/label
A jump (either upward or downward) is made to label if the
command succeeds. It fails under any of the following conditions:

1. Either address is not between 1 and $.
2. The second address is less than the first.
3. The regular expression does not match at least one line in

specified range, including the first and last lines.

If the command succeeds, • is set to the line matched and a jump is
made to label. This command is the only one that does not issue an
error message on bad addresses, so it may be used to test whether
addresses are bad before other commands are executed. Note that
the command

xb 1,..1 label

is an unconditional jump.

The xb command is allowed only if it is read from someplace other
than a terminal. If it is read from a pipe, only a downward jump is
possible.

xtnumber
Output from the p and null commands is truncated to at most number
characters. The initial number is 255.

xv [digit] [spaces] [value]
The variable name is the specified digit following the xv. The
commands xv5100 or xv5 100 both assign the value 100 to the variable
5. The command xv61,l00p assigns the value 1,100p to the variable 6.

UP-15525 V1

BFS(1)

To reference a variable, put a % in front of the variable name. For
example, using the above assignments for variables 5 and 6:

1,%5p
1,%5
%6

will all print the first 100 lines.

g/%5/p

would globally search for the characters 100 and print each line
containing a mat~h. To escape the special meaning of %, a \ must
precede it.

g/".*\%[cds]/p

could be used to match and list lines containing print[of characters,
decimal integers, or strings.

Another feature of the xv command is that the first line of output
from a UNIX system command can be stored into a variable. The
only requirement is that the first character of value be an!. For
example:

.w junk
xv51 cat junk
Inn junk
lecho "%5"
xv6lexpr %6 + 1

would put the current line into variable 5, print it, and increment the
variable 6 by one. To escape the special meaning of ! as the first
character of value, precede it with a \.

xv7\ I date

stores the value !date into variable 7.

xbz label and xbn label

UP-15525 V1

These two commands will test the last saved return code from the
execution of a UNIX system command (! command) or non-zero
value, respectively, to the specified label. The two examples below
both search for the next five lines containing the string size.

xv55
: 1

Page 3

BFS(1)

!size!
xv51expr %5 - 1
I if 0%5 1= 0 ex i t 2
xbn 1

xv45
: 1
!size!
xv41expr %4 - 1
I if 0%4 = 0 ex i t 2
xbz 1

xc [switch]
If switch is 1, output from the p and null commands is crunched; if
switch is 0, it is not. Without an argument, xc reverses switch.
Initially switch is set for no crunching. Crunched output has strings
of tabs and blanks reduced to one blank and blank lines suppressed.

Internationalization
The bfs command can process ASCII characters as well as characters from
supplementary code sets in the text.

The bfs command can also recognize labels containing characters from
supplementary code sets for :, xb, xbn and xbz commands.

Regular expression searches are performed on characters, not on individual
bytes. Refer to ed(l).

The value designated by number with the xl command must be the number of
displayed columns, not the number of characters or the number of EUC bytes.

Marks set by the k command must be ASCII characters in the range of a to z,
and all 26 marks are remembered.

SEE ALSO
csplit(l), ed(l), umask(l) regcmp(3X) is the Programmer's Reference Manual

DIAGNOSTICS
The ? appears for errors in commands if prompting is turned off. Self
explanatory error messages appear when prompting is on.

WARNINGS
Size indication

Page 4

The size of the file displayed at first and after read/write by the e or w
commands is in bytes, not characters.

UP-15525 V1

CAL(1)

NAME
cal - print calendar

SYNOPSIS
cal [[month] year]

DESCRIPTION
The cal command prints a calendar for the specified year. If a month is also
specified, a calendar just for that month is printed. If neither is specified, a
calendar for the present month is printed. The year can be between 1 and 9999.
The month is a number between 1 and 12. The calendar produced is that for
England and the United States.

EXAMPLES
An unusual calendar is printed for September 1752. That is the month 11 days
were skipped to make up for lack of leap year adjustments. To see this calendar,
type: cal91752

BUGS
The year is always considered to start in January, even though this is historically
naive.

Beware that cal 88 refers to the early Christian era, not the 20th century.

UP-15525 V1 Page 1

CAL(1)

[This page left blank.]

Page 2 UP-15525 V1

CALENDAR (1)

NAME
calendar - reminder service

SYNOPSIS
calendar [-]

DESCRIPTION
The calendar command consults the file calendar in the current directory and
prints out lines that contain today's or tomorrows date anywhere in the line.
Most reasonable month-day dates such as Aug. 24, august 24, 8/24, etc., are
recognized, but not 24 August or 24/8. On weekends tomorrow extends through
Monday.

When an argument is present, calendar does its job for every user who has a file
calendar in his or her login directory and sends them any positive results by
mail(l). Normally this is done daily by facilities in the UNIX operating system.

FILES
/usr/lib/calprog
/etc/passwd
/tmp/cal*

SEE ALSO
mai1(l)

BUGS

to figure out today's and tomorrows dates

Your calendar must be public information for you to get reminder service.
The calendar's extended idea of tomorrow does not account for holidays.

UP-15525 V1 Page 1

CALENDAR (1)

[This page left blank.]

Page 2 UP-15525 V1

CAT(1)

NAME
cat - concatenate and print files

SYNOPSIS
cat [-u] [-s] [-v [-t] [-e]] file ...

DESCRIPTION
The cat command reads each file in sequence and writes it on the standard
output Thus:

cat file

prints file on your terminal, and:

cat filel file2 > file3

concatenates filel and file2, and writes the results in fiIe3.

If no input file is given, or if the argument - is encountered, cat reads from the
standard input file.

The following options apply to cat:

-u The output is not buffered. (The default is buffered output.)

-s The cat command is silent about nonexistent files.

-v Causes non-printing characters (with the exception of tabs, new lines and
form-feeds) to be printed visibly. The ASCII control characters (octal 000 -
037) are printed as "n, where n is the corresponding ASCII character in
the range octal 100 - 137 (@, A, B, C, ... , x, Y, Z, ~ \,], ", and J; the
DEL character (octal 0177) is printed,,? Other non-printable characters
are printed as M-x, where x is the ASCII character specified by the low
order seven bits.

The following options may be used with the -v option:

-t Causes tabs to be printed as ,,1's and form-feeds to be printed as "L's.

-e Causes a $ character to be printed at the end of each line (prior to the
newline).

The -t and -e options are ignored if the -v option is not specified.

Internationa1ization
The cat command can read and write characters from supplementary code sets.

UP-15525 V1 Page 1

CAT(1}

SEE ALSO
cp(l), pg(l), pr(l)

WARNING
Redirecting the output of cat onto one of the files being read will cause the loss
of the data originally in the file being read. For example, typing:

cat filel file2 > filel

will cause the original data in filel to be lost.

When invoked with the -v option, cat considers all multibyte characters to be
printable.

Page 2 UP-15525 V1

CO(1)

NAME
cd - change working directory

SYNOPSIS
cd [directory]

DESCRIPTION
If directory is not specified, the value of shell parameter $HOME is used as the
new working directory. If directory specifies a complete path starting with /,
directory becomes the new working directory. If neither case applies, cd tries to
find the designated directory relative to one of the paths specified by the
$CDPAm shell variable. The $CDPAm has the same syntax as, and similar
semantics to, the $PATH shell variable. The cd command must have execute
(search) permission in directory .

Because a new process is created to execute each command, cd would be
ineffective if it were written as a normal command; therefore, it is recognized and
is internal to the shell.

SEE ALSO
pwd(l), sh(l)
chdir(2) in the Programmer's Reference Manual

UP-15525 V1 Page 1

CD(1)

[This page left blank.]

Page 2 UP-15525 V1

NAME
chmod - change mode

SYNOPSIS
chmod mode file ...
chmod mode directory ...

DESCRIPTION

CHMOD(1)

The permissions of the named files or directories are changed according to mode,
which may be symbolic or absolute. Absolute changes to permissions are stated
using octal numbers:

chmod nnn file (s)

where n is a number from 0 to 7. Symbolic changes are stated using mnemonic
characters:

chmod a operator b file (s)

where a is one or more characters corresponding to user, group, or other; where
operator is +, ., and =, signifying assignment of permissions; and where b is one
or more characters corresponding to the type of permission.

An absolute mode is given as an octal number constructed from the "or" of the
following modes:

4000 set user ID on execution
20#0 set group ID on execution if # is 7, 5, 3, or 1

enable mandatory locking if # is 6, 4, 2, or 0
1000 sticky bit is turned on [see chmod (2)]
0400 read by owner
0200 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

Symbolic changes are stated using letters that correspond both to access classes
and to the individual permissions themselves. Permissions to a file may vary
depending on your user identification number (UID) or group identification
number (GID). Permissions are described in three sequences each having three
characters:

User Group Other

rwx rwx rwx

UP-15525 V1 Page 1

CHMOD(1)

This example (meaning that User, Group, and Others all have reading,
writing, and execution permission to a given file) demonstrates two
categories for granting permissions, the access class and the permissions
themselves.

Thus, to change the mode of a file's (or directory's) permissions using chmod's
symbolic method, use the following syntax for mode:

[who] operator [permission(s)], ...

A command line using the symbolic method would appear as follows:

chmod g+ rw file

This command would make file readable and writable by the group.

The who part can be stated as one or more of the following letters:
u user's permissions
g group's permissions
o others permissions

The letter a (all) is equivalent to ugo and is the default if who is omitted.

The operator can be + to add pennission to the file's mode, - to take away
pennission, or = to assignpennission absolutely. (Unlike other symbolic
operations, = has an absolute effect in that it resets all other bits.) Omitting
pennission is only useful with = to take away all permissions.

The pennission is any compatible combination of the following letters:
r reading permission
w writing permission
x execution permission
s user or group set-ID is turned on
t sticky bit is turned on
I mandatory locking wi.11 occur during access

Multiple symbolic modes separated by commas may be given, though no spaces
may intervene between these modes. Operations are performed in the order
given. Multiple symbolic letters following a single operator cause the
corresponding operations to be performed simultaneously. The letter s is only
meaningful with u or g, and t only works with u.

Mandatory file and record locking (I) refers to a file's ability to have its reading
or writing permissions locked while a program is accessing that file. It is not
possible to permit group execution and enable a file to be locked on execution at
the same time. In addition, it is not possible to turn on the set-group-ID and

Page 2 UP-15525 V1

CHMOD(1)

enable a file to be locked on execution at the same time. The following
examples,

chmod g + x, + I file
chmod g + s, + I file

are, therefore, illegal usages and will elicit error messages.

Only the owner of a file or directory (or the superuser) may change a file's mode.
Only the superuser may set the sticky bit on a non-directory file. In order to turn
on a file's set-group-ID, your own group ID must correspond to the file's, and
group execution must be set.

EXAMPLES
The first examples deny execution permissions to all. The absolute (octal)
example permits only read permissions:

chmod a-xfile
chmod 444 file

The next examples make a file readable and writable by the group and others:

chmod go + rw file
chmod 606file

This example causes a file to be locked during access:

chmod + I file

The last two examples enable all to read, write, and execute the file; and they
turn on the set-group-ID.

NOTES

chmod = rwx,g + s file
chmod 2777 file

In a Remote File Sharing environment, you may not have the permissions that the
output of the Is -I command leads you to believe. For more information, see the
Administration Guide.

UP-15525 V1 Page 3

CHMOD(1)

SEE ALSO
Is(1)
chmod(2) in the Programmer's Reference Manual

Page 4 UP-15525 V1

NAME
chown, chgrp - change owner or group

SYNOPSIS
chown owner file ...
chown owner directory ...
chgrp group file ...
chgrp group directory ...

DESCRIPTION

CHOWN(1)

The chown command changes the owner of the files or directories to owner. The
owner may be either a decimal user ID or a login name found in the password
file.

The chgrp command changes the group ID of the files or directories to group.
The group may be either a decimal group ID or a group name found in the
group file.

IT either command is invoked by other than the superuser, the set-user-ID and
set-group-ID bits of the file mode, 04000 and 02000 respectively, will be cleared.

Only the owner of a file (or the superuser) may change the owner or group of
that file.

FILES
fetc/passwd
fetc/group

NOTES
In a Remote File Sharing environment, you may not have the permissions that the
output of the Is ·1 command leads you to believe. For more information see the
Administration Guide.

SEE ALSO
chmod(l)
chown(2), groupe 4), passwd(4) in the Programmer's Reference Manual

UP-15525 V1 Page 1

CHOWN(1)

[This page left blank.]

Page 2 UP-15525 V1

NAME
clear - clear terminal screen

SYNOPSIS
/bin/clear

DESCRIPTION

CLEAR(1)

The clear command clears your screen if it is possible to do so. It looks in the
environment for the terminal type and uses tenninfo to figure out how to clear
the saeen.

UP-15525 V1 Page 1

CLEAR(1)

[This page left blank.]

Pace 2 UP-15525 V1

CMP(1)

NAME
cmp - compare two files

SYNOPSIS
cmp [-I] [-s] [-an] [-0] filel file2

DESCRIPTION
The two files are compared. (If filel is -, the standard input is used.) Under
default options, cmp makes no comment if the files are the same; if they differ, it
announces the byte and line number at which the difference occurred If one file
is an initial subsequence of the other, that fact is noted.

Options:

-I Print the byte number (decimal) and the differing bytes (octal) for each
difference.

-8 Print nothing for differing files; return codes only.

-an Start the comparison at byte offset n, where n is an octal number. (Note
that the byte offset will be the same for both files.)

-0 Ignore time and date stamp differences when comparing the contents of
binary files.

SEE ALSO
comm(l), diff(l)

DIAGNOSTICS
Exit code 0 is returned for identical files, 1 for different files, and 2 for an
inaccessible or missing argument.

UP-15525 V1 Page 1

CMP(1)

[This page left blank.]

Page 2 UP-15525 V1

COL(1)

NAME
col- filter reverse line-feeds

SYNOPSIS
col [-b] [-fJ [-x] [-p]

DESCRIPTION
The col command reads from the standard input and writes onto the standard
output. It performs the line overlays implied by reverse line feeds (ASCn code
ESC-7), and by forward and reverse half-line-feeds (ESC-9 and ESC-8). The col
command is particularly useful for filtering multicolumn output made with the .rt
command of nroff and output resulting from use of the tbl(1) preprocessor.

If the ·b option is given, col assumes that the output device in use is not capable
of backspacing. In this case, if two or more characters are to appear in the same
place, only the last one read is output.

Although col accepts half-line motions in its input, it normally does not emit
them on output. Instead, text that would appear between lines is moved to the
next lower full-line boundary. This treatment can be suppressed by the -f (fine)
option; in this case, the output from col may contain forward half-line-feeds
(ESC-9), but will still never contain either kind of reverse line motion.

Unless the -x option is given, col converts white space to tabs on output wherever
possible to shorten printing time.

The Ascn control characters SO (\011) and SI (\016) are assumed by col to
start and end text in an alternate character set. The character set to which each
input character belongs is remembered, and on output, SI and SO characters are
generated as appropriate to ensure that each character is printed in the correct
character set.

On input, the only control characters accepted are space, backspace, tab, return,
newline, SI, SO, VT (\013), and ESC followed by 7, 8, or 9. The vr character is
an alternate form of full reverse line-feed, included for compatibility with some
earlier programs of this type. All other non-printing characters are ignored.

Normally, col ignores any escape sequences unknown to it that are found in its
input; the -p option may be used to cause col to output these sequences as
regular characters, subject to overprinting from reverse line motions. The use of
this option is highly discouraged unless the user is fully aware of the textual
position of the escape sequences.

UP-15525 V1 Page 1

COL(1)

NOTES
The input format accepted by col matches the output produced by nroff with
either the -T37 or -TIp options. Use -1'37 (and the -f option of col) if the
ultimate disposition of the output of col is a device that can interpret half-line
motions; use -TIp otherwise.

BUGS
Cannot back up more than 128 lines.

Allows at most 800 characters, including backspaces, on a line.

Local vertical motions that result in backing up over the first line of the
document are ignored. As a result, the first line must not have any superscripts.

Page 2 UP-15525 V1

COMM(1)

NAME
comm - select or reject lines common to two sorted files

SYNOPSIS
comm [- [123]] file1 file2

DESCRIPTION
The comm command reads file1 and file2, which should be ordered in ASCII
collating sequence [see sort(1)], and produces a three-column output; lines only
infile1; lines only infile2; and lines in both files. The filename - means the
standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm -12
prints only the lines common to the two files; comm -23 prints only lines in the
first file but not in the second; comm -123 prints nothing.

SEE ALSO
cmp(1), diff(1), sort(1), uniq(1)

UP-15525 V1 Page 1

COMM(1)

[This page left blank.]

Page 2 UP-15525 V1

COPY(1)

NAME
copy - copy groups of files

SYNOPSIS
copy [option] ... source ... dest

DESCRIPTION
The copy command copies the contents of directories to another directory. It is
possible to copy whole file systems since directories are made when needed.

If files, directories, or special files do not exist at the destination, then they are
created with the same modes and flags as the source. In addition, the superuser
may set the user and group ID. The owner and mode are not changed if the
destination file exists. Note that there may be more than one source directory. If
so, the effect is the same as if the copy command had been issued for each source
directory with the same destination directory for each copy.

All options must be given as separate arguments, and they may appear in any
order. The options are:

-a Asks the user before attempting a copy. If the response does not begin
with a ''y,'' then a copy is not done. This option also sets the -ad option.

-I Uses links instead whenever they can be used. Otherwise, a copy is
done. Note that links are never done for special files or directories.

-0 Requires the destination file to be new. If not, then the copy command
does not change the destination file. The -0 flag is meaningless for
directories. For special files, an -0 flag is assumed (i.e., the destination
of a special file must not exist).

-0 If set, then every file copied has its owner and group set to those of the
source. If not set, then the file's owner is the user who invoked the
program.

-m If set, then every file copied has its modification time and access time
set to that of the source. If not set, then the modification time is set to
the time of the copy.

-r If set, then every directory is recursively examined as it is encountered.
If not set, then any directories that are found are ignored.

-ad Asks the user whether the -r flag applies when a directory is discovered.
If the answer does not begin with a y, then the directory is ignored.

UP-15525 V1 Page 1

COPY(1)

-v If the verbose option is set, messages are printed that reveal what the
program is doing.

source This may be a file, directory, or special file. It must exist. If it is not a
directory, then the results of the command are the same as for the cp
command.

dest The destination must be either a file or directory that is different from
the source.

If source and destination are anything but directories, then copy acts just like a cp
command If both are directories, then copy copies each file into the destination
directory according to the flags that have been set.

NOTES
Special device files can be copied. When they are copied, any data associated
with the specified device is not copied.

SEE ALSO
chmod(l), cp(l)

Page 2 UP-15525 V1

CP(1)

NAME
cp, In, mv - copy, link, or move files

SYNOPSIS
cp filel [file2 ...] target
In [·f] filel [file2 ...] target
mv [·f] filel [file2 ...] target

DESCRIPTION
Thefilel is copied (linked, moved) to target. Under no circumstance canfilel
and target be the same [take care when using sh(l) metacharacters]. If target is a
directory, then one or more files are copied (linked, moved) to that directory. If
target is a file, its contents are destroyed.

If mv or In determines that the mode of target forbids writing, it will print the
mode [see chmod (2)], ask for a response, and read the standard input for one
line. If the line begins with y, the mv (move) or In (link) occurs, if permissible; if
not, the command exits. For mv, when source parent directories or the target
directory is writable and has the sticky bit set, any of the following conditions
must be true:

the user must own the file
the user must own the directory
the file must be writable to the user
the user must be the superuser

When the ·f option is used or if the standard input is not a terminal, no questions
are asked and the mv or In is done.

Only mv allows filel to be a directory, in which case the directory rename occurs
only if the two directories have the same parent; filel is renamed target. If filel is
a file and target is a link to another file with links, the other links remain and
target becomes a new file.

When using cp, if target is not a file, a new file is created which has the same
mode as filel except that the sticky bit is not set unless you are superuser; the
owner and group of target are those of the user. If target is a file, copying a file
into target does not change its mode, owner, or group. The last modification time
of target (and last access time, if target did not exist) and the last access time of
filel are set to the time the copy was made. If target is a link to a file, all links
remain and the file is changed.

SEE ALSO
chmod(l), cpio(l), nn(l)

UP-15525 V1 Page 1

CP(1)

WARNINGS
The In command does not link across file systems. This restriction is necessary
because file systems can be added and removed When the destination of a copy
is a file that already exists, cp will try to overwrite it; this preserves the
destination file's ownership and so forth. If the destination file has an ownership
you do not want, remove the destination file before doing the copy.

BUGS
If filel and target lie on different file systems, mv must copy the file and delete
the original. In this case the owner name becomes that of the copying process
and any linking relationship with other files is lost.

Page 2 UP-15525 V1

CPIO(1)

NAME
cpio - copy file archives in and out

SYNOPSIS
cpio -0 [acBQvV] [-T blocksize in Kbytes] [-C bufsize] [[-0 file] [-M
message]]
cpio -i [BcdmQrtuvVfsSb6k] [-T blocksize in Kbytes] [-C bufsize] [[-I file]
[-M message]] [pattern ...]
cpio -p [adlmuvV] directory

DESCRIPTION
The command cpio -0 (copy out) reads the standard input to obtain a list of
pathnames and copies those files onto the standard output together with
pathname and status information. Output is padded to a 512-byte boundary by
default.

The command cpio -i (copy in) extracts files from the standard input, which is
assumed to be the product of a previous cpio -0. Only files with names that
match patterns are selected. The patterns are regular expressions given in the
filename-generating notation of sh(l). Inpatterns, metacharacters ?, *, and [...]
match the slash (I) character, and backslash (\) is an escape character. A!
meta character means not. (For example, the !abc* pattern would exclude all files
that begin with abc.)

Multiple patterns may be specified and if no patterns are specified, the default for
patterns is * (i.e., select all files). Eachpattern must be enclosed in double
quotes; otherwise, the name of a file in the current directory is used. Extracted
files are conditionally created and copied into the current directory tree based
upon the options described in the following text. The permissions of the files will
be those of the previous cpio -0 • The owner and group of the files will be that of
the current user unless the user is a superuser, which causes cpio to retain the
owner and group of the files of the previous cpio -0 •

NOTE: If cpio -i tries to create a file that already exists and the existing file is
the same age or newer, cpio will output a warning message and not replace the
file. (The -u option can be used to unconditionally overwrite the existing file.)

The command cpio -p (pass) reads the standard input to obtain a list of
pathnames of files that are conditionally created and copied into the destination
directory tree based upon the options described in the following paragraph.
Archives of text files created by cpio are portable between implementations of
UNIX System V.

UP-15525 V1 Page 1

CPIO(1)

The meanings of the available options are:

-a Reset access times of input files after they have been copied. Access times
are not reset for linked files when cpio -pia is specified.

-b Reverse the order of the bytes within each word. Use only with the-i
option.

-B Input/output is to be blocked 5120 bytes to the record. The default buffer
size is 512 bytes when this and the -C options are not used. (-B does not
apply to the pass option; -B is meaningful only with data directed to or
from a character-special device, e.g., /dev/rdsk/IDq15dt.)

-c Write header information in ASCn character form for portability. Always
use this option when origin and destination machines are different types.

-C bufsiu
Input/output is to be blocked bu/size bytes to the record, where bufsize is
replaced by a positive integer. The default buffer size is 512 bytes when
this and -B options are not used. (The -C option does not apply to the pass
option; -C is meaningful only with data directed to or from a character
special device, e.g., /dev/rmt/cOsO.)

-d The directories are to be created as needed.
-f Copy in allfiles except those in patterns. (See the paragraph on cpio -i for a

-I file
description of patterns.)

Read the contents of file as input. If file is a character-special device, when
the first medium is full, replace the medium and type a carriage return to
continue to the next medium. Use only with the -i option.

-k Attempt to skip corrupted file headers and I/O errors that may be
encountered. If you want to copy files from a medium that is corrupted or
out of sequence, this option lets you read only those files with good
headers. (For cpio archives that contain other cpio archives, if an error is
encountered, cpio may terminate prematurely. The cpio command will find
the next good header, which may be one for a smaller archive, and
terminates when the smaller archive's trailer is encountered.) Used only
with the -i option.

-I Whenever possible, link files rather than copy them. Usable only with the
-p option.

-m Retain previous file modification time. This option is ineffective on
directories that are being copied.

-Mmessage

Page 2

Define a message to use when switching media. When you use the -0 or -I
options and specify a character-special device, you can use this option to
define the message that is printed when you reach the end of the medium.

UP-i5525 Vi

CPIO(1)

One %d can be placed in the message to print the sequence number of the
next medium needed to continue.

-0 file
Direct the output of cpio to file. If file is a character-special device, when
the first medium is full, replace the medium and type a carriage return to
continue to the next medium. Use only with the -0 option.

-Q Input/output is to be blocked 65,536 bytes to the record. Works like the-B
option, with which it is mutually exclusive. The -Q option optimizes
quarter-inch tape access.

-r Interactively rename files. If the user types a null line, the file is skipped.
If the user types a ".", the original pathname will be copied. (Not available
with cpio -p.)

-s swap bytes within each half word. Use only with the -i option.
-s Swap half words within each word. Use only with the -i option.
-t Print a table of contents of the input. No files are created.
-T Input/output is blocked by an integer following T * 1024 bytes. Works like

the -B option with which it is mutually exclusive and allows random block
sizes in increments of 1024 bytes.

-u Copy Wlconditionally (normally, an older file will not replace a newer file
with the same name).

-v verbose; causes a list of filenames to be printed. When used with the -t
option, the table of contents looks like the output of an Is -I command [see
Is(I)].

-v SpecialVerbose: print a dot for each file seen. Useful to assure the user
that cpio is working without printing out all filenames.

-6 Process an old (i.e., UNIX System Sixth Edition format) file. Use only with
the -i option.

NOTE: The cpio command assumes 4-byte words.

If cpio reaches end of medium (end of a diskette for example) when writing to
(-0) or reading from (-i) a character-special device, and -0 and -I are not used,
cpio will print the message:

If you want to go on, type device/fi lename when ready.

To continue, you must replace the medium and type the character-special device
name (fdev/rdsk/fOqlSdt for example) and a carriage return. You may want to
continue by directing cpio to use a different device. For example, if you have two
floppy drives, you may want to switch between them so cpio can proceed while
you are changing the floppies. A carriage return alone causes the cpio process to
exit.

UP-15525 V1 Page 3

CPIO(1)

Internationalization
The cpio command can process files containing characters from supplementary
code sets. In pattern processing using metacharacters, matching is performed on
characters, not bytes.

The message with the -M option can include characters from supplementary code
sets.

EXAMPLES
The following examples show three uses of cpio.

When standard input is directed through a pipe to cpio -0, it groups the files so
they can be directed (» to a single file (•• /newfile). The -c option insures that
the file will be portable to other machines. Instead of Is(1), you could use
find (1), echo (1), cat(1), etc., to pipe a list of names to cpio. You could direct the
output to a device instead of a file.

Is I cpio -oc > . . /newfile

The command cpio -i uses the output file of cpio -0 (directed through a pipe with
cat in the example), extracts those files that match the patterns (memo/a!,
memo/b*), creates directories below the current directory as needed (-d option),
and places the files in the appropriate directories. The -c option is used when
the file is created with a portable header. If no patterns were given, all files from
newfile would be placed in the directory.

cat newfile I cpio -icd ''memo/al'' ''memo/b*''

The command cpio -p takes the filenames piped to it and copies or links (-I
option) those files to another directory on your machine (newdir in the example).
The -d option says to create directories as needed. The -m option says retain the
modification time. [It is important to use the -depth option offind(1) to generate
pathnames for cpio. This eliminates problems cpio could have trying to create
files under read only directories.]

find. -depth -print I cpio -pdImv newdir

NOTES
1) Pathnames are restricted to 256 characters.
2) Only the superuser can copy special files.
3) Blocks are reported in 512-byte quantities.
4) If a file has 000 permissions, contains more than a characters of data,

and the user is not root, the file will not be saved or restored.

Page 4 UP-15525 V1

CPIO(1)

SEE ALSO
cat(1), echo(1), find(1), Is(1), sh(1), tar(1)
cpio(4) in the Programmer's Reference Manual

(

UP-15525 V1 Page 5

CPIO(1)

[This page left blank.]

Page 6 UP-15525 V1

NAME
crontab - user crontab file

SYNOPSIS
erontab [file]
erontab -r
erontab -I

DESCRIPTION

CRONTAB(1)

The crontab command copies the specified file, or standard input if no file is
specified, into a directory that holds all users' crontabs. The -r option removes a
user's crontab from the crontab directory. The erontab -I lists the crontab file for
the invoking user.

Users are permitted to use crontab if their names appear in the file
/usr/lib/eroD/eron.allow. If that file does not exist, the file /usr/lib/eroD/eron.deny
is checked to determine if the user should be denied access to crontab. If neither
file exists, only root is allowed to submit a job. If eron.aUow exists and is empty,
no usage is permitted. If eron.allow exists, eron.deny is ignored. If eron.allow
does not exist and eron.deny exists but is empty, global usage is permitted. The
allow/deny files consist of one user name per line.

A crontab file consists of lines of six fields each. The fields are separated by
spaces or tabs. The first five are integer patterns that specify the following:

minute (0-59),
hour (0-23),
day of the month (1-31),
month of the year (1-12),
day of the week (0-6 with 0 = Sunday).

Each of these patterns may be either an asterisk (meaning all legal values) or a
list of elements separated by commas. An element is either a number or two
numbers separated by a minus sign (meaning an inclusive range). Note that the
specification of days may be made by two fields (day of the month and day of the
week). If both are specified as a list of elements, both are adhered to. For
example, 0 0 1,15 * 1 would run a command on the first and fifteenth of each
month, as well as on every Monday. To specify days by only one field, the other
field should be set to * (for example, 0 0 * * 1 would run a command only on
Mondays).

The sixth field of a line in a crontab file is a string that is executed by the shell at
the specified times. A percent character in this field (unless escaped by \) is

UP-15525 V1 Page 1

CRONTAB(1)

translated to a newline character. Only the first line (up to a % or end of line)
of the command field is executed by the shell. The other lines are made available
to the command as standard input.

The shell is invoked from your SHOME directory with an argO of she Users who
desire to have their .profile executed must explicitly do so in the aontab file. The
cron command supplies a default environment for every shell, defining HOME,
LOGNAME, SHELL(=/bin/sh), and
PATH(= :/bin:/usr/bin:/usr/locaJ/bin:/usr/lbin).

IT you do not redirect the standard output and standard error of your commands,
any generated output or errors are mailed to you.

FILES
/usr/lib/cron
/usr/spooVcron/crontabs
/usr/lib/cron/log
/usr/lib/cron/cron.allow
/usr/lib/cron/cron.deny

SEE ALSO
cron(lM), sh(l)

WARNINGS

main cron directory
spool area
accounting information
list of allowed users
list of denied users

IT you inadvertently enter the crontab command with no argument(s), do not
attempt to get out with a < Ctrl > d. This will cause all entries in your crontab
file to be removed. Instead, exit with a < Del> .

Page 2 UP-15525 V1

NAME
crypt - encode/decode

SYNOPSIS
crypt [password]
crypt [-k]

DESCRIPTION

CRVPT(1)

The crypt command reads from the standard input and writes on the standard
output. The password is a key that selects a particular transformation. If no
argument is given, crypt demands a key from the terminal and turns off printing
while the key is being typed in. If the -k option is used, crypt will use the key
assigned to the environment variable CRYPTKEY. The crypt command encrypts
and decrypts with the same key:

crypt key < clear > cypher
crypt key < cypher I pr

Files encrypted by crypt are compatible with those treated by the editors ed(1),
edit(1), ex(1), and vi (1) in encryption mode.

The security of encrypted files depends on three factors:
1. the fundamental method must be hard to solve
2. direct search of the key space must be infeasible
3. sneak paths by which keys or clear text can become visible must be

minimized.

The crypt command implements a one-rotor machine designed along the lines of
the German Enigma, but with a 256-element rotor. Methods of attack on such
machines are known, but not widely; moreover, the amount of work required is
likely to be large.

The transformation of a key into the internal settings of the machine is
deliberately designed to be expensive, i.e., to take a substantial fraction of a
second to compute. However, if keys are restricted to (say) three lowercase
letters, then encrypted files can be read by expending only a substantial fraction
of five minutes of machine time.

If the key is an argument to the crypt command, it is potentially visible to users
executingps(1) or a derivative. To minimjze this possibility, crypt takes care to
destroy any record of the key immediately upon entry. The choice of keys and
key security are the most vulnerable aspect of crypt.

UP-15525 V1 Page 1

CRYPT(1)

FILES
/dev/tty

SEE ALSO

for typed key

ed(l), edit(l), ex(l), makekey(l), ps(l), stty(l), vi(l)

WARNINGS
This command is provided with the Crypt Utilities, which is only available in the
United States. If two or more files encrypted with the same key are concatenated
and an attempt is made to decrypt the result, only the contents of the first of the
original files are decrypted correctly.

Page 2 UP-15525 V1

CUT(1}

NAME
cut - cut out selected fields of each line of a file

SYNOPSIS
cut -clist [file ...]
cut -flist [-d char] [-s] [file ...]

DESCRIPTION
Use cut to cut out columns from a table or fields from each line of a file; in data
base parlance, it implements the projection of a relation. The fields as specified
by list can be fixed length, i.e., character positions as on a punched card (-c
option), or the length can vary from line to line and be marked with a field
delimiter character like tab (-f option). The cut command can be used as a filter;
if no files are given, the standard input is used. In addition, a filename of -
explicitly refers to standard input.

The meanings of the options are:

list A comma-separated list of integer field numbers (in increasing order),
with optional- to indicate ranges [e.g., 1,4,7; 1-3,8; -5,10 (short for
1-5,10); or 3- (short for third through last field)].

-clist The list following -c (no space) specifies character positions (e.g., -c1-72
would pass the first 72 characters of each line).

-flist The list following -f is a list of fields assumed to be separated in the file
by a delimiter character (see -d); e.g., -f1,7 copies the first and seventh
field only. Lines with no field delimiters are passed through intact
(useful for table subheadings), unless -s is specified.

-dchar The character following -d is the field delimiter (-f option only). Default
is tab. Space or other characters with special meaning to the shell must
be quoted.

-s Suppresses lines with no delimiter characters in case of -f option.
Unless specified, lines with no delimiters are passed through untouched.

Either the -c or -f option must be specified.

Use grep(1) to make horizontal cuts (by context) through a file, or paste (1) to put
files together column-wise (i.e., horizontally). To reorder columns in a table, use
cut and paste.

UP-15525 V1 Page 1

CSH(1)

NAME
csh - invoke a shell command interpreter that uses C-Iike syntax

SYNOPSIS
csh [-cefinstvVxX] [arg ..•]

DESCRIPTION
The csh command language interpreter begins by executing commands from the
file .cshrc in the home directory of the invoker. If this is a login shell, then it also
executes commands from the file Jogin there. In the normal case, the shell then
begins reading commands from the terminal, prompting with %. Processing of
arguments and the use of the shell to process files containing command scripts
will be described later.

The shell then repeatedly performs the following actions: a line of command
input is read and broken into words. This sequence of words is placed on the
command history list and then parsed. Finally, each command in the current line
is executed.

When a login shell terminates, it executes commands from the file Jogout in the
user's home directory.

Lexical Structure
The shell splits input lines into words at blanks and tabs with the following
exceptions. The characters &, :, ;, <, >, (, and) form separate words. If
doubled (for example, &&, : :, < <, or > >) these character pairs form single
words. These parser metacharacters may be made part of other words, or you
can take away their special meaning by preceding them with \. A newline
preceded by a \ is equivalent to a blank.

In addition, strings enclosed in matched pairs of single or double quotations form
parts of a word; metacharacters in these strings, including blanks and tabs, do not
form separate words. The semantics of these quotations are described below.
Within pairs of \ or n characters, a newline preceded by a \ gives a true newline
character.

When the shell's input is not from the console, the character # introduces a
comment which continues to the end of the input line. It does not have this
special meaning when preceded by \ and placed inside the quotation marks ',',
and ".

Commands
A simple command is a sequence of words, the first of which specifies the
command to be executed. A simple command or a sequence of simple

UP-15525 V1 Page 1

CSH(1)

commands separated by I characters forms a pipeline. The output of each
command in a pipeline is connected to the input of the next. Sequences of
pipelines may be separated by a semicolon (;) and are then executed sequentially.
A sequence of pipeline commands may be executed without waiting for them to
terminate by following it with an &. Such a sequence is automatically prevented
from being terminated by a hangup signal; the nohup command need not be used.

Any of the above may be placed in parentheses to form a simple command,
which may be a component of a pipeline, etc. It is also possible to separate
pipelines with I I or && indicating, as in the C language, that the second is to be
executed only if the first fails or succeeds respectively. (See Expressions.)

Substitutions
The following sections describe the various transformations the shell performs on
the input in the order in which they occur.

History Substitutions
History substitutions can be used to reintroduce sequences of words from
previous commands, possibly performing modifications on these words. Thus,
history substitutions provide a generalization of a redo function.

History substitutions begin with the ! character and may begin anywhere in the
input stream if a history substitution is not already in progress. This! may be
preceded by a \ to prevent its special meaning; a ! is passed unchanged when it is
followed by a blank, tab, newline, =, or (. History substitutions also occur when
an input line begins with A. This special abbreviation will be described later.

Any input line that contains a history substitution is echoed on the terminal
before it is executed as it could have been typed without a history substitution.

Commands input from the terminal that consist of one or more words are saved
on the history list, the size of which is controlled by the history variable. The
previous command is always retained. Commands are numbered sequentially
from 1.

For example, consider the following output from the history command:

9 write michael
10 ex write.c
11 cat oldwrite.c
12 diff *write.c

The commands are shown with their event numbers. It is not usually necessary to
use event numbers, but the current event number can be made part of the
prompt by placing a ! in the prompt string.

Page 2 UP-15525 V1

CSH(1)

With the current event 13, its possible to refer to previous events by event
number 111, relatively as in !-2 (referring to the same event), by a prefix of a
command word as in !d for event 12 or !w for event 9, or by a string contained in
a word in the command as in !?mic? also referring to event 9. These forms,
without further modification, simply re-introduce the words of the specified
events, each separated by a single blank. As a special case, !! refers to the
previous command; so the !! command alone is essentially a redo. The form !#
references the current command (the one being typed). It allows a word to be
selected from further left in the line, to avoid retyping a long name, as in !#:1.

To select words from an event, we can follow the event specification by using a
colon (:) and a designator for the desired words. The words of an input line are
numbered from 0, the first (usually command) word being 0, the second word
(first argument) being 1, and so on. The basic word designators are as follows:

Designator

o
n

$

%

x-y

-y

*
x*

x-

Description

First (command) word

nth argument

First argument, i.e., 1

Last argument

Word matched by (immediately preceding) 1s 1 search

Range of words

Abbreviates O-y

Abbreviates A -$, or nothing if only one word in event

Abbreviates x-$

Like x * but omitting word $

The colon separating the event specification from the word designator can be
omitted if the argument selector begins with a , $, *, - or %. After the optional
word designator, a sequence of modifiers can be placed, each preceded by a :.
The following modifiers are defined:

Modifier

h

r

UP-15525 V1

Description

Removes a trailing pathname component

Removes a trailing.xxx component

Page 3

CSH(1)

slllrl

t

&

g

P

q

x

Substitutes I for r

Removes all leading pathname components

Repeats the previous substitution

Applies the change globally, prefixing the above

Prints the new command but does not execute it

Quotes the substituted words, preventing substitutions

Like q but breaks into words at blanks, tabs, and newlines

Unless preceded by a g, the modification is applied only to the first modifiable
word. In any case, it is an error for no word to be applicable.

The left sides of substitutions are not regular expressions in the sense of the
editors but rather strings. Any character may be used as the delimiter in place of
I; a \ quotes the delimiter into the I and r strings. The character & in the right
side is replaced by the text from the left. A \ quotes & also. A null I uses the
previous string either from a I or from a contextual scan string s in l?s? The
trailing delimiter in the substitution may be omitted if a newline follows
immediately as may the trailing ? in a contextual scan.

