

FORTRAN
Language Manual for UniPlus+

_.--:... ~----- ------ -.--: ~ _ ~ _......-----."' ""T'

=Iiiiiil=~iiiili" _. _.. -- -_. _. --....-. . --_. _. - . -- -_. _. -_. --_. _. -_. --- a _ •• - . -._ - ------ _......--... ~ ~

s Y S T EMS

739 Allston Way. Berkeley, CA 94710
(415) 644-1230 eTWX 11910 366-2145

UUCP ucbvaxlunisoftlunisoft

FORTRAN

Language Reference Manual

Version 2.0, 1st September 1983

PN: 1019-{)2 IIniSDl1
S Y S T EMS

This FORTRAN Reference Manual was produced by:

J. Barth, R.S. Glanville, H. McGilton and E. Boyle.

UniSoft Part Number: 1019-02

Copyright ~j 1983 by Silicon Valley Software, Inc.

All rights reserved. No part of this FORTRAN Reference Manual may be
reproduced, translated, transcribed or transmitted in any form or by any means
manual, electronic, electro-magnetic, chemical or optical without explicit
written permission from Silicon Valley Software, Inc. or U niSoft Systems.

CONTENTS

Chapter 1 - Introduction . • • • . •
1.1 Overview of the FORTRAN Language
1.2 Notation and Terminology Used in this Manual
1.3 Basic Elements of FORTRAN • . . • .

Chapter 2 - Lines, Statements and Control Flow • .
2.1 Lines ••....•....••
2.2 Statements............
2.3 Execution Sequence and Control Transfer

Chapter 3 - Data Types and Constants
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Data Type Rules . ..•.
Constants . •.••••
Integer Data Type . . • •
Real Data Type • . . . • . .
Double Precision Data Type
Complex Data Type
Character Data Type
Logical Data Type

Chapter 4 - FORTRAN Names, Arrays and Substrings.
4.1 FORTRAN Names . .
4.2 Array Declarations • .
4.3 Character Substrings

Chapter 5 - Expressions . .
5.1 Arithmetic Expressions
5.2 Character Expressions
5.3 Relational Expressions .
5.4 Logical Expressions. . .
5.5 Precedence of Operators
5.6 Evaluation Rules and Restrictions for Expressions

Chapter 6 - Specification Statements . • • • • . . . •
6.1 Type Statements - Declaring Data Types
6.2 DIMENSION - Declare Data Dimension
6.3 COMMON - Declare a COMMON Block .
6.4 PARAMETER - Make a Symbolic Association
6.5 IMPLICIT - Establish Default Data Type •
6.6 EXTERNAL - Declare External or Dummy

Procedure • . • • • • . . • • • .
6.7 INTRINSIC - Declare Intrinsic Function
6.8 SAVE - Retain Definition Status • • •
6.9 EQUIV ALENCE - Share Storage Between Elements . . . •

Chapter 7 - Data Initialization . • . • • • • • .
7.1 Initializing Character Variables • •

- i -

1
1
4
5

8
8

10
13

15
15
15
16
17
18
18
19
20

21
21
23
26

28
28
33
34
35
36
36

37
37
39
40
41
41

42
43
44
44

47
48

7.2 Initializing Non CHARACTER Variables to CHARACTER
Values • . • • • • •

7.3 Implied DO in DATA Statements

Chapter 8 - Assignment Statements
8.1 Arithmetic Assignment
8.2 Logical Assignment. . . • .
8.3 Statement Label Assignment
8.4 Character Assignment

Chapter 9 - Control Statements
9.1 Block IF THEN ELSE Statement
9.2 Logical IF Statemen"t . • . .
9.3 Arithmetic IF Statement . . .
9.4 DO Statement - Loop Control. .
9.5 CONTINUE Statement - Null Statement . • • •
9.6 STOP Statement - Stop Program Execution
9.7 PAUSE Statement - Suspend Program Execution
9.8 Unconditional GO TO Statement
9.9 Computed GO TO Statement • • • •
9.10 Assigned GO TO Statement • •

Chapter 10 - Input and Output . • . .' .
10.1 Overview of the Input-Output System
10.2 General Discussion of the Input Output System
10.3 Elements of Input and Output Statements . • • •
10.4 The Specific Input and Output Statements
10.5 List Directed Input and Output • • • .

Chapter 11 - Format Specifications • . • .
11.1 FORMAT Specifications and the FORMAT

Statement • • . . . • • .
11.2 Interaction Between Format Specifications and I/O

List . . . • . . . • • • . . . • • • • •
11.3 Edit Descriptors . . • • . • • • .

Chapter 12 - Program and Subprogram Structure.
12.1 Main Program ...•.•...
12.2 Access To Command Line Arguments
12.3 Formal Arguments and Actual Arguments • .
12.4 Subroutines • • • •
12.5 Functions
12.6 ENTRY Statement . .
12.7 RETURN Statement . • . .
12.8 Definition Status. . . • • •
12.9 BLOCK DATA Subprogram
12.10 The FORTRAN Intrinsic Functions

Chapter 13 - FORTRAN Compile Time Options • .

- ii -

49
49

51
51
52
53
53

55
56
59
59
60
62
63
63
63
63
64

66
66
70
74
77
86

90

90

92
94

103
103
104
105
107
109
112
113
114
114
115

117

13.1
13.2
13.3
13.4
13.5

$INCLUDE - Include Source File
$XREF - Generate Cross Reference. •
$SEGMENT - Designate Segment Name
$COL 72 - Restrict Source Lines to 72 Columns .
FORTRAN-66 Compatibility Options. • . •

Appendix A - Messages from the FORTRAN System
A.l Compile-Time Error Messages .
A.2 Run-Time Error Messages

Appendix B - Intrinsic Functions • • •
B.l Notes on the Intrinsic Functions
B.2 Restrictions on Ranges of Arguments
B.3 Non Standard Intrinsic Functions and Subroutines

Appendix C - Data Representations . • • •
C.l Storage Allocation • . • • . • • • • •
C.2 Data Representations • . .
C.3 Argument Passing Mechanism . . . • • •
C.4 Function Results ...•.
C.5 Register Conventions .

Appendix D. • . . • •. ..••

Appendix E - Operating the SVS FORTRAN System
E.l System Components • . • • • • • • • •
E.2 Command Line Directives and Compiler Options .
E.3 Linking Programs which Utilize Pascal and C . • • .

Appendix F - UNIX Operating System Specific Information
F.l Compiling a Simple Program. . . . • . . . • .
F.2 Error Message Files .•....••..
F.3 U linker • . . • . . • • • . . • • •
F.4 Linking to UNIX Assembly Code . . • • •
F.5 Access to Command Line Arguments •..••.
F.6 Return Values from FORTRAN Programs .••.

- iii -

117
117
117
118
118

120
120
127

131
134
135
136

138
138
139
146
147
147

148

149
149
151
152

157
157
158
158
163
163
164

Preface

Preface

This manual is a reference manual for SVS FORTRAN-77 - an
implementation of the full ANSI FORTRAN-77 computer programming
language for Motorola MC68000 computer systems.

FOR TRAN is one of the most widely used programming languages to
date. FORTRAN is primarily oriented towards scientific computing
applications.

FORTRAN's evolution has developed from its early beginnings as
FORTRAN-II through to FORTRAN-IV, for which an ANSI standard was
adopted in 1966. By the middle of the 1970's decade, it was apparent that
many of the most widely used extensions to FORTRAN-IV could form the
basis for a new FORTRAN language standard. An updated language (called
FORTRAN-77 by consensus) was announced in 1977. The formal standard
was issued by the American National Standards Institute (ANSI) in 1978.

The ANSI standard for FORTRAN-77 actually defines two languages: a
"full" language and a "subset" language. The subset omits certain items such as
the complex data-type and list-directed input-output. SVS FOR TRAN
implements the full language.

Scope of this Manual

This is a reference manual, as opposed to a "how to write FORTRAN
programs" manual. There are several tutorial-style FORTRAN books on the
market for novice FORTRAN users.

Overview of this Manual

Chapter 1 - "Introduction" is a general overview of FORTRAN. Terms
and concepts of FORTRAN are introduced here, as is the metalanguage that
this manual uses to describe FORTRAN.

Preface

Chapter 2 - "Lines, Statements, and Control Flow" introduces the ideas
of lines, statements and execution sequence.

Chapter 3 - "Data Types and Constants" introduces FORTRAN data
types and constants.

Chapter 4 - "FORTRAN Names, Arrays, and Substrings" discusses
FORTRAN names, arrays and substrings.

Chapter 5 - "Expression" describes the rules for expressions in
FORTRAN.

Chapter 6 - "Specification Statements" is a description of specijication
statements used to declare data variables and their attributes.

Chapter 7 - "Data Initialization" discusses data initialization, that is, static
data initialization via DATA statements.

Chapter 8 - "Assignment Statements" describes assignment statements
whereby variables are assigned new values.

Chapter 9 - "Control Statements" presents control statements that direct
the flow of program execution.

Chapter 10 - "FORTRAN Input Output" covers input output-statements
which are the means whereby a program communicates with the world external
to the computer.

Chapter II - "Format Specifications" is about format statements which
describe the conversion process between internal data representations and
external formats.

Chapter 12 - "Program and Subprogram Structure" describes program
and subprogram structure whereby large programs can be split into smaller and
more manageable units.

Chapter 13 - "FORTRAN Compile Time Options" describes the
compiler options which control the actions of the compiler.

Appendix A is a list of FORTRAN error messages.

Appendix B contains a table of FORTRAN intrinsic functions - the
"built-in" functions for performing mathematical computations.

Appendix C describes FORTRAN's data representation methods and
parameter passing mechanism.

Appendix D is an ASCII character set chart.

Appendix E - "Operating the SVS FORTRAN System" describes the
system independent aspects of operating the system and the considerations
involved in linking programs written in several languages.

Appendix F - "Operating System Specific Information" contains a
description of how to run the FORTRAN compiler on the host operating
system, and also covers details of specific dependencies and interfacing
requirements (if any) of the host operating system.

Chapter 1 Introduction

Chapter 1 - Introduction

FORTRAN is a computer programming language oriented towards
numerical computations. FORTRAN-77 is the latest (at the time of this
writing) offering of the ANSI standardization committee. This FORTRAN
reference manual describes the language called FORTRAN-77, as implemented
by Silicon Yalley Software, Inc. (SYS). From now on, the word FORTRAN is
used to mean this implementation of FORTRAN-77.

1.1 Overview of the FORTRAN Language

A FORTRAN program is (ultimately) composed of characters.
Characters are grouped into lines. Lines are grouped into program units.
Program units are grouped into programs.

A line is either a comment line, an initial line of a statement or a
continuation line of a statement. Lines appear in columns 1 thru 120. For
compatibility with older FORTRAN implementations, the SYS FORTRAN-77
compiler will ignore lines past column 72 if the user selects the SCOL 72
compiler option (see Chapter 13 - "FORTRAN Compile Time Options" for a
description of the compiler options.)

Comment lines are blank lines, as are lines with the letter C (upper-case
or lower-case) or the asterisk character "." in column one. Comment lines can
appear anywhere in a FORTRAN program, including between initial lines and
continuation lines of a statement.

The initial line of a statement has a zero or a space character in column
6. A continuation line of a statement has any other character in column 6. A
continuation line is also signaled by an ampersand character (&) appearing in
column one of a source line.

Statements may have up to 19 continuation lines. The initial line of a
statement may have a statement label in columns 1 thru 5. A statement label is
one to five digits in length. At least one of the digits must be non-zero. A
statement label serves to "tag" a statement so that it can be referenced by other
statements.

FORTRAN Reference Manual Page 1

Introduction Chapter 1

Statements are broadly divided into the two groups of executable and
non-executable. Executable statements perform program actions that assign
values to variables, evaluate expressions, affect flow of execution and perform
data transmission. Non-executable statements generally are those that specify
the forms and attributes of program objects. Statements are discussed in more
detail a few paragraphs further on.

Program objects include constants and variables. A constant is a string of
digits or other characters defining a value that does not change. Variables
occupy storage and have values that can be changed during program execution.
Variables and constants can have both a name and a data type. The name
serves to identify that object in a program. The type of a data object defines,
among other things, the amount of storage it occupies, its range and precision,
and in some cases, the operations that can be performed on it. FORTRAN
names can have default data types derived from a naming convention or the
default rules can be overridden by explicit specifications.

A variable can be a single object or it can be an aggregate. There are two
forms of aggregate data objects, namely array variables and character variables.
An array variable is a collection of data occupying consecutive storage units.
Arrays can have up to seven dimensions. A character variable represents
string data and is a sequence of characters, which can be accessed individually,
or collectively, in the form of a substring.

A complete FORTRAN program is composed of a main program and any
number of subprograms. Subprograms fall into the categories of
SUBROUTINE subprograms which can be activated via the CALL statement to
perform out-of-line groups of statements, FUNCTION subprograms which
compute and return a value in the context of an expression, and BLOCK
DA T A subprograms which serve to initialize data declared in COMMON
blocks. The main program and subprograms form what are called program
units. In general, the terms "subprogram" and "program unit" can be used
interchangeably. User-defined subroutines and functions are also called
"procedures" .

A variable may be given more than one name by a process of association.
There are several ways to associate data. The COMMON statement provides a
way to share data between separate program units. The EQUIVALENCE
statement associates variables in the same program unit. Variables may also be
associated through the argument passing mechanism when subroutines or
functions are referenced.

Names of variables have a scope which is dependent on the way that they
are defined. In general, most names (except names of program units, common
areas and certain other names) have a scope that is local to the program unit in
which they are defined. A name defined by being called as an external
function has a global scope by default. Names defined in a common area are
local to the program unit in which they are declared. The name of the

Page 2 FORTRAN Reference Manual

Chapter 1 Introduction

common area itself is global. Formal parameters to statement-functions have a
scope which is local to the statement-function statement itself.

Specification statements are one of the two major groupings of statements.
Specification statements serve to declare variables and symbolic constants.
Specification statements include the type statement for defining the data type of
a variable, the DIMENSION statement to define the size of array variables, the
COMMON and EQUIV ALENCE statements to provide association of
variables, the PARAMETER statement to give a symbolic name to a constant
and the EXTERNAL and INTRINSIC statements to define attributes of other
program units.

The DATA statement provides a mechanism for static initialization of
data. The DATA statement includes an implied DO loop construct to facilitate
initializing array variables in a concise manner.

Expressions combine data objects and operators to create new values.
FORTRAN supports arithmetic, character, logical and relational expressions.
Mixed-mode expressions are permitted, with well defined rules for conversions
between the operands and generation of the result.

The assignment statement assigns the value of an expression to a variable.
There are three variations of assignment, namely arithmetic, character and
logical. The ASSIGN statement serves to assign the value of a statement label
to an integer variable.

Control statements are those that control the flow of execution in a
program. Various kinds of IF statements select other statements for execution,
depending on the result of evaluating a logical or arithmetic expression. The
DO statement provides for repetition of a block of statements while a control
variable is assigned a sequence of values. The CALL and RETURN
statements provide for subroutine and function execution. Variations of the
GO TO statement provide for transfer of control within a program unit.

Statement-junction statements are characterized by a single-statement
"template" defined in a program unit, with operations on dummy arguments.
The statement function is referenced in a program unit just like a function,
with actual arguments supplied. The arguments are combined according to the
statement-function definition to yield a result that can be used in an
expression.

FORTRAN provides a powerful input and output capability. A file can be
external (connected to an external device) or internal (refers to a character
variable). Files can be formatted or unformatted. Files can be accessed
sequentially or randomly. Formatted files can be the subject of data
conversion operations from internal storage representations to external
character string representations and vice-versa.

Format conversion is performed via READ, WRITE or PRINT
statements. There is a rich set of format specifications to control the form and

FORTRAN Reference Manual Page 3

Introduction Chapter 1

layout of converted data. There is a list-directed input-output capability, where
default formatting rules are applied to the conversion process.

SUBROUTINE and FUNCTION program units may have arguments
which a calling routine passes to them for processing. At the time a subroutine
or function is declared, its formal arguments are declared. At the time the
subroutine or function is referenced, actual arguments are substituted for the
formal arguments. A subroutine or function may have multiple ENTRY
points. An ENTRY statement can cause execution of a subroutine or function
to begin at a statement other than the first executable statement. Control is
returned from a subroutine or function program unit either by encountering
the END statement, or by executing a RETURN statement. FORTRAN
provides for an alternate return specification for subroutines, such that a
subroutine can return to a different place in the caller than the statement
following the CALL statement.

FORTRAN supplies a comprehensive set of intrinsic functions which
perform data type conversion and provide an extensive collection of arithmetic
and transcendental functions.

1.2 Notation and Terminology Used in this Manual

This section defines the notation that is used in this manual to define
FOR TRAN language constructs.

Upper-case letters and special characters are written as shown in
programs. Lower-case letters and words indicate objects for which there is a
substitution in actual statements described in the text. Once a lower-case
object is defined, it can be assumed to retain that meaning for the remainder of
the construct being defined.

Example of upper-case and lower-case usage

The format specification which describes integer editing is denoted Iw,
where w is a non-zero, unsigned integer constant. In an actual FORMAT
statement, the editing specification might be written as 15 or 121. The editing
specification for real numbers is Fw.d, where d is an unsigned integer
constant. An actual FORMAT statement might contain an edit specification
like FS.4 or FI4.0. Note that the period character is a special character as
defined above, and is taken literally.

Brackets "I" and "I" enclose optional items. For example, Alwl indicates
that either of the forms A or Al2 are valid (as a means of specifying a
character format).

The ellipsis notation " ••. " indicates that the optional item preceding the
ellipsis may appear one or more times. For example, the computed GOTO
statement is described by the form:

Page 4 FORTRAN Reference Manual

Chapter 1 Introduction

GOTO (s [, s] .. J [,] i

which indicates that the syntactic item ',s' may be repeated any number of
times.

Spaces (blanks) normally have no significance in describing FORTRAN
statements. The general rules for spaces, supplied later in this chapter, provide
the interpretation of spaces in all contexts. Throughout this manual, "space"
and "blank" are considered synonymous. In general, the word "space" is used.

1.3 Basic Elements of FORTRAN

This section covers the basic lexical and syntactic elements that go
towards constructing a FORTRAN program.

1.3.1 FORTRAN Character Set

The FORTRAN character set consists of upper and lower case letters,
digits, and special characters.

A letter is one of the 52 characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abc de fg h ij kim n 0 p q r stu v w x y z

A digit is one of the ten characters:

0123456789

An alphanumeric character is a letter or a digit.

The special characters consist of the following characters:

FORTRAN Reference Manual Page 5

Introduction Chapter 1

Character Name of Character

Blank or Space
= Equals sign
+ Plus sign
- Minus sign
... Asterisk
I Slash
\ Reverse Slash
(Left Parenthesis
) Right Parenthesi's
, Comma

Decimal Point
$ Currency Symbol ,

Apostrophe
Colon

& Ampersand

1.3.2 Collating Sequence and Graphics

SVS FORTRAN uses the ASCII character set. The collating sequence in
ASCII is:

• Space (blank) collates lowest, followed by:

• Digits "0" thru "9", followed by:

• Upper case letters "A" thru "Z", followed by:

• Lower case letters "a" thru "z".

The special characters appear in between digits and upper-case letters and
before and after lower-case letters. There is an ASCII character set chart in
the appendices.

Within each of the ordered sets, digits, upper-case letters, and lower-case
letters, the characters in those sequences are contiguous - there are no "holes"
in those sequences.

1.3.3 Use 0/ Spaces or Blanks or Tabs

The tab character is interpreted in all cases by SVS FORTRAN as a series
of one or more blanks, sufficient to fill columns up to and including the next
column position evenly divisible by eight. All references to blanks in this
manual may refer to actual blanks or blanks resulting from the interpretation
of tab characters. All references to columns in this manual refer to the

Page 6 FORTRAN Reference Manual

Chapter 1 Introduction

columning after the interpretation of tabs. Limitations on the total number of
characters per line and per statement are after the interpretation of tabs.

The space (also called blank) character has no meaning in a program
unit, with the exceptions listed below. Otherwise, spaces can be used freely to
improve the layout and readability of a program. Spaces are significant in the
following cases:

• Within string constants, and within Hollerith fields.

• On compiler directive lines, discussed in the chapter on "Using the
FORTRAN Compiler".

• In column 6, where a space distinguishes an initial line from a
continuation line.

• Counting in the total number of characters per line and per statement.

FORTRAN Reference Manual Page 7

Lines, Statements and Control Flow Chapter 2

Chapter 2 - Lines, Statements and Control Flow

This chapter consists of three sections. The first section describes the
notions of lines in a FORTRAN program. The second section covers the rules
for FORTRAN statements. The final section in this chapter covers the concept
of execution sequence or control flow - the order in which FORTRAN
statements are executed.

2.1 Lines

A line in a program unit is a sequence of characters in columns 1 thru
120 (I thru 72 if the $COL 72 compiler option is selected, as described in
Chapter 13). All characters in a line must be selected from the character set
described in Chapter 1. Comment lines (described below), character constants
and Hollerith fields can contain any printable ASCII character.

The character positions on a line are called columns and are numbered
consecutively from 1 thru 120 (I through 72), left to right on a line.

The FORTRAN compiler ignores characters which appear to the right of
column 120 (column 72 if the $COL72 compiler option is selected) on a line,
thus the user may use these columns for any purpose (such as sequence
information) .

2.1.1 Comment Lines

Comment lines can appear anywhere in a program unit, including before
the first statement or after the last statement of a program unit. Comment
lines may appear between an initial line and its first continuation line, or
between two continuation lines.

Page 8 FOR TRAN Reference Manual

Chapter 2 Lines, Statements and Control Flow

Examples of Comment Lines

C This is a comment line.
• This is also a comment line.
C The line following this one is all blank

C and is therefore considered to be a comment .
•
• Comment lines are for documentary purposes and
• have no effect on compilation or execution.

2.1.2 1nitial Lines

An initial line generally indicates the start of a statement line. An initial
line is any non-comment line containing the space character or the digit 0 in
column 6. Columns 1 thru 5 of the initial line of a statement may contain a
statement label.

Since a line which begins with a tab character is processed as if it had 8
initial blanks, such lines are interpreted as initial lines. If a tab character
follows a statement label which occupies some or all of the first 5 columns, the
line will also be processed as if it had a blank in column 6.

Examples of Initial Lines

C Here are initial lines without statement labels.
C

C

GO TO 999
OGO TO 999

C Here are initial lines with statement labels.
C

379 GO TO 999
4850GO TO 999

2.1. J Continuation Lines

A continuation line is any non-comment line containing any character
from the FORTRAN character set (other than a space character or the digit 0)
in column 6, or having the ampersand character & in column one. A
continuation line must not have a statement label. There may be up to 19
continuation lines in a statement.

FOR TRAN Reference Manual Page 9

Lines, Statements and Control Flow

Examples of Continuation Lines

C
C These contrived statements each span two lines.
C

*

*

GO TO
$ 999

843 GO TO
+ 999

GO TO
& 999

2.1.4 Compiler Directive Lines

Chapter 2

Compiler Directives are an SVS extension to FORTRAN -77. Compiler
directives provide additional controls over the compiler's actions. A compiler
directive line is a line with a dollar sign "$" in column 1. A compiler directive
line can appear anywhere that a comment line can appear, although certain
directives must appear in certain restricted places in the program. Spaces are
significant in compiler directive lines and serve to delimit keywords and
filenames. The compiler directives are listed in the chapter on "Running the
FOR TRAN Compiler".

Examples of Compiler Directives

*
* The following directive instructs the compiler to
* include the body of the file 'rasp.text' into the
* program source code.

*
$INCLUDE rasp. text

2.2 Statements

FORTRAN language statements are described in Chapters 6 thru 12.
Statements are used to form program units.

Statements are written in columns 7 thru· 72 of an initial line, and as
many as 19 continuation lines.

An END statement is the exception to the above rules. An END
statement must appear on an initial line on its own. No other statement in a
program unit may have an initial line that looks like an END statement.

Page 10 FOR TRAN Reference Manual

Chapter 2 Lines, Statements and Control Flow

In general, statements must begin on new lines, that is, a statement may
not begin on the same line as another statement. The exception to this rule is
the logical IF statement.

Spaces before, within, and after statements have no effect, except within
character constants and Hollerith constants, where they indicate blank
characters.

Examples of Statements

C An assignment statement
C

A = 5.0
C
C A subroutine call statement
C

CALL COLECT(PAY, PHONE)
C
C A logical IF statement
C

IF (DAY .EQ. 'FRIDAY') RETURN

2.2. J Statement Labels

Statement labels provide the means to "tag" a statement such that other
statements may refer to it.

Any statement may be labeled, but only labels associated with executable
statements and FORMAT statements can be referenced by other statements.

A statement label is one to five digits appearing anywhere in columns 1
thru 5 of the initial line of a statement. At least one of the digits in a
statement label must be non-zero.

In any given program unit, statement labels must be unique
duplication of statement labels is an error.

Examples of Statement Labels

123 FORMAT('The result is', 15)
C
C An example of a DO block.
C

DO 110 ICON = 1, 100
DESK (ICON) = 0.0

110 CONTINUE

FORTRAN Reference Manual Page 11

Lines, Statements and Control Flow Chapter 2

2.2.2 Order oj Statements and Lines

In any given program unit, the order in which statements appear must
obey certain rules. These rules are detailed below.

A PROGRAM statement may appear only as the first statement of a
main program. The first statement of a subprogram must be either a
FUNCTION, SUBROUTINE, or a BLOCK DATA statement.

In a program unit, statements must appear in the following order.

1. FORMAT statements can appear anywhere.

2. All specification statements must precede all DATA statements,
statement-function statements, and executable statements.

3. All statement-function statements must precede all executable
statements.

4. DAT A statements may appear anywhere after the specification
statements.

5. ENTRY statements may appear anywhere except between a block IF
statement and its corresponding END IF statement or between a DO
statement and the terminal statement of its DO-loop. In other words, a
subprogram must not be entered (via an ENTRY statement), in the
middle of a block IF or DO block.

Within a program unit's specification statements, IMPLICIT statements
must precede all specification statements other than PARAMETER statements.
Any specification statement that defines· the type of a symbolic name must
precede a PARAMETER statement that defines the symbolic name of a
constant.

PARAMETER statements that define symbolic constant names' must
precede all uses of such names.

The last {non-comment} line of a program unit must be an END
statement.

The diagram below pictorially describes the manner in which statements
and comment lines may be interspersed.

Page 12 FORTRAN Reference Manual

Chapter 2 Lines, Statements and Control Flow

PROGRAM, FUNCTION, SUBROUTINE, or
BLOCK DATA statement.

IMPLICIT
PARAMETER Statements

Comment FORMAT Statements Other
Lines and Specification

ENTRY Statement
Statements

Statement
Function

DATA Statements

Statements Executable
Statements

END Statement

Figure 2-1
Ordering 0/ Lines and Statements in a FORTRAN Program

In the diagram, vertical lines separate statement groups that may be
mixed. For example, FORMAT statements can be mixed with statement
function statements and executable statements.

Horizontal lines separate statement groups that must not be mixed. For
example, statement-function statements cannot be mixed with executable
statements. Note that an END statement, in addition to being executable,
must be the last statement in a program unit.

2.3 Execution Sequence and Control Transfer

Normal execution sequence means that executable statements are executed
in the order in which they appear in the program unit. Program execution
starts with the first executable statement in the main program. When an
external procedure is referenced, execution proceeds with the first executable
statement that follows the FUNCTION, SUBROUTINE or ENTRY statement
in the subprogram.

A control tran~er means that the normal execution sequence is altered.
Statements that cause control transfer are:

1. unconditional GO TO statement, computed GO TO statement or assigned
GO TO statement,

FORTRAN Reference Manual Page 13

Lines, Statements and Control Flow Chapter 2

2. Arithmetic IF statement,

3. RETURN statement,

4. STOP statement,

5. input-output statement containing an error specifier or an end-of-file
specifier,

6. CALL with an alternate return specifier,

7. logical IF statement containing any of the above forms as its subordinate
statement,

8. Block IF and ELSE IF statements,

9. the last statement Of any) of an IF-block or ELSE IF-block,

10. DO statement,

11. the terminal statement of a DO-loop,

12. END statement.

Normal execution sequence is not affected by non-executable statements,
comment lines or compiler directives appearing between executable statements
in the source code.

Executing a function reference or a CALL statement is not considered a
control transfer in the program that makes the reference, except when control
is returned to a statement identified by an alternate return specifier in a CALL
statement.

Executing a RETURN or an END statement in a referenced procedure,
or a control transfer in a referenced procedure, is not considered a control
transfer in the program unit that makes the reference.

Function and subroutine subprograms cannot be invoked recursively in
SVS FORTRAN. Note, however, that FORTRAN subprograms can reference
subprograms written in other languages (such as Pascal) that themselves can
be recursive.

Page 14 FORTRAN Reference Manual

Chapter 3 Data Types and Constants

Chapter 3 - Data Types and Constants

There are six data types in FORTRAN, namely: INTEGER, REAL
(floating point), DOUBLE PRECISION (extended precISIon REAL),
COMPLEX (elements of the complex number domain), CHARACTER
(character string data) and LOGICAL (able to assume the values .TRUE. or
.F ALSE.). The various data types are discussed in the sections to follow. SVS
FORTRAN extends ANSI FORTRAN in such a way that the user can specify
the amount of computer storage which a particular data type consumes. This
extension is covered in the appropriate sections below.

3.1 Data Type Rules

A symbolic name (associated with a constant, variable, array, external
function or statement-function) can have its type specified in a type statement.
The possible types are those listed in the paragraph above.

If no explicit type statement is supplied for a program element, the type
is implied by the first letter of the name. A first letter of I, J, K, L, M or N
implies type integer. Any other first letter implies type real. These default
type rules can be overridden either by explicit type statements or by the
IMPLICIT statement, which changes the default type-rules.

The data type of an array element is the same as that of the array. The
data type of a function name specifies the type of the value which that
function returns. Intrinsic functions have a type that is specified in the chart in
the chapter on "Program Structure". Generic intrinsic functions do not have a
default type. The type of a generic intrinsic function depends on the type of its
argument(s). An external function reference is given a default type, based
upon the first letter of its name, in the same way as variables and arrays.

3.2 Constants

A constant is a value that defines itself and does not change. A constant
can be an arithmetic value, a logical value, or a character string value. The
representation of a constant specifies both its value and its data type. A
PARAMETER statement associates a symbolic name with a constant.

FORTRAN Reference Manual Page 15

Data Types and Constants Chapter 3

Arithmetic constants are INTEGER, REAL, DOUBLE PRECISION, and
COMPLEX values.

For the purposes of definition in this manual, an unsigned constant is a
constant without any leading sign. A signed constant is a constant with a
leading plus or minus sign. An optionally-signed constant is a constant that can
be either signed or unsigned. Integer, real, and double precision constants may
be optionally-signed except where otherwise noted.

3.3 Integer Data Type

Integers, as represented in the finite word size of a computer, are only a
subset of the infinite set of integers. An integer value as represented in
FORTRAN is an exact representation of the corresponding integer.

An integer data value occupies two words (four bytes or 32 bits) of
storage and can represent values in the range - 2,147,483,648 thru
+2,147,483,647. Integers can be designated as fitting in 16 bits if the $INT2
compiler option is selected.

Integer numbers are internally stored in two's complement
representation. As a consequence, there is one more negative integer value
than there are positive integer values.

SVS FORTRAN also provides a means to specify the amount of storage
which integers occupy. This is an extension to ANSI FOR TRAN. The
extended forms of integer are:

INTEGER*1 occupies one byte (8 bits) and can assume values in the range
-128 thru + 127.

INTEGER*2 occupies one word (16 bits) and assumes values in the. range
- 32768 thru + 32767.

INTEGER*4 occupies two words (32 bits) and is the same as the standard
integer type discussed above.

An integer constant consists of a sequence of decimal digits, preceded by
an optional sign. Alternatively, an integer constant can be expressed in the
hexadecimal radix by a dollar sign ($) followed by a sequence of digits or
letters in the range 'A' through 'F' or 'a' through T. Note that hexadecimal
numbers are considered unsigned. To obtain a signed hexadecimal constant,
the user must explicitly code a 1 in the sign bit position.

