

UL(I) (UniSoft) UL (1)

NAME
ul - do underlining

SYNOPSIS
ul [- t terminal] [name...]

DESCRIPTION
UI reads the named files (or standard input if none are given) and
translates occurrences of underscores to the sequence which indicates
underlining. If - t is present, terminal is used as the terminal kind. Other­
wise, first the environment is searched, and if necessary, /etc/termcap is
read to determine the appropriate sequences for underlining. If none of the
fields us, ue, or uc are present, and if so and se are present, standout mode
is used to indicate underlining. If the terminal can overstrike, or handles
underlining automatically, ul behaves like cat{I). If the terminal cannot
underline, underlining is ignored.

EXAMPLE

FILES

ul filel

displays "filel" on the terminal with underlined portions of the file either
underlined, or in reverse video when this option is supported for the termi­
nal.

/bin/cat
/ etc/ term cap

concatenate and print
terminal capability data base

SEE ALSO

BUGS

man(I), nroiHI).

Nroff usually outputs a series of backspaces and underlines intermixed with
the text to indicate underlining. No attempt is made to optimize the back­
ward motion.

AUTHOR
Mark Horton

July 1984 - 1 -

UMASK(l) UMASK(l)

NAME
umask - set file-creation mode mask

SYNOPSIS
umask [000]

DESCRIPTION
The user file-creation mode mask is set to 000. The three octal digits refer
to read/write/execute permissions for owner, group, and others, respectively
(see chmod (2) and umask (2». The value of each specified digit is su b­
tracted from the corresponding "digit" specified by the system for the crea­
tion of a file (see creat (2». For example, umask 022 removes group and
others write permission (files normally created with mode 777 become
mode 755; files created with mode 666 become mode 644).

If 000 is omitted, the current value of the mask is printed.

Umask is recognized and executed by the shell.

EXAMPLE
umask 22

sets file-creation mode mask such that at file creation, the write bits will be
zeroed out for group and other users, regardless of mode specification in
create.

SEE ALSO
chmod (1), sh (1), chmod (2), creat (2), umask (2).

October 1983 - 1 -

UNAME(l)

NAME
uname - print name of current UNIX System

SYNOPSIS
uname [- snrvma]

DESCRIPTION

UNAME(1)

Uname prints the current system name of the UNIX System on the standard
output file. It is mainly useful to determine what system one is using. The
options cause selected information returned by uname (2) to be printed:

- s print the system name (default).

- n print the nodename (the nodename may be a name that the system
is known by to a communications network).

- r print the operating system release.

-v print the operating system version.

-m print the machine hardware name.

- a print all the above information.

Arguments not recognized default the command to the - s option.

EXAMPLE
uname

on UniPlus+ would print on the screen

unix

SEE ALSO
uname(2).

October 1983 - 1 -

UNGET(1) UNGET(I)

NAME
unget - undo a previous get of an sees file

SYNOPSIS
unget [- r SID] [- s] [- n] files

DESCRIPTION
Unget undoes the effect of a get -e done prior to creating the intended
new delta. If a directory is named, unget behaves as though each file in the
directory were specified as a named file, except that non-SeeS files and
unreadable files are silently ignored. If a name of - is given, the standard
input is read with each line being taken as the name of an sees file to be
processed.

Keyletter arguments apply independently to each named file.

EXAMPLE

-r SID Uniquely identifies which delta is no longer intended. (This
would have been specified by get as the "new delta"). The
use of this key letter is necessary only if two or more out­
standing get s for editing on the same sees file were done by
the same person (login name). A diagnostic results if the
specified SID is ambiguous, or if it is necessary and omitted
on the command line.

- s Suppresses the printout, on the standard output, of the
intended delta's SID.

- n Causes the retention of the gotten file which would normally
be removed from the current directory.

% unget s. testl.c
1.2

undoes version 1.2 of "testl.c" set up for editing by an earlier
get-e.

SEE ALSO
delta(I), get(I), sact(I).

DIAGNOSTICS
Use help (I) for explanations.

October 1983 - 1 -

UNIQ(l) UNIQ(l)

NAME
uniq - report repeated lines in a file

SYNOPSIS
uniq [-udc [+n] [-n]] [input [output]]

DESCRIPTION
Uniq reads the input file comparing adjacent lines. In the normal case, the
second and succeeding copies of repeated lines are removed; the remainder
is written on the output file. Input and output should always be different.
Note that repeated lines must be adjacent in order to be found; see sort(1).
If the - u flag is used, just the lines that are not repeated in the original file
are output. The - d option specifies that one copy of just the repeated lines
is to be written. The normal mode output is the union of the - u and - d
mode outputs.

The -c option supersedes -u and -d and generates an output report in
default style but with each line preceded by a count of the number of times
it occurred.

The n arguments specify skipping an initial portion of each line in the com­
parison:

- n The first n fields together with any blanks before each are ignored. A
field is defined as a string of non-space, non-tab characters separated
by tabs and spaces from its neighbors.

+ n The first n characters are ignored. Fields are skipped before charac­
ters.

EXAMPLE
uniq filel

prints contents of "filel" with adjacent identical lines removed.

SEE ALSO
comm (1), sort(O.

October 1983 - 1 -

UNITS (1) UNITS (1)

NAME
units - conversion program

SYNOPSIS
units

DESCRIPTION
Units converts quantities expressed in various standard scales to their
equivalents in other scales. It works interactively, as in the examples
below.

A quantity is specified as a multiplicative combination of units optionally
preceded by a numeric multiplier. Powers are indicated by suffixed positive
integers, division by the usual sign (see the second example beloW).

