
(

• UNISYS U 6000 Series
System V
Programmer's
Reference Manual

Volume 2
Copyright © 1988 Unisys Corporation.
Unisys is a trademark of Unisys Corporation.

Priced Item

March 1988

Printed in U S America
UP-13712.3

This document is intended for software releases based on AT&T Release 3 of UNIX
System V or a subsequent release of the System unless otherwise indicated.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any
product and related material disclosed herein are only fumished pursuant and subject to
the terms and conditions of a duly executed Program Product Ucense or Agreement to
purchase or lease equipment. The only warranties made by Unisys, if any, with respect
to the products described in this document are set forth in such Ucense or Agreement.
Unisys cannot accept any financial or other responsibility that may be the result of your
use of the information in this document or software material, including direct, indirect,
special or consequential damages.

You should be very careful to ensure that the use of this information and/or software
material complies with the laws, rules, and regulations of the jurisdictions with respect to
which it is used.

The information contained herein is subject to change without notice. Revisions may be
issued to advise of such changes and/or additions.

ACT, Micro-Term, and MIME are trademarks of Micro-Term.
Ann Arbor is a trademark of Ann Arbor Terminals.
Beehive and Superbee are registered trademarks of Beehive Intemational.
Concept is a trademark of Human Designed Systems.
DEC, PDP, VAX, and VT100 are trademarks of Digital Equipment Corp.
Diablo is a registered trademark of Xerox Corp.
DOCUMENTER'S WORKBENCH is a trademark of AT&T. Teletype and WE are registered
trademarks of AT&T. UNIX is a registered trademark of AT&T in the USA and other
countries.
HP and Hewlett-Packard 45 are registered trademarks of Hewlett-Packard, Inc.
LSI ADM is a trademark of Lear Siegler.
TEKTRONIX, TEKTRONIX 4010, and TEKTRONIX 4014 are registered trademarks of
Tektronix, Inc.
Teleray and Teleray 1061 are trademarks of Research.
TeleVideo is a registered trademark of TeleVideo Systems.
Texas Instruments, T1735, T1725, and TI745 are registered trademarks of Texas
Instruments, Inc.
Versatec and Versatec D1200A are registered trademarks of Versatec Corp.

Portions of this material are copyrighted = by
AT&T Technologies

and are reprinted with their permission.

This documentation Is based In part on the fourth Berkeley Software Distribution, under license from the Regents of the
University or Callfomla. We acknowledge the following IndMduals and Institutions for their role In Its development:

Computer Science Division
Department or EIec:trIc:al engineering and Computer Science

University or Callfomla
Berkeley, California 94720

6000/50

Customization Package

This customization package contains changes to your
Programmer's Reference Manual, Volume 2, which reflect the AT& T
System V Release 3.1 and the value-added features of the Unisys
System V Operating System. Please add these pages to your base
manual to produce a fully customized Programmer's Reference
Manual.

To fully customize your Programmer's Reference Manual,
Volume 1, replace the existing generic manual cover with the
new customized manual cover.

Customization

Customization Package

Customizat~on DHrect~ons

The table below indicates the name of the document and
directions for making your manual current. The document found
in your customization package may be used to replace an already
existing document of the same name, or it may be added as a
new document to the manual. You may also be directed to
remove an existing document from the current manual. For the
location of specific documents, please refer to the Table of
Contents.

New Customization Document Customization Directions
Table of Contents replace old with new
intro(3) replace old with new
dbm(38) add new
ndbm(38) add new
ctime(3C) replace old with new
ctype(3C) replace old with new
dial (3C) replace old with new
fpgetround (3C) replace old with new
crypt(3X) replace old with new
curses (3X) replace old with new
libdev(3X) add new
ocurse(3X) add new
otermcap(3X) add new
sputl(3X) add new

2 Customization

Table of Contents

(The following are contained in three volumes.)

1. Commands
intro(1) introduction to commands and applications programs
admin(1) .. create and administer sees files
adb(1) .. absolute debugger
ar(1) archive and library maintainer for portable archives
as(1) ... common assembler
astgen(1) generate/modify ASSIST menus and command forms
bs(1) a compiler/interpreter for modest sized programs
buildgrp(1) ... build software distributions
cb(1) ... e program beautifier
cc(1) .. e compiler
cdc(1) change the delta commentary of an sees delta
cflow(1) ... generate e flowgraph
comb(1) .. combine sees deltas
cpp(1) .. the e language preprocessor
cprs(1) .. compress a common object file
ctags(1) ... create a tags file
ctrace(1) .. e program debugger
cxref(1) generate e program cross-reference
delta(1) make a delta (change) to an sees file
dis(1) .. object code disassembler
dump(1) dump selected parts of an object file
efl(1) .. extended FORTRAN language
fsplit(1) ... split f77, rattor, or efl files
gencc(1 M) create a front-end to the cc command
get(1) .. get a version of an sees file
i286emul(1) ... emulate 80286
includes(1) determine e language preprocessor include files
inline(1) ... substitute inline code in a5m file
infocmp(1 M) compare or print out terminfo descriptions
install(1 M) .. install commands

UP-13712.3 Contents 1

Table of Contents

Id(1) ... link editor for common object files
lex(1) generate programs for simple lexical tasks
lint(1) ... a e program checker
list(1) produce e source listing from a common object file
lorder(1) find ordering relation for an object library
m4(1) : ... macro processor
make(1) maintain, update, and regenerate groups of programs
mcs(1) manipulate the object file comment section
mkshlib(1) ... create a shared library
mkstr(1 B) create error message file from e source
nm(1) print name list of common object file
prof(1) .. display profile data
prs(1) .. print an sees file
rattor(1) .. rational FORTRAN dialect
regcmp(1) .. regular expression compile
rmdel(1) .. remove a delta from an sees file
sact(1) print current sees file editing activity
sccsdiff(1) compare two versions of an sees file
sdb(1) ... symbolic debugger
size(1) print section sizes in bytes of common object files
sno(1) .. SNOBOL interpreter
strip(1) strip symbol & line no. info. from a common object file
sym(1) .. display symbols
tic(1 M) ... terminfo compiler
tsort(1) .. topological sort
unget(1) undo a previous get of an sees file
val(1) ... validate sees file
vc(1) .. version control
what(1) ... identify sees files
xstr(1) extract and share strings in e program
yacc(1) .. yet another compiler-compiler

2. System Calls
intro(2) introduction to system calls and error numbers
access (2) ... determine accessibility of a file
acct(2) enable or disable process accounting
alarm(2) .. set a process alarm clock
brk(2) change data segment space allocation
chdir(2) ... change working directory
chmod(2) ... change mode of file
chown(2) change owner and group of a file

Contents 2 UP-13712.3

Table of Contents

ch root (2) ... change root directory
close(2) .. close a file descriptor
creat(2) create a new file or rewrite an existing one
dup(2) ... duplicate an open file descriptor
exec (2) .. execute a file
exit(2) .. terminate process
fcntl(2) ... file control
fork(2) ... create a new process
getdents(2) read directory entries and put in a file
getmsg(2) ... get next message off a stream
getpid(2) get process, process group, and parent process IDs
gettimeofday, settimeofday(2) get/set date and time
getuid(2) .. get real user, effective user, real grp., effective grp. IDs
ioctl(2) .. control device
kill(2) send a signal to a process or a group of processes
Iddrv(2) ... access loadable drivers
link(2) ... link to a file
Iseek(2) ... move read/write file pointer
mkdir(2) .. make a directory
mknod(2) make a directory, or a special or ordinary file
mount(2) .. mount a file system
msgctl(2) .. message control operations
msgget(2) .. get message queue
msgop(2) ... message operations
nice(2) .. change priority of a process
notify, unnotify, evwait, evnowait(2) manage notifications
open (2) .. open for reading or writing
pause(2) .. suspend process until signal
pipe(2) ... create an interprocess channel
plock (2) lock process, text, or data in memory
poll(2) .. STREAMS input/output multiplexing
profil(2) ... execution time profile
ptrace(2) ... process trace
putmsg (2) .. send a message on a stream
read(2) .. read from file
rmdir(2) ... remove a directory
semctl (2) ... semaphore control operations
semget(2) .. get set of semaphores
semop(2) ... semaphore operations
setpgrp(2) .. set process group 10
setuid(2) ... set user and group IDs

UP-13712.3 Contents 3

Table of Contents

shmctl(2) shared memory control operations
shmget(2) get shared memory segment identifier
shmop(2) ... shared memory operations
signal (2) specify what to do upon receipt of a signal
sigset(2) ... signal management
stat (2) ... get file status
statfs(2) .. get file system information
stime(2) .. set time
sync (2) .. update super block
sysfs(2) .. get file system type information
sysi86 (2) ... machine specific functions
time (2) ... get time
times (2) get process and child process times
uadmin(2) .. administrative control
ulimit(2) .. get and set user limits
umask(2) ... set and get file creation mask
umount(2) .. unmount a file system
uname(2) get name of current UNIX system
unlink(2) .. remove directory entry
us tat (2) ... get file system statistics
utime(2) set file access and modification times
wait(2) wait for child process to stop or terminate
write (2) ... write on a file

3. Subroutines
intro(3) introduction to functions and libraries
dbm(38) .. data base subroutines
ndbm (38) .. data base subroutines
a641(3C) convert between long integer and base-64 ASCII string
abort(3C) ... generate an lOT fault
abs(3C) ... return integer absolute value
bsearch(3C) ... binary search a sorted table
clock (3C) .. report CPU time used
crypt(3C) .. generate hashing encryption
ctermid(3S) generate file name for terminal
ctime, localtime, gmtime, asctime, tzset(3C)
....... convert date and time to string
ctype: isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace,
ispucnt, is print, isgraph, iscntrl, isascii(3C) classify characters
cuserid (3S) get character login name of the user
dial (3C) establish an out-going terminal line connection

Contents 4 UP-13712.3

Table of Contents

drand48(3C) ... generate uniformly distributed pseudo-random no.s
dup2(3C) .. duplicate an open file descriptor
ecvt(3C) convert floating-point number to string
end (3C) ... last locations in program
fclose(3S) ... close or flush a stream
ferror(3S) .. stream status inquiries
fopen(3S) .. open a stream
fpgetround(3C) IEEE floating point environment control
fread(3S) .. binary input/output
frexp(3C) manipulate parts of floating-point numbers
fseek(3S) reposition a file pointer in a stream
ftw(3C) .. walk a file tree
getc(3S) get character or word from a stream
getcwd(3C) get path-name of current working directory
getenv(3C) return value for environment name
getgrent(3C) .. get group file entry
getlogin (3C) ... get login name
getopt(3C) get option letter from argument vector
getpass(3C) .. read a password
getpw(3C) ... get name from UIO
getpwent(3C) ... get password file entry
gets (3S) .. get a string from a stream
getut(3C) ... access utmp file entry
hsearch(3C) .. manage hash search tables
isnan(3C) test for floating point NaN (Not-A-Number)
13tol(3C) convert between 3-byte integers and long integers
lockf(3C) .. record locking on files
Isearch(3C) .. linear search and update
malloc(3C) .. main memory allocator
memory(3C) ... memory operations
mktemp(3C) .. make a unique file name
monitor(3C) .. prepare execution profile
nlist(3C) ... get entries from name list
perror(3C) .. system error messages
popen(3S) .. initiate pipe to/from a process
printf(3S) ... print formatted output
putc(3S) put character or word on a stream
putenv(3C) change or add value to environment
putpwent(3C) .. write password file entry
puts(3S) ... put a string on a stream
qsort(3C) ... quicker sort

UP-13712.3 Contents 5

Table of Contents

rand (3C) simple random-number generator
scanf(3S) ... convert formatted input
setbuf(3S) ... assign buffering to a stream
setjmp(3C) .. non-local goto
sleep(3C) .. suspend execution for interval
sSignal(3C) ... software signals
stdio(3S) standard buffered input/output package
stdipc(3C) standard inter process communication package
string(3C) .. string operations
strtod (3C) convert string to double-precision number
strtol(3C) .. convert string to integer
swab (3C) .. swap bytes
system (3S) ... issue a shell command
tmpfile(3S) .. create a temporary file
tmpnam(3S) create a name for a temporary file
tsearch(3C) .. manage binary search trees
ttyname(3C) .. find name of a terminal
ttyslot(3C) find the slot in the utmp file of the current user
ungetc(3S) push character back into input stream
vprintf(3S) print formatted output of a varargs argument list
bessel(3M) ... Bessel functions
erf(3M) error function and complementary error function
exp(3M) exponential, logarithm, power, square root functions
floor(3M) floor, ceiling, remainder, absolute value functions
gamma (3M) .. log gamma function
hypot(3M) ... Euclidean distance function
matherr(3M) ... error-handling function
sinh (3M) .. hyperbolic functions
trig (3M) .. trigonometric functions
t_ accept(3N) .. accept a connect request
t_ alloc(3N) ... allocate a library structure
t_bind(3N) bind an address to a transport endpoint
t_ close(3N) ... close a transport endpoint
t_ connect(3N) .. establish a connection with another transport user
t_ error(3N) ... produce error message
t_free(3N) .. free a library structure
t_getinfo(3N) get protocol-specific service information
t_getstate(3N) .. get the current state
tJisten(3N) ... listen for a connect request
tJook(3N) look at the current event on a transport endpoint
t_open(3N) ... establish a transport endpoint

Contents 6 UP-13712.3

Table of Contents

t_ optmgmt(3N) manage options for a transport endpoint
t_rcv(3N) receive data or expedited data sent over a connection
t_rcvconnect(3N) . receive the confirmation from a connect request
t_rcvdis(3N) retrieve information from disconnect
t_rcvrel(3N) ... acknowledge receipt of an orderly release indication
t_rcvudata(3N) ... receive a data unit
t_rcvuderr(3N) receive a unit data error indication
t_snd(3N) send data or expedited data over a connection
t_snddis(3N) send user-initiated disconnect request
t_sndrel(3N) .. initiate an orderly release
t_sndudata(3N) ... send a data unit
t_sync(3N) .. synchronize transport library
t_ unbind(3N) ... disable a transport endpoint
assert(3X) .. verify program assertion
crypt(3X) password and file encryption functions
curses(3X) terminal screen handling and optimization package
directory(3X) ... directory operations
Idahread(3X) ... read archive header of a member of an archive file
Idclose(3X) ... close a common object file

(Idfhread(3X) read the file header of a common object file
Idgetname(3X) retrieve sym. name for common obj. file sym. table
Idlread(3X) manipulate line no. entries of common obj. file function
Idlseek(3X) seek to line no. entries of sect of a common obj. file
Idohseek(3X) seek to optional file header of common obj file
Idopen(3X) open a common object file for reading
Idrseek(3X) seek to relocation entries of sect. of a common obj. file
Idshread(3X) read indexed/named sect. header of common obj. file
Idsseek(3X) seek to indexed/named sect. of common obj. file
Idtbindex(3X) ... compute index of sym. table entry of com. obj. file
Idtbread(3X) read indexed sym. table entry of common obj. file
Idtbseek(3X) seek to the symbol table of a common object file
libdev(3X) manipulate Volume Home Blocks (VHB)
logname(3X) .. return login name of user
malloc(3X) ... fast main memory allocator
ocurse(3X) ... optimized screen functions
otermcap(3X) terminal independent operations
plot(3X) .. graphics interface subroutines
regcmp(3X) compile and execute regular expression
sputl, sgetl(3X) .. .
............ access long integer data in a machine independent fashion
abort(3F) .. terminate Fortran program