Page 16 FOR TRAN Reference Manual

Chapter 3 Data Types and Constants

72

$123

3.4 Real Data Type

Examples of INTEGER Constants

-32768

$ffffffff

32767

$Oa

o
$3e8

+56

Real Data Types are intended to represent the set of real values which
comprise the continuum. Because of a finite representation imposed by a finite
word size in the computer, the real data type in FORTRAN can only represent
a finite subset of the entire set of reals.

A basic real constant has an optional sign, an integer part, a decimal point,
and a fractional part. Both the integer and the real part are sequences of digits.
Either part can be omitted, but not both. Real constants are assumed to be
decimal numbers.

Examples of Basic Real Constants

3.14159
.7071

5.
0.0

+2.236
+.5

+8.
o.

-1.4142
-.618034

-6.
.0

A real exponent consists of the letter E followed by an optionally signed
integer constant. A real exponent indicates a power of ten.

Examples of Real Exponents

E14 E+12 E-I0 EO

A real constant is anyone of: a basic real constant, a basic real constant
followed by an exponent part, or an integer constant followed by an exponent
part.

SVS FORTRAN provides a means to specify the amount of data storage
which a real data type is to occupy. The forms are:

REAL*4 occupies two words (32 bits) and is the same as a basic real datum
as described above.

REAL*8 occupies four words (64 bits) and is the same as the DOUBLE
PRECISION data type discussed below.

FORTRAN Reference Manual Page 17

Data Types and Constants Chapter 3

Examples of Real Constants

+7.52E-l 299793.5E3 20E-3

A real constant containing an exponent part is the product of the constant
preceding the E and the power of ten indicated by the integer following the E.

A real value occupies four bytes of storage. The range of real values is
approximately - 3.4E38 thru + 3.4E38. The precision is about seven decimal
places.

3.4.1 1nfinite and Indeterminate Real Values

The representation of real values in FORTRAN allows for positive and
negative "infinity", and for indeterminate values. This is primarily of interest
when formatting such values for output. When output by a FORTRAN
program, these values appear as strings of either plus signs '+ + + +. + + + '
or minus signs '- - - - . - - -' for positive and negative infinity, and as
question marks '???????' for indeterminate values. There is more on this
subject in the chapter on input and output.

3.S Double Precision Data Type

The Double-Precision data type is intended for applications where the range
and precision of Single-Precision data is inadequate. Double-Precision extends
the range to approximately -10E308 thru + 10E308 and the precision to
about 16 decimal digits.

A double precision exponent is the letter D followed by an optionally
signed integer constant. The forms of a double precision constant are either: a
basic real constant followed by a double precision exponent, or an integer
constant followed by a double precision exponent.

3.6 Complex Data Type

The Complex data type represents values from the complex number
domain.

A complex number consists of an ordered pair of numbers, each of which
is either an integer or a single-precision real number - the first representing
the "real" part of the number, and the second representing the "imaginary" part.
A complex constant is written as two integers or single-precision real numbers
enclosed in parentheses and separated by a comma.

Page 18 FORTRAN Reference Manual

Chapter 3 Data Types and Constants

Examples of Complex Constants

(1,1) (0.707, -0.707) (-1.5E10,2.6E-5)

3.7 Character Data Type

A character data element is a string of characters. The string can contain
any of the printable ASCII characters. Spaces are significant in character
strings. The length of a character string is the number of characters in the
string.

The form of a character constant is a non-empty string of characters
enclosed in apostrophe "'" signs. The apostrophes serve to delimit the string
constant, but are not part of it. An apostrophe in the string is represented by
two juxtaposed apostrophes.

The length of a character constant is the number of characters in the
string, except that each pair of juxtaposed apostrophes in the string is counted
as one character. The delimiting apostrophes are not part of the string and are
not counted in the string length.

The maximum length of a character constant is 255 characters.

There is no provision for expressing empty (null) character strings.

Examples of Character String Constants

'x' , ,
'The hunting of the Snark'

'The time is One O"Clock' ""

The last two examples illustrate the representation of embedded apostrophes.

FORTRAN source lines may extend up to column 120 (or 72 if SCOL 72
set) on a line. Shorter lines are not space-filled to 72 columns but are left as
typed. When a character constant extends across a line boundary, its value is
as if the portion of the continuation line starting in column 7 abuts the last
character on the preceding line. Thus the FORTRAN source statement:

200 example = 'First string part<cr>
S Second string part'

(where < cr> is carriage-return) is equivalent to the statement:

200 example = 'First string part Second string part'

where the single space between the "ttl at the end of the first line and the "S" at
the start of the second line is the space in column 7 of the continuation line.

FORTRAN Reference Manual Page 19

Data Types and Constants Chapter 3

Long character constants can be represented in this way.

3.8 Logical Data Type

A logical data element represents a Boolean quantity. It can only take on
the values true or false.

The form of a logical constant is either: ".TRUE." (representing the truth
value) or ".FALSE." (representing the false value).

SVS FORTRAN provides a means to specify logical data items which
occupy less data storage than the standard logical type. These forms are:

LOGICAL*! occupies one byte (8 bits).

LOGICAL*2 occupies one word (16 bits).

LOGICAL*4 occupies two words (32 bits) and is the same as the standard
LOGICAL data type.

Page 20 FORTRAN Reference Manual

Chapter 4 Names, Arrays and Substrings

Chapter 4 - FORTRAN Names, Arrays and Substrings

This chapter introduces the rules for FORTRAN names - symbolic
names which may be used to identify program objects. The second section
describes the way that arrays are defined and referenced. The third section
discusses the ideas of character variables and substrings of character variables.

4.1 FORTRAN Names

A FORTRAN name or identifier consists of one through six alphanumeric
characters, and must start with a letter. A FORTRAN name can have
embedded spaces in it - the spaces have no significance and are ignored. The
FORTRAN compiler makes no distinction between upper-case letters and
lower-case letters - the names PASCAL, PaScAl, pAsCaL and pascal are all
equivalent as far as FORTRAN is concerned.

A name is used to denote a user-defined variable, a system-defined
variable, array variable, subroutine or function. FORTRAN does not have any
reserved words - the compiler recognizes keywords in context. For reasons of
clarity and readability though, users are recommended to use names that are
distinct from those of FORTRAN.

Examples of Valid FORTRAN Names

XPos

RngKut

Eatup

L5

FilSet

Shell

MAXO

Bubble

Examples of Invalid FORTRAN Names

2ndTime Begins with digit

Too Large More than six characters

No_Good Non-alphanumeric character

FORTRAN Reference Manual Page 21

Names, Arrays and Substrings Chapter 4

4.1.1 Scope of FORTRAN Names

The scope of a FORTRAN name is that region of a program over which
the name is known or can be referenced. In general, the scope of a name is
either local to a program unit or global to the entire FORTRAN program.
There are certain exceptions which are described later.

A name with global scope can be used in more than one program unit
(subroutine, function or the main program) and still refer to the same object.
Names with global scope can only be used in a single, consistent manner
within the same program. The names of all subroutine, function and block
data program units, the names of common areas, and the program name, have
global scope. Therefore, there cannot be a subroutine program unit that has
the same name as a function program unit or a common area. Similarly, two
function program units cannot have the same name.

A name with local scope is only known within a single program unit. A
name with local scope can therefore be used in other program units with the
same or different meanings everywhere it is used. Within a specific local
scope, a name must be used consistently and refer to the same object. The
names of variables, arrays, constants, arguments and statement-functions all
have local scope. A name with local scope can be used in the same
compilation as the same name with global scope as long as the global name is
not referenced within the program unit containing the local name. For
example, there can be a function called PARTY, and a local variable called
P ARTY in another program unit, as long as the program unit containing the
variable called PARTY does not try to reference the function called PARTY.
The FORTRAN compiler detects all such scope errors and issues diagnostics
concerning them.

Common block names are an exception to the scope rules. It is possible
to refer to a globally scoped common block name in a program unit containing
a locally scoped name identical to that of the common block. This situation is
allowed because common block names always appear in slashes, such as
/COLD/, and therefore the compiler can always distinguish such names.

Formal arguments to statement-functions are another exception to the
scope rules. The scope of formal arguments of statement-functions is the body
of the statement function itself. Any other use of those names in the
statement-function is not allowed and neither is any other use of such names
outside the statement-function. For example, if a formal argument to a
statement-function has the same name as that of a function subprogram, that
function subprogram may not be referenced from within the body of the
statement-function. References to formal argument names of a statement
function from outside the body of the statement-function refer to objects
which are different from the arguments of the statement-function.

Page 22 FORTRAN Reference Manual

Chapter 4 Names, Arrays and Substrings

Names used as implied-DO control variables in DATA statements and
input-output statements have a scope which is local to the DATA statement or
input-output statement.

4.1.2 Undeclared FORTRAN Names

When a user name that has not previously appeared in a program unit is
referenced in an executable statement, FORTRAN decides how to classify that
name from the context in which it appears. If the name appears to be a
variable, FORTRAN creates a symbol-table entry for that name.

Its type is inferred from the first letter of the name. Variables starting
with the letters I, J, K, L, M and N are considered to be of type integer; all
others are considered to be of type real. If an undeclared name appears in the
context of a function reference, the function's type is inferred from its name in
the same manner as for variables. In both cases, these default type rules can
be overridden by previous IMPLICIT statements (see the chapter on
"Specification Statements"). Similarly, a name appearing in the context of a
subroutine call has an entry created for it. If a symbol table entry exists for a
subroutine or function name, its attributes are coordinated with those of the
newly created entry. Inconsistencies such as a subroutine name used in the
context of a function or vice versa give rise to error diagnostics.

In general, users are encouraged to declare all names used in each
program unit, since it helps to assure that FORTRAN associates the proper
definition with the name. Letting FORTRAN decide on the default can
sometimes result in logical errors that are hard to find, usually at execution
time when strange results or forms of behavior are exhibited.

4.2 Array Declarations

Arrays provide the means to deal with data aggregates where the
elements of the aggregates are homogeneous. An array dec/oration specifies a
symbolic name that identifies an array in a program unit. The declaration also
serves to specify properties of the array, such as its dimension and, optionally,
the type of its elements. In any given program unit only one array declaration
is allowed for any given array - duplicate declarations are flagged as errors.
The form of an array declaration is:

array name (dim [, dim] ...)

Each 'dim' above is a dimension declarator as defined below. The
number of dimensions for an array is equal to the number of dimension
declarations given when the array is declared.

4.2.1 Dimension Dec/orations

A dimension declarator serves to define the bounds of a specific
dimension in an array. FORTRAN-?? provides for defining both the lower

FORTRAN Reference Manual Page 23

Names, Arrays and Substrings Chapter 4

and the upper bound of a dimension. The form of a dimension declaration is:

[lower bound :] upper bound

The optional lower bound, and the upper bound are arithmetic expressions,
called dimension bound expressions, in which all constants, symbolic constant
names, and variables are of type integer. The upper bound of the last
dimension declaration can be an asterisk (see 'assumed size arrays', later).

A dimension bound expression must not contain any function or array
element references. Integer variables can appear in dimension bound
expressions only in adjustable array declarations . (see 'adjustable arrays',
later). If a symbolic constant name or variable in a dimension bound
expression is not of default implied integer type, it must be specified as integer
via a type statement or an IMPLICIT statement before its use in a dimension
bound expression.

Either dimension bound may have a positive, negative or zero value. The
upper bound must not be less than the lower bound. If only the upper bound
is specified, the lower bound has the value one 0). An upper bound of • is
always greater than or equal to the lower bound.

4.2.2 Kinds of Array Declarations

There are three basic forms of array declarations.

A constant array declaration is one in which all the dimension bound
expressions are integer constant expressions.

An adjustable array declaration is one in which the dimension bounds
contain integer variables. Adjustable arrays may be used as dummy arguments
in subroutines and functions. Variables which define the bounds of adjustable
arrays must either be formal arguments themselves, or they must be in
common blocks.

An assumed size array declaration is one in which the upper bound of the
last dimension is an asterisk character '.'. Assumed size arrays may also only
be used as dummy arguments to subroutines and functions. Using assumed
size arrays in procedures circumvents any range checking which the
FORTRAN system can perform.

4.2.3 Actual Arrays and Dummy Arrays

An actual array declarator "actually" declares an array there and then.
Each actual array declarator must be a constant array declarator as defined
above. An actual array declarator can be used in the type statement, the
DIMENSION statement and the COMMON statement, as defined in the
chapter on "Specification Statements".

Page 24 FORTRAN Reference Manual

Chapter 4 Names, Arrays and Substrings

A dummy array declarator defines a dummy argument for a subroutine or
function. A dummy array declarator can be any of the forms given above:
constant, adjustable or assumed size. A dummy array declarator can only
appear in subroutines and functions. A dummy array declarator may not
appear in a COMMON statement.

Examples of Array Declarations

*
* Constant array Declarations in type statements

*
CalOO element vector with bounds 1 - 100

INTEGER VECTOR (I 00)
C a 20 element matrix with 5 rows and 4 columns

REAL MATRIX(5, 4)
C a 256 element array with bounds 0 - 255

CHARACTER*2 CHARS(O : 255)
C a 3 element array

LOGICAL*2 BOOLS(-l : + 1)
C a constant expression dimension

REAL WOOD(2*4)

*
* Adjustable Array Declaration in a DIMENSION statement

*
DIMENSION SCREEN (I : CHARS, 1 : LINES)

*
* Assumed size array declaration in a type statement.

*
REAL V ARIAB (5, *)

4.2.4 Referencing Array Elements - Array Subscripts

An array subscript is the means to reference an element of the array. The
form of an array subscript is:

(subexpr [, subexpr] .. J

Note that the term "subscript" includes the parentheses that enclose the
subscript expression list.

A subscript expression is an integer expression. A subscript expression can
contain array element references and function references. If a subscript
expression contains a function reference, the function must not change the
value of any other subscript expression in the same subscript.

In any given program unit, the value of each subscript expression should
not be less than the lower bound for the dimension and should not be greater
than the upper bound for the dimension. If the upper dimension bound is an

FORTRAN Reference Manual Page 25

Names, Arrays and Substrings Chapter 4

asterisk, the subscript expression must not be greater than the size of the
dummy array.

Examples of Arrays with Subscripts

SCREEN (2, 3)

VARIAB(N+ 1, MAX(3, 4»

4.2.5 Using Unsubscripted Array Names

Generally speaking, array names must be followed by subscripts. There
are some exceptions where the array name alone can be used. An
unsubscripted array name can be used in the following places:

• a list of dummy arguments for a subroutine or function program unit,

• a COMMON statement when declaring that the array resides in that
common block,

• a type statement when the type of the array is established,

• an array declaration when the array dimensions are being established,

• an EQUIVALENCE statement,

• a DATA statement,

• the list of actual arguments in a reference to an external procedure,

• the list of an input-output statement if the array is not an assumed size
dummy array,

• a unit identifier for an internal file in an input-output statement· if the
array is not an assumed size dummy array,

• the format identifier in an input-output statement if the array is not an
assumed size dummy array,

• a SAVE statement.

4.3 Character Substrings

A Character Substring is a contiguous portion of a character object. The
type of a character substring is of type CHARACTER. A character-substring
can be identified by a symbolic name, and it can be referenced and assigned
values by that name. The forms of a substring name are:

character variable([start1 : [finish])

where 'start' and 'finish' are substring expressions. A character variable may
be an element of a character array. 'start' specifies the leftmost character

Page 26 FORTRAN Reference Manual

Chapter 4 Names, Arrays and Substrings

position of the substring. 'finish' specifies the rightmost character position of
the substring. The values of 'start' and 'finish' must be such that:

1 < = start < = finish < = length

where 'length' is the length of the character variable or character array
element. If 'start' is omitted, the value one O} is used. If 'finish' is
omitted, the value 'length' is used. Both 'start' and 'finish' can be omitted.
In such a case, a substring reference of the form s(:) is equivalent to s. The
length of a character substring is 'finish' - 'start' + l.

A substring expression is any integer expression which can contain array
element references, and function references. The same restrictions (with
regard to side effects) apply to substring expressions as apply to array
subscripts.

Examples of Character Substrings

ROPEYO:3}

ACHAR(S:S}

FORTRAN Reference Manual

THELOT(:}

FOURCH(:4}

Page 27

Expressions Chapter 5

Chapter 5 - Expressions

This chapter describes the rules for expressions. An expression is
formed from operands, operators, and parentheses. FORTRAN has four
classes of expressions:

• Arithmetic expressions,

• Character expressions,

• Relational expressions,

• Logical expressions.

5.1 Arithmetic Expressions

An arithmetic expression expresses a numeric computation and generates
a numeric value.

5.1.1 Arithmetic Operators

The arithmetic operators are as follows:

Operator Meaning

•• Exponentiation
/ Division
• Multiplication
- Subtraction or Negation
+ Addition or Identity

The .*, /, and • operators are binary operators. The + and - operators
can be unary or binary operators.

The ** operator has the highest precedence, then the * and / operators,
and lastly the + and - operators. Parentheses may be used freely to change
the order of evaluation.

Page 28· FORTRAN Reference Manual

Chapter 5 Expressions

5.1.2 Arithmetic Operands

An arithmetic operand consists of a primary, a factor, a term or an
arithmetic expression. These various kinds of operands are discussed below.

The primary operands are:

• Unsigned arithmetic constant,

• Symbolic name of an arithmetic constant,

• Arithmetic variable reference,

• Arithmetic array element reference,

• Arithmetic function reference,

• Arithmetic expression enclosed in parentheses.

The factor operands are:

• Primary,

• Primary ** factor.

A factor is formed from a sequence of one or more primaries separated
by an exponentiation operator. The second form means that an expression
such as:

is to be interpreted as:

2**(3**4)

A term operand is:

• Factor,

• Term / factor,

• Term * factor.

A term is formed from one or more factors separated by the multiply or
divide operator. Factors are combined left to right.

An arithmetic expression consists of:

• Term,

• + term or - term,

• Arithmetic expression + term,

• Arithmetic expression - term.

An arithmetic expression consists of a series of terms separated by plus
or minus operators. The first term in an expression can be preceded by a plus
or minus sign. Terms are combined left to right. Note that the rules for

FORTRAN Reference Manual Page 29

Expressions Chapter 5

expressions mean that two consecutive operators form an incorrect expression.
Thus A .. -B is wrong, whereas A"(-B) is correct.

5.1.3 Constant Expressions

Constant expressions are used in many language constructs throughout
FORTRAN, especially in specification statements. There are two forms of
constant expressions, namely arithmetic constant expressions and integer
constant expressions. These are discussed below.

An arithmetic constant expression is an expression in which each primary is
an arithmetic constant, the symbolic name of an arithmetic constant or a
constant expression enclosed in parentheses. Exponentiation is only allowed if
the exponent is of type integer.

Examples of Arithmetic Constant Expressions

2"31-1

-16/4 3.141592/2 5**(3+2)

An integer constant expression is an arithmetic constant expression in
which each constant is of type integer.

Examples of Integer Constant Expressions

-10

5.1.4 Type Conversion Rules/or Arithmetic Expressions

The data type of an expression is ultimately derived from the data types
of its operands according to the rules stated below. When operands of mixed
data types appear in an expression, FORTRAN performs implicit type
conversion on the operands according to well-defined rules in order to generate
the result.

When the plus "+" operator or the minus "-" operator operate upon a
single operand (they are used as unary operators), the data type of the result is
the same as the data type of the operand.

When an arithmetic operator applies to a pair of operands, the type of the
results is as shown in the tables below. The letter I stands for an operand or
result of type Integer, the letter R for Real, the letter D for Double-precision
and the letter C for Complex. The rules are given in the form of assignments.
The result type is indicated by the letter to the left of the equals sign and the
derivation of that result is given by the expression to the right of the equals

Page 30 FOR TRAN Reference Manual

Chapter 5 Expressions

sign. The function names REAL, DBLE and CMPLX are as defined in the
table of intrinsic functions in the Appendix on "Intrinsic Functions".

5.1.4.1 Rules for Add, Subtract, Multiply and Divide

The two tables below define the types and interpretations for the +, -, *
and / operators. For example, to obtain the rule for 11 *C2 where '11' is an
integer and 'C2' is a complex, look in the second part of the table; find the
'11' entry under 'XI' and the 'C2' entry across from 'X2'; the rule is then:

'C = CMPLX(REAL(II), 0.0) + C2'

which is interpreted as:

'the result is of type complex; the first operand is obtained by converting
the integer to a real, then converting that to a complex with the
imaginary part 0.0; the two complex numbers are then added'.

The rules for subtraction, multiplication and division are obtained by
replacing the" +" signs with the desired operator.

X2 12 R2
Xl

II I = 11 + 12 R = REAL(II) + R2
RI R = RI + REAL(I2) R = Rl + R2
01 D = 01 + DBLE(I2) D = Dl + OBLE(R2)
Cl C = Cl +CMPLX(REAL(I2), 0.0) C = Cl +CMPLX(R2, 0.0)

X2 D2 C2
Xl

11 D = DBLE(II) + D2 C = CMPLX(REAL(II), 0.0) +C2
Rl D = DBLE(RI) + D2 C = CMPLX(Rl, 0.0) +C2
Dl D = 01 + 02 Not Allowed
CI Not Allowed C=Cl+C2

5.1.4.2 Rules for Exponentiation Operator

The tables below define the types and interpretations for expressions of
the form Xl**X2.

FOR TRAN Reference Manual Page 31

Expressions Chapter 5

X2 12 R2
Xl

11 I == 11 ** 12 R == REAL(II) ** R2
RI R == Rl ** 12 R == RI ** R2
DI D == DI ** 12 D = DI ** DBLE(R2)
CI C == CI**12 C == CI**CMPLX(R2, 0.0)

X2 D2 C2
Xl

II D == DBLE(Il) ** D2 C == CMPLX(REAL(II), 0.0)**C2
Rl D == DBLE(RI) ** D2 C == CMPLX(RI, 0.0)**C2
Dl D == DI ** D2 Not Allowed
CI Not Allowed C == CI**C2

Four of the entries in the above table specify what happens when a
complex argument is raised to a complex power. In these cases, the value of
the expression is the principal value, determined by the formula:

XI**X2 == EXP(X2 * LOG(X2»

where EXP and LOG are the exponential and natural logarithm intrinsics
described in the chapter on "Program Structure".

Except for values raised to an integer power, in mixed mode
expressions, the operand which differs from the type of the result is converted
to the type of the result according to the rules given in the tables above. The
operator then operates on a pair of operands of the same type. "When a
primary is raised to an integer power, the integer does not need to be
converted.

5.1.5 Coercion Rulesfor Integers of Different Size

In expressions involving INTEGER*I, INTEGER*2 and INTEGER*4
(INTEGER), the smaller sized operand is always "promoted" to the size of the
larger operand, and the arithmetic operation is performed in the larger sized
field. In all cases, elements of type INTEGER * I are always promoted to
INTEGER*2. In any case, assigning the result of an expression to a variable
of smaller size produces an undefined result if the value stored exceeds the
range of values allowed for that specific variable. Note also that many
FORTRAN statements and functions specifically require arguments of type
INTEGER. In such cases, neither arguments of size INTEGER. I nor
INTEGER*2 may be used.

Page 32 FORTRAN Reference Manual

Chapter 5 Expressions

5.1.6 1nteger Division

If an integer operand is divided by another integer operand~ the result is
not the strict mathematical quotient. Instead~ the quotient is obtained by
truncating towards zero. Thus 112 is 0 and (-8)13 is -2.

5.2 Character Expressions

A character expression operates on character strings and generates
character values. The simplest form of character expressions are:

• Character constant,

• Character variable,

• Character array element reference~

• Character substring reference~

• Character function reference,

• Character expression enclosed in parentheses.

There is only one character operator - the "I I" sign, meaning
concatenation.

The result of a character concatenation operations such as:

Xl II X2

is a value which is 'Xl ~ concatenated on the right with 'X2'. The length of the
result is the sum of the lengths of the individual operands.

5.2.1 Restrictions on the use 0/ String Expressions

Formal arguments to procedures can be character strings whose length is
specified as (*). This designates the string as an assumed size character string
whose length is determined at the time an actual string argument is associated
with that formal argument. A character string expression involving
concatenation of such a string argument may not be passed as an actual
argument to any procedure, nor may it appear in the format specification of an
input-output statement, nor may it appear as an item in the 'iolist' of an
input-output statement.

Example of String Concatenation

'Left Side' I I ~Right Side'

FORTRAN Reference Manual Page 33

Expressions Chapter 5

5.3 Relational Expressions

Relational expressions compare arithmetic expression values or character
expression values. Relational expressions yield logical values. The relational
operators are:

Operator Meaning

.LT. Less than

.LE. Less than or equal to

.EQ . Equal to

. NE. Not equal to

.GT . Greater than

. GE. Greater than or equal to

5.3.1 Arithmetic Relational Expressions

An arithmetic relational expression expresses a relationship between
arithmetic operands. The form of an arithmetic rehitional expression is:

EI relop E2

where 'EI' and 'E2' are arithmetic operands, and 'relop' is one of the
operators selected from the table above.

Only the .EQ. (equality) and .NE. (inequality) operators are allowed for
operands of complex type.

If the operands are of different types, the relational expression is treated
as if it were in the form:

«EO - (E2» relop 0

where 0 (zero) is the same type as the expression.

Comparison of a double precision value and a complex value is not
allowed.

5.3.2 Character Relational Expressions

A character relational expression is of the form:

El relop E2

where 'EI' and 'E2' are character expressions and 'relop' is one of the
relational operators selected from the table above. The ordering of character
expressions is as defined in the ASCII character set table in the appendices.
The .EQ. (equality) and .NE. (inequality) operators do not use the ordering. If
the operands in a character relational expression are of different lengths, the

Page 34 FORTRAN Reference Manual

Chapter 5 Expressions

shorter operand is considered to be padded on the right with spaces until the
operands are of the same length.

5.4 Logical Expressions

A logical expression operates on values of type logical and generates a
result of type logical. The simplest forms of logical expressions are:

• Logical constant,

• Logical variable reference,

• Logical array element reference,

• Logical function reference,

• Relational expression.

Other logical expressions are built up from these simple forms by using
parentheses and the logical operators as follows:

Operator Meaning

.NOT. Logical Negation

.AND. Logical Conjunction

.OR. Inclusive Disjunction

.EQV. Logical Equivalence

.NEQV. Logical Nonequivalence

5.4.1 Precedence 0/ Logical Operators

The precedence of the logical operators is shown on the next page:

Operator Precedence

.NOT. Highest
.AND .
. OR .

. EQV. or .NEQV. Lowest

The .AND. and .OR. operators are binary operators and must appear
between their operands. The .NOT. operator is a unary operator and appears
before its operand. Operators of equal precedence associate left to right.

FORTRAN Reference Manual Page 35

Expressions

BA .AND. B .AND. CR

is equivalent to:

(A .AND. B) .AND. C

.NOT. A .OR. B .AND. C

is equivalent to:

(.NOT. A) .OR. (B .AND. C)

Chapter 5

Two .NOT. operators must not appear adjacent to each other. The
expression:

A .AND .. NOT. B

is an example of an allowable·expression with two adjacent operators.

5.5 Precedence of Operators

When arithmetic, relational and logical operators appear in the same
expression, their relative precedence is:

Operator Precedence

Arithmetic Highest
Relational Intermediate
Logical Lowest

5.6 Evaluation Rules and Restrictions for Expressions

Any variable, array element or function referenced in an expression must
be defined at the time it is referenced. Integer variables must be defined with
an arithmetic value rather than a statement label set by an ASSIGN statement.
If a character string or substring is referenced in an expression, all the
referenced characters should be defined at the time of the reference.

It is an error to divide by zero. It is also an error to raise a zero value to
a zero or negative power. It is also an error to raise a negative value to a real
or double precision power.

5.6.1 Restrictions on Function References

In any given statement, it is an error if a function reference within that
statement changes any other object in the statement.

If a function reference causes an actual argument to the function to
become defined, it is an error to reference that object anywhere else in the
statement containing the function reference.

Page 36 FORTRAN Reference Manual

Chapter 6 Specification Statements

Chapter 6 - Specification Statements

This chapter describes SVS FORTRAN specification statements.
Specification statements are non-executable. They are used to define
properties of user-defined variables, arrays and functions. There are nine types
of specification statements:

• Type statements,
• DIMENSION statements,
• COMMON statements,
• PARAMETER statements,
• IMPLICIT statements,
• EXTERNAL statements,
• INTRINSIC statements,
• SAVE statements,
• EQUIVALENCE statements.

Specification statements must precede all executable statements in a
subprogram unit. If any IMPLICIT statements appear in the subprogram, they
must precede all other specification statements. Other than that, specification
statements can appear in any order within their own group.

6.1 Type Statements - Declaring Data Types

Type statements specify the data type of user-defined names. A type
statement either confirms or overrides the default type rules for names. Type
statements can also convey dimension information when declaring arrays. A
user-defined name for a variable, array, formal argument, external function or
statement-function can appear in a type statement. Such an appearance defines
the type of that name for the entire program unit that contains the type
statement. In any given program unit, a user-defined name may only appear
once in a type statement.

A type statement can confirm the type of an intrinsic function, but it is
not required to do so. A main program name or a subroutine name must not
appear in a type statement. A type statement can define the dimensions of an
array, or the dimensions can be declared in a DIMENSION statement (see
below), independently of the type statement.

FORTRAN Reference Manual Page 37

Specification Statements Chapter 6

6.1.1 Arithmetic Type Statements

Arithmetic type statements are used to declare arithmetic data objects.
The form of an arithmetic type statement is:

type var [, var1 ...

'type' is one of INTEGER, INTEGER*I, INTEGER*2, INTEGER*4, REAL,
REAL*4, REAL*8, DOUBLE PRECISION or COMPLEX.

INTEGER and INTEGER*4 are the same. REAL and REAL*4 are the
same. DOUBLE PRECISION and REAL*8 are the same.

'var' is a variable name, array name, formal argument name, function name
or array declarator. See the definition of array declarators in the chapter
on "FORTRAN Names, Arrays and Substrings".

Examples of Arithmetic Type Statements

C declare some integer variables.
C

INTEGER CLOCK, HANDS(2), TIME(24)
C
C declare some real and double precision variables.
C

REAL RADIO, KI01, VARBLS(IO, 10,5)
DOUBLE PRECISION TWOS(50), TWICE, SECOND

C
C declare some complex data items
C

COMPLEX FUNKS, ROCK, BACH (48)

6.1.2 CHARACTER Type Statement

The character type statement is used to declare CHARACTER data
objects. The form of a CHARACTER type statement is:

CHARACTER [*nnn [,]] var [*nnn] [, var [*nnn] 1...

'var' is a variable name, array name, formal argument name or an array
declarator. For a definition of an array declarator, see the chapter on
"FORTRAN Names, Arrays and Substrings".

'nnn' is the length, in characters, of a character variable or character array
element. The length must be an unsigned integer in the range 1 to 255
or a constant expression enclosed in parentheses, whose value lies in
the range 1 to 255. The length can also be specified as (.), when the
name is being defined either as a formal argument which is an assumed

Page 38 FORTRAN Reference Manual

Chapter 6 Specification Statements

size character string, or for the purpose of establishing a type for later
use in a PARAMETER statement:

The length 'nnn', following the type name CHARACTER, is the default
length for any name in the list that does not have its length specified explicitly.
In the absence of a length specification, the default length is one (0. A
length immediately following a variable or array element overrides the default
length for that item only. For an array, the length specifies the length of each
element of that array.

A formal argument defined as CHARACTER.(.) cannot be used as an
actual argument to a procedure if it is concatenated in a character string
expression, whereas a symbolic name of a constant can be used in such a place.

Examples of CHARACTER Type Statements

CHARACTER FLIP.10, FLOP*20
CHARACTER WILD(15).20
CHARACTER.80 LINE(24)
CHARACTER. (10.20) LSTR
CHARACTER. (.) VARBLE

6.1.3 LOGICAL Type Statement

The logical type statement is used to declare logical data objects. The
form of a LOGICAL type statement is:

type var [, var1 ...