A history reference may be given without an event specification, e.g., 1$. In this
case the reference is to the previous command unless a previous history reference
occurred on the same line, in which case this form repeats the previous
reference. Thus, !?foo? '" !$ gives the first and last arguments from the command
matching ?foo?

A special abbreviation of a history reference occurs when the first nonblank
character of an input line is a "'. This is equivalent to !:s'" , providing a
convenient shorthand for substitutions on the text of the previous line. Thus,
'" lb '" lib fixes the spelling of lib in the previous command. Finally, a history
substitution may be surrounded with { and } if necessary to insulate it from the
characters that follow. Thus, after Is -ld - paul we might do !{l}a to do Is -ld
- paula, while !la would look for a command starting lao

Quotations With ' and"

The quotation of strings by' and " can be used to prevent all or some of the
remaining substitutions. Strings enclosed in 's are prevented from any further
interpretation. Strings enclosed in " are variable, and command expansion may
occur.

Page 4 UP-15525 V1

CSH(1)

In both cases, the resulting text becomes (all or part of) a single word; only in
one special case (see Command Substitution below) does a " quoted string yield
parts of more than one word; quoted strings never do.

Alias Substitution
The shell maintains a list of aliases that can be established, displayed, and
modified by the alias and unalias commands. After a command line is scanned,
it is parsed into distinct commands, and the first word of each command, left-to
right, is checked to see if it has an alias. If it does, then the text which is the
alias for that command is reread with the history mechanism available as though
that command were the previous input line. The resulting words replace the
command and argument list. If no reference is made to the history list, then the
argument list is left unchanged.

Thus, if the alias for Is is Is -1, the command '1s /usr" would map to '18 -l/usr".
Similarly if the alias for lookup was "grep !" /etc/passwd", then '1ookup bill"
would map to "grep bill/etc/passwd".

If an alias is found, the word transformation of the input text is performed and
the aliasing process begins again on the reformed input line. Looping is
prevented if the first word of the new text is the same as the old by flagging it to
prevent further aliasing. Other loops are detected and cause an error.

Note that the mechanism allows aliases to introduce parser metasyntax. Thus,
you can alias print" 'pr \! * I lpr'" to make a command that paginates its
arguments to the lineprinter.

Variable Substitution
The shell maintains a set of variables, each of which has as its value zero or more
words. Some of these variables are set by the shell or referred to by it. For
instance, the argv variable is an image of the shell's argument list, and words of
this variable's value are referred to in special ways.

The values of variables may be displayed and changed by using the set and unset
commands. Of the variables referred to by the shell, a number are toggles; the
shell does not care what their value is, only whether they are set or not. For
instance, the verbose variable is a toggle that causes command input to be
echoed. The setting of this variable results from the -v command line option.

Other operations treat variables numerically. The at-sign (@) command permits
numeric calculations to be performed and the result assigned to a variable.
However, variable values are always represented as (zero or more) strings. For
the purposes of numeric operations, the null string is considered to be zero, and
the second and subsequent words of multiword values are ignored.

UP-15525 V1 Page 5

CSH(1)

After the input line is aliased and parsed, and before each command is executed,
variable substitution is performed, keyed by dollar sign ($) characters. This
expansion can be prevented by preceding the dollar sign with a backslash (\)
except within double quotation marks (") where it always occurs, and within
single quotation marks (') where it never occurs. Strings quoted by back
quotation marks (,) are interpreted later (see "Command Substitution" in this
manpage) so dollar sign substitution does not occur there until later, if at all. A
dollar sign is passed unchanged if followed by a blank, tab, or end-of-line.

Input and output redirections are recognized before variable expansion and are
expanded separately. Otherwise, the command name and entire argument list are
expanded together. It is thus possible for the first (command) word to generate
more than one word, the first of which becomes the command name, and the rest
of which become arguments.

Unless enclosed in double quotation marks or given the :q modifier, the results of
variable substitution may eventually be command and filename substituted.
Within double quotation marks (") a variable whose value consists of multiple
words expands to a portion of a single word, with the words of the variable's
value separated by blanks. When the :q modifier is applied to a substitution, the
variable expands to multiple words with each word separated by a blank and
quoted to prevent later command or filename substitution.

The following sequences are provided for introducing variable values into the
shell input. Except as noted, it is an error to reference a variable that is not set.

$name
${name}

Are replaced by the words of the value of variable name, each separated by
a blank. Braces insulate name from following characters which would
otherwise be part of it. Shell variables have names consisting of up to 20
letters, digits, and underscores.

If name is not a shell variable, but is set in the environment, then that value
is returned. However, modifiers and the other forms shown in the
following list are not available in this case.

$name [selector]
${name[selector]}

Page 6

May be used to select only some of the words from the value of name. The
selector is subjected to $ substitution and may consist of a single number or
two numbers separated by a -. The first word of a variable value is
numbered 1. If the first number of a range is omitted, it defaults to 1. If
the last member of a range is omitted, it defaults to $#name.

UP-15525 V1

CSH(1)

The selector * selects all words. It is not an error for a range to be empty if the
second argument is omitted or in range.

$#name
${#name}

Gives the number of words in the variable. This is useful for later use in a
[selector].

$0 Substitutes the name of the file from which command input is being read.
An error occurs if the name is not known.

$number
${number}

Equivalent to $tugv[number].

$* Equivalent to $tugv[*].

The modifiers :h, :t, :r, :q and :x may be applied to the substitutions above as may
:gh, :gt and :gr. If braces { } appear in the command form, then the modifiers
must appear within the braces. Only one : modifier is allowed on each $
expansion.

The following substitutions may not be modified with : modifiers.

$?name
${?name}

Substitutes the string 1 if name is set and 0 if it is not.

$?O Substitutes 1 if the current input filename is known and 0 if it is not.

$$ Substitutes the (decimal) process number of the (parent) shell.

Command and Filename Substitution
Command and filename substitution are applied selectively to the arguments of
built-in commands. This means that portions of expressions that are not
evaluated are not subjected to these expansions. For commands that are not
internal to the shell, the command name is substituted separately from the
argument list. This occurs very late, after input-output redirection is performed,
and in a child of the main shell.

Command Substitution
Command substitution is indicated by a command enclosed in back quotation
marks. The output from such a command is normally broken into separate words
at blanks, tabs, and newlines, with null words being discarded. This text then
replaces the original string. Within double quotation marks, only newlines force
new words; blanks and tabs are preserved

UP-15525 V1 Page 7

CSH(1)

In any case, the single final newline does not force a new word. Note that it is
thus possible for a command substitution to yield only part of a word, even if the
command displays a complete line.

Filename Substitution
If a word contains any *, ?, [or { characters, or begins with the character - ,
then that word is a candidate for filename substitution, also known as globbing.
This word is then regarded as a pattern and is replaced with an alphabetically
sorted list of filenames that match the pattern. In a list of words specifying
filename substitution, it is an error for no pattern to match an existing filename,
but it is not required for each pattern to match. Only the metacharacters *, ?,
and [imply pattern matching; the characters - and { are more akin to
abbreviations.

In matching filenames, the . character at the beginning of a filename or
immediately following a I, as well as the character I, must be matched explicitly.
The * character matches any string of characters, including the null string. The?
character matches any single character. The sequence [...] matches anyone of
the characters enclosed. Within [...], a pair of characters separated by -
matches any character lexically between the two.

The - character at the beginning of a filename is used to refer to home
directories. Standing alone it expands to the invoker's home directory as
reflected in the value of the variable home. When followed by a name consisting
of letters, digits, and - characters, the shell searches for a user with that name
and substitutes the user's home directory; thus, - ken might expand to lusrlken
and -kenlchmach to lusrlkenlchmach. If the - character is followed by a
character other than a letter or I, or does not appear at the beginning of a word,
it is left unchanged.

The metanotation a{b,c,d}e is a shorthand for abe ace ade. Left to right order is
preserved, with results of matches being sorted separately at a low level to
preserve this order. This construct may be nested. Thus, - source/s1!{ oldls,ls}.c
expands to lusr/source/s1!oldls.c lusr/source!s1!ls.c, whether or not these files
exist, without any chance of error if the home directory for source is lusr/source.
Similarly . . /{ memo, *box} might expand to . . /memo .. !box . . /mbox. (Note that
memo was not sorted with the results of matching *box.) As a special case {, },
and {} are passed unchanged.

Input/Output
The standard input and standard output of a command may be redirected with
the following syntax:

Page 8 UP-15525 V1

CSH{1}

< name
Opens file name (which is first variable, command and filename expanded)
as the standard input.

< < word
Reads the shell input up to a line which is identical to word. The word is
not subjected to variable, filename, or command substitution, and each
input line is compared to word before any substitutions are made on this
input line. Unless a quoting backslash, double or single quotation mark, or
a back quotation mark appears in word, variable and command substitution
is performed on the intervening lines, allowing \ to quote $, \ and .
Commands that are substituted have all blanks, tabs, and new lines
preserved except for the final newline, which is dropped. The resulting text
is placed in an anonymous temporary file, which is given to the command
as standard input.

> name
>! name
>&name
>&! name

The file name is used as standard output. If the file does not exist, then it
is created; if the file exists, it is truncated, and its previous contents are
lost.

If the variable noclobber is set, then the file must not already exist or it
must be a character special file (e.g., a terminal or I dev/null), or an error
results. This helps prevent accidental destruction of files. In this case, the
! forms can be used to suppress this check.

The forms involving & route the diagnostic output into the specified file as
well as the standard output. The name is expanded in the same way as <
input filenames are.

> > name
> >&name
> >! name
> >&!name

Uses file name as standard output like > but places output at the end of
the file. If the variable noclobber is set, then it is an error for the file not to
exist unless one of the ! forms is given. Otherwise, it is similar to >.

If a command is run detached (followed by &), then the default standard input
for the command is the empty file Idev/null. Otherwise, the command receives
the environment in which the shell was invoked as modified by the input-output

UP-15525 V1 Page 9

CSH(1)

parameters and the presence of the command in a pipeline. Thus, unlike some
previous shells, commands run from a file of shell commands have no access to
the text of the commands by default; rather they receive the original standard
input of the shell. The < < mechanism should be used to present inIine data.
This permits shell command scripts to function as components of pipelines and
allows the shell to block read its input.

Diagnostic output may be directed through a pipe with the standard output.
Simply use the form I & rather than just I.

Expressions
A number of the built-in commands (to be described later) take expressions, in
which the operators are similar to those of C, with the same precedence. These
expressions appear in the @, exit, if, and while commands. The following
operators are available:

I I && I A & = = != < = > = < > < < > >
+ -*/%!..., ()

Here the precedence increases to the right, with the following operators forming
groups at the same level:

= = and!=
< =, > =, <, and >
< < and > >
+ and-
* / and %

The = = and ! = operators compare their arguments as strings; all others
operate on numbers. Strings that begin with 0 are considered octal numbers.
Null or missing arguments are considered o. The results of all expressions are
strings, which represent decimal numbers. It is important to note that no two
components of an expression can appear in the same word; they should be
surrounded by spaces except when adjacent to components of expressions which
are syntactically significant to the parser [& I < > ()].

Also available in expressions as primitive operands are command executions
enclosed in { and } and file enquiries of the form -/ name, where / is one of the
following characters:

Page 10

r
w
x
e
o

read access
write access
execute access
existence
ownership

UP-15525 V1

CSH(1)

z zero size
f plain file
d dUrectory

The specified name is command- and filename-expanded, then tested to see if it
has the specified relationship to the real user. If the file does not exist or is
inaccessible, then all enquiries return false, i.e., o. Command executions succeed,
returning true, i.e., 1, if the command exits with status 0; otherwise, they fail,
returning false, i.e., o. If more detailed status information is required, then the
command should be executed outside of an expression and the variable status
examined.

Control Flow
The shell contains a number of commands that can be used to control command
files (shell saipts) and, in limited but useful ways, terminal input. These
commands all operate by forcing the shell to reread or skip in its input and, due
to the implementation, restrict the placement of some of the commands.

The foreach, switch, and while statements, as well as the if-then-else form of the if
statement, require that the major keywords appear in a single command line.

If the shell's input is not seekable, the shell buffers up input whenever a loop is
being read and performs seeks in this internal buffer to accomplish the rereading
implied by the loop. (To the extent that this allows, backward goto commands
will succeed on nonseekable inputs.)

Built-In Commands
Built-in commands are executed within the shell. If a built-in command occurs as
any component of a pipeline except the last, then it is executed in a subshell.
The following list desaibes the syntax and function of the built-in commands:

alias
alias name
alias name word/ist

break

The first form prints all aliases. The second form prints the alias for name.
The final form assigns the specified wordlist as the alias of name; word/ist is
command and filename substituted. The name is not allowed to be alias or
una/ias.

Causes execution to resume after the end of the nearest enclosingforeach
or while statement. The remaining commands on the current line are
executed. Multilevel breaks are thus possible by writing them all on one
line.

UP-15525 V1 Page 11

CSH(1)

breaksw
Causes a break from a switch, resuming after the endsw.

case label'
A label in a switch statement as discussed below.

cd
cd name
chdir
chdirname

Changes the shell's working directory to directory name. If no argument is
given, then it changes to the home directory of the user. If name is not
found as a subdirectory of the current directory (and does not begin with f,
.f, or .. /), then each component of the variable cdpath is checked to see if
it has a subdirectory name. Finally, if all else fails but name is a shell
variable whose value begins with f, then this is tried to see if it is a
directory.

continue
Continues execution of the nearest enclosing while or foreach. The rest of
the commands on the current line are executed.

default:
Labels the default case in a switch statement. The default should come
after all case labels.

echo wordlist
The specified words are written to the shell's standard output. A \c causes
the echo to complete without printing a newline. A \n in wordlist causes a
newline to be printed. Otherwise, the words are echoed, separated by
spaces.

else
end
endif
endsw

See the following descriptions of the foreach, if, switch, and while
statements.

exec command
The specified command is executed in place of the current shell.

exit
exit (expr)

The shell exits either with the value of the status variable (first form) or

Page 12 UP-15525 V1

CSH(1)

with the value of the specified expr (second form).

foreach name (wordlist)

end
The variable name is successively set to each member of wordlist and the
sequence of commands between this command and the matching end are
executed. (Both foreach and end must appear alone on separate lines.)

The built-in command continue may be used to continue the loop
prematurely, and the built-in command break may be used to terminate it
prematurely. When this command is read from the terminal, the loop is
read up once prompting with ? before any statements in the loop are
executed.

glob wordlist
Like echo but no \ escapes are recognized and words are delimited by null
characters in the output. Useful for programs that want to use the shell to
filename-expand a list of words.

goto word
The specified word is filename-and-command expanded to yield a string of
the form label. The shell rewinds its input as much as possible and
searches for a line of the form label: possibly preceded by blanks or tabs.
Execution continues after the specified line.

history
Displays the history event list.

if (expr) command
If the specified expression evaluates true, then the single command with
arguments is executed. Variable substitution on command happens early,
at the same time it does for the rest of the if command. Command must be
a simple command, not a pipeline, a command list, or a parenthesized
command list. Input/output redirection occurs even if expr is false, when
command is not executed.

if (expr) then

else if (expr2) then

else

UP-15525 V1 Page 13

CSH(1)

endif
H the specified expr is true, then the commands to the first else are
executed; else if expr2 is true, then the commands to the second else are
executed, etc. Any number of else-if pairs are possible; only one endif is
needed.

The else part is likewise optional. (The words else and endif must appear
at the beginning of input lines; the if must appear alone on its input line or
after an else.)

logout
Terminates a login shell. The only way to log out if ignoreeof is set.

nice
nice + nwnber
nice command
nice + nwnber command

The first form sets the nice for this shell to 4. The second form sets the
nice to the given number. The final two forms run command at priority 4
and nwnber respectively. The superuser may specify negative niceness by
using "nice -number " The command is always executed in a subshell,
and the restrictions placed on commands in simple if statements apply.

nohup
nohup command

The first form can be used in shell scripts to cause hangups to be ignored
for the remainder of the script. The second form causes the specified
command to be run with hangups ignored. Unless the shell is running
detached, nohup has no effect. All processes detached with & are
automatically run with nohup. (Thus nohup is not really needed.)

onintr
onintr -
onintr label

Page 14

Controls the action of the shell on interrupts. The first form restores the
default action of the shell on interrupts: to terminate shell scripts or to
return to the terminal command input level. The second form onintr -
causes all interrupts to be ignored. The final form causes the shell to
execute a goto label when an interrupt is received or a child process
terminates because it was interrupted.

In any case, if the shell is running detached and interrupts are being
ignored, all forms of onintr have no meaning, and interrupts continue to be
ignored by the shell and all invoked commands.

UP-15525 V1

CSH(1)

rehash
Causes the internal hash table of the directories' contents in the path
variable to be recomputed. This is needed if new commands are added to
directories in the path while you are logged in. This should be necessary
only if you add commands to one of your own directories or if a systems
programmer changes the contents of one of the system directories.

repeat count command

set

The specified command, which is subject to the same restrictions as the
command in the one line if statement above, is executed count times. I/O
redirection occurs exactly once, even if count is o.

set name
set name = word
set name [index] = word
set name = (wordlist)

The first form of the command shows the value of all shell variables.
Variables that have other than a single word as value print as a
parenthesized word list. The second form sets name to the null string. The
third form sets name to the single word. The fourth form sets the index
component of name to word; this component must already exist. The final
form sets name to the list of words in wordlist. In all cases the value is
command- and filename-expanded. These arguments may be repeated to
set multiple values in a single set command. Note, however, that variable
expansion happens for all arguments before any setting occurs.

setenv name value

shift

Sets the value of the environment variable name to be value, a single string.
Useful environment variables are TERM , the type of your terminal and
SHELL, the shell you are using.

shift variable
The members of argv are shifted to the left, discarding argv[1]. It is an
error for argv not to be set or to have less than one word as value. The
second form performs the same function on the specified variable.

source name
The shell reads commands from name. source commands may be nested; if
they are nested too deeply, the shell may run out of file descriptors. An
error in a source at any level terminates all nested source commands. Input
during source commands is never placed on the history list.

UP-15525 V1 Page 15

CSH(1)

switch (string)
case stri:

breaksw

default:

breaksw
endsw

time

Each case label is successively matched against the specified string that is
first command- and filename-expanded. The file metacharacters *, ?, and [
...] may be used in the case labels, which are variable-expanded. If none
of the labels match before a default label is found, then the execution
begins after the default label. Each case label and the default label must
appear at the beginning of a line. The command breaksw causes execution
to continue after the endsw. Otherwise control may fall through case labels
and default labels, as in C. If no label matches and there is no default,
execution continues after the endsw .

time command
With no argument, a summary of time used by this shell and its children is
printed. If arguments are given, the specified simple command is timed,
and a time summary as described under the time variable is printed. If
necessary, an extra shell is created to print the time statistic when the
command completes.

umask
umask value

The file creation mask is displayed (first form) or set to the specified value
(second form). The mask is given in octal. Common values for the mask
are OO~ giving all access to the group and read and execute access to
others; or 022, giving all access except no write access for users in the
group or others.

uoalias pattern
All aliases whose names match the specified pattern are discarded. Thus,
all aliases are removed by unalias *. It is not an error for nothing to match
the unalias pattern.

uohash

Page 16

Use of the internal hash table to speed location of executed programs is
disabled.

UP-15525 V1

CSH(1)

unset pattern

wait

All variables whose names match the specified pattern are removed. Thus,
all variables are removed by Wlset *; this has noticeably undesirable side
effects. It is not an error for nothing to be Wlset.

All child processes are waited for. It the shell is interactive, then an
interrupt can disrupt the wait, at which time the shell prints names and
process numbers of all children known to be outstanding.

wbile(expr)

end

@

While the specified expression evaluates nonzero, the commands between
the while and the matching end are evaluated. Use break and continue to
terminate or continue the loop prematurely. (The while and end must
appear alone on their input lines.) Prompting occurs here the first time
through the loop as for the foreach statement if the input is a terminal.

@name = expr
@ name [index] = expr

The first form prints the values of all shell variables. The second form sets
the specified name to the value of expr. If the expression contains <, >,
& or I, then at least this part of the expression must be placed within ().
The third form assigns the value of expr to the index argument of name.
Both name and its index component must already exist.

Assignment operators, such as * = and + =, are available as in C. The
space separating the name from the assignment operator is optional.
Spaces are mandatory in separating components of expr which would
otherwise be single words.

Special postfix + + and - - operators increment and decrement name
respectively, i.e., @ i + + .

Predefined Variables
The following variables have special meaning to the shell. Of these, argv, child,
home, path, prompt, shell, and status are always set by the sheIl. Except for child
and status, this setting occurs only at initialization; these variables will not then be
modified unless done explicitly by the user.

UP-15525 V1 Page 17

CSH(1)

Variable

argv

cdpatb

child

echo

histchars

history

home

ignoreeof

mail

Page 18

Description

Set to the arguments of the shell; from this variable, positional
parameters are substituted, i.e., $1 is replaced by $tugv[1].

Gives a list of alternate directories searched to find
subdirectories in cd commands.

The process number printed when the last command was
forked with &. This variable is unset when this process
terminates.

Set when the -x command line option is given. Causes each
command and its arguments to be echoed just before it is
executed. For non built-in commands, all expansions occur
before echoing. Built-in commands are echoed before
command and filename substitution since these substitutions are
then done selectively.

Can be assigned a two-character string. The first character is
used as a history character in place of !; the second character is
used in place of the " substitution mechanism. For example,
set histchars = ,j will cause the history characters to be comma
and semicolon.

Can be given a numeric value to control the size of the history
list. Any command that has been referenced in this many
events will not be discarded. A history that is too large may run
the shell out of memory. The last executed command is always
saved on the history list.

The home directory of the user, initialized from the
environment. The filename expansion of - refers to this
variable.

If set, the shell ignores the end-of-file from input devices that
are terminals. This prevents a shell from accidentally being
terminated by typing CTRL-D.

The files where the shell checks for mail. This is done after
each command completion results in a prompt, if a specified
interval has elapsed The shell sends the message "You have
new mail" if the file exists with an access time not greater than
its modify time. If the first word of the value of mail is
numeri<; it specifies a different mail checking interval, in

UP-15525 V1

noclobber

noglob

nomatch

path

prompt

shell

status

UP-15525 V1

CSH(1)

seconds, than the default, which is 10 minutes. If multiple mail
files are specified, then the shell sends the message "New mail
in name" when there is mail in the file name.

Restrictions are placed on output redirection to insure that files
are not accidentally destroyed and that > > redirections refer
to existing files.

If set, filename expansion is inhibited. This is most useful in
shell scripts that are not dealing with filenames or after a list of
filenames has been obtained and further expansions are not
desirable.

If set, it is not an error for a filename expansion to not match
any existing files; rather, the primitive pattern is returned. It is
still an error for the primitive pattern to be malformed, i.e.,
echo [still gives an error.

Each word of the path variable specifies a directory in which
commands are to be sought for execution. A null word
specifies the current directory. If there is no path variable, then
only full pathnames will execute. The usual search path is /bin,
lusr/bin, and ., but this may vary from system to system. For
the superuser, the default search path is letc, /bin and lusr/bin.
A shell that is given neither the -c nor the -t option will
normally hash the contents of the directories in the path
variable after reading .cshrc and each time the path variable is
reset. If new commands are added to these directories while
the shell is active, it may be necessary to give the rehash, or the
commands may not be found.

The string that is printed before each command is read from an
interactive terminal input. If a ! appears in the string it will be
replaced by the current event number unless a preceding \ is
given. The default is % or # for the superuser.

The file in which the shell resides. This is used in forking sheIls
to interpret files that have execute bits set but are not
executable by the system. (See the section "Non built-In
Command Execution" in this manpage.) The shell is initialized
to the system-dependent home of the shell.

The status returned by the last command If it terminated
abnormally, then 0200 is added to the status. Abnormal

Page 19

CSH(1)

time

verbose

termination results in a core dump. Built-in commands that fail
return exit status 1; all other built-in commands set status O.

Controls automatic timing of commands. If set, then any
command that takes more than this many CPU seconds will
cause a line giving user, system, and real times and a utilization
percentage (ratio of user plus system times to real time) to be
printed when it terminates.

Set by the -v command line option, causes the words of each
command to be printed after history substitution.

The shell copies the environment variable PATH into the variable path and
copies the value back into the environment whenever path is set. Thus, it is not
necessary to worry about its setting other than in the file .cshrc as inferior csh
processes will import the definition of path from the environment.

Nonbuilt-In Command Execution
When a command to be executed is found to not be a built-in command, the shell
attempts to execute the command via exec(S). Each word in the variable path
names a directory from which the shell will attempt to execute the command. If
it is given neither a -c nor a -t option, the shell will hash the names in these
directories into an internal table so that it will only try an exec in a directory if
there is a possibility that the command resides there. This greatly speeds
command location when a large number of directories are present in the search
path. If this mechanism has been turned off (via unhash) or if the shell was given
a -c or -t argument, and in any case for each directory component of path which
does not begin with a /, the shell concatenates with the given command name to
form a pathname of a file which it then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus (cd ; pwd) ;
pwd prints the home directory, leaving you where you were (printing this after
the home directory), while cd ; pwd leaves you in the home directory.
Parenthesized commands are most often used to prevent cd from affecting the
current shell.

H the file has execute permissions but is not an executable binary to the system,
then it is assumed to be a file containing shell commands and a new shell is
spawned to read it.

H there is an alias for shell, then the words of the alias will be prepended to the
argument list to form the shell command. The first word of the alias should be
the full pathname of the shell (e.g., $shell). Note that this is a special, late
occurring case of alias substitution and only allows words to be prepended to the

Page 20 UP-15525 V1

CSH(1)

argument list without modification.

Argument List Processing
If argument 0 to the shell is -, then this is a login shell. The flag arguments are
interpreted as follows:

Flag Description

-c Reads commands from the (single) following argument which must be
present. Any remaining arguments are placed in argv.

-e Causes the shell to exit if any invoked command terminates abnormally or
yields a nonzero exit status.

-f Lets the shell start faster because it will neither search for nor execute
commands from the file .cshrc in the user's home directory.

-i Makes the shell interactive. The shell prompts for its top-level input even
if it appears not to be a terminal. Shells are interactive without this
option if their inputs and outputs are terminals.

-n Causes commands to be parsed but not executed. This may aid in
syntactic checking of shell scripts.

-s Causes command input to be taken from the standard input.

-t Reads and executes a single line of input. A backslash (\) can be used to
escape the newline at the end of this line and continue onto another line.

-v Causes the verbose variable to be set, with the effect that command input
is echoed after history substitution.

-x Causes the echo variable to be set so that commands are echoed
immediately before execution.

-V Causes the verbose variable to be set even before .cshrc is executed.

-x Causes the echo variable to be set even before .cshrc is executed.

After processing of flag arguments, if arguments remain but none of the -c, -i, -s,
or -t options were given, the first argument is taken as the name of a file of
commands to be executed. The shell opens this file and saves its name for
possible resubstitution by $0. Since on a typical system most shell scripts are
written for the standard shell [see sh(l)], the C shell executes such a standard
shell if the first character of a script is not a #: that is, if the script does not start
with a comment. Remaining arguments initialize the variable argv.

UP-15525 V1 Page 21

CSH(1)

Signal Handling
The shell normally ignores quit signals. The interrupt and quit signals are ignored
for an invoked command if the command is followed by &; otherwise, the signals
have the values that the shell inherited from its parent. The shell's handling of
interrupts can be controlled by onintr. Login shells catch the tenninate signal;
otherwise, this signal is passed on to children from the state in the shell's parent.
In no case are interrupts allowed when a login shell is reading the file logout

NEW ENVIRONMENT VARIABLES
The new environment variable described in this section has been added to the C
shell. The C shell will behave normally for those users who do not set
DOS PATH. Users who want to execute DOS programs directly from the C shell,
that is, bypassing the normal DOS bootup that occurs when running vpix, should
set DOSPATH to include those directories in PATH that contain DOS
executables.

DOSPATH is a string with the same format as PATH; it contains a subset of the
list of directories from PATH. When searching a directory in PATH for a
program, the C shell determines whether that directory is also in DOSPATH. If
it is not, the C shell acts as usual. If it is, the C shell looks first for the command
with the suffix .com, then .exe, then .bat, and finally, for the command without
any suffix. Whenever the result of a path search gives a file with one of these
DOS suffixes, the shell runs the vpix program via a standard search path and
adds arguments -c and the full pathname of the DOS program (including the
suffix).

For example, if PATH is set to :/bin:/usr/bin, DOSPATH is set to ., the current
directory is /usr/john/dosbin, and there is a DOS program named abc.comi in the
current directory, then typing abc to the C shell will cause the command vpix -c
/usr/john/dosbin/abc.com to be executed, which will run the DOS program
abc. com without the normal vpix DOS bootup.

FILES
.... /.cshrc
.... /.login
.... /.logout
/binIsh
/tmp/sh*
/dev/null
/etc/passwd
/etc/cshrc

Page 22

Read by each shell at the beginning of execution
Read by login shell after .cshrc at login
Read by login shell at logout
Shell for scripts not starting with a #
Temporary file for < <
Source of empty file
Source of home directories for name
Default file of automatically invoked commands

UP-15525 V1

CSH(1)

NOTES
Words can be no longer than 512 characters. The number of arguments to a
command which involves filename expansion is limited to 1/6 number of
characters allowed in an argument list, which is 5120 less the characters in the
environment. Also, command substitutions may substitute no more characters
than are allowed in an argument list.

To detect looping, the shell restricts the number of alias substitutions on a single
line to 20.

Built-in control structure commands like foreach and while cannot be used with
the pipe symbol (I), ampersand (&), or semicolon (;).

Commands within loops prompted for by ? are not placed in the history list.

It is not possible to use the colon (:) modifiers on the output of command
substitutions.

The csh interpreter attempts to import and export the PATH variable for use
with regular shell scripts. This only works for simple cases, where the PATH
contains no command characters.

This version of csh does not support or use the process control features of the
4th Berkeley Distribution.

You can modify the list of commands that csh automatically invokes by editing
the letcldefault/.cshrc file. For example, if you want to automatically assign the
alias h to the history command, add the following line to the /etc/default/.cshrc
file using the computer editor of your choice:

alias history h

SEE ALSO
umask(l), wait(l)
access(2), exec(2), fork(2), pipe(2), ssignal(3C), a.out(4), environ(5) in the
Programmer's Reference Manual

UP-15525 V1 Page 23

CSH(1)

[This page left blank.]

Page 24 UP-15525 V1

CSPUT(1)

NAME
csplit - context split

SYNOPSIS
csplit [-s] [-k] [-f prefix] file arg1 [... argn]

DESCRIPTION
The esplit command reads file and separates it into n + 1 sections, defined by the
arguments argi. .. argn. By default the sections are placed in nOD ... xxn (n
may not be greater than 99). These sections get the following pieces offile:

00: From the start of file up to (but not including) the line referenced by
argi.

01: From the line referenced by arg1 up to the line referenced by arg2.

n + 1: From the line referenced by argn to the end of file.

If the file argument is a -, then standard input is used.

The options to esplit are:

-s The esplit command normally prints the character counts for
each file created. If the -s option is present, esplit suppresses
the printing of all character counts.

-k The esplit command normally removes created files if an error
occurs. If the -k option is present, esplit leaves previously
created files intact.

-f prefix If the -f option is used, the created files are named prejixOO ...
prefixn. The default is xxOO .•• xxn.

The arguments (argi ... argn) to esplit can be a combination of the following:

lrexpl A file is to be created for the section from the current line up to
(but not including) the line containing the regular expression
rexp. The current line becomes the line containing rexp. This
argument may be followed by an optional + or - some number
of lines (e.g., IPage/-S).

%rexp % This argument is the same as Irexp I, except that no file is created
for the section.

lnno

UP-15525 V1

A file is to be created from the current line up to (but not
including) lnno. The current line becomes lnno.

Page 1

CSPUT(1)

{nwn} Repeat argument. This argument may follow any of the above
arguments. If it follows a rexp type argument, that argument is
applied nwn more times. If it follows lnno, the file will be split
every lnno lines (nwn times) from that point.

Enclose all rexp type arguments that contain blanks or other characters
meaningful to the shell in the appropriate quotes. Reguln expressions may not
contain embedded newlines. The esp/it command does not affect the original
file; it is the user's responsibility to remove it.

EXAMPLES
csplit -f cobol file '/procedure division/' /parSJ /par16J

The preceding example creates four files, cobolOO ... cobolO3. After editing the
split files, they can be recombined as follows:

cat coboI0[0-3] > file

Note that the preceding example overwrites the original file.

The next example would split the file at every 100 lines, up to 10,000 lines. The
-k option causes the created files to be retained if there are less than 10,000 lines;
however, an error message would still be printed:

csplit -k file 100 {99}

Assuming that prog.c follows the normal C coding convention of ending routines
with a } at the beginning of the line, the following example creates a file
containing each separate C routine (up to 21) in prog.c:

csplit -k prog.c '%main(%' '/"'}/ + l' {20}

SEE ALSO
ed(l), sh(l)
regexp(5) in the Programmer's Reference Manual

DIAGNOSTICS
Self-explanatory except for:

arg - out of range
which means that the given argument did not reference a line between the
current position and the end of the file.

Page 2 UP-15525 V1

CT(1C)

NAME
ct - spawn getty to a remote terminal

SYNOPSIS
ct [-wn] [-m] [-h] [-v] [-sspeed] telno ...

DESCRIPTION
The ct command dials the telephone number of a modem that is attached to a
terminal, and spawns a getty process to that terminal. The teinD command is a
telephone number, with equal signs for secondary dial tones and minus signs for
delays at appropriate places. (The set of legal characters for teinD is 0 through 9,
-, =, *, and #. The maximum length teinD is 31 characters). If more than one
telephone number is specified, the ct command tries each in succession until one
answers; this is useful for specifying alternate dialing paths.

The ct command will try each line listed in the file /usr/lih/uucplDevices until it
finds an available line with appropriate attributes or runs out of entries. If there
are no free lines, ct asks if it should wait for one, and if so, for how many minutes
it should wait before it gives up. The ct command continues to try to open the
dialers at one-minute intervals until the specified limit is exceeded. The dialogue
may be overridden by specifying the -wn option, where n is the maximum number
of minutes that ct is to wait for a line.

The -m option is used for debugging; it produces a detailed output of the
program execution on stderr (standard error). The debugging leve~ n, is a single
digit; -x9 is the most useful value.

Normally, ct hangs up the current line, so the line can answer the incoming call.
The -h option prevents this action. The -h option also waits for the termination
of the specified ct process before returning control to the user's terminal. If the
-v option is used, ct sends a running narrative to the standard error output
stream.

The data rate may be set with the -s option, where speed is expressed in baud.
The default rate is 1200.

After the user on the destination terminal logs out, there are two things that
could occur depending on what type of getty is on the line (getty or uugetty). For
the first case, ct prompts, Reconnect? If the response begins with the letter n, the
line is dropped; otherwise, getty is started again and the login: prompt is printed.
In the second case, there is already a getty (uugetty) on the line, so the login:
message appears.

UP-15525 V1 Page 1

CT(1C)

To log out properly, the user must type < Ctrl > d.

Of course, the destination terminal must be attached to a modem that can answer
the telephone.

FILES
/usr/lib/uucp/Devices
/usr/adm! ctlog

SEE ALSO
cu(lC), login(l), uucp(lC)
getty(lM), uugetty(lM) in the Administrator's Reference Manual

BUGS
For a shared port, one used for both dial-in and dial-out, the uugetty program
running on the line must have the -r option specified [see uugetty(lM)].

Page 2 UP-15525 V1

CU(1C)

NAME
cu - call another UNIX system

SYNOPSIS
cu [-sspeed] [-Dine] [-h] [-t] [-d] [-0 I -e] [-n] telno
cu [-s speed] [-h] [-d] [-0 I -e] -I line
cu [-h] [-d] [-0 I -e] systemname

DESCRIPTION
The cu command calls up another UNIX system, a terminal, or possibly a non
UNIX system. It manages an interactive conversation with possible transfers of
Ascn files.

The cu command accepts the following options and arguments:

-sspeed Specifies the transmission speed (300, 1200, 2400, 4800,9600); the
default value is "Any" speed which will depend on the order of the
lines in the /usr/lib/uucp/Devices file. Most modems are either 300
or 1200 baud. Directly connected lines may be set to a speed
higher than 1200 baud.

-lline

-h

-t

UP-15525 V1

Specifies a device name to use as the communication line. This can
be used to override the search that would otherwise take place for
the first available line having the right speed. When the -I option is
used without the -s option, the speed of a line is taken from the
Devices file. When the -I and -s options are both used together, cu
will search the Devices file to check if the requested speed for the
requested line is available. If so, the connection is made at the
requested speed; otherwise, an error message is printed and the
call is not made. The specified device is generally a directly
connected asynchronous line (e.g., /dev/ttyab) in which case a
telephone number (telno) is not required. The specified device
need not be in the / dey directory. If the specified device is
associated with an auto dialer, a telephone number must be
provided. Use of this option with systemname rather than telno
does not give the desired result (see systemname in following text).

Emulates local echo, supporting calls to other computer systems
which expect terminals to be set to half-duplex mode.

U sed to dial an Ascn terminal which has been set to auto answer.
Appropriate mapping of carriage-return to carriage-return-line
feed pairs is set.

Page 1

CU(1C)

-d Causes diagnostic traces to be printed.

-0 Designates that odd parity is to be generated for data sent to the
remote system.

-e Designates that even parity is to be generated for data sent to the
remote system.

-n For added security, it prompts the user to provide the telephone
number to be dialed rather than taking it from the command line.

telno When using an automatic dialer, the argument is the telephone
number with equal signs for secondary dial tone or minus signs
placed appropriately for delays of four seconds.

systemname A uucp system name may be used rather than a telephone number;
in this case, cu will obtain an appropriate direct line or telephone
number from /usr/lib/uucp/Systems. Note: The systemname option
should not be used in conjunction with the -I and -s options as cu
will connect to the first available line for the system name
specified, ignoring the requested line and speed.

After making the connection, cu runs as two processes:

The transmit process reads data from the standard input and, except for
lines beginning with -, passes it to the remote system.

The receive process accepts data from the remote system and, except for
lines beginning with -, passes it to the standard output.

Normally, an automatic DC3/DCl protocol is used to control input from the
remote system so the buffer is not overrun. Lines beginning with - have special
meanings.

The transmit process interprets the following user-initiated commands:

terminate the conversation.

-!cmd ...

-$cmd ...

-o/~d

Page 2

escape to an interactive shell on the local system.

run cmd on the local system (by sh -c).

run cmd locally and send its output to the remote system.

change the directory on the local system. Note: The
- !cd will cause the command to be run by a sub-shell,
probably not what was intended.

UP-15525 V1

CU(1C)

- %take from [to 1 copy file from (on the remote system) to file to on the
local system. If to is omitted, the from argument is used
in both places.

- %put from [to 1 copy file from (on local system) to file to on remote
system. If to is omitted, the from argument is used in
both places.

- - line

-%break

-%debug

-I

-%nostop

For both - %take and put commands, as each block of
the file is transferred, consecutive single digits are printed
to the terminal.

send the line - line to the remote system.

transmit a BREAK to the remote system (which can also
be specified as - %b).

toggles the -d debugging option on or off (which can also
be specified as - %d).

prints the values of the termio structure variables for the
user's terminal (useful for debugging).

prints the values of the termio structure variables for the
remote communication line (useful for debugging).

toggles between DC3/DCl input control protocol and no
input control. This is useful in case the remote system is
one which does not respond properly to the DC3 and
DCl characters.

The receive process normally copies data from the remote system to its standard
output. Internally the program accomplishes this by initiating an output diversion
to a file when a line from the remote begins with -. The complete sequence is:

.... > [> l:file
zero or more lines to be written to file
->

Data from the remote is diverted (or appended, if > > is used) to file on the
local system. The trailing - > marks the end of the diversion.