Units only does multiplicative scale changes; thus it can convert Kelvin to
Rankine, but not Celsius to Fahrenheit. Most familiar units, abbreviations,
and metric prefixes are recognized, together with a generous leavening of
exotica and a few constants of nature including:

pi ratio of circumference to diameter,
c speed of light,
e charge on an electron,
g acceleration of gravity,
force same as g,
mole Avogadro's number,
water pressure head per unit height of water,
au astronomical unit.

Pound is not recognized as a unit of mass; lb is. Compound names are run
together, (e.g., light year). British units that differ from their U.S. counter­
parts are prefixed thus: brgallon. For a complete list of units, type:

cat lusr/lib/unittab

EXAMPLE
You have: inch
You want: em

* 2.540000e+00
/ 3.937008e-Ol

You have: 15 lbs force/in2"

You want: atm

* 1.02068ge + 00
/ 9.79729ge-Ol

FILES
lusr/lib/unittab

October 1983 - 1 -

UPDATER (1) (UniSoft) UPDATER(I)

NAME
updater - update files between two machines

SYNOPSIS
updater [key] local remote ...

DESCRIPTION
Updater updates files between two machines.

One of the following key letters must be included:

t Take files from the remote machine, updating the local machine.

p Put files from the local machine onto the remote machine, updating the
remote machine.

d List the difference between files on the local and remote machines.

The following key letters are optional:

u Update a file only if it exists on both machines; this is the default condi-
tion.

r Replace a file if it did not exist on the destination machine.

Local refers to the local directory name.

Remote refers to the remote directory names. Only one remote name can
be specified if the p (put) key is specified.

ALGORITHM
Open /dev/ttyO to the remote machine.

Stty the local port and send a stty command to the remote machine to con­
dition both ends of the connection.

Send a "cd remote; sumdir . I sort + 2 > Itmp/rXXXXX" to remote
machine for each remote system; "cd local ; sumdir . I sort >
ItmpIlXXXXX" for local machine.

Wait for remote to complete.

Take /tmp/rXXXXX.

Do a comparison between the local and the union of the remotes:

exists on remote only:

EXAMPLE

If both the t and r keys are specified, take the file; otherwise list
the file.

exists on local only:
If both p and r keys are specified, put the file; otherwise list the
file.

exist on both but different:
If t key is specified, take the file.
If p key is specified, put the file.
If d key is specified, list the file.

same:
nothing

updater d ..

uses /dev/ttyO to communicate with a remote machine and compares direc­
tories on the remote and local systems.

October 1983 - 1 -

UUCP(1C) UUCP(1C)

NAME
uucp, uulog, uuname - unix to unix copy

SYNOPSIS
uucp [options] source-files destination-file

uulog [options]

uuname [-I]

DESCRIPTION
Uucp.

Uucp copies files named by the source-file arguments to the destination-file
argument. A file name may be a path name on your machine, or may have
the form:

system-name!path-name

where system-name is taken from a list of system names which uucp knows
about. The system-name may also be a list of names such as

system-name!system-name! ... !system-name!path-name

in which case an attempt is made to send the file via the specified route,
and only to a destination in PUBDIR (see below). Care should be taken to
insure that intermediate nodes in the route are willing to forward informa­
tion.

The shell metacharacters ?, • and (... I appearing in path-name will be
expanded on the appropriate system.

Path names may be one of:

(1) a full path name;

(2) a path name preceded by - user where user is a login name on the
specified system and is replaced by that user's login directory;

(3) a path name preceded by -/ user where user is a login name on
the specified system and is replaced by that user's directory under
PUBDIR;

(4) anything else is prefixed by the current directory.

If the result is an erroneous path name for the remote system, the copy will
fail. If the destination-file is a directory, the last part of the source-file name
is used.

If a simple - user destination is inaccessible to uucp, data is copied to a spool
directory and the user is notified by mail (1) .

Uucp preserves execute permissions across the transmission and gives 0666
read and write permissions (see chmod (2».

The following options are interpreted by uucp:

- d Make all necessary directories for the file copy (default).

-f Do not make intermediate directories for the file copy.

- c Use the source file when copying out rather than copying the file
to the spool directory (default).

- C Copy the source file to the spool directory.

- mfile Report status of the transfer in file. If file is omitted, send mail to
the requester when the copy is completed.

October 1983 - 1 -

UUCP(1C> UUCP(1C>

- n user Notify user on the remote system that a file was sent.

- e sys Send the uucp command to system sys to be executed there.
(Note: this will only be successful if the remote machine allows
the uucp command to be executed by /usr/Ub/uucp/uuxqt.)

Uucp returns on the standard output a string which is the job number of
the request. This job number can be used by uustat to obtain status or ter­
minate the job.

Uulog.
Uulog queries a summary log of uucp and uux (I C) transactions in the file
/usr/spool/uucp/LOGFILE.

The options cause uulog to print logging information:

- s sys Print information about work involving system sys.

- u user Print information about work done for the specified user.

Uuname.
Uuname lists the uucp names of known systems. The -I option returns
the local system name.

EXAMPLE

FILES

uucp file! unisoft! /usr/spoolluucppublic/file2

sends "file!" from the local machine, via the uucp network, to the "unisoft"
machine, where it is saved as file "/usrlspoolluucppublic/file2".

/usr/spoolluucp spool directory
/usr/spoolluucppublic public directory for receiving and sending (PUB­

DIR)
/usr/lib/uucp/* other data and program files

SEE ALSO
mail(I), uux(1C).

WARNING

BUGS

The domain of remotely accessible files can (and for obvious security rea­
sons, usually should) be severely restricted. You will very likely not be
able to fetch files by path name; ask a responsible person on the remote
system to send them to you. For the same reasons you will probably not
be able to send files to arbitrary path names. As distributed, the remotely
accessible files are those whose names begin /usr/spool/uucppublic
(equivalent to -nuucp or just -).