'type' is one of LOGICAL, LOGICAL.1, LOGICAL*2 or LOGICAL.4.

LOGICAL is the same as LOGICAL.4.

'var' is a variable name, array name, formal argument name, function name,
or an array declarator. For a definition of an array declarator, see the
chapter on "FORTRAN Names, Arrays and Substrings".

Examples of LOGICAL Type Declarations

LOGICAL
LOGICAL·2
LOGICAL

SONG
BLACK, WHITE
YES(10), N0(10)

6.2 DIMENSION - Declare Data Dimension

A DIMENSION statement specifies the number of dimensions of a user
defined array. The form of a DIMENSION statement is:

FOR TRAN Reference Manual Page 39

Specification Statements Chapter 6

DIMENSION var(dim) [, var(dim)] ...

where each one of the 'var(dim)' pairs is an array declarator of the form:

name (d [,d) .. .)

'name' is the user-defined name of the array,

'd' is a dimension declarator.

6.2.1 Dimension Dec/arators

The number of dimensions in the array is the number of dimension
declarators in the array declarator. The maximum number of dimensions is
seven. The rules for array and dimension declarators are defined in the
chapter on "FORTRAN Names, Arrays and Substrings".

Examples of DIMENSION Statements

DIMENSION forth (1 0, 5:15, 0:99)

DIMENSION axis(6)

6.3 COMMON - Declare a COMMON Block

Common blocks provide a means to share variables between multiple
independently-compiled program units. Common blocks and their contents are
defined via the COMMON statement. The form of the COMMON statement
is:

COMMON (f[cname1l] nlist [[,] /[cname1l nlist)...

'cname' is a common block name. If any 'cname' is omitted, the blank
common block is implied.

'nlist' is a list of variable names, array names and array declarators, all
separated by commas. Formal argument names and function names
must not appear in a COMMON statement.

In each COMMON statement, all variables and arrays appearing in each
'nlist', following a common block name, are declared to be in that common
block. If the 'cname' is omitted, all elements appearing in the 'nlist' are
specified to be in the blank common block.

Any common block name can appear more than once in COMMON
statements in the same subprogram unit. All elements in all 'nlists' for the
same common block are allocated storage, sequentially in that common block,
in the order of their declaration.

All elements in a single common area must be all of type character or
none of type character.

Page 40 FORTRAN Reference Manual

Chapter 6 Specification Statements

The size of a common block is equal to the number of bytes of storage
needed to hold all elements in that common block. If the same named
common block is referenced in several subprogram units, the size must be the
same in all those units.

Examples of COMMON Statements

COMMON Ihorde/ TOKEN(100), SYMBOL(100)

6.4 PARAMETER - Make a Symbolic Association

A PARAMETER statement associates a symbolic name with a constant
value. That constant is thereafter associated with that symbolic name, such
that using the name is synonymous with a use of the constant. The form of a
PARAMETER statement is:

PARAMETER (name=expr [,name=expr] .. J

'name' is the symbolic name to be defined,

'expr' is an expression that is to be associated with the name. The expression
noted in the definition above must be a constant expression.

Examples of PARAMETER Statements

PARAMETER (TODAY = 'FRIDAY')
C

PARAMETER (BASE = 1, LIMIT = 100)

6.5 IMPLICIT - Establish Default Data Type

FORTRAN normally assigns a default type to a variable depending on
the first letter of that variable. The IMPLICIT statement overrides the default
type rules and establishes a new default type for variables. The form of the
IMPLICIT statement is:

IMPLICIT type (Jetter-list) [, type (Jetter-list>] ...

'type' is one of the data types: INTEGER, INTEGER*I, INTEGER*2,
INTEGER*4, REAL, REAL*4, REAL*8, LOGICAL,
LOGICAL*I, LOGICAL*2, LOGICAL*4, DOUBLE PRECISION,
COMPLEX or CHARACTER [*nnn]

'letter-list' is a list of single letters or ranges of letters. A range of letters is
indicated by the first and last letters in the range, separated by a
minus sign. If a range is specified, the letters must be in
alphabetical order.

FORTRAN Reference Manual Page 41

Specification Statements Chapter 6

'nnn' is only applicable to a character data type, and is the size of the
character type that is to be associated with that letter or letters.
'nnn' must be an unsigned integer in the range 1 thru 255. If
'nnn' is not specified, a value of one (1) is assumed.

An IMPLICIT statement defines the type and size for all user-defined
names that begin with the letter or letters appearing in the specification. An
IMPLICIT statement only applies to the program unit in which it appears.
IMPLICIT statements do not change the type of any intrinsic functions.

Implicit types can be overridden or confirmed for any specific user
defined name if that name appears in a subsequent type statement. An explicit
type in a FUNCTION statement also takes precedence over an IMPLICIT
statement. If the type in question is a character type, the length is also
overridden by any later type specification.

A program unit can have more than one IMPLICIT statement, but all
IMPLICIT statements must precede all other specification statements.

Examples of IMPLICIT Statements

* declare all names beginning with A as integer.

*
IMPLICIT INTEGER (A)

*
* declare all names starting with the letters
* Q, X, Y or Z to be complex.

*
IMPLICIT COMPLEX (Q, X-Z)

*
* declare all names starting with C as CHARACTER.

*
IMPLICIT CHARACTER*255 (C)

6.6 EXTERNAL - Declare External or Dummy Procedure

An EXTERNAL statement specifies that a user-defined name is the
name of an external procedure or a dummy procedure. It also allows such a
name to be used as an actual argument to a subroutine or function reference.
The form of an EXTERNAL statement is:

EXTERNAL proc-name [, proc-name) .,.

where each 'proc-name' is the name of an external procedure, dummy
procedure or block data subprogram. A name appearing in an EXTERNAL
statement declares that name to be an external procedure.

Statement-function names must not appear in an EXTERNAL statement.

Page 42 FORTRAN Reference Manual

Chapter 6 Specification Statements

If an intrinsic function name appears in an EXTERNAL statement, that
name becomes the name of an external procedure and the corresponding
intrinsic function can no longer be called from that program unit.

A user-defined name can only appear once in an EXTERNAL statement.

6.7 INTRINSIC - Declare Intrinsic Function

An INTRINSIC statement declares that a name is an intrinsic function.
It also allows a specific intrinsic function name to be used as an actual
argument to a subroutine or function reference. The form of an INTRINSIC
statement is:

INTRINSIC name [, name] ...

where 'name' is an intrinsic function name.

An intrinsic function is anyone of a specific set of predefined functions
in the FORTRAN language, such as SIN or MAX. Since these names are in
no way reserved, user functions as well as variables can have the same name
as an intrinsic function, but not in the same scope. The intrinsic statement,
though normally not required, is used to specifically state that the name in
question refers to an intrinsic function.

Each name may appear only once in an INTRINSIC statement. If a
name appears in an INTRINSIC statement, it may not appear in an
EXTERNAL statement.

All names used in an INTRINSIC statement must be system-defined
intrinsic functions. For a list of intrinsic functions, see the Appendix on
"Intrinsic Functions".

If a specific name of an intrinsic function is used as an actual argument
in a program unit, that name must be declared in an INTRINSIC statement in
that program unit.

If a generic function name appears in an INTRINSIC statement, that
function still retains its generic properties.

In a given program unit~ a name must not appear in more than one
INTRINSIC statement.

Certain intrinsic functions may not be used as actual arguments. These
are:

• The type-conversion functions: INT, IFIX, IDINT, FLOAT, SNOL,
REAL, DBLE, CMPLX, ICHAR and CHAR .

• The lexical relationship functions: LOE, LOT, LLE and LLT.

FORTRAN Reference Manual Page 43

Specification Statements Chapter 6

• The functions for choosing largest or smallest values: MAX, MAXO,
AMAXI, DMAXI, AMAXO, MAXI, MIN, MINO, AMINI, DMINI,
AMINO and MIN 1.

6.8 SAVE - Retain Definition Status

A SAVE statement is used to retain the definition of a program object
after returning from the procedure which defines that program object. Within
a subroutine or function subprogram, a program object specified in a SAVE
statement remains defined after exit from the subroutine or function. The
form of a SAVE statement is:

SA VE [thing [, thing] ...]

where 'thing' is a common block name enclosed in slashes, a variable name or
an array name. Any given name may only appear once in a SAVE statement.
The names of dummy arguments, procedures and objects appearing in
common blocks must not appear in a SAVE statement.

If a SAVE statement appears without an associated list of program
objects, it is the same as if all objects in that program unit which could appear
in the SAVE statement actually had appeared in the SAVE statement.

Specifying a common block name in a SAVE statement is the same as
saving all the elements in that common block. A common block mentioned in
a SAVE statement must be mentioned in a SAVE statement in every
subprogram in which that common block appears. A SAVE statement has no
effect in the main program, and is optional.

Examples of SAVE Statements

C
C Save everything in the subprogram with
C

SAVE
C
C Save some variables
C

SA VE dimes, nickels, pennies
C
C Save all of common blocks
C

SA VE IStampsl, ILettrsl

6.9 EQUIVALENCE - Share Storage Between Elements

An EQUIVALENCE statement specifies that two or more variables or
arrays are to share the same storage. If the shared variables are of different
types, the EQUIVALENCE statement does not cause any kind of automatic

Page 44 FOR TRAN Reference Manual

Chapter 6 Specification Statements

type conversion. The form of an EQUIVALENCE statement is:

EQUIVALENCE (nlist) [, (nlist)] ...

'nlist' is a list of at least two variable names, array names, array element
names or character substring names. Argument names must not appear
in EQUIVALENCE statements. Subscripts must be integer constant
expressions and must be within the bounds of the array that they
reference.

An EQUIVALENCE statement specifies that the storage sequences of the
elements that appear in the list 'nlist' have the same first storage location.
Two or more variables are said to be associated if they refer to the same actual
storage. Thus an EQUIVALENCE statement causes its list of variables to
become associated. If an array name appears in an EQUIVALENCE list, it
refers to the first element of the array.

6.9.i Restrictions on EQUiVALENCE Statements

An EQUIVALENCE statement must not specify that the same storage
location is to appear more than once. For example:

REAL R, SOO)
EQUIVALENCE (R, SO», (R, S(5»

is in error because it forces the variable "R" to appear in two distinct memory
locations, namely at SO) and S(5).

An EQUIVALENCE statement must not specify that consecutive array
elements be stored out of sequential order. For example:

REAL ROO), SOO)
EQUIVALENCE (RO), S(1», (R(5), S(6»

is in error because, having defined R(1) and SO) to be associated, the
statement then attempts to define R(5) and S(6) to be associated, and this
means that the array "R" has somehow been "stretched".

Names of dummy arguments must not appear in an EQUIVALENCE
statement. Also, if a variable name is also a function name, that name must
not appear in an EQUIVALENCE statement.

When EQUIVALENCE statements and COMMON statements are used
together, there are further restrictions. An EQUIVALENCE statement must
not try to associate storage elements in different common blocks. An
EQUIV ALENCE statement can extend a common block by adding storage
elements following the common block, but not preceding the common block.
For example:

FORTRAN Reference Manual Page 45

Specification Statements

COMMON IMASSES/ R(10)
REAL S(10)
EQUIVALENCE (R(1), S(10»

Chapter 6

is in error because it tries to extend the common block by adding storage
before the start of the block. That is, when R(1) and S(10) are associated, it
means that SO) would be nine locations before the defined start of the block.

Page 46 FORTRAN Reference Manual

Chapter 7 Data Initialization

Chapter 7 - Data Initialization

The DATA statement is used to (statically) initialize data variables. The
DA T A statement is non-executable in the sense that the compiler does not
generate any code for it.

If a DATA statement is present within a subprogram, it may appear
anywhere after the specification statements Of there are any). The form of a
DATA statement is:

DATA nlist /clist/ [[,] nlist /clist/] ...

'nlist' is a list of variables, arrays, array element names, substring names and
implied-DO lists.

'elist' is a list of constants, or constants preceded by an integer-constant
repeat-factor and an asterisk. Examples of repeated data items are:

5*3.14159 3*'Help' 100*0

There must be the same number of values in each 'elist' as there are
variables or array elements in the corresponding 'nlist'. The appearance of an
array in an 'nlist' is equivalent to a list of all the elements in that array in order
of storage sequence. Array elements and substrings may be indexed by integer
constant expressions (but see the implied-DO loop below).

The type of each element in a 'elist' must be the same as the type of the
corresponding variable or array element in the accompanying 'nlist'. If
necessary, the 'elist' constant is converted to the type of the 'nlist' object
according to the rules for arithmetic conversion given in the table in the
chapter on "Assignment Statements".

A DATA statement can be used to initialize any variable, array element
or substring that is not one of the following:

• a dummy argument,

• an object in blank common or any object which is associated with an
object in blank common,

• a variable in a function subprogram whose name is also the same name
as that of the function or one of its alternate entry-point names.

FORTRAN Reference Manual Page 47

Data Initialization Chapter 7

Objects may only be initialized once in any given program unit.

DATA statements in BLOCK DATA subprograms may only initialize
objects in named COMMON areas.

Examples of DATA Statements

*
* Deelare some variables

*

*

REAL FIRST, SECOND
INTEGER NIG, NOG

COMPLEX WEIRD (I 0)
DOUBLE PRECISION VECT(5)

* initialize some rea Is

*
DATA FIRST, SECOND

*
* initialize some integers

DATA NIG /10/, NOG /20/

*
* initialize two elements of the complex array

*

/1.0, 2.0/

DATA WEIRD(2), WEIRD(5) /2 * (0.0, 0.0)/

*
* initialize all the double precision array

*
DATA VECT /0.0, 0.0, 0.0, 0.0, 0.0/

7.1 Initializing Character Variables

If an 'nlist' item is of type character, the corresponding 'elist' item must
be a character constant expression.

If the 'elist' item is shorter than the length of the 'ntist' item, the initial
characters occupy the leftmost positions of the character data item and the
remaining character positions are filled with spaces. If the 'elist' item is longer
than its corresponding 'nlist' variable, only the characters needed to initialize
the 'ntist' item are used and the rem~ining characters are ignored.

Examples of Character Initialization

DATA STRING I'Old Rope'/

DATA SVECT /6 * 'Attached'/

Page 48 FORTRAN Reference Manual

Chapter 7 Data Initialization

The second example assumes that SVECT is a 6 element character array.

7.2 Initializing Non CHARACTER Variables to CHARACTER Values

The FORTRAN-77 standard explicitly forbids initializing variables of any
non-CHARACTER data type with CHARACTER values. Almost all
FORTRAN-66 compilers do allow such initializations (they had to since there
was no explicit CHARACTER data type in FORTRAN-66). SVS FORTRAN-
77 therefore allows such initialization, provided the $CHAREQU option has
been selected. For a description of the $CHAREQU option, see Chapter 13 -
"FOR TRAN Compile Time Options".

When the $CHAREQU compiler option is selected, non-CHARACTER
variables may be initialized with CHARACTER constants. Each character
constant in the 'e1ist' initializes precisely one variable in the 'nlist'. If the
length of the CHARACTER constant is longer than the number of bytes which
the target variable occupies, the CHARACTER constant is truncated on the
right to the same size as the target variable. If the CHARACTER constant is
shorter in length than the number of bytes which the target variable occupies,
the CHARACTER constant is padded on the right with trailing spaces.

In all cases, one ASCII character is stored in each byte of the target
variable. Thus a variable of type REAL.4 would receive exactly four bytes,
and a variable of type LOGICAL.} would receive exactly one byte.

Example of Initializing non-CHARACTER Variables

• Select the option
$CHAREQU

• Declare some variables
•

LOGICAL.} ARG
DOUBLE PRECISION LARJ

•
• Initialize the variables
•

DATA ARG, LARJ I'SING', 'SONG'/

In the example above, the variable ARG would receive the single
character value'S' (because of truncation), while the variable LARJ would
receive the value 'SONG '(because of space padding).

7.3 Implied DO in DATA Statements

As an added convenience, the DATA statement can incorporate a form
of DO loop for initializing arrays (for example) in a regular and concise way.

FORTRAN Reference Manual Page 49

Data Initialization Chapter 7

This is known as an "implied-DO loop" and has the same form as a DO
statement (see the chapter on "Control Statements"). The control variables of
an implied-DO loop are declared implicitly and only for the duration of the DO
loop. The following example should clarify the use of implied-DO loop
initialization. In this case, the form of an implied-DO list in the DATA
statement is:

(dlist, i = first, last [, inc])

'dlist' is a list of array element names and implied-DO lists.

'i' is the name of an integer variable, the implied-DO-variable.

'first', 'last' and 'inc'
are each integer constant expressions. The expressions can contain
implied-DO-variables of other implied-DO lists whose range includes
this implied-DO list.

The range of an implied-DO list is the list 'dlist'. An iteration count and
the values of the implied-DO-variable are established from 'first', 'last' and
'inc' just as for a DO loop, but the iteration count must be positive.

When an implied-DO list appears in a DATA statement, the items in
'dlist' are specified once for each iteration of the implied-DO list with the
appropriate substitution of values for any occurrence of the implied-DO
variable'i'.

The implied-DO-variable can have the same name as a variable in the
subprogram unit containing the DATA statement - there is no conflict of
such names.

Page 50

Examples of Implied DO Loop Initialization

C Declare some large arrays.
C

C

INTEGER PRIMES(IOOO)
INTEGER UPRTRI(20,20)
REAL MATRIX(25, 80)

C Now initialize with DATA statements
C containing an implied-DO loop.
C

DATA (PRIMES(I), I = 1, 1000) /1000*11
C

DATA «MATRIX(J, K), J = 1, 80), K = 1, 25) 12000*1.01
C
C The last DATA statement initializes the upper triangle
C of the array called UPR TRI.
C

DATA «UPRTRIO, 1), J=I, 21-1), 1= 1,20) 1210 * 01

FORTRAN Reference Manual

Chapter 8 Assignment Statements

Chapter 8 - Assignment Statements

An assignment statement computes a value which is then assigned to a
program object. Because FORTRAN does not require that variables be
declared ahead of time, it is possible that assignment actually causes that object
to become allocated. There are four distinct types of assignment statements:

• Arithmetic,
• Logical,
• Statement Label assignment (the ASSIGN) statement,
• Character assignment.

8.1 Arithmetic Assignment

Arithmetic assignment evaluates an arithmetic expression, and assigns the
result to a variable. The form is:

variable == expression

'variable' is a variable or an array element name, of type INTEGER,
INTEGER*I, INTEGER*2, INTEGER*4 REAL, REAL*4,
REAL*8, DOUBLE PRECISION or COMPLEX.

'expression' is an expression compatible with one of those types.

If the type of 'variable' and the type of 'expression' are not compatible,
the value of 'expression' is automatically converted to the type of 'variable'
according to the following table.

FOR TRAN Reference Manual Page 51

Assignment Statements Chapter 8

Type of variable
or array element Value Assigned

Integer INT(expression)

Real REAL (expression)

Double Precision DBLE(expression)

Complex CMPLX (expression)

Table 8-1
Type Conversion for Arithmetic Assignment Statements

The functions in the "Value Assigned" column in the above table are
generic intrinsic functions described in the table of intrinsic functions in the
appendices.

If an integer expression is of type INTEGER*I, INTEGER*2 or
INTEGER*4, the result is automatically converted to the correct type. In
general, an operand is "promoted" to the larger size when evaluating
expressions. Operands of type INTEGER*1 are always promoted to
INTEGER*2,

In the assignment statement, converting a longer INTEGER value to a
shorter one is done by truncation. The FORTRAN-77 compiler does not issue
any warning about it, and the running program issues no error messages
because of truncation.

*

*

Examples of Arithmetic Assignment

INTEGER whole
REAL party
DOUBLE PRECISION huge
COMPLEX house

DATA whole /10/, party /5.5/

whole = 50 * party
party = 3.1415926388 * 5.7
huge = 547.987654e243
house = (1.0, -4.0)

8.2 Logical Assignment

Logical assignment assigns the value of an expression to a logical variable.
The value of the expression must therefore evaluate to either of the values

Page 52 FORTRAN Reference Manual

Chapter 8 Assignment Statements

.TRUE. or .FALSE. The form of a logical assignment statement is:

logical variable == logical expression

If a logical variable is one of the types LOGICAL.}, LOGICAL.2 and
LOGICAL*4, a logical expression is automatically converted to the correct
type.

Examples of Logical Assignment Statements

LOGICAL TELLME, NONO

TELLME = .TRUE.

NONO = .FALSE.

8.3 Statement Label Assignment

Statement label assignment is used to assign the value of a format label or
a statement label to an integer variable. The form of statement label
assignment is:

ASSIGN statement-label TO integer-variable

'statement-label' is a format label or a statement label.

'integer-variable' is an integer variable. The integer variable must not be of
type INTEGER.} or INTEGER .2.

Executing an ASSIGN statement sets the integer variable to the value of
the label. The label can be either a format label or a statement label. The
label must appear in the same program unit as the ASSIGN statement. When
used in an assigned GO TO statement, a variable must currently have the
value of a statement label. When used as a format specifier in an input-output
statement, a variable must have the value of a format statement label. The
ASSIGN statement is the only way to assign the value of a label to a variable.

Examples of Statement Label Assignment

INTEGER SLAB,FORLAB

ASSIG N 666 TO SLAB

ASSIGN 905 TO FORLAB

8.4 Character Assignment

Character assignment evaluates a character expression and assigns the
result to a character variable, character array-element or a character substring.
The form of a character assignment statement is:

FOR TRAN Reference Manual Page 53

Assignment Statements Chapter 8

character-variable = character-expression

None of the character positions being defined in the left-hand side of the
assignment may appear on the right-hand side of the assignment. If they do,
the results are undefined.

The left-hand side and. the right-hand side of the assignment may be of
different lengths. If the left-hand side is longer, the effect is to extend the
right-hand side value to the right with spaces until it is the same length as the
left-hand side. If the left-hand side is shorter, the effect is to take a substring
starting at position 1 of the right-hand side, short enough to assign to the left
hand side.

Only as much of the right-hand side need be defined as is necessary to
define the left-hand side. For example, consider the following program
fragment:

CHARACTER fred*4, bill*8

fred = bill

The assignment of 'bill' to 'fred' above requires that the substring
'bill (1 :4)' be defined, since that is enough to define 'fred'. It is not required
that the rest of 'bill', 'bill(5:8)', be defined.

If the left-hand side of the assignment is a substring reference, the right
hand side is assigned only to the substring. The definition status of the
character positions not defined on the left-hand side does not change.

Page 54 FORTRAN Reference Manual

Chapter 9 Control Statements

Chapter 9 - Control Statements

Control statements are used to direct the sequence of execution of a
FORTRAN program. Control statements include constructs to execute
statements selectively depending on the outcome of a logical expression (the
block IF and logical IF statements), perform blocks of statements repetitively
(the DO statement), to select one of a number of statements to execute
depending on the value of an integer expression (the computed GO TO
statement, and to terminate or suspend program execution (the STOP and
P A USE statements). This chapter covers the control statements of FORTRAN,
in this order:

Block IF THEN ELSE

Logical IF

Arithmetic IF

DO

CONTINUE

STOP

PAUSE

a "structured coding" construct which was newly
introduced to FORTRAN with FORTRAN-77,

which executes or does not execute a subordinate
statement depending on the truth or falsity of a logical
expression,

which executes a three-way branch depending on the
value of an arithmetic expression,

which is FORTRAN's principal means of loop control,

which acts as a "null" statement,

to stop program execution,

to suspend program execution,

Unconditional GO TO
which unconditionally transfers control to another part of
the program unit,

Computed GO TO which selects a statement label to execute, depending on
the value of an expression,

Assigned GO TO which uses the value of an integer variable as a statement
label.

FORTRAN Reference Manual Page SS

Control Statements Chapter 9

9.1 Block IF THEN ELSE Statement

The block IF THEN ELSE statement group (described in the subsections
below) represents "structured coding" constructs that control program
execution flow without the need for indiscriminate jumping around via GO TO
statements. As an overview of the subsections to follow, the three code
skeletons below illustrate the basic ideas of the IF THEN ELSE statement
groups.

Skeleton 1 - a simple block IF which skips a group of statements if the
expression is false:

IF (I .LT. 10) THEN

ENDIF

some statements that are executed
..... only if I < 10

Skeleton 2 - block IF with a series of ELSEIF statements.

IF (J .OT. 1000) THEN
..... some statements executed only

..... if J > 1000
ELSEIF (J .GT. 100) THEN

..... some statements executed only
..... 'if J > 100 and < = 1000

ELSEIF (J .GT. 10) THEN

ELSE

ENDIF

..... some statements executed only
..... if J > lOand <= 100

..... some statements executed only if
..... none of the above conditions were true

Skeleton 3 - shows that the constructs can be nested and that an ELSE
statement can follow an IF block without intervening ELSEIF statements. The
indentation is here to enhance readability - FORTRAN does not require it.

Page 56

IF (I .LT. 100) THEN
.. some statements executed only

.. if I < 100
IF (J .LT. 10) THEN

ENDIF

.. some statements executed only
.. if I < 100 and J < 10

.. some more statements executed only if
.. I < 100

ELSEIF (I .LT. 1000) THEN
.. some statements executed only

FORTRAN Reference Manual

Chapter 9 Control Statements

.. if I == > 100 and I < 1000
IF (J .LT. 10) THEN

.. some statements executed only
.. if I == > 100 and I < 10000 and J < 10

ENDIF

ENDIF
.. some more statements executed only if

.. I = > 100 and I < 1000

To provide a detailed understanding of the block IF and its associated
statements, the concept of the IF-level is introduced. For any statement, its
IF -level is:

nl - n2

where 'nl' is the number of block IF statements (including the current
statement) from the beginning of the current program unit and 'n2' is the
number of ENDIF statements (not including the current statement) from the
beginning of the current program unit. The IF-level of every statement must
be greater than or equal to zero, and the IF-level of every block (IF, ELSEIF,
ELSE and ENDIF) must be greater than zero. The IF-level of every END
statement must be zero. The IF-level is used to define the nesting rules for
the block IF and its associated statements and to define the extent of IF
blocks, ELSEIF blocks, and ELSE blocks.

9.1.1 Block IF Statement

The general form of the Block IF statement is:

IF (logical expression) THEN

Execution of the block IF statement involves evaluating the 'logical
expression'. If the value is true and there is at least one statement in the IF
block, the next statement executed is the first statement of the IF block. After
the last statement in the IF block is executed, the next statement to be
executed is the next ENDIF statement at the same IF-level as this IF
statement.

If the value is true and there are no executable statements in the IF
block, the next statement to be executed is the next ENDIF statement at the
same IF-level as this IF statement.

If the value of the 'logical expression' is false, the next statement to be
executed is the next ELSEIF, ELSE or ENDIF statement at the same IF-level
as this IF statement.

Note that transfer of control into an IF block from outside the IF block is
not allowed.

FOR TRAN Reference Manual Page 57

Control Statements Chapter 9

The block IF statement, in fact, looks no different from the logical IF
statement described later; however, the presence of the THEN keyword as the
next statement indicates that a structured block IF statement group follows.

9.1.2 ELSEIF Statement

The form of the ELSEIF statement is:

ELSEIF (logical expression) THEN

The ELSEIF block associated with an ELSEIF ·statement consists of the
(possibly zero) executable statements up to, but not including, the next
ELSEIF, ELSE or ENDIF statement that has the same IF-level as this ELSEIF
statement.

Execution of an ELSEIF statement starts by evaluating the 'logical
expression'. If the value is true and there is at least one statement in the
ELSEIF block, the next· statement executed is the first statement of the
ELSEIF block. After the last statement in the ELSEIF block is executed, the
next statement to be executed is the next ENDIF statement at the same IF
level as this ELSEIF statement.

If the value of 'logical expression' is true and there are no executable
statements in the ELSEIF block, the next statement to be executed is the next
ENDIF statement at the same IF-level as this ELSEIF statement.

If the 'logical expression' evaluates to false, the next statement to be
executed is the next ELSEIF, ELSE or ENDIF statement that has the same
IF-level as this ELSEIF statement.

Note that transfer of control into an ELSEIF block from outside of that
ELSEIF block is not allowed.

9.1. 3 ELSE Statement

The form of an ELSE statement is:

ELSE

The ELSE block associated with an ELSE statement consists of the
(possibly zero) statements that follow the ELSE statement, up to, but not
including, the next ENDIF statement that has the same IF-level as this ELSE
statement. The "matching" ENDIF statement must appear before .any
intervening ELSE or ELSEIF statements at the same IF-level. In other words,
there may only be one ELSE statement in a block IF statement. There is no
effect in executing an ELSE statement.

Note that transfer of control into an ELSE block from outside that ELSE
block is not allowed.

Page 58 FORTRAN Reference Manual

Chapter 9 Control Statements

9.1.4 END1F Statement

The ENDIF statement marks the end of a block IF group. The form of
the ENDIF statement is:

ENDIF

There is no effect in executing an ENDIF statement. There must be a
"matching" ENDIF statement for every block IF statement in a program unit in
order to specify which statements are in a particular block IF statement.

9.2 Logical IF Statement

The logical IF statement evaluates an expression for logical TRUE or
FALSE, then either executes or does not execute a following statement based
on the truth or falsity, respectively, of the expression. The form of the logical
IF statement is:

IF (logical expression) statement

where 'logical expression' is a logical expression, and 'statement' is any
executable statement except a DO statement, Block IF, ELSEIF, ELSE,
ENDIF statement, an END statement, or another logical IF statement.

The 'logical expression' is evaluated, and if the value of the expression is
true, the 'statement' is executed. If the 'logical expression' evaluates to false,
the 'statement' is not executed and the execution sequence proceeds as if a
CONTINUE statement had been encountered.

Note that functions in the 'logical expression' can affect objects in the
'statement' .

Example of Logical IF Statement

IF (Token (1) .NE. 32) RETURN

9.3 Arithmetic IF Statement

The arithmetic IF statement performs a GO TO to one of three statement
labels depending on the value of an expression being negative, zero, or
positive. The form of the arithmetic IF statement is:

IF (expression) sl, s2, s3

The 'expression' in the description must be an INTEGER, INTEGER*I,
INTEGER*2, INTEGER*4, REAL, REAL*4, REAL*8 or DOUBLE
PRECISION expression.

'sl', 's2' and 's3' are the statement labels of executable statements that
appear in the same program unit as does the arithmetic IF statement itself. The

FORTRAN Reference Manual Page 59

Control Statements Chapter 9

same statement label can appear more than once among the three labels.

The effect of the arithmetic IF statement is to evaluate 'expression' and "
select a label based upon the value.

The statement labeled by 'sl' is executed if the value of the expression is
less than zero.

The statement labeled by 's2' is executed if the value of the expression is
zero.

The statement labeled by 's3' is executed if the value of the expression is
greater than zero.

The next statement executed is the statement labeled by the selected
label. None of the labels may appear within the range of a DO loop or inside
an IF, ELSEIF or ELSE block, unless the arithmetic IF statement itself is also,
in the same range or block.

Example of the Arithmetic IF Statement

IF (I - 100) 20, 30, 40
C

c

C

20 PRINT *, 'I is less than 100'
STOP

30 PRINT *, 'I is exactly 100'
STOP

40 PRINT *, 'I is more than 100'
STOP

9.4 DO Statement - Loop Control

A DO statement block is used for "loop control" purposes such as
applying some operation to each element of an aggregate. The form of a DO
statement is:

DO s [,] i=el, e2 [, e3]

's' is the statement label of an executable statement. The label must follow
this DO statement and be contained in the same program unit.

'i' is an integer, real or double precision variable, called the DO-variable.

'el', 'e2' and 'e3'
are each an integer, real or double precision expression.

The statement labeled by's' is called the "terminal statement" of the DO
statement. The terminal statement must not be an unconditional GO TO,
assigned GO TO, arithmetic IF, block IF, ELSEIF, ELSE, ENDIF, RETURN,

Page 60 FORTRAN Reference Manual

Chapter 9 Control Statements

STOP, END or another DO statement. If the terminal statement is a logical
IF, it may contain any executable statement except those not permitted inside a
logical IF statement.