The use of - %put requires stty(l) and cat(l) on the remote side. It also
requires that the current erase and kill characters on the remote system be
identical to the current control characters on the local system. Backslashes are
inserted at appropriate places.

UP-15525 V1 Page 3

CU(1C)

The use of - %take requires the existence of echo (1) and cat(1) on the remote
system. Also, tabs mode [see stty(1)] should be set on the remote system if tabs
are to be copied without expansion to spaces.

When cu is used on system X to connect to system Y and subsequently used on
system Y to connect to system Z, commands on system Y can be executed by
using - - . Executing a tilde command reminds the user of the local system
uname. For example, Wlame can be executed on Z, X, and Y as follows:

uname
Z
-[X]!uname
X
- -[Y]' .uname
Y

In general, - causes the command to be executed on the original machine, - -
causes the command to be executed on the next machine in the chain.

EXAMPLES
To dial a system whose telephone number is 92015551212 using 1200 baud
(where a dial tone is expected after the 9):

cu -s1200 9 = 12015551212

If the speed is not specified, "Any" is the default value.

To log in to a system connected by a direct line, enter:
cu -I /dev/ttyXX

or
cu -I ttyXX

To dial a system with the specific line and a specific speed, enter:
cu -s1200 -I ttyXX

To dial a system using a specific line associated with an auto dialer, enter:
cu -I culXX 9 = 12015551212

To use a system name, enter:
cu systemname

FILES
/usr/lib/uucp/Systems
/usr/lib/uucp/Devices
/usr/spool/locks/LCK .. (tty-device)

Page 4 UP-15525 V1

CU(1C)

SEE ALSO
cat(l), ct(lC), echo(l), stty(l), uucp(lC), uname(l)

DIAGNOSTICS
Exit code is zero for normal exit, otherwise, one.

WARNINGS
The cu command buffers input data internally and does not do any integrity
checking on data it transfers. Data fields with special cu characters may not be
transmitted properly. Depending on the interconnection hardware, it may be
necessary to use a -. to terminate the conversion even if stty 0 has been used.
Non-printing characters are not dependably transmitted using either the - %put
or - %take commands. The cu command between some modems will not return
a login prompt immediately upon connection. A carriage return will return the
prompt.

BUGS
During the - %put operation, there is an artificial slowing of transmission by cu
so that loss of data is unlikely.

UP-15525 V1 Page 5

CU (1C)

[This page left blank.]

Page 6 UP-15525 V1

CUT(1)

NAME
cut - cut out selected fields of each line of a file

SYNOPSIS
cut -clist [file ...]
cut -flist [-d char] [-s] [file ...]

DESCRIPTION
Use cut to cut out columns from a table or fields from each line of a file; in data
base parlance, it implements the projection of a relation. The fields as specified
by list can be fixed length, i.e., character positions as on a punched card (-c
option), or the length can vary from line to line and be marked with a field
delimiter character like tab (-f option). The cut command can be used as a filter;
if no files are given, the standard input is used In addition, a filename of •
explicitly refers to standard input.

The meanings of the options are:

list A comma-separated list of integer field numbers (in increasing order),
with optional- to indicate ranges [e.g., 1,4,7; 1-3,8; -5,10 (short for
1-5,10); or 3- (short for third through last field)].

-clist The list following -c (no space) specifies character positions (e.g., -c1-72
would pass the first 72 characters of each line).

-flist The list following -f is a list of fields assumed to be separated in the file
by a delimiter character (see -d); e.g., -f1,7 copies the first and seventh
field only. Lines with no field delimiters are passed through intact
(useful for table subheadings), unless -s is specified.

-dchar The character following -d is the field delimiter (-f option only). Default
is tab. Space or other characters with special meaning to the shell must
be quoted.

-s Suppresses lines with no delimiter characters in case of -f option.
Unless specified, lines with no delimiters are passed through untouched.

Either the -c or -f option must be specified.

Use grep(l) to make horizontal cuts (by context) through a file, or paste(l) to put
files together column-wise (Le., horizontally). To reorder columns in a table, use
cut and paste .

UP-15525 V1 Page 1

CUT(1)

EXAMPLES
cut -d: -fl,5 letc/passwd mapping of user IDs to names

name = 'who am i I cut -f1 -d" " , to set name to current login name.

SEE ALSO
grep(1), paste(l)

DIAGNOSTICS
ERROR: line too long

A line can have no more than 1023 characters or fields, or
there is no newline character.

ERROR: bad list for c If option
Missing -c or -f option or incorrectly specified list. No error
occurs if a line has fewer fields than the list calls for.

ERROR: no fields The list is empty.

ERROR: no delimiter
Missing char on -d option.

ERROR: cannot handle multiple adjacent backspaces
Adjacent backspaces cannot be processed correctly.

WARNING: cannot open <filename>

Page 2

Either filename cannot be read or does not exist. If
multiple filenames are present, processing continues.

UP-15525 V1

CW(1)

NAME
cw, checkcw - prepare constant-width text for troff

SYNOPSIS
cw [-Ixx] [-rxx] [-fn] [-t] [+t] [-d] [files]

checkcw [-Ixx] [-rxx] files

DESCRIPTION
The cw utility is a preprocessor for troff input files that contain text to be typeset in
the constant-width (CW) font. Note that the cw utility has been superseded and is no
longer required in the current version of Documenter's Workbench (2.0).

Text typeset with the CW font resembles the output of tenninals and of line printers.
This font is used to typeset examples of programs and computer output in user
manuals, programming texts, and so forth. It has been designed to be quite distinc
tive (but not overly obtrusive) when used together with the Times Roman font.

Because the CW font contains a "non-standard" set of characters and because text
typeset with it requires different character and inter-word spacing than is used for
"standard" fonts, documents that use the CW font must be preprocessed by cwo

The CW font contains the 94 printing ASCII characters:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUV\\xYZ
0123456789
I $ 0/<:&() • • * + @. • / : ; =? [] I __ A -" < > { } # \j

plus eight non-ASCII characters represented by four-character troff names (in some
cases attaching these names to "non-standard" graphics):

Character Symbol TrotT
Name

"Cents" sign ¢ \(ct
EBCDIC "not" sign -, \(no
Left arrow ~ \«-
Right arrow -? \(->
Down arrow J. \(da
Vertical single quote \(fm
Control-shift indicator t \(dg
Visible space indicator 0 \(sq
Hyphen \(hy

UP-15525 V1 Page 1

CW(1)

The hyphen is a synonym for the unadorned minus sign (-). Certain versions of cw
recognize two additional names: \(ua for an up arrow (i) and \(lb for a diagonal
left-up (home) arrow.

The cw utility recognizes five request lines, as well as user-defined delimiters. The
request lines look like troff macro requests, and are copied in their entirety by cw
onto its output; thus, they can be defined by the user as troff macros; in fact, the .CW
and .CN macros should be so defined (see "HINTS" in this manpage). The five
requests are:

.CW Start of text to be set in the CW font; .CW causes a break; it can take precisely
the same options, in precisely the same format, as are available on the cw com
mand line .

. CN End of text to be set in the CW font; .CN causes a break; it can take the same
options as are available on the cw command line .

• CD Change delimiters and/or settings of other options; takes the same options as
are available on the cw command line .

. CP argJ arg2 arg3 ••• argn
All the arguments (which are delimited like troffmacro arguments) are con
catenated, with the odd-numbered arguments set in the CW font and the even
numbered ones in the prevailing font.

.PC argJ arg2 arg3 ••• argn
Same as .CP, except that the even-numbered arguments are set in the CW font
and the odd-numbered ones in the prevailing font.

The .CW and .CN requests are meant to bracket text (for example, a program frag
ment) that is to be typeset in the CW font "as is." Normally, cw operates in the tran
sparent mode. In that mode, except for the .CD request and the nine special four
character names listed in the table above, every character between .CW and .CN
request lines stands for itself. In particular, cw arranges for periods (.) and apos
trophes (') at the beginning of lines, and backslashes (\) everywhere to be "hidden"
from troff. The transparent mode can be turned off (see below), in which case nor
mal troff rules apply; in particular, lines that begin with. and ' are passed through
untouched (except if they contain delimiters-see below). In either case, cw hides the
effect of the font changes generated by the .CW and .CN requests; cwalso defeats all
ligatures (fi, tI, and so forth) in the CW font.

The only purpose of the .CD request is to allow the changing of various options
other than just at the beginning of a document.

Page 2 UP-15525 V1

CW(1)

The user can also define delimiters. The left and right delimiters perform the same
function as the .CW I.CN requests; they are meant, however, to enclose CW "words"
or "phrases" in running text (see example under BUGS below). The cw preprocessor
treats text between delimiters in the same manner as text enclosed by .CW I.CN
pairs, except that, for aesthetic reasons, spaces and backspaces inside .CW I.CN pairs
have the same width as other CW characters, while spaces and backspaces between
delimiters are half as wide, so they have the same width as spaces in the prevailing
text (but are not adjustable). Font changes due to delimiters are not hidden.

Delimiters have no special meaning inside .CW I.CN pairs.

The options are:

-Jxx The one- or two-character string xx becomes the left delimiter; if xx is omitted,
the left delimiter becomes undefined.

-rxx Same for the right delimiter. The left and right delimiters may (but need not)
be different

-fn The CW font is mounted in font position n; acceptable values for n are 1, 2,
and 3 (default is 3, replacing the bold font). This option is only useful at the
beginning of a document

-t Turn transparent mode off.

+t Tum transparent mode on (this is the initial default).

-d Print current option settings on file descriptor 2 in the form of troff comment
lines. This option is meant for debugging.

The cw preprocessor reads the standard input when no files are specified (or when -
is specified as the last argument), so it can be used as a filter. Typical usage is:

cw files I troff ...

The checkcw utility checks that left and right delimiters, as well as the .CW I.CN
pairs, are properly balanced. It prints out all offending lines.

UP-15525 V1 Page 3

CW(1)

HINTS
Typical definitions of the .CW and .CN macros meant to be used with the mm(5)
macro package:

.de CW

.DS I

.ps 9

.vs lO.Sp

.ta 16m/3u 32m/3u 48m/3u 64m/3u 80m/3u 96m/3u ...

. de CN

.ta .Si li 1.Si 2i 2.Si 3i ...

. vs

.ps

.DE

At the very least, the .CW macro should invoke the troff no-fill (.of) mode.

When set in running text, the CW font is meant to be set in the same point size as the
rest of the text. In displayed matter, on the other hand, it can often be profitably set
one point smaller than the prevailing point size (the displayed definitions of .CW and
.CN above are one point smaller than the running text on this page). The CW font is
sized so that, when it is set in 9-point, there are 12 characters per inch.

Documents that contain CW text may also contain tables and/or equations. If this is
the case, the order of preprocessing should be: CW, tbl, and eqn. Usually, the tables
contained in such documents will not contain any CW text, although it is entirely
possible to have elements of the table set in the CW font; of course, care must be
taken that tbl(l) format information not be modified by cwo Attempts to set equa
tions in the CW font are not likely to be either pleasing or successful.

In the CW font, overstriking is most easily accomplished with backspaces: letting
the <left arrow> key represent a backspace, striking d, then the <left arrow> key
twice, and then the <Ctrl>-<Shift> combination yields an overstrike over d.
[Because backspaces are half as wide between delimiters as inside .CW /.CN pairs
(see previous text), two backspaces are required for each overstrike between delim
iters.]

FILES
/usr/lib/font/ftCW CW font-width table

Page 4 UP-15525 V1

CW(1)

SEE ALSO
Documenter's Workbench User's Guide
Documenter's Workbench Technical Discussion and Reference

WARNINGS
If text preprocessed by cw is to make any sense, it must be set on a typesetter
equipped with the CW font or on a STARE facility; on the latter, the CW font appears
as bold, but with the proper CW spacing.

BUGS
It is not a good idea to use periods (.), backslashes (\), or double quotes (") as delim
iters, or as arguments to .CP and .PC.

Certain CW characters do not concatenate gracefully with certain Times Roman char
acters, for example, a CW ampersand (&) followed by a Times Roman comma (,); in
such cases, judicious use of troff half- and quarter-spaces (\I and \") is most salutary;
for example, one should use _ & -' A, (rather than just plain _ & _,) to obtain &,
(assuming that _ is used for both delimiters).

The cw utility is not compatible with nroff.

The output of cw is hard to read.

UP-15525 V1 Page 5

CW(1)

[This page left blank.]

Page 6 UP-15525 V1

DATE(1)

NAME
date - print and set the date

SYNOPSIS
date [+ format]
date [mmddbbmm [[yy] I [ccyy]]]

DESCRIPTION
If no argument is given, or if the argument begins with +, the current date and
time are printed. Otherwise, the current date is set (only by the superuser). The
first mm is the month number; dd is the day number in the month; hh is the hour
number (24-hour system); the second mm is the minute number; cc is the century
minus one and is optional; W is the last 2 digits of the year number and is
optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is
mentioned. The system operates in GMT. The date command takes care of the
conversion to and from local standard and daylight saving time. Only the
superuser may change the date.

If the argument begins with +, the output of date is under the control of the
user. All output fields are of fixed size (zero-padded, if necessary). Each field
descriptor is preceded by % and is replaced in the output by its corresponding
value. A single % is encoded by %%. All other characters are copied to the
output without change. The string is always terminated with a newline character.
If the argument contains embedded blanks, it must be quoted (see "EXAMPLES"
in this manpage).

Specifications of native language translations of month and weekday names are
supported. The language used depends on the value of the environment variable
LANGUAGE [see environ (5)]. The month and weekday names used for a
language are taken from strings in the file for that language in the IIib/cftime
directory [see cftime (4)].

After successfully setting the date and time, date displays the new date according
to the format defined in the environment variable CFTIME [see environ (5)].

Field descriptors (must be preceded by a %):
a abbreviated weekday name
A full weekday name
b abbreviated month name

UP-15525 V1 Page 1

DATE(1)

B full month name
d day of month - 01 to 31
D date as mm/ddlyy
e day of month - 1 to 31 (single digits are preceded by a blank)
h abbreviated month name (alias for %b)
H hour - 00 to 23
I hour - 01 to 12
j day of year - 001 to 366
m month of year - 01 to 12
M minute - 00 to 59
n insert a newline character
p string containing ante-meridiem or post-meridiem indicator (by

default, AM or PM)
r time as hh:mm:ss pp wherepp is the ante-meridiem or post-meridiem

indicator (by default, AM or PM)
R time as hh:mm
S second - 00 to 59
t insert a tab character
T time as hh:mm:ss
U week number of year (Sunday as the first day of the week) - 01 to 52
w day of week - Sunday = 0
W week number of year (Monday as the first day of the week) - 01 to 52
x Country-specific date format
X Country-specific time format
y year within century - 00 to 99
Y year as cc,w (4 digits)
Z timezone name

EXAMPLE
date '+DATE: %m/%dI%y%nTIME: %H:%M:%S'

would have generated as output:

DATE: 08/01/76
TIME: 14:45:05

FILES
/dev/kmem

NOTE
Administrators should note the following; if you attempt to set the current date
to one of the dates that the standard and alternate time zones change (for
example, the date that daylight time is starting or ending), and you attempt to set

Page 2 UP-15525 V1

DATE(1)

the time to a time in the interval between the end of standard time and the
beginning of the alternate time (or the end of the alternate time and the
beginning of standard time), the results are unpredictable.

SEE ALSO
cftime(4), environ(5) in the Programmer's Reference Manual

DIAGNOSTICS
No pennission

bad conversion
bad lonnat character

UP-15525 V1

if you are not the superuser and you try to change the
date
if the date set is syntactically incorrect
if the field descriptor is not recognizable

Page 3

DATE(1)

[This page left blank.]

Page 4 UP-15525 V1

DC(1)

NAME
dc - desk calculator

SYNOPSIS
de [file]

DESCRIPTION
The de command is an arbitrary precision arithmetic package. Ordinarily, it
operates on decimal integers, but one may specify an input base, output base, and
a number of fractional digits to be maintained. [See be(l), a preprocessor for de
that provides infix notation and a C-like syntax that implements functions. The
be command also provides reasonable control structures for programs.] The
overall structure of de is a stacking (reverse Polish) calculator. IT an argument is
given, input is taken from that file until its end, then from the standard input.
The following constructions are recognized:

number
The value of the number is pushed on the stack. A number is an
unbroken string of the digits 0-9. It may be preceded by an underscore
(_) to input a negative number. Numbers may contain decimal points.

+_/*%A
The top two values on the stack are added (+), subtracted (-), multiplied
(*), divided (J), remaindered (%), or exponentiated (A). The two entries
are popped off the stack; the result is pushed on the stack in their place.
Any fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register named x, where
x may be any character. IT the s is capitalized, x is treated as a stack and
the value is pushed on it.

Ix The value in register x is pushed on the stack. The register x is not
altered. All registers start with zero value. IT the I is capitalized, register
x is treated as a stack and its top value is popped onto the main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains unchanged.

P Interprets the top of the stack as an ASCII string, removes it, and prints
it.

f All values on the stack are printed.

q Exits the program. IT executing a string, the recursion level is popped by
two.

UP-15525 V1 Page 1

DC(1)

Q Exits the program. The top value on the stack is popped and the string
execution level is popped by that value.

x Treats the top element of the stack as a character string and executes it as
a string of de commands.

X Replaces the number on the top of the stack with its scale factor.

[•••] Puts the bracketed ASCII string onto the top of the stack.

<x >x =x
The top two elements of the stack are popped and compared. Register x
is evaluated if they obey the stated relation.

v Replaces the top element on the stack by its square root. Any existing
fractional part of the argument is taken into account, but otherwise the
scale factor is ignored.

Interprets the rest of the line as a UNIX system command.

c All values on the stack are popped.

I

o

o
k

z

z
?

. . , .

Page 2

The top value on the stack is popped and used as the number radix for
further input.

Pushes the input base on the top of the stack.

The top value on the stack is popped and used as the number radix for
further output.

Pushes the output base on the top of the stack.

The top of the stack is popped, and that value is used as a non-negative
scale factor. The appropriate number of places are printed on output,
and maintained during multiplication, division, and exponentiation. The
interaction of scale factor, input base, and output base is reasonable if all
bases are changed together.

The stack level is pushed onto the stack.

Replaces the number on the top of the stack with its length.

A line of input is taken from the input source (usually the terminal) and
executed.

Used by be (1) for array operations .

UP-15525 V1

(

EXAMPLE
This example prints the first ten values of nl:

[lal + dsa*plalO >y]sy
Osal
lyx

SEE ALSO
bc(l), hc(l)

DIAGNOSTICS
x is unimplemented

where x is an octal number.

stack empty
for not enough elements on the stack to do what was asked.

Out of space
when the free list is exhausted (too many digits).

Out of headers
for too many numbers being kept around.

Out of pushdown
for too many items on the stack.

Nesting Depth
for too many levels of nested execution.

UP-15525 V1

DC(1)

Page 3

DC(1)

[This page left blank.]

Page 4 UP-15525 V1

DEROFF(1)

NAME
deroff - remove nroffltroff, tb~ and eqn constructs

SYNOPSIS
derotT [-lOX] [-w] [files]

DESCRIPTION
The derolf command reads each of thefiles in sequence and removes all trolf(1)
requests, macro calls, backslash constructs, eqn (1) constructs (between .EQ and
.EN lines and between delimiters), and tbl(1) descriptions, perhaps replacing
them with white space (blanks and blank lines), and writes the remainder of the
file on the standard output.

The derolf command follows chains of included files (.so and .ox trolf
commands); if a file has already been included, a .so naming that file is ignored
and a .ox naming that file terminates execution. If no input file is given, derolf
reads the standard input.

The -m option may be followed by an m, s, or I. The -mm option causes the
macros to be interpreted so that only running text is output (i.e., no text from
macro lines). The -ml option forces the -mm option and also causes deletion of
lists associated with the mm macros.

If the -w option is given, the output is a word list, one word per line, with all
other characters deleted. Otherwise, the output follows the original with the
deletions mentioned above. In text, a word is any string that contains at least two
letters and is composed of letters, digits, ampersands (&), and apostrophes ('); in
a macro call, however, a word is a string that begins with at least two letters and
contains a total of at least three letters. Delimiters are any characters other than
letters, digits, apostrophes, and ampersands. Trailing apostrophes and
ampersands are removed from words.

BUGS
The derolf command is not a complete trolf interpreter, so it can be confused by
subtle constructs. Most of these errors result in too much rather than too little
output.

The -ml option does not handle nested lists correctly.

UP-15525 V1 Page 1

DEROFF(1)

[This page left blank.]

Page 2 UP-15525 V1

DIFF(1)

NAME
cliff - differential file comparator

SYNOPSIS
diff [-efbh] file1 file2

DESCRIPTION
The diff command tells what lines must be changed in two files to bring them
into agreement. Jffilel (file2) is -, the standard input is used. Jffilel (file2) is a
directory, then a file in that directory with the namefile2 (filel) is used. The
normal output contains lines of these forms:

nl a n3,n4
nl,n2 d n3
nl,n2 c n3,n4

These lines resemble ed commands to convert filel into file2 . The numbers after
the letters pertain to file2. In fact, by exchanging a for d and reading backward
one may ascertain equally how to convertfile2 intofilel. As in ed, identical pairs
(where nl = n2 or n3 = n4) are abbreviated as a single number.

Following each of these lines comes all the lines that are affected in the first file
flagged by <, then all the lines that are affected in the second file flagged by > .

The -b option causes trailing blanks (spaces and tabs) to be ignored and other
strings of blanks to compare equal.

The -e option produces a script of a, c, and d commands for the editor ed, which
recreatesfile2 fromfilel. The -f option produces a similar script, not useful with
ed, in the opposite order. In connection with -e, the following shell program may
help maintain multiple versions of a fue. Only an ancestral file ($1) and a chain
of version-to-version ed scripts ($2,$3, ...) made by diff need be on hand. A latest
version appears on the standard output.

(shift; cat $*; echo 'l,$p'): ed - $1

Except in rare circumstances, diff finds a smallest sufficient set of file differences.

Option -h does a fast, half-hearted job. It works only when changed stretches are
short and well separated, but does work on files of unlimited length. Options-e
and -f are unavailable with -h.

FILES
/tmp/d?????
/usr/lib/diffh for -h

UP-15525 V1 Page 1

DIFF(1)

SEE ALSO
bdiff(l), cmp(l), comm(l), ed(l)

DIAGNOSTICS
Exit status is 0 for no differences, 1 for some differences, 2 for trouble.

WARNINGS
Missing newline at end of file X

BUGS

Indicates that the last line of file X did not have a newline. If the lines are
different, they are flagged and output although the output seems to indicate
they are the same.

Editing scripts produced under the -e or -f option are naive about creating lines
consisting of a single period (.).

Page 2 UP-15525 V1

DIFF3(1)

NAME
dif:f3 - 3-way differential file comparison

SYNOPSIS
dUD [-ex3] file1 file2 file3

DESCRIPTION
The diff3 command compares three versions of a file, and publishes disagreeing
ranges of text flagged with these codes:

====
====1

====2

====3

all three files differ

filel is different

file2 is different

file3 is different

The type of change suffered in converting a given range of a given file to some
other file is indicated in one of these ways:

/: nl a Text is to be appended after line number nl in file/,
where f = 1, 2, or 3.

/: nl , n2 c Text is to be changed in the range line nl to line n2. H
nl = n 2, the range may be abbreviated to nl.

The original contents of the range follows immediately after a c indication.
When the contents of two files are identical, the contents of the lower-numbered
file is suppressed.

Under the -e option, diff3 publishes a script for the editor ed that incorporates
intoJilel all changes betweenfile2 andfile3, i.e., the changes that normally would
be flagged = = = = and = = = = 3. Option -x (-3) produces a script to
incorporate only changes flagged = = = = (= = = =3). The following
command will apply the resulting script to filel.

(cat script; echo 'l,$p') I ed - file1

FILES
/tmp/d3*
/usr/lib/diff3prog

SEE ALSO
diff(l)

UP-15525 V1 Page 1

DIFF3(1)

BUGS
Text lines that consist of a single. defeat -e.
Files longer than 64K bytes do not work.

Page 2 UP-15525 V1

DIRCMP(1)

NAME
dircmp - directory comparison

SYNOPSIS
dircmp [-d] [-s] [-w n] [-0] dirl dir2

DESCRIPTION
The dircmp command examines dirl and dir2 and generates various tabulated
information about the contents of the directories. Listings of files that are unique
to each directory are generated for all the options. If no option is entered, a list
is output indicating whether the filenames common to both directories have the
same contents.

-d Compare the contents of files with the same name in both directories and
output a list telling what must be changed in the two files to bring them into
agreement. The list format is described in diff(l).

-s Suppress messages about identical files.

-wn Change the width of the output line to n characters. The default width is
72.

-0 Ignore time and date stamp differences when comparing the contents of
binary files.

SEE ALSO
cmp(l), diff(l)

UP-15525 V1 Page 1

DIRCMP(1)

[This page left blank.]

Page 2 UP-15525 V1

ECHO(1)

NAME
echo - echo arguments

SYNOPSIS
echo [] [arg] ...

DESCRIPTION
The echo command writes its arguments separated by blanks and terminated by a
newline on the standard output. The -n option prints a line without the newline;
same as using the \c escape sequence.

The echo command also understands C-like escape conventions; beware of
conflicts with the shell's use of \:

\b backspace
\c print line without newline
\f form-feed
\n newline
\r carriage return
\t tab
\ v vertical tab
\ \ backslash
\On where n is the 8-bit character whose Ascn code is the one, two or

three digit octal number representing that character.

The echo command is useful for producing diagnostics in command files and for
sending known data into a pipe.

SEE ALSO
sh(l)

CAVEATS
When representing an 8-bit character by using the escape convention \On, the n
must always be preceded by the digit zero (0).

For example, typing: echo 'WARNING:\07' prints the phrase WARNING: and
sounds the bell on your terminal. The use of single (or double) quotes (or two
backslashes) is required to protect the \ that precedes the 07.

For the octal equivalents of each character, see ascii(5) in the Programmer's
Reference Manual.

UP-15525 V1 Page 1

ECHO(1)

[This page left blank.]

Page 2 UP-15525 V1

NAME
ed, red - text editor

SYNOPSIS
ed [-s] [-p string] [-x] [-C] [file]
red [-s] [-p string] [-x] [-C] [file]

DESCRIPTION

ED(1)

The ed command is the standard text editor. H the file argument is given, ed
simulates an e command (see the following text) on the named file; that is to say,
the file is read into ed's buffer so that it can be edited.

-s Suppresses the printing of character counts bye, r, and w commands, of
diagnostics from e and q commands, and of the ! prompt after a
!shell command.

-p Allows the user to specify a prompt string.

-x Enayption option; when used, ed simulates an X command and prompts
the user for a key. This key is used to encrypt and decrypt text using the
algorithm of crypt(l). The X command makes an educated guess to
determine whether text read in is enaypted or not. The temporary buffer
file is encrypted also, using a transformed version of the key typed in for
the -x option. See crypt(l). Also, see the WARNINGS section at the end of
this manual page.

-c Enayption option; the same as the -x option, except that ed simulates a C
command. The C command is like the X command, except that all text
read in is assumed to have been enaypted.

The ed command operates on a copy of the file it is editing; changes made to the
copy have no effect on the file until a w (write) command is given. The copy of
the text being edited resides in a temporary file called the buffer. There is only
one buffer.

The red command is a restricted version of ed. It allows editing of files only in
the current directory. It prohibits executing shell commands by the
!shell command. Attempts to bypass these restrictions result in an error message
(restricted shelf).

Both ed and red support the [spec (4) formatting capability. After including a
format specification as the first line of file and invoking ed with your terminal in
stty -tabs or stty tab3 mode [see stty(l)], the specified tab stops are used
automatically when SC3nningfile. For example, if the first line of a file contained:

UP-15525 V1 Page 1

ED(1)

< :t5,10,15 s72: >

tab stops are set at columns 5, 10, and 15, and a maximum line length of 72 is
imposed NOTE: When you are entering text into the file, this format is not in
effect; instead, because of being in stty -tabs or stty tab3 mode, tabs are
expanded to every eighth column.

Commands to ed have a simple and regular structure; zero, one, or two addresses
followed by a single-character command, possibly followed by parameters to that
command. These addresses specify one or more lines in the buffer. Every
command that requires addresses has default addresses, so that the addresses can
very often be omitted.

In general, only one command may appear on a line. Certain commands allow
the input of text. This text is placed in the appropriate place in the buffer.
While ed is accepting text, it is said to be in input mode. In this mode, no
commands are recognized; all input is merely collected. Leave input mode by
typing a period (.) at the beginning of a line, followed immediately by a carriage
return.

The ed command supports a limited form of regular expression notation; regular
expressions are used in addresses to specify lines and in some commands (e.g., s)
to specify portions of a line that are to be substituted. A regular expression (RE)
specifies a set of character strings. A member of this set of strings is said to be
matched by the RE. The REs allowed byed are constructed as follows:

The following one-character REs match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a one
character RE that matches itself.

1.2 A backslash (\) followed by any special character is a one-character RE
that matches the special character itself. The special characters are:

a. ., *, [, and \ (period, asterisk, left square bracket, and backslash,
respectively), which are always special, except when they appear within
square brackets ([]; see 1.4 in this list).

b. A (caret or circumflex), which is special at the beginning of an entire
RE (see 3.1 and 3.2 in later text) or when it immediately follows the
left of a pair of square brackets ([]) (see 1.4 in later text).

c. $ (dollar sign), which is special at the end of an entire RE (see 3.2 in
this list).

Pane 2 UP-15525 V1

ED(1)

d The character used to bound (i.e., delimit) an entire RE, which is
special for that RE [for example, see how slash (I) is used in the g
command, in the following text.]

13 A period (.) is a one-character RE that matches any character except
newline.

1.4 A non-empty string of characters enclosed in square brackets ([]) is a
one-character RE that matches anyone character in that string. If,
however, the first character of the string is a circumflex (A), the one
character RE matches any character except newline and the remaining
characters in the string. The A has this special meaning only if it occurs
first in the string. The minus (-) may be used to indicate a range of
consecutive Ascn characters; for example, [0-9] is equivalent to
[0123456789] . The - loses this special meaning if it occurs first (after an
initial A, if any) or last in the string. The right square bracket (]) does
not terminate such a string when it is the first character within it (after an
initial A, if any); e.g., []a-fj matches either a right square bracket (]) or
one of the letters a through f inclusive. The four characters listed in 1.2.a
above stand for themselves within such a string of characters.

The following rules may be used to construct REs from one-character REs:

2.1 A one-character RE is a RE that matches whatever the one-character RE
matches.

2.2 A one-character RE followed by an asterisk (*) is a RE that matches zero
or more occurrences of the one-character RE. If there is any choice, the
longest leftmost string that permits a match is chosen.

23 A one-character RE followed by \ {m \}, \ {m, \}, or \ {m,n \} is a RE that
matches a range of occurrences of the one-character RE. The values of m
and n must be non-negative integers less than 256; \ {m \} matches exactly
m occurrences; \ {m, \} matches at least m occurrences; \ {m,n \} matches
any number of occurrences between m and n inclusive. Whenever a choice
exists, the RE matches as many occurrences as possible.

2.4 The concatenation of REs is a RE that matches the concatenation of the
strings matched by each component of the RE.

25 A RE enclosed between the character sequences \ (and \) is a RE that
matches whatever the unadorned RE matches.

2.6 The expression Vz, matches the same string of characters as was matched
by an expression enclosed between \ (and \) earlier in the same RE. Here

UP-15525 V1 Page 3

EO(1)

n is a digit; the sUb-expression specified is that beginning with the nth
occurrence of \ (counting from the left. For example, the expression
A \(.*\)\1$ matches a line consisting of two repeated appearances of the
same string.

Finally, an entire RE may be constrained to match only an initial segment or final
segment of a line (or both).

3.1 A circumflex (A) at the beginning of an entire RE constrains that RE to
match an initial segment of a line.

3.2 A dollar sign ($) at the end of an entire RE constrains that RE to match a
final segment of a line.

The construction A entire RE $ constrains the entire RE to match the entire line.

The null RE (e.g., II) is equivalent to the last RE encountered. See also the last
paragraph before FILES.

To understand addressing in ed, it is necessary to know that at any time there is a
current line. Generally speaking, the current line is the last line affected by a
command; the exact effect on the current line is discussed under the description
of each command. The addresses are constructed as follows:

1. The character • addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. x addresses the line marked with the mark name character x, which must
be an ASCII lowercase letter (a-z). Lines are marked with the k command
described in the following text.

5. A RE enclosed by slashes (I) addresses the first line found by searching
forward from the line following the current line toward the end of the
buffer and stopping at the first line containing a string matching the RE. If
necessary, the search wraps around to the beginning of the buffer and
continues up to and including the current line, so that the entire buffer is
searched. See also the last paragraph before FILES.

6. A RE enclosed in question marks (1) addresses the first line found by
searching backward from the line preceding the current line toward the
beginning of the buffer and stopping at the first line containing a string
matching the RE. If necessary, the search wraps around to the end of the
buffer and continues up to and including the current line. See also the last
paragraph before FILES.

P&ln~ A. IIP-1 fifi?fi V1

ED(1)

7. An address followed by a plus sign (+) or a minus sign (-) followed by a
decimal number specifies that address plus (respectively minus) the
indicated number of lines. The plus sign may be omitted.

8. If an address begins with + or -, the addition or subtraction is taken with
respect to the current line; e.g, -5 is understood to mean .-5.

9. If an address ends with + or -, then 1 is added to or subtracted from the
address, respectively. As a consequence of this rule and of Rule 8, the
address - refers to the line preceding the current line. (To maintain
compatibility with earlier versions of the editor, the character A in
addresses is entirely equivalent to -.) Moreover, trailing + and - characters
have a cumulative effect, so -- refers to the current line less 2.

10. For convenience, a comma (,) stands for the address pair 1,$, while a
semicolon (;) stands for the pair .,$.

Commands may require zero, one, or two addresses. Commands that require no
addresses regard the presence of an address as an error. Commands that accept
one or two addresses assume default addresses when an insufficient number of
addresses is given; if more addresses are given than such a command requires,
the last one(s) is used

Typically, addresses are separated from each other by a comma (,). They may
also be separated by a semicolon (;). In the latter case, the current line (.) is set
to the first address, and only then is the second address calculated. This feature
can be used to determine the starting line for forward and backward searches
(see Rules 5 and 6 shown previously). The second address of any two-address
sequence must correspond to a line that follows, in the buffer, the line
corresponding to the first address.

In the following list of ed commands, the default addresses are shown in
parentheses. The parentheses are not part of the address; they show that the
given addresses are the default.

It is generally illegal for more than one command to appear on a line. However,
any command (except e, I, r, or w) may be suffixed by I, n, or p in which case the
current line is either listed, numbered, or printed, respectively, as discussed
under the I, n, and p commands.

(.)a
<text>

The append command reads the given text and appends it after the
addressed line; • is left at the last inserted line, or, if there were none, at the

I ID of J:J:'lJ: \/-t

EO(1)

addressed line. Address 0 is legal for this command: it causes the
appended text to be placed at the beginning of the buffer. The maximum
number of characters that may be entered from a terminal is 256 per line
(including the newline character).

(o)e
<text>

The change command deletes the addressed lines, then accepts input text
that replaces these lines; the 0 is left at the last line input, or, if there were
none, at the first line that was not deleted.

(0,0)d

efile

Efile

ffile

The delete command deletes the addressed lines from the buffer 0 The line
after the last line deleted becomes the current line; if the lines deleted were
originally at the end of the buffer, the new last line becomes the current
line.

The edit command causes the entire contents of the buffer to be deleted,
and then the named file to be read in; the 0 is set to the last line of the
buffer. If no filename is given, the currently remembered filename, if any,
is used (see the f command). The number of characters read is typed; file
is remembered for possible use as a default filename in subsequent e, r, and
w commands. If file is replaced by!, the rest of the line is taken to be a
shell [sh(l)] command whose output is to be read. Such a shell command
is not remembered as the current filename. See also DIAGNOSTICS.

The Edit command is like e, except that the editor does not check to see if
any changes have been made to the buffer since the last w command.

If file is given, the file-name command changes the currently remembered
filename to file; otherwise, it prints the currently remembered filename.

(1, $)wRE/command list
In the global command, the first step is to mark every line that matches the
given RE. Then, for every such line, the given command list is executed
with • initially set to that line. A single command or the first of a list of
commands appears on the same line as the global command. All lines of a
multi-line list except the last line must be ended with a \; a, i, and c
commands and associated input is permitted. The 0 which terminates the
input mode may be omitted if it is the last line of the command list. An

ED(1)

empty command list is equivalent to the p command. The g, G, v, and V
commands are not permitted in the command list. See also BUGS and the
last paragraph before FILES.

(1,$)GIREI

h

H

In the interactive Global command, the first step is to mark every line that
matches the given RE. Then, for every such line, that line is printed, • is
changed to that line, and anyone command (other than one of the a, c, i,
g, G, v, and V commands) may be input and is executed. After the
execution of that command, the next marked line is printed, and so on; a
newline acts as a null command; an & causes the re-execution of the most
recent command executed within the current invocation of G. Note that
the commands input as part of the execution of the G command may
address and affect any lines in the buffer. The G command can be
terminated by an interrupt signal (ASCn DEL or BREAK).

The help command gives a short error message that explains the reason for
the most recent? diagnostic.

The Help command causes ed to enter a mode in which error messages are
printed for all subsequent? diagnostics. It will also explain the previous ?
if there was one. The H command alternately turns this mode on and off; it
is initially off.

(.)i
<text>

The insert command inserts the given text before the addressed line; the • is
left at the last inserted line, or, if there was not one, at the addressed line.
This command differs from the a command only in the placement of the
input text. Address 0 is not legal for this command. The maximum number
of characters that may be entered from a terminal is 256 per line (including
the newline character).

(.,.+ 1)j

(.)kx

The join command joins contiguous lines by removing the appropriate
newline characters. If exactly one address is given, this command does
nothing.

The mark command marks the addressed line with name x, which must be
an Ascn lowercase letter (a-z). The address x then addresses this line;

ED(1)

the • is unchanged.

(.,.)1
The list command prints the addressed lines in an unambiguous way; a few
non-printing characters (e.g., tab, backspace) are represented by visually
mnemonic overstrikes. All other non-printing characters are printed in
octal, and long lines are folded. An I command may be appended to any
command other than e, /, r, or w.

(.,.)ma
The move command repositions the addressed line(s) after the line
addressed bya. Address 0 is legal for a and causes the addressed line(s)
to be moved to the beginning of the file. It is an error if address a falls
within the range of moved lines; • is left at the last line moved.

(.,.)0
The n umber command prints the addressed lines, preceding each line by its
line number and a tab character; the • is left at the last line printed. The n
command may be appended to any command other than e, /, r, or w.

(.,.)p

p

q

Q

The print command prints the addressed lines; the • is left at the last line
printed. The p command may be appended to any command other than e,
/, r, or w. For example, dp deletes the current line and prints the new
current line.

The editor prompts with a * for all subsequent commands. The P
command alternately turns this mode on and off; it is initially off.

The quit command causes ed to exit. No automatic write of a file is done;
however, see DIAGNOSTICS.

The editor exits without checking if changes have been made in the buffer
since the last w command.

($)r file
The read command reads in the given file after the addressed line. If no
filename is given, the currently remembered filename, if any, is used (see e
and / commands). The currently remembered filename is not changed
unless file is the very first filename mentioned since ed was invoked.
Address 0 is legal for r and causes the file to be read at the beginning of
the buffer. If the read is successful, the number of characters read is typed;

ED(1)

• is set to the last line read in. If file is replaced by!, the rest of the line is
taken to be a shell [sh(l)] command whose output is to be read. For
example, "Sr !ls" appends current directory to the end of the file being
edited. Such a shell command is not remembered as the current filename.

