
/ --

UNIPLUS+ SYSTEM V
User's Manual

Section 1

Copyright © 1984 U niSoft Corporation.

Portions of this material have been previously copyrighted by:

Bell Telephone Laboratories, Incorporated,' 1980

Western Electric Company, Incorporated, 1983

Regents of the University of California

Holders of a UNIX and UniPlus+ software license are permitted to copy this docu­
ment, or any portion of it, as necessary for licensed use of the software, provided
this copyright notice and statement of permission are included.

UNIX is a Trademark of AT&T Bell Laboratories, Inc.
\

UniPlus+ is a Trademark of UniSoft Corporation of Berkeley.

INTRODUCTION

This manual describes the features of System V UniPlus+, a UNIX operating sys­
tem. All commands, features, and facilities described in this manual are available
on U niP Ius + .

This manual is divided into two volumes containing a total of six sections, some
containing subsections:

1. Commands and Application Programs:

1. General-Purpose Commands.

lC. Communications Commands.

1 G. Graphics Commands.

2. System Calls.

3. Subroutines:

3C. C and Assembler Library Routines.

3M. Mathematical Library Routines.

3S. Standard I/O Library Routines.

3X. Miscellaneous Routines.

4. File Formats.

5. Miscellaneous Facilities.

6. Games.

Section 1 (Commands and Application Programs) describes programs intended to be
invoked directly by the user or by command language procedures, as opposed to
subroutines, which are intended to be called by the user's programs. Commands
generally reside in the directory Ibin (for binary programs). Some programs also
reside in lusr/bin, to save space in Ibin. These directories are searched automati­
cally by the command interpreter called the shell. Sub-class lC contains communi­
cation programs such as cu, send, uucp, etc.

Section 2 (System Calls) describes the entries into the UNIX kernel, including the C
language interface.

Section 3 (Subroutines) describes the available subroutines. Their binary versions
reside in various system libraries in the directories llib and lusr/lib. See intro(3)
for descriptions of these libraries and the files in which they are stored.

Section 4 (File Formats) documents the structure of particular kinds of files; for
example, the format of the output of the link editor is given in a. out(4). Excluded
are files used by only one command (for example, the assembler's intermediate
files). In general, the C language struct declarations corresponding to these for­
mats can be found in the directories luSr/include and lusr/include/sys.

Section 5 (Miscellaneous Facilities) includes descriptions of character sets, macro
packages and other system features.

Section 6 (Games) describes the games and educational programs that, as a rule,
reside in the directory lusr/games.

Each section consists of a number of independent entries of a page or so each. The
name of the entry appears in the upper corners of its pages. Entries within each

-1-

Introduction

section are alphabetized, with the exception of the introductory entry that begins
each section. The page numbers of each entry start at 1. The version date of the
entry appears in the lower left corner of each page. Some entries may describe
several routines, commands, etc. In such cases, the entry appears only once, alpha­
betized under its "major" name.

All entries are based on a common format, not all of whose parts always appear:

The NAME part gives the name(s) of the entry and briefly states its purpose.

The SYNOPSIS part summarizes the use of the program being described. A
few conventions are used, particularly in Section 1 (Commands):

Boldface strings are literals and are to be typed just as they appear.

Italic strings usually represent substitutable argument prototypes and
program names found elsewhere in the manual.

Square brackets [] around an argument prototype indicate that the
argument is optional. When an argument prototype is given as "name"
or "file", it always refers to a file name.

Ellipses ... are used to show that the previous argument prototype
may be repeated.

A final convention is used by the commands themselves. An argu­
ment beginning with a minus -, plus +, or equal sign = is often taken
to be some sort of flag argument, even if it appears in a position where
a file name could appear. Therefore, it is unwise to have files whose
names begin with -, +, or =.

The DESCRIPTION part discusses the subject at hand.

The EXAMPLE part gives example(s) of usage, where appropriate.

The FILES part gives the file names that are built into the program.

The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic indications that may be pro­
duced. Messages that are intended to be self-explanatory are not listed.

The WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes deficiencies. Occasionally,
the suggested fix is also described.

At the front of each volume there is a table of contents and a permuted index.
The permuted index is a computer-generated index that uses the information in the
NAME part of each entry in the User's and Administrator's Manuals. The per­
muted index contains three columns. The center column is an alphabetic list of
keywords as they appear in the NAME part of the entries. The last column is the
entry that the keyword in the center column refers to. This entry is followed by
the appropriate section number in parentheses. The first column contains the
remaining information from the NAME part that either precedes or follows the key­
word.

For example, to look for a text editor, scan the center column for the word "edi­
tor". There are several index lines containing an "editor" reference, Le.:

ed, red: text editor. ed(1)
files. ld: link editor for common object Id(1)

-2-

Introduction

You can then turn to the entries listed in the last column, ed(1) and Id(l), to find
information on the editor.

On most systems, all user manual entries are available on-line via the command,
q.V.

-3-

TABLE OF CONTENTS

1. Commands and Application Programs

intro 0 0 0 0 0 0 0 0 0 0 introduction to commands and application programs
300 0 0 handle special functions of DASI 300 and 300s terminals
4014 0 0 0 0 0 0 0 0 0 0 0 0 0 0 paginator for the Tektronix 4014 terminal
450 0 0 0 0 0 0 0 0 0 0 0 handle special functions of the DASI 450 terminal
acctcom 0 0 0 0 0 0 0 0 0 0 0 0 0 search and print process accounting file(s)
adb 0 debugger
admin 0 create and administer sees files
ar 0 0 0 0 0 0 0 0 0 0 0 0 0 archive and library maintainer
as 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 assembler
asa 0 0 0 0 0 interpret ASA carriage control characters
at 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 execute commands at a later time
awk 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 pattern scanning and processing language
banner 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 make posters

. banner7 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 print large banner on printer
base name 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 deliver portions of path names
bc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 arbitrary-precision arithmetic language
bdiff 0 big diff
bfs 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 big file scanner
bs 0 0 0 0 0 0 0 0 0 0 0 0 a compiler/interpreter for modest-sized programs
cal 0 print calendar
calendar 0 reminder service
cat 0 concatenate and print files
cb 0 e program beautifier
cc 0 e compiler
cd 0 change working directory
cdc 0 0 0 0 0 0 0 0 0 0 0 0 0 change the delta commentary of an secs delta
cflow 0 generate e flow graph
chmod 0 change mode
chown 0 change owner or group
clear 0 clear terminal screen
cmp 0 compare two files
col 0 filter reverse line-feeds
comb 0 combine sees deltas
comm 0 0 0 0 0 0 0 0 0 select or reject lines common to two sorted files
cp 0 0 0 0 0 0 0 0 0 copy, link or move files
cpio 0 0 0 0 0 0 0 0 0 0 0 copy file archives in and out
cpp 0 0 0 0 0 0 0 0 0 0 0 0 the e language preprocessor

. crypt 0 • 0 encode/ decode
csh 0 0 • 0 0 • 0 • 0 • • 0 a shell (command interpreter) with C-like syntax
csplit 0 0·. 0 0 0 • • 0 0 • • • • • 0 • 0 0 • • 0 0 0 • • • 0 context split
ct 0 0 • • 0 0 0 • 0 0 • 0 • • spawn getty to a remote terminal
ctags 0 • 0 0 • 0 maintain a tags file for a C program
cu ••••• 0 0 • 0 •• 0 •• 0 • 0 call another UNIX System
cut 0 0 cut out selected fields of each line of a file
cw . . 0 0 0 • • 0 0 0 • 0 • • 0 0 • 0 prepare constant-width text for troff
cxref • . 0 • 0 0 • 0 • • 0 • 0 • • 0 • generate C program cross reference
date . . 0 • 0 • 0 0 • 0 0 • 0 • • 0 • • 0 • • 0 • 0 print and set the date
dc 0 0 0 0 • 0 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 • 0 • 0 • 0 0 desk calculator
dd 0 • • 0 0 0 0 0 • 0 0 0 • 0 0 • • convert and copy a file
delta 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • make a delta (change) to an sees file
deroff 0 0 0 0 0 0 0 0 0 0 • • • • remove nroff/troff, tbl, and eqn constructs
diff • . • . • • . 0 • differential file comparator
diff3 ..0 0 • 0 • 0 • • 0 • 0 • • • • • 3-way differential file comparison

- 1 -

Table of Contents

diffdir . . • • • . . . • . • diff directories
diffmk • . . • mark differences between files
dircmp . • • • • . . directory comparison
du ..••......•......•...... summarize disk usage
echo • • • echo arguments
ed • • • . text editor
efl •.......•......••••... Extended Fortran Language
enable . • • • • . • . . enable/disable LP printers
env .•....••....... set environment for command execution
eqn • . . format mathematical text for nroff or troff
ex . . . • . • . . . • . • . • • • . . . • • • • . . text editor
expr .• •.....••••..• evaluate arguments as an expression
exterr . . exterr - turn on/off the extended errors in the specified device
factor. • • • . factor a number
file • .. •.......•.....•••.... determine file type
find • • . find files
freq • • report on character frequencies in a file
fsplit••.......•....• split fortran, ratfor, or eft files
get • • • get a version of an sees file
getopt . • • • • . . . parse command options
greek • • . • • • . • select terminal filter
grep . search a file for a pattern
head . . give first few lines
help ask for help
hex. . . . • . translates object files
hostname . . . • .. .• set or print name of current host system
hp . handle special functions of HP 2640 and 2621-series terminals
hpio••••..••••... HP 2645A terminal tape file archiver
hyphen . . • . . . • • • . . . • • . • . • • find hyphenated words
id ..••. • . • • • • • • • • . • . print user and group IDs and names
ipcrm • remove a message queue, semaphore set or shared memory id
ipcs • . • • • . report inter-process communication facilities status
join ••••.....•.••..•••... relational database operator
kill . • . . • • • . . • . . • terminate a process
ld • . • . • • . • • • . . . • . • • . link editor
lex . . . •• •..• generate programs for simple lexical tasks
line . • . • • . • • • . . read one line
lint •...••.••••.••.••......•• a e program checker
login • . • • . • • . • . • • • . • • • • • . . • • . • • sign on
logname • • • . . • • • • . . • . • get login name
lorder • find ordering relation for an object library
lp • . . • • . • • . • . • • . . . send/cancel requests to an LP line printer
lpr . . • . • • • . . • • • . • • . • • • • . • • • • • line printer spooler
Ips tat . . • • . . • • . • • • . . • . . • . • . print LP status information
Is • • • . . • • • • • • . . • • . • . • list contents of directories
Is7 • • • . . • • • • . . . • • • list contents of directory (Berkeley version)
m4 . • . . • • . . • • • • • • . • • macro processor
machid. • . • . . • • . • . . provide truth value about your processor type
mail. . • • • . . . • . • • . . • • . • • . send mail to users or read mail
make . • maintain, update, and regenerate groups of programs
makekey • . • • . • • . • . • • • • • . • • • • . generate encryption key
man •..•..•.•.••..•.•..•. print entries in this manual
mesg • . . • . • • . . • • • • . • . . permit or deny messages
mkdir • . • . • • . • • • • • • • • . • • . • . • . • • make a directory
mkstr • • . . • . • • • • create an error message file by massaging e source
mm •••.•.•.• print/check documents formatted with the MM macros
mmt • . • • • • . . • . typeset documents, view graphs, and slides

- 2 -

Table of Contents

more • • • • • . • • . • • • • • • • • • • file perusal filter for crt viewing
newform ••.••.••.••••••.. change the format of a text file
newgrp ••.••••••••••••••••..•• log in to a new group
news . . • . print news items
nice • • • . . . • • • • . • run a command at low priority
nl •• • • • • • • • . • • • • . line numbering filter
nm •.•.••..•.......••••....... print name list
nohup • . .•. run a command immune to hangups (sh only)
nroff • . • • • • • . format text
nrof17 • . • • • • • • . . . text formatting and typesetting
od . . . • . . . • . . . octal dump
pack . • • • • compress and expand files
passwd .• • • • • • • • . . • • . • • • • . • . . change login password
paste. • . . . merge same lines of several files or subsequent lines of one file
pr •• • . • • • • • • • • . • • • . . • • • . . . • . print files
printenv . . . • • • • . . • • • • • print out the environment
prof • • • • • • . . . • • . • • • . • . • . . . • . . display profile data
prs • • • • . • • . print an sees file
ps .• • • • • . . • . • . . • • • • • • • . . • • • report process status
ptx • • • • • • . • • • • • • • . . • • • • • • permuted index
put. • • • • puts a file onto a remote machine.
put7 • • • • • • • • . • • . • • puts a file onto a remote machine.
pwd • • • . . . • • • • . • • . • • • • • • . . . working directory name
rcp : • • • • • • • • • • • • • . • . . • • . • . remote file copy
rcvhex . . • • • • translates Motorola S-records from downloading into a file
regcmp . . • • • • . . • • . • • • • • • . • • regular expression compile
remsh • • • • . . . • • • • • • • • . . • remote shell
rlogin • • • • . • • • • • • • • • • • • • • . • • • . • • • remote login
rm •.•••.•.••••••••••.•.• remove files or directories
rmdel • . • • • • . • . • • • • • • • . • remove a delta from an sees file
rstat • • • • • • • network statistics program
ruptime ..•.••••...••.•• show host status of local machines
rwho. • . • . . • • • • . • • who is logged in on local machines
sact. • • . • • •• .. • • . . • print current sees file editing activity
sadp . . • • • . • . • disk access profiler
sag • . • • . • • . • • • . • • • • . . • system activity graph
sar • . • • . . •. • • • • • • . • • . • . • . system activity reporter
sccsdiff • • compare two versions of an sees file
sdiff ••.••.. • • • • • • • • • . . . side-by-side difference program
sed • • • . • • . • • • • • • • • • • . • . • • . . . • • • stream editor
sh •.•.•. shell, the standard/restricted command programming language
size • • . • • • • • • • • • • • size of an object file
sleep • • • • • . • suspend execution for an interval
sno. • • . • SNOBOL interpreter
sort • • sort and/ or merge files
spell • • • • find spelling errors
spline. • interpolate smooth curve
split • • • . • • • split a file into pieces
ssp • • • • • • • • • make output single spaced
strings • . . find the printable strings in an object, or other binary file
strip. • . . •••....... remove symbols and relocation bits
su . • • • . • • . . • . . • • • become super-user or another user
sum .••••..••••••.. print checksum and block count of a file
sum7 .•.••••••••..•.•••• sum and count blocks in a file
sumdir ...•• sum and count characters in the files in the given directories
sync . . • • • • • •. • • • • . • • • • • update the super block
tabs • • • • • • • • • • • • • • • . • • • • • set tabs on a terminal

- 3 -

Table of Contents

tail. . • • . . • . • • • • • • . . • • deliver the last part of a file
take . • . • • • • • • • takes a file from a remote machine
take7 • . . • . . • . • . • . . • • • . takes a file from a remote machine.
tar . • • • • . • . . tape file archiver
tbl . . . • • • • . • . . • . . • format tables for nroff or troff
tc • • . . • . • • phototypesetter simulator
tee ..••..............•..•..••.•. pipe fitting
test . . • • • . . • • • . . condition evaluation command
time • . • • . • . . • • . • • . . . time a command
timex • . . time a command; report process data and system activity
touch. • • • • . . update access and modification times of a file
tp . • . manipulate tape archive
tplot . • . . • • • . • . . • • • • . . . • graphics filters
tr • • • . . . • . . • . • . . • translate characters
troff • . . . • • . . • • • . • . . • . . typeset text
troff7 . • • • • • text formatting and typesetting
true. • • • • . • • . • • . • . provide truth values
tset . . set or reset the teletype bits to a sensible state
tsort • . . • . . . • • • . . • • • . topological sort
tty • . . •....•••..•••...•. get the terminal's name
ul . . . ••... do underlining
umask . . • • . . . • • . • set file-creation mode mask
uname .• print name of current UNIX System
unget . . . • undo a previous get of an sees file
uniq. . . • . • • . . . • • • . . • report repeated lines in a file
units ..• • . . . • • • • • • . . • . . • conversion program
updater ..••..........•• update files between two machines
uucp ..•.•..•••...•••••..••... unix to unix copy
uustat . • • • uucp status inquiry and job control
uuto • • . • . . . • public UNIX System-to-UNIX System file copy
uux ...••...••....•..•. unix to unix command execution
val • . . • • . . . • • • • . • • • • . . • . • validate sees file
vc • • • . • . . . • . . • . . • . version control
version . • . • • . . . • • • • • • • . . . reports version number of files
vi • screen oriented (visual) display editor based on ex
wait • • • . . • • . • . • . • • • . . await completion of process
wc . • • • . • • . • . . • • . • • • • • . • • . . • . . . • word count
what. ..••. ••..••.•• • . . . • • identify sees files
who • • . • . . • . • • • • • • • • . • • . • . • • who is on the system
write • • . • • . • . • . . . • . • . • • • . • • • . write to another user
xargs • . • . . • . . • . • construct argument list(s) and execute command
yacc . • • . • . • • • . . • • • • . yet another compiler-compiler

- 4 -

PERMUTED INDEX

/functions of HP 2640 and
handle special functions of HP

archiver. hpio: HP
functions of DASI 300 and/

/special functions of DASI
of DASI 300 and 300s/ 300,

functions of DASI 300 and
13tol, ito13: convert between

comparison. diff3:
Tektronix 4014 terminal.

paginator for the Tektronix
of the DASI 450 terminal.

special functions of the DASI
long integer and base-64/

value.
abs: return integer

/floor, ceiling, remainder,
socket. accept:

a socket.
LP requests.

utime: set file
of a file. touch: update

accessibility of a file.
machine/ sputl, sgetl:

phys: allow a process to
sadp: disk

copy file systems for optimal
/setutent, endutent, utmpname:

access: determine
enable or disable process

acctcon2: connect-time
acctprci, acctprc2: process

turnacct: shell procedures for
runacct: run daily

/accton, acctwtmp: overview of
accounting and miscellaneous

acct: per-process
search and print process

acctmerg: merge or add total
summary from per-process

wtmpfix: manipulate connect
process accounting.

file format.
per-process accounting/

process accounting file(s).
connect-time accounting.

accounting. acctconl,
acctwtmp: overview of!
overview of! acctdisk,

accounting files.
acctdisk, acctdusg,

accounting.
acctprci,

acctdisk, acctdusg, accton,
sin, cos, tan, asin,

killall: kill all
current sees file editing

report process data and system
sag: system

sal, sa2, sadc: system

2621-series terminals.
2640 and 2621-series/ hp:
2645A terminal tape file
300, 300s: handle special
300 and 300s terminals. .
300s: handle special functions
300s terminals. /special .
3-byte integers and long/
3-way differential file .
4014: paginator for the
4014 terminal. 4014:
450: handle special functions
450 terminal. 450: handle .
a64l, 164a: convert between
abort: generate an lOT fault.
abs: return integer absolute
absolute value. . . . • .
absolute value functions.
accept a connection on a
accept: accept a connection on
accept, reject: allow/prevent .
access and modification times.
access and modification times
access: determine
access long numeric data in a
access physical addresses.
access profiler. . . .
access time. dcopy: .
access utmp file entry.
accessibility of a file.
accounting. acct: . .
accounting. acctcon 1,
accounting.
accounting. / startup,
accounting.
accounting and miscellaneous/
accounting commands. /of
accounting file format.
accounting file(s). acctcom:
accounting files.
accounting records. /command
accounting records. fwtmp,
acct: enable or disable
acct: per-process accounting
acctcms: command summary from
acctcom: search and print
acctconl, acctcon2: . . .
acctcon2: connect-time
acctdisk, acctdusg, accton,
acctdusg, accton, acctwtmp:
acctmerg: merge or add total
accton, acctwtmp: overview off
acctprc 1, acctprc2: process .
acctprc2: process accounting.
acctwtmp: overview of!
acos, atan, atan2:1
active processes.
activity. sact: print
activity. /time a command;
activity graph.
activity report package.

- 1 -

hp.1
hp.l
hpio.l
300.1
300.1
300.1
300.1
13to1.3c
diff3.1
4014.1
4014.1
450.1
450.1
h641.3c
abort.3c
abs.3c
abs.3c
floor.3m
accept.2n
accept.2n
accept. 1m
utime.2
touch. 1
access.2
sput1.3x
phys.2
sadp.l
dcopy.1m
getut.3c
access.2
acct.2
acctcon.lm
acctprc.lm
acctsh.lm
runacct.Im
acct.lm
acct.lm
acctA
acctcom.l
acctmerg.l m
acctcms.lm
fwtmp.lm
acct.2
acctA
acctcms.lm
acctcom.1
acctcon.lm
acctcon.lm
acct.lm
acct.lm
acctmerg.lm
acct.lm
acctprc.1m
acctprc.lm
acct.lm
trig.3m
killall.lm
sact.l
timex. 1
sag.1g
sar.lm

Permuted Index

sar: system
random, hopefully interesting,
formatting! mosd: the OSDD

acctmerg: merge or
up internet hosts by name or

socket. socketaddr: return
a process to access physical

SCCS files.
admin: create and

game.
alarm: set a process's

clock.
delivermail.

aliases:
earth. aliens: The

attack the earth.
change data segment space

realloc, calloc: main memory
physical addresses. phys:

accept, reject:
information for bad block!

for bad block! altblk:
sort: sort

terminal. worms:
rain:

bcd: convert to
editor output.

introduction to commands and
maintenance commands and

maintainer.
format.

number: convert
delivermail: deliver mail to

language. bc:
cpio: format of cpio
tp: manipulate tape

maintainer. ar:
ar:

HP 2645A terminal tape file
tar: tape file

cpio: copy file
command. xargs: construct

getopt: get option letter from
echo: echo

expr: evaluate
bc: arbitrary-precision

number facts.
expr: evaluate arguments

characters. asa: interpret
control characters.

ascii: map of
!translates object files into

set.
long integer and base-64

number. atof: convert
and! ctime, localtime, gmtime,

trigonometric! sin, cos, tan,
help:

as:
output. a.out:

assertion.
assert: verify program

activity reporter.
adage. fortune: print a
adapter macro package for
adb: debugger.
add total accounting files.
address. rhost, raddr: look
address associated with a
addresses. phys: allow
admin: create and administer
administer SCCS files.
adventure: an exploration .
alarm clock.
alarm: set a process's alarm
aliases: aliases file for . .
aliases file for delivermail.
alien invaders attack the
aliens: The alien invaders
allocation. brk, sbrk:
allocator. malloc, free,
allow a process to access
allow!prevent LP requests.
altblk: alternate block . .
alternate block information
and! or merge files.
animate worms on a display
animated raindrops display.
antique media.
a.out: assembler and link
application programs. intro:
application programs. !system
ar: archive and library
ar: archive (Hbrary) file . .
Arabic numerals to English.
arbitrary people.
arbitrary-precision arithmetic
archive.
archive.
archive and library
archive (library) file format.
archiver. hpio: . .
archiver.
archives in and out.
argument list(s) and execute
argument vector.
arguments.
arguments as an expression.
arithmetic language.
arithmetic: provide drill in
as an expression. . .
as: assembler.
ASA carriage control . .
asa: interpret ASA carriage
ASCII character set.
ASCII formats suitable for!
ascii: map of ASCII character
ASCII string. !convert between
ASCII string to floating-point
asctime, tzset: convert date
asin, acos, atan, atan2:
ask for help.
assembler.
assem bier and link editor
assert: verify program
assertion.

- 2 -

sar.l
fortune.6
mosd.5
adb.l
acctmerg.1 m
rhost.3n
socketaddr.2n
phys.2
admin.l
admin.1
adventure.6
alarm.2
alarm.2
aliases.7n
aliases.7n
aliens.6
aliens.6
brk.2
malloc.3c
phys.2
accept.lm
altblk.4
altblk.4
sort. I
worms.6
rain.6
bcd.6
a.out.4
intro.1
intro.1m
ar.1
ar.4
number.6
delivermail.8n
bc.1
cpio.4
tp.1
ar.1
ar.4
hpio.1
tar. I
cpio.1
xargs.1
getopt.3c
echo.1
expr.1
bc.1
arithmetic.6
expr.1
as.1
asa.1
asa.1
ascii.5
hex.1
ascii.5
h641.3c
atof.3c
ctime.3c
trig.3m
help.1
as.1
a.out.4
assert.3x
assert.3x

setbuf: assign buffering to a stream.
socketaddr: return address associated with a socket.

sin, cos, tan, asin, acos, atan, atan2: trigonometric/
cos, tan, asin, acos, atan, atan2: trigonometric/ sin, .

floating-point number. atof: convert ASCII string to
integer. strtol, atol, atoi: convert string to . .

integer. strtol, atol, atoi: convert string to
aliens: The alien invaders attack the earth.

autorobots: Escape from the automatic robots.
automatic robots. autorobots: Escape from the

wait: await completion of process.
processing language. awk: pattern scanning and .

ungetc: push character back into input stream.
back: the game of backgammon.

back: the game of backgammon.
daily/weekly UNIX file system backup. filesave, tapesave:

finc: fast incremental backup. . . . • .
frec: recover files from a backup tape.

block information for bad block handling. /alternate
/program to set or update bad block information.

update bad block information. badblk: program to set or
banner: make posters.

banner7: print large banner on printer.
printer. banner7: print large banner on

terminal capability data base. termcap:
port. ttytype: data base of terminal types by

between long integer and base-64 ASCII string. /convert
(visual) display editor based on ex. /screen oriented

portions of path names. basename, dirname: deliver •
arithmetic language. bc: arbitrary-precision

bcd: convert to antique media.
system initialization/ brc, bcheckrc, rc, powerfail: . . .

bcopy: interactive block copy.
bdiff: big diff.

cb: C program beautifier. • •
list contents of directory (Berkeley version). Is7:

jO, jl, jn, yO, yl, yn: Bessel functions. . • .
bfs: big file scanner.

strings in an object, or other binary file. /the printable
fread, fwrite: binary input/output.

bsearch: binary search.
tdelete, twalk: manage binary search trees. tsearch,

remove symbols and relocation bits. strip:..
/set or reset the teletype bits to a sensible state.

bj: the game of black jack.
bj: the game of black jack.

sync: update the super block.
bcopy: interactive block copy.

sum: print checksum and block count of a file.
block information for bad block handling. /alternate

program to set or update bad block information. badblk:
block/ altblk: alternate block information for bad

bIt, blt512: block transfer data.
df: report number of free disk blocks. •.......

sum7: sum and count blocks in a file ..•...
data. bit, blt512: block transfer

bit, blt512: block transfer data.
/ etc/hosts: host table for bnet.••...

netmail: the bnet network mail system.
boot: startup procedures.

system initialization shell/ brc, bcheckrc, rc, powerfail:
space allocation. brk, sbrk: change data segment

modest-sized programs. bs: a compilerlinterpreter for
bsearch: binary search.

- 3 -

Permuted Index

setbuf.3s
socketaddr .2n
trig.3m
trig.3m
atof.3c
strto1.3c
strto1.3c
aliens.6
autorobots.6
autorobots.6
wait.l
awk.1
ungetc.3s
back.6
back.6
filesave.lm
finc.lm
frec.lm
altblk.4
badblk.1m
badblk.lm
banner.l
banner7.}
banner7.1
termcap.5
ttytype.4
h641.3c
vi.1
basename.l
bc.1
bcd.6
brc.lm
bcopy.lm
bdiff.l
cb.l
Is7.1
besse1.3m
bfs.l
strings. 1
fread.3s
bsearch.3c
tsearch.3c
strip.l
tset.1
bj.6
bj.6
sync.1
bcopy.lm
sum.l
altblk.4
badblk.1m
altblk.4
blt.3
df.lm
sum7.1
blt.3
blt.3
hosts.7n
netmail.8n
boot.8
brc.1m
brk.2
bs.l
bsearch.3c

Permuted Index

stdio: standard buffered input/ output package.
setbuf: assign buffering to a stream.

mknod: build special file.
swab: swap bytes. . . .

cc: e compiler.
cflow: generate e flow graph.

cpp: the e language preprocessor.
maintain a tags file for a e program. ctags:

cb: e program beautifier. . .
lint: a e program checker.

cxref: generate e program cross reference.
message file by massaging e source. /create an error

cal: print calendar.
dc: desk calculator.

cal: print calendar.
calendar: reminder service.

data returned by stat system call. stat:
cu: call another UNIX System.

malloc, free, realloc, calloc: main memory allocator.
link and unlink system calls. link, unlink: exercise

intro: introduction to system calls and error numbers.
to an LP line printer. lp, cancel: send/cancel requests

termcap: terminal capability data base.
cribbage: the card game cribbage.

pnch: file format for card images. . . .
asa: interpret ASA carriage control characters.

files. cat: concatenate and print
cb: e program beautifier.
cc: e compiler.
cd: change working directory.

commentary of an sees delta. cdc: change the delta
ceiling, remainder,! floor, ceil, fmod, fabs: floor,

Iceil, fmod, fabs: floor, ceiling, remainder, absolute/
cflow: generate e flow graph.

delta: make a delta (change) to an sees file.
pipe: create an interprocess channel.

stream. ungetc: push character back into input
and neqn. eqnchar: special character definitions for eqn

file. freq: report on character frequencies in a .
user. cuserid: get character login name of the

Igetchar, fgetc, getw: get character or word from stream.
Iputchar, fputc, putw: put character or word on a stream.

ascii: map of ASCII character set.
interpret ASA carriage control characters. asa:

tolower, toascii: translate characters. / toupper,
- iscntrl, isascii: classify characters. /~print, isgraph,

tr: translate characters.
givenl sumdir: sum and count characters in the files in the

lastlogin, monacct, nulladm,l chargefee, ckpacct, dodisk,
killer robots. chase: Try to escape the . .

directory. chdir: change working
Idfsck: file system consistency check and interactive repair.

constant-width text fori cw, checkcw: prepare
text for nroff or/ eqn, neqn, checkeq: format mathematical

lint: a e program checker.
grpck: password/group file checkers. pwck,

copy file systems with label checking. volcopy, labelit:
systems processed by fsck. checklist: list of file . . .

formatted with thel mm,osdd, checkmm: print/check documents
file. sum: print checksum and block count of a

vchk: version checkup.•...
chown, chgrp: change owner or group.

times: get process and child process times. . .
terminate. wait: wait for child process to stop or

- 4 -

stdio.3s
setbuf.3s
mknod.lm
swab.3c
cc.l
cflow.l
cpp.l
ctags.l
cb.1
lint.!
cxref.l
mkstr.l
cal. I
dc.l
cal. I
calendar. 1
stat.5
cu.lc
malloc.3c
link.lm
intro.2
lp.l
termcap.5
cribbage.6
pnch.4
asa.l
cat.!
cb.l
cc.1
cd.1
cdc.l
floor.3m
floor.3m
cflow.l
delta.l
pipe.2
ungetc.3s
eqnchar.5
freq.l
cuserid.3s
getc.3s
putc.3s
ascii.5
asa.l
conv.3c
ctype.3c
tr.l
sumdir.1
acctsh.lm
chase.6
chdir.2
fsck.lm
cw.l
eqn.l
lint. 1
pwck.lm
volcopy.1m
checklistA
mm.l
sum.l
vchk.lm
chown.1
times.2
wait.2

of a file.
group.

for a command.
monacct, nulladm,/ chargefee,

isgraph, iscntrl, isascii:
uuclean: uucp spool directory

c1ri:
clear:

statusl ferror, feof,
(command interpreter) with
alarm: set a process's alarm

cron:

close:
descriptor.

fclose, mush:

line-feeds.

comb:
common to two sorted files.

change root directory for a
system: issue a shell

test: condition evaluation
time: time a

argument Iist{s} and execute
nice: run a

env: set environment for
uux: unix to unix

{shl nohup: run a
C-Iike syntax. csh: a shell

getopt: parse
Ishell, the standard/restricted

and systeml timex: time a
per-processl acctcms:

and miscellaneous accounting
install: install

intro: introduction to
Ito system maintenance

at: execute
cdc: change the delta

comm: select or reject lines
socket: create an endpoint for

ipcs: report inter-process
stdipc: standard interprocess

diff: differential file
cmp:

SCCS file. sccsdiff:
diff3: 3-way differential file

dircmp: directory
regcmp: regular expression
expression. regcmp, regex:
regexp: regular expression

cc: C
yacc: yet another

modest-sized programs. bs: a
erf, erfc: error function and

wait: await
pack, pcat, unpack:

chmod: change mode.
chmod: change mode of file. . .
chown: change owner and group
chown, chgrp: change owner or
chroot: change root directory.
chroot: change root directory
ckpacct, dodisk, lastlogin,
classify characters. lisprint,
clean-up. . .•.•...
clear: clear terminal screen.
clear i-node.
clear terminal screen. . .
c1earerr, fileno: stream
C-Iike syntax. csh: a shell
clock.
clock daemon.
clock: report CPU time used.
close a file descriptor. .
close: close a file . . .
close or flush a stream.
c1ri: clear i-node. . . .
cmp: compare two files.
col: filter reverse . . •
comb: combine SCCS deltas.
combine SCCS deltas.
comm: select or reject lines
command. chroot:
command.
command.
command.
command. xargs: construct
command at low priority.
command execution.
command execution.
command immune to hang ups
(command interpreter) with .
command options.
command programming language.
command; report process data
command summary from
commands. lof accounting
commands. . •.....
commands and applicationl
commands and applicationl
commands at a later time. .
commentary of an SCCS delta.
common to two sorted files.
communication.
communication facilitiesl
communication package.
comparator.
compare two files.
compare two versions of an
comparison.
comparison.
compile
compile and execute regular
compile and match routines.
compiler.
compiler-compiler.
compiler/interpreter for ..
complementary error function.
completion of process.
compress and expand files.

- 5 -

Permuted Index

chmod.l
chmod.2
chown.2
chown.l
chroot.2
chroot.lm
acctsh.lm
ctype.3c
uuclean.lm
c1ear.l
c1rLlm
clear. 1
ferror.3s
csh.l
alarm.2
cron.lm
c1ock.3c
c1ose.2
c1ose.2
fclose.3s
c1ri.lm
cmp.l
co 1.1
comb.l
comb.l
comm.l
chroot.lm
system.3s
test. 1
time. 1
xargs.l
nice.l
env.l
uux.lc
nohup.l
csh.l
getopt.l
sh.l
timex.l
acctcms.lm
acct.lm
install.lm
intro.l
intro.lm
at.l
cdc.1
comm.l
socket.2n
ipcs.1
stdipc.3c
diff.1
cmp.l
sccsdiff.l
diff3.l
dircmp.l
regcmp.l
regcmp.3x
regexp.5
cc.l
yacc.l
bs.l
erf.3m
wait. 1
pack.l

Permuted Index

cat:
test:

uvar: returns system-specific
system. Ipadmin:

fwtmp, wtmpfix: manipulate
on a socket.

an out-going terminal line
accept: accept a

connect: initiate a
acctcon 1, acctcon2:

fsck, dfsck: file system
cw, checkcw: prepare

mkfs1b:
mkfs:

execute command. xargs:
nroff/troff, tbl, and eqn

Is: list
(Berkeley version). Is7: list

csplit:
fcnt!: file

uucp status inquiry and job
vc: version

asa: interpret ASA carriage
ioctl:

init, telinit: process
msgctl: message

semctl: semaphore
shmct!: shared memory

fcnt!: file
tcp: Internet Transmission

interface. tty:
terminals. term:

units:
dd:

English. number:
floating-point number. atof:

integers and/ 13tol, Itol3:
and base-64 ASCII/ a64l, 164a:

/gmtime, asctime, tzset:
to string. ecvt, fcvt, gcvt:

scanf, fscanf, sscanf:
strtol, atol, atoi:

bcd:
bcopy: interactive block

rcp: remote file
uulog, uuname: unix to unix
System-to-UNIX System file

dd: convert and
cpio:

access time. dcopy:
checking. volcopy, labelit:

cp, In, mv:
file.

core: format of
mem, kmem:

atan2: trigonometric/ sin,
functions. sinh,

wc: word
sum7: sum and

in the given/ sumdir: sum and
sum: print checksum and block

files.
cpio: format of

and out.

concatenate and print files.
condition evaluation command.
configuration information. .
configure the LP spooling . .
connect accounting records.
connect: initiate a connection
connection. dial: establish
connection on a socket. .
connection on a socket. .
connect-time accounting.
consistency check and/
constant-width text for troff.
construct a file system.
construct a file system.
construct argument list(s) and
constructs. deroff: remove
contents of directories.
contents of directory
context split. .
control.
control. uustat:
control.
control characters.
control device. . .
control initialization.
control operations.
control operations.
control operations.
control options.
Control Protocol. .
controlling terminal
conventional names for
conversion program.
convert and copy a file.
convert Arabic numerals to
convert ASCII string to . .
convert between 3-byte . .
convert between long integer
convert date and time to/ . .
convert floating-point number
convert formatted input.
convert string to integer.
convert to antique media.
copy.
copy.
copy. uucp,
copy. /uupick: public UNIX
copy a file
copy file archives in and out.
copy file systems for optimal
copy file systems with label
copy, link or move files.
core: format of core image
core image file.
core memory.
cos, tan, asin, acos, atan,
cosh, tanh: hyperbolic
count.
count blocks in a file. . .
count characters in the files
count of a file.
cp, In, mv: copy, link or move
cpio archive.
cpio: copy file archives in

- 6 -

cat. 1
test. 1
uvar.2
Ipadmin.1m
fwtmp.lm
connect.2n
dia1.3c
accept.2n
connect.2n
acctcon.lm
fsck.lm
cw.l
mkfslb.lm
mkfs.1m
xargs.l
deroff.l
Is.l
Is7.!
cspiit.1
fcnt1.2
uustat.1c
vc.1
asa.l
ioct1.2
init.1m
msgctl.2
semctl.2
shmct1.2
fcntl.5
tcp.5n
tty.7
term.5
units.!
dd.l
number.6
atof.3c
13to1.3c
h641.3c
ctime.3c
ecvt.3c
scanf.3s
strto1.3c
bcd.6
bcopy.lm
rcp.1n
uucp.1c
uuto.lc
dd.l
cpio.1
dcopy.lm
volcopy.1m
cp.1
core.4
core.4
mem.7
trig.3m
sinh.3m
wc.1
sum7.l
sumdir.1
sum.l
cp.1
cpio.4
cpio.l

cpio: format of cpia archive.
preprocessor. cpp: the e language

sethostname: set name of host cpu.••
clock: report CPU time used.

craps: the game of craps. •
craps: the game of craps.

system crashes. crash: what to do when the
what to do when the system crashes. crash: . •

rewrite an existing one. creat: create a new file or
file. tmpnam, tempnam: create a name for a temporary

an existing one. creat: create a new file or rewrite
fork: create a new process.

tmpfile: create a temporary file.
communication. socket: create an endpoint for

by massaging e source. mkstr: create an error message file
channel. pipe: create an interprocess . . .

files. admin: create and administer sees
umask: set and get file creation mask.

cribbage: the card game cribbage. .•••..
cribbage. cribbage: the card game

cron: clock daemon.
cxref: generate e program
more: file perusal filter for

generate DES encryption.
interpreter) with e-like/

terminal.
for a e program.

for terminal.
asctime, tzset: convert date/

ttt,
gethostname: get name of

hostname: set or print name of
activity. sact: print

uname: print name of
uname: get name of

slot in the utmp file of the
getcwd: get pathname of

spline: interpolate smooth
name of the user.

of each line of a file.
each line of a file. cut:

constant-width text forI
cross reference.

cron: clock
errdemon: error-logging

terminate the error-logging
runacct: run

backup. filesave, tapesave:
/handle special functions of

special functions of the
bit, blt512: block transfer

prof: display profile
/time a command; report process

termcap: terminal capability
port. ttytype:

I sgetl: access long numeric
plock: lock process, text, or

call. stat:
brk, sbrk: change

types: primitive system
join: relational

cross reference.
crt viewing.
crypt: encode/decode.
crypt, setkey, encrypt:
csh: a shell (command
csplit: context split. . .
ct: spawn getty to a remote
ctags: maintain a tags file
ctermid: generate file name
ctime, localtime, gmtime, .
cu: call another UNIX System.
cubic: tic-tac-toe. . .
current host.
current host system.
current sees file editing
current UNIX System.
current UNIX system.
current user. /find the
current working directory.
curve ..•.......
cuserid: get character login
cut: cut out selected fields
cut out selected fields of
cw, checkcw: prepare ..
cxref: generate e program
daemon.
daemon.
daemon. errstop:
daily accounting.
daily/weekly UNIX file system
DASI 300 and 300s terminals.
DASI 450 terminal. Ihandle
data.
data.
data and system activity.
data base.
data base of terminal types by
data in a machine independent/
data in memory.
data returned by stat system .
data segment space allocation.
data types
database operator.

- 7 -

Permuted Index

cpio.4
cpp.1
sethostname.2n
clock.3c
craps.6
craps.6
crash.8
crash.8
creat.2
tmpnam.3s
creat.2
fork.2
tmpfile.3s
socket.2n
mkstr.l
pipe.2
admin.l
umask.2
cribbage.6
cribbage.6
cron.lm
cxref.l
more. I
crypt. I
crypt.3c
csh.l
csplit.l
ct.1c
ctags.l
ctermid.3s
ctime.3c
cu.lc
ttt.6
gethostname.2n
hostname.1 n
sact.l
uname.l
uname.2
ttyslot.3c
getcwd.3c
spline.lg
cuserid.3s
cut.l
cut. I
cw.l
cxref.l
cron.lm
errdemon.1 m
errstop.lm
runacct.lm
filesave.lm
300.1
450.1
blt.3
prof. 1
timex. 1
termcap.5
ttytype.4
sput!.3x
plock.2
stat.5
brk.2
types.5
join.1

Permuted Index

udp: Internet User Datagram Protocol. . .
date: print and set the date.•...

I asctime, tzset: convert date and time to string.
date: print and set the date.
dc: desk calculator.

optimal access time. dcopy: copy file systems for
dd: convert and copy a file.

adb: debugger.
fsdb: file system debugger.

eqnchar: special character definitions for eqn and neqn.
netmailer: deliver mail to.

people. deliver mail: deliver mail to arbitrary
names. basename, dirname: deliver portions of path

file. tail: deliver the last part of a
aliases: aliases file for deliver mail.

arbitrary people. deliver mail: deliver mail to
delta commentary of an sees delta. cdc: change the ...

file. delta: make a delta (change) to an sees
delta. cdc: change the delta commentary of an sees

rmdel: remove a delta from an sees file.
to an sees file. delta: make a delta (change)

comb: combine sees deltas.
mesg: permit or deny messages.

tbl, and eqn constructs. deroff: remove nroff/troff,
setkey, encrypt: generate DES encryption. crypt,

close: close a file descriptor. . .
dup: duplicate an open file descriptor.

dc: desk calculator.
file. access: determine accessibility of a

file: determine file type.
errors in the specified device. I onl off the extended

ioct!: control device.
master: master device information table.

devnm: device name.
devnm: device name. . .

blocks. df: report number of free disk
check and interactivel fsck, dfsck: file system consistency

terminal line connection. dial: establish an out-going
bdiff: big diff. . •

comparator. diff: differential file . . .
diffdir: diff directories.

comparison. diff3: 3-way differential file
diffdir: diff directories.

sdiff: side-by-side difference program. . • . .
diffmk: mark differences between files.

diff: differential file comparator.
diff3: 3-way differential file comparison.

between files. diffmk: mark differences
dir: format of directories.
dircmp: directory comparison.

diffdir: diff directories.
dir: format of directories.

Is: list contents of directories.
rm, rmdir: remove files or directories.

in the files in the given directories. Icount characters
cd: change working directory.

chdir: change working directory.
chroot: change root directory.

pathname of current working directory. getcwd: get
mkdir: make a directory.
mvdir: move a directory.

Is7: list contents of directory (Berkeley version).
uuclean: uucp spool dtrectory clean-up.

dircmp: directory comparison.

- 8 -

udp.5n
date.1
ctime.3c
date.1
dc.l
dcopy.lm
dd.l
adb.1
fsdb.1m
eqnchar.5
netmailer.8n
delivermail.8n
basename.l
tail.l
aliases.7n
delivermail.8n
cdc.l
delta. 1
cdc.l
rmdel.l
delta. 1
comb.l
mesg.l
deroff.1
crypt.3c
close.2
dup.2
dc.l
access.2
file.1
exterr.1
ioct1.2
master.4
devnm.lm
devnm.lm
df.lm
fsck.lm
dia1.3c
bdiff.1
diff.1
diffdir.1
diff3.1
diffdir.1
sdiff.1
diffmk.1
diff.l
diff3.1
diffmk.l
dir.4
dircmp.1
diffdir.l
dir.4
Is. 1
rm.l
sumdir.1
cd.1
chdir.2
chroot.2
getcwd.3c
mkdir.l
mvdir.lm
Is7.1
uuclean.1m
dircmp.1

unlink: remove
chroot: change root

/make a lost+found
pwd: working

ordinary file. mknod: make a
path names. basename,

printers. enable,
acct: ena ble or

type, modes, speed, and line
diskformat - format a

sadp:
df: report number of free

disktune - tune floppy
du: summarize

settling time parameters.
mount, umount: mount and

rain: animated raindrops
/view: screen oriented (visual)

prof:
worms: animate worms on a

hypot: Euclidean
/lcong48: generate uniformly
macro package for formatting
macro package for formatting

mm, osdd, checkmm: print/check
slides. mmt, mvt: typeset

nulladm,/ chargefee, ckpacct,
whodo: who is

suitable for Motorola S-record
/Motorola S-records from

nrand48, mrand48, jrand48,/
arithmetic: provide

extract error records from
od: octal

descriptor.
descriptor. dup:

The alien invaders attack the
echo:

floating-point number to/

program. end, etext,
ex,

sact: print current SCCS file
ed, red: text
ex, edit: text

Id: link
sed: stream

oriented (visual) display
a.out: assembler and link

/user, real group, and
and/ /getegid: get real user,

Language.
split fortran, ratfor, or

for a pattern. grep,
enable/ disable LP printers.

accounting. acct:
enable, disable:

crypt:
encryption. crypt, set key ,

setkey, encrypt: generate DES
makekey: generate

directory entry.
directory for a command.
directory for fsck.
directory name.
directory, or a special or
dirname: deliver portions of
disable: enable/ disable LP .
disable process accounting.
discipline. /set terminal
disk. . .••..
disk access profiler. • .
disk blocks. .•..•
disk settling time parameters.
disk usage. . ..•...
diskformat - format a disk.
disk tune - tune floppy disk
dismount file system. • •
display. . .••....
display editor based on ex.
display profile data.
display terminal.
distance function.
distributed pseudo-random/
documents. mm: the MM .
documents. /the OSDD adapter
documents formatted with the/
documents, view graphs, and
dodisk, lastlogin, monacct,
doing what. .•......
downloading. / ASCII formats
downloading into a file. . .
drand48, erand48, Irand48,
drill in number facts. . .
du: summarize disk usage.
dump. errdead:
dump.
dup: duplicate an open file
duplicate an open file
earth. aliens:
echo arguments.
echo: echo arguments.
ecvt, fcvt, gcvt: convert
ed, red: text editor. .
edata: last locations in
edit: text editor.
editing activity.
editor.
editor.
editor.
editor.
editor based on ex. / screen
editor output.
effective group IDs.
effective user, real group,
efl: Extended Fortran
efl files. fsplit:
egrep, fgrep: search a file
enable, disable:
enable or disable process
enable/ disable LP printers.
encode/ decode.
encrypt: generate DES
encryption. crypt,
encryption key.

- 9 -

Permuted Index

unlink.2
chroot.1m
mklost+fnd.lm
pWd.1
mknod.2
basename.l
enable.1
acct.2
getty.1m
diskformat.1m
sadp.1
df.1m
disktune.lm
du.l
diskformat.1m
disktune.1 m
mount.1m
rain.6
vi.1
prof. I
worms.6
hypot.3m
drand48.3c
mm.5
mosd.5
mm.l
mmt.1
acctsh.lm
whodo.1m
hex.l
rcvhex.1
drand48.3c
arithmetic.6
du.l
errdead.lm
od.1
dup.2
dup.2
aliens.6
echo.l
echo.l
ecvt.3c
ed.l
end.3c
ex.l
sact.l
ed.l
ex.l
Id.l
sed.1
vi.1
a.out.4
getuid.2
getuid.2
efl.l
fsplit.1
grep.l
enable.1
acct.2
enable. 1
crypt. I
crypt.3c
crypt.3c
makekey.1

Permuted Index

locations in program.
Igetgrgid, getgrnam, setgrent,

socket: create an
Igetpwuid, getpwnam, setpwent,

utmpl /pututline, setutent,
convert Arabic numerals to

nlist: get
man, manprog: print

man: macros for formatting
endgrent: get group file

endpwent: get password file
utmpname: access utmp file

putpwent: write password file
unlink: remove directory

utmp, wtmp: utmp and wtmp
command execution.

environ: user
environ: user

printenv: print out the
profile: setting up an

execution. env: set
getenv: return value for
character definitions for

remove nroff/troff, tbl, and
mathematical text for nroffl

definitions for eqn and neqn.
mrand48, jrand48,1 drand48,

complementary error function.
complementary errorl erf,

from dump.
daemon.

format.
system errorl perror,

function and complementary
complementaryl erf, erfc:

massaging CI mkstr: create an
sys errlist, sys nerr: system

- to system calls and
errdead: extract

matherr:
errfile:

errdemon:
errstop: terminate the

err:
process a report of logged

hashcheck: find spelling
I - turn on/off the extended

logged errors.
error-logging daemon.

robots. autorobots:
robots:

chase: Try to
terminal linel dial:

setmnt:
bnet.

in program. end,
hypot:

end, etext, edata: last
endgrent: get group filel
endpoint for communication.
endpwent: get password filel
endutent, utmpname: access
English. number:
entries from name list.
entries in this manual.
entries in this manual.
entry. Igetgrnam, setgrent,
entry. Igetpwnam, setpwent,
entry. Isetutent, endutent,
entry.
entry.•..
entry formats.
env: set environment for
environ: user environment.
environ: user environment.
environment.
environment.
environment.
environment at login time.
environment for command
environment name.
eqn and neqn. Ispecial
eqn constructs. deroff:
eqn, neqn, checkeq: format
eqnchar: special character
erand48, Irand48, nrand48,
erf, erfc: error function and
erfc: error function and . .
err: error-logging interface.
errdead: extract error records
errdemon: error-logging . .
errfile: error-log file
errno, sys err list, sys nerr:
error function. lerfc:-error
error function and
error message file by
error messages. I errno, . .
error numbers. !introduction
error records from dump.
error-handling function.
error-log file format.
error-logging daemon.
error-logging daemon.
error-logging interface.
errors. errpt:
errors. Ihashmake, spelIin,
errors in the specifiedl
errpt: process a report of
errstop: terminate the . .
Escape from the automatic
Escape from the robots.
escape the killer robots.
establish an out-going
establish mount table.
I etc/hosts: host table for
etext, edata: last locations
Euclidean distance function.

expression. expr: evaluate arguments as an
test: condition evaluation command. . . .

display editor based on ex. Iscreen oriented (visual)
ex, edit: text editor.

- 10 -

end.3c
getgrent.3c
socket.2n
getpwent.3c
getut.3c
number.6
nlist.3c
man.l
man.5
getgrent.3c
getpwent.3c
getut.3c
putpwent.3c
unlink.2
utmpA
env.l
environ.4
environ.5
environ.4
environ.5
printenv.1
profile.4
env.l
getenv.3c
eqnchar.5
deroff.l
eqn.l
eqnchar.5
drand48.3c
erf.3m
erf.3m
err.7
errdead.lm
errdemon.l m
errfileA
perror.3c
erf.3m
erf.3m
mkstr.l
perror.3c
intro.2
errdead.lm
matherr.3m
errfileA
errdemon.l m
errstop.lm
err.7
errpt.lm
spell. 1
exterr.l
errpt.lm
errstop.lm
autorobots.6
robots.6
chase.6
dia1.3c
setmnt.1m
hosts.7n
end.3c
hypot.3m
expr.l
test. 1
vi.!
ex.l

reading or/ lockf: provide
execlp, execvp: execute a/

execvp: execute/ execl, execv,
execl, execv, execle, execve,

execve, execlp, execvp:
construct argument list(s) and

time. at:
regcmp, regex: compile and

set environment for command
uux: unix to unix command

sleep: suspend
sleep: suspend

monitor: prepare
profil:

execvp: execute at execl,
execute/ execl, execv, execle,

/ execv, execle, execve, execlp,
system calls. link, unlink:

a new file or rewrite an
process.

exit,
exponential, logarithm,!

peat, unpack: compress and
adventure: an

exp, log, 10glO, pow, sqrt:
expression.

expr: evaluate arguments as an
compile and execute regular

regcmp: regular
routines. regexp: regular

exterr - turn on/ off the
efl:

greek: graphics for the
extended errors in the/

dump. errdead:
remainder,! floor, ceil, fmod,

factor:

true,
data in a machine independent

finc:
abort: generate an lOT

a stream.

floating-point number/ ecvt,
fopen, freopen,

status inquiries. ferror,
fileno: stream status/

statistics for a file system.
stream. fclose,

word from/ getc, getchar,
stream. gets,

pattern. grep, egrep,
determine accessibility of a

chmod: change mode of
change owner and group of a

core: format of core image
fields of each line of a

dd: convert and copy a
a delta (change) to an sees

execlp, execvp: execute a
on character frequencies in a

get: get a version of an sees

exclusive file regions for
execl, execv, execle, execve,
execle, execve, execlp,
execlp, execvp: execute a/
execute a file. / execle,
execute command. xargs:
execute commands at a later
execute regular expression.
execution. env:
execution•..
execution for an interval.
execution for interval.
execution profile.
execution time profile.
execv, execle, execve, execlp,
execve, execlp, execvp:
execvp: execute a file.
exercise link and unlink
existing one. creat: create
exit, _exit: terminate
exit: terminate process.

exp, log, 10g10, pow, sqrt:
expand files. pack,
exploration game.
exponential, logarithm, power,!
expr: evaluate arguments as an
expression.
expression. regcmp, regex:
expression compile.
expression compile and match
extended errors in the/ . .
Extended Fortran Language.
extended TTY -37 type-box.
exterr - turn on/ off the .
extract error records from
fabs: floor, ceiling,
factor a number.
factor: factor a number. .
false: provide truth values.
fashion .. /access long numeric
fast incremental backup.
fault. ...•......
fclose, mush: close or flush
fcntl: file control.
fcntl: file control options.
fcvt, gcvt: convert
fdopen: open a stream.
feof, clearerr, fileno: stream
ferror, feof, clearerr,
ff: list file names and . . .
mush: close or flush a
fgetc, getw: get character or
fgets: get a string from a
fgrep: search a file for a
file. access:
file.
file. chown:
file.
file. cut: cut out selected
file .••..••...•
file. delta: make
file. /execv, execle, execve,
file. freq: report
file .••.•••...•.

- 11 -

Permuted Index

lockf.2
exec.2
exec.2
exec.2
exec.2
xargs.l
at.l
regcmp.3x
env.l
uux.lc
sleep.l
sleep.3c
monitor.3c
profil.2
exec.2
exec.2
exec.2
link.lm
creat.2
exit.2
exit.2
exp.3m
pack.l
adventure.6
exp.3m
expr.l
expr.l
regcmp.3x
regcmp.l
regexp.5
exterr.l
efl.l
greek.5
exterr.l
errdead.lm
floor.3m
factor.1
factor.l
true. 1
sput1.3x
finc.lm
abort.3c
fclose.3s
fcntl.2
fcntl.5
ecvt.3c
fopen.3s
ferror.3s
ferror.3s
ff.lm
fclose.3s
getc.3s
gets.3s
grep.l
access.2
chmod.2
chown.2
core.4
cut.l
dd.l
delta. I
exec.2
freq.l
get. I

Permuted Index

group: group file.
issue: issue identification file.

link: link to a file.
mknod: build special file.

or a special or ordinary file. / make a directory,
change the format of a text file. newform:

null: the null file. •
passwd: password file.

or subsequent lines of one file. llines of several files
prs: print an sees file.

from downloading into a file. IMotorola S-records
read: read from file.

remove a delta from an sees file. rmdel:
two versions of an sees file. sccsdiff: compare
sccsfile: format of sees file.

size: size of an object file.
in an object, or other binary file. Ithe printable strings

checksum and block count of a file. sum: print
sum and count blocks in a file. sum7:

deliver the last part of a file. tail: . . .
tmpfile: create a temporary file.

create a name for a temporary file. tmpnam, tempnam:
and modification times of a file. touch: update access

undo a previous get of an sees file. unget:
report repeated lines in a file. uniq:

val: validate sees file.
write: write on a file.
times. utime: set file access and modification

hpio: HP 2645A terminal tape file archiver.
tar: tape file archiver.

cpio: copy file archives in and out. ..
mkstr: create an error message file by massaging e source.

pwck, grpck: passwordl group file checkers. . .
diff: differential file comparator.

diff3: 3-way differential file comparison.
fcnt!: file control.
fcnt!: file control options.

rcp: remote file copy.
UNIX System-to-UNIX System file copy. luupick: public

umask: set and get file creation mask.
close: close a file descriptor.

dup: duplicate an open file descriptor.
file: determine file type.

sact: print current sees file editing activity. .
setgrent, endgrent: get group file entry. I getgrnam ,

endpwent: get password file entry. /setpwent,
utmpname: access utmp file entry. lendutent,

putpwent: write password file entry.
ctags: maintain a tags file for a e program.

grep, egrep, fgrep: search a file for a pattern. .
aliases: aliases file for delivermail.

acct: per-process accounting file format.
ar: archive (library) file format.

errfile: error-log file format.
pnch: file format for card images.

intro: introduction to file formats. •. . . . • .
take: takes a file from a remote machine.

take7: takes a file from a remote machine ..
split: split a file into pieces.

mktemp: make a unique file name. . •
ctermid: generate file name for terminal.

a file system. ff: list file names and statistics for
/find the slot in the utmp file of the current user. • .

put: puts a file onto a remote machine ..

- 12 -

group.4
issue.4
link.2
mknod.1m
mknod.2
newform.l
null.7
passwd.4
paste.1
prs.l
rcvhex.l
read.2
rmdel.1
sccsdiff.l
sccsfile.4
size.l
strings. I
sum.l
sum7.1
tail. I
tmpfile.3s
tmpnam.3s
touch. I
unget.1
uniq.l
val. 1
write.2
utime.2
hpio.l
tar.l
cpio.l
mkstr.l
pwck.lm
diff.1
diff3.1
fcntl.2
fcntl.5
rcp.1n
uuto.lc
umask.2
close.2
dup.2
file.1
sact.l
getgrent.3c
getpwent.3c
getut.3c
putpwent.3c
ctags.1
grep.l
aliases.7n
acct.4
ar.4
errfile.4
pnch.4
intro.4
take.lc
take7.lc
split. I
mktemp.3c
ctermid.3s
ff.lm
ttyslot.3c
put.1c

Permuted index

put7: puts a file onto a remote machine .. put7.1c
/identify processes using a file or file structure. fuser.1m

one. creat: create a new file or rewrite an existing creat.2
viewing. more: file perusal filter for crt more. 1

lseek: move read/write file pointer. Iseek.2
/ rewind, ftell: reposition a file pointer in a stream. fseek.3s

lockf: provide exclusive file regions for reading or/ lockf.2
bfs: big file scanner. bfs.l

stat, fstat: get file status. stat.2
processes using a file or file structure. !identify fuser.1m

names and statistics for a file system. ff: list file ff.lm
mkfsl b: construct a file system. mkfslb.lm

mkfs: construct a file system. mkfs.1m
umount: mount and dismount file system. mount, mount.lm

mount: mount a file system. mount.2
umount: unmount a file system. umount.2

tapesave: daily/weekly UNIX file system backup. filesave, filesave.lm
and interactive/ fsck, dfsck: file system consistency check fsck.lm

fsdb: file system debugger. fsdb.1m
volume. file system: format of system fs.4

ustat: get file system statistics. ustat.2
mnttab: mounted file system table. mnttab.4

access time. dcopy: copy file systems for optimal dcopy.lm
fsck. checklist: list of file systems processed by checklist.4
volcopy, labelit: copy file systems with label! volcopy.lm

ftw: walk a file tree. ftw.3c
file: determine file type. file.l

umask: set file-creation mode mask. umask.l
ferror, feof, clearerr, fileno: stream status/ ferror.3s

and print process accounting file(s). acctcom: search acctcom.l
merge or add total accounting files. acctmerg: acctmerg.lm

create and administer sees files. admin: admin.l
cat: concatenate and print files. cat.l

cmp: compare two files. cmp.l
lines common to two sorted files. comm: select or reject comm.l

cp, In, mv: copy, link or move files. cp.l
mark differences between files. diffmk: diffmk.1

find: find files. find. 1
format specification in text files. fspec: fspec.4

fortran, ratfor, or efl files. fsplit: split fsplit.l
string, format of graphical files. / graphical primitive gps.4

intro: introduction to special files. intro.7
unpack: compress and expand files. pack, pcat, pack. 1

pr: print files. pr.l
sort: sort and/ or merge files. sort.l

reports version number of files. version: version.}
what: identify sees files. what.l

updater: update files between two machines. updater.l
updater: update files between two machines. updater.lm

frec: recover files from a backup tape. frec.1m
and count characters in the files in the given/ / sum sumdir.1

hex: translates object files into ASeII formats/ hex.l
rm, rmdir: remove files or directories. rm.1

/merge same lines of several files or subsequent lines of! paste.1
daily/weekly UNIX file system/ filesave, tapesave: filesave.1m

greek: select terminal filter. greek. 1
nl: line numbering filter. nI.1
more: file perusal filter for crt viewing. more.1

col: filter reverse line-feeds. col.l
tplot: graphics filters. tplot.1g

finc: fast incremental backup. finc.1m
find: find files. find. 1

find: find files. find.1
hyphen: find hyphenated words. hyphen. 1

- 13 -

Permuted Index

ttyname, isatty:
object library. lorder:

hashmake, spellin, hashcheck:
an object, or other/ strings:
of the current user. ttyslot:

fish: play "Go

a command immune to hangups
tee: pipe

atof: convert ASCII string to
ecvt, fcvt, gcvt: convert

Imodf: manipulate parts of
floor, ceiling, remainder,!

floor, ceil, fmod, fabs:
parameters. disktune - tune

cflow: generate C
fclose, mush: close or

remainder,! floor, ceil,
stream.

per-process accounting file
ar: archive Clibrary) file

errfile: error-log file
tp: magnetic tape

diskformat -
pnch: file

nroff orl eqn, neqn, checkeq:
newform: change the

inode:
core:
cpio:

dir:
I graphical primitive string,

sccsfile:
file system:
files. fspec:

troff. tbl:
nroff:

intro: introduction to file
wtmp: utmp and wtmp entry

lobject files into ASCII
scanf, fscanf, sscanf: convert

fprintf, sprintf: print
Icheckmm: print/check documents

mptx: the macro package for
nroff7: text
troff7: text

mm: the MM macro package for
OSDD adapter macro package for

manual. man: macros for
efl: Extended

files. fsplit: split
hopefully interesting, adage.

formatted output. printf,
word on a/ putc, putchar,

stream. puts,
input! output.
backup tape.

df: report number of
memory allocator. malloc,

stream. fopen,
frequencies in a file.

freq: report on character
parts of floating-point/

find name of a terminal.
find ordering relation for an
find spelling errors. spell,
find the printable strings in
find the slot in the utmp file
Fish".
fish: play "Go Fish".
(sh only). nohup: run
fitting.
floating-point number.
floating-point number tol
floating-point numbers.
floor, ceil, fmod, fabs:
floor, ceiling, remainder,!
floppy disk settling time
flow graph. . •....
flush a stream.
fmod, fabs: floor, ceiling,
fopen, freopen, fdopen: open a
fork: create a new process.
format. acct:
format.
format.
format.
format a disk.
format for card images.
format mathematical text for
format of a text file.
format of an inode. . . .
format of core image file.
format of cpio archive.
format of directories. .
format of graphical files.
format of SCCS file.
format of system volume.
format specification in text
format tables for nroff or
format text.
formats ..••.....
formats. utmp,
formats suitable for Motorolal
formatted input.
formatted output. printf,
formatted with the MM macros.
formatting a permuted index.
formatting and typesetting.
formatting and typesetting.
formatting documents.
formatting documents. /the
formatting entries in this
Fortran Language.
fortran, ratfor, or efl .
fortune: print a random,
fprintf, sprintf: print
fputc, putw: put character or
fputs: put a string on a
fread, fwrite: binary
frec: recover files from a
free disk blocks.
free, realloc, calloc: main
freopen, fdopen: open a
freq: report on character
frequencies in a file.
frexp, ldexp, modf: manipulate

- 14 -

ttyname.3c
lorder.!
spell. I
strings.1
ttyslot.3c
fish.6
fish.6
nohup.1
tee.1
atof.3c
ecvt.3c
frexp.3c
floor.3m
floor.3m
disktune.1m
cflow.1
fclose.3s
floor.3m
fopen.3s
fork.2
acct.4
ar.4
errfile.4
tp.4
diskformat.1 m
pnch.4
eqn.1
newform.1
inode.4
core.4
cpio.4
dir.4
gps.4
sccsfile.4
fs.4
fspec.4
tbl.1
nroff.1
intro.4
utmp.4
hex.1
scanf.3s
printf.3s
mm.1
mptx.S
nroff7.1
troff7.1
mm.S
mosd.S
man.S
efl.1
fsplit.1
fortune.6
printf.3s
putc.3s
puts.3s
fread.3s
frec.1m
df.1m
malloc.3c
fopen.3s
freq.1
freq.1
frexp.3c

frec: recover files from a backup tape.
take: takes a file from a remote machine.

take7: takes a file from a remote machine ..
receive: receive message from a socket.

send: send message from a socket.
gets, fgets: get a string from a stream.
rmdel: remove a delta from an sees file.

getopt: get option letter from argument vector.
Itranslates Motorola S-records from downloading into a file.
errdead: extract error records from dump.

read: read from file.
ncheck: generate names from i-numbers.

nlist: get entries from name list.
acctcms: command summary from per-process accountingl

getw: get character or word from stream. Igetchar, fgetc,
autorobots: Escape from the automatic robots.

robots: Escape from the robots.
getpw: get name from UID.

formatted input. scanf, fscanf, sscanf: convert
of file systems processed by fsck. checklist: list
a lost+found directory for fsck. mklost+found: make

consistency check and 1 fsck, dfsck: file system
fsdb: file system debugger.

reposition a file pointer inl fseek, rewind, ftell: . . .
text files. fspec: format specification in

or efl files. fsplit: split fortran, ratfor,
stat, fstat: get file status. .

pointer in al fseek, rewind, ftell: reposition a file

and complementary error
gamma: log gamma

hypot: Euclidean distance
matherr: error-handling

error 1 erf, erfc: error
jO, jl, jn, yO, yl, yn: Bessel

logarithm, power, square root
remainder, absolute value

sinh, cosh, tanh: hyperbolic
atan, atan2: trigonometric

300, 300s: handle special
hp: handle special

terminal. 450: handle special
using a file or filel

fread,
connect accounting records.

adventure: an exploration

ftw: walk a file tree.
function. 1 error function
function.
function.
function.
function and complementary
functions. . ••.....
functions. Isqrt: exponential,
functions. Ifloor, ceiling,
functions.•....
functions. 1 tan, asin, acos,
functions of DASI 300 and 300s1
functions of HP 2640 andl
functions of the DASI 450
fuser: identify processes .
fwrite: binary input/output.
fwtmp, wtmpfix: manipulate
game.

moo: guessing game.
trek: trekkie game.

worm: Play the growing worm game.
cribbage: the card game cribbage.

back: the game of backgammon.
bj: the game of black jack. . .

craps: the game of craps.
wump: the game of hunt-the-wumpus.

life: play the game of life. . .
intro: introduction to games.

gamma: log gamma function.
gamma: log gamma function.

number to string. ecvt, fcvt, gcvt: convert floating-point
maze: generate a maze. . . .
abort: generate an lOT fault.
cflow: generate e flow graph.

reference. cxref: generate e program cross
crypt, setkey, encrypt: generate DES encryption.

- 15 -

Permuted Index

frec.1m
take.1c
take7.1c
receive.2n
send.2
gets.3s
rmdel.l
getopt.3c
rcvhex.l
errdead.lm
read.2
ncheck.lm
nlist.3c
acctcms.lm
getc.3s
autorobots.6
robots.6
getpw.3c
scanf.3s
checklist.4
mklost + fnd.lm
fsck.1m
fsdb.1m
fseek.3s
fspec.4
fsplit.l
stat.2
fseek.3s
ftw.3c
erf.3m
gamma.3m
hypot.3m
matherr.3m
erf.3m
bessel.3m
exp.3m
floor.3m
sinh.3m
trig.3m
300.1
hp.l
450.1
fuser.lm
fread.3s
fwtmp.1m
adventure.6
moo.6
trek.6
worm.6
cribbage.6
back.6
bj.6
craps.6
wump.6
life.6
intro.6
gamma.3m
gamma.3m
ecvt.3c
maze.6
abort.3c
cflow.l
cxref.l
crypt.3c

Permuted Index

makekey:
terminal. ctermid:

ncheck:
lexical tasks. lex:

Isrand48, seed48, icong48:
srand: simple random-number

gets, fgets:
get:

ulimit:
the user. cuserid:

getc, getchar, fgetc, getw:
nlist:

umask: set and
stat, fstat:

ustat:
file.

/getgrnam, setgrent, endgrent:
getlogin:
logname:

msgget:
getpw:

gethostname:
system. uname:

unget: undo a previous
argument vector. getopt:

/getpwnam, setpwent, endpwent:
working directory. getcwd:

times. times:
and/ getpid, getpgrp, getppid:

/ geteuid, getgid, getegid:
semget:
shmget:

tty:
time:

get character or word from/
character or word from/ getc,

current working directory.
getuid, geteuid, getgid,

environment name.
real user, effective/ getuid,

user,/ getuid, geteuid,
setgrent, endgrent: get group/
endgrent: get group/ getgrent,
get group/ getgrent, getgrgid,

current host.

argument vector.

process group, and/ getpid,
process, process group, and/
group, and/ getpid, getpgrp,

setpwent, endpwent: get/
get! getpwent, getpwuid,
endpwent: get/ getpwent,

a stream.
and terminal settings used by

modes, speed, and line/
ct: spawn

settings used by getty.
getegid: get real user,/

pututiine, setutent,/
setutent, endutent,/ getutent,

generate encryption key.
generate file name for
generate names from i-numbers.
generate programs for simple
generate uniformiy distributed/
generator. rand, .••• • •
get a string from a stream.
get a version of an sees file.
get and set user limits.
get character login name of
get character or word from/
get entries from name list.
get file creation mask.
get file status. ••.•.
get file system statistics. •
get: get a version of an sees
get group file entry.
get login name.
get login name.
get message queue.
get name from UID.
get name of current host.
get name of current UNIX
get of an sees file.
get option letter from .
get password file entry.
get pathname of current
get process and child process
get process, process group,
get real user, effective user,/
get set of semaphores.
get shared memory segment.
get the terminal's name.
get time. • ••....
getc, getchar, fgetc, getw:
getchar, fgetc, getw: get •
getcwd: get pathname of
getegid: get real user,/
getenv: return value for .
geteuid, getgid, getegid: get
getgid, getegid: get real . .
getgrent, getgrgid, getgrnam,
getgrgid, getgrnam, setgrent,
getgrnam, setgrent, endgrent:
gethostname: get name of . .
getiogin: get login name.
getopt: get option letter from
getopt: parse command options.
getpass: read a password.
getpgrp, getppid: get process,
getpid, getpgrp, getppid: get
getppid: get process, process
getpw: get name from UID.
getpwent, getpwuid, getpwnam,
getpwnam, setpwent, endpwent:
getpwuid, getpwnam, setpwent,
gets, fgets: get a string from
getty. gettydefs: speed
getty: set terminal type, . .
getty to a remote terminal.
gettydefs: speed and terminal
getuid, geteuid, getgid,
getutent, getutid, getutline,
getutid, getutline, pututiine,

- 16 -

makekey.l
ctermid.3s
ncheck.lm
lex.l
drand48.3c
rand.3c
gets.3s
get.1
ulimit.2
cuserid.3s
getc.3s
nlist.3c
umask.2
stat.2
ustat.2
get. 1
getgrent.3c
getiogin.3c
logname.l
msgget.2
getpw.3c
gethostname.2n
uname.2
unget.1
getopt.3c
getpwent.3c
getcwd.3c
times.2
getpid.2
getuid.2
semget.2
shmget.2
tty. 1
time.2
getc.3s
getc.3s
getcwd.3c
getuid.2
getenv.3c
getuid.2
getuid.2
getgrent.3c
getgrent.3c
getgrent.3c
gethostname.2n
getiogin.3c
getopt.3c
getopt.l
getpass.3c
getpid.2
getpid.2
getpid.2
getpw.3c
getpwent.3c
getpwent.3c
getpwent.3c
gets.3s
gettydefs.4
getty. 1m
ct.1c
gettydefs.4
getuid.2
getut.3c
getut.3c

setutent,l getutent, getutid, getutline, pututline,
froml getc, getchar, fgetc, getw: get character or word
convertl ctime, localtime, gmtime, asctime, tzset:

fish: play "Go Fish".•
setjmp, longjmp: non-local goto.
string, format of graphical! gps: graphical primitive

cflow: generate C flow graph
sag: system activity graph. . . • •

primitive string, format of graphical files. Igraphical
format of graphicall gps: graphical primitive string,

tplot: graphics filters.
TTY-37 type-box. greek: graphics for the extended

plot: graphics interface.
subroutines. plot: graphics interface . . . •

mvt: typeset documents, view graphs, and slides. mmt,
package for typesetting view graphs and slides. Imacro
extended TTY -37 type-box. greek: graphics for the

greek: select terminal filter.
file for a pattern. grep, egrep, fgrep: search a

chown, chgrp: change owner or group.
newgrp: log in to a new group. •

luser, effective user, real group, and effective groupl
Igetppid: get process, process group, and parent process IDs.

group: group file. . •
setgrent, endgrent: get group file entry. Igetgrnam,

group: group file. . . • . .
setpgrp: set process group 10.

real group, and effective group IDs. I effective user,
setuid, setgid: set user and group IDs.

id: print user and group IDs and names.
chown: change owner and group of a file. . . .

a signal to a process or a group of processes. Isend
update, and regenerate groups of programs. Imaintain,

worm: Play the growing worm game. . .
checkers. pwck, grpck: password/group file

ssignal, gsignal: software signals.
hangman: guess the word.

moo: guessing game.
DASI 300 and 300s1 300, 300s: handle special functions of

2640 and 2621-seriesl hp: handle special functions of HP
the DASI 450 terminal. 450: handle special functions of

information for bad block handling. lalternate block
hangman: guess the word. .

nohup: run a command immune to hangups (sh only).
hcreate, hdestroy: manage hash search tables. hsearch,

spell, hashmake, spellin, hashcheck: find spellingl
find spelling errors. spell, hashmake, spellin, hashcheck:

search tables. hsearch, hcreate, hdestroy: manage hash
tables. hsearch, hcreate, hdestroy: manage hash search

help: ask for help. .•.......
help: ask for help.

into ASCII formats suitablel hex: translates object files .
fortune: print a random, hopefully interesting, adage.

get name of current host. gethostname: . . • .
sethostname: set name of host cpu.

ruptime: show host status of local machines.
set or print name of current host system. hostname: . . .

I etc/hosts: host table for bnet.
current host system. hostname: set or print name of

rhost, raddr: look up internet hosts by name or address. . .
handle special functions of HP 2640 and 2621-seriesl hp:

archiver. hpio: HP 2645A terminal tape file .
of HP 2640 and 2621-seriesl hp: handle special functions

file archiver. hpio: HP 2645A terminal tape

- 17 -

Permuted Index

getut.3c
getc.3s
ctime.3c
fish.6
setjmp.3c
gpsA
cflow.1
sag.1g
gpsA
gpsA
tplot.1g
greek.S
plotA
plot.3x
mmt.1
mv.5
greek.S
greek. 1
grep.1
chown.1
newgrp.1
getuid.2
getpid.2
groupA
getgrent.3c
group.4
setpgrp.2
getuid.2
setuid.2
id.1
chown.2
kill.2
make. 1
worm.6
pwck.1m
ssignal.3c
hangman.6
moo.6
300.1
hp.1
450.1
altblk.4
hangman.6
nohup.1
hsearch.3c
spell. 1
spell. 1
hsearch.3c
hsearch.3c
help.1
help.1
hex.1
fortune. 6
gethostname.2n
sethostname.2n
ruptime.1n
hostname.1 n
hosts.7n
hostname.1 n
rhost.3n
hp.1
hpio.1
hp.1
hpio.1

Permuted Index

manage hash search tables.
wump: the game of

sinh, cosh, tanh:

hyphen: find
function.

semaphore set or shared memory
setpgrp: set process group

and names.
issue: issue

file or filel fuser:
what:

group, and parent process
group, and effective group
setgid: set user and group

id: print user and group
core: format of core

pnch: file format for card
only). nohup: run a command

finc: fast
long numeric data in a machine

Itgoto, tputs: terminal
for formatting a permuted

ptx: permuted
family.

inittab: script for the
initialization.

init, telinit: process control
Irc, powerfail: system

socket. connect:
process. popen, pclose:

process.
clri: clear

inode: format of an

sscanf: convert formatted
push character back into

fread, fwrite: binary
stdio: standard buffered

fileno: stream status
uustat: uucp status

install:

atol, atoi: convert string to
abs: return

II64a: convert between long
3-byte integers and long

Ilto13: convert between 3-byte
bcopy:

system consistency check and
print a random, hopefully

err: error-logging
loop: software loopback

plot: graphics
termio: general terminal
tty: controlling terminal

plot: graphics
rhost, raddr: look up

ip:
inet:

Protocol. tcp:
Protocol. udp:

spline:
characters. asa:

hsearch, hcreate, hdestroy:
hunt-the-wumpus.
hyperbolic functions.
hyphen: find hyphenated words.
hyphenated words.
hypot: Euclidean distance
id. Iremove a message queue,
ID .•..........
id: print user and group IDs
identification file. . • . .
identify processes using a
identify SCCS files. . . .
IDs. I get process, process
IDs. leffective user, real
IDs. setuid,
IDs and names.
image file .•••
images.
immune to hangups (sh
incremental backup.
independent fashion .. laccess
independent operationl . .
index. Ithe macro package
index ..•.....
inet: Internet protocol
init process.
init, telinit: process control
initialization. •
initialization shell scripts.
initiate a connection on a
initiate pipe to/from a
inittab: script for the init
i-node. . ••.....
inode••....
inode: format of an inode.
input. scanf, fscanf,
input stream. ungetc:
input/output.
input/output package.
inquiries. Ifeof, clearerr,
inquiry and job control. .
install commands.
install: install commands.
integer. strtol, •
integer absolute value.
integer and base-64 ASCIII
integers. I convert between
integers and long integers.
interactive block copy.
interactive repair. lfile
interesting, adage. fortune:
interface.
interface.
interface.
interface.
interface.
interface subroutines.
internet hosts by name orl
Internet Protocol.
Internet protocol family.
Internet Transmission Control
Internet User Datagram . . .
interpolate smooth curve. . .
interpret ASA carriage control

- 18 -

hsearch.3c
wump.6
sinh.3m
hyphen. I
hyphen.l
hypot.3m
ipcrm.l
setpgrp.2
id.l
issue.4
fuser.lm
what.1
getpid.2
getuid.2
setuid.2
id.l
core.4
pnch.4
nohup.l
finc.lm
sput1.3x
termcap.3
mptx.5
ptx.l
inet.5n
inittab.4
init.1m
init.lm
brc.lm
connect.2n
popen.3s
inittab.4
clri,lm
inode.4
inode.4
scanf.3s
ungetc.3s
fread.3s
stdio.3s
ferror.3s
uustat.1c
install.lm
install.lm
strto1.3c
abs.3c
h641.3c
l3tol.3c
l3to1.3c
bcopy.lm
fsck.lm
fortune.6
err.7
10.5n
plot.4
termio.7
tty.7
plot.3x
rhost.3n
ip.5n
inet.5n
tcp.5n
udp.5n
spline.lg
asa.l

sno: SNOBOL
syntax. csh: a shell (command

pipe: create an
facilities/ ipcs: report

package. stdipc: standard
suspend execution for an

sleep: suspend execution for
commands and application/

formats.

miscellany.
files.

subroutines and libraries.
calls and error numbers.

maintenance commands and/
maintenance procedures.

application programs. intro:
intro:
intro:
intro:

facilities. net:
intro:

and libraries. intro:
and error numbers. intro:

maintenance commands/ intro:
maintenance/ intro:

ncheck: generate names from
aliens: The alien

select: synchronous

abort: generate an

semaphore set or shared/
communication facilities/
lislower, isdigit, isxdigit,

isdigit, isxdigit, isalnum,l
/isprint, isgraph, iscntrl,

terminal. ttyname,
/ ispunct, isprint, isgraph,
isalpha, isupper, islower,
lisspace, ispunct, isprint,

isalnum,l isalpha, isupper,
/ isalnum, iss pace, ispunct,
lisxdigit, isalnum, isspace,
/ isdigit, isxdigit, isalnum,

system:
issue:

file.
isxdigit, isalnum,l isalpha,

/isupper, islower, isdigit,
news: print news

functions.
functions. jO,

bj: the game of black
functions. jO, jl,

operator.
/lrand48, nrand48, mrand48,

make key: generate encryption
killall:

process or a group off

processes.
chase: Try to escape the

mem,

interpreter. ...•.
interpreter) with C-like
interprocess channel.
inter-process communication
interprocess communication
interval. sleep:.. .
interval. ••......
intro: introduction to . .
intro: introduction to file
intro: introduction to games.
intro: introduction to . . .
intro: introduction to special
intro: introduction to . . .
intro: introduction to system
intro: introduction to system
intro: introduction to system
introduction to commands and
introduction to file formats.
introduction to games.
introduction to miscellany.
introduction to networking
introduction to special files.
introduction to subroutines
introduction to system calls
introduction to system
introduction to system
i-numbers. . ..•.
invaders attack the earth.
i/o multiplexing.
ioct1: control device.
lOT fault. •....
ip: Internet Protocol.
ipcrm: remove a message queue,
ipcs: report inter-process
isalnum, isspace, ispunct,l
isalpha, isupper, islower,
isascii: classify characters.
isatty: find name of a • •
iscntrl, isascii: classify/
isdigit, isxdigit, isalnum,l
isgraph, iscntrl, isascii:/
islower, isdigit, isxdigit, .
isprint, isgraph, iscntri,l
ispunct, isprint, isgraph,l
isspace, ispunct, isprint,l
issue a shell command.
issue identification file.
issue: issue identification
isupper, islower, isdigit, .
isxdigit, isalnum, isspace,l
items ...•.•..••
jO, jl, jn, yO, yl, yn: Bessel
jl, jn, yO, yl, yn: Bessel
jack. . .••...•
jn, yO, yl, yn: Bessel
join: relational database
jrand48, srand48, seed48,1
key. • ••••..•
kill all active processes.
kill: send a signal to a •
kill: terminate a process.
killall: kill all active .
killer robots. • . . .
kmem: core memory.

- 19 -

Permuted Index

sno.1
csh.l
pipe.2
ipcs.l
stdipc.3c
sleep.l
sleep.3c
intro.l
intro.4
intro.6
intro.5
intro.7
introJ
intro.2
intro.1m
intro.8
intro'!
intro.4
intro.6
intro.5
net.5n
intro.7
intro.3
intro.2
intro'!m
intro.8
ncheck.lm
aliens.6
select.2n
ioctl.2
abort.3c
ip.5n
ipcrm.l
ipcs.l
ctypeJc
ctype.3c
ctype.3c
ttyname.3c
ctype.3c
ctype.3c
ctypeJc
ctype.3c
ctype.3c
ctype.3c
ctypeJc
system.3s
issue.4
issue.4
ctype.3c
ctype.3c
news.1
besseJ.3m
besseJ.3m
bj.6
besseJ.3m
join.l
drand48.3c
makekey.l
killal1.1m
kill.2
kill. I
killall.lm
chase.6
mem.7

Permuted Index

quiz: test your knowledge.
3-byte integers and long/ 13tol, ltol3: convert between

integer and base-64/ a64l, 164a: convert between long
copy file systems with label checking. Ilabelit:

with label checking. vo!copy, labelit: copy file systems
scanning and processing language. awk: pattern

arbitrary-precision arithmetic language. bc:
efl: Extended Fortran Language.

command programming language. /standard/restricted
cpp: the C language preprocessor.

chargefee, ckpacct, dodisk, lastiogin, monacct, nuliadm,!
/jrand48, srand48, seed48, Icong48: generate uniformly/

Id: link editor.
of floating-point/ frexp, Idexp, modf: manipulate parts

getopt: get option letter from argument vector.
simple lexical tasks. lex: generate programs for

generate programs for simple lexical tasks. lex: . • .
to subroutines and libraries. !introduction

relation for an object library. /find ordering
ar: archive (library) file format.

ar: archive and library maintainer.
ulimit: get and set user limits.

line: read one line. •......
an out-going terminal line connection. /establish

type, modes, speed, and line discipline. / set terminal
nl: line numbering filter. .

out selected fields of each line of a file. cut: cut .
send/ cancel requests to an LP line printer. Ip, cancel:

Ipr: line printer spooler. . .
line: read one line.

Isearch: linear search and update.
col: filter reverse line-feeds.

head: give first few lines. ••..•....
files. comm: select or reject lines common to two sorted

uniq: report repeated lines in a file.
of several files or subsequent lines of one file. /same lines

subsequent/ paste: merge same lines of several files or
link, unlink: exercise link and unlink system calis.

Id: link editor.
a.out: assembler and link editor output.

link: link to a file.
cp, In, mv: copy, link or move files.

link: link to a file. . . •
and unlink system calis. link, unlink: exercise link

lint: a C program checker.
nlist: get entries from name list.

nm: print name list.
Is: list contents of directories.

(Berkeley version). Is7: list contents of directory
for a file system. ff: list file names and statistics

by fsck. checklist: list of file systems processed
xargs: construct argument list(s) and execute command.

files. cp, In, mv: copy, link or move
tzset: convert date/ ctime, localtime, gmtime, asctime,

end, etext, edata: last locations in program. . • .
memory. plock: lock process, text, or data in

regions for reading or/ lockf: provide exclusive file
gamma: log gamma function.
newgrp: log in to a new group.

exponential, logarithm,! exp, log, 10g10, pow, sqrt:
logarithm, power,! exp, log, 10g10, pow, sqrt: exponential,

IloglO, pow, sqrt: exponential, logarithm, power, square root/
errpt: process a report of logged errors.•.

rwho: who is logged in on local machines.

