
• UNISYS System V Operating
System
Programmer's
Reference Manual

Volume 2
Copyright © 1987 Unisys Corporation.
Unisys is a trademark of Unisys Corporation.

Priced Item

December 1987

Printed in U S America
UP-13712

This document is intended for software releases based on AT&T Release 3 of UNIX
System V or a subsequent release of the System unless otherwise indicated.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any
product and related material disclosed herein are only furnished pursuant and subject to
the terms and conditions of a duly executed Program Product License or Agreement to
purchase or lease equipment. The only warranties made by Unisys, if any, with respect
to the products described in this document are set forth in such License or Agreement.
Unisys cannot accept any financial or other responsibility that may be the result of your
use of the information in this document or software material, including direct, indirect,
special or consequential damages.

You should be very careful to ensure that the use of this information and/or software
material complies with the laws, rules, and regulations of the jurisdictions with respect to
which it is used.

The information contained herein is subject to change without notice. Revisions may be
issued to advise of such changes and/or additions.

ACT, Micro-Term, and MIME are trademarks of Micro-Term.
Ann Arbor is a trademark of Ann Arbor Terminals.
Beehive and Superbee are registered trademarks of Beehive International.
Concept is a trademark of Human Designed Systems.
DEC, PDP , VAX, and VT100 are trademarks of Digital Equipment Corp.
Diablo is a registered trademark of Xerox Corp.
DOCUMENTER'S WORKBENCH is a trademark of AT&T. Teletype and WE are registered
trademarks of AT&T. UNIX is a registered trademark of AT&T in the USA and other
countries.
HP and Hewlett-Packard 45 are registered trademarks of Hewlett-Packard, Inc.
LSI ADM is a trademark of Lear Siegler.
TEKTRONIX, TEKTRONIX 4010, and TEKTRONIX 4014 are registered trademarks of
Tektronix, Inc.
Teleray and Teleray 1061 are trademarks of Research.
TeleVideo is a registered trademark of TeleVideo Systems.
Texas Instruments, T1735, T1725, and TI745 are registered trademarks of Texas
Instruments, Inc.
Versatec and Versatec D1200A are registered trademarks of Versatec Corp.

Portions of this material are copyrighted 0 by
AT&T Technologies

and are reprinted with their parmisslon.

ThIs documentation Is based In part on the fourth Berkeley Software DlsIributIon. under Ilcansa from the Regents 0/ the
Unlvarslty 0/ California. We ecknowledge the following Individuals and Institutions for their role In its davaIopmant:

Computer ScIence Division
Department of ElectrIcal Engineering and Computer Science

Univeraity 0/ California
Berkeley. California 94720

Table of Contents

(The following are contained in three vOlumes.)

1. Commands
intro(1) introduction to programming commands
admin(1) .. create and administer sees files
ar(1) archive and library maintainer for portable archives
as(1) ... common assembler
cb(1) ... e program beautifier
cc(1) .. e compiler
cdc(1) change the delta commentary of an sees delta
cflow(1) ... generate e flowgraph
comb(1) .. combine sees deltas
cpp(1) .. the e language preprocessor
cprs(1) .. compress a common object file
ctags(1 B) .. create a tags file
ctrace(1) .. e program debugger
cxref(1) generate e program cross-reference
delta(1) make a delta (change) to an sees file
dis(1) .. object code disassembler
dump(1) dump selected parts of an object file
gencc(1 M) create a front-end to the cc command
get(1) .. get a version of an sees file
infocmp(1 M) compare or print out terminfo descriptions
install (1 M) .. install commands
Id(1) ... link editor for common object files
lex(1) generate programs for simple lexical tasks
lint(1) ... a e program checker
list(1) produce e source listing from a common object file
lorder(1) find ordering relation for an object library
m4(1) .. macro processor
make(1) maintain, update, and regenerate groups of programs
mcs(1) manipulate the object file comment section
mkshlib(1) ... create a shared library

UP-13712 Contents 1

Table of Contents

mkstr(1 B) create error message file from e source
nm(1) print name list of common object file
prof(1) ... display profile data
prs(1) .. print an sees file
regcmp(1) .. regular expression compile
rmdel(1) .. remove a delta from an sees file
sact(1) print current sees file editing activity
sccsdiff(1) compare two versions of an sees file
sdb (1) ... symbolic debugger
size(1) print section sizes in bytes of common object files
strip(1) strip symbol & line no. info. from a common object file
tic(1 M) ... terminfo compiler
tsort(1) .. topological sort
unget(1) undo a previous get of an sees file
val(1) ... validate sees file
vc(1) .. version control
what(1) ... identify sees files
xstr(1 B) .. extract string from e program
yacc(1) .. yet another compiler-compiler

2. System Calls
intro(2) introduction to system calls and error numbers
access (2) ... determine accessibility of a file
acct(2) enable or disable process accounting
alarm (2) .. set a process alarm clock
brk(2) change data segment space allocation
chdir(2) ... change working directory
chmod (2) ... change mode of file
chown(2) change owner and group of a file
ch root (2) ... change root directory
close(2) .. close a file descriptor
creat(2) create a new file or rewrite an existing one
dup(2) ... duplicate an open file descriptor
exec (2) .. execute a file
exit(2) .. terminate process
fcntl (2) ... file control
fork(2) ... create a new process
getdents(2) read directory entries and put in a file
getmsg (2) ... get next message off a stream
getpid(2) get process. process group. and parent process IDs
getuid(2) .. get real user. effective user. real grp .• effective grp. IDs

Contents 2 UP-13712

Table of Contents

ioctl (2) .. control device
kill(2) send a signal to a process or a group of processes
link(2) ... link to a file
Iseek(2) ; move read/write file pointer
mkdir(2) .. make a directory
mknod(2) make a directory. or a special or ordinary file
mount(2) .. mount a file system
msgctl(2) .. message control operations
msgget(2) .. get message queue
msgop(2) ... message operations
nice(2) .. change priority of a process
open(2) .. open for reading or writing
pause(2) .. suspend process until signal
pipe(2) ... create an interprocess channel
plock (2) lock process. text. or data in memory
poll(2) .. STREAMS input/output multiplexing
profil (2) ... execution time profile
ptrace(2) ... process trace
putmsg (2) .. send a message on a stream
read (2) .. read from file
rmdir(2) ... remove a directory
semctl (2) ... semaphore control operations
semget(2) .. get set of semaphores
semop(2) ... semaphore operations
setpgrp(2) .. set process group 10
setuid(2) ... set user and group IDs
shmctl (2) shared memory control operations
shmget(2) get shared memory segment identifier
shmop(2) ... shared memory operations
signal(2) specify what to do upon receipt of a signal
sigset(2) ... signal management
stat (2) ... get file status
statfs(2) .. get file system information
stime(2) .. set time
sync(2) .. update super block
sysfs(2) .. get file system type information
time(2) ... get time
times(2) get process and child process times
uadmin(2) .. administrative control
ulimit(2) .. get and set user limits
umask(2) ... set and get file creation mask

UP-13712 Contents 3

Table of Contents

umount(2) .. unmount a file system
uname(2) get name of current UNIX system
unlink (2) .. remove directory entry
ustat(2) ... get file system statistics
utime(2) set file access and modification times
wait(2) wait for child process to stop or terminate
write (2) ... write on a file

3. Subroutines
intro(3) introduction to functions and libraries
a641(3C) convert between long integer and base-64 ASCII string
abort(3C) ... generate an lOT fault
abs(3C) ... return integer absolute value
bsearch (3C) ... binary search a sorted table
clock (3C) .. report CPU time used
conv(3C) .. translate characters
crypt(3C) .. generate hashing encryption
ctermid(3S) generate file name for terminal
ctime(3C) .. convert date and time to string
ctype(3C) ... classify characters
cuserid(3S) get character login name of the user
dial (3C) establish an out-going terminal line connection
drand48(3C) ... generate uniformly distributed pseudo-random no.s
dup2(3C) .. duplicate an open file descriptor
ecvt(3C) convert floating-point number to string
end (3C) ... last locations in program
fclose(3S) ... close or flush a stream
ferror(3S) .. stream status inquiries
fopen(3S) .. open a stream
fpgetround(3C) IEEE floating point environment control
fread(3S) .. binary input/output
frexp(3C) manipulate parts of floating-point numbers
fseek(3S) reposition a file pointer in a stream
ftw(3C) .. walk a file tree
getc(3S) get character or word from a stream
getcwd(3C) get path-name of current working directory
getenv(3C) return value for environment name
getgrent(3C) .. get group file entry
getlogin(3C) ... get login name
getopt(3C) get option letter from argument vector
getpass(3C) .. read a password

Contents 4 UP-13712

Table of Contents

getpw(3C) ... get name from UID
getpwent(3C) ... get password file entry
gets (3S) .. get a string from a stream
getut(3C) ... access utmp file entry
hsearch (3C) .. manage hash search tables
isnan(3C) test for floating point NaN (Not-A-Number)
13tol (3C) convert between 3-byte integers and long integers
lockf(3C) .. record locking on files
Isearch(3C) .. linear search and update
malloc(3C) .. main memory allocator
memory(3C) ... memory operations
mktemp(3C) .. make a unique file name
monitor(3C) .. prepare execution profile
nlist(3C) ... get entries from name list
perror(3C) .. system error messages
popen(3S) .. initiate pipe to/from a process
printf(3S) ... print formatted output
putc(3S) put character or word on a stream
putenv(3C) change or add value to environment
putpwent(3C) .. write password file entry
puts (3S) ... put a string on a stream
qsort(3C) ... quicker sort
rand (3C) simple random-number generator
scanf(3S) ... convert formatted input
setbuf(3S) ... assign buffering to a stream
setjmp(3C) .. non-local goto
sleep(3C) .. suspend execution for interval
sSignal (3C) ... software signals
stdio(3S) standard buffered input/output package
stdipc(3C) standard interprocess communication package
string (3C) .. string operations
strtod(3C) convert string to double-precision number
strtol(3C) .. convert string to integer
swab (3C) .. swap bytes
system (3S) ... issue a shell command
tmpfile(3S) .. create a temporary file
tmpnam(3S) create a name for a temporary file
tsearch(3C) .. manage binary search trees
ttyname(3C) .. find name of a terminal
ttyslot(3C) find the slot in the utmp file of the current user
ungetc(3S) push character back into input stream

UP-13712 Contents 5

Table of Contents

vprintf(3S) print formatted output of a varargs argument list
bessel (3 M) ... Bessel functions
erf(3M) error function and complementary error function
exp(3M) exponential, logarithm, power, square root functions
floor(3M) floor, ceiling, remainder, absolute value functions
gamma(3M) .. log gamma function
hypot(3M) ... Euclidean distance function
matherr(3M) ... error-handling function
sinh (3M) .. hyperbolic functions
trig (3M) .. trigonometric functions
t_accept(3N) .. accept a connect request
t_alloc(3N) ... allocate a library structure
t_bind(3N) bind an address to a transport endpoint
t_ close(3N) ... close a transport endpoint
t_ connect(3N) .. establish a connection with another transport user
t_ error(3N) ... produce error message
t_free(3N) .. free a library structure
t_getinfo(3N) get protocol-specific service information
t_getstate(3N) .. get the current state
tJisten (3N) ... listen for a connect request
tJook(3N) look at the current event on a transport endpoint
t_ open(3N) ... establish a transport endpoint
t_ optmgmt(3N) manage options for a transport endpoint
t_rcv(3N) receive data or expedited data sent over a connection
t_rcvconnect(3N) . receive the confirmation from a connect request
t_rcvdis(3N) retrieve information from disconnect
t_rcvrel(3N) ... acknowledge receipt of an orderly release indication
t rcvudata(3N) ... receive a data unit
~rc\luderr(3N) receive a unit data error indication
t_ snd (3N) send data or expedited data over a connection
t_snddis(3N) send user-initiated disconnect request
t_sndrel(3N) .. initiate an orderly release
t_sndudata(3N) ... send a data unit
t_ sync(3N) .. synchronize transport library
t_unbind(3N) ... disable a transport endpoint
assert (3X) .. verify program assertion
crypt (3X) password and file encryption functions
curses (3X) terminal screen handling and optimization package
directory(3X) ... directory operations
Idahread(3X) ... read archive header of a member of an archive file
Idclose(3X) ... close a common object file

Contents 6 UP-13712

Table of Contents

Idfhread(3X) read the file header of a common object file
Idgetname(3X) retrieve sym. name for common obj. file sym. table
Idlread(3X) manipulate line no. entries of common obj. file function
Idlseek(3X) seek to line no. entries of sect of a common obj. file
Idohseek(3X) seek to optional file header of common obj file
Idopen(3X) open a common object file for reading
Idrseek(3X) seek to relocation entries of sect. of a common obj. file
Idshread(3X) read indexed/named sect. header of common obj. file
Idsseek(3X) seek to indexed/named sect. of common obj. file
Idtbindex(3X) ... compu'te index of sym. table entry of com. obj. file
Idtbread(3X) read indexed sym. table entry of common obj. file
Idtbseek(3X) seek to the symbol table of a common object file
logname(3X) .. return login name of user
malloc(3X) ... fast main memory allocator
plot(3X) .. graphics interface subroutines
regcmp(3X) compile and execute regular expression
abort(3F) .. terminate Fortran program
abs(3F) .. Fortran absolute value
acos(3F) Fortran arccosine intrinsic function
aimag(3F) Fortran imaginary part of complex argument
aint(3F) Fortran integer part intrinsic function
asin(3F) ... Fortran arcsine intrinsic function
atan(3F) Fortran arctangent intrinsic function
atan2(3F) Fortran arctangent intrinsic function
bool(3F) .. Fortran Bitwise Boolean functions
conjg(3F) Fortran complex conjugate intrinsic function
cos (3F) ... Fortran cosine intrinsic function
cosh (3F) Fortran hyperbolic cosine intrinsic function
dim (3F) positive difference intrinsic functions
dprod(3F) double precision product intrinsic function
exp(3F) Fortran exponential intrinsic function
ftype(3F) .. explicit Fortran type conversion
getarg(3F) return Fortran command-line argument
getenv(3F) return Fortran environment variable
iargc(3F) return the number of command line arguments
index(3F) return location of Fortran substring
len(3F) ... return length of Fortran string
log (3F) Fortran natural logarithm intrinsic function
log10(3F) Fortran common logarithm intrinsic function
max(3F) ... Fortran maximum-value functions
mclock(3F) .. return Fortran time accounting

UP-13712 Contents 7

Table of Contents

mil (3F) .. Fortran Military Standard functions
min(3F) ... Fortran minimum-value functions
mod (3F) Fortran remaindering intrinsic functions
rand (3F) ... random number generator
round(3F) Fortran nearest integer functions
sign(3F) Fortran transfer-of-sign intrinsic function
signal(3F) specify Fortran action on receipt of a system signal
sin (3F) .. Fortran sine intrinsic function
sinh(3F) Fortran hyperbolic sine intrinsic function
sqrt(3F) Fortran square root intrinsic function
strcmp(3F) string comparison intrinsic functions
system (3F) issue a shell command from Fortran
tan(3F) ... Fortran tangent intrinsic function
tanh(3F) Fortran hyperbolic tangent intrinsic function

4. File Formats
intro(4) .. introduction to file formats
a.out(4) common assembler and link editor output
acct(4) ... per-process accounting file format
ar(4) common archive file format
checklist(4) list of file systems processed by fsck and ncheck
co re (4) ... format of core image file
cpio(4) .. format of cpio archive
dir(4) ... format of directories
dirent(4) file system independent directory entry
filehdr(4) file header for common object files
fS(4) ... format of system volume
fspec(4) .. format specification in text files
fstab(4) .. file-system-table
gettydefs(4) speed and terminal settings used by getty
gps(4) graphical primitive string, format of graphical files
group(4) .. group file
inittab (4) .. script for the init process
inode(4) .. format of an i-node
isort(4) ... international sort
issue(4) ... issue identification file
Idfcn(4) common object file access routines
limits(4) file header for implementation-specific constants
linenum(4) line number entries in a common object file
master(4) ... master configuration database
mnttab (4) .. mounted file system table

Contents 8 UP-13712

Table of Contents

passwd(4) ... password file
plot(4) .. graphics interface
profile(4) setting up an environment at login time
prsetup(4) ... international printer spooler
reloc(4) relocation information for a common object file
rfmaster(4) Remote File Sharing name server master file
sccsfile(4) ... format of sces file
scnhdr(4) section header for a common object file
scr _ dump(4) format of curses screen image file
syms(4) common object file symbol table format
system (4) system configuration information table
term (4) ... format of compiled term file
terminfo(4) .. terminal capability data base
timezone(4) .. set default system time zone
unistd(4) file header for symbolic constants
utmp(4) .. utmp and wtmp entry formats

5. Miscellaneous Facilities
intro(5) ... introduction to miscellany
ascii (5) ... map of ASCII character set
environ(5) ... user environment
fcntl (5) .. file control options
math (5) ... math functions and constants
prof(5) .. profile within a function
regexp(5) regular expression compile and match routines
stat (5) .. data returned by stat system call
term (5) ... conventional names for terminals
types (5) .. primitive system data types
values(5) ... machine-dependent values
varargs(5) ... handle variable argument list

UP-13712 Contents 9

INTRO(3)

NAME
intro - introduction to functions and libraries

DESCRIPTION
This section describes functions found in various libraries,
other than those functions that directly invoke UNIX system
primitives, which are described in Section 2 of this volume.
Certain major collections are identified by a letter after the
section number:

(3C) These functions, together with those of Section 2 and
those marked (3S) , constitute the Standard C Library
Jibe, which is automatically loaded by the C compiler,
ee (1). (For this reason the (3C) and (3S) sections
together comprise one section of this manual.) The link
editor /d(1) searches this library under the ·Ie option. A
"shared library" version of Jibe can be searched using
the ·Ie _ s option, resulting in smaller a.outs. Declara
tions for some of these functions may be obtained from
#inelude files indicated on the appropriate pages.

(3S) These functions constitute the "standard I/O package"
[see stdio (3S)]. These functions are in the lib rary Jibe,
already mentioned. Declarations for these functions
may be obtained from the #inelude file < stdio.h > .

(3M) These functions constitute the Math Library, Jibm. They
are automatically loaded as needed by the FORTRAN
compiler 177(1). They are not automatically loaded by
the C compiler, ec(1); however, the link editor searches
this library under the ·Im option. Declarations for these
functions may be obtained from the #inelude file
< math.h >. Several generally useful mathematical con
stants are also defined there [see math (5)].

(3N) This contains sets of functions constituting the Network
Services library. These sets provide protocol indepen
dent interfaces to networking services based on the ser
vice definitions of the OSI (Open Systems Interconnec
tion) reference model. Application developers access
the function sets that provide services at a particular
level.

UP-13712

The function sets contained in the library are:

TRANSPORT INTERFACE (TJ) - provide the services
of the OSI Transport Layer. These services provide

Page 1

INTRO(3)

reliable end-to-end data transmission using the ser
vices of an underlying network. Applications writ
ten using the TI functions are independent of the
underlying protocols. Declarations for these func
tions may be obtained from the #include file
< tiuser.h > . The link editor Id (1) searches this
library under the -Insl_s option.

(3X) Various specialized libraries. The files in which these
libraries are found are given on the appropriate pages.

(3F) These functions constitute the FORTRAN intrinsic func
tion library, IibF77. These functions are automatically
available to the FORTRAN programmer and require no
special invocation of the compiler.

DEFINITIONS
A character is any bit pattern able to fit into a byte on the
machine. The null character is a character with value 0,
represented in the C language as '\0'. A character array is a
sequence of characters. A null-terminated character array is a
sequence of characters, the last of which is the null character.
A string is a designation for a null-terminated character array.
The null string is a character array containing only the null
character. A NULL pointer is the value that is obtained by
casting 0 into a pointer. The C language guarantees that this
value will not match that of any legitimate pointer, so many
functions that return pointers return it to indicate an error.
NULL is defined as 0 in < stdio.h >; the user can include an
appropriate definition if not using < stdio.h > .

Many groups of FORTRAN intrinsic functions have generic
function names that do not require explicit or implicit type
declaration. The type of the function will be determined by
the type of its argument(s). For example, the generic function
max will return an integer value if given integer arguments
(maxO) , a real value if given real arguments (amax1) , or a
double-precision value if given double-precision arguments
(dmax1).

Netbuf In the Network Services library, netbuf is a structure
used in various Transport Interface (TI) functions to send and
receive data and information. It contains the following
members:

Page 2 UP-13712

unsigned int maxlen;
unsigned int len;
char *buf;

INTR()(3)

Buf points to a user input and/or output buffer. Len generally
specifies the number of bytes contained in the buffer. If the
structure is used for both input and output, the function will
replace the user value of len on return.

Maxlen generally has significance only when buf is used to
receive output from the TI function. In this case, it specifies
the physical size of the buffer, the maximum value of len that
can be set by the function. If maxlen is not large enough to
hold the returned information, an TBUFOVFLW error will gen
erally result. However, certain functions may return part of
the data and not generate an error.

FILES
LIBDIR usually /Iib
LIBDIR/libc.a
LIBDIR/libc _ s.a
LIBDIR/libm.a
LIBDIR/lib77.a
/shlib/libc _ s
/shlib/libnsl_ s (3N)
/usr/lib/libnsLs.a (3N)

SEE ALSO
ar(1), cc(1), Id(1), Iint(1), nm(1), intro(2), stdio(3S), math(5).

DIAGNOSTICS
Functions in the C and Math Libraries (3C and 3M) may return
the conventional values 0 or ± HUGE (the largest-magnitude
single-precision floating-point numbers; HUGE is defined in
the < math.h > header file) when the function is undefined for
the given arguments or when the value is not representable.
In these cases, the external variable errno [see intro (2)] is set
to the value EDOM or ERANGE.

WARNING
Many of the functions in the libraries call and/or refer to other
functions and external variables described in this section and
in Section 2 (System Calls). If a program inadvertently defines
a function or external variable with the same name, the
presumed library version of the function or external variable

UP-13712 Page 3

INTRO(3)

may not be loaded. The Iint(1) program checker reports name
conflicts -of this k~nd as "'multiple declarations'" of the names in
quest1on. Definitions for Sections 2J SC, and 3S ar-e checked
automaticallY4 . Other definitions can be jnc~ded by sing -the ..
option. (For example •• 1m includes definitions for Section 3MJ
the Math UbrarY4) Use of lint is highly r-ecommended.

Page 4 UP-13712

A64L(3C)

NAME
a641, 164a - convert between long integer and base-64 ASCII
string

SYNOPSIS
long a641 (s)
char *s;

char *164a (I)
long I;

DESCRIPTION
These functions are used to maintain numbers stored in base-
64 ASCII characters. This is a notation by which long integers
can be represented by up to six characters; each character
represents a "digit" in a radix-64 notation.

The characters used to represent "digits" are. for 0, / for 1, 0
through 9 for 2-11, A through Z for 12-37, and a through z for
38-63.

a641 takes a pointer to a null-terminated base-64 representa
tion and returns a corresponding long value. If the string
pointed to by s contains more than six characters, a641 will
use the first six.

a641 scans the character string from left to right, decoding
each character as a 6 bit Radix 64 number.

164a takes a long argument and returns a pointer to the
corresponding base-64 representation. If the argument is 0,
164a returns a pointer to a null string.

CAVEAT
The value returned by 164a is a pointer into a static buffer, the
contents of which are overwritten by each call.

UP-13712 Page 1

A64L(3C)

[This page left blank.]

Page 2 UP-13712

AB()RT(3C)

NAME
abort - generate an lOT fault

SYNOPSIS
int abort ()

DESCRIPTION
abort does the work of exit (2), but instead of just exiting,
abort causes SIGABRT to be sent to the calling process. If
SIGABRT is neither caught nor ignored, all stdio (3S) streams
are flushed prior to the signal being sent, and a core dump
results.

abort returns the value of the kill (2) system call.

SEE ALSO
sdb(1), exit (2) , kill(2), signal(2).

DIAGNOSTICS
If SIGABRT is neither caught nor ignored, and the current
directory is writable, a core dump is produced and the mes
sage "abort - core dumped" is written by the shell.

UP-13712 Page 1

ARORT(3C)

[This page left blank.]

Page 2 UP-13712

NAME
abs - return integer absolute value

SYNOPSIS
int abs (i)
int i;

DESCRIPTION

ABS(3C)

abs returns the absolute value of its integer operand.

SEE ALSO
floor(3M).

CAVEAT
In two's-complement representation, the absolute value of the
negative integer with largest magnitude is undefined. Some
implementations trap this error, but others simply ignore it.

UP-13712 Page 1

ARS(3C)

[This page left blank.]

Page 2 UP-13712

BSEARCH(3C)

NAME
bsearch - binary search a sorted table

SYNOPSIS
#include < search.h >

char *bsearch «char *) key, (char *) base, nel, sizeof
(*key), com par)
unsigned nel;
int (*compar)();

DESCRIPTION
bsearch is a binary search routine generalized from Knuth
(6.2.1) Algorithm B. It returns a pOinter into a table indicating
where a datum may be found. The table must be previously
sorted in increasing order according to a provided comparison
function. Key points to a datum instance to be sought in the
table. Base points to the element at the base of the table.
Ne/ is the number of elements in the table. Compar is the
name of the comparison function, which is called with two
arguments that point to the elements being compared. The
function must return an integer less than, equal to, or greater
than zero as accordingly the first argument is to be con
sidered less than, equal to, or greater than the second.

EXAMPLE
The example below searches a table containing pointers to
nodes consisting of a string and its length. The table is
ordered alphabetically on the string in the node pointed to by
each entry.

This code fragment reads in strings and either finds the
corresponding node and prints out the string and its length, or
prints an error message.

#include <stdio.h>
#include <search.h>

#define TABSIZE 1000

struct node {
char *string;
int length;

I;
struct node table[TABSIZE];

UP-13712

/* these are stored in the table */

/* table to be searched */

Page 1

BSEARCH(3C)

I
/*

*/
int

struct node *node-ptr, node;
int node_comparee); /* routine to compare 2 nodes */
char str_space[20]; /* space to read string into */

node.string = str_space;
while (scanf("%s", node.string) != EOF) I

node-ptr = (struct node *)bsearch«char *)(&node),
(char *)table, TABSIZE,
sfzeof(struct node), node_compare);

if (node-ptr != NULL) I

else

(void)printf("string = %20s, length = %d\n",
node-ptr->string, node-ptr->length);

(void)printf("not found: %s\n", node.string);

This routine compares two nodes based on an
alphabetical ordering of the string field.

node_compare(node1, node2)
char *node1, *node2;
I

return (strcmp(
«struct node *)node1)->string,
«struct node *)node2)->string»;

NOTES
The pointers to the key and the element at the base of the
table should be of type pointer-to-element. and cast to type
pointer -to-character.
The comparison function need not compare every byte. so
arbitrary data may be contained in the elements in addition to

Page 2 UP-13712

BSEARCH(3C)

the values being compared.
Although bsearch is declared as type pointer-to-character, the
value returned should be cast into type pointer-to-element.

SEE ALSO
hsearch (3C) , Isearch (3C) , qsort(3C) , tsearch (3C).

DIAGNOSTICS
A NULL pOinter is returned if the key cannot be found in the
table.

UP-13712 Page 3

RSEARCH(3C)

[This page left blank.]

Page 4 UP-13712

CLOCK(3C)

NAME
clock - report CPU time used

SYNOPSIS
long clock ()

DESCRIPTION
clock returns the amount of CPU time (in microseconds) used
since the first call to clock. The time reported is the sum of
the user and system times of the calling process and its ter
minated child processes for which it has executed wait (2),
pclose (3S) , or system (38) .

SEE ALSO
times(2), wait (2) , popen(3S), system(38).

BUGS
The value returned by clock is defined in microseconds for
compatibility with systems that have CPU clocks with much
higher resolution. Because of this, the value returned will
wrap around after accumulating only 2147 seconds of CPU
time (about 36 minutes).

UP-13712 Page 1

CLOCK(3C)

[This page left blank.]

Page 2 UP-13712

C()NV(3C)

NAME
conv: toupper. tolower. _toupper. _tolower. toascii - translate
characters

SYNOPSIS
#include < ctype.h >

int toupper (c)
int c;

int tolovver (c)
int c;

int _toupper (c)
int c;

int _ tolovver (c)
int c;

int toascii (c)
int c;

DESCRIPTION
Toupper and t%wer have as domain the range of gete (3S):
the integers from -1 through 255. If the argument of toupper
represents a lower-case letter. the result is the corresponding
upper-case letter. If the argument of t%wer represents an
upper-case letter. the result is the corresponding lower-case
letter. All other arguments in the domain are returned
unchanged.

The macros _toupper and _t%wer. are macros that accom
plish the same thing as toupper and t%wer but have res
tricted domains and are faster. _toupper requires a lower
case letter as its argument; its result is the corresponding
upper-case letter. The macro _t%wer requires an upper-case
letter as its argument; its result is the corresponding lower
case letter. Arguments outside the domain cause undefined
results.

Toaseii yields its argument with all bits turned off that are not
part of a standard ASCII character; it is intended for compati
bility with other systems.

SEE ALSO
ctype(3C). getc(3S).

UP-13712 Page 1

C()NV(3C)

[This page left blank.]

Page 2 UP-13712

CRYPT(3C)

NAME
crypt, setkey, encrypt - generate hashing encryption

SYNOPSIS
char *crypt (key, salt)
char *key, *salt;

void setkey (key)
char *key;

void encrypt (block, ignored)
char *block;
int ignored;

DESCRIPTION
crypt is the password encryption function. It is based on a
one way hashing encryption algorithm with variations intended
(among other things) to frustrate use of hardware implementa
tions of a key search.

Key is a user's typed password. Salt is a two-character string
chosen from the set [a-zA-ZO-9./]; this string is used to per
turb the hashing algorithm in one of 4096 different ways, after
which the password is used as the key to encrypt repeatedly a
constant string. The returned value points to the encrypted
password. The first two characters are the salt itself.

The setkey and encrypt entries provide (rather primitive)
access to the actual hashing algorithm. The argument of set
key is a character array of length 64 containing only the char
acters with numerical value 0 and 1. If this string is divided
into groups of 8, the low-order bit in each group is ignored;
this gives a 56-bit key which is set into the machine. This is
the key that will be used with the hashing algorithm to encrypt
the string block with the function encrypt.

The argument to the encrypt entry is a character array of
length 64 containing only the characters with numerical value
o and 1. The argument array is modified in place to a similar
array representing the bits of the argument after having been
subjected to the hashing algorithm using the key set by set
key. Ignored is unused by encrypt but it must be present.

SEE ALSO
getpass(3C) , passwd(4).
login(1), passwd(1) in the User's Reference Manual.

UP-13712 Page 1

CRYPT (3C)

CAVEAT
The return value paints to static data that are overwritten by
each call.

Page 2 UP-13712

NAME
ctermid - generate file name for terminal

SYNOPSIS
#include < stdio.h >
char *ctermid (s)
char *s;

DESCRIPTION

CTERMID(3S)

ctermid generates the path name of the controlling terminal
for the current process, and stores it in a string.

If s is a NULL pointer, the string is stored in an internal static
area, the contents of which are overwritten at the next call to
ctermid, and the address of which is returned. Otherwise, s is
assumed to point to a character array of at least L_ctermid
elements; the path name is placed in this array and the value
of s is returned. The constant L_ctermid is defined in the
< stdio.h > header file.

NOTES
The difference between ctermid and ttyname (3C) is that
ttyname must be handed a file descriptor and returns the
actual name of the terminal associated with that file descrip
tor, while ctermid returns a string (ldev/tty) that will refer to
the terminal if used as a file name. Thus ttyname is useful
only if the process already has at least one file open to a ter
minal.

SEE ALSO
ttyname (3 C) .

UP-13712 Page 1

CTER~lID(3S)

[This page left blank.]

Page 2 UP-13712

CTIME(3C)

NAME
ctime, localtime, gmtime, asctime, tzset - convert date and
time to string

SYNOPSIS
#include < sys/types.h >
#include < time.h >

char *ctime (clock)
time_t *clock;

struct tm *Iocaltime (clock)
time _ t *clock;

struct tm *gmtime (clock)
time _ t *clock;

char *asctime (tm)
struct tm *tm;

extern long timezone;

extern int daylight;

extern char *tzname[2];

void tzset ()

DESCRIPTION
ctime converts a long integer, pointed to by c/ock, represent
ing the time in seconds since 00:00:00 GMT, January 1, 1970,
and returns a pOinter to a 26-character string in the following
form. All the fields have constant width.

Sun Sep 16 01 :03:52 1985\n\0

Loca/time and gmtime return pOinters to "tm" structures,
described below. Loca/time corrects for the time zone and
possible Daylight Savings Time; gmtime converts directly to
Greenwich Mean Time (GMT), which is the time the UNIX sys
tem uses.

Asctime converts a "tm" structure to a 26-character string, as
shown in the above example, and returns a pointer to the
string.

Declarations of all the functions and externals, and the "tm"
structure, are in the < time.h > header file. The structure
declaration is:

UP-13712 Page 1

CTIME(3C)

struct tm {

};

int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm _year;
int tm_wday;
int tm_yday;
int tm Jsdst;

/* seconds (0 - 59) * /
/* minutes (0 - 59) * /
/* hours (0 - 23) * /
/* day of month (1 - 31) */
/* month of year (0 -11) */
/* year - 1900 */
/* day of week (Sunday = 0) * /
/* day of year (0 - 365) * /

Tm _isdst is non-zero if Daylight Savings Time is in effect.

The external long variable timezone contains the difference, in
seconds, between GMT and local standard time (in EST,
timezone is 5*60*60); the external variable daylight is non-zero
if and only if the standard U.S.A. Daylight Savings Time
conversion should be applied. The program knows about the
peculiarities of this conversion in 1974 and 1975; if necessary,
a table for these years can be extended.

If an environment variable named TZ is present, asctime uses
the contents of the variable to override the default time zone.
The value of TZ must be a three-letter time zone name, fol
lowed by a number representing the difference between local
time and Greenwich Mean Time in hours, followed by an
optional three-letter name for a daylight time zone. For exam
ple, the setting for New Jersey would be EST5EDT. The
effects of setting TZ are thus to change the values of the
external variables timezone and daylight; in addition, the time
zone names contained in the external variable

char *tzname[2] = { nESTn, nEDTn };

are set from the environment variable TZ. The function tzset
sets these external variables from TZ; tzset is called by asc
time and may also be called explicitly by the user.

Note that in most installations, TZ is set by default when the
user logs on, to a value in the local/etc/profile file [see pro
file (4)].

SEE ALSO
time(2), getenv(3C), profile(4), environ(5).

Page 2 UP-13712

CTIME(3C)

CAVEAT
The return values point to static data whose content is
overwritten by each call.

UP-13712 Page 3

CTI:\:lE(3C)

[This page left blank.]

Page 4 UP-13712

CTYPE(3C)

NAME
ctype: isalpha, isupper, islower, isdigit, isxdigit, isalnum,
isspace, ispunct, isprint, isgraph, iscntrl, isascii - classify char
acters

SYNOPSIS
#include < ctype.h >

int isalpha (c)
int c;

DESCRIPTION
These macros classify character-coded integer values by table
lookup. Each is a predicate returning nonzero for true, zero
for false. [saseii is defined on all integer values; the rest are
defined only where isaseii is true and on the single non-ASCII
value EOF [-1; see stdio (3S)].

isa/pha

isupper

is/ower

is digit

isxdigit

isa/num

isspaee

ispunet

isprint

isgraph

isentr/

isaseii

SEE ALSO

e is a letter.

e is an upper-case letter.

e is a lower-case letter.

e is a digit [0-9].

e is a hexadecimal digit [0-9], [A-F] or [a-fl.

e is an alphanumeric (letter or digit).

e is a space, tab, carriage return, newline,
vertical tab, or form-feed.

e is a punctuation character (neither control
nor alphanumeric).

e is a printing character, code 040 (space)
through 0176 (tilde).

e is a printing character, like isprint except
false for space.

e is a delete character (0177) or an ordinary
control character (less than 040).

e is an ASCII character, code less than 0200.

stdio(3S), ascii(5).

UP-13712 Page 1

CTYPE(3C)

DIAGNOSTICS
If the argument to any of these macros is not in the domain of
the function, the result is undefined.

Page 2 UP-13712

CUSERID(3S)

NAME
cuserid - get character login name of the user

SYNOPSIS
#include < stdio.h >

char *cuserid (s)
char *s;

DESCRIPTION
cuserid generates a character-string representation of the
login name that the owner of the current process is logged in
under. If s is a NULL pointer, this representation is generated
in an internal static area, the address of which is returned.
Otherwise, s is assumed to point to an array of at least
L_cuserid characters; the representation is left in this array.
The constant L_cuserid is defined in the < stdio.h > header
file.

DIAGNOSTICS
If the login name cannot be found, cuserid returns a NULL
pointer; if s is not a NULL pointer, a null character (\0) will be
placed at s[OJ.

SEE ALSO
getlogin (3 C) , getpwent (3C).

UP-13712 Page 1

CUSERID (3S)

[This page left blank.]

Page 2 UP-13712

DIAL(3C)

NAME
dial - establish an out-going terminal line connection

SYNOPSIS
#include < dial.h >

int dial (call)
CALL call;

void undial (fd)
int fd;

DESCRIPTION
dial returns a file-descriptor for a terminal line open for
read/write. The argument to dial is a CALL structure (defined
in the < dial.h > header file).

When finished with the terminal line, the calling program must
invoke undial to release the semaphore that has been set dur
ing the allocation of the terminal device.

The definition of CALL in the < dial.h > header file is:

typedef struct I
struct termio *attr;

int baud;
int speed;

char *line;

char *telno;

int modem;

char *device;

int dev_len;

I CALL;

/* pointer to termio attribute
struct */

/* transmission data rate */
/* 212A modem: low=300,

high=1200 */
/* device name for out-going

1 ine * /
/* pointer to tel-no digits

string */
/* specify modem control for

direct lines */
/* Will hold the name of the

device used to make a
connection */

/* The length of the device
used to make connection */

The CALL element speed is intended only for use with an out
going dialed call, in which case its value should be either 300
or 1200 to identify the 113A modem, or the high- or low-speed

UP-13712 Page 1

DIAL(3C)

setting on the 212A modem. Note that the 113A modem or
the low-speed setting of the 212A modem will transmit at any
rate between 0 and 300 bits per second. However, the high
speed setting of the 212A modem transmits and receives at
1200 bits per secound only. The CALL element baud is for the
desired transmission baud rate. For example, one might set
baud to 110 and speed to 300 (or 1200). However, if speed
set to 1200 baud must be set to high (1200).

If the desired terminal line is a direct line, a string pointer to its
device-name should be placed in the line element in the CALL
structure. Legal values for such terminal device names are
kept in the L-devices file. In this case, the value of the baud
element need not be specified as it will be determined from
the L-devices file.

The telno element is for a pointer to a character string
representing the telephone number to be dialed. Such
numbers may consist only of symbols described on the
acu (7). The termination symbol will be supplied by the dial
function, and should not be included in the telno string
passed to dial in the CALL structure.

The CALL element modem is used to specify modem control
for direct lines. This element should be non-zero if modem
control is required. The CALL element attr is a pointer to a
termio structure, as defined in the termio.h header file. A
NULL value for this pointer element may be passed to the dial
function, but if such a structure is included, the elements
specified in it will be set for the outgoing terminal line before
the connection is established. This is often important for cer
tain attributes such as parity and baud-rate.

The CALL element device is used to hold the device name
(cuI..) that establishes the connection.

The CALL element dev _len is the length of the device name
that is copied into the array device.

FILES
/usr /Iib/uucp/L-devices
/usr /spool/uucp/LCK .. tty-device

SEE ALSO
alarm (2) , read (2) , write(2).
acu(7) I termio(7) in the System Administrator's Reference

Page 2 UP-13712

DIAL(3C)

Manual.
uucp(1 C) in the User's Reference Manual.

DIAGNOSTICS
On failure, a negative value indicating the reason for the
failure will be returned. Mnemonics for these negative indices
as listed here are defined in the < dial.h > header file.

INTRPT -1 /* interrupt occurred */
D_HUNG -2 /* dialer hung (no return from

write) */
NO_ANS -3 /* no answer within 10 seconds */
ILL_BD -4 /* illegal baud-rate */
A_PROB -5 /* acu problem (open() failure) */
L_PROB -6 /* line problem (open() failure) */
NO_Ldv -7 /* can't open LDEVS file */
DV_NT_A -8 /* requested device not available */
DV_NT_K -9 /* requested device not known */
NO_BD_A -10 /* no device available at

requested baud */
NO_BD_K - 11 /* no device known at requested

baud */

WARNINGS
The dial (3C) library function is not compatible with Basic Net
working Utilities on UNIX System V Release 2.0.

Including the < dial.h > header file automatically includes the
< termio.h > header file.

The above routine uses < stdio.h >, which causes it to
increase the size of programs, not otherwise using standard
I/O, more than might be expected.

BUGS
An alarm (2) system call for 3600 seconds is made (and
caught) within the dial module for the purpose of "touching"
the LCK .. file and constitutes the device allocation semaphore
for the terminal device. Otherwise, uucp (1 C) may simply
delete the LCK .. entry on its 90-minute clean-up rounds. The
alarm may go off while the user program is in a read (2) or
write (2) system call, causing an apparent error return. If the
user program expects to be around for an hour or more, error
returns from reads should be checked for (errno = = EINTR),
and the read possibly reissued.

UP-13712 Page 3

DIAL(3C)

[This page left blank.]

Page 4 UP-13712

DRAND48 (3C)

NAME
drand48, erand48, Irand48, nrand48, mrand48, jrand48, srand48,
seed48, Icong48 generate uniformly distributed pseudo-random
numbers

SYNOPSIS
double drand48 ()

double erand48 (xsubi)
unsigned short xsubi[3];

long Irand48 ()

long nrand48 (xsubi)
unsigned short xsubi[3];

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubi[3];

void srand48 (seedval)
long seedval;

unsigned short *seed48 (seed16v)
unsigned short seed16v[3];

void Icong48 (param)
unsigned short param[7];

DESCRIPTION
This family of functions generates pseudo-random numbers using
the well-known linear congruential algorithm and 48-bit integer
arithmetic.

Functions drand48 and erand48 return non-negative double
precision floating-point values uniformly distributed over the
interval [0.0, 1.0).

Functions Irand48 and nrand48 return non-negative long integers
uniformly distributed over the interval [0, 231

).

Functions mrand48 and jrand48 return signed long integers
uniformly distributed over the interval [_231 , 231).

