
• UNISYS System V Operating
System
Programmer's
Guide

Volume 1
Unisys is a trademark of Unisys Corporation.

Priced Item

January 1988

Printed in U S America
UP-13689

This document is intended for software releases based on AT&T Release 3 of
UNIX System V or a subsequent release of the System unless otherwise
indicated.

The names, places, and/or events used in this publication are not intended to
correspond to any individual, group, or association existing, living, or otherwise.
Any similarity or likeness of the names, places and/or events with the names
of any individual living or otherwise, or that of any group or association is purely
coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT.
Any product and related material disclosed herein are only furnished pursuant
and subject to the terms and conditions of a duly executed Program Product
License or Agreement to purchase or lease equipment. The only warranties
made by Unisys, if any, with respect to the products described in this document
are set forth in such License or Agreement. Unisys cannot accept any financial
or other responsibility that may be the result of your use of the information in
this document or software material, including direct, indirect, special or
consequential damages.

You should be very careful to ensure that the use of this information and/or
software material complies with the laws, rules, and regulations of the
jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions
may be issued to advise of such changes and/or additions.

PDP and VT100 are trademarks of Digital Equipment Corporation.
Teletype is a registered trademark of AT&T. UNIX is a registered trademark of
AT&T in the USA and other countries.

Portions 01 this material are copyrighted C by

AT&T Technologies

and are reprinted with their permission.

Table of Contents

Introduction

Chapter 1: Programming in a UNIX

System Environment: An Overview

Introduction

UNIX System Tools and Where You Can

Read About Them

Three Programming Environments

Summary

Chapter 2: Programming Basics

Introduction

Choosing a Programming Language

After Your Code Is Written

The Interface Between a Programming Language

and the UNIX System

Analysis/Debugging

Program Organizing Utilities

Chapter 3: Application Programming

Introduction

Application Programming

Language Selection

Advanced Programming Tools

xiii

1-1

1-5

1-8

1-10

2-1

2-2

2-9

2-15

2-51

2-75

3-1

3-2

3-5

3-13

UP·13689 TABLE OF CONTENTS iii

Table of Contents

Programming Support Tools

Project Control Tools

liber, A Library System

Chapter 4: awk

The awk Programming Language

Using awk

Input and Output

Patterns

Actions

Special Features

Chapter 5: lex

An Overview of lex Programming

Writing lex Programs

Running lex under the UNIX System

Chapter 6: yacc

Introduction

Basic Specifications

Parser Operation

Ambiguity and Conflicts

Precedence

Error Handling

iv PROGRAMMER'S GUIDE

3-22

3-36

3-40

4-1

4-17

4-18

4-30

4-37

4-44

5-1

5-3

5-19

6-1

6-5

6-14

6-20

6-26

6-30

UP·13689

The yacc Environment

Hints for Preparing Specifications

Advanced Topics

Examples

Chapter 7: File and Record Locking

Introduction

Terminology

File Protection

Selecting Advisory or Mandatory Locking

Chapter 8: Shared Libraries

Introduction

Using a Shared Library

Building a Shared Library

Summary

Chapter 9: Interprocess Communication

Introduction

Messages

Semaphores

Shared Memory

Table of Contents

6-34

6-36

6-40

6-47

7-1

7-2

7-4

7-18

8-1

8-2

8-15

8-49

9-1

9-2

9-41

9-81

UP-13689 TABLE OF CONTENTS v

Table of Contents

Chapter 10: curses/terminfo

Introduction

Overview

Working with curses Routines

Working with terminfo Routines

Working with the terminfo Database

curses Program Examples

Chapter 11: The Common Object File

Format (COFF)

Chapter 12: The Link Editor

The Link Editor

Link Editor Command Language

Notes and Special Considerations

Syntax Diagram for Input Directives

Chapter 13: make

Introduction

Basic Features

Description Files and Substitutions

Recursive Makefiles

Source Code Control System Filenames:

the Tilde

Command Usage

vi PROGRAMMER'S GUIDE

10-1

10-3

10-9

10-65

10-71

10-84

12-1

12-4

12-23

12-34

13-1

13-3

13-7

13-12

13-18

13-22

UP-13689

Suggestions and Warnings

Internal Rules

Chapter 14: Source Code Control

System (SCCS)

Introduction

SCCS For Beginners

Delta Numbering

SCCS Command Conventions

SCCS Commands

SCCS Files

Chapter 15: sdb - The Symbolic Debugger

Introduction

Using sdb

Chapter 16: lint

Introduction

Usage

lint Message Types

Chapter 17: C Language

Introduction

Lexical Conventions

Storage Class and Type

Table of Contents

13-26

13-27

14-1

14-2

14-8

14-11

14-13

14-40

15-1

15-2

16-1

16-2

16-4

17-1

17-2

17-6

UP-13689 TABLE OF CONTENTS vii

Table of Contents

Operator Conversions

Expressions and Operators

Declarations

Statements

External Definitions

Scope Rules

Compiler Control Lines

Types Revisited

Constant Expressions

Portability Considerations

Syntax Summary

Appendix A: Index to Utilities

Glossary

Index

viii PROGRAMMER'S GUIDE

17-9

17-13

17-25

17-40

17-46

17-48

17-50

17-54

17-59

17-60

17-61

UP-13689

List of Figures
2-1: Using Command Line Arguments to Set Flags 2-17
2-2: Using argv[n] Pointers to Pass a Filename 2-18
2-3: C Language Standard I/O Subroutines 2-21
2-4: String Operations 2-23
2-5: Classifying ASCII Character-Coded Integer Values 2-25
2-6: Conversion Functions and Macros 2-26
2-7: Manual Page for gets(3S) 2-28
2-8: How gets Is Used in a Program 2-31
2-9: A Version of stdio.h 2-32
2-10: Environment and Status System Calls 2-40
2-11: Process Status 2-41
2-12: Example of fork 2-45
2-13: Example of a popen pipe 2-47
2-14: Signal Numbers Defined in lusr/include/sys/signal.h 2-49
2-15: Source Code for Sample Program 2-52
2-16: cflow Output, No Options 2-56
2-17: cflow Output, Using -r Option 2-57
2-18: cflow Output, Using -ix Option 2-58
2-19: cflow Output, Using -r and -ix Options 2-59
2-20: ctrace Output 2-61
2-21: cxref Output, Using -c Option 2-65
2-22: lint Output 2-70
2-23: prof Output 2-72
2-24: make Description File 2-76
2-25: nm Output, with -f Option 2-79

3-1: The fcntl.h Header File 3-16

4-1: awk Keywords 4-3
4-2: awk Assignment Operators 4-5
4-3: awk Arithmetic Operators 4-6
4-4: awk Relational Operators 4-6
4-5: awk Logical Operators 4-6
4-6: Operators for Matching Regular Expressions in awk 4-7
4-7: Numeric Values for String Constants 4-9
4-8: String Values for String Constants 4-10
4-9: Built-in Functions for Arithmetic and String Operations 4-11
4-10: awk String Functions 4-12
4-11: Sample Input File, countries 4-20

UP-13689 LIST OF FIGURES ix

list of Figures

5-1: Creation and Use of a Lexical Analyzer with lex 5-2

8-1: a.out Files Created Using an Archive Library
and a Shared Library 8-9

8-2: Processes Using an Archive and a Shared Library 8-10
8-3: A Branch Table in a Shared Library 8-13
8-4: Imported Symbols in a Shared Library 8-35

9-1: ipc_perm Data Structure 9-6
9-2: Operation Permissions Codes 9-11
9-3: Control Commands (Flags) 9-11
9-4: msggetO System Call Example 9-15
9-5: msgctlO System Call Example 9-22
9-6: msgopO System Call Example 9-34
9-7: Operation Permissions Codes 9-49
9-8: Control Commands (Flags) 9-50
9-9: semgetO System Call Example 9-54
9-10: semctlO System Call Example 9-65
9-11: semop(2) System Call Example 9-77
9-12: Shared Memory State Information 9-84
9-13: Operation Permissions Codes 9-88
9-14: Control Commands (Flags) 9-89
9-15: shmget(2) System Call Example 9-93
9-16: shmctl(2) System Call Example 9-101
9-17: shmopO System Call Example 9-112

10-1: A Simple curses Program 10-4
10-2: A Shell Script Using terminfo Routines 10-6
10-3: The Purposes of initscrO, refresh 0 , and endwinO

in a Program 10-11
10-4: The Relationship between stdscr and a

Terminal Screen 10-17
10-5: Multiple Windows and Pads Mapped to a

Terminal Screen 10-18
10-6: Input Option Settings for curses Programs 10-46
10-7: The Relationship Between a Window and a

Terminal Screen 10-55
10-8: Sending a Message to Several Terminals 10-64
10-9: Typical Framework of a terminfo Program 10-66
11-1: Object File Format 11-2

x PROGRAMMER'S GUIDE UP-13689

List of Figures

11-2: File Header Contents 11-4
11-3: File Header Flags (382 Computer) 11-5
11-4: File Header Declaration 11-6
11-5: Optional Header Contents (382, 385, 3815 Computers) 11-7
11-6: UNIX System Magic Numbers (382, 385,

3815 Computers) 11-8
11-7: aouthdr Declaration 11-9
11-8: Section Header Contents 11-10
11-9: Section Header Flags 11-11
11-10: Section Header Declaration 11-12
11-11: Relocation Section Contents 11-14
11-12: Relocation Types (382, 385, 3815 Computers) 11-13
11-13: Relocation Entry Declaration 11-15
11-14: Line Number Grouping 11-16
11-15: Line Number Entry Declaration 11-17
11-16: COFF Symbol Table 11-18
11-17: Special Symbols in the Symbol Table 11-19
11-18: Special Symbols (.bb and .eb) 11-20
11-19: Nested blocks 11-21
11-20: Example of the Symbol Table 11-22
11-21 : Symbols for Functions 11-22
11-22: Symbol Table Entry Format 11-23
11-23: Name Field 11-24
11-24: Storage Classes 11-25
11-25: Storage Class by Special Symbols 11-27
11-26: Restricted Storage Classes 11-27
11-27: Storage Class and Value 11-28
11-28: Section Number 11-29
11-29: Section Number and Storage Class 11-30
11-30: Fundamental Types 11-32
11-31 : Derived Types 11-32
11-32: Type Entries by Storage Class 11-34
11-33: Symbol Table Entry Declaration 11-36
11-34: Auxiliary Symbol Table Entries 11-37
11-35: Format for Auxiliary Table Entries for Sections 11-38
11-36: Tag Names Table Entries 11-39
11-37: Table Entries for End of Structures 11-39
11-38: Table Entries for Functions 11-40
11-39: Table Entries for Arrays 11-40
11-40: End of Block and Function Entries 11-41
11-41 : Format for 8eginning of 810ck and Function 11-41

UP-13689 LIST OF FIGURES xi

List of Figures

11-42: Entries for Structures. Unions. and Enumerations 11-42
11-43: Auxiliary Symbol Table Entry 11-43
11-44: String Table 11-45

12-1: Operator Symbols 12-5
12-2: Syntax Diagram for Input Directives 12-34

13-1: Summary of Default Transformation Path 13-14
13-2: make Internal Rules 13-27

14-1: Evolution of an SCCS File 14-8
14-2: Tree Structure with Branch Deltas 14-8
14-3: Extended Branching Concept 14-9
14-4: Determination of New SID 14-10

15-1: Example of sdb Usage 15-14

17-1: Escape Sequences for Nongraphic Characters 17-4
17-2: AT&T 3B Computer Hardware Characteristics 17-7

xii PROGRAMMER'S GUIDE UP-13689

Chapter 1: Programming in a UNIX
System Environment: An Over
view

Introduction

The Early Days

UNIX System Philosophy Simply Stated

UNIX System Tools and Where You Can

Read About Them

Tools Covered and Not Covered in this Guide

The Shell as a Prototyping Tool

Three Programming Environments

Single-User Programmer

Application Programming

Systems Programmers

Summary

UP-13689 TABLE OF CONTENTS

1-1

1-1

1-3

1-4

1-4

1-5

1-7

1-7

1-8

1-8

1-9

Introduction
The 1983 Turing Award of the Association for Computing

Machinery was given jointly to Ken Thompson and Dennis Ritchie,
the two men who first designed and developed the UNIX operating
system. The award citation said, in part:

"The success of the UNIX system stems from its
tasteful selection of a few key ideas and their
elegant implementation. The model of the UNIX
system has led a generation of software designers
to new ways of thinking about programming. The
genius of the UNIX system is its framework which
enables programmers to stand on the work of others."

As programmers working in a UNIX system environment, why
should we care what Thompson and Ritchie did? Does it have any
relevance for us today?

It does because if we understand the thinking behind the sys
tem design and the atmosphere in which it flowered, it can help us
become productive UNIX system programmers more quickly.

The Early Days
You may already have read about how Ken Thompson came

across a DEC PDP-7 machine sitting unused in a hallway at AT&T
Bell Laboratories, and how he and Dennis Ritchie and a few of
their colleagues used that as the original machine for developing a
new operating system that became UNIX.

The important thing to realize, however, is that what they were
trying to do was fashion a pleasant computing environment for
themselves. It was not, "Let's get together and build an operating
system that will attract world-wide attention."

The sequence in which elements of the system fell into place is
interesting. The first piece was the file system, followed quickly by
its organization into a hierarchy of directories and files. The view
of everything, data stores, programs, commands, directories, even
devices, as files of one type or another was critical, as was the
idea of a file as a one-dimensional array of bytes with no other
structure implied. The cleanness and simplicity of this way of

UP·13689 AN OVERVIEW 1·1

Introduction

looking at files has been a major contributing factor to a computer
environment that programmers and other users have found com
fortable to work in.

The next element was the idea of processes, with one process
being able to create another and communicate with it. This inno
vative way of looking at running programs as processes led easily
to the practice (quintessentially UNIX) of reusing code by calling it
from another process. With the addition of commands to manipu
late files and an assembler to produce executable programs, the
system was essentially able to function on its own.

The next major development was the acquisition of a DEC
PDP-11 and the installation of the new system on it. This has been
described by Ritchie as a stroke of good luck, in that the PDP-11
was to become a hugely successful machine, its success to some
extent adding momentum to the acceptance of the system that
began to be known by the name of UNIX.

By 1972 the innovative idea of pipes (connecting links between
processes whereby the output of one becomes the input of the
next) had been incorporated into the system, the operating system
had been recoded in higher level languages (first B, then C), and
had been dubbed with the name UNIX (coined by Brian Ker
nighan). By this point, the "pleasant computing environment"
sought by Thompson and Ritchie was a reality; but some other
things were going on that had a strong influence on the character
of the product then and today.

It is worth pointing out that the UNIX system came out of an
atmosphere that was totally different from that in which most com
mercially successful operating systems are produced. The more
typical atmosphere is that described by Tracy Kidder in The Soul
of a New Machine. In that case, dozens of talented programmers
worked at white heat, in an atmosphere of extremely tight security,
against murderous deadlines. By contrast, the UNIX system could
be said to have had about a ten year gestation period. From the
beginning it attracted the interest of a growing number of brilliant
specialists, many of whom found in the UNIX system an environ
ment that allowed them to pursue research and development
interests of their own, but who in turn contributed additions to the
body of tools available for succeeding ranks of UNIX program
mers.

1-2 PROGRAMMER'S GUIDE UP-13689

Introduction

Beginning in 1971, the system began to be used for applica
tions within AT&T Bell Laboratories, and shortly thereafter (1974)
was made available at low cost and without support to colleges
and universities. These versions, called research versions and
identified with Arabic numbers up through 7, occasionally grew on
their own and fed back to the main system additional innovative
tools. The widely-used screen editor vi(1), for example, was added
to the UNIX system by William Joy at the University of California,
Berkeley. In 1979 acceding to commercial demand, AT&T began
offering supported versions (called development versions) of the
UNIX system. These are identified with Roman numerals and often
have interim release numbers appended. The current develop
ment version, for example, is UNIX System V Release 3.0.

Versions of the UNIX system being offered now by AT&T are
coming from an environment more closely related, perhaps, to the
standard software factory. Features are being added to new
releases in response to the expressed needs of the market place.
The essential quality of the UNIX system, however, remains as the
product of the innovative thinking of its originators and the colle
gial atmosphere in which they worked. This quality has on occa
sion been referred to as the UNIX philosophy, but what is meant is
the way in which sophisticated programmers have come to work
with the UNIX system.

UNIX System Philosophy Simply Stated

For as long as you are writing programs on a UNIX system
you should keep this motto hanging on your wall:

*
*
* Build on the work of others

*

*
*
*

*
Unlike computer environments where each new project is like

starting with a blank canvas, on a UNIX system a good percentage
of any programming effort is lying there in bins, and Ibins, and
/usr/bins, not to mention etc, waiting to be used.

UP-13689 AN OVERVIEW 1-3

Introduction

The features of the UNIX system (pipes, processes, and the
file system) contribute to this reusability, as does the history of
sharing and contributing that extends back to 1969. You risk
missing the essential nature of the UNIX system if you don't put
this to work.

1-4 PROGRAMMER'S GUIDE UP-13689

--

UNIX System Tools and Where You
Can Read About Them

The term "UNIX system tools" can stand some clarification. In
the narrowest sense, it means an existing piece of software used
as a component in a new task. In a broader context, the term is
often used to refer to elements of the UNIX system that might also
be called features, utilities, programs, filters, commands,
languages, functions, and so on. It gets confusing because any of
the things that might be called by one or more of these names
can be, and often are, used in the narrow way as part of the solu
tion to a programming problem.

Tools Covered and Not Covered in this Guide
The Programmer's Guide is about tools used in the process of

creating programs in a UNIX system environment, so let's take a
minute to talk about which tools we mean, which ones are not
going to be covered in this book, and where you might find infor
mation about those not covered here. Actually, the subject of
things not covered in this guide might be even more important to
you than the things that are. We couldn't possibly cover every
thing you ever need to know about UNIX system tools in this one
volume.

Tools not covered in this text:

• the login procedure

• UNIX system editors and how to use them

• how the file system is organized and how you move around
in it

• shell programming

Information about these subjects can be found in the User's
Guide and a number of commercially available texts.

Tools covered here can be classified as follows:

UP-13689 AN OVERVIEW 1-5

UNIX System Tools

• utilities for getting programs running

• utilities for organizing software development projects

• specialized languages

• debugging and analysis tools

• compiled language components that are not part of the
language syntax, for example, standard libraries, systems
calls, and functions

The Shell as a Prototyping Tool

Any time you log in to a UNIX system machine you are using
the shell. The shell is the interactive command interpreter that
stands between you and the UNIX system kernel, but that's only
part of the story. Because of its ability to start processes, direct
the flow of control, field interrupts and redirect input and output it
is a full-fledged programming language. Programs that use these
capabilities are known as shell procedures or shell scripts.

Much innovative use of the shell involves stringing together
commands to be run under the control of a shell script. The
dozens a~d dozens of commands that can be used in this way are
documented in the User's Reference Manual. Time spent with the
User's Reference Manual can be rewarding. Look through it when
you are trying to find a command with just the right option to han
dle a knotty programming problem. The more familiar you
become with the commands described in the manual pages the
more you will be able to take full advantage of the UNIX system
environment.

It is not our purpose here to instruct you in shell programming.
What we want to stress here is the important part that shell pro
cedures can play in developing prototypes of full-scale applica
tions. While understanding all the nuances of shell programming
can be a fairly complex task, getting a shell procedure up and run
ning is far less time-consuming than writing, compiling and debug
ging compiled code.

1-6 PROGRAMMER'S GUIDE UP-13689

UNIX System Tools

This ability to get a program into production quickly is what
makes the shell a valuable tool for program development. Shell
programming allows you to "build on the work of others" to the
greatest possible degree, since it allows you to piece together
major components simply and efficiently. Many times even large
applications can be done using shell procedures. Even if the appli
cation is initially developed as a prototype system for testing pur
poses rather than being put into production, many months of work
can be saved.

With a prototype for testing, the range of possible user errors
can be determined - something that is not always easy to plan out
when an application is being designed. The method of dealing
with strange user input can be worked out inexpensively, avoiding
large re-coding problems.

A common occurrence in the UNIX system environment is to
find that an available UNIX system tool can accomplish with a cou
ple of lines of instructions what might take a page and a half of
compiled code. Shell procedures can intermix compiled modules
and regular UNIX system commands to let you take advantage of
work that has gone before.

UP-13689 AN OVERVIEW 1-7

Three Programming Environments
We distinguish among three programming environments to

emphasize that the information needs and the way in which UNIX
system tools are used differ from one environment to another. We
do not intend to imply a hierarchy of skill or experience. Highly
skilled programmers with years of experience can be found in the
"single-user" category, and relative newcomers can be members of
an application development or systems programming team.

Single-User Programmer
Programmers in this environment are writing programs only to

ease the performance of their primary job. The resulting programs
might well be added to the stock of programs available to the
community in which the programmer works. This is similar to the
atmosphere in which the UNIX system thrived; someone develops
a useful tool and shares it with the rest of the organization.
Single-user programmers may not have externally imposed
requirements, or co-authors, or project management concerns.
The programming task itself drives the coding very directly. One
advantage of a timesharing system such as UNIX is that people
with programming skills can be set free to work on their own
without having to go through formal project approval channels and
perhaps wait for months for a programming department to solve
their problems.

Single-user programmers need to know how to:

• select an appropriate language

• compile and run programs

• use system libraries

• analyze programs

• debug programs

• keep track of program versions

1-8 PROGRAMMER'S GUIDE UP-13689

Three Programming Environments

Most of the information to perform these functions at the
single-user level can be found in Chapter 2.

Application Programming

Programmers working in this environment are developing sys
tems for the benefit of other, non-programming users. Most large
commercial computer applications still involve a team of applica
tions development programmers. They may be employees of the
end-user organization or they may work for a software develop
ment firm. Some of the people working in this environment may
be more in the project management area than working program
mers.

Information needs of people in this environment include all the
topics in Chapter 2, plus additional information on:

• software control systems

• file and record locking

• communication between processes

• shared memory

• advanced debugging techniques

These topics are discussed in Chapter 3.

Systems Programmers

These are programmers engaged in writing software tools that
are part of, or closely related to the operating system itself. The
project may involve writing a new device driver, a data base
management system or an enhancement to the UNIX system ker
nel. In addition to knowing their way around the operating system
source code and how to make changes and enhancements to it,
they need to be thoroughly familiar with all the topics covered in
Chapters 2 and 3.

UP-13689 AN OVERVIEW 1-9

Summary
In this overview chapter we have described the way that the

UNIX system developed and the effect that has on the way pro
grammers now work with it. We have described what is and is not
to be found in the other chapters of this guide to help program
mers. We have also suggested that in many cases programming
problems may be easily solved by taking advantage of the UNIX
system interactive command interpreter known as the shell.
Finally, we identified three programming environments in the hope
that it will help orient the reader to the organization of the text in
the remaining chapters.

1-10 PROGRAMMER'S GUIDE UP-13689

Chapter 2: Programming Basics

Introduction 2-1

Choosing a Programming Language 2-2

Supported Languages in a UNIX System Environment 2-3

C Language 2-3

FORTRAN 2-4

Pascal 2-4

COBOL ~4

MffiC ~5

Assembly Language 2-5

Special Purpose Languages 2-6

awk ~6

lex 2-7

yacc 2-7

M4 2-7

bc and dc 2-7
curses 2-8

After Your Code Is Written 2-9

Compiling and Link Editing 2-10

Compiling C Programs 2-10

Compiling FORTRAN Programs 2-11

Loading and Running BASIC Programs 2-11

Compiler Diagnostic Messages 2-12

Link Editing 2-12

The Interface Between a Programming Language

and the UNIX System 2-14

Why C Is Used to Illustrate the Interface 2-14

How Arguments Are Passed to a Program 2-15

UP·13689 TABLE OF CONTENTS

Table of Contents

System Calls and Subroutines

Categories of System Calls and Subroutines

Where the Manual Pages Can Be Found

2-18

2-18

2-27

How System Calls and Subroutines Are Used in C Prograrns27

Header Files and Libraries 2-33

Object File Libraries 2-34

Input/Output 2-35

Three Files You Always Have 2-35

Named Files 2-36

Low-level I/O and Why You Shouldn't Use It 2-38
System Calls for Environment or Status Information 2-38

Processes 2-40

system (3S) 2-41

exec (2) 2-42

fork (2) 2-42

Pipes 2-45

Error Handling 2-47

Signals and Interrupts 2-47

Analysis/Debugging 2-50

Sample Program 2-50

cflow 2-55

ctrace 2-58

cxref 2-62

lint 2-69

prof 2-70

size 2-72

strip 2-72

sdb 2-72

ii PROGRAMMER'S GUIDE UP-13689

Program Organizing Utilities

The make Command

The Archive

Use of SCCS by Single-User Programmers

Table of Contents

2-74

2-74

2-76

2-83

UP-13689 TABLE OF CONTENTS iii

Introduction
The information in this chapter is for anyone just learning to

write programs to run in a UNIX system environment. In Chapter
1 we identified one group of UNIX system users as single-user pro
grammers. People in that category, particularly those who are not
deeply interested in programming, may find this chapter (plus
related reference manuals) tells them as much as they need to
know about coding and running programs on a UNIX system com
puter.

Programmers whose interest does run deeper, who are part of
an application development project, or who are producing pro
grams on one UNIX system computer that are being ported to
another, should view this chapter as a starter package.

UP-13689 PROGRAM MING BASICS 2-1

Choosing a Programming Language
How do you decide which programming language to use in a

given situation? One answer could be, "I always code in HAIRBOL,
because that's the language I know best." Actually, in some cir
cumstances that's a legitimate answer. But assuming more than
one programming language is available to you, that different pro
gramming languages have their strengths and weaknesses, and
assuming that once you've learned to use one programming
language it becomes relatively easy to learn to use another, you
might approach the problem of language selection by asking your
self questions like the following:

• What is the nature of the task this program is to do?

Does the task call for the development of a complex algo
rithm, or is this a simple procedure that has to be done on
a lot of records?

• Does the programming task have many separate parts?

Can the program be subdivided into separately compilable
functions, or is it one module?

• How soon does the program have to be available?

Is it needed right now, or do I have enough time to work
out the most efficient process possible?

• What is the scope of its use?

Am I the only person who will use this program, or is it
going to be distributed to the whole world?

• Is there a possibility the program will be ported to other sys
tems?

• What is the life-expectancy of the program?

Is it going to be used just a few times, or will it still be going
strong five years from now?

2-2 PROGRAMMER'S GUIDE UP-13689

Language Selection

Supported Languages in a UNIX System Environment

By "supported languages" we mean those offered by AT&T for
use on an AT&T 3B2 Computer running UNIX System V Release
3.0. Since these are separately purchasable items, not all of them
will necessarily be installed on your machine. On the other hand,
you may have languages available on your machine that came
from another source and are not mentioned in this discussion. Be
that as it may, in this section and the one to follow we give brief
descriptions of the nature of a) six full-scale programming
languages, and b) a number of special purpose languages.

C Language
C is intimately associated with the UNIX system since it was

originally developed for use in recoding the UNIX system kernel. If
you need to use a lot of UNIX system function calls for low-level
I/O, memory or device management, or inter-process communica
tion, C language is a logical first choice. Most programs, however,
don't require such direct interfaces with the operating system so
the decision to choose C might better be based on one or more of
the following characteristics:

• a variety of data types: character, integer, long integer,
float, and double

• low level constructs (most of the UNIX system kernel is writ
ten in C)

• derived data types such as arrays, functions, pOinters, struc-
tures and unions

• multi-dimensional arrays

• scaled pointers, and the ability to do pointer arithmetic

• bit-wise operators

• a variety of flow-of-control statements: if, if-else, switch,
while, do-while, and for

• a high degree of portability

UP-13689 PROGRAMMING BASICS 2-3

Language Selection

C is a language that lends itself readily to structured program
ming. It is natural in C to think in terms of functions. The next
logical step is to view each function as a separately compilable
unit. This approach (coding a program in small pieces) eases the
job of making changes and/or improvements. If this begins to
sound like the UNIX system philosophy of building new programs
from existing tools, it's not just coincidence. As you create func
tions for one program you will surely find that many can be picked
up, or quickly revised, for another program.

A difficulty with C is that it takes a fairly concentrated use of
the language over a period of several months to reach your full
potential as a C programmer. If you are a casual programmer,
you might make life easier for yourself if you choose a less
demanding language.

FORTRAN

The oldest of the high-level programming languages, FOR
TRAN is still highly prized for its variety of mathematical functions.
If you are writing a program for statistical analysis or other scien
tific applications, FORTRAN is a good choice. An original design
objective was to produce a language with good operating effi
ciency. This has been achieved at the expense of some flexibility
in the area of type definition and data abstraction. There is, for
example, only a single form of the iteration statement. FORTRAN
also requires using a somewhat rigid format for input of lines of
source code. This shortcoming may be overcome by using one of
the UNIX system tools designed to make FORTRAN more flexible.

Pascal

Originally designed as a teaching tool for block structured pro
gramming, Pascal has gained quite a wide acceptance because of
its straightforward style. Pascal is highly structured and allows
system level calls (characteristics it shares with C). Since the
intent of the developers, however, was to produce a language to
teach people about programming it is perhaps best suited to small
projects. Among its inconveniences are its lack of facilities for
specifying initial values for variables and limited file processing
capability.

2-4 PROGRAMMER'S GUIDE UP-13689

Language Selection

COBOL
Probably more programmers are familiar with COBOL than

with any other single programming language. It is frequently used
in business applications because its strengths lie in the manage
ment of input/output and in defining record layouts.

It is somewhat cumbersome to use COBOL for complex algo
rithms, but it works well in cases where many records have to be
passed through a simple process; a payroll withholding tax calcula
tion, for example. It is a rather tedious language to work with
because each program requires a lengthy amount of text merely
to describe record layouts, processing environment and variables
used in the code. The COBOL language is wordy so the compila
tion process is often quite complex. Once written and put into
production, COBOL programs have a way of staying in use for
years, and what might be thought of by some as wordiness comes
to be considered self-documentation. The investment in program
mer time often makes them resistant to change.

BASIC
The most commonly heard comment about BASIC is that it is

easy to learn. With the spread of personal microcomputers many
people have learned BASIC because it is simple to produce runn
able programs in very little time. It is difficult, however, to use
BASIC for large programming projects. It lacks the provision for
structured flow-of-control, requires that every variable used be
defined for the entire program and has no way of transferring
values between functions and calling programs. Most versions of
BASIC run as interpreted code rather than compiled. That makes
for slower running programs. Despite its limitations, however, it is
useful for getting simple procedures into operation quickly.

Assembly Language
The closest approach to machine language, assembly

language is specific to the particular computer on which your pro
gram is to run. High-level languages are translated into the
assembly language for a specific processor as one step of the
compilation. The most common need to work in assembly
language arises when you want to do some task that is not within
the scope of a high-level language. Since assembly language is

UP-13689 PROGRAM MING BASICS 2-5

Language Selection

machine-specific, programs written in it are not portable.

Special Purpose Languages

In addition to the above formal programming languages, the
UNIX system environment frequently offers one or more of the
special purpose languages listed below.

NOTE: Since UNIX system utilities and commands are
packaged in functional groupings, it is possible
that not all the facilities mentioned will be available
on all systems.

awk
awk (its name is an acronym constructed from the initials of its

developers) scans an input file for lines that match pattern(s)
described in a specification file. On finding a line that matches a
pattern, awk performs actions also described in the specification.
It is not uncommon that an awk program can be written in a cou
ple of lines to do functions that would take a couple of pages to
describe in a programming language like FORTRAN or C. For
example, consider a case where you have a set of records that
consist of a key field and a second field that represents a quantity.
You have sorted the records by the key field, and you now want to
add the quantities for records with duplicate keys and output a file
in which no keys are duplicated. The pseudo-code for such a pro
gram might look like this:

Read the first record into a hold area;
Read additional records until EOF;
{
If the key matches the key of the record in the hold area,
add the quantity to the quantity field of the held record;

If the key does not match the key of the held record,
write the held record,
move the new record to the hold area;

}
At EOF, write out the last record from the hold area.

2-6 PROGRAMMER'S GUIDE UP-13689

Language Selection

An awk program to accomplish this task would look like this:

I qty[$l] += $2 J
END~ for (key in qty) print key, qty[key] J

This illustrates only one characteristic of awk; its ability to work
with associative arrays. With awk, the input file does not have to
be sorted, which is a requirement of the pseudo-program.

lex

lex is a lexical analyzer that can be added to C or FORTRAN
programs. A lexical analyzer is interested in the vocabulary of a
language rather than its grammar, which is a system of rules defin
ing the structure of a language. lex can produce C language sub
routines that recognize regular expressions specified by the user,
take some action when a regular expression is recognized and
pass the output stream on to the next program.

yacc

yacc (Yet Another Compiler Compiler) is a tool for describing
an input language to a computer program. yaee produces a C
language subroutine that parses an input stream according to
rules laid down in a specification file. The yaee specification file
establishes a set of grammar rules together with actions to be
taken when tokens in the input match the rules. lex may be used
with yaee to control the input process and pass tokens to the
parser that applies the grammar rules.

M4

M4 is a macro processor that can be used as a preprocessor
for assembly language, and C programs. It is described in Section
(1) of the Programmer's Reference Manual.

be and de

be enables you to use a computer terminal as you would a
programmable calculator. You can edit a file of mathematical
computations and call be to execute them. The be program uses
dc. You can use dc directly, if you want, but it takes a little get
ting used to since it works with reverse Polish notation. That
means you enter numbers into a stack followed by the operator.
bc and de are described in Section (1) of the User's Reference

UP-13689 PROGRAMMING BASICS 2-7

Language Selection

Manual.

curses
Actually a library of C functions, curses is included in this list

because the set of functions just about amounts to a sub
language for dealing with terminal screens. If you are writing pro
grams that include interactive user screens, you will want to
become familiar with this group of functions.

In addition to all the foregoing, don't overlook the possibility of
using shell procedures.

2-8 PROGRAMMER'S GUIDE UP-13689

After Your Code Is Written
The last two steps in most compilation systems in the UNIX

system environment are the assembler and the link editor. The
compilation system produces assembly language code. The
assembler translates that code into the machine language of the
computer the program is to run on. The link editor resolves all
undefined references and makes the object module executable.
With most languages on the UNIX system the assembler and link
editor produce files in what is known as the Common Object File
Format (COFF). A common format makes it easier for utilities that
depend on information in the object file to work on different
machines running different versions of the UNIX system.

In the Common Object File Format an object file contains:

• a file header

• optional secondary header

• a table of section headers

• data corresponding to the section header(s)

• relocation information

• line numbers

• a symbol table

• a string table

An object file is made up of sections. Usually. there are at
least two: .text. and .data. Some object files contain a section
called .bss. (.bss is an assembly language pseudo-op that origi
nally stood for IIblock started by symbol,lI) .bss. when present.
holds uninitialized data. Options of the compilers cause different
items of information to be included in the Common Object File
Format. For example. compiling a program with the -9 option
adds line numbers and other symbolic information that is needed
for the sdb (Symbolic Debugger) command to be fully effective.
You can spend many years programming without having to worry
too much about the contents and organization of the Common
Object File Format. so we are not going into any further depth of
detail at this point. Detailed information is available in Chapter 11
of this guide.

UP-13689 PROGRAMMING BASICS 2-9

Compiling and Link Editing

Compiling and Link Editing

The command used for compiling depends on the language
used;

• for C programs, cc both compiles and link edits

• for FORTRAN programs, f77 both compiles and link edits

Compiling C Programs
To use the C compilation system you must have your source

code in a file with a filename that ends in the characters .c, as in
mycode.c. The command to invoke the compiler is:

cc mycode.c

If the compilation is successful the process proceeds through the
link edit stage and the result will be an executable file by the name
of a.out.

Several options to the cc command are available to control its
operation. The most used options are:

-c

-g

-0

causes the compilation system to suppress the
link edit phase. This produces an object file
(mycode.o) that can be link edited at a later
time with a cc command without the -c option.

causes the compilation system to generate spe
cial information about variables and language
statements used by the symbolic debugger
sdb. If you are going through the stage of
·debugging your program, use this option.

causes the inclusion of an additional optimiza
tion phase. This option is logically incompatible
with the -g option. You would normally use -0
after the program has been debugged, to
reduce the size of the object file and increase
execution speed.

2-10 PROGRAMMER'S GUIDE UP-13689

-p

Compiling and Link Editing

causes the compilation system to produce code
that works in conjunction with the prof(1) com
mand to produce a runtime profile of where the
program is spending its time. Useful in identify
ing which routines are candidates for improved
code.

-ooutfile tells cc to tell the link editor to use the specified
name for the executable file, rather than the
default a.out.

Other options can be used with cc. Check the Programmer's
Reference Manual.

If you enter the cc command using a file name that ends in .s,
the compilation system treats it as assembly language source
code and bypasses all the steps ahead of the assembly step.

Compiling FORTRAN Programs

The f77 command invokes the FORTRAN compilation system.
The operation of the command is similar to that of the cc com
mand, except the source code file(s) must have a .f suffix. The
f77 command compiles your source code and calls in the link edi
tor to produce an executable file whose name is a.out.

The following command line options have the same meaning
as they do for the cc command:

-c, -p, -0, -g, and -ooutfile

Loading and Running BASIC Programs

BASIC programs can be invoked in two ways:

• With the command

basic bscpgm.b

where bscpgm.b is the name of the file that holds your
BASIC statements. This tells the UNIX system to load and
run the program. If the program includes a run statement
naming another program, you will chain from one to the
other. Variables specified in the first can be preserved for
the second with the common statement.

UP-13689 PROGRAMMING BASICS 2-11

Compiling and Link Editing

• By setting up a shell script.

Compiler Diagnostic Messages

The C compiler generates error messages for statements that
don't compile. The messages are generally quite understandable,
but in common with most language compilers they sometimes
point several statements beyond where the actual error occurred.
For example, if you inadvertently put an extra; at the end of an if
statement, a subsequent else will be flagged as a syntax error. In
the case where a block of several statements follows the if, the line
number of the syntax error caused by the else will start you look
ing for the error well past where it is. Unbalanced curly braces, {
}, are another common producer of syntax errors.

Link Editing

The Id command invokes the link editor directly. The typical
user, however, seldom invokes Id directly. A more common prac
tice is to use a language compilation control command (such as
cc) that invokes Id. The link editor combines several object files
into one, performs relocation, resolves external symbols, incor
porates startup routines, and supports symbol table information
used by sdb. You may, of course, start with a single object file
rather than several. The resulting executable module is left in a file
named a.out.

Any file named on the Id command line that is not an object
file (typically, a name ending in 0) is assumed to be an archive
library or a file of link editor directives. The Id command has some
16 options. We are going to describe four of them. These options
should be fed to the link editor by specifying them on the cc com
mand line if you are doing both jobs with the single command,
which is the usual case.

-ooutfile provides a name to be used to replace a.out as
the name of the output file. Obviously, the
name a.out is of only temporary usefulness. If
you know the name you want use to invoke
your program, you can provide it here. Of
course, it may be equally convenient to do this:

mv a.out progname

2-12 PROGRAMMER'S GUIDE UP-13689

-Ix

-L dir

Compiling and Link Editing

when you want to give your program a less
temporary name.

directs the link editor to search a library libx.a,
where x is up to nine characters. For C pro
grams, libe.a is automatically searched if the ee
command is used. The -Ix option is used to
bring in libraries not normally in the search path
such as libm.a, the math library. The -Ix option
can occur more than once on a command line,
with different values for the x. A library is
searched when its name is encountered, so the
placement of the option on the command line is
important. The safest place to put it is at the
end of the command line. The·1x option is
related to the -L option.

changes the libx.a search sequence to search
in the specified directory before looking in the
default library directories, usually /lib or
/usr/lib. This is useful if you have different ver
sions of a library and you want to point the link
editor to the correct one. It works on the
assumption that once a library has been found
no further searching for that library is neces
sary. Because -L diverts the search for the
libraries specified by ·Ix options, it must pre
cede such options on the command line.

-u symname enters symname as an undefined symbol in the
symbol table. This is useful if you are loading
entirely from an archive library, because initially
the symbol table is empty and needs an
unresolved reference to force the loading of the
first routine.

When the link editor is called through ee, a startup routine
(typically /lib/ertO.o for C programs) is linked with your program.
This routine calls exit(2) after execution of the main program.

UP-13689 PROGRAM MING BASICS 2-13

Compiling and Link Editing

The link editor accepts a file containing link editor directives.
The details of the link editor command language can be found in
Chapter 12.

2-14 PROGRAMMER'S GUIDE UP-13689

The Interface Between a Program
ming Language and the UNIX
System

When a program is run in a computer it depends on the
operating system for a variety of services. Some of the services
such as bringing the program into main memory and starting the
execution are completely transparent to the program. They are. in
effect. arranged for in advance by the link editor when it marks an
object module as executable. As a programmer you seldom need
to be concerned about such matters.

Other services. however. such as input/output. file manage
ment. storage allocation do require work on the part of the pro
grammer. These connections between a program and the UNIX
operating system are what is meant by the term UNIX
system/language interface. The topics included in this section are:

• How arguments are passed to a program

• System calls and subroutines

• Header files and libraries

• Input/Output

• Processes

• Error Handling. Signals. and Interrupts

Why C Is Used to Illustrate the Interface

Throughout this section C programs are used to illustrate the
interface between the UNIX system and programming languages
because C programs make more use of the interface mechanisms
than other high-level languages. What is really being covered in
this section then is the UNIX systemIC Language interface. The
way that other languages deal with these topics is described in the
user's guides for those languages.

UP-13689 PROGRAMMING BASICS 2-15

The UNIX System/Language Interface

How Arguments Are Passed to a Program

Information or control data can be passed to a C program as
arguments on the command line. When the program is run as a
command, arguments on the command line are made available to
the function main in two parameters, an argument count and an
array of pointers to character strings. (Every C program is
required to have an entry module by the name of main.) Since
the argument count is always given, the program does not have to
know in advance how many arguments to expect. The character
strings pointed at by elements of the array of pointers contain the
argument information.

The arguments are presented to the program traditionally as
argc and argy, although any names you choose will work. argc is
an integer that gives the count of the number of arguments.
Since the command itself is considered to be the first argument,
argy[O], the count is always at least one. argy is an array of
pointers to character strings (arrays of characters terminated by
the null character \0).

If you plan to pass runtime parameters to your program, you
need to include code to deal with the information. Two possible
uses of runtime parameters are:

• as control data. Use the information to set internal flags
that control the operation of the program.

• to provide a variable filename to the program.

Figures 2-1 and 2-2 show program fragments that illustrate
these uses.

2-16 PROGRAMMER'S GUIDE UP-13689

#include <stdio.h>

main(argc, argv)
int argc;
char *argv[];

The UNIX System/Language Interface

void exit();
int oflag = FALSE;
int pflag = FALSE;/* Function Flags */
int rflag = FALSE;
int chi

while ((ch = getopt(argc,argv, "opr"»
!= EOF)
1

/* For options present, set flag to
TRUE */

/* If no options present, print error
message */

switch (ch)
I
case '0':
oflag = 1;
break;
case 'p':
pflag = 1;
break;
case 'r':
rfl ag = 1;
break;
default:
(void)fprintf(stderr,
"Usage: %s [-opr]\n", argv[O]);
ex it (2);
1
1

~ --

Figure 2-1: Using Command Line Arguments to Set Flags

UP-13689 PROGRAMMING BASICS 2-17

The UNIX System/Language Interface

#include <stdio.h>

main(argc, argv)
int argc;
char *argv[];

FILE *fopen(), *fin;
void perror(), exit();

if (argc > 1)
{
if «fin = fopen(argv[1], "r"» == NULL)
1

/* First string (%s) is program name
(argv[O]) */

/* Second string (%s) is name of file
that could */

/* not be opened (argv[1]) */

(void)fprintf(stderr,
"%s: cannot open %s: "
argv[O], argv[1]);

perror ('''') ;
exit(2);
I
1

Figure 2-2: Using argv[n] Pointers to Pass a Filename

2-18 PROGRAMMER'S GUIDE UP-13689

The UNIX System/Language Interface

The shell, which makes arguments available to your program,
considers an argument to be any non-blank characters separated
by blanks or tabs. Characters enclosed in double quotes ("abc
def") are passed to the program as one argument even if blanks or
tabs are among the characters. It goes without saying that you
are responsible for error checking and otherwise making sure the
argument received is what your program expects it to be.

A third argument is also present, in addition to argc and argv.
The third argument, known as envp, is an array of pointers to
environment variables. You can find more information on envp in
the Programmer's Reference Manual under exec(2) and
environ (5).

System Calls and Subroutines

System calls are requests from a program for an action to be
performed by the UNIX system kernel. Subroutines are precoded
modules used to supplement the functionality of a programming
language.

Both system calls and subroutines look like functions such as
those you might code for the individual parts of your program.
There are, however, differences between them:

• At link edit time, the code for subroutines is copied into the
object file for your program; the code invoked by a system
call remains in the kernel.

• At execution time, subroutine code is executed as if it was
code you had written yourself; a system function call is exe
cuted by switching from your process area to the kernel.

This means that while subroutines make your executable
object file larger, runtime overhead for context switching may be
less and execution may be faster.

UP-13689 PROGRAMMING BASICS 2-19

The UNIX System/Language Interface

Categories of System Calls and Subroutines

System calls divide fairly neatly into the following categories:

• file access

• file and directory manipulation

• process control

• environment control and status information

You can generally tell the category of a subroutine by the sec
tion of the Programmer's Reference Manual in which you find its
manual page. However, the first part of Section 3 (3C and 3S)
covers such a variety of subroutines it might be helpful to classify
them further.

• The subroutines of sub-class 3S constitute the UNIX
systemIC Language standard I/O, an efficient 110 buffering
scheme for C.

• The subroutines of sub-class 3C do a variety of tasks. They
have in common the fact that their object code is stored in
libc.a. They can be divided into the following categories:

string manipulation

character conversion

character classification

environment management

memory management

Figure 2-3 lists the functions that compose the standard 110
subroutines. Frequently, one manual page describes several
related functions. In Figure 2-3 the left hand column contains the
name that appears at the top of the manual page; the other
names in the same row are related functions described on the
same manual page.

2-20 PROGRAM M ER '5 GUID E UP-13689

The UNIX System/Language Interface

Function Name(s) Purpose

. fclose, fflush close or flush a stream

ferror, feof, clearerr, fileno stream status inquires

fopen, freopen, fdopen open a stream

fread, fwrite binary input/output

fseek, rewind, ftell reposition on file pointer in stream

getc, getchar, fgetc, getw get char. or word from stream

gets, fgets get string from a stream

popen, pclose begin/end pipe to/from process

printf, fprintf, sprintf print formatted output

For all functions: #include < stdio.h >

The function name shown in bold gives the location in
the Programmer's Reference Manual, Section 3.

Figure 2-3: C Language Standard I/O Subroutines (sheet 1 of 2)

UP-13689 PROGRAMMING BASICS 2-21

The UNIX System/Language Interface

Function Name(s) Purpose

putc, putchar, fputc, putw put char. or word on stream

puts, fputs put string on a stream

scanf, fscanf, sscanf convert formatted input

setbuf, setvbuf assign buffering to a stream

system issue command through shell

tmpfile create a temporary file

tmpnam, tempnam create name for temp. file

ungetc push char. back into input stream

vprintf, vfprintf, vsprintf print output of vargas argo list

For all functions: #include < stdio.h >

The function name shown in bold gives the location in
the Programmer's Reference Manual, Section 3.

Figure 2-3: C Language Standard I/O Subroutines (sheet 2 of 2)

Figure 2-4 lists string handling functions that are grouped
under the heading string(3C) in the Programmer's Reference
Manual.

2·22 PROGRAMMER'S GUIDE UP·13689

The UNIX System/Language Interface

String Operations

strcat(s1, s2) append a copy of s2 to the end of s 1.

strncat(s1, s2, n) append n characters from s2 to the end of s1.

strcmp(s1, s2) compare two strings. Returns an integer less
than. greater than or equal to 0 to show that
s1 is lexicographically less than. greater than
or equal to s2.

strncmp(s1, s2, n) compare n characters from the two strings.

strcpy(s1, s2)

Results are otherwise identical to strcmp.

copy s2 to s1. stopping after the null character
(\0) has been copied.

strncpy(s1, s2, n) copy n characters from s2 to sl. s2 will be
truncated if it is longer than n. or padded with
null characters if it is shorter than n.

strdup(s)

strchr(s, c)

strrchr(s, c)

returns a pointer to a new string that is a dupli
cate of the string pointed to by s.

returns a pointer to the first occurrence of
character c in string s. or a NULL pointer if c is
not in s.

returns a pointer to the last occurrence of
character c in string s. or a NULL pointer if c is
not in s.