- 20 -

quiz.6
13to1.3c
h641.3c
volcopy.!m
volcopy.lm
awk.1
bc.l
efl.l
sh.l
cpp.l
acctsh.lm
drand48.3c
Id.l
frexp.3c
getopt.3c
lex.!
lex.!
intro.3
10rder.1
ar.4
ar.1
ulimit.2
line.l·
dia1.3c
getty.lm
nU
cut.1
Ip.!
Ipr.l
line. 1
Isearch.3c
col. 1
head.l
comm.l
uniq.l
paste. 1
paste. 1
link. 1m
Id.l
a.out.4
link.2
cp.l
link. 2
link.1m
lint.1
nlist.3c
nm.1
Is.l
Is7.1
ff.1m
checklist.4
xargs.l
cp.l
ctime.3c
end.3c
plock.2
lockf.2
gamma.3m
newgrp.1
exp.3m
exp.3m
exp.3m
errpt.1m
rwho.ln

rlogin: remote login. . . .
getiogin: get login name.
logname: get login name.

cuserid: get character login name of the user.
logname: return login name of user.
passwd: change login password.

login: sign on.
setting up an environment at login time. profile:

logname: get login name.
user. logname: return login name of

a64l, 164a: convert between long integer and base-64 ASCII/
between 3-byte integers and long integers. I1tol3: convert

sputl, sgetl: access long numeric data in a machine/
setjmp, longjmp: non-local goto.

interface. loop: software loop back . .
loop: software loopback interface.

for an object library. lorder: find ordering relation
mklost+found: make a lost+found directory for fsck.
nice: run a command at low priority.•
requests to an LP line/ Ip, cancel: send/cancel

send/cancel requests to an LP line printer. Ip, cancel:
disable: enable/disable LP printers. enable,

/lpshut, Ipmove: start/stop the LP request scheduler and move/
accept, reject: allow/prevent LP requests. •

Ipadmin: configure the LP spooling system.
Ipstat: print LP status information.

spooling system. Ipadmin: configure the LP
request/ Ipsched, Ipshut, Ipmove: start/stop the LP

Ipr: line printer spooler. .
start/stop the LP request/ Ipsched, Ipshut, Ipmove:

LP request scheduler/ Ipsched, Ipshut, Ipmove: start/stop the
information. Ipstat: print LP status . . .

jrand48,1 drand48, erand48, Irand48, nrand48, mrand48,
directories. Is: list contents of

directory (Berkeley version). Is7: list contents of . . • .
update. Isearch: linear search and
pointer. Iseek: move read/write file

integers and long/ 13tol, ltoJ3: convert between 3-byte
m4: macro processor. . • • .

truth value about your/ m68k, pdp 11 , u3 b, vax: provide
put: puts a file onto a remote machine ..

puts a file onto a remote machine .. put7:
takes a file from a remote machine. take: .
takes a file from a remote machine .. take7:

/access long numeric data in a machine independent fashion ..
show host status of local machines. ruptime:
who is logged in on local machines. rwho: .
update files between two machines. updater:
update files between two machines. updater:

permuted index. mptx: the macro package for formatting a
documents. mm: the MM macro package for formatting
mosd: the OSDD adapter macro package for formatting/

view graphs and/ mv: a troff macro package for typesetting
m4: macro processor.

formatted with the MM macros. /print/check documents
in this manual. man: macros for formatting entries

tp: magnetic tape format. . •
send mail to users or read mail. mail, rmail:

users or read mail. mail, rmail: send mail to
netmail: the bnet network mail system. • • . . .

netmailer: deliver mail to. . . • •
delivermail: deliver mail to arbitrary people. .

mail, rmail: send mail to users or read mail.
malloc, free, realloc, calloc: main memory allocator.

- 21 -

Permuted Index

rlogin.In
getiogin.3c
logname.1
cuserid.3s
logname.3x
passwd.1
login. I
profile.4
logname.l
10gname.3x
h64i.3c
J3toi.3c
sputi.3x
setjmp.3c
10.5n
10.5n
lorder.!
mklost + fnd.1 m
nice.1
Ip.1
Ip.1
enable.1
Ipsched.1m
accept.Im
Ipadmin.1m
Ipstat.1
Ipadmin.1m
Ipsched.1m
Ipr.1
Ipsched.1m
Ipsched.1m
Ipstat.l
drand48.3c
Is.1
Is7.1
Isearch.3c
Iseek.2
13toi.3c
m4.1
machid.1
put.1c
put7.1c
take.1c
take7.1c
sputi.3x
ruptime.1n
rwho.1n
updater.1
updater.1m
mptx.5
mm.5
mosd.5
mv.5
m4.1
mm.1
man.5
tp.4
mail.1
mail. 1
netmail.8n
netmailer.8n
delivermail.8n
mail. 1
malloc.3c

Permuted Index

program. ctags:
regenerate groups of! make:

ar: archive and library
intro: introduction to system
intro: introduction to system

SCCS file. delta:
mkdir:

or ordinary file. mknod:
for fsck. mklost+found:

mktemp:
regenerate groups off

ssp:
banner:

key.
main memory allocator.

entries in this manual.
this manual.

tsearch, tdelete, twalk:
hsearch, hcreate, hdestroy:

records. fwtmp, wtmpfix:
frexp, Idexp, modf:

tp:
manual. man,

manprog: print entries in this
for formatting entries in this

ascii:
files. diffmk:

umask: set file-creation mode
set and get file creation

an error message file by
table. master:

information table.
regular expression compile and

eqn, neqn, checkeq: format
function.

maze: generate a

maintain a tags file for a C
maintain, update, and
maintainer.
maintenance commands and/
maintenance procedures.
make a delta (change) to an .
make a directory. •••..
make a directory, or a special
make a lost+found directory
make a unique file name.
make: maintain, update, and
make output single spaced.
make posters.
makekey: generate encryption
malloc, free, realloc, calloc:
man: macros for formatting
man, manprog: print entries in
manage binary search trees.
manage hash search tables.
manipulate connect accounting
manipulate parts off
manipulate tape archive.
manprog: print entries in this
manual. man,
manual. man: macros
map of ASCII character set.
mark differences between
mask
mask. umask:
massaging C source. /create
master device information
master: master device
match routines. regexp: . .
mathematical text for nroff or/
matherr: error-handling
maze•....
maze: generate a maze.

bcd: convert to antique media.•

memcpy, memset: memory/
memset: memory/ memccpy,

operations. memccpy, memchr,
memccpy, memchr, memcmp,

mem, kmem: core
lock process, text, or data in

free, realloc, calloc: main
shmct1: shared

queue, semaphore set or shared
memcmp, memcpy, memset:

shmop: shared
shmget: get shared

/ memchr, memcmp, memcpy,
sort: sort and/ or

files. acctmerg:
files or subsequent/ paste:

msgct1:
mkstr: create an error

receive: receive
send: send

msgop:
msgget: get

or shared/ ipcrm: remove a
mesg: permit or deny

mem, kmem: core memory.
memccpy, memchr, memcmp,
memchr, memcmp, memcpy,
memcmp, memcpy, memset: memory
memcpy, memset: memory/
memory.
memory. plock:
memory allocator. malloc,
memory control operations.
memory id. /remove a message
memory operations. /memchr,
memory operations.
memory segment. .••..
memset: memory operations.
merge files.
merge or add total accounting
merge same lines of several .
mesg: permit or deny messages.
message control operations.
message file by massaging C/
message from a socket.
message from a socket.
message operations.
message queue.
message queue, semaphore set
messages. • •...••.•

- 22 -

ctags.!
make.l
ar.l
intro.! m
intro.8
delta.!
mkdir.l
mknod.2
mklost+fnd.lm
mktemp.3c
make.l
ssp.!
banner.!
makekey.!
malloc.3c
man.5
man.l
tsearch.3c
hsearch.3c
fwtmp.!m
frexp.3c
tp.l
man.l
man.l
man.5
ascii. 5
diffmk.l
umask'!
umask.2
mkstr.l
master.4
master.4
regexp.5
eqn.l
matherr.3m
maze.6
maze.6
bcd.6
mem.7
memory.3c
memory.3c
memory.3c
memory.3c
mem.7
plock.2
malloc.3c
shmct1.2
ipcrm.l
memory.3c
shmop.2
shmget.2
memory.3c
sort. 1
acctmerg.l m
paste.!
mesg.l
msgctl.2
mkstr.l
receive.2n
send.2
msgop.2
msgget.2
ipcrm.l
mesg.l

sys_nerr: system error

system.
lost+found directory fori

special or ordinary file.
file by massaging C source.

name.
formatting documents. mm: the

documents formatted with the
documents formatted with the I

formatting documents.
view graphs, and slides.

table.
chmod: change

umask: set file-creation
chmod: change

getty: set terminal type,
bs: a compiler/interpreter for
floating-point/ frexp, ldexp,

utime: set file access and
touch: update access and

I ckpacct, dodisk, lastiogin,
profile.
uusub:

package for formattingl
I ASCII formats suitable for

rcvhex: translates
mount:

system. mount, umount:

setmnt: establish
dismount file system.

mnttab:
mvdir:

cp, In, my: copy, link or
lseek:

the LP request scheduler and
formatting a permuted index.

lerand48, lrand48, nrand48,
operations.

select: synchronous if 0

typesetting view graphs andl
cp, In,

graphs, and slides. mmt,
i-numbers.

definitions for eqn and
mathematical text fori eqn,

networking facilities.
system.

uusub: monitor uucp
netmail: the bnet

rstat:
net: introduction to

a text file.

news: print

messages. I ermo, sys err list,
mkdir: make a directory.
mkfs: construct a file system.
mkfsl b: construct a file .
mklost+found: make a ...
mknod: build special file.
mknod: make a directory, or a
mkstr: create an error message
mktemp: make a unique file
MM macro package for . . .
MM macros. Iprint/check
mm, osdd, checkmm: print/check
mm: the MM macro package for
mmt, mvt: typeset documents,
mnttab: mounted file system
mode .••.
mode mask
mode of file. . • • . .
modes, speed, and linel
modest-sized programs.
modf: manipulate parts of
modification times. . . .
modification times of a file.
monacct, nulladm, prctmp,/
monitor: prepare execution
monitor uucp network.
moo: guessing game.
mosd: the OSDD adapter macro
Motorola S-record downloading.
Motorola S-records froml
mount a file system.
mount and dismount file
mount: mount a file system.
mount table. . . •
mount, umount: mount and
mounted file system table.
move a directory.
move files. • ••..•.
move read/write file pointer.
move requests. I startl stop
mptx: the macro package for
mrand48, jrand48, srand48,/
msgct1: message control . .
msgget: get message queue.
msgop: message operations.
multiplexing. .•..•.
my: a troff macro package for
my: copy, link or move files.
mvdir: move a directory.
mvt: typeset documents, view
ncheck: generate names from
neqn. Ispecial character
neqn, checkeq: format
net: introduction to . .
netmail: the bnet network mail
netmailer: deliver mail to.
network.
network mail system. . . .
network statistics program.
networking facilities.
newform: change the format of
newgrp: log in to a new group.
news items.
news: print news items.

- 23 -

Permuted Index

perror.3c
mkdir.1
mkfs.lm
mkfslb.lm
mklost + fnd.1 m
mknod.lm
mknod.2
mkstr.1
mktemp.3c
mm.5
mm.l
mm.1
mm.5
mmt.1
mnttab.4
chmod.l
umask.l
chmod.2
getty.lm
bs.1
frexp.3c
utime.2
touch.1
acctsh.1m
monitor.3c
uusub.1m
moo.6
mosd.5
hex.l
rcvhex.l
mount.2
mount.1m
mount.2
setmnt.1m
mount.Im
mnttab.4
mvdir.1m
cp.1
lseek.2
lpsched.lm
mptx.5
drand48.3c
msgctl.2
msgget.2
msgop.2
select.2n
mv.5
cp.l
mvdir.lm
mmt.1
ncheck.lm
eqnchar.5
eqn.1
net.5n
netmail.8n
netmailer.8n
uusub.1m
netmail.8n
rstat.1n
net.5n
newform.l
newgrp.l
news. 1
news.l

Permuted Index

process. nice: change priority of a
priority. nice: run a command at low

nl: line numbering filter.
list. nlist: get entries from name

nm: print name list.
hangups (sh only). nohup: run a command immune to

setjmp, longjmp: non-local goto.
drand48, erand48, Irand48, nrand48, mrand48, jrand48,1

nroff: format text.
format mathematical text for nroff or troff. / checkeq:

tbl: format tables for nroff or troff.
typesetting. nroff7: text formatting and

constructs. deroff: remove nroff!troff, tbl, and eqn
null: the null file.

null: the null file. • . . .
/dodisk, lastlogin, monacct, nulladm, prctmp, prdaily,/

nl: line numbering filter.
number: convert Arabic numerals to English.
sputl, sgetl: access long numeric data in a machine!

size: size of an object file. . •
formats/ hex: translates object files into ASCII

find ordering relation for an object library. lorder:
!the printable strings in an object, or other binary file.

od: octal dump.
od: octal dump.

immune to hangups (sh only). nohup: run a command
the specified/ exterr - turn onl off the extended errors in

put: puts a file onto a remote machine ..
put7: puts a file onto a remote machine ..

fopen, freopen, fdopen: open a stream.
dup: duplicate an open file descriptor.

open: open for reading or writing.
writing. open: open for reading or .

/ prfdc, prfsnap, prfpr: operating system profiler.
tputs: terminal independent operation routines. /tgoto,

memcmp, memcpy, memset: memory operations. memccpy, memchr,
msgct1: message control operations.

msgop: message operations.
semct!: semaphore control operations.

semop: semaphore operations.
shmct1: shared memory control operations.

shmop: shared memory operations.
strcspn, strtok: string operations. /strpbrk, strspn,

join: relational database operator. ..•.....
dcopy: copy file systems for optimal access time.

vector. getopt: get option letter from argument
fcntl: file control options. • . . • . . • •

getopt: parse command options. •
object library. lorder: find ordering relation for an ..
a directory, or a special or ordinary file. mknod: make

editor based/ vi, view: screen oriented (visual) display
formatting! mosd: the OSDD adapter macro package for

documents formatted with! mm, osdd, checkmm: print/check
dial: establish an out-going terminal line!

assembler and link editor output. a.out:
sprintf: print formatted output. printf, fprintf,

ssp: make output single spaced.
/acctdusg, accton, acctwtmp: overview of accounting and/

chown: change owner and group of a file. .
chown, chgrp: change owner or group.

and expand files. pack, peat, unpack: compress
sadc: system activity report package. sal, sa2,

standard buffered input!output package. stdio: ..•••
inter process communication package. stdipc: standard

- 24 -

• nice.2
nice. I

• nLl
nlist.3c
om.l
nohup.1
setjmp.3c
drand48.3c
nroff.l
eqn.l
tbl.l
nroff7.1
deroff.1
null.7
null.7
acctsh.1m
nLl
number.6
sputl.3x
size. I
hex.l
lorder.1
strings. 1
od.1
od.1
nohup.1
exterr.1
put.1c
put7.1c
fopen.3s
dup.2
open.2
open.2
profiler.1m
termcap.3
memory.3c
msgctl.2
msgop.2
semct1.2
semop.2
shmctl.2
shmop.2
string.3c
join.1
dcopy.1m
getopt.3c
fcntl.S
getopt.1
lorder.1
mknod.2
vi.1
mosd.5
mm.1
dia1.3c
a.out.4
printf.3s
ssp.1
acct.1m
chown.2
chown.1
pack. I
sar.1m
stdio.3s
stdipe.3c

permutedl mptx: the macro
documents. mm: the MM macro
mosd: the OSDD adapter macro

graphs andl mv: a troff macro
4014 terminal. 4014:

tune floppy disk settling time
process, process group, and

getopt:

getpass: read a
passwd: change login

passwd:
Isetpwent, endpwent: get

putpwent: write
pwck, grpck:

several files or subsequentl
dirname: deliver portions of

directory. getcwd: get
fgrep: search a file for a

processing language. awk:
signal.

expand files. pack,
a process. popen,

value about yourl m68k,
mesg:

macro package for formatting a
ptx:

format. acct:
acctcms: command summary from

sys nerr: system errorl
- viewing. more: file

tc:
access physical addresses.
allow a process to access

split: split a file into
channel.

tee:
popen, pelose: initiate

fish:
life:

worm:
data in memory.

subroutines.
images.

lseek: move read/write file
ftell: reposition a file

to/from a process.
data base of terminal types by

basename, dirname: deliver
banner: make

logarithm,! exp, log, log1O,
Isqrt: exponential, logarithm,

brc, bcheckrc, rc,

Ilastiogin, monacct, nulladm,
Imonacct, nulladm, prctmp,

for troff. cw, checkcw:
monitor:

cpp: the e language
unget: undo a

operatingl prfld, prfstat,
prfsnap, prfpr: operatingl

package for formatting a
package for formatting
package for formattingl
package for typesetting view
paginator for the Tektronix
parameters. disktune -
parent process IDs. Iget
parse command options.
passwd: change login password.
passwd: password file.
password.
password.
password file.
password file entry.
password file entry.
passwordl group file checkers.
paste: merge same lines of
path names. basename, . . .
pathname of current working
pattern. grep, egrep,
pattern scanning and
pause: suspend process until
peat, unpack: compress and
pelose: initiate pipe to/from
pdp 11, u3 b, vax: provide truth
permit or deny messages.
permuted index. mptx: the
permuted index.
per-process accounting file
per-process accountingl .
perror, errno, sys errlist,
perusal filter for crt • . .
phototypesetter sim ula tor.
phys: allow a process to .
physical addresses. phys:
pieces. •
pipe: create an inter process
pipe fitting.•
pipe to/from a process.
play "Go Fish".
play the game of life.
Play the growing worm game.
plock: lock process, text, or
plot: graphics interface.
plot: graphics interface
pnch: file format for card
pointer. • . .
pointer in a stream. Irewind,
popen, pelose: initiate pipe
port. ttytype:
portions of path names.
posters.•
pow, sqrt: exponential,
power, square root functions.
powerfail: systeml
pr: print files.
prctmp, prdaiJy, prtacct,!
prdaiJy, prtacct, runacct,!
prepare constant-width text
prepare execution profile.
preprocessor. ...•..
previous get of an sees file.
prfdc, prfsnap, prfpr:
prfld, prfstat, prfdc,

- 25 -

Permuted Index

mptx.5
mm.5
mosd.S
mv.S
4014.1
disktune.1 m
getpid.2
getopt.l
passwd.l
passwd.4
getpass.3c
passwd.l
passwd.4
getpwent.3c
putpwent.3c
pwck.1m
paste.1
basename.1
getcwd.3c
grep.l
awk.l
pause.2
pack.1
popen.3s
machid.1
mesg.1
mptx.S
ptx.1
acct.4
acctcms.1m
perror.3c
more.1
tc.1
phys.2
phys.2
split. 1
pipe.2
tee. 1
popen.3s
fish.6
life.6
worm.6
plock.2
plot.4
plot.3x
pnch.4
Iseek.2
fseek.3s
popen.3s
ttytype.4
basename.1
banner.1
exp.3m
exp.3m
brc.1m
prj
acctsh.1m
acctsh.1m
cw.1
monitor.3c
cpp.1
unget.1
profiler.1 m
profiler.1m

Permuted Index

/prfstat, prfdc, prfsnap,
system/ prild, prfstat, prfdc,

prfpr: operating/ prfld,
graphical! gps: graphical

types:
interesting, adage. fortune:

prs:
date:

cal:
of a file. sum:

editing activity. sact:
man, manprog:

cat: concatenate and
pr:

printf, fprintf, sprintf:
banner7:

lpstat:
nm:

system. hostname: set or
System. uname:

news:
printenv:

file(s). acctcom: search and
pstat:

names. id:
object, or/ strings: find the

formattedl mm, osdd, checkmm:
environment.

banner7: print large banner on
requests to an LP line

lpr: line
disable: enable/ disable LP

print formatted output.
nice: run a command at low

nice: change
exit, exit: terminate

fork: create a new
inittab: script for the init

kill: terminate a
nice: change priority of a

initiate pipe to/ from a
wait: await completion of

errors. errpt:
acct: enable or disable

acctprc1, acctprc2:
acctcom: search and print

times. times: get
in it, telinit:

timex: time a command; report
/ getpgrp, getppid: get process,

setpgrp: set
process group, and parent

kill: send a signal to a
getpid, getpgrp, getppid: get

ps: report
memory. plock: lock

times: get process and child
addresses. phys: allow a

wait: wait for child
ptrace:

pause: suspend
list of file systems

to a process or a group of
killall: kill all active

prfpr: operating system/
prfsnap, prfpr: operating
prfstat, prfdc, prfsnap,
primitive string, format of
primitive system data types.
print a random, hopefully
print an sees file.
print and set the date.
print calendar.
print checksum and block count
print current sees file
print entries in this manual.
print files.
print files.
print formatted output.
print large banner on printer.
print LP status information.
print name list.
print name of current host
print name of current UNIX
print news items.
print out the environment.
print process accounting •
print system facts.
print user and group IDs and
printable strings in an .
print/ check documents
printenv: print out the
printer. .•.....
printer. /cancel: send/cancel
printer spooler.
printers. enable,
printf, fprintf, sprintf:
priority.•.
priority of a process.
process.
process.
process.
process.
process.
process. popen, pelose:
process.
process a report of logged
process accounting. . . .
process accounting. . . .
process accounting file(s).
process and child process
process control/
process data and system/
process group, and parenti
process group 10.
process IDs. / get process,
process or a group of!

process, process group, and/
process status.
process, text, or data in .
process times.
process to access physical
process to stop or terminate.
process trace.
process until signal. . . • .
processed by fsck. checklist:
processes. I send a signal
processes.

- 26 -

profiler.1 m
profiler.1 m
profiler.! m
gps.4
types.5
fortune.6
prs.!
date.!
cal.!
sum.!
sact.!
man.!
cat.!
pr.!
printf.3s
banner7.1
lpstat.!
nm.!
hostname.! n
uname.!
news.!
printenv.1
acctcom.!
pstat.1m
id.!
strings.!
mm.!
printenv.!
banner7.!
Ip.1
lpr.!
enable.1
printf.3s
nice.!
nice.2
exit.2
fork.2
inittab.4
kill.1
nice.2
popen.3s
wait.1
errpt.!m
acct.2
acctprc.!m
acctcom.!
times.2
init.1m
timex.!
getpid.2
setpgrp.2
getpid.2
kill.2
getpid.2
ps.!
plock.2
times.2
phys.2
wait.2
ptrace.2
pause.2
checklist.4
kil1.2
killall.1m

structure. fuser: identify processes using a file or file
shutdown: terminate all processing.

awk: pattern scanning and processing language.
m4: macro processor. . • . . .

provide truth value about your processor type. /u3b, vax:
alarm: set a process's alarm clock. . .

prof: display profile data.
profile. profil: execution time

monitor: prepare execution profile.
profil: execution time profile. .••..•

prof: display profile data.
environment at login time. profile: setting up an

prfpr: operating system profiler. /prfdc, prfsnap,
sadp: disk access profiler. •

standard/restricted command programming language. /the
ip: Internet Protocol.

Internet Transmission Control Protocol. tcp:
udp: Internet User Datagram Protocol.

inet: Internet protocol family.
arithmetic: provide drill in number facts.

for reading or/ lockf: provide exclusive file regions
m68k, pdpll, u3b, vax: provide truth value about your/

true, false: provide truth values.
prs: print an SCCS file.

/nulladm, prctmp, prdaily, prtacct, runacct, shutacct,/
ps: report process status.

/generate uniformly distributed pseudo-random numbers.
pstat: print system facts.
ptrace: process trace.
ptx: permuted index.

stream. ungetc: push character back into input
remote machine.. put7: puts a file onto a

put character or word on a/ putc, putchar, fputc, putw:
character or word on a/ putc, putchar, fputc, putw: put

entry. putpwent: write password file
machine .. put: puts a file onto a remote

machine .. put7: puts a file onto a remote
stream. puts, fputs: put a string on a •

getutent, getutid, getutline, pututline, setutent, endutent,/
a/ putc, putchar, fputc, putw: put character or word on

file checkers. pwck, grpck: password/group
pwd: working directory name.
qsort: quicker sort. . . • . .

msgget: get message queue. .••......•
ipcrm: remove a message queue, semaphore set or shared/

qsort: quicker sort. • • . . . • .
quiz: test your knowledge. .

by name or address. rhost, raddr: look up internet hosts
display. rain: animated raindrops

rain: animated raindrops display.
random-number generator. rand, srand: simple .•..

adage. fortune: print a random, hopefully interesting,
rand, srand: simple random-number generator.
fsplit: split fortran, ratfor, or efl files.

initialization/ brc, bcheckrc, rc, powerfail: system
rcp: remote file copy.

S-records from downloading/ rcvhex: translates Motorola
getpass: read a password.

read: read from file. .
rmail: send mail to users or read mail. mail,

line: read one line.
read: read from file.

exclusive file regions for reading or writing. / provide
open: open for reading or writing.

- 27 -

Permuted Index

fuser.1m
shutdown.lm
awk.l
m4.1
machid.l
alarm.2
prof. 1
profil.2
monitor.3c
profil.2
prof. 1
profile.4
profiler .1 m
sadp.l
sh.l
ip.5n
tcp.5n
udp.5n
inet.5n
arithmetic.6
lockf.2
machid.l
true.l
prs.l
acctsh.lm
ps.l
drand48.3c
pstat.1m
ptrace.2
ptx.!
ungetc.3s
put7.1c
putc.3s
putc.3s
putpwent.3c
put.lc
put7.lc
puts.3s
getut,3c
putc.3s
pwck.lm
pwd.l
qsort,3c
msgget,2
ipcrm.1
qsort.3c
quiz.6
rhost,3n
rain.6
rain.6
rand.3c
fortune.6
rand.3c
fsplit,l
brc.lm
rcp.!n
rcvhex.l
getpass.3c
read.2
mail.1
line.!
read.2
lockf.2
open.2

Permuted Index

lseek: move read/write file pointer.
allocator. malloc, free, realloc, calloc: main memory

reboot: reboot the system.
reboot: reboot the system.

specify what to do upon receipt of a signa!. signa!:
receive: receive message from a socket.

a socket. receive: receive message from
from per-process accounting records. /command summary

manipulate connect accounting records. fwtmp, wtmpfix:
errdead: extract error records from dump.

tape. frec: recover files from a backup
ed, red: text editor.

generate e program cross reference. cxref:
execute regular expression. regcmp, regex: compile and

compile. regcmp: regular expression
make: maintain, update, and regenerate groups of programs.
regular expression. regcmp, regex: compile and execute
compile and match routines. regexp: regular expression .
lockf: provide exclusive file regions for reading or/
regex: compile and execute regular expression. regcmp,

regcmp: regular expression compile.
match routines. regexp: regular expression compile and

requests. accept, reject: allow/prevent LP
sorted files. comm: select or reject lines common to two

lorder: find ordering relation for an object/
join: relational database operator.

strip: remove symbols and relocation bits.
/fmod, fabs: floor, ceiling, remainder, absolute value/

calendar: reminder service.
rcp: remote file copy.

rlogin: remote login.
put: puts a file onto a remote machine ..

put7: puts a file onto a remote machine ..
take: takes a file from a remote machine.

take7: takes a file from a remote machine ..
remsh: remote shell.

ct: spawn getty to a remote terminal.
file. rmdel: remove a delta from an sees

semaphore set or/ ipcrm: remove a message queue, . .
unlink: remove directory entry. . .

rm, rmdir: remove files or directories.
eqn constructs. deroff: remove nroff/troff, tbl, and

bits. strip: remove symbols and relocation
remsh: remote shell.

check and interactive repair. / system consistency
uniq: report repeated lines in a file.

clock: report CPU time used.
communication/ ipcs: report inter-process . .

blocks. df: report number of free disk
errpt: process a report of logged errors.

frequencies in a file. freq: report on character
sa2, sadc: system activity report package. sal,
timex: time a command; report process data and system/

ps: report process status. . .
file. uniq: report repeated lines in a

sar: system activity reporter.
files. version: reports version number of

stream. fseek, rewind, ftell: reposition a file pointer in a
/lpmove: start/stop the LP request scheduler and move/

reject: allow/prevent LP requests. accept,
LP request scheduler and move requests. /start/stop the

lp, cancel: send/cancel requests to an LP line/
teletype bits to a/ tset, reset: set or reset the .

sensible/ tset, reset: set or reset the teletype bits to a

- 28 -

Iseek.2
malloc.3c
reboot.2
reboot.2
signal.2
receive.2n
receive.2n

• acctcms.1 m
fwtmp.lm
errdead.1m
frec.lm
ed.1
cxref.1
regcmp.3x
regcmp.l
make.1
regcmp.3x
regexp.s
lockf.2
regcmp.3x
regcmp.1
regexp.5
accept. 1m

.• comm.l
lorder.1
join. 1
strip. 1
floor.3m
calendar.l
rcp.1n
rlogin.1n
put.1c
put7.lc
take.1c
take7.1c
remsh.1n
ct.lc
rmdel.1
ipcrm.1
unlink.2
rm.1
deroff.1
strip. 1
remsh.1n
fsck.1m
uniq.l
clock.3c
ipcs.1
df.1m
errpt.lm
freq.l
sar.1m
timex.1
ps.l
uniq.1
sar.!
version. 1
fseek.3s
Ipsched.1m
accept.1m
Ipsched.1m
lp.l
tset.1
tset.1

a socket. socketaddr: return address associated with
abs: return integer absolute value.

logname: return login name of user.
name. getenv: return value for environment

stat: data returned by stat system call.
configurationl uvar: returns system-specific

col: filter reverse line-feeds.
file pointer in al fseek, rewind, ftell: reposition a

creat: create a new file or rewrite an existing one. .
hosts by name or address. rhost, raddr: look up internet

rlogin: remote login.
directories. rm, rmdir: remove files or

read mail. mail, rmail: send mail to users or
sees file. rmdel: remove a delta from an

directories. rm, rmdir: remove files or
Escape from the automatic robots. autorobots:

Try to escape the killer robots. chase:
robots: Escape from the robots.

robots. robots: Escape from the
chroot: change root directory.
chroot: change root directory for a command.

logarithm, power, square root functions. lexponential,
expression compile and match routines. regexp: regular

terminal independent operation routines. Itgoto, tputs:
standardl restrictedl sh, rsh: shell, the ...•.

program. rstat: network statistics
nice: run a command at low priority.

hangups (shl nohup: run a command immune to .
runacct: run daily accounting.

runacct: run daily accounting.
Iprctmp, prdaily, prtacct, runacct, shutacct, startup,!

local machines. ruptime: show host status of
local machines. rwho: who is logged in on

activity report package. sal, sa2, sadc: system . . .
report package. sal, sa2, sadc: system activity

editing activity. sact: print current sees file
package. sal, sa2, sadc: system activity report

sadp: disk access profiler.
sag: system activity graph. .
sar: system activity reporter.

space allocation. brk, sbrk: change data segment
formatted input. scanf, fscanf, sscanf: convert

bfs: big file scanner.
language. awk: pattern scanning and processing

the delta commentary of an sees delta. cdc: change
comb: combine sees deltas. . .

make a delta (change) to an sees file. delta:
get: get a version of an sees file.

prs: print an sees file.
rmdel: remove a delta from an sees file.

compare two versions of an sees file. sccsdiff:
sccsfile: format of sees file.

undo a previous get of an sees file. unget:
val: validate sees file.

sact: print current sees file editing activity.
admin: create and administer sees files. .•....

what: identify sees files.
of an sees file. sccsdiff: compare two versions

sccsfile: format of sees file.
Istart/stop the LP request scheduler and move requests.

clear: clear terminal screen.
twinkle: twinkle stars on the screen.

display editor 1 vi, view: screen oriented (visual) .
inittab: script for the init process.

- 29 -

Permuted Index

socketaddr .2n
abs.3c
logname.3x
getenv.3c
stat.5
uvar.2
col.1
fseek.3s
creat.2
rhost.3n
rlogin.1n
rm.l
mail. 1
rmdel.l
rm.1
autorobots.6
chase.6
robots.6
robots.6
chroot.2
chroot.lm
exp.3m
regexp.5
termcapJ
sh.l
rstat.1 n
nice. 1
nohup.l
runacct.lm
runacct.lm
acctsh.lm
ruptime.ln
rwho.1n
sar.lm
sar.1m
sact.1
sar.1m
sadp.l
sag.lg
sar.1
brk.2
scanf.3s
bfs.l
awk.l
cdc.1
comb. I
delta.l
get. 1
prs.l
rmdel.1
sccsdiff.l
sccsfile.4
unget.1
val. 1
sact.l
admin.l
what.1
sccsdiff.l
sccsfile.4
lpsched.lm
clear. 1
twinkle.6
vi.1
inittab.4

Permuted Index

system initialization shell scripts. /rc, powerfail:
program. sdiff: side-by-side difference

bsearch: binary search.
grep, egrep, fgrep: search a file for a pattern.

accounting file(s). acctcom: search and print process
lsearch: linear search and update.

hcreate, hdestroy: manage hash search tables. hsearch,
tdelete, twalk: manage binary search trees. tsearch, .

sed: stream editor.
/ mrand48, jrand48, srand48, seed48, Icong48: generate/
shmget: get shared memory segment.

brk, sbrk: change data segment space allocation.
to two sorted files. comm: select or reject lines common

multiplexing. select: synchronous i/o
greek: select terminal filter.

of a file. cut: cut out selected fields of each line . .
semctl: semaphore control operations.
semop: semaphore operations.

ipcrm: remove a message queue, semaphore set or shared memory/
semget: get set of semaphores.

operations. semctl: semaphore control . .
semget: get set of semaphores.
semop: semaphore operations.

a group of processes. kill: send a signal to a process or
mail. mail, rmail: send mail to users or read .

send: send message from a socket.
socket. send: send message from a

line printer. lp, cancel: send/cancel requests to an LP
reset the teletype bits to a sensible state. /reset: set or

stream. setbuf: assign buffering to a .
IDs. setuid, setgid: set user and group . .

getgrent, getgrgid, getgrnam, setgrent, endgrent: get group/
cpu. sethostname: set name of host

goto. setjmp, longjmp: non-local
encryption. crypt, setkey, encrypt: generate DES

setmnt: establish mount table.
setpgrp: set process group ID.

getpwent, getpwuid, getpwnam, setpwent, endpwent: get/
login time. profile: setting up an environment at

gettydefs: speed and terminal settings used by getty.
disk tune - tune floppy disk settling time parameters.

group IDs. setuid, setgid: set user and
/getutid, getutline, pututline, setutent, endutent, utmpname:/

data in a machine/ sputl, sgetl: access long numeric
standard/ restricted command/ sh, rsh: shell, the

operations. shmctl: shared memory control
queue, semaphore set or shared memory id. /a message

shmop: shared memory operations.
shmget: get shared memory segment.

remsh: remote shell.
system: issue a shell command.

with C-like syntax. csh: a shell (command interpreter)
shutacct, startup, turnacct: shell procedures fort /runacct,

system initialization shell scripts. /rc, powerfail:
command programming/ sh, rsh: shell, the standard/restricted

operations. shmctl: shared memory control
segment. shmget: get shared memory

operations. shmop: shared memory . .
/prdaily, prtacct, runacct, shutacct, startup, turnacct:/

processing. shutdown: terminate all
program. sdiff: side-by-side difference

login: sign on.
pause: suspend process until signal.
what to do upon receipt of a signal. signal: specify

- 30 -

• brc.1m
sdiff.l
bsearch.3c
grep.1
acctcom.l
Isearch.3c
hsearch.3c
tsearch.3c
sed.1
drand48.3c
shmget.2
brk.2
comm.1
select.2n
greek. 1
cut.!
semctl.2
semop.2
ipcrm.1
semget.2
semctl.2
semget.2
semop.2
kill.2
mail.1
send.2
send.2
Ip.1
tset.1
setbuf.3s
setuid.2
getgrent.3c
sethostname.2n
setjmp.3c
crypt.3c
setmnt.1m
setpgrp.2
getpwent.3c
profile A
gettydefsA
disktune.1m
setuid.2
getut.3c
sput1.3x
sh.1
shmctl.2
ipcrm.1
shmop.2
shmget.2
remsh.1n
system.3s
csh.1
acctsh.lm
brc.1m
sh.l
shmctl.2
shmget.2
shmop.2
acctsh.1m
shutdown. 1m
sdiff.1
login.1
pause.2
signal.2

upon receipt of a signal. signal: specify what to do
of processes. kill: send a signal to a process or a group
ssignal, gsignal: software signals.•..

lex: generate programs for simple lexical tasks.
generator. rand, srand: simple random-number

tc: phototypesetter simulator. . .••..
atan, atan2: trigonometric/ sin, cos, tan, asin, acos,

ssp: make output single spaced.
functions. sinh, cosh, tanh: hyperbolic

size: size of an object file.
size: size of an object file. •

an interval. sleep: suspend execution for
interval. sleep: suspend execution for

documents, view graphs, and slides. mmt, mvt: typeset
typesetting view graphs and slides. /macro package for

currentl ttyslot: find the slot in the utmp file of the
spline: interpolate smooth curve. • • . . .

sno: SNOBOL interpreter.
sno: SNOBOL interpreter.

accept a connection on a socket. accept: •
initiate a connection on a socket. connect:

receive message from a socket. receive:
send: send message from a socket.

address associated with a socket. socketaddr: return
communication. socket: create an endpoint for

associated with a socket. socketaddr: return address
loop: software loopback interface.

ssignal, gsignal: software signals.
qsort: quicker sort.•...

tsort: topological sort. •...••..
sort: sort and/ or merge files.

sort: sort and/or merge files.
or reject lines common to two sorted files. comm: select

message file by massaging C source. / create an error
brk, sbrk: change data segment space allocation.

ssp: make output single spaced.
terminal. ct: spawn getty to a remote

fspec: format specification in text files.
the extended errors in the specified device. Iturn on/off
receipt of a signal. signal: specify what to do upon . •

/ set terminal type, modes, speed, and line discipline. •
used by getty. gettydefs: speed and terminal settings
hashcheck: find spelling/ spell, hashmake, spellin,

spelling/ spell, hashmake, spellin, hashcheck: find . .
spellin, hashcheck: find spelling errors. /hashmake,

curve. spline: interpolate smooth
csplit: context split.

split: split a file into pieces. .
efl files. fsplit: split fortran, ratfor, or

pieces. split: split a file into
uuclean: uucp spool directory clean-up.

lpr: line printer spooler.
Ipadmin: configure the LP spooling system.

output. printf, fprintf, sprintf: print formatted
numeric data in a machine/ sputl, sgetl: access long

power,! exp, log, 10glO, pow, sqrt: exponential, logarithm,
exponential, logarithm, power, square root functions. /sqrt:

generator. rand, srand: simple random-number
/nrand48, mrand48, jrand48, srand48, seed48, 1cong48:/
formats suitable for Motorola S-record downloading. / ASCII

rcvhex: translates Motorola S-records from downloading/
input. scanf, fscanf, sscanf: convert formatted

signals. ssignal, gsignal: software
spaced. ssp: make output single

- 31 -

Permuted Index

signal.2
kill.2
ssigna1.3c
lex.1
rand.3c
tc.1
trig.3m
ssp.1
sinh.3m
size.1
size.1
sleep. 1
sleep.3c
mmt.1
mv.5
ttyslot.3c
spline.1g
sno.1
sno.1
accept.2n
connect.2n
receive.2n
send.2
socketaddr .2n
socket.2n
socketaddr .2n
10.5n
ssigna1.3c
qsort.3c
tsort.1
sort. 1
sort.1
comm.1
mkstr.1
brk.2
ssp.1
ct.1c
fspec.4
exterr.l
signal.2
getty. 1m
gettydefs.4
spell. 1
spell. 1
spell. 1
spline.1g
csplit.1
split. 1
fsplit.1
split.1
uuclean.1m
Ipr.1
Ipadmin.1m
printf.3s
sput1.3x
exp.3m
exp.3m
rand.3c
drand48.3c
hex.1
rcvhex.1
scanf.3s
ssigna1.3c
ssp.!

Permuted Index

package. stdio:
communicationl stdipc:

sh, rsh: shell, the
twinkle: twinkle

lpsched, lpshut, lpmove:
boot:

Iprtacet, runacct, shutacct,
system call.

stat: data returned by
ustat: get file system

ff: list file names and
rstat: network

communication facilities
ps: report process
stat, fstat: get file

Ipstat: print LP
feof, clearerr, fileno: stream

control. uustat: uuep
ruptime: show host

input/output package.
communication package.

wait for child process to
strncmp, strepy, strncpy,1

I strcpy, strncpy, strlen,
strncpy'/ streat, strncat,

Istrncat, strcmp, strncmp,
Istrrchr, strpbrk, strspn,

mush: close or flush a
fopen, freopen, fdopen: open a

reposition a file pointer in a
get character or word from

fgets: get a string from a
put character or word on a

puts, fputs: put a string on a
setbuf: assign buffering to a

push character back into input
sed:

/feof, clearerr, fileno:
convert date and time to
floating-point number to

long integer and base-64 ASCII
gps: graphical primitive

gets, fgets: get a
puts, fputs: put a

strspn, strcspn, strtok:
number. atof: convert ASCII

strtol, atol, atoi: convert
strings in an object, orl

strings: find the printable
relocation bits.

I strncmp, strcpy, strncpy,
strepy, strncpy,l strcat,
strcat, strncat, strcmp,

I strcm p, strncm p, strcpy,
Istrlen, strchr, strrehr,
/strncpy, strlen, strehr,

I strchr, strrchr, strpbrk,
I strpbrk, strspn, strcspn,

string to integer.
processes using a file or file

another user.
plot: graphics interface

standard buffered input/output
standard inter process . • . .
standardl restricted command/
stars on the screen. . • .
startl stop the LP request!
startup procedures. . . .
startup, turnacct: shelll
stat: data returned by stat
stat, fstat: get file status.
stat system call.
statistics.
statistics for a file system.
statistics program.
status. Ireport inter-process
status.
status.
status information.
status inquiries. ferror,
status inquiry and job .
status of local machines.
stdio: standard buffered
stdipe: standard interprocess
stime: set time.
stop or terminate. wait:
strcat, strncat, strcmp,
strchr, strrchr, strpbrk,l
strcmp, strncmp, strepy,
strcpy, strncpy, strlen,l
strcspn, strtok: string/
stream. fclose,
stream.
stream. fseek, rewind, ftell:
stream. Igetchar, fgetc, getw:
stream. gets,
stream. Iputchar, fputc, putw:
stream.
stream.
stream. ungetc:
stream editor.
stream status inquiries.
string. I asctime, tzset:
string. Ifcvt, gcvt: convert
string. II64a: convert between
string, format of graphical!
string from a stream. . ..
string on a stream.
string operations. /strpbrk,
string to floating-point
string to integer.
strings: find the printable
strings in an object, or otherl
strip: remove symbols and
strlen, strchr, strrchr,l
strncat, strcmp, strncmp,
strncmp, strepy, strncpy,l
strncpy, strlen, strchr,l
strpbrk, strspn, strcspn,l
strrchr, strpbrk, strspn,l
strspn, strcspn, strtok:/
strtok: string operations.
strtol, atol, atoi: convert
structure. fuser: identify
su: become super-user or
subroutines.

- 32 -

stdio.3s
stdipc.3c
sh.1
twinkle.6
Ipsched.lm
boot.S
acctsh.1m
stat.S
stat. 2
stat.S
ustat.2
ff.lm
rstat.1n
ipcs.l
ps.l
stat.2
Ipstat.l
ferror.3s
uustat.1c
ruptime.ln
stdio.3s
stdipc.3c
stime.2
wait.2
string.3c
string.3c
string.3c
string.3c
string.3c
fclose.3s
fopen.3s
fseek.3s
getc.3s
gets.3s
putc.3s
puts.3s
setbuf.3s
ungetc.3s
sed.l
ferror.3s
ctime.3c
ecvt.3c
h641.3c
gps.4
gets.3s
puts.3s
string.3c
atof.3c
strtol.3c
strings. 1
strings. 1
strip.l
string.3c
string.3c
string.3c
string.3c
string.3c
string.3c
string.3c
string.3c
strto1.3c
fuser.lm
su.l
plot.3x

intro: introduction to subroutines and libraries.
Isame lines of several files or subsequent lines of one file. . .

lfiles into ASCII formats suitable for Motorola S-recordl
file. sum7: sum and count blocks in a

the files in thel sumdir: sum and count characters in . .
count of a file. sum: print checksum and block

a file. sum7: sum and count blocks in
characters in the files inl sumdir: sum and count • •

du: summarize disk usage.
accountingl acctcms: command summary from per-process

sync: update the super block. . •
sync: update super-block. • • .
su: become super-user or another user.

interval. sleep: suspend execution for an
interval. sleep: suspend execution for

pause: suspend process until signal.
swab: swap bytes.

swab: swap bytes. ••.•...
strip: remove symbols and relocation bits.

sync: update super-block.
sync: update the super block.

select: synchronous i/o multiplexing.
interpreter) with C-Iike syntax. csh: a shell (command

error I perror, errno, sys errlist, sys nerr: system .
perror, ermo, sys errlist, Sys-nerr: system errorl

information. uvar: returns system-specific configuration .
uuto, uupick: public UNIX System-to-UNIX System filel
master device information table. master:

mnttab: mounted file system table.
setmnt: establish mount table.

letc/hosts: host table for bnet.
hdestroy: manage hash search tables. hsearch, hcreate,

tbl: format tables for nroff or troff.
tabs: set tabs on a terminal.

tabs: set tabs on a terminal.
ctags: maintain a tags file for a C program.

a file. tail: deliver the last part of
remote machine. take: takes a file from a .

remote machine.. take7: takes a file from a
machine. take: takes a file from a remote

machine .. take7: takes a file from a remote
trigonometricl sin, cos, tan, asin, acos, atan, atan2:

sinh, cosh, tanh: hyperbolic functions.
recover files from a backup tape. frec: . . .

tp: manipulate tape archive. • •
hpio: HP 2645A terminal tape file archiver.

tar: tape file archiver.
tp: magnetic tape format. . •

file system backup. filesave, tapesave: daily/weekly UNIX
tar: tape file archiver. .

programs for simple lexical tasks. lex: generate . . .
deroff: remove nroff/troff, tbl, and eqn constructs. .

or troff. tbl: format tables for nroff
tc: phototypesetter simulator.

Control Protocol. tcp: Internet Transmission . .
search trees. tsearch, tdelete, twalk: manage binary

tee: pipe fitting.
4014: paginator for the Tektronix 4014 terminal.

tset, reset: set or reset the teletype bits to a sensiblel
initialization. init, telinit: process control

temporary file. tmpnam, tempnam: create a name for a
tmpfile: create a temporary file. • •

tempnam: create a name for a temporary file. tmpnam,
terminals. term: conventional names for

- 33 -

Permuted Index

intro.3
paste. 1
hex.l
sum7.1
sumdir.1
sum.1
sum7.1
sumdir.1
du.l
acctcms.lm
sync.l
sync.2
su.1
sleep. 1
sleep.3c
pause.2
swab.3c
swab.3c
strip. 1
sync.2
sync.1
select.2n
csh.l
perror.3c
perror.3c
uvar.2
uuto.lc
master.4
mnttab.4
setmnt.lm
hosts.7n
hsearch.3c
tbl.l
tabs.1
tabs.l
ctags.1
tail. 1
take.1c
take7.1c
take.1c
take7.1c
trig.3m
sinh.3m
frec.1m
tp.1
hpio.l
tar.l
tp.4
filesave.1m
tar.l
lex.l
deroff.l
tbl.l
tc.1
tcp.5n
tsearch.3c
tee.l
4014.1
tset.1
init.1m
tmpnam.3s
tmpfile.3s
tmpnam.3s
term.5

Permuted Index

data base.
for the Tektronix 4014

functions of the DASI 450
ct: spawn getty to a remote

generate file name for
tabs: set tabs on a

isatty: find name of a
animate worms on a display

termcap:
greek: select

/tgetstr, tgoto, tputs:
termio: general
tty: controlling

dial: establish an out-going
clear: clear

getty. gettydefs: speed and
hpio: HP 2645A

and line/ getty: set
ttytype: data base of

functions of DASI 300 and 300s
of HP 2640 and 2621-series

term: conventional names for
tty: get the

for child process to stop or
kill:

shutdown:
exit, _exit:

daemon. errstop:
interface.

command.
quiz:

nroff: format
troff: typeset

ed, red:
ex, edit:

change the format of a
fspec: format specification in

/checkeq: format mathematicai
prepare constant-width

typesetting. nroff7:
typesetting. troff7:

plock: lock process,
tgetstr, tgoto, tputs:/

tputs:/ tgetent, tgetnum,
tgoto, tputs:/ tgetent,

tgetent, tgetnum, tgetflag,
/tgetnum, tgetflag, tgetstr,

ttt, cubic:
execute commands at a later

systems for optimal access
up an environment at login

stime: set
time: get

time:
data and system/ timex:

- tune floppy disk settling
profii: execution

tzset: convert date and
clock: report CPU

get process and child process
file access and modification

process times.

termcap: terminal capability
terminal. 4014: paginator
terminal. 450: handle special
terminal.
terminal. ctermid:
terminal.
terminal. ttyname,
terminal. worms: .
terminal capability data base.
terminal filter. • •
terminal independent operation/
terminal interface.
terminal interface.
terminal line connection.
terminal screen.
terminal settings used by
terminal tape file archiver.
terminal type, modes, speed,
terminal types by port.
terminals. /handle special .
terminals. /special functions
terminals.
terminal's name. • .
terminate. wait: wait
terminate a process.
terminate all processing.
terminate process.
terminate the error-logging
termio: general terminal
test: condition evaluation
test your knowledge.
text.
text.
text editor.
text editor.
text file. newform:
text files.
text for nroft' or troft'.
text for troff. cw, checkcw:
text formatting and . . .
text formatting and . . .
text, or data in memory.
tgetent, tgetnum, tgetflag,
tgetflag, tgetstr, tgoto,
tgetnum, tgetflag, tgetstr,
tgetstr, tgoto, tputs:/
tgoto, tputs: terminal!
tic- tac-toe.
time. at:
time. dcopy: copy file
time. profile: setting
time.
time.
time a command.
time a command; report process
time: get time. . . . • .
time parameters. disk tune
time profile.
time: time a command.
time to string. / asctime,
time used
times. times:
times. utime: set . . .
times: get process and child

- 34 -

termcap.5
4014.1
450.1
ct.1c
ctermid.3s
tabs.1
ttyname.3c
worms.6
termcap.5
greek.1
termcap.3
termio.7
tty.7
dia1.3c
clear.1
getty defs.4
hpio.1
getty. 1m
ttytype.4
300.1
hp.1
term.5
tty. 1
wait.2
kill. 1
sh u tdown.1 m
exit.2
errstop.1m
termio.7
test. 1
quiz.6
nroff.1
troff.1
ed.1
ex.1
newform.1
fspec.4
eqn.l
cw.1
nroff7.1
troff7.1
plock.2
termcap.3
termcap.3
termcap.3
termcap.3
termcap.3
ttt.6
at.1
dcopy.lm
profile.4
stime.2
time.2
time.1
timex.1
time.2
disktune.1m
profi I. 2
time.1
ctime.3c
clock.3c
times.2
utime.2
times.2

update access and modification
process data and system/

file.
for a temporary file.

/tolower, toupper, tolower,
popen, -pelose: initiate pipe

toupper, to lower, _to upper,
toascii: translate/ toupper,

tsort:
acctmerg: merge or add

modification times of a file.
translate/ to upper , tolower,
_ tolower, toascii: translate/

/tgetflag, tgetstr, tgoto,

ptrace: process
bit, blt512: block

/ _toupper, _tolower, toascii:
tr:

from downloading into/ rcvhex:
ASCII formats suitable/ hex:

tcp: Internet
ftw: walk a file

twalk: manage binary search

trek:
tan, asin, acos, atan, atan2:

constant-width text for
mathematical text for nroff or

format tables for nroff or
typesetting view graphs/ mv: a

typesetting.
values.

m68k, pdpll, u3b, vax: provide
true, false: provide

robots. chase:
manage binary search trees.

teletype bits to a sensible/

interface.

graphics for the extended
a terminal.

utmp file of the current/
types by port.

parameters. disktune­
/runacct, shutacct, startup,

trees. tsearch, tdelete,
twinkle:
screen.

file: determine file
value about your processor

getty: set terminal
for the extended TTY -37

types: primitive system data
ttytype: data base of terminal

types.
graphs, and slides. mmt, mvt:

troff:

times of a file. touch: . . . • .
timex: time a command; report
tmpfile: create a temporary
tmpnam, tempnam: create a name
toascii: translate characters.
to/from a process.
tolower, toascii: translate/

tOlower, toupper, tolower,
topological sort. -
total accounting files. . . .
touch: update access and
toupper, tolower, toascii:

toupper, tOlower, toupper,
tp: magnetic tape format.
tp: manipulate tape archive.
tplot: graphics filters.
tputs: terminal independent/
tr: translate characters.
trace. • ..•••
transfer data.
translate characters.
translate characters.
translates Motorola S-records
translates object files into
Transmission Control Protocol.
tree.••.•
trees. tsearch, tdelete,
trek: trekkie game. . .
trekkie game.
trigonometric functions. / cos,
troff. cw, checkcw: prepare
troff. /neqn, checkeq: format
troff. tbl: .•••.•
troff macro package for .
troff: typeset text.
troff7: text formatting and
true, false: provide truth
truth value about your/
truth values. . • • . .
Try to escape the killer
tsearch, tdelete, twalk:
tset, reset: set or reset the
tsort: topological sort. .
ttt, cubic: tic-tac-toe.
tty: controlling terminal .
tty: get the terminal's name.
TTY -37 type-box. greek:
ttyname, isatty: find name of
ttyslot: find the slot in the • .
ttytype: data base of terminal
tune floppy disk settling time
turnacct: shell procedures fori
twalk: manage binary search
twinkle stars on the screen.
twinkle: twinkle stars on the
type. • ..••••...
type. /u3b, vax: provide truth
type, modes, speed, and line/
type-box. greek: graphics
types. • ...•...••
types by port.
types: primitive system data
typeset documents, view
typeset text. •

- 35 -

Permuted Index

touch.l
timex.l
tmpfile.3s
tmpnam.3s
conv.3c
popen.3s
conv.3c
conv.3c
tsort.1
acctmerg.lm
touch.1
conv.3c
conv.3c
tp.4
tp.l
tplot.lg
termcap.3
tr.l
ptrace.2
blt.3
conv.3c
tr.l
rcvhex.l
hex.1
tcp.5n
ftw.3c
tsearch.3c
trek.6
trek.6
trig.3m
cw.l
eqn.1
tbl.l
mv.5
troff.l
troff7.1
true. 1
machid.l
true.1
chase.6
tsearch.3c
tset.1
tsort.l
ttt.6
tty.7
tty. 1
greek.5
ttyname.3c
ttyslot.3c
ttytype.4
disktune.lm
acctsh.lm
tsearch.3c
twinkle.6
twinkle.6
file. 1
machid.1
getty.1m
greek.5
types.5
ttytype.4
types.5
mmt.1
troff.l

Permuted Index

nroft7: text formatting and typesetting. ...•...
troff7: text formatting and typesetting.

mv: a troff macro package for typesetting view graphs andl
/Iocaltime, gmtime, asctime, tzset: convert date and timet

about yourl m68k, pdpl!, u3b, vax: provide truth value
Protocol. udp: Internet User Datagram

getpw: get name from UID. . .•.....
ul: do underlining.

limits. ulimit: get and set user
creation mask. umask: set and get file

mask. umask: set file-creation mode
file system. mount, umount: mount and dismount

UNIX system.
UNIX System.

ul: do
file. unget:

an sees file.

umount: unmount a file system.
uname: get name of current .
uname: print name of current
underlining. . • • • . . • .
undo a previous get of an sees
unget: undo a previous get of

into input stream. ungetc: push character back
Iseed48, lcong48: generate uniformly distributedl

a file. uniq: report repeated lines in
mktemp: make a unique file name. . . . •

units: conversion program.
unlink system calls. link, unlink: exercise link and

entry. unlink: remove directory
unlink: exercise link and unlink system calls. link,

umount: unmount a file system.
files. pack, peat, unpack: compress and expand

Isearch: linear search and update. •..•....•.
times of a file. touch: update access and modification

of programs. make: maintain, update, and regenerate groups
badblk: program to set or update bad block information.

machines. updater: update files between two
machines. updater: update files between two

sync: update super-block. . • .
sync:

two machines.
two machines.

du: summarize disk
character login name of the

logname: return login name of
become super-user or another

the utmp file of the current
write: write to another

setuid, setgid: set
id: print

udp: Internet
I getgid, getegid: get real

environ:
environ:

ulimit~ get and set
Iget real user, effective

wall: write to all
mail, rmail: send mail to
fuser: identify processes

statistics.
modification times.

utmp, wtmp:
endutent, utmpname: access

ttyslot: find the slot in the
entry formats.

I pututline, setutent, endutent,
clean-up.

uusub: monitor

update the super block. •
updater: update files between
updater: update files between
usage••
user. cuserid: get
user.
user. su:
user. lfind the slot in
user. . .•••..
user and group IDs.
user and group IDs and names.
User Datagram Protocol.
user, effective user, reall
user environment.
user environment.
user limits.
user, real group, andl
users. •
users or read mail.
using a file or filel
us tat: get file system
utime: set file access and
utmp and wtmp entry formats.
utmp file entry. Isetutent,
utmp file of the current user.
utmp, wtmp: utmp and wtmp
utmpname: access utmp filel
uuclean: uucp spool directory
uucp network. • • . . • . .

- 36 -

nroff7.1
troff7.1
mv.S
ctime.3c
machid.1
udp.Sn
getpw.3c
ul.1
ulimit.2
umask.2
umask.1
mount.1m
umount.2
uname.2
uname.1
ul.1
unget.1
unget.1
ungetc.3s
drand48.3c
uniq.1
mktemp.3c
units. 1
Iink.1m
unlink.2
Iink.1m
umount.2
pack. 1
Isearch.3c
touch.1
make.1
badblk.1m
updater.l
updater.1m
sync.2
sync. 1
updater.l
updater.lm
du.1
cuserid.3s
logname.3x
su.1
ttyslot.3c
write.1
setuid.2
id.1
udp.5n
getuid.2
environ.4
environ.S
ulimit.2
getuid.2
wall.1m
mail.1
fuser.1m
ustat.2
utime.2
utmp.4
getut.3c
ttyslot.3c
utmp.4
getut.3c
uuclean.1m
uusub.1m

uuclean:
control. uustat:

unix copy.
copy. uucp,

uucp, uulog,
System-to-UNIX Systeml uuto,

and job control.

System-to-UNIX System filel
execution.

configuration information.

val:
abs: return integer absolute

Ipdpll, u3b, vax: provide truth
getenv: return

ceiling, remainder, absolute
true, false: provide truth

yourl m68k, pdp11, u3b,

option letter from argument
assert:

of directory (Berkeley
vchk:

vc:
version: reports

get: get a
number of files.

sccsdiff: compare two
(visuaO display editor basedl

mmt, mvt: typeset documents,
macro package for typesetting

display editor based onl vi,
file perusal filter for crt

onl vi, view: screen oriented
systems with label checking.

file system: format of system
process.

or terminate. wait:
to stop or terminate.

ftw:

signal. signal: specify
crashes. crash:

whodo:
machines. rwho:

who:

cd: change
chdir: change

get pathname of current
pwd:

worm: Play the growing
game.

display terminal.
worms: animate

write:
putpwent:

wall:
write:

uucp spool directory clean-up.
uucp status inquiry and job
uucp, uulog, uuname: unix to
uulog, uuname: unix to unix
uuname: unix to unix copy.
uupick: public UNIX
uustat: uucp status inquiry
uusub: monitor uucp network.
uuto, uupick: public UNIX
uux: unix to unix command
uvar: returns system-specific
val: validate sees file.
validate sees file.
value
value about your processorl
value for environment name.
value functions. Ifabs: floor,
values. •
vax: provide truth value about
vc: version control. . .
vchk: version checkup.
vector. getopt: get
verify program assertion.
version). Is7: list contents
version checkup. . . .
version control.
version number of files.
version of an sees file.
version: reports version
versions of an sees file.
vi, view: screen oriented
view graphs, and slides. .
view graphs and slides. Itroff
view: screen oriented (visuaO
viewing. more:•
(visuaO display editor based
volcopy, labelit: copy file
volume .•..•....•
wait: await completion of
wait for child process to stop
wait: wait for child process
walk a file tree.
wall: write to all users.
wc: word count.
what: identify sees files.
what to do upon receipt of a
what to do when the system
who is doing what.
who is logged in on local
who is on the system. . .
who: who is on the system.
whodo: who is doing what.
working directory.
working directory.
working directory. getcwd:
working directory name.
worm game ..•....
worm: Play the growing worm
worms: animate worms on a
worms on a display terminal.
write on a file. •
write password file entry.
write to all users. . •
write to another user. . .

- 37 -

Permuted Index

uuclean.1m
uustat.1c
uucp.1c
uucp.1c
uucp.1c
uuto.1c
uustat.1c
uusub.1m
uuto.1c
uux.1c
uvar.2
val.l
val. 1
abs.3c
machid.1
getenv.3c
floor.3m
true.1
machid.l
vc.1
vchk.1m
getopt.3c
assert.3x
ls7.1
vchk.1m
vc.1
version.l
get.1
version. 1
sccsdiff.1
vi.!
mmt.l
mv.S
vi.!
more.1
vi.!
volcopy.1m
fsA
wait. I
wait.2
wait.2
ftw.3c
wall.1m
wc.1
what.l
signal.2
crash.8
whodo.1m
rwho.1n
who.1
who.1
whodo.1m
cd.l
chdir.2
getcwd.3c
pwd.1
worm.6
worm.6
worms.6
worms.6
write.2
putpwent.3c
wall.1m
write. 1

Permuted Index

write: write on a file.
write: write to another user.

file regions for reading or writing. /provide exclusive
open: open for reading or writing. . . • •

utmp, wtmp: utmp and wtmp entry formats.
formats. utmp, wtmp: utmp and wtmp entry

accounting records. fwtmp, wtmpfix: manipulate connect
hunt-the-wumpus. wump: the game of . • • •

list(s) and execute command. xargs: construct argument •
jO, jl, jn, yO, yl, yn: Bessel functions.

jO, jl, jn, yO, yl, yn: Bessel functions.
compiler-compiler. yacc: yet another . .

jO, jl, jn, yO, yl, yn: Bessel functions.

- 38 -

write.2
write. 1
lockf.2
open.2
utmp.4
utmp.4
[wtmp.1m
wump.6
xargs.1
besseJ.3m
besseJ.3m
yacc.1
bessel.3m

INTRO (1) INTRO (1)

NAME
intro - introduction to commands and application programs

DESCRIPTION
This section describes, in alphabetical order, publicly-accessible commands.
Certain distinctions of purpose are made in the headings:

(1) Commands of general utility.
(1C) Commands for communication with other systems.
(1G) Commands used primarily for graphics and computer-aided design.

COMMAND SYNTAX
Unless otherwise noted, commands described in this section accept options
and other arguments according to the following syntax:

name [option{s)] [cmdarg(s)]

where:

name

option

The name of an executable file.

- noargletter (s) or,
- argletter < > optarg
where < > is optional white space.

noargletter A single letter representing an option without an argument.

argletter

optarg

cmdarg

A single letter representing an option requiring an argument.

Argument (character string) satisfying preceding argletter.

Path name (or other command argument) not beginning with
- or, - by itself indicating the standard input.

SEE ALSO
getopt(1), getopt{3C).

DIAGNOSTICS

BUGS

Upon termination, each command returns two bytes of status, one supplied
by the system and giving the cause for termination, and (in the case of
"normal" termination) one supplied by the program (see wait (2) and
exit (2». The former byte is 0 for normal termination; the latter is cus­
tomarily 0 for successful execution and non-zero to indicate troubles such
as erroneous parameters, bad or inaccessible data, or other inability to cope
with the task at hand. It is called variously "exit code", "exit status", or
"return code", and is described only where special conventions are involved.

Regretfully, many commands do not adhere to the aforementioned syntax.

October 1983 - 1 -

300 (1) 300 (1)

NAME
300, 300s - handle special functions of DASI 300 and 300s terminals

SYNOPSIS
300 [+12] [-n] [-dt,l,c]

300s [+12] [-n] [-dt,l,c]

DESCRIPTION
300 supports special functions and optimizes the use of the DASI 300 (GSI
300 or DTC 300) terminal; 300s performs the same functions for the DASI
300s (GSI 300s or DTC 300s) terminal. It converts half-line forward, half­
line reverse, and full-line reverse motions to the correct vertical motions.
It also attempts to draw Greek letters and other special sym boIs. It permits
convenient use of 12-pitch text. It also reduces printing time 5 to 70%.
300 can be used to print equations neatly, in the sequence:

neqn file ... I nroff I 300

WARNING: if your terminal has a PLOT switch, make sure it is turned on
before 300 is used.

The behavior of 300 can be modified by the optional flag arguments to
handle 12-pitch text, fractional line spacings, messages, and delays.

+ 12 permits use of 12-pitch, 6 lines/inch text. DASI 300 terminals nor­
mally allow only two combinations: 10-pitch, 6 lines/inch, or 12-
pitch, 8 lines/inch. To obtain the 12-pitch, 6 lines per inch combi­
nation, the user should turn the PITCH switch to 12, and use the
+12 option.

- n controls the size of half-line spacing. A half-line is, by default,
equal to 4 vertical plot increments. Because each increment equals
1148 of an inch, a 10-pitch line-feed requires 8 increments, while a
12-pitch line-feed needs only 6. The first digit of n overrides the
default value, thus allowing for individual taste in the appearance
of subscripts and superscripts. For example, nroff half-lines could
be made to act as quarter-lines by using - 2. The user could also
obtain appropriate half-lines for 12-pitch, 8 lineslinch mode by
using the option - 3 alone, having set the PITCH switch to 12-
pitch.

-dt,l,e controls delay factors. The default setting is -d3,90,30. DASI300
terminals sometimes produce peculiar output when faced with very
long lines, too many tab characters, or long strings of blankless,
non-identical characters. One null (delay) character is inserted in
a line for every set of t tabs, and for every contiguous string of e
non-blank, non-tab characters. If a line is longer than I bytes,
1 + (total length)/20 nulls are inserted at the end of that line.
Items can be omitted from the end of the list, implying use of the
default values. Also, a value of zero for t (e) results in two null
bytes per tab (character). The former may be needed for C pro­
grams, the latter for files like /etc/passwd. Because terminal
behavior varies according to the specific characters printed and the
load on a system, the user may have to experiment with these
values to get correct output. The - d option exists only as a last
resort for those few cases that do not otherwise print properly.
For example, the file /etc/passwd may be printed using -d3,30,5.

October 1983 - 1 -

300 (I) 300 (1)

The value - dO,l is a good one to use for C programs that have
many levels of indentation.

Note that the delay control interacts heavily with the prevailing
carriage return and line-feed delays. The stty (1) modes niO er2 or
niO cr3 are recommended for most uses.

300 can be used with the nroff - s flag or .rd requests, when it is necessary
to insert paper manually or change fonts in the middle of a document.
Instead of hitting the return key in these cases, you must use the line-feed
key to get any response.

In many (but not all) cases, the following sequences are equivalent:

nroff - T300 files. .. and nroff files ... I 300
nroff -T300-12 files. .. and nroff files ... I 300 + 12

The use of 300 can thus often be avoided unless special delays or options
are required; in a few cases, however, the additional movement optimiza­
tion of 300 may produce better-aligned output.

The neqn names of, and resulting output for, the Greek and special charac­
ters supported by 300 are shown in greek (5).

SEE ALSO

BUGS

450(1), eqn(1), mesg(l), nroff(1) , stty(l) , tabs(l), tbl(l), tplot(lG),
greek(5).

Some special characters cannot be correctly printed in column 1 because the
print head cannot be moved to the left from there.
If your output contains Greek and/or reverse line-feeds, use a friction-feed
platen instead of a forms tractor; although good enough for drafts, the
latter has a tendency to slip when reversing direction, distorting Greek
characters and misaligning the first line of text after one or more reverse
line-feeds.

October 1983 - 2 -

4014 (1) 4014 (1)

NAME
4014 - paginator for the Tektronix 4014 terminal

SYNOPSIS
4014 [- t] [- n] [- eN] [- pL] [file]

DESCRIPTION
The output of 4014 is intended for a Tektronix 4014 terminal; 4014
arranges for 66 lines to fit on the screen, divides the screen into N
columns, and contributes an eight-space page offset in the (default) single­
column case. Tabs, spaces, and backspaces are collected and plotted when
necessary. TELETYPE@ Teletypewriter Model 37 half- and reverse-line
sequences are interpreted and plotted. At the end of each page, 4014 waits
for a new-line (empty line) from the keyboard before continuing on to the
next page. In this wait state, the command ! cmd will send the cmd to the
shell.

The command line options are:

-t Don't wait between pages (useful for directing output into a file).

- n Start printing at the current cursor position and never erase the
screen.

-eN Divide the screen into N columns and wait after the last column.

- pL Set page length to L; L accepts the scale factors i (inches) and I
(lines); default is lines.

SEE ALSO
prO), tc(I), troffO).

October 1983 - 1 -

450(1) 450 (1)

NAME
450 - handle special functions of the DASI 450 terminal

SYNOPSIS
450

DESCRIPTION
450 supports special functions of, and optimizes the use of, the DASI 450
terminal, or any terminal that is functionally identical, such as the DIABLO
1620 or XEROX 1700. It converts half-line forward, half-line reverse, and
full-line reverse motions to the correct vertical motions. It also attempts to
draw Greek letters and other special symbols in the same manner as
300 (I). 450 can be used to print equations neatly, in the sequence:

neqn file ... I nroff. I 450

WARNING: make sure that the PLOT switch on your terminal is ON before
450 is used. The SPACING switch should be put in the desired position
(either 10- or 12-pitch). In either case, vertical spacing is 6 lines/inch,
unless dynamically changed to 8 lines per inch by an appropriate escape
sequence.

450 can be used with the nro./f - s flag or .rd requests, when it is necessary
to insert paper manually or change fonts in the middle of a document.
Instead of hitting the return key in these cases, you must use the line-feed
key to get any response.

In many (but not all) cases, the use of 450 can be eliminated in favor of
one of the following:

nroff -T450 files ...
or

nroff -T450-12 files

The use of 450 can thus often be avoided unless special delays or options
are required; in a few cases, however, the additional movement optimiza­
tion of 450 may produce better-aligned output.

The neqn names of, and resulting output for, the Greek and special charac­
ters supported by 450 are shown in greek (5).

SEE ALSO

BUGS

300(1), eqn(O, mesg(I), nroff(O, stty(1) , tabs(O, tbl(I), tplot(lG),
greek(5).

Some special characters cannot be correctly printed in column 1 because the
print head cannot be moved to the left from there.
If your output contains Greek and/or reverse line-feeds, use a friction-feed
platen instead of a forms tractor; although good enough for drafts, the
latter has a tendency to slip when reversing direction, distorting Greek
characters and misaligning the first line of text after one or more reverse
line-feeds.

October 1983 - 1 -

ACCTCOM(I) ACCTCOM(l)

NAME
acctcom - search and print process accounting file(s)

SYNOPSIS
acctcom [[options] [file]] . . .

DESCRIPTION
Acctcom reads file, the standard input, or /usr/adm/pacct, in the form
described by acct(4) and writes selected records to the standard output.
Each record represents the execution of one process. The output shows the
COMMAND NAME, USER, TTYNAME, START TIME, END TIME, REAL
(SEC), CPU (SEC), MEAN SIZE (K), and optionally, F (the fork/ exec flag: 1
for fork without exec) and STAT (the system exit status).

The command name is prepended with a # if it was executed with super­
user privileges. If a process is not associated with a known terminal, a ? is
printed in the TTYNAME field.

If no files are specified, and if the standard input is associated with a termi­
nal or /dev/null (as is the case when using & in the shell), /usr/adm/pacct
is read, otherwise the standard input is read.

If any file arguments are given, they are read in their respective order.
Each file is normally read forward, i.e., in chronological order by process
completion time. The file /usr/adm/pacct is usually the current file to be
examined; a busy system may need several such files of which all but the
current file are found in /usr/adm/pacct? The options are:

- b Read backwards, showing latest commands first.
- f Print the fork/ exec flag and system exit status columns in the

output.
- h Instead of mean memory size, show the fraction of total avail­

able CPU time consumed by the process during its execution.
This "hog factor" is computed as:

(total CPU time) / (elapsed time).
- i Print columns containing the I/o counts in the output.
- k Instead of memory size, show total kcore-minutes.
-m Show mean core size (the default).
- r Show CPU factor (user timet (system-time + user-time).
- t Show separate system and user CPU times.
- v Exclude column headings from the output.
-1 line Show only processes belonging to terminal /dev/ line.
- u user Show only processes belonging to user that may be specified by:

a user ID, a login name that is then converted to a user ID, a #
which designates only those processes executed with:· super-user
privileges, or ? which designates only those processes associ­
ated with unknown user IDs.

- g group Show only processes belonging to group. The group may be
designated by either the group ID or group name.

- d mm/dd Any time arguments following this flag are assumed to occur on
the given month mm and the day dd rather than during last 24
hours. This is needed for looking at old files.

- s time Select processes existing at or after time, given in the format
hr[: min [: sed],

- e time Select processes existing at or before time.
- S time Select processes starting at or after time.

October 1983 - 1 -

ACCTCOM(l) ACCTCOM(l)

FILES

- E time Select processes ending at or before time.
- n pattern Show only commands matching pattern that may be a regular

expression as in ed(1) except that + means one or more
occurrences.

-0 ofile Copy selected process records in the input data format to ofile;
suppress standard output printing.

- H factor Show only processes that exceed factor, where factor is the
"hog factor" as explained in option - h above.

- 0 sec Show only processes with CPU system time exceeding sec
seconds.

- C sec Show only processes with total CPU time, system plus user,
exceeding sec seconds.

Listing options together has the effect of a logical and.

/ etc/ passwd
/ usr / adm/ pacct
/etc/group

SEE ALSO

BUGS

ps(l), su(1), acct(2), acct(4) , utmp(4).
acct(1M), acctcms(1M), acctcon(1M),
acctsh(1M), fwtmp(1M), runacct(1M) in
Manual.

acctmerg(lM), acctprc(lM),
the UniPlus + Administrator's

Acctcom only reports on processes that have terminated; use ps (1) for
active processes. If time exceeds the present time and option - d is not
used, then time is interpreted as occurring on the previous day.

October 1983 - 2 -

ADB(1) ADB(I)

NAME
adb - debugger

SYNOPSIS
adb [-w] [- k] [objfil [corfil]]

DESCRIPTION
Adb is a general purpose debugging program. It may be used to examine
files and to provide a controlled environment for the execution of UNIX
programs.

ObJfil is normally an executable program file, preferably containing a sym­
bol table; if not, then the symbolic features of adb cannot be used although
the file can still be examined. The default for obJfil is a.out. Corfil is
assumed to be a core image file produced after executing obJfil; the default
for corfil is core.

Requests to adb are read from the standard input and responses are to the
standard output. If the - w flag is present, then both objfil and corfil are
created if necessary and opened for reading and writing so that files can be
modified using adb. Adb ignores QUIT; INTERRUPT causes return to the
next adb command.

To EXIT adb: use $q or $Q or Control-d.

Normally, for portability, adb does a system call to gather information
regarding relocation addresses. If using adb on a stand-alone program, such
as the kernel,/unix, use the - k flag which skips that part of the adb code.

In general requests to adb are of the form

[address] [, cound [command] [;]

If address is present, then dot is set to address. Initially dot is set to O. For
most commands count specifies how many times the command will be exe­
cuted. The default count is 1. Address and count are expressions.

The interpretation of an address depends on the context it is used in. If a
subprocess is being debugged, then addresses are interpreted in the usual
way in the address space of the subprocess. If the operating system is being
debugged either post-mortem or using the special file Idev Ikmem to
interactive examine and/or modify memory, the maps are set to map the
kernel virtual addresses. For further details of address mapping see
ADDRESSES.

EXPRESSIONS
The value of dot.

+ The value of dot incremented by the current increment.

The value of dot decremented by the current increment.

The last address typed.

integer A number. The prefix 0 (zero) forces interpretation in octal
radix; the prefixes Od and OD force interpretation in decimal
radix; the prefixes Ox and OX force interpretation in hexadecimal
radix. Thus 020 = Od16 = Ox10 = sixteen. If no prefix appears,
then the default radix is used; see the $d command. The default
radix is initially hexadecimal. The hexadecimal digits are
0123456789abcdefABCDEF with the obvious values. Note that a

~~1~4 -1-

ADB(I) ADB(I)

hexadecimal number whose most significant digit would otherwise
be an alphabetic character must have a Ox (or OX) prefix (or a
leading zero if the default radix is hexadecimal).

illteger .fraction
A 32-bit floating point number.

, ccce The ASCII value of up to 4 characters. \ may be used to escape a

< name The value of name, which is either a variable name or a register
name. Adb maintains a number of variables (see VARIABLES)
named by single letters or digits. If name is a register name, then
the value of the register is obtained from the system header in
corft!. The register names are those printed by the $r command.

symbol A symbol is a sequence of upper or lower case letters, underscores
or digits, not starting with a digit. \ may be used to escape other
characters. The value of the symbol is taken from the symbol
table in obJ.fil. An initial or - will be prepended to symbol if
needed. -

symbol In C, the "true name" of an external symbol begins with _. It
may be necessary to utter this name to distinguish it from internal
or hidden variables of a program.

(exp) The value of the expression expo

Monadic operators:

* exp The contents of the location addressed by exp in corfi!.

-exp

-exp

#exp

The contents of the location addressed by exp in objfil.

Integer negation.

Bitwise complement.

Logical negation.

Dyadic operators are left associative and are less binding than monadic
operators.

e1+ e2 Integer addition.

e1-e2

ebe2

e1%e2

e1&e2

e1/e2

Integer subtraction.

Integer multiplication.

Integer division.

Bitwise conjunction.

Bitwise disjunction.

e1#e2 E1 rounded up to the next multiple of e2.

COMMANDS
Most commands consist of a verb followed by a modifier or list of
modifiers. The following verbs are available. (The commands "?" and "/"
may be followed by "*"; see ADDRESSES for further details')

?/ Locations starting at address in objfil are printed according to the
format f Dot is incremented by the sum of the increments for
each format letter (q.v.).

July 1984 - 2 -

ADB(I)

If

=f

ADBU)

Locations starting at address in corfil are printed according to the
format f, and dot is incremented as for "?".

The value of address itself is printed in the styles indicated by the
format f (For i format"?" is printed for the parts of the instruc-
tion that reference subsequent words.)

A format consists of one or more characters that specify a style of printing.
Each format character may be preceded by a decimal integer that is a repeat
count for the format character. While stepping through a format, dot is
incremented by the amount given for each format letter. If no format is
given, then the last format is used. The format letters available are as fol­
lows.

July }984

i n Disassemble the addressed instruction.
o 2 Print 2 bytes in octal. All octal numbers output by adb are

preceded by O.
o 4 Print 4 bytes in octal.
q 2 Print in signed octal.
Q 4 Print long signed octal.
d 2 Print in decimal.
D 4 Print long decimal.
x 2 Print 2 bytes in hexadecimal.
X 4 Print 4 bytes in hexadecimal.
u 2 Print as an unsigned decimal number.
U 4 Print long unsigned decimal.
f 4 Print the 32-bit value as a floating point number.
F 8 Print double floating point.
b 1 Print the addressed byte in octal.
c 1 Print the addressed character.
C 1 Print the addressed character using the standard escape con-

vention where control characters are printed as A X and the
delete character is printed as A ?

s n Print the addressed characters until a zero character is reached.
S n Print a string using the A X escape convention- (see C above).

The n is the length of the string including its zero terminator.
Y 4 Print 4 bytes in date format (see ctime(3».
a 0 Print the value of dot in symbolic form. Symbols are checked

to ensure that they have an appropriate type as indicated
below.

I global data symbol
? global text symbol

global absolute symbol
p 4 Print the addressed value in symbolic form using the same

rules for symbol lookup as a.
o When preceded by an integer tabs to the next appropriate tab

stop. For example, 8t moves to the next 8-space tab stop.
r 0 Print a space.
n 0 Print a newline.
" ... " 0 Print the enclosed string.

Dot is decremented by the current increment. Nothing is
printed.

+ Dot is incremented by l. Nothing is printed.
Dot is decremented by 1. Nothing is printed.

- 3 -

ADD(l) ADDU)

newline
Repeat the previous command with a count of 1.

[?lB value mask
Words starting at dot are masked with mask and compared with value
until a match is found. If L is used, then the match is for 4 bytes at a
time instead of 2. If no match is found, then dot is unchanged; other­
wise, dot is set to the matched location. If mask is omitted, then -1
is used.

[? I]w value ...
Write the 2-byte value into the addressed location. If the command is
W, write 4 bytes. Odd addresses are not allowed when writing to the
subprocess address space.

[?/]m bi ei/i[?/]
New values for (b i, e 1, /I) are recorded. If less than three expres­
sions are given, then the remaining map parameters are left
unchanged. If the"?" or "/" is followed by"·", then the second seg­
ment (b2, e2,/2) of the mapping is changed. If the list is terminated
by"?" or "/", then the file (objfilor corfil respectively) is used for sub­
sequent requests. (So that, for example, "/m?" will cause "/" to refer
to objfi/.)

> name
Dot is assigned to the variable or register named.

A shell is called to read the rest of the line following"!".

$ modifier

July 1984

Miscellaneous commands. The available modifiers are:

< / Read commands from the file l If this command is executed
in a file, further commands in the file are not seen. If / is
omitted, the current input stream is terminated. If a count is
given, and is zero, the command will be ignored. The value of
the count will be placed in variable 9 before the first command
in / is executed.

< < / Similar to < except it can be used in a file of commands
without causing the file to be closed. Variable 9 is saved dur­
ing the execution of this command, and restored when it com­
pletes. There is a (small) finite limit to the number of < <
files that can be open at once.

> / Append output to the file /, which is created if it does not
exist. If / is omitted, output is returned to the terminal.

? Print process ID, the signal which caused stoppage or termina­
tion, as well as the registers as Sr. This is the default if
modifier is omitted.

r Print the general registers and the instruction addressed by pc.
Dot is set to pc.

b Print all breakpoints and their associated counts and com­
mands.

c C stack backtrace. If address is given, then it is taken as the
address of the current frame (instead of a7). If C is used, then
the names and (I6 bit) values of all automatic and static vari­
ables are printed for each active function. If count is given,
then only the first count frames are printed.

- 4 -

ADB(1)

d

e
w
s
o
d
q
v
m

ADB (1)

Set the default radix to address and report the new value. Note
that address is interpreted in the (old) current radix. Thus
10$d never changes the default radix. To make decimal the
default radix, use Otl O$d.
The names and values of external variables are printed.
Set the page width for output to address (default 80).
Set the limit for symbol matches to address (default 255).
All integers input are regarded as octal.
Reset integer input as described in EXPRESSIONS.
Exit from a db.
Print all non zero variables in octal.
Print the address map.

: modifier

VARIABLES

Manage a subprocess. Available modifiers are:

bc Set breakpoint at address. The breakpoint is executed count-1
times before causing a stop. Each time the breakpoint is
encountered the command c is executed. If this command is
omitted or sets dot to zero then the breakpoint causes a stop.

d Delete breakpoint at .IR address.
r Run objfil as a subprocess. If address is given explicitly then

the program is entered at this point; otherwise the program is
entered at its standard entry point. count specifies how many
breakpoints are to be ignored before stopping. Arguments to
the subprocess may be supplied on the same line as the com­
mand. An argument starting with < or > causes the standard
input or output to be established for the command. All signals
are turned on on entry to the subprocess.

es The subprocess is continued with signal ses (see signal(2». If
address is given, then the subprocess is continued at this
address. If no signal is specified, then the signal that caused
the subprocess to stop is sent. Breakpoint skipping is the same
as for r.

ss As for e except that the subprocess is single stepped count
times. If there is no current subprocess then objfil is run as a
subprocess as for r. In this case no signal can be sent; the
remainder of the line is treated as arguments to the subprocess.

k The current subprocess, if any, is terminated.

Adb provides a number of variables. Named variables are set initially by
adb but are not used subsequently. Numbered variables are reserved for
communication as follows.

o The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.
9 The count on the last $< or $< < command.

On entry the following are set from the system header in the corfil. If corfi!
does not appear to be a eore file, then these values are set from objfil.

b The base address of the data segment.
d The data segment size.
e The entry point.

July 1984 - 5 -

ADB(1) ADB(1)

m The "magic" number (0407,0410).
s The stack segment size.
t The text segment size.

ADDRESSES
The address in a file associated with a written address is determined by a
mapping associated with that file. Each mapping is represented by two tri­
ples (bl,elJl and (b2,e2J2 and the file address corresponding to a written
address is calculated as follows.

bl ~ address< e 1 => file address = address + fl-bl, otherwise,

b2~ address < e2 => file address = address + f2 -b2,

otherwise, the requested address is not legal. In some cases (e.g., for pro­
grams with separated I and D space) the two segments for a file may over­
lap. If a ? or / is followed by an *, then only the second triple is used.

The initial setting of both mappings is suitable for normal a.out and core
files. If either file is not of the kind expected, then for that file b 1 is set to
0, e 1 is set to the maximum file size and }1 is set to 0; in this way the
whole file can be examined with no address translation.

So that adb may be used on large files all appropriate values are kept as
signed 32-bit integers.

EXAMPLE

FILES

adb obj1

will invoke adb with the executable object "obj1 "; when adb responds with

ready

the request:

main,10?ia

will cause 16 (IOhex) instructions to be printed in assembly code, starting
from location "main".

a.out
core

SEE ALSO
a.out(4), core(4)

DIAGNOSTICS

BUGS

Adb when there is no current command or format. Comments about inac­
cessible files, syntax errors, abnormal termination of commands, etc. Exit
status is 0, unless last command failed or returned nonzero status.

Use of # for the unary logical negation operator is peculiar.

There doesn't seem to be any way to clear all breakpoints.

July 1984 - 6 -

ADMIN(l) ADMIN(l)

NAME
admin - create and administer sees files

SYNOPSIS
admin [-n] [-i[name]] [-rrel] [-t[name]] [-fflag[flag-val]
[-dflag[flag-val]] [-alogin] [-elogin] [-m[mrlistl] [-y[comment]
[- h] [- z] files

DESCRIPTION
Admin is used to create new sees files and change parameters of existing
ones. Arguments to admin, which may appear in any order, consist of
key letter arguments, which begin with -, and named files (note that sees
file names must begin with the characters s.). If a named file doesn't exist,
it is created, and its parameters are initialized according to the specified
key letter arguments. Parameters not initialized by a key letter argument are
assigned a default value. If a named file does exist, parameters correspond­
ing to specified keyletter arguments are changed, and other parameters are
left as is.

If a directory is named, admin behaves as though each file in the directory
were specified as a named file, except that non-SeeS files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of
the standard input is taken to be the name of an sees file to be processed.
Again, non-SeeS files and unreadable files are silently ignored.

The key letter arguments are as follows. Each is explained as though only
one named file is to be processed since the effects of the arguments apply
independently to each named file.