A DO statement is said to have a "range", beginning with the statement
which follows the DO statement and ending with (and including) the terminal
statement. If a DO statement appears in the range of another DO loop, its
range must be entirely contained within the range of the enclosing DO loop. If
a DO statement appears within an IF block, ELSEIF block or ELSE block, the
range of the associated DO loop must be entirely contained in the particular
block. If a block IF statement appears within the range of a DO loop, its
associated ENDIF statement must also appear within the range of the DO loop.
More than one DO loop can have the same terminal statement.

The DO control variable, 'i', must not be set by any statement within the
range of the DO loop associated with that control variable.

Transfer of control into the range of a DO loop from outside the range of
a DO loop is not allowed.

9.4.1 DO Loop initialization Sequence

Execution of a DO statement causes the following events to happen in
order:

• the expressions 'el', 'e2' and 'e3' are evaluated, with conversion to the
type of the DO variable if necessary, according to the rules specified for
type conversion in the chapter on "Assignment Statements". If 'e3' is
omitted, a default value of 1 is used. If 'e3' is present, it must not
evaluate to zero,

• the DO variable 'i' is set to the value of 'el "

• The iteration count for the DO loop is computed as:

MAX(INT«e2 - el + e3) I e3), 0)

which may be zero,

• The iteration count is tested; if it exceeds zero, the statements in the
range of the DO loop are executed.

9.4.2 DO Loop incrementation Processing

After the terminal statement of the DO loop is executed, the following
events occur in order:

• The value of the DO control variable 'i' is incremented by the value of
'e3' which was computed when the DO statement was executed,

FOR TRAN Reference Manual Page 61

Control Statements Chapter 9

• The iteration count is decremented by one 0),

• The iteration count is tested; if it exceeds zero, the statements in the
range of the DO loop are executed again.

The value of the DO control variable is well-defined, whether the DO
loop is exited as a result of the iteration count being zero, or as a result of an
explicit transfer of control out of the DO loop.

Example of the Final Value of a DO Control Variable

C This program fragment prints the number
C 1 thru lIon the console

DO 200 I = 1, 10
200 WRITE(*, '(I5)') I

WRITE(*, , (I5)') I

9.4.3 Events Which Terminate a DO Loop

A DO loop is exited under the following conditions:

• when its iteration count is zero, as described above under "DO Loop
Execution Sequence",

• a RETURN statement is executed within the range of the DO loop,

• control is transferred to a statement in the same program unit but outside
the range of the DO loop,

• a subroutine called from within the range of the DO loop returns via an
alternate return specifier to a statement which is outside the rang~ of the
DO loop,

• the program terminates for any reason.

9.5 CONTINUE Statement - Null Statement

The CONTINUE statement is a "null" or "no operation" statement. It can
appear just as any other statement in a program. CONTINUE has no effect on
program execution. CONTINUE is almost always used as the final statement
in a DO block, when the DO block would otherwise end in a statement that is
disallowed in that context. The form of a CONTINUE statement is:

CONTINUE

Page 62 FOR TRAN Reference Manual

Chapter 9

9.6 STOP Statement - Stop Program Execution

The form of a STOP statement is:

STOP [n]

Control Statements

where 'n' is either a character constant or a string of not more than five digits.
The effect of executing a STOP statement is to cause the program to terminate.
If the argument 'n' is present on the STOP statement, it is displayed on the
console upon termination.

9.7 PAUSE Statement - Suspend Program Execution

The form of a PAUSE statement is:

PAUSE [n]

where 'n' is either a character constant or a string of not more than five digits.
The effect of executing a PAUSE statement is to cause the program to be
suspended until there is an indication from the console that the program
should proceed. If the argument 'n' is present on the PAUSE statement, it is
displayed on the console as part of a prompt, requesting input from the
console. If the indication is received from the console, program execution
resumes as if a CONTINUE statement had been executed.

9.8 Unconditional GO TO Statement

The unconditional GO TO causes an unconditional transfer of control to
a specific labeled statement. The form of the unconditional GO TO statement
is:

GO TO statement label

The 'statement label' which is the target of the GO TO statement must
be defined within the same program unit as the GO TO statement. The 'label'
must be the statement label of an executable statement. Transfer of control
into a DO, IF, ELSEIF or ELSE block from outside such a block is not
allowed.

9.9 Computed GO TO Statement

A computed GO TO statement acts as a means of transferring control to
one out of a set of labeled statements, depending on the value of an
expression. The form of the computed GO TO statement is:

GO TO (s [,s] .. .) [,] i

where 'i' is an integer expression and each's' is a statement label of an
executable statement in the same program unit as the computed GO TO

FORTRAN Reference Manual Page 63

Control Statements Chapter 9

statement. The same statement label may appear more than once in the list of
statement labels.

The effect of the computed GO TO statement is to evaluate the integer
expression indicated by 'i' to a value, say n. Control is then transferred to the
n'th statement label in the list, counting from 1. If the value of n is less than
1, or if the value of n is greater than the number of statement labels in the
list, the computed GO TO statement has no effect, and program execution
proceeds as if a CONTINUE statement had been executed.

The same restrictions on transfer of control apply to the computed GO
TO statement as those that apply to the unconditional GO TO statement.

Example of Computed GO TO Statement

WHERE = 3
GO TO (100,200,300,400,500), WHERE

..... execution continues here when 5 < WHERE <
C

100 statements executed if WHERE = 1
C

200 statements executed if WHERE = 2
C

300 statements executed if WHERE = 3
C

400 statements executed if WHERE = 4
C

500 statements executed if WHERE = 5

9.10 Assigned GO TO Statement

The assigned GO TO statement uses the value of an integer variable as a
statement label which is to be the target of a GO TO statement. The effect is
as if an unconditional GO TO had been made to that statement label. The
form of the assigned GO TO is:

GO TO i [[,1 (s[, s1 .. ,)1

where 'i' is the name of an integer variable and each's' is a statement label of
an executable statement in the same program unit as the assigned GO TO
statement. The same statement label may appear more than once in the list of
statement labels in an assigned GO TO statement.

At the time the assigned GO TO is executed, the integer variable 'i' must
.be defined with the value of a statement label of an executable statement
which appears in the same program unit as the assigned GO TO statement.
That variable must have been defined with an ASSIGN statement. The

Page 64 FORTRAN Reference Manual

Chapter 9 Control Statements

integer variable ~i~ must be of type INTEGER or INTEGER*4. It must not be
of type INTEGER*1 or INTEGER*2.

If the optional, parenthesized list of statement-labels is present, the value
of the integer variable 'i' must be that of one of the statement-labels in the
list. The same restrictions apply to the assigned GO TO statement as those
that apply to the unconditional GO TO statement.

Example of Assigned GO TO Statement

ASSIGN 645 TO SYSTEM
GO TO SYSTEM, (360, 370~ 635, 645, 1108)

645 statements starting here will be executed
because 'SYSTEM' has the value 645.

FOR TRAN Reference Manual Page 65

Input and Output Chapter 10

Chapter 10 - Input and Output

This chapter and Chapter 11 describe the FORTRAN input-output
system. This chapter covers the basic concepts of input and output in
FORTRAN. Chapter 11 describes the FORMAT statement. Topics covered in
this chapter and Chapter 11 are:

• an overview of the input-output system. Covers the basics of the
FORTRAN file system. Defines the ideas of records, units and various
forms of file access,

• a general coverage of the input-output system,

• input-output statements are covered, with the exception of the FORMAT
statement, which is covered in Chapter 11.

10.1 Overview of the Input-Output System

This section introduces the basic terms and concepts of the FORTRAN,
input-output system. Most tasks related to input-output can be done without a
full understanding of this section, so the reader can skip to the next section on
first reading and use this section for subsequent reference purposes.

10.1.1 Records

A record is the building block of the FORTRAN input-output system. A
record is a sequence of characters or a sequence of values. There are three
forms of records:

• Formatted records,
• Unformatted records,
• Endfile records.

A formatted record is a sequence of characters terminated by the character
value corresponding to the "end-of-line" key on a terminal (character value 13,
or 10, or both, depending on the particular operating system). Formatted
records are interpreted consistently on input the same way that the underlying
operating system and any text editor interprets characters. A formatted record

Page 66 FORTRAN Reference Manual

Chapter 10 Input and Output

therefore corresponds to the notion of a "line" from a device. Formatted files
are normally transportable between different language processors and other
text-processing applications.

An unformatted record is a sequence of values. The system does not alter
or interpret such records in any way; neither is there any representation for an
end-of-record as is the case with a formatted record. Unformatted files are
generally not transportable between different language processors or computers
because of differences in the external representations of data.

An endfile record has no physical existence in a file, but the underlying
input-output system supplies an indication of one, as if there had been some
actual record after the last record in a file.

10.1.2 Files

A FORTRAN file is a sequence of records. FORTRAN files are either
External or Internal.

An external FORTRAN file is a file on a physical peripheral device or it is
an actual peripheral device.

An internal FORTRAN file is a character variable which is to serve as the
source or destination of some input-output action.

From here on, FORTRAN files and the files known to the underlying
operating system and any text processors are simply called "files". The correct
meaning is determined by the context. The OPEN statement provides the
association between the two notions of files, and in most cases, there is no
ambiguity after the file is opened - the two notions of a file being the same.

10.1.3 Properties of Files

A file which is being operated upon by a FORTRAN program has a
number of properties which are described in the paragraphs below. File
properties which are discussed below encompass:

• Name of the file,
• Position of the file,
• Record format,
• Access method.

10.1.3.1 File Name

A file can have a name. If the name is present, it is a character string
identical to that by which it is known to the operating system. A file can have
a name such as '/source/fourier.text'.

FORTRAN Reference Manual Page 67

Input and Output Chapter 10

10.1.3.2 File Position

A file has the property of position which is usually established by the
preceding input-output operation. There is the notion of the beginning-of-file,
endfile, the current record, the preceding record, and the next record in the
file. It is possible to be between records, in which case the next record is the
successor to the previous record, and there is no current record. The position
of the file after a sequential write is the endfile but not beyond the endfile
record. Executing an ENDFILE statement positions the file beyond the endfile
record. A READ statement executed at end-of-file (but not beyond the endfile
record) positions the file beyond the endfile record.· The user can trap reading
of an endfile record via the END = option in a READ statement.

10.1.3.3 Formatted and Unformatted Files

An external file is opened as either formatted or unformatted. Internal
files are always formatted. Formatted files consist entirely of formatted
records. Unformatted files consist entirely of unformatted records. Formatted
files have the structural properties of being a sequence of lines with end-of-line
indicators (usually carriage-return).

10.1.3.4 Sequential and Direct Access Files

An external file is opened as either sequential access or direct access.
Sequential files contain records in an order determined by the order in which
they were written. Sequential files must not be read or written using the
REC = option which specifies a position for direct-access input-output. The
system attempts to extend sequential access files if a record is written beyond
the old endfile, if there is enough room to do this on the external devic~.

Direct-acc~ss files can be written in any order (random access). Records
in a direct-access file are numbered sequentially with the first records having
the number one (1). All records in a direct-access file have the same length,
specified when the file is opened. Each record in the file is uniquely referenced
by its record number, specified at the time the record is written. Records can
be written out of order, with holes in the sequence if desired. For example,
records 9, 5 and 11 could be written in that order without writing the
intermediate records. Once written, a record cannot be deleted, but a record
can be rewritten with a new value. It is an error to read a record that has not
yet been written, but the system can only detect this if the attempted read is to
a record beyond the highest numbered record in the file. Direct-access files
must reside on block-structured storage devices, such that a position in the file
is meaningful. The system attempts to extend a direct-access file if a write is
made to a position beyond the current highest numbered record in the file, but
the success of this depends on the amount of space on the storage device.

Page 68 FORTRAN Reference Manual

Chapter 10 Input and Output

10.1.4 Internal Files

Internal files provide a means for using the formatting capabilities of the
input-output system to convert values to and from their external character
representations, within FORTRAN's internal storage structures. That means
that reading from a character variable converts the character values into
numeric, logical or character variables. Writing to a character variable converts
values into their external character representation.

10.1.4.1 Special Properties of Internal Files

An internal file is a character variable, character array element, character
array or character substring.

A record of an internal file is a character variable, character array element
or character substring.

If an internal file is a character variable, character array element or
character substring, such a file has exactly one element, whose length is that of
the character variable, character array element or character substring. If an
internal file is a character array, each element of that array is a record of the
file, with each record being the same length.

If less than an entire record is written by a WRITE statement, the
remainder of the record is filled with spaces.

The position of an internal file is always at the beginning of file prior to
executing any input-output statement. Only sequential, formatted input-output
is allowed on an internal file. Only the READ and WRITE statements can
reference an internal file. List-directed input-output is not allowed on an
internal file.

10.1.5 Units

A unit is a means of specifying a file. A unit specified in an input-output
statement is either of:

• External unit specifier,
• Internal unit specifier.

An external unit specifier is either a positive integer expression or the
character'" which stands for the Standard Input and Standard Output files for
the running program. In most cases, external unit specifiers are bound to
physical devices (or files on those devices) by name when the OPEN statement
is executed. Once this binding of a value to a system file name has occurred,
FORTRAN input-output statements refer to the unit number as a means of
referring to the external object. Once opened, the external unit specifier is
uniquely associated with the external device or file until an explicit CLOSE
statement is executed or until the program terminates.

FORTRAN Reference Manual Page 69

Input and Output Chapter 10

Unit specifier 0 (zero) is initially associated with the Standard Input and
Standard Output files for reading and writing (respectively) and an explicit
OPEN statement is not needed. The system interprets the character * as
specifying unit O. Similarly, the unit specifier 1 (one) is associated with the
Standard Error file if one exists in the system, or the Standard Output
otherwise. No other unit specifiers are initially available (without explicit
OPEN statements) and in particular, unit specifiers 5 and 6 have no special or
initial properties as they had in certain earlier FORTRAN dialects.

An internal unit identifier is the name of a character variable, character
array, character array element or character substring. Internal unit specifiers
may only be used in the READ, WRITE and PRINT statements - they are
not allowed in any of the auxiliary input-output statements such as OPEN,
CLOSE, INQUIRE and so on.

10.2 General Discussion of the Input Output System

FORTRAN supplies a rich selection of possible file structures. At first
there might seem to be a confusing array of choices. However, two sorts of
files will probably suffice for most applications .

• The Standard Input and Standard Output files. These are referred to as
unit 0 or by the character *. The Standard Input and Output files are
sequential, formatted files. When reading from the Standard Input, the
backspace and line-delete keys familiar to the user have their normal
editing functions. The Standard Output file has the special property that
it is possible to write partial lines to it (lines which are not terminated by
a carriage-return) by using the ., \., or "$" edit descriptors. These edit
descriptors are described in the next chapter. Writing to any other unit
does not have this property, even if that unit is explicitly bound. to the
Standard Output file by an OPEN statement.

• Explicitly-opened external, sequential, formatted files. These files are
bound to a system file by name in an OPEN statement. These files can
be processed by system editors and other text-processing utilities.

10.2.1 Pre-Connected Files

The FORTRAN run-time system preconnects unit 0 to the Standard
Input and Standard Output files, as mentioned above. On those operating
systems which support a standard error file, the FORTRAN run-time system
also preconnects unit 1 to that stream. On those systems which do not support
a standard error file, the FORTRAN run-time system preconnects unit 1 to the
same place as the Standard Output.

Page 70 FORTRAN Reference Manual

Chapter 10 Input and Output

10.2.2 Examples o/Common Input Output Operations

Here is an example program reading and writing the sorts of files
discussed in the paragraph above. The specific input-output statements are
discussed in detail in the next section.

C Copy a file containing three columns of integers,
C each column being 7 characters wide. The user
C supplies the name of the input file. The output
C file is called OUT.TEXT. The first and second
C columns are swapped.
C

C

PROGRAM SWITCH
CHARACTER*23 FNAME
INTEGER FIRST, SECOND, THIRD

C Prompt to the Standard Output by writing to *.
C

WRITE(*,900)
900 FORMAT('Input file name - '\)

C
C Read the file name from the Standard Input by reading *.
C

READ(*, 910) FNAME
910 FORMAT(A)

C
C Use unit 3 for input - any unit but 0 will do.
C

OPEN(3, FILE=FNAME)
C
C Use unit 4 for output - any but 0 and 3 are ok.
C

OPEN(4, FILE='OUT.TEXT\ STATUS='NEW')
C
C Read and write until end-of-file.
C

100 READ(3, 920, END=200) FIRST, SECOND, THIRD
WRITE(4, 920) SECOND, FIRST, THIRD

C

920 FORMAT(317)
GO TO 100

200 WRITE(*, 910) 'Done Copying'
END

FOR TRAN Reference Manual Page 71

Input and Output Chapter 10

10.2.3 Less Common File Operations

The less common file structures are suitable for certain classes of
applications. In general, the application areas are these:

Direct-access files are suitable for random access applications such as
maintaining a database.

Unformatted files are more efficient in input-output overhead and in file
space requirements. Unformatted access can be used if data is to be written
and read by FORTRAN on the same processor.

The combination of direct-access and unformatted files is ideal for a
database management facility to be accessed exclusively through the
FOR TRAN system.

If data is to be transferred without any system interpretation (especially if
all 256 character combinations are needed), unformatted input output is
necessary, since .TEXT files are limited to the printable character set. A good
example of unformatted input-output usage is to control a device with a
single-byte binary interface. In this situation, formatted input-output would
interpret certain characters (such as carriage-return) and would change their
meanings in certain ways.

Internal files are not input-output in the conventional sense but they
provide valuable character string operations and conversion via a standard
mechanism.

Formatted direct-access files require special care. FORTRAN formatted
files try to comply with the operating system's rules for ASCII files. This
allows standard system utilities such as editors to be used on these files. The
FOR TRAN input-output system is able to enforce these rules for sequential
files, but cannot always enforce them for direct-access files. Direct-access files
are not necessarily valid ASCII files and may not work properly with other
system utilities, since any unwritten records leave "holes" which do not follow
the operating system's rules for ASCII files. Direct-access files do, of course,
follow FORTRAN'S input-output rules.

A file opened in FORTRAN is either "old" or "new". There is no notion
of "open for reading" as distinct from "open for writing". Therefore "old"
(existing) files may be opened and written on, with the effect of changing an
existing file. Similarly the same file may be alternately read from and written
to, providing that no attempts are made to read beyondend-of-file or to read
unwritten records in direct-access files. A write to a sequential file effectively
deletes any records which existed beyond the fresh record. Normally, when a
device (such as a terminal) is opened as a file, it makes no difference whether
it is "new" or "old". With disk files, opening "new" creates a new file. If that
file is closed with the "keep" option, or the program terminates before a
CLOSE is performed on that file, a permanent file is created with the name
given when the file was opened. If a file is closed using the "delete" option, the

Page 72 FORTRAN Reference Manual

Chapter 10 Input and Output

newly created file is deleted. In either case, if a file existed previously with the
same name, the prior version is deleted. Opening a disk file as "old" generates
a run-time error if the file does not exist; if it does exist, any writes to that file
change its contents.

10.2.4 Limitations of FORTRAN Input Output System

This subsection discusses specific limitations that FORTRAN's input
output system imposes.

10.2.4.1 Direct Files must be on Blocked Devices

The operating system underlying FORTRAN has two kinds of devices,
namely blocked and sequential.

Sequential files can be considered a stream of characters with no explicit
positioning; the only operations are reading and writing. The Standard Input
and Standard Output are examples of sequential devices.

Blocked devices, such as disks, have the additional capability to seek to a
specific position. Blocked devices can be accessed either sequentially or
randomly and therefore can support direct-access files. Since there is no notion
of seeking to a position on an unblocked file, FORTRAN prohibits direct
access to sequential devices.

10.2.4.2 No Character Compression in Direct Files

Direct-access formatted files must not contain any character compression
information.

10.2.4.3 BACKSPACE Only Applies to Files on Blocked Devices

BACKSPACE can only be performed on files associated with blocked
devices, it cannot be applied to sequential devices.

10.2.4.4 Length Limitations on Formatted Records

Formatted recoI:ds must not be greater than 512 characters in length,
including the terminating carriage-return character.

10.2.4.5 BACKSPACE may not be used on Unformatted Sequential Files

It is not possible to apply the BACKSPACE statement to an unformatted
sequential file, because such a file contains no indications of its record

FORTRAN Reference Manual Page 73

Input and Output Chapter 10

boundaries. In principle it is possible to place end-of-record marks in such a
file format, but this conflicts with the notion of an unformatted file as a "pure"
sequence of values. Any structure imposed upon unformatted sequential files
would interfere with their most common application, which is direct control of
external instruments.

10.2.4.6 Side Effects of Functions Used in Input Output Statements

During execution of any input-output statement, expression evaluation
can reference functions. Any function so referenced must not execute any
other input-output statement.

10.3 Elements of Input and Output Statements

This section describes the elements that comprise input and output
statements that FORTRAN supports. The next section covers the individual
input-output statements in detail.

FOR TRAN input-output statements require certain arguments and
parameters which specify sources and destinations of data transfer, as well as
other aspects of the operation.

10.3.1 The Unit Specifier 'u'

The unit specifier indicates the unit to be used in input-output operations.
The format of a unit specifier is:

[UNIT=] u

where 'u' is an external or internal unit identifier.

The unit identifier, 'u', can take one of these forms in an input-output
statement:

* refers to the Standard Input or Standard Output files.

positive integer expression
refers to an external file whose unit number is that of the expression.
Unit 0 is the same as * - the Standard Input or Standard Output files.

name the name of a character variable, character array, character array
element or character substring.

In all input-output operations, if the UNIT= keyword is omitted, the
unit specifier, 'u', must be the first item in the list of specifiers.

Page 74 FOR TRAN Reference Manual

Chapter 10 Input and Output

10.3.2 The Format Specifier 'I'

The format specifier is used to designate format lists when performing
formatted input-output. The form of the format specifier is:

[FMT=] f

where 'r is the format identifier, and can take one of these forms in an input
output statement:

statement label
refers to the FORMAT statement labeled by that statement label.

integer variable name
refers to the FORMAT label assigned to that integer variable using the
ASSIGN statement.

character expression
the current value of the character expression is the format specifier.

asterisk character '.'
the asterisk is used to specify list-directed formatting.

If the FMT= keyword is omitted in a list of specifiers, the format
specifier, 'r, must be the second item in the list and the unit specifier, 'u',
must be the first item in the list, with the UNIT = keyword omitted.

See Chapter 11 for a complete description of the format list and the
elements it may contain.

10.3.3 The Record Number 'm'

The record number is used in direct-access input-output only. It specifies
the number of the record to be read or written. The format of the record
number specifier is:

REC=rn

where 'rn' is the record number. The record number must be a positive
integer.

10.3.4 The End of File Exit Specifier

The end-of-file exit specifier designates a statement label at which
execution is to start when an end-of-file condition occurs while reading from a
file. The format is:

END=s

where 's' is a statement label in the same program unit as the READ
statement.

FORTRAN Reference Manual Page 75

Input and Output Chapter 10

10.3.5 The Error Exit Specifier

The error exit specifier designates a statement label at which execution is
to start when any errors occur during execution of an input-output statement.
The format of the error exit specifier is:

ERR=s

where 's' is a statement label in the same program unit as the input-output
statement.

10.3.6 The Input Output Status specifier 'ios'

The input-output status specifier specifies an integer variable into which
an input-output status value is placed when the current input-output statement
completes. The format of the specifier is:

IOSTAT=ios

where 'ios' is the name of an integer variable or integer array element. The
integer variable specified by 'ios' must be an INTEGER (or INTEGER*4).
When an input-output statement containing this specifier terminates, 'ios'
becomes defined with the following values:

zero (0) indicates that the input-output operation completed normally.
There were no errors and end-of-file was not encountered,

negative value indicates that an end-of-file was encountered during a READ
statement,

positive value indicates that an error condition occurred during the input
output statement.

10.3.7 The Input-Output List 'io/is!'

The input-output Iist- 'iolist' - specifies the objects whose values are
transferred by READ and WRITE statements. An 'iolist' can be empty. If an
'iolist' is present, it is a list of elements separated by commas. Items in the list
consist of:

• Input and output objects,
• Implied DO lists.

These two forms of 'iolist' are discussed in the two paragraphs below.

10.3.7.1 Input and Output Objects

An input or output object can be sPecified in the
WRITE or PRINT statement and is one of these forms:

~ n~ ... T"'
UI it 1.'\.1:.1"\1...1,

Page 76 FORTRAN Reference Manual

Chapter 10 Input and Output

• Variable name,

• Array element name,

• Character substring name,

• Array name. This form is a means of specifying all the elements of the
array, in the order in which they are stored internally,

• On output only, any other expression except a character expression which
concatenates an assumed length character string.

Example of Input and Output

WRITE (0, 100) 'Results are: " widget, blivet(j, 4)
100 FORMAT (A, IS, FI0.S)

10.3.7.2 Implied DO Lists

Implied-DO lists can be specified as items in the 'iolist' of READ,
WRITE and PRINT statements and are of the form:

(dlist, i = el, e2 [, e3])

where the 'dlist' is an 'iolist' as defined previously ..

In a READ statement, the DO variable, 'i', (or an associated object)
must not appear as an input list item in the embedded 'dlist', but can be read
in the same READ statement outside of the implied-DO list.

The embedded 'dlist' is effectively repeated for each iteration of 'i' with
appropriate substitution of values for the DO control variable 'i'.

Example of an Implied DO List

WRITE (0, 150) (jinx{i), i = 1, 100)
150 FORMAT (1017)

In the example above, the variable 'i' iterates through 100 elements of
the array 'jinx'. The format specified in the FORMAT statement causes the
results to be placed 10 per line on the output.

10.4 The Specific Input and Output Statements

The following input-output statements are supported in the FORTRAN
system. The possible form of each statement is specified first, with an
explanation of the meanings of the following forms. Certain items are
specified as required if they must appear in the statement and are specified as
optional if they need not appear in the statement. Optional items normally
result in a default which is indicated if the item is omitted.

FORTRAN Reference Manual Page 77

Input and Output Chapter 10

10.4.1 OPEN Statement

The format of the OPEN statement is:

OPEN (open list)

where 'open list' is a list of specifiers as described below. The argument list,
'open list' must contain one unit specifier and may contain one of each of the
other specifiers listed.

[UNIT=]u 'u' is the unit specifier. It must not be an internal unit
specifier. If the UNIT= keyword is omitted, the 'u' argument
must be first in the argument list to OPEN.

lOST AT = ios 'ios' is an input-output status specifier as defined above in
"Elements of Input and Output Statements".

ERR = s .. is an error exit specifier as defined above in "Elements of
Input anq Output Statements".

FILE=fname The file name 'fname' is a character expression. If the
'fname' argument is omitted, OPEN opens a an anonymous
file with a status of 'SCRATCH' (see below). This file is
automatically deleted when CLOSE'd or upon program
termination.

ST A TUS = sta 'sta' is the status of the file when opened. 'sta' is a character
expression whose value must be one of 'OLD', 'NEW',
'SCRATCH' or 'UNKNOWN'. 'OLD' is the default for
reading or writing existillg files. 'NEW' may be used for
writing new files. If the 'OLD' or 'NEW' keywords are used,
the FILE= argument must be supplied. If 'SCRATCH' is
specified, the file is deleted when a CLOSE is performed on
that file. If 'UNKNOWN' is specified, it is treated the same as
if 'OLD' had been specified.

ACCESS = acc specifies the access mode for this file. 'ace' is a character
expression whose value must be either 'SEQUENTIAL' or
'DIRECT'. 'SEQUENTIAL' is the default.

FORM=fm

RECL=rl

specifies whether the file is formatted or unformatted. 'fm' is
a character expression whose value must be either
'FORMATTED' or 'UNFORMATTED'. 'FORMATTED' is
the default.

The record length 'rl' is an integer expression. This argument
to OPEN is for DIRECT -access files only and is required for
that file type.

BLANK=blnk 'blnk' controls the default treatment of blanks (spaces) in
formatted reads, which can be altered, in a particular
formatted READ, by a BN or BZ edit-descriptor in a format

Page 78 FORTRAN Reference Manual

Chapter 10 Input and Output

specification. 'blnk' is a character expression whose value
must be either 'NULL' or 'ZERO'. The default is 'NULL'. If
'NULL' is specified, all spaces are ignored in numeric input
fields. If 'ZERO' is specified, all spaces other than leading
spaces are treated as zeros.

BUFFERED== 'buffered'
The BUFFERED option selects buffered or unbuffered input
or output on a unit in the system. If the option is
'BUFFERED', buffered input output is selected. If the option
is 'UNBUFFERED', unbuffered input output is selected.
Note that the operating system might override the option.
Some operating systems show a substantial improvement in
throughput if the 'BUFFERED' option is selected. All files
are opened with the 'BUFFERED' option by" default, except
for the. unit and unit 1 (the standar~ errod.

The OPEN statement binds a unit number with an external device, or file
on an external device, by specifying its file name. If the file is to be a direct
access file, the REeL == rl option specifies the length of records in that file. If
the unit specified in an OPEN statement is already open, it is closed before
being bound to a file.

10.4.2 CLOSE Statement

The format of the CLOSE statement is:

CLOSE(close list)

where 'close list' is a list of specifiers. 'close list' must contain an external unit
specifier and at most one of any of the other specifiers, which are as follQws:

[UNIT==]u 'u' is the unit number of an external unit. If the UNIT==
keyword is omitted, the unit specifier, 'u', must be the first
specifier in the list.

IOSTAT==ios 'ios' is an input-output status specifier as defined above in
"Elements of Input and Output Statements".

ERR==s 's' is an error exit specifier as defined above in "Elements of
Input and Output Statements".

STATUS=sta 'sta' is an optional argument which dictates the disposition of
the file after it is CLOSE'd. 'sta' is a character expression
whose value must be either 'KEEP' or 'DELETE'.

CLOSE disconnects the specified unit and prevents input';'output from
being directed to that unit (unless the same unit number is re-opened, possibly
bound to a different file or device). Files are discarded if
STATUS=='DELETE' is specified. Normal termination of a FORTRAN

FORTRAN Reference Manual Page 79

Input and Output Chapter 10

program automatically closes all open files as if a CLOSE with
ST ATUS = 'KEEP' had been specified. STATUS = 'KEEP' should not be
specified for a file which was opened as 'SCRATCH'.

10.4.3 READ, WRITE and PRINT Statements

The READ statement transfers data into storage. The WRITE and
PRINT statements transfer data from storage. All three statements have
similar forms, as defined here:

READ (control list) [iolist]

READ f [, iolist]

WRITE (control list) [iolist]

PRINT f [, iolist1

where 'f' and 'iolist' are a format identifier and an input-output list as
previously described in "Elements of Input and Output Statements". Note that
the PRINT statement has no connection with "printing" on the system printer
device (even if such a device exists).

The 'control list' is a list whose elements may be any of the following:

[UNIT=] u

[FMT=] f

is a unit specifier. If the optional UNIT = keyword is omitted
from the specifier, the unit specifier, 'u', must be the first item
in the list.

is a format specifier. If the optional FMT= keyword is
omitted from this specifier, the format specifier, 'f', must be
the second item in the list and the first item must then be the
unit specifier, 'u', without the UNIT = keyword.

REC=rn is a record number specifier. If this specifier is included in the
list, the statement is a direct-access data transfer statement,
otherwise the statement is a sequential access data transfer.

IOSTAT=ios 'ios' is an input-output status specifier as defined above in
"Elements of Input and Output Statements".

ERR = s 's' is an error exit specifier as defined above in "Elements of
Input and Output Statements".

END = s is an end-of-file exit specifier as defined above in "Elements of
Input and Output Statements". This specifier is only applicable
to the READ statement.

If the 'control list' contains a format specifier, the statement is a
formatted input-output statement, otherwise it is an unformatted input-output
statement.

Page 80 FOR TRAN Reference Manual

Chapter 10 Input and Output

If the format identifier is an asterisk character, '.', the statement is a
list-directed input-output statement. In this case, the record specifier must not
appear in the 'control list'.

List-directed input-output must not be done on an internal file. If the
unit specifier designates an internal file, the 'control list' must not contain a
record specifier.