UP-13712 Page 1

DRAND48 (3C)

Functions srand48, seed48 and Icong48 are initialization entry
points, one of which should be invoked before either drand48,
lrand48 or mrand48 is called. (Although it is not recommended
practice, constant default initializer values will be supplied
automatically if drand48, Irand48 or mrand48 is called without a
prior call to an initialization entry point.) Functions erand48,
nrand48 and jrand48 do not require an initialization entry point to
be called first.

All the routines work by generating a sequence of 48-bit integer
values, Xii according to the linear congruential formula

Xn + 1 = (aXn + C)mod m n~O.

The parameter m = 248
; hence 48-bit integer arithmetic is

performed. Unless Icong48 has been invoked, the multiplier value
a and the addend value c are given by

a = 5DEECE66D16 = 2736731631558

C = 816 = 138 .

The value returned by any of the functions drand48, erand48,
Irand48, nrand48, mrand48 or jrand48 is computed by first
generating the next 48-bit Xi in the sequence. Then the
appropriate number of bits, according to the type of data item to
be returned, are copied from the high-order (leftmost) bits of Xi
and transformed into the returned value.

The functions drand48, Irand48 and mrand48 store the last 48-bit
Xi generated in an internal buffer, and must be initialized prior to
being invoked. The functions erand48, nrand48 and jrand48
require the calling program to provide storage for the successive
Xi values in the array specified as an argument when the
functions are invoked. These routines do not have to be
initialized; the calling program must place the desired initial value
of Xi into the array and pass it as an argument. 8y using different
arguments, functions erand48, nrand48 and jrand48 allow
separate modules of a large program to generate several
independent streams of pseudo-random numbers, i.e., the
sequence of numbers in each stream will not depend upon how
many times the routines have been called to generate numbers
for the other streams.

Page 2 UP-13712

DRAND48 (3C)

The initializer function srand48 sets the high-order 32 bits of Xi
to the 32 bits contained in its argument. The low-order 16 bits
of Xi are set to the arbitrary value 330E16

The initializer function seed48 sets the value of Xi to the 48-bit
value specified in the argument array. In addition, the previous
value of Xi is copied into a 48-bit internal buffer, used only by
seed48, and a pointer to this buffer is the value returned by
seed48. This returned pointer, which can just be ignored if not
needed, is useful if a program is to be restarted from a given
point at some future time use the pointer to get at and store the
last Xi value, and then use this value to reinitialize via seed48
when the program is restarted.

The initialization function /cong48 allows the user to specify the
initial Xii the multiplier value a, and the addend value c.
Argument array elements param[O-2] specify Xj, param[3-5]
specify the multiplier a, and param[6] specifies the 16-bit addend
c. After /cong48 has been called, a subsequent call to either
srand48 or seed48 will restore the "standard" multiplier and
addend values, a and c, and specified on the previous page.

NOTES
The source code for the portable version can be used on
computers which do not have floating-point arithmetic. In such a
situation, functions drand48 and erand48 are replaced by the two
new functions below.

long irand48 (m)
unsigned short m;

long krand48 (xsubi, m)
unsigned short xsubi[3], m;

Functions irand48 and krand48 return non-negative long integers
uniformly distributed over the interval [0, m - 1].

SEE ALSO
rand(3C).

UP-13712 Page 3

[This page left blank.]

Page 4 UP-13712

NAME
dup2 - duplicate an open file descriptor

SYNOPSIS
int dup2 (fildes, fildes2)
int fildes, fildes2;

DESCRIPTION

DUP2(3C)

Fildes is a file descriptor referring to an open file, and fildes2
is a non-negative integer less than NOFILES. dup2 causes
fildes2 to refer to the same file as fildes. If fildes2 already
referred to an open file, it is closed first.

dup2 will fail if one or more of the following are true:

[EBADF]

[EMFILE]

SEE ALSO

Fildes is not a valid open file descriptor.

NOFILES file descriptors are currently open.

creat(2) , close (2) , exec (2) , fcntl(2) , open(2), pipe(2) , lockf(3C).

DIAGNOSTICS
Upon successful completion a non-negative integer, namely
the file descriptor, is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

UP-13712 Page 1

DUP2(3C)

[This page left blank.]

Page 2 UP-13712

ECVT(3C)

NAME
ecvt, fcvt, gcvt - convert floating-point number to string

SYNOPSIS
char *ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gcvt (value, ndigit, buf)
double value;
int ndigit;
char *buf;

DESCRIPTION
ecvt converts value to a null-terminated string of ndigit digits
and returns a pointer thereto. The high-order digit is non
zero, unless the value is zero. The low-order digit is rounded.
The position of the decimal point relative to the beginning of
the string is stored indirectly through decpt (negative means
to the left of the returned digits). The decimal pOint is not
included in the returned string. If the sign of the result is
negative, the word pOinted to by sign is non-zero, otherwise it
is zero.

Fcvt is identical to ecvt, except that the correct digit has been
rounded for printf "%f" (FORTRAN F-format) output of the
number of digits specified by ndigit.

Gcvt converts the value to a null-terminated string in the array
pointed to by but and returns but. It attempts to produce ndi
git significant digits in FORTRAN F-format if possible, other
wise E-format, ready for printing. A minus sign, if there is one,
or a decimal point will be included as part of the returned
string. Trailing zeros are suppressed.

SEE ALSO
printf(3S) .

BUGS
The values returned by ecvt and tcvt point to a single static
data array whose content is overwritten by each call.

UP-13712 Page 1

ECVT(3C)

[This page left blank.]

Page 2 UP-13712

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION

END(3C)

These names refer neither to routines nor to locations with
interesting contents. The address of etext is the first address
above the program text, edata above the initialized data
region, and end above the uninitialized data region.

When execution begins, the program break (the first location
beyond the data) coincides with end, but the program break
may be reset by the routines of brk (2), malloe (3C) , standard
input/output [stdio(3S)], the profile (-p) option of cc(1), and
so on. Thus, the current value of the program break should
be determined by sbrk (char *)(0) [see brk(2)].

SEE ALSO
cc(1), brk(2), malloc(3C), stdio(3S).

UP-13712 Page 1

END(3C)

[This page left blank.]

Page 2 UP-13712

NAME
fclose. fflush - close or flush a stream

SYNOPSIS
#include < stdio.h >

int fclose (stream)
FILE *stream;

int fflush (stream)
FILE *stream;

DESCRIPTION

FCLOSE(3S)

fclose causes any buffered data for the named stream to be
written out. and the stream to be closed.

fclose is performed automatically for all open files upon calling
exit (2).

Fflush causes any buffered data for the named stream to be
written to that file. The stream remains open.

SEE ALSO
close(2). exit(2). fopen(3S). setbuf(3S). stdio(3S).

DIAGNOSTICS
These functions return 0 for success. and EOF if any error
(such as trying to write to a file that has not been opened for
writing) was detected.

UP-13712 Page 1

FCL()SE (3S)

[This page left blank.]

Page 2 UP-13712

FERR() R (3S)

NAME
ferror. feof. clearerr. fileno - stream status inquiries

SYNOPSIS
#include < stdio.h >

int ferror (stream)
FILE *stream;

int feof (stream)
FILE *stream;

void clearerr (stream)
FILE *stream;

int fileno (stream)
FILE *stream;

DESCRIPTION
ferror returns non-zero when an I/O error has previously
occurred reading from or writing to the named stream. other
wise zero.

Feof returns non-zero when EOF has previously been
detected reading the named input stream. otherwise zero.

C/earerr resets the error indicator and EOF indicator to zero
on the named stream.

Fileno returns the integer file descriptor associated with the
named stream; see open (2) .

NOTES
All these functions are implemented as macros; they cannot
be declared or redeclared.

SEE ALSO
open (2). fopen (38). stdio (38).

UP-13712 Page 1

FERROR(3S)

[This page left blank.]

Page 2 UP-13712

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include < stdio.h >

FILE *fopen (filename, type)
char *filename, *type;

FILE *freopen (filename, type, stream)
char *filename, *type;
FILE *stream;

FILE *fdopen (fildes, type)
int fildes;
char *type;

DESCRIPTION

F()PEN(3S)

fopen opens the file named by filename and associates a
stream with it. fop en returns a pointer to the FILE structure
associated with the stream.

Filename points to a character string that contains the name
of the file to be opened.

Type is a character string having one of the following values:

"r" open for reading

"W" truncate or create for writing

II a" append; open for writing at end of file, or
create for writing

"r + II open for update (reading and writing)

"W + II truncate or create for update

"a + II append; open or create for update at end-of-
file

Freopen substitutes the named file in place of the open
stream. The original stream is closed, regardless of whether
the open ultimately succeeds. Freopen returns a pointer to
the FILE structure associated with stream.

Freopen is typically used to attach the preopened streams
associated with stdin, stdout and stderr to other files.

Fdopen associates a stream with a file descriptor. File
descriptors are obtained from open, dup, creat, or pipe (2) I

UP-13712 Page 1

.'()PEN (3S)

which open files but do not return pointers to a FILE structure
stream. Streams are necessary input for many of the Section
3S library routines. The type of stream must agree with the
mode of the open file.

When a file is opened for update, both input and output may
be done on the resulting stream. However, output may not
be directly followed by input without an intervening fseek or
rewind, and input may not be directly followed by output
without an intervening fseek, rewind, or an input operation
which encounters end-of-file.

When a file is opened for append (i.e., when type is 11 all or
lIa + 11). it is impossible to overwrite information already in the
file. Fseek may be used to reposition the file pOinter to any
position in the file, but when output is written to the file, the
current file pointer is disregarded. All output is written at the
end of the file and causes the file pointer to be repositioned at
the end of the output. If two separate processes open the
same file for append, each process may write freely to the file
without fear of destroying output being written by the other.
The output from the two processes will be intermixed in the
file in the order in which it is written.

SEE ALSO
creat(2) , dup(2). open (2) , pipe(2), fclose(3S). fseek(3S).
stdio(3S).

DIAGNOSTICS
fop en , fdopen, and freopen return a NULL pointer on failure.

Page 2 UP-13712

FPGETR()UND(3C)

NAME
fpgetround, fpsetround, fpgetmask, fpsetmask, fpgetsticky,
fpsetsticky - IEEE floating point environment control

SYNOPSIS
#inc1ude <ieeefp.h>

typedef enum
I
FP_RN=O, /* round to nearest */
FP_RP, /* round to plus */
FP_RM, /* round to minus */
FP_RZ, /* round to zero (truncate) */
1 fp_rnd;

fp_rnd fpgetround();

fp_rnd fpsetround(rnd_dir)
fp_rnd rnd_dir;

#define fp_except int
#define FP_X_INV Oxl0

#define FP_X_OFL Ox08
#define FP_X_UFL ox04

/* invalid operation
exception*/

/* overflow exception*/
/* underflow exception*/

#define FP_X_DZ Ox02 /* divide-by-zero exception*/
#define FP_X_IMP OxOl

fp_except fpgetmask();

fp_except fpsetmask(mask);
fp_except mask;

fp_except fpgetsticky();

fp_except fpsetsticky(sticky);
fp_except sticky;

DESCRIPTION

/* imprecise (loss of
precision)*/

There are five floating point exceptions: divide-by-zero, over
flow, underflow, imprecise (inexact) result, and invalid opera
tion. When a floating point exception occurs, the

UP-13712 Page 1

FPGETR()UND(3C)

corresponding sticky bit is set (1), and if the mask bit is
enabled (1), the trap takes place. These routines let the user
change the behavior on occurrence of any of these excep
tions, as well as change the rounding mode for floating point
operations.

fpgetround 0 returns the current rounding mode.

fpsetround 0 sets the rounding mode and returns the previous
rounding mode.

fpgetmask 0 returns the current exception masks.

fpsetmaskO sets the exception masks and returns the previ
ous setting.

fpgetstickyO returns the current exception sticky flags.

fpsetstickyO sets (clears) the exception sticky flags and
returns the previous setting.

SEE ALSO
isnan(3C).

WARNINGS
fpsetstickyO modifies all sticky flags. fpsetmaskO changes all
mask bits.

Both C and F77 require truncation (round to zero) for floating
point to integral conversions. The current rounding mode has
no effect on these conversions.

CAVEATS
One must clear the sticky bit to recover from the trap and to
proceed. If the sticky bit is not cleared before the next trap
occurs, a wrong exception type may be signaled.

For the same reason, when calling fpsetmaskO the user should
make sure that the sticky bit corresponding to the exception
being enabled is cleared.

Page 2 UP-13712

NAME
fread, fwrite - binary input/output

SYNOPSIS
#include < stdio.h >
#include < sys/types.h >

int tread (ptr, size, nitems, stream)
char *ptr;
int nitems;
size_t size;
FILE *stream;

int fwrite (ptr, size, nitems, stream)
char *ptr;
int nitems;
size_t size;
FILE *stream;

DESCRIPTION

FREAD (3S)

tread copies, into an array pointed to by ptr, nitems items of
data from the named input stream, where an item of data is a
sequence of bytes (not necessarily terminated by a null byte)
of length size. tread stops appending bytes if an end-of-file
or error condition is encountered while reading stream, or if
nitems items have been read. tread leaves the file pointer in
stream, if defined, pointing to the byte following the last byte
read if there is one. fread does not change the contents of
stream.

fwrite appends at most nitems items of data from the array
pOinted to by ptr to the named output stream. fwrite stops
appending when it has appended nitems items of data or if an
error condition is encountered on stream. fwrite does not
change the contents of the array pointed to by ptr.

The argument size is typically sizeot(*ptr) where the pseudo
function sizeof specifies the length of an item pointed to by
ptr. If ptr points to a data type other than char it should be
cast into a pointer to char.

SEE ALSO
read(2) , write(2) , fopen(38), getc(38) , gets(38), printf(38),
putc (38), puts (38), scanf (38), stdio (3S).

UP-13712 Page 1

FREAD(3S)

DIAGNOSTICS
fread and fwrite return the number of items read or written. If
nitems is non-positive, no characters are read or written and 0
is returned by both fread and fwrite.

Page 2 UP-13712

FREXP(3C)

NAME
frexp, Idexp, modf - manipulate parts of floating-point
numbers

SYNOPSIS
double frexp (value, eptr)
double value;
int *eptr;

double Idexp (value, exp)
double value;
int exp;

double modf (value, iptr)
double value, *iptr;

DESCRIPTION
Every non-zero number can be written uniquely as x * 2n

1

where the "mantissa" (fraction) x is in the range 0.5 < = : x :
< 1.01 and the "exponent" n is an integer. frexp returns the
mantissa of a double value 1 and stores the exponent indirectly
in the location pointed to by eptr. If value is zero, both results
returned by frexp are zero.

Ldexp returns the quantity value * 2exp .

Modf returns the signed fractional part of value and stores the
integral part indirectly in the location pointed to by iptr.

DIAGNOSTICS
If Idexp would cause overflow, ± HUGE (defined in
< math.h >) is returned (according to the sign of valueL and
errno is set to ERANGE.
If Idexp would cause underflow, zero is returned and errno is
set to ERANGE.

UP-13712 Page 1

FREXP(3C)

[This page left blank.]

Page 2 UP-13712

FSEEK(3S)

NAME
fseek, rewind, ftell - reposition a file pointer in a stream

SYNOPSIS
#include < stdio.h >

int fseek (stream, offset, ptrname)
FILE *stream;
long offset;
int ptrname;

void rewind (stream)
FILE *stream;

long ftell (stream)
FILE *stream;

DESCRIPTION
fseek sets the position of the next input or output operation
on the stream. The new position is at the signed distance
offset bytes from the beginning, from the current position, or
from the end of the file, according as ptrname has the value a,
1, or 2.

Rewind (stream) is equivalent to fseek (stream, Ol, 0), except
that no value is returned.

fseek and rewind undo any effects of ungetc (38).

After fseek or rewind, the next operation on a file opened for
update may be either input or output.

Ftell returns the offset of the current byte relative to the
beginning of the file associated with the named stream.

SEE ALSO
Iseek(2) , fopen(3S), popen(38) , stdio(3S), ungetc(3S).

DIAGNOSTICS
fseek returns non-zero for improper seeks, otherwise zero. An
improper seek can be, for example, an fseek done on a file
that has not been opened via fopen; in particular, fseek may
not be used on a terminal, or on a file opened via popen (38).

WARNING
Although on the UNIX system an offset returned by ftell is
measured in bytes, and it is permissible to seek to positions
relative to that offset, portability to non-UNIX systems requires
that an offset be used by fseek directly. Arithmetic may not

UP-13712 Page 1

FSEEK(3S)

meaningfully be performed on such an offset, which is not
necessarily measured in bytes.

Page 2 UP-13712

NAME
ftw - walk a file tree

SYNOPSIS
#include < ftw.h >

int ftw (path, fn, depth)
char *path;
int (*fn) ();
int depth;

DESCRIPTION

FTW(3C)

ftw recursively descends the directory hierarchy rooted in
path. For each object in the hierarchy, ftw calls fn, passing it
a pointer to a null-terminated character string containing the
name of the object, a pointer to a stat structure [see stat(2)]
containing information about the object, and an integer. Pos
sible values of the integer, defined in the < ftw.h > header file,
are FTW_F for a file, FTW_D for a directory, FTW_DNR for a
directory that cannot be read, and FTW_NS for an object for
which stat could not successfully be executed. If the integer
is FTW_DNR, descendants of that directory will not be pro
cessed. If the integer is FTW_NS, the stat structure will con
tain garbage. An example of an object that would cause
FTW_NS to be passed to fn would be a file in a directory with
read but without execute (search) permission.

ftw visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an
invocation of fn returns a nonzero value, or some error is
detected within ftw (such as an I/O error). If the tree is
exhausted, ftw returns zero. If fn returns a nonzero value, ftw
stops its tree traversal and returns whatever value was
returned by fn. If ftw detects an error, it returns -1, and sets
the error type in errno.

ftw uses one file descriptor for each level in the tree. The
depth argument limits the number of file descriptors so used.
If depth is zero or negative, the effect is the same as if it were
1. Depth must not be greater than the number of file descrip
tors currently available for use. ftw will run more quickly if
depth is at least as large as the number of levels in the tree.

SEE ALSO
stat (2) , malloc(3C).

UP-13712 Page 1

FTW(3C)

BUGS
Because ftw is recursive, it is possible for it to terminate with a
memory fault when applied to very deep file structures.

CAVEAT
ftw uses mal/oc(3C) to allocate dynamic storage during its
operation. If ftw is forcibly terminated, such as by /ongjmp
being executed by fn or an interrupt routine, ftw will not have
a chance to free that storage, so it will remain permanently
allocated. A safe way to handle interrupts is to store the fact
that an interrupt has occurred, and arrange to have fn return
a nonzero value at its next invocation.

Page 2 UP-13712

GETC(3S)

NAME
getc, getchar, fgetc, getw - get character or word from a
stream

SYNOPSIS
#include < stdio.h >

int getc (stream)
FILE *stream;

int getchar ()

int fgetc (stream)
FILE *stream;

int getw (stream)
FILE *stream;

DESCRIPTION
getc returns the next character (i.e., byte) from the named
input stream, as an integer. It also moves the file pointer, if
defined, ahead one character in stream. getchar is defined as
getc(stdin). getc and getchar are macros.

Fgetc behaves like getc, but is a function rather than a macro.
Fgetc runs more slowly than getc, but it takes less space per
invocation and its name can be passed as an argument to a
function.

Getw returns the next word (i.e., integer) from the named
input stream. Getw increments the associated file pointer, if
defined, to point to the next word. The size of a word is the
size of an integer and varies from machine to machine. Getw
assumes no special alignment in the file.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S),
scanf(3S), stdio(3S).

DIAGNOSTICS
These functions return the constant EOF at end-of-file or upon
an error. Because EOF is a valid integer, ferror (3S) should be
used to detect getw errors.

WARNING
If the integer value returned by getc, getchar. or fgetc is
stored into a character variable and then compared against
the integer constant EOF, the comparison may never succeed,

UP-13712 Page 1

GETC(3S)

because sign-extension of a character on widening to integer
is machine-dependent.

CAVEATS
Because it is implemented as a macro, getc evaluates a
stream argument more than once. In particular, getc(*f) does
not work sensibly. Fgetc should be used instead.

Because of possible differences in word length and byte ord
ering, files written using putw are machine-dependent, and
may not be read using getw on a different processor.

Page 2 UP-13712

GETCWD(3C)

NAME
getcwd - get path-name of current working directory

SYNOPSIS
char *getcwd (but, size)
char *but;
int size;

DESCRIPTION
getcwd returns a pointer to the current directory path name.
The value of size must be at least two greater than the length
of the path-name to be returned.

If buf is a NULL pointer, getcwd will obtain size bytes of space
using mal/oc (3C). In this case, the pointer returned by
getcwd may be used as the argument in a subsequent call to
free.

The function is implemented by using popen (38) to pipe the
output of the pwd(1) command into the specified string
space.

EXAMPLE
void exitO, perrorO;

if ((cwd = getcwd((char *)NULL, 64)) = = NULL) {
perror("pwd") ;
exit(2);

}
printf("%s\n", cwd);

SEE ALSO
malloc(3C), popen(38).
pWd(1) in the User's Reference Manual.

DIAGNOSTICS
Returns NULL with errno set if size is not large enough, or if
an error occurs in a lower-level function.

UP-13712 Page 1

GETCWD(3C)

[This page left blank.]

Page 2 UP-13712

NAME
getenv - return value for environment name

SYNOPSIS
char *getenv (name)
char *name;

DESCRIPTION

GETENV(3C)

getenv searches the environment list [see environ (5)] for a
string of the form name = value, and returns a pointer to the
value in the current environment if such a string is present,
otherwise a NULL pointer.

SEE ALSO
exec(2), putenv(3C), environ(5).

UP-13712 Page 1

GETENV(3C)

[This page left blank.]

Page 2 UP-13712

GETGRENT(3C)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent -
get group file entry

SYNOPSIS
#inelude < grp.h >

struet group *getgrent ()

struet group *getgrgid (gid)
int gid;

struet group *getgrnam (name)
ehar *name;

void setgrent ()

void endgrent ()

struet group *fgetgrent (f)
FILE *f;

DESCRIPTION
getgrent, getgrgid and getgrnam each return pointers to an
object with the following structure containing the broken-out
fields of a line in the fetefgroup file. Each line contains a
"group" structure, defined in the < grp.h > header file.

struct group

char
char
int
char

*gr_name;
*gr_passwd;
gr_gid;
**gr_mem;

/* the name of the group */
/* the encrypted group password */
/* the numerical group 10 */
/* vector of pointers to member names */

getgrent when first called returns a pointer to the first group
structure in the file; thereafter, it returns a pointer to the next
group structure in the file; so, successive calls may be used to
search the entire file. Getgrgid searches from the beginning
of the file until a numerical group id matching gid is found
and returns a pOinter to the particular structure in which it was
found. Getgrnam searches from the beginning of the file until
a group name matching name is found and returns a pointer
to the particular structure in which it was found. If an end-of
file or an error is encountered on reading, these functions

UP-13712 Page 1

GETGRENT(3C)

return a NULL pointer.

A call to setgrent has the effect of rewinding the group file to
allow repeated searches. Endgrent may be called to close the
group file when processing is complete.

Fgetgrent returns a pointer to the next group structure in the
stream f. which matches the format of fete/group.

FILES
/etc/group

SEE ALSO
getlogin(3C). getpwent(3C). group(4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING
The above routines use < stdio.h >. which causes them to
increase the size of programs. not otherwise using standard
I/O. more than might be expected.

CAVEAT
All information is contained in a static area. so it must be
copied if it is to be saved.

Page 2 UP-13712

GETLOGIN (3C)

NAME
getlogin - get login name

SYNOPSIS
char *getlogin ();

DESCRIPTION
getlogin returns a pOinter to the login name as found in
/etc/utmp. It may be used in conjunction with getpwnam to
locate the correct pas.sword file entry when the same user ID
is shared by several login names.

If get/ogin is called within a process that is not attached to a
terminal, it returns a NULL pointer.

The correct procedure for determining the login name is to call
cuserid, or to call getlogin and if it fails to call getpwuid.

FILES
/etc/utmp

SEE ALSO
cuserid (3S), getgrent(3C), getpwent(3C), utmp(4).

DIAGNOSTICS
Returns the NULL pointer if name is not found.

CAVEAT
The return values point to static data whose content is
overwritten by each call.

UP-13712 Page 1

G ETL()G I N (3C)

[This page left blank.]

Page 2 UP-13712

GET()PT(3C)

NAME
getopt - get option letter from argument vector

SYNOPSIS
int getopt (argc, argv, optstring)
int argc;
char **argv, *opstring;

extern char *optarg;
extern int optind, opterr;

DESCRIPTION
getopt returns the next option letter in argv that matches a
letter in optstring. It supports all the rules of the command
syntax standard (see intro (1)). So all new commands will
adhere to the command syntax standard, they should use
getopts (1) or getopt (3C) to parse positional parameters and
check for options that are legal for that command.

optstring must contain the option letters the command using
getopt will recognize; if a letter is followed by a colon, the
option is expected to have an argument, or group of argu
ments, which must be separated from it by white space.

optarg is set to point to the start of the option-argument on
return from getopt.

getopt places in optind the argv index of the next argument
to be processed. optind is external and is initialized to 1
before the first call to getopt.

When all options have been processed (i.e., up to the first
non-option argument), getopt returns -1. The special option
"--" may be used to delimit the end of the options; when it is
encountered, -1 will be returned, and "--" will be skipped.

DIAGNOSTICS
getopt prints an error message on standard error and returns
a question mark (?) when it encounters an option letter not
included in optstring or no option-argument after an option
that expects one. This error message may be disabled by set
ting opterr to O.

EXAMPLE
The following code fragment shows how one might process
the arguments for a command that can take the mutually
exclusive options a and b, and the option 0, which requires an

UP-13712 Page 1

GETOPT(3C)

option-argument:

main (argc, argv)
int argc;
char **argv;
{

int c;
extern char *optarg;
extern int optind;

while ((c = getopt(argc, argv, "abo:")) ! = -1)
switch (c) {

}

Page 2

case 'a':
if (bflg)

errflg + +;
else

aflg+ +;
break;

case 'b ':
if (aflg)

errflg+ +;
else

bproc();
break;

case '0 ' :

ofile = optarg;
break;

case '?':
errflg+ +;

}
if (errflg) {

}

(void)fprintf(stderr, "usage:
exit (2);

") ,

for (; optind < argc; optind + +) {
if (access(argv[optind]I 4)) {

UP-13712

GET()PT(3C)

This code will accept any of the following as equivalent:

cmd -a -b -0 "XXX z yy" file
cmd -a -b -0 "XXX z yy" -- file
cmd -ab -0 xxx,z,yy file
cmd -ab -0 "XXX Z yy" file
cmd -0 xxx,z,yy -b -a file

WARNING
Although the following command syntax rule (see intro (1))
relaxations are permitted under the current implementation,
they should not be used because they may not be supported
in future releases of the system. As in the EXAMPLE section
above, a and b are options, and the option 0 requires an
option-argument:

cmd -aboxxx file

cmd -ab -oxxx file

SEE ALSO

(Rule 5 violation: options with
option-arguments must not be
grouped with other options)

(Rule 6 violation: there must be
white space after an option which
takes an option-argument)

getopts(1), intro(1) in the User's Reference Manual.

UP-13712 Page 3

G ET() PT (3C)

[This page left blank.]

Page 4 UP-13712

NAME
getpass - read a password

SYNOPSIS
char *getpass (prompt)
char *prompt;

DESCRIPTION

GETPASS(3C)

getpass reads up to a newline or EOF from the file /dev/tty,
after prompting on the standard error output with the null
terminated string prompt and disabling echoing. A pointer is
returned to a null-terminated string of at most 8 characters. If
/dev/tty cannot be opened, a NULL pointer is returned. An
interrupt will terminate input and send an interrupt signal to
the calling program before returning.

FILES
/dev/tty

WARNING
The above routine uses < stdio.h >, which causes it to
increase the size of programs not otherwise using standard
I/O, more than might be expected.

CAVEAT
The return value points to static data whose content is
overwritten by each call.

UP-13712 Page 1

(; ETP ASS (3C)

[This page left blank.]

Page 2 UP-13712

NAME
getpw - get name from UID

SYNOPSIS
int getpw (uid, but)
int uid;
char *but;

DESCRIPTION

GETPW(3C)

getpw searches the password file for a user id number that
equals uid, copies the line of the password file in which uid
was found into the array pointed to by buf, and returns O.
getpw returns non-zero if uid cannot be found.

This routine is included only for compatibility with prior sys
tems and should not be used; see getpwent (3C) for routines
to use instead.

FILES
/ etc/ passwd

SEE ALSO
getpwent(3C) , passwd(4).

DIAGNOSTICS
getpw returns non-zero on error.

WARNING
The above routine uses < stdio.h >, which causes it to
increase, more than might be expected, the size of programs
not otherwise using standard I/O.

UP-13712 Page 1

GETPW(3C)

[This page left blank.]

Page 2 UP-13712

GETPWENT(3C)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent,
fgetpwent - get password file entry

SYNOPSIS
#include < pwd.h >

struct passwd *getpwent ()

struct passwd *getpwuid (uid)
int uid;

struct passwd *getpwnam (name)
char *name;

void setpwent ()

void endpwent ()

struct passwd *fgetpwent (f)
FILE *f;

DESCRIPTION
getpwent, getpwuid and getpwnam each returns a pointer to
an object with the following structure containing the broken
out fields of a line in the /etc/passwd file. Each line in the file
contains a "passwd" structure, declared in the <pwd.h>
header file:

struct passwd {
char *pw_name;
char *pw_passwd;
int pw_uid;
int pw_gid;
char *pw_age;
char *pw _comment;
char *pw_gecos;
char *pw_dir;
char *pw_shell;

};

This structure is declared in < pwd.h > so it is not necessary
to redeclare it.

The fields have meanings described in passwd (4).

getpwent when first called returns a pointer to the first
passwd structure in the file; thereafter, it returns a pointer to
the next passwd structure in the file; so successive calls can

UP-13712 Page 1

GETPWENT(3C)

be used to search the entire file. Getpwuid searches from the
beginning of the file until a numerical user id matching uid is
found and returns a pointer to the particular structure in which
it was found. Getpwnam searches from the beginning of the
file until a login name matching name is found, and returns a
pointer to the particular structure in which it was found. If an
end-of-file or an error is encountered on reading, these func
tions return a NULL pointer.

A call to setpwent has the effect of rewinding the password
file to allow repeated searches. Endpwent may be called to
close the password file when processing is complete.

Fgetpwent returns a pointer to the next passwd structure in
the stream " which matches the format of /etc/passwd.

FILES
/ etc/ passwd

SEE ALSO
getlogin(3C) , getgrent(3C), passwd(4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING
The above routines use < stdio.h >, which causes them to
increase the size of programs, not otherwise using standard
I/O, more than might be expected.

CAVEAT
All information is contained in a static area, so it must be
copied if it is to be saved.

Page 2 UP-13712

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#include < stdio.h >

char *gets (s)
char *s;

char *fgets (s, n, stream)
char *s;
int n;
FILE *stream;

DESCRIPTION

GETS(3S)

gets reads characters from the standard input stream, stdin,
into the array pointed to by s, until a new-line character is
read or an end-of-file condition is encountered. The new-line
character is discarded and the string is terminated with a null
character.

Fgets reads characters from the stream into the array pointed
to by s, until n-1 characters are read, or a new-line character
is read and transferred to s, or an end-of-file condition is
encountered. The string is then terminated with a null charac
ter.

SEE ALSO
ferror (38), fopen (38), fread (38), getc (38), scanf (38), stdio (38) .

DIAGNOSTICS
If end-of-file is encountered and no characters have been
read, no characters are transferred to s and a NULL pointer is
returned. If a read error occurs, such as trying to use these
functions on a file that has not been opened for reading, a
NULL pointer is returned. Otherwise s is returned.

UP-13712 Page 1

GETS(3S)

[This page left blank.]

Page 2 UP-13712

NAME
getut: getutent, getutid, getutline, pututline, setutent,
endutent, utmpname - access utmp file entry

SYNOPSIS
#include < utmp.h >

struct utmp *getutent ()

struct utmp *getutid (id)
struct utmp *id;

struct utmp *getutline (line)
struct utmp *line;

void pututline (utmp)
struct utmp *utmp;

void setutent ()

void endutent ()

void utmpname (file)
char *file;

DESCRIPTION
getutent, getutid and getutline each return a pointer to a
structure of the following type:

struct utmp {
char ut_ user[8];
char utJd[4];
char utJine[12];
short ut_pid;
short ut_ type;
struct exit_status {

/* User login name * /
/* /etc/inittab id (usually line #) */
/* device name (console, Inxx) * /
/* process id * /
/* type of entry * /

short e_termination;/* Process termination status */
short e _exit; /* Process exit status * /

} ut_ exit; /* The exit status of a process

time t ut_ time;
};

* marked as DEAD_PROCESS. * /
/* time entry was made * /

getutent reads in the next entry from a utmp-like file. If the
file is not already open, it opens it. If it reaches the end of the
file, it fails.

UP-13712 Page 1

GETUT(3C)

getutid searches forward from the current point in the utmp
file until it finds an entry with a ut _type matching id- > ut _type
if the type specified is RUN_LVL, BOOT_TIME, OLD_TIME or
NEW_TIME. If the type specified in id is INIT _PROCESS,
LOGIN_PROCESS, USER_PROCESS or DEAD_PROCESS,
then getutid will return a pointer to the first entry whose type
is one of these four and whose ut id field matches id- > ut id. - -
If the end of file is reached without a match, it fails.

getutline searches forward from the current pOint in the utmp
file until it finds an entry of the type LOGIN_PROCESS or
USER_PROCESS which also has a ut -'ine string matching the
line- > ut -'ine string. If the end of file is reached without a
match, it fails.

Pututline writes out the supplied utmp structure into the utmp
file. It uses getutid to search forward for the proper place if it
finds that it is not already at the proper place. It is expected
that normally the user of pututline will have searched for the
proper entry using one of the getut routines. If so, pututline
will not search. If pututline does not find a matching slot for
the new entry, it will add a new entry to the end of the file.

Setutent resets the input stream to the beginning of the file.
This should be done before each search for a new entry if it is
desired that the entire file be examined.

Endutent closes the currently open file.

Utmpname allows the user to change the name of the file
examined, from /etc/utmp to any other file. It is most often
expected that this other file will be /etc/wtmp. If the file does
not exist, this will not be apparent until the first attempt to
reference the file is made. Utmpname does not open the file.
It just closes the old file if it is currently open and saves the
new file name.

FILES
/etc/utmp
/etc/wtmp

SEE ALSO
ttyslot(3C}, utmp(4}.

DIAGNOSTICS
A NULL pointer is returned upon failure to read, whether for

Page 2 UP-13712

GETUT(3C)

permissions or having reached the end of file, or upon failure
to write.

NOTES
The most current entry is saved in a static structure. Multiple
accesses require that it be copied before further accesses are
made. Each call to either getutid or getutline sees the routine
examine the static structure before performing more I/O. If
the contents of the static structure match what it is searching
for, it looks no further. For this reason to use getutline to
search for multiple occurrences, it would be necessary to zero
out the static after each success, or getutline would just return
the same pointer over and over again. There is one exception
to the rule about removing the structure before further reads
are done.

The impliCit read done by pututline (if it finds that it is not
already at the correct place in the file) will not hurt the con
tents of the static structure returned by the getutent, getutid
or getutline routines, if the user has just modified those con
tents and passed the pointer back to pututline.

These routines use buffered standard I/O for input, but the
pututline uses an unbuffered non-standard write to avoid race
conditions between processes trying to modify the utmp and
wtmp files.

UP-13712 Page 3

GETUT(3C)

[This page left blank.]

Page 4 UP-13712

HSEARCH(3C)

NAME
hsearch, hcreate, hdestroy - manage hash search tables

SYNOPSIS
#include < search.h >

ENTRY *hsearch (item, action)
ENTRY item;
ACTION action;

int hcreate (nel)
unsigned nel;

void hdestroy ()

DESCRIPTION
hsearch is a hash-table search routine generalized from Knuth
(6.4) Algorithm D. It returns a pointer into a hash table indi
cating the location at which an entry can be found. Item is a
structure of type ENTRY (defined in the <search.h> header
file) containing two pointers: item.key points to the com
parison key, and item.data points to any other data to be
associated with that key. (Pointers to types other than char
acter should be cast to pointer-to-character.) Action is a
member of an enumeration type ACTION indicating the dispo
sition of the entry if it cannot be found in the table. ENTER
indicates that the item should be inserted in the table at an
appropriate point. FIND indicates that no entry should be
made. Unsuccessful resolution is indicated by the return of a
NULL pointer.

Hcreate allocates sufficient space for the table, and must be
called before hsearch is used. Nel is an estimate of the max
imum number of entries that the table will contain. This
number may be adjusted upward by the algorithm in order to
obtain certain mathematically favorable circumstances.

Hdestroy destroys the search table, and may be followed by
another call to hcreate.

NOTES
hsearch uses open addressing with a multiplicative hash func
tion. However, its source code has many other options avail
able which the user may select by compiling the hsearch
source with the following symbols defined to the preproces
sor:

UP-13712 Page 1

HSEARCH(3C)

DIV

USCR

Use the remainder modulo table size as the
hash function instead of the multiplicative algo
rithm.

Use a User Supplied Comparison Routine for
ascertaining table membership. The routine
should be named hcompar and should behave
in a mannner similar to strcmp [see
string (3C)].

CHAIN ED Use a linked list to resolve collisions. If this
option is selected, the following other options
become available.

START Place new entries at the begin
ning of the linked list (default is
at the end).

SORTUP Keep the linked list sorted by key
in ascending order.

SORTDOWN Keep the linked list sorted by key
in descending order.

Additionally, there are preprocessor flags for obtaining debug
ging printout (-DDEBUG) and for including a test driver in the
calling routine (-DDRIVER). The source code should be con
sulted for further details.

EXAMPLE
The following example will read in strings followed by two
numbers and store them in a hash table, discarding dupli
cates. It will then read in strings and find the matching entry
in the hash table and print it out.

Ninclude <stdio.h>
Ninclude <search.h>

struct info {
int age, room;

1 ;

/* this is the info stored in the table */
/* other than the key. */

Ndefine NUM_EMPL 5000 /* N of elements in search table */

maine)
I

/* space to store strings */

Page 2 UP-13712

HSEARCH(3C)

char string_space[NUM_EMPL*20];
/* space to store employee info */
struct info info_space[NUM_EMPL]j
/* next avail space in string_space */
char *str_ptr = string_space;
/* next avail space in info_space */
struct info *info-ptr = info_space;
ENTRY item, *found_item, *hsearch();
/* name to look for in table */
char name_to_find[~O];
int i = 0;

/* create table */
(void) hcreate(NUM_EMPL)j
while (scanf("%s%d%d", str_ptr, &info-ptr->age,

&info-ptr->room) != EOF && i++ < NUM_EMPL)
/* put info in structure, and structure in item */
item.key = str-ptr;
item.data = (char *)info_ptr;
str_ptr += strlen(str-ptr) + 1;
info-ptr++;
/* put item into table */
(void) hsearch(item, ENTER)j

/* access table */
item. key = name_to_findj
while (scanf("%s", item.key) != EOF) I

if «found_item = hsearch(item, FIND» != NULL)
/* if item is in the table */
(void)printf("found %s, age = %d, room = %d\n",

found_item->key,
«struct info *)found_item->data)->age,
«struct info *)found_item->data)->room)j

1 else I
(void)printf("no such employee %s\n",

name_to_find)

UP-13712 Page 3

HSEARCH (3C)

SEE ALSO
bsearch (3C) , Isearch (3C) , malloc (3C) , malloc (3X) , string (3C) ,
tsearch (3C).

DIAGNOSTICS
hsearch returns a NULL pointer if either the action is FIND
and the item could not be found or the action is ENTER and
the table is full.

Hcreate returns zero if it cannot allocate sufficient space for
the table.

WARNING
hsearch and hcreate use mal/oc (3C) to allocate space.

CAVEAT
Only one hash search table may be active at any given time.

Page 4 UP-13712

ISNAN(3C)

NAME
isnan: isnand, isnanf - test for floating point NaN (Not-A
Number)

SYNOPSIS
#include < ieeefp.h >

int isnand (dsrc)
double dsrc;

int isnanf (fsrc)
float fsrc;

DESCRIPTION
isnand and isnanf return true (1) if the argument dsrc or fsrc
is a NaN; otherwise they return false (0).

Neither routine generates any exception, even for signaling
NaNs.

isnanf() is implemented as a macro included in < ieeefp.h > .

SEE ALSO
fpgetround (3C).

UP-13712 Page 1

ISNAN(3C)

[This page left blank.]

Page 2 UP-13712

L3TOL(3C)

NAME
13tol, Itol3 - convert between 3-byte integers and long integers

SYNOPSIS
void 13tol (Ip, cp, n)
long *Ip;
char *cp;
int n;

void Itol3 (cp, Ip, n)
char *cp;
long *Ip;
int n;

DESCRIPTION
13tol converts a list of n three-byte integers packed into a
character string pointed to by cp into a list of long integers
pointed to by Ip.

Ltol3 performs the reverse conversion from long integers (Ip)
to three-byte integers (cp).

These functions are useful for file-system maintenance where
the block numbers are three bytes long.

SEE ALSO
fS(4).

CAVEAT
Because of possible differences in byte ordering, the numeri
cal values of the long integers are machine-dependent.

UP-13712 Page 1

L3T()L(3C)

[This page left blank.]

Page 2 UP-13712

NAME
lockf - record locking on files

SYNOPSIS
#include < unistd.h >

int lockf (fildes, function, size)
long size;
int fildes, function;

DESCRIPTION

L()CKF(3C)

The lockf command will allow sections of a file to be locked;
advisory or mandatory write locks depending on the mode
bits of the file [see chmod(2)]. Locking calls from other
processes which attempt to lock the locked file section will
either return an error value or be put to sleep until the
resource becomes unlocked. All the locks for a process are
removed when the process terminates. [See fcntl(2) for more
information about record locking.]

Fildes is an open file descriptor. The file descriptor must have
0_ WRONL Y or 0_ RDWR permission in order to establish lock
with this function call.

Function is a control value which specifies the action to be
taken. The permissible values for function are defined in
< unistd.h > as follows:

#define F_ULOCK 0
#define F_LOCK
#define F_TLOCK 2

/* Unlock a previously locked section */
/* Lock a section for exclusive use */
/* Test and lock a section for

exclusive use */
#define F_TEST 3 /* Test section for other processes

locks */

All other values of function are reserved for future extensions
and will result in an error return if not implemented.

