DNOS {y

System
Design Document

TEXAS INSTRUMENTS

© Texas Instruments Incorporated 1981, 1982, 1983
All Rights Resefved, Printed in U.S.A.

The information and/or drawings set forth in this document and all rights in and to inventions disclosed
herein and patents which might be granted thereon disclosing or employing the materials, methods,

techniques or apparatus described herein, are the exclusive property of Texas Instruments
Incorporated.

MANUAL REVISION HISTORY

DNOS System Design Document (2270512-9701)

OriginalIssue ... 1 August 1981
Revision. 1 October 1982
Revision. 15 November 1983

The total number of pages in this publication is 706.

The computers offered in this agreement, as well as the programs that Tl has created to use
with them, are tools that can help people better manage the information used in their busi-
ness; but tools—including Tl computers—cannot replace sound judgment nor make the
manager’s business decisions.

Consequently, Tl cannot warrant that its systems are suitable for any specific customer
application. The manager must rely on judgment of what is best for his or her business.

DNOS Software Manuals

This diagram shows the manuals supporting DNOS, arranged according to user type. Refer to the block identified by your user
group and all blocks above that set to determine which manuals are most beneficial to your needs.

1046-2150.¢2¢C

Al DNOS Users:
DNOS Concepts and Facilities DNOS System Command DNOS Messages and DNOS Master Index to
2270501-9701 Interpreter (SCI) Reterence Manual Codes Reference Manual Operating System Manuals
2270503-9701 2270506-9701 2270500-9701
DNOS Operations Guide DNOS Text Editor DNOS Reference Handbook
2270502-9701 Reference Manual 2270505-9701
2270504-9701
High-Level “Assembly Productivity Communications Systems
Language Users: Language Users: Tools Users: Software Users: Programmers:
COBOL Reference Manual 990/99000 Assembly DNOS Sort/Merge DNOS DNCS/SNA DNOS System Generation
2270518-9701 Language Reference User’'s Guide User’'s Guide Reference Manual
Manual 2272060-9701 2302663-9701 2270511-9701
DNOS COBOL 2270509-9701
Programmer’s Guide DNOS TIFORM DNOS DNCS DNOS Systems
2270516-9701 DNOS Assembly Reference Manual Operations Guide Programmer’s Guide
Language 2276573-9701 2302662-9701 2270510-9701
DNOS Performance Programmer’s Guide
Package Documentation 2270508-9701 DNOS Query-990 DNOS DNCS 914A DNOS Online Diagnostics
2272109-9701 User’s Guide User’s Guide and System Log Analysis
DNOS Link Editor 2276554-9701 2302664-9701 Tasks User’s Guide
Tl Pascal Reference Manual Reference Manual i 2270532-9701
2270519-9701 2270522-9701 DNOS Data Base DNOS 3270 Interactive
Management System Communications Software ROM Loader User’s Guide
DNOS Tl Pascal DNOS Supervisor Call Programmer’s Guide (ICS) User’s Guide 2270534-9701
Programmer’s Guide (SVC) Reference 2272058-9701 2302670-9701
2270517-9701 Manual
2270507-9701 DNOS Data Base DNOS 3780/2780
FORTRAN-78 Reference Administrator User’s Emulator User’s Guide
Manual Guide 2270520-9701
2268681-9701 2272059-9701
DNOS DNCS System
DNOS FORTRAN-78 Data Dictionary Generation Reference
Programmer’s Guide User’s Guide Manual
22 -9701 2276582-9701 2302648-9701
MATHSTAT-78 DNOS TIPE DNOS DNCS X.25
Programmer’s Reference Reference Manual Remote File Transfer
2‘2%%'&%'7 9701 2308786-9701 (RFT) User’s Guide
FORTRAN-78 ISA [E) oS TIFE;E id soamineTe?
- xercise Guide i
E;é%’é;?g?o'f"““" Security 2308787-9701 Eﬂﬁﬁs’i‘éﬁ?&%?m'"" Source
Managers: DNOS COBOL Program User's Guide Code Users:
T1 BASIC Reference Manual Generator User’s Guide 2302676-9701
2308769-9701 DNOS Security 2234375-9701 gNOS System
Manager’s Guide esign Document
RPG Hl Programmer’s 23089549701 22705129701

Guide
939524-9701

DNOS SCI and Utilities
Design Document
2270513-9701

DNOS Software Manuals Summary

Concepts and Facilities
Presents an overview of DNOS with topics grouped by operating system functions. All new users (or
evaluators) of DNOS should read this manual.

DNOS Operations Guide
Explains fundamental operations for a DNOS system. Includes detailed instructions on how to use each
device supported by DNOS.

System Command Interpreter (SCI) Reference Manual
Describes how to use SCI in both interactive and batch jobs. Describes command procedures and gives
adetailed presentation of all SCIl commands in alphabetical order for easy reference.

Text Editor Reference Manual
Explains how to use the Text Editor on DNOS and describes each of the editing commands.

Messages and Codes Reference Manual
Lists the error messages, informative messages, and error codes reported by DNOS.

DNOS Reference Handbook
Provides a summary of commonly used information for quick reference.

Mastor Index to Operating System Manuals
Contains a composite index to topics in the DNOS operating system manuals.

Programmer’s Guides and Reference Manuals for Languages
Contain information about the languages supported by DNOS. Each programmer’s guide covers oper-
ating system information relevant to the use of that language on DNOS. Each reference manual covers
details of the language itself, including language syntax and programming considerations.

Performance Package Documentation
Describes the enhanced capabilities that the DNOS Performance Package provides on the Model 990/12
Computer and Business System 800.

Link 'Editor Reference Manual
Describes how to use the Link Editor on DNOS to combine separately generated object modules to
form a single linked output.

Supervisor Call (SVC) Reference Manual
Presents detailed information about each DNOS supervisor call and DNOS services.

DNOS System Generation Reference Manual
Explains how to generate a DNOS system for your particular configuration and environment.

User’s Guides for Productivity Tools
Describe the features, functions, and use of each productivity tool supported by DNOS.

User’s Guides for Communications Software
Describe the features, functions, and use of the communications software available for execution
under DNOS.

Systems Programmer’s Guide
Discusses the DNOS subsystems and how to modify the system for specific application environments.

Online Diagnostics and System Log Analysis Tasks User’s Guide
Explains how to execute the online diagnostic tasks and the system log analysis task and how to inter-
pret the results. :

ROM Loader User’s Guide
Explains how to load the operating system using the ROM loader and describes the error conditions.

DNOS Design Documents
Contain design information about the DNOS system, SCi, and the utilities.

DNOS Security Manager’s Guide
Describes the file access security features available with DNOS.

iv ' 2270512-9701

DNOS System Design Document

PREFACE

This DNOS system design document contains the information that is
needed to understand the operation of the system but is not
provided 1in other DNOS manuals. The document describes the flow
of control of the operating system in general and of each of its
subsystems in particular. It also includes data structure
plctures, 1link streams, and directory information for DNOS
modules. Revisions made to this manual since DNOS 1,1 are marked
with revision bars in the margins.

This manual is divided into the following sections:
Section

1 How to Use the Design Document =-- Explains how to use
this manual.

2 Overview of DNOS -- Discusses the general features of
the DNOS system.

3 Naming and Coding Conventions =--— Explains the
conventions used in writing DNOS modules.

4 DNOS Structure and Nucleus Functions -- Discusses the
overall structure of DNOS, common interface routines,
map file wusage, major data structures, and queue
server structures.

5 IPL and System Loaders =- Describes the process of
Initial Program Load and the structures that support
system loading.

6 SVC Processing -- Discusses the preprocessing done by
the system, the several paths of control through
supervisor call (SVC) processing, and how new SVC
processors can be added to DNOS.

7 Segment Management -- Explains the structures,
function, and use of segment management facilities of
DNOS,

8 Job Management -- Discusses the job management flow

of control and the data structures that support job
management .

9 Program Management —- Describes the flow of control

and the data structures used by DNOS in controlling
bidding, loading, and synchronizing tasks.

2270512~-9701 v

10

11

12

13

14

15

16

17

18

19

20

21

DNOS System Design Document

I/0 Subsystem =+ Reviews the overall 1I/0 processing
structure and the details of handling of device I/0,
I/0 utility calls, interprocess communication (IPC),
file security, and name management.

Disk Structures and File I/0 <+ Includes an overview
of file management, a description of disk and in~
memory file structures, and a detailed description of
key indexed file management.

DNOS System Tasks =+ Discusses the conventions used
in writing DNOS system tasks and provides detailed
descriptions of many system tasks provided with DNOS.

System Generation Utility =~~~ Provides an overview of
the system generation utility and the data structures
used.

Logging and Accounting ++* Describes the functions and
the flow of control for the system log and job
accounting functions.

DNOS Performance Package ++ Discusses the conventions
used in system source code to enable the performance
package and describes the routines executed in
microcode.

DNOS Development and Analysis Tools =+~ Describes
several tools available to Texas Instruments internal
users for development purposes only and several tools
and command procedures available for general access.

Analyzing a System Crash <+« Describes the ANALZ
utility functions and how to use them in analyzing a
system crash file or in studying a running system.

XOP Processing *+~ Describes the XOP processors in
DNOS and how to add a new XOP processor.

Special SVCs == Describes SVCs used only by the
operating system.

Linking Information for DNOS =+ Explains how to 1link
DNOS and provides examples of link streams and link
maps from building a DSR link, a 1link of a system
task, and the link of the DNOS root.

DNOS Source Disk Structure - Describes the
directories and files provided with a DNOS source
kit. :

Texas Instruments vi 2270512+9701

DNOS System Design Document

22 Data Structure Pictures -—- Provides data structure

pictures for DNOS data structures commonly needed to
understand the system.

A Keycap Cross—Reference - Discusses the generic keycap
names that apply to all terminals that are used for
keys on keyboards through out this manual.

For further information related to the use of DNOS, refer to the
following document and those shown in the frontispiece.

Title Part Number

DNOS Source Installation Guide 2270515-9701

2270512-9701 vii/viii

DNOS System Design Document

TABLE of CONTENTS

Paragraph Title

SECTION 1 HOW TO USE THE DESIGN DOCUMENT

SECTION 2 OVERVIEW OF DNOS

2.1 INTRODUCTION ¢« ¢ ¢ o o o o o o o o o
2.2 GENERAL STRUCTURE e o e o e e o o
2.3 FLOW OF CONTROL OF DNOS S
2.4 DX10 COMPATIBILITY &« « o o o o o o

SECTION 3 NAMING AND CODING CONVENTIONS

NAMES OF ROUTINES e e e s e e e e
GLOBAL DATA AND STRUCTURE TEMPLATES

ASSEMBLY LANGUAGE CODING CONVENTIONS
PASCAL CODING CONVENTIONS e e« e o e
ERROR HANDLING « ¢ ¢ o o« o s o o o o
GENERATING NEW ERROR CODES e e e e

WWwwwww
.
U WN e

SECTION 4 DNOS STRUCTURE AND NUCLEUS FUNCTIONS

OVERVIEW . o & ¢ & o o o o o o o o =
SYSTEM MEMORY MAPPING e ¢ o o & o o
SYSTEM DATA STRUCTURES . « « .« « + &
SYSTEM FILES « « o« ¢ o o o o o o o o
NUCLEUS SUPPORT FUNCTIONS e e e e e
Linkage Support e« e o e o 4 o e
Queuing Support ¢ o o s e o o o o
Synchronization and Coordinmation .,
Inhibiting Scheduling e e e e e
Map File Changing e e e e e e e e
Table Area Management e o s e e e
System Crash Routine . « .+ « + .+ &
NUCLEUS FUNCTIONS FOR TASK SCHEDULING
EXECUTION e o s e s+ e e e o e o o o
Data Structures e o o o o e e o
Execution Priorities e e s e s e e
Time Slicing .« ¢ ¢ o ¢ o« o ¢ o o o

s o o o e o s o o o
e e @ . .

.
No Vs LN -

R S ISR TR S S P S O S
L]

(=2, IR, LW, I, I, R U R U, N Sy GUN SR
L]

~ B
L I
o
L]

WK =

B~
L]

2270512-9701 ix

TABLE of CONTENTS

. .

Page

1
BN

NN
1

I | I
b et et ONODS
wwo

wwc.lowww

| 111
~ OO 00 00N O W -

J-\-l-\-l-\-l-\-l-\-l-\-li\b-b-l-\-l-\b

4-12
4-13
4=14
4-1¢

TABLE of CONTENTS

Task Bid + ¢ « o o« o o o o o o o o s o o o o o« &« b4=16
Task Activation e s o o s e s e o o o o o o o o b-16
Table Area Scheduling e o o s o o s e s e s e o 4L=16
INTERRUPT PROCESSING ¢ o « o o s s o o s o o o o o 4=19
Clock Interrupt Processor e s o s s s e e e e o 4L=19
Internal Interrupt Processor . « « ¢ o o o o o o 4=19
Power-Up and Power—Down Interrupt Processors . 4-20
SVC PROCESSING &« ¢ o o o o o o o s s o o o o o o o 4=20
TASK TERMINATION) O . . 4-20
SPECIAL COPY ROUTINE e o e s e e e & & o o o o o » 4-21

L]
.

* ¢ o o
.« o o« o
WK - [« NN, I -

.
=L RONNNOO O
.

o R IR R
L
o

SECTION 5 1IPL AND SYSTEM LOADERS

5.1 IPL SEQUENCE e o o & o s & & e s e & o e o e o o 5-1
5.2 SYSTEM LOADER OVERVIEW o ¢ o o o o o o o o o o o o 5=2
5.3 SYSTEM LOADER DATA STRUCTURES e« o & o o o s o o o 5=5
5.3.1 Disk Volume Information e o s+ e o e« o s o o s e 5=5
5.3.2 WCS File e o o s o o e & e e 8 o s o o s o a e @ 5-6
5.3.3 Kernel Program File e o s o e o s s s s e o o o« 5-6
5.3.4 System Loader Internal Working Storage . . « « o 5-7
5.4 FLOW OF CONTROL THROUGH THE SYSTEM LOADER e o o o 5-7
5.4.1 Relocating the Loader e o o o o o s s s e o o o 5-8
5.4.2 Load Device Initialization . « ¢« ¢ « « o« o o« o o 5-10
5.4.3 Opening a File for I/0 « ¢« & o o o o o o o % o o« 5=10
5.4.4 Loading the System Root e o o s s o s e o o & o 5-11
5.4.5 Loading a Module .+ « « ¢ o o o o o o o o o o o o 5=11
5.4.6 Initializing the Crash File s o o o o s e e o o 5-13
5.4.7 CPU Type Dependent Initialization s e o o o o o 5-13
5.4.8 Loading the Special Table Areas e ¢ o o o e o & 5=13
5.4.9 Loading the JCAS + « + o o o« o o o o o o o o o &« b5-14
5.4.10 Loading the DSRS =« o o o o o o o o o o o s o o o 5b=14
5.4.11 Loading Memory-Resident Tasks e o o o o o o o o 5-15
5.4.12 Disk System Initialization . « « ¢« o o o s o o o 5=15
5.4.13 Installing Disk Volumes e o o o e s e o e e e o 516
SECTION 6 SVC REQUEST PROCESSING
6.1 OVERVIEW OF SVC PROCESSING e o o o o o s o o e e 6-1
6.2 MODULES USED FOR REQUEST PROCESSING e o e o o o 6-3
6.3 MAPPING STRUCTURE o o e« o o o & o o o e e o e 6-5
6.4 DATA STRUCTURES USED FOR SVC PROCESSING ¢« o o o 6=5
6.5 DETAILS OF SVC PROCESSING e e o o o a4 s o e e o 6-8
6.5.1 Decoding Routine (RPROOT) e o o o o o o s+ o o« o 6-8
6.5.2 SVC Buffering Routine (RPBUF) e o o o e« o o o 6-10
6.5.3 Dequeuing and Unbuffering Routine (RPDQUE) « « o 6-10
6.5.4 Other Request Processor Support Routines ., . « « 6-11
6.5.5 DNOS SVCs and ProcesS8O0TrS « + o« s o s o o o o o o 6-11
6.6 USER-WRITTEN SVC PROCESSORS s o o e o o o o e o o 6-14
6.6.1 User SVC Table « « o o o o o o o o o o o o o« o o 6-14
6.6.2 Processors for User—-Written SVCs . ¢« « ¢« « o« o « 6-18

X 2270512-9701

DNOS System Design Document

SECTION 7 SEGMENT MANAGEMENT

OVERVIEW e o o o o o 6 e o s v e e o
ARCHITECTURE OF SEGMENT MANAGEMENT . .
SEGMENT MANAGEMENT DATA STRUCTURES o
SEGMENT MANAGEMENT ROUTINES e o o o
SVC Preprocessor (SMPREP) e ¢ o o s
Change Segment Processor (SMCHGS) .
Create Segment Processor (SMCRES) .
Reserve Segment Processor (SMRSVE) .

e e o o
e o o o o

Forced Write Segment Processor (SMFWRS

NN SNSNSNSNNSNSNSNNNNN NN
L]

S S T P I P R O R O R R L N SUl Ol
.

. o

L]
= bt bt et = O 0NN -

4410 Bias Segment Address Within Task (SMBIAS)
4.1 Set Exclusive Use of a Segment (SMEXCU) .
Y/] Reset Exclusive Use of a Segment (SMREXC)
o413 Load a Segment (SMLOAD) e s o o o o o &
414 Unload a Segment (SMUNLD) e 4 & s s e o s
. SEGMENT MANAGEMENT TABLE AREA o s o o o e .
SECTION 8 JOB MANAGEMENT
8.1 JOB CONSTRUCT e o e & s e o o o e o o o e o
8.2 OVERVIEW OF JOB MANAGEMENT ¢ o e s s e & o
8.3 ARCHITECTURE OF JOB MANAGEMENT e o s o o e o
8.4 JOB MANAGEMENT DATA STRUCTURES e o o o e o o
8.5 JOB STATES e« o 6 e o & e o e & s s e o o e o
8.6 DETAILS OF JOB MANAGER ROUTINES e« e o s s e
8.6.1 Job Manager Preprocessor (JMPREP) o« o e e
8.6.2 Job Manager Request Processing Task (JMMAIN)
8.6.3 Create Job Processor (JMCS$) e e o e o o s
8.6.4 Halt Job Processor (JMHALT) e ¢ o 4 s e e
"8.6.5 Resume Job Processor (JMRESU) .« o . e e
8.6.6 Modify Job Priority Processor (JMPRIO) .- .
8.6.7 Map Job Name Processor (JMMAP) . . . + .« .
8.6.8 Get Job Information Processor (JMINFO) . .
8.6.9 Kill Job Processor (JMKILL) e s s e e e e
8.6.10 Job Clean-Up Routine (JMDS$) e o o s+ o & o
8.6.11 Verify Job ID Routine (JMVRFY) o« o o o e e
8.7 IMPLICATIONS OF JOB BOUNDARIES e s s e e e o

SECTION 9 PROGRAM MANAGEMENT

OVERVIEW o o

DETAILS OF PROGRAM MANAGEMENT ROUTINES
Task Bid Processor (PMTBID) e o e e
Task Loader (PMTLDR) e o s o e o o

O \O O WO O
L
wwwN =

L
N =

2270512-9701 xi

TABLE

Release Reserved Segment Processor (SMRLSE)
Check Segment Status Processor (SMCHKS) .

) .

Release Job Segments Processor (SMJRLS) .
Set/Reset Modified and Releasable (SMMDFY)

DATA STRUCTURES USED BY PROGRAM MANAGEMENT .

. . .

of CONTENTS

\l\l\l\l\l\ll\l\l\l\l\l
— e O WO NP WWN R
o

~N NN
[
e
NN -=O

7-12
7-13
7=-13
7-13
7=14

! L T I I |
COONNNNOIAPEDEDEPWNN -~

Q0 00 00 00 OO0 OO 00 00 OO OO G0 o OO0 OO OO o o O
i

O O O WO WY
|
W NN e =

.
w

(Vo JiVo Ve JNe N o]
« o o e o
o S

e o o
W -

10.1

10.2

10.3

10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.3.6
10.4

. 10.4.1
10.4.2
10.4.3
10.4.4
10.4.5
10.5

10.5.1
10.5.2
10.5.3

10.5.3
10.5.3.1
10.5.3.1
10.6
10.6.1
10.6.2
10.6.3
10.6.3.1
10.6.3.2

TABLE

Task Termination Processor (PMTERM)
TASK SYNCHRONIZATION e o o o & o
Semaphores e o s o o e e o s s
Locks « o o 8 e o o s s e e e
Event Synchronization o s e o

.
e o ¢ o o
e o o o o

SECTION 10 1I/0 SUBSYSTEM
OVERVIEW . ¢ ¢ o ¢ o o s o o o o o o
DEVICE I/0 DATA STRUCTURES
DEVICE I/0 HANDLING c e e s s e
Details of 1/0 System Routines .
I1/0 Processing by the DSR e o o
Returning Information to the Requ
Bidding a Task from a DSR o o o
Handling Large I/0 Buffers . . .
Converting a DX10 DSR for DNOS
TELEPRINTER TERMINAL DSR
DSRTPD Structures o« .
PDT Structures o o o s
DSRTPD Functions . . .
DSRTPD Details . . .
DSRTPD Defaults o e
ASYNCHRONOUS DSR STRUCTURE .,
Data Structures Linkage .
Data Structure Allocation o o
PDT Extension Definitions o o e
Asynchronous Local PDT Extension . « « o &
Asynchronous Long-Distance Device
CI401 HSR Local Extenmsion e o o o s o o o
CI401 HSR Long-Distance Extension o s e o
CI1403/C1404 HSR Local Extension e o o s
CI403/C1404 HSR Long-Distance Extension .
9902/9903 HSR Local Extension e o o o o o
9902/9903 HSR Long-Distance Extension o« o
931/940 TSR/ISR Local Extension e e o o

0 931/940 TSR/ISR Long-Distance Extension
1 Serial Printer HSR Local Extension . + + o
2 Serial Printer HSR Long-Distance Extension
1/0 UTILITY (IOU) e o s e e e e
Configurability e e o o o e o
Memory Layout e o s o s s e o
Structures Maintained by IOU . .
Directory Tree Construction .
LDT Structure « s 4 e s e s e e e e
Details of IOU Processing o« o e o e
10U Preprocessor (IUPREP) e e o
Initial Processing in the IOU Task
Channel Operations e o o o s s e e o
Concatenated Files and Multifile Sets
Temporary Files
Operating System Support SVCs e o o o o

D e o o o
.

o]

.
.
.
.
8

cr

e

® o e o o

e o o o

e o o s o o
3
. . . [L] L] .
. o e o o o o
e o o o
. * * L] L] . L] L] L] . '] o . . L] L] . [}
e & e 6 o o o o o o 0 o ¢ o o o

*® o o o o o @
® e & o & o o o o o
[] L] L] L] * L] . L] L] . L] L] L] L] L L L] .