-n
-i[name]

-rrel

-t[name]

October 1983

This keyletter indicates that a new sees file is to be created.

The name of a file from which the text for a new sees file is
to be taken. The text constitutes the first delta of the file
(see - r key letter for delta numbering scheme). If the i
key letter is used, but the file name is omitted, the text is
obtained by reading the standard input until an end-of-file is
encountered. If this keyletter is omitted, then the sees file
is created empty. Only one sees file may be created by an
admin command on which the i key letter is supplied. Using
a single admin to create two or more sees files require that
they be created empty (no -i keyletter). Note that the -i
key letter implies the - n key letter .

The release into which the initial delta is inserted. This
key letter may be used only if the - i key letter is also used.
If the - r key letter is not used, the initial delta is inserted
into release 1. The level of the initial delta is always 1 (by
default initial deltas are named 1.1).

The name of a file from which descriptive text for the sees
file is to be taken. If the - t keyletter is used and admin is
creating a new sees file (the - n and/or - i keyletters also
used), the descriptive text file name must also be supplied.
In the case of existing sees files: (1) a - t keyletter without
a file name causes removal of descriptive text Of any)
currently in the sees file, and (2) a - t keyletter with a file
name causes text Of any) in the named file to replace the

- 1 -

ADMIN (1)

-fflag

October 1983

ADMIN (I)

descriptive text (if any) currently in the sees file.

This key letter specifies a flag, and , possibly, a value for the
flag, to be placed in the sees file. Several f key letters may
be supplied on a single admin command line. The allowable
flags and their values are:

b Allows use of the - b key letter on a get (1) com­
mand to create branch deltas.

cceil The highest release (i.e., "ceiling"), a number less
than or equal to 9999, which may be retrieved by a
get(1) command for editing. The default value for
an unspecified c flag is 9999.

ffloor The lowest release (i.e., "floor"), a number greater
than 0 but less than 9999, which may be retrieved
by a get(1) command for editing. The default value
for an unspecified f flag is 1.

dSID The default delta number (SID) to be used by a
get(1) command.

Causes the "No id keywords (ge6)" message issued
by get(1) or delta (1) to be treated as a fatal error.
In the absence of this flag, the message is only a
warning. The message is issued if no sees
identification keywords (see get (1» are found in the
text retrieved or stored in the sees file.

Allows concurrent get(I) commands for editing on
the same SID of an sees file. This allows multiple
concurrent updates to the same version of the sees
file.

l/ist A list of releases to which deltas can no longer be
made (get - e against one of these "locked" releases
fails). The list has the following syntax:

<list> ::= <range> I <list> , <range>
<range>-::= RELEASE NUMBER I a

The character a in the list is equivalent to specifying
all releases for the named sees file.

D Causes delta (1) to create a "null" delta in each of
those releases (if any) being skipped when a delta is
made in a new release (e.g., in making delta 5.1 after
delta 2.7, releases 3 and 4 are skipped). These null
deltas serve as "anchor points" so that branch deltas
may later be created from them. The absence of
this flag causes skipped releases to be non-existent
in the sees file preventing branch deltas from being
created from them in the future.

qtext User definable text substituted for all occurrences of
the %Q% keyword in sees file text retrieved by
get (I).

mmod Module name of the sees file substituted for all
occurrences of the %M% keyword in sees file text

- 2 -

ADMIN (1) ADMIN (1)

retrieved by get (1) . If the m flag is not specified,
the value assigned is the name of the sees file with
the leading s. removed.

ttype Type of module in the sees file substituted for all
occurrences of % Y% keyword in sees file text
retrieved by get(l).

v [pgm] Causes delta 0) to prompt for Modification Request
(MR) numbers as the reason for creating a delta.
The optional value specifies the name of an MR
number validity checking program (see delta (1)).
(If this flag is set when creating an sees file, the m
keyletter must also be used even if its value is null).

- dflag Causes removal (deletion) of the specified ./lag from an
sees file. The - d key letter may be specified only when
processing existing sees files. Several - d key letters may be
supplied on a single admin command. See the - f key letter
for allowable ./lag names.

lIist A list of releases to be "unlocked". See the - f
key letter for a description of the 1 flag and the syn­
tax of a list.

- a login A login name, or numerical UNIX System group ID, to be
added to the list of users which may make deltas (changes)
to the sees file. A group ID is equivalent to specifying all
login names common to that group ID. Several a keyletters
may be used on a single admin command line. As many
login s, or numerical group IDs, as desired may be on the list
simultaneously. If the list of users is empty, then anyone
may add deltas.

-elogin A login name, or numerical group ID, to be erased from the
list of users allowed to make deltas (changes) to the sees
file. Specifying a group ID is equivalent to specifying all login
names common to that group ID. Several e keyletters may
be used on a single admin command line.

-y[commenrl The comment text is inserted into the sees file as a comment
for the initial delta in a manner identical to that of delta 0).
Omission of the - y key letter results in a default comment
line being inserted in the form:

-m[mrlisrl

-b

October 1983

date and time created YY/ MM/ DD HH:MM:SS by login

The - y key letter is valid only if the - i and/ or - n
key letters are specified (i.e., a new sees file is being
created).

The list of Modification Requests (MR) numbers is inserted
into the sees file as the reason for creating the initial delta
in a manner identical to delta 0). The v flag must be set
and the MR numbers are validated if the v flag has a value
(the name of an MR number validation program). Diagnos­
tics will occur if the v flag is not set or MR validation fails.

Causes admin to check the structure of the sees file (see
sccsjile(5)) , and to compare a newly computed check-sum

- 3 -

ADMIN(l) ADMIN (1)

-z

(the sum of all the characters in the sees file except those
in the first line) with the check-sum that is stored in the first
line of the sees file. Appropriate error diagnostics are pro­
duced.

This keyletter inhibits writing on the file, so that it nullifies
the effect of any other key letters supplied, and is, therefore,
only meaningful when processing existing files.

The sees file check-sum is recomputed and stored in the
first line of the sees file (see - h, above).

Note that use of this key letter on a truly corrupted file may
prevent future detection of the corruption.

EXAMPLE

FILES

admin -i filel s.filel

creates a new file in sees format named "s.filel", from "filel".

The last component of all sees file names must be of the form s.file-name.
New sees files are given mode 444 (see chmod(1». Write permission in
the pertinent directory is, of course, required to create a file. All writing
done by admin is to a temporary x-file, called x.file-name, (see get (1»,
created with mode 444 if the admin command is creating a new sees file,
or with the same mode as the sees file if it exists. After successful execu­
tion of admin, the sees file is removed (if it exists), and the x-file is
renamed with the name of the sees file. This ensures that changes are
made to the sees file only if no errors occurred.

It is recommended that directories containing sees files be mode 755 and
that sees files themselves be mode 444. The mode of the directories
allows only the owner to modify sees files contained in the directories.
The mode of the sees files prevents any modification at all except by sees
commands.

If it should be necessary to patch an sees file for any reason, the mode
may be changed to 644 by the owner allowing use of ed(l). Care must be
taken! The edited file should always be processed by an admin - h to check
for corruption followed by an admin - z to generate a proper check-sum.
Another admin - h is recommended to ensure the sees file is valid.

Admin also makes use of a transient lock file (called z.file-name), which is
used to prevent simultaneous updates to the sees file by different users.
See get (1) for further information.

SEE ALSO
delta(1), ed(1), get(1), help(1), prs(1), what(1), sccsfile(4).
Source Code Control System User's Guide

DIAGNOSTICS
Use help (1) for explanations.

October 1983 - 4 -

AR(l) AR(l)

NAME
ar - archive and library maintainer

SYNOPSIS
ar [uvnbail] [mrxtdpq) [posname] archivename filename(s)

DESCRIPTION
The archive command ar maintains groups of files combined into a single
archive file. Its main use is to create and update library files as used by the
loader. However, ar can be used for any similar archiving purpose.
Archives often consist of unlinked program modules.

Key is one character from the set mrxtdpq, optionally concatenated with
one or more of uvnbail. Archivename is the archive file. The jilename(s)
are constituent files in or destined for the archive file. The meanings of the
key characters are:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character u
is used with r, then only those files with modified dates later than the
archive files are replaced. If an optional positioning character from the
set abi is used, then the posname argument must be present and
specifies that new files are to be placed after (a) or before (b or i)
posname. Otherwise new files are placed at the end.

q Quickly append the named files to the end of the archive file. Optional
positioning characters are invalid. The command does not check
whether the added members are already in the archive. Useful only to
avoid quadratic behavior when creating a large archive piece-by-piece.

Print a table of contents of the archive file. If no names are given, all
files in the archive are tabled. If names are given, only those files are
tabled.

p Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning char­
acter is present, then the posname argument must be present and, as in
r, specifies where the files are to be moved.

x Extract the named files. If no names are given, all files in the archive
are extracted. In neither case does x alter the archive file.

v Verbose. Under the verbose option, ar gives a file-by-file description
of the making of a new archive file from the old archive and the consti­
tuent files. When used with t, it gives a long listing of all information
about the files. When used with p, it precedes each file with a name.

c Create. Normally ar will create afile when it needs to. The create
option suppresses the normal message that is produced when afile is
created.

EXAMPLE

Local. Normally ar places its temporary files in the directory /tmp.
This option causes them to be placed in the local directory.

ar rv libar.a text.o

places file "text.o" in archive "libar.a".

ar bm filel archivename file2

July 1984 - 1 -

AR(l)

FILES

AR(l)

changes the location of a file inside an archive. "File2" is the file to be
moved. "File2" is moved to a new position before "filel".

Itmp temporaries

SEE ALSO

BUGS

ld(l), ar(4).

If the same file is mentioned twice in an argument list, it may be put in the
archive twice.
Sufficient disk space must be present to make an entire copy of the archive
or the ar command will fail.

October 1983 - 2 -

AS (1) AS (1)

NAME
as - assembler

SYNOPSIS
as [- 0 objfile] [- v] [-I] [name ...]

DESCRIPTION
As assembles the named files, or the standard input if no file name is
specified.

All undefined symbols in the assembly are treated as global.

The relocatable output of the assembly is left on the file objfile; if that is
omitted, a.out is used.

The - v option enables as to recognize 68010 instruction mnemonics.

The -I option produces an assembly listing on file objfile.lst. If the -I
option is specified and no - 0 parameter is specified, the assembly listing is
placed on a.lst.

EXAMPLE

FILES

as - 0 file.o filea fileb filec

would assemble the three named files and put the output of the assembly
into "file.o".

Itmp/as* default temporary file
a.out default resultant object file
a.lst default assembly listing file

SEE ALSO
adb(1), Id(I), nm(1), a.out(4)
AS Assembler Reference Guide, James L. Gula and Thomas J. Teixeira.
Revised by U niSoft Systems.

July 1984 - 1 -

ASA (1) ASA (1)

NAME
asa - interpret ASA carriage control characters

SYNOPSIS
asa [files]

DESCRIPTION
Asa interprets the output of FORTRAN programs that utilize ASA carriage
control characters. It processes either the files whose names are given as
arguments or the standard input if no file names are supplied. The first
character of each line is assumed to be a control character; their meanings
are:

(blank) single new line before printing

o double new line before printing

1 new page before printing

+ overprint previous line.

Lines beginning with other than the above characters are treated as if they
began with' '. The first character of a line is not printed. If any such lines
appear, an appropriate diagnostic will appear on standard error. This pro­
gram forces the first line of each input file to start on a new page.

EXAMPLE
To correctly view the output of FORTRAN programs which use ASA carriage
control characters, asa could be used as a filter thusly:

a.out I asa I lpr

and the output, properly formatted .and paginated, would be directed to the
line printer. FORTRAN output sent to a file could be viewed by:

asa file

SEE ALSO
efI(O, fortran(I), fsplit(1).

October 1983 - 1 -

AT(l) (UniSoft) AT(l)

NAME
at - execute commands at a later time

SYNOPSIS
at time [day] [file]

DESCRIPTION
At squirrels away a copy of the named file (standard input default) to be
used as input to sh (1) at a specified later time. A cd(1) command to the
current directory is inserted at the beginning, followed by assignments to all
environment variables. When the script is run, it uses the user and group
ID of the creator of the copy file.

The time is 1 to 4 digits, with an optional following "A", "P", "N" or "M" for
AM, PM, noon or midnight. One and two digit numbers are taken to be
hours, three and four digits to be hours and minutes. If no letters follow
the digits, a 24-hour clock time is understood.

The optional day is either (1) a month name followed by a day number, or
(2) a day of the week; if the word "week" follows invocation is moved
seven days further off. Names of months and days may be recognizably
truncated. Examples of legitimate commands are

at 8am jan 24
at 1530 fr week

At programs are executed by periodic execution of the command
lusrlliblatrun from cron (1M). The granularity of at depends upon how
often atrun is executed.

Standard output or error output is lost unless redirected. The directory
/usr/spool/at/past must be present or at will not run.

EXAMPLE

FILES

at 10:25
Is -I /etc > /dev/console

will cause the directory fete to be listed in long format on device
/dev/eonsole at approximately 10:25 pm on the same day. The exact time
this is executed will depend on how often lusrlliblatrun is scheduled to run
in /usr/lib/erontab; e.g., if lusrlliblatrun is set up to run every 15 minutes,
the above command will be executed at 10:30 am. A temporary file is
created in directory /usr/spool/at containing the "Is -I" command to be exe­
cuted; this temporary file will be removed upon completion of the com­
mand. Note that /usr/lib/erontab must contain a schedule entry for
lusrlliblatrun in order for "at" to work.

/usr/spool/at/yy.ddd.hhhh.uu

/usr/spool/at/lasttimedone
/usr/ spool/ at/past
/usr/lib/atrun

activity to be performed at hour hhhh of
day ddd of year yy. uu is a unique number.
contains hhhh for last hour of activity.
directory of activities now in progress.
program that executes activities that are
due.

/usr/lib/ crontab

SEE ALSO

cron table entry for running atrun.

calendar(1),
cron(1M) in the UniPlus+ Administrator's Guide.

October 1983 - 1 -

AT(I) (UniSoft) AT(1)

DIAGNOSTICS

BUGS

Complains about various syntax errors and times out of range.

Due to the granularity of the execution of lusrlliblatrun, there may be bugs
in scheduling things almost exactly 24 hours into the future.

October 1983 - 2 -

AWK(1) AWK(1)

NAME
awk - pattern scanning and processing language

SYNOPSIS
awk [- Fe] [prog] [parameters] [files]

DESCRIPTION
Awk scans each input file for lines that match any of a set of patterns
specified in prog. With each pattern in prog there can be an associated
action that will be performed when a line of a file matches the pattern. The
set of patterns may appear literally as prog, or in a file specified as - f file.
The prog string should be enclosed in single quotes (') to protect it from
the shell.

Parameters, in the form x = ... y= ... etc., may be passed to awk.

Files are read in order; if there are no files, the standard input is read. The
file name - means the standard input. Each line is matched against the
pattern portion of every pattern-action statement; the associated action is
performed for each matched pattern.

An input line is made up of fields separated by white space. (This default
can be changed by using FS, see below). The fields are denoted $1, $2, ... ;
$0 refers to the entire line.

A pattern-action statement has the form:

pattern { action}

A missing action means print the line; a missing pattern always matches.
An action is a sequence of statements. A statement can be one of the fol­
lowing:

if (conditional) statement [else statement]
while (conditional) statement
for (expression; conditional; expression) statement
break
continue
{ [statement] ... }
variable = expression
print [expression-list] [> expression]
printf format [, expression-list] [> expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right braces. An
empty expression-list stands for the whole line. Expressions take on string
or numeric values as appropriate, and are built using the operators +, -, *
, /, %, and concatenation (indicated by a blank). The C operators + +,
- -, + =, - =, * =, / =, and % = are also available in expressions. Vari­
ables may be scalars, array elements (denoted xli]) or fields. Variables are
initialized to the null string. Array subscripts may be any string, not neces­
sarily numeric; this allows for a form of associative memory. String con­
stants are quoted (").

The print statement prints its arguments on the standard output (or on a
file if > expr is present), separated by the current output field separator,
and terminated by the output record separator. The print/ statement for­
mats its expression list according to the format (see print/OS».

July 1984 - 1 -

AWK(I) AWK(I)

The built-in function length returns the length of its argument taken as a
string, or of the whole line if no argument. There are also built-in func­
tions exp, log, sqrt, and into The last truncates its argument to an integer;
substr (s,m,n returns the n-character substring of s that begins at position
m. The function sprintj(jmt,expr,expr formats the expressions according to
the printj(3S) format given by Imt and returns the resulting string.

Patterns are arbitrary Boolean combinations (!, II, &&, and parentheses)
of regular expressions and relational expressions. Regular expressions
must be surrounded by slashes and are as in egrep (see grep(I». Isolated
regular expressions in a pattern apply to the entire line. Regular expres­
sions may also occur in relational expressions. A pattern may consist of
two patterns separated by a comma; in this case, the action is performed for
all lines between an occurrence of the first pattern and the next occurrence
of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is
either - (for contains) or !- (for does not contain). A conditional is an
arithmetic expression, a relational expression, or a Boolean combination of
these.

The special patterns BEGIN and END may be used to capture control before
the first input line is read and after the last. BEGIN must be the first pat­
tern, END the last.

A single character c may be used to separate the fields by starting the pro­
gram with:

BEG IN { FS = c}

or by using the - F c option.

Other variable names with special meanings include NF, the number of
fields in the current record; NR, the ordinal number of the current record;
FILENAME, the name of the current input file; OFS, the output field separa­
tor (default blank); ORS, the output record separator (default new-line);
and OFMT, the output format for numbers (default %.6g).

EXAMPLE
awk "length> 72" filea

prints lines longer than 72 characters on the standard output.

awk '{ print $2, $1 }' filea

prints the first two fields of each line in opposite order.

awk'{ s += $1} END {print "sum is", s, "average is", s/NR}'
filea

adds up the first column and prints the sum and average.

awk '{ for (i = NF; i > 0; - -0 print $i }' filea

prints all the fields of each line in reverse order. The output prints one
field per line, beginning at the end of the file, unless otherwise directed.

awk "/start/, /stop/" filea

July 1984 - 2 -

AWK(I) AWK(1)

prints all lines between start/stop pattern pairs, for every such pair in the
file.

SEE ALSO

BUGS

grep (I), lex (I), sed (I).
Awk-A Pattern Scanning and Processing Language by A. V. Aho, B. W.
Kernighan, and P. J. Weinberger.

Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To force
an expression to be treated as a number add 0 to it; to force it to be treated
as a string concatenate the null string (" ") to it.

July 1984 - 3 -

BANNER(l)

NAME
banner - make posters

SYNOPSIS
banner strings

DESCRIPTION

BANNER(l)

Banner prints its arguments (each up to 10 characters long) in large letters
on the standard output.

EXAMPLE
banner asa

will cause the characters "a", "s" and "a" to be printed as large letters on the
screen.

SEE ALSO
echo(I).

October 1983 - 1 -

BANNER7(1) (UniSoft) BANNER7(1)

NAME
banner7 - print large banner on printer

SYNOPSIS
banner7 [- w n] message ...

DESCRIPTION

BUGS

Banner7 prints a large, high quality banner on the standard output. If the
message is omitted, it prompts for and reads one line of its standard input.
If - w is given, the output is scrunched down from a width of 132 to n,
suitable for a narrow terminal. If n is omitted, it defaults to 80.

The output should be printed on a hard-copy device, up to 132 columns
wide, with no breaks between the pages. The volume is enough that you
want a printer or a fast hardcopy terminal, but if you are patient, a dec­
writer or other 300 baud terminal will do.

Several ASCII characters are not defined, notably <, >, [,], \, ~, ,{ ,
}, I, and -. Also, the characters ", " and & are funny looking (but-in a
useful way.)

The - w option is implemented by skipping some rows and columns. The
smaller it gets, the grainier the output. Sometimes it runs letters together.

AUTHOR
Mark Horton

October 1983 - 1 -

BASENAME (1)

NAME
basename, dirname - deliver portions of path names

SYNOPSIS
base name string [suffix]
dirname string

DESCRIPTION

BASEN AME (1)

Basename deletes any prefix ending in / and the suffix (if present in string)
from string, and prints the result on the standard output. It is normally
used inside substitution marks (' ') within shell procedures.

Dirname delivers all but the last level of the path name in string.

EXAMPLE
Invoked with the argument /usr/src/cmd/cat.c,

cc $1
mv a.out 'basename $1 .c'

compiles the named file and moves the output to a file named "cat" in the
current directory.

NAME= 'dirname /usrlsrc/cmd/cat.c'

sets the shell variable NAME to /usr/src/cmd.

SEE ALSO
sh(I).

BUGS
The basename of / is null and is considered an error.

October 1983 - 1 -

BC (1) BC(l)

NAME
be - arbitrary-precision arithmetic language

SYNOPSIS
be [- e] [- 1] [file ...]

DESCRIPTION
Be is an interactive processor for a language that resembles C but provides
unlimited precision arithmetic. It takes input from any files given, then
reads the standard input. The -I argument stands for the name of an arbi­
trary precision math library. The syntax for be programs is as follows; L
means letter a - z, E means expression, S means statement.

Comments
are enclosed in /. and • / .

Names
simple variables: L
array elements: L [E]
The words "ibase", "obase", and "scale"

Other operands
arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt (E)
length (E)
scale (E)
L(E, ... ,E)

number of significant decimal digits
number of digits right of decimal point

Operators
+ - • / % " (% is remainder; " is power)
+ + - - (prefix and postfix; apply to names)
==<=>=!=<>
= = + =. =/ =0/0 ="

Statements
E
{ S ; ... ; S }
if(E)S
while (E) S
for (E ; E ; E) S
null statement
break
quit

Function definitions
define L (L , ... , L) {

auto L, ... , L
S; ... S
return (E)

Functions in -I math library
s(x) sine
c(x) cosine
e(x) exponential
l(x) log
a (x) arctangent
j (n,x) Bessel function

October 1983 - 1 -

BC(1) BC (1)

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main
operator is an assignment. Either semicolons or new-lines may separate
statements. Assignment to scale influences the number of digits to be
retained on arithmetic operations in the manner of ddt). Assignments to
ibase or obase set the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable
simultaneously. All variables are global to the program. "Auto" variables
are pushed down during function calls. When using arrays as function
arguments or defining them as automatic variables empty square brackets
must follow the array name.

Be is actually a preprocessor for ddt), which it invokes automatically,
unless the -c (compile only) option is present. In this case the de input is
sent to the standard output instead.

EXAMPLE

FILES

scale = 20
define e(x){

auto a, b, c, i, s
a = 1
b = 1
s = 1
for{i=I; 1==1; i++){

a = a*x
b = b*i
c = alb
if(c = = 0) return(s)
s = s+c

defines a function to compute an approximate value of the exponential
function and

for{i= 1; i< = 10; i+ +) eO)

prints approximate values of the exponential function of the first ten
integers.

lusr/lib/lib.b mathematical library
lusr/bin/dc desk calculator proper

SEE ALSO
ddt).

BUGS

BC - An Arbitrary Precision Desk-Calculator Language by L. L. Cherry and
R. Morris.

No &&, II yet.
For statement must have all three E's.
Quit is interpreted when read, not when executed.

October 1983 - 2 -

BDIFF(I) BDIFF (1)

NAME
bdiff - big diff

SYNOPSIS
bdiff filel file2 [n] [- s]

DESCRIPTION
Bdiff is used in a manner analogous to diff(1) to find which lines must be
changed in two files to bring them into agreement. Its purpose is to allow
processing of files which are too large for diff. Bdiff ignores lines common
to the beginning of both files, splits the remainder of each file into n-line
segments, and invokes diff upon corresponding segments. The value of n
is 3500 by default. If the optional third argument is given, and it is
numeric, it is used as the value for n. This is useful in those cases in
which 3500-line segments are too large for diff, causing it to fail. If file1
(file2) is -, the standard input is read. The optional - s (silent) argument
specifies that no diagnostics are to be printed by bdiff (note, however, that
this does not suppress possible exclamations by diff. If both optional argu­
ments are specified, they must appear in the order indicated above.

The output of bdiff is exactly that of diff, with line numbers adjusted to
account for the segmenting of the files (that is, to make it look as if the
files had been processed whole). Note that because of the segmenting of
the files, bdiff does not necessarily find a smallest sufficient set of file
differences.

EXAMPLE
See example in diff(1).

FILES
Itmp/bd?????

SEE ALSO
diff(1) .

DIAGNOSTICS
Use help (1) for explanations.

October 1983 - 1 -

BFS (1) BFS (1)

NAME
bfs - big file scanner

SYNOPSIS
bfs [-] name

DESCRIPTION
Bfs is (almost) like ed(1) except that it is read-only and processes much
larger files. Files can be up to I024K bytes (the maximum possible size)
and 32K lines, with up to 255 characters per line. Bft is usually more
efficient than ed for scanning a file, since the file is not copied to a buffer.
It is most useful for identifying sections of a large file where csplit (I) can
be used to divide it into more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of any
file written with the w command. The optional - suppresses printing of
sizes. Input is prompted with • if P and a carriage return are typed as in
ed. Prompting can be turned off again by inputting another P and carriage
return. Note that messages are given in response to errors if prompting is
turned on.

All address expressions described under ed are supported. In addition, reg­
ular expressions may be surrounded with two symbols besides / and ?: >
indicates downward search without wrap-around, and < indicates upward
search without wrap-around. Since bfs uses a different regular expression­
matching routine from ed, the regular expressions accepted are slightly
wider in scope (see regcmp (3X». There is a slight difference in mark
names: only the letters a through z may be used, and all 26 marks are
remembered.

The e, g, v, k, n, p, q, W, =, ! and null commands operate as described
under ed. Commands such as - - -, + + + -, + + + =, -12, and +4p
are accepted. Note that 1,10p and 1,10 will both print the first ten lines.
The f command only prints the name of the file being scanned; there is no
remembered file name. The W command is independent of output diver­
sion, truncation, or crunching (see the XO, xt and xc commands, below).
The following additional commands are available:

October 1983

xf file
Further commands are taken from the named file. When an
end-of-file is reached, an interrupt signal is received or an error
occurs, reading resumes with the file containing the xf. Xf com­
mands may be nested to a depth of 10.

xo [file]
Further output from the p and null commands is diverted to the
named file, which, if necessary, is created mode 666. If file is
missing, output is diverted to the standard output. Note that
each diversion causes truncation or creation of the file.

: label
This positions a label in a command file. The label is terminated
by new-line, and blanks between the : and the start of the label
are ignored. This command may also be used to insert com­
ments into a command file, since labels need not be referenced.

(• , •) xb/ regular expression/ label
A jump (either upward or downward) is made to label if the
command succeeds. It fails under any of the following

- 1 -

BFS (I)

October 1983

BFS (1)

conditions:

1. Either address is not between 1 and $.

2. The second address is less than the first.

3. The regular expression doesn't match at least one line in the
specified range, including the first and last lines.

On success, • is set to the line matched and a jump is made to
label. This command is the only one that doesn't issue an error
message on bad addresses, so it may be used to test whether
addresses are bad before other commands are executed. Note
that the command

xb/"I label

is an unconditional jump.
The xb command is allowed only if it is read from someplace
other than a terminal. If it is read from a pipe only a downward
jump is possible.

xt number
Output from the p and null commands is truncated to at most
number characters. The initial number is 255.

xv [digit] [spaces] [value]
The variable name is the specified digit following the xv. xv5100
or xv5 100 both assign the value 100 to the variable 5.
Xv61,100p assigns the value 1,100p to the variable 6. To refer­
ence a variable, put a % in front of the variable name. For
example, using the above assignments for variables 5 and 6:

1,%5p
1,%5
%6

will all print the first 100 lines.

g/%5/p

would globally search for the characters 100 and print each
line containing a match. To escape the special meaning of %,
a \ must precede it.

g/" .*\ % [cds]/p

could be used to match and list lines containing print! of char­
acters, decimal integers, or strings.
Another feature of the xv command is that the first line of
output from a UNIX System command can be stored into a
variable. The only requirement is that the first character of
value be an!. For example:

.w junk
xv5 !cat junk
!rm junk
!echo "%5"
xv6 !expr %6 +

would put the current line into variable 5, print it, and incre­
ment the variable 6 by one. To escape the special meaning of

- 2 -

BFS (1)

! as the first character of value, precede it with a \.

xv7\!date

stores the value !date into variable 7.

xbz label

xbn label

BFS (1)

These two commands will test the last saved return code from
the execution of a UNIX System command (!command) or
nonzero value, respectively, to the specified label. The two
examples below both search for the next five lines containing
the string size.

xc [switch]

xv55
: I
/size/
xv5!expr %5 -
!if 0%5 != 0 exit 2
xbn I
xv45
: I
/size/
xv4!expr %4 -
!if 0%4 = 0 exit 2
xbz I

If switch is 1, output from the p and null commands is
crunched; if switch is 0 it isn't. Without an argument, xc rev­
erses switch. Initially switch is set for no crunching. Crunched
output has strings of tabs and blanks reduced to one blank
and blank lines suppressed.

EXAMPLE
bfs text

will invoke bls with the file named "text".

SEE ALSO
csplit(1), ed(1), regcmp(3X).

DIAGNOSTICS
? for errors in commands, if prompting is turned off. Self-explanatory
error messages when prompting is on.

October 1983 - 3 -

BS (1) BS(I)

NAME
bs - a compiler/interpreter for modest-sized programs

SYNOPSIS
bs [file [args]]

DESCRIPTION
Bs is a remote descendant of Basic and Snobol4 with a little C language
thrown in. Bs is designed for programming tasks where program develop­
ment time is as important as the resulting speed of execution. Formalities
of data declaration and file/process manipulation are minimized. Line-at­
a-time debugging, the trace and dump statements, and useful run-time error
messages all simplify program testing. Furthermore, incomplete programs
can be debugged; inner functions can be tested before outer functions have
been written and vice versa.

If the command line file argument is provided, the file is used for input
before the console is read. By default, statements read from the file argu­
ment are compiled for later execution. Likewise, statements entered from
the console are normally executed immediately (see compile and execute
below). Unless the final operation is assignment, the result of an immedi­
ate expression statement is printed.

Bs programs are made up of input lines. If the last character on a line is a
\, the line is continued. Bs accepts lines of the following form:

statement
label statement

A label is a name (see below) followed by a colon. A label and a variable
can have the same name.

A bs statement is either an expression or a keyword followed by zero or
more expressions. Some keywords (clear, compile, I, execute, include,
ibase, obase, and run) are always executed as they are compiled.

Statement Syntax:

expression
The expression is executed for its side effects (value, assignment or
function call). The details of expressions follow the description of state­
ment types below.

break
Break exits from the inner-most for/while loop.

clear
Clears the symbol table and compiled statements. Clear is executed
immediately.

compile [expression]
Succeeding statements are compiled (overrides the immediate execution
default) . The optional expression is evaluated and used as a file name
for further input. A clear is associated with this latter case. Compile is
executed immediately.

continue
Continue transfers to the loop-continuation of the current for/while loop.

dump [name]
The name and current value of every non-local variable is printed.

October J 983 - 1 -

BS(I) BS (1)

Optionally, only the named variable is reported. After an error or inter­
rupt, the number of the last statement and (possibly) the user-function
trace are displayed.

exit [expression]
Return to system level. The expression is returned as process status.

execute
Change to immediate execution mode (an interrupt has a similar effect).
This statement does not cause stored statements to execute (see run
below).

for name = expression expression statement
for name = expression expression

next

for expression, expression, expression statement
for expression, expression, expression

next
The for statement repetitively executes a statement (first form) or a
group of statements (second form) under control of a named variable.
The variable takes on the value of the first expression, then is incre­
mented by one on each loop, not to exceed the value of the second
expression. The third and fourth forms require three expressions
separated by commas. The first of these is the initialization, the second
is the test (true to continue), and the third is the loop-continuation
action (normally an increment).

fun f([a, ...]) [v, ...]

nuf
Fun defines the function name, arguments, and local variables for a
user-written function. Up to ten arguments and local variables are
allowed. Such names cannot be arrays, nor can they be I/O associated.
Function definitions may not be nested.

freturn
A way to signal the failure of a user-written function. See the interroga­
tion operator (?) below. If interrogation is not present, freturn merely
returns zero. When interrogation is active, freturn transfers to that
expression (possibly by-passing intermediate function returns).

goto name
Control is passed to the internally stored statement with the matching
label.

ibase N
[base sets the input base (radix) to N. The only supported values for N
are 8, 10 (the default), and 16. Hexadecimal values 10-15 are entered
as a-f. A leading digit is required (i.e., fOa must be entered as OfOa).
[base (and obase, below) are executed immediately.

if expression statement
if expression

[else

October 1983 - 2 -

8S(I)

fi

8S(I)

The statement (first form) or group of statements (second form) is exe­
cuted if the expression evaluates to non-zero. The strings 0 and ""
(nulO evaluate as zero. In the second form, an optional else allows for
a group of statements to be executed when the first group is not. The
only statement permitted on the same line with an else is an if, only
other fl's can be on the same line with a fl. The elision of else and if
into an elif is supported. Only a single fl is required to close an if ... elif
. .. [else . ..] sequence.

include expression
The expression must evaluate to a file name. The file must contain bs
source statements. Such statements become part of the program being
compiled. Include statements may not be nested.

obase N
Obase sets the output base to N (see ibase above).

onintr label
onintr

The onintr command provides program control of interrupts. In the first
form, control will pass to the label given, just as if a goto had been exe­
cuted at the time onintr was executed. The effect of the statement is
cleared after each interrupt. In the second form, an interrupt will cause
bs to terminate.

return [expression]
The expression is evaluated and the result is passed back as the value of
a function call. If no expression is given, zero is returned.

run
The random number generator is reset. Control is passed to the first
internal statement. If the run statement is contained in a file, it should
be the last statement.

stop
Execution of internal statements is stopped. Bs reverts to immediate
mode.

trace [expression]
The trace statement controls function tracing. If the expression is null
(or evaluates to zero), tracing is turned off. Otherwise, a record of
user-function calls/returns will be printed. Each return decrements the
trace expression value.

while expression statement
while expression

next
While is similar to for except that only the conditional expression for
loop-continuation is given.

! shell command
An immediate escape to the Shell.

...
This statement is ignored. It is used to interject commentary in a pro­
gram.

October 1983 - 3 -

BS (1)

Expression Syntax:

name

BS (1)

A name is used to specify a variable. Names are composed of a letter
(upper or lower case) optionally followed by letters and digits. Only the
first six characters of a name are significant. Except for names declared
in fun statements, all names are global to the program. Names can take
on numeric (double float) values, string values, or can be associated
with input/output (see the built-in function open () below).

name ([expression [, expression] ...])
Functions can be called by a name followed by the arguments in
parentheses separated by commas. Except for built-in functions (listed
beloW), the name must be defined with a fun statement. Arguments to
functions are passed by value.

name [expression [, expression] ...]
This syntax is used to reference either arrays or tables (see built-in table
functions below). For arrays, each expression is truncated to an integer
and used as a specifier for the name. The resulting array reference is
syntactically identical to a name; aU,2] is the same as a[t][21. The trun­
cated expressions are restricted to values between 0 and 32767.

number
A number is used to represent a constant value. A number is written in
Fortran style, and contains digits, an optional decimal point, and possi­
bly a scale factor consisting of an e followed by a possibly signed
exponent.

string
Character strings are delimited by " characters. The \ escape character
allows the double quote (\"), new-line (\n), carriage return (\r), back­
space (\b), and tab (\t) characters to appear in a string. Otherwise, \
stands for itself.

(expression)
Parentheses are used to alter the normal order of evaluation.

(expression, expression [, expression ...]) [expression]
The bracketed expression is used as a subscript to select a comma­
separated expression from the parenthesized list. List elements are
numbered from the left, starting at zero. The expression:

(False, True) [a = = b]

has the value True if the comparison is true.

? expression
The interrogation operator tests for the success of the expression rather
than its value. At the moment, it is useful for testing end-of-file (see
examples in the Programming Tips section below), the result of the eval
built-in function, and for checking the return from user-written func­
tions (see fretum). An interrogation "trap" (end-of-file, etc.) causes an
immediate transfer to the most recent interrogation, possibly skipping
assignment statements or intervening function levels.

expression
The result is the negation of the expression.

October 1983 - 4 -

BS(l) BS(l)

+ + name
Incremen ts the value of the variable (or array reference). The result is
the new value.

- - name
Decrements the value of the variable. The result is the new value.

! expression
The logical negation of the expression. Watch out for the shell escape
command.

expression operator expression
Common functions of two arguments are abbreviated by the two argu­
ments separated by an operator denoting the function. Except for the
assignment, concatenation, and relational operators, both operands are
converted to numeric form before the function is applied.

Binary Operators (in increasing precedence):

= is the assignment operator. The left operand must be a name or an
array element. The result is the right operand. Assignment binds right
to left, all other operators bind left to right.

_ (underscore) is the concatenation operator.

&1
& (logical and) has result zero if either of its arguments are zero. It has
result one if both of its arguments are non-zero; I (logical or) has result
zero if both of its arguments are zero. It has result one if either of its
arguments is non-zero. Both operators treat a null string as a zero.

< < = > > = = = !=

+

The relational operators « less than, < = less than or equal, >
greater than, > = greater than or equal, = = equal to, ! = not equal to)
return one if their arguments are in the specified relation. They return
zero otherwise. Relational operators at the same level extend as fol­
lows: a> b> c is the same as a> b & b> c. A string comparison is made
if both operands are strings.

Add and subtract.

• / %
Multiply, divide, and remainder.

"
Exponentiation.

Built-in Functions:

Dealing with arguments

arg(i}
is the value of the i-th actual parameter on the current level of function
call. At level zero, arg returns the i-th command-line argument (arg(O)
returns bs).

narg()
returns the number of arguments passed. At level zero, the command
argument count is returned.

October 1983 - 5 -

BS(l) BS(l)

Mathematical

abs(x)
is the absolute value of x.

atan(x)
is the arctangent of x. Its value is between -7r/2 and 7r/2.

ceil (x)
returns the smallest integer not less than x.

cos (x)
is the cosine of x (radians).

exp(x)
is the exponential function of x.

floor(x)
returns the largest integer not greater than x.

log(x)
is the natural logarithm of x.

rand()
is a uniformly distributed random number between zero and one.

sin (x)
is the sine of x (radians).

sqrt(x)
is the square root of x.

String operations

size (s)
the size (length in bytes) of s is returned.

format (f, a)
returns the formatted value of a. F is assumed to be a format
specification in the style of printj(3S). Only the % ••• f, % ••• e, and
% ••• s types are safe.

index(x, y)
returns the number of the first position in x that any of the characters
from y matches. No match yields zero.

trans (s, f, t)
Translates characters of the source s from matching characters in f to a
character in the same position in t. Source characters that do not appear
in f are copied to the result. If the string f is longer than t, source char­
acters that match in the excess portion of f do not appear in the result.

substr(s, start, width)
returns the sub-string of s defined by the starting position and width.

match (string, pattern)
mstring(n)

The pattern is similar to the regular expression syntax of the ed(1) com­
mand. The characters ., (, 1, " {inside brackets}, • and $ are special.
The mstring function returns the n-th (1 < = n < = 10) substring of
the subject that occurred between pairs of the pattern symbols \ (and \)
for the most recent call to match. To succeed, patterns must match the
beginning of the string (as if all patterns began with "). The function

October 1983 - 6 -

BS (1)

returns the number of characters matched. For example:

match("a123ab123", ".*\([a-z]\)") == 6
mstring(1) = = "b"

open (name, file, function)
close (name)

File handling

BS(I)

The name argument must be a bs variable name (passed as a string).
For the open, the file argument may be 1) a 0 (zero), 1, or 2 represent­
ing standard input, output, or error output, respectively, 2) a string
representing a file name, or 3) a string beginning with an ! representing
a command to be executed (via sh -c). The function argument must be
either r (read), w (write), W (write without new-line), or a (append).
After a close, the name reverts to being an ordinary variable. The initial
associations are:

open ("get", 0, "r")
open("put", 1, "w")
open("puterr", 2, "w")

Examples are given in the following section.

access (s, m)
executes access (2).

ftype(s)
returns a single character file type indication: f for regular file, p for
FIFO (Le., named pipe), d for directory, b for block special, or c for
character special.

Tables

table(name, size)
A table in bs is an associatively accessed, single-dimension array. "Sub­
scripts" (called keys) are strings (numbers are converted). The name
argument must be a bs variable name (passed as a string). The size
argument sets the minimum number of elements to be allocated. Bs
prints an error message and stops on table overflow.

item (name, n
keyO

The item function accesses table elements sequentially (in normal use,
there is no orderly progression of key values). Where the item function
accesses values, the key function accesses the "subscript" of the previ­
ous item call. The name argument should not be quoted. Since exact
table sizes are not defined, the interrogation operator should be used to
detect end-of-table, for example:

table("t", 100)

If word contains "party", the following expression adds one
to the count of that word:
+ +tlword]

To print out the the key/value pairs:
for i = 0, ?(s = item(t, i», + +i if keyO put = keyO_":"_s

October 1983 - 7 -

BS(1) BS (1)

iskey(name, word)
The iskey function tests whether the key word exists in the table name
and returns one for true, zero for false.

Odds and ends

eval(s)
The string argument is evaluated as a bs expression. The function is
handy for converting numeric strings to numeric internal form. Eval
can also be used as a crude form of indirection, as in:

name = "xyz"
eval("+ +"_ name)

which increments the variable xyz. In addition, eval preceded by the
interrogation operator permits the user to control bs error conditions.
For example:

?evaI("open{\"X\", \"XXX\", \"r\")")

returns the value zero if there is no file named "XXX" (instead of halt­
ing the user's program). The following executes a goto to the label L
(if it exists):

label="L"
if ! (?evaI("goto "_ label) puterr = "no label"

plot (request, args)
The plot function produces output on devices recognized by tplot(1G).
The requests are as follows:

~n h~tiM

plot(O, term)

plot(4)

plot(2, string)

plot(3, xl, yl, x2, y2)

plot(4, x, y, r)

plot(5, xl, yl, x2, y2, x3, y3)

plot(6)

plot(7, x, y)

plot(8, x, y)

plot(9, x, y)

plot(10, string)

plot (1 I , xl, yl, x2, y2)

causes further plot output to be piped
into tplot(1G) with an argument of
-Tterm.

"erases" the plotter.

labels the current point with string.

draws the line between (x 1 ,y 1) and
(x2,y2).

draws a circle with center (x,y) and
radius r.

draws an arc (counterclockwise) with
center (x1,yJ) and endpoints (x2,y2)
and (x3,y3).

is not implemented.

makes the current point (x,y).

draws a line from the current point to
(x,y).

draws a point at (x,y).

sets the line mode to string.

makes (x 1 ,y 1) the lower left corner of
the plotting area and (x2,y2) the upper
right corner of the plotting area.

October 1983 - 8 -

BS(t)

plot(12, xl, y1, x2, y2)

BS(l)

causes subsequent x (y) coordinates to
be multiplied by xl (yJ) and then
added to x2 (y2) before they are plot­
ted. The initial scaling is plot (12, 1.0,
1.0, 0.0, 0.0).

Some requests do not apply to all plotters. All requests except zero and
twelve are implemented by piping characters to tplot(IG). See plot(4)
for more details.

last<)
in immediate mode, last returns the most recently computed value.

PROGRAMMING TIPS
Using bs as a calculator:

$ bs
Distance (inches) light travels in a nanosecond.
186000 * 5280 * 12 / 1e9
11.78496

Compound interest (6% for 5 years on $1,000).
int = .06 / 4
bal = 1000
for i = 1 5*4 bal = bal + bal*int
bal - 1000
346.855007

exit

The outline of a typical bs program:

initialize things:
varl = 1
open("read", "infile", "r")

compute:
while ? (str = read)

next
clean up:
close ("read")

last statement executed (exit or stop):
exit
last input line:
run

Input/Output examples:

October 1983

Copy "oldfile" to "newfile".
open ("read", "oldfile", "r")
open ("write", "newfile", "w")

while ? (write = read)

close "read" and "write":

- 9 -

BS(1)

close ("read")
close (" wri te")

Pipe between commands.
open("ls", "!ls *", "r")
open("pr", "!pr -2 -h 'List"', "w")
while ? (pr = Is) ...

be sure to close (wait for) these:
close ("Is")
close (" pr")

BS (1)

EXAMPLE
bs program 1 2 3

compiles and/ or executes the file named "program" as well as statements
typed from standard input. The arguments "1", "2," and "3" are passed as
arguments to the compiled/executed program.

SEE ALSO
ed(1), sh(1), tplot(1G), access(2), printf(3S), stdio(3S), plot(4).
See Section 3 of this volume for further description of the mathematical
functions (pow on exp(3M) is used for exponentiation); bs uses the Stan­
dard Input/Output package.

October 1983 - 10 -

CAL(I) CAL (I)

NAME
cal - print calendar

SYNOPSIS
cal [month] year

DESCRIPTION
Cal prints a calendar for the specified year. If a month is also specified, a
calendar just for that month is printed. Year can be between 1 and 9999.
The month is a number between 1 and 12. The calendar produced is that
for England and her colonies.

EXAMPLE

BUGS

cal 9 1752

produces a calendar for September 1752.

The year is always considered to start in January even though this is histor­
ically naive.
Beware that "cal 78" refers to the early Christian era, not the 20th century.

October 1983 - 1 -

CALENDAR (1) CALENDAR (1)

NAME
calendar - reminder service

SYNOPSIS
calendar [-]

DESCRIPTION
Calendar consults the file calendar in the current directory and prints out
lines that contain today's or tomorrow's date anywhere in the line. Most
reasonable month-day dates such as "Dec. 7," "december 7," "1217,"
etc., are recognized, but not "7 December' or "7112". On weekends
"tomorrow" extends through Monday.

When an argument is present, calendar does its job for every user who has
a file calendar in their login directory and sends them any positive results
by rnai/O), Normally this is done daily by facilities in the UNIX operating
system under control of cron OM).

EXAMPLE

FILES

If the user has the following line, among other lines containing date infor­
mation, in the file "calendar" in the login directory:

Monday, September 6 Labor Day Holiday

typing in

calendar

either on the Friday before or on the specified Monday will cause this line
to be printed on the screen.

calendar
lusrllib/calprog to figure out today's and tomorrow's dates
I etcl passwd
Itmp/cal*
lusr/lib/crontab

SEE ALSO
maiI(l).

BUGS
Your calendar must be public information for you to get reminder service.
Calendar's extended idea of "tomorrow" does not account for holidays.

October 1983 - 1 -

CAT(l)

NAME
cat - concatenate and print files

SYNOPSIS
cat [- u] [- s] file ...

DESCRIPTION

CAT (I)

Cat reads each file in sequence and writes it on the standard output.

If no input file is given, or if the argument - is encountered, cat reads
from the standard input file. Output is buffered unless the -u option is
specified. The - s option makes cat silent about non-existent files. No
input file may be the same as the output file unless it is a special file.

EXAMPLE
cat file

prints the file, and:

cat filel file2 > file3

concatenates the first two files and places the result in the third.

WARNING
Command formats such as

cat filel file2 > filel
will cause the original data in file 1 to be lost, therefore, take care when
using shell special characters.

SEE ALSO
cpO), prO).

July 1984 - 1 -

CB (1) CB (1)

NAME
cb - C program beautifier

SYNOPSIS
cb [- s] [- j 1 [-I leng 1 [file ...]

DESCRIPTION
Cb reads C programs either from its arguments or from the standard input
and writes them on the standard output with spacing and indentation that
displays the structure of the code. Under default options, eb preserves all
user new-lines. Under the - s flag eb canonicalizes the code to the style of
Kernighan and Ritchie in The C Programming Language. The - j flag
causes split lines to be put back together. The -I flag causes eb to split
lines that are longer than [eng.

EXAMPLE
If there is a C program called test.e which looks like this:

#define COMING 1
#define GOING 0

main 0
{
/* This is a test of the C Beautifier */
if (COMING)
printf ("Hello, world\n");
else
printf ("Goodbye, world\n");
}

Then using the eb command as shown below produces the output shown:
cb test.c
#define COMING 1
#define GOING 0

main 0
{

/* This is a test of the C Beautifier * /
if (COMING)

printf ("Hello, world\n");
else

printf ("Goodbye, world\n");

SEE ALSO
ccO) .

BUGS

The C Programming Language by B. W. Kernighan and D. M. Ritchie.

Punctuation that is hidden in preprocessor statements will cause indentation
errors.

October 1983 - 1 -

CC(I) CC (1)

NAME
cc - C compiler

SYNOPSIS
cc [option] ... file

DESCRIPTION
Cc is the UNIX C compiler.

Cc accepts several types of arguments:

Arguments whose names end with '.c' are taken to be C source programs;
they are compiled, and each object program is left on the file whose name
is that of the source with' .0' substituted for' .c'. The' .0' file is normally
deleted if a single C program is compiled and loaded.

In the same way, arguments whose names end with '.s' are taken to be
assembly source programs and are assembled, producing a '.0' file.

The following options are interpreted by cc. See Id(1) for link editor
options.

-c Suppress the link edit phase of the compilation, and force an
object file to be produced even if only one program is compiled.

- n Passed on to ld to make the text of the resulting program
shared.

- p Arrange for the compiler to produce code which counts the
number of times each routine is called; also, if link editing takes
place, replace the standard startup routine by one which
automatically calls monitor(3C) at the start and arranges to write
out a mon.out file at normal termination of execution of the
object program. An execution profile can then be generated by
use of proj(1).

-fsky Use the sky floating point library.

-O(BKPS)

-R (addr)

-S

-E

-P

July 1984

Invoke an object-code improver (optimizer). If B is specified,
"jump to subroutine" instructions are changed to "branch to
subroutine" instructions (where possible). If K is specified, cer­
tain UNIX kernel optimizer functions are not performed. If P is
specified, stack probe instructions are removed. (Note: P
should only be used for the operating system source.) If S is
specified, stack frame optimization is performed and the
debugger, adb (1), might indicate too few subroutine parameters
on stack trace back.

Pass on to ld, making the resulting object module origined at
addr(hex).

Compile the named C programs, and leave the assembler­
language output on corresponding files suffixed' .s'.

Run only cpp (1) on the named C programs, and send the result
to standard output.

Run only the macro preprocessor on the named C programs,
and send the result to the corresponding files suffixed. 'j'

- 1 -

CC(l) CC(l)

- C Prevent the macro preprocessor from eliding (leaving out) com­
ments.

-0 output Name the final executable output file output. If this option is
used the file "a.out" will be left undisturbed.

-Dname=def
- D name Define the name to the preprocessor, as if by #define. If no

definition is given, the name is defined as "1".

- U name Remove any initial definition of name.

- I dir #include files whose names do not begin with 'I' are always
sought first in the directory of the file argument, then in direc­
tories named in - I options, then in the directory lusr/include.

-v print the name of each subprocess as it is executing.

Other arguments are taken to be either link editor option arguments, or C­
compatible object programs, typically produced by an earlier cc run, or
perhaps libraries of C-compatible routines. These programs, together with
the results of any compilations specified, are linked via ld (I) (in the order
given) to produce an executable program with name a.out.

EXAMPLE

FILES

cc -0 output prog1.c prog2.c prog3.c

would compile code in the three named C programs and put the compiled
code into the file "output".

file.c
file.o
a.out
Itmp/ctm?
llib/cpp
llib/c
!lib/cO
llib/d
llib/c2
llib/crtO.o
llib/mcrtO.o
llib/libc.a
lusrlinclude
llib/libm.a
llib!libsky.a
llibl crtOsky.o
llib/mcrtOsky.o

input file
object file
linked output
temporary
preprocessor
combined compiler pass 1 and pass2
compiler passl
compiler pass2
optional optimizer invoked with "-0"
runtime startoff
runtime startoff for profiling
standard library, see section 3
standard directory for '#include' files
math library
sky floating point routines
runtime startoff using sky
runtime startoff for profiling using sky

SEE ALSO
adb(l), Id(I), lint(I), proHl), monitor(3C)
The C Programming Language, Prentice-Hall, 1978, by B. W. Kernighan and
D. M. Ritchie; Programming in C-a tutorial, by B. W. Kernighan; C Refer­
ence Manual, by D. M. Ritchie

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self-explanatory.
Occasional messages may be produced by the assembler or the link editor.
Confusing syntax may cause the C compiler to indicate an error on the line
following the actual error.

July 1984 - 2 -

CD(I) CD (I)

NAME
cd - change working directory

SYNOPSIS
cd [directory]

DESCRIPTION
If directory is not specified, the value of shell parameter SHOME is used as
the new working directory. If directory specifies a complete path starting
with /, ., .. , directory becomes the new working directory. If neither case
applies, cd tries to find the designated directory relative to one of the paths
specified by the SCDPATH shell variable. SCDPATH has the same syntax
as, and similar semantics to, the SPATH shell variable. Cd must have exe­
cute (search) permission in directory.

Because a new process is created to execute each command, cd would be
ineffective if it were written as a normal command; therefore, it is recog­
nized and internal to the shell.

EXAMPLE
cd /unisoft/usr/games

would relocate you to the directory /unisoft/usr/games if this directory is
executable (searchable) by you.

SEE ALSO
pwd(1), sh(1), chdir(2).

October 1983 - 1 -

CDC (1) CDC (1)

NAME
cdc - change the delta commentary of an sees delta

SYNOPSIS
cdc -rSID [-m[mrlistJJ [-y[commentJJ files

DESCRIPTION
Cdc changes the delta commentary, for the SID specified by the - r
key letter , of each named sees file.

Delta commentary is defined to be the Modification Request (MR) and com­
ment information normally specified via the delta (1) command (- m and
- y key letters) .

If a directory is named, cdc behaves as though each file in the directory
were specified as a named file, except that non-sees files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read (see
WARNINGS); each line of the standard input is taken to be the name of an
sees file to be processed.

Arguments to cdc, which may appear in any order, consist of keyletter argu­
ments, and file names.

All the described keyletter arguments apply independently to each named
file:

'-rSID

-m[mrlist]

October 1983

Used to specify the sees IDentification (SID) string
of a delta for which the delta commentary is to be
changed.

If the sees file has the v flag set (see admin (1» then
a list of MR numbers to be added and/or deleted in
the delta commentary of the SID specified by the - r
key letter may be supplied. A null MR list has no
effect.

MR entries are added to the list of MRs in the same
manner as that of delta (1). In order to delete an
MR, precede the MR number with the character !
(see EXAMPLE). If the MR to be deleted is currently
in the list of MRs, it is removed and changed into a
"comment" line. A list of all deleted MRs is placed
in the comment section of the delta commentary and
preceded by a comment line stating that they were
deleted.

If - m is not used and the standard input is a termi­
nal, the prompt MRs? is issued on the standard out­
put before the standard input is read; if the standard
input is not a terminal, no prompt is issued. The
MRs? prompt always precedes the comments?
prompt (see - y key letter).

MRs in a list are separated by blanks and/or tab char­
acters. An unescaped new-line character terminates
the MR list.

Note that if the v flag has a value (see admin (1», it
is taken to be the name of a program (or shell

- 1 -

CDC (1) CDC (1)

procedure) which validates the correctness of the MR
numbers. If a non-zero exit status is returned from
the MR number validation program, cdc terminates
and the delta commentary remains unchanged.

- y [comment1 Arbitrary text used to replace the comment(s) already
existing for the delta specified by the - r keyletter.
The previous comments are kept and preceded by a
comment line stating that they were changed. A null
comment has no effect.

If - Y is not specified and the standard input is a ter­
minal, the prompt comments? is issued on the stan­
dard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued.
An unescaped new-line character terminates the com­
ment text.

The exact permissions necessary to modify the sees file are docu­
mented in the Source Code Control System User's Guide. Simply
stated, they are either (1) if you made the delta, you can change its
delta commentary; or (2) if you own the file and directory you can
modify the delta commentary.

EXAMPLE
cdc -r1.6 -m"bI78-12345 !bl77-54321 bI79-00001" -ytrouble
s.file

adds b178-12345 and b179-00001 to the MR list, removes b177-54321 from
the MR list, and adds the comment trouble to delta 1.6 of s.file.

cdc - r1.6 s.file
MRs? !bI77-54321 b178-12345 b179-00001
comments? trouble

does the same thing.

WARNINGS

FILES

If sees file names are supplied to the cdc command via the standard input
(- on the command line), then the - m and - y keyletters must also be
used.

x-file (see delta 0»
z-file (see delta 0»

SEE ALSO
admin (1), delta(1), get(1), helpO), prsO), sccsfile(4).
"Source Code Control System User's Guide"

DIAGNOSTICS
Use help 0) for explanations.

October 1983 - 2 -

CFLOW(I) CFLOW (I)

NAME
cflow - generate C flow graph

SYNOPSIS
cftow [- r1 [- ix] [- iJ [- dnum] files

DESCRIPTION
Cjfow analyzes a collection of C, Y ACC, LEX, assembler, and object files
and attempts to build a graph charting the external references. Files
suffixed in .y, .I, .c, and .i are Y ACC'd, LEX'd, and C-preprocessed
(bypassed for .i files) as appropriate and then run through the first pass of
IindI). (The - I, - D, and - U options of the C-preprocessor are also
understood.) Files suffixed with .s are assembled and information is
extracted (as in .0 files) from the symbol table. The output of all this
non-trivial processing is collected and turned into a graph of external refer­
ences which is displayed upon the standard output.

Each line of output begins with a reference (i.e., line) number, followed by
a suitable number of tabs indicating the level. Then the name of the global
(normally only a function not defined as an external or beginning with an
underscore; see below for the - i inclusion option) a colon and its
definition. For information extracted from C source, the definition consists
of an abstract type declaration (e.g., char .), and, delimited by angle brack­
ets, the name of the source file and the line number where the definition
was found. Definitions extracted from object files indicate the file name
and location counter under which the symbol appeared (e.g., text). Leading
underscores in C-style external names are deleted.

Once a definition of a name has been printed, subsequent references to that
name contain only the reference number of the line where the definition
may be found. For undefined references, only < > is printed.

When the nesting level becomes too deep, the - e option of pr (I) can be
used to compress the tab expansion to something less than every eight
spaces.

The following options are interpreted by cjfow:

July 1984

- r Reverse the "caller:callee" relationship producing an inverted list­
ing showing the callers of each function. The listing is also sorted
in lexicographical order by callee. .

- ix Include external and static data symbols. The default is to include
only functions in the flow graph.

- i_ Include names that begin with an underscore. The default is to
exclude these functions (and data if -ix is used).

-dnum The num decimal integer indicates the depth at which the flow
graph is cut off. By default this is a very large number. Attempts
to set the cutoff depth to a nonpositive integer will be met with
contempt.

- 1 -

CFLOW(I) CFLOW (I)

EXAMPLE
Given the following in "file.c":

int

mainO
{

fO
{

}

the command:

i' ,

fO;
gO;
fO;

i = hO;

cflow file.c

produces the the output:

1 main: intO, <file.c 4>
2 f: intO, <file.c 11 >
3 h: <>
4 g: <>

DIAGNOSTICS
Complains about bad options. Complains about multiple definitions and
only believes the first. Other messages may come from the various pro­
grams used (e.g., the C-preprocessor).

SEE ALSO

BUGS

asO), cc(t), lexO), lintO), nmO), prO), yacc(t).

Files produced by lexO) and yaeeO) cause the reordering of line number
declarations which can confuse eflow. To get proper results, feed eflow the
yaee or lex input.

July 1984 - 2 -

CHMOD(I) CHMOD (I)

NAME
chmod - change mode

SYNOPSIS
chmod mode files

DESCRIPTION
The permissions of the named files are changed according to mode, which
may be absolute or symbolic. An absolute mode is an octal number con­
structed from the OR of the following modes:

4000 set user ID on execution
2000 set group ID on execution
1000 sticky bit, see chmod (2)
0400 read by owner
0200 write by owner
01 00 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:

[who] op permission [op permission]

The who part is a combination of the letters u (for user's permissions), g
(group) and ° (other). The letter a stands for ugo, the default if who is
omitted.

Op can be + to add permission to the file's mode, - to take away permis­
sion, or = to assign permission absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (write), x (exe­
cute), s (set owner or group m) and t (save text, or sticky) ~ u, g, or 0 indi­
cate that permission is to be taken from the current mode. Omitting permis­
sion is only useful with = to take away all permissions.

Multiple symbolic modes separated by commas may be given. Operations
are performed in the order specified. The letter s is only useful with u or g
and t only works with u.

Only the owner of a file (or the super-user) may change its mode.

EXAMPLE
chmod 755 filename

changes the mode of "filename" to: read, write, execute (400+200+ 100)
by owner; read, execute (40+ 10) for group~ read, execute (4+ 1) for oth­
ers. An Is -I of filename shows [-rwxr-xr-x filename] that the requested
mode is in effect.

chmod = filename

will take away all permissions from filename, including yours.

chmod o-w file

denies write permission to others.

chmod +x file

makes a file executable.

SEE ALSO
Is (1), chmod (2) .

October 1983 - 1 -

CHOWN(l)

NAME
chown, chgrp - change owner or group

SYNOPSIS
chown owner file .. .

chgrp group file .. .

DESCRIPTION

CHOWN(l)

Chown changes the owner of the files to owner. The owner may be either a
decimal user ID or a login name found in the password file.

Chgrp changes the group ID of the files to group. The group may be either
a decimal group ID or a group name found in the group file.

EXAMPLE
chown unisoft filea fileb filec

would make "unisoft" the owner of the three files.

FILES
/ etc/ passwd
/etc/group

SEE ALSO
chown(2), group(4), passwd(4).

October 1983 - 1 -

CLEAR(l)

NAME
clear - clear terminal screen

SYNOPSIS
clear

DESCRIPTION

(UniSoft) CLEAR(l)

Clear clears your screen if this is possible. It looks in the environment for
the terminal type (TERM) and capabilities string (TERMCAP). If
TERMCAP is not found in the environment, it looks in /etc/termcap to
figure out how to clear the screen.

EXAMPLE

FILES

clear

clears the screen.

/etc/termcap terminal capability data base

SEE ALSO
environ(4), termcap(5)

July 1984 - 1 -

CMP(1) CMP(t)

NAME
cmp - compare two files

SYNOPSIS
cmp [-I] [- s] file 1 file2

DESCRIPTION
The two files are compared. (If filel is -, the standard input is used.)
Under default options, cmp makes no comment if the files are the same; if
they differ, it announces the byte and line number at which the difference
occurred. If one file is an initial subsequence of the other, that fact is
noted.

Options:

-I Print the byte number (decimal) and the differing bytes (octal) for
each difference.

- s Print nothing for differing files; return codes only.

EXAMPLE
cmp alpha beta

will report if the files are different and at what point they differ, such as:

alpha beta differ: char 33, line 2

SEE ALSO
comm(1), diff(1).

DIAGNOSTICS
Exit code 0 is returned for identical files, 1 for different files, and 2 for an
inaccessible or missing argument.

October 1983 - 1 -

COLO) COLO)

NAME
col - filter reverse line-feeds

SYNOPSIS
col [-bfpx]

DESCRIPTION
Col reads from the standard input and writes onto the standard output. It
performs the line overlays implied by reverse line feeds (ASCII code
ESC-7), and by forward and reverse half-line-feeds (ESc-9 and ESC-8).
Col is particularly useful for filtering multicolumn output made with the .rt
command of nroff and output resulting from use of the tbl (1) preprocessor.

If the - b option is given, col assumes that the output device in use is not
capable of backspacing. In this case, if two or more characters are to
appear in the same place, only the last one read will be output.

Although col accepts half-line motions in its input, it normally does not
emit them on output. Instead, text that would appear between lines is
moved to the next lower full-line boundary. This treatment can be
suppressed by the - f (fine) option; in this case, the ou tpu t from col may
contain forward half-line-feeds (ESC-9), but will still never contain either
kind of reverse line motion.

Unless the - x option is given, col will convert white space to tabs on out­
put wherever possible to shorten printing time.

The ASCII control characters so (\017) and SI (\016) are assumed by col to
start and end text in an alternate character set. The character set to which
each input character belongs is remembered, and on output SI and SO char­
acters are generated as appropriate to ensure that each character is printed
in the correct character set.

On input, the only control characters accepted are space, backspace, tab,
return, new-line, SI, SO, VT (\013), and ESC followed by 7, 8, or 9. The
VT character is an alternate form of full reverse line-feed, included for
compatibility with some earlier programs of this type. All other non­
printing characters are ignored.

Normally, col will ignore any unknown to it escape sequences found in its
input; the - p option may be used to cause col to output these sequences as
regular characters, subject to overprinting from reverse line motions. The
use of this option is highly discouraged unless the user is fully aware of the
textual position of the escape sequences.

EXAMPLE
nroff -ms filea I col

pipes multicolumn nroff output through the col filter to enable proper crea­
tion of columns.

SEE ALSO

NOTES

nroff(1), tbl (1).

The input format accepted by col matches the output produced by nroff
with either the - T37 or - Tip options. Use - T37 (and the - f option of
col) if the ultimate disposition of the output of col will be a device that can
interpret half-line motions, and - Tip otherwise.

October 1983 - I -

COLO)

BUGS

COLO)

Cannot back up more than 128 lines.
Allows at most 800 characters, including backspaces, on a line.
Local vertical motions that would result in backing up over the first line of
the document are ignored. As a result, the first line must not have any
superscripts.

October 1983 - 2 -

COMB (1) COMB (1)

NAME
comb - combine sees deltas

SYNOPSIS
comb [- 0] [- s] [- psid] [- clist1 files

DESCRIPTION
Comb generates a shell procedure (see sh (I» which, when run, will recon­
struct the given sees files. The reconstructed files will, hopefully, be
smaller than the original files. The arguments may be specified in any
order, but all key letter arguments apply to all named sees files. If a direc­
tory is named, comb behaves as though each file in the directory were
specified as a named file, except that non-sees files (last component of the
path name does not begin with s.) and unreadable files are silently ignored.
If a name of - is given, the standard input is read; each line of the stan­
dard input is taken to be the name of an sees file to be processed; non­
sees files and unreadable files are silently ignored.

The generated shell procedure is written on the standard output.

The key letter arguments are as follows. Each is explained as though only
one named file is to be processed, but the effects of any key letter argument
apply independently to each named file.

- pSID The sees IDentification string (SID) of the oldest delta to be
preserved. All older deltas are discarded in the reconstructed file.

-clist A list (see get(I) for the syntax of a list) of deltas to be preserved.
All other deltas are discarded.

- 0 For each get - e generated, this argument causes the reconstructed
file to be accessed at the release of the delta to be created, other­
wise the reconstructed file would be accessed at the most recent
ancestor. Use of the - 0 key letter may decrease the size of the
reconstructed sees file. It may also alter the shape of the delta
tree of the original file.

- s This argument causes comb to generate a shell procedure which,
when run, will produce a report giving, for each file: the file name,
size (in blocks) after combining, original size (also in blocks), and
percentage change computed by:

100 • (original - combined) / original
It is recommended that before any sees files are actually com­
bined, one should use this option to determine exactly how much
space is saved by the combining process.

If no keyletter arguments are specified, comb will preserve only leaf deltas
and the minimal number of ancestors needed to preserve the tree.

EXAMPLE

FILES

comb s.filel > tmpl

produces a shell script saved in "tmpl" which will remove from the sces­
format file, "s.file!", all deltas previous to the last set of changes, i.e.,
removes the capability to return to earlier versions.

s.eOMB
comb?????

The name of the reconstructed sees file.
Temporary.

October 1983 - I -

COMB (I)

SEE ALSO
admin(I), delta(I), get(I), help(I), prs(I), sccsfile(4).
"Source Code Control System User's Guide"

DIAGNOSTICS
Use help (I) for explanations.

BUGS

COMB(I)

Comb may rearrange the shape of the tree of deltas. It may not save any
space; in fact, it is possible for the reconstructed file to actually be larger
than the original.

October 1983 - 2 -

COMM(l) COMM(l)

NAME
comm - select or reject lines common to two sorted files

SYNOPSIS
comm [- [123]] file! file2

DESCRIPTION
Comm reads filel and file 2, which should be ordered in ASCII collating
sequence (see sort (1», and produces a three-column output: lines only in
filel; lines only in file2; and lines in both files. The file name - means the
standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus
comm -12 prints only the lines common to the two files; comm - 23
prints only lines in the first file but not in the second; comm -123 is a no­
op.

EXAMPLE
comm -12 filea fileb

prints only the lines common to filea and fileb.

comm -23 filea fileb

prints only lines in the first file but not in the second.

comm -123 filea fileb

is not an option, as it suppresses all output.

comm -3 filea fileb

prints only the lines that differ in the two files.

SEE ALSO
cmp(1), diff(1), sort(1), uniq(1).

October 1983 - 1 -

CP(l) CP(l)

NAME
cp, In, mv - copy, link or move files

SYNOPSIS
cp file I [file2 .. .1 target
In filel [file2 .. .1 target
mv filel [file2 .. .1 target

DESCRIPTION
Filel is copied Oinked, moved) to target. Under no circumstance can filel
and target be the same (take care when using sh 0) metacharacters). If tar­
get is a directory, then one or more files are copied Oinked, moved) to that
directory.

If mv determines that the mode of target forbids writing, it will print the
mode (see chmod (2» and read the standard input for one line Of the stan­
dard input is a terminal); if the line begins with y, the move takes place; if
not, mv exits.

Only mv will allow filel to be a directory, in which case the directory
rename will occur only if the two directories have the same parent.

EXAMPLE
cp alpha beta gamma / unisoft/ roxanne

places copies of the three files in the directory /unisoft/roxanne.

SEE ALSO

BUGS

cpio(l), rm(l), chmod(2).

If filel and target lie on different file systems, mv must copy the file and
delete the original. In this case the owner name becomes that of the copy­
ing process and any linking relationship with other files is lost.

Ln will not link across file systems.

October 1983 - I -

CPIO (1) CPIO (1)

NAME
cpio - copy file archives in and out

SYNOPSIS
cpio -0 [acBv]

cpio - i [BcdmrtuvfsSb6] [patterns]

cpio - p [adlmruv] directory

DESCRIPTION
Cpio - 0 (copy out) reads the standard input to obtain a list of path names
and copies those files onto the standard output together with path name
and status information.

Cpio - i (copy in) extracts files from the standard input which is assumed
to be the product of a previous cpio - o. Only files with names that match
patterns are selected. Patterns are given in the name-generating notation of
sh (1). In patterns, meta-characters?, *, and 1 .. .1 match the slash / charac­
ter. Multiple patterns may be specified and if no patterns are specified, the
default for patterns is * (i.e., select all files). The extracted files are condi­
tionally created and copied into the current directory tree based upon the
options described below.

Cpio - p (pass) reads the standard input to obtain a list of path names of
files that are conditionally created and copied into the destination directory
tree based upon the options described below.

The meanings of the available options are:

a Reset access times of input files after they have been copied.
B Input/output is to be blocked 5,120 bytes to the record (does not apply

to the pass option; meaningful only with data directed to or from
/dev/rmt?).

d Directories are to be created as needed.
c Write header information in ASCII character form for portability.
r Interactively rename files. If the user types a null line, the file is

skipped.
Print a table of contents of the input. No files are created.

u Copy unconditionally (normally, an older file will not replace a newer file
with the same name).

v Verbose: causes a list of file names to be printed. When used with the t
option, the table of contents looks like the output of an Is -I com­
mand (see Is (1».
Whenever possible, link files rather than copying them. Usable only
with the - p option.

m Retain previous file modification time. This option is ineffective on
directories that are being copied.

f Copy in all files except those in patterns.
s Swap bytes. Use only with the - i option.
S Swap halfwords. Use only with the - i option.
b Swap both bytes and halfwords. Use only with the - i option.
6 Process an old (i.e., UNIX System Sixth Edition format) file. Only use­

ful with - i (copy in).

EXAMPLE
Is I cpio -0 >/dev/mtO

October 1983 - 1 -

CPIO (1) CPIO (1)

copies the contents of a directory into an archive;

cd olddir
find . - depth - print I cpio - pdl newdir

duplicates a directory hierarchy.

The trivial case "find. -depth -print I cpio -oB >/dev/rmtO" can be
handled more efficiently by:

find. -cpio Idev/rmtO

SEE ALSO

BUGS

ar(1), findO), cpio (4).

Path names are restricted to 128 characters. If there are too many unique
linked files, the program runs out of memory to keep track of them and,
thereafter, linking information is lost. Only the super-user can copy special
files. The -B option does not work with certain magnetic tape drives.

October 1983 - 2 -

CPP(I) CPP(1)

NAME
cpp - the C language preprocessor

SYNOPSIS
/lib/ cpp [option ...] [HUe [ofile]]

DESCRIPTION
Cpp is the C language preprocessor which is invoked as the first pass of any
C compilation using the cc(1) command. Thus the output of cpp is
designed to be in a form acceptable as input to the next pass of the C com­
piler. As the C language evolves, cpp and the rest of the C compilation
package will be modified to follow these changes. Therefore, the use of cpp
other than in this framework is not suggested. The preferred way to invoke
cpp is through the cc (1) command since the functionality of cpp may some­
day be moved elsewhere. See m4(1) for a general macro processor.

Cpp optionally accepts two file names as arguments. lfile and ofile are
respectively the input and output for the preprocessor. They default to
standard input and standard output if not supplied.

The following options to cpp are recognized:

- P Preprocess the input without producing the line control information
used by the next pass of the C compiler and leave the result in
ifile.o.

- E Preprocess the input and put the resulting output on the standard
output.

- C By default, cpp strips C-style comments. If the - C option is
specified, all comments (except those found on cpp directive lines)
are passed along.

-Uname
Remove any initial definition of name, where name is a reserved
symbol that is predefined by the particular preprocessor. The
current list of these possibly reserved symbols includes:

operating system: ibm, gcos, os, tss, unix
hardware: interdata, m68000, pdpll, u370, u3b, vax
UNIX System variant: RES, RT

-Dname
-Dname=deJ

Define name as if by a #define directive. If no =deJ is given, name
is defined as 1.

- I dir Change the algorithm for searching for #include files whose names
do not begin with / to look in dir before looking in the directories
on the standard list. Thus, #include files whose names are enclosed
in "" will be searched for first in the directory of the i./i/e argument,
then in directories named in - I options, and last in directories on a
standard list. For #include files whose names are enclosed in < > ,
the directory of the ifile argument is not searched.

Two special names are understood by cpp. The name LINE is defined
as the current line number (as a decimal integer) as-known -by cpp, and
__ FILE __ is defined as the current file name (as a C string) as known by
cpp. They can be used anywhere (including in macros) just as any other
defined name.

July 1984 - 1 -

CPP(I) CPP(l)

All cpp directives start with lines begun by #. The directives are:

#define name token-string
Replace subsequent instances of name with token-string.

#define name(arg, ••• , arg) token-string
Notice that there can be no space between name and the {, Replace
subsequent instances of name followed by a (, a list of comma
separated tokens, and a) by- token-string where each occurrence of an
arg in the token-string is replaced by the corresponding token in the
comma separated list.

#undef name
Cause the definition of name (if any) to be forgotten from now on.

#include "filename"
#include <filename>

Include at this point the contents of filename (which will then be run
through cpp). When the <filename> notation is used, filename is
only searched for in the standard places. See the - I option above
for more detail.

#line integer-constant "filename"
Causes cpp to generate line control information for the next pass of
the C compiler. Integer-constant is the line number of the next line
and filename is the file where it comes from. If "filename" is not
given, the current file name is unchanged.

#endif
Ends a section of lines begun by a test directive (#if, #ifdef, or
#ifndef). Each test directive must have a matching #endif.

#ifdef name
The lines following will appear in the output if and only if name has
been the subject of a previous #define without being the subject of
an intervening #undef.

#ifndef name
The lines following will not appear in the output if and only if name
has been the subject of a previous #define without being the subject
of an intervening #undef.

#if constant-expression

#else

Lines following will appear in the output if and only if the constant­
expression evaluates to non-zero. All binary non-assignment C
operators, the ?: operator, the unary -, !, and - operators are all
legal in constant-expression. The precedence of the operators is the
same as defined by the C language. There is also a unary operator
defined, which can be used in constant-expression in these two forms:
defined (name) or defined name. This allows the utility of #ifdef
and #ifndef in a #if directive. Only these operators, integer con­
stants, and names which are known by cpp should be used in
constant-expression. In particular, the sizeof operator is not available.

Reverses the notion of the test directive which matches this direc­
tive. So if lines previous to this directive are ignored, the following
lines will appear in the output. And vice versa.

July 1984 - 2 -

Cpp (1) Cpp (I)

The test directives and the possible #else directives can be nested.

EXAMPLE

FILES

llib/cpp - P - DXYZ - DMYFILE=myfile - I..linclude myprog.c myprog.i

would preprocess "myprog.c" input output file "myprogj", deleting output
line numbers (- P), defining symbol XYZ to be null, symbol MYFILE to be
"myfile" and using include files from .. /include.

lusrlinclude standard directory for #include files

SEE ALSO
ccO), m40).

DIAGNOSTICS

NOTES

The error messages produced by cpp are intended to be self-explanatory.
The line number and filename where the error occurred are printed along
with the diagnostic.

When newline characters were found in argument lists for macros to be
expanded, previous versions of cpp put out the newlines as they were
found and expanded. The current version of cpp replaces these newlines
with blanks to alleviate problems that the previous versions had when this
occurred.

July 1984 - 3 -

CRYPT (I) CRYPT(I)

NAME
crypt - encode/ decode

SYNOPSIS
crypt [password]

DESCRIPTION
Crypt reads from the standard input and writes on the standard output.
The password is a key that selects a particular transformation. If no pass­
word is given, crypt demands a key from the terminal and turns off printing
while the key is being typed in. Crypt encrypts and decrypts with the same
key:

crypt key < clear > cypher
crypt key < cypher I pr

will print the clear.

Files encrypted by crypt are compatible with those treated by the editor ed
in encryption mode.

The security of encrypted files depends on three factors: the fundamental
method must be hard to solve; direct search of the key space must be
infeasible; "sneak paths" by which keys or clear text can become visible
must be minimized.

Crypt implements a one-rotor machine designed along the lines of the Ger­
man Enigma, but with a 256-element rotor. Methods of attack on such
machines are known, but not widely; moreover the amount of work
required is likely to be large.

The transformation of a key into the internal settings of the machine is
deliberately designed to be expensive, i.e. to take a substantial fraction of a
second to compute. However, if keys are restricted to (say) three lower­
case letters, then encrypted files can be read by expending only a substan­
tial fraction of five minutes of machine time.

Since the key is an argument to the crypt command, it is potentially visible
to users executing ps(1) or a derivative. To minimize this possibility, crypt
takes care to destroy any record of the key immediately upon entry. The
choice of keys and key security are the most vulnerable aspect of crypt.

EXAMPLE

FILES

crypt asa < sleeper.c > zzz

will use the string "asa" as key to the encryption algorithm to encrypt the
contents of "sleeper.c", and place the encrypted output in file "zzz". File
"zzz" at this point will be unreadable. NOTE that the original file,
"sleeper.c", remains in readable form. To obtain readable print-out of the
file "zzz", it could be decoded as follows:

crypt < zzz

After the response:

Enter key:

the user types in "asa".

/dev/tty for typed key

October 1983 - 1 -

CRYPT(l) CRYPT(I)

SEE ALSO

BUGS

NOTE

ed (I), makekey (I) .

If output is piped to nroff and the encryption key is not given on the com­
mand line, crypt can leave terminal modes in a strange state (see stty (1)).
If two or more files encrypted with the same key are concatenated and an
attempt is made to decrypt the result, only the contents of the first of the
original files will be decrypted correctly.

This utility is not provided with international distribution.

July 1984 - 2 -

CSH (1) (UniSoft) CSH (1)

NAME
csh - a shell (command interpreter) with C-like syntax

SYNOPSIS
csh [-cefinstvVxX] [arg...]

DESCRIPTION
Csh is a command language interpreter incorporating a history mechanism
(see History Substitutions) and a C-like syntax.

An instance of csh begins by executing commands from the file ".cshrc" in
the home directory of the invoker. If this is a login shell, then it also exe­
cutes commands from the file ".login" there. It is typical for users on CRTs
to put the command stty crt in their" .login" file, and to also invoke tset (1)
there.

In the normal case, the shell will then begin reading commands from the
terminal, prompting with "%". Processing of arguments and the use of the
shell to process files containing command scripts will be described later.

The shell then repeatedly performs the following actions: a line of com­
mand input is read and broken into words. This sequence of words is
placed on the command history list and then parsed. Finally each com­
mand in the current line is executed.

When a login shell terminates, it executes commands from the file" .logout"
in the user's home directory.

Lexical Structure
The shell splits input lines into words at blanks and tabs with the following
exceptions. The characters &, I, ;, <, >, (,), form separate words. If
doubled in &&, II, < < or > >, these pairs form single words. These
parser metacharacters may be made part of other words, or their special
meaning may be prevented, by preceding them with a backslash (\). A
newline preceded by a \ is equivalent to a blank. It is usually necessary to
use the backslash to escape the parser metacharacters when you want to use
them literally rather than as metacharacters.

Strings enclosed in matched pairs of quotation marks, either single or dou­
ble quotation marks, " ' or ", form parts of a word. Metacharacters in
these strings, including blanks and tabs, do not form separate words. Such
quotations have semantics to be described subsequently.

Within pairs of single or double quotation marks, a newline (carriage
return) preceded by a \ gives a true newline character. This is used to set
up a file of strings separated by newlines, as for jgrep (1).

When the shell's input is not a terminal, the character # introduces a com­
ment which continues to the end of the input line. It is prevented from
having this special meaning when preceded by \ or if bracketed by a pair of
single or double quotation marks.

Commands
A simple command is a sequence of words, the first of which specifies the
command to be executed.

A simple command or a sequence of simple commands separated by I char­
acters forms a pipeline. The output of each command in a pipeline is con­
nected to the input of the next.

October 1983 - 1 -

CSH (1) (UniSoft) CSH (1)

Sequences of pipelines may be separated by ;, and are then executed
sequentially. A sequence of pipelines may be executed without immedi­
ately waiting for it to terminate by following it with an &, which means
"run it in background".

Parentheses (and) around a pipeline or sequence of pipelines cause the
whole series to be treated as a simple command, which may in turn be a
component of a pipeline, etc. It is also possible to separate pipelines with II
or && indicating, as in the C language, that the second is to be executed
only if the first fails or succeeds, respectively. (See Expressions.)

Process ID Numbers
When a process is run in background with &, the shell prints a line which
looks like:

1234

indicating that the process which was started asynchronously was number
1234.

Status Reporting
This shell learns immediately whenever a process changes state. It nor­
mally informs you whenever a job becomes blocked so that no further pro­
gress is possible, but only just before it prints a prompt. This is done so
that it does not otherwise disturb your work.

To check on the status of a process, use the ps (process status) command.

Substitutions
We now describe the various transformations the shell performs on the
input in the order in which they occur.

History substitutions

History substitutions place words from previous command input as portions
of new commands, making it easy to repeat commands, repeat arguments
of a previous command in the current command, or fix spelling mistakes in
the previous command with little typing and a high degree of confidence.

History substitutions begin with the character! and may begin anywhere in
the input stream (with the proviso that they do not nest.)

This! may be preceded by a \ to turn off its special meaning; for conveni­
ence, a ! is also passed unchanged when it is followed by a blank, tab, new­
line, = or (.

Therefore, do not put a space after the ! and the command reference when
you are invoking the shell's history mechanism. (History substitutions also
occur when an input line begins with l. This special abbreviation will be
described later.)

An input line which invokes history substitution is echoed on the terminal
before it is executed, as it would look if typed out in full.

The shell's history list, which may be seen by typing the history command,
contains all commands input from the terminal which consist of one or
more words. History substitutions reintroduce sequences of words from
these saved commands into the input stream. The history variable controls
the size of the input stream. The previous command is always retained,
regardless of its value. Commands are numbered sequentially from 1.

October 1983 - 2 -

CSH (1) (UniSoft)

Consider the following output from the history command:

9 write michael
10 ex write.c
11 cat oldwrite.c
12 diff *write.c

CSH (1)

The commands are shown with their event numbers. It is not usually
necessary to use event numbers, but the current event number can be
made part of the prompt by placing an ! in the prompt string. This is done
by SETting Prompt = ! and the prompt character of your choice.

For example, if the current event is number 13, we can call up the com­
mand recorded as event 11 in several ways: !-2 [i.e., 13-2]; by the first
letter of one of its command words, such as !c referring to the "c" in cat; or
!wri for event 9, or by a string contained in a word in the command as in
!?mic? also referring to event 9.

These forms, without further modification, simply reintroduce the words of
the specified events, each separated by a single blank. As a special case !!
refers to the previous command; thus !! alone is essentially a redo.

Words are selected from a command event and acted upon according to the
following formula:

eventposition:action

The event is the command you wish to retrieve. As mentioned above, it
may be summoned up by event number and in several other ways. All that
the event notation does is to tell the shell which command you have in
mind.

Position picks out the words from the command event on which you want
the action to take place. The position notation can do anything from alter­
ing the command completely to making some very minor substitution,
depending on which words from the command event you specify with the
position notation.

To select words from a command event, follow the event specification with
a : and a designator (by position) for the desired words.

The words of a command event are picked out by their position in the
input line. Positions are numbered from 0, the first word (usually com­
mand) being position 0, the second word having position 1, and so forth.
If you designate a word from the command event by stating its position,
means you want to include it in your revised command. All the words that
you want to include in a revised command must be designated by position
notation in order to be included.

The basic position designators are:

o first (command) word
n nth argument
1 first argument, i.e., 1
$ last argument
% matches the word of an ?s? search which immediately precedes

it; used to strip one word out of a command event for use in
another command. Example: !?four?:%:p prints four.

October 1983 - 3 -

CSH(1) (UniSoft) CSH(t)

x- y range of words (e.g., 1-3 means "from position 1 to position 3").
- y abbreviates "0- y
* stands for "T - $", or indicates position 1 if only one word in

event.
x* abbreviates" x- $" where

x is a position number.
x- like "x*" but omitting last word "$"

The : separating the event specification from the word designator can be
omitted if the argument selector begins with aT, $, *, - or %.

Modifiers, each preceded by a :, may be used to act on the designated
words in the specified command event. The following modifiers are
defined:

h Remove a trailing pathname component, leaving the
head.
Remove a trailing ".xxx" component, leaving the root
name.

e. Remove all but the extension" .xxx" part.
s/ old/ new/ Substitute new for old

Remove all leading pathname components, leaving the
tail.

& Repeat the previous substitution.
g Apply the change globally, prefixing the above, e.g., "g&".
p Print the new command but do not execute it.
q Quote the substituted words, preventing further substitu­

tions.
x Like q, but break into words at blanks, tabs and newlines.

Unless preceded by a "g", the modification is applied only to the first
modifiable word. With substitutions it is an error for no word to be appli­
cable.

The left hand side of substitutions are not regular expressions in the sense
of the editors, but rather strings. Any character may be used as the delim­
iter in place of /; a \ quotes the delimiter into the I and r strings. The
character & in the right hand side is replaced by the text from the left. A
\ quotes & also. A null I uses the previous string either from a I or from
a contextual scan string s in !? s? The trailing delimiter in the substitution
may be omitted if (but only if) a newline follows immediately as may the
trailing ? in a contextual scan.