(• t.)s/RE/replacement/ or
(• , •)s/RE/replacement/g or
(.,.)s/RE/replacement/n

The substitute command searches each addressed line for an occurrence of
the specified RE. In each line in which a match is found, all (not
overlapped) matched strings are replaced by the replacement if the global
replacement indicator g appears after the command. If the global indicator
does not appear, only the first occurrence of the matched string is replaced.
If a number n appears after the command, only the nth occurrence of the
matched string on each addressed line is replaced. It is an error for the
substitution to fail on all addressed lines. Any character other than space
or newline may be used instead of / to delimit the RE and the replacement;
• is left at the last line on which a substitution occurred. See also the last
paragraph before FILES.

An ampersand (&) appearing in the replacement is replaced by the string
matching the RE on the current line. The special meaning of & in this
context may be suppressed by preceding it by \. As a more general
feature, the characters \n, where n is a digit, are replaced by the text
matched by the nth regular subexpression of the specified RE enclosed
between \ (and \). When nested, parenthesized sub expressions are
present, n is determined by counting occurrences of \ (starting from the
left. When the character % is the only character in the replacement, the
replacement used in the most recent substitute command is used as the
replacement in the current substitute command The % loses its special
meaning when it is in a replacement string of more than one character or is
preceded by a \.

A line may be split by substituting a newline character into it. The newline
in the replacement must be escaped by preceding it with \. Such
substitution cannot be done as part of a g or v command list.

(.,.)ta
This command acts just like the m command, except that a copy of the
addressed lines is placed after address a (which may be 0); the. is left at
the last line of the copy.

IIP-H\~?~ V1 Paoe 9

ED(1)

u
The undo command nullifies the effect of the most recent command that
modified anything in the buffer, namely the most recent a, c, d, g, i,j, m, T,

s, t, v, G, or V command.

(1 , $)v/RE/command list
This command is the same as the global command g except that the
command list is executed with • initially set to every line that does not
match the RE.

(1,$)V/REI
This command is the same as the interactive global command G except that
the lines that are marked during the first step are those that do not match
theRE.

(1 ,$)w file

x

The write command writes the addressed lines into the named file. If the
file does not exist, it is created with mode 666 (readable and writable by
everyone), unless your umask setting [see umask(I)) dictates otherwise.
The currently remembered filename is not changed unless file is the very
first filename mentioned since ed was invoked. If no filename is given, the
currently remembered filename, if any, is used (see e and f commands); the
• is unchanged. If the command is successful, the number of characters
written is typed. If file is replaced by!, the rest of the line is taken to be a
shell [sh(I)) command whose standard input is the addressed lines. Such a
shell command is not remembered as the current filename.

A key is prompted for, and it is used in subsequent e, T, and w commands
to decrypt and encrypt text using the crypt(l) algorithm. An educated
guess is made to determine whether text read in for the e and T commands
is encrypted. A null key turns off encryption. Subsequent e, T, and w
commands will use this key to encrypt or decrypt the text [see crypt(l)). An
explicitly empty key turns off encryption. Also, see the -x option of ed.

($)=
The line number of the addressed line is typed; the • is unchanged by this
command.

!shell command

Pace 10

The remainder of the line after the ! is sent to the UNIX system shell
[sh(l)) to be interpreted as a command. Within the text of that command,
the unescaped character % is replaced with the remembered filename; if a !
appears as the first character of the shell command, it is replaced with the

UP-15525 V1

ED(1)

text of the previous shell command. Thus,!! will repeat the last shell
command. If any expansion is performed, the expanded line is echoed; the
• is unchanged.

(. + 1) < newline>
An address alone on a line causes the addressed line to be printed. A
newline alone is equivalent to • + Ip; it is useful for stepping forward
through the buffer.

If an interrupt signal (ASCn DEL or BREAK) is sent, ed prints a ? and returns
to its command level.

Some size limitations: 512 characters in a line, 256 characters in a global
command list, and 64 characters in the pathname of a file (counting slashes).
The limit on the number of lines depends on the amount of user memory: each
line takes 1 word.

When reading a file, ed discards Ascn NUL characters.

If a file is not terminated by a newline character, ed adds one and puts out a
message explaining what it did.

If the closing delimiter of a RE or of a replacement string (e.g., I) is the last
character before a newline, that delimiter may be omitted, in which case the
addressed line is printed. The following pairs of commands are equivalent:

s/slJs2 s/slJs2/p
gls1 gls1!p
?s1 ?s1?

FILES
$TMPDIR If this environmental variable is not null, its value is used in place of

lusr/tmp as the directory name for the temporary work file.
lusr/tmp If lusr/tmp exists, it is used as the default directory name for the

temporary work file.
Itmp If the environmental variable TMPDIR does not exist or is null, and

if lusr/tmp does not exist, then Ifmp is used as the directory name
for the temporary work file.

ed.hup Work is saved here if the terminal is hung up.

NOTES
The· option, although it continues to be supported, has been replaced in the
documentation by the -s option that follows the Command Syntax Standard [see
intro(1)]. The· option will not be supported in the next major release of the
operating system.

UP-15525 V1 Page 11

ED(1)

SEE ALSO
edit(l), ex(l), grep(l), sed(l), sh(l), stty(l), umask(l), vi(l)
fspec(4), regexp(5) in the Programmer's Reference Manual

DIAGNOSTICS
? for command errors

?file for an inaccessible file
(use help)

If changes have been made in the buffer since the last w command that wrote the
entire buffer, ed warns the user if an attempt is made to destroyed's buffer by
the e or q commands. It prints ? and allows one to continue editing. A second e
or q command at this point will take effect. The -s command-line option inhibits
this feature.

WARNINGS
The encryption options and commands are provided with the Crypt Utilities
package, which is available only in the United States.

BUGS
A I command cannot be subject to a g or a v command.

The I command and the! escape from the e, r, and w commands cannot be used
if the editor is invoked from a restricted shell [see sh(l)].

The sequence \0 in a RE does not match a newline character.

If the editor input is coming from a command file (e.g., ed file < ed-cmd-file),
the editor will exit at the first failure.

P!:lIno 1? I IP_1 "".,~ V1

EDIT(1)

NAME
edit - text editor (variant of ex for casual users)

SYNOPSIS
edit [-r] [-x] [-C] name ...

DESCRIPTION
The edit command is a variant of the text editor ex, recommended for new or
casual users who wish to use a command-oriented editor. It operates precisely as
ex(l) with the following options automatically set:

novice ON

report ON

showmode ON

magic OFF

These options can be turned on or off with the set command in ex(l).

-r Recover file after an editor or system crash.

-x Encryption option; when used, the file will be encrypted as it is being
written and will require an encryption key to be read. The edit command
makes an educated guess to determine if a file is encrypted or not See
crypt(l). Also, see the WARNINGS section at the end of this manual page.

-C Encryption option; the same as -x except that edit assumes files are
encrypted.

The following brief introduction should help you get started with edit. If you are
using a CRT terminal you may want to learn about the display editor vi.

To edit the contents of an existing file, you begin with the command edit nome to
the shell. The edit command makes a copy of the file that you can then edit, and
tells you how many lines and characters are in the file. To create a new file, you
also begin with the command edit with a filename, edit name; the editor tells you
it is a New Fi le.

The edit command prompt is the colon (:), which you should see after starting
the editor. If you are editing an existing file, then you have some lines in edifs
buffer (its name for the copy of the file you are editing). When you start editing,
edit makes the last line of the file the current line. Most commands to edit use
the current line if you do not tell them which line to use. Thus if you say print
(which can be abbreviated p) and type carriage return (as you should after all
edit commands), the current line is printed. If you delete (d) the current line, edit

EDIT(1)

prints the new cmrent line, which is usually the next line in the file. If you delete
the last line, then the new last line becomes the cmrent one.

If you start with an empty file or wish to add some new lines, then the append (a)
command can be used. After you execute this command (typing a carriage
return after the word append), edit will read lines from your terminal until you
type a line consisting of just a dot (.); it places these lines after the cmrent line.
The last line you type then becomes the CWTent line. The command insert (i) is
like append, but places the lines you type before, rather than after, the CWTent
line.

The edit command numbers the lines in the buffer, with the first line having
number 1. If you execute the command 1, then edit will type the first line of the
buffer. If you then execute the command d, edit will delete the first line, line 2
will become line 1, and edit will print the cmrent line (the new line 1) so you can
see where you are. In general, the cmrent line will always be the last line
affected by a command.

You can make a change to some text within the current line by using the
substitute (s) command, s/old/new/ where old is the string of characters you want
to replace and new is the string of characters you want to replace old with.

The command file if) will tell you how many lines there are in the buffer you are
editing and will say [Modified] if you have changed the buffer. After modifying a
file, you can save the contents of the file by executing a write (w) command. You
can leave the editor by issuing a quit (q) command. If you run edit on a file, but
do not change it, it is not necessary (but does no harm) to write the file back. If
you try to quit from edit after modifying the buffer without writing it out, you will
receive the message No write since last change (:quitl overrides), and edit will
wait for another command. If you do not want to write the buffer out, issue the
quit command followed by an exclamation point (q!). The buffer is then
irretrievably discarded and you return to the shell.

By using the d and a commands and giving line numbers to see lines in the file,
you can make any changes you want. You should learn at least a few more
things, however, if you will use edit more than a few times.

The change (c) command changes the cmrent line to a sequence of lines you
supply as in append, you type lines up to a line consisting of only a dot (.). You
can tell change to change more than one line by giving the line numbers of the
lines you want to change, i.e., 3,5c. You can print lines this way too, 1,23p prints
the first 23 lines of the file.

EDIT(1)

The undo (u) command reverses the effect of the last command you executed
that changed the buffer. Thus, if you execute a substitute command that does not
do what you want, type u and the old contents of the line will be restored. You
can also undo an undo command. The edit command will give you a warning
message when a command affects more than one line of the buffer. Note that
commands such as write and quit cannot be undone.

To look at the next line in the buffer, type carriage return. To look at a number
of lines, type ,.. D (while holding down the control key, press d) rather than
carriage return. This will show you a half-screen of lines on a CRT or 12 lines
on a hardcopy terminal. You can look at nearby text by executing the z
command. The current line will appear in the middle of the text displayed, and
the last line displayed will become the current line; you can get back to the line
where you were before you executed the z command by typing. The z command
has other options, z- prints a screen of text (or 24 lines) ending where you are;
z+ prints the next screenful. If you want less than a screenful of lines, typez.l1
to display five lines before and five lines after the current line. (Typing zJt,
when n is an odd number, displays a total of n lines, centered about the current
line; when n is an even number, it displays n-1lines, so that the lines displayed
are centered around the current line.) You can give counts after other
commands; for example, you can delete 5 lines starting with the current line with
the command dS.

To find things in the file, you can use line numbers if you happen to know them.
Since the line numbers change when you insert and delete lines, this is somewhat
unreliable. You can search backward and forward in the file for strings by giving
commands of the form /text/ to search forward for text or ?text? to search
backward for text. If a search reaches the end of the file without finding text, it
wraps around and continues to search back to the line where you are. A useful
feature here is a search of the form / ,.. text/ which searches for text at the
beginning of a line. Similarly /text$/ searches for text at the end of a line. You
can leave off the trailing / or ? in these commands.

The current line has the symbolic name dot (.); this is most useful in a range of
lines as in .,$p which prints the current line plus the rest of the lines in the file.
To move to the last line in the file, you can refer to it by its symbolic name $.
Thus the command $d deletes the last line in the file, no matter what the current
line is. Arithmetic with line references is also possible. Thus the line $-5 is the
fifth before the last and • + 20 is 20 lines after the current line.

You can determine the current line by typing. =. This is useful if you wish to
move or copy a section of text within a file or between files. Find the first and
last line numbers you wish to copy or move. To move lines 10 through 20, type

EDIT(1)

lO,20d a to delete these lines from the file and place them in a buffer named a.
The edit command has 26 such buffers named a through z. To put the contents
of buffer a after the current line, type put a. If you want to move or copy these
lines to another file, execute an edit (e) command after copying the lines;
following the e command with the name of the other file you wish to edit, i.e., edit
chapter2. To copy lines without deleting them, use yank (y) in place of d. If the
text you wish to move or copy is all within one file, it is not necessary to use
named buffers. For example, to move lines 10 through 20 to the end of the file,
type lO,20m $.

SEE ALSO
ed(1), eX(1), vi(1)

WARNING
The encryption options are provided with the Crypt Utilities package, which is
available only in the United States.

On 110 ot r.r.ru::. \/ot

EGREP(1)

NAME
egrep - search a file for a pattern using full regular expressions

SYNOPSIS
egrep [options] full regular expression [file ...]

DESCRIPTION
The egrep command (expression grep) searches files for a pattern of characters
and prints all lines that contain that pattern. The egrep command uses full
regular expressions (expressions that have string values that use the full set of
alphanumeric and special characters) to match the patterns. It uses a fast
deterministic algorithm that sometimes needs exponential space.

The egrep command accepts full regular expressions as in ed(l), except for \(
and \), with the addition of:

1. A full regular expression followed by + that matches one or more
occurrences of the full regular expression.

2. A full regular expression followed by ? that matches 0 or 1 occurrences of
the full regular expression.

3. Full regular expressions separated by I or by a newline that match strings
that are matched by any of the expressions.

4. A full regular expression that may be enclosed in parentheses () for
grouping.

Be careful using the characters $, *, [, A, I, (,), and \ infull regular expression,
because they are also meaningful to the shell. It is safest to enclose the entire full
regular expression in single quotes ' ... '.

The order of precedence of operators is [], then *? +, then concatenation, then
I and newline.

If no files are specified, egrep assumes standard input. Normally, each line found
is copied to the standard output. The filename is printed before each line found
if there is more than one input file.

Command line options are:

-b Precede each line by the block number on which it was found. This can
be useful in locating block numbers by context (first block is 0).

-c Print only a count of the lines that contain the pattern.
-i Ignore upper!1ower case distinction during comparisons.
-1 Print the names of files with matching lines once, separated by newlines.

Does not repeat the names of files when the pattern is found more than
once.

I 10 -41:1:'11: \/-4

EGREP(1)

-0 Precede each line by its line number in the file (first line is 1).
-v Print all lines except those that contain the pattern.
-e speciaC expression

Search for a special expression (full regular expression that begins with a .).
-ffile Take the list offull regular expressions fromJile.
-h Prevents the name of the file containing the matching lines from being

appended to that line. Used when searching multiple files.

SEE ALSO
ed(1), fgrep(1), grep(1), sed(1), sh(l)

DIAGNOSTICS
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or
inaccessible files (even if matches were found).

BUGS
Ideally, there should be only one grep command, but there is not a single
algorithm that spans a wide enough range of space-time tradeoffs. Lines are
limited to BUFSIZ characters; longer lines are truncated. BUFSIZ is defined in
/usr/include/stdio.h, which is included as part of the basic software development
set.

IIP.i ~~?Fi Vi

ENABLE(1)

NAME
enable, disable - enable/disable LP printers

SYNOPSIS
enable printers
disable [options] printers

DESCRIPTION
The enable command activates the named printers, enabling them to print
requests taken by q,(l). Use q,stat(l) to find the status of printers.

The disable command deactivates the named printers, disabling them from
printing requests taken by q,(l). By default, any requests that are currently
printing on the designated printers will be reprinted in their entirety either on the
same printer or on another member of the same class. Use q,stat(l) to find the
status of printers. Options for use with disable are:

-c Cancel any requests that are currently printing on any of the
designated printers.

-r reason Assign a reason for the disabling of the printers. This reason applies
to all printers mentioned up to the next -r option. This reason is
reported by q,stat(l). If the -r option is not present, then a default
reason will be used.

Fll..ES
/usr/spool/lp/*

SEE ALSO
lp(l), lpstat(l)

Pona 1

ENABLE(1)

[This page left blank.]

UP-15525 V1

(
\

ENV(1}

NAME
env - set environment for command execution

SYNOPSIS
env [-] [name = value] ... [command args]

DESCRIPTION
The env command obtains the current environment, modifies it according to its
arguments, then executes the command with the modified environment.
Arguments of the form name = value are merged into the inherited environment
before the command is executed. The - flag causes the inherited environment to
be ignored completely, so that the command is executed with exactly the
environment specified by the arguments.

If no command is specified, the resulting environment is printed, one name-value
pair per line.

Internationalization
Characters from supplementary code sets can be used for value, command and
args.

SEE ALSO
sh(l)
exec(2), profile(4), environ(5) in the Programmer's Reference Manual

UP-15525 V1 Pane 1

ENV(1)

[This page left blank.]

Paae 2 UP-15525 V1

NAME
eqn, neqn, checkeq - format mathematical text for nrolI or troff

SYNOPSIS
eqn [-dxy] [-pn] [-sn] [-fn] [files]

neqn [-dxy] [-pn] [-sn] [-fn] [files]

cbeckeq [files]

DESCRIPTION

EQN(1)

Eqn is a troff(1) preprocessor for typesetting mathematical text on a phototypesetter,
while neqn is used for the same purpose with nroff on typewriter-like terminals.
Usage is almost always:

eqn fIles I troff

neqn fIles I nroff

or equivalent.

If no files are specified (or if - is specified as the last argument), these programs read
the standard input A line beginning with .EQ marks the start of an equation; the end
of an equation is marked by a line beginning with .EN. Neither of these lines is
altered, so they may be defined in macro packages to get centering, numbering, and
so forth. It is also possible to designate two characters as delimiters; subsequent text
between delimiters is then treated as eqn input Delimiters may be set to characters x
and y with the command-line argument -dxy or (more commonly) with delim xy
between .EQ and .EN. The left and right delimiters may be the same character; the
dollar sign is often used as such a delimiter. Delimiters are turned off by de lim off.
All text that is neither between delimiters nor between .EQ and .EN is passed
through untouched.

The program checkeq reports missing or unbalanced delimiters and .EQ/.EN pairs.

Tokens within eqn are separated by spaces, tabs, new-lines, braces, double quotes,
tildes, and circumflexes. Braces () are used for grouping; generally speaking, any
where a single character such as x could appear, a complicated construction enclosed
in braces may be used instead. Tilde (-) represents a full space in the output,
circumflex (A) half as much.

Subscripts and superscripts are produced with the keywords sub and sup. Thus
x sub j makes Xj' a sub k sup 2 produces a~, while e

x2
+

y2
is made with

e sup (x sup 2 + Y sup 2) .

Fractions are made with over: a over b yields :; sqrt makes square roots:

lover sqrt {ax sup 2+bx+c} results in:

UP-15525 V1 Page 1

EQN(1)

1

~ax2+bx+e .

The keywords from and to introduce lower and upper limits:
n

limDi
n~O

is made with limfrom {n -> inf} sum from 0 to n x sub i. Left and right brack
ets, braces, and so forth, of the right height are made with left and right:

left [x sup 2 + Y sup 2 over alpha right 1 -=- 1

produces

b2+~] = 1.

Legal characters after left and right are braces, brackets, bars, c and f for ceiling and
floor, and "" for nothing at all (useful for a right-side-only bracket). A left thing
need not have a matching right thing.

Vertical piles of things are made with pile, Ipile, cpile, and rpile:

pile (a above b above e)

produces:

a
b.
e

Piles may have arbitrary numbers of elements; Ipile left-justifies, pile and cpile
center (but with different vertical spacing), and rpile right justifies. Matrices are
made with matrix:

matrix { leol (x sub i above y sub 2) eeol { 1 above 2 } }

produces

Xi 1

Y2 2'

In addition, there is rcol for a right-justified column.

Diacritical marks are made with dot, dotdot, hat, tilde, bar, vec, dyad, and under:

x dot = f(t) bar is x=f (t), y dotdot bar -=- n under is y =!!, and
x vee -=- y dyad is7=y.

Point sizes and fonts can be changed with size n or size ±n, roman, italic, bold, and
font n. Point sizes and fonts can be changed globally in a document by gsize nand

Page 2 UP-15525 V1

EQN(1)

gfont n, or by the command-line arguments -sn and -fn.

Normally, subscripts and superscripts are reduced by 3 points from the previous size;
this may be changed by the command-line argument -pn.

Successive display arguments can be lined up. Place mark before the desired lineup
point in the first equation; place lineup at the place that is to line up vertically in
subsequent equations.

Shorthands may be defined or existing keywords redefined with define:

define thing % replacement %

defines a new token called thing that will be replaced by replacement whenever it
appears thereafter. The % may be any character that does not occur in replacement.

Keywords such as sum (l:), int d), inf (00), and shorthands such as >= (~), != (i=),
and -> (~) are recognized. Greek letters are spelled out in the desired case, as in
alpha (ex), or GAMMA (n. Mathematical words such as sin, cos, and log are made
Roman automatically. Troff(1) four-character escapes such as \(dd (+) and \(bs (0)
may be used anywhere. Strings enclosed in double quotes (" ... It) are passed
through untouched; this permits keywords to be entered as text, and can be used to
communicate with troff(l) when all else fails. Full details are given in the manual
cited below.

SEE ALSO
Documenter's Workbench User's Guide
AT&T Documenter's Workbench Technical Discussion and Reference

BUGS
To embolden digits, parentheses, and so forth, it is necessary to quote them, as in
bold" 12.3".

See also "BUGS" under troff(l).

UP-15525 V1 Page 3

EQN(1)

[This page left blank.]

P;:!(1P' 4 UP-15525 V1

NAME
eucset - set or get EUC code set width

SYNOPSIS
eucset [cswidth]
eucset -p

DESCRIPTION

EUCSET(1)

The eucset command assumes the existence of an EUC line discipline (which
does canonical processing of EUC characters) in its standard input Stream
(usually a tty). The EUC line discipline must recognize the eucioc calls to
ioctl(2), as defined in the header file sys/eucioctl.h.

If given no arguments, eucset looks in the environment for the cswidth parameter
in the character class table, which is assumed to specify the code set widths and
screen widths in use. The format of cswidth parameter is described in character
class table specification.

If given one argument which does not begin with "_", it is taken to be a string in
the format of cswidth parameter, overriding whatever is in the environment.

If given the optional argument -p, eucset prints the current values of the code set
widths and Screen widths as returned by the line discipline. These values may be
different than what is currently in the user's environment, but represents the
EUC mapping that the EUC line discipline is currently using. Code set 0
(ASCll) is excluded from the listing, which is in the same format as the cswidth
parameter.

RETURN VALUES
The eucset command returns 0 on success, 1 on failure of any call to ioctl(2).

FILES
lusr/include/sys/eucioctl.h
lusrfmclude/sys/euc.h
/usr/include/sys/cswidth.h

SEE ALSO
ioctl(2), getwidth(3W), eldO(7), streamio(7) in the Programmer's Reference
Manual

l 1P-1 fifi?fi V1 PaQe 1

EUCSET(1)

[This page left blank.]

Page 2 UP-15525 V1

EX(1)

NAME
ex - text editor

SYNOPSIS
ex [-s] [-v] [-t tag] [-r file] [-L] [-R] [-x] [-C] [-c command] file

DESCRIPTION
The ex command is the root of a family of editors: ex and vi. The ex command is
a superset of ed, with the most notable extension being a display editing facility.
Display-based editing is the focus of vi.

H you have a CRT terminal, you may wish to use a display-based editor; in this
case see vi (1), which is a command which focuses on the display-editing portion
of ex.

For ed Users
H you have used ed(1), you will find that, in addition to having all of the ed(1)
commands available, ex has a number of additional features useful on CRT
terminals. Intelligent terminals and high-speed terminals are very pleasant to
use with vi. Generally, the ex editor uses far more of the capabilities of terminals
than ed(1) does and uses the terminal capability data base [see tenninfo(4)] and
the type of the terminal you are using from the environmental variable TERM to
determine how to drive your terminal efficiently. The editor makes use of
features such as insert and delete character and line in its visual command (which
can be abbreviated vi) and which is the central mode of editing when using vi (1).

The ex command contains a number of features for easily viewing the text of the
file. The z command gives easy access to windows of text. Typing A D (control
d) causes the editor to scroll a half-window of text and is more useful for quickly
stepping through a file than just typing return. Of course, the screen-oriented
visual mode gives constant access to editing context.

The ex command gives you help when you make mistakes. The undo (u)
command allows you to reverse any single change which goes astray. The ex
command gives you a lot of feedback, normally printing changed lines, and
indicates when more than a few lines are affected by a command so that it is easy
to detect when a command has affected more lines than it should have.

The editor also normally prevents overwriting existing files, unless you edited
them, so that you do not accidentally overwrite a file other than the one you are
editing. H the system (or editor) crashes, or you accidentally hang up the
telephone, you can use the editor recover command (or -r file option) to retrieve
your work. This will get you back to within a few lines of where you left off.

UP-15525 V1 Page 1

EX(1)

The ex command has several features for dealing with more than one file at a
time. You can give it a list of files on the command line and use the next (n)
command to deal with each in turn. The next command can also be given a list
of filenames or a pattern as used by the shell to specify a new set of files to be
dealt with. In general, filenames in the editor may be formed with full shell
metasyntax. The metacharacter % is also available in forming filenames and is
replaced by the name of the current file.

The editor has a group of buffers whose names are the ASCn lowercase letters
(a-z). You can place text in these named buffers where it is available to be
inserted elsewhere in the file. The contents of these buffers remain available
when you begin editing a new file using the edit (e) command.

There is a command & in ex which repeats the last substitute command. In
addition, there is a confirmed substitute command. You give a range of
substitutions to be done and the editor interactively asks whether each
substitution is desired.

It is possible to ignore the case of letters in searches and substitutions. The ex
command also allows regular expressions which match words to be constructed.
This is convenient, for example, in searching for the word "edit" if your document
also contains the word "editor".

The ex command has a set of options which you can set to tailor your document
to your liking. One option which is very useful is the autoindent option that
allows the editor to supply leading white space to align text automatically. You
can then use '" D as a backtab and space or tab to move forward to align new
code easily.

Miscellaneous useful features include an intelligent join V) command that
supplies white space between joined lines automatically, commands" <" and ">"
which shift groups of lines, and the ability to filter portions of the buffer through
commands such as sort(l).

Invocation Options
The following invocation options are interpreted by ex (previously documented
options are discussed in the NOTES section at the end of this manual page):

-s

-v

-t tag

Page 2

Suppress all interactive-user feedback. This is useful in
processing editor scripts.

Invoke vi.

Edit the file containing the tag and position the editor at its
definition.

UP-15525 V1

-r file

-L

-R

-x

-C

-c command

EX(1)

Edit file after an editor or system crash. (Recovers the version
of file that was in the buffer when the crash occurred.)

List the names of all files saved as the result of an editor or
system crash.

Read only mode; the read only flag is set, preventing ~ ccidental
overwriting of the file.

Encryption option; when used, ex simulates an X command and
prompts the user for a key. This key is used to encrypt and
decrypt text using the algorithm of crypt(l). The X command
makes an educated guess to determine whether text read in is
encrypted or not. The temporary buffer file is encrypted also,
using a transformed version of the key typed in for the -x
option. [See crypt(l)]. Also, see the WARNINGS section at
the end of this manual page.

Encryption option; the same as the -x option, except that ex
simulates a C command. The C command is like the X
command, except that all text read in is assumed to have been
encrypted.

Begin editing by executing the specified editor command
(usually a search or positioning command).

The file argument indicates one or more files to be edited.

The ex States
Command Normal and initial state. Input prompted for by:. Your line

kill character cancels a partial command.

Insert

Visual

Entered by a, i, or c. Arbitrary text may be entered. Insert
state normally is terminated by a line having only n." on it, or,
abnormally, with an interrupt.

Entered by typing vi; terminated by typing Q or
A \ (control-\)o

The ex Command Names and Abbreviations
abbrev ab map set se
append a mark ma shell sh
args ar move m source so
change c next n substitute s
copy co number nu unabbrev unab
delete d preserve pre undo u

UP-15525 V1 Page 3

EX(1)

edit e print p unmap
tile f put pu version
global g quit q visual
insert read r write
join j recover rec xit
list I rewind rew yank

The ex Commands
forced encryption C heuristic encryption
resubst & print next
rshift > lshift
scroll AD window
shell escape

The ex Command Addresses
n linen Ipat

current ?pat
$ last x-n
+ next

previous
+n n forward "
% 1,$

Initializing Options

next with pat
previous with pat
n before x
x throughy
marked with x
previous context

X
CR
<
z

EXINIT place set here in environment variable
$HOME/.exrc editor initialization file
J .exrc editor initialization file
set x enable option x
set nox disable option x
set x = val give value val to option x
set show changed options
set all show all options
set x? show value of option x

Most Useful Options and Their Abbreviations
autoindent ai supply indent
autowrite aw write before changing files
directory dir specify the directory

uom
ve
vi
w
x
ya

exrc ex allow vilex to read the .exrc in the current

ignorecase ic

Page 4

directory. This option is set in the
EXINIT shell variable or in the .exrc file
in the $HOME directory.

ignore case of letters in scanning

UP-15525 V1

list
magic
modelines

number
paragraphs
redraw
report

scroll
sections
sbiftwidth
shoWlDatch
shoWIDode
slowopen
term

window
wrapmargin
wraps can

print "I for tab, $ at end
treat • [* special in patterns
first five lines and last five lines executed as

vi/ex commands if they are of the form
ex: command: or vi: command:

no number lines
para macro names that start paragraphs

simulate smart terminal
informs you if the number of lines modified

by the last command is greater than the
value of the report variable

command mode lines
sect macro names that start sections
sw for < >, and input "n
sm to) and } as typed
smd show insert mode in vi
slow stop updates during insert

specifies to vi the type of terminal
being used (the default is the value
of the environmental variable TERM)

visual mode lines
WID automatic line splitting
ws search around end (or beginning) of buffer

Scanning Pattern Formation
" beginning of line
$ end of line

\<
\>
[str]
[fstr]
[x-y]

*
Internationalization

any character
beginning of word
end of word
any character in str
any character not in str
any character between x and y
any number of preceding characters

EX(1)

The ex command can process characters from supplementary code sets as well as
Ascn characters.

In regular expressions, searches and pattern matching are performed in character
units, not in individual bytes.

UP-15525 V1 Page 5

EX(1)

FILES
/usrllib/exstrings
/usrllib/exrecover
/usrllib/expreserve
/usrllib/terminfo/*
mOMFJ.exrc
J.exrc
/tmp/Exnnnnn
/tmp/Rxnnnnn
/usr/preserve.l~&in

NOTES

error messages
recover command
preserve command
describes capabilities of terminals
editor startup file
editor startup file
editor temporary
named buffer temporary
preservation directory
(where ~&in is the user's login)

Several options, although they continue to be supported, have been replaced in
the documentation by options that follow the Command Sytax Rules [see
intro(1)]. The - option has been replaced by -s, a -r option that is not followed
with an option-argument has been replaced by -L, and + command has been
replaced by -c command.

SEE ALSO
crypt(1), ed(1), edit(1), grep(1), sed(1), sort(1), vi(1)
curses(3X), term(4), terminfo(4) in the Programmer's Reference Manual
User's Guide
"curses/terminfo" chapter of the Programmer's Guide

WARNINGS
The encryption options and commands are provided with the Crypt Utilities
package, which is available only in the United States.

BUGS
The z command prints the number of logical rather than physical lines. More
than a screen full of output may result if long lines are present.

FIle input/output errors do not print a name if the command line -s option is
used.

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used before
exiting the editor.

Null characters are discarded in input files and cannot appear in resultant files.

Paae 6 UP-155?5 V1

EXPAND(1)

NAME
expand, unexpand - expand tabs to spaces, and vice versa

SYNOPSIS
expand [-tabs top] [-tabl, tab2, ... , tabn] [file ...]

unexpand [-a] [file ...]

DESCRIPTION
The expand command processes the named files or the standard input writing the
standard output with tabs changed into blanks. Backspace characters are
preserved into the output and decrement the column count for tab calculations.
Use expand for pre-processing character files (before sorting, looking at specific
columns, and so forth) that contain tabs.

If a single tabstop argument is given then tabs are set tabstop spaces apart instead
of the default 8. If multiple tabstops are given then the tabs are set at those
specific columns.

Use unexpand to put tabs back into the data from the standard input or the
named files and to write the result on the standard output. By default, only
leading blanks and tabs are reconverted to maximal strings of tabs. If the -a
option is given, then tabs are inserted whenever they would compress the
resultant file by replacing two or more characters.

l jp.1 ~fi?~ V1 Paae 1

EXPAND(1)

[This page left blank.]

P'!lIno?

EXPR(1)

NAME
expr - evaluate arguments as an expression

SYNOPSIS
expr arguments

DESCRIPTION
The argwnents are taken as an expression. After evaluation, the result is written
on the standard output. Terms of the expression must be separated by blanks.
Characters special to the shell must be escaped. Note that 0 is returned to
indicate a zero value, rather than the null string. Strings containing blanks or
other special characters should be quoted. Integer-valued arguments may be
preceded by a unary minus sign. Internally, integers are treated as 32-bit, 2s
complement numbers.

The operators and keywords are listed in the following text. Characters that
need to be escaped are preceded by \. The list is in order of increasing
precedence, with equal precedence operators grouped within { } symbols.

expT \1 expT
returns the first expT if it is neither null nor 0, otherwise returns the
second expr.

expT \&expT
returns the first expT if neither expr is null or 0, otherwise returns o.

expT { =, \ >, \ > =, \ <, \ < =, ! = } expT
returns the result of an integer comparison if both arguments are
integers, otherwise returns the result of a lexical comparison.

expT { +, - } apT
addition or subtraction of integer-valued arguments.

apT { *, /, % } expT
multiplication, division, or remainder of the integer-valued arguments.

apT: apT

110 .frrnr \, ...

The matching operator : compares the first argument with the second
argument which must be a regular expression. Regular expression syntax
is the same as that of ed(l), except that all patterns are anchored (i.e.,
begin with "') therefore, '" is not a special character, in that context.
Normally, the matching operator returns the number of characters
matched (0 on failure). Alternatively, the \ (••• \) pattern symbols can be
used to return a portion of the first argument.

EXPR(1)

EXAMPLES
1. a= 'expr Sa + 1 '

adds 1 to the shell variable a.

2. # 'For Sa equal to either "/usr/abc/file" or just "file" ,
expr Sa : '. */\(. *\)' \ I $a
returns the last segment of a pathname (i.e., file). Watch out for / alone as
an argument; expr will take it as the division operator (see "BUGS" at the
end of this manual page).

3. # A better representation of example 2:
expr liSa : '.*'/\(.*\)
The addition of the II characters eliminates any ambiguity about the
division operator and simplifies the whole expression.

4. expr $VAR : '.*'
returns the number of characters in $V AR.

SEE ALSO
ed(l), sh(l)

DIAGNOSTICS
As a side effect of expression evaluation, expr returns the following exit values;

o if the expression is neither null nor 0
1 if the expression is null or 0
2 for invalid expressions

syntax error for operator/operand errors
non-nwneric argwnent if arithmetic is attempted on such a string

BUGS
After argument processing by the shell, expr cannot tell the difference between an
operator and an operand except by the value. If $a is an =, the command
expr $a = ' =' looks like expr = = = as the arguments are passed to expr
(and they will all be taken as the = operator). The following works:
expr X$a = X=

NAME
exstr - extract strings from source files

SYNOPSIS
exstr files
exstr -e files
exstr -7 [-d] file

DESCRIPTION

EXSTR(1)

The exstr utility is used to extract strings from source files and replace them by
calls to the message retrieval function [gettxt(3G)]. In the first form., exstr finds all
strings in the source files and writes them on the standard output. Each string is
preceded by the source filename and a colon. The meanings of the options are:

-e
Produces on the standard output a list of strings from the named C source
files with positional information.

The following is the format of the output:

file:line:position:msgfile:msgnum:string

The following fields are created by exstr:

file the name of the C source file
line line number in the file
position character position in the line
string the extracted text string

The application developer will supply the remaining two fields:

msgfile the file that contains the
created text strings

A file with the same name must be created and installed in the appropriate place
by the mlansgs(lM) utility.

msgnwn the sequence number of the
string in the message file

This file must be examined by the developer to identify which strings can be
translated and retrieved by the message retrieval function. The developer has to
delete lines that cannot be translated and insert the names of message file(s) and
message number(s) in their appropriate places. The names of message files must
be the same as the names of files created by mlansgs(lM) and installed in

EXSTR(1)

/Iib/locale/ < locale> /LC _MESSAGES. The message numbers must correspond
to the sequence numbers of strings in the message meso

-r Modify the C source me by replacing strings with
function calls to the message retrieval function gettxt.

The first step is to invoke exstr with the -e option to create a list of strings. This
list will be examined and modified by deleting lines and adding the message
menames and numbers to their appropriate places. The exstr command with the
-r option will use the modified list of strings as input C source me. Strings in the
source me are replaced by call to the message retrieval function gettxt(3G). The
msgfile and msgnwn fields will be used to construct the first argument to gettxt.
Without the -d option the second argument to gettxt will be the null string [see
gettxt(3G)].

-d This option is used together with the -r option.
The extracted strings are used as second arguments
to the retrieval function (gettxt).

This utility would not be capable of performing strings replacement in all
instances. For example, a static initialized character string cannot be replaced by
a function call. Another example is a string which could be in a form of an
escape sequence which would not be translated. These examples strongly suggest
that, in order not to break existing code, the mes created by invoking exstr with
the -e option must be examined, and lines containing strings not replaceable by
function calls must be deleted. In some cases, the code may require
modifications so that strings can be extracted and replaced by calls to the
message retrieval function.

EXAMPLES
The following examples show uses of exstr.

The me foo.c contains two strings.

mainO
{

}

printf(:This is an example\n");
printf("Hello world!!\n");

The exstr utility, invoked with the argument foo.c extracts strings from the named
file and prints them on the standard output.

exstr foo.c will produce the following output:
foo.c:This is an example\n
foo.c:Hello world\n

exstr -e foo.c will produce the following output:
foo.c:3:8:::This is an example\n
foo.c:4:8:::Helloworld!\n

EXSTR(1)

The developer must supply the msgfi/e and msgnum fields before the strings can
be replaced by calls to the retrieval function. If UX is the name of the message
file and the numbers 1 and 2 represent the sequence number of the strings in the
file the following are the contents of strings file after this information has been
added:

foo.c:3:8:UX:l:This is an example\n
foo.c:4:8:UX:2:Hello world!\n

The exstr utility can now be invoked with the -r option to replace the strings in
the source file by calls to the message retrieval function (gettxt).

exstr -r foo.c < strings > intlfoo.c

The following is the output of the command:

extern char *gettxt():
mainO
{

}

printf(gettxt("UX:l",""»:
printf(gettxt("UX:2",""):

The exstr -rd foo.c < strings > intlfoo.c will use the extracted strings as a
second argument to 2gettxt.

extern char *gettxt():
mainO
{

FILES

printf(gettxt("UX:l","This is an example\n"»:
printf(gettxt("UX: 2" , "Hello world! ! \n ll »:

/lib/loca1e/ < locale> /LC _ MESSAG E13/*
message file created by mlansgs(lM)

I JP-1~~?~ V1

EXSTR(1)

SEE ALSO
mkmsgs(lM) in the Administrator's Reference Manual
setloca1e(3C), gettxt(3G) in the Programmer's Reference Manual

DIAGNOSTICS
The error messages produced by exstr are intended to be self-explanatory. They
indicate errors in the command line or format errors encountered within the
strings file.

Paae 4 UP-15525 V1

FACTOR(1)

NAME
factor - obtain the prime factors of a number

SYNOPSIS
factor [integer]

DESCRIPTION
When you use [actor without an argument, it waits for you to give it an integer.
After you give it a positive integer less than or equal to 1014, it factors the integer,
prints its prime factors the proper number of times, and then waits for another
integer. The [actor command exits if it encounters a zero or any non-numeric char
acter.

If you invoke factor with an argument, it factors the integer as described above, and
then it exits.

The maximum time to factor an integer is proportional to -m. The factor command
will take this time when n is prime or the square of a prime.

DIAGNOSTICS
The [actor command prints the error message, Ouch, for input out of range or for
garbage input

UP-15525 V1 Page 1

FACTOR(1)

[This page left blank.]

Paae 2 UP-15525 V1

FGREP(1)

NAME
fgrep - search a file for a character string

SYNOPSIS
fgrep [options] string [file ...]

DESCRIPTION
The /grep (fast grep) command searches files for a character string and prints all
lines that contain that string. The Igrep command is different from grep(l) and
egrep(l) because it searches for a string, instead of searching for a pattern that
matches an expression. It uses a fast and compact algorithm.