* L] L L)

. L] L]

*® & o & o
* s o o
e o o o
e o o o
» L] . L] L]

e o o o o
. . L] L] L]] L] L] * L . L]
.

. . L]

xii

e ® e o ® o

e o o o e o

¢ o ® © ® e & o ¢ & * ¢ & © o ° & o o

e e @ e ® e © & o o o ©° o o ° 2 s o

® e o e o o

of CONTENTS

10-1

10-2

10-4

10-4

10-8

10-11
10-13
10-14
10-16
10-22
10-23
10-22
10-25
10-25
10-27
10-27
10-31
10-31
10-31
10-32
10-35
10-37
10-39
10-41
10-43
10-44
10-46
10-48
10-51
10-54
10-56
10-57
10-58
10-58
10-58
10-60
10-61
10-64
10-64
10-66
10-66
10-68
10-69
10-70

2270512-9701

DNOS System Design Document

10.7

10.7.1
10.7.2
10.7.3
10.8

10.8.1
10.8.2

10.9.2
10.9.2.1
10.9.2.2
10.9.3
10.9.3.1
10.9.4

10.9.4.5
10.10
10.10.1
10.10.2
10.10.3
10.10.4
10.10.5

11.4.6
11.5

2270512~

DEVICE I/0 UTILITY (DIOU
DIOU Functions e e e
DIOU Data Base o o o

Data Structures Used by DIOU

FILE ACCESS SECURITY .

)

Establishing a Job's Security

Enforcing Security .
File Manager o« o
Program Manager .
Segment Manager .
Sysgen .« o o ¢ o o

Volume Security .« .

Networking . . « « &
Manipulation of the

IPC SVC Interface .

Channel Characteristics
Symmetric Channel Activity
Master/Slave Channel Activity

Details of IPC Processing

.

TABLE

Access Control List
INTERPROCESS COMMUNICATION (IPC)

Structures Used for IPC Processing . . .

Detailed Operation of IPC Routines

IPC Preprocessor (IPCPRE)
IPC Queue Server (IPCTSK)
IPC XOP level request processor (IPCXOP)
IPC request processors (IPCPRO,

IPCMWT) e o s e e
IPC Support Routines
NAME MANAGEMENT o« o

Architecture of the Name Manager

.

IPCMRD and

Data Structures Used by the Name Manager .

Name Manager SVC Preprocessing
Details of Name Manager Modules

Stage Scope Rules .

SECTION 11

OVERVIEW OF FILE MANAGEMENT

STRUCTURE OF A NEW DISK
DISK DATA STRUCTURES .
Volume Information .
Allocation Bit Map .
FILE STRUCTURES « o
Relative Record Files

Unblocked Relative Record
Blocked Relative Record

Sequential Files . .
Key Indexed Files .
Program Files « o o
Directory Files . .
Image Files « e e e

.

*

DISK STRUCTURES

Fi

File

.] . . .
. .] L] L]

FILE I/0

ALLOCATION OF SPACE FOR EXPANDABLE FILES .« .

9701 xiii

of CONTENTS

10-70
10-71
10-71
10-72
10-76
10-76
10-78
10-78
10-79
10-79
10-80
10-80
10-80
10-80
10-82
10-83
10-83
10-83
10-86
10-87
10-87
10-88
10-88
10-89
10-90

10-90
10-92
10-94
10-95
10-95
10-99
10-100
10-105

11-1

11-1
11-2
11-4
11-4
11-5
11-5
11-5
11-6
11-7
11-10
11-13
11-21
11-23
11-23

11.6 IN-MEMORY DATA STRUCTURES e e & e s e s s e e 11-26
11.6.1 X0P-Level Preprocessing o e o s s e e s o s 11-30
11.6.2 Task—-Level Processing e o & s s s e e s e o o 11-32
11.6.3 Flow of Control in File Management . . « « + . 11-32
11.6.4 Overlay Management .« o+ o o o o o o o o o o o 11-36
11.6.5 Buffer Management e o 6 s s & e 8 s s e s e 11-39
11.6.6 Details of I/0 Sub-Opcode Processors .« « « « « 11-40
11.6.6.1 Read o ¢ « ¢ o o o o o o o o o o o o o o s o 11-40
11.6.6.2 Write e 6 e o & & s s s s s e s s s s e v 11-41
11.6.6.3 Close e e 4 6 e s s 4 s s s e e 4 s e & s 11-41
11.6.6.4 Multiple—Record Read .« « ¢ « o ¢ ¢ ¢ o o o o 11-41
11.6.6.5 Multiple—-Record Write e o o s+ e s s o s o a 11-42
11.6.7 Lower Level Support Routines . e o 5 o s s o 11-42
11.6.7.1 Concatenated Files and Multifile Sets o o o 11-42
Unblocked Relative Record Files 11-42
Blocked Relative Record Files 11-42
Sequential Files 11-43
Multifile KIF Sets 11-43
Closing Blocked Files 11-43
11.6.7.2 Unblocked Relative Record Files e s e o o 11-43
11.6.7.3 Blocked Files e o s s s o s s s s s s e o 11-43
Record Transfers 11-43
Relative Record Files 11-44
Sequential Files 11-44
Blank Adjustment 11-44
11.7 KIF MANAGEMENT e o & s e e e 6 s 6 o s e e e e 11-44
11.7.1 KIF Data Structures c e & e o o s o s s e = o 11-45
11.7.2 KIF Management Code Structure e o & o o o o » 11-48
11.7.3 Details of KIF Operations e o o & o o s s e 11-49
11.7.3.1 Close e e o o e s e o e s o e s o o o e o o 11-50
11.7.3.2 Open Random e & o 2 o o s s e & o o s e a e 11-50
11.7.3.3 Read Greater and Read Greater or Equal e o 11-50
11.7.3.4 Read by Key, Read Current, and Read by Primary
Key e o & & s & e e e & e e 8 o o s o o e 11-50
11.7.3.5 Read Next s e s a2 & 8 a ® ® 8 ® s e e = o w 11-51
11.7.3.6 Read Previous e+ o s s s e e e e o e o o o 11-51
11.7.3.7 Insert e o ¢ s+ e o o 6 o e o o o e o o o o o 11-51
11.7.3.8 Rewrite e e o s e + s & 8 s o a4 o o s o o o 11-52
11.7.3.9 Delete by Key and Delete by Current e o s e 11-52
11.7.3.10 Set Currency Equal, Greater, Equal or Greater 11-53
11.7.3.11 Forward Space, Backspace, Read ASCII, Rewind 11-53
11.7.4 Details of KIF Subroutines . « « ¢ o ¢ o o o & 11-54
SECTION 12 DNOS SYSTEM TASKS
12.1 SYSTEM TASK ENVIRONMENT AND CONVENTIONS o o o o 12-1
12.2 WRITING AND LINKING AN ASSEMBLY LANGUAGE TASK . 12-1
12.3 USING OVERLAYS IN ASSEMBLY LANGUAGE SYSTEM TASKS 12-2
12.3.1 Overlay Data Structures e 5 o s & o o o o o s 12-2
12.3.2 System Support Routines for Overlays« . 12-3
12.3.3 Size of Overlay Areas e e s e e e e s e o o 12-4
12.3.4 Coding Overlays e o o & & e s o o o s o o o 12=4
xiv 2270512-9701

TABLE

of CONTENTS

DNOS System Design Document

12.3.5
12.3.6
12.4
12.5
12.5.1
12.5.2

13.1
13.2
13.3
13.3.1
13.3.2
13.4
13.4.1
13.4.2
13.4.3
13.4.4
13.4.5
13.4.6
13.5
13.5.1
13.5.2
13.5.3
13.5.4
13.5.5
13.5.6
13.6
13.7
13.7.1
13.7.1
13.7.1
13.7.1
3.7.1
7.1
7.2
7.3
8

1
13.7.
13.7.
13.7.
13

14.1
14.2
14.2.1
14.2.2
14.3

2270512-9701

.1
o2
3
ob
«5

Calling Routines in an Overlay .+ « o+ o
Internal Design Considerations
WRITING AND LINKING A PASCAL SYSTEM TASK
DETAILS OF DNOS SYSTEM TASKS . « .+ « . &
Log=-0On Task (LOGON) s s o o e s o »
System Initialization Tasks (RESTART and
RESTART2) e e e e e e e e e e e e
RPRCP e o e o & o o s o e o o e s o o
IOBREAK s e e e e s e e e s s e e o

SECTION 13 SYSTEM GENERATION
OVERVIEW o ¢ o o o o o o o o o o o o o o
SYSJEN STRUCTURE .« « o o o o o o o o o o
DETAILS OF THE SYSJEN ROOT PHASE .« . . .
STOPRT &« & o o o o o o o o s o o o o o
Support Routines e o e o s s s e e &
DETAILS OF THE INITIALIZATION PHASE . e
INIT o o o o o o o o o o o o s o o o
INITAL & ¢ o o o o o o o o o o o o o o
INITCN & ¢« ¢ o o o o o o o o o o o o
INITDB & & o o o o o o s o o o o o o »
INITHD . . L] . L] L . L] . . L] . . . L] L]
INITOP . . o o o s « e o s e
DETAILS OF THE INTERACTIVE PHASE o o s e
General Support Routines . . . « .+ .+ o

Asking System Questions e s e o o & e
Defining Structures e s e o s o o o
Changing Structures e o e e & e o e
Deleting Structures e o e o e o o o o

Listing Structures e o s s o & e o o o
DETAILS OF THE BUILDING PHASE o e s o
JENDAT FILE e o e o s & s s o s e & e o

Interactive Use of the JENDAT

Number Questions =« o« + s o o o o o o
Name Questions e o o & e e o e o o
Element Questions
Pathname Questions e e & o o e o o o
Yes/No Questions « « o o ¢ o o o o

BUILD Use of the JENDAT

Sample Copy Module =« ¢ o ¢ o o o o o
JENDAT EDITOR e o o o 8 6 s o o o o o

SECTION 14 LOGGING AND ACCOUNTING
LOGGING AND ACCOUNTING FUNCTIONS
LOGGING AND ACCOUNTING TASKS e o o o s
LGFORM ¢ o ¢ ¢ o o o o o o o o o o o o
LGACCT ¢ o o o o o o o o o o o o o o o
SUPPORT ROUTINES & ¢ ¢ o o ¢ o o o o o

XV

TABLE

of CONTENTS

12-6
12-6
12-7
12-9
12-11

12-13
12-13
12-15

13-1
13-1
13-3
13-3
13-3
13-5
13-5
13-5
13-6
13-6
13-6
13-6
13-7
13-7
13-7
13-9
13-11
13-12
13-12
13-13
13-15
13-15
13-16
13-17
13-17
13-18
13-19
13-19
13-20
13-21

14=-1
14-2
14-2
14-2
14-3

14.4

15.1
15.2
15.3
15.4
15.4.1
15.4.2
15.4.3
15.4.4
15.4.5

16.1
16.2
16.3
16.3.1
16.3.2
16.3.3
16.4
16.4.1
16.4.2
16.5
16.5.1
16.5.2
16.5.3
16.5.4
16.6
16.7
16.8
16 .8.1
16.8.2
16.8.3
16.8.4
16 .8.5
16.8.6
16.8.7

17.1
17 .2
17.3
17 .4

TABLE

xvi

of CONTENTS

MISCELLANEOUS MODULES e s o e e e s e e o e s o 14-3
SECTION 15 DNOS PERFORMANCE PACKAGE
OVERVIEW ¢ © o o o & o o & & e e e & 8 & & o 6 o o 15-1
'DNOS SOURCE CONVENTIONS e« o o e o e s e & & o o o 15-1
MICROCODE CHARACTERISTICS e o s s e o e s o e e @ 15=-2
MICROCODE CODING CONVENTIONS e s & o o e s e s e 15-3
Standard Syntax For Microcode States . . « o« o« o 15=3
Labeling Conventions .« . « o« o « o o o o s ¢ o o« 15=3
Commenting Conventions .« « ¢ ¢ o o o o o o o o o 15=4
Common Routines e o o o o s e s s e e s s e s o 15-4
Debugging o o o o s e o e s e o s o e o o o &« 15=4
SECTION 16 DEVELOPMENT AND ANALYSIS TOOLS
OVERVIEW ¢ o o o o o ¢ o o o s o o o o o o o o o o 16-1
SHOW RELATIVE TO FILE INTERACTIVELY UTILITY (SRFI) 16-1
THE TIGRESS TEST FACILITY e o o o o o s s e o e 16-2
Details of Tigress Commands e e o o s o o o & o l6-4
Directives of Tigress e e o o e o s e o e o o o l6=12
User Defined Commands For Tigress e o o o o o6 16-13
THE SYSTEM DEBUG UTILITY e e &+ o & s & 6 s+ o o e 16-13
Details of Debug Commands e o & o o e o o s o o 16=-14
Establishing the Debug Environment . « o+ o« o« o« o 16-19
THE PICT UTILITY e o o o & e o 6 o o o o o & s e o 16-22
Assembly Language Output =« « o o o« o o o o o o o 16-25
Pascal Template OQutpPut + + o o o o o o o o« o o« o« 16=27
PICT Picture Output e e s o o o o o o o o s o & 16-30
Input Format =« « o o o o o o o o o s o o o o o« o« 16=33
THE JENDAT EDITOR ¢ o o o o e o o & s o e e o & 16-35
XJENED Command Procedure . o« o o o o o o o o o o o 16=35
JENED Commands + « « s o s s s o o o o o« o o o o« « 16=-36
EDIT Command . .« « o« « ¢ s o o o o o o o o o« o o« 16=37
PRINT Command e o o o & e e s & s & s s e e s« s 16=40
QUIT Command .« o o s o o o o o o s o o o o o o o 16=40
REMOVE Command . . « + o o o o s o o o o o o o o 16=40
SHOW Command .« ¢ o o o o o o o o o s o o o s o o 16=41
VERSION Command e e o e s o & e s o e s o e o @ 16-41
MOVE Command « o + o ¢ s o o o o o o o s o o o o 16=41
SECTION 17 ANALYZING A SYSTEM CRASH
OVERVIEW e o o o e e e e e e s s & o e e o o o s e 17-1
DETAILS OF CRASH ANALYSIS COMMANDS e« o o o o o o o 17-3
GUIDELINES FOR CRASH ANALYSIS e o o e s o s o e 17-12
HARDWARE TRACE INFORMATION e o o o o o o o o e o @ 17-14

2270512-9701

DNOS System Design Document

18.1
18.2
18.3
18.3.1
18.3.2

SECTION 18 INTERRUPTS AND XOP PROCESSING

OVERVIEW OF INTERRUPT PROCESSING .+ « « .« .
OVERVIEW OF XOP PROCESSING « « ¢ o o o o
BUILDING AN XOP PROCESSOR e e o + s e e

System Generation Requirements for User XOPs

XOP Processor Details e o o o o o o e @

SECTION 19 SPECIAL SVCs

OVERVIEW ¢ « o o o o o s o o o o o o o o o
I/O SVCS . . 3 Y ° . . .
DSRTPD Diagnostics Control (Subopcode >08)
Write Interface Image e o o o o o o o
Read Interface Image e o o o o e o o
Communications DSR Diagnostics Control
(Subopcode >08) e o o o o o o o o o o

19.2.3 Open Unblocked (Subopcode >13) . ¢ o « o & o &
19.2.4 Close Without Updating FDR (Subopcode >14) .
19.2.5 DSRTPD Communications Control - (Subopcode >15)
19.2.5.1 Set File Transfer Parameters >1C . + « « + &
19.2.5.2 Modify Timing Characteristics >16 e e o s
19.2.5.3 Modify Line Characteristics >17 o o o e o
19.2.5.4 Modify Terminal Type D18 « ¢ ¢ o o o o o o o
19.2.5.5 Modify Special Characters >19 e o e o o o s
190205.6 Connect >1A e © & o e o e o o & o o o o o o
19.2.5.7 Flush Character Queue >1B e o e o s o o o @
19.2,.,5.8 Set Exclusive Access DID . « ¢ o o o o o o o
19.2.5.9 Set Shared Access >1E e o e o o o o o e
19.2.6 VDT Extended Edit Flags (Subopcode >15) o o .
19.2.7 Asynchronous Multiplexor Operation (Subopcode
>15) e o o & s s o o & e e e & e s o e o o o o
19.2.7.1 Write UART Registers .+ o« o o o o o s o o o o
19.2.7.2 Read UART Registers e s e 6 6 e e e o & s o
19.2.8 TILINE Diagnostic Port (Subopcode >16)
19.2.9 Read with Initial Value (Subopcode >17) « o o
19.2.10 Assign Diagnostic Device (Subopcode >94) . . .
19.2.11 Attach File (Subopcode >A0) e o ¢ e o e o o
19.2.12 Detach File (Subopcode >Al) c e e e e e e e e
19.2.13 Detach File by Number (Subopcode >A3) e o s e
19.2.14 Modify FDR Bit (Subopcode >A4) o .
19.2.15 Release LUNO in Another Job (Subopcode >A5) .
19.2.16 Assign System LUNO FF (Subopcode >A6) . o e
19.2.17 Release File Structures (Subopcode >A7) . o e
19.2.18 DIOU Operations (Subopcodes >C2, >C3, >C6, >C7)
19.2.18.1 >C2 -~ Get Selected Device Parameters . . « &
19.2.18.2 >C3 - Set Selected Device Parameters . . « =
19.2.18.3 >C6 - Get CDE From CDT ¢ o o o e e o e o o
19.2.18.4 >C7 - Process Device Task Bid e e e e e e e
19.3 SPECIAL FEATURE OF EXECUTE TASK SVC e o o o e o
19.4 SEGMENT MANAGEMENT e s o & s e & o e o & o s o o
19.5 NAME MANAGEMENT e 6 o o s s e e e o e o e o o =

2270512

-9701 xvii

L] .

e o e e e e © o o o o o o e e o o

TABLE of CONTENTS

18-1
18-2
18-2
18~2
18-3

19-1
19-1
19-1
19-2
19-3

19-4
19-5
19-5
19-6
19-7
19-7
19-8
19-8
19-9
19-9
19-10
19-10
19-10
19-10

19-11
19-12
19-14
19-16
19-20
19-21
19-22

- 19-23

19-24
19-25
19-26
19-27
19-28
19-28
19-31
19-32
19-33
19-34
19-34
19-35
19-35

19.5.1
19.5.2
19.5.3
19.5.4
19.5.5
19.5.6
19.5.7
19.5.8
19.5.9
19.5.10
19.5.11
19.6
19.7
19.8

20.1
20.2
20.3
20.4
20.5

21.1
21.2
21.3
21.4

22.1
22.2
22.3

DIRECTORY STRUCTURE e o ¢ o o o o o o
COMPONENTS USED IN BUILDING DNOS . . .
THE PROCEDURE FOR BUILDING DNOS o o s
DNOS PROGRAM FILES ¢ ¢ ¢ o ¢ o o o o o

TABLE of CONTENTS

Determine Next Pathname (Subopcode >01)
Append Pathname to Name (Subopcode >03)
Return Next Name (Subopcode >05) .« .
Purge Names (Subopcode >06)
Enter New Stage (Subopcode >07) . . .

Return to Previous Stage (Subopcode >08)

Return Next Error Entry (Subopcode >09)
Determine Segment Size (Subopcode >0A)

Copy Names to New Segment (Subopcode >0B)
Creating an Empty Name Segment (Subopcode

Saving a Name Segment (Subopcode >0E)

MODIFY BTA OR JCA SIZE « « o o o o o o
HALT/RESUME TASK . . L] . L] * L] L] L] L] Ld L
EXPAND JCA . L] L4 Ll L] Ll L] L d . L] L] L] L] L .

SECTION 20 LINKING INFORMATION FOR DNOS

OVERVIEW o ¢ ¢ o o o o ¢ o o o o s o o o
LINKING A SYSTEM TASK e o o o o o o o o
LINKING A DSR e o o o o s e o e & o o @
LINKING THE DNOS SEED R
LINK CONTROL FILES BUILT DURING SYSTEM GENERATION 20-6

SECTION 21 DNOS SOURCE DISK STRUCTURE

e o o o

SECTION 22 DATA STRUCTURE PICTURES

OVERVIEW L] L] . . . L4 L] . L] . L] L]
STRUCTURES FROM THE COMMON DIRECTORY . .
STRUCTURES FROM THE ATABLE DIRECTORY . .