A history reference may be given without an event specification, e.g., !$.
In this case the reference is to the previous command. If a previous history
reference occurred on the same line, this form repeats the previous refer­
ence. Thus !?foo?l !$ gives the first and last arguments from the com­
mand matching ?foo?

You can quickly make substitutions to the previous command line by using
the T character as the first non-blank character of an input line. This is
equivalent to !:sl providing a convenient shorthand for substitutions on
the text of the previous line. Thus llbtlib fixes the spelling of "lib" in the
previous command. Finally, a history substitution may be surrounded with
{ and} if necessary to insulate it from the characters which follow. Thus,
after Is -Id -paul we might do !{I}a to do Is -Id -paula, while !la would
look for a command starting la-.

October 1983 - 4 -

CSH (1) (UniSoft) CSH (1)

Quotations with ' and "

The quotation of strings by , and" can be used to prevent all or some of
the remaining substitutions which would otherwise take place if these char­
acters were interpreted as "metacharacters" or "wild card matching charac­
ters". Strings enclosed in single quotes, ' are prevented any further
interpretation or expansion. Strings enclosed in " may still be variable and
command expanded as described below.

In both cases the resulting text becomes (all or part of) a single word; only
in one special case (see Command Substitution below) does a " quoted string
yield parts of more than one word; , quoted strings never do.

Alias substitution

The shell maintains a list of aliases which can be established, displayed and
modified by the alias and una lias commands. After a command line is
scanned, it is parsed into distinct commands and the first word of each
command, left-to-right, is checked to see if it has an alias. If it does, then
the text which is the alias for that command is reread with the history
mechanism available as though that command were the previous input line.
The resulting words replace the command and argument list. If no refer­
ence is made to the history list, then the argument list is left unchanged.

Thus if the alias for Is is Is -I the command Is /usr would map to
Is -l/usr, the argument list here being undisturbed. Similarly if the alias
for lookup was grep !f /etc/passwd, then lookup bill would map to grep
bill /etc/passwd.

If an alias is found, the word transformation of the input text is performed
and the aliasing process begins again on the reformed input line. Looping
is prevented if the first word of the new text is the same as the old by
flagging it to prevent further aliasing. Other loops are detected and cause
an error.

Note that the mechanism allows aliases to introduce parser metasyntax.
Thus we can alias print 'pr \!. I Ipr' to make a command which prs its
arguments to the line printer.

Variable substitution

The shell maintains a set of variables, each of which has as value a list of
zero or more words. Some of these variables are set by the shell or
referred to by it. For instance, the argv variable is an image of the shell's
argument list, and words of this variable's value are referred to in special
ways.

The values of variables may be displayed and changed by using the set and
unset commands. Of the variables referred to by the shell a number are
toggles; the shell does not care what their value is, only whether they are
set or not. For instance, the verbose variable is a toggle which causes com­
mand input to be echoed. The setting of this variable results from the - v
command line option.

Other operations treat variables numerically. The @ command permits
numeric calculations to be performed and the result assigned to a variable.
Variable values are, however, always represented as (zero or more) strings.
For the purposes of numeric operations, the null string is considered to be
zero, and the second and subsequent words of multiword values are
ignored.

October 1983 - 5 -

CSH (1) (UniSoft) CSH (1)

After the input line is alia sed and parsed, and before each command is exe­
cuted, variable substitution is performed keyed by $ characters. This
expansion can be prevented by preceding the $ with a \ except within dou­
ble quotes (") where it always occurs, and within single quotes (') where it
never occurs. Strings quoted by , are interpreted later (see Command sub­
stitution below) so $ substitution does not occur there until later, if at all.
A $ is passed unchanged if followed by a blank, tab, or end-of-line.

Input/output redirections are recognized before variable expansion, and are
variable expanded separately. Otherwise, the command name and entire
argument list are expanded together. It is thus possible for the first (com­
mand) word to this point to generate more than one word, the first of
which becomes the command name, and the rest of which become argu­
ments.

Unless enclosed in double quotes or given the :q modifier, the results of
variable substitution may eventually be command and filename substituted.
Within double quotes, a variable whose value consists of multiple words
expands to a (portion of) a single word, with the words of the variables
value separated by blanks. When the :q modifier is applied to a substitu­
tion, the variable will expand to mUltiple words with each word separated
by a blank and quoted to prevent later command or filename substitution.

Metasequences for variable substitution

The following metasequences are provided for introducing variable values
into the shell input. Except as noted, it is an error to reference a variable
which is not set.

$name
, ${name}

Are replaced by the words of the value of variable name, each
separated by a blank. Braces insulate name from following characters
which would otherwise be part of it. Shell variables have names con­
sisting of up to 20 letters and digits starting with a letter. The under­
score character is considered a letter.

If name is not a shell variable, but is set in the environment, then that
value is returned (but : modifiers and the other forms given below are
not available in this case).

$name[selectorl
${name[selectorl }

May be used to select only some of the words from the value of
name. The selector is subjected to $ substitution and may consist of a
single number or two numbers separated by a -. The first word of a
variables value is numbered "1". If the first number of a range is
omitted it defaults to "1". If the last member of a range is omitted it
defaults to "$#name". The selector * selects all words. It is not an
error for a range to be empty if the second argument is omitted or in
range.

$#name
${#name}

$0

October 1983

Gives the number of words in the variable. This is useful for later
use in a "[selector]".

Substitutes the name of the file from which command input is being

- 6 -

CSH (1) (UniSoft)

read. An error occurs if the name is not known.

$number
${number}

Equivalent to "$argv[number]".

Equivalent to "$argv[*]".

CSH(I)

The modifiers ":h", ":t", ":r", ":q" and ":x" may be applied to the substitu­
tions above as may ":gh", ":gt" and ":gr". If braces { } appear in the com­
mand form, then the modifiers must appear within the braces. The current
implementation allows only one : modifier on each $ expansion.

The following substitutions may not be modified with : modifiers.

$?name
${?name}

Substitutes the string "1" if name is set, "0" if it is not.

$?O
Substitutes "1" if the current input filename is known, "0" if it is not.

$$
Substitute the (decimal) process number of the (parent) shell.

Command and filename substitution

The remaining substitutions, command and filename substitution, are
applied selectively to the arguments of builtin commands. This means that
portions of expressions which are not evaluated are not subjected to these
expansions. For commands which are not internal to the shell, the com­
mand name is substituted separately from the argument list. This occurs
very late, after input-output redirection is performed, and in a child of the
main shell.

Command substitution

Command substitution is indicated by a command enclosed in' The out­
put from such a command is normally broken into separate words at
blanks, tabs and new lines, with null words being discarded, this text then
replacing the original string. Within double quotes ("), only newlines force
new words; blanks and tabs are preserved.

In any case, the single final newline does not force a new word. Note that
it is thus possible for a command substitution to yield only part of a word,
even if the command outputs a complete line.

Filename substitution

If a word contains any of the characters *, ?, [or { or begins with the
character -, then that word is a candidate for filename substitution, also
known as "globbing". This word is then regarded as a pattern, and replaced
with an alphabetically sorted list of file names which match the pattern. In
a list of words specifying filename substitution it is an error for no pattern
to match an existing file name, but it is not required for each pattern to
match. Only the metacharacters *, ? and [imply pattern matching, the
characters - and { being more akin to abbreviations.

In matching filenames, the character . at the beginning of a filename or
immediately following a /, as well as the character / must be matched
explicitly. The character * matches any string of characters, including the

October 1983 - 7 -

CSH(1) (UniSoft) CSH (1)

null string. The character ? matches any single character. The sequence
L..J matches anyone of the characters enclosed. Within L..l, a pair of
characters separated by - matches any character lexically between the two.

The character - at the beginning of a filename is used to refer to home
directories. Standing alone, i.e., - it expands to the invokers home direc­
tory as reflected in the value of the variable home. When followed by a
name consisting of letters, digits and - characters, the shell searches for a
user with that name and substitutes their home directory~ thus -ken might
expand to lusr/ken and -ken/chmach to lusr/ken/chmach. If the charac­
ter - is followed by a character other than a letter or / or appears not at
the beginning of a word, it is left undisturbed.

The metanotation a{b,c,d}e is a shorthand for abeaceade. Left to right
order is preserved, with results of matches being sorted separately at a low
level to preserve this order. This construct may be nested. Thus
-source/sl/{oldls,ls}.c expands to lusrlsource/sllo1dls.c
lusrlsource/s1l1s.c whether or not these files exist without any chance of
error if the home directory for source is lusrlsource. Similarly
.'/{memo,*box} might expand to . ./memo . ./box . ./mbox. (Note that
"memo" was not sorted with the results of matching ""'box".) As a special
case {, } and {} are passed undisturbed.

Input/output

The standard input and standard output of a command may be redirected
with the following syntax:

< name
Open file name (which is first variable, command and filename
expanded) as the standard input.

< < word
Read the shell input up to a line which is identical to word. Word is
not subjected to variable, filename or command substitution, and
each input line is compared to word before any substitutions are
done on this input line. Unless a quoting \, ", ' or ' appears in
word, variable and command substitution is performed on the inter­
vening lines, allowing \ to quote $, \ and '. Commands which are
substituted have all blanks, tabs, and new lines preserved, except
for the final newline which is dropped. The resultant text is placed
in an anonymous temporary file which is given to the command as
standard input.

> name
>! name
>& name
>&! name

The file name is used as standard output. If the file does not exist
then it is created; if the file exists, it is truncated, its previous con­
tents being lost.

If the variable noclobber is set, then the file must not exist or be a
character special file (e.g., a terminal or Idev/null) or an error
results. This helps prevent accidental destruction of files. In this
case the! forms can be used and suppress this check.

The forms involving &, route the diagnostic output into the
specified file as well as the standard output. Name is expanded in

October 1983 - 8 -

CSH (1) (UniSoft)

the same way as < input filenames are.

» name
»& name
»! name
»&! name

CSH(t)

Uses file name as standard output like > but places output at the
end of the file. If the variable noclobber is set, then it is an error
for the file not to exist unless one of the ! forms is given. Other­
wise similar to >.

A command receives the environment in which the shell was invoked as
modified by the input-output parameters and the presence of the command
in a pipeline. Thus, unlike some previous shells, commands run from a file
of shell commands have no access to the text of the commands by default;
rather they receive the original standard input of the shell. The < <
mechanism should be used to present in line data. This permits shell com­
mand scripts to function as components of pipelines and allows the shell to
block read its input.

Diagnostic output may be directed through a pipe with the standard output.
Simply use the form 1& rather than just I.
Expressions

A number of the builtin commands (to be described subsequently) take
expressions, in which the operators are similar to those of C, with the same
precedence. These expressions appear in the @, exit, if, and while com­
mands. The following operators are available:

II && I l & = = ! = =- !- < = > = < > < < > > + -
*I%!-()

Here the precedence increases to the right, = =, ! =, = - and !-; < = ,
> =, < and >; < < and > >; + and -; *, I and % being, in groups,
at the same level. The = =, ! =, = - and !- operators compare their argu­
ments as strings; all others operate on numbers. The operators = - and !­
are like ! = and = = except that the right hand side is a pattern (contain­
ing, e.g., * s, ? s and instances of [, . .1) against which the left hand operand
is matched. This reduces the need for use of the switch statement in shell
scripts when all that is really needed is pattern matching.

Strings which begin with "0" are considered octal numbers. Null or missing
arguments are considered "0". The result of all expressions are strings,
which represent decimal numbers. It is important to note that no two com­
ponents of an expression can appear in the same word; except when adja­
cent to components of expressions which are syntactically significant to the
parser (& I < > (» they should be surrounded by spaces.

Also available in expressions as primitive operands are command execu­
tions enclosed in { and } and file enquiries of the form -I name where I is
one of:

read access
w write access
x
e
o

execute access
existence
ownership

October 1983 - 9 -

CSH(1)

z zero size
f plain file
d directory

(UniSoft) CSH (1)

The specified name is command and filename expanded and then tested to
see if it has the specified relationship to the real user. If the file does not
exist or is inaccessible, then all enquiries return false, i.e., "0". Command
executions succeed, returning true, i.e., "1", if the command exits with
status 0, otherwise they fail, returning false, i.e., "0". If more detailed
status information is required, then the command should be executed out­
side of an expression and the variable status examined.

Control Flow
The shell contains a number of commands which can be used to regulate
the flow of control in command files (shell scripts) and (in limited but use­
ful ways) from terminal input. These commands all operate by forcing the
shell to reread or skip in its input and, due to the implementation, restrict
the placement of some of the commands.

The joreach, switch, and while statements, as well as the if-then -else form
of the if statement require that the major keywords appear in a single sim­
ple command on an input line as shown below.

If the shell's input is not seekable, the shell buffers up input whenever a
loop is being read and performs seeks in this internal buffer to accomplish
the rereading implied by the loop. (To the extent that this allows, back­
ward gotos will succeed on non-seekable inputs.)

Builtin Commands
Builtin commands are executed within the shell. If a builtin command
occurs as any component of a pipeline except the last, then it is executed in
a subshell.

alias
alias name
alias name wordlist

The first form prints all aliases. The second form prints the alias for
name. The final form assigns the specified wordlist as the alias of
name; wordlist is command and filename substituted. Name is not
allowed to be alias or una lias.

break
Causes execution to resume after the end of the nearest enclosing
joreach or while. The remaining commands on the current line are
executed. Multi-level breaks are thus possible by writing them all on
one line.

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
A label in a switch statement as discussed below.

cd
cd name
cbdir
chdir name

Change the shells working directory to directory name. If no argu­
ment is given, then change to the home directory of the user.

October 1983 - 10 -

CSH (1) (UniSoft) CSH (1)

If name is not found as a subdirectory of the current directory (and
does not begin with /, .I or .. f), then each component of the variable
cdpath is checked to see if it has a subdirectory name. Finally, if all
else fails but name is a shell variable whose value begins with /, then
this is tried to see if it is a directory.

continue
Continue execution of the nearest enclosing while or joreach. The
rest of the commands on the current line are executed.

default:
Labels the default case in a switch statement. The default should
come after all case labels.

echo wordlist
echo - n wordlist

The specified words are written to the shells standard output,
separated by spaces, and terminated with a newline unless the - n
option is specified.

else
end
endif
endsw

See the description of the joreach, if, switch, and while statements
below.

exec command
The specified command is executed in place of the current shell.

exit
exit (expr)

The shell exits either with the value of the status variable (first form)
or with the value of the specified expr (second form).

foreach name (wordlist)

end
The variable name is successively set to each member of wordlist and
the sequence of commands between this command and the matching
end are executed. (Both joreach and end must appear alone on
separate lines.)

The builtin command continue may be used to continue the loop
prematurely and the builtin command break to terminate it prema­
turely. When this command is read from the terminal, the loop is
read up once prompting with ? before any statements in the loop are
executed. If you make a mistake typing in a loop at the terminal, you
can rub it out.

glob wordlist
Like echo but no \ escapes are recognized and words are delimited by
null characters in the output. Useful for programs which wish to use
the shell to filename expand a list of words.

goto word
The specified word is filename and command expanded to yield a
string of the form "label". The shell rewinds its input as much as pos­
sible and searches for a line of the form "label:" possibly preceded by

October 1983 - 11 -

CSH(1) (UniSoft) CSH (1)

blanks or tabs. Execution continues after the specified line.

history
Displays the history event list.

if (expr) command
If the specified expression evaluates true, then the single command
with arguments is executed. Variable substitution on command hap­
pens early, at the same time it does for the rest of the if command.
Command must be a simple command, not a pipeline, a command list,
or a parenthesized command list. Input/output redirection occurs
even if expr is false, when command is not executed (this is a bug).

if (expr) then

else if (expr2) then

else

endif
If the specified expr is true, then the commands to the first else are
executed; else if expr2 is true, then the commands to the second else
are executed, etc. Any number of else-if pairs are possible; only one
endif is needed. The else part is likewise optional. (The words else
and endif must appear at the beginning of input lines; the if must
appear alone on its input line or after an else,)

kill pid
kill - sig pid ...

login

Sends either the TERM (terminate) signal or specified signal to the
specified processes. Signals are either given by number or names (as
in /usr/include/signal.h, stripped of the prefix SIG). There is no
default, saying "kill" does not send a signal to the current process. If
the signal being sent is TERM (terminate) or HUP (hangup), then the
job or process will be sent a CONT (continue) signal as well.

Terminate a login shell, replacing it with an instance of /bin/login.
This is one way to log off, included for compatibility with sh(I).

logout
Terminate a login shell. Especially useful if ignoreeof is set.

newgrp

nice

changes the group identification of its caller resulting in the access
permissions being calculated with respect to the new group ID.

nice + number
nice command
nice +number command

The first form sets the nice for this shell to 4. The second form sets
the nice to the given number. The final two forms run command at
priority 4 and number respectively. The super-user may specify nega­
tive niceness by using nice - number Command is always exe­
cuted in a sub-shell, and the restrictions place on commands in simple
if statements apply.

nohup
nohup command

The first form can be used in shell scripts to cause hangups to be

July 1984 - 12 -

CSH(l) (UniSoft) CSH(t)

ignored for the remainder of the script. The second form causes the
specified command to be run with hangups ignored. All processes
detached with & are effectively nohuped.

onintr
onintr -
onintr label

Control the action of the shell on interrupts. The first form restores
the default action of the shell on interrupts which is to terminate shell
scripts or to return to the terminal command input level. The second
form onintr - causes all interrupts to be ignored. The final form
causes the shell to execute a goto label when an interrupt is received
or a child process terminates because it was interrupted.

In any case, if the shell is running detached and interrupts are being
ignored, all forms of onintr have no meaning and interrupts continue
to be ignored by the shell and all invoked commands.

rehash
Causes the internal hash table of the contents of the directories in the
path variable to be recomputed. This is needed if new commands are
added to directories in the path while you are logged in. This should
only be necessary if you add commands to one of your own direc­
tories, or if a systems programmer changes the contents of one of the
system directories.

repeat count command

set

The specified command which is subject to the same restrictions as the
command in the one line if statement above, is executed count times.
1/0 redirections occur exactly once, even if count is O.

set name
set name = word
set name [index] = word
set name = (wordlist)

The first form of the command shows the value of all shell variables.
Variables which have other than a single word as value print as a
parenthesized word list. The second form sets name to the null string.
The third form sets name to the single word. The fourth form sets
the indexth component of name to word; this component must already
exist. The final form sets name to the list of words in wordlist. In all
cases the value is command and filename expanded.

These arguments may be repeated to set multiple values in a single set
command. Note, however, that variable expansion happens for all
arguments before any setting occurs.

setenv name value

shift

Sets the value of environment variable name to be value, a single
string. The variable PATH is automatically imported to and exported
from the csh variable path; there is no need to use setenv for these.

shift variable

October 1983

The members of argv are shifted to the left, discarding argv[1]. It is
an error for argv not to be set or to have less than one word as value.
The second form performs the same function on the specified

- 13 -

CSH (1) (UniSoft) CSH(1)

variable.

source name
The shell reads commands from name. Source commands may be
nested; if they are nested too deeply, the shell may run out of file
descriptors. An error in a source at any level terminates all nested
source commands. Input during source commands is never placed on
the history list.

switch (string)
case strl:

breaksw

default:

breaksw
endsw

time

Each case label is successively matched against the specified string
which is first command and filename expanded. The file metacharac­
ters *, ? and L .. 1 may be used in the case labels, which are variable
expanded. If none of the labels match before a "default" label is
found, then the execution begins after the default label. Each case
label and the default label must appear at the beginning of a line. The
command breaksw causes execution to continue after the endsw. Oth­
erwise control may fall through case labels and default labels as in C.
If no label matches and there is no default, execution continues after
the endsw.

time command
With no argument, a summary of time used by this shell and its chil­
dren is printed. If arguments are given, the specified simple command
is timed and a time summary as described under the time variable is
printed. If necessary, an extra shell is created to print the time statis­
tic when the command completes.

umask
umask value

The file creation mask is displayed (first form) or set to the specified
value (second form). The mask is given in octal. Common values for
the mask are 002 giving all access to the group and read and execute
access to others or 022 giving all access except no write access for
users in the group or others.

unalias pattern
All aliases whose names match the specified pattern are discarded.
Thus all aliases are removed by unalias*. It is not an error for noth­
ing to be unaliased.

unhash
Use of the internal hash table to speed location of executed programs
is disabled.

unset pattern

October 1983

All variables whose names match the specified pattern are removed.
Thus all variables are removed by unset*; this has noticeably

- 14 -

CSH (l)

wait

(UniSoft) CSH (1)

distasteful side-effects. It is not an error for nothing to be unset.

All background jobs are waited for. If the shell is interactive, then an
interrupt can disrupt the wait, at which time the shell prints names
and job numbers of all jobs known to be outstanding.

while (expr)

end

@

While the specified expression evaluates non-zero, the commands
between the while and the matching end are evaluated. Break and
continue may be used to terminate or continue the loop prematurely.
(The while and end must appear alone on their input lines.) Prompting
occurs here the first time through the loop as for the foreach state­
ment if the input is a terminal.

@ name = expr
@ name [index] = expr

The first form prints the values of all the shell variables. The second
form sets the specified name to the value of expr. If the expression
contains <, >, & or I, then at least this part of the expression must
be placed within (). The third form assigns the value of expr to the
indexth argument of name. Both name and its indexth component
must already exist.

The operators *=, + =, etc., are available as in C. The space
separating the name from the assignment operator is optional. Spaces
are, however, mandatory in separating components of expr which
would otherwise be single words.

Special postfix + + and - - operators increment and decrement
name respectively, i.e., @ i + + .

Pre-defined and Environment Variables
The following variables have special meaning to the shell. Of these, argv,
home, path, prompt, shell and status are always set by the shell. Except for
status, this setting occurs only at initialization; these variables will not then
be modified unless this is done explicitly by the user.

This shell copies the environment variable USER into the variable user,
TERM into term, and HOME into home, and copies these back into the
environment whenever the normal shell variables are reset. The environ­
ment variable PATH is likewise handled; it is not necessary to worry about
its setting other than in the file" .cshrc" as inferior csh processes will import
the definition of path from the environment, and re-export it if you then
change it.

argv

cdpath

echo

October 1983

Set to the arguments to the shell, it is from this variable that
positional parameters are substituted, i.e., "$1" is replaced by
"$argv[1]", etc.

Gives a list of alternate directories searched to find subdirec­
tories in chdir commands.

Set when the - x command line option is given. Causes each
command and its arguments to be echoed just before it is exe­
cuted. For non-builtin commands all expansions occur before

- 15 -

CSH(1) (UniSoft) CSH(t)

echoing. Builtin commands are echoed before command and
filename substitution, since these substitutions are then done
selectively.

history Can be given a numeric value to control the size of the history
list. Any command which has been referenced in this many
events will not be discarded. Too large values of history may
run the shell out of memory. The last executed command is
always saved on the history list.

home The home directory of the invoker, initialized from the
environment. The filename expansion of "-,, refers to this
variable.

ignoreeof If set the shell ignores end-of-file from input devices which
are terminals. This prevents shells from accidentally being
killed by control-Ds.

mail The files where the shell checks for mail. This is done after
each command completion which will result in a prompt, if a
specified interval has elapsed. The shell says "You have new
mail." if the file exists with an access time not greater than its
modify time.

If the first word of the value of mail is numeric, it specifies a
different mail checking interval, in seconds, than the default,
which is 10 minutes.

If multiple mail files are specified, then the shell says "New
mail in name when there is mail in the file name.

noclobber As described in the section on Input/output, restrictions are
placed on output redirection to insure that files are not
accidentally destroyed, and that > > redirections refer to
existing files.

noglob If set, filename expansion is inhibited. This is most useful in
shell scripts which are not dealing with filenames, or after a
list of filenames has been obtained and further expansions are
not desirable.

nonomatch If set, it is not an error for a filename expansion to not match
any existing files; rather the primitive pattern is returned. It is
still an error for the primitive pattern to be malformed, i.e.,
"echo [" still gives an error.

path Each word of the path variable specifies a directory in which
commands are to be sought for execution. A null word
specifies the current directory. If there is no path variable,
then only full path names will execute. The usual search path
is ., Ibin and lusr/bin, but this may vary from system to sys­
tem. For the super-user the default search path is fete, Ibin
and lusr/bin. A shell which is given neither the - e nor the
- t option will normally hash the contents of the directories in
the path variable after reading ".cshrc", and each time the path
variable is reset. If new commands are added to these direc­
tories while the shell is active, it may be necessary to give the
rehash or the commands may not be found.

October 1983 - 16 -

CSH (I)

prompt

shell

status

time

(UniSoft) CSH (I)

The string which is printed before each command is read from
an interactive terminal input. If a ! appears in the string, it
will be replaced by the current event number unless a preced­
ing \ is given. Default is %, or # for the super-user.

The file in which the shell resides. This is used in forking
shells to interpret files which have execute bits set, but which
are not executable by the system. (See the description of
Non-builtin Command Execution below.) Initialized to the
(system-dependent) home of the shell.

The status returned by the last command. If it terminated
abnormally, then 0200 is added to the status. Builtin com­
mands which fail return exit status "1", all other builtin com­
mands set status "0".

Controls automatic timing of commands. If set, then any
command which takes more than this many cpu seconds will
cause a line giving user, system, and real times and a utiliza­
tion percentage which is the ratio of user plus system times to
real time to be printed when it terminates.

verbose Set by the - v command line option, causes the words of each
command to be printed after history substitution.

Non-builtin Command Execution
When a command to be executed is found not to be a builtin command,
the shell attempts to execute the command via exec (2). Each word in the
variable path names a directory from which the shell will attempt to execute
the command. If it is given neither a - c nor a - t option, the shell will
hash the names in these directories into an internal table so that it will only
try an exec in a directory if there is a possibility that the command resides
there. This greatly speeds command location when a large number of
directories are present in the search path. If this mechanism has been
turned off (via unhash), or if the shell was given a -c or -t argument,
and in any case for each directory component of path which does not begin
with a I, the shell concatenates with the given command name to form a
path name of a file which it then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus (cd ;
pwd) ; pwd prints the home directory; leaving you where you were (printing
this after the home directory), while cd ; pwd leaves you in the home direc­
tory. Parenthesized commands are most often used to prevent chdir from
affecting the current shell.

If the file has execute permissions but is not an executable binary to the
system, then it is assumed to be a file containing shell commands an a new
shell is spawned to read it.

If there is an alias for shell, then the words of the alias will be prepended
to the argument list to form the shell command. The first word of the alias
should be the full path name of the shell (e.g., "$shell"). Note that this is a
special, late occurring, case of alias substitution, and only allows words to
be prepended to the argument list without modification.

Argument List Processing
If argument 0 to the shell is -, then this is a login shell. The flag argu­
ments are interpreted as follows:

October 1983 - 17 -

CSH (1) (UniSoft) CSH(1)

- c Commands are read from the (single) following argument which
must be present. Any remaining arguments are placed in argv.

- e The shell exits if any invoked command terminates abnormally or
yields a non-zero exit status.

- f The shell will start faster, because it will neither search for nor exe­
cute commands from the file" .cshrc" in the invokers home direc­
tory.

- i The shell is interactive and prompts for its top-level input, even if
it appears to not be a terminal. Shells are interactive without this
option if their inputs and outputs are terminals.

-n Commands are parsed, but not executed. This may aid in syntactic
checking of shell scripts.

- s Command input is taken from the standard input.

-t A single line of input is read and executed. A \ may be used to
escape the newline at the end of this line and continue onto
another line.

-v Causes the verbose variable to be set, with the effect that command
input is echoed after history substitution.

- x Causes the echo variable to be set, so that commands are echoed
immediately before execution.

- V Causes the verbose variable to be set even before ".cshrc" is exe-
cuted.

- X Is to - x as - V is to - v.

After processing of flag arguments, if arguments remain but none of the
-c, -i, -s, or -t options was given, the first argument is taken as the
name of a file of commands to be executed. The shell opens this file, and
saves its name for possible resubstitution by "$0". Remaining arguments
initialize the variable argv.

Signal Handling
The shell normally ignores quit signals. Processes running in background
(by &) are immune to signals generated from the keyboard, including
hangups. Other signals have the values which the shell inherited from its
parent. The shells handling of interrupts and terminate signals in shell
scripts can be controlled by onintr. Login shells catch the terminate signal;
otherwise this signal is passed on to children from the state in the shell's
parent. In no case are interrupts allowed when a login shell is reading the
file" .logout".

EXAMPLE

FILES

csh

creates a new shell which will accept shell commands with Berkeley exten­
sions.

-I.cshrc
-I.login
-/.logout
Ibin/sh
Itmp/sh*

Read at beginning of execution by each shell.
Read by login shell, after" .cshrc" at login.
Read by login shell, at logout.
Standard shell, for shell scripts not starting with a #.
Temporary file for < < .

October 1983 - 18 -

CSH (I) (UniSoft) CSH (1)

/etc/passwd Source of home directories for "-name".

LIMIT A TIONS
Words can be no longer than 1024 characters. The system limits argument
lists to 5120 characters. The number of arguments to a command which
involves filename expansion is limited to 1I6th the number of characters
allowed in an argument list. Command substitutions may substitute no
more characters than are allowed in an argument list. To detect looping,
the shell restricts the number of alias substitutions on a single line to 20.

SEE ALSO

BUGS

sh(I), access(2) , exec(2), fork(2), pipe(2), signaI(2), umask(2), wait(2),
a.out(4), environ(4)
An Introduction to the C Shell, by William Joy.

It suffices to place the sequence of commands in 0 s to force it to a sub­
shell, i.e., "(a ; b ; c)".

Control over tty output after processes are started is primitive; perhaps this
will inspire someone to work on a good virtual terminal interface. In a vir­
tual terminal interface much more interesting things could be done with
output control.

Alias substitution is most often used to clumsily simulate shell procedures;
shell procedures should be provided rather than aliases.

Commands within loops, prompted for by ?, are not placed in the history
list. Control structure should be parsed rather than being recognized as
built-in commands. This would allow control commands to be placed any­
where, to be combined with I, and to be used with & and; metasyntax.

It should be possible to use the: modifiers on the output of command sub­
stitutions. All and more than one : modifier should be allowed on $ sub­
stitutions.

AUTHOR
William Joy.

October 1983 - 19 -

CSPLIT(I) CSPLIT (1)

NAME
csplit - context split

SYNOPSIS
csplit [- s] [- k] [- f prefix) file arg1 [.•. argn]

DESCRIPTION
Csplit reads file and separates it into n + 1 sections, defined by the argu­
ments argi . •• argn. By default the sections are placed in xxOO ... xxn
(n may not be greater than 99). These sections get the following pieces of
file:

00: From the start of file up to (but not including) the line refer­
enced by arg i.

01: From the line referenced by argi up to the line referenced by
arg2.

n + 1: From the line referenced by argn to the end of file.

The options to csplit are:

- s Csplit normally prints the character counts for each file
created. If the - s option is present, csplit suppresses the
printing of all character counts.

- k Csplit normally removes created files if an error occurs. If
the - k option is present, csplit leaves previously created
files intact.

- f prefIX If the - f option is used, the created files are named
prejixOO •.. prejixn. The default is xxOO ... xxn.

The arguments (arg1 ... argn) to csplit can be a combination of the fol­
lowing:

/ rexp/ A file is to be created for the section from the current line up
to (but not including) the line containing the regular expres­
sion rexp. The current line becomes the line containing rexp.
This argument may be followed by an optional + or - some
number of lines (e.g., /Page/ - 5).

%rexp% This argument is the same as / rexp/, except that no file is
created for the section.

Inno A file is to be created from the current line up to (but not
including) Inno. The current line becomes Inno.

{num} Repeat argument. This argument may follow any of the
above arguments. If it follows a rexp type argument, that
argument is applied num more times. If it follows Inno, the
file will be split every Inno lines (num times) from that point.

Enclose all rexp type arguments that contain blanks or other characters
meaningful to the Shell in the appropriate quotes. Regular expressions may
not contain embedded new-lines. Csplit does not affect the original file; it
is the users responsibility to remove it.

EXAMPLE
csplit -f cobol file '/procedure division!' /par5.1 /par16.1

creates four files, "cobolOO ... coboI03". After editing the split files, they
can be recombined as follows:

October 1983 - 1 -

CSPLIT(l) CSPLIT(l)

cat coboI0[0-3] > file

Note that this example overwrites the original file.

csplit - k file 100 {99}

splits the file at every 100 lines, up to 10,000 lines. The - k option causes
the created files to be retained if there are less than 10,000 lines; however,
an error message would still be printed.

csplit - k prog.c '%main(%' 'r}1 + l' {20}

assuming that "prog.c" follows the normal C coding convention of ending
routines with a } at the beginning of the line, this example will create a file
containing each separate C routine (up to 21) in "prog.c".

SEE ALSO
ed(I), sh(I), regexp(5).

DIAGNOSTICS
Self explanatory except for:

arg - out of range
which means that the given argument did not reference a line between the
current position and the end of the file.

October 1983 - 2 -

CT(iC) CT(lC)

NAME
ct - spawn getty to a remote terminal

SYNOPSIS
ct [- h] [- v] [- wn] [- sspeed] telno ...

DESCRIPTION
Ct dials the phone number of a modem that is attached to a terminal, and
spawns a getty process to that terminal. Telno is a telephone number, with
equal signs for secondary dial tones and minus signs for delays at appropri­
ate places. If more than one telephone number is specified, cl will try each
in succession until one answers; this is useful for specifying alternate dial­
ing paths.

Ct will try each line listed in the file lusr/Jib/uucp/L-devices until it finds
an available line with appropriate attributes or runs out of entries. If there
are no free lines, cl will ask if it should wait for one, and if so, for how
many minutes it should wait before it gives up. Ct will continue to try to
open the dialers at one-minute intervals until the specified limit is
exceeded. The dialogue may be overridden by specifying the - w n option,
where n is the maximum number of minutes that CI is to wait for a line.

Normally, ct will hang up the current line, so that that line can answer the
incoming call. The - h option will prevent this action. If the - v option is
used, cl will send a running narrative to the standard error output stream.

The data rate may be set with the - s option, where speed is expressed in
baud. The default rate is 300.

After the user on the destination terminal logs out, cl prompts, Recon­
nect? If the response begins with the letter n the line will be dropped; oth­
erwise, getty will be started again and the login: prompt will be printed.

Of course, the destination terminal must be attached to a modem that can
answer the telephone.

EXAMPLE

FILES

ct -w15 -s1200 644-1234

dials from the terminal the given modem phone number (644-1234),
spawning a login process at 1200 baud. If the dialer line is busy, ct will
continue to try to open the dialer at one-minute intervals for a total of 15
minutes (as set by the - w option).

/ usr / lib/ u ucp/ L-devices
/ usr / adm/ ctlog

SEE ALSO
cu(IC), 10gin(I), uucp(IC).

October 1983 - 1 -

CTAGS(l) (UniSoft) CTAGS (I)

NAME
ctags - maintain a tags file for a C program

SYNOPSIS
ctags [- a] [- u] [- w] [- x] name

DESCRIPTION
Ctags makes a tags file for ex(I) and vi(I) from the specified C, Fortran,
and Pascal sources.

A tags file gives the locations of specified objects (in this case functions) in
a group of files. Each line of the tags file contains the function name, the
file in which it is defined, and a scanning pattern used to find the function
definition. These are given in separate fields on the line, separated by
blanks or tabs. Using the tags file, ex can quickly find these function
definitions.

Options
The - a option causes the output to be appended to the tags file instead of
rewriting it.

The - u option causes the specified files to be updated in tags, that is, all
references to them are deleted, and the new values are appended to the file.
This option implies the - a option. (Beware: this option is implemented in
a way which is rather slow; it is usually faster to simply rebuild the tags
file.)

The - w option suppresses warning diagnostics.

If the - x flag is given, ctags produces a list of function names, the line
number and file name on which each is defined, as well as the text of that
line and prints this on the standard output.

Files whose name ends in ".c" or ".h" are assumed to be C source files and
are searched for C routine and macro definitions.

The tag main is treated specially in C programs. The tag formed is created
by prepending "M" to the name of the file, with a trailing ".c" removed, if
any, and leading pathname components also removed. This makes use of
ctags, practical in directories with more than one program.

EXAMPLE
ctags *.C *.h

puts the tags from all the" .c" and" .h" files into the tagsfile "tags".

FILES
tags output tags file

SEE ALSO
ex(I), vieD.

BUGS
Not all warning diagnostics are suppressed by - w.

AUTHOR
Ken Arnold

July 1984 - 1 -

CU (IC> CU(1C)

NAME
cu - call another UNIX System

SYNOPSIS
cu [-sspeed] [-lline] [-h] [-t] [-d] [-m] [-ol-e] telno I dir

DESCRIPTION
Cu calls up another UNIX system, a terminal, or possibly a non-UNIX sys­
tem. It manages an interactive conversation with possible transfers of
ASCII files. Speed gives the transmission speed (110, 150, 300, 600, 1200,
4800, 9600); 300 is the default value. Most of our modems are either 300
or 1200 baud. For dial out lines, cu will choose a modem speed (300 or
1200) as the slowest available which will handle the specified transmission
speed. Directly connected lines may be set to speeds higher than 1200
baud.

The -I value may be used to specify a device name for the communica­
tions line device to be used. This can be used to override searching for the
first available line having the right speed. The speed of a line is taken from
the file /usr/lib/uucp/L-devices, overriding any speed specified by the - s
option. The - h option emulates local echo, supporting calls to other com­
puter systems which expect terminals to be in half-duplex mode. The - t
option is used when dialing an ASCII terminal which has been set to auto­
answer. Appropriate mapping of carriage-returns to carriage-return-line­
feed pairs is set. The - d option cause diagnostic traces to be printed. The
- m option specifies a direct line which has modem control. The - e (- 0)
option designates that even (odd) parity is to be generated for data sent to
the remote. Telno is the telephone number, with equal signs for secondary
dial tone or minus signs for delays, at appropriate places. The string dir for
telno may be used for directly connected lines, and implies a null ACU.
Using dir insures that a line has been specified by the -I option.

Cu will try each line listed in the file /usr/lib/uucp/L-devices until it finds
an available line with appropriate attributes or runs out of entries. After
making the connection, cu runs as two processes: the transmit process reads
data from the standard input and, except for lines beginning with - , passes
it to the remote system; the receive process accepts data from the remote
system and, except for lines beginning with - , passes it to the standard
output. Normally, an automatic OC3/0Cl protocol is used to control input
from the remote so the buffer is not overrun. Lines beginning with - have
special meanings.

The transmit process interprets the following:

terminate the conversation.

-! escape to an interactive shell on the local system.

-!cmd... run cmd on the local system (via sh -c).

-$cmd... run cmd locally and send its output to the remote sys-
tem.

-%take from [to] copy file from (on the remote system) to file to on the
local system. If to is omitted, the from argument is
used in both places.

-%put from [to] copy file from (on local system) to file to on remote
system. If to is omitted, the from argument is used in
both places.

July 1984 - 1 -

CU (IC) CU (IC)

-O/onostop
send the line - ... to the remote system.

turn off the DC3/DCI input control protocol for the
remainder of the session. This is useful in case the
remote system is one which does not respond properly
to the DC3 and DCI characters,

The receive process normally copies data from the remote system to its
standard output. A line from the remote that begins with - > initiates an
output diversion to a file. The complete sequence is:

-> [>]: file
zero or more lines to be written to file
->

Data from the remote is diverted (or appended, if > > is used) to file.
The trailing - > terminates the diversion.

The use of -Ofoput requires stty(I) and cat(I) on the remote side. It also
requires that the current erase and kill characters on the remote system be
identical to the current ones on the local system. Backslashes are inserted
at appropriate places.

The use of -Ofotake requires the existence of echo (I) and cat{I) on the
remote system. Also, stty tabs mode should be set on the remote system
if tabs are to be copied without expansion.

EXAMPLE

FILES

cu -s 1200 777-8888

attempts to connect to the telephone line numbered "777-8888" at 1200
baud rate.

/usr/lib/uucp/L-devices
/usr/spool!uucp/LCK .. (tty-device)
/dev/null

SEE ALSO
cat(I), ct(IC), echo(I), stty(I), uucp(IC).

DIAGNOSTICS

BUGS

Exit code is zero for normal exit, non-zero (various values) otherwise.

Cu buffers input internally.
There is an artificial slowing of transmission by cu during the -Ofoput opera­
tion so that loss of data is unlikely.

July 1984 - 2 -

CUT(1) CUT(1)

NAME
cut - cut out selected fields of each line of a file

SYNOPSIS
cut - c list [file} fUe2 .. .J
cut -flist [-dchar] [-s] [file} file2 .. J

DESCRIPTION

HINTS

Use cut to cut out columns from a table or fields from each line of a file; in
data base parlance, it implements the projection of a relation. The fields as
specified by list can be fixed length, i.e., character positions as on a
punched card (- c option), or the length can vary from line to line and be
marked with a field delimiter character like tab (-f option). Cut can be
used as a filter; if no files are given, the standard input is used.

The meanings of the options are:

list A comma-separated list of integer field numbers Gn increasing
order), with optional - to indicate ranges as in the - 0 option of
nroff/ troff for page ranges; e.g., 1,4,7; 1-3,8; - 5,10 (short for
1-5,10); or 3 - (short for third through last field).

- c list The list following - c (no space) specifies character positions
(e.g., -c1-72 would pass the first 72 characters of each line).

- f list The list following - f is a list of fields assumed to be separated in
the file by a delimiter character (see - d); e.g. , - fl, 7 copies the
first and seventh field only. Lines with no field delimiters will be
passed through intact (useful for table subheadings), unless - s is
specified.

- d char The character following - d is the field delimiter (- f option
only). Default is tab. Space or other characters with special
meaning to the shell must be quoted.

- s Suppresses lines with no delimiter characters in case of - f option.
Unless specified, lines with no delimiters will be passed through
untouched.

Either the - c or - f option must be specified.

Use grep (1) to make horizontal "cuts" (by context) through a file, or
paste(1) to put files together column-wise (i.e., horizontally). To reorder
columns in a table, use cut and paste.

EXAMPLE
cut -d: -fl,5 /etc/passwd

mapping of user IDs to names.

name='who am i I cut -fl -d" '"

to set name to current login name.

DIAGNOSTICS
line too long

A line can have no more than 511 characters or fields.

bad list for c /f option

October 1983

Missing - c or - f option or incorrectly specified list. No error
occurs if a line has fewer fields than the list calls for.

- } -

CUT (1) cUT(l)

no fields
The list is empty.

SEE ALSO
grep (1), paste (1) .

October 1983 - 2 -

CWO) CWO)

NAME
cw, checkcw - prepare constant-width text for troff

SYNOPSIS
cw [-lxx] [-rxx] [-fn] [-t] [+ t] [-d] [files]

checkcw [-lxx] [-rxx] files

DESCRIPTION
Cw is a preprocessor for trojf(1) input files that contain text to be typeset
in the constant-width (CW) font.

Text typeset with the CW font resembles the output of terminals and of line
printers. This font is used to typeset examples of programs and of com­
puter output in user manuals, programming texts, etc. (An earlier version
of this font was used in typesetting The C Programming Language by B. W.
Kernighan and D. M. Ritchie.) It has been designed to be quite distinctive
(but not overly obtrusive) when used together with the Times Roman font.

Because the CW font contains a "non-standard" set of characters and
because text typeset with it requires different character and inter-word spac­
ing than is used for "standard" fonts, documents that use the CW font
must be preprocessed by cwo

The CW font contains the 94 printing ASCII characters:

abcdefghijklmnopqrstuvwxyz
ABCDEFG HIJKLMNOPQRSTUVWXYZ
0123456789
!$%&O"*+@.'/:;=?[]I-_A_,,< > 0#

plus eight non-ASCII characters represented by four-character troff(l)
names (in some cases attaching these names to "non-standard" graphics):

Character Symbol Trojf Name
"Cents" sign ¢ \ (ct

EBCDIC "not" sign \ (no
Left arrow \ (< -

Right arrow \ (->
Down arrow \ (da

Vertical single quote \ (fm
Control-shift indicator t \ (dg
Visible space indicator 0 \ (sq

Hyphen \(hy

The hyphen is a synonym for the unadorned minus sign (-). Certain ver­
sions of cw recognize two additional names: \ (ua for an up arrow and \ Cih
for a diagonal left-up (home) arrow.

Cw recognizes five request lines, as well as user-defined delimiters. The
request lines look like trojf(1) macro requests, and are copied in their
entirety by cw onto its output; thus, they can be defined by the user as
trojf(I) macros; in fact, the .CW and .CN macros should be so defined (see
HINTS below). The five requests are:

.CW Start of text to be set in the CW font; .CW causes a break; it can take
precisely the same options, in precisely the same format, as are avail­
able on the cw command line .

. CN End of text to be set in the CW font; .CN causes a break; it can take
the same options as are available on the cw command line.

October J 983 - 1 -

CWO) CWO)

.CD Change delimiters and/or settings of other options; takes the same
options as are available on the cw command line .

. CP arg1 arg2 arg3 ••• argn
All the arguments (which are delimited like trojf(1) macro argu­
ments) are concatenated, with the odd-numbered arguments set in
the CW font and the even-numbered ones in the prevailing font.

.PC arg1 arg2 arg3 ••• argn
Same as .CP, except that the even-numbered arguments are set in
the CW font and the odd-numbered ones in the prevailing font.

The .CW and .CN requests are meant to bracket text (e.g.~ a program frag­
ment) that is to be typeset in the cw font "as is." Normally, cwoperates
in the transparent mode. In that mode, except for the .CD request and the
nine special four-character names listed in the table above, every character
between .CW and .CN request lines stands for itself. In particular, cw
arranges for periods (.) and apostrophes (') at the beginning of lines, and
backslashes (\) everywhere to be "hidden" from troff(l). The transparent
mode can be turned off (see beloW), in which case normal trojf(I) rules
apply; in particular, lines that begin with . and ' are passed through
untouched (except if they contain delimiters-see below). In either case,
cw hides the effect of the font changes generated by the .CW and .CN
requests; cw also defeats all ligatures (fl, .if, etc.) in the CW font.

The only purpose of the .CD request is to allow the changing of various
options other than just at the beginning of a document.

The user can also define delimiters. The left and right delimiters perform
the same function as the .CW I.CN requests; they are meant, however, to
enclose CW "words" or "phrases" in running text (see example under
BUGS beloW). Cw treats text between delimiters in the same manner as
text enclosed by .CW I .CN pairs, except that, for aesthetic reasons, spaces
and backspaces inside .CW / .CN pairs have the same width as other CW
characters, while spaces and backspaces between delimiters are half as wide,
so they have the same width as spaces in the prevailing text (but are not
adjustable). Font changes due to delimiters are not hidden.

Delimiters have no special meaning inside .CW/.CN pairs.

The options are:

-lxx The one- or two-character string xx becomes the left delimiter; if xx
is omitted, the left delimiter becomes undefined, which it is initially.

-rxx Same for the right delimiter. The left and right delimiters may (but
need not) be different.

-fn The CW font is mounted in font position n; acceptable values for n
are 1, 2, and 3 (default is 3, replacing the bold font). This option is
only useful at the beginning of a document.

- t Turn transparent mode off.

+ t Turn transparent mode on (this is the initial default).

-d Print current option settings on file descriptor 2 in the form of
troff(I) comment lines. This option is meant for debugging.

Cw reads the standard input when no flies are specified (or when - is
specified as the last argument), so it can be used as a filter. Typical usage
is:

October 1983 - 2 -

cwO)

HINTS

CW(l)

cw files I troff ...

Checkcw checks that left and right delimiters, as well as the .cw I.CN pairs,
are properly balanced. It prints out all offending lines.

Typical definitions of the .. CW and .. CN macros meant to be used with the
mm (7) macro package:

.deCW

.DS I

.ps 9

.vs 10.5p

.ta 16m/3u 32m13u 48m13u 64m/3u 80m/3u 96m13u ...

. de CN

.ta O.5i Ii l.5i 2i 2.5i 3i 3.5i 4i 4.5i 5i 5.5i 6i

.vs

.ps

.DE

At the very least, the .CW macro should invoke the trojf(1) no-fill Cnf)
mode.

When set in running text, the CW font is meant to be set in the same point
size as the rest of the text. In displayed matter, on the other hand, it can
often be profitably set one point smaller than the prevailing point size (the
displayed definitions of .CW and .CN above are one point smaller than the
running text on this page). The CW font is sized so that, when it is set in
9-point, there are 12 characters per inch.

Documents that contain CW text may also contain tables and/or equations.
If this is the case, the order of preprocessing should be: cw, tbl, and eqn.
Usually, the tables contained in such documents will not contain any CW
text, although it is entirely possible to have elements of the table set in the
CW font; of course, care must be taken that tbl(1) format information not
be modified by cwo Attempts to set equations in the CW font are not likely
to be either pleasing or successful.

In the CW font, overstriking is most easily accomplished with backspaces:
letting - represent a backspace, d--t yields %1f'/o. Because spaces (and,
therefore backspaces) are half as wide between delimiters as inside
.CW I.CN pairs (see above), two backspaces are required for each overstrike
between delimiters.

EXAMPLE

FILES

cw text I tbl I troff -mm

processes the text file "text", sends the output to tbl(1) and then sends the
output for final formatting to trojf(1) and mm (7).

lusr/lib/font/ftcw CW font-width table

SEE ALSO
eqn(1), mmt(1), tbl(1), troff(1), mm(5), mv(5).

WARNINGS
If text preprocessed by cw is to make any sense, it must be set on a
typesetter equipped with the CW font or on a STARE facility; on the latter,
the CW font appears as bold, but with the proper CW spacing.

October 1983 - 3 -

CWO)

BUGS

CWO)

Only a masochist would use periods (.), backslashes (\), or double quotes
(") as delimiters, or as arguments to .CP and .PC.
Certain CW characters don't concatenate gracefully with certain Times
Roman characters, e.g., a CW ampersand (&) followed by a Times Roman
comma (,); in such cases, judicious use of trojJ(I) half- and quarter-spaces
(\1 and \ A) is most salutary, e.g., one should use _&_ \ A, (rather than just
plain _&_,) to obtain &, (assuming that _ is used for both delimiters).
Using cw with nrojJ is silly.
The output of cw is hard to read.
See also BUGS under trojJ(I).

October 1983 - 4 -

CXREF(l) CXREF(l)

NAME
cxref - generate C program cross reference

SYNOPSIS
cxref [options] files

DESCRIPTION

FILES

Cxrej analyzes a collection of C files and attempts to build a cross reference
table. Cxref utilizes a special version of cpp to include #define'd informa­
tion in its symbol table. It produces a listing on standard output of all sym­
bols (auto, static, and global) in each file separately, or with the - c option,
in combination. Each symbol contains an asterisk (*) before the declaring
reference.

In addition to the - D, - I and - U options (which are identical to their
interpretation by cc (1», the following options are interpreted by cxref:
-c Print a combined cross-reference of all input files.

-w<num>
Width option which formats output no wider than < num>
(decimal) columns. This option will default to 80 if < num > is not
specified or is less than 51.

- 0 file Direct output to named file.

- s Operate silently; does not print input file names.

- t Format listing for 80-column width.

lusr/lib/xcpp special version of C-preprocessor.

SEE ALSO
cc(!).

DIAGNOSTICS
Error messages are unusually cryptic, but usually mean that you can't com­
pile these files, anyway.

October 1983 - 1 -

DATE(t) DATE(t)

NAME
date - print and set the date

SYNOPSIS
date [mmddhhmm [yy]] [+ format]

DESCRIPTION
If no argument is given, or if the argument begins with +, the current date
and time are printed. Otherwise, the current date is set. The first mm is
the month number; dd is the day number in the month; hh is the hour
number (24 hour system); the second mm is the minute number; yy is the
last 2 digits of the year number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the defal,11t if no year
is mentioned. The system operates in GMT. Date takes care of the conver­
sion to and from local standard and daylight time.

If the argument begins with +, the output of date is under the control of
the user. The format for the output is similar to that of the first argument
to print/OS). All output fields are of fixed size (zero padded if necessary).
Each field descriptor is preceded by % and will be replaced in the output by
its corresponding value. A single % is encoded by %%. All other characters
are copied to the output without change. The string is always terminated
with a new-line character.

Field Descriptors:

EXAMPLE

n insert a new-line character
t insert a tab character
m month of year - 01 to 12
d day of month - 01 to 31
y last 2 digits of year - 00 to 99
D date as mm/ dd/yy
H hour - 00 to 23
M minute - 00 to 59
S second - 00 to 59
T time as HH:MM:SS

day of year - 001 to 366
w day of week - Sunday = 0
a abbreviated weekday - Sun to Sat
h abbreviated month - Jan to Dec
r time in AM/PM notation

date ' + DA TE: %m/%d/%y%nTIME: %H:%M:%S'
generates as output:

DATE: 08/01176
TIME: 14:45:05

DIAGNOSTICS
No permission if you aren't the super-user and you try to change the

date;
bad conversion if the date set is syntactically incorrect;
bad format character if the field descriptor is not recognizable.

WARNING
It is a bad practice to change the date while the system is running multi­
user.

July 1984 - 1 -

DC(I) DC (1)

NAME
dc - desk calculator

SYNOPSIS
de [file]

DESCRIPTION
De is an arbitrary precision arithmetic package. Ordinarily it operates on
decimal integers, but one may specify an input base, output base, and a
number of fractional digits to be maintained. The overall structure of de is
a stacking (reverse Polish) calculator. If an argument is given, input is
taken from that file until its end, then from the standard input. The fol­
lowing constructions are recognized:
number

The value of the number is pushed on the stack. A number is an
unbroken string of the digits 0-9. It may be preceded by an
underscore () to input a negative number. Numbers may contain
decimal pointS.

+ - /*Ofo
A

The top two values on the stack are added (+), subtracted (-),
multiplied (.), divided (f), remaindered (Ofo), or exponentiated (A).
The two entries are popped off the stack; the result is pushed on
the stack in their place. Any fractional part of an exponent is
ignored.

sx The top of the stack is popped and stored into a register named x,
where x may be any character. If the s is capitalized, x is treated as
a stack and the value is pushed on it.

Ix The value in register x is pushed on the stack. The register x is not
altered. All registers start with zero value. If the I is capitalized,
register x is treated as a stack and its top value is popped onto the
main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains
unchanged. P interprets the top of the stack as an ASCII string,
removes it, and prints it.

f All values on the stack are printed.

q exits the program. If executing a string, the recursion level is
popped by two. If q is capitalized, the top value on the stack is
popped and the string execution level is popped by that value.
Alternately, control-d (EO F) will exit from de.

x treats the top element of the stack as a character string and exe-
cutes it as a string of de commands.

X replaces the number on the top of the stack with its scale factor.

I ...) puts the bracketed ASCII string onto the top of the stack.

<x >x =x

v

October 1983

The top two elements of the stack are popped and compared.
Register x is evaluated if they obey the stated relation.

replaces the top element on the stack by its square root. Any exist­
ing fractional part of the argument is taken into account, but other­
wise the scale factor is ignored.

- 1 -

DC(I) DC (I)

interprets the rest of the line as a UNIX System command.

c All values on the stack are popped.

o

o
k

z

z
?

, .

The top value on the stack is popped and used as the number radix
for further input. I pushes the input base on the top of the stack.

The top value on the stack is popped and used as the number radix
for further output.

pushes the output base on the top of the stack.

the top of the stack is popped, and that value is used as a non­
negative scale factor: the appropriate number of places are printed
on output, and maintained during multiplication, division, and
exponentiation. The interaction of scale factor, input base, and
output base will be reasonable if all are changed together.

The stack level is pushed onto the stack.

replaces the number on the top of the stack with its length.

A line of input is taken from the input source (usually the termi­
nal) and executed.

are used by bc for array operations.

EXAMPLE
dc
24.2 56.2 + p

adds the two numbers and prints the result (top value in the stack).

Ual +dsa*plalO> y]sy
Osal
lyx

prints the first ten values of nL

SEE ALSO
bc(I), which is a preprocessor for dc providing infix notation and a C-like
syntax which implements functions and reasonable control structures for
programs.

DIAGNOSTICS
x is unimplemented where x is an octal number.

stack empty for not enough elements on the stack to do what was
asked.

Out oj space when the free list is exhausted (too many digits).

Out oj headers for too many numbers being kept around.

Out oj pushdown for too many items on the stack.

Nesting Depth for too many levels of nested execution.

October 1983 - 2 -

00(1) DD(l)

NAME
dd - convert and copy a file

SYNOPSIS
dd [option = value] ...

DESCRIPTION
Dd copies the specified input file to the specified output with possible
conversions. The standard input and output are used by default. The input
and output block size may be specified to take advantage of raw physical
110.
option
if= file
of = file
ibs=n
obs=n
bs= n

cbs = n
skip= n
seek = n

values
input file name; standard input is default
output file name; standard output is default
input block size n bytes (default 512)
output block size (default 512)
set both input and output block size, superseding ibs and
obs; also, if no conversion is specified, it is particularly
efficient since no in-core copy need be done
conversion buffer size
skip n input records before starting copy
seek n records from beginning of output file before copy­
ing; dd creates the specified output file (see creat(2» ,
which insures the length of the file will be zero; seeking n
records from the beginning of the output file will fill the
skipped area with zeros (nulls).

count = n copy only n input records
cony = ascii convert EBCDIC to ASCII

ebcdic convert ASCII to EBCDIC
ibm slightly different map of-ASCII to EBCDIC
lcase map alphabetics to lower case
ucase map alpha be tics to upper case
swab swap every pair of bytes
noerror do not stop processing on an error
sync pad every input record to ibs
... , ... several comma-separated conversions

multi = in input file is multi-volume
out output file is multi-volume
in,out both the input file and the output file are multi-volume

Where sizes are specified, a number of bytes is expected. A number may
end with k, b, or w to specify multiplication by 1024, 512, or 2 respec­
tively; a pair of numbers may be separated by x to indicate a product.

Cbs is used only if ascii, ebcdic, or ibm conversion is specified. In the
former case cbs characters are placed into the conversion buffer, converted
to ASCII, and trailing blanks trimmed and new-line added before sending
the line to the output. In the latter two cases ASCII characters are read into
the conversion buffer, converted to EBCDIC (or the IBM version of
EBCDIC), and blanks added to make up an output record of size cbs.

If multi-volume input(output) is specified, a prompt is given on end-of-file
to allow another volume to be mounted.

After completion, dd reports the number of whole and partial input and
output blocks.

July 1984 - 1 -

DD(l) DD(l)

EXAMPLE
dd if=/dev/rmtO of=x ibs=800 cbs=80 conv=ascii,lcase

will read an EBCDIC tape blocked ten 80-byte EBCDIC card images per
record into the ASCII file "x".

Note the use of raw magtape. Dd is especially suited to I/O on the raw
physical devices because it allows reading and writing in arbitrary record
sizes.

SEE ALSO
cpO).

DIAGNOSTICS

BUGS

j+p records in (out) numbers of full and partial records read(written)

The ASCII/ EBCDIC conversion tables are taken from the 256 character
standard in the CACM Nov, 1968. The ibm conversion, while less blessed
as a standard, corresponds better to certain IBM print train conventions.
There is no universal solution.

New-lines are inserted only on conversion to ASCII; padding is done only
on conversion to EBCDIC. These should be separate options.

July 1984 - 2 -

DELTA (1) DELTA (1)

NAME
delta - make a delta (change) to an sees file

SYNOPSIS
delta [- rSID] [- s] [- 0] [- glist] [- m [mrlist)) [- y [comment}] ,[- p]
files

DESCRIPTION
Delta is used to permanently introduce into the named sees file changes
that were made to the file retrieved by getO) (called the g-file, or gen­
erated file).

Delta makes a delta to each named sees file. If a directory is named, delta
behaves as though each file in the directory were specified as a named file,
except that non-SeeS files (last component of the path name does not
begin with s.) and unreadable files are silently ignored. If a name of - is
given, the standard input is read (see WARNINGS); each line of the stan­
dard input is taken to be the name of an sees file to be processed.

Delta may issue prompts on the standard output depending upon certain
key letters specified and flags (see admin (1» that may be present in the
sees file (see -m and -y keyletters below).

Keyletter arguments apply independently to each named file.

October 1983

- r SID Uniquely identifies which delta is to be made to the
sees file. The use of this key letter is necessary only
if two or more outstanding gets for editing (get - e)
on the same sees file were done by the same person
(login name). The SID value specified with the - r
key letter can be either the SID specified on the get
command line or the SID to be made as reported by
the get command (see get (1». A diagnostic results if
the specified SID is ambiguous, or, if necessary and
omitted on the command line.

-s

-0

-glist

-m[mrlisd

Suppresses the issue on the standard output of the
created delta's SID, as well as the number of lines
inserted, deleted and unchanged in the sees file.

Specifies retention of the edited g-file (normally
removed at completion of delta processing).

Specifies a list (see get (1) for the definition of list) of
deltas which are to be ignored when the file is
accessed at the change level (SID) created by this
delta.

If the sees file has the v flag set (see admin (1» then
a Modification Request (MR) number must be sup­
plied as the reason for creating the new delta.

If - m is not used and the standard input is a termi­
nal, the prompt MRs? is issued on the standard out­
put before the standard input is read; if the standard
input is not a terminal, no prompt is issued. The
MRs? prompt always precedes the comments?
prompt (see - y keyletter).

- 1 -

DELTA(l) DELTA (1)

MRs in a list are separated by blanks and/or tab char­
acters. An unescaped new-line character terminates
the MR list.

Note that if the v flag has a value (see admin (1», it
is taken to be the name of a program (or shell pro­
cedure) which will validate the correctness of the MR
numbers. If a non-zero exit status is returned from
MR number validation program, delta terminates (it is
assumed that the MR numbers were not all valid).

- y[comment1 Arbitrary text used to describe the reason for making
the delta. A null string is considered a valid comment.

If - y is not specified and the standard inpu t is a ter­
minal, the prompt comments? is issued on the stan­
dard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued.
An un escaped new-line character terminates the com­
ment text.

- p Causes delta to print (on the standard output) the
sees file differences before and after the delta is
applied in a diff(l) format.

EXAMPLE

FILES

% delta s.testl.c
comments? second version
1.2
1 inserted
o deleted
12 unchanged

does a delta on file "testl.c".

All files of the form ?-file are explained in the Source Code Control System
User's Guide. The naming convention for these files is also described there.

g-file Existed before the execution of delta; removed after com-
pletion of delta.

p-file Existed before the execution of delta; may exist after com­
pletion of delta.

q-file Created during the execution of delta; removed after com­
pletion of delta.

x-file Created during the execution of delta; renamed to sees file
after completion of delta.

z-file Created during the execution of delta; removed during the
execution of delta.

d-file Created during the execution of delta; removed after com­
pletion of delta.

/usr/bin/bdiff Program to compute differences between the "gotten" file
and the g-file.

WARNINGS
Lines beginning with an SOH ASCII character (binary 001) cannot be placed
in the sees file unless the SOH is escaped. This character has special
meaning to sees (see sccsfile(5» and will cause an error.

October 1983 - 2 -

DELTA'(1) DELTA (1)

A get of many sees files, followed by a delta of those files, should be
avoided when the get generates a large amount of data. Instead, multiple
get/delta sequences should be used.

If the standard input (-) is specified on the delta command line, the - m
(if necessary) and - y key letters must also be present. Omission of these
keyletters causes an error to occur.

Comments are limited to text strings of at most 512 characters.

SEE ALSO
admin(1), bdiff(1), cdc(1), get(1), help(1), prs(1), rmdeI(l), sccsfile(4).
Source Code Control System User's Guide

DIAGNOSTICS
Use help (1) for explanations.

October 1983 - 3 -

DEROFF(I) DEROFF(I)

NAME
deroff - remove nroff/troff, tbl, and eqn constructs

SYNOPSIS
deroff [- mx] [- w] [files]

DESCRIPTION
Deroffreads each of the files in sequence and removes all troff(1) requests,
macro calls, backslash constructs, eqn (1) constructs (between .EQ and .EN
lines, and between delimiters), and tbl (1) descriptions, perhaps replacing
them with white space (blanks and blank lines), and writes the remainder
of the file on the standard output. Deroff follows chains of included files
(.so and .ox troff commands); if a file has already been included, a .so
naming that file is ignored and a .ox naming that file terminates execution.
If no input file is given, deroff reads the standard input.

The -m option may be followed by an m, s, or l. The- -mm option
causes the macros be interpreted so that only running text is output (i.e.,
no text from macro lines.) The - ml option forces the - mm option and
also causes deletion of lists associated with the mm macros.

If the - w option is given, the output is a word list, one "word" per line,
with all other characters deleted. Otherwise, the output follows the origi­
nal, with the deletions mentioned above. In text, a "word" is any string
that contains at least two letters and is composed of letters, digits, amper­
sands (&), and apostrophes ('); in a macro call, however, a "word" is a
string that begins with at least two letters and contains a total of at least
three letters. Delimiters are any characters other than letters, digits, apos­
trophes, and ampersands. Trailing apostrophes and ampersands are
removed from "words."

EXAMPLE
deroff textfile

removes all nroff, troff, and macro definitions from "textfile".

SEE ALSO

BUGS

eqn(1), nroff(1), tbl(1), troff(I).

Deroff is not a complete troff interpreter, so it can be confused by subtle
constructs. Most such errors result in too much rather than too little out­
put.
The - ml option does not handle nested lists correctly.

October 1983 - 1 -

DIFF(l) DIFF(1)

NAME
diff - differential file comparator

SYNOPSIS
diff [- efbh] file 1 file2

DESCRIPTION
Diff tells what lines must be changed in two files to bring them into agree­
ment. If file1 (file2) is -, the standard input is used. If file1 (file2) is a
directory, then a file in that directory with the name file2 (file]) is used.
The normal output contains lines of these forms:

n1 a n3,n4
n1,n2 d n3
n1,n2 c n3,n4

These lines resemble ed commands to convert file1 into file2. The
numbers after the letters pertain to file2. In fact, by exchanging a for d
and reading backward one may ascertain equally how to convert file2 into
file1. As in ed, identical pairs where n1 = n2 or n3 = n4 are abbreviated
as a single number.

Following each of these lines come all the lines that are affected in the first
file flagged by <, then all the lines that are affected in the second file
flagged by >.
The - b option causes trailing blanks (spaces and tabs) to be ignored and
other strings of blanks to compare equal.

The -e option produces a script of Q, c and d commands for the editor ed,
which will recreate file2 from file 1. The - f option produces a similar
script, not useful with ed, in the opposite order. In connection with - e,
the following shell program may help maintain multiple versions of a file.
Only an ancestral file ($1) and a chain of version-to-version ed scripts
($2,$3, .. .) made by diff need be on hand. A "latest version" appears on
the standard output.

(shift; cat $*; echo '1,$p') I ed - $1

Except in rare circumstances, diff finds a smallest sufficient set of file
differences.

Option - h does a fast, half-hearted job. It works only when changed
stretches are short and well separated, but does work on files of unlimited
length. Options - e and - f are unavailable with - h.

EXAMPLE
diff -e file 1 file2

where "file1" and "file2" are two versions of the manual text for the cp com­
mand, produces:

October 1983

35,41d
27c
In the second form, one or more

18,25c
existed; the mode of the source file
is used otherwise.

- 1 -

DIFF(1) DIFF(1)

FILES

15c
The mode and owner of

IOc
file ... directory

7c
filel file2

1,3c
.TH CP I
.SH NAME

Following this ed script would transform "filel" into file2", line for line and
character for character.

/tmp/d?????
/usrllib/diffh for - h

SEE ALSO
cmp(1), comm(l), ed(l).

DIAGNOSTICS

BUGS

Exit status is 0 for no differences, I for some differences, 2 for trouble.

Editing scripts produced under the - e or - f option are naive about creat­
ing lines consisting of a single period (.).

October 1983 - 2 -

DIFF3 (1) DIFF3 (1)

NAME
diff3 - 3-way differential file comparison

SYNOPSIS
diff3 [- ex3] file 1 file2 file3

DESCRIPTION
Diff3 compares three versions of a file, and publishes disagreeing ranges of
text flagged with these codes:

= = = = all three files differ

= = = = 1 filel is different

= = = =2 file2 is different

= = = = 3 file3 is different

The type of change suffered in converting a given range of a given file to
some other is indicated in one of these ways:

j: nl a Text is to be appended after line number nl in file j,
where j = 1, 2, or 3.

j: nl , n2 c Text is to be changed in the range line nl to line n2. If
nl = n2, the range may be abbreviated to nl.

The original contents of the range follows immediately after a c indication.
When the contents of two files are identical, the contents of the lower­
numbered file is suppressed.

Under the -e option, diff3 publishes a script for the editor ed that will
incorporate into filel all changes between file2 and file3, i.e., the changes
that normally would be flagged ==== and ====3. Option -x (-3)
produces a script to incorporate only changes flagged = = = = (= = = = 3).
The following command will apply the, resulting script to filel.

(cat script; echo '1,$p') I ed - file 1

EXAMPLE
If file "fl" contains the following text:

This is a file.
This is the first of three files.
This is not the last file.

and file "f2" contains:
This is a file.
This is the second of three files.
This is not the last file.

and file "f3" contains:

then

This is a file.
This is the third of three files.
This is the last file.

diff3 fl f2 f3

will return

October 1983

1:2,3c
This is the first of three files.
This is not the last file.

- 1 -

DIFF3 (I)

FILES

2:2,3c
This is the second of three files.
This is not the last file.

3:2,3c
This is the third of three files.
This is the last file

Itmp/d3.
lusrllibl diff3prog

SEE ALSO

BUGS

diff(1).

Text lines that consist of a single. will defeat - e.
Files longer than 64K bytes won't work.

October 1983 - 2 -

DIFF3 (1)

DIFFDIR (I) (UniSoft) DIFFDIR(I)

NAME
diff dir - diff directories

SYNOPSIS
diffdir [- h] [- s] did dir2

DESCRIPTION
Difjdir compares the differences of two directories recursively by sorting the
contents of the directories by name and then runs a difj' on text files which
are different. Object files which differ and files which appear in only one
directory are also listed.

The - h option causes di./Jdir to paginate its output, and to summarize
binary differences and files in only one place at the end of the dift: Each
individual di./J'is run through an appropriate pro

The - s option causes files which are the same to be reported; normally
they are omitted.

EXAMPLE
diff dir dir 1 dir2

compares all the files in two directories and reports differences, by line
number, for similar files. Unique files are simply listed.

FILES
lusr/bin/cmp

SEE ALSO
diff(1) .

BUGS

compare two files

Program should pass flags through to difj:

AUTHOR
Bill Joy

July 1984 - 1 -

DIFFMK(l) DIFFMK(l)

NAME
diffmk - mark differences between files

SYNOPSIS
diffmk namel name2 name3

DESCRIPTION
Diffmk compares two versions of a file and creates a third file that includes
"change mark" commands for nrojf(I) or trojf(I). Name1 and name2 are
the old and new versions of the file. Diffmk generates name3, which con­
tains the lines of name2 plus inserted formatter "change mark" (.me)
requests. When name3 is formatted, changed or inserted text is shown by I
at the right margin of each line. The position of deleted text is shown by a
single •.

If the characters I and • are inappropriate, a copy of diffmk can be edited to
change them (diffmk is a shell procedure).

If anyone is so inclined, diffmk can be used to produce listings of C (or
other) programs with changes marked.

EXAMPLE
diffmk old.c new.c tmp; nroff macs tmp I pr

produces a listing of two versions of a C program with changes marked.
First the two versions are compared and a new file, "tmp", is created con­
taining the change mark commands. The temporary file is then passed to
nrojf(I) using the file "macs" which contains:

.pl 1

.11 77

.nf

.eo

.nc

The .11 request might specify a different line length, depending on the
nature of the program being printed. The .eo and .nc requests are probably
needed only for C programs.

SEE ALSO

BUGS

diff(I), nroff(I), troff(I).

Aesthetic considerations may dictate manual adjustment of some output.
File differences involving only formatting requests may produce undesirable
output, i.e., replacing .sp by .sp 2 will produce a "change mark" on the
preceding or following line of output.

October 1983 - 1 -

DIRCMP(l) DIRCMP(I)

NAME
dircmp - directory comparison

SYNOPSIS
dircmp [- d 1 [- s 1 dirl dir2

DESCRIPTION
Dircmp examines dirl and dir2 and generates various tabulated information
about the contents of the directories. Listings of files that are unique to
each directory are generated for all the options. If no option is entered, a
list is output indicating whether the filenames common to both directories
have the same contents.

- d Compare the contents of files with the same name in both directories
and output a list telling what must be changed in the two files to bring
them into agreement. The list format is described in diff(I).

- s Suppress messages about identical files.

EXAMPLE
dircmp dl d2

will show the differences between the directories dl and d2.

SEE ALSO
cmp(l), diff(l).

October 1983 - 1 -

DUO) DU(I)

NAME
du - summarize disk usage

SYNOPSIS
du [-ars] [names]

DESCRIPTION
Du gives the number of blocks contained in all files and (recursively) direc­
tories within each directory and file specified by the names argument. The
block count includes the indirect blocks of the file. If names is missing, . is
used.

The optional argument - s causes only the grand total (for each of the
specified names) to be given. The optional argument - a causes an entry to
be generated for each file. Absence of either causes an entry to be gen­
erated for each directory only.

Du is normally silent about directories that cannot be read, files that cannot
be opened, etc. The - r option will cause du to generate messages in such
instances.

A file with two or more links is only counted once.

EXAMPLE

BUGS

du dirl dir2

produces a count of the number of blocks in each of the directories. In
order to see how many blocks are in each file, the - a option must be used.

If the - a option is not used, non-directories given as arguments are not
listed.
If there are too many distinct linked files, du will count the excess files
more than once.
Files with holes in them will get an incorrect block count.

October 1983 - 1 -

ECHO(l)

NAME
echo - echo arguments

SYNOPSIS
echo [arg] ...

DESCRIPTION

ECHO(l)

Echo writes its arguments separated by blanks and terminated by a new-line
on the standard output. It also understands C-like escape conventions;
beware of conflicts with the shell's use of \:

\b backspace
\c print line without new-line
\f form-feed
\n new-line
\r carriage return
\t tab
\ \ backslash
\n the 8-bit character whose ASCII code is the 1-, 2- or 3-digit octal

number n, which must start with a zero.

Echo is useful for producing diagnostics in command files and for sending
known data into a pipe.

EXAMPLE
echo curmudgeon

simply responds

curmudgeon

on the standard output.

SEE ALSO
sh(l).

October 1983 - 1 -

ED (1) ED (1)

NAME
ed, red - text editor

SYNOPSIS
ed [-] [- x] [file]

red [-] [- x] [file]

DESCRIPTION
Ed is the standard text editor. If the file argument is given, ed simulates an
e command (see below) on the named file; that is to say, the file is read
into ed's buffer so that it can be edited. The optional - suppresses the
printing of character counts bye, r, and w commands, of diagnostics from
e and q commands, and of the ! prompt after a ! shell command. If - x is
present, an x command is simulated first to handle an encrypted file. Ed
operates on a copy of the file it is editing; changes made to the copy have
no effect on the file until a w (write) command is given. The copy of the
text being edited resides in a temporary file called the buffer. There is only
one buffer.

Red is a restricted version of ed. It will only allow editing of files in the
current directory. It prohibits executing shell commands via
!shell command. Attempts to bypass these restrictions result in an error
message (restricted shell).

Both ed and red support the Jspec (4) formatting capability. After including
a format specification as the first line of file and invoking ed with your ter­
minal in sUy - tabs or sUy tab3 mode (see stty (1), the specified tab stops
will automatically be used when scanning file. For example, if the first line
of a file contained:

< :t5,10,15 s72:>
tab stops would be set at columns 5, 10 and 15, and a maximum line length
of 72 would be imposed. NOTE: while inputting text, tab characters when
typed are expanded to every eighth column as is the default.

Commands to ed have a simple and regular structure: zero, one, or two
addresses followed by a single-character command, possibly followed by
parameters to that command. These addresses specify one or more lines in
the buffer. Every command that requires addresses has default addresses,
so that the addresses can very often be omitted.

In general, only one command may appear on a line. Certain commands
allow the input of text. This text is placed in the appropriate place in the
buffer. While ed is accepting text, it is said to be in input mode. In this
mode, no commands are recognized; all input is merely collected. Input
mode is left by typing a period (.) alone at the beginning of a line.

Ed supports a limited form of regular expression notation; regular expres­
sions are used in addresses to specify lines and in some commands (e.g., s)
to specify portions of a line that are to be substituted. A regular expression
(RE) specifies a set of character strings. A member of this set of strings is
said to be matched by the RE. The REs allowed by ed are constructed as
follows:

The following one-character REs match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a
one-character RE that matches itself.

October 1983 - 1 -

ED(I) ED (I)

1.2 A backslash (\) followed by any special character is a one-character
RE that matches the special character itself. The special characters are:

a. .,., [, and \ (period, asterisk, left square bracket, and backslash,
respectively), which are always special, except when they appear
within square brackets ([]; see 1.4 below).

b. " (caret or circumflex), which is special at the beginning of an
entire RE (see 3.1 and 3.2 below), or when it immediately follows
the left of a pair of square brackets (I]) (see 1.4 below).

c. $ (currency symbol), which is special at the end of an entire RE
(see 3 .2 below).

d. The character used to bound (i.e., delimit) an entire RE, which is
special for that RE (for example, see how slash U) is used in the
g command, below.)

1.3 A period (.) is a one-character RE that matches any character except
new-line.

1.4 A non-empty string of characters enclosed in square brackets ([]) is a
one-character RE that matches anyone character in that string. If,
however, the first character of the string is a circumflex ("), the one­
character RE matches any character except new-line and the remaining
characters in the string. The " has this special meaning only if it
occurs first in the string. The minus (-) may be used to indicate a
range of consecutive ASCII characters; for example, [0 - 9] is
equivalent to [01234567891. The - loses this special meaning if it
occurs first (after an initial" , if any) or last in the string. The right
square bracket (]) does not terminate such a string when it is the first
character within it (after an initial ", if any); e.g., []a - f] matches
either a right square bracket (]) or one of the letters a through f
inclusive. The four characters listed in 1.2.a above stand for them­
selves within such a string of characters.

The following rules may be used to construct REs from one-character REs:

2.1 A one-character RE is a RE that matches whatever the one-character
RE matches.

2.2 A one-character RE followed by an asterisk (.) is a RE that matches
zero or more occurrences of the one-character RE. If there is any
choice, the longest leftmost string that permits a match is chosen.

2.3 A one-character RE followed by \{m\}, \{m,\}, or \{m,n\} is a RE
that matches a range of occurrences of the one-character RE. The
values of m and n must be non-negative integers less than 256; \{ m\}
matches exactly m occurrences; \ { m, \} matches at least m
occurrences; \{ m,n\} matches any number of occurrences between m
and n inclusive. Whenever a choice exists, the RE matches as many
occurrences as possible.

2.4 The concatenation of REs is a RE that matches the concatenation of
the strings matched by each component of the RE.

2.5 A RE enclosed between the character sequences \ (and \) is a RE that
matches whatever the unadorned RE matches.

2.6 The expression \n matches the same string of characters as was
matched by an expression enclosed between \ (and \) earlier in the

October 1983 - 2 -

ED(l) ED(l)

same RE. Here n is a digit; the sub-expression specified is that begin­
ning with the n-th occurrence of \ (counting from the left. For exam­
ple, the expression "\ <'.\)\1$ matches a line consisting of two
repeated appearances of the same string.

Finally, an entire RE may be constrained to match only an initial segment
or final segment of a line (or both):

3.1 A circumflex (") at the beginning of an entire RE constrains that RE
to match an initial segment of a line.

3.2 A currency symbol ($) at the end of an entire RE constrains that RE
to match a final segment of a line.

The construction "entire RE$ constrains the entire RE to match the entire
line.

The null RE (e.g., I/) is equivalent to the last RE encountered. See also
the last paragraph before FILES below.

To understand addressing in ed it is necessary to know that at any time
there is a current line. Generally speaking, the current line is the last line
affected by a command; the exact effect on the current line is discussed
under the description of each command. Addresses are constructed as fol­
lows:

1. The character. addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. x addresses the line marked with the mark name character x, which
must be a lower-case letter. Lines are marked with the k command
described below.

5. A RE enclosed by slashes U) addresses the first line found by search­
ing forward from the line following the current line toward the end of
the buffer and stopping at the first line containing a string matching
the RE. If necessary, the search wraps around to the beginning of the
buffer and continues up to and including the current line, so that the
entire buffer is searched. See also the last paragraph before FJLES
below.

6. A RE enclosed in question marks (?) addresses the first line found by
searching backward from the line preceding the current line toward the
beginning of the buffer and stopping at the first line containing a
string matching the RE. If necessary, the search wraps around to the
end of the buffer and continues up to and including the current line.
See also the last paragraph before FILES below.

7. An address followed by a plus sign (+) or a minus sign (-) followed
by a decimal number specifies that address plus (respectively minus)
the indicated number of lines. The plus sign may be omitted.

8. If an address begins with + or -, the addition or subtraction is taken
with respect to the current line; e.g, - 5 is understood to mean. - 5.

9. If an address ends with + or -, then 1 is added to or subtracted from
the address, respectively. As a consequence of this rule and of rule 8
immediately above, the address - refers to the line preceding the
current line. (To maintain compatibility with earlier versions of the

October 1983 - 3 -

ED(l) ED(1)

editor, the character " in addresses is entirely equivalent to -.)
Moreover, trailing + and - characters have a cumulative effect, so
- - refers to the current line less 2.

10. For convenience, a comma (,) stands for the address pair 1,$, while a
semicolon (;) stands for the pair., $.

Commands may require zero, one, or two addresses. Commands that
require no addresses regard the presence of an address as an error. Com­
mands that accept one or two addresses assume default addresses when an
insufficient number of addresses is given; if more addresses are given than
such a command requires, the last one(s) are used.

Typically, addresses are separated from each other by a comma (,). They
may also be separated by a semicolon (;). In the latter case, the current
line (.) is set to the first address, and only then is the second address cal­
culated. This feature can be used to determine the starting line for forward
and backward searches (see rules 5. and 6. above). The second address of
any two-address sequence must correspond to a line that follows, in the
buffer, the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown in
parentheses. The parentheses are not part of the address; they show that
the given addresses are the default.

It is generally illegal for more than one command to appear on a line.
However, any command (except e, /, r, or w) may be suffixed by I, nor p,
in which case the current line is either listed, numbered or printed, respec­
tively, as discussed below under the I, nand p commands.
(.)a
< text>

(.)c
<text>

The append command reads the given text and appends it after
the addressed line; . is left at the last inserted line, or, if there
were none, at the addressed line. Address 0 is legal for this com­
mand: it causes the "appended" text to be placed at the begin­
ning of the buffer. The maximum number of characters that may
be entered from a terminal is 256 per line (including the newline
character) .

The change command deletes the addressed lines, then accepts
input text that replaces these lines; . is left at the last line input,
or, if there were none, at the first line that was not deleted.

(.,.)d The delete command deletes the addressed lines from the buffer.
The line after the last line deleted becomes the current line; if the
lines deleted were originally at the end of the buffer, the new last
line becomes the current line.

e file The edit command causes the entire contents of the buffer to be
deleted, and then the named file to be read in; . is set to the last
line of the buffer. If no file name is given, the currently­
remembered file name, if any, is used (see the f command). The
number of characters read is typed; file is remembered for possi­
ble use as a default file name in subsequent e, r, and w com­
mands. If file is replaced by !, the rest of the line is taken to be a
shell (sh(I» command whose output is to be read. Such a shell

October 1983 - 4 -

ED (1)

E file

f file

ED(I)

command is not remembered as the current file name. See also
DIAGNOSTICS below.

The Edit command is like e, except that the editor does not check
to see if any changes have been made to the buffer since the last
w command.

If file is given, the file-name command changes the currently­
remembered file name to file; otherwise, it prints the currently­
remembered file name.

(1, S)gl REI command list
In the global command, the first step is to mark every line that
matches the given RE. Then, for every such line, the given com­
mand list is executed with . initially set to that line. A single
command or the first of a list of commands appears on the same
line as the global command. All lines of a multi-line list except
the last line must be ended with a \; a, i, and c commands and
associated input are permitted; the. terminating input mode may
be omitted if it would be the last line of the command list. An
empty command list is equivalent to the p command. The g, G,
v, and V commands are not permitted in the command list. See
also BUGS and the last paragraph before FILES below.

(t, S)GI REI
In the interactive Global command, the first step is to mark every
line that matches the given RE. Then, for every such line, that
line is printed, . is changed to that line, and anyone command
(other than one of the a, C, i, g, G, v, and V commands) may be
input and is executed. After the execution of that command, the
next marked line is printed, and so on; a new-line acts as a null
command; an & causes the re-execution of the most recent com­
mand executed within the current invocation of G. Note that the
commands input as part of the execution of the G command may
address and affect any lines in the buffer. The G command can
be terminated by an interrupt signal (ASCII DEL or BREAK).

h The help command gives a short error message that explains the
reason for the most recent? diagnostic.

H The Help command causes ed to enter a mode in which error
messages are printed for all subsequent? diagnostics. It will also
explain the previous ? if there was one. The H command alter­
nately turns this mode on and off; it is initially off.

(.)i

< text>

(.,.+t)j

The insert command inserts the given text before the addressed
line; . is left at the last inserted line, or, if there were none, at the
addressed line. This command differs from the a command only
in the placement of the input text. Address 0 is not legal for this
command. The maximum number of characters that may be
entered from a terminal is 256 per line (including the newline
character) .

The Join command JOInS contiguous lines by removing the
appropriate new-line characters. If exactly one address is given,

October 1983 - 5 -

EDO) ED(l)

this command does nothing.

(.)kx The mark command marks the addressed line with name x,
which must be a lower-case letter. The address x then addresses
this line; . is unchanged.

(.,.)I The list command prints the addressed lines in an unambiguous
way: a few non-printing characters (e.g., tab, backspace) are
represented by (hopefully) mnemonic overstrikes, all other non­
printing characters are printed in octal, and long lines are folded.
An I command may be appended to any other command other
than e, f, r, or w.

(.,.)ma The move command repositions the addressed line(s) after the
line addressed by a. Address 0 is legal for a and causes the
addressed line(s) to be moved to the beginning of the file; it is an
error if address a falls within the range of moved lines; . is left at
the last line moved.

(.,.)n The number command prints the addressed lines, preceding each
line by its line number and a tab character; • is left at the last line
printed. The n command may be appended to any other com­
mand other than e, f, r, or w.

(.,.)p The print command prints the addressed lines; . is left at the last
line printed. The p command may be appended to any other
command other than e, j, r, or w; for example, dp deletes the
current line and prints the new current line.

P The editor will prompt with a • for all subsequent commands.
The P command alternately turns this mode on and off; it is ini­
tially off.

q The quit command causes ed to exit. No automatic write of a file
is done (but see D1AGNOSTlCS below).

Q The editor exits without checking if changes have been made in
the buffer since the last w command.