For all functions: #include < string.h >
string.h provides extern definitions of the string functions.

Figure 2-4: String Operations (sheet 1 of 2)

UP-13689 PROGRAMMING BASICS 2-23

The UNIX System/Language Interface

strlen(s)

strpbrk(s1, s2)

strspn(s1, s2)

strcspn(s1, s2)

strtok(s1, s2)

String Operations

returns the number of characters in s up to the
first null character.

returns a pointer to the first occurrence in s1
of any character from s2, or a NULL pointer if
no character from s2 occurs in s1.

returns the length of the initial segment of s1,
which consists entirely of characters from s2.

returns the length of the initial segment of s1,
which consists entirely of characters not from
s2.

look for occurrences of s2 within s 1.

For all functions: #include < string.h >
string.h provides extern definitions of the string functions.

Figure 2-4: String Operations (sheet 2 of 2)

Figure 2-5 lists macros that classify ASCII character-coded
integer values. These macros are described under the heading
ctype(3C) in Section 3 of the Programmer's Reference Manual.

2-24 PROGRAMMER'S GUIDE UP-13689

The UNIX System/Language Interface

Classify Characters

isalpha(c) is c a letter

isupper(c) is c an upper-case letter

islower(c) is c a lower-case letter

isdigit(c) is c a digit [0-9]

isxdigit(c) is c a hexadecimal digit [0-9], [A-F] or [a-f]

isalnum(c) is c an alphanumeric (letter or digit)

isspace(c) is c a space, tab, carriage return, new-line, vertical tab
or form-feed

ispunct(c) is c a punctuation character (neither control nor
alphanumeric)

isprint(c) is c a printing character, code 040 (space) through
0176 (tilde)

isgraph(c) same as isprint except false for 040 (space)

iscntrl(c) is c a control character (less than 040) or a delete
character (0177)

isascii(c) is c an ASCII character (code less than 0200)

For all functions: #include < ctype.h >
Nonzero return = = true; zero return = = false

Figure 2-5: Classifying ASCII Character-Coded Integer Values

UP-13689 PROGRAM MING BASICS 2-25

The UNIX System/Language Interface

Figure 2-6 lists functions and macros that are used to convert
characters, integers, or strings from one representation to another.

Function Name(s) Purpose

a641 164a convert between long integer and
base-64 ASCII string

ecvt fcvt gcvt convert floating-point number to string

13tol Itol3 convert between 3-byte integer and
long integer

strtod atof convert string to double-precision
number

strtol atol atoi convert string to integer

conv(3C): Translate Characters

toupper lower-case to upper-case

_toupper macro version of toupper

tolower upper-case to lower-case

_ tolower macro version of tolower

toascii turn off all bits that are not part of a
standard ASCII character; intended for
compatibility with other systems

For all conv(3C) macros: #include < ctype.h >

Figure 2-6: Conversion Functions and Macros

2·26 PROGRAMMER'S GUIDE UP·13689

The UNIX System/Language Interface

Where the Manual Pages Can Be Found
System calls are listed alphabetically in Section 2 of the

Programmer's Reference Manual. Subroutines are listed in Section
3. We have described above what is in the first subsection of Sec
tion 3. The remaining subsections of Section 3 are:

• 3M - functions that make up the Math Library, libm

• 3X - various specialized functions

• 3F - the FORTRAN intrinsic function library, IibF77

• 3N - Networking Support Utilities

How System Calls and Subroutines Are Used in C Programs
Information about the proper way to use system calls and sub

routines is given on the manual page, but you have to know what
you are looking for before it begins to make sense. To illustrate, a
sample manual page (for gets(3S)) is shown in Figure 2-7.

UP-13689 PROGRAMMING BASICS 2-27

The UNIX System/Language Interface

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#include < stdio.h >

char *gets (s)
char *s;

char *fgets (s, n, stream)
char *s;
int n;
FILE *stream;

DESCRIPTION
Gets reads characters from the standard input stream,
stdin, into the array pointed to by s, until a new-line char
acter is read or an end-of-file condition is encountered.
Fgets reads characters from the stream into the array
pointed to by s, until n-1 characters are read, or a new-line
character is read and transferred to s, or an end-of-file
condition is encountered.

SEE ALSO
ferror(3S) ,
fopen(3S),
fread(3S),
getc(3S),
scanf(3S).

DIAGNOSTICS
If end-of-file is encountered and no characters have been
read, no characters are transferred to s and a NULL
pointer is returned. If a read error occurs a NULL pointer
is returned. Otherwise s is returned.

Figure 2-7: Manual Page for gets(3S)

2·28 PROGRAMMER'S GUIDE UP·13689

The UNIX System/language Interface

As you can see from the illustration, two related functions are
described on this page: gets and fgets. Each function gets a
string from a stream in a slightly different way. The DESCRIPTION
section tells how each operates.

It is the SYNOPSIS section, however, that contains the critical
information about how the function (or macro) is used in your pro
gram. Notice in Figure 2-7 that the first line in the SYNOPSIS is

#include < stdio.h >

This means that to use gets or fgets you must bring the standard
I/O header file into your program (generally right at the top of the
file). There is something in stdio.h that is needed when you use
the described functions. Figure 2-9 shows a version of stdio.h.
Check it to see if you can understand what gets or fgets uses.

The next thing shown in the SYNOPSIS section of a manual
page that documents system calls or subroutines is the formal
declaration of the function. The formal declaration tells you:

• the type of object returned by the function

In our example, both gets and fgets return a character
pointer.

• the object or objects the function expects to receive
when called

These are the things enclosed in the parentheses of the
function. gets expects a character pointer. (The DESCRIP
TION section sheds light on what the tokens of the formal
declaration stand for.)

• how the function is going to treat those objects

The declaration

char *s;

in gets means that the token s enclosed in the parentheses
will be considered to be a pointer to a character string.
Bear in mind that in the C language, when passed as an
argument, the name of an array is converted to a pointer to

UP-13689 PROGRAM MING BASICS 2-29

The UNIX System/Language Interface

the beginning of the array.

We have chosen a simple example here in gets. If you want to
test yourself on something a little more complex, try working out
the meaning of the elements of the fgets declaration.

While we're on the subject of fgets, there is another piece of C
esoterica that we'll explain. Notice that the third parameter in the
fgets declaration is referred to as stream. A stream, in this con
text, is a file with its associated buffering. It is declared to be a
pointer to a defined type FILE. Where is FILE defined? Right! In
stdio.h.

To finish off this discussion of the way you use functions
described in the Programmer's Reference Manual in your own
code, in Figure 2-8 we show a program fragment in which gets is
used.

#include <stdio.h>

maine)
1

char sarray[80)j

fore;;)
1

if (gets(sarray) != NULL)

/* Do something with the string */

Figure 2-8: How gets Is Used in a Program

2-30 PROGRAMMER'S GUIDE UP-13689

The UNIX System/Language Interface

You might ask, "Where is gets reading from?" The answer is,
"From the standard input." That generally means from something
being keyed in from the terminal where the command was entered
to get the program running, or output from another command that
was piped to gets. How do we know that? The DESCRIPTION
section of the gets manual page says, "gets reads characters from
the standard input.. .. " Where is the standard input defined? In
stdio.h.

UP·13689 PROGRAMMING BASICS 2·31

The UNIX System/Language Interface

. #ifndef _NFILE
#define _NFILE 20

#define BUFSIZ 1024
#define _SBFSIZ 8

typedef struct 1

J FILE;

int _cnt;
unsigned char
unsigned char
char _flag;
char _file;

#define _IOFBF
#define _IOREAD
#define _IOWRT
#define _IONBF
#define _IOMYBUF
#define _IOEOF
#define _IOERR
#define _IOLBF
#define _IORW

0000 /* _IOLBF means that a */

#ifndef NULL
#define NULL
#endif
#ifndef EOF
#define EOF
#endif

0001 /* file's output will be */
0002 /* buffered line by line. */
0004 /* In addition to being */
0010 /* flags, _IONBF, _IOLBF, & */
0020 /* IOFBF are possible */
0040 /* values for "type" in */
0100 /* setvbuf. */
0200

o

(-1)

Figure 2-9: A Version of stdio.h (sheet 1 of 2)

2-32 PROGRAMMER'S GUIDE UP-13689

#define stdin
#define stdout
#define stderr

#define _bufend(p)
#define _bufsiz(p)

#ifndef lint
#define getc(p)

#define putc(x, p)

#define getchar()
#define putchar(x)
#define c1earerr(p)

#define feof(p)
#define ferror(p)
#define fi1eno(p)
#endif

The UNIX System/Language Interface

(&_ i ob [0])
(&_iob[l])
(&_iob[2])

_bufendtab[(p)->_fi1e]
(_bufend(p) - (p)->_base)

(--(p)->_cnt < 0 ? _fi1buf(p)
(int) *(p)->_ptr++)
(--(p)->_cnt < 0 ?
_f1sbuf((unsigned char) (x), (p»
(int) (*(p)->_ptr++ = (unsigned
char) (x»)
getc(stdin)
putc((x), stdout)
((void) ((p)->_f1ag &=

(_IOERR : _IOEOF»)
((p)->_f1ag & _IOEOF)
((p)->_f1ag & _IOERR)
(p)->_fi1e

extern FILE _iob[_NFILE];
extern FILE *fopen(), *fdopen(), *freopen(),

*popen(), *tmpfile();
extern long fte11();
extern void rewind(), setbuf();
extern char *ctermid(), *cuserid(), *fgets(), *gets(),

*tempnam(), *tmpnam();
extern unsigned char *_bufendtab[];

#define L_ctermid
#define L_cuserid
#define P_tmpdir
#define L_tmpnam

9
9
"/usr/tmp/"
(sizeof(P_tmpdir) + 15)

~_f ________________________________ ~
Figure 2-9: A Version of stdio.h (sheet 2 of 2)

UP-13689 PROGRAM MING BASICS 2-33

The UNIX System/Language Interface

Header Files and Libraries

In the earlier parts of this chapter there have been frequent
references to stdio.h, and a version of the file itself is shown in
Figure 2-9. stdio.h is the most commonly used header file in the
UNIX systemiC environment, but there are many others.

Header files carry definitions and declarations that are used by
more than one function. Header filenames traditionally have the
suffix .h, and are brought into a program at compile time by the
C-preprocessor. The preprocessor does this because it interprets
the #include statement in your program as a directive; as indeed
it is. All keywords preceded by a pound sign (#) at the beginning
of the line, are treated as preprocessor directives. The two most
commonly used directives are #include and #define. We have
already seen that the #include directive is used to call in (and pro
cess) the contents of the named file. The #define directive is
used to replace a name with a token-string. For example,

#define _NFILE 20

sets to 20 the number of files a program can have open at one
time. See cpp(1) for the complete list.

In the pages of the Programmer's Reference Manual there are
about 45 different .h files named. The format of the #include
statement for all these shows the file name enclosed in angle
brackets « », as in

#include < stdio.h >

The angle brackets tell the C preprocessor to look in the stan
dard places for the file. In most systems the standard place is in
the /usr/include directory. If you have some definitions or exter
nal declarations that you want to make available in several files,
you can create a .h file with any editor, store it in a convenient
directory and make it the subject of a #include statement such as
the following:

#include II •• /defs/rec.h"

2-34 PROGRAMMER'S GUIDE UP-13689

The UNIX System/Language Interface

It is necessary, in this case, to provide the relative pathname
of the file and enclose it in quotation marks (""). Fully-qualified
pathnames (those that begin with /) can create portability and
organizational problems. An alternative to long or fully-qualified
pathnames is to use the -Idir preprocessor option when you com
pile the program. This option directs the preprocessor to search
for #include files whose names are enclosed in 1111, first in the
directory of the file being compiled, then in the directories named
in the -I option (s), and finally in di rectories on the standard list. In
addition, all #include files whose names are enclosed in angle
brackets « » are first searched for in the list of directories
named in the -I option and finally in the directories on the stan
dard list.

Object File Libraries

It is common practice in UNIX system computers to keep
modules of compiled code (object files) in archives; by convention,
designated by a .a suffix. System calls from Section 2, and the
subroutines in Section 3, subsections 3C and 38, of the
Programmer's Reference Manual that are functions (as distinct
from macros) are kept in an archive file by the name of libc.a. In
most systems, libc.a is found in the directory /lib. Many systems
also have a directory /usr/lib. Where both /Iib and /usr/lib occur,
/usr/lib is apt to be used to hold archives that are related to
specific applications.

During the link edit phase of the compilation and link edit pro
cess, copies of some of the object modules in an archive file are
loaded with your executable code. By default the cc command
that invokes the C compilation system causes the link editor to
search libc.a. If you need to point the link editor to other libraries
that are not searched by default, you do it by naming them expli
citly on the command line with the -I option. The format of the -I
option is -Ix where x is the library name, and can be up to nine
characters. For example, if your program includes functions from
the curses screen control package, the option

-Icurses

will cause the link editor to search for /lib/libcurses.a or
/usr/lib/libcurses.a and use the first one it finds to resolve

UP-13689 PROGRAMMING BASICS 2-35

The UNIX System/Language Interface

references in your program.

In cases where you want to direct the order in which archive
libraries are searched, you may use the -L dir option. Assuming
the -L option appears on the command line ahead of the -I option,
it directs the link editor to search the named directory for libx.a
before looking in /lib and /usr/lib. This is particularly useful if you
are testing out a new version of a function that already exists in an
archive in a standard directory. Its success is due to the fact that
once having resolved a reference the link editor stops looking.
That's why the -L option, if used, should appear on the command
line ahead of any -I specification.

Input/Output

We talked some about I/O earlier in this chapter in connection
with system calls and subroutines. A whole set of subroutines
constitutes the C language standard I/O package, and there are
several system calls that deal with the same area. In this section
we want to get into the subject in a little more detail and describe
for you how to deal with input and output concerns in your C pro
grams. First off, let's briefly define what the subject of I/O encom
passes. It has to do with

• creating and sometimes removing files

• opening and closing files used by your program

• transferring information from a file to your program (read
ing)

• transferring information from your program to a file (writing)

In this section we will describe some of the subroutines you
might choose for transferring information, but the heaviest
emphasis will be on dealing with files.

Three Files You Always Have
Programs are permitted to have several files open simultane

ously. The number may vary from system to system; the most
common maximum is 20. _ NFILE in stdio.h specifies the number
of standard I/O FILEs a program is permitted to have open.

2-36 PROGRAMMER'S GUIDE UP-13689

The UNIX System/Language Interface

Any program automatically starts off with three files. If you
will look again at Figure 2-9, about midway through you will see
that stdio.h contains three #define directives that equate stdin,
stdout, and stderr to the address of Job[O], Job[1], and Job[2].
respectively. The array Job holds information dealing with the
way standard I/O handles streams. It is a representation of the
open file table in the control block for your program. The position
in the array is a digit that is also known as the file descriptor. The
default in UNIX systems is to associate all three of these files with
your terminal.

The real significance is that functions and macros that deal
with stdin or stdout can be used in your program with no further
need to open or close files. For example, gets, cited above, reads
a string from stdin; puts writes a null-terminated string to stdout.
There are others that do the same (in slightly different ways: char
acter at a time, formatted, etc.). You can specify that output be
directed to stderr by using a function such as fprintf. fprintf
works the same as printf except that it delivers its formatted out
put to a named stream, such as stderr. You can use the shell's
redirection feature on the command line to read from or write into
a named file. If you want to separate error messages from ordi
nary output being sent to stdout and thence possibly piped by the
shell to a succeeding program, you can do it by using one func
tion to handle the ordinary output and a variation of the same
function that names the stream, to handle error messages.

Named Files
Any files other than stdin, stdout, and stderr that are to be

used by your program must be explicitly connected by you before
the file can be read from or written to. This can be done using the
standard library routine fopen. fopen takes a pathname (which is
the name by which the file is known to the UNIX file system), asks
the system to keep track of the connection, and returns a pointer
that you then use in functions that do the reads and writes.

A structure is defined in stdio.h with a type of FILE. In your
program you need to have a declaration such as

FILE *fin;

The declaration says that fin is a pointer to a FILE. You can then
assign the name of a particular file to the pointer with a statement

UP·13689 PROGRAM MING BASICS 2·37

The UNIX System/Language Interface

in your program like this:

fin = fopen("filename", "r");

where filename is the pathname to open. The Iff3rlf means that
the file is to be opened for reading. This argument is known as
the mode. As you might suspect, there are modes for reading,
writing, and both reading and writing. Actually, the file open func
tion is often included in an if statement such as:

if ((fin = fopen("filename", "r"» == NULL)
(void)fprintf(stderr,"%s: Unable to open input file
%s\n",argv[O],"filename");

that takes advantage of the fact that fopen returns a NULL pointer
if it can't open the file.

Once the file has been successfully opened, the pointer fin is
used in functions (or macros) to refer to the file. For example:

int c;
c = getc(fin);

brings in a character at a time from the file into an integer variable
called c. The variable c is declared as an integer even though we
are reading characters because the function getcO returns an
integer. Getting a character is often incorporated into some flow
of-control mechanism such as:

while ((c = getc(fin» != EOF)

that reads through the file until EOF is returned. EOF, NULL, and
the macro getc are all defined in stdio.h. getc and others that
make up the standard I/O package keep advancing a pointer
through the buffer associated with the file; the UNIX system and
the standard I/O subroutines are responsible for seeing that the

2-38 PROGRAMMER'S GUIDE UP-13689

The UNIX System/Language Interface

buffer is refilled (or written to the output file if you are producing
output) when the pointer reaches the end of the buffer. All these
mechanics are mercifully invisible to the program and the pro
grammer.

The function fclose is used to break the connection between
the pointer in your program and the pathname. The pointer may
then be associated with another file by another call to fopen. This
re-use of a file descriptor for a different stream may be necessary
if your program has many files to open. For output files it is good
to issue an fclose call because the call makes sure that all output
has been sent from the output buffer before disconnecting the file.
The system call exit closes all open files for you. It also gets you
completely out of your process, however, so it is safe to use only
when you are sure you are completely finished.

Low-level I/O and Why You Shouldn't Use It

The term low-level I/O is used to refer to the process of using
system calls from Section 2 of the Programmer's Reference
Manual rather than the functions and subroutines of the standard
I/O package. We are going to postpone until Chapter 3 any dis
cussion of when this might be advantageous. If you find as you
go through the information in this chapter that it is a good fit with
the objectives you have as a programmer, it is a safe assumption
that you can work with C language programs in the UNIX system
for a good many years without ever having a real need to use sys
tem calls to handle your I/O and file accessing problems. The rea
son low-level I/O is perilous is because it is more system
dependent. Your programs are less portable and probably no
more efficient.

System Calls for Environment or Status Information

Under some circumstances you might want to be able to moni
tor or control the environment in your computer. There are sys
tem calls that can be used for this purpose. Some of them are
shown in Figure 2-10.

UP·13689 PROGRAM MING BASICS 2-39

The UNIX System/Language Interface

Function Name(s) Purpose

chdir change working directory

chmod change access permission of file

chown change owner & group of file

getpid, getpgrp, getppid get process IDs

getuid, geteuid, getgid get user IDs

ioctl control device

link, unlink add or remove directory entry

mount, umount mount!unmount file system

nice change priority of a process

stat, fstat get file status

time get time

ulimit get & set user limits

uname get name current UNIX system

Figure 2-10: Environment and Status System Calls

As you can see, many of the functions shown in Figure 2-10
have equivalent UNIX system shell commands. Shell commands
can easily be incorporated into shell scripts to accomplish the
monitoring and control tasks you may need to do. The functions
are available, however I and may be used in C programs as part of
the UNIX systemiC Language interface. They are documented in
Section 2 of the Programmers' Reference Manual.

2-40 PROGRAMMER'S GUIDE UP-13689

The UNIX System/Language Interface

Processes
Whenever you execute a command in the UNIX system you

are initiating a process that is numbered and tracked by the
operating system. A flexible feature of the UNIX system is that
processes can be generated by other processes. This happens
more than you might ever be aware of. For example, when you
log in to your system you are running a process, very probably the
shell. If you then use an editor such as vi, take the option of
invoking the shell from vi, and execute the ps command, you will
see a display something like that in Figure 2-11 (which shows the
results of a ps -f command):

UID PID PPID C STIME TIV TIME COMMAND
abc 24210 1 0 06:13:14 tty29 0:05 -sh
abc 24631 24210 0 06:59:07 tty29 0:13 vi c2.uli
abc 28441 28358 80 09:17:22 tty29 0:01 ps -f
abc 28358 24631 2 09:15:14 tty29 0:01 sh -i

Figure 2-11: Process Status

As you can see, user abc (who went through the steps
described above) now has four processes active. It is an interest
ing exercise to trace the chain that is shown in the Process ID
(PID) and Parent Process ID (PPID) columns. The shell that was
started when user abc logged on is Process 24210; its parent is
the initialization process (Process ID 1). Process 24210 is the
parent of Process 24631, and so on.

The four processes in the example above are all UNIX system
shell level commands, but you can spawn new processes from
your own program. (Actually, when you issue the command from
your terminal to execute a program you are asking the shell to
start another process, the process being your executable object
module with all the functions and subroutines that were made a
part of it by the link editor.)

UP-13689 PROGRAM MING BASICS 2-41

The UNIX System/Language Interface

You might think, "Well, it's one thing to switch from one pro
gram to another when I'm at my terminal working interactively with
the computer; but why would a program want to run other pro
grams, and if one does, why wouldn't I just put everything
together into one big executable module?"

Overlooking the case where your program is itself an interac
tive application with diverse choices for the user, your program
may need to run one or more other programs based on conditions
it encounters in its own processing. (If it's the end of the month,
go do a trial balance, for example.) The usual reasons why it
might not be practical to create one monster executable are:

• The load module may get too big to fit in the maximum pro
cess size for your system.

• You may not have control over the object code of all the
other modules you want to include.

Suffice it to say, there are legitimate reasons why this creation
of new processes might need to be done. There are three ways to
do it:

• system(3S) - request the shell to execute a command

• exec(2) - stop this process and start another

• fork(2) - start an additional copy of this process

system(3S)
The formal declaration of the system function looks like this:

#include <stdio.h>

int system(string)
char *string;

The function asks the shell to treat the string as a command line.
The string can therefore be the name and arguments of any exe
cutable program or UNIX system shell command. If the exact
arguments vary from one execution to the next, you may want to
use sprintf to format the string before issuing the system com
mand. When the command has finished running, system returns
the shell exit status to your program. Execution of your program

2-42 PROGRAMMER'S GUIDE UP-13689

The UNIX System/Language Interface

waits for the completion of the command initiated by system and
then picks up again at the next executable statement.

exec(2)

exec is the name of a family of functions that includes execv,
execle, execve, execlp, and execvp. They all have the function of
transforming the calling process into a new process. The reason
for the variety is to provide different ways of pulling together and
presenting the arguments of the function. An example of one ver
sion (exec I) might be:

execl("/bin/prog2", "prog", progargl, progarg2,
(char *)0);

For exec I the argument list is

/bin/prog2 path name of the new process file

prog the name the new process gets in its argv[O]

progarg1, arguments to prog2 as char *'s
progarg2

(char *)0 null char pOinter to mark end of arguments

Check the manual page in the Programmer's Reference
Manual for the rest of the details. The key point of the exec family
is that there is no return from a successful execution: the calling
process is finished, the new process overlays the old. The new
process also takes over the Process 10 and other attributes of the
old process. If the call to exec is unsuccessful, control is returned
to your program with a return value of -1. You can check errno
(see below) to learn why it failed.

fork(2)
The fork system call creates a new process that is an exact

copy of the calling process. The new process is known as the
child process; the caller is known as the parent process. The one
major difference between the two processes is that the chHd gets
its own unique process ID. When the fork process has completed
successfully, it returns a 0 to the child process and the child's pro
cess 10 to the parent. If the idea of having two identical processes
seems a little funny, consider this:

UP-13689 PROGRAM MING BASICS 2-43

The UNIX System/Language Interface

• Because the return value is different between the child pro
cess and the parent, the program can contain the logic to
determine different paths.

• The child process could say, "Okay, I'm the child. I'm sup
posed to issue an exec for an entirely different program."

• The parent process could say, "My child is going to be exec
ing a new process. I'll issue a wait until I get word that that
process is finished."

To take this out of the storybook world where programs talk like
people and into the world of C programming (where people talk
like programs), your code might include statements like this:

2-44 PROGRAMMER'S GUIDE UP-13689

The UNIX System/Language Interface

• ,include <errno.h>

int ch_stat, ch-pid, status;
char *progargl;
char *progarg2;
void extt()j
extern tnt errno;

if «ch_pid = fork(» < 0)
I

I

1* Could not fork •••
check errno

*1

else if (ch-pid == 0)
I

1* child *1

(void)execl("/bin/prog2","prog",progargl,
progarg2,(char *)0);
exit(2); 1* execl() failed *1

else 1* parent *1
I

while «status = waft(&ch_stat» != ch_pfd)
I

If (status < 0 && errno == ECHILD)
break;

errno = 0;

Figure 2-12: Example of fork

Because the child process 10 is taken over by the new exec'd
process, the parent knows the 10. What this boils down to is a
way of leaving one program to run another, returning to the point
in the first program where processing left off. This is exactly what
the system (38) function does. As a matter of fact, system accom
plishes it through this same procedure of forking and execing,
with a wait in the parent.

UP·13689 PROGRAMMING BASICS 2·45

The UNIX System/Language Interface

Keep in mind that the fragment of code above includes a
minimum amount of checking for error conditions. There is also
potential confusion about open files and which program is writing
to a file. Leaving out the possibility of named files, the new pro
cess created by the fork or exec has the three standard files that
are automatically opened: stdin, stdout, and stderr. If the parent
has buffered output that should appear before output from the
child, the buffers must be flushed before the fork. Also, if the
parent and the child process both read input from a stream, what
ever is read by one process will be lost to the other. That is, once
something has been delivered from the input buffer to a process
the pointer has moved on.

Pipes

The idea of using pipes, a connection between the output of
one program and the input of another, when working with com
mands executed by the shell is well established in the UNIX sys
tem environment. For example, to learn the number of archive
files in your system you might enter a command like:

echo /lib/*.a /usr/lib/*.a : wc -w

that first echoes all the files in /lib and /usr/lib that end in .3, then
pipes the results to the wc command, which counts their number.

A feature of the UNIX systemIC Language interface is the abil
ity to establish pipe connections between your process and a com
mand to be executed by the shell, or between two cooperating
processes. The first uses the popen(3S) subroutine that is part of
the standard I/O package; the second requires the system call
pipe(2).

popen is similar in concept to the system subroutine in that it
causes the shell to execute a command. The difference is that
once having invoked popen from your program, you have esta
blished an open line to a concurrently running process through a
stream. You can send characters or strings to this stream with
standard I/O subroutines just as you would to stdout or to a
named file. The connection remains open until your program
invokes the companion pclose subroutine. A common application
of this technique might be a pipe to a printer spooler. For exam
ple:

2-46 PROGRAMMER'S GUIDE UP-13689

#include <stdio.h>

main()
1

FILE *pptr;
char *outstring;

The UNIX System/Language Interface

if ((pptr = popen("lp","w")) != NULL)
1

for(;;)
1

/* Organize output */

(void)fprintf(pptr, "%s\n", outstring);

pclose(pptr);
1

Figure 2-13: Example of a popen pipe

Error Handling

Within your C programs you must determine the appropriate
level of checking for valid data and for acceptable return codes
from functions and subroutines. If you use any of the system calls
described in Section 2 of the Programmer's Reference Manual,
you have a way in which you can find out the probable cause of a

UP-13689 PROGRAMMING BASICS 2-47

The UNIX System/Language Interface

bad return value.

UNIX system calls that are not able to complete successfully
almost always return a value of -1 to your program. (If you look
through the system calls in Section 2, you will see that there are a
few calls for which no return value is defined, but they are the
exceptions.) In addition to the -1 that is returned to the program,
the unsuccessful system call places an integer in an externally
declared variable, errno. You can determine the value in errno if
your program contains the statement

#include <errno.h>

The value in errno is not cleared on successful calls, so your
program should check it only if the system call returned a -1. The
errors are described in intro(2) of the Programmer's Reference
Manual.

The subroutine perror(3C) can be used to print an error mes
sage (on stderr) based on the value of errno.

Signals and Interrupts
Signals and interrupts are two words for the same thing. Both

words refer to messages passed by the UNIX system to running
processes. Generally, the effect is to cause the process to stop
running. Some signals are generated if the process attempts to
'do something illegal; others can be initiated by a user against his
or her own processes, or by the super-user against any process.

There is a system call, kill, that you can include in your pro
gram to send signals to other processes running under your user
id. The format for the kill call is:

kill(pid, sig)

where pid is the process number against which the call is directed,
and sig is an integer from 1 to 19 that shows the intent of the
message. The name "kill" is something of an overstatement; not all
the messages have a "drop dead" meaning. Some of the available
signals are shown in Figure 2-14 as they are defined in
< sys/signal.h > .

2·48 PROGRAMMER'S GUIDE UP·13689

#define SIGHUP 1
#define SIGINT 2
#define SIGQUIT 3
#define SIGILL 4

#def i ne S I GTRAP 5

#define SIGIOT 6
#define SIGABRT 6

#define SIGEMT 7
#define SIGFPE 8
#define SIGKILL 9
#define SIGBUS 10
#define SIGSEGV 11
#define SIGSYS 12
#define SIGPIPE 13
#define SIGALRM 14
#define SIGTERM 15
#define SIGUSR1 16
#define SIGUSR2 17
#define SIGCLD 18
#define SIGPWR 19

/*#define SIGWIND 20
/*#define SIGPHONE 21

The UNIX System/Language Interface

/* hangup */
/* interrupt (rubout) */
/* quit (ASCII FS) */
/* ill ega 1 instruct i on (not reset
when caught)*/
/* trace trap (not reset when
caught) */
/* lOT instruction */
/* used by abort, replace SIGIOT
in the future */
/* EMT instruction */
/* floating point exception */
/* kill (cannot be caught/ignored)*/
/* bus error */
/* segmentation violation */
/* bad argument to system call */
/* write on pipe w/ no one to read*/
/* alarm clock */
/* software term. signal from kill*/
/* user defined signal 1 */
/* user defined signal 2 */
/* death of a child */
/* power-fail restart */
/*SIGWIND/SIGPHONE in UNIX/PC only*/
/ / window change */
/ / handset, line status change*/

#define SIGPOLL 22/* pollable event occurred */

#define NSIG

#define MAXSIG

23 /* The valid signal number is from
1 to NSIG-1 */

32 /* size of u_signal[], NSIG-1 <= */
/* MAXSIG. MAXSIG is larger than */
/* needed. In the future, we can */
/* add more signal numbers without*/

\ /* changing user.h */

~--------
Figure 2-14: Signal Numbers Defined in /usr/include/sys/signal.h

UP-13689 PROGRAMMING BASICS 2-49

The UNIX System/Language Interface

The signal (2) system call is designed to let you code methods
of dealing with incoming signals. You have a three-way choice.
You can a) accept whatever the default action is for the signal, b)
have your program ignore the signal, or c) write a function of your
own to deal with it.

2·50 PROGRAMMER'S GUIDE UP·13689

Analysis/Debugging
The UNIX system provides several commands designed to help

you discover the causes of problems in programs and to learn
about potential problems.

Sample Program
To illustrate how these commands are used and the type of

output they produce, we have constructed a sample program that
opens and reads an input file and performs one to three subrou
tines according to options specified on the command line. This
program does not do anything you couldn't do quite easily on
your pocket calculator, but it does serve to illustrate some points.
The source code is shown in Figure 2-15. The header file,
recdef.h, is shown at the end of the source code.

The output produced by the various analysis and debugging
tools illustrated in this section may vary slightly from one installa
tion to another. The Programmer's Reference Manual is a good
source of additional information about the contents of the reports.

UP-13689 PROGRAMMING BASICS 2-51

Analysis/Debugging

/* Main module -- restate.c */

#include <stdio.h>
#include "recdef.h"

#def i ne TRUE 1
#define FALSE 0

main(argc, argv)
int argc;
char *argv [] j
I

FILE *fopen(), *finj
void exit();
int getopt();
int oflag = FALSE;
int pflag = FALSEj
int rflag = FALSE;
int chj
struct rec firstj
extern int opterrj
extern float oppty(), pft(), rfe();

/* restate.c is continued on the next page */

Figure 2-15: Source Code for Sample Program (sheet 1 of 4)

2-52 PROGRAMMER'S GUIDE UP-13689

Analysis/Debugging

/* restate.c continued */

if (argc < 2)
I

(void) fprintf(stderr, "%s: Must specify
option\n",argv[O));

(void) fprintf(stderr, "Usage: %s -rpo\n",
argv[O)) ;

exit(2);

opterr = FALSE;
while «ch = getopt(argc,argv,"opr")) != EOF)
I

J

switch(ch)
I
case '0':

ofl ag = TRUE;
break;

case 'p':
pfl ag = TRUE;
break;

case 'r':
rfl ag = TRUE;
break;

default:
(void) fprintf(stderr, "Usage: %s -rpo\n",

argyl 0));
exit(2);

if «fin = fopen("info","r")) == NULL)
I
(void) fprintf(stderr, "%s: cannot open input file

%s\n",argv[O),"info");
exit(2);
J

Figure 2-15: Source Code for Sample Program (sheet 2 of 4)

UP-13689 PROGRAMMING BASICS 2-53

Analysis/Debugging

/* restate.c continued */

if (fscanf(fin,"%s%f%f%f%f%f%f",first.pname,&first.ppx,
&first.dp,&first.i,&first.c,&first.t,&first.spx) != 7)
1

(void) fprintf(stderr,"%s: cannot read first record
from %s\n",argv[O],"info");

exit(2);

printf("Property: %s\n",first.pname);

if (ofl ag)
pr i ntf (" Opportun i ty Cost: $%H5. 2f\n",

oppty(&first»;

f f (pfl ag)
pr intf (" Ant i c ipated Prof i t (loss): $%H7 .2f\n",

pft(&first»;

if(rflag)
pr i nt f (" Return on Funds Emp 1 oyed: %H3. 2f%%\n" ,

rfe(&first»;

/* End of Main Module -- restate.c */

/* Opportunity Cost -- oppty.c */
Hinclude "recdef.h"

float
opPty(ps)
struct rec *ps;
I

return(ps->i/12 * ps->t * ps->dp);

Figure 2-15: Source Code for Sample Program (sheet 3 of 4)

2-54 PROGRAMMER'S GUIDE UP-13689

/* Prof i t - - pft.c * /

Hinclude "recdef.h"

float
pft(ps)
struct rec *ps;
I

return(ps->spx - ps->ppx + ps->c);

Analysis/Debugging

/* Return on Funds Employed -- rte.c */

Hinclude "recdef.h"

float
rfe(ps)
struct rec *'ps;
1

return(100 * (ps->spx - ps->c) / ps->spx);

/* Header F i 1 e - - recdef.h *' /

struct rec 1 /* To hold input */
char pname[25];
fl oat ppx;
float dp;
float i;
float c;
float t;
float spx;

Figure 2-15: Source Code for Sample Program (sheet 4 of 4)

UP-13689 PROGRAM MING BASICS 2-55

Analysis/Debugging

cflow

cflow produces a chart of the external references in C, yacc,
lex, and assembly language files. Using the modules of our sam
ple program, the command

cflow restate.c oppty.c pft.c rfe.c

produces the output shown in Figure 2-16.

1 main: int(), <restate.c 11>
2 fprintf: <>
3 exit: <>
4 getopt: <>
5 fopen: <>
6 fscanf: <>
7 printf: <>
8 oppty: float(), <oppty.c 7>
9 pft: float(), <pft.c 7>
10 rfe: float(), <rfe.c 8>

Figure 2-16: cflow Output, No Options

2-56 PROGRAMMER'S GUIDE UP-13689

Analysis/Debugging

The -r option looks at the caller:callee relationship from the
other side. It produces the output shown in Figure 2-17.

1 exit: <>
2 main <>
3 fopen: <>
4 main : 2
5 fprintf: <>
6 main : 2
7 fscanf: <>
8 main : 2
9 getopt: <>
10 main : 2
11 main: i nt (), <restate.c 11>
12 oppty: float(), <oppty.c 7>
13 main : 2
14 pft: float(), <pft.c 7>
15 main : 2
16 printf: <>
17 main : 2
18 rfe: float(), <rfe.c 8>
19 main : 2

Figure 2-17: cflow Output, Using -r Option

UP-13689 PROGRAMMING BASICS 2-57

Analysis/Debugging

The -ix option causes external and static data symbols to be
included. Our sample program has only one such symbol, opterr.
The output is shown in Figure 2-18.

1 main: int(), <restate.c 11>
2 fprintf: <>
3 exit: <>
4 opterr: <>
5 getopt: <>
6 fopen: <>
7 fscanf: <>
8 printf: <>
9 oppty: float(), <oppty.c 7>
10 pft: float(), <pft.c 7>
11 rfe: float(), <rfe.c 8>

Figure 2-18: cflow Output, Using -ix Option

2-58 PROGRAMMER'S GUIDE UP-13689

Analysis/Debugging

Combining the ·r and the ·ix options produces the output
shown in Figure 2-19.

1 ex it: <>
2 main <>
3 fopen: <>
4 main : 2
5 fprintf: <>
6 main : 2
7 fscanf: <>
8 main : 2
9 getopt: <>
10 main : 2
11 main: int(), <restate.c 11>
12 oppty: fl oat (), <oppty. c 7>
13 main : 2
14 opterr: <>
15 main : 2
16 pft: fl oat (), <pft. c 7>
17 main : 2
18 pr i nt f: <>
19 main : 2
20 rfe: float(), <rfe.c 8>
21 main : 2

Figure 2-19: cflow Output. Using ·r and ·ix Options

ctrace

ctrace lets you follow the execution of a C program statement
by statement. ctrace takes a .C file as input and inserts state
ments in the source code to print out variables as each program
statement is executed. You must direct the output of this process
to a temporary .c file. The temporary file is then used as input to
cc. When the resulting a.out file is executed it produces output
that can tell you a lot about what is going on in your program.

Up·13689 PROGRAM MING BASICS 2·59

Analysis/Debugging

Options give you the ability to limit the number of times
through loops. You can also include functions in your source file
that turn the trace off and on so you can limit the output to por
tions of the program that are of particular interest.

ctrace accepts only one source code file as input. To use our
sample program to illustrate, it is necessary to execute the follow
ing four commands:

ctrace restate.c > ct.maln.c
ctrace oppty.c > ct.op.c
ctrace pft.c > ct.p.c
ctrace rfe.c > ct.r.c

The names of the output files are completely arbitrary. Use
any names that are convenient for you. The names must end in
.c, since the files are used as input to the C compilation system.

cc -0 ct.run ct.main.c ct.op.c ct.p.c ct.r.c

Now the command

ct.run -opr

produces the output shown in Figure 2-20. The command above
will cause the output to be directed to your terminal (stdout). It is
probably a good idea to direct it to a file or to a printer so you can
refer to it.

2-60 PROGRAMMER'S GUIDE UP-13689

8 main(argc, argv)
23 if (argc < 2)

/* argc == 2 */
30 opterr = FALSE;

/* FALSE == 0 */
/* opterr == 0 */

Analysis/Debugging

31 wh i1 e « ch = getopt (argc, argv, "opr"» ! = EOF)
/* argc == 2 */
/* argv == 15729316 */
/* ch == 111 or '0' or "t" */

32 1
33 switch(ch)

/* ch == 111 or '0' or Itt" */
35 case '0':
36 oflag = TRUE;

/* TRUE == 1 or "h" */
/* oflag == 1 or "hIt */

37 break;
48
31 while «ch = getopt(argc,argv,"opr"» != EOF)

/* argc == 2 */
/* argv == 15729316 */
/* ch == 112 9r 'p' */

32 1
33 switch(ch)

/* ch == 112 or 'p' */
38 case 'p':
39 pflag = TRUE;

/* TRUE == 1 or "hIt */
/* pflag == 1 or "h" */

40 break;
48

Figure 2-20: ctrace Output (sheet 1 of 3)

UP-13689 PROGRAMMING BASICS 2-61

Analysis/Debugging

31 while ((ch = getopt(argc,argv,"opr"» != EOF)
1* argc == 2 *1
1* argv == 15729316 *1
1* ch == 114 or 'r' *1

32 I
33 switch(ch)

1* ch == 114 or 'r' *1
41 case'r':
42 rf1ag = TRUE;

1* TRUE == 1 or "h" *1
1* rf1ag == 1 or "h" *1

43 break;
48
31 while ((ch = getopt(argc,argv,"opr"» != EOF)

1* argc == 2 *1
1* argv == 15729316 *1
1* ch == -1 *1

49 if ((fin = fopen("info","r"» == NULL)
1* fin == 140200 *1

54 if (fscanf(fin,"%s%f%f%f%f%f%f",first.pname,&first.ppx,
&first.dp,&first.i,&first.c,&first.t,&first.spx) != 7)
1* fin == 140200 *1
1* first.pname == 15729528 *1

61 printf("Property: %sO,first.pname);
1* first.pname == 15729528 or "Linden_Place" *1

Property: Linden_Place

63 if (ofl ag)
1* of1ag == 1 or "h" *1

64 printf(" Opportunity Cost: $%H5.2fO,oppty(&first»;
5 oppty(ps)
8 return (ps- > i 112 * ps- >t * ps- >dp) ;

1* ps->i == 1069044203 *1
1* ps->t == 1076494336 *1
1* ps->dp == 1088765312 *1 Opportunity Cost: $4476.87

Figure 2-20: ctrace Output (sheet 2 of 3)

2-62 PROGRAMMER'S GUIDE UP-13689

Analysis/Debugging

66 if(pflag)
/* pflag == 1 or "h" */

67 pr i nt f (" Ant i c i pated Prof i t (loss) :
$%H7.2fO,pft(&first));

5 pft(ps)
8 return(ps->spx - ps->ppx + ps->c);

/* ps->spx == 1091649040 */
/* ps->ppx == 1091178464 */
/* ps->c == 1087409536 */ Anticipated Profit(loss):

$85950.00

69 if(rflag)
/* rflag == 1 or "h" */

70 pr i ntf (" Return on Funds Emp 1 oyed:
%H3.2f%%0,rfe(&first));

6 rfe(ps)
9 return(100 * (ps->spx - ps->c) / ps->spx);

/* ps->spx == 1091649040 */
/* ps->c == 1087409536 */ Return on Funds

Employed: 94.00%

/* return */

Figure 2-20: ctrace Output (sheet 3 of 3)

Using a program that runs successfully is not the optimal way
to demonstrate ctrace. It would be more helpful to have an error
in the operation that could be detected by ctrace. It would seem
that this utility might be most useful in cases where the program
runs to completion, but the output is not as expected.

UP·13689 PROGRAMMING BASICS 2·63

Analysis/Debugging

cxref

cxref analyzes a group of C source code files and builds a
cross-reference table of the automatic, static, and global symbols
in each file.

The command

cxref -c -0 cx.op restate.c oppty.c pft.c rfe.c

produces the output shown in Figure 2-21 in a file named, in this
case, cx.op. The -c option causes the reports for the four .c files
to be combined in one cross-reference file.

2-64 PROGRAMMER'S GUIDE UP-13689

Analysis/Debugging

restate.c:

oppty.c:

pft.c:

rfe.c:

SYMBOL FILE FUNCTION LINE

BUFSIZ /usr/include/stdio.h *9
EOF /usr/include/stdio.h 49 *50

restate.c 31
FALSE restate.c *6 15 16 17 30
FILE /usr/include/stdio.h *29 73 74

restate.c main 12
L_ctermid /usr/include/stdio.h *80
L_cuserid /usr/include/stdio.h *81
L_tmpnam /usr/include/stdio.h *83
NULL /usr/include/stdio.h 46 *47

restate.c 49
P_tmpdir /usr/include/stdio.h *82
TRUE restate.c *5 36 39 42

IOEOF /usr/include/stdio.h *41
JOERR /usr/include/stdio.h *42
IOFBF /usr/include/stdio.h *36
IOLBF /usr/include/stdio.h *43
IOMYBUF /usr/include/stdio.h *40
IONBF /usr/include/stdio.h *39
10READ /usr/include/stdio.h *37
IORW /usr/include/stdio.h *44
IOWRT /usr/include/stdio.h *38

- NFILE /usr/include/stdio.h 2 *3 73
_SBFSIZ /usr/include/stdio.h *16

Figure 2-21: cxref Output, Using -c Option (sheet 1 of 5)

UP-13689 PROGRAMMING BASICS 2-65

Analysis/Debugging

SYMBOL FILE FUNCTION LINE
-base /usr/include/stdio.h *26
_bufend()

/usr/include/stdio.h *57
- bufendtab /usr/include/stdio.h *78
_bufsiz()

/usr/include/stdfo.h *58

-cnt /usr/include/stdio.h *20
- fi le /usr/include/stdio.h *28
_flag /usr/include/stdio.h *27

iob /usr/include/stdio.h *73
restate.c main 25 26 45 51 57

_ptr /usr/include/stdio.h *21
argc restate.c 8

restate.c main *9 23 31
argv restate.c 8

restate.c main *10 25 26 31 45
51 57

c ./recdef.h *6
pft.c pft 8
restate.c main 55
rfe.c rfe 9

ch restate.c main *18 31 33
clearerr()

/usr/include/stdio.h *67
ctermid()

/usr/include/stdio.h *77
cuserid()

/usr/include/stdfo.h *77
dp ./recdef.h - - *4

oppty.c oppty 8
restate.c main 55

exit()
restate.c main *13 27 46 52 58

fdopen()
/usr/include/stdio.h *74

Figure 2-21: cxref Output, Using -c Option (sheet 2 of 5)

2-66 PROGRAMMER'S GUIDE UP-13689

Analysis/Debugging

SYMBOL FILE FUNCTION LINE
feof()

/usr/include/stdio.h *68
ferror()

/usr/include/stdio.h *69
fgets()

/usr/include/stdio.h *77
f i 1 enD ()

/usr/include/stdio.h *70
fin restate.c main *12 49 54
first restate.c main *19 54 55 61 64

67 70
fopen()

/usr/include/stdio.h *74
restate.c main 12 49

fprintf restate.c main 25 26 45 51 57
freopen()

/usr/include/stdio.h *74
fscanf restate.c main 54
ftell()

/usr/include/stdio.h *75
getc()

/usr/include/stdio.h *61
getchar()

/usr/include/stdio.h *65
getopt()

restate.c main *14 31
gets()

/usr/include/stdio.h *77
./recdef.h *5
oppty.c oppty 8
restate.c main 55

lint /usr/include/stdio.h 60
maine)

restate.c *8

Figure 2-21: cxref Output, Using -c Option (sheet 3 of 5)

UP-13689 PROGRAM MING BASICS 2-67

Analysis/Debugging

SYMBOL FILE FUNCTION LINE
of1ag restate.c main *15 36 63
oppty ()

oppty.c *5
restate.c main *21 64

opterr restate.c main *20 30
P /usr/inc1ude/stdio.h *57 *58 *61 62

*62 63 64 67 *67 68 *68 69 *69 70 *70
pdp11 /usr/inc1ude/stdio.h 11
pf1ag restate.c main *16 39 66
pft()

pft.c *5
restate.c main *21 67

pname ./recdef.h *2
restate.c main 54 61

popen()
/usr/inc1ude/stdio.h *74

ppx ./recdef.h *3
pft.c pft 8
restate.c main 54

printf restate.c main 61 64 67 70
ps oppty.c 5

oppty.c oppty *6 8
pft.c 5
pft.c pft *6 8
rfe.c 6
rfe.c rfe *7 9

putc()
/usr/inc1ude/stdio.h *62

putchar()
/usr/include/stdio.h *66

rec ./recdef.h *1
oppty.c oppty 6
pft.c pft 6
restate.c main 19
rfe.c rfe 7

Figure 2-21: cxref Output, Using -c Option (sheet 4 of 5)

2-68 PROGRAMMER'S GUIDE UP-13689

Analysis/Debugging

SYMBOL FILE FUNCTION LINE
rewind()

/usr/include/stdio.h *76
rfe()

restate.c main *21 70
rfe.c *6

rflag restate.c main *17 42 69
setbuf()

/usr/include/stdio.h *76
spx ./recdef.h *8

pft.c pft 8
restate.c main 55
rfe.c rfe 9

stderr /usr/include/stdio.h *55
restate.c 25 26 45 51 57

stdin /usr/include/stdio.h *53
stdout /usr/include/stdio.h *54
t ./recdef.h *7

oppty.c oppty 8
restate.c main 55

tempnam()
/usr/include/stdio.h *77

tmpfil e()
/usr/include/stdio.h *74

tmpnam()
/usr/include/stdio.h *77

u370 /usr/include/stdio.h 5
u3b /usr/include/stdio.h 8 19
u3b5 /usr/include/stdio.h 8 19
vax /usr/include/stdio.h 8 19
x /usr/include/stdio.h *62 63 64 66 *66

Figure 2-21: cxref Output, Using -c Option (sheet 5 of 5)

UP-13689 PROGRAMMING BASICS 2-69

Analysis/Debugging

lint

lint looks for features in a C program that are apt to cause
execution errors, that are wasteful of resources, or that create
problems of portability.