UP-13712.3 Contents 7

Tnhle of Contents

abs(3F) .. Fortran absolute value
acos(3F) Fortran arccosine intrinsic function
aimag(3F) Fortran imaginary part of complex argument
aint(3F) Fortran integer part intrinsic function
asin(3F) ... Fortran arcsine intrinsic function
atan(3F) Fortran arctangent intrinsic function
atan2(3F) Fortran arctangent intrinsic function
bool(3F) .. Fortran Bitwise Boolean functions
conjg(3F) Fortran complex conjugate intrinsic function
cos (3F) ... Fortran cosine intrinsic function
cosh(3F) Fortran hyperbolic cosine intrinsic function
dim(3F) positive difference intrinsic functions
dprod (3F) double precision product intrinsic function
exp(3F) Fortran exponential intrinsic function
fpgetround, fpsetround, fpgetmask, fpsetmask, fpgetsticky,
fpsetsticky(3C) IEEE floating point environment control
ftype(3F) .. explicit Fortran type conversion
getarg(3F) return Fortran command-line argument
getenv(3F) return Fortran environment variable
iargc(3F) return the number of command line arguments
index(3F) return location of Fortran substring
len(3F) ... return length of Fortran string
log(3F) Fortran natural logarithm intrinsic function
log 1 O(3F) Fortran common logarithm intrinsic function
max(3F) ... Fortran maximum-value functions
mclock(3F) .. return Fortran time accounting
mil(3F) .. Fortran Military Standard functions
min(3F) ... Fortran minimum-value functions
mod(3F) Fortran remaindering intrinsic functions
rand(3F) ... random number generator
round(3F) Fortran nearest integer functions
sign (3F) Fortran transfer-of-sign intrinsic function
signal(3F) specify Fortran action on receipt of a system signal
sin (3F) .. Fortran sine intrinsic function
sinh(3F) Fortran hyperbolic sine intrinsic function
sqrt(3F) Fortran square root intrinsic function
strcmp(3F) string comparison intrinsic functions
system (3F) issue a shell command from Fortran
tan (3F) ... Fortran tangent intrinsic function
tanh(3F) Fortran hyperbolic tangent intrinsic function

Contents 8 UP-13712.3

Table of Contents

4. File Formats
intro(4) .. introduction to file formats
a.out(4) common assembler and link editor output
acct(4) ... per-process accounting file format
ar(4) ... common archive file format
checklist(4) list of file systems processed by fsck and ncheck
core(4) ... format of core image file
cpio(4) .. format of cpio archive
cprofile(4) setting up a C shell environment at login time
dir(4) ... format of directories
dirent(4) file system independent directory entry
errfile(4) .. error-log file format
filehdr(4) file header for common object files
fs(4) ... format of system volume
fspec(4) ; format specification in text files
fstab(4) .. file-system-table
gettydefs(4) speed and terminal settings used by getty
gps(4) graphical primitive string. format of graphical files
group(4) .. group file
inittab(4) .. script for the init process
inode(4) .. format of an i-node
isort(4) ... international sort
issue(4) ... issue identification file
Idfcn(4) common object file access routines
limits(4) file header for implementation-specific constants
linenum(4) line number entries in a common object file
master(4) ... master device information table
mnttab(4) .. mounted file system table
otermcap(4) .. terminal capability data base
passwd(4) ... password file
plot(4} .. graphics interface
profile(4) setting up an environment at login time
prsetup(4) ... international printer spooler
reloc(4) relocation information for a common object file
rfmaster(4) Remote File Sharing name server master file
sccsfile{4} ... format of SCCS file
scnhdr(4) section header for a common object file
scr _ dump(4) format of curses screen image file
syms(4) common object file symbol table format
system(4) .. system description file
term{4} ... format of compiled term file

UP-13712.3 Contents 9

T~lhle of' Contents

terminfo(4) .. terminal capability data base
timezone(4) .. set default system time zone
ttytype(4) list of terminal types by terminal number
tZ(4) ... time zone file
unistd(4) file header for symbolic constants
utmp(4) .. utmp and wtmp entry formats

5. Miscellaneous Facilities
intro(5) ... introduction to miscellany
ascii (5) ... map of ASCII character set
environ(5) ... user environment
eqnchar(5) special character definitions for eqn and neqn
fcntl(5) .. file control options
math (5) ... math functions and constants
man (5) macros for formatting entries in this manual
me(5) ... macros for formatting papers
mm(5) macro package for formatting documents
mptx(5) the macro package for formatting a permuted index
ms(5) .. text formatting macros
mvt(5) .. .
......... a troff macro package for typesetting view graphs and slides
prof(5) .. profile within a function
regexp(5) regular expression compile and match routines
stat (5) .. data returned by stat system call
term(5) ... conventional names for terminals
types(5) .. primitive system data types
values(5) ... machine-dependent values
varargs(5) ... handle variable argument list

Contents 10 UP-13712.3

INTR() (3)

NAME
intro - introduction to functions and libraries

DESCRIPTION
This section describes functions found in various libraries other
than those functions that directly invoke System V system
primitives, which are described in Section 2 of this volume.
Certain major collections are identified by a letter after the
section number:

(3C) These functions, together with those of Section 2 and
those marked (3S) , constitute the Standard C Library
libe, which is automatically loaded by the C compiler,
ee(1). The link editor Id(1) searches this library under
the -Ic option. A "shared library" version of Jibe can be
searched using the -Ic_s option, resulting in smaller
a.outs. Declarations for some of these functions may
be obtained from #include files indicated on the
appropriate pages.

(3S) These functions constitute the "standard I/O package"
[see stdio(3S)]. These functions are in the library libe,
already mentioned. Declarations for these functions
may be obtained from the #Include file < stdio.h > .

(3M) These functions constitute the Math Library, /ibm. They
are not automatically loaded by the C compiler, ee(1);
however, the link editor searches this library under the
-1m option. Declarations for these functions may be
obtained from the #include file < math.h > . Several
generally useful mathematical constants are also
defined there [see math (5)].

(3N) This contains sets of functions constituting the Network
Services library. These sets provide protocol indepen
dent interfaces to networking services based on the ser
vice definitions of the OSI (Open Systems Interconnec
tion) reference model. Application developers access
the function sets that provide services at a particular
level.

This library contains the functions of the TRANSPORT
INTERFACE (TI) - provide the services of the OSI Tran
sport Layer. These services provide reliable end-to-end
data transmission using the services of an underlying

UP-13712.3 Page 1

INTR()(3)

network. Applications written using the TI functions are
independent of the underlying protocols. Declarations
for these functions may be obtained from the #include
file <tiuser.h>. The link editor /d(1) searches this
library under the -Insl_s option.

(3 B) These functions are part of the System V BSD Berkeley
networking package. To use these functions you must
have the network protocols on your system.

(3X) Various specialized libraries. The files in which these
libraries are found are given on the appropriate pages.

DEFINITIONS
character

Any bit pattern able to fit into a byte on the machine.

null character
A character with value 0, represented in the C language
as '\0'.

character array
A sequence of characters.

null-terminated character array
A sequence of characters, the last of which is the null
character.

string
A designation for a null-terminated character array.

null string
A character array containing only the null character.

NULL pointer
The value that is obtained by casting 0 into a pointer. The
C language guarantees that this value will not match that
of any legitimate pointer, so many functions that return
pointers return it to indicate an error.

NULL
Defined as 0 in < stdio.h >; the user can include an
appropriate definition if not using < stdio.h > .

Netbuf
In the Network Services library, netbuf is a structure used in
various Transport Interface (TI) functions to send and receive
data and information. It contains the following members:

Page 2 UP-13712.3

unsigned int maxlen;
unsigned int len;
char *buf;

INTRO(3)

Buf points to a user input and/or output buffer. Len generally
specifies the number of bytes contained in the buffer. If the
structure is used for both input and output, the function will
replace the user value of len on return.

Max/en generally has significance only when buf is used to
receive output from the TI function. In this case, it specifies
the physical size of the buffer, the maximum value of len that
can be set by the function. If max/en is not large enough to
hold the returned information, an TBUFOVFLW error will gen
erally result. However, certain functions may return part of
the data and not generate an error.

FILES
/lib
/Iib/libc.a
/lib/libc _ s.a
/lib/libm.a
/shlib/libc_s
/shlib/libnsl_ s (3N)
/usr/lib/libnsl_s.a (3N)

SEE ALSO
ar(1), cc(1), Id(1), Iint(1), nm(1), intro(2), stdio(3S), math(5).

DIAGNOSTICS
Functions in the C and Math Libraries (3C and 3M) may return
the conventional values 0 or ± HUGE (the largest-magnitude
single-precision floating-point numbers; HUGE is defined in
the < math.h > header file) when the function is undefined for

UP-13712.3 Page 3

INTR()(3)

the given arguments or when the value is not representable.
In these cases, the external variable errno [see intro (2)] is set
to the value EDaM or ERANGE.

WARNING
Many of the functions in the libraries call and/or refer to other
functions and external variables described in this section and
in Section 2 (System Calls). If a program inadvertently defines
a function or external variable with the same name. the
presumed library version of the function or external variable
may not be loaded. The lint (1) program checker reports name
conflicts of this kind as "multiple declarations" of the names in
question. Definitions for Sections 2. 3C. and 3S are checked
automatically. Other definitions can be included by using the
-I option. (For example. -1m includes definitions for Section
3M. the Math Library.) Use of lint is highly recommended.

Page 4 UP-13712.3

DBl\1(38)

NAME
dbminit, fetch, store, delete, firstkey, nextkey - data base sub
routines

SYNOPSIS
#include < dbm.h >

typedef struct {
char *dptr;
int dsize;

} datum;

dbminit(file)
char *file;

datum fetch(key)
datum key;

store(key, content)
datum key, content;

delete(key)
datum key;

datum firstkey()

datum nextkey(key)
datum key;

DESCRIPTION
These functions maintain key/content pairs in a data base.
The functions handle very large (a billion blocks) databases
and access a keyed item in one or two file system accesses.
The functions are obtained with the loader option -Idbm.

Keys and contents are described by the datum typedef. A
datum specifies a string of dsize bytes pointed to by dptr.
Arbitrary binary data, as well as normal ASCII strings, are
allowed. The data base is stored in two files. One file is a
directory containing a bit map and has .dir as its suffix. The
second file contains all data and has .pag as its suffix.

Before a database can be accessed, it must be opened by
dbminit. At the time of this call, the files file .dir and file .pag
must exist. An empty database is created by creating zero
length .dir and .pag files.

Once open, the data stored under a key is accessed by fetch
and data is placed under a key by store. A key (and its

UP-13712.3 Page 1

DBM(3B)
E

associated contents) is deleted by delete. A linear pass
through all keys in a database may be made, in (apparently)
random order, by use of firstkey and nextkey. Firstkey returns
the first key in the database. With any key nextkey returns the
next key in the database. This code traverses the data base:

for (key = firstkey(); key.dptr != NULL;
key = nextkey(key))

DIAGNOSTICS
All functions that return an int indicate errors with negative
values. A zero return indicates OK. Routines that return a
datum indicate errors with a null (0) dptr.

BUGS
The .pag file contains holes so that its apparent size is about
four times its actual content. Other UNIX systems may create
real file blocks for these holes when touched. These files can
not be copied by normal means (cp, cat, tp, tar, ar) without
filling in the holes.

Dptr pointers returned by these subroutines point into static
storage that is changed by subsequent calls.

The sum of the sizes of a key/content pair must not exceed
the internal block size (currently 1024 bytes). Moreover all
key/content pairs that hash together must fit on a single
block. Store returns an error in the event that a disk block fills
with inseparable data.

Delete does not physically reclaim file space, although it does
make it available for reuse.

The order of keys presented by firstkey and nextkey depends
on a hashing function, not on anything interesting.

Page 2 UP-13712.3

NDBlVl (3B)

NAME
dbm_open, dbm_close, dbm_fetch, dbm_store, dbm_delete,
dbm_firstkey, dbm_nextkey, dbm_error, dbm clearerr - data
base sub routines

SYNOPSIS
#include <ndbm.h>

typedef struct {
char *dptr;
int dsize;

} datum;

DBM *dbm_open(file, flags, mode)
char *file;
int flags, mode;

void dbm_close(db)
DBM *db;

datum dbm_fetch(db, key)
DBM *db;
datum key;

int dbm_store(db, key, content, flags)
DBM *db;
datum key, content;
int flags;

int dbm_ delete(db, key)
DBM *db;
datum key;

datum dbm_firstkey(db)
DBM *db;

datum dbm_nextkey(db)
DBM *db;

int dbm_error(db)
DBM *db;

int dbm_clearerr(db)
DBM *db;

DESCRIPTION
These functions maintain key/content pairs in a data base.
The functions handle very large databases (a billion blocks)
and access a keyed item in one or two file system accesses.

UP-13712.3 Page 1

NDRM(3R)

This package replaces, and is incompatible with, the earlier
dbm (3B) library, which managed only a single database.

Keys and contents are described by the datum typedef. A
datum specifies a string of dsize bytes pOinted to by dptr.
Arbitrary binary data, as well as normal ASCII strings, are
allowed. The data base is stored in two files. One file is a
directory containing a bit map and has .dir as its suffix. The
second file contains all data and has .pag as its suffix.

Before a database can be accessed, it must be opened by
dbm_open. This opens and/or creates the files file.dir and
file.pag depending on the flags parameter [see open (2)].

Once open, the data stored under a key is accessed by
dbm _fetch and data is placed under a key by dbm _store. The
flags field can be either OBMJNSERT or OBM_REPLACE.
OBM JNSERT only inserts new entries into the database and
does not change an existing entry with the same key.
OBM _REPLACE replaces an existing entry if it has the same
key. A key (and its associated contents) is deleted by
dbm_delete. A linear pass through all keys in a database may
be made, in an (apparently) random order, by use of
dbm_firstkey and dbm_nextkey. Dbm_firstkey returns the first
key in the database. Dbm _ nextkey returns the next key in the
database. This code traverses the database:

for (key = dbm_firstkey(db); key.dptr != NULL;
key = dbm_nextkey(db))

Dbm_error returns non-zero when an error has occurred read
ing or writing the database. Dbm _ clearerr resets the error
condition on the named database.

DIAGNOSTICS
All functions that return an int indicate errors with negative
values. A zero return indicates no error condition. Routines
that return a datum indicate errors with a null (0) dptr. If
dbm_store is called with a flags value of OBM_INSERT, and
finds an existing entry with the same key, it returns 1.

