ZMACS EDITOR REFERENCE

MANUAL REVISION HISTORY

Zmacs Reference (2243192-0001 *A)

Original ISSUE . ..o v vttt i e i e June 1985
Revision A ... i i e e e June 1987
© 1987, Texas Instruments Incorporated. All Rights Reserved.

No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior written permission of
Texas Instruments Incorporated.

The system-defined windows shown in this manual are examples of the soft-
ware as this manual goes into production. Later changes in the software may
cause the windows on your system to be different from those in the manual.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Com-
puter Software clause at 52.227-7013.

Texas Instruments Incorporated
ATTN: Data Systems Group, M/S 2151
P.O. Box 2909
Austin, Texas 78769-2909

THE EXPLORER™ SYSTEM SOFTWARE MANUALS

Introduction to the
Explorer System

Zmacs Editor
’ Tutorial

Master Index

Lisp Reference

Input/Output
Reference

Tools and Utilities

Zmacs Editor
Reference

Window System
Reference

Programming
Concepts

Networking
Reference

Glossary

System Software
Installation

Technical
Summary

System Software
Design Notes

Little/No Interest

Medium Interest

cd

Required

First Day of
Explorer Use

Casual or New|
Developer

Experienced
Developer

Applications
Programmer

Systems
Manager

crsasnss
SRR

23

THE EXPLORER™ SYSTEM SOFTWARE MANUALS

Mastering Explorer Technical Summary 2243189-0001

the Explorer Introduction to the Explorer System 2243190-0001

Environment Explorer Zmacs Editor Tutorial 2243191-0001

Explorer GloSSaryvovvivnn ittt in it 2243134-0001

Explorer Networking Reference 2243206-0001

Explorer Diagnosticsvvvuvrirenininininnn., 2533554-0001

Explorer Master Index to Software Manuals 2243198-0001

Explorer System Software Installation Guide 2243205-0001

Programming Explorer Programming Conceptsovvuievninn... 2549830-0001

With the Explorer Explorer Lisp Reference 2243201-0001

Explorer Input/Output Reference. 2549281-0001

Explorer Zmacs Editor Reference 2243192-0001

Explorer Tools and Utilitiescoviuvu... 2549831-0001

Explorer Window System Reference 2243200-0001

Explorer Options Explorer Natural Language Menu System User’s Guide 2243202-0001
Explorer Relational Table Management

System User's Guideccvtiitiniinnnnennn., 2243203-0001

Explorer Grasper User’s Guidecouvvvnnnn.. 2243135-0001

Explorer Prolog User’s Guide vvuvun... 2537248-0001

Programming in Prolog, by Clocksin and Mellish 2537157-0001

Explorer Color Graphics User’'s Guide 2537157-0001

Explorer TCP/IP User’s Guidecc0vvvuvnn.n. 2537150-0001

Explorer LX™ User's Guidecovvininvnnennnenn.. 2537225-0001

Explorer LX System Installation 2537227-0001

Explorer NFS™ User's Guidecoviinninn.n. 2546890-0001

Explorer DECnet™ User’'s Guide 2537223-0001

Personal Consultant™ Plus Explorer 2537259-0001

System Software Explorer System Software Design Notes 2243208-0001

Internals Release Information, Explorer System Software 2549844-0001

Explorer and NuBus are trademarks of Texas Instruments Incorporated.
Explorer LX is a trademark of Texas Instruments Incorporated.

NFS is a trademark of Sun Microsystems, Inc.

DEChnet is a trademark of Digital Equipment Corporation.

Personal Consultant is a trademark of Texas Instruments Incorporated.

THE EXPLORER™ SYSTEM HARDWARE MANUALS

System Level Explorer 7-Slot System Installation 2243140-0001
Publications Explorer System Field Maintenance 2243141-0001
Explorer System Field Maintenance Documentation Kit 2243222-0001
Explorer System Field Maintenance Supplement 2537183-0001
Explorer System Field Maintenance Supplement
Documentation Kit v, 2549278-0001
Explorer NuBus™ System Architecture
General Descriptionvvvtv it 2537171-0001
System Enclosure Explorer 7-Slot System Enclosure General Description 2243143-0001
Equipment Explorer Memory General Description (8-megabytes) 2533592-0001
Publications Explorer 32-Megabyte Memory General Description....... 2537185-0001
Explorer Processor General Description 2243144-0001
68020-Based Processor General Description 2537240-0001
Explorer II Processor and Auxiliary Processor
Options General Description0vviiiienn, 2537187-0001
Explorer System Interface General Description 2243145-0001
Explorer NuBus Peripheral Interface
General Description (NUPI board) 2243146-0001
Display Terminal Explorer Display Unit General Description 2243151-0001
Publications CRT Data Display Service Manual, Panasonic
code number FTD85055057C v, 2537139-0001
Model 924 Video Display Terminal User’s Guide 2544365-0001
143-Megabyte Explorer Mass Storage Enclosure General Description 2243148-0001

Disk/Tape Enclosure
Publications

Explorer Winchester Disk Formatter (ADAPTEC)
Supplement to Explorer Mass Storage Enclosure

General Description 0. 2243149-0001
Explorer Winchester Disk Drive (Maxtor)

Supplement to Explorer Mass Storage Enclosure

General Descriptiono, 2243150-0001
Explorer Cartridge Tape Drive (Cipher)

Supplement to Explorer Mass Storage Enclosure

General Descriptionccoiiiiiiiiiiiinn 2243166-0001
Explorer Cable Interconnect Board (2236120-0001)

Supplement to Explorer Mass Storage Enclosure

General Descriptionoviii it 2243177-0001

143-Megabyte
Disk Drive Vendor
Publications

XT-1000 Service Manual, 5 1/4-inch Fixed Disk

Drive, Maxtor Corporation, part number 20005

(5 1/4-inch Winchester disk drive, 112 megabytes) 2249999-0001
ACB-5500 Winchester Disk Controller User’s

Manual, Adaptec, Inc., (formatter for the

5 1/4-inch Winchester disk drive) 2249933-0001

1/4-Inch Tape Drive
Vendor Publications

Series 540 Cartridge Tape Drive Product Description,
Cipher Data Products, Inc., Bulletin Number
01-311-0284-1K (1/4-inch tape drive)

MTO01 Tape Controller Technical Manual,
Emulex Corporation, part number MT0151001
(formatter for the 1/4-inch tape drive)

...............

................

2249997-0001

2243182-0001

182-Megabyte
Disk/Tape Enclosure
MSU 11 Publications

Mass Storage Unit (MSU II)
General Description

...............................

2537197-0001

182-Megabyte
Disk Drive Vendor
Publications

Control Data® WREN™ III Disk Drive OEM Manual,
part number 77738216, Magnetic Peripherals, Inc.,
a Control Data Company

...........................

2546867-0001

515-Megabyte Mass
Storage Subsystem
Publications

SMD/515-Megabyte Mass Storage Subsystem General
Description (includes SMD/SCSI controller
and 515-megabyte disk drive enclosure)

...............

2537244-0001

515-Megabyte Disk
Drive Vendor
Publications

515-Megabyte Disk Drive Documentation Master Kit
(Volumes 1, 2, and 3), Control Data Corporation
Volume 1, General Description, Operation, Installation
and Checkout, and Part Data
Volume 2, Theory, General Maintenance, Trouble
Analysis, Electrical Checks, and Repair Information
Volume 3, Diagrams

.......................

.....

................................

2246129-0002
2246125-0004

2246125-0005
2246125-0006

1/2-Inch Tape Drive
Publications

MT3201 1/2-Inch Tape Drive
General Description

...............................

2537246-0001

1/2-Inch Tape Drive
Vendor Publications

Cipher CacheTape® Documentation Manual Kit
(Volumes 1 and 2 With SCSI Addendum and,
Logic Diagram), Cipher Data products

1/2-Inch Tape Drive Operation and Maintenance
(Volume 1), Cipher Data Products

1/2-Inch Tape Drive Theory of Operation
(Volume 2), Cipher Data Products

SCSI Addendum With Logic Diagram,

Cipher Data Products

................

..............................

2246130-0001
2246126-0001
2246126-0002

2246126-0003

Control Data is a registered trademark of Control Data Corporation.
WREN is a trademark of Control Data Corporation.
CacheTape is a registered trademark of Cipher Data Products, Inc.

Printer Model 810 Printer Installation and Operation Manual 2311356-9701
Publications Omni 800™ Electronic Data Terminals Maintenance
Manual for Model 810 Printersccvvvvonn 0994386-9701
Model 850 RO Printer User’s Manual 2219890-0001
Model 850 RO Printer Maintenance Manual 2219896-0001
Model 850 XL Printer User’s Manual 2243250-0001
Model 850 XL Printer Quick Reference Guide 2243249-0001
Model 855 Printer Operator’s Manual 2225911-0001
Model 855 Printer Technical Reference Manual 2232822-0001
Model 855 Printer Maintenance Manual 2225914-0001
Model 860 XL Printer User’s Manual 2239401-0001
Model 860 XL Printer Maintenance Manual 2239427-0001
Model 860 X1 Printer Quick Reference Guide 2239402-0001
Model 860/859 Printer Technical Reference Manual 2239407-0001
Model 865 Printer Operator’s Manual 2239405-0001
Model 865 Printer Maintenance Manual 2239428-0001
Model 880 Printer User’'s Manual 2222627-0001
Model 880 Printer Maintenance Manual 2222628-0001
OmniLaser™ 2015 Page Printer Operator’s Manual 2539178-0001
OmniLaser 2015 Page Printer Technical Reference 2539179-0001
OmniLaser 2015 Page Printer Maintenance Manual 2539180-0001
OmniLaser 2108 Page Printer Operator’s Manual 2539348-0001
OmniLaser 2108 Page Printer Technical Reference 2539349-0001
OmniLaser 2108 Page Printer Maintenance Manual 2539350-0001
OmniLaser 2115 Page Printer Operator’s Manual 2539344-0001
OmniLaser 2115 Page Printer Technical Reference 2539345-0001
OmniLaser 2115 Page Printer Maintenance Manual 2539356-0001
Communications 990 Family Communications Systems Field Reference 2276579-9701
Publications EI990 Ethernet® Interface Installation and Operation 2234392-9701
Explorer NuBus Ethernet Controller
General Descriptioncoviii i 2243161-0001
Communications Carrier Board and Options
General Description v iiiiiiiiiiiiiiiean 2537242-0001

Omni 800 is a trademark of Texas Instruments Incorporated.
OmniLaser is a trademark of Texas Instruments Incorporated.
Ethernet is a registered trademark of Xerox Corporation.

CONTENTS

Section

Title

AW N

About This Manual
Zmacs Overview
Zmacs Operations
Command Groups

Customizing Zmacs

Zmacs Editor Reference

.
X1

Contents

Paragraph Title Page

About This Manual

Introductionttt i i e i e e xix
L0701/ ¢ 1 A xix
Executing Commandst i i e e xix
Using Keystroke Sequencescoviiiteiininnaann, xix
Typing Command Namescitiinninnennnnn. XX
Using the Mouseccviunn... et XX
Lisp Language Notation cciitinnnrnnennnnns. xxi
1 Zmacs Overview

1.1 Introductioncciiiiuiiiiiien i, 1-1
1.2 Text Bditingttt iiitiene e, 1-2
1.3 Program Developmentcoviuiiniiiinueeennieeereenns, 1-2
1.4 Getting Started and Helpciviinini i, 1-4
1.5 Text Storage Facilitieso nnnn., 1-4
1.5.1 Files, Buffers, and Directoriescciiiiirivnnn 1-5
1.5.2 0T = 1110 1-6
1.5.3 Point PDL i e i e i e 1-6
1.5.4 2= 1 1-6
1.5.5 Keyboard Macroso vvvivi it i it it cine e 1-6
1.6 Searching and Replacingcc.cuvitiniiiinrinneennnenn, 1-7
1.7 Customizationottt it e i e e 1-7

2 Zmacs Operations
2.1 INtroduction ittt it e e e e e e 2-1
2.2 ENtering Zmacsvvtuuittnn it oaie ettt 2-2
2.3 EXitiNg ZIMACS « ot vttt vttt et e e 2-3
2.4 ZmMacs SCIEEI . ot vttt it ettt ettt ettt 2-3
2.4.1 Editor Buffer Window i it 2-3
2.4.2 Mode Line Windowcooii it it i iiiie e it 2-4
2.4.3 Mouse Documentation Windowciiiivenann. 2-5
2.4.4 System Status Lineciiiiiiiiii i e 2-5
2.4.5 Scroll Bar . ..o e e e e e e 2-5
2.4.6 Typeout Window it 2-5
2.5 ExecutingCommands.........ooivuiiiiiniiieiiiienitoinnenas 2-6
2.6 Scrolling e e e e e 2-7
2.7 Splitting the Screenttt i i 2-7
2.8 MENUS « it e e e e 2-9
2.8.1 Types of Menus . ..o viii it iiiii e 2-10
2.8.2 1723 1o Y (=5 o 1 N 2-10
2.8.3 Top-Level Editor Menu 0ttt iiinniinnnnnnns 2-11
2.8.4 Zmacs Suggestions Menust 2-11

xii Zmacs Editor Reference

Contents

Paragraph Title Page
2.9 Help Facilities 00 iiiii i 2-12
2.9.1 Help Menu Commandsovttitttneeteeinreeeeennan, 2-12
2.9.2 Help Commands for Lisp Codecciiiiiineennnn. 2-13
2.9.3 N o) 43 oV 2-14
2.9.4 Troubleshooting vt ittt i, 2-14
2.10 Files, Buffers, and Directoriesvviiti .. 2-15
2.10.1 Pathname Structureouiuittiineeernnnnereennnns 2-16
2.10.2 File Types i i i it e e 2-18
2.10.3 Mode Line Informationovvi i it enenneens 2-18
2.10.4 Lisp Code in Bufferso i, 2-19
2.10.5 Creating Directoriescovviiiiii oo 2-20
2.10.6 Creating Buffersottt i 2-20
2.10.7 Listing and Editing Buffers 2-20
2.10.8 Finding a File for Editingo i, 2-22
2.10.9 Saving and Writing Files o ., 2-22
2.10.10 Editing a Directory it 2-22
2.11 Cursor Movementoitiiiiiiitinniiierianrrrsnnns 2-23
2.11.1 General Rules for Cursor Movementc.coovuvvuve... 2-24
2.11.2 Cursor Movement Commands Grouped by Quantity 2-26
2.11.3 Storing Cursor Locationsvvvvivini i iinen, 2-26
2.11.3.1 Storing Cursor Locations on the Point PDL 2-27
2.11.3.2 Storing Cursor Locations in Registers 2-29
2.12 Setting Modes and Buffer Attributes 2-30
2.12.1 Setting Modes iiviiii ittt i i e e 2-30
2.12.2 Setting Buffer Attributes i i 2-32
2.13 Deleting and Moving TexXto v iiiiiii it 2-34
2.13.1 Exchanging TexXtcciuitiiiniineiiinnnnenns 2-36
2.13.2 Marking TeXt . ..ottt ittt i e it it eienan 2-36
2.13.3 Deleting and Killing Textt iinniineeennn. 2-39
2.13.4 Retrieving (Yanking) Textcooviirtiiiiiiiinneennn. 2-41
2.13.5 Storing Text in Registerso iiiiii i nans 2-43
3 Command Groups
3.1 Overview of Commandsovi vttt nnnneenn. 3-1
3.1.1 Executing Commandsc.cuiiiiiiiiiiiiiiiiiei, 3-2
3.1.2 Prefix Commando, 3-3
3.1.3 Minibuffer Commands ittt i, 3-3
3.1.4 Numeric Argumentsovvv it ittt ot ennneronsnness 3-5
3.2 Buffer Commandsoiiiiiiiiiiiiiiiiiii i 3-7
3.2.1 Capture Into Buffer Commandscoiiivvnnnn. 3-7
3.2.2 Insert Buffer Commands i innnnn 3-8
3.2.3 Kill and Save Buffer Commands i 3-8
3.2.4 List and Edit Buffer Commands 0., 3-10
3.2.5 List and Edit Changed Definition Commands 3-15
3.2.6 Miscellaneous Buffer Commands 0u... 3-18
3.2.7 Print Buffer Commandsciiiiiiiiiiiiii, 3-19
3.2.8 Revert Buffer Command i, 3-20
3.2.9 Select Buffer Commandscoiviuiiriinietennnen.. 3-20
3.3 Compile and Evaluate Commandscccviivinnvnnn. 3-21
3.3.1 Evaluate Minibuffer Command, 3-23
3.3.2 Evaluate Into Buffer Commands................., 3-23
3.3.3 Compile or Evaluate Region or Definition Commands 3-23
Zmacs Editor Reference xiii

Contents

Paragraph Title Page
3.34 Compile or Evaluate Changed Definition Commands 3-25
3.3.5 Compile or Evaluate Buffer Commands 3-26
3.3.6 Compile File Command i, 3-27
3.3.7 Update Xld Commandoiiie ittt iinnansroas 3-28
3.3.8 Compile and Load Commandsc0iiiiinnnenrons 3-28
3.3.9 Compiler Warning Commandsccviiieernnnee... 3-29

3.3.10 Disassemble Commandsoviiiii i 3-32
3.4 Cursor Movement Commandsouuiiiiniiereennes 3-33
3.4.1 General Cursor Movement Commandsc..ouueuuny 3-33
3.4.2 Lisp Cursor Movement Commandscoiuuuuennn 3-35
343 Text Cursor Movement Commandscovuievvreenene. 3-40
3.4.4 Saving Cursor Locations (Point) Commands 3-41
3.4.5 Various Quantities Command ittt 3-45
3.5 Customization Commands0iuiirrerrrrrrrerrreras 3-47
3.5.1 Install Command on Key Commandsc.oovvvvvvin... 3-47
3.5.2 Keyboard Macro Commandsc.cciuuuiiennnnnnns 3-48
3.5.3 Variable Commands it 3-52
3.5.4 Word Abbreviation Commandsovvviiiiiii i, 3-54
3.6 Deleting and Moving Text Commandsccvvvuue... 3-59
3.6.1 Delete Commandsvvvniiiinniiernnnnnerennnnsesas 3-59
3.6.2 Kill Commandscciiiiiiiiiinrerrenonsoisnnnneesns 3-61
3.6.3 Mark Commandsovvt it rennneeenns 3-65
3.6.4 Register Commandsoviiiiiiiii it 3-68
3.6.5 Yank (Retrieve) Commandscovvvuviinnnninnennnnenn, 3-72
3.7 Directory Commandsttt ittt it 3-75
3.7.1 Create, List, and Clean Directory Commands 3-75
3.7.2 Edit a Directory (Dired) Commandsccvivvuuvenns 3-77
3.7.2.1 Dired Enter Commands iiiiiiinrenn, 3-80
3.7.2.2 Dired Documentation Command 3-80
3.7.2.3 Dired Abort Commandccoiiiiiiiinnnennnannn. 3-80
3.7.2.4 Cursor Movement Commandsc.o0viiinnunnn. 3-80
3.7.2.5 Numeric ATGUMENTS ... vvunt v ittt rnnnneeennnnsenss 3-81
3.7.2.6 Dired Edit Commands oot innn, 3-81
3.7.2.7 Dired Find File Command 3-82
3.7.2.8 Dired View File Commandcoiviiiiieinnn, 3-82
3.7.2.9 Dired Delete Commandccoiiiiiiiiinerranns 3-82
3.7.2.10 Dired Print File Command 0viiiinnnn.. 3-83
3.7.2.11 Dired Apply Function Command iun. 3-83
3.7.2.12 Dired Undelete Commandsccouieirinnnnnennnns 3-83
3.7.2.13 Dired Hog Commandsciiiiiiiieennnonnnnn 3-84
3.7.2.14 Dired Execute Commands0iiiviernnnennnns 3-85
3.7.2.15 Dired Rename Command ittt nnnns 3-86
3.7.2.16 Dired Copy Commandiiiiieirinrnonrnnans 3-86
3.7.2.17 Dired Compile and Load File Commands 3-86
3.7.2.18 Dired Subdirectory Command0cviinnnnn.. 3-87
3.7.2.19 Dired Next Undumped Command 3-88
3.7.2.20 Dired Flag Commandsc vt nans 3-88
3.7.2.21 Dired Print File Attributes Command 3-88
3.7.2.22 Dired Change File Properties Command 3-89
3.7.2.23 Dired SRCCOM Commandiviiiennennnnnans 3-90
3.7.2.24 Dired Sort Commandscciiiviverenernnnennnn. 3-90
3.7.2.25 Dired Mouse Commandscoviiiiniieiennaa. 3-92

xiv Zmacs Editor Reference

Contents

Paragraph Title Page
3.8 File Commandsvvivtiinetieetinetie ettt 3-93
3.8.1 Change File Properties Commandcovvvuveeean 3-93
3.8.2 Copy File Commandscoviit e 3-94
3.8.3 Delete File Commandsc.vviii it ineennns 3-95
3.8.4 Find and View File Commandstiirinerenennns 3-96
3.8.5 Insert File Commandscivit ittt ittt it eareean 3-97
3.8.6 Print File Commandttt ittt i, 3-98
3.8.7 Rename File Commandso vvi ittt ieineeninennenennns 3-98
3.8.8 Save and Write File Commandscoviiviineeen, 3-99
3.9 Font Commands . ..vv it itie oo enerniesaneens 3-101
3.10 Help, Documentation, and Undo Commands 3-105
3.10.1 Abort Commands ..o vv i i e e e e e e 3-105
3.10.2 Command and Key Help Commands 3-106
3.10.3 Function and Variable Help Commands 3-109
3.10.4 Help Menu Commands ...t vvinniiinniieinnineeenanns 3-113
3.10.5 List Keystroke History Command covvn 3-114
3.10.6 Minibuffer Help Commandscoiviiniveniierevannn 3-114
3.10.7 Where Am I Commandccitiiiiiiiinnninrnnnans 3-115
3.10.8 Symbol Help Command0tiv i, 3-115
3.10.9 Teach Zmacs Commandiitiieernnrnrenenns 3-115
3.10.10 Undo Commands ... v v vr i trntie i tnenesnionensasensas 3-115
3.11 Lisp Programming Commandsooivitiiininenn, 3-117
3.11.1 Break Commandi ittt i e e e e 3-117
3.11.2 Caller Commands .. ovv ittt it tiranenneneneeeenseenes 3-117
3.11.3 Edit or Find Source Commandsoviiiriinnnrnensnn 3-119
3.11.4 Flavor Commandsovvv i innin oo eenineenioennns 3-120
3.11.5 Set Package Commandviiitiiiiiiii e, 3-122
3.11.6 Patch Commandsv ittt ittt ittt ittt annens 3-124
3.11.7 Possibility Commandso it i i 3-126
3.11.8 Source Compare Commands v ivrrannn. 3-128
3.11.9 Trace Commandvvtivtin et oneneenneneaennonsas 3-132
3,12 Lisp Syntax Commandst vvniit i 3-133
3.12.1 Comment Commandsuvvtrtnrenriersenrionansnes 3-133
3.12.2 Grind (Pretty Print) Commands.c.coviineeennnnn 3-136
3.12.3 Macro Expansion Commandscoviiiiiii i, 3-136
3.12.4 Parentheses Commandsoviiiitrn ooty 3-137
3.13 Miscellaneous Commandsoviiierineranernoeenssons 3-141
3.14 Mode and Buffer Attribute Commands cvvu... 3-143
3.14.1 Major Mode Commandscovviiiiiiniiieriennenns 3-143
3.14.2 Minor Mode Commands vt ii et insenan 3-144
3.14.3 Buffer Attribute Commandsttt e 3-147
3.15 Mouse Commandsottt e e 3-151
3.16 Print Commandscv vttt ittt it i e e e 3-153
3.17 Scroll Commandsov vttt e e e e 3-155
3.18 Search and Replace Commandscooiiiiiiie, 3-159
3.18.1 Search Commands vv i vt et ittt et teresneseenornsnns 3-159
3.18.1.1 String Search Commandsc.cociviiiei e, 3-159
3.18.1.2 Incremental Search Commandsccoitvvenneans 3-161
3.18.1.3 Extended Search Commandscvvievvenvronnsoes 3-163
3.18.1.4 Miscellaneous Search Commandsccvvvieenea.s 3-166
3.18.2 Replace Commandsttt 3-168
3.18.3 Tag Commandscoitiiiiiiiniineiirinnieneanas 3-172
Zmacs Editor Reference XV

Contents

Paragraph Title Page
3.19 Text Format Commandscovuritrruiinererennessoos 3-179
3.19.1 Exchange Commandsc.covirevinrenneiutonneonns 3-179
3.19.2 Fill Commandst iitiiiir e ineoansionnoeeassaans 3-182
3.19.3 Lowercase and Uppercase Commandsoocvnuvonn 3-184
3.19.4 Miscellaneous Text Format Commandsc00uo.n 3-185
3.19.5 Sort Commands .. v v 3-187
3.19.6 Tab and Indentation Commands v vnnenns 3-188
3.19.6.1 Indentation Commandsvertiii i i e s 3-189
3.19.6.2 Tab Commands .. .cvvvvin ettt inaerenenns 3-194
3.19.7 Just One Space Commandcvviiviinerenern ey 3-196
3,20 Window Commands .. covv vttt ittt e 3-197