APPENDIX A KEYCAP CROSS-REFERENCE

OVERVIEW L] . . ° . .

xviii

e o o o 19-41
« o o o 19-42
¢ o o o 19-43
e o o o 19=-44
s o o o 19-45

e o o 19-45
e o o 19-47
o o o o 19-47

e o o 19-48
>0D) . 19-48
e o o o 19-49
e o o o 19-50
e o o o« 19-51
s s+ o o 19-52

e o o o 20-1
e o o o 20-2
e o o o« 20-3
. . o o 20-4

21-1
21-3
21-8
21-8

e o o o
* o o o
L] L] * L]
e o o o

. . . . 22-1
. . . . 22-6
. . . . 22"'27

2270512-9701

DNOS System Design Document

)
e

()]

[

=

1]

1 | I R T I |
I =N WNE WK =N -

1
-2

=k~ O NSNNNNNN~NOCOC O EN
I

c ol

ot

o
!

w

10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
10-13
10-14
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13
11-14
11-15
11-16
11-17
11-18

LIST of FIGURES
Title

Flow of Control inm DNOS . « « « o o o
DNOS Map Files o s ¢ o o o o o o o o o o
Flow of Control in Task Scheduling . . .
System Loader Subroutine Calls « . « .+ &
SVC Entry Form in RPSTAB . « ¢« ¢ o o o
Examples of RDB and RIB Structures . . .
Format of RPUDAT Module + ¢« « o o o o o
Flow of Control in Segment Manager . « .
Flow of Control in Change Segment . . .
Flow of Control During Initial Load . .
Flow of Control in Create Segment . . .
Flow of Control in Forced Write
Flow of Control in Release Job Segments

Segment Manager Table Organization . . .
Flow of Control in Task Loader . . .« .+ .
Overview of Device I/0 Handling
Beginning Device Request Processing . .
DSR Control Paths . . « « ¢ o o o o o
Returning Information to the Requester .
Device I/0 Buffering + o« « o o« o o o o &
DSR Link Control Stream =« . o o o o o o
DSR Structure e s 4 s e s e e s o e o
Asynchronous Data Structure Linkages . .
Asynchronous Local PDT Extension
Asynchronous Long-Distance PDT Extension
LDT Chains « o« o o« o o o o o o o o o o o
Symmetric Channel States . o« « ¢ o ¢ o o
Owner SVCs for Master/Slave Channels . .
Name Segment Structure . o« o« o ¢ o o o
Sequential File Format o« o« o ¢ o o o o o
Blank-Suppressed Record =« « « o o o o o
Key Indexed File B~Tree .« o« o« o o o o« o
Program File Format e s s e e o o o o o
Program File Available Space List o o e
Task Description Entry . o« « ¢ o o o ¢
Procedure/Segment Description Entry . .
Overlay Description Entry .« o « o o o o
Directory File Structure « « ¢ « o o+ « o
Computing a Hash Key o+ o« ¢ o o o o o o+
Dump of Directory File « o ¢ o o o o o o
In-Memory File Representation . « « .+ &
Flow of Control in File Management . . .
Overlay Area Structure . « o« « o o o o
Buffered KIF Request .« « o« ¢ o o o o o o
KIF Currency Block « « ¢ ¢ o o o o o o o
Example of Root Node Split . « «+ + o ¢ &
Example of Regular B-Tree Node Split . .

2270512-9701 xix

LIST of FIGURES

la~)
]
o0]
[o¢] o]

~

ONNNNSNN~NOTCTOUBL BN
U N =

—
oco L vy r e

Nt ot s XN D = NN =W W

1
(S, N =

10-11
10-13
10-16
10-21
10-28
10-33
10-34
10-36
10-63
10-85
10-87
10-96
11-8

11-10
11-12
11-14
11-16
11-17
11-19
11-20
11-22
11-22
11-25
11-27
11-33
11-38
11-45
11-47
11-55
11-56

12-1
16-1
16-2
16-3
18-1
19-1
19-2

Example of Link Control for System

PCKREC Input Format . . .
DORG Input Format o e s
Template Picture Format .
X0OP Processor e e s o o
Write UART Register Format
Read UART Registers Format

XX

e o e o o

LIST of

FIGURES

e o o o o

12-2

16-34
16-34
16-35
18-4

19-13
19-15

2270512-9701

DNOS System Design Document

Table

1

b=t o = O UTW W W
COoOCCO | 1

t Il PN -~
SO -

—
(o)
'

5
11-1
11-2
11-3
11-4
11-5
12-1
12-2
15-1
l6~-1
16-2
16-3
16-4
16-5
16-6
17-1
17-2
18-1
21-1
21-2
21-3
22-1
22-2

LIST of TABLES

Title
Acronyms Used in this Manual e o e e
DNOS Subsystem Abbreviations o o o e

Major Directories of DNOS o o s & s s
Macros from DSC.MACROS.FUNC . . .« .+ =

System Loader Phases e o o o o o o
Major Request Processor Routines o o
SVC Processors and Modules e e o o

Request Definition Block (RDB) Format

- Return Information Block (RIB) Format

Location of Support Subroutines for DSRs

Asynchronous DSR Module Functions . .
DSR/TSR Entry Points L] * L] L4 L] . . .

Asynchronous Local PDT Extension Template

Asynchronous Long-Distance PDT Extension

Format Information for Available Disks
Capabilities of Available Disks . . .
File Management Modules . « + o o« & &
KIF Main Routines e
KIF Subroutines . ¢« ¢« o o o o o o o o
DNOS System Tasks « « o o & o e .

System Tasks to Support SCI and Utilitles

Location of the Microaddress Bus .« .
Types of Arguments for Tigress Commands
Predefined Labels for Tigress Commands
Tigress Commands e o o s s e e o o
Parameter Types for Debug Commands .
Commands for System Debug Program . .
Verbs Used in Generating Structures .
Crash Analysis Commands . « +« « o o o
Format of Hardware Trace Information
System Generation Prompts for XOPs .
DNOS Batch Stream Files .« ¢« « o« « «
Map of Utility Program File
Map of System Program File o e o e
Template ACronymsS .« « o o o o s o o o

.

Templates Described in SCI and Utilities

2270512-9701 xxi/xxii

LIST of TABLES

. - . .

.

Document

DNOS System Design Document

SECTION 1
HOW TO USE THE DESIGN DOCUMENT

The description of DNOS design is divided into sections according
to major operating system functions. The nucleus routines are
described first, along with their data structures and the overall
operating system structure. This section is followed by separate
sections describing each of the major subsystems in DNOS. For an
overview of all subsystems, skim through this document, reading
carefully the overview portion of each subsystem section. For
details on a particular subsystem or module within a subsystem,
consult the detailed diagrams and discussion that follow the
overview.

Section 3 details naming conventions for the DNOS modules. When
searching for details about a particular module, use the module
name to determine which subsystem description is relevant. For

details about particular data structures being used, consult the
section on data structure pictures.

The section on linking information provides example link control
streams used to build pieces of the operating system. To build a
device service routine (DSR) or a new system task, use these link
examples as a guide in building the required link streams. Link
streams are also shown for several other parts of the operating
system to show how these pieces are structured. The DNOS link
streams should be considered the primary source of information
about the modules included to support a particular task or
subsystem. The link streams are also the primary source for full
pathnames for modules in DNOS.

Most data structure pictures in this document are built directly
from the templates copied into operating system source code. The
structures are shown with hexadecimal byte counts, special
comments, flags, and a diagram.

Most of the special terms used to describe DNOS can be found in
the glossary - in the DNOS Concepts and Facilities manual. Other

terms are defined in this document as they are needed. Acronyms
for system structures and routine names are introduced at various
points throughout the manual. If you read a section from the

manual without reading all preceding sections, an acronym may be
encountered without an explanation of its meaning. Table 1-1
lists most of the acronyms used in the manual. Refer to this
list 1in conjunction with the glossary for a complete description
of the term. |

2270512+9701 1-1 How to Use

How to Use

Acronym

R R X X

ACC
ADR
ADU
BRB
BRO
BTA
BTB
CCB
CDE
CDR
CDT
DIA
DIB
DOR
DPD
DPR
DSR
FCB
FDB
FDR
FID
FIR
FMT
FSC
I0U
IPC
IRB
JCA
JIT
JMR
JSB
KCB
KDB
KDR
KIB
KIT
KSB
LDT
LFD
LPD
LSE
MRB
NDB
NDS

DNOS System Design Document

Table 1-1 Acronyms Used in this Manual

Meaning

e e e e

Accounting record contents
Alias descriptor record
Allocatable disk unit
Buffered request block
Buffered request overhead
Buffer table area

B~tree block

Channel control block
Command definition entry
Channel descriptor record
Command definition table
Diagnostic status

Device information block
Directory overhead record
Disk PDT extension data
DIOU Device Parameters
Device Service Routine
File control block

File directory block

File descriptor record
File identification

File information record
File management task area
File structure common

I/0 utility task
Interprocess Communication
1/0 request block

Job communication area
Job information table

Job manager request block
Job status block

KIF currency block

KIF descriptor block

Key descriptor record

KIF information block

KIF task area

Keyboard status block
Logical device table

Log file definition

Line printer PDT extension
Load segment entry

Master Read/Master Write buffer
Name definition block
Name definition segment

2270512+~9701

DNOS System Design Document

Table 1-1 Acronyms Used in this Manual (Continued)

Acronym Meaning

B e e B b e R o R

NRB Name manager request block
OAD Overlay area description
OAW Overlay area wait block

OSE Owned Segment Entry

0VB Overhead beet

OVT Overlay table entry

PBM Partial bit map

PDT Physical device table

PFIL Program file directory index
PFZ Program file record zero
PRM DIOU/I0U Parameters

QHR Queue header

RDB Request definition block
RIB Return information block
RLT Record lock table

ROB Resource ownership block
ROM Read~only memory

RPB Resource privilege block
RST Reserve segment table

SAT Secondary allocation table -
SCO Track 0, sector 0 format
SCI System Command Interpreter
SDB Stage descriptor block

SGB Segment group block

SLB System log block formats
SMT Segment manager table

SOB Segment Owner block

SSB Segment status block

STA System table area

STE Swap table entry

TDL Time delay list entry

TOL Time+~ordered 1list

TPCS TILINE peripheral control space
TSB Task status block

UDR User descriptor record

WCs Writable control store

WOM Waiting for memory queue
XTK Extension for a terminal with keyboard

2270512-9701 1-3/1~4 How to Use

DNOS System Design Document

SECTION 2

OVERVIEW OF DNOS

2.1 INTRODUCTION

DNOS, a general purpose operating system for the 990 computer,bis
designed to meet a variety of computing needs. DNOS 1is a
configurable operating system, allowing users to generate small
systems with minimal software development capability; medium+
range systems with a limited number of options; and large systems
with a wide variety of system options.

Among the special features available for DNOS are program and
overlay loading, program swapping, key indexed files, dynamic job
creation, output spooling, dynamic system configuration,
interprocess communication (IPC), multiprogramming support, file
access security, and a wide variety of utilities.

A performance package is available for DNOS. It wuses microcode

implementations of a number of DNOS routines to enhance the
processing speed of DNOS.

2.2 GENERAL STRUCTURE

DNOS is composed of memory+~resident and disk+~resident code. The
memory+~resident portion includes the following:

* Device service routines

* Interrupt processors

* Extended operation (XOP) processors

* System tables and device buffers

* Many supervisor call (SVC) processors
* Task scheduler

* Nucleus support functions

* Memory~resident tasks

2270512+-9701 2+1 Overview

DNOS System Design Document

These parts are linked when DNOS 1is generated, and they are
loaded into memory during initial program load (IPL). This
memory~resident portion 1s referred to as the kernmel of DNOS.
The first portion of the kernel is referred to as the root; it
forms the first segment of the mapping structure for kernel
activities and for system tasks.

Disk~resident parts of DNOS include system tasks and overlays for
some system tasks. These tasks include the I/O0 Utility, the Job
Manager, and a number of miscellaneous SVC processors. These
tasks are loaded into memory whenever their services are
required.

Most of the DNOS functions are performed by routines that serve
queues of requests. A queue is a first~in, first*out 1list of
data to Dbe processed. Each queue consists of a queue anchor,
from which blocks of data are linked. Most queue anchors are
located 1in the system root; those for file management are in the
job communication area of the user job. The queues are singly
linked, and the anchor points to the first data block, the first
block points to the second, and so on. The anchor also points to
the last block in the queue to enable efficient queue handling.
The queue header format 1is displayed 1in the section of data
structure pictures as the QHR.

2.3 FLOW OF CONTROL OF DNOS

While DNOS is running user jobs, the control paths vary. The
diagram 1in Figure 2+~1 shows an overview of DNOS initialization,
functioning, and termination. Detailed paths for the wvarious
subsystems are described in the following sections.

Overview 2+2 2270512-9701

DNOS System Design Document

Halt~Load Sequence
on 990 Front Panel
|
\
Initial Program Load
(loads kernel and memory-resident
tasks, installs disk volumes, etc.)
|
\
System Restart Task
(sets up system log and accounting log,
bids required system tasks, etc.)
|

I<‘v--c-¢v’v»b&““»’-f-rﬁf—&hﬁ-v—w%hﬁ#—&-w&hﬁvbb&b&&“+

\Y
Serve a Request of the
Functioning System
I
\

Pt B B R R Rl R R Rl R il B R R R e R 3

&—&vt‘-p&) l | | I

|
|
|
|
|
l
|
| \Y \ \' \Y |
| Execute Process Process Provide Operating System |
| Task sve Hardware Support for Memory |
| Code Request Interrupt Management, Timing, |
| | | or Performance, etc.]
l \ / XO0P | |
I \ / I ! I
| Time Slice | | |
| Expired | | |
] ? \"A \' |
<v’bwﬁ%bﬁh6&#v w&&&w#>ww&#&&»&bh&&&&l>&l&&&&&&*&l&&&&&hl&>&&&&l+

no yes |

|
error path only

| Forced error condition, error in
| a system task, error in DNOS, or

| error in hardware

\'
DNOS Crash Routine

|

v

System Halt

Figure 2-1 Flow of Control in DNOS

2270512+-9701 2+3 Overview

DNOS System Design Document

2.4 DX10 COMPATIBILITY

For a number of users, DNOS is an upgrade from the DX10 operating
system. Most software that executes under DX10 executes without
source change under DNOS. It needs only to be relinked with DNOS
run+time support. The notable exceptions are user+written DSRs,
X0OP processors, system tasks and utilities, and SVC processors.
Several sections of this document describe the changes needed to
make these pieces of software function under DNOS,.

Several system SVCs that were used with DX10 are not available

for use in DNOS; in most cases, their functions are performed by
a new SVC.

Overview 2~ 4 2270512+-9701

DNOS System Design Document

SECTION 3

NAMING AND CODING CONVENTIONS

3.1 NAMES OF ROUTINES

DNOS modules are written in either assembly language or Pascal.
In most cases, a module consists of one routine. When several
small routines perform related functions, those routines appear
in a single module. Each routine and module is named wusing the
form aabbbb where aa is an abbreviation for the subsystem in
which the routine fits and bbbb 1is a set of characters that
describe the function of the routine. For example, JMHALT is the
job management routine that processes the Halt Job SVC.

Abbreviations for subsystems in the DNOS kernel and wmajor
utilities are shown in Table 3+~1.

Modules are organized into directories that correspond to DNOS

subsystems. Table 3+-2 lists the major directories that comprise
DNOS and indicates the section in which each directory 1is
described. Other directories 1include modules for the various

utilities of DNOS. The major directories labeled DNOS are
detailed 1in this document; those 1labeled SCI, UTILITIES are
detailed in the DNOS SCI and Utilities Design Document.

The source library for DNOS has one or more of the following
subdirectories for each of the directories:

* PSOURCE for Pascal source

* FSOURCE for Fortran source

* SOURCE for Assembly language source

* MSOURCE for /12 microcode

* MOBJECT for assembled microcode

* MLIST for Microcode assembly listing

* TSOURCE for Link Editor modules needing to Dbe
transliterated from POPs code to assembly language

* UTILITY for the transliteration wutilities for 1linker
code

2270512~9701 3~1 Coding Conventions

‘DNOS System Design Document

Table 3-1 DNOS Subsystem Abbreviations

Abbreviation

R eadhadt g 2 g

D$§
DM
DS
DU
E$
FM
10
IP
1U
JM
KM
LG
MB
NF
NM
oI
PL
PM
RP
SE
SL
SM
S0
SP
TP
uT
aaa

Coding Conventions

Subsystem or Utility

LR O R o R R R R o

Debugger

Disk management

Device service routines (DSRs)

Device I/0 Utility

Text Editor

File management

1/0 routines

Interprocess communication (IPC)

I/0 utilities

Job management

Key indexed file (KIF) management
System log and accounting log

Mailbox

Nucleus functions

Name management

Operator Interface
Pascal+~to*assembly~language interface
Program and memory management

Request processing + SVC support
Security

System loaders

Segment management

System overlay management

Qutput spooler

Teleprinter device utilities
Subroutines common to several utilities
SCI utilities - aa or aaa 1s the SCI command

3+2 2270512+9701

DNOS System Design Document

Table 3+2 Major Directories of DNOS

Directory Location of Documentation

e e e S P B e e i B g e e e Yo S e B b B B B B e S e R e
ANALZ DNOS +~ Section 17
BATCH DNOS + Section 21
DEBUG DNOS =~. Section 16
DEBUGGER SCI, UTILITIES
DEVDSR DNOS + Section 10
DIOU DNOS + Section 10
DISKMGR DNOS + Section 12
EDITOR SCI, UTILITIES
FILEMGR DNOS +~ Section 11
IOMGR DNOS + Section 10
10U DNOS + Section 10
IPC DNOS ~ Section 10
JOBMGR DNOS + Section 8
KIFMGR DNOS - Section 11
LINK DNOS - Section 20
LOADERS DNOS + Sectiom 5
LOG DNOS + Section 14
LOGON DNOS +~ Section 12
MACROS DNOS + Section 3
MAILBOX SCI, UTILITIES
MESSAGES SCI, UTILITIES
NAMMGR DNOS +~ Section 10
NUCLEUS DNOS +~ Section 4
OPERATOR SCI, UTILITIES
PASASM DNOS + Section 3
PERFORM DNOS = Section 15
PROGMGR DNOS = Section 9
REQPROC DNOS + Section 6
RESTART DNOS + Section 12
S$ SCI, UTILITIES
SCI990 SCI, UTILITIES
SECURITY DNOS - Section 10
SEGMGR DNOS + Section 7
SPOOLER SCI, UTILITIES
SYSJEN DNOS +~ Section 13
SYSOVLY -DNOS = Section 12
TEMPLATE DNOS +~ Section 3,22
TIGRESS DNOS +~ Section 16
TPCALANS SCI, UTILITIES
UTCOMN SCI, UTILITIES

2270512+~9701 3~3 Coding Conventions

DNOS System Design Document

3.2 GLOBAL DATA AND STRUCTURE TEMPLATES

Names of system tables and data structures are generally three
characters long, with the <characters chosen to reflect the
structure name. Fields within the structure have six*character
names (whether part of Pascal records or assembly language code);
the first three characters are the same as the structure label.
Flag fields within the structure are detailed using equates, with
each flag bit (or set of bits) identified by aaFbbb where aa
represents the first two characters of the structure name, F
indicates a flag, and bbb describes the flag. For example, the
task status block is the TSB. TSBPRI is the name a field within
the TSB that carries the task priority. TSFSYS names a flag in
the TSB that indicates whether a task is a system task.

Global constants and error equates are named using these formats:

WDaaaa DATA >aaaa
ERRaa BYTE >aa
BYTEaa EQU ERRaa

where a is a hexadecimal digit and > 1is wused to represent a
hexadecimal value.

The TEMPLATE directory contains the global constants aund
variables used by DNOS source code. In the following 1list of
subdirectories of the TEMPLATE directory, DSC is a synonym for
the entire DNOS source directory. All of these directories,
except the PREAMBLE directory, also appear in the linkable parts
directory .S$OSLINK on an installed DNOS system.

DSC.TEMPLATE.ATABLE
DSC.TEMPLATE .COMMON
DSC.TEMPLATE.DECLARE
DSC.TEMPLATE .PREAMBLE
DSC.TEMPLATE.PTABLE

The DSC.TEMPLATE.ATABLE directory contains templates for DNOS
data structures that are wused by assembly language routines.
Files in this directory are copied into an assembly language
module to reference fields within the data structures. A module
accesses a particular field in a structure by using a template
offset with a pointer. The pointer can be passed to the module
or retrieved from some other DNOS structure. This directory also
includes a template of system crash codes (NFCRSH) and a template
of task states (NFSTAT). Files from this directory are shown in
detail in the section on data structure pictures. They are built
using the picture macros described in the section on DNOS
Development and Analysis Tools.

Coding Conventions 3+4 2270512+9701

DNOS System Design Document

The DSC.TEMPLATE.COMMON directory contains the common data wused
by assembly language routines. It consists of files of CSEG
blocks, including the following major files:

* DSC.TEMPLATE.COMMON.NFDATA +~ Global data values for the
current state of the system

* DSC.TEMPLATE.COMMON.NFERnO ~ Byte constants (>n0 through
>nF) and equates for system error codes (16 such
templates)

* DSC.TEMPLATE.COMMON.NFPTR -~ System pointers to global
lists and structures

* DSC. TEMPLATE.COMMON.NFWORD = Word constants

Any assembly language module that makes use of a byte constant or
a word constant copies the appropriate common template and uses
the constant in that module. Similarly, NFPTR and NFDATA are
copied into a module to allow access to a system pointer or
global data item. Use of the templates provides documentation of
all wuses of a particular error code, constant, or system
variable.

NFPTR includes pointers to system queues, pointers to beginnings
of structure 1lists, addresses of segment management tables,
pointers to device 1iunformation, and several miscellaneous
pointers. Full details on NFPTR appear in the section on data
structure pictures.