WARNINGS
The .pag file contains holes so that its apparent size is about
four times its actual content. These files cannot be copied by
normal means (cp, cat, tp, tar, ar) without filling in the holes.

Page 2 UP-13712.3

ND8M(38)

Dptr pointers returned by these subroutines point into static
storage that is changed by subsequent cal:s.

The sum of the sizes of a key/content pair must not exceed
the internal block size (currently 4096 bytes). Moreover all
key/content pairs that hash together must fit in a single block.
Dbm store returns an error in the event that a disk block fills
with inseparable data.

Dbm _delete does not physically reclaim file space, although it
does make it available for reuse.

The order of keys presented by dbm _firstkey and
dbm_nextkey depends on a hashing function, not on anything
interesting.

SEE ALSO
dbm(38).

NOTE
This function is for use with a version of the System V kernel
that supports networking protocols.

UP-13712.3 Page 3

NDRM(3B)

[This page left blank.]

Page 4 UP-13712.3

CTIME(3C)

NAME
ctime, localtime, gmtime, asctime, tzset - convert date and
time to string

SYNOPSIS
#include < sys/types.h >
#include < time.h >

char *ctime (clock)
time _ t *clock;

struct tm *Iocaltime (clock)
time _ t *clock;

struct tm *gmtime (clock)
time _ t *clock;

char *asctime (tm)
struct tm *tm;

extern long timezone;

extern int daylight;

extern char *tzname(2];

void tzset ()

DESCRIPTION
Ctime converts a long integer, pointed to by clock I represent
ing the time in seconds since 00:00:00 GMT, January 1, 1970,
and returns a pointer to a 26-character string in the following
form. All the fields have constant width.

Sun Sep 16 01:03:52 1985\n\0

Localtime and gmtime return pointers to tm structures,
described below. Loca/time corrects for the time zone and
possible Daylight Savings Time; gmtime converts directly to
Greenwich Mean Time (GMT), which is the time the System V
system uses.

Asctime converts a tm structure to a 26-character string, as
shown in the above example, and returns a pointer to the
string.

Declarations of all the functions and externals, and the tm
structure, are in the < time.h > header file. The structure
declaration is:

UP-13712.3 Page 1

CTIME(3C)

struct tm 1

J;

int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm-year;
int tm_wday;
int tm-yday;
int tm_isdst;

/* seconds (0 - 59) */
/* minutes (0 - 59) */
/* hours (0 - 23) */
/* day of month (1 - 31) */
/* month of year (0 - 11) */
/* year - 1900 */
/* day of week (Sunday = 0) */
/* day of year (0 - 365) */

Tm}sdst is non-zero if Daylight Savings Time is in effect.

The external long variable timezone contains the difference, in
seconds, between GMT and local standard time (in EST,
timezone is 5*60*60); the external variable daylight is non-zero
if and only if the standard U.S.A. Daylight Savings Time
conversion should be applied. The program knows about the
peculiarities of this conversion in 1974 and 1975; if necessary,
a table for these years can be extended.

If an environment variable named TZ is present, asctime uses
the contents of the variable to override the default time zone.
The value of TZ must be a three-letter time zone name, fol
lowed by a number representing the difference between local
time and Greenwich Mean Time in hours, followed by an
optional three-letter name for a daylight time zone. For exam
ple, the setting for New Jersey would be EST5EDT. The
effects of setting TZ are thus to change the values of the
external variables timezone and daylight; in addition, the time
zone names contained in the external variable

char *tzname[2] = 1 "EST", "EDT" I;

Page 2 UP-13712.3

CTIME(3C)

are set from the environmentvariable TZ. The function tzset
sets these external variables from TZ; tzset is called by asc
time and may also be called explicitly by the user.

Note that in most installations, TZ is set by default when the
user logs on, to a value in the local fetefprofile file [see pro
file (4)].

SEE ALSO
time(2) , getenv(3C) , profile(4), environ(5).

CAVEAT
The return values point to static data whose content is
overwritten by each call.

UP-13712.3 Page 3

CTIME(3C)

[This page left blank.]

Page 4 UP-13712.3

CTYPE(3C)

NAME
ctype: isalpha, isupper, islower, isdigit, isxdigit, isalnum,
isspace, ispunct, isprint, isgraph, iscntrl, isascii - classify char
acters

SYNOPSIS
#include < ctype.h >

int isalpha (c)
int c;

DESCRIPTION
These macros classify character-coded integer values by table
lookup. Each is a predicate returning nonzero for true, zero
for false. [sasoii is defined on all integer values; the rest are
defined only where isascii is true and on the single non-ASCII
value EOF [-1; see stdio(3S)].

isa/pha

is upper

is/ower

is digit

isxdigit

isalnum

isspace

ispunct

isprint

isgraph

iscntr/

isascii

SEE ALSO

o is a letter.

o is an upper-case letter.

c is a lower-case letter.

o is a digit [0-9].

o is a hexadecimal digit [0-9], [A-F] or [a-fl.

o is an alphanumeric (letter or digit).

c is a space, tab, carriage return, newline, vertical
tab, or form-feed.

c is a punctuation character (neither control nor
alphanumeric) .

c is a printing character, code 040 (space)
through 0176 (tilde).

c is a printing character, like isprint except false
for space.

c is a delete character (0177) or an ordinary con
trol character (less than 040).

c is an ASCII character, code less than 0200.

stdio (3S), ascii (5).

UP-13712.3 Page 1

CTYPE(3C)

DIAGNOSTICS
If the argument to any of these macros is not in the domain of
the function, the result is undefined.

Page 2 UP-13712.3

DIAL(3C)

NAME
dial - establish an out-going terminal line connection

SYNOPSIS
#include < dial.h >

int dial (call)
CAll call;

void undial (fd)
int fd;

DESCRIPTION
Dial returns a file-descriptor for a terminal line open for
read/write. The argument to dial is a CALL structure (defined
in the < dial.h > header file).

When finished with the terminal line, the calling program must
invoke undial to release the semaphore that has been set dur
ing the allocation of the terminal device.

The definition of CALL in the < dial.h > header file is:

typedef struct 1

1 CALL;

struct termio *attr;

int baud;
int speed;

1* pointer to termio *1
1* attribute struct *1
1* transmission data rate *1
1* 212A modem: low=300~ *1
1* high=1200 *1

char *line; 1* device name for out- *1
1* going line *1

char *telno; 1* pointer to tel-no *1
1* digits string *1

int modem; 1* specify modem control *1
1* for direct lines *1

char *device; 1* Will hold the name of the *1
1* device used to make a *1
1* connection *1

int dev_len; 1* The length of the *1
1* device used to make *1
1* connection *1

The CALL element speed is intended only for use with an out
going dialed call, in which case its value should be either 300
or 1200 to identify the 113A modem, or the high- or low-speed

UP-13712.3 Page 1

DIAL(3C)

setting on the 212A modem. Note that the 113A modem or
the low-speed setting of the 212A modem will transmit at any
rate between 0 and 300 bits per second. However, the high
speed setting of the 212A modem transmits and receives at
1200 bits per secound only. The CALL element baud is for the
desired transmission baud rate. For example, one might set
baud to 110 and speed to 300 (or 1200). However, if speed
set to 1200 baud must be set to high (1200).

If the desired terminal line is a direct line, a string pointer to its
device-name should be placed in the line element in the CALL
structure. Legal values for such terminal device names are
kept in the L-devices file. In this case, the value of the baud
element need not be specified as it will be determined from
the L-devices file.

The telno element is for a pointer to a character string
representing the telephone number to be dialed. The termina
tion symbol will be supplied by the dial function, and should
not be included in the telno string passed to dial in the CALL
structure.

The CALL element modem is used to specify modem control
for direct lines. This element should be non-zero if modem
control is required. The CALL element attr is a pointer to a
termio structure, as defined in the < termio.h > header file. A
NULL value for this pointer element may be passed to the dial
function, but if such a structure is included, the elements
specified in it will be set for the outgoing terminal line before
the connection is established. This is often important for cer
tain attributes such as parity and baud-rate.

The CALL element device is used to hold the device name
(cul..) that establishes the connection.

The CALL element dev _len is the length of the device name
that is copied into the array device.

FILES
/usr/lib/uucp/L-devices
/usr/spool/uucp/LCK . . tty-device

SEE ALSO
alarm (2) , read(2), write(2).
termio(7) in the Administrator's Reference Manual.
uucp(1C) in the User's Reference Manual.

Page 2 UP-13712.3

DIAL(3C)

DIAGNOSTICS
On failure, a negative value indicating the reason for the
failure will be returned. Mnemonics for these negative indices
as listed here are defined in the < dial.h > header file.

INTRPT - 1
D_HUNG -2
NO_ANS -3
ILL_BD -4
A_PROB -5
L_PROB -6
NO_Ldv -7
DV_NT_A - 8
DV_NT_K -9
NO_BD_A -10
NO_BD_K -11
DV_NT_E -12

WARNINGS

/* interrupt occurred */
/* dialer hung (no return from write) */
/* no answer within 10 seconds */
/* illegal baud-rate */
/* acu problem (open() failure) */
/* line problem (open() failure) */
/* can't open LDEVS file */
/* requested device not available */
/* requested device not known */
/* no device available at requested baud */
/* no device known at requested baud */
/* requested speed does not match */

The dial (3C) library function is not compatible with Basic Net
working Utilities on UNIX System V Release 2.0.

Including the < dial.h > header file automatically includes the
< termio.h > header file.

The above routine uses < stdio.h >, which causes it to
increase the size of programs, not otherwise using standard
I/O, more than might be expected.

BUGS
An alarm (2) system call for 3600 seconds is made (and
caught) within the dial module for the purpose of "touching"
the LCK.. file and constitutes the device allocation semaphore
for the terminal device. Otherwise, uucp (1 C) may simply
delete the LCK .. entry on its SO-minute clean-up rounds. The
alarm may go off while the user program is in a read(2) or
write (2) system call, causing an apparent error return. If the
user program expects to be around for an hour or more, error
returns from reads should be checked for (err no = = EINTR),
and the read possibly reissued.

UP-13712.3 Page 3

DIAL(3C)

[This page left blank.]

Page 4 UP-13712.3

FPGETROUND (3C)

NAME
fpgetround, fpsetround, fpgetmask, fpsetmask, fpgetsticky,
fpsetsticky - IEEE floating point environment control

SYNOPSIS
#include < ieeefp.h >

typedef enum {
FP _ RN = 0, /* round to nearest * /
FP _ RZ = Ox1 0, /* round to zero (truncate) * /
FP _RM=Ox20, /* round to minus */
FP_RP = Ox30, /* round to plus */
} fp_rnd;

fp _rnd fpgetroundO;

fp _rnd fpsetround(rnd _ dir)
fp _rnd rnd _ dir;

#define fp _ except
#define FP X INV

int
Ox80

#define FP X OFL Ox40

#define FP X DZ Ox10

#define FP X IMP Ox08

fp _except fpgetmaskO;

fp_except fpsetmask(mask);
fp _except mask;

fp _except fpgetstickyO;

fp _except fpsetsticky(sticky);
fp _except sticky;

DESCRIPTION

/* invalid operation * /
/* exception * /
/* overflow * /
/* exception * /
/* underflow * /
/* exception * /
/* divide-by-zero * /
/* exception * /
/* imprecise (loss */
/* of precision) */

These routines let the user change the behavior on occurrence
of any of five floating point exceptions: divide-by-zero, over
flow, underflow, imprecise (inexact) result, and invalid opera
tion. The routines also change the rounding mode for floating
point operations. When a floating point exception occurs, the

UP-13712.3 Page 1

FPGETROUND (3C)

corresponding sticky bit is set (1). and if the mask bit is
enabled (1). the trap takes place. The routines are valid only
on systems that are equipped with floating point accelerator
hardware; otherwise. floating point operations are compiled
differently and handled in software.

fpgetroundO returns the current rounding mode.

fpsetround 0 sets the rounding mode and returns the previous
rounding mode.

fpgetmask 0 returns the current exception masks.

fpsetmask 0 sets the exception masks and returns the previ
ous setting.

fpgetstickyO returns the current exception sticky flags.

fpsetstickyO sets (clears) the exception sticky flags and
returns the previous setting.

The environment for Convergent computers that combine the
MC68020 CPU with the MC68881 or MC68882 floating point
processor is:

• Rounding mode set to nearest(FP _ RN).
• Divide-by-zero.
• Floating point overflow. and
• Invalid operation traps enabled.

SEE ALSO
isnan(3C).

WARNINGS
fpsetstickyO modifies all sticky flags. fpsetmaskO changes all
mask bits.

C requires truncation (round to zero) for floating point to
integral conversions. The current rounding mode has no
effect on these conversions.

CAVEATS
The utilities described in this manual page are applicable only
for computers that are equipped with both the MC68020
microprocessor for the CPU and the MC68881 or MC68882
microprocessor for a hardware floating point accelerator. Pro
grams that invoke these utilities that are run on computers
without the floating point hardware result in no operation and
no returned error message for the particular function.

Page 2 UP-13712.3

FPGETROUND(3C)

One must clear the sticky bit to recover from the trap and to
proceed. If the sticky bit is not cleared before the next trap
occurs, a wrong exception type may be signaled.

For the same reason, when calling fpsetmaskO the user should
make sure that the sticky bit corresponding to the exception
being enabled is cleared.

UP-13712.3 Page 3

FPGETR()UND(3C)

[This page left blank.]

Page 4 UP-13712.3

NAME
crypt - password and file encryption functions

SYNOPSIS
cc (flag ...] file ... -Icrypt (library ...]

char *crypt (key, salt)
char *key, *salt;

void setkey (key)
char *key;

void encrypt (block, flag)
char *block;
int flag;

char *des _crypt (key, salt)
char *key, *salt;

void des _ setkey (key)
char *key;

void des_encrypt (block, flag)
char *block;
int flag;

int run_setkey (p, key)
int p(2];
char *key;

int run_crypt (offset, buffer, count, p)
long offset;
char *buffer;
unsigned int count;
int p(2];

int crypt_ close(p)
int p(2];

DESCRIPTION

CRYPT(3X)

Des_crypt is the password encryption function. It is based on
a one way hashing encryption algorithm with variations
intended (among other things) to frustrate use of hardware
implementations of a key search.

Key is a user's typed password. Salt is a two-character string
chosen from the set [a-zA-ZO-9./]; this string is used to per
turb the hashing algorithm in one of 4096 different ways, after
which the password is used as the key to encrypt repeatedly a

UP-13712.3 Page 1

CRYPT(3X)

constant string. The returned value points to the encrypted
password. The first two characters are the salt itself.

The des _ setkey and des_encrypt entries provide (rather primi
tive) access to the actual hashing algorithm. The argument of
des _ setkey is a character array of length 64 containing only
the characters with numerical value 0 and 1. If this string is
divided into groups of 8. the low-order bit in each group is
ignored; this gives a 56-bit key which is set into the machine.
This is the key that will be used with the hashing algorithm to
encrypt the string block with the function des_encrypt.