F _ TEST is used to detect if a lock by another process is
present on the specified section. F _LOCK and F _ TLOCK both
lock a section of a file if the section is available. F ULOCK
removes locks from a section of the file.

Size is the number of contiguous bytes to be locked or
unlocked. The resource to be locked starts at the current

UP-13712 Page 1

LOCKF(3C)

offset in the file and extends forward for a positive size and
backward for a negative size (the preceding bytes up to but
not including the current offset). If size is zero, the section
from the current offset through the largest file offset is locked
(Le., from the current offset through the present or any future
end-of-file). An area need not be allocated to the file in order
to be locked as such locks may exist past the end-of-file.

The sections locked with F _LOCK or F _TLOCK may, in whole
or in part, contain or be contained by a previously locked sec
tion for the same process. When this occurs, or if adjacent
sections occur, the sections are combined into a single sec
tion. If the request requires that a new element be added to
the table of active locks and this table is already full, an error
is returned, and the new section is not locked.

F _LOCK and F _ TLOCK requests differ only by the action
taken if the resource is not available. F LOCK will cause the
calling process to sleep until the resource is available.
F TLOCK will cause the function to return a -1 and set errno
to [EACCES] error if the section is already locked by another
process.

F _ ULOCK requests may, in whole or in part, release one or
more locked sections controlled by the process. When sec
tions are not fully released, the remaining sections are still
locked by the process. Releasing the center section of a
locked section requires an additional eiement in the table of
active locks. If this table is full, an [EDEADLK] error is
returned and the requested section is not released.

A potential for deadlock occurs if a process controlling a
locked resource is put to sleep by accessing another process's
locked resource. Thus calls to lock! or !cnt! scan for a
deadlock prior to sleeping on a locked resource. An error
return is made if sleeping on the locked resource would cause
a deadlock.

Sleeping on a resource is interrupted with any signal. The
alarm(2) command may be used to provide a timeout facility
in applications which require this facility.

The lock! utility will fail if one or more of the following are true:

Page 2 UP-13712

LOCKF(3C)

[EBADF]
Fildes is not a valid open descriptor.

[EACCES]
Cmd is F _ TLOCK or F _TEST and the section is already
locked by another process.

[EDEADLK]
Cmd is F LOCK and a deadlock would occur. Also the
cmd is either F _LOCK. F _ TLOCK. or F _ ULOCK and the
number of entries in the lock table would exceed the
number allocated on the system.

[ECOMM]
Fildes is on a remote machine and the link to that
machine is no longer active.

SEE ALSO
chmod(2). close(2). creat(2). fcntl(2). intro(2). open(2). read (2) ,
write(2).

DIAGNOSTICS
Upon successful completion. a value of 0 is returned. Other
wise. a value of -1 is returned and errno is set to indicate the
error.

WARNINGS
Unexpected results may occur in processes that do buffering
in the user address space. The process may later read/write
data which is/was locked. The standard I/O package is the
most common source of unexpected buffering.

Because in the future the variable errno will be set to EAGAIN
rather than EACCES when a section of a file is already locked
by another process. portable application programs should
expect and test for either value.

UP-13712 Page 3

L()CKF(3C)

[This page left blank.]

Page 4 UP-13712

NAME
Isearch, Ifind - linear search and update

SYNOPSIS
#include < stdio.h >
#include < search.h >

LSEARCH(3C)

char *Isearch «char *)key, (char *)base, nelp,
sizeof(*key), compar)
unsigned *nelp;
int (*compar)();

char *Ifind «char *)key, (char *)base, nelp, sizeof(*key),
com par)
unsigned *nelp;
int (*compar)();

DESCRIPTION
Isearch is a linear search routine generalized from Knuth (6.1)
Algorithm S. It returns a pointer into a table indicating where
a datum may be found. If the datum does not occur, it is
added at the end of the table. Key pOints to the datum to be
sought in the table. Base points to the first element in the
table. Nelp points to an integer containing the current
number of elements in the table. The integer is incremented if
the datum is added to the table. Compar is the name of the
comparison function which the user must supply (strcmp, for
example). It is called with two arguments that point to the ele
ments being compared. The function must return zero if the
elements are equal and non-zero otherwise.

Lfind is the same as Isearch except that if the datum is not
found, it is not added to the table. Instead, a NULL pOinter is
returned.

NOTES
The pointers to the key and the element at the base of the
table should be of type pointer-to-element, and cast to type
pointer -to-character.
The comparison function need not compare every byte, so
arbitrary data may be contained in the elements in addition to
the values being compared.
Although declared as type pointer-to-character, the value
returned should be cast into type pointer-to-element.

UP-13712 Page 1

LSEARCH(3C)

EXAMPLE
This fragment will read in less than T ABSIZE strings of length
less than ELSIZE and store them in a table, eliminating dupli
cates.

#include < stdio.h >
#include < search.h >

#define T ABSIZE 50
#define ELSIZE 120

char line [ELSIZE], tab [T ABSIZE][ELSIZE], *Isearch ();
unsigned nel = 0;
int strcmp();

while (fgets(line, ELSIZE, stdin) ! = NULL &&
nel < TABSIZE)
(void) Isearch(line, (char *)tab, &nel,

ELSIZE, strcmp);

SEE ALSO
bsearch (3C) , hsearch (3C), string (3C) , tsearch (3C).

DIAGNOSTICS
If the searched for datum is found, both /search and /find
return a pointer to it. Otherwise, /find returns NULL and
/search returns a pointer to the newly added element.

BUGS
Undefined results can occur if there is not enough room in the
table to add a new item.

Page 2 UP-13712

MALLOC(3C)

NAME
malloc, free, realloc, calloc - main memory allocator

SYNOPSIS
char *malloc (size)
unsigned size;

void free (ptr)
char *ptrj

char *realloc (ptr, size)
char *ptrj
unsigned size;

char *calloc (nelem, elsize)
unsigned nelem, elsizej

DESCRIPTION
mal/oc and free provide a simple general-purpose memory
allocation package. mal/oc returns a pointer to a block of at
least size bytes suitably aligned for any use.

The argument to free is a pointer to a block previously allo
cated by mal/oc; after free is performed this space is made
available for further allocation, but its contents are left undis
turbed.

Undefined results will occur if the space assigned by mal/oc is
overrun or if some random number is handed to free.

mal/oc allocates the first big enough contiguous reach of free
space found in a circular search from the last block allocated
or freed, coalescing adjacent free blocks as it searches. It
calls sbrk [see brk (2)] to get more memory from the system
when there is no suitable space already free.

Real/oc changes the size of the block pointed to by ptr to size
bytes and returns a pointer to the (possibly moved) block.
The contents will be unchanged up to the lesser of the new
and old sizes. If no free block of size bytes is available in the
storage arena, then real/oc will ask mal/oc to enlarge the
arena by size bytes and will then move the data to the new
space.

Real/oc also works if ptr points to a block freed since the last
call of mal/oc, real/oc, or cal/oc; therefore sequences of free,
mal/oc and real/oc can exploit the search strategy of mal/oc
to do storage compaction.

UP-13712 Page 1

MALL()C(3C)

Calloc allocates space for an array of ne/em elements of size
elsize. The space is initialized to zeros.

Each of the allocation routines returns a pointer to space suit
ably aligned (after possible pointer coercion) for storage of
any type of object.

SEE ALSO
brk(2), malloc(3X).

DIAGNOSTICS
malloc, realloc and calloe return a NULL pointer if there is no
available memory or if the arena has been detectably cor
rupted by storing outside the bounds of a block. When this
happens the block pOinted to by ptr may be destroyed.

NOTES
Search time increases when many objects have been allo
cated; that is, if a program allocates but never frees, then
each successive allocation takes longer. For an alternate,
more flexible implementation, see malloe (3X).

Page 2 UP-13712

M~~1()RY(3C)

NAME
memory: memccpy. memchr. memcmp. memcpy. memset -
memory operations

SYNOPSIS
#include < memory.h >

char *memccpy (s1, s2, c, n)
char *s1, *s2;
int c, n;

char *memchr (s, c, n)
char *s;
int c, n;

int memcmp (s1, s2, n)
char *s1, *s2;
int n;

char *memcpy (s1, s2, n)
char *s1, *s2;
int n;

char *memset (s, c, n)
char *s;
int c, n;

DESCRIPTION
These functions operate as efficiently as possible on memory
areas (arrays of characters bounded by a count. not ter
minated by a null character). They do not check for the over
flow of any receiving memory area.

Memccpy copies characters from memory area s2 into s1.
stopping after the first occurrence of character c has been
copied. or after n characters have been copied. whichever
comes first. It returns a pointer to the character after the
copy of c in s1. or a NULL pointer if c was not found in the
first n characters of s2.

Memchr returns a pointer to the first occurrence of character
c in the first n characters of memory area s, or a NULL
pointer if c does not occur.

Memcmp compares its arguments. looking at the first n char
acters only. and returns an integer less than. equal to. or
greater than O. according as s1 is lexicographically less than.
equal to. or greater than s2.

UP-13712 Page 1

M~M()RY(3C)

Memcpy copies n characters from memory area s2 to s1. It
returns s1.

Memset sets the first n characters in memory area s to the
value of character c. It returns s.

For user convenience, all these functions are declared in the
optional < memory.h > header file.

CAVEATS
Memcmp is implemented by using the most natural character
comparison on the machine. Thus the sign of the value
returned when one of the characters has its high order bit set
is not the same in all implementations and should not be relied
upon.

Character movement is performed differently in different
implementations. Thus overlapping moves may yield
surprises.

Page 2 UP-13712

NAME
mktemp - make a unique file name

SYNOPSIS
char *mktemp (template)
char *template;

DESCRIPTION

MKTEMP(3C)

mktemp replaces the entire contents of the string pointed to
by template by a unique file name, and returns the address of
template. The string in template should look like a file name
with six trailing Xs; mktemp will replace the Xs with a letter
and the current process ID. The letter will be chosen so that
the resulting name does not duplicate an existing file.

SEE ALSO
getpid(2), tmpfile(3S), tmpnam(3S).

DIAGNOSTIC
mktemp will assign to template the NULL string if it cannot
create a unique name.

CAVEAT
If called more than 17,576 time in a single process, this func
tion will start recycling previously used names.

UP-13712 Page 1

MKTEMP(3C)

[This page left blank.]

Page 2 UP-13712

M{)NIT{)R(3C)

NAME
monitor - prepare execution profile

SYNOPSIS
#include < mon.h >

void monitor (Iowpc, highpc, buffer, bufsize, nfunc)
int (*Iowpc)(), (*highpc)();
WORD *buffer;
int bufsize, nfunc;

DESCRIPTION
An executable program created by cc -p automatically
includes calls for monitor with default parameters; monitor
need not be called explicitly except to gain fine control over
profiling.

monitor is an interface to profil (2). Lowpc and highpc are the
addresses of two functions; buffer is the address of a (user
supplied) array of bufsize WORDs (defined in the <mon.h>
header file). monitor arranges to record a histogram of
periodically sampled values of the program counter. and of
counts of calls of certain functions. in the buffer. The lowest
address sampled is that of lowpc and the highest is just below
highpc. Lowpc may not equal 0 for this use of monitor. At
most nfunc call counts can be kept; only calls of functions
compiled with the profiling option -p of cc (1) are recorded.

For the results to be significant. especially where there are
small. heavily used routines. it is suggested that the buffer be
no more than a few times smaller than the range of locations
sampled.

To profile the entire program. it is sufficient to use

extern etext;

monitor ((int (*) 0)2. &etext. buf. bufsize. nfunc);

Etext lies just above all the program text; see end(3C).

To stop execution monitoring and write the results. use

monitor ((int (*)0)0. O. O. 0.0);

Prof(1) can then be used to examine the results.

The name of the file written by monitor is controlled by the
environment variable PROFDIR. If PROFDIR does not exist.

UP-13712 Page 1

M()NIT()R(3C)

"mon.out" is created in the current directory. If PROFDIR
exists but has no value, monitor does not do any profiling and
creates no output file. Otherwise, the value of PROFDIR is
used as the name of the directory in which to create the out
put file. If PROFDIR is dirname, then the file written is
"dirname/pid.mon.out" where pid is the program's process id.
(When monitor is called automatically by compiling via cc -p,
the file created is "dirname/pid.progname" where progname is
the name of the program.)

FILES
mon.out

SEE ALSO
cc(1), prof(1), profil(2) , end(3C).

BUGS
The "dirname/pid.mon.out" form does not work; the
"dirname/pid.progname" form (automatically called via cc -p)
does work.

Page 2 UP-13712

NAME
nlist - get entries from name list

SYNOPSIS
#include < nlist.h >

int nlist (filename, nl)
char *filename;
struct nlist *nl;

DESCRIPTION

NLIST(3C)

nlist examines the name list in the executable file whose name
is pointed to by filename, and selectively extracts a list of
values and puts them in the array of nlist structu res pointed to
by nl. The name list nl consists of an array of structures con
taining names of variables, types and values. The list is ter
minated with a null name; that is, a null string is in the name
position of the structure. Each variable name is looked up in
the name list of the file. If the name is found, the type and
value of the name are inserted in the next two fields. The
type field will be set to 0 unless the file was compiled with the
-g option. If the name is not found, both entries are set to O.
See a.out (4) for a discussion of the symbol table structure.

This function is useful for examining the system name list kept
in the file /unix. In this way programs can obtain system
addresses that are up to date.

NOTES
The < nlist.h > header file is automatically included by
<a.out.h> for compatability. However, if the only information
needed from < a.out.h > is for use of nlist, then including
<a.out.h> is discouraged. If <a.out.h> is included, the line
"#undef n_name" may need to follow it.

SEE ALSO
a.out{4}.

DIAGNOSTICS
All value entries are set to 0 if the file cannot be read or if it
does not contain a valid name list.

nlist returns -1 upon error; otherwise it returns O.

UP-13712 Page 1

NLIST(3C)

[This page left blank.]

Page 2 UP-13712

PERR()R(3C)

NAME
perror, errno, sys _ errlist, sys _ nerr - system error messages

SYNOPSIS
void perror (s)
char *s;

extern int errno;

extern char *sys _ errlist[];

extern int sys _ nerr;

DESCRIPTION
perror produces a message on the standard error output,
describing the last error encountered during a call to a system
or library function. The argument string s is printed first, then
a colon and a blank, then the message and a new-line. (How
ever, if s = "" the colon is not printed.) To be of most use, the
argument string should include the name of the program that
incurred the error. The error number is taken from the exter
nal variable errno, which is set when errors occur but not
cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the array of mes
sage strings sys _ errlist is provided; errno can be used as an
index into this table to get the message string without the
new-line. Sys_nerr is the number of messages in the table; it
should be checked because new error codes may be added to
the system before they are added to the table.

SEE ALSO
intro(2).

UP-13712 Page 1

PERROR(3C)

[This page left blank.]

Page 2 UP-13712

NAME
popen, pclose - initiate pipe to/from a process

SYNOPSIS
#include < stdio.h >

FILE *popen (command, type)
char *command, *type;

int pclose (stream)
FILE *stream;

DESCRIPTION

P()PEN(3S)

popen creates a pipe between the calling program and the
command to be executed. The arguments to popen are
pointers to null-terminated strings. Command consists of a
shell command line. Type is an I/O mode, either r for reading
or w for writing. The value returned is a stream pointer such
that one can write to the standard input of the command, if
the I/O mode is w, by writing to the file stream; and one can
read from the standard output of the command, if the I/O
mode is r, by reading from the file stream.

A stream opened by popen should be closed by pclose,
which waits for the associated process to terminate and
returns the exit status of the command.

Because open files are shared, a type r command may be
used as an input filter and a type w as an output filter.

EXAMPLE
A typical call may be:

char *cmd = "ls *.c";
FILE *ptr;
if ((ptr = popen(cmd, "r")) ! = NULL)

while (fgets(buf, n, ptr) ! = NULL)
(void) printf("%s ",buf);

This will print in stdout [see stdio (3S)] all the file names in the
current directory that have a ".c" suffix.

SEE ALSO
pipe(2), wait (2) , fclose(3S), fopen(3S), stdio(3S), system(3S).

DIAGNOSTICS
popen returns a NULL pointer if files or processes cannot be
created.

UP-13712 Page 1

P()PEN (3S)

Pclose returns -1 if stream is not associated with a "popen ed"
command.

WARNING
If the original and "popen ed" processes concurrently read or
write a common file, neither should use buffered I/O, because
the buffering gets all mixed up. Problems with an output filter
may be forestalled by careful buffer flushing, e.g. with 'flush
[see 'close (3S)] .

Page 2 UP-13712

NAME
printf, fprintf, sprintf - print formatted output

SYNOPSIS
#include < stdio.h >

int printf (format , arg ...)
char *format;

int fprintf (stream, format , arg ...)
FILE *stream;
char *format;

int sprintf (s, format [, arg] ...)
char *s, *format;

DESCRIPTION

PRINTF(3S)

printf places output on the standard output stream stdout.
Fprintf places output on the named output stream. Sprintf
places "output," followed by the null character (\0), in con
secutive bytes starting at *s; it is the user's responsibility to
ensure that enough storage is available. Each function returns
the number of characters transmitted (not including the \0 in
the case of sprintf) , or a negative value if an output error was
encounte red.

Each of these functions converts, formats, and prints its args
under control of the format. The format is a character string
that contains two types of objects: plain characters, which are
simply copied to the output stream, and conversion specifica
tions, each of which results in fetching of zero or more args.
The results are undefined if there are insufficient args for the
format. If the format is exhausted while args remain, the
excess args are simply ignored.

Each conversion specification is introduced by the character
%. After the %, the following appear in sequence:

Zero or more flags, which modify the meaning of the
conversion specification.

An optional decimal digit string specifying a minimum
field width. If the converted value has fewer characters
than the field width, it will be padded on the left (or right,
if the left-adjustment flag '-', described below, has been
given) to the field width. The padding is with blanks
unless the field width digit string starts with a zero, in

UP-13712 Page 1

PRINTF(3S)

which case the padding is with zeros.

A precision that gives the minimum number of digits to
appear for the d, i, 0, U, x, or X conversions, the number
of digits to appear after the decimal point for the e, E,
and f conversions, the maximum number of significant
digits for the 9 and G conversion, or the maximum
number of characters to be printed from a string in s
conversion. The precision takes the form of a period (.)
followed by a decimal digit string; a null digit string is
treated as zero. Padding specified by the precision over
rides the padding specified by the field width.

An optional I (ell) specifying that a following d, i, 0, U, x,
or X conversion character applies to a long integer arg.
An I before any other conversion character is ignored.

A character that indicates the type of conversion to be
applied.

A field width or precision or both may be indicated by an
asterisk (*) instead of a digit string. In this case, an integer
arg supplies the field width or precision. The arg that is actu
ally converted is not fetched until the conversion letter is seen,
so the args specifying field width or precision must appear
before the arg (if any) to be converted. A negativ.e field width
argument is taken as a '.' flag followed by a positive field
width. If the precision argument is negative, it will be changed
to zero.

The flag characters and their meanings are:
The result of the conversion will be left-justified
within the field.

+ The result of a signed conversion will always begin
with a sign (+ or .).

blank If the first character of a signed conversion is not a
sign, a blank will be prefixed to the result. This
implies that if the blank and + flags both appear,
the blank flag will be ignored.

This flag specifies that the value is to be converted
to an "alternate form." For c, d, i, s, and U conver
sions, the flag has no effect. For 0 conversion, it
increases the precision to force the first digit of the
result to be a zero. For x or X conversion, a non
zero result will have Ox or OX prefixed to it. For e,

Page 2 UP-13712

PRINTF(3S)

E, f, g, and G conversions, the result will always
contain a decimal point, even if no digits follow the
point (normally, a decimal point appears in the
result of these conversions only if a digit follows it).
For g and G conversions, trailing zeroes will not be
removed from the result (which they normally are).

The conversion characters and their meanings are:

d,i,o,u,x,X The integer arg is converted to signed decimal (d
or i), unsigned octal, (0), decimal (u), or hexade
cimal notation (x or X), respectively; the letters
abcdef are used for x conversion and the letters
ABCDEF for X conversion. The precision specifies
the minimum number of digits to appear; if the
value being converted can be represented in fewer
digits, it will be expanded with leading zeroes. The
default precision is 1. The result of converting a
zero value with a precision of zero is a null string.

f

e,E

g,G

UP-13712

The float or double arg is converted to decimal
notation in the style "[-]ddd.ddd," where the
number of digits after the decimal point is equal to
the precision specification. If the precision is miss
ing, six digits are output; if the precision is explicitly
0, no decimal point appears.

The float or double arg is converted in the style
"[-]d.ddde ± dd," where there is one digit before
the decimal point and the number of digits after it
is equal to the precision; when the precision is
missing, six digits are produced; if the precision is
zero, no decimal point appears. The E format code
will produce a number with E instead of e introduc
ing the exponent. The exponent always contains at
least two digits.

The float or double arg is printed in style f or e (or
in style E in the case of a G format code), with the
precision specifying the number of significant
digits. The style used depends on the value con
verted: style e will be used only if the exponent
resulting from the conversion is less than -4 or

Page 3

PRINTF(3S)

greater than the precIsion. Trailing zeroes are
removed from the result; a decimal point appears
only if it is followed by a digit.

c The character arg is printed.

s The arg is taken to be a string (character pointer)
and characters from the string are printed until a
null character (\0) is encountered or the number of
characters indicated by the preCision specification
is reached. If the precision is missing, it is taken to
be infinite, so all characters up to the first null char
acter are printed. A NULL value for arg will yield
undefined results.

% Print a %; no argument is converted.

In printing floating point types (float and double), if the
exponent is Ox7FF and the mantissa is not equal to zero, then
the output is

[-1 NaNOxdddddddd

where Oxdddddddd is the hexadecimal representation of the
leftmost 32 bits of the mantissa. If the mantissa is zero, the
output is

[± linf.

In no case does a non-existent or small field width cause trun
cation of a field; if the result of a conversion is wider than the
field width, the field is simply expanded to contain the conver
sion result. Characters generated by printf and 'printf are
printed as if putc(3S) had been called.

EXAMPLES
To print a date and time in the form "Sunday, July 3, 10:02,"
where weekday and month are pointers to null-terminated
strings:

printf("%s, %s %i, %d:%.2d", weekday, month, day, hour, min);

To print 1T to 5 decimal places:

printf("pi = %.51", 4 * atan(1.0));

Page 4 UP-13712

PRINTF(3S)

SEE ALSO
ecvt(3C) I putc(3S) I scanf(3S) I stdio(3S).

UP-13712 Page 5

PRINTF(3S)

[This page left blank.]

Page 6 UP-13712

PUTC(3S)

NAME
putc. putchar. fputc. putw - put character or word on a stream

SYNOPSIS
#inelude < stdio.h >

int pute (e, stream)
int e;
FILE *stream;

int putehar (e)
int e;

int fpute (e, stream)
int e;
FILE *stream;

int putw (w, stream)
int W;
FILE *stream;

DESCRIPTION
putc writes the character c onto the output stream (at the
position where the file pOinter. if defined. is pointing).
putchar(c) is defined as putc(c, stdout). putc and putchar are
macros.

Fputc behaves like putc. but is a function rather than a macro.
Fputc runs more slowly than putc. but it takes less space per
invocation and its name can be passed as an argument to a
function.

Putw writes the word (i.e. integer) w to the output stream (at
the position at which the file pointer •. if defined. is pointing).
The size of a word is the size of an integer and varies from
machine to machine. Putw neither assumes nor causes spe
cial alignment in the file.

SEE ALSO
fclose(3S). ferror(3S). fopen(3S). fread(3S). printf(3S).
puts (3S) • setbuf(3S). stdio(3S).

DIAGNOSTICS
On success. these functions (with the exception of putw) each
return the value they have written. [Putw returns ferror
(stream)]. On failure. they return the constant EOF. This will
occur if the file stream is not open for writing or if the output
file cannot grow. Because EOF is a valid integer. ferror(3S)

UP-13712 Page 1

PUTC(3S)

should be used to detect putw errors.

CAVEATS
Because it is implemented as a macro, pute evaluates a
stream argument more than once. In particular, putc(c,
*f + +); doesn't work sensibly. Fpute should be used instead.
Because of possible differences in word length and byte ord
ering, files written using putw are machine-dependent, and
may not be read using getw on a different processor.

Page 2 UP-13712

NAME
putenv - change or add value to environment

SYNOPSIS
int putenv (string)
char *string;

DESCRIPTION

PUTENV(3C)

String points to a string of the form "name = value. II putenv
makes the value of the environment variable name equal to
value by altering an existing variable or creating a new one.
In either case, the string pointed to by string becomes part of
the environment, so altering the string will change the environ
ment. The space used by string is no longer used once a new
string-defining name is passed to putenv.

SEE ALSO
exec(2L getenv(3CL malloc(3CL environ(5).

DIAGNOSTICS
putenv returns non-zero if it was unable to obtain enough
space via malloe for an expanded environment, otherwise
zero.

WARNINGS
putenv manipulates the environment pointed to by environ,
and can be used in conjunction with getenv. However, envp
(the third argument to main) is not changed.
This routine uses malloe (3C) to enlarge the envi ronment.
After putenv is called, environmental variables are not in alpha
betical order.
A potential error is to call putenv with an automatic variable as
the argument, then exit the calling function while string is still
part of the environment.

UP-13712 Page 1

PUTENV(3C)

[This page left blank.]

Page 2 UP-13712

NAME
putpwent - write password file entry

SYNOPSIS
#include < pwd.h >

int putpwent (p, f)
struct passwd *p;
FILE *f;

DESCRIPTION

PUTPWENT(3C)

putpwent is the inverse of getpwent (3C). Given a pointer to a
passwd structure created by getpwent (or getpwuid or
getpwnam) , putpwent writes a line on the stream " which
matches the format of /etc/passwd.

SEE ALSO
getpwent(3C) .

DIAGNOSTICS
putpwent returns non-zero if an error was detected during its
operation, otherwise zero.

WARNING
The above routine uses < stdio.h >, which causes it to
increase the size of programs, not otherwise using standard
I/O, more than might be expected.

UP-13712 Page 1

PUTPWENT(3C)

[This page left blank.]

Page 2 UP-13712

PUTS(3S)

NAME
puts, fputs - put a string on a stream

SYNOPSIS
#include < stdio.h >

int puts (s)
char *s;

int fputs (s, stream)
char *s;
FILE *stream;

DESCRIPTION
puts writes the null-terminated string pointed to by s ,followed
by a new-line character, to the standard output stream stdout.

Fputs writes the null-terminated string pointed to by s to the
named output stream.

Neither function writes the terminating null character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), printf(3S), putc(3S), stdio(3S).

DIAGNOSTICS
Both routines return EOF on error. This will happen if the rou
tines try to write on a file that has not been opened for writ
ing.

NOTES
puts appends a new-line character while fputs does not.

UP-13712 Page 1

PUTS(3S)

[This page left blank.]

Page 2 UP-13712

QS()RT(3C)

NAME
qsort - quicker sort

SYNOPSIS
void qsort «char *) base, nel, sizeof (*base), com par)
unsigned nel;
int (*compar)();

DESCRIPTION
qsort is an implementation of the quicker-sort algorithm. It
sorts a table of data in place.

Base pOints to the element at the base of the table. Nel is
the number of elements in the table. Compar is the name of
the comparison function, which is called with two arguments
that point to the elements being compared. As the function
must return an integer less than, equal to, or greater than
zero, so must the first argument to be considered be less
than, equal to, or greater than the second.

NOTES
The pointer to the base of the table should be of type
pointer-to-element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so
arbitrary data may be contained in the elements in addition to
the values being compared.
The order in the output of two items which compare as equal
is unpredictable.

SEE ALSO
bsearch (3C) , Isearch (3C) , string (3C).
sort(1) in the User's Reference Manual:

UP-13712 Page 1

QS()RT(3C)

[This page left blank.]

Page 2 UP-13712

NAME
rand, srand - simple random-number generator

SYNOPSIS
int rand ()

void srand (seed)
unsigned seed;

DESCRIPTION

RAND(3C)

rand uses a multiplicative congruential random-number gen
erator with period 232 that returns successive pseudo-random
numbers in the range from 0 to 215_1.

Srand can be called at any time to reset the random-number
generator to a random starting point. The generator is initially
seeded with a value of 1.

NOTES
The spectral properties of rand are limited. Drand48 (3C) pro
vides a much better, though more elaborate. random-number
generator.

SEE ALSO
drand48(3C).

UP-13712 Page 1

RAND(3C)

[This page left blank.]

Page 2 UP-13712

NAME
scanf, fscanf, sscanf - convert formatted input

SYNOPSIS
#include < stdio.h >

int scanf (format [, pointer] ...)
char *format;

int fscanf (stream, format [, pointer] ...)
FILE *stream;
char *format;

int sscanf (s, format [, pointer] ...)
char *s, *format;

DESCRIPTION

SCANF(3S)

scanf reads from the standard input stream stdin. Fscanf
reads from the named input stream. Sscanf reads from the
character string s. Each function reads characters, interprets
them according to a format, and stores the results in its argu
ments. Each expects, as arguments, a control string format
described below, and a set of pointer arguments indicating
where the converted input should be stored. The results are
undefined in there are insufficient args for the format. If the
format is exhausted while args remain, the excess args are
simply ignored.

The control string usually contains conversion specifications,
which are used to direct interpretation of input sequences.
The control string may contain:

1. White-space characters (blanks, tabs, new-lines, or form
feeds) which, except in two cases described below, cause
input to be read up to the next non-white-space character.

2. An ordinary character (not %), which must match the next
character of the input stream.

3. Conversion specifications, consisting of the character %, an
optional assignment suppressing character *, an optional
numerical maximum field width, an optional I (ell) or h indi
cating the size of the receiving variable, and a conversion
code.

A conversion specification directs the conversion of the next
input field; the result is placed in the variable pointed to by
the corresponding argument, unless assignment suppression

UP-13712 Page 1

SCANF(3S)

was indicated by *. The suppression of assignment provides
a way of describing an input field which is to be skipped. An
input field is defined as a string of non-space characters; it
extends to the next inappropriate character or until the field
width, if specified, is exhausted. For all descriptors except "["
and "c", white space leading an input field is ignored.

The conversion code indicates the interpretation of the input
field; the corresponding pointer argument must usually be of
a restricted type. For a suppressed field, no pointer argument
is given. The following conversion codes are legal:

% a single % is expected in the input at this point; no
assignment is done.

d a decimal integer is expected; the corresponding argu
ment should be an integer pointer.

u an unsigned decimal integer is expected; the correspond
ing argument should be an unsigned integer pointer.

o an octal integer is expected; the corresponding argument
should be an integer pointer.

x a hexadecimal integer is expected; the corresponding
argument should be an integer pointer.

an integer is expected; the corresponding argument
should be an integer pointer. It will store the value of the
next input item interpreted according to C conventions: a
leading "a" implies octal; a leading "Ox" implies hexade
cimal; otherwise, decimal.

n stores in an integer argument the total number of charac
ters (including white space) that have been scanned so
far since the function call. No input is consumed.

e,f,Q

Page 2

a floating point number is expected; the next field is con
verted accordingly and stored through the corresponding
argument, which should be a pointer to a float. The input
format for floating point numbers is an optionally signed
string of digits, possibly containing a decimal point,

UP-13712

SCANF(3S)

followed by an optional exponent field consisting of an E
or an e, followed by an optional, -, or space, followed by
an integer.

s a character string is expected; the corresponding argu
ment should be a character pointer pOinting to an array of
characters large enough to accept the string and a ter
minating \0, which will be added automatically. The input
field is terminated by a white-space character.

c a character is expected; the corresponding argument
should be a character pointer. The normal skip over white
space is suppressed in this case; to read the next non
space character, use %1 s. If a field width is given, the
corresponding argument should refer to a character
array; the indicated number of characters is read.

indicates string data and the normal skip over leading
white space is suppressed. The left bracket is followed by
a set of characters, which we will call the scanset, and a
right bracket; the input field is the maximal sequence of
input characters consisting entirely of characters in the
scanset. The circumflex (~). when it appears as the first
character in the scanset, serves as a complement opera
tor and redefines the scanset as the set of all characters
not contained in the remainder of the scanset string.
There are some conventions used in the construction of
the scanset. A range of characters may be represented
by the construct first-last, thus [0123456789] may be
expressed [0-9]. Using this convention, first must be lexi
cally less than or equal to last, or else the dash will stand
for itself. The dash will also stand for itself whenever it is
the first or the last character in the scanset. To include
the right square bracket as an element of the scanset, it
must appear as the first character (possibly preceded by
a circumflex) of the scanset, and in this case it will not be
syntactically interpreted as the closing b racket. The
corresponding argument must point to a character array
large enough to hold the data field and the terminating \0,
which will be added automatically. At least one character
must match for this conversion to be considered success
ful.

UP-13712 Page 3

SCANF(3S)

The conversion characters d, U, 0, x and i may be preceded
by I or h to indicate that a pointer to long or to short rather
than to int is in the argument list. Similarly, the conversion
characters e, f, and g may be preceded by I to indicate that a
pointer to double rather than to float is in the argument list.
The I or h modifier is ignored for other conversion characters.

scanf conversion terminates at EOF, at the end of the control
string, or when an input character conflicts with the control
string. In the latter case, the offending character is left
unread in the input stream.

scanf returns the number of successfully matched and
assigned input items; this number can be zero in the event of
an early conflict between an input character and the control
string. If the input ends before the first conflict or conversion,
EOF is returned.

EXAMPLES
The call:

int n ; float x; char name[50];
n = scanf ("%d%f%s", &i, &x, name);

with the input line:

25 54.32E - 1 thompson

will assign to n the value 3, to i the value 25, to x the value
5.432, and name will contain thompson\O. Or:

int i, j; float x; char name[50];
(void) scanf ("%i%2d%f%*d %[0-9] ", &j, &i, &x, name);

with input:

011 56789 0123 56a72

will assign 9 to j, 56 to i, 789.0 to x, skip 0123, and place the
string 56\0 in name. The next call to getchar [see getc(3S)]
will return a. Or:

int i, j, s, e; char name[50];
(void) scanf ("%i %i %n%s%n", &i, &j. &s, name, &e);

with input:

Ox 11 Oxy johnson

Page 4 UP-13712

SCANF(3S)

will assign 17 to i, 0 to j, 6 to s, will place the string xy\O in
name, and will assign 8 to e. Thus, the length of name is e - s
= 2. The next call to getchar [see getc(3S)] will return a
blank.

SEE ALSO
getc(3S), printf(3S), stdio(3S), strtod (3C), strtol(3C).

DIAGNOSTICS
These functions return EOF on end of input and a short count
for missing or illegal data items.

CAVEATS
Trailing white space (including a new-line) is left unread unless
matched in the control string.

UP-13712 Page 5

SCANF(3S)

[This page left blank.]

Page 6 UP-13712

NAME
setbuf, setvbuf - assign buffering to a stream

SYNOPSIS
#include < stdio.h >

void setbuf (stream, buf)
FILE *stream;
char *buf;

int setvbuf (stream, buf, type, size)
FILE *stream;
char *buf;
int type, size;

DESCRIPTION

S~TBUF(3S)

setbuf may be used after a stream has been opened but
before it is read or written. It causes the array pointed to by
buf to be used instead of an automatically allocated buffer. If
buf is the NULL pointer input/output will be completely unbuf
fered.

A constant BUFSIZ, defined in the < stdio.h > header file,
tells how big an array is needed:

char buf[BUFSIZ];

Setvbuf may be used after a stream has been opened but
before it is read or written. Type determines how stream will
be buffered. Legal values for type (defined in stdio.h) are:

IOFBF

IOLBF

IONBF

causes input/output to be fully buffered.

causes output to be line buffered; the buffer will
be flushed when a newline is written, the buffer
is full, or input is requested.

causes input/output to be completely unbuf-
fered.

If buf is not the NULL pointer, the array it points to will be
used for buffering, instead of an automatically allocated
buffer. Size specifies the size of the buffer to be used. The
constant BUFSIZ in < stdio.h > is suggested as a good buffer
size. If input/output is unbuffered, buf and size are ignored.

By default, output to a terminal is line buffered and all other
input/output is fully buffered.

UP-13712 Page 1

SET8UF(3S)

SEE ALSO
fopen(3S), getc(3S), malloc(3C) , putc(3S), stdio(3S).

DIAGNOSTICS
If an illegal value for type or size is provided, setvbuf returns a
non-zero value. Otherwise, the value returned will be zero.

NOTES
A common source of error is allocating buffer space as an
"automatic" variable in a code block, and then failing to close
the stream in the same block.

Page 2 UP-13712

NAME
setjmp, longjmp - non-local goto

SYNOPSIS
#include < setjmp.h >

int setjmp (env)
jmp_buf env;

void longjmp (env, val)
jmp _ buf env;
int val;

DESCRIPTION

S ET.JMP (3C)

These functions are useful for dealing with errors and inter
rupts encountered in a low-level subroutine of a program.

setjmp saves its stack environment in env (whose type,
jmp_buf, is defined in the <setjmp.h> header file) for later
use by longjmp. It returns the value O.

Longjmp restores the environment saved by the last call of
setjmp with the corresponding env argument. After longjmp is
completed, program execution continues as if the correspond
ing call of setjmp (which must not itself have returned in the
interim) had just returned the value val. Longjmp cannot
cause setjmp to return the value O. If longjmp is invoked with
a second argument of 01 setjmp will return 1. At the time of
the second return from setjmp, all accessible data have values
as of the time /ongjmp is called. However, global variables will
have the expected values, i.e. those as of the time of the
longjmp (see example).

EXAMPLE
#include <setjmp.h>

jmp_buf env;
int i = 0;
main ()
I

void exit();

if(setjmp(env) != 0) I
(void) printf("val ue of on 2nd return from setjmp:

%d\n", i);
exit(O);

UP-13712 Page 1

SET.JMP(3C)

(void) printf("value of on 1st return from setjmp:
%d\n" Ii);

g()
{

i = 1;
g();
/*NOTREACHED*/

longjmp(env, 1);
/*NOTREACHED*/

If the a.out resulting from this C language code is run, the
output will be:

value of i on 1 st return from setjmp: 0

value of i on 2nd return from setjmp: 1

SEE ALSO
signal(2).

WARNING
If /ongjmp is called even though env was never primed by a
call to setjmp, or when the last such call was in a function
which has since returned, absolute chaos is guaranteed.

BUGS
The values of the registers on the second return from setjmp
are the register values at the time of the first call to setjmp,
not those at the time of the /ongjmp. This means that vari
ables in a given function may behave differently in the pres
ence of setjmp, depending on whether they are register or
stack variables.

Page 2 UP-13712

NAME
sleep - suspend execution for interval

SYNOPSIS
unsigned sleep (seconds)
unsigned seconds;

DESCRIPTION

SLEEP(3C)

The current process is suspended from execution for the
number of seconds specified by the argument. The actual
suspension time may be less than that requested for two rea
sons: (1) Because scheduled wakeups occur at fixed 1-second
intervals, (on the second, according to an internal clock) and
(2) because any caught signal will terminate the sleep follow
ing execution of that signal's catching routine. Also, the
suspension time may be longer than requested by an arbitrary
amount due to the scheduling of other activity in the system.
The value returned by sleep will be the "unslept" amount (the
requested time minus the time actually slept) in case the caller
had an alarm set to go off earlier than the end of the
requested sleep time, or premature arousal due to another
caught signal.

The routine is implemented by setting an alarm signal and
pausing until it (or some other signal) occurs. The previous
state of the alarm signal is saved and restored. The calling
program may have set up an alarm Signal before calling
sleep. If the sleep time exceeds the time till such alarm sig
nal, the process sleeps only until the alarm signal would have
occurred. The caller's alarm catch routine is executed just
before the sleep routine returns. But if the sleep time is less
than the time till such alarm, the prior alarm time is reset to go
off at the same time it would have without the intervening
sleep.

SEE ALSO
alarm (2) I pause (2) I signal (2).

UP-13712 Page 1

SLEEP (3C)

[This page left blank.]

Page 2 UP-13712

SSIGNAL(3C)

NAME
ssignal, gsignal - software signals

SYNOPSIS
#include < signal.h >

int (*ssignal (sig, action))()
int sig, (*action)();

int gsignal (sig)
int sig;

DESCRIPTION
ssignal and gsignal implement a software facility similar to
signal (2). This facility is used by the Standard C Library to
enable users to indicate the disposition of error conditions,
and is also made available to users for their own purposes.

Software signals made available to users are associated with
integers in the inclusive range 1 through 16. A call to ssignal
associates a procedure, action, with the software signal sig;
the software signal, sig, is raised by a call to gsignal. Raising
a software signal causes the action established for that signal
to be taken.

The first argument to ssignal is a number identifying the type
of signal for which an action is to be established. The second
argument defines the action; it is either the name of a (user
defined) action function or one of the manifest constants
SIG_DFL (default) or SIG_IGN (ignore). ssignal returns the
action previously established for that signal type; if no action
has been established or the signal number is illegal, ssignal
returns SIG_DFL.

Gsignal raises the signal identified by its argument, sig:

UP-13712

If an action function has been established for sig, then
that action is reset to SIG_DFL and the action function is
entered with argument sig. Gsignal returns the value
returned to it by the action function.

If the action for sig is SIG_IGN, gsignal returns the value
1 and takes no other action.

If the action for sig is SIG_DFL, gsignal returns the
value 0 and takes no other action.

Page 1

SSIGNAL(3C)

If sig has an illegal value or no action was ever specified
for sig, gsignal returns the value 0 and takes no other
action.

SEE ALSO
signal(2), sigset(2).

NOTES
There are some additional signals with numbers outside the
range 1 through 16 which are used by the Standard C Library
to indicate error conditions. Thus, some signal numbers out
side the range 1 through 16 are legal, although their use may
interfere with the operation of the Standard C Library.

Page 2 UP-13712

STDU)(3S)

NAME
stdio - standard buffered input/output package

SYNOPSIS
#include < stdio.h >

FILE *stdin, *stdout, *stderr;

DESCRIPTION
The functions described in the entries of sub-class 38 of this
manual constitute an efficient. user-level 110 buffering scheme.
The in-line macros getc (38) and putc (38) handle characters
quickly. The macros getchar and putchar. and the higher-level
routines fgetc. fgets. fprintf. fputc. fputs. fread. fscanf. fwrite.
gets. getw. printf. puts. putw. and scanf all use or act as if
they use getc and putc; they can be freely intermixed.