The end-of-file specifier must not appear in the 'control list' for a WRITE
or PRINT statement.

The 'control list' must not contain both a record specifier and an end-of
file specifier.

10.4.4 File Positioning Statements

FORTRAN supplies three statements which position files explicitly:

BACKSPACE to backspace a file by one record.

ENDFILE

REWIND

to write an endfile record on a file.

to position or re-position a file at its first record.

Each of the file positioning statements has two different forms:

BACKSPACE u
BACKSPACE (alist)

ENDFILE u
ENDFILE (alist)

REWIND u
REWIND (alist)

In each case, the 'u' is a unit number. The 'aUst' is a parenthesized list
of specifiers of the form:

[UNIT=]u 'u' is a unit specifier for the unit. This argument is required.
If the UNIT= keyword is omitted, the 'u' argument must be
first in the list.

IOSTAT=ios 'ios' is an integer variable which is assigned the status of the
specific input-output statement. 'ios' is defined previously in
"Elements of Input and Output Statements".

ERR =s 's' is a statement label to which control is passed if there are
any errors· in the input-output statement. The statement label
's' must appear in the program unit that contains the input
output statement. 's' is defined previously in "Elements of
Input and Output Statements".

FORTRAN Reference Manual Page 81

Input and Output Chapter 10

10.4.4.1 BACKSPACE Statement - Backspace a File

BACKSPACE positions the file connected to the specified unit, before
the preceding record. If there is no preceding record, the file position is not
changed. If the preceding record is the endfile record, the file is positioned
before the endfile record.

A non-connected unit may be BACKSPACE'd without any error. In
other words a BACKSPACE command issued against a non-connected unit has
no effect.

BACKSPACE can only be issued on units which are sequential
formatted. BACKSPACE must not be applied to a sequential-unformatted file.

10.4.4.2 ENDFILE Statement - Write an Endfile Record

ENDFILE "writes" an endfile record as the next record on the file
connected to the specified unit 'u'. The file is then positioned after the endfile
record, so that further sequential data transfers are prohibited until either a
BACKSPACE or a REWIND statement is executed.

10.4.4.3 REWIND Statement - Rewind a File

The REWIND statement positions the file associated with the unit 'u' to
its initial point. The unit must be sequential.

A non-connected unit may be rewound without any error. In other
words a REWIND command issued against a non-connected unit has no effect.

10.4.5 1NQUIRE Statement - Obtain File Properties

The INQUIRE statement is used to obtain information about the
properties of a particular named file or about the connection to a particular
unit. There are two forms of INQUIRE, namely, inquire by file and inquire by
unit.

The INQUIRE statement can be executed before, while or after a file is
connected to a unit. Any values assigned as a result of INQUIRE are values
which are current at the time the INQUIRE is executed. The two forms of
the INQUIRE statement are:

INQUIRE(iflist) or INQUIRE(iulist)

where 'iflist', used for the inquire by file form, is a list of specifiers containing
exactly one file specifier and 'iulist', used for the inquire by unit form, is a list
of specifiers containing exactly one unit specifier. Both forms may then
contain other specifiers as described below. The format of the file specifier is:

Page 82 FORTRAN Reference Manual

Chapter 10 Input and Output

FILE=fin

where 'fin' is a character expression which, when trailing spaces are removed,
is the name of the file which is the subject of the inquiry. The named file does
not need to exist or to be connected to a unit.

The form of the unit specifier is as described previously in "Elements of
Input Output Statements". The unit specified does not have to exist, nor be
connected to a file. If the unit is connected to a file, the inquiry is being made
about the connection and the file connected to it.

The remainder of the list in the INQUIRE statement is the inquiry
specifiers. This is a list of one or more inquiry specifiers as described below.
There may be only one of each inquiry specifier. Furthermore, each variable
name may only appear once in the list of specifiers, in other words, the same
variable name must not be given to more than one specifier.

The inquiry specifiers are summarized here and described in more detail
below.

IOSTAT=ios
ERR=s
EXIST=ex
OPENED=od
NUMBER=num
NAMED=nmd
NAME=fn
ACCESS = acc
SEQU ENTIAL = seq
DIRECT=dir
FORM=fm
FORMATTED=fmt
UNFORMATTED=unf
RECL=rcl
NEXTREC=nr
BLANK=blnk

In every case where an integer variable is specified, it must be an
INTEGER*4 (which is the same as INTEGER). In all cases where a logical
variable is specified, it must be a LOGICAL*4 (which is the same as
LOGICAL). The specifiers given here are as defined previously in "Elements
of Input and Output Statements". The meaning of each of the inquiry
specifiers is as follows:

IOSTAT=ios is an input-output status specifier. The variable 'ios'
is set to zero (O) by the INQUIRE statement.

FORTRAN Reference Manual Page 83

Input and Output

ERR=s

EXIST=ex

OPENED=od

NUMBER=num

NAMED=nmd

NAME=fn

ACCESS=acc

SEQUENTIAL=seq

DIRECT=dir

Page 84

Chapter 10

's' is a statement label to which control is passed if
an error occurs. The INQUIRE statement never
causes any error conditions.

'ex' is a LOGICAL*4 variable. If a file with the
specified name exists (in the FORTRAN milieu) 'ex'
is set to .TRUE., else 'ex' is set to .FALSE. For an
inquire by unit, 'ex' is set to true if and only if the
unit actually exists. 'ex' always gets defined by the
INQUIRE statement.

'od' is a LOGICAL*4 variable. If the specified file is
opened (connected to a unit), 'od' is set to .TRUE.,
else 'od' is set to .FALSE. 'od' always gets defined
by the INQUIRE statement.

'num' is an INTEGER*4 variable. 'num' is set to
the the external unit number for the unit currently
connected to the file. If the file is not connected to a
unit, 'num' is undefined.

If the file has a name, the LOGICAL*4 variable
'nmd' is set to .TRUE., else 'nmd' is set to .FALSE.

'fn' is a character variable that is set to the name of
the file if the file has a name. If the file does not
have a name, 'nmd' is undefined.

'acc' is a character variable that is assigned the string
'SEQUENTIAL' if the file is connected for
sequential access, and is assigned the value
'DIRECT' if the file is connected for direct access.
If the file is not connected to a unit, the value of
'acc' is undefined.

'seq' is a character variable which is assigned the
value 'YES' if this file can be connected for
sequential access. 'seq' receives the value 'NO' if
the file cannot be connected for sequential access. If
FORTRAN cannot determine what access methods
are allowed for the file, 'seq' receives the value
'UNKNOWN'.

'dir' is a character variable which is assigned the
value 'YES' if this file can be connected for direct
access. 'dir' receives the value 'NO' if the file
cannot be connected for direct access. If FORTRAN
cannot determine what access methods are allowed
for the file, 'dir' receives the value 'UNKNOWN'.

FORTRAN Reference Manual

Chapter 10

FORM=fm

FORMATTED = fmt

Input and Output

'fm' is a character variable which is assigned the
value 'FORMATTED' if the file is connected for
formatted input-output, and is assigned the value
'UNFORMATTED' if the file is connected for
unformatted input-output. If the file is not
connected, 'fm' is undefined.

'fmt' is a character variable which is assigned the
value 'YES' if this file can be connected for
formatted input-output. 'fmt' receives the value
'NO' if the file cannot be connected for formatted
input-output. If FORTRAN cannot determine if the
file can be connected for formatted input-output,
'fmt' is assigned the value 'UNKNOWN'.

UNFORMA TTED = unf 'fmt' is a character variable which is assigned the
value 'YES' if this file can be connected for

RECL=rcl

NEXTREC=nr

BLANK=blnk

unformatted input-output. 'unf' receives the value
'NO' if the file cannot be connected for unformatted
input-output. If FORTRAN cannot determine if the
file can be connected for unformatted input-output,
'unf' is assigned the value 'UNKNOWN'.

'rcl' is an INTEGER*4 variable which is assigned the
record length of the file connected for direct access.
If the connection is not for direct-access or the the
file is not connected at all, 'rcl' is undefined.

'nr' is an INTEGER*4 variable which is assigned the
number of the next record to be read or written on a
direct-access file. If the file is connected but no data
transfer has been done, 'nr' is assigned the value 1.
If the file is not a direct-access file or if the position
cannot be determined (possibly because of a
previous error), 'nr' is undefined.

'blnk' is a character variable which is assigned the
value 'NULL' if the BN edit-descriptor is the default
for blank control and is assigned the value 'ZERO' if
the BZ edit-descriptor is the default for blank control
(see the OPEN statement and the chapter on
"Format Specifications"). If the file is not connected
or if the file is connected but not for formatted
input-output, 'blnk' is undefined.

The INQUIRE statement never returns an error condition. The specifiers
'ex' (exists) and 'od' (opened) always get defined. When a specifier is said to
be "undefined" in the descriptions above, it means that certain of the specifiers

FORTRAN Reference Manual Page 85

Input and Output Chapter 10

are meaningless in certain contexts. For example, if the access method for a
unit is SEQUENTIAL, the 'rei' (record length) and 'nr' (next record)
specifiers have no meaning, and are thus said to be undefined (in the context
that a program should not be examining those specifiers in such a case).

For example, to see if a file named 'xyzzy' exists, use the statement:

INQUIRE(FILE='xyzzy', EXIST=L)

The value of the LOGICAL*4 variable L is set to .TRUE. or .FALSE.
depending upon the existence of that file. To see if UNIT 10 is currently
OPEN, use:

INQUIRE(UNIT= 10, OPENED=L)

10.5 List Directed Input and Output

List-directed input-output serves to process formatted records without the
use of a FORMAT statement. Values in the records are in a "free-form".
List-directed input-output is convenient for those cases where the precise
layout of the data is not important.

10.5.1 List Directed READ

The elements in the list-directed READ statement are the same as those
for the READ statement previously described, with the exception that an
asterisk character "." is supplied as the format specifier.

Data is read into storage locations as specified in the 'iolist'. Input data
consists of a number of values and value separators. The next paragraph
describes value separators and the following paragraph describes values.

10.5.1.1 List Directed Value Separators

Value separators are used to delimit values in a list-directed input list. A
value separator is one of the following:

• a comma, with optional spaces on either side.

• a slash, with optional spaces on each side.

• one or more contiguous spaces between constants or after the last
constant in the list.

• end-of-record, which appears as a space between two constants.

A comma is used to separate values. Two commas in a row indicate a
null value.

Page 86 FORTRAN Reference Manual

Chapter 10 Input and Output

A slash has the effect that the remaining items in in the input list are
discarded and null values substituted.

A value separator adjacent to an end-of-record is not considered to be a
null value.

10.5.1.2 List Directed Input Values

A value is a constant, a null (empty) value or one of the forms:

r*c

r*

where 'r' is a repeat factor which must be an unsigned non-zero integer
constant. The form of 'r*c' represents 'r' successive appearances of the
constant 'c'. The form 'r*' is the same as 'r' successive null values. Neither
of these forms may contain embedded spaces except where 'c' is a character
constant.

Individual values in list-directed input are in the forms described below.
Values may not have embedded spaces, except character constants, where a
space stands for itself. The acceptable forms of input values are:

Null A null value is indicated by the presence of two
contiguous value separators, no characters or spaces
preceding the first value separator in an input list, or by
an 'r*' form. A null value cannot be used as the real or
imaginary part of a complex constant but can be used as
an entire complex constant. List items which are null
have no effect on the definition status of variables in the
corresponding 'iolist'. Variables in the 'iolist' which are
already defined stay defined and variables which are not
defined stay undefined.

Integers Must be the same form as for integer constants.

Real Numbers Any valid format for a FORTRAN real number.
Furthermore the decimal point can be omitted from a real
number, in which case the number is assumed not to
have a fractional part.

Complex Numbers A complex value is represented by an ordered pair of real
numbers in the format described above for real numbers.
The pair of rea Is are separated from each other by a
comma, and enclosed in parentheses. There can be
spaces surrounding the numbers. An end of record can
appear before or after the comma in a complex number.

FORTRAN Reference Manual Page 87

Input and Output Chapter 10

Character string values

Logical values

A string of characters enclosed in apostrophes. Embedded
spaces are significant and are part of the constant. An
apostrophe is represented by two juxtaposed apostrophes
in the string. Character constants can span record
boundaries. A record boundary in a character constant
does not generate any gratuitous characters in the value.
Character constants can be continued over as many
records as needed. Note that unterminated character
constants can lead to disastrous results.

If the character constant as read is longer than the length
of the corresponding 'iolist' item, it is truncated to fit. If
the character constant is shorter than the corresponding
'iolist' item, it is placed left justified in the variable and
the remaining positions in the variable are filled with
spaces.

Logical values are represented by a T (.TRUE.) or an F
CFALSE.). An optional period character "." may appear
before the T or F character. The T or F can be followed
by optional characters, but these characters must not be
value separators - slashes or commas.

10.5.2 List Directed WRITE and PRINT

The list-directed WRITE and PRINT statements are similar to the
formatted WRITE and PRINT statements described previously, with the
exception that the FORMAT specifier is a *.

Data is transferred from the variables specified by the 'iolist' to the
specified unit. In general, values are written on the output device in a manner
consistent with list-directed input, but there are exceptions, the most notable
being that character string data written out by a list-directed WRITE or PRINT
statement cannot be re-read by a list directed input statement. FORTRAN
starts new records when necessary. Values in the output are separated by three
spaces, except that character values are not preceded or followed by any spaces.
FORTRAN never generates slashes or null values on list-directed output. The
forms of the different data types are as follows:

Integer values are generated as for an Iw edit-descriptor. 'w' is the
minimum number of characters required to print the
integer value.

Real and Double Precision

Page 88

are generated with the effect of either an .' edit-descriptor
or an E edit-descriptor, depending on the magnitude of
the numbers involved. The specific edit-descriptors used

FORTRAN Reference Manual

Chapter 10 Input and Output

are as described in the table below.

Edit-Descriptor Used
Range of Number Real Double Precision

1.0 < val < 10.0 OPF9.6 OPF17.14

val < 1.0 or
val> 10.0 IPE13.6E2 IPE22.14E3

Not A Number '???????' '???????'

Plus Infinity '+++++++' '+++++++'
Minus Infinity

, ------- , , ------- ,

Complex Numbers are generated as a pair of real numbers enclosed in
parentheses with a comma separating the real and
imaginary parts.

Character string values

Logical values

are generated as strings of characters. However, character
constants are not surrounded by apostrophes, meaning
that they cannot be read back in using list-directed input.

are generated as T for .TRUE. and F for .FALSE.

FOR TRAN Reference Manual Page 89

Format Specifications Chapter 11

Chapter 11 - Format Specifications

This chapter describes formatted input-output and the FORMAT
statements available from FORTRAN. The reader is assumed to be familiar
with the FORTRAN file system, units, records, access methods and input
output statements as described in the previous chapter.

A format specification is used in conjunction with formatted input-output
to supply information which directs the editing or conversion between the
internal representations of the machine and the representations of character
strings in a file or character data item.

11.1 FORMAT Specifications and the FORMAT Statement

If a READ, WRITE or PRINT statement specifies a format, it is
considered to be a formatted input-output statement as opposed to an
unformatted input-output statement. To reiterate what was described in the
previous chapter, a format can be specified by any of the following forms:

• giving the label of a FORMAT statement,

• the name of an integer variable containing the label of a FORMAT
statement,

• a character variable, character array element or character expression
which has the correct form of a format specifier,

• an asterisk character, "*", indicating list-directed input-output.

The following examples illustrate valid ways to specify a format:

*
*
*

Page 90

Example the first
reference to a FORMAT statement

WRITE(*, 990) IGOR, JOHANN, KLUTZ
990 FORMAT(2I5, 13)

FORTRAN Reference Manual

Chapter 11 Format Specifications

•
•
•
•

•
•
•
•

*
•
•
•

Example the second
assigned FORMAT label to integer

ASSIGN 880 TO MORFAT
880 FORMAT(215, 13)

WRITE(., MORFAT) IVAN, JANUS, KLaNG

Example the third ... ,.
using a character variable

CHARACTER*9 FORCH
FORCH = '(215, 13)'
WRITE(*, FORCH) IVOR, JACKO, KELP

Example the fourth
using a character expression

CHARACTER*7 CHAREX
DATA CHAREX 1'215,13'/
WRITE(*, '(' / / CHAREX / / ')') IRENE, JANET, KLARG

*
• Example the fifth
• List-directed write

*
WRITE(., .) INEZ, JACKIE, KRON

The format specification itself must begin with a left parenthesis II (" and
must end with a right parenthesis ")". Characters after a matching right
parenthesis are ignored.

A FORMAT statement must have a label. Like all non-executable
statements, a FORMAT statement may not be the target of a branching
statement.

Between the "(" and ")" characters, the format specifications appear. The
format specifications are a list of items, separated by commas. Each of the
items in the format list is one of:

[r] ed repeatable edit-descriptors.

ned non-repeatable edit-descriptors.

[r] fs a nested format specification. At most ten levels of nested parentheses
are allowed within the outermost level.

where 'r' is an optional, non-zero, unsigned integer constant called a repeat
specification. The comma separating two list items may be omitted if the

FORTRAN Reference Manual Page 91

Format Specifications Chapter 11

resulting format is unambiguous, such as after a P edit-descriptor or before or
after a / edit-descriptor.

The repeatable edit-descriptors (described in more detail below) are:

Iw and Iw.m for Integer editing

Fw.d for Real editing

Ew.d and Ew.dEe for Real editing

Dw.d for Real editing

Gw.d and Gw.dEe for Real editing

Lw for Logical editing

A and Aw for Character editing

The wand e are unsigned non-zero integer constants. The d and mare
unsigned integer constants.

The non-repeatable edit-descriptors (also described in detail below) are:

'xxxxxxx'

nH xxxxxxxxxxxx

Tc, TLc and TRc

nX

/

\ or S

S, SS and SP

kP

BN and BZ

apostrophe editing

Hollerith editing

Tabbing to column

inserting spaces

starting a new record

inhibits starting new record

conditionally terminates format list

optional Sign control

Scale factor editing

Blank control

x is one of the characters from the character set that FORTRAN
supports. nand c are unsigned, non zero integer constants. k is an optionally
signed integer constant.

Note that the FORTRAN compiler performs as much checking of
FORMAT statements as is possible at compilation time. There can however,
be incorrect FORMAT statements which the compiler cannot detect, and such
incorrect statements will not manifest themselves until the program is actually
run.

11.2 Interaction Between Format Specifications and I/O List

Before going into the full details of how the various edit-descriptors
control the editing, it is necessary to describe how the format specification

Page 92 FORTRAN Reference Manual

Chapter 11 Format Specifications

interacts with the input-output list ('iolist') in a given READ, WRITE or
PRINT statement.

If an 'iolist' contains any items, at least one repeatable edit-descriptor
must appear in the format specification. In particular, the empty edit
specification "0" may only be used if there are no items in the 'iolist', in which
case the only action the input-output statement performs is the implicit record
skipping action associated with formatted input-output. Each item in the
'iolist' is associated in turn, with a repeatable edit-descriptor during the
execution of the input-output statement. In contrast, the remaining non
repeatable format-control items interact directly with the record and are not
associated with items in the 'iolist'.

Items in a format specification are interpreted from left to right.
Repeatable edit-descriptors act as if they were present 'r' times - if 'r' is
omitted it is treated as a repeat factor of 1. Similarly, a nested format
specification is treated as if its list of items appears 'r' times.

Format specifications are interpreted at execution time. The term "format
controller" is used here to describe the entity that interprets the list. The
formatted input-output process proceeds as follows:

The format controller scans the format items in the order noted above.
When a repeatable edit-descriptor is found, either:

• a corresponding item appears in the 'iolist'. In this case the item and the
edit-descriptor are associated and input or output of that item proceeds
under format control of the edit-descriptor, or:

• the format controller terminates the input-output process.

If the format controller encounters a colon edit-descriptor, ":" in the
format list and there are no further items in the 'iolist', the format comroller
terminates input-output.

If the format controller encounters the matching final ")" of the format
specification and there are no further items in the 'iolist', the format controller
terminates input-output. If there are further items in the 'iolist', the file is
positioned at the beginning of the next record and the format controller
continues by re-scanning the format, starting at the beginning of the format
specification terminated by the last preceding right parenthesis. If there is no
such preceding right parenthesis, the format controller re-scans the format
from the beginning. Within the portion of the re-scanned format, there must
be at least one repeatable edit-descriptor. Should the re-scan of the format
specification begin with a repeated, nested, format specification, the repeat
factor indicates the number of times to repeat that nested format specification.
The re-scan does not change the previously set scale-factor, BN or BZ blank
control or S, SP or SS sign control.

FORTRAN Reference Manual Page 93

Format Specifications Chapter 11

When the format controller terminates, the remaining characters of an
input record are skipped or an end-of-record is written on output, except as
noted under the \ or $ edit-descriptors.

11.3 Edit Descriptors

Edit-descriptors are used to specify a field of a record. A detailed
description of the various edit-descriptors follows. The repeatable edit
descriptors appear first, followed by the non-repeatable edit-descriptors.

11.3.1 Repeatable Edit Descriptors

Repeatable edit-descriptors are associated with items from an 'iolist'.
Repeatable edit-descriptors are concerned with the editing of numeric, logical,
and character data items. These are described in the paragraphs to follow.

11.3.1.1 Numeric Editing

The I, E, F and G edit-descriptors are used for formatting integer, real
and complex data. The following general rules apply to all of those edit
descriptors:

• On input, leading spaces are not significant. Other spaces are interpreted
differently depending on the BN or BZ flag in effect, but all blank fields
are always treated as the value zero (0). Plus signs are optional.

• On input, with E and F editing, an explicit decimal point appearing in the
input field overrides position of the decimal point as specified in the edit
descriptor.

• On output, generated characters are right justified in the field with leading
spaces if required.

• On output, if the number of characters produced exceeds the field width,
or the exponent exceeds its specified width, the entire field is filled with
asterisks, but also see the next list item, concerning infinite and
indeterminate values.

• On output, a value of plus infinity fills the field with plus signs, a value of
minus infinity fills the field with minus signs, and an indeterminate value
fills the field with question marks.

• Editing of complex numbers is controlled by two E, F or G edit
descriptors in succession, each of which controls the editing of "half' of
the complex value. The two edit-descriptors for a given complex number
do not have to be the same.

Page 94 FORTRAN Reference Manual

Chapter 11 Format Specifications

11.3.1.2 I - Integer Editing

The edit-descriptor Ill' must be associated with an 'iolist' item which is of
type INTEGER (which is the same as INTEGER*4), INTEGER.l or
INTEGER*2. The field width is 'w' characters long. On input, an optional
sign may appear in the field.

The Ill'.m edit-descriptor specifies the field width 'w' as above, but the
'm' part specifies a minimum field width for the integer value.

On input, the 'm' specification has no effect.

On output, if the converted integer is shorter than 'm' characters, leading
zeros are placed in the field. If 'm' is zero and the integer value to be
formatted is also zero, the output field consists of 'w' spaces, regardless of any
sign control in effect (see later). 'm' must not be greater than 'w'.

11.3.1.3 F - Real Editing

The edit-descriptor Fll'.d must be associated with an 'ioUst' item which is
of type real, double-precision or one half of a complex number. The width of
the field is 'w' characters. The fractional part is 'd' digits long.

The input field begins with an optional sign, followed by a string of digits
optionally containing a decimal point. If the decimal point is present, it
overrides the 'd' specified in the edit-descriptor. If the decimal point is not
present, the rightmost 'd' digits of the string are interpreted as following the
decimal point - leading spaces are converted to zeros if necessary. The
number may be followed by an optional exponent which is either of the forms:

• plus or minus followed by an integer, or

• E or D, followed by zero or more spaces~ followed by an optional sign,
followed by an integer. E and D are treated identically.

The output field occupies 'w' digits, 'd' of which follow the decimal point.
The output value is controlled both by the 'iolist' item and by the current
scale-factor (see the paragraph later, on "Scale Factor Editing", in the
discussion on non-repeatable edit-descriptors). The output value is rounded,
not truncated.

11.3.1.4 E and D - Real Editing

The E or D edit-descriptors control formatting of real elements. These
edit-descriptors must be associated with an 'iolist' item which is of type real,
double-precision or one half of a complex number.

An E or D edit-descriptor takes one of the forms Ell' .d, Dll'.d or Ell' .dEe.
The forms Ell'.d and Dll'.d have identical editing effects. In each case, the
field width is 'w' characters.

FOR TRAN Reference Manual Page 95

Format Specifications Chapter II

The 'e' has no effect on input. The input field for an E edit-descriptor is
identical to that described by an F edit-descriptor which has the same 'w' and
'd' fields.

The form of the output field depends on the scale-factor (set by the P
edit-descriptor) in effect. For a scale-factor of 0, the output field contains a
minus sign {if needed}, followed by a decimal point, followed by a string of
digits, followed by an exponent field for an exponent 'exp' of one of the
following forms:

Ew.d -99 < = 'exp' < = 99

E, followed by plus or minus, followed by the two digit exponent.

Ew.d -999 < = 'exp' < = 999

plus or minus, followed by three digit exponent.

EW.dEe -IOe-1 <= 'exp' <= 10e-1

E, followed by plus or minus, followed by 'e' digits of exponent with
possible leading zeros.

The form Ew.d must not be used if the absolute value of the exponent to
be printed exceeds 999.

The scale-factor controls decimal normalization of the printed 'E' field. If
the scale-factor 'k' is in the range -d < k < = 0, the output field contains
exactly 'd'-'k' leading zeros after the decimal point and 'd'+'k' significant
digits after that. If 0 < k < d+2, the output field contains exactly 'k'
significant digits before the decimal point and 'd' - 'k' -I places after the
decimal point. Other values of 'k' are errors.

11.3.1.5 G - Real Editing

The G edit-descriptor is similar to the E and F edit-descriptors except that
the G edit-descriptor provides for an "adaptable" output format depending on
the magnitude of the number being converted - it gives the user a flexible
choice of output formats without the need to pre-check on the size of the
numbers ahead of time.

The G edit-descriptor must be associated with an 'iolist' item which is of
type real, double-precision or one half of a complex number.

The G edit-descriptor takes one of the forms Gw.d or Gw.dEe. In either
case, the final output field width is 'w' characters. The number of digits after
the decimal point is 'd' digits unless a scale-factor greater than I is in effect.

On input, G editing acts the same as F editing (see above);

On output, the format of the converted number is dependent on its
magnitude. If N is the number to be converted, the table below describes the

Page 96 FORTRAN Reference Manual

Chapter II Format Specifications

action of the G edit-descriptor:

Magnitude of N Equivalent Conversion

N < 0.1 or Gw.d is the same as kPEw.d
N > 10 .. d Gw.dEe is the same as kPEw.dEe

0.1 < N < I F(w-n).d, n('b')

I < N < 10 F(w- n).(d - 1), n('b')
. ·

· . · 10 .. (d-2) < N < 10**(d- 1) F(w-n).1, n('b')

10 .. (d- 1) < N < 10**d F(w-n).O, n('b')

where 'b' stands for a blank (space) in the above table, and 'n' is 4 for Gw.d
editing and 'e'+2 for Gw.dEe editing.

11.3.1.6 Formatting Extreme Values

The floating point system used in SVS FORTRAN contains several
extreme value representations. These are infinity, both positive and negative,
and Not a Number, call NaN. Infinities are produced by floating-point overflow
and NaN's are produced by certain invalid operations such as zero divided by
zero.

When extreme values are printed in either D, E, F or G format, they are
represented by replacing all digits in the field with either plus signs
, + + +. + + +' for positive infinity, minus signs '- - - . - - -' for negative
infinity, or question marks '111.111' for NaN.

11.3.1.7 L - Logical Editing

The edit-descriptor for a logical item is Lw, indicating that the field width
is 'w' characters. The 'iolist' element associated with an L edit.;.descriptor must
be of type LOGICAL (which is the same as LOGICAL*4), LOGICAL*l or
LOGICAL*2.

On input, the field consists of optional spaces, followed by an optional
decimal point, followed by a T (for .TRUE.) or F (for .FALSE.). Any further
characters in the field are ignored but accepted on input, so that the strings
.TRUE. and .FALSE. are valid inputs.

On output, 'w' -1 spaces are followed by either the character T or F as
appropriate.

FORTRAN Reference Manual Page 97

Format Specifications Chapter 11

11.3.1.8 A - Character Editing

The forms of the edit-descriptor for character items are A or Aw. The
straight A format acquires an implied field width, 'w', from the number of
characters in the 'iolist' item it is associated with. The 'iolist' item must be of
type character to be associated with an A or Aw edit-descriptor.

On input, if 'w' equals or exceeds the number of characters in the 'iolist'
element, the rightmost characters of the input field are used as the input
characters, otherwise the input characters are left-justified in the input 'iolist'
item, and trailing spaces are added.

On output, if 'w' exceeds the characters produced by the 'iolist' item,
leading spaces are provided, otherwise the leftmost 'w' characters of the 'iolist'
item are output.

It is also possible to read and write non-character items with the A edit
descriptor. When this is done, the variable is treated as if it were a
CHARACTER variable whose length is the number of bytes that that variable
occupies.

11.3.2 Non Repeatable Edit Descriptors

Non-repeatable edit-descriptors are format list items which are not
associated with any 'iolist' items.

11.3.2.1 'xxx' - Apostrophe Editing

Apostrophe editing has the form of a character constant. It causes
characters to be written from the enclosed characters, including spaces, of the
edit-descriptor itself. Within the string, two ' signs in a row are interpreted as
one apostrophe. Apostrophe edit-descriptors cannot be used on input.

11.3.2.2 H - Hollerith Editing

The nH edit-descriptor (called Hollerith editing) transmits the 'n'
characters (including spaces) following the descriptor to the output. Hollerith
editing cannot be used for input.

Page 98 FORTRAN Reference Manual

Chapter 11 Format Specifications

Examples of Apostrophe and Hollerith Editing

C Each of the following WRITE statements writes
C the characters
C ABC'DEF
C to the output.
C

WRITE(*, 970)
970 FORMAT(' ABC"DEF')

C
WRITE(*, '("ABC""DEF")')

C
WRITE(*, '(7HABC"DEF)')

C
WRITE(*, 960)

960 FORMAT(7HABC'DEF)

11.3.2.3 X and T - Positional Editing

The X and T edit-descriptors described below have the effect of
positioning the format controller within a record. They do not by themselves
transmit any characters to or from a record.

When a formatted record is read on input, it is treated as if it were of
infinite length, with as many trailing spaces as needed to satisfy input requests.
Positioning using the X and T edit-descr.ptors determines the position of the
next character to be read from the record. These edit-descriptors may
therefore be used to skip portions of the input record or to re-read the same
positions in the record more than once.

On output, it is as if the input-output system initially creates a record
which is potentially of infinite length and filled with spaces. As formatted
output transmits characters to the record, the final length of the record is
determined by the rightmost position to which a character is transmitted.
Changing the position with the X or T edit-descriptors does not directly affect
the length of the record, but does affect the position at which the next
character is transmitted to the output record. Using the· X or T edit
descriptors, positions in the record may never have any characters transmitted
to them (they are skipped), which means that those positions retain their
original blank values, providing, of course, that characters are transmitted after
the skipped positions so that those character positions are eventually included
in the output record. It is also possible to overwrite positions of formatted
output records using the X and T edit-descriptors by positioning to a place
where data was previously written. In this case, only the last value written to a
given character position becomes part of the final formatted recQrd.

FORTRAN Reference Manual Page 99

Format Specifications Chapter 11

oX edit-descriptor advances the record position by 'n' spaces. If 'n' is
omitted, the value I is used.

The Tc, TLc and TRc edit-descriptors position the record to a specified
column. The Tc edit-descriptor positions the record to absolute column
position 'c'. The TLc edit-descriptor moves the column position to 'c'
characters to the Left (backwards), relative to the current position. The TRc
edit-descriptor moves the column position 'c' characters to the Right
(forwards) relative to the current position.

On input, the T edit-descriptors have the effect of skipping or allowing
re-reading of portions of the input record. If the TLc edit-descriptor moves
the character position to a place where input fields were previously transmitted,
those items can be re-transmitted.