The characters $, *, [, "', I, (,), and \ are interpreted literally by Igrep, that is,
Igrep does not recognize full regular expressions as does egrep. Since these
characters have special meaning to the shell, it is safest to enclose the entire

."singl t" string m e quo es ••••

If no files are specified, /grep assumes standard input. Normally, each line found
is copied to the standard output. The filename is printed before each line found,
if there is more than one input file.

Command line options are:

-b Precede each line by the block number on which it was found. This can
be useful in locating block numbers by context (first block is 0).

-c Print only a count of the lines that contain the pattern.
-i Ignore upper!1ower case distinction during comparisons.
-I Print the names of files with matching lines once, separated by newlines.

Does not repeat the names of files when the pattern is found more than
once.

-0 Precede each line by its line number in the file (first line is 1).
-v Print all lines except those that contain the pattern.
-x Print only lines matched entirely.
-e speciaCstring

Search for a special string (string begins with a -).
-f file Take the list of strings from file"
-h Prevents the name of the file containing the matching line from being

appended to that line. Used when searching multiple files.

InternationaIization
The Igrep command can process characters from supplementary code sets.

Searches are performed on characters, not on individual bytes.

P&lInA 1

FGREP(1)

Option:

-i Ignore upper!1owercase distinction during comparisons; valid for
single-byte characters only.

SEE ALSO
ed(l), egrep(l), grep(l), sed(l), sh(l)

DIAGNOSTICS
Exit status is 0 if any matches are found, 1 if none, and 2 for syntax errors or
inaccessible files (even if matches were found).

BUGS
Ideally there should be only one grep command, but there is not a single
algorithm that spans a wide enough range of space-time tradeoffs. Lines are
limited to BUFSIZ characters; longer lines are truncated. BUFSIZ is defined in
/usr/include/stdio.h, which is included as part of the basic software development
set.

FILE(1)

NAME
file - determine file type

SYNOPSIS
me [-c] [-f ffile] [-m mfile] arg ...

DESCRIPTION
The file command performs a series of tests on each argument in an attempt to
classify it. If an argument appears to be ASCn, file examines the first 512 bytes
and tries to guess its language. If an argument is an executable a.out, file will
print the version stamp, provided it is greater than o.
-c The -c option causes file to check the magic file for format errors. This

validation is not normally carried out for reasons of efficiency. No file
typing is done under -c.

-f If the -f option is given, the next argument is taken to be a file containing
the names of the files to be examined.

-m The -m option instructs file to use an alternate magic file.

The file command uses the file /etdmagic to identify files that have some sort of
magic nwnber, that is, any file containing a numeric or string constant that
indicates its type. Commentary at the beginning of /etdmagic explains its format.

Internationalization
The file command can classify files containing characters from supplementary
code sets. The file command reads each argument and can distinguish data files,
program text files, shell scripts and executable files as follows:

Files

Data files containing
supplementary characters

Shell scripts containing
supplementary characters

Language program text files
containing literals or
comments using supplementary
characters

Executable files

Classification

data

command text

xu text

executable

FILE{1)

FILES
jete/magic

SEE ALSO
filehdr(4} in the Programmer's Reference Manual

FIND(1)

NAME
find - find files

SYNOPSIS
find path-name-list expression

DESCRIPTION
The find command recursively descends the directory hierarchy for each
pathname in the path-name-list (that is, one or more pathnames), seeking files
that match a Boolean expression written in the primaries given below. In the
descriptions, the argument n is used as a decimal integer where + n means more
than n, -n means less than n, and n means exactly n. Valid expressions are:

-name file True iffile matches the current filename. Normal shell
argument syntax may be used if escaped (watch out for [, ?
and *).

[-perm] -onwn True if the file permission flags exactly match the octal
number onwn [see chmod(l)]. If onwn is prefixed by a minus
sign, only the bits that are set in onwn are compared with the
file permission flags, and the expression evaluates true if they
match.

-type c True if the type of the file is c, where c is b, c, d, p, or f for
block special file, character special file, directory, fifo (a.k.a
named pipe), or plain file, respectively.

-links n True if the file has n links.

-user uname True if the file belongs to the user uname. If uname is
numeric and does not appear as a login name in the
fete/passwd file, it is taken as a user ID.

-group gname True if the file belongs to the group gname. If gname is
numeric and does not appear in the fete/group file, it is taken
as a group ID.

-size n[c] True if the file is n blocks long (512 bytes per block). If n is
followed by a c, the size is in characters.

-atime n True if the file has been accessed in n days. The access time
of directories in path-name-list is changed by find itself.

-mtime n True if the file has been modified in n days.

IIP-1 ~~9~ V1 Paoe 1

FIND(1)

-ctimen

-exec cmd

-okcmd

-print

-cpio device

-newer file

-inwnn

-depth

-mount

-local

(expression)

True if the file has been changed in n days.

True if the executed cmd returns a zero value as exit status.
The end of cmd must be punctuated by an escaped semicolon.
A command argument {} is replaced by the current pathname.

Like -exec except that the generated command line is printed
with a question mark first and is executed only if the user
responds by typing y.

Always true; causes the current pathname to be printed.

Always true; writes the cmrent file on device in cpio (1)
format (512O-byte records).

True if the current file has been modified more recently than
the argument file •

True if the current file is inode number n.

Always true; causes descent of the directory hierarchy to be
done so that all entries in a directory are acted on before the
directory itself. This can be useful when find is used with
cpio (1) to transfer files that are contained in directories
without write permission.

Always true; restricts the search to the file system containing
the directory specified, or if no directory was specified, the
current directory.

True if the file physically resides on the local system.

True if the parenthesized expression is true (parentheses are
special to the shell and must be escaped).

The primaries may be combined using the following operators (in order of
decreasing precedence):

(1) The negation of a primary (! is the unary not operator).

(2) Concatenation of primaries (the and operation is implied by the
juxtaposition of two primaries).

(3) Alternation of primaries (-0 is the or operator).

Internationalization
The find command can process characters from supplementary code sets in
addition to Ascn characters. Searches are performed on characters, not

Paae 2 UP-15525 V1

individual bytes.

Characters from supplementary code sets can be used in path-name-list.

Expressions:

-name file
Character from supplementary code sets can be used in file.

-execcmd

-okcmd
Characters from supplementary code sets can be used in cmd.

EXAMPLE

FIND(1)

To remove all files named a.out or *.0 that have not been accessed for a week:

find f \(-name a.out -0 -name '*.0' \) -atime +7 -exec rm {} \;

FILES
fetc/passwd, fetc/group

SEE ALSO
chmod(1), cpio(1), sh(1), test(1)
stat(2), umask(2), fs(4) in the Programmer's Reference Manual

BUGS
find f -depth always fails with the message:
find: stat fai led: : No such fi le or directory

Pono ~

FIND(1)

[This page left blank.]

UP-15525 V1

FINGER{1}

NAME
finger - user information lookup program

SYNOPSIS
finger [options] [name ...]

DESCRIPTION
The finger program displays information about users on the local and remote
machines. If you don't specify any arguments, finger lists the login name, full
name (as specified in the fifth field of /etc/passwd), terminal name, and write
status (as a '*' before the terminal name if write permission is denied), idle time,
login time, and office location and phone number (if they are known) for each
logged-in user on the local system. Idle time is in minutes if it is a single integer,
hours and minutes if a ':' is present, or days and hours if a 'd' is present.

The finger program generates a longer, more detailed format of user information
if at least one of the following arguments is supplied:

(1) A user name or a list of user names. A user name can be a login name
(first field of /etc/passwd) or a first or last name (fifth field of
/etc/passwd).

(2) The -I option.

The longer format is multi-line, and includes all the information described above,
as well as the user's home directory and login shell, any plan specified in the
user's SHOME .plan file, and any project specified in the user's SHOME .project
file.

To use finger to look up users on a remote machine, specify the user as
user @ host. A list of users on the same remote host can be enclosed in double
quotes; for example,

finger "userl user2 user3"@host

If no user names are supplied (argument to finger is @host); standard, rather
than long, format listing is provided.

The following options are recognized by finger:

-m Match arguments only on login name.

-I Force long (rather than standard) output format.

-p Suppress printing of the .plan files.

UP-15525 V1 Pace 1

FINGER(1}

-s Force standard (rather than long) output format.

FILES
/etc/utmp

/etc/passwd

/usr/admllastlog

SHOMEl.plan

SHOMEl.project

SEE ALSO
who(l)

BUGS

who file

for user's names, offices, and so forth

last login times

plans

projects

Only the first line of the .project file is printed.

There is no way to pass arguments to the remote machine as finger uses an
internet standard port.

Page 2 UP-15525 V1

GENCAT(1)

NAME
gencat - generate a formatted message catalog

SYNOPSIS
gencat [-s] [-e) catfi1e msgfi1e •••

DESCRIPTION
Thegencat utility merges the message text source 6le(s) msgfi1e into a formatted
message catalog catfi1e. The catfi1e will be created if it does not already exist. If
catfi1e does exist, its messages will be included in the new catfi1e. If set and
message numbers collide, the new message-text defined in msgfi1e will replace the
old message text currently contained in catfi1e.

UP-15525 V1 A Page 1

GENCAT(1)

[This page left blank.]

Page 2 UP-15525 V1 A

GETOPT(1)

NAME
getopt - parse command options

SYNOPSIS
set -- 'getopt optstring $* '

DESCRIPTION
WARNING: Start using the new commandgetoptr(1) in place of getopt(1). The
commandgetopt(1) will not be supported in the next major release. For more
information, see the WARNINGS section which follows.

The getopt command is used to break up options in command lines for easy
parsing by shell procedures and to check for legal options. The optrtring is a
string of recognized option letters [see getopt(3C)]; if a letter is followed by a
colon, the option is expected to have an argument which mayor may not be
separated from it by white space. The special option -- is used to delimit the end
of the options. If it is used explicitly, getopt will recognize it; otherwise, getopt
will generate it; in either case, getopt will place it at the end of the options. The
positional parameters ($1 $2 ...) of the shell are reset so that each option is
preceded by a - and is in its own positional parameter; each option argument is
also parsed into its own positional parameter.

Internationalization
Characters from supplementary code sets can be read as the argument to
optrtring. Note, however, that the recognized string of option letters specified in
optrtring must be a single byte character.

EXAMPLES
The following code fragment shows how one might process the arguments for a
command that can take the options a or b, as well as the option 0, which requires
an argument:

set -- 'getopt abo: $*'
if [$1 I_ 0]
then

fi

echo $USAGE
exit 2

for i in $*
do

UP-15525 V1

case $i in
-a I -b)
-0)

FLAG=$i: shift::
OARG=$2: shift 2;:

Page 1

GETOPT(1)

--) shift: break::
esac

done

This code will accept any of the following as equivalent:

cmd -aoarg file file
cmd -a -0 arg file file
cmd -oarg -a file file
cmd -a -oarg -- file file

SEE ALSO
getopts(1), sh(1)
getopt(3C) in the Programmer's Reference Manual

DIAGNOSTICS
The getopt command prints an error message on the standard error when it
encounters an option letter not included in optstring.

WARNINGS
Thegetopt(1) command does not support the part of Rille 8 of the Command
Syntax Ru1es that permits groups of option-arguments following an option to be
separated by white space and quoted (see the "About This Document" section at
the beginning of this reference manual). For example:

cmd -a -b -0 "xxx z yy'l file

is not handled correctly. To correct this deficiency, use the new command
getopts(1) in place of getopt(1).

The getopt(1) command will not be supported in the next major release. For this
release, a conversion tool has been provided, getoptcvt. For more information
about getopts and getoptcvt, see the getopts (1) manual page.

If an option that takes an option-argument is followed by a value that is the same
as one of the options listed in optstring (referring to the earlier EXAMPLES
section, but using the following command line: cmd -0 -a file), getopt will always
treat -a as an option-argument to -0; it will never recognize -a as an option. For
this case, the for loop in the example will shift past the file argument.

Page 2 UP-15525 V1

GETOPTS(1)

NAME
getopts, getoptcvt - parse command options

SYNOPSIS
getopts optstring name [arg ... J
/osr/lib/getoptcvt [-b J file

DESCRIPTION
The getopts command is used by shell procedures to parse positional parameters
and to check for legal options. It supports all applicable Command Syntax Ru1es
(see Rules 3-10 in the intro(1) manual page) and should be used in place of the
getopt(1) command. (See·W ARNINGS" which follow.)

The optstring must contain the option letters the command using getopts will
recognize; if a letter is followed by a colon, the option is expected to have an
argument, or group of arguments, which must be separated from it by white
space.

Each time it is invoked, getopts will place the next option in the shell variable
name and the index of the next argument to be processed in the shell variable
OPTIND. Whenever the shell or a shell procedure is invoked, OPTIND is
initialized to 1.

When an option requires an option-argument, getopts places it in the shell
variable OPrARG.

If an illegal option is encountered, ? will be placed in name.

When the end of options is encountered, getopts exits with a non-zero exit status.
The special option II -- II may be used to delimit the end of the options.

By default, getopts parses the positional parameters. If extra arguments (arg •••)
are given on the getopts command line, getopts will parse them instead

The /usr/lib/getoptcvt command reads the shell script infi1e, converts it to use
getopts (1) instead of getopt(1), and writes the resu1ts on the standard output.

-b the resu1ts of running /usr/lib/getoptcvt will be portable to earlier releases of
the UNIX system. The /usr/lib/getoptcvtmodifies the shell script infi1e so
that when the resulting shell script is executed, it determines at run time
whether to invoke getopts(1) or getopt(1).

So all new commands will adhere to Command Syntax Standards described in
intro(1) they shou1d use getopts (1) or getopt(3C) to parse positional parameters
and check for options that are legal for that command (see WARNINGS).

UP-15525 Page 1

GETOPTS(1)

Internationalization
Characters from supplementary code sets can be read as the argument to
optstring.

EXAMPLES
The following fragment of a shell program shows how one might process the
arguments for a command that can take the options a or b, as well as the option
0, which requires an option-argument:

while getopts abo: c
do

done

case $c in
a I b)
0)
\1)

esac

shift 'expr $OPTIND - l'

FLAG=$c: :
OARG=$OPTARG::
echo $USAGE
exit 2::

This code will accept any of the following as equivalent:

cmd -a -b -0 "xxx z Y,Y" file
cmd -a -b -0 "xxx Z Y,Y" -- file
cmd -ab -0 xxx,z,Y,Y file
cmd -ab -0 "xxx Z Y,Y" file
cmd -0 xxx,z,Y,Y -b -a file

SEE ALSO
intro(l), sh(l)
getopt(3C) in the Programmer's Reference Manual

WARNINGS
Although the following command syntax rule [see intro(l)] relaxations are
permitted under the current implementation, they should not be used because
they may not be supported in future releases of the system. As in the preceding
EXAMPLES, a and b are options, and the option 0 requires an option-argument:

cmd -aboxxx f i 1 e
(Rule 5 violation: options with option-arguments must not be grouped with
other options.)

cmd -ab -oxxx f i 1 e
(Rule 6 violation: there must be white space after an option that takes an

IIP-1 FiFi?Fi

other options.)

cmd -ab -oxxx file

GETOPTS(1)

(Rule 6 violation: there must be white space after an option that takes an
option-argument.)

Changing the value of the shell variable OPTIND or parsing different sets of
arguments may lead to unexpected results.

DIAGNOSTICS
The getopts command prints an error message on the standard error when it
encounters an option letter not included in optstring.

Paae 3

GETOPTS(1)

[This page left blank.]

Page 4 UP-15525

GEITXT(1}

NAME
gettxt - retrieve a text string from a message data base

SYNOPSIS
gettxt msgfile:msgnum [dflt _ msgCW]

DESCRIPTION
The gettxt command retrieves a text string from a message file in the directory
/lib/locale/locale!LC_MESSAGES. The directory locale corresponds to the
language in which the text strings are written; see setlocale(3C).

msgfile Name of the file in the directory /lib/locale/locale/LC_MESSAGES to
retrieve msgnum from. The msgfile can be up to 14 characters in
length, but may not contain either \0 (null) or the ASCII code for
/ (slash) or : (colon).

msgnum Sequence number of the string to retrieve from msgfile. The strings in
msgfile are numbered sequentially from 1 to n where n is the number
of strings in the file.

dflt _ msg Default string to be used on failure to retrieve the message from the
file.

The text string to be retrieved is in the file created by the mkmsgs(1M) utility and
installed in the local directory in /lib/locale/locale!LC_MESSAGE. The user
controls which directory is searched by setting the environment variable
LC_MESSAGES. If LC_MESSAGES is not set, the environment variable LANG
will be used. If LANG is not set, the language in which the strings are retrieved
is U.S. English and the files containing the strings are in
/lib/locale/C!LC _MESSAGES/* .

If gettxt fails to retrieve a message in the requested language, it will try to retrieve
the same message in U.S. English. If this also fails, the processing depends on
the second argument. If the second argument is not supplied on the command
line or it is the null string gettxt will display the string Message not found! ! in
U.S. English. The second argument will be displayed if it is not the null string.

Nongraphic characters can be included in the default message as alphabetic
escape sequences.

EXAMPLES
gettxt UX:1
gettxt UX:1 ''hello world"

UP-15525 V1 Page 1

GETIXT(1}

FILES
/lib/locale/C/LC_MESSAGES/* U.S. English files created by mlansgs(lM)
/lib/locale/locale/LC _ MESSAGES/* message files for different languages

created by mlansgs(lM)

SEE ALSO
exstr(l) mkmsgs(lM)

Page 2 UP-15525 V1

GLOSSARY (1)

NAME
glossary - definitions of common System V terms and symbols

SYNOPSIS
[help] glossary [term]

DESCRIPTION
The System V Help Facility command glossary provides definitions of common
technical terms and symbols.

Without an argument, glossary displays a menu screen listing the terms and
symbols that are currently included in glossary. A user may choose one of the
terms or may exit to the shell by typing q (for "quit'~. When a term is selected,
its definition is retrieved and displayed. By selecting the appropriate menu
choice, the list of terms and symbols can be redisplayed.

A term's definition may also be requested directly from shell level (as shown
above), causing a definition to be retrieved and the list of terms and symbols not
to be displayed. Some of the symbols must be escaped if requested at shell level
in order for the facility to understand the symbol. The following is a table which
lists the symbols and their escape sequence.

SYMBOL ESCAPE SEQUENCE

"" \"\" , ,
\'\'

[] \ \[\ \] , ,
\'\'

\#
& \&
* *
\ \\\\

\1
From any screen in the Help Facility, a user may execute a command via the
shell [sh(l)] by typing a ! and the command to be executed. The screen will be
redrawn if the command that was executed was entered at a first level prompt. If
entered at any other prompt leve~ only the prompt will be redrawn.

By default, the Help Facility scrolls the data that is presented to the user. If you
prefer to have the screen clear before printing the data (non-scrolling), the shell
variable SCROLL must be set to no and exported so it will become part of your
environment. This is done by adding the following line to your .profile file [see
profile (4)]:

UP-15525 V1 Page 1

GLOSSARY (1)

export SCROLL ; SCROLL=no

If you later decide that scrolling is desired, SCROLL must be set to yes.

Information on each of the Help Facility commands (starter, locate, usage,
glossary, and help) is located on their respective manual pages.

SEE ALSO
help(1), locate(1), sh(1), starter(1), usage(1)
helpadm.(lM) in the Administrator's Reference Manual
term(5) in the Programmer's Reference Manual

WARNINGS
If the shell variable TERM [see sh (1)] is not set in the user's .profile file, then
TERM will default to the terminal value type 450 (a hard-copy terminal). For a
list of valid terminal types, refer to term (5).

Paae 2

GRAPH(1G)

NAME
graph - draw a graph

SYNOPSIS
graph [options]

DESCRIPTION
The graph command with no options takes pairs of numbers from the standard
input as abscissas and ordinates of a graph. Successive points are connected by
straight lines. The graph is encoded on the standard output for display by the
tplot(1G) filters.

If the coordinates of a point are followed by a non-numeric string, that string is
printed as a label beginning on the point. Labels may be surrounded with quotes
", in which case they may be empty or contain blanks and numbers; labels never
contain newlines.

The following options are recognized, each as a separate argument:

-a Supply abscissas automatically (they are missing from the input);
spacing is given by the next argument (default 1). A second optional
argument is the starting point for automatic abscissas (default 0 or

-b
-c

-g

-I
-m

-s
-x [I]

-y [I]
-h
-w
-r

I IP-1 fifi?fi V1

lower limit given by -x).
Break (disconnect) the graph after each label in the input.
Character string given by next argument is default label for each
point.
Next argument is grid style, 0 no grid, 1 frame with ticks, 2 full grid
(default).
Next argument is label for graph.
Next argument is mode (style) of connecting lines: 0 disconnected, 1
connected (default). Some devices give distinguishable line styles for
other small integers (e.g., the Tektronix 4014: 2 = dotted, 3 = dash-dot,
4= short-dash, 5=long-dash).
Save screen, do not erase before plotting.
If I is present, the x axis is logarithmic. Next 1 (or 2) arguments are
lower (and upper) x limits. Third argument, if present, is grid
spacing on x axis. Normally these quantities are determined
automatically.
Similarly for y.
Next argument is fraction of space for height.
Similarly for width.
Next argument is fraction of space to move right before plotting.

Page 1

GRAPH (1G)

-u Similarly to move up before plotting.
-t Transpose horizontal and vertical axes. (Option -x now applies to the

vertical axis.)
A legend indicating grid range is produced with a grid unless the -s option is
present. If a specified lower limit exceeds the upper limit, the axis is reversed.

SEE ALSO
graphics(lG), spIine(lG), tplot(lG)

BUGS
The graph command stores all points internally and drops those for which there
are no room.

Segments that run out of bounds are dropped, not windowed

Logarithmic axes may not be reversed.

Pane 2

CSH(1)

rehash
Causes the internal hash table of the directories' contents in the path
variable to be recomputed. This is needed if new commands are added to
directories in the path while you are logged in. This should be necessary
only if you add commands to one of your own directories or if a systems
programmer changes the contents of one of the system directories.

repeat count command

set

The specified command, which is subject to the same restrictions as the
command in the one line if statement above, is executed count times. I/O
redirection occurs exactly once, even if COW'lt is O.

set name
set name = word
set name [index] = word
set name = (wordlist)

The first form of the command shows the value of all shell variables.
Variables that have other than a single word as value print as a
parenthesized word list. The second form sets name to the null string. The
third form sets name to the single word. The fourth form sets the index
component of name to word; this component must already exist. The final
form sets name to the list of words in wordlist. In all cases the value is
command- and filename-expanded. These arguments may be repeated to
set multiple values in a single set command. Note, however, that variable
expansion happens for all arguments before any setting occurs.

setenv name value

shift

Sets the value of the environment variable name to be value, a single string.
Useful environment variables are TERM , the type of your terminal and
SHELL, the shell you are using.

shift variable
The members of tugV are shifted to the left, discarding argv[l]. It is an
error for tugV not to be set or to have less than one word as value. The
second form performs the same function on the specified variable.

source name
The shell reads commands from name. source commands may be nested; if
they are nested too deeply, the shell may run out of file descriptors. An
error in a source at any level terminates all nested source commands. Input
during source commands is never placed on the history list.

UP-15525 V1 Page 15

CSH (1)

switch (string)
case strI:

breaksw

default:

breaksw
endsw

time

Each case label is successively matched against the specified string that is
first command- and filename-expanded. The file metacharacters *, ?, and [
... 1 may be used in the case labels, which are variable-expanded. If none
of the labels match before a default label is found, then the execution
begins after the default label. Each case label and the default label must
appear at the beginning of a line. The command breaksw causes execution
to continue after the endsw. Otherwise control may fall through case labels
and default labels, as in C. If no label matches and there is no default,
execution continues after the endsw .

time command
With no argument, a summary of time used by this shell and its children is
printed. If arguments are given, the specified simple command is timed,
and a time summary as described under the time variable is printed. If
necessary, an extra shell is created to print the time statistic when the
command completes.

umask
umaskvalue

The file creation mask is displayed (first form) or set to the specified value
(second form). The mask is given in octal. Common values for the mask
are 002, giving all access to the group and read and execute access to
others; or 022, giving all access except no write access for users in the
group or others.

unalias pattern
All aliases whose names match the specified pattern are discarded. Thus,
all aliases are removed by unalias *. It is not an error for nothing to match
the unalias pattern.

unhash

Page 16

Use of the internal hash table to speed location of executed programs is
disabled.

UP-15525 V1

CSH(1)

unset pattern

wait

All variables whose names match the specified pattern are removed. Thus,
all variables are removed by unset *; this has noticeably undesirable side
effects. It is not an error for nothing to be unset.

All child processes are waited for. It the shell is interactive, then an
interrupt can disrupt the wait, at which time the shell prints names and
process numbers of all children known to be outstanding.

wbile(expr)

end

@

While the specified expression evaluates nonzero, the commands between
the while and the matching end are evaluated. Use break and continue to
terminate or continue the loop prematurely. (The while and end must
appear alone on their input lines.) Prompting occurs here the first time
through the loop as for the foreach statement if the input is a terminal.

@name = expr
@ name [index] = expr

The first form prints the values of all shell variables. The second form sets
the specified name to the value of expr. If the expression contains <, >,
& or I, then at least this part of the expression must be placed within ().
The third form assigns the value of expr to the index argument of name.
Both name and its index component must already exist.

Assignment operators, such as * = and + =, are available as in C. The
space separating the name from the assignment operator is optional.
Spaces are mandatory in separating components of expr which would
otherwise be single words.

Special postfix + + and - - operators increment and decrement name
respectively, i.e., @ i + + .

Predefined Variables
The following variables have special meaning to the shell. Of these, tugV, child,
home, path, prompt, shell, and status are always set by the shell. Except for child
and status, this setting occurs only at initialization; these variables will not then be
modified unless done explicitly by the user.

UP-15525 V1 Page 17

CSH(1)

Variable

argv

cdpath

child

echo

histchars

history

home

ignoreeof

mail

Page 18

Description

Set to the arguments of the shell; from this variable, positional
parameters are substituted, i.e., $1 is replaced by $mgv[1].

Gives a list of alternate directories searched to find
subdirectories in cd commands.

The process number printed when the last command was
forked with &. This variable is unset when this process
terminates.

Set when the -x command line option is given. Causes each
command and its arguments to be echoed just before it is
executed. For non built-in commands, all expansions occur
before echoing. Built-in commands are echoed before
command and filename substitution since these substitutions are
then done selectively.

Can be assigned a two-character string. The first character is
used as a history character in place of !; the second character is
used in place of the A substitution mechanism. For example,
set histchars = ,; will cause the history characters to be comma
and semicolon.

Can be given a numeric value to control the size of the history
list. Any command that has been referenced in this many
events will not be discarded. A history that is too large may run
the shell out of memory. The last executed command is always
saved on the history list.

The home directory of the user, initialized from the
environment. The filename expansion of - refers to this
variable.

If set, the shell ignores the end-of-file from input devices that
are terminals. This prevents a shell from accidentally being
terminated by typing CTRL-D.

The files where the shell checks for mail. This is done after
each command completion results in a prompt, if a specified
interval has elapsed. The shell sends the message ''You have
new mail" if the file exists with an access time not greater than
its modify time. If the first word of the value of mail is
numeric, it specifies a different mail checking interval, in

UP-15525 V1

noclobber

no glob

nomatch

path

prompt

shell

status

UP-15525 V1

CSH(1}

seconds, than the default, which is 10 minutes. If multiple mail
files are specified, then the shell sends the message "New mail
in name" when there is mail in the file name.

Restrictions are placed on output redirection to insure that files
are not accidentally destroyed and that > > redirections refer
to existing files.

If set, filename expansion is inhibited. This is most useful in
shell scripts that are not dealing with filenames or after a list of
filenames has been obtained and further expansions are not
desirable.

If set, it is not an error for a filename expansion to not match
any existing files; rather, the primitive pattern is returned. It is
still an error for the primitive pattern to be malformed, i.e.,
echo [still gives an error.

Each word of the path variable specifies a directory in which
commands are to be sought for execution. A null word
specifies the current directory. If there is no path variable, then
only full pathnames will execute. The usual search path is /bin,
lusrlbin, and ., but this may vary from system to system. For
the superuser, the default search path is letc, /bin and lusrlbin.
A shell that is given neither the -c nor the -t option will
normally hash the contents of the directories in the path
variable after reading .cshrc and each time the path variable is
reset. If new commands are added to these directories while
the shell is active, it may be necessary to give the rehash, or the
commands may not be found.

The string that is printed before each command is read from an
interactive terminal input. If a ! appears in the string it will be
replaced by the current event number unless a preceding \ is
given. The default is % or # for the superuser.

The file in which the shell resides. This is used in forking shells
to interpret files that have execute bits set but are not
executable by the system. (See the section "Nonbuilt-In
Command Execution" in this manpage.) The shell is initialized
to the system-dependent home of the shell.

The status returned by the last command If it terminated
abnormally, then 0200 is added to the status. Abnormal

Page 19

CSH(1)

time

verbose

termination results in a core dump. Built-in commands that fail
return exit status 1; all other built-in commands set status O.

Controls automatic timing of commands. If set, then any
command that takes more than this many CPU seconds will
cause a line giving user, system, and real times and a utilization
percentage (ratio of user plus system times to real time) to be
printed when it terminates.

Set by the -v command line option, causes the words of each
command to be printed after history substitution.

The shell copies the environment variable PATH into the variable path and
copies the value back into the environment whenever path is set. Thus, it is not
necessary to worry about its setting other than in the file .cshrc as inferior csh
processes will import the definition of path from the environment.

Nonbuilt-In Command Execution
When a command to be executed is found to not be a built-in command, the shell
attempts to execute the command via exec(S). Each word in the variable path
names a directory from which the shell will attempt to execute the command. If
it is given neither a -c nor a -t option, the shell will hash the names in these
directories into an internal table so that it will only try an exec in a directory if
there is a possibility that the command resides there. This greatly speeds
command location when a large number of directories are present in the search
path. If this mechanism has been turned off (via unhash) or if the shell was given
a -c or -t argument, and in any case for each directory component of path which
does not begin with a /, the shell concatenates with the given command name to
form a pathname of a file which it then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus (cd ; pwd) ;
pwd prints the home directory, leaving you where you were (printing this after
the home directory), while cd ; pwd leaves you in the home directory.
Parenthesized commands are most often used to prevent cd from affecting the
current shell.

If the file has execute permissions but is not an executable binary to the system,
then it is assumed to be a file containing shell commands and a new shell is
spawned to read it.

If there is an alias for shell, then the words of the alias will be prep ended to the
argument list to form the shell command. The first word of the alias should be
the full pathname of the shell (e.g., $she1l). Note that this is a special, late
occurring case of alias substitution and only allows words to be prepended to the

Page 20 UP-15525 V1

CSH(1)

argument list without modification.

Argument List Processing
If argument 0 to the shell is -, then this is a login shell. The flag arguments are
interpreted as follows:

Flag Description

-c Reads commands from the (single) following argument which must be
present. Any remaining arguments are placed in argv.

-e Causes the shell to exit if any invoked command terminates abnormally or
yields a nonzero exit status.

-f Lets the shell start faster because it will neither search for nor execute
commands from the file .cshrc in the user's home directory.

-i Makes the shell interactive. The shell prompts for its top-level input even
if it appears not to be a terminal. Shells are interactive without this
option if their inputs and outputs are terminals.

-n Causes commands to be parsed but not executed. This may aid in
syntactic checking of shell scripts.

-s Causes command input to be taken from the standard input.

-t Reads and executes a single line of input. A backslash (\) can be used to
escape the newline at the end of this line and continue onto another line.

-v Causes the verbose variable to be set, with the effect that command input
is echoed after history substitution.

-x Causes the echo variable to be set so that commands are echoed
immediately before execution.

-v Causes the verbose variable to be set even before .cshrc is executed.

-x Causes the echo variable to be set even before .cshrc is executed.

After processing of flag arguments, if arguments remain but none of the -c, -i, -s,
or -t options were given, the first argument is taken as the name of a file of
commands to be executed. The shell opens this file and saves its name for
possible resubstitution by $0. Since on a typical system most shell scripts are
written for the standard shell [see sh(l)], the C shell executes such a standard
shell if the first character of a script is not a #: that is, if the script does not start
with a comment. Remaining arguments initialize the variable argv.

UP-15525 V1 Page 21

CSH(1)

Signal Handling
The shell normally ignores quit signals. The interrupt and quit signals are ignored
for an invoked command if the command is followed by &; otherwise, the signals
have the values that the shell inherited from its parent. The shell's handling of
interrupts can be controlled by onintr. Login shells catch the tenninate signal;
otherwise, this signal is passed on to children from the state in the shell's parent.
In no case are interrupts allowed when a login shell is reading the file logout

NEW ENVIRONMENT VARIABLES
The new environment variable described in this section has been added to the C
shell. The C shell will behave normally for those users who do not set
DOS PATH. Users who want to execute DOS programs directly from the C shell,
that is, bypassing the normal DOS bootup that occurs when running vpix, should
set DOSPATH to include those directories in PATH that contain DOS
executables.

DOSPATH is a string with the same format as PATH; it contains a subset of the
list of directories from PATH. When searching a directory in PATH for a
program, the C shell determines whether that directory is also in DOSPATH. If
it is not, the C shell acts as usual. If it is, the C shell looks first for the command
with the suffix .com, then .exe, then .bat, and finally, for the command without
any suffix. Whenever the result of a path search gives a file with one of these
DOS suffixes, the shell runs the vpix program via a standard search path and
adds arguments -c and the full pathname of the DOS program (including the
suffix).

For example, if PATH is set to :/bin:/usrlbin, DOSPATH is set to ., the current
directory is /usr/john/ dosbin, and there is a DOS program named abc.comi in the
current directory, then typing abc to the C shell will cause the command vpix -c
/usr/john/dosbin/abc.com to be executed, which will run the DOS program
abc. com without the normal vpix DOS bootup.

FILES
- /.cshrc
- /.login
- /.logout
IbinIsh
/tmp/sh*
/dev/null
/ etc/passwd
/etc/cshrc

Page 22

Read by each shell at the beginning of execution
Read by login shell after .cshrc at login
Read by login shell at logout
Shell for scripts not starting with a #
Temporary file for < <
Source of empty file
Source of home directories for - name
Default file of automatically invoked commands

UP-15525 V1

CSH(1)

NOTES
Words can be no longer than 512 characters. The number of arguments to a
command which involves filename expansion is limited to 1/6 number of
characters allowed in an argument list, which is 5120 less the characters in the
environment. Also, command substitutions may substitute no more characters
than are allowed in an argument list.

To detect looping, the shell restricts the number of alias substitutions on a single
line to 20.

Built -in control structure commands like [oreach and while cannot be used with
the pipe symbol (I), ampersand (&), or semicolon (;).

Commands within loops prompted for by? are not placed in the history list.

It is not possible to use the colon (:) modifiers on the output of command
substitutions.

The csh interpreter attempts to import and export the PATH variable for use
with regular shell scripts. This only works for simple cases, where the PATH
contains no command characters.

This version of csh does not support or use the process control features of the
4th Berkeley Distribution.

You can modify the list of commands that csh automatically invokes by editing
the /etc/default/.cshrc file. For example, if you want to automatically assign the
alias h to the history command, add the following line to the /etc/default/.cshrc
file using the computer editor of your choice:

alias history h

SEE ALSO
umask(l), wait(1)
access(2), exec(2), fork(2), pipe(2), ssignal{3C), a.out(4), environ(5) in the
Programmer's Reference Manual

UP-15525 V1 Page 23

CSH(1)

[This page left blank.]

Page 24 UP-15525 V1

CSPUT(1)

NAME
csplit - context split

SYNOPSIS
csplit [-s] [-k] [-f prefix] file arg1 [... argn]

DESCRIPTION
The esplit command reads file and separates it into n + 1 sections, defined by the
arguments argI. .. argn. By default the sections are placed in XXOO ... xxn (n
may not be greater than 99). These sections get the following pieces offile:

00: From the start offile up to (but not including) the line referenced by
argI.

01: From the line referenced by argI up to the line referenced by arg2.

n + 1: From the line referenced by argn to the end of file.

If the file argument is a -, then standard input is used.

The options to esplit are:

-s The esplit command normally prints the character counts for
each file created. If the -s option is present, esplit suppresses
the printing of all character counts.

-k The esplit command normally removes created files if an error
occurs. If the -k option is present, esplit leaves previously
created files intact.

-f prefix If the -f option is used, the created files are named prefixOO ...
prefixn. The default is xxOO . •• xxn.

The arguments (argI ... argn) to esplit can be a combination of the following:

/rexp/ A file is to be created for the section from the current line up to
(but not including) the line containing the regular expression
rexp. The current line becomes the line containing rexp. This
argument may be followed by an optional + or - some number
of lines (e.g., /Page/-5).

%rexp % This argument is the same as /rexp /, except that no file is created
for the section.

lnno

UP-15525 V1

A file is to be created from the current line up to (but not
including) lnno. The current line becomes lnno.

Page 1

CSPLlT(1)

{nwn} Repeat argument. This argument may follow any of the above
arguments. If it follows a rexp type argument, that argument is
applied nwn more times. If it follows lnno, the file will be split
every lnno lines (nwn times) from that point.

Enclose all rexp type arguments that contain blanks or other characters
meaningful to the shell in the appropriate quotes. Regular expressions may not
contain embedded newlines. The esp/it command does not affect the original
file; it is the user's responsibility to remove it.

EXAMPLES
csplit -f cobol file '/procedure division/' /par5J /par16J

The preceding example creates four files, cobolOO ... cobolO3. After editing the
split files, they can be recombined as follows:

cat coboI0[0-3] > file

Note that the preceding example overwrites the original file.

The next example would split the file at every 100 lines, up to 10,000 lines. The
·k option causes the created files to be retained if there are less than 10,000 lines;
however, an error message would still be printed:

csplit -k file 100 {99}

Assuming that prog.c follows the normal C coding convention of ending routines
with a } at the beginning of the line, the following example creates a file
containing each separate C routine (up to 21) in prog.c:

csplit -k prog.c '%main(%' '/"'}/ + l' {20}

SEE ALSO
ed(l), sh(l)
regexp(5) in the Programmer's Reference Manual

DIAGNOSTICS
Self-explanatory except for:

arg - out of range
which means that the given argument did not reference a line between the
current position and the end of the file.

Page 2 UP-15525 V1

CT(1C)

NAME
ct - spawn getty to a remote terminal

SYNOPSIS
ct [-wn] [-m] [-h] [-v] [-sspeed] teIno ...

DESCRIPTION
The ct command dials the telephone number of a modem that is attached to a
terminal, and spawns a getty process to that terminal. The telno command is a
telephone number, with equal signs for secondary dial tones and minus signs for
delays at appropriate places. (The set of legal characters for telno is 0 through 9,
-, =, *, and #. The maximum length telno is 31 characters). If more than one
telephone number is specified, the ct command tries each in succession until one
answers; this is useful for specifying alternate dialing paths.

The ct command will try each line listed in the file /usr/lih/uucp/Devices until it
finds an available line with appropriate attributes or runs out of entries. If there
are no free lines, ct asks if it should wait for one, and if so, for how many minutes
it should wait before it gives up. The ct command continues to try to open the
dialers at one-minute intervals until the specified limit is exceeded. The dialogue
may be overridden by specifying the -WIt option, where n is the maximum number
of minutes that ct is to wait for a line.

The -xn option is used for debugging; it produces a detailed output of the
program execution on stderr (standard error). The debugging leve~ n, is a single
digit; -x9 is the most useful value.

Normally, ct hangs up the current line, so the line can answer the incoming call.
The -h option prevents this action. The -h option also waits for the termination
of the specified ct process before returning control to the user's terminal. If the
-v option is used, ct sends a running narrative to the standard error output
stream.

The data rate may be set with the -5 option, where speed is expressed in baud.
The default rate is 1200.