The argument to the des_encrypt entry is a character array of
length 64 containing only the characters with numerical value
o and 1. The argument array is modified in place to a similar
array representing the bits of the argument after having been
subjected to the hashing algorithm using the key set by
des_setkey. If edf/ag is zero. the argument is encrypted; if
non-zero. it is decrypted.

Note that decryption is not provided in the international ver
sion of crypt (3X) . The international version is the only version
supplied with System V. as part of the C Programming Utili
ties. If decryption is attempted with the international version
of des_encrypt. an error message is printed.

Crypt. setkey. and encrypt are front-end routines that invoke
des_crypt. des_setkey. and des_encrypt respectively.

DIAGNOSTICS
In the international version of crypt(3X). a flag argument of 1
to des_encrypt is not accepted. and an error message is
printed.

SEE ALSO
getpass(3C). passwd(4).
login(1). passwd(1) in the User's Reference Manual.

CAVEATS
The return value in crypt points to static data that are overwrit
ten by each call.

Only the international version of crypt(3X) is supplied with Sys
tem V. The domestic version is not available.

Page 2 UP-13712.3

CURSES (3X)

NAME
curses - terminal screen handling and optimization package

OVERVIEW
The curses manual page is organized as follows:

In SYNOPSIS:

• Compiling information.

• Summary of parameters used by curses routines.

• Alphabetical list of curses routines, showing their
parameters.

In DESCRIPTION.

• An overview of how curses routines should be used.

In ROUTINES, descriptions of each curses routine are grouped
under the appropriate topics:

• Overall Screen Manipulation.

• Window and Pad Manipulation.

• Output Routines.

• Input Routines.

• Output Options Setting.

• Input Options Setting.

• Environment Queries.

• Soft Label Routines.

• Low-level Curses Access.

• Terminfo-Level Manipulations.

• Termcap Emulation.

• Miscellaneous.

• Use of curser.

• Obsolete calls.

Then come sections on:

• ATTRIBUTES.

UP-13712.3 Page 1

CURSES(3X)

• FUNCTION KEYS.

• LINE GRAPHICS.

SYNOPSIS
cc [flag ...] file ... -Icurses [library ...]

#include < curses.h >
(automatically includes < stdio.h > , < termio.h >, and
< unctrl.h ».

The parameters in the following list are not global vari
ables, but rather this is a summary of the parameters
used by the curses library routines. All routines return the
int values ERR or OK unless otherwise noted. Routines
that return pointers always return NULL on error. (ERR,
OK, and NULL are all defined in < curses.h > .) Routines
that return integers are not listed in the parameter list
below.

boo I bf

char **area,*boolnames[], *boolcodes[],
*boolfnames[], *bp

char *cap, *capname, codename[2], erasechar,
*filename, *fmt

char *keyname, killchar, *Iabel, *Iongname
char *name, *numnames[], *numcodes[],

*numfnames[]
char *slkJabel, *str, *strnames[], *strcodes[],

*strfnames[]
char *term, *tgetstr, *tigetstr, *tgoto, *tparm, *type

chtype attrs, ch, horch, vertch

FILE *infd, *outfd

Page 2 UP-13712.3

CURSES(3X)

int begin_x, begin_y, begline, bot, c, col, count
int dmaxcol, dmaxrow, dmincol, dminrow, *errret,

fildes
int (*init()), labfmt, labnum, line
int ms, ncols, new, newcol, newrow, nlines,

numlines
int oldcol, oldrow, overlay
int p1, p2, p9, pmincol, pminrow, (*putc()), row
int smaxcol, smaxrow, smincol, sminrow, start
int tenths, top, visibility, x, y

SCREEN *new, *newterm, *set_term

TERMINAL *cur_term, *nterm, *oterm

vaJist varglist

WINDOW *curscr, *dstwin, *initscr, *newpad,
*newwin, *orig

WINDOW *pad, *srcwin, *stdscr, *subpad, *subwin,
*win

addch(ch)
addstr(str)
attroff(attrs)
attron (attrs)
attrset(attrs)
baudrate()
beepO
box(win, vertch, horch)
cbreak()
clear()
clearok(win, bf)
clrtobotO
clrtoeol()
copywin(srcwin, dstwin, sminrow, smincol, dminrow,

dmincol, dmaxrow, dmaxcol, overlay)
curs _ set(visibility)
def _pro9_ mode ()
def_shell_mode()
del_curterm(oterm)
delay _ output(ms)
delch()
deleteln()

UP-13712.3 Page 3

CURSES(3X)

delwin (win)
doupdate()
draino(ms)
echo()
echochar(eh)
endwinO
eraseO
erasechar ()
filter()
flash 0
flushinpO
garbagedlines(win, begline, numlines)
getbegyx(win, y, x)
getch()
getmaxyx(win, y, x)
getstr(str)
getsyx(y, x)
getyx(win, y, x)
halfdelay(tenths)
hasJcO
hasJIO
idlok(win, bf)
inch()
initscr()
insch(eh)
insertln()
intrflush (win, bf)
isendwin()
keyname(e)
keypad (win, bf)
killchar()
leaveok(win, bf)
longname()
meta (win, bf)
move(y, x)
mvaddch(y, x, eh)
mvaddstr(y, x, str)
mvcur(oldrow, oldeol, newrow, neweol)
mvdelch (y, x)
mvgetch (y, x)
mvgetstr(y, x, str)
mvinch(y. x)

Page 4 UP-13712.3

CURSES(3X)

mvinsch(y, X, ch)
mvprintw(y, X, fmt [, arg ...])
mvscanw(y, X, fmt [, arg ...])
mvwaddch(win, y, X, ch)
mvwaddstr(win, y, X, str)
mvwdelch(win, y, X)
mvwgetch(win, y, X)
mvwgetstr(win, y, X, str)
mvwin(win, y, X)
mvwinch(win, y, X)
mvwinsch(win, y, X, ch)
mvwprintw(win, y, X, fmt [, arg ...])
mvwscanw(win, y, X, fmt [, arg ...])
napms(ms)
newpad (nlines, ncols)
newterm (type, outfd, infd)
newwin(nlines, ncols, begin_v, begin_x)
nlO
nocbreak()
nodelay(win, bf)
noecho()
nonlO
noraw()
notimeout(win, bf)
overlay (srcwin, dstwin)
overwrite (srcwin, dstwin)
pechochar(pad, ch)
pnoutrefresh(pad, pminrow, pmincol, sminrow,

smincol, smaxrow, smaxcol)

UP-13712.3 Page 5

CURSES(3X)

prefresh(pad, pminrow, pmincol1 sminrow, smincol,
smaxrow, smaxcol)

printw(fmt [, arg 00 oj)
putp(str)
rawO
refresh()
reset _prog_mode()
reset_shell_mode 0
resettyO
restartterm(term, fildes, errret)
rl poffline (line, init)
savetty()
scanw(fmt [, arg 0 0 0])
scr _ dump (filename)
scr _init(filename)
scr _restore (fil ename)
scroll (win)
scrollok(win, bf)
set_ curterm(nterm)
set_ term (new)
setscrreg(top, bot)
setsyx(y, x)
setupterm (term, fildes, errret)
slk_clear()
slkJnit(fmt)
slk_label (Iabnum)
slk _ noutrefresh ()
slk_refresh ()
slk_restore()
slk_set(labnum, label, fmt)
slk_touch()
standend()
standout()
subpad(orig, nlines, ncols, begin_y, begin_x)
subwin(orig, nlines, ncols, begin_y, begin_x)
tgetent(bp, name)
tgetflag (codename)
tgetnum (codename)
tgetstr(codename, area)
tgoto(cap, col, row)
tigetflag (capname)
tigetnum (capname)

Page 6 UP-13712.3

tigetstr(capname)
touchline(win, start, count)
touchwin (win)
tparm(str, p1, p2, ... , p9)
tputs(str, count, putc)
traceoff()
traceon()
typeahead (fildes)
unctrl(c)
ungetch(c)
vidattr (attrs)
vidputs(attrs, putc)
vwprintw(win, fmt, varglist)
vwscanw(win, fmt, varglist)
waddch(win, ch)
waddstr(win, str)
wattroff(win, attrs)
wattron(win, attrs)
wattrset(win, attrs)
wclear(win)
wclrtobot(win)
wclrtoeol (win)
wdelch (win)
wdeleteln (win)
wechochar(win, ch)
werase(win)
wgetch (win)
wgetstr(win, str)
winch (win)
winsch(win, ch)
winsertln (win)
wmove(win, y, x)
wnoutrefresh (win)
wprintw(win, fmt [. arg ...])
wrefresh (win)
wscanw(win, fmt [, arg ...])
wsetscrreg(win, top, bot)
wstandend (win)
wstandout(win)

DESCRIPTION

CURSES(3X)

The curses routines give the user a terminal-independent

UP-13712.3 Page 7

CURSES(3X)

method of updating screens with reasonable optimization.

In order to initialize the routines, the routine initscrO or
newtermO must be called before any of the other routines
that deal with windows and screens are used. (Three excep
tions are noted where they apply.) The routine endwin() must
be called before exiting. To get character-at-a-time input
without echoing, (most interactive, screen oriented programs
want this) after calling initscrO you should call "cbreakO;
noechoO;" Most programs would additionally call "nonIO;
intrflush (stdscr, FALSE); keypad(stdscr, TRUE);".

Before a curses program is run, a terminal's tab stops should
be set and its initialization strings, if defined, must be output.
This can be done by executing the tput init command after
the shell environment variable TERM has been exported. For
further details, see profile (4), tput(1), and the "Tabs and Initial
ization" subsection of terminfo (4).

The curses library contains routines that manipulate data
structures called windows that can be thought of as two
dimensional arrays of characters representing all or part of a
terminal screen. A default window called stdscr is supplied,
which is the size of the terminal screen. Others may be
created with newwinO. Windows are referred to by variables
declared as WINDOW *; the type WINDOW is defined in
< curses.h > to be a C structure. These data structures are
manipulated with routines described below, among which the
most basic are moveO and addchO. (More general versions
of these routines are included with names beginning with w,
allowing you to specify a window. The routines not beginning
with w usually affect stdscr.) Then refreshO is called, telling
the routines to make the user's terminal screen look like
stdscr. The characters in a window are actually of type
chtype, so that other information about the character may
also be stored with each character.

Special windows called pads may also be manipulated. These
are windows which are not constrained to the size of the
screen and whose contents need not be displayed completely.
See the description of newpadO under "Window and Pad
Manipulation" for more information.

Page 8 UP-13712.3

CURSES(3X)

In addition to drawing characters on the screen. video attri
butes may be included which cause the characters to show up
in modes such as underlined or in reverse video on terminals
that support such display enhancements. Line drawing char
acters may be specified to be output. On input. curses is also
able to translate arrow and function keys that transmit escape
sequences into single values. The video attributes. line draw
ing characters. and input values use names. defined in
<curses.h>. such as A_REVERSE. ACS_HlI'NE. and
KEY_lEFT.

Curses also defines the WINDOW * variable. curscr. which is
used only for certain low-level operations like clearing and
redrawing a garbaged screen. curscr can be used in only a
few routines. If the window argument to clearokO is curscr.
the next call to wrefresh () with any window will cause the
screen to be cleared and repainted from scratch. If the win
dow argument to wrefreshO is curscr. the screen in immedi
ately cleared and repainted from scratch. This is how most
programs would implement a "repaint-screen" function. More
information on using curser is provided where its use is
appropriate.

The environment variables lINES and COLUMNS may be set
to override terminfo's idea of how large a screen is. These
may be used in an AT&T Teletype 5620 layer. for example.
where the size of a screen is changeable.

If the environment variable TERMINFO is defined. any pro
gram using curses will check for a local terminal definition
before checking in the standard place. For example. if the
environment variable TERM is set to att4425. then the com
piled terminal definition is found in
/usr/lib/terminfo/a/att4425. (The a is copied from the first
letter of att4425 to avoid creation of huge directories.) How
ever, if TERMINFO is set to $HOME/myterms, curses will first
check $HOME/myterms/a/att4425. and. if that fails. will then
check /usr/lib/terminfo/a/att4425. This is useful for develop
ing experimental definitions or when write permission on
/usr/lib/terminfo is not available.

The integer variables lINES and eOlS are defined in
< eurses.h >. and will be filled in by initserO with the size of
the screen. (For more information. see the subsection

UP-13712.3 Page 9

CURSES(3X)

"Terminfo-Level Manipulations.") The constants TRUE and
FALSE have the values 1 and 0, respectively. The constants
ERR and OK are returned by routines to indicate whether the
routine successfully completed. These constants are also
defined in < curses.h > .

ROUTINES
Many of the following routines have two or more versions.
The routines prefixed with w require a window argument. The
routines prefixed with p require a pad argument. Those
without a prefix generally use stdscr.

The routines prefixed with mv require y and x coordinates to
move to before performing the appropriate action. The mvO
routines imply a call to moveO before the call to the other
routine. The window argument is always specified before the
coordinates. Y always refers to the row (of the window), and x
always refers to the column. The upper left corner is always
(0,0), not (1,1). The routines prefixed with mvw take both a
window argument and y and x coordinates.

In each case, win is the window affected and pad is the pad
affected. (win and pad are always of type WINDOW *.)
Option-setting routines require a boolean flag bf with the value
TRUE or FALSE. (bf is always of type bool.) The types WIN·
DOW, bool, and chtype are defined in < curses.h >. See the
SYNOPSIS for a summary of what types all variables are.

All routines return either the integer ERR or the integer OK,
unless otherwise noted. Routines that return pointers always
return NULL on error.

Page 10 UP-13712.3

CURSES(3X)

Overall Screen Manipulation
WINDOW *initscr()

The first routine called should almost always be
initscr(). (The exceptions are slkJnit(), filter(), and
ripoffline().) This will determine the terminal type and
initialize all curses data structures. InitscrO also
arranges that the first call to refresh() will clear the
screen. If errors occur, initscrO will write an appropri
ate error message to standard error and exit; otherwise,
a pointer to stdscr is returned. If the program wants
an indication of error conditions, newterm() should be
used instead of initscr(). initscr() should only be
called once per application.

endwin()
A program should always call endwin() before exiting
or escaping from curses mode temporarily, to do a
shell escape or system(38) call, for example. This rou
tine will restore tty(7) modes, move the cursor to the
lower left corner of the screen and reset the terminal
into the proper non-visual mode. To resume after a
temporary escape, call wrefresh() or doupdateO.

isendwin()
Returns TRUE if endwinO has been called without any
subsequent calls to wrefresh () .