4 Customizing Zmacs
4.1 IntroduCliOncvvvievrteeennann oo annnnansasannsssos 4-1
4.2 Changing User Variablescoiiiniiiiiriiini i 4-1
4.2.1 Listing and Changing User Variables 4-2
4.2.2 Examples of Changing User Variables 4-2
4.3 Customizing Keyscovtiriiiiiiiiiiieieiieiaioennenaan 4-3
44 LoginInit Fileoiuiiiiinnininn i nniiiiniineone 4-3
4.5 Writing Your Own Commandscciivvniervaannes 4-5
4.6 Standalone Editorccceeiiiiietriiinnineeerninnnaans 4-6

Index

xvi Zmacs Editor Reference

Contents

Figure Title Page
Figures 2-1 Zmacs SCreeN ..o\ttt 2-4
2-2 Typeout Windowuuuiiiinin i 2-6
2-3 Split Screen Display (First Screen)ovvuurnn.. 2-8
2-4 Split Screen Display (Second Screen)0.0u... 2-8
2-5 Editor Menuouiiiiniriintn i 2-1
2-6 Show Point PDL Commandcuovuuruurnrnennnn.n. 2-28
2-7 Example Attribute Listc.ouiiiniintienn . 2-34
2-8 Show Kill History Displayovuviniinninnennennnnnn.n. 2-41
3-1 Kill or Save Buffers Menuouvunernrunennnnnnn.. 3-9
3-2 Sample Buffer HiStOryvuiiiiniiniinnnenennn 3-13
3-3 List Buffers Menucuviiiuniinin it 3-14
3-4 List Changed Definitions Commandcoovrvrnn... 3-16
3-5 List Buffer Changed Definitions Command 3-17
3-6 List Sections Commandvuuiiinininnen 3-17
3-7 Show Point PDL Commandouvvrmununennnnnn... 3-44
3-8 Variable Apropos Command (HELP V)c.'v.... 3-53
3-9 List Registers Commanduouuiinenrunrnnnennnn. .. 3-69
3-10 Show All Registers Commandovuerernenennnnnn.. 3-69
3-11 Show Saved Positions Commandovurnrnn.... 3-70
3-12 View Register Commandcoouiinninnannnn. 3-71
3-13 Example Dired Listingovtiiineneennn, 3-77
3-14 Dired MeNU ...ttt 3-78
3-15 Dired Change File Properties Menucovuun... 3-89
3-16 Change File Properties Menuc.uvueuunennnnnn... 3-94
3-17 Apropos Command (HELP A)covuriuinunnnnnn. .. 3-107
3-18 Self Document Command (HELP C)c.oovvuuu.n., 3-108
3-19 Where Is Command (HELP W)oovurnunnnniin. 3-108
3-20 Function Apropos Commandouvtrmrrnunnrnnn... 3-110
3-21 Function Apropos Possibilities Buffer 3-111
3-22 Variable Apropos Command (HELP V) 3-112
3-23 Undo Command (HELP U) oiitinnnnnnnnnnn, 3-116
3-24 Sample Definitions Buffercouuuuninrnininn... 3-127
3-25 Source Compare Merge Commandoovvvuernnnnn... 3-130
3-26 Trace Command MeNUvvutvinninneeneennenennnnnns, 3-132
3-27 Tab-Stop Buffer i 3-194
3-28 Split Screen Display (First Screen)ooveuunoon.. 3-200
3-29 Split Screen Display (Second Screen)00iun..n. 3-200
Table Title Page
Table 3-1 File Propertiesouuuuinuunun e ensenenenannnnn, 3-89
Zmacs Editor Reference xvii

ABOUT THIS MANUAL

Introduction

The Explorer Zmacs Editor Reference describes the Zmacs editor, a
command-driven, window-oriented editor that provides a wide range of facili-
ties for editing text, developing Lisp programs (editing source code), and
manipulating files. The manual tells you how to operate Zmacs and provides
reference material on all the Zmacs commands. The manual is intended for
anyone using the Explorer system. It assumes you have read the Explorer
Technical Summary and are familiar with the basic operations described in
the Introduction to the Explorer System.

Contents

This manual contains an index and the following sections:

Section 1: Zmacs Overview — Presents an overview of the features available
on Zmacs, which range from compiling and evaluating Lisp code within
Zmacs, to elaborate search and replace operations, to online help on almost
any operation you are performing.

Section 2: Zmacs Operations — Describes how to perform basic operations
on Zmacs, such as entering and exiting Zmacs, creating directories and files,
moving the cursor, and deleting and moving text.

Section 3: Command Groups — Presents all the Zmacs commands in func-
tional groups to explain how they work together and to help you easily find a
particular command.

Section 4: Customizing Zmacs — Tells how you can easily change some of
the ways Zmacs operates.

Executing
Commands

Using Keystroke
Sequences

You can execute Zmacs commands three ways: by using keystroke seq-
uences, by typing the command name, and by using the mouse.

You can execute many of the commands in Zmacs with a combination or
sequence of keystrokes. In this manual, hyphens connect the names of keys
that you should press simultaneously (chord). Spaces separate the names of
keys that you should press one after the other. The following table illustrates
this manual’s conventions for describing keystroke sequences.

Zmacs Editor Reference

xix

About This Manual

Typing
Command Names

Using the Mouse

Keystroke Sequence Description

SYSTEM E Press the SYSTEM key and release it, then press
the E key and release it.

META-X Hold the META Kkey and press the X key.

CTRL-X CTRL-F Hold the CTRL key and press the X key, release
the X key, and then press the F key. Alternatively,
press CTRL-X, release both keys, and press
CTRL-F.

Many Zmacs commands do not have keystrokes assigned to them. To exe-
cute these commands, you press META-X, type the name of the command,
and then press RETURN.

META-X Find File Hold the META Kkey and press the X key, release
RETURN the keys, type the words find file (separated by a
space), and then press the RETURN Kkey.

The optical mouse features three buttons that enable you to perform opera-
tions from the mouse. The mouse documentation window (the window in
reverse video at the bottom of the screen) tells you what operations you can
perform with the mouse. The options change according to the operation you
are performing. The following table describes the abbreviations the mouse
documentation window uses to describe using the mouse buttons. (Pressing
and releasing a button is called clicking.)

Abbreviation Action

L Click the left button (press the left button once and
release).

M Click the middle button (press the middle button
once and release).

R Click the right button (press the right button once
and release).

L2 Click the specified button twice quickly. (Press the

M2 button, release it, then press it again quickly.) This

R2 action is called double clicking*.

LHOLD Press the specified button and hold it down.

MHOLD

RHOLD

* If you double click too fast, the system sees only one click. If you double
click too slowly, the system sees two single clicks. You can use an alterna-
tive method to prevent such misinterpretations: press and hold the CTRL
key while you click the specified button one time.

XX

Zmacs Editor Reference

About This Manual

Lisp Language
Notation

The Lisp language notational convention helps you distinguish Lisp functions
and arguments from user-defined symbols. The following table shows the
three fonts used in this manual to denote Lisp code:

Typeface Meaning

boldface System-defined words and symbols, including names
of functions, macros, flavors, methods, variables,
keywords, and so on—any word or symbol that appears
in the system source code.

italics Example names and arguments to functions, such as a
value or parameter you specify. An item in italics can
be replaced by any value you choose to substitute.
(Italics are also used for emphasis and to introduce new
terms.)

monowidth Examples of program code and output. System-defined
v words shown in examples are also in this font.

For example, this sentence contains the word setf in boldface because setf is
defined by the system.

Some function and method names are very long—for example, get-ucode-
version-of-band. Within the text, long function names may be split over two
lines because of typographical constraints. When you code the function name
get-ucode-version-of-band, however, you should not split it or include any
spaces within it.

Within manual text, each example of actual Lisp code is shown in monowidth
font. For instance:

(setf x 1y 2) => 2
(+xy) =>38

The form (setf x 1 y 2) sets the variables x and y to integer values;
then the form (+ x y) adds them together.

In this example of Lisp code with its explanation, setf appears in the
monowidth font because it is part of a specific example.

For more detailed information about Lisp syntax descriptions, see Section 1,
Introduction, of the Explorer Lisp Reference manual.

Zmacs Editor Reference

xxi

ZMACS OVERVIEW

Introduction

1.1 The Zmacs editor is a command-driven, window-oriented editor that
you can use for text editing, program development (source code editing), and
file manipulation. Zmacs is descended from Emacs, a powerful text editor
developed at the Artificial Intelligence Laboratory of the Massachusetts Insti-
tute of Technology. Zmacs provides these features:

Text editing capabilities — Zmacs provides commands that make it easy
for you to edit text. These commands allow you to perform operations on
different units of text: character, word, sentence, paragraph, and so on.
Cursor movement commands quickly move you to whatever location you
want. You can easily move and copy blocks of text.

Program development — Closely tied to the other utilities on the system,
Zmacs lets you compile and evaluate Lisp code and helps you find source
code for editing. Zmacs also enables you to find functions and variables.
When you are writing Lisp code, Zmacs helps you with balancing paren-
theses and proper indentation. The commands available allow you to
perform operations such as cursor movement on different units of Lisp
code: symbols, lists, and so on.

The integrated environment of the Explorer system, which allows you to
use the interpreter and the compiler from inside the editor, adds to the
power of Zmacs. Also, you can easily go to another program such as the
Inspector by using the System menu (which is available from Zmacs and
everywhere else).

Getting started and help — The Explorer Zmacs Editor Tutorial gives the
first-time user valuable hands-on experience. It covers a wide range of
basic commands. This reference manual discusses basic operations in
more detail.

Online help is available for almost every situation. Pressing the HELP key
usually displays information about whatever operation you are perform-
ing. Other help commands assist you in finding a command name, a
keystroke, or even a variable name.

The Zmacs Suggestions menus display the commands in functional
groups. They make it easy for you to find and execute a particular com-
mand. Most people like to use the menus when they first start because
the menus are easy to use and quickly help you learn your way around.

Text storage facilities — Zmacs contains a large repertoire of commands
that deal with files and directories. It also contains temporary storage
locations for saving blocks of text and cursor locations.

Searching and replacing — Zmacs provides commands that perform a
wide range of search and replace operations. You can search and replace
forward or backward.

Zmacs Editor Reference

1-1

Zmacs Overview

m Customization — You can change how Zmacs operates and tailor it to suit
your individual needs. Zmacs contains facilities to help you easily change
some aspects of its workings.

Text Editing

1.2 Zmacs provides extensive text editing capabilities. Zmacs contains a
mode, called Text mode, that is specifically designed for editing text. A mode
changes how some commands operate.

Zmacs contains commands to manipulate text at the following levels: charac-
ter, word, line, sentence, paragraph, region, and buffer/file. A region is a
block of text that you define. Some of the operations you can perform
include the following:

m Change text to uppercase or lowercase.

B Delete text.

m Fill text. Fill means to put as much text as possible on the current line
without exceeding the right margin.

Justify text. Justify means to make the text align on the right margin.
Move the cursor to a different location.

Set tabs where you want them.

Transpose text.

Program
Development

1.3 Zmacs provides extensive program development aids for Lisp code. It
is closely tied to the compiler and interpreter, so you can compile and evalu-
ate from within the editor. Zmacs also contains two modes specifically
designed for Lisp code: Common Lisp mode for Common Lisp code and
Zetalisp mode for Zetalisp code.

Zmacs provides commands to manipulate Lisp code on the following levels:
B Symbolic expression

W Definition

B Region

When you edit a file of function definitions, each definition is a section within
the buffer that you are editing. After the opening parenthesis in the first
column, a section can contain any defining construct that begins with def,
such as defvar, defflavor, and defun. The section scheme allows you to
locate definitions quickly. It also allows you to perform operations such as
compiling only the changed sections (or definitions) in a buffer. (Buffers and
files are explained later.)

Zmacs helps you balance parentheses by providing automatic display of
matching parentheses. When you finish typing the closing parenthesis for an
expression, Zmacs flashes the corresponding opening parenthesis. If the

1-2

Zmacs Editor Reference

Zmacs Overview

cursor is on the opening parenthesis, Zmacs flashes the corresponding closing
parenthesis if it exists.

Zmacs also provides automatic indentation. It correctly indents the next line
for you. It also provides commands to perform more elaborate indentation,
such as indenting every line in a block of code that you define as a region.

Among the other program development operations with Lisp code are the
following;:

Finding information about Lisp code. Lisp finds information about code
in real time, whereas other languages stop at mere cross-references. You
can use the mouse cursor to point to a symbol in a Lisp expression, and
then enter various Zmacs commands to provide information about the
symbol and find its source. Examples of operations you can perform with
Zmacs commands are as follows:

®» Find the source code for a function.

» List and edit callers.

» Edit flavors and methods.

s Display the expansion of a Lisp macro.

» Manipulate variables. Zmacs helps you find variables, prints docu-
mentation about a variable, and allows you to change the values of
variables.

s List the arguments for a function.

s Provide documentation about a function.

w Trace the execution of a function.

Improving code appearance and pretty printing. Zmacs helps you with

the appearance and indentation of Lisp code. For example, Zmacs

enables you to perform these tasks:

= Change Lisp code to uppercase, lowercase, or initial capitals.

= Grind and indent Lisp code. Grind means to indent Lisp code cor-
rectly (or to pretty print it). Grind works on a whole Lisp expression,
whereas indent usually works on one or more lines that you specify or
take as the default.

Understanding program structure. Zmacs provides commands to manipu-

late the syntax of a Lisp program. For example, Zmacs helps you to

perform these tasks:

= Manipulate comments. You can move the cursor by comment lines,
indent comments, and start and end comments.

s Manipulate parentheses. You can move the cursor from one paren-
thesis to the next, display the start of a list, and insert matching
parentheses.

Zmacs Editor Reference

Zmacs Overview

Getting Started
and Help

1.4 The Explorer Zmacs Editor Tutorial gives the first-time user valuable
hands-on experience with Zmacs. It teaches many of the basic commands
and operations that Zmacs can perform.

Section 2 of this reference manual describes the basic operations of Zmacs in
more detail. You can use Section 3 for reference. It describes all the Zmacs
commands in functional groups.

Zmacs contains many help facilities. Help is available for almost every situ-
ation. Usually, you can press the HELP key to display information about the
operation you are performing. Among the help facilities available are the
following:

m A Help menu that provides a wide range of help operations
Documentation on an individual command

Documentation on a key sequence

Documentation on a function

Documentation on a variable

A listing of the last 60 keystrokes you typed
M A command to undo your recent editing changes

The Zmacs Suggestions menus help you get started using Zmacs by displaying
the Zmacs commands in functional groups. You can see these menu names
when you first enter Zmacs. These menus teach you the use and meaning of
various commands and make you aware of all the commands in a given con-
text. You can select a menu item with the mouse. To select a menu item, you
position the mouse cursor on the item until it is highlighted with a box and
then you click left. Clicking on an item either displays more menu names, the
individual commands in the group, or both. If you select an individual com-
mand, the command is executed.

To turn on the Suggestions menus, you select the item Suggestions Menus On
in the command line in the Lisp Listener.

Text Storage

1.5 Zmacs can access the following text storage facilities. You can use

Facilities these depending on your particular needs.
m Files — Stored on disk.
B Buffers — Memory-resident versions of files that Zmacs uses for editing.
m Directories — Contain both files and other directories.
W Kill history — Used to move and copy text.
m Point PDL — Stores cursor locations. (PDL stands for push-down list.)
1-4 Zmacs Editor Reference

Files, Buffers,
and Directories

Zmacs Overview

W Registers — Store cursor locations and/or text.

B Keyboard macros — Store a series of commands that you can later call as
one command.

Files and directories are part of the Explorer file system. Buffers, registers,
keyboard macros, the kill history, and the point PDL are part of Zmacs.

1.5.1 Zmacs provides a wide range of file, buffer, and directory operations.
Zmacs makes a distinction between files and buffers. Files are stored on disk.
Zmacs does not edit files. Whenever you want to edit a file, Zmacs makes a
temporary copy in a buffer. You work with the copy in the buffer. When you
save a buffer, it is written to a file on disk.

When you write a buffer to disk, it does not overwrite the previous copy of
the file. It has the same filename but the next higher version number.

All files and buffers are stored in directories, which form a tree structure. A
directory is a file that contains other files or subdirectories. A subdirectory is
a directory within another directory. A subdirectory can also contain files and
subdirectories. Zmacs provides a directory editor, Dired, that allows you to
perform a wide range of operations on a directory.

Some of the file, buffer, and directory operations available are as follows:

m Directory housekeeping. You can perform all your directory housekeep-
ing from Dired. You can delete, copy, rename, print, and edit files.
However, you do not immediately delete files. You mark them for dele-
tion, and you can remove the deletion mark. When you finish with
Dired, you are asked whether you want to delete the files that are
marked for deletion.

m Editing and viewing. Zmacs provides several different operations for edit-
ing and viewing files and buffers:

= Find — Brings a file into a buffer for editing.
s Select — Allows you to switch between buffers.
» Edit — Allows you to edit a buffer.

= View — Allows YOu to view the contents of a file or buffer, but you
cannot edit the file or buffer.

m Saving and writing files. Zmacs provides two commands that copy a
buffer to a file. The Write File command lets you specify the filename.
The Save command automatically gives you the default filename.

M Compiling and loading. Zmacs lets you compile files and buffers from
within Zmacs. The integrated environment of the Explorer system allows
Zmacs to use the compiler. You can also load a file. Loading means to
bring the contents of the file on disk into memory so that the functions
and so on can be called.

B Moving blocks of text. You can move blocks of text within buffers and
between buffers. You can also insert a file into your buffer.

Zmacs Editor Reference

Zmacs Overview

Kill History

Point PDL

Registers

Keyboard Macros

Files and buffers use fonts. A font specifies the typeface and size of charac-
ters in the file or buffer. The Explorer system contains a wide assortment of
fonts that you can use in Zmacs. You can highlight different parts of your text
by using different fonts.

1.5.2 The kill history is a stack of infinite size that allows you to move and
copy blocks of text. The operations you perform with the Kkill history are
called kill, save, and yank.

When you kill text, it is put on the kill history and removed from your buffer.
You can save text on the Kkill history without removing it from your buffer.
When you yank text, you copy an entry from the Kill history into your buffer.
You can yank all or only parts of the entry. A save followed by a yank is the
way Zmacs allows you to copy text. A Kkill followed by a yank is the way
Zmacs allows you to move text.

Usually, the block of text in the kill history is a region that you have marked.
When you mark a block of text, it is highlighted (underlined or displayed in
reverse video) and referred to as a region.

1.5.3 The point PDL allows you to store point (or cursor) locations. You
can use the point PDL to return to previous cursor locations. Point refers to
the previous location of the keyboard cursor. PDL stands for push-down list,
which basically means that entries are added to and removed from the top of
the list. (In modern terminology, a PDL is a stack.)

Point is actually the position in the buffer represented by the left-hand edge
of the keyboard cursor. Point is never on a character as the cursor is; point is
always between characters. For example, if the cursor is on the ¢ in the word
me, point is between the m and the e.

1.5.4 Zmacs contains storage areas called registers. The following list
describes what you can store in a register:

B A block of text

B A cursor location

M Both a block of text and a cursor location

These registers allow you to store text (or code) in much the same way as the

kill history does. The difference is that text put in a register stays there, while
the top of the Kill history (the part from which you yank) often changes.

1.5.5 A keyboard macro is a sequence of commands stored for use as a
group. You press several keys that perform commands and make that a
repeatable sequence. You can name the keyboard macro or store it on a
keystroke for easy execution. This is one of the customization features that
Zmacs offers.

Zmacs Editor Reference

Zmacs Overview

Searching
and Replacing

1.6 Zmacs contains a wide variety of search and replace facilities. You can
search and replace forward or backward. The following search facilities are
available:

W String search finds the string that you specify.

W Incremental search finds intermediate strings while you are typing a
string.

B Extended search lets you make complicated searches for combinations of
strings by using special characters.

W Tags tables search allows you to search through groups of files. The files
are treated as one file for the search operation.

The following replace facilities are available:
W String replace replaces all occurrences of a given string with another.

B Query replace replaces a string and asks you about each occurrence (that
is, whether you want to replace it).

W Multiple query replace replaces two sets of strings at the same time and
asks you about each occurrence.

W Tags tables replace allows you to replace strings in a group of files. The
files are treated as one file for the replace operation.

Customization

1.7 Zmacs allows you to change various aspects of its workings, and it pro-
vides facilities to help you make the changes.

Zmacs contains a set of variables called user variables that allow you to cus-
tomize Zmacs. Zmacs contains commands that help you find and change the
values of these variables. For example, when you mark a region, the region is
underlined. You can change the underlining to reverse video.

If you find that you frequently use a command that does not have an associ-
ated key, you can associate a key with the command. You can also define a
keyboard macro to associate a key with a group of commands. Then, that
one key executes the entire group of commands.

If Zmacs does not contain the appropriate command for your particular
application, you can customize Zmacs by writing your own command. You
might want a command to perform a file or buffer operation that Zmacs does
not presently supply.

Zmacs contains many minor modes that change some aspects of how Zmacs
operates. Text mode, Common Lisp mode, and Zetalisp mode are major
modes. You always have one and only one major mode active at a time. A
minor mode is used in conjunction with a major mode. You can specify as
many minor modes as you want with any major mode. For example, Zmacs,
by default, is in Insert mode. When you position the cursor over a character
and type another character, the old character is moved to the right and the

Zmacs Editor Reference

Zmacs Overview

new character is inserted. If you specify Overwrite mode as a minor mode,
the old character is overwritten.

You can create a login initialization (init) file to customize Zmacs for you.
You set up the file with whatever options you want. The system executes the
init file whenever you log in. This init file, which is named LOGIN-
INIT.LISP, is in the directory with the same name as your login user ID. That
is, if your user ID is JONES, then your init file is JONES; LOGIN-
INIT.LISP. (You can also use a compiled version of the file.)

Section 4, Customizing Zmacs, explains customization in detail.

Zmacs Editor Reference

ZMACS OPERATIONS

Introduction

2.1 This section covers the basic operations of Zmacs. It is intended to get
you started using Zmacs. It does not describe every detail of the operations,
nor does it cover every operation that Zmacs provides. For detailed informa-
tion, refer to Section 3, which describes all the commands that Zmacs
contains. Before using this section, you should be familiar with the Intro-
duction to the Explorer System. In addition, you should understand basic
operating instructions for the Explorer system.

The following list describes the basic operations that are discussed:

B Entering Zmacs — Tells how to enter Zmacs.

M Exiting Zmacs — Tells how to exit Zmacs.

B Zmacs screen — Describes the Zmacs screen and its various parts.

B Executing commands — Describes the different ways you can execute
commands in Zmacs.

M Scrolling — Describes how to scroll in Zmacs.

B Splitting the screen — Explains how to split the screen.

B Menus — Presents an overview of the menus you see in Zmacs.

W Help facilities — Presents an overview of the Zmacs help facilities.

B Files, buffers, and directories — Describes the basic file, buffer, and
directory operations, such as creating directories.

B Cursor movement — Describes the cursor movement commands and how
to store cursor locations.

B Setting modes and buffer attributes — Tells how to set modes and other
buffer attributes.

m Deleting and moving text — Tells how to delete and move text in Zmacs.

NOTE: Unlike some editors, Zmacs is in Insert mode by default. When you
position the cursor over a character and type a new character, the old charac-
ter is moved to the right and the new character is inserted. You can customize
Zmacs by putting it in Overwrite mode. Then old characters are overwritten.
(Refer to paragraph 2.12, Setting Modes and Buffer Attributes.)

Zmacs Editor Reference

Zmacs Operations

Entering Zmacs

2.2 You can enter Zmacs in several different ways. You can create a new
instance of the Zmacs editor, or enter one that already exists. In other words,
you can create more than one instance of the editor while you are logged in.
However, one instance is sufficient to edit many different buffers. (In this
manual, creating an instance of the Zmacs editor is called creating an
editor.)

You can use any of the following methods to enter the editor:

W SYSTEM E — Pressing SYSTEM E creates an editor if one does not
already exist. If you have created several editors, SYSTEM E puts you in
the most recently used (not recently created) editor. You can cycle
through the editors by repeatedly pressing SYSTEM E.

B SYSTEM CTRL-E — Pressing SYSTEM CTRL-E creates a new editor,
whether one already exists or not.

B Zmacs Editor option on the System menu — Selecting the Zmacs Editor
option on the System menu creates an editor if one does not already
exist. If you have created several editors, selecting Zmacs Editor puts you
in the most recently used (not most recently created) editor.