NFDATA includes anchors for several system data structures,
counts for jobs and tasks in the system, parameters for system
time wunits, sizes of the system and system files, scheduling
data, a word of flags which define system options chosen at
system generation, and several other items. Details of NFDATA
are shown in the section on data structure pictures.

The DSC.TEMPLATE.DECLARE directory is used by Pascal routines.
It consists of files of procedure declarations, which are copied
into Pascal modules. Each subsystem or utility written in Pascal

has a file of declarations for its own set of modules. Also,
declarations are included for run~time routines and for interface

routines from Pascal code to assembly language modules.

The DSC.TEMPLATE.PREAMBLE directory has the templates for
documentation preambles to assembly language and Pascal source
modules.

2270512~9701 3+5 Coding Conventions

DNOS System Design Document

The DSC.TEMPLATE.PTABLE directory has data structure templates
and common segment templates for wuse by Pascal code. The
directory includes files corresponding to each of those ian the
DSC.TEMPLATE.ATABLE and DSC.TEMPLATE.COMMON directories. Also,
it has a number of files that have no counterparts in the other
directories but are needed by Pascal routines.

3.3 ASSEMBLY LANGUAGE CODING CONVENTIONS

Each assembly language module begins with a preamble that
describes that module. Fields in the preamble template that are
not used for a particular module are omitted in that module. In
the assembler template, the following are required sections:

copyright statement errors

routine name revision

abstract environment

entry IDT name

exit PSEG, code, and END

When more than one routine 1s included in a module, each routine
is preceded by a description that includes abstract, entry, exit,
and error information. .

The abstract gives a brief English description of the general
purpose of the module, while the algorithm section describes how
the routine works. The environment section points out what table
areas are used by the module. Revision information 1is provided
in the format shown below. Other entries are self+explanatory.

* REVISION: <creation date mm/dd/yy - ORIGINAL
* {revision ID> = <date> = <purpose> =~ <0S release no>
* repeated, with latest revision last

where:

{revision ID> is a pair of decimal digits, beginning

with 0Ol1.

<date> is the form mm/dd/yy, where each field
is decimal.

{purpose> is description of the change, including

the number of any STR on design request
being satisfied by this revision.

<0S release no> is the release for which this revision
was prepared.

Coding Conventions 3«6 2270512+9701

DNOS System Design Document

To keep track of which 1lines of <code were added for what
revisions, each added line is flagged. In columns 58 through 60
of the line added to an assembly language module, the characters
Rmn are inserted, where <mn> is the revision ID specified for
this revision in the preamble.

Templates copied 1into assembly language programs with the COPY
statement are by default UNListed. (Data templates and other
structures are surrounded by UNL and LIST. To see the copied
items, the program may be assembled with the FUNLST (F) option of
the assembler enabled.)

For the most part, assembly language code uses tab settings of 1,
8, 13, 31, and a right margin of 60 to make the assembly 1listing
as legible as possible. Comments are 1ncluded in the preamble
and in atoms within each routine. An atom is several 1lines of
comments, set off from the code it describes.

Labels wused within an assembly language routine are composed of
three characters followed by three digits (for example, OPNL1OO
for a label in a routine performing open processing). The
characters are chosen from the routine name unless another set of
characters is clearly more useful. The numeric portion ends 1in
zero to allow room for inserted labels, and labels appear in
ascending numeric order from beginning to end of a module.

The format of the assembly language preamble 1s as follows:

2270512+9701 3+~7 Coding Conventions

DNOS System Design Document

TITL ‘<MODULE ID -~ SHORT DESCRIPTIOND>’

(C) COPYRIGHT, TEXAS INSTRUMENTS INCORPORATED, 1983.
ALL RIGHTS RESERVED. PROPERTY OF TEXAS INSTRUMENTS
INCORPORATED. RESTRICTED RIGHTS ~ USE, DUPLICATION
OR DISCLOSURE IS SUBJECT TO RESTRICTIONS SET FORTH
IN TI‘S PROGRAM LICENSE AGREEMENT AND ASSOCIATED
DOCUMENTATION.

ROUTINE NAME: <NAME OF ROUTINE(S)>
ABSTRACT: <DESCRIBE THE GENERAL PURPOSE OF THIS ROUTINE>

ENTRY: <INSTRUCTION/STATEMENT/INTERRUPT USED TO ENTER>
(<KRN>) = <DESCRIPTION>

EXIT: (<RN>) = <VALUE> IF <CONDITION>

ERRORS: <ACTION OR CODE> IF <CONDITION>

STACK REQUIREMENTS: <N> WORDS

ALGORITHM: <DESCRIPTION OF ALGORITHM IF NECESSARY>

REVISION: <CREATION DATE IN MM/DD/YY> - ORIGINAL
<REVISION DATE; LATEST LAST> - <NATURE>

ENVIRONMENT: 990/10 ASSEMBLER
CALLABLE FROM <assembler,Pascal)>
TABLE SEGMENTS MAPPED IN WHEN ENTERED:
<LIST>
TABLE SEGMENTS MAPPED IN DURING ROUTINE:
<LIST>

NOTES: <SPECIAL CONDITIONS/ASSUMPTIONS OR OTHER
SPECIAL INFORMATION>

% ¥ N % % % % % ok ¥ ¥ N ¥ % % % % Ok % ¥ O % H % B b % ¥ % % H F ¥ ¥ X ¥ F *

SUBROUTINE REFS:

REF <NAME> <DESCRIPTION>
*
* CONDITIONAL ASSEMBLY:
* {VARIABLE) <DESCRIPTION>
*
* MACROS TO BE USED:
LIBIN DSC.MACROS.TEMPLATE
* LIBIN DSC.<MACRO LIBRARY PATHNAME)>
*
* EQUATES:
KNAME> EQU <VALUE> <DESCRIPTION>

* {INSERT COPIES OF EQUATE FILES IF ANY>
*

* GLOBAL DATA (TO SHARE AND ACCESS DATA IN COMMON AREAS)

Coding Conventions 3-8 2270512+9701

DNOS System Design Document

*
* {INSERT COPIES OF ANY RELEVANT CSEG FILES>
PAGE
*
IDT ‘<MODULE NAME>’
DEF <MODULE NAME>
PSEG
<ROUTINE CODE>
END

Several macro libraries are available in the MACROS directory for
use by assembly language routines. 1In each case, the SOURCE file
shows the macro definitions and documents their use. To find out
how a particular macro functions, read the comments in the source
file for the macro.

The DSC.MACROS.TEMPLATE library must be included with a LIBIN
statement in most modules that wuse data structure templates.
Many of the templates inm the DSC.TEMPLATE.ATABLE directory are
defined wusing macros that allow processing in assembly language
and Pascal structures. It includes macros for ADDR, BITS, CHAR,
FLAG, FLAGS, LONG, PTR, RECORD, WORD, INT, PCKREC, ENDREC, REC,
ARRAY, POSINT, and VARNT.

In the rare instance that a CSEG must be used as a DSEG, the set
of macros in DSC.MACROS.DORGCSEG should be used. This set
includes macros for CSEG, CEND, and DZERO directives. These
macros are often used by modules that issue the Retrieve System
Data SVC (>3F) to access a part of a system common area. The SVC
expects the user to specify an offset into the common area (as a
DSEG would allow) rather than an absolute CSEG address.

The DSC.MACROS.FUNC library includes macros to inhibit and enable
scheduling, to initialize a block of data, to test conditions
during assembly of code, and to provide common subroutine access.
This set includes macros for ASSUME, DATAM, ENAB, INHB, SCALL,
SPOP, SPUSH, GTA, GTAO, RTA, PRCK, SGCK, SRTN, and TRTN. These
macros must be used for the purposes described in Table 3~3. See
the FILE DSC.MACROS.FUNC.SOURCE for the descriptions of the macro
details. All accesses to the routines indicated in Table 3+3
must be made using the macros, since the macros provide access to
performance microcode,

2270512+9701 3-9 Coding Conventions

DNOS System Design Document

Table 3-3 Macros from DSC.MACROS.FUNC

MACRO NAME PURPOSE
ASSUME Test an assembly condition, (generally
a template field)
DATAM Generate data fields
DCLOSE Door Close
DOPEN Door Open
ENAB Access NFENAB to enable scheduling
INHB Inhibit scheduling
SCALL Call another routine
SPOP Access NFPOP
SPUSH Access NFPSH
GTA Access NFGTA
GTAO Access NFGTAOQO
PRCK Access RPPRCK
SGCK Access RPSGCK
RTA Access NFRTA
SRTN Access NFSRTN
TRTN Access NFTRTN

Macros in DSC.MACROS.UTILITY are used by a number of DNOS and SCI
utility programs to perform commonly needed operations. It
includes macros to terminate a program under abnormal error
conditions and a variety of special field initialization macros.

A set of macros is available to build assembly language routines
to be <called by Pascal routines. These macros yield code
compatible with Pascal subroutine conventions. The macros are in
the library named DSC.MACROS.RIFLE.MACROS.

3.4 PASCAL CODING CONVENTIONS

Several subsystems are written in a subset of TI Pascal. These
include job management, system generation (sysgen), system log
processing, accounting log processing, and many SCI utilities.

Statements are written one per line, and segments of programs are
visibly separated to facilitate readability. As with assembly
language programs, Pascal programs are documented in the preamble
and throughout the code. To allow printing of source code on any
available printer, only uppercase characters are used.

In the Pascal template, the following fields are required:

Coding Conventions 3~10 2270512+9701

DNOS System Design Document

compiler options revision
copyright statement environment
program statement procedure (function) and code

abstract
The revision information must be of the following format:

" REVISION: <creation date mm/dd/yy - ORIGINAL>
" <revision ID> = <date> ~ <purpose> = K0S release no>
" repeated, with latest revision last

To keep track of which 1lines of code were added for what
revisions, each added 1line 1is flagged. For Pascal code, the
characters Rmn are inserted with a comment indicator after column
60.

The preamble template for a Pascal module 1is of the following
form:

(*#*&FILL~,ADJT~,SLIM(72)%)

”

" (C) COPYRIGHT, TEXAS INSTRUMENTS INCORPORATED, 1983.
" ALL RIGHTS RESERVED. PROPERTY OF TEXAS INSTRUMENTS

" INCORPORATED. RESTRICTED RIGHTS ~ USE, DUPLICATION

" OR DISCLOSURE IS SUBJECT TO RESTRICTIONS SET FORTH IN
" TL’S PROGRAM LICENSE AGREEMENT AND ASSOCIATED

" DOCUMENTATION.

(*$WIDELIST,NO MAP,LOCALS,GLOBALS*)
PROGRAM <DUMMY NAME>;

"

" ROUTINE NAME: <NAME OF ROUTINE(S)>
" ABSTRACT <DESCRIBE THE GENERAL PURPOSE OF THE ROUTINE>

" NOTES: {SPECIAL CONDITIONS, ASSUMPTIONS, OR OTHER SPECIAL
" INFORMATION>

" METHOD: <DESCRIPTION OF ALGORITHM IF NECESSARY>

" REVISIONS: ORIGINAL <MM/DD/YY>;
" REVISION <INTEGER>: <MM/DD/YY>, <PURPOSE OF REVISION>

" ENVIRONMENT: 990/10 PASCAL X.X

" TABLE SEGMENTS MAPPED IN WHEN ENTERED

" <STA, JCA OR OTHER TABLE>

" TABLE SEGMENTS MAPPED IN DURING ROUTINE
" <STA, JCA OR OTHER TABLE>

(*SPAGE*)

" GLOBAL DECLARATIONS

2270512~9701 3~11 Coding Conventions

DNOS System Design Document

CONST <IDENTIFIER> = <CONSTANT EXPRESSION>; (*<DESCRIPTION>#*)
?7COPY <FILENAME OF GLOBAL CONSTANTS>;
TYPE <IDENTIFIER> = <TYPE>; (*<DESCRIPTION>*)
?COPY <KFILENAME OF GLOBAL TYPES>;
COMMON <IDENTIFIER> : <TYPE>; (*<DESCRIPTION>#*)
?COPY <FILENAME OF COMMONS>;
ACCESS <IDENTIFIER>,

<IDENTIFIERD>;

" FUNCTIONS OR PROCEDURES DEFINED EXTERNAL TO THIS MODULE

"

<INSERT THE ?COPY THAT BRINGS IN PROCEDURE DECLARATIONS FOR THIS
SUBSYSTEM, WHERE EACH PROCEDURE IS DEFINED WITH ITS PARAMETERS AND
DECLARED AS BEING FORWARD>;

(*$PAGE*)

PROCEDURE <{PROCEDURE NAME)>;
"<{COMMENT HERE THE PROCEDURE NAME WITH ITS PARAMETERS AS A READING AID>

n

" LOCAL DECLARATIONS

LABEL <INTEGERD, (*<DESCRIPTION>*)
<INTEGER)D, (*<DESCRIPTIOND*)
CONST CIDENTIFIER> = <CONSTANT EXPRESSION)>; (*<DESCRIPTION>*)
CIDENTIFIER> = <CONSTANT EXPRESSION); (*<DESCRIPTION>*)
TYPE CIDENTIFIERD> = <TYPE);
<IDENTIFIER> = <TYPE)>;
VAR : <IDENTIFIERD>, <IDENTIFIERD> : <TYPE)>;
CIDENTIFIERD>, <IDENTIFIER> : <TYPE)>;
COMMON <IDENTIFIER>, <TYPE>; (*<DESCRIPTIOND*)
KIDENTIFIERD>, <TYPE>; (*<DESCRIPTION>*)
ACCESS <IDENTIFIER),
<IDENTIFIER),

BEGIN (*$MAP*)
"

~+«INSERT PROCEDURE CODE#++

END;

n

BEGIN (*$NO OBJECT*)

END.

Pascal routines make use of the templates in the

DSC.TEMPLATE.PTABLE directory through use of ?COPY statements.
The data structure templates are copied in as type declarations,
and the CSEG template equivalents are copied as common
declarations. In addition to templates for DNOS structures, the
DSC.TEMPLATE.PTABLE directory also includes a standard set of
types for DNOS in DSC.TEMPLATE.PTABLE.TYPES.

Coding Conventions 3~12 2270512+%9701

DNOS System Design Document

The PASASM directory includes interface routines written in the
Pascal .MACROS to allow routines written in Pascal to call DNOS
kernel routines written in assembly language. Routine names
begin with the letters PL and have the same last four characters
as the nucleus routine to which they interface.

For wutilities written 1in ©Pascal, a collection of routines is
available for interface to SCI. These routines are like the 8§
routines used by assembly language and are found in the Pascal
object directory.

3.5 ERROR HANDLING

Errors detected by assembly language routines are encoded using
error code constants and equated symbols from the collection
defined in these copy modules:

DSC.TEMPLATE.ATABLE.NFCRSH (for system crash codes)

DSC.TEMPLATE .COMMON.NFEROQOO (error codes >00 through >0F)
DSC.TEMPLATE.COMMON.NFER1IO (error codes >10 through >1F)
DSC.TEMPLATE.COMMON.NFER20 (error codes >20 through >2F)
DSC.TEMPLATE.COMMON.NFER30 (error codes >30 through >3F)
DSC.TEMPLATE .COMMON.NFER40 (error codes >40 through >4F)
DSC. TEMPLATE.COMMON.NFERS50 (error codes >50 through >5F)
DSC.TEMPLATE.COMMON.NFER60 (error codes >60 through >6F)
DSC.TEMPLATE.COMMON.NFER70 (error codes >70 through >7F)
DSC.TEMPLATE.COMMON.NFERSBO0 (error codes >80 through >8F)
DSC.TEMPLATE.COMMON.NFER90 (error codes >90 through >9F)
DSC,TEMPLATE.COMMON.NFERAQ (error codes >A0 through >AF)
DSC.TEMPLATE.COMMON.NFERBO (error codes >B0O through >BF)
DSC.TEMPLATE.COMMON.NFERCO (error codes >CO through >CF)
DSC.TEMPLATE.COMMON.NFERDO (error codes >D0O through >DF)
DSC.TEMPLATE.COMMON.NFEREQO (error codes >EQO through >EF)
DSC.TEMPLATE.COMMON.NFERFO (error codes D>FO0 through >FF)

All SVC error codes and crash codes are documented in these copy
modules. Errors detected by Pascal routines use the same codes,
defining constants to have the appropriate error number. The
meaning of each error code is described in detail in the DNOS
Messages and Codes Reference Manual. These errors are also
viewable with the Show Expanded Message (SEM) command.

3.6 GENERATING NEW ERROR CODES

The current set of error codes must be very carefully examined
when a new error code is added. For SVCs, the new error code
must not duplicate any previously defined code which might arise
for that SVC. The DSC.TEMPLATE.COMMON.NFERxx files and the SVC
code list in the DNOS Messages and Codes Reference Manual must be

2270512-9701 3-13 Coding Conventions

DNOS System Design Document

examined. In addition to codes 1listed explicitly, an SVC
processor may return an error code defined for I/0 SVC 00 if an
I1/0 8VC is executed by the processor. Thus, for SVCs in the
following set, any new error code cannot duplicate any defined
for SVC 00: >l4, >1F, >20, >22, >25, >26, >27, >28, >29, >2A,
>2B, >31, >34, >37, >38, >40, >43 and >48. The error codes
reserved for I/0 are annotated in the NFERxx files as being used
for SVC 00, IOU, FILEMGR, DIOU, or IPC. Also, SVC >40 and SVC
>43 must not share an error code, since SVC >43 returns errors
from SVC >40.

Once a new error code has been chosen for an SVC error, that code
must be documented in the appropriate NFERxx file. It also must
be documented in the S8VC files wused by the error processing
utilities. These files are DSC.MESSAGES.TEXT.SVC and
DSC.MESSAGES .EXPTEXT.SVC. If the message employs variable text
pulled from the offending call block, the appropriate entries
must also be made to the tables in DSC.REQPROC.SOURCE.RPRCDA for
use by the Returun Code Processor SVC. The section on system
tasks 1includes a description of the task RPRCP and its required
data structures for handling the Return Code Processor SVC.

When adding error codes for non+~SVC purposes, several sources
must be examined. Task errors are documented in the NFERxx files
as well as in the DNOS Messages and Codes Reference Manual. Any
additions to the set must not duplicate previously defined codes,
and appropriate updates must be made to the NFERxx files and the
manual.

Additional system <c¢rash codes must be checked with the file
DSC.TEMPLATE.ATABLE.NFCRSH and with the DNOS Messages and Codes
Reference Manual, Additional error codes for SCI or utilities.
must be checked against currently defined codes as documented in
the DNOS Messages and Codes Reference Manual. Further
information about assigning error codes for SCI or utilities can
be found in the DNOS SCI and Utilities Design Document.

Coding Conventions 3-14 2270512+9701

DNOS System Design Document

SECTION 4

DNOS STRUCTURE AND NUCLEUS FUNCTIONS

4.1 OVERVIEW

DNOS uses the memory mapping option of the 990/10, 990/10A and
990/12 to efficiently divide the operating system code. It uses
a number of common data structures and a set of system files to
facilitate communication between subsystems. The DNOS nucleus
includes the <code for miscellaneous support functions, task
scheduling and execution, interrupt processing, task termination,
and SVC processing.

4.2 SYSTEM MEMORY MAPPING

Parts of DNOS run in map file 0, some parts run 'in map file 1 and
other parts alternate use of each map file. Each map file 1is
divided into three segments that may total up to 64K bytes of
physical memory.

Task code is executed in map file 1. SVC support, device service
routines (DSRs), interrupt support, and scheduling code are
executed in map file 0. Several nucleus support routines may
execute in either map file (depending on which is in use by the
caller). Figure 4~1 shows the arrangements used by DNOS.

Map file O contains the following: sl

* First map segment (system root):

~ Interrupt and XOP vectors, interrupt decoder and
tables

- Nucleus common support routines

-~ Common data segments

t

System table area (STA)
* Second map segment:

~ Job communication area (JCA) for the task
currently executing, or

2270512-9701 4+1 Nucleus Functions

DNOS System Design Document

~ Special table areas as needed by subsystems, or
~ Buffers for I/0
* Third map segment:

= Scheduler overlay including some SVC support, or

~ SVC support not included in scheduler overlay, or

- DSR code as required by devices.

~ Task code running in a fast transfer mode
Map file 1 is set up in one of two ways, depending on whether or
not the task is installed in a program file as a system task. If
the task is a system task, the first map segment is set up the
same as map file 0, the second map segment 1s set up with the JCA
of the task, and the third map segment 1s set up with the task
code. For nonsystem tasks, all three map segments may be wused

for task and procedure code (no system area is mapped into the
task).

Nucleus Functions 42 2270512+~9701

DNOS System Design Document

First Segment

et Rl R A R R R e O

| Kernel Code |

|wh¢&bb&ﬁhb&bb»&&&l

|System Table Areal

Lt R R R R R R

Second Segment

L etk R e R R R R
| JCA |
+-—a’»w¢-&wc~¢b»p»ﬂ—»»»&ﬂ+
R e R R R R R R R R
| SM Table |
+6&&#&l&&b&b&«l&&&&+
+&l&&l&ﬂ&l&8&&&&lb+
] FM Table |
Lt R R R R R R R TR LRSS
+i*&#&&#&l&&b&&&&‘+

| Synonym and Name|
| Segment i
S R R R AR R
| Physical Record |
| buffer |

+&&&&¢&‘&l“&&&&&&&+
+&4“&&*%&“%I““#&ﬂ&+
| Disk Bit Map |
+%&%%%&&%llhl#*l&l+
+“%&*&&&%&&&ll&l&&+

|Device I/0 Buffer|

FHEARARALERRELERLRRNRRA L

Third Segment

+“ﬁ&~»ihhw&&ﬁh&&&ﬂrﬂ+
|Scheduler/SVC Code|
N 2 I T Ty,

| SVC Code |

S AL A E 2 XS S S E 2 2 2 2 8 2

E b B A R AR B B 2 a2 2 2 2

| DSR |

NS S S Z RS 2 S S 22 2 2 B

ettt 2 2 2 E 2 2 2 2 8 2 2 2 5

| System Task Code |

FRAERBADNRRRE RS R

map

ma p

map

map
or

NP WN -

* Bt ot

only by
only by
mapped only by
mapped only by
memory*resident
fixed size

mapped
mapped

name
file
disk
DSRs

management
management
management
and I/0 subsystem

Figure 4#1 DNOS Map Files

4.3 SYSTEM DATA STRUCTURES

DNOS data structures include both common segments and dynamically
allocated tables.