All files received by uucp will be owned by uucp.
The - m option will only work sending files or receIvmg a single file.
Receiving multiple files specified by special shell characters ? • I ...] will
not activate the - m option.

October 1983 - 2 -

UUSTAT(1C> UUSTAT(1C)

NAME
uustat - uucp status inquiry and job control

SYNOPSIS
uustat [options]

DESCRIPTION
Uustat will display the status of, or cancel, previously specified uucp com­
mands, or provide general status on uucp connections to other systems.
The following options are recognized:

-jjobn Report the status of the uucp request jobn. If all is used for
jobn, the status of all uucp requests is reported. If jobn is omit­
ted, the status of the current user's uucp requests is reported.

- kjobn Kill the uucp request whose job number is jobn. The killed uucp
request must belong to the person issuing the uustat command
unless one is the super-user.

- r jobn Rejuvenate jobn. That is jobn is touched so that its modification
time is set to the current time. This prevents uuc/ean from delet­
ing the job until the jobs modification time reaches the limit
imposed by uuclean.

-c hour Remove the status entries which are older than hour hours. This
administrative option can only be initiated by the user uucp or
the super-user.

-u user Report the status of all uucp requests issued by user.
- s sys Report the status of all uucp requests which communicate with

remote system sys.
-0 hour Report the status of all uucp requests which are older than hour

hours.
-y hour Report the status of all uucp requests which are younger than

hour hours.
- m mch Report the status of accessibility of machine mch. If mch is

specified as all, then the status of all machines known to the
local uucp are provided.

- M mch This is the same as the -m option except that two times are
printed. The time that the last status was obtained and the time
that the last successful transfer to that system occurred.

- 0 Report the uucp status using the octal status codes listed below.
If this option is not specified, the verbose description is printed
with each uucp request.

- q List the number of jobs and other control files queued for each
machine and the time of the oldest and youngest file queued for
each machine. If a lock file exists for that system, its date of
creation is listed.

When no options are given, uustat outputs the status of all uucp requests
issued by the current user. Note that only one of the options - j, - m,
- k, - c, - r, can be used with the rest of the other options.

For example, the command:

uustat -uhdc -smhtsa -y72

will print the status of all uucp requests that were issued by user hdc to
communicate with system mhtsa within the last 72 hours. The meanings of
the job request status are:

July]984 - 1 -

UUSTAT(1C) UUSTATOC)

FILES

job-number user remote-system command-time status-time status

where the status may be either an octal number or a verbose description.
The octal code corresponds to the following description:

OCTAL STATUS
000001 the copy failed, but the reason cannot be determined
000002 permission to access local file is denied
000004 permission to access remote file is denied
000010 bad uucp command is generated
000020 remote system cannot create temporary file
000040 cannot copy to remote directory
000100 cannot copy to local directory
000200 local system cannot create temporary file
000400 cannot execute uucp
001000 copy (partially) succeeded
002000 copy finished, job deleted
004000 job is queued
010000 job killed (incomplete)
020000 job killed (complete)

The meanings of the machine accessibility status are:

system-name time status

where time is the latest status time and status is a self-explanatory descrip­
tion of the machine status.

lusrlspool/uucp
lusr/lib/uucp/L stat
lusr/lib/uucp/R-=-'stat

spool directory
system status file
request status file

SEE ALSO
uucp(1C).

July 1984 - 2 -

UUTO(lC) UUTO(lC)

NAME
uuto, uupick - public UNIX System-to-UNIX System file copy

SYNOPSIS
uuto [options] source-files destination
uupick [- s system]

DESCRIPTION
Uuto sends source-files to destination. Uuto uses the uucp (IC) facility to
send files, while it allows the local system to control the file access. A
source-file name is a path name on your machine. Destination has the
form:

system! user

where system is taken from a list of system names that uucp knows about
(see uuname). Logname is the login name of someone on the specified sys­
tem.

Two options are available:

- p Copy the source file into the spool directory before transmission.
- m Send mail to the sender when the copy is complete.

The files (or sub-trees if directories are specified) are sent to PUBDIR on
system, where PUBDIR is a public directory defined in the uucp source.
Specifically the files are sent to

PUBDIR/receivel user! mysystemlfiles.

The destined recipient is notified by mail (I) of the arrival of files.

Uupick accepts or rejects the files transmitted to the user. Specifically,
uupick searches PUBDIR for files destined for the user. For each entry (file
or directory) found, the following message is printed on the standard out­
put:

from system: [file file-name] [dir dirname] ?

Uupick then reads a line from the standard input to determine the disposi­
tion of the file:

<new-line>

d

m[dir]

a [dir]

p

q

Go on to next entry.

Delete the entry.

Move the entry to named directory dir (current directory
is default).

Same as m except moving all the files sent from system.

Print the content of the file.

Stop.

EOT (control-d) Same as q.

!command Escape to the shell to do command.

* Print a command summary.

Uupick invoked with the - ssystem option will only search the PUBDIR for
files sent from system.

EXAMPLE
uuto -p filel file2 file3 ucbvax!Joe

October 1983 - 1 -

UUTO (IC)

FILES

would send the three files to user Joe on ucbvax

uupick [executed by Joe]

would tell him what has arrived and from where.

PUBDIR/usr/spool/uucppublic public directory

SEE ALSO
maiI(l), uucp(1C), uustat(1C), uux(1C)
uuclean(1M) in the UniPlus+ Administrator's Manual.

October 1983 - 2 -

UUTO(1C)

UUX(1C) UUX(1C)

NAME
uux - unix to unix command execution

SYNOPSIS
uux [options] command-string

DESCRIPTION
Uux will gather zero or more files from various systems, execute a com­
mand on a specified system and then send standard output to a file on a
specified system. Note that, for security reasons, many installations will
limit the list of commands executable on behalf of an incoming request
from uux. Many sites will permit little more than the receipt of mail (see
mai/(I» via uux.