You can also enter the editor from the System menu by selecting Create
or Select. The Create option allows you to create a new editor and specify
the size and position of the editor window, which otherwise is a full
screen. The Select option allows you to select an existing editor. Select
gives you a list of the windows currently available, including all the
instances of the editor. It shows you the most recently used buffer in each
editor. For information on how to use the Create and Select options,
refer to the Introduction to the Explorer System.

To invoke the System menu when you are in the editor, you double click
right.

B Function calls — You can also enter the editor by ﬁsing one of the follow-
ing function calls:

ed &optional x Function

The ed function is the main function for entering the editor.

The (ed) or (ed nil) form enters the editor, putting you in the same buffer
that you were in the last time you used the editor.

The (ed t) form puts you in a new buffer with a generated name (such as
BUFFER-2).

The (ed pathname) form edits the file specified by pathname, which can be
an actual pathname or a string.

The (ed ’foo) form edits the definition of the foo function. It finds a buffer
or file containing the source code for foo and positions the cursor at the
beginning of the code. In general, foo can be any function-spec (refer to the
Explorer Lisp Reference).

2-2

Zmacs Editor Reference

Zmacs Operations

The (ed -zwei:reload) form reinitializes the editor (that is, all instances of
the editor). Because it deletes all existing buffers, you should use this form
only as a last resort.

dired &optional pathname Function

This function allows you to edit the directory specified by pathname. If you
do not specify a pathname, it defaults to the last file opened.

Exiting Zmacs

2.3 You can exit Zmacs using any of the following methods:

B END — Pressing END returns you to the previous window you were in. If
you were in the Lisp Listener, END returns you to it. However, if you
were in another editor, END returns you to this editor.

M System menu — You can exit Zmacs by double clicking right to invoke
the System menu and selecting one of the other programs, such as the
Lisp Listener.

B SYSTEM HELP — Pressing SYSTEM HELP provides a list of other pro-
grams that you can select on the system. You press the SYSTEM key,
then the character for the program, such as L for the Lisp Listener (that
is, you press SYSTEM L).

Zmacs Screen

Editor Buffer
Window

2.4 The Zmacs screen contains several related parts, each used for different
operations. Figure 2-1 shows the Zmacs screen.

Subsequent paragraphs summarize the purpose of each of the following parts
of the Zmacs screen:

Editor buffer window

Mode line window

Mouse documentation window
System status line

Scroll bar

Typeout window

2.4.1 The editor buffer window is the upper section of the screen, which
you use for editing. You can split the screen into two or more editor buffer
windows. You can move between multiple editor buffer windows by using
either commands or the mouse. You exit the editor buffer window by moving
to another editor window or by leaving the editor. For details on splitting the
screen, see paragraph 2.7, Splitting the Screen.

Zmacs Editor Reference

2-3

Zmacs Operations

Figure 2-1 Zmacs Screen

keyboard
cursor

\

mouse
cursor

/

”

editor scroll bar

buffer<
window ‘/

mode
line —
window

[

mouse
docurentation
window

minibuffer

system mode
status line
line

Mode Line Window 2.4.2 The mode line window contains the mode line and the minibuffer.
The mode line tells you the following information:

Program name — The name of the program, which is Zmacs.

Mode — The mode you are in. Common Lisp mode is the default mode.
(Paragraph 2.12, Setting Modes and Buffer Attributes, describes modes.)

Buffer name — The name of the buffer you are editing. If a buffer is
connected to a file (that is, the buffer was read from disk), the version
number of the file appears in parentheses beside the pathname. (When
you save the contents of a buffer, Zmacs writes the buffer to a file on
disk.)

Font — The name of the current font if fonts have been set for the
buffer.

Size of buffer — If more of the buffer is above or below what you see on
the screen, an up arrow or a down arrow is displayed following the name
of the buffer.

2-4

Zmacs Editor Reference

Mouse
Documentation
Window

System
Status Line

Scroll Bar

Zmacs Operations

B Modified buffer — If the buffer has been changed since it was read from
disk, an asterisk is displayed after the up arrow or down arrow. If the
buffer is read only, (RO) is displayed.

You enter command names and responses to command prompts in the mini-
buffer. You can tell if you are in the minibuffer because the keyboard cursor
moves there. The minibuffer is usually a three-line-high version of the editor.
It works exactly like an editor buffer window. You can edit your input and
scroll in it. When you enter the minibuffer, the right side of the mode line
presents messages about the operation you are performing. The following
messages may appear:

B Completion — If you press the ESCAPE key when you see this message,
Zmacs provides help on completing command names, pathnames, and
responses to commands.

B Extended Search Characters: CTRL-H — If you press CTRL-H HELP
when you see this message, a list of extended search characters appears.
You use these to perform searches.

2.4.3 The mouse documentation window is in reverse video below the mode
line window. Zmacs uses the mouse documentation window to provide docu-
mentation on the options available with the mouse. For example, if you are in
the editor buffer window, the mouse documentation window tells you that two
right clicks (R2) invoke the System menu and that one right click (R) invokes
the Editor menu.

2.4.4 The system status line, the bottom line on the screen, provides infor-
mation on the status of the entire system. In addition to the date, time and
user name, two items appear there to provide status information on Zmacs:

B Package name — A name followed by a colon appears to the right of the
user name. This tells you what package a file is using. All files use a
particular package. In Figure 2-1, the package name is USER.

B File information — During file transfers, the file information appears to
the right of the package name. This information includes the name of the
file being transferred and the percentage of transfer complete. An arrow
indicates input to or output from the named file.

2.4.5 The scroll bar, which is next to the left margin, allows you to scroll the
information in the editor buffer window. The scrolling icons in this scroll bar
region indicate whether you need to scroll forward or backward to find addi-
tional material. For example, a down arrow appears in the lower left corner if
there is more information below. Similarly, an up arrow appears in the upper
left corner if there is more information above. The mouse documentation
window describes the scrolling operations you can perform when the mouse is
positioned in the scroll bar region. For specific information about scrolling
with the mouse, refer to the Introduction to the Explorer System.

Zmacs Editor Reference

Zmacs Operations

Typeout Window

Figure 2-2

2.4.6 The typeout window returns information in response to commands or
errors. It overlays the editor buffer window, starting at the top. The typeout
window is a temporary window; it overwrites the editor buffer window, but as
soon as you erase the typeout window, the contents of the editor buffer win-
dow are restored. Figure 2-2 shows a sample typeout window.

When you execute a command such as the List Fonts command to see the
available fonts in the system, the typeout window displays the list.

The general rules for removing the typeout window are as follows:

If the typeout window returns information because of an error, you can
press the ABORT key to remove the typeout window in most cases.

If the typeout window returns information in response to a command and
the word More does not appear on the bottom of the window, you press
the space bar or the ABORT key to remove the window. Any other key,
including RUBOUT, affects your buffer as if no typeout window were
present. Typing a character such as g removes the typeout window, but
the g is also inserted into your file. The space bar does not insert a space.

If the typeout window returns information in response to a command and
the word More does appear on the bottom of the window, you press the
space bar to scroll the window. To remove the window, you press
RUBOUT or ABORT. Then the message Removed appears, and the
screen is restored.

Typeout Window

Torc<Ioun

[TAeTo:
Tupe one of the following characters to choose an option:

Print out documentation for the command on a given key.
Describe a command, specified by name.

Print documentation of editor user option variable.

List commands whose names contain a given string.

List a1l editor options whose names contain a given substring.
Undo the last undoable command done in the current buffer.
List the last sixty keystrokes typed inside the editor.

List the special characters available in this buffer.

List all characters that invoke a given command.

You may continue choosing options until you exit.

Press the space bar to exit this command.
Any other non-option key will exit and bs executed.

lMunA Ty P R U OO U T SO U T T UYaTr T O U UITU—wrTae—t

(check—tupe. font font ‘a font object")

(LET* ((FONT-SIZE (IF Cand (font-fill-pointer font) (NOT (ZEROP (FONI-FIL
(FONT-FILL-POINTER FONI)
.« E

; s ELS
(LENGTH (FONT-CHAR-WIDTH-TABLE FONI))))

Executing
Commands

2.5 Zmacs allows you to execute commands several different ways. You
can use any of the following methods:

Press keystrokes. You can use keystrokes to execute many of the com-
mands, but not all of them. Some keystrokes such as CTRL-X are prefix
commands. These commands allow you to use another group of com-
mands after you enter the prefix command.

Click on command names in menus. You can use the mouse to select
commands from the Suggestions menus, the Editor menu, and other

Zmacs Editor Reference

Zmacs Operations

Zmacs menus. To select a command, you position the mouse cursor on
the command name until it is highlighted with a box, and then you click
the left mouse button.

B Press META-X and then type the command name. Commands allowed
by META-X are designed to apply to your current context in the editor.

Furthermore, you can give any Zmacs command a numeric argument. The
numeric argument has different effects depending on the command. You can
supply positive or negative numbers as arguments.

One of the most common uses for the numeric argument is as a counter for
the number of times the command should be performed. For example, sup-
plying the Kill Word command (META-D) a numeric argument of 20 deletes
20 words after the cursor instead of 1. The following list provides examples of
entering a numeric argument of 20 for a Zmacs command by using the key-
stroke method, by using the menu method, and by using the META-X
method:

W Keystrokes — Press CTRL-2 CTRL-0 META-D to execute the Kill Word
command 20 times. You hold down any combination of the CTRL,
META, SUPER, and HYPER keys while pressing numbers. Then you
press the keystroke for the command.

B Menus — Press CTRL-2 CTRL-0. Then select the Kill Word command
from a menu. You can find the command listed as M-D Word — in the
Suggestions menus. You need to select the Move, Copy, and Delete
menu listed under Other Menus. The command is under the heading
Killing (for moving).

B META-X — Press CTRL-2 CTRL-0 META-X, and then type Down
Indented Line.

Section 3, Command Groups, describes META-X, numeric arguments, and
prefix commands in detail. It also tells you how Zmacs can help you find and
complete command names.

Scrolling

2.6 Zmacs allows you to scroll the editor buffer window with the following
commands:

B Next Screen (CTRL-V or CTRL-|) — Scrolls forward a screenful of text.
If you supply a numeric argument, CTRL-V or CTRL-| scrolls forward
the specified number of lines.

W Previous Screen (META-V or CTRL-t1) — Scrolls backward a screenful
of text. If you supply a numeric argument, META-V or CTRL-t scrolls
backward the specified number of lines.

Splitting the Screen

2.7 You can divide the editor buffer window into two or more windows and
edit a different buffer in each window. However, you can perform an opera-
tion in only one window at a time.

To split the editor buffer window, you execute the Split Screen command
(META-X Split Screen). (You can also find this command on the Editor
menu.) Figure 2-3 shows the display that appears when you execute the Split
Screen command.

Zmacs Editor Reference

2-7

Zmacs Operations

Figure 2-3 Split Screen Display (First Screen)
Split screen buffer:
Buffer-6 *Buffer-5*
Buffer-4 *Buffer-3*
Buffer-2 *Dired-MARK;-1*
Buffer-1
New buffer Find file
Undo Do it
Abort
You can choose one of the buffers listed by clicking on its name, select New
buffer to create a new buffer, or select Find file to bring a file into a buffer
for editing. When you specify the buffer or file, an empty box appears beside
the Split Screen display with the buffer name on the bottom. When you spec-
ify the next buffer you want, the box is split in half. This box is divided
among the buffers until you click on one of the following:
m Do It — Executes the command.
B Undo — Allows you to undo the buffers displayed. It removes one buffer
name at a time from the box, starting with the last buffer you chose.
B Abort — Aborts the Split Screen command.
Suppose you want to split the screen among four buffers. Figure 2-4 shows an
example Split Screen display after four buffers have been chosen.
Figure 2-4 Split Screen Display (Second Screen)
Split screen buffer:
Buffer-6 *Buffer-5*
Buffer-4 *Buffer-3*
Buffer-2 *Dired-MARK;-1*
Buffer-1 *BUFFER-1* *BUFFER-2*
New buffer Find file
Undo Do it
Abort *BUFFER-4*
2-8 Zmacs Editor Reference

Zmacs Operations

When you finish executing the Split Screen command, you can perform the
following operations:

B Move to another window by using one of these two methods to move to
another window:

= Execute the Other Window command (CTRL-X O). If several win-
dows are on the screen, this command moves through them all in
cyclical order. Specify the window to go to by using a numeric argu-
ment, counting from 1 at the top.

= Move the mouse cursor to another window and click any button.

W Scroll another window by using the Execute the Scroll Other Window
command (META-CTRL-V). This command scrolls the other window
forward one screen of text. If several windows are on the screen, this
command finds the other window to scroll by going from left to right or
by going back to the top left window if you are in the lower right window.
Specify the number of lines to scroll forward or backward by using a
positive or negative numeric argument, respectively.

W Return to displaying only one window by using the Execute the One Win-
dow command (CTRL-X 1). The window displayed is the one that the
blinking keyboard cursor is in.

Menus

2.8 Zmacs contains many different types of menus that provide a wide
range of operations. You can execute commands from menus by selecting
them with the mouse, and many commands prompt you for information with
a menu. You can also easily invoke the System menu from Zmacs. The fol-
lowing list summarizes the menu topics discussed:

B Types of menus — Zmacs contains several types of menus that require
different methods for entering information.

M System menu — You can enter and exit Zmacs from the System menu,
and you can also select options that affect Zmacs, such as Suggestions,
Kill, and Reset.

B Top-Level Editor menu — This menu contains a small group of com-
mands that allow you to perform a diverse range of Zmacs operations.

B Suggestions menus — These menus allow you to easily find and execute
Zmacs commands by displaying them in functional groups.

Zmacs provides you with online help when you are using these menus. The
mouse documentation window, which is displayed in reverse video, usually
tells you what options you have with the mouse. If you are in the editor buffer
window, the mouse documentation window tells you that two right clicks (R2)
invoke the System menu and one right click (R) invokes the Editor menu.
Also, if you position the mouse on one of the menu items until it is high-
lighted with a box, the mouse documentation window provides brief
documentation on that item.

Zmacs Editor Reference

Zmacs Operations

Types of Menus

System Menu

2.8.1 The menus that you can invoke from Zmacs require different
methods for entering information. The three basic structures of these menus
are as follows:

B Standard menus
B Multiple-choice menus

m Choose-variable-values menus
Standard menus list items that you can select with the mouse. An example of
a standard menu is the System menu.

Multiple-choice menus provide you with options that you select by putting an
x in one of the boxes. The Kill or Save Buffers command displays a menu of
this type.

Choose-variable-values menus display variables on the left and list the possi-
ble values for each variable on the right. You can choose one of the values
with the mouse. The current value is displayed or highlighted. The Change
File Properties command (META-X Change File Properties) displays a menu
of this type (after you specify a filename).

When you move the mouse cursor off many of the menus, such as the System
menu, they disappear. Other menus, such as the multiple-choice menus, dis-
play the prompts Do It and Abort, and you must click on one of these
prompts to remove the menu. Some menus display the prompt Exit, and you
must click on Exit to exit (for example, the Edit Screen menu on the System
menu).

2.8.2 The primary menu for the entire system is called the System meru.
You can invoke the System menu no matter where you are in the editor by
double clicking right with the mouse. The System menu contains a list of
several other menus and programs. While most of these menus do not
directly affect the editor, some of them allow you to perform operations with
the editor. The following options affect the editor:

M Zmacs Editor, Create, and Select — These options allow you to enter
Zmacs. Refer to paragraph 2.2, Entering Zmacs, for more information.

B Programs — You can exit Zmacs by selecting a program such as the Lisp
Listener.

m Edit Screen — This option allows you to reshape the editor window. Refer
to the Introduction to the Explorer System for information on how to use
this option.

m Edit Attributes — Selecting this option invokes a choose-variable-values
menu. This menu allows you to change the attributes of whatever you
have on the screen at the time. You can apply this menu to a variety of
windows, including the editor. Refer to the Introduction to the Explorer
System for information on how to use this menu.

To invoke one of the items on the System menu, you position the mouse
cursor on that item and click left.

2-10

Zmacs Editor Reference

Top-Level
Editor Menu

Figure 2-5

Zmacs
Suggestions Menus

Zmacs Operations

2.8.3 The Top-Level Editor menu provides a small group of commands
that allow you to perform such diverse operations as compiling, changing
fonts, indenting code, listing and saving buffers, and editing the definition of
a function. When you are in the editor, you can invoke the Editor menu by
clicking right, Figure 2-5 shows the Editor menu. Most commands on the
Editor menu are also available on a key. For detailed information on these
commands, refer to Section 3, Command Groups.

Editor Menu

nd €gion
Change Default Font
Change Font Region
Uppercase Region
Lowercase Region
Indent Rigidly
Indent Under

2.8.4 The Zmacs Suggestions menus, located to the right of the editor
buffer window, make it easy for you to find and execute a command. These
menus display commands and other menus that are functionally related.
When you move the mouse cursor over a menu or command name, the
mouse documentation window provides a brief explanation of that menu or
command. You show the menu or execute one of the commands by clicking
left.

Executing simple commands such as Forward Character takes longer when
you use the Suggestions menus than when you use keystrokes. For the For-
ward Character command, it is faster to use the keystroke CTRL-F.
However, the Suggestions menus are intended to be a learning aid. The func-
tional grouping of commands makes it easy to learn what commands are
available.

The Suggestions menus provide an easy method to execute commands that
have long names and that do not have associated keystrokes (for example,
the Create Directory command). Otherwise, you must press META-X and
then type the name of the command. (Zmacs can help you complete the
typing of the name by using a process called completion. You type enough
characters to uniquely identify the command and then press ESCAPE.)

To turn on the Suggestions menus, you select the item Suggestions Menus On
in the command line of the Lisp Listener or select the item Suggestions from
the User Aids column of the System menu.

Zmacs Editor Reference

2-11

Zmacs Operations

Help Facilities

2.9 Zmacs provides help for almost every situation. When you press the

HELP key, you receive help on whatever operation you are performing. The
following list summarizes the help facilities discussed in subsequent

paragraphs:

B Commands on the Zmacs Help menu — These commands provide a wide
variety of options from documentation on keys and commands to undo-
ing a previous command.

B Help commands for Lisp code — These commands provide you with use-
ful information about Lisp code, such as the definition of a function and
the list of all functions that contain a specified string.

M Aborting — Zmacs provides commands to abort most operations.

M Troubleshooting — If the editor malfunctions, you can try several proce-
dures to reactivate it.

Help Menu 2.9.1 If you press HELP while you are editing, a menu containing a list of

Commands help commands appears. The following table provides a brief descripticn of
the commands. For detailed descriptions of the commands, refer to the Help
command group in Section 3, Command Groups.

Keystroke Command Name Description

HELP C Document Command Displays documentation for the command on a given
key.

HELP D Self Document Displays documentation for a command.

HELP O Describe Variable Displays documentation for a Zmacs user variable.

HELP A Apropos Lists commands whose names contain a given
string. The display is mouse-sensitive. You can exe-
cute a command by selecting it with the mouse.

HELP V Variable Apropos Lists Zmacs user variables whose names contain
a given string. The display is mouse-sensitive. When
you click left on any variable listed, its value
appears for editing in the minibuffer. You can also
click right on any variable to invoke a menu that
provides documentation on the variable or allows
you to modify the variable.

HELP L List Keystroke History Lists the last 60 keystrokes you typed.

HELP U Undo Undoes the last command. (An alternative keystroke
for HELP U is the UNDO key.)

HELP W Where Is Tells what keystroke is associated with a command.

HELP S Symbol Help Lists the keystrokes for characters that are not cn
keycaps, such as =.

Space bar - Removes the help screen.

2-12 Zmacs Editor Reference

Zmacs Operations

Help Commands
for Lisp Code

2.9.2 Several Zmacs commands provide information about Lisp code that
you may find helpful, such as the definition of a function and the list of all

functions that contain a specified string. The following table briefly describes
these commands. Section 3, Command Groups, discusses these commands in
more detail.

Keystroke

Command Name

Description

META-X Arglist

CTRL-SHIFT-V

META-.

META-ESCAPE

META-SHIFT-E

META-X Function Apropos

META-X List Callers

META-X List Combined Methods

META-X List Flavor Methods

META-X List Methods

META-SHIFT-D

CTRL-SHIFT-A

CTRL-SHIFT-D

Arglist

Describe Variable at Point

Edit Definition

Evaluate Minibuffer

Evaluate Region Verbose

Function Apropos

List Callers

List Combined Methods

List Flavor Methods

List Methods

Long Documentation

Quick Arglist

Quick Documentation

Lists the arguments for the
function that you specify. The
list is displayed in the
minibuffer.

Displays information about the
variable at or before the cursor.

Edits the definition of a function
that you specify.

Evaluates a form from the
minibuffer.

Evaluates the current region or
definition.

Lists functions whose names
contain the string that you
specify.

Lists functions that use the
specified function.

Lists all methods used for a
specified operation on a speci-
fied flavor.

Lists all the methods of a flavor.

Lists all flavors with methods for
a specified message.

Provides long documentation for
the function that you specify.
The documentation includes the
function’s arguments.

Lists the arguments for the
function to the left of the cursor.
The list is printed in the
minibuffer.

Displays documentation for the
function being called from where
the location of point.

Zmacs Editor Reference

2-13

Zmacs Operations

Aborting

Troubleshooting

The describe function provides information about any object x (except for
array contents). This function recognizes arrays, symbols, floating-point num-
bers, packages, stack groups, closures, and FEFs, and prints the attributes of
each in human-readable form.

For more information on the describe function, refer to Explorer Tools and
Utilities, For more information on the terms introduced here, such as
floating-point numbers, stack groups, closures, and FEFs, refer to the
Explorer Lisp Reference.

2.9.3 Zmacs contains commands to abort most operations. The following
commands are available:

m CTRL-G — Allows you to correct editing errors, unmark a region, and
clear partially entered commands (that are not executing yet) from the
minibuffer.

B ABORT — Aborts commands that are waiting for input.

M CTRL-ABORT — Aborts almost any operation, such as evaluations, com-
pilations, and file transfers.

N META-CTRL-ABORT — Aborts what CTRL-ABORT does and some-
times more. It is the most powerful Abort command and should be used
only as a last resort.

2.9.4 1If the editor malfunctions, you can try the following procedures to
reactivate it:

W Position the mouse in the editor buffer window and click left. You should
try this procedure first if, while using the editor, you press keys and noth-
ing happens. This action may reactivate the editor.

M Press CTRL-ABORT or META-CTRL-ABORT. Pressing CTRL-ABORT
or META-CTRL-ABORT allows you to abort editor conditions that hang
the editor, such as evaluating a region that contains an infinite loop.

B Press SYSTEM CTRL-E or invoke the System menu and start a new
editor. Pressing SYSTEM CTRL-E creates a new editor. You can also
create a new editor by selecting Zmacs Editor on the System menu.
These two methods are basically the same, except that if the keyboard is
frozen, you can use the System menu method with the mouse. If the
mouse is frozen, you can use the keyboard method. These methods let
you save all your buffers with changes back to disk. You may be able to
continue editing, but it is safer to save your files first.

B Use Abort in the error handler, which also provides troubleshooting
information. The error handler is not directly part of the editor, but the
editor does use it. For information on the error handler, refer to
Explorer Programming Tools and Utilities.

2-14

Zmacs Editor Reference

Zmacs Operations

B Enter the form (zwei:save-all-files) from a Lisp Listener. The func-
tion zwei:save-all-files is useful in emergencies when you have modified
material in buffers that need to be saved but the Zmacs editor is malfunc-
tioning. This function does in Zmacs what the Save All Files command
does, but it works even when the window system is broken.

M Enter the form (ed -zwei:reload) from a Lisp Listener. This form
reinitializes the editor (that is, all instances of the editor). Because it
deletes all existing buffers, you should use this form only as a last resort.

Files, Buffers,
and Directories

2.10 Zmacs makes a distinction between files and buffers. Files store infor-
mation on disk. Zmacs does not edit files. When you want to edit a file,

Zmacs copies the file on disk into a buffer. Then you work with the copy in
the buffer.

You can have several different buffers, each containing text from different
files. The editor can switch between buffers.

When you create an editor, it automatically includes one empty buffer. This
buffer usually has the same number as the editor. That is, editor 1 has a
buffer called *BUFFER-1*. (Remember you can create more than one edi-
tor, although you usually create more buffers.)

When you specify a file to edit, Zmacs copies the file into a buffer, and by
default, the buffer name is the same as the filename. The host and directory
name are ignored. You can specify a different buffer name by using the
Rename Buffer command (META-X Rename Buffer).

Al files are stored in directories, which form a tree structure. A directory is a
file that contains other files or subdirectories. A subdirectory is a directory
within another directory. A subdirectory can also contain files and subdirec-
tories. Zmacs provides a directory editor, Dired, that allows you to perform a
wide range of operations on a directory.