SCREEN *newterm(type, outfd, infd)
A program that outputs to more than one terminal must
use newtermO for each terminal instead of initscr(). A
program that wants an indication of error conditions, so
that it may continue to run in a line-oriented mode if the
terminal cannot support a screen-oriented program,
must also use this routine. NewtermO should be called
once for each terminal. It returns a variable of type
SCREEN* that should be saved as a reference to that
terminal. The arguments are the type of the terminal to
be used in place of the environment variable TERM;
outfd. a stdio (38) file pointer for output to the terminal;
and infd, another file pointer for input from the terminal.
When it is done running. the program must also call
endwinO for each terminal being used. If newterm() is
called more than once for the same terminal, the first

UP-13712.3 Page 11

CURSES(3X)

terminal referred to must be the last one for which
endwin() is called.

SCREEN *set_term(new)
This routine is used to switch between different termi
nals. The screen reference new becomes the new
current terminal. A pointer to the screen of the previ
ous terminal is returned by the routine. This is the only
routine which manipulates SCREEN pointers; all other
routines affect only the current terminal.

Window and Pad Manipulation
refresh()
wrefresh (win)

Page 12

These routines [or prefresh(). pnoutrefresh().
wnoutrefresh(). or doupdateO] must be called to write
output to the terminal. as most other routines merely
manipulate data structures. Wrefresh() copies the
named window to the physical terminal screen. taking into
account what is already there in order to minimize the
amount of information that is sent to the terminal (called
optimization). RefreshO does the same thing. except it
uses stdscr as a default window. Unless leaveok() has
been enabled. the physical cursor of the terminal is left at
the location of the window's cursor. The number of char
acters output to the terminal is returned.

Note that refresh() is a macro.

UP-13712.3

wnoutrefresh (win)
doupdate()

CURSES(3X)

These two routines allow multiple updates to the physical
terminal screen with more efficiency than wrefresh ()
alone. How this is accomplished is described in the next
paragraph.

Curses keeps two data structures representing the termi
nal screen: a physical terminal screen, describing what is
actually on the screen, and a virtual terminal screen,
describing what the programmer wants to have on the
screen. WrefreshO works by first calling wnoutrefreshO,
which copys the named window to the virtual screen, and
then by calling doupdateO, which compares the virtual
screen to the physical screen and does the actual update.
If the programmer wishes to output several windows at
once, a series of calls to wrefreshO will result in alternat
ing calls to wnoutrefresh() and doupdate(), causing
several bursts of output to the screen. By first calling
wnoutrefresh() for each window, it is then possible to call
doupdate() once, resulting in only one burst of output,
with probably fewer total characters transmitted and cer
tain�y less processor time used.

WINDOW *newwin(nlines, ncols, begin_y, begin_x)
Create and return a pointer to a new window with the
given number of lines (or rows), nlines, and columns,
ncols. The upper left corner of the window is at line
beginy, column begin_x. If either nlines or ncols is 0,
they will be set to the value of Iines-begin.Y and
cols-begin_x. A new full-screen window is created by cal
ling newwin(O,O,O,O).

mvwin(win, y, x)
Move the window so that the upper left corner will be at
position (y, x). If the move would cause the window to be
off the screen, it is an error and the window is not moved.

WINDOW *subwin(orig, nlines, ncols, begin_y, begin_x)
Create and return a pointer to a new window with the
given number of lines (or rows), nlines, and columns,
ncols. The window is at position (begin y, begin_x) on
the screen. (This position is relative to the screen, and
not to the window orig.) The window is made in the

UP-13712.3 Page 13

CURSES(3X)

middle of the window o,ig, so that changes made to one
window will affect both windows. When using this routine,
often it will be necessary to call touchwinO or touchline()
on o,ig before calling wrefreshO.

delwin(win)
Delete the named window, freeing up all memory associ
ated with it. In the case of overlapping windows, subwin
dows should be deleted before the main window.

WINDOW *newpad (nlines, ncols)
Create and return a pointer to a new pad data structure
with the given number of lines (or rows), nJines, and
columns, nco/s. A pad is a window that is not restricted
by the screen size and is not necessarily associated with a
particular part of the screen. Pads can be used when a
large window is needed, and only a part of the window
will be on the screen at one time. Automatic refreshes of
pads (for example, from scrolling or echoing of input) do
not occur. It is not legal to call wrefreshO with a pad as
an argument; the routines prefresh () or pnoutrefresh ()
should be called instead. Note that these routines require
additional parameters to specify the part of the pad to be
displayed and the location on the screen to be used for
display.

WINDOW *subpad(orig, nlines, ncols, begin_y, begin_x)
Create and return a pointer to a subwindow within a pad
with the given number of lines (or rows), nJines, and
columns, nco/so Unlike subwinO. which uses screen coor
dinates, the window is at position (beginY1 begin_x) on
the pad. The window is made in the middle of the win
dow o,ig, so that changes made to one window will affect
both windows. When using this routine, often it will be
necessary to call touchwin() or touchlineO on o,ig
before calling prefresh ().

prefresh(pad, pminrow, pmincol, sminrow, smincol,
smaxrow, smaxcol)

pnoutrefresh(pad, pminrow, pmincol, sminrow, smincol,
smaxrow, smaxcol)

Page 14

These routines are analogous to wrefreshO and
wnoutrefresh 0 except that pads, instead of windows, are
involved. The additional parameters are needed to

UP-13712.3

CURSES (3X)

indicate what part of the pad and screen are involved.
pminrow and pminco/ specify the upper left corner, in the
pad, of the rectangle to be displayed. sminrow, sminco/,
smaxrow, and smaxcol specify the edges, on the screen,
of the rectangle to be displayed in. The lower right corner
in the pad of the rectangle to be displayed is calculated
from the screen coordinates, since the rectangles must be
the same size. Both rectangles must be entirely con
tained within their respective structures. Negative values
of pminrow, pmincol, sminrow, or smincol are treated as
if they were zero.

Output Routines
These routines are used to II draw" text on windows.

addch(ch)
waddch(win, ch)
mvaddch(y, x, ch)
mvwaddch(win, y, x, ch)

The character ch is put into the window at the current cur
sor position of the window and the position of the window
cursor is advanced. Its function is similar to that of
putchar [see putc(3S)]. At the right margin, an automatic
newline is performed. At the bottom of the scrolling
region, if scrollok() is enabled, the scrolling region will be
scrolled up one line.

If ch is a tab, newline, or backspace, the cursor will be
moved appropriately within the window. A newline also
does a clrtoeol() before moving. Tabs are considered to
be at every eighth column. If ch is another control char
acter, it will be drawn in the AX notation. (Calling winchO
after adding a control character will not return the control
character, but instead will return the representation of the
control character.)

Video attributes can be combined with a character by
OR-ing them into the parameter. This will result in these
attributes also being set. (The intent here is that text,
including attributes, can be copied from one place to
another using inchO and addchO.) See standout(),
below.

Note that ch is actually of type chtype, not a character.

UP-13712.3 Page 15

CURSES(3X)

Note that addchO, mvaddchO, and mvwaddchO, are
macros.

echochar (ch)
wechochar(win, ch)
pechochar(pad, ch)

These routines are functionally equivalent to a call to
addch(ch) followed by a call to refreshO, a call to
waddch (win, ch) followed by a call to wrefresh (win), or a
call to waddch(pad, ch) followed by a call to
prefresh(pad). The knowledge that only a single charac
ter is being output is taken into consideration and, for
non-control characters, a considerable performance gain
can be seen by using these routines instead of their
equivalents. In the case of pechocharO, the last location
of the pad on the screen is reused for the arguments to
prefresh () .

Note that ch is actually of type chtype, not a character.

Note that echocharO is a macro.

addstr(str)
waddstr(win, str)
mvwaddstr(win, y, x, str)
mvaddstr(y, x, str)

These routines write all the characters of the null
terminated character string sfr on the given window. This
is equivalent to calling waddch 0 once for each character
in the string.

Note that addstrO, mvaddstrO, and mvwaddstrO are
macros.

attroff(attrs)
wattroff(win, attrs)
attron (attrs)
wattron (win, attrs)
attrset(attrs)
wattrset(win, attrs)
standend()
wstandend (win)
standout()
wstandout(win)

These routines manipulate the current attributes of the

Page 16 UP-13712.3

CURSES(3X)

named window. These attributes can be any combination
of A_STANDOUT. A_REVERSE. A_BOLD. A_DIM.
A_BLINK. A_UNDERLINE. and A_AL TCHARSET. These
constants are defined in < curses.h > and can be com
bined with the C logical OR (:) operator.

The current attributes of a window are applied to all char
acters that are written into the window with waddch ().
Attributes are a property of the character. and move with
the character through any scrolling and insert/delete
line/character operations. To the extent possible on the
particular terminal. they will be displayed as the graphic
rendition of the characters put on the screen.
Attrset(attrs) sets the current attributes of the given win
dow to attrs. Attroff(attrs) turns off the named attributes
without turning on or off any other attributes.
attron (attrs) turns on the named attributes without affect
ing any others. Standout() is the same as
attron(A_STANDOUT). Standend() is the same as
attrset(O). that is. it turns off all attributes.

Note that attrs is actually of type chtype. not a character.

Note that attroff(). attron () • attrset() • standend (). and
standout() are macros.

beep()
flash()

These routines are used to signal the terminal user.
Beep() will sound the audible alarm on the terminal. if
possible. and if not. will flash the screen (visible bell). if
that is possible. Flash() will flash the screen. and if that
is not possible. will sound the audible signal. If neither
signal is possible. nothing will happen. Nearly all termi
nals have an audible Signal (bell or beep) but only some
can flash the screen.

box (win. vertch. horch)
A box is drawn around the edge of the window. win.
vertch and horch are the characters the box is to be
drawn with. If vertch and horch are O. then appropriate
default characters. ACS_ VLINE and ACS_HLINE. will be
used.

Note that vertch and horch are actually of type chtype.

UP-13712.3 Page 17

CURSES(3X)

not characters.

erase()
werase(win)

These routines copy blanks to every position in the win
dow.

Note that eraseO is a macro.

clear()
wclear(win)

These routines are like eraseO and weraseO, but they
also call clearokO, arranging that the screen will be
cleared completely on the next call to wrefresh () for that
window, and repainted from scratch.

Note that clearO is a macro.

clrtobot()
wclrtobot(win)

All lines below the cursor in this window are erased. Also,
the current line to the right of the cursor, inclusive, is
erased.

Note that clrtobotO is a macro.

clrtoeol()
wclrtoeol (win)

The current line to the right of the cursor, inclusive, is
erased.

Note that clrtoeolO is a macro.

delay _ output (ms)
Insert a ms millisecond pause in the output. It is not
recommended that this routine be used extensively,
because padding characters are used rather than a pro
cessor pause.

delch()
wdelch (win)
mvdelch (y, x)
mvwdelch(win, y, x)

Page 18

The character under the cursor in the window is deleted.
All characters to the right on the same line are moved to
the left one position and the last character on the line is
filled with a blank. The cursor position does not change

UP-13712.3

CURSES(3X)
P&

(after moving to (y, x), if specified). (This does not imply
use of the hardware "delete-character" feature.)

Note that delch 0, mvdelch 0, and mvwdelch () are mac
ros.

deleteln()
wdeleteln (win)

The line under the cursor in the window is deleted. All
lines below the current line are moved up one line. The
bottom line of the window is cleared. The cursor position
does not change. (This does not imply use of the
hardware "delete-line" feature.)

Note that deletelnO is a macro.

getyx(win, y, x)
The cursor position of the window is placed in the two
integer variables y and x. This is implemented as a
macro, so no "&" is necessary before the variables.

getbegyx(win, y, x)
getmaxyx(win, y, x)

Like getyxO, these routines store the current beginning
coordinates and size of the specified window.

Note that getbegyx() and getmaxyxO are macros.

insch(ch)
winsch(win, ch)
mvwinsch(win, y, x, ch)
mvinsch (y, x, ch)

The character ch is inserted before the character under
the cursor. All characters to the right are moved one
space to the right, possibly losing the rightmost character
of the line. The cursor position does not change (after
moving to (y, x). if specified). (This does not imply use of
the hardware "insert-character" feature.)

Note that ch is actually of type chtype, not a character.

Note that insch (), mvinsch (), and mvwinsch () are mac
ros.

insertln()
winsertln(win)

A blank line is inserted above the current line and the

UP-13712.3 Page 19

CURSES(3X)

bottom line is lost. (This does not imply use of the
hardware "insert-line" feature.)

Note that insertln() is a macro.

move(y, x)
wmove(win, y, x)

The cursor associated with the window is moved to line
(row) y, column x. This does not move the physical cur
sor of the terminal until refreshO is called. The position
specified is relative to the upper left corner of the window,
which is (0, 0).

Note that moveO is a macro.

overlay(srcwin, dstwin)
overwrite (srcwin, dstwin)

These routines overlay srcwin on top of dstwin; that is, all
text in srcwin is copied into dstwin. scrwin and dstwin
need not be the same size; only text where the two win
dows overlap is copied. The difference is that overlayO is
non-destructive (blanks are not copied), while overwO is
destructive.

copywin(srcwin, dstwin, sminrow, smincol, dminrow.
dmincol, dmaxrow, dmaxcol, overlay)

This routine provides a finer grain of control over the
overlay() and overwrite() routines. Like in the
prefreshO routine, a rectangle is specified in the destina
tion window, (dminrow, dmincol) and (dmaxrow, dmaxco/) ,
and the upper-left-corner coordinates of the source win
dow, (sminrow, sminco/). If the argument overlay is true.
then copying is non-destructive, as in overlay().

printw(fmt [, arg ...])
wprintw(win, fmt [, arg ...])
mvprintw(y, x, fmt [, arg ...])
mvwprintw(win, y, x, fmt [, arg ...])

These routines are analogous to printf(3S). The string
which would be output by printf(3S) is instead output
using waddstrO on the given window.

vwprintw(win, fmt, varglist)

Page 20

This routine corresponds to vfprintf [see vprintf(3S)]. It
performs a wprintw 0 using a variable argument list. The
third argument is a va _'ist, a pointer to a list of

UP-13712.3

CURSES (3X)

arguments, as defined in < varargs.h > . See the
vprintf(3S) and varargs (5) manual pages for a detailed
description on how to use variable argument lists.

scroll (win)
The window is scrolled up one line. This involves moving
the lines in the window data structure. As an optimiza
tion, if the window is stdscr and the scrolling region is the
entire window, the physical screen will be scrolled at the
same time.

touchwin (win)
touchline(win, start, count)

Throwaway all optimization information about which parts
of the window have been touched, by pretending that the
entire window has been drawn on. This is sometimes
necessary when using overlapping windows, since a
change to one window will affect the other window, but
the records of which lines have been changed in the other
window will not reflect the change. Touchline() only pre
tends that count lines have been changed, beginning with
line start .

UP-13712.3 Page 21

CURSES(3X)

Input Routines
getch()
wgetch (win)
mvgetch (y. x)
mvwgetch(win. y. x)

Page 22

A character is read from the terminal associated with the
window. In NODELAY mode. if there is no input waiting.
the value ERR is returned. In DELAY mode. the program
will hang until the system passes text through to the pro
gram. Depending on the setting of cbreakO. this will be
after one character (CBREAK mode). or after the first
newline (NOCBREAK mode). In HALF-DELAY mode. the
program will hang until a character is typed or the speci
fied timeout has been reached. Unless noecho() has
been set. the character will also be echoed into the desig
nated window. No refreshO will occur between the
moveO and the getchO done within the routines
mvgetch 0 and mvwgetch O.