The command-string is made up of one or more arguments that look like a
Shell command line, except that the command and file names may be
prefixed by system-name!. A null system-name is interpreted as the local
system.

File names may be one of

(I) a full path name;

(2) a path name preceded by -xxx where xxx is a login name on the
specified system and is replaced by that user's login directory;

(3) anything else is prefixed by the current directory.

Any special shell characters such as < > ; I should be quoted either by quot­
ing the entire command-string, or quoting the special characters as individual
arguments.

Uux will attempt to get all files to the execution system. For files which are
output files, the file name must be escaped using parentheses.

Uux will notify you if the requested command on the remote system was
disallowed. The response comes by remote mail from the remote machine.

The following options are interpreted by uux:

The standard input to uux is made the standard input to the
command-string.

- n Send no notification to user.

-mfile Report status of the transfer in file. If file is omitted, send mail to
the requester when the copy is completed.

Uux returns an ASCII string on the standard output which is the job
number. This job number can be used by uustat to obtain the status or ter­
minate a job.

EXAMPLE

FILES

uux "!diff usg!/usr/dan/fl pwba!/a4/dan/fl > !f1.diff"

will get the "n" files from the usg and pwba machines, execute a di./f com­
mand and put the results in "fl.diff" in the local directory.

uux a!uucp b!/usr/file \ (c!/usr/file\)

will send a uucp command to system a to get lusr/file from system band
send it to system c.

/usr/lib/uucp/L.sys List of system names and when to call them

October 1983 - 1 -

uux(tC) UUX(1C)

lusr/lib/uucp/L-cmd
lusr/lib/uucp/L-devices
I usr I libl u ucpl L-dialcodes
lusr/lib/uucp/SYSTEMNAME
I usr I li bl u ucpl USERFILE
prefixes
lusr/lib/uucp/uucico
lusr/lib/uucp/uuclean
uucp
lusr/lib/uucp/uuxqt
lusrlspool/uucp

List of commands for uuxqt to execute
List of device codes and speeds
List of phone numbers in L.sys
N arne of this system
List of users and required pathname

copy in, copy out program; called by uucp
spool directory cleanup program; called by

command execution program; called by uucp
spool directory

SEE ALSO

BUGS

uucp(1C)
uuclean(1M) in the UniPlus+ Administrator's Manual.

Only the first command of a shell pipeline may have a system-name!. All
other commands are executed on the system of the first command.
The use of the shell metacharacter • will probably not do what you want it
to do. The shell tokens < < and > > are not implemented.

October 1983 - 2 -

VAL (I) VAL(l)

NAME
val - validate sees file

SYNOPSIS
val -
val files

DESCRIPTION
Val determines if the specified file is an sees file meeting the characteris­
tics specified by the optional argument list. Arguments to val may appear
in any order. The arguments consist of keyletter arguments, which begin
with a -, and named files.

Val has a special argument, -, which causes reading of the standard input
until an end-of-file condition is detected. Each line read is independently
processed as if it were a command line argument list.

Val generates diagnostic messages on the standard output for each com­
mand line and file processed and also returns a single 8-bit code upon exit
as described below.

The keyletter arguments are defined as follows. The effects of any keyletter
argument apply independently to each named file on the command line.

-s

-rSID

The presence of this argument silences the diagnostic mes­
sage normally generated on the standard output for any
error that is detected while processing each named file on a
given command line.

The argument value SID (Sees IDentification String) is an
sees delta number. A check is made to determine if the
SID is ambiguous (e.g., -rl is ambiguous because it phy­
sically does not exist but implies 1.1, 1.2, etc. which may
exist) or invalid (e.g., -rI.O or -r1.1.0 are invalid
because neither case can exist as a valid delta number). If
the SID is valid and not ambiguous, a check is made to
determine if it actually exists.

- mname The argument value name is compared with the sees
%M% keyword in file.

-ytype The argument value type is compared with the sees % Y%
keyword in file.

The 8-bit code returned by val is a disjunction of the possible errors, i.e.,
can be interpreted as a bit string where (moving from left to right) set bits
are interpreted as follows:

bit 0 = missing file argument;
bit 1 = unknown or duplicate key letter argument;
bit 2 = corrupted sees file;
bit 3 = can't open file or file not sees;
bit 4 = SID is invalid or ambiguous;
bit 5 = SID does not exist;
bit 6 = %Y%, -y mismatch;
bit 7 = %M%, -m mismatch;

Note that val can process two or more files on a given command line and in
turn can process multiple command lines (when reading the standard
input). In these cases an aggregate code is returned - a logical OR of the

October 1983 - 1 -

VAL(1) VAL(l)

codes generated for each command line and file processed.

EXAMPLE
val -
-yc -mabc s.abc
-mxyz -ypll s.xyz

first checks if file "s.abc" has a value c for its type flag and value abc for
the module name flag. Once processing of the first file is completed, val
then processes the remaining files Gn this case "s.xyz") to determine if they
meet the characteristics specified by the keyleUer arguments associated with
them.

SEE ALSO
admin(I), delta(1), get(1), prs(I).

DIAGNOSTICS

BUGS

Use help (1) for explanations.

Val can process up to 50 files on a single command line. Any number
above 50 will produce a core dump.

October 1983 - 2 -

VC(l) VC(l)

NAME
vc - version control

SYNOPSIS
vc [- a] [- t] [- ccharJ [- s] [keyword = value ... keyword = value]

DESCRIPTION
The vc command copies lines from the standard input to the standard out­
put under control of its arguments and control statements encountered in the
standard input. In the process of performing the copy operation, user
declared keywords may be replaced by their string value when they appear in
plain text and/or control statements.