The two common segments that contain most of the system variables

and pointers are NFDATA and NFPTR. The common segments
containing most of the constants used in DNOS include: NFWORD,
NFEROO, NFER10, NFER20, NFER30, NFER40, NFER50, NFER60, NFER70,
NFER80, NFER90, NFERAO, NFERBO, NFERCO, NFERDO, NFEREO, and
NFERFO.

See the section on detailed data structures for more information.

2270512+-9701 4+3 Nucleus Functions

DNOS System Design Document

The four areas from which system data structures may be allocated
are as follows:

* STA, in the system root, where structures needed by more
than one job are located

* JCAs, one for each job in the system, where job*local
structures are located

* Segment Manager special table areas (see the section on
segment management for details)

* File Manager special table areas (see the section on the
1/0 subsystem for details)

Each job in the system is represented by a job status block (JSB)
in the STA. The JSB contains job identification information,
links for various queues, and priority information.

Tasks (programs) executing in each job are represented by TSBs,
kept in the JCA for the job in which the task 1is running. The
TSB contains all of the information concerning the state of a
task. This includes the current task status 1indicators of
workspace pointer (WP), program counter (PC), and status register
(ST); task state; task priority; flags; installed and run*time
IDs; segment identifiers; map file registers; outstanding I/0
counts; execution time; and end*action pointers for the WP and
PC.

4.4 SYSTEM FILES

DNOS requires certain files to be on the system disk (primary
disk) for its operation. These files are:

* The loader file, .S$IPL, containing the image of the IPL
program (see the section on IPL aud System Loaders)

* The kernel program file, containing the tasks,
procedures, and overlays comprising DNOS

* The utilities program file, containing tasks and
procedures for system utility programs

* The applications program file specified 1in SYSGEN,
containing tasks and procedures for user programs

* The shared program file, .S$SHARED, on which wusers may
place procedures to be shared by other program files,
and where tasks and procedures are placed when installed
to LUNO O

Nucleus Functions 4+ 4 2270512+9701

DNOS System Design Document

Other

The swap file, .SSROLLD.S$ROLLA, where task 1images are
temporarily placed to make room in memory for higher+*
priority tasks

The crash file, .S$CRASH, where an image of memory 1is
written in the event of a system crash

files are also on the system disk for proper execution of

SCI and various DNOS features. These files are:

*

The command procedures directory of SCI commands,
«S$SCMDS

The directory of command definition tables used to
process keyboard bids, .S$CDT, with one file for each
system booted on this disk

The messages directories, .S$MSG and .SS$EXPMSG. If
these are not present, messages appear in cryptic form.

The spooler queue directory, .S$SDTQUE, with one file
for each system booted on this disk

The system generation directory, .S$SGUS
The overlay management directory, .S$SYSLIB

A 1library of system programmer commands and the system
history file in the directory .S$SYSTEM

The user ID directory, .SSUSER and the capabilities list
file, .SS$CLF

Accounting files, .SSACT1 and .S$ACT2, used when
accounting is enabled

The initialization batch stream .SSISBTCH, used to start
the Spooler and for user*specified activities

System log files, .S$LOGl1 and .S$LOG2

The file .S$MVI, used by the Modify Volume Information
processor to record changes to the disk

The file .S$SCA, used by LOGON and SCI

The program file «S$SECURE, used if file access security
is generated with the system :

File structures are described in detail in the section on file
management.

2270512+9701 4+ 5 Nucleus Functions

\

DNOS System Design Document

4.5 NUCLEUS SUPPORT FUNCTIONS

The nucleus provides support routines for system tasks as well as
for other parts of the nucleus. The routines support such things
as routine linkage, queuing, synchronization, inhibiting
scheduling, map file changes, table area management, and system
crash analysis.

4,5.1 Linkage Support.

Most of the linkage between DNOS routines is accomplished by the
push and pop routines (NFPSHn and NFPOPn, where n is the number
of registers to push or pop). R10 is used throughout the DNOS
code as a stack pointer. On entry to a routine, the return
address is pushed on the stack, and a push routine is called to
save registers on the stack. To exit from the routine, the
return code is placed in the leftmost byte of RO and a branch is
made to the pop routine that corresponds to the push routine that
was used. The assembly language macros SPUSH and SPOP must Dbe
used to set up the linkage to subroutines, since the performance
microcode depends on their use. For example, the following code
shows linkage using three registers:

Entry: Exit:

-~ B * & KRR

MOV R11,*R10+ MOVB @ERR30,RO

BL @NFPSH3 B @NFPOP3
or

SPUSH 3 SPOP (@ERR30

Most of the code in the kernel makes use of the stack defined in
the scheduler segment. The scheduler stack is initialized at the
NFSCHD and RPROOT entry points.

When the called routine makes use of SPOP to returm to a caller,
the calling routine can specify three types of error returns.
The word following the BL instruction contains a return address
to be used if an error occurs in the called routine. When the
called routine branches to NFPOP, a test is made to see whether
or not the leftmost byte of RO is zero. If it is not zero, the
return is made to the address specified for error handling. Two
special cases can be specified as error addresses:

Nucleus Functions 4+6 2270512+9701

DNOS System Design Document

* 0 + 1indicates that there 1is no error possible or that
the error should be ignored and, if one occurs, return
to the same address that would have been used if no
error had occurred

* +]1 =~ indicates that no error return is expected and if
one occurs a system crash (0029) should occur. (This
case is primarily used during debugging of DNOS code.)

4.5.2 Queuing Support.

Many of the DNOS system tasks are queue servers, tasks dedicated
to processing entries on queues. When an entry is placed on a
queue server’s queue, the queue server is activated (if it is not
already active) and begins processing entries. When the
processing 1is finished, the queue server either suspends and
waits for more entries to be placed on the queue, or it
terminates; depending wupon the time#*critical mnature of the
function being performed.

System data structures can be queued and dequeued to the
following types of queues, using the nucleus queuing routines:

* Queues with one~word headers, whose entries form a
singly linked list. The routines NFQUEl and NFDQl are
used to queue aund dequeue the entries in a first+in,
first®¥out manner.

* Queues with a six~word header, whose entries form a
singly linked 1list. The header includes fields pointing
to the first entry aud to the last entry, and it
contains a count of the entries. 1If the queue is being
served by a queue server, the header also contains the
task identifier for the queue server task as well as the
TSB address, the JSB address, and the program file
identifier. The routines NFQUEH and NFDQH are used to
queue and dequeue entries in a first in, first out
manner. NFQUEH activates the queue server when
necessary.

* Queues of overhead beets (OVBs), whose entries form a
doubly 1linked 1list. The routines for queuing and
dequeuing overhead beets are NFLOVB and NFDLOV memory
management lists and NFQOVB and NFDOVB for six*word
headers.

Queue headers for system queues are maintained in two 1locations.
Some queue servers execute Iin the system job and have their queue
headers in the system root. Other queue servers execute in the
user’s job and have their queue headers 1in the user’s job
communication area (JCA). Queue headers are defined with an

2270512~9701 4+7 Nucleus Functions

DNOS System Design Document

assembly language DEF directive for the header so that queue
servers running in the system job can use an assembly language
REF directive for the label and access the queue header address
directly. Queue servers 1in the user’s job receive the queue
header address as their second task bid parameter and access the
queue header using this address.

The form of a system queue header is shown in the queue header
template, QHR. All system root queue headers are defined in the
template, DSC.TEMPLATE.COMMON.NFQHDR. NFQHDR is copied during
sysgen to initialize the queue headers. Some of the queues are
optional, depending upon sysgen choices. If a queue 1s not used,
the symbol for the queue header is defined as a word of zeros in
the system root. The bid of a queue server is done by NFACTQ and
the queue server terminates after processing the queue of
requests.

During system start*up, to prevent premature request processing,
the queue server IDs in several queue headers are temporarily set
to zero. When the system is ready to handle the requests, the
queue server ID 1s restored. These operations are domne by
RESTART.

Queue headers in the job communication area are built when a job
is created. The queues for program file SVC operations (install,
delete, assign space, map name to ID), Initialize New Volume SVC,
and Return Code Processor SVC are in the user job communication
area. The section on writing system tasks describes how to build
tasks for each of these environments.

4.,5.3 Synchronization and Coordinationun.

Some nucleus routines aid in coordinating access to the same
system structure or code by more than one routine. One such
coordination aid is the door. A door is described by a two+word
descriptor record that is passed to the door+*handling routines,
The routine NFDCLO closes a door and prevents other tasks from
accessing the door until it is opened by NFDOPN. A task trying
to access a door that 1is closed is suspended until the door is
opened. The macros DCLOS and DOPEN are wused to call these
routines. These macros are in DSC.MACROS.FUNC. (This type of
coordination may also be accomplished by using the semaphore SVC.
See the section on program management.)

4.5.4 Inhibiting Scheduling.

When a task 1is executing critical code, scheduling must not
occur. One assembly language macro 1is wused to inhibit the
scheduler (INHB) and another to enable the scheduler (ENAB).
Between the execution of INHB and ENAB, the task will not Dbe
rescheduled. These macros are located in DSC.MACROS.FUNC.

Nucleus Functions 4+8 2270512+9701

DNOS System Design Document

4.5.5 Map File Changing.

Occasionally, a system task (which normally executes in map file
1) must call a routine that can execute only in map file O.
Interface routines are available for switching to map file 0O upon
entering a routine and returning to map file 1 upon exit. A
routine is entered in map file 0 by executing a BLWP @NFMAPO,
with the next word of program code specifying the address of the
routine to be entered. The second word following the BLWP
contains an error address, zero, or *1, If an error address is
specified and an error occurs, the return from the called routine
is made to the error address. If zero is specified and am error
occurs, no special action is taken; execution continues. If +1
is specified and an error occurs, the system crashes with a crash
code of >0029 (this is used primarily during debugging of DNOS).
The <called routine returns to the caller in map file 1 by
branching to NFRTNO.

When a routine executes in map 0, it expects to be using the
scheduler workspace. Thus it is necessary to set up any required
registers in that workspace before calling NFMAPO. It is also
necessary to pass back any data, (including any error code in RO)
before calling NFRTNO. -

4.5.6 Table Area Management.

The routines in module NFTMGR allocate and deallocate table area
in the dynamic table areas. Allocation is performed by NFGTA and
NFGTAOQ (initialized to zero after allocation), and deallocation
is performed by NFRTA. The smallest block of table area
allocated 1is eight Dbytes. When memory in the specified table
area is exhausted, an error is returned to the caller. Macros
GTA, GTAO, and RTA must be used to access these routines. These
routines may not be called from code which processes interrupts
or requires interrupts to be masked.

The Segment Manager support routines enable system functiomns to
map special table areas, find segment status block (SSB)
addresses for segments, create aund delete SSBs and SGBs, and
force load segments into memory. Descriptions of these routines
follow:

2270512+9701 4+9 Nucleus Functions

DNOS System Design Document

SMMJCA, SMMJCl, and SMMJC2

Maps JCAs 1into the second segment of the executing task or
processor map file. When called from map file 0, each of
these routines performs the same processing, simply mapping
the requested JCA into the current map file 0. When called
from map file 1, SMMJCA does not change the releasable and
modified status of the old segment. SMMJC1l allows the
caller to specify the releasable and modified status.
SMMJC2 is used if the caller needs an error code rather than
loading of the JCA when the JCA is not in memory; otherwise
SMMJC2 functions like SMMJCA.

SMMTBL and SMMTBI
Maps special table areas into the second segment of the

executing task or processor map file. These two routines
function like SMMJCA and SMMJCIl.

SMMSEG
Maps an arbitrary segment into the second segment of the
executing task map file. SMMSEG allows the caller to

specify a byte offset which is to be the beginning of the
mapped portion of the segment. Specifying an offset of zero
causes the entire segment to be mapped.

SMCSGO
Maps an arbitrary segment into the second segment of the
executing task map file. SMCSGO does the actual work of and
is a common subroutine of SMMJCA, SMMTBL, and SMMSEG.

SMSRCH

Returns an SMT/SSB pair for a specified ID/file descriptor
packet (FDP) pair. SMSRCH calls SMFSID to see if an SSB
exists for the specified ID. If so, it verifies that the
caller has access to the segment, which may include an
SMCHUC call. 1If the caller has access, the SMT/SSB pair is
returned. If not, SMSRCH will returm a replicated SSB 1if
the segment is replicatable; otherwise an error is returned.
If no SSB already exists, SMBLDS is called to create one.

SMBLDS
Creates an SSB (and an SGB if necessary) for a given segment
type. The «caller specifies an FDP and a task/procedure

flag. If the FDP is zero, a memory*based segment is built.
SMBLDS first builds an SGB if there 1is none for the
specified file. It then builds an SSB of the correct size,
supplies a run*time ID, and links the SSB onto the SGB. For
data files, the length and attributes are set; for program
files, certain flags are set.

Nucleus Functions 4+10 2270512+9701

DNOS System Design Document

SMFSID

Searches a segment group for a segment with a specified 1ID.
The <caller specifies the segment group via an FDP address.
If the FDP address is zero, the memory*based segment group
is assumed. The caller can search for the segment via an
installed or run+*time ID. Also, the caller can search for a
task segment. If a match 1is found, the Segment Manager
table area that contains the segment’s SSB is mapped. This
routine is callable by system tasks and processors.

SMCHUC _
Checks to see if the use counts of a given segment can all
be accounted for by the mapped or loaded segments of a task.

SMLOAD

Loads a segment into memory for system tasks if the segment
is not already in memory. The segment is not mapped into
the task address space but remains in memory as long as the
task is in memory. A segment may be loaded by more than one
task, regardless of its attributes. The use count and task=+
in*memory count of the segment are incremented. This
routine also serves the function of am SVC processor.

SMUNLD
Unloads a segment loaded by SMLOAD. SMUNLD detaches the
segment from the task; consequently, the segment need not be
in memory when the task 1is in mwmemory. This routine
decrements the wuse and task*in*memory counts for the
segment. This routine also serves the function of an §SVC
processor.

SMDSSB

Deallocates segment memory and deletes a specified SSB. 1f
the segment (specified by the SMT/SSB pair) is not wused,
reserved, or owned and not memory*resident, the SSB is
eligible for deletion. If the segment is reusable, it 1is
left cached. If it is updatable and modified, it is placed
on the write queue. If the segment is not in memory, the
swap table entry is released; if in memory, the segment is
placed on the loader queue for deallocation. The SSB is
then delinked and released. If no more SSBs exist for the
associated SGB, SMDSGB is called.

SMDSGB
Deletes a specified SGB. SMDSGB verifies that there are nuno
more SSBs linked onto the SGB and no LUNOs assigned to the
associated file, then delinks and releases the SGB. If the
SGB is deleted, an >A7 call is placed on the IOUQUE to clean
up the file structures.

2270512+-9701 4«11 Nucleus Functions

DNOS System Design Document

SMRMVE

Removes a segment from a task. SMRMVE 1is called when a
segment loses its association with a task on the TOL,
whether because of a segment manager SVC or task
termination. The task+*in+*memory count for the segment 1is
decremented and, 1if it goes to zero, the segment is placed
on the cache 1list. SMDSSB is then called to finish
processing the removal.

SMFL SH
Writes cached buffer segments to disk and deallocates the
memory . SMFLSH processes all segments associated with a
specified LUNO (JSB/LDT ©pair). If they are modified, it
places them on the write queue and waits for the write to
complete. SMDSSB is called to delete the segment. SMFLSH
must be called only by task code.

SMBUFF
Accesses the SSB address of a buffer in a specified task.
The caller specifies a JSB, TSB, and buffer address. SMBUFF
returns the SSB address for the buffer and the offset of the
buffer into the segment.

4.5.7 System Crash Routine.

Whenever an internal operating system error is detected, a branch
is made to the system crash routine (NFCRSH), passing a crash
code indicating the type of error. The crash routine halts the
system and displays the crash code on the front panel of the
computer. When the HALT and RUN indicators on the front panel
are pressed, the crash routine saves the state of the system at
the time of. the crash and writes an imagé of memory to the crash
file on disk. This crash file may then be analyzed by systems
programmers.

4.6 NUCLEUS FUNCTIONS FOR TASK SCHEDULING AND EXECUTION

The DNOS component that places tasks into execution is the task
scheduler (NFSCHD). A task must first be bid and activated
before the scheduler can select it for execution. The scheduler
selects the highest-priority task ready to execute and causes the
central processing wunit (CPU) to start executing it. The task
then executes for a quantum of time until it wvoluntarily or
involuntarily releases control of the CPU. At this point, the
next task in priority order is selected for execution. The
execution period may be limited to a value known as a time slice.
The scheduler also collects the accounting and performance data
related to CPU execution.

Nucleus Functions 4-12 2270512-9701

DNOS System Design Document

The following 1is a metacode description of the scheduler
algorithm:

BEGIN
IF a task is currently active
THEN BEGIN
increment execution time for task;
IF task is a timesharing task
THEN BEGIN
update I/0-bound indicator;
recompute run—time priority;
adjust run-time priority for aging;
END;
IF task is to remain active
THEN requeue task on active queue;
clear active task;
END;
REPEAT
check for reenter and time-out flags (from DSRs);
IF DSR task bid is outstanding
THEN call task bid routine for task;
IF a time-delayed task needs reactivation
THEN call activate task routinej
IF any buffered requests need processing
THEN call end of buffered request processor;
IF no task is on active queue
THEN idle (wait for next interrupt);
UNTIL task found to execute;
set up highest-priority task for execution;
IF task needs I/0 requests unbuffered
THEN call unbuffering processor;
place task into execution;
END

4,6.1 Data Structurese.

The data structures referenced by the scheduler are JSBs and:
TSBs. Each JCA includes a queue of TSBs for tasks ready to
execute, ordered by execution priority. Each JSB carries the
priority of the highest-priority task on its active queue; the
queue of JSB

execution. When a task reaches the end of its allotted execution
time, its TSB is returned to the JCA active queue if 1t dis to
remain active; it is left unqueued if the task is to be
suspended. When a task suspends, it may be necessary to change
the priority of the highest-priority active task in the JSB and
reorder the JSB on the system JSB queue.

2270512-9701 4-13 Nucleus Functions

DNOS System Design Document

4.,6.2 Execution Priorities.

Every task has three associated priority values: a run—time
priority, an dinitial priority, and an installed priority. Task
run~time priorities range from a high of 0 to a low of 255. The

run-time priority is used by the scheduler when selecting tasks
for execution. The initial priority is the initial value of the
run—-time priority and also ranges from O to 255. The installed
priority is the ©priority assigned to the task when it 1is
installed in a program file. The calculation of the initial
priority is based on the installed priority, the priority of the
job in which the task is being bid, and the mode in which the
task is being bid (foreground or background). Job priorities
range from a high of 0 to a low of 31.

Installed priority O is 1limited to certain system tasks. An
installed priority of 0 always maps to an initial priority and a
run~time priority of O. The task’s run-time priority does not
vary during execution.

Real-time tasks have installed priorities ranging from 1 to 127.
The dinitial priority of a real-time task is always the same as
its installed priority. The priority of real-time tasks does not
vary during execution. Therefore, the run-time priority 1is
always equal to the initial priority and ranges from 1 to 127.

All other tasks are time-sharing tasks. They have installed
priorities of 1, 2, 3 or 4. 1Installed priority 1 is intended for
highly interactive tasks. Installed priority 2 is 1intended for
foreground tasks that are less interactive. 1Installed priority 3
is intended for tasks that execute exclusively in background.
Priority 4 is intended for use by tasks that can run either in
foreground or Dbackground. Priority 4 is appropriate for almost
all user tasks.

The following discussion of initial priority mapping and dynamic
priority modification applies only to time-sharing tasks.

Each of the four time-sharing task priority classes (1, 2, 3 or
4) have associated parameters that determine the mapping from
installed priority to run—-time priority. These parameters can be
modified with the Modify Scheduler/ Swap Parameters (MSP) SCI
command. The run-time and initial priorities for all ©background
tasks (regardless of their 1installed priority) are calculated
using the scheduling parameters for priority class 3.

The first parameter used in calculating a run-time priority is
the Initial Priority Mapping Value. The initial priority for a
task 1is a function of the 1Initial Priority Mapping Value
parameter, the job priority of the job in which the task is being
bid, and the Weight of Job Priority parameter. The Weight of Job

Nucleus Functions 4=14 2270512-9701

DNOS System Design Document

Priority specifies the range over which an initial priority can
vary based on the job priority. For example, assume that the
task being bid has an installed priority of 4 and that the task

is being bid in foreground mode. Assume that the 1Initial
Priority Mapping Value parameter for priority class 4 is 190 and
that the Weight of Job Priority parameter for class 4 is 32. If

the job priority were 0, the initial priority for the task would
be 190 - 32 = 158. If the job priority were 31, the initial
priority would be 190 + 32 = 222, 1If the job priority were 7,
the initial priority would be 190 - 16 = 174, The mapping from
the Initial Priority Mapping Value to the actual initial priority
is proportional to the job priority, within the range specified
by the Weight of Job Priority parameter.