When using getch O. wgetch O. mvgetch O. or
mvwgetchO. do not set both NOCBREAK mode [noc
breakO] and ECHO mode [echoO] at the same time.
Depending on the state of the tty (7) driver when each
character is typed. the program may produce undesirable
results.

If keypad (win. TRUE) has been called. and a function key
is pressed. the token for that function key will be returned
instead of the raw characters. (See keypad () under
"Input Options Setting.") Possible function keys are
defined in < curses.h > with integers beginning with
0401. whose names begin with KEY _. If a character is
received that could be the beginning of a function key
(such as escape). curses will set a timer. If the remainder
of the sequence is not received within the designated
time. the character will be passed through. otherwise the
function key value will be returned. For this reason. on
many terminals. there will be a delay after a user presses
the escape key before the escape is returned to the pro
gram. (Use by a programmer of the escape key for a sin
gle character routine is discouraged. Also see
notimeoutO below.)

UP-13712.3

CURSES(3X)

Note that getchO, mvgetchO, and mvwgetchO are mac
ros.

getstr(str)
wgetstr(win, str)
mvgetstr(y, x, str)
mvwgetstr(win, y, x, str)

A series of calls to getchO is made, until a newline, car
riage return, or enter key is received. The resulting value
is placed in the area pointed at by the character pointer
str. The user's erase and kill characters are interpreted.
As in mvgetchO, no refreshO is done between the
moveO and getstrO within the routines mvgetstrO and
mvwgetstr() .

Note that getstrO, mvgetstrO, and mvwgetstrO are mac
ros.

flushinp()
Throws away any typeahead that has been typed by the
user and has not yet been read by the program.

ungetch(c)
Place c back onto the input queue to be returned by the
next call to wgetch () .

inch()
winch (win)
mvinch(y, x)
mvwinch(win, y, x)

The character, of type chtype, at the current position in
the named window is returned. If any attributes are set
for that position, their values will be OR'ed into the value
returned. The predefined constants A_ CHARTEXT and

UP-13712.3 Page 23

CURSES(3X)

A_ATTRIBUTES, defined in < curses.h >, can be used
with the C logical AND (&) operator to extract the charac
ter or attributes alone.

Note that inch 0, winch 0, mvinch 0, and mvwinch 0 are
macros.

scanw(fmt [, arg ...])
wscanw(win, fmt [, arg ...])
mvscanw(y, x, fmt [, arg ...])
mvwscanw(win, y, x, fmt [, arg ...])

These routines correspond to scanf(3S), as do their argu
ments and return values. WgetstrO is called on the win
dow, and the resulting line is used as tnput for the scan.

vwscanw(win, fmt, ap)
This routine is similar to vwprintwO above in that per
forms a wscanwO using a variable argument list. The
thi rd argument is a va _list, a pointer to a list of argu
ments, as defined in < varargs.h >. See the vprintf (3S)
and varargs (5) manual pages for a detailed description on
how to use variable argument lists.

Output Options Setting
These routines set options within curses that deal with output.
All options are initially FALSE, unless otherwise stated. It is
not necessary to turn these options off before calling
endwinO·

clearok(win, bf)
If enabled (bf is TRUE), the next call to wrefreshO with
this window will clear the screen completely and redraw
the entire screen from scratch. This is useful when the
contents of the screen are uncertain, or in some cases for
a more pleasing visual effect.

idlok(win, bf)

Page 24

If enabled (bf is TRUE), curses will consider using the
hardware "insert/delete-line" feature of terminals so
equipped. If disabled (bf is FALSE), curses will very sel
dom use this feature. (The "insert/delete-character"
feature is always considered.) This option should be
enabled only if your application needs "insert/delete-line",
for example, for a screen editor. It is disabled by default
because "insert/delete-line" tends to be visually annoying

UP-13712.3

CURSES(3X)

when used in applications where it isn't really needed. If
"insert/delete-line" cannot be used, curses will redraw the
changed portions of all lines.

leaveok(win, bf)
Normally, the hardware cursor is left at the location of the
window cursor being refreshed. This option allows the
cursor to be left wherever the update happens to leave it.
It is useful for applications where the cursor is not used,
since it reduces the need for cursor motions. If possible,
the cursor is made invisible when this option is enabled.

setserreg (top, bot)
wsetserreg (win, top, bot)

These routines allow the user to set a software scrolling
region in a window. top and bot are the line numbers of
the top and bottom margin of the scrolling region. (Line 0
is the top line of the window.) If this option and serol
lok() are enabled, an attempt to move off the bottom
margin line will cause all lines in the scrolling region to
scroll up one line. (Note that this has nothing to do with
use of a physical scrolling region capability in the terminal,
like that in the DEC VT100. Only the text of the window is
scrolled; if idlokO is enabled and the terminal has either a
scrolling region or "insert/delete-line" capability. they will
probably be used by the output routines.)

Note that setserregO and wsetserregO are macros.

serollok(win. bf)
This option controls what happens when the cursor of a
window is moved off the edge of the window or scrolling
region. either from a newline on the bottom line. or typing
the last character of the last line. If disabled (bf is
FALSE). the cursor is left on the bottom line at the loca
tion where the offending character was entered. If
enabled (bf is TRUE), wrefreshO is called on the window.
and then the physical terminal and window are scrolled up
one line. (Note that in order to get the physical scrolling
effect on the terminal. it is also necessary to call idlok().)

nl()
nonlO

These routines control whether newline is translated into

UP-13712.3 Page 25

CURSES(3X)

carriage return and linefeed on output, and whether
return is translated into newline on input. Initially, the
translations do occur. By disabling these translations
using nonl(), curses is able to make better use of the
linefeed capability, resulting in faster cursor motion.

Input Options Setting
These routines set options within curses that deal with input.
The options involve using ioctl (2) and therefore interact with
curses routines. It is not necessary to turn these options off
before calling endwin ().

For more information on these options, see "curses/terminfo"
in the System V Programmer's Guide.

cbreakO
nocbreak()

Page 26

These two routines put the terminal into and out of
CBREAK mode, respectively. In CBREAK mode, charac
ters typed by the user are immediately available to the
program and erase/kill character processing is not per
formed. When in NOCBREAK mode, the tty driver will
buffer characters typed until a newline or carriage return
is typed. Interrupt and flow-control characters are unaf
fected by this mode [see termio (7)]. Initially the terminal
mayor may not be in CBREAK mode, as it is inherited,

UP-13712.3

CURSES(3X)

therefore, a program should call ebreakO or noebreakO
explicitly. Most interactive programs using curses will set
CBREAK mode.

Note that ebreakO overrides rawO. See getehO under
"Input Routines" for a discussion of how these routines
interact with eehoO and noeehoO.

eehoO
noeehoO

These routines control whether characters typed by the
user are echoed by getehO as they are typed. Echoing
by the tty driver is always disabled, but initially getehO is
in ECHO mode, so characters typed are echoed. Authors
of most interactive programs prefer to dQ their own echo
ing in a controlled area of the screen, or not to echo at all,
so they disable echoing by calling noeehoO. See getehO
under "Input Routines" for a discussion of how these rou
tines interact with ebreakO and noebreakO.

halfdelay(tenths)
Half-delay mode is similar to CBREAK mode in that char
acters typed by the user are immediately available to the
program. However, after blocking for tenths tenths of
seconds, ERR will be returned if nothing has been typed.
tenths must be a number between 1 and 255. Use noe
breakO to leave half-delay mode.

intrflush(win, bf)
If this option is enabled, when an interrupt key is pressed
on the keyboard (interrupt, break, quit) all output in the
tty driver queue will be flushed, giving the effect of faster
response to the interrupt, but causing curses to have the
wrong idea of what is on the screen. Disabling the option
pr~vents the flush. The default for the option is inherited
from the tty driver settings. The window argument is
ignored.

keypad (win, bf)
This option enables the keypad of the user's terminal. If
enabled, the user can press a function key (such as an
arrow key) and wgetehO will return a single value
representing the function key, as in KEY_LEFT. If dis
abled, curses will not treat function keys specially and the

UP-13712.3 Page 27

CURSES(3X)

program would have to interpret the escape sequences
itself. If the keypad in the terminal can be turned on
(made to transmit) and off (made to work locally), turning
on this option will cause the terminal keypad to be turned
on when wgetch() is called.

meta (win, bf)
If enabled, characters returned by wgetchO are transmit
ted with all 8 bits, instead of with the highest bit stripped.
In order for metaO to work correctly, the km
(has_meta _key) capability has to be specified in the
terminal's terminfo(4) entry.

nodelay(win, bf)
This option causes wgetchO to be a non-blocking call. If
no input is ready, wgetch() will return ERR. If disabled,
wgetch() will hang until a key is pressed.

notimeout(win, bf)
While interpreting an input escape sequence, wgetchO
will set a timer while waiting for the next character. If
notimeout(win, TRUE) is called, then wgetchO will not set
a timer. The purpose of the timeout is to differentiate
between sequences received from a function key and
those typed by a user.

raw()
norawO

Page 28

The terminal is placed into or out of raw mode. RAW
mode is similar to CBREAK mode, in that characters
typed are immediately passed through to the user pro
gram. The differences are that in RAW mode, the inter
rupt, quit, suspend, and flow control characters are
passed through uninterpreted, instead of generating a
signal. RAW mode also causes 8-bit input and output.

UP-13712.3

CURSES(3X)

The behavior of the BREAK key depends on other bits in
the tty(7) driver that are not set by curses.

typeahead (fildes)
Curses does "line-breakout optimization" by looking for
typeahead periodically while updating the screen. If input
is found, and it is coming from a tty, the current update
will be postponed until refreshO or doupdateO is called
again. This allows faster response to commands typed in
advance. Normally, the file descriptor for the input FILE
pointer passed to newterm (), or stdin in the case that
initscrO was used, will be used to do this typeahead
checking. The typeaheadO routine specifies that the file
descriptor fi/des is to be used to check for typeahead
instead. If fi/des is -1, then no typeahead checking will be
done.

Note that fi/des is a file descriptor, not a < stdio.h > FILE
painter.

Environment Queries
baudrate()

Returns the output speed of the terminal. The number
returned is in bits per second, for example, 9600, and is
an integer.

char erasecharO
The user's current erase character is returned.

hasJcO
True if the terminal has insert- and delete-character capa
bilities.

has_ilO
True if the terminal has insert- and delete-line capabilities,
or can simulate them using scrolling regions. This might
be used to check to see if it would be appropriate to turn
on physical scrolling using scroliokO.

char killchar()
The user's current line-kill character is returned.

UP-13712.3 Page 29

CURSES(3X)

char *Iongname()
This routine returns a pointer to a static area containing a
verbose description of the current terminal. The max
imum length of a verbose description is 128 characters. It
is defined only after the call to initscrO or newtermO.
The area is overwritten by each call to newtermO and is
not restored by set_termO. so the value should be saved
between calls to newtermO if longnameO is going to be
used with multiple terminals.

Soft label Routines
If desired. curses will manipulate the set of soft function-key
labels that exist on many terminals. For those terminals that
do not have soft labels. if you want to simulate them. curses
will take over the bottom line of stdscr. reducing the size of
stdscr and the variable LINES. Curses standardizes on 8
labels of 8 characters each.

slkJnit(labfmt)
In order to use soft labels. this routine must be called
before initscrO or newtermO is called. If initscrO winds
up using a line from stdscr to emulate the soft labels.
then labfmt determines how the labels are arranged on
the screen. Setting labfmt to indicates that the labels are
to be arranged in a 3-2-3 arrangement; 1 asks for a 4-4
arrangement.

slk_ set(labnum. label. labfmt)
Labnum is the label number, from 1 to 8. Label is the
string to be put on the label. up to 8 characters in length.
A NULL string or a NULL pointer will put up a blank label.
labfmt is one of 0, 1 or 2. to indicate whether the label is
to be left-justified. centered. or right-justified within the
label.

slk_refresh()
slk_noutrefresh 0

These routines correspond to the routines wrefreshO and
wnoutrefreshO. Most applications would use
slk _ noutrefresh 0 because a wrefresh 0 will most likely
soon follow.

char *slkJabel(labnum)

Page 30

The current label for label number labnum. with leading
and trailing blanks stripped. is returned.

UP-13712.3

CURSES(3X)

slk _clear ()
The soft labels are cleared from the screen.

slk _restore ()
The soft labels are restored to the screen after a
slk_clearO·

slk _touch ()
All of the soft labels are forced to be output the next time
a slk_"outrefreshO is performed.

Low-Level curses Access
The following routines give low-level access to various curses
functionality. These routines typically would be used inside of
library routines.

def _prog_mode ()
def_shell_modeO

Save the current terminal modes as the "program" (in
curses) or "shell" (not in curses) state for use by the
reset_prog_mode() and reset_ shell_mode () routines.
This is done automatically by initscr().

reset_prog_ mode()
reset_shell_mode ()

Restore the terminal to "program" (in curses) or "shell"
(out of curses) state. These are done automatically by
endwin() and doupdate() after an endwin(), so they nor
mally would not be called.

resetty()
savetty()

These routines save and restore the state of the terminal
modes. SavettyO saves the current state of the terminal
in a buffer and resetty() restores the state to what it was
at the last call to savetty().

getsyx (y, x)
The current coordinates of the virtual screen cursor are
returned in y and x. Like getyx() , the variables y and x do
not take an "&" before them. If leaveokO is currently
TRUE, then -1,·1 will be returned. If lines may have been
removed from the top of the screen using ripoffline() and
the values are to be used beyond just passing them on to
setsyx(), the value y + stdscr· > _yoffset should be used
for those other uses.

UP-13712.3 Page 31

CURSES(3X)

Note that getsyx() is a macro.

setsyx(y, x)
The virtual screen cursor is set to y, x. If y and x are both
-1, then leaveokO will be set. The two routines getsyxO
and setsyxO are designed to be used by a library routine
which manipulates curses windows but does not want to
mess up the current position of the program's cursor.
The library routine would call getsyxO at the beginning,
do its manipulation of its own windows, do a
wnoutrefreshO on its windows, call setsyxO, and then
call doupdate () .

ripoffline(line, init)
This routine provides access to the same facility that
slk init() uses to reduce the size of the screen. Ripoff
IineO must be called before initscr() or newterm () is
called. If line is positive, a line will be removed from the
top of stdscr; if negative, a line will be removed from the
bottom. When this is done inside initscrO, the routine
init () is called with two arguments: a window pointer to
the 1-line window that has been allocated and an integer
with the number of columns in the window. Inside this ini
tialization routine, the integer variables lIN ES and eOlS
(defined in < curses.h » are not guaranteed to be accu
rate and wrefreshO or doupdateO must not be called. It
is allowable to call wnoutrefreshO during the initialization
routine.