On output, if a character is transmitted to a position where another
character has already been transmitted, the earlier transmission is replaced.

11.3.2.4 Slash Editing - End of Transfer on Record

The slash character "/" indicates end of transfer on the current record.

On input, the file is positioned to the beginning of the next record.

On output, an end-of-record is written and the file is positioned to write
at the start of the next record.

11.3.2.5 Backslash or Dollar Editing - Inhibit End of Record

The backs lash "\" and dollar "$" edit-descriptors only apply when
writing to the * device (the Standard Output).

Normally, when the format controller terminates a format list, data
transmission to the current record ceases and the file is positioned so that a
new WRITE starts a new record. If, while scanning the format list, the format
controller finds a backslash character "\" or a dollar character "$", the
automatic end-of-record action is inhibited. This means that subsequent
input-output statements can continue reading from or writing to the same
record. The most common use for this mechanism is to prompt to the
Standard Input and read a response on the same line. For example:

WRITE(*, '(A)') 'Please type your weight - > '
READ(*, '(BN, 16)') LIGHT

The backslash or dollar edit-descriptor does not inhibit the automatic
end-of-record generated when reading from the * unit. Input from the
Standard Input must always be terminated by a carriage-return. This permits
proper functioning of the backspace and line-delete keys.

Page 100 FOR TRAN Reference Manual

Chapter II Format Specifications

11.3.2.6 Colon Editing - Conditional Termination

The : character appearing in a format list has the effect of terminating
processing of the format list if there are no more items in the 'iolist'. If there
are more items in the 'iolist' when the colon is encountered, the colon is
ignored. There may be more than one colon in a format list.

The colon edit-descriptor is useful for terminating extraneous textual data
that might otherwise be printed after all appropriate numeric items have been
transferred. It is also useful for preventing further / edit-descriptors on input.

11.3.2.7 P - Scale Factor Editing

The kP edit-descriptor sets the scale-factor for subsequent E, F and G
edit-descriptors until another kP edit-descriptor is encountered. At the start of
each input-output statement, the scale-factor is zero (0). The scale-factor
affects format editing as follows:

• On input with E, F or G editing, providing that an explicit exponent does
not appear, the externally represented number is equal to the internally
represented number multipled by IO**k.

• On input with E, F and G editing, the scale-factor has no effect if there is
an explicit exponent in the input field.

• On output with E editing, the real part of the quantity is multiplied by
IO**k and the exponent is reduced by 'k', effectively altering the column
position of the decimal point, but not the actual output value.

• On output with· F and G editing, the externally represented number is
equal to the internally represented number multiplied by IO**k.

11.3.2.8 BN and BZ - Blank Interpretation

The BN and BZ edit-descriptors specify the interpretation of blanks
(spaces) in numeric input fields.

The initial setting of this edit-descriptor is dependent on the BLANK ==
parameter to the OPEN statement when this file was opened. See the OPEN
statement for a description of the BLANK== parameter.

If BZ editing is in effect, leading blanks are ignored and embedded
blanks are treated as. zeros. This edit-descriptor stays in effect until a BN edit
descriptor is encountered in the format list.

If BN editing is in effect, blanks in subsequent input fields are ignored
until a BZ edit-descriptor is processed. The effect of ignoring blanks is to
treat all the non-blank characters in the input field as if they were right justified
in the field, with the number of leading blanks equal to the number of ignored
blanks. In the example below, the READ statement treats the characters

FORTRAN Reference Manual Page 101

Format Specifications Chapter 11

shown between the vertical bars as the value 123, where the term <cr>
indicates a carriage-return:

READ(*, 100) 1
100 FORMAT(BN, 16)

1123 <cr>1
1123 456<cr>1
1123<cr>1
I 123<cr>1

Using the BN edit-descriptor in conjunction with the infinite blank
padding at the end of formatted records makes interactive input very
convenient.

11.3.2.9 S, SS and SP - Sign Control Editing

An output field generated by I, D, E, F or G editing includes an optional
sign immediately preceding the digits of the value. The sign always appears if
the number is negative, but if the number is positive, FORTRAN omits the
plus sign.

At the start of a format list, FORTRAN opts to omit plus signs. An S,
SS or SP edit-descriptor controls the option. Any option chosen remains in
effect until another one is found in the format list.

An SP format code specifies that "optional" plus signs are always printed.
An SS edit-descriptor specifies that they are to be suppressed always. An S
option restores FORTRAN's option to omit plus signs.

On input, these format codes have no effect and are ignored.

Page 102 FORTRAN Reference Manual

Chapter 12 Program and Subprogram Structure

Chapter 12 - Program and Subprogram Structure

A complete executable FORTRAN program consists of the following
elements:

• a main program,

• any number of SUBROUTINE subprograms,

• any number of FUNCTION subprograms,

• any number of BLOCK DATA subprograms.

A subprogram is a program unit which begins with a SUBROUTINE,
FUNCTION or BLOCK DATA statement. A subprogram is defined separately
and can be compiled independently of the main program. Subroutine and
function subprograms are procedures which can share values and results
through argument lists, common blocks or both. A BLOCK DATA
subprogram acts as a container for initializing common blocks.

A procedure can be a subroutine, external function, intrinsic function or
statement-function.

12.1 Main Program

A main program is any program unit that does not start with a
SUBROUTINE, FUNCTION or BLOCK DATA statement. A main program
may start with a PROGRAM statement. Execution of a FORTRAN program
starts with the first executable statement in a main program. Consequently
there must be precisely one main program in every executable FORTRAN
program. The form of a PROGRAM statement is:

PROGRAM progname

where 'progname' is a user-defined name of the main program.

The name 'progname' is a global name. Therefore it must not be the
same as the name of another external procedure or the name of a common
block. The "name 'progname' is also local to the main program and must not

FORTRAN Reference Manual Page 103

Program and Subprogram Structure Chapter 12

be the same as any other local name in the main program. The PROGRAM
statement may only appear as the first statement of a main program.

Example of a PROGRAM Statement

PROGRAM BESSEL

12.2 Access To Command Line Arguments

The SVS FOR TRAN-77 system provides for access to the command line
which called up the running program.

The FORTRAN-77 run-time library contains two routines which enable a
FORTRAN-77 program to access its command line arguments.

IARGC (Argument Count) is an INTEGER FUNCTION which returns
the number of arguments actually typed on the command line.

GETARG is a subroutine which returns a specified argument. The
definition of GETARG is:

SUBROUTINE GETARG(ARGNUM, ARGCH)
INTEGER ARGNUM
CHARACTER *(*) ARGCH

ARGNUM is the number of the argument which is to be accessed from
the command line. Arguments are numbered from 1 (not from 0 as on some
operating systems). Indexing from 1 is done for compatibility with the Pascal
numbering, and with FORTRAN-77's default lower array bounds. The value
passed to ARGNUM must be in the range 1 through IARGC. If it is not, the
results are undefined.

Under some operating systems, the first argument (argument 1) is the
name of the program.

The receiving variable is treated just as it is in a character assignment
statement in FORTRAN-77. If the source character string is shorter than the
target variable, it is padded with spaces on the right. If the source character
string is longer than the receiving variable, it is truncated.

Here is a short example of using the argument access facility to echo the
command line to the standard output.

Page 104

PROGRAM ECHO
CHARACTER*100 ARG
INTEGER I

DO 200 I = 1, IARGCO
CALL GETARG(I, ARG)

200 WRITE(*, *) ARG
END

FORTRAN Reference Manual

Chapter 12 Program and Subprogram Structure

12.3 Formal Arguments and Actual Arguments

This section covers the relationship between formal arguments and actual
arguments in function and subroutine subprograms. Throughout the
discussion, the terms "formal argument" and "dummy argument" are
synonymous.

A formal argument is the name (Iocal to the subprogram) by which the
argument is known during the execution of the subprogram.

The actual argument is the actual value (variable, expression, array and
so on) passed to the subprogram in question at the time a caller references the
subprogram.

There are a number of ways to pass values into and out of subprograms.
One way is via common blocks. Another way is to use the argument
mechanism of subroutines and functions. It is this second way that this
section covers.

Arguments are used to pass values into and out of subprograms. The
number of actual arguments must be the same as the number of formal
arguments. The types of the corresponding formal and actual arguments must
also agree.

12.3.1 Argument Association

On entry to a subroutine or function, the actual arguments become
associated with the formal arguments. Tbe association remains effective until
execution of the subprogram terminates. Thus assigning a value to a formal
argument while executing a subprogram can change the value of the
corresponding actual argument. If an actual argument is a constant, function
reference, or an expression other than a simple variable, assigning a value to
the formal argument should not be done, and can lead to strange and hard to
diagnose side effects.

A formal argument that is a variable can be associated with an actual
argument that is a variable, an array element or an expression. The length
attributes of integer and logical arguments must match exactly, that is, an
actual argument of type INTEGER*2 must only be associated with a formal
argument of INTEGER*2.

Actual arguments which are integer expressions must be associated with
formal arguments of type INTEGER*4 or INTEGER*2 depending on the
default integer size. Similarly, actual arguments which are logical expressions
must only be associated with formal arguments of type LOGICAL*4 or
LOGICAL* 1 depending on the default integer size. An "expression" in this
context is any construct which is not a variable, array or array element.

Actual arguments which are manifest constants, (Le. names set to
constant values in PARAMETER statements) are treated exactly as if the

FORTRAN Reference Manual Page 105

Program and Subprogram Structure Chapter 12

constant (a constant expression) were the actual parameter. Names set to
constant values in PARAMETER statements do not become typed by their
initial letter or otherwise except by the form of the constant expression to
which they were set. Thus, actual arguments which are manifest constants will
result in 4 byte values with the $INT2 option not set or 2 byte integer (1 byte
logical) values with the $INT2 option set.

If an actual argument is an expression (anything not a variable, array,
or array element), it is evaluated immediately prior to the association of actual
and formal arguments. If an actual argument is an array element, its subscript
expression is evaluated just prior to the association and remains constant
during execution of the subprogram, even if the subscript expression contains
variables that are re-defined while the subprogram executes.

A formal argument that is an array can be associated with an actual
argument that is an array or an array element. The number and size of
dimensions in the formal argument can differ from those of the actual
argument, but any reference to the formal argument must be within the limits
of the actual array's storage sequence. While the FORTRAN system cannot
detect such an out-of-bounds reference, the results are generally unpredictable
and undesirable.

A formal argument which is an asterisk character, "*", may only appear in
the argument list of a subroutine or in an ENTRY statement in a subroutine.
The actual argument is an alternate return specifier in the subroutine CALL
statement (see below).

Formal arguments which are arrays or character strings may have
adjustable dimensions. This enables writing more general subprograms which
can accept objects of varying size. A formal argument which is an array may
have its dimensions specified by variables passed as actual arguments. This is
an adjustable array. An array formal argument may also have the upper bound
of its last dimension specified as an asterisk character, "*", which declares it to
be an assumed size array. In this case, the value of that dimension is not
passed as an actual argument, but is determined by the number of elements in
the array. If an array is dimensioned as *, it is the programmer's responsibility
to ensure that the calling program unit has provided an array big enough to
contain all the elements stored into it in the subprogram.

Character strings may have their length specified as (*). This declares the
string to be of varying size. The length of the string is not passed explicitly as
an argument, but is determined by the system from the length of the actual
argument.

A formal argument which is of type character must not be greater than
the length of the actual argument. If the length of the actual argument is
greater than that of the formal argument, the actual argument is truncated on
the right.

Page 106 FORTRAN Reference Manual

Chapter 12' Program and Subprogram Structure

If a formal argument is of type character whose length is specified as (.),
a character expression involving concatenation of that argument must not be
used as an actual argument to any other procedure, format specification or
input-output list in an input-output statement.

12.4 Subroutines

A subroutine is a program unit that is called from other program units
via the CALL statement. When invoked, the subroutine performs the actions
that its executable statements define, and then returns control to the program
unit that called it. A subroutine does not directly return a value, although
values can be passed to the caller via the subroutine's arguments or via
common variables.

12.4.1 SUBROUTINE Statement

A subroutine starts with a SUBROUTINE statement and ends with the
first END statement that follows. A subroutine can contain any kind of
statement except a PROGRAM statement, a FUNCTION statement or a
BLOCK DATA statement. The form of a SUBROUTINE statement is:

SUBROUTINE subname [(farg [, farg] ...)]

'subname' is the user-defined name of the subroutine.

'farg' is a formal argument specification. A formal argument can be the
user-defined name of a variable, array, dummy procedure, or it
can be an alternate-return specifier designated by the asterisk
character ".".

The subroutine name 'subname' is a global name. It is also local to the
subroutine it names. The list of argument names defines the number (and
with any subsequent IMPLICIT, type or DIMENSION statements) the type of
arguments to that subroutine. Argument names must not appear in
COMMON , DATA, EQUIVALENCE or INTRINSIC statements.

If a subroutine does not have any formal arguments, an empty argument
list indicated by a pair of parentheses may follow the name, as shown in the
examples below.

FORTRAN Reference Manual Page 107

Program and Subprogram Structure

Examples of SUBROUTINE Statements

SUBROUTINE NOARGS

SUBROUTINE ZILCH 0

SUBROUTINE ONEARG (RILEY)

SUBROUTINE ALTRET(LIMIT, *)

12.4.2 CALL Statement

Chapter 12

A subroutine is executed when a CALL statement in another subprogram
references that subroutines by name. The form of a CALL statement is:

CALL subname [([arg [, arg] ...])]

'subname' is the name of the subroutine to call.

'arg' is an actual argument. The actual arguments are described below.

The actual arguments in the CALL statement must agree in type and
number with the corresponding formal arguments specified in the
SUBROUTINE statement of the referenced subroutine. Actual arguments may
be one of the following:

• An expression,

• An array name,

• An intrinsic function name,

• An external procedure name,

• A dummy procedure name,

• An alternate-return specifier of the form *s, where 's' is the statement
label of an executable statement in the same program unit as the CALL
statement.

If there are no arguments in the SUBROUTINE statement, a CALL
statement that references that subroutine must not have any actual arguments.
A pair of parentheses following the subroutine name is optional in the CALL
statement. A formal argument can be used as an actual argument in another
subroutine call.

Execution of a CALL statement proceeds as follows:

1. All actual arguments that are expressions are evaluated.

2. All actual arguments are then associated with their corresponding formal
arguments.

Page 108 FORTRAN Reference Manual

Chapter 12 Program and Subprogram Structure

3. The body of the specified subroutine is executed.

4. Control is returned to the subroutine's caller when a RETURN or and
END statement is executed in the subprogram, either at the statement
following the CALL statement, or at the alternate return specifier
designated in a RETURN statement.

A subroutine specified in any program unit can be called from any other
subprogram within the same executable program. Recursive subroutine calls
are not allowed in FORTRAN. That is, a subroutine cannot call itself directly,
nor maya subroutine called by the current subroutine subsequently call the
current subroutine.

12.5 Functions

A function is referenced in the context of an expression and returns a
value that is used in the evaluation of that expression. There are three kinds
of functions, namely: external functions, intrinsic functions and statement
functions. The subsections to follow describe the three kinds of functions.

A function reference can appear in an expression. Referencing a
function in the context of an expression causes that function to be executed.
The resulting value that the function returns is used as an operand in the
expression that references the function. The form of a function reference is:

funcname ([arg [, arg] ...])

'funcname' is the name of an external, intrinsic, or statement function.

'arg' is an actual argument to the function. The forms of the actual
arguments are described below.

The number of actual arguments must be the same as the number of
formal arguments. Except for generic intrinsic functions, the types of the
actual arguments must agree with the types of the corresponding formal
arguments. An actual argument can be anyone of:

• An expression,

• An array name,

• An external procedure name,

• An intrinsic function name,

• A dummy procedure name.

11.5.1 External Functions

An external function is specified by a function subprogram. It starts with
a FUNCTION statement and ends with an END statement. A function can

FORTRAN Reference Manual Page 109

Program and Subprogram Structure Chapter 12

contain any kind of statement except a SUBROUTINE statement, PROGRAM
statement or BLOCK DATA statement. The form of a FUNCTION statement
is:

[type] FUNCTION function_name ([farg [, farg]. . .])

'type' defines the return type of the function. 'type' is one of
INTEGER, INTEGER*I, INTEGER*2, INTEGER*4,
REAL, REAL*4, REAL*8, DOUBLE PRECISION,
CHARACTER [*len], LOGICAL, LOGICAL*I,
LOGICAL*2, LOGICAL*4 or COMPLEX.

'function_name' is the user-defined name of the function.

'farg' is a user-defined name of the formal argument.

The function name 'function_name' is a global name. It must not be the
same as the name of any other PROGRAM, SUBROUTINE, FUNCTION or
BLOCK DATA subprogram. The function name is also local to the function
it names.

If the 'type' specification is omitted from the function declaration, the
function's type is determined by default and any subsequent IMPLICIT
statements that would determine the type of an ordinary variable. If the 'type'
specifier is present, the function name must not appear in any subsequent type
statements.

The list of argument names determines the number (and with any
subsequent IMPLICIT, type or DIMENSION statements) the type of the
arguments to the function. Neither the argument names nor the function
name may appear in any COMMON, DATA, EQUIVALENCE or INTRINSIC
statements.

The function name must appear as a variable in the su bprogram that
defines the function. Each execution of the function must assign a value to
that variable. The final value of this variable upon execution of a RETURN or
END statement, defines the value of the function. After this variable is
defined, its value can be referenced in an expression just like any other
variable. In addition to the value returned, an external function can return
values via assignment to one or more of its formal arguments or through
variables in common areas.

A function which is declared as type CHARACTER*(*) derives its length
from the specification (declaration) of the function in the calling program unit.

J 2.5.2 Intrinsic Functions

Intrinsic functions are those functions that the FORTRAN compiler pre
defines. Intrinsic functions are available for use in a FORTRAN program.
The table in the appendix on "Intrinsic Functions" gives the name, definition,

Page 110 FORTRAN Reference Manual

Chapter 12 Program and Subprogram Structure

number of arguments, and type of the intrinsic functions available in SVS
FORTRAN-?? Those intrinsic functions which accept several types of
arguments must have all those arguments of the same type in any given
reference.

An intrinsic function can appear in an INTRINSIC statement, but only
those intrinsic functions listed in the table in the appendix on "Intrinsic
Functions" may do so. An intrinsic function may also appear in a type
statement, but only if the type is the same as the standard type of that intrinsic
function.

Certain intrinsic functions limit the range of their arguments in certain
ways determined by the definition of the function being computed. For
example, the logarithm of a negative number is mathematically undefined, and
is therefore not allowed.

12.5.3 Statement Functions

A statement-function is a function that is defined by a single statement.
It is similar in form to an assignment statement. A statement-function
statement must appear in a subprogram after any specification statements and
before any executable statements. A statement-function statement is not
executable - rather the body of the statement-function statement serves to
define the meaning of the statement-function. A statement-function is
executed (in the body of the subprogram in which it is defined) by referencing
it just like a function. The form of a statement-function statement is:

function_name ([arg [, arg)...]) = expression

'function_name' is the name of the statement-function being defined.

'arg'

'expression'

is the user-defined name of the formal argument(s), if any.

is an expression that defines how the formal arguments are
to be combined to generate a function result when the
function is referenced.

The type of the 'expression' must be assignment compatible with the type
of the statement-function name. The list of formal argument names serves to
define the number and types of arguments to the statement-function. The
scope of the formal arguments is the statement-function. Therefore the formal
argument names may be used as other user-defined names in the rest of the
program unit that contains the statement-function statement. The name of the
statement-function is local to the containing program unit, and therefore must
not be used for any other purpose, other than as the name of a common block,
or as the name of a formal argument to another statement-function statement.
The type of all such other uses must be the same. If a formal argument to a
statement-function statement is the same as a local name in the program unit,

FORTRAN Reference Manual Page 111

Program and Subprogram Structure Chapter 12

a reference to that name within the statement-function always refers to the
formal argument, never to the other usage.

Within the 'expression', references to variables, formal arguments of the
containing subprogram, other functions, array elements and constants, are all
allowed. Statement-function references, however, must refer to statement
functions defined prior to the statement-function in which they appear.
Statement-functions must not be called recursively, either directly or indirectly.

A statement-function can only be referenced in the subprogram in which
it is defined. A statement-function name must not appear in any specification
statement other than a type statement or a COMMON statement. If a
statement-function name appears in a type statement, that name must not be
defined as an array name. If a statement-function name appears in a
COMMON statement, that name can only be the name of the common area.

12.6 ENTRY Statement

A subroutine or function subprogram has a primary entry-point which is
established via the SUBROUTINE or FUNCTION statement which declares
that program unit. A subroutine call or a function reference normally activates
that subprogram at its primary entry-point, and the first statement which is
executed is normally the first executable statement in the subprogram.

It is possible, however, to define alternate entry-points in a subroutine or
function subprogram. These alternate entry-points are the start of sequences
of statements which are different from the sequence executed by entering the
subprogram at its primary entry-point. In addition, such alternate entry-points
can have formal argument lists which differ in number and type from those
found in the primary entry-point, and from those of other ENTRY statements
in the same subprogram. The format of the ENTRY statement is:

ENTR Y entname [(farg [, farg] ...)]

'entname' is the user-defined name of the entry-point for the subroutine or
function subprogram.

'farg' is a formal argument specification. A formal argument can be the
user-defined name of a variable, array, dummy procedure, or, if
the subprogram is a subroutine subprogram, it can be an
alternate-return specifier designated by the asterisk character "*".

The entry-point name 'entname' is a global name. It is also local to the
subprogram in which it appears. The list of argument names defines the
number (and with any IMPLICIT, type or DIMENSION statements) the type
of arguments to that subroutine. Argument names must not appear in
COMMON, DATA, EQUIVALENCE or INTRINSIC statements.

If the entry-point name, 'entname' is in a function subprogram, the
name can appear in a type statement.

Page 112 FORTRAN Reference Manual

Chapter 12 Program and Subprogram Structure

An ENTRY statement must not appear within the body of an IF block or
a DO block.

As with SUBROUTINE and FUNCTION statements, if there are no
arguments to the ENTRY statement, an empty argument list can be supplied.

When a subprogram is referenced or called via an alternate entry-point,
the actual arguments must agree in number, order and type with the formal
arguments (except for subroutine names and alternate return specifiers which
do not have a type).

12.6.1 Restrictions on the ENTR Y Statement

An entry name must not appear as a dummy argument in a
FUNCTION, SUBROUTINE or another ENTRY statement, and must not
appear in an EXTERNAL statement.

In a function subprogram, the only place the entry-point name may be
used prior to the ENTRY statement is in a type statement.

If a function subprogram is of type character, all entry-points to that
function must also be of type character. If the length of the character function
is specified as (*), all entry-points to that function must also have a length of
(.), otherwise all entry-points must have the same length specification.

An argument in an ENTRY statement cannot appear prior to that
ENTR Y statement unless it:

• is either a type statement,

• is an argument in the SUBROUTINE or FUNCTION statement which
begins the procedure containing the ENTRY statement,

• appears in a prior ENTRY statement in the same procedure.

12.7 RETURN Statement

A RETURN statement returns control from a subprogram to the program
unit which called it. A RETURN statement can only appear in a function or
subroutine subprogram. The form of a RETURN in a function subprogram is:

RETURN

The form of a RETURN statement in a subroutine subprogram is:

RETURN [e]

Where the optional e is an integer expression.

Execution of a RETURN statement terminates the execution of the
containing function or subroutine subprogram. If the RETURN statement is
in a function subprogram, the value of the function is the current value of the

FORTRAN Reference Manual Page 113

Program and Subprogram Structure Chapter 12

variable with the same name as the function. If the function variable has not
been assigned to prior to executing a RETURN or an END statement, the
function value is undefined.

The RETURN statement is optional in a subprogram. Executing an END
statement is equivalent to executing a RETURN statement.

If e is supplied on the RETURN statement, it indicates an alternate
return from the subroutine. If e lies between 1 and 'n', where 'n' is the
number of asterisks in the SUBROUTINE or ENTRY statement, the value of e
selects the e'th asterisk from the formal argument list. Control then returns to
the caller at the label specified by the e'th alternate return specifier.

If e is omitted, or if e lies outside the range 1 to 'n', the effect is to
execute a normal return. Control then returns to the caller at the statement
after the CALL statement that invoked the current subroutine.

12.8 Definition Status

When a RETURN statement or an END statement is executed in a
subprogram, all objects within the subprogram become undefined, with the
following exceptions:

• Objects specified by SAVE statements.

• Objects in blank common.

• Anything in a named common block that appears in the current
subprogram and also appears in at least one other subprogram that
directly or indirectly references the current subprogram.

• Initially-defined objects that have neither been re-defined nor become
undefined.

If a named common block appears in the main program, anything in that
common block does not become undefined.

12.9 BLOCK DATA Subprogram

A BLOCK DATA subprogram is a non-executable subprogram which is
used to initialize the values of variables and array elements in named common
areas. There may be more than one block data subprogram in a FORTRAN
program, but if there is more than one block data subprogram, only one of
them can be un-named. The format of a BLOCK DATA statement is:

BLOCK D A T A [blockname]

where 'blockname' is the optional name of the block data subprogram.

The BLOCK DATA statement must appear as the first statement of the
block data subprogram. The name, 'blockname', if present, must not be the

Page 114 FORTRAN Reference Manual

Chapter 12 Program and Subprogram Structure

same as any the name of any any external procedure, main program, common
area or other block data subprogram. The name, 'blockname' must not be the
same as any local name in the subprogram.

A block data subprogram can contain type statements, IMPLICIT,
PARAMETER, DIMENSION, COMMON, SAVE, EQUIVALENCE or DATA
statements. A block data subprogram ends with an END statement.

More than one named common block can be initialized in the same block
data subprogram. All the variables in a given named common block must be
specified, even if they are not all initialized.

A given named common block may only be specified in one block data
subprogram in the same executable program.

Examples of BLOCK DATA Subprogram

BLOCKDATA Whammo
•
• Declare a common block with variables
•

•

COMMON IDRINKSI Beer, Wine, Scotch
REAL Beer
COMPLEX Wine
DOUBLE PRECISION Scotch

• Declare another common block with variables
•

•

COMMON IFOODSI Burger, Dogs, Fries
LOGICAL Burger
REAL Dogs
COMPLEX Fries

• N ow initialize some of the variables.
•

DATA Beer/3.2/, Wine 1(11.5, 1.5)1

DATA Burger I.TRUE.!, Fries 1(1.1,2.8)1
•

END

In the example above, note that not all the variables were initialized.

12.10 The FORTRAN Intrinsic Functions

Intrinsic functions are those system supplied ("built-in") functions which
are otherwise difficult to express in FORTRAN. An intrinsic function is

FORTRAN Reference Manual Page 115

Program and Subprogram Structure Chapter 12

supplied by FORTRAN. An intrinsic function returns a single value and is
referenced in the same way as a user-defined function.

If a variable, array or statement-function is defined with the same name
as that of an intrinsic function, the name is local to the program unit in which
it is declared and the intrinsic function of that name is no longer available to
that program unit.

If a function subprogram is defined which has the same name as that of
an intrinsic function, use of that name references the intrinsic function, unless
the name is declared as the name of an external function via the EXTERNAL
statement.

Certain intrinsic functions are generic. In general, if a generic name
exists, a generic name can be used in place of a specific name and permits
greater flexibility than a specific name. Except for the type conversion
functions, the type of the argument to a generic function determines the type
of the result. For example, the generic function LOG computes the natural
logarithm of its argument, which may be real, double precision or complex.
The type of the result is the same as the type of its argument. The specific
functions ALOG, DLOG and CLOG also compute the natural logarithm.
ALOG computes the log of a real argument and returns a real result.
Likewise, DLOG and CLOG accept double precision and complex arguments
and return double precision and complex results, respectively.

Only the specific name can be used as an actual argument when an
intrinsic function name is passed to a user-defined procedure or function.

The table in the appendix, "FORTRAN Intrinsic Functions", shows the
intrinsic functions, their generic and specific names, their number of
arguments and their argument types and result types.

Page 116 FORTRAN Reference Manual

Chapter 13 FORTRAN Compile Time Options

Chapter 13 - FORTRAN Compile Time Options

Compiler Directives are a SVS extension to ANSI FORTRAN. SVS
FORTRAN compiler directives provide additional controls over the compiler's
actions.

A compiler directive line is a line with a dollar sign $ in column one. A
compiler directive line can appear anywhere that a comment line can appear.
Spaces are significant in compiler directive lines, where they delimit keywords
and filenames.

Some of the compiler directives listed below are to make FORTRAN-77
cater to FORTRAN-66 features.

13.1 $INCLUDE - Include Source File

$INCLUDE filename

the file specified by "filename" is textually included in the program source, as if
the actual contents of the included file had been written there. The file name
is not quoted.

Included files may be nested to a maximum depth of five.

13.2 $XREF - Generate Cross Reference

$XREF

generate a cross-reference listing at the end of each compiled subprogram.

13.3 $SEGMENT - Designate Segment Name

$SEGMENT [identifier]

the generated object-code of subsequent procedures is placed into the segment
named by 'identifier'. If the $SEGMENT directive appears without any
'identifier' field, the generated object-code is placed in a segment whose name
is ' , (eight spaces).

FORTRAN Reference Manual Page 117

FORTRAN Compile Time Options Chapter 13

The SVS linker imposes a limit of 32K bytes of object code per segment.
However, the linker will automatically split larger segments as required. Even
for very large programs, a user normally should not have to explicitly partition
his program into segments.

13.4 $COL 72 - Restrict Source Lines to 72 Columns

$COL72

indicates that source lines are to end in column 72. If this option is not
specified, source lines can be up to 120 characters long. But, the ANSI
FORTRAN-77 standard restriction of a maximum of 1360 characters per
statement still applies. This corresponds to 20 lines of 66 columns.

13.5 FORTRAN-66 Compatibility Options

The FORTRAN compiler accepts options which change features of the
language in a manner compatible with FORTRAN-66. These options are listed
in the following paragraphs.

13.5.1 $F66DO - 1mplement FORTRAN-66 DO Loops

If the $F66DO option is used, DO loops always execute at least once.

13.5.2 $CHAREQU - Character and Numeric Data Equivalence

The $CHAREQU option means that CHARACTER and numeric data
can now be assigned to the same COMMON areas. Using this option,
CHARACTER and numeric data can also be EQUIV ALENCE'd.

In addition, the $CHAREQU option indicates that non-CHARACTER
variables can be initialized with CHARACTER data constants via the DATA
statement. See Chapter 7 - "Data Initialization" for details.

13.5.3 $INT2 - Make Integers J6-Bits

If the $INT2 option is used, the INTEGER data type is INTEGER *2 by
default, although all the length specifications are still available if explicitly used
in specification statements.

If the $INT2 option is used, LOGICAL variables default to LOGICAL*!.
Just as for INTEGER, all the length specifications for LOGICAL are still
available if explicitly used in specification statements.

It should be noted that these last two features conflict with the "storage
unit" standards of FORTRAN -77, but are useful nevertheless.

Page 118 FORTRAN Reference Manual

Chapter 13 FOR TRAN Compile Time Options

Note: Although the $INT2 option changes the default size of INTEGER
and LOGICAL variables, the FORTRAN system still expects to see 4-byte
variables in those contexts where an INTEGER*4 (or a LOGICAL*4) is
required. For example, the assigned GO TO statement still expects a 4-byte
variable as the subject of the ASSIGN statement and any GO TO statement
which references that variable.

If the $INT2 option is set, actual parameter integer expressions (not
variables or array elements but any constant or computed expression) are
coerced to two byte values. Similarly, constant and computed logical
expressions are coerced to one byte values if the $INT2 option is set. This
makes expressions default to matching lengths with parameters of default
length.

A fairly common programming error is to compile a subprogram with
$INT2 set but to call it from a compile in which $INT2 is not set. This leads
to incompatible actual and formal arguments if all length specifications are
defaulted by the FORTRAN system.