DNOS has optional dynamic modification of priorities. As a time-
sharing task executes, an indicator shows whether the task 1is
I/0-bound or compute-bound. The indicator shows the number of
suspensions over a fixed time period and is recomputed at the end
of each execution period for a task., This indicator is used to
modify the initial priority to create the run-time priority
(raising it for I/0-bound tasks and lowering it for compute-bound
tasks). The variation of the run-time priority from the initial
priority depends on the Dynamic Priority Range parameter for that
priority <class. A Dynamic Priority Range value of 16 would
indicate that the run-time priority could differ from the initial
priority by +/-16. A Dynamic Priority Range of 0 would indicate
that the run-time priority would never differ from the initial
priority.,

The default Dynamic Priority Range parameter for all four
priority classes is 0. That is, dynamic priority modification is
disabled by default. Performance tests have indicated that
dynamic priority modification does not improve response time and
can cause unacceptable deviations in performance between stations
when the computing environment is characterized by homogeneous
activity (basically similar tasks executing at most stations).
However, dynamic priority modification can improve response time

without causing significant performance deviations in
heterogeneous computing environments (varied computing activity,
possibly occurring at irregular intervals). I1f a system

administrator wishes to try dynamic priority modification, the
Dynamic Priority Range parameters should be set to 4,4,0,8 wusing
the MSP command. Dynamic priority modification can always be
disabled again by setting the parameters back to 0,0,0,0.

The Aging on Priority parameter is a YES/NO wvalue indicating
whether task aging is used for a given priority class. Task
aging should only be used for background tasks (priority <class
3). If task aging is in effect, the priority of an older task is
raised slightly more than the priority of a new task. To raise
the priority, the power of 4 that represents the execution time
in seconds is used. A task that has executed for 4 seconds is
raised 1 priority level, one that executed for 16 seconds is

2270512-9701 4-15 Nucleus Functions

DNOS System Design Document

raised 2 levels, etc. Task aging can be disabled by setting the
Aging On Priority parameters to NO,NO,NO,NO wusing the MSP
command .

4.6.3 Time Slicing.

Time slicing allows a task to run during a quantum of time and
then forces the task to release control of the CPU., This 1is
accomplished by an interface with the clock interrupt processor.
The clock interrupt routine counts the number of clock ticks for
which a task executes. (A clock+tick is 8.33 MS in the United
States, 10 MS in Europe.) When the count reaches a specified
number, control returns to the scheduler rather than to the
executing task. During sysgen, the user can specify the 1length
of the time slice or can disable time slicing. The length of a
time slice can also be changed using the Modify Scheduler/Swap
Parameters (MSP) command.

4.6.4 Task Bid.

The process of preparing a task for execution is called bidding a
task. This 1is accomplished by the nucleus routine NFTBID. The
process involves building and initializing the necessary data
structures, such as the TSB, and activating the task.

4.6.5 Task Activation.

The NFPACT routine activates a task. If the task segments are
already in memory, checks are made to see that the task 1is not
being killed and that its Jjob 1is not terminating; if these
conditions are met, the task 1s put on the active queue. If the
segments are not in memory (as is the case following a task bid),
the task is put on the waiting-on-memory (WOM) 1list to be
processed by the task loader. (See the section on program
management for details.) After the task is loaded into memory,
NFPACT is again called to place the task on the active queue.

NFPACT calls the routine NFACTL to place a task on the active
queue. The routine NFDACT removes a task from the active queue.
The routines NFWOML and NFDWOM place tasks on the WOM 1list and
remove them from the WOM list. The routine NFWOMJ places a JSB
on the WOM list.

Figure 4-2 shows the flow through the task scheduler.
4.6.6 Table Area Scheduling.
If a GTA(O) request fails, NFPWOT may be <called to place the

active task on the Waiting On Table area (WOT) queue. NFPWOT

Nucleus Functions 4-16 2270512-9701

DNOS System Design Document

causes the active task’s context to be set back as outlined
below. NFDACT is called to remove the task from the active 1list,
and NFWOTL ©places the task on the WOT. NFPWOT then returns
through NFSRTN.

When any RTA is executed, the WOT is examined. by NFRTA. If a
task is on the WOT, NFWAKE is called to restart the task. NFWAKE
calls NFDWOT to remove the first waiting task from the WOT and
makes 1t active.

NFPWOT makes certain assumptions about the environment in which
the GTA(O) was dissued. If the GTA(O0) was issued from Map 1
(task) code, NFPWOT expects entry through the GTA(O) -error
return. The restart context will be set back to the GTA(O0) XOP
which will be reissued when the task is restarted. If the GTA(O)
was issued from Map 0O, NFPWOT assumed the failure occurred while
processing an SVC. 1In this case the active task’s context is set
back to reissue the SVC. This means only modules which process
SVC’s may call NFPWOT from Map O. It is also necessary for the
SVC processor to restore all system structures to the state they
were in before the SVC was 1issued as it will ©be reprocessed
entirely.

2270512-9701 ‘ 4-17 Nucleus Functions

DNOS System Design Document

|
V NFSCHD

| CLEAN UP |
| EXEC TASK |

\ NFTBID
DSR bidding fmmm—————e +
a task? =-yes-->| BID TASK|]

no |

|
|
|
|
|
|
|
| Time delay fom————— +
| expired? --yes-=>|ACTIVATE|
I |] TASK |
|
|
I
|
|
|
|
|
|

Any requests R —— +
to unbuffer? --yes=->| PERFORM |
| | UNBUFFERING|

tm————— + Any tasks ready
| IDLE |<{--no-=-- to execute?

| SET UP TASK |
| TO EXECUTE |

Figure 4-2 Flow of Control in Task Scheduling

Nucleus Functions 4-18 2270512-9701

DNOS System Design Document

4.7 INTERRUPT PROCESSING

When an interrupt occurs, it 1s processed by the anpropriate
interrupt processor. When the interrupt processor is finished,
it branches to a return routine (NFTRTN), which returns to either
the interrupted code or to the scheduler if the time slice for
the task has expired.

4,7.1 Clock Interrupt Processor.

NFCLOK, the clock interrupt processor, gathers performance
statistics, keeps track of time, and decides when a time slice
occurs. The time and date are kept in the following form: year,
day (Julian), hour, minute, second, and tick. Also, a 32-bit
tick counter keeps track of time in clock ticks. The time, the
date, and the tick counter are updated each clock tick. The tick
counter counts clock ticks for 14 months before returning to
zero; it 1is used for timing system functions such as task time
delays. (A clock tick is 8.33 ms in the United States, 10 ms in
Europe.)

Statistics gathering involves sampling a set of flags. The flags
may be set and reset by the operating system at the beginning and
end of critical functions. The frequency with which a flag is
set determines the percentage of time that the operating system
spends within the section of code between the set and reset. A
variable contains the number of flags to be sampled; a two-word
counter counts the number of times that the flags are sampled.
Each flag is a full word and is followed by a two-word counter.
The counter is incremented each time the flag is found to be
nonzero. The first two flags, representing the CPU and disk
utilization, are displayed as a bar graph on the front panel,
with CPU utilization in the 1leftmost eight 1lights and disk
utilization din the rightmost eight lights. This can be changed
using the System Configuration Utility. The remainder of the
flags are defined to measure other aspects of system performance
as shown by the Execute Performance Display (XPD) command.

4.7.2 Internal Interrupt Processor.

An internal interrupt (interrupt level 2) is caused by
instruction execution errors (for example, illegal opcode,
illegal memory address, or privileged dinstruction). Internal

interrupts are processed by the internal interrupt processor,
NFINT2. 1If the interrupt occurs in task code, the task is killed
or placed into end-action code, and control returns to the
scheduler. If the interrupt occurs in operating system code, in
interrupt processing code, or while scheduling is inhibited, the

2270512-9701 4-19 Nucleus Functions

DNOS System Design Document

system crash routine is called.

4.,7.3 Power-Up and Power-Down Interrupt Processors.

When a power-down interrupt (interrupt level 1) occurs, the
power—-down interrupt processor (NFPWDN) idles and waits for the
power-up dinterrupt (interrupt 1level 0). When the power-up
interrupt occurs, the power=-up processor (NFPWUP) chains Dback
through contexts saved by interrupt processors (interrupts are
not reentered after power up) to find the noninterrupt code that
was executing at the time of power down. When the code is found,
the map files are set wup for that code, the devices are all
reinitialized by entering each DSR at its power-up entry point,
the microcode is reloaded by «calling NFLWCS, and the code is
restarted.

4.8 SVC PROCESSING

When a task issues an SVC, the SVC rums with scheduling inhibited
until it either completes or suspends the task that issued the
SvcC. The requesting task is suspended if completion requires a
task driven SVC processor. -

When an SVC processor terminates, it may reactivate the «calling
task by branching to NFTRTN. NFTRTN either reactivates the task
or, if the time slice has expired, forces rescheduling. Svce
processors that suspend the executing task and wish to return to
the scheduler do so through the scheduler return routine, NFSRTN.
NFSRTN saves the status of the executing task im 1its TSB and
exits to the scheduler.

1/0 requests and buffered SVC requests usually require
unbuffering of information to the requesting task when the
request completes. Unbuffering must occur when the task is in

memory. This is accomplished by queuing the buffered request
block (BRB), using NFEOBR, to the TSB if the TSB is in memory and
to the JSB if the TSB is not in memory. The task may then be
activated. Queued BRBs are unbuffered when the task is selected
for scheduling.

4.9 TASK TERMINATION

Task execution is terminated when the task issues a termination
SVC, another task issues a Kill Task SVC, or the task aborts by
executing an illegal or privileged instruction. Task termination
is processed by NFTERM. If the task is not terminating normally,
NFTERM builds a diagnostic packet and, if the task is active
(executable) and has specified end-action (execution after

Nucleus Functions 4-20 2270512-9701

DNOS System Design Document

termination), NFTERM restarts the task at the end-action address.
The diagnostic packet includes the task program counter,
workspace pointer, status, task termination error code, and the
time by which the task must finish end action (see the DIA
template in the section of data structure pictures).

End action can continue for no more than five seconds, unless the
Modify Scheduler/Swap Parameters (MSP) command is used to change
the limit

If the task 1is terminating normally or did not specify end-
action, NFTERM deactivates the task (if active), places a task
termination entry on the accounting queue, then releases the
memory used by the task and system structures that describe that
memory by calling NFDTOL and NFDTSK. Finally, if the task was
not restarted, an entry is placed on the task termination queue
to be processed by the termination processor task, PMTERM. (See
the section on program management.)

4.10 SPECIAL COPY ROUTINE

The routines in the module NFCOPY are used to copy blocks of data
from one segment to another. There are three main entry points,
NFCOPY, NFXCPY, and NFCXFR. NFCXFR is used to copy large blocks
of data from one place to another within the current map file.
It can be used in either map file O or map file 1. NFCOPY and
NFXCPY are used to copy data from one segment to another where
neither of the blocks need be mapped. NFXCPY must be called from
map file O and NFCOPY must be called from map file 1 through the
NFMAPO interface. NFCOPY calls NFXCPY which then calls NFCMAP to
set up a special map file which is used for a <call to NFCXFR.
The routine NFCMAP can be called to set up map files for special
purposes by other routines which run in map file O and are
located in the system root.

2270512-9701 4-21/4-22 Nucleus Functions

DNOS System Design Document

SECTION 5

IPL AND SYSTEM LOADERS

5.1 1IPL SEQUENCE

The DNOS initial program load (IPL) process consists of several
logical steps:

l. A read-only memory (ROM) loader on the CPU 1loads the
track 1 loader (a simple bootstrap program).

2. The track 1 loader loads the system loader.
3. The system loader loads the operating system and any

memory-resident tasks from the wuser’s application
program file. :

ROMs are discussed in other documents about the 990 computer.
See, for example, the Universal ROM Loader User’s Manual.

After Dbeing loaded, the track 1 loader relocates itself to the
last 8K bytes of the first 64K bytes of memory and then reads the
disk volume information from track O, sector O. From this
information, the track 1 loader determines whether it is to load
a diagnostic (stand-alone) program, a secondary loader, or an
operating system. The file to be loaded may be either an image
file or an object (compressed or noncompressed) file. After
determining what is to be loaded, the track 1 loader loads the
program into a portion of the first 64K bytes of memory, starting
at address >A0. Note that this loader cannot load any program

larger than 54K bytes.

The system loader loads DNOS from the kernel program file, using
the steps shown in Table 5-1.

After the system is loaded, the " loader passes control to the
power—-up interrupt handler of the loaded operating system.

The following paragraphs describe in more detail the operation

and logic of the DNOS system loader, as well as the data
structures used by the loader.

2270512-9701 5-1 IPL and System Loaders

DNOS System Design Document

5.2 SYSTEM LOADER OVERVIEW

The system loader resides on disk 1in an 1image file called
DSC.SS$IPL and is loaded into memory by the track 1 loader. It is
linked as if it were a system task; that is, it expects to be
mapped in with the operating system ©root and a JCA while
executing. This allows the loader to call subroutines in the
root after the root has been loaded into memory. The loader
executes with interrupts masked to level 2, inhibiting interrupts
from devices.

Once loaded into memory, the loader enables mapping, creating for
itself a two-segment map file. The first segment contains the
loader code, which is located in the first 8K bytes of physical
memory. The second segment maps in the 8K ©bytes of physical
memory immediately following the loader code.

The first section of code (located in module SLIPL) initializes
physical memory to reset any correctable memory errors and to
determine the actual size of physical memory. This procedure
involves writing to each word mapped into the second segment,
changing the map file to map in the next 8K bytes, and writing
into each word in that segment. This process 1s repeated until
the loader tries to write to memory that does not exist.

Having found the end of physical memory, the loader maps in the
last 16K bytes as its second map segment and relocates itself to
that segment resetting its map file such that the first map
segment maps in the memory starting at physical address 0 and
logical address 0, and the second map segment maps in the memory
containing the loader code, starting at logical address >C000.,
From this point on, as the loader finishes a particular phase of
the load process, it displays the phase on the front panel
lights, starting at the left. Table 5~1 lists the different
phases and indicates the significance of each.

IPL and System Loaders 5-2 2270512-9701

DNOS System Design Document

Table 5-1 System Loader Phases

Phase Description
1 Successful relocation of the loader
2 Successful open of kernel program file

3 Successful load of root, verification of
system version, and load of writable
control store (WCS)

4 Successful load of special table areas

5 Successful initialization of system overlay
table and crash file

6 Successful load of JCA segments

7 Successful load of DSRs and scheduler

8 Successful load of memory resident system tasks

9 Successful load of memory-resident user tasks

Next, the loader initializes its load device (disk drive) for
I/0. It then determines whether the machine being loaded is a
990/12.

The system root, consisting of a procedure and "a task segment
from the kernel program file, is then loaded into memory,
starting at location O. The loader creates a new three-segment
map file, mapping in the root as the first segment, the following
physical memory (up to address >C000) as the second segment, and
the loader code as the third segment. As soon as the root 1is
loaded, the 1loader verifies that the loader file (.S$IPL), the
kernel program file, and the utilities program file (.S$UTIL),
are all of the same version. Then the loader checks the volume
information from the disk being 1loaded to see 1if a writable
control store (WCS) file is specified. If so, it then loads the
WCS from the file.

Next, the loader loads or creates the memory-based segments of
the operating system. The loader traverses the memory-based SSB
list located in the STA. Each SSB represents a file management’
or segment management table area and indicates whether to load a-
segment from the kernel program file or to build a segment in
memory (a nonzero SSBADR value indicates that the overlay is 'to
be loaded from the kernel program file). After loading or
creating a segment, the 1loader initializes that segment’s
overhead words.

2270512-9701 5-3 IPL and System Loaders

DNOS System Design Document

The loader then performs the following:

* Determines which of the disk drives defined is the disk
from which the system was initially loaded and marks it
as the system disk

* Installs the system disk
* Initializes the system overlay table

* Builds the file structures for the swap file and the
crash file

After all of the special table areas are in memory, the loader
scans the JSB list in the system table area. Each JSB points to
an SSB for a JCA that needs to be loaded from the kernel program
file. JCA segments may also require name segments; if so, the
loader creates the segments. Table management overhead words are
initialized in both JCA and name segments.

The next phase consists of loading the DSRs, the scheduler, and
the SVC processor segments. The map files of these various
segments, which are 1in an array for the scheduler and in the
physical device tables (PDTs) for the DSRs, contain the installed
IDs of the overlays on the kernel program file. The loader scans
the map files, loading any segments indicated.

The loader then reads the memory-resident system task ©bit maps
from the kernel program file and the utilities program file,
loading each task indicated. Any associated procedures are also
loaded. SSBs are created and initialized for all segments loaded
in this phase. If a user application program file was specified
during sysgen, the loader reads the bit map for that file and
loads all memory-resident tasks, procedures, and segments.

The next step in the load process 1is installing all on-line disk
volumes. Installing a volume includes initializing PDT
information, c¢reating an FDB for VCATALOG for that disk, and
initializing the disk manager data structures.

The final phase of the 1loader execution allocates the ©buffer
table area (BTA), loads the 1/0 utility task, and initializes the
system anchor for BTA. BTA is located in wuser memory,
immediately following the memory-resident portion of the
operating system and all memory-resident tasks. The I/O0 utility
task is then loaded, and the system anchor is initialized for the
file memory list. The memory containing the loader is part of
user memory. After the initialization is performed, the loader
transfers control to the power-up I1nterrupt processor of the
operating system.

IPL and System Loaders 5=4 2270512-9701

DNOS System Design Document

5.3 SYSTEM LOADER DATA STRUCTURES

Since the data structures created by the system loader are also
used by other parts of the operating system, the data structures
themselves are not described in detail. The loader’s use of
these structures and the reasons for their existence are
described in the remainder of this section. The descriptions
assume that the load medium is a disk. In the 1loader modules,
device—-dependent code is localized to as few modules as possible.
As a result, the 1loader 1is easily configurable as a download
program that uses a communication port as its load device.

The system loader uses the following data structures on the disk:
* Volume information (track 0, sector 0)
* Volume directory (VCATALOG)
* Kernel program file, named during sysgen

* Utilities program file, .SSUTIL (or a name chosen by the
user)

* Shared program file, S$SHARED

*# Application program file

% Writable control store (WCS) file

* Partial bit maps (while installing the disk)
All except the volume informationm and the WCS file are standard
structures, as described 1in the section on data structure
pictures.
In addition, the system loader uses modules SLDATA and SLDISK for
internal working storage. These storage areas are part of the

system loader object itself, and are available to the system
loader for the duration of its execution.

5.3.1 Disk Volume Information.

The volume information contains the following data wused by the
system loader:

*¥ Starting allocatable disk wunit (ADU) of VCATALOG, the
volume directory

* Names of the following files:

- kernel program file

2270512-9701 5=5 IPL and System Loaders

DNOS System Design Document

- wutilities program file

-~ WCS file (If the Performance Package is present)
* Total number of ADUs on the disk
* Starting sector of the partial bit maps
* Volume name

% Number of sectors per ADU on the disk

5.3.2 WCS File.

The WCS file is an image file whose content is of the following
form:

* Word 1 - number of bytes of overhead

* Word 2 - microcode word size

* One or more repetitions of
- Word 3 - microcode starting address
- Word 4 - number of microcode words

- Microcode

5.3.3 Kernel Program File.
Although the kernel program file 1is standard in format, its
contents are slightly wunusual. The kernel program file 1is
created by the Assemble and Link Generated System (ALGS) portion
of sysgen and contains all of the system segments that are
configurable during sysgen. The file contains the following:

* System root (two procedure segments)

% System JCA (overlay)

* First segment management table area (overlay)

* All DSRs included during sysgen (overlays)

* Configurable system tasks (starting with task ID 2) and
their overlays

* JCAs for sysgen-defined jobs (overlays)

IPL and System Loaders 5=-6 2270512-9701

DNOS System Design Document

5.3.4 System Loader Intermnal Working Storage.

The modules SLDATA and SLDISK contain the following data 1items
local to the system loader.

* SLDATA
- System loader MAP files
- Linkage to system file structures
- Memory management and allocation information
*# SLDISK
- Disk initialization routine (SLINIT) workspace

- Disk I/0 routine (SLDIO) workspace

5.4 FLOW OF CONTROL THROUGH THE SYSTEM LOADER

SLIPL 1is the main routine of the system loader. It includes the
loader relocation code and calls to subroutines that perform all
of the actual loading. Figure 5-1 shows the calling
relationships between the different loader modules.

2270512-9701 5-7 IPL and System Loaders

DNOS System Design Document

Fmm———— + Fomm e ————— +

| j—————- | SLINIT I

| I e ————— + e et +

| e e L | SLVRFY |

| | Fmrm———————— + tmmmmme———- +

| | —————— | SLWCS |

| S | Fmm—m - tom————— +

| | == |

| L | o ——— + | |

| | m————— | SLDSR 1| tomm——— e e i

| 1 | o + —----~| SLOPEN | ——————————— \

| | \ Fommm + \ \
| P | \ - \ |
| | Fom e ——— +\ | Fommm + | |
| L | m————— | SLTABL Y t=———- | SLDIO (!

l I to—mmmmm + 0\ e ittt + 1 |
		\		
	Fe————— \			
	\	I		
I	Fommmm + \ pommmm + 1			
	m=—————	SLJCA	=—————— \	SLPFIO I
	Frmmm——————— + \ Fomm———————— +/	/		
[I \ r				
	Frm—————————- + Ftrmmmm——————— +	/]		

| |—————— | SLSTSK |==—=== | SLLMOD | =—=~——- + /

| | Fommmm - + [H=—m———————— + [/

| | Fomm - + / [/

I |—===-= { SLUTSK ==/ !/

i | ittt + [/ dmmmm—m—e— e Fmmme e /

| | +===/ | SLFDB | /

| I | tommmmm e + [emm—-- /

| | Fomm - + | /

| | ==—==== | SLDINT | —————=- + I /

| | Fomm + | I /

| | e +

| [== e e | SLIV |

tmm———— + e —————— +

Figure 5-1 System Loader Subroutine Calls

5.4.1 Relocating the Loader.

As described in the overview of the system loader, the first
activity of SLIPL is to determine the size of physical memory.
This is accomplished by using a second map file segment (the
first segment maps in the loader code). Initially, the loader
map file maps memory as shown:

IPL and System Loaders 5-8 2270512-9701

DNOS System Design Document

1st segment 2nd segment

fmmm—mm e Fmmmm—————— Fomm e /
| | [\
| loader | 8K bytes [/
| | | \
tmmmmmm fommm e T /
0

The memory initialization code then writes to every word in the
second map segment, comparing the contents of each word after the
write to verify that the contents are the same, If the
comparison fails, the loader assumes that it is at the end of
physical memory.