($) r file The read command reads in the given file after the addressed
line. If no file name is given, the currently-remembered file
name, if any, is used (see e and f commands). The currently­
remembered file name is not changed unless file is the very first
file name mentioned since ed was invoked. Address 0 is legal for
r and causes the file to be read at the beginning of the buffer. If
the read is successful, the number of characters read is typed; • is
set to the last line read in. If file is replaced by !, the rest of the
line is taken to be a shell (sh(1» command whose output is to be
read. For example, "$r !Is" appends current directory to the end
of the file being edited. Such a shell command is not remem­
bered as the current file name.

(• , •) sl REI replacementl or
(.,.)sl REI replacementlg

The substitute command searches each addressed line for an
occurrence of the specified RE. In each line in which a match is
found, all (non-overlapped) matched strings are replaced by the
replacement if the global replacement indicator g appears after the
command. If the global indicator does not appear, only the first

October 1983 - 6 -

ED(l) ED(l)

occurrence of the matched string is replaced. It is an error for the
substitution to fail on all addressed lines. Any character other
than space or new-line may be used instead of I to delimit the RE
and the replacement; . is left at the last line on which a substitu­
tion occurred. See also the last paragraph before FILES below.

An ampersand (&) appearing in the replacement is replaced by the
string matching the RE on the current line. The special meaning
of & in this context may be suppressed by preceding it by \. As a
more general feature, the characters \n, where n is a digit, are
replaced by the text matched by the n-th regular subexpression of
the specified RE enclosed between \ (and \). When nested
parenthesized sUbexpressions are present, n is determined by
counting occurrences of \ (starting from the left. When the char­
acter % is the only character in the replacement, the replacement
used in the most recent substitute command is used as the
replacement in the current substitute command. The % loses its
special meaning when it is in a replacement string of more than
one character or is preceded by a \.

A line may be split by substituting a new-line character into it.
The new-line in the replacement must be escaped by preceding it
by \. Such substitution cannot be done as part of a g or v com­
mand list.

(.,.)ta This command acts just like the m command, except that a copy
of the addressed lines is placed after address a (which may be 0);
• is left at the last line of the copy.

u The undo command nullifies the effect of the most recent com­
mand that modified anything in the buffer, namely the most
recent a, c, d, g, i, j, m, r, s, t, v, G, or V command.

(1 , $)v I REI command list
This command is the same as the global command g except that
the command list is executed with. initially set to every line that
does not match the RE.

0, $)VI REI
This command is the same as the interactive global command G
except that the lines that are marked during the first step are
those that do not match the RE.

0, $)w file
The write command writes the addressed lines into the named
file. If the file does not exist, it is created with mode 666 (read­
able and writable by everyone), unless your umask setting (see
shU» dictates otherwise. The currently-remembered file name is
not changed unless file is the very first file name mentioned since
ed was invoked. If no file name is given, the currently­
remembered file name, if any, is used (see e and f commands); •
is unchanged. If the command is successful, the number of char­
acters written is typed. If file is replaced by!, the rest of the line
is taken to be a shell (shU» command whose standard input is
the addressed lines. Such a shell command is not remembered as
the current file name.

October 1983 - 7 -

ED (1)

x

($) =

ED (1)

A key string is demanded from the standard input. Subsequent
e, r, and w· commands will encrypt and decrypt the text with this
key by the algorithm of crypt (1). An explicitly empty key turns
off encryption.

The line number of the addressed line is typed; . is unchanged by
this command.

! shell command
The remainder of the line after the ! is sent to the UNIX System
shell (sh(I» to be interpreted as a command. Within the text of
that command, the unescaped character % is replaced with the
remembered file name; if a ! appears as the first character of the
shell command, it is replaced with the text of the previous shell
command. Thus, !! will repeat the last shell command. If any
expansion is performed, the expanded line is echoed; . is
unchanged.

(. + 1) < new-line>
An address alone on a line causes the addressed line to be
printed. A new-line alone is equivalent to . + Ip; it is useful for
stepping forward through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and
returns to its command level.

Some size limitations: 512 characters per line, 256 characters per global
command list, 64 characters per file name, and 128K characters in the
buffer. The limit on the number of lines depends on the amount of user
memory: each line takes 1 word.

When reading a file, ed discards ASCII NUL characters and all characters
after the last new-line. Files (e.g., a.out) that contain characters not in the
ASCII set (bit 8 on) cannot be edited by ed.

If the closing delimiter of a RE or of a replacement string (e.g., /) would be
the last character before a new-line, that delimiter may be omitted, in
which case the addressed line is printed. The following pairs of commands
are equivalent:

s/sl/s2 slsl/s2/p
g/sl g/sl/p
?sl ?sl?

EXAMPLE

FILES

ed text

would invoke the editor with the file named "text". For further examples,
see" A Tutorial Introduction to the UNIX Text Editor" and" Advanced Editing on
UNIX'

Itmp/e#
ed.hup

DIAGNOSTICS

temporary; # is the process number.
work is saved here if the terminal is hung up.

?
?file

for command errors.
for an inaccessible file.
(use the help and Help commands for detailed explanations).

If changes have been made in the buffer since the last w command that
wrote the entire buffer, ed warns the user if an attempt is made to destroy

October 1983 - 8 -

ED(I) ED (I)

ed's buffer via the e or q commands: it prints? and allows one to continue
editing. A second e or q command at this point will take effect. The -
command-line option inhibits this feature.

SEE ALSO
crypt(1), grep(1), sed(1), sh(1), stty(1), fspec(4), regexp(5).
A Tutorial Introduction to the UNIX Text Editor, by B. W. Kernighan.
Advanced Editing on UNIX, by B. W. Kernighan.

CAVEATS AND BUGS

NOTE

A ! command cannot be subject to a g or a v command.
The! command and the! escape from the e, r, and w commands cannot
be used if the the editor is invoked from a restricted shell (see sh (1».
The sequence \0 in a RE does not match a new-line character.
The I command mishandles DEL.
Files encrypted directly with the crypt(I) command with the null key can­
not be edited.
Characters are masked to 7 bits on input.

The - x option and the editor command X are not implemented in the
international distribution.

July 1984 - 9 -

EFL(l) EFL (I)

NAME
en - Extended Fortran Language

SYNOPSIS
eft [options] [files]

DESCRIPTION
Ell compiles a program written in the EFL language into clean Fortran on
the standard output. Ell provides the C-like control constructs similar to
ra(j'or:

statement grouping with braces.

decision -making:
if, if-else, and select-case (also known as switch-case);
while, for, Fortran do, repeat, and repeat ... until loops;
multi-level break and next.

EFL has C-like data structures, e.g.:

struct
{
integer flags(3)
character(8) name
long real coords (2)
} tableOOO)

The language offers generic functions, assignment operators (+ =, & =,
etc.), and sequentially evaluated logical operators (&& and II). There is a
uniform input! output syntax:

write(6,x,y:f(7,2), do i=l,l0 { a(i,j),z.b(i) })

EFL also provides some syntactic "sugar":

free-form input:
multiple statements per line; automatic continuation; statement
label names (not just numbers).

comments:
this is a comment.

translation of relational and logical operators:
>, > =, &, etc., become .GT., .GE., .AND., etc.

return expression to caller from function:
return (expression)

defines:
define name replacement

includes:
include file

Ell understands several option arguments: - w suppresses warning mes­
sages, - # suppresses comments in the generated program, and the default
option - C causes comments to be included in the generated program.

An argument with an embedded = (equal sign) sets an EFL option as if it
had appeared in an option statement at the start of the program. Many
options are described in the reference manual. A set of defaults for a par­
ticular target machine may be selected by one of the choices:
system = unix, system = gcos, or system = cray. The default setting of the

October J 983 - 1 -

EFL{l) EFL(l)

system option is the same as the machine the compiler is running on.
Other specific options determine the style of input! output, error handling,
continuation conventions, the number of characters packed per word, and
default formats.

Efl is best used with fortran (1).

EXAMPLE
eft prog.for I fortran -0 prog

will process the program prog.jor through efl and then run the fortran (1)
compiler on the output from eft, generating an executable file named
"prog".

SEE ALSO
cc(1), fortran(1).
The Programming Language EFL by S.1. Feldman.

October 1983 - 2 -

ENABLE(l) ENABLE(l)

NAME
enable, disable - enable/disable LP printers

SYNOPSIS
enable printers
disable [- c] [- r[reason]] printers

DESCRIPTION

FILES

Enable activates the named printers, enabling them to print requests taken
by Ip(1). Use Ipstat(1) to find the status of printers.

Disable deactivates the named printers, disabling them from printing
requests taken by Ip (1). By default, any requests that are currently printing
on the designated printers wilt be reprinted in their entirety either on the
same printer or on another member of the same class. Use Ipstat(1) to
find the status of printers. Options useful with disable are:

- c Cancel any requests that are currently printing on any of the
designated printers.

- r [reason] Associates a reason with the deactivation of the printers.
This reason applies to all printers mentioned up to the next
- r option. If the - r option is not present or the - r option
is given without a reason, then a default reason will be used.
Reason is reported by Ipstat (I).

/usr/spooillp/*

SEE ALSO
Ip(I), lpstat(l).

October 1983 - 1 -

ENV(l) ENV(l)

NAME
env - set environment for command execution

SYNOPSIS
env [-] [name = value]... [command args]

DESCRIPTION
Env obtains the current environment, modifies it according to its arguments,
then executes the command with the modified environment. Arguments of
the form name = value are merged into the inherited environment before
the command is executed. The - flag causes the inherited environment to
be ignored completely, so that the command is executed with exactly the
environment specified by the arguments.

If no command is specified, the resulting environment is printed, one
name-value pair per line.

EXAMPLE
env XYZ = pdq sh

sets the environment name "XYZ" to the value pdq for the duration of the
new shell.

SEE ALSO
sh(1), exec(2), profile(4), environ(5).

October 1983 - 1 -

EQN(I) EQN(1)

NAME
eqn, neqn, checkeq - format mathematical text for nroff or troff

SYNOPSIS
eqn [- dxy] [- pn] [- sn] [- fn] [files]

neqn [- dxy] [- pn] [- sn] [- fn] [files]

checkeq [files]

DESCR.IPTION
Eqn is a troff(1) preprocessor for typesetting mathematical text on a photo­
typesetter, while neqn is used for the same purpose with nroff on
typewriter-like terminals. Usage is almost always:

eqn files I troff
neqn files I nroff

or equivalent.

If no files are specified (or if - is specified as the last argument), these
programs read the standard input. A line beginning with .EQ marks the
start of an equation; the end of an equation is marked by a line beginning
with .EN. Neither of these lines is altered, so they may be defined in macro
packages to get centering, numbering, etc. It is also possible to designate
two characters as delimiters; subsequent text between delimiters is then
treated as eqn input. Delimiters may be set to characters x and y with the
command-line argument -dxy or (more commonly) with de lim xy between
.EQ and .EN. The left and right delimiters may be the same character; the
dollar sign is often used as such a delimiter. Delimiters are turned off by
delim off. All text that is neither between delimiters nor between .EQ and
.EN is passed through untouched.

The program checkeq reports missing or unbalanced delimiters and .EQ/ .EN
pairs.

Tokens within eqn are separated by spaces, tabs, new-lines, braces, double
quotes, tildes, and circumflexes. Braces {} are used for grouping; generally
speaking, anywhere a single character such as x could appear, a complicated
construction enclosed in braces may be used instead. Tilde (-) represents a
full space in the output, circumflex C) half as much.

Subscripts and superscripts are produced with the keywords sub and sup.
Thus x sub j makes xi> a sub k sup 2 produces al, while ex2

+
y2 is made

with e sup {x sup 2 + y sup 2}. Fractions are made with over: a over b

yields {; sqrt makes square roots: lover sqrt {ax sup 2+bx+c} results in

1

/I

The keywords from and to introduce lower and upper limits: lim LXi is
1/-00 0

made with Iimfrom {n -> inf} sum from 0 to n x sub i. Left and right
brackets, braces, etc., of the right height are made with left and right:

left [x sup 2 + y sup 2 over alpha right J - ~- 1 produces IX2+:;:-j ~ 1.

Legal characters after left and right are braces, brackets, bars, c and f for
ceiling and floor, and "" for nothing at all (useful for a right-side-only
bracket). A left thing need not have a matching right thing.

October 1983 - 1 -

EQN(t) EQN(I)

Vertical piles of things are made with pile, lpile, cpile, and rpile:
a

pile {a above b above c} produces b. Piles may have arbitrary numbers of
c

elements; lpile left-justifies, pile and cpile center (but with different verti­
cal spacing), and rpile right justifies. Matrices are made with matrix:

Xi I
matrix { lcol { X sub i above y sub 2} ccol { 1 above 2 } } produces 2.

Y2
In addition, there is rcol for a right-justified column.

Diacritical marks are made with dot, dotdot, hat, tilde, bar, vee, dyad, and
under: x dot = j(t) bar is x= J[i'f, y dotdot bar - =- n under is y = n, and
x vec - =- y dyad is x = y. -

Point sizes and fonts can be changed with size n or size ± n, roman, italic,
bold, and font n. Point sizes and fonts can be changed globally in a docu­
ment by gsize nand gfont n, or by the command-line arguments -sn and
-fn.

Normally, subscripts and superscripts are reduced by 3 points from the pre­
vious size; this may be changed by the command-line argument -pn.

Successive display arguments can be lined up. Place mark before the
desired lineup point in the first equation; place lineup at the place that is to
line up vertically in subsequent equations.

Shorthands may be defined or existing keywords redefined with define:

define thing % replacement %

defines a new token called thing that will be replaced by replacement when­
ever it appears thereafter. The % may be any character that does not occur
in replacement.

Keywords such as sum (I,), int (f), inf (00), and shorthands such as
> = (~), ! = (~), and - > (-) are recognized. Greek letters are spelled
out in the desired case, as in alpha (a), or GAMMA (r). Mathematical
words such as sin, cos, and log are made Roman automatically. Troff(l)
four-character escapes such as \(dd (:j:) and \(bs (@) may be used any­
where. Strings enclosed in double quotes (" ... ") are passed through
untouched; this permits keywords to be entered as text, and can be used to
communicate with troff(l) when all else fails. Full details are given in the
manual cited below.

EXAMPLE
eqn filel I troff

would process the file "filel" with the preprocessor before formatting it with
troff.

SEE ALSO

BUGS

cw(l), mm(l), mmt(l), nroff(l) , tbl(l) , troff(l) , eqnchar(5) , mm(5),
mv(5).
Typesetting Mathematics-Users Guide by B. W. Kernighan and L. L.
Cherry.

To embolden digits, parentheses, etc., it is necessary to quote them, as in
bold "12.3".
See also BUGS under trojf(l).

October 1983 - 2 -

EXO) EX(I)

NAME
ex, edit - text editor

SYNOPSIS
ex [-] [- v] [- t tag] [- r] [+ command] name ...
edit [ex options]

DESCRIPTION
Ex is the root of a family of editors: edit, ex and vi. Ex is a superset of
edit, with the most notable extension being a display editing facility.
Display based editing is the focus of vi.

If you have not used ed, or are a casual user, you will find that the editor
edit is convenient for you. It avoids some of the complexities of ex used
mostly by systems programmers and persons very familiar with ed.

If you have a CRT terminal, you may wish to use a display based editor; in
this case see vi (1), which is a command which focuses on the display edit­
ing portion of ex.

The following options are recognized:

suppresses all interactive-user feedback, as when processing editor
scripts in command files.

-v Equivalent to using vi rather than ex.

- t Equivalent to an initial tag command, editing the file containing the
tag and positioning the editor at its definition.

- r U sed in recovering after an editor or system crash, retrieving the
last saved version of the named file. If no file is specified, a list of
saved files will be reported.

+ command
Indicates that the editor should begin by executing the specified
command. If command is omitted, then it defaults to $, positioning
the editor at the last line of the first file initially. Other useful com­
mands here are scanning patterns of the form /pat or line numbers,
e.g., + 100 to start at line 100.

Name arguments indicate files to be edited.

Documentation
The document, Edit: A tutorial, provides a comprehensive introduction to
edit assuming no previous knowledge of computers or the UNIX system.

The Ex Reference Manual is a comprehensive and complete manual for the
command mode features of ex, but you cannot learn to use the editor by
reading it. For an introduction to more advanced forms of editing using
the command mode of ex, see the editing documents written by Brian Ker­
nighan for the editor ed; the material in the introductory and advanced
documents works also with ex.

An Introduction to Display Editing with Vi introduces the display editor vi and
provides reference material on vi. In addition, the Vi Quick Reference card
summarizes the commands of vi in a useful, functional way, and is useful
with the Introduction.

July 1984 - 1 -

EX(1)

FILES
/ usr / lib/ ex3. 7 strings
/ usr / lib/ ex3. 7 recover
/ usr / lib/ ex3. 7 preserve
/ etc/ term cap
-/.exrc

/ tmp/EX nnnnn
/tmp/Rxnnnnn
/ usr / preserve
/usr/lib/tags

error messages
recover command
preserve command
describes capabilities of terminals

EX(l)

editor startup command file, user- created in
home directory
editor temporary
named buffer temporary
preservation directory
standard editor tag file

EXAMPLE
ex text

would invoke the editor with the file named "text".

SEE ALSO

BUGS

awk(l), ed(l), grep(l), sed(l), vi(l)

The undo command causes all marks to be lost on lines changed and then
restored if the marked lines were changed.

Undo never clears the buffer modified condition.

The z command prints a number of logical rather than physical lines. More
than a screen full of output may result if long lines are present.

File input! output errors don't print a name if the command line" -" option
is used.

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used
before exiting the editor.

Null characters are discarded in input files, and cannot appear in resultant
files.

AUTHOR
William Joy and Mark Horton.

July 1984 - 2 -

EXPR(t) EXPR(I)

NAME
expr - evaluate arguments as an expression

SYNOPSIS
expr arguments

DESCRIPTION
The arguments are taken as an expression. After evaluation, the result is
written on the standard output. Terms of the expression must be separated
by blanks. Characters special to the shell must be escaped. Note that 0 is
returned to indicate a zero value, rather than the null string. Strings con­
taining blanks or other special characters should be quoted. Integer-valued
arguments may be preceded by a unary minus sign. Internally, integers are
treated as 32-bit, 2's complement numbers.

The operators and keywords are listed below. Characters that need to be
escaped are preceded by \. The list is in order of increasing precedence,
with equal precedence operators grouped within {} symbols.

expr\1 expr
returns the first expr if it is neither null nor 0, otherwise returns the
second expr.

expr\& expr
returns the first expr if neither expr is null or 0, otherwise returns o.

expr { =, \ >, \ > =, \ <, \ < =, ! = } expr
returns the result of an integer comparison if both arguments are
integers, otherwise returns the result of a lexical comparison.

expr { +, - } expr
addition or subtraction of integer-valued arguments.

expr { \., I, % } expr
mUltiplication, division, or remainder of the integer-valued arguments.

expr: expr

EXAMPLE

The matching operator : compares the first argument with the second
argument which must be a regular expression; regular expression syn­
tax is the same as that of ed(I), except that all patterns are
"anchored" (i.e., begin with ") and, therefore, " is not a special char­
acter, in that context. Normally, the matching operator returns the
number of characters matched (0 on failure). Alternatively, the
\ (... \) pattern symbols can be used to return a portion of the first
argument.

a='expr $a + l'

adds 1 to the shell variable a.

'For $a equal to either "/usr/abc/file" or just "file'"
expr $a : '.*/\(.*\)' \1' $a

returns the last segment of a path name (i.e., "file"). Watch out for I alone
as an argument: expr will take it as the division operator (see BUGS below).

A better representation of above example
expr / /$a : ' .*/\(.*\)' ,

the addition of the I I characters eliminates any ambiguity about the divi­
sion operator and simplifies the whole expression.

October 1983 - 1 -

EXPR(I) EXPR(I)

expr $V AR : '.*'
returns the number of characters in SVAR.

SEE ALSO
ed(I), shU).

EXIT CODE
As a side effect of expression evaluation, expr returns the following exit
values:

o if the expression is neither null nor 0
1 if the expression is null or 0
2 for invalid expressions.

DIAGNOSTICS

BUGS

syntax error
non-numeric argument

for operator/operand errors
if arithmetic is attempted on such a string

After argument processing by the shell, expr cannot tell the difference
between an operator and an operand except by the value. If Sa is an
the command:

expr Sa = '='
looks like:

expr

as the arguments are passed to expr (and they will all be taken as the
operator). The following works:

expr XSa = X=

October 1983 - 2 -

EXTERR(l) (UniSoft) EXTERR(l)

NAME
exterr - turn onloff the extended errors in the specified device

SYNOPSIS
exterr I dey I devicename [yn]

DESCRIPTION
Exterr turns on (or off) the reporting of extended errors on the specified
device.

If reporting of errors is turned "off" with the argument n, only fatal errors
are reported.

The default condition is "yes", in which case soft as well as hard errors are
reported on the specified device. The devicename must be the "raw" one to
access the ioetl.

EXAMPLE
exterr Idev/xxxx n

turns to off the reporting of extended errors for device Idev/xxxx.

October 1983 - 1 -

FACTOR(l) FACTOR(l)

NAME
factor - factor a number

SYNOPSIS
factor [number]

DESCRIPTION
When factor is invoked without an argument, it wait~ for a number t~ be
typed in. If you type in a positive number less than 2 6 (about 7.2x 101

) it
will factor the number and print its prime factors; each one is printed the
proper number of times. Then it waits for another number. It exits if it
encounters a zero or any non-numeric character.

If factor is invoked with an argument, it factors the number as above and
then exits.

Maximum time to factor is proportional to ~ and occurs when n is p'rime
or the square of a prime. It takes 30 seconds to factor a prime near 1014 on
a 68000.

DIAGNOSTICS
"Ouch" for input out of range or for garbage input.

October 1983 - 1 -

FILE (1) FILE(1)

NAME
file - determine file type

SYNOPSIS
file [-c] [-f ffile] [-m mfile] arg ...

DESCRIPTION
File performs a series of tests on each argument in an attempt to classify it.
If an argument appears to be ASCII, file examines the first 512 bytes and
tries to guess its language. If an argument is an executable a.out, file will
print the version stamp, provided it is greater than 0 (see IdO».
If the - f option is given, the next argument is taken to be a file containing
the names of the files to be examined.

File uses the file /etc/magic to identify files that have some sort of magic
number, that is, any file containing a numeric or string constant that indi­
cates its type. Commentary at the beginning of /etc/magic explains its for­
mat.

The - m option instructs file to use an alternate magic file.

The -c flag causes file to check the magic file for format errors. This vali­
dation is not normally carried out for reasons of efficiency. No file typing is
done under - c.

EXAMPLE
file textfile programfile directory

reports the file names and directory name, and whether the files are English
text, nroffinput, a C program, or whatever.

October 1983 - 1 -

FIND (1) FIND(l)

NAME
find - find files

SYNOPSIS
find path-name-list expression

DESCRIPTION
Find recursively descends the directory hierarchy for each path name in the
path-name-list (i.e., one or more path names) seeking files that match a
boolean expression written in the primaries given below. In the descrip­
tions, the argument n is used as a decimal integer where + n means more
than n, - n means less than nand n means exactly n.

- name file True if file matches the current file name. Normal shell
argument syntax may be used if escaped (watch out for [,
? and .).

- perm onum True if the file permission flags exactly match the octal
number onum (see chmod(1)). If onum is prefixed by a
minus sign, more flag bits (017777, see stat(2)) become
significant and the flags are compared:

(flags&onum) = = onum

-type c True if the type of the file is c, where c is b, c, d, p, or f
for block special file, character special file, directory, fifo
(a.k.a named pipe), or plain file.

-links n True if the file has n links.

-user uname True if the file belongs to the user uname. If uname is
numeric and does not appear as a login name in the
/etc/passwd file, it is taken as a user ID.

-group gname True if the file belongs to the group gname. If gname is
numeric and does not appear in the /etc/group file, it is
taken as a group ID.

- size n True if the file is n blocks long (512 bytes per block).

- atime n True if the file has been accessed in n days.

- mtime n True if the file has been modified in n days.

- ctime n True if the file has been changed in n days.

-exec cmd True if the executed cmd returns a zero value as exit
status. The end of cmd must be punctuated by an escaped
semicolon. A command argument {} is replaced by the
current path name.

- ok cmd Like - exec except that the generated command line is
printed with a question mark first, and is executed only if
the user responds by typing y.

- print Always true; causes the current path name to be printed.

-cpio device Write the current file on device in cpio(4) format (5120
byte records).

- newer file True if the current file has been modified more recently
than the argument file.

October 1983 - 1 -

FIND (t) FIND (I)

(expression) True if the parenthesized expression is true (parentheses
are special to the shell and must be escaped).

The primaries may be combined using the following operators (in order of
decreasing precedence):

1) The negation of a primary (! is the unary not operator).

2) Concatenation of primaries (the and operation is implied by the juxta­
position of two primaries).

3) Alternation of primaries (- 0 is the or operator).

EXAMPLE

FILES

find I -perm 755 -exec Is "0" ";"
will find all files, starting with the root directory, on which the permission
levels have been set to 755 (see chmod(1».

With - exec and a command such as Is, it is often necessary to escape the
"0" that stores the current path name under investigation by putting it in
double quotes. It is always necessary to escape the semicolon at the end of
an - exec sequence.

Note again that it is also necessary to escape parentheses" \ (" and" \) "
used for grouping primaries, by means of a backslash.

find I \(-name a.out -0 -name '*.0' \) -atime +7 -exec rm
{} \;

removes all files named "a.out" or "*.0" that have not been accessed for a
week.

letc/passwd, letc/group

SEE ALSO
cpio(1), sh(1), test(1), stat(2), cpio(4), fs(4).

October 1983 - 2 -

FREQ(I) (UniSoft)

NAME
freq - report on character frequencies in a file

SYNOPSIS
freq [file ...]

DESCRIPTION

FREQ(I)

Freq counts occurrences of characters in the list of files specified on the
command line. If no files are specified, the standard input is read.

EXAMPLE
freq filea

will list a count of each character that appears in "filea".

October 1983 - I -

FSPLIT(I) FSPLIT (I)

NAME
fsplit - split fortran, ratfor, or efl files

SYNOPSIS
fsplit options files

DESCRIPTION
Fsplit splits the named file (s) into separate files, with one procedure per
file. A procedure includes blockdata, function, main, program, and subroutine
program segments. Procedure X is put in file X of, X or, or Xoe depending
on the language option chosen, with the following exceptions: main is put
in the file MAINolefr1 and unnamed blockdata segments in the files
biockdataNolefr1 where N is a unique integer value for each file.

The following options pertain:

- f (default) Input files are fortran.

- r Input files are rat/or.

-e Input files are Efl.

- s Strip fortran input lines to 72 or fewer characters with trailing blanks
removed.

SEE ALSO
csplit(1), efI(l), fortran (1) , split(1).

October 1983 - 1 -

GET(l) GET(O

NAME
get - get a version of an sees file

SYNOPSIS
get [-rSID] [-ccutoff] [-ilisd [-xlist] [-aseq-no.1 [-k] [-e]
[- I[p]] [- p] [- m] [- 0] [- s] [- b] [- g] [- t] file •••

DESCRIPTION
Get generates an ASCII text file from each named sees file according to the
specifications given by its keyletter arguments, which begin with -. The
arguments may be specified in any order, but all key letter arguments apply
to all named sees files. If a directory is named, get behaves as though
each file in the directory were specified as a named file, except that non­
sees files (last component of the path name does not begin with s.) and
unreadable files are silently ignored. If a name of - is given, the standard
input is read; each line of the standard input is taken to be the name of an
sees file to be processed. Again, non-Sees files and unreadable files are
silently ignored.

The generated text is normally written into a file called the g-file whose
name is derived from the sees file name by simply removing the leading
s.; (see also FILES, below).

Each of the key letter arguments is explained below as though only one
sees file is to be processed, but the effects of any key letter argument
applies independently to each named file.

-rSID The Sees IDentification string (SID) of the version (delta) of
an sees file to be retrieved. Table 1 below shows, for the most
useful cases, what version of an sees file is retrieved (as well
as the SID of the version to be eventually created by delta (1) if
the - e key letter is also used), as a function of the SID
specified.

-ccutofJ Cutoffdate-time, in the form: YY[MM[DD[HH[MM[SS]]]]]
No changes (deltas) to the sees file which were created after
the specified cutoffdate-time are included in the generated ASCII
text file. Units omitted from the date-time default to their
maximum possible values; that is, - c7502 is equivalent to
-c750228235959. Any number of non-numeric characters may
separate the various 2 digit pieces of the cutoff date-time. This
feature allows one to specify a cutoff date in the form:
"-c7712/2 9:22:25". Note that this implies that one may use
the %E% and %U% identification keywords (see below) for
nested gets within, say the input to a send(1C) command:

-!get "-c%E% %U%" s.file

- e Indicates that the get is for the purpose of editing or making a

October 1983

change (delta) to the sees file via a subsequent use of delta (1).
The - e key letter used in a get for a particular version (SID) of
the sees file prevents further gets for editing on the same SID
until delta is executed or the j (joint edit) flag is set in the sees
file (see admin (1». Concurrent use of get - e for different
SIDs is always allowed.

If the g-file generated by get with an - e key letter -is accidentally
ruined in the process of editing it, it may be regenerated by re­
executing the get command with the - k key letter in place of

- 1 -

GET(1)

-b

- ilist

- X list

-k

-Hp]

-p

-s

-m

-n

October 1983

GET(1)

the - e key letter.

sees file protection specified via the ceiling, floor, and author­
ized user list stored in the sees file (see admin (1» are
enforced when the -e key letter is used.

Used with the -e keyletter to indicate that the new delta
should have an SID in a new branch as shown in Table 1. This
key letter is ignored if the b flag is not present in the file (see
admin (1» or if the retrieved delta is not a leaf delta. (A leaf
delta is one that has no successors on the sees file tree.)
Note: A branch delta may always be created from a non-leaf
delta.

A list of deltas to be included (forced to be applied) in the crea­
tion of the generated file. The list has the following syntax:

< list> :: = < range> I < list> , < range>
< range> :: = SID I SID - SID

SID, the sees Identification of a delta, may be in any form
shown in the "SID Specified" column of Table 1. Partial SIDs
are interpreted as shown in the "SID Retrieved" column of
Table 1.

A list of deltas to be excluded (forced not to be applied) in the
creation of the generated file. See the - i keyletter for the list
format.

Suppresses replacement of identification keywords (see below)
in the retrieved text by their value. The - k key letter is
implied by the -e keyletter.

Causes a delta summary to be written into an I-file. If -lp is
used, then an I-file is not created; the delta summary is written
on the standard output instead. See FILES for the format of the
I-file.

Causes the text retrieved from the sees file to be written on
the standard output. No g-file is created. All output which nor­
mally goes to the standard output goes to file descriptor 2
instead, unless the - s key letter is used, in which case it disap­
pears.

Suppresses all output normally written on the standard output.
However, fatal error messages (which always go to file descrip­
tor 2) remain unaffected.

Causes each text line retrieved from the sees file to be pre­
ceded by the SID of the delta that inserted the text line in the
sees file. The format is: SID, followed by a horizontal tab, fol­
lowed by the text line.

Causes each generated text line to be preceded with the %M%
identification keyword value (see below). The format is: %M%
value, followed by a horizontal tab, followed by the text line.
When both the - m and - n key letters are used, the format is:
%M% value, followed by a horizontal tab, followed by the - m
keyletter generated format.

- 2 -

GET(1) GET (1)

SID*

- g Suppresses the actual retrieval of text from the sees file. It is
primarily used to generate an I-jile, or to verify the existence of
a particular SID.

- t Used to access the most recently created ("top") delta in a
given release (e.g., -rl), or release and level (e.g., -rl.2).

- 8 seq-no. The delta sequence number of the sees file delta (version) to
be retrieved (see sccsjile(5». This key letter is used by the
comb (1) command; it is not a generally useful key letter , and
users should not use it. If both the - rand - 8 key letters are
specified, the - 8 key letter is used. Care should be taken when
using the -8 keyletter in conjunction with the -e keyletter, as
the SID of the delta to be created may not be what one expects.
The - r keyletter can be used with the - 8 and - e key letters to
control the naming of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with the SID
being accessed and with the number of lines retrieved from the sees file.

If the -e key letter is used, the SID of the delta to be made appears after
the SID accessed and before the number of lines generated. If there is
more than one named file or if a directory or standard input is named, each
file name is printed (preceded by a new-line) before it is processed. If the
- i key letter is used included deltas are listed following the notation
"Included"; if the - x key letter is used, excluded deltas are listed following
the notation "Excluded".

TABLE 1. Determination of sees Identification String
- b Keyletter Other SID SID of Delta

Specified Usedt Conditions Retrieved to be Created
none:J:
none:J:
R
R
R
R

R

R

R.L
R.L

R.L

R.L.B
R.L.B
R.L.B.S
R.L.B.S
R.L.B.S

*

October 1983

no R defaults to mR mR.mL mR. (mL + 1)
yes R defaults to mR mR.mL mR.mL. (mB + 1).1
no R > mR mR.mL R.t h*

no R = mR mR.mL mR.(mL+I)
yes R > mR mR.mL mR.mL. (mB + 1).1
yes R = mR mR.mL mR.mL.(mB+1).1

no
yes

no
yes
no
yes

R < mR and
R does not exist
Trunk succ.#
in release > R
and R exists
No trunk succ.
No trunk succ.
Trunk succ.
in release ~ R
No branch succ.
No branch succ.
No branch succ.
No branch succ.
Branch succ.

hR.mL** hR.mL.(mB +1).1

R.mL R.mL.(mB + 1).1

R.L R.(L+1)
R.L R.L. (mB + 1).1

R.L R.L.(mB + 1).1

R.L.B.mS R.L.B. (mS + 1)
R.L.B.mS R.L. (mB + 1) .1

R.L.B.S R.L.B. (S + 1)
R.L.B.S R.L. (mB + 1).1
R.L.B.S R.L. (mB + 1).1

"R", "L", "B", and "S" are the "release", "level", "branch", and
"sequence" components of the SID, respectively; "m" means

- 3 -

GET (1) GET(t)

"maximum". Thus, for example, "R.mL" means "the maximum
level number within release R"; "R.L.(mB+ 0.1" means "the first
sequence number on the new branch (i.e., maximum branch number
plus one) of level L within release R". Note that if the SID specified
is of the form "R.L", "R.L.B", or "R.L.B.S", each of the specified
components must exist.

** "hR" is the highest existing release that is lower than the specified,
nonexistent, release R.

*** This is used to force creation of the first delta in a new release.
Successor.
t The - b keyletter is effective only if the b flag (see admin (1» is

present in the file. An entry of - means "irrelevant". * This case applies if the d (default SID) flag is not present in the file. If
the d flag is present in the file, then the SID obtained from the d flag
is interpreted as if it had been specified on the command line. Thus,
one of the other cases in this table applies.

IDENTIFICA TION KEYWORDS
Identifying information is inserted into the text retrieved from the sees file
by replacing identification keywords with their value wherever they occur.
The following keywords may be used in the text stored in an sees file:

Keyword Value
%M% Module name: either the value of the m flag in the file (see

%1%

%R%
%L%
%B%
%8%
%D%
%H%
%T%
%E%
%G%
%U%
%Y%
%F%
%P%
%Q%
%C%

%Z%
%W%

%A%

October 1983

admin (1», or if absent, the name of the sees file with the lead­
ing s. removed.
sees identification (SID) (%R%.%L%.%B%.%S%) of the retrieved
text.
Release.
Level.
Branch.
Sequence.
Current date (YY/MM/DD).
Current date (MM/DD/YY).
Current time (HH:MM:SS).
Date newest applied delta was created (YY/MM/DD).
Date newest applied delta was created (MM/DD/YY).
Time newest applied delta was created (HH:MM:SS).
Module type: value of the t flag in the sees file (see admin (1».
sees file name.
Fully qualified sees file name.
The value of the q flag in the file (see admin 0».
Current line number. This keyword is intended for identifying
messages output by the program such as "this shouldn't have
happened" type errors. It is not intended to be used on every
line to provide sequence numbers.
The 4-character string @ (#) recognizable by what 0).
A shorthand notation for constructing whatO) strings for the
UNIX System program files. % W% = %Z%%M% < horizontal­
tab>%I%
Another shorthand notation for constructing what(1) strings for
non-UNIX system program files.
%A % = %Z%% Y% %M% %I%%Z%

- 4 -

GET (1) GET(1)

EXAMPLE

FILES

get -e s.filel

generates from the sees format file, "s.filel", the text file, "file 1 ", for edit­
ing.

Several auxiliary files may be created by get, These files are known generi­
cally as the g-file, I-file, p-file, and z-file. The letter before the hyphen is
called the tag. An auxiliary file name is formed from the sees file name:
the last component of all sees file names must be of the form s.module­
name, the auxiliary files are named by replacing the leading s with the tag.
The g-file is an exception to this scheme: the g-file is named by removing
the s. prefix. For example, S.XYZ.C, the auxiliary file names would be
XYZ.C, I.xyz.c, p.xyZ.C, and z.xyZ.C, respectively.

The g-file, which contains the generated text, is created in the current
directory (unless the -p key letter is used). A g-file is created in all cases,
whether or not any lines of text were generated by the get. It is owned by
the real user. If the - k keyletter is used or implied its mode is 644; other­
wise its mode is 444. Only the real user need have write permission in the
current directory.

The I-file contains a table showing which deltas were applied in generating
the retrieved text. The I-file is created in the current directory if the -I
key letter is used; its mode is 444 and it is owned by the real user. Only the
real user need have write permission in the current directory.

Lines in the I-file have the following format:

a. A blank character if the delta was applied;
* otherwise.

b. A blank character if the delta was applied or wasn't applied and
ignored;
• if the delta wasn't applied and wasn't ignored.

c. A code indicating a "special" reason why the delta was or was not
applied:
"I": Included.
"X": Excluded.
"e": Cut off (by a - c key letter) .

d. Blank.
e. sees identification (SID).
f. Tab character.
g. Date and time (in the form YY IMM/DD HH:MM:SS) of creation.
h. Blank.
i. Login name of person who created delta.

The comments and MR data follow on subsequent lines, indented one
horizontal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an -e
key letter along to delta. Its contents are also used to prevent a subsequent
execution of get with an - e keyletter for the same SID until delta is exe­
cuted or the joint edit flag, j, (see admin (I» is set in the sees file. The p­
file is created in the directory containing the sees file and the effective user
must have write permission in that directory. Its mode is 644 and it is
owned by the effective user. The format of the p-file is: the gotten SID, fol­
lowed by a blank, followed by the SID that the new delta will have when it

October 1983 - 5 -

GET(1) GET (1)

is made, followed by a blank, followed by the login name of the real user,
followed by a blank, followed by the date-time the get was executed, fol­
lowed by a blank and the - i key letter argument if it was present, followed
by a blank and the - x keyletter argument if it was present, followed by a
new-line. There can be an arbitrary number of lines in the p-file at any
time; no two lines can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its
contents are the binary (2 bytes) process ID of the command (i.e., get) that
created it. The z-file is created in the directory containing the SCCS file for
the duration of get. The same protection restrictions as those for the p-file
apply for the z-file. The z-file is created mode 444.

SEE ALSO
admin(I), delta(I), help(I), prs(I), whatO), sccsfile(4).
"Source Code Control System"

DIAGNOSTICS

BUGS

Use help 0) for explanations.

If the effective user has write permission (either explicitly or implicitly) in
the directory containing the SCCS files, but the real user doesn't, then only
one file may be named when the - e key letter is used.

October 1983 - 6 -

GETOPT(l) GETOPT(l)

NAME
getopt - parse command options

SYNOPSIS
set - - 'getopt optstring $-'

DESCRIPTION
Getopt is used to break up options in command lines for easy parsing by
shell procedures and to check for legal options. Optstring is a string of
recognized option letters (see getopt (3 C)); if a letter is followed by a colon,
the option is expected to have an argument which mayor may not be
separated from it by white space. The special option - - is used to delimit
the end of the options. If it is used explicitly, getopt will recognize it; oth­
erwise, getopt will generate it; in either case, getopt will place it at the end
of the options. The shell's positional parameters ($1 $2 ...) are reset so
that each option is preceded by a - and is in its own positional parameter;
each option argument is also parsed into its own positional parameter.

EXAMPLE
The following code fragment shows how one might process the arguments
for a command that can take the options a or b, as well as the option 0,

which requires an argument:

set - - 'getopt abo: $*'
if [$? != 0]
then

fi

echo $USAGE
exit 2

for in $*
do

done

case $i in
-a I -b)
-0)
--)
esac

FLAG = $i; shift;;
OARG=$2; shift 2;;
shift; break;;

This code will accept any of the following as equivalent:

cmd - aoarg file file
cmd -a -0 arg file file
cmd - oarg - a file file
cmd -a -oarg - - file file

SEE ALSO
sh (I), getopt(3C).

DIAGNOSTICS
Getopt prints an error message on the standard error when it encounters an
option letter not included in optstring.

October 1983 - 1 -

GREEK(l) GREEK(1)

NAME
greek - select terminal filter

SYNOPSIS
greek [- Tterminal]

DESCRIPTION
Greek is a filter that reinterprets the extended character set, as well as the
reverse and half-line motions, of a 128-character TELETYPE@ Teletypewriter
Model 37 terminal (which is the nrojf default terminal) for certain other
terminals. Special characters are simulated by overstriking, if necessary and
possible. If the argument is omitted, greek attempts to use the environ­
ment variable $TERM (see environ (5)). The following terminals are recog­
nized currently:

300 DASI 300.
300-12 DASI 300 in 12-pitch.
300s DASI 300s.
300s-12 DASI 300s in 12-pitch.
450 DASI 450.
450-12 DASI 450 in 12-pitch.
1620 Diablo 1620 (alias DASI 450).
1620-12 Diablo 1620 (alias DASI 450) in 12-pitch.
2621 Hewlett-Packard 2621, 2640, and 2645.
2640 Hewlett-Packard 2621, 2640, and 2645.
2645 Hewlett-Packard 2621, 2640, and 2645.
4014 Tektronix 4014.
hp Hewlett-Packard 2621, 2640, and 2645.
tek Tektronix 4014.

EXAMPLE

FILES

nroff filename I greek -T4014

rein terprets the extended character set on a Tektronix 4014 terminal.

lusr/bin/300
I usr I bini 3 OOs
lusr/bin/4014
lusr/bin/450
lusr/bin/hp

SEE ALSO
300(1), 4014(1), 450(1), eqn(1), hp(1), mm(1), nroff(1) , tplot(1G),
environ (5), greek (5), term (5).

October 1983 - 1 -

GREP(1) GREP(1)

NAME
grep, egrep, fgrep - search a file for a pattern

SYNOPSIS
grep [options] expression [files]

egrep [options] [expression] [files]

fgrep [options] [strings] [files]

DESCRIPTION
Commands of the grep family search the input files (standard input default)
for lines matching a pattern. Normally, each line found is copied to the
standard output. Grep patterns are limited regular expressions in the style
of ed(I); it uses a compact non-deterministic algorithm. Egrep patterns are
full regular expressions; it uses a fast deterministic algorithm that some­
times needs exponential space. Fgrep patterns are fixed strings; it is fast
and compact. The following options are recognized:

- v All lines but those matching are printed.
-x (Exact) only lines matched in their entirety are printed (fgrep only).
- c Only a count of matching lines is printed.
-I Only the names of files with matching lines are listed (once),

separated by new-lines.
- n Each line is preceded by its relative line number in the file.
- b Each line is preceded by the block number on which it was found.

This is sometimes useful in locating disk block numbers by context.
- s The error messages produced for nonexistent or unreadable files are

suppressed (grep only).
- e expression

Same as a simple expression argument, but useful when the expression
begins with a - (does not work with grep).

-f file
The regular expression (egrep) or strings list (fgrep) is taken from the
file.

In all cases, the file name is output if there is more than one input file.
Care should be taken when using the characters $, *, (, ", I, (,), and \ in
expression, because they are also meaningful to the shell. It is safest to
enclose the entire expression argument in single quotes' ... '.

Fgrep searches for lines that contain one of the strings separated by new­
lines.

Egrep accepts regular expressions as in ed (I), except for \ (and \), with the
addition of:

1. A regular expression followed by + matches one or more occurrences
of the regular expression.

2. A regular expression followed by ? matches 0 or 1 occurrences of the
regular expression.

3. Two regular expressions separated by I or by a new-line match strings
that are matched by either.

4. A regular expression may be enclosed in parentheses () for grouping.

The order of precedence of operators is (], then • ? +, then concatenation,
then I and new-line.

October 1983 - 1 -

GREP(I) GREP(1)

EXAMPLE
grep -v -c 'regular' grep.1

reports a count of the number of lines that do not contain the word regular
in the file "grep.l".

SEE ALSO
ed (1), sed (1), sh (1) .

DIAGNOSTICS

BUGS

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or
inaccessible files (even if matches were found).

Ideally there should be only one grep, but we don't know a single algorithm
that spans a wide enough range of space-time tradeoffs.
Lines are limited to 256 characters; longer lines are truncated.
Egrep does not recognize ranges, such as [a - z], in character classes.

October 1983 - 2 -

HEAD(l)

NAME
head - give first few lines

SYNOPSIS
head [- count] [file .. .1

DESCRIPTION

(UniSoft) HEAD(l)

This filter gives the first count lines of each of the specified files, or of the
standard input. If count is omitted it defaults to 10.

EXAMPLE
head -6 filea fileb filec

will print out the first six lines of the three specified files. The filename will
appear before each new set of head lines listed, if more than one file has
been specified.

SEE ALSO
tail(l) .

October 1983 - 1 -

HELP(l) HELP(l)

NAME
help - ask for help in using sees

SYNOPSIS
help [args]

DESCRIPTION
Help finds information to explain a message from an sees command or
explain the use of an sees command. Zero or more arguments may be
supplied. If no arguments are given, help will prompt for one.

The arguments may be either message numbers (which normally appear in
parentheses following messages) or command names, of one of the follow­
ing types:

type 1 Begins with non-numerics, ends in numerics. The non­
numeric prefix is usually an abbreviation for the program or
set of routines which produced the message (e.g., ge6, for
message 6 from the get command).

type 2 Does not contain numerics (as a command, such as get)

type 3 Is all numeric (e.g., 212)

The response of the program will be the explanatory information related to
the argument, if there is any.

When all else fails, try "help stuck".

EXAMPLE

FILES

help he2

prints the message for error number "he2".

lusr/lib/help directory containing files of message text.

lusr/lib/help/helploc file containing locations of help files not in
/usr/lib/help.

DIAGNOSTICS
Use help (1) for explanations.

July 1984 - 1 -

HEX (I) (UniSoft) HEX (I)

NAME
hex - translates object files

SYNOPSIS
hex [-f] [-I] [-:-0#] [-£1 [-sO] [-s2] [-os8] [+saddr] ifile

DESCRIPTION
Hex translates object files into ASCII formats suitable for Motorola S-record
downloading. The following options determine locations:

f The file specified is to be shipped as is without treating it as an
object file.

Output "Loading at" message.

0# Number of characters to output per record. # is a decimal number.

r Output a carriage return at the end of each S-record (instead of a
newline).

sO Output a leading sO record.

s2 82 records only (no s 1 records are produced).

os8 Do not output a trailing s8 (s9) record.

saddr Starting load address (in hex).

ifile File to be downloaded. The file's starting address is used if saddr is
not present.

EXAMPLE
hex objfile

where "objfile" is the object file to be downloaded.

AUTHOR
Jeff Schriebman

July 1984 - 1 -

HOSTNAME (IN) (UniSoft)

NAME
hostname - set or print name of current host system

SYNOPSIS
host name [nameofhost]

DESCRIPTION

HOSTNAME (IN)

The hostname command prints the name of the current host, as given
before the "login" prompt. The super-user can set the hostname by giving
an argument; this is usually done in the startup script jete/reo

SEE ALSO
gethostname(2N), sethostname(2N).

July 1984 - 1 -

HP(l) HP(l)

NAME
hp - handle special functions of HP 2640 and 2621-series terminals

SYNOPSIS
hp [-e] [-m]

DESCRIPTION
Hp supports special functions of the Hewlett-Packard 2640 series of termi­
nals, with the primary purpose of producing accurate representations of
most nroff output.

Regardless of the hardware options on your terminal, hp tries to do sensible
things with underlining and reverse line-feeds. If the terminal has the
"display enhancements" feature, subscripts and superscripts can be indicated
in distinct ways. If it has the "mathematical-symbol" feature, Greek and
other special characters can be displayed.

The flags are as follows:
-e It is assumed that your terminal has the "display enhancements"

feature, and so maximal use is made of the added display modes.
Overstruck characters are presented in the Underline mode. Super­
scripts are shown in Half-bright mode, and subscripts in Half­
bright, Underlined mode. If this flag is omitted, hp assumes that
your terminal lacks the "display enhancements" feature. In this
case, all overstruck characters, subscripts, and superscripts are
displayed in Inverse Video mode, i.e., dark-on-light, rather than the
usual light-on-dark.

- m Requests minimization of output by removal of new-lines. Any
contiguous sequence of 3 or more new-lines is converted into a
sequence of only 2 new-lines; i.e., any number of successive blank
lines produces only a single blank output line. This allows you to
retain more actual text on the screen.

With regard to Greek and other special characters, hp provides the same set
as does 300 (1), except that "not" is approximated by a right arrow, and
only the top half of the integral sign is shown. The display is adequate for
examining output from neqn.

DIAGNOSTICS
line too long if the representation of a line exceeds 1,024 characters.

The exit codes are 0 for normal termination, 2 for all errors.

EXAMPLE
nroff - h filea ... I hp

will nroff "tHea" according to the special functions of the Hewlett-Packard
2640 series of terminals.

SEE ALSO

BUGS

300(1), coHl), eqn(1), greek(l), nroff(1), tbI(l).

An "overstriking sequence" is defined as a printing character followed by a
backspace followed by another printing character. In such sequences, if
either printing character is an underscore, the other printing character is
shown underlined or in Inverse Video; otherwise, only the first printing
character is shown (again, underlined or in Inverse Video). Nothing special
is done if a backspace is adjacent to an ASCII control character. Sequences
of control characters (e.g., reverse line-feeds, backspaces) can make text

October 1983 - 1 -

HP(l) HP(l)

"disappear"; in particular, tables generated by tbl (I) that contain vertical
lines will often be missing the lines of text that contain the "foot" of a vert i­
cal line, unless the input to hp is piped through col (I).

Although some terminals do provide numerical superscript characters, no
attempt is made to display them.

October 1983 - 2 -

HPIO(1) HPIO(1)

NAME
hpio - HP 2645A terminal tape file archiver

SYNOPSIS
hpio - 0 [rc1 file ...

hpio - Hrta] [- n count]

DESCRIPTION
Hpio is designed to take advantage of the tape drives on Hewlett Packard
2645A terminals. Up to 255 UNIX System files can be archived onto a tape
cartridge for off-line storage or for transfer to another UNIX System. The
actual number of files depends on the sizes of the files. One file of about
115,000 bytes will almost fill a tape cartridge. Almost 300 I-byte files will
fit on a tape, but the terminal will not be able to retrieve files after the first
255. This manual page is not intended to be a guide for using tapes on HP
2645A terminals, but tries to give enough information to be able to create
and read tape archives and to position a tape for access to a desired file in
an archive.

The - 0 (copy out) option copies the specified file (s), together with path
name and status information to a tape drive on your terminal (which is
assumed to be positioned at the beginning of a tape or immediately after a
tape mark). The left tape drive is used by default. Each file is written to a
separate tape file and terminated with a tape mark. When hpio finishes, the
tape is positioned following the last tape mark written.

The - i (copy in) option extracts a file(s) from a tape drive (which is
assumed to be positioned at the beginning of a file that was previously writ­
ten by a hpio - 0). The default action extracts the next file from the left
tape drive.

Hpio always leaves the tape positioned after the last file read from or writ­
ten to the tape. Tapes should always be rewound before the terminal is
turned off. To rewind a tape depress the green function button, then func­
tion key 5, and then select the appropriate tape drive by depressing either
function key 5 for the left tape drive or function key 6 for the right. If
several files have been archived onto a tape, the tape may be positioned at
the beginning of a specific file by depressing the green function button,
then function key 8, followed by typing the desired file number 0- 255)
with no RETURN, and finally function key 5 for the left tape or function
key 6 for the right. The desired file number may also be specified by a
signed number relative to the current file number.

The meanings of the available options are:

rUse the right tape drive.
c Include a checksum at the end of each file. The checksum is

always checked by hpio - i for each file written with this option by
hpio -0.

n count The number of input files to be extracted is set to count. If this
option is not given, count defaults to 1. An arbitrarily large count
may be specified to extract all files from the tape. Hpio will stop at
the end of data mark on the tape.

October 1983

Print a table of contents only. No files are created. Printed infor­
mation gives the file size in bytes, the file name, the file access
modes, and whether or not a checksum is included for the file.

- 1 -

HPIO (I) HPIO (I)

a

FILES

Ask before creating a file. Hpio - i normally prints the file size
and name, creates and reads in the file, and prints a status message
when the file has been read in. If a checksum is included with the
file, it reports whether the checksum matched its computed value.
With this option, the file size and name are printed followed by a
? . Any response beginning with y or Y will cause the file to be
copied in as above. Any other response will cause the file to be
skipped.

/ dev/tty?? to block messages while accessing a tape

SEE ALSO
2645A Display Station User's Manual , Hewlett-Packard Company, Part

Number 02645-90001.

DIAGNOSTICS
BREAK

An interrupt signal terminated processing.

Can't create
file . File system access permissions did not allow file to be created.

Can't get tty options on stdout.
Hpio was unable to get the input-output control settings associated
with the terminal.

Can't open
file . File could not be accessed to copy it to tape.

End of Tape.
No tape record was available when a read from a tape was requested.
An end of data mark is the usual reason for this, but it may also occur
if the wrong tape drive is being accessed and no tape is present.

"file" not a regular file.
File is a directory or other special file. Only regular files will be copied
to tape.

Readcnt = rc, termcnt = tc.
Hpio expected to read rc bytes from the next block on the tape, but
the block contained tc bytes. This is caused by having the tape
improperly positioned or by a tape block being mangled by interfer­
ence from other terminal 110.

Skip to next file failed.
An attempt to skip over a tape mark failed.

Tape mark write failed.
An attempt to write a tape mark at the end of a file failed.

Write failed.

WARNINGS

A tape write failed. This is most frequently caused by specifying the
wrong tape drive, running off the end of the tape, or trying to write
on a tape that is write protected.

Tape 110 operations may copy bad data if any other 110 involving the ter­
minal occurs. Do not attempt any type ahead while hpio is running. Hpio
turns off write permissions for other users while it is running, but processes
started asynchronously from your terminal can still interfere. The most

October 1983 - 2 -

HPIO (I) HPIO (I)

BUGS

common indication of this problem, while a tape is being written, is the
appearance of characters on the display screen that should have been copied
to tape.

The keyboard, including the terminal's BREAK key, is locked during tape
write operations; the BREAK key is only functional between writes.

Hpio must have complete control of the attributes of the terminal to com­
municate with the tape drives. Interaction with commands such as cu (Ie)
may interfere and prevent successful operation.

Some binary files contain sequences that will confuse the terminal.

An hpio - i that encounters the end of data mark on the tape (e.g., scan­
ning the entire tape with hpio - itn 300), leaves the tape positioned after
the end of data mark. If a subsequent hpio - 0 is done at this point, the
data will not be retrievable. The tape must be repositioned manually using
the terminal's FIND FILE -1 operation (depress the green function button,
function key 8, and then function key 5 for the left tape or function key 6
for the right tape) before the hpio - 0 is started.

If an interrupt is received by hpio while a tape is being written, the terminal
may be left with the keyboard locked. If this happens, the terminal's
RESET TERMINAL key will unlock the keyboard.

October 1983 - 3 -

HYPHEN(l) HYPHEN (1)

NAME
hyphen - find hyphenated words

SYNOPSIS
hyphen [files]

DESCRIPTION
Hyphen finds all the hyphenated words ending lines in files and prints them
on the standard output. If no arguments are given, the standard input is
used; thus, hyphen may be used as a filter.

EXAMPLE
If the file "text.hyphen" contains the following text:

then

This is an ex-
ample of the command hy­
phen, a com-
mand which finds all hyphen-
ated words in files and prints them on stan­
dard out-
put.

hyphen text.hyphen

will return
ex-ample
hy-phen
com-mand
hyphen-ated
stan-dard
out-put

SEE ALSO

BUGS

mm(1), troff(l).

Hyphen can't cope with hyphenated italic (i.e., underlined) words; it will
often miss them completely, or mangle them.
Hyphen occasionally gets confused, but with no ill effects other than spuri­
ous extra output.

October 1983 - 1 -

ID(O ID (1)

NAME
id - print user and group IDs and names

SYNOPSIS
id

DESCRIPTION
ld writes a message on the standard output giving the user and group IDs
and the corresponding names of the invoking process. If the effective and
real IDs do not match, both are printed.

EXAMPLE
id guest

will return

uid= 100 (guest) gid= 100 (users)

where "100" and "guest" are the user's ID number and name and "100" and
"users" are the user's group ID number and group name. These values are
set up in the administrative file /etc/passwd.

SEE ALSO
logname(l), getuid(2).

October 1983 - 1 -

IPCRM (I) IPCRM(I)

NAME
ipcrm - remove a message queue, semaphore set or shared memory id

SYNOPSIS
ipcrm [options]

DESCRIPTION
Jpcrm will remove one or more specified message, semaphore or shared
memory identifiers. The identifiers are specified by the following options:

- q msqid removes the message queue identifier msqid from the system
and destroys the message queue and data structure associated
with it.

- m shmid removes the shared memory identifier shmid from the system.
The shared memory segment and data structure associated
with it are destroyed after the last detach.

- s semid removes the semaphore identifier semid from the system and
destroys the set of semaphores and data structure associated
with it.

-Q msgkey removes the message queue identifier, created with key
msgkey, from the system and destroys the message queue and
data structure associated with it.

- M shmkey removes the shared memory identifier, created with key
shmkey, from the system. The shared memory segment and
data structure associated with it are destroyed after the last
detach.

- S semkey removes the semaphore identifier, created with key semkey,
from the system and destroys the set of semaphores and data
structure associated with it.

The details of the removes are described in msgctt(2), shmct/(2), and
semctl(2). The identifiers and keys may be found by using ipcs(1).

SEE ALSO
ipcs(1), msgctl(2), msgget(2), msgop(2), semctl(2), semget(2), semop(2),
shmctl (2), shmget (2), shmop (2).

October 1983 - 1 -

IPCS (1) IPCS (1)

NAME
ipcs - report inter-process communication facilities status

SYNOPSIS
ipcs [options]

DESCRIPTION
/pcs prints certain information about active inter-process communication
facilities. Without options, information is printed in short format for mes­
sage queues, shared memory, and semaphores that are currently active in
the system. Otherwise, the information that is displayed is controlled by
the following options:

-q Print information about active message queues.
- m Print information about active shared memory segments.
- s Print information about active semaphores.

If any of the options - q, - m, or - s are specified, information about only
those indicated will be printed. If none of these three are specified, infor­
mation about all three will be printed.

- b Print biggest allowable size information. (Maximum number of bytes
in messages on queue for message queues, size of segments for shared
memory, and number of semaphores in each set for semaphores.) See
below for meaning of columns in a listing.

-c Print creator's login name and group name. See below.
-0 Print information on outstanding usage. (Number of messages on

queue and total number of bytes in messages on queue for message
queues and number of processes attached to shared memory seg­
ments.)

- p Print process number information. (Process ID of last process to send
a message and process ID of last process to receive a message on mes­
sage queues and process ID of creating process and process ID of last
process to attach or detach on shared memory segments) See below.

- t Print time information. (Time of the last control operation that
changed the access permissions for all facilities. Time of last msgsnd
and last msgrcv on message queues, last shmat and last shmdt on
shared memory, last semop (2) on semaphores.) See below.

-a Use all print options. (This is a shorthand notation for -b, -c, -0,

-p, and -t.)
-c corefile

Use the file core./ile in place of /dev/kmem.
- N namelist

The argument will be taken as the name of an alternate namelist
(/unix is the default).

The column headings and the meaning of the columns in an ipcs listing are
given below; the letters in parentheses indicate the options that cause the
corresponding heading to appear; all means that the heading always
appears. Note that these options only determine what information is pro­
vided for each facility; they do not determine which facilities will be listed.

T (all) Type of the facility:
q message queue;
m shared memory segment;
s semaphore.

October 1983 - 1 -

IPes (1)

ID

KEY

MODE

OWNER

GROUP

CREATOR

CGROUP

CBYTES

QNUM

QBYTES

LSPID

LRPID

STIME

October 1983

IPes (1)

(all) The identifier for the facility entry.

(alI) The key used as an argument to msgget, semget, or
shmget to create the facility entry. (Note: The key of a
shared memory segment is changed to IPC_PRIVATE
when the segment has been removed until all processes
attached to the segment detach it.)

(all) The facility access modes and flags. The mode consists
of 11 characters that are interpreted as follows:

(all)

(all)

(a,c)

(a,c)

(a,o)

(a,o)

(a,b)

(a,p)

(a,p)

(a,t)

The first two characters are:
R if a process is waiting on a msgrcv~
S if a process is waiting on a msgsnd~
D if the associated shared memory segment has

been removed. It will disappear when the last
process attached to the segment detaches it~

C if the associated shared memory segment is to be
cleared when the first attach is executed~
if the corresponding special flag is not set.

The next 9 characters are interpreted as three sets of
three bits each. The first set refers to the owner's per­
missions~ the next to permissions of others in the user­
group of the facility entry~ and the last to all others.
Within each set, the first character indicates permission
to read, the second character indicates permission to
write or alter the facility entry, and the last character is
currently unused.

The permissions are indicated as follows:
r if read permission is granted~
w if write permission is granted~
a if alter permission is granted~

if the indicated permission is not granted.

The login name of the owner of the facility entry.

The group name of the group of the owner of the facility
entry.

The login name of the creator of the facility entry.

The group name of the group of the creator of the facil­
ityentry.

The number of bytes in messages currently outstanding
on the associated message queue.

The number of messages currently outstanding on the
associated message queue.

The maximum number of bytes allowed in messages
outstanding on the associated message queue.

The process 10 of the last process to send a message to
the associated queue.

The process ID of the last process to receive a message
from the associated queue.

The time the last message was sent to the associated
queue.

- 2 -

IPCS (1) IPCS (1)

RTIME (a,t) The time the last message was received from the associ-
ated queue.

CTIME (a,t) The time when the associated entry was created or
changed.

NATTCH (a,o) The number of processes attached to the associated
shared memory segment.

SEGSZ (a,b) The size of the associated shared memory segment.

CPID (a,p) The process ID of the creator of the shared memory
entry.

LPID (a,p) The process ID of the last process to attach or detach the
shared memory segment.

ATIME (a,t) The time the last attach was completed to the associated
shared memory segment.

DTIME (a,t) The time the last detach was completed on the associ-
ated shared memory segment.

NSEMS (a,b) The number of semaphores in the set associated with
the semaphore entry.

OTIME (a,t) The time the last semaphore operation was completed on
the set associated with the semaphore entry.

FILES
/ unix system namelist
/dev/kmem memory
/ etc/ passwd user names
/ etc/ group group names

SEE ALSO

BUGS

msgop(2), semop(2), shmop(2).

Things can change while ipcs is running; the picture it gives is only a close
approximation to reality.

October 1983 - 3 -

JOIN (1) JOIN (1)

NAME
join - relational database operator

SYNOPSIS
join [options] file1 fUe2

DESCRIPTION
Join forms, on the standard output, a join of the two relations specified by
the lines of filel and file2. If filel is -, the standard input is used.

File land file2 must be sorted in increasing ASCII collating sequence on the
fields on which they are to be joined, normally the first in each line.

There is one line in the output for each pair of lines in filel and file2 that
have identical join fields. The output line normally consists of the common
field, then the rest of the line from file l, then the rest of the line from
file2.

Fields are normally separated by blank, tab or new-line. In this case, multi­
ple separators count as one, and leading separators are discarded.

These options are recognized:

- an In addition to the normal output, produce a line for each unpair­
able line in file n, where n is I or 2.

- e s Replace empty output fields by string s.

- j n m Join on the m th field of file n. If n is missing, use the m th field
in each file.

- 0 list Each output line comprises the fields specified in list, each element
of which has the form n. m, where n is a file number and m is a
field number.

-t c Use character c as a separator (tab character). Every appearance
of c in a line is significant.

EXAMPLE
If "file 1 " contains: Austen -

Bailey -
Clark -
Dawson -
Smith -

and "file2" contains: Austen Jack Anchor Brewery
Clark Maryann Shoeshop

then

join -j1

Daniels Steve Computer Software
Dawson Sylvia Toot Sweets
Smith Sally Talcum Powdery

-j2 1 -0 2.2 2.1 1.2 2.3 2.4 file1 file2

will generate

SEE ALSO

Jack Austen - Anchor Brewery
Maryann Clark - Shoeshop
Sylvia Dawson - Toot Sweets
Sally Smith - Talcum Powdery

awkO), commO), sortO).

October 1983 - 1 -

JOIN (1) JOIN (1)

BUGS
With default field separation, the collating sequence is that of sort - b; with
- t, the sequence is that of a plain sort.

The conventions of join, sort, comm, uniq and awk (1) are wildly incongru­
ous.

October 1983 - 2 -

KILL (1) KILL (1)

NAME
kill - terminate a process

SYNOPSIS
kill [- signo] PID ...

DESCRIPTION
Kill sends signal 15 (terminate) to the specified processes. This will nor­
mally kill processes that do not catch or ignore the signal. The process
number of each asynchronous process started with & is reported by the
Shell (unless more than one process is started in a pipeline, in which case
the number of the last process in the pipeline is reported). Process
numbers can also be found by using ps (1).

The details of the kill are described in kill (2). For example, if process
number 0 is specified, all processes in the process group are signaled.

The killed process must belong to the current user unless he is the super­
user.

If a signal number preceded by - is given as first argument, that signal is
sent instead of terminate (see signal (2». In particular "kill - 9 ... " is a
sure kill.

EXAMPLE
kill 24068

Sends signal 15 to the process with the ID number 24068.

SEE ALSO
ps(l), sh(l), kill(2), signal(2).

July 1984 - 1 -

LD (1) LD (1)

NAME
ld - link editor

SYNOPSIS
Id [option] file

DESCRIPTION
Ld combines several object programs into one, resolves external references,
and searches libraries. In the simplest case several object files are given,
and Id combines them, producing an object module which can be either
executed or become the input for a further Id run. (In the latter case, the
- r option must be given to preserve the relocation bits.) The output of Id
is left on a.out. This file is made executable only if no errors occurred dur­
ing the load.

The argument routines are concatenated in the order specified. The entry
point of the output is the beginning of the first routine.

If any argument is a library, it is searched exactly once at the point it is
encountered in the argument list. Only those routines defining an
unresolved external reference are loaded. If a routine from a library refer­
ences another routine in the library, the referenced routine must appear
after the referencing routine in the library. Thus the order of programs
within libraries may be important.

The symbols "_etext", "_edata" and "_end" ("etext", "edata" and "end" in C)
are reserved, and if referred to, are set to the first location above the pro­
gram, the first location above initialized data, and the first location above
all data respectively. It is erroneous to define these symbols.

Ld understands several options. Except for -I, they should appear before
the file names.

-s

-u

-Ix

-x

-x

-r

October 1983

"Strip" the output, that is, remove the symbol table and relocation
bits to save space (but impair the usefulness of the debugger).
This inf orma tion can also be removed by strip (1) .

Take the following argument as a symbol and enter it as undefined
in the symbol table. This is useful for loading wholly from a
library, since initially the symbol table is empty and an unresolved
reference is needed to force the loading of the first routine.

This option is an abbreviation for the library name "/lib/libx.a",
where x is a string. If that does not exist, Id tries
"/usr/lib/libx.a". A library is searched when its name is encoun­
tered, so the placement of a -I is significant.

Do not preserve local (non-.globl) symbols in the output symbol
table; only enter external symbols. This option saves some space
in the output file.

Save local symbols except for those whose names begin with "L".
This option is used by cc (1) to discard internally generated labels
while retaining symbols local to routines.

Generate relocation bits in the output file so that it can be the sub­
ject of another Id run. This flag also prevents final definitions
from being given to common symbols, and suppresses the
"undefined symbol" diagnostics.

- 1 -

LO(I) LO (1)

- R x Set starting relocation address of program to x (x is in hex).

-LT x Set the text relocation address to x (xisoin hex).

- LD x Set the data relocation address to x (x is in hex).

- LC x Set the common relocation address to x (x is in hex).

- LB x Set the bss relocation address to x (x is in hex).

-d Force definition of common storage even if the -r flag is present.

- n Arrange that when the output file is executed, the text portion will
be read-only and shared among all users executing the file. This
involves moving the data areas up to the first possible protection
boundary following the end of the text.

- N x Set the data relocation boundary to x for shared text programs.
The value x may be followed by a k or K to indicate multiplication
by 1024.

-0 The name argument after -0 is used as the name of the ld output
file, instead of a.out.

-e The following argument is taken to be the name of the entry point
of the loaded program; location 0 is the default.

- F x Add offset x to all data references (x is in hex).

EXAMPLE

FILES

ld -s llibl crtO.o filea.o fileb.o -Ie

will load subroutines "filea" with "fileb" for execution and remove its sym­
bol table.

llib/lib* .a
lusr/lib/lib* .a
a.out
IIi bl crtO. 0

libraries
more libraries
default output file
"C" start up routine

SEE ALSO
ar (1), as (1), cc (1) .

October 1983 - 2 -

LEX (1) LEX (I)

NAME
lex - generate programs for simple lexical tasks

SYNOPSIS
lex [-rctvn] [file] '"

DESCRIPTION
Lex generates programs to be used in simple lexical analysis of text.

The input files (standard input default) contain strings and expressions to
be searched for, and C text to be executed when strings are found.

A file lex.yy.c is generated which, when loaded with the library, copies the
input to the output except when a string specified in the file is found; then
the corresponding program text is executed. The actual string matched is
left in yytext, an external character array. Matching is done in order of the
strings in the file. The strings may contain square brackets to indicate char­
acter classes, as in [abx - z] to indicate a, b, x, y, and z; and the operators
*, +, and? mean respectively any non-negative number of, any positive
number of, and either zero or one occurrences of, the previous character or
character class. The character . is the class of all ASCII characters except
new-line. Parentheses for grouping and vertical bar for alternation are also
supported. The notation r {d, e} in a rule indicates between d and e
instances of regular expression r. It has higher precedence than I, but
lower than *, ?, +, and concatenation. The character A at the beginning of
an expression permits a successful match only immediately after a new-line,
and the character $ at the end of an expression requires a trailing new-line.
The character / in an expression indicates trailing context; only the part of
the expression up to the slash is returned in yytext, but the remainder of
the expression must follow in the input stream. An operator character may
be used as an ordinary symbol if it is within" symbols or preceded by \ .
Thus [a - zA - Z] + matches a string of letters.

Three subroutines defined as macros are expected: inputO to read a charac­
ter; unput(c) to replace a character read; and output(c) to place an output
character. They are defined in terms of the standard streams, but you can
override them. The program generated is named yylex (), and the library
contains a main 0 which calls it. The action REJECT on the right side of
the rule causes this match to be rejected and the next suitable match exe­
cuted; the function yymoreO accumulates additional characters into the
same yytext; and the function yyless (p) pushes back the portion of the
string matched beginning at p, which should be between yytext and
yytext+ yyleng. The macros input and output use files yyin and yyout to
read from and write to, defaulted to stdin and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text and is
copied; if it precedes %% , it is copied into the external definition area of
the lex.yy.c file. All rules should follow a %% , as in Y ACC. Lines preced­
ing %% which begin with a non-blank character define the string on the left
to be the remainder of the line; it can be called out later by surrounding it
with {} . Note that curly brackets do not imply parentheses; only string
substitution is done.

The external names generated by lex all begin with the prefix yy or YY.

The flags must appear before any files. The flag - r indicates RATFOR
actions, - c indicates C actions and is the default, - t causes the lex.yy.c
program to be written instead to standard ou tpu t, - v provides a one-line

October 1983 - 1 -

LEX (I) LEX (1)

summary of statistics of the machine generated, - 0 will not print out the
- summary. Multiple files are treated as a single file. If no files are
specified, standard input is used.

Certain table sizes for the resulting finite state machine can be set in the
definitions section:

%p n number of positions is n (default 2000)
%0 n number of states is n (500)
%t n number of parse tree nodes is n (1000)
%a n number of transitions is n (3000)

The use of one or more of the above automatically implies the - v option,
unless the - 0 option is used.

EXAMPLE
D
%%
if
[a-z] +
O{D}+
{D}+
"++"
"+"
"/*"

SEE ALSO
yacc(1).

[0-9]

printf("IF statement\n");
printf("tag, value %s\n" ,yytext);
printf("octal number %s\n" ,yytext);
printf("decimal number %s\n" ,yytext);
printf("unary op\n");
printf("binary op\n");
{ loop:

while (inputO != '*');
switch (inputO)

{
case 'I': break;
case '*': unput('*');
default: go to loop;
}

LEX-Lexical Analyzer Generator by M. E. Lesk and E. Schmidt.

BUGS
The - r option is not yet fully operational.

October 1983 - 2 -

LINE (1)

NAME
line - read one line

SYNOPSIS
line

DESCRIPTION

LINE (1)

Line copies one line (up to a new-line) from the standard input and writes
it on the standard output. It returns an exit code of 1 on EOF and always
prints at least a new-line. It is often used within shell files to read from the
user's terminal.

EXAMPLE
line
Hello world

will return

Hello world

In the Bourne shell (sh):

a= 'line'
hi there
echo $a

will return .

hi there

In the C-shell (csh):

set a='line'
bye bye
echo $a

will return

bye bye

SEE ALSO
sh(1), read(2).

October 1983 - 1 -

LINT 0) LINT 0)

NAME
lint - a C program checker

SYNOPSIS
lint [- abhlnpuvx] file ...

DESCRIPTION
Lint attempts to detect features of the C program files which are likely to be
bugs, non-portable, or wasteful. It also checks type usage more strictly
than the compilers. Among the things which are currently detected are
unreachable statements, loops not entered at the top, automatic variables
declared and not used, and logical expressions whose value is constant.
Moreover, the usage of functions is checked to find functions which return
values in some places and not in others, functions called with varying
numbers of arguments, and functions whose values are not used.

It is assumed that all the files are to be loaded together; they are checked
for mutual compatibility. By default, lint uses function definitions from the
standard lint library llib-Ic.ln; function definitions from the portable lint
library llib-port.ln are used when lint is invoked with the - p option.

Any number of lint options may be used, in any order. The following
options are used to suppress certain kinds of complaints:

- a Suppress complaints about assignments of long values to variables
that are not long.

- b Suppress complaints about break statements that cannot be reached.
(Programs produced by lex or yaee will often result in a large number
of such complaints.)

- h Do not apply heuristic tests that attempt to intuit bugs, improve style,
and reduce waste.

-u Suppress complaints about functions and external variables used and
not defined, or defined and not used. (This option is suitable for run­
ning lint on a subset of files of a larger program.)

- v Suppress complaints about unused arguments in functions.

- x Do not report variables referred to by external declarations but never
used.

The following arguments alter lint's behavior:

-Ix Include additional lint library llib-Ix.ln. You can include a lint ver­
sion of the math library llib-Im.ln by inserting -1m on the command
line. This argument does not suppress the default use of llib-lc.ln.
This option can be used to keep local lint libraries and is useful in the
development of multi-file projects. To generate llib-IX.ln from llib-IX,
use:

% cc - E -C - Dlint llib-IX I/usr/lib/lint/lintl -vx - H/tmp/lint$$ > llib-IX.ln
% rm - f Itmp/lint$$

July 1984

- n Do not check compatibility against either the standard or the portable
lint library.

-p Attempt to check portability to other dialects (IBM and GCOS) of C.

- 1 -

UNTO) UNTO)

The - D, - U, and - I options of cc 0) are also recognized as separate
arguments.

Certain conventional comments in the C source will change the behavior of
lint:

I*NOTREACHED*I
at appropriate points stops comments about unreachable code.

I*VARARGSn*1
suppresses the usual checking for variable numbers of arguments in
the following function declaration. The data types of the first n argu­
ments are checked; a missing n is taken to be O.

I*ARGSUSED*I
turns on the - v option for the next function.

1* LINTLIBRAR Y * I
at the beginning of a file shuts off complaints about unused functions
in this file.

Lint produces its first output on a per source file basis. Complaints regard­
ing included files are collected and printed after all source files have been
processed. Finally, information gathered from all input files is collected
and checked for consistency. At this point, if it is not clear whether a com­
plaint stems from a given source file or from one of its included files, the
source file name will be printed followed by a question mark.

EXAMPLE

FILES

lint - b myfile.c

checks the consistency of the file "myfile.c". The - b option indicates that
unreachable break statements are not to be checked. This option might
well be used on files that lex 0) generates.

lusr/lib/lint[12]
I usr I li bl lli b-Ic.ln

I usr/lib/llib-port.1n

lusr/lib/llib-Im.ln

programs
declarations for standard functions (binary format;
source is in lusr/lib/llib-Ic)
declarations for portable functions (binary format;
source is in lusr/lib/llib-port)
declarations for standard math functions (binary for­
mat; source is in Imu/lib/llib-Im)

lusr/tmp/*lint*

SEE ALSO

temporaries

BUGS

ccO).

Exit (2) and other functions which do not return are not understood; this
causes various lies.

July 1984 - 2 -

LOGIN (I) LOGIN (1)

NAME
login - sign on

SYNOPSIS
login [name [env-var '"]]

DESCRIPTION
The login command is used at the beginning of each terminal session and
allows you to identify yourself to the system. It may be invoked as a com­
mand or by the system when a connection is first established. Also, it is
invoked by the system when a previous user has terminated the initial shell
by typing a cntrl-d to indicate an "end-of-file".

If login is invoked as a command, it must replace the initial command
interpreter. This is accomplished by typing:

exec login
from the initial shell.

Login asks for your user name Of not supplied as an argument), and, if
appropriate, your password. Echoing is turned off (where possible) during
the typing of your password, so it will not appear on the written record of
the session.

At some installations, an option may be invoked that will require you to
enter a second "dialup" password. This will occur only for dial-up connec­
tions, and will be prompted by the message "dialup password:". Both pass­
words are required for a successful login.

If you do not complete the login successfully within a certain period of time
(e.g., one minute), you are likely to be silently disconnected.

After a successful login, accounting files are updated, the procedure
/etc/profile is performed, the message-of-the-day, if any, is printed, the
user-ID, the group-ID, the working directory, and the command interpreter
(usually sh (1)) is initialized, and the file .profile in the working directory is
executed, if it exists. These specifications are found in the /etc/passwd file
entry for the user. The name of the command interpreter is - followed by
the last component of the interpreter's path name (i.e., -sh). If this field
in the password file is empty, then the default command interpreter,
/bin/sh is used.

The basic environment (see environ (5)) is initialized to:

HOME = your-login-directory
PATH=:/bin:/usr/bin
SHELL = last-field-oJ-passwd-entry
MAIL = I usr I mail/ your-login-name
TZ = timezone-specijication '

The environment may be expanded or modified by supplying additional
arguments to login, either at execution time or when login requests your
login name. The arguments may take either the form xxx or xxx=yyy.
Arguments without an equal sign are placed in the environment as

L n=xxx
where n is a number starting at 0 and is incremented each time a new vari­
able name is required. Variables containing an = are placed into the
environment without modification. If they already appear in the environ­
ment, then they replace the older value. There are two exceptions. The
variables PATH and SHELL cannot be changed. This prevents people,

October 1983 - 1 -

LOGIN (1) LOGIN (1)

logging into restricted shell environments, from spawning secondary shells
which aren't restricted. Both login and getty understand simple single char­
acter quoting conventions. Typing a backslash in front of a character
quotes it and allows the inclusion of such things as spaces and tabs.

EXAMPLE

FILES

At the beginning of each terminal session, the following sort of message is
displayed on the screen:

U niSoft 68000 UNIX
:login:

to which a user name is the appropriate response.

letc/utmp
letc/wtmp
lusr/maill your-name
letc/motd
I etcl passwd
I etcl profile
letc/cshrc
.profile
.login
.cshrc
.logout

accounting
accounting
mailbox for user your-name
message-o f -the-day
password file
systemwide personal profile (sh (1))
systemwide personal csh startup (csh (1))
personal profile (sh (1))
personal csh startup used at login time (csh (1))
personal csh startup (csh (1))
personal csh logout used at logout time (csh (1))

SEE ALSO
maiI(l), newgrp(l), sh(1), su(1), passwd(4), profile(4), environ(5).

DIAGNOSTICS
Login incorrect

if the user name or the password cannot be matched.

No shell, cannot open password file, or no directory
consult a UNIX system programming counselor.

No utmp entry. You must exec" login" from the lowest level" sh".

October 1983

if you attempted to execute login as a command without using the
shell's exec internal command or from other than the initial shell.

- 2 -

LOGNAME(I)

NAME
logname - get login name

SYNOPSIS
logname

DESCRIPTION

LOGNAME(I)

Logname returns the contents of the environment variable $LOGNAME,
which is set when a user logs into the system.

EXAMPLE
logname

displays the $LOGNAME of the user logged into the system on the current
port.

FILES
/ etc/ profile

SEE ALSO
env(I), login(I), logname(3X) , environ(4) , printenv(I).

July 1984 - 1 -

LORDER(l) LORDER(l)

NAME
lorder - find ordering relation for an object library

SYNOPSIS
lorder file .. ,

DESCRIPTION
The input is one or more object or library archive files (see ar 0». The
standard output is a list of pairs of object file names, meaning that the first
file of the pair refers to external identifiers defined in the second. The out­
put may be processed by tsort (0 to find an ordering of a library suitable for
one-pass access by IdO). Note that the link editor IdO) is capable of mul­
tiple passes over an archive in the portable archive format (see ar(4» and
does not require that lorder(O be used when building an archive. The
usage of the lorder(O command may, however, allow for a slightly more
efficient access of the archive during the link edit process.

EXAMPLE

FILES

ar cr library lorder *.0 I tsort

builds a new library from existing .0 files.

*symref, *symdef temporary files

SEE ALSO

BUGS

ar(O, Id(O, tsort(O, ar(4).

Object files whose names do not end with .0, even when contained in
library archives, are overlooked. Their global symbols and references are
attributed to some other file.

October 1983 - 1 -

LP(I) LP (1)

NAME
lp, cancel - send/cancel requests to an LP line printer

SYNOPSIS
lp [-c] [-ddestJ [-m] [-nnumber1 [-ooption] [-s] [-ttitle] [-w]
files
cancel [ids] [printers]

DESCRIPTION
Lp arranges for the named files and associated information (collectively
called a request) to be printed by a line printer. If no file names are men­
tioned, the standard input is assumed. The file name - stands for the
standard input and may be supplied on the command line in conjunction
with named files. The order in which files appear is the same order in
which they will be printed.

Lp associates a unique id with each request and prints it on the standard
output. This id can be used later to cancel (see below) or find the status
(see Ipstat(1» of the request.

The following options to Ip may appear in any order and may be intermixed
with file names:

- c Make copies of the files to be printed immediately when Ip is
invoked. Normally, files will not be copied, but will be linked
whenever possible. If the - c option is not given, then the
user should be careful not to remove any of the files before the
request has been printed in its entirety. It should also be noted
that in the absence of the - c option, any changes made to the
named files after the request is made but before it is printed
will be reflected in the printed output.

-d dest Choose dest as the printer or class of printers that is to do the
printing. If dest is a printer, then the request will be printed
only on that specific printer. If dest is a class of printers, then
the request will be printed on the first available printer that is a
member of the class. Under certain conditions (printer unavai­
lability, file space limitation, etc.), requests for specific destina­
tions may not be accepted (see accept (1 M) and Ipstat (1»). By
default, dest is taken from the environment variable LPDEST
(if it is set). Otherwise, a default destination (if one exists) for
the computer system is used. Destination names vary between
systems (see lpstat (1».

- m Send mail (see mail (1» after the files have been printed. By
default, no mail is sent upon normal completion of the print
request.

- n number Print number copies (default of 1) of the output.

- 0 option Specify printer-dependent or class-dependent options. Several
such options may be collected by specifying the - 0 keyletter
more than once. For more information about what is valid for
options, see Models in Ipadmin (1 M).

-s Suppress messages from Ip(1) such as "request id is ... ".

- t title Print title on the banner page of the output.

October 1983 - 1 -

LP(l)

FILES

LP(l)

- w Write a message on the user's terminal after the files have
been printed. If the user is not logged in, then mail will be
sent instead.

Cancel cancels line printer requests that were made by the lp (1) command.
The command line arguments may be either request ids (as returned by
lp (1)) or printer names (for a complete list, use lpstat (I)). Specifying a
request id cancels the associated request even if it is currently printing.
Specifying a printer cancels the request which is currently printing on that
printer. In either case, the cancellation of a request that is currently print­
ing frees the printer to print its next available request.

lusrl spooillpl *
SEE ALSO

enable(1), Ipstat(1), mail(1).
accept (1 M), Ipadmin (1 M), lpsched (1 M) in the UniPlus + Administrator's
Manual.

October 1983 - 2 -

LPR (1) LPR (1)

NAME
lpr - line printer spooler

SYNOPSIS
Ipr [option ...] [name ...]

DESCRIPTION
Lpr causes the named files to be queued for printing on a line printer. If
no names appear, the standard input is assumed; thus /pr may be used as a
filter.

The following options may be given (each as a separate argument and in
any order) before any file name arguments:

- c Makes a copy of the file to be sent before returning to the user.
- r Removes the file after sending it.
- m When printing is complete, reports that fact by mail (1).
-n Does not report the completion of printing by mail(D. This is the

default option.
- ffile Use file as a dummy file name to report back in the mail. (This is

useful for distinguishing multiple runs, especially when /pr is being
used as a filter).

Please note that the directory /usr/spool/lpd must be owned by daemon
and have mode 0755; /bin/lpr must have mode 4755; and /dev/lp must be
owned by daemon and have mode 600.

EXAMPLE
cat asa Ilpr

will print the file "asa" on the line printer.

FILES
/ etc/ passwd
/usrllibllpd
/ usr/ spool! lpd/ *

SEE ALSO
Ip(1).

October 1983

user's identification and accounting data.
line printer daemon.
spool area.

- 1 -

LPSTAT(I) LPSTAT(t)

NAME
lpstat - print LP status information

SYNOPSIS
Ips tat [options]

DESCRIPTION

FILES

Lpstat prints information about the current status of the LP line printer sys­
tem.

If no options are given, then /pstat prints the status of all requests made to
/p (1) by the user. Any arguments that are not options are assumed to be
request ids (as returned by /p). Lpstat prints the status of such requests.
Options may appear in any order and may be repeated and intermixed with
other arguments. Some of the keyletters below may be followed by an
optional list that can be in one of two forms: a list of items separated from
one another by a comma, or a list of items enclosed in double quotes and
separated from one another by a comma and/or one or more spaces. For
example:

- u"used, user2, user3"

The omission of a list following such keyletters causes all information
relevant to the keyletter to be printed, for example:

lpstat -0

prints the status of all output requests.