After the user on the destination terminal logs out, there are two things that
could occur depending on what type of getty is on the line (getty or uugetty). For
the first case, ct prompts, Reconnect? If the response begins with the letter n, the
line is dropped; otherwise, getty is started again and the login: prompt is printed.
In the second case, there is already a getty (uugetty) on the line, so the login:
message appears.

UP-15525 V1 Page 1

CT(1C)

To log out properly, the user must type < Ctrl > d.

Of course, the destination terminal must be attached to a modem that can answer
the telephone.

FILES
/usr/lib/uucp/Devices
/usr/adm./ ctlog

SEE ALSO
cu(lC), login(l), uucp(lC)
getty(lM), uugetty(lM) in the Administrator's Reference Manual

BUGS
For a shared port, one used for both dial-in and dial-out, the uugetty program
running on the line must have the -r option specified [see uugetty(lM)].

Page 2 UP-15525 V1

CU(1C)

NAME
cu - call another UNIX system

SYNOPSIS
cu [-sspeed] [-lline] [-h] [-t] [-d] [-0 I -e] [-n] telno
cu [-s speed] [-h] [-d] [-0 I -e] -I line
cu [-h] [-d] [-0 I -e] systemname

DESCRIPTION
The cu command calls up another UNIX system, a terminal, or possibly a non
UNIX system. It manages an interactive conversation with possible transfers of
ASCII files.

The cu command accepts the following options and arguments:

-sspeed Specifies the transmission speed (300, 1200, 2400,4800,9600); the
default value is "Any" speed which will depend on the order of the
lines in the /usr/lib/uucp/Devices file. Most modems are either 300
or 1200 baud. Directly connected lines may be set to a speed
higher than 1200 baud.

-lline

-h

-t

UP-15525 Vi

Specifies a device name to use as the communication line. This can
be used to override the search that would otherwise take place for
the first available line having the right speed. When the -I option is
used without the -s option, the speed of a line is taken from the
Devices file. When the -I and -s options are both used together, cu
will search the Devices file to check if the requested speed for the
requested line is available. If so, the connection is made at the
requested speed; otherwise, an error message is printed and the
call is not made. The specified device is generally a directly
connected asynchronous line (e.g., /dev/ttyab) in which case a
telephone number (telno) is not required. The specified device
need not be in the /dev directory. If the specified device is
associated with an auto dialer, a telephone number must be
provided. Use of this option with systemname rather than telno
does not give the desired result (see systemname in following text).

Emulates local echo, supporting calls to other computer systems
which expect terminals to be set to half-duplex mode.

Used to dial an ASCII terminal which has been set to auto answer.
Appropriate mapping of carriage-return to carriage-return-Iine
feed pairs is set.

Page 1

CU(1C)

-d Causes diagnostic traces to be printed.

-0 Designates that odd parity is to be generated for data sent to the
remote system.

-e Designates that even parity is to be generated for data sent to the
remote system.

-n For added security, it prompts the user to provide the telephone
number to be dialed rather than taking it from the command line.

telno When using an automatic dialer, the argument is the telephone
number with equal signs for secondary dial tone or minus signs
placed appropriately for delays of four seconds.

systemname A uucp system name may be used rather than a telephone number;
in this case, cu will obtain an appropriate direct line or telephone
number from /usr/lib/uucp/Systems. Note: The systemname option
should not be used in conjunction with the -I and -s options as cu
will connect to the first available line for the system name
specified, ignoring the requested line and speed.

After making the connection, cu runs as two processes:

The transmit process reads data from the standard input and, except for
lines beginning with -, passes it to the remote system.

The receive process accepts data from the remote system and, except for
lines beginning with -, passes it to the standard output.

Normally, an automatic DC3/DCl protocol is used to control input from the
remote system so the buffer is not overrun. Lines beginning with - have special
meanings.

The transmit process interprets the following user-initiated commands:

terminate the conversation.

-!cmd ...

-$cmd ...

-o/GCd

Page 2

escape to an interactive shell on the local system.

run cmd on the local system (by sh -c).

run cmd locally and send its output to the remote system.

change the directory on the local system. Note: The
- !cd will cause the command to be run by a sub-shell,
probably not what was intended.

UP-15525 V1

CU(1C)

- %take from [to] copy file from (on the remote system) to file to on the
local system. If to is omitted, the from argument is used
in both places.

- %put from [to] copy file from (on local system) to file to on remote
system. If to is omitted, the from argument is used in
both places.

- - line

-%break

-%debug

-I

-%nostop

For both -%take and put commands, as each block of
the file is transferred, consecutive single digits are printed
to the terminal.

send the line - line to the remote system.

transmit a BREAK to the remote system (which can also
be specified as - %b).

toggles the -d debugging option on or off (which can also
be specified as - %d).

prints the values of the termio structure variables for the
user's terminal (useful for debugging).

prints the values of the termio structure variables for the
remote communication line (useful for debugging).

toggles between DC3/DCl input control protocol and no
input control. This is useful in case the remote system is
one which does not respond properly to the DC3 and
DCl characters.

The receive process normally copies data from the remote system to its standard
output. Internally the program accomplishes this by initiating an output diversion
to a file when a line from the remote begins with -. The complete sequence is:

- > [>]:file
zero or more lines to be written to file
->

Data from the remote is diverted (or appended, if > > is used) to file on the
local system. The trailing - > marks the end of the diversion.

The use of - %put requires stty(l) and cat(l) on the remote side. It also
requires that the current erase and kill characters on the remote system be
identical to the current control characters on the local system. Backslashes are
inserted at appropriate places.

UP-15525 V1 Page 3

CU{1C)

The use of - %take requires the existence of echo (1) and cat(1) on the remote
system. Also, tabs mode [see stty(1)] should be set on the remote system if tabs
are to be copied without expansion to spaces.

When cu is used on system X to connect to system Y and subsequently used on
system Y to connect to system Z, commands on system Y can be executed by
using - - . Executing a tilde command reminds the user of the local system
unarne. For example, Wtame can be executed on Z, X, and Y as follows:

uname
Z
-[X]!uname
X
- - [Y]!unarne
Y

In general, - causes the command to be executed on the original machine, - -
causes the command to be executed on the next machine in the chain.

EXAMPLES
To dial a system whose telephone number is 9 201 555 1212 using 1200 baud
(where a dial tone is expected after the 9):

cu -s1200 9 = 12015551212

If the speed is not specified, "Any" is the default value.

To log in to a system connected by a direct line, enter:
cu -I /dev/ttyXX

or
cu -I ttyXX

To dial a system with the specific line and a specific speed, enter:
cu -s1200 -I ttyXX

To dial a system using a specific line associated with an auto dialer, enter:
cu -I culXX 9 = 12015551212

To use a system name, enter:
cu systemname

FILES
/usr/lib/uucp/Systems
/usr/lib/uucp/Devices
/usr/spool/locks/LCK .. (tty-device)

Page 4 UP-15525 V1

CU(1C)

SEE ALSO
cat(l), ct(lC), echo(l), stty(l), uucp(lC), uname(l)

DIAGNOSTICS
Exit code is zero for normal exit, otherwise, one.

WARNINGS
The cu command buffers input data internally and does not do any integrity
checking on data it transfers. Data fields with special cu characters may not be
transmitted properly. Depending on the interconnection hardware, it may be
necessary to use a - • to terminate the conversion even if stty 0 has been used.
Non-printing characters are not dependably transmitted using either the - %put
or - %take commands. The cu command between some modems will not return
a login prompt immediately upon connection. A carriage return will return the
prompt.

BUGS
During the - %put operation, there is an artificial slowing of transmission by cu
so that loss of data is unlikely.

UP-15525 V1 Page 5

CU (1C)

[This page left blank.]

Page 6 UP-15525 V1

CUT(1)

NAME
cut - cut out selected fields of each line of a file

SYNOPSIS
cut -clist [file ...]
cut -rust [-d char] [-s] [file ...]

DESCRIPTION
Use cut to cut out columns from a table or fields from each line of a file; in data
base parlance, it implements the projection of a relation. The fields as specified
by list can be fixed length, i.e., character positions as on a punched card (-c
option), or the length can vary from line to line and be marked with a field
delimiter character like tab (-f option). The cut command can be used as a filter;
if no files are given, the standard input is used In addition, a filename of -
explicitly refers to standard input.

The meanings of the options are:

list A comma-separated list of integer field numbers (in increasing order),
with optional- to indicate ranges [e.g., 1,4,7; 1-3,8; -5,10 (short for
1-5,10); or 3- (short for third through last field)).

-clist The list following -c (no space) specifies character positions (e.g., -c1-72
would pass the first 72 characters of each line).

-flist The list following -f is a list of fields assumed to be separated in the file
by a delimiter character (see -d); e.g., -fl,7 copies the first and seventh
field only. Lines with no field delimiters are passed through intact
(useful for table subheadings), unless -s is specified.

-dchar The character following -d is the field delimiter (-f option only). Default
is tab. Space or other characters with special meaning to the shell must
be quoted.

-s Suppresses lines with no delimiter characters in case of -f option.
Unless specified, lines with no delimiters are passed through untouched.

Either the -c or -f option must be specified.

Use grep(l) to make horizontal cuts (by context) through a file, or paste (1) to put
files together column-wise (Le., horizontally). To reorder columns in a table, use
cut and paste .

UP-15525 V1 Page 1

CUT(1)

EXAMPLES
cut -d: -f1,5 letc/passwd mapping of user IDs to names

name = 'who am i I cut -f1 -d" " , to set name to current login name.

SEE ALSO
grep(1), paste(1)

DIAGNOSTICS
ERROR: line too long

A line can have no more than 1023 characters or fields, or
there is no newline character.

ERROR: bad list for c If option
Missing -c or -f option or incorrectly specified list. No error
occurs if a line has fewer fields than the list calls for.

ERROR: no fields The list is empty.

ERROR: no delimiter
Missing char on -d option.

ERROR: cannot handle multiple adjacent backspaces
Adjacent backspaces cannot be processed correctly.

WARNING: cannot open <filename>

Page 2

Either filename cannot be read or does not exist. If
multiple filenames are present, processing continues.

UP-15525 V1

CW(1)

NAME
cw, checkcw - prepare constant-width text for troff

SYNOPSIS
cw [·Ixx] [·rxx] [·fn] [·t] [+t] [·d] [files]

checkcw [·Ixx] [·rxx] files

DESCRIPTION
The cw utility is a preprocessor for troff input files that contain text to be typeset in
the constant-width (CW) font. Note that the cw utility has been superseded and is no
longer required in the current version of Documenter's Workbench (2.0).

Text typeset with the CW font resembles the output of tenninals and of line printers.
This font is used to typeset examples of programs and computer output in user
manuals, programming texts, and so forth. It has bccn designed to be quite distinc
tive (but not overly obtrusive) when used together with the Times Roman font

Because the CW font contains a "non-standard" set of characters and because text
typeset with it requires different character and inter-word spacing than is used for
"standard" fonts, documents that use the CW font must be preprocessed by cw.

The CW font contains the 94 printing ASCII characters:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
I $ 0/'0&() • • * + @. • I : ; =? [] I - _ 1\ -" < > { } # \I

plus eight non-ASCII characters represented by four-character troff names (in some
cases attaching these names to "non-standard" graphics):

Character Symbol Troff
Name

"Cents" sign ¢ \(ct
EBCDIC "not" sign -, \(no
Left arrow +- \«-
Right arrow ~ \(->
Down arrow J, \(da
Vertical single quote \(fm
Control-shift indicator t \(dg
Visible space indicator 0 \(sq
Hyphen \(hy

UP-15525 V1 Page 1

CW(1)

The hyphen is a synonym for the unadorned minus sign (-). Certain versions of cw
recognize two additional names: \(ua for an up arrow (i) and \(lb for a diagonal
left-up (home) arrow.

The cw utility recognizes five request lines, as well as user-defined delimiters. The
request lines look like troff macro requests, and are copied in their entirety by cw
onto its output; thus, they can be defined by the user as troff macros; in fact, the .CW
and .CN macros should be so defined (see "HINTS" in this manpage). The five
requests are:

.CW Start of text to be set in the CW font; .CW causes a break; it can take precisely
the same options, in precisely the same format, as are available on the cw com
mand line .

• CN End of text to be set in the CW font; .CN causes a break; it can take the same
options as are available on the cw command line .

• CD Change delimiters and/or settings of other options; takes the same options as
are available on the cw command line .

• CP argJ arg2 arg3 ••• argn
All the arguments (which are delimited like troffmacro arguments) are con
catenated, with the odd-numbered arguments set in the CW font and the even
numbered ones in the prevailing font.

.PC argJ arg2 arg3 .•• argn
Same as .CP, except that the even-numbered arguments are set in the CW font
and the odd-numbered ones in the prevailing font.

The .CW and .CN requests are meant to bracket text (for example, a program frag
ment) that is to be typeset in the CW font "as is." Normally, cw operates in the tran
sparent mode. In that mode, except for the .CD request and the nine special four
character names listed in the table above, every character between .CW and .CN
request lines stands for itself. In particular, cw arranges for periods (.) and apos
trophes (') at the beginning of lines, and backslashes (\) everywhere to be "hidden"
from troff. The transparent mode can be turned off (see below), in which case nor
mal troff rules apply; in particular, lines that begin with. and ' are passed through
untouched (except if they contain delimiters-see below). In either case, cw hides the
effect of the font changes generated by the .CW and .CN requests; cw also defeats all
ligatures (fi, ff, and so forth) in the CW font.

The only purpose of the .CD request is to allow the changing of various options
other than just at the beginning of a document.

Page 2 UP-15525 V1

CW(1)

The user can also define delimiters. The left and right delimiters perform the same
function as the .CW I.CN requests; they are meant, however, to enclose CW "words"
or "phrases" in running text (see example under BUGS below). The cw preprocessor
treats text between delimiters in the same manner as text enclosed by .CW I.CN
pairs, except that, for aesthetic reasons, spaces and backspaces inside .CW I.CN pairs
have the same width as other CW characters, while spaces and backspaces between
delimiters are half as wide, so they have the same width as spaces in the prevailing
text (but are not adjustable). Font changes due to delimiters are not hidden.

Delimiters have no special meaning inside .CW I.CN pairs.

The options are:

-Ixx The one- or two-character string xx becomes the left delimiter; if xx is omitted,
the left delimiter becomes undefined.

-rxx Same for the right delimiter. The left and right delimiters may (but need not)
be different.

-fn The CW font is mounted in font position n; acceptable values for n are 1,2,
and 3 (default is 3, replacing the bold font). This option is only useful at the
beginning of a document.

-t Turn transparent mode off.

+t Tum transparent mode on (this is the initial default).

-d Print current option settings on file descriptor 2 in the form of troff comment
lines. This option is meant for debugging.

The cw preprocessor reads the standard input when no files are specified (or when -
is specified as the last argument), so it can be used as a filter. Typical usage is:

cw files I troff ...

The checkcw utility checks that left and right delimiters, as well as the .CW I.CN
pairs, are properly balanced. It prints out all offending lines.

UP-15525 V1 Page 3

CW(1)

HINTS
Typical definitions of the .CW and .CN macros meant to be used with the mm (5)
macro package:

.de CW

.DS I

.ps 9

.vs lO.Sp

.ta 16m/3u 32m/3u 48m/3u 64m/3u BOm/3u 96m/3u ...

. de CN

.ta .Si Ii l.Si 2i 2.Si 3i ...

. vs

.ps

.DE

At the very least, the .CW macro should invoke the troJfno-fill (.of) mode.

When set in running text, the cw font is meant to be set in the same point size as the
rest of the text. In displayed matter, on the other hand, it can often be profitably set
one point smaller than the prevailing point size (the displayed definitions of .CW and
.CN above are one point smaller than the running text on this page). The CW font is
sized so that, when it is set in 9-point, there are 12 characters per inch.

Documents that contain CW text may also contain tables and/or equations. If this is
the case, the order of preprocessing should be: CW, tbl, and eqn. Usually, the tables
contained in such documents will not contain any CW text, although it is entirely
possible to have elements of the table set in the CW font; of course, care must be
taken that tbl(l) format information not be modified by cwo Attempts to set equa
tions in the CW font are not likely to be either pleasing or successful.

In the CW font, overstriking is most easily accomplished with backspaces: letting
the <left arrow> key represent a backspace, striking d, then the <left arrow> key
twice, and then the <Ctrl>-<Shift> combination yields an overstrike over d.
[Because backspaces are half as wide between delimiters as inside .CW /.CN pairs
(see previous text), two backspaces are required for each overstrike between delim
iters.]

FILES
/usr/lib/font/ftCWCW font-width table

Page 4 UP-15525 V1

CW(1)

SEE ALSO
Documenter's Workbench User's Guide
Documenter's Workbench Technical Discussion and Reference

WARNINGS
If text preprocessed by cw is to make any sense, it must be set on a typesetter
equipped with the CW font or on a STARE facility; on the latter, the CW font appears
as bold, but with the proper cw spacing.

BUGS
It is not a good idea to use periods (.), backslashes (\), or double quotes (") as delim
iters, or as arguments to .CP and .PC.

Certain CW characters do not concatenate gracefully with certain Times Roman char
acters, for example, a CW ampersand (&) followed by a Times Roman comma (,); in
such cases, judicious use of troff half- and quarter-spaces (\I and \A) is most salutary;
for example, one should use _ & -' 1\, (rather than just plain _ & _,) to obtain &,
(assuming that _ is used for both delimiters).

The cw utility is not compatible with nroff.

The output of cw is hard to read.

UP-15525 V1 Page 5

CW(1)

[This page left blank.]

Page 6 UP-15525 V1

DATE(1)

NAME
date - print and set the date

SYNOPSIS
date [+ format]
date [mmddhhmm[[yy] I [ccyy]]]

DESCRIPTION
If no argument is given, or if the argument begins with +, the current date and
time are printed. Otherwise, the cmrent date is set (only by the superuser). The
first mm is the month number; dd is the day number in the month; hh is the hour
number (24-hour system); the second mm is the minute number; cc is the century
minus one and is optional; y.y is the last 2 digits of the year number and is
optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is
mentioned The system operates in GMT. The date command takes care of the
conversion to and from local standard and daylight saving time. Only the
superuser may change the date.

If the argument begins with +, the output of date is under the control of the
user. All output fields are of fixed size (zero-padded, if necessary). Each field
descriptor is preceded by % and is replaced in the output by its corresponding
value. A single % is encoded by %%. All other characters are copied to the
output without change. The string is always terminated with a newline character.
If the argument contains embedded blanks, it must be quoted (see "EXAMPLES"
in this manpage).

Specifications of native language translations of month and weekday names are
supported. The language used depends on the value of the environment variable
lANGUAGE [see environ (5)]. The month and weekday names used for a
language are taken from strings in the file for that language in the IIib/cftime
directory [see cftime(4)].

After successfully setting the date and time, date displays the new date according
to the format defined in the environment variable CFTIME [see environ (5)].

Field descriptors (must be preceded by a %):
a abbreviated weekday name
A full weekday name
b abbreviated month name

UP-15525 V1 Page 1

DATE(1)

B
d
D
e
h
H
I
j
m
M
D

P

r

R
S
t
T
U
w
W
x
X
y
Y
Z

EXAMPLE

full month name
day of month - 01 to 31
date as mm/ddlyy
day of month - 1 to 31 (single digits are preceded by a blank)
abbreviated month name (alias for %b)
hour - 00 to 23
hour - 01 to 12
day of year - 001 to 366
month of year - 01 to 12
minute - 00 to 59
insert a newline character
string containing ante-meridiem or post-meridiem indicator (by
default, AM or PM)
time as hh:mm:ss pp where pp is the ante-meridiem or post-meridiem
indicator (by default, AM or PM)
time as hh:mm
second - 00 to 59
insert a tab character
time as hh:mm:ss
week number of year (Sunday as the first day of the week) - 01 to 52
day of week - Sunday = 0
week number of year (Monday as the first day of the week) - 01 to 52
Country-specific date format
Country-specific time format
year within century - 00 to 99
year as cc.w (4 digits)
timezone name

date '+DATE: %m/%dI%y%nTIME: %H:%M:%S'

would have generated as output:

DATE: 08/01/76
TIME: 14:45:05

FILES
/dev/kmem

NOTE
Administrators should note the following; if you attempt to set the current date
to one of the dates that the standard and alternate time zones change (for
example, the date that daylight time is starting or ending), and you attempt to set

Page 2 UP-15525 V1

DATE(1)

the time to a time in the interval between the end of standard time and the
beginning of the alternate time (or the end of the alternate time and the
beginning of standard time), the results are unpredictable.

SEE ALSO
cftime(4), environ(5) in the Programmer's Reference Manual

DIAGNOSTICS
No pennission

bad conversion
bad Jonnat character

UP-15525 V1

if you are not the superuser and you try to change the
date
if the date set is syntactically incorrect
if the field descriptor is not recognizable

Page 3

DATE(1)

[This page left blank.]

Page 4 UP-15525 V1

DC(1)

NAME
dc - desk calculator

SYNOPSIS
de [file]

DESCRIPTION
The de command is an arbitrary precision arithmetic package. Ordinarily, it
operates on decimal integers, but one may specify an input base, output base, and
a number of fractional digits to be maintained. [See be(l), a preprocessor for de
that provides infix notation and a C-like syntax that implements functions. The
be command also provides reasonable control structures for programs.] The
overall structure of de is a stacking (reverse Polish) calculator. If an argument is
given, input is taken from that file until its end, then from the standard input.
The following constructions are recognized:

number
The value of the number is pushed on the stack. A number is an
unbroken string of the digits 0-9. It may be preceded by an underscore
(_) to input a negative number. Numbers may contain decimal points.

+-/*%"
The top two values on the stack are added (+), subtracted (-), multiplied
(*), divided (J), remaindered (%), or exponentiated (,...). The two entries
are popped off the stack; the result is pushed on the stack in their place.
Any fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register named x, where
x may be any character. If the s is capitalized, x is treated as a stack and
the value is pushed on it.

Ix The value in register x is pushed on the stack. The register x is not
altered. All registers start with zero value. If the I is capitalized, register
x is treated as a stack and its top value is popped onto the main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains unchanged.

P Interprets the top of the stack as an Ascn string, removes it, and prints
it.

f All values on the stack are printed.

q Exits the program. If executing a string, the recursion level is popped by
two.

UP-15525 V1 Page 1

DC(1)

Q Exits the program. The top value on the stack is popped and the string
execution level is popped by that value.

x Treats the top element of the stack as a character string and executes it as
a string of de commands.

X Replaces the number on the top of the stack with its scale factor.

[•••] Puts the bracketed Ascn string onto the top of the stack.

<x >x =x
The top two elements of the stack are popped and compared. Register x
is evaluated if they obey the stated relation.

v Replaces the top element on the stack by its square root. Any existing
fractional part of the argument is taken into account, but otherwise the
scale factor is ignored.

Interprets the rest of the line as a UNIX system command.

c All values on the stack are popped.

I

o

o
k

z

z
?

. . , .

Page 2

The top value on the stack is popped and used as the number radix for
further input.

Pushes the input base on the top of the stack.

The top value on the stack is popped and used as the number radix for
further output.

Pushes the output base on the top of the stack.

The top of the stack is popped, and that value is used as a non-negative
scale factor. The appropriate number of places are printed on output,
and maintained during multiplication, division, and exponentiation. The
interaction of scale factor, input base, and output base is reasonable if all
bases are changed together.

The stack level is pushed onto the stack.

Replaces the number on the top of the stack with its length.

A line of input is taken from the input source (usually the terminal) and
executed.

Used by be(l) for array operations .

UP-15525 V1

EXAMPLE
This example prints the first ten values of n!:

[lal + dsa *plalO > y]sy
Osal
lyx

SEE ALSO
bc(l), hc(l)

DIAGNOSTICS
x is Wlimplemented

where x is an octal number.

stack empty
for not enough elements on the stack to do what was asked.

Out of space
when the free list is exhausted (too many digits).

Out of headers
for too many numbers being kept around.

Out of pushdown
for too many items on the stack.

Nesting Depth
for too many levels of nested execution.

UP-15525 V1

DC(1)

Page 3

DC(1)

[This page left blank.]

Page 4 UP-15525 V1

DEROFF(1)

NAME
deroff - remove nroffltroff, tb~ and eqn constructs

SYNOPSIS
deroiT [-lOX] [-w] [files]

DESCRIPTION
The derolf command reads each of the files in sequence and removes all trolf(1)
requests, macro calls, backslash constructs, eqn (1) constructs (between .EQ and
.EN lines and between delimiters), and tbl(1) descriptions, perhaps replacing
them with white space (blanks and blank lines), and writes the remainder of the
file on the standard output.

The derolf command follows chains of included files (.so and .DX trolf
commands); if a file has already been included, a .so naming that file is ignored
and a .ox naming that file terminates execution. If no input file is given, deroff
reads the standard input.

The -m option may be followed by an m, s, or l. The -mm option causes the
macros to be interpreted so that only running text is output (i.e., no text from
macro lines). The -ml option forces the -mm option and also causes deletion of
lists associated with the mm macros.

If the -w option is given, the output is a word list, one word per line, with all
other characters deleted. Otherwise, the output follows the original with the
deletions mentioned above. In text, a word is any string that contains at least two
letters and is composed of letters, digits, ampersands (&), and apostrophes ('); in
a macro call, however, a word is a string that begins with at least two letters and
contains a total of at least three letters. Delimiters are any characters other than
letters, digits, apostrophes, and ampersands. Trailing apostrophes and
ampersands are removed from words.

BUGS
The derolf command is not a complete trolf interpreter, so it can be confused by
subtle constructs. Most of these errors result in too much rather than too little
output.

The -ml option does not handle nested lists correctly.

UP-15525 V1 Page 1

DEROFF(1)

[This page left blank.]

Page 2 UP-15525 V1

DIFF(1)

NAME
diff - differential file comparator

SYNOPSIS
diff [-efbh] file1 file2

DESCRIPTION
The diff command tells what lines must be changed in two files to bring them
into agreement. Iffilel (file2) is -, the standard input is used. Iffilel (file2) is a
directory, then a file in that directory with the namefile2 (filel) is used. The
normal output contains lines of these forms:

nl a n3,n4
nl,n2 d n3
nl,n2 c n3,n4

These lines resemble ed commands to convert filel into file2 . The numbers after
the letters pertain to file2 . In fact, by exchanging a for d and reading backward
one may ascertain equally how to convertfile2 intofilel. As in ed, identical pairs
(where nl = n2 or n3 = n4) are abbreviated as a single number.

Following each of these lines comes all the lines that are affected in the first file
flagged by <, then all the lines that are affected in the second file flagged by > .

The -b option causes trailing blanks (spaces and tabs) to be ignored and other
strings of blanks to compare equal.

The -e option produces a script of a, c, and d commands for the editor ed, which
recreates file2 from filel. The -f option produces a similar script, not useful with
ed, in the opposite order. In connection with -e, the following shell program may
help maintain multiple versions of a file. Only an ancestral file ($1) and a chain
of version-to-version ed scripts ($2,$3, ...) made by diff need be on hand A latest
version appears on the standard output.

(shift; cat $*; echo '1,$p '): ed - $1

Except in rare circumstances, diff finds a smallest sufficient set of file differences.

Option -h does a fast, half-hearted job. It works only when changed stretches are
short and well separated, but does work on files of unlimited length. Options-e
and -f are unavailable with -h.

FILES
/tmp/d?????
/usr/lib/diffh for -h

UP-15525 V1 Page 1

DIFF(1)

SEE ALSO
bdiff(l), cmp(l), comm(l), ed(l)

DIAGNOSTICS
Exit status is 0 for no differences, 1 for some differences, 2 for trouble.

WARNINGS
Missing newline at end of file X

BUGS

Indicates that the last line of file X did not have a newline. If the lines are
different, they are flagged and output although the output seems to indicate
they are the same.

Editing scripts produced under the -e or -f option are naive about creating lines
consisting of a single period (.).

Page 2 UP-15525 V1

DIFF3(1)

NAME
d.ift3 - 3-way differential file comparison

SYNOPSIS
dUB [-ex3] filel file2 file3

DESCRIPTION
The diff3 command compares three versions of a file, and publishes disagreeing
ranges of text flagged with these codes:

= = = = all three files differ

====1

====2

====3

filel is different

file2 is different

file3 is different

The type of change suffered in converting a given range of a given file to some
other file is indicated in one of these ways:

I : nl a Text is to be appended after line number nl in file I,
wheref = 1, ~ or 3.

I: nl , n2 c Text is to be changed in the range line nl to line n2. H
nl = n~ the range may be abbreviated to nl.

The original contents of the range follows immediately after a c indication.
When the contents of two files are identical, the contents of the lower-numbered
file is suppressed.

Under the -e option, diff3 publishes a script for the editor ed that incorporates
intofilel all changes betweenfile2 andfile3, i.e., the changes that normally would
be flagged = = = = and = = = = 3. Option -x (-3) produces a script to
incorporate only changes flagged = = = = (= = = = 3). The following
command will apply the resulting script to filel.

(cat script; echo 'l,$p') I ed - filel

FILES
/tmp/d3*
/usr/lib/diff3prog

SEE ALSO
diff(l)

UP-15525 V1 Page 1

DIFF3(1)

BUGS
Text lines that consist of a single. defeat -e.
Files longer than 64K bytes do not work.

Page 2 UP-15525 V1

GREEK(1}

NAME
greek - select terminal filter

SYNOPSIS
greek [-TIerminal]

DESCRIPTION
The greek command is a filter that reinterprets the extended character set, as well
as the reverse and half-line motions, of a 128-character TELETYPE Model 37
terminal for certain other terminals. Special characters are simulated by
overstriking, if necessary and possible. If the argument is omitted, greek attempts
to use the environment variable $TERM [see environ (5)]. Cmrently, the
following terminals are recognized:

300
300-12
300s
300s-12
450
450-12
1620
1620-12
2621
2640
2645
4014
hp
tek

FILES
/usrlbin/300
/usrlbin/300s
/usrlbinl4014
/usrlbinl450
/usrlbin/hp

SEE ALSO

DASI300
DASI 300 in 12-pitch
DASI300s
DASI 300s in 12-pitch
DASI450
DASI 450 in 12-pitch
Diablo 1620 (alias DASI 450)
Diablo 1620 (alias DASI 450) in 12-pitch
Hewlett-Packard 2621, 2640, and 2645
Hewlett-Packard 2621, 2640, and 2645
Hewlett-Packard 2621, 2640, and 2645
Tektronix 4014
Hewlett-Packard 2621, 2640, and 2645.
Tektronix 4014.

300(1), 4014(1), 450(1), hp(1), tplot(1G)
environ(5), term.(5) in the Programmer's Reference Manual

UP-15525 V1 Page 1

GREEK(1)

[This page left blank.]

Page 2 UP-15525 V1

GREP{1}

NAME
grep - search a file for a pattern

SYNOPSIS
grep [options] limited regular expression [file ...]

DESCRIPTION
The grep command searches files for a pattern and prints all lines that contain
that pattern. The grep command uses limited regular expressions (expressions
that have string values that use a subset of the possible alphanumeric and special
characters) like those used with ed(1) to match the patterns. It uses a compact
non-deterministic algorithm.

Be careful using the characters $, *, [, A, l, (,), and \ in the limited regular
expression because they are also meaningful to the shell. It is safest to enclose
the entire limited regular expression in single quotes ' ... '.

If no files are specified, grep assumes standard input. Normally, each line found
is copied to standard output. The filename is printed before each line found if
there is more than one input file.

Command line options are:

-b Precede each line by the block number on which it was found. This can
be useful in locating block numbers by context (first block is 0).

-c Print only a count of the lines that contain the pattern.
-i Ignore upper!1owercase distinction during comparisons.
-b Prevents the name of the file containing the matching line from being

appended to that line. Used when searching multiple files.
-I Print the names of files with matching lines once, separated by newlines.

Does not repeat the names of files when the pattern is found more than
once.

-0 Precede each line by its line number in the file (first line is 1).
-s Suppress error messages about nonexistent or unreadable files.
-v Print all lines except those that contain the pattern.

InternationaIization
The grep command can process characters from supplementary code sets, as well
as ASCII characters. Searches are performed on characters, not individual bytes.

Option:

-i Ignores upper!1owercase distinction during comparisons, is valid for
single-byte characters only.

UP-15525 V1 Page 1

GREP(1)

SEE ALSO
ed(l), egrep(l), fgrep(l), sed(l), sh(l)

DIAGNOSTICS
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or
inaccessible files (even if matches were found).

BUGS
Lines are limited to BUFSIZ characters; longer lines are truncated. BUFSIZ is
defined in /usr/include/stdio.h, which is included as part of the basic software
development set.

If there is a line with embedded nulls, grep will only match up to the first null; if
it matches, it will print the entire line.

Page 2 UP-15525 V1

NAME
gsar - graphical system activity reporter

SYNOPSIS
gsar [-n] [t[n]]
gsar [-n] [t[n]]

DESCRIPTION

GSAR{1)

The gsar reporter samples cumulative activity counters in the operating system
and displays the resulting data graphically on Unisys supported terminals. The
default display mode is 132 columns. If the -n option is selected, the display uses
80 columns. In the 132 column mode, the data is presented dynamically on four
logical screens (A, B, C, and D) as bar graphs with moving average indicators
(vertical scaled lines) to the right of the bar graphs. In 80 column mode, a fifth
screen (E) is added.

To select a logical screen, type 'a', 'b', 'c, 'd', or 'e'. To toggle between screens,
press the escape key.

The gsar reporter, invoked with the first syntax, samples for n intervals of t
seconds. The default value of t is 1. The default value of n is 100.

The gsar reporter, invoked with the second syntax, samples for n intervals of t
seconds and displays on the logical screen selected by the -S option. The default
value of t is 1. The default value of n is 100.

OPTIONS
-Ss Select logical screen, where sis:

o logical screen A

1 logical screen B

2 logical screen C

3 logical screen D

4 logical screen E (valid only in 80 columns mode)

LOGICAL SCREENS
The exact screen that is displayed depends upon the -n option. All screens
display certain data with column headers matching display columns as follows:

Master CPU utilization

usr Portion of time running in user mode.

UP-15525 V1 Page 1

GSAR(1)

sys Portion of time running in system mode.

wio Portion of time idle with some process waiting for block I/O.

idle Portion of time otherwise idle.

Tables

pre Portion of process table filled.

ino Portion of inode table filled.

fil Portion of file table filled.

All tables are displayed on a percent basis and display "OV!" at the top of the
column if an overflow is detected.

Memory

mem Portion of user memory being used.

Cache

Page 2

reh

wch

cis

rds

wts

frk

exc

res

wcs

igt

nmi

dbk

rqz

sqz

psw

Percent of read cache match/system buffers.

Percent of write cache match/system buffers.

Number of system calls per second.

Number of read calls per second.

Number of write calls per second.

Number of forks per second.

Number of execs per second.

Number of characters read per second.

Number of characters written per second.

Number of times the kernel function iget was called per second.

Number of times the kernel function namei was called per second.

Number of times the kernel function dirblk was called per second.

Average run queue length while occupied.

Average swap queue length while occupied.

Number of process switches per second.

UP-15525 V1

GSAR(1)

raw Input character rate.

can Input character rate processed by canon.

out Output character rate.

n;v Receive interrupt rates.

xmt Transmit interrupt rates.

mdm Modem interrupt rates.

Slave Processor

S1 User and system time from slave CPUI.

S2 User and system time from slave CPU2.

S3 Uwer and system time from slave CPU3.

The only information displayed for slave processors is usr and sys time. Any
remaining time can be considered idle time. If a slave processor is not installed,
then ''NIl! is displayed at the bottom of the respective column.

EXAMPLES
To view system activity for ten minutes, with samples every 5 seconds and the
data presented on logical screen C:

gsar -S2 5 120

To view system activity for 100 seconds, with samples every second and the data
presented on logical screen A (default situation):

gsar

or:

sar -so 1100

or:

gsar 1100

UP-15525 V1 Page 3

GSAR(1)

FILES
/usrlbinlgsar

/usr/lib/sa/gsadc

SEE ALSO
sar(1M).

RESTRICTIONS
This package supports only Unisys terminals. Terminal environment variables
must equal svt1210 or svt1220. Some ANSI look-alikes may work (e.g. Wyse75)
when running in ANSI mode, but the terminal environment variables must be as
stated above.

Occasionally, a terminal may get stuck in the middle of painting a box. If this
happens, use A Q (control-Q) to free it.

Page 4 UP-15525 V1

HD(1)

NAME
hd - display files in hexadecimal format

SYNOPSIS
hd [-Jonnat [-s offset] [-n COWlt] [file] ..•

DESCRIPTION
The hd command displays the contents of files in hexadecimal, octal, decimal,
and character formats. Control over the specification of ranges of characters is
also available. The default behavior is with the following flags set: -abx -A. This
says that addresses (file offsets) and bytes are printed in hexadecimal and that
characters are also printed If no file argument is given, the standard input is
read.

Options include:

-s offset Specify the beginning offset in the file where printing is to begin.

-0 count

If no file argument is given or if a seek fails because the input is a
pipe, offset bytes are read from the input and discarded
Otherwise, a seek error will terminate processing of the current
file.

The offset may be given in decimal, hexadecimal (preceded by Ox),
or octal (preceded by a 0). It is optionally followed by one of the
following multipliers: w, I, b, or k; for words (2 bytes), long words
(4 bytes), blocks (512 bytes), or K bytes (1024 bytes). Note that this
is the one case where b does not stand for bytes. Since specifying a
hexadecimal offset in blocks would result in an ambiguous trailing
b, any offset and multiplier may be separated by an asterisk (*).

Specify the number of bytes to process. The count is in the same
format as offset above.

FORMAT FLAGS
Format flags may specify addresses, characters, bytes, words (2 bytes), or longs (4
bytes) to be printed in hexadecimal, decimal, or octal. Two special formats may
also be indicated: text or ASCII. Format and base specifiers may be freely
combined and repeated as desired to specify different bases (hexadecimal,
decimal, or octal) for different output formats (addresses, characters, etc.). All
format flags appearing in a single argument are applied as appropriate to all
other flags in that argument.

acbwlA
Output format specifiers for addresses, characters, bytes, words, longs, and

Page 1

HD(1)

ASCII, respectively. Only one base specifier will be used for addresses; the
address will appear on the first line of output that begins each new offset in
the input.

The character format prints printable characters unchanged, special C
escapes as defined in the language, and remaining values in the specified
base.

The ASCII format prints all printable characters unchanged, and all others
as a period (.). This format appears to the right of the first of other
specified output formats. A base specifier has no meaning with the ASCII
format. If no other output format (other than addresses) is given, bx is
assumed. If no base specifier is given, all of xdo are used

xdo Output base specifiers for hexadecimal, decimal, and octal. If no format
specifier is given, all of acbwl are used.

t Print a text file, each line preceded by the address in the file. Normally,
lines should be terminated by a \0 character, but long lines will be broken
up. Control characters in the range OxOO to Oxlf are printed as 'A @' to
'A _'. Bytes with the high bit set are preceded by a tilde (....) and printed
as if the high bit were not set. The special characters (A, , \) are
preceded by a backslash (\) to escape their special meaning. As special
cases, two values are represented numerically as '\177' and '\377'. This flag
will override all output format specifiers except addresses.

Page 2 UP-15525 V1

NAME
help - System V Help Facility

SYNOPSIS
help

[help] starter

[help] usage [-d] [-e] [-0] [command_name]

[help] locate [keywordl [keyword2] ...]

[help] glossary [term]

help arg ...

DESCRIPTION

HELP(1)

The System V Help Facility provides on-line assistance for System V users,
whether they desire general information or specific assistance for use of the
Source Code Control System (SCCS) commands.

Without arguments, help prints a menu of available on-line assistance commands
with a short description of their functions. The commands and their descriptions
are:

COMMAND DESCRIPTION

starter information about the System V for the beginning user

locate locate System V commands using function-related keywords

usage System V command usage information

glossary definitions of System V technical terms

The user may choose one of the above commands by entering its corresponding
letter (given in the menu), or may exit to the shell by typing q (for "quit").