A file with associated buffering is called a stream and is
declared to be a pointer to a defined type FILE. Fopen (38)
creates certain descriptive data for a stream and returns a
pOinter to designate the stream in all further transactions.
Normally. there are three open streams with constant pOinters
declared in the < stdio.h > header file and associated with the
standard open files:

stdin
stdout
stderr

standard input file
standard output file
standard error file

A constant NULL (0) designates a nonexistent pointer.

An integer-constant EOF (-1) is returned upon end-of-file or
error by most integer functions that deal with streams (see the
individual descriptions for details).

An integer constant BUFSIZ specifies the size of the buffers
used by the particular implementation.

Any program that uses this package must include the header
file of pertinent macro definitions. as follows:

#include < stdio.h >

The functions and constants mentioned in the entries of sub
class 38 of this manual are declared in that header file and
need no further declaration. The constants and the following
"functions" are implemented as macros (redeclaration of
these names is perilous): getc. getchar. putc. putchar. ferror.

UP-13712 Page 1

STDIO(3S)

feof. clearerr. and fileno.

Output streams. with the exception of the standard error
stream stderr. are by default buffered if the output refers to a
file and line-buffered if the output refers to a terminal. The
standard error output stream stderr is by default unbuffered.
but use of freopen [see fopen (38)] will cause it to become
buffered or line-buffered. When an output stream is unbuf
fered. information is queued for writing on the destination file
or terminal as soon as written; when it is buffered. many char
acters are saved up and written as a block. When it is
line-buffered. each line of output is queued for writing on the
destination terminal as soon as the line is completed (that is.
as soon as a new-line character is written or terminal input is
requested). Setbuf(38) or setvbufO in setbuf(38) may be used
to change the stream's buffering strategy.

SEE ALSO
open (2). close(2). Iseek(2). pipe (2). read (2). write (2).
ctermid(38). cuserid(38). fclose(3S). ferror(3S). fopen(38).
fread(38). fseek(38). getc(38). gets(3S). popen(38). printf(38).
putc (38). puts (3S). scanf (38). setbuf (38). system (38) •
tmpfile(3S). tmpnam(3S). ungetc(38).

DIAGNOSTICS
Invalid stream pointers will usually cause grave disorder. possi
bly including program termination. Individual function descrip
tions describe the possible error conditions.

Page 2 UP-13712

STDIPC(3C)

NAME
stdipc: ftok - standard interprocess communication package

SYNOPSIS
#include < sys/types.h >
#include < sys/ipc.h >

key_t ftok(path, id)
char *path;
char id;

DESCRIPTION
All interprocess communication facilities require the user to
supply a key to be used by the msgget(2). semget(2), and
shmget (2) system calls to obtain interprocess communication
identifiers. One suggested method for forming a key is to use
the ftok subroutine described below. Another way to compose
keys is to include the project ID in the most significant byte
and to use the remaining portion as a sequence number.
There are many other ways to form keys, but it is necessary
for each system to define standards for forming them. If
some standard is not adhered to, it will be possible for unre
lated processes to unintentionally interfere with each other's
operation. Therefore, it is strongly suggested that the most
significant byte of a key in some sense refer to a project so
that keys do not conflict across a given system.

Ftok returns a key based on path and id that is usable in sub
sequent msgget, semget, and shmget system calls. Path
must be the path name of an existing file that is accessible to
the process. Id is a character which uniquely identifies a pro
ject. Note that ftok will return the same key for linked files
when called with the same id and that it will return different
keys when called with the same file name but different ids.

SEE ALSO
intro(2), msgget(2). semget(2), shmget(2).

DIAGNOSTICS
Ftok returns (key_t) -1 if path does not exist or if it is not
accessible to the process.

WARNING
If the file whose path is passed to ftok is removed when keys
still refer to the file, future calls to ftok with the same path and
id will return an error. If the same file is recreated, then ftok is

UP-13712 Page 1

STDIPC(3C)

likely to return a different key than it did the original time it
was called.

Page 2 UP-13712

STRING (3C)

NAME
string: strcat, strdup, strncat, strcmp, strncmp, strcpy,
strncpy, strlen, strchr, strrchr, strpbrk, strspn, strcspn, strtok -
string operations

SYNOPSIS
#include < string.h >
#include < sys/types.h >

char *strcat (sl, s2)
char *sl, *s2;

char *strdup (sl)
char *sl;

char *strncat (sl, s2, n)
char *sl, *s2;
size_t n;

int strcmp (sl, s2)
char *sl, *s2;

int strncmp (sl, s2, n)
char *sl, *s2;
size_t n;

char *strcpy (sl, s2)
char *sl, *s2;

char *strncpy (sl, s2, n)
char *sl, *s2;
size_t n;

int strlen (s)
char *s;

char *strchr (s, c)
char *s;
int c;

char *strrchr (s, c)
char *s;
int c;

char *strpbrk (sl, s2)
char *sl, *s2;

int strspn (sl, s2)
char *s1, *s2;

UP-13712 Page 1

STRING (3C)

int strcspn (s1, s2)
char *s1, *s2;

char *strtok (s1, s2)
char *s1, *s2;

DESCRIPTION
The arguments s1, s2 and s point to strings (arrays of charac
ters terminated by a null character). The functions strcat,
strncat, strcpy, and strncpy all alter s1. These functions do
not check for overflow of the array pointed to by s1.

Strcat appends a copy of string s2 to the end of string s1.

Strdup returns a pointer to a new string which is a duplicate of
the string pointed to by s1. The space for the new string is
obtained using malloc (3C) . If the new string can not be
created, null is returned.

Strncat appends at most n characters. Each returns a pointer
to the null-terminated result.

Strcmp compares its arguments and returns an integer less
than, equal to, or greater than 0, according as s1 is lexico
graphically less than, equal to, or greater than s2. Strncmp
makes the same comparison but looks at at most n charac
ters.

Strcpy copies string s2 to s1, stopping after the null character
has been copied. Strncpy copies exactly n characters, trun
cating s2 or adding null characters to s1 if necessary. The
result will not be null-terminated if the length of s2 is n or
more. Each function returns s1.

Str/en returns the number of characters in s, not including the
terminating null character.

Strchr (strrchr) returns a pointer to the first (last) occurrence
of character c in string s, or a NULL pointer if c does not
occur in the string. The null character terminating a string is
considered to be part of the string.

Strpbrk returns a pointer to the first occurrence in string s1 of
any character from string s2, or a NULL pointer if no charac
ter from s2 exists in s1.

Strspn (strcspn) returns the length of the initial segment of
string s1 which consists entirely of characters from (not from)

Page 2 UP-13712

STRING(3C)

string s2.

Strtok considers the string s 1 to consist of a sequence of zero
or more text tokens separated by spans of one or more char
acters from the separator string s2. The first call (with pointer
s1 specified) returns a pointer to the first character of the first
token, and will have written a null character into s1 immedi
ately following the returned token. The function keeps track of
its position in the string between separate calls, so that subse
quent calls (which must be made with the first argument a
NULL pointer) will work through the string s1 immediately fol
lowing that token. In this way subsequent calls will work
through the string s1 until no tokens remain. The separator
string s2 may be different from call to call. When no token
remains in s1, a NULL pointer is returned.

For user convenience, all these functions are declared in the
optional < string.h > header file.

SEE ALSO
malloc(3C) , malloc(3X).

CAVEATS
Strcmp and strncmp are implemented by using the most
natural character comparison on the machine. Thus the sign
of the value returned when one of the characters has its high
order bit set not the same in all implementations and should
not be relied upon.

Character movement is performed differently in different
implementations. Thus overlapping moves may yield
surprises.

UP-13712 Page 3

STRING (3C)

[This page left blank.]

Page 4 UP-13712

STRT() D (3C)

NAME
strtod, atof - convert string to double-precision number

SYNOPSIS
double strtod (str, ptr)
char *str, **ptr;

double atof (str)
char *str;

DESCRIPTION
strtod returns as a double-precision floating-point number the
value represented by the character string pointed to by str.
The string is scanned up to the first unrecognized character.

strtod recognizes an optional string of "white-space" charac
ters [as defined by isspace in ctype (3C)]. then an optional
sign, then a string of digits optionally containing a decimal
pOint, then an optional e or E followed by an optional sign or
space, followed by an integer.

If the value of ptr is not (char **) NULL, a pointer to the char
acter terminating the scan is returned in the location pointed
to by ptr. If no number can be formed, *ptr is set to str, and
zero is returned.

Atof(str) is equivalent to strtod(str, (char * *)NUL L) .

SEE ALSO
ctype(3C), scanf(3S), strtol(3C).

DIAGNOSTICS
If the correct value would cause overflow, ± HUGE (as defined
in < math.h » is returned (according to the sign of the value),
and errno is set to ERANG E.
If the correct value would cause underflow, zero is returned
and errno is set to ERANGE.

UP-13712 Page 1

STRT() D (3C)

[This page left blank.]

Page 2 UP-13712

NAME
strtol, atol, atoi - convert string to integer

SYNOPSIS
long strtol (str, ptr, base)
char *str, **ptr;
int base;

long atol (str)
char *str;

int atoi (str)
char *str;

DESCRIPTION

STRTOL(3C)

strtol returns as a long integer the value represented by the
character string pointed to by str. The string is scanned up to
the first character inconsistent with the base. Leading "white
space" characters [as defined by isspace in ctype (3e)] are
ignored.

If the value of ptr is not (char **) NULL, a pointer to the char
acter terminating the scan is returned in the location pointed
to by ptr. If no integer can be formed, that location is set to
str, and zero is returned.

If base is positive (and not greater than 36), it is used as the
base for conversion. After an optional leading sign, leading
zeros are ignored, and "Ox" or "OX" is ignored if base is 16.

If base is zero, the string itself determines the base thusly:
After an optional leading sign a leading zero indicates octal
conversion. and a teading "Ox" or "OX" hexadecimal conver
sion. Otherwise, decimal conversion is used.

Truncation: from Long to int can. of course, take place upon
assignment or by an explicit cast~

Atol(str) is equivalent to strto/(str, (char **)NULL, 10).

Atoi(str) is equivalent to (int) strtol(str, (char **)NULL, 10).

SEE ALSO
ctype(3C), scanf(3S), strtod(3C).

CAVEAT
Overflow conditions are ignored.

UP-13712 Page 1

STRT()L(3C)

[This page left blank.]

Page 2 UP-13712

NAME
swab - swap bytes

SYNOPSIS
void swab (from, to, nbytes)
char *from, *to;
int nbytes;

DESCRIPTION

SWA8(3C)

swab copies nbytes bytes pointed to by from to the array
pointed to by to, exchanging adjacent even and odd bytes.
Nbytes should be even and non-negative. If nbytes is odd and
positive swab uses nbyfes-1 instead. If nbytes is negative,
swab does nothing.

UP-13712 Page 1

SWAB (3C)

[This page left blank.]

Page 2 UP-13712

NAME
system - issue a shell command

SYNOPSIS
#include < stdio.h >

int system (string)
char *string;

DESCRIPTION

SYSTEM(3S)

system causes the string to be given to sh (1) as input, as if
the string had been typed as a command at a terminal. The
current process waits until the shell has completed, then
returns the exit status of the shell.

FILES
/bin/sh

SEE ALSO
exec(2).
sh(1) in the User's Reference Manual.

DIAGNOSTICS
system forks to create a child process that in turn exec's
/bin/sh in order to execute string. If the fork or exec fails,
system returns a negative value and sets errno.

UP-13712 Page 1

SYSTEM (3S)

[This page left blank.]

Page 2 UP-13712

TMPfILE(3S)

NAME
tmpfile - create a temporary file

SYNOPSIS
#include < stdio.h >

FILE *tmpfile ()

DESCRIPTION
tmpfile creates a temporary file using a name generated by
tmpnam(3S), and returns a corresponding FILE pointer. If the
file cannot be opened, an error message is printed using
perror(3C) , and a NULL pointer is returned. The file will
automatically be deleted when the process using it terminates.
The file is opened for update ("w + ").

SEE ALSO
creat(2) , unlink(2}, fopen(3S), mktemp(3C), perror(3C),
stdio(3S), tmpnam(3S).

UP-13712 Page 1

TMPFILE(3S)

[This page left blank.]

Page 2 UP-13712

TlVIPNAM(3S)

NAME
tmpnam, tempnam - create a name for a temporary file

SYNOPSIS
#include < stdio.h >

char *tmpnam (s)
char *s;

char *tempnam (dir, pfx)
char *dir, *pfx;

DESCRIPTION
These functions generate file names that can safely be used
for a temporary file.

tmpnam always generates a file name using the path-prefix
defined as P _tmpdir in the <stdio.h> header file. If s is
NULL, tmpnam leaves its result in an internal static area and
returns a pointer to that area. The next call to tmpnam will
destroy the contents of the area. If s is not NULL, it is
assumed to be the address of an array of at least L_tmpnam
bytes, where L_tmpnam is a constant defined in <stdio.h>;
tmpnam places its result in that array and returns s.

Tempnam allows the user to control the choice of a directory.
The argument dir points to the name of the directory in which
the file is to be created. If dir is NULL or points to a string
that is not a name for an appropriate directory, the path-prefix
defined as P _tmpdir in the <stdio.h> header file is used. If
that directory is not accessible, /tmp will be used as a last
resort. This entire sequence can be up-staged by providing
an environment variable TMPDIR in the user's environment,
whose value is the name of the desired temporary-file direc
tory.

Many applications prefer their temporary files to have certain
favorite initial letter sequences in their names. Use the pfx
argument for this. This argument may be NULL or point to a
string of up to five characters to be used as the first few char
acters of the temporary-file name.

Tempnam uses malloc (3C) to get space for the constructed
file name, and returns a pointer to this area. Thus, any
pointer value returned from tempnam may serve as an argu
ment to free [see malloc(3C)]. If tempnam cannot return the

UP-13712 Page 1

TMPNAM(3S)

expected result for any reason, i.e. mal/oc (3C) failed, or none
of the above mentioned attempts to find an appropriate direc
tory was successful, a NULL pointer will be returned.

NOTES
These functions generate a different file name each time they
are called.

Files created using these functions and either fopen (38) or
creat (2) are temporary only in the sense that they reside in a
directory intended for temporary use, and their names are
unique. It is the user's responsibility to use unlink (2) to
remove the file when its use is ended.

SEE ALSO
creat(2), unlink(2), fopen(38), malloc(3C), mktemp(3C),
tmpfile(38) .

CAVEATS
If called more than 17,576 times in a single process, these
functions will start recycling previously used names.

Between the time a file name is created and the file is opened,
it is possible for some other process to create a file with the
same name. This can never happen if that other process is
using these functions or mktemp, and the file names are
chosen to render duplication by other means unlikely.

Page 2 UP-13712

TSEARCH (3C)

NAME
tsearch, tfind, tdelete, twalk - manage binary search trees

SYNOPSIS
#include < search.h >

char *tsearch «char *) key, (char **) rootp, compar)
int (*compar)();

char *tfind «char *) key, (char **) rootp, com par)
int (*compar)();

char *tdelete «char *) key, (char **) rootp, com par)
int (*compar)();

void twalk «char *) root, action)
void (*action)();

DESCRIPTION
tsearch, tfind, tde/ete, and twa/k are routines for manipulating
binary search trees. They are generalized from Knuth (6.2.2)
Algorithms T and D. All comparisons are done with a user
supplied routine. This routine is called with two arguments,
the pointers to the elements being compared. It returns an
integer less than, equal to. or greater than 0, according to
whether the first argument is to be considered less than, equal
to or greater than the second argument. The comparison
function need not compare every byte, so arbitrary data may
be contained in the elements in addition to the values being
compared.

tsearch is used to build and access the tree. Key is a pointer
to a datum to be accessed or stored. If there is a datum in
the tree equal to *key (the value pOinted to by key). a pointer
to this found datum is returned. Otherwise, *key is inserted,
and a pointer to it returned. Only pointers are copied, so the
calling routine must store the data. Rootp points to a variable
that points to the root of the tree. A NULL value for the vari
able pointed to by rootp denotes an empty tree; in this case,
the variable will be set to point to the datum which will be at
the root of the new tree.

Like tsearch, tfind will search for a datum in the tree, returning
a pointer to it if found. However. if it is not found. tfind will
return a NULL pointer. The arguments for tfind are the same
as for tsearch.

UP-13712 Page 1

TSEARCH(3C)

Tdelete deletes a node from a binary search tree. The argu
ments are the same as for tsearch. The variable pointed to by
rootp will be changed if the deleted node was the root of the
tree. Tdelete returns a pointer to the parent of the deleted
node, or a NULL pointer if the node is not found.

Twalk traverses a binary search tree. Root is the root of the
tree to be traversed. (Any node in a tree may be used as the
root for a walk below that node.) Action is the name of a rou
tine to be invoked at each node. This routine is, in turn, called
with three arguments. The first argument is the address of
the node being visited.

The second argument is a value from an enumeration data
type typedef enum { preorder, postorder, endorder, leaf }
VISIT; (defined in the < search.h > header file), depending on
whether this is the first, second or third time that the node has
been visited (during a depth-first, left-to-right traversal of the
tree), or whether the node is a leaf. The third argument is the
level of the node in the tree, with the root being level zero.

The pointers to the key and the root of the tree should be of
type pointer-to-element, and cast to type pointer-to-character.
Similarly, although declared as type pointer-to-character, the
value returned should be cast into type pointer-to-element.

EXAMPLE
The following code reads in strings and stores structures con
taining a pointer to each string and a count of its length. It
then walks the tree, printing out the stored strings and their
lengths in alphabetical order.

Page 2

#include <search.h>
#include <stdio.h>

struct node {

1 ;

char *string;
int length;

char string_space[10000];
struct node nodes[500];
struct node *root = NULL;

main()

/* pointers to these are
stored in the tree */

/* to store strings */
/* nodes to store */
/* points to the root */

UP-13712

TSEARCH(3C)

char *strptr = string_space;
struct node *nodeptr = nodes;
void print_node(), twalk();
int i = 0, node_compare ();

while (gets(strptr) != NULL && i++ < 500)
/* set node */
nodeptr->string = strptr;
nodeptr->length = strlen(strptr);
/* put node into the tree */
(void) tsearch«char *)nodeptr, (char **) &root,

node_compare);
/* adjust pointers, so we don't overwrite tree */
strptr += nodeptr->length + 1;

/*

*/
jnt

nodeptr++;

twalk«char *)root, print_node);

This routine compares two nodes, based on an
alphabetical ordering of the string field.

node_compare(node1, node2)
char *node1, *node2;
I

/*

*/
void-

return strcmp«(struct node *)node1)->string,
«(struct node *) node2)->string);

This routine prints out a node, the first time
twalk encounters it.

pr int_node (node, order, level)
char **node;
VISll order;
int level;

if (orde~ == preorder :: or order == leaf)
(void)printf("string = %20s, length = %d\n",

UP-13712 Page 3

TSEARCH(3C)

SEE ALSO

(*((struct node **)node»->string,
(*((struct node **)node»->length);

bsearch (3C) , hsearch (3C) , Isearch (3C).

DIAGNOSTICS
A NULL pointer is returned by tsearch if there is not enough
space available to create a new node.
A NULL pointer is returned by tfind and tdelete if rootp is
NULL on entry.
If the datum is found, both tsearch and tfind return a pointer
to it. If not, tfind returns NULL, and tsearch returns a pointer
to the inserted item.

WARNINGS
The root argument to twalk is one level of indirection less than
the rootp arguments to tsearch and tdelete.
There are two nomenclatures used to refer to the order in
which tree nodes are visited. tsearch uses preorder, pos
torder and endorder to respectively refer to visting a node
before any of its children, after its left child and before its
right, and after both its children. The alternate nomenclature
uses preorder, inorder and postorder to refer to the same
visits, which could result in some confusion over the meaning
of postorder.

CAVEAT
If the calling function alters the pointer to the root, results are
unpredictable.

Page 4 UP-13712

NAME
ttyname, isatty - find name of a terminal

SYNOPSIS
char *ttyname (fildes)
int fildes;

int isatty (fildes)
int fildes;

DESCRIPTION

TTYNAME(3C)

ttyname returns a pOinter to a string containtng the null
terminated path name of the terminal device associated with
file descriptor fildes.

Tsatty r:eturns 1 if fi/des is associated with a terminal crevice, 0
otherwise.

FILES
/dev/*

DIAGNOSTICS
ttyname returns a NULL pointer if fi/des does not describe a
terminal device in directory Idev.

CAVEAT
The return value points to static data whose content is
overwritten by each caH.

UP-13712 Page 1

TTYNAME(3C)

[This page left blank.]

Page 2 UP-13712

TTYSLOT(3C)

NAME
ttyslot - find the slot in the utmp file of the current user

SYNOPSIS
int ttyslot ()

DESCRIPTION
ttys/ot returns the index of the current user's entry in the
/etc/utmp file. This is accomplished by actually scanning the
file /etc/inittab for the name of the terminal associated with
the standard input, the standard output, or the error output
(0, 1 or 2).

FILES
/ etc/inittab
/etc/utmp

SEE ALSO
getut(3C), ttyname(3C).

DIAGNOSTICS
A value of 0 is returned if an error was encountered while
searching for the terminal name or if none of the above file
descriptors is associated with a terminal device.

UP-13712 Page 1

TTYSL()T(3C)

[This page left blank.]

Page 2 UP-13712

UN{;ETC (3S)

NAME
ungetc - push character back into input stream

SYNOPSIS
#include < stdio.h >

int ungetc (c, stream)
int c;
FILE *stream;

DESCRIPTION
ungete inserts the character e into the buffer associated with
an input stream. That character, e, will be returned by the
next gete (38) call on that stream. ungete retu rns c, and
leaves the file stream unchanged.

One character of push back is guaranteed, provided something
has already been read from the stream and the stream is
actually buffered.

If e equals EOF, ungetc does nothing to the buffer and
returns EOF.

Fseek (38) erases all memory of inserted characters.

SEE ALSO
fseek(38) , getc(38) , setbuf(38), stdio(38).

DIAGNOSTICS
ungete returns EOF if it cannot insert the character.

BUGS
When stream is stdin, one character may be pushed back
onto the buffer without a previous read statement.

UP-13712 Page 1

UNGETC(3S)

[This page left blank.]

Page 2 UP-13712

VPRINTF(3S)

NAME
vprintf, vfprintf, vsprintf - print formatted output of a varargs
argument list

SYNOPSIS
#include < stdio.h >
#include < varargs.h >

int vprintf (format, ap)
char *format;
vaJist ap;

int vfprintf (stream, format, ap)
FILE *stream;
char *format;
vaJist ap;

int vsprintf (s, format, ap)
char *s, *format;
vaJist ap;

DESCRIPTION
vprintf, vfprintf I and vsprintf are the same as printf, fprintf,
and sprintf respectively, except that instead of being called
with a variable number of arguments, they are called with an
argument list as defined by varargs (5).

EXAMPLE
The following demonstrates the use of vfprintf to write an error
routine.

#include <stdio.h>
#include <varargs.h>

/*
* error should be called like
* error(function_name, format, argl, arg2 ...); */

/*VARARGS*/
void
error(va_alist)
/* Note that the function_name and format arguments
* cannot be separately declared because of the
* definition of varargs. */

UP-13712 Page 1

VPRINTF(3S)

SEE ALSO

va_list args;
char *fmt;

va_start(args);
/* print out name of function causing error */
(void)fprintf(stderr, "ERROR in %s: "
va_arg(args, char *»;
fmt = va_arg(args, char *);
/* print out remainder of message */
(void)vfprintf(stderr, fmt, args);
va_end(args);
(vo i d) abort ();

printf(3S) I varargs(5).

Page 2 UP-13712

NAME
bessel: jO, j1, jn, yO, y1, yn - Bessel functions

SYNOPSIS
#include < math.h >

double jO (x)
double x;

double j1 (x)
double x;

double jn (n, x)
int n;
double x;

double yO (x)
double x;

double y1 (x)
double x;

double yn (n, x)
int n;
double x;

DESCRIPTION

BESSEL(3M)

JO and j1 return Bessel functions of x of the first kind of ord
ers 0 and 1 respectively. In returns the Bessel function of x
of the first kind of order n.

YO and y1 return Bessel functions of x of the second kind of
orders a and 1 respectively. Yn returns the Bessel function of
x of the second kind of order n. The value of x must be posi
tive.

SEE ALSO
matherr(3M) .

DIAGNOSTICS
Non-positive arguments cause yO, y1 and yn to return the
value -HUGE and to set errno to EDOM. In addition, a mes
sage indicating DOMAIN error is printed on the standard error
output.

Arguments too large in magnitude cause jO, j1, yO and y1 to
return zero and to set errno to ERANGE. In addition, a mes
sage indicating TLOSS error is printed on the standard error
output.

UP-13712 Page 1

BESSEL(3M)

These error-handling procedures may be changed with the
function matherr(3M).

Page 2 UP-13712

ERF (3M)

NAME
ert, erfc - error function and complementary error function

SYNOPSIS
#include <math.h>

double erf (x)
double x;

double erfc (x)
double x;

DESCRIPTION 2 J
eri returns the error function of x, defined as '\I'1T e-t

2dt.

o
eric, which returns 1.0 - eri(x), is provided because of the
extreme loss of relative accuracy if eri(x) is called for large x and
the result subtracted from 1.0 (e.g., for x = 5, 12 places are
lost).

SEE ALSO
exp(3M).

UP-13712 Page 1

ERF(3M)

[This page left blank.]

Page 2 UP-13712

EXP(3M)

NAME
exp. log. log10. pow. sqrt - exponential. logarithm. power.
square root functions

SYNOPSIS
#include < math.h >

double exp (x)
double x;

double log (x)
double x;

double log10 (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

DESCRIPTION
exp returns eX.

Log returns the natural logarithm of x. The value of X must be
positive.

Log10 returns the logarithm base ten of x. The value of X

must be positive.

Pow returns xY. If x is zero. y must be positive. If x is nega
tive. y must be an integer.

Sqrt returns the non-negative square root of x. The value of x
may not be negative.

SEE ALSO
hypot(3M). matherr(3M). sinh(3M).

DIAGNOSTICS
exp returns HUGE when the correct value would overflow. or
o when the correct value would underflow. and sets errno to
ERANGE.

Log and /og10 return -HUGE and set errno to EDOM when x
is non-positive. A message indicating DOMAIN error (or SING
error when x is 0) is printed on the standard error output.

UP-13712 Page 1

EXP(3M)

Pow returns 0 and sets errno to EDOM when x is 0 and y is
non-positive, or when x is negative and y is not an integer. In
these cases a message indicating DOMAIN error is printed on
the standard error output. When the correct value for pow
would overflow or underflow, pow returns ± HUGE or 0
respectively, and sets errno to ERANGE.

Sqrt returns 0 and sets errno to EDOM when x is negative. A
message indicating DOMAIN error is printed on the standard
error output.

These error-handling procedures may be changed with the
function matherr (3M).

Page 2 UP-13712

FLOOR(3M)

NAME
floor, ceil, fmod, fabs - floor, ceiling, remainder, absolute value
functions

SYNOPSIS
#include < math.h >

double floor (x)
double x;

double ceil (x)
double x;

double fmod (x, y)
double x, y;

double fabs (x)
double x;

DESCRIPTION
floor returns the largest integer (as a double-precision
number) not greater than x.

Ceil returns the smallest integer not less than x.

Fmod returns the floating-point remainder of the division of x
by y: zero if y is zero or if x/y would overflow; otherwise the
number f with the same sign as x, such that x = iy + f for
some integer i, and : f: < : y : .

Fabs returns the absolute value of x, : x : .

SEE ALSO
abs(3C).

UP-13712 Page 1

FL()()R (3M)

[This page left blank.]

Page 2 UP-13712

NAME
gamma - log gamma function

SYNOPSIS
#include <math.h>

double gamma (x)
double x;

extern int signgam;

GAMMA (3M)

or:

DESCRIPTION I
gamma returns In(lf(x)i), where f(x) is defined as e -t tX

-
1dt.

o

The sign of f(x) is returned in the external integer signgam. The
argument x may not be a non-positive integer.

The following C program fragment might be used to calculate f:

if ((y = gamma(x)) > LN _ MAXDOUBLE)
error();

y = signgam * exp(y);

where LN MAXDOUBLE is the least value that causes exp(3M)
to return arange error, and is defined in the <va/ues.h> header
file.

SEE ALSO
exp(3M), matherr(3M), values(5).

DIAGNOSTICS
For non-negative integer arguments HUGE is returned, and errno
is set to EDOM. A message indicating SING error is printed on
the standard error output.

If the correct value would overflow, gamma returns HUGE and
sets errno to ERANGE.

These error-handling procedures may be changed with the
function matherr(3M).

UP-13712 Page 1

GAMMA(3M)

[This page left blank.]

Page 2 UP-13712

NAME
hypot - Euclidean distance function

SYNOPSIS
#include < math.h >

double hypot (x, y)
double x, y;

DESCRIPTION
hypot returns

sqrt(x * x + y * y),

HYP()T(3M)

taking precautions against unwarranted overflows.

SEE ALSO
matherr(3M) .

DIAGNOSTICS
When the correct value would overflow, hypot returns HUGE
and sets errno to ERANGE.

These error-handling procedures may be changed with the
function matherr(3M).

UP-13712 Page 1

HYP()T(3M)

[This page left blank.]

Page 2 UP-13712

MATHERR(3M)

NAME
matherr - error-handling function

SYNOPSIS
#include < math.h >

int matherr (x)
struct exception *x;

DESCRIPTION
matherr is invoked by functions in the Math Library when
errors are detected. Users may define their own procedures
for handling errors, by including a function named matherr in
their programs. matherr must be of the form described
above. When an error occurs, a pointer to the exception
structure x will be passed to the user-supplied matherr func
tion. This structure, which is defined in the <math.h> header
file, is as follows:

struct exception {
int type;
char *name;
double arg1, arg2, retval;

};

The element type is an integer describing the type of error
that has occurred, from the following list of constants (defined
in the header file):

DOMAIN
SING
OVERFLOW
UNDERFLOW
TLOSS
PLOSS

argument domain error
argument singularity
overflow range error
underflow range error
total loss of significance
partial loss of significance

The element name pOints to a string containing the name of
the function that incurred the error. The variables arg1 and
arg2 are the arguments with which the function was invoked.
Retval is set to the default value that will be returned by the
function unless the user's matherr sets it to a different value.

If the user's matherr function returns non-zero, no error mes
sage will be printed, and errno will not be set.

If matherr is not supplied by the user, the default error
handling procedures, described with the math functions

UP-13712 Page 1

MATHERR(3M)

involved. will be invoked upon error. These procedures are
also summarized in the table below. In every case. errno is
set to EDOM or ERANGE and the program continues.

EXAMPLE
Hinclude <math.h>

int
matherr(x)
register struct exception *Xj

1

Page 2

switch (x->type) 1
case DOMAIN:

/* change sqrt to return sqrt(-argl), not 0 */
if (!strcll1>(x->name, "sqrt"» 1

x->retval = sqrt(-x->argl)j
return (O)j /* print message and

set err no */

case SING:
/* all other domain or sing errors,

print message and abort */
fprintf(stderr, "domain error in %5\n", x->name)j
abort()j

case PLOSS:
/* print detailed error message */
fprintf(stderr, "loss of significance

in %5(%9) ='%9\n",
x->name, x->argl, x->retval)j

return (l)j /* take no other action */

return (0); /* all other errors, execute default
procedure */

UP-13712

MATHERR(3M)

DEFAULT ERROR HANDLING PROCEDURES

Types of Errors

type POMAIf\ SING OVERFLOW UNDERFLOW TLOSS

ermo EDaM EDON ERANGE ERANGE ERANGE

BESSEL: - - - -
~O, y1, yn (arg ~O) M,-H - - -
EXP: - - H 0

LOG, LOG10:
(arg < 0) M, -H - - -
(arg = 0) - M, -H - -

POW: - - ±H 0
neg ** non-int M,O - - -
0** non-pos

SORT: M,O - - -
GAMMA: - M,H H -
HYPOT: - - H -
SINH: - - ±H -
COSH: - - H -
SIN, COS, TAN: - - - - M,O

fASIN, ACOS, ATAN2: M, a - - - -

UP-13712

*
M
H
-H
±H
o

ABBREVIATIONS
As much as possible of the value is returned.
Message is printed (EDaM error).
HUGE is returned.
-HUGE is returned.
HUGE or -HUGE is returned.
o is returned.

M,O

-
-

-
-
-
-

-
-
-
-
-
*

-

PLOSS

ERANGE

*

-
-

-
-
-
-

-
-
-
-
-

Page 3

MATHERR(3M)

{This page left blank.]

Page 4 UP-13712

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
#include < math.h >

double sinh (x)
double x;

double cosh (x)
double x;

double tanh (x)
double x;

DESCRIPTION

SINH(3M)

sinh, cosh, and tanh return, respectively, the hyberbolic sine,
cosine and tangent of their argument.

SEE ALSO
matherr(3M) .

DIAGNOSTICS
sinh and cosh return HUGE (and slnh may return -HUGE for
negative x) when the correct value would overflow and set
errno to ERANGE.

These error-handling procedures may be changed with the
function matherr (3M) .

UP-13712 Page 1

SINH(3M)

[This page left blank.]

Page 2 UP-13712

TRIG (3M)

NAME
trig: sin. cos. tan. asin. acos. atan. atan2 - trigonometric func
tions

SYNOPSIS
#include < math.h >

double sin (x)
double x;

double cos (x)
double x;

double tan (x)
double X;

double asin (x)
double X;

double acos (x)
double x;

double atan (x)
double x;

double atan2 (y, x)
double y, x;

DESCRIPTION
Sin. cos and tan return respectively the sine. cosine and
tangent of their argument. x. measured in radians.

Asin returns the arcsine of x. in the range [-1T/2.1T/2].

Acos returns the arccosine of x. in the range [D.1T].

Atan returns the arctangent of x. in the range [-1T/2.1T/2].

Atan2 returns the arctangent of y/x. in the range (-1T.1T]. using
the signs of both arguments to determine the quadrant of the
return value.

SEE ALSO
matherr(3M).

DIAGNOSTICS
Sin. cos. and tan lose accuracy when their argument is far
from zero. For arguments sufficiently large. these functions
return zero when there would otherwise be a complete loss of
significance. In this case a message indicating TLOSS error is
printed on the standard error output. For less extreme

UP-13712 Page 1

TRIG(3M)

arguments causing partial loss of significance, a PLOSS error
is generated but no message is printed. In both cases, errno
is set to ERANGE.

If the magnitude of the argument of asin or acos is greater
than one, or if both arguments of atan2 are zero, zero is
returned and errno is set to EDOM. In addition, a message
indicating DOMAIN error is printed on the standard error out
put.

These error-handling procedures may be changed with the
function matherr(3M).

Page 2 UP-13712

NAME
t_ accept - accept a connect request

SYNOPSIS
#include < tiuser.h >

int t_accept(fd, resfd, call)
int fd;
int resfd;
struct t_call *call;

DESCRIPTION
This function is issued by a transport user to accept a connect
request. Fd identifies the local transport endpoint where the
connect indication arrived. resfd specifies the local transport
endpoint where the connection is to be established. and call
contains information required by the transport provider to
complete the connection. Call points to a t_call structure
which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

Netbuf is described in intro (3). In call. addr is the address of
the caller. opt indicates any protocol-specific parameters asso
ciated with the connection. udata points to any user data to
be returned to the caller, and sequence is the value returned
by t _listen that uniquely associates the response with a previ
ously received connect indication.

A transport user may accept a connection on either the same,
or on a different, local transport endpoint than the one on
which the connect indication arrived. If the same endpoint is
specified (i.e., resfd=fd), the connection can be accepted
unless the following condition is true: The user has received
other indications on that endpoint but has not responded to
them (with t_accept or t_snddis). For this condition. t_accept
will fail and set t errno to TBADF.

If a different transport endpoint is specified (resfd! = fd). the
endpoint must be bound to a protocol address and must be in
the T _IDLE state [see t _getstate (3N)] before the t _accept is
issued.

UP-13712 Page 1

For both types of endpoints, t_accept will fail and set t_errno
to TLOOK if there are indications (e.g., a connect or discon
nect) waiting to be received on that endpoint.

The values of parameters specified by opt and the syntax of
those values are protocol specific. The udata argument
enables the called transport user to send user data to the
caller and the amount of user data must not exceed the limits
supported by the transport provider as returned by t_open or
t_getinfo. If the len [see netbuf in intro(3)] field of udata is
zero, no data will be sent to the caller.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not
refer to a transport endpoint, or the user
is illegally accepting a connection on the
same transport endpoint on which the
connect indication arrived.

[TOUTSTATE] The function was issued in the wrong
sequence on the transport endpoint refer
enced by fd, or the transport endpoint
referred to by resfd is not in the T JDLE
state.

[T ACCES] The user does not have permission to
accept a connection on the responding
transport endpoint or use the specified
options.

[TBADOPT] The specified options were in an incorrect
format or contained illegal information.

[TBADDATA] The amount of user data specified was
not within the bounds allowed by the
transport provider.

[TBADSEQ] An invalid sequence number was speci
fied.

[TLOOK] An asynchronous event has occurred on
the transport endpoint referenced by fd
and requires immediate attention.

[TNOTSUPPORT] This function is not supported by the
underlying transport provider.

Page 2 UP-13712

[TSYSERR] A system error has occurred during exe
cution of this function.

SEE ALSO
intro(3). t_ connect(3N). t_getstate(3N). tJisten(3N).
t_open(3N). t_rcvconnect(3N).
Network Programmer's Guide

DIAGNOSTICS
Upon successful completion. a value of 0 is returned. Other
wise. a value of -1 is returned and t_errno is set to indicate the
error.

UP-13712 Page 3

T ACCEPT(3N)

[This page left blank.]

Page 4 UP-13712

NAME
t_ alloc - allocate a library structure

SYNOPSIS
#include < tiuser.h >

char *t_aII oc(fd, struct_type, fields)
int fd;
int struct_ type;
int fields;

DESCRIPTION
The t _ alloc function dynamically allocates memory for the vari
ous transport function argument structures as specified below.
This function will allocate memory for the specified structure,
and will also allocate memory for buffers referenced by the
structure.

The structure to allocate is specified by struct_type, and can
be one of the following:

T BIND struct t bind

T _CALL struct t call

T_OPTMGMT

T_DIS

T_UNITDATA

T_UDERROR

TJNFO

struct t_ optmgmt

struct t discon

struct t unitdata

struct t uderr

struct t info

where each of these structures may subsequently be used as
an argument to one or more transport functions.

Each of the above structures, except TJNFO, contains at least
one field of type struct netbuf. Netbuf is described in intro(3).
For each field of this type, the user may specify that the
buffer for that field should be allocated as well. The fields
argument specifies this option, where the argument is the
bitwise-OR of any of the following:

T ADDR The addr field of the t _bind, t _call, t _ unitdata, or
t uderr structures.

T OPT

UP-13712

The opt field of the t _ optmgmt I t _call, t _ unitdata I or
t uderr structures.

Page 1

T UDAT A The udata field of the t _call, t _ dis con , or t _ unitdata
structures.

TALL All relevant fields of the given structure.

For each field specified in fie/ds, t _alloc will allocate memory
for the buffer associated with the field, and initialize the buf
pointer and max/en [see netbuf in intro(3) for description of buf
and max/en] field accordingly. The length of the buffer allo
cated will be based on the same size information that is
returned to the user on t_open and t_getinfo. Thus, fd must
refer to the transport endpoint through which the newly allo
cated structure will be passed, so that the appropriate size
information can be accessed. If the size value associated with
any specified field is -1 or -2 (see t_open or t_getinfo), t_alloc
will be unable to determine the size of the buffer to allocate
and will fail, setting t_errno to TSYSERR and errno to EINVAL.
For any field not specified in fie/ds, buf will be set to NULL
and max/en will be set to zero.

Use of t_a/loc to allocate structures will help ensure the com
patibility of user programs with future releases of the tran
sport interface.

On failure, t _ errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to
a transport endpoint.

[TSYSERR]

SEE ALSO

A system error has occurred during execution
of this function.

intro(3), t_free(3N), t_getinfo(3N), t_ open(3N).
Network Programmer's Guide

DIAGNOSTICS
On successful completion, t_alloc returns a pointer to the
newly allocated structure. On failure, NULL is returned.

Page 2 UP-13712

NAME
t_ bind - bind an address to a transport endpoint

SYNOPSIS
#include < tiuser.h >

int t_ bind(fd, req, ret)
int fd;
struct t_bind *req;
struct t_bind *ret;

DESCRIPTION
This function associates a protocol address with the transport
endpoint specified by fd and activates that transport endpoint.
In connection mode, the transport provider may begin accept
ing or requesting connections on the transport endpoint. In
connectionless mode, the transport user may send or receive
data units through the transport endpoint.

The req and ret arguments point to a t_bind structure contain
ing the following members:

struct netbuf addr;
unsigned qlen;

Netbuf is described in intro (3). The addr field of the t bind
structure specifies a protocol address and the q/en field is
used to indicate the maximum number of outstanding connect
indications.

Req is used to request that an address, represented by the
netbuf structure, be bound to the given transport endpoint.
Len [see netbuf in intro(3); also for buf and max/en] specifies
the number of bytes in the address and buf points to the
address buffer. Max/en has no meaning for the req argument.
On return, ret contains the address that the transport provider
actually bound to the transport endpoint; this may be different
from the address specified by the user in req. In ret, the user
specifies max/en which is the maximum size of the address
buffer and buf which points to the buffer where the address is
to be placed. On return, len specifies the number of bytes in
the bound address and buf points to the bound address. If
max/en is not large enough to hold the returned address, an
error will result.

UP-13712 Page 1

T_BIND(3N)

If the requested address is not available, or if no address is
specified in req (the len field of addr in req is zero) the tran
sport provider will assign an appropriate address to be bound,
and will return that address in the addr field of ret. The user
can compare the addresses in req and ret to determine
whether the transport provider bound the transport endpoint
to a different address than that requested.

Req may be NULL if the user does not wish to specify an
address to be bound. Here, the value of q/en is assumed to
be zero, and the transport provider must assign an address to
the transport endpoint. Similarly, ret may be NULL if the user
does not care what address was bound by the provider and is
not interested in the negotiated value of qlen. It is valid to set
req and ret to NULL for the same call, in which case the pro
vider chooses the address to bind to the transport endpoint
and does not return that information to the user.

The q/en field has meaning only when initializing a
connection-mode service. It specifies the number of outstand
ing connect indications the transport provider should support
for the given transport endpoint. An outstanding connect indi
cation is one that has been passed to the transport user by
the transport provider. A value of qlen greater than zero is
only meaningful when issued by a passive transport user that
expects other users to call it. The value of qlen will be nego
tiated by the transport provider and may be changed if the
transport provider cannot support the specified number of
outstanding connect indications. On return, the qlen field in
ret will contain the negotiated value.