FOR TRAN Reference Manual Page 119

Messages from the FORTRAN System Appendix A

Appendix A - Messages from the FORTRAN System

A.I Compile-Time Error Messages

o Unknown error
1 Fatal error reading source block
2 Non-numeric characters in label field
3 Too many continuation lines
4 Fatal end-of-file encountered
5 Labeled continuation line
6 Missing field on $ compiler directive line
8 Unrecognizable $ compiler directive
9 Input source file not a valid text file format
10 Maximum depth of include file nesting exceeded

11 Integer constant overflow
12 Error in real constant
13 Too many digits in constant
14 Identifier too long
15 Character constant extends to end of line
16 Character constant is zero length
17 Illegal character in input
18 Integer constant expected
19 Label expected
20 Error in label

21 Type name expected (INTEGER[*n), REAL[*n], DOUBLE
PRECISION, COMPLEX, LOGICAL[*n), or CHARACTER [*n]

22 INTEGER constant expected
23 Extra characters at end of statement
24 '(' expected
25 Letter IMPLICIT'ed more than once
26 ')' expected
27 Letter expected
28 Identifier expected
29 Dimension(s) required in DIMENSION statement
30 Array dimensioned more than once

Page 120 FORTRAN Reference Manual

Appendix A Messages from the FORTRAN System

31 Maximum of 7 dimensions in an array
32 Incompatible arguments to EQUIVALENCE
33 Variable appears more than once in a type specification statement
34 This identifier has already been declared
3S This intrinsic function cannot be passed as an argument
36 Identifier must be a variable
37 Identifier must be a variable or the current FUNCTION name
38 ' /' expected
39 Named COMMON block already saved
40 Variable already appears in a COMMON block.

41 Variables in different COMMON blocks cannot be EQUIVALENCE'd
42 Number of subscripts in EQUIVALENCE statement does not agree with

variable declaration
43 EQUIV ALENCE subscript out of range
44 Two distinct cells EQUIVALENCE'd to the same location in a

COMMON block
45 EQUIV ALENCE statement extends a COMMON block in a negative

direction
46 EQUIVALENCE statement forces a variable to two distinct locations, not

in a COMMON block
47 Statement number expected
48 Mixed CHARACTER and numeric items not allowed in same

COMMON block
49 CHARACTER items cannot be EQUIVALENCE'd to non

CHARACTER items
50 Illegal symbols in an expression

51 Cannot use SUBROUTINE name in an expression
52 Type of argument must be INTEGER or REAL
53 Type of argument must be INTEGER, REAL or CHARACTER
54 Types of comparisons must be compatible
55 Type of expression must be LOGICAL
56 Too many subscripts
57 Too few subscripts
58 Variable expected
59 '=' expected
60 Size of EQUIV ALENCE'd CHARACTER items must be the same

61 Illegal assignment - types do not match
62 Can only call SUBROUTINES
63 Dummy arguments cannot appear in COMMON statements
64 Dummy arguments cannot appear in EQUIVALENCE statements
65 Assumed-size array declarations can only be used for dummy arrays
66 Adjustable-size array declarations can only be used for dummy arrays
67 Assumed-size array dimension specifier, It.", must be the upper bound of

FOR TRAN Reference Manual Page 121

Messages from the FORTRAN System Appendix A

the last dimension
68 Adjustable bound must be either a dummy argument or be in COMMON

prior to appearance
69 Adjustable bound must be simple integer expression containing only

constants, COMMON variables, or PARAMETER constant names
70 Cannot have more than one main program

71 The size of a named COMMON block must be the same in all
subprograms

72 Dummy arguments cannot appear in DATA statements
73 Variables in blank COMMON cannot appear in DATA statements
74 Names of SUBROUTINES, FUNCTIONS, INTRINSIC FUNCTIONS

and such cannot appear in DATA statements
75 Subscripts out of range in DATA statement
76 Repeat count must be integer value greater than zero
77 Constant expected
78 Type conflict in DATA statement
79 Number of variables does not match the number of values in DATA

statement list
80 Statement cannot have a label

81 No such INTRINSIC function
82 Type declaration for INTRINSIC function does not match actual type of

INTRINSIC function
83
84
85
86

87
88

Letter expected
Type of FUNCTION does not agree with previous usage
This subprogram has already appeared in this compilation
This procedure has already been defined as appearing
compilation unit via a $USES command
Error in type of argument to INTRINSIC function
SUBROUTINE/FUNCTION previously used
FUNCTION/SUBROUTINE

89 Unrecognizable statement
90 Expression not allowed

91 Missing END statement

in another

as a

93 Fewer actual arguments than formal arguments in a FUNCTION or
SUBROUTINE reference

94 More actual arguments than formal arguments in a FUNCTION or
SUBROUTINE reference

95 Type of actual argument does not agree with formal argument
96 The following procedures were called but not defined
98 Size of type CHARACTER item must be between 1 and 255
99 INTEGER*4 variable required

100 Statement out of order

Page 122 FORTRAN Reference Manual

Appendix A Messages from the FORTRAN System

101 Unrecognizable statement
102 Illegal jump into block
103 Label already used for FORMAT
104 Label already defined
105 Jump to FORMAT label
106 DO statement forbidden in this context
107 DO label must follow a DO statement
108 ENDIF forbidden in this context
109 No matching IF for this ENDIF
110 Improperly nested DO block in IF block

111 ELSEIF forbidden in this context
112 No matching IF for ELSEIF
113 Improperly nested DO or ELSE block
114 '(' expected
115 ')' expected
116 THEN expected
117 Logical expression expected
118 ELSE statement forbidden in this context
119 No matching IF for ELSE
120 Unconditional GOTO forbidden in this context

121 Assigned GOTO forbidden in this 'context
122 Block IF statement forbidden in this context
123 Logical IF statement forbidden in this context
124 Arithmetic IF statement forbidden in this context
125 ' " expected
126 Expression of wrong type
127 RETURN forbidden in this context
128 STOP forbidden in this context
129 END forbidden in this context

131 Label referenced but not defined
132 DO or IF block not terminated
133 FORMAT statement not permitted in this context
134 FORMAT label already referenced
135 FORMAT must be labeled
136 Identifier expected
137 Integer variable expected
138 'TO' expected
139 Integer expression expected
140 Assigned GOTO but no ASSIGN statements

141 Unrecognizable character constant as option
142 Character constant expected as option
143 Integer expression expected for unit designation

FORTRAN Reference Manual Page 123

Messages from the FORTRAN System

144 STATUS option expected after ',' in CLOSE statement
145 Character expression as filename in OPEN
146 FILE= option must be present in OPEN statement
147 RECL= option specified twice in OPEN statement

Appendix A

148 Integer expression expected for RECL= option in OPEN statement
149 Unrecognizable option in OPEN sta!ement
150 Direct access files must specify RECL= in OPEN statement

151 Assumed-sized arrays not allowed as input-output list elements
152 End of statement encountered in implied DO, expressions beginning with

'(' not allowed as input-output list elements
153 Variable required as control for implied DO
154 Expressions not allowed as reading input-output list elements
155 REC = option appears twice in statement
156 REC = options expects integer expression
157 END= option only allowed in READ statement _
158 END = option appears twice in statement
159 Unrecognizable input-output unit
160 Unrecognizable format in input-output statement

161 Options expected after',' in input-output statement
162 Unrecognizable input-output list element
163 Label used as format but not defined in FORMAT statement
164 Integer variable used as assigned format but no ASSIGN statement
165 Label of an executable statement used as format
166 Integer variable expected for assigned format
167 Label defined more than once as format
169 FUNCTION references require "0"
170 INTEGER expression expected for array dimension bound

171 Lower dimension bound must be less than or equal to upper dimension
bound

172 DATA statement cannot initialize arrays of unknown size

200 Variable name of named COMMON name expected
201 This variable already SAVE'd
202 Cannot SA VE dummy arguments
203 Cannot SA VE COMMON variables
204 INTEGER and LOGICAL *1, *2, or *4 only
205 No *n allowed for DOUBLE PRECISION
206 Only REAL*4 or REAL*8 allowed
207 No *n allowed for COMPLEX
208 Size expression only allowed for CHARACTER
209 INTEGER constant expression expected
210 INTEGER constant or INTEGER constant expression expected

Page 124 FORTRAN Reference Manual

Appendix A Messages from the FORTRAN System

211 CHARACTER substring expression out of range
212 CHARACTER substring expression must be of type INTEGER
213 Error in CHARACTER substring expression
214 CHARACTER expression expected
215 LOGICAL expression expected
216 CHARACTER*(*) only allowed for dummy arguments
217 Undeclared PARAMETER constant
218 Constant expression not allowed
219 Arithmetic operators only apply to numeric values
220 Malformed COMPLEX constant

221 Maximum of seven levels of implied-DO allowed
222 Error in DATA statement variable list
223 Error in implied DO list in data statement
224 Variables in named COMMON can only appear in a DATA statement

which is in a BLOCK DATA subprogram
225 Integer subscript expected
226 Subscript error
227 This identifier is already in use as an implied-DO control variable
228 Integer constant expression or implied DO control variable expected
229 Integer expression required
230 Division by zero

231 Error in COMPLEX primary
232 Numeric expression or CHARACTER expression expected
233 COMPLEX can only compare for equality
234 COMPLEX is not compatible with DOUBLE PRECISION
235 Constant expression expected
236 ENTRY statements must appear in SUBROUTINE or FUNCTION

subprograms
237 ENTRY statements cannot be within a block IF or a DO statement range
238 Concatenation only applies to CHARACTER values
239 ':' expected
240 Substring operations only apply to CHARACTER variables or

CHARACTER array elements

241 Error in implied DO expression in a DATA statement
242 Implied DO iteration count is zero in a DATA statement
24) Error in formal argument list
244 Alternate return is not allowed in a FUNCTION subprogram
245 Substring error in EQUIVALENCE statement
246 EQUIV ALENCE statement must not require *2, *4, or *8 variables to be

allocated on odd byte addresses
247 EQUIV ALENCE statement must not require a COMMON block to be

allocated on odd byte addresses

FORTRAN Reference Manual Page 125

Messages from the FORTRAN System Appendix A

248 CHARACTER arguments cannot contain concatenation of values that
are of size *(*)

249 Numeric expression expected
250 SUBROUTINE or FUNCTION name has already been used as a

COMMON name

251 Recursive calls are not allowed
252 Statement-FUNCTIONS require variable or value arguments
253 Alternate ENTRY in CHARACTER FUNCTION must be of type

CHARACTER and must be the same size as the FUNCTION
254 This INTRINSIC FUNCTION cannot be passed as an argument
255 Executable statements cannot appear in BLOCK DATA subprograms
256 An argument to an ENTRY statement has already appeared as a local

variable

270 Assigned GO TO variable must be INTEGER or INTEGER*4
271 INTEGER, REAL, or DOUBLE PRECISION variable expected
272 INTEGER, REAL, or DOUBLE PRECISION expression expected
273 Unrecognizable element in option list
274 Option appears more than once in an option list
275 Incorrect type for variable
276 Variable must be *4 in size
277 CHARACTER variable or CHARACTER array element required
278 CHARACTER expression expected
279 Cannot have FILE and UNIT specifier in same INQUIRE statement
280 Must have a FILE or UNIT specifier in INQUIRE statement

281 Must have UNIT specifier
282 PRINT statement requires no option list - use WRITE
283 WRITE statement must have an option list
284 READ statement must not have both REC = and END = options
285 Must not specify REC= option with * format specifier
286 Cannot do internal input-output with * format specifier
287 Cannot use REC = specifier with internal input-output
288 Malformed implied DO loop
289 Implied DO loop must have simple variable for loop control
290 Wrong number of arguments to intrinsic function

291 Unit set more than once in input-output statement
292 No unit specified in input-output statement
293 Error in FORMAT statement
294 Hexadecimal constant expected
295 Too many characters in statement
296 Can't find $INCLUDE file
297 Sub arrays cannot exceed 32766 bytes in size
350 Procedure too large

Page 126 FORTRAN Reference Manual

, Appendix A Messages from the FORTRAN System

400 Code file write error
401 Error in rereading code file
402 Error in reopening text file
403 Procedure too large (code buffer too small)
407 Not enough room for intermediate code file
408 Error in writing code file
409 Error in reading intermediate code file

A.2 Run-Time Error Messages

These messages are issued by the input-output run time system, and
represent the possible values of 'iostat' in an 'iolist'.

- 1 End of file found on a READ with no END = option.

600 FORMA T statement missing final ')'
601 Sign not expected in input
602 Sign not followed by digit in input
603 Digit expected in input
604 Missing N or Z after B in format
605 Unexpected character in format
606 Zero. repetition factor in format not allowed
607 Integer expected for w field in format
608 Positive integer required for w field in format
609 '.' expected in format
610 Integer expected for d field in format

611 Integer expected for e field in format
612 Positive integer required for e field in format
613 Positive integer required for w field in A format
614 Hollerith field in format must not appear for reading
615 Hollerith field in format requires repetition factor
616 X field in format requires repetition factor
617 P field in format requires repetition factor
618 Integer appears before' +' or '-' in format
619 Integer expected after' +' or '-' in format
620 P format expected after signed repetition factor in format

621 Maximum nesting level (10 levels) for formats exceeded
622 ')' has repetition factor in format
623 Integer followed by ',' illegal in format
624 '.' is illegal format control character
625 Character constant must not appear in format for reading
626 Character constant in format must not be repeated
627 ' I' in format must not be repeated
628 ", '$', ':', 'S', 'SP' and 'ss' in format must not be

repeated

FORTRAN Reference Manual Page 127

Messages from the FORTRAN System Appendix A

629 HN or HZ format control must not be repeated
630 Attempt to perform input-output on unknown unit number

631 Formatted or list-directed input-output attempted on file opened as
unformatted

632 Format fails to begin with '('
633 I format expected for integer read
634 F, D, G or E format expected for real read
635 Two' .' characters in formatted real read
636 Digit expected in formatted real read
637 L format expected for logical read
639 T or F expected in logical read
640 A format expected for character read

641 I format expected for integer write
642 w field in F format not greater than d field +
643 Scale factor out of range of d field in E format
644 E, D, G or F format expected for real write
645 L format expected for logical write
646 A format expected for character write
647 Attempt to do unformatted input-output to a file opened as formatted
648 Unable to write blocked output - possibly no room on output device
649 Unable to read blocked input
650 Error in formatted text file - no carriage-return in last 512 bytes

651 Integer overflow on input
652 T, TL or TR in format must not be repeated
653 Positive integer expected for c field in T, TL or TR format
654 Attempt to open direct-access unit on unblocked device
655 Attempt to do external input-output on a unit beyond end-of-file record
656 Attempt to position a unit for direct-access on a non-positive record

number
657 Attempt to do direct-access on a unit opened as sequential
658 Attempt to position direct-access unit on an unblocked device
659 Attempt to position direct-access unit beyond end-of-file for reading
660 Attempt to backspace unit connected to unblocked device or unformatted

file

661 Attempt to backspace sequential, unformatted unit
662 Argument to ASIN or ACOS out of bounds - ABS(x) > 1.0
663 Argument to SIN or COS too large - ABS(x) > 10@+ (6)
664 Attempt to do unformatted input-output to internal unit
665 Attempt to put more than one record into an internal unit
666 Attempt to write more characters to an internal unit than its length
667 EOF called on unknown unit
668 Direct-access formatted input files must not use DLE blank compression

Page 128 FORTRAN Reference Manual

Appendix A Messages from the FORTRAN System

669 Error in opening file
670 Error in closing file

671 Can't specify KEEP in close if file opened SCRATCH
672 Unrecognizable option specified as character value in input-output

statement
673 File name required unless status is SCRATCH
674 Must not name file if status is SCRATCH
675 Record length not allowed for sequential files
676 Record length must be positive
677 Record length must be specified for direct-access files
678 BLANK option only for formatted files
679 Rewind only allowed on sequential files
680 Endfile only allowed on sequential files

681 Backspace only allowed on sequential files
682 Formatted records must be less than or equal to 512 characters
683 More characters written to internal file record than record length
684 Incorrect number of characters read in formatted record of direct-access

file
685 Attempt to write too many characters into formatted record of direct-

access file
686 No repeatable edit descriptor found and format exhausted
687 Digit expected in input field exponent
688 Too many digits in input real number
689 Numeric field expected in input
690 Unexpected character encountered in list-directed input

691 Repeat factor in list-directed input must be positive
692 ',' between reals for complex expected in list-directed input
693 ')' expected to terminate complex in list-directed input
694 Attempt to do list-directed input-output to direct-access file
697 Integer variable not currently assigned a FORMAT label
698 End-of-file encountered on a read with no END = option
699 Integer variable not assigned a label used in assigned GOTO statement

701 Integer input item expected for list-directed input
702 Numeric input item expected for list-directed input
703 Logical input item expected for list-directed input
704 Complex input item expected for list-directed input
705 Character input item expected for list-directed input
706 Incorrect number of bytes read or written to direct-access unformatted

file
707 Substring index range error
708 Unable to perform FCHAIN

FOR TRAN Reference Manual Page 129

Messages from the FORTRAN System Appendix A

1000 + Compiler debug error messages - should never appear in correct
programs. These normally are an indication that the wrong file was
specified as the input to the code generator.

Page 130 FORTRAN Reference Manual

Appendix B Intrinsic Functions

Appendix B - Intrinsic Functions

Intrinsic Number of Generic Specific Type of
Function Arguments Name Name Argument Function

Conversion INT Real Integer
to Integer 1 INT IFIX Real Integer

IDINT Double Integer

Conversion REAL Integer Real
to Real 1 REAL FLOAT Integer Real

SNGL Double Real

-- Integer Double
Conversion 1 DBLE -- Real Double
to Double -- Double Double

-- Complex Double

-- Integer Complex
Conversion 1 or 2 CMPLX -- Real Complex
to Complex -- Double Complex

-- Complex Complex

Conversion 1 ICHAR Character Integer
to Integer

Conversion 1 CHAR Integer Character
to Character

Truncation AINT AINT Real Real
1 DINT Double Double

Nearest 1 ANINT ANINT Real Real
Whole DNINT Double Double

FOR TRAN Reference Manual Page 131

Intrinsic Functions Appendix B

Intrinsic Number of Generic Specific Type of
Function Arguments Name Name Argument Function

Nearest I NINT NINT Real Integer
Integer IDNINT Double Integer

lABS Integer Integer
Absolute I ABS ABS Real Real
Value DABS Double Double

CABS Complex Real

Remain- MOD Integer Integer
dering 2 MOD AMOD Real Real

DMOD Double Double

Transfer ISIGN Integer Integer
of sign 2 SIGN SIGN Real Real

DSIGN Double Double

Positive IDIM Integer Integer
Difference 2 DIM DIM Real Real

DDIM Double Double

Double
Precision 2 DPROD Real Double
Product

MAXO Integer Integer
Choosing AMAXI Real Real
Largest 2 or more MAX DMAXI Double Double
Value

AMAXO Integer Real
MAXI Real Integer

MINO Integer Integer
Choosing AMINI Real Real
Smallest 2 or more MIN DMINI Double Double
Value

AMINO Integer Real
MINI Real Integer

Length I LEN Character Integer

Index of INDEX Character Integer
Substring 2

Page 132 FOR TRAN Reference Manual

Appendix B Intrinsic Functions

Intrinsic Number of Generic Specific Type of
Function Arguments Name Name Argument Function

Imaginary AIMAG Complex Real
Part of I
Complex
Argument

Complex I CONJG Complex Complex
Conjugate

Square SQRT Real Real
Root I SQRT DSQRT Double Double

CSQRT Complex Complex

Exponen- EXP Real Real
tial I EXP DEXP Double Double

CEXP Complex Complex

Natural ALOG Real Real
Logarithm I LOG DLOG Double Double

CLOG Complex Complex

Common ALOGIO Real Real
Logarithm I LOGIO DLOGIO Double Double

SIN Real Real
Sine I SIN DSIN Double Double

CSIN Complex Complex

COS Real Real
Cosine I COS DCOS Double Double

CCOS Complex Complex

Tangent I TAN TAN Real Real
DTAN Double Double

Arcsine I ASIN ASIN Real Real
DASIN Double Double

Arccosine I ACOS ACOS Real Real

FORTRAN Reference Manual Page 133

Intrinsic Functions Appendix B

Intrinsic Number of Generic Specific Type of
Function Arguments Name Name Argument Function

1 ATAN ATAN Real Real
DATAN Double Double

Arctangent
2 ATAN2 ATAN2 Real Real

DATAN2 Double Double

Hyperbolic 1 SINH SINH Real Real
Sine DSINH Double Double

Hyperbolic 1 COSH COSH Real Real
Cosine DCOSH Double Double

Hyperbolic 1 TANH TANH Real Real
Tangent DTANH Double Double

Lexically
Greater 2 LGE Character Logical
or Equal

Lexically
Greater 2 LGT Character Logical
Than

Lexically
Less Than 2 LLE Character Logical
or Equal

Lexically 2 LLT Character Logical
Less Than

B.1 Notes on the Intrinsic Functions

The INT function truncates real or double precision arguments towards
zero. If the argument to INT is a complex number, the function is applied to
the real part of the complex argument. IFIX is the same as INT for real
arguments.

If the REAL or DBLE functions are applied to a complex argument, the
result is the real part of the argument.

CMPLX can have one or two arguments. If there is one argument, it can
be of type integer, real, double precision or complex. If the argument is of
type integer, real or double precision, the result is a complex value whose real
part is that of the argument, and whose imaginary part is zero.

Page 134 FORTRAN Reference Manual

Appendix B Intrinsic Functions

If CMPLX has two arguments, they must both be of the same type. The
arguments can be of type integer, real or double precision. The result is a
complex value whose real part is the first argument and whose imaginary part
is the second argument.

ICHAR converts from character to integer. The first character in the
collating sequence is position 0 and the last character in the sequence is 'n'-I,
where 'n' is the number of characters in the character set.

In the trigonometric functions, all angles are in radians.

Functions of complex arguments yield a result which is the principal
value of the function.

The INDEX function returns the index where its second argument starts
in its first argument. If the first argument does not contain the second
argument, or if the second argument is longer than the first argument, the
INDEX function returns a value of zero.

All arguments in an intrinsic function reference must be of the same
type.

D.2 Restrictions on Ranges of Arguments

When intrinsic functions are referenced by their specific names, the
restrictions on ranges of arguments and results are as follows:

Remaindering MOD, AMOD and DMOD are undefined when their second
argument is zero.

Transference of Sign
If the first argument to ISIGN, SIGN or DSIGN is zero, the
result is zero.

Square Root SQR T and DSQR T require an argument which is not less than
zero. CSQRT returns a value which is the principal value and
is greater than or equal to zero. If the real part of the result is
zero, the imaginary part is greater than or equal to zero.

Logarithms ALOG, DLOG, ALOGIO and DLOGIO require an argument
greater than zero. The argument to CLOG must not be (0.0,
0.0). If the real part of the argument is less than zero and the
imaginary part is zero, the imaginary part of the result is 'pi',
otherwise the imaginary part of the result lines in the range:

- pi < imaginary part < = pi

Arcsine and Arccosine
ASIN, DASIN, ACOS and DCOS require that the absolute
value of their argument be not greater than one. The result of
arcsine lies in the range

FORTRAN Reference Manual Page 135

Intrinsic Functions

- pil2 < = result < = pi/2

and the result of arccosine lies in the range

o < = result < = pi

B.3 Non Standard Intrinsic Functions and Subroutines

Appendix B

The functions and subroutines described here are non-standard SVS
FORTRAN-77 extensions to the FORTRAN-77 language.

B.3.1 POKE - Store Into Arbitrary Memory Location

The POKE subroutine stores a byte into an arbitrary memory location.
The interface definition is:

SUBROUTINE POKE(IADDR, IV AL)
INTEGER IADDR, IVAL*l

The POKE subroutine sets the memory location addressed by IADDR to
the byte value of the variable IV AL. IV AL must be a variable that is declared
INTEGER*} in the calling procedure or POKE will not work as expected.

B. 3. 2 IPEEK - Read From Arbitrary Memory Location

The IPEEK function gets a byte from an arbitrary memory location. The
interface definition is:

INTEGER*4 FUNCTION IPEEK(IADDR)
INTEGER IADDR

IADDR is the address of a memory location. The IPEEK function
returns the signed value of the byte stored at that location.

B.3.3 VERS - Print Date and Version

The VERS subroutine prints the date and version of the SVS
FORTRAN-77 run-time system. The interface definition is:

SUBROUTINE VERS

There are no arguments to the VERS subroutine.

B.3A RAN - Random Number Generator

The function RAN generates pseudo random numbers in the interval
[0.0,1.0). The definition is:

Page 136 FORTRAN Reference Manual

Appendix B

REAL FUNCTION RAN (I)
INTEGER*4 I

Intrinsic Functions

If the value of the parameter 'I' is zero, then a new random result is
returned. If 'I' is greater than zero, a new sequence of random numbers is
stated, and the first value in that sequence is returned. If 'I' is negative, the
same number that was returned for the last call to RAN is returned.

B.3.5 lARGe - Number 0/ Arguments

The function IARGC returns the number of command line arguments
passed to the program. Its declaration is:

INTEGER*4 FUNCTION IARGCO

INTEGER*4 FUNCTION IARGCO

The exact meaning of the value returned depends upon the operating
system under which the program is running.

B.3.6 GETARG - Access an Argument

The subroutine GETARG is used to fetch the value of command line
arguments. The form is:

SUBROUTINE GETARG(I,C)
INTEGER*41
CHARACTER * (*)C

The value of the I'th command line argument is returned in the variable
C. If there is no argument corresponding to '1', then C is set to blanks. If the
length of the argument is greater than the length of C, then only that part that
fits is returned, and if it is smaller, than the rest of C is filled with blanks.

FORTRAN Reference Manual Page 137

Data Representations Appendix C

Appendix C - Data Representations

This appendix describes the ways that SVS FORTRAN represents data in
storage and the mechanisms for passing arguments to subroutines and
functions. This appendix is intended as a guide to those programmers who
wish to write modules in languages other than FORTRAN and have those
modules interface to FORTRAN.

C.I Storage Allocation

This section describes the way in which storage is allocated to variables of
various types.

In general, any word value (a value which occupies 16 bits) is always
aligned on a word boundary. Anything larger than a word is also aligned on a
word boundary. Values that can fit into a single byte are aligned on a byte
boundary.

INTEGER, REAL and LOGICAL data types all occupy the same amount
of storage, namely 32 bits (four bytes or two words). DOUBLE PRECISION
occupies 64 bits (eight bytes or four words). COMPLEX is represented as a
pair of single precision real data values and so occupies 64 bits (eight bytes or
four words). There are provisions for indicating that integer and logical data
types occupy less storage.

INTEGER*1 occupies 8 bits (one byte), aligned on a byte boundary.

INTEGER*2 occupies 16 bits (two bytes or one word), aligned on a word
boundary.

INTEGER and INTEGER*4
occupy 32 bits (four bytes or two words), aligned on a word
boundary.

REAL and REAL*4

Page 138

occupy 32 bits (four bytes or two words), aligned on a word
boundary. A REAL element has a sign bit, an 8-bit exponent
and a 23-bit mantissa. SVS FORTRAN REAL elements
conform to the IEEE standard for reals as defined in the March

FORTRAN Reference Manual

Appendix C Data Representations

1981 Computer magazine. The layout of a REAL element is
shown below.

DOUBLE PRECISION and REAL*8
elements occupy 64 bits (eight bytes or four words), aligned on
a word boundary. A DOUBLE PRECISION element has a sign
bit, an ll-bit exponent and a 52-bit mantissa. SVS FORTRAN
DOUBLE PRECISION elements conform to the IEEE standard
for double precision data as defined in the March 1981
Computer magazine. The layout of a DOUBLE PRECISION
element is shown below.

COMPLEX elements are represented by two REAL elements. The first
element represents the real part of the number, the second
represen ts the imaginary part.

LOGICAL*1 occupies one byte (8 bits) of storage, aligned on a byte
boundary. A value of 0 represents the value .F ALSE. . A
value of 1 represents the value .TRUE •. Any other value is an
"undefined" logical value.

LOGICAL*2 occupies two bytes (16 bits) of storage, aligned on a word
boundary. A value of 0 represents the value .F ALSE. . A
value of 1 represents the value. TR UE.. Any other value is an
"undefined" logical value.

LOGICAL and LOGICAL*4
occupies four bytes (32 bits) of storage, aligned on a word
boundary. A value of 0 represents the value .F ALSE. . A
value of 1 represents the value. TRUE.. Any other value is an
"undefined" logical value.

C.2 Data Representations

Whatever the size of the data element in question, the most significant
bit of the data element is always in the lowest numbered byte of however many
bytes are required to represent that object. The diagrams below should clarify
this.

FOR TRAN Reference Manual Page 139

Data Representations Appendix C

C. 2.1 Representation oj Integers

bit - 7 0
INTEGER*1 I byte 0 I

15 0

INTEGER*2 I byte 0 I byte 1 I
31 o

INTEGER*4 I byte 0 I byte 1 I byte 2 byte 3 I

C.2.2 Representation oj REAL and DOUBLE PRECISION

REAL and DOUBLE PRECISION data elements are represented
according to the proposed IEEE standard described in Computer magazine of
March, 1981. The diagrams below illustrates the representation.

31 30 23 22 0

I S I Exponent I Mantissa I
1 T 1

Sign Exponent, biased by 127 Mantissa (23 + 1 bits)

REAL Representation

63 62 52 51 0

I S I Exponent I Mantissa I
1 T T

Sign Exponent, biased by 1023 Mantissa (52 + I bits)

DOUBLE PRECISION Representation

The parts of REAL and DOUBLE PRECISION numbers are as follows:

• a one-bit sign bit designated by "S" in the diagrams above. The sign bit is
a 1 if, and only if, the number is negative.

• a biased exponent. The exponent is eight bits for a REAL number, and
is eleven bits for a DOUBLE PRECISION number. The values of all
zeros, and all ones, are reserved values for exponents.

• a normalized mantissa, with the high-order 1 bit "hidden". The mantissa
is 23 bits for a REAL number, and is 52 bits for a DOUBLE PRECISION
number. A REAL or DOUBLE PRECISION number is represented by
the form:

Page 140 FORTRAN Reference Manual

Appendix C

2exponent-bias * l.f

where 'r is the bits in the mantissa.

C. 2. 3 Representation of Extreme Numbers

zero (signed)

Data Representations

is represented by an exponent of zero, and a mantissa of zero.

denormalized numbers
are a product of "gradual underflow". They are non-zero numbers with
an exponent of zero. The form of a denormalized number is:

2exponent-bias+ 1 * O.f

where 'r is the bits in the mantissa.

signed infinity
(that is, affine infinity) is represented by the largest value that the
exponent can assume (all ones), and a zero mantissa. When infinity is
printed by a FOR TRAN program, it appears as either plus
, + + + . + + +' or minus signs '- - - . - - -' depending on the sign.

Not-a-Number (NaN)
is represented by the largest value that the exponent can assume (all
ones), and a non-zero mantissa. The sign is usually ignored. Formatted
printing of NaN appears as a sequence of question marks '??????'.

Normalized REAL and DOUBLE PRECISION numbers are said to
contain a "hidden" bit, providing for one more bit of precision than would
normally be the case.

FOR TRAN Reference Manual Page 141

Data Representations Appendix C

C. 2. 4 Hexadecimal Representation 0/ Selected Numbers

Value REAL PRECISION

+0 00000000 0000000000000000
-0 80000000 8000000000000000

+1.0 3F800000 3FFOOOOOOOOOOOOO
-1.0 BF800000 BFFOOOOOOOOOOOOO

+2.0 40000000 4000000000000000
+3.0 40400000 4008000000000000

+ Infinity 7F800000 7FFOOOOOOOOOOOOO
- Infinity FF800000 FFFOOOOOOOOOOOOO

NaN 7F8xxxxx 7FFxxxxxxxxxxxxx

C.2.5 Deviations/rom the Proposed IEEE Standard

Deviations from the proposed IEEE standard in this implementation are
as follows:

• affine mapping for infinities,

• normalizing mode for denormalized numbers,

• rounds approximately to nearest - 7 or more guard bits are computed,
but the "sticky" bit is not,

• exception flags are not implemented,

• conversion between binary and decimal is not implemented.