With arguments, help directly invokes the named on-line assistance command,
bypassing the initial help menu. The commands starter, locate, usage, and
glossary, optionally preceded by the word help, may also be specified at shell
level. When executing glossary from shell level some of the symbols listed in the
glossary must be escaped (preceded by one or more backslashes, \) to be
understood by the Help Facility. For a list of symbols and how many backslashes
to use for each, refer to the glossary(l) manual page.

From any screen in the Help Facility, a user may execute a command via the
shell [sh(l)] by typing a ! and the command to be executed The screen will be

UP-15525 V1 Page 1

HELP{1}

From any screen in the Help Facility, a user may execute a command via the
shell [sh(l)] by typing a ! and the command to be executed. The screen will be
redrawn if the command that was executed was entered at a first level prompt. If
entered at any other prompt level, only the prompt will be redrawn.

By default, the Help Facility scrolls the data that is presented to the user. If you
prefer to have the screen clear before printing the data (non-scrolling), the shell
variable SCROLL must be set to no and exported so it will become part of your
environment. This is done by adding the following line to your .profile file [see
profile (4)]:

export SCROLL : SCROLL=no

If you later decide that scrolling is desired, SCROLL must be set to yes.

Information on each of the Help Facility commands (starter, locate, usage,
glossary, and help) is located on their respective manual pages.

The Help Facility can be tailored to a customer's needs by use of the
helpadm (1M) command.

If the first argument to help is different from starter, usage, locate, or glossary,
help assumes information is being requested about the sces facility. The
arguments may be either message numbers (which normally appear in
parentheses following messages) or command names, of one of the following
types:

typel Begins with non-numerics, ends in numerics. The non-numeric prefix is
usually an abbreviation for the program or set of routines which
produced the message (that is, ge3 for message 3 from the get
command).

type2 Does not contain numerics (as a command, such as get).

type3 Is all numeric (for example, 212).

SEE ALSO
glossary(l), 10cate(1), sh(l), starter(l), usage(l)
helpadm(1M) in the Administrator's Reference Manual

admin(l), cdc(l), comb(l), delta(l), get(l), prs(l), rmdel(l), sact(l), sccsdiff(l),
unget(l), val(l), vc(l), what(l), profile(4), sccsfile(4), term(5) in the
Programmer's Reference Manual

Page 2 UP-15525 V1

HELP(1)

WARNINGS
If the shell variable TERM [see sh(l)] is not set in the user's .profile file, then
TERM will default to the terminal value type 450 (a hard-copy terminal). For a
list of valid terminal types, refer to tenn(5).

UP-15525 V1 Page 3

HELP(1)

[This page left blank.]

Page 4 UP-15525 V1

HP(1)

NAME
hp - handle special functions of Hewlett-Packard terminals

SYNOPSIS
hp [-e] [-m]

DESCRIPTION
The hp command supports special functions of the Hewlett-Packard 2640 series
of terminals, with the primary purpose of producing accurate representations of
most nroff output. A typical usage is in conjunction with DOCUMENTER'S
WORKBENCH Software:

nroff -h files ... I hp

Regardless of the hardware options on your terminal, hp tries to do sensible
things with underlining and reverse line-feeds. If the terminal has the display
enhancements feature, SUbscripts and superscripts can be indicated in distinct
ways. If it has the mathematical-symbol feature, Greek and other special
characters can be displayed.

The flags are as follows:

-e It is assumed that your terminal has the display enhancements feature, and
so maximal use is made of the added display modes. Overstruck characters
are presented in the Underlined mode. Superscripts are shown in Half
bright mode, and subscripts in Half-bright, Underlined mode. If this flag is
omitted, hp assumes that your terminal lacks the display enhancements
feature. In this case, all overstruck characters, SUbscripts, and superscripts
are displayed in Inverse Video mode, i.e., dark-on-light, rather than the
usuallight-on-dark.

-m Requests minimization of output by removal of newlines. Any contiguous
sequence of 3 or more newlines is converted into a sequence of only 2
newlines; i.e., any number of successive blank lines produces only a single
blank output line. This allows you to retain more actual text on the saeen.

With regard to Greek and other special characters, hp provides the same set as
does 300(1), except that not is approximated by a right arrow, and only the top
half of the integral sign is shown.

SEE ALSO
300(1), greek(1)

UP-15525 V1 Page 1

HP(1)

DIAGNOSTICS
line too long if the representation of a line exceeds 1,024 characters.

The exit codes are 0 for normal termination, 2 for all errors.

BUGS
An over striking sequence is defined as a printing character followed by a
backspace followed by another printing character. In such sequences, if either
printing character is an underscore, the other printing character is shown
underlined or in Inverse Video; otherwise, only the first printing character is
shown (again, underlined or in Inverse Video). Nothing special is done if a
backspace is adjacent to an ASCn control character. Sequences of control
characters (e.g., reverse line-feeds, backspaces) can make text disappear; in
particular, tables generated by tbl(1) that contain vertical lines are often missing
the lines of text that contain the foot of a vertical line, unless the input to hp is
piped through col(1).

Although some terminals do provide numerical superscript characters, no
attempt is made to display them.

Page 2 UP-15525 V1

HPIO(1)

NAME
hpio - Hewlett-Packard 2645A terminal tape file archiver

SYNOPSIS
bpio -0 [rc] file ...

bpio -i [rta] [-n count]

DESCRIPTION
The hpio archiver is designed to take advantage of the tape drives on Hewlett
Packard 2645A terminals. Up to 255 System V files can be archived onto a tape
cartridge for off-line storage or for transfer to another UNIX system. The actual
number of files depends on the sizes of the files. One file of about 115,000 bytes
will almost fill a tape cartridge. Almost 300 I-byte files will fit on a tape, but the
terminal will not be able to retrieve files after the first 255. This manual page is
not intended to be a guide for using tapes on Hewlett-Packard 2645A terminals,
but tries to give enough information to be able to create and read tape archives
and to position a tape for access to a desired file in an archive.

The hpio -0 command (copy out) copies the specified jiles, together with
pathname and status information to a tape drive on your terminal (which is
assumed to be positioned at the beginning of a tape or immediately after a tape
mark). The left tape drive is used by default. Eachjile is written to a separate
tape file and terminated with a tape mark. When hpio finishes, the tape is
positioned following the last tape mark written.

The hpio -i command·i (copy in) extracts files from a tape drive (which is
assumed to be positioned at the beginning of a file that was previously written by
an hpio -0). The default action extracts the next file from the left tape drive.

The hpio archiver always leaves the tape positioned after the last file read from
or written to the tape. Tapes should always be rewound before the terminal is
turned off. To rewind a tape depress the green function button, then function
key 5, and then select the appropriate tape drive by depressing either function
key 5 for the left tape drive or function key 6 for the right. If several files have
been archived onto a tape, the tape may be positioned at the beginning of a
specific file by depressing the green function button, then function key 8,
followed by typing the desired file number (1-255) with no RETURN, and finally
function key 5 for the left tape or function key 6 for the right. The desired file
number may also be specified by a signed number relative to the current file
number.

UP-15525 V1 Page 1

HPIO(1)

The meanings of the available options are:

rUse the right tape drive.

c Include a checksum at the end of eachfile. The checksum is always
checked by hpio -i for each file written with this option by hpio -0.

n count The number of input files to be extracted is set to count. If this option
is not given, count defaults to 1. An arbitrarily large count may be
specified to extract all files from the tape. The hpio archiver will stop at
the end of data mark on the tape.

t Print a table of contents only. No files are created. Printed information
gives the file size in bytes, the filename, the file access modes, and
whether or not a checksum is included for the file.

a Ask before creating a file. The hpio -i command normally prints the file
size and name, creates and reads in the file, and prints a status message
when the file has been read in. If a checksum is included with the file, it
reports whether the checksum matched its computed value. With this
option, the file size and name are printed followed by a ? Any response
beginning with y or Y will cause the file to be copied in as above. Any
other response will cause the file to be skipped.

FILES
/dev/tty??

SEE ALSO
cu(lC)

DIAGNOSTICS
BREAK

to block messages while accessing a tape

An interrupt signal terminated processing.

Can't create 'file '.
File system access permissions did not allow file to be created.

Can't get tty options on stdout.:
The hpio archiver was unable to get the input-output control settings
associated with the terminal.

Can't open 'file '.
File could not be accessed to copy it to tape.

End of Tape.
No tape record was available when a read from a tape was requested. An

Page 2 UP-15525 V1

HPIO(1)

end of data mark is the usual reason for this, but it may also occur if the
wrong tape drive is being accessed and no tape is present.

'file' not a regular file.
File is a directory or other special file. Only regular files will be copied to
tape.

Readent = TC, tennent = te.
The hpio archiver expected to read TC bytes from the next block on the
tape, but the block contained te bytes. This is caused by having the tape
improperly positioned or by a tape block being mangled by intederence
from other terminalI/O.

Skip to next file [ailed.
An attempt to skip over a tape mark failed.

Tape mark write [ailed.
An attempt to write a tape mark at the end of a file failed.

Write [ailed.
A tape write failed. This is most frequently caused by specifying the wrong
tape drive, running off the end of the tape, or trying to write on a tape that
is write protected.

WARNINGS
Tape I/O operations may copy bad data if any other I/O involving the terminal
occurs. Do not attempt any type ahead while hpio is running. The hpio archiver
turns off write permissions for other users while it is running, but processes
started asynchronously from your terminal can still intedere. The most common
indication of this problem, while a tape is being written, is the appearance of
characters on the display screen that should have been copied to tape.

The keyboard, including the terminal BREAK key, is locked during tape write
operations; the BREAK key is only functional between writes.

The hpio archiver must have complete control of the attributes of the terminal to
communicate with the tape drives. Interaction with commands such as eu (Ie)
may intedere and prevent successful operation.

BUGS
Some binary files contain sequences that will confuse the terminal.

An hpio -i that encounters the end of data mark on the tape (for example,
scanning the entire tape with hpio -itn 300), leaves the tape positioned after the
end of data mark. H a subsequent hpio -0 is done at this point, the data will not

UP-15525 V1 Page 3

HPIO(1)

be retrievable. The tape must be repositioned manually using the terminal FIND
FILE -1 operation (depress the green function button, function key 8, and then
function key 5 for the left tape or function key 6 for the right tape) before the
hpio -0 is started.

H an interrupt is received by hpio while a tape is being written, the terminal may
be left with the keyboard locked. H this happens, the terminal's RESET
TERMINAL key will unlock the keyboard.

Page 4 UP-15525 V1

ICONV(1)

NAME
iconv - code set conversion

SYNOPSIS
icon ·f fromcode ·t tocode [·m mode] [·d database] [file(s)]

DESCRIPTION
The iconv command converts the encoding of characters infile(s) from one code
set to another and writes the results to standard output.

The required arguments fromcode and tocode identify the input and output code
sets, respectively. The optional argument mode provides a further distinction
between mulitple code set maps for the same fromcode and tocode. The optional
argument database specifies a database to be used instead of the default
database /usr/lib/kbd/iconv _data. If no file(s) arguments are specified on the
command line, iconv reads the standard input.

The iconv command uses a database with 4 required fields fromcode, tocode,
table, file and one optional field mode. The order of the database fields is as
named previously. The database fields are separated by spaces or tabs, and the
database rows are separated by newlines.

The iconv command matches the required arguments fromcode and tocode and
the optional argument mode to the corresponding fields in the database. If a
match is found, iconv calls kbdpipe with the appropriate table andfile fields; i.e.,
kbdpipe -t table -F file, where table is the mapping between fromcode and tocode
(with optional mode), andfile contains table.

The field mode does not have to be uniformly included or excluded from the
database, i.e. it may be included in some rows and not in others. If the argument
mode is not included in the iconv command line, iconv matches the first row
found that contains the correct fromcode and tocode fields, ignoring any mode
fields.

The naming conventions in the database are left entirely up to the user.
However, absolute pathnames are required for file fields not located in
/usr/lib/kbd, as kbdpipe assumes that any file in the -F file argument that does not
begin with "/" will be found in /usr/lib/kbd.

UP-15525 V1 Page 1

ICONV(1)

The codeset conversions supported in the supplied database are given in the
following table:

Code Set Conversions Supported
fromcode tocode modes comment

88591 ascii
6937 88591 d Teletext
88591 6937 d Teletext
646 88591 dbep US Ascii
646DE 88591 d German
646DK 88591 d Danish
646GB 88591 d English Ascii
646ES 88591 d Spanish
646FR 88591 d French
646IT 88591 d Italian
646NO 88591 d Norwegian
646SE 88591 d Swedish
88591 646 d 7 bit Ascii
88591 646DE dbep German
88591 646DK dbep Danish
88591 646GB dbep English Ascii
88591 646ES dbep Spanish
88591 646FR dbep French
88591 646IT dbep Italian
88591 646NO dbep Norwegian
88591 646SE dbep Swedish
ASCII 88591 dbe
ASCII ebcdic d
ebcdic ASCII d
ASCII ibm ebcdic d

The fromcodes and tocodes 88591, 646, and 6937 correspond to the International
Standards ISO 8859-1, ISO 646, and ISO 6937 respectively.

The optional modes, d,b,e,and p have the following meanings:

d default

Page 2

Any character that cannot be represented is mapped to the ultimate
fall back character, which in the tables supplied, is the underscore
character U.

UP-15525 V1

ICONV(1)

b best fit with no expansion
Characters are, where possible, mapped to the closest approximation
of that character but always without expansion, ie., all the character
mappings are one-to-one. This will be important, for example, when
using curses-based applications where any expansion of a character
representation would affect the screen management. [H such code set
mappings are performed by the STREAMS-module in the TTY
subsystem, then such mappings will be transparent and the application
will have no knowledge that these mappings take place.]

e best fit with expansion
Characters of the source code set are, where possible, mapped to the
closest approximation of that character in the target code set. Where
necessary the character in the source code set is expanded to a
sequence of characters in the target code set.

p printer mode - with over striking
If there is a nondestructive backspace, as exists on many printers, then
some characters that are not available can be displayed by over striking.
In this way many accented characters can be displayed.

RETURN VALUES
Returns 0 upon successful completion, 1 otherwise.

EXAMPLES
An example of a database for iconv is shown below, with the following fields
(field names are not included in the database):

fromcode tocode table filemode

88591
88591
646

6937
6937
646DE

88591.6937.b pubfilebestfit
pubtable 88591.6937.nt. normal
togerman Imydir/togerman

U sing the preceding database, the following converts the contents of files maill
and mail2 from code set 88591 to 6937 using bestfit mode and stores the results in
file mailJocai.

icon v -f 88591 -t 6937 -m bestfit maill mail2 > maillocal

The following accomplishes the same result as previously shown, as the bestfit
mode from code set 88591 to 6937 will be the first row containing the correct
match.

iconv -f 88591-t 6937 mail1 mail2 > maillocal

UP-15525 V1 Page 3

ICONV(1)

FILES
/usr!liblkbdliconv _data default database

NOTES
The STREAMS pipe device (/dev/spx) and the STREAMS tty subsystem are
used by kbdpipe and must be installed on the system.

SEE ALSO
kbd(7), kbdcomp(1M), kbdkey(l), kbdmap(lM), kbdpipe(l) in the MNLS 3.2
Product Overview

Page 4 UP-15525 V1

IPCRM(1}

NAME
ipcrm - remove a message queue, semaphore set, or shared memory id

SYNOPSIS
ipcrm [options]

DESCRIPTION
The ipcnn command removes one or more specified messages, semaphore or
shared memory identifiers. The identifiers are specified by the following options:

-q msqid removes the message queue identifier msqid from the system and
destroys the message queue and data structure associated with it.

-m shmid removes the shared memory identifier shmid from the system. The
shared memory segment and data structure associated with it are
destroyed after the last detach.

-s semid removes the semaphore identifier semid from the system and
destroys the set of semaphores and data structure associated with
it.

-Q msgkey removes the message queue identifier, created with key msgkey,
from the system and destroys the message queue and data
structure associated with it.

-M shmkey removes the shared memory identifier, created with key shmkey,
from the system. The shared memory segment and data structure
associated with it are destroyed after the last detach.

-8 semkey removes the semaphore identifier, created with key semkey, from
the system and destroys the set of semaphores and data structure
associated with it.

The details of the removes are described in msgctl(2), shmct1(2), and semctl(2).
The identifiers and keys may be found by using ipcs(l).

SEE ALSO
ipcs(l)
msgct1(2), msgget(2), msgop(2), semct1(2), semget(2), semop(2), shmct1(2),
shmget(2), shmop(2) in the Programmer's Reference Manual

UP-15525 V1 Page 1

IPCRM(1)

[This page left blank.]

Page 2 UP-15525 V1

IPCS(1)

NAME
ipcs - report inter-process communication facilities status

SYNOPSIS
i pes [options]

DESCRIPTION
The ipcs command prints certain information about active inter-process
communication facilities. Without options, information is printed in short format
for message queues, shared memory, and semaphores that are currently active in
the system. Otherwise, the information that is displayed is controlled by the
following options:

-q Print information about active message queues.

-m Print information about active shared memory segments.

-s Print information about active semaphores.

H any of the options -q, -m, or -s are specified, information about only those
indicated are printed. H none of these three options are specified, information
about all three are printed subject to these options:

-a Use all print options. (This is a shorthand notation for -b, -c, -0, -p, and
-t.)

-b Print biggest allowable size information. (Maximum number of bytes in
messages on queue for message queues, size of segments for shared
memory, and number of semaphores in each set for semaphores.) See
the following for meaning of columns in a listing.

-c Print creator's login name and group name. See the following text.

-0 Print information on outstanding usage. (Number of messages on
queue and total number of bytes in messages on queue for message
queues and number of processes attached to shared memory
segments.)

-p Print process number information. (Process ID of last process to send
a message and process ID of last process to receive a message on
message queues and process ID of creating process and process ID of
last process to attach or detach on shared memory segments.) See the
following text.

-t Print time information. (TIme of the last control operation that
changed the access permissions for all facilities. Tune of last

UP-15525 V1 Page 1

IPCS(1)

msgsnd and last msgrcv on message queues, last shmat and last shmdt
on shared memory, last semop (2) on semaphores.) See the following
text.

-C corefile
Use the file corefile in place of /dev/kmem.

-N namelist
The argument is taken as the name of an alternate namelist (lunix is the
default).

-x Print information about XENIX interprocess communication, in
addition to the standard interprocess communication status. The
XENIX process information describes a second set of semaphores and
shared memory. Note that the -p option does not print process number
information for XENIX shared memory, and the -t option does not
print time information about XENIX semaphores and shared memory.

The column headings and the meaning of the columns in an ipcs listing are given
below. The letters in parentheses indicate the options that cause the
corresponding heading to appear; aU means that the heading always appears.
Note that these options only determine what information is provided for each
facility; they do not determine which facilities are listed.

T (all)

ID (all)

KEY (all)

MODE (all)

Type of facility:
q message queue
m shared memory segment
s semaphore

The identifier for the facility entry.

The key used as an argument to msgget, semget, or shmget to
create the facility entry. (Note: The key of a shared memory
segment is changed to IPC_PRIVATE when the segment has
been removed until all processes attached to the segment detach
it.)

The facility access modes and flags; the mode consists of 11
characters that are interpreted as follows:

The first two characters are:

R if a process is waiting on a msgrcv.

S if a process is waiting on a msgsnd.

Page 2 UP-15525 V1

IPCS(1)

D if the associated shared memory segment has been removed. It
disappears when the last process attached to the segment detaches it.

C if the associated shared memory segment is to be cleared when the
first attach is executed.

if the corresponding special flag is not set.

The next 9 characters are interpreted as three sets of three bits each. The
first set refers to the owner's permissions. The next set refers to
permissions of others in the user-group of the facility entry. The last set
refers to all others. Within each set, the first character indicates permission
to read, the second character indicates permission to write or alter the
facility entry, and the last character is currently unused. Permissions are
indicated as follows:

r if read permission is granted
w if write permission is granted
a if alter permission is granted

if the indicated permission is not granted

OWNER (all)
The login name of the owner of the facility entry.

GROUP (all)
The group name of the group of the owner of the facility entry.

CREATOR (a, c)
The login name of the creator of the facility entry.

CGROUP (a, c)
The group name of the group of the creator of the facility entry.

CBYTES (a, 0)
The number of bytes in messages currently outstanding on the associated
message queue.

QNUM (a,o)
The number of messages currently outstanding on the associated message
queue.

QBYTES (a,b)
The maximum number of bytes allowed in messages outstanding on the
associated message queue.

LSPID (a,p)
The process ID of the last process to send a message to the associated
queue.

LRPID (a,p)
The process ID of the last process to receive a message from the

UP-15525 V1 Page 3

IPCS(1)

associated queue.
STIME (a,t)

The time the last message was sent to the associated queue.
RTIME (a,t)

The time the last message was received from the associated queue.
CTIME (a,t)

The time when the associated entry was created or changed.
NATfCH (a, 0)

The number of processes attached to the associated shared memory
segment.

SEGSZ (a,b)
The size of the associated shared memory segment.

CPID (a,p)
The process ID of the creator of the shared memory entry.

LPID (a,p)
The process ID of the last process to attach or detach the shared memory
segment.

ATIME (a,t)
The time the last attach was completed to the associated shared memory
segment.

DTIME (a,t)
The time the last detach was completed on the associated shared memory
segment.

NSEMS(a,b)
The number of semaphores in the set associated with the semaphore
entry.

OTIME(a,t)
The time the last semaphore operation was completed on the set
associated with the semaphore entry.

Fll..ES
/unix
/dev/kmem
/etc/passwd
/etc/group

SEE ALSO

system namelist
memory
user names
group names

msgop(2), semop(2), shmop(2) in the Programmer's Reference Manual

WARNINGS
IT the user specifies either the -C or -N flag, the real and effective UID/GID is

Page 4 UP-15525 V1

IPCS(1)

set to the real UID/OID of the user invoking ipcs.

BUGS
Things can change while ipcs is running; the picture it gives is only a close
approximation to reality.

UP-15525 V1 Page 5

IPCS(1)

[This page left blank.]

Page 6 UP-15525 V1

ISASTREAM (1)

NAME
isastream - test for a STREAMS device special file

SYNOPSIS
isastream [device I -]

DESCRIPTION
The isastream utility is used to test for a STREAMS device special file. A
pathname is given as an argument Standard input (usually the login terminal)
can be specified by a dash character (-).

The specified pathname is opened using the flag O_NDELAY. This means that it
will always return control to the calling utility, even if the STREAM is connected
to an offline tty device.

The utility uses isastream (3C) to do the test and then reports on the result A
usage report is printed in the absence of a pathname.

RETURN VALUES
All output is sent to the standard error file. If the argument is a STREAMS
device file then the exit code is O. In the case of error or a non-STREAMS
device file, the exit code is non zero.

EXAMPLES
$ isastream /dev!1og
/dev!1og is a stream
$ isastream -
stdin is a stream
$ isastream /usr/tmplfoo
/usr/tmp/foo is not a stream

SEE ALSO
isastream(3C), open(2) in the Programmer's Reference Manual

UP-15525 Vi A Page 1

ISASTREAM (1)

[This page left blank.]

Page 2 UP-15525 V1 A

JOIN(1)

NAME
join - relational data base operator

SYNOPSIS
join [options) filel file2

DESCRIPTION
The join command forms, on the standard output, a join of the two relations
specified by the lines offilel andfile2. Iffilel is -, the standard input is used.

Filel andfile2 must be sorted in increasing ASCII collating sequence on the
fields on which they are to be joined, normally the first in each line [see sort(I»).

There is one line in the output for each pair of lines infilel andfile2 that have
identical join fields. The output line normally consists of the common field, then
the rest of the line from filel, then the rest of the line from file2.

The default input field separators are blank, tab, or newline. In this case,
multiple separators count as one field separator, and leading separators are
ignored. The default output field separator is a blank.

Some of the options in the following text use the argument n. This argument
should be a lora 2 referring to either filel or file2, respectively. The following
options are recognized:

-an In addition to the normal output, produce a line for each unpairable line
in file n, where nisI or 2.

-e s Replace empty output fields by string s.

-jn m Join on the m th field of file n. If n is missing, use the m th field in each
file. Fields are numbered starting with 1.

-0 list Each output line comprises the fields specified in list, each element of
which has the form n m, where n is a file number and m is a field
number. The common field is not printed unless specifically requested.

-tc Use character c as a separator (tab character). Every appearance of c in
a line is significant. The character c is used as the field separator for both
input and output.

Internationalization
The join command can process characters from supplementary code sets, as well
as ASCII characters.

UP-15525 V1 Page 1

JOIN (1)

Options:

-e s The string s to be replaced can contain supplementary characters.

-t c The separator c can be a character from the supplementary code sets.

EXAMPLE
The following command line will join the password file and the group file,
matching on the numeric group 10, and outputting the login name, the group
name, and the login directory. It is assumed that the files have been sorted in
ASCII collating sequence on the group ID fields.

join -j1 4 -j2 3 -0 1.1 2.11.6 -t: /ete/passwd fete/group

SEE ALSO
awk(l), comm(l), nawk(l), sort(l), uniq(l)

BUGS
With default field separation, the collating sequence is that of sort -b; with -t, the
sequence is that of a plain sort.

The conventions of join , sort, comm, uniq, and awk(l) are incongruous.

File names that are numeric may cause conflict when the -0 option is used right
before listing filenames.

Page 2 UP-15525 V1

KBDCOMP(1)

NAME
kbdcomp - compile kbd tables

SYNOPSIS
kbdcomp [-vrR] [-0 outfile] [infile]

DESCRIPTION
The kbdcomp command compiles the tables for use with the kbd(7) STREAMS
module, a programmable string-translation module. The module has two
separate abilities, each of which may be used alone or in combination.

The first ability, ''lookup," is that of performing simple substitution of bytes in an
input stream. This ability is based on a simple 256-entry lookup table (as there
are 256 possible bit combinations for a byte). As input is received, each byte is
looked up in the translation table, and the table value for that byte is substituted
in place of the original byte. The process is quick, and can be performed on
each STREAMS message with no message copying or duplication.

The second ability, "mapping," allows searching for occurrences of specified
strings of bytes (or individual bytes) in an input stream, and substituting other
strings (or bytes) for them as they are recognized. There are three kinds of
mapping that are differentiated by the relationship between the number of bytes
in the input and the number of bytes in the output. "One-many" mapping means
that for a given byte in the input, many bytes are substituted. "Many-one"
includes the other two types as a proper subset, but also includes substitution of
many bytes in the input with many bytes of output. The kbd compiler can
perform all three types of mapping. The lookup ability described in the previous
paragraph (i.e. what amounts to "one-one" mapping) is a common special case
useful enough to be included separately. By using combinations of both lookup
and mapping, a larger class of input translation and conversion problems can be
solved than can be solved by the use of either alone.

During operation, processing occurs in two major passes: the lookup table pass
always precedes string mapping. The string mapping procedure is nonrecursive
for a given table and there is no feedback mechanism (that is, input is scanned in
the order received and output is not rescanned for occurrences of recognizable
input strings). As an example of mapping, suppose one wishes to translate all
occurrences of the string this in an input stream into the string there. The
module recognizes and buffers occurrences of the string th (as each byte is
received); if the following character is i, it will also be buffered, but if x is then
received, a mismatch is recognized and no translation occurs. Assuming thi has
been buffered, if the next character seen is s, a match is recognized, the buffer
containing this is discarded, and the string there replaces it.

UP-15525 V1 Page 1

KBDCOMP(1)

It should be obvious that both input and output strings can be of any non-zero
length (see, however, the section on "RESTRICTIONS" in this manpage). Each
string to be recognized and translated must be unique, and no complete input
string may constitute the leading substring of any other (e.g., you may not define
abc and ab simultaneously, but you may so define abc, agd, and abxy).

Given a filename (or standard input if no name is supplied), kbdcomp will
compile tables into the output file specified by the -0 option. If the -0 option is
not supplied, output is to the file kbd.out

The -v option causes parsing and verification -- no output file is produced; if no
error messages are printed, then the input file is syntactically correct. The-r
option causes the compiler to check for and report on byte values that cannot be
generated in a table (see the description below). The option -R is equivalent to
-r, but it tries to print printable characters as themselves rather than in octal
format.

Input Language
Source files for kbdcomp are a series of table declarations. Within each table
declaration are a number of definitions and functions. A table declaration is one
of the forms map or link:

map type (name) {expressions}

link (string)

The link form will be described in text which follows. The name of a map must
be a simple token not containing any colons, commas, quotes, or spaces. (For
our purposes, a "simple token" is a sequence of alphabetic and/or numeric
characters with no embedded punctuation, whitespace, or special symbols.) The
type field is an optional field that may be either of the keywords, full or sparse.
If omitted, the type defaults to sparse. The effect of this field is described in
more detail below. The expressions contained in the map declaration are one of
the following forms. Reserved keywords are printed in constant-width font,
variables in italics:

Page 2

keylist (string string)
define (word value)
word (extension result)
string (word word)
strlist (string string)
error (string)
timed

UP-15525 V1

KBDCOMP(1)

The keylist form is for defining lookup table entries while the remaining forms
are the separate string functions.

The definition form (define) allows a mnemonic word (the first argument) to be
associated with a string (the second argument). It is useful for replacing
complicated sequences (e.g., those containing special symbols or control
characters) with mnemonic words to facilitate the design and readability of
tables.

Using the word form (where word must be a previously defined sequence) in a
manner similar to a C function call results in the value of word being
concatenated with extension; when the combination is recognized, it is mapped to
result. The value may be a string of characters or a single byte. The following is
an illustration (not intended to be complete):

map (some_accents) {
define(acute 1\0471)
define(grave 1'1)
acute(a 1\341 1) 41 same as string("\047a" "\341")
grave(a 1\3401)
I ... et cetera •••
keylist("zyZY" "yzYZ")

This map defines the single quote and reverse quote keys as "dead-keys" which,
when followed by a, produce a character from the ISO 8859·1 code set. It is not
necessary for the definition, extension, or result to be a single byte; they may be
arbitrary strings.

Strings in definitions and arguments may generally be entered either without
quotation or between double quotes. Byte constants may likewise be entered
unquoted or between single quotes. The only time quotation is strictly required
is when the string contains parentheses, spaces, tab characters, or other special
symbols. The language makes no real distinction between byte constants and
string constants: both are treated as null-terminated strings; the choice of
whether to use a one-character string or a byte constant is thus a matter of taste.
Most quoting conventions of C are recognized, except that octal constants must
be exactly three digits long. Octal constants may be used in strings as well. In
the example above, the arguments to keylist need not be quoted, as they contain
no special symbols. The following example illustrates some situations where
strings must be quoted:

UP-15525 V1

string(abc "two words")
keylist("[{}]""«»")

I 1 i tera 1 space
I brackets/parentheses

Page 3

KBDCOMP(1)

define(esc_seqft\033\t(ft)
define(space 1 I)
string(abc ftkeylist ft)

tab and parentheses
1 i tera 1 space
keyword used as argument

Comments in files (inside or outside of map declarations) may be entered in the
same manner as for sh(l); that is, after a # at the end of a line, or on a line
beginning with a #, as shown in the above example.

The keylist form allows single bytes to be mapped to other single bytes; it defines
actions that are treated in the lookup table (i.e., are performed before mapping).
Any byte value that is not explicitly changed by being included in a keylist form
will, of course, be left unchanged; if no keylist forms appear in a map definition,
then kbdcomp does not generate a lookup table for the map, and the lookup
phase is skipped during module operation. Each byte in the first string argument
to keylist is mapped to the byte at the same position in the second string
argument. That is, given two strings X and Y as arguments: Xi maps to Yi, Xj
maps to Yj and so forth. The two arguments must evaluate to strings containing
the same number of bytes.

The string form has a function similar to mnemonic forms defined with define
and may be used for any type of many-many mapping. The first argument to
string is mapped to the second argument (see the comment in the sample map
above).

Mappings using both keylist and string or any define forms may be combined. If
i is mapped to a with a keylist form, and a is used in the sequence .. a, then
when the user types .. i, the sequence .. a is seen by the string mapping process
(because lookup is done first) and translated accordingly.

The keylist form is intended mainly for use in simple keyboard rearrangement
and case-conversion applications; string is for one-many mapping or for isolated
instances of many-many mapping; the define form and word s defined with it are
intended for more general use in groups of related sequences. In some situations
while a one-one mapping with keylist may be an obvious choice, the same effect
may be achieved with string forms to avoid having a contradictory mapping. For
example, suppose one desires, simultaneously, to translate x into y and y into abc.
If x is mapped to y by a keylist form and y is mapped to abc by a string form,
then it may be impossible to obtain y itself (unless defined in another sequence),
even though that was not the intention -- the intention was to obtain y whenever
the user enters x. Following is an example of a contradictory mapping:

keyl ist (x y)
string(yabc) #ftyft itself cannot be generated

Page 4 UP-15525 V1

KBDCOMP(1)

There are cases where the intention is tha:t y not be generated, but most often the
intention is to generate it. This problem (a relatively common one in code set
mapping) can be solved by using a string form to map x to y initially rather than
using a keylist form. This allows both y and abc to be generated:

string(x y)
string(y abc)

Entering a large number of one-one mappings with string can be somewhat
tedious. To make things easier, the strlist form is provided. The two string
arguments to strlist are interpreted in the same manner as arguments to keylist
(i.e., they are one-one mappings); however, they are not done by the lookup
table, but are processed as string mappings. In the following example, the first
three string definitions can be reduced to the strlist form which follows:

string(a b)
string(c d)
string(e f)

strl ist(ace bdf)

It is important to recognize the difference between string and strlist: with
string, the two arguments are a single mapping definition (which may be of any
type) whereas with strlist, one or more "one-one" string mappings are defined
simultaneously. A set of mappings defined with a combination of string and
strlist do not exhibit the same type of incompatibility described previously
between keylist and string.

Some further aspects of module processing can now be presented. When a
partial match in an input sequence is detected during string processing, it is
buffered; if at some point the match no longer succeeds, the first byte of the
matched buffer is normally sent to the neighboring module. The rest of the input
is left in the buffer and scanned again to see if it matches the beginning of
another sequence. The error entry allows one to send a string (or byte) constant
(called a "fallback" character) instead of the byte that began the previous
sequence; this is particularly useful in code set mapping and conversion
applications where the character which failed to be translated might be one
which does not occur or has some other meaning in the target code set. The

UP-15525 V1 Page 5

KBDCOMP(1)

following example illustrates use of the error format:

'turn arrow keys into vi conmands
map(vi_map) {

}

string("\033[A" k) , up
string("\033[B" j) , down
error("!")

Given input of the escape character followed by [A or [B, a single character (j or
k) is generated. If presented with the sequence escape-[Q the module will
produce the sequence ![Q. The error string! replaces escape because the
sequence failed to match when Q was received. The remaining characters are
rescanned, and neither [nor Q is found to begin a recognized sequence.

One-one mapping with strings or other defined forms (rather than by a key list
lookup table) is generally performed with a linear search operation when looking
for bytes which begin sequences. However, if the table is specified as a full table,
it is initially indexed rather than searched linearly and, thus, processed much
more quickly when there are a large number of entries. This should be kept in
mind in code set mapping applications where nearly all characters are mapped,
and many (or most) are one-one mappings. If only a very few characters are
mapped with string functions, one must decide whether to trade a small gain in
processing speed for the space needed to store the index if a table is made full.

The link form is used to produce a composite table. A composite table is really
a form of linkage that allows several tables to be used together in sequence as if
the sequence were a single table. The string argument to link is of the following
form:

composite:componentl,component2,componentn

The target composite name is followed by a colon, and the ordered component
list is comma-separated. If the string argument contains spaces or special
characters, it must be quoted. (This string is not interpreted by kbdcomp, but is
left intact in the output field; it is interpreted by the module at runtime.) When a
composite table is used, the effect is similar to pushing more than one instance of
the kbd(7) module in the sense that the component tables function sequentially,
but it is accomplished within a single instance of the module. As output is
produced by processing with one table in the composite, the data is subsequently
processed by the next component and so forth until the final result emerges at
the end of the sequence. (There is no restriction on the use of any combination
of full and sparse tables in composite.)

Page 6 UP-15525 V1

KBDCOMP(1)

Composite tables are useful for simplifying complex mapping situations by
modularizing the processing and for increasing the reusability of tables for
different mapping applications. Tables primarily implementing code set
mappings may be linked to other tables primarily implementing compose- or
dead-key sequences. With a single table implementing a common code set
mapping, several different tables implementing combinations of code set mapping
and compose-key layouts may be built. A typical configuration might use one
table for mapping from an external to internal code set, then use one or more
separate tables working in the internal code set to provide compose- or dead-key
functionality, as in the following example. One table, 646Sp-8859, maps from an
ISO 646 variant (Spanish) external code set to ISO 8859 1; this is combined with
two other tables respectively implementing 8859-1 by compose-sequences, and by
dead-key sequences:

link("composed:646Sp-8859,8859-1-cmp")
link("deadkey:646Sp-8859,8859-1-dk")

Composite tables can also be built while the module is running from the
kbdload(lM) command line; details are in the kbdZoad(lM) manual page. The
component tables are linked and processed in the given order (left-to-right).
Because the link argument is actually parsed at runtime [by kbd(7)], it is not an
error to refer to tables that are not contained in the file currently being compiled.
An error will be generated when the file is loaded if any component of a link is
not present in memory at that time.

The directive timed may appear any place within a map definition. If used, it
causes the table in which it is defined to be interpreted in timeout mode. In this
mode, string mappings are considered to not match if more than a certain
amount of time elapses after receipt of the first byte of a sequence without its
being fully received and mapped. Given a timed map in which abc is to be
mapped to xyz and the timeout value is 30, if the user types ab, then waits for
longer than 30 time units before typing c, the entire sequence will not be
translated. In this case, the sequence is treated as any other mismatch would be:
a is passed to the neighboring module, and b is checked to see if it begins a
sequence. The timer is reset when a mismatch occurs, so that if be is defined in
this situation and c has just been received, it will be mapped as expected. The
default timeout is typically 1/5 to 1/3 of a second (see kbd(7) for details).

Timeout mode is generally useful in situations where terminal function keys are
being interpreted, to distinguish between a string typed by the user and a
function key string sent by the terminal; it is not intended for use with ''batch''
applications such as kbdpipe(IM). In a composite table, some components may
be timed and some not, making the mode useful for combinations of code set

UP-15525 V1 Page 7

KBDCOMP(1)

mapping and function key mapping.

Tuning depends on several factors, including terminal baud-rate, system load, and
the user's typing speed. If the timeout value is too long, then typed sequences
that happen to be the same as function keys will be erroneously mapped; if the
value is too short, then function keys may be missed under a heavy system load or
with low speed devices. See kbdset(1) for information on how to change the
timeout value, and kbd(7) for information on how an administrator may change
the default timeout value. This directive should never be used in tables that
implement code set mapping, as it makes the results quite unpredictable. Long
timeouts, on the order of seconds, may be useful in some contexts.

Building & Debugging
Users who intend to build their own tables may study the source tables supplied
with the distribution in the directory /usr/lib/kbd/src.

If characters other than alphanumerics are to be used, quoted strings are
preferred to unquoted strings; quotation is required for some characters, as
mentioned previously. Map names and the first arguments of define should be
alphanumeric tokens.

The report generated by the -r option may be useful for debugging complex
tables. The report (produced on standard error) consists of two octal lists. One
list contains byte values that cannot be generated from the lookup table (if keylist
forms are used). The other list contains byte values that cannot be generated in
any way; in other words, values that are neither parts of "result text" (i.e .. ,
products of string mappings) nor generated by the lookup table (if there is one),
but that are used in other sequences. The report does not exhaustively list
unreachable paths, but may indicate whether they exist and help pinpoint them.

Output Files
The files produced by kbdcomp begin with a header. The magic string is
kbd!map, with a version number. This header is immediately followed by the
tables themselves. (A file can contain more than one table.) The lines below can
be added to the /etdmav).c file for thefile(l) command to recognize kbd files.

o string
>8 byte
>10 short

RESTRICTIONS

kbdlmap
>0

>0

kbd map fi le
Ver %d:
with %d table(s)

A maximum length of 128 bytes for input strings and 156 bytes for output strings
is imposed The total amount of space consumed by a single table is limited to

Page 8 UP-15525 V1

KBDCOMP(1)

around 65,000 bytes. Versions are strictly incompatible: "object" tables are
machine-dependent in their byte order and structure size. Thus, while source
files are portable, the output of kbdcomp is not. This implies that when using
remote devices across a network between heterogeneous machines, tables must
be loaded on the machine where the module is actually pushed (Le., the remote
side).