- a [list] Print acceptance status (with respect to /p) of destinations for
requests. List is a list of intermixed printer names and class
names.

-c[list] Print class names and their members. List is a list of class
names.

- d Print the system default destination for /p.

-o[list] Print the status of output requests. List is a list of intermixed
printer names, class names, and request ids.

-p[list] Print the status of printers. List is a list of printer names.

-r Print the status of the LP request scheduler.

- s Print a status summary, including the status of the line printer
scheduler, the system default destination, a list of class names
and their members, and a list of printers and their associated dev­
ices.

- t Print all status information.

-u[list] Print status of output requests for users. List is a list of login
names.

-v[list] Print the names of printers and the pathnames of the devices
associated with them. List is a list of printer names.

/usr/spoolllp/*

SEE ALSO
enable(1), Ip(1).

October 1983 - 1 -

LS(l) LS (1)

NAME
Is - list contents of directories

SYNOPSIS
Is [-Iogtasdrucifp] names

DESCRIPTION
For each directory named, Is lists the contents of that directory; for each
file named, Is repeats its name and any other information requested. By
default, the output is sorted alphabetically. When no argument is given,
the current directory is listed. When several arguments are given, the argu­
ments are first sorted appropriately, but file arguments are processed before
directories and their contents. There are several options:

-I List in long format, giving mode, number of links, owner, group, size
in bytes, and time of last modification for each file (see below). If
the file is a special file, the size field will contain the major and minor
device numbers, rather than a size.

-0 The same as -I, except that the group is not printed.

- g The same as -I, except that the owner is not printed.

- t Sort by time of last modification (latest first) instead of by name.

- a List all entries; usually entries beginning with are suppressed,
except for the super user. '.' and ' . .' are always suppressed if the
- a option is not used.

-s Give size in blocks (including indirect blocks) for each entry.

- d If argument is a directory, list only its name; often used with -I to
get the status of a directory.

- r Reverse the order of sort to get reverse alphabetic or oldest first, as
appropriate.

-u Use time of last access instead of last modification for sorting (with
the - t option) and/or printing (with the -I option).

-c Use time of last modification of the inode (mode, etc.) instead of last
modification of the file for sorting (- t) and/or printing (- I).

- i For each file, print the i-number in the first column of the report.

- f Force each argument to be interpreted as a directory and list the name
found in each slot. This option turns off -I, -t, - s, and - r, and
turns on - a; the order is the order in which entries appear in the
directory.

- p Put a slash after each filename if -that file is a directory. Especially
useful for CRT terminals when combined with the prO) command as
follows: Is -p I pr -5 -t -w80.

The mode printed under the -I option consists of 11 characters that are
interpreted as follows:

July 1984

The first character is:
d if the entry is a directory;
b if the entry is a block special file;
c if the entry is a character special file;
p if the entry is a fifo (a.k.a. "named pipe") special file;

if the entry is an ordinary file.

- 1 -

LS (I) LS(I)

The next 9 characters are interpreted as three sets of three bits each.
The first set refers to the owner's permissions; the next to permis­
sions of others in the user-group of the file; and the last to all others.
Within each set, the three characters indicate permission to read, to
write, and to execute the file as a program, respectively. For a direc­
tory, "execute" permission is interpreted to mean permission to search
the directory for a specified file.

The permissions are indicated as follows:

r if the file is readable;
w if the file is writable;
x if the file is executable;

if the indicated permission is not granted.

The group-execute permission character is given as s if the file has
set-group-ID mode; likewise, the user-execute permission character is
given as s if the file has set-user-ID mode. The last character of the
mode (normally x or -) is t if the 1000 (octal) bit of the mode is on;
see chmod(1) for the meaning of this mode. The indications of set-ID
and 1000 bit of the mode are capitalized (8 and T respectively) if the
corresponding execute permission is not set.

When the sizes of the files in a directory are listed, a total count of blocks,
including indirect blocks, is printed.

EXAMPLE
Is -1 fetc

will list all entries in lete in long format.

FILES
fetcfpasswd to get user IDs for Is -1 and Is -0.

f etcf group to get group IDs for Is -1 and Is - g.

SEE ALSO
chmod(1), find(1), Is7(1).

July 1984 - 2 -

LS70) (UniSoft) LS70)

NAME
Is7 - list contents of directory (Berkeley version)

SYNOPSIS
Is7 [-IACFRabcdfgilmnqrstux] name ...

DESCRIPTION
For each directory argument, Is7lists the contents of the directory; for each
file argument, Is7 repeats the file name(s) and any other information
requested with the Is 7 options. The output is sorted alphabetically by
default. When no argument is given, the current directory is listed. When
several arguments are given, the arguments are first sorted appropriately,
but file arguments appear before directories and their contents.

There are three major listing formats. The format chosen depends on
whether the output is going to a teletype, and may also be controlled by
option flags. The default format for a teletype is to list the contents of
directories in multi-column format, with the entries sorted down the
columns. (Files which are not the contents of a directory being interpreted
are always sorted across the page rather than down the page in columns.
This is because the individual file names may be arbitrarily long.) Files are
listed first, and each directory being listed is labeled with its pathname,
when two or more directory listings are requested. If the standard output is
not a teletype, the default format is to list one entry per line. Finally, there
is a stream ontput format in which files are listed across the page, separated
by"," characters. The -m flag enables this format.

There are numerous options:

-1 Force one entry per line output format, e.g., to a teletype.

- A reverses the default state of the - a option.

- C Force multi-column output, e.g., to a file or a pipe.

- F Cause directories to be marked with a trailing "/" and executable files
to be marked with a trailing "*"; this is the default if the last character
of the name the program is invoked with is a "f' (for example, by
linking Ibin/ls7 to Ibin/If).

- R Recursively list subdirectories encountered.

- a List all entries; usually entries beginning with are suppressed,
except for the super user. '.' and ' .. ' are always suppressed if the
- a option is not used.

- b Force printing of non-graphic characters to be in the "\ddd" notation,
in octal.

- c Use time of file creation for sorting (- t) or printing (- I).

-d If argument is a directory, list only its name, not its contents (mostly
used with -I to get status on directory).

- f Force each argument to be interpreted as a directory and list the name
found in each slot. This option turns off -I, - t, - s, and - r, and
turns on - a; the order is the order in which entries appear in the
directory.

- g Give group ID instead of owner ID in long listing.

- i Print i-number in first column of the report for each file listed.

July 1984 - 1 -

LS7 (1) (UniSoft) LS7 (1)

-I List in long format, givmg mode, number of links, owner, size in
bytes, and time of last modification for each file. (See below.) If the
file is a special file, the size field will instead contain the major and
minor device numbers.

- m Force stream output format.

-n User and group numbers, rather than names, will be printed in long
(-n listings.

- q Force printing of non-graphic characters in file names as the character
"?"; this normally happens only if the output device is a teletype.

- r Reverse the order of sort to get reverse alphabetic or oldest first as
appropriate.

-5 Give size in blocks, including indirect blocks, for each entry.

- t Sort by time modified (latest first) instead of by name, as is normal.

- u Use time of last access instead of last modification for sorting (- t) or
printing (- n.

- x Force columnar printing to be sorted across rather than down the
page; this is the default if the last character of the name the program
is invoked with is an "x" (for example, by linking Ibin/Is7 to
Ibin/Ix).

The mode printed under the -I (long) option contains 11 characters which
are interpreted as follows: (see also chmod (1)). The first character is:

d if the entry is a directory;
b if the entry is a block-type special file;
c if the entry is a character-type special file;
m if the entry is a multiplexor-type character special file;

if the entry is a plain file.

The next 9 characters are interpreted as three sets of three bits each.
The first set refers to owner permissions; the next to permissions to
others in the same user-group; and the last to all others. Within each
set the three characters indicate permission respectively to read, to
write, or to execute the file as a program. For a directory, "execute"
permission is interpreted to mean permission to search the directory
for a specified file. The permissions are indicated as follows:

r if the file is readable;
w if the file is writable;
x if the file is executable;

if the indicated permission is not granted.

The group-execute permission character is given as s if the file has
set-group-ID mode; likewise the user-execute permission character is
given as s if the file has set-user-ID mode.

The last character of the mode (normally "x" or "-") is t if the 1000
bit of the mode is on. See chmod(1) for the meaning of this mode.

When the sizes of the files in a directory are listed, a total count of blocks,
including indirect blocks is printed.

July 1984 - 2 -

LS7(1) (UniSoft)

EXAMPLE

FILES

BUGS

Is7
lists the contents of the current directory in multi-column format.

/etc/passwd to get user and group IDs given in ls7 -I.

Newline and tab are considered printing characters in file names.
The output device is assumed to be 80 columns wide.
Column widths choices are poor for terminals which can tab.

July 1984 - 3 -

LS7 (I)

M4(l) M4(I)

NAME
nn4 -- nnacro processor

SYNOPSIS
m4 [options] [files]

DESCRIPTION
M4 is a nnacro processor intended as a front end for Ratfor, C, and other
languages. Each of the argunnent files is processed in order; if there are no
files, or if a file nanne is -, the standard input is read. The processed text
is written on the standard ~>utput.

The options and their effects are as follows:

-e Operate interactively. Interrupts are ignored and the output is
unbuffered. Using this nnode requires a special state of mind.

-s Enable line sync output for the C preprocessor (#line ...)

-- B int Change the size of the push-back and argunnent collection buffers
from the default of 4,096.

-- Hint Change the size of the synnbol table hash array from the default of
199. The size should be prinne.

-- S int Change the size of the call stack fronn the default of 100 slots.
Macros take three slots, and non-nnacro arguments take one.

--T int Change the size of the token buffer fronn the default of 512 bytes.

To be effective, these flags nnust appear before any file nannes and before
any -- D or -- U flags:

- D name[= val]
Defines name to valor to null in val's absence.

-U name
undefines name.

Macro calls have the fornn:

nanne(arg1 ,arg2, ... , argn)

The (must innnnediately follow the nanne of the nnacro. If the name of a
defined macro is not followed by a (, it is deenned to be a call of that macro
with no argunnents. Potential nnacro nannes consist of alphabetic letters,
digits, and underscore _, where the first character is not a digit.

Leading unquoted blanks, tabs, and new-lines are ignored while collecting
argunnents. Left and right single quotes are used to quote strings. The
value of a quoted string is the string stripped of the quotes.

When a nnacro nanne is recognized, its arguments are collected by searching
for a nnatching right parenthesis. If fewer argunnents are supplied than are
in the macro definition, the trailing arguments are taken to be null. Macro
evaluation proceeds nornnally during the collection of the arguments, and
any comnnas or right parentheses which happen to turn up within the value
of a nested call are as effective as those in the original input text. After
argunnent collection, the value of the nnacro is pushed back onto the input
streann and rescanned.

M4 nnakes available the following built-in nnacros. They nnay be redefined,
but once this is done the original meaning is lost. Their values are null
unless otherwise stated.

October 1983 - 1 -

M4(l) M4(1)

define the second argument is installed as the value of the macro
whose name is the first argument. Each occurrence of $n in
the replacement text, where n is a digit, is replaced by the n­
th argument. Argument 0 is the name of the macro; missing
arguments are replaced by the null string; $# is replaced by
the number of arguments; $* is replaced by a list of all the
arguments separated by commas; $ is like $*, but each argu­
ment is quoted (with the current quotes).

undefine removes the definition of the macro named in its argument.

defn returns the quoted definition of its argument(s). It is useful
for renaming macros, especially built-ins.

pushdef like define, but saves any previous definition.

popdef removes current definition of its argument(s), exposing the
previous one if any.

ifdef if the first argument is defined, the value is the second argu­
ment, otherwise the third. If there is no third argument, the
value is null. The word unix is predefined on the UNIX Sys­
tem versions of m4.

shift returns all but its first argument. The other arguments are
quoted and pushed back with commas in between. The quot­
ing nullifies the effect of the extra scan that will subsequently
be performed.

changequote change quote symbols to the first and second arguments. The
symbols may be up to five characters long. Changequote
without arguments restores the original values (i.e., ").

changecom change left and right comment markers from the default #
and new-line. With no arguments, the comment mechanism
is effectively disabled. With one argument, the left marker
becomes the argument and the right marker becomes new­
line. With two arguments, both markers are affected. Com­
ment markers may be up to five characters long.

divert m4 maintains 10 output streams, numbered 0-9. The final
output is the concatenation of the streams in numerical order;
initially stream 0 is the current stream. The divert macro
changes the current output stream to its (digit-string) argu­
ment. Output diverted to a stream other than 0 through 9 is
discarded.

undivert causes immediate output of text from diversions named as
arguments, or all diversions if no argument. Text may be
undiverted into another diversion. Undiverting discards the
diverted text.

divnum returns the value of the current output stream.

dnl reads and discards characters up to and including the next
new-line.

ifelse has three or more arguments. If the first argument is the
same string as the second, then the value is the third argu­
ment. If not, and if there are more than four arguments, the
process is repeated with arguments 4, 5, 6 and 7. Otherwise,

October 1983 - 2 -

M4(I) M4(I)

the value is either the fourth string, or, if it is not present,
null.

incr returns the value of its argument incremented by 1. The
value of the argument is calculated by interpreting an initial
digit-string as a decimal number.

decr returns the value of its argument decremented by 1.

eval evaluates its argument as an arithmetic expression, using 32-
bit arithmetic. Operators include +, -, *, /, %, A (exponen­
tiation), bitwise &, I, A, and - ; relationals; parentheses. Octal
and hex numbers may be specified as in C. The second argu­
ment specifies the radix for the result; the default is 10. The
third argument may be used to specify the minimum number
of digits in the result.

len returns the number of characters in its argument.

index returns the position in its first argument where the second
argument begins (zero origin), or -1 if the second argument
does not occur.

substr returns a substring of its first argument. The second argu­
ment is a zero origin number selecting the first character; the
third argument indicates the length of the substring. A miss­
ing third argument is taken to be large enough to extend to
the end of the first string.

translit transliterates the characters in its first argument from the set
given by the second argument to the set given by the third.
No abbreviations are permitted.

include returns the contents of the file named in the argument.

sinclude is identical to include, except that it says nothing if the file is
inaccessible.

syscmd executes the UNIX System command given in the first argu­
ment. No value is returned.

sysval is the return code from the last call to syscmd.

maketemp fills in a string of XXXXX in its argument with the current
process ID.

m4exit causes immediate exit from m4. Argument 1, if given, is the
exit code; the default is O.

m4wrap argument 1 will be pushed back at final EOF; example:
m4wrap('cleanup(} '}

errprint prints its argument on the diagnostic output file.

dumpdef prints current names and definitions, for the named items, or
for all if no arguments are given.

traceon with no arguments, turns on tracing for all macros {including
built-ins}. Otherwise, turns on tracing for named macros.

traceoff turns off trace globally and for any macros specified. Macros
specifically traced by traceon can be untraced only by specific
calls to traceoff.

October 1983 - 3 -

M4(l) M4(I)

EXAMPLE
m4 filel file2 > outputfile

will run the m4 macro processor on the files "filel" and "file2", redirecting
the output into "outputfile".

SEE ALSO
cc(l), cpp(1).
The M4 Macro Processor by B. W. Kernighan and D. M. Ritchie.

October 1983 - 4 -

MAC HID (1) MACHID(l)

NAME
m68k, pdpll, u3b, vax - provide truth value about your processor type

SYNOPSIS
m68k

pdp11

u3b

vax

DESCRIPTION
The following commands will return a true value (exit code of 0) if you are
on a processor that the command name indicates.

m68k True if you are on a 68000.

pdp11 True if you are on a PDP-ll/45 or PDP-llI70.

u3b True if you are on a 3B20S.

vax True if you are on a vAx-1l1750 or VAX-llI780.

The commands that do not apply will return a false (non-zero) value.
These commands are often used within make (1) makefiles and shell pro­
cedures to increase portability.

SEE ALSO
sh(1), test (1), true(1).

July 1984 - 1 -

MAIL (1) MAIL (1)

NAME
mail, rmail - send mail to users or read mail

SYNOPSIS
mail [-epqr] [-f file]

mail [- t] persons

rmail [- t] persons

DESCRIPTION
Mail without arguments prints a user's mail, message-by-message, in last­
in, first-out order. For each message, the user is prompted with a ?, and a
line is read from the standard input to determine the disposition of the
message:

< new-line>
+
d
p

s [files]
w [files]

m [persons]

Go on to next message.
Same as < new-line>.
Delete message and go on to next message.
Print message again.
Go back to previous message.
Save message in the named files (mbox is default).
Save message, without its header, in the named files
(mbox is default).
Mail the message to the named persons (yourself is
default).

q Put undeleted mail back in the mailjile and stop.
EOT (control-d) Same as q.
x Put all mail back in the mailjile unchanged and stop.
! command Escape to the shell to do command.
• Print a command summary.

The optional arguments alter the printing of the mail:

-e

-p
-q

-r
-ffile

causes mail not to be printed. An exit value of 0 is returned if
the user has mail; otherwise, an exit value of 1 is returned.
causes all mail to be printed without prompting for disposition.
causes mail to terminate after interrupts. Normally an inter­
rupt only causes the termination of the message being printed.
causes messages to be printed in first-in, first-out order.
causes mail to use file (e.g., mbox) instead of the default
mailjile.

When persons are named, mail takes the standard input up to an end-of-file
(or up to a line consisting of just a .) and adds it to each person's mailjile.
The message is preceded by the sender's name and a postmark. Lines that
look like postmarks in the message, (i.e., "From ... ") are preceded with a
> . The - t option causes the message to be preceded by all persons the
mail is sent to. A person is usually a user name recognized by login (1). If
a person being sent mail is not recognized, or if mail is interrupted during
input, the file dead.letter will be saved to allow editing and resending.

To denote a recipient on a remote system, prefix person by the system
name and exclamation mark (see uucp (1 C». Everything after the first exc­
lamation mark in persons is interpreted by the remote system. In particular,
if persons contains additional exclamation marks, it can denote a sequence
of machines through which the message is to be sent on the way to its ulti­
mate destination. For example, specifying a!b!cde as a recipient's name
causes the message to be sent to user b !cde on system a. System a will

October 1983 - 1 -

MAIL(l) MAIL(l)

interpret that destination as a request to send the message to user cde on
system b. This might be useful, for instance, if the sending system can
access system a but not system b, and system a has access to system b.

The mai/file may be manipulated in two ways to alter the function of mail.
The other permissions of the file may be read-write, read-only, or neither
read nor write to allow different levels of privacy. If changed to other than
the default, the file will be preserved even when empty to perpetuate the
desired permissions. The file may also contain the first line:

Forward to person

which will cause all mail sent to the owner of the mai/file to be forwarded
to person. This is especially useful to forward all of a person's mail to one
machine in a multiple machine environment.

Rmail only permits the sending of mail; uucp (1 C) uses rmail as a security
precaution.

When a user logs in, the presence of mail, if any, is indicated. Also,
notification is made if new mail arrives while using mail.

EXAMPLE

FILES

mail carolyn

accepts whatever message is typed up to an EOF. Carolyn will be notified
that she has mail the next time she logs in.

If you want to read mail that has been sent to you, simply type

mail

/ etc/ passwd
/usr/mail/ user
$HOME/mbox
$MAIL
Itmp/ma*
/ usr / mail! * .lock
dead. letter

to identify sender and locate persons
incoming mail for user, i.e., the mai/file
saved mail
variable containing path name of mai/file
temporary file
lock for mail directory
unmailable text

SEE ALSO

BUGS

login(l), uucp(1C), write(l).

Race conditions sometimes result in a failure to remove a lock file.
After an interrupt, the next message may not be printed; printing may be
forced by typing a p.

October 1983 - 2 -

MAKE(l) MAKE(l)

NAME
make - maintain, update, and regenerate groups of programs

SYNOPSIS
make [-f makefile] [-p] [-i1 [-k] [-s] [-r] [-n] [-b) [-e]
[- m] [- t] [- d) [- q] [names]

DESCRIPTION
The following is a brief description of all options and some special names:

- f makefile Description file name. Make./ile is assumed to be the name of
a description file. A file name of - denotes the standard
input. The contents of makefile override the built-in rules if
they are present.

- p Print out the complete set of macro definitions and target
descriptions.

- i Ignore error codes returned by invoked commands. This
mode is entered if the fake target name .IGNORE appears in
the description file.

- k When a command returns nonzero status, abandon work on
the current entry, but continue on other branches that do not
depend on that entry.

- s Silent mode. Do not print command lines before executing.
This mode is also entered if the fake target name .SILENT
appears in the description file.

- r Do not use the built-in rules.

-n No execute mode. Print commands, but do not execute them.
Even lines beginning with an @ are printed.

- b Compatibility mode for old makefiles.

-e Environment variables override assignments within makefiles.

- m Print a memory map showing text, data, and stack. This
option is a no-operation on systems without the getu system
call.

-t Touch the target files (causing them to be up-to-date) rather
than issue the usual commands.

-d Debug mode. Print out detailed information on files and
times examined.

- q Question. The make command returns a zero or non-zero
status code depending on whether the target file is or is not
up-to-date .

• DEFAULT If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the
name .DEF AULT are used if it exists .

• PRECIOUS Dependents of this target will not be removed when quit or
interrupt are hit.

.SILENT Same effect as the - s option .

• IGNORE Same effect as the - i option.

July 1984 - 1 -

MAKE(l) MAKE(l)

Make executes commands in makejile to update one or more target names.
Name is typically a program. If no - f option is present, makefile,
Makefile, s.makefile, and s.Makefile are tried in order. If makejile is -,
the standard input is taken. More than one - makejile argument pair may
appear.

Make updates a target only if it depends on files that are newer than the
target. All prerequisite files of a target are added recursively to the list of
targets. Missing files are deemed to be out of date.

Makejile contains a sequence of entries that specify dependencies. The first
line of an entry is a blank~separated, non-null list of targets, then a :, then
a (possibly null) list of prerequisite files or dependencies. Text following a
; and all following lines that begin with a tab are shell commands to be exe­
cuted to update the target. The first line that does not begin with a tab or
begins a new dependency or macro definition. Shell commands may be
continued across lines with the <backslash> <new-line> sequence.
Everything printed by make (except the initial tab) is passed directly to the
shell as is. Thus,

echo a\
b

will produce

ab

exactly the same as the shell would.

Sharp (#) and new-line surround comments.

The following makejile says that pgm depends on two files a.o and b.o, and
that they in turn depend on their corresponding source files (a.e and b.c)
and a common file incl.h:

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o: incl.h a.c
cc -c a.c

b.o: incl.h b.c
cc -c b.c

Command lines are executed one at a time, each by its own shell. The first
one or two characters in a command can be the following: -, @, - @, or
@ -. If @ is present, printing of the command is suppressed. If - is
present, make ignores an error. A line is printed when it is executed unless
the - s option is present, or the entry .SILENT: is in makejile, or unless
the initial character sequence contains a @. The - n option specifies print­
ing without execution; however, if the command line has the string
$ (MAKE) in it, the line is always executed (see discussion of the
MAKEFLAGS macro under Environment). The -t (touch) option updates
the modified date of a file without executing any commands.

Commands returning non-zero status normally terminate make. If the - i
option is present, or the entry .IGNORE: appears in makejile, or the initial
character sequence of the command contains -, the error is ignored. If
the - k option is present, work is abandoned on the current entry, but con­
tinues on other branches that do not depend on that entry.

July 1984 - 2 -

MAKE(l) MAKE(l)

The - b option allows old makefiles (those written for the old version of
make) to run without errors. The difference between the old version of
make and this version is that this version requires all dependency lines to
have a (possibly null or implicit) command associated with them. The pre­
vious version of make assumed if no command was specified explicitly that
the command was null.

Interrupt and quit cause the target to be deleted unless the target is a
dependency of the special name .PRECIOUS.

Environment
The environment is read by make. All variables are assumed to be macro
definitions and processed as such. The environment variables are pro­
cessed before any makefile and after the internal rules; thus, macro assign­
ments in a makefile override environment variables. The - e option causes
the environment to override the macro assignments in a makefile.

The MAKEFLAGS· environment variable is processed by make as containing
any legal input option (except -f, -p, and -d) defined for the command
line. Further, upon invocation, make "invents" the variable if it is not in
the environment, puts the current options into it, and passes it on to invo­
cations of commands. Thus, MAKEFLAGS always contains the current
input options. This proves very useful for "super-makes". In fact, as noted
above, when the - n option is used, the command $(MAKE) is executed
anyway; hence, one can perform a make - n recursively on a whole
software system to see what would have been executed. This is because
the -n is put in MAKE FLAGS and passed to further invocations of
$(MAKE). This is one way of debugging all of the makefiles for a software
project without actually doing anything.

Macros
Entries of the form string 1 = string2 are macro definitions. String2 is
defined as all characters up to a comment character or an unescaped new­
line. Subsequent appearances of $ (stringl[:substl = [subst2]]) are replaced
by string2. The parentheses are optional if a single character macro name is
used and there is no substitute sequence. The optional :substl = subst2 is a
substitute sequence. If it is specified, all non-overlapping occurrences of
substl in the named macro are replaced by subst2. Strings (for the pur­
poses of this type of substitution) are delimited by blanks, tabs, new-line
characters, and beginnings of lines. An example of the use of the substi­
tute sequence is shown under Libraries.

Internal Macros
There are five internally maintained macros which are useful for writing
rules for building targets.

$. The macro $. stands for the file name part of the current dependent
with the suffix deleted. It is evaluated only for inference rules.

$@ The $@ macro stands for the full target name of the current target. It
is evaluated only for explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the .DEFAULT
rule. It is the module which is out of date with respect to the target
(i.e., the "manufactured" dependent file name). Thus, in the .C.o rule,
the $< macro would evaluate to the .c file. An example for making
optimized .0 files from .c files is:

July 1984 - 3 -

MAKE(l) MAKE(l)

.c.o:
cc -c -0 $*.c

or:

.c.o:
cc -c -0 $<

$? The $? macro is evaluated when explicit rules from the makefile
are evaluated. It is the list of prerequisites that are out of date with
respect to the target; essentially, those modules which must be
rebuilt.

$% The $% macro is only evaluated when the target is an archive
library member of the form lib(fUe.o). In this case, $@ evaluates
to lib and $% evaluates to the library member, file.o.

Four of the five macros can have alternative forms. When an upper case D
or F is appended to any of the four macros the meaning is changed to
"directory part" for D and "file part" for F. Thus, $(@D) refers to the
directory part of the string $@. If there is no directory part, ./ is gen­
erated. The only macro excluded from this alternative form is $? The
reasons for this are debatable.

Suffixes
Certain names (for instance, those ending with .0) have inferable prere­
quisites such as .c, .s, etc. If no update commands for such a file appear in
makejile, and if an inferable prerequisite exists, that prerequisite is com­
piled to make the target. In this case, make has inference rules which allow
building files from other files by examining the suffixes and determining an
appropriate inference rule to use. The current default inference rules are:

.c .c- .sh .sh- .c.o .c-.o .c-.c .s.o .s-.o .y.o .y-.o .l.o r.o

.y.c .y-.c .l.c .c.a .c-.a .s-.a .h-.h

The internal rules for make are contained in the source file rules.c for the
make program. These rules can be locally modified. To print out the rules
compiled into the make on any machine in a form suitable for recompila­
tion, the following command is used:

make -fp - 2>/dev/null </dev/null

The only peculiarity in this output is the (null) string which print/OS)
prints when handed a null string.

A tilde in the above rules refers to an sees file (see sccsjile (4». Thus, the
rule .c-.o would transform an sees C source file into an object file (.0).
Because the s. of the sees files is a prefix it is incompatible with make's
suffix point-of-view. Hence, the tilde is a way of changing any file refer­
ence into an sees file reference.

A rule with only one suffix (i.e .. c:) is the definition of how to build x from
x.c. In effect, the other suffix is null. This is useful for building targets
from only one source file (e.g., shell procedures, simple C programs).

Additional suffixes are given as the dependency list for .SUFFIXES. Order
is significant; the first possible name for which both a file and a rule exist is
inferred as a prerequisite. The default list is:

.SUFFIXES: .0 .c .y .1 .s

July 1984 - 4 -

MAKE(l) MAKE(l)

Here again, the above command for printing the internal rules will display
the list of suffixes implemented on the current machine. Multiple suffix
lists accumulate; .SUFFIXES: with no dependencies clears the list of
suffixes.

Inference Rules
The first example can be done more briefly:

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o b.o: incl.h

This is because make has a set of internal rules for building files. The user
may add rules to this list by simply putting them in the make file.

Certain macros are used by the default inference rules to permit the inclu­
sion of optional matter in any resulting commands. For example, CFLAGS,
LFLAGS, and YFLAGS are used for compiler options to cc (I), lex (I), and
yacc(I) respectively. Again, the previous method for examining the
current rules is recommended.

The inference of prerequisites can be controlled. The rule to create a file
with suffix .0 from a file with suffix .c is specified as an entry with .c.o: as
the target and no dependents. Shell commands associated with the target
define the rule for making a .0 file from a .c file. Any target that has no
slashes in it and starts with a dot is identified as a rule and not a true target.

Libraries
If a target or dependency name contains parentheses, it is assumed to be an
archive library, the string within parentheses referring to a member within
the library. Thus lib(file.o) and $(LIB)(file.o) both refer to an archive
library which contains file.o. (This assumes the LIB macro has been previ­
ously defined.) The expression $ (LIB) (file1.o file2.0) is not legal. Rules
pertaining to archive libraries have the form . XX. a where the xx is the
suffix from which the archive member is to be made. An unfortunate by­
product of the current implementation requires the xx to be different from
the suffix of the archive member. Thus, one cannot have lib(file.o)
depend upon file.o explicitly. The most common use of the archive inter­
face follows. Here, we assume the source files are all C type source:

lib: lib(filel.o) lib(file2.0) lib(file3.0)
@echo lib is now up to date

.c.a:
$(CC) -c $(CFLAGS) $<
ar rv $@ $ 0
rm -f $ 0

In fact, the .c.a rule listed above is built into make and is unnecessary in
this example. A more interesting, but more limited example of an archive
library maintenance construction follows:

lib: fib(filel.o) lib(file2.0) lib(file3.0)
$(CC) -c $(CFLAGS) $(?:.o=.c)
ar rv lib $?
rm $? @echo lib is now up to date

.c.a:;

Here the substitution mode of the macro expansions is used. The $? list
is defined to be the set of object file names (inside lib) whose C source files

July 1984 - 5 -

MAKE(l) MAKE(l)

are out of date. The substitution mode translates the .0 to .c. (U nfor­
tunately, one cannot as yet transform to .c-; however, this may become
possible in the future.> Note also, the disabling of the .c.a: rule, which
would have created each object file, one by one. This particular construct
speeds up archive library maintenance considerably. This type of construct
becomes very cumbersome if the archive library contains a mix of assembly
programs and C programs.

EXAMPLE

FILES

make CFLAGS= -0 -f make. special

invokes make with command file "make. special" and redefines compiler
options flag CFLAGS to be "-0".

[Mm]akefile and s. [Mm]akefile

SEE ALSO
sh(I).

BUGS

Make - A Program for Maintaining Computer Programs by S. I. Feldman.
An Augmented Version of Make by E. G. Bradford.

Some commands return non-zero status inappropriately; use - i to over­
come the difficulty. Commands that are directly executed by the shell, not­
ably cd(I), are ineffectual across new-lines in make. The syntax Oib(filel.o
file2.o file3.o} is illegal. You cannot build lib(file.o} from file.o. The
macro $(a:.o=.c-) doesn't work.

July 1984 - 6 -

MAKEKEY(l) MAKEKEY(l)

NAME
makekey - generate encryption key

SYNOPSIS
/usr/Ub/makekey

DESCRIPTION
Makekey improves the usefulness of encryption schemes depending on a
key by increasing the amount of time required to search the key space. It
reads 10 bytes from its standard input, and writes 13 bytes on its standard
output. The output depends on the input in a way intended to be difficult
to compute (i.e., to require a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII characters.
The last two (the salt) are best chosen from the set of digits, ., /, and
upper- and lower-case letters. The salt characters are repeated as the first
two characters of the output. The remaining 11 output characters are
chosen from the same set as the salt and constitute the output key.

The transformation performed is essentially the following: the salt is used
to select one of 4,096 cryptographic machines all based on the National
Bureau of Standards DES algorithm, but broken in 4,096 different ways.
Using the input key as key, a constant string is fed into the machine and
recirculated a number of times. The 64 bits that come out are distributed
into the 66 output key bits in the result.

Makekey is intended for programs that perform encryption (e.g., ed(1) and
crypt (1». Usually, its input and output will be pipes.

EXAMPLE

I usr I Ii bl makekey
abcdefgh23
23xq5GyrhL TeA

The first line invokes makekey, the second line is the input to makekey, and
the third is the new key generated by makekey.

SEE ALSO
crypt(1), ed(1), passwd(4).

October 1983 - 1 -

MAN(l) MAN (1)

NAME
man, manprog - print entries in this manual

SYNOPSIS
man [options] [section] titles

/usr/lib/manprog file

DESCRIPTION
Man locates and prints the entry of this manual named title in the specified
section. (For historical reasons, the word "page" is often used as a synonym
for "entry" in this context.} The title is entered in lower case. The section
number may not have a letter suffix. If no section is specified, the whole
manual is searched for title and all occurrences of it are printed. Options
and their meanings are:

"":"t Typeset the entry in the default format (S.5"xll").
-s Typeset the entry in the small format (6"x9").
-Tst Directs the output to the MHCC STARE facility.
- T term Format the entry using nroff and print it on the standard output

(usually, the terminal); term is the terminal type (see term (5)
and the explanation below); for a list of recognized values of
term, type help term2. The default value of term is 450.

- w Print on the standard output only the path names of the entries,
relative to /usr/man, or to the current directory for -d option.

-d Search the current directory rather than /usr/man; requires the
full file name (e.g., eu.1e, rather than just eu).

-12 Indicates that the manual entry is to be produced in 12-pitch.
May be used when $TERM (see below) is set to one of 300, 300s,
450, and 1620. (The pitch switch on the DASI 300 and 300s ter­
minals must be manually set to 12 if this option is used.)

-e Causes man to invoke coJ(O; note that coJ(O is invoked
automatically by man unless term is one of 300, 300s, 450, 37,
4000a, 382, 4014, tek, 1620, andX.

- y Causes man to use the non-compacted version of the macros.

The above options other than -d, -c, and -yare mutually exclusive.
Any other options are passed to troff, nroff, or the man (5) macro package.

When using nroff, man examines the environment variable $TERM (see
environ (5» and attempts to select options to nroff, as well as filters, that
adapt the output to the terminal being used. The - T term option overrides
the value of STERM; in particular, one should use - Tip when sending the
output of man to a line printer.

Section may be changed before each title.

lf the first line of the input for an entry consists solely of the string:

'\"x
where x is any combination of the three characters e, e, and t, and where
there is exactly one blank between the double quote () and x, then man
will preprocess its input through the appropriate combination of cw(1),
eqn (1) (neqn for nrojf) and tbl(1), respectively; if eqn or neqn are invoked,
they will automatically read the file /usr/pub/eqnehar (see eqnchar (5».

The man command executes manprog that takes a file name as its argu­
ment. Manprog calculates and returns a string of three register definitions
used by the formatters identifying the date the file was last modified. The

October 1983 - 1 -

MAN(t) MAN(t)

returned string has the form:

- rd day - rm month - ry year

and is passed to nroffwhich sets this string as variables for the man macro
package. Months are given from 0 to 11, therefore month is always 1 less
than the actual month. The man macros calculate the correct month. If
the man macro package is invoked as an option to nroffl troff (i.e., nroff
-man file), then the current day/month/year is used as the printed date.

EXAMPLE

FILES

man man

would reproduce on the terminal this entry, as well as any other entries
named "man" that may exist in other sections of the manual, e.g., man (5).

lusr/man/u man/man[I-6]1*
lusr/man/a -man/man[I78]1*
I usr I manllocall man [I -8] I *
lusr/lib/manprog

the UniPlus+ User's Manual
the UniPlus+ Administrator's Manual
local additions
calculates modification dates of entries

SEE ALSO

BUGS

cw(I), eqn(I), nrotf(I), tbt(l), trotf(I), environ(5), man(5), term(5).

All entries are supposed to be reproducible either on a typesetter or on a
terminal. However, on a terminal some information is necessarily lost.

Pages bearing the same name in both manuals will result in the UniPlus +
Administrator's Manual entry being printed first, if no section argument is
supplied.

October 1983 - 2 -

MESG(l)

NAME
mesg - permit or deny messages

SYNOPSIS
mesg [n] [y]

DESCRIPTION

MESG(l)

Mesg with argument n forbids messages via write (1) by revoking non-user
write permission on the user's terminal. Mesg with argument y reinstates
permission. All by itself, mesg reports the current state without changing
it.

EXAMPLE
mesg y

changes the permission to "yes", and the system reports:

Is Yes; Was No

or whatever is the current and former state of your message permission.

FILES
Idev/tty*

SEE ALSO
write(1).

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

October 1983 - 1 -

MKDIR (1)

NAME
mkdir - make a directory

SYNOPSIS
mkdir dirname ...

DESCRIPTION

MKDIR(I)

Mkdir creates specified directories in mode 777 (possibly altered by
umask(l)). Standard entries, " for the directory itself, and '" for its
parent, are made automatically. These and other directories beginning with
, are not visible in listings unless you use the -a option to Is.

Mkdir requires write permission in the parent directory.

EXAMPLE
mkdir letters

creates a directory letters as a subdirectory of the directory you are in at
the time you employ the command.

SEE ALSO
rm(I), sh(I), umask(l).

DIAGNOSTICS
Mkdir returns exit code 0 if all directories were successfully made; other­
wise, it prints a diagnostic and returns non-zero.

October 1983 - 1 -

MKSTR(l) (UniSoft) MKSTR(l)

NAME
mkstr - create an error message file by massaging C source

SYNOPSIS
mkstr [-] messagefile prefix file ...

DESCRIPTION
Mkstr is used to create files of error messages. Its use can make programs
with large numbers of error diagnostics much smaller, and reduce system
overhead in running the program as the error messages do not have to be
constantly swapped in and out.

Mkstr will process each of the specified files, placing a massaged version of
the input file in a file whose name consists of the specified prefix and the
original name.

To process the error messages in the source to the message file mkstr keys
on the string 'error(" , in the input stream. Each time it occurs, the C
string starting at the " is placed in the message file followed by a new-line
character and a null character; the null character terminates the message so
it can be easily used when retrieved, the new-line character makes it possi­
ble to sensibly cat the error message file to see its contents. The massaged
copy of the input file then contains a lseek pointer into the file which can be
used to retrieve the message, i.e.:

char efilname[] = "/usrllib/pi strings";
int efil = -1; -

error(al, a2, a3, a4)
{

oops:

char buf[256];

if (efil < 0) {
efil = open(efilname, 0);
if (efil < 0) {

}

perror(efilname) ;
exit(1);

if (Iseek(efil, (Iong) aI, 0) II read(efil, buf, 256) < = 0)
goto oops;

printf(buf, a2, a3, a4);

The optional - causes the error messages to be placed at the end of the
specified message file for recompiling part of a large mkstred program.

EXAMPLE
If the current directory has files "a.c" and "b.c", then

mkstr exs x *.c

would create a new file "exs" which holds all the error messages extracted
from the source files "a.c" and "b.c", as well as two new source files "xa.c"
and "xb.c" which no longer contains the extracted error messages.

SEE ALSO
Iseek(2) .

October 1983 - 1 -

MKSTR(I) (UniSoft) MKSTR (I)

BUGS
All the arguments except the name of the file to be processed are unneces­
sary.

AUTHORS
Bill Joy and Charles Haley.

October 1983 - 2 -

MM(t)

NAME

MM(1)

mm, osdd, checkmm - print/check documents formatted with the MM
macros

SYNOPSIS
mm [options] [flIes]

osdd [options] [files]

checkmm [files]

DESCRIPTION
Mm can be used to type out documents using nroff and the MM text­
formatting macro package. It has options to specify preprocessing by tbl(I)
and/or neqn (see eqn (I» and postprocessing by various terminal-oriented
output filters. The proper pipelines and the required arguments and flags
for nroffand MM are generated, depending on the options selected.

Osdd is equivalent to the command mm - mosd. For more information
about the OSDD adapter macro package, see mosd(5).

Options for mm are given below. Any other arguments or flags (e.g.,
-rC3) are passed to nroff or to MM, as appropriate. Such options can
occur in any order, but they must appear before the files arguments. If no
arguments are given, mm prints a list of its options.

-Tterm Specifies the type of output terminal; for a list of recognized
values for term, type help term2. If this option is not used, mm
will use the value of the shell variable STERM from the environ­
ment (see profile(4) and environ(5» as the value of term, if
STERM is set; otherwise, mm will use 450 as the value of term. If
several terminal types are specified, the last one takes precedence.

-12 Indicates that the document is to be produced in 12-pitch. May
be used when STERM is set to one of 300, 300s, 450, and 1620.
(The pitch switch on the DASI 300 and 300s terminals must be
manually set to 12 if this option is used.)

- c Causes mm to invoke col(O; note that col(O is invoked automat­
ically by mm unless term is one of 300, 300s, 450, 37, 4000a, 382,
4014, tek, 1620, and X.

-e Causes mm to invoke neqn; also causes neqn to read the
/usr/pub/eqnchar file (see eqnchar(5».

- t Causes mm to invoke tbl(O.
- E Invokes the - e option of nroff.
-y Causes mm to use the non-compacted ver~ion of the macros (see

mm(5».

Checkmm is a program for checking the contents of the named files for
errors in the use of the Memorandum Macros, missing or unbalanced neqn
delimiters, and .EQ/ .EN pairs. Note: The user need not use the checkeq
program (see eqn (I». Appropriate messages are produced. The program
skips all directories, and if no file name is given, standard input is read.

EXAMPLE
Assuming that the shell variable STERM is set in the environment to 450,
the two command lines below are equivalent:

mm -t -rC3 -12 ghh*

tbl ghh* I nroff -cm -T450-12 - h -rC3

October 1983 - 1 -

MM(1)

HINTS

MM(I)

Mm reads the standard input when - is specified instead of any file names.
(Mentioning other files together with - leads to disaster.) This option
allows mm to be used as a filter, e.g.:

cat dws I mm -

1. Mm invokes nroff with the - h flag. With this flag, nroff assumes that
the terminal has tabs set every 8 character positions.

2. Use the -olist option of nroff to specify ranges of pages to be output.
Note, however, that mm, if invoked with one or more of the -e, -t,
and - options, together with the -olist option of nroff may cause a
harmless "broken pipe" diagnostic if the last page of the document is not
specified in list.

3. If .you use the - s option of nroff (to stop between pages of output), use
line-feed (rather than return or new-line) to restart the output. The - s
option of nroff does not work with the - c option of mm, or if mm
automatically invokes coHO (see -c option above).

4. If you lie to mm about the kind of terminal its output will be printed on,
you'll get (often subtle) garbage; however, if you are redirecting output
into a file, use the - T37 option, and then use the appropriate terminal
filter when you actually print that file.

SEE ALSO
coI(O, cw(I}, env(I}, eqn(I}, greek(I}, mmt(I}, nroff(I} , tbl(I},
profile(4}, mm(5}, mosd(5}, term(5}.

DIAGNOSTICS
mm "mm: no input file" if none of the arguments is a readable file

and mm is not used as a filter.
checkmm "Cannot open filename" if file(s} is unreadable. The remaining

output of the program is diagnostic of the source file.

October 1983 - 2 -

MMT(I) MMT(I)

NAME
mmt, mvt - typeset documents, view graphs, and slides

SYNOPSIS
mmt [options] [files]

mvt [options] [files]

DESCRIPTION

HINT

These two commands are very similar to mm (1), except that they both
typeset their input via troff(1), as opposed to formatting it via nro./f, mmt
uses the MM macro package, while mvt uses the Macro Package for View
Graphs and Slides. These two commands have options to specify prepro­
cessing by tbl(1) and/or eqn (1). The proper pipelines and the required
arguments and flags for troff(1) and for the macro packages are generated,
depending on the options selected.

Options are given below. Any other arguments or flags (e.g., - rC3) are
passed to troff(1) or to the macro package, as appropriate. Such options
can occur in any order, but they must appear before the files arguments. If
no arguments are given, these commands print a list of their options.

-e Causes these commands to invoke eqn (1)~ also causes eqn to read
the /usr/pub/eqnchar file (see eqnchar(5».

-t Causes these commands to invoke tbl(1).
-Tst Directs the output to the MH STARE facility.
-a Invokes the -a option of troff(1).
- y Causes mmt to use the non-compacted version of the macros (see

mm (5». No effect for mvt.

These commands read the standard input when - is specified instead of
any file names.

Mvt is just a link to mmt.

Use the -olist option of troff(1) to specify ranges of pages to be output.
Note, however, that these commands, if invoked with one or more of the
-e, -t, and - options, together with the -olist option of troff(1) may
cause a harmless "broken pipe" diagnostic if the last page of the document
is not specified in list.

EXAMPLE
mmt -t -rC3 -12 -Tst file

is equivalent to

tbl file I troff -cm -Tst -12 -h -rC3

SEE ALSO
env(1), eqn(1), mm(1), tbl(1), tc(l), troff(l) , profile(4), environ(5) ,
mm (5), mv(5).

DIAGNOSTICS
"m[mv]t: no input file" if none of the arguments is a readable file and the
command is not used as a filter.

October 1983 - 1 -

MORE(l) (UniSoft) MORE(l)

NAME
more - file perusal filter for crt viewing

SYNOPSIS
more [-dfln] [+ linenumber I + / pattern] [name ...]

DESCRIPTION
More is a filter which allows examination of a continuous text one screenful
at a time on a CRT terminal. It normally pauses after each screenful, print­
ing "--More--" at the bottom of the screen.

If the user then types a carriage return, one more line is displayed. If the
user hits a space, another screenful is displayed. If a space is preceded by
an integer, that number of lines is printed. If the user hits d or control-D,
11 more lines (usually half a screenfuO are displayed (a "scroll").

More looks in the user's environment and, if necessary, the file
/etc/termcap to determine terminal characteristics and to determine the
default window size. On a terminal capable of displaying 24 lines, the
default window size is 22 lines.

If more is reading from a file, rather than a pipe, then a percentage is
displayed along with the "--More--" prompt. This gives the fraction of the
file (in characters, not lines) that has been read so far.

The following options are available:

- n is an integer which is the size (in lines) of the window which more will
use instead of the default.

- c More will draw each page by beginning at the top of the screen and
erasing each line just before it draws on it. This avoids scrolling the
screen, making it easier to read while more is writing. This option will
be ignored if the terminal does not have the ability to clear to the end
of a line.

-d causes more to prompt the user with the message "Hit space to con­
tinue, Rubout to abort" at the end of each screenful.

-f causes more to count logical, rather than screen lines. That is, long
lines are not folded. This option is recommended if nro./f output is
being piped through ul, since the latter may generate escape
sequences. These escape sequences contain characters which would
ordinarily occupy screen positions, but which do not print when they
are sent to the terminal as part of an escape sequence. Thus more
may think that lines are longer than they actually are, and fold lines
erroneously.

-I causes more not to treat control-L (form feed) specially. If this option
is not given, more will pause after any line that contains a control-L,
as if the end of a screenful had been reached. Also, if a file begins
with a form feed, the screen will be cleared before the file is printed.

-s Squeeze multiple blank lines from the output, producing only one
blank line. Especially helpful when viewing nrofloutput, this option
maximizes the useful information present on the screen.

-u Normally, more will handle underlining such as produced by nroffin a
manner appropriate to the particular terminal: if the terminal can per­
form underlining or has a stand-out mode, more will output appropri­
ate escape sequenc~s to enable underlining or stand-out mode for

July 1984 - 1 -

MORE (1) (UniSoft) MORE(t)

underlined information in the source file. The -u option suppresses
this processing.

+ linen umber
option causes more to start up at linen umber

+/ pattern
causes more to start up two lines before the line containing the regular
expression pattern.

Once inside more, other sequences may be typed when more pauses. The
sequences and their effects are as follows (; is an optional integer argu­
ment, defaulting to 1) :

display the current line number

v start up the editor vi at the current line

h help command; give a description of all the more commands

i:n skip to the i-th next file given in the command line (Skips to last file
if n doesn't make sense.)

i:p skip to the i-th previous file given in the command line. If this com­
mand is given in the middle of printing out a file, then more goes back
to the beginning of the file. If i doesn't make sense, more skips back
to the first file. If more is not reading from a file, the bell is rung and
nothing else happens.

i:f display the current file name and line number.

i:q or :Q
exit from more (same as q or Q).

(dot) repeat the previous command.

iz same as typing a space except that i, if present, becomes the new win-
dow size.

is skip i lines and print a screenful of lines

if skip i screenfuls and print a screenful of lines

in skip to the i-th next file given in the command line (skips to last file
if n doesn't make sense)

ip skip to the i-th previous file given in the command line. If this com­
mand is given in the middle of printing out a file, then more goes
back to the beginning of the file. If i doesn't make sense, more skips
back to the first file. If more is not reading from a file, the bell is
rung and nothing else happens.

q or Q
Exit from more.

ilexpr
search for the i-th occurrence of the regular expression expr. If there
are less than i occurrences of expr and the input is a file (rather than
a pipe), then the position in the file remains unchanged. Otherwise, a
screenful is displayed, starting two lines before the place where the
expression was found. The user's erase and kill characters may be
used to edit the regular expression. Erasing back past the first column
cancels the search command.

July 1984 - 2 -

MORE(l) (UniSoft) MORE(t)

(single quote) Go to the point from which the last search started. If
no search has been performed in the current file, this command goes
back to the beginning of the file.

!command
invoke a shell with command.

The commands take effect immediately, i.e., it is not necessary to type a
carriage return. Up to the time when the command character itself is
given, the user may hit the line kill character to cancel the numerical argu­
ment being formed. In addition, the user may hit the erase character to
redisplay the "--More--{xx%)" message.

At any time when output is being sent to the terminal, the user can hit the
quit key (normally control- \). More will stop sending output, and will
display the usual "--More--" prompt. The user may then enter one of the
above commands in the normal manner. Unfortunately, some output is
lost when this is done, due to the fact that any characters waiting in the
terminal's output queue are flushed when the quit signal occurs.

The terminal is set to noecho mode by this program so that the output can
be continuous. What you type will thus not show on your terminal, except
for the "/" and "!" commands.

If the standard output is not a teletype, then more acts just like cat, except
that a header is printed before each file (if there is more than one).

EXAMPLE
nroff -ms +2 doc.n I more

would show the nro./f output on the terminal screen.

FILES
/ etc/ termcap
/ usr / lib/ more. help

AUTHOR
Eric Shienbrood

July 1984

Terminal data base
Help file

- 3 -

NEWFORM(l) NEWFORM(l)

NAME
newform - change the format of a text file

SYNOPSIS
newform [-s] [-itabspec] [-otabspec] [-bn] [-en] [-pn] [-an]
[-f) [-cchad [-In] [files]

DESCRIPTION
Newform reads lines from the named files, or the standard input if no input
file is named, and reproduces the lines on the standard output. Lines are
reformatted in accordance with command line options in effect.

Except for - s, command line options may appear in any order, may be
repeated, and may be intermingled with the optional files. Command line
options are processed in the order specified. This means that option
sequences like -e 15 -160 will yield results different from -160 -e15.
Options are applied to all files on the command line.

- i tabspec Input tab specification: expands tabs to spaces, according to the
tab specifications given. Tabspec recognizes all tab specification
forms described in tabs (1). In addition, tabspec may be - -,
in which newform assumes that the tab specification is to be
found in the first line read from the standard input (see
jspec(4». If no tabspec is given, tabspec defaults to -8. A
tabspec of - 0 expects no tabs; if any are found, they are
treated as -1.

- 0 tabspec Output tab specification: replaces spaces by tabs, according to
the tab specifications given. The tab specifications are the same
as for - i tabspec. If no tabspec is given, tabspec defaults to - 8.
A tabspec of - 0 means that no spaces will be converted to tabs
on output.

-I n Set the effective line length to n characters. If n is not entered,
-I defaults to 72. The default line length without the -I
option is 80 characters. Note that tabs and backspaces are con­
sidered to be one character (use - i to expand tabs to spaces).

- b n Truncate n characters from the beginning of the line when the
line length is greater than the effective line length (see -I n).
Default is to truncate the number of characters necessary to
obtain the effective line length. The default value is used when
- b with no n is used. This option can be used to delete the
sequence numbers from a COBOL program as follows:

-en

-ck

-pn

July 1984

newform -ll - b7 file-name

The -11 must be used to set the effective line length shorter
than any existing line in the file so that the - b option is
activated.

Same as - b n except that characters are truncated from the end
of the line.

Change the prefix/append character to k. Default character for
k is a space.

Prefix n characters (see - c k) to the beginning of a line when
the line length is less than the effective line length. Default is
to prefix the number of characters necessary to obtain the

- 1 -

NEWFORM(l) NEWFORM(l)

effective line length.

- a n Same as - p n except characters are appended to the end of a
line.

-f Write the tab specification format line on the standard output
before any other lines are output. The tab specification format
line which is printed will correspond to the format specified in
the last - 0 option. If no - 0 option is specified, the line which
is printed will contain the default specification of - 8.

- s Shears off leading characters on each line up to the first tab and
places up to 8 of the sheared characters at the end of the line.
If more than 8 characters (not counting the first tab) are
sheared, the eighth character is replaced by an * and any char­
acters to the right of it are discarded. The first tab is always
discarded.

An error message and program exit will occur if this option is
used on a file without a tab on each line. The characters
sheared off are saved internally until all other options specified
are applied to that line. The characters are then added at the
end of the processed line.

For example, to convert a file with leading digits, one or more
tabs, and text on each line, to a file beginning with the text, all
tabs after the first expanded to spaces, padded with spaces out
to column 72 (or truncated to column 72), and the leading
digits placed starting at column 73, the command would be:

newform -s -i -I -a -e file-name

DIAGNOSTICS
All diagnostics are fatal.
usage: ...
not - s format
can't open file
internal line too long

tabspec in error

tabspec indirection illegal

Newform was called with a bad option.
There was no tab on one line.
Self explanatory.
A line exceeds 512 characters after being
expanded in the internal work buffer.
A tab specification is incorrectly formatted, or
specified tab stops are not ascending.
A tabspec read from a file (or standard input) may
not contain a tabspec referencing another file (or
standard input).

EXIT CODES
o - normal execution
1 - for any error

SEE ALSO

BUGS

csplit(I), tabs(I), fspec(4).

Newform normally only keeps track of printable characters; however, for
the - i and - 0 options, newform will keep track of backspaces in order to
line up tabs in the appropriate logical columns.

Newform will not prompt the user if a tabspec is to be read from the stan­
dard input (by use of -i- - or -0- -).

july 1984 - 2 -

NEWFORM(l) NEWFORM(l)

If the - f option is used, and the last - 0 option specified was - 0 - -, and
was preceded by either a - 0 - - or a - i - -, the tab specification format
line will be incorrect.

July 1984 - 3 -

NEWGRP(I) NEWGRP(l)

NAME
newgrp - log in to a new group

SYNOPSIS
newgrp [-] [group]

DESCRIPTION
Newgrp changes the group identification of its caller, analogously to
login (0. The same person remains logged in, and the current directory is
unchanged, but calculations of access permissions to files are performed
with respect to the new group ID.

Newgrp without an argument changes the group identification to the group
in the password file; in effect it changes the group identification back to the
caller's original group.

An initial - flag causes the environment to be changed to the one that
would be expected if the user actually logged in again.

A password is demanded if the group has a password and the user himself
does not, or if the group has a password and the user is not listed in
/etc/group as being a member of that group.

When most users log in, they are members of the group named other.

EXAMPLE

FILES

newgrp grpnam

would set the user's group ID to that of the group named "grpnam".

/etc/group
/ etc/ passwd

SEE ALSO

BUGS

10gin(1), group(4).

There is no convenient way to enter a password into /etc/group. Use of
group passwords is not encouraged, because, by their very nature, they
encourage poor security practices. Group passwords may disappear in the
future.

October 1983 - 1 -

NEWS(I) NEWS (I)

NAME
news - print news items

SYNOPSIS
news [- a] [- n] [- s] [items]

DESCRIPTION
News is used to keep the user informed of current events. By convention,
these events are described by files in the directory /usr/news.

When invoked without arguments, news prints the contents of all current
files in /usr/news, most recent first, with each preceded by an appropriate
header. News stores the "currency" time as the modification date of a file
named .news time in the user's home directory (the identity of this direc­
tory is detennined by the environment variable SHOME); only files more
recent than this currency time are considered "current".

The - a option causes news to print all items, regardless of currency. In
this case, the stored time is not changed.

The - n option causes news to report the names of the current items
without printing their contents, and without changing the stored time.

The - s option causes news to report how many current items exist,
without printing their names or contents, and without changing the stored
time. It is useful to include such an invocation of news in one's .profile
file, or in the system's /etc/profile.

All other arguments are assumed to be specific news items that are to be
printed.

If a delete is typed during the printing of a news item, printing stops and
the next item is started. Another delete within one second of the first
causes the program to terminate.

EXAMPLE
news

will print out all files in /usr/news that have not been read previously by
the account owner.

FILES
I etcl profile
I usr I news/ *
$HOME/.news_time

SEE ALSO
profile(4), environ(5).

October 1983 - 1 -

NICE (1)

NAME
nice - run a command at low priority

SYNOPSIS
nice [- increment] command [arguments]

DESCRIPTION

NICE(l)

Nice executes command with a lower CPU scheduling priority. If the incre­
ment argument (in the range 1-19) is given, it is used; if not, an increment
of lOis assumed.

The super-user may run commands with priority higher than normal by
using a negative increment, e.g., - -10.

EXAMPLE
For the Bourne shell:

nice -10 date

would cause the program date to be processed at a priority lower than nor­
mal (0), i.e., at + 10. In the C shell, the same is achieved by typing in

nice + 10 date

SEE ALSO
nohup(1), nice(2).

DIAGNOSTICS
Nice returns the exit status of the subject command.

BUGS
An increment larger than 19 is equivalent to 19.

October 1983 - 1 -

NL(l) NL(l)

NAME
nl - line numbering filter

SYNOPSIS
nl [- htype] [- btype] [- ftype] [- vstart#] [- iincd [- p] [-Inurn]
[- ssep] [- wwidth] [- nformad [- ddelim] file

DESCRIPTION
NI reads lines from the named file or the standard input if no file is named
and reproduces the lines on the standard output. Lines are numbered on
the left in accordance with the command options in effect.

NI views the text it reads in . terms of logical pages. Line numbering is reset
at the start of each logical page. A logical page consists of a header, a
body, and a footer section. Empty sections are valid. Different line
numbering options are independently available for header, body, and footer
(e.g., no numbering of header and footer lines while numbering blank lines
only in the body).

The start of logical page sections are signaled by input lines containing
nothing but the following delimiter character(s):

Line contents Start of

\:\:\: header
\:\: body
\: footer

Unless optioned otherwise, nl assumes the text being read is in a single log­
ical page body.

Command options may appear in any order and may be intermingled with
an optional file name. Only one file may be named. The options are:

- b type Specifies which logical page body lines are to be numbered.
Recognized types and their meaning are: a, number all lines; t,
number lines with printable text only; n, no line numbering;
p string, number only lines that contain the regular expression
specified in string. Default type for logical page body is t (text
lines numbered).

- h type Same as - b type except for header. Default type for logical
page header is n (no lines numbered).

-f type Same as -b type except for footer. Default for logical page
footer is n (no lines numbered).

- p Do not restart numbering at logical page delimiters.

- v start# Start# is the initial value used to number logical page lines.
Default is 1.

- i incr Incr is the increment value used to number logical page lines.
Default is 1.

-s sep Sep is the character(s) used in separating the line number and
the corresponding text line. Default sep is a tab.

-w width Width is the number of characters to be used for the line
number. Default width is 6.

- nformat Format is the line numbering format. Recognized values are:
In, left justified, leading zeroes suppressed; rn, right justified,

October 1983 - 1 -

NL(l)

-Inurn

-dxx

EXAMPLE

NL(O

leading zeroes suppressed; rz, right justified, leading zeroes
kept. Default format is rn (right justified).

Num is the number of blank lines to be considered as one.
For example, -12 results in only the second adjacent blank
being numbered Of the appropriate - ba, - ba, and/or - fa
option is set}. Default is 1.

The delimiter characters specifying the start of a logical page
section may be changed from the default characters (\:) to two
user specified characters. If only one character is entered, the
second character remains the default character (:). No space
should appear between the - d and the delimiter characters.
To enter a backslash, use two backslashes.

nl -vlO -ilO -d!+ filel file2

will number "filel" and "file2" starting at line number 10 with an increment
of ten. The logical page delimiters are ! + .

SEE ALSO
prO).

October 1983 - 2 -

NM(1) NM(1)

NAME
nm - print name list

SYNOPSIS
nm [- gnoprsu] [file ...]

DESCRIPTION
Nm prints the name list (symbol table) of each object file in the argument
list. If an argument is an archive, a listing for each object file in the
archive will be produced. If no file is given, the symbols in a.out are listed.

Each symbol name is preceded by its value (blanks if undefined) and one
of the letters U (undefined), A (absolute), T (text segment symbol), D
(data segment symbol), B (bss segment symbol), R (register symbol), F
(file symbol), or C (common symbol). If the symbol is local (non­
external) the type letter is in lower case. The output is sorted alphabeti­
cally.

Options are:

- g Print only global (external) symbols.

- n Sort numerically rather than alphabetically.

- 0 Prepend file or archive element name to each output line rather than
only once. This option can be used to make piping to grep (1) more
meaningful.

-p Don't sort; print in symbol-table order.

- r Sort in reverse order.

- s Sort according to the size of the external symbol (computed from the
difference between the value of the symbol and the value of the sym­
bol with the next highest value). This difference is the value printed.
This flag turns on - g and - n and turns off - u and - p.

-u Print only undefined symbols.

EXAMPLE
nm

prints the symbol list of a.out , the default output file for the C compiler.

SEE ALSO
ar(1), a.out(5), ar(5).

October 1983 - 1 -

NOHUP(l) NOHUP(l)

NAME
nohup - run a command immune to hangups (sh only)

SYNOPSIS
nohup command [arguments]

DESCRIPTION
Nohup executes command immune to terminate (EOT, control-D) signal
from the controlling terminal. With nohup, the priority is automatically
incremented by 5. Nohup should be used with processes running in back­
ground (with n&n) in order to prevent it from responding to interrupts or
stealing the input from the next person who logs in on the same terminal.
In csh, processes run in background are automatically immune to hangups.

If output is not redirected by the user, it will be sent to nohup.out. If
nohup.out is not writable in the current directory, output is redirected to
$HOME/nohup.out.

EXAMPLE
nohup nroff -ms docsfile I lpr

runs the nro./f command shown, immune to hangups, quits, and interrupts.

FILES
nohup.out standard output and standard error file.

SEE ALSO
csh(I), nice(I), nice(2).

October 1983 - 1 -

NROFF(l) NROFF(l)

NAME
nroff - format text

SYNOPSIS
nroff [options] [. files]

DESCRIPTION
Nroffformats text contained in files (standard input by default) for printing
on typewriter-like devices and line printers. Its capabilities are described in
the NROFFITROFF User's Manual cited below.

An argument consisting of a minus (-) is taken to be a file name
corresponding to the standard input. The options, which may appear in any
order, but must appear before the files, are:

- 0 list Print only pages whose page numbers appear in the list of
numbers and ranges, separated by commas. A range N - M
means pages N through M; an initial - N means from the
beginning to page N; and a final N - means from N to the end.

-nN
-sN

-raN
-i
-q
-z

(See BUGS below.)
Number first generated page N.
Stop every N pages. Nroffwill halt after every N pages (default
N = 1) to allow paper loading or changing, and will resume upon
receipt of a line-feed or new-line (new-lines do not work in
pipelines, e.g., with mm(1». This option does not work if the
output of nroff is piped through co/{O. When nroff halts
between pages, an ASCII BEL is sent to the terminal.
Set register a (which must have a one-character name) to N.
Read standard input after files are exhausted.
Invoke the simultaneous input-output mode of the .rd request.
Print only messages generated by .tm (terminal message)
requests.

- m name Prepend to the input files the non-compacted (ASCII text) macro
file lusr/lib/tmac/tmac. name.

- c name Prepend to the input files the compacted macro files
lusr/lib/macros/cmp.[nt].[dt].name and
lusr/lib/macros/ucmp. [nt]. name.

- k name Compact the macros used in this invocation of nroif, placing the
output in files [dt].name in the current directory.

- T name Prepare output for specified terminal. Known name s are 37 for
the (default) TELETYPE@ Model 37 terminal, tn300 for the GE
TermiNet 300 (or any terminal without half-line capability),
300s for the DASI 300s, 300 for the DASI 300, 450 for the DASI
450, Ip for a (generic) ASCII line printer, 382 for the DTC-382,
4000A for the Trendata 4000A, 832 for the Anderson Jacobson
832, X for a (generic) EBCDIC printer, and 2631 for the Hewlett

-e

-b

-un

October 1983

Packard 2631 line printer.
Produce equally-spaced words in adjusted lines, using the full
resolution of the particular terminal.
Use output tabs during horizontal spacing to speed output and
reduce output character count. Tab settings are assumed to be
every 8 nominal character widths.
Set the emboldening factor (number of character overstrikes)
for the third font position (bold) to n, or to zero if n is missing.

- 1 -

NROFF (I) NROFF(I)

EXAMPLE

FILES

nroff -04,8-10 -T300S -mabc file1 file2
requests formatting of pages 4, 8, 9, and 10 of a document contained in the
files named "file 1 " and "file2", specifies the output terminal as a DASI-300S,
and invokes the macro package abc.

/usr/lib/suftab
/tmp/ta$#
/usr/lib/tmac/tmac.*
/ usr / lib/ macros/ *
/ usr / lib/ term/ *

suffix hyphenation tables
temporary file
standard macro files and pointers
standard macro files
terminal driving tables for nroff

SEE ALSO

BUGS

coI(O, cw(1), eqn(1), greek(1), mm(1), tbI(O, troff(O, mm(5).
NROFFITROFF User's Manual
A TROFF Tutorial

Nroffbelieves in Eastern Standard Time; as a result, depending on the time
of the year and on your local time zone, the date that nroff generates may
be off by one day from your idea of what the date is.

When nroff is used with the -0 list option inside a pipeline (e.g., with one
or more of cw (1), eqn (1), and tbl (1», it may cause a harmless "broken
pipe" diagnostic if the last page of the document is not specified in list.

October 1983 - 2 -

NROFF7(1) (UniSoft) NROFF7(1)

NAME
nroff7 - text formatting and typesetting

SYNOPSIS
nroff7 [option] ... [file] ...

DESCRIPTION
NroJ!7 formats text in the named files for typewriter-like devices. See also
nroffO) troffO) , and troJ!7(l). The full capabilities of nroff and troff are
described in the NrofflTroff User's Manual.

If no file argument is present, the standard input is read. An argument
consisting of a single minus (-) is taken to be a file name corresponding to
the standard input. .

The options, which may appear in any order so long as they appear before
the files, are:

-olist

-nN

Print only pages whose page numbers appear in the comma­
separated list of numbers and ranges. A range N - M means
pages N through M; an initial - N means from the beginning to
page N; and a final N - means from N to the end.

Number first generated page N.

- s N Stop every N pages. NroJ!7 will halt prior to every N pages
(default N= l) to allow paper loading or changing, and will
resume upon receipt of a newline.

-mname Prepend the macro file lusr/lib/tmac/tmac.name to the input
files.

- r aN Set register a (one-character) to N.

- i Read standard input after the input files are exhausted.

-q Invoke the simultaneous input-output mode of the rd request.

- T name Prepare output for specified terminal. Known names are 37 for
the (default) Teletype Corporation Model 37 terminal, tn300 for
the GE TermiNet 300 (or any terminal without half-line capabil­
ity), 3008 for the DASI-300S, 300 for the DASI-300, and 450 for
the DASI-450 (Diablo Hyterm).

- e Produce equally-spaced words in adjusted lines, using full termi­
nal resolution.

- h Use output tabs during horizontal spacing to speed output and
reduce output character count. Tab settings are assumed to be·
every 8 nominal character widths.

EXAMPLE

FILES

nroff7 -s4 -me filea

will nroJ!7 the named file using the - me macro package, stopping every 4
pages.

/usr/lib/suftab suffix hyphenation tables
/tmp/ta· temporary file
/usr/lib/tmac/tmac.. standard macro files
/usr/lib/term/. terminal driving tables for nroJ!7

October 1983 - 1 -

00(1) OD(I)

NAME
od - octal dump

SYNOPSIS
od [-bcdosx 1 [file 1 [[+ 1 offset [.][b 1 1

DESCRIPTION
Od dumps file in one or more formats as selected by the first argument. If
the first argument is missing, -0 is default. The meanings of the format
options are:

- b Interpret bytes in octal.

- c Interpret bytes in ASCII. Certain non-graphic characters appear as C
escapes: null=\O, backspace=\b, form-feed=\f, new-line=\n,
return=\r, tab=\t; others appear as 3-digit octal numbers.

-d Interpret words in unsigned decimal.

- 0 Interpret words in octal.

- s Interpret words in signed decimal.

- x Interpret words in hex.

The file argument specifies which file is to be dumped. If no file argument
is specified, the standard input is used.

The offset argument specifies the offset in the file where dumping is to
commence. This argument is normally interpreted as octal bytes. If. is
appended, the offset is interpreted in decimal. If b is appended, the offset
is interpreted in blocks of 512 bytes. If the file argument is omitted, the
offset argument must be preceded by +.
Dumping continues until end-of-file.

EXAMPLE
od -d filea + 2

produces an octal dump of "filea" divided up into 32-bit words expressed in
decimal equivalents with the dump starting point offset by 2 octal bytes.

SEE ALSO
dump(1).

July 1984 - 1 -

PACK(1) PACK(1)

NAME
pack, pcat, unpack - compress and expand files

SYNOPSIS
pack [-] name

pcat name ...

unpack name ...

DESCRIPTION
Pack attempts to store the specified files in a compressed form. Wherever
possible (and useful), each input file name is replaced by a packed file
name.z with the same access modes, access and modified dates, and owner
as those of name. If pack is successful, name will be removed. Packed
files can be restored to their original form using unpack or peat.

Pack uses Huffman (minimum redundancy) codes on a byte-by-byte basis.
If the - argument is used, an internal flag is set that causes the number of
times each byte is used, its relative frequency, and the code for the byte to
be printed on the standard output. Additional occurrences of - in place of
name will cause the internal flag to be set and reset.

The amount of compression obtained depends on the size of the input file
and the character frequency distribution. Because a decoding tree forms
the first part of each .z file, it is usually not worthwhile to pack files smaller
than three blocks, unless the character frequency distribution is very
skewed, which may occur with printer plots or pictures.

Typically, text files are reduced to 60-75% of their original size. Load
modules, which use a larger character set and have a more uniform distri­
bution of characters, show little compression, the packed versions being
about 90% of the original size.

Pack returns a value that is the number of files that it failed to compress.

No packing will occur if:

the file appears to be already packed;
the file name has more than 12 characters;
the file has links;
the file is a directory;
the file cannot be opened;
no disk storage blocks will be saved by packing;
a file called name.z already exists;
the .z file cannot be created;
an I/O error occurred during processing.

The last segment of the file name must contain no more than 12 characters
to allow space for the appended .z extension. Directories cannot be
compressed.

Peat does for packed files what cat(1) does for ordinary files. The specified
files are unpacked and written to the standard output. Thus to view a
packed file named name.z use:

pcat name.z
or just:

pcat name

October 1983 - 1 -

PACK(I) PACK(I)

To make an unpacked copy, say nnn, of a packed file named name.z
<without destroying name.z) use the command:

pcat name > nnn

Pcat returns the number of files it was unable to unpack. Failure may
occur if:

the file name (exclusive of the .z) has more than 12 characters;
the file cannot be opened;
the file does not appear to be the output of pack.

Unpack expands files created by pack. For each file name specified in the
command, a search is made for a file called name.z (or just name, if name
ends in .z). If this file appears to be a packed file, it is replaced by its
expanded version. The new file has the .z suffix stripped from its name,
and has the same access modes, access and modification dates, and owner
as those of the packed file.

Unpack returns a value that is the number of files it was unable to unpack.
Failure may occur for the same reasons that it may in pcat, as well as for
the following:

EXAMPLE

a file with the "unpacked" name already exists;
if the unpacked file cannot be created.

pack filel

will pack file "filel" into "filel.z" and removes "filel" if packing is successful.

October 1983 - 2 -

PASSWD(I) PASSWD (I)

NAME
passwd - change login password

SYNOPSIS
passwd name

DESCRIPTION
This command changes (or installs) a password associated with the login
name.

The program prompts for the old password (if any) and then for the new
one (twice). The caller must supply these. New passwords should be at
least four characters long if they use a sufficiently rich alphabet and at least
six characters long if monocase. Only the first eight characters of the pass­
word are significant.

Only the owner of the name or the super-user may change a password; the
owner must prove he knows the old password. Only the super-user can
create a null password.

The password file is not changed if the new password is the same as the old
password, or if the password has not "aged" sufficiently; see passwd(4).

EXAMPLE
passwd

will give the respondence

Changing password for < username>

and will then prompt for your present password and for the new password
(twice).

FILES
/ etc/ passwd

SEE ALSO
login(I), crypt(3C), passwd(4).

October 1983 - 1 -

PASTE(t) PASTE(t)

NAME
paste - merge same lines of several files or subsequent lines of one file

SYNOPSIS
paste filel file2 ...
paste - d list file 1 file2
paste - s (- d list) file 1 file2

DESCRIPTION
In the first two forms, paste concatenates corresponding lines of the given
input files file 1 , file2, etc. It treats each file as a column or columns of a
table and pastes them together horizontally (parallel merging). If you will,
it is the counterpart of cat 0) which concatenates vertically, i.e., one file
after the other. In the last form above, paste subsumes the function of an
older command with the same name by combining subsequent lines of the
input file (serial merging). In all cases, lines are glued together with the
tab character, or with characters from an optionally specified list. Output is
to the standard ou tpu t, so it can be used as the start of a pipe, or as a filter,
if - is used in place of a file name.

The meanings of the options are:

- d Without this option, the new-line characters of each but the last file
(or last line in case of the - s option) are replaced by a tab character.
This option allows replacing the tab character by one or more alter­
nate characters (see below).

list One or more characters immediately following - d replace the default
tab as the line concatenation character. The list is used circularly, i.e.,
when exhausted, it is reused. In parallel merging (i.e., no - s
option), the lines from the last file are always terminated with a new­
line character, not from the list. The list may contain the special
escape sequences: \ n (new-line), \t (tab), \ \ (backslash), and \0
(empty string, not a null character). Quoting may be necessary, if
characters have special meaning to the shell (e.g., to get one
backslash, use -d"\ \ \ \").

- s Merge subsequent lines rather than one from each input file. Use tab
for concatenation, unless a list is specified with -d option. Regard­
less of the list, the very last character of the file is forced to be a
new-line.

May be used in place of any file name, to read a line from the stan­
dard input. (There is no prompting).

EXAMPLE
Is I paste -d"" -

list directory in one column ..

Is I paste - - - -

list directory in four columns.

paste - s - d"\ t\ n" file

combine pairs of lines into lines.

SEE ALSO
cut(1), grep(1),
prO): pr -t -m... works similarly, but creates extra blanks, tabs and
new-lines for a nice page layout.

October 1983 - 1 -

PASTE (1)

DIAGNOSTICS
line too long

too many files

October 1983

PASTE (1)

Output lines are restricted to 511 characters.

Except for - s option, no more than 12 input files may be
specified.

- 2 -

PR(I) PR (1)

NAME
pr - print files

SYNOPSIS
pr [options] [files]

DESCRIPTION
Pr prints the named files on the standard output. If file is -, or if no files
are specified, the standard input is assumed. By default, the listing is
separated into pages, each headed by the page number, a date and time,
and the name of the file.

By default, columns are of equal width, separated by at least one space;
lines which do not fit are truncated. If the - s option is used, lines are not
truncated and columns are separated by the separation character.

If the standard output is associated with a terminal, error messages are
withheld until pr has completed printing.

The below options may appear singly or be combined in any order:

+ k Begin printing with page k (default is 1).

- k Produce k-column output (default is 1). The options - e and - i
are assumed for multi-column output. Also, the - k option must
be used if the - w (column width) option is used.

-a Print multi-column output across the page.

-m Merge and print all files simultaneously, one per column (overrides
the - k, and - a options).

-d Double-space the output.

-e ck Expand input tabs to character positions k+ 1, 2* k+ 1, 3* k+ 1, etc.
If k is 0 or is omitted, default tab settings at every eighth position
are assumed. Tab characters in the input are expanded into the
appropriate number of spaces. If c (any non-digit character) is
given, it is treated as the input tab character (default for c is the
tab character).

- i ck In output, replace white space wherever possible by inserting tabs to
character positions k+l, 2* k+l, 3* k+l, etc. If k is 0 or is omit­
ted, default tab settings at every eighth position are assumed. If c
(any non-digit character) is given, it is treated as the output tab
character (default for c is the tab character).

- n ck Provide k-digit line numbering (default for k is 5). The number
occupies the first k+ 1 character positions of each column of nor­
mal output or each line of - m output. If c (any non-digit charac­
ter) is given, it is appended to the line number to separate it from
whatever follows (default for c is a tab).

-w k For multi-column output, set the width of a line to k character
positions instead of the default 72 characters. This option must be
used with the - k (number of columns) option.

- 0 k Offset each line by k character positions (default is 0). The
number of character positions per line is the sum of the width and
offset.

-I k Set the length of a page to k lines (default is 66).

July 1984 - 1 -

PR (1) PR (1)

- h Use the next argument as the header to be printed instead of the
file name.

- p Pause before beginning each page if the output is directed to a ter­
minal (pr will ring the bell at the terminal and wait for a carriage
return) .

-f Use form-feed character for new pages (default is to use a sequence
of line-feeds). Pause before beginning the first page if the standard
output is associated with a terminal.

- r Print no diagnostic reports on failure to open files.

-t Print neither the five-line identifying header nor the five-line trailer
normally supplied for each page. Quit printing after the last line of
each file without spacing to the end of the page.

- s c Separate columns by the single character c instead of by the
appropriate number of spaces (default for c is a tab).

EXAMPLE

FILES

pr - 3dh "file list" file! file2

prints "file!" and "file2" 'as a double-spaced, three-column listing headed by
"file list".

pr -e9 -t < file! > file2

writes "file1" on "file2", expanding tabs to columns 10, 19,28, 37, ...

Idev/tty* to suspend messages

SEE ALSO
cat (1).

July 1984 - 2 -

PRINTENV (1) (UniSoft)

NAME
printenv - print out the environment

SYNOPSIS
printenv [argument]

DESCRIPTION

PRINTENV (1)

Printenv takes an environment variable name as an argument and prints
only the value of that variable. If no argument is given, it prints the values
for the entire environment.

Examples of environment variable names are:

HOME

SHELL

PATH

TERM

USER

TERMCAP

EXINIT

EXAMPLE

path name of user's home directory.

the shell present at login.

search path for binary programs.

type of terminal used.

the login name of the user.

terminal capabilities string.

a startup list of commands read by ex, edit and vi.

printenv HOME

prints the path name of your home directory.

SEE ALSO
csh(1), sh(1), environ(4).

July 1984 - 1 -

PROF (1) PROF (1)

NAME
prof - display profile data

SYNOPSIS
prof [- v] [- a] [-I] [- low [- high]] [file]

DESCRIPTION
Prof interprets the file mOD.out produced by the monitor (3C) subroutine.
Under default modes, the symbol table in the named object file (a.out
default) is read and correlated with the mOD.out profile file. For each
external symbol, the percentage of time spent executing between that sym­
bol and the next is printed (in decreasing order), together with the number
of times that routine was called aDd the number of milliseconds per call.

If the - a option is used, all symbols are reported rather than just external
symbols. If the -I option is used, the output is listed by symbol value
rather than decreasing percentage.

If the - v option is used, all printing is suppressed and a graphic version of
the profile is produced on the standard output for display by the tplot(IG)
filters. The optional arguments low and high, by default 0 and 100, cause a
selected percentage of the profile to be plotted with accordingly higher reso­
lution.

In order for the number of calls to a routine to be tallied, the - p option of
cc must have been given when the file containing the routine was compiled.
This option also arranges for the mOD.out file to be produced automatically.

EXAMPLE

FILES

If a.out has been compiled with the - p option and has been executed,
then

prof a.out

would print profile information for each routine in a.out.

mon.out for profile
a.out for name list

SEE ALSO
ccO), tplotO G), profiI(2), monitor(3C).

BUGS
Beware of quantization errors.

October 1983 - 1 -

PRS (1) PRS (1)

NAME
prs - print an sees file

SYNOPSIS
prs [- d [dataspec]] [- r[SID]] [- e) [- I] [- a] files

DESCRIPTION
Prs prints, on the standard output, parts or all of an sees file (see
sccsjile (4» in a user supplied format. If a directory is named, prs behaves
as though each file in the directory were specified as a named file, except
that non-SCCS files (last component of the path name does not begin with
s.), and unreadable files are silently ignored. If a name of - is given, the
standard input is read; each line of the standard input is taken to be the
name of an sees file or directory to be processed; non-SeeS files and
unreadable files are silently ignored.

Arguments to prs, which may appear in any order, consist of keyletter argu­
ments, and file names.

All the described keyletter arguments apply independently to each named
file:

-d[dataspec] Used to specify the output data specification. The dataspec
is a string consisting of sees file data keywords (see DATA
KEYWORDS) interspersed with optional user supplied text.

- r[SID] U sed to specify the Sees IDentification (SID) string of a
delta for which information is desired. If no SID is
specified, the SID of the most recently created delta is
assumed.

- e Requests information for all deltas created earlier than and
including the delta designated via the -r keyletter.

-I Requests information for all deltas created later than and
including the delta designated via the -r keyletter.

- a Requests printing of information for both removed, i.e.,
delta type = R, (see rmdel(1» and existing, i.e., delta type
= D, deltas. If the - a keyletter is not specified, informa­
tion for existing deltas only is provided.

DATA KEYWORDS
Data keywords specify which parts of an sees file are to be retrieved and
output. All parts of an sees file (see sccsjile (4» have an associated data
keyword. There is no limit on the number of times a data keyword may
appear in a dataspec.

The information printed by prs consists of: (1) the user supplied text; and
(2) appropriate values (extracted from the sees file) substituted for the
recognized data keywords in the order of appearance in the dataspec. The
format of a data keyword value is either Simple (S), in which keyword sub­
stitution is direct, or Multi-line (M), in which keyword substitution is fol­
lowed by a carriage return.

User supplied text is any text other than recognized data keywords. A tab
is specified by \t and carriage return/new-line is specified by \n.

October 1983 - 1-

PRS (1) PRS (1)

TABLE 1. sees Files Data Keywords
Keyword Data Item File Section Value Format

:Dt: Delta information Delta Table See below· S
:DL: Delta line statistics :Li:/:Ld:/:Lu: S
:Li: Lines inserted by Delta nnnnn S
:Ld: Lines deleted by Delta nnnnn S
:Lu: Lines unchanged by Delta nnnnn S
:DT: Delta type D or R S

:1: SCCS ID string (SID) :R:.:L:.:B:.:S: S
:R: Release number nnnn S
:L: Level number nnnn S
:B: Branch number nnnn S
:S: Sequence number nnnn S
:D: Date Delta created :Dy:/:Dm:/:Dd: S
:Dy: Year Delta created nn S
:Dm: Month Delta created nn S
:Dd: Day Delta created nn S
:T: Time Delta created :Th:::Tm:::Ts: S

:Th: Hour Delta created nn S
:Tm: Minutes Delta created nn S
:Ts: Seconds Delta created nn S
:P: Programmer who created Delta logname S

:DS: Delta sequence number nnnn S
:DP: Predecessor Delta seq-no. nnnn S
:DI: Seq-no. of deltas incl., excl., ignored :Dn:/:Dx:/:Dg: S
:Dn: Deltas included (seq #) :DS: :DS: ... S
:Dx: Deltas excluded (seq #) :DS: :DS: ... S
:Dg: Deltas ignored (seq #) :DS: :DS: ... S
:MR: MR numbers for delta text M
:C: Comments for delta text M

:UN: User names User Names text M
:FL: Flag list Flags text M
:Y: Module type flag text S

:MF: MR validation flag yes or no S
:MP: MR validation pgm name text S
:KF: Keyword error/warning flag yes or no S
:BF: Branch flag yes or no S
:J: Joint edit flag yes or no S

:LK: Locked releases :R: ... S
:Q: User defined keyword text S
:M: Module name text S
:FB: Floor boundary :R: S
:CB: Ceiling boundary :R: S
:Ds: Default SID :1: S
:ND: N uU delta flag yes or no S
:FD: File descriptive text Comments text M
:BD: Body Body text M
:GB: Gotten body text M
:W: A form of what(1) string N/A :Z::M:\t:l: S
:A: A form of what(I) string N/A :Z::Y: :M: :I::Z: S
:Z: what(I) string delimiter N/A @(#) S
:F: SCCS file name N/A text S

:PN: SCCS file path name N/A text S

• :Dt: = :DT: :1: :D: :T: :P: :DS: :DP:

October 1983 - 2 -

PRS (1) PRS (1)

EXAMPLE

FILES

prs -d"Users and/or user IDs for :F: are:\n:UN:" s.ftle

may produce on the standard output:

Users and/ or user IDs for s.ftle are:
xyz
131
abc

prs -d"Newest delta for pgm :M:: :1: Created :D: By :P:" -r s.ftle

may produce on the standard output:
Newest delta for pgm main.c: 3.7 Created 7711211 By cas

As a special case:

prs s.ftle

may produce on the standard output:

D 1.1 7711211 00:00:00 cas 1 000000/00000/00000
MRs:
b178-12345
bI79-54321
COMMENTS:
this is the comment line for s.ftle initial delta

for each delta table entry of the "D" type. The only key letter argument
allowed to be used with the special case is the - a key letter.

/tmp/pr???? ?

SEE ALSO
admin(l), delta(l), get(1), help(l), sccsftle(4).
"Source Code Control System User's Guide"

DIAGNOSTICS
Use help (1) for explanations.