RipofflineO can be called up to five times before calling
initscr() or newterm ().

scr _ dump(filename)
The current contents of the virtual screen are written to
the file filename.

scr restore(filename)
The virtual screen is set to the contents of filename, which
must have been written using scr_dumpO. The next call
to doupdate() will restore the screen to what it looked like
in the dump file.

scr Jnit(filename)

Page 32

The contents of filename are read in and used to initialize
the curses data structures about what the terminal

UP-13712.3

CURSES(3X)

currently has on its screen. If the data is determined to
be valid, curses will base its next update of the screen on
this information rather than clearing the screen and start
ing from scratch. Scr Jnit() would be used after initscr()
or a system (3S) call to share the screen with another pro
cess which has done a scr_dump() after its endwinO call.
The data will be declared invalid if the time-stamp of the
tty is old or the term info (4) capability nrrmc is true.

curs _ set(visibility)
The cursor is set to invisible, normal, or very visible for
visibility equal to 0, 1 or 2.

draino(ms)
Wait until the output has drained enough that it will only
take ms more milliseconds to drain completely.

garbagedlines(win, begline, numlines)
This routine indicates to curses that a screen line is gar
baged and should be thrown away before having any
thing written over the top of it. It could be used for pro
grams such as editors which want a command to redraw
just a single line. Such a command could be used in
cases where there is a noisy communications line and
redrawing the entire screen would be subject to even
more communication noise. Just redrawing the single line
gives some semblance of hope that it would show up
unblemished. The current location of the window is used
to determine which lines are to be redrawn.

napms(ms)
Sleep for ms milliseconds.

Terminfo-Level Manipulations
These low-level routines must be called by programs that
need to deal directly with the terminfo (4) database to handle
certain terminal capabilities, such as programming function
keys. For all other functionality, curses routines are more suit
able and their use is recommended.

Initially, setupterm() should be called. (Note that setupterm()
is automatically called by initscrO and newterm().) This will
define the set of terminal-dependent variables defined in the
terminfo (4) database. The terminfo (4) variables lines and
columns [see terminfo (4)] are initialized by setupterm() as

UP-13712.3 Page 33

CURSES(3X)

follows: if the environment variables LINES and COLUMNS
exist, their values are used. Otherwise, the values for lines
and columns specified in the terminfo (4) database are used.

The header files < curses.h > and < term.h > should be
included, in this order, to get the definitions for these strings,
numbers, and flags. Parameterized strings should be passed
through tparmO to instantiate them. All terminfo (4) strings
[including the output of tparm()] should be printed with
tputsO or putpO. Before exiting, reset_shell_mode() should
be called to restore the tty modes. Programs which use cur
sor addressing should output enter_ca_mode upon startup
and should output exit_ca_mode before exiting [see ter
minfo(4)]. (Programs desiring shell escapes should call
reset_shell_mode() and output exit_ca_mode before the shell
is called and should output enter_ca_mode and call
reset_pro9_modeO after returning from the shell. Note that
this is different from the curses routines [see endwinO].

setupterm (term, fildes, errret)

Page 34

Reads in the terminfo (4) database, initializing the ter
minfo (4) structures, but does not set up the output virtual
ization structures used by curses. The terminal type is in
the character string term; if term is NULL, the environ
ment variable TERM will be used. All output is to the file
descriptor fi/des. If errret is not NULL, then setuptermO
will return OK or ERR and store a status value in the
integer pointed to by errret. A status of 1 in errret is nor
mal, 0 means that the terminal could not be found, and -1
means that the terminfo (4) database could not be found.
If errret is NULL, setuptermO will print an error message
upon finding an error and exit. Thus, the simplest call is
setupterm «(char *)0, 1, (int *)0), which uses all the
defaults.

The term info (4) boolean, numeric, and string variables are
stored in a structure of type TERMINAL. After setup
term() returns successfully, the variable cur_term (of type
TERMINAL *) is initialized with all of the information that
the terminfo (4) boolean, numeric, and string variables
refer to. The pOinter may be saved before calling setup
term() again. Further calls to setuptermO will allocate
new space rather than reuse the space pOinted to by

UP-13712.3

CURSES(3X)

cur_term.

set_ curterm (nterm)
Nterm is of type TERMINAL *. Set_curterm() sets the
variable cur_term to nterm, and makes all of the ter
minfo (4) boolean, numeric and string variables use the
values from nterm.

del_ curterm (oterm)
Oterm is of type TERMINAL *. DetcurtermO frees the
space pointed to by oterm and makes it available for
further use. If oterm is the same as cur_term, then refer
ences to any of the terminfo (4) boolean, numeric, and
string variables thereafter may refer to invalid memory
locations until another setupterm() has been called.

restartterm(term, fildes, errret)
Like setuptermO after a memory restore.

char *tparm(str, P1' P2' ... , Pg)
Instantiate the string str with parms Pi' A pointer is
returned to the result of str with the. parameters applied.

tputs(str, count, putc)
Apply padding to the string str and output it. str must be
a terminfo (4) string variable or the return value from
tparmO, tgetstrO. tigetstr() or tgoto(). Count is the
number of lines affected, or 1 if not applicable. PuteO is
a putchar-like routine to which the characters are passed.
one at a time.

putp(str)
A routine that calls tputs [str. 1. putchar()].

vidputs(attrs, putc)
Output a string that puts the terminal in the video attri
bute mode attrs. which is any combination of the attri
butes listed below. The characters are passed to the
putchar-like routine puteO.

vidattr(attrs)
Like vidputs(). except that it outputs through putchar.

mvcur(oldrow. oldcol. newrow. newcol)
LOW-level cursor motion.

UP-13712.3 Page 35

CURSES(3X)
.. @- •

The following routines return the value of the capability
corresponding to the terminfo (4) capname passed to them,
such as xenl.

tigetflag (capname)
The value -1 is returned if capname is not a boolean capa
bility.

tigetnum (capname)
The value -2 is returned if capname is not a numeric capa
bility.

tigetstr (capname)
The value (char *) -1 is returned if capname is not a string
capability.

char *boolnames[], *boolcodes[], *boolfnames[]
char *numnames[], *numcodes[], *numfnames[]
char *strnames[], *strcodes[], *strfnames[]

These null-terminated arrays contain the capnames, the
term cap codes, and the full C names, for each of the ter
minfo (4) variables.

Termcap Emulation
These routines are included as a conversion aid for programs
that use the termcap library. Their parameters are the same
and the routines are emulated using the terminfo (4) database.

tgetent(bp, name)
Look up termcap entry for name. The emulation ignores
the buffer pointer bp.

tgetflag (codename)
Get the boolean entry for codename.

tgetnum (codes)
Get numeric entry for codename.

char *tgetstr(codename, area)
Return the string entry for codename. If area is not
NULL, then also store it in the buffer pointed to by area
and advance area. TputsO should be used to output the
returned string.

char *tgoto(cap, col, row)

Page 36

Instantiate the parameters into the given capability. The
output from this routine is to be passed to tputsO .

UP-13712.3

CURSES (3X)

tputs(str, affcnt, putc)
See tputsO above, under "Terminfo-Level Manipulations."

UP-13712.3 Page 37

CURSES(3X)

Miscellaneous
traceoff()
traceon()

Turn off and on debugging trace output when using the
debug version of the curses library. /usr/lib/libdcurses.a.
This facility is available only to customers with a source
license.

unctrl(c)
This macro expands to a character string which is a print
able representation of the character c. Control characters
are displayed in the AX notation. Printing characters are
displayed as is.

Unctrl() is a macro, defined in < unctrl.h >. which is
automatically included by < curses.h > .

char *keyname(c)
A character string corresponding to the key c is returned.

filter()
This routine is one of the few that is to be called before
initscr() or newterm() is called. It arranges things so
that curses thinks that there is a 1-line screen. Curses
will not use any terminal capabilities that assume that they
know what line on the screen the cursor is on.

Use of curser
The special window curscr can be used in only a few routines.
If the window argument to clearok() is curscr. the next call to
wrefresh 0 with any window will cause the screen to be
cleared and repainted from scratch. If the window argument
to wrefresh() is curscr. the screen is immediately cleared and
repainted from scratch. (This is how most programs would
implement a "repaint-screen" routine.) The source window
argument to overlayO. overwrite(). and copywinO may be
curscr. in which case the current contents of the virtual termi
nal screen will be accessed.

Obsolete Calls
Various routines are provided to maintain compatibility in pro
grams written for older versions of the curses library. These
routines are all emulated as indicated below.

crmodeO Replaced by cbreakO.

Page 38 UP-13712.3

CURSES(3X)

fixterm() Replaced by reset_prog_mode().

gettmode() A no-op.

nocrmode() Replaced by nocbreak().

resetterm() Replaced by reset_shell_mode().

saveterm() Replaced by def_prog_mode().

setterm () Replaced by setupterm ().

ATTRIBUTES
The following video attributes. defined in < curses.h >. can be
passed to the routines attron(). attroff(). and attrset(). or
OR' ed with the characters passed to addch () .

A_STANDOUT Terminal's best highlighting mode
A_UNDERUNE Underlining
A_REVERSE Reverse video
A BUNK Blinking
A_DIM Half bright
A_BOLD Extra bright or bold
A_ALTCHARSET Alternate character set

A_CHARTEXT Bit-mask to extract character
[described under winch ()]

A_ATIRIBUTES Bit-mask to extract attributes
[described under winch()]

A_NORMAL Bit mask to reset all attributes off
(for example: attrset (A_NORMAL)

FUNCTION-KEYS
The following function keys. defined in < curses.h >. might be
returned by getch() if keypad() has been enabled. Note that
not all of these may be supported on a particular terminal if
the terminal does not transmit a unique code when the key is
pressed or the definition for the key is not present in the fer
minto (4) database.

UP-13712.3 Page 39

CURSES(3X)

Name

KEY BREAK
KEY-DOWN
KEY-UP
KEY-lEFT
KEY-RIGHT
KEY=HOME

KEY BACKSPACE
KEY=FO

KEY F(n)
KEY-Dl
KEY-Il
KEY-DC
KEY=IC

KEY EIC
KEY-CLEAR
KEY-EOS
KEY-EOl
KEY-SF
KEY=SR

KEY NPAGE
KEY-PPAGE
KEY-STAB
KEY-CTAB
KEY-CATAB
KEY-ENTER
KEY-SRESET
KEY-RESET
KEY-PRINT
KEY-ll

KEY A1
KEY-A3
KEY-B2
KEY-C1
KEY-C3
KEY-BTAB
KEY-BEG
KEY-CANCEL
KEY-CLOSE

Page 40

Value Key name

0401
0402
0403
0404
0405
0406

Break key (unreliable)
The four arrow keys ...

Home key (upward + left
arrow)

0407
0410

Backspace (unreliable)
Function keys. Space for
64 keys is reserved.

(KEY _FO + (n)) Formula for fn.
0510 Delete line
0511 Insert line
0512 Delete character
0513 Insert char or enter insert

mode
0514 Exit insert char mode
0515 Clear screen
0516 Clear to end of screen
0517 Clear to end of line
0520 Scroll 1 line forward
0521 Scroll 1 line backwards

(reverse)
0522 Next page
0523 Previous page
0524 Set tab
0525 Clear tab
0526 Clear all tabs
0527 Enter or send
0530 Soft (partial) reset
0531 Reset or hard reset
0532 Print or copy
0533 Home down or bottom (lower

left). Keypad is arranged
like this:

A1 up A3
left B2 right
C1 down C3

0534 Upper left of keypad
0535 Upper right of keypad
0536 Center of keypad
0537 lower left of keypad
0540 lower right of keypad
0541 Back tab key
0542 Beg(inning) key
0543 Canc~ key
0544 Close key

UP-13712.3

KEY COMMAND
KEY-COPY
KEY-CREATE
KEY-END
KEY-EXIT
KEY-FIND
KEY-HELP
KEY-MARK
KEY-MESSAGE
KEY-MOVE
KEY-NEXT
KEY-OPEN
KEY-OPTIONS
KEY-PREVIOUS
KEY-REDO
KEY-REFERENCE
KEY-REFRESH
KEY-REPLACE
KEY-RESTART
KEY-RESUME
KEY-SAVE
KEY-SBEG
KEY-SCANCEl
KEY-SCOMMAND
KEY-SCOPY
KEY-SCREATE
KEY-SDC
KEY-SDl
KEY-SELECT
KEY-SEND
KEY-SEOl
KEY-SEXIT
KEY-SFIND
KEY-SHELP
KEY-SHOME
KEY-SIC
KEY-SlEFT
KEY-SMESSAGE
KEY-SMOVE
KEY-SNEXT
KEY-SOPTIONS
KEY-SPREVIOUS
KEY-SPRINT
KEY-SREDO
KEY-SREPlACE
KEY-SRIGHT
KEY-SRSUME
KEY-SSAVE
KEY-SSUSPEND

UP-13712.3

0545
0546
0547
0550
0551
0552
0553
0554
0555
0556
0557
0560
0561
0562
0563
0564
0565
0566
0567
0570
0571
0572
0573
0574
0575
0576
0577
0600
0601
0602
0603
0604
0605
0606
0607
0610
0611
0612
0613
0614
0615
0616
0617
0620
0621
0622
0623
0624
0625

CURSES(3X)

Cmd (command) key
Copy key
Create key
End key
Exit key
Find key
Help key
Mark key
Message key
Move key
Next object key
Open key
Options key
Previous object key
Redo key
Ref(erence) key
Refresh key
Replace key
Restart key
Resume key
Save key
Shifted beginning key
Shifted cancel key
Shifted command key
Shifted copy key
Shifted create key
Shifted delete char key
Shifted delete line key
Select key
Shifted end key
Shifted clear line key
Shifted exit key
Shifted find key
Shifted help key
Shifted home key
Shifted input key
Shifted left arrow key
Shifted message key
Shifted move key
Shifted next key
Shifted options key
Shifted prev key
Shifted print key
Shifted redo key
Shifted replace key
Shifted right arrow
Shifted resume key
Shifted save key
Shifted suspend key

Page 41

CURSES(3X)

KEY SUNDO
KEY-SUSPEND
KEY-UNDO

LIN E GRAPHICS

0626
0627
0630

Shifted undo key
Suspend key
Undo key

The following variables may be used to add line-drawing char
acters to the screen with waddch(). When defined for the ter
minal, the variable will have the A_AL TCHARSET bit turned
on. Otherwise, the default charcter listed below will be stored
in the variable. The names were chosen to be consistent with
the DEC VT100 nomenclature.