The following list describes the topics discussed in subsequent paragraphs
about the file and buffer system:

M Pathname structure — Provides a brief description of the components of
an Explorer pathname.

W File types — Describes the various file types that Zmacs recognizes.

M Mode line information — Discusses some useful status information about
the buffer.

B Lisp code in buffers — Describes how a Zmacs buffer containing Lisp
code is divided into sections, each containing a definition, so that you
can locate definitions quickly and perform operations on only the
changed definitions.

M Creating directories — Tells how to create a directory.

M Creating buffers — Tells how to create a buffer.

W Listing and editing buffers — Describes how to list and edit buffers.

Zmacs Editor Reference

2-15

Zmacs Operations

Pathname Structure

m Finding a file for editing — Describes how to bring a file into a buffer for

editing.

M Saving and writing files — Tells how to write buffers to disk (that is, to a
file stored on disk).

m Editing a directory — Tells how to invoke the directory editor (Dired)
and perform a wide range of operations on the directory, such as bringing
files into buffers for editing, deleting files, viewing files, and comparing

files.

2.10.1 Zmacs uses the same file system (FS) that the other utilities on the
system use. The Explorer Input/Output Reference discusses pathnames in
detail. The following table shows the syntax for an Explorer pathname and
provides a brief review of the components of an Explorer pathname.

Pathname syntax: host:dir.sdir.ssdir; name.type#version

Pathname
Component Description
host: Host name, followed by a colon. The top level of the

dir.sdir.ssdir;

name

.type

#version

pathname structure is the host name, which is usually
the name of some machine.

Directory (dir) and, optionally, subdirectory names
(sdir and ssdir), followed by a semicolon. Under the
host name are directories, which can contain sub-
directories and files. A subdirectory can also contain
subdirectories and files. The bottom level of the
structure contains either a file or a directory without
any files.

Filename.

File type preceded by a period. The editor looks at
the file type and activates an appropriate mode for
that file type. If the file type is text, the editor puts
you in Text mode. Refer to paragraph 2.10.2, File
Types, for more information.

The number sign (#) signifies that the version num-
ber follows. Each time you change a file and write it
to disk, you do not overwrite the old file. You simply
make a new copy and store it with a higher version
number (one higher) than the file you brought in.
You can specify the version riumber for the new copy
if you want. However, you cannot specify an existing
version number. A greater than sign (>) following the
number sign (#) indicates the greatest version or the
most current.

The Explorer system also understands other types of pathnames and deter-
mines the syntax from the type of machine. Pathnames for other machines
may contain a pathname component named device, followed by a semicolon,
after the host name. The Explorer file system does not currently use the

2-16

Zmacs Editor Reference

Zmacs Operations

device component but recognizes it in a pathname for other types of
machines.

Zmacs contains some elaborate defaulting conventions for pathnames:

The mode line tells you the default pathname. To accept the default, you
press RETURN.

When you type only part of the pathname and press ESCAPE, Zmacs,
using completion, shows the rest of the pathname as far as it is unique.
When you are satisfied with the pathname, press RETURN.

When you type only part of the pathname and press END, Zmacs com-
pletes the pathname and exits if it is unique.

When you want to change parts of a pathname, you do not always need
to type the entire pathname. Suppose you have the following pathname:

EX1: ZWEI; MENUS.LISP#22

If you want to change only the filename MENUS, you simply type a new
filename, such as CATS. When you change any other component of the
pathname, you need to supply the adjacent punctuation. You should
always place the punctuation on the side toward the filename. The fol-
lowing list shows an example of how to change each component of the
pathname in the example:

Pathname Component How to Change
EX1 EX2:

ZWEI WINDOW;
MENUS. CATS.

LISP XLD

#22 #8

If you want to change two adjacent components, such as the host and
directory names, you can type them together (for example, EX2:
WINDOW:;). However, if the components are not adjacent, you need to
type the entire pathname.

When executing one of the file commands, you can also yank the default
pathname into the minibuffer and edit it. You can use the cursor move-
ment commands and the delete commands in the minibuffer. To yank
the default pathname, you press CTRL-SHIFT-Y.

Zmacs Editor Reference

2-17

Zmacs Operations

File Types

Mode Line
Information

2.10.2 Zmacs makes distinctions between files of different types. It provides
different capabilities depending on the file type. Zmacs looks at the file type
in the pathname and activates an appropriate mode for that file type. For
example, if the file type is Lisp, Zmacs puts you in Common Lisp mode when
you edit the file. (However, if the attribute list in the top line of the file lists a
different mode, such as Zetalisp, the editor uses that mode.)

The file type is also a label so that you can tell what kind of file it is. You can
have as many types of files as you want. The following file types are common
ones:

Lisp — Contains Lisp code. When you want to edit a Lisp file, Zmacs
sees that the file type in the pathname is Lisp and automatically activates
Common Lisp mode (unless the attribute list overrides it with a different
mode, such as Zetalisp).

Text — Contains text. When you want to edit a text file, Zmacs sees that
the file type in the pathname is text and automatically activates Text
mode.

Xld — Contains compiled code.

Temporary — Is automatically deleted from a directory if you clean up
the directory with the Clean Directory command or the Dired Automatic
command. Temporary files are deleted regardless of how many copies of
the files you have. If you have only one copy of the file, it is deleted. You
can find the list of temporary files in the Zmacs user variable Temp File
Type List.

User-defined file type — Is a file type you create. For example, you can
have a file type called cats. This name does not mean anything to the
system, but it does not mind what file type you specify. Zmacs uses a
default mode called Fundamental mode for user-defined file types.

2.10.3 The mode line provides the following useful information about the
buffer:

That you are in Zmacs.

Which mode you are in. Common Lisp mode is the default mode. (Para-
graph 2.12, Setting Modes and Buffer Attributes, describes modes.)

The name of the buffer you are editing. If the buffer is connected to a
file (that is, the buffer was read from disk), the version number of the file
appears in parentheses beside the pathname.

If more of the buffer is above or below what you see on the screen, an up
arrow or down arrow appears on the left side of the mode line. When the
top of the buffer is on the screen, the up arrow disappears because there
is no more of the buffer above; however, the down arrow stays. When the
bottom of the buffer is on the screen, the down arrow disappears and the
up arrow stays.

If the buffer has been changed since it was read from disk, an asterisk
appears on the left side of the mode line. If you write the buffer back to
disk, the asterisk disappears.

2-18

Zmacs Editor Reference

Lisp Code
in Buffers

Zmacs Operations

2.10.4 When Zmacs reads into a buffer a file that contains Lisp code, it
divides the definitions in the buffer into sections. The only buffers that have
sections are those containing Lisp code. Other buffers do not have sections.
A section can contain any defining construct that begins with def after the
opening parenthesis in the first column, such as defvar, defflavor, and
defun. The defining construct can be user-defined. Each definition is a
section.

The section scheme allows you to locate definitions quickly and perform
operations only on the changed sections (or definitions). For example, you
can perform these operations:

W List all the sections (definitions) in a specified buffer.

m List and edit the definitions that have been changed in a specified buffer
or in all buffers.

B Compile and evaluate only the changed definitions in a specified buffer
or in all buffers.

When Zmacs sectionizes a buffer containing Lisp code, it actually looks for a
matching set of parentheses starting with an opening parenthesis in the first
column. Zmacs’ detection of an opening parenthesis in the first column is
unconditional. Even if the parenthesis is inside a quoted string or a block
comment (that is, #| ... |#), Zmacs starts a new section. This feature may
cause unexpected errors.

Note that Zmacs finds an opening parenthesis only if it follows a return char-
acter. A long line that wraps on the screen so that an embedded parenthesis
appears on the left edge of the screen does not start a new section.

If a parenthesis is in the first column of a string, you can prevent Zmacs from
starting a new section by putting a backslash in front of the parenthesis in
Common Lisp mode or a forward slash in Zetalisp mode. The backslash (or
forward slash) protects the next character in the string and is effectively
removed when the string is originally read.

Code that is commented out is ignored for making sections, unless the code is
commented with the comment function.

At the top of the buffer is a section called the buffer header. Essentially, the
buffer header contains the attribute list. Zmacs names the other types of
sections as follows:

M If the section is a definition, Zmacs names the section according to the
name of the definition. For example, if the definition is a defun defining
com-forward-character, Zmacs names the section com-forward-
character.

Zmacs Editor Reference

2-19

Zmacs Operations

Creating Directories

Creating Buffers

Listing and
Editing Buffers

m If the section begins with an opening parenthesis but it is not a definition,
Zmacs names the section with the following syntax:

name-form-number
where:
name is the name of the buffer.
Jorm is the first word of the form.
number is a number that Zmacs assigns to the section.

For example, *BUFFER-1*-setq-2 represents a buffer named *BUFFER-1%,
a form starting with setq, and a section with a number of 2.

2.10.5 If you want to create a directory, you can use the Create Directory
command. You press META-X and then type cCreate Directory; a prompt
appears in the minibuffer asking you for the pathname of the directory. You
need to type the pathname only through the semicolon (;).

2.10.6 Zmacs automatically creates a buffer for you when you enter the
editor. This buffer usually has the same number as the editor. That is, editor
1 has a buffer called *BUFFER-1*.

You can create a new buffer by using the Select Buffer command (CTRL-X
B). You specify a buffer name that does not already exist and press
RETURN. (For more information on this command, refer to the Buffer com-
mands in Section 3, Command Groups.)

You can create as many buffers as you want.

NOTE: When you update a buffer in one editor and look at it in another
editor, it is updated in the second editor also. Only one copy of that buffer
exists. You do not have two different copies with one out of date in relation
to the other.

2.10.7 Zmacs provides many commands that allow you to list and edit
buffers. You can use the following commands:

B List Buffers (CTRL-X CTRL-B) — Lists the buffers you have and allows
you to choose one for editing. You can also perform other operations on
the buffer, such as compiling.

B Select Previous Buffer (META-CTRL-L) — Selects the previous buffer
for editing.

m Select Buffer (CTRL-X B) — Allows you to select the buffer of your
choice for editing.

2-20

Zmacs Editor Reference

Zmacs Operations

The List Buffers command (CTRL-X CTRL-B) shows the Zmacs buffer
names. It lists all the buffers you have. You can then select a buffer for
editing. You position the mouse cursor on the buffer you want to edit and
then click left. If you click right on the buffer name, a menu appears showing
other operations that you can perform on the buffer:

B Compile File — Compiles the file to which the buffer is connected on disk
and puts the compiled version on disk with the same name and a differ-
ent type, xld. It does not change the contents of memory. If you have
made changes to the buffer, first you are asked if you want to save the
buffer so that your changes will be in the file on disk.

B Kill — Deletes the buffer. If the buffer is connected to a file and you have
modified the buffer, you are asked if you want to save the buffer first. If
you do not save it, the original version on disk is unchanged.

M Print — Prints the buffer on a line printer.

B Unmod — Marks the buffer as unmodified. The changes you made to the
buffer are still in the buffer, but Zmacs does not treat the buffer as modi-
fied. The effect is that Kill or Save Buffers will not mark the file to save.

You may want to do this if you are using Kill or Save Buffers several times
and you are not ready to save that particular buffer. Unmod prevents you
from having to remove the x from the Save box each time you use the
command. When you are ready to save the buffer, you can then mark
the Save box.

WM Save — Writes the buffer to disk, using the pathname of the file from
which the buffer originally came and incrementing the version number.
The Save operation automatically gives you the default filename. You do
not specify the filename.

B Write — Writes the buffer to the filename you specify.
W Select — Allows you to edit the buffer.

You can also execute the List Buffers command from the Editor menu or the
Suggestions menus. For detailed information on the List Buffers command,
refer to the Buffer commands in Section 3, Command Groups.

The Select Previous Buffer command (META-CTRL-L) allows you to select
the previous buffer for editing. If you want to go back more than one buffer,
you enter a numeric argument with the command. For example, if you want
to go back three buffers, you press META-3 META-CTRL-L. The current
buffer is 1.

The Select Buffer (CTRL-X B) command allows you to select a buffer of
your choice for editing. When it asks you which buffer you want to edit, you
enter a name. If you enter the name of a buffer that does not exist, it tells
you it does not exist. If you press RETURN again, it creates a buffer with the
name you specified.

Zmacs Editor Reference

2-21

Zmacs Operations

Finding a File
for Editing

Saving and
Writing Files

Editing a Directory

2.10.8 To bring a file into one of your buffers for editing, you enter the
Find File command (CTRL-X CTRL-F). You are prompted in the mini-
buffer for the name of the file you want to edit.

The Edit Definition command (META-.) also brings in a file for you to edit.
When you specify a function name, the command brings in the file(s) with
the definition.

2.10.9 The Save File command (CTRL-X CTRL-S) and the Write File
command (CTRL-X CTRL-W) allow you to write a buffer to disk. The Save
File command writes the buffer to disk, using the pathname of the file from
which the buffer originally came and incrementing the version number. This
command automatically provides the default file pathname. Thus, you do not
need to specify the filename. If the buffer is new or you want to specify a
different filename, you must use the Write File command. If you accept the
default, this command also works like the Save File command.

You can also save a buffer by using the List Buffers menu or the Kill or Save
Buffers menu. You can find both of these menus on the Editor menu and on
the Suggestions menus.

NOTE: When you exit the editor, your files are not automatically saved to
disk. You must save them with one of these commands. Your edit sessions
are not lost unless you execute the Revert Buffer command (CTRL-X
CTRL-R), cold boot, or perform a disk-restore. (You can even log out andl
your edit sessions stay.) Thus, you do not need to save buffers on disk each
time you want to exit the editor. (Explorer Input/Output Reference describes
disk-restore.)

2.10.10 Zmacs provides a directory editor (Dired) that allows you to per-
form a wide range of operations on a directory. Dired displays a listing of all
the files and subdirectories in a directory. To enter Dired, you press CTRL-X
CTRL-D and enter the name of a directory. If you press HELP M, a brief
description of the Dired commands appears. You enter these commands,
which are single letters, beside the name of the file for which you want to
perform an operation.

To position the keyboard cursor beside a filename, you can use the following
methods:

M Press CTRL-P or 1 to move the cursor up a line.
M Press CTRL-N,], or the space bar to move the cursor down a line.

W Position the mouse cursor where you want the keyboard cursor and click
left.

2-22

Zmacs Editor Reference

Zmacs Operations

The following table summarizes some of the important Dired commands. Sec-
tion 3, Command Groups, explains Dired in detail.

Command

Description

E

O »w w "W W & g <

»

ABORT

If the keyboard cursor is on a line that is a file, edits
the file. If the keyboard cursor is on a line that is a

directory name, starts a new Dired on that directory.
Views the file.

Marks the file for deletion.

Removes the delete mark.

Compiles the file.

Renames the file.

Prints the file.

Lists the files in the subdirectory.

Performs operations such as deletions on the files you
have marked and then exits Dired.

Performs operations such as deletions on the files you
have marked and leaves you in Dired.

Compares the file with the highest version number of
the file.

Aborts Dired.

Cursor Moveéiment

2.11 Zmacs contains many cursor movement commands. Depending on
whether you are in Text, Common Lisp, or Zetalisp mode, these commands
allow you to move by text quantities such as word and sentence or by Lisp
quantities such as symbolic expression and list. The commands specific to
Common Lisp mode work the same in Zetalisp mode. Many commands, such
as moving up or down a line, apply to all three modes. The following list
summarizes the cursor movement topics discussed in subsequent paragraphs:

M General rules for cursor movement — These rules illustrate some patterns
for learning the keys that move the cursor.

m Cursor movement by quantity — The cursor movement commands are
divided into groups according to the quantity by which they move the
cursor. A quantity is a character, word, symbolic expression, list, para-
graph, and so on.

m Storing cursor locations — Zmacs allows you to store cursor locations and
return to them later.

Zmacs Editor Referencé

2-23

Zmacs Operations

General Rules for
Cursor Movement

NOTE: You can add numeric arguments to the cursor movement commands
to execute more than one operation at a time. For example, you can move
three characters forward instead of one by adding a numeric argument of 3 to
the Forward Character command (CTRL-F or —). You press CTRL-3
CTRL-F.

The following list defines the quantities by which the cursor movement com-
mands move the cursor:

W Character — Letter, number, or special symbol, such as a punctuation
character.

B Real line — Synonymous with the term line, which is ended by a return
character. A line can span multiple lines on the screen before the return
character appears. (Zmacs recognizes return characters, but they are not
displayed in the buffer.)

m Word — A group of contiguous letters containing no blanks.

m Symbolic expression — A Lisp expression enclosed in parentheses or a
single symbol, such as my-symbol.

M Sentence — Ended by a period (.), question mark (?), or exclamation
point (!) followed by two spaces or a return character (with optional
space), with any number of closing characters between sentences. Closing
characters are double quote (), single apostrophe (’), closing parenthe-
sis ()), and right square bracket (]). A sentence also ends before a
blank line.

B Definition — Any defining construct that begins with an opening paren-
thesis in the first column followed by def, such as defflavor, defmethod,
and defvar.

B Paragraph — Delimited by blank lines or by lines that start with a delim-
iter in the Zmacs user variable Paragraph Delimiter List or in the user
variable Page Delimiter List. You can see and change the values of these
variables by executing the Variable Apropos command (HELP V).

2.11.1 Some general rules exist for the keys that allow you to move the
cursor. These rules help you to learn patterns for the way the keystrokes are
used in the commands.

The following table shows the basic keys used for the cursor movement com-
mands and their meaning. These keys by themselves do not move the cursor.

Key Meaning

F Forward

B Backward

N Next

P Previous (many commands say Up instead of Previous)
A Beginning

E End

2-24

Zmacs Editor Reference

Zmacs Operations

These keys are used in conjunction with the META and CTRL keys, as
described in the three tables that follow.

If you hold down CTRL and press one of the above keys, the cursor is moved
on the lowest level (that is, by the smallest quantity). The corresponding
arrow keys are also listed. The following table describes the commands these
keys perform:

Key Meaning

CTRL-F or — Forward Character
CTRL-B or +- Backward Character
CTRL-N or | Down Real Line
CTRL-P or t Up Real Line
CTRL-A or SUPER-+ Beginning of Line
CTRL-E or SUPER-— End of Line

If you hold down META and press one of these keys, the cursor is moved on
the next higher level (that is, by the next higher quantity). The corresponding
arrow keys (if available) are also listed. The following table describes the
commands these keys perform:

Key Meaning

META-F or META-— Forward Word
META-B or META-«+ Backward Word
META-A or META-1 Backward Sentence
META-E or META-| Forward Sentence

If you hold down META-CTRL, the keys move the cursor by Lisp forms in
Common Lisp or Zetalisp mode. The corresponding arrow keys (if available)
are also listed. The following table describes the commands these keys

perform:

Key Meaning
META-CTRL-F or META-CTRL-— Forward Sexp
META-CTRL-B or META-CTRL-+ Backward Sexp
META-CTRL-N Forward List
META-CTRL-P Backward List
META-CTRL-[or META-CTRL-1 Beginning of Definition
META-CTRL-] or META-CTRL-} End of Definition

Zmacs Editor Reference 2-25

Zmacs Operations

Cursor Movement
Commands Grouped
by Quantity

2.11.2 The cursor movement commands allow you to move by character,
word, symbolic expression, line, list, definition, sentence, paragraph, buffer,
and screen. The following table summarizes these operations:

Quantity Key Meaning

Character CTRL-B or « Backward Character
CTRL-F or — Forward Character

Word META-B or META-+ Backward Word

Symbolic expression

Line

List

Definition

Sentence

Paragraph

Buffer

Screen

META-F or META-—

META-CTRL-B or META-CTRL-+
META-X Backward Sexp No Up
META-CTRL-F or META-CTRL-—
META-X Forward Sexp No Up

META-M

CTRL-A or SUPER-+
META-N

META-X Down Indented Line
CTRL-N or |

CTRL-E or SUPER-—
META-P

META-X Up Indented Line
CTRL-P or 1

META-X Backward Down List
META-CTRL-P
META-CTRL-(
META-CTRL-D
META-CTRL-N
META-CTRL-)

META-)

META-CTRL-{ or META-CTRL-1
META-CTRL-] or META-CTRL-}

META-A or META-t
META-E or META-]

META-[
META-]

META-< or HYPER-{
META-> or HYPER-]

SUPER-)
SUPER-t

Forward Word

Backward Sexp
Backward Sexp No Up
Forward Sexp
Forward Sexp No Up

Back to Indentation
Beginning of Line
Down Comment Line
Down Indented Line
Down Real Line

End of Line

Up Comment Line
Up Indented Line
Up Real Line

Backward Down List
Backward List
Backward Up List
Down List

Forward List
Forward Up List
Move Over)

Beginning of Definition
End of Definition

Backward Sentence
Forward Sentence

Backward Paragraph
Forward Paragraph

Goto Beginning (of buffer)
Goto End (of buffer)

Move to Bottom of Screen
Move to Top of Screen

Storing
Cursor Locations

2.11.3 Zmacs allows you to store cursor locations (or point) and return to
them later. The cursor locations can be in different buffers, allowing you to
jump between buffers. You store the cursor locations on the point PDL or in
a register.

2-26

Zmacs Editor Reference

Storing
Cursor Locations
on the Point PDL

Zmacs Operations

The point PDL is a push-down list that stores cursor locations. New entries
are added to the top of the point PDL. When the point PDL is full, entries on
the bottom are deleted as new entries are added.

Registers are storage locations in which you can store a cursor location and/or
a block of text. You can store only one cursor location at a time in a register.
However, the cursor location stays in a fixed place, whereas the cursor loca-
tions on the point PDL are dynamic. (The cursor locations are moved down
the point PDL as new entries are added.)

Point is the position in the file represented by the left edge of the keyboard
cursor. Point is never on a character like the keyboard cursor is; it is always
between characters. For example, if the cursor is on the e in the word me,
point is between the m and the e.

The following list summarizes the topics discussed in subsequent paragraphs
about storing cursor locations:

W Storing cursor locations on the point PDL — Describes how to store,
view, and return to previous cursor locations.

W Storing cursor locations in a register — Describes how to store, view, and
return to a cursor location stored in a register.

2.11.3.1 You can store, view, and retrieve cursor locations stored on the
point PDL. In addition to the commands that you use to store cursor
locations, Zmacs contains many commands that automatically put points on
the point PDL. You can tell when a command puts a point on the point PDL
because the mode line window displays the message Point Pushed whenever a
cursor location is saved.

The default of the point PDL is 8 locations. If you want to change this
default, refer to Section 4, Customizing Zmacs. You can change this number
to any value by changing the Zmacs user variable Point PDL Max with either
the Set Variable command (META-X Set Variable) or the Variable Apropos
command (HELP V),

The point PDL lists three lines of each cursor location saved. You can list
more lines when you execute the Show Point PDL command by giving it a
numeric argument.

The following list summarizes the operations you can perform with the point
PDL:

B Put the current cursor location on the point PDL — You use the Push
Pop Point Explicit command (META-space bar).

B Move to the previous location in the point PDL — You use the Move to
Previous Point command (META-CTRL-space bar). This command
exchanges the current location with the previous one.

B Move to the location before the previous location on the point PDL —
You use the Move to Default Previous Point command (CTRL-X META-
CTRL-space bar). Pressing CTRL-X META-CTRL-space bar again
returns to the previous entry on the point PDL. Pressing a third time
returns to the original point.

Zmacs Editor Reference

2-27

Zmacs Operations

B View the point PDL and return to one of the locations — You use the
Show Point PDL command (META-STATUS) to view the point PDL.
Then you use the mouse to select the entry that contains the location to
which you want to return. You can return to any line shown. Figure 2-6
shows an example point PDL listing.

The display is mouse-sensitive except for the first line. You click left on
the line to which you want to return. The first line tells you the buffer
from which the cursor location came. If the buffer contains Lisp code,
the first line also tells the section of the buffer from which point came.
For example, it might indicate that the three lines are from a function
called com-find-file in the buffer called *BUFFER3*. This information
is helpful when you have a few lines of code from the middle of a func-
tion and you want to know from what function the lines came.

Figure 2-6 Show Point PDL Command

This is a list of locations to which you may jump.
META-STATUS gives this display; arg. controls the number of lines shown in one entry.

oOother commands that manupulate the point pdl are:
META-SPACE with no numeric argument adds your current position to the list.
With a numeric argument n, exchange the current and nth points

CTRL-META-SPACE rotates through the current & last 2 locations. Args. change 2.
The MOUSE is like CTRL-META-SPACE with an argument but rotates the other direction.

from Buffer header in GETTYBURG-INSERT.TEXT#> TI-EXAMPLE.ZMACS; L10O:

freedom and that government of the people, by the people, for the people,
shall not perish from the earth.

from Buffer header in GETTYBURG-INSERT.TEXT#> TI-EXAMPLES.ZMACS; L10O:

we have come to

dedicate a portion of that field as a final resting place for those who here
gave their lives that the nation might live. The world will little note,

from COM-FIND-FILE in ZMACS.LISP#> ZWEI; L10O:

(DEFCOM COM-FIND-FILE "Visits a file in its own buffer.