October 1983 - 3 -

PS (1) PS (1)

NAME
ps - report process status

SYNOPSIS
ps [options]

DESCRIPTION
Ps prints certain information about active processes. Without options,
information is printed about processes associated with the current terminal.
Otherwise, the information that is displayed is controlled by the following
options:

-e
-d

-a

-f

-I
-c corefile
-s swapdev

-n namelist

- t tlist

Print information about all processes.
Print information about all processes, except process group
leaders.
Print information about all processes, except process group
leaders and processes not associated with a terminal.
Generate a full listing. (Normally, a short listing containing
only process ID, terminal ("tty") identifier, cumulative execu-
tion time, and the command name is printed.) See below for
meaning of columns in a full listing.
Generate a long listing. See below.
Use the file core./ile in place of Idev/mem.
Use the file swapdev in place of Idev/swap. This is useful
when examining a core./ile; a swapdev of Idev Inull will cause
the user block to be zeroed out.
The argument will be taken as the name of an alternate
namelist (/unix is the default).
Restrict listing to data about the processes associated with the
terminals given in tlist, where tlist can be in one of two forms:
a list of terminal identifiers separated from one another by a
comma, or a list of terminal identifiers enclosed in double
quotes and separated from one another by a comma and/or
one or more spaces.

- p plist Restrict listing to data about processes whose process ID
numbers are given in plist, where plist is in the same format
as tlist.

-u ulist Restrict listing to data about processes whose user ID numbers
or login names are given in ulist, where ulist is in the same
format as tlist. In the listing, the numerical user ID will be
printed unless the - f option is used, in which case the login
name will be printed.

-g glist Restrict listing to data about processes whose process groups
are given in glist, where glist is a list of process group leaders
and is in the same format as tlist.

The column headings and the meaning of the columns in a ps listing are
given below; the letters f and 1 indicate the option (full or long) that causes
the corresponding heading to appear; all means that the heading always
appears. Note that these two options only determine what information is
provided for a process; they do not determine which processes will be listed.

F (I) Flags (octal and additive) associated with the process:
01 in core;
02 system process;

July]984 - 1 -

PS(I)

s

UID

PID

PPID
C

04 locked in core (e.g., for physical I/O);
10 being swapped;
20 being traced by another process;
40 another tracing flag.

(l) The state of the process:
o non-existent;
S sleeping;
W waiting;
R running;
I intermediate;
Z terminated;
T stopped;
X growing.

PS (1)

(f,O The user ID number of the process owner; the login name
is printed under the - f option.

(aU) The process ID of the process; it is possible to kill a process
if you know this datum.

(f,O The process ID of the parent process.
(f,O Processor utilization for scheduling.

STIME (f) Starting time of the process.
PRI (l) The priority of the process; higher numbers mean lower

NI
ADDR

priority.
(l) Nice value; used in priority computation.
(I) The memory address of the process, if resident; otherwise,

the disk address.
sz (l) The size in blocks of the core image of the process.
WCHAN (l) The event for which the process is waiting or sleeping; if

TTY
TIME
CMD

blank, the process is running.
(all) The controlling terminal for the process.
(aU) The cumulative execution time for the process.
(all) The command name; the full command name and its argu­

ments are printed under the - f option.

A process that has exited and has a parent, but has not yet been waited for
by the parent, is marked <defunct>.

Under the - f option, ps tries to determine the command name and argu­
ments given when the process was created by examining memory or the
swap area. Failing this, the command name, as it would appear without the
- f option, is printed in square brackets.

EXAMPLE

FILES

ps -ef

displays information about all processes, with or without terminals.

/unix
/dev/mem
/dev/swap
/ etc/ passwd
/etc/ps data
/dev -

system namelist.
memory.
the default swap device.
supplies UID information.
internal data structure.
searched to find terminal ("tty") names.

SEE ALSO
kill(1), nice (1) .

July 1984 - 2 -

PSO)

BUGS

PS (1)

Things can change while ps is running; the picture it gives is only a close
approximation to reality. Some data printed for defunct processes are
irrelevant.

July 1984 - 3 -

PTX(1) PTX(1)

NAME
ptx - permuted index

SYNOPSIS
ptx [options] [input [output]]

DESCRIPTION
Pix generates the file output that can be processed with a text formatter to
produce a permuted index of file input (standard input and output default).
It has three phases: the first does the permutation, generating one line for
each keyword in an input line. The keyword is rotated to the front. The
permuted file is then sorted. Finally, the sorted lines are rotated so the
keyword comes at the middle of each line. Pix output is in the form:

.xx "tail" "before keyword" "keyword and after" "head"

where .xx is assumed to be an nroff or troff macro provided by the user, or
provided by the mplx (5) macro package. The before keyword and keyword
and after fields incorporate as much of the line as will fit around the key­
word when it is printed. Tail and head, at least one of which is always the
empty string, are wrapped-around pieces small enough to fit in the unused
space at the opposite end of the line.

The following options can be applied:

-f Fold upper and lower case letters for sorting.

- t Prepare the output for the phototypesetter.

-w n Use the next argument, n, as the length of the output line.
The default line length is 72 characters for nroff and 100 for
troff.

-g n Use the next argument, n, as the number of characters that pix
will reserve in its calculations for each gap among the four parts
of the line as finally printed. The default gap is 3.

- 0 only Use as keywords only the words given in the only file.

- i ignore Do not use as keywords any words given in the ignore file. If
the - i and - 0 options are missing, use fusr /lib/ eign as the
ignore file.

- b break Use the characters in the break file to separate words. Tab,
new-line, and space characters are always used as break charac­
ters.

- r Take any leading non-blank characters of each input line to be a
reference identifier (as to a page or chapter), separate from the
text of the line. Attach that identifier as a 5th field on each
output line.

The index for this manual was generated using pix.

EXAMPLE
If "file1" contains: once upon a time

ptx file1

responds with:

October 1983

in the middle of a large
dark forest

- 1 -

PTX(l)

FILES

.xx "" "" "dark forest" ""

.xx "" "dark" "forest" ""

.xx "" "in the middle of a" "large" ""

.xx "" "in the" "middle of a large" ,,"

.xx "" "" "once upon a time" ""

.xx "" "once" "upon a time" ""

Ibin/sort
lusr/lib/eign
lusr/lib/tmac/tmac.ptx

PTX(1)

SEE ALSO

BUGS

nroffO), trotfO), mm(S), mptx(S).

Line length counts do not account for overstriking or proportional spacing.
Lines that contain tildes (-) are botched, because ptx uses that character
internally.

October 1983 - 2 -

PUT(IC) (UniSoft) PUT(IC)

NAME
put - puts a file onto a remote machine.

SYNOPSIS
put [- p port] - sSPEED [- i [ID]] fromfile [tofile]
put [- p port] - sSPEED - e command [args] ...

DESCRIPTION
Put is part of system of programs useful for transferring files between UNIX
systems. It is the "uploader" designed to transmit files from a local machine
to a remote machine. For a brief discussion of the takelput system and
installation instructions, see the companion document: Installation and Over­
view of the UniSoft Take/Put File Transfer System.

The default port is /dev/ttyO; the -p option can be used to specify an
alternate output port. The default speed is determined by the system; the
- s option can be used to specify a speed. If tofile is unspecified, then it is
assumed to be the same as fromfile. If fromfile is a directory, tofile must be
a directory on the remote machine (or if nonexistent, the last existent
directory specified in the pathname must be writable).

The - HID] option specifies a system ID and is the mechanism for remap­
ping pathnames on the remote machine. The system ID is passed to the
remote machine where it is used to generate pathname prefixes (using the
fete/take oem file) which are appended to the tofile pathname supplied by
put. If an 10 is specified when using the - i option, it is used on the
remote machine. If no ID is specified, the default ID is read from the
/ete/sys id file if it exists; if the /ete/sys id does not exist, the system ID
is considered to be the user name of the invoker of put7 (i.e., the user who
logged in over the port used).

The - e option is useful for executing an arbitrary command on the remote
machine. All arguments following the - e flag are collected, transmitted to
the remote machine and executed as a single command. The standard
input to the put program is sent to the remote machine to become the stan­
dard input to the command specified. The standard error of the remote
command becomes the standard error of put. The standard output of the
remote command is not returned. The exit status of the remote command
is returned as the exit status of put.

In order to perform its function, put(1C) interfaces with the program
/usr/bin/put7 on the remote machine.

EXAMPLE

FILES

put lalblc

puts the contents of the directory (or file) "I albl c" on the local machine
into a similarly named directory (or file) on the remote machine; if "/a/b/c"
did not previously exist on the remote machine, it is created; otherwise it is
overwritten.

put file.c Ix/y/z

puts the contents of "file.c" on the local machine into "/x/y/z/file.c" on the
remote machine. Note that "file.c" is created on the remote machine if "z"
is a directory; if "z" is a file rather than a directory, its contents are
overwritten but its name remains "z" rather than becoming "file.c".

October 1983 - 1 -

PUT(IC) (UniSoft) PUT(IC)

fromfile The local file name. When using the - i option, this file should
be specified as a path name starting at the root of the local
machine.

tofile The remote file name; if tofile is null, tofile is defaulted to
fromfile.

SEE ALSO
cu(IC), take(IC)
Installation and Overview of the UniSoft Take/Put File Transfer System

October 1983 - 2 -

PUT7 (IC) (UniSoft) PUT7 (IC)

NAME
put7 - puts a file onto a remote machine.

SYNOPSIS
put7 [-p port]
put7 [-p port]

-sSPEED
-sSPEED

[- ilID]] fromfile [tofile]
-e command [args] ...

DESCRIPTION
Putl is part of system of programs useful for transferring files between
UNIX systems. It is the "uploader" designed to transmit files from a local
machine to a remote machine. For a brief discussion of the takelput sys­
tem and installation instructions, see the companion document: "Overview of
the UniSojt Take/Put File Transfer System'.

The default port is /dev/ttyO; the -p option can be used to specify an
alternate output port. The default speed is determined by the system; the
- s option can be used to specify a speed. If tofile is unspecified, then it is
assumed to be the same as fromfile. If fromfile is a directory, tofile must be
a directory on the remote machine (or if nonexistent, the last existent
directory specified in the pathname must be writable).

The - i [IDJ option specifies a system ID and is the mechanism for remap­
ping pathnames on the remote machine. The system ID is passed to the
remote machine where it is used to generate pathname prefixes (using the
fete/take oem file) which are appended to the tofile path name supplied by
put 1. If an ID is specified when using the - i option, it is used on the
remote machine. If no ID is specified, the default ID is read from the
/ete/sys id file if it exists; if the /ete/sys id does not exist, the system ID
is considered to be the user name of the invoker of put6 (i.e., the user who
logged in over the port used).

The - e option is useful for executing an arbitrary command on the remote
machine. All arguments following the - e flag are collected, transmitted to
the remote machine and executed as a single command. The standard
input to the putl program is sent to the remote machine to become the
standard input to the command specified. The standard error of the remote
command becomes the standard error of putl. The standard output of the
remote command is not returned. The exit status of the remote command
is returned as the exit status of putl.

In order to perform its function, putl(1C) interfaces with the program
/usr/bin/put6 on the remote machine.

EXAMPLE

FILES

put7 lalblc

puts the contents of the directory (or file) "/a/b/c" on the local machine
into a similarly named directory (or file) on the remote machine; if "/a/b/c"
did not previously exist on the remote machine, it is created; otherwise it is
overwritten.

put7 file.c Ixlylz

puts the contents of "file.c" on the local machine into "/x/y/z/file.c" on the
remote machine. Note that "file.c" is created on the remote machine if "z"
is a directory; if "z" is a file rather than a directory, its contents are
overwritten but its name remains "z" rather than becoming "file.c".

October 1983 - 1 -

PUT7(IC) (UniSoft) PUT7 (IC)

fromfile The local file name. When using the - i option, this file should
be specified as a path name starting at the root of the local
machine.

file The remote file name; if tofile is null, tofile is defaulted to
fromfile.

SEE ALSO
cu(1C), take7(1)
Overview of the UniSoft Take/Put File Transfer System

October 1983 - 2 -

PWD(l)

NAME
pwd - working directory name

SYNOPSIS
pwd

DESCRIPTION
Pwd prints the path name of the working (current) directory.

EXAMPLE
pwd

PWD(I)

produces a pathname, such as /usr/games, indicating what directory you
are currently in.

SEE ALSO
cd(l).

DIAGNOSTICS
"Cannot open .. " and "Read error in .. " indicate possible file system trouble
and should be referred to a UNIX system programming counselor.

October 1983 - 1 -

RCP(tN) (UniSoft) RCP(1N)

NAME
rcp - remote file copy

SYNOPSIS
rcp file 1 file2
rcp [- r] file ... directory

DESCRIPTION
Rcp copies files between machines. Each file or directory argument is either
a remote file name of the form "rhostpath", or a local file name (containing
no ':' characters, or a 'I' before any ':'s.)

If the - r is specified and any of the source files are directories, rcp copies
each subtree rooted at that name; in this case the destination must be a
directory.

If path is not a full path name, it is interpreted relative to your login direc­
tory on rhost. A path on a remote host may be quoted (using \, ", or') so
that the metacharacters are interpreted remotely.

Rcp does not prompt for passwords; your current local user name must exist on
rhost and allow remote command execution via remsh (IN)

Rcp handles third party copies, where neither source nor target files are on
the current machine. Hostnames may also take the form "rhost.rname" to
use rna me rather than the current user name on the remote host.

SEE ALSO

BUGS

remsh(IN), rlogin(IN).

Doesn't detect in all cases the fact that a target of a copy might be a file in
cases where only a directory should be legal.

This command is provisional and may be changed in future releases.

July 1984 - 1 -

RCVHEX(1) (UniSoft) RCVHEX(l)

NAME
rcvhex - translates Motorola S-records from downloading into a file

SYNOPSIS
rcvhex [-p port] [-c command] file

DESCRIPTION
Rcvhex translates Motorola S-records shipped from a port into a file. The
following options are available:

p port specifies an alternate port for reception; the default port is
/dev/ttyO.

c command ship the specified command On quotes) over the remote port;
the default is to not ship anything.

ifile File to be created by rcvhex.

The file's starting address must be zero and successive records must be
sequential.

AUTHOR
Asa Romberger, UniSoft Systems

July 1984 - 1 -

REGCMP(l) REGCMP(l)

NAME
regcmp - regular expression compile

SYNOPSIS
regcmp [-] files

DESCRIPTION
Regcmp, in most cases, precludes the need for calling regcmp OX) from C
programs. This saves on both execution time and program size. The com­
mand regcmp compiles the regular expressions in file and places the output
in file.i. If the - option is used, the output will be placed in file.c. The
format of entries in file is a name (C variable) followed by one or more
blanks followed by a regular expression enclosed in double quotes. The
output of regcmp is C source code. Compiled regular expressions are
represented as extern char vectors. File.i files may thus be included into C
programs, or file.c files may be compiled and later loaded. In the C pro­
gram which uses the regcmp output, regex(abc, line) will apply the regular
expression named abc to line. Diagnostics are self-explanatory.

EXAMPLE
name "([A -Za-z] [A -Za-zO-9J*)$0"

telno "\ ({0,1}([2 - 9][01][1- 9])$0\){0, I) *"
"([2-9] [0-9]{2})$1 [-]{0,1}"
"([0-9]{4})$2"

In the C program that uses the regcmp output,

regex(telno, line, area, exch, rest)

will apply the regular expression named telno to line.

SEE ALSO
regcmp(3X).

October 1983 - 1 -

REMSH(lN) (UniSoft) REMSH(lN)

NAME
remsh - remote shell

SYNOPSIS
remsh host [-I username] [- 0] command
host [-I username] [- 0] command

DESCRIPTION

FILES

Remsh connects to the specified host, and executes the specified command.
Remsh copies its standard input to the remote command, the standard out­
put of the remote command to its standard output, and the standard error
of the remote command to its standard error. Interrupt, quit and terminate
signals are propagated to the remote command; remsh normally terminates
when the remote command does.

The remote username used is the same as your local username, unless you
specify a different remote name with the -I option. This remote name
must be equivalentGn the sense of rlogin (1N)>to the originating account;
no provision is made for specifying a password with a command.

If you omit command, then instead of executing a single command, you will
be logged in on the remote host using rlogin (1 N).

Shell metacharacters which are not quoted are interpreted on the local
machine, while quoted metacharacters are interpreted on the remote
machine. Thus the command

remsh otherhost cat remotefile > > localfile

appends the remote file "remotefile" to the local file "localfile", while

remsh other host cat remotefile "> >" otherremotefile

appends "remotefile" to "otherremotefile".

Host names are given in the file jete/hosts. Each host has one standard
name (the first name given in the file), which is rather long and unambigu­
ous, and optionally one or more nicknames. The host names for local
machines maybe linked to the remsh command in some convenient place,
normally in the directory /usr/host. If this directory is in one's search
path, then the remsh can be omitted. If no input is desired, you should
redirect the input of remsh to /dev/oull using the -0 option.

/etc/hosts
/usr/hosts/·
/etc/remsh

SEE ALSO

BUGS

rio gin (1 N) ~

You cannot run an interactive command (like vi(1»; use rlogin (1).

This command is provisional and may change in future releases.

July 1984 - 1 -

RESET (I) (UniSoft) RESET(I)

NAME
reset - reset the teletype bits to a sensible state

SYNOPSIS
reset

DESCRIPTION
Reset sets the terminal to cooked mode, turns off "cbreak" and "raw"
modes, turns on "nl", and restores special characters that are undefined to
their default values.

This is most useful after a program dies leaving a terminal in a funny state;
you have to type <LF>reset<LF> to get it to work as <CR> often
doesn't work; often none of this will echo.

It isn't a bad idea to follow reset with tset (I).

EXAMPLE
reset

returns the user's terminal to a usable state after being accidentally set by
an interrupted process.

SEE ALSO

BUGS

stty(l), tset(1).

Doesn't set tabs properly; it can't intuit personal choices for interrupt and
line kill characters, so it leaves these the old UNIX standards A? (delete) for
interrupt and @ for line kill.

It could well be argued that the shell should be responsible for insuring that
the terminal remains in a sane state; this would eliminate the need for this
program.

October 1983 - 1 -

RLOGIN(1N) (UniSoft) RLOGIN(lN)

NAME
rlogin - remote login

SYNOPSIS
rlogin rhost [- e c] [-I username]
rhost [-I username]

DESCRIPTION
Rlogin connects your terminal on the current local host system lhost to the
remote host system rhost.

Each host has a file /etc/hosts.equiv which contains a list of rhosts with
which it shares account names. (The host names must be the standard
names as described inremsh (1N)and printed by login (1).) When you rlogin
as the same user on an equivalent host, you don't need to give a password.
Each user may also have a private equivalence list in a file ".rhosts" in his
login directory. Each line in this file should contain a rhost and a username
separated by a space, giving additional cases where logins without pass­
words are to be permitted. If the originating user is not equivalent to the
remote user, then a login and password will be prompted for on the remote
machine as in login (1).

All echoing takes place at the remote site, so that (except for delays) the
rlogin is transparent. Flow control via control-S CS) and control-Q CQ) is
handled properly. A line of the form "-." disconnects from the remote
host, where "-II is the escape character. A different escape character may be
specified by the - e option. Other cu (1 C) "-,, options available; see cu (1 C)
documentation for details.

SEE ALSO

FILES

BUGS

cu(1C), remsh(1N).

lusr/hostsl* for rhost version of the command

The "-%put" cu function should be made to work.

More terminal characteristics should be propagated.

This command is provisional and may be revised and/or renamed in future
releases.

July 1984 - 1 -

RM(I) RM(1)

NAME
rm, rmdir - remove files or directories

SYNOPSIS
rm [-fri] file

rmdir dir ...

DESCRIPTION
Rm removes the entries for one or more files from a directory. If an entry
was the last link to the file, the file is destroyed. Removal of a file requires
write permission in its directory, but neither read nor write permission on
the file itself. .

If a file has no write permission and the standard input is a terminal, its
permissions are printed and a line is read from the standard input. If that
line begins with y the file is deleted, otherwise the file remains. No ques­
tions are asked when the - f option is given or if the standard input is not
a terminal.

If a designated file is a directory, an error comment is printed unless the
optional argument - r has been used. In that case, rm recursively deletes
the entire contents of the specified directory, and the directory itself.

If the - i (interactive) option is in effect, rm asks whether to delete each
file, and, under -r, whether to examine each directory.

Rmdir removes entries for the named directories, which must be empty.

EXAMPLE
rm -r dirname

will remove the entire contents of the named directory and all subdirec­
tories, and finally the directory itself, with no questions asked.

SEE ALSO
unlink(2).

DIAGNOSTICS
Generally self-explanatory. It is forbidden to remove the file .. merely to
avoid the antisocial consequences of inadvertently doing something like:

rm -r .•

October 1983 - 1 -

RMDEL(l) RMDEL(l)

NAME
rmdel - remove a delta from an sees file

SYNOPSIS
rmdel - rSID files

DESCRIPTION
Rmdel removes the delta specified by the SID from each named sees file.
The delta to be removed must be the newest (most recent) delta in its
branch in the delta chain of each named sees file. In addition, the SID
specified must not be that of a version being edited for the purpose of mak­
ing a delta {i.e., if a p-file (see get{l) exists for the named sees file, the
SID specified must not appear in any entry of the p-file).

If a directory is named, rmdel behaves as though each file in the directory
were specified as a named file, except that non-sees files (last cOlJ1Ponent
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of
the standard input is taken to be the name of an sees file to be processed;
non-SeeS files and unreadable files are silently ignored.

The exact permissions necessary to remove a delta are documented in the
Source Code Control System User's Guide. Simply stated, they are either: (1)
if you make a delta you can remove it; or (2) if you own the file and direc­
tory you can remove a delta.

EXAMPLE
rmdel -r1.2 s.test1.c

would remove the latest delta version {i.e., 1.2) for "s.test1.c".

FILES
x-file (see delta (1»
z-file (see delta (1»

SEE ALSO
delta(1), get(1), help(1), prs(1), sccsfile(4).
Source Code Control System User's Guide

DIAGNOSTICS
Use help (1) for explanations.

October 1983 - 1 -

RSTAT(IN) (UniSoft) RSTAT(1N)

NAME
rstat - network statistics program

SYNOPSIS
rstat [- Amisr J [- pprotocol J [- aJ [interval J [system J [core J

DESCRIPTION
The rstat command symbolically displays the contents of various network­
related data structures. The options have the following meaning:

- a show the state of all sockets; this is the default

- i show the state of interfaces which have been auto-configured

-m show statistics recorded by the memory management routines (the
network manages a "private share" of memory)

-pproto
show the state of sockets utilizing protocol proto; the protocol is
specified symbolically, e.g., "tcp"

- s show per-protocol statistics

-r show the routing tables

- A give the kernel address of the protocol "state block" associated with an
active socket (used for debugging)

The arguments, system and core allow substitutes for the defaults /unix and
/dev/kmem.

If an interval is specified, rstat will continuously display the requested infor­
mation, pausing interval seconds before refreshing the screen.

DISPLAYS
There are a number of display formats, depending on the information
presented. The default display, for active sockets, shows the local and
remote addresses, send and receive queue sizes On bytes), protocol, and,
optionally, the internal state of the protocol.

Address formats vary according to their "address family". Internet address
are displayed as "address/port", where port is printed symbolically if it is a
well-known service (e.g., telnet). The address portion is a hex representa­
tion in the "standard network format". Unspecified, or "wildcard",
addresses and ports appear as "*". Raw socket addresses may appear
unspecified (e.g., "unspec") if no address was supplied when the socket was
created.

Protocols are normally printed symbolically, though they may also appear as
"protocol-family/ protocol".

The interface display provides a table of cumulative statistics regarding
packets transferred, errors, and collisions. The network address (currently
Internet specific) of the interface and the maximum transmission unit
("mtu") are also displayed.

The routing table display indicates the available routes and their status.
Each route consists of a destination host or network and a gateway to use
in forwarding packets. The flags field shows the state of the route ("U" if
"up"), and whether the route is a direct route ("D"). Direct routes are
created for each interface attached to the local host. The relent field gives
the current number of active uses of the route. Connection oriented proto­
cols normally hold on to a single route for the duration of a connection

July 1984 - 1 -

RSTAT(1N) (UniSoft) RSTAT(1N)

BUGS

while connectionless protocols obtain a route then discard it. The use field
provides a count of the number of packets sent using that route. The inter­
face entry indicates the network interface utilized for the route.

The formats and all need to be redone. Network address should be
displayed symbolically (e.g., "ucbmonet", "sri-prmh"). Interval statistics are
more convenient when watching the net during a transfer. The notion of
errors is ill-defined.

july 1984 - 2 -

RUPTIME(1N) (UniSoft)

NAME
ruptime - show host status of local machines

SYNOPSIS
ruptime [- a]

DESCRIPTION

RUPTIME(IN)

Ruptime gives a status line like uptime for each machine on the local net­
work; these are formed from packets broadcast by each host on the net­
work once a minute.

FILES

Machines for which no status report has been received for 5 minutes are
shown as being down.

Users idle an hour or more are not counted unless the - a flag is given.

letc/whod.* data files

SEE ALSO
rwho(1N).

BUGS
This command is provisional and may change in future releases.

July 1984 - 1 -

RWHO(1N) (UniSoft) RWHO(1N)

NAME
rwho - who is logged in on local machines

SYNOPSIS
rwho [-a] [-u] [systemname(s)] [- systemname(s)]

DESCRIPTION

FILES

BUGS

The rwho command produces output similar to who, but for all machines
on the local network. If no report has been received from a machine for 5
minutes, then rwho assumes the machine is down, and does not report
users last known to be logged into that machine.

If a user hasn't typed to the system for an hour or more, then the user will
be omitted from the output of rwho unless the -a flag is given. Rwho nor­
mally sorts its output by systemname, the - u option will cause rwho to sort
its output by username. If a systemname is given, only information for that
system in printed. If a -systemname is given, output is suppressed for that
system.

letc/whod.* information about other machines

This is unwieldy when the number of machines on the local net is large.

This command is provisional and may change in future releases.

July 1984 - 1 -

SACT(1) SACT(1)

NAME
sact - print current sees file editing activity

SYNOPSIS
sact files

DESCRIPTION
Sact informs the user of any impending deltas to a named sces file. This
situation occurs when get(1) with the -e option has been previously exe­
cuted without a subsequent execution of delta (1). If a directory is named
on the command line, sact behaves as though each file in the directory
were specified as a named file, except that non-SCCS files and unreadable
files are silently ignored. If a name of - is given, the standard input is
read with each line being taken as the name of an SCCS file to be processed.

The output for each named file consists of five fields separated by spaces.

EXAMPLE

Field 1 specifies the SID of a delta that currently exists in the sees
file to which changes will be made to make the new delta.

Field 2 specifies the SID for the new delta to be created.

Field 3 contains the logname of the user who will make the delta
(i.e., executed a get for editing).

Field 4 contains the date that get -e was executed.

Field 5 contains the time that get - e was executed.

If the user has done a get - e, but not a delta to merge the new changes,
doing a

sact s.testl.c

would show:

1.2 1.3 eryk 82111110 16:10:35

indicating that a new version numbered 1.3 is in the process of being made
from version numbered 1.2 by user "eryk". The get - e for the file was
done on 82111110 at 16:10:35.

SEE ALSO
delta (1), get (1), unget (1) .

DIAGNOSTICS
Use help (1) for explanations.

October 1983 - 1 -

SADP(1) SADP(l)

NAME
sadp - disk access profiler

SYNOPSIS
sadp [-th) [-d device [-drive)) s [n)

DESCRIPTION
Sadp reports disk access location and seek distance, in tabular or histogram
form. It samples disk activity once every second during an interval of s
seconds. This is done repeatedly if n is specified. Cylinder usage and disk
distance are recorded in units of eight cylinders.

Valid values of device are rp06, rmOS, and disk. Drive specifies the disk
drives and it may be:

a drive number in the range supported by device,
two numbers separated by a minus (indicating an inclusive range),

or

a list of drive numbers separated by commas.

Up to eight disk drives may be reported. The - d option may be omitted,
if only one device is present.

The - t flag causes the data to be reported in tabular form. The - h flag
produces a histogram on the printer of the data. Default is - t.

EXAMPLE

FILES

sadp -d rp06 -0 900 4

will generate 4 tabular reports, each describing cylinder usage and seek dis­
tance of rp06 disk drive 0 during a 15 minute interval.

Idev/kmem

October 1983 - 1 -

SAG(IG) SAG(IG)

NAME
sag - system activity graph

SYNOPSIS
sag [options]

DESCRIPTION
Sag graphically displays the system activity data stored in a binary data file
by a previous sar(!) run. Any of the sar data items may be plotted singly,
or in combination; as cross plots, or versus time. Simple arithmetic combi­
nations of data may be specified. Sag invokes sar and finds the desired
data by string-matching the data column header (run sar to see what's
available). These options are passed thru to sar:

-s time Select data later than time in the form hh [:mm]. Default is
08:00.

-e time Select data up to time. Default is 18:00.

- i sec Select data at intervals as close as possible to sec seconds.

-f file Use file as the data source for sar. Default is the current daily
data file lusr/adm/sa/sadd.

Other options:

-T term Produce output suitable for terminal term. See tplot(10) for
known terminals. If term is vpr, output is processed by vpr - p
and queued to a Versatec printer. Default for term is $TERM.

- x spec x axis specification with spec in the form:
"name [op name] ... [10 hi]"

- y spec y axis specification with spec in the same form as above.

Name is either a string that will match a column header in the sar report,
with an optional device name in square brackets, e.g., r + wI s [dsk -1], or
an integer value. Op is +, -, *, or / surrounded by blanks. Up to five
names may be specified. Parentheses are not recognized. Contrary to cus­
tom, + and - have precedence over * and /. Evaluation is left to right.
Thus A / A + B * 100 is evaluated (A/(A+B»*100, and
A + B / C + D is (A + B)/(C+ D). Lo and hi are optional numeric
scale limits. If unspecified, they are deduced from the data.

A single spec is permitted for the x axis. If unspecified, time is used. Up
to 5 spec's separated by ; may be given for -y. Enclose the -x and -y
arguments in "" if blanks or \ < CR > are included. The - y default is:

-y "%usr 0 100; %usr + %sys 0 100; %usr + %sys + %wio 0 100"

EXAMPLE
sag

wil show today's CPU utilization.

FILES
/usr/adm/sa/sadd daily data file for day dd.

SEE ALSO
sar(1), tplot(10).

October 1983 - 1 -

SAR(1) SAR(1)

NAME
sar - system activity reporter

SYNOPSIS
sar [- ubdycwaqvrnA] [- 0 file] t [n]

sar [- ubdycwaqvrnA] [- s time] [- e time] [- i sec] [- f file]

DESCRIPTION
Sar, in the first instance, samples cumulative activity counters in the
operating system at n intervals of t seconds. If the -0 option is specified,
it saves the samples in file in binary format. The default value of n is 1.
In the second instance, with no sampling interval specified, sar extracts
data from a previously recorded file, either the one specified by - f option
or, by default, the standard system activity daily data file
lusr/adm/sa/sa dd for the current day dd. The starting and ending times
of the report can be bounded via the - sand - e time arguments of the
form hh[: mm[: ss]1. The - i option selects records at sec second intervals.
Otherwise, all intervals found in the data file are reported.

In either case, subsets of data to be printed are specified by option:

-u Report CPU utilization (the default):
%usr, %sys, %wio, %idle - portion of time running in user mode,
running in system mode, idle with some process waiting for block 110,
and otherwise idle.

- b Report buffer activity:
bread/s, bwrit/s - transfers per second of data between system
buffers and disk or other block devices;
lread! s, lwrit/ s - accesses of system buffers;
%rcache, %wcache - cache hit ratios, e.g., 1 - bread/lread;
pread/s, pwrit/s - transfers via raw (physical) device mechanism.

- d Report activity for each block device, e.g., disk or tape drive:
%busy, avque - portion of time device was busy servicing a transfer
request, average number of requests outstanding during that time;
r+w/s, blks/s - number of data transfers from or to device, number
of bytes transferred in 512 byte units;
avwait, avserv - average time in ms. that transfer requests wait idly
on queue, and average time to be serviced (which for disks includes
seek, rotational latency and data transfer times).

- y Report TTY device activity:
rawch/s, canch/s, outch/s - input character rate, input character rate
processed by canon, output character rate;
rcvin/s, xmtin/s, mdmin/s - receive, transmit and modem interrupt
rates.

- c Report system calls:
scall/ s - system calls of all types;
sread/s, swrit/s, fork/s, exec/s - specific system calls;
rchar/s, wchar/s - characters transferred by read and write system
calls.

- w Report system swapping and switching activity:

October 1983

swpin/s, swpot/s, bswin/s, bswot/s - number of transfers and
number of 512 byte units transferred for swap ins (including initial
loading of some programs) and swapouts;
pswch/s - process switches.

- 1 -

SAR(1) SAR(1)

- a Report use of file access system routines:
iget/ s, namei/ s, dirblk/ s.

- q Report average queue length while occupied, and % of time occupied:
runq-sz, %runocc - run queue of processes in memory and runnable;
swpq-sz, %swpocc - swap queue of processes swapped out but ready
to run.

- v Report status of text, process, inode and file tables:
text-sz, proc-sz, inod-sz, file-sz entries/size for each table,
evaluated once at sampling point;
text-ov, proc-ov, inod-ov, file-ov overflows occurring between
sampling points.

- m Report message and semaphore activities:
msg/ s, semal s - primitives per second.

- A Report all data. Equivalent to - udqbwcayvm.

EXAMPLE

FILES

sar

shows today's CPU activity so far.

sar -0 temp 60 10

watches CPU activity evolve for 10 minutes and saves data.

sar -d -f temp

later reviews disk and tape activity from that period.

lusr/adm/sa/sa dd daily data file, where dd are digits representing the day
of the month.

SEE ALSO
sag(IG).
sar(IM) in the UniPlus+ Administrator's Manual.

October 1983 - 2 -

SCCSDIFF(l) SCCSDIFF (1)

NAME
sccsdiff - compare two versions of an sees file

SYNOPSIS
sccsdiff - r SID 1 - r SID2 [- p] [- sn] files

DESCRIPTION
Sccsdiff compares two versions of an sees file and generates the differences
between the two versions. Any number of sees files may be specified, but
arguments apply to all files.

- r SID? SID1 and SID2 specify the deltas of an sees file that are to
be compared. Versions are passed to bdiff(1) in the order
given.

-p pipe output for each file through pr(1).

-s n n is the file segment size that bdiffwill pass to diff(l). This
is useful when diff fails due to a high system load.

EXAMPLE

FILES

sccsdiff -rl.l -rl.2 s.testl.c

would show the differences between version 1.1 and version 1.2 of the file
"testl.c" .

Itmp/get????? Temporary files

SEE ALSO
bdiff(1), get(1), help(l), pr(1).
Source Code Control System.

DIAGNOSTICS
"file: No differenceS' If the two versions are the same.
Use helpO) for explanations.

October 1983 - 1 -

SDIFF (1) SDIFF (1)

NAME
sdiff - side-by-side difference program

SYNOPSIS
sdiff [options ...] filel file2

DESCRIPTION
Sdiff uses the output of diff(1) to produce a side-by-side listing of two files
indicating those lines that are different. Each line of the two files is printed
with a blank gutter between them if the lines are identical, a < in the
gutter if the line only exists in filel, a > in the gutter if the line only exists
in file2, and a I for lines that are different.

The following options exist:

-w n

-1

-s

Use the next argument, n, as the width of the output line. The
default line length is 130 characters.

Only print the left side of any lines that are identical.

Do not print identical lines.

- 0 output Use the next argument, output, as the name of a third file that is
created as a user controlled merging of filel and file2. Identical
lines of filel and file2 are copied to output. Sets of differences,
as produced by diff(1), are printed; where a set of differences
share a common gutter character. After printing each set of
differences, sdiff prompts the user with a % and waits for one of
the following user-typed commands:

EXAMPLE

1 append the left column to the output file
r append the right column to the output file
s turn on silent mode; do not print identical lines
v turn off silent mode
e 1 call the editor with the left column
e r call the editor with the right column
e b call the editor with the concatenation of left and right
e call the editor with a zero length file
q exit from the program

On exit from the editor, the resulting file is concatenated on the
end of the output file.

If "file 1 " contains: x
a
b
c
d

and "file2" contains: y
a
d
c

then

sdiff file 1 file2

would print:

October 1983 - 1 -

SDIFF(l) SDIFF (1)

x y
a a
b <
c <
d d

> c

SEE ALSO
dill'(1), ed(1) .

October 1983 - 2 -

SED (1) SED(1)

NAME
sed - stream editor

SYNOPSIS
sed [-n] [-e script] [-f sfile] [files]

DESCRIPTION
Sed copies the named files (standard input default) to the standard output,
edited according to a script of commands. The - f option causes the script
to be taken from file sfile; these options accumulate. If there is just one
- e option and no - f options, the flag - e may be omitted. The - n
option suppresses the default output. A script consists of editing com­
mands, one per line, of the following form:

[address [, address]] function [arguments]

In normal operation, sed cyclically copies a line of input into a pattern space
(unless there is something left after a D command), applies in sequence all
commands whose addresses select that pattern space, and at the end of the
script copies the pattern space to the standard output (except under - n)
and deletes the pattern space.

Some of the commands use a hold space to save all or part of the pattern
space for subsequent retrieval.

An address is either a decimal number that counts input lines cumulatively
across files, a $ that addresses the last line of input, or a context address,
i.e., a / regular expression/ in the style of ed(1) modified thus:

In a context address, the construction \ ?regular expression?, where ?
is any character, is identical to / regular expression/. Note that in
the context address \xabc\xdefx, the second x stands for itself,
so that the regular expression is abcxdef.

The escape sequence \n matches a new-line embedded in the pattern
space.

A period. matches any character except the terminal new-line of the
pattern space.

A command line with no addresses selects every pattern space.
A command line with one address selects each pattern space that

matches the address.
A command line with two addresses selects the inclusive range from

the first pattern space that matches the first address through the
next pattern space that matches the second. (If the second
address is a number less than or equal to the line number first
selected, only one line is selected.) Thereafter the process is
repeated, looking again for the. first address.

Editing commands can be applied only to non-selected pattern spaces by
use of the negation function! (below).

In the following list of functions the maximum number of permissible
addresses for each function is indicated in parentheses.

The text argument consists of one or more lines, all but the last of which
end with \ to hide the new-line. Backslashes in text are treated like
backslashes in the replacement string of an s command, and may be used
to protect initial blanks and tabs against the stripping that is done on every
script line. The rfile or wfile argument must terminate the command line
and must be preceded by exactly one blank. Each wfile is created before

October 1983 - 1 -

SED(l) SED(t)

processing begins. There can be at most 10 distinct wfile arguments.

(1) a\
text Append. Place text on the output before reading the next input

line.
(2) b label Branch to the : command bearing the label. If label is empty,

branch to the end of the script.
(2) c\
text

(2) d
(2) D

(2) g

(2) G
(2) h

(2) H
(1) i\
text
(2)1

(2) n

(2) N

(2) p
(2) P

Change. Delete the pattern space. With 0 or 1 address or at the
end of a 2-address range, place text on the output. Start the
next cycle.
Delete the pattern space. Start the next cycle.
Delete the initial segment of the pattern space through the first
new-line. Start the next cycle.
Replace the contents of the pattern space by the contents of the
hold space.
Append the contents of the hold space to the pattern space.
Replace the contents of the hold space by the contents of the
pattern space.
Append the contents of the pattern space to the hold space.

Insert. Place text on the standard output.
List the pattern space on the standard output in an unambigu­
ous form. Non-printing characters are spelled in two-digit ASCII
and long lines are folded.
Copy the pattern space to the standard output. Replace the pat­
tern space with the next line of input.
Append the next line of input to the pattern space with an
embedded new-line. (The current line number changes.)
Print. Copy the pattern space to the standard output.
Copy the initial segment of the pattern space through the first
new-line to the standard output.

(1) q Quit. Branch to the end of the script. Do not start a new cycle.
(2) r rfile Read the contents of rfile. Place them on the output before

reading the next input line.
(2) s / regular expression / replacement / flags

Substitute the replacement string for instances of the regular
expression in the pattern space. Any character may be used
instead of I. For a fuller description see ed(1). Flags is zero or
more of:

g Global. Substitute for all nonoverlapping instances
of the regular expression rather than just the first one.

p Print the pattern space if a replacement was made.
w wfile Write. Append the pattern space to wfile if a replace­

ment was made.
(2) t label Test. Branch to the: command bearing the label if any substi­

tutions have been made since the most recent reading of an
input line or execution of a t. If label is empty, branch to the
end of the script.

(2) w wfile Write. Append the pattern space to wfile.
(2) x Exchange the contents of the pattern and hold spaces.
(2) y / string] / string2/

Transform. Replace all occurrences of characters in string] with
the corresponding character in string2. The lengths of string]

October 1983 - 2 -

SED (1) SED (1)

and string2 must be equal.
(2)! function

Don't. Apply the function (or group, if function is () only to
lines not selected by the address (es) .

(0) : label This command does nothing; it bears a label for band t com­

(1)=
(2){

(0)

mands to branch to.
Place the current line number on the standard output as a line.
Execute the following commands through a matching} only
when the pattern space is selected.
An empty command is ignored.

EXAMPLE
sed -f sedfile inputfile > filea

will process the "inputfile" according to the sedfile script, and place the
results in "filea".

The sedfile script

4 a\
XXXXXXXXXXXXX

would insert a row of Xs after line 4.

SEE ALSO
awk(1), ed(l), grep(1).

October 1983 - 3 -

SH(I) SH(1)

NAME
sh, rsh - shell, the standard/ restricted command programming language

SYNOPSIS
sh [- ceiknrstuvx] [args]
rsh [- ceiknrstuvx] [args]

DESCRIPTION
Sh is a command programming language that executes commands read
from a terminal or a file. Rsh is a restricted version of the standard com­
mand interpreter sh; it is used to set up login names and execution
environments whose capabilities are more controlled than those of the stan­
dard shell. See Invocation below for the meaning of arguments to the shell.

Commands.
A simple-command is a sequence of non-blank words separated by blanks (a
blank is a tab or a space). The first word specifies the name of the com­
mand to be executed. Except as specified below, the remaining words are
passed as arguments to the invoked command. The command name is
passed as argument 0 (see exec (2». The value of a simple-command is its
exit status if it terminates normally, or (octal) 200 + status if it terminates
abnormally (see signal (2) for a list of status values).

A pipeline is a sequence of one or more commands separated by I (or, for
historical compatibility, by ~). The standard output of each command but
the last is connected by a pipe (2) to the standard input of the next com­
mand. Each command is run as a separate process; the shell waits for the
last command to terminate.

A list is a sequence of one or more pipelines separated by;, &, &&, or I,
and optionally terminated by ; or &. Of these four symbols, ; and & have
equal precedence, which is lower than that of && and II . The symbols &&
and II also have equal precedence. A semicolon (;) causes sequential exe­
cution of the preceding pipeline; an ampersand (&) causes asynchronous
execution of the preceding pipeline (i.e., the shell does not wait for that
pipeline to finish). The symbol && (II) causes the list following it to be
executed only if the preceding pipeline returns a zero (non-zero) exit
status. An arbitrary number of new-lines may appear in a list, instead of
semicolons, to delimit commands.

A command is either a simple-command or one of the following. Unless
otherwise stated, the value returned by a command is that of the last
simple-command executed in the command.

for name [in word ...] do list done
Each time a for command is executed, name is set to the next word
taken from the in word list. If in word .. , is omitted, then the for
command executes the do list once for each positional parameter that
is set (see Parameter Substitution below). Execution ends when there
are no more words in the list.

case word in [pattern [I pattern] ...) list;;] .. , esac
A case command executes the list associated with the first pattern that
matches word. The form of the patterns is the same as that used for
file-name generation (see File Name Generation below).

if list then list [elif list then list] ... [else list] f i

October 1983

The list following if is executed and, if it returns a zero exit status,
the list following the first then is executed. Otherwise, the list

- 1 -

SH (1) SH (1)

following elit is executed and, if its value is zero, the list following the
next then is executed. Failing that, the else list is executed. If no
else list or then list is executed, then the if command returns a zero
exit status.

while list do list done

(list)

A while command repeatedly executes the while list and, if the exit
status of the last command in the list is zero, executes the do list; oth­
erwise the loop terminates. If no commands in the do list are exe­
cuted, then the while command returns a zero exit status; until may
be used in place of while to negate the loop termination test.

Execute list in a sub-shell.
{ list;}

list is simply executed.

The following words are only recognized as the first word of a command
and when not quoted:

if then else elif fi case esac for while until do done { }

Comments.
A word beginning with # causes that word and all the following characters
up to a new-line to be ignored.

Command Substitution.
The standard output from a command enclosed in a pair of grave accents (
, ') may be used as part or all of a word; trailing new-lines are removed.

Parameter Substitution.
The character $ is used to introduce substitutable parameters. Positional
parameters may be assigned values by set. Variables may be set by writing:

name= value [name= value] ...

Pattern-matching is not performed on value.

${ parameter}
A parameter is a sequence of letters, digits, or underscores (a name),
a digit, or any of the characters., #,?, -, $, and!. The value, if
any, of the parameter is substituted. The braces are required only
when parameter is followed by a letter, digit, or underscore that is not
to be interpreted as part of its name. A name must begin with a letter
or underscore. If parameter is a digit, then it is a positional parameter.
If parameter is • or then all the positional parameters, starting with
$1, are substituted (separated by spaces). Parameter $0 is set from
argument zero when the shell is invoked.

${parameter :- word}
If parameter is set and is non-null, then substitute its value; otherwise
substitute word.

${ parameter : = word}
If parameter is not set or is null, then set it to word; the value of the
parameter is then substituted. Positiona.1 parameters may not be
assigned to in this way.

${parameter :? word}

October 1983

If parameter is set and is non-null, then substitute its value; otherwise,
print word and exit from the shell. If word is omitted, then the mes­
sage "parameter null or not set" is printed.

- 2 -

SH(I) SH(I)

S{ parameter : + word}
If parameter is set and is non-null, then substitute word; otherwise
substitute nothing.

In the above, word is not evaluated unless it is to be used as the substituted
string, so that, in the following example, pwd is executed only if d is not
set or is null:

echo S{d:- 'pwd ,}

If the colon (:) is omitted from the above expressions, then the shell only
checks whether parameter is set or not.

The following parameters are automatically set by the shell:

The number of positional parameters in decimal.
Flags supplied to the shell on invocation or by the set com­
mand.

? The decimal value returned by the last synchronously exe­
cuted command.

S The process number of this shell.
The process number of the last background command
invoked.

The following parameters are used by the shell:

HOME The default argument (home directory) for the cd com­
mand.

PATH The search path for commands (see Execution below). The
user may not change PATH if executing under rsh.

CDPATH The search path for the cd command.
MAIL If this variable is set to the name of a mail file, then the

shell informs the user of the arrival of mail in the specified
file.

PSt Primary prompt string, by default" S".
PS2 Secondary prompt string, by default" > ".
IFS Internal field separators, normally space, tab, and new-line.

The shell gives default values to PATH, PSt, PS2, and IFS, while HOME
and MAIL are not set at all by the shell (although HOME is set by
login 0».

Blank Interpretation.
After parameter and command substitution, the results of substitution are
scanned for internal field separator characters (those found in IFS) and split
into distinct arguments where such characters are found. Explicit null argu­
ments ("" or ") are retained. Implicit null arguments (those resulting
from parameters that have no values) are removed.

File Name Generation.
Following substitution, each command word is scanned for the characters .,
?, and (. If one of these characters appears, then the word is regarded as a
pattern. The word is replaced with alphabetically sorted file names that
match the pattern. If no file name is found that matches the pattern, then
the word is left unchanged. The character . at the start of a file name or
immediately following a /, as well as the character / itself, must be
matched explicitly.

• Matches any string, including the null string .

October 1983 - 3 -

S8 (1) S8 (1)

Quoting.

? Matches any single character.
[. ..] Matches anyone of the enclosed characters. A pair of charac­

ters separated by - matches any character lexically between the
pair, inclusive. If the first character following the opening" [" is
a " ! ", then any character not enclosed is matched.

The following characters have a special meaning to the shell and cause ter­
mination of a word unless quoted:

; & () I A < > new-line space tab

A character may be quoted (i.e., made to stand for itself) by preceding it
with a \. The pair \new-line is ignored. All characters enclosed between a
pair of single quote marks ("), except a single quote, are quoted. Inside
double quote marks (""), parameter and command substitution occurs and
\ quotes the characters \, " ", and $. "$-" is equivalent to "$1 $2 ... ",
whereas "$@" is equivalent to "$1 $2 .•. ".

Prompting.
When used interactively, the shell prompts with the value of PSt before
reading a command. If at any time a new-line is typed and further input is
needed to complete a command, then the secondary prompt (i.e., the value
of PS2) is issued.

Input/Output.
Before a command is executed, its input and output may be redirected
using a special notation interpreted by the shell. The following may appear
anywhere in a simple-command or may precede or follow a command and
are not passed on to the invoked command; substitution occurs before word
or digit is used:

< word
Use file word as standard input (file descriptor 0).

> word
Use file word as standard output (file descriptor 1). If the file does
not exist then it is created; otherwise, it is truncated to zero length.

» word
Use file word as standard output. If the file exists, then output is
appended to it (by first seeking to the end-of-file); otherwise, the
file is created.

«[-] word
The shell input is read up to a line that is the same as word, or to
an end-of-file. The resulting document becomes the standard
input. If any character of word is quoted, then no interpretation is
placed upon the characters of the document; otherwise, parameter
and command substitution occurs, (unescaped) \new-line is
ignored, and \ must be used to quote the characters \, $, ' , and the
first character of word. If - is appended to «, then all leading
tabs are stripped from word and from the document.

< & digit
The standard input is duplicated from file descriptor digit (see
dup (2». Similarly for the standard output using> .

< & - The standard input is closed. Similarly for the standard output
using >.

October 1983 - 4 -

S8 (1) SH (1)

If one of the above is preceded by a digit, then the file descriptor created is
that specified by the digit (instead of the default 0 or 1). For example:

... 2> &1

creates file descriptor 2 that is a duplicate of file descriptor 1.

If a command is followed by &, then the default standard input for the
command is the empty file Idev/null. Otherwise, the environment for the
execution of a command contains the file descriptors of the invoking shell
as modified by input/output specifications.

Redirection of output is not allowed in the restricted shell.

Environment.
The environment (see environ (5» is a list of name-value pairs that is passed
to an executed program in the same way as a normal argument list. The
shell interacts with the environment in several ways. On invocation, the
shell scans the environment and creates a parameter for each name found,
giving it the corresponding value. Executed commands inherit the same
environment. If the user modifies the values of these parameters or creates
new ones, none of these affects the environment unless the export com­
mand is used to bind the shell's parameter to the environment. The
environment seen by any executed command is thus composed of any
unmodified name-value pairs originally inherited by the shell, plus any
modifications or additions, all of which must be noted in export commands.

The environment for any simple-command may be augmented by prefixing it
with one or more assignments to parameters. Thus:

TERM = 450 cmd args and
(export TERM; TERM = 450; cmd args)

are equivalent (as far as the above execution of cmd is concerned).

If the - k flag is set, all keyword arguments are placed in the environment,
even if they occur after the command name. The following first prints a = b
c and then c:

Signals.

echo a=b c
set -k
echo a=b c

The INTERRUPT and QUIT signals for an invoked command are ignored if
the command is followed by &; otherwise signals have the values inherited
by the shell from its parent, with the exception of signal 11 (but see also
the trap command below).

Execution.
Each time a command is executed, the above substitutions are carried out.
Except for the Special Commands listed below, a new process is created and
an attempt is made to execute the command via exec (2).

The shell parameter PATH defines the search path for the directory contain­
ing the command. Alternative directory names are separated by a colon
(:). The default path is :/bin:/usr/bin (specifying the current directory,
Ibin, and lusr/bin, in that order). Note that the current directory is
specified by a null path name, which can appear immediately after the equal
sign or between the colon delimiters anywhere else in the path list. If the

October 1983 - 5 -

SH(1) SH (1)

command name contains a / then the search path is not used; such com­
mands will not be executed by the restricted shell. Otherwise, each direc­
tory in the path is searched for an executable file. If the file has execute
permission but is not an a.out file, it is assumed to be a file containing shell
commands. A sub-shell (i.e., a separate process) is spawned to read it. A
parenthesized command is also executed in a sub-shell.

Special Commands.
The following commands are executed in the shell process and, except as
specified, no input/output redirection is permitted for such commands:

No effect; the command does nothing. A zero exit code is returned .
• file

Read and execute commands from file and return. The search path
specified by PATH is used to find the directory containing file.

break [n]
Exit from the enclosing for or while loop, if any. If n is specified,
then break n levels.

continue [n]
Resume the next iteration of the enclosing for or while loop. If n is
specified then resume at the n-th enclosing loop.

cd [arg]
Change the current directory to argo The shell parameter HOME is
the default argo The shell parameter CDPATH defines the search path
for the directory containing argo Alternative directory names are
separated by a colon (:). The default path is <null> (specifying the
current directory). Note that the current directory is specified by a
null path name, which can appear immediately after the equal sign or
between the colon delimiters anywhere else in the path list. If arg
begins with a /, then the search path is not used. Otherwise, each
directory in the path is searched for argo The cd command may not
be executed by rsh.

eval [arg ...]
The arguments are read as input to the shell and the resulting
command(s) executed.

exec [arg ...]
The command specified by the arguments is executed in place of this
shell without creating a new process. Input! output arguments may
appear and, if no other arguments are given, cause the shell
input! output to be modified.

exit [n]
Causes a shell to exit with the exit status specified by n. If n is omit­
ted, then the exit status is that of the last command executed (an
end-of-file will also cause the shell to exit.)

export [name ...]
The given names are marked for automatic export to the environment
of subsequently-executed commands. If no arguments are given, then
a list of all names that are exported in this shell is printed.

newgrp [arg ...]
Equivalent to exec newgrp arg

read [name . . .]

October 1983

One line is read from the standard input and the first word is assigned
to the first name, the second word to the second name, etc., with left­
over words assigned to the last name. The return code is 0 unless an

- 6 -

88(1) 88(1)

end-of-file is encountered.
readonly [name ...]

The given name s are marked readonly and the values of the these
name s may not be changed by subsequent assignment. If no argu­
ments are given, then a list of all readonly names is printed.

set [- -ekntuvx [arg ...]]
-e Exit immediately if a command exits with a non-zero exit status.
- k All keyword arguments are placed in the environment for a

command, not just those that precede the command name.
- n Read commands but do not execute them.
- t Exit after reading and executing one command.
- u Treat unset variables as an error when substituting.
- v Print shell input lines as they are read.
- x Print commands and their arguments as they are executed.

Do not change any of the flags; useful in setting $1 to -.
Using + rather than - causes these flags to be turned off. These
flags can also be used upon invocation of the shell. The current set of
flags may be found in $-. The remaining arguments are positional
parameters and are assigned, in order, to $1, $2, If no arguments
are given, then the values of all names are printed.

shift [n]
The positional parameters from $n + 1 ... are renamed $1 If n is
not given, it is assumed to be 1.

test Evaluate conditional expressions. See test(I) for usage and descrip­
tion.

times
Print the accumulated user and system times for processes run from
the shell.

trap [arg] [n] ...
arg is a command to be read and executed when the shell receives
signaI(s) n. (Note that arg is scanned once when the trap is set and
once when the trap is taken.) Trap commands are executed in order of
signal number. Any attempt to set a trap on a signal that was ignored
on entry to the current shell is ineffective. An attempt to trap on sig­
nal 11 (memory fault) produces an error. If arg is absent, then all
trap(s) n are reset to their original values. If arg is the null string,
then this signal is ignored by the shell and by the commands it
invokes. If n is 0, then the command arg is executed on exit from
the shell. The trap command with no arguments prints a list of com­
mands associated with each signal number.

ulimit [- f p] [n]
imposes a size limit of n
- f imposes a size limit of n blocks on files written by child processes

(files of any size may be read). With no argument, the current
limit is printed.

-p changes the pipe size to n (UNIX/RT only).
If no option is given, - f is assumed.

umask [nnn]
The user file-creation mask is set to nnn (see umask (2)). If nnn is
omitted, the current value of the mask is printed.

wait [n]
Wait for the specified process and report its termination status. If n is
not given, then all currently active child processes are waited for and

October 1983 - 7 -

SH(I) SH (I)

the return code is zero.

Invocation.
If the shell is invoked through exec (2) and the first character of argument
zero is -, commands are initially read from lete/profile and then from
$HOME/.profile, if such files exist. Thereafter, commands are read as
described below, which is also the case when the shell is invoked as
Ibin/sh. The flags below are interpreted by the shell on invocation only;
Note that unless the - e or - s flag is specified, the first argument is
assumed to be the name of a file containing commands, and the remaining
arguments are passed as positional parameters to that command file:

- e string If the - e flag is present, then commands are read from string.
- s If the - s flag is present or if no arguments remain, then com-

mands are read from the standard input. Any remaining argu­
ments specify the positional parameters. Shell output is written
to file descriptor 2.

- i If the - i flag is present or if the shell input and output are
attached to a terminal, then this shell is interactive. In this case,
TERMINATE is ignored (so that kill 0 does not kill an interactive
shell) and INTERRUPT is caught and ignored (so that wait is
interruptible). In all cases, QUIT is ignored by the shell.

- r If the - r flag is present, the shell is a restricted shell.

The remaining flags and arguments are described under the set command
above.

Rsh Only.
Rsh is used to set up login names and execution environments whose capa­
bilities are more controlled than those of the standard shell. The actions of
rsh are identical to those of sh, except that the following are disallowed:

changing directory (see cd (1)) ,
setting the value of $PATH,
specifying path or command names containing I,
redirecting output (> and> ».

The restrictions above are enforced after .profile is interpreted.

When a command to be executed is found to be a shell procedure, rsh
invokes sh to execute it. Thus, it is possible to provide to the end-user
shell procedures that have access to the full power of the standard shell,
while imposing a limited menu of commands; this scheme assumes that the
end-user does not have write and execute permissions in the same direc­
tory.

The net effect of these rules is that the writer of the .profile has complete
control over user actions, by performing guaranteed setup actions and leav­
ing the user in an appropriate directory (probably not the login directory).

The system administrator often sets up a directory of commands (i.e.,
lusr/rbin) that can be safely invoked by rsh. Some systems also provide a
restricted editor red.

EXIT STATUS
Errors detected by the shell, such as syntax errors, cause the shell to return
a non-zero exit status. If the shell is being used non-interactively then exe­
cution of the shell file is abandoned. Otherwise, the shell returns the exit
status of the last command executed (see also the exit command above).

October 1983 - 8 -

SH (I) SH(I)

EXAMPLE

FILES

sh -x scriptl

will execute each command in "scriptl", echoing the command just before
executing it.

/ etc/ profile
$HOME/ .profile
/tmp/sh*
/dev/null

SEE ALSO

BUGS

cd(1), env(1), login(1), newgrp(l), test(1), umask(1), dup(2), exec(2),
fork(2), pipe(2), signal(2), ulimit(2), umask(2), wait(2), a.out(4),
profile(4), environ(5).

The command readonly (without arguments) produces the same output as
the command export.
If « is used to provide standard input to an asynchronous process
invoked by &, the shell gets mixed up about naming the input document; a
garbage file /tmp/sh. is created and the shell complains about not being
able to find that file by another name.

October 1983 - 9 -

SIZE (1) SIZE (1)

NAME
size - size of an object file

SYNOPSIS
size [-xl [object ... 1

DESCRIPTION
Size prints the decimal number of bytes required by the text, data, and bss
portions, and their sum in decimal and (hexidecimal), of each object-file
argument. If no file is specified, a.out is used.

If the - x option is specified, size prints the hexidecimal number of bytes
required by the text, data, and bss portions, and their sum in hexidecimal
and (decimal).

EXAMPLE
size

prints the number of bytes for the various portions of the a.out file, and
their sum in decimal and hexidecimal.

SEE ALSO
a.out(5).

October 1983 - 1 -

SLEEP(l)

NAME
sleep - suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION

SLEEP(l)

Sleep suspends execution for time seconds. It is used to execute a com­
mand after a certain amount of time as in:

(sleep 105; command)&

or to execute a command every so often, as in:

while true
do

done

command
sleep 37

EXAMPLE
label:

command» x
command» x
date » x
sleep 10
goto label

The preceding sh (I) script would execute the two commands and append
the results to file "x", then sleep for 10 seconds and repeat the process.

SEE ALSO
alarm (2), sleep(3C).

BUGS
Time must be less than 65536 seconds.

October 1983 - I -

SNO(I) SNO(l)

NAME
sno - SNOBOL interpreter

SYNOPSIS
sno [files]

DESCRIPTION
Sno is a SNOBOL compiler and interpreter (with slight differences). Sno
obtains input from the concatenation of the named file s and the standard
input. All input through a statement containing the label end is considered
program and is compiled. The rest is available to syspit.

Sno differs from SNOBOL in the following ways:

There are no unanchored searches. To get the same effect:

a ** b unanchored search for b.

a *x* b = x c unanchored assignment

There is no back referencing.

x = "abc"

a *x* x is an unanchored search for abc.

Function declaration is done at compile time by the use of the (non­
unique) label define. Execution of a function call begins at the state­
ment following the define. Functions cannot be defined at run time,
and the use of the name define is preempted. There is no provision
for automatic variables other than parameters. Examples:

define f()
define f(a, b, c)

All labels except define (even end) must have a non-empty statement.

Labels, functions and variables must all have distinct names. In par­
ticular, the non-empty statement on end cannot merely name a label.

If start is a label in the program, program execution will start there.
If not, execution begins with the first executable statement; define is
not an executable statement.

There are no builtin functions.

Parentheses for arithmetic are not needed. Normal precedence
applies. Because of this, the arithmetic operators / and. must be set
off by spaces.

The right side of assignments must be non-empty.

Either' or " may be used for literal quotes.

The pseudo-variable sysppt is not available.

SEE ALSO
awk(l).
SNOBOL, a String Manipulation Language, by D. J. Farber, R. E. Griswold,
and I. P. Polonsky, JACM 11 (1964), pp. 21-30.

October 1983 - 1 -

SORT (1) SORT (I)

NAME
sort - sort and/ or merge files

SYNOPSIS
sort [- cmubdf inrtx] [+ posl [- pos2]] .•. [- 0 output] [names]

DESCRIPTION
Sort sorts lines of all the named files together and writes the result on the
standard output. The name - means the standard input. If no input files
are named, the standard input is sorted.

The default sort key is an entire line. Default ordering is lexicographic by
bytes in machine collating sequence. The ordering is affected globally by
the following options, one or more of which may appear.

b Ignore leading blanks (spaces and tabs) in field comparisons.

d "Dictionary" order: only letters, digits and blanks are significant in com­
parisons.

f Fold upper case letters onto lower case.

Ignore characters outside the ASCII range 040-0176 in non-numeric
comparisons.

n An initial numeric string, consisting of optional blanks, optional minus
sign, and zero or more digits with optional decimal point, is sorted by
arithmetic value. Option n implies option b.

r Reverse the sense of comparisons.

t x "Tab character" separating fields is x.

The notation + posl - pos2 restricts a sort key to a field beginning at posl
and ending just before pos2. Posl and pos2 each have the form m. n,
optionally followed by one or more of the flags bdfinr, where m tells a
number of fields to skip from the beginning of the line and n tells a
number of characters to skip further. If any flags are present they override
all the global ordering options for this key. If the b option is in effect n is
counted from the first non-blank in the field; b is attached independently to
pos2. A missing. n means .0; a missing - pos2 means the end of the line.
Under the -t x option, fields are strings separated by x; otherwise fields
are non-empty non-blank strings separated by blanks.

When there are multiple sort keys, later keys are compared only after all
earlier keys compare equal. Lines that otherwise compare equal are
ordered with all bytes significant.

These option arguments are also understood:

c Check that the input file is sorted according to the ordering rules; give
no output unless the file is out of sort.

m Merge only, the input files are already sorted.

u Suppress all but one in each set of equal lines. Ignored bytes and bytes
outside keys do not participate in this comparison.

o The next argument is the name of an output file to use instead of the
standard output. This file may be the same as one of the inputs.

EXAMPLE
sort -u +Of +0 list

October 1983 - 1 -

SORT (1) SORT(1)

FILES

prints in alphabetical order all the unique spellings in a list of words (capi­
talized words differ from uncapitalized).

sort - t: + 2n / etc/ passwd

prints the password file (passwd(4» sorted by user ID (the third colon­
separated field).

sort -urn +0 -1 dates

print the first instance of each month in an already sorted file of (month­
day) entries (the options -urn with just one input file make the choice of a
unique representative from a set of equal lines predictable).

/usr/tmp/stm?? ?

SEE ALSO
comm(D, joineD, uniq(D.

DIAGNOSTICS

BUGS

Comments and exits with non-zero status for various trouble conditions
and for disorder discovered under option - c.

Very long lines are silently truncated.

October 1983 - 2 -

SPELL (I) SPELL(I)

NAME
spell, hashmake, spellin, hashcheck - find spelling errors

SYNOPSIS
spell [- v] [- b] [- x] [-I] [+ local_file] [files]

lusr/lib/spell/hashmake

lusr/lib/spell/spellio n

lusr llibl spell/hashcheck spelling_list

DESCRIPTION
Spell collects words from the named files and looks them up in a spelling
list. Words that neither occur among nor are derivable (by applying certain
inflections, prefixes, and/or suffixes) from words in the spelling list are
printed on the standard output. If no files are named, words are collected
from the standard input.

Spell ignores most troff(I), tbl (I), and eqn (I) constructions.

Under the -v option, all words not literally in the spelling list are printed,
and plausible derivations from the words in the spelling list are indicated.

Under the - b option, British spelling is checked. Besides preferring centre,
colour, programme, speciality, travelled, etc., this option insists upon -ise in
words like standardise, Fowler and the OED to the contrary notwithstanding.

Under the - x option, every plausible stem is printed with = for each
word.

By default, spell (like deroff(I» follows chains of included files (.so and
.ox troff(I) requests), unless the names of such included files begin with
lusr/lib. Under the -I option, spell will follow the chains of all included
files.

Under the + locaLfile option, words found in locaLfile are removed from
spell's output. LocaLfile is the name of a user-provided file that contains a
sorted list of words, one per line. With this option, the user can specify a
set of words that are correct spellings (in addition to spell's own spelling
list) for each job.

The spelling list is based on many sources, and while more haphazard than
an ordinary dictionary, is also more effective with respect to proper names
and popular technical words. Coverage of the specialized vocabularies of
biology, medicine, and chemistry is light.

Pertinent auxiliary files may be specified by name arguments, indicated
below with their default settings (see FILES). Copies of all output are accu­
mulated in the history file. The stop list filters out misspellings (e.g.,
thier=thy-y+ier) that would otherwise pass.

Three routines help maintain and check the hash lists used by spell:

hash make Reads a list of words from the standard input and writes the
corresponding nine-digit hash code on the standard output.

spellio Reads n hash codes from the standard input and writes a
compressed spelling list on the standard output.

hashcheck Reads a compressed spelling list and recreates the nine-digit
hash codes for all the words Tn it; it writes these codes on the
standard output.

October 1983 - 1 -

SPELL (1) SPELL (1)

EXAMPLE

FILES

spell filea fileb filec > misteaks

would put a list of the words from "filea", "fileb" and "filec" that were not
part of the on-line dictionary into file "misteaks". The on-line dictionary
rejects technical terms and proper names it does not know and treats them
as misspellings.

D _SPELL = lusr/lib/ spell/hlistlab]

S _SPELL = / usr / libl spell/ hstop
H SPELL = /usr/lib/spell/spellhist
/ usr I lib/ spelll spellprog

hashed spelling lists, American & Brit­
ish
hashed stop list
history file
program

SEE ALSO

BUGS

deroff(I), eqn(I), sed(I), sort(I), tbHI), tee(I), troff(I).

The spelling list's coverage is uneven; new installations will probably wish
to monitor the output for several months to gather local additions; typi­
cally, these are kept in a separate local file that is added to the hashed
spelling list via spellin.
The British spelling feature was done by an American.

October 1983 - 2 -

SPLINE (lG) SPLINE(lG)

NAME
spline - interpolate smooth curve

SYNOPSIS
spline [options]

DESCRIPTION
Spline takes pairs of numbers from the standard input as abscissas and ordi­
nates of a function. It produces a similar set, which is approximately
equally spaced and includes the input set, on the standard output. The
cubic spline output (R. W. Hamming, Numerical Methods jor Scientists and
Engineers, 2nd ed., pp. 349ft') has two continuous derivatives, and
sufficiently many points to look smooth when plotted.

The following options are recognized, each as a separate argument:

- a Supply abscissas automatically (they are missing from the input);
spacing is given by the next argument, or is assumed to be 1 if next
argument is not a number.

- k The constant k used in the boundary value computation:
Yo" = kYl'" Yn" = kYn"-1

is set by the next argument (default k = 0).

- n Space output points so that approximately n intervals occur between
the lower and upper x limits (default n = 100).

- p Make output periodic, i.e., match derivatives at ends. First and last
input values should normally agree.

- x Next 1 (or 2) arguments are lower (and upper) x limits. Normally,
these limits are calculated from the data. Automatic abscissas start at
lower limit (default 0).

EXAMPLE
spline -n 10 > spline.out
00
1 2
24
3 9

will create the file "spline.out" with the contents:

3.000000 8.999999
2.666667 7.096296
2.333333 5.370370
2.000000 4.000000
1.666667 3.096296
1.333333 2.503703
1.000000 2.000000
0.666667 1.407407
0.333333 0.725926
0.000000 0.000000

DIAGNOSTICS

BUGS

When data is not strictly monotone in x, spline reproduces the input
without interpolating extra points.

A limit of 1,000 input points is enforced silently.

October 1983 - 1 -

SPLIT (1) SPLIT (1)

NAME
split - split a file into pieces

SYNOPSIS
split [- n] [file [name]]

DESCRIPTION
Split reads file and writes it in n -line pieces (default 1000 lines) onto a set
of output files. The name of the first output file is name with aa appended,
and so on lexicographically, up to zz (a maximum of 676 files). Name can­
not be longer than 12 characters. If no output name is given, x is default.

If no input file is given, or if - is given in its stead, then the standard
input file is used.

EXAMPLE
split -100 filea newfile

would split "filea" into 100-line pieces and put them in "newfileaa",
"newfilebb", and so forth until the end of filea.

SEE ALSO
bfs(1), csplit(1).

October 1983 - 1 -

SSP(1) (UniSoft) SSP(l)

NAME
ssp - make output single spaced

SYNOPSIS
ssp [name ...]

DESCRIPTION
Ssp removes extra blank lines and causes all output to be single spaced. It
can be used directly, or as a filter after nroff or other text formatting opera­
tions.

EXAMPLE
nroff -ms filea fileb I ssp> > filec

would nroff the files with the - ms macro package, then single space the
output and direct it to "filec".

October 1983 - 1 -

STRINGS (1) (UniSoft) STRINGS (1)

NAME
strings - find the printable strings in an object, or other binary file

SYNOPSIS
strings [-] [-0] [- number] file ...

DESCRIPTION
Strings looks for ascii strings in a binary file. A string is any sequence of 4
or more printing characters ending with a newline or a null. Unless the -
flag is given, strings only looks in the initialized data space of object files. If
the - 0 flag is given, then each string is preceded by its offset in the file (in
octal). If the - number flag is given, then number is used as the minimum
string length rather than 4.

Strings is useful for identifying random object files and many other things.

EXAMPLE
strings objl

will locate the ASCII-character strings in the object file "objl".

SEE ALSO
odO).

BUGS
The algorithm for identifying strings is extremely primitive.

October 1983 - 1 -

STRIP(l)

NAME
strip - remove symbols and relocation bits

SYNOPSIS
strip name ...

DESCRIPTION

STRIP(l)

Strip removes the symbol table and relocation bits ordinarily attached to the
output of the assembler and link editor. This is useful to save space after a
program has been debugged.

The effect of strip is the same as use of the - s option of [d.

If name is an archive file, strip will remove the local symbols from any
a.out format files it finds in the archive. Certain libraries, such as those
residing in llib, have no need for local symbols. By deleting them, the size
of the archive is decreased and link editing performance is increased.

EXAMPLE
strip a.out

removes the symbol table and relocation bits from a.out.

FILES
Itmp/stm*

SEE ALSO
ld(l).

October 1983

temporary file

- 1 -

STTY(t) STTY(1)

NAME
stty - set the options for a terminal

SYNOPSIS
stty [-a] [-g] [options]

DESCRIPTION
Stty sets certain terminal I/O options for the device that is the current stan­
dard input; without arguments, it reports the settings of certain options;
with the - a option, it reports all of the option settings; with the - g
option, it reports current settings in a form that can be used as an argu­
ment to another stty command. Detailed information about the modes
listed in the first five groups below may be found in termio(7) for asynchro­
nous lines, or in stermio(7) for synchronous lines in the UNIX System
Administrator's Manual . Options in the last group are implemented using
options in the previous groups. Note that many combinations of options
make no sense, but no sanity checking is performed. The options are
selected from the following:

Control Modes
parenb (-parenb) enable (disable) parity generation and detection.
par odd (-parodd) select odd (even) parity.
es5 es6 es7 es8 select character size (see termio(7».
o hang up phone line immediately.
50 75 110 134 150 200 300 600 1200 1800 2400 4800 9600 exta extb

hupcl (- hupeI)

hup (-hup)
estopb (- estopb)
eread (- eread)
cloeal (- eloeaI)

Input Modes
ignbrk (- ignbrk)
brkint (- brkint)
ignpar (- ignpar)
parmrk (- parmrk)
inpek (- inpek)
is trip (- istrip)
inler (- inler)
igner (- igner)
iernl (- iernO
iuele (- iucle)

ixon (- ixon)

ixany (- ixany)
ixoff (- ixoff)

July 1984

Set terminal baud rate to the number given, if possi­
ble. (All speeds are not supported by all hardware
interfaces.) 19200 is equivalent to exta. 38400 is
equivalent to extb.
hang up (do not hang up) a DAT A-PHONE® data set
connection on last close.
same as hupel (- hupeI).
use two (one) stop bits per character.
enable (disable) the receiver.
assume a line without (with) modem control.

ignore (do not ignore) break on input.
signal (do not signal) INTR on break.
ignore (do not ignore) parity errors.
mark (do not mark) parity errors (see fermio(7».
enable (disable) input parity checking.
strip (do not strip) input characters to seven bits.
map (do not map) NL to CR on input.
ignore (do not ignore) CR on input.
map (do not map) CR to NL on input.
map (do not map) upper-case alphabetics to lower
case on input.
enable (disable) START/STOP output control. Output
is stopped by sending an ASCII DC3 and started by
sending an ASCII DCI.
allow any character (only DCl) to restart output.
request that the system send (not send) START/STOP
characters when the input queue is nearly empty/full.

- I -

STTY(I)

Output Modes
- opost '(- opost)

oleue (- oleuc)

onler (- onler)
oernl (- ocrnI)
onocr (- onoer)
onlret (-oolret)

ofill (- ofilO
of del (- of de I)
crO crl cr2 cr3

nlO nil
tabO tabl tab2 tab3

bsO bsl
ffOffl
vtO vtl

Local Modes
isig (- isig)

icanon (- ieanon)

xcase (- xcase)

echo (-echo)
echoe (- echoe)

echok (-echok)
Ifke (-lfke)
echonl (- echonI)
noflsh (- noflsh)
stwrap (- stwrap)

stflush (- stflush)

stappl (- stappI)

Control Assignments
control-character c

July 1984

STTY(I)

post-process output (do not post-process output;
ignore all other output modes).
map (do not map) lower-case alphabetics to upper
case on output.
map (do not map) NL to CR-NL on output.
map (do not map) CR to NL on output.
do not (do) output CRs at column zero.
on the terminal NL performs (does not perform) the
CR function.
use fill characters (use timing) for delays.
fill characters are DELs (NULs).
select style of delay for carriage returns (see ter­
mio(7».
select style of delay for line-feeds (see termio(7».
select style of delay for horizontal tabs (see termio(7)
or stermio(7».
select style of delay for backspaces (see termio(7».
select style of delay for form-feeds (see termio(7».
select style of delay for vertical tabs (see termio(7».

enable (disable) the checking of characters against
the special control characters INTR and QUIT.
enable (disable) canonical input (ERASE and KILL
processing) .
canonical (unprocessed) upperllower-case presenta­
tion.
echo back (do not echo back) every character typed.
echo (do not echo) ERASE character as a backspace­
space-backspace string. Note: this mode will erase
the ERASEed character on many CRT terminals; how­
ever, it does not keep track of column position and,
as a result, may be confusing on escaped characters,
tabs, and backspaces.
echo (do not echo) NL after KILL character.
the same as echok (- echok); obsolete.
echo (do not echo) NL.
disable (enable) flush after INTR or QUIT.
disable (enable) truncation of lines longer than 79
characters on a synchronous line.
enable (disable) flush on a synchronous line after
every write (2) .
use application mode (use line mode) on a synchro­
nous line.

set control-character to c, where control-character is
erase, kill, intr, quit, eof, eol, ctab, min, or time
(ctab is used with - stappl; see stermio(7» , (min
and time are used with -icanon; see termio(7». If c
is preceded by an (escaped from the shell) caret ("),
then the value used is the corresponding CTRL char­
acter (e.g., ""d" is a CTRL.d); ""?" is interpreted as
DEL and ,," -" is interpreted as undefined.

- 2 -

STTY(I) STTY(1)

line i set line discipline to i (0 < i < 127).
Combination Modes

evenp or parity enable parenb and es7.
oddp enable parenb, es7, and parodd.
-parity, -evenp, or -oddp

disable parenb, and set es8.
raw (- raw or cooked)

enable (disable) raw input and output (no ERASE,
KILL, INTR, QUIT, EOT, or output post processing).

nl (- nn unset (set) iernl, onler. In addition - nl unsets
inler, igner, oernl, and onlret.

lease (-lease) set (unset) xease, iucle, and oleue.
LCASE (- LCASE) same as lease (-lease).
tabs (-tabs or tab3)

preserve (expand to spaces) tabs when printing.
ek reset ERASE and KILL characters back to normal #

and
sane resets all modes to some reasonable values.
term set all modes suitable for the terminal type term,

where term is one of tty33, tty37, vt05, tn300, ti700,
or tek.

SEE ALSO
tabs(1}, ioctI(2}.
stermio(7}, termio(7} in the UNIX System Adminstrator's Manual.

July 1984 - 3 -

SU (1) SU (1)

NAME
su - become super-user or another user

SYNOPSIS
su [-] [name [arg ...]]

DESCRIPTION
Su allows one to become another user without logging off. The default
user name is root (i.e., super-user).

To use su, the appropriate password must be supplied (unless one is
already super-user). If the password is correct, su will execute a new shell
with the user ID set to that of the specified user. To restore normal user ID
privileges, type an EOF to the new shell.

Any additional arguments are passed to the shell, permitting the super-user
to run shell procedures with restricted privileges (an arg of the form - c
string executes string via the shell). When additional arguments are passed,
Ibin/sh is always used. When no additional arguments are passed, su uses
the shell specified in the password file.

An initial - flag causes the environment to be changed to the one that
would be expected if the user actually logged in again. This is done by
invoking the shell with an argO of - su causing the .profile in the home
directory of the new user ID to be executed. Otherwise, the environment is
passed along with the possible exception of SPATH, which is set to
Ibin:/etc:/usr/bin for root. Note that the .profile can check argO for - sh
or - su to determine how it was invoked.

EXAMPLE

F~LES

su unisoft

would cause the system to prompt for UniSoft's password; if the password
is typed in correctly, UniSoft's identity is substituted for yours, so far as
the system is concerned.

/etc/passwd system's password file
$HOME/.profile user's profile

SEE ALSO
env(I), 10gin(I), sh(I), environ(S).

October 1983 - 1 -

SUM (I)

NAME
sum - print checksum and block count of a file

SYNOPSIS
sum [- r] file

DESCRIPTION

SUM (I)

Sum calculates and prints a 16-bit checksum for the named file, and also
prints the number of blocks in the file. It is typically used to look for bad
spots, or to validate a file communicated over some transmission line. The
option - r causes an alternate algorithm to be used in computing the check­
sum.

EXAMPLE
sum filea

produces the checksum and the block count of "filea".

SEE ALSO
wC(O.

DIAGNOSTICS
"Read error" is indistinguishable from end of file on most devices; check
the block count.

October 1983 - 1 -

SUM7(1) (UniSoft)

NAME
sum7 - sum and count blocks in a file

SYNOPSIS
sum7 file

DESCRIPTION

SUM7(t)

Sum 7 calculates and prints a 16-bit checksum for the named file, and also
prints the number of blocks in the file, to the nearest whole block. It is
typically used to look for bad spots, or to validate a file communicated over
some transmission line.

EXAMPLE
sum7 sum7.l

produces the checksum and the block count of this manual section, namely:

21009

SEE ALSO
wc(I).

October 1983 - 1 -

SUMDIR(I) (UniSoft) SUMDIR(I)

NAME
sumdir - sum and count characters in the files in the given directories

SYNOPSIS
sumdir [directories]

DESCRIPTION
Sumdir calculates and prints a 16-bit checksum for the named file, and also
prints the number of characters in the file. It is typically used to look for
bad spots on the file system, or to validate a file transmitted over some
transmission line. The output from this program differs from the output
from the sum (1) program in that sumdir prints the number of characters
rather than the number of blocks in the file.

Sumdir provides a recursive checksum of all files in the specified directory.

EXAMPLE
sumdir manl

produces the checksum and the character count of the files in the directory
manl.

SEE ALSO
sum(1).

October 1983 - 1 -

SYNC (1)

NAME
sync - update the super block

SYNOPSIS
sync

DESCRIPTION

SYNC (I)

Sync executes the sync system primitive. If the system is to be stopped,
sync must be called to insure file system integrity. It will flush all previ­
ously unwritten system buffers out to disk, thus assuring that all file
modifications up to that point will be saved. See sync (2) for details.

EXAMPLE
sync

should be typed to flush all internal disk buffers, before bringing down the
system.

SEE ALSO
sync(2).

October 1983 - 1 -

TABS (I) TABSO)

NAME
tabs - set tabs on a terminal

SYNOPSIS
tabs [tabspec] [+m n] [-T type]

DESCRIPTION
Tabs sets the tab stops on the user's terminal according to the tab
specification tabspec, after clearing any previous settings. The user must of
course be logged in on a terminal with remotely-settable hardware tabs.

Users of GE TermiNet terminals should be aware that they behave in a
different way than most other terminals for some tab settings: the first
number in a list of tab settings becomes the left margin on a TermiNet ter­
minal. Thus, any list of tab numbers whose first element is other than I
causes a margin to be left on a TermiNet, but not on other terminals. A
tab list beginning with 1 causes the same effect regardless of terminal type.
It is possible to set a left margin on some other terminals, although in a
different way (see below).

Four types of tab specification are accepted for tabspec: "canned", repetitive,
arbitrary, and file. If no tabspec is given, the default value is - 8, i.e.,
UNIX "standard" tabs. The lowest column number is 1. Note that for tabs,
column 1 always refers to the left-most column on a terminal, even one
whose column markers begin at 0, e.g., the DASI 300, DASI 300s, and DASI
450.

- code Gives the name of one of a set of "canned" tabs. The legal codes
and their meanings are as follows:

-a 1,10,16,36,72
Assembler, IBM S/370, first format

-a2 1,10,16,40,72
Assembler, IBM S/370, second format

-c 1,8,12,16,20,55
COBOL, normal format

-c2 1,6,10,14,49
COBOL, compact format (columns 1-6 omitted). Using this code,
the first typed character corresponds to card column 7, one space
gets you to column 8, and a tab reaches column 12. Files using
this tab setup should include a format specification as follows:

< :t-c2 m6 s66 d:>
- c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67

COBOL compact format (columns 1-6 omitted), with more tabs
than -c2. This is the recommended format for COBOL. The
appropriate format specification is:

< :t-c3 m6 s66 d:>
- f 1,7,11 ,15,19,23

FORTRAN
-p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61

PLII
-s 1,10,55

SNOBOL
-u 1,12,20,44

UNIVAC 1100 Assembler

In addition to these "canned" formats, three other types exist:

July 1984 - 1 -

TABS 0) TABS (I)

- n A repetitive specification requests tabs at columns 1 + n, 1 + 2*n,
etc. Note that such a setting leaves a left margin of n columns on
TermiNet terminals only. Of particular importance is the value
- 8: this represents the UNIX "standard" tab setting, and is the
most likely tab setting to be found at a terminal. It is required for
use with the nroff - h option for high-speed output. Another spe­
cial case is the value - 0, implying no tabs at all.

nl,n2, ... The arbitrary format permits the user to type any chosen set of
numbers, separated by commas, in ascending order. Up to 40
numbers are allowed. If any number (except the first one) is pre­
ceded by a plus sign, it is taken as an increment to be added to
the previous value. Thus, the tab lists 1,10,20,30 and
1,10, + 10, + 10 are considered identical.

- - file If the name of a file is given, tabs reads the first line of the file,
searching for a format specification. If it finds one there, it sets
the tab stops according to it, otherwise it sets them as - 8. This
type of specification may be used to make sure that a tabbed file is
printed with correct tab settings, and would be used with the prO)
command:

tabs - - file; pr file

Any of the following may be used also; if a given flag occurs more than
once, the last value given takes effect:

- T type Tabs usually needs to know the type of terminal in order to set
tabs and always needs to know the type to set margins. Type is a
name listed in term (5). If no - T flag is supplied, tabs searches
for the $TERM value in the environment (see environ (5)). If no
type can be found, tabs tries a sequence that will work for many
terminals.

+mn The margin argument may be used for some terminals. It causes
all tabs to be moved over n columns by making column n + 1 the
left margin. If +m is given without a value of n, the value
assumed is 10. For a TermiNet, the first value in the tab list
should be 1, or the margin will move even further to the right.
The normal (teft-most) margin on most terminals is obtained by
+ mO. The margin for most terminals is reset only when the + m
flag is given explicitly.

Tab and margin setting is performed via the standard output.

EXAMPLE
tabs -c

will send commands to the terminal to remotely ~et the tabs for COBOL format.
tabs 6,12,18

will set tabs in columns 6, 12 and 18.
tabs -10

will set tabs in columns 11, 21, 31, 41, 51, 61, and 71.

DIAGNOSTICS
illegal tabs
illegal increment

July 1984

when arbitrary tabs are ordered incorrectly.
when a zero or missing increment is found in an arbi­
trary specification.

- 2 -

TABS (1) TABS (1)

unknown tab code
can't open
file indirection

when a "canned" code cannot be found.
if - - file option used, and file can't be opened.
if - - file option used and the specification in that file
points to yet another file. Indirection of this form is
not permitted.

SEE ALSO

BUGS

nroffO), environ(4), term(5), tsetO).

There is no consistency among different terminals regarding ways of clear­
ing tabs and setting the left margin.
It is generally impossible to usefully change the left margin without also
setting tabs.
Tabs clears only 20 tabs (on terminals requiring a long sequence), but is
willing to set 40.

July 1984 - 3 -

TAIL (I) TAIL (I)

NAME
tail - deliver the last part of a file

SYNOPSIS
tail [± [numbed [I bc [f]]] [file]

DESCRIPTION
Tail copies the named file to the standard output beginning at a designated
place. If no file is named, the standard input is used.