This function allows more than one transport endpoint to be
bound to the same protocol address (however, the transport
provider must support this capability also), but it is not allow
able to bind more than one protocol address to the same tran
sport endpoint. If a user binds more than one transport end
point to the same protocol address, only one endpoint can be
used to listen for connect indications associated with that pro
tocol address. In other words, only one t_bind for a given pro
tocol address may specify a value of q/en greater than zero.
In this way, the transport provider can identify which transport
endpoint should be notified of an incoming connect indication.
If a user attempts to bind a protocol address to a second

Page 2 UP-13712

transport endpoint with a value of q/en greater than zero. the
transport provider will assign another address to be bound to
that endpoint. If a user accepts a connection on the transport
endpoint that is being used as the listening endpoint. the
bound protocol address will be found to be busy for the dura
tion of that connection. No other transport endpoints may be
bound for listening while that initial listening endpoint is in the
data transfer phase. This will prevent more than one transport
endpoint bound to the same protocol address from accepting
connect indications.

On failure. t_errno may be set to one of the following:

[TBADF]

[TOUTST ATE]

[TBADADDR]

[TNOADDR]

[TACCES]

[TBUFOVFLW]

[TSYSERR]

SEE ALSO

The specified file descriptor does not
refer to a transport endpoint.

The function was issued in the wrong
sequence.

The specified protocol address was in an
incorrect format or contained illegal infor
mation.

The transport provider could not allocate
an address.

The user does not have permission to use
the specified address.

The number of bytes allowed for an
incoming argument is not sufficient to
store the value of that argument. The
provider's state will change to T JDLE and
the information to be returned in ret will
be discarded.

A system error has occurred during exe
cution of this function.

intro(3). t_open(3N). t_optmgmt(3N). t_unbind(3N).
Network Programmer's Guide

DIAGNOSTICS
t_bind returns 0 on success and -1 on failure and t_errno is set
to indicate the error.

UP-13712 Page 3

[This page left blank.]

Page 4 UP-13712

NAME
t_ close - close a transport endpoint

SYNOPSIS
#include < tiuser.h >

int t_ close(fd)
int fd;

DESCRIPTION
The t_close function informs the transport provider that the
user is finished with the transport endpoint specified by fd,
and frees any local library resources associated with the end
point. In addition, t _close closes the file associated with the
transport endpoint.

t_close should be called from the T_UNBND state [see
t_getstate (3N)]. However, this function does not check state
information, so it may be called from any state to close a tran
sport endpoint. If this occurs, the local library resources asso
ciated with the endpoint will be freed automatically. In addi
tion, close(2) will be issued for that file descriptor; the close
will be abortive if no other process has that file open, and will
break any transport connection that may be associated with
that endpoint.

On failure, t_errno may be set to the following:

[TBADF] The specified file descriptor does not refer to a
transport endpoint.

SEE ALSO
t_getstate(3N), t_open(3N), t_unbind(3N).
Network Programmer's Guide

DIAGNOSTICS
t_close returns 0 on success and -1 on failure and t errno is
set to indicate the error.

UP-13712 Page 1

T _ CL()SE (3N)

[This page left blank.]

Page 2 UP-13712

NAME
t_ connect - establish a connection with another transport user

SYNOPSIS
#include < tiuser.h >

int t_connect(fd, sndcall, rcvcall)
int fd;
struct t_ call *sndcall;
struct t_call *rcvcall;

DESCRIPTION
This function enables a transport user to request a connection
to the specified destination transport user. Fd identifies the
local transport endpoint where communication will be esta
blished, while sndcall and rcvcall point to a t_call structure
which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

Sndcall specifies information needed by the transport provider
to establish a connection and rcvcalJ specifies information that
is associated with the newly established connection.

Netbuf is described in intro (3). In sndcall, addr specifies the
protocol address of the destination transport user, opt
presents any protocol-specific information that might be
needed by the transport provider, udata points to optional
user data that may be passed to the destination transport
user during connection establishment, and sequence has no
meaning for this function.

On return in rcvcalJ, addr returns the protocol address associ
ated with the responding transport endpoint, opt presents any
protocol-specific information associated with the connection,
udata pOints to optional user data that may be returned by
the destination transport user during connection establish
ment, and sequence has no meaning for this function.

The opt argument implies no structure on the options that
may be passed to the transport provider. The transport pro
vider is free to specify the structure of any options passed to

UP-13712 Page 1

it. These options are specific to the underlying protocol of the
transport provider. The user may choose not to negotiate
protocol options by setting the len field of opt to zero. In this
case, the provider may use default options.

The udata argument enables the caller to pass user data to
the destination transport user and receive user data from the
destination user during connection establishment. However,
the amount of user data must not exceed the limits supported
by the transport provider as returned by t_open (3N) or
t_getinfo (3N). If the len [see netbuf in intro(3)] field of udata
is zero in sndcall, no data will be sent to the destination tran
sport user.

On return, the addr, opt, and udata fields of rcvcall will be
updated to reflect values associated with the connection.
Thus, the maxlen [see netbuf in intro(3)] field of each argu
ment must be set before issuing this function to indicate the
maximum size of the buffer for each. However, rcvcalJ may
be NULL, in which case no information is given to the user on
return from t connect.

By default, t_connect executes in synchronous mode, and will
wait for the destination user's response before returning con
trol to the local user. A successful return (Le. return value of
zero) indicates that the requested connection has been esta
blished. However, if O_NDELAY is set (via t_open or fcnt~,
t _connect executes in asynchronous mode. In this case, the
call will not wait for the remote user's response, but will return
control immediately to the local user and return -1 with t _ errno
set to TNODAT A to indicate that the connection has not yet
been established. In this way, the function simply initiates the
connection establishment procedure by sending a connect
request to the destination transport user.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not
refer to a transport endpoint.

[TOUTST ATE]

[TNODATA]

Page 2

The function was issued in the wrong
sequence.

o _NDELA Y was set, so the function suc
cessfully initiated the connection estab
lishment procedure, but did not wait for a

UP-13712

response from the remote user.

[TBADADDR] The specified protocol address was in an
incorrect format or contained illegal infor
mation.

[TBADOPT] The specified protocol options were in an
incorrect format or contained illegal infor
mation.

[TBADDATA] The amount of user data specified was
not within the bounds allowed by the
transport provider.

[TACCES] The user does not have permission to use
the specified address or options.

[TBUFOVFLW] The number of bytes allocated for an
incoming argument is not sufficient to
store the value of that argument. If exe
cuted in synchronous mode. the
provider·s state. as seen by the user.
changes to T_DATAXFER. and the con
nect indication information to be returned
in rcvcall is discarded.

[TLOOK] An asynchronous event has occurred on
this transport endpoint and requires
immediate attention.

[TNOTSUPPORT] This function is not supported by the
underlying transport provider.

[TSYSERR] A system error has occurred during exe
cution of this function.

SEE ALSO
intro(3). t_accept(3N). t_getinfo(3N). tJisten(3N). t_open(3N).
t_optmgmt(3N). t_rcvconnect(3N).
Network Programmer's Guide

DIAGNOSTICS
t_connect returns 0 on success and -1 on failure and t_errno is
set to indicate the error.

UP-13712 Page 3

[This page left blank.]

Page 4 UP-13712

NAME
t_ error - produce error message

SYNOPSIS
#include < tiuser.h >

void t_ error(errmsg)
char *errmsg;
extern int t_ errno;
extern char *t_ errlist[];
extern int t_nerr;

DESCRIPTION

T ERROR(3N)

The t _error function produces a message on the standard
error output which describes the last error encountered during
a call to a transport function. The argument string errmsg is a
user-supplied error message that gives context to the error.
t_error prints the user-supplied error message followed by a
colon and a standard error message for the current error
defined in t_errno. To simplify variant formatting of mes
sages. the array of message strings t _ err/ist is provided;
t_errno can be used as an index in this table to get the mes
sage string without the newline. T _ nerr is the largest message
number provided for in the t _ errlist table.

T _errno is only set when an error occurs and is not cleared on
successful calls.

EXAMPLE
If a t_connect function fails on transport endpoint fd2 because
a bad address was given. the following call might follow the
failure:

The diagnostic message to be printed would look like:

t connect failed on fd2: Incorrect transport address
format

where "Incorrect transport address format" identifies the
specific error that occurred. and lit_connect failed on fd2" tells
the user which function failed on which transport endpoint.

UP-13712 Page 1

T_ERROR(3N)

[This page left blank.]

Page 2 UP-13712

NAME
t_free - free a library structure

SYNOPSIS
#include < tiuser.h >

int t_free(ptr, struct_type)
char *ptr;
int struct_type;

DESCRIPTION
The t_free function frees memory previously allocated by
t_al/oc. This function will free memory for the specified struc
ture, and will also free memory for buffers referenced by the
structure.

Ptr points to one of the six structure types described for
t_al/oc, and struct_type identifies the type of that structure
which can be one of the following:

T BIND struct t bind

T _CALL struct t call

T OPTMGMT

T DIS

T UNITDATA

T UDERROR

TJNFO

struct t_ optmgmt

struct t discon

struct t unitdata

struct t uderr

struct t info

where each of these structures is used as an argument to one
or more transport functions.

t_free will check the addr, opt, and udata fields of the given
structure (as appropriate), and free the buffers pointed to by
the buf field of the netbuf [see intro(3)] structure. If buf is
NULL, t_free will not attempt to free memory. After all buffers
are freed, t _free will free the memory associated with the
structure pointed to by ptr.

Undefined results will occur if ptr or any of the buf pointers
points to a block of memory that was not previously allocated
by t_al/oc.

On failure, t_errno may be set to the following:

UP-13712 Page 1

[TSYSERR]

SEE ALSO

A system error has occurred during execution
of this function.

intro(3L t_alloc(3N).
Network Programmer's Guide

DIAGNOSTICS
t_free returns 0 on success and -1 on failure and t_errno is set
to indicate the error.

Page 2 UP-13712

T_GETINFO(3N)

NAME
t_getinfo - get protocol-specific service information

SYNOPSIS
#include < tiuser.h >

int t_getinfo(fd, info)
int fd;
struct tJnfo *info;

DESCRIPTION
This function returns the current characteristics of the underly
ing transport protocol associated with file descriptor fd. The
info structure is used to return the same information returned
by t_open. This function enables a transport user to access
this information during any phase of communication.

This argument points to a t}nfo structure which contains the
following members:

long addrj /* max size of the transport protocol address */
long optionsj /* max number of bytes of protocol-specific

options */
long tsduj /* max size of a transport service data unit

(TSDU) */
long etsduj /* max size of an expedited transport service

data unit (ETSDU) */
long connectj /* max amount of data allowed on connection

establishment functions */
long disconj /* max amount of data allowed on t_snddis

and t_rcvdis functions */
long servtypej /* service type supported by the transport

provider */

The values of the fields have the following meanings:

addr A value greater than or equal to zero indicates
the maximum size of a transport protocol
address; a value of -1 specifies that there is no
limit on the address size; and a value of -2
specifies that the transport provider does not
provide user access to transport protocol
addresses.

UP-13712 Page 1

options

tsdu

etsdu

connect

Page 2

A value greater than or equal to zero indicates
the maximum number of bytes of protocol
specific options supported by the provider; a
value of -1 specifies that there is no limit on the
option size; and a value of -2 specifies that the
transport provider does not support user
settable options.

A value greater than zero specifies the max
imum size of a transport service data unit
(TSDU); a value of zero specifies that the tran
sport provider does not support the concept of
TSDU, although it does support the sending of
a data stream with no logical boundaries
preserved across a connection; a value of -1
specifies that there is no limit on the size of a
TSDU; and a value of -2 specifies that the
transfer of normal data is not supported by the
transport provider.

A value greater than zero specifies the max
imum size of an expedited transport service
data unit (ETSDU); a value of zero specifies
that the transport provider does not support
the concept of ETSDU, although it does sup
port the sending of an expedited data stream
with no logical boundaries preserved across a
connection; a value of -1 specifies that there is
no limit on the size of an ETSDU; and a value
of -2 specifies that the transfer of expedited
data is not supported by the transport pro
vider.

A value greater than or equal to zero specifies
the maximum amount of data that may be
associated with connection establishment func
tions; a value of -1 specifies that there is no
limit on the amount of data sent during con
nection establishment; and a value of -2 speci
fies that the transport provider does not allow
data to be sent with connection establishment
functions.

UP-13712

dis con

servtype

T_GETINFO(3N)

A value greater than or equal to zero specifies
the maximum amount of data that may be
associated with the t snddis and t rcvdis func-- -
tions; a value of -1 specifies that there is no
limit on the amount of data sent with these
abortive release functions; and a value of -2
specifies that the transport provider does not
allow data to be sent with the abortive release
functions.

This field specifies the service type supported
by the transport provider, as described below.

If a transport user is concerned with protocol independence,
the above sizes may be accessed to determine how large the
buffers must be to hold each piece of information. Alterna
tively, the t_a/loc function may be used to allocate these
buffers. An error will result if a transport user exceeds the
allowed data size on any function. The value of each field
may change as a result of option negotiation, and t_getinfo
enables a user to retrieve the current characteristics.

The servtype field of info may specify one of the following
values on return:

T COTS The transport provider supports a
connection-mode service but does not sup
port the optional orderly release facility.

T_COTS_ORD The transport provider supports a
connection-mode service with the optional
orderly release facility.

T _ CL TS The transport provider supports a
connectionless-mode service. For this service
type, t_open will return -2 for etsdu, connect,
and discon.

On failure, t _ errno may be set to one of the following:

[TBADF]

[TSYSERR]

UP-13712

The specified file descriptor does not refer to
a transport endpoint.

A system error has occurred during execution
of this function.

Page 3

T_GETINFO(3N)

SEE ALSO
t_ open (3N) .
Network Programmer's Guide

DIAGNOSTICS
t _getinfo returns 0 on success and -1 on failure and t _ errno is
set to indicate the error.

Page 4 UP-13712

T_GETSTATE(3N)

NAME
t_getstate - get the current state

SYNOPSIS
#include < tiuser.h >

int t_getstate(fd)
int fd;

DESCRIPTION
The t_getstate function returns the current state of the pro
vider associated with the transport endpoint specified by fd.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer
to a transport endpoint.

[TSTATECHNG]

[TSYSERR]

SEE ALSO
t_open(3N).

The transport provider is undergoing a
state change.

A system error has occurred during execu
tion of this function.

Network Programmer's Guide

DIAGNOSTICS
t_getstate returns the current state on successful completion
and -1 on failure and t errno is set to indicate the error. The
current state may be one of the following:

T _ UNBND unbound

T IDLE

T OUTCON

TINCON

T DATAXFER

T OUTREL

T INREL

idle

outgoing connection pending

incoming connection pending

data transfer

outgoing orderly release (waiting for an ord
erly release indication)

incoming orderly release (waiting for an ord
erly release request)

If the provider is undergoing a state transition when t_getstate
is called, the function will fail.

UP-13712 Page 1

T_GETSTATE(3N)

[This page left blank.]

Page 2 UP-13712

NAME
tJisten - listen for a connect request

SYNOPSIS
#include < tiuser.h >

int tJisten(fd, call)
int fd;
struct t_call *call;

DESCRIPTION
This function listens for a connect request from a calling tran
sport user. Fd identifies the local transport endpoint where
connect indications arrive, and on return, call contains infor
mation describing the connect indication. Call points to a
t_call structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

Netbuf is described in intro(3). In call, addr returns the proto
col address of the calling transport user, opt returns protocol
specific parameters associated with the connect request,
udata returns any user data sent by the caller on the connect
request, and sequence is a number that uniquely identifies the
returned connect indication. The value of sequence enables
the user to listen for multiple connect indications before
responding to any of them.

Since this function returns values for the addr, opt, and udata
fields of call, the max/en [see netbuf in intro(3)] field of each
must be set before issuing the t -'isten to indicate the max
imum size of the buffer for each.

By default, t -,isten executes in synchronous mode and waits
for a connect indication to arrive before returning to the user.
However, if O_NDELAY is set (via t_open or fcntl) , t_listen exe
cutes asynchronously, reducing to a poll for existing connect
indications. If none are available, it returns -1 and sets t_errno
to TNODATA.

On failure, t _ errno may be set to one of the following:

UP-13712 Page 1

T _LISTEN (3N)

[TBADF]

[TBUFOVFLW]

[TN o DATA]

[TLOOK]

[TNOTSUPPORT]

[TSYSERR]

CAVEATS

The specified file descriptor does not
refer to a transport endpoint.

The number of bytes allocated for an
incoming argument is not sufficient to
store the value of that argument. The
provider's state, as seen by the user,
changes to T JNCON, and the connect
indication information to be returned in
call is discarded.

O_NDELAY was set, but no connect indi
cations had been queued.

An asynchronous event has occurred on
this transport endpoint and requires
immediate attention.

This function is not supported by the
underlying transport provider.

A system error has occurred during exe
cution of this function.

If a user issues t_listen in synchronous mode on a transport
endpoint that was not bound for listening (i.e. q/en was zero
on t _bind), the call will wait forever because no connect indica
tions will arrive on that endpoint.

SEE ALSO
intro(3) , t_accept(3N), t_bind(3N), t_connect(3N), t_open(3N),
t_rcvconnect(3N) .
Network Programmer's Guide

DIAGNOSTICS
t listen returns 0 on success and -1 on failure and t errno is
set to indicate the error.

Page 2 UP-13712

NAME
tJook - look at the current event on a transport endpoint

SYNOPSIS
#include <tiuser.h>

int tJook(fd)
int fd;

DESCRIPTION
This function returns the current event on the transport end
point specified by fd. This function enables a transport pro
vider to notify a transport user of an asynchronous event
when the user is issuing functions in synchronous mode. Cer
tain events require immediate notification of the user and are
indicated by a specific error, TLOOK, on the current or next
function to be executed.

This function also enables a transport user to poll a transport
endpoint periodically for asynchronous events.

On failure, t _ errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to
a transport endpoint.

[TSYSERR] A system error has occurred during execution
of this function.

SEE ALSO
t_open(3N).
Network Programmer's Guide

DIAGNOSTICS
Upon success, t -'ook returns a value that indicates which of
the allowable events has occurred, or returns zero if no event
exists. One of the following events is returned:

T _LISTEN connection indication received

T CONNECT

T DATA

T EXDATA

T _DISCONNECT

T_ERROR

UP-13712

connect confirmation received

normal data received

expedited data received

disconnect received

fatal error indication

Page 1

T_UDERR

T_ORDREL

datagram error indication

orderly release indication

On failure. -1 is returned and t errno is set to indicate the
error.

Page 2 UP-13712

NAME
t_ open - establish a transport endpoint

SYNOPSIS
#include < tiuser.h >

int t_ open(path, of lag , info)
char *path;
int of lag;
struct t_info *info;

DESCRIPTION
t_open must be called as the first step in the initialization of a
transport endpoint. This function establishes a transport end
point by opening a UNIX* file that identifies a particular tran
sport provider (Le. transport protocol) and returning a file
descriptor that identifies that endpoint. For example. opening
the file /dev/iso_cots identifies an OSI connection-oriented
transport layer protocol as the transport provider.

Path points to the path name of the file to open. and of/ag
identifies any open flags [as in open (2)]. t_open returns a file
descriptor that will be used by all subsequent functions to
identify the particular local transport endpoint.

This function also returns various default characteristics of the
underlying transport protocol by setting fields in the t }nfo
structure. This argument points to a t_info which contains the
following members:

long addrj /* max size of the transport protocol address */
long optionsj /* max number of bytes of protocol-specific

options */
long tsduj /* max size of a transport service data unit

(TSDU) */
long etsduj /* max size of an expedited transport service

data unit (ETSDU) */
long connectj /* max amount of data allowed on connection

establishment functiDns */

*UNIX is a registered trademark of AT&T in the USA and other
count ires. Port ions of the Un i sys System V Operat i ng System
are derived from the AT&T V.3 UNIX release.

UP-13712 Page 1

long discon; /* max amount of data allowed on t_snddis and
t_rcvdis functions */

long servtype; /* service type supported by the transport
provider */

The values of the fields have the following meanings:

addr A value greater than or equal to zero indicates
the maximum size of a transport protocol
address; a value of -1 specifies that there is no
limit on the address size; and a value of -2
specifies that the transport provider does not
provide user access to transport protocol
addresses.

options

tsdu

etsdu

Page 2

A value greater than or equal to zero indicates
the maximum number of bytes of protocol
specific options supported by the provider; a
value of -1 specifies that there is no limit on the
option size; and a value of -2 specifies that the
transport provider does not support user
settable options.

A value greater than zero specifies the max
imum size of a transport service data unit
(TSDU); a value of zero specifies that the tran
sport provider does not support the concept of
TSDU, although it does support the sending of
a data stream with no logical boundaries
preserved across a connection; a value of -1
specifies that there is no limit on the size of a
TSDU; and a value of -2 specifies that the
transfer of normal data is not supported by the
transport provider.

A value greater than zero specifies the max
imum size of an expedited transport service
data unit (ETSDU); a value of zero specifies
that the transport provider does not support
the concept of ETSDU, although it does sup
port the sending of an expedited data stream
with no logical boundaries preserved across a
connection; a value of -1 specifies that there is
no limit on the size of an ETSDU; and a value

UP-13712

connect

dis con

servtype

of -2 specifies that the transfer of expedited
data is not supported by the transport pro
vider.

A value greater than or equal to zero specifies
the maximum amount of data that may be
associated with connection establishment func
tions; a value of -1 specifies that there is no
limit on the amount of data sent during con
nection establishment; and a value of -2 speci
fies that the transport provider does not allow
data to be sent with connection establishment
functions.

A value greater than or equal to zero specifies
the maximum amount of data that may be
associated with the t _ snddis and t _rcvdis func
tions; a value of -1 specifies that there is no
limit on the amount of data sent with these
abortive release functions; and a value of -2
specifies that the transport provider does not
allow data to be sent with the abortive release
functions.

This field specifies the service type supported
by the transport provider, as described below.

If a transport user is concerned with protocol independence,
the above sizes may be accessed to determine how large the
buffers must be to hold each piece of information. Alterna
tively, the t_al/oc function may be used to allocate these
buffers. An error will result if a transport user exceeds the
allowed data size on any function.

The servtype field of info may specify one of the following
values on return:

T COTS The transport provider supports a connection
mode service but does not support the
optional orderly release facility.

T _ COTS_ORO The transport provider su pports a connection
mode service with the optional orderly release
facility.

UP-13712 Page 3

T CLTS The transport provider supports a
connectionless-mode service. For this service
type, t _open will return -2 for etsdu, connect,
and discon.

A single transport endpoint may support only one of the
above services at one time.

If info is set to ULL by the transport user, no protocol informa
tion is returned by t_open.

On failure, t _ errno may be set to the following:

[TSYSERR] A system error has occurred during exe
cution of this function.

SEE ALSO
open(2).
Network Programmer's Guide

DIAGNOSTICS
t_open returns a valid file descriptor on success and -1 on
failure and t errno is set to indicate the error.

Page 4 UP-13712

NAME
t_ optmgmt - manage options for a transport endpoint

SYNOPSIS
#include < tiuser.h >

int t_optmgmt(fd, req, ret)
int fd;
struct t_ optmgmt *req;
struct t_ optmgmt *ret;

DESCRIPTION
The t _ optmgmt function enables a transport user to retrieve,
verify, or negotiate protocol options with the transport pro
vider. Fd identifies a bound transport endpoint.

The req and ret arguments point to a t_optmgmt structure
containing the following members:

struct netbuf opt;
long flags;

The opt field identifies protocol options and the flags field is
used to specify the action to take with those options.

The options are represented by a netbuf [see intro(3); also for
len, buf and max/en] structure in a manner similar to the
address in t_bind. Req is used to request a specific action of
the provider and to send options to the provider. Len speci
fies the number of bytes in the options, buf points to the
options buffer, and max/en has no meaning for the req argu
ment. The transport provider may return options and flag
values to the user through ret. For ret, maxlen specifies the
maximum size of the options buffer and buf points to the
buffer where the options are to be placed. On return, len
specifies the number of bytes of options returned. Max/en
has no meaning for the req argument, but must be set in the
ret argument to specify the maximum number of bytes the
options buffer can hold. The actual structure and content of
the options is imposed by the transport provider.

The flags field of req can specify one of the following actions:

T_NEGOTIATE This action enables the user to negotiate the
values of the options specified in req with the

UP-13712 Page 1

T_OPTMGMT(3N)

transport provider. The provider will evaluate
the requested options and negotiate the
values, returning the negotiated values
through ret.

This action enables the user to verify whether
the options specified in req are supported by
the transport provider. On return, the flags
field of ret will have either T SUCCESS or
T FAILURE set to indicate to the user whether
the options are supported. These flags are
only meaningful for the T _CHECK request.

This action enables a user to retrieve the
default options supported by the transport
provider into the opt field of ret. In req, the
len field of opt must be zero and the buf field
may be NULL.

If issued as part of the connectionless-mode service,
t_optmgmt may block due to flow control constraints. The
function will not complete until the transport provider has pro
cessed all previously sent data units.

On failure, t_errno may be set to one of the following:

[TBADF]

[TOUTSTATE]

[TACCES]

[TBADOPT]

[TBADFLAG]

[TBUFOVFLW]

Page 2

The specified file descriptor does not
refer to a transport endpoint.

The function was issued in the wrong
sequence.

The user does not have permission to
negotiate the specified options.

The specified protocol options were in
an incorrect format or contained illegal
information.

An invalid flag was specified.

The number of bytes allowed for an
incoming argument is not sufficient to
store the value of that argument. The
information to be returned in ret will be
discarded.

UP-13712

[TSYSERR]

SEE ALSO

A system error has occurred during exe
cution of this function.

intro(3) I t_getinfo(3N), t_ open(3N).
Network Programmer's Guide

DIAGNOSTICS
t_optmgmt returns 0 on success and -1 on failure and t_errno
is set to indicate the error.

UP-13712 Page 3

T_OPTMGMT(3N)

[This page left blank.]

Page 4 UP-13712

NAME
t_rcv - receive data or expedited data sent over a connection

SYNOPSIS
int t_rcv(fd, buf, nbytes, flags)
int fd;
char *buf;
unsigned nbytes;
int *flags;

DESCRIPTION
This function receives either normal or expedited data. Fd
identifies the local transport endpoint through which data will
arrive, buf points to a receive buffer where user data will be
placed, and nbytes specifies the size of the receive buffer.
Flags may be set on return from t_fCV and specifies optional
flags as described below.

By default, t_fCV operates in synchronous mode and will wait
for data to arrive if none is currently available. However, if
O_NDELAY is set (via t_open or fcntl) , t_fCV will execute in
asynchronous mode and will fail if no data is available. (See
TNODATA below.)

On return from the call, if T_MORE is set in flags this indicates
that there is more data and the current transport service data
unit (TSDU) or expedited transport service data unit (ETSDU)
must be received in multiple t _fCV calls. Each t _fCV with the
T_MORE flag set indicates that another t_fCV must follow
immediately to get more data for the current TSDU. The end
of the TSDU is identified by the return of a t_fCV call with the
T _MORE flag not set. If the transport provider does not sup
port the concept of a TSDU as indicated in the info argument
on return from t_open or t_getinfo, the T_MORE flag is not
meaningful and should be ignored.

On return, the data returned is expedited data if
T _EXPEDITED is set in flags. If the number of bytes of
expedited data exceeds nbytes, t _fCV will set T _EXPEDITED
and T_MORE on return from the initial call. Subsequent calls
to retrieve the remaining ETSDU will not have T _ EXPEDITED
set on return. The end of the ETSDU is identified by the
return of a t_fcV call with the T_MORE flag not set.

UP-13712 Page 1

If expedited data arrives after part of a TSDU has been
retrieved, receipt of the remainder of the TSDU will be
suspended until the ETSDU has been processed. Only after
the full ETSDU has been retrieved (T MORE not set) will the
remainder of the TSDU be available to the user.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not
refer to a transport endpoint.

[TNODATA] O_NDELAY was set, but no data is
currently available from the transport pro
vider.

[TLOOK] An asynchronous event has occurred on
this transport endpoint and requires
immediate attention.

[TNOTSUPPORT] This function is not supported by the
underlying transport provider.

[TSYSERR] A system error has occurred during exe
cution of this function.

SEE ALSO
t_open(3N), t_snd(3N).
Network Programmer's Guide

DIAGNOSTICS
On successful completion, t_rev returns the number of bytes
received, and it returns -1 on failure and t_errno is set to indi
cate the error.

Page 2 UP-13712

T_RCVCONNECT(3N)

NAME
t rcvconnect - receive the confirmation from a connect
request

SYNOPSIS
#include < tiuser.h >

int t_rcvconnect(fd, call)
int fd;
struct t_call *call;

DESCRIPTION
This function enables a calling transport user to determine the
status of a previously sent connect request and is used in con
junction with t _connect to establish a connection in asynchro
nous mode. The connection will be established on successful
completion of this function.

Fd identifies the local transport endpoint where communica
tion will be established, and call contains information associ
ated with the newly established connection. Call points to a
t _call structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

Netbuf is described in intro(3). In call, addr returns the proto
col address associated with the responding transport end
point, opt presents any protocol-specific information associ
ated with the connection, udata points to optional user data
that may be returned by the destination transport user during
connection establishment, and sequence has no meaning for
this function.

The max/en [see netbuf in intro(3)] field of each argument
must be set before issuing this function to indicate the max
imum size of the buffer for each. However, call may be NULL,
in which case no information is given to the user on return
from t _rcvconnect. By default, t _rcvconnect executes in syn
chronous mode and waits for the connection to be established
before returning. On return, the addr, opt, and udata fields
reflect values associated with the connection.

UP-13712 Page 1

T_RCVCONNECT(3N)

If O_NDELAY is set (via t_open or fcnt/). t_rcvconnect exe
cutes in asynchronous mode. and reduces to a poll for exist
ing connect confirmations. If none are available. t_rcvconnect
fails and returns immediately without waiting for the connec
tion to be established. (See TNODATA below.) t_rcvconnect
must be re-issued at a later time to complete the connection
establishment phase and retrieve the information returned in
call.

On failure. t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not
refer to a transport endpoint.

[TBUFOVFLW] The number of bytes allocated for an
incoming argument is not sufficient to
store the value of that argument and the
connect information to be returned in
call will be discarded. The provider's
state. as seen by the user. will be
changed to DA T AXFER.

[TNODATA]

[TLOOK]

[TNOTSUPPORT]

[TSYSERR]

SEE ALSO

O_NDELAY was set. but a connect con
firmation has not yet arrived.

An asynchronous event has occurred on
this transport connection and requires
immediate attention.

This function is not supported by the
underlying transport provider.

A system error has occurred during exe
cution of this function.

intro(3). t_ accept (3N) • t_ bind (3N). t_ connect(3N). tJisten (3N).
t_ open (3N).
Programmer's Network Guide

DIAGNOSTICS
t rcvconnect returns 0 on success and -1 on failure and
t errno is set to indicate the error.

Page 2 UP-13712

NAME
t rcvdis - retrieve information from disconnect

SYNOPSIS
#include < tiuser.h >

t_rcvdis(fd, discon)
int fd;
struct t_discon *discon;

DESCRIPTION
This function is used to identify the cause of a disconnect, and
to retrieve any user data sent with the disconnect. Fd identi
fies the local transport endpoint where the connection existed,
and discon points to a t _ discon structure containing the fol
lowing members:

struct netbuf udata;
int reason;
int sequence;

Netbuf is described in intro(3). Reason specifies the reason
for the disconnect through a protocol-dependent reason code,
udata identifies any user data that was sent with the discon
nect, and sequence may identify an outstanding connect indi
cation with which the disconnect is associated. Sequence is
only meaningful when t _rcvdis is issued by a passive transport
user who has executed one or more t listen functions and is
processing the resulting connect indications. If a disconnect
indication occurs, sequence can be used to identify which of
the outstanding connect indications is associated with the
disconnect.

If a user does not care if there is incoming data and does not
need to know the value of reason or sequence, discon may
be NULL and any user data associated with the disconnect will
be discarded. However, if a user has retrieved more than one
outstanding connect indication (via t-'isten) and discon is
NULL, the user will be unable to identify with which connect
indication the disconnect is associated.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not
refer to a transport endpoint.

UP-13712 Page 1

[TNODIS]

[TBUFOVFLW]

[TNOTSUPPORT]

[TSYSERR]

SEE ALSO

No disconnect indication currently exists
on the specified transport endpoint.

The number of bytes allocated for
incoming data is not sufficient to store
the data. The provider's state. as seen
by the user, will change to TJDLE. and
the disconnect indication information to
be returned in discon will be discarded.

This function is not supported by the
underlying transport provider.

A system error has occurred during exe
cution of this function.

intro(3), t_connect(3N). tJisten(3N), t_open(3N), t_snddis(3N).
Network Programmer's Guide

DIAGNOSTICS
t_rcvdis returns 0 on success and -1 on failure and t errno is
set to indicate the error.

Page 2 UP-13712

T RCVREL(3N)

NAME
t_rcvrel - acknowledge receipt of an orderly release indication

SYNOPSIS
#include < tiuser.h >

t_ rcvrel(fd)
int fd;

DESCRIPTION
This function is used to acknowledge receipt of an orderly
release indication. Fd identifies the local transport endpoint
where the connection exists. After receipt of this indication.
the user may not attempt to receive more data because such
an attempt will block forever. However. the user may continue
to send data over the connection if t sndrel has not been
issued by the user.

This function is an optional service of the transport provider.
and is only supported if the transport provider returned ser
vice type T _COTS_ORO on t _open or t _getinfo.

On failure. t _ errno may be set to one of the following:

[TBADF] The specified file descriptor does not
refer to a transport endpoint.

[TNOREL]

[TLOOK]

[TNOTSUPPORT]

[TSYSERR]

SEE ALSO

No orderly release indication currently
exists on the specified transport end
point.

An asynchronous event has occurred on
this transport endpoint and requires
immediate attention.

This function is not supported by the
underlying transport provider.

A system error has occurred during exe
cution of this function.

t_open(3N). t_sndrel(3N).
Network Programmer's Guide

DIAGNOSTICS
t rcvrel returns 0 on success and -1 on failure t errno is set to - -
indicate the error.

UP-13712 Page 1

[This page left blank.]

Page 2 UP-13712

NAME
t rcvudata - receive a data unit

SYNOPSIS
#include < tiuser.h >

int t_rcvudata(fd, unitdata, flags)
int fd;
struct t_unitdata *unitdata;
int *flags;

DESCRIPTION

T_RCVUDATA(3N)

This function is used in connection less mode to receive a data
unit from another transport user. Fd identifies the local tran
sport endpoint through which data will be received, unitdata
holds information associated with the received data unit, and
flags is set on return to indicate that the complete data unit
was not received. Unitdata points to a t _ unitdata structure
containing the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

The max/en [see netbufin intro (3)] field of addr, opt, and udata
must be set before issuing this function to indicate the max
imum size of the buffer for each.

On return from this call, addr specifies the protocol address of
the sending user, opt identifies protocol-specific options that
were associated with this data unit, and udata specifies the
user data that was received.

By default, t _rcvudata operates in synchronous mode and will
wait for a data unit to arrive if none is currently available.
However, if O_NDELAY is set (via t_open or fcntl), t_rcvudata
will execute in asynchronous mode and will fail if no data units
are available.

If the buffer defined in the udata field of unitdata is not large
enough to hold the current data unit, the buffer will be filled
and T _MORE will be set in flags on return to indicate that
another t rcvudata should be issued to retrieve the rest of the
data unit. Subsequent t _rcvudata call (s) will return zero for
the length of the address and options until the full data unit
has been received.

UP-13712 Page 1

T_RCVUDATA(3N)

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not
refer to a transport endpoint.

[TNODATA] O_NDELAY was set, but no data units
are currently available from the transport
provider.

[TBUFOVFLW] The number of bytes allocated for the
incoming protocol address or options is
not sufficient to store the information.
The unit data information to be returned
in unitdata will be discarded.

[TLOOK]

[TNOTSUPPORT]

[TSYSERR]

SEE ALSO

An asynchronous event has occurred on
this transport endpoint and requires
immediate attention.

This function is not supported by the
underlying transport provider.

A system error has occurred during exe
cution of this function.

intro(3), t_rcvuderr(3N), t_ sndudata(3N).
Network Programmer's Guide

DIAGNOSTICS
t_rcvudata returns 0 on successful completion and -1 on
failure and t errno is set to indicate the error.

Page 2 UP-13712

T_RCVUDERR(3N)

NAME
t rcvuderr - receive a unit data error indication

SYNOPSIS
#include < tiuser.h >

int t_rcvuderr(fd, uderr)
int fd;
struct t_ uderr *uderr;

DESCRIPTION
This function is used in connectionless mode to receive infor
mation concerning an error on a previously sent data unit, and
should only be issued following a unit data error indication. It
informs the transport user that a data unit with a specific des
tination address and protocol options produced an error. Fd
identifies the local transport endpoint through which the error
report will be received, and uderr pOints to a t_uderr structure
containing the following members: struct netbuf addr;

struct netbuf opt; long error;

Netbuf is described in intro(3). The max/en [see netbuf in
intro(3)] field of addr and opt must be set before issuing this
function to indicate the maximum size of the buffer for each.

On return from this call, the addr structure specifies the desti
nation protocol address of the erroneous data unit, the opt
structure identifies protocol-specific options that were associ
ated with the data unit, and error specifies a protocol
dependent error code.

If the user does not care to identify the data unit that pro
duced an error, uderr may be set to NULL and t_rcvuderr will
simply clear the error indication without reporting any informa
tion to the user.

On failure, t_errno may be set to one of the following:

[TBADF]

[TNOUDERR]

[TBUFOVFLW]

UP-13712

The specified file descriptor does not refer
to a transport endpoint.

No unit data error indication currently
exists on the specified transport endpoint.

The number of bytes allocated for the
incoming protocol address or options is
not sufficient to store the information. The
unit data error information to be returned

Page 1

T_RCVUDERR(3N)

in uderr will be discarded.

[TNOTSUPPORT] This function is not supported by the
underlying transport provider.

[TSYSERR] A system error has occurred during execu
tion of this function.

SEE ALSO
intro(3) I t_rcvudata(3N) I t_ sndudata(3N).
Network Programmer's Guide

DIAGNOSTICS
t _rcvuderr returns 0 on successful completion and -1 on failure
and t errno is set to indicate the error.

Page 2 UP-13712

NAME
t_ snd - send data or expedited data over a connection

SYNOPSIS
#include < tiuser.h >

int t_snd(fd, buf, nbytes, flags)
int fd;
char *buf;
unsigned nbytes;
int flags;

DESCRIPTION
This function is used to send either normal or expedited data.
Fd identifies the local transport endpoint over which data
should be sent, buf points to the user data, nbytes specifies
the number of bytes of user data to be sent, and flags speci
fies any optional flags described below.

By default, t_snd operates In synchronous mode and may wait
if flow control restrictions prevent the data from being
accepted by the local transport provider at the time the call is
made. However, if O_NDELAY is set (via t_open or fcntl).
t _ snd will execute in asynchronous mode, and will fail immedi
ately if there are flow control restrictions.

On successful completion, t _ snd returns the number of bytes
accepted by the transport provider. Normally this will equal
the number of bytes specified in nbytes. However, if
O_NDELAY is set, it is possible that only part of the data will
be accepted by the transport provider. In this case, t_snd will
set T _ MORE for the data that was sent (see below) and will
return a value less than nbytes. If nbytes is zero, no data will
be passed to the provider and t_snd will return zero.

If T _EXPEDITED is set in flags, the data will be sent as
expedited data, and will be subject to the interpretations of
the transport provider.

If T _MORE is set in flags, or set as described above, an indi
cation is sent to the transport provider that the transport ser
vice data unit (TSDU) (or expedited transport service data unit
- ETSDU) is being sent through multiple t_snd calls. Each
t_snd with the T_MORE flag set indicates that another t_snd
will follow with more data for the current TSDU. The end of
the TSDU (or ETSDU) is identified by a t_snd call with the

UP-13712 Page 1

T _MORE flag not set. Use of T _ MORE enables a user to
break up large logical data units without losing the boundaries
of those units at the other end of the connection. The flag
implies nothing about how the data is packaged for transfer
below the transport interface. If the transport provider does
not support the concept of a TSDU as indicated in the info
argument on return from t_open or t_getinfo, the T_MORE
flag is not meaningful and should be ignored.

The size of each TSDU or ETSDU must not exceed the limits
of the transport provider as returned by t_open or t_getinfo.
Failure to comply will result in protocol error EPROTO. (See
TSYSERR below.)

If t_snd is issued from the TJDLE state, the provider may
silently discard the data. If t _ snd is issued from any state
other than T_DATAXFER or TJDLE, the provider will generate
an EPROTO error.

On failure, t_errno may be set to one of the following:

[TBADF]

[TFLOW]

[TNOTSU PPORT]

[TSYSERR]

SEE ALSO

The specified file descriptor does not
refer to a transport endpoint.

O_NDELAY was set, but the flow control
mechanism prevented the transport pro
vider from accepting data at this time.

This function is not supported by the
underlying transport provider.

A system error has occurred during exe
cution of this function.

t_open(3N), t_rcv(3N).
Network Programmer's Guide

DIAGNOSTICS
On successful completion, t_snd returns the number of bytes
accepted by the transport provider, and it returns -1 on failure
and t errno is set to indicate the error.

Page 2 UP-13712

NAME
t_ snddis - send user-initiated disconnect request

SYNOPSIS
#include < tiuser.h >

int t_snddis(fd, call)
int fd;
struct t_call *call;

DESCRIPTION
This function is used to initiate an abortive release on an
already established connection or to reject a connect request.
Fd identifies the local transport endpoint of the connection,
and call specifies information associated with the abortive
release. Call points to a t_call structure which contains the
following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

Netbuf is described in intro (3). The values in call have dif
ferent semantics, depending on the context of the call to
t_snddis. When rejecting a connect request, call must be
non-NULL and contain a valid value of sequence to uniquely
identify the rejected connect indication to the transport pro
vider. The addr and opt fields of call are ignored. In all other
cases, call need only be used when data is being sent with the
disconnect request. The addr, opt, and sequence fields of the
t_call structure are ignored. If the user does not wish to send
data to the remote user, the value of call may be NULL.

Udata specifies the user data to be sent to the remote user.
The amount of user data must not exceed the limits supported
by the transport provider as returned by t_open or t_getinfo.
If the len field of udata is zero, no data will be sent to the
remote user.