The copying of lines from the standard input to the standard output is con­
ditional, based on tests (in control statements) of keyword values specified
in control statements or as vc command arguments.

A control statement is a single line beginning with a control character,
except as modified by the - t key letter (see below). The default control
character is colon (:), except as modified by the -c keyletter (see below).
Input lines beginning with a backs lash (\) followed by a control character
are not control lines and are copied to the standard output with the
backs lash removed. Lines beginning with a backslash followed by a non­
control character are copied in their entirety.

A keyword is composed of 9 or less alphanumerics; the first must be alpha­
betic. A value is any ASCII string that can be created with ed(1); a numeric
value is an unsigned string of digits. Keyword values may not contain
blanks or tabs.

Replacement of keywords by values is done whenever a keyword sur­
rounded by control characters is encountered on a version control state­
ment. The - a keyletter (see below) forces replacement of keywords in all
lines of text. An uninterpreted control character may be included in a
value by preceding it with \. If a literal \ is desired, then it too must be
preceded by \.

Keyletter arguments

- a Forces replacement of keywords surrounded by control char­
acters with their assigned value in all text lines and not just
in vc statements.

- t All characters from the beginning of a line up to and includ­
ing the first tab character are ignored for the purpose of
detecting a control statement. If one is found, all characters
up to and including the tab are discarded.

-cchar Specifies a control character to be used in place of :.

- s Silences warning messages (not error) that are normally
printed on the diagnostic output.

Version Control Statements

:dcl keyword[, ..• , keyword]
Used to declare keywords. All keywords must be declared.

:asg keyword = value

October 1983

Used to assign values to keywords. An asg statement overrides the
assignment for the corresponding keyword on the vc command line

- 1 -

VC(I) VC (I)

and all previous asg's for that keyword. Keywords declared, but
not assigned values have null values.

:if condition

:end Used to skip lines of the standard input. If the condition is true all
lines between the if statement and the matching end statement are
copied to the standard output. If the condition is false, all interven­
ing lines are discarded, including control statements. Note that
intervening if statements and matching end statements are recog­
nized solely for the purpose of maintaining the proper if-end match­
ing.

The syntax of a condition is:

<cond> "= ["not"] <or>
<or> ::= <and> I <and> "I" <or>
<and> ::= <exp> I <exp> "&" <and>
<exp> ::= "(" <or> ")" I <value> <op> <value>
<op> ::= "=" I "!=" I "<" I ">"
<value> ::= <arbitrary ASCII string> I <numeric string>

The available operators and their meanings are:

equal
!= not equal
& and
I or
> greater than
< less than
() used for logical groupings
not may only occur immediately after the if, and when

present, inverts the value of the entire condition

The> and < operate only on unsigned integer values (e.g., : 012 >
12 is false). All other operators take strings as arguments (e.g., : 012
! = 12 is true). The precedence of the operators (from highest to
lowest) is:

&
I

! = > < all of equal precedence

Parentheses may be used to alter the order of precedence.

Values must be separated from operators or parentheses by at least
one blank or tab.

::text

:on

:off

Used for keyword replacement on lines that are copied to the standard
output. The two leading control characters are removed, and key­
words surrounded by control characters in text are replaced by their
value before the line is copied to the output file. This action is
independent of the - a key letter.

Turn on or off keyword replacement on all lines.

October 1983 - 2 -

VC(l) VC(l)

:ctl char
Change the control character to char.

:msg message
Prints the given message on the diagnostic output.

:err message
Prints the given message followed by:

ERROR: err statement on line .•• (915)
on the diagnostic output. Vc halts execution, and returns an exit code
of 1.

EXAMPLE
If you have a file named "note" containing:

:dcl NAME,PLACE
:NAME:,
Just a note to remind you that we have a meeting
scheduled Monday morning at :PLACE:.

the command

vc -a NAME=Joe PLACE=UniSoft < note

will produce

Joe,
Just a note to remind you that we have a meeting
scheduled Monday morning at UniSoft.

DIAGNOSTICS
Use help (1) for explanations.

EXIT CODES
o - normal
1 - any error

October 1983 - 3 -

VER.SION (1) (UniSoft)

NAME
version - reports version number of files

SYNOPSIS
version name ...

DESCR.IPTION

VERSION (1)

Version takes a list of files and reports the version number. If the file is
not a binary, it reports: "not a binary". If no version number is associated
with the file, it reports: "pre history". Version is useful for determining
which version of the current program you are running.

EXAMPLE
version Ibinlversion

prints the version number of the version program.

October 1983 - 1 -

VI(l) VI(l)

NAME
vi, view - screen oriented (visual) display editor based on ex

SYNOPSIS
vi [- t tag] [- r] [+ command] [- w n] name ...
view [- t tag] [- r] [+ command] [- w n] name ...

DESCRIPTION

Vi

Vi (visual) is a display oriented text editor based on ex (1) . Ex and vi run
the same code; it is possible to get to the command mode of ex from within
vi and vice-versa.

Vi puts up a screenful of text at a time (unless a smaller window is
specified) and allows rapid and fluid cursor motion to the place where you
want to begin adding, changing, or deleting text. With vi, editing can be
done on characters, words, lines, or sections at a time. When multi­
character changes are made, it is necessary to hit the ESCAPE key to
return to cursor motion mode.

View is an invocation of vi which disallows writing. View is useful for
browsing through a file when no modifications are intended.

Using ex commands and calling up the Shell by typing 0) are done with a
colon (:) and the appropriate command sequence, such as that to find a
string or write the file.

The Vi Command Summary (below), the Vi Quick Reference card and the
Introduction to Display Editing with Vi provide full details on using vi.