Reads in a filename from the minibuffer. If the file is already
in a buffer, selects that buffer. Otherwise creates a buffer

from Buffer header in GETTYSBURG-INSERT.TEXT#> TI-EXAMPLES.ZMACS; L10:

We have come to

dedicate a portion of that field as a final resting place for those who here
gave their lives that the nation might live. The world will little note,

Example of Saving Cursor Locations on the Point PDL Suppose you are
editing in the middle of a large buffer. You want to go to the top of the
buffer, examine it for a second, and return to where you were. First, you
execute the Goto Beginning command (META-<) to take you to the top of
the buffer, which you then examine. META-< pushes the current cursor loca-
tion on the point PDL.

Next, you execute the Move to Previous Point command (META-CTRL-
space bar) to return you to the previous location in the point PDL (which was
the place in the middle of the buffer where you were originally).

If you edit some of the text at the top of the file, you may have another point
pushed on the PDL. In this case, the Move to Previous Point command
(META-CTRL-space bar) does not take you back to your original location. It

2-28

Zmacs Editor Reference

Storing Cursor
Locations in Registers

Zmacs Operations

switches you back and forth between two locations at the top of the file.
Instead, you should use the Show Point PDL command. Then you can select
the location you want.

2.11.3.2 You can store a cursor location in a register and then later view it
or return to it. You can store only one cursor location at a time in each
register. However, the cursor location stays in a fixed place, whereas the
cursor locations on the point PDL are dynamic. You can also store a cursor
location and a block of text simultaneously in one register. (Paragraph
2.13.5, Storing Text in Registers, describes how to store text in a register.)

Registers have one-letter names. For example, you can name a register A, B,
C, or even $, as long as it is a single character. The limit on the number of
registers you can create is the number of characters available to name them.

Storing a Cursor Location The following procedure describes how to store
the current cursor location in a register:

1. Press CTRL-X S. (This command is the Save Position command.)

2. Type any character, such as A, to specify a register.

Viewing and Returning to Cursor Locations You can use the following
procedures to return to stored cursor locations. The first procedure describes
how to view and return to cursor locations stored in registers with the Save

Position command (CTRL-X S).

1. Press META-X and type show Saved Positions. The display is mouse-
sensitive.

2. Click on the line of text that contains the cursor location to which you
want to return.

The following procedure allows you to return to a cursor location, but the
contents of the register are not displayed:

1. Press CTRL-X -J. (This command is the Jump to Saved Position
command.)

2. Type any character, such as A, to specify the register that contains the
cursor location you want.

NOTE: You can store a cursor location and a block of text simultaneously in
the same register. You use the Save Position command (CTRL-X S) to store
the cursor location and the Put Register command (CTRL-X X) to store the
text. For both commands, you specify the same register name.

Zmacs Editor Reference

2-29

Zmacs Operations

Setting Modes and 2.12 Zmacs provides several modes and buffer attributes that change how
Buffer Attributes

Setting Modes

Zmacs operates on the buffer. If you are editing Lisp code, you use Common
Lisp or Zetalisp mode. If you are editing text, you use Text mode. Some of
the buffer attributes are the fonts, the package, and the width of a tab.

You can set the modes and change the buffer attributes. When you change a
mode or buffer attribute, you can make the change permanent by changirg
the attribute list in the top line of the buffer. The following list summarizes
the topics discussed in subsequent paragraphs about modes and buffer
attributes:

W Modes — Describes the various modes Zmacs contains and tells you how
to set them.

W Buffer attributes — Tells you how to change buffer attributes and
describes the attribute list in the top line of the buffer.

2.12.1 Zmacs provides several modes that change the way Zmacs operates.
Zmacs contains both major and minor modes. The modes change how com-
mands operate to provide different capabilities for the type of material on
which you are working. If you are editing Lisp code, either Common Lisp or
Zetalisp mode is appropriate. Text mode is appropriate for editing text. You
can tell what mode you are using by looking at the mode line window, which
lists major and minor modes.

A major mode determines the overall framework for operations on your file.
Zmacs contains the following major modes:

B Common Lisp — Designed for editing Common Lisp code

B Zetalisp — Designed for editing Zetalisp code

B Text — Designed for editing text

m Fundamental — Designed for dealing with user-defined file types
m Macsyma — Designed for editing Macsyma code

B Ztop — Designed for editing at the top level

You always have one and only one major mode active for a buffer. If you are
editing several buffers, you can have a different major mode for each buffer.

If you do not specify a file type in the pathname when you write a buffer to
disk, Zmacs uses the canonical type corresponding to the mode of the buffer.

When you first enter the editor and have a new buffer, the default mode is
Common Lisp. When you read files from disk, Zmacs looks at the file type in
the pathname and activates the appropriate mode for that file type. If the file
has a recognized type, such as Lisp, the default mode is the mode appropri-
ate for that type (in this case, Common Lisp mode). The default mode for
unrecognized file types is Fundamental mode.

However, if the attribute list in the top line of a file lists another mode, that
mode overrides the file type. For example, if the file type is Lisp and the
attribute list contains the mode Zetalisp, Zmacs uses the Zetalisp mode.

2-30

Zmacs Editor Reference

Zmacs Operations

If you change the major mode with one of the mode commands, the change
lasts only for that edit session unless you execute the Update Attribute List
command (META-X Update Attribute List) to make the change permanent.
Then, when you save the buffer to disk, the change is recorded in the attri-
bute list. When you copy the file from disk into a buffer again, it is in the new
major mode.

A minror mode is used in conjunction with a major mode. A minor mode also
changes how Zmacs operates but on a smaller scale than a major mode. You
can combine any minor mode with any major mode. You can also have more
than one minor mode active at a time. Zmacs does not record minor modes
in the attribute list in the top line of the file. The minor modes are temporary
modes that remain active only during a particular edit session.

A minor mode can be either sticky or unsticky. A sticky minor mode remains

active when you change major mode or go to another buffer. An unsticky

minor mode does not remain active. Also, if you reparse the attribute list (to

record a new major mode setting), the sticky minor modes remain active and

the unsticky ones do not.

Zmacs contains the following minor modes:

B Any Bracket — Zmacs treats the characters [{}] like parentheses.

H Atom Word — All word commands act on Lisp atoms.

B Auto Fill — Zmacs automatically fills text.

M Electric Font Lock — Zmacs puts text in font A, comments in font B,
quoted strings (commonly documentation strings) in font C, other strings

in font D, and function specifications in font E.

B Electric Shift Lock — Zmacs uppercases everything except comments
and strings.

® Overwrite — Typing over existing characters replaces them.

B RETURN Indents — Pressing RETURN indents the next line and LINE
FEED does not.

B Uppercase Global Functions — Function names that are contained in the
GLOBAL package are automatically uppercased.

W Word Abbreviation — Zmacs expands word abbreviations.

The unsticky minor modes are Electric Shift Lock mode, Electric Font Lock
mode, and RETURN Indents mode.

Zmacs Editor Reference

2-31

Zmacs Operations

Setting
Buffer Attributes

The following list describes the procedures for setting major and minor
modes:

To change major modes or set any of the minor modes, you press
META-X and then type the command name for the mode. The com-
mand name is the name of the mode and the word mode. For example, if
you want to enter Common Lisp mode, you press META-X and type
common Lisp Mode. To specify Electric Font Lock mode, you press
META-X and type Electric Font Lock Mode. Refer to the Mode and
Buffer Attribute commands in Section 3, Command Groups, for a list of
the command names.

If you do not type the entire command name, you can press ESCAPE
and Zmacs completes the command name if it can. If you press HELP,
Zmacs describes what you are doing and what the possible completions
for the command name are.

To turn off one of the minor modes, you press META-X and then type
the command name. For example, to toggle the Electric Shift Lock mode
on and off, you press META-X and type Electric shift Lock Mode.

The mode line tells you what major and minor modes are in effect.

2.12.2 Zmacs allows you to change many attributes that affect the buffer.
When you change one of the attributes, you can make the change permanent
by recording it in the attribute list in the top line of the buffer. When you
save the buffer to disk, the attribute list is also saved. When you bring the file
back into a buffer, Zmacs uses the attributes recorded in the attribute list.
You can choose not to record the changes in the attribute list. Then, those
changes apply only for that edit session.

You can change the following attributes for the buffer:

Major mode — Tells Zmacs which major mode to use for the buffer. To
change major mode, you use one of the major mode commands, such as
the Common Lisp Mode command (META-X Common Lisp Mode), the
Zetalisp Mode command (META-X Zetalisp Mode), or the Text Mode
command (META-X Text Mode). A prompt asks if you wish the attrib-
ute line (-*-) updated. To make the change permanent, answer Y (for
Yes). If you answer N (for No) to this prompt, you can go back later and
execute the Update Attribute List command (META-X Update Attribute
List).

Package — Specifies the package to associate with the buffer. Each buffer
has associated with it a default package. The package is used during the
interning of symbols from the buffer. Interning a symbol means to either
create the symbol or find it if there is a symbol that has the name that you
typed.

The reason you change package names is to change the variables you are
referencing. If a buffer makes references to variables or functions in the
editor (for example), you have the choice of typing zwei: in front of each
or simply putting the buffer in the ZWEI package and leaving the zwei:
off all names. Another option is that you can precede each top-level form
with zwei:.

2-32

Zmacs Editor Reference

Zmacs Operations

To change packages, you use the Set Package command (META-X Set
Package).

B Fonts — Specifies which fonts to use in the buffer. A font specifies the
typeface and size of characters. The Explorer system contains many dif-
ferent fonts. You can use .different fonts to highlight different parts of
your buffer.

Each buffer has a set of fonts associated with it. When you create a new
buffer, it automatically comes with one font: cptfont. This is the default
font. You can then add more fonts. You can specify up to 26 different
fonts for the buffer.

To set fonts, you use the Set Fonts command (META-X Set Fonts).

B Backspace — Specifies that backspace characters are to overprint on dis-
play. To set this attribute, you use the Set Backspace command
(META-X Set Backspace).

B Base — Sets the base for numbers in the buffer (for example, 10 for
decimal and 8 for octal). To set this attribute, you use the Set Base com-
mand (META-X Set Base).

M Lowercase — Specifies that the buffer contains lowercase or mixed-case
data. To set this attribute, you use the Set Lowercase command
(META-X Set Lowercase).

M Nofill — Specifies not to use Auto Fill mode without an explicit user
command. To set this attribute, you use the Set Nofill command
(META-X Set Nofill).

W Patch file — Specifies that the buffer is a patch file. To set this attribute,
you use the Set Patch File command (META-X Set Patch File). This
attribute allows you to redefine functions (and so on) that are already
defined in other files without receiving warnings when the file is compiled
or loaded.

B Tab width — Sets the displayed width of tab characters for the buffer. To
set this attribute, you use the Set Tab Width command (META-X Set
Tab Width).

B VSP (vertical interline spacing) — Sets the vertical interline spacing
(VSP) for the buffer. The VSP is the number of blank rows of pixels
between lines of text. To set this attribute, you use the Set VSP command
(META-X Set VSP).

When you execute one of the commands to change a buffer attribute, you
have the option of recording the change in the attribute list. If no attribute list
exists, the command automatically creates it for you. The attribute list must
be the first nonblank line in the file. (You can have blank lines before it.)

You can also edit the attribute list. The changes do not take effect until you
retrieve the buffer from disk or execute the Reparse Attribute List command.
Figure 2-7 shows two example attribute lists. Notice that you can specify the
font syntax in two different ways.

Zmacs Editor Reference . 2-33

Zmacs Operations

Figure 2-7

If the attribute list does not begin with a comment character in the language
you are using, you cannot compile the buffer. Zmacs ignores the comment
character when reading the attribute list. It looks for the characters -*-,
which define where the attribute list starts. Thus, you do not need a comment
character for a text file because you do not compile text files.

The attribute list also ends with the characters -*-. In between, it has various
keywords, each followed by a colon and the value of that keyword. A semico-
lon follows a value if another keyword follows the value. You use the
following keywords when editing the mode line:

Mode Lowercase
Package Nofill
Fonts Patch-file
Backspace Tab-width
Base VSP

If you use Common Lisp for the mode in the attribute list, you need to
hyphenate it (that is, Common-Lisp).

In Figure 2-7, Example Attribute List, the mode is Common Lisp, the pack-
age used when interning symbols from the buffer is ZWEI (the editor
package), and the fonts in the file are medfnt and hl12b.

Example Attribute List

;: —%- Mode:Common-Lisp; Package:ZWEI; Fonts: (medfnt hli2b) -*-

Deleting and
Moving Text

2.13 Zmacs provides a wide range of commands to delete, move, and copy
text. Zmacs makes a distinction between deleting and killing text. When you
delete text, you cannot recover it. The delete commands perform only small
deletions, such as character deletions. When you kill text, you put the text
you delete from the buffer on the kill history. The kill history is a stack of
infinite size; new entries are added on the top of the stack. You can Kill text
as small as one character and as large as the entire buffer. You can also save
text on the Kkill history without removing it from your buffer.

Usually, the text you kill is a region that you have marked. When you mark a
block of text, it is highlighted (usually by underlining), and you can manipu-
late it as a single unit. You can mark text of any size.

After you put text on the kill history, you can yank (retrieve) the text back
into your buffer. You can yank all or only parts of the entry. A save followed
by a yank is the way Zmacs allows you to copy text. A kill followed by a yank
is the way Zmacs allows you to move text.

You can also store a block of text in a register and yank it into your buffer at
a later time. The block of text can be any size. You can store only one block
of text in a register. However, it stays in a fixed place, whereas the kill history
is dynamic. (That is, text is moved down the kill history as new entries are
added.) You can also store a cursor location simultaneously in the same regis-
ter in which you store text.

2-34

Zmacs Editor Reference

Zmacs Operations

The following list summarizes the topics discussed in subsequent paragraphs
about deleting and moving text:

Exchanging text — Tells how to exchange (transpose) text, such as char-
acters and words.

Marking text — Tells how to mark text so that you can manipulate it as a
region.

Deleting and Killing text — Tells how to remove text of any size from your
buffer and put it on the kill history. Also tells how to put text on the kill
history without removing it from your buffer.

Yanking text — Tells how to copy an entry (or a line of an entry) on the
kill history into your buffer.

Storing text in registers — Tells how to store and retrieve text from a
register.

You can view the Kill history by executing the Show Kill History command
(CTRL-STATUS).

The following list defines quantities on which the transpose, mark, and delete
commands operate:

Character — A letter, number, or special symbol, such as a punctuation
character.

Line — A line is ended by a return character. A line can span multiple
lines on the screen before the return character appears. (Zmacs recog-
nizes return characters, but they are not displayed in the buffer.)

Word — A group of contiguous letters with no blanks.

Symbolic expression — Lisp expressions enclosed in parentheses or a sin-
gle symbol, such as my-symbol.

Sentence — A sentence is ended by a period (.), question mark (?), or
exclamation point (!) followed by two spaces or a return character (with
optional space), with any number of closing characters between sen-
tences. Closing characters are double quote (), single apostrophe (*),
closing parenthesis ()), and right square bracket (]). A sentence also
ends before a blank line.

Definition — Any defining construct that begins with an opening paren-
thesis in the first column followed by def, such as defflavor, defmethod,
and defvar.

Paragraph — A paragraph is delimited by blank lines or by lines that start
with a delimiter in the Zmacs user variable Paragraph Delimiter List or in
the user variable Page Delimiter List. You can see and change the values
of these variables by executing the Variable Apropos command (HELP
V).

Region — A quantity that you define by marking.

Zmacs Editor Reference

2-35

Zmacs Operations

Exchanging Text

Marking Text

2.13.1 Zmacs allows you to exchange various quantities of text. When you
exchange text, you transpose the positions of two items of that quantity. For
example, if you exchange the characters ex, the result is xe. You can
exchange the following quantities of text:

Characters

Lines

Words

Symbolic expressions

Paragraphs
The following commands allow you to exchange text:

B Exchange Characters (CTRL-T) — Exchanges the characters before and
after point (that is, the character before the keyboard cursor and the
character the cursor is on).

m Exchange Lines (CTRL-X CTRL-T) — Exchanges the line the keyboard
cursor is on with the line above the cursor.

m Exchange Sexps (META-CTRL-T) — Exchanges the symbolic expression
the keyboard cursor is on with the expression before the cursor.

m Exchange Words (META-T) — Exchanges the word the keyboard cursor
is on with the word before the cursor.

B Various Quantities (CTRL-Q) — Exchanges various quantities, such as
character, line, symbolic expression, word, paragraph, and so on. See
paragraph 3.4.5, Various Quantities Command, for more information.

If you want more information on these commands, refer to the Text Format
commands in Section 3, Command Groups.

2.13.2 You mark text so that you can manipulate it as one block. The
marked text is highlighted (usually by underlining) and called a region. You
can use commands that mark text in quantities such as word, symbolic
expression, or paragraph; or you can decide the size of the text you want to
mark. You can mark a region as small as one character or as large as the
entire buffer. Some of the uses for marking text are as follows:

m To put the region on the kill history by Killing or saving it

m To see how large a Lisp expression is

To evaluate or compile the region

To save the region in a register

To change the font of the region

To add semicolons (;) in front of every line in the region

2-36

Zmacs Editor Reference

Zmacs Operations

To remove semicolons from lines in the region
To fill the text in the region

To indent the region

To lowercase or uppercase the region
B To print the region

You can execute the Apropos command (HELP A) and type region to see
the commands that deal with regions.

When you mark text, you are setting the buffer pointers in the editor at either
end of the block of text. One of them is called point, which is where the
keyboard cursor is. The other is called mark, which is the buffer pointer in
the editor that allows you to mark text. The text between point and mark is
highlighted (usually by underlining). regardless of whether point or mark
comes first.

The following paragraphs describe how to mark (and unmark) text of various
sizes.

Mark a Region Zmacs provides two procedures for marking a region.

When you mark a region, you decide the size of the region. One procedure is

as follows:

1. Press the left mouse button and hold it down.

2. Move the mouse cursor until you have marked all the text you want.

3. Release the left button.

Another procedure is as follows:

1. Set mark at point with the Set Pop Mark command (CTRL-space bar).

2. Move the keyboard cursor with one of the keyboard cursor movement
commands. (Do not use the mouse to move the cursor.) The area

between mark and the cursor is marked.

Unmark a Region To unmark a region, you press CTRL-G. This command
is the Abort One Level (Unmark Region) command.

Mark a Symbolic Expression Zmacs provides two procedures for marking
a symbolic expression. One procedure is as follows:

1. Position the mouse cursor on a symbolic expression.

2. Click middle to mark it.

Zmacs Editor Reference 2-37

Zmacs Operations

Another procedure is as follows:

1. Position the keyboard cursor on the first character of a symbolic
expression.

2. Press META-CTRL-@. (This command is the Mark Sexp command.) To
mark more than one symbolic expression from point, you supply a
numeric argument.

Mark a Word Zmacs provides two procedures for marking a word. One
procedure is as follows:

1. Position the keyboard cursor on the first character of a word.

2. Press META-@. (This command is the Mark Word command.) To mark
more than one word from point, you supply a numeric argument.

Another procedure is as follows:
1. Position the mouse cursor on a word.

2. Click middle to mark it.

Mark a Definition Zmacs provides two procedures for marking a defini-
tion. One procedure is as follows:

1. Position the keyboard cursor on a definition such as a defun.

2. Press META-CTRL-H. (This command is the Mark Definition
command.)

Another procedure is as follows:

1. Position the mouse cursor on the opening parenthesis of a definition such
as a defun.

2. Click middle to mark it.

Mark a Paragraph You can use the following procedure to mark a
paragraph:

1. Position the keyboard cursor on a paragraph.
2. Press META-H. (This command is the Mark Paragraph command.)

Let Zmacs Mark Text for You You can use the following procedure to let
Zmacs determine the length of what you want marked:

1. Position the mouse cursor on the item (such as a Lisp expression) you
want marked.

2. Click middle. (This command is the Mark Item command.) Zmacs
determines where to put point and mark in order to include the item you
indicate.

If you click middle on the opening parenthesis of a Lisp expression, Zmacs
marks the entire Lisp expression; that is, Zmacs marks all the way to the
corresponding right parenthesis. The corresponding right parenthesis may not

2-38

Zmacs Editor Reference

Deleting and
Killing Text

Zmacs Operations

appear for several lines. You can mark an entire definition by clicking middle
on the opening (or closing) parenthesis of the definition.

2.13.3 Zmacs contains many commands to delete and kill text in your
buffer. When you delete text, you cannot recover it. Usually, you delete only
small items such as characters. When you kill text, you delete it from your
buffer and put it on the kill history. You can yank (copy) the text back into
your buffer at a later time. You can also save text on the kill history without
deleting it from your buffer.

The size of the text you kill can be as small as a single character or as large as
the entire buffer. You decide the length of the text you want to kill by first
marking the text as a region. Zmacs also provides commands to kill quantities
such as words, symbolic expressions, and lines.

The following paragraphs describe the procedures to delete, kill, and save
text.

Deleting Characters You can enter the following commands to delete
characters:

B Delete Forward (CTRL-D) — Deletes one or more characters forward
from point.

B Delete Backward (RUBOUT) — Deletes one or more characters back-
ward from point.

When you delete one character, it is not put on the kill history. However, if
you delete more than one character at a time by supplying a numeric argu-
ment to CTRL-D or RUBOUT, these commands become kill commands and
what they delete is put on the kill history.

Killing Words You can use the following commands to kill words:

B Backward Kill Word (META-RUBOUT) — Kills one or more words
backward from point.

B Kill Word (META-D) — Kills one or more words forward from point.

To kill more than one word at a time, you supply a numeric argument with
these commands. :

Killing Symbolic Expressions You can enter one of the following com-
mands to kill symbolic expressions:

M Backward Kill Sexp (META-CTRL-RUBOUT) — Kills one or more sym-
bolic expressions backward from point.

m Kill Sexp (META-CTRL-K) — Kills one or more symbolic expressions
forward from point,

To kill more than one symbolic expression at a time, you supply a numeric
argument with these commands.

Zmacs Editor Reference

2-39

Zmacs Operations

Killing Sentences You can use the following commands to kill sentences:

m Backward Kill Sentence (CTRL-X RUBOUT) — Kills one or more sen-
tences backward from point.

B Kill Sentence (META-K) — Kills one or more sentences forward from
point.

To kill more than one sentence at a time, you supply a numeric argument
with these commands.

Killing Lines To kill a line, you can use the Kill Line (CTRL-K) command
to kill text to the end of the line. If only blanks and a return character are to
the right of the cursor, this command kills them.

If the keyboard cursor is in the middle of a line when you kill the line, Zmacs
kills from the cursor to the end of the line. However, it leaves a return char-
acter at the end of the line.

If you want to kill the whole line, you need to move to the beginning of the
line. Zmacs kills all the contents of the line but does not touch the return
character. Thus, you have a blank line there. If you Kill the line again, Zmacs
deletes the return character on that line and the line disappears.

When you kill lines consecutively, Zmacs puts them together in one entry in
the kill history. You can execute the Show Kill History command (CTRL-
STATUS) to yank individual lines with the mouse. If you do not want the
killed lines together as one entry in the Kkill history, you need to move the
keyboard cursor or execute another command in between each Kill Line
command.

Killing and Saving Regions You can Kkill or save regions of any length. You
decide the length of the region when you mark it. The following procedure
describes how to save a region:

1. Mark a region.

2. Double click middle (or press META-W). Zmacs saves the region you
marked in the kill history without removing it from your buffer. (This is
the Save Region command.)

When you save a region, notice that the highlighting (usually underliring)
disappears. However, the region is still remembered; if you double click mid-
dle again without moving the keyboard cursor, the region is deleted from your
buffer. (This command is the Kill Region command.)

NOTE: If you move the cursor or perform another operation between dou-
ble clicks, the region is not deleted. Zmacs retrieves (yanks) the region from
the kill history into your buffer on the second double click.

The following procedure describes how to kill a region:

1. Mark a region.

2-40

Zmacs Editor Reference

Retrieving
(Yanking) Text

Zmacs Operations

2. Double click middle twice (or press CTRL-W). Zmacs puts the region
you marked on the Kkill history and deletes it from your buffer. (This
command is the Kill Region command.)

2.13.4 You can retrieve (yank) any entry from the kill history and put it in
your buffer. You can also yank individual lines from the entry. To copy
blocks of text in Zmacs, execute a save followed by a yank. To move blocks
of text in Zmacs, execute a kill followed by a yank.

Zmacs provides several procedures for yanking entries from the Kkill history:

W Mouse clicks (double middle) — Allows you to yank the top entry on the
kill history, yank more than one copy of the entry, or rotate through the
kill history.