The command

lint restate.c oppty.c pft.c rfe.c

produces the output shown in Figure 2-22.

restate.c:

restate.c
==============
(71) warning: main() returns random value to

invocation environment
oppty.c:
pft.c:
rfe.c:

==============
function returns value which is always ignored

printf

Figure 2-22: lint Output

lint has options that will produce additional information.
Check the User's Reference Manual. The error messages give you
the line numbers of some items you may want to review.

2·70 PROGRAMMER'S GUIDE UP·13689

Analysis/Debugging

prof

prof produces a report on the amount of execution time spent
in various portions of your program and the number of times each
function is called. The program must be compiled with the -p
option. When a program that was compiled with that option is
run, a file called mon.out is produced. mon.out and a.out (or
whatever name identifies your executable file) are input to the prof
command.

The sequence of steps needed to produce a profile report for
our sample program is as follows:

Step 1: Compile the programs with the -p option:

cc -p restate.c oppty.c pft.c rfe.c

Step 2: Run the program to produce a file mon.out.

a.out -opr

Step 3: Execute the prof command:

prof a.out

The example of the output of this last step is shown in Figure
2-23. The figures may vary from one run to another. You will also
notice that programs of very small size, like that used in the exam
ple, produce statistics that are not overly helpful.

UP-13689 PROGRAMMING BASICS 2-71

Analysis/Debugging

%Time Seconds Cumsecs #Calls msec/call Name
50.0 0.03 0.03 3 8. fcvt
20.0 0.01 0.04 6 2. atof
20.0 0.01 0.05 5 2. write
10.0 0.00 0.05 5. fwrite
0.0 0.00 0.05 O. monitor
0.0 0.00 0.05 O. creat
0.0 0.00 0.05 4 O. printf
0.0 0.00 0.05 2 O. profi 1
0.0 0.00 0.05 O. fscanf
0.0 0.00 0.05 O. doscan -
0.0 0.00 0.05 O. oppty
0.0 0.00 0.05 O. -filbuf
0.0 0.00 0.05 3 O. strchr
0.0 0.00 0.05 1 O. strcmp
0.0 0.00 0.05 O. 'ldexp
0.0 0.00 0.05 O. getenv
0.0 0.00 0.05 O. fopen
0.0 0.00 0.05 O. _findiop
0.0 0.00 0.05 O. open
0.0 0.00 0.05 1 O. main
0.0 0.00 0.05 1 O. read
0.0 0.00 0.05 1 O. strcpy
0.0 0.00 0.05 14 0 ungetc
0.0 0.00 0.05 4 O. _doprnt
0.0 0.00 0.05 O. pft
0.0 0.00 0.05 1 O. rfe
0.0 0.00 0.05 4 O. - xflsbuf
0.0 0.00 0.05 1 O. _wrtchk
0.0 0.00 0.05 2 O. - findbuf
0.0 0.00 0.05 2 O. isatty
0.0 0.00 0.05 2 O. ioctl
0.0 0.00 0.05 1 O. malloc
0.0 0.00 0.05 O. memchr
0.0 0.00 0.05 O. memcpy
0.0 0.00 0.05 2 O. sbrk
0.0 0.00 0.05 4 O. getopt

Figure 2-23: prof Output

2-72 PROGRAMMER'S GUIDE UP·13689

Analysis/Debugging

size

size produces information on the number of bytes occupied
by the three sections (text, data, and bss) of a common object file
when the program is brought into main memory to be run. Here
are the results of one invocation of the size command with our
object file as an argument.

11832 + 3872 + 2240 = 17944

Don't confuse this number with the number of characters in
the object file that appears when you do an Is -I command. That
figure includes the symbol table and other header information that
is not used at run time.

strip

strip removes the symbol and line number information from a
common object file. When you issue this command the number of
characters shown by the Is -I command approaches the figure
shown by the size command, but still includes some header infor
mation that is not counted as part of the .text, .data, or .bss sec
tion. After the strip command has been executed, it is no longer
possible to use the file with the sdb command.

sdb

sdb stands for Symbolic Debugger, which means you can use
the symbolic names in your program to pinpoint where a problem
has occurred. You can use sdb to debug C, FORTRAN 77, or
PASCAL programs. There are two basic ways to use sdb: by run
ning your program under control of sdb, or by using sdb to
rummage through a core image file left by a program that failed.
The first way lets you see what the program is doing up to the
point at which it fails (or to skip around the failure point and
proceed with the run). The second method lets you check the
status at the moment of failure, which mayor may not disclose the
reason the program failed.

UP-13689 PROGRAMMING BASICS 2-73

Analysis/Debugging

Chapter 15 contains a tutorial on sdb that describes the
interactive commands you can use to work your way through your
program. For the time being we want to tell you just a couple of
key things you need to do when using it.

1. Compile your program(s) with the -g option, which causes
additional information to be generated for use by sdb.

2. Run your program under sdb with the command:

sdb myprog - srcdir

where myprog is the name of your executable file (a.out is
the default), and srcdir is an optional list of the directories
where source code for your modules may be found. The
dash between the two arguments keeps sdb from looking
for a core image file.

2-74 PROGRAMMER'S GUIDE UP-13689

Program Organizing Utilities
The following three utilities are helpful in keeping your pro

gramming work organized effectively.

The make Command
When you have a program that is made up of more than one

module of code you begin to run into problems of keeping track of
which modules are up to date and which need to be recompiled
when changes are made in another module. The make command
is used to ensure that dependencies between modules are
recorded so that changes in one module results in the re
compilation of dependent programs. Even control of a program
as simple as the one shown in Figure 2-15 is made easier through
the use of make.

The make utility requires a description file that you create with
an editor. The description file (also referred to by its default
name: makefile) contains the information used by make to keep a
target file current. The target file is typically an executable pro
gram. A description file contains three types of information:

dependency information tells the make utility the relationship
between the modules that comprise
the target program.

executable commands needed to generate the target pro
gram. make uses the dependency
information to determine which exe
cutable commands should be passed
to the shell for execution.

macro definitions

UP·13689

provide a shorthand notation within
the description file to make mainte
nance easier. Macro definitions can
be overridden by information from the
command line when the make com-
mand is entered.

PROGRAMMING BASICS 2·75

Program Organizing Utilities

The make command works by checking the "Iast changed"
time of the modules named in the description file. When make
finds a component that has been changed more recently than
modules that depend on it, the specified commands (usually com
pilations) are passed to the shell for execution.

The make command takes three kinds of arguments: options,
macro definitions, and target filenames. If no description filename
is given as an option on the command line, make searches the
current directory for a file named makefile or Makefile. Figure
2-24 shows a makefile for our sample program.

• OBJECTS = restate.o oppty.o pft.o rfe.o
all: restate
restate: S(OBJECTS)

S(CC) S(CFLAGS) $(LDFLAGS) S(OBJECTS) -0 restate

S(OBJECTS): ./recdef.h

clean:
rm -f S(OBJECTS)

clobber: clean
rm -f restate

Figure 2-24: make Description File

The following things are worth noticing in this description file:

• It identifies the target, restate, as being dependent on the
four object modules. Each of the object modules in turn is
defined as being dependent on the header file, recdef.h,
and by default, on its corresponding source file.

2-76 PROGRAMMER'S GUIDE UP-13689

Program Organizing Utilities

• A macro, OBJECTS, is defined as a convenient shorthand
for referring to all of the component modules.

Whenever testing or debugging results in a change to one of
the components of restate, for example, a command such as the
following should be entered:

make CFLAGS = -g restate

This has been a very brief overview of the make utility. There
is more on make in Chapter 3, and a detailed description of make
can be found in Chapter 13.

The Archive

The most common use of an archive file, although not the only
one, is to hold object modules that make up a library. The library
can be named on the link editor command line (or with a link edi
tor option on the cc command line). This causes the link editor to
search the symbol table of the archive file when attempting to
resolve references.

The ar command is used to create an archive file, to manipu
late its contents and to maintain its symbol table. The structure of
the ar command is a little different from the normal UNIX system
arrangement of command line options. When you enter the ar
command you include a one-character key from the set drqtpmx
that defines the type of action you intend. The key may be com
bined with one or more additional characters from the set vuaibcls
that modify the way the requested operation is performed. The
makeup of the command line is

ar -key [posname] afile [name] ...

where posname is the name of a member of the archive and may
be used with some optional key characters to make sure that the
files in your archive are in a particular order. The afile argument is
the name of your archive file. By convention, the suffix .a is used
to indicate the named file is an archive file. (Iibc.a, for example, is
the archive file that contains many of the object files of the stan
dard C subroutines.) One or more names may be furnished.
These identify files that are subjected to the action specified in the

UP-13689 PROGRAMMING BASICS 2-77

Program Organizing Utilities

key.

We can make an archive file to contain the modules used in
our sample program, restate. The command to do this is

ar -rv rste.a restate.o oppty.o pft.o rfe.o

If these are the only .0 files in the current directory, you can
use shell metacharacters as follows:

ar -rv rste.a *.0

Either command will produce this feedback:

a - restate.o
a - oppty.o
a - pft.o
a - rfe.o
ar: creating rste.a

The nm command is used to get a variety of information from
the symbol table of common object files. The object files can be,
but don't have to be, in an archive file. Figure 2-25 shows the out
put of this command when executed with the -f (for full) option on
the archive we just created. The object files were compiled with
the -g option.

2-78 PROGRAMMER'S GUIDE UP-13689

Program Organizing Utilities

Symbols from rste.a[restate.o]

Name Value Class Type Size Line Section

.Ofake strtag struct 16
restate.c file
cnt 0 strmem int -

_ptr 4 strmem *Uchar
base 8 strmem *Uchar -

_flag 12 strmem char
file 13 strmem char

.eos endstr 16
rec strtag struct 52
pname 0 strmem char[25] 25
ppx 28 strmem float
dp 32 strmem float
i 36 strmem float
c 40 strmem float
t 44 strmem float
spx 48 strmem float
.eos endstr 52
main 0 extern int() 520 .text
.bf 10 fcn 11 .text
argc 0 argm't int
argv 4 argm't **char
fin 0 auto *struct-.Ofake 16
of lag 4 auto int
pflag 8 auto int
rflag 12 auto int
ch 16 auto int

Figure 2-25: nm Output, with -f Option (sheet 1 of 5)

UP-13689 PROGRAMMING BASICS 2·79

Program Organizing Utilities

Symbols from rste.a[restate.o]

Name Value Class Type Size Line Section

first 20 auto struct-rec 52
.ef 518 fcn 61 .text
FILE typdef struct-.Ofake 16
.text 0 static 31 39 .text
.data 520 static 4 .data
.bss 824 static .bss
iob 0 extern -

fprintf 0 extern
exit 0 extern
opterr 0 extern
getopt 0 extern
fopen 0 extern
fscanf 0 extern
printf 0 extern
oppty 0 extern
pft 0 extern
rfe 0 extern

Figure 2-25: nm Output, with -f Option (sheet 2 of 5)

2-80 PROGRAMMER'S GUIDE UP-13689

Program Organizing Utilities

Symbols from rste.a[oppty.o]

Name Value Class Type Size Line Section

oppty.c file
rec strtag struct 52
pname 0 strmem char[25] 25
ppx 28 strmem float
dp 32 strmem float
i 36 strmem float
c 40 strmem float
t 44 strmem float
spx 48 strmem float
.eos endstr 52
oppty 0 extern float() 64 .text
.bf 10 fcn 7 .text
ps 0 argm't *struct-rec 52
.ef 62 fcn 3 .text
.text 0 static 4 1 .text
.data 64 static .data
.bss 72 static .bss

Figure 2-25: nm Output, with -f Option (sheet 3 of 5)

UP-13689 PROGRAM MING BASICS 2-81

Program Organizing Utilities

Symbols from rste.a[pft.o]

Name Value Class Type Size Line Section

pft.c file
rec strtag struct 52
pname 0 strmem char[25] 25
ppx 28 strmem float
dp 32 strmem float
i 36 strmem float
c 40 strmem float
t 44 strmem float
spx 48 strmem float
.. eos endstr 52
pft 0 extern float() 60 .text
.. bf 10 fcn 7 .text
ps 0 argm't *struct-rec 52
.. ef 58 fcn 3 .text
.. text 0 static 4 .text
.. data 60 static .data
.. bss 60 static .bss

Figure 2-25: nm Output, with -f Option (sheet 4 of 5)

2-82 PROGRAMMER'S GUIDE UP-13689

Program Organizing Utilities

Symbols from rste.a[rfe.o]

Name Value Class Type Size Line Section

rfe.c file
rec strtag struct 52
pname 0 strmem char[25] 25
ppx 28 strmem float
dp 32 strmem float

36 strmem float
c 40 strmem float
t 44 strmem float
spx 48 strmem float
.eos endstr 52
rfe 0 extern floatO 68 .text
.bf 10 fen 8 .text
ps 0 argm't *struet-ree 52
.ef 64 fcn 3 .text
.text 0 static 4 1 .text
.data 68 static .data
.bss 76 static .bss

Figure 2-25: nm Output. with -f Option (sheet 5 of 5)

For nm to work on an archive file all of the contents of the
archive have to be object modules. If you have stored other
things in the archive. you will get the message:

nm: rste.a bad magic

when you try to execute the command.

UP·13689 PROGRAMMING BASICS 2·83

Program Organizing Utilities

Use of sees by Single-User Programmers

The UNIX system Source Code Control System (SeeS) is a set
of programs designed to keep track of different versions of pro
grams. When a program has been placed under control of sees.
only a single copy of anyone version of the code can be retrieved
for editing at a given time. When program code is changed and
the program returned to sees. only the changes are recorded.
Each version of the code is identified by its SID. or sees IDentify
ing number. By specifying the SID when the code is extracted
from the sees file. it is possible to return to an earlier version. If
an early version is extracted with the intent of editing it and return
ing it to sees. a new branch of the development tree is started.
The set of programs that make up sees appear as UNIX system
commands. The commands are:

admin
get
delta
prs
rmdel
cdc
what
sccsdiff
comb
val

It is most common to think of sees as a tool for project con
trol of large programming projects. It is. however. entirely possible
for any individual user of the UNIX system to set up a private
sees system. Chapter 14 is an sees user's guide.

2·84 PROGRAMMER'S GUIDE UP·13689

Chapter 3: Application Program
ming

Introduction

Application Programming

Numbers
Portability
Documentation
Project Management

Language Selection

Influences
Special Purpose Languages

What awk Is Like
How awk Is Used
Where to Find More Information
What lex and yacc Are Like
How lex Is Used
Where to Find More Information
How yacc Is Used
Where to Find More Information

Advanced Programming Tools

Memory Management
File and Record Locking

How File and Record Locking Works

lockf

Where to Find More Information
Interprocess Communications

IPC get Calls
IPC ctl Calls

3-1

3-2

3-2

3-2

3-3

3-4

3-5

3-5

3-6

3-6

3-7

3-7

3-7

3-8

3-10

3-10

3-12

3-13

3-13

3-14

3-15

3-17

3-17

3-18

3-19

3-19

UP-13689 TABLE OF CONTENTS

Table of Contents

IPC op Calls

Where to Find More Information

Programming Terminal Screens

curses

Where to Find More Information

Programming Support Tools

Link Edit Command Language
Where to Find More Information

Common Object File Format
Where to Find More Information

Libraries
The Object File Library

Common Object File Interface Macros (Idfcn.h)

The Math Library

Shared Libraries
Where to Find More Information

Symbolic Debugger
Where to Find More Information

lint as a Portability Tool
Where to Find More Information

Project Control Tools

make

Where to Find More Information

SCCS
Where to Find More Information

liber. A Library System

ii PROGRAMMER'S GUIDE

3-19

3-19

3-20

3-20

3-21

3-22

3-22

3-23

3-23

3-24

3-24

3-24

3-28

3-29

3-32

3-33

3-33

3-34

3-34

3-35

3-36

3-36

3-37

3-37

3-39

3-40

UP-13689

Introduction
This chapter deals with programming where the objective is to

produce sets of programs (applications) that will run on a UNIX
system computer.

The chapter begins with a discussion of how the ground rules
change as you move up the scale from writing programs that are
essentially for your own private use (we have called this single-user
programming), to working as a member of a programming team
developing an application that is to be turned over to others to
use.

There is a section on how the criteria for selecting appropriate
programming languages may be influenced by the requirements
of the application.

The next three sections of the chapter deal with a number of
loosely-related topics that are of importance to programmers work
ing in the application development environment. Most of these
mirror topics that were discussed in Chapter 2, Programming
Basics, but here we try to point out aspects of the subject that are
particularly pertinent to application programming. They are
covered under the following headings:

Advanced Programming deals with such topics as File and
Record Locking, Interprocess Com
munication, and programming terminal
screens.

Support Tools

Project Control Tools

covers the Common Object File For
mat, link editor directives, shared
libraries, SOB, and lint.

includes some discussion of make and
SCCS.

The chapter concludes with a description of a sample applica
tion called liber that uses several of the components described in
earlier portions of the chapter.

UP·13689 APPLICATION PROGRAMMING 3·1

Application Programming
The characteristics of the application programming environ

ment that make it different from single-user programming have at
their base the need for interaction and for sharing of information.

Numbers

Perhaps the most obvious difference between application pro
gramming and single-user programming is in the quantities of the
components. Not only are applications generally developed by
teams of programmers, but the number of separate modules of
code can grow into the hundreds on even a fairly simple applica
tion.

When more than one programmer works on a project, there is
a need to share such information as:

• the operation of each function

• the number, identity and type of arguments expected by a
function

• if pointers are passed to a function, are the objects being
pointed to modified by the called function, and what is the
lifetime of the pointed-to object

• the data type returned by a function

In an application, there is an odds-on possibility that the same
function can be used in many different programs, by many dif
ferent programmers. The object code needs to be kept in a library
accessible to anyone on the project who needs it.

Porta bi lity

When you are working on a program to be used on a single
model of a computer, your concerns about portability are minimal.
In application development, on the other hand, a desirable objec
tive often is to produce code that will run on many different UNIX
system computers. Some of the things that affect portability will
be touched on later in this chapter.

3-2 PROGRAMMER'S GUIDE UP-13689

Application Programming

Documentation

A single-user program has modest needs for documentation.
There should be enough to remind the program's creator how to
use it, and what the intent was in portions of the code.

On an application development project there is a significant
need for two types of internal documentation:

• comments throughout the source code that enable succes
sor programmers to understand easily what is happening in
the code. Applications can be expected to have a useful life
of 5 or more years, and frequently need to be modified dur
ing that time. It is not realistic to expect that the same per
son who wrote the program will always be available to make
modifications. Even if that does happen the comments will
make the maintenance job a lot easier.

• hard-copy descriptions of functions should be available to all
members of an application development team. Without
them it is difficult to keep track of available modules, which
can result in the same function being written over again.

Unless end-users have clear I readily-available instructions in
how to install and use an application they either will not do it at all
(if that is an option) I or do it improperly.

The microcomputer software industry has become ever more
keenly aware of the importance of good end-user documentation.
There are cases on record where the success of a software pack
age has been attributed in large part to the fact that it had excep
tionally good documentation. There are also cases where a pretty
good piece of software was not widely used due to the inaccessi
bility of its manuals. There appears to be no truth to the rumor
that in one or two cases, end-users have thrown the software away
and just read the manual.

UP-13689 APPLICATION PROGRAM MING 3-3

Application Programming

Project Management

Without effective project management, an application develop
ment project is in trouble. This subject will not be dealt with in this
guide, except to mention the following three things that are vital
functions of project management:

• tracking dependencies between modules of code

• dealing with change requests in a controlled way

• seeing that milestone dates are met

3·4 PROGRAMMER'S GUIDE UP·13689

Language Selection
In this section we talk about some of the considerations that

influence the selection of programming languages, and describe
two of the special purpose languages that are part of the UNIX
system environment.

Influences
In single-user programming the choice of language is often a

matter of personal preference; a language is chosen because it is
the one the programmer feels most comfortable with.

An additional set of considerations comes into play when mak
ing the same decision for an application development project.

Is there an existing standard within the organization that
should be observed?

A firm may decide to emphasize one language because
a good supply of programmers is available who are
familiar with it.

Does one language have better facilities for handling the
particular algorithm?

One would like to see all language selection based on
such objective criteria, but it is often necessary to bal
ance this against the skills of the organization.

Is there an inherent compatibility between the language
and the UNIX operating system?

This is sometimes the impetus behind selecting C for
programs destined for a UNIX system machine.

Are there existing tools that can be used?

UP·13689

If parsing of input lines is an important phase of the
application, perhaps a parser generator such as yacc
should be employed to develop what the application

APPLICATION PROGRAMMING 3·5

Language Selection

needs.
Does the application integrate other software into the
whole package?

If, for example, a package is to be built around an exist
ing data base management system, there may be con
straints on the variety of languages the data base
management system can accommodate.

Special Purpose Languages

The UNIX system contains a number of tools that can be
included in the category of special purpose languages. Three that
are especially interesting are awk, lex, and yacc.

What awk Is Like
The awk utility scans an ASCII input file record by record,

looking for matches to specific patterns. When a match is found,
an action is taken. Patterns and their accompanying actions are
contained in a specification file referred to as the program. The
program can be made up of a number of statements. However,
since each statement has the potential for causing a complex
action, most awk programs consist of only a few. The set of state
ments may include definitions of the pattern that separates one
record from another (a newline character, for example), and what
separates one field of a record from the next (white space, for
example). It may also include actions to be performed before the
first record of the input file is read, and other actions to be per
formed after the final record has been read. All statements in
between are evaluated in order for each record in the input file.
To paraphrase the action of a simple awk program, it would go
something like this:

Look through the input file.
Every time you see this specific pattern, do this action.

A more complex awk program might be paraphrased like this:

3-6 PROGRAMMER'S GUIDE UP-13689

Language Selection

First do some initialization.
Then, look through the input file.
Every time you see this specific pattern, do this action.
Every time you see this other pattern, do another action.
After all the records have been read, do these final things.

The directions for finding the patterns and for describing the
actions can get pretty complicated, but the essential idea is as
simple as the two sets of statements above.

One of the strong points of awk is that once you are familiar
with the language syntax, programs can be written very quickly.
They don't always run very fast, however, so they are seldom
appropriate if you want to run the same program repeatedly on a
large quantities of records. In such a case, it is likely to be better
to translate the program to a compiled language.

How awk Is Used

One typical use of awk would be to extract information from a
file and print it out in a report. Another might be to pull fields
from records in an input file, arrange them in a different order and
pass the resulting rearranged data to a function that adds records
to your data base. There is an example of a use of awk in the
sample application at the end of this chapter.

Where to Find More Information

The manual page for awk is in Section (1) of the User's Refer
ence Manual. Chapter 4 in Part 2 of this guide contains a descrip
tion of the awk syntax and a number of examples showing ways in
which awk may be used.

What lex and yacc Are Like

lex and yacc are often mentioned in the same breath because
they perform complementary parts of what can be viewed as a
single task: making sense out of input. The two utilities also share
the common characteristic of producing source code for C
language subroutines from specifications that appear on the sur
face to be quite similar.

UP-13689 APPLICATION PROGRAMMING 3-7

Language Selection

Recognizing input is a recurring problem in programming.
Input can be from various sources. In a language compiler, for
example, the input is normally contained in a file of source
language statements. The UNIX system shell language most often
receives its input from a person keying in commands from a termi
nal. Frequently, information coming out of one program is fed into
another where it must be evaluated.

The process of input recognition can be subdivided into two
tasks: lexical analysis and parsing, and that's where lex and yacc
come in. In both utilities, the specifications cause the generation
of C language subroutines that deal with streams of characters;
lex generates subroutines that do lexical analysis while yacc gen
erates subroutines that do parsing.

To describe those two tasks in dictionary terms:

Lexical analysis has to do with identifying the words or
vocabulary of a language as distinguished from its gram
mar or structure.

Parsing is the act of describing units of the language
grammatically. Students in elementary school are often
taught to do this with sentence diagrams.

Of course, the important thing to remember here is that in
each case the rules for our lexical analysis or parsing are those we
set down ourselves in the lex or yacc specifications. Because of
this, the dividing line between lexical analysis and parsing some
times becomes fuzzy.

The fact that lex and yacc produce C language source code
means that these parts of what may be a large programming pro
ject can be separately maintained. The generated source code is
processed by the C compiler to produce an object file. The object
file can be link edited with others to produce programs that then
perform whatever process follows from the recognition of the
input.

3-8 PROGRAMMER'S GUIDE UP-13689

Language Selection

How lex Is Used

A lex subroutine scans a stream of input characters and waves
a flag each time it identifies something that matches one or
another of its rules. The waved flag is referred to as a token. The
rules are stated in a format that closely resembles the one used by
the UNIX system text editor for regular expressions. For example,

[\t]+

describes a rule that recognizes a string of one or more blanks or
tabs (without mentioning any action to be taken). A more com
plete statement of that rule might have this notation:

[\t]+ ;

which, in effect, says to ignore white space. It carries this mean
ing because no action is specified when a string of one or more
blanks or tabs is recognized. The semicolon marks the end of the
statement. Another rule, one that does take some action, could be
stated like this:

[0-9]+

= atoi(yytext);
return(NBR)i

J

This rule depends on several things:

NBR must have been defined as a token in an earlier part
of the lex source code called the declaration section. (It
may be in a header file which is #include'd in the declara
tion section.)

i is declared as an extern int in the declaration section.

It is a characteristic of lex that things it finds are made
available in a character string called yytext.

Actions can make use of standard C syntax. Here, the
standard C subroutine, atoi, is used to convert the string
to an integer.

UP-13689 APPLICATION PROGRAM MING 3-9

Language Selection

What this rule boils down to is lex saying, "Hey, I found the
kind of token we call NBR, and its value is now in i."

To review the steps of the process:

1 . The lex specification statements are processed by the lex
utility to produce a file called lex.yy.c. (This is the stan
dard name for a file generated by lex, just as a.out is the
standard name for the executable file generated by the
link editor.)

2. lex.yy.c is transformed by the C compiler (with a -c
option) into an object file called lex.yy.o that contains a
subroutine called yylex().

3. lex.yy.o is link edited with other subroutines. Presumably
one of those subroutines will call yylex() with a statement
such as:

while((token = yylex(» != 0)

and other subroutines (or even main) will deal with what
comes back.

Where to Find More Information
The manual page for lex is in Section (1) of the Programmer's

Reference Manual. A tutorial on lex is contained in Chapter 5 in
Part 2 of this guide.

How yacc Is Used
yacc subroutines are produced by pretty much the same

series of steps as lex:

1 . The yacc specification is processed by the yacc utility to
produce a file called y.tab.c.

2. y.tab.c is compiled by the C compiler producing an object
file, y.tab.o, that contains the subroutine yyparse(). A sig
nificant difference is that yyparse() calls a subroutine
called yylex() to perform lexical analysis.

3-10 PROGRAMMER'S GUIDE UP-13689

Language Selection

3. The object file y.tab.o may be link edited with other sub
routines, one of which will be called yylex().

There are two things worth noting about this sequence:

1 . The parser generated by the yacc specifications calls a
lexical analyzer to scan the input stream and return
tokens.

2. While the lexical analyzer is called by the same name as
one produced by lex, it does not have to be the product of
a lex specification. It can be any subroutine that does the
lexical analysis.

What really differentiates these two utilities is the format for
their rules. As noted above, lex rules are regular expressions Ijke
those used by UNIX system editors. yacc rules are chains of
definitions and alternative definitions, written in Backus-Naur form,
accompanied by actions. The rules may refer to other rules
defined further down the specification. Actions are sequences of
C language statements enclosed in braces. They frequently con
tain numbered variables that enable you to reference values asso
ciated with parts of the rules. An example might make that easier
to understand:

%token NUMBER
%%
expr numb I $$ = $1; J

expr '+' expr I $$ = $1 + $3;
expr I - I expr I $$ = $1 - $3;
expr '*' expr I $$ = $1 * $3;
expr I I' expr I $$ = $1 I $3;
I (I expr I) I $$ = $2; J

numb NUMBER $$ = $1;

This fragment of a yacc specification shows

UP-13689 APPLICATION PROGRAMMING 3-11

Language Selection

• NUMBER identified as a token in the declaration section

• the start of the rules section indicated by the pair of percent
signs

• a number of alternate definitions for expr separated by the
: sign and terminated by the semicolon

• actions to be taken when a rule is matched

• within actions, numbered variables used to represent com
ponents of the rule:

$$ means the value to be returned as the value of the
whole rule

$n means the value associated with the nth component of
the rule, counting from the left

• numb defined as meaning the token NUMBER. This is a
trivial example that illustrates that one rule can be refer
enced within another, as well as within itself.

As with lex, the compiled yacc object file will generally be link
edited with other subroutines that handle processing that takes
place after the parsing - or even ahead of it.

Where to Find More Information
The manual page for yacc is in Section (1) of the

Programmer's Reference Manual. A detailed description of yacc
may be found in Chapter 6 of this guide.

3-12 PROGRAMMER'S GUIDE UP-13689

Advanced Programming Tools
In Chapter 2 we described the use of such basic elements of

programming in the UNIX system environment as the standard I/O
library, header files, system calls and subroutines. In this section
we introduce tools that are more apt to be used by members of
an application development team than by a single-user program
mer. The section contains material on the following topics:

• memory management

• file and record locking

• interprocess communication

• programming terminal screens

Memory Management

There are situations where a program needs to ask the operat
ing system for blocks of memory. It may be, for example, that a
number of records have been extracted from a data base and
need to be held for some further processing. Rather than writing
them out to a file on secondary storage and then reading them
back in again, it is likely to be a great deal more efficient to hold
them in memory for the duration of the process. (This is not to
ignore the possibility that portions of memory may be paged out
before the program is finished; but such an occurrence is not per
tinent to this discussion.) There are two C language subroutines
available for acquiring blocks of memory and they are both called
malloe. One of them is malloe(3C), the other is malloe(3X). Each
has several related commands that do specialized tasks in the
same area. They are:

• free - to inform the system that space is being relinquished

• realloe - to change the size and possibly move the block

• ealloe - to allocate space for an array and initialize it to
zeros

UP-13689 APPLICATION PROGRAMMING 3-13

Advanced Programming Tools

In addition, malloc(3X) has a function, mallopt, that provides
for control over the space allocation algorithm, and a structure,
mallinfo, from which the program can get information about the
usage of the allocated space.

malloc(3X) runs faster than the other version. It is loaded by
specifying

-Imalloc

on the cc(1) or Id(1) command line to direct the link editor to the
proper library. When you use malloc(3X) your program should
contain the statement

#include <malloc.h>

where the values for mallopt options are defined.

See the Programmer's Reference Manual for the formal defini
tions of the two mallocs.

File and Record Locking
The provision for locking files, or portions of files, is primarily

used to prevent the sort of error that can occur when two or more
users of a file try to update information at the same time. The
classic example is the airlines reservation system where two ticket
agents each assign a passenger to Seat A, Row 5 on the 5 o'clock
flight to Detroit. A locking mechanism is designed to prevent such
mishaps by blocking Agent 8 from even seeing the seat assign
ment file until Agent A's transaction is complete.

File locking and record locking are really the same thing,
except that file locking implies the whole file is affected; record
locking means that only a specified portion of the file is locked.
(Remember, in the UNIX system, file structure is undefined; a
record is a concept of the programs that use the file.)

Two types of locks are available: read locks and write locks. If
a process places a read lock on a file, other processes can also
read the file but all are prevented from writing to it, that is, chang
ing any of the data. If a process places a write lock on a file, no
other processes can read or write in the file until the lock is
removed. Write locks are also known as exclusive locks. The term

3-14 PROGRAMMER'S GUIDE UP-13689

Advanced Programming Tools

shared lock is sometimes applied to read locks.

Another distinction needs to be made between mandatory and
advisory locking. Mandatory locking means that the discipline is
enforced automatically for the system calls that read, write or
create files. This is done through a permission flag established by
the file's owner (or the super-user). Advisory locking means that
the processes that use the file take the responsibility for setting
and removing locks as needed. Thus mandatory may sound like a
simpler and better deal, but it isn't so. The mandatory locking
capability is included in the system to comply with an agreement
with /usr/group, an organization that represents the interests of
UNIX system users. The principal weakness in the mandatory
method is that the lock is in place only while the single system call
is being made. It is extremely common for a single transaction to
require a series of reads and writes before it can be considered
complete. In cases like this, the term atomic is used to describe a
transaction that must be viewed as an indivisible unit. The pre
ferred way to manage locking in such a circumstance is to make
certain the lock is in place before any 110 starts, and that it is not
removed until the transaction is done. That calls for locking of the
advisory variety.

How File and Record Locking Works
The system call for file and record locking is fcntl(2). To bring

in the header file shown in Figure 3-1, include the line:

#include <fcntl.h>

/* Flag values accessible to open(2) and fcntl(2) */
. /* (The first three can only be set by open) */

#define O_RDONLY 0
#define O_WRONLY 1
#define O_RDWR 2
#define O_NDELAY 04
#define O_APPEND 010

UP-13689

/* Non-blocking I/O */
/* append (writes guaranteed

at the end) */

APPLICATION PROGRAMMING 3-15

Advanced Programming Tools

- CONTINUED -

Hdefine
/* Flag

O_SVNC
values accessible

020/* synchronous write option */
only to open(2) */

#define O_CREAT 00400 /* open with file create (uses
third open arg)*/

#define O_TRUNC 01000
#define O_EXCL 02000
/* fcntl(2) requests */
#define F_DUPFD 0
#define F_GETFD 1
Hdefine F_SETFD 2
#define F_GETFL 3
#define F_SETFL 4
#define F_GETLK 5
#define F_SETLK 6

/* open with truncation */
/* exclusive open */

/* Duplicate fildes */
/* Get fildes flags */
/* Set fildes flags */
/* Get file flags */
/* Set file flags */
/* Get file lock */
/* Set file lock */

#define F_SETLKW
#define F_CHKFL

7
8

/* Set file lock and wait */
/* Check legality of file

flag changes */
/* file segment locking set data type - information

passed to system by user */
struct flock I

short
short
long
long

short
short

l_type;
l_whence;
l_start;
l_len; /* len = 0 means until

end of file */
l_sysid;
l_pid;

/* file segment locking types */
/* Read lock */

#define F_RDLCK 01
/* Write lock */

#define F_WRLCK 02
/* Remove lock(s) */

#define F_UNLCK 03

Figure 3-1: The fcntl.h Header File

3·16 PROGRAMMER'S GUIDE UP-13689

Advanced Programming Tools

The format of the fcntl (2) system call is

int fcnt1(fi1des, cmd, arg)
int fi1des, cmd, argj

fildes is the file descriptor returned by the open system call. In
addition to defining tags that are used as the commands on fcntl
system calls, fcntl.h includes the declaration for a struct flock that
is used to pass values that control where locks are to be placed.

lockf
A subroutine, lockf(3), can also be used to lock sections of a

file or an entire file. The format of lockf is:

#include <unistd.h>

int 10ckf (fi1des, function, size)
int fi1des, function;
long sizej

fildes is the file descriptor; function is one of four control values
defined in unistd.h that let you lock, unlock, test and lock, or sim
ply test to see if a lock is already in place. size is the number of
contiguous bytes to be locked or unlocked. The section of con
tiguous bytes can be either forward or backward from the current
offset in the file. (You can arrange to be somewhere in the middle
of the file by using the Iseek(2) system call.)

Where to Find More Information
There is an example of file and record locking in the sample

application at the end of this chapter. The manual pages that
apply to this facility are fcntl (2), fcntl (5), lockf(3), and chmod (2) in
the Programmer's Reference Manual. Chapter 7 in Part 2 of this
guide is a detailed discussion of the subject with a number of
examples.

UP-13689 APPLICATION PROGRAMMING 3-17

Advanced Programming Tools

I nterprocess Commun ications

In Chapter 2 we described forking and execing as methods of
communicating between processes. Business applications running
on a UNIX system computer often need more sophisticated
methods. In applications, for example, where fast response is criti
cal, a number of processes may be brought up at the start of a
business day to be constantly available to handle transactions on
demand. This cuts out initialization time that can add seconds to
the time required to deal with the transaction. To go back to the
ticket reservation example again for a moment, if a customer calls
to reserve a seat on the 5 o'clock flight to Detroit, you don't want
to have to say, "Yes, sir. Just hang on a minute while I start up the
reservations program." In transaction driven systems, the normal
mode of processing is to have all the components of the applica
tion standing by waiting for some sort of an indication that there is
work to do.

To meet requirements of this type the UNIX system offers a
set of nine system calls and their accompanying header files, all
under the umbrella name of Interprocess Communications (I PC) .

The IPC system calls come in sets of three; one set each for
messages, semaphores, and shared memory. These three terms
define three different styles of communication between processes:

messages communication is in the form of data stored in
a buffer. The buffer can be either sent or
received.

semaphores communication is in the form of positive
integers with a value between 0 and 32,767.
Semaphores may be contained in an array the
size of which is determined by the system
administrator. The default maximum size for
the array is 25.

shared memory communication takes place through a com
mon area of main memory. One or more
processes can attach a segment of memory
and as a consequence can share whatever
data is placed there.

3-18 PROGRAMMER'S GUIDE UP-13689

Advanced Programming Tools

The sets of IPC system calls are:

IPC get Calls

msgget
msgctl
msgop

semget
semctl
semop

shmget
shmctl
shmop

The get calls each return to the calling program an identifier
for the type of IPC facility that is being requested.

IPC ctl Calls
The ctl calls provide a variety of control operations that include

obtaining (IPC _ STAT), setting (IPC _SET) and removing
(IPC_RMID), the values in data structures associated with the iden
tifiers picked up by the get calls.

IPC op Calls
The op manual pages describe calls that are used to perform

the particular operations characteristic of the type of IPC facility
being used. msgop has calls that send or receive messages.
semop (the only one of the three that is actually the name of a
system call) is used to increment or decrement the value of a
semaphore, among other functions. shmop has calls that attach
or detach shared memory segments.

Where to Find More Information

An example of the use of some IPC features is included in the
sample application at the end of this chapter. The system calls are
all located in Section (2) of the Programmer's Reference Manual.
Don't overlook intro(2). It includes descriptions of the data struc
tures that are used by IPC facilities. A detailed description of IPC,
with many code examples that use the IPC system calls, is con
tained in Chapter 9 in Part 2 of this guide.

UP·13689 APPLICATION PROGRAMMING 3·19

•
Advanced Programming Tools

Programming Terminal Screens

The facility for setting up terminal screens to meet the needs
of your application is provided by two parts of the UNIX system.
The first of these, terminfo, is a data base of compiled entries that
describe the capabilities of terminals and the way they perform
various operations.

The terminfo data base normally begins at the directory
/usr/lib/terminfo. The members of this directory are themselves
directories, generally with single-character names that are the first
character in the name of the terminal. The compiled files of
operating characteristics are at the next level down the hierarchy.
For example, the entry for a Teletype 5425 is located in both the
file /usr/lib/terminfo/5/5425 and the file
/usr/lib/terminfo/t/tty5425.

Describing the capabilities of a terminal can be a painstaking
task. Quite a good selection of terminal entries is included in the
terminfo data base that comes with your 382 Computer. How
ever, if you have a type of terminal that is not already described in
the data base, the best way to proceed is to find a description of
one that comes close to having the same capabilities as yours and
building on that one. There is a routine (setupterm) in curses(3X)
that can be used to print out descriptions from the data base.
Once you have worked out the code that describes the capabilities
of your terminal, the tic(1 M) command is used to compile the
entry and add it to the data base.

curses
After you have made sure that the operating capabilities of

your terminal are a part of the terminfo data base, you can then
proceed to use the routines that make up the curses(3X) package
to create and manage screens for your application.

The curses library includes functions to:

• define portions of your terminal screen as windows

• define pads that extend beyond the borders of your physi
cal terminal screen and let you see portions of the pad on
your terminal

3·20 PROGRAMMER'S GUIDE UP·13689

Advanced Programming Tools

• read input from a terminal screen into a program

• write output from a program to your terminal screen

• manipulate the information in a window in a virtual screen
area and then send it to your physical screen

Where to Find More Information
In the sample application at the end of this chapter, we show

how you might use curses routines. Chapter 10 in Part 2 of this
guide contains a tutorial on the subject. The manual pages for
curses are in Section (3X), and those for terminfo are in Section
(4) of the Programmer's Reference Manual.

UP-13689 APPLICATION PROGRAMMING 3-21

Programming Support Tools
This section covers UNIX system components that are part of

the programming environment, but that have a highly specialized
use. We refer to such things as:

• link edit command language

• Common Object File Format

• libraries

• Symbolic Debugger

• lint as a portability tool

Link Edit Command Language
The link editor command language is for use when the default

arrangement of the Id output will not do the job. The default loca
tions for the standard Common Object File Format sections are
described in a.out(4) in the Programmer's Reference Manual. On
a 382 Computer, when an a.out file is loaded into memory for exe
cution, the text segment starts at location Ox80800000, and the
data section starts at the next segment boundary after the end of
the text. The stack begins at OxC0020000 and grows to higher
memory addresses.

The link editor command language provides directives for
describing different arrangements. The two major types of link
editor directives are MEMORY and SECTIONS. MEMORY direc
tives can be used to define the boundaries of configured and
unconfigured sections of memory within a machine, to name sec
tions, and to assign specific attributes (read, write, execute, and
initialize) to portions of memory. SECTIONS directives, among a
lot of other functions, can be used to bind sections of the object
file to specific addresses within the configured portions of
memory.

Why would you want to be able to do those things? Well, the
truth is that in the majority of cases you don't have to worry about
it. The need to control the link editor output becomes more
urgent under two, possibly related, sets of circumstances.

3-22 PROGRAMMER'S GUIDE UP-13689

Programming Support Tools

1. Your application is large and consists of a lot of object files.

2. The hardware your application is to run on is tight for space.

Where to Find More Information
Chapter 12 in Part 2 of this guide gives a detailed description

of the subject.

Common Object File Format

The details of the Common Object File Format have never
been looked on as stimulating reading. In fact, they have been
recommended to hard-core insomniacs as preferred bedtime fare.
However, if you're going to break into the ranks of really sophisti
cated UNIX system programmers, you're going to have to get a
good grasp of COFF. A knowledge of COFF is fundamental to
using the link editor command language. It is also good back
ground knowledge for tasks such as:

• setting up archive libraries or shared libraries

• using the Symbolic Debugger

The following system header files contain definitions of data
structures of parts of the Common Object File Format:

< syms.h >
< linenum.h >
< Idfcn.h >
<filehdr.h>
<a.out.h>
< scnhdr.h >
< reloc.h >
< storclass.h >

symbol table format
line number entries
COFF access routines
file header for a common object file
common assembler and link editor output
section header for a common object file
relocation information for a common object file
storage classes for common object files

The object file access routines are described below under the
heading "The Object File Library."

UP·13689 APPLICATION PROGRAM MING 3·23

Programming Support Tools

Where to Find More Information
Chapter 11 in Part 2 of this guide gives a detailed description

of COFF.

Libraries
A library is a collection of related object files and/or declara

tions that simplify programming effort. Programming groups
involved in the development of applications often find it convenient
to establish private libraries. For example, an application with a
number of programs using a common data base can keep the I/O
routines in a library that is searched at link edit time.

Prior to Release 3.0 of the UNIX System V the libraries,
whether system supplied or application developed, were collec
tions of common object format files stored in an archive
(filename.a) file that was searched by the link editor to resolve
references. Files in the archive that were needed to satisfy
unresolved references became a part of the resulting executable.

Beginning with Release 3.0, shared libraries are supported.
Shared libraries are similar to archive libraries in that they are col
lections of object files that are acted upon by the link editor. The
difference, however, is that shared libraries perform a static linking
between the file in the library and the executable that is the output
of Id. The result is a saving of space, because all executables that
need a file from the library share a single copy. We go into shared
libraries later in this section.

In Chapter 2 we described many of the functions that are
found in the standard C library, libc.a. The next two sections
describe two other libraries, the object file library and the math
library.

The Object File Library
The object file library provides functions for the access and

manipulation of object files. Some functions locate portions of an
object file such as the symbol table, the file header, sections, and
line number entries associated with a function. Other functions
read these types of entries into memory. The need to work at this
level of detail with object files occurs most often in the

3-24 PROGRAMMER'S GUIDE UP-13689

Programming Support Tools

development of new tools that manipulate object files. For a
description of the format of an object file, see "The Common
Object File Format" in Chapter 11. This library consists of several
portions. The functions reside in /lib/libld.a and are loaded during
the compilation of a C language program by the -I command line
option:

cc file -lid

which causes the link editor to search the object file library. The
argument -lid must appear after all files that reference functions in
libld.a.

The following header files must be included in the source code.

#include <stdio.h>
#include <a.out.h>
#include <ldfcn.h>

UP-13689 APPLICATION PROGRAM MING 3-25

Programming Support Tools

Function Reference Brief Description

Idaclose Idclose(3X) Close object file being
processed.

Idahread Idahread (3X) Read archive header.

Idaopen Idopen(3X) Open object file for
reading.

Idclose Idclose(3X) Close object file being
processed.

Idfhread Idfhread (3X) Read file header of
object file being
processed.

Idgetname Idgetname(3X) Retrieve the name of
an object file symbol
table entry.

Idllnlt Idlread (3X) Prepare object file for
reading line number
entries via Idlitem.

Idlltem Idlread(3X) Read line number entry
from object file after
Idlinit.

Idlread Idlread (3X) Read line number entry
from object file.

Idlseek Idlseek (3X) Seeks to the line number
entries of the object
file being processed.

Idnlseek Idlseek(3X) Seeks to the line number
entries of the object file
being processed given
the name of a section.

3·26 PROGRAMMER'S GUIDE UP-13689

Programming Support Tools

Function Reference Brief Description

Idnrseek Idrseek(3X) Seeks to the relocation
entries of the object file
being processed given
the name of a section.

Idnshread Idshread (3X) Read section header of
the named section of the
object file being
processed.

Idnsseek Idsseek(3X) Seeks to the section of
the object file being
processed given the
name of a section.

Idohseek Idohseek(3X) Seeks to the optional
file header of the object
file being processed.

Idopen Idopen(3X) Open object file for
reading.

Idrseek Idrseek(3X) Seeks to the relocation
entries of the object file
being processed.

Idshread Idshread (3X) Read section header of
an object file being
processed.

Idsseek Idsseek(3X) Seeks to the section of
the object file being
processed.

UP-13689 APPLICATION PROGRAMMING 3-27

Programming Support Tools

Function Reference Brief Description

Idtbindex Idtbindex(3X) Returns the long index
of the symbol table entry
at the current position of
the object file being
processed.

Idtbread Idtbread (3X) Reads a specific
symbol table entry
of the object file
being processed.

Idtbseek Idtbseek (3X) Seeks to the symbol
table of the object file
being processed.

sgetl sputl(3X) Access long integer data
in a machine independent
format.

sputl sputl(3X) Translate a long integer
into a machine
independent format.

Common Object File Interface Macros (Idfcn.h)
The interface between the calling program and the object file

access routines is based on the defined type LDFILE, which is in
the header file Idfcn.h (see Idfcn(4)). The primary purpose of this
structure is to provide uniform access to both simple object files
and to object files that are members of an archive file.