The following options are recognized:

-t Equivalent to an initial tag command, editing the file contain­
ing the tag and positioning the editor at its definition.

- r U sed in recovering after an editor or system crash, retrieving
the last saved version of the named file. If no file is specified,
a list of saved files will be reported.

+ command indicates that the editor should begin by executing the
specified command. If command is omitted, then it defaults to
$, positioning the editor at the last line of the first file initially.
Other useful commands here are scanning patterns of the form
"/pat" or line numbers, e.g., "+ 100" to start at line 100.

- w n sets the default window size to n, and is useful in dialups, to
start in small windows.

Name arguments indicate files to be edited.

Command Summary
Cursor Motion: Forward Back

letter (space) AH, h
word right-limit E,e
word left-limit W,w B,b
sentence) (
paragraph } {
section/ function]] [[
line: same/limit $ 0

1st charac +,<ret>
same column n,LF

A p

July 1984 - 1 -

VI(l)

FILES

.·specified
112 screenful
screenful

<line# > G < line# > G
Ad AU
Af Ab

Undoing Errors (see also: change, insert, delete)

u undo last change
U restore current line
"N p retrieve Nth last delete
<esc> abandon incomplete command (without completing it)
:q! drastic! abandon without saving.

Insert Change

VI(l)

before cursor cw<newword> change word to newword

a
A
o
o
<esc>

Delete

x
X
dw
de
dd
(#)dd
D

before 1st non-blank
after cursor
at end-of-line
open line below
open line above
terminates insert

C change rest of line
s substitute character
S substitute lines
rx replace 1 character
R replace characters
xp transpose character
< esc> terminates change

Delete during Insert

character last character AH
... before cursor last word AW
word all input this line @
... but leave punctuation
line
number of lines
rest of line

See ex(I).

EXAMPLE
vi text

would invoke the editor with the file named "text". For further examples,
see An Introduction to Display Editing with Vi.

SEE ALSO
ex(1), edit(1)
Vi QUick Reference card, An Introduction to Display Editing with Vi.

AUTHOR

BUGS

William Joy
Mark Horton added macros to visual mode.

Software tabs using AT work only immediately after the autoindent.

Left and right shifts on intelligent terminals don't make use of insert and
delete character operations in the terminal.

The wrapmargin option can be fooled since it looks at output columns when
blanks are typed. If a long word passes through the margin and onto the
next line without a break, then the line won't be broken.

Insert/delete within a line can be slow if tabs are present on intelligent ter­
minals, since the terminals need help in doing this correctly.

July 1984 - 2 -

VI(l) VI(l)

Saving text on deletes in the named buffers is somewhat inefficient.

The source command does not work when executed as :source; there is no
way to use the :append, :change, and :insert commands, since it is not
possible to give more than one line of input to a : escape. To use these on
a :global you must Q to ex command mode, execute them, and then
reenter the screen editor with vi or open.

July 1984 - 3 -

WAIT(t)

NAME
wait - await completion of process

SYNOPSIS
wait

DESCRIPTION

WAIT (1)

Wait until all processes started with & have completed, and report on
abnormal terminations.

Because the wait(2) system call must be executed in the parent process, the
shell itself executes wait, without creating a new process.

EXAMPLE
wait

waits for all child processes to terminate.

SEE ALSO
shO).

BUGS
Not all the processes of a 3- or more-stage pipeline are children of the
shell, and thus can't be waited for.

October 1983 - 1 -

WC(1) wc(1)

NAME
wc - word count

SYNOPSIS
we [- 1 we] [names]

DESCRIPTION
We counts lines, words and characters in the named files, or in the stan­
dard input if no names appear. It also keeps a total count for all named
files. A word is a maximal string of characters delimited by spaces, tabs, or
new-lines.

The options I, w, and e may be used in any combination to specify that a
subset of lines, words, and characters are to be reported. The default is
-Iwe.

When names are specified on the command line, they will be printed along
with the counts.

EXAMPLE
wc filea fileb filec

reports the number of lines, words, and characters in each of the files.

October 1983 - 1 -

WHAT (I) WHAT (I)

NAME
what - identify sees files

SYNOPSIS
what files

DESCRIPTION
What searches the given files for all occurrences of the pattern that get (1)
substitutes for %Z% (this is @ (#) at this printing) and prints out what fol­
lows until the first" , > , new-line, \ , or null character. For example, if
the C program in file f.c contains

char ident[1 = "@(#)identification information";

and f.c is compiled to yield f.o and a.out, then the command

what f.c f.o a.out

will print

f.c:
identification information

f.o:
identification information

a.out:
identification information

What is intended to be used in conjunction with the sees command get(l),
which automatically inserts identifying information, but it can also be used
where the information is inserted manually.

EXAMPLE
If "testl.c" has the following string

char v[] = "@(#)1 test1.c 2";

typing

what testl.c

would print the following:

test1.c:
1 testl.c 2

SEE ALSO
get(1), help(1).

DIAGNOSTICS
Use help (1) for explanations.

BUGS
It's possible that an unintended occurrence of the pattern @(#) could
be found just by chance, but this causes no harm in nearly all cases.

October 1983 - 1 -

WHO(D WHO(D

NAME
who - who is on the system

SYNOPSIS
who [- uTlpdbrtas] [file]

who am i

DESCRIPTION
Who can list the user's name, terminal line, login time, elapsed time since
activity occurred on the line, and the process-ID of the command inter­
preter (shell) for each current UNIX System user. It examines the
/etc/utmp file to obtain its information. If file is given, that file is exam­
ined. Usually, file will be /etc/wtmp, which contains a history of all the
logins since the file was last created.

Who with the am i option identifies the invoking user.