Copying begins at distance + number from the beginning, or - number from
the end of the input Of number is null, the value 10 is assumed). Number
is counted in units of lines, blocks, or characters, according to the
appended option I, b, or c. When no units are specified, counting is by
lines.

With the - f ("follow") option, if the input file is not a pipe, the program
will not terminate after the line of the input file has been copied, but will
enter an endless loop, wherein it sleeps for a second and then attempts to
read and copy further records from the input file. Thus it may be used to
monitor the growth of a file that is being written by some other process.

EXAMPLE
tail -f fred

will print the last ten lines of the file "fred", followed by any lines that are
appended to "fred" between the time tail is initiated and killed.

tail - 15cf fred

will print the last 15 characters of the file "fred", followed by any lines that
are appended to "fred" between the time tail is initiated and killed.

SEE ALSO
dd(l).

BUGS
Tails relative to the end of the file are treasured up in a buffer, and thus
are limited in length. Various kinds of anomalous behavior may happen
with character special files.

October 1983 - 1 -

TAKE(IC) (UniSoft) TAKE(IC)

NAME
take - takes a file from a remote machine

SYNOPSIS
take [- p port] - sSPEED [- i [ID]] fromfile [to file]
take [- p port] - sSPEED - c command [args] ...

DESCRIPTION
Take is part of system of programs useful for transferring files between
UNIX systems. It is the "downloader" designed to transmit files from a
remote machine to a local machine. For a brief discussion of the take/put
system and installation instructions, see the companion document: Installa­
tion and Overview of the UniSoft Take/Put File Transfer System.

Take transfers a file, directory, or output from a command given at a
remote machine. The default port is Idev/ttyO; the - p option can be used
to specify an alternate port. The default speed is determined by the system;
the - s option can be used to specify a specific speed. The - i [ID] option
remaps pathnames on the remote machine. The ID (if present) is passed to
the remote machine where it is used to locate a line containing pathname
prefixes (using the letc/takelist file discussed below). If no ID is given
after the - i flag, then the default system ID is read from the I etc/ sys id
file (if it exists); otherwise take7 will use the account name of the invoker
(i.e., the person who logged in to the port used) to determine which line of
letc/takelist to apply. See the overview document for details of the map­
ping.

The - c option is useful for executing an arbitrary command on the remote
machine. All arguments following the - c flag are collected, transmitted to
the remote machine and executed as a single command. The standard out­
put and standard error from this command are returned as the standard
output and standard error of take.

In order to perform its function, take (1 C) interfaces with the program
lusr/bin/take7 on the remote machine.

EXAMPLE

FILES

take /a/b/c

takes the contents of the directory (or file) "/a/b/c" on the remote machine
and copies them into a similarly named directory (or file) on the local
machine; if "/a/b/c" did not previously exist on the local machine, it is
created; otherwise it is overwritten.

take file.c /x/y/z/filename

takes the contents of "file.c" from the remote machine and copies them into
"/x/y/z/filename" on the local machine. Note that if "filename" exists on
the local machine, its contents are overwritten.

fro m file The remote file name. When using the - i option, this file
should usually be specified as a pathname starting at the root of
the local machine.

to file The local file name; if tofile is null, tofile is defaulted to fromfile.
If tofile is a directory, then to file has the last segment of the
fromfile path appended to it.

h~1~4 -1-

TAKE(1C) (UniSoft) TAKEOC)

SEE ALSO
cu(lC), put(lC)
Installation and Overview of the UniSoft. Take/Put File Transfer System

July 1984 - 2 -

TAKE7 (IC) (UniSoft) TAKE7(lC)

NAME
take7 - takes a file from a remote machine.

SYNOPSIS
take7 [- p port]
take7 [- p port]

-sSPEED
-sSPEED

[- iUDI] fromfile [tofile]
- c command [args] ...

DESCRIPTION
Take 7 is part of system of programs useful for transferring files between
UNIX systems. It is the "downloader" designed to transmit files from a
remote machine to a local machine. For a brief discussion of the take/put
system and installation instructions, see the companion document: Overview
of the UniSoft Take/Put File Transfer System.

Take 7 transfers a file, directory, or output from a command given at a
remote machine. The default port is Idev Itt yO; the - p option can be used
to specify an alternate port. The default speed is determined by the system;
the - s option can be used to specify a specific speed. The - i [ID] option
remaps pathnames on the remote machine. The ID (if present) is passed to
the remote machine where it is used to locate a line containing pathname
prefixes (using the I etc/takelist file discussed below). If no ID is given
after the - i flag, then the default system ID is read from the letc/sys_id
file (if it exists); otherwise take6 will use the account name of the invoker
(i.e., the person who logged in to the port used) to determine which line of
letc/takelist to apply. See the overview document for details of the map­
ping.

The - c option is useful for executing an arbitrary command on the remote
machine. All arguments following the - c flag are collected, transmitted to
the remote machine and executed as a single command. The standard out­
put and standard error from this command are returned as the standard
output and standard error of take7.

In order to perform its function, take 7 (I C) interfaces with the program
lusr/bin/take6 on the remote machine.

EXAMPLE

FILES

take7 /a/b/c

takes the contents of the directory (or file) "/a/b/c" on the remote machine
and copies them into a similarly named directory (or file) on the local
machine; if "/a/b/c" did not previously exist on the local machine, it is
created; otherwise it is overwritten.

take file.c /x/y/z/filename

takes the contents of "file.c" from the remote machine and copies them into
"/x/y/z/filename" on the local machine. Note that if "filename" exists on
the local machine, its contents are overwritten.

fromfile The remote file name. When using the - i option, this file
should usually be specified as a pathname starting at the root of
the local machine.

tofile The local file name; if to file is null, tofile is defaulted to fromfile.
If tofile is a directory, then tofile has the last segment of the
fromfile path appended to it.

July 1984 - 1 -

TAKE7(IC) (UniSoft) TAKE7 (IC)

SEE ALSO
cu(1), put7(1)
Overview of the UniSoft Take/Put File Transfer System

July 1984 - 2 -

TAR (1) TAR(1)

NAME
tar - tape file archiver

SYNOPSIS
tar [key] [files]

DESCRIPTION
Tar saves and restores files on magnetic tape. Its actions are controlled by
the key argument. The key is a string of characters containing at most one
function letter and possibly one or more function modifiers. Other argu­
ments to the command are files (or directory names) specifying which files
are to be dumped or restored. In all cases, appearance of a directory name
refers to the files and (recursively) subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

r The named files are written on the end of the tape. The c func­
tion implies this function.

x The named files are extracted from the tape. If a named file
matches a directory whose contents had been written onto the
tape, this directory is (recursively) extracted. The owner,
modification time, and mode are restored (if possible). If no files
argument is given, the entire content of the tape is extracted.
Note that if several files with the same name are on the tape, the
last one overwrites all earlier ones.
The names of the specified files are listed each time that they
occur on the tape. If no files argument is given, all the names on
the tape are listed.

u The named files are added to the tape if they are not already there,
or have been modified since last written on that tape.

c Create a new tape; writing begins at the beginning of the tape,
instead of after the last file. This command implies the r function.

The following characters may be used in addition to the letter that selects
the desired function:

0, ... ,7 This modifier selects the drive on which the tape is mounted. The
default is 1.

v Normally, tar does its work silently. The v (verbose) option
causes it to type the name of each file it treats, preceded by the
function letter. With the t function, v gives more information
about the tape entries than just the name.

w causes tar to print the action to be taken, followed by the name of
the file, and then wait for the user's confirmation. If a word
beginning with y is given, the action is performed. Any other
input means "no".

f causes tar to use the next argument as the name of the archive
instead of Idev/mt? If the name of the file is -, tar writes to
the standard output or reads from the standard input, whichever is
appropriate. Thus, tar can be used as the head or tail of a pipe­
line. Tar can also be used to move hierarchies with the command:

cd fromdir; tar cf - . I (cd todir; tar xf -)
b causes tar to use the next argument as the blocking factor for tape

records. The default is 1, the maximum is 20. This option should
only be used with raw magnetic tape archives (see f above). The
block size is determined automatically when reading tapes (key
letters x and t).

October 1983 - 1 -

TARO) TARO)

m

tells tar to complain if it cannot resolve all of the links to the files
being dumped. If 1 is not specified, no error messages are printed.
tells tar to not restore the modification times. The modification
time of the file will be the time of extraction.

This version of tar is capable of writing more than one tape or disk. The
user will be prompted to change media when necessary. The next two
options are used for tapes; the last is for disks.

d causes tar to use the next argument as the tape's density. The
default density is 1600BPI.

s causes tar to use the next argument as the tape's length in feet.
The default length is 2300 feet.

B causes tar to use the next argument as the number of 512-byte
blocks in the disk.

The tar header format is as follows:

define TBLOCK 512
define NBLOCK 40
define NAMSIZ 100
union hblock {

char dummy [TBLOCK];
struct header {

} dbuf;

char name[NAMESIZ];
char mode[8];
char uid[8];
char gid[8];
char size [12] ;
char mtime[l2];
char chksum[8];
char linkflag;
char linkname[NAMESIZ];

} dblock, tbu[[NBLOCK];

EXAMPLE

FILES

cd fromdir; tar cf - . I (cd todir; tar xf -)

will copy directories from one directory tree to another.

Idev/rmt?
Idev/mt?
Itmp/tar*
Ibin/mkdir build directories during recovery
Ibin/pwd get working directory name

DIAGNOSTICS

BUGS

Complaints about bad key characters and tape read/write errors.
Complaints if enough memory is not available to hold the link tables.

There is no way to ask for the n -th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.
The b option should not be used with archives that are going to be updated.
The current magnetic tape driver cannot backspace raw magnetic tape. If

July 1984 - 2 -

TARO) TARO)

the archive is on a disk file, the b option should not be used at all, because
updating an archive stored on disk can destroy it.
The current limit on file-name length is 100 characters.
Empty directories are skipped when creating a tar archive.

July 1984 - 3 -

TBL(1) TBL(1)

NAME
tbl - format tables for nroff or troff

SYNOPSIS
tbl [- TX] [files]

DESCRIPTION
Tbl is a preprocessor that formats tables for nroff or troff. The input files
are copied to the standard output, except for lines between .TS and .TE
command lines, which are assumed to describe tables and are re-formatted
by tbl. (The .TS and .TE command lines are not altered by tbl) .

. TS is followed by global options. The available global options are:

center center the table (default is left-adjust);
expand make the table as wide as the current line length;
box enclose the table in a box;
doublebox enclose the table in a double box;
allbox enclose each item of the table in a box;
tab (x) use the character x instead of a tab to separate items in a

line of input data.

The global options, if any, are terminated with a semi-colon (;).

Next come lines describing the format of each line of the table. Each such
format line describes one line of the actual table, except that the last format
line (which must end with a period) describes all remaining lines of the
table. Each column of each line of the table is described by a single key­
letter, optionally followed by specifiers that determine the font and point
size of the corresponding item, that indicate where vertical bars are to
appear between columns, that determine column width, inter-column spac­
ing, etc. The available key-letters are:

c center item within the column;
r right-adjust item within the column;
I left-adjust item within the column;
n numerically adjust item in the column: units positions of numbers

are aligned vertically;
s span previous item on the left into this column;
a center longest line in this column and then left-adjust all other

lines in this column with respect to that centered line;
span down previous entry in this column;
replace this entry with a horizontal line;
replace this entry with a double horizontal line.

The characters B and I stand for the bold and italic fonts, respectively; the
character I indicates a vertical line between columns.

The format lines are followed by lines containing the actual data for the
table, followed finally by . TE. Within such data lines, data items are nor­
mally separated by tab characters.

If a data line consists of only or =, a single or double line, respectively,
is drawn across the table at that point; if a single item in a data line consists
of only _ or =, then that item is replaced by a single or double line.

Full details of all these and other features of tbl are given in the reference
manual cited below.

October 1983 - 1 -

TBL (1) TBL (1)

. .The - TX option forces tbl to use only full vertical line motions, making the
output more suitable for devices that cannot generate partial vertical line
motions (e.g., line printers).

If no file names are given as arguments (or if - is specified as the last
argument), tbl reads the standard input, so it may be used as a filter.
When it is used with eqn (1) or neqn, tbl should come first to minimize the
volume of data passed through pipes.

EXAMPLE
In the following input, "I represents a tab (which should be typed as a
genuine tab):

yields:

.TS
center box
cB s s
cIlcIs
A Icc
11 n n .
Household Population

Town "I Households
"I Number "I Size

Bedminster "1789 "I 3.26
Bernards Twp. "I 3087 "I 3.74
Bernardsville "I 2018 "I 3.30
Bound Brook "I 3425 "13.04
Bridgewater "17897 "13.81
Far Hills"1240"13.19
.TE

Household Population

Town
Households

Number Size
Bedminster 789 3.26
Bernards Twp. 3087 3.74
Bernardsville 2018 3.30
Bound Brook 3425 3.04
Bridgewater 7897 3.81
Far Hills 240 3.19

SEE ALSO

BUGS

cw(1), eqn(I), mm(1)' mmt(1)' nroff(1), troff(1), mm(5), mv(5)
TBL -A Program to Format Tables.

See BUGS under nroff(I).

October 1983 - 2 -

TC(l) TC(l)

NAME
tc - phototypesetter simulator

SYNOPSIS
tc [- t] [- sn] [- pi] [file]

DESCRIPTION
Tc interprets its input (standard input default) as device codes for a Wang
Laboratories, Inc. CI A/T phototypesetter. The standard output of tc is
intended for a Tektronix 4014 terminal with ASCII and APL character sets.
The sixteen typesetter sizes are mapped into the 4014's four sizes; the
entire TROPP character set is drawn using the 4014's character generator,
with overstruck combinations where necessary. Typical usage is:

troff - t files I tc

At the end of each page, tc waits for a new-line (empty line) from the key­
board before continuing on to the next page. In this wait state, the com­
mand e will suppress the screen erase before the next page; s n will cause
the next n pages to be skipped; and! cmd will send cmd to the shell.

The command line options are:

-t Don't wait between pages (for directing output into a file).

- s n Skip the first n pages.

- p I Set page length to I; I may include the scale factors p (points), i
(inches), c (centimeters), and P (picas); default is picas.

SEE ALSO
4014(1), sh(1), tplot(1G), troff(1).

BUGS
Font distinctions are lost.

October 1983 - 1 -

TEE (1)

NAME
tee - pipe fitting

SYNOPSIS
tee [- i] [- a] [file] ...

DESCRIPTION

TEE{1)

Tee transcribes the standard input to the standard output and makes copies
in the files. The - i option ignores interrupts; the - a option causes the
output to be appended to the files rather than overwriting them.

EXAMPLE
make I tee x

will cause the output of the make program to be recorded on file "x" as well
as printed on standard output.

October 1983 - 1 -

TEST (I) TEST (I)

NAME
test - condition evaluation command

SYNOPSIS
test expr
[expr]

DESCRIPTION
Test evaluates the expression expr and, if its value is true, returns a zero
(true) exit status; otherwise, a non-zero (false) exit status is returned; test
also returns a non-zero exit status if there are no arguments. The follow­
ing primitives are used to construct expr:

- r file true if file exists and is readable.

-w file

-x file

-f file

-d file

-c file

-b file

-p file

-u file

-g file

-k file

true if file exists and is writable.

true if file exists and is executable.

true if file exists and is a regular file.

true if file exists and is a directory.

true if file exists and is a character special file.

true if file exists and is a block special file.

true if file exists and is a named pipe (fifo).

true if file exists and its set-user-ID bit is set.

true if file exists and its set-group-ID bit is set.

true if file exists and its sticky bit is set.

- s file true if file exists and has a size greater than zero.

- t [fildes] true if the open file whose file descriptor number is fildes (1 by
default) is associated with a terminal device.

- z s1 true if the length of string s1 is zero.

- n s1 true if the length of the string s1 is non-zero.

s1 = s2 true if strings s1 and s2 are identical.

s1 ! = s2 true if strings s1 and s2 are not identical.

s1 true if s1 is not the null string.

n1-eq n2 true if the integers n1 and n2 are algebraically equal. Any of
the comparisons - ne, - gt, - ge, -It, and -Ie may be used
in place of - eq.

These primaries may be combined with the following operators:

unary negation operator.

- a binary and operator.

- 0 binary or operator (- a has higher precedence than - 0).

(expr) parentheses for grouping.

Notice that all the operators and flags are separate arguments to test.
Notice also that parentheses are meaningful to the shell and, therefore,
must be escaped.

October 1983 - 1 -

TEST(l) TEST 0)

EXAMPLE

Test is typically used in shell scripts (sh 0», as in the following example
which prints the message "foo is a directory" if it is found to be one when
tested.

if (test -d foo) then
echo "foo is a dir"

fi

SEE ALSO
find(1), sh(1).

WARNING
In the second form of the command (i.e., the one that uses [1, rather than
the word test), the square brackets must be delimited by blanks.
Some UNIX systems do not recognize the second form of the command.

Note test is built into Ibin/sh and will not work in Ibin/csh.

July 1984 - 2 -

TIME(l) TIME(l)

NAME
time - time a command

SYNOPSIS
time command

DESCRIPTION
The command is executed; after it is complete, time prints the elapsed time
during the command, the time spent in the system, and the time spent in
execution of the command. Times are reported in seconds.

The execution time can depend on what kind of memory the program hap­
pens to land in; the user time in MOS is often half what it is in core.

The times are printed on standard error.

EXAMPLE
time nroff man fHea

will, in sh, perform the formatting and report the time at the end of the
file, e.g.:

real 22.0
user 8.6
sys 6.4

In csh, on the other hand, the time report might be:

8.9u 7.0s 0:29 54%

which reports the user time, system time, real time, and percentage of real
time that the CPU was active, which is the sum of the user and system
times divided by real elapsed time.

SEE ALSO
timex(1), times(2).

October 1983 - 1 -

TIMEX(I) TIMEX (I)

NAME
timex - time a command; report process data and system activity

SYNOPSIS
timex [options] command

DESCRIPTION
The given command is executed; the elapsed time, user time and system
time spent in execution are reported in seconds. Optionally, process
accounting data for the command and all its children can be listed or sum­
marized, and total system activity during the execution interval can be
reported.

The output of timex is written on standard error.

Options are:

- p List process accounting records for command and all its children.
Suboptions f, b, k, m, r, and t modify the data items reported, as
defined in acctcom (1). The number of blocks read or written and the
number of characters transferred are always reported.

-0 Report the total number of blocks read or written and total characters
transferred by command and all its children.

- s Report total system activity (not just that due to command) that
occurred during the execution interval of command. All the data
items listed in sar (1) are reported.

EXAMPLE
timex ps -el

runs the ps command (with the correct options), then produces statistics
concerning the command and system activity during the command to the
standard error.

SEE ALSO
acctcom(1), sar(I).

WARNING
Process records associated with command are selected from the accounting
file /usr/adm/pacct by inference, since process genealogy is not available.
Background processes having the same user-id, terminal-id, and execution
time window will be spuriously included.

October 1983 - 1 -

TOUCH (1) TOUCH(l)

NAME
touch - update access and modification times of a file

SYNOPSIS
toueh [- arne] [mmddhhmm [yy]] files

DESCRIPTION
Touch causes the access and modification times of each argument to be
updated. If no time is specified (see date(1» the current time is used.
The - a and - m options cause touch to update only the access or
modification times respectively (default is - am). The - e option silently
prevents touch from creating the file if it did not previously exist.

The return code from touch is the number of files for which the times
could not be successfully modified (including files that did not exist and
were not created).

Note that you can't touch a numeric filename without preceding that
filename with the date or with a non-numeric filename on the command
line. For example,

touch 100

will not work, however

touch 0723093584 100

or

touch file 1 100

will work.

EXAMPLE
touch filea fileb

sets the "date last modified" of the two files to the current date.

SEE ALSO
date(1), utime(2).

July 1984 - 1 -

TP(I) (UniSoft) TP(I)

NAME
tp - manipulate tape archive

SYNOPSIS
tp [key] [name ...]

DESCRIPTION
Tp saves and restores files on DEC tape or other magnetic tape. Its actions
are controlled by the key argument. The key is a string of characters con­
taining at most one function letter and possibly one or more function
modifiers. Other arguments to the command are file or directory names
specifying which files are to be dumped, restored, or listed. In all cases,
appearance of a directory name refers to the files and (recursively) sub­
directories of that directory.

Tp is useful for importing tapes made on older systems.

The function portion of the key is specified by one of the following letters:

r The named files are written on the tape. If files with the same
names already exist, they are replaced. "Same" is determined by
string comparison, so .abc can never be the same as lusrlsbo/abc
even if lusrlsbo is the current directory. If no file argument is
given, . is the default.

u Updates the tape. u is like r, but a file is replaced only if its
modification date is later than the date stored on the tape; that is to
say, if it has changed since it was dumped. u is the default com­
mand if none is given.

d Deletes the named files from the tape. At least one name argu­
ment must be given. This function is not permitted on magnetic
tapes.

x Extracts the named files from the tape to the file system. The
owner and mode are restored. If no file argument is given, the
entire contents of the tape are extracted.

Lists the names of the specified files. If no file argument is given,
the entire contents of the tape is listed.

The following characters may be used in addition to the letter which selects
the function desired.

m Specifies magnetic tape as opposed to DECtape.

0, ... ,7 This modifier selects the drive on which the tape is mounted. For
DECtape, x is default; for magnetic tape 0 is the default.

v

c

October 1983

Normally tp does its work silently. The v (verbose) option causes it
to type the name of each file it treats preceded by the function
letter. With the t function, v gives more information about the
tape entries than just the name.

Means a fresh dump is being created; the tape directory is cleared
before beginning. Usable only with rand u. This option is
assumed with magnetic tape since it is impossible to selectively
overwrite magnetic tape.

Errors reading and writing the tape are noted, but no action is
taken. Normally, errors cause a return to the command level.

- 1 -

TP(l) (UniSoft) TP(l)

f Use the first named file, rather than a tape, as the archive. This
option is known to work only with x.

w Causes tp to pause before treating each file, type the indicative
letter and the file name (as with v) and await the user's response.
Response y means "yes", so the file is treated. Null response
means "no", and the file does not take part in whatever is being
done. Response x means "exit"; the tp command terminates
immediately. In the x function, files previously asked about have
been extracted already. With r, U, and d, no change has been made
to the tape.

EXAMPLE

FILES

tp x file!

extracts "filel" from a tp formatted magnetic tape mounted on drive O.

Idev/tap?
Idev/mt?

SEE ALSO
adO, cpioO), tarO).

DIAGNOSTICS

BUGS

Several; the non-obvious one is "Phase error", which means the file
changed after it was selected for dumping but before it was dumped.

A single file with sev~rallinks to it is treated like several files.

Binary-coded control information makes magnetic tapes written by tp
difficult to carry to other machines; tar 0) avoids the problem.

Tp does not copy zero-length files to tape.

October 1983 - 2 -

TPLOT(IG) TPLOT(IG)

NAME
tplot - graphics filters

SYNOPSIS
tplot [- T terminal [- e raster]]

DESCRIPTION
These commands read plotting instructions (see plot(4» from the standard
input and in general produce, on the standard output, plotting instructions
suitable for a particular terminal. If no terminal is specified, the environ­
ment parameter $TERM (see environ (5» is used. Known terminal s are:

300 DASI 300.
300S DASI 300s.
450 DASI 450.
4014 Tektronix 4014.
ver Versatec D1200A. This version of plot places a scan-converted

image in /usr/tmp/raster$$ and sends the result directly to the
plotter device, rather than to the standard output. The - e option
causes a previously scan-converted file raster to be sent to the
plotter.

EXAMPLE
tplot -T4014 graph. out

will use the encoded information in "graph.out" to plot a graph on a Tek­
tronix 4014-type terminal.

FILES
I usr IIi bl t3 00
I usr I libl t300s
I usr/libl t450
lusr/lib/t4014
lusr/lib/vplot
I usr I tmpl raster$$

SEE ALSO
plot(3X), plot(4) , term(5).

October 1983 - 1 -

TR(l) TR(l)

NAME
tr - translate characters

SYNOPSIS
tr [- cds] [string 1 [string2]

DESCRIPTION
Tr copies the standard input to the standard output with substitution or
deletion of selected characters. Input characters found in string1 are
mapped into the corresponding characters of string2. Any combination of
the options - cds may be used:

-c Complements the set of characters in string1 with respect to the
universe of characters whose ASCII codes are 001 through 377
octal.

-d Deletes all input characters in string1.

- s Squeezes all strings of repeated output characters that are in string2
to single characters.

The following abbreviation conventions may be used to introduce ranges of
characters or repeated characters into the strings:

[a - z] Stands for the string of characters whose ASCII codes run from
character a to character z, inclusive.

[a* n] Stands for n repetitions of a. If the first digit of n is 0, n is con­
sidered octal; otherwise, n is taken to be decimal. A zero or miss­
ing n is taken to be huge; this facility is useful for padding string2.

The escape character \ may be used as in the shell to remove special mean­
ing from any character in a string. In addition, \ followed by 1, 2, or 3
octal digits stands for the character whose ASCII code is given by those·
digits.

EXAMPLE
tr -cs "[A-Z][a-z]" "[\012*]" <file1 >file2

creates a list of all the words in "file1" one per line in "file2", where a word
is taken to be a maximal string of alphabetics. The strings are quoted to
protect the special characters from interpretation by the shell; 012 is the
ASCII code for newline.

In this case, tr has substituted the newline character for all the alphabetics
in "file 1", reconstituted the alphabetics with the -c option, squeezed the
newlines to one per occurrence, with the -s option, and directed the out­
put to "file2".

SEE ALSO

BUGS

ed (1), sh (1), ascii(5).

Won't handle ASCII NUL in string1 or string2; always deletes NUL from
input.

October 1983 - 1 -

TROFF(l) TROFF(l)

NAME
troff - typeset text

SYNOPSIS
troff [options] [files]

DESCRIPTION
Troffformats text contained in files (standard input by default) for a Wang
Laboratories, Inc., Cf AfT phototypesetter. Its capabilities are described in
the NROFFITROFF User's Manual cited below.

An argument consisting of a minus (-) is taken to be a file name
corresponding to the standard input. The options, which may appear in any
order, but must appear before the files, are:

-olist Print only pages whose page numbers appear in the list of
numbers and ranges, separated by commas. A range N - M
means pages N through M; an initial - N means from the
beginning to page N; and a final N - means from N to the end.

-nN
-sN

-raN
-i
-q
-z

(See BUGS below,)
Number first generated page N.
Stop every N pages. Troffwill stop the phototypesetter every N
pages, produce a trailer to allow changing cassettes, and resume
when the typesetter's start button is pressed.
Set register a (which must have a one-character name) to N.
Read standard input after files are exhausted.
Invoke the simultaneous input-output mode of the .rd request.
Print only messages generated by .tm (terminal message)
requests.

-mname Prepend to the input files the non-compacted (ASCII text) macro
file /usr/Ub/tmac/tmac. name.

-cname Prepend to the input files the compacted macro files
/usr/lib/macros/cmp. [nt]. [dt). name and
/usr/Ub/macros/ucmp. [nt]. name.

-kname Compact the macros used in this invocation of troff, placing the
output in files [dt].name in the current directory (see the May
1979 Addendum to the NROFFITROFF User's Manual for details

-t

-f

-w
-b

-a

-pN

of compacting macro files).
Direct output to the standard output instead of the photo­
typesetter.
Refrain from feeding out paper and stopping phototypesetter at
the end of the run.
Wait until phototypesetter is available, if it is currently busy.
Report whether the phototypesetter is busy or available. No text
processing is done.
Send a printable ASCII approximation of the results to the stan­
dard output.
Print all characters in point size N while retaining all prescribed
spacings and motions, to reduce phototypesetter elapsed time.

- T name Use font-width tables for device name (the font tables are found
in /usr/Ub/font/name/.). Currently, no names are supported.

EXAMPLE
troff -04,8-10 -mabc file1 file2

requests formatting of pages 4, 8, 9, and 10 of a document contained in the
files named "file 1" and "file2", and invokes the macro package abc.

October 1983 - 1 -

TROFF(l) TROFF(l)

FILES
lusr/lib/suftab
Itmp/ta$#
lusr/lib/tmac/tmac.*
lusr/lib/macros/*
lusr/lib/font/*

suffix hyphenation tables
temporary file
standard macro files and pointers
standard macro files
font width tables for troff

SEE ALSO

BUGS

cw(1), eqn(l), mmt(1), nroff(1) , tbl(1), tc(l), mm(5), mv(5).
NROFFITROFF User's Manual and A TROFF Tutorial

Troff believes in Eastern Standard Time; as a result, depending on the time
of the year and on your local time zone, the date that troff generates may
be off by one day from your idea of what the date is.
When troffis used with the -olist option inside a pipeline (e.g., with one or
more of cw(1), eqn (1), and tb/(1)), it may cause a harmless "broken pipe"
diagnostic if the last page of the document is not specified in list.

October 1983 - 2 -

TROFF7(1) TROFF7 (1)

NAME
troff7 - text formatting and typesetting

SYNOPSIS
troff7 [option] ... [file] ...

DESCRIPTION
Troff7 formats text in the named files for printing on a Graphic Systems
Cf AfT phototypesetter; nroff is used for for typewriter-like devices. Their
capabilities are described in the NrofflTroff User's Manual.

If no file argument is present, the standard input is read. An argument
consisting of a single minus (-) is taken to be a file name corresponding to
the standard input. The options, which may appear in any order so long as
they appear before the files, are:

-olist

-nN

-sN

Print only pages whose page numbers appear in the comma­
separated list of numbers and ranges. A range N - M means
pages N through M; an initial - N means from the beginning to
page N; and a final N- means from N to the end.

Number first generated page N.

Stop every N pages. Nroff will halt prior to every N pages
(default N= 1) to allow paper loading or changing, and will
resume upon receipt of a newline. Troff7 will stop the photo­
typesetter every N pages, produce a trailer to allow changing
cassettes, and resume when the typesetter's start button is
pressed.

- m name Prepend the macro file /usr /Hb/tmac/tmac. name to the input
files.

-raN Set register a (one-character) to N.

-i Read standard input after the input files are exhausted.

-q Invoke the simultaneous input-output mode of the rd request.

Troff7 only

- t Direct output to the standard output instead of the photo­
typesetter.

- f Refrain from feeding out paper and stopping phototypesetter at
the end of the run.

-w Wait until phototypesetter is available, if currently busy.

- b Report whether the phototypesetter is busy or available. No text
processing is done.

- a Send a printable ASCII approximation of the results to the stan­
dard output.

- pN Print all characters in point size N while retaining all prescribed
spacings and motions, to reduce phototypesetter elapsed time.

- g Prepare output for a GCOS phototypesetter and direct it to the
standard output (see gcatO».

If the file lusrladmltracct is writable, troff7 keeps phototypesetter accounting
records there. The integrity of that file may be secured by making troff7 a
"set-user-id" program.

October 1983 - 1 -

TROFF7 (1)

FILES
lusr/Iib/suftab
Itmp/ta*
I usr I Ii bl tmacl tmac. *
I usr I Ii bl terml *
lusr/Iib/font/*
Idev/cat
I usr I adml tracct

SEE ALSO
eqn(l), tbl(l)

suffix hyphenation tables
temporary file
standard macro files
terminal driving tables for nrojj7
font width tables for trojj7
phototypesetter
accounting statistics for Idev/cat

Nro.fflTroff User's Manual by J. F. Ossanna,
A TROFF Tutorial by B. W. Kernighan.

October 1983 - 2 -

TROFF7 (1)

TRUE(l)

NAME
true, false - provide truth values

SYNOPSIS
true

false

DESCRIPTION

TRUE(l)

True does nothing, successfully. False does nothing, unsuccessfully. They
are typically used in input to sh 0).

EXAMPLE

SEE ALSO
sh(l) .

DIAGNOSTICS

while true
do

command
done

True has exit status zero, false nonzero.

October 1983 - 1 -

TSET(1) (UniSoft) TSET(1)

NAME
tset, reset - set or reset the teletype bits to a sensible state

SYNOPSIS
tset [options]
reset

DESCRIPTION
Tset causes terminal dependent processing such as setting erase and kill
characters, setting or resetting delays, and the like. It first determines the
type of terminal involv~d, names for which are specified by the
/etc/termcap data base, and then does necessary initializations and mode
settings. In the case where no argument types are specified, tset simply
reads the terminal type out of the environment variable TERM and re­
initializes the terminal. The rest of this manual concerns itself with type
initialization, done typically once at login, and options used at initialization
time to determine the terminal type and set up terminal modes.

When used in a startup script ".profile" (for sh (1) users) or ".login" (for
csh (1) users), it is desirable to give information about the types of terminal
usually used, for terminals which are connected to the computer through a
modem. These ports are initially identified as being dialup or plugboard or
arpanet etc. To specify what terminal type is usually used on these ports,
-m is followed by the appropriate port type identifier, an optional baud­
rate specification, and the terminal type to be used if the mapping condi­
tions are satisfied. If more than one mapping is specified, the first applica­
ble mapping prevails. A missing type identifier matches all identifiers.

Baud rates are specified as with stty(l), and are compared with the speed of
the diagnostic output (which is almost always the control terminal). The
baud rate test may be any combination of: >, =, <, @, and !; @ is a
synonym for = and! inverts the sense of the test. To avoid problems with
metacharacters, it is best to place the entire argument to - m within" char­
acters; users of csh (1) must also put a "\" before any"!" used here.

Thus
tset -m 'dialup>300:adm3a' -m dialup:dw2 -m 'plugboard:?adm3a'

causes the terminal type to be set to an adm3a if the port in use is a dialup
at a speed greater than 300 baud; to a dw2 if the port is (otherwise) a
dialup (i.e., at 300 baud or less). If the type above begins with a question
mark, the user is asked if slhe really wants that type. A null response
means to use that type; otherwise, another type can be entered which will
be used instead. Thus, in this case, the user will be queried on a plugboard
port as to whether they are using an adm3a. For other ports the port type
will be taken from the /etc/ttytype file or a final, default type option may
be given on the command line not preceded by a - m.

It is often desirable to return the terminal type, as specified by the - m
options, and information about the terminal to a shell's environment. This
can be done using the - s option; using the Bourne shell, sh (1):

eval 'tset - s options ... '

or using the C shell, csh (1) :

july 1984

tset -s options ... > tset$$
source tset$$
rm tset$$

- 1 -

TSET (1) (UniSoft) TSET(1)

These commands cause tset to generate as output a sequence of shell com­
mands which place the variables TERM and TERMCAP in the environment;
see en viron (5).

Once the terminal type is known, tset engages in terminal mode setting.
This normally involves sending an initialization sequence to the terminal
and setting the single character erase {and optionally the line-kill (full line
erase» characters.

On terminals that can backspace but not overstrike (such as a CRT), and
when the erase character is the default erase character ("#" on standard
systems), the erase character is changed to a Control-H (backspace).

Other options are:

-e set the erase character to be the named character c on all terminals,
the default being the backspace character on the terminal, usually AH.

- k is similar to - e but for the line kill character rather than the erase
character; c defaults to AX (for purely historical reasons); AU is the
preferred setting. No kill processing is done if - k is not specified.

- I suppresses outputting terminal initialization strings.

- Q suppresses printing the "Erase set to" and "Kill set to" messages.

- S Outputs the strings to be assigned to TERM and TERMCAP in the
environment rather than commands for a shell.

Reset sets the terminal to cooked mode, turns off "cbreak" and "raw"
modes, turns on "nl", and restores special characters that are undefined to
their default values.

This is most useful after a program dies leaving a terminal in a funny state;
you have to type <LF>reset<LF> to get it to work as <CR> often
doesn't work; often none of this will echo.

It isn't a bad idea to follow reset with tset.

EXAMPLE

FILES

A typical csh ".login" file using tset would be:

set noglob
set term = ('tset -e -S -r -d\ ?h19')
setenv TERM "$term[I]"
setenv TERMCAP "$term[2]"
unset term noglob

This ".login" sets the environment variables TERM and TERMCAP for the
user's current terminal according to the file /etc/ttytype. If the terminal
line is a dialup line, the user is prompted for the proper terminal type.

reset

returns the user's terminal to a usable state after being accidentally set by
an interrupted process.

/ etc/ ttytype
/ etc/ term cap

terminal id to type map database
terminal capability database

SEE ALSO
csh(I), sh(I), stty(I), environ(4), ttytype(4), termcap(5).

July /984 - 2 -

TSET(I) (UniSoft) TSET(I)

BUGS

NOTES

Should be merged with stty (1).

Reset doesn't set tabs properly; it can't intuit personal choices for interrupt
and line kill characters, so it leaves these the old UNIX standards A?
(delete) for interrupt and @ for line kill.

It could well be argued that the shell should be responsible for insuring that
the terminal remains in a sane state; this would eliminate the need for this
program.

For compatibility with earlier versions of tset, a number of flags are
accepted whose use is discouraged:

-d type equivalent to -m dialup:type

- p type equivalent to - m plugboard:type

- a type equivalent to - m arpanettype

- E c Sets the erase character to c only if the terminal can backspace.

prints the terminal type on the standard output

- r prints the terminal type on the diagnostic output.

AUTHOR
Eric Allman

July 1984 - 3 -

TSORT(1)

NAME
tsort - topological sort

SYNOPSIS
tsort [file]

DESCRIPTION

TSORT(I)

Tsort produces on the standard output a totally ordered list of items con­
sistent with a partial ordering of items mentioned in the input file. If no
file is specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separated by blanks.
Pairs of different items indicate ordering. Pairs of identical items indicate
presence, but not ordering.

EXAMPLE
ar cr library 'lorder *.0 I tsort'

intends to build a new library from existing .0 files.

SEE ALSO
10rder(1) .

DIAGNOSTICS

BUGS

Odd data: there is an odd number of fields in the input file.

Uses a quadratic algorithm; not worth fixing for the typical use of ordering
a library archive file.

October 1983 - 1 -

TTY (1) TTY (1)

NAME
tty - get the terminal's name

SYNOPSIS
tty [- 1] [- s]

DESCRIPTION
Tty prints the path name of the user's terminal. The -1 option prints the
synchronous line number to which the user's terminal is connected, if it is
on an active synchronous line. The - s option inhibits printing of the
terminal's path name, allowing one to test just the exit code.

EXAMPLE
tty

produces fdev ftty7 if user is on tty7.

EXIT CODES
2 if invalid options were specified,
o if standard input is a terminal,
1 otherwise.

DIAGNOSTICS
"not on an active synchronous line" if the standard input is not a synchro­
nous terminal and -1 is specified.
"not a tty" if the standard input is not a terminal and - s is not specified.

October 1983 - 1 -

UL(I) (UniSoft) UL (1)

NAME
ul - do underlining

SYNOPSIS
ul [- t terminal] [name...]

DESCRIPTION
UI reads the named files (or standard input if none are given) and
translates occurrences of underscores to the sequence which indicates
underlining. If - t is present, terminal is used as the terminal kind. Other­
wise, first the environment is searched, and if necessary, /etc/termcap is
read to determine the appropriate sequences for underlining. If none of the
fields us, ue, or uc are present, and if so and se are present, standout mode
is used to indicate underlining. If the terminal can overstrike, or handles
underlining automatically, ul behaves like cat{I). If the terminal cannot
underline, underlining is ignored.

EXAMPLE

FILES

ul filel

displays "filel" on the terminal with underlined portions of the file either
underlined, or in reverse video when this option is supported for the termi­
nal.

/bin/cat
/ etc/ term cap

concatenate and print
terminal capability data base

SEE ALSO

BUGS

man(I), nroiHI).

Nroff usually outputs a series of backspaces and underlines intermixed with
the text to indicate underlining. No attempt is made to optimize the back­
ward motion.

AUTHOR
Mark Horton

July 1984 - 1 -

UMASK(l) UMASK(l)

NAME
umask - set file-creation mode mask

SYNOPSIS
umask [000]

DESCRIPTION
The user file-creation mode mask is set to 000. The three octal digits refer
to read/write/execute permissions for owner, group, and others, respectively
(see chmod (2) and umask (2». The value of each specified digit is su b­
tracted from the corresponding "digit" specified by the system for the crea­
tion of a file (see creat (2». For example, umask 022 removes group and
others write permission (files normally created with mode 777 become
mode 755; files created with mode 666 become mode 644).

If 000 is omitted, the current value of the mask is printed.

Umask is recognized and executed by the shell.

EXAMPLE
umask 22

sets file-creation mode mask such that at file creation, the write bits will be
zeroed out for group and other users, regardless of mode specification in
create.

SEE ALSO
chmod (1), sh (1), chmod (2), creat (2), umask (2).

October 1983 - 1 -

UNAME(l)

NAME
uname - print name of current UNIX System

SYNOPSIS
uname [- snrvma]

DESCRIPTION

UNAME(1)

Uname prints the current system name of the UNIX System on the standard
output file. It is mainly useful to determine what system one is using. The
options cause selected information returned by uname (2) to be printed:

- s print the system name (default).

- n print the nodename (the nodename may be a name that the system
is known by to a communications network).

- r print the operating system release.

-v print the operating system version.

-m print the machine hardware name.

- a print all the above information.

Arguments not recognized default the command to the - s option.

EXAMPLE
uname

on UniPlus+ would print on the screen

unix

SEE ALSO
uname(2).

October 1983 - 1 -

UNGET(1) UNGET(I)

NAME
unget - undo a previous get of an sees file

SYNOPSIS
unget [- r SID] [- s] [- n] files

DESCRIPTION
Unget undoes the effect of a get -e done prior to creating the intended
new delta. If a directory is named, unget behaves as though each file in the
directory were specified as a named file, except that non-SeeS files and
unreadable files are silently ignored. If a name of - is given, the standard
input is read with each line being taken as the name of an sees file to be
processed.

Keyletter arguments apply independently to each named file.

EXAMPLE

-r SID Uniquely identifies which delta is no longer intended. (This
would have been specified by get as the "new delta"). The
use of this key letter is necessary only if two or more out­
standing get s for editing on the same sees file were done by
the same person (login name). A diagnostic results if the
specified SID is ambiguous, or if it is necessary and omitted
on the command line.

- s Suppresses the printout, on the standard output, of the
intended delta's SID.

- n Causes the retention of the gotten file which would normally
be removed from the current directory.

% unget s. testl.c
1.2

undoes version 1.2 of "testl.c" set up for editing by an earlier
get-e.

SEE ALSO
delta(I), get(I), sact(I).

DIAGNOSTICS
Use help (I) for explanations.

October 1983 - 1 -

UNIQ(l) UNIQ(l)

NAME
uniq - report repeated lines in a file

SYNOPSIS
uniq [-udc [+n] [-n]] [input [output]]

DESCRIPTION
Uniq reads the input file comparing adjacent lines. In the normal case, the
second and succeeding copies of repeated lines are removed; the remainder
is written on the output file. Input and output should always be different.
Note that repeated lines must be adjacent in order to be found; see sort(1).
If the - u flag is used, just the lines that are not repeated in the original file
are output. The - d option specifies that one copy of just the repeated lines
is to be written. The normal mode output is the union of the - u and - d
mode outputs.

The -c option supersedes -u and -d and generates an output report in
default style but with each line preceded by a count of the number of times
it occurred.

The n arguments specify skipping an initial portion of each line in the com­
parison:

- n The first n fields together with any blanks before each are ignored. A
field is defined as a string of non-space, non-tab characters separated
by tabs and spaces from its neighbors.

+ n The first n characters are ignored. Fields are skipped before charac­
ters.

EXAMPLE
uniq filel

prints contents of "filel" with adjacent identical lines removed.

SEE ALSO
comm (1), sort(O.

October 1983 - 1 -

UNITS (1) UNITS (1)

NAME
units - conversion program

SYNOPSIS
units

DESCRIPTION
Units converts quantities expressed in various standard scales to their
equivalents in other scales. It works interactively, as in the examples
below.

A quantity is specified as a multiplicative combination of units optionally
preceded by a numeric multiplier. Powers are indicated by suffixed positive
integers, division by the usual sign (see the second example beloW).

Units only does multiplicative scale changes; thus it can convert Kelvin to
Rankine, but not Celsius to Fahrenheit. Most familiar units, abbreviations,
and metric prefixes are recognized, together with a generous leavening of
exotica and a few constants of nature including:

pi ratio of circumference to diameter,
c speed of light,
e charge on an electron,
g acceleration of gravity,
force same as g,
mole Avogadro's number,
water pressure head per unit height of water,
au astronomical unit.

Pound is not recognized as a unit of mass; lb is. Compound names are run
together, (e.g., light year). British units that differ from their U.S. counter­
parts are prefixed thus: brgallon. For a complete list of units, type:

cat lusr/lib/unittab

EXAMPLE
You have: inch
You want: em

* 2.540000e+00
/ 3.937008e-Ol

You have: 15 lbs force/in2"

You want: atm

* 1.02068ge + 00
/ 9.79729ge-Ol

FILES
lusr/lib/unittab

October 1983 - 1 -

UPDATER (1) (UniSoft) UPDATER(I)

NAME
updater - update files between two machines

SYNOPSIS
updater [key] local remote ...

DESCRIPTION
Updater updates files between two machines.

One of the following key letters must be included:

t Take files from the remote machine, updating the local machine.

p Put files from the local machine onto the remote machine, updating the
remote machine.

d List the difference between files on the local and remote machines.

The following key letters are optional:

u Update a file only if it exists on both machines; this is the default condi-
tion.

r Replace a file if it did not exist on the destination machine.

Local refers to the local directory name.

Remote refers to the remote directory names. Only one remote name can
be specified if the p (put) key is specified.

ALGORITHM
Open /dev/ttyO to the remote machine.

Stty the local port and send a stty command to the remote machine to con­
dition both ends of the connection.

Send a "cd remote; sumdir . I sort + 2 > Itmp/rXXXXX" to remote
machine for each remote system; "cd local ; sumdir . I sort >
ItmpIlXXXXX" for local machine.

Wait for remote to complete.

Take /tmp/rXXXXX.

Do a comparison between the local and the union of the remotes:

exists on remote only:

EXAMPLE

If both the t and r keys are specified, take the file; otherwise list
the file.

exists on local only:
If both p and r keys are specified, put the file; otherwise list the
file.

exist on both but different:
If t key is specified, take the file.
If p key is specified, put the file.
If d key is specified, list the file.

same:
nothing

updater d ..

uses /dev/ttyO to communicate with a remote machine and compares direc­
tories on the remote and local systems.

October 1983 - 1 -

UUCP(1C) UUCP(1C)

NAME
uucp, uulog, uuname - unix to unix copy

SYNOPSIS
uucp [options] source-files destination-file

uulog [options]

uuname [-I]

DESCRIPTION
Uucp.

Uucp copies files named by the source-file arguments to the destination-file
argument. A file name may be a path name on your machine, or may have
the form:

system-name!path-name

where system-name is taken from a list of system names which uucp knows
about. The system-name may also be a list of names such as

system-name!system-name! ... !system-name!path-name

in which case an attempt is made to send the file via the specified route,
and only to a destination in PUBDIR (see below). Care should be taken to
insure that intermediate nodes in the route are willing to forward informa­
tion.

The shell metacharacters ?, • and (... I appearing in path-name will be
expanded on the appropriate system.

Path names may be one of:

(1) a full path name;

(2) a path name preceded by - user where user is a login name on the
specified system and is replaced by that user's login directory;

(3) a path name preceded by -/ user where user is a login name on
the specified system and is replaced by that user's directory under
PUBDIR;

(4) anything else is prefixed by the current directory.

If the result is an erroneous path name for the remote system, the copy will
fail. If the destination-file is a directory, the last part of the source-file name
is used.

If a simple - user destination is inaccessible to uucp, data is copied to a spool
directory and the user is notified by mail (1) .

Uucp preserves execute permissions across the transmission and gives 0666
read and write permissions (see chmod (2».

The following options are interpreted by uucp:

- d Make all necessary directories for the file copy (default).

-f Do not make intermediate directories for the file copy.

- c Use the source file when copying out rather than copying the file
to the spool directory (default).

- C Copy the source file to the spool directory.

- mfile Report status of the transfer in file. If file is omitted, send mail to
the requester when the copy is completed.

October 1983 - 1 -

UUCP(1C> UUCP(1C>

- n user Notify user on the remote system that a file was sent.

- e sys Send the uucp command to system sys to be executed there.
(Note: this will only be successful if the remote machine allows
the uucp command to be executed by /usr/Ub/uucp/uuxqt.)

Uucp returns on the standard output a string which is the job number of
the request. This job number can be used by uustat to obtain status or ter­
minate the job.

Uulog.
Uulog queries a summary log of uucp and uux (I C) transactions in the file
/usr/spool/uucp/LOGFILE.

The options cause uulog to print logging information:

- s sys Print information about work involving system sys.

- u user Print information about work done for the specified user.

Uuname.
Uuname lists the uucp names of known systems. The -I option returns
the local system name.

EXAMPLE

FILES

uucp file! unisoft! /usr/spoolluucppublic/file2

sends "file!" from the local machine, via the uucp network, to the "unisoft"
machine, where it is saved as file "/usrlspoolluucppublic/file2".

/usr/spoolluucp spool directory
/usr/spoolluucppublic public directory for receiving and sending (PUB­

DIR)
/usr/lib/uucp/* other data and program files

SEE ALSO
mail(I), uux(1C).

WARNING

BUGS

The domain of remotely accessible files can (and for obvious security rea­
sons, usually should) be severely restricted. You will very likely not be
able to fetch files by path name; ask a responsible person on the remote
system to send them to you. For the same reasons you will probably not
be able to send files to arbitrary path names. As distributed, the remotely
accessible files are those whose names begin /usr/spool/uucppublic
(equivalent to -nuucp or just -).

All files received by uucp will be owned by uucp.
The - m option will only work sending files or receIvmg a single file.
Receiving multiple files specified by special shell characters ? • I ...] will
not activate the - m option.

October 1983 - 2 -

UUSTAT(1C> UUSTAT(1C)

NAME
uustat - uucp status inquiry and job control

SYNOPSIS
uustat [options]

DESCRIPTION
Uustat will display the status of, or cancel, previously specified uucp com­
mands, or provide general status on uucp connections to other systems.
The following options are recognized:

-jjobn Report the status of the uucp request jobn. If all is used for
jobn, the status of all uucp requests is reported. If jobn is omit­
ted, the status of the current user's uucp requests is reported.

- kjobn Kill the uucp request whose job number is jobn. The killed uucp
request must belong to the person issuing the uustat command
unless one is the super-user.

- r jobn Rejuvenate jobn. That is jobn is touched so that its modification
time is set to the current time. This prevents uuc/ean from delet­
ing the job until the jobs modification time reaches the limit
imposed by uuclean.

-c hour Remove the status entries which are older than hour hours. This
administrative option can only be initiated by the user uucp or
the super-user.

-u user Report the status of all uucp requests issued by user.
- s sys Report the status of all uucp requests which communicate with

remote system sys.
-0 hour Report the status of all uucp requests which are older than hour

hours.
-y hour Report the status of all uucp requests which are younger than

hour hours.
- m mch Report the status of accessibility of machine mch. If mch is

specified as all, then the status of all machines known to the
local uucp are provided.

- M mch This is the same as the -m option except that two times are
printed. The time that the last status was obtained and the time
that the last successful transfer to that system occurred.

- 0 Report the uucp status using the octal status codes listed below.
If this option is not specified, the verbose description is printed
with each uucp request.

- q List the number of jobs and other control files queued for each
machine and the time of the oldest and youngest file queued for
each machine. If a lock file exists for that system, its date of
creation is listed.

When no options are given, uustat outputs the status of all uucp requests
issued by the current user. Note that only one of the options - j, - m,
- k, - c, - r, can be used with the rest of the other options.

For example, the command:

uustat -uhdc -smhtsa -y72

will print the status of all uucp requests that were issued by user hdc to
communicate with system mhtsa within the last 72 hours. The meanings of
the job request status are:

July]984 - 1 -

UUSTAT(1C) UUSTATOC)

FILES

job-number user remote-system command-time status-time status

where the status may be either an octal number or a verbose description.
The octal code corresponds to the following description:

OCTAL STATUS
000001 the copy failed, but the reason cannot be determined
000002 permission to access local file is denied
000004 permission to access remote file is denied
000010 bad uucp command is generated
000020 remote system cannot create temporary file
000040 cannot copy to remote directory
000100 cannot copy to local directory
000200 local system cannot create temporary file
000400 cannot execute uucp
001000 copy (partially) succeeded
002000 copy finished, job deleted
004000 job is queued
010000 job killed (incomplete)
020000 job killed (complete)

The meanings of the machine accessibility status are:

system-name time status

where time is the latest status time and status is a self-explanatory descrip­
tion of the machine status.

lusrlspool/uucp
lusr/lib/uucp/L stat
lusr/lib/uucp/R-=-'stat

spool directory
system status file
request status file

SEE ALSO
uucp(1C).

July 1984 - 2 -

UUTO(lC) UUTO(lC)

NAME
uuto, uupick - public UNIX System-to-UNIX System file copy

SYNOPSIS
uuto [options] source-files destination
uupick [- s system]

DESCRIPTION
Uuto sends source-files to destination. Uuto uses the uucp (IC) facility to
send files, while it allows the local system to control the file access. A
source-file name is a path name on your machine. Destination has the
form:

system! user

where system is taken from a list of system names that uucp knows about
(see uuname). Logname is the login name of someone on the specified sys­
tem.

Two options are available:

- p Copy the source file into the spool directory before transmission.
- m Send mail to the sender when the copy is complete.

The files (or sub-trees if directories are specified) are sent to PUBDIR on
system, where PUBDIR is a public directory defined in the uucp source.
Specifically the files are sent to

PUBDIR/receivel user! mysystemlfiles.

The destined recipient is notified by mail (I) of the arrival of files.

Uupick accepts or rejects the files transmitted to the user. Specifically,
uupick searches PUBDIR for files destined for the user. For each entry (file
or directory) found, the following message is printed on the standard out­
put:

from system: [file file-name] [dir dirname] ?

Uupick then reads a line from the standard input to determine the disposi­
tion of the file:

<new-line>

d

m[dir]

a [dir]

p

q

Go on to next entry.

Delete the entry.

Move the entry to named directory dir (current directory
is default).

Same as m except moving all the files sent from system.

Print the content of the file.

Stop.

EOT (control-d) Same as q.

!command Escape to the shell to do command.

* Print a command summary.

Uupick invoked with the - ssystem option will only search the PUBDIR for
files sent from system.

EXAMPLE
uuto -p filel file2 file3 ucbvax!Joe

October 1983 - 1 -

UUTO (IC)

FILES

would send the three files to user Joe on ucbvax

uupick [executed by Joe]

would tell him what has arrived and from where.

PUBDIR/usr/spool/uucppublic public directory

SEE ALSO
maiI(l), uucp(1C), uustat(1C), uux(1C)
uuclean(1M) in the UniPlus+ Administrator's Manual.

October 1983 - 2 -

UUTO(1C)

UUX(1C) UUX(1C)

NAME
uux - unix to unix command execution

SYNOPSIS
uux [options] command-string

DESCRIPTION
Uux will gather zero or more files from various systems, execute a com­
mand on a specified system and then send standard output to a file on a
specified system. Note that, for security reasons, many installations will
limit the list of commands executable on behalf of an incoming request
from uux. Many sites will permit little more than the receipt of mail (see
mai/(I» via uux.

The command-string is made up of one or more arguments that look like a
Shell command line, except that the command and file names may be
prefixed by system-name!. A null system-name is interpreted as the local
system.

File names may be one of

(I) a full path name;

(2) a path name preceded by -xxx where xxx is a login name on the
specified system and is replaced by that user's login directory;

(3) anything else is prefixed by the current directory.

Any special shell characters such as < > ; I should be quoted either by quot­
ing the entire command-string, or quoting the special characters as individual
arguments.

Uux will attempt to get all files to the execution system. For files which are
output files, the file name must be escaped using parentheses.

Uux will notify you if the requested command on the remote system was
disallowed. The response comes by remote mail from the remote machine.

The following options are interpreted by uux:

The standard input to uux is made the standard input to the
command-string.

- n Send no notification to user.

-mfile Report status of the transfer in file. If file is omitted, send mail to
the requester when the copy is completed.

Uux returns an ASCII string on the standard output which is the job
number. This job number can be used by uustat to obtain the status or ter­
minate a job.

EXAMPLE

FILES

uux "!diff usg!/usr/dan/fl pwba!/a4/dan/fl > !f1.diff"

will get the "n" files from the usg and pwba machines, execute a di./f com­
mand and put the results in "fl.diff" in the local directory.

uux a!uucp b!/usr/file \ (c!/usr/file\)

will send a uucp command to system a to get lusr/file from system band
send it to system c.

/usr/lib/uucp/L.sys List of system names and when to call them

October 1983 - 1 -

uux(tC) UUX(1C)

lusr/lib/uucp/L-cmd
lusr/lib/uucp/L-devices
I usr I libl u ucpl L-dialcodes
lusr/lib/uucp/SYSTEMNAME
I usr I li bl u ucpl USERFILE
prefixes
lusr/lib/uucp/uucico
lusr/lib/uucp/uuclean
uucp
lusr/lib/uucp/uuxqt
lusrlspool/uucp

List of commands for uuxqt to execute
List of device codes and speeds
List of phone numbers in L.sys
N arne of this system
List of users and required pathname

copy in, copy out program; called by uucp
spool directory cleanup program; called by

command execution program; called by uucp
spool directory

SEE ALSO

BUGS

uucp(1C)
uuclean(1M) in the UniPlus+ Administrator's Manual.

Only the first command of a shell pipeline may have a system-name!. All
other commands are executed on the system of the first command.
The use of the shell metacharacter • will probably not do what you want it
to do. The shell tokens < < and > > are not implemented.

October 1983 - 2 -

VAL (I) VAL(l)

NAME
val - validate sees file

SYNOPSIS
val -
val files

DESCRIPTION
Val determines if the specified file is an sees file meeting the characteris­
tics specified by the optional argument list. Arguments to val may appear
in any order. The arguments consist of keyletter arguments, which begin
with a -, and named files.

Val has a special argument, -, which causes reading of the standard input
until an end-of-file condition is detected. Each line read is independently
processed as if it were a command line argument list.

Val generates diagnostic messages on the standard output for each com­
mand line and file processed and also returns a single 8-bit code upon exit
as described below.

The keyletter arguments are defined as follows. The effects of any keyletter
argument apply independently to each named file on the command line.

-s

-rSID

The presence of this argument silences the diagnostic mes­
sage normally generated on the standard output for any
error that is detected while processing each named file on a
given command line.

The argument value SID (Sees IDentification String) is an
sees delta number. A check is made to determine if the
SID is ambiguous (e.g., -rl is ambiguous because it phy­
sically does not exist but implies 1.1, 1.2, etc. which may
exist) or invalid (e.g., -rI.O or -r1.1.0 are invalid
because neither case can exist as a valid delta number). If
the SID is valid and not ambiguous, a check is made to
determine if it actually exists.

- mname The argument value name is compared with the sees
%M% keyword in file.

-ytype The argument value type is compared with the sees % Y%
keyword in file.

The 8-bit code returned by val is a disjunction of the possible errors, i.e.,
can be interpreted as a bit string where (moving from left to right) set bits
are interpreted as follows:

bit 0 = missing file argument;
bit 1 = unknown or duplicate key letter argument;
bit 2 = corrupted sees file;
bit 3 = can't open file or file not sees;
bit 4 = SID is invalid or ambiguous;
bit 5 = SID does not exist;
bit 6 = %Y%, -y mismatch;
bit 7 = %M%, -m mismatch;

Note that val can process two or more files on a given command line and in
turn can process multiple command lines (when reading the standard
input). In these cases an aggregate code is returned - a logical OR of the

October 1983 - 1 -

VAL(1) VAL(l)

codes generated for each command line and file processed.

EXAMPLE
val -
-yc -mabc s.abc
-mxyz -ypll s.xyz

first checks if file "s.abc" has a value c for its type flag and value abc for
the module name flag. Once processing of the first file is completed, val
then processes the remaining files Gn this case "s.xyz") to determine if they
meet the characteristics specified by the keyleUer arguments associated with
them.

SEE ALSO
admin(I), delta(1), get(1), prs(I).

DIAGNOSTICS

BUGS

Use help (1) for explanations.

Val can process up to 50 files on a single command line. Any number
above 50 will produce a core dump.

October 1983 - 2 -

VC(l) VC(l)

NAME
vc - version control

SYNOPSIS
vc [- a] [- t] [- ccharJ [- s] [keyword = value ... keyword = value]

DESCRIPTION
The vc command copies lines from the standard input to the standard out­
put under control of its arguments and control statements encountered in the
standard input. In the process of performing the copy operation, user
declared keywords may be replaced by their string value when they appear in
plain text and/or control statements.

The copying of lines from the standard input to the standard output is con­
ditional, based on tests (in control statements) of keyword values specified
in control statements or as vc command arguments.

A control statement is a single line beginning with a control character,
except as modified by the - t key letter (see below). The default control
character is colon (:), except as modified by the -c keyletter (see below).
Input lines beginning with a backs lash (\) followed by a control character
are not control lines and are copied to the standard output with the
backs lash removed. Lines beginning with a backslash followed by a non­
control character are copied in their entirety.

A keyword is composed of 9 or less alphanumerics; the first must be alpha­
betic. A value is any ASCII string that can be created with ed(1); a numeric
value is an unsigned string of digits. Keyword values may not contain
blanks or tabs.

Replacement of keywords by values is done whenever a keyword sur­
rounded by control characters is encountered on a version control state­
ment. The - a keyletter (see below) forces replacement of keywords in all
lines of text. An uninterpreted control character may be included in a
value by preceding it with \. If a literal \ is desired, then it too must be
preceded by \.

Keyletter arguments

- a Forces replacement of keywords surrounded by control char­
acters with their assigned value in all text lines and not just
in vc statements.

- t All characters from the beginning of a line up to and includ­
ing the first tab character are ignored for the purpose of
detecting a control statement. If one is found, all characters
up to and including the tab are discarded.

-cchar Specifies a control character to be used in place of :.

- s Silences warning messages (not error) that are normally
printed on the diagnostic output.

Version Control Statements

:dcl keyword[, ..• , keyword]
Used to declare keywords. All keywords must be declared.

:asg keyword = value

October 1983

Used to assign values to keywords. An asg statement overrides the
assignment for the corresponding keyword on the vc command line

- 1 -

VC(I) VC (I)

and all previous asg's for that keyword. Keywords declared, but
not assigned values have null values.

:if condition

:end Used to skip lines of the standard input. If the condition is true all
lines between the if statement and the matching end statement are
copied to the standard output. If the condition is false, all interven­
ing lines are discarded, including control statements. Note that
intervening if statements and matching end statements are recog­
nized solely for the purpose of maintaining the proper if-end match­
ing.

The syntax of a condition is:

<cond> "= ["not"] <or>
<or> ::= <and> I <and> "I" <or>
<and> ::= <exp> I <exp> "&" <and>
<exp> ::= "(" <or> ")" I <value> <op> <value>
<op> ::= "=" I "!=" I "<" I ">"
<value> ::= <arbitrary ASCII string> I <numeric string>

The available operators and their meanings are:

equal
!= not equal
& and
I or
> greater than
< less than
() used for logical groupings
not may only occur immediately after the if, and when

present, inverts the value of the entire condition

The> and < operate only on unsigned integer values (e.g., : 012 >
12 is false). All other operators take strings as arguments (e.g., : 012
! = 12 is true). The precedence of the operators (from highest to
lowest) is:

&
I

! = > < all of equal precedence

Parentheses may be used to alter the order of precedence.

Values must be separated from operators or parentheses by at least
one blank or tab.

::text

:on

:off

Used for keyword replacement on lines that are copied to the standard
output. The two leading control characters are removed, and key­
words surrounded by control characters in text are replaced by their
value before the line is copied to the output file. This action is
independent of the - a key letter.

Turn on or off keyword replacement on all lines.

October 1983 - 2 -

VC(l) VC(l)

:ctl char
Change the control character to char.

:msg message
Prints the given message on the diagnostic output.

:err message
Prints the given message followed by:

ERROR: err statement on line .•• (915)
on the diagnostic output. Vc halts execution, and returns an exit code
of 1.

EXAMPLE
If you have a file named "note" containing:

:dcl NAME,PLACE
:NAME:,
Just a note to remind you that we have a meeting
scheduled Monday morning at :PLACE:.

the command

vc -a NAME=Joe PLACE=UniSoft < note

will produce

Joe,
Just a note to remind you that we have a meeting
scheduled Monday morning at UniSoft.

DIAGNOSTICS
Use help (1) for explanations.

EXIT CODES
o - normal
1 - any error

October 1983 - 3 -

VER.SION (1) (UniSoft)

NAME
version - reports version number of files

SYNOPSIS
version name ...

DESCR.IPTION

VERSION (1)

Version takes a list of files and reports the version number. If the file is
not a binary, it reports: "not a binary". If no version number is associated
with the file, it reports: "pre history". Version is useful for determining
which version of the current program you are running.

EXAMPLE
version Ibinlversion

prints the version number of the version program.

October 1983 - 1 -

VI(l) VI(l)

NAME
vi, view - screen oriented (visual) display editor based on ex

SYNOPSIS
vi [- t tag] [- r] [+ command] [- w n] name ...
view [- t tag] [- r] [+ command] [- w n] name ...

DESCRIPTION

Vi

Vi (visual) is a display oriented text editor based on ex (1) . Ex and vi run
the same code; it is possible to get to the command mode of ex from within
vi and vice-versa.

Vi puts up a screenful of text at a time (unless a smaller window is
specified) and allows rapid and fluid cursor motion to the place where you
want to begin adding, changing, or deleting text. With vi, editing can be
done on characters, words, lines, or sections at a time. When multi­
character changes are made, it is necessary to hit the ESCAPE key to
return to cursor motion mode.

View is an invocation of vi which disallows writing. View is useful for
browsing through a file when no modifications are intended.

Using ex commands and calling up the Shell by typing 0) are done with a
colon (:) and the appropriate command sequence, such as that to find a
string or write the file.

The Vi Command Summary (below), the Vi Quick Reference card and the
Introduction to Display Editing with Vi provide full details on using vi.

The following options are recognized:

-t Equivalent to an initial tag command, editing the file contain­
ing the tag and positioning the editor at its definition.

- r U sed in recovering after an editor or system crash, retrieving
the last saved version of the named file. If no file is specified,
a list of saved files will be reported.

+ command indicates that the editor should begin by executing the
specified command. If command is omitted, then it defaults to
$, positioning the editor at the last line of the first file initially.
Other useful commands here are scanning patterns of the form
"/pat" or line numbers, e.g., "+ 100" to start at line 100.

- w n sets the default window size to n, and is useful in dialups, to
start in small windows.

Name arguments indicate files to be edited.

Command Summary
Cursor Motion: Forward Back

letter (space) AH, h
word right-limit E,e
word left-limit W,w B,b
sentence) (
paragraph } {
section/ function]] [[
line: same/limit $ 0

1st charac +,<ret>
same column n,LF

A p

July 1984 - 1 -

VI(l)

FILES

.·specified
112 screenful
screenful

<line# > G < line# > G
Ad AU
Af Ab

Undoing Errors (see also: change, insert, delete)

u undo last change
U restore current line
"N p retrieve Nth last delete
<esc> abandon incomplete command (without completing it)
:q! drastic! abandon without saving.

Insert Change

VI(l)

before cursor cw<newword> change word to newword

a
A
o
o
<esc>

Delete

x
X
dw
de
dd
(#)dd
D

before 1st non-blank
after cursor
at end-of-line
open line below
open line above
terminates insert

C change rest of line
s substitute character
S substitute lines
rx replace 1 character
R replace characters
xp transpose character
< esc> terminates change

Delete during Insert

character last character AH
... before cursor last word AW
word all input this line @
... but leave punctuation
line
number of lines
rest of line

See ex(I).

EXAMPLE
vi text

would invoke the editor with the file named "text". For further examples,
see An Introduction to Display Editing with Vi.

SEE ALSO
ex(1), edit(1)
Vi QUick Reference card, An Introduction to Display Editing with Vi.

AUTHOR

BUGS

William Joy
Mark Horton added macros to visual mode.

Software tabs using AT work only immediately after the autoindent.

Left and right shifts on intelligent terminals don't make use of insert and
delete character operations in the terminal.

The wrapmargin option can be fooled since it looks at output columns when
blanks are typed. If a long word passes through the margin and onto the
next line without a break, then the line won't be broken.

Insert/delete within a line can be slow if tabs are present on intelligent ter­
minals, since the terminals need help in doing this correctly.

July 1984 - 2 -

VI(l) VI(l)

Saving text on deletes in the named buffers is somewhat inefficient.

The source command does not work when executed as :source; there is no
way to use the :append, :change, and :insert commands, since it is not
possible to give more than one line of input to a : escape. To use these on
a :global you must Q to ex command mode, execute them, and then
reenter the screen editor with vi or open.

July 1984 - 3 -

WAIT(t)

NAME
wait - await completion of process

SYNOPSIS
wait

DESCRIPTION

WAIT (1)

Wait until all processes started with & have completed, and report on
abnormal terminations.

Because the wait(2) system call must be executed in the parent process, the
shell itself executes wait, without creating a new process.

EXAMPLE
wait

waits for all child processes to terminate.

SEE ALSO
shO).

BUGS
Not all the processes of a 3- or more-stage pipeline are children of the
shell, and thus can't be waited for.

October 1983 - 1 -

WC(1) wc(1)

NAME
wc - word count

SYNOPSIS
we [- 1 we] [names]

DESCRIPTION
We counts lines, words and characters in the named files, or in the stan­
dard input if no names appear. It also keeps a total count for all named
files. A word is a maximal string of characters delimited by spaces, tabs, or
new-lines.

The options I, w, and e may be used in any combination to specify that a
subset of lines, words, and characters are to be reported. The default is
-Iwe.

When names are specified on the command line, they will be printed along
with the counts.

EXAMPLE
wc filea fileb filec

reports the number of lines, words, and characters in each of the files.

October 1983 - 1 -

WHAT (I) WHAT (I)

NAME
what - identify sees files

SYNOPSIS
what files

DESCRIPTION
What searches the given files for all occurrences of the pattern that get (1)
substitutes for %Z% (this is @ (#) at this printing) and prints out what fol­
lows until the first" , > , new-line, \ , or null character. For example, if
the C program in file f.c contains

char ident[1 = "@(#)identification information";

and f.c is compiled to yield f.o and a.out, then the command

what f.c f.o a.out

will print

f.c:
identification information

f.o:
identification information

a.out:
identification information

What is intended to be used in conjunction with the sees command get(l),
which automatically inserts identifying information, but it can also be used
where the information is inserted manually.

EXAMPLE
If "testl.c" has the following string

char v[] = "@(#)1 test1.c 2";

typing

what testl.c

would print the following:

test1.c:
1 testl.c 2

SEE ALSO
get(1), help(1).

DIAGNOSTICS
Use help (1) for explanations.

BUGS
It's possible that an unintended occurrence of the pattern @(#) could
be found just by chance, but this causes no harm in nearly all cases.

October 1983 - 1 -

WHO(D WHO(D

NAME
who - who is on the system

SYNOPSIS
who [- uTlpdbrtas] [file]

who am i

DESCRIPTION
Who can list the user's name, terminal line, login time, elapsed time since
activity occurred on the line, and the process-ID of the command inter­
preter (shell) for each current UNIX System user. It examines the
/etc/utmp file to obtain its information. If file is given, that file is exam­
ined. Usually, file will be /etc/wtmp, which contains a history of all the
logins since the file was last created.

Who with the am i option identifies the invoking user.

Except for the default -s option, the general format for output entries is:

name [state] line time activity pid [comment] [exit]

With options, who can list logins, logoffs, reboots, and changes to the sys­
tem clock, as well as other processes spawned by the init process. These
options are:

-u This option lists information about those users who are currently
logged in. The name is the user's login name. The line is the name
of the line as found in the directory /dev. The time is the time that
the user logged in. The activity is the number of hours and minutes
since activity last occurred on that particular line. A dot (.) indicates
that the terminal has seen activity in the last minute and is therefore
"current". If more than twenty-four hours have elapsed or the line
has not been used since boot time, the entry is marked old. This field
is useful when trying to determine whether a person is working at the
terminal or not. The pid is the process-ID of the user's shell. The
comment is the comment field associated with this line as found in
/etc/inittab (see inittab(4». This can contain information about
where the terminal is located, the telephone number of the dataset,
type of terminal if hard-wired, etc.

- T This option causes the state of the terminal line to be printed. The
state describes whether someone else can write to that terminal. A +
appears if the terminal is writable by anyone; a - appears if it is not.
Root can write to all lines having a + or a - in the state field. If a
bad line is encountered, a ? is printed.

-I This option lists only those lines on which the system is waiting for
someone to login. The name field is LOGIN in such cases. Other
fields are the same as for user entries except that the state field
doesn't exist.

- p This option lists any other process which is currently active and has
been previously spawned by init. The name field is the name of the
program executed by init as found in /etc/inittab. The state, line,
and activity fields have no meaning. The comment field shows the id
field of the line from / etc/inittab that spawned this process. See init­
tab (4).

October 1983 - 1 -

WHO (1) WHO (1)

- d This option displays all processes that have expired and not been
respawned by init. The exit field appears for dead processes and con­
tains the termination and exit values (as returned by wait (2», of the
dead process. This can be useful in determining why a process ter­
minated.

- b This option indicates the time and date of the last reboot.

- r This option indicates the current run-level of the init process. Follow-
ing the run-level and date information are three fields which indicate
the current state, the number of times that state was previously
entered, and the previous state.

- t This option indicates the last change to the system clock (via the
date (1) command) by root. See su (1).

- a This option processes /etc/utmp or the named file with all options
turned on.

- s This option is the default and lists only the name, line and time fields.

EXAMPLE

FILES

who am i

reports the name under which you are currently logged in. This could be a
name other than the original name under which you logged in, if the su
command has been used.

letc/utmp
/etc/wtmp
/ etc/ inittab

SEE ALSO
date(1), 10gin(1), mesg(1), su(1), wait(2), inittab(4), utmp(4)
init(1M) in the UniPlus+ Administrator's Manual.

October 1983 - 2 -

WRITE(l) WRITE(l)

NAME
write - write to another user

SYNOPSIS
write user [line]

DESCRIPTION
Write copies lines from your terminal to that of another user. When first
called, it sends the message:

Message from yourname (tty??) [date] . .•

to the person you want to talk to. When it has successfully completed the
connection it also sends two bells to your own terminal to indicate that
what you are typing is being sent.

The recipient of the message should write back at this point. Communica­
tion continues until an end of file is read from the terminal or an interrupt
is sent. At that point write writes EOT on the other terminal and exits.

If you want to write to a user who is logged in more than once, the line
argument may be used to indicate which line or terminal to send to (e.g.,
ttyOO); otherwise, the first instance of the user found in /etc/utmp is
assumed and the following message posted:

user is logged on more than one place.
You are connected to "terminaf'.
Other locations are:
terminal

Permission to write may be denied or granted by use of the mesg (1) com­
mand. Writing to others is normally allowed by default. Certain com­
mands, in particular nroff(1) and pr (1) disallow messages in order to
prevent interference with their output. However, if the user has super-user
permissions, messages can be forced onto a write inhibited terminal.

If the character ! is found at the beginning of a line, write calls the shell to
execute the rest of the line as a command.

The following protocol is suggested for using write: when you first write to
another user, wait for them to write back before starting to send. Each per­
son should end a message with a distinctive signal (i.e., (0) for "over") so
that the other person knows when to reply. The signal (00) (for "over and
out") is suggested when conversation is to be terminated.

EXAMPLE

FILES

write unisoft tty7

writes unisoft on terminal 7, unless messages have been refused with
mesg(1).

/etc/utmp to find user
/bin/sh to execute!

SEE ALSO
mail(1), mesg(1), nroff(1), pr(1), sh(1), who(I).

DIAGNOSTICS
user not logged in if the person you are trying to write to is not logged in.

October 1983 - 1 -

XARGS (1) XARGS (1)

NAME
xargs - construct argument list(s) and execute command

SYNOPSIS
xargs [flags] [command [initial-arguments]]

DESCRIPTION
Xargs combines the fixed initial-arguments with arguments read from stan­
dard input to execute the specified command one or more times. The
number of arguments read for each command invocation and the manner in
which they are combined are determined by the flags specified.

Command, which may be a shell file, is searched for, using one's SPATH.
If command is omitted, Ibinlecho is used.

Arguments read in from standard input are defined to be contiguous strings
of characters delimited by one or more blanks, tabs, or new-lines; empty
lines are always discarded. Blanks and tabs may be embedded as part of an
argument if escaped or quoted: Characters enclosed in quotes (single or
double) are taken literally, and the delimiting quotes are removed. Outside
of quoted strings a backs lash (\) will escape the next character.

Each argument list is constructed starting with the initial-arguments, fol­
lowed by some number of arguments read from standard input (Exception:
see - i flag). Flags - i, -I, and - n determine how arguments are selected
for each command invocation. When none of these flags are coded, the
initial-arguments are followed by arguments read continuously from stan­
dard input until an internal buffer is full, and then command is executed
with the accumulated args. This process is repeated until there are no more
args. When there are flag conflicts (e.g., -I vs. - n), the last flag has pre­
cedence. Flag values are:

-Inumber Command is executed for each non-empty number lines of
arguments from standard input. The last invocation of com­
mand will be with fewer lines of arguments if fewer than
number remain. A line is considered to end with the first
new-line unless the last character of the line is a blank or a
tab; a trailing blank/tab signals continuation through the next
non-empty line. If number is omitted, 1 is assumed. Option
- x is forced.

-irep/str Insert mode: command is executed for each line from standard
input, taking the entire line as a single arg, inserting it in
initial-arguments for each occurrence of rep/str. A maximum
of 5 arguments in initial-arguments may each contain one or
more instances of rep/str. Blanks and tabs at the beginning of
each line are thrown away'. Constructed arguments may not
grow larger than 255 characters, and option - x is also forced.
{} is assumed for rep/str if not specified.

-nnumber Execute command using as many standard input arguments as
possible, up to number arguments maximum. Fewer argu­
ments will be used if their total size is greater than size char­
acters, and for the last invocation if there are fewer than
number arguments remaining. If option - x is also coded,
each number arguments must fit in the size limitation, else
xargs terminates execution.

October 1983 - 1 -

XARGS (I)

-t

-p

-x

-ssize

-eeofstr

XARGS(I)

Trace mode: The command and each constructed argument list
are echoed to file descriptor 2 just prior to their execution.

Prompt mode: The user is asked whether to execute command
each invocation. Trace mode (- t) is turned on to print the
command instance to be executed, followed by a ? •• prompt.
A reply of y (optionally followed by anything) will execute the
command; anything else, including just a carriage return,
skips that particular invocation of command.

Causes xargs to terminate if any argument list would be
greater than size characters; - x is forced by the options - i
and -I. When neither of the options - i, -I, or - n are
coded, the total length of all arguments must be within the
size limit.

The maximum total size of each argument list is set to size
characters; size must be a positive integer less than or equal to
470. If -s is not coded, 470 is taken as the default. Note
that the character count for size includes one extra character
for each argument and the count of characters in the com­
mand name.

Eofstr is taken as the logical end-of-file string. Underbar ()
is assumed for the logical EOF string if -e is not coded. -=e
with no eofstr coded turns off the logical EOF string capability
(underbar is taken literally). Xargs reads standard input until
either end-of-file or the logical EOF string is encountered.

Xargs will terminate if either it receives a return code of -1 from, or if it
cannot execute, command. When command is a shell program, it should
explicitly exit (see sh (I» with an appropriate value to avoid accidentally
returning with -1.

EXAMPLE
Is $1 I xargs -i -t mv $l/{} $2/{}

will move all files from directory $1 to directory $2, and echo each move
command just before doing it.

(Iogname; date; echo $0 $*) I xargs > > log

will combine the output of the parenthesized commands onto one line,
which is then echoed to the end of file "log".

Is I xargs - p - 1 ar r arch
Is I xargs - p - 1 I xargs ar r arch

causes the user to be asked which files in the current directory are to be
archived and archives them into "arch" one at a time in the first instance, or
as in the second instance, many at a time.

echo $* I xargs - n2 diff

will execute diff(l) with successive pairs of arguments originally typed as
shell arguments.

DIAGNOSTICS
Self explanatory.

October 1983 - 2 -

YACC(t) YACC(I)

NAME
yacc - yet another compiler-compiler

SYNOPSIS
yace [- vdlt] grammar

DESCRIPTION
Yaee converts a context-free grammar into a set of tables for a simple auto­
maton which executes an LR(1) parsing algorithm. The grammar may be
ambiguous; specified precedence rules are used to break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a
program yyparse. This program must be loaded with the lexical analyzer
program, yylex, as well as main and yyerror, an error handling routine.
These routines must be supplied by the user; lex (1) is useful for creating
lexical analyzers usable by yaee.

If the -v flag is given, the file y.output is prepared, which contains a
description of the parsing tables and a report on conflicts generated by
ambiguities in the grammar.

If the -d flag is used, the file y.tab.h is generated with the #define state­
ments that associate the yaee-assigned "token codes" with the user-declared
"token names". This allows source files other than y.tab.c to access the
token codes.

If the -(flag is given, the code produced in y.tab.c will not contain any
#line constructs. This should only be used after the grammar and the
associated actions are fully debugged.

Runtime debugging code is always generated in y.tab.c under conditional
compilation control. By default, this code is not included when y.tab.c is
compiled. However, when yaee's - t option is used, this debugging code
will be compiled by default. Independent of whether the - t option was
used, the runtime debugging code is under the control of YYDEBUG, a
pre-processor symbol. If YYDEBUG has a non-zero value, then the debug­
ging code is included. If its value is zero, then the code will not be
included. The size and execution time of a program produced without the
runtime debugging code will be smaller and slightly faster.

EXAMPLE

FILES

yacc file1.y

invokes yaee to process file "filel.y" in yaee-format.

y.output
y.tab.c
y.tab.h defines for token names
yacc.tmp, yacc.debug, yacc.acts temporary files
lusr/lib/yaccpar parser prototype for C programs

SEE ALSO
lex(1)
YACC- Yet Another Compiler Compiler.

DIAGNOSTICS
The number of reduce-reduce and shift-reduce conflicts is reported on the
standard error output; a more detailed report is found in the y.output file.
Similarly, if some rules are not reachable from the start symbol, this is also

October 1983 - 1 -

YACC(1) YACC(1)

reported.

BUGS
Because file names are fixed, at most one yacc process can be active in a
given directory at a time.

October 1983 - 2 -

	0001
	0002
	001
	002
	003
	004
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	03-001
	03-002
	03-003
	03-004
	03-005
	03-006
	03-007
	03-008
	03-009
	03-010
	03-011
	03-012
	03-013
	03-014
	03-015
	03-016
	03-017
	03-018
	03-019
	03-020
	03-021
	03-022
	03-023
	03-024
	03-025
	03-026
	03-027
	03-028
	03-029
	03-030
	03-031
	03-032
	03-033
	03-034
	03-035
	03-036
	03-037
	03-038
	03-039
	03-040
	03-041
	03-042
	03-043
	03-044
	03-045
	03-046
	03-047
	03-048
	03-049
	03-050
	03-051
	03-052
	03-053
	03-054
	03-055
	03-056
	03-057
	03-058
	03-059
	03-060
	03-061
	03-062
	03-063
	03-064
	03-065
	03-066
	03-067
	03-068
	03-069
	03-070
	03-071
	03-072
	03-073
	03-074
	03-075
	03-076
	03-077
	03-078
	03-079
	03-080
	03-081
	03-082
	03-083
	03-084
	03-085
	03-086
	03-087
	03-088
	03-089
	03-090
	03-091
	03-092
	03-093
	03-094
	03-095
	03-096
	03-097
	03-098
	03-099
	03-100
	03-101
	03-102
	03-103
	03-104
	03-105
	03-106
	03-107
	03-108
	03-109
	03-110
	03-111
	03-112
	03-113
	03-114
	03-115
	03-116
	03-117
	03-118
	03-119
	03-120
	03-121
	03-122
	03-123
	03-124
	03-125
	03-126
	03-127
	03-128
	03-129
	03-130
	03-131
	03-132
	03-133
	03-134
	03-135
	03-136
	03-137
	03-138
	03-139
	03-140
	03-141
	03-142
	03-143
	03-144
	03-145
	03-146
	03-147
	03-148
	03-149
	03-150
	03-151
	03-152
	03-153
	03-154
	03-155
	03-156
	03-157
	03-158
	03-159
	03-160
	03-161
	03-162
	03-163
	03-164
	03-165
	03-166
	03-167
	03-168
	03-169
	03-170
	03-171
	03-172
	03-173
	03-174
	03-175
	03-176
	03-177
	03-178
	03-179
	03-180
	03-181
	03-182
	03-183
	03-184
	03-185
	03-186
	03-187
	03-188
	03-189
	03-190
	03-191
	03-192
	03-193
	03-194
	03-195
	03-196
	03-197
	03-198
	03-199
	03-200
	03-201
	03-202
	03-203
	03-204
	03-205
	03-206
	03-207
	03-208
	03-209
	03-210
	03-211
	03-212
	03-213
	03-214
	03-215
	03-216
	03-217
	03-218
	03-219
	03-220
	03-221
	03-222
	03-223
	03-224
	03-225
	03-226
	03-227
	03-228
	03-229
	03-230
	03-231
	03-232
	03-233
	03-234
	03-235
	03-236
	03-237
	03-238
	03-239
	03-240
	03-241
	03-242
	03-243
	03-244
	03-245
	03-246
	03-247
	03-248
	03-249
	03-250
	03-251
	03-252
	03-253
	03-254
	03-255
	03-256
	03-257
	03-258
	03-259
	03-260
	03-261
	03-262
	03-263
	03-264
	03-265
	03-266
	03-267
	03-268
	03-269
	03-270
	03-271
	03-272
	03-273
	03-274
	03-275
	03-276
	03-277
	03-278
	03-279
	03-280
	03-281
	03-282
	03-283
	03-284
	03-285
	03-286
	03-287
	03-288
	03-289
	03-290
	03-291
	03-292
	03-293
	03-294
	03-295
	03-296
	03-297
	03-298
	03-299
	03-300
	03-301
	03-302
	03-303
	03-304
	03-305
	03-306
	03-307
	03-308
	03-309
	03-310
	03-311
	03-312
	03-313
	03-314
	03-315
	03-316
	03-317
	03-318
	03-319
	03-320
	03-321
	03-322
	03-323
	03-324
	03-325
	03-326
	03-327
	03-328
	03-329
	03-330
	03-331
	03-332
	03-333
	03-334
	03-335
	03-336
	03-337
	03-338
	03-339
	03-340
	03-341
	03-342
	03-343
	03-344
	03-345
	03-346
	03-347
	03-348
	03-349
	03-350
	03-351
	03-352
	03-353
	03-354
	03-355
	03-356
	03-357
	03-358
	03-359
	03-360
	03-361
	03-362
	03-363
	03-364
	03-365
	03-366
	03-367
	03-368
	03-369
	03-370
	03-371
	03-372
	03-373
	03-374
	03-375
	03-376
	03-377
	03-378
	03-379