The function Idopen (3X) allocates and initializes the LDFILE
structure and returns a pointer to the structure. The fields of the
LDFILE structure may be accessed individually through the follow
ing macros:

• The TYPE macro returns the magic number of the file, which
is used to distinguish between archive files and object files
that are not part of an archive.

3·28 PROGRAMMER'S GUIDE UP·13689

Programming Support Tools

• The IOPTR macro returns the file pointer. which was opened
by Idopen(3X) and is used by the input/output functions of
the C library.

• The OFFSET macro returns the file address of the beginning
of the object file. This value is non-zero only if the object
file is a member of the archive file.

• The HEADER macro accesses the file header structure of
the object file.

Additional macros are provided to access an object file. These
macros parallel the input/output functions in the C library; each
macro translates a reference to an LDFILE structure into a refer
ence to its file descriptor field. The available macros are described
in Idfcn(4) in the Programmer's Reference Manual.

The Math library

The math library package consists of functions and a header
file. The functions are located and loaded during the compilation
of a C language program by the -I option on a command line. as
follows:

cc file -1m

This option causes the link editor to search the math library.
libm.a. In addition to the request to load the. functions. the header
file of the math library should be included in the program being
compiled. This is accomplished by including the line:

#include <math.h>

near the beginning of each file that uses the routines.

The functions are grouped into the following categories:

• trigonometric functions

• Bessel functions

• hyperbolic functions

• miscellaneous functions

UP-13689 APPLICATION PROGRAM MING 3-29

Programming Support Tools

Trigonometric Functions
These functions are used to compute angles (in radian meas

ure), sines, cosines, and tangents. All of these values are
expressed in double-precision.

Function Reference Brief Description

acos trig (3M) Return arc cosine.

asin trig (3M) Return arc sine.

atan trig (3M) Return arc tangent.

atan2 trig (3M) Return arc tangent of
a ratio.

cos trig (3M) Return cosine.

sin trig (3M) Return sine.

tan trig (3M) Return tangent.

Bessel Functions
These functions calculate Bessel functions of the first and

second kinds of several orders for real values. The Bessel func
tions are jO, j1, jn, yO, y1, and yn. The functions are located in
section bessel (3M) .

Hyperbolic Functions
These functions are used to compute the hyperbolic sine,

cosine, and tangent for real values.

Function Reference Brief Description

cosh sinh(3M) Return hyperbolic cosine.

sinh slnh(3M) Return hyperbolic sine.

tanh sinh(3M) Return hyperbolic tangent.

3-30 PROGRAMMER'S GUIDE UP·13689

Programming Support Tools

Miscellaneous Functions
These functions cover a wide variety of operations, such as

natural logarithm, exponential. and absolute value. In addition.
several are provided to truncate the integer portion of double
precision numbers.

Function Reference Brief Description

ceil floor(3M) Returns the smallest
integer not less than a

exp

fabs

floor

fmod

gamma

hypot

UP-13689

exp(3M)

floor (3M)

given value.

Returns the exponential
function of a given value.

Returns the absolute value
of a given value.

floor(3M) Returns the largest integer
not greater than a given
value.

floor(3M) Returns the remainder
produced by the division of
two given values.

gamma(3M) Returns the natural log of
the absolute value of the
result of applying the
gamma function to a
given value.

hypot(3M) Return the square root
of the sum of the squares
of two numbers.

APPLICATION PROGRAMMING 3-31

Programming Support Tools

Function Reference Brief Description

log exp(3M) Returns the natural
logarithm of a given
value.

log10 exp(3M) Returns the logarithm base
ten of a given value.

matherr matherr (3M) Error-handling function.

pow exp(3M) Returns the result of a
given value raised to
another given value.

sqrt exp(3M) Returns the square root
of a given value.

Shared Libraries
As noted above, beginning with UNIX System V Release 3.0,

shared libraries are supported. Not only are some system libraries
(libc and the networking library) available in both archive and
shared library form, but also applications have the option of creat
ing private application shared libraries.

The reason why shared libraries are desirable is that they save
space, both on disk and in memory. With an archive library, when
the link editor goes to the archive to resolve a reference it takes a
copy of the object file that it needs for the resolution and binds it
into the a.out file. From that point on the copied file is a part of
the executable, whether it is in memory to be run or sitting in
secondary storage. If you have a lot of executables that use, say,
printf (which just happens to require much of the standard I/O
library) you can be talking about a sizeable amount of space.

With a shared library, the link editor does not copy code into
the executable files. When the operating system starts a process
that uses a shared library it maps the shared library contents into
the address space of the process. Only one copy of the shared
code exists, and many processes can use it at the same time.

3-32 PROGRAMMER'S GUIDE UP-13689

Programming Support Tools

This fundamental difference between archives and shared
libraries has another significant aspect. When code in an archive
library is modified, all existing executables are uneffected. They
continue using the older version until they are re-link edited. When
code in a shared library is modified, all programs that share that
code use the new version the next time they are executed.

All this may sound like a really terrific deal, but as with most
things in life there are complications. To begin with, in the para
graphs above we didn't give you quite all the facts. For example,
each process that uses shared library code gets its own copy of
the entire data region of the library. It is actually only the text
region that is really shared. So the truth is that shared libraries
can add space to executing a.out's even though the chances are
good that they will cause more shrinkage than expansion. What
this means is that when there is a choice between using a shared
library and an archive, you shouldn't use the shared library unless
it saves space. If you were using a shared libc to access only
strcmp, for example, you would pick up more in shared library
data than you would save by sharing the text.

The answer to this problem, and to others that are somewhat
more complex, is to assign the responsibility for shared libraries to
a central person or group within the application. The shared
library developer should be the one to resolve questions of when
to use shared and when to use archive system libraries. If a
private library is to be built for your application, one person or
organization should be responsible for its development and
maintenance.

Where to Find More Information
The sample application at the end of this chapter includes an

example of the use of a shared library. Chapter 8 in Part 2 of this
guide describes how shared libraries are built and maintained.

UP-13689 APPLICATION PROGRAM MING 3-33

Programming Support Tools

Symbolic Debugger

The use of sdb was mentioned briefly in Chapter 2. In this
section we want to say a few words about sdb within the context
of an application development project.

sdb works on a process, and enables a programmer to find
errors in the code. It is a tool a programmer might use while cod
ing and unit testing a program, to make sure it runs according to
its design. sdb would normally be used prior to the time the pro
gram is turned over, along with the rest of the application, to tes
ters. During this phase of the application development cycle pro
grams are compiled with the -g option of cc to facilitate the use of
the debugger. The symbol table should not be stripped from the
object file. Once the programmer is satisfied that the program is
error-free, strip(1} can be used to reduce the file storage overhead
taken by the file.

If the application uses a private shared library, the possibility
arises that a program bug may be located in a file that resides in
the shared library. Dealing with a problem of this sort calls for
coordination by the administrator of the shared library. Any
change to an object file that is part of a shared library means the
change effects all processes that use that file. One program's bug
may be another program's feature.

Where to Find More Information
Chapter 15 in Part 2 of this guide contains information on how

to use sdb. The manual page is in Section (1) of the
Programmer's Reference Manual.

lint as a Portability Tool

It is a characteristic of the UNIX system that language compila
tion systems are somewhat permissive. Generally speaking it is a
design objective that a compiler should run fast. Most C com
pilers, therefore, let some things go unflagged as long as the
language syntax is observed statement by statement. This some
times means that while your program may run, the output will
have some surprises. It also sometimes means that while the

3-34 PROGRAMMER'S GUIDE UP-13689

Programming Support Tools

program may run on the machine on which the compilation sys
tem runs, there may be real difficulties in running it on some other
machine.

That's where lint comes in. lint produces comments about
inconsistencies in the code. The types of anomalies flagged by
lint are:

• cases of disagreement between the type of value expected
from a called function and what the function actually returns

• disagreement between the types and number of arguments
expected by functions and what the function receives

• inconsistencies that might prove to be bugs

• things that might cause portability problems

Here is an example of a portability problem that would be
caught by lint.

Code such as this:

int i = lseek(fdes, offset, whence)

would get by most compilers. However, Iseek returns a long
integer representing the address of a location in the file. On a
machine with a 16-bit integer and a bigger long int, it would pro
duce incorrect results, because i would contain only the last 16
bits of the value returned.

Since it is reasonable to expect that an application written for
a UNIX system machine will be able to run on a variety of comput
ers, it is important that the use of lint be a regular part of the
application development.

Where to Find More Information
Chapter 16 in Part 2 of this guide contains a description of lint

with examples of the kinds of conditions it uncovers. The manual
page is in Section (1) of the Programmer's Reference Manual.

UP-13689 APPLICATION PROGRAM MING 3-35

Project Control Tools
Volumes have been written on the subject of project control.

It is an item of top priority for the managers of any application
development team. Two UNIX system tools that can playa role in
this area are described in this section.

make

make is extremely useful in an application development project
for keeping track of what object files need to be recompiled as
changes are made to source code files. One of the characteristics
of programs in a UNIX system environment is that they are made
up of many small pieces, each in its own object file, that are link
edited together to form the executable file. Quite a few of the
UNIX system tools are devoted to supporting that style of program
architecture. For example, archive libraries, shared libraries and
even the fact that the cc command accepts .0 files as well as .c
files, and that it can stop short of the Id step and produce .0 files
instead of an a.out, are all important elements of modular architec
ture. The two main advantages of this type of programming are
that

• A file that performs one function can be re-used in any pro
gram that needs it.

• When one function is changed, the whole program does not
have to be recompiled.

On the flip side, however, a consequence of the proliferation of
object files is an increased difficulty in keeping track of what does
need to be recompiled, and what doesn't. make is designed to
help deal with this problem. You use make by describing in a
specification file, called makefile, the relationship (that is, the
dependencies) between the different files of your program. Once
having done that, you conclude a session in which possibly a
number of your source code files have been changed by running
the make command. make takes care of generating a new a.out
by comparing the time-last-changed of your source code files with
the dependency rules you have given it.

3-36 PROGRAMMER'S GUIDE UP-13689

Project Control Tools

make has the ability to work with files in archive libraries or
under control of the Source Code Control System (SCCS).

Where to Find More Information

The make(1) manual page is contained in the Programmer's
Reference Manual. Chapter 13 in Part 2 of this guide gives a com
plete description of how to use make.

sees
SCCS is an acronym for Source Code Control System. It con

sists of a set of 14 commands used to track evolving versions of
files. Its use is not limited to source code; any text files can be
handled, so an application's documentation can also be put under
control of SCCS. SCCS can:

• store and retrieve files under its control

• allow no more than a single copy of a file to be edited at
one time

• provide an audit trail of changes to files

• reconstruct any earlier version of a file that may be wanted

SCCS files are stored in a special coded format. Only through
commands that are part of the SCCS package can files be made
available in a user's directory for editing, compiling, etc. From the
point at which a file is first placed under sees control, only
Changes to the original version are stored. For example, let's say
that the program, restate, that was used in several examples in
Chapter 2, was controlled by SCCS. One of the original pieces of
that program is a file called oppty.c that looks like this:

UP-13689 APPLICATION PROGRAM MING 3-37

Project Control Tools

/* Opportunity Cost -- oppty.c */
,include "recdef.h"

float
oppty(ps)
struct rec *ps;
1

return(ps->i/12 * ps->t * ps->dp);

If you decide to add a message to this funtion, you might
change the file like this:

/* Opportunity Cost -- oppty.c */
,include "recdef.h"
,include <stdio.h>

float
oppty(ps)
struct rec *ps;
1

(void) fprintf(stderr, "Opportunity
calling\n");

return(ps->i/12 * ps->t * ps->dp);

sees saves only the two new lines from the second version,
with a coded notation that shows where in the text the two lines
belong. It also includes a note of the version number, lines
deleted, lines inserted, total lines in the file, the date and time of
the change and the login id of the person making the change.

3-38 PROGRAMMER'S GUIDE UP-13689

Project Control Tools

Where to Find More Information
Chapter 14 in Part 2 of this guide is an sees user's guide.

sees commands are in Section (1) of the Programmer's Refer
ence Manual.

UP-13689 APPLICATION PROGRAMMING 3-39

liber, A Library System
To illustrate the use of UNIX system programming tools in the

development of an application, we are going to pretend we are
engaged in the development of a computer system for a library.
The system is known as liber. The early stages of system
development, we assume, have already been completed; feasibility
studies have been done, the preliminary design is described in the
coming paragraphs. We are going to stop short of producing a
complete detailed design and module specifications for our sys
tem. You will have to accept that these exist. In using portions of
the system for examples of the topics covered in this chapter, we
will work from these virtual specifications.

We make no claim as to the efficacy of this design. It is the
way it is only in order to provide some passably realistic examples
of UNIX system programming tools in use.

liber is a system for keeping track of the books in a library.
The hardware consists of a single computer with terminals
throughout the library. One terminal is used for adding new books
to the data base. Others are used for checking out books and as
electronic card catalogs.

The design of the system calls for it to be brought up at the
beginning of the day and remain running while the library is in
operation. The system has one master index that contains the
unique identifier of each title in the library. When the system is
running the index resides in memory. Semaphores are used to
control access to the index. In the pages that follow fragments of
some of the system's programs are shown to illustrate the way
they work together. The startup program performs the system ini
tialization; opening the semaphores and shared memory; reading
the index into the shared memory; and kicking off the other pro
grams. The id numbers for the shared memory and semaphores
(shmid, wrtsem, and rdsem) are read from a file during initializa
tion. The programs all share the in-memory index. They attach it
with the following code:

3-40 PROGRAMMER'S GUIDE UP-13689

SAMPLE APPLICATION: liber

/* attach shared memory for .index */
if ((int)(index = (INDEX *) shmat(shmid, NULL, 0)) == -1)
I

(void) fprintf(stderr, "shmat failed: %d\n", errno);
exit(1);

Of the programs shown, add-books is the only one that alters
the index. The semaphores are used to ensure that no other pro
grams will try to read the index while add-books is altering it. The
checkout program locks the file record for the book, so that each
copy being checked out is recorded separately and the book can
not be checked out at two different checkout stations at the same
time.

The program fragments do not provide any details on the
structure of the index or the book records in the data base.

/* liber.h - header file for the
* library system.
*/

typedef .•. INDEX;/* data structure for book file index */
typedef struct I . /* type of records in book file */

char title[30)j
char author[30);

UP-13689 APPLICATION PROGRAM MING 3-41

SAMPLE APPLICATION: liber

J BOOKj
int shmid;
int wrtsem;
int rdsemj
INDEX *indexj

int book_filej
BOOK book_bufj

/* startup program*/

/*

- CONT I NUED -

* 1. Open shared memory for file index and read it in.
* 2. Open two semaphores for providing exclusive write
* access to index.
* 3. Stash id's for shared memory segment and semaphores
* in a file
* where they can be accessed by the programs.
* 4. Start programs: add-books, card-catalog, and checkout
* running on the various terminals throughout the
* library.
*/

Hinclude <stdio.h>
Hinclude <sys/types.h>
Hinclude <sys/ipc.h>
Hinclude <sys/shm.h>
Hinclude <sys/sem.h>
Hinclude "liber.h"

void exit()j
extern int errnoj

key_t key;
int shmidj
int wrtsem;
int rdsemj
FILE *ipc_file;

3-42 PROGRAMMER'S GUIDE UP-13689

main()
1

SAMPLE APPLICATION: liber

- CONT I NUED -

if «shmid = shmget(key, sizeof(INDEX), IPC_CREAT :
0666)) == -1)

I

(void) fprintf(stderr, "startup: shmget failed:
errno=%d\n"'t, errno);

exit(1);

if «wrtsem = semget(key, 1, IPC_CREAT : 0666)) == -1)
1

(void) fprintf(stderr, "startup: semget failed:
errno=%d\n", errno);

exit(1);

if «rdsem = semget(key, 1, IPC_CREAT : 0666)) == -1)
1

(void) fprintf(stderr, "startup: semget failed:
errno=%d\n", errno);

ex i t (1);
I
(void) fprintf(ipc_file, "%d\n%d\n%d\n", shmid,

wrtsem, rdsem);

/*
* Start the add-books program running on the terminal
* in the basement. Start the checkout and card-catalog
* programs running on the various other terminals
* throughout the library.
*/

UP-13689 APPLICATION PROGRAMMING 3-43

SAMPLE APPLICATION: liber

- CONT I NUED -

/* card- catalog program* /

/*
* 1. Read screen for author and title.
* 2. Use semaphores to prevent reading index while

it is being written.
* 3. Use index to get position of book record in book

file.
* 4. Print book record on screen or indicate book was

not found.
* 5. Go to 1.
*/

#include
#include
#include
#include
#include
#include

<stdio.h>
<sys/types.h>
<sys/ipc.h>
<sys/sem.h>

<fcntl.h>
"liber.h"

void exit();
extern int errno;
struct sembuf sop[1];

main()

while (1)
I

/*
* Read author/title/subject info. from screen.
*/

/*
* Wait for write semaphore to reach 0 (index
* not being written).
*/

3-44 PROGRAMMER'S GUIDE UP-13689

SAMPLE APPLICATION: liber

- CONTI NUED -

sop[O).sem_op = 1;
if (semop(wrtsem, sop, 1) == -1)
1

(void) fprintf(stderr, "semop failed:
%d\n", errno);

ex i t (1);
}
/*
* Increment read semaphore so potential writer
* will wait for us to finish reading the index.
*/

sop[O).sem_op = 0;
if (semop(rdsem, sop, 1) == -1)
1

(void) fprintf(stderr, "semop failed:
%d\n", errno);

exit(1);

/* Use index to find file pointer(s) for book(s) */

/* Decrement read semaphore */
sop[O).sem_op = -1;
if (semop(rdsem, sop, 1) == -1)
1

(void) fprintf(stderr, "semop failed:
%d\n", errno);

exit(1);

/*
* Now use the file pointers found in the index to
* read the book file. Then print the information
* on the book(s) to the screen.
*/

/* while */

UP-13689 APPLICATION PROGRAMMING 3-45

SAMPLE APPLICATION: liber

- CONTI NUED -

/* checkout program* /

/*
* 1. Read screen for Dewey Decimal number of book to be
* checked out.
* 2. Use semaphores to prevent reading index while it is
* being written.
* 3. Use index to get position of book record in book file.
* 4. If book not found print message on screen, otherwise
* lock book record and read.
* 5. If book already checked out print message on screen,
* otherwise mark record "checked out" and write back
* to book file.
* 6. Unlock book record.
* 7. Go to 1.
*/

<stdio.h>
<sys/types.h>
<sys/ipc.h>
<sys/sem.h>

#inc1ude
#inc1ude
#inc1ude
#inc1ude
#inc1ude
#inc1ude

<fcnt1.h>
"liber.h"

void exit()j
long lseek()j
extern int errnoj
struct flock f1kj
struct sembuf sop[1]j
long bookposj
main()
1

wh i 1 e (1)

3-46 PROGRAMMER'S GUIDE UP-13689

UP-13689

SAMPLE APPLICATION: liber

- CONTI NUED -

/*
* Read Dewey Decimal number from screen.
*/

/*
* Wait for write semaphore to reach 0 (index
* not being written).
*/

sop[O].sem_flg = 0;
sop[O].sem_op = 0;
if (semop(wrtsem, sop, 1) == -1)
1

(void) fprintf(stderr, "semop failed:
%d\n", errno);

exit(1);
}
/*
* Increment read semaphore so potential writer
* will wait for us to finish reading the index.
*/

sop[O].sem_op = 1;
if (semop(rdsem, sop, 1) == -1)
1

(void) fprintf(stderr, "semop failed:
%d\n", errno);

exit(1);

/*
* Now we can use the index to find the book's
* record position. Assign value to "bookpos".
*/

/* Decrement read semaphore */
sop[O].sem_op = -1;
if (semop(rdsem, sop, 1) == -1)

APPLICATION PROGRAMMING 3-47

SAMPLE APPLICATION: liber

- CONT I NUED -

(void) fprintf(stderr, "semop failed:
%d\n", errno);

exit(,);

/* Lock the book's record in book file, read the
record. */

flk.l_type = F_WRLCK;
flk.l_whence = 0;
flk.l_start = bookpos;
flk.l_len = sizeof(BOOK);
if (fcntl(book_file, F_SETLKW, &flk) == -1)
1

(void) fprintf(stderr, "trouble locking:
%d\n", errno);

exit(1);
I
if (lseek(book_file, bookpos, 0) == -1)
1

Error processing for Iseek;
J
if (read(book_file, &book_buf, sizeof(BOOK» -- -1)
1

Error processing for read;

/*
* If the book is checked out inform the client,
* otherwise mark the book's record as checked out
* and write it back into the book file.
*/

/* Unlock the book's record in book file. */
flk.l_type = F_UNLCK;
if (fcntl(book_file, F_SETLK, &flk) == -1)

3·48 PROGRAMMER'S GUIDE UP·13689

SAMPLE APPLICATION: liber

- CONT I NUED -

(void) fprintf(stderr, "trouble unlocking:
%d\n", errno);

exit(1);
I

I'll while 'Ill
I
I'll add- books program'll I

I'll
* 1. Read a new book entry from screen.
* 2. Insert book in book file.
* 3. Use semaphore "wrtsem" to block new readers.
* 4. Wait for semaphore "rdsem" to reach O.
* 5. Insert book into index.
* 6. Decrement wrtsem.
* 7. Go to 1.
'Ill

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include "liber.h"

void exit();
extern int errno;
struct sembuf sop(1);
BOOK bookbuf;

main()
1

for (;;)
1

UP-13689 APPLICATION PROGRAMMING 3-49

SAMPLE APPLICATION: liber

- CONTI NUED -

/*
* Read information on new book from screen.
*/

addscr(&bookbuf)j

/* write new record at the end of the bookfile.
* Code not shown, but
* addscr() returns a 1 if title information has
* been entered, 0 if not.
*/

/*
* Increment write semaphore, blocking new readers
* from accessing the index.
*/

sop[O].sem_flg = OJ
sop[O].sem_op = 1;
if (semop(wrtsem, sop, 1) == -1)
I

I
/*

(void) fprintf(stderr, "semop failed:
%d\n", errno);

exit(1);

* Wait for read semaphore to reach 0 (all readers
* to finish using the index).
*/

sop[O].sem_op = 0;
if (semop(rdsem, sop, 1) == -1)
I

(void) fprintf(stderr, "semop failed:
%d\n", errno);

exit(1);

3-50 PROGRAMMER'S GUIDE UP-13689

SAMPLE APPLICATION: liber

- CONT I NUED -

I'll
* Now that we have exclusive access to the index
* we insert our new book with its file pointer.
'Ill

I'll Decrement write semaphore, permitting readers
* to read index.
'Ill

sop[O].sem_op = -1;
if (semop(wrtsem, sop, 1) == -1)
1

I

(void) fprintf(stderr, "semop failed:
%d\n", errno);

exit(1);

I'll for 'Ill

The example following. addscr(). illustrates two significant
points about curses screens:

1 . Information read in from a curses window can be stored in
fields that are part of a structure defined in the header file
for the application.

2. The address of the structure can be passed from another
function where the record is processed.

UP-13689 APPLICATION PROGRAM MING 3-51

SAMPLE APPLICATION: liber

/* addscr is called from add-books. The
* user is prompted for title info.
*/

#include <curses.h>

WINDOW *cmdwin;

addscr(bb)
struct BOOK *bb;
I

int c;

initscr();
nonl();
noecho();
cbreak();

cmdwin = newwin(6, 40, 3, 20);
mvprintw(O, 0, "This screen is for adding titles to

the data base");
mvprintw(l, 0, "Enter a to add; q to quit: H);
refresh();
for (;;)
I

refresh();
c = getch();
switch (c) I

case 'a':
werase(cmdwin) ;
box(cmdwin, ':', ' -');
mvwprintw(cmdwin, 1, 1, "Enter title: ");
wmove(cmdwin, 2, 1);
echo();
wrefresh(cmdwin);
wgetstr(cmdwin, bb->title);

3-52 PROGRAMMER'S GUIDE UP-13689

SAMPLE APPLICATION: liber

- CONTINUED -

noecho();
werase(cmdwin);
box(cmdwin, ':', '_');
mvwprintw(cmdwin, 1, 1, "Enter author: ");
wmove(cmdwin, 2, 1);
echo();
wrefresh(cmdwin);
wgetstr(cmdwin, bb->author);
noecho() ;
werase(cmdwin);
wrefresh(cmdwin);
endwin()j
return(1)j

case 'q':

erase();
endwin();
return(O)j

Makefile for liber library system

CC = cc
CFLAGS = -0
all: startup add-books checkout card-catalog

startup: liber.h startup.c
$(CC) $(CFLAGS) -0 startup startup.c

UP-13689 APPLICATION PROGRAMMING 3-53

SAMPLE APPLICATION: liber

- CONTINUED -

add-books: add-books.o addscr.o
$(CC) $(CFLAGS) -0 add-books add-books.o addscr.o

add-books.o: liber.h

checkout: liber.h checkout.c
$(CC) $(CFLAGS) -0 checkout checkout.c

card-catalog: liber.h card-catalog.c
$(CC) $(CFLAGS) -0 card-catalog card-catalog.c

3·54 PROGRAMMER'S GUIDE UP·13689

Chapter 4: awk

The awk Programming Language 4-1

Program Structure 4-1

Lexical Units 4-2

Numeric Constants 4-3

String Constants 4-3

Keywords 4-3

Identifiers 4-4

Operators 4-4

Record and Field Tokens 4-6

Comments 4-8

Tokens Used for Grouping 4-8

Primary Expressions 4-8

Numeric Constants 4-8

String Constants 4-9

Variables 4-10

Functions 4-11

Terms 4-13

Binary Terms 4-14

Unary Term 4-14

Incremented Vars 4-14

Parenthesized Terms 4-15

Expressions 4-15

Concatenation of Terms 4-15

Assignment Expressions 4-15

Using awk 4-17

UP-13689 TABLE OF CONTENTS

Table of Contents

Input and Output

Presenting Your Program for Processing

Input: Records and Fields
Sample Input File. countries

I~put: From the Command Line
Output: Printing
Output: to Different Files
Output: to Pipes

Patterns

BEGIN and END

Relational Expressions
Regular Expressions
Combinations of Patterns
Pattern Ranges

Actions

Variables. Expressions, and Assignments
Initialization of Variables
Field Variables
String Concatenation
Special Variables
Type
Arrays

Special Features

Built-in Functions
Flow of Control

Report Generation
Cooperation with the Shell
Multidimensional Arrays

ii PROGRAMMER'S GUIDE

4-18

4-18

4-19

4-19

4-21

4-22

4-27

4-27

4-29

4-29

4-30

4-31

4-33

4-34

4-35

4-35

4-36

4-37

4-37

4-38

4-39

4-40

4-42

4-42

4-44

4-47

4-49

4-50

UP-13689

Introduction
awk is a file-processing programming language designed to

make many common information and retrieval text manipulation
tasks easy to state and perform. awk:

• generates reports

• matches patterns

• validates data

• filters data for transmission

In the first part of this chapter, we give a general statement of
the awk syntax. Then, under the heading "Using awk," we provide
a number of examples that show the syntax rules in use.

Program Structure

An awk program is a sequence of statements of the form

pattern lactionl
pattern lactionl

awk runs on a set of input files. The basic operation of awk is
to scan a set of input lines, in order, one at a time. In each line,
awk searches for the pattern described in the awk program. If
that pattern is found in the input line, a corresponding action is
performed. In this way, each statement of the awk program is
executed for a given input line. When all the patterns are tested,
the next input line is fetched; and the awk program is once again
executed from the beginning.

In the awk command, either the pattern or the action may be
omitted, but not both. If there is no action for a pattern, the
matching line is simply printed. If there is no pattern for an action,
then the action is performed for every input line. The null awk
program does nothing. Since patterns and actions are both
optional, actions are enclosed in braces to distinguish them from
patterns.

UP-13689 awk 4-1

The awk Programming Language

For example. this awk program

Ixl Ipr intI

prints every input line that has an x in it..

An awk program has the following structure:

- a BEGIN section
- a record or main section
- an END section

The BEGIN section is run before any input lines are read. and the
END section is run after all the data files are processed. The
record section is run over and over for each separate line of input.
The words BEGIN and END are actually special patterns recog
nized by awk.

Values are assigned to variables from the awk command line.
The BEGIN section is run before these assignments are made.

Lexical Units

All awk programs are made up of lexical units called tokens.
In awk there are eight token types:

1. numeric constants

2. string constants

3. keywords

4. identifiers

5. operators

6. record and field tokens

7. comments

8. tokens used for grouping

4-2 PROGRAMMER'S GUIDE UP-13689

The awk Programming Language

Numeric Constants

A numeric constant is either a decimal constant or a floating
constant. A decimal constant is a nonnull sequence of digits con
taining at most one decimal point as in 12, 12., 1.2, and .12. A
floating constant is a decimal constant followed by e or E followed
by an optional + or - sign followed by a non null sequence of
digits as in 12e3, 1.2e3, 1.2e - 3, and 1.2E + 3. The maximum size
and precision of a numeric constant are machine dependent.

String Constants
A string constant is a sequence of zero or more characters

surrounded by double quotes as in 11,11, lIa ll
, lIabll

, and 111211. A dou
ble quote is put in a string by preceding it with a backslash, \, as
in IIHe said, \11 Sit! \1111. A newline is put in a string by using \n in its
place. No other characters need to be escaped. Strings can be
(almost) any length.

Keywords

Strings used as keywords are shown in Figure 4-1.

Keywords

BEGIN break log
END close next
FILENAME continue number
FS exit print
NF exp printf
NA for split
OFS getline sprintf
OAS if sqrt
OFMT in string
AS index substr

int while
length

Figure 4-1: awk Keywords

UP-13689 awk 4-3

The awk Programming Language

Identifiers

Identifiers in awk serve to denote variables and arrays. An
identifier is a sequence of letters, digits, and underscores, begin
ning with a letter or an underscore. Uppercase and lowercase
letters are different.

Operators
awk has assignment, arithmetic, relational, and logical opera

tors similar to those in the C programming language and regular
expression pattern matching operators similar to those in egrep(1)
and lex(1).

Assignment operators are shown in Figure 4-2.

4·4 PROGRAMMER'S GUIDE UP·13689

The awk Programming Language

Symbol Usage Description

= assignment

+= plus-equals X + = V is
similar to X =
X+V

.= minus-equals X- = V is similar
to X = X-V

*= times-equals X *= V is simi-
lar to X = X*V

1= divide-equals X 1= V is simi-
lar to X = XIV

010= mod-equals X %= V is simi-
lar to X = X%V

++ prefix and post- + +X and
fix increments X + + are simi-

lar to X=X + 1

prefix and post- - -X and
fix decrements X - - are simi-

lar to X = X
-1

Figure 4-2: awk Assignment Operators

Arithmetic operators are shown in Figure 4-3.

Up·13689 awk 4-5

The awk Programming Language

Symbol

+

*
/
0/0

(...)

Description

unary and binary plus
unary and binary minus
multiplication
division
modulus
grouping

Figure 4-3: awk Arithmetic Operators

Relational operators are shown in Figure 4-4.

Symbol

<
<=

!=
>=
>

Description

less than
less than or equal to
equal to
not equal to
greater than or equal to
greater than

Figure 4-4: awk Relational Operators

Logical operators are shown in Figure 4-5.

Symbol

SeSe
II
II

!

Description

and
or
not

Figure 4-5: awk Logical Operators

Regular expression matching operators are shown in the Figure 4-
6.

4-6 PROGRAMMER'S GUIDE UP-13689

The awk Programming Language

Symbol Description

matches
!.. does not match

Figure 4-6: Operators for Matching Regular Expressions in awk

Record and Field Tokens
$0 is a special variable whose value is that of the current input

record. $1, $2, and so forth, are special variables whose values
are those of the first field, the second field, and so forth, of the
current input record. The keyword NF (Number of Fields) is a spe
cial variable whose value is the number of fields in the current
input record. Thus $NF has, as its value, the value of the last field
of the current input record. Notice that the first field of each
record is numbered 1 and that the number of fields can vary from
record to record. None of these variables is defined in the action
associated with a BEGIN or END pattern, where there is no
current input record.

The keyword NR (Number of Records) is a variable whose
value is the number of input records read so far. The first input
record read is 1.

Record Separators
The keyword RS (Record Separator) is a variable whose value

is the current record separator. The value of RS is initially set to
newline, indicating that adjacent input records are separated by a
newline. Keyword RS may be changed to any character, e, by
executing the assignment statement RS = "e" in an action.

Field Separator
The keyword FS (Field Separator) is a variable indicating the

current field separator. Initially, the value of FS is a blank, indicat
ing that fields are separated by white space, i.e., any nonnull
sequence of blanks and tabs. Keyword FS is changed to any sin
gle character, e, by executing the assignment statement F = "e"
in an action or by using the optional command line argument
- Fe. Two values of e have special meaning, space and \t. The
assignment statement FS =" "makes white space (a tab or

UP-13689 awk 4-7

The awk Programming Language

blank) the field separator; and on the command line, - F\t makes
a tab the field separator.

If the field separator is not a blank, then there is a field in the
record on each side of the separator. For instance, if the field
separator is 1, the record 1 XXX1 has three fields. The first and
last are null. If the field separator is blank, then fields are
separated by white space, and none of the NF fields are null.

Multiline Records
The assignment RS =" II makes an empty line the record

separator and makes a nonnull sequence (consisting of blanks,
tabs, and possibly a newline) the field separator. With this setting,
none of the first NF fields of any record are null.

Output Record and Field Separators
The value of OFS (Output Field Separator) is the output field

separator. It is put between fields by print. The value of ORS
(Output Record Separators) is put after each record by print. Ini
tially, ORS is set to a newline and OFS to a space. These values
may change to any string by assignments such as ORS = "abc"
and OFS = "xyz".

Comments

A comment is introduced by a # and terminated by a newline.
For example:

this line is a comment

A comment can be appended to the end of any line of an awk
program.

Tokens Used for Grouping

Tokens in awk are usually separated by nonnull sequences of
blanks, tabs, and newlines, or by other punctuation symbols such
as commas and semicolons. Braces, { ... }, surround actions,
slashes, / .. ./, surround regular expression patterns, and double
quotes, " ... ", surround string constants.

4-8 PROGRAMMER'S GUIDE UP-13689

The awk Programming Language

Primary Expressions

In awk, patterns and actions are made up of expressions. The
basic building blocks of expressions are the primary expressions:

numeric constants
string constants
variables
functions

Each expression has both a numeric and a string value, one of
which is usually preferred. The rules for determining the preferred
value of an expression are explained below.

Numeric Constants
The format of a numeric constant was defined previously in

"Lexical Units." Numeric values are stored as floating point
numbers. The string value of a numeric constant is computed
from the numeric value. The preferred value is the numeric value.
Numeric values for string constants are in Figure 4-7.

Numeric
Constant

o
1

.5

.5e2

Numeric
Value

o
1
0.5

50

String
Value

o
1

.5
50

Figure 4-7: Numeric Values for String Constants

String Constants

The format of a string constant was defined previously in "Lexi
cal Units." The numeric value of a string constant is 0 unless the
string is a numeric constant enclosed in double quotes. In this
case, the numeric value is the number represented. The pre
ferred value of a string constant is its string value. The string
value of a string constant is always the string itself. String values

UP-13689 awk 4-9

The awk Programming Language

for string constants are in Figure 4-8.

String
Constant

1111
lIall

IIXYZII
11011
11111
11.511

1I.5e211

Numeric
Value

0
0
0
0
1
0.5
0.5

String
Value

empty space
a
XYZ
o
1
.5
.5e2

Figure 4-8: String Values for String Constants

Variables
A variable is one of the following:

identifier
identifier [expression]
$term

The numeric value of any uninitialized variable is 0, and the string
value is the empty string.

An identifier by itself is a simple variable. A variable of the
form identifier [expression] represents an element of an associa
tive array named by identifier. The string value of expression is
used as the index into the array. The preferred value of identifier
or identifier [expression] is determined by context.

The variable $0 refers to the current input record. Its string
and numeric values are those of the current input record. If the
current input record represents a number, then the numeric value
of $0 is the number and the string value is the literal string. The
preferred value of $0 is string unless the current input record is a
number. $0 cannot be changed by assignment.

4-10 PROGRAMMER'S GUIDE UP-13689

The awk Programming Language

The variables $1, $2, .•• refer to fields 1, 2, and so forth, of the
current input record. The string and numeric value of $i for
1 < = i < = NF are those of the ith field of the current input record.
As with $0, if the ith field represents a number, then the numeric
value of $i is the number and the string value is the literal string.
The preferred value of $i is string unless the ith field is a number.
$i may be changed by assignment; the value of $0 is changed
accordingly.

In general, $term refers to the input record if term has the
numeric value 0 and to field i if the greatest integer in the numeric
value of term is i. If i < 0 or if i> = 100, then accessing $i causes
awk to produce an error diagnostic. If NF < i < = 100, then $i
behaves like an uninitialized variable. Accessing $i for i > NF
does not change the value of NF.

Functions

awk has a number of built-in functions that perform common
arithmetic and string operations. The arithmetic functions are in
Figure 4-9.

Functions

exp (expression)
int (expression)
log (expression)
sqrt (expression)

Figure 4-9: Built-in Functions for Arithmetic and String Operations

These functions (exp, int, log, and sqrt) compute the exponential,
integer part, natural logarithm, and square root, respectively, of
the numeric value of expression. The (expression) may be omit
ted; then the function is applied to $0. The preferred value of an
arithmetic function is numeric. String functions are shown in Fig
ure 4-10.

UP-13689 awk 4-11

The awk Programming Language

String Functions

getline
index (expression 1, expression2)
length (expression)
split(expression, identifier, expression2)
split(expression, identifier)
sprintf(format, expression 1, expression2 ...)
substr (expression 1, expression2)
substr (expression 1, expression2, expression3)

Figure 4-10: awk String Functions

The function getline causes the next input record to replace
the current record. It returns 1 if there is a next input record or a
o if there is no next input record. The value of NR is updated.

The function index(e1,e2) takes the string value of expressions
e1 and e2 and returns the first position of where e2 occurs as a
substring in e1. If e2 does not occur in e1, index returns O. For
example:

index ("abc", "bc")=2
index ("abc", "ac")=O.

The function length without an argument returns the number
of characters in the current input record. With an expression argu
ment, length(e) returns the number of characters in the string
value of e. For example:

length ("abc")=3
length (17)=2.

4-12 PROGRAMMER'S GUIDE UP-13689

The awk Programming Language

The function split splits the string value of expression e into
fields that are then stored in array[l], array[2], .,,' array[n] using
the string value of sep as the field separator. Split returns the
number of fields found in The function split uses the current value
of FS to indicate the field separator. For example, after invoking

n = sp 1 it (SO, a), a [1 L

a[2], .,,' a[n] is the same sequence of values as $1, $2 "" $NF.

The function sprintf(f, e1, e2, ...) produces the value of expres
sions e1, e2, ... in the format specified by the string value of the
expression f. The format control conventions are those of the
printf(3S) statement in the C programming language (except that
the use of the asterisk, *, for field width or precision is not
allowed).

The function substr returns the suffix of string starting at posi
tion The function substr returns the substring of string that begins
at position pos and is length characters long. If pos + length is
greater than the length of string then substr is equivalent to
substr For example:

substr("abc", 2,
substr("abc", 2,
substr("abc", 2,

1)

2)

3)

= "b"
= "be"
= "be"

Positions less than 1 are taken as 1. A negative or zero length
produces a null result. The preferred value of sprintf and substr
is string. The preferred value of the remaining string functions is
numeric.

Terms

Various arithmetic operators are applied to primary expres
sions to produce larger syntactic units called terms. All arithmetic
is done in floating point. A term has one of the following forms:

primary expression
term binop term
unop term
incremented variable
(term)

UP-13689 awk 4-13

The awk Programming Language

Binary Terms
In a term of the form

term 1 binop term2

binop can be one of the five binary arithmetic operators +, -, *
(multiplication), I(division), % (modulus). The binary operator is
applied to the numeric value of the operands term1 and term2,
and the result is the usual numeric value. This numeric value is the
preferred value, but it can be interpreted as a string value (see
Numeric Constants). The operators *, I, and % have higher pre
cedence than + and -. All operators are left associative.

Unary Term
In a term of the form

unop term

unop can be unary + or -. The unary operator is applied to the
numeric value of term, and the result is the usual numeric value
which is preferred. However, it can be interpreted as a string
value. Unary + and - have higher precedence than *, I, and %.

Incremented Vars
An incremented variable has one of the forms

++ var
- - var
var + +
var - -

The + + var has the value var + 1 and has the effect of var =
var + 1. Similarly, - - var has the value var - 1 and has the
effect of var = var - 1. Therefore, var + + has the same value
as var and has the effect of var = var + 1. Similarly, var - -
has the same value as var and has the effect of var = var - 1.
The preferred value of an incremented variable is numeric.

4·14 PROGRAMMER'S GUIDE UP·13689

The awk Programming Language

Parenthesized Terms
Parentheses are used to group terms in the usual manner.

Expressions
An awk expression is one of the following:

term
term term '"
var asgnop expression

Concatenation of Terms
In an expression of the form term 1 term2 .", the string value of

the terms are concatenated. The preferred value of the resulting
expression is a string value. Concatenation of terms has lower
precedence than binary + and -. For example,

1+2 3+4

has the string (and numeric) value 37.

Assignment Expressions
An assignment expression is one of the forms

var asgnop expression

where asgnop is one of the six assignment operators:

=
+=
-=
*=
/=
0/0=

The preferred value of var is the same as that of expression.

In an expression of the form

var = expression

the numeric and string values of var become those of expression.

var op = expression

UP-13689 awk 4-15

The awk Programming Language

is equivalent to

var = var op expression

where op is one of: +, -, *, I, %. The asgnops are right associa
tive and have the lowest precedence of any operator. Thus, a + =
b * = c - 2 is equivalent to the sequence of assignments

b = b * (c-2)

a = a + b

4-16 PROGRAMMER'S GUIDE UP-13689

Using awk

The remainder of this chapter undertakes to show the syntax
rules of awk in action. The material is organized under the follow
ing topics:

• input and output

• patterns

• actions

• special features

UP-13689 awk 4-17

Input and Output

Presenting Your Program for Processing

There are two ways to present your program of pattern/action
statements to awk for processing:

1. If the program is short (a line or two), it is often easiest to
make the program the first argument on the command
line:

awk ' program • [filename ...]

where program is your awk program, and filename ... is an
optional input file(s). Note that there are single quotes
around the program name in order for the shell to accept
the entire string (program) as the first argument to awk.
For example, write to the shell

awk ' /x/ {print} , file1

to run the awk program /x/ {print} on the input file file1.
If no input file is specified, awk expects input from the
standard input, stdin. You can also specify that input
comes from stdin by using the hyphen, -, as one of the
files. The pattern-action statement

awk • program • file1 -

looks for input from file1 and from stdin. It processes first
from file1 and then from stdin.

2. Alternately. if your awk program is long or is one you want
to preserve for re-use in the future, it is convenient to put
the program in a separate file, awkprog, for example, and
tell awk to fetch it from there. This is done by using the
- f option on the command line, as follows:

awk - f awkprog filename... where filename ... is an
optional list of input

4-18 PROGRAMMER'S GUIDE UP-13689

Using awk: input and output

files that may include stdin as is shown above.

These alternative ways of presenting your awk program for
processing are illustrated by the following:

awk ' BEGIN {print "hello, world II exit} ,

prints

hello, world

on the standard output when given to the shell.

This awk program could be run by putting

BEGIN Iprint "hello, world" exit}

in a file named awkprog, and then the command

awk ·f awkprog

given to the shell would have the same effect as the first pro
cedure.

Input: Records and Fields

awk reads its input one record at a time. Unless changed by
you, a record is a sequence of characters from the input ending
with a newline character or with an end of file. awk reads in char
acters until it encounters a newline or end of file. The string of
characters, thus read, is assigned to the variable $0.

Once awk has read in a record, it then views the record as
being made up of fields. Unless changed by you, a field is a string
of characters separated by blanks or tabs.

Sample Input File, countries

For use as an example, we have created the file, countries.
countries contains the area in thousands of square miles, the
population in millions, and the continent for the ten largest coun
tries in the world. (Figures are from 1978; Russia is placed in
Asia.)

UP·13689 awk 4-19

Using awk: input and output

Russia 8650 262 Asia
Canada 3852 24 North America
China 3692 866 Asia
USA 3615 219 North America
Brazi 1 3286 116 South America
Australia 2968 14 Australia
India 1269 637 Asia
Argentina 1072 26 South America
Sudan 968 19 Africa
Algeria 920 18 Africa

Figure 4-11: Sample Input File, countries

The wide spaces are tabs in the original input and a single
blank separates North and South from America. We use this data
as the input for many of the awk programs in this chapter since it
is typical of the type of material that awk is best at processing (a
mixture of words and numbers arranged in fields or columns
separated by blanks and tabs).

Each of these lines has either four or five fields if blanks
and/or tabs separate the fields. This is what awk assumes unless
told otherwise. In the above example, the first record is

Russia 8650 262 Asia

When this record is read by awk, it is assigned to the variable
$0. If you want to refer to this entire record, it is done through the
variable, $0. For example, the following action:

Iprint $01

prints the entire record.

Fields within a record are assigned to the variables $1, $2, $3,
and so forth; that is, the first field of the present record is referred
to as $1 by the awk program. The second field of the present
record is referred to as $2 by the awk program. The ith field of
the present record is referred to as $i by the awk program. Thus,
in the above example of the file countries, in the first record:

4-20 PROGRAMMER'S GUIDE UP-13689

Using awk: input and output

$1 is equal to the string "Russia"
$2 is equal to the integer 8650
$3 is equal to the integer 262
$4 is equal to the string "Asia"
$5 is equal to the null string

... and so forth.

To print the continent, followed by the name of the country,
followed by its population, use the following command:

awk '{print $4, $1, $3}' countries

You'll notice that this does not produce exactly the output you
may have wanted because the field separator defaults to white
space (tabs or blanks). North America and South America incon
veniently contain a blank. Try it again with the following command
line:

awk -F\t '{print $4, $1, $3}' countries

Input: From the Command Line
We have seen above, under "Presenting Your Program for Pro

cessing," that you can give your program to awk for processing by
either including it on the command line enclosed by single quotes,
or by putting it in a file and naming the file on the command line
(preceded by the -f flag). It is also possible to ~et variables from
the command line.

In awk, values may be assigned to variables from within an
awk program. Because you do not declare types of variables, a
variable is created simply by referring to it. An example of assign
ing a value to a variable is:

x=5

This statement in an awk program assigns the value 5 to the vari
able x. This type of assignment can be done from the command
line. This provides another way to supply input values to awk pro
grams. For example:

UP-13689 awk 4-21

Using awk: input and output

awk' {print x }' x=5 -

will print the value 5 on the standard output. The minus sign at
the end of this command is necessary to indicate that input is
coming from stdin instead of a file called x = 5. After entering the
command, the user must proceed to enter input. The input is ter
minated with a CTRL-d.

If the input comes from a file, named file1 in the example, the
command is

awk '{print x}' file1

It is not possible to assign values to variables used in the BEGIN
section in this way.

If it is necessary to change the record separator and the field
separator, it is useful to do so from the command line as in the fol
lowing example:

awk - f awkprog RS = ":" file1

Here, the record separator is changed to the character:. This
causes your program in the file awkprog to run with records
separated by the colon instead of the newline character and with
input coming from file1. It is similarly useful to change the field
separator from the command line.

There is a separate option, - Fx, that is placed directly after
the command awk. This changes the field separator from white
space to the character x. For example:

awk ·F: ·f awkprog file1

changes the field separator, FS, to the character:. Note that if
the field separator is specifically set to a tab (that is, with the - F
option or by making a direct assignment to FS), then blanks are
not recognized by awk as separating fields. However, the reverse
is not true. Even if the field separator is specifically set to a blank,
tabs are still recognized by awk as separating fields.