Except for the default -s option, the general format for output entries is:

name [state] line time activity pid [comment] [exit]

With options, who can list logins, logoffs, reboots, and changes to the sys­
tem clock, as well as other processes spawned by the init process. These
options are:

-u This option lists information about those users who are currently
logged in. The name is the user's login name. The line is the name
of the line as found in the directory /dev. The time is the time that
the user logged in. The activity is the number of hours and minutes
since activity last occurred on that particular line. A dot (.) indicates
that the terminal has seen activity in the last minute and is therefore
"current". If more than twenty-four hours have elapsed or the line
has not been used since boot time, the entry is marked old. This field
is useful when trying to determine whether a person is working at the
terminal or not. The pid is the process-ID of the user's shell. The
comment is the comment field associated with this line as found in
/etc/inittab (see inittab(4». This can contain information about
where the terminal is located, the telephone number of the dataset,
type of terminal if hard-wired, etc.

- T This option causes the state of the terminal line to be printed. The
state describes whether someone else can write to that terminal. A +
appears if the terminal is writable by anyone; a - appears if it is not.
Root can write to all lines having a + or a - in the state field. If a
bad line is encountered, a ? is printed.

-I This option lists only those lines on which the system is waiting for
someone to login. The name field is LOGIN in such cases. Other
fields are the same as for user entries except that the state field
doesn't exist.

- p This option lists any other process which is currently active and has
been previously spawned by init. The name field is the name of the
program executed by init as found in /etc/inittab. The state, line,
and activity fields have no meaning. The comment field shows the id
field of the line from / etc/inittab that spawned this process. See init­
tab (4).

October 1983 - 1 -

WHO (1) WHO (1)

- d This option displays all processes that have expired and not been
respawned by init. The exit field appears for dead processes and con­
tains the termination and exit values (as returned by wait (2», of the
dead process. This can be useful in determining why a process ter­
minated.

- b This option indicates the time and date of the last reboot.

- r This option indicates the current run-level of the init process. Follow-
ing the run-level and date information are three fields which indicate
the current state, the number of times that state was previously
entered, and the previous state.

- t This option indicates the last change to the system clock (via the
date (1) command) by root. See su (1).

- a This option processes /etc/utmp or the named file with all options
turned on.

- s This option is the default and lists only the name, line and time fields.

EXAMPLE

FILES

who am i

reports the name under which you are currently logged in. This could be a
name other than the original name under which you logged in, if the su
command has been used.

letc/utmp
/etc/wtmp
/ etc/ inittab

SEE ALSO
date(1), 10gin(1), mesg(1), su(1), wait(2), inittab(4), utmp(4)
init(1M) in the UniPlus+ Administrator's Manual.

October 1983 - 2 -

WRITE(l) WRITE(l)

NAME
write - write to another user

SYNOPSIS
write user [line]

DESCRIPTION
Write copies lines from your terminal to that of another user. When first
called, it sends the message:

Message from yourname (tty??) [date] . .•

to the person you want to talk to. When it has successfully completed the
connection it also sends two bells to your own terminal to indicate that
what you are typing is being sent.

The recipient of the message should write back at this point. Communica­
tion continues until an end of file is read from the terminal or an interrupt
is sent. At that point write writes EOT on the other terminal and exits.

If you want to write to a user who is logged in more than once, the line
argument may be used to indicate which line or terminal to send to (e.g.,
ttyOO); otherwise, the first instance of the user found in /etc/utmp is
assumed and the following message posted:

user is logged on more than one place.
You are connected to "terminaf'.
Other locations are:
terminal

Permission to write may be denied or granted by use of the mesg (1) com­
mand. Writing to others is normally allowed by default. Certain com­
mands, in particular nroff(1) and pr (1) disallow messages in order to
prevent interference with their output. However, if the user has super-user
permissions, messages can be forced onto a write inhibited terminal.

If the character ! is found at the beginning of a line, write calls the shell to
execute the rest of the line as a command.

The following protocol is suggested for using write: when you first write to
another user, wait for them to write back before starting to send. Each per­
son should end a message with a distinctive signal (i.e., (0) for "over") so
that the other person knows when to reply. The signal (00) (for "over and
out") is suggested when conversation is to be terminated.

EXAMPLE

FILES

write unisoft tty7

writes unisoft on terminal 7, unless messages have been refused with
mesg(1).

/etc/utmp to find user
/bin/sh to execute!

SEE ALSO
mail(1), mesg(1), nroff(1), pr(1), sh(1), who(I).

DIAGNOSTICS
user not logged in if the person you are trying to write to is not logged in.

October 1983 - 1 -

XARGS (1) XARGS (1)

NAME
xargs - construct argument list(s) and execute command

SYNOPSIS
xargs [flags] [command [initial-arguments]]

DESCRIPTION
Xargs combines the fixed initial-arguments with arguments read from stan­
dard input to execute the specified command one or more times. The
number of arguments read for each command invocation and the manner in
which they are combined are determined by the flags specified.

Command, which may be a shell file, is searched for, using one's SPATH.
If command is omitted, Ibinlecho is used.

Arguments read in from standard input are defined to be contiguous strings
of characters delimited by one or more blanks, tabs, or new-lines; empty
lines are always discarded. Blanks and tabs may be embedded as part of an
argument if escaped or quoted: Characters enclosed in quotes (single or
double) are taken literally, and the delimiting quotes are removed. Outside
of quoted strings a backs lash (\) will escape the next character.