C. 2. 6 Arithmetic Operations on Extreme Values

This subsection describes the results derived from applying the basic
arithmetic operations on combinations of extreme values and ordinary values.

No traps or any other exception actions are taken.

All inputs are assumed to be positive. Overflow, underflow, and
cancellation are assumed not to happen.

Page 142 FORTRAN Reference Manual

Appendix C Data Representations

In all the tables below, the abbreviations have the following meanings:

Abbreviation Meaning

Den Denormalized Number
Num Normalized Number
Inf Infinity (positive or negative)

NaN Not a Number
Uno Unordered

Addition and Subtraction

Left Right Operand

Operand 0 Den Num Inf NaN

0 0 Den Num Inf NaN

Den Den Den Num Inf NaN

Num Num Num Num Inf NaN

Inf Inf Inf Inf Note 1 NaN

NaN NaN NaN NaN NaN NaN

Note 1: Inf + Inf = InC; Inf - Inf = NaN

Multiplication

Left Right Operand

Operand 0 Den Num Inf NaN

0 0 0 0 NaN NaN

Den 0 0 Num Inf NaN

Num 0 Num Num Inf NaN

Inf NaN Inf Inf Inf NaN

NaN NaN NaN NaN NaN NaN

FORTRAN Reference Manual Page 143

Data Representations Appendix C

Division

Left Right Operand

Operand 0 Den Num Inf NaN

0 NaN 0 0 0 NaN

Den Inr Num Num 0 NaN

Num Inr Num Num 0 NaN

Inr Inr Inr Inf NaN NaN

NaN NaN NaN NaN NaN NaN

Comparison

Left Right Operand

Operand 0 Den Num Inf NaN

0 = < < < Uno

Den > < < Uno

Num > > < Uno

Inr > > > Uno

NaN Uno Uno Uno Uno Uno

Notes: NaN compared with NaN is Unordered, and also results in inequality.

+0 compares equal to -0.

Page 144 FORTRAN Reference Manual

Appendix C Data Representations

Max

Left Right Operand

Operand 0 Den Num Inf NaN

0 0 Den Num Inf NaN

Den Den Den Num Inf NaN

Num Num Num Num Inf NaN

Inf Inf Inf Inf Inf NaN

NaN NaN NaN NaN NaN NaN

Min

Left Right Operand

Operand 0 Den Num Inf NaN

0 0 0 0 0 NaN

Den 0 Den Den Den NaN

Num 0 Den Num Num NaN

Inf 0 Den Num Inf NaN

NaN NaN NaN NaN NaN NaN

FORTRAN Reference Manual Page 145

Data Representations Appendix C

C.2.7 Representation of Logica/s

bit - 7 0
LOG ICAL* 1 I byte 0 I

15 0

LOGICAL*2 I byte 0 I byte 1 I
31 o

LOGICAL*4 I byte 0 I byte 1 I byte 2 byte 3 I

C.2.8 Storage of Arrays

Arrays are stored with their elements in a specific storage order. The
elements are actually stored in a linear sequence of storage elements.

FORTRAN arrays are stored in column major order, such that the first
subscript in a multi-dimensional array varies fastest. The position of an
arbitrary element in an array is:

1 +SUM«Si- Li*PRODUCT(Uj - Lj»
where 'Sk' is the value of the subscript expression specified for dimension
bound of dimension 'k'. The subscript 'j' in the product above varies between
1 and 'i' -I for any given dimension.

C.3 Argument Passing Mechanism

This section describes the way in which arguments are passed in SVS
FORTRAN.

All arguments to FORTRAN subroutines and functions are passed by
reference. For every argument except a CHARACTER object, a 32-bit pointer
to the object is pushed onto the stack.

When CHARACTER objects are passed in FORTRAN-77, a 32-bit
pointer to the CHARACTER object is pushed onto the stack, followed by a
16-bit value which is the length of the CHARACTER object.

Pointers to actual arguments are pushed onto the stack in the order in
which they are declared in a subroutine or function declaration.

Actual arguments which are expressions are evaluated before the
subroutine or function call. The result of the expression is assigned to a
temporary storage area and a pointer to the temporary is pushed onto the
stack. Normally 4 bytes are utilized for the temporary created to store a
numeric expression (8 bytes for double precision). The number of bytes
utilized will be different if the $INT2 option is set. In this case, integer

Page 146 FORTRAN Reference Manual

Appendix C Data Representations

expressions (including constants) are placed into 2 byte temporaries and logical
expressions (including constants) are placed into 1 byte temporaries.

In the exit code of a procedure, all arguments are discarded from the
stack before the routine returns.

C.4 Function Results

Functions return their values in register DO (or 00/01 for double
precision and complex return values).

C.S Register Conventions

Registers AO, AI, ~O, 01, and 02 are available as scratch registers in
called routines. That is, they may be clobbered by functions and subroutines.
All other registers must be preserved across calls. In addition, register A4 and
AS must contain their original values whenever any external routine is called.
A4 is used in addressing external entry points and AS is used to access the
standard input and output, command line arguments, etc.

FOR TRAN Reference Manual Page 147

ASCII Character Set Table Appendix D

Appendix D - ASCII Character Set Table

hex char hex char hex char hex char

00 NUL 20 SP 40 @ 60 ,

01 SOH 21 ! 41 A 61 a
02 STX 22 " 42 B 62 b
03 ETX 23 # 43 C 63 c
04 EOT 24 $ 44 D 64 d
05 ENQ 25 % 45 E 65 e
06 ACK 26 & 46 F 66 f
07 BEL 27 , 47 G 67 g
08 BS 28 (48 H 68 h
09 HT 29) 49 1 69 i
OA LF 2A ... 4A J 6A j
OB VT 2B + 4B K 6B k
OC FF 2C , 4C L 6C I
OD CR 2D - 4D M 6D m
OE SO 2E 4E N 6E n
OF SI 2F / 4F 0 6F 0

10 DLE 30 0 50 P 70 p
11 DCl 31 1 51 Q 71 ct
12 DC2 32 2 52 R 72 r
13 DC3 33 3 53 S 73 s
14 DC4 34 4 54 T 74 t
15 NAK 35 5 55 U 75 u
16 SYN 36 6 56 V 76 v
17 ETB 37 7 57 W 77 w
18 CAN 38 8 58 X 78 x
19 EM 39 9 59 Y 79 y
lA SUB 3A SA Z 7A z
IB ESC 3B , 5B [78 {
lC FS 3C < 5C \ 7C I
ID GS 3D = 5D] 7D }
IE RS 3E > 5E A 7E -
IF US 3F ? SF 7F DEL -

Page 148 FORTRAN Reference Manual

Appendix E Operating the SVS FORTRAN System

Appendix E - Operating the SVS FORTRAN System

This appendix will describe those characteristics of the SVS FORTRAN
system which are similar among the various environments in which the system
operates. The appendix which follows this one describes the implementation
specific details of the FORTRAN system under your operating system. The
information in this appendix describes the FORTRAN system In the form it is
released by SVS. Some of the vendors of the system provide additional
utilities which can used in conjunction with SVS FORTRAN and which may
alter the appearance of the system.

E.I System Components

In order to most effectively utilize the SVS FORTRAN system, it is
necessary to understand the function and operation of its various components.
In all environments a completely straight forward procedure is provided for
compiling and executing simple FORTRAN programs (see next appendix).
The information provided here, will only be necessary for more complicated
situations involving separate compilation and multiple source languages.

E.1.1 Compiler Front End

FORTRAN source programs (actually FORTRAN compilation units
consisting of one or more procedures with or without a main program and/or a
block data subprogram) are accepted by the compiler front end, syntax
checked, and an intermediate representation of the program (compilation unit)
is written to a file. This file is passed to the code generator which generates
object code. The input source program may "include" other files (see Chapter
13). In addition to the input source file, the FORTRAN compiler front end
accepts certain directives from the command line, which are described in the
"Command Line Directives and Compiler Options" section of this appendix.

Input files to the FORTRAN front end generally are files with names
which end in ".for", although this differs among operating environments. The
output file from the FORTRAN compiler front end is an intermediate
representation of the program which is placed in a file which generally ends in

FOR TRAN Reference Manual Page 149

Operating the SVS FORTRAN System Appendix E

II .i" . There is virtually nothing which can be done with this ".i" file except
provide it as input to the code generator.

E.1.2 Code Generator

The code generator for the FORTRAN system accepts as input the ".i"
file produced by the front end and generates linkable object code in a file with
a name which generally ends in II .obj" .

The same code generator is utilized in compiling SVS Pascal, SVS
FORTRAN, and SVS C and the resulting ".obj" files are linkable providing the
applicable rules are followed.

E.1.3 Linker

A utility is provided with SVS FORTRAN for linking ".obj" files with
each other and with run time libraries which are part of the language system.
The linker is highly specific to the operating environment and its operation is
described in detail in the following appendix. There is, however, certain
general information which applies to all of the linkers.

Each linker accepts as inputs ".obj" files and produces an output which is
acceptable to the operating system as an object file. In some operating
environments, the linker's output file is further linkable in· the target
environment with object code generated by the operating system assembler,
etc. In all cases, the linker may be run only once per executable image. The
input to the linker must contain exactly one main program but may contain
many object files derived from separate compilations.

E.1.4 Libraries

Object files in ".obj" format mayor may not be libraries. The result of a
run of the code generator is an ".obj" which is not a library, although it is
possible that such a file contains object code with corresponds to many
subroutines. The main difference between ".obj" files which are libraries and
those which are not libraries is that the linker includes all of the object code
from non-library input files but only that object code which is referenced from
library input files. The determination of what is referenced is made based on
unresolved external code references in previous input files to the linker.
Therefore the order that files are presented to the linker is important.

When linking FORTRAN programs, the two run time libraries provided
with the system must be among the input files to the linker. One of these
libraries is paslib.obj which is a library which is common for SVS Pascal, SVS
FORTRAN, and SVS C. It contains a variety of low level support routines
used by all three languages. It must be linked as the last" .obj" input file to the
linker. The other library is ftnlib.obj which contains· run time support specific

Page 150 FORTRAN Reference Manual

Appendix E Operating the SVS FORTRAN System

to the FORTRAN language and which must be linked as the second to last
".obj" input file to the linker.

E.1.5 Error Messages

The FORTRAN system contains a file of compile time error messages.
If this file is given the appropriate name, the compiler will generate English
error messages along with error numbers. If not, the compiler will only give
error numbers. The FORTRAN system also contains a file of run time error
messages. If this file is given the appropriate name, most run time errors
detected in FORTRAN application programs will print English error messages
in addition to the run time error number. The names to be given to these two
error message files differs from one implementation to another and can be
found by referring to the following appendix.

E.2 Command Line Directives and Compiler Options

The FORTRAN compiler front end is invoked to compile a source file
named "prog.for" (other file name endings required on other systems) with a
command line of the form:

lusrlliblFortran prog.for { options .. , }

Any number of command line options may appear and they may appear in any
order. The possible command line options are:

+q -q

+p -p

+x

+c72

+f -f

Show more (-q) or less (+q) information on the progress of the
compile to the user. The default setting varies among different
implementations.

Prompt (+ p) or don't prompt (- p) to the standard input in the
case of a compile time error. The default setting varies among
different implementations. Prompting mode is useful so that error
messages do· not fly off CRT screens but is awkward when
compiling in background mode.

Generate a cross reference in the listing file. Same as setting the
$XREF option (see Chapter 13).

Truncate input lines to 72 columns. Same as setting the $COL 72
option (see Chapter 13).

Generate code for the Sky floating point hardware board (+ f) or
generate code for software floating point (- f). This option is only
enabled in systems which support the Sky board and will result in
an error if not enabled. The default is - f, no floating point
hardware. Note: If the Sky floating point hardware interface is to
be used, the entire program must be compiled with the +f flag set

FORTRAN Reference Manual Page 151

Operating the SVS FORTRAN System Appendix E

and the resulting object code must be linked with sky.paslib.obj
instead of paslib.obj.

-lfname Create a listing file of the source program in the file named fname.

- efname Place a summary of the compile time errors on file named fname.

- ifname Name the ".i" file fname. If this option is not provided, the ".i"
file when compiling a source program named prog.for is named
prog.i.

Under certain operating systems the code generator is directly invoked by
the FORTRAN compiler front end. In this case, there is an additional
command line option.

- of name Name the ".obj" file fname. If this option is not provided, the
".obj" file when compiling a source program named progJor is
named prog.obj.

Under systems in which the code generator is not directly invoked by the
FORTRAN compiler front end, the code generator is invoked using a
command of the form:

code prog.i {optionalfname}

where leaving off the optional file name results in an output file named
prog.obj. If the optional file name is provided, the output file is named
optionalfname.

See the appendix which follows for a description of command line
arguments and options related to the linker.

E.3 Linking Programs which Utilize Pascal and C

There are certain rules which must be observed by programmers wishing
to combine object code compiled under more than one language processor.
Throughout the following discussion, Pascal, FORTRAN, and C refer to the
S VS implementations of these languages.

E.3.1 What Language must Supply the Main Program

In all cases in which FORTRAN code is present, the main program must
be FORTRAN. In the case where Pascal and C are to be present, either
language may supply the main program. If the C system is not SVS C, then
the main program must be Pascal.

E.3.2 Referring to the Command Line Arguments

In all cases in which the command line arguments are to be referenced
from C, C must provide the main program. This is a consequence of the fact

Page 152 FORTRAN Reference Manual

Appendix E Operating the SVS FORTRAN System

that command line arguments are "parameters" to the C main routine.
Command line arguments are available from Pascal and FORTRAN regardless
of which language provides the main program.

E.3.3 Dynamic Memory Allocation and Deallocation

A program may utilize the C library memory allocation and deallocation
package (malloc, free, etc.) providing that Pascal components of the program
do not call release. Similarly, Pascal components should not call release if
FORTRAN components performing any I/O are present. If the C system is
not SVS C, then the C routines must not utilize any dynamic memory
allocation or deallocation directly or through the operating system run time
library.

E.3.4 Parameter Conventions

The calling convention in C is such that parameters are pushed in
"reverse" order from the order in which they appear and the calling routine is
responsible for popping parameters otT the stack after the call returns. Pascal
and FORTRAN push parameters in order and the exit code of the called
routines is responsible for popping otT its parameters. Pascal contains a
"cexternal" declaration (similar to Pascal "external") which generates calls to C
routines in which the parameters are popped otT at the calling site after the
subroutine returns. The parameters must appear in reverse order in the
Pascal call as compared to the order. expected by C. There is no direct
language support for calling C from FORTRAN or Pascal and FORTRAN
from C, but parameteriess routines or assembly language interfacing routines
can be utilized for these purposes. It is often easiest to go through Pascal
when calling C from FORTRAN (a complete explanation of which 'can be
found in the Pascal Reference Manual).

E.3.4.1 Calling FORTRAN from Pascal

It is straight forward to call FORTRAN subroutines from Pascal. The
called routines should be declared to be external in the Pascal compilation
with formal parameter declarations which match FORTRAN parameter
conventions. In particular, Pascal varparameters will match the FORTRAN
call by reference convention. If the receiving FORTRAN routine expects a
character parameter, it will be necessary to pass the length of the packed array'
of char as an explicit two byte value parameter (as described in the parameter
passing section of the FORTRAN reference manual). Note: Pascal strings are
not compatible with the FORTRAN character datatype.

FORTRAN Reference Manual Page 153

Operating the SVS FORTRAN System Appendix E

E.3.4.2 Calling Pascal from FORTRAN

When calling an external routine from FORTRAN, it is merely invoked
without any special declaration. This called routine may have been written in
Pascal. In the event that it is, the routine should be written with formal
parameters declared in the manner which is consistent with what FORTRAN
would expect from a receiving routine written in FORTRAN. Pascal formal
parameter declarations are adequate for expressing all of the interfaces
expected by FORTRAN calling sites.

E.3.4.3 Calling C from FORTRAN

FORTRAN programs call external routines without declaration as
functions in expressions and as procedures in CALL statements. FORTRAN
generally passes all parameters by reference, so the receiving routine should
expect pointer parameters. Assuming a FORTRAN function call as illustrated
below:

INTEGER I,J
DOUBLEPRECISION D

100 I = CFUNCT2(I,J,D)

the receiving C function might be as follows

cfunct2 (dj,i)
int *I,*J;
double *d;
{
if (*d = = 0.0) return(*i+*j); else return(*i-*j);
}

An assembly language interfacing routine, called a "wrapper", will be necessary
to provide a proper interface between the calling site and the C routine since
FORTRAN has no way of knowing to pop the parameters off at the calling
site. The wrapper would be as follows:

.text

.globl CFUNCT2

.globl cfunct2
CFUNCT2:

movl sp@+,savera
jsr cfunct2
addl #12,sp
movl savera, -sp@
rts

savera: .bss .=.+4

There are several important points to note: The FORTRAN external reference
is in upper case letters whereas the C entry point is in the same upperllower

Page 154 FORTRAN Reference Manual

Appendix E Operating the SVS FORTRAN System

case letters as specified in the C source code. Under some operating systems,
the C entry point will require a prepended underscore to adhere to the
conventions in that environment. The wrapper will not work if the
interlanguage call is recursive, although a more sophisticated version of the
wrapper can be made to work in this situation. The primary role of the
wrapper is to pop off the 12 bytes of parameters (3 pointers) which FORTRAN
expects to be popped off by the called routine and which C expects to be
popped off by the caller.

The above procedure is not guaranteed to work with C systems other than S VS
C since the parameter, register, and return value location conventions are not
necessarily the same in other C implementations. In general, these
incompatibilities can be adjusted for by enhancing the wrapper.

The exact syntax of the assembly language will vary from system to
system. In general the object code for wrappers is linked into the executable
program at the last linking step of the compile. Normally, a wrapper is
required for each FORTRAN to C call.

Is is particularly difficult to pass character variables from FORTRAN to C
since C has no method of receiving a two byte value parameter corresponding
to the length portion of the character parameter.

E.3.4.4 Calling FORTRAN from C

When calling FORTRAN from C, the actual parameters should evaluate
to pointers to properly map into the FORTRAN reference parameter
conventions. There is no way to tell the ·C system that an external reference is
to a non C routine. Therefore, assuming that i and j are 4 byte integers and
that d is an eight byte floating point variable, a C call of the form:

i = ifund&d,&j,&i};

would require an assembly language "wrapper" of the form:

.text

ifunc:

savera:

.globl ifunc

.globl IFUNC

movl sp@ + ,savera
jsr IFUNC
subl #12,sp
movl savera, -sp@
rts
.bss
. =. +4

to call a FORTRAN function declared with the header

FORTRAN Reference Manual Page 155

Operating the SVS FORTRAN System

FUNCTION IFUNC(I,J,D)
DOUBLE PRECISION D
INTEGER I,J

Appendix E

The important items to note are: FORTRAN entry point is in upper case, C
external reference is in the same case as the programmer specified. The .globl
for the C entry point may need a prepended underscore on some operating
systems. The wrapper will not work if the interlanguage call is recursive. The
C calling site expects to pop off 12 bytes of parameters after the call returns (3
pointers), but the FORTRAN function has already popped off the parameters.
Therefore, the wrapper decrements the stack pointer by the amount the calling
site expects to pop off.

The exact syntax of the assembly language will vary from system to
system. In general the object code for wrappers is linked into the executable
program at the last linking step of the compile. Normally, a wrapper is
required for each C to J4'ORTRAN call.

The above procedure will not work with C systems other than S VS C because
other C systems expect called subroutines to preserve different registers then
FORTRAN functions preserve. In this case, the wrapper must be enhanced to
preserve the registers required by the calling C language subroutine.

£.3.5 Run Time Libraries

When linking mUltiple languages, the last input file provided to the linker
must always be paslib.obj. Immediately preceding paslib.obj must be clib.obj
and ftnlib.obj, in either order. The former must be present if C is present and
the latter must be supplied if FORTRAN is contained in the program being
linked.

£.3.6 Upper and Lower Case External Naming Conventions

It is the convention in Pascal and FORTRAN to upper case all external
names except routine names which are declared cexternal in Pascal. These
names are passed directly to the linker as they appeared in the cexternal
declaration. In C, upper and lower case letters are distinct, so it is the
convention to pass letters directly through as they were supplied by the
programmer. For interfacing purposes, use upper case names in C, or use
cexternal in Pascal, or use assembly language to bridge the naming
conventions.

Page 156 FORTRAN Reference Manual

Appendix F UNIX Specific Information

Appendix F - UNIX Operating System Specific Information

Although the SVS FORTRAN system appears to be almost identical
under a wide variety of operating systems, there are minor differences,
particularly related to the linker and in operating procedures, among the
various environments. This appendix will provide the implementation
dependent details related to SVS FORTRAN running under the UNIX
operating system.

F.l Compiling a Simple Program

The instructions provided here for compiling and linking a FORTRAN
program reflect the system as it is released by SVS. Some vendors of the
system provide additional utilities for sequencing compiles for which there may
be separate documentation.

Appendix E of this manual described in some detail the components of
the SVS FORTRAN system. For most FORTRAN programs, the following
simple procedure will be completely adequate for sequencing a compile:

Create a "shellscript" called Fortran with the following commands:

set -e
fortran $IJor
code $1.i
ulinker -I $1.0 $1.obj ftnlib.obj paslib.obj
cc $1.0
mv a.out $1
rm $1.0 $1.obj

To compile a FORTRAN program in a file named progJor, execute:

Fortran prog

The FORTRAN program and the shellscript can be created using the system
text editor. The "mode" of the shell script should include execute permission
(i.e. chmod +rwx Fortran). The shellscript assumes that fortran (the
FORTRAN compiler front end), code (the code generator), and ulinker (the

FORTRAN Reference Manual Page 157

UNIX Specific Information Appendix F

linker} reside in the system in directories from which they can be executed.
The shellscript also assumes that ftnlib.obj and paslib.obj are the correct
pathnames for accessing these files. These names will most likely have to be
changed to reflect the location of these files on your system.

The lines of the shellscript do the following: The set - e causes the
compiling sequence to terminate after an error is detected. The next lines run
the front end and code generator on files whose names are derived from the
command line in which the shellscript is invoked. The linker is run (in its
simplest form, see below for more details) with -I inhibiting a linkmap listing
file, with output file $1.0, and with three input files, including the SVS supplied
libraries. Ulinker produces a file which is then linked to those UNIX system
calls which are utilized by the program in the cc step (which invokes the UNIX
system linker). The final two lines rename the executable program and
remove the unlinked object code files.

F .2 Error Message Files

The SVS FORTRAN system includes two files called ftncterrs and
ftnrterrs which should be placed in either the llib or lusrllib directory. This
will allow the compiler to display English messages for errors which it detects
and will allow the FORTRAN run time system to display English error
messages for most detected run time errors in application programs.

F.3 Ulinker

Under UNIX, ulinker is the SVS linker. The general operation of the
linker is described in Appendix E. This section will describe in detail the
modes of operation of ulinker and its load map listing option.

F.3.i Ulinker inputs

Ulinker links object code in ".obj" format, including libraries. In addition,
ulinker accepts input from the command line or interactively as described
below.

F. 3. 2 Ulinker Outputs

Ulinker creates partially linked object code in UNIX ".0" format as its
primary output. Optionally, ulinker can produce a listing file which is a load
map of global entry points in the created ".0" file. The form of this map and
information contained in it is best described by the following example with
subsequent explanations:

Page 158 FORTRAN Reference Manual

Appendix F UNIX Specific Information

Example of Ulinker Listing File

Linking segment' , (4310)
Linking segment '%_F77RTS' (3376)
MC68000 Unix Object Code Formatter 22-Aug-83

File: smallf.o

Memory map for segment'

ONE
TWO
SMALLF
$START
%_FWRITE
%_FREAD

%W_SS_
%W_SS_L

- ONE
-TWO
- SMALLF
- $START
- %_FWRITE
- %_FREAD

- %W_SS_
- %W_SS_L

OOOODE
000120
000174
000174
0001C4
0001F2

001194
00119E

Memory map for segment '%_F77RTS'

$2000000
$5000000
$6000000

%_WRLI4

- ERROR
- FOUTPUTR
- FINPUTRE

Static Data Areas:

0011B4, %_F77RTS
0011DA, %_F77RTS
001222, %_F77RTS

001E12, %_F77RTS

/%F77RT/at 000000 BSS area relative, size 0003BO
/ ABC / at 0003C4 BSS area relative, size 000008
ONE at 000000 Data area relative, size OOOOOC
SMALLF at 0003BO BSS area relative, size 000008
TWO at 0003B8 BSS area relative, size OOOOOC

No: Segment: Size:
O. ' 0010D6
1. '%_F77RTS' 000D30

Start Loc = 000174
Code Size = 001E06
Global Size = 000000

FORTRAN Reference Manual Page 159

UNIX Specific Information Appendix F

Explanation of Ulinker Listing File

The listing file was generated from the following FORTRAN
program:

subroutine one
com monl abcl icomm 1 ,icomm2
data ii,jj,kk/l ,2,31
write{ *,*) ii,jj,kk
icomml = 99
icomm2 = 999
end

subroutine two
common/abc/icomm 1 ,icomm2
ii = 1
jj = 2
kk = 3
write(*,*)ii,jj,kk
write(*,*)icomml,icomm2
end

program smallf
i = 17
j = 33 * i
write(*,*)i,j
call one
call two
end

The segment named by 8 blanks had 4310 (decimaJ) bytes in it. The
segment named %_F77RTS had 3376 (decimal) bytes in it. Under UNIX there
is no reason for programmers to explicitly deal with segments, since ulinker
handles this automatically.

There were a large number of entry points in the linked files, most of
which were extracted from the run time libraries, only a few of which are
shown above and the remainder have been omitted in order to keep the
example listing short. Three of these entry points are recognizable as user
procedure names. The addresses of these entry points are given in hex and are
text area relative, but will be further relocated by the cc step of the compilation.
The relative addresses (distance between them) will remain intact through the
cc step.

For each }'ORTRAN procedure, for each FORTRAN common area, and
for the FORTRAN run time system there is a static data area listed. Each
such data area is mapped to the data or bss area depending upon whether the
area is initialized at compile time using the data statement. Note: an area
which is partially initialized using data statements is mapped to the data (as

Page 160 FORTRAN Reference Manual

Appendix F UNIX Specific Information

opposed to bss} area, even if the area is large and only sparsely initialized.
Initialized data areas are represented in the UNIX object file format as an
image and large data areas which are initialized result in large object files. In
the example, the common area is indicated by having a data area name which
begins and ends in slashes. Sizes and locations of these data area listings are in
hex and relative to the start of the data or bss area as appropriate.

F.l.l Running Ulinker from the Command Line

The command line form of running ulinker is: .

ulinker listfname outputfname inputfname {inputfname ... }

where the optional listing file is created on a file named listfname providing
that listfname is not equal to -I (no listing file to be created directive). The
command line arguments are positional. No file name suffixes are enforced by
ulinker in this mode so complete file names must be entered.

F.3.4 Running Ulinker Interactively

It is often not convenient or not possible to have a command line which
is long enough to have all of the input files listed. In this event, ulinker can be
run interactive. Execute ulinker without any command line arguments and it
prompts:

Listing file -

Any file name provided creates the listing file. Enter just return to suppress
the optional listing file. The next prompt is:

Output file Lo] -

Ulinker requires an output file. If the file name provided does not end in ".0",
ulinker will append this file name extension onto the name which is input.
Following this prompt, ulinker will repeatedly prompt:

Input file [,obj] -

for its input files, until a plain return is typed, indicating that the input file list
is completed. Ulinker will append the ".obj" suffix onto input file names if it is
not supplied by the user. Running in this mode, there is no limit on the
number of input files which ulinker can process.

F.l.5 Running Ulinker with Standard Input Redirected

With many input files, it is most convenient to operate ulinker in its
interactive mode with standard input redirected. For example, run ulinker as
follows:

FORTRAN Reference Manual Page 161

UNIX Specific Information Appendix F

ulinker < cmd

where the file cmd contains a line for the listing file name, a line for the output
file name, lines for the input file names, and a blank line to terminate the
input file list.

F.3.5.l Symbol Table Information Placed in Output File

Utilizing the UNIX utility nm it is possible to examine the symbol table
information placed in the output file by ulinker. In general, all entry points
which are not local to another procedure (a situation which only occurs in
Pascal) are placed into the" .0" file symbol table. All entry points appear in the
ulinker listing file, including those which are Pascal local procedures. There
are also symbol table entries for unresolved external references and for the
program entry point (named _main under UNIX).

F.3.6 Treatment of Unresolved External References

Unresolved external references are passed through into the output file for
potential linking in the cc step of the compile. In the event that these
references are not resolved at that stage, an error message is generated then.

F.3. 7 Segments

Under some operating systems other than UNIX, the SVS FORTRAN
system contains a meaningful object code concept referred to as segments.
Under UNIX, there are segments in the object code, but they are not
semantically meaningful. Ulinker automatically creates segments as needed
and there is no reason for the user to do anything explicitly about creating
and/or naming segments.

F. 3. 8 Errors Detected by Ulinker

Most of the error messages which come out of ulinker are completely self
explanatory. The error message:

*** In data area named ABC
*** at offset 999 bytes into that data area
*** Fatal Error - overlapping data initialization

is caused by user programs initializing the same location in the named data
area more than once. The error message:

*** Error - Double defined: ABC

is caused by the same entry point name being used in more than one input file.
Only 8 characters are significant for the linker. The error message:

Page 162 FORTRAN Reference Manual

Appendix F UNIX Specific Information

*** Error - Double defined unit

is caused by linking more than one unit with the same name. The link name
for Pascal units begins and ends in slashes and contains the six initial
characters of the Pascal unit user name between the slashes. This facilitates
initializing Pascal unit globals using FORTRAN named common and data
statements. One consequence of this link naming convention is that only six
characters of the user unit name are utilized for resolving naming conflicts.
The error message:

*** Error - Multiple start locations

is caused by having more than one main program among the input files.

F.4 Linking to UNIX Assembly Code

It is normal for the output of ulinker to contain unresolved external
references to UNIX system calls (such as _open, _close, and _write). These
are resolved by the cc linking step by using the operating system default library
of UNIX object code. The user may do the same kind of linking to UNIX
assembly code by providing the assembly language source as an additional
argument to the cc compilation step which will automatically invoke the
operating system assembler.

One limitation on code which is linked in with code generated by the SVS
languages is that no UNIX system calls on malloc, free, sbrk, or related
routines (directly, or through other linked in routines) may be used. The SVS
languages handle the UNIX break area of memory, including versions of
malloc and free in the SVS C library, in a manner which is not fully
compatible with the UNIX routines.

User's should also beware of differing floating point formats. Some of
the UNIX systt!ms do not use IEEE format floating point. In this event,
passing floating point values will result in strange results.

It is not guaranteed that I/O will work as expected across language
boundaries, particularly with respect to object code generated by non SVS
systems.

Any code linked into programs generated by the SVS languages must
obey the register and calling conventions assumed by the system. In particular,
all called routines must preserve registers D3 through D7 and A2 through A6.
More details on the calling conventions are provided in the appendix on data
represen ta tions.

F.5 Access to Command Line Arguments

Under UNIX, the name of the program is the first argument in the argv
list of the invoked program. IARGCO is always at least 1. The first user

FORTRAN Reference Manual Page 163

UNIX Specific Information Appendix F

supplied command line argument is obtained from GETARG using the
indexing argument 2. This is sometimes confusing for UNIX programmers
who are more used to seeing the name of the invoked program as the zero'th
argv in the C programming language and the first user supplied command line
argument as the one referenced using array index 1 on the argv array. The
FORTRAN numbering scheme is consistent with the Pascal argv array'which
is a one origin indexed array.

F.6 Return Values from FORTRAN Programs

A FO R TRAN program can issue the call:

CALL FHALT(jntegervalue)

to generate a UNIX system termination code equal to the value specified. If a
zero value is provided, UNIX will consider that the program "succeeded",
otherwise UNIX will treat the process as having terminated with an error. This
is useful for interacting with shellscripts which test the UNIX error flag after
executing programs written in FORTRAN.

Page 164 FORTRAN Reference Manual

	00001
	00002
	00003
	00004
	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164