4·22 PROGRAMMER'S GUIDE UP·13689

Using awk: input and output

Output: Printing
An action may have no pattern; in this case. the action is exe

cuted for all lines as in the simple printing program

{printJ

This is one of the simplest actions performed by awk. It prints
each line of the input to the output. More useful is to print one or
more fields from each line. For instance. using the file countries
that was used earlier.

awk '{ print $1, $3 }' countries

prints the name of the country and the population:

Russia 262
Canada 24
China 866
USA 219
Brazil 116
Australia 14
India 637
Argentina 14
Sudan 19
Algeria 18

A semicolon at the end of statements is optional. awk accepts

{print $1J

and

Iprint $1jJ

equally and takes them to mean the same thing. If you want to
put two awk statements on the same line of an awk script. the
semicolon is necessary. for example. if you want the number 5
printed:

{x=5j print xJ

UP-13689 awk 4-23

Using awk: input and output

Parentheses are also optional with the print statement.

Iprint $3" $2J

is the same as

Iprint ($3" $2)J

Items separated by a comma in a print statement are
separated by the current output field separator (normally spaces,
even though the input is separated by tabs) when printed. The
OFS is another special variable that can be changed by you.
(These special variables are summarized below.) print also prints
strings directly from your programs, as with the awk script

{print "hello, world"J

As we have already seen, awk makes available a number of
special variables with useful values, for example, FS and AS. We
introduce two other special variables in the next example. NA and
NF are both integers that contain the number of the present
record and the number of fields in the present record, respec
tively. Thus,

Iprint NR" NF" $o}

prints each record number and the number of fields in each record
followed by the record itself. Using this program on the file coun·
tries yields:

4 Russia 8650 262 Asia
2 5 Canada 3852 24 North America
3 4 China 3692 866 Asia
4 5 USA 3615 219 North America
5 5 Brazil 3286 116 South America
6 4 Australia 2968 14 Australia
7 4 India 1269 637 Asia
8 5 Argentina 1072 26 South America
9 4 Sudan 968 19 Africa
10 4 Algeria 920 18 Africa

and the program

{print NR" $1}

4·24 PROGRAMMER'S GUIDE UP·13689

prints

1 Russia
2 Canada
3 China
4 USA
5 Brazil
6 Australia
7 India
8 Argentina
9 Sudan
10 Algeria

Using awk: input and output

This is an easy way to supply sequence numbers to a list. print,
by itself, prints the input record. Use

1 pr i nt ,ttl I

to print an empty line.

awk also provides the statement printf so that you can format
output as desired. print uses the default format %.6g for each
numeric variable printed.

printf "format", expr, expr, ...

formats the expressions in the list according to the specification in
the string format, and prints them. The format statement is almost
identical to that of printf(3S) in the C library. For example:

1 printf "%10s %6d %6d\n", $1, $2, $3 I

prints $1 as a string of 1 0 characters (right justified). The second
and third fields (6-digit numbers) make a neatly columned table.

UP·13689 awk 4-25

Using awk: input and output

Russia 8650 262
Canada 3852 244
China 3692 866

USA 3615 219
Brazil 3286 116

Australia 2968 14
India 1269 637

Argentina 1072 26
Sudan 968 19

Algeria 920 18

With printf, no output separators or newlines are produced
automatically. You must add them as in this example. The
escape characters \n, \t, \b (backspace), and \r (carriage return)
may be specified.

There is a third way that printing can occur on standard output
when a pattern without an action is specified. In this case, the
entire record, $0, is printed. For example, the program

Ixl

prints any record that contains the character x.

There are two special variables that go with printing, OFS and
ORS. By default, these are set to blank and the newline character,
respectively. The variable OFS is printed on the standard output
when a comma occurs in a print statement such as

1 x="hello"; y="world"
print x,y
1

which prints

hello world

However, without the comma in the print statement as

you get

1 x="hello"; y="world"
print x y
1

4-26 PROGRAMMER'S GUIDE UP·13689

Using awk: input and output

helloworld

To get a comma on the output, you can either insert it in the print
statement as in this case

I x="hello"; y="world"
print x"," y

I
or you can change OFS in a BEGIN section as in

BEGIN IOFS=", "I
I x="hello"; y="world"
print x, y
}

Both of these last two scripts yield

hello, world

Note that the output field separator is not used when $0 is printed.

Output: to Different Files
The UNIX operating system shell allows you to redirect stan

dard output to a file. awk also lets you direct output to many dif
ferent files from within your awk program. For example, with our
input file countries, we want to print all the data from countries of
Asia in a file called ASIA, all the data from countries in Africa in a
file called AFRICA, and so forth. This is done with the following
awk program:

if ($4 == "Asia") print> "ASIA"
if ($4 == "Europe") print> "EUROPE"
if ($4 == "North") print> "NORTH_AMERICA"
if ($4 == "South") print> "SOUTH_AMERICA"
if ($4 == "Australia") print> "AUSTRALIA"
if ($4 == "Africa") print> "AFRICA"

Flow of control statements is discussed later.

UP-13689 awk 4-27

Using awk: input and output

In general, you may direct output into a file after a print or a
printf statement by using a statement of the form

print> "filename"

where filename is the name of the file receiving the data. The
print statement may have any legal arguments to it.

Notice that the filename is quoted. Without quotes, filenames
are treated as uninitialized variables and all output then goes to
stdout, unless redirected on the command line.

If > is replaced by > >, output is appended to the file rather
than overwriting it. Notice that there is an upper limit to the
number of files that are written in this way. At present it is ten.

Output: to Pipes

It is also possible to direct printing into a pipe instead of a file.
For example:

if ($2 == "XX") print: "mailx mary"
I

where mary is a person's login name. Any record with the second
field equal to XX is sent to the user, mary, as mail. awk waits until
the entire program is run before it executes the command that
was piped to; in this case, the mailx(1) command. For example:

print $1 : "sort"

takes the first field of each input record, sorts these fields, and
then prints them.

Another example of using a pipe for output is the following
idiom, which guarantees that its output always goes to your termi
nal:

print "cat -v > /dev/tty"
J

4-28 PROGRAMMER'S GUIDE UP-13689

Using awk: input and output

Only one output statement to a pipe is permitted in an awk
program. In all output statements involving redirection of output,
the files or pipes are identified by their names, but they are
created and opened only once in the entire run.

UP·13689 awk 4·29

Patterns
A pattern in front of an action acts as a selector that deter

mines if the action is to be executed. A variety of expressions are
used as patterns:

• certain keywords

• arithmetic relational expressions

• regular expressions

• combinations of these

BEGIN and END

The keyword, BEGIN, is a special pattern that matches the
beginning of the input before the first record is read. The key
word, END, is a special pattern that matches the end of the input
after the last line is processed. BEGIN and END thus provide a
way to gain control before and after processing for initialization
and wrapping up.

As you have seen, you can use BEGIN to put column head
ings on the output

BEGIN {print "Country", "Area", "Population", "Continent"}
{print}

which produces

Country Area Population Continent

Russia 8650 262 Asia
Canada 3852 24 North America
China 3692 866 Asia
USA 3615 219 North America
Brazi 1 3286 116 South America
Australia2968 14 Australia
India 1269 637 Asia
Argentina1072 26 South America
Sudan 968 19 Africa
Algeria 920 18 Africa

Formatting is not very good here; printf would do a better job and

4-30 PROGRAMMER'S GUIDE UP-13689

Using awk: patterns

is generally used when appearance is important.

Recall also, that the BEGIN section is a good place to change
special variables such as FS or RS. For example:

BEGIN 1 FS= "\t"
printf "Country\t\t

Area\tPopulation\tContinent\n\n"}
{printf "%-10s\t%6d\t%6d\t\t% -14s\n",

$1, $2, $3, $4}
END {print "The number of records is", NR}

In this program, FS is set to a tab in the BEGIN section and as a
result all records in the file countries have exactly four fields.
Note that if BEGIN is present it is the first pattern; END is the last
if it is used.

Relational Expressions
An awk pattern is any expression involving comparisons

between strings of characters or numbers. For example, if you
want to print only countries with more than 100 million population,
use

$3 > 100

This tiny awk program is a pattern without an action so it prints
each line whose third field is greater than 100 as follows:

Russia 8650 262 Asia
China 3692 866 Asia
USA 3615 219 North America
Brazi 1 3286 116 South America
India 1269 637 Asia

To print the names of the countries that are in Asia, type

$4 == "Asia" {print $1}

which produces

Russia
China
India

UP-13689 awk 4-31

Using awk: patterns

The conditions tested are <, < =, = =, ! =, > =, and >. In such
relational tests if both operands are numeric, a numerical com
parison is made. Otherwise, the operands are compared as
strings. Thus,

$1 >= "s"

selects lines that begin with S, T, U, and greater, which in this case
are

USA 3615
Sudan 968

219

19

North America
Africa

In the absence of other information, fields are treated as strings,
so the program

$1 == $4

compares the first and fourth fields as strings of characters and
prints the single line

Australia 2968 14 Australia

Regular Expressions

awk provides more powerful capabilities for searching for
strings of characters than were illustrated in the previous section.
These are regular expressions. The simplest regular expression is
a literal string of characters enclosed in slashes.

/Asia/

This is a complete awk program that prints all lines that contain
any occurrence of the name Asia. If a line contains Asia as part
of a larger word like Asiatic, it is also printed (but there are no
such words in the countries file.)

awk regular expressions include regular expression forms
found in the text editor, ed(1), and the pattern finder, grep(1), in
which certain characters have special meanings.

4-32 PROGRAMMER'S GUIDE UP-13689

Using awk: patterns

For example, we could print all lines that begin with A with

I~ AI

or all lines that begin with A, B, or C with

I ~ [ABC]I

or all lines that end with ia with

lia$1

In general, the circumflex, ~, indicates the beginning of a line. The
dollar sign, $, indicates the end of the line and characters enclosed
in brackets, [], match anyone of the characters enclosed. In
addition, awk allows parentheses for grouping, the pipe, :, for
alternatives, + for one or more occurrences, and? for zero or one
occurrences. For example:

IxlYI {print}

prints all records that contain either an x or a y.

lax+bl {print!

prints all records that contain an a followed by one or more x's fol
lowed by a b. For example, axb, Paxxxxxxxb, QaxxbR.

lax?bl

prints all records that contain an a followed by zero or one x fol
lowed by a b. For example: ab, axb, yaxbPPP, CabD.

The two characters, . and *, have the same meaning as they
have in ed(1) namely, . can stand for any character and * means
zero or more occurrences of the character preceding it. For exam
ple:

/a.b/

matches any record that contains an a followed by any character
followed by a b. That is, the record must contain an a and a b
separated by exactly one character. For example, /a.b/ matches
axb, aPb and xxxxaXbxx, but not ab, axxb.

lax*c/

matches a record that contains an a followed by zero or more x's
followed by a c. For example, it matches

UP-13689 awk 4-33

Using awk: patterns

ac
axc
pqraxxxxxxxxxxc901

Just as in ed(1), it is possible to turn off the special meaning of
metacharacters such as.. and * by preceding these characters
with a backslash. An example of this is the pattern

/\/*\//

which matches any string of characters enclosed in slashes.

One can also specify that any field or variable matches a regu
lar expression (or does not match it) by using the operators - or
!-. For example, with the input file countries as before, the pro
gram

$1 - /ia$/ {print $1J

prints all countries whose name ends in ia:

Russia
Australia
India
Algeria

which is indeed different from lines that end in ia.

Combinations of Patterns
A pattern can be made up of similar patterns combined with

the operators :: (OR), && (AND), ! (NOT), and parentheses. For
example:

$2 >= 3000 && $3 >= 100

selects Jines where both area and population are large. For exam
ple:

Russ i a 8650 262 As i a
China 3692 866 As i a
USA 3615 219 North America
Brazil 3286 116 South America

while

4-34 PROGRAMMER'S GUIDE UP-13689

Using awk: patterns

$4 == "Asia" :: $4 == "Africa"

selects lines with Asia or Africa as the fourth field. An alternate
way to write this last expression is with a regular expression:

$4 - I,. Asia:Africa)$/

which says to select records where the 4th field matches Africa or
begins with Asia.

&& and :: guarantee that their operands are evaluated from
left to right; evaluation stops as soon as truth or falsehood is
determined.

Pattern Ra nges

The pattern that selects an action may also consist of two pat
terns separated by a comma as in

pattern 1, pattern2 { action }

In this case, the action is performed for each line between an
occurrence of pattern1 and the next occurrence of pattern2
(inclusive). As an example with no action

/Canada/,/Brazil/

prints all lines between the one containing Canada and the line
containing Brazil. For example:

while

Canada 3852
China 3692
USA 3615
Brazi 1 3286

24 North Amer i ca
866 Asi a
219 North America
116 South America

NR == 2, NR == 5 { ... 1

does the action for lines 2 through 5 of the input. Different types
of patterns may be mixed as in

/Canada/, $4 == "Africa"

which prints all lines from the first line containing Canada up to
and including the next record whose fourth field is Africa.

UP-13689 awk 4-35

Using awk: patterns

NOTE: The foregoing discussion of pattern matching per
tains to the pattern portion of the pattern/action
awk statement. Pattern matching can also take
place inside an if or while statement in the action
portion. See the section "Flow of ControL II

4-36 PROGRAMMER'S GUIDE UP·13689

Actions
An awk action is a sequence of action statements separated

by newlines or semicolons. These action statements do a variety
of bookkeeping and string manipulating tasks.

Variables, Expressions, and Assignments

awk provides the ability to do arithmetic and to store the
results in variables for later use in the program. As an example,
consider printing the population density for each country in the file
countries.

{print $1, (1000000 * $3) / ($2 * 1000) }

(Recall that in this file the population is in millions and the area in
thousands.) The result is population density in people per square
mile.

Russia 30.289
Canada 6.23053
China 234.561
USA 60.5809
Brazil 35.3013
Australia 4.71698
India 501.97
Argentina 24.2537
Sudan 19.6281
Algeria 19.5652

The formatting is not good; using printf instead gives the program

{printf "%10s %6.1f\n", $1, (1000000 * $3) / ($2 * 1000)}

and the output

UP-13689 awk 4-37

Using awk: actions

Russia 30.3
Canada 6.2
China 234.6
USA 60.6
Brazi 1 35.3
Australia 4.7
India 502.0
Argentina 24.3
Sudan 19.6
Algeria 19.6

Arithmetic is done internally in floating point. The arithmetic
operators are +, -, *, /, and % (modulus).

To compute the total population and number of countries from
Asia, we could write

{ pop += $3; ++n 1 /Asia/
END {print "total population of", n, "Asian countries is",

pop 1

which produces

total population of 3 Asian countries is 1765.

The operators, + +, - -, - =, / =, * =, + =, and % = are
available in awk as they are in C. The same is true of the + +
operator; it adds one to the value of a variable. The increment
operators + + and - - (as in C) are used as prefix or as postfix
operators. These operators are also used in expressions.

Initialization of Variables
In the previous example, we did not initialize pop nor n; yet

everything worked properly. This is because (by default) variables
are initialized to the null string, which has a numerical value of O.
This eliminates the need for most initialization of variables in
BEGIN sections. We can use default initialization to advantage in
this program, which finds the country with the largest population.

4-38 PROGRAMMER'S GUIDE UP-13689

Using awk: actions

maxpop < $3 I
maxpop = $3
country = $1
}

END {print country, maxpop}

which produces

China 866

Field Variables
Fields in awk share essentially all of the properties of variables.

They are used in arithmetic and string operations, may be initial
ized to the null string, or have other values assigned to them.
Thus, divide the second field by 1000 to convert the area to mil
lions of square miles by

{ $2 /= 1000; print 1

or process two fields into a third with

BEGIN {FS = "\t" 1
{ $4 = 1000 * $3 / $2; print 1

or assign strings to a field as in

/USA/ I $1 = "United States" ; print}

which replaces USA by United States and prints the affected line:

United States 3615 219 North America

Fields are accessed by expressions; thus, $NF is the last field and
$(NF - 1) is the second to the last. Note that the parentheses are
needed since $NF - 1 is 1 less than the value in the last field.

UP-13689 awk 4-39

Using awk: actions

Stri ng Concatenation
Strings are concatenated by writing them one after the other

as in the following example:

x = "hello"
x = x ", world"
print x

which prints the usual

hello, world

With input from the file countries, the following program:

IAI s = s " " $1
END I print s J

prints

Australia Argentina Algeria

Variables, string expressions, and numeric expressions may
appear in concatenations; the numeric expressions are treated as
strings in this case.

Special Variables

Some variables in awk have special meanings. These are
detailed here and the complete list given.

NR

NF

FS

RS

$i

Number of the current record.

Number of fields in the current record.

Input field separator, by default it is set to a
blank or tab.

Input record separator, by default it is set to
the newline character.

The ith input field of the current record.

4·40 PROGRAMMER'S GUIDE UP·13689

$0

OFS

ORS

OFMT

FILENAME

Type

Using awk: actions

The entire current input record.

Output field separator, by default it is set to a
blank.

Output record separator, by default it is set to
the newline character.

The format for printing numbers, with the print
statement, by default is %.69

The name of the input file currently being read.
This is useful because awk commands are typ
ically of the form

awk -f program file1 file2 file3 ...

Variables (and fields) take on numeric or string values accord
ing to context. For example, in

pop += $3

pop is presumably a number, while in

country = $1

country is a string. In

maxpop < $3

the type of maxpop depends on the data found in $3. It is deter
mined when the program is run.

In general, each variable and field is potentially a string or a
number, or both at any time. When a variable is set by the assign
ment

v = expr

its type is set to that of expr. (Assignment also includes + =,
+ +, - =, and so forth.) An arithmetic expression is of the type
number; a concatenation of strings is of type string. If the assign
ment is a simple copy as in

UP-13689 awk 4-41

Using awk: actions

v1 = v2

then the type of v1 becomes that of v2.

In comparisons, if both operands are numeric, the comparison
is made numerically. Otherwise, operands are coerced to strings if
necessary and the comparison is made on strings.

The type of any expression may be coerced to numeric by a
subterfuge such as

expr + 0

and to string by

expr ""

This last expression is string concatenated with the null string.

Arrays

As well as ordinary variables, awk provides 1-dimensional
arrays. Array elements are not declared; they spring into
existence by being mentioned. Subscripts may have any non-null
value including non-numeric strings. As an example of a conven
tional numeric subscript, the statement

x[NR] = $0

assigns the current input line to the NRth element of the array x.
In fact, it is possible in principle (though perhaps slow) to process
the entire input in a random order with the following awk program:

1 x[NR] = $0 1
END I 000 program 000 1

The first line of this program records each input line into the array
x. In particular, the following program

1 x[NR] = $1}

(when run on the file countries) produces an array of elements
with

4-42 PROGRAMMER'S GUIDE UP-13689

x[1] = "Russia"
x[2] = "Canada"
x[3] = "China"

... and so forth.

Using awk: actions

Arrays are also indexed by non-numeric values that give awk a
capability rather like the associative memory of Snobol tables. For
example, we can write

/Asia/lpop["Asia"] += $31
/Africa/lpop[Africa] += $31
END lprint "Asia=" pop["Asia"],

"Africa="pop["Africa"] 1

which produces

Asia=1765 Africa=37

Notice the concatenation. Also, any expression can be used as a
subscript in an array reference. Thus,

area[$1] = $2

uses the first field of a line (as a string) to index the array area.

UP·13689 awk 4·43

Special Features
In this final section we describe the use of some special awk

features.

Built-In Functions

The function length is provided by awk to compute the length
of a string of characters. The following program prints each
record preceded by its length:

{print length, SO J

In this case the variable length means length($O), the length of the
present record. In general, length(x) will return the length of x as
a string.

With input from the file countries, the following awk program
will print the longest country name:

length(S1) > max {max = length(Sl); name = S1 J
END {print name!

The function split

split(s, array)

assigns the fields of the string s to successive elements of the
array, array.

For example;

split("Now is the time", w)

assigns the value Now to w[1], is to w[2], the to w[3], and time to
w[4]. All other elements of the array w[], if any, are set to the
null string. It is possible to have a character other than a blank as
the separator for the elements of w. For this, use split with three
elements.

n = split(s, array, sep)

This splits the string s into array[1], ... , array[n]. The number of
elements found is returned as the value of split. If the sep argu
ment is present, its first character is used as the field separator;
otherwise, FS is used. This is useful if in the middle of an awk

4-44 PROGRAMMER'S GUIDE UP-13689

Using awk: Special Features

script, it is necessary to change the record separator for one
record. Also provided by awk are the math functions

sqrt
log
exp
int

They provide the square root function, the base e logarithm
function, exponential and integral part functions. This last function
returns the greatest integer less than or equal to its argument.
These functions are the same as those of the C math library (int
corresponds to the libm floor function) and so they have the same
return on error as those in libm. (See the Programmer's Refer
ence Manual.)

The function substr

substr(s"m"n)

produces the substring of s that begins at position m and is at
most n characters long. If the third argument (n in this case) is
omitted, the substring goes to the end of s. For example, we
could abbreviate the country names in the file countries by

1 $1 = substr($1, 1, 3); print I

which produces

Rus 8650 262 Asia
Can 3852 24 North America
Chi 3692 866 Asia
USA 3615 219 North America
Bra 3286 116 South America
Aus 2968 14 Australia
Ind 1269 637 Asia
Arg 1072 26 South America
Sud 968 19 Africa
Alg 920 18 Africa

If s is a number, substr uses its printed image:

substr(123456789,3,4} = 3456.

UP-13689 awk 4-45

Using awk: Special Features

The function index

index (s1,s2)

returns the leftmost position where the string s2 occurs in s1 or
zero if s2 does not occur in s1.

The function sprintf formats expressions as the printf state
ment does but assigns the resulting expression to a variable
instead of sending the results to stdout. For example:

x = sprintf("%10s %6d", $1, $2)

sets x to the string produced by formatting the values of $1 and
$2. The x may then be used in subsequent computations.

The function getline immediately reads the next input record.
Fields NR and $0 are set but control is left at exactly the same
spot in the awk program. getline returns 0 for the end of file and
a 1 for a normal record.

Flow of Control
awk provides the basic flow of control statements within

actions

• If-else

• while

• for

with statement grouping as in C language.

The if statement is used as follows:

if (condition) statement1 else statement2

The condition is evaluated; and if it is true. statement1 is exe
cuted; otherwise. statement2 is executed. The else part is
optional. Several statements enclosed in braces. { }. are treated
as a single statement. Rewriting the maximum population compu
tation from the pattern section with an if statement results in

4-46 PROGRAMMER'5 GUIDE UP-13689

Using awk: Special Features

if (maxpop < $3) {
maxpop = $3
country = $1

END print country, maxpop

There is also a while statement in awk.

while (condition) statement

The condition is evaluated; if it is true, the statement is executed.
The condition is evaluated again, and if true, the statement is exe
cuted. The cycle repeats as long as the condition is true. For
example, the following prints all input fields, one per line:

f = 1
while (i <= NF) 1

print $i
++i

Another example is the Euclidean algorithm for finding the
greatest common divisor of $1 and $2:

{printf "the greatest common divisor of " $1 "and ",
$2, "is"

wh i 1 e ($1 ! = $2) {
if ($1 > $2) $1 -= $2
else $2 -= $1

prfntf $1 "\n"
J

The for statement is like that of C, which is:

for (expression 1 ; condition ; expression2) statement

UP-13689 awk 4-47

Using awk: Special Features

So

for (i = 1 ; i <= NF; i ++)
print $i

is another awk program that prints all input fields, one per line.

There is an alternate form of the for statement that is useful
for accessing the elements of an associative array in awk.

for (i in array) statement

executes statement with the variable i set in turn to each subscript
of array. The subscripts are each accessed once but in undefined
order. Chaos will ensue if the variable i is altered or if any new
elements are created within the loop. For example, you could use
the for statement to print the record number followed by the
record of all input records after the main program is executed.

I x[NR] = $0 I
END I for (i in x) pr i nt i, x [i) I

A more practical example is the following use of strings to index
arrays to add the populations of countries by continents:

BEGIN IFS="\t"}
Ipopulation[$4] += $3}

END (for(i in population)
print i, population[i]

In this program, the body of the for loop is executed for i equal
to the string Asia, then for i equal to the string North America,
and so forth until all the possible values of i are exhausted; that is,
until all the strings of names of countries are used. Note, however,
the order the loops are executed is not specified. If the loop asso
ciated with Canada is executed before the loop associated with
the string Russia, such a program produces

South America 26
Africa 16
Asia 637
Australia 14
North America 219

4-48 PROGRAMMER'S GUIDE UP-13689

Using awk: Special Features

Note that the expression in the condition part of an if, while,
or, for statement can include

• relational operators like <, < =, >, > =, = = , and ! =

• regular expressions that are used with the matching opera
tors - and!-

• the logical operators ::, &&, and

• parentheses for grouping

The break statement (when it occurs within a while or for
loop) causes an immediate exit from the while or for loop.

The continue statement (when it occurs within a while or for
loop) causes the next iteration of the loop to begin.

The next statement in an awk program causes awk to skip
immediately to the next record and begin scanning patterns from
the top of the program. (Note the difference between getline and
next. getline does not skip to the top of the awk program.)

If an exit statement occurs in the BEGIN section of an awk
program, the program stops executing and the END section is not
executed (if there is one).

An exit that occurs in the main body of the awk program
causes execution of the main body of the awk program to stop.
No more records are read, and the END section is executed.

An exit in the END section causes execution to terminate at
that point.

Report Generation

The flow of control statements in the last section are especially
useful when awk is used as a report generator. awk is useful for
tabulating, summarizing, and formatting information. We have
seen an example of awk tabulating populations in the last section.
Here is another example of this. Suppose you have a file
prog.usage that contains lines of three fields: name, program,
and usage:

UP-13689 awk 4-49

Using awk: Special Features

Smith draw 3
Brown eqn
Jones nroff 4

Smith nroff 1
Jones spell 5
Brown spell 9
Smith draw 6

The first line indicates that Smith used the draw program three
times. If you want to create a program that has the total usage of
each program along with the names in alphabetical order and the
total usage, use the following program, called Iist1:

{use[$1 "" $2J += $3J
END {for (np in use)

print np" "use[npJ : "sort +0 +2nr"

This program produces the following output when used on the
input file, prog.usage.

Brown eqn 1
Brown spell 9

Jones nroff 4

Jones spell 5
Smith draw 9

Smith nroff

If you would like to format the previous output so that each
name is printed only once, pipe the output of the previous awk
program into the following program, called format1:

if ($1 != prey) {
print $1 ":"
prey = $1

print" " $2 " " $3

4-50 PROGRAMMER'S GUIDE UP-13689

Using awk: Special Features

The variable prey is used to ensure each unique value of $1
prints only once. The command

awk ·f Iist1 prog.usage : awk ·f format1

gives the output

Brown:
eqn 1

spell 9
Jones:

nroff 4
spell 5

Smith:
draw 9
nroff

It is often useful to combine different awk scripts and other shell
commands such as sort(1), as was done in the Iist1 script.

Cooperation with the Shell
Normally, an awk program is either contained in a file or

enclosed within single quotes as in

awk '{print $1}' •.•

Since awk uses many of the same characters the shell does (such
as $ and the double quote) surrounding the program by single
quotes ensures that the shell passes the program to awk intact.

Consider writing an awk program to print the nth field, where
n is a parameter determined when the program is run. That is, we
want a program called field such that

field n

runs the awk program

awk '{print $n}'

How does the value of n get into the awk program?

UP·13689 awk 4·51

Using awk: Special Features

There are several ways to do this. One is to define field as fol
lows:

awk '{print $'$1'}'

Spaces are critical here: as written there is only one argument,
even though there are two sets of quotes. The $1 is outside the
quotes, visible to the shell, and therefore substituted properly
when field is invoked.

Another way to do this job relies on the fact that the shell sub
stitutes for $ parameters within double quotes.

awk "{print \$ $11"

Here the trick is to protect the first $ with a \; the $1 is again
replaced by the number when field is invoked.

Multidimensional Arrays
You can simulate the effect of multidimensional arrays by

creating your own subscripts. For example:

for (i = 1; i <= 10; i ++)
for (j = 1; j <= 10; j++)

mult[i "," j] = .
creates an array whose subscripts have the form i,j; that is, 1,1;
1,2 and so forth; and thus simulate a 2-dimensional array.

4-52 PROGRAMMER'S GUIDE UP-13689

Chapter 5: lex

An Overview of lex Programming 5-1

Writing lex Programs 5-3

The Fundamentals of lex Rules 5-3

Specifications 5-3

Actions 5-6

Advanced lex Usage 5-7

Some Special Features 5-8

Definitions 5-12

Subroutines 5-14

Using lex with yacc 5-15

Running lex under the UNIX System 5-18

UP-13689 TABLE OF CONTENTS

An Overview of lex Programming
lex is a software tool that lets you solve a wide class of prob

lems drawn from text processing, code enciphering, compiler writ
ing, and other areas. In text processing, you may check the spel
ling of words for errors; in code enciphering, you may translate
certain patterns of characters into others; and in compiler writing,
you may determine what the tokens (smallest meaningful
sequences of characters) are in the program to be compiled. The
problem common to all of these tasks is recognizing different
strings of characters that satisfy certain characteristics. In the
compiler writing case, creating the ability to solve the problem
requires implementing the compiler's lexical analyzer. Hence the
name lex.

It is not essential to use lex to handle problems of this kind.
You could write programs in a standard language like C to handle
them, too. In fact, what lex does is produce such C programs.
(lex is therefore called a program generator.) What lex offers you,
once you acquire a facility with it, is typically a faster, easier way
to create programs that perform these tasks. Its weakness is that
it often produces C programs that are longer than necessary for
the task at hand and that execute more slowly than they otherwise
might. In many applications this is a minor consideration, and the
advantages of using lex considerably outweigh it.

To understand what lex does, see the diagram in Figure 5-1.
We begin with the lex source (often called the lex specification)
that you, the programmer, write to solve the problem at hand.
This lex source consists of a list of rules specifying sequences of
characters (expressions) to be searched for in an input text, and
the actions to take when an expression is found. The source is
read by the lex program generator. The output of the program
generator is a C program that, in turn, must be compiled by a host
language C compiler to generate the executable object program
that does the lexical analysis. Note that this procedure is not typi
cally automatic - user intervention is required. Finally, the lexical
analyzer program produced by this process takes as input any
source file and produces the desired output, such as altered text
or a list of tokens.

UP-13689 lex 5-1

An Overview of lex Programming

lex can also be used to collect statistical data on features of
the input, such as character count, word length, number of
occurrences of a word, and so forth. In later sections of this
chapter, we will see

• how to write lex source to do some of these tasks

• how to translate lex source

• how to compile, link, and execute the lexical analyzer in C

• how to run the lexical analyzer program

We will then be on our way to appreciating the power that lex
provides.

Figure 5-1: Creation and Use of a Lexical Analyzer with lex

5-2 PROGRAMMER'S GUIDE UP-13689

Writing lex Programs
A lex specification consists of at most three sections: defini

tions, rules, and user subroutines. The rules section is mandatory.
Sections for definitions and user subroutines are optional, but if
present, must appear in the indicated order.

The Fundamentals of lex Rules

The mandatory rules section opens with the delimiter %%. If a
subroutines section follows, another %% delimiter ends the rules
section. If there is no second delimiter, the rules section is
presumed to continue to the end of the program.

Each rule consists of a specification of the pattern sought and
the action(s) to take on finding it. (Note the dual meaning of the
term specification - it may mean either the entire lex source itself
or, within it, a representation of a particular pattern to be recog
nized.) Whenever the input consists of patterns not sought, lex
writes out the input exactly as it finds it. So, the simplest lex pro
gram is just the beginning rules delimiter, %%. It writes out the
entire input to the output with no changes at all. Typically, the
rules are more elaborate than that.

Specifications
You specify the patterns you are interested in with a notation

called regular expressions. A regular expression is formed by
stringing together characters with or without operators. The sim
plest regular expressions are strings of text characters with no
operators at all. For example,

apple
orange
pluto

These three regular expressions match any occurrences of those
character strings in an input text. If you want to have your lexical
analyzer a.out remove every occurrence of orange, from the input
text, you could specify the rule

orange;

UP-13689 lex 5-3

Writing lex Programs

Because you did not specify an action on the right (before the
semi-colon), lex does nothing but print out the original input text
with every occurrence of this regular expression removed, that is,
without any occurrence of the string orange at all.

Unlike orange above, most of the expressions that we want to
search for cannot be specified so easily. The expression itself
might simply be too long. More commonly, the class of desired
expressions is too large; it may, in fact, be infinite. Thanks to the
use of operators, we can form regular expressions signifying any
expression of a certain class. The + operator, for instance, means
one or more occurrences of the preceding expression, the?
means 0 or 1 occurrence(s) of the preceding expression (this is
equivalent, of course, to saying that the preceding expression is
optional), and * means 0 or more occurrences of the preceding
expression. (It may at first seem odd to speak of 0 occurrences of
an expression and to need an operator to capture the idea, but it
is often quite helpful. We will see an example in a moment.) So
m + is a regular expression matching any string of ms such as
each of the following:

nmn
m
nmmrmI

mm

and 7* is a regular expression matching any string of zero or more
7s:

77
77777

777

The string of blanks on the third line matches simply because it
has no 7s in it at all.

Brackets, [], indicate anyone character from the string of
characters specified between the brackets. Thus, [dgka] matches
a single d, g, k, or a. Note that commas are not included within
the b rackets. Any comma here would be taken as a character to
be recognized in the input text. Ranges within a standard alpha
betic or numeric order are indicated with a hyphen, -. The
sequence [a-z], for instance, indicates any lowercase letter.

5-4 PROGRAMMER'5 GUIDE UP-13689

Writing lex Programs

Somewhat more interestingly,

[A-Za-zO-9*

is a regular expression that matches any letter (whether upper- or
lowercase), any digit, an asterisk, an ampersand, or a sharp char
acter. Given the input text

$$$$?? 7?11!!!*$$ $$$$$$&+====r~~# ((

the lexical analyzer with the previous specification in one of its
rules will recognize the *, &, r, and #, perform on each recognition
whatever action the rule specifies (we have not indicated an action
here), and print out the rest of the text as it stands.

The operators become especially powerful in combination. For
example, the regular expression to recognize an identifier in many
programming languages is

[a-zA-Z)[O-9a-zA-Zl*

An identifier in these languages is defined to be a letter fol
lowed by zero or more letters or digits, and that is just what the
regular expression says. The first pair of brackets matches any
letter. The second, if it were not followed by a *, would match any
digit or letter. The two pairs of brackets with their enclosed char
acters would then match any letter followed by a digit or a letter.
But with the asterisk, *, the example matches any letter followed
by any number of letters or digits. In particular, it would recognize
the following as identifiers:

e
pay
distance
pH
EngineN099
R2D2

Note that it would not recognize the following as identifiers:

not iden lIFER
5times
$hello

because notJdenTIFER has an embedded underscore; 5times
starts with a digit, not a letter; and $hello starts with a special

UP·13689 lex 5·5

Writing lex Programs

character. Of course, you may want to write the specifications for
these three examples as an exercise.

A potential problem with operator characters is how we can
refer to them as characters to look for in our search pattern. The
last example, for instance, will not recognize text with an * in it.
lex solves the problem in one of two ways: a character enclosed in
quotation marks or a character preceded by a \ is taken literally.
that is, as part of the text to be searched for. To use the
backslash method to recognize, say, an * followed by any number
of digits, we can use the pattern

[1-9]

To recognize a \ itself, we need two backslashes: \\.

Actions
Once lex recognizes a string matching the regular expression

at the start of a rule, it looks to the right of the rule for the action
to be performed. Kinds of actions include recording the token
type found and its value, if any; replacing one token with another;
and counting the number of instances of a token or token type.
What you want to do is write these actions as program fragments
in the host language C. An action may consist of as many state
ments as are needed for the job at hand. You may want to print
out a message noting that the text has been found or a message
transforming the text in some way. Thus, to recognize the expres
sion Amelia Earhart and to note such recognition, the rule

"Amelia Earhart" printf("found Amelia")j

would do. And to replace in a text lengthy medical terms with
their equivalent acronyms, a rule such as

Electroencephalogram printf("EEG")j

would be called for. To count the lines in a text, we need to recog
nize end-of-lines and increment a linecounter. lex uses the stan
dard escape sequences from C like \n for end-of-line. To count
lines we might have

\n lineno++j

where lineno, like other C variables, is declared in the definitions
section that we discuss later.

5-6 PROGRAMMER'S GUIDE UP-13689

Writing lex Programs

lex stores every character string that it recognizes in a charac
ter array called yytext[]. You can print or manipulate the contents
of this array as you want. Sometimes your action may consist of
two or more C statements and you must (or for style and clarity,
you choose to) write it on several lines. To inform lex that the
action is for one rule only, simply enclose the C code in braces.
For example, to count the total number of all digit strings in an
input text, print the running total of the number of digit strings
(not their sum, here) and print out each one as soon as it is found,
your lex code might be

+1[1-9]+ digstrngcount++j
printf("%d",digstrngcount)j
printf("%s", yytext); 1

This specification matches digit strings whether they are preceded
by a plus sign or not, because the? indicates that the preceding
plus sign is optional. In addition, it will catch negative digit strings
because that portion following the minus sign, ., will match the
specification. The next section explains how to distinguish nega
tive from positive integers.

Advanced lex Usage
lex provides a suite of features that lets you process input text

riddled with quite complicated patterns. These include rules that
decide what specification is relevant, when more than one seems
so at first; functions that transform one matching pattern into
another; and the use of definitions and subroutines. Before con
sidering these features, you may want to affirm your understand
ing thus far by examining an example drawing together several of
the points already covered.

UP·13689 lex 5·7

Writing lex Programs

%%
- [0- 9]+ printf("negative integer");
+?[0-9]+ printf("positive integer");
-o. [0- 9]+ printf("negative fraction, no whole

number part");
rai 1 []+road p~intf("railroad is one word");
crook printf("Here's a crook");
function subprogcount++;
G[a-zA-Z]* I printf("may have a G word here:

" , yytext);
Gstringcount++;

The first three rules recognize negative integers, positive
integers, and negative fractions between 0 and -1. The use of the
terminating + in each specification ensures that one or more
digits compose the number in question. Each of the next three
rules recognizes a specific pattern. The specification for railroad
matches cases where one or more blanks intervene between the
two syllables of the word. In the cases of railroad and crook, you
may have simply printed a synonym rather than the messages
stated. The rule recognizing a function simply increments a
counter. The last rule illustrates several points:

• The braces specify an action sequence extending over
several lines.

• Its action uses the lex array yytext[], which stores the
recognized character string.

• Its specification uses the * to indicate that zero or more
letters may follow the G.

Some Special Features
Besides storing the recognized character string in yytext[], lex

automatically counts the number of characters in a match and
stores it in the variable yyleng. You may use this variable to refer
to any specific character just placed in the array yytext[].
Remember that C numbers locations in an array starting with 0, so
to print out the third digit (if there is one) in a just recognized
integer, you might write

5-8 PROGRAMMER'S GUIDE UP-13689

Writing lex Programs

[1-9]+ {if (yyleng > 2)
pr i ntf ("%c" I yytext [2]);

lex follows a number of high-level rules to resolve ambiguities
that may arise from the set of rules that you write. Prima facie,
any reserved word, for instance, could match two rules. In the lex
ical analyzer example developed later in the section on lex and
yacc, the reserved word end could match the second rule as well
as the seventh, the one for identifiers.

NOTE: lex follows the rule that where there is a match
with two or more rules in a specification, the first
rule is the one whose action will be executed.

By placing the rule for end and the other reserved words before
the rule for identifiers, we ensure that our reserved words will be
duly recognized.

Another potential problem arises from cases where one pat
tern you are searching for is the prefix of another. For instance,
the last two rules in the lexical analyzer example above are
designed to recognize > and > = . If the text has the string > =
at one point, you might worry that the lexical analyzer would stop
as soon as it recognized the > character to execute the rule for >
rather than read the next character and execute the rule for > = .

NOTE: lex follows the rule that it matches the longest
character string possible and executes the rule for
that.

Here it would recognize the> = and act accordingly. As a further
example, the rule would enable you to distinguish + from + + in
a program in C.

Still another potential problem exists when the analyzer must
read characters beyond the string you are seeking because you
cannot be sure you've in fact found it until you've read the addi
tional characters. These cases reveal the importance of trailing
context. The classic example here is the DO statement in

UP-13689 lex 5-9

Writing lex Programs

FORTRAN. In the statement

DO 50 k = 1 , 20, 1

we cannot be sure that the first 1 is the initial value of the index k
until we read the first comma. Until then, we might have the
assignment statement

D050k = 1

(Remember that FORTRAN ignores all blanks.) The way to handle
this is to use the forward-looking slash, / (not the backslash, \),
which signifies that what follows is trailing context, something not
to be stored in yytext[] , because it is not part of the token itself.
So the rule to recognize the FORTRAN DO statement could be

301l]*[0-9][]*[a-z A-ZO-9]+=[a-z A-ZO-9]+, printf("found

DO") ;

Different versions of FORTRAN have limits on the size of identif
iers, here the index name. To simplify the example, the rule
accepts an index name of any length.

lex uses the $ as an operator to mark a special trailing
context - the end of line. (It is therefore equivalent to \n.) An
example would be a rule to ignore all blanks and tabs at the end
of a line:

[\t]+$

On the other hand, if you want to match a pattern only when it
starts a line, lex offers you the circumflex, ~, as the operator. The
formatter nroff, for example, demands that you never start a line
with a blank, so you might want to check input to nroff with some
such rule as:

5-10 PROGRAMMER'S GUIDE UP-13689

Writing lex Programs

~[] printf("error: remove leading blank");

Finally, some of your action statements themselves may
require your reading another character, putting one back to be
read again a moment later, or writing a character on an output
device. lex supplies three functions to handle these tasks
inputO, unput(c), and output(c), respectively. One way to ignore
all characters between two special characters, say between a pair
of double quotation marks, would be to use inputO, thus:

\" wh i 1 e (i nput () ! = '''');

Upon finding the first double quotation mark, the generated a.out
will simply continue reading all subsequent characters so long as
none is a quotation mark, and not again look for a match until it
finds a second double quotation mark.

To handle special I/O needs, such as writing to several files,
you may use standard I/O routines in C to rewrite the functions
inputO, unput(c), and output. These and other programmer
defined functions should be placed in your subroutine section.
Your new routines will then replace the standard ones. The stan
dard inputO, in fact, is equivalent to getcharO, and the standard
output(c) is equivalent to putchar(c).

There are a number of lex routines that let you handle
sequences of characters to be processed in more than one way.
These include yymoreO, yyless(n), and REJECT. Recall that the
text matching a given specification is stored in the array yytext[].
In general, once the action is performed for the specification, the
characters in yytext[] are overwritten with succeeding characters
in the input stream to form the next match. The function
yymoreO, by contrast, ensures that the succeeding characters
recognized are appended to those already in yytext[]. This lets
you do one thing and then another, when one string of characters
is significant and a longer one including the first is significant as
well. Consider a character string bound by Bs and interspersed
with one at an arbitrary location.

B ••• B ••• B

UP-13689 lex 5-11

Writing lex Programs

In a simple code deciphering situation, you may want to count
the number of characters between the first and second B's and
add it to the number of characters between the second and third
B. (Only the last B is not to be counted.) The code to do this is

I if (fl ag = 0)
save = yylengj
fl ag = 1 j

yymore ();
else I

importantno = save + yylengj
fl ag = 0; I

where flag, save, and importantno are declared (and at least flag
initialized to 0) in the definitions section. The flag distinguishes the
character sequence terminating just before the second B from that
terminating just before the third.

The function yyless(n) lets you reset the end point of the
string to be considered to the nth character in the original yytext[].
Suppose you are again in the code deciphering business and the
gimmick here is to work with only half the characters in a
sequence ending with a certain one, say upper- or lowercase Z.
The code you want might be

[a-yA-V]+[ZZ] I yyless(yyleng/2);
... process first half of string ...

Finally, the function REJECT lets you more easily process
strings of characters even when they overlap or contain one
another as parts. REJECT does this by immediately jumping to
the next rule and its specification without changing the contents of
yytext[]. If you want to count the number of occurrences both of
the regular expression snapdragon and of its subexpression dra
gon in an input text, the following will do:

snapdragon
dragon

Icountflowers++j REJECT;l
countmonsters++;

5-12 PROGRAMMER'S GUIDE UP-13689

Writing lex Programs

As an example of one pattern overlapping another, the follow
ing counts the number of occurrences of the expressions
comedian and diana, even where the input text has sequences
such as comediana •• :

comedian
diana

Icomiccount++; REJECT;}
princesscount++;

Note that the actions here may be considerably more compli
cated than simply incrementing a counter. In all cases, the
counters and other necessary variables are declared in the defini
tions section commencing the lex specification.

Definitions
The lex definitions section may contain any of several classes

of items. The most critical are external definitions, #include state
ments, and abbreviations. Recall that for legal lex source this sec
tion is optional, but in most cases some of these items are neces
sary. External definitions have the form and function that they do
in C. They declare that variables globally defined elsewhere
(perhaps in another source file) will be accessed in your lex
generated a.out. Consider a declaration from an example to be
developed later.

extern int tokval;

When you store an integer value in a variable declared in this
way, it will be accessible in the routine, say a parser, that calls it.
If, on the other hand, you want to define a local variable for use
within the action sequence of one rule (as you might for the index
variable for a loop), you can declare the variable at the start of the
action itself right after the left brace, { .

The purpose of the #include statement is the same as in C:
to include files of importance for your program. Some variable
declarations and lex definitions might be needed in more than one
lex source file. It is then advantageous to place them all in one file
to be included in every file that needs them. One example occurs
in using lex with yacc, which generates parsers that call a lexical
analyzer. In this context, you should include the file y.tab.h, which
may contain #defines for token names. Like the declarations,
#include statements should come between %{ and }%, thus:

UP-13689 lex 5-13

Writing lex Programs

%{
,include "y.tab.h"
extern int tokval;
int lineno;
%}

In the definitions section, after the %} that ends your
#include's and declarations, you place your abbreviations for reg
ular expressions to be used in the rules section. The abbreviation
appears on the left of the line and, separated by one or more
spaces, its definition or translation appears on the right. When
you later use abbreviations in your rules, be sure to enclose them
within braces.

NOTE: The purpose of abbreviations is to avoid needless
repetition in writing your specifications and to pro
vide clarity in reading them.

As an example, reconsider the lex source reviewed at the
beginning of this section on advanced lex usage. The use of
definitions simplifies our later reference to digits, letters, and
blanks. This is especially true if the specifications appear several
times:

o
L

B

%%
- {oJ+
+?10}+
-0.10}+

GIL}*
rail {B}+road
crook
\n\./{B}+

[0- 9]
[a-zA-Z)

[]

printf(nnegative integern);
printf(npositive integern);
printf(nnegative fraction");
printf(nmay have a G word heren);
printf(nrailroad is one wordn);

printf(ncriminal n);
printf(n.\,,,,);

5-14 PROGRAMMER'S GUIDE UP-13689

Writing lex Programs

The last rule, newly added to the example and somewhat more
complex than the others, is used in the WRITER'S WORKBENCH
Software, an AT&T software product for promoting good writing.
(See the UNIX System WRITER'S WORKBENCH Software Release
3.0 User's Guide for information on this product.) The rule
ensures that a period always precedes a quotation mark at the
end of a sentence. It would change example". to example."

Subroutines

You may want to use subroutines in lex for much the same
reason that you do so in other programming languages. Action
code that is to be used for several rules can be written once and
called when needed. As with definitions, this can simplify the writ
ing and reading of programs. The function putJn_tabIO, to be
discussed in the next section on lex and yacc, is a good candidate
for a subroutine.

Another reason to place a routine in this section is to highlight
some code of interest or to simplify the rules section, even if the
code is to be used for one rule only. As an example, consider the
following routine to ignore comments in a language like C where
comments occur between /* and * / :

"/*" sk i pcmnts () ;

/* rest of rules */

%%
skipcmnts()
I

UP·13689

for(;;)
I

wh i 1 e (i nput () ! = ' *') ;
if (i nput () ! = ' /') I

unput(yytext[yyleng-l]);
else return;

lex 5·15

Writing lex Programs

There are three points of interest in this example. First, the
unput(c) function (putting back the last character read) is neces
sary to avoid missing the final/if the comment ends unusually
with a **/. In this case, eventually having read an *, the analyzer
finds that the next character is not the terminal/and must read
some more. Second, the expression yytext[yyleng-1] picks out
that last character read. Third, this routine assumes that the com
ments are not nested. (This is indeed the case with the C
language.) If, unlike C, they are nested in the source text, after
inputOing the first */ ending the inner group of comments, the
a.out will read the rest of the comments as if they were part of the
input to be searched for patterns.