B Show Kill History command (CTRL-STATUS) — Displays the Kill history
and allows you to yank any entry by using the mouse. You can yank as
many copies of an entry as you want. You can also yank individual lines.

H Yank command (CTRL-Y) — Allows you to yank the top entry of the kill
history and yank more than one copy of the entry.

B Yank Pop command (META-Y) — After you use the Yank command
(CTRL-Y) once, you can use META-Y to rotate through the kill history.

When you yank an entry (or an individual line) from the kill history, Zmacs
inserts it where the cursor is. The cursor is then positioned at the end of the
inserted text.

The Show Kill History command allows you to view the kill history and yank
entries from it. Figure 2-8 shows an example kill history display.

Figure 2-8 Show Kill History Display

+Mouseable KiTT Ring Contéents:
Insert a Carriage Return. Toggle of Insert a Carriage Return.
Finished Toggle finished when entire yank is done.

13| 2] € _toTTowin: .
;jc1o8e the output stream
(close sunstrn)
i; (beep
gsend tviselected-windouw :beep :chime)

2:<¢¢ ALL of the following K1il11. »»

smake an array called invert-pix-array that matches the properties of pix-array,
;jit will contain th2 bit mop formatted for the Interieaf.
(setf invert-pix-array (mave-array *(832 1924) :type ’art-1b))

3:<< ALL of the following kill. >>
(DEFUN PLOT-LINE (length angle)
{declare (special x y))
(connect-1ine (+ % (% length (cos angle)))
(+ y (» length (sin angle)))))

You yank entries from this display by clicking on <<all of the Following
Kill.>>. This selection yanks the entire entry. You can also yank individual
lines by clicking on them.

Zmacs Editor Reference

2-41

Zmacs Operations

Anytime you yank an entry with the mouse, Zmacs inserts a return character
in your buffer before the entry. If you do not want to insert a return charac-
ter, you can click on the Toggle of Insert a Carriage Return prompt in the
upper right corner of the display. If you want to remove the Kkill history dis-
play automatically after you yank an entry, you can click on Toggle finished
when entire yank is done.

When you finish, you can remove the kill history screen by pressing the space
bar or by clicking on Finished. If you want more information on the Show
Kill History command, refer to the Deleting and Moving Text commands in
Section 3, Command Groups.

The following list describes the procedures for yanking kill history entries by
using the mouse, the Show Kill History command (CTRL-STATUS), the
Yank command (CTRL-Y), or the Yank Pop command (META-Y):

N Yank the top or most current entry on the kill history:

= With the Show Kill History command (CTRL-STATUS), click on
<<All of the following kill.>>.

s With the Yank command, press CTRL-Y.
= With the mouse, double click middle.
B Yank an entry more than once:

» With the Show Kill History command (CTRL-STATUS), click on
<<All of the following kill.>> twice. You can yank any entry you
want. Clicking once may remove the display (see the mode line win-
dow contents). You can fix this removal by clicking on the option in
the upper right corner of the display called Toggle finished when
entire yank is done.

» With the Yank command, press CTRL-Y twice. You can yank only
the top entry on the kill history.

s With the mouse, double click middle, move the cursor, and then
double click middle again. You can yank only the top entry on the
kill history.

B Yank any entry on the kill history:

= With the Show Kill History command (CTRL-STATUS), click cn
<<All of the following kill.>>, which precedes any entry.

s With the Yank command (CTRL-Y), supply a numeric argument.
For example, if you want the third entry on the Kkill history, enter
CTRL-3 CTRL-Y.

= With the Yank command (CTRL-Y) and the Yank Pop command
(META-Y), press CTRL-Y for the first entry and then META-Y for
each successive entry. This procedure allows you to rotate through
the Kkill history.

B To yank individual lines, use the Show Kill History command (CTRL-
STATUS), and select individual lines with the mouse.

2-42

Zmacs Editor Reference

Storing Text in
Registers

Zmacs Operations

2.13.5 Zmacs contains storage areas called registers in which you can store
either text or cursor locations. You can even store text and a cursor location
simultaneously in one register. The text that you store can be of any size. You
can store only one block of text and one cursor location in a register. How-
ever, they stay in a fixed place. On the kill history, text is moved down the
stack as new entries are added. (Paragraph 2.11.3.2, Storing Cursor Loca-
tions in Registers, discusses storing cursor locations in registers.)

Registers have one-letter names. For example, you can have a register named
A, B, C, or even $, as long as the name is a single character. You cannot
specify a character with attribute bits (that is, a key used in combination with
SUPER, HYPER, META, or CTRL). The limit on the number of registers
you can create is the number of characters available to name them.

When you retrieve text from a register, Zmacs inserts the text where the
cursor is. The cursor is then positioned at the end of the inserted text.

The following paragraphs describe how to store and retrieve text from a regis-
ter and also how to view a register.

Storing Text in a Register Use the following procedure to store text in a
register:

1. Mark a region.
2. Press CTRL-X X. (This command is the Put Register command.)

3. Type any character, such as A, to specify a register.

NOTE: You can store a block of text and a cursor location simultaneously in
the same register. You use the Put Register command (CTRL-X X) to store
the text and the Save Position command (CTRL-X S) to store the cursor
location. For both commands, you specify the same register name.

Retrieving Text From a Register You can use the following procedures to
yank text from a register into your buffer. The first procedure allows you to
view one register and yank text from it:

1. Press META-X and type view Register.

2. Type the name of the register you want (for example, A).

3. Click on the line that says <<vank the entire register >>. You can also
yank individual lines by clicking on them.

The following procedure allows you to view all registers and yank text from
them:

1. Press META-X and type show All Registers.

2. Click on the line that says <<vank the entire register >>. You can also
yank individual lines by clicking on them.

Zmacs Editor Reference

2-43

Zmacs Operations

The following procedure allows you to yank text from a register. It does not
display the contents of the register:

1. Press CTRL-X G. (This command is the Open Get Register command.)
2. Type the name of the register you want (for example, A).
Viewing Registers You can use the following commands to view registers:

m View Register (META-X View Register) — Displays the contents of the
register you specify. The display contains both text and cursor locations,
and it is mouse-sensitive. You can yank the text in its entirety or on a
line-by-line basis.

m Show All Registers (META-X Show All Registers) — Displays the con-
tents of all registers. The display contains only text (not the cursor
locations), and it is mouse-sensitive. You can yank the text in its entirety
or on a line-by-line basis.

m List Registers (META-X List Registers) — Displays the contents of all
registers. The display contains both text and cursor locations, but it is not
mouse-sensitive.

2-44

Zmacs Editor Reference

COMMAND GROUPS

Overview
of Commands

3.1 This section describes all the Zmacs commands. These commands are
divided into functional groups to explain how the commands work together
and to help you easily find the particular command you need. Each individual
command description tells in detail what the command does and lists the
keystroke that executes it. The following list describes the command groups:

Buffer commands — Perform operations on buffers such as edit, list, kill,
and print.

Compile and Evaluate commands — Allow you to compile and evaluate
files, buffers, regions, and changed definitions from within Zmacs.

Cursor Movement commands — Provide a wide range of options to move
the cursor and allow you to store cursor locations.

Customization commands — Customize some of the operations of Zmacs
by changing Zmacs user variables, putting a series of commands on one
key, and so on.

Deleting and Moving Text commands — Allow you to delete, move,
copy, and mark text.

Directory commands — Allow you to perform operations such as creating
and editing a directory.

File commands — Include such operations as find, copy, load, write, and
save files.

Font commands — Include commands that you can use in your buffer,
such as set, change, and display fonts.

Help, Documentation, and Undo commands — Tell how to abort Zmacs
operations, receive help on what you are doing, and undo previous
commands.

Lisp Programming commands — Help you develop your Lisp program
with facilities such as editing Lisp definitions, listing callers, editing fla-
vors, and comparing and merging two files or buffers.

Lisp Syntax commands — Work on the syntax of Lisp code by mani-
pulating comments and parentheses, expanding macros, and grinding
(pretty printing).

Miscellaneous commands — Count quantities such as words and insert
the date into your buffer.

Mode and Buffer Attribute commands — Set major and minor modes
and other buffer attributes such as package and base.

Zmacs Editor Reference

3-1

Command Groups

Executing Commands

B Mouse commands — Allow you to perform operations with the mouse,
such as moving the keyboard cursor to the mouse cursor.

W Print commands — Allow you to print on a hard-copy device and to grind
(pretty print) Lisp code.

m Scroll commands — Allow you to scroll editor buffer windows in Zmacs.

B Search and Replace commands — Perform elaborate search and replace
functions and let you specify a group of files to be treated like one file for
searching and replacing.

m Text Format commands — Allow you to exchange (transpose) text, fill
text, lowercase and uppercase text, and indent Lisp code.

M Window commands — Allow you to split the editor buffer window into
two or more windows.

The following topics relate to your use of all the Zmacs commands. These
topics are described in detail in the paragraphs that follow.

M Executing commands — Describes the META-X and META-CTRL-X
commands, which allow you to execute commands by their name.

M Prefix command — Describes the CTRL-X command, which is a prefix
for a number of other commands.

B Minibuffer commands — Details the important commands that you can
use in the minibuffer to complete command names and pathnames, dis-
play a menu of possible completions, and repeat the previous minibuffer
command.

B Numeric arguments — Tells you how to enter numeric arguments to
Zmacs commands.

3.1.1 Zmacs allows you to execute commands by keystrokes, by clicking the
mouse on command names in menus, and by typing the command name after
pressing META-X or META-CTRL-X. Many Zmacs commands do not have
keystrokes assigned to them. These commands are called extended com-
mands. The following procedure describes how to execute one of these com-
mands:

1. Press META-X.

A prompt appears in the minibuffer asking you for a command name.
2. Enter the name of the command; for example, type split Screen.
Refer to the Minibuffer commands, paragraph 3.1.3, for information on the
online help available for finding and completing command names. Zmacs

automatically completes a command name for you if you supply enough char-
acters to uniquely identify the command name and then press ESCAPE.

3-2

Zmacs Editor Reference

Prefix Command

Minibuffer Commands

Command Groups

The following table describes META-X and META-CTRL-X in more detail:

Keystroke Description

META-X Executes any legal Zmacs commands that Zmacs
makes available through their names. Commands
allowed by META-X are designed to.apply to your
current context in the editor. Zmacs is extendable:
you can define your own commands and add them
to a command table.

META-CTRL-X Executes any legal Zmacs commands that Zmacs
makes available through their names. META-
CTRL-X does not guarantee that these commands
apply to your current context in the editor.

CAUTION: Since META-CTRL-X can execute commands out of con-
text, problems may arise. You should not use META-CTRL-X except for
trying out new commands.

3.1.2 The Prefix command (CTRL-X) allows you to use a group of com-
mands after you press CTRL-X. That is, you then press another keystroke
after CTRL-X to execute a particular command. For example, to execute the
Write File command, you press CTRL-X CTRL-W. Many Zmacs commands
use CTRL-X as part of their keystrokes.

If you press CTRL-X and decide you want to abort, you can press ABORT or
CTRL-G.

3.1.3 Zmacs uses the minibuffer for a wide range of operations. You enter
command names to META-X and responses to command prompts in the
minibuffer. You can tell if you are in the minibuffer because the keyboard
cursor moves there.

The minibuffer is usually a three-line-high version of the editor. It works
exactly like an editor buffer window. You can edit your input with the cursor
movement commands and the delete commands. You can also scroll in it.
One big difference is that you cannot enter the minibuffer from the mini-
buffer; that is, you can enter the minibuffer from the editor buffer window,
but you cannot enter another minibuffer from the minibuffer.

When you enter the minibuffer, the right side of the mode line presents mes-
sages about the operation you are performing. The following messages may
appear:

B Completion — If you press the ESCAPE key when you see this message,
Zmacs provides help on completing command names, pathnames, and
responses to commands.

B Extended Search Characters: CTRL-H — If you press CTRL-H HELP
when you see this message, a list of extended search characters appears.
You use these to perform complicated searches.

Zmacs Editor Reference

3-3

Command Groups

The following table describes important keystrokes that you can use in the

minibuffer:

Keystroke

Description

HELP

ESCAPE

END

RETURN

CTRL-G

CTRL-SHIFT-Y

META-SHIFT-Y

CTRL-/

CTRL-?

Provides help on the operation you are performing.

Completes the pathname as much as possible but
does not execute it. You can use this keystroke to
verify that Zmacs completes your partial input the
way you expect. For example, the Find File com-
mand creates a new buffer if you type a wrong
partial pathname and press RETURN; to avoid
this, press ESCAPE to determine if the command
completes the pathname as you intended.

Attempts completion on the partial input and exits
if it is unique. Note that although a completion is
unique, it is not necessarily what you had in mind.

Usually exits without completion. Sometimes
RETURN completes, such as for command names.
Also, for commands that allow you to type
multiple lines, such as the Evaluate Minibuffer
command (META-ESCAPE), RETURN only
inserts return characters, and END exits.

Clears the minibuffer if there is text in it. If the
minibuffer is empty, CTRL-G quits the minibuffer.

During execution of one of the File commands,
inserts the default pathname as text.

During execution of one of the File commands,
inserts the last pathname you typed, as text.

Performs the Apropos command for the possible
completions of what you have typed so far. (You
type part of a command name and CTRL-/
searches for the possible completions.) CTRL-/
looks for any matching string regardless of its
position in the command name. Also, the display it
provides is mouse-sensitive. You can position the
mouse cursor on a command name and click left
to execute it.

Gives a menu of the possible completions for the
string that you have typed so far. Unlike CTRL-/,
CTRL-? looks only for matching prefix strings (that
is, it only finds the commands that begin with the
string). The display that CTRL-? provides is
mouse-sensitive. You can position the mouse
cursor on a command name and click left to exe-
cute it.

3-4

Zmacs Editor Reference

Numeric Arguments

Command Groups

Keystroke Description

META-CTRL-Y Cycles backward through previous minibuffer com-
mands and the data they were given when entered.

CTRL-SHIFT-F Specifies a pathname instead of a buffer name.
You use this keystroke when a file is mismatched
with its buffer. For example, you may create a
buffer and read a file into the buffer without the
buffer name being updated.

CTRL-X ESCAPE is an important keystroke that allows you to repeat a mini-
buffer command. This command does not work if you are already in the
minibuffer.

CTRL-X ESCAPE with a numeric argument executes the nth previous com-
mand, where n is the numeric argument. The default is 1. An argument of 0
lists the commands that are remembered.

3.1.4 You can give any Zmacs command a numeric argument. The numeric
argument has different effects depending on the command. You can supply
positive or negative numbers.

One of the most common uses for the numeric argument is as a counter for
the number of times the command should be performed. For example, sup-
plying Forward Character (CTRL-F) a numeric argument of 20 moves the
cursor forward 20 characters instead of 1.

Some commands only need to know if there is a numeric argument present;
they do not care about its value. For example, the Evaluate Buffer Changed
Definitions command evaluates any definitions in a buffer that you have
edited. If you supply a numeric argument with the command, it asks about
each definition individually.

Other commands react differently to different numeric arguments. An exam-
ple is the Select Previous Buffer (META-CTRL-L) command. If you supply a
numeric argument, it selects the nth previous buffer. An argument of 1 ro-
tates through the buffer history. Any negative argument rotates through the
buffer history in the opposite direction.

The Copy File command provides another example. Each of the numeric
arguments 2 through 6 causes a different operation to be performed.

The individual documentation for each command tells you how numeric
arguments affect the command.

To specify a numeric argument for a command, you hold down any combina-
tion of the CTRL, META, SUPER, and HYPER Kkeys while pressing the de-
sired numbers. Then you type the command. For example, if you want to
move the cursor forward 20 characters, you press CTRL-2 CTRL-0 CTRL-F.

Zmacs Editor Reference

3-5

Command Groups

To enter a numeric argument for a META-X command, you press the appro-
priate keys for the numeric argument such as CTRL-2, then press META-X,
and finally type the name of the command. For example, if you want to
specify a numeric argument of 2 for the Copy File command, you press
CTRL-2 META-X and then type Copy File.

NOTE: This manual expresses numeric arguments with the convention of
typing only one digit at a time for each CTRL. Thus, a numeric argument of
20 is written CTRL-2 CTRL-0. However, you can hold down the CTRL key
until you finish entering all of the numbers.

The Universal Argument command (CTRL-U) provides another way of
entering numeric arguments. If you enter this command by itself, it multiplies
the current argument by four. (The current argument is initially 1.) For
example, CTRL-U CTRL-F moves the cursor forward four characters. If you
press CTRL-U twice, the argument is multiplied by 16. Thus, CTRL-U
CTRL-U CTRL-F moves the cursor forward 16 characters. CTRL-3 CTRL-U
CTRL-F moves the cursor forward 12 characters.

Other commands treat CTRL-U differently. Commands that deal with pack-
ages search the current package without a CTRL-U argument, search all
packages with one CTRL-U, or ask for a package if you press CTRL-U twice.
Refer to paragraph 3.11.2, Caller Commands.

3-6

Zmacs Editor Reference

Command Groups

Buffer
Commands

Capture Into
Buffer Commands

3.2 The Buffer commands allow you to perform a multitude of operations
on a buffer. The commands are divided into the following groups:

W Capture Into Buffer commands — Insert the results of Lisp functions into
your buffer.

B Insert Buffer commands — Append to and insert buffers.

W Kill and Save Buffers commands — Kill and save buffers.

m List and Edit Buffers commands — Allow you to list buffers and perform
a variety of operations on them, such as editing, saving, writing, compil-

ing, killing, and printing.

W List and Edit Changed Definitions commands — List sections (defini-
tions) in a buffer and list and edit modified definitions.

B Miscellaneous Buffer commands — Perform operations on buffers such
as renaming, viewing, sectionizing, and listing modifications.

B Print Buffer commands — Print buffers.
M Revert Buffer commands — Removes the changes you made to a buffer.

B Select Buffer commands — Allow you to switch between the buffers you
are editing.

NOTE: For information on the commands that change buffer attributes such
as mode, package, base, fonts, and tab width, refer to the Mode and Buffer
Attribute commands.

The List Buffers command (paragraph 3.2.4) and the Kill or Save Buffers
command (paragraph 3.2.3) display menus that allow you to perform a wide
range of operations on buffers, such as editing, compiling, killing, printing,
saving, and writing. These two commands provide a tool for dealing with
buffers.

3.2.1 These commands allow you to insert the results of Lisp functions into
the current buffer.

Evaluate and Replace Into Buffer Command
Keystroke: META-X Evaluate and Replace Into Buffer

Evaluates the symbolic expression after point and places the result into the
buffer at point. The original expression is deleted, and the value that is

printed out replaces it.

Also refer to the Compile and Evaluate commands.

Zmacs Editor Reference

3-7

Command Groups

Insert Buffer
Commands

Kill and Save
Buffer Commands

Evaluate Into Buffer Command
Keystroke: META-X Evaluate Into Buffer

Evaluates a form from the minibuffer and inserts the results into the buffer at
point. If the form returns multiple values, each value is printed into the buffer
with. a carriage return before each one. If you supply a numeric argument
with this command, output printed by the evaluation also goes in the buffer.

Also refer to the Compile and Evaluate commands.

Execute Command Into Buffer Command
Keystroke: META-X Execute Command Into Buffer

Executes the next editor command, printing the result into the buffer. Any
output that ordinarily appears as typeout from the command is inserted into
the current buffer instead. Trace and warning output are also inserted into
the buffer.

3.2.2 The Insert Buffer commands allow you to append to and insert
buffers.

Append to Buffer Command
Keystroke: CTRL-X A

Appends a region to the specified buffer. You are prompted in the minibuffer
for the name of the buffer; it is created if it does not already exist. This
command inserts the text at that buffer’s point and leaves point after the
inserted text. With a numeric argument, this command leaves point before
the inserted text.

Insert Buffer Command
Keystroke:' META-X Insert Buffer

Inserts a copy of the specified buffer at point.

3.2.3 These commands allow you to kill and save buffers. One of the
commands, the Kill or Save Buffers command, presents a listing of the Zmacs
buffers and allows you to compile or unmodify them in addition to saving and
killing them.

Kill Buffer Command
Keystroke: CTRL-X K

Kills a specified buffer. You are prompted in the minibuffer for the name of
the buffer to kill.

3-8

Zmacs Editor Reference

Figure 3-1

Command Groups

Kill or Save Buffers Command
Keystroke: META-X Kill or Save Buffers (also available on the Editor menu)

Displays a menu containing the Zmacs buffers and allows you to save buffers
to disk, kill buffers, unmodify buffers, and compile them if they are Lisp

type.

The Kill or Save Buffers menu is a multiple-choice menu in which you have to
select the Do It or Abort item with the mouse to remove the menu. Figure
3-1 shows a sample Kill or Save Buffers menu.

Kill or Save Buffers Menu

DRESS.TEXT#1 VAN; Romeo:
C-CURVE.LISP#> VAN; Romeo:

GETTYSBURG-ADDRESS . TEXT#> VAN; Romeo :
= Romeo: VAN; *.##% (1)

The following table explains the symbols in the left column:

Symbol Description
* The buffer has been modified.
Read only.

il

New file (not yet written to disk).

Some of the boxes are marked with an x, such as files to be saved. If you
modify the buffer and it is connected to a source file on disk, an x appears in
the Save box. An x does not appear in the Save box for a new buffer (not
connected to a file) that you modify. In this case, only an asterisk (*) appears
in the left column.

When you move the mouse over a box, the mouse cursor becomes an x. If
you click left, an x appears in the box to select whatever the box represents.
If you click left again while the mouse cursor is still an x, the x in the box is
removed. You can choose to both save and kill a buffer. No actions are taken
until you click on the Do It item.

If you select the Do It item, the operations are performed for the boxes that
have an x in them. For example, files that are marked to be saved are written
to disk. Files that are marked to be killed are killed. If you select the Abort
item, no operation is performed, regardless of what is marked.

When you invoke the Kill or Save Buffers menu again, the items from which
you removed the x are marked again. However, the Unmod option removes
the x.

Zmacs Editor Reference

Command Groups

List and Edit
Buffer Commands

The following paragraphs explain in detail the options on the Kill or Save
Buffers menu.

Save The Save option writes the buffer to disk, using the pathname of the
file from which the buffer originally came and incrementing the version num-
ber. This option automatically provides the default file pathname; you do not
need to specify the filename. If you want to specify a different filename, you
must use the Write option on the List Buffers menu. If the buffer is a new
buffer not associated with a pathname, you are prompted for a filename.

Kill The Kill option deletes the buffer.

Unmod The Unmod option marks the buffer as unmodified. (It does not
discard the changes.) Buffers that you have modified are marked with an x in
the Save box. The normal way to end an edit session is to click on the Do It
item and save all modified files. However, if you make modifications to files
that you do not want to save, you must toggle the x out of the Save box each
time you invoke the Kill or Save Buffers menu. This procedure is not neces-
sary if you mark the Unmod box (and unmark the Save box) for the buffer.
The x does not reappear in the Save box until you change the buffer again.

Compile The Compile option compiles the file that the buffer is connected
to on.disk and puts the compiled version on disk with the same filename and
a different type, xld. It does not change the memory from which you execute.
If the Save box also has an x in it, the buffer is written to disk before it is
compiled.

A box does not appear in the Compile column for a buffer unless the buffer is
Lisp type. Also, a box does not appear unless there is a source file on disk.
You must save a new buffer (Lisp type) to disk before a box appears in the
Compile column.

The Compile option performs the same operation as the Compile File corn-
mand (META-X Compile File).

Kill Some Buffers Command
Keystroke: META-X Kill Some Buffers

Offers to Kill each buffer. For each buffer, this command asks whether to kill
it, and for each one to be killed, it offers to write out any changes.

3.2.4 Zmacs provides two commands, List Buffers and Edit Buffers, that
display the list of Zmacs buffers and allow you to perform a variety of opera-
tions on the buffers. Between the two commands, you can select buffers for
editing and perform other operations such as compiling, printing, killing, sav-
ing, writing, and reverting. The Edit Buffers command allows you to perform
operations on all the buffers at one time. The List Buffers command works
on one buffer at a time.

3-10

Zmacs Editor Reference

Command Groups

Buffer Edit Command
Keystroke: META-X Buffer Edit

Edits the list of buffers; saves, kills, and so on. (This command is a synonym
for the Edit Buffers command.)

Edit Buffers Command
Keystroke: META-X Edit Buffers

Edits the list of Zmacs buffers. Performs operations such as select, save,
write, kill, and unmodify buffers. The Edit Buffers command allows you to
specify one of these commands by typing the character for the command next
to the buffer name.

When you enter one of the Edit Buffers commands, the keyboard cursor
must be on the line that contains the name of the buffer for which you want
to execute one of the commands. A mark appears in the first column signify-
ing the operation (for example, S for save). You can mark different buffers
for different operations. When you finish marking buffers, you press Q and
the operations are performed.