Fll..ES
lusrlIiblkbd
lusrlIiblkbdlsrc

SEE ALSO
kbdset(l)

directory containing system standard map files
source for some system map files

kbdload(lM), kbd(7) in the Administrator's Reference Manual

UP-15525 V1 Page 9

KBDCOMP(1)

[This page left blank.]

Page 10 UP-15525 V1

KBDPIPE(1)

NAME
kbdpipe - use the kbd module in a pipeline

SYNOPSIS
kbdpipe -t table [-f tablefile] [-F] [-0 outfile] [infile(s)]

DESCRIPTION
The program allows the use of kbd(7) tables as pipeline elements between user
programs. [General descriptions of the module and its capabilities appear in
kbdcomp(lM) and kbd(7).] The kbdpipe command is mostly useful in code set
conversion applications. If an output file is given, then all injiles are piped to the
given output file. With no arguments other than -1, standard input is converted
and sent to standard output.

The required -t option argument identifies the table to be used for conversion. If
the table has already been loaded as a shared table [see kbdload(lM)], it is
attached. If, however, the table has not been loaded, an attempt is made to load
it. If the given table name is not an absolute pathname, then the name of the
system mapping library (/usr/liblkbd) is prepended to the argument, and an
attempt is made to load the table from the resulting pathname ~.e., it becomes an
argument to the loader, kbdload(lM)]. Assuming the table can be loaded, it is
attached.

The argument to -f defines the filename from which the table will be loaded,
overriding the default action described above. The file is loaded (in its entirety),
and the named table attached. This option should be used if the default action
would fail.

The output file specified by -0 must not already exist (a safety feature.) The
option.F may be used to override the check for existence of the output file; in
this case, any existing outfile will be truncated before being written.

EXAMPLES
The following example converts two input files into relative nonsense by mapping
Ascn into Dvorak keyboard equivalents using the Dvorak table. The table is
assumed to reside in the file lusr/liblkbd/Dvorak. The existing output file is
forcefully overwritten:

kbdpipe -F -t Dvorak -0 iapxai.~ filel file2

UP-15525 V1 Page 1

KBDPIPE(1)

The following example loads the Dvorak table from a different file, then converts
standard input to standard output. The Dvorak table (assumed to be
nonresident) is explicitly loaded from an absolute path beginning at the user's
home directory:

kbdpipe -t Dvorak -f $HOME/tables/Dvorak.tab

FILES
/usr/lib/kbd - directory containing system standard table files

SEE ALSO
kbdset(l)
kbd(7), kbdload(lM) in the Administrator's Reference Manual

WARNINGS
Because kbdpipe uses kbdload(l) to load tables, it cannot resolve link references.
Therefore, if a composite table is to be used, then the relevant portions must
either be already loaded and public, or be contained in the file indicated (using
the -f option) on the command line. In this case, the composite elements must be
loaded earlier than the link entry.

Page 2 UP-15525 V1

KBDSET(1)

NAME
kbdset - attach to kbd mapping tables, set modes

SYNOPSIS
kbdset [-oq] [-{al d} table] [-v string] [-k hotkey] [-m x] [-t ticks]

DESCRIPTION
The normal user interface to the kbd(7) module is kbdset. (See kbdcomp(1M)
and kbd(7) for a general description of the module's capabilities.) The kbdset
interface allows users to attach to preloaded tables, detach from tables, and to set
options. Options are provided for setting "hot keys" to toggle tables and for
controlling modes of the module.

Arguments and options are scanned and acted upon in command line order. If
the -0 option is given, subsequent options affect the output side of the Stream;
otherwise the input side is assumed.

Presence of the -q option causes kbdset to list modules which can be accessed by
the invoking user. In this case all subsequent options are ignored. The output
from the -q option lists the user's current hot key settings; current timer value;
and, for each available table, an identifier, the name, size, attachments (input
and/or output sides), reference count, number of components, and type (private
or public). In the following example, there is one composite table, two tables are
attached on the input side, and one on the output side:

In Hot Key = A_

Timers: In = 20; Out = 20

ID Name Size I/O Ref Cmp Type

40319800 Deutsche 324 i - 4 pub
4033de80 Case/Dvorak 68 0 2 pri
[40316800] [40316aOO]

40316800 Case 312 - 0 1 pri
40316aOO Dvorak 312 i - 1 pri

The ID field is an identifier unique to a given table (actually its address in
memory). Currently attached tables are marked i or 0, otherwise the I/O fields
are marked with a dash. Ref is a reference count of attached users (including
composites that refer to simple tables) and, if non-zero, indicates that the table
is "in use". Size is the total size in bytes of the table and associated overhead in
memory. If the table is a composite table, the Onp field contains a number
instead of a dash, and the following line lists an identifier for each component, in
order of processing (allowing identification of the components in a composite
table). Publicly available tables are marked with the type pub and private tables

UP-15525 V1 Page 1

KBDSET(1)

with pri. Private tables are available only to the invoking user and within the
current Stream. Tables that are interpreted in timeout mode [see kbdcomp(lM)]
have an asterisk (*) preceding the type field; members of composite tables that
are interpreted in timeout mode have an asterisk after their bracketed identifier
(on the second output line).

The option -a accompanied by an argument attaches to the named table. A table
may not be multiply attached by a single user. When a table is attached and no
other table is already attached, then the table is automatically made current. The
option -d detaches from the named table. (See kbdload(lM) for a description of
how tables are loaded.)

The -k option sets the user's hot key. Setting a hot key with only a single active
table allows mapping to be toggled on and off, depending on the hot key mode.
A hot key is a single byte, typically set to a relatively unused control character,
that is caught by the kbd module and used for module control rather than being
translated in any way. The key used as a hot key becomes unavailable for other
uses (unless it is generated by mapping!). The hot key may be reset at any time,
independently from other options.

The am option with an integer argument controls the hot key mode. Legal modes
are 0,1 (the default), and 2. Mode 0 allows one to toggle through the list of
attached tables. Upon reaching the end of the list, the cycle returns to the
beginning of the list. Use of Mode 0 with only one table loaded does not allow
mapping to be turned off. Mode 1 toggles to the unmapped state upon reaching
the end of the list (e.g., given two tables, the sequence is tablel, table2, off, tablel,
etc.). Mode 2 toggles to the unmapped (or off) state between every table in the
list of attached tables (e.g., given two tables, the sequence is tablel, off, table2,
off, tablel, etc.).

The -v option turns on "verbose" mode, which can be useful when multiple tables
are used in interactive sessions. In verbose mode, the name of the table can be
output to the terminal whenever the user changes to a new table with the hot key.
The string associated with the option can be any short string. If the character
sequence %n appears in the string, the name of the current table (or a null
string) will be substituted for the %n. (A null argument to -v is equivalent to
"terse" mode.) One useful sequence for this mode is save-cursor, goto-status-line,
clear-to-end-of-line, "o/on H, restore-cursor. This causes output of the current table
name on the terminal's status line. (See the tenninfo(4) description for the
appropriate escape sequences.) Verbose mode is only available to show input
table status to the output side of the Stream. The output string for verbose mode
is not passed through the mapping process, but is transmitted directly
downstream with no other interpretation (it should thus be a string of Ascn

Page 2 UP-15525 V1

KBDSET(1)

characters or in some other externally available code set).

The -t option with an argument is used to change the timer for tables in the
Stream that are interpreted in timeout mode. Values (in "clock ticks'~ between 5
and 400 are acceptable. (Depending on the hardware, the clock is usually either
60Hz or 100HZ; thus, one tick is either 1/60 or 1/100 of a second. With some
experimentation, a suitable value for one's own system and typing speed can be
found.) When a table that uses timeout mode is attached, it is assigned the
current timer value. All tables that are attached after setting the timer value will
take on the new value, but tables currently attached are unaffected (this allows
one to set different values for different tables). The option does not affect other
users' values. The timer value may be set independently for input and output
sides by using -t in conjunction with f3-o. The value for a currently attached
table may be reset by detaching the table, setting the value, then reattaching the
table.

In the query output, the line beginning with nmers: shows the timer values for
input and output sides of the module.

FILES
lusrlliblkbd - directory containing system standard map files

SEE ALSO
kbdcomp(lM), kbdload(lM), kbd(7) in the Administrators Reference Manual

BUGS
It is not possible with the -q option to see the timer values assigned to currently
attached tables, nor to reset the value for a table that is currently attached.

Better control of timeout mode and values should be provided in the future.

RESTRICTIONS
A table may be detached while it is current; however, in this case, it is first made
non-current; this allows error recovery under adverse circumstances.
Detachment of a current table is not affected by the current hot key mode, but
always toggles to a state where no table is current.

UP-15525 V1 Page 3

KBDSET(1)

[This page left blank.]

Page 4 UP-15525 V1

KEEPOPEN (1)

NAME
keepopen - open a file and keep it open

SYNOPSIS
keepopen [file I -]

DESCRIPTION
The keepopen utility is used to hold a file open. This is particularly useful for
holding open STREAMS device special files. A STREAM is normally
dismantled on the last close, so this utility ensures that the STREAM is opened
and held intact.

The STREAM to be kept open is specified by file, or dash character (.) for
standard input The utility returns immediately leaving a child process sleeping
withfile open. This process can be killed by any signal except SIOINT and
SIGQUIT, in which case the STREAM is closed.

RETURN VALUES
If the file does not exist or has incorrect access permission then keepopen exits
with a return value of 1. On successful completion, the parent process will exit
with return value o. The child process has an indeterminate return value. All
output is sent to standard error.

EXAMPLES
If the nls(7) module were required for output to a printer, then keepopen can be
used to open the STREAMS device special file for the printer and then nls can
be pushed. The configuration is then available for all subsequent accesses to the
printer.

SEE ALSO

keepopen printer
printer is open
strpush printer n1s
pushed module nls on printer
strlook printer
the top module on printer is nls

strpush(l), strlook(l), kill(l)
signal(2) in the Programmer's Reference Manual

UP-15525 V1 A Page 1

KEEPOPEN (1)

[This page left blank.]

Page 2 UP-15525 V1 A

KILL(1)

NAME
kill - terminate a process

SYNOPSIS
kill [-signo] PID ...

DESCRIPTION
The kill command sends signal 15 (terminate) to the specified processes. This
normally kills processes that do not catch or ignore the signal. The process
number of each asynchronous process started with & is reported by the shell
(unless more than one process is started in a pipeline, in which case the number
of the last process in the pipeline is reported). Process numbers can also be
found by usingps(1).

The details of the kill are desaibed in kill(2). For example, if process number 0
is specified, all processes in the process group are signaled.

The killed process must belong to the current user unless he is the superuser.

If a signal number preceded by - is given as first argument, that signal is sent
instead of terminate [see signal(2)]. In particular, kill-9 ... is a sure kill.

SEE ALSO
ps(1), sh(1)
kill(2), signa1(2) in the Programmer's Reference Manual

UP-15525 V1 Page 1

KILL(1)

[This page left blank.]

Page 2 UP-15525 V1

LAST(1B)

NAME
last - indicate last logins of users and teletypes

SYNOPSIS
last [-N] [name ...] [tty ...]

DESCRIPTION
The last command prints the sessions of the specified users and teletypes, most
recent first, indicating the time the session began, the duration of the session, and
the teletype which the session took place on. The last command will indicate if
the session is still continuing or was cut short by a reboot.

The last command prints information from the wtmp file which records alliogins
and logouts for information about a user, a teletype or any group of users and
teletypes.

If last is interrupted, it indicates how far the search has progressed in wtmp.

Control-d (EOF) signal does nothing. Therefore, exit gracefully from last with a
break or shift! delete signal.

ARGUMENTS
Arguments specify names of users or teletypes of interest.

Names of teletypes may be given fully or abbreviated. For example last 00 is the
same as last ttyOO.

If multiple arguments are given, last prints the information which applies to any
of the arguments. For example:

last root ttyb

would list all of the sessions of root as well as all sessions on the terminal ttyb.

The last command, with no arguments, prints a record of alliogins and logouts in
reverse order. The -N option limits the report to N lines.

EXAMPLE
The pseudo-user reboot logs in at reboots of the system, thus

last reboot

gives an indication of mean time between reboots.

FILES
/etclwtmp

UP-15525 V1

login data base

Page 1

LAST(1B)

SEE ALSO
utmp(4)

Page 2 UP-15525 V1

NAME
line - read one line

SYNOPSIS
line

DESCRIPTION

UNE(1)

The line command copies one line (up to a newline) from the standard input and
writes it on the standard output. It returns an exit code of 1 on EOF and always
prints at least a newline. It is often used within shell files to read from the user's
terminal.

SEE ALSO
sh(l)
read(2) in the Programmer's Reference Manual

UP-15525 V1 Page 1

UNE(1)

[This page left blank.]

Page 2 UP-15525 V1

LOCATE(1)

NAME
locate - identify a System V command using keywords

SYNOPSIS
[belp] locate

[belp] locate [keywordl [keyword2] ...]

DESCRIPTION
The locate command is part of the System V Help Facility, and provides on-line
assistance with identifying System V commands.

Without arguments, the initial locate screen is displayed from which the user may
enter keywords functionally related to the action of the desired System V
commands they want identified. A user may enter keywords and receive a list of
System V commands whose functional attributes match those in the keyword list,
or may exit to the shell by typing q (for "quitj. For example, if you want to print
the contents of a file, enter the keywords "print" and "file". The locate command
would then print the names of all commands related to these keywords.

Keywords may also be entered directly from the shell, as shown above. In this
case, the initial screen is not displayed, and the resulting command list is printed.

More detailed information on a command in the list produced by locate can be
obtained by accessing the usage module of the System V Help Facility. Access is
made by entering the appropriate menu choice after the command list is
displayed

From any screen in the Help Facility, a user may execute a command via the
shell [sh(!)] by typing a ! and the command to be executed. The screen will be
redrawn if the command that was executed was entered at a first level prompt If
entered at any other prompt level, only the prompt will be redrawn.

By default, the Help Facility scrolls the data that is presented to the user. If you
prefer to have the screen clear before printing the data (non-scrolling), the shell
variable SCROLL must be set to no and exported so it will become part of your
environment This is done by adding the following line to your .profile file [see
profile (4)]:

export SCROLL : SCROLL=no

If you later decide that scrolling is desired, SCROLL must be set to yes.

Information on each of the Help Facility commands (starter, locate, usage,
glossary, and help) is located on their respective manual pages.

UP-15525 V1 Page 1

LOCATE(1)

SEE ALSO
glossary(l), help(l), sh(l), starter(l), usage(l)
term.(5) in the Programmer's Reference Manual

WARNINGS
If the shell variable TERM [see sh(l)] is not set in the user's .profile file, then
TERM will default to the terminal value type 450 (a hard-copy terminal). For a
list of valid terminal types, refer to tenn(5).

Page 2 UP-15525 V1

LOGIN{1}

NAME
login - sign on

SYNOPSIS
login [name [environment-variable ...]]

DESCRIPTION
The login command is used at the beginning of each terminal session and allows
you to identify yourself to the system. It may be invoked as a command or by the
system when a connection is first established. Also, it is invoked by the system
when a previous user has terminated the initial shell by typing a <Ctrl> d to
indicate an end-of-file.

If login is invoked as a command it must replace the initial command interpreter.
Thls~a~mplishedby~mg.

exec login

from the initial shell.

The login command asks for your user name (if not supplied as an argument),
and, if appropriate, your password. Echoing ~ turned off (where possible)
during the ~ing of your password, so it does not appear on the written record
of the session.

If you make a mistake in the login procedure you will receive the message

Login incorrect

and a new login prompt does appear. If you make five incorrect login attempts,
all five may be logged in /usr/adm/logioIog (if it exists) and the line is dropped.

If you do not complete the login successfully within a certain period of time (e.g.,
one minute), you are likely to be silently disconnected

After a successful login, the user 10, the group 10, the working directory, and
the command interpreter [usually she!)] is initialized. If the shelllbin/sh is
running a~unting files are updated, the procedure /etc/profile is performed,
the message of the day (if any) ~ printed, and the file .profile in the working
directory is executed, if it exists. If the shell/bin/csh is running, the Jogin and
.cshrc files in the working directory are executed, if they exist. These
specifications are found in the /etc/passwd file entry for the user. The name of
the command interpreter ~ - followed by the last component of the interpreter's
pathname (i.e., -sh). If this field in the password file is empty, then the default
command interpreter, Ibin/sh is used. If this field is *, then the named directory
becomes the root directory, the starting point for path searches for pathnames

UP-15525 V1 Page 1

LOGIN(1)

beginning with a I. At that point, login is executed again at the new level which
must have its own root structure, including letc/login and letc/passwd.

The basic environment is initialized to:

HOME =your-login-directory
PATH = :/bin:/usr/bin
SHELL = last-field-of-passwd-entry
MAIL = lusr/mail/your-login-name
TZ = timezone-specijication

The environment may be expanded or modified by supplying additional
arguments to login, either at execution time or when login requests your login
name. The arguments may take either the form.ox or .ox = m. Arguments
without an equal sign are placed in the environment as

In = xxx

where n is a number starting at 0 and is incremented each time a new variable
name is required. Variables containing an = are placed into the environment
without modification. If they already appear in the environment, then they
replace the older value. There are exceptions. The variables HOME, PATH,
SHELL, MAIL, IFS, TZ, HZ, CDPATH, and LOGNAME cannot be changed.
This prevents people, logging into restricted shell environments, from spawning
secondary shells which are not restricted. Both login and getty understand simple
single-character quoting conventions. Typing a backslash in front of a character
quotes it and allows the inclusion of such things as spaces and tabs.

FILES
fetc/utmp
letc/wtmp
fusrfmail/your-name
fusrfadmlloginlog
fetc/motd
fetc/passwd
fetc/profile
.profile

NOTES

accounting
accounting
mailbox for user your-name
record of failed login attempts
message-of-the-day
password file
system profile (lbin/sh only)
user's login profile (lbin/sh only)

The file leU:! defanlt/login contains special login information including the flag
PASSREQ. When PASSREQ is set to YES (PASSREQ = YES), users will be
required to have a password. When a user without a password logs in and
PASSREQ = YES, the user will be forced to add a password before the user is
allowed access to the system. One exception to this requirement is if password

Page 2 UP-15525 V1

LOGIN (1)

aging is turned on for the user and the NULL password has not been aged. In
this case, the user will be allowed to access the system without a password until
the NULL password has been aged, or until the root user forces the password to
be aged (passwd 1 command).

SEE ALSO
mall(i), sh(i)
newgrp(lM), su(lM) in the Administrator's Reference Manual
loginlog(4), passwd(4), profile(4), environ(5) in the Programmer's Reference
Manual

DIAGNOSTICS
login incorrect if the user name or the password cannot be matched.

No shell, cannot open password file, or no directory: consult a UNIX system
programming counselor.

No utrnp entry. You must exec login from the lowest level shell if you attempted
to execute login as a command without using the shell's exec internal command or
from other than the initial shell.

UP-15525 V1 Page 3

LOGIN(1}

[This page left blank.]

Page 4 UP-15525 V1

LOGNAME(1)

NAME
logname - get login name

SYNOPSIS
logname

DESCRIPTION
The logname command returns the contents of the environment variable
$LOGNAME, which is set when a user logs into the system.

FILES
fetc/profile

SEE ALSO
env(l), login(l)
logname(3X), environ(5) in the Programmer's Reference Manual

UP-15525 V1 Page 1

LOGNAME(1)

[This page left blank.]

Page 2 UP-15525 V1

LOOK(1B)

NAME
look - find lines in a sorted list

SYNOPSIS
look [-df] string [file]

DESCRIPTION
look consults a sorted file and prints all lines that begin with string. It uses binary
search.

The options d and f affect comparisons as in sort(l):

d Dictionary order: only letters, digits, tabs and blanks participate in
comparisons.

f Fold. Upper case letters compare equal to lower case.

If no file is specified, /usr/diet/words is assumed with collating sequence -df.

FILES
/usr/dict/words

SEE ALSO
sort(l), grep(l)

RESTRICTIONS
Some special characters, such as parentheses, ampersands, and carats, are shell
sensitive and therefore are not recognized as strings. These characters may be
used, however, if preceded by a backslash.

UP-15525 V1 Page 1

LOOK(1B)

[This page left blank.]

Page 2 UP-15525 V1

LP(1)

NAME
lp, cancel- send/cancel requests to an LP print service

SYNOPSIS
lp fprinting options] files
lp -i id printing options
cancel [ids] fprinters]

DESCRIPTION
The first form of the lp shell command arranges for the named files and
associated information (collectively called a request) to be printed. H no
filenames are specified on the shell command line, the standard input is assumed.
The standard input may be specified along with named files on the shell
command line using the filename. The files are printed in the order they appear
on the shell command line.

The second form of lp is used to change the options for a request. The print
request identified by the request-id is changed according to the printing options
specified with this shell command. The printing options available are the same as
those with the first form of the lp shell command. H request-id has finished
printing, the change is rejected. H the request-id is already printing, it is stopped
and restarted from the beginning, unless the -P option has been given.

The lp command associates a unique id with each request and prints it on the
standard output. This id can be used later to cancel, change, or find the status of
the request. (See the section on cancel for details about canceling a request, the
previous paragraph for an explanation of how to change a request, and lpstat(l)
for information about checking the status of a print request.)

Sending a Print Request
The first form of the lp command is used to send a print request to a particular
printer or group of printers.

Options to lp must always precede filenames but may be listed in any order. The
following options are available for lp:

-c Makes copies of the files to be printed immediately when lp is invoked.

UP-15525 V1

NormallY,files will not be copied. H the -c option is not given, then the
user should be careful not to remove any of the files before the request
has been printed in its entirety. It should also be noted that in the
absence of the -c option, any changes made to the named files after the
request is made but before it is printed will be reflected in the printed
output.

Page 1

LP(1)

-d dest Prints this request using dest as the printer or class of printers. Under
certain conditions (lack of printer availability, capabilities of printers,
and so on), requests for specific destinations may not be accepted [see
accept(lM) and q,stat(l)]. By default, dest is taken from the
environment variable LPDEST (if it is set). Otherwise, a default
destination (if one exists) for the computer system is used. Destination
names vary between systems [see q,stat(l)].

-fJonn-name [-d any]
Prints the request on the form Jonn-name. The LP print service
ensures that the form is mounted on the printer. IfJonn-name is
requested with a printer destination that cannot support the form, the
request is rejected. IfJonn-name has not been defined for the system
or if the user is not allowed to use the form, the request is rejected [see
lpfonns(1M)]. When the -d any option is given, the request is printed
on any printer that has the requested form mounted and can handle any
other needs of the print request.

-H special-handling
Prints the request according to the value of special-handling.
Acceptable values for special-handling are hold, resume, and immediate,
as defined in the following text:

hold Will not print the request until notified. If already printing,
stops it. Other print requests will go ahead of a held request
until it is resumed.

resume Resumes a held request. If it had been printing when held, it
will be the next request printed, unless subsequently bumped
by an immediate request.

immediate
(Available only to LP administrators)
Prints the request next. If more than one request is assigned
immediate, the requests are printed in the reverse order
queued. If a request is currently printing on the desired
printer, you have to put it on hold to allow the immediate
request to print.

-m Sends mail [see mail(l)] after the files have been printed. By default,
no mail is sent upon normal completion of the print request.

-nnumber
Prints number copies of the output. (Default is 1.)

Page 2 UP-15525 V1

-0 option

UP-15525 V1

LP(1)

Specifies printer-dependent or class-dependent options. Several such
options may be collected by specifying the -0 key letter more than once.
The standard interface recognizes the following options:

nobanner
Does not print a banner page with this request. (The
administrator can disallow this option at any time.)

nofilebreak
Does not insert a form feed between the files given if submitting
a job to print more than one file.

length = scaled-decimal-number
Prints the output of this request with pages scaled-decimal
number lines long. A scaled-decimal-number is an optionally
scaled decimal number that gives a size in lines, columns, inches,
or centimeters, as appropriate. The scale is indicated by
appending the letter "i" (for inches) or the letter "c" (for
centimeters). For length or width settings, an unsealed number
indicates lines or columns; for line pitch or character pitch
settings, an unsealed number indicates lines per inch or
characters per inch (the same as a number scaled with "i"). For
example, length = 66 indicates a page length of 66 lines,
length = III indicates a page length of 11 inches, and
length=27.94c indicates a page length of 27.94 centimeters.

This option cannot be used with the -f option.

width = scaled-decimal-number
Prints the output of this request with page-width set to scaled
decimal-number columns wide. (See the explanation above for
scaled-decimal-numbers.) This option cannot be used with the-f
option.

lpi = scaled-decimal-number
Prints this request for ''lines per inch" with the line pitch set to
scaled-decimal-number lines per inch. This option cannot be
used with the -f option.

cpi = scaled-decim al-n umber
Prints this request for "characters per inch" with the character
pitch set to scaled-decimal-number characters per inch.
Character pitch can also be set to pica (representing 10 columns

Page 3

LP(1)

per inch) or elite (representing 12 columns per inch), or it can
be compressed., which is as many columns as a printer can
handle. There is no standard number of columns per inch for all
printers; see the tennin/o(4) database for the default character
pitch for your printer. The cpi option cannot be used in
conjunction with the -r option.

stty = stty-option-list
A list of options valid for the stty command. Enclose the list
with quotes if it contains blanks.

-P page-list
Prints the page specified in page-list. This option can be used only if
there is a filter available to handle it; otherwise, the print request will
be rejected.

The page-list may consist of range(s) of numbers, single page numbers,
or a combination of both. The pages will be printed in ascending order.

-q priority-level
Assigns this request priority-level in the printing queue. The values of
priority-level range from 0, the highest priority, to 39, the lowest priority.
If a priority is not specified, the default for the print service is used, as
assigned by the system administrator.

-s Suppresses messages from ?P(l) such as "request id is ... ".

-S character-set [-d any]
-S print-wheel [-d any]

Page 4

Prints this request using the specified character-set or print-wheel. If a
form. has been specified that requires a character-set or print-wheel other
than the one specified with the -S option, the request is rejected.

For printers that take print wheels, if the print-wheel specified is not one
listed by the administrator as acceptable for the printer involved in this
request, the request is rejected unless the print wheel is already
mounted on the printer. For printers that use selectable or
programmable character sets, if the character-set specified is not one
defined in the Terminfo database for the printer [see tennin/o(4)] or is
not an alias defined by the administrator, the request is rejected.

When the -d any option is used, the request is printed on any printer
that has the print wheel mounted or any printer that can select the
character set and can handle any other needs of the request.

UP-15525 V1

LP(1)

-t title Prints title on the banner page of the output. The default is no title.

-T content-type [-r]
Prints the request on a printer that can support the specified content
type. If no printer accepts this type directly, a filter will be used to
convert the content into an acceptable type. If the -r option is
specified, a filter will not be used. If -r is specified but no printer
accepts the content-type directly, the request is rejected. If the content
type is not acceptable to any printer, either directly or with a filter, the
request is rejected.

-w Writes a message on the user's terminal after the files have been
printed. If the user is not logged in, then mail will be sent instead.

-y mode-list
Prints this request according to the printing modes listed in mode-list.
The allowed values for mode-list are locally defined. This option can be
used only if there is a filter available to handle it; if there is no filter,
the print request will be rejected.

Canceling a Print Request
The cancel command cancels printer requests that were made by the q,(l) shell
command. The shell command line arguments may be either request-ids [as
returned by q,(l)] or printer names [for a complete list, use q,stat(l)]. Specifying
a request-id cancels the associated request even if it is currently printing.
Specifying a printer cancels the request that is currently printing on that printer.
In either case, the cancellation of a request that is currently printing frees the
printer to print its next available request.

Internationalization
The q, command sends files or standard input containing characters from
supplementary code sets to an LP line printer.

FILES
/usr/spool/lp/*

NOTES
Printers for which requests are not being accepted will not be considered when
the destination is any. (Use the q,stat -a command to see which printers are
accepting requests.) On the other hand, if a request is destined for a class of
printers and the class itself is accepting requests, all printers in the class will be
considered, regardless of their acceptance status, as long as the printer class is
accepting requests.

UP-15525 V1 Page 5

LP(1)

SEE ALSO
enable(l), lpstat(l), mail(l)
accept(lM), Ipadm.in(lM), Ipfilter(lM), Ipforms(lM), Ipsched(lM), Ipusers(lM)
in the Administrator's Reference Manual
terminfo(4) in the Programmer's Reference Manual

WARNINGS
For printers that take mountable print wheels or font cartridges, if you do not
specify a particular print wheel or font with the -S option, whatever printwheel
happens to be mounted at the time your request prints will be used. Use the
lpstat -p -I command to see what print wheels are available. For printers that
have selectable character sets, you will get the standard set if you don't use the -S
option.

RESTRICTIONS
Option:

-t title Supplementary characters specified in title do not print correctly.
Refer to banner(l).

Page 6 UP-15525 V1

LPS(1)

NAME
Ips - set parallel printer characteristics

SYNOPSIS
Ips device name [lines colwnns indent]

DESCRIPTION
The Ips command allows the user to change the line, column, and indentation
settings of printers connected to a parallel interface. When used without options,
Ips reports the current settings for the specified device.

The three options may not be set separately; all must be specified at once. Also,
Ips must be used after every reboot or system reset if you want to keep the
designated changes.

Lines is lines per page; columns is columns per line (to the right of the current
indent); and indent is the number of columns from the left margin to the first
column of print.

EXAMPLES
The following line lists the current settings for device Pdoc:

Ips Pdoc

The following line would set printer Psp to 66 lines per page, 132 columns per
page, and 0 indent:

Ips Psp 66 132 0

DIAGNOSTICS
Can't open device name

SEE ALSO
lp(l), Ip(7)

UP-15525 V1

Ips could not access the device specified.

Page 1

LPS(1)

[This page left blank.]

Page 2 UP-15525 V1

LPSTAT(1)

NAME
lpstat - print information about status of LP print service

SYNOPSIS
Ipstat [options]

DESCRIPTION
The /pstat command prints information about the current status of the LP print
service.

If no options are given, then /pstat prints the status of all requests made to /P(l)
by the users. Any arguments that are not options are assumed to be request-ids
(as returned by /P), printers, or printer classes. The lpstat command prints the
status of such requests, printers, or printer classes. Options may appear in any
order and may be repeated and intermixed with other arguments. Some of the
keyletters in the following text may be followed by an optional list that can be in
one of two forms; a list of items separated from one another by a comma, or a
list of items enclosed in double quotes and separated from one another by a
comma and/or one or more spaces. For example:

-u "userl, user2, user3"

The omission of a list following such keyletters causes all information relevant to
the key letter to be printed. For example, the command

lpstat -0

prints the status of all output requests.

-a [list] Print acceptance status (with respect to lp) of destinations for requests
[see accept(1M)]. The list is a list of intermixed printer names and
class names.

-c [list] Print class names and their members. The list is a list of class names.

-d Print the system default destination for lp.

-0 [list] [-I]
Print the status of output requests. The list is a list of intermixed
printer names, class names, and request-ids.

-p [list] [-D] [-I]
Print the status of printers named in list.

-r Print the status of the LP request scheduler.

UP-15525 V1 Page 1

LPSTAT(1)

-8 Print a status summary, including the status of the line printer
scheduler, the system default destination, a list of class names and
their members, a list of printers and their associated devices, a list of
all forms currently mounted, and a list of all recognized character sets
and print wheels.

-t Print all status information.

-u [list] Print status of output requests for users. List is a list of login names.

-v [list] Print the names of printers and the pathnames of the devices
associated with them. List is a list of printer names.

Internationalization
Status messages containing characters from supplementary code sets can be
displayed.

FILES
/usr/spoo1/lp/*

SEE ALSO
enable(l), lp(l)

Page 2 UP-15525 V1

NAME
Is, lc - list contents of directory

SYNOPSIS
Is [-RadCxmlnogrtuepFbqist] [names]
Ie [-RadxmlnogrtuepFbqist] [names]

DESCRIPTION

LS(1)

For each directory argument, Is lists the contents of the directory; for each file
argument, Is repeats its name and any other information requested. The output
is sorted alphabetically by default. When no argument is given, the current
directory is listed. When several arguments are given, the arguments are first
sorted appropriately, but file arguments appear before directories and their
contents.

The Ie command is a synonym for Is with the -C option set. There are three
major listing formats. The default format is to list one entry per line, the -C and
-x options enable multi-column formats, and the -m option enables stream output
format. In order to determine output formats for the -C, -x, and -m options, Is
uses an environment variable, COLUMNS, to determine the number of character
positions available on one output line. If this variable is not set, the tenninfo (4)
data base is used to determine the number of columns, based on the environment
variable TERM. If this information cannot be obtained, 80 columns are assumed.

The Is command has the following options:

-R Recursively list subdirectories encountered.

-a list all entries, including those that begin with a dot (.), which are normally
not listed.

-d If an argument is a directory, list only its name (not its contents); often used
with -I to get the status of a directory.

-C Multi-column output with entries sorted down the columns (default setting
for Ie).

-x Multi-column output with entries sorted across rather than down the page.

-m Stream output format; files are listed across the page, separated by
commas.

-I list in long format, giving mode, number of links, owner, group, size in
bytes, and time of last modification for each file (see the following text). If
the file is a special file, the size field will instead contain the major and
minor device numbers rather than a size.

UP-15525 V1 Page 1

LS(1)

-0 The same as -I, except that the owner's UID and group's GID numbers are
printed, rather than the associated character strings.

-0 The same as -I, except that the group is not printed.

-g The same as -I, except that the owner is not printed.

-r Reverse the order of sort to get reverse alphabetic or oldest first as
appropriate.

-t Sort by time stamp Qatest first) instead of by name. The default is the last
modification time. (See -0 and -c.)

-u Use time of last access instead of last modification for sorting (with the -t
option) or printing (with the -I option).

-c Use time of last modification of the inode (file created, mode changed, etc.)
for sorting (-t) or printing (-I).

-p Put a slash (I) after each filename if that file is a directory.

-F Put a slash (I) after each filename if that file is a directory and put an
asterisk (*) after each filename if that file is executable.

-b Force printing of non-printable characters to be in the octal \ddd notation.

-q Force printing of non-printable characters in filenames as the character
question mark (1).

-i For each file, print the i-number in the first column of the report.

-s Give size in blocks, including indirect blocks, for each entry.

-f Force each argument to be interpreted as a directory and list the name
found in each slot. This option turns off -I, at, as, and -r, and turns on -a;
the order is the order in which entries appear in the directory.

The mode printed under the -I option consists of ten characters. The first
character may be one of the following.

d The entry is a directory.
b The entry is a block special file.
c The entry is a character special file.
m The entry is a XENIX shred data (memory) file.
p The entry is a fifo (a.k.a. "named pipe') special file.
s The entry is a XENIX semaphore.

The entry is an ordinary file.

The next 9 characters are interpreted as three sets of three bits each. The frrst

Page 2 UP-15525 V1

LS(1)

set refers to the owner's permissions; the next to permissions of others in the
user-group of the file; and the last to all others. Within each set, the three
characters indicate permission to read, to write, and to execute the file as a
program, respectively. For a directory, "execute" permission is interpreted to
mean permission to search the directory for a specified file.

Is -I (the long list) prints its output as follows:

-rwxrwxrwx 1 smith dev 10876 May 16 9:42 part2

This horizontal configuration provides a good deal of information. Reading from
right to left, you see that the current directory holds one file, named "part2."
Next, the last time that file's contents were modified was 9:42 A.M. on May 16.
The file is moderately sized, containing 10,876 characters, or bytes. The owner of
the file, or the user, belongs to the group "dev" (perhaps indicating
"development'~, and his or her login name is "smith." The number, in this case
"1," indicates the number of links to file "part2." Finally, the row of dash and
letters tell you that user, group, and others have permissions to read, write,
execute "part2."

The execute (x) symbol here occupies the third position of the three-character
sequence. A - in the third position would have indicated a denial of execution
permissions.

The permissions are indicated as follows:

r The file is readable.
w The file is writable.
x The file is executable.

The indicated permission is not granted.
Mandatory locking will occur during access (the set-group-ID bit is on
and the group execution bit is off).

s The set-user-ID or set-group-ID bit is on, and the corresponding user
or group execution bit is also on.

S Undefined bit-state (the set-user-ID bit is on and the user execution
bit is off).

t The 1000 (octal) bit, or sticky bit, is on [see chmod(l)], and execution
is on.

T The 1000 bit is turned on, and execution is off (undefined bit-state).

For user and group permissions, the third position is sometimes occupied by a
character other than x or -. s also may occupy this position, referring to the state
of the set-ID bit, whether it be the user's or the group's. The ability to assume

UP-15525 V1 Page 3

LS(1)

the same ID as the user during execution is, for example, used during login when
you begin as root but need to assume the identity of the user stated at ''login."

In the case of the sequence of group permissions, I may occupy the third
position. The I refers to mandatory file and record locking. This permission
describes a file's ability to allow other files to lock its reading or writing
permissions during access.

For others permissions, the third position may be occupied by t or T. These
refer to the state of the sticky bit and execution permissions.

Internationalization
The Is command can process directory and filenames containing characters from
supplementary code sets. Multi-column output can be displayed correctly using
the -C and -x options.

With the -b and -q options, Is considers all multi byte characters to be printable.

EXAMPLES
An example of a file's permissions is:

-rwxr--r--

This describes a file that is readable, writable, and executable by the user and
readable by the group and others.

Another example of a file's permissions is:

-rwsr-XI'-X

This describes a file that is readable, writable, and executable by the user,
readable and executable by the group and others, and allows its user ID to be
assumed, during execution, by the user presently executing it.

Another example of a file's permissions is:

-rw-rwl---

This describes a file that is readable and writable only by the user and the group
and can be locked during access.

An example of a command line:

Is -a

This command will print the names of all files in the current directory, including
those that begin with a dot (.), which normally do not print.

Page 4 UP-15525 V1

LS(1)

Another example of a command line:

Is -aisn

This command will provide you with quite a bit of information listing all files,
including non-printing ones, with the·a option; printing the i-number (the
memory address of the inode associated with the file) in the left-hand column
with the ·i option; giving the size (in blocks) of the files, printed in the column to
the right of the i-numbers, with the ·s option; and displaying the report in the
numeric version of the long list, printing the IDn (instead of user name) and GID
(instead of group name) numbers associated with the files with the ·n option.

When the sizes of the files in a directory are listed, a total count of blocks,
including indirect blocks, is printed.

FILES
/etc/passwd
/etc/group
/usr/lib/terminfo/? /*

NOTES

user IDs for Is ·1 and Is -0

group IDs for Is -I and Is .g
terminal information database

In a Remote Fl1e Sharing environment, you may not have the permissions that the
output of the Is ·1 command leads you to believe. For more information, see the
Administration Guide.

SEE ALSO
chmod(l), find(l)

BUGS
Unprintable characters in filenames may confuse the columnar output options.

UP-15525 V1 Page 5

LS(1)

[This page left blank.]

Page 6 UP-15525 V1

NOTES

NOTES

NOTES

lltle:

Date:

Document Update Notice
U 6000 Series System V

System V User's Reference Manual, Volume 1,
UP-15525 VI, Update A

October 1989

Attached are update pages (marked UP-15525 VI A) for the System V User's
Reference Manual, Volume 1. Together with the title page, these pages upgrade the
document to include the most recent information on the Unisys International
Enhancements capability.

RemOft

'ttdePage
Table of Contents (pp. iii - ix)
Permuted Index (pp. xi - xxi)

Insert

'ttdePage
Table of Contents (pp. iii - ix)
Permuted Index (pp. xi - XXI)
gencat(l) (pp.I-2)
isastream(l) (pp. 1-2)
keepopen(l) (pp.I-2)

FUe this notice in the front of the manual to provide a record of changes.

UP-15525 V1 A