Other examples of subroutines would be programmer-defined
versions of the I/O routines inputO, unput(c), and outputO, dis
cussed above. Subroutines such as these that may be exploited
by many different programs would probably do best to be stored
in their own individual file or library to be called as needed. The
appropriate #include statements would then be necessary in the
definitions section.

Using lex with yacc

If you work on a compiler project or develop a program to
check the validity of an input language, you may want to use the
UNIX system program tool yacc. yacc generates parsers, pro
grams that analyze input to ensure that it is syntactically correct.
(yacc is discussed in detail in Chapter 6 of this guide.) lex often
forms a fruitful union with yacc in the compiler development con
text. Whether or not you plan to use lex with yacc, be sure to
read this section because it covers information of interest to all lex
programmers.

The lexical analyzer that lex generates (not the file that stores
it) takes the name yylexO. This name is convenient because yacc
calls its lexical analyzer by this very name. To use lex to create
the lexical analyzer for the parser of a compiler, you want to end
each lex action with the statement return token, where token is a
defined term whose value is an integer. The integer value of the
token returned indicates to the parser what the lexical analyzer has
found. The parser, whose file is called y.tab.c by yacc, then

5-16 PROGRAMMER'S GUIDE UP·13689

Writing lex Programs

resumes control and makes another call to the lexical analyzer
when it needs another token.

In a compiler, the different values of the token indicate what, if
any, reserved word of the language has been found or whether an
identifier, constant, arithmetic operand, or relational operator has
been found. In the latter cases, the analyzer must also specify the
exact value of the token: what the identifier is, whether the con
stant, say, is 9 or 888, whether the operand is + or * (multiply),
and whether the relational operator is = or >. Consider the fol
lowing portion of lex source for a lexical analyzer for some pro
gramming language perhaps slightly reminiscent of Ada:

beginreturn(BEGIN)j
end
whi le
if

package
reverse
loop
[a-zA-Z][a-zA-ZO-9]*

[0- 9]+

\+

\-

>

>=

return(END)j
return(WHILE)j
return (IF) j
return(PACKAGE)j
return(REVERSE)j
return(LOOP)j
tokval = put_in_tabl()j

return(IDENTIFIER)j 1
tokval = put_in_tabl()j

return(INTEGER)j 1
I tokval = PLUS;

return(ARITHOP)j
tokval = MINUS;

return(ARITHOP)j
tokval = GREATER;

return(RELOP)j J
tokval = GREATEREQLj

return(RELOP)j J

Despite appearances, the tokens returned, and the values
assigned to tokval, are indeed integers. Good programming style
dictates that we use informative terms such as BEGIN, END,
WHILE, and so forth to signify the integers the parser under
stands, rather than use the integers themselves. You establish the
association by using #define statements in your parser calling rou
tine in C. For example,

UP·13689 lex 5·17

Writing lex Programs

Hdefine BEGIN
Hdefine END 2

Hdefine PLUS 7

If the need arises to change the integer for some token type.
you then change the #define statement in the parser rather than
hunt through the entire program. changing every occurrence of
the particular integer. In using yacc to generate your parser. it is
helpful to insert the statement

Hinclude y.tab.h

into the definitions section of your lex source. The file y.tab.h pro
vides #define statements that associate token names such as
BEGIN. END. and so on with the integers of significance to the
generated parser.

To indicate the reserved words in the example, the returned
integer values suffice. For the other token types, the integer value
of the token type is stored in the programmer-defined variable
tokval. This variable. whose definition was an example in the
definitions section. is globally defined so that the parser as well as
the lexical analyzer can access it. yacc provides the variable yyl·
val for the same purpose.

Note that the example shows two ways to assign a value to
tokval. First. a function putJn_tablO places the name and type of
the identifier or constant in a symbol table so that the compiler
can refer to it in this or a later stage of the compilation process.
More to the present point, putJn_tablO assigns a type value to
tokval so that the parser can use the information immediately to
determine the syntactic correctness of the input text. The function
putJn_tablO would be a routine that the compiler writer might
place in the subroutines section discussed later. Second. in the
last few actions of the example. tokval is assigned a specific
integer indicating which operand or relational operator the analyzer
recognized. If the variable PLUS. for instance. is associated with
the integer 7 by means of the #define statement above. then
when a + sign is recognized. the action assigns to tokval the
value 7. which indicates the +. The analyzer indicates the general

5·18 PROGRAMMER'S GUIDE Up·13689

Writing lex Programs

class of operator by the value it returns to the parser (in the exam
ple, the integer signified by ARITHOP or RELOP).

UP-13689 lex 5-19

Running lex under the UN IX System
As you review the following few steps, you might recall Figure

5-1 at the start of the chapter. To produce the lexical analyzer in
C, run

lex lex.1

where lex.l is the file containing your lex specification. The name
lex.1 is conventionally the favorite, but you may use whatever
name you want. The output file that lex produces is automatically
called lex.yy.c: this is the lexical analyzer program that you
created with lex. You then compile and link this as you would any
C program, making sure that you invoke the lex library with the ·11
option:

cc lex.yy.c ·11

The lex library provides a default mainO program that calls the lex
ical analyzer under the name yylexO, so you need not supply your
own mainO.

If you have the lex specification spread across several files,
you can run lex with each of them individually, but be sure to
rename or move each lex.yy.c file (with mv) before you run lex on
the next one. Otherwise, each will overwrite the previous one.
Once you have all Lhe generated .c files, you can compile all of
them, of course, in one command line.

With the executable a.out produced, you are ready to analyze
any desired input text. Suppose that the text is stored under the
filename textin (this name is also arbitrary). The lexical analyzer
a.out by default takes input from your terminal. To have it take
the file textin as input, Simply use redirection, thus:

a.out < textin

By default, output will appear on your terminal, but you can
redirect this as well:

a.out < textin > textout

5-20 PROGRAMMER'5 GUIDE UP·13689

Running lex under the UNIX System

In running lex with yacc, either may be run first.

yacc -d grammar.y
lex lex.l

spawns a parser in the file y.tab.c. (The -d option creates the file
y.tab.h, which contains the #define statements that associate the
yacc assigned integer token values with the user-defined token
names.) To compile and link the output files produced, run

cc lex.yy.c y.tab.c -Iy -II

Note that the yacc library is loaded (with the -Iy option) before the
lex library (with the -II option) to ensure that the mainO program
supplied will call the yacc parser.

There are several options available with the lex command. If
you use one or more of them, place them between the command
name lex and the filename argument. If you care to see the C
program, lex.yy.c, that lex generates on your terminal (the default
output device), use the -t option.

lex -t lex.l

The -v option prints out for you a small set of statistics
describing the so-called finite automata that lex produces with the
C program lex.yy.c. (For a detailed account of finite automata
and their importance for lex, see the Aho, Sethi, and Ullman text,
Compilers: Principles, Techniques, and Tools, Addison-Wesley,
1986.)

lex uses a table (a two-dimensional array in C) to represent its
finite automaton. The maximum number of states that the finite
automaton requires is set by default to 500. If your lex source has
a large number of rules or the rules are very complex, this default
value may be too small. You can enlarge the value by placing
another entry in the definitions section of your lex source, as fol
lows:

%n 700

UP-13689 lex 5-21

Running lex under the UNIX System

This entry tells lex to make the table large enough to handle
as many as 700 states. (The -v option will indicate how large a
number you should choose.) If you have need to increase the
maximum number of state transitions beyond 2000, the desig
nated parameter is a, thus:

%a 2800

Finally, check the Programmer's Reference Manual page on
lex for a list of all the options available with the lex command. In
addition, review the paper by Lesk (the originator of lex) and
Schmidt, "Lex - A Lexical Analyzer Generator," in volume 5 of the
UNIX Programmer's Manual, Holt, Rinehart, and Winston, 1986. It
is somewhat dated, but offers several interesting examples.

This tutorial has introduced you to lex programming. As with
any programming language, the way to master it is to write pro
grams and then write some more.

5-22 PROGRAMMER'S GUIDE UP-13689

Chapter 6: yacc

Introduction

Basic Specifications

Actions

Lexical Analysis

Parser Operation

Ambiguity and Conflicts

Precedence

Error Handling

The yacc Environment

Hints for Preparing Specifications

Input Style

Left Recursion

Lexical Tie-Ins

Reserved Words

Advanced Topics

Simulating error and accept in Actions

Accessing Values in Enclosing Rules

Support for Arbitrary Value Types

yacc Input Syntax

6-1

6-4

6-6

6-10

6-13

6-18

6-24

6-28

6-32

6-34

6-34

6-34

6-36

6-37

6-38

6-38

6-38

6-40

6-42

UP-13689 TABLE OF CONTENTS

Table of Contents

Examples

1. A Simple Example
2. An Advanced Example

ii PROGRAMMER'S GUIDE

6-45

6-45

6-48

UP-13689

Introduction
yacc provides a general tool for imposing structure on the

input to a computer program. The yacc user prepares a specifica
tion that includes:

• a set of rules to describe the elements of the input

• code to be invoked when a rule is recognized

• either a definition or declaration of a low-level routine to
examine the input

yacc then turns the specification into a C language function
that examines the input stream. This function, called a parser,
works by calling the low-level input scanner. The low-level input
scanner, called a lexical analyzer, picks up items from the input
stream. The selected items are known as tokens. Tokens are
compared to the input construct rules, called grammar rules.
When one of the rules is recognized, the user code supplied for
this rule, (an action) is invoked. Actions are fragments of C
language code. They can return values and make use of values
returned by other actions.

The heart of the yacc specification is the collection of gram
mar rules. Each rule describes a construct and gives it a name.
For example, one grammar rule might be

date : month_name day',' year

where date, month_name, day, and year represent constructs of
interest; presumably, month_name, day, and year are defined in
greater detail elsewhere. In the example, the comma is enclosed
in single quotes. This means that the comma is to appear literally
in the input. The colon and semicolon merely serve as punctuation
in the rule and have no significance in evaluating the input. With
proper definitions, the input

July 4, 1776

might be matched by the rule.

UP-13689 yacc 6-1

Introduction

The lexical analyzer is an important part of the parsing func
tion. This user-supplied routine reads the input stream, recognizes
the lower-level constructs, and communicates these as tokens to
the parser. The lexical analyzer recognizes constructs of the input
stream as terminal symbols; the parser recognizes constructs as
nonterminal symbols. To avoid confusion, we will refer to terminal
symbols as tokens.

There is considerable leeway in deciding whether to recognize
constructs using the lexical analyzer or grammar rules. For exam
ple, the rules

month_name 'J' 'a' 'n'
month_name 'F' 'e' 'b'

month_name : '0' 'e' 'e'

might be used in the above example. While the lexical analyzer
only needs to recognize individual letters, such low-level rules tend
to waste time and space, and may complicate the specification
beyond the ability of yacc to deal with it. Usually, the lexical
analyzer recognizes the month names and returns an indication
that a month_name is seen. In this case, month_name is a token
and the detailed rules are not needed.

Literal characters such as a comma must also be passed
through the lexical analyzer and are also considered tokens.

Specification files are very flexible. It is relatively easy to add
to the above example the rule

date : month '/' day '/' year

allowing

7/4/1776

6-2 PROGRAMMER'S GUIDE UP-13689

Introduction

as a synonym for

July 4, 1776

on input. In most cases, this new rule could be slipped into a
working system with minimal effort and little danger of disrupting
existing input.

The input being read may not conform to the specifications.
With a left-to-right scan input errors are detected as early as is
theoretically possible. Thus, not only is the chance of reading and
computing with bad input data substantially reduced, but the bad
data usually can be found quickly. Error handling, provided as
part of the input speCifications, permits the reentry of bad data or
the continuation of the input process after skipping over the bad
data.

In some cases, yacc fails to produce a parser when given a set
of specifications. For example, the specifications may be self
contradictory, or they may require a more powerful recognition
mechanism than that available to yacc. The former cases
represent design errors; the latter cases often can be corrected by
making the lexical analyzer more powerful or by rewriting some of
the grammar rules. While yacc cannot handle all possible specifi
cations, its power compares favorably with similar systems. More
over, the constructs that are difficult for yacc to handle are also
frequently difficult for human beings to handle. Some users have
reported that the discipline of formulating valid yacc specifications
for their input revealed errors of conception or design early in the
program development.

The remainder of this chapter describes the following subjects:

• basic process of preparing a yacc specification

• parser operation

• handling ambiguities

• handling operator precedences in arithmetic expressions

• error detection and recovery

• the operating environment and special features of the
parsers yacc produces

UP-13689 yacc 6·3

Introduction

• suggestions to improve the style and efficiency of the
specifications

• advanced topicS

In addition, there are two examples and a summary of the
yacc input syntax.

6-4 PROGRAMMER'S GUIDE UP-13689

Basic Specifications
Names refer to either tokens or nonterminal symbols. yacc

requires token names to be declared as such. While the lexical
analyzer may be included as part of the specification file, it is
perhaps more in keeping with modular design to keep it as a
separate file. Like the lexical analyzer, other subroutines may be
included as well. Thus, every specification file theoretically con
sists of three sections: the declarations, (grammar) rules, and sub
routines. The sections are separated by double percent signs,
% % (the percent sign is generally used in yacc specifications as
an escape character).

A full specification file looks like:

declarations
0/00/0

rules
%%
subroutines

when all sections are used. The declarations and subroutines sec
tions are optional. The smallest legal yacc specification is

Blanks, tabs, and newlines are ignored, but they may not
appear in names or multicharacter reserved symbols. Comments
may appear wherever a name is legal. They are enclosed in /* ...
*/, as in the C language.

The rules section is made up of one or more grammar rules. A
grammar rule has the form

A : BODY ;

where A represents a nonterminal symbol, and BODY represents a
sequence of zero or more names and literals. The colon and the
semicolon are yacc punctuation.

Names may be of any length and may be made up of letters,
dots, underscores, and digits although a digit may not be the first
character of a name. Uppercase and lowercase letters are distinct.
The names used in the body of a grammar rule may represent

UP-13689 yacc 6-5

Basic Specifications

tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes, '. As
in the C language, the backslash, \, is an escape character within
literals, and all the C language escapes are recognized. Thus:

'\n'
'\r'
, \ ' ,

'\ \'
, \t'
'\b'
'\1'
'\xxx'

newline
return
single quote (,)
backslash (\)
tab
backspace
form feed
xxx in octal notation

are understood by yacc. For a number of technical reasons, the
NULL character (\0 or 0) should never be used in grammar rules.

If there are several grammar rules with the same left-hand
side, the vertical bar, :, can be used to avoid rewriting the left
hand side. In addition, the semicolon at the end of a rule is
dropped before a vertical bar. Thus the grammar rules

ABC 0

A : E F

A : G

can be given to yacc as

ABC 0

E F
G

by using the vertical bar. It is not necessary that all grammar rules
with the same left side appear together in the grammar rules sec
tion although it makes the input more readable and easier to
change.

If a nonterminal symbol matches the empty string, this can be
indicated by

eps 11 on :

The blank space following the colon is understood by yacc to be a
nonterminal symbol named epsilon.

6-6 PROGRAMMER'S GUIDE UP-13689

Basic Specifications

Names representing tokens must be declared. This is most
simply done by writing

%token name1 name2 ...

in the declarations section. Every name not defined in the declara
tions section is assumed to represent a nonterminal symbol.
Every nonterminal symbol must appear on the left side of at least
one rule.

Of all the nonterminal symbols, the start symbol has particular
importance. By default, the start symbol is taken to be the left
hand side of the first grammar rule in the rules section. It is possi
ble and desirable to declare the start symbol explicitly in the
declarations section using the %start keyword.

%start symbol

The end of the input to the parser is signaled by a special
token, called the end-marker. The end-marker is represented by
either a zero or a negative number. If the tokens up to but not
including the end-marker form a construct that matches the start
symbol, the parser function returns to its caller after the end
marker is seen and accepts the input. If the end-marker is seen in
any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the
end-marker when appropriate. Usually the end-marker represents
some reasonably obvious I/O status, such as end of file or end of
record.

Actions

With each grammar rule, the user may associate actions to be
performed when the rule is recognized. Actions may return values
and may obtain the values returned by previous actions. More
over, the lexical analyzer can return values for tokens if desired.

An action is an arbitrary C language statement and as such
can do input and output, call subroutines, and alter arrays and
variables. An action is specified by one or more statements
enclosed in curly braces, {, and}. For example:

UP-13689 yacc 6-7

Basic Specifications

and

A '(' B ')'

hello(1, "abc");

xxx yyy ZZZ

(void) printf("a message\n");
f1 ag = 25;

are grammar rules with actions.

The dollar sign symbol, $, is used to facilitate communication
between the actions and the parser, The pseudo-variable $$
represents the value returned by the complete action. For exam
ple, the action

I $$ = 1;

returns the value of one; in fact. that's all it does.

To obtain the values returned by previous actions and the lexi
cal analyzer. the action may use the pseudo-variables $1, $2, ...
$n. These refer to the values returned by components 1 through n
of the right side of a rule. with the components being numbered
from left to right. If the rule is

A : BCD

then $2 has the value returned by C. and $3 the value returned by
D.

The rule

expr ' (, expr ') ,

provides a common example. One would expect the value
returned by this rule to be the value of the expr within the
parentheses. Since the first component of the action is the literal
left parenthesis. the desired logical result can be indicated by

6-8 PROGRAMMER'S GUIDE UP-13689

Basic Specifications

expr I (I expr I) I

$$ = $2 ;

By default, the value of a rule is the value of the first element
in it ($1). Thus, grammar rules of the form

A B

frequently need not have an explicit action. In previous examples,
all the actions came at the end of rules. Sometimes, it is desirable
to get control before a rule is fully parsed. yacc permits an action
to be written in the middle of a rule as well as at the end. This
action is assumed to return a value accessible through the usual $
mechanism by the actions to the right of it. In turn, it may access
the values returned by the symbols to its left. Thus, in the rule
below the effect is to set x to 1 and y to the value returned by C.

A B

J
c

$$ = 1;

x = $2;
y = $3;

Actions that do not terminate a rule are handled by yacc by
manufacturing a new nonterminal symbol name and a new rule
matching this name to the empty string. The interior action is the
action triggered by recognizing this added rule. yacc treats the
above example as if it had been written

UP-13689 yacc 6-9

Basic Specifications

$ACT /* empty */

A

$$ = 1;

B $ACT C

x = $2;
y = $3;

~-----
where $ACT is an empty action.

In many applications, output is not done directly by the
actions. A data structure, such as a parse tree, is constructed in
memory and transformations are applied to it before output is
generated. Parse trees are particularly easy to construct given
routines to build and maintain the tree structure desired. For
example, suppose there is a C function node written so that the
call

node(L, n1, n2)

creates a node with label L and descendants n1 and n2 and
returns the index of the newly created node. Then a parse tree
can be built by supplying actions such as

expr expr '+' expr

$$ = node ('+', $1, $3);

in the specification.

The user may define other variables to be used by the actions.
Declarations and definitions can appear in the declarations section
enclosed in the marks %{ and %}. These declarations and defini
tions have global scope, so they are known to the action

6-10 PROGRAMMER'S GUIDE UP-13689

Basic Specifications

statements and can be made known to the lexical analyzer. For
example:

%1 int variable = 0; %~

could be placed in the declarations section making variable acces
sible to all of the actions. Users should avoid names beginning
with yy because the yacc parser uses only such names. In the
examples shown thus far all the values are integers. A discussion
of values of other types is found in the section "Advanced Topics."

Lexical Analysis

The user must supply a lexical analyzer to read the input
stream and communicate tokens (with values, if desired) to the
parser. The lexical analyzer is an integer-valued function called
yylex. The function returns an integer, the token number,
representing the kind of token read. If there is a value associated
with that token, it should be assigned to the external variable yyl
val.

The parser and the lexical analyzer must agree on these token
numbers in order for communication between them to take place.
The numbers may be chosen by yacc or the user. In either case,
the #define mechanism of C language is used to allow the lexical
analyzer to return these numbers symbolically. For example, sup
pose that the token name DIGIT has been defined in the declara
tions section of the yacc specification file. The relevant portion of
the lexical analyzer might look like

UP-13689 yacc 6-11

Basic Specifications

int yylex()
I

extern int yylval;
int c;

c = getchar();

switch (c)
I

case '0':
case '1':

case '9':
yylval = c - '0';
return (DIGIT);

to return the appropriate token.

The intent is to return a token number of DIGIT and a value
equal to the numerical value of the digit. Provided that the lexical
analyzer code is placed in the subroutines section of the specifica
tion file, the identifier DIGIT is defined as the token number associ
ated with the token DIGIT.

This mechanism leads to clear, easily modified lexical
analyzers. The only pitfall to avoid is using any token names in the
grammar that are reserved or significant in C language or the
parser. For example, the use of token names if or while will
almost certainly cause severe difficulties when the lexical analyzer
is compiled. The token name error is reserved for error handling
and should not be used naively.

6-12 PROGRAMMER'S GUIDE UP-13689

Basic Specifications

In the default situation, token numbers are chosen by yacc.
The default token number for a literal character is the numerical
value of the character in the local character set. Other names are
assigned token numbers starting at 257. If the yacc command is
invoked with the -d option a file called y.tab.h is generated.
y.tab.h contains #define statements for the tokens.

If the user prefers to assign the token numbers, the first
appearance of the token name or literal in the declarations section
must be followed immediately by a nonnegative integer. This
integer is taken to be the token number of the name or literal.
Names and literals not defined this way are assigned default defin
itions by yacc. The potential for duplication exists here. Care
must be taken to make sure that all token numbers are distinct.

For historical reasons, the end-marker must have token
number 0 or negative. This token number cannot be redefined by
the user. Thus, all lexical analyzers should be prepared to return 0
or a negative number as a token upon reaching the end of their
input.

A very useful tool for constructing lexical analyzers is the lex
utility. Lexical analyzers produced by lex are designed to work in
close harmony with yacc parsers. The specifications for these lexi
cal analyzers use regular expressions instead of grammar rules.
lex can be easily used to produce quite complicated lexical
analyzers, but there remain some languages (such as FORTRAN),
which do not fit any theoretical framework and whose lexical
analyzers must be crafted by hand.

UP-13689 yacc 6-13

Parser Operation
yacc turns the specification file into a C language procedure,

which parses the input according to the specification given. The
algorithm used to go from the specification to the parser is com
plex and will not be discussed here. The parser itself, though, is
relatively simple and understanding its usage will make treatment
of error recovery and ambiguities easier.

The parser produced by yacc consists of a finite state machine
with a stack. The parser is also capable of reading and remember
ing the next input token (called the look-ahead token). The current
state is always the one on the top of the stack. The states of the
finite state machine are given small integer labels. Initially, the
machine is in state 0 (the stack contains only state 0) and no look
ahead token has been read.

The machine has only four actions available - shift, reduce,
accept, and error. A step of the parser is done as follows:

1. Based on its current state, the parser decides if it needs a
look-ahead token to choose the action to be taken. If it
needs one and does not have one, it calls yylex to obtain
the next token.

2. Using the current state and the look-ahead token if
needed, the parser decides on its next action and carries it
out. This may result in states being pushed onto the stack
or popped off of the stack and in the look-ahead token
being processed or left alone.

The shift action is the most common action the parser takes.
Whenever a shift action is taken, there is always a look-ahead
token. For example, in state 56 there may be an action

IF shift 34

which says, in state 56, if the look-ahead token is IF, the current
state (56) is pushed down on the stack, and state 34 becomes the
current state (on the top of the stack). The look-ahead token is
cleared.

6-14 PROGRAMMER'S GUIDE UP-13689

Parser Operation

The reduce action keeps the stack from growing without
bounds. reduce actions are appropriate when the parser has seen
the right-hand side of a grammar rule and is prepared to
announce that it has seen an instance of the rule replacing the
right-hand side by the left-hand side. It may be necessary to con
sult the look-ahead token to decide whether or not to reduce (usu
ally it is not necessary). In fact, the default action (represented by
a dot) is often a reduce action.

reduce actions are associated with individual grammar rules.
Grammar rules are also given small integer numbers, and this
leads to some confusion. The action

reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34.

Suppose the rule

A x Y z

is being reduced. The reduce action depends on the left-hand
symbol (A in this case) and the number of symbols on the right
hand side (three in this case). To reduce, first pop off the top
three states from the stack. (In general, the number of states
popped equals the number of symbols on the right side of the
rule.) In effect, these states were the ones put on the stack while
recognizing x, y, and z and no longer serve any useful purpose.
After popping these states, a state is uncovered, which was the
state the parser was in before beginning to process the rule.
Using this uncovered state and the symbol on the left side of the
rule, perform what is in effect a shift of A. A new state is
obtained, pushed onto the stack, and parsing continues. There
are significant differences between the processing of the left-hand
symbol and an ordinary shift of a token, however, so this action is
called a goto action. In particular, the look-ahead token is cleared
by a shift but is not affected by a goto. In any case, the
uncovered state contains an entry such as

A goto 20

causing state 20 to be pushed onto the stack and become the

UP-13689 yacc 6-15

Parser Operation

current state.

In effect, the reduce action turns back the clock in the parse
popping the states off the stack to go back to the state where the
right-hand side of the rule was first seen. The parser then behaves
as if it had seen the left side at that time. If the right-hand side of
the rule is empty, no states are popped off of the stacks. The
uncovered state is in fact the current state.

The reduce action is also important in the treatment of user
supplied actions and values. When a rule is reduced, the code
supplied with the rule is executed before the stack is adjusted. In
addition to the stack holding the states, another stack running in
parallel with it holds the values returned from the lexical analyzer
and the actions. When a shift takes place, the external variable
yylval is copied onto the value stack. After the return from the
user code, the reduction is carried out. When the goto action is
done, the external variable yyval is copied onto the value stack.
The pseudo-variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler.
The accept action indicates that the entire input has been seen
and that it matches the specification. This action appears only
when the look-ahead token is the end-marker and indicates that
the parser has successfully done its job. The error action, on the
other hand, represents a place where the parser can no longer
continue parsing according to the specification. The input tokens
it has seen (together with the look-ahead token) cannot be fol
lowed by anything that would result in a legal input. The parser
reports an error and attempts to recover the situation and resume
parsing. The error recovery (as opposed to the detection of error)
will be discussed later.

Consider:

6-16 PROGRAMMER'S GUIDE UP-13689

%token DING DONG DELL
%%
rhyme sound place

sound DING DONG

place DELL
;

as a yacc specification.

Parser Operation

When yacc is invoked with the -v option, a file called y.output
is produced with a human-readable description of the parser. The
y.output file corresponding to the above grammar (with some
statistics stripped off the end) follows.

state 0
$accept : _rhyme Send

DING shift 3
. error

rhyme go to 1
sound goto 2

state 1
$accept rhyme_Send

Send accept
error

state 2
rhyme sound_place

UP-13689 yacc 6-17

Parser Operation

state 3

state 4

state 5

state 6

- CONT I NUED -

DELL shift 5
. error

place goto 4

sound DING_DONG

DONG shift 6
. error

rhyme sound place_

reduce 1

place (3)

reduce 3

sound DING DONG_

(1)

(2)

~ ________ r_ed_u_c_e __ 2 ___________________________ __

The actions for each state are specified and there is a description
of the parsing rules being processed in each state. The _ charac
ter is used to indicate what has been seen and what is yet to
come in each rule. The following input

DING DONG DELL

can be used to track the operations of the parser. Initially, the
current state is state O. The parser needs to refer to the input in
order to decide between the actions available in state 0, so the
first token, DING, is read and becomes the look-ahead token. The
action in state 0 on DING is shift 3, state 3 is pushed onto the

6-18 PROGRAMMER'S GUIDE UP-13689

Parser Operation

stack, and the look-ahead token is cleared. State 3 becomes the
current state. The next token, DONG, is read and becomes the
look-ahead token. The action in state 3 on the token DONG is
shift 6, state 6 is pushed onto the stack, and the look-ahead is
cleared. The stack now contains 0, 3, and 6. In state 6, without
even consulting the look-ahead, the parser reduces by

sound : DING DONG

which is rule 2. Two states, 6 and 3, are popped off of the stack
uncovering state 0. Consulting the description of state ° (looking
for a goto on sound),

sound goto 2

is obtained. State 2 is pushed onto the stack and becomes the
current state.

In state 2, the next token, DELL, must be read. The action is
shift 5, so state 5 is pushed onto the stack, which now has 0, 2,
and 5 on it, and the look-ahead token is cleared. In state 5, the
only action is to reduce by rule 3. This has one symbol on the
right-hand side, so one state, 5, is popped off, and state 2 is
uncovered. The goto in state 2 on place (the left side of rule 3) is
state 4. Now, the stack contains 0, 2, and 4. In state 4, the only
action is to reduce by rule 1. There are two symbols on the right,
so the top two states are popped off, uncovering state ° again. In
state 0, there is a golo on rhyme causing the parser to enter state
1. In state 1, the input is read and the end-marker is obtained
indicated by $end in the y.output file. The action in state 1 (when
the end-marker is seen) successfully ends the parse.

The reader is urged to consider how the parser works when
confronted with such incorrect strings as DING DONG DONG,
DING DONG, DING DONG DELL DELL, etc. A few minutes spent
with this and other simple examples is repaid when problems arise
in more complicated contexts.

UP-13689 yacc 6-19

Ambiguity and Conflicts
A set of grammar rules is ambiguous if there is some input

string that can be structured in two or more different ways. For
example, the grammar rule

expr expr '-' expr

is a natural way of expressing the fact that one way of forming an
arithmetic expression is to put two other expressions together with
a minus sign between them. Unfortunately, this grammar rule
does not completely specify the way that all complex inputs
should be structured. For example, if the input is

expr - expr - expr

the rule allows this input to be structured as either

(expr - expr) - expr

or as

expr - (expr - expr)

(The first is called left association, the second right association.)

yacc detects such ambiguities when it is attempting to build
the parser. Given the input

expr - expr - expr

consider the problem that confronts the parser. When the parser
has read the second expr, the input seen

expr - expr

matches the right side of the grammar rule above. The parser
could reduce the input by applying this rule. After applying the
rule, the input is reduced to expr (the left side of the rule). The
parser would then read the final part of the input

- expr

and again reduce. The effect of this is to take the left associative
interpretation.

6-20 PROGRAMMER'S GUIDE UP-13689

Ambiguity and Conflicts

Alternatively, if the parser sees

expr - expr

it could defer the immediate application of the rule and continue
reading the in put until

expr - expr - expr

is seen. It could then apply the rule to the rightmost three sym
bols reducing them to expr, which results in

expr - expr

being left. Now the rule can be reduced once more. The effect is
to take the right associative interpretation. Thus, having read

expr - expr

the parser can do one of two legal things, a shift or a reduction. It
has no way of deciding between them. This is called a shift
reduce conflict. It may also happen that the parser has a choice
of two legal reductions. This is called a reduce-reduce conflict.
Note that there are never any shift-shift conflicts.

When there are shift-reduce or reduce-reduce conflicts, yacc
still produces a parser. It does this by selecting one of the valid
steps wherever it has a choice. A rule describing the choice to
make in a given situation is called a disambiguating rule.

yacc invokes two default disambiguating rules:

1 . In a shift-reduce conflict, the default is to do the shift.

2. In a reduce-reduce conflict, the default is to reduce by the
earlier grammar rule (in the yacc specification).

Rule 1 implies that reductions are deferred in favor of shifts
when there is a choice. Rule 2 gives the user rather crude control
over the behavior of the parser in this situation, but reduce-reduce
conflicts should be avoided when possible.

Conflicts may arise because of mistakes in input or logic or
because the grammar rules (while consistent) require a more com
plex parser than yacc can construct. The use of actions within
rules can also cause conflicts if the action must be done before
the parser can be sure which rule is being recognized. In these

UP-13689 yacc 6-21

Ambiguity and Conflicts

cases, the application of disambiguating rules is inappropriate and
leads to an incorrect parser. For this reason, yacc always reports
the number of shift-reduce and reduce-reduce conflicts resolved
by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating
rules to produce a correct parser, it is also possible to rewrite the
grammar rules so that the same inputs are read but there are no
conflicts. For this reason, most previous parser generators have
considered conflicts to be fatal errors. Our experience has sug
gested that this rewriting is somewhat unnatural and produces
slower parsers. Thus, yacc will produce parsers even in the pres
ence of conflicts.

As an example of the power of disambiguating rules, consider

stat IF '(' cond ')' stat
IF '(' cond ')' stat ELSE stat

which is a fragment from a programming language involving an if·
then·else statement. In these rules, IF and ELSE are tokens, cond
is a nonterminal symbol describing conditional (logical) expres
sions, and stat is a nonterminal symbol describing statements.
The first rule will be called the simple if rule and the second the if·
else rule.

These two rules form an ambiguous construction because
input of the form

IF (C1 IF (C2) 51 ELSE 52

can be structured according to these rules in two ways

IF C1
I

IF C2
51

ELSE
52

or

6·22 PROGRAMMER'S GUIDE UP·13689

---------------. Ambiguity and Conflicts

IF C1
{

IF C2
Sl

ELSE
S2

where the second interpretation is the one given in most program
ming languages having this construct; each ELSE is associated
with the last preceding un-ELSE'd IF. In this example, consider
the situation where the parser has seen

IF (C1 IF (C2) S1

and is looking at the ELSE. It can immediately reduce by the sim
ple if rule to get

IF (C1) stat

and then read the remaining input

ELSE S2

and reduce

IF (C1) stat ELSE S2

by the if-else rule. This leads to the first of the above groupings
of the input.

On the other hand, the ELSE may be shifted, S2 read, and
then the right-hand portion of

IF (C1 IF (C2) Sl ELSE S2

can be reduced by the if-else rule to get

IF (C1) stat

which can be reduced by the Simple if rule. This leads to the
second of the above groupings of the input which is usually
desired.

UP-13689 yacc 6-23

Ambiguity and Conflicts

Once again, the parser can do two valid things - there is a
shift-reduce conflict. The application of disambiguating rule 1 tells
the parser to shift in this case, which leads to the desired group
ing.

This shift-reduce conflict arises only when there is a particular
current input symbol, ELSE, and particular inputs, such as

IF (C1 IF (C2) Sl

have already been seen. In general, there may be many conflicts,
and each one will be associated with an input symbol and a set of
previously read inputs. The previously read inputs are character
ized by the state of the parser.

The conflict messages of yacc are best understood by examin
ing the verbose (-v) option output file. For example, the output
corresponding to the above conflict state might be

23: shift-reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat
stat

IF (cond
IF (cond

ELSE shift 45
reduce 18

stat_ (18)
stat_ELSE stat

where the first line describes the conflict - giving the state and the
input symbol. The ordinary state description gives the grammar
rules active in the state and the parser actions. Recall that the
underline marks the portion of the grammar rules, which has been
seen. Thus in the example, in state 23 the parser has seen input
corresponding to

IF (cond) stat

and the two grammar rules shown are active at this time. The

6-24 PROGRAMMER'S GUIDE UP-13689

Ambiguity and Conflicts

parser can do two possible things. If the input symbol is ELSE, it
is possible to shift into state 45. State 45 will have, as part of its
description, the line

stat IF (cond stat ELSE_stat

because the ELSE will have been shifted in this state. In state 23,
the alternative action (describing a dot, .), is to be done if the input
symbol is not mentioned explicitly in the actions. In this case, if
the input symbol is not ELSE, the parser reduces to

stat IF '(' cond ')' stat

by grammar rule 18.

Once again, notice that the numbers following shift commands
refer to other states, while the numbers following reduce com
mands refer to grammar rule numbers. In the y.output file, the
rule numbers are printed in parentheses after those rules, which
can be reduced. In most states, there is a reduce action possible
in the state and this is the default command. The user who
encounters unexpected shift-reduce conflicts will probably want to
look at the verbose output to decide whether the default actions
are appropriate.

UP-13689 yacc 6-25

Precedence
There is one common situation where the rules given above for

resolving conflicts are not sufficient. This is in the parsing of arith
metic expressions. Most of the commonly used constructions for
arithmetic expressions can be naturally described by the notion of
precedence levels for operators, together with information about
left or right associativity. It turns out that ambiguous grammars
with appropriate disambiguating rules can be used to create
parsers that are faster and easier to write than parsers con
structed from unambiguous grammars. The basic notion is to
write grammar rules of the form

expr : expr OP expr

and

expr : UNARY expr

for all binary and unary operators desired. This creates a very
ambiguous grammar with many parsing conflicts. As disambiguat
ing rules, the user specifies the precedence or binding strength of
all the operators and the associativity of the binary operators. This
information is sufficient to allow yacc to resolve the parsing con
flicts in accordance with these rules and construct a parser that
realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in
the declarations section. This is done by a series of lines begin
ning with a yacc keyword: %Ieft, %right, or %nonassoc, followed
by a list of tokens. All of the tokens on the same line are assumed
to have the same precedence level and associativity; the lines are
listed in order of increasing precedence or binding strength. Thus:

%left '+'
%left ,*,

, ,

, /'

describes the precedence and associativity of the four arithmetic
operators. Plus and minus are left associative and have lower pre
cedence than star and slash, which are also left associative. The
keyword %right is used to describe right associative operators,
and the keyword %nonassoc is used to describe operators, like
the operator .L T. in FORTRAN, that may not associate with them
selves. Thus:

6-26 PROGRAMMER'S GUIDE UP-13689

Precedence

A .LT. B .LT. C

is illegal in FORTRAN and such an operator would be described
with the keyword %nonassoc in yacc. As an example of the
behavior of these declarations, the description

%right
,
=
,

%left '+'
, - I

%left '*' I I'

%%

expr expr I = I expr
expr '+' expr
expr I - I expr
expr ,*, expr
expr I I' expr
NAME

might be used to structure the input

a = b = c*d - e - f*g

as follows

a = (b = (« c~:d) - e) - (f*g)))

in order to perform the correct precedence of operators. When
this mechanism is used, unary operators must, in general, be given
a precedence. Sometimes a unary operator and a binary operator
have the same symbolic representation but different precedences.
An example is unary and binary minus, -.

Unary minus may be given the same strength as multiplication,
or even higher, while binary minus has a lower strength than multi
plication. The keyword, %prec, changes the precedence level
associated with a particular grammar rule. The keyword %prec
appears immediately after the body of the grammar rule, before

UP-13689 yacc 6-27

Precedence

the action or closing semicolon, and is followed by a token name
or literal. It causes the precedence of the grammar rule to
become that of the following token name or literal. For example,
the rules

%left '+'
, - ,

%left '*' , /'

%%

expr expr '+' expr
expr , - , expr
expr '*' expr
expr ' /' expr , - , expr %prec '*'
NAME

might be used to give unary minus the same precedence as multi
plication.

A token declared by 0/01 eft, %right, and %nonassoc need not
be, but may be, declared by %token as well.

Precedences and associativities are used by yacc to resolve
parsing conflicts. They give rise to the following disambiguating
rules:

1 . Precedences and associativities are recorded for those
tokens and literals that have them.

2. A precedence and associativity is associated with each
grammar rule. It is the precedence and associativity of the
last token or literal in the body of the rule. If the %prec
construction is used, it overrides this default. Some gram
mar rules may have no precedence and associativity asso
ciated with them.

6-28 PROGRAMMER'S GUIDE UP-13689

Precedence

3. When there is a reduce-reduce conflict or there is a shift
reduce conflict and either the input symbol or the gram
mar rule has no precedence and associativity, then the two
default disambiguating rules given at the beginning of the
section are used, and the conflicts are reported.

4. If there is a shift-reduce conflict and both the grammar
rule and the input character have precedence and associa
tivity associated with them, then the conflict is resolved in
favor of the action - shift or reduce - associated with the
higher precedence. If precedences are equal, then associ
ativity is used. Left associative implies reduce; right asso
ciative implies shift; nonassociating implies error.

Conflicts resolved by precedence are not counted in the
number of shift-reduce and reduce-reduce conflicts reported by
yacc. This means that mistakes in the specification of pre
cedences may disguise errors in the input grammar. It is a good
idea to be sparing with precedences and use them in a cookbook
fashion until some experience has been gained. The y.output file
is very useful in deciding whether the parser is actually doing what
was intended.

UP-13689 yacc 6-29

Error Handling
Error handling is an extremely difficult area, and many of the

problems are semantic ones. When an error is found, for example,
it may be necessary to reclaim parse tree storage, delete or alter
symbol table entries, and/or, typically, set switches to avoid gen
erating any further output.

It is seldom acceptable to stop all processing when an error is
found. It is more useful to continue scanning the input to find
further syntax errors. This leads to the problem of getting the
parser restarted after an error. A general class of algorithms to do
this involves discarding a number of tokens from the input string
and attempting to adjust the parser so that input can continue.

To allow the user some control over this process, yacc pro
vides the token name error. This name can be used in grammar
rules. In effect, it suggests places where errors are expected and
recovery might take place. The parser pops its stack until it enters
a state where the token error is legal. It then behaves as if the
token error were the current look-ahead token and performs the
action encountered. The look-ahead token is then reset to the
token that caused the error. If no special error rules have been
specified, the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser,
after detecting an error, remains in error state until three tokens
have been successfully read and shifted. If an error is detected
when the parser is already in error state, no message is given, and
the input token is quietly deleted.

As an example, a rule of the form

stat error

means that on a syntax error the parser attempts to skip over the
statement in which the error is seen. More precisely, the parser
scans ahead, looking for three tokens that might legally follow a
statement, and start processing at the first of these. If the begin
nings of statements are not sufficiently distinctive, it may make a
false start in the middle of a statement and end up reporting a
second error where there is in fact no error.

6-30 PROGRAMMER'S GUIDE UP-13689

Error Handling

Actions may be used with these special error rules. These
actions might attempt to reinitialize tables, reclaim symbol table
space, etc.

Error rules such as the above are very general but difficult to
control. Rules such as

stat error '.' ,

are somewhat easier. Here, when there is an error, the parser
attempts to skip over the statement but does so by skipping to the
next semicolon. All tokens after the error and before the next
semicolon cannot be shifted and are discarded. When the semi
colon is seen, this rule will be reduced and any cleanup action
associated with it performed.

Another form of error rule arises in interactive applications
where it may be desirable to permit a line to be reentered after an
error. The following example

. input error '\n'
I

(void) printf("Reenter last line: ");

input

$$ = $4;

is one way to do this. There is one potential difficulty with this
approach. The parser must correctly process three input tokens
before it admits that it has correctly resynchronized after the error.
If the reentered line contains an error in the first two tokens, the
parser deletes the offending tokens and gives no message. This is
clearly unacceptable. For this reason, there is a mechanism that
can force the parser to believe that error recovery has been
accomplished. The statement

UP-13689 yacc 6-31

Error Handling

yyerrok

in an action resets the parser to its normal mode. The last exam
ple can be rewritten as

. input error '\n'
I

yyerrok;
(void) printf("Reenter last line: ");

input

$$ = $4;

which is somewhat better.

As previously mentioned, the token seen immediately after the
error symbol is the input token at which the error was discovered.
Sometimes, this is inappropriate; for example, an error recovery
action might take upon itself the job of finding the correct place to
resume input. In this case, the previous look-ahead token must be
cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose the action
after error were to call some sophisticated resynchronization rou
tine (supplied by the user) that attempted to advance the input to
the beginning of the next valid statement. After this routine is
called, the next token returned by yylex is presumably the first
token in a legal statement. The old illegal token must be discarded
and the error state reset. A rule similar to

6-32 PROGRAMMER'S GUIDE UP-13689

stat error

resynch() ;
yyerrok ;
yyclearin;

could perform this.

Error Handling

These mechanisms are admittedly crude but do allow for a
simple, fairly effective recovery of the parser from many errors.
Moreover, the user can get control to deal with the error actions
required by other portions of the program.

UP-13689 yacc 6-33

The yacc Environment
When the user inputs a specification to yacc, the output is a

file of C language subroutines, called y.tab.c. The function pro
duced by yacc is called yyparseO; it is an integer valued function.
When it is called, it in turn repeatedly calls yylexO, the lexical
analyzer supplied by the user (see "Lexical Analysis"), to obtain
input tokens. Eventually, an error is detected, yyparseO returns
the value 1, and no error recovery is pOSSible, or the lexical
analyzer returns the end-marker token and the parser accepts. In
this case, yyparseO returns the value O.

The user must provide a certain amount of environment for
this parser in order to obtain a working program. For example, as
with every C language program, a routine called mainO must be .
defined that eventually calls yparseO. In addition, a routine called
yyerrorO is needed to print a message when a syntax error is
detected.

These two routines must be supplied in one form or another
by the user. To ease the initial effort of using yacc, a library has
been provided with default versions of mainO and yerrorO. The
library is accessed by a .Iy argument to the cc(1) command or to
the loader. The source codes

and

main()
1

return (yyparse(»j

include <stdio.h>

yyerror(s)
char *Sj

(void) fprintf(stderr, "%s\n", s)j

show the triviality of these default programs. The argument to
yerrorO is a string containing an error message, usually the string
syntax error. The average application wants to do better than
this. Ordinarily, the program should keep track of the input line

6·34 PROGRAMMER'S GUIDE UP·13689

The yacc Environment

number and print it along with the message when a syntax error is
detected. The external integer variable wchar contains the look
ahead token number at the time the error was detected. This may
be of some interest in giving better diagnostics. Since the main 0
routine is probably supplied by the user (to read arguments, etc.),
the yacc library is useful only in small projects or in the earliest
stages of larger ones.

The external integer variable yydebug is normally set to O. If it
is set to a nonzero value, the parser will output a verbose descrip
tion of its actions including a discussion of the input symbols read
and what the parser actions are. It is possible to set this variable
by using sdb.

UP-13689 yacc 6-35

Hints for Preparing Specifications
This part contains miscellaneous hints on preparing efficient,

easy to change, and clear specifications. The individual subsec
tions are more or less independent.

Input Style
It is difficult to provide rules with substantial actions and still

have a readable specification file. The following are a few style
hints.

1. Use all uppercase letters for token names and all lower
case letters for nonterminal names. This is useful in
debugging.

2. Put grammar rules and actions on separate lines. It makes
editing easier.

3. Put all rules with the same left-hand side together. Put the
left-hand side in only once and let all following rules begin
with a vertical bar.

4. Put a semicolon only after the last rule with a given left
hand side and put the semicolon on a separate line. This
allows new rules to be easily added.

5. Indent rule bodies by one tab stop and action bodies by
two tab stops.

6. Put complicated actions into subroutines defined in
separate files.

Example 1 is written following this style, as are the examples in
this section (where space permits). The user must decide about
these stylistic questions. The central problem, however, is to make
the rules visible through the morass of action code.

6-36 PROGRAMMER'S GUIDE

Hints for Preparing Specifications

Left Recursion

The algorithm used by the yacc parser encourages so called
left recursive grammar rules. Rules of the form

name name rest_of_rule j

match this algorithm. These rules such as

list item
1 i st

, ,
item ,

and

seq item
seq item

frequently arise when writing specifications of sequences and lists.
In each of these cases, the first rule will be reduced for the first
item only; and the second rule will be reduced for the second and
all succeeding items.

With right recursive rules~ such as

seq item
item seq

the parser is a bit bigger; and the items are seen and reduced
from right to left. More seriously, an internal stack in the parser is
in danger of overflowing if a very long sequence is read. Thus, the
user should use left recursion wherever reasonable.

It is worth considering if a sequence with zero elements has
any meaning, and if so, consider writing the sequence specification
as

seq /* empty */
seq item

using an empty rule. Once again, the first rule would always be
reduced exactly once before the first item was read, and then the
second rule would be reduced once for each item read.

UP-13689 yacc 6-37

Hints for Preparing Specifications

Permitting empty sequences often leads to increased generality.
However, conflicts might arise if yacc is asked to decide which
empty sequence it has seen when it hasn't seen enough to know!

Lexical Tie-Ins
Some lexical decisions depend on context. For example, the

lexical analyzer might want to delete blanks normally, but not
within quoted strings, or names might be entered into a symbol
table in declarations but not in expressions. One way of handling
these situations is to create a global flag that is examined by the
lexical analyzer and set by actions. For example,

%{
int dflag;

%}
other declarations

%%

prog decls stats

decls /* empty */

dfl ag = 1;

decls declaration

stats /* empty */

dflag = 0;

stats statement

other rules 000

6-38 PROGRAMMER'S GUIDE UP-13689

Hints for Preparing Specifications

specifies a program that consists of zero or more declarations fol
lowed by zero or more statements. The flag dflag is now 0 when
reading statements and 1 when reading declarations, except for
the first token in the first statement. This token must be seen by
the parser before it can tell that the declaration section has ended
and the statements have begun. In many cases, this single token
exception does not affect the lexical scan.