NOTE: If the buffer is not associated with a file on disk, many of these
commands take effect immediately. In the case of S (for save), you are
prompted in the minibuffer for a filename.

Most of the cursor movement commands work the same way in the Edit
Buffers display as they do in the editor buffer. You can use the following
methods to move the cursor: ‘

W CTRL-P and T — Take you to the previous line.
W Space bar, CTRL-N, and | — Take you to the next line.

B Mouse — Positioning the mouse cursor beside a filename and clicking left
moves the keyboard cursor there.

When you go to another buffer (for example, by typing a period to select a
buffer), you can return to the Edit Buffers display by pressing META-
CTRL-L. (META-CTRL-L is the Select Previous Buffer command.) You can
also return to the Edit Buffers display by executing the List Buffers command
(CTRL-X CTRL-B). The buffer name containing the Edit Buffers display is
then listed.

Zmacs Editor Reference

3-11

Command Groups

The following table describes the Edit Buffer commands. Pressing the HELP
key provides an online description of the Edit Buffer commands.

Keystroke

Description

HELP

DorK

U
RUBOUT

ABORT

END

Provides a brief description of the Edit Buffer com-
mands.

Marks the buffer to be killed. Also requests saving, if
the buffer contains changes. Use N to cancel the
saving but not cancel the Killing.

Cancels all operations on the buffer.

Moves to the previous line and cancels all operations
on that line.

Marks this buffer to be selected.
Marks this buffer to be printed.

Marks this buffer to be saved. The buffer is saved to
the file (on disk) from which it originally came. If you
want to specify a different file or if it is a new buffer,
use the W command.

Marks this buffer to be written. The buffer is written
to a file (on disk) that you specify.

Marks this buffer to be unmodified.

Marks this buffer to be reverted; that is, the changes
you made are forgotten.

Cancels any request for file I/O on the buffer, such as
save, revert, and so on.

Exits Edit Buffers. Kills, saves, and reverts as
requested. Displays the files to be deleted and/or
printed, then asks you to confirm.

Aborts Edit Buffers. If you marked a file for operation
(such as D for deletion), the ABORT key leaves Edit
Buffers and usually cancels the operations. However, if
the buffers need saving, for example, the marks stay.

Exits Edit Buffers. Kills, saves, and reverts as
requested. Displays the files to be deleted and/or
printed, then asks you to confirm.

3-12

Zmacs Editor Reference

Figure 3-2

Command Groups

List Buffers Command
Keystroke: CTRL-X CTRL-B

Shows the Zmacs buffer history. This command lists all the buffers and their
files (or sizes). The buffers are ordered by most recent use (not by creation
date). The buffer history is shared by all instances of the editor. For exam-
ple, if you have five different editors with five buffers in each one, all of the
buffer names appear in the buffer history.

You might see that some buffers do not have pathnames for buffer names.
These buffers are not connected to files, because they are new buffers that
you have not saved to disk yet, or because you disassociated them from their
files with the Rename Buffer command. If a buffer is connected to a file, the
version number appears in parentheses in the File Version column of the
listing. If the buffer is not connected to a file, the number of lines in the
buffer appears in the File Version column. If the buffer is a Dired buffer, the
name of the directory appears in the File Version column. Figure 3-2 shows a
sample buffer history.

Sample Buffer History

[Buffers in ZHEI:

Buffer name: File Version: Major mode:

DRAW-ICON.MAGICH> WEBB.WINDOW; Lima: (1) (Common-Lisp)
ICONS-EXPLAN,LISP#> WEBB.WINDOW; Lima: (1) (Common-Lisp)
BINDINGS .EXAMPLE#> WEBB.WINDOW; Lima: (3) (Common-Lisp)
* #Possibilities Listsx* [7 Lines] (Possibilities)
* xDefinitions» [4 Lines] (Possibilities)
* mh:laurie; modified-file [1 Line) (Common-Lisp)
SHEET.LISP#> WINDOW; MR-X: 12) (Common-Lisp)
mh:marty;new-file.example [1 Line) (Common-Lisp)
= Lima: HEBB; ».»#x» (1) [33 Lines] (Dired)
*Buf fer-3» [t Line] (Common-Lisp)
*Buf fer—1# [1 Line] (Common-Lisp)

* means buffer modified. = means read-only.

(ERD=TTEM-LTST (HREF RUR=MAF {1+ RUHJ))
)

(X—PO% a8))

The following table explains the symbols in the left column:

Symbol Description

* The buffer has been modified.

= Read only.

+ New file (not yet written to disk).

You can edit any buffer in the buffer history by simply clicking left as indi-
cated by the mouse documentation window. If you click right on an entry in
the List Buffers listing, the menu shown in Figure 3-3 appears. If you move
the mouse cursor from one option to another, the mouse documentation win-
dow changes to describe that option.

Zmacs Editor Reference

3-13

Command Groups

Figure 3-3 List Buffers Menu

Buffers in ZWET:

*

Buffer name: File Version: Major mode: Dgﬁgi%gopimgﬁlcﬁr ﬁEPP'HINDD”' Lima: :
DRAN-ICON.MAGIC#> WEBB.MINDOW; Lima: (1) (Common-L1efEr1n® brnod
ICONS-EXPLAN,LISP#> WEBB.MINDOW; Lima: (1) (Connon—LlS-Se1ect
BINDINGS.EXAMPLEH> HEBB.WINDOW; Lima: (3) {Common-~-L1s

* xPossihilities Lists¥ [7 Lines] (Possib111tifs

* sxDefinitions#* [4 Lines] (Possibitities)

* nh:laurie; modified-file {1 Linel (Comnon-Lisp)
SHEET.LISPH#> WINDOW; MR-H: 12) (Comnon-Lisp)
mh:narty;neu-file.example 1 Line] (Common-Lisp)

a Lima: WEBB; ». % (1) 33 Lines] (Dired)
#Buf fer-3* [1 Line] (Common-L1isp)
*BuUffer-1x [l Line} (Common-L1isp)

means buffer modified. = means read-only.

(FONT)
(FLAB)
(x-POS @))

(ENU'IIEH‘leI {HREF RUW=TIHF {T+ RUW}J])
TR

The following paragraphs explain in detail each of the options on the List
Buffers menu.

Compile File The Compile File option compiles the file that the buffer is
connected to on disk and puts the compiled version on disk with the same
filename and a different type, xld. It does not change the memory from
which you execute. If you have made changes to the buffer, you are first

asked if you want to save the buffer so that your changes will be in the file on
disk.

NOTE: The Compile File option works only if there is a source file on disk.
You must save a new buffer to disk before using the Compile File option.

The Compile File option performs the same operation as the Compile File
command (META-X Compile File).

Kill The Kill option deletes the buffer. If the buffer is connected to a file,
you are asked if you want to save the buffer first. If you do not save it, the
original version on disk is unchanged. i

Print The Print option automatically prints a copy of the buffer to a line
printer. (This option may not be functional at some sites.)

Unmod The Unmod option marks the buffer as unmodified so that you can
direct'the editor to consider the buffer unchanged. (It does not discard the
changés.) The asterisk (*) that you see in the left column of the buffer his-
tory and the mode line disappears. This option is useful when you execute the
Kill or Save Buffers command.

NOTE: If you invoke the Kill or Save Buffers menu from the Top-Level
Editor menu, you see a multiple-choice menu. Files that you have modified
are marked with an x in the Save box. The normal way to end an edit
session is to click on the Do It item to save all modified files. However, if you
make modifications to files that you do not want to save, you must toggle the
x out of the Save box each time you invoke the Kill or Save Buffers menu.
This procedure is not necessary if you unmodify the buffer. The x does not
reappear in the Save box until you change the buffer again.

3-14

Zmacs Editor Reference

List and Edit
Changed Definition
Commands

Command Groups

Save The Save option writes the buffer to disk, using the pathname of the
file from which the buffer originally came and incrementing the version num-
ber. This option automatically provides the default file pathname. Thus, you
do not need to specify the filename. If you want to specify a different file-
name, you must use the Write option.

Write The Write option writes the buffer to a file that you specify. It is
similar to the Save option except that you are allowed to specify the filename
rather than taking the default. If you accept the default, this option works
like Save.

Select The Select option allows you to edit the buffer.

3.2.5 These commands allow you to perform operations on the changed
definitions in a buffer. When Zmacs reads into a buffer a file that contains
Lisp code, it divides the definitions in the buffer into sections. The only
buffers that have sections are those containing Lisp code. Other buffers do
not have sections. A section can contain any defining construct that begins
with def after the opening parenthesis in the first column, such as defvar,
defflavor, and defun. The defining construct can be user-defined. Each
definition is a section.

At the top of the buffer is a section called the buffer header, which contains
contains the attribute list.

For a detailed discussion of this section scheme, refer to paragraph 2.10.4,
Lisp Code in Buffers.

Basically, the section scheme allows you to locate definitions quickly and
perform operations only on the changed definitions. The List and Edit
Changed Definitions commands allow you to perform the following
operations:

M List all the sections (definitions) in a specified buffer.

B List or edit the definitions that have been changed in a specified buffer or
in all buffers. '

You can compile and evaluate only the changed definitions in a buffer. Refer
to the Compile and Evaluate commands.

For all of these commands except the List Sections command, you can press
CTRL-SHIFT-P to start editing the changed definitions. Each successive
CTRL-SHIFT-P moves the cursor to the next changed definition. However,
you cannot return to the beginning of the list.

Edit Buffer Changed Definitions Command
Keystroke: META-X Edit Buffer Changed Definitions

Edits any definitions in the buffer that have been changed. A definition is
changed if it has been modified since one of the following events occurred:

W The file was read in (numeric argument 1 or no argument).

Zmacs Editor Reference

3-15

Command Groups

B The file was read in or saved (numeric argument 2).

B The definition was compiled (numeric argument 3).

Edit Changed Definitions Command
Keystroke: META-X Edit Changed Definitions

Identifies any definitions that have been edited. This command examines all
buffers for changed definitions. A definition is changed if it has been modi-
fied since one of the following events occurred:

® The file was read in (numeric argument 1 or no argument).

M The file was read in or saved (numeric argument 2).

m The definition was compiled (numeric argument 3).

When you do not specify a numeric argument, the cursor is placed at the
beginning of the first changed definition.

List Changed Definitions Command
Keystroke: META-X List Changed Definition

Lists any definitions that have been edited. This command examines all buf-
fers for changed definitions. A definition is changed if it has been modified
since one of the following events occurred:

B The file was read in (numeric argument 1 or no argument).

B The file was read in or saved (numeric argument 2).

M The definition was compiled (numeric argument 3).

Figure 3-4 provides an example of the output of this command. The com-
mand also creates a *POSSIBILITIES LISTS* buffer, which lists all the

changed definitions. You can also use the *POSSIBILITIES LISTS* buffer
to edit the changed definitions.

Figure 3-4 List Changed Definitions Command
Changed sections:
'*Buffer-1-setq-2" COM-FIND-FILE
Type CTRL-SHIFT-P to start editing these.
3-16 Zmacs Editor Reference

Figure 3-5

Figure 3-6

Command Groups

List Buffer Changed Definitions Command
Keystroke: META-X List Buffer Changed Definitions

Lists any definitions in the buffer that have been edited. A definition is
changed if it has been modified since one of the following events occurred:

W The file was read in (numeric argument 1 or no argument).
B The file was read in or saved (numeric argument 2).
B The definition was compiled (numeric argument 3).

Figure 3-5 provides an example of the output of this command.

List Buffer Changed Definitions Command

Changed sections in buffer BUFFER NAME.
"xBuf fer-1*-setq-2" COM-FIND-FILE

Type CTRL-SHIFT-P to start editing these.

List Sections Command
Keystroke: META-X List Sections

Lists all sections (definitions) in a specified buffer. You can press CTRL-
SHIFT-F to specify a filename. Each defun, defvar, defstruct, and so on, is
one section. You can also invoke this command from the Top-Level Editor

menu.

Figure 3-6 shows a sample listing from the List Sections command.

List Sections Command

Sections in buffer *BUFFER-2%:

"Buffer header" COM-GOTO-BEGINNING COM-UP-REAL-LINE
COM~COMPILE-BUFFER COM-GOTO-END

Zmacs Editor Reference

3-17

Command Groups

Miscellaneous
Buffer Commands

3.2.6 These commands allow you to perform the following operations:

W Show modifications made to the buffer.

M Treat the buffer as if it has not been modified.
B Rename a buffer.

W Sectionize a buffer.

W Make a buffer read-only or make it modifiable.

N View a buffer.

List Modifications Command
Keystroke: META-X List Modifications

Lists the lines in the buffer that have changed since the file was last saved.

Not Modified Command

Keystroke: META-~

Treats the buffer as if it has not been modified.

Rename Buffer Command
Keystroke: META-X Rename Buffer

Renames the current buffer.

Sectionize Buffer Command
Keystroke: META-X Sectionize Buffer

Reparses a buffer for definitions. This command repeats the processing nor-
mally performed only when the file is read into the buffer, that is, the proc-
essing that finds the definitions in the file so that the Edit Definition
command (META-.) can work. This command is useful if you have adcled
functions to the file.

For a detailed discussion of sectionizing, refer to paragraph 2.10.4, Lisp
Code in Buffers.

Toggle Read Only Command
Keystroke: CTRL-X R

Makes the current buffer read-only, or makes it modifiable.

3-18

Zmacs Editor Reference

Print Buffer
Commands

Command Groups

View Buffer Command
Keystroke: CTRL-X V

Views the contents of the specified buffer. You cannot edit the buffer. While
viewing, you can press the following keystrokes to scroll:

m CTRL-V, CTRL-], or the space bar to scroll forward a screen of text
WM META-V or CTRL-1 to scroll backward a screen of text

B CTRL-N or | to scroll forward one line

H CTRL-P or t to scroll backward one line

To exit, press END.

3.2.7 The Print Buffer commands allow you to print a buffer. In addition to
the commands listed here, you can also print a buffer with the List Buffers
command.

Print All Buffers Command
Keystroke: META-X Print All Buffers

Query prints all buffers on the default hard-copy device (provided that there
is one). You are asked about each buffer individually.

Also refer to the Print commands.

Print Buffer Command
Keystroke: META-X Print Buffer

Prints a buffer on the default hard-copy device (provided that there is one).
You are prompted in the minibuffer for the name of the buffer. The default is

the current buffer. You can press CTRL-SHIFT-F to specify a filename.

Also refer to the Print commands.

Quick Print Buffer Command
Keystroke: META-SHIFT-P
Prints the current buffer on the default hard-copy device.

Also refer to the Print commands.

Zmacs Editor Reference

3-19

Command Groups

Revert Buffer
Command

Select Buffer
Commands

3.2.8 The Revert Buffer command allows you to remove changes you made
to the buffer.

Revert Buffer Command
Keystroke: CTRL-X CTRL-R

Discards changes made to a specified buffer. You are prompted in the mini-
buffer for the name of the buffer. This command reads the file from disk

again, deleting the buffer’s former contents.

If you execute this command on a Dired buffer, the directory is read again to
make a new listing.

3.2.9 The Select Buffer commands allow you to select a buffer for editing.
They allow you to switch between the buffers you are editing.

Select Buffer Command
Keystroke: CTRL-X B

Selects the specified buffer. You are prompted in the minibuffer for the
buffer name (completion available). With a numeric argument, this com-
mand allows you to create a new buffer. It also creates a new buffer if you
specify the name of a nonexistent buffer. In this case, the command tells you
the buffer does not exist and asks if you want to create it.

Select Default Previous Buffer Command
Keystroke: CTRL-X META-CTRL-L

Rotates the stack of previously selected buffers. A numeric argument specifies
the number of entries to rotate and sets the new default.

Select Previous Buffer Comrnand
Keystroke: META-CTRL-L

Selects the previously selected buffer. A numeric argument of n selects the
nth previous buffer (the default argument is 2). With an argument of 1, this
command rotates through the entire buffer history. A negative argument ro-
tates through the buffer history in the opposite direction. This command uses
the order of buffers that is displayed by List Buffers.

3-20

Zmacs Editor Reference

Command Groups

Compile
and Evaluate
Commands

3.3 Closely tied to the other utilities on the system, Zmacs uses the com-
piler and the interpreter to allow you to compile and evaluate Lisp code from
within Zmacs.

When you evaluate Lisp code, the interpreter processes one Lisp form and
executes it. Then it interprets the next Lisp form and executes it.

When you compile Lisp code, the compiler translates all Lisp functions into
machine instructions. The code always executes whether it is compiled or
interpreted. However, a defining construct that begins with an opening paren-
thesis in the first column followed by a def, such as defun, defmacro, and so
on, only executes to create internal structures. (Only the top-level forms are
executed.) A top-level form is a form that is not nested in another form.

The following list provides reasons for compiling a function rather than evalu-
ating it:

M The compiled function runs much faster.

M The compiler provides better debugging information than the interpreter.
The compiler prints warnings and records them in a database. You can
use the database to edit the functions that received warnings. This data-
base makes it easier to edit the source to correct the problems indicated
by the error messages. It is unnecessary to write down all the messages
before you begin editing.

NOTE: The compiler evaluates all top-level forms as well as some other
forms, particularly when eval-when is used.

The following list provides reasons for evaluating rather than compiling a
function:

B Evaluation is faster.on a large file.
B You can execute fragments of code.
B You can create a function and have it interpreted at run time.

B Although a Lisp function runs faster if you compile it, certain debugging
options are available only if you interpret the function (evaluate it). You
can trace and step through a function when using evaluation. When you
step through a function, you execute one Lisp form at a time. When you
trace a function, you can see the order in which the Lisp forms are exe-
cuted and usually the results of that execution. You cannot trace a com-
piled function because tracing tells you only the arguments with which the
function was entered and what it returned. For more information on trac-
ing and stepping, refer to Explorer Tools and Utilities.

Interpreting a function makes it actually exist in memory (that is, it is remem-
bered by the computer). Typing a function into an editor buffer does not
make it exist in memory. When you evaluate a function, the interpreter reads
the definition and stores it in the package you are using.

Zmacs Editor Reference

3-21

Command Groups

When you compile a function, it is stored either in memory or on disk,
depending on which of these methods you use to compile:

Compiling a file — If you compile with the Compile File command, which
uses the compile-file function, the file on disk is compiled, and the com-
piled version is put on disk with the same name and a different type, xId.
The Compile File command does not change the memory from which
you execute. If you have a buffer connected to the file and you have
made changes to the buffer, you are first asked if you want to save the
buffer so that your changes will be in the file on disk. To use the cormn-
piled code, you then need to load the xId file into memory by using the
Load File command.

Compiling a buffer, region, or changed definition — If you compile a
buffer, region, or changed definition, the memory from which you exe-
cute is changed. You cannot retrieve the compiled code, and it is there
only until you cold boot. The following differences exist when you com-
pile a buffer, region, or changed definition instead of a file:

= Incremental loading is used. Each top-level form is compiled and
then loaded. This procedure allows later forms to make use of the
previously compiled forms. If you use the Compile File command
and then load the compiled code into memory, the benefit of using
previously compiled forms is not provided.

® You can test the buffer, region, or changed definition.
= Compiling a region or changed definition several times until the code

is right saves recompiling the whole buffer up to the point where the
error occurs.

The Compile and Evaluate commands are very similar. They have the same
options except that you are either evaluating or compiling. The major differ-
ence between the commands is that you cannot evaluate a file and store it in
another file. Basically, you would be storing the same code. The following
commands are discussed in subsequent paragraphs:

Evaluate Minibuffer command — Evaluates forms in the editor.

Evaluate Into Buffer commands — Evaluate forms and insert the results
into your buffer.

Compile or Evaluate Region or Definition commands — Compile or
evaluate a region or definition.

Compile or Evaluate Changed Definitions commands — Compile or
evaluate only the changed definitions in a buffer.

Compile or Evaluate Buffer commands — Compile or evaluate a buffer.
Compile File command — Compiles a file on disk.
Update X1d command — Updates an xId file on disk.

Compile and Load commands — Compile a file on disk and load it into
memory for use.

3-22

Zmacs Editor Reference

Evaluate Minibuffer
Command

Evaluate Into
Buffer Commands

Compile or
Evaluate Region
or Definition
Commands

Command Groups

W Compiler Warning commands — Allow you to use compiler warnings.

® Disassemble commands — Enable you to obtain a more readable textual
representation of the compiled code of a function.

3.3.1 The Evaluate Minibuffer command (META-ESCAPE) allows you to
evaluate forms in the minibuffer.

Evaluate Minibuffer Command
Keystroke: META-ESCAPE

Evaluates a form that you type into the minibuffer. The result appears in the
minibuffer.

3.3.2 The Evaluate Into Buffer commands allow you to evaluate a form and
insert the result into your buffer.

Evaluate and Replace Into Buffer Command
Keystroke: META-X Evaluate and Replace Into Buffer

Evaluates the symbolic expression after point and places the result into the
buffer at point. The original expression is deleted, and the value that is

printed out replaces it.

Also refer to paragraph 3.2.1, Capture Into Buffer Commands.

Evaluate Into Buffer Command
Keystroke: META-X Evaluate Into Buffer

Evaluates a form from the minibuffer and inserts the result into the buffer at
point. If the form returns multiple values, each value is printed into the buffer
with a carriage return before each one. If you supply a numeric argument
with this command, output printed by the evaluation also goes in the buffer.

Also refer to paragraph 3.2.1, Capture Into Buffer Commands.

3.3.3 You can compile or evaluate a region or a definition. A Zmacs buffer
that contains Lisp code is divided into sections, each containing a definition.
A definition is any defining construct that begins with an opening parenthesis
in the first column followed by a def, such as defflavor, defmethod, and
defvar.

To compile or evaluate a region, you mark the region and then enter one of
the commands in this command group.

Zmacs Editor Reference

3-23

Command Groups

You can use the following two procedures to compile or evaluate a definition:

® You enter one of these commands when the cursor is in the middle of a
definition or immediately before or after the definition.

B You mark the definition as a region and then enter one of these
commands.

The Evaluate Region, Evaluate Region Verbose, and Compile Region com-
mands differ from Evaluate Region Hack in the way they affect a defvar. If
you evaluate or compile a defvar with Evaluate Region, Evaluate Region Ver-
bose, or Compile Region by marking the defvar as a region, the variable is
not reset. This feature allows you to avoid excessive initializations that may
never be used. If you use the cursor position method to evaluate or compile
the defvar, the variable is reset. The Evaluate Region Hack command resets
the variable in either case.

To evaluate a region or a definition, you enter one of the following
commands:

Evaluate Region Command
Keystroke: CTRL-SHIFT-E

Evaluates the current region or definition. The resuilt is returned in the rnini-
buffer. If there is a region, it is evaluated. Otherwise, the current or next

definition is evaluated.

If you evaluate a defvar, this command works differently depending on how
you evaluate it:

M If you evaluate the defvar by marking it as a region, the variable is not
reset.

H If you evaluate the defvar by the position of the cursor, the variable is
reset even if it is already bound.

Evaluate Region Hack Command
Keystroke: META-CTRL-SHIFT-E

Evaluates the current region or definition. If there is a region, it is evaluated.
Otherwise, the current or next definition is evaluated.

If you evaluate a defvar by either marking it as a region or by the position of
the cursor, the variable is reset even if it is already bound.

Evaluate Region Verbose Comranand
Keystroke: META-SHIFT-E

Evaluates the current region or definition. This command differs from the
Evaluate Region command in that the result is returned in the typeout win-
dow rather than in the minibuffer. If there is a region, it is evaluated. Other-
wise, the current or next definition is evaluated.

3-24

Zmacs Editor Reference

Compile or
Evaluate Changed
Definition Commands

Command Groups

If you evaluate a defvar, this command works differently depending on how
you evaluate it:

m If you evaluate the defvar by marking it as a region, the variable is not
reset.

M If you evaluate the defvar by the position of the cursor, the variable is
reset even if it is already bound.

To compile a region or definition, you enter the following command:

Compile Region Command
Keystroke: CTRL-SHIFT-C

Compiles the current region or definition. If there is a region, it is compiled.
Otherwise, the current or next definition is compiled.

If you compile a defvar, this command works differently depending on how
you compile it:

B If you compile the defvar by marking it as a region, the variable is not
reset.

® If you compile the defvar by the position of the cursor, the variable is
reset even if it is already bound.

3.3.4 These commands compile or evaluate only the definitions of any
buffers that you have changed since you last compiled or evaluated. These
commands keep you from having to compile or evaluate entire buffers. When
you change a portion of a buffer, you can mark it as a region and compile or
evaluate it. However, if you make changes throughout the buffer without
compiling or evaluating or if you do not remember what you changed, you
can use these commands rather than compiling or evaluating the entire
buffer.

When Zmacs reads into a buffer a file that contains Lisp code, it divides the
definitions in the buffer into sections. The only buffers that have sections are
those containing Lisp code. Other buffers do not have sections. A section can
contain any defining construct that begins with an opening parenthesis in the
first column followed by def, such as defvar, defflavor, and defun. The
defining construct can be user-defined. Each definition is a section.