Each argument list is constructed starting with the initial-arguments, fol­
lowed by some number of arguments read from standard input (Exception:
see - i flag). Flags - i, -I, and - n determine how arguments are selected
for each command invocation. When none of these flags are coded, the
initial-arguments are followed by arguments read continuously from stan­
dard input until an internal buffer is full, and then command is executed
with the accumulated args. This process is repeated until there are no more
args. When there are flag conflicts (e.g., -I vs. - n), the last flag has pre­
cedence. Flag values are:

-Inumber Command is executed for each non-empty number lines of
arguments from standard input. The last invocation of com­
mand will be with fewer lines of arguments if fewer than
number remain. A line is considered to end with the first
new-line unless the last character of the line is a blank or a
tab; a trailing blank/tab signals continuation through the next
non-empty line. If number is omitted, 1 is assumed. Option
- x is forced.

-irep/str Insert mode: command is executed for each line from standard
input, taking the entire line as a single arg, inserting it in
initial-arguments for each occurrence of rep/str. A maximum
of 5 arguments in initial-arguments may each contain one or
more instances of rep/str. Blanks and tabs at the beginning of
each line are thrown away'. Constructed arguments may not
grow larger than 255 characters, and option - x is also forced.
{} is assumed for rep/str if not specified.

-nnumber Execute command using as many standard input arguments as
possible, up to number arguments maximum. Fewer argu­
ments will be used if their total size is greater than size char­
acters, and for the last invocation if there are fewer than
number arguments remaining. If option - x is also coded,
each number arguments must fit in the size limitation, else
xargs terminates execution.

October 1983 - 1 -

XARGS (I)

-t

-p

-x

-ssize

-eeofstr

XARGS(I)

Trace mode: The command and each constructed argument list
are echoed to file descriptor 2 just prior to their execution.

Prompt mode: The user is asked whether to execute command
each invocation. Trace mode (- t) is turned on to print the
command instance to be executed, followed by a ? •• prompt.
A reply of y (optionally followed by anything) will execute the
command; anything else, including just a carriage return,
skips that particular invocation of command.

Causes xargs to terminate if any argument list would be
greater than size characters; - x is forced by the options - i
and -I. When neither of the options - i, -I, or - n are
coded, the total length of all arguments must be within the
size limit.

The maximum total size of each argument list is set to size
characters; size must be a positive integer less than or equal to
470. If -s is not coded, 470 is taken as the default. Note
that the character count for size includes one extra character
for each argument and the count of characters in the com­
mand name.

Eofstr is taken as the logical end-of-file string. Underbar ()
is assumed for the logical EOF string if -e is not coded. -=e
with no eofstr coded turns off the logical EOF string capability
(underbar is taken literally). Xargs reads standard input until
either end-of-file or the logical EOF string is encountered.

Xargs will terminate if either it receives a return code of -1 from, or if it
cannot execute, command. When command is a shell program, it should
explicitly exit (see sh (I» with an appropriate value to avoid accidentally
returning with -1.

EXAMPLE
Is $1 I xargs -i -t mv $l/{} $2/{}

will move all files from directory $1 to directory $2, and echo each move
command just before doing it.

(Iogname; date; echo $0 $*) I xargs > > log

will combine the output of the parenthesized commands onto one line,
which is then echoed to the end of file "log".

Is I xargs - p - 1 ar r arch
Is I xargs - p - 1 I xargs ar r arch

causes the user to be asked which files in the current directory are to be
archived and archives them into "arch" one at a time in the first instance, or
as in the second instance, many at a time.

echo $* I xargs - n2 diff

will execute diff(l) with successive pairs of arguments originally typed as
shell arguments.

DIAGNOSTICS
Self explanatory.

October 1983 - 2 -

YACC(t) YACC(I)

NAME
yacc - yet another compiler-compiler

SYNOPSIS
yace [- vdlt] grammar

DESCRIPTION
Yaee converts a context-free grammar into a set of tables for a simple auto­
maton which executes an LR(1) parsing algorithm. The grammar may be
ambiguous; specified precedence rules are used to break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a
program yyparse. This program must be loaded with the lexical analyzer
program, yylex, as well as main and yyerror, an error handling routine.
These routines must be supplied by the user; lex (1) is useful for creating
lexical analyzers usable by yaee.

If the -v flag is given, the file y.output is prepared, which contains a
description of the parsing tables and a report on conflicts generated by
ambiguities in the grammar.

If the -d flag is used, the file y.tab.h is generated with the #define state­
ments that associate the yaee-assigned "token codes" with the user-declared
"token names". This allows source files other than y.tab.c to access the
token codes.

If the -(flag is given, the code produced in y.tab.c will not contain any
#line constructs. This should only be used after the grammar and the
associated actions are fully debugged.

Runtime debugging code is always generated in y.tab.c under conditional
compilation control. By default, this code is not included when y.tab.c is
compiled. However, when yaee's - t option is used, this debugging code
will be compiled by default. Independent of whether the - t option was
used, the runtime debugging code is under the control of YYDEBUG, a
pre-processor symbol. If YYDEBUG has a non-zero value, then the debug­
ging code is included. If its value is zero, then the code will not be
included. The size and execution time of a program produced without the
runtime debugging code will be smaller and slightly faster.

EXAMPLE

FILES

yacc file1.y

invokes yaee to process file "filel.y" in yaee-format.

y.output
y.tab.c
y.tab.h defines for token names
yacc.tmp, yacc.debug, yacc.acts temporary files
lusr/lib/yaccpar parser prototype for C programs

SEE ALSO
lex(1)
YACC- Yet Another Compiler Compiler.

DIAGNOSTICS
The number of reduce-reduce and shift-reduce conflicts is reported on the
standard error output; a more detailed report is found in the y.output file.
Similarly, if some rules are not reachable from the start symbol, this is also

October 1983 - 1 -

YACC(1) YACC(1)

reported.

BUGS
Because file names are fixed, at most one yacc process can be active in a
given directory at a time.

October 1983 - 2 -