This kind of back-door approach can be elaborated to a noxi
ous degree. Nevertheless, it represents a way of doing some
things that are difficult, if not impossible, to do otherwise.

Reserved Words

Some programming languages permit you to use words like if,
which are normally reserved as label or variable names, provided
that such use does not conflict with the legal use of these names
in the programming language. This is extremely hard to do in the
framework of yacc. It is difficult to pass information to the lexical
analyzer telling it this instance of if is a keyword and that instance
is a variable. The user can make a stab at it using the mechanism
described in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement.
Until then, it is better that the keywords be reserved, i.e., forbid
den for use as variable names. There are powerful stylistic rea
sons for preferring this.

UP·13689 yacc 6·39

Advanced Topics
This part discusses a number of advanced features of yacc.

Simulating error and accept in Actions

The parsing actions of error and accept can be simulated in
an action by use of macros YYACCEPT and YYERROR. The
YYACCEPT macro causes yyparseO to return the value 0; YYER
ROR causes the parser to behave as if the current input symbol
had been a syntax error; yyerrorO is called, and error recovery
takes place. These mechanisms can be used to simulate parsers
with multiple end-markers or context sensitive syntax checking.

Accessing Values in Enclosing Rules

An action may refer to values returned by actions to the left of
the current rule. The mechanism is Simply the same as with ordi
nary actions, a dollar sign followed by a digit.

6-40 PROGRAMMER'S GUIDE UP-13689

sent adj noun verb adj noun

look at the sentence

adj THE

$$ = THE;

YOUNG

$$ = YOUNG;

noun DOG

$$ = DOG;

CRONE

if($0 == YOUNG
1

(void) printf("what?\n");
J
$$ = CRONE;

Advanced Topics

In this case, the digit may be 0 or negative. In the action fol
lowing the word CRONE, a check is made that the preceding
token shifted was not YOUNG. Obviously, this is only possible
when a great deal is known about what might precede the symbol
noun in the input. There is also a distinctly unstructured flavor
about this. Nevertheless, at times this mechanism prevents a
great deal of trouble especially when a few combinations are to be
excluded from an otherwise regular structure.

UP-13689 yacc 6-41

Advanced Topics

Support for Arbitrary Value Types

By default, the values returned by actions and the lexical
analyzer are integers. yacc can also support values of other types
including structures. In addition, yacc keeps track of the types
and inserts appropriate union member names so that the resulting
parser is strictly type checked. yacc value stack is declared to be
a union of the various types of values desired. The user declares
the union and associates union member names with each token
and nonterminal symbol having a value. When the value is refer
enced through a $$ or $n construction, yacc will automatically
insert the appropriate union name so that no unwanted conver
sions take place. In addition, type checking commands such as
lint are far more silent.

There are three mechanisms used to provide for this typing.
First, there is a way of defining the union. This must be done by
the user since other subroutines, notably the lexical analyzer, must
know about the union member names. Second, there is a way of
associating a union member name with tokens and nonterminals.
Finally, there is a mechanism for describing the type of those few
values where yacc cannot easily determine the type.

To declare the union, the user includes

%union

body of union

in the declaration section. This declares the yacc value stack and
the external variables yylval and yyval to have type equal to this
union. If yacc was invoked with the -d option, the union declara
tion is copied onto the y.tab.h file as YYSTYPE.

Once YYSTYPE is defined, the union member names must be
associated with the various terminal and nonterminal names. The
construction

<name>

is used to indicate a union member name. If this follows one of
the keywords %token, %Ieft, %right, and %nonassoc, the union

6-42 PROGRAMMER'S GUIDE UP-13689

Advanced Topics

member name is associated with the tokens listed. Thus, saying

%left <optype> '+'
, ,

causes any reference to values returned by these two tokens to be
tagged with the union member name optype. Another keyword,
%type, is used to associate union member names with nontermi
nals. Thus, one might say

%type <nodetype> expr stat

to associate the union member nodetype with the nonterminal
symbols expr and stat.

There remain a couple of cases where these mechanisms are
insufficient. If there is an action within a rule, the value returned
by this action has no a priori type. Similarly, reference to left con
text values (such as $0) leaves yacc with no easy way of knowing
the type. In this case, a type can be imposed on the reference by
inserting a union member name between < and > immediately
after the first $. The example

rule aaa

I
bbb

$<intval>$ = 3;

fun($<intval>2, $<other>O);

shows this usage. This syntax has little to recommend it, but the
situation arises rarely.

A sample specification is given in Example 2. The facilities in
this subsection are not triggered until they are used. In particular,
the use of %type will turn on these mechanisms. When they are
used, there is a fairly strict level of checking. For example, use of
$n or $$ to refer to something with no defined type is diagnosed.

UP-13689 yacc 6-43

Advanced Topics

If these facilities are not triggered. the yacc value stack is used to
hold ints.

yacc I n put Syntax
This section has a description of the yacc input syntax as a

yacc specification. Context dependencies. etc. are not con
sidered. Ironically. although yacc accepts an LALR(1) grammar.
the yacc input specification language is most naturally specified as
an LR(2) grammar; the sticky part comes when an identifier is
seen in a rule immediately following an action. If this identifier is
followed by a colon. it is the start of the next rule; otherwise. it is a
continuation of the current rule. which just happens to have an
action embedded in it. As implemented. the lexical analyzer looks
ahead after seeing an identifier and decides whether the next
token (skipping blanks. newlines. and comments. etc.) is a colon.
If so. it returns the token CJDENTIFIER. Otherwise. it returns
IDENTIFIER. Literals (quoted strings) are also returned as IDEN
TIFIERs but never as part of C JDENTIFIERs.

/* grammar for the input to yacc */

/* basic entries */
%token IDENTIFIER /* incld. identifiers & literals */
%token C_IDENTIFIER /* identifier followed by a : */
%token NUMBER /* [0-9]+ */

/*

%token

%token
%token
%token

reserved words: %type=>TYPE %left=>LEFT,etc. */

LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

MARK
LCURL
RCURL

/* the %% mark */
/* the %1 mark */
/* the %} mark */

/* ASCII character literals stand for themselves */

6-44 PROGRAMMER'S GUIDE UP-13689

Advanced Topics

- CONTINUED -
%token spec

%%

spec defs MARK rules tail

tail MARK

In this action, eat up the rest of the file

/* empty: the second MARK is optional */

defs /* empty */
defs def

def START IDENTIFIER
UNION

rword

tag

UP-13689

Copy union definition to output

LCURL

Copy C code to output file

RCURL
rword tag nlist

TOKEN
LEFT
RIGHT
NONASSOC
TYPE

/* empty: union tag is optional */
, < ' IDENTI FI ER '>'

yacc 6-45

Advanced Topics

nlist

nmno

/* rule

rules

rule

rbody

act

- CONTINUED -
nmno
nlist nmno
nlist ',' nmno

IDENTIFIER /* Note: literal illegal
with % type */

IDENTIFIER NUMBER /* Note: illegal with %
type */

section */

C_IDENT I FI ER rbody
rules rule

C_IDENTIF IER rbody
'I' rbody prec I

/* empty */
rbody IDENTIFIER
rbody act

, 1 '
1

prec

prec

Copy action translate $$ etc.
I
'I'

prec /* empty */
PREC IDENTIFIER
PREC IDENTIFIER act
prec

6·46 PROGRAMMER'S GUIDE UP·13689

Examples

1. A Simple Example

This example gives the complete yacc applications for a small
desk calculator; the calculator has 26 registers labeled a through z
and accepts arithmetic expressions made up of the operators

+, -, *, I, % (mod operator), & (bitwise and), :
(bitwise or) and assignments.

If an expression at the top level is an assignment, only the assign
ment is done; otherwise, the expression is printed. As in the C
language, an integer that begins with 0 (zero) is assumed to be
octal; otherwise, it is assumed to be decimal.

As an example of a yacc specification, the desk calculator
does a reasonable job of showing how precedence and ambigui
ties are used and demonstrates simple recovery. The major over
simplifications are that the lexical analyzer is much simpler than for
most applications, and the output is produced immediately line by
line. Note the way that decimal and octal integers are read in by
grammar rules. This job is probably better done by the lexical
analyzer.

%1
N include <stdio.h>

oN include <ctype.h>

int regs[26];
int base;

\(

UP·13689 yacc 6·47

Examples

%start list

%token DIGIT LETTER

'I' I

'&'
'+'

, ,
'*' 'I' '%'

- CONT I NUED -

%left
%left
%left
%left
%left UMINUS 1* supplies precedence for unary minus *1

%%

1 ist

stat

expr

1* beginning of rules section *1

1* empty *1
list stat '\n'
list error '\n'

yyerrokj

expr

(void) printf("%d\n",

LETTER
,
=' expr

regs[$l] = $3j

'(' expr ') ,

$$ = $2;

expr '+' expr

$$ = $1 + $3;

$1)j

6·48 PROGRAMMER'S GUIDE UP .. 13689

UP-13689

- CONT I NUED -

expr '-' expr

$$ = $1 - $3;

expr ''if' expr

$$ = $1 'if $3;

expr 'I' expr

$$ = $1 I $3;

exp '%' expr

$$ = $1 % $3;

expr '&' expr

$$ = $1 & $3;

expr 'I' expr

$$ = $1 I $3;

'-' expr %prec UMINUS

$$ = -$2;

LETTER

$$ = reg[$1];

number

Examples

yacc 6-49

Examples

number

%%

int yylex(
1

- CONT I NUED -

DIGIT

$$ = $1; base = ($1==0) ? 8 10;

number DIG IT

$$ = base * $1 + $2;

/* beginning of subroutines section */

/* lexical analysis routine */
/* return LETTER for lowercase letter, */
/* yylval = 0 through 25 */
/* returns DIGIT for digit, yylval = 0 - 9 */
/* all other char. are returned immediately*/

tnt Cj

/*skip blanks*/
wh i 1 e ((c = getchar (» == ' ')

/* c is now nonblank */

i f (i slower (C »
1

J

yylval = c - 'a'j
return (LETTER)j

if (i sd i g i t (c »
J

return (c)j

yy 1 va 1 = c - ' 0' j
return (DIGIT);

6-50 PROGRAMMER'S GUIDE UP-13689

Examples

2. An Advanced Example
This section gives an example of a grammar using some of the

advanced features. The desk calculator example in Example 1 is
modified to provide a desk calculator that does floating point inter
val arithmetic. The calculator understands floating point constants;
the arithmetic operations +, - *, /, unary - a through z. Moreover,
it also understands intervals written

(X,Y)

where X is less than or equal to Y. There are 26 interval valued
variables A through Z that may also be used. The usage is similar
to that in Example 1; assignments return no value and print noth
ing while expressions print the (floating or interval) value.

This example explores a number of interesting features of
yacc and C. Intervals are represented by a structure consisting of
the left and right endpoint values stored as doubles. This struc
ture is given a type name, INTERVAL, by using typedef. yacc
value stack can also contain floating point scalars and integers
(used to index into the arrays holding the variable values). Notice
that the entire strategy depends strongly on being able to assign
structures and unions in C language. In fact, many of the actions
call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error
conditions - division by an interval containing 0 and an interval
presented in the wrong order. The error recovery mechanism of
yacc is used to throwaway the rest of the offending line.

In addition to the mixing of types on the value stack, this
grammar also demonstrates an interesting use of syntax to keep
track of the type (for example, scalar or interval) of intermediate
expressions. Note that scalar can be automatically promoted to
an interval if the context demands an interval value. This causes a
large number of conflicts when the grammar is run through yacc:
18 shift-reduce and 26 reduce-reduce. The problem can be seen
by looking at the two input lines.

2.5 + (3.5 - 4.)

and

UP·13689 yacc 6·51

Examples

2.5 + (3.5, 4)

Notice that the 2.5 is to be used in an interval value expression
in the second example, but this fact is not known until the comma
is read. By this time, 2.5 is finished, and the parser cannot go
back and change its mind. More generally, it might be necessary
to look ahead an arbitrary number of tokens to decide whether to
convert a scalar to an interval. This problem is evaded by having
two rules for each binary interval valued operator-one when the left
operand is a scalar and one when the left operand is an interval.
In the second case, the right operand must be an interval, so the
conversion will be applied automatically. Despite this evasion,
there are still many cases where the conversion may be applied or
not, leading to the above conflicts. They are resolved by listing
the rules that yield scalars first in the specification file; in this way,
the conflict will be resolved in the direction of keeping scalar
valued expressions scalar valued until they are forced to become
intervals.

This way of handling multiple types is very instructive. If there
were many kinds of expression types instead of just two, the
number of rules needed would increase dramatically and the con
flicts even more dramatically. Thus, while this example is instruc
tive, it is better practice in a more normal programming language
environment to keep the type information as part of the value and
not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual
feature is the treatment of floating point constants. The C
language library routine atof() is used to do the actual conversion
from a character string to a double-precision value. If the lexical
analyzer detects an error, it responds by returning a token that is
illegal in the grammar provoking a syntax error in the parser and
thence error recovery.

6-52 PROGRAMMER'S GUIDE UP-13689

%1

#include <stdio.h>
#include <ctype.h>

typedef struct interval
1

double 10, hi;
INTERVAL;

INTERVAL vrnul(), vdiv();

double atof();

double dreg[26];
INTERVAL vreg[26];

%1

%start line

%union
1

int ival;
double dval;
INTERVAL vval;

Examples

%token <ival> DREG VREG /* indices into dreg, vreg arrays*/

%token <dval> CONST /* floating point constant */

%type <dval> dexp /* expression */

%type <vval> vexp /* interval expression */

UP·13689 yacc 6·53

Examples

- CONT I NUED -

1* precedence information about the operators *1

%1 eft ' +' '-'
%left '*', I'
%left UMINUS 1* precedence for unary minus *1

%%

1 ines

line

1* beginning of rules section *1

1* empty *1
1 ines 1 ine

dexp '\n'

(void) printf("%1S.8f\n",$1);

vexp '\n'

(void) printf("(%1S.8f, %1S.8f)\n",
$1.10, $1.hi);

DREG '=' dexp '\n'

dreg[$1] = $3;

VREG '=' vexp '\n'

vreg[$1) = $3;

error '\n'

yyerrok;

dexp CONST
DREG

$$ = dreg[$1);

6·54 PROGRAMMER'S GUIDE UP·13689

- CONT I NUED -

dexp '+' dexp

$$ = $1 + $3;

dexp '-' dexp

$$ = $1 - $3;

dexp ''it' dexp

$$ = $1 * $3;

dexp 'I' dexp

$$ = $1 I $3;

, , dexp %prec UMINUS

$$ = -$2;

, (' dexp')'

$$ = $2;

vexp dexp

$$.hi = $$.10 = $1;

, (' dexp ',' dexp ')'

$$.10 = $2;
$$.hi = $4;

\ if($$.10 > $$.hi

Examples

~-----

UP-13689 yacc 6-55

Examples

VREG

- CONT I NUED -

(void) printf("interva1 out of
order \n");

VYERROR;

$$ = vreg[$1];

vexp '+' vexp

$$.hi = $1.hi + $3.hi;
$$.10 = $1.10 + $3.10;

dexp '+' vexp

$$.hi = $1 + $3.hi;
$$.10 = $1 + $3.10;

vexp '-' vexp

$$.hi = $1.hi - $3.10;
$$.10 = $1.10 - $3.hi;

dvep '-' vdep

$$.hf = $1 - $3.10;
$$.10 = $1 - $3.hi

vexp ''if' vexp

$$ = vmu1($1.10,$.hi,$3)

dexp ''if' vexp

6-56 PROGRAMMER'S GUIDE UP-13689

- CONTI NUED -

$$ = vrnu1($1, $1, $3

vexp 'I' vexp

if(dcheck($3)) YVERRORj
$$ = vdiv($1.10, $1.hi, $3

dexp 'I' vexp

if(dcheck($3)) YVERRORj
$$ = vdiv($1.10, $1.hi, $3

'-' vexp %prec UMINUS

$$.hi = -$2.10;$$.10 = -$2.hi

, (' vexp ')'

$$ = $2

Examples

%% 1* beginning of subroutines section*1

define BSZ 50 1* buffer size for floating point nurnber*1

1* lexical analysis *1

int yy1ex()
1

register int Cj

1* skip over blanks *1
while ((c = getchar(» == ' ')

,
if (isupper(c»

UP-13689 yacc 6-57

Examples

- CONTI NUED -

yylval. ival = c - 'A'
return (VREG);

if (islower(c))
1

yylval. ival = c - 'a',
return(DREG);

/* gobble up digits. pOints, exponents */

if (isdigit(c) :: c == ' .')
1

char buf[BSZ+l], *cp = buf;
int dot = 0, exp = 0;

for(; (cp - buf) < BSZ ; ++cp, c getchar())
I

*cp = c;

1

I

if (isdigit(c))
continue;

if (c == '.')

if (dot++ :: exp)
return ('.');

continue;

if(c == 'e')
1
if (exp++)

return (' e') ;

continue;
J

/* will cause syntax
error */

/* will cause syntax
error */

/* end of number */
break;

6-58 PROGRAMMER'S GUIDE UP-13689

J
INTERVAL

- CONT I NUED -
*cp = ' ';
if (cp - buf >= BSZ)

Examples

(void) printf("constant too long -
truncated\n");

else
ungetc(c, stdin); /* push back last

char read */
yylval.dval = atof(buf);
return (CONST);

return (c);

hilo(a, b, c, d)

UP-13689

double a, b, c, d;

/* returns the smallest interval containing a,
b, c, and d */

/* used by *,/ routine */
INTERVAL v;

if (a > b)

I

else
I

v.hi
v. 1 0

v.hi
v.lo

if (c > d)
1

a· ,
b· ,

b· ,
a· ,

if (c > v.hi)
v.hi = c;

if (d < v.lo)
v.lo = d;

yacc 6-59

Examples

J
INTERVAL

else
I

- CONTINUED -

if (d > v.hi)
v.hi = dj

if (c < v.lo)
v.lo = c;

return (v)j

vmul(a, b, v)
double a, bj
INTERVAL Vj

return (hilo(a * v.hi, a * v,lo, b * v.hi,
b * v.lo»;

J
dcheck(v)

INTERVAL v;

if (v.hi >= o. && v.lo <= 0.)
I

(void) printf("divisor interval contains
O.\n");

return (1);

return (0);

INTERVAL
vdiv(a, b, v)

double a, b;
INTERVAL v;

return (hilo(a / v.hi, a / v,lo, b / v.hi, b / v.lo»;

6-60 PROGRAMMER'S GUIDE UP-13689

Chapter 7: File and Record Locking

Introduction

Terminology

File Protection

Opening a File for Record Locl<ing

Setting a File Lock

Setting and Removing Record Locks

Getting Lock Information

Deadlock Handling

7-1

7-2

7-4

7-4

7-6

7-9

7-13

7-17

Selecting Advisory or Mandatory Locking 7-18

Caveat Emptor - Mandatory Locking 7-19

Record Locking and Future Releases of the UNIX System 7-20

UP-13689 TABLE OF CONTENTS

Introduction
Mandatory and advisory file and record locking both are avail

able on current releases of the UNIX system. The intent of this
capability to is provide a synchronization mechanism for programs
accessing the same stores of data simultaneously. Such process
ing is characteristic of many multi-user applications, and the need
for a standard method of dealing with the problem has been
recognized by standards advocates like /usr/group, an organiza
tion of UNIX system users from businesses and campuses across
the country.

Advisory file and record locking can be used to coordinate
self-synchronizing processes. In mandatory locking, the standard
I/O subroutines and I/O system calls enforce the locking protocol.
In this way, at the cost of a little efficiency, mandatory locking
double checks the programs against accessing the data out of
sequence.

The remainder of this chapter describes how file and record
locking capabilities can be used. Examples are given for the
correct use of record locking. Misconceptions about the amount
of protection that record locking affords are dispelled. Record
locking should be viewed as a synchronization mechanism, not a
security mechanism.

The manual pages for the fentl (2) system call, the loekf(3)
library function, and fentl(5) data structures and commands are
referred to throughout this section. You should read them before
continuing.

UP-13689 FILE AND RECORD LOCKING 7-1

Terminology
Before discussing how record locking should be used. let us

first define a few terms.

Record
A contiguous set of bytes in a file. The UNIX operating
system does not impose any record structure on files.
This may be done by the programs that use the files.

Cooperating Processes
Processes that work together in some well defined fashion
to accomplish the tasks at hand. Processes that share
files must request permission to access the files before
using them. File access permissions must be carefully set
to restrict non-cooperating processes from accessing
those files. The term process will be used interchangeably
with cooperating process to refer to a task obeying such
protocols.

Read (Share) Locks
These are used to gain limited access to sections of files.
When a read lock is in place on a record. other processes
may also read lock that record. in whole or in part. No
other process. however. may have or obtain a write lock on
an overlapping section of the file. If a process holds a
read lock it may assume that no other process will be writ
ing or updating that record at the same time. This access
method also permits many processes to read the given
record. This might be necessary when searching a file.
without the contention involved if a write or exclusive lock
were to be used.

Write (Exclusive) Locks
These are used to gain complete control over sections of
files. When a write lock is in place on a record. no other
process may read or write lock that record. in whole or in
part. If a process holds a write lock it may assume that no
other process will be reading or writing that record at the
same time.

7-2 PROGRAMMER'S GUIDE UP-13689

Terminology

Advisory Locking
A form of record locking that does not interact with the I/O
subsystem (i.e. creat(2), open(2), read (2) , and write(2)).
The control over records is accomplished by requiring an
appropriate record lock request before I/O operations. If
appropriate requests are always made by all processes
accessing the file, then the accessibility of the file will be
controlled by the interaction of these requests. Advisory
locking depends on the individual processes to enforce the
record locking protocol; it does not require an accessibility
check at the time of each I/O request.

Mandatory Locking
A form of record locking that does interact with the I/O
subsystem. Access to locked records is enforced by the
creat(2), open(2), read(2), and write(2) system calls. If a
record is locked, then access of that record by any other
process is restricted according to the type of lock on the
record. The control over records should still be performed
explicitly by requesting an appropriate record lock before
I/O operations, but an additional check is made by the sys
tem before each I/O operation to ensure the record lock
ing protocol is being honored. Mandatory locking offers
an extra synchronization check, but at the cost of some
additional system overhead.

UP-13689 FILE AND RECORD LOCKING 7-3

File Protection
There are access permissions for UNIX system files to control

who may read, write, or execute such a file. These access permis
sions may only be set by the owner of the file or by the superuser.
The permissions of the directory in which the file resides can also
affect the ultimate disposition of a file. Note that if the directory
permissions allow anyone to write in it, then files within the direc
tory may be removed, even if those files do not have read, write or
execute permission for that user. Any information that is worth
protecting, is worth protecting properly. If your application war
rants the use of record locking, make sure that the permissions on
your files and directories are set properly. A record lock, even a
mandatory record lock, will only protect the portions of the files
that are locked. Other parts of these files might be corrupted if
proper precautions are not taken.

Only a known set of programs and/or administrators should be
able to read or write a data base. This can be done easily by set
ting the set-group-ID bit (see chmod(1)) of the data base access
ing programs. The files can then be accessed by a known set of
programs that obey the record locking protocol. An example of
such file protection, although record locking is not used, is the
mail(1) command. In that command only the particular user and
the mail command can read and write in the unread mail files.

Opening a File for Record Locking
The first requirement for locking a file or segment of a file is

having a valid open file descriptor. If read locks are to be done,
then the file must be opened with at least read accessibility and
likewise for write locks and write accessibility. For our example we
will open our file for both read and write access:

7-4 PROGRAMMER'S GUIDE UP-13689

#inc1ude <stdio.h>
#inc1ude <errno.h>
#inc1ude <fcnt1.h>

int fd; /* file descriptor */
char *fi1enamej

main(argc, argv)
int argc;
char *argv[];
I

extern void exit(), perror();

File Protection

/* get data base file name from command line and
* open the file for read and write access.
*/

if (argc < 2) I
(void) fprintf(stderr, "usage: %s fi1ename\n",

argyl 0]);
exit(2);
I
filename = argv[l]j
fd = open(fi1ename, O_RDWR);
if (fd < 0) I
perror(fi1ename);
exit(2);
I

~------
The file is now open for us to perform both locking and I/O

functions. We then proceed with the task of setting a lock.

UP-13689 FILE AND RECORD LOCKING 7-5

File Protection

Setting a File Lock
There are several ways for us to set a lock on a file. In part,

these methods depend upon how the lock interacts with the rest
of the program. There are also questions of performance as well
as portability. Two methods will be given here, one using the
fcntl(2) system call, the other using the /usr/group standards com
patible lockf(3) library function call.

Locking an entire file is just a special case of record locking.
For both these methods the concept and the effect of the lock are
the same. The file is locked starting at a byte offset of zero (0)
until the end of the maximum file size. This point extends beyond
any real end of the file so that no lock can be placed on this file
beyond this point. To do this the value of the size of the lock is
set to zero. The code using the fcntl(2) system call is as follows:

Hinclude <fcntl.h>
Hdefine MAX_TRY10
int try;
struct flock lck;

try = 0;

/* set up the record locking structure, the address
* of which is passed to the fcntl system call.
*/

lck.l_type = F_WRLCK;/* setting a write lock */
lck.l_whence = 0;/* offset l_start from beginning of

file */
lck.l_start = OL;
lck.l_l~n = OL;/*until end of file address space*/

/* Attempt locking MAX_TRY times before giving up. \ ~~/

~-----

7-6 PROGRAMMER'S GUIDE UPa13689

- CONT I NUED -

while (fcntl(fd, F_SETLK, &lck) < 0) 1
if (errno == EAGAIN :: errno == EACCES)

File Protection

/* there might be other errors cases in which
* you might try again.
*/

if (++try < MAX_TRY)
(vo i d) sleep (2);
continue;
I
(void) fprintf(stderr,"File busy try again

laterl\n");
return;
I
perror("fcntl");
exit(2);
I

This portion of code tries to lock a file. This is attempted
several times until one of the following things happens:

• the file is locked

• an error occurs

• it gives up trying because MAX_TRY has been exceeded

To perform the same task using the lockf(3) function, the code
is as follows:

UP·13689 FILE AND RECORD LOCKING 7·7

File Protection

#include <unistd.h>
#define MAX_TRY10
int try;
try = 0;

/* make sure the file pointer
* is at the beginning of the file.
*/

lseek(fd, Ol, 0);

/* Attempt locking MAX_TRY times before giving up.
*/

while (lockf(fd, F_TlOCK, Ol) < 0) I
if (errno == EAGAIN :: errno == EACCES)
/* there might be other errors cases in which
* you might try again.
*/

if (++try < MAX_TRY)
sleep(2);
continue;
J
(void) fprintf(stderr,"File busy try again

later!\n");
return;
J
perror("lockf");
exit(2);
J

~-----
It should be noted that the lockf(3) example appears to be

simpler, but the fcntl(2) example exhibits additional flexibility.
Using the fcntl(2) method, it is possible to set the type and start of
the lock request simply by setting a few structure variables.
lockf(3) merely sets write (exclusive) locks; an additional system
call (lseek(2)) is required to specify the start of the lock.

7-8 PROGRAMMER'S GUIDE UP-13689

File Protection

Setting and Removing Record Locks

Locking a record is done the same way as locking a file except
for the differing starting point and length of the lock. We will now
try to solve an interesting and real problem. There are two
records (these records may be in the same or different file) that
must be updated simultaneously so that other processes get a
consistent view of this information. (This type of problem comes
up, for example, when updating the inter record pOinters in a dou
bly linked list.) To do this you must decide the following ques
tions:

• What do you want to lock?

• For multiple locks, what order do you want to lock and
unlock the records?

• What do you do if you succeed in getting all the required
locks?

• What do you do if you fail to get all the locks?

In managing record locks, you must plan a failure strategy if
one cannot obtain all the required locks. It is because of conten
tion for these records that we have decided to use record locking
in the first place. Different programs might:

• wait a certain amount of time, and try again

• abort the procedure and warn the user

• let the process sleep until signaled that the lock has been
freed

• some combination of the above

Let us now look at our example of inserting an entry into a
doubly linked list. For the example, we will assume that the record
after which the new record is to be inserted has a read lock on it
already. The lock on this record must be changed or promoted to
a write lock so that the record may be edited.

UP-13689 FILE AND RECORD LOCKING 7-9

File Protection

Promoting a lock (generally from read lock to write lock) is per
mitted if no other process is holding a read lock in the same sec
tion of the file. If there are processes with pending write locks that
are sleeping on the same section of the file, the lock promotion
succeeds and the other (sleeping) locks wait. Promoting (or
demoting) a write lock to a read lock carries no restrictions. In
either case, the lock is merely reset with the new lock type.
Because the /usr/group lockf function does not have read locks,
lock promotion is not applicable to that call. An example of record
locking with lock promotion follows:

struct record I

./* data portion of record */

long prev;/* index to previous record in the list */
long next;/* index to next record in the list */

I ;

/* Lock promotion using fcnt1(2)
* When this routine is entered it is assumed that there
* are read locks on "here" and "next".
* If write locks on "here" and "next" are obtained:
* Set a write lock on "this".
* Return index to "this" record.
* If any write lock is not obtained:
* Restore read locks on "here" and "next".
* Remove all other locks.
* Return a -1.
*/

long
set310ck (this, here, next)
long this, here, next;
I

7-10 PROGRAMMER'S GUIDE UP-13689

UP-13689

- CONT I NUED -
struct flock lck;

File Protection

lck.l_type = F_WRLCK;/* setting a write lock */
lck.l_whence = 0;/* offset l_start from beginning

of file */
lck.l_start = here;
lck.l_len = sizeof(struct record);

/* promote lock on "here" to write lock */
if (fcntl(fd, F_SETLKW, &lck) < 0) I
return (-1);
I
/* lock "this" with write lock */
lck.l_start = this;
if (fcntl(fd, F_SETLKW, &lck) < 0)
/* Lock on "this" failed;
* demote lock on "here" to read lock.
*/

lck.l_type = F_RDLCK;
lck.l_start = here;
(void) fcntl(fd, F_SETLKW, &lck);
return (-1);
I
/* promote lock on "next" to write lock */
lck.l_start = next;
if (fcntl(fd, F_SETLKW, &lck) < 0)
/* Lock on "next" failed;
* demote lock on "here" to read lock,
*/

lck.l_type = F_RDLCK;
lck.l_start = here;
(void) fcntl(fd, F_SETLK, &lck);
/* and remove lock on "this".
*/

lck.l_type = F_UNLCK;
lck.l_start = this;
(void) fcntl(fd, F_SETLK, &lck);
return (-1);/* cannot set lock, try again or quit */
I
return (this);

FILE AND RECORD LOCKING 7-11

File Protection

The locks on these three records were all set to wait (sleep) if
another process was blocking them from being set. This was done
with the F SETLKW command. If the F SETLK command was - -
used instead, the fcntl system calls would fail if blocked. The pro
gram would then have to be changed to handle the blocked condi
tion in each of the error return sections.

Let us now look at a similar example using the lockf function.
Since there are no read locks, all (write) locks will be referenced
generically as locks.

/* Lock promotion using 10ckf(3)
* When this routine is entered it is assumed that there
* are no locks on "here" and "next".
* If locks are obtained:
* Set a lock on "this".
* Return index to "this" record.
* If any lock is not obtained:
* Remove all other locks.
* Return a -1.
*/

#include <unistd.h>

long
set310ck (this, here, next)
long this, here, next;

/* lock "here" */
(void) lseek(fd, here, 0);
if (lockf(fd, F_LOCK, sizeof(struct record» < 0) l
return (-1);
I
/* lock "this" */
(void) lseek(fd, this, 0);
if (lockf(fd, F_LOCK, sizeof(struct record» < 0) l

7-12 PROGRAMMER'S GUIDE UP-13689

- CONT I NUED -
/* Lock on "this" failed.
* Clear lock on "here".
*/

(void) lseek(fd, here, 0);

File Protection

(void) lockf(fd, F_ULOCK, sizeof(struct record»;
return (-1);
I
/* lock "next" */
(void) lseek(fd, next, 0);
if (lockf(fd, F_LOCK, sizeof(struct record» < 0) l

/* Lock on "next" failed.
* Clear lock on "here",
*/

(void) lseek(fd, here, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record»;

/* and remove lock on "this".
*/

(void) lseek(fd, this, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record»;
return (-1);/* cannot set lock, try again

or quit */

return (this);

Locks are removed in the same manner as they are set, only
the lock type is different (F _ UNLCK or F _ ULOCK). An unlock can
not be blocked by another process and will only affect locks that
were placed by this process. The unlock only affects the section
of the file defined in the previous example by Ick. It is possible to
unlock or change the type of lock on a subsection of a previously
set lock. This may cause an additional lock (two locks for one sys
tem call) to be used by the operating system. This occurs if the
subsection is from the middle of the previously set lock.

UP-13689 FILE AND RECORD LOCKING 7-13

File Protection

Getting Lock Information

One can determine which processes, if any, are blocking a lock
from being set. This can be used as a simple test or as a means
to find locks on a file. A lock is set up as in the previous examples
and the F GETLK command is used in the fentl call. If the lock
passed to fentl would be blocked, the first blocking lock is
returned to the process through the structure passed to fent!.
That is, the lock data passed to fentl is overwritten by blocking
lock information. This information includes two pieces of data that
have not been discussed yet, I_pid and I_sysid, that are only used
by F _ GETLK. (For systems that do not support a distributed archi
tecture the value in I_sysid should be ignored.) These fields
uniquely identify the process holding the lock.

If a lock passed to fentl using the F _GETLK command would
not be blocked by another process' lock, then the I_type field is
changed to F _ UNLCK and the remaining fields in the structure are
unaffected. Let us use this capability to print all the segments
locked by other processes. Note that if there are several read
locks over the same segment only one of these will be found.

7·14 PROGRAMMER'S GUIDE UP-13689

File Protection

struct flock lck;

/* Find and print "write lock" blocked segments of
th i s f i 1 e. * /
(void) printf("sysid pid type start length\n");
lck.l_whence = 0;
lck.l_start = Ol;
lck.l_len = Ol;
do I
lck.l_type = F_WRlCK;
(void) fcntl(fd, F_GETlK, &lck);
if (lck.l_type != F_UNlCK) I
(void) printf("%5d %5d %c %8d %8d\n",
lCk.l_sysid,
lck.l_pid,
(lck.l_type == F_WRlCK) ? 'w' : 'R',
1 ck. l_start,
1 ck. 1_1 en);
/* if this lock goes to the end of the address
* space, no need to look further, so break out.
*/

if (lck.l_len == 0)
break;
/* otherwise, look for new lock after the one
* just found.
*/

lck.l_start += lck.l_len;
J
J while (lck.l_type != F_UNlCK);

fcntl with the F _ GETLK command will always return correctly
(that is, it will not sleep or fail) if the values passed to it as argu
ments are valid.

The lockf function with the F TEST command can also be
used to test if there is a process blocking a lock. This function
does not, however, return the information about where the lock
actually is and which process owns the lock. A routine using lockf
to test for a lock on a file follows:

UP-13689 FILE AND RECORD LOCKING 7-15

File Protection

/* find a blocked record. */

/* seek to beginning of file */
(void) lseek(fd, 0, OL);
/* set the size of the test region to zero (0)
* to test until the end of the file address space.
*/

if (lockf(fd, F_TEST, OL) < 0) I
switch (errno) I
case EACCES:
case EAGAIN:
(void) printf("file is locked by another process\n");
break;
case EBADF:
/* bad argument passed to lockf */
perror("lockf");
break;
default:
(void) printf("lockf: unknown error <%d>\n", errno);
break;
J
J

When a process forks, the child receives a copy of the file
descriptors that the parent has opened. The parent and child also
share a common file pointer for each file. If the parent were to
seek to a point in the file, the child's file pointer would also be at
that location. This feature has important implications when using
record locking. The current value of the file pointer is used as the
reference for the offset of the beginning of the lock, as described
by I_start, when using a I_whence value of 1. If both the parent
and child process set locks on the same file, there is a possibility
that a lock will be set using a file pointer that was reset by the
other process. This problem appears in the lockf(3) function call
as well and is a result of the /usr/group requirements for record
locking. If forking is used in a record locking program, the child
process should close and reopen the file if either locking method is
used. This will result in the creation of a new and separate file
pointer that can be manipulated without this problem occurring.

7-16 PROGRAMMER'S GUIDE UP-13S89

File Protection

Another solution is to use the fcntl system call with a I_whence
value of 0 or 2. This makes the locking function atomic, so that
even processes sharing file pointers can be locked without diffi
culty.

Deadlock Handling
There is a certain level of deadlock detection/avoidance built

into the record locking facility. This deadlock handling provides
the same level of protection granted by the /usr/group standard
lockf call. This deadlock detection is only valid for processes that
are locking files or records on a single system. Deadlocks can
only potentially occur when the system is about to put a record
locking system call to sleep. A search is made for constraint loops
of processes that would cause the system call to sleep indefinitely.
If such a situation is found, the locking system call will fail and set
errno to the deadlock error number. If a process wishes to avoid
the use of the systems deadlock detection it should set its locks
using F _GETLK instead of F _GETLKW.

UP-13689 FILE AND RECORD LOCKING 7-17

Selecting Advisory or Mandatory
Locking

The use of mandatory locking is not recommended for reasons
that will be made clear in a subsequent section. Whether or not
locks are enforced by the I/O system calls is determined at the
time the calls are made and the state of the permissions on the file
(see chmod(2)). For locks to be under mandatory enforcement,
the file must be a regular file with the set-group-ID bit on and the
group execute permission off. If either condition fails, all record
locks are advisory. Mandatory enforcement can be assured by the
following code:

#include <sys/types.h>
#include <sys/stat.h>

int mode;
struct stat buf;

if (stat(fflename, &buf) < 0) 1
perror("program");
ex i t (2);
J
/* get currently set mode */
mode = buf.st_modej
/* remove group execute permission from mode */
mode &= -(S_IEXEC»3);
/* set 'set group id bit' in mode */
mode := S_ISGIDj
if (chmod(filename, mode) < 0) 1
perror("program");
exit(2);
J

7·18 PROGRAMMER'S GUIDE Up·13689

Selecting Advisory or Mandatory Locking

Files that are to be record locked should never have any type
of execute permission set on them. This is because the operating
system does not obey the record locking protocol when executing
a file.

The chmod(1) command can also be easily used to set a file to
have mandatory locking. This can be done with the command:

chmod + 1 filename

The Is(1) command was also changed to show this setting when
you ask for the long listing format:

Is -I filename

causes the following to be printed:

-rw---l--- 1 abc other 10QS576 Dec 3 11:QQ filename

Caveat Emptor - Mandatory Locking

• Mandatory locking only protects those portions of a file that
are locked. Other portions of the file that are not locked
may be accessed according to normal UNIX system file per
missions.

• If multiple reads or writes are necessary for an atomic tran
saction, the process should explicitly lock all such pieces
before any I/O begins. Thus advisory enforcement is suffi
cient for all programs that perform in this way.

• As stated earlier, arbitrary programs should not have unres
tricted access permission to files that are important enough
to record lock.

• Advisory locking is more efficient because a record lock
check does not have to be performed for every I/O request.

UP-13689 FILE AND RECORD LOCKING 7-19

Selecting Advisory or Mandatory Locking

Record Locking and Future Releases of the UNIX
System

Provisions have been made for file and record locking in a
UNIX system environment. In such an environment the system on
which the locking process resides may be remote from the system
on which the file and record locks reside. In this way multiple
processes on different systems may put locks upon a single file
that resides on one of these or yet another system. The record
locks for a file reside on the system that maintains the file. It is
also important to note that deadlock detection/avoidance is only
determined by the record locks being held by and for a single sys
tem. Therefore, it is necessary that a process only hold record
locks on a single system at any given time for the deadlock
mechanism to be effective. If a process needs to maintain locks
over several systems, it is suggested that the process avoid the
sleep-when-blocked features of fcntl or lockf and that the pro
cess maintain its own deadlock detection. If the process uses the
sleep-when-blocked feature, then a timeout mechanism should be
provided by the process so that it does not hang waiting for a lock
to be cleared.

7-20 PROGRAMMER'S GUIDE UP-13689

Chapter 8: Shared Libraries

Introduction 8-1

Using a Shared Library 8-2

What is a Shared Library? 8-2

The UNIX System Shared Libraries 8-3

Building an a.out File 8-4

Coding an Application 8-4

Deciding Whether to Use a Shared Library 8-5

More About Saving Space 8-6

How Shared Libraries Save Space 8-6

How Shared Libraries Are Implemented 8-9

How Shared Libraries Might Increase Space Usage 8-12

Identifying a.out Files that Use Shared Libraries 8-13

Debugging a.out Files that Use Shared Libraries 8-13

Building a Shared Library 8-14

The Building Process 8-14

Step 1: Choosing Region Addresses 8-14

Step 2: Choosing the Target Library Path Name 8-16

Step 3: Selecting Library Contents 8-17

Step 4: Rewriting Existing Library Code 8-17

Step 5: Writing the Library Specification File 8-17

Step 6: Using mkshlib to Build the Host and Target 8-19

An Example 8-21

Guidelines for Writing Shared Library Code 8-27

Choosing Library Members 8-28

Changing Existing Code for the Shared library 8-30

Importing Symbols 8-33

Providing Archive Library Compatibility 8-40

UP-13689 TABLE OF CONTENTS

Table of Contents

Tuning the Shared Library Code

Making A Shared Library Upward Compatible

Summary

ii PROGRAMMER'S GUIDE

8-40

8-43

8-46

UP-13689

Introduction
With the UNIX system running on smaller machines, such as

the AT&T 382 Computer, efficient use of disk storage space,
memory, and computer power is becoming increasingly important.
A shared library can offer savings in all three areas. For example,
if constructed properly, a shared library can make a.out files (exe
cutable object files) smaller on disk storage and processes (a.out
files that are executing) smaller in memory.

The first part of this chapter, "Using a Shared Library,,' is
designed to help you use UNIX System V shared libraries. It
describes what a shared library is and how to use one to build
a.out files. It also offers advice about when and when not to use a
shared library and how to determine whether an a.out uses a
shared library.

The second part in this chapter, "Building a Shared Library,"
describes how to build a shared library. You do not need to read
this part to use shared libraries. It addresses library developers,
advanced programmers who are expected to build their own
shared libraries. Specifically, this part describes how to use the
UNIX system tool mkshlib(1) (documented in the Programmer's
Reference Manua~ and how to write C code for shared libraries on
a UNIX system. An example is included. Read this part of the
chapter only if you have to build a shared library.

NOTE:

UP·13689

Shared libraries are a new feature of UNIX System
V Release 3.0. An executable object file that needs
shared libraries will not run on previous releases of
UNIX System V.

SHARED LIBRARIES 8·1

Using a Shared Library
If you are accustomed to using libraries to build your applica

tions programs, shared libraries should blend into your work easily.
This part of the chapter explains what shared libraries are and how
and when to use them on the UNIX system.

What is a Shared Library?

A shared library is a file containing object code that several
a.out files may use simultaneously while executing. A shared
library, like a library that is not shared, is an archive file. For sim
plicity, however, we refer to an archive file with shared library
members as a shared library and one without as an archive library.

When a program is compiled or link edited with a shared
library, the library code that defines the program's external refer
ences is not copied into the program's object file. Instead, a spe
cial section called .lib that identifies the library code is created in
the object file. When the UNIX system executes the resulting
a.out file, it uses the information in this section to bring the
required shared library code into the address space of the pro
cess.

A shared library offers several benefits by not copying code
into a.out files. It can

• save disk storage space

Because shared library code is not copied into all the a.out
files that use the code, these files are smaller and use less
disk space.

• save memory

By sharing library code at run time, the dynamic memory
needs of processes are reduced.

• make executable files using library code easier to maintain

As mentioned above, shared library code is brought into a
process' address space at run time. Updating a shared
library effectively updates all executable files that use the
library, because the operating system brings the updated
version into new processes. If an error in shared library

8-2 PROGRAMMER'S GUIDE UP-13689

Using a Shared Library

code is fixed, all processes automatically use the corrected
code.

Archive libraries cannot, of course, offer this benefit:
changes to archive libraries do not affect executable files,
because code from the libraries is copied to the files during
link editing, not during execution.

"Deciding Whether to Use a Shared Library" in this chapter
describes shared libraries in more detail.

The UNIX System Shared Libraries

AT&T provides the C shared library with UNIX System V
Release 3.0, and later releases; the networking library included
with the Networking Support Utilities is also a shared library.
Other shared libraries may be available now from software vendors
and in the futu re from AT&T.

These libraries, like all shared libraries, are made up of two
files called the host library and the target library. The host library
is the file that the link editor searches when linking programs to
create the .lib sections in a.out files; the target library is the file
that the UNIX system uses when running those files. Naturally, the
target library must be present for the a.out file to run.

Shared
Library

C Library

Networking Library

Host Library
Command Line Option

-Ic s

Target Library
Path Name

/shlib/libc s

/shlibllibnsl_ s

Notice the _ s suffix on the library names; we use it to identify
both host and target shared libraries. For example, it distinguishes
the standard relocatable C library libc from the shared C library
libc_s. The _s also indicates that the libraries are statically linked.

The relocatable C library is still available on the UNIX system;
this library is searched by default during the compilation or link
editing of C programs. All other archive libraries from previous
releases of the system are also available. Just as you use the

UP-13689 SHARED LIBRARIES 8-3

Using a Shared Library

archive libraries' names, you must use a shared library's name
when you want to use it to build your a.out files. You tell the link
editor its name with the -I option, as shown below.

Building an a.out File
You direct the link editor to search a shared library the same

way you direct a search of an archive library on the UNIX system:

cc file.c -0 file -Ilibrary _file

To direct a search of the networking library. for example. you
use the following command line.

cc file.c -0 file

And to link all the files in your current directory together with
the shared C library you'd use the following command line:

cc *.c -Ic_s

Normally. you should include the -Ic_s argument after all other
-I arguments on a command line. The shared C library will then be
treated like the relocatable C library, which is searched by default
after all other libraries specified on a command line are searched.

Coding an Application
Application source code in C or assembly language is compatI

ble with both archive libraries and shared libraries. As a result. you
should not have to change the code in any applications you
already have when you use a shared library with them. When cod
ing a new application for use with a shared library. you should just
observe your standard coding conventions.

However. do keep the following two points in mind. which
apply when using either an archive or a shared library:

• Don't define symbols in your application with the same
names as those in a library.

Although there are exceptions. you should avoid redefining
standard library routines. such as printf(3S) and

8-4 PROGRAMMER'S GUIDE UP-13689

Using a Shared Library

strcmp(3C). Replacements that are incompatibly defined
can cause any library, shared or unshared, to behave
incorrectly.

• Don't use undocumented archive routines.

Use only the functions and data mentioned on the manual
pages describing the routines in Section 3 of the
Programmer's Reference Manual. For example, don't try to
outsmart the ctype design by manipulating the underlying
implementation.

Deciding Whether to Use a Shared Library
You should base your decision to use a shared library on

whether it saves space in disk storage and memory for your pro
gram. A well-designed shared library almost always saves space.
So, as a general rule, use a shared library when it is available.

To determine what savings are gained from using a shared
library, you might build the same application with both an archive
and a shared library, assuming both kinds of library are available.
Remember, that you may do this because source code is compati
ble between shared libraries and archive libraries. (See the above
section "Coding an Application.") Then compare the two versions
of the application for size and performance. For example,

UP-13689 SHARED LIBRARIES 8-5

Using a Shared Library

$ cat hell0.c
main()
1

printf("Hello\n");
J
$ cc -0 unshared hel10.c
$ cc -0 shared hell0.c -lc_s
$ size unshared shared
unshared: 8680 + 1388 + 2248 = 12316
shared: 300 + 680 + 2248 = 3228

If the application calls only a few library members, it is possible
that using a shared library could take more disk storage or
memory. The following section gives a more detailed discussion
about when a shared library does and does not save space.