On failure, t_errno may be set to one of the following:

[TBADF]

UP-13712

The specified file descriptor does not
refer to a transport endpoint.

Page 1

[TOUTSTATE] The function was issued in the wrong
sequence. The transport provider's out
going queue may be flushed, so data
may be lost.

[TBADDATA] The amount of user data specified was
not within the bounds allowed by the
transport provider. The transport
provider's outgoing queue will be flushed,
so data may be lost.

[TBADSEQ] An invalid sequence number was speci
fied, or a NULL call structure was speci
fied when rejecting a connect request.
The transport provider's outgoing queue
will be flushed, so data may be lost.

[TLOOK] An asynchronous event has occurred on
this transport endpoint and requires
immediate attention.

[TNOTSUPPORT] This function is not supported by the
underlying transport provider.

[TSYSERR] A system error has occurred during exe
cution of this function.

SEE ALSO
intro(3), t_ connect (3N) , t_getinfo(3N), tJisten(3N), t_ open(3N).
Network Programmer's Guide

DIAGNOSTICS
t snddis returns 0 on success and -1 on failure and t errno is - -
set to indicate the error.

Page 2 UP-13712

NAME
t_ sndrel - initiate an orderly release

SYNOPSIS
#include < tiuser.h >

int t_ sndrel(fd)
int fd;

DESCRIPTION
This function is used to initiate an orderly release of a tran
sport connection and indicates to the transport provider that
the transport user has no more data to send. Fd identifies the
local transport endpoint where the connection exists. After
issuing t_sndre/, the user may not send any more data over
the connection. However, a user may continue to receive data
if an orderly release indication has been received.

This function is an optional service of the transport provider,
and is only supported if the transport provider returned ser
vice type T _COTS_ORO on t _open or t _getinfo.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not
refer to a transport endpoint.

[TFLOW] 0_ NDELA Y was set, but the flow control
mechanism prevented the transport pro
vider from accepting the function at this
time.

[TNOTSUPPORT]

[TSYSERR]

SEE ALSO

This function is not supported by the
underlying transport provider.

A system error has occurred during exe
cution of this function.

t_open(3N), t_rcvrel{3N).
Network Programmer's Guide

DIAGNOSTICS
t sndrel returns 0 on success and -1 on failure and t errno is
set to indicate the error.

UP-13712 Page 1

T_SNDREL(3N)

[This page left blank.]

Page 2 UP-13712

NAME
t sndudata - send a data unit

SYNOPSIS
#include < tiuser.h >

int t_ sndudata(fd, unitdata)
int fd;
struct t_ unitdata *unitdata;

DESCRIPTION

T SNDUDATA(3N)

This function is used in connectionless mode to send a data
unit to another transport user. Fd identifies the local transport
endpoint through which data will be sent, and unitdata points
to a t_unitdata structure containing the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

Netbuf is described in intro (3). In unitdata, addr specifies the
protocol address of the destination user, opt identifies
protocol-specific options that the user wants associated with
this request, and udata specifies the user data to be sent.
The user may choose not to specify what protocol options are
associated with the transfer by setting the len field of opt to
zero. In this case, the provider may use default options.

If the len field of udata is zero, no data unit will be passed to
the transport provider; t_sndudata will not send zero-length
data units.

By default, t_sndudata operates in synchronous mode and
may wait if flow control restrictions prevent the data from
being accepted by the local transport provider at the time the
call is made. However, if O_NDELAY is set (via t_open or
fcntl) , t_sndudata will execute in asynchronous mode and will
fail under such conditions.

If t_sndudata is issued from an invalid state, or if the amount
of data specified in udata exceeds the TSDU size as returned
by t _open or t _getinfo, the provider will generate an EPROTO
protocol error. (See TSYSERR below.)

UP-13712 Page 1

T_SNDUDATA(3N)

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer
to a transport endpoint.

[TFLOW] O_NDELAY was set, but the flow control
mechanism prevented the transport pro
vider from accepting data at this time.

[TNOTSUPPORT] This function is not supported by the
underlying transport provider.

[TSYSERR] A system error has occurred during execu
tion of this function.

SEE ALSO
intro(3), t_rcvudata(3N), t_rcvuderr(3N).
Network Programmer's Guide

DIAGNOSTICS
t sndudata returns 0 on successful completion and -1 on
failure t errno is set to indicate the error.

Page 2 UP-13712

NAME
t_sync - synchronize transport library

SYNOPSIS
#include < tiuser.h >

int t_ sync(fd)
int fd;

DESCRIPTION
For the transport endpoint specified by fd, t_sync synchron
izes the data structures managed by the transport library with
information from the underlying transport provider. In doing
so, it can convert a raw file descriptor [obtained via open (2) ,
dup(2) , or as a result of a fork(2) and exec(2)] to an initialized
transport endpoint, assuming that file descriptor referenced a
transport provider. This function also allows two cooperating
processes to synchronize their interaction with a transport pro
vider.

For example, if a process forks a new process and issues an
exec, the new process must issue a t_sync to build the private
library data structure associated with a transport endpoint and
to synchronize the data structure with the relevant provider
information.

It is important to remember that the transport provider treats
all users of a transport endpoint as a single user. If multiple
processes are using the same endpoint, they should coordi
nate their activities so as not to violate the state of the pro
vider. t_sync returns the current state of the provider to the
user, thereby enabling the user to verify the state before tak
ing further action. This coordination is only valid among
cooperating processes; it is possible that a process or an
incoming event could change the provider's state after a
t_sync is issued.

If the provider is undergoing a state transition when t_sync is
called, the function will fail.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor is a valid
open file descriptor but does not refer to
a transport endpoint.

UP-13712 Page 1

[TSTATEGHNG]

[TSYSERR]

SEE ALSO

The transport provider is undergoing a
state change.

A system error has occurred during exe
cution of this function.

dup(2) I exec (2) I fork(2) I open (2) .
Network Programmer's Guide

DIAGNOSTICS
t_sync returns the state of the transport provider on success
ful completion and -1 on failure and t _ errno is set to indicate
the error. The state returned may be one of the following:

T UNBND unbound

T IDLE

T OUTGON

TINGON

T DATAXFER

T OUTREL

T INREL

Page 2

idle

outgoing connection pending

incoming connection pending

data transfer

outgoing orderly release (waiting for an
orderly release indication)

incoming orderly release (waiting for an
orderly release request)

UP-13712

NAME
t_ unbind - disable a transport endpoint

SYNOPSIS
#include < tiuser.h >

int t_ unbind(fd)
int fd;

DESCRIPTION
The t _unbind function disables the transport endpoint speci
fied by fd which was previously bound by t _bind (3N). On
completion of this call, no further data or events destined for
this transport endpoint will be accepted by the transport pro
vider.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to
a transport endpoint.

[TOUTSTATE] The function was issued in the wrong
sequence.

[TLOOK] An asynchronous event has occurred on this
transport endpoint.

[TSYSERR] A system error has occurred during execution
of this function.

SEE ALSO
t_ bind(3N).
Network Programmer's Guide

DIAGNOSTICS
t unbind returns a on success and -1 on failure and t errno is - -
set to indicate the error.

UP-13712 Page 1

T_UNBIND(3N)

[This page left blank.]

Page 2 UP-13712

NAME
assert - verify program assertion

SYNOPSIS
#include < assert.h >

assert (expression)
int expression;

DESCRIPTION

ASSERT (3X)

This macro is useful for putting diagnostics into programs.
When it is executed, if expression is false (zero), assert prints

"Assertion failed: expression, file xyz, line nnn"

on the standard error output and aborts. In the error mes
sage, xyz is the name of the source file and nnn the source
line number of the assert statement.

Compiling with the preprocessor option -DNDEBUG [see
cpp (1)], or with the preprocessor control statement "#define
NDEBUG" ahead of the "#include < assert.h >" statement,
will stop assertions from being compiled into the program.

SEE ALSO
cpp(1), abort(3C).
Network Programmer's Guide

CAVEAT
Since assert is implemented as a macro, the expression may
not contain any string literals.

UP-13712 Page 1

ASSERT~3X)

[This page left blank.]

Page 2 UP-13712

NAME
crypt - password and file encryption functions

SYNOPSIS
cc [flag ...] file ... -Icrypt

char *crypt (key, salt)
char *key, *salt;

void setkey (key)
char *key;

void encrypt (block, flag)
char *block;
int flag;

char *des _crypt (key, salt)
char *key, *salt;

void des _ setkey (key)
char *key;

void des_encrypt (block, flag)
char *block;
int flag;

int run_setkey (p, key)
int p[2];
char *key;

int run_crypt (offset, buffer, count, p)
long offset;
char *buffer;
unsigned int count;
int p[2];

int crypt_ close(p)
int p[2];

DESCRIPTION

CRYPT (3X)

des_crypt is the password encryption function. It is based on
a one way hashing encryption algorithm with variations
intended (among other things) to frustrate use of hardware
implementations of a key search.

Key is a user's typed password. Salt is a two-character string
chosen from the set [a-zA-ZO-9./]; this string is used to per
turb the hashing algorithm in one of 4096 different ways, after
which the password is used as the key to encrypt repeatedly a

UP-13712 Page 1

CRVPT(3X)

constant string. The returned value points to the encrypted
password. The first two characters are the salt itself.

The des_setkey and des_encrypt entries provide (rather primi
tive) access to the actual hashing algorithm. The argument of
des _ setkey is a character array of length 64 containing only
the characters with numerical value 0 and 1. If this string is
divided into groups of 8. the low-order bit in each group is
ignored; this gives a 56-bit key which is set into the machine.
This is the key that will be used with the hashing algorithm to
encrypt the string block with the function des_encrypt.

The argument to the des_encrypt entry is a character array of
length 64 containing only the characters with numerical value
o and 1. The argument array is modified in place to a similar
array representing the bits of the argument after having been
subjected to the hashing algorithm using the key set by
des_setkey. If edf/ag is zero. the argument is encrypted; if
non-zero. it is decrypted.

Note that decryption is not provided in the international ver
sion of crypt (3X) . The international version is part of the C
Programming Language Utilities, and the domestic version is
part of the Security Administration Utilities. If decryption is
attempted with the international version of des_encrypt. an
error message is printed.

Crypt. setkey. and encrypt are front-end routines that invoke
des_crypt, des _ setkey. and des_encrypt respectively.

The routines run _ setkey and run_crypt are designed for use by
applications that need cryptographic capabilities [such as
ed(1) and vi(1)] that must be compatible with the crypt(1)
user-level utility. Run_setkey establishes a two-way pipe con
nection with crypt(1) , using key as the password argument.
Run_crypt takes a block of characters and transforms the
cleartext or ciphertext into their ciphertext or cleartext using
crypt(1). Offset is the relative byte position from the beginning
of the file that the block of text provided in block is coming
from. Count is the number of characters in block, and con
nection is an array containing indices to a table of input and
output file streams. When encryption is finished, crypt_close is
used to terminate the connection with crypt(1).

Page 2 UP-13712

CRYPT (3X)

Run_setkey returns -1 if a connection with crypt(1) cannot be
established. This will occur on international versions of UNIX
where crypt(1) is not available. If a null key is passed to
run_setkey, a is returned. Otherwise, 1 is returned. Run_crypt
returns -1 if it cannot write output or read input from the pipe
attached to crypt. Otherwise it returns O.

DIAGNOSTICS
In the international version of crypt (3X) , a flag argument of 1
to des_encrypt is not accepted, and an error message is
printed.

SEE ALSO
getpass(3C) , passwd(4).
crypt(1), login(1), passwd(1) in the User's Reference Manual.

CAVEAT
The return value in crypt points to static data that are overwrit
ten by each call.

UP-13712 Page 3

CRYPT (3X)

[This page left blank.]

Page 4 UP-13712

CURSES (3X)

NAME
curses - terminal screen handling and optimization package

SYNOPSIS
The curses manual page is organized as follows:

In SYNOPSIS
- compiling information
- summary of parameters used by curses routines
- alphabetical list of curses routines, showing their
parameters

In DESCRIPTION:
- An overview of how curses routines should be used

In ROUTINES, descriptions of each curses routines, are
grouped under the appropriate topics:
- Overall Screen Manipulation
- Window and Pad Manipulation
- Output
- Input
- Output Options Setting
- Input Options Setting
- Environment Queries
- Soft Labels
- Low-level Curses Access
- Terminfo-Level Manipulations
- Termcap Emulation
- Miscellaneous
- Use of curser

Then come sections on:
- ATIRIBUTES
- FUNCTION CALLS
- LINE GRAPHICS

cc [flag ...] file ... -Icurses [library ...]

#include < eurses.h >

UP-13712

(automatically includes
< stdio.h >, < termio.h > ,
and < unctrl.h >) .

Page 1

CURSES (3X)

The parameters in the following list are not global vari
ables, but rather this is a summary of the parameters
used by the curses library routines. All routines return the
int values ERR or OK unless otherwise noted. Routines
that return pointers always return NULL on error. (ERR,
OK, and NULL are all defined in < curses.h > .) Routines
that return integers are not listed in the parameter list
below.

bool bf

char **area,*boolnames[], *boolcodes[], *boolfnames[],
*bp

char *cap, *capname, codename[2], erasechar, *filename,
*fmt

char *keyname, killchar, *Iabel, *Iongname
char *name, *numnames[], *numcodes[], *numfnames[]
char *slkJabel, *str, *strnames[], *strcodes[], *strfnames[]
char *term, *tgetstr, *tigetstr, *tgoto, *tparm, *type

chtype attrs, ch, horch, vertch

FILE *infd, * outfd

int begin_x, begin_y, begline, bot, c, c.ol, count
int dmaxcol, dmaxrow, dmincol, dminrow, *errret, fildes
int (*init()), labfmt, labnum, line
int ms, ncols, new, newcol, newrow, nlines, numlines
int oldcol, oldrow, overlay
int p1, p2, p9, pmincol, pminrow, (*putc()), row
int smaxcol, smaxrow, smincol, sminrow, start
int tenths, top, visibility, x, y

SCREEN *new, *newterm, *set_term

TERMINAL *cur_term, *nterm, *oterm

va Jist varglist

WINDOW *curscr, *dstwin, *initscr, *newpad, *newwin,
*orig

WINDOW *pad, *srcwin, *stdscr, *subpad, *subwin, *win

addch(ch)
addstr(str)
attroff(attrs)
attron (attrs)
attrset (att rs)

Page 2 UP-13712

baudrate()
beepO
box (win , vertch, horch)
cbreak()
clear()
clearok(win, bf)
clrtobot()
clrtoeolO

CURSES (3X)

copywin(srcwin, dstwin, sminrow, smincol, dminrow,
dmincol, dmaxrow, dmaxcol, overlay) II

curs _ set (visibility)
def _prog_ mode ()
def_shell_mode()
del_ curterm (oterm)
delay _ output(ms)
delch()
deleteln()
delwin (win)
doupdateO
draino(ms)
echoO
echochar(ch)
endwin()
eraseO
erasechar ()
filter 0
flash()
flushinpO
garbagedlines(win, begline, numlines)
getbegyx(win, y, x)
getch()
getmaxyx(win, y, x)
getstr(str)
getsyx(y, x)
getyx(win, y, x)
halfdelay(tenths)
hasJcO
hasJIO
idlok(win, bf)
inch()
initscrO
insch(ch)

UP-13712 Page 3

CURSES (3X)

insertlnO
intrflush(win, bf)
isendwin()
keyname(c)
keypad (win, bf)
killchar()
leaveok(win, bf)
longname()
meta(win, bf)
move(y, x)
mvaddch(y, x, ch)
mvaddstr (y, x, str)
mvcur(oldrow, oldcol, newrow, newcol)
mvdelch (y, x)
mvgetch(y, x)
mvgetstr(y, x, str)
mvinch(y, x)
mvinsch(y, x, ch)
mvprintw(y, x, fmt [, arg 0 0 0])
mvscanw(y, X, fmt [, arg 000])
mvwaddch(win, y, X, ch)
mvwaddstr(win, y, X, str)
mvwdelch(win, y, X)
mvwgetch(win, y, X)
mvwgetstr(win, y, X, str)
mvwin(win, y, X)
mvwinch(win, y, X)
mvwinsch(win, y, X, ch)
mvwprintw(win, y, X, fmt [, arg 0 00])
mvwscanw(win, y, X, fmt [, arg 000])
napms(ms)
new pad (nlines, ncols)
newterm (type, outfd, infd)
newwin(nlines, ncols, begin_y, begin_x)
nlO
nocbreak()
nodelay(win, bf)
noechoO
nonlO
noraw()
notimeout(win, bf)
overlay(srcwin, dstwin)

Page 4 UP-13712

overwrite (srcwin, dstwin)
pechochar(pad, ch)

CURSES (3X)

pnoutrefresh(pad, pminrow, pmincol, sminrow, smincol,
smaxrow, smaxcol)n

prefresh(pad, pminrow, pmincol, sminrow, smincol,
smaxrow, smaxcol)n

printw (fmt [, arg ...])
putp(str)
raw()
refresh()
reset_prog_ mode()
reset_shell_mode 0
resettyO
restartterm(term, fildes, errret)
ripoffline(line, init)
savetty()
scanw (fmt [, arg ...])
scr _dump (filename)
scr Jnit(filename)
scr _restore (filename)
scroll (win)
scrollok(win, bf)
set_ curterm (nterm)
set_ term (new)
setscrreg(top, bot)
setsyx (y, x)
setupterm(term, fildes, errret)
slk_clearO
slkJnit(fmt)
slkJabel(labnum)
slk_noutrefreshO
slk_refreshO
slk_restoreO
slk_set(labnum, label, fmt)
slk _touch ()
standend()
standout()
subpad(orig, nlines, ncols, begin_y, begin_x)
subwin(orig, nlines, ncols, begin_y, begin_x)
tgetent(bp, name)
tgetflag (codename)
tgetnum (codename)

UP-13712 Page 5

CURSES (3X)

tgetstr(codename, area)
tgoto(cap. col. row)
tigetflag (capname)
tigetnum (capname)
tigetstr(capname)
touchline(win. start. count)
touchwin (win)
tparm(str. p1. p2. . ..• p9)
tputs(str. count. putc)
traceoff()
traceon()
typeahead (fildes)
unctrl(c)
ungetch(c)
vidattr(attrs)
vidputs(attrs. putc)
vwprintw(win. fmt. varglist)
vwscanw(win. fmt. varglist)
waddch(win. ch)
waddstr(win. str)
wattroff(win. attrs)
wattron(win. attrs)
wattrset(win. attrs)
wclear(win)
wclrtobot(win)
wclrtoeol(win)
wdelch (win)
wdeleteln (win)
wechochar(win. ch)
werase(win)
wgetch (win)
wgetstr(win. str)
winch (win)
winsch (win. ch)
winsertln (win)
wmove (win. y. x)
wnoutrefresh (win)
wprintw(win. fmt L arg ...])
wrefresh (win)
wscanw(win. fmt L arg ...])
wsetscrreg(win. top. bot)
wstandend (win)

Page 6 UP-13712

CURSES (3X)

wstandout(win)

DESCRIPTION
The curses routines give the user a terminal-independent
method of updating screens with reasonable optimization.

In order to initialize the routines. the routine initscrO or
newterm () must be called before any of the other routines
that deal with windows and screens are used. (Three excep
tions are noted where they apply.) The routine endwin() must
be called before exiting. To get character-at-a-time input
without echoing. (most interactive. screen oriented programs
want this) after calling initscrO you should call "cbreakO;
noechoO;" Most programs would additionally call "nonIO;
intrflush (stdscr, FALSE); keypad(stdscr, TRUE);".

Before a curses program is run. a terminal's tab stops should
be set and its initialization strings. if defined. must be output.
This can be done by executing the tput init command after
the shell environment variable TERM has been exported. For
further details. see profile (4). tput(1). and the "Tabs and Initiali
zation" subsection of term info (4).

The curses library contains routines that manipulate data
structures called windows that can be thought of as two
dimensional arrays of characters representing all or part of a
terminal screen. A default window called stdscr is supplied.
which is the size of the terminal screen. Others may be
created with newwinO. Windows are referred to by variables
declared as WINDOW *; the type WINDOW is defined in
< curses.h > to be a C structure. These data structures are
manipulated with routines described below. among which the
most basic are moveO and addchO. (More general versions
of these routines are included with names beginning with w.
allowing you to specify a window. The routines not beginning
with w usually affect stdscr.) Then refreshO is called. telling
the routines to make the user's terminal screen look like
stdscr. The characters in a window are actually of type
chtype. so that other information about the character may
also be stored with each character.

Special windows called pads may also be manipulated. These
are windows which are not constrained to the size of the
screen and whose contents need not be displayed completely.
See the description of newpad () under "Window and Pad

UP-13712 Page 7

CURSES(3X)

Manipulationll for more information.

In addition to drawing characters on the screen, video attri
butes may be included which cause the characters to show up
in modes such as underlined or in reverse video on terminals
that support such display enhancements. Line drawing char
acters may be specified to be output. On input, curses is also
able to translate arrow and function keys that transmit escape
sequences into single values. The video attributes, line draw
ing characters, and input values use names, defined in
< curses.h >, such as A_REVERSE, ACS_HLINE, and
KEY_LEFT.

curses also defines the WINDOW * variable, curser, which is
used only for certain low-level operations like clearing and
redrawing a garbaged screen. curser can be used in only a
few routines. If the window argument to clearokO is curser,
the next call to wrefresh () with any window will cause the
screen to be cleared and repainted from scratch. If the win
dow argument to wrefreshO is curser, the screen in immedi
ately cleared and repainted from scratch. This is how most
programs would implement a "repaint-screen" function. More
information on uSing curser is provided where its use is
appropriate.

The environment variables LINES and COLUMNS may be set
to override terminfo's idea of how large a screen is. These
may be used where the size of a screen is changeable.

If the environment variable TERMINFO is defined, any pro
gram using curses will check for a local terminal definition
before checking in the standard place. For example, if the
environment variable TERM is set to att4425, then the com
piled terminal definition is found in /usr/lib/terminfo/a/att4425.
(The a is copied from the first letter of att4425 to avoid crea
tion of huge directories.) However, if TERMINFO is set to
$HOME/myterms, curses will first check
$HOME/myterms/a/att4425 , and, if that fails, will then check
/usr/lib/terminfo/a/att4425. This is useful for developing
experimental definitions or when write permission on
/usr/lib/terminfo is not available.

The integer variables LIN ES and COlS are defined in
< curses.h >, and will be filled in by initscrO with the size of
the screen. (For more information, see the subsection

Page 8 UP-13712

CURSES (3X)

"Terminfo-Level Manipulations".) The constants TRUE and
FALSE have the values 1 and 0, respectively. The constants
ERR and OK are returned by routines to indicate whether the
routine successfully completed. These constants are also
defined in < curses.h > .

ROUTINES
Many of the following routines have two or more versions.
The routines prefixed with w require a window argument. The
routines prefixed with p require a pad argument. Those
without a prefix generally use stdscr.

The routines prefixed with mv require y and x coordinates to
move to before performing the appropriate action. The mv()
routines imply a call to moveO before the call to the other
routine. The window argument is always specified before the
coordinates. yalways refers to the row (of the window), and x
always refers to the column. The upper left corner is always
(0,0), not (1,1). The routines prefixed with mvw take both a
window argument and y and x coordinates.

In each case, win is the window affected and pad is the pad
affected. (win and pad are always of type WINDOW *.)
Option-setting routines require a boolean flag bf with the value
TRUE or FALSE. (bf is always of type bool.) The types WIN·
DOW, bool, and chtype are defined in < curses.h >. See the
SYNOPSIS for a summary of what types all variables are.

All routines return either the integer ERR or the integer OK,
unless otherwise noted. Routines that return pointers always
return NULL on error.

Overall Screen Manipulation
WINDOW *initscrO The first routine called should almost

always be initscrO. (The exceptions are
slkJnitO, filter 0 , and ripofflineO.) This
will determine the terminal type and ini
tialize all curses data structures.
initscrO also arranges that the first call
to refreshO will clear the screen. If
errors occur, initscrO will write an
appropriate error message to standard
error and exit; otherwise, a pointer to
stdscr is returned. If the program wants
an indication of error conditions,

UP-13712 Page 9

CURSES (3X)

endwin()

isendwin()

newtermO should be used instead of
initscrO. initscrO should only be called
once per application.

A program should always call endwinO
before exiting or escaping from curses
mode temporarily, to do a shell escape
or system (38) call, for example. This
routine will restore tty (7) modes, move
the cursor to the lower left corner of the
screen and reset the terminal into the
proper non-visual mode. To resume
after a temporary escape, call
wrefreshO or doupdate().

Returns TRUE if endwin() has been
called without any subsequent calls to
wrefresh () .

SCREEN *newterm(type, outfd, infd)

Page 10

A program that outputs to more than
one terminal must use newterm 0 for
each terminal instead of initscrO. A
program that wants an indication of
error conditions, so that it may continue
to run in a line-oriented mode if the ter
minal cannot support a screen-oriented
program, must also use this routine.
newterm () should be called once for
each terminal. It returns a variable of
type SCREEN* that should be saved as
a reference to that terminal. The argu
ments are the type of the terminal to be
used in place of the environment vari
able TERM; outfd, a stdio(3S) file
pointer for output to the terminal; and
infd, another file pointer for input from
the terminal. When it is done running,
the program must also call endwin() for
each terminal being used. If newtermO
is called more than once for the same
terminal, the first terminal referred to
must be the last one for which endwinO

UP-13712

CURSES (3X)

is called.

SCREEN *set_ term (new)
This routine is used to switch between
different terminals. The screen refer
ence new becomes the new current ter
minal. A pointer to the screen of the
previous terminal is returned by the rou
tine. This is the only routine which mani
pulates SCREEN pointers; all other rou
tines affect only the current terminal.

Window and Pad Manipulation
refresh()
wrefresh (win) These routines (or prefreshO,

wnoutrefresh (win)
doupdate()

UP-13712

pnoutrefresh(), wnoutrefresh(), or
doupdateO) must be called to write out
put to the terminal, as most other rou
tines merely manipulate data structures.
wrefreshO copies the named window to
the physical terminal screen, taking into
account what is already there in order to
minimize the amount of information
that's sent to the terminal (called optimi
zation). refreshO does the same thing,
except it uses stdscr as a default win
dow. Unless leaveok() has been
enabled, the physical cursor of the ter
minal is left at the location of the
window's cursor. The number of charac
ters output to the terminal is returned.

Note that refresh () is a macro.

These two routines allow multiple
updates to the physical terminal screen
with more efficiency than wrefresh ()
alone. How this is accomplished is
described in the next paragraph.

curses keeps two data structures
representing the terminal screen: a phy
sical terminal screen, describing what is

Page 11

CURSES (3X)

actually on the screen, and a virtual ter
minal screen, describing what the pro
grammer wants to have on the screen.
wrefreshO works by first calling
wnoutrefresh (), which copys the named
window to the virtual screen, and then
by calling doupdateO, which compares
the virtual screen to the physical screen
and does the actual update. If the pro
grammer wishes to output several win
dows at once, a series of calls to
wrefresh ° will result in alternating calls
to wnoutrefreshO and doupdateO,
causing several bursts of output to the
screen. By first calling wnoutrefreshO
for each window, it is then possible to
call doupdateO once, resulting in only
one burst of output, with probably fewer
total characters transmitted and certainly
less processor time used.

WINDOW *newwin(nlines, nco Is, begin_y, begin_x)
Create and return a pointer to a new
window with the given number of lines
(or rows), nlines, and columns, nco/so
The upper left corner of the window is at
line beginy, column begin_x. If either
nlines or ncols is 0, they will be set to
the value of lines-begin y and
cols-begin_x. A new full-screen window
is created by calling newwin(O,O,O,O).

mvwin(win, y, x) Move the window so that the upper left
corner will be at position (y, x). If the
move would cause the window to be off
the screen, it is an error and the window
is not moved.

WINDOW *subwin(orig, nlines, ncols, begin_y, begin_x)
Create and return a pointer to a new
window with the given number of lines
(or rows). nlines, and columns, ncols.
The window is at position (begin y,

Page 12 UP-13712

delwin (win)

CURSES (3X)

begin_x) on the screen. (This position is
relative to the screen, and not to the
window orig.) The window is made in
the middle of the window orig, so that
changes made to one window will affect
both windows. When using this routine,
often it will be necessary to call
touchwinO or touchlineO on orig
before calling wrefresh().

Delete the named window, freeing up all
memory associated with it. In the case
of overlapping windows, subwindows
should be deleted before the main win
dow.

WINDOW *newpad(nlines, ncols)
Create and return a pointer to a new
pad data structure with the given
number of lines (or rows), nlines, and
columns, ncols. A pad is a window that
is not restricted by the screen size and
is not necessarily associated with a par
ticular part of the screen. Pads can be
used when a large window is needed,
and only a part of the window will be on
the screen at one time. Automatic
refreshes of pads (e.g. from scrolling or
echoing of input) do not occur. It is not
legal to call wrefresh () with a pad as an
argument; the routines prefresh 0 or
pnoutrefreshO should be called instead.
Note that these routines require addi
tional parameters to specify the part of
the pad to be displayed and the location
on the screen to be used for display.

WINDOW *subpad(orig, nlines, ncols, begin_y, begin_x)
Create and return a pointer to a subwin
dow within a pad with the given number
of lines (or rows), nlines, and columns,
ncols. Unlike subwin () , which uses
screen coordinates, the window is at

UP-13712 Page 13

CURSES (3X)

position (beginy, begin_x) on the pad.
The window is made in the middle of the
window orig. so that changes made to
one window will affect both windows.
When using this routine. often it will be
necessary to call touchwin () or touch
line() on orig before calling prefresh().

prefresh(pad. pminrow. pmincol. sminrow. smincol.
smaxrow. smaxcol)

pnoutrefresh(pad. pminrow. pmincol. sminrow. smincol.
smaxrow. smaxcol)

Output

These routines are analogous to
wrefreshO and wnoutrefresh() except
that pads. instead of windows. are
involved. The additional parameters are
needed to indicate what part of the pad
and screen are involved. pminrow and
pminco/ specify the upper left corner. in
the pad. of the rectangle to be
displayed. sminrow. sminco/. smaxrow.
and smaxco/ specify the edges. on the
screen. of the rectangle to be displayed
in. The lower right corner in the pad of
the rectangle to be displayed is calcu
lated from the screen coordinates. since
the rectangles must be the same size.
Both rectangles must be entirely con
tained within their respective structures.
Negative values of pminrow. pminco/.
sminrow. or sminco/ are treated as if
they were zero.

These routines are used to "draw" text on windows.

addch(ch)
waddch(win. ch)
mvaddch(y. x. ch)
mvwaddch(win. y. x. ch)

Page 14

The character ch is put into the window
at the current cursor position of the win
dow and the position of the window

UP-13712

echochar(ch)
wechochar(win, ch)

CURSES (3X)

cursor is advanced. Its function is simi
lar to that of putchar (see putc(3S)). At
the right margin, an automatic newline is
performed. At the bottom of the scrol
ling region, if scroliokO is enabled, the
scrolling region will be scrolled up one
line.

If ch is a tab, newline, or backspace, the
cursor will be moved appropriately within
the window. A newline also does a
clrtoeolO before moving. Tabs are con
sidered to be at every eighth column. If
ch is another control character, it will be
drawn in the "X notation. (Calling
winchO after adding a control character
will not return the control character, but
instead will return the representation of
the control character.)

Video attributes can be combined with a
character by or-ing them into the param
eter. This will result in these attributes
also being set. (The intent here is that
text, including attributes, can be copied
from one place to another using inchO
and addchO.) See standoutO, below.

Note that ch is actually of type chtype,
not a character.

Note that addch 0, mvaddch 0, and
mvwaddchO, are macros.

pechochar(pad, ch) These routines are functionally
equivalent to a call to addch(ch) fol
lowed by a call to refresh 0, a call to
waddch(win, ch) followed by a call to
wrefresh (win), or a call to waddch (pad,
ch) followed by a call to prefresh (pad).
The knowledge that only a single charac
ter is being output is taken into

UP-13712 Page 15

CURSES (3X)

addstr(str)

consideration and, for non-control char
acters, a considerable performance gain
can be seen by using these routines
instead of their equivalents. In the case
of pechochar(), the last location of the
pad on the screen is reused for the
arguments to prefresh().

Note that ch is actually of type chtype,
not a character.

Note that echochar() is a macro.

waddstr(win, str)
mvwaddstr(win, y, x, str)
mvaddstr(y, x, str) These routines write all the characters of

the null-terminated character string sfr
on the given window. This is equivalent
to calling waddch() once for each char
acter in the string.

attroff(attrs)
wattroff(win, attrs)
attron (attrs)
wattron(win, attrs)
attrset(attrs)
wattrset(win, attrs)
standend()
wstandend (win)
standout()
wstandout(win)

Page 16

Note that addstr(), mvaddstr(), and
mvwaddstr() are macros.

These routines manipulate the current
attributes of the named window. These
attributes can be any combination of
A_STANDOUT, A_REVERSE, A_BOLD,
A_DIM, A_BLINK, A_UNDERLINE, and
A_AL TCHARSET. These constants are
defined in < curses.h > and can be
combined with the C logical OR (:)
operator.

The current attributes of a window are

UP-13712

beepO
flashO

CURSES(3X)

applied to all characters that are written
into the window with waddch(). Attri
butes are a property of the character,
and move with the character through
any scrolling and insert/delete
line/character operations. To the extent
possible on the particular terminal, they
will be displayed as the graphic rendition
of the characters put on the screen.

attrset(attrs) sets the current attributes
of the given window to attrs.
attroff(attrs) turns off the named attri
butes without turning on or off any other
attributes. attron(attrs) turns on the
named attributes without affecting any
others. standout() is the same as
attron(A_STANDOUT). standend() is
the same as attrset (0), that is, it turns
off all attributes.

Note that attrs is actually of type
chtype, not a character.

Note that attroff(), attron 0, attrsetO,
standend 0, and standoutO are macros.

These routines are used to signal the ter
minal user. beepO will sound the audi
ble alarm on the terminal, if possible,
and if not, will flash the screen (visible
bell), if that is possible. flashO will flash
the screen, and if that is not possible,
will sound the audible signal. If neither
signal is possible, nothing will happen.
Nearly all terminals have an audible sig
nal (bell or beep) but only some can
flash the screen.

box (win, vertch, horch)

UP-13712

A box is drawn around the edge of the
window, win. vertch and horch are the
characters the box is to be drawn with.

Page 17

CURSES (3X)

erase()
werase(win)

clear()
wclear(win)

clrtobotO
wclrtobot(win)

clrtoeol()
wclrtoeol (win)

delay _ output(ms)

delch()
wdelch (win)
mvdelch(y, x)

If vertch and horch are 0, then appropri
ate default characters, ACS _ VLIN E and
ACS_HLINE, will be used.

Note that vertch and horch are actually
of type chtype, not characters.

These routines copy blanks to every
position in the window.

Note that erase() is a macro.

These routines are like erase() and
weraseO, but they also call clearokO,
arranging that the screen will be cleared
completely on the next call to
wrefreshO for that window, and
repainted from scratch.

Note that clearO is a macro.

All lines below the cursor in this window
are erased. Also, the current line to the
right of the cursor, inclusive, is erased.

Note that clrtobotO is a macro.

The current line to the right of the cur
sor, inclusive, is erased.

Note that clrtoeolO is a macro.

Insert a ms millisecond pause in the out
put. It is not recommended that this
routine be used extensively, because
padding characters are used rather than
a processor pause.

mvwdelch(win, y, x) The character under the cursor in the
window is deleted. All characters to the

Page 18 UP-13712

deletelnO
wdeleteln (win)

getyx(win. y. x)

getbegyx(win. y. x)

CURSES (3X)

right on the same line are moved to the
left one position and the last character
on the line is filled with a blank. The cur
sor position does not change (after mov
ing to (y. x). if specified). (This does not
imply use of the hardware "delete
character" feature.)

Note that delch(). mvdelch(). and
mvwdelch () are macros.

The line under the cursor in the window
is deleted. All lines below the current
line are moved up one line. The bottom
line of the window is cleared. The cursor
position does not change. (This does
not imply use of the hardware "delete
line" feature.)

Note that deleteln () is a macro.

The cursor position of the window is
placed in the two integer variables y and
x. This is implemented as a macro. so
no "&" is necessary before the vari
ables.

getmaxyx(win. y. x) Like getyxO. these routines store the
current beginning coordinates and size
of the specified window.

insch(ch)

Note that getbegyxO and getmaxyxO
are macros.

winsch(win. ch)
mvwinsch(win. y. x. ch)
mvinsch(y. x. ch) The character ch is inserted before the

character under the cursor. All charac
ters to the right are moved one space to
the right. possibly losing the rightmost
character of the line. The cursor posi
tion does not change (after moving to (y.

UP-13712 Page 19

CURSES (3X)

insertln()
winsertln (win)

move(y, x)
wmove(win, y, x)

X), if specified). (This does not imply use
of the hardware "insert-character"
feature.)

Note that ch is actually of type chtype,
not a character.

Note that inschO, mvinschO, and
mvwinsch 0 are macros.

A blank line is inserted above the current
line and the bottom line is lost. (This
does not imply use of the hardware
"insert-line" feature.)

Note that insertln 0 is a macro.

The cursor associated with the window is
moved to line (row) y, column x. This
does not move the physical cursor of the
terminal until refresh 0 is called. The
position specified is relative to the upper
left corner of the window, which is (0, 0).

Note that move() is a macro.

overlay(srcwin, dstwin)
overwrite(srcwin, dstwin)

These routines overlay srcwin on top of
dstwin; that is, all text in srcwin is
copied into dstwin. scrwin and dstwin
need not be the same size; only text
where the two windows overlap is
copied. The difference is that overlayO
is non-destructive (blanks are not
copied), while overwriteO is destructive.

copywin(srcwin, dstwin, sminrow, smincol, dminrow,

Page 20

dmincol, dmaxrow, dmaxcol, overlay)
This routine provides a finer grain of
control over the overlay() and
overwrite 0 routines. Like in the
prefreshO routine, a rectangle is speci
fied in the destination window, (dminrow,

UP-13712

printw (fmt [, arg ...])

CURSES(3X)

dminco/) and (dmaxrow, dmaxco/) , and
the upper-left-corner coordinates of the
source window, (sminrow, sminco/). If
the argument overlay is true, then copy
ing is non-destructive, as in overlay().

wprintw(win, fmt L arg ...])
mvprintw(y, x, fmt [. arg ...])
mvwprintw(win, y, x, fmt [. arg ...])

These routines are analogous to
printf(3). The string which would be out
put by printf(3) is instead output using
waddstr() on the given window.

vwprintw(win, fmt, varglist)
This routine corresponds to vfprintf (3S).
It performs a wprintw() using a variable
argument list. The third argument is a
va _list, a pointer to a list of arguments,
as defined in < varargs.h >. See the
vprintf (3S) and varargs (5) manual pages
for a detailed description on how to use
variable argument lists.

scroll (win) The window is scrolled up one line. This
involves moving the lines in the window
data structure. As an optimization, if the
window is stdscr and the scrolling region
is the entire window, the physical screen
will be scrolled at the same time.

touchwin (win)
touchline(win, start, count)

UP-13712

Throwaway all optimization information
about which parts of the window have
been touched, by pretending that the
entire window has been drawn on. This
is sometimes necessary when using
overlapping windows, since a change to
one window will affect the other window,
but the records of which lines have been
changed in the other window will not
reflect the change. touchline() only

Page 21

CURSES (3X)

Input
getchO
wgetch (win)
mvgetch (y, x)

pretends that count lines have been
changed, beginning with line start .

mvwgetch(win, y, x) A character is read from the terminal
associated with the window. In NODE
LAY mode, if there is no input waiting,
the value ERR is returned. In DELAY
mode, the program will hang until the
system passes text through to the pro
gram. Depending on the setting of
cbreakO, this will be after one character
(CBREAK mode), or after the first new
line (NOCBREAK mode). In HALF
DELAY mode, the program will hang
until a character is typed or the specified
timeout has been reached. Unless noe
choO has been set, the character will
also be echoed into the designated win
dow. No refreshO will occur between
the moveO and the getchO done within
the routines mvgetch 0 and
mvwgetch ().

Page 22

When using getch 0, wgetch 0,
mvgetchO, or mvwgetchO, do not set
both NOCBREAK mode (nocbreakO)
and ECHO mode (echoO) at the same
time. Depending on the state of the
tty (7) driver when each character is
typed, the program may produce
undesirable results.

If keypad (win, TRUE) has been called,
and a function key is pressed, the token
for that function key will be returned
instead of the raw characters. (See
keypadO under "Input Options Setting. ")
Possible function keys are defined in
< curses.h > with integers beginning

UP-13712

getstr(str)

CURSES (3X)

with 0401, whose names begin with
KEY. If a character is received that
could be the beginning of a function key
(such as escape), curses will set a timer.
If the remainder of the sequence is not
received within the designated time, the
character will be passed through, other
wise the function key value will be
returned. For this reason, on many ter
minals, there will be a delay after a user
presses the escape key before the
escape is returned to the program. (Use
by a programmer of the escape key for
a single character routine is
discouraged. Also see notimeout()
below.)

Note that getch (), mvgetch (), and
mvwgetch() are macros.

wgetstr(win, str)
mvgetstr(y, x, str)
mvwgetstr(win, y, x, str)

flushinp()

ungetch(c)

UP-13712

A series of calls to getch () is made, until
a newline, carriage return, or enter key is
received. The resulting value is placed in
the area pointed at by the character
pointer sfr. The user's erase and kill
characters are interpreted. As in
mvgetch(), no refresh() is done
between the move() and getstr() within
the routines mvgetstr() and
mvwgetstr() .

Note that getstr(), mvgetstr(), and
mvwgetstr() are macros.

Throws away any typeahead that has
been typed by the user and has not yet
been read by the program.

Place c back onto the input queue to be
returned by the next call to wgetch().

Page 23

CURSES (3X)

inch()
winch (win)
mvinch (y, x)
mvwinch(win, y, x)

scanw(fmt [, arg ... J)

The character, of type chtype, at the
current position in the named window is
returned. If any attributes are set for
that position, their values will be DR'ed
into the value returned. The predefined
constants A_CHARTEXT and
A_ATTRIBUTES, defined in
< curses.h >, can be used with the C
logical AND (&) operator to extract the
character or attributes alone.

Note that inch (), winch (), mvinch (),
and mvwinchO are macros.

wscanw(win, fmt [, arg ...])
mvscanw(y, x, fmt [, arg ...])
mvwscanw(win, y, x, fmt [, arg ...])