After 8K bytes have been checked, the loader resets its map file
as shown:

lst segment 2nd segment
fomm e tmm————————— tommm———————— tmm——— /
I I | | \
| loader | 8K bytes | 8K bytes | /
! I | | \
Fmmmmmm e pmmmmmmmm e trmmm—————— fmm——— /
0

This process is repeated until the end of physical memory 1is
found.

NOTE

If the computer being loaded contains the
maximum amount of memory allowed, or 1if the
search for the end of memory causes the
loader to write to the TILINE peripheral
control space (TPCS), the write/compare test
will fail on the first write to the TPCS;
thus, no accidental TILINE commands can be
issued. (TILINE is a registered trademark of
Texas Instruments Incorporated.)

After finding the end of memory, SLIPL relocates the 1loader to
the upper 16K bytes of physical memory, mapping memory as shown:

2270512-9701 5-9 IPL and System Loaders

DNOS System Design Document

lst segment 2nd segment
e L T tome———— ——f) ——————— Frm———————— -t

| old | \\ | I
|loader I // I loader |

| code I \\ I I
tmmmmm - fommm————— /] ===—————— tmmmm e +
0 >C000 end of memory

After the relocation, SLIPL calls SLINIT to initialize the 1load
device for I/0.

SLIPL also determines the CPU type and saves it as CPUID in
NFDATA.

5.4.2 Load Device Initialization.

SLINIT has two entry points, SLINIT and SLIVSU. SLINIT performs
some device initialization, dependent on values found in the
loader ROM workspace (location >80 through >9E), and is called by
SLIPL. SLIVSU is an entry point used by the disk installation
routine, SLIV, to gather the information about a disk drive
necessary to install the volume. The device initialization logic
consists of performing a Store Registers command to the disk
drive and then reading the volume information (track 0, sector
0). From this information, SLINIT initializes the workspace used
by the disk I/0 routine (SLDIO), saves the important file names,
and saves the ADU address of VCATALOG. Since the device
information is saved in common segments, it is accessible by the
other loader routines.

5.4.3 Opening a File for 1/0.

Before loading the system root, SLIPL calls SLOPEN to open the
kernel program file for I/0. SLOPEN is an important routine in
the loader; it accepts as input a file name, which is assumed to
be cataloged in the volume directory VCATALOG. It then
calculates the hash value of the file name and searches VCATALOG
for the File Descriptor Record (FDR) for that file. When the
file is found, SLOPEN reads the FDR into the 1loader’s internal
buffer (located after the 1last module in the loader) and then
builds a file control block (FCB) and file descriptor block (FDB)
for the file. The FCB and FDB are built in the file manager
table (FMT) if the FMT has been loaded, otherwise, they are built
in a temporary area in one of the loader common segments. The
FCB information 1s used by the program file I/0 routine, SLPFIO,
to read and write to the file on disk.

IPL and System Loaders 5-10 2270512-9701

DNOS System Design Document

NOTE

The loader is designed so that it can perform
I/0 to only one file at a time; in other
words, only one file can be open at a time.

5.4.4 Loading the System Root.

After the kernel program file is open, SLIPL 1loads the system
root. It calls the module load routine, SLLMOD, to 1load
procedure 1 and procedure 2 from the kernel program file. These
two modules are loaded in adjacent memory, starting at location
0, and combine to form the system root segment. After the root
is loaded, SLIPL resets its map file to be a three-segment map
file. It maps the root as the first segment, the physical memory
immediately following the root as the second segment, an the
loader code as the third segment, as shown:

lst segment 2nd 3rd segment
e Fm————— fm———- /] =m———————— fmmmm e +

| system | | \\ | I

| root | | // | loader |

| I | \\ | |
fommm————— pmmm—— tmm——— []=—m—————— e +

0 JCASTR >C000 end of memory

After 1loading the root, SLIPL calls SLVRFY to verify that the
versions of the kernel program file, the wutility program, and
S$IPL match.

5.4.5 Loading a Module.

The loader <calls SLLMOD to load a segment (task, procedure, or
overlay) from the currently open program file. The module |is
always loaded into memory, starting at the next available beet
address. (A beet address is an address evenly divisible by 32.)
Memory 1is allocated linearly from physical location 0 to the end
of memory. SLLMOD is used for three purposes:

* Loading a kernel segment (a segment that is not a system
or user task, such as a JCA or a DSR)

% Loading a task or procedure segment

* Reading the program file directory index (PFI) for a
segment

2270512-9701 5-11 IPL and System Loaders

DNOS System Design Document

When loading a kernel segment, SLLMOD does not create any system
overhead (such as an SSB or OVB for the segment). It does,
however, make an entry in an internal table to indicate which
kernel segments have already been loaded. Thus, if a segment is
requested more than once (as is the case for the system JCA) it
will be loaded only once. This intermal table has the following
form:

e e +
0| type | ID | load beet | seg. length |

ittt et +
1] | | |
. T e e s e e S S +
. // // // //
B e e L L P e PP PP PP P PP PP PPt +
n | I I |

ittt it L e L +

Each table entry is three words long and contains four fields as
follows

* The first byte of the first word 1is the segment type
(O=task, 4=procedure, 8=overlay) on the program file.
Note that a segment installed as a procedure or a task
on the kernel 1is not necessarily loaded into memory as a
procedure or task. The system root is an example of
this.

* The second byte of the first word is the installed ID on
the program file.

* The second word is the beet address where the segment
was loaded.

* The third word is the byte length of the segment.

When a kernel segment 1is requested, SLLMOD first searches the
table to determine if the segment 1is already 1loaded; 1f so,
SLLMOD immediately returns the load beet and segment length to
the caller.

If the segment requested is a task or procedure segment, SLLMOD
loads the segment and builds system overhead for it (SSB and
OVB). Before trying to load the segment from the program file,
SLLMOD calls a routine in the system root, SMFSID, to search the
SSB group for the SSB of the currently open program file. If the
SSB is found, the segment is already in memory and need not be
reloaded; otherwise, the segment must be loaded.

IPL and System Loaders 5-12 2270512-9701

DNOS System Design Document

5¢4.6 Initializing the Crash File.

After the system root 1s loaded, SLIPL calls SLCRSH to initialize
the «crash file informationm in the system root. This information
is kept in the CSEG NFDATA and consists of the TILINE address;
the head, cylinder, and sector addresses of the crash file; and
the size of the c¢rash file (in -~ beets). SLCRSH obtains the
information by opening the file and extracting information from
the FDR for the file.

54.7 CPU Type Dependent Initialization.

After the load device is initialized, SLIPL determines the CPU
type. This is done by examining a CRU location. If the CPU is a
990/10 or a 990/10A, no special initialization is done. If the
CPU is a 990/12, SLWCS is called to load the WCS file if one 1is
specified 1in the volume information. If the CPU is an S300, the
clock handler is initialized for a 50hz clock.

5.4.8 Loading the Special Table Areas.

The special table areas for segment management, file management,
and system common are represented by SSBs in the memory-based
segment group, located in the STA in the root. These SSBs, built
during sysgen in the $BLOCK module in the D$SOURCE file, can be
initialized with either of the following formats:

* The beet address field of the SSB contains an overlay ID

* The beet address is 0 and the length field contains the
length of the segment to be created.

Only the first segment management table area SSB and the system
common SSB are of the first format; none of the others represent

actual program file segments.

If the table area is a segment in the program file, it is
constructed during sysgen to include only the defined data area,
thus occupying less disk space than if free area was also
allocated. The SSB for the table area contains the correct
length in the SSBLEN field. SLLMOD allocates the difference
between the SSBLEN value and the segment installed length as free
table area. When the system loader loads one of these segments,
it adds the size of the free area to the memory already allocated
for the segment; the result is a segment in memory that includes
all of the free area.

If the segment has no program file image (it is completely empty
and so sysgen built only an SSB for 1it), SLTABL allocates the

2270512-9701 5-13 IPL and System Loaders

DNOS System Design Document

amount of memory indicated in the length field of the SSB; SLTABL
then initializes the table area management overhead words in the
segment to indicate that it is completely empty.

5.4.9 Loading the JCAs.

The SSBs that represent JCA segments are also in the memory-based
segment group but are not located in the STA in the root. They
are located in the first segment management special table area,
which is built during sysgen and loaded in the preceding phase of
the system load. To load the JCAs into memory, SLIPL calls the
routine SLJCA. This routine scans the JSB 1list, maps in the
segment management special table area and then wuses the SSBADR
field to indicate which segment is to be loaded. SLJCA never
creates a JCA segment, since they are all built during sysgen and
have a segment in the kernel program file.

NOTE

Normally, JCA segments are considered
swappable (except for the system JCA).

As SLJCA loads each JCA segment, it inspects the job information
table (JIT) in the JCA to see if any name segment must be created
for the job. This 1s indicated by a nonzero value in the SSB
address field for the segment. If the value is nonzero, it is
used as the size of the area that must be created. SLJCA creates
an empty segment and initializes it as a name segment. (For
details, see the description of name management in the section on
the I/0 subsystem.)

5.4.10 Loading the DSRs.

The next phase of the load process is the loading of the DSRs,
the scheduler, and the SVC processor segments. The routine SLDSR
loads these. SLDSR first loads the scheduler and SVC processor
segments, then the DSRs. It determines which segments to load by
inspecting the map files for the scheduler and DSRs.

The scheduler/SVC map files are in an array located in the STA in
the root. The array begins with the scheduler map file, and
MAPSHD in the NFPTR common segment in the root points to the
array. Each entry 1in the array 1is a six-word map file,
initialized during sysgen as follows:

l. Limit 1 is set to the length of the root.

2. Bias 1 is set to O.

IPL and System Loaders 5-14 2270512-9701

DNOS System Design Document

3. Limit 2 is set to >4000 (one’s complement of >C000).
4, Bias 2 is the overlay ID of the system JCA.

5. Limit 3 is set to the negative value -1, (This 1is a
signal wused by IPL to determine whether or not the DSR
map file has been initialized.)

6. Bias 3 is the overlay ID of the scheduler or SVC
segment to be loaded.

SLDSR inspects each map file, loading the segments indicated by
the bias 2 and bias 3 fields and initializing each map file with
the correct bias and limit values.

After the map file array has been processed, SLDSR scans the PDT
list, loading the segments indicated by the map file in each PDT.
The PDT map files are initialized 1in the same way as the
SVC/scheduler map files, with the wvalue in bias 3 being the
overlay ID of the DSR for the device.

5.4.11 Loading Memory-Resident Tasks.

After all of the JCAs are in memory, SLIPL is ready to 1load all
of the memory-resident tasks for the system and for user jobs.
SLIPL first calls SLSTSK to load all of the tasks defined in the
system job. SLSTSK calls SLMRES to load all memory-resident
tasks on the kermel program file. SLSTSK then opens the utility
program file and calls SLMRES to load all memory-resident tasks
in that program file. SLIPL calls SLUTSK to load wuser-defined
tasks from the user’s application program file. SLUTSK operates
in the same manner as SLSTSK,

54,12 Disk System Initialization.

SLIPL calls SLDINT to perform some system disk initialization.
SLDINT performs the following functions: ' c

1., Searches the PDT 1list for the disk PDT, which
represents the disk from which the system was loaded.
This PDT is then marked to be that of the system disk

by setting the system disk flag and setting the pointer
SYSPDT to point to the PDT.

2., Opens the system swap file by calling SLOPEN.
3. Installs the system disk volume by calling SLIV,

4., Initializes the system overlay table used by the system
overlay loader.

2270512-9701 5

15 IPL and System Loaders

DNOS System Design Document

5¢.4.13 1Installing Disk Volumes.

The next phase of the system loader is the installation of all
disk volumes that are on-line during IPL. To do this, SLIPL
calls SLIV, which scans the PDT 1list in the STA, searching for a
disk.

IPL and System Loaders 5-16 2270512-9701

DNOS System Design Document

SECTION 6

SVC REQUEST PROCESSING

6.1 OVERVIEW OF SVC PROCESSING

In the 990 hardware architecture, 16 levels of extended
operations (XOPs) are defined. Level 15 is reserved for use as
an interface between user software and operating system services.
This interface is named the Supervisor Call (SVC) interface.

When an SVC 1is 1issued, the 990 computer hardware transfers
control to a software routine, which begins decoding and
processing the SVC. The activity of the decoding routine varies,
depending on the particular SVC request. Some SVCs are processed
quickly, with 1little information passed from requester to
processor. Other SVCs require extensive effort and time or
require much information transfer between requester and
processor. To allow optimum wuse of the 990 resources, an SVC
that requires much time to process is copied 1into a block of
system table area (STA) along with information identifying the
requester; then the requester task is suspended and its memory 1is
relinquished to other tasks.

The amount of effort involved plus several other factors
determine the method used by an SVC processor. The SVC request
is copied (buffered) into registers if the processor meets the
following conditions:

* It is a memory-resident processor

* It completes processing of the SVC in a short period of
time

* It processes an SVC that may be issued by any task

* It processes an SVC that cannot be an initiated event
(using SVC >41)

* It returns all results directly to the requester task
space

Otherwise, the SVC request is buffered into the STA.
While a task is having an SVC decoded, that task cannot lose its

time slice or be preempted by the scheduler. When the SVC issued

2270512-9701 6-1 SVC Processing

DNOS System Design Document

is one that finishes quickly, the request is decoded and is
processed, and control returns to the requester task before the
scheduler can schedule another task for execution. Essentially,
the sequence of events 1s as follows:

l. Requester task issues the SVC by wusing XOP @block,15
(or equivalent)

2. Decoding routine is entered from the XOP interface

3. Decoder determines that this 1is a request which
finishes quickly

4. Decoder coples some or all of request block into
processor routine registers

5. Decoder transfers control to processor

6. Processor performs requested service and returns
information to requester task

7. Processor returns control to requester task

If the SVC request 1issued is not a fast request, the SVC decoder
copies the request block into a buffer in STA and then follows
one of two possible paths. For requests that require much time
and effort, usually the request is queued to a processor task and
the requester task 1s suspended wuntil the request completes.
Processors that are disk-resident tasks follow this path. Such
processors are either seldom used or very large in size.

Certain special processors, such as those for I/0 and job
management use an alternate path for processing buffered
requests. Some preprocessing is required before control goes to
a processing task. When following this path, the decoder copies
the request block into a buffer d1in STA or JCA and transfers
control to the ©preprocessor. The preprocessor examines the
buffered request and performs whatever processing it can. For
some subopcodes, all processing is completed in the preprocessor.
In these cases, control is returned to the requester task., In
other cases, the preprocessor queues the request to the processor
task and suspends the requester task,

When the requester task is suspended while the SVC is being
processed, the requester task may be removed from memory to make
room for another task, When the SVC request is finished, the
buffered request must be returned to the requester task; then the
requester task can again be scheduled for execution. To allow
this, the SVC processor queues the finished buffered request
block to the requester task’s TSB (or to the task’s JSB if the
TSB is not in memory). When ready for a new task, the scheduler
examines these blocks, ensures that the task is in memory, calls

SVC Processing 6-2 2270512-9701

DNOS System Design Document

a routine to return informationm to the task, and schedules the
task for execution.

The decoding routine examines the SVC request not only to
determine whether processing will be fast or slow, but also to
verify several other characteristics. Some SVC requests must be
aligned on a word boundary in order to execute properly. This is
the first characteristic the decoder checks for. 1If the request
block is not aligned but should be, an error code of >Fl is
returned in the return code field of the request block, and the
requesting task resumes control.

Another characteristic to be checked is the privilege level of
the request. Some SVC requests can only be issued by operating

system tasks. If this requirement is not met, an error code of
>F2 is returned in the return code field of the request block,
and the requesting task resumes control. Some SVC requests

require that the requesting task be 1installed as software
privileged. If this requirement is not met, the task recelives an
error code of >F3, and the requesting task resumes control,

Since some of the SVC requests (and their processors) are
configurable when a DNOS system is generated, it is possible for
a task to issue an SVC that is not supported on a particular DNOS
system. When this occurs, an error code of >F0 is returned to
the request block, and control returns to the requesting task.
This error code is also returned when a request specifies an SVC
code that is not defined in the DNOS set.

Some DNOS users extend the capabilities of the operating system
by adding their own SVC codes and processors during sysgen.
(Such user—-defined SVCs have operation codes >80 or greater.)
The same checks are performed on user-defined SVCs as on the DNOS
SVCs, and the same set of error codes is used for these checks.

6.2 MODULES USED FOR REQUEST PROCESSING

Most of the routines for processing SVC requests are written in
990 assembly language; several are written in ©Pascal. The
routines are found in modules either in the subsystems that they
directly support, or in the DSC.REQPROC directory. Modules in
REQPROC support the decoding, buffering, and unbuffering of
requests and also process some of the requests that do not belong

in any other DNOS subsystem. Table 6-~1 lists and describes some
of the request processor modules found in the REQPROC directory.

2270512-9701 6-3 SVC Processing

DNOS System Design Document

Table 6~1 Major Request Processor Routines

Name Description

RPBUF Routine that copies request blocks to buffers in
STA

RPCONV Processors for SVC 0A,0B,0C,0D (data conversion)

RPDQUE Routine that dequeues and unbuffers SVC requests
to requester tasks

RPGSVC Processors for SVC 02,03,06,07,09,0E,11,2E,2F,35,
3B,3E (miscellaneous general-support SVCs)

RPIDSC Processor for SVC 38 (Initialize New Disk Volume)

RPINV Main driver for the initialize new task volume

RPINV1 Routines used to support the initialize volume
process

RPINV2 Same as RPINVI

RPINV3 Routines used to initialize disc process

RPINV4 Utility routines for the initialize new volume

process

RPIOR Utility routines for the IV, UV, and INV SVC
handlers

RPIV Handles the main portion of installation of a

disc volume

RPPRCK Routine that checks for memory protection
violations

RPPEVT Processor for SVC >4F (Post Event)

RPPSVC Processors for SVC 04,10,1B,24,2B,2C, 33
(miscellaneous) (program—-support SVCs)

RPRCDA Data base for SVC 4C (Return Code Processor)

RPRCP Processor for SVC 4C (Return Code Processor)

RPRETR Processor for SVC 3F (Retrieve System Data)

RPROOT Decoder for SVC requests

RPSDAT Module that includes the system static buffer
and a table (RPSTAB) built during sysgen, '
showing characteristics and processors for DNOS
SVCs

RPSGCK Routine that checks for mapping violations

RPUDAT 1Includes the table RPUTAB built during sysgen,
showing characteristics and processors for
user—-defined SVCs

RPUTIL Utility routines and data areas for the IV, UV,
and INV SVC handlers

RPVOL Processors for SVC 20,34 (Install Disk and
Unload Disk)

RPWAIT Processor for SVC 42 (Wait for Event)

RPWTIO Processors for SVC 01,36 (Wait for I/0)

Other modules that process SVC requests are found 1in the
subsystems for I/0, name management, job management, program
management, and segment management. Short descriptions of the

SVC Processing 6-4 2270512-9701

DNOS System Design Document

routines that process SVCs can be found in the relevant subsystem
descriptions.

6.3 MAPPING STRUCTURE

Due to the large number of SVC processors, one map file segment
cannot contain all of them. Therefore, two arrangements of map
file 0 are set up during sysgen. One arrangement has these three
segments mapped in: system root, requester JCA, scheduler/first

SVC segment. The other arrangement has these three segments
mapped in: system root, requester JCA, second set of SVC
pProcessorss. A flag in the RPSTAB entry shows which of the map
arrangements is needed for processing a particular SVC. Before

passing control to the processor, the decoding routine makes sure
that the correct map file 1is being used. When the processor
terminates, the return routines ensure that the map file with the
scheduler segment is restored.

6.4 DATA STRUCTURES USED FOR SVC PROCESSING

The primary structure used by the SVC decoding routine is the SVC
definition table built during sysgen. This table, RPSTAB, is
created to define completely all DNOS SVCs included in the
current system configuration. Users who supply any of their own
SVCs must build a similar table, RPUTAB, to describe those SVCs.
The RPSTAB table is located in a module named RPSDAT; the wuser
defined table is placed into a file named .S$SGUS.USERSVC.RPUDAT.

Each DNOS-supported SVC code has a two-word description field in
RPSTAB. For codes that are undefined in a particular
configuration, both words are zero. Figure 6-1 shows the two-
word description format.