Name Default Glyph Description

ACS_ULCORNER + upper left corner
ACS LLCORNER + lower left corner
ACS_URCORNER + upper right corner
ACS_LRCORNER + lower right corner
ACS RTEE + right tee (-I)
ACS LTEE + left tee (1-)
ACS_BTEE + bottom tee (L)
ACS TTEE + top tee (I)
ACS HLINE horizontal line
ACS VLINE vertical line
ACS PLUS + plus
ACS S1 scan line 1
ACS S9 scan line 9
ACS_DIAMOND + diamond
ACS_CKBOARD checker board (stipple)
ACS DEGREE degree symbol
ACS_PLMINUS # plus/minus
ACS BULLET 0 bullet
ACS_LARROW < arrow pointing left
ACS_RARROW > arrow pointing right
ACS_DARROW v arrow pointing down
ACS_UARROW arrow pointing up
ACS BOARD # board of squares
ACS LANTERN # lantern symbol
ACS BLOCK # solid square block

RETURN VALUES
All routines return the integer OK upon successful completion
and the integer ERR upon failure, unless otherwise noted in
the preceding routine descriptions.

Page 42 UP-13712.3

CURSES (3X)

All macros return the value of their w version, except
setscrregO, wsetscrregO, getsyx(), getyx() , getbegyO, get
maxyx(). For these macros, no useful value is returned.

Routines that return pointers always return (type *) NULL on
error.

BUGS
Currently typeahead checking is done using a nodelay read
followed by an ungetch 0 of any character that may have
been read. Typeahead checking is done only if wgetch 0 has
been called at least once. This will be changed when proper
kernel support is available. Programs which use a mixture of
their own input routines with curses input routines may wish
to call typeahead(-1) to turn off typeahead checking.

The argument to napmsO is currently rounded up to the
nearest second.

Draino(ms) only works for ms equal to O.

WARNINGS
To use the new curses features, use the version of curses.
All programs that ran with UNIX System V Release 2 curses
will run with System V Release 3.0. You may link applications
with object files based on the Release 2 curses/terminfo with
the Release 3.0 /ibcurses.a library. You may link applications
with object files based on the Release 3.0 curses /terminfo with
the Release 2 /ibcurses.a library, so long as the application
does not use the new features in the Release 3.0
curses /terminfo.

The plotting library plot (3X) and the curses lib rary curses (3X)
both use the names erase() and move(). The curses versions
are macros. If you need both libraries, put the plot (3X) code
iii a different source file than the curses (3X) code, and/or
#undef move() and eraseO in the plot (3X) code.

Between the time a call to initscr() and endwin 0 has been
issued, use only the routines in the curses library to generate
output. Using system calls or the "standard I/O package"
[see stdio (3S)] for output during that time can cause
unpredictable results.

SEE ALSO
cc(1), Id(1), ioctl(2) , plot(3X), putc(3S), scanf(3S), stdio(3S),

UP-13712.3 Page 43

CURSES(3X)

system(3S). vprintf(3S). profile(4). term(4). terminfo(4).
varargs(5) .
termio(7). tty(7) in the Administrator's Reference Manual.
"curses/terminfo" in the Programmer's Guide.

Page 44 UP-13712.3

NAME
libdev - manipulate Volume Home Blocks (VHB)

SYNOPSIS
#include < sys/gdisk.h >

struct vhbd *vhbd;
short sl, *slp;
char *s, *device;
int fd;

int gdnsec(vhbd, sl)
int gdstrk(vhbd, sl)
int gdftrk(vhbd, sl)
int gdnszc(vhbd)
int isdisk(fd)
struct vhbd *readvhb(s, sip)
struct vhbd *sreadvhb(device)
struct vhbd *freadvhb(fd, sip)
char *adevname(fd)
char *bdevname(s)
int dismnt(fd)
char *gdname(s, sip)
char *fgdname(fd, sip)
int gdnlblk(fd)
int writvhb(s, sl, vhbd)
int swritevhb(device, vhbd)
int fwritevhb(fd, sl, vhbd)

DESCRIPTION

LIRDEV(3X)

In each of the above subroutines the arguments denote:

vhbd A pointer to a disk volume home block, as returned
by readvhb, sreadvhb, or freadvhb.

sl Slice number on the drive.

sip Pointer to a slice number. This argument is actually
used by the subroutine to return a slice number.

s The name of a special file in /dev/rdsk. This
filename is used to obtain a file descriptor to
access a VHB. The name need not be for slice
zero of the disk.

device The name of a special file in /dev/rdsk. This
filename is used to obtain a file descriptor to

UP-13712.3 Page 1

LIBDEV(3X)

access a VHB. The name must be for slice zero of
a disk.

fd Open file descriptor for slice zero of a disk.

The subroutines in /usr/lib/libdev.a form a device and
machine independent interface to the VHB of 6000/50 disks.
The function of each subroutine is described below.

Gdnsec Returns the number of sectors in slice sl of the
VHB indicated by vhbd.

Gdstrk Returns the starting track of slice sl of the VHB
pointed to by vhbd.

Gdftrk returns 1 if slice sl of the VHB pointed to by vhbd
extends to the end of the disk.

Gdnszc Returns the number of sectors per cylinder.

Is disk Returns 1 if the file descriptor fd is opened to a
special disk device.

Readvhb, Sreadvhb, and Freadvhb

Adevname

Bdevname

Dismnt

Return a pointer to a VHB for the device described
by their arguments.

Returns the character device name for the disk
drive that the file descriptor fd is opened to.

Returns the block device name for the disk drive
that the string s names. The filename S may be
either for any slice on either a raw or a block dev
ice.

Exercises the GDDISMNT ioctl call for the disk drive
that the file descriptor fd is opened to.

Gdname Returns the file name for the character special slice
zero of a disk that the filename s name a slice of.
The value pointed to by sIp is set to the slice
number of the filename s. Fgdname performs as
does gdname, but uses the file descriptor fd
instead of the filename s.

Gdnlblk Returns the number of logical blocks in the slice
that the file descriptor fd is opened to.

Page 2 UP-13712.3

LIBDEV(3X)

writevhb, swritevhb, and fwritevhb
Write the volume home block onto the device.

FILES
/dev/rdsk/c?d?s?
/dev/dsk/c?d?s?
/usr/lib/libdev.a

SEE ALSO
iv(1} in the User's Reference Manual.
disk{7} in the Administrator's Reference Manual.

UP-13712.3 Page 3

LIBDEV(3X)

[This page left blank.]

Page 4 UP-13712.3

OCURSE(3X)

NAME
ocurse - optimized screen functions

SYNOPSIS
#include < ocurse.h >

DESCRIPTION
Ocurse is the old Berkeley curses library that uses
otermcap (4).

These functions optimally update the screen.

Each curses program begins by calling initscr and ends by
calling endwin.

Before a program can change a screen, it must specify the
changes. It stores changes in a variable of type WINDOW by
calling curses functions with the variable as argument. Once
the variable contains all the changes desired, the program
calls wrefresh to write the changes to the screen.

Most programs only need a single WINDOW variable. Curses
provides a standard WINDOW variable for this case and a
group of functions that operate on it. The variable is called
stdscr; its special functions have the same name as the gen
eral functions minus the initial w.

FILES
/usr/include/ocurse.h

/usr/lib/libocurse.a

/usr /lib/libtermcap.a

SEE ALSO
otermcap(4) .

FUNCTIONS
addch(ch)
addstr(str)
box (win, vert,hor)
crmode()
clear()
clearok (scr ,boolf)
clrtobotO
clrtoeol()
delch()

UP-13712.3

header file

curses library

termcap library, used by curses

Add a character to stdscr.
Add a string to stdscr.
Draw a box around a window.
Set cbreak mode.
Clear stdscr.
Set clear flag for scr.
Clear to bottom on stdscr.
Clear to end of line on stdscr.
Delete a character.

Page 1

()CURSE(3X)

Delete a line.
Delete win.
Set echo mode.
End window modes.
Erase stdscr.

deleteln()
delwin (win)
echoO
endwin()
erase()
getch()
getcap(name)
getstr(str)
gettmodeO
getyx(win,y,x)
inchO

Get a character through stdscr.
Get terminal capability name.
Get a string through stdscr.
Get tty modes.
Get (y,x) co-ordinates.
Get character at current (y,x) co-
ordinates.

initscrO Initialize screens.
insch(c) Insert a char.
insertln () Insert a line.
leaveok(win,boolf) Set leave flag for win.
longname(termbuf,name) Get long name from termbuf.
move(y,x) Move to (y,x) on stdscr.
mvcur(lasty,lastx,newY,newx)

Actually move cursor.
newwin (lines,cols,begin _y,begin _x)

Create a new window.
nlO Set newline mapping.
nocrmodeO Unset cbreak mode.
noechoO Unset echo mode.
nonlO Unset newline mapping.
norawO Unset raw mode.
overlay(win1,win2) Overlay win1 on win2.
overwrite(win1,win2) Overwrite win1 on top of win2.
printw(fmt,arg1,arg2, ...) Printf on stdscr.
raw() Set raw mode.
refresh 0 Make current screen look like

stdscr.
resettyO Reset tty flags to stored value.
savettyO Stored current tty flags.
scanw(fmt,arg1,arg2, ...) Scanf through stdscr.
scroll (win) Scroll win one line.
scrollok(win,boolf) Set scroll flag.
setterm(name) Set term variables for name.
standendO End standout mode.

Page 2 UP-13712.3

OCURSE(3X)

standoutO Start standout mode.
subwin (win,lines,cols,begin _y ,begin_x)

Create a subwindow.
"change" all of win.
Printable version of ch.
Add char to win.
Add string to win.
Clear win.
Clear to bottom of win.
Clear to end of line on win.
Delete character from win.
Delete line from win.
Erase win.
Get a character through win.
Get a string through win.

touchwin (win)
unctrl(ch)
waddch (win,ch)
waddstr(win,str)
wclear(win)
wclrtobot(win)
wclrtoeol (win)
wdelch(win,c)
wdeleteln (win)
werase(win)
wgetch (win)
wgetstr(win,str)
winch (win)
winsch (win,c)
winsertln (win)
wmove(win,y,x)

Get character at current (y,x) in win.
Insert character into win.
Insert line into win.
Set current (y,x) co-ordinates on
win.

wprintw(win, fmt,arg1,arg2, ...)
Printf on win.

wrefresh(win) Make screen look like win.
wscanw(win,fmt,arg1,arg2, ...)

wstandend (win)
wstandout(win)

UP-13712.3

Scanf through win.
End standout mode on win.
Start standout mode on win.

Page 3

()CURSE(3X)

[This page left blank.]

Page 4 UP-13712.3

OTERMCAP(3X)

NAME
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs - terminal
independent operations

SYNOPSIS
char PC;
char *BC;
char *UP;
short ospeed;

tgetent(bp, name)
char *bp, *name;

tgetnum(id)
char *id;

tgetflag(id)
char *id;

char *
tgetstr(id, area)
char *id, **area;

char *
tgoto(cmstr, destcol, destline)
char *cmstr;

tputs(cp, affcnt, outc)
register char *cp;
int affcnt;
int (*outc)();

DESCRIPTION
These functions are now emulated in curses (3X) using the ter
minto (4) databases. Refer to the "Termcap Emulation" sec
tion in curses (3X).

This manual page is included for historical reason only. New
and existing applications should use curses (3X) and ter
minto (4) for terminal independent operations. However, as a
conversion aid, these functions extract and use information
from terminal descriptions that follow the conventions in
otermcap (4). The functions only do basic screen manipula
tion: they find and output specified terminal function strings
and interpret the em string.

UP-13712.3 Page 1

OTERMCAP(3X)

Tgetent finds and copies a terminal description. Name is the
name of the description; bp pOints to a buffer to hold the
description. Tgetent passes bp to the other termcap func
tions; the buffer must remain allocated until the prog ram is
done with the termcap functions.

Tgetent uses the TERM and TERMCAP environment variables
to locate the terminal description.

• If TERMCAP isn't set or is empty, tgetent searches for
name in letcltermcap.

• If TERMCAP contains the full pathname of a file (any
string that begins with I), tgetent searches for name in
that file.

• If TERMCAP contains any string that does not begin with
1 and TERM is not set or matches name, tgetent copies
the TERMCAP string.

• If TERMCAP contains any string that does not begin with
1 and TERM does not match name, tgetent searches for
name in letc/termcap.

Tgetent returns -1 if it couldn't open the terminal capability
file, 0 if it couldn't find an entry for name, and 1 upon success.

Tgetnum returns the value of the numeric capability whose
name is id. It returns -1 if the terminal lacks the specified
capability or it is not a numeric capability.

Tgetflag returns 1 if the terminal has boolean capability whose
name is id, 0 if it does not or it is not a boolean capability.

Tgetstr copies and interprets the value of the string capability
named by id. T getstr expands instances in the string of \ and
,. . It leaves the expanded string in the buffer indirectly
pointed to by area and leaves the buffer's direct pointer point
ing to the end of the expanded string; for example,

tgetstr ("CPI, &ptr);

where ptr is a character pointer, not an array name. Tgetstr
returns a (direct) pointer to the beginning of the string.

Tgoto interprets the % escapes in a em string. It returns
cmstr with the % sequences changed to the position indicated
by des teo/ and destline. This function must have the external
variables Be and UP set to the values of the be and up

Page 2 UP-13712.3

OTERMCAP(3X)

capabilities; if the terminal lacks the capability, set the external
variable to null. If tgoto can't interpret all the % sequences in
cm, it returns "OOPS"

Tgoto avoids producing characters that might be misinter
preted by the terminal interface. If expanding a % sequence
would produce a control-d or null, the function will, if possible,
send the cursor to the next line or column and use BC or UP
to move to the correct location. Note that tgoto does not
avoid producing tabs; a program must turn off the TAB3
feature of the terminal interface [termio (7)]. This is a good
idea anyway: some terminals use the tab character as a non
destructive space.

Tputs directs the output of a string returned by tgetstr or
tgoto. This function must have the external variable PC set to
the value of the pc capability; if the terminal lacks the capabil
ity, set the external variable to null. Tputs interprets any delay
at the beginning of the string. Cp is the string to be output;
affcnt is the number of lines affected by the action (1 if
"number of lines affected" doesn't mean anything); and outc
points to a function that takes a single char argument and
outputs it, such as putchar.

FILES
/usr/lib/libtermcap.a library
/ etc/termcap data base

SEE ALSO
curses(3X), terminfo(4).

UP-13712.3 Page 3

()TERMCAP(3X)

[This page left blank.]

Page 4 UP-13712.3

SPUTL(3X)

NAME
sputl, sgetl - access long integer data in a machine
independent fashion

SYNOPSIS
void sputl (value, buffer)
long value;
char *buffer;

long sgetl (buffer)
char *buffer;

DESCRIPTION
SputJ takes the four bytes of the long integer value and places
them in memory starting at the address pointed to by buffer.
The ordering of the bytes is the same across all machines.

SgetJ retrieves the four bytes in memory starting at the
address pointed to by buffer and returns the long integer
value in the byte ordering of the host machine.

The combination of sputl and sgetJ provides a machine
independent way of storing long numeric data in a file in
binary form without conversion to characters.

A program which uses these functions must be loaded with
the object-file access routine library /lib/libld.a.

UP-13712.3 Page 1

SPUTL(3X)

[This page left blank.]

Page 2 UP-13712.3