These routines correspond to scanf(3S),
as do their arguments and return values.
wgetstr() is called on the window, and
the resulting line is used as input for the
scan.

vwscanw(win, fmt, ap)
This routine is similar to vwprintwO
above in that performs a wscanw()
using a variable argument list. The third
argument is a va_list, a pointer to a list
of arguments, as defined in
< varargs.h >. See the vprintf (3S) and
varargs (5) manual pages for a detailed
description on how to use variable argu
ment lists.

Output Options Setting
These routines set options within curses that deal with output.
All options are initially FALSE, unless otherwise stated. It is
not necessary to turn these options off before calling
endwin().

Page 24 UP-13712

clearok(win, bf)

idlok(win, bf)

leaveok(win, bf)

CURSES(3X)

If enabled (bf is TRUE), the next call to
wrefresh() with this window will clear
the screen completely and redraw the
entire screen from scratch. This is use
ful when the contents of the screen are
uncertain, or in some cases for a more
pleasing visual effect.

If enabled (bf is TRUE), curses will con
sider using the hardware "insert/delete
line" feature of terminals so equipped. If
disabled (bf is FALSE), curses will very
seldom use this feature. (The
"insert/delete-character" feature is
always considered.) This option should
be enabled only if your application
needs "insert/delete-line", for example,
for a screen editor. It is disabled by
default because "insert/delete-line"
tends to be visually annoying when used
in applications where it isn't really
needed. If "insert/delete-line" cannot be
used, curses will redraw the changed
portions of all lines.

Normally, the hardware cursor is left at
the location of the window cursor being
refreshed. This option allows the cursor
to be left wherever the update happens
to leave it. It is useful for applications
where the cursor is not used, since it
reduces the need for cursor motions. If
possible, the cursor is made invisible
when this option is enabled.

setscrreg (top, bot)
wsetscrreg(win, top, bot)

UP-13712

These routines allow the user to set a
software scrolling region in a window.
top and bot are the line numbers of the
top and bottom margin of the scrolling
region. (Line 0 is the top line of the win
dow.) If this option and scroliokO are

Page 25

CURSES (3X)

scrollok(win, bf)

nlO
nonlO

Page 26

enabled, an attempt to move off the bot
tom margin line will cause all lines in the
scrolling region to scroll up one line.
(Note that this has nothing to do with
use of a physical scrolling region capa
bility in the terminal, like that in the DEC
VT100. Only the text of the window is
scrolled; if idlok() is enabled and the ter
minal has either a scrolling region or
"insert/delete-line" capability, they will
probably be used by the output rou
tines.)

Note that setscrregO and wsetscrregO
are macros.

This option controls what happens when
the cursor of a window is moved off the
edge of the window or scrolling region,
either from a newline on the bottom line,
or typing the last character of the last
line. If disabled (bf is FALSE) I the cur
sor is left on the bottom line at the loca
tion where the offending character was
entered. If enabled (bf is TRUE),
wrefreshO is called on the window, and
then the physical terminal and window
are scrolled up one line. (Note that in
order to get the physical scrolling effect
on the terminal, it is also necessary to
call idlokO.)

These routines control whether newline
is translated into carriage return and
linefeed on output, and whether return is
translated into newline on input. Initially,
the translations do occur. By disabling
these translations using non I 0, curses is
able to make better use of the linefeed
capability, resulting in faster cursor
motion.

UP-13712

CURSES(3X)

Input Options Setting
These routines set options within curses that deal with input.
The options involve using ioctl(2) and therefore interact with
curses routines. It is not necessary to turn these options off
before calling endwin().

For more information on these options, see Chapter 10 of the
Programmer's Guide.

cbreak()
nocbreak()

echo()
noechoO

UP-13712

These two routines put the terminal into
and out of CBREAK mode, respectively.
In CBREAK mode, characters typed by
the user are immediately available to the
program and erase/kill character pro
cessing is not performed. When in
NOCBREAK mode, the tty driver will
buffer characters typed until a newline
or carriage return is typed. Interrupt
and flow-control characters are unaf
fected by this mode (see termio (7)). Ini
tially the terminal mayor may not be in
CBREAK mode, as it is inherited, there
fore, a program should call cbreak() or
nocbreak() explicitly. Most interactive
programs using curses will set CBREAK
mode.

Note that cbreak() overrides raw(). See
getch() under "Input" for a discussion of
how these routines interact with echoO
and noecho().

These routines control whether charac
ters typed by the user are echoed by
getchO as they are typed. Echoing by
the tty driver is always disabled, but ini
tially getch() is in ECHO mode, so char
acters typed are echoed. Authors of
most interactive programs prefer to do
their own echoing in a controlled area of
the screen, or not to echo at all, so they
disable echoing by calling noecho().

Page 27

CURSES (3X)

halfdelay(tenths)

intrflush(win, bf)

keypad (win, bf)

meta (win, bf)

Page 28

See getch () under "Inpue for a discus
sion of how these routines interact with
cbreakO and nocbreakO.

Half-delay mode is similar to CBREAK
mode in that characters typed by the
user are immediately available to the
program. However, after blocking for
tenths tenths of seconds, ERR will be
returned if nothing has been typed.
tenths must be a number between 1 and
255. Use nocbreakO to leave half-delay
mode.

If this option is enabled, when an inter
rupt key is pressed on the keyboard
(interrupt, break, quit) all output in the
tty driver queue will be flushed, giving
the effect of faster response to the inter
rupt, but causing curses to have the
wrong idea of what is on the screen.
Disabling the option prevents the flush.
The default for the option is inherited
from the tty driver settings. The window
argument is ignored.

This option enables the keypad of the
user's terminal. If enabled, the user can
press a function key (such as an arrow
key) and wgetchO will return a single
value representing the function key, as
in KEY_LEFT. If disabled, curses will
not treat function keys specially and the
program would have to interpret the
escape sequences itself. If the keypad
in the terminal can be turned on (made
to transmit) and off (made to work
locally), turning on this option will cause
the terminal keypad to be turned on
when wgetchO is called.

If enabled, characters returned by
wgetchO are transmitted with all 8 bits,
instead of with the highest bit stripped.

UP-13712

nodelay(win, bf)

notimeout(win, bf)

raw()
norawO

typeahead (fildes)

UP-13712

CURSES (3X)

In order for metaO to work correctly, the
km (has_meta_key) capability has to be
specified in the terminal's terminfo(4)
entry.

This option causes wgetch () to be a
non-blocking call. If no input is ready,
wgetch() will return ERR. If disabled,
wgetch () will hang until a key is
pressed.

While interpreting an input escape
sequence, wgetchO will set a timer while
waiting for the next character. If
notimeout(win, TRUE) is called, then
wgetch() will not set a timer. The pur
pose of the timeout is to differentiate
between sequences received from a
function key and those typed by a user.

The terminal is placed into or out of raw
mode. RAW mode is similar to CBREAK
mode, in that characters typed are
immediately passed through to the user
program. The differences are that in
RAW mode, the interrupt, quit, suspend,
and flow control characters are passed
through uninterpreted, instead of gen
erating a signal. RAW mode also causes
a-bit input and output. The behavior of
the BREAK key depends on other bits in
the tty (7) driver that are not set by
curses.

curses does "line-breakout optimization"
by looking for typeahead periodically
while updating the screen. If input is
found, and it is coming from a tty, the
current update will be postponed until
refreshO or doupdateO is called again.
This allows faster response to com
mands typed in advance. Normally, the
file descriptor for the input FILE pointer

Page 29

CURSES (3X)

passed to newterm (), or stdin in the
case that initscrO was used, will be
used to do this typeahead checking.
The typeahead () routine specifies that
the file descriptor fildes is to be used to
check for typeahead instead. If fildes is
-1, then no typeahead checking will be
done.

Note that fi/des is a file descriptor, not a
< stdio.h > FILE pointer.

Environment Queries
baud rate 0 Returns the output speed of the termi

nal. The number returned is in bits per
second, for example, 9600, and is an
integer.

char erasechar ()

hasJcO

hasJIO

char kilicharO

The user's current erase character is
returned.

True if the terminal has insert- and
delete-character capabilities.

True if the terminal has insert- and
delete-line capabilities, or can simulate
them using scrolling regions. This might
be used to check to see if it would be
appropriate to turn on physical scrolling
using scroliokO.

The user's current line-kill character is
returned.

char *longnameO This routine returns a pointer to a static
area containing a verbose description of
the current terminal. The maximum
length of a verbose description is 128
characters. It is defined only after the
call to initscrO or newtermO. The area
is overwritten by each call to newterm 0
and is not restored by set_term 0 I so
the value should be saved between calls
to newtermO if longnameO is going to
be used with multiple terminals.

Page 30 UP-13712

CURSES(3X)

Soft Labels
If desired, curses will manipulate the set of soft function-key
labels that exist on many terminals. For those terminals that
do not have soft labels, if you want to simulate them, curses
will take over the bottom line of stdscr, reducing the size of
stdscr and the variable LINES. curses standardizes on 8
labels of 8 characters each.

slkJnit(labfmt) In order to use soft labels, this routine
must be called before initscr() or
newterm() is called. If initscr() winds
up using a line from stdscr to emulate
the soft labels, then labfmt determines
how the labels are arranged on the
screen. Setting labfmt to 0 indicates
that the labels are to be arranged in a
3-2-3 arrangement; 1 asks for a 4-4
arrangement.

slk_set(labnum, label, labfmt)

slk_refreshO

labnum is the label number, from 1 to 8.
label is the string to be put on the label,
up to 8 characters in length. A NULL
string or a NULL pointer will put up a
blank label. labfmt is one of 0, 1 or 2, to
indicate whether the label is to be left
justified, centered, or right-justified
within the label.

slk_noutrefreshO These routines correspond to the rou
tines wrefresh () and wnoutrefresh ().
Most applications would use
slk_noutrefreshO because a wrefreshO
will most likely soon follow.

char *slkJabel(labnum)
The current label for label number lab
num, with leading and trailing blanks
stripped, is returned.

slk _ clear() The soft labels are cleared from the
screen.

UP-13712 Page 31

CURSES (3X)

slk _touch ()

The soft labels are restored to the
screen after a slk_clearO.

All of the soft labels are forced to be
output the next time a slk_"outrefreshO
is performed.

Low-Level curses Access
The following routines give low-level access to various curses
functionality. These routines typically would be used inside of
library routines.

def _prog_mode ()
def _ shell_mode ()

reset_prog_mode()
reset_shell_mode ()

resettyO
savetty()

getsyx(y, x)

Page 32

Save the current terminal modes as the
"program" (in curses) or "shell" (not in
curses) state for use by the
reset_prog_mode() and
reset_shell_mode() routines. This is
done automatically by initscrO.

Restore the terminal to "program" (in
curses) or "shell" (out of curses) state.
These are done automatically by
endwin() and doupdate() after an
endwin (), so they normally would not be
called.

These routines save and restore the
state of the terminal modes. savettyO
saves the current state of the terminal in
a buffer and resettyO restores the state
to what it was at the last call to
savetty().

The current coordinates of the virtual
screen cursor are returned in y and x.
Like getyx() , the variables y and x do
not take an "&" before them. If
leaveok() is currently TRUE, then -1,-1
will be returned. If lines may have been
removed from the top of the screen
using ripoffline() and the values are to
be used beyond just passing them on to

UP-13712

CURSES(3X)

setsyxO, the value y + stdscr- > _yoffset
should be used for those other uses.

Note that getsyxO is a macro.

setsyx(y, x) The virtual screen cursor is set to y, x. If
y and x are both -1, then leaveokO will
be set. The two routines getsyxO and
setsyxO are designed to be used by a
library routine which manipulates curses
windows but does not want to mess up
the current position of the program's
cursor. The library routine would call
getsyxO at the beginning, do its mani
pulation of its own windows, do a
wnoutrefresh () on its windows, call set
syxO, and then call doupdateO.

ripoffline(line, init) This routine provides access to the same
facility that slkJnitO uses to reduce the
size of the screen. ripoffline() must be
called before initscr() or newtermO is
called. If line is positive, a line will be
removed from the top of stdscr; if nega
tive, a line will be removed from the bot
tom. When this is done inside initscrO,
the routine init 0 is called with two argu
ments: a window pointer to the 1-line
window that has been allocated and an
integer with the number of columns in
the window. Inside this initialization rou
tine, the integer variables lINES and
eOlS (defined in < curses.h » are not
guaranteed to be accurate and
wrefresh() or doupdateO must not be
called. It is allowable to call
wnoutrefreshO during the initialization
routine.

UP-13712

ripofflineO can be called up to five
times before calling initscrO or
newterm().

Page 33

CURSES (3X)

scr_dump(filename) The current contents of the virtual
screen are written to the file filename.

scr _restore(filename)

scr Jnit(filename)

curs _ set(visibility)

The virtual screen is set to the contents
of filename 1 which must have been writ
ten using scr_dumpO. The next call to
doupdate() will restore the screen to
what it looked like in the dump file.

The contents of filename are read in and
used to initialize the curses data struc
tures about what the terminal currently
has on its screen. If the data is deter
mined to be valid, curses will base its
next update of the screen on this infor
mation rather than clearing the screen
and starting from scratch. scr JnitO
would be used after initscrO or a
system (3S) call to share the screen with
another process which has done a
scr_dumpO after its endwinO call. The
data will be declared invalid if the time
stamp of the tty is old or the terminfo (4)
capability nrrmc is true.

The cursor is set to invisible, normal, or
very visible for visibility equal to 0, 1 or
2.

draino(ms) Wait until the output has drained enough
that it will only take ms more mil
liseconds to drain completely.

garbagedlines(win, begline, numlines)

Page 34

This routine indicates to curses that a
screen line is garbaged and should be
thrown away before having anything
written over the top of it. It could be
used for programs such as editors which
want a command to redraw just a single
line. Such a command could be used in
cases where there is a noisy communica
tions line and redrawing the entire
screen would be subject to even more

UP-13712

napms(ms)

CURSES (3X)

communication noise. Just redrawing
the single line gives some semblance of
hope that it would show up unblem
ished. The current location of the win
dow is used to determine which lines are
to be redrawn.

Sleep for ms milliseconds.

Terminfo-Level Manipulations
These low-level routines must be called by programs that need
to deal directly with the terminfo (4) database to handle certain
terminal capabilities, such as programming function keys. For
all other functionality, curses routines are more suitable and
their use is recommended.

Initially, setupterm() should be called. (Note that setupterm()
is automatically called by initscr() and newterm().) This will
define the set of terminal-dependent variables defined in the
terminfo (4) database. The terminfo (4) variables lines and
columns (see terminfo (4)) are initialized by setupterm () as fol
lows: if the environment variables LINES and COLUMNS
exist, their values are used. If the above environment vari
ables do not exist and the program is running in a layer (see
layers(1)), the size of the current layer is used. Otherwise, the
values for lines and columns specified in the terminfo (4) data
base are used.

The header files < curses.h > and < term.h > should be
included, in this order, to get the definitions for these strings,
numbers, and flags. Parameterized strings should be passed
through tparm() to instantiate them. All terminfo (4) strings
(including the output of tparm()) should be printed with
tputs() or putp(). Before exiting, reset_shell_mode() should
be called to restore the tty modes. Programs which use cur
sor addressing should output enter_ca_mode upon startup
and should output exit_ ca _mode before exiting (see ter
minfo(4)). (Programs desiring shell escapes should call
reset_shell_mode() and output exit_ca_mode before the shell
is called and should output enter_ca_mode and call
reset_proQ_mode() after returning from the shell. Note that
this is different from the curses routines (see endwin()).

UP-13712 Page 35

CURSES(3X)

setupterm (term, fildes, errret)
Reads in the terminfo (4) database, initial
izing the terminfo (4) structures, but does
not set up the output virtualization struc
tures used by curses. The terminal type
is in the character string term; if term is
NULL, the environment variable TERM
will be used. All output is to the file
descriptor fildes. If errret is not NULL,
then setupterm() will return OK or ERR
and store a status value in the integer
pointed to by errret. A status of 1 in
errret is normal, 0 means that the termi
nal could not be found, and -1 means
that the term info (4) database could not
be found. If errret is NULL, setuptermO
will print an error message upon finding
an error and exit. Thus, the simplest call
is setupterm «char *)0, 1, (int *)0),
which uses all the defaults.

The terminfo (4) boolean, numeric and
string variables are stored in a structure
of type TERMINAL. After setuptermO
returns successfully, the variable
cur_term (of type TERMINAL *) is ini
tialized with all of the information that
the terminfo (4) boolean, numeric and
string variables refer to. The pointer
may be saved before calling setup
term() again. Further calls to setup
term() will allocate new space rather
than reuse the space pointed to by
cur_term.

set_curterm(nterm) nterm is of type TERMINAL *
set_ curterm () sets the variable cur_term
to nterm, and makes all of the ter
minfo (4) boolean, numeric and string
variables use the values from nterm.

del_curterm(oterm) oterm is of type TERMINAL *
del_curterm() frees the space pointed

Page 36 UP-13712

CURSES (3X)

to by oterm and makes it available for
further use. If oterm is the same as
cur_term, then references to any of the
terminfo (4) boolean, numeric and string
variables thereafter may refer to invalid
memory locations until another setup
term 0 has been called.

restartterm(term, fildes, errret)
Like setupterm() after a memory
restore.

char *tparm(str, P1' P2' ... , Pg)
Instantiate the string str with parms Pi'
A pointer is returned to the result of str
with the parameters applied.

tputs(str, count, putc)
Apply padding to the string str and out
put it. str must be a terminfo (4) string
variable or the return value from
tparm(), tgetstrO, tigetstrO or tgotoO.
count is the number of lines affected, or
1 if not applicable. putc () is a
putchar (3S)-like routine to which the
characters are passed, one at a time.

putp(str) A routine that calls tputs (str, 1,
putchar()).

vidputs(attrs, putc) Output a string that puts the terminal in
the video attribute mode attrs, which is
any combination of the attributes listed
below. The characters are passed to the
putchar(3S)-like routine putc().

vidattr(attrs) Like vidputsO, except that it outputs
through putchar (3S).

mvcur(oldrow, oldcol, newrow, newcol)
Low-level cursor motion.

The following routines return the value of the capability
corresponding to the terminfo (4) capname passed to them,
such as xenl.

UP-13712 Page 37

CURSES(3X)

tigetflag(capname) The value -1 is returned if capname is
not a boolean capability.

tigetnum(capname) The value -2 is returned if capname is
not a numeric capability.

tigetstr(capname) The value (char *) -1 is returned if cap-
name is not a string capability.

char *boolnames[], *boolcodes[], *boolfnames[]
char *numnames[], *numcodes[], *numfnames[]
char *strnames[], *strcodes[], *strfnames[]

Termcap Emulation

These null-terminated arrays contain the
capnames, the termcap codes, and the
full C names, for each of the terminfo (4)
variables.

These routines are included as a conversion aid for programs
that use the term cap library. Their parameters are the same
and the routines are emulated using the terminfo (4) database.

tgetent(bp, name) Look up term cap entry for name. The
emulation ignores the buffer pointer bp.

tgetflag (codename) Get the boolean entry for codename.

tgetnum (codes) Get numeric entry for codename.

char *tgetstr(codename, area)
Return the string entry for codename. If
area is not NULL, then also store it in
the buffer pointed to by area and
advance area. tputs() should be used
to output the returned string.

char *tgoto(cap, col, row)
Instantiate the parameters into the given
capability. The output from this routine
is to be passed to tputs().

tputs(str, affcnt, putc)

Miscellaneous
traceoff()

Page 38

See tputs() above, under "Terminfo
Level Manipulations",

UP-13712

traeeon()

unetrl(c)

CURSES(3X)

Turn off and on debugging trace output
when using the debug version of the
curses library, /usr/lib/libdcurses.a. This
facility is available only to customers
with a source license.

This macro expands to a character string
which is a printable representation of the
character c. Control characters are
displayed in the "X notation. Printing
characters are displayed as is.

unetrl() is a macro,
< unetrl.h > , which is
included by < eurses.h > .

defined in
automatically

char *keyname(c) A character string corresponding to the
key c is returned.

filter 0 This routine is one of the few that is to
be called before initserO or newtermO
is called. It arranges things so that
curses thinks that there is a 1-line
screen. curses will not use any terminal
capabilities that assume that they know
what line on the screen the cursor is on.

Use of curser
The special window curser can be used in only a few routines.
If the window argument to elearokO is curser, the next call to
wrefreshO with any window will cause the screen to be
cleared and repainted from scratch. If the window argument
to wrefreshO is curser, the screen is immediately cleared and
repainted from scratch. (This is how most programs would
implement a "repaint-screen" routine.) The source window
argument to overlayO, overwrite 0 , and eopywinO may be
curser, in which case the current contents of the virtual termi
nal screen will be accessed.

Obsolete Calls
Various routines are provided to maintain compatibility in pro
grams written for older versions of the curses library. These
routines are all emulated as indicated below.

UP-13712 Page 39

CURSES (3X)

crmode()

fixterm()

gettmodeO

nocrmode()

resetterm ()

saveterm()

setterm()

ATTRIBUTES

Replaced by cbreak().

Replaced by reset_prog_mode().

A no-op.

Replaced by nocbreakO.

Replaced by reset_shell_modeO.

Replaced by def_prog_mode().

Replaced by setupterm().

The following video attributes, defined in < curses.h >, can be
passed to the routines attron 0, attroffO, and attrset(), or
OR'ed with the characters passed to addch().

A_STANDOUT Terminal's best highlighting mode
A UNDERLINE Underlining
A REVERSE Reverse video
A BLINK Blinking
A DIM Half bright
A_BOLD Extra bright or bold
A AL TCHARSET Alternate character set

A CHARTEXT
A ATTRIBUTES
A NORMAL

Bit-mask to extract character (see winchO)
Bit-mask to extract attributes (see winchO)
Bit mask to reset all attributes off
(for example: attrset (A_NORMAL)

FUNCTION-KEYS
The following function keys, defined in < curses.h >, might be
returned by getchO if keypad() has been enabled. Note that
not all of these may be supported on a particular terminal if
the terminal does not transmit a unique code when the key is
pressed or the definition for the key is not present in the ter
minfo (4) database.

Name

KEY BREAK
KEY DOWN
KEY UP
KEY LEFT
KEY RIGHT

Page 40

Value

0401
0402
0403
0404
0405

Key name

break key (unreliable)
The four arrow keys ...

UP-13712

KEY HOME

KEY BACKSPACE
KEY FO

KEY_F(n)
KEY Dl
KEY Il
KEY DC
KEY IC

KEY_EIC
KEY_CLEAR
KEY_EOS
KEY_EOl
KEY SF
KEY_SR

KEY_NPAGE
KEY_PPAGE
KEY_STAB
KEY CTAB
KEY_CATAB
KEY ENTER
KEY SRESET
KEY RESET
KEY PRINT
KEY II

KEY A1
KEY A3
KEY B2
KEY C1
KEY C3
KEY BTAB
KEY BEG
KEY CANCEL
KEY CLOSE

UP-13712

0406

0407
0410

(KEY _FO + (n))
0510
0511
0512
0513

0514
0515
0516
0517
0520
0521

0522
0523
0524
0525
0526
0527
0530
0531
0532
0533

0534
0535
0536
0537
0540
0541
0542
0543
0544

CURSES(3X)

Home key
(upward + left arrow)
backspace (unreliable)
Function keys. Space for
64 keys is reserved.
Formula for fn.
Delete line
Insert line
Delete character
Insert char or enter
insert mode
Exit insert char mode
Clear screen
Clear to end of screen
Clear to end of line
Scroll 1 line forward
Scroll 1 line backwards
(reverse)
Next page
Previous page
Set tab
Clear tab
Clear all tabs
Enter or send
soft (partial) reset
reset or hard reset
print or copy
home down or bottom
(lower left)
keypad is arranged like this:

A1 up A3
left B2 right
C1 down C3

Upper left of keypad
Upper right of keypad
Center of keypad
lower left of keypad
lower right of keypad
Back tab key
beg(inning) key
cancel key
close key

Page 41

CURSES (3X)

KEY COMMAND
KEY_COPY
KEY CREATE
KEY END
KEY EXIT
KEY FIND
KEY-HELP
KEY MARK
KEY_MESSAGE
KEY MOVE
KEY NEXT
KEY OPEN
KEY OPTIONS
KEY PREVIOUS
KEY REDO
KEY REFERENCE
KEY REFRESH
KEY REPLACE
KEY RESTART
KEY RESUME
KEY_SAVE
KEY_SBEG
KEY _ SCANCEl
KEY SCOMMAND
KEY SCOPY
KEY SCREATE
KEY_SOC
KEY_SOL
KEY SELECT
KEY_SEND
KEY SEOl
KEY SEXIT
KEY SFIND
KEY SHELP
KEY_SHOME
KEY SIC
KEY SlEFT
KEY_SMESSAGE
KEY_SMOVE
KEY_SNEXT
KEY _ SOPTIONS
KEY _ SPREVIOUS

Page 42

0545
0546
0547
0550
0551
0552
0553
0554
0555
0556
0557
0560
0561
0562
0563
0564
0565
0566
0567
0570
0571
0572
0573
0574
0575
0576
0577
0600
0601
0602
0603
0604
0605
0606
0607
0610
0611
0612
0613
0614
0615
0616

cmd (command) key
copy key
create key
end key
exit key
find key
help key
mark key
message key
move key
next object key
open key
options key
previous object key
redo key
ref(erence) key
refresh key
replace key
restart key
resume key
save key
shifted beginning key
shifted cancel key
shifted command key
shifted copy key
shifted create key
shifted delete char key
shifted delete line key
select key
shifted end key
shifted clear line key
shifted exit key
shifted find key
shifted help key
shifted home key
shifted input key
shifted left arrow key
shifted message key
shifted move key
shifted next key
shifted options key
shifted prev key

UP-13712

KEY SPRINT
KEY SREDO
KEY SREPLACE
KEY SRIGHT
KEY SRSUME
KEY SSAVE
KEY SSUSPEND
KEY_SUNDO
KEY SUSPEND
KEY UNDO

LIN E GRAPHICS

0617
0620
0621
0622
0623
0624
0625
0626
0627
0630

CURSES(3X)

shifted print key
shifted redo key
shifted replace key
shifted right arrow
shifted resume key
shifted save key
shifted suspend key
shifted undo key
suspend key
undo key

The following variables may be used to add line-drawing char
acters to the screen with waddchO. When defined for the ter
minal, the variable will have the A_AL TCHARSET bit turned
on. Otherwise, the default charcter listed below will be stored
in the variable. The names were chosen to be consistent with
the DEC VT100 nomenclature.

Name Default Glyph Description

ACS ULCORNER + upper left corner
ACS LLCORNER + lower left corner
ACS URCORNER + upper right corner
ACS LRCORNER + lower right corner
ACS RTEE + right tee (1)
ACS LTEE + left tee n·)
ACS_BTEE + bottom tee (L)
ACS_TIEE + top tee (I)
ACS HLINE horizontal line
ACS VLINE vertical line
ACS PLUS + plus
ACS S1 scan line 1
ACS S9 scan line 9
ACS DIAMOND + diamond
ACS CKBOARD checker board (stipple)
ACS DEGREE degree symbol
ACS PLMINUS # plus/minus
ACS_BULLET 0 bullet
ACS LARROW < arrow pointing left
ACS RARROW > arrow pointing right
ACS DARROW v arrow pointing down
ACS UARROW arrow pointing up

UP-13712 Page 43

CURSES (3X)

ACS BOARD
ACS LANTERN
ACS BLOCK

RETURN VALUES

board of squares
lantern symbol
solid square block

All routines return the integer OK upon successful completion
and the integer ERR upon failure, unless otherwise noted in
the preceding routine descriptions.

All macros return the value of their w version, except
setscrreg 0, wsetscrreg 0, getsyx 0, getyx (), getbegy(), get
maxyx(). For these macros, no useful value is returned.

Routines that return pointers always return (type *) NULL on
error.

BUGS
Currently typeahead checking is done using a nodelay read
followed by an ungetchO of any character that may have
been read. Typeahead checking is done only if wgetch() has
been called at least once. This will be changed when proper
kernel support is available. Programs which use a mixture of
their own input routines with curses input routines may wish
to call typeahead(-1) to turn off typeahead checking.

The argument to napms() is currently rounded up to the
nearest second.

draino (ms) only works for ms equal to O.

WARNINGS
To use the new curses features, use the Release 3.0 version of
curses on UNIX System Release 3.0. All programs that ran
with System V Release 2 curses will run with System V
Release 3.0. You may link applications with object files based
on the Release 2 curses/terminfo with the Release 3.0
/ibcurses.a library. You may link applications with object files
based on the Release 3.0 curses/terminfo with the Release 2
/ibcurses.a library, so long as the application does not use the
new features in the Release 3.0 curses/terminfo.

The plotting library plot(3X) and the curses library curses (3X)
both use the names eraseO and moveO. The curses versions
are macros. If you need both libraries, put the plot (3X) code
in a different source file than the curses (3X) code, and/or
#undef move() and erase() in the plot (3X) code.

Page 44 UP-13712

CURSES (3X)

Between the time a call to initscr() and endwin () has been
issued, use only the routines in the curses library to generate
output. Using system calls or the IIstandard I/O packagell (see
stdio (3S)) for output during that time can cause unpredictable
results.

SEE ALSO
cc(1), Id(1), ioctl(2) , plot(3X), putc(3S), scanf(3S), stdio(3S),
system (3S) , vprintf(3S), profile(4), term (4) , terminfo(4) ,
varargs(5) .
termio(7) , tty (7) in the System Administrator's Reference
Manual.
Chapter 10 of the Programmer's Guide.

UP-13712 Page 45

CURSES(3X)

[This page left blank.]

Page 46 UP-13712

DIRECTORY (3X)

NAME
directory: opendir, readdir, telldir, seekdir, rewinddir, closedir -
directory operations

SYNOPSIS
#include < sys/types.h >
#include < dirent.h >

DIR *opendir (filename)
char *filename;

struct dirent *readdir (dirp)
DIR *dirp;

long telldir (dirp)
DIR *dirp;

void seekdir (dirp, loc)
DIR *dirp;
long loc;

void rewinddir (dirp)
DIR *dirp;

void closedir(dirp)
DIR *dirp;

DESCRIPTION
Opendir opens the directory named by filename and associ
ates a directory stream with it. Opendir returns a pointer to
be used to identify the directory stream in subsequent opera
tions. The pointer NULL is returned if filename cannot be
accessed or is not a directory, or if it cannot malloc(3X)
enough memory to hold a DIR structure or a buffer for the
directory entries.

Readdir returns a pointer to the next active directory entry.
No inactive entries are returned. It returns NULL upon reach
ing the end of the directory or upon detecting an invalid loca
tion in the directory.

Telldir returns the current location associated with the named
directory stream.

Seekdir sets the position of the next readdir operation on the
directory stream. The new position reverts to the one associ
ated with the directory stream when the telldir operation from
which loc was obtained was performed. Values returned by

UP-13712 Page 1

DIRECTORY (3X)

telldir are good only if the directory has not changed due to
compaction or expansion. This is not a problem with System
V, but it may be with some file system types.

Rewinddir resets the position of the named directory stream
to the beginning of the directory.

Closedir closes the named directory stream and frees the DIR
structure.

The following errors can occur as a result of these operations.

opendir:

[ENOTDIR]

[EACCES]

[EMFILE]

[EFAUL T]

readdir:

[ENOENT]

[EBADF]

A component of filename is not a directory.

A component of filename denies search per-
mission.

The maximum number of file descriptors are
currently open.

Filename points outside the allocated address
space.

The current file pOinter for the directory is not
located at a valid entry.

The file descriptor determined by the DIR
stream is no longer valid. This results if the
DIR stream has been closed.

telldir, seekdir, and closedir:

[EBADF] The file descriptor determined by the DIR
stream is no longer valid. This results if the
DIR stream has been closed.

EXAMPLE
Sample code which searches a directory for entry name:

Page 2

dirp = opendir(".11);
while ((dp = readdir(dirp)) ! = NULL)

if (strcmp(dp- > d _name, name) = = 0)
{
closedir(dirp);
return FOUND;

UP-13712

}
closedir(dirp);
return NOT_FOUND;

SEE ALSO
getdents(2}. dirent(4}.

WARNINGS

DIRECTORY (3X)

Rewinddir is implemented as a macro. so its function address
cannot be taken.

UP-13712 Page 3

DIRECTORY (3X)

[This page left blank.]

Page 4 UP-13712

LDAHREAD(3X)

NAME
Idahread - read the archive header of a member of an archive
file

SYNOPSIS
#include < stdio.h >
#include < ar.h >
#include < filehdr.h >
#include < Idfcn.h >

int Idahread (Idptr, arhead)
LDFILE *Idptr;
ARCH DR *arhead;

DESCRIPTION
If TYPE(ldptr) is the archive file magic number, Idahread reads
the archive header of the common object file currently associ
ated with Idptr into the area of memory beginning at arhead.

Idahread returns SUCCESS or FAILURE. Idahread will fail if
TYPE(ldptr) does not represent an archive file, or if it cannot
read the archive header.

The program must be loaded with the object file access rou
tine library libld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idfcn(4) , ar(4).

UP-13712 Page 1

LDAHREAD (3X)

[This page left blank.]

Page 2 UP-13712

LDCLOSE(3X)

NAME
Idclose, Idaclose - close a common object file

SYNOPSIS
#include < stdio.h >
#include <filehdr.h>
#include < Idfcn.h >

int Idclose (Idptr)
LDFILE *Idptr;

int Idaclose (Idptr)
LDFILE *Idptr;

DESCRIPTION
Ldopen (3X) and Idclose are designed to provide uniform
access to both simple object files and object files that are
members of archive files. Thus an archive of common object
files can be processed as if it were a series of simple common
object files.

If TYPE(ldptr) does not represent an archive file, Idclose will
close the file and free the memory allocated to the LDFILE
structure associated with Jdptr. If TVPE(ldptr) is the magic
number of an archive file, and if there are any more files in the
archive, Jdclose will reinitialize OFFSET(ldptr) to the file
address of the next archive member and return FAILURE.
The LDFILE structure is prepared for a subsequent
Idopen (3X). In all other cases, Idclose returns SUCCESS.

Ldaclose closes the file and frees the memory allocated to the
LDFILE structure associated with Idptr regardless of the value
of TYPE(Jdptr). LdacJose always returns SUCCESS. The
function is often used in conjunction with Jdaopen.

The program must be loaded with the object file access rou
tine library libld.a.

SEE ALSO
fclose(3S), Idopen(3X), Idfcn(4).

UP-13712 Page 1

LDCLOSE(3X)

[This page left blank.]

Page 2 UP-13712

LDFHREAD(3X)

NAME
Idfhread - read the file header of a common object file

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include < Idfcn.h >

int Idfhread (Idptr, file head)
LDFILE *Idptr;
FILHDR *filehead;

DESCRIPTION
Idfhread reads the file header of the common object file
currently associated with Idptr into the area of memory begin
ning at filehead.

Idfhread returns SUCCESS or FAILURE. Idfhread will fail if it
cannot read the file header.

In most cases the use of Idfhread can be avoided by using the
macro HEADER(ldptr) defined in Idfcn.h [see Idfcn (4)]. The
information in any field, fieldname, of the file header may be
accessed using HEADER(ldptr).fieldname.

The program must be loaded with the object file access rou
tine library libld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idfcn(4).

UP-13712 Page 1

LDFHREAD(3X)

[This page left blank.]

Page 2 UP-13712

LDGETNAME(3X)

NAME
Idgetname - retrieve symbol name for common object file
symbol table entry

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include < syms.h >
#include < Idfcn.h >

char *Idgetname (Idptr, symbol)
LDFILE *Idptr;
SYMENT *symbol;

DESCRIPTION
Idgetname returns a pointer to the name associated with sym
bol as a string. The string is contained in a static buffer local
to Idgetname that is overwritten by each call to Idgetname,
and therefore must be copied by the caller if the name is to
be saved.

Idgetname can be used to retrieve names from object files
without any backward compatibility problems. Idgetname will
return NULL (defined in stdio.h) for an object file if the name
cannot be retrieved. This situation can occur:

if the "string table" cannot be found,

if not enough memory can be allocated for the string
table,

if the string table appears not to be a string table (for
example, if an auxiliary entry is handed to Idgetname that
looks like a reference to a name in a nonexistent string
table), or

if the name's offset into the string table is past the end of
the string table.

Typically, Idgetname will be called immediately after a suc
cessful call to Idtbread to retrieve the name associated with
the symbol table entry filled by Idtbread.

The program must be loaded with the object file access rou
tine library libld.a.

SEE ALSO
Idclose(3X), Idopen(3X) , Idtbread (3X) , Idtbseek(3X), Idfcn(4).

UP-13712 Page 1

LDGETNAME(3X)

[This page left blank.]

Page 2 UP-13712

LDLREAD(3X)

NAME
Idlread, Idlinit, Idlitem - manipulate line number entries of a
common object file function

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include < linenum.h >
#include < Idfcn.h >

int Idlread(ldptr, fcnindx, linenum, linent)
LDFILE *Idptr;
long fcnindx;
unsigned short linenum;
LIN ENO *linent;

int Idlinit(ldptr, fcnindx)
LDFILE *Idptr;
long fcnindx;

int Idlitem(ldptr, linenum, linent)
LDFILE *Idptr;
unsigned short linenum;
LIN ENO *linent;

DESCRIPTION
Idlread searches the line number entries of the common
object file currently associated with Idptr. Idlread begins its
search with the line number entry for the beginning of a func
tion and confines its search to the line numbers associated
with a single function. The function is identified by fcnindx,
the index of its entry in the object file symbol table. Idlread
reads the entry with the smallest line number equal to or
greater than linenum into the memory beginning at linent.

Ldlinit and Idlitem together perform exactly the same function
as Idlread. After an initial call to Idlread or Idlinit, Idlitem may
be used to retrieve a series of line number entries associated
with a single function. Ldlinit simply locates the line number
entries for the function identified by fcnindx. Ldlitem finds and
reads the entry with the smallest line number equal to or
greater than linenum into the memory beginning at linent.

Idlread, Idlinit, and Idlitem each return either SUCCESS or
FAILURE. Idlread will fail if there are no line number entries

UP-13712 Page 1

LDLREAD(3X)

in the object file. if fcnindx does not index a function entry in
the symbol table. or if it finds no line number equal to or
greater than linenum. Ldlinit will fail if there are no line
number entries in the object file or if fcnindx does not index a
function entry in the symbol table. Ldlitem will fail if it finds
no line number equal to or greater than linenum.

The programs must be loaded with the object file access rou
tine library libld.a.

SEE ALSO
Idclose(3X). Idopen(3X). Idtbindex(3X). Idfcn(4).

Page 2 UP-13712

LDLSEEK(3X)

NAME
Idlseek, Idnlseek - seek to line number entries of a section of a
common object file

SYNOPSIS
#include < stdio.h >
#include <filehdr.h>
#include < Idfcn.h >

int Idlseek (Idptr, sectindx)
LDFILE *Idptr;
unsigned short sectindx;

int Idnlseek (Idptr, sectname)
LDFILE *Idptr;
char *sectname;

DESCRIPTION
Idlseek seeks to the line number entries of the section speci
fied by sectindx of the common object file currently associ
ated with Idptr.

Ldnlseek seeks to the line number entries of the section speci
fied by sectname.

Idlseek and Idnlseek return SUCCESS or FAILURE. Idlseek
will fail if sectindx is greater than the number of sections in the
object file; Idnlseek will fail if there is no section name
corresponding with *sectname. Either function will fail if the
specified section has no line number entries or if it cannot
seek to the specified line number entries.

Note that the first section has an index of one.

The program must be loaded with the object file access rou
tine library libld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idshread(3X), Idfcn(4).

UP-13712 Page 1

LDLSEEK(3X)

[This page left blank.]

Page 2 UP-13712

LDOHSEEK(3X)

NAME
Idohseek - seek to the optional file header of a common object
file

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include < Idfcn.h >

int Idohseek (Idptr)
LDFILE *Idptr;

DESCRIPTION
/dohseek seeks to the optional file header of the common
object file currently associated with /dptr.

/dohseek returns SUCCESS or FAILURE. /dohseek will fail if
the object file has no optional header or if it cannot seek to
the optional header.

The program must be loaded with the object file access rou
tine library libld.a.

SEE ALSO
Idclose(3X). Idopen(3X}. Idfhread(3X}. Idfcn(4}.

UP-13712 Page 1

LDOHSEEK(3X)

[This page left blank.]

Page 2 UP-13712

LDOPEN(3X)

NAME
Idopen, Idaopen - open a common object file for reading

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include < Idfcn.h >

LDFILE *Idopen (filename, Idptr)
char *filename;
LDFILE *Idptr;

LDFILE *Idaopen (filename, oldptr)
char *filename;
LDFILE *oldptr;

DESCRIPTION
Idopen and Idclose (3X) are designed to provide uniform
access to both simple object files and object files that are
members of archive files. Thus an archive of common object
files can be processed as if it were a series of simple common
object files.

If Idptr has the value NULL, then Idopen will open filename
and allocate and initialize the LDFILE structure, and return a
pointer to the structure to the calling program.

If Idptr is valid and if TYPE(ldptr) is the archive magic number,
Idopen will reinitialize the LDFILE structure for the next
archive member of filename.

Idopen and Idclose (3X) are designed to work in concert.
Ldclose will return FAILURE only when TYPE(ldptr) is the
archive magic number and there is another file in the archive
to be processed. Only then should Idopen be called with the
current value of Idptr. In all other cases, in particular when
ever a new filename is opened, Idopen should be called with a
NULL Idptr argument.

The following is a prototype for the use of Idopen and
Idclose (3X).

UP-13712 Page 1

LOOPEN(3X)

/* for each filename to be processed * /

Idptr = NULL;
do
{

if ((Idptr = Idopen(filename. Idptr)) ! = NULL)
{

}

/* check magic number * /
/* process the file * /

} while (ldclose(ldptr) = = FAILURE);

If the value of oldptr is not NULL. Idaopen will open filename
anew and allocate and initialize a new LDFILE structure. copy
ing the TYPE. OFFSET. and HEADER fields from oldptr.
Ldaopen returns a pointer to the new LDFILE structure. This
new pointer is independent of the old pointer. oldptr. The two
pointers may be used concurrently to read separate parts of
the object file. For example. one pointer may be used to step
sequentially through the relocation information. while the other
is used to read indexed symbol table entries.

Both Idopen and Idaopen open filename for reading. Both
functions return NULL if filename cannot be opened. or if
memory for the LDFILE structure cannot be allocated. A suc
cessful open does not insure that the given file is a common
object file or an archived object file.