When making your decision about using shared libraries, also
remember that they are not available on UNIX System V releases
prior to Release 3.0. If your program must run on previous
releases, you will need to use archive libraries.

More About Saving Space
This section is designed to help you better understand why

your programs will usually benefit from using a shared library. It
explains

• how shared libraries save space that archive libraries cannot

• how shared libraries are implemented on the UNIX system

• how shared libraries might increase space usage

8-6 PROGRAMMER'S GUIDE UP-13689

Using a Shared Library

How Shared Libraries Save Space

To better understand how a shared library saves space, we
need to compare it to an archive library.

A host shared library resembles an archive library in three
ways. First, as noted earlier, both are archive files. Second, the
object code in the library typically defines commonly used text
symbols and data symbols. The symbols defined inside and made
available outside the library are called exported symbols. Note
that the library may also have imported symbols, symbols that it
uses but usually does not define. Third, the link editor searches
the library for these symbols when linking a program to resolve its
external references. By resolving the references, the link editor
produces an executable version of the program, the a.out file.

NOTE: Note that the link editor on the UNIX system is a
static linking tool; static linking requires that all
symbolic references in a program be resolved
before the program may be executed. The link
editor uses static linking with both an archive
library and a shared library.

Although these similarities exist, a shared library differs signifi
cantly from an archive library. The major differences relate to how
the libraries are handled to resolve symbolic references, a topic
already discussed briefly.

Consider how the UNIX system handles both types of libraries
during link editing. To produce an a.out file using an archive
library, the link editor copies the library code that defines a
program's unresolved external reference from the library into
appropriate .text and .data sections in the program's object file.
In contrast, to produce an a.out file using a shared library, the link
editor does not copy any code from the library into the program's
object file. Instead, it creates a special section called .lib in the file
that identifies the library code needed at run time and resolves the
external references to shared library symbols with their correct
values. When the UNIX system executes the resulting a.out file, it
uses the information in the .Iib section to bring the required
shared library code into the address space of the process.

UP-13689 SHARED LIBRARIES 8-7

Using a Shared Library

Figure 8-1 depicts the a.out files produced using a regular
archive version and a shared version of the standard C library to
compile the following program:

maine)
{

printf("How do }'Ol like this m:umal?\n");

result = stranp("I do.". answer);

Notice that the shared version is smaller. Figure 8-2 depicts the
process images in memory of these two files when they are exe
cuted.

8·8 PROGRAMMER'S GUIDE UP·13689

a.out Using
Archive Library

FILE HEADER

program .text

library .text

for printf(3S) and

strcmp(3C)

program .data

library .data
for printf(3S) and

strcmp(3C)

SYMBOL TABLE

STRING TABLE

Using a Shared Library

Created by the link editor.
Refers to library code for
print and strcmp(3C)

~

Copied to file by
the Jink editor

a.out Using
Shared Library

FILE HEADER

program .text

program .data

.lib

SYMBOL TABLE

STRING TABLE

Figure 8-1: a.out Files Created Using an Archive Library and a
Shared Library

Now consider what happens when several a.out files need
the same code from a library. When using an archive library, each
file gets its own copy of the code. This results in duplication of the
same code on the disk and in memory when the a.out files are run
as processes. In contrast, when a shared library is used, the
library code remains separate from the code in the a.out files, as
indicated in Figure 8-2. This separation enables all processes
using the same shared library to reference a single copy of the
code.

UP-13689 SHARED LIBRARIES 8-9

Using a Shared Library

Address

Space

Archive

Version
Shared
Version

May be brought
to other processes

simultaneously

! .?' ...
:.-

..... ·1 Library I
: : ~ Brought into process' : *: address space•.......

•
• Library code referred

to by .lib

Figure 8-2: Processes Using an Archive and a Shared Library

How Shared Libraries Are Implemented
Now that you have a better understanding of how shared

libraries save space, you need to consider their implementation on
the UNIX system to understand how they might increase space
usage (this happens seldomly).

The Host Library and Target Library
As previously mentioned, every shared library has two parts:

the host library used for linking that resides on the host machine
and the target library used for execution that resides on the target
machine. The host machine is the machine on which you build an
a.out file; the target machine is the machine on which you run the
file. Of course, the host and target may be the same machine, but
they don't have to be.

8-10 PROGRAMMER'S GUIDE UP-13689

Using a Shared Library

The host library is just like an archive library. Each of its
members (typically a complete object file) defines some text and
data symbols in its symbol table. The link editor searches this file
when a shared library is used during the compilation or link editing
of a program.

The search is for definitions of symbols referenced in the pro
gram but not defined there. However, as mentioned earlier, the
link editor does not copy the library code defining the symbols into
the program's object file. Instead, it uses the library members to
locate the definitions and then places symbols in the file that tell
where the library code is. The result is the special section in the
a.out file mentioned earlier (see the section "What is a Shared
Library?") and shown in Figure 8-1 as .lib.

The target library used for execution resembles an a.out file.
The UNIX operating system reads this file during execution if a
process needs a shared library. The special .lib section in the
a.out file tells which shared libraries are needed. When the UNIX
system executes the a.out file, it uses this section to bring the
appropriate library code into the address space of the process. In
this way, before the process starts to run, all required library code
has been made available.

Shared libraries enable the sharing of .text sections in the tar
get library, which is where text symbols are defined. Although
processes that use the shared library have their own virtual
address spaces, they share a single physical copy of the library's
text among them. That is, the UNIX system uses the same physi
cal code for each process that attaches a shared library's text.

The target library cannot share its .data sections. Each pro
cess using data from the library has its own private data region
(contiguous area of virtual address space that mirrors the .data
section of the target library). Processes that share text do not
share data and stack area so that they do not interfere with one
another.

As suggested above, the target library is a lot like an a.out file,
which can also share its text, but not its data. Also, a process
must have execute permission for a target library to execute an
a.out file that uses the library.

UP·13689 SHARED LIBRARIES 8·11

Using a Shared Library

The Branch Table
When the link editor resolves an external reference in a pro

gram, it gets the address of the referenced symbol from the host
library. This is because a static linking loader like Id binds symbols
to addresses during link editing. In this way, the a.out file for the
program has an address for each referenced symbol.

What happens if library code is updated and the address of a
symbol changes? Nothing happens to an a.out file built with an
archive library, because that file already has a copy of the code
defining the symbol. (Even though it isn't the updated copy, the
a.out file will still run.) However, the change can adversely affect
an a.out file built with a shared library. This file has only a symbol
telling where the required library code is. If the library code were
updated, the location of that code might change. Therefore, if the
a.out file ran after the change took place, the operating system
could bring in the wrong code. To keep the a.out file current, you
might have to recompile a program that uses a shared library after
each library update.

To prevent the need to recompile, a shared library is imple
mented with a branch table on the UNIX system. A branch table
associates text symbols with an absolute address that does not
change even when library code is changed. Each address labels a
jump instruction to the address of the code that defines a symbol.
Instead of being directly associated with the addresses of code,
text symbols have addresses in the branch table.

Figure 8-3 shows two a.out files executing that make a call to
printf(3S). The process on the left was built using an archive
library. It already has a copy of the library code defining the
printf(3S) symbol. The process on the right was built using a
shared library. This file references an absolute address (10) in the
branch table of the shared library at run time; at this address, a
jump instruction references the needed code.

8-12 PROGRAMMER'S GUIDE UP-13689

A shared library uses
a branch table.

An archive library does

not use a branch table.

call printf(3S

Using a Shared Library

./ •••• or?

Branch

Table 300

Shared
Library

jump to
printf

Figure 8-3: A Branch Table in a Shared Library

How Shared Libraries Might Increase Space Usage
A host library might add space to an a.out file. Recall that

UNIX System V Release 3.0 uses static linking, which requires that
all external references in a program be resolved before it is exe
cuted. Also recall that a shared library may have imported sym
bols, which are used but not defined by the library. These sym
bols might introduce unresolved references during the linking pro
cess. To resolve these references, the link editor has to add the
.text and .data sections defining the referenced imported symbols
to the a.out file. These sections increase the size of the a.out file.

A target library might also add space to a process. Again
recall from ''How Shared Libraries are Implemented" in this chapter
that a shared library's target file may have both text and data
regions connected to a process. While the text region is shared
by all processes that use the library, the data region is not. Every
process that uses the library gets its own private copy of the entire

UP-13689 SHARED LIBRARIES 8-13

Using a Shared Library

library data region. Naturally, this region adds to the process's
memory requirements. As a result, if an application uses only a
small part of a shared library's text and data, executing the appli
cation might require more memory with a shared library than
without one. For example, it would be unwise to use the shared C
library to access only strcmp(3C). Although sharing strcmp(3C)
saves disk storage and memory, the memory cost for sharing all
the shared C library's private data region outweighs the savings.
The archive version of the library would be more appropriate.

Identifying a.out Files that Use Shared Libraries

Suppose you have an executable file and you want to know
whether it uses a shared library. You can use the dump(1) com
mand (documented in the Programmer's Reference Manua~ to
look at the section headers for the file:

dump -hv a.out

If the file has a .lib section, a shared library is needed. If the
a.out does not have a .lib section, it does not use shared libraries.

With a little more work, you can even tell what libraries a file
uses by looking at the .lib section contents.

dump -L a.out

Debugging a.out Files that Use Shared Libraries

Debugging support for shared libraries is currently limited.
Shared library data are not dumped to core files, and sdb(1)
(documented in the Programmer's Reference Manua~ does not
read shared libraries' symbol tables. If you encounter an error
that appears not to be in your application code, you may find
debugging easier if you rebuild the application with the archive
version of the library used.

8-14 PROGRAMMER'S GUIDE UP-13689

Building a Shared Library
This part of the chapter explains how to build a shared library.

It covers the major steps to the building process, the use of the
UNIX system tool mkshlib(1) which builds the host and target
libraries, and some guidelines for writing shared library code.

This part assumes that you are an advanced C programmer
faced with the task of building a shared library. It also assumes
you are familiar with the archive library building process. You do
not need to read this part of the chapter if you only plan to use
the UNIX system shared libraries or other shared libraries that
have already been built.

The Building Process
To build a shared library on the UNIX system, you have to

complete six major tasks:

• Choose region addresses.

• Choose the path name for the shared library target file.

• Select the library contents.

• Rewrite existing library code to be included in the shared
library.

• Write the library specification file.

• Use the mkshlib tool to build the host and target libraries.

Here each of these tasks is discussed.

Step 1: Choosing Region Addresses
The first thing you need to do is choose region addresses for

your shared library.

Shared library regions on the AT&T 3B2 Computer correspond
to memory management unit (MMU) segment size, each of which
is 128 KB. The following table gives a list of the segment assign
ments on the 3B2 Computer (as of the copyright date for this
guide) and shows what virtual addresses are available for libraries
you might build.

UP-13689 SHARED LIBRARIES 8-15

Building a Shared Library

Start Target
Address Contents Path Name

OxSOOOOOOO Reserved for AT&T

... UNIX Shared C Library /shlib/libc _ s
AT& T Networking Library /shlib/libnsl_ s

OxS03EOOOO
OXS0400000 Generic Database Library Unassigned
Ox80420000
Ox80440000 Generic Statistical Library Unassigned
Ox80460000
OxS0480000 Generic User Interface Library Unassigned
Ox804AOOOO
Ox804COOOO Generic Screen Handling Library Unassigned
OxS04EOOOO
OxS0500000 Generic Graphics Library Unassigned
Ox80520000
Ox80540000 Generic Networking Library Unassigned
Ox80560000
OxS0580000 Generic - to be defined Unassigned
...
OxS066OOOO
Ox80680000 For private use Unassigned
...
OxS07EOOOO

What does this table tell you? First, the AT&T shared C library
and the networking library reside at the path names given above
and use addresses in the range reserved for AT&T. If you build a
shared library that uses reserved addresses you run the risk of
conflicting with future AT&T products.

Second, a number of segments are allocated for shared
libraries that provide various services such as graphics, database
access, and so on. These categories are intended to reduce the
chance of address conflicts among commercially available libraries.
Although two libraries of the same type may conflict, that doesn't
matter. A single process should not usually need to use two
shared libraries of the same type. If the need arises, a program
can use one shared library and one archive library.

8-16 PROGRAMMER'S GUIDE UP-13689

Building a Shared Library

Any number of libraries can use the same virtual
addresses, even on the same machine. Conflicts
occur only within a single process, not among
separate processes. Thus two shared libraries can
have the same region addresses without causing
problems, as long as a single a.out file doesn't
need to use both libraries.

Third, several segments are reserved for private use. If you
are building a large system with many a.out files and processes,
shared libraries might improve its performance. As long as you
don't intend to release the shared libraries as separate products,
you should use the private region addresses. You can put your
shared libraries into these segments and avoid conflicting with
commercial shared libraries. You should also use the private areas
when you will own all the a.out files that access your shared
library. Don't risk address conflicts.

NOTE: If you plan to build a commercial shared library,
you are strongly encouraged to provide a compati
ble, relocatable archive as well. Some of your cus
tomers might not find the shared library appropri
ate for their applications. Others might want their
applications to run on versions of the UNIX system
without shared library support.

Step 2: Choosing the Target Library Path Name

After you choose the region addresses for your shared library,
you should choose the path name for the target library. We chose
/shlib/libc_s for the shared C library and /shlib/libnsl_s for the
networking library. (As mentioned earlier, we use the _s suffix in
the path names of all statically linked shared libraries.) To choose
a path name for your shared library, consult the established list of
names for your computer or see your system administrator. Also
keep in mind that shared libraries needed to boot a UNIX system
should normally be located in /shlib; other application libraries nor
mally reside in /usr/lib or in private application directories. Of
course, if your shared library is for personal use, you can choose

UP-13689 SHARED LIBRARIES 8-17

Building a Shared Library

any convenient path name for the target library.

Step 3: Selecting Library Contents

Selecting the contents for your shared library is the most
important task in the building process. Some routines are prime
candidates for sharing; others are not. For example, it's a good
idea to include large, frequently used routines in a shared library
but to exclude smaller routines that aren't used as much. What
you include will depend on the individual needs of the program
mers and other users for whom you are building the library. There
are some general guidelines you should follow, however. They are
discussed in the section "Choosing Library Members" in this
chapter. Also see the guidelines in the following sections "Import
ing Symbols" and "Tuning the Shared Library Code."

Step 4: Rewriting Existing Library Code

If you choose to include some existing code from an archive
library in a shared library, changing some of the code will make
the shared code easier to maintain. See the section "Changing
Existing Code for the Shared Library" in this chapter.

Step 5: Writing the Library Specification File
After you select and edit all the code for your shared library,

you have to build the shared library specification file. The library
specification file contains all the information that mkshlib needs to
build both the host and target libraries. An example specification
file is shown in the next section, "An Example." The contents and
format of the specification file are given by the following directives
(see also the mkshlib(1) manual page):

#address sectname address
Specifies the start address, address, of section
sectname for the target file. This directive is
typically used to specify the start addresses of
the .text and .data sections.

#target pathname
Specifies the path name, pathname, of the tar
get shared library on the target machine. This
is the location where the operating system
looks for the shared library during execution.
Normally, pathname will be an absolute path

8-18 PROGRAMMER'S GUIDE UP-13689

#branch

UP-13689

Building a Shared Library

name, but it does not have to be.

This directive can be specified only once per
shared library specification file.

Starts the branch table specifications. The
lines following this directive are taken to be
branch table specification lines.

Branch table specification lines have the follow
ing format:

funcname < white space> position

funcname is the name of the symbol given a
branch table entry and position specifies the
position of funcname's branch table entry.
position may be a single integer or a range of
integers of the form position1-position2. Each
position must be greater than or equal to one.
The same position cannot be specified more
than once, and every position from one to the
highest given position must be accounted for.

If a symbol is given more than one branch
table entry by associating a range of positions
with the symbol or by specifying the same
symbol on more than one branch table specifi
cation line, then the symbol is defined to have
the address of the highest associated branch
table entry. All other branch table entries for
the symbol can be thought of as empty slots
and can be replaced by new entries in future
versions of the shared library.

Finally, only functions should be given branch
table entries, and those functions must be
external.

This directive can be specified only once per
shared library specification file.

SHARED LIBRARIES 8-19

Building a Shared Library

#objects

#init object

Specifies the names of the object files consti
tuting the target shared library. The lines fol
lowing this directive are taken to be the list of
input object files in the order they are to be
loaded into the target. The list simply consists
of each filename followed by white space. This
list of objects will be used to build the shared
library.

This directive can be specified only once per
shared library specification file.

Specifies that the object file, object, requires
initialization code. The lines following this
directive are taken to be initialization specifica
tion lines.

Initialization specification lines have the follow
ing format:

pimport < white space> import

pimport is a pointer to the associated imported
symbol, import, and must be defined in the
current specified object file, object. The initiali
zation code generated for each line resembles
the C assignment statement:

pimport = &import;

The assignments set the pointers to default
values. All initializations for a particular object
file must be given at once and multiple specifi
cations of the same object file are not allowed.

#ident "string" Specifies a string, string, to be included in the
.comment section of the target shared library
and the .comment sections of every member
of the host shared library. Only one #ident
directive is permitted per shared library specifi
cation file.

8-20 PROGRAMMER'S GUIDE UP-13689

Building a Shared Library

Specifies a comment. The rest of the line is
ignored.

All directives that are followed by multi-line specifications are
valid until the next directive or the end of file.

Step 6: Using mkshlib to Build the Host and Target

The UNIX system command mkshlib(1) builds both the host
and target libraries. mkshlib invokes other tools such as the
assembler, as(1), and link editor, Id(1). Tools are invoked through
the use of execvp (see exec(2)) which searches directories in a
user's $PATH environment variable. Also, prefixes to mkshlib are
parsed in much the same manner as prefixes to the cc(1) com
mand and invoked tools are given the prefix, where appropriate.
For example, 3b2mkshlib invokes 3b21d. These commands all are
documented in the Programmer's Reference Manual.

The user input to mkshlib consists of the library specification
file and command line options. We just discussed the specification
file; let's take a look at the options now. The shared library build
tool has the following syntax:

mkshlib -s specfil -t target [-h host] [-n] [-q] .DE

-s specfil Specifies the shared library specification file,
specfil. This file contains all the information neces
sary to build a shared library, as described in Step
5. Its contents include the branch table specifica
tions for the target, the path name in which the
target should be installed, the start addresses of
text and data for the target, the initialization specif
ications for the host, and the list of object files to
be included in the shared library.

-t target Specifies the name, target, of the target shared
library produced on the host machine. When tar
get is moved to the target machine, it should be
installed at the location given in the specification
file (see the #target directive in the section "Writ
ing the Lib rary Specification File"). If the -n option
is given, then a new target shared library will not
be generated.

UP-13689 SHARED LIBRARIES 8-21

Building a Shared Library

-h host

-n

-q

An Example

Specifies the name of the host shared library, host.
If this option is not given, then the host shared
library will not be produced.

Prevents a new target shared library from being
generated. This option is useful when producing
only a new host shared library. The -t option must
still be supplied since a version of the target
shared library is needed to build the host shared
library.

Suppresses the printing of certain warning mes
sages.

Follow each of the steps in the library building process to build
a small example shared library. While building this library,
appropriate guidelines will be displayed amidst text. Note that the
example code is contrived to show samples of problem areas, not
to do anything useful.

The name of our library will be libexam. Assume the original
code was a single source file, as shown below.

8-22 PROGRAMMER'S GUIDE UP-13689

/* Original exam.c */

,include <stdio.h>

strlen()j

Building a Shared Library

extern tnt
extern char *malloc(), *strcPY()j

int count = OJ
char *Errorj

char *
excopy(e)

char *e;

char *new;

++count;
if ((new = malloc(strlen(e)+l» == 0)
I

Error = "no memory";
return 0;

return strcpy(new, e)j

excount()
1

fprintf(stderr, "excount %d\n", count);
return count;

To begin, let's choose the region address spaces for the
library's .text and .data sections from the segments reserved for
private use on the 382 Computer; note that the region addresses
must be on a segment boundary (128K):

.text Ox80680000

.data Ox806aOOOO

Also choose the path name for our target library:

UP·13689 SHARED LIBRARIES 8-23

Building a Shared Library

/my/directory/libexam_s

Now you need to identify the imported symbols in the library
code. (See the guidelines in the section about 111m porting Sym
bolsll

: malloc, strcpy, strlen, fprintf, and Job.) A header file
defines C preprocessor macros for these symbols; note that you
don't use Job directly except through the macro stderr from
< stdio.h >. Also notice the Jibexam_ prefixes for the symbols.
The pointers for imported symbols are exported and, therefore,
might conflict with other symbols. Using the library name as a
prefix reduces the chance of a conflict occurring.

NOTE:

/* New file import.h */

#define malloc
. #def i ne strcpy

#define strlen
#define fprintf
#define _iob

extern char
extern char
extern int
extern int

(*_libexam_malloc)
(*_libexam_strcpy)
(*_libexam_strlen)
(*_libexam_fprintf)
(*_libexam __ iob)

*malloc();
*strcpy() ;
strlen();
fprintf();

The file import.h does not declare Job as extern;
it relies on the header file < stdio.h > for this infor
mation.

8-24 PROGRAMMER'S GUIDE UP·13689

Building a Shared Library

You will also need a new source file to hold definitions of the
imported symbol pointers. Remember that all global data need to
be initialized:

/* New file import.c */

#include <stdio.h>

char
char
int
int
FILE

*(*_libexam_malloc)()
*(*_libexam_strcpy)()
(*_libexam_strlen)()
(*_libexam_fprintf)()
(*_libexam __ iob)[]

0;
o· ,
o· ,
o· ,
0;

Next, look at the library's global data to see what needs to be
visible externally. (See the guideline "Minimize Global Data.") The
variable count does not need to be external, because it is
accessed through excount(). Make it static. (This should have
been done for the relocatable version.)

Now the library's global data need to be moved into separate
source files. (See the guideline "Define Text and Global Data in
Separate Source Files.") The only global datum left is Error, and it
needs to be initialized. (See the guideline "Initialize Global Data.")
Error must remain global, because it passes information back to
the calling routine:

/* New file global.c */

char *Error 0;

Integrating these changes into the original source file, we get
the following (notice that the symbol names must be declared as
externs):

UP-13689 SHARED LIBRARIES 8-25

Building a Shared Library

/* Modified exam.c */

#include "import.h"

#include <stdio.h>

extern int strlen();
extern char *malloc() ,

static Int count = 0;
extern char *Error;

char *
excopy(e)

char *e;

char *new;

++count;

*strcpy();

if ((new = malloc(strlen(e)+1» == 0)
I

I

Error = "no memory";
return 0;

return strcpy(new, e);

excount()
I

fprintf(stderr, "excount %d\n", count);
return count;

8-26 PROGRAMMER'S GUIDE UP-13689

Building a Shared Library

NOTE: The new header file import.h must be included
before < stdio.h > .

Next, we must write the shared library specification file for
mkshlib:

/* New file libexam.sl */

1 #target /my/directory/libexam_s
2 #address .text Ox80680000
3 #address .data Ox806aOOOO

4
5
6

#branch

7 #objects

excopy
excount

8 import.o
9 global.o

10 exam.o

11 #init import.o

1
2

12 _libexam_malloc malloc
13 _libexam_strcpy strcpy
14 _libexam_strlen strlen
15 _libexam_fprintf fprintf
16 libexam __ iob iob

Briefly, here is what the specification file does. Line 1 gives
the path name of the shared library on the target machine. The
target shared library must be installed there for a.out files that use
it to work correctly. Lines 2 and 3 give the virtual addresses for
the shared library text and data regions, respectively. Line 4
through 6 specify the branch table. Lines 5 and 6 assign the func
tions excopy() and excount() to branch table entries 1 and 2. Only
external text symbols, such as C functions, should be placed in the
branch table.

UP·13689 SHARED LIBRARIES 8-27

Building a Shared Library

Lines 7 through 10 give the list of object files that will be used
to construct the host and target shared libraries. When building
the host shared library archive, each file listed here will reside in its
own archive member. When building the target library, the order
of object files will be preserved. The data files must be first. Oth
erwise, a change in the size of static data in exam.o would move
external data symbols and break compatibility.

Lines 11 through 16 give imported symbol information for the
object file import.o. You can imagine assignments of the symbol
values on the right to the symbols on the left. Thus
Jibexam_malloc will hold a pointer to malloc, and so on.

Now, we have to compile the .0 files as we would for any other
library:

cc ·c import.c global.c exam.c

Finally, we need to invoke mkshlib to build our host and target
libraries:

mkshlib -s libexam.sl ·t libexam_s ·h libexam_s.a

Presuming all of the source files have been compiled appropri
ately, the mkshlib command line shown above will create both the
host library, libexam_s.a, and the target library, libexam_s.

Guidelines for Writing Shared Library Code

Because the main advantage of a shared library over an
archive library is sharing and the space it saves, these guidelines
stress ways to increase sharing while avoiding the disadvantages
of a shared library. The guidelines also stress upward compatibil
ity. When appropriate, we describe our experience with building
the shared C library to illustrate how following a particular guide
line helped us.

We recommend that you read these guidelines once from
beginning to end to get a perspective of the things you need to
consider when building a shared library. Then use it as a checklist
to guide your planning and decision-making.

8·28 PROGRAMMER'S GUIDE UP·13689

Building a Shared Library

Before we consider these guidelines, let's consider the restric
tions to building a shared library common to all the guidelines.
These restrictions involve static linking. Here's a summary of
them, some of which are discussed in more detail later. Keep
them in mind when reading the guidelines in this section:

• Exported symbols have fixed addresses.

If an exported symbol moves, you have to re-link all a.out
files that use the library. This restriction applies both to text
and data symbols.

• If the library's text changes for one process at run time, it
changes for all processes.

Therefore, any library changes that apply only to a single
process must occur in data, not in text, because only the
data region is private. (Besides, the text region is read
only.)

• If the library uses a symbol directly, that symbol's run time
value (address) must be known when the library is built.

• Imported symbols cannot be referenced directly.

Their addresses are not known when you build the library,
and they can be different for different processes. You can
use imported symbols by adding an indirection through a
pointer in the library's data.

Choosing Library Members

Include Large, Frequently Used Routines
These routines are prime candidates for sharing. Placing them

in a shared library saves code space for individual a.out files and
saves memory, too, when several concurrent processes need the
same code. printf(3S) and related C library routines (which are
documented in the Programmer's Reference Manua~ are good
examples.

UP-13689 SHARED LIBRARIES 8-29

Building a Shared Library

When we built the shared C library ..•

The printf(3S) family of routines is used fre
quently. Consequently, we included printf(3S)
and related routines in the shared C library.

Exclude Infrequently Used Routines
Putting these routines in a shared library can degrade perfor

mance, particularly on paging systems. Traditional a.out files con
tain all code they need at run time. By definition, the code in an
a.out file is (at least distantly) related to the process. Therefore, if
a process calls a function, it may already be in memory because
of its proximity to other text in the process.

If the function is in the shared library, a page fault may be
more likely to occur, because the surrounding library code may be
unrelated to the calling process. Only rarely will any single a.out
file use everything in the shared C library. If a shared library has
unrelated functions, and unrelated processes make random calls
to those functions, the locality of reference may be decreased.
The decreased locality may cause more paging activity and,
thereby, decrease performance. See also "Organize to Improve
Locality."

When we built the shared C library ...

Our original shared C library had about 44 KB of
text. After profiling the code in the library, we
removed small routines that were not often used.
The current library has under 29 KB of text. The
point is that functions used only by a few a.out
files do not save much disk space by being in a
shared library, and their inclusion can cause more
paging and decrease performance.

8-30 PROGRAMMER'S GUIDE UP-13689

Building a Shared Library

Exclude Routines that Use Much Static Data
These modules increase the size of processes. As "How

Shared Libraries are Implemented" and "Deciding Whether to Use
a Shared Library" explain, every process that uses a shared library
gets its own private copy of the library's data, regardless of how
much of the data is needed. Library data is static: it is not shared
and cannot be loaded selectively with the provision that unrefer
enced pages may be removed from the working set.

For example, getgrent(3C), which is documented in the
Programmer's Reference Manua', is not used by many standard
UNIX commands. Some versions of the module define over 1400
bytes of unshared, static data. It probably should not be included
in a shared library. You can import global data, if necessary, but
not local, static data.

Exclude Routines that Complicate Maintenance
All exported symbols must remain at constant addresses. The

branch table makes this easy for text symbols, but data symbols
don't have an equivalent mechanism. The more data a library has,
the more likely some of them will have to change size. Any
change in the size of exported data may affect symbol addresses
and break compatibility.

Include Routines the Library Itself Needs
It usually pays to make the library self-contained. For exam

ple, printf(3S) requires much of the standard I/O library. A shared
library containing printf(3S) should contain the rest of the stan
dard I/O routines, too.

NOTE:

UP·13689

This guideline should not take priority over the oth
ers in this section. If you exclude some routine
that the library itself needs based on a previous
guideline, consider leaving the symbol out of the
library and importing it.

SHARED LIBRARIES 8·31

Building a Shared Library

Changing Existing Code for the Shared Library
All C code that works in a shared library will also work in an

archive library. However, the reverse is not true because a shared
library must explicitly handle imported symbols. The following
guidelines are meant to help you produce shared library code that
is still valid for archive libraries (although it may be slightly bigger
and slower). The guidelines mostly explain how to structure data
for ease of maintenance, since most compatibility problems involve
restructuring data from a shared library to an archive library.

Minimize Global Data
In the current shared library implementation, all external data

symbols are global; they are visible to applications. This can make
maintenance difficult. You should try to reduce global data, as
described below.

First, try to use automatic (stack) variables. Don't use per
manent storage if automatic variables work. Using automatic vari
ables saves static data space and reduces the number of symbols
visible to application processes.

Second, see whether variables really must be external. Static
symbols are not visible outside the library, so they may change
addresses between library versions. Only external variables must
remain constant.

Third, allocate buffers at run time instead of defining them at
compile time. This does two important things. It reduces the size
of the library's data region for all processes and, therefore, saves
memory; only the processes that actually need the buffers get
them. It also allows the size of the buffer to change from one
release to the next without affecting compatibility. Staticallyallo
cated buffers cannot change size without affecting the addresses
of other symbols and, perhaps, breaking compatibility.

Define Text and Global Data in Separate Source Files
Separating text from global data makes it easier to prevent

data symbols from moving. If new exported variables are needed,
they can be added at the end of the old definitions to preserve the
old symbols' addresses.

8·32 PROGRAMMER'S GUIDE UP·13689

Building a Shared Library

Archive libraries let the link editor extract individual members.
This sometimes encourages programmers to define related vari
ables and text in the same source file. This works fine for relocat
able files, but shared libraries have a different set of restrictions.
Suppose exported variables were scattered throughout the library
modules. Then visible and hidden data would be intermixed.
Changing hidden data, such as a string, like hello in the following
example, moves subsequent data symbols, even the exported
symbols:

Before

int head = 0;
func()
1

p = "hello";

int tail = 0;

Broken Successor

int head = 0;
func()
1

p = "hello, world";

int tail = 0;

Assume the relative virtual address of head is 0 for both
examples. The string literals will have the same address too, but
they have different lengths. The old and new addresses of tail
thus will be 12 and 20, respectively. If tail is supposed to be visi
ble outside the library, the two versions will not be compatible.

Adding new exported variables to a shared library may change
the addresses of static symbols, but this doesn't affect compatibil
ity. An a.out file has no way to reference static library symbols
directly, so it cannot depend on their values. Thus it pays to
group all exported data symbols and place them at lower
addresses than the static (hidden) data. You can write the specifi
cation file to control this. In the list of object files, make the global
data files first.

UP-13689 SHARED LIBRARIES 8-33

Buildin'g a Shared Library

#objects
data1.o

lastdata.o
text1.o
text2.o

If the data modules are not first, a seemingly harmless change
(such as a new string literal) can break existing a.out files.

Shared library users get all library data at run time, regardless
of the source file organization. Consequently, you can put all
exported variables' definitions in a single source file without a
penalty. You can also use several source files for data definitions.

Initialize Global Data
Initialize exported variables, including the pointers for imported

symbols. Although this uses more disk space in the target shared
library, the expansion is limited to a single file. Using initialized
variables is another way to prevent address changes.

The C compilation system on UNIX System V puts uninitialized
variables in a common area, and the link editor assigns addresses
to them in an unpredictable way. In other words, the order of
un initialized symbols may change from one link editor run to the
next. However, the link editor will not change the order of initial
ized variables, thus allowing a library developer to preserve compa
tibility.

Preserve Branch Table Order
You should add new functions only at the end of the branch

table. After you have a specification file for the library, try to
maintain compatibility with previous versions. You may add new
functions without breaking old a.out files as long as previous
assignments are not changed. This lets you distribute a new
library without having to re-link all of the a.out files that used a
previous version of the library.

8-34 PROGRAMMER'S GUIDE UP-13689

Building a Shared Library

Importing Symbols
Shared library code cannot directly use symbols defined out

side a library, but an escape hatch exists. You can define pointers
in the data area and arrange for those pointers to be initialized to
the addresses of imported symbols. Library code then accesses
imported symbols indirectly, delaying symbol binding until run
time. Libraries can import both text and data symbols. Moreover,
imported symbols can come from the user's code, another library,
or even the library itself. In Figure 8-4, the symbols _libc.ptr1 and
Jibc.ptr2 are imported from user's code and the symbol
Jibc_malloc from the library itself.

Shared Library a.out File

Addresses

ptr1

ptr2

Figure 8-4: Imported Symbols in a Shared Library

The following guidelines describe when and how to use
imported symbols.

UP·13689 SHARED LIBRARIES 8·35

Building a Shared Library

Imported Symbols that the Library Does Not Define
Archive libraries typically contain relocatable files, which allow

undefined references. Although the host shared library is an
archive, too, that archive is constructed to mirror the target library,
which more closely resembles an a.out file. Neither target shared
libraries nor a.out files can have unresolved symbols.

Consequently, shared libraries must import any symbols they
use but do not define. Some shared libraries will derive from exist
ing archive libraries. For the reasons stated above, it may not be
appropriate to include all the archive's modules in the target
shared library. If you leave something out that the library calls,
you have to make an imported symbol pointer for it.

Imported Symbols that Users Must Be Able to Redefine
Optionally, shared libraries can import their own symbols. At

first this might appear to be an unnecessary complication, but
consider the following. Two standard libraries, libc and libmalloc,
provide a malloc family. Even though most UNIX commands use
the malloc from the C library, they can choose either library or
define their own.

8-36 PROGRAMMER'S GUIDE UP-13689

Building a Shared Library

When we built the shared C library .•.

Three possible strategies existed for the shared C
library. First, we could have excluded malloc(3X).
Other library members would have needed it, and
so it would have been an imported symbol. This
would have worked, but it would have meant less
savings.

Second, we could have included the malloc(3X)
family and not imported it. This would have given
us more savings for typical commands, but it had
a price. Other library routines call malloc(3X)
directly, and those calls could not have been over
ridden. If an application tried to redefine
malloc(3X), the library calls would not have used
the alternate version. Furthermore, the link editor
would have found multiple definitions of
malloc(3X) while building the application. To
resolve this the library developer would have to
change source code to remove the custom
malloc(3X), or the developer would have to refrain
from using the shared library.

Finally, we could have included malloc(3X) in the
shared library, treating it as an imported symbol.
This is what we did. Even though malloc(3X) is in
the library, nothing else there refers to it directly.
If the application does not redefine malloc(3X),
both application and library calls are routed to the
library version. All calls are mapped to the alter
nate, if present.

You might want to permit redefinition of all library symbols in
some libraries. You can do this by importing all symbols the
library defines, in addition to those it uses but does not define.
Although this adds a little space and time overhead to the library,
the technique allows a shared library to be one hundred percent
compatible with an existing archive at link time and run time.

UP-13689 SHARED LIBRARIES 8-37

Building a Shared Library

Mechanics of Importing Symbols
Let's assume a shared library wants to import the symbol mal

loc. The original archive code and the shared library code appear
below.

Archive Code

extern char *malloc();

export()
I

p = malloc(n);

Shared Library Code

/* See pointers.c on next
page */

extern char
*(*_libc_malloc)();

export()
I

p = (*_libc_malloc)(n);

Making this transformation is straightforward, but two sets of
source code would be necessary to support both an archive and a
shared library. Some simple macro definitions can hide the
transformations and allow source code compatibility. A header file
defines the macros, and a different version of this header file
would exist for each type of library. The -I flag to cpp(1) would
direct the C preprocessor to look in the appropriate directory to
find the desired file.

Archive import.h

/* empty */

8-38 PROGRAMMER'S GUIDE

Shared import.h

/*
* Macros for importing
* symbols. One #define
* per symbol.
*/

#define malloc
(* _1 i bc_ma 11 oc)

extern char *malloc();

UP-13689

Building a Shared Library

These header files allow one source both to serve the original
archive source and to serve a shared library, too, because they
supply the indirections for imported symbols. The declaration of
malloe in import.h actually declares the pointer Jibe _ malloe.

Common Source

#include "import.h"

extern char *malloc();

export()
1

p = malloc(n);

Alternatively, one can hide the #include with #ifdef:

Common Source

#ifdef SHLIB
include "import.h"
#endif

extern char *malloc();

export()
I

p = ma 11 oc (n);

Of course the transformation is not complete. You must
define the pointer Jibe_malloe.

File pOinters.e

char *(*_libc_malloc)() = 0;

UP·13689 SHARED LIBRARIES 8·39

Building a Shared Library

Note that Jibc _ malloc is initialized to zero, because it is an
exported data symbol.

Special initialization code sets the pointers. Shared library
code should not use the pointer before it contains the correct
value. In the example the address of malloc must be assigned to
Jibc_malloc. Tools that build the shared library generate the ini
tialization code according to the library specification file.

Pointer Initialization Fragments
A host shared library archive member can define one or many

imported symbol pointers. Regardless of the number, every
imported symbol pointer should have initialization code.

This code goes into the a.out file and does two things. First, it
creates an unresolved reference to make sure the symbol being
imported gets resolved. Second, initialization fragments set the
imported symbol pointers to their values before the process
reaches main. If the imported symbol pointer can be used at run
time, the imported symbol will be present, and the imported sym
bol pointer will be set properly.

NOTE: Initialization fragments reside in the host, not the
target, shared library. The link editor copies initiali
zation code into a.out files to set imported pointers
to their correct values.

Library specification files describe how to initialize the
imported symbol pointers. For example, the following specification
line would set Jibc_malloc to the address of malloc:

#init pmalloc.o
_libc_malloc malloc

When mkshlib builds the host library, it modifies the file
pmalloc.o, adding relocatable code to perform the following
assignment statement:

Jibc_malloc = &malloc;

8-40 PROGRAMMER'S GUIDE UP .. 13689

Building a Shared Library

When the link editor extracts pmalloc.o from the host library,
the relocatable code goes into the a.out file. As the link editor
builds the final a.out file, it resolves the unresolved references and
collects all initialization fragments. When the a.out file is executed,
the run time startup (crt1) executes the initialization fragments to
set the library pointers.

Selectively Loading Imported Symbols
Defining fewer pointers in each archive member increases the

granularity of symbol selection and can prevent unnecessary
objects from being linked into the a.out file. For example, if an
archive member defines three pointers to imported symbols, the
link editor will resolve all three, even though only one might be
needed.

You can reduce unnecessary loading by writing C source files
that define imported symbol pointers singly or in related groups.
If an imported symbol must be individually selectable, put its
pointer in its own source file (and archive member). This will give
the link editor a finer granularity to use when it resolves the sym
bols.

Let's look at some examples. In the coarse method, a single
source file might define all pointers to imported symbols:

Old pointers.c

int (*_libc_ptr1)() = 0;
char *(*_libc_malloc)() = 0;
int (*_libc_ptr2)() = 0;

Being able to use them individually requires multiple source
files and archive members. Each of the new files defines a
Single pointer or a small group of related pointers:

File Contents

ptr1.c int (*_libc_ptr1)() = 0;

pmalloc.c char *(*_1 i bc_mall oc)() = 0;

ptr2.c int (*_libc_ptr2)() = 0;

UP·13689 SHARED LIBRARIES 8·41

Building a Shared Library

Originally, a single object file, pointers.o, defines all pointers.
Extracting it requires definitions for ptr1, malloc, and ptr2. The
modified example lets one extract each pointer individually, thus
avoiding the unresolved reference for unnecessary symbols.

Providing Archive Library Compatibility

Having compatible libraries makes it easy to substitute one for
the other. In almost all cases, this can be done without makefile or
source file changes. Perhaps the best way to explain this guide
line is by example:

When we built the shared C library ...

We had an existing archive library to use as the
base. This obviously gave us code for individual
routines, and the archive library also gave us a
model to use for the shared library itself.

We wanted the host library archive file to be com
patible with the relocatable archive C library.
However, we did not want the shared library tar
get file to include all routines from the archive:
including them all would have hurt performance.

Reaching these goals was, perhaps, easier than
you might think. We did it by building the host
library in two steps. First, we used the available
shared library tools to create the host library to
match exactly the target. The resulting archive
file was not compatible with the archive C library
at this point. Second, we added to the host
library the set of relocatable objects residing in
the archive C library that were missing from the
host library. Although this set is not in the shared
library target, its inclusion in the host library
makes the relocatable and shared C libraries com
patible.

8-42 PROGRAMMER'S GUIDE UP-13689

Building a Shared Library

Tuning the Shared Library Code

Some suggestions for how to organize shared library code to
improve performance are presented here. They apply to paging
systems, such as UNIX System V Release 3.0. The suggestions
come from the experience of building the shared C library.

The archive C library contains several diverse groups of func
tions. Many processes use different combinations of these
groups, making the paging behavior of any shared C library diffi
cult to predict. A shared library should offer greater benefits for
more homogeneous collections of code. For example, a data base
library probably could be organized to reduce system paging sub
stantially, if its static and dynamic calling dependencies were more
predictable.

Profile the Code
To begin, profile the code that might go into the shared

library.

Choose Library Contents
Based on profiling information, make some decisions about

what to include in the shared library. a.out file size is a static pro
perty, and paging is a dynamic property. These static and
dynamic characteristics may conflict, so you have to decide
whether the performance lost is worth the disk space gained. See
"Choosing Library Members" in this chapter for more information.

Organize to Improve Locality
When a function is in a.out files, it probably resides in a page

with other code that is used more often (see "Exclude Infrequently
Used Routines"). Try to improve locality of reference by grouping
dynamically related functions. If every call of funeA generates
calls to funeB and funeC, try to put them in the same page.
eflow(1) (documented in the Programmer's Reference Manua~
generates this static dependency information. Combine it with
profiling to see what things actually are called, as opposed to what
things might be called.

UP-13689 SHARED LIBRARIES 8-43

Building a Shared Library

Align for Paging
The key is to arrange the shared library target's object files so

that frequently used functions do not unnecessarily cross page
boundaries. When arranging object files within the target library,
be sure to keep the text and data files separate. You can reorder
text object files without breaking compatibility; the same is not
true for object files that define global data. Once again, an exam
ple might best explain this guideline:

8-44 PROGRAMMER'S GUIDE UP-13689

Building a Shared Library

When we built the shared C library .•.

We used a 3B2 Computer to build the library; the
architecture of the 382 Computer uses 2 KB
pages. Using name lists and disassemblies of the
shared library target file, we determined where
the page boundaries fell.

After grouping related functions, we broke them
into page-sized chunks. Although some object
files and functions are larger than a single page,
most of them are smaller. Then we used the
infrequently called functions as glue between the
chunks. Because the glue between pages is
referenced less frequently than the page con
tents, the probability of a page fault decreased.

After determining the branch table, we rearranged
the library's object files without breaking compati
bility. We put frequently used, unrelated func
tions together, because we figured they would be
called randomly enough to keep the pages in
memory. System calls went into another page as
a group, and so on. The following example shows
how to change the order of the library's object
files:

Before After

Hobjects Hobjects

printf.o strcmp.o
fopen.o malloc.o
malloc.o printf.o
strcmp.o fopen.o

UP-13689 SHARED LIBRARIES 8-45

Building a Shared Library

Avoid Hardware Thrashing
Finally, you may have to consider the hardware you're using to

obtain better performance. Using the 382 Computer, for example,
you need to consider its memory management. Part of the
memory management hardware is an 8-entry cache for translating
virtual to physical addresses. Each segment (128 KB) is mapped
to one of the eight entries. Consequently, segments 0, 8, 16, ...
use entry 0; segments 1,9, 17, ... use entry 1; and so on.

You get better performance by arranging the typical process
to avoid cache entry conflicts. If a heavily used library had both
its text and its data segment mapped to the same cache entry, the
performance penalty would be particularly severe. Every library
instruction would bring the text segment information into the
cache. Instructions that referenced data would flush the entry to
load the data segment. Of course, the next instruction would
reference text and flush the cache entry, again.

When we built the shared C library ..•

We avoided the cache entry conflicts. At least
with the 382 Computer architecture, a library's
text and data segment numbers should differ by
something other than eight.

Making A Shared Library Upward Compatible
The following guidelines explain how to build upward

compatible shared libraries. Note, however, that upward compati
bility may not always be an issue. Consider the case in which a
shared library is one piece of a larger system and is not delivered
as a separate product. In this restricted case, you can identify all
a.out files that use a particular library. As long as you rebuild all
the a.out files every time the library changes, versions of the
library may be incompatible with each other. This may complicate
development, but it is possible.

8-46 PROGRAMMER'S GUIDE UP-13689

Building a Shared Library

Comparing Previous Versions of the Library
Shared library developers normally want newer versions of a

library to be compatible with previous ones. As mentioned before,
a.out files will not execute properly otherwise.

The following procedures let you check libraries for compatibil
ity. In these tests, two libraries are said to be compatible if their
exported symbols have the same addresses. Although this cri
terion usually works, it is not foolproof. For example, if a library
developer changes the number of arguments a function requires,
the new function may not be compatible with the old. This kind of
change may not alter symbol addresses, but it will break old a.out
files.

Let's assume we want to compare two target shared libraries:
new.libx_s and old.libx_s. We use the nm(1) command to look at
their symbols and sed(1) to delete everything except external sym
bols. A small sed program simplifies the job.

New file cmplib.sed

sed '/:extern:.*/!d
sIll
/" .bt/d
I"etext Id
I"edata Id
I"end Id'"

The first line of the sed script deletes all lines except those for
external symbols. The second line leaves only symbol names and
values in the output. The last four lines delete special symbols
that have no bearing on library compatibility; they are not visible to
application programs. You will have to create your own file to hold
the sed script.

Now we are ready to create lists of symbol names and values
for the new and old libraries:

nm old.libx_s : sed -f cmplib.sed > old.nm
nm new.libx_s : sed -f cmplib.sed > new.nm

UP-13689 SHARED LIBRARIES 8-47

Building a Shared Library

Next, we compare the symbol values to identify differences:

diff old.nm new.nm

If all symbols in the two libraries have the same values, the
diff(1) command will produce no output, and the libraries are com
patible. Otherwise, some symbols are different and the two
libraries may be incompatible. diff(1). nm(1), and sed(1) are docu
mented in the User's Reference Manual.

Dealing with Incompatible Libraries
When you determine that two libraries are incompatible, you

have to deal with the incompatibility. You can deal with it in one
of two ways. First, you can rebuild all the a.out files that use your
library. If feasible, this is probably the best choice. Unfortunately,
you might not be able to find those a.out files, let alone force their
owners to rebuild them with your new library.

So your second choice is to give a different target path name
to the new version of the library. The host and target path names
are independent; so you don't have to change the host library
path name. New a.out files will use your new target library, but
old a.out files will continue to access the old library.

As the library developer, it is your responsibility to check for
compatibility and, probably, to provide a new target library path
name for a new version of a library that is incompatible with older
versions. If you fail to resolve compatibility problems, a.out files
that use your library will not work properly.

NOTE: You should try to avoid multiple library versions. If
too many copies of the same shared library exist,
they might actually use more disk space and more
memory than the equivalent relocatable version
would have.

8-48 PROGRAMMER'S GUIDE UP-13689

Summary
This chapter described the UNIX system shared libraries and

explained how to use them. It also explained how to build your
own shared libraries. Using any shared library almost always
saves disk storage space, memory, and computer power; and run
ning the UNIX system on smaller machines makes the efficient use
of these resources increasingly important. Therefore, you should
normally use a shared library whenever it's available.

UP-13689 SHARED LIBRARIES 8-49