There is also a section at the top of the buffer called the buffer header, which
essentially contains the attribute list.

For a detailed discussion of this section scheme, refer to paragraph 2.10.4,
Lisp Code in Buffers.

Zmacs Editor Reference

3-25

Command Groups

Compile or
Evaluate Buffer
Commands

The Compile and Evaluate Changed Definitions commands compile or evalu-
ate those sections (definitions) that have a section tick greater than their
compile or evaluate tick. The tick is a counter that increments each time any
operation is performed. For example, the compile tick records the current
tick value each time you compile; the section tick records the current tick
value each time the section is updated. Thus, a comparison of the compile
and section ticks tells the editor if the current definition in a section is the
compiled value of the function defined there.

Compile Buffer Changed Definitions Command
Keystroke: META-X Compile Buffer Changed Definitions

Compiles any definitions in this buffer that have been edited. With a numeric
argument, this command asks about each definition individually.

Compile Changed Definitions Command
Keystroke: META-X Compile Changed Definitions

Compiles any definitions that have been edited in any of the buffers. With a
numeric argument, this command asks about each definition individually.

Evaluate Buffer Changed Definitions Command
Keystroke: META-X Evaluate Buffer Changed Definitions

Evaluates any definitions in this buffer that have been edited. With a numeric
argument, this command asks about each definition individually.

Evaluate Changed Definitions Command
Keystroke: META-X Evaluate Changed Definitions

Evaluates any definitions that have been edited in any of the buffers. With a
numeric argument, this command asks about each definition individually.

3.3.5 You can either compile or evaluate a buffer. To evaluate an entire
buffer, you enter one of the following commands:

Evaluate and Exit Command
Keystroke: META-CTRL-Z
Evaluates the entire buffer. If the buffer evaluates with no errors, this

command leaves the editor and returns to the program you were using before
you entered the editor, such as the Lisp Listener.

3-26

Zmacs Editor Reference

Compile File
Command

Command Groups

Evaluate Buffer Command
Keystroke: META-X Evaluate Buffer

Evaluates the entire buffer.

Compile and Exit Command
Keystroke: META-Z
Compiles the entire buffer. Then, this command leaves the editor and returns

to the program you were using before you entered the editor, such as the Lisp
Listener. '

Compile Buffer Command
Keystroke: META-X Compile Buffer

Compiles the entire buffer but does not exit.

3.3.6 The Compile File command enables you to compile a file on disk.

Compile File Command
Keystroke: META-X Compile File

The Compile File command, which uses the compile-file function, compiles
a file on disk and puts the compiled version on disk with the same filename
and a different type, xld. This command does not change the memory from
which you execute. If you have a buffer connected to the file and you have
made changes to the buffer, you are first asked if you want to save the buffer
so that your changes will be in the file on disk. To use the compiled code, you
then need to load the xId file into memory, which is a separate step. Refer to
paragraph 3.3.8, Compile and Load Commands.

If a file uses a function or a global variable, warnings are given when you try
to compile the file, unless the function is already in the system. If it is not in
the system, you can bring the file containing the function into the editor by
using the Find File command (CTRL-X CTRL-F) and then evaluate or com-
pile it. You can also load the file containing the function. You can load an xId
or a Lisp file.

If you use a macro that does not currently exist in the system, the file that
you are trying to compile does not compile correctly. You must load macros
before you can compile files that use them. The same is true for flavors,
methods, defstruct, and various other items.

Zmacs Editor Reference

3-27

Command Groups

Update Xl1d
Command

Compile and
Load Commands

3.3.7 The Update Xld command allows you to compile the code in your
buffer and write it back to disk as an xId file.

Update Xld Command
Keystroke: CTRL-X META-CTRL-SHIFT-C
Updates the xId file of the file that you are visiting. This command uses the

function definitions present in the environment, offering to compile them: if
they have changed. Note that declare and eval-when (compile) are ignored.

3.3.8 The Compile and Load commands allow you to compile a file, if the
xld file has an earlier date than the file, and load the file so that you can use
the most up-to-date versions of the functions it contains. Loading means to
bring the contents on disk into memory so that the functions and so on can be
called. This operation differs from the Compile File command, which com-
piles the file on disk and stores the compiled version on disk in an xlId file
without affecting what is currently in memory.

Compile and Load File Command
Keystroke: META-X Compile and Load File

Loads a file after compiling it if the xId file has an earlier date than the file.
This command compiles the file on disk and stores the compiled version on

disk. Then it loads the compiled version into memory. It is equivalent to
executing the Compile File command followed by the Load File command.

Load File Command
Keystroke: META-X Load File

Loads a file. With a numeric argument, this command compiles the file if the
xld file has an earlier date than the file.

You can load either an xld or a Lisp file. If you do not specify a type, the
command looks for xld first and then Lisp. If the command loads Lisp, it is
interpreted. If the command loads xld, it is compiled.

Loading a Lisp file with this command is equivalent to executing the Find File

command followed by the Evaluate Buffer command. |

3-28

Zmacs Editor Reference

Compiler Warning
Commands

Command Groups

3.3.9 When the compiler prints warnings and error messages, it also
records them in a database, organized by file and by function within the file.
Old warnings for previous compilations of the same function are discarded;
the database contains only warnings that are still applicable. You can use this
database to visit the functions that receive warnings. You can also save the
database and restore it later.

You can use one of three editor commands to begin visiting the sites of the
recorded warnings. These commands differ only in how they decide which
files to look through:

B Edit Warnings (META-X Edit Warnings)

B Edit File Warnings (META-X Edit File Warnings)

W Edit System Warnings (META-X Edit System Warnings)

For information on systems, refer to the Explorer Lisp Reference.

While the warning sites are being edited, the warnings themselves appear in a
small window at the top of the editor buffer window, and the code appears in
a large window that occupies the rest of the editor buffer window.

As soon as you have finished specifying the file(s) or system to process, the
editor visits the code for the first warning. From then on, you can move to
the next warning by using the Edit Next Warning command (CTRL-
SHIFT-W). To move to the previous warning, you use the Edit Previous
Warning command (META-SHIFT-W). You can also switch to the warnings
window with the Other Window command (CTRL-X O) or with the mouse;
then you can move around in that buffer. When you use Edit Next Warning
(CTRL-SHIFT-W) and there are no more warnings after the cursor, you re-
turn to one-window mode.

You can also insert the text of the warnings into any editor buffer by using
one of the following commands:

W Insert File Warnings (META-X Insert File Warnings)

B Insert Warnings (META-X Insert Warnings)

You can also dump the database that contains the warnings into a file and
reload it later. Then you can use the Edit Warnings command again in the

later session. For information on dumping the warnings and loading the file
later, refer to the Explorer Lisp Reference.

NOTE: If the code you are compiling causes the compiler to terminate with
an error, the location of the faulty code is stored in a register named .
(period). You can use the Jump to Saved Position command (CTRL-X J) to
go to the location saved in the register named . (period).

Zmacs Editor Reference

3-29

Command Groups

Edit Warnings Command
Keystroke: META-X Edit Warnings

Edits warnings from compilations and similar operations. First, you are asked
which files’ warnings you want to edit. Then, a list of all warnings for these
files is placed in the buffer *WARNINGS*. You move through that buffer in
a small top window, with the corresponding code appearing in the bottom
window.

When you finish editing the last warning, press CTRL-SHIFT-W (the Edit
Next Warning command) to remove the small warnings window and return to
one-window mode. To return to one-window mode before you finish editing
the warnings, press CTRL-X 1. (This command is the One Window
command.)

Edit Compiler Warnings Command
Keystroke: META-X Edit Compiler Warnings

This command is a synonym for the Edit Warnings command.

Edit File Warnings Command
Keystroke: META-X Edit File Warnings

Edits warnings for a particular file. This command is similar to Edit Warnings
except that you specify one filename and only the warnings for that file are
processed.

When you finish editing the last warning, press CTRL-SHIFT-W (the Edit
Next Warning command) to remove the small warnings window and return to
one-window mode. To return to one-window mode before you finish editing
the warnings, press CTRL-X 1. (This command is the One Window
command.)

Edit System Warnings Command
Keystroke: META-X Edit System Warnings

Edits warnings for the files in a specified system. This command is similar to
Edit Warnings except that you specify the name of a system and the warnings
for the source files of that system are processed.

When you finish editing the last warning, press CTRL-SHIFT-W (the Edit
Next Warning command) to remove the small warnings window and return to
one-window mode. To return to one-window mode before you finish editing
the warnings, press CTRL-X 1. (This command is the One Window
command.)

3-30

Zmacs Editor Reference

Command Groups

Edit Next Warning Command
Keystroke: CTRL-SHIFT-W
Edits the next function that has a warning. Once you have started editing a

list of warnings with Edit Warnings or Edit File Warnings, this command
moves to the next function with warnings or error messages.

Edit Previous Warning Command

‘Keystroke: META-SHIFT-W

Edits the previous warning’s function. Once you have started editing a list of
warnings with Edit Warnings or Edit File Warnings, this command returns to
the previous warning.

Go to Warning Command
Keystroke: CTRL-/

If point is at a warning in the small top window, this command goes to the
text in the large window that the warning describes.

Insert File Warnings Command
Keystroke: META-X Insert File Warnings

Inserts at point the warnings about a file. You are prompted in the minibuffer
for the name of the file. A numeric argument specifies the buffer of warnings
for compile operations not associated with files (such as compiling from the
Lisp Listener by calling compile). This command leaves the mark after the
inserted text, but the region is not turned on.

Insert Warnings Command
Keystroke: META-X Insert Warnings

Inserts at point all the warnings about all files. This command leaves the mark
after the inserted text, but the region is not turned on.

Zmacs Editor Reference

3-31

Command Groups

Disassemble
Commands

3.3.10 The Disassemble commands read the compiled code of a function
and provide a readable textual representation of the code. Disassemble
means reverse assemble. In other words, instead of producing executable
code from assembly language, it produces a textual representation of the
executable code. For more information, refer to the Explorer Lisp Reference.

Disassemble Command
Keystroke: META-X Disassemble

Disassembles the specified function. You are prompted in the minibuffer for
the name of the function.

Quick Disassemble Command
Keystroke: META-X Quick Disassemble

Disassembles the function to the left of the keyboard cursor.

3-32

Zmacs Editor Reference

Command Groups

Cursor Movement
Commands

General Cursor
Movement
Commands

3.4 Zmacs provides a wide range of Cursor Movement commands. The five
groups of Cursor Movement commands are as follows:

B General Cursor Movement commands — Allow you to move up or down
a real line. (A real line is a line that is terminated by a carriage return.)
They also allow you to move to the beginning or end of a line, to the top
or bottom of the buffer, and to the top or bottom of the screen.

B Lisp Cursor Movement commands — Allow you to move backward or
forward a symbolic expression, list, or definition in Common Lisp or
Zetalisp mode. They also allow you to move up or down a comment line.

B Text Cursor Movement commands — Allow you to move backward or
forward a character, word, sentence, or paragraph in Text mode.

B Saving Cursor Locations (Point) commands — Allow you to store cursor
locations and return to them later.

B Various Quantities command — Allows you to move the cursor by various
quantities. A quantity is a character, word, sentence, symbolic expres-
sion, and so on. (This command also allows you to perform operations
such as delete, transpose, and copy.)

In addition to these commands, you can use the mouse to move the keyboard
cursor. You position the mouse cursor where you want the keyboard cursor
and click left.

Remember that you can add a numeric argument to these operations to per-
form more than one item at a time. For example, you can move 20 charac-
ters forward instead of one by typing CTRL-2 CTRL-0 CTRL-F.

3.4.1 The following paragraphs describe the General Cursor Movement
commands:

Backward Character Command
Keystroke: CTRL-B or «

Moves point one or more characters backward. With a numeric argument,
this command moves point the specified number of characters backward.

Beginning of Line Command
Keystroke: CTRL-A or SUPER-+

Moves to the beginning of the line. With a numeric argument, this command
also moves forward by a number of lines one less than the argument.

Zmacs Editor Reference

3-33

Command Groups

Down Real Line Command
Keystroke: CTRL-N or]

Moves down vertically to the next real line..

End of Line Command
Keystroke: CTRL-E or SUPER-—

Moves to the end of the line. With a numeric argument, this command also
moves forward by a number of lines one less than the argument.

Forward Character Command
Keystroke: CTRL-F or —

Moves point one or more characters forward. With a numeric argument, this
command moves point the specified number of characters forward.

Goto Beginning Command
Keystroke: META-< or HYPER-1

Goes to the beginning of the buffer. With an argument from 0 to 10, this
command goes forward that many tenths of the length of the buffer starting

from the beginning.

Also refer to paragraph 3.17, Scroll Commands.

Goto End - Command
Keystroke: META-> or HYPER-]

Goes to the end of the buffer. With an argument from 0 to 10, this command
goes backward that many tenths of the length of the buffer starting from the

end.

Also refer to paragraph 3.17, Scroll Commands.

Move to Bottom of Screen Command
Keystroke: SUPER-]
Moves vertically to the bottom of the screen. This command moves to the last

line on the screen and either stays in the same column, if possible, or moves
to the rightmost character in the line. ’

3-34

Zmacs Editor Reference

Lisp Cursor
Movement
Commands

Command Groups

Move to Screen Edge Command
Keystroke: META-R

Positions the keyboard cursor on the left margin of the screen as determined
by the Zmacs user variable Center Fraction. The default is the middle of the
screen. A numeric argument specifies the screen line where you want to go.
Negative arguments count upward from the bottom of the screen.

Move to Top of Screen Command
Keystroke: SUPER-1
Moves vertically to the top of the screen. This command moves to the first

line on the screen and either stays in the same column, if possible, or moves
to the rightmost character in the line.

Up Real Line Command
Keystroke: CTRL-P or t

Moves up vertically to the previous real line.

3.4.2 Many of the Lisp Cursor Movement command explanations use the
terminology shown in the following table to describe their operation:

Term Description

Forward list Moves forward to the next element at the current
level.

Backward list Moves backward to the next element at the current
level.

Up list Moves up into an element.

Down list Moves down into an element.

Suppose you perform the forward list and backward list operations on the
following code with the cursor on the e:

@b dehi 6 o
The following shows where the cursor moves:

Forward list: (a b (d (g hi) e f).c)
Backward list: (a b (dl@g h i) e £) ¢)

Zmacs Editor Reference

3-35

Command Groups

Suppose you perform the up list and down list operations on the following
code with the cursor on the d:

(a b (H (g hi) e f) ¢)
The following shows where the cursor moves:

Up list: (ab (d (gh i) e Do
Down list: (a b (d (E h i) e f) ¢)

Back to Indentation Command
Keystroke: META-M

Moves to the first nonblank character in the current line. If there is a fill
prefix, this command moves to the first nonblank character after the fill pre-

fix (even if the fill prefix is not blank).

Also refer to paragraph 3.19.6, Tab and Indentation Commands.

Backward Down List Command
Keystroke: META-X Backward Down List

Moves down one or more levels of list structure, backward. In other words,
this command moves backward over the elements of the current list until it

finds one that is a list. Then it positions the cursor at the end of this inner list.

For example, suppose you execute this command on the following code with
the cursor on the e:

@b dehibFH o
The following line shows where the cursor moves:

(ab (d (ghill e f) ¢)

Backward List Command
Keystroke: META-CTRL-P

Moves backward one or more lists. For example, suppose you execute this
command on the following code with the cursor on the e:

@b @dehi)@ 5 o
The following line shows where the cursor moves:

(ab(dl@ghi) e f)c)

3-36

Zmacs Editor Reference

Command Groups

Backward Sexp Command
Keystroke: META-CTRL-B or META-CTRL-+

Moves one or more symbolic expressions backward.

Backward Sexp No Up Command
Keystroke: META-X Backward Sexp No Up
Moves backward one or more symbolic expressions, but never over an

unbalanced opening parenthesis. This command is useful in keyboard
macros, for example.

Backward Up List Command
Keystroke: META-CTRL-(

Moves up one level of list structure, backward. Also, if called inside a string,
this command moves back up out of that string.

Suppose you execute this command on the following code with the cursor on
the e:

@b @d@ehi)@nH o
The following line shows where the cursor moves:

(ab@d (ghi)ef)c)

Beginning of Definition Command
Keystroke: META-CTRL-[or META-CTRL-1

Moves to the beginning of the current definition (such as defun, defflavor,
and so on).

Down Comment Line Command
Keystroke: META-N

Moves to the comment position in the next line and inserts a semicolon (;) if
one is not already there. This command is equivalent to the Down Real Line
command (CTRL-N) followed by the Indent for Comment command
(CTRL-;), except that any blank comment on the current line is deleted be-
fore the keyboard cursor is moved.

Zmacs Editor Reference

3-37

Command Groups

Down Indented Line Command
Keystroke: META-X Down Indented Line

Moves to the first nonblank character on the next line.

Down List Command
Keystroke: META-CTRL-D
Moves down one or more levels of list structure.

Suppose you execute this command on the following code with the cursor on
the d:

(a b (H (ghi)ef) o)
The following line shows where the cursor moves:

(ab(d(ﬂhi)ef))

End of Definition Command
Keystroke: META-CTRL-] or META-CTRL-]

Moves to the end of the current definition (such as defun, defflavor, and so
on).

Forward List Command
Keystroke: META-CTRL-N

Moves forward one or more lists. With a numeric argument, this command
moves the specified number of lists forward.

Suppose you execute this command on the following code with the cursor on
the d:

(a b (H (g hi) e f) ¢
The following line shows where the cursor moves:

(@b (@ @h e) o

Forward Sexp Command
Keystroke: META-CTRL-F or META-CTRL-—

Moves one or more symbolic expressions forward.

3-38

Zmacs Editor Reference

Command Groups

Forward Sexp No Up Command
Keystroke: META-X Forward Sexp No Up
Moves forward one or more symbolic expressions, but never over an unbal-

anced closing parenthesis. This command is useful in keyboard macros, for
example.

Forward Up List Command
Keystroke: META-CTRL-)

Moves up one level of list structure, forward. Also, if called inside a string,
this command moves up out of that string.

Suppose you execute this command on the following code with the cursor on
the d:

(a b (E (g hi) e f) c)
The following line shows where the cursor moves:

(@b (d (ghi)e Do

Move Over) ' Command
Keystroke: META-)

Moves over the next closing parenthesis, inserting return characters and up-
dating indentation. Any indentation before the closing parenthesis is deleted.

Lisp-style indentation is inserted after the closing parenthesis.

Also refer to paragraph 3.19.6, Tab and Indentation Commands.

Up Comment Line Command
Keystroke: META-P

Moves to the comment position in the previous line and inserts a semicolon
(;) if one is not already there. This command is equivalent to the Up Real
Line command (CTRL-P) followed by the Indent for Comment command
(CTRL-;), except that any blank comment on the current line is deleted be-
fore the keyboard cursor is moved.

Up Indented Line Command
Keystroke: META-X Up Indented Line

Moves to the first nonblank character on the previous line.

Zmacs Editor Reference

3-39

Command Groups

Text Cursor
Movement
Commands

3.4.3 The following paragraphs describe the Text Cursor Movement
commands:

Backward Paragraph Command
Keystroke: META-[

Moves to the start of this (or the last) paragraph. Paragraphs are delimited by
blank lines or by lines that start with a delimiter in the Zmacs user variable
Paragraph Delimiter List or in the user variable Page Delimiter List. If there is
a fill prefix, any line that does not start with the fill prefix starts a paragraph.
If a line starts with a character that is in the user variable Text Justifier
Escape List and that is also in the user variable Paragraph Delimiter List, the
line counts as a blank line because it separates paragraphs and is not part of
them. You can see and change the values of these variables by executing the
Variable Apropos command (HELP A).

Backward Sentence Command
Keystroke: META-A or META-t

Moves to the beginning of the sentence. A sentence is ended by a period (.),
question mark (?), or exclamation point (!) and followed by two spaces or a
return character (with optional space), with any number of closing characters
between sentences. Closing characters are double quote (), single
apostrophe ('), right parenthesis ()), and right square bracket (]). A sen-
tence also ends before a blank line.

Backward Word Command
Keystroke: META-B or META-«+

Moves one or more words backward.

Forward Paragraph Command
Keystroke: META-]

Moves to the start of the next paragraph. Paragraphs are delimited by blank
lines or by lines that start with a delimiter in the Zmacs user variable Para-
graph Delimiter List or in the user variable Page Delimiter List. If there is a
fill prefix, any line that does not start with the fill prefix starts a paragraph. If
a line starts with a character that is in the user variable Text Justifier Escape
List and that is also in the user variable Paragraph Delimiter List, the line
counts as a blank line because it separates paragraphs and is not part of them.
You can see and change the values of these variables by executing the Vari-
able Apropos command (HELP A).

3-40

Zmacs Editor Reference

Saving Cursor
Locations (Point)
Commands

Command Groups

Forward Sentence Command
Keystroke: META-E or META-]|

Moves to the end of this sentence. If the cursor is already at the end of a
sentence, it moves to the end of the next sentence. A sentence is ended by a
period (.), question mark (?), or exclamation point (!) and followed by two
spaces or a return character (with optional space), with any number of clos-
ing characters between sentences. Closing characters are double quote (),
single apostrophe (’), right parenthesis ()), and right square bracket (]). A
sentence also ends before a blank line.

Forward Word Command
Keystroke: META-F or META-—

Moves one or more words forward.

3.4.4 The Saving Cursor Locations (Point) commands allow you to store
cursor locations (points) and return to them later. The cursor locations can
be in different buffers, allowing you to jump between buffers.

Many of these commands store points on the point PDL, which is a list. The
point PDL usually stores up to eight points. New entries are put on the top of
the point PDL. When the point PDL is full, entries on the bottom are deleted
as new entries are added.

Other commands store points in registers. A register can store only one point
at a time, but you do not have to worry about an entry being deleted. Besides
storing points, some of these commands manipulate mark. The following list
summarizes the operations you can perform with the Saving Cursor Locations
(Point) commands:

B Push a point onto the point PDL

B Exchange point with the top entry on the point PDL

B Rotate through the point PDL

B Show the point PDL

m Save the current point in a register

M Restore a saved position from a register
B Show the positions saved in registers

B Exchange point and mark
m Set the mark to point

Section 2 describes how to use the point PDL and registers as well as how to
mark.

Zmacs Editor Reference

3-41

Command Groups

Jump to Saved Position Command
Keystroke: CTRL-X J

Restores a saved position from a register. You are prompted in the minibuffer
for the register name, a character with no attribute bits. (The term attribute
bits means a key used in combination with SUPER, HYPER, META, or
CTRL.)

Also refer to paragraph 3.6.4, Register Commands.

Move to Default Previous Point Command
Keystroke: CTRL-X META-CTRL-space bar
Returns to the second most recent entry on the point PDL when first pressed.

Pressing CTRL-X META-CTRL-space bar again returns to the most recent
entry on the point PDL. Pressing a third time returns to the original point.

Move to Previous Point Command
Keystroke: META-CTRL-space bar

Returns to the previous point on the point PDL. This command exchanges
the current location with the previous one. A numeric argument specifies the
number of entries on the top of the point PDL to rotate through (the default
numeric argument is 2). An argument of 1 rotates forward through the whole
point PDL, and a negative argument rotates in the other direction.

For example, with a numeric argument of 4, the current point is pushed on
the point PDL and the third most recent point (now four from the top
because of the push) is removed from the point PDL and becomes the value
of point.

Push Pop Point Explicit Command
Keystroke: META-space bar
Pushes or pops point onto the point PDL. With no argument, this command

pushes point onto the point PDL. With an argument, this command
exchanges point with the nth position on the stack.

Save Position Command
Keystroke: CTRL-X S
Saves the current point in a register. You are prompted in the minibuffer for

the register name, a character with no attribute bits. (The term attribute bits
means a Key used in combination with SUPER, HYPER, META, or CTRL.)

3-42

Zmacs Editor Reference

Command Groups

Set Pop Mark Command
Keystroke: CTRL-space bar
Sets or pops the mark in the following ways:

B Without a CTRL-U argument, this command sets mark at point and
pushes point onto the point PDL.

B With one CTRL-U, this command moves point down the point PDL.
(The top entry on the point PDL becomes point.) Each time you press
CTRL-U CTRL-space bar, point moves farther down the point PDL,
leaving mark at the original position for easy return with the Swap Point
and Mark command (CTRL-X CTRL-X).

B With two CTRL-Us, this command pops the point PDL and discards it.
In other words, the top entry on the point PDL becomes point, and this
entry is discarded from the point PDL.

Also refer to paragraph 3.6.3, Mark Commands.

Show Point PDL Command
Keystroke: META-STATUS

Shows the contents of the point PDL. The point PDL lists the last eight loca-
tions of point. The display is mouse-sensitive except for the first line. You
click left on the line to which you want to go.

The firs