The program must be loaded with the object file access rou
tine library libld.a.

SEE ALSO
fopen(3S). Idclose(3X). Idfcn(4).

Page 2 UP-13712

LDRSEEK(3X)

NAME
Idrseek, Idnrseek - seek to relocation entries of a section of a
common object file

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include < Idfcn.h >

int Idrseek (Idptr, sectindx)
LDFILE *Idptr;
unsigned short sectindx;

int Idnrseek (Idptr, sectname)
LDFILE *Idptr;
char *sectname;

DESCRIPTION
Idrseek seeks to the relocation entries of the section specified
by sectindx of the common object file currently associated
with Idptr.

Ldnrseek seeks to the relocation entries of the section speci
fied by sectname.

Idrseek and Idnrseek return SUCCESS or FAILURE. Idrseek
will fail if sectindx is greater than the number of sections in the
object file; Idnrseek will fail if there is no section name
corresponding with sectname. Either function will fail if the
specified section has no relocation entries or if it cannot seek
to the specified relocation entries.

Note that the first section has an index of one.

The program must be loaded with the object file access rou
tine library libld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idshread(3X), Idfcn(4).

UP-13712 Page 1

LDRSEEK(3X)

[This page left blank.]

Page 2 UP-13712

LDSHREAD(3X)

NAME
Idshread. Idnshread - read an indexed/named section header
of a common object file

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include < scnhdr.h >
#include < Idfcn.h >

int Idshread (Idptr, sectindx, secthead)
LDFILE *Idptr;
unsigned short sectindx;
SCNHDR *secthead;

int Idnshread (Idptr, sectname, secthead)
LDFILE *Idptr;
char *sectname;
SCNHDR *secthead;

DESCRIPTION
Idshread reads the section header specified by sectindx of the
common object file currently associated with Idptr into the
area of memory beginning at secthead.

Ldnshread reads the section header specified by sectname
into the area of memory beginning at secthead.

Idshread and Idnshread return SUCCESS or FAILURE.
Idshread will fail if sectindx is greater than the number of sec
tions in the object file; Idnshread will fail if there is no section
name corresponding with sectname. Either function will fail if
it cannot read the specified section header.

Note that the first section header has an index of one.

The program must be loaded with the object file access rou
tine library libld.a.

SEE ALSO
Idclose(3X). Idopen(3X}. Idfcn(4}.

UP-13712 Page 1

LDSHREAD(3X)

[This page left blank.]

Page 2 UP-13712

LDSSEEK(3X)

NAME
Idsseek, Idnsseek - seek to an indexed/named section of a
common object file

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include < Idfcn.h >

int Idsseek (Idptr, sectindx)
LDFILE *Idptr;
unsigned short sectindx;

int Idnsseek (Idptr, sectname)
LDFILE *Idptr;
char *sectname;

DESCRIPTION
Idsseek seeks to the section specified by sectindx of the com
mon object file currently associated with Idptr.

Ldnsseek seeks to the section specified by sectname.

Idsseek and Idnsseek return SUCCESS or FAILURE. Idsseek
will fail if sectindx is greater than the number of sections in the
object file; Idnsseek will fail if there is no section name
corresponding with sectname. Either function will fail if there
is no section data for the specified section or if it cannot seek
to the specified section.

Note that the first section has an index of one.

The program must be loaded with the object file access rou
tine library libld.a.

SEE ALSO
Idclose(3X), Idopen(3X}, Idshread(3X), Idfcn{4}.

UP-13712 Page 1

LDSSEEK(3X)

[This page left blank.]

Page 2 UP-13712

LDTBINDEX(3X)

NAME
Idtbindex - compute the index of a symbol table entry of a
common object file

SYNOPSIS
#include < stdio.h >
#include <filehdr.h>
#include < syms.h >
#include < Idfcn.h >

long Idtbindex (Idptr)
LDFILE *Idptr;

DESCRIPTION
Idtbindex returns the (long) index of the symbol table entry at
the current position of the common object file associated with
Idptr.

The index returned by Idtbindex may be used in subsequent
calls to Idtbread (3X). However, since Idtbindex returns the
index of the symbol table entry that begins at the current
position of the object file, if Idtbindex is called immediately
after a particular symbol table entry has been read, it will
return the index of the next entry.

Idtbindex will fail if there are no symbols in the object file, or if
the object file is not positioned at the beginning of a symbol
table entry.

Note that the first symbol in the symbol table has an index of
zero.

The program must be loaded with the object file access rou
tine library libld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idtbread(3X), Idtbseek(3X), Idfcn(4}.

UP-13712 Page 1

LDTBINDEX(3X)

[This page left blank.]

Page 2 UP-13712

LDTBREAD(3X)

NAME
Idtbread - read an indexed symbol table entry of a common
object file

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include < syms.h >
#include < Idfcn.h >

int Idtbread (Idptr, symindex, symbol)
LDFILE *Idptr;
long symindex;
SYMENT *symbol;

DESCRIPTION
Idtbread reads the symbol table entry specified by symindex
of the common object file currently associated with Idptr into
the area of memory beginning at symbol.

Idtbread returns SUCCESS or FAILURE. Idtbread will fail if
symindex is greater than or equal to the number of symbols in
the object file, or if it cannot read the specified symbol table
entry.

Note that the first symbol in the symbol table has an index of
zero.

The program must be loaded with the object file access rou
tine library libld.a.

SEE ALSO
Idclose(3X}, Idopen(3X}, Idtbseek(3X}, Idgetname(3X}, Idfcn(4}.

UP-13712 Page 1

LDTBREAD(3X)

[This page left blank.]

Page 2 UP-13712

LDTBSEEK(3X)

NAME
Idtbseek - seek to the symbol table of a common object file

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include < Idfcn.h >

int Idtbseek (Idptr)
LDFILE *Idptr;

DESCRIPTION
Idtbseek seeks to the symbol table of the common object file
currently associated with Idptr.

Idtbseek returns SUCCESS or FAILURE. Idtbseek will fail if
the symbol table has been stripped from the object file, or if it
cannot seek to the symbol table.

The program must be loaded with the object file access 'ou
tine library libld.a.

SEE ALSO
Idclose(3X), Jdopen(3X). Jdtbread(3X). Idfcn(4).

UP-13712 Page 1

LDTBSEEK(3X)

[This page left blank.]

Page 2 UP-13712

LOGNAME(3X)

NAME
logname - return login name of user

SYNOPSIS
char *Iogname()

DESCRIPTION
logname returns a pointer to the null-terminated login name; it
extracts the LOGNAME environment variable from the user's
environment.

This routine is kept in /lib/libPW.a.

FILES
/etc/profile

SEE ALSO
getenv(3C) , profile(4), environ(5).
env(1), login(1) in the User's Reference Manual.

CAVEATS
The return values point to static data whose content is
overwritten by each call.

This method of determining a login name is subject to forgery.

UP-13712 Page 1

LOGNAME(3X)

[This page left blank.]

Page 2 UP-13712

MALLOC(3X)

NAME
malloc, free, realloc, calloc, mallopt, mallinfo - fast main
memory allocator

SYNOPSIS
#include < malloc.h >

char *malloc (size)
unsigned size;

void free (ptr)
char *ptr;

char *realloc (ptr, size)
char *ptr;
unsigned size;

char *calloc (nelem, elsize)
unsigned nelem, elsize;

int mallopt (cmd, value)
int cmd, value;

struct mallinfo mallinfo()

DESCRIPTION
mal/oc and free provide a simple general-purpose memory
allocation package, which runs considerably faster than the
mal/oc (3C) package. It is found in the library "malloc", and is
loaded if the option "-Imalloc" is used with cc(1) or /d(1).

mal/oc returns a pointer to a block of at least size bytes suit
ably aligned for any use.

The argument to free is a pointer to a block previously allo
cated by mal/oc; after free is performed this space is made
available for further allocation, and its contents have been des
troyed (but see mal/opt below for a way to change this
behavior).

Undefined results will occur if the space assigned by mal/oc is
overrun or if some random number is handed to free.

Real/oc changes the size of the block pointed to by ptr to size
bytes and returns a pointer to the (possibly moved) block.
The contents will be unchanged up to the lesser of the new
and old sizes.

UP-13712 Page 1

MALLOC(3X)

Cal/oc allocates space for an array of nelem elements of size
e/size. The space is initialized to zeros.

Mal/opt provides for control over the allocation algorithm. The
available values for cmd are:

M_MXFAST Set maxfast to value. The algorithm allocates all
blocks below the size of maxfast in large groups
and then doles them out very quickly. The
default value for maxfast is 24.

M_NLBLKS Set numlblks to value. The above mentioned
"large groups" each contain numlblks blocks.
Numlblks must be greater than O. The default
value for numlblks is 100.

M GRAIN Set grain to value. The sizes of all blocks
smaller than maxfast are considered to be
rounded up to the nearest multiple of grain.
Grain must be greater than O. The default value
of grain is the smallest number of bytes which
will allow alignment of any data type. Value will
be rounded up to a multiple of the default when
grain is set.

M KEEP Preserve data in a freed block until the next
mal/oc, real/oc, or caIJoc. This option is pro
vided only for compatibility with the old version
of maIJoc and is not recommended.

These values are defined in the < mal/oc.h > header file.

Mal/opt may be called repeatedly, but may not be called after
the first small block is allocated.

Mallinfo provides instrumentation describing space usage. It
returns the structure:

struct mallinfo {
int arena;
int ordblks;
int smblks;
int hblkhd;
int hblks;

Page 2

int usmblks;
int fsmblks;
int uordblks;

/* total space in arena * /
/* number of ordinary blocks * /
/* number of small blocks */
/* space in holding block headers * /
/* number of holding blocks * /
/* space in small blocks in use * /
/* space in free small blocks * /
/* space in ordinary blocks in use */

UP-13712

}

int fordblks;
int keepcost;

MALLOC(3X)

/* space in free ordinary blocks * /
/* space penalty if keep option * /
/* is used */

This structure is defined in the < malloe.h > header file.

Each of the allocation routines returns a pOinter to space suit
ably aligned (after possible pointer coercion) for storage of
any type of object.

SEE ALSO
brk(2), malloc(3C).

DIAGNOSTICS
malloe, realloe and ealloe return a NULL pointer if there is not
enough available memory. When realloe returns NULL, the
block pointed to by ptr is left intact. If mallopt is called after
any allocation or if emd or value are invalid, non-zero is
returned. Otherwise, it returns zero.

WARNINGS
This package usually uses more data space than malloe (3C).
The code size is also bigger than malloe (3C).
Note that unlikemalloe(3C).this package does not preserve
the contents of a block when it is freed, unless the M_KEEP
option of mallopt is used.
Undocumented features of malloe (3C) have not been dupli
cated.

UP-13712 Page 3

MALL()C(3X)

[This page left blank.]

Page 4 UP-13712

NAME
plot - graphics interface subroutines

SYNOPSIS
open pi ()

erase ()

label (s)
char *s;

line (x1, y1, x2, y2)
int x1, y1, x2, y2;

circle (x, y, r)
int x, y, r;

arc (x, y, xO, yO, x1, y1)
int x, y, xO, yO, x1, y1;

move (x, y)
int x, y;

cont (x, y)
int x, y;
point (x, y)
int x, y;

linemod (s)
char *s;

space (xO, yO, x1, y1)
int xO, yO, x1, y1;

closepl ()

DESCRIPTION

PLOT (3X)

These subroutines generate graphic output in a relatively
device-independent manner. Space must be used before any
of these functions to declare the amount of space necessary
[see plot (4)] . Openpl must be used before any of the others
to open the device for writing. Closepl flushes the output.

Circle draws a circle of radius r with center at the point (x, y).

Arc draws an arc of a circle with center at the point (x, y)
between the points (xO, yO) and (x1, y1) .

String arguments to label and linemod are terminated by nulls
and do not contain new-lines.

UP-13712 Page 1

PLOT (3X)

See plot (4) for a description of the effect of the remaining
functions.

The library files listed below provide several flavors of these
routines.

FILES
LIBDIR/libplot.a

LIBDIR/lib300.pa

LIBDIR/lib300.a

LIBDIR/lib450.a

LIBDIR/lib4014.a

LIBDIRusual\y /usr/lib

SEE ALSO
plot(4) .

produces output for tplot (1 G) filters

for DASI 300

for DASI 300s

for DASI 450

for TEKTRONIX 4014

graph(1 G), stat(1 G), tplot(1 G) in the User's Reference Manual.

WARNINGS
In order to compile a program containing these functions in
file.c it is necessary to use "cc file.c -Iplot".

In order to execute it, it is necessary to use "a. out : tplot".

The above routines use < stdio.h >, which causes them to
increase the size of programs, not otherwise using standard
I/O more than might be expected.

Page 2 UP-13712

REGCMP(3X)

NAME
regcmp, regex - compile and execute regular expression

SYNOPSIS
char *regcmp (string1 [, string2, ...], (char *)0)
char *string1, *string2, ... ;

char *regex (re, subject[, retO, ...])
char *re, *subject, *retO, ... ,

extern char * _Joc1 ;

DESCRIPTION
regcmp compiles a regular expression (consisting of the con
catenated arguments) and returns a pointer to the compiled
form. Mal/oc (3C) is used to create space for the compiled
form. It is the user's responsibility to free unneeded space so
allocated. A NULL return from regcmp indicates an incorrect
argument. regcmp (1) has been written to generally preclude
the need for this routine at execution time.

Regex executes a compiled pattern against the subject string.
Additional arguments are passed to receive values back.
Regex returns NULL on failure or a pointer to the next
unmatched character on success. A global character pOinter
_loc1 points to where the match began. regcmp and regex
were mostly borrowed from the editor, ed(1); however, the
syntax and semantics have been changed slightly. The follow
ing are the valid symbols and their associated meanings.

[] * . .. These symbols retain their meaning in ed (1).

$ Matches the end of the string; \n matches a new-line.

Within brackets the minus means through. For exam
ple, [a-z] is equivalent to [abcd ... xyz). The - can
appear as itself only if used as the first or last charac
ter. For example, the character class expression []-]
matches the characters] and -.

+ A regular expression followed by + means one or
more times. For example, [0-9] + is equivalent to
[0-9] [0-9]*.

{m} {m,} {m,u}

UP-13712

Integer values enclosed in {} indicate the number of
times the preceding regular expression is to be
applied. The value m is the minimum number and u

Page 1

REGCMP(3X)

is a number, less than 256, which is the maximum. If
only m is present (e.g., {m}), it indicates the exact
number of times the regular expression is to be
applied. The value {m,} is analogous to {m,infinity}.
The plus (+) and star (*) operations are equivalent to
{1,} and {O,} respectively.

(•..)$n The value of the enclosed regular expression is to be
returned. The value will be stored in the (n + 1) th
argument following the subject argument. At most
ten enclosed regular expressions are allowed. Regex
makes its assignments unconditionally.

(...) Parentheses are used for grouping. An operator,
e.g., *, +, {}, can work on a single character or a
regular expression enclosed in parentheses. For
example, (a*(cb+)*)$O.

By necessity, all the above defined symbols are special. They
must, therefore, be escaped with a \ (backslash) to be used as
themselves.

EXAMPLES
Example 1:

char *cursor, *newcursor, *ptr;

newcursor = regex((ptr = regcmp(""\n", (char *)0)),
cu rsor); free (ptr) ;

This example will match a leading new-line in the subject string
pOinted at by cursor.

Example 2:
char retO[9];
char *newcursor, *name;

name = regcmp("([A-Za-z][A-za-zO-9]{O,7})$0", (char *)0);
newcursor = regex(name, "012Testing345", retO);

This example will match through the string "Testing3" and will
return the address of the character after the last matched
character (the "4"). The string "Testing3" will be copied to the
character array retO.

Example 3:
#include "file.i"

Page 2 UP-13712

REGCMP(3X)

char *string, *newcursor;

newcursor = regex(name, string);

This example applies a precompiled regular expression in file.i
[see regcmp (1)] against string.

These routines are kept in /lib/libPW.3.

SEE ALSO
regcmp(1), malloc(3C).
ed(1) in the User's Reference Manual.

BUGS
The user program may run out of memory if regcmp is called
iteratively without freeing the vectors no longer required.

UP-13712 Page 3

REGCMP(3X)

[This page left blank.]

Page 4 UP-13712

ABORT (3F)

NAME
abort - terminate Fortran program

SYNOPSIS
call abort ()

DESCRIPTION
abort terminates the program which calls it, closing all open
files truncated to the current position of the file pointer. The
abort usually results in a core dump.

DIAGNOSTICS
When invoked, abort prints "Fortran abort routine called" on
the standard error output. The shell prints the message
"abort - core dumped" if a core dump results.

SEE ALSO
abort(3C).
sh(1) in the User's Reference Manual.

UP-13712 Page 1

ABORT (3F)

[This page left blank.]

Page 2 UP-13712

NAME
abs, iabs, dabs, cabs, zabs - Fortran absolute value

SYNOPSIS
integer i1, i2
real r1, r2
double precision dp1, dp2
complex cx1, cx2
double complex dx1, dx2

r2 = abs(r1)

i2 = iabs(i 1)
i2 = abs(i1)

dp2 = dabs(dp1)
dp2 = abs(dp1)

cx2 = cabs(cx1)
cx2 = abs(cx1)

dx2 = zabs(dx1)
dx2 = abs(dx1)

DESCRIPTION

ABS(3F)

abs is the family of absolute value functions. labs returns the
integer absolute value of its integer argument. Dabs returns
the double-precision absolute value of its double-precision
argument. Cabs returns the complex absolute value of its
complex argument. Zabs returns the double-complex abso
lute value of its double-complex argument. The generic form
abs returns the type of its argument.

SEE ALSO
floor(3M).

UP-13712 Page 1

ABS(3F)

[This page left blank.]

Page 2 UP-13712

NAME
acos. dacos - Fortran arccosine intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2

r2 = acos(r1)

dp2 = dacos(dp1)
dp2 = acos(dp1)

DESCRIPTION

ACOS(3F)

acos returns the real arccosine of its real argument. Dacos
returns the double-precision arccosine of its double-precision
argument. The generic form acos may be used with impunity
as its argument will determine the type of the returned value.

SEE ALSO
trig(3M).

UP-13712 Page 1

ACOS(3F)

[This page left blank.]

Page 2 UP-13712

AIMAG(3F)

NAME
aimag. dimag - Fortran imaginary part of complex argument

SYNOPSIS
real r
complex cxr
double precision dp
double complex cxd

r = aimag(cxr)

dp = dimag(cxd)

DESCRIPTION
aimag returns the imaginary part of its single-precision com
plex argument. Dimag returns the double-precision imaginary
part of its double-complex argument.

UP-13712 Page 1

AIMAG(3F)

[This page left blank.]

Page 2 UP-13712

NAME
aint, dint - Fortran integer part intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2

r2 = aint(r1)

dp2 = dint(dp1)
dp2 = aint(dp1)

DESCRIPTION

AI NT (3F)

aint returns the truncated value of its real argument in a real.
Dint returns the truncated value of its double-precision argu
ment as a double-precision value. aint may be used as a gen
eric function name, returning either a real or double-precision
value depending on the type of its argument.

UP-13712 Page 1

AINT(3F)

[This page left blank.]

Page 2 UP-13712

NAME
asin. dasin - Fortran arcsine intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2

r2 = asin(r1)

dp2 = dasin(dp1)
dp2 = asin(dp1)

DESCRIPTION

ASIN(3F)

asin returns the real arcsine of its real argument. Dasin
returns the double-precision arcsine of its double-precision
argument. The generic form asin may be used with impunity
as it derives its type from that of its argument.

SEE ALSO
trig(3M).

UP-13712 Page 1

ASIN(3F)

[This page left blank.]

Page 2 UP-13712

NAME
atan, datan - Fortran arctangent intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2

r2 = atan(r1)

dp2 = datan(dp1)
dp2 = atan(dp1)

DESCRIPTION

ATAN(3F)

atan returns the real arctangent of its real argument. Datan
returns the double-precision arctangent of its double-precision
argument. The generic form atan may be used with a
double-precision argument returning a double-precision value.

SEE ALSO
trig(3M).

UP-13712 Page 1

ATAN(3F)

[This page left blank.]

Page 2 UP-13712

ATAN2(3F)

NAME
atan2, datan2 - Fortran arctangent intrinsic function

SYNOPSIS
real r1, r2, r3
double precision dp1, dp2, dp3

r3 = atan2(r1, r2)

dp3 = datan2(dp1, dp2)
dp3 = atan2(dp1, dp2)

DESCRIPTION
atan2 returns the arctangent of arg1/arg2 as a real value.
Datan2 returns the double-precision arctangent of its double
precision arguments. The generic form atan2 may be used
with impunity with double-precision arguments.

SEE ALSO
trig(3M).

UP-13712 Page 1

ATAN2(3F)

[This page left blank.]

Page 2 UP-13712

BOOL(3F)

NAME
bool: and, or, xor, not, Ishift, rshift - Fortran Bitwise Boolean
functions

SYNOPSIS
integer i, j, k
real a, b, c

k = and(i, j)
c = or(a, b)
j = xor(i, a)
j = not(i)
k = Ishift(i, j)
k = rshift(i, j)

DESCRIPTION
The generic intrinsic Boolean functions and, or and xor return
the value of the binary operations on their arguments. Not is
a unary operator returning the one's complement of its argu
ment. Lshift and rshift return the value of the first argument
shifted left or right, respectively, the number of times specified
by the second (integer) argument.

While it is recommended that Boolean functions be used only
on integer data, these functions are generic; that is, they are
defined for all data types as arguments and return values.
Where required, the compiler generates appropriate type
conversions. However, when the functions are not used with
integer data, the results are unpredictable.

BUGS
The implementation of the shift functions may cause large
shift values to deliver weird results.

SEE ALSO
mil(3F).

UP-13712 Page 1

BOOL(3F)

[This page left blank.]

Page 2 UP-13712

CONJG(3F)

NAME
conjg, dconjg - Fortran complex conjugate intrinsic function

SYNOPSIS
complex cxl, cx2
double complex dxl, dx2

cx2 = conjg(cxl)

dx2 = dconjg(dxl)

DESCRIPTION
conjg returns the complex conjugate of its complex argument.
Dconjg returns the double-complex conjugate of its double
complex argument.

UP-13712 Page 1

CONJG(3F)

[This page left blank.]

Page 2 UP-13712

NAME
cos, dcos, ccos - Fortran cosine intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2
complex cx1, cx2

r2 = cos(r1)

dp2 = dcos(dp1)
dp2 = cos(dp1)

cx2 = ccos(cx1)
cx2 = cos(cx1)

DESCRIPTION

cos (3F)

cos returns the real cosine of its real argument. Dcos returns
the double-precision cosine of its double-precision argument.
ecos returns the complex cosine of its complex argument.
The generic form cos may be used with impunity as its
returned type is determined by that of its argument.

SEE ALSO
trig(3M).

UP-13712 Page 1

COS(3F)

[This page left blank.]

Page 2 UP-13712

COSH (3F)

NAME
cosh, dcosh - Fortran hyperbolic cosine intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2

r2 = cosh(r1)

dp2 = dcosh(dp1)
dp2 = cosh(dp1)

DESCRIPTION
cosh returns the real hyperbolic cosine of its real argument.
Dcosh returns the double-precision hyperbolic cosine of its
double-precision argument. The generic form cosh may be
used to return the hyperbolic cosine in the type of its argu
ment.

SEE ALSO
sinh(3M).

UP-13712 Page 1

COSH(3F)

[This page left blank.]

Page 2 UP-13712

DIM (3F)

NAME
dim, ddim, idim - positive difference intrinsic functions

SYNOPSIS
integer a1, a2, a3
a3 = idim(a1, a2)

real a1, a2, a3
a3 = dim(a1, a2)

double precision a1, a2, a3
a3 = ddim(a1, a2)

DESCRIPTION
These functions return:

a1-a2 if a1 > a2
o if a1 < = a2

UP-13712 Page 1

DIM(3F)

[This page left blank.]

Page 2 UP-13712

DPROD(3F)

NAME
dprod - double precision product intrinsic function

SYNOPSIS
real a1, a2

double precision a3

a3 = dprod(a1, a2)

DESCRIPTION
Dprod returns the double precision product of its real argu
ments.

UP-13712 Page 1

DPROD(3F)

[This page left blank.]

Page 2 UP-13712

EXP(3F)

NAME
exp, dexp, cexp - Fortran exponential intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2
complex cx1, cx2

r2 = exp(r1)

dp2 = dexp(dp1)
dp2 = exp(dp1)

cx2 = cexp(cx1)
cx2 = exp(cx1)

DESCRIPTION
exp returns the real exponential function eX of its real argu
ment. Dexp returns the double-precision exponential function
of its double-precision argument. Cexp returns the complex
exponential function of its complex argument. The generic
function exp becomes a call to dexp or cexp as required,
depending on the type of its argument.

SEE ALSO
exp(3M).

UP-13712 Page 1

EXP(3F)

[This page left blank.]

Page 2 UP-13712

FTYPE(3F)

NAME
ftype: int, ifix, idint, real, float, sngl, dble, cmplx, dcmplx, ichar,
char - explicit Fortran type conversion

SYNOPSIS
integer i, j
real r, s
double precision dp, dq
complex cx
double complex dcx
character*1 ch

= int(r)

= int(dp)
= int(cx)

= int(dcx)
= ifix(r)
= idint(dp)

r = real(i)
r = real(dp)
r = real(cx)
r = real(dcx)
r = float(i)
r = sngl(dp)

dp = dble(i)
dp = dble(r)
dp = dble(cx)
dp = dble(dcx)

cx = cmplx(i)
cx = cmplx(i, j)
cx = cmplx(r)
cx = cmplx(r, s)
cx = cmplx(dp)
cx = cmplx(dp, dq)
cx = cmplx(dcx)

dcx = dcmplx(i)
dcx = dcmplx(i, j)
dcx = dcmplx(r)
dcx = dcmplx(r, s)
dcx = dcmplx(dp)
dcx = dcmplx(dp, dq)

UP-13712 Page 1

FTYPE(3F)

dcx = dcmplx(cx)

i = ichar(ch)
ch = char(i)

DESCRIPTION
These functions perform conversion from one data type to
another.

The function int converts to integer form its real. double preci
sion. complex. or double complex argument. If the argument
is real or double precision. int returns the integer whose mag
nitude is the largest integer that does not exceed the magni
tude of the argument and whose sign is the same as the sign
of the argument (Le. truncation). For complex types. the
above rule is applied to the real part. ifix and idint convert
only real and double precision arguments respectively.

The function real converts to real form an integer. double pre
cision. complex. or double complex argument. If the argu
ment is double precision or double complex. as much preci
sion is kept as is possible. If the argument is one of the com
plex types. the real part is returned. float and sn91 convert
only integer and double precision arguments respectively.

The function dble converts any integer. real. complex. or dou
ble complex argument to double precision form. If the argu
ment is of a complex type. the real part is returned.

The function cmplx converts its integer. real. double precision.
or double complex argument(s) to complex form.

The function dcmplx converts to double complex form its
integer. real. double precision. or complex argument(s).

Either one or two arguments may be supplied to cmplx and
dcmplx . If there is only one argument. it is taken as the real
part of the complex type and an imaginary part of zero is sup
plied. If two arguments are supplied. the first is taken as the
real part and the second as the imaginary part.

The function ichar converts from a character to an integer
depending on the character's position in the collating
sequence.

The function char returns the character in the ith position in
the processor collating sequence where i is the supplied argu
ment.

Page 2 UP-13712

FTYPE(3F)

For a processor capable of representing n characters.

ichar(char(i)) = i for 0 < = i < n. and

char(ichar(ch)) = ch for any representable character ch.

UP-13712 Page 3

FTYPE(3F)

[This page left blank.]

Page 4 UP-13712

GETARG(3F)

NAME
getarg - return Fortran command-line argument

SYNOPSIS
character*N c
integer i

call getarg(i, c)

DESCRIPTION
getarg returns the i-th command-line argument of the current
process. Thus, if a program were invoked via

foo arg1 arg2 arg3

getarg(2, c) would return the string "arg2" in the character
variable c.

SEE ALSO
getopt(3C) .

UP-13712 Page 1

GETARG(3F)

[This page left blank.]

Page 2 UP-13712

GETENV(3F)

NAME
getenv - return Fortran environment variable

SYNOPSIS
character*N c

call getenv("V ARIABLE _ NAM E", c)

DESCRIPTION
getenv returns the character-string value of the environment
variable represented by its first argument into the character
variable of its second argument. If no such environment vari
able exists, all blanks will be returned.

SEE ALSO
getenv(3C), environ(5).

UP-13712 Page 1

GETENV(3F)

[This page left blank.]

Page 2 UP-13712

IARGC(3F)

NAME
iargc - return the number of command line arguments

SYNOPSIS
integer i

i = iargc()

DESCRIPTION
The iargc function returns the number of command line argu
ments passed to the program. Thus. if a program were
invoked via

foo arg1 arg2 arg3

iargc() would return 3.

SEE ALSO
getarg (3F) .

UP-13712 Page 1

IARGC(3F)

[This page left blank.]

Page 2 UP-13712

NAME
index - return location of Fortran substring

SYNOPSIS
character*N 1 ch 1
character*N2 ch2
integer i

i = index(ch1, ch2)

DESCRIPTION

INDEX(3F)

index returns the location of substring ch2 in string ch1. The
value returned is the position at which substring ch2 starts, or
o if it is not present in string ch1. If N2 is greater than N1, a
zero is returned.

UP-13712 Page 1

INDEX(3F)

[This page left blank.]

Page 2 UP-13712

NAME
len - return length of Fortran string

SYNOPSIS
character*N ch
integer i

i = len(ch)

DESCRIPTION
len returns the length of string ch.

UP-13712

LEN (3F)

Page 1

LEN (3F)

[This page left blank.]

Page 2 UP-13712

LOG (3F)

NAME
log, alog, dlog, clog - Fortran natural logarithm intrinsic func
tion

SYNOPSIS
real r1, r2
double precision dp1, dp2
complex cx1, cx2

r2 = alog(r1)
r2 = log(r1)

dp2 = dlog(dp1)
dp2 = log(dp1)

cx2 = clog(cx1)
cx2 = log(cx1)

DESCRIPTION
Alog returns the real natural logarithm of its real argument.
Dlog returns the double-precision natural logarithm of its
double-precision argument. Clog returns the complex loga
rithm of its complex argument. The generic function log
becomes a call to alog, dlog, or clog depending on the type
of its argument.

SEE ALSO
exp(3M).

UP-13712 Page 1

L()(;(3F)

[This page left blank.]

Page 2 UP-13712

LOGIO(3F)

NAME
log10. alog10. dlog10 - Fortran common logarithm intrinsic
function

SYNOPSIS
real r1, r2
double precision dp1, dp2

r2 = alog10(r1)
r2 = log1 O(r1)

dp2 = dlog10(dp1)
dp2 = log10(dp1)

DESCRIPTION
Alog10 returns the real common logarithm of its real argu
ment. Dlog10 returns the double-precision common logarithm
of its double-precision argument. The generic function log10
becomes a call to alog10 or dlog10 depending on the type of
its argument.

SEE ALSO
exp(3M).

UP-13712 Page 1

L()GIO(3F)

[This page left blank.]

Page 2 UP-13712

MAX(3F)

NAME
max, maxO, amaxO, max1, amax1, dmax1 - Fortran maximum
value functions

SYNOPSIS
integer i, j, k,
real a, b, c, d
double precision dp1, dp2, dp3

I = max(i, j, k)
c = max(a, b)
dp = max(a, b, c)
k = maxO(i, j)
a = am axO(i , j, k)
i = max1 (a, b)
d = amax1 (a, b, c)
dp3 = dmax1 (dp1, dp2)

DESCRIPTION
The maximum-value functions return the largest of their argu
ments (of which there may be any number). max is the gen
eric form which can be used for all data types and takes its
return type from that of its arguments (which must all be of
the same type). maxO returns the integer form of the max
imum value of its integer arguments; amaxO, the real form of
its integer arguments; max1, the integer form of its real argu
ments; amax1, the real form of its real arguments; and dmax1,
the double-precision form of its double-precision arguments.

SEE ALSO
min(3F).

UP-13712 Page 1

MAX(3F)

[This page left blank.]

Page 2 UP-13712

MCLOCK(3F)

NAME
mclock - return Fortran time accounting

SYNOPSIS
integer i

i = mclock()

DESCRIPTION
mclock returns time accounting information about the current
process and its child processes. The value returned is the sum
of the current process's user time and the user and system
times of all child processes.

SEE ALSO
times(2), clock(3C) , system(3F).

UP-13712 Page 1

MCLOCK(3F)

[This page left blank.]

Page 2 UP-13712

MIL(3F)

NAME
mil: ior, iand, not, ieor, ishft, ishftc, ibits, btest, ibset, ibclr,
mvbits - Fortran Military Standard functions

SYNOPSIS
integer i, k, I, m, n, len
logical b

= ior(m, n)
= iand(m, n)
= not(m)
= ieor(m, n)
= ishft(m, k)
= ishftc(m, k, len)
= ibits(m, k, len)

b = btest(n, k)
i = ibset(n, k)
i = ibclr(n, k)
call mvbits(m, k, len, n, I)

DESCRIPTION
mil is the general name for the bit field manipulation intrinsic
functions and subroutines from the Fortran Military Standard
(MIL-STD-17S3). ior, iand, not, ieor - return the same results
as and, or, not, xor as defined in boo/(3F).

ishft, ishftc - m specifies the integer to be shifted. k specifies
the shift count. k > 0 indicates a left shift. k = 0 indicates
no shift. k < 0 indicates a right shift. In ishft, zeros are
shifted in. In ishftc, the rightmost len bits are shifted circularly
k bits. If k is greater than the machine word-size, ish ftc will
not shift.

Bit fields are numbered from right to left and the rightmost bit
position is zero. The length of the len field must be greater
than zero.

ibits - extract a subfield of len bits from m starting with bit
position k and extending left for len bits. The result field is
right justified and the remaining bits are set to zero.

btest - The kth bit of argument n is tested. The value of the
function is .TRUE. if the bit is a 1 and .FALSE. if the bit is O.

ibset - the result is the value of n with the kth bit set to 1.

UP-13712 Page 1

MIL(3F)

ibclr - the result is the value of n with the kth bit set to O.

mvbits - len bits are moved beginning at position k of argu
ment m to position I of argument n.

SEE ALSO
bool(3F).

Page 2 UP-13712

MIN(3F)

NAME
min, minD, aminO, min1, amin1, dmin1 - Fortran minimum
value functions

SYNOPSIS
integer i, j, k, I
real a, b, c, d
double precision dp1, dp2, dp3

I = min(i, j, k)
c = min(a, b)
dp = min(a, b, c)
k = minO(i, j)
a = aminO(i, j, k)
i = min1 (a, b)
d = amin1 (a, b, c)
dp3 = dmin1 (dp1, dp2)

DESCRIPTION
The minimum-value functions return the minimum of their
arguments (of which there may be any number). min is the
generic form which can be used for all data types and takes
its return type from that of its arguments (which must all be of
the same type). minO returns the integer form of the
minimum value of its integer arguments; aminO, the real form
of its integer arguments; min 1 , the integer form of its real
arguments; amin 1, the real form of its real arguments; and
dmin 1, the double-precision form of its double-precision argu
ments.

SEE ALSO
max(3F).

UP-13712 Page 1

MIN(3F)

[This page left blank.]

Page 2 UP-13712

MOD(3F)

NAME
mod, amod, dmod - Fortran remaindering intrinsic functions

SYNOPSIS
integer i, j, k
real r1, r2, r3
double precision dp1, dp2, dp3

k = mod(i, j)

r3 = amod(r1, r2)
r3 = mod(r1, r2)

dp3 = dmod(dp1, dp2)
dp3 = mod(dp1, dp2)

DESCRIPTION
mod returns the integer remainder of its first argument
divided by its second argument. Amod and dmod return,
respectively, the real and double-precision whole number
remainder of the integer division of their two arguments. The
generic version mod will return the data type of its arguments.

UP-13712 Page 1

MOD(3F)

[This page left blank.]

Page 2 UP-13712

NAME
rand, irand, srand - random number generator

SYNOPSIS
integer iseed, i, irand
double precision x, rand

call srand(iseed)

i = irand()

x = rand()

DESCRIPTION

RAND (3F)

[rand generates successive pseudo-random integers in the
range from 0 to 2**15-1. rand generates pseudo-random
numbers distributed in [0, 1.0]. Srand uses its integer argu
ment to re-initialize the seed for successive invocations of
irand and rand.

SEE ALSO
rand(3C).

UP-13712 Page 1

RAND (3F)

[This page left blank.]

Page 2 UP-13712

ROUND (3F)

NAME
round: anint, dnint, nint, idnint - Fortran nearest integer func
tions

SYNOPSIS
integer i
real r1, r2
double precision dp1, dp2

r2 = anint(r1)
i = nint(r1)

dp2 = anint(dp1)
dp2 = dnint(dp1)

i = nint(dp1)
i = idnint(dp1)

DESCRIPTION
Anint returns the nearest whole real number to its real argu
ment (Le., int(a + 0.5) if a > = a, int(a-O.S) otherwise). Dnint
does the same for its double-precision argument. Nint returns
the nearest integer to its real argument. Idnint is the double
precision version. Anint is the generic form of anint and dnint,
performing the same operation and returning the data type of
its argument. Nint is also the generic form of idnint.

UP-13712 Page 1

R()UNI> (3F)

[This page left blank.]

Page 2 UP-13712

SIGN (3F)

NAME
sign, isign, dsign - Fortran transfer-of-sign intrinsic function

SYNOPSIS
integer i, j, k
real r1, r2, r3
double precision dp1, dp2, dp3

k = isign(i, j)
k = sign(i, j)

r3 = sign(r1, r2)

dp3 = dsign(dp1, dp2)
dp3 = sign(dp1, dp2)

DESCRIPTION
[sign returns the magnitude of its first argument with the sign
of its second argument. sign and dsign are its real and
double-precision counterparts, respectively. The generic ver
sion is sign and will devolve to the appropriate type depend
ing on its arguments.

UP-13712 Page 1

SIGN(3F)

[This page left blank.]

Page 2 UP-13712

SIGNAL(3F)

NAME
signal - specify Fortran action on receipt of a system signal

SYNOPSIS
integer i, intfc
external intfc

call signal(i, intfc)

DESCRIPTION
The argument i specifies the signal to be caught. signal
allows a process to specify a function to be invoked upon
receipt of a specific signal. The first argument specifies which
fault or exception. The second argument specifies the func
tion to be invoked.
NOTE: The interrupt processing function, intfc , does not take
an argument.

SEE ALSO
kill (2) I signal (2).

UP-13712 Page 1

SIGNAL(3F)

[This page left blank.]

Page 2 UP-13712

NAME
sin. dsin. csin - Fortran sine intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2
complex cx1, cx2

r2 = sin(r1)

dp2 = dsin(dp1)
dp2 = sin(dp1)

cx2 = csin(cx1)
cx2 = sin(cx1)

DESCRIPTION

SIN (3F)

sin returns the real sine of its real argument. Dsin returns the
double-precision sine of its double-precision argument. Csin
returns the complex sine of its complex argument. The gen
eric sin function becomes dsin or csin as required by argu
ment type.

SEE ALSO
trig(3M).

UP-13712 Page 1

SIN(3F)

[This page left blank.]

Page 2 UP-13712

SINH (3F)

NAME
sinh, dsinh - Fortran hyperbolic sine intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2

r2 = sinh(r1)

dp2 = dsinh(dp1)
dp2 = sinh(dp1)

DESCRIPTION
sinh returns the real hyperbolic sine of its real argument.
Dsinh returns the double-precision hyperbolic sine of its
double-precision argument. The generic form sinh may be
used to return a double-precision value when given a double
precision argument.

SEE ALSO
sinh(3M).

UP-13712 Page 1

SINH(3F)

[This page left blank.]

Page 2 UP-13712

SQRT(3F)

NAME
sqrt, dsqrt, csqrt - Fortran square root intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2
complex cx1, cx2

r2 = sqrt(r1)

dp2 = dsqrt(dp1)
dp2 = sqrt(dp1)

cx2 = csqrt(cx1)
cx2 = sqrt(cx1)

DESCRIPTION
sqrt returns the real square root of its real argument. Dsqrt
returns the double-precision square root of its double
precision argument. Csqrt returns the complex square root of
its complex argument. sqrt, the generic form, will become
dsqrt or csqrt as required by its argument type.

SEE ALSO
exp(3M).

UP-13712 Page 1

SQRT(3F)

[This page left blank.]

Page 2 UP-13712

STRCMP(3F)

NAME
strcmp: Ige, Igt, lie, lit - string comparison intrinsic functions

SYNOPSIS
character*N a 1, a2
logical I

= Ige(a1, a2)
= Igt(a1, a2)
= lIe(a1, a2)

I = IIt(a1, a2)

DESCRIPTION
These functions return .TRUE. if the inequality holds and
.FALSE. otherwise.

UP-13712 Page 1

STRCMP(3F)

[This page left blank.]

Page 2 UP-13712

SYSTEM (3F)

NAME
system - issue a shell command from Fortran

SYNOPSIS
character*N c

call system(c)

DESCRIPTION
system causes its character argument to be given to sh (1) as
input, as if the string had been typed at a terminal. The
current process waits until the shell has completed.

SEE ALSO
exec (2), system (38) .
sh(1) in the User's Reference Manual.

UP-13712 Page 1

SYSTEM (3F)

[This page left blank.]

Page 2 UP-13712

NAME
tan, dtan - Fortran tangent intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2

r2 = tan(r1)

dp2 = dtan(dp1)
dp2 = tan(dp1)

DESCRIPTION

TAN (3F)

tan returns the real tangent of its real argument. Dtan returns
the double-precision tangent of its double-precision argument.
The generic tan function becomes dtan as required with a
double-precision argument.

SEE ALSO
trig(3M).

UP-13712 Page 1

TAN (3F)

[This page left blank.]

Page 2 UP-13712

TANH (3F)

NAME
tanh, dtanh - Fortran hyperbolic tangent intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2

r2 = tanh(r1)

dp2 = dtanh(dp1)
dp2 = tanh(dp1)

DESCRIPTION
tanh returns the real hyperbolic tangent of its real argument.
Dtanh returns the double-precision hyperbolic tangent of its
double-precision argument. The generic form tanh may be
used to return a double-precision value given a double
precision argument.

SEE ALSO
sinh(3M).

UP-13712 Page 1

TANH(3F)

[This page left blank.]

Page 2 UP-13712