2270512-9701 6-5 SVC Processing

DNOS System Design Document

BYTE 0 - FLAG BYTE

BIT O - O= Do not check alignment; l=check alignment
1 - 0= Use registers to buffer; l=use table area
2 - 0= Use first SVC segment of processors;

= Use second SVC segment of processors
3,4 - Reserved
5=7 ~ Length to buffer, if going to registers;
otherwise O
BYTE 1 - LENGTH BYTE
>00 if buffering in table area
Length of whole call block if buffering in registers
BYTES 2,3 - ADDRESS WORD
Address of request definition block (RDB) if
buffering in STA
Address of processor 1f buffering in registers

Figure 6-1 SVC Entry Form in RPSTAB

SVC processors that execute quickly and require little

information from the SVC call block have the required information
buffered 1in registers. Upon entry to the SVC processor, the

following registers are set:
* RO - bytes 0,1 of call block (or zero if unused)
*# R1 - bytes 2,3 of call block (or zero if unused)
* R2 - bytes 4,5 of call block (or zero if unused)
* R3 - requester call block address
* R4 - requester TSB address
* R5 - requester map file pointer in TSB

When using a buffer in STA, a structure called the request
definition block (RDB) is used to tell how much and which fields
to buffer. The RDB is defined in the module with the memory-
resident ©processor or preprocessor, if one 1is used. For SVCs
processed by tasks with no preprocessors or for SVCs that are
configurable options of DNOS, the RDB is defined in the RPSDAT
module. The RDB is labeled RDBSxx for system SVC opcode xx. A
template for the RDB is shown in the section on data structure
pictures. Figure 6-2 shows examples of RDBs.

For many of the requests buffered according to an RDB,
information must be returned from the processed buffered request
to the requesting task. The structure used to govern this

transfer is the return information block (RIB) built for the SVC.
A RIB 1is needed if information in addition to the return code

SVC Processing 6-6 2270512-9701

DNOS System Design Document

must be passed back to the requester task. The RIB for system
opcode xx 1is RIBSxx and is shown in detail in the section on data
structure pictures. Figure 6-2 shows an example of an RIB.

RDBS14 EQU § LOAD OVERLAY RDB
DATA >0800 USE DYNAMIC BUFFER IN STA
DATA OVYQUE OVERLAY QUEUE SERVER HEAD
DATA 0 NO RIB NEEDED
DATA >0007 MAX BUFFER SIZE
BYTE >07 BASIC BLOCK LENGTH
BYTE 0 ACCOUNTING FACTOR
DATA 0 RESERVED

RDBS48 EQU § JOB MANAGER RDB
DATA >1800 PREPROCESSOR, DYNAMIC BUFFER
DATA JMPREP ADDRESS OF PREPROCESSOR
DATA RIBS48 RIB ADDRESS
DATA >0010 MAX BUFFER NEEDED IS 16 BYTES
BYTE >10 BUFFER 16 BYTES
BYTE 0 ACCOUNTING FACTOR
DATA 0 RESERVED

RIBS48 EQU &
DATA 0 NO POST PROCESSOR "NEEDED
BYTE 0 START UNBUFFERING AT BYTE O
BYTE >10 UNBUFFER 16 BYTES
DATA 0 END OF RIB

Figure 6-2 Examples of RDB and RIB Structures

The job management SVC 1is one example of an SVC that must be
rebuffered for certain sub-opcodes. The flags defined in the RDB
for expansion govern that rebuffering. This technique 1is used
because request blocks for sub-opcodes within the SVC opcode vary
in size. The preprocessor of the SVC must make a call to RPBUF
with a revised RDB to rebuffer special cases.

SVC processing uses several data structures in addition to the
RDB, RIB, and RPSDAT. Among these are the queue headers for the
queue server SVC processing tasks. The queue headers ‘rare
described 1in the section on nucleus functions. The SVC decoder
uses the queue header pointer in the RDB to queue a buffered
request to a queue server.

SVC processing uses TSBs of the requesting tasks to access map
file information and to return completed requests. It uses JSBs
to return completed requests if the TSBs are not available.
Other structures are used by particular SVC processors but not by
the decoder or buffering routines.

2270512-9701 6-7 SVC Processing

DNOS System Design Document

6.5 DETAILS OF SVC PROCESSING

SVC processing begins 1in the routine RPROOT. This routine
accesses tables to locate the appropriate processor and to
determine buffering details. The routine RPBUF is used to copy
(buffer) the SVC request into a temporary work area., The routine
RPDQUE is used to return the finished request to the task issuing
the SVC. A set of miscellaneous routines is used throughout
processing.

6.5.1 Decoding Routine (RPROOT).

When an SVC is executed, the hardware transfers control via the
interrupt processing routines to the SVC decoding routine RPROOT.
RPROOT first checks for a special SVC (XOP 15,15) used by the SCI
Debugger. If this special call was issued, a flag 1s set in the
requesting task’s TSB.

A check is then made for the Initiate Event SVC. If that SVC is
specified, it is now processed in RPROOT. The SVC being
initiated is checked to ensure that it is a legal opcode and can
be initiated. (In the current version of DNOS, only I/O and
semaphore operations can be initiated.) If no errors occur, the
initiated SVC is processed like any other request.

At this point I/0 and ASegment Manager SVCs are checked for
alignment and then routed directly to thelr preprocessors. This
is done to speed up the processing of those SVCs.

RPROOT then examines the RPSTAB entry for the requested SVC. The
first check verifies that the opcode 1s defined 1in this
configuration. If there is no RPSTAB entry and no RPUTAB entry,
error code D>F0 1is returned, S8SVC ©processing terminates, and
control returns to the requester task.

If the SVC is defined, the next check is for alignment. If the
RPSTAB or RPUTAB entry shows that the request must be aligned on
a word boundary, the address of the request is checked. If it is
not legal, error code >Fl1 1is returned, and SVC processing
terminates.

The RPSTAB entry for the requested operation 1s checked to see
whether buffering occurs in registers or in STA. If the request
is to be buffered in registers, RPROOT performs the following:

l. Checks the call block for mapping and protection
violations

2. Transfers the required amount of information from the
requester call block to registers RO, Rl, and R2

3. Ensures that the correct map file 1is in use

SVC Processing 6-8 2270512-9701

DNOS System Design Document

4., Transfers control to the processor. When the processor
completes 1its work, it transfers control back to the
requester task

If the RPSTAB entry for the SVC shows that the SVC is to be
buffered into STA, RPROOT performs the following:

l. Accesses the RDB

2. Checks the «call block for mapping and protection
violations

3. Calls the ©buffering routine RPBUF to transfer
information from the requester call block to STA
according to the RDB, creating a BRB (Buffered Request
Block)

4. Checks whether the request is to be queued to a queue
header for a task or sent on to a processor in memory

a. If the request is to be queued, RPROOT queues the
buffered block to the queue header and suspends
the requester task

b. If the request is to be sent to a processor,
RPROOT transfers control to the processor, which
either returns to the requester or queues the
buffered request to a task

After RPROOT transfers control to an SVC processor, that
processor may return control to the scheduler by ©branching to
NFSRTN or NFTRTN. It may also return to RPROOT in case an error
occurs in the processing logic. The return points are as
follows:

*# RPRTNE - an error completion. RPROOT must check whether
this was an 1initiated event and return only the error

byte to the requester task,

% RPRTNF - a task error in the requester task. RPROOT
must check whether this was an initiated event and
terminate the requester task with the task error passed
from the SVC processor. If the SVC processor itself
encounters a logic error, RPROOT terminates the
requester task with task error >04 to show an SVC
processor error. *

2270512-9701 6-9 SVC Processing

DNOS System Design Document

6.5.2 SVC Buffering Routine (RPBUF).

RPBUF is a general request buffering routine called by RPROOT and
by several SVC preprocessors that have received a partially
buffered block from RPROOT. RPBUF uses the RDB provided by the
caller to determine how to buffer the information.

RPBUF first checks the RDB flags to see if this buffering is to
use the single system static buffer (provided as part of the
RPSTAB module) or a dynamic buffer. 1If a dynamic buffer is to be
used, a flag is checked to see whether the buffer comes from STA
or from the requester JCA. A dynamic buffer of the size
specified in the RDBMAX field of the RDB is then allocated via
the nucleus routine NFGTA.

If RPROOT called for this ©buffering, RPBUF now sets up the
buffered request by first building the buffered request overhead
(BRO). The BRO is shown in the section of data structure
pictures. It 1includes a pointer to the requester TSB and JSB,
the address of the call block in the requester task, a set of
flags, and several filelds filled during SVC processing.

After the BRO 1is completed, RPBUF includes as much of the call
block as indicated in the RDBBAS field of the RDB. RPBUF then
checks to see 1f expansions to this basic block are to be
included. 1If so, the next several words of the RDB indicate
where to buffer the information (table area or JCA), how much to
buffer, and at which offset 1into the buffered information to
place the new information.

If the buffering request is for revision of a partially buffered
block, RPBUF copies the BRO and the basic request block from the
partially buffered block to the newly acquired block. The old
block of memory is released via the nucleus function NFRTA, and
expansions are treated like those in buffering for RPROOT.

6.5.3 Dequeuing and Unbuffering Routine (RPDQUE).

When a task 1is to be scheduled for execution, the scheduler
examines the TSB to see if any SVC requests are to be unbuffered
to the requester task., If so, RPDQUE is called to remove all
queued SVC requests. RPDQUE works with each queued request,
returning information from the buffered request block to the
requester task. It passes back the return code byte and then
uses an RIB to pass back any other information, if the RIB is
defined. RPDQUE returns the number of bytes specified in RIBLEN
from the offset RIBOFF in the BRB to the offset RIBOFF in the
requester call block. Several sets of paired specifications may
be present, terminated by palr of zeros. When these pairs are
completed, a postprocessor is called, if one is specified in the

SVC Processing 6-10 2270512~9701

DNOS System Design Document

RIBPRO field. When unbuffering is complete, RPDQUE releases the
buffer via the nucleus routine NFRTA and returns to its caller.

A Wait for Event SVC requires special handling by RPDQUE, which
checks the requester task TSB to see which event flags have
completed. The flags being tested in the Wait for Event ©block
are then matched against those in the TSB to generate a correct
reply in the requester task area.,

6.5.4 Other Request Processor Support Routines.

RPMAP2
This routine is part of the DNOS root. It is used by RPROOT
to access a processor in the second SVC map file. RPMAP2
adjusts global pointer CURMAP, loads the second map file,
and transfers control to the processor routine. If the
processor returns to RPROOT, it passes back through RPMAP2,
restoring the original map file.

RPPRCK

This routine checks the memory-protection attributes of a
portion of memory. It first examines the protection bit in
the status word of the task. If protection 1is enabled,
RPPRCK then checks to see if the map: register 1limit
indicates write protection. If so, an error is returned.
To allow unbuffering of SVC request results, write
protection must not be enabled; thus, the error causes the
task to terminate.

RPSGCK
The requester call block must be mapped in by a single base
and limit register pair to simplify processing. RPSGCK

verifies this condition. Given any address and length,
RPSGCK uses the relevant map file to ensure that the block
addressed is correctly mapped. If not, an error 1is

returned, which may cause the task to terminate.

6.5.5 DNOS SVCs and Processors.

Table 6-2 shows the processors for each of the system-defined SVC
opcodes for DNOS. 1In some cases, a preprocessor is shown, since
that module is the one accessed from RPROOT; it may in turn call

one of several processors. Some small processors that perform
related functions have been collected into a single module; the

listing shows both the module name and the processor name for
these processorse.

2270512-9701 6-11 SVC Processing

DNOS System Design Document

Table 6-2 SVC Processors and Modules

NOTATION: MEANING
A Alignment on word boundary required
I May be initiated with SVC 41
(Not Supported) This SVC code is intentionally omitted.
(pre) This is a preprocessor
P Software privileged task required
(P) Some of the set require software privilege
S System task required
(S) Some of the set require a system task
(task) This processor runs as a task
[nn] Name of module containing processor
Processor/Preprocessor
SvC # Name Notes [Module if Different]
00 I/0 Operations A,I,(P) IOPREP (pre)
01 Wait for I/O A RPWTOl [RPWTIO]
02 Time Delay A RPTDLY [RPGSVC]
03 Get Date and Time A RPGDT [RPGSVC]
04 End of Task RPENDT [RPPSVC]
05 (Not Supported)
06 Suspend Task RPUNCW [RPGSVC]
07 Activate Suspended Task RPAST [RPGSVC]
08 (Not Supported)
09 Extend Time Slice RPETS [RPGSVC]
0A Convert Binary to Decimal RPCBDA [RPCONV]
0B Convert Decimal to Binary RPCDAB [RPCONV]
ocC Convert Binary to Hexadecimal RPCBHA [RPCONV]
0D Convert Hexadecimal to Binary RPCHAB [RPCONV]
OE Activate Time-Delayed Task RPATDL [RPGSVC]
OF Abort I/0 Request by LUNO IOABRT
10 Get Common Data Address PMGRCM
11 Change Task Priority RPCTP [RPGSVC]
12 Get Memory A PMGRMM
13 Release Memory A PMGRMM
14 Load Overlay A PMOVYL (task)

15 (Not Supported)
16 (Not Supported)
17 Get Task Bid Parameters A RPGTBP [RPGSVC(C]
18 (Not Supported)
19 (Not Supported)
1A (Not Supported)

SVC Processing 6-12 2270512-9701

DNOS System Design Document

Table 6-2 SVC Processors and Modules (Continued)

SVC # Name Notes [Module if Different]
1B Return Common Data Address PMGRCM

1C Put Data A PMGDAT

1D Get Data A PMGDAT

1E (Not Supported)

1F Scheduled Bid Task A RPXSBT [RPPSVC(C]
20 Install Disk Volume A,P RPVOL (task)
21 System Log Queue Request A LGSVC

22 Disk Management A,8 DMTASK (task)
23 (Not Supported)

24 Suspend for Queue Input S RPQSUS [RPPSVC]
25 Install Task A,P PMPINS (task)
26 Install Procedure/Segment A,P PMPINS (task)
27 Install Overlay A,P PMPINS (task)
28 Delete Task A,P PMPDEL (task)
29 Delete Procedure/Segment A,P PMPDEL (task)
2A Delete Overlay A,P PMPDEL (task)
2B Bid Task A RPXTSK [RPPSVC]
2C Read/Write TSB A,P PMRWTB

2D Read/Write Task A,P PMRWTK (task)
2E Self Identification A RPGSID [RPGSVC(C]
2F Get End Action Status A RPGEAS [RPGSVC]
30 (Not Supported)

31 Map Program Name to ID A PMPMAP (task)
32 (Not Supported)

33 Kill Task A RPKILT [RPPSVC(C]
34 Unload Disk Volume A,P RPVOL (task)
35 Poll Status of Task » RPPTS [RPGSVC]
36 Wait for Multiple I/O RPWT36 [RPWTIO]
37 Assign Program File Space A,P PMPASP (task)
38 Initialize New Disk Volume A,P RPINV (task)
39 (Not Supported)

3A (Not Supported)

3B Set Date and Time A RPIDT [RPGSVC]
3C (Not Supported)

3D Semaphore Operations A,IT PMSEMA

3E Reset End Action Status RPREA [RPGSVC(C]
3F Retrieve System Data A RPRETR

40 Segment Management A,(S) SMPREP (pre)

41 Initiate Event A RPROOT

42 Wait for Event A RPWAIT

43 Name Management A NMPREP (pre)

44 Reserved

45 Get Encrypted Value A SECRYP
46 Get Decrypted Value A SECRYP
47 Log Accounting Entry A PMACCT
48 Job Management A JMPREP (pre)

|
[—
w

2270512-9701 6 SVC Processing

DNOS System Design Document

Table 6-2 SVC Processors and Modules (Continued)

SvC # Name Notes [Module if Different]
49 Get Accounting Info from TSB A PMACCT
4A Modify BTA or JCA Size A,P PMSBUF (task)
4B Halt/Resume Task A,P PMHALT
4C Return Code Processor A RPRCP (task)
4D (Not Supported)
4E Comm I/O -
4F Post Event A RPPEVT

50 DNOS Performance Functions

80+ User-defined SVCs

6.6 USER-WRITTEN SVC PROCESSORS

The standard set of SVCs uses operation codes that range from >0
through >7F. The user may implement SVCs using codes from >80
through >FF. One or more codes may be specified, using any codes
within the wuser-defined range. The wuser must design- the SVC
block, build an RDB to describe buffering, build an RIB if
information is to be wunbuffered, and set up a module of
information with the IDT name RPUDAT. During sysgen, the wuser
supplies a file name for the module containing RPUDAT object and
ensures that object modules for the SVC processor(s) are 1in the
directory .SSGU.USERSVC of the data disk.

6.6.1 User SVC Table.
The user specifies the RDB and RIB information, as well as a set
of general information about all SVCs being defined, in a 'module
of tables that contains the following:

* An IDT name of RPUDAT

* DEF statements for RPUMAX and RPUTAB

* REF statements for each SVC processor entry point

* A byte named RPUMAX with a value of the largest user-
defined SVC code

* A table named RPUTAB with a two-word entry for each SVC
code in the range >80 through RPUMAX

* An RDB for each user-defined SVC code

2270512-9701

[*2]
I
—
£~

SVC Processing

DNOS System Design Document

* An RIB for each user-defined SVC that must return
information to the caller

The entries in the table RPUTAB consist of two words each. The
first word is the value >E000 and the second word is the address
of the RDB for the SVC code being defined. The first entry in
the table is for SVC code >80. Each successive entry is for the
next sequential SVC code. If a particular code is not defined in
the system being generated, the entry in RPUTAB must consist of
two words of zero. Figure 6-3 includes the format of RPUTAB when
the user is defining several SVCs.

An RDB for a wuser—-defined SVC includes the address of the SVC
processor, flags showing how to copy the call block for
processing, and the address of an RIB used to return information
to the calling task. Table 6-3 shows the format of an RDB.

Table 6-3 Request Definition Block (RDB) Format

Field Size Contents

Word Flags, >1000 for user-defined SVCs

Word Address of the SVC processor

Word Address of the RIB for this SVC
(zero if no RIB is defined)

Word Size of the call block in bytes

Byte Number of bytes of call block to
be copied by the operating system

Byte Zero

Word Zero

Figure 6-3 shows several RDB definitions for user-defined SVCs.

An RIB is used by the operating system to return data from the
system copy of the call block to the task that issued the SVC.
If only the error byte of the call block must be returned, no RIB
is needed. If any other information is to be returmed, an RIB
must be specified in the RPUDAT module. Table 6-4 shows the
format of an RIB for a user-defined SVC. The pair of byte fields
may be repeated if information is to be returned from several
noncontiguous areas in the call block.

2270512-9701 6

15 SVC Processing

DNOS System Design Document

Table 6-4 Return Information Block (RIB) Format

Field Size Contents
Word Zero
Byte Offset in the call block from which the
return of data should begin
Byte Number of bytes to return
Word Zero

The RPUDAT module must be assembled and 1its object module
pathname must be supplied during sysgen in response to the
question about the user SVC table. Figure 6-3 shows a source
module for defining two user SVCs, using SVC opcodes >80 and >82.
Assume that there is some legitimate reason to omit opcode >81.

16 2270512-9701

SVC Processing 6

DNOS System Design Document

* THIS MODULE HAS THE DATA TABLES TO ENABLE PROCESSING OF
* USER-DEFINED SVCS. RPUTAB IS THE TABLE OF RDB AND PROCESSOR
* ADDRESSES FOR THE SVCS. THE SET OF RDB DEFINITIONS FOLLOWS,
*# AND RIB DEFINITIONS ARE INCLUDED FOR RELEVANT CASES. 1IN
* ADDITION, RPUMAX IS DEFINED TO BE THE MAXIMUM USER-DEFINED
*# SVC CODE.
K mmm e
IDT ‘RPUDAT’ ‘
DEF RPUMAX,RPUTAB LABELS TO ACCESS USER DATA
REF sSvVCco80,5vC082 . LABELS OF ENTRY POINTS
RPUTAB DATA >EQ00 SVC80 ~ FIND CPU TIME
DATA RDBUS8O |
DATA O SKIP Sv(CS8l
DATA O
DATA >E000 SVC82 - SPECIAL ADD
DATA RDBUS82
RPUMAX BYTE >82 MAXIMUM USER-DEFINED CODE
*
RDBU80O DATA >1000 FLAGS
DATA SVC080 PROCESSOR
DATA RIBUS8O RETURN INFORMATION BLOCK
DATA 6 MAXIMUM CALL BLOCK SIZE
BYTE 2 COPY ONLY TWO BYTES
BYTE O RESERVED
DATA O RESERVED
RDBU82 DATA >1000 FLAGS
DATA SVCO082 PROCESSOR
DATA RIBUS82 RETURN INFORMATION BLOCK
DATA 16 MAXIMUM CALL BLOCK SIZE
BYTE 16 COPY ALL
BYTE O RESERVED
DATA O RESERVED
RIBU80O DATA O RESERVED
BYTE 2,4 START AT OFFSET 2, RETURN 4 BYTES
DATA O RESERVED
RIBU82 DATA O RESERVED
BYTE 2,6 START AT OFFSET 2, RETURN 6 BYTES
BYTE 12,4 AND AT OFFSET 12, RETURN 4 BYTES
DATA O
END
Figure 6-3 Format of RPUDAT Module
2270512-9701 6-17 SVC Processing

DNOS System Design Document

6.6.2 Processors for User-Written SVCs.

The SVC processor must define (DEF) 1its own entry point. It
needs to use SPUSH 1 on entry to save Rl and SPOP 1 to return to
the 0S. The processor runs as part of the operating system
kernel, making use of an operating system workspace. Upon entry
to the processor, the following registers are set:

* Rl - Points to the system copy of the requesting call
block

*# R4 - Points to the requester TSB

*# R5 - Points to the requester saved map file

* RI10 Points to an internal operating system stack
* R13 - The requesting task workspace pointer (WP)
*# R1l4 - The requesting task program counter (PC)

* RI15

The requesting task status register (ST)

The SVC processor must not alter registers 13, 14, and 15.
Register 10 should be used only for pushing and popping items on
the stack.,

Register 1 points to the system copy of the requester’s call
block. The processor usually gathers all of the information it
needs from this copy. The processor alters the copied call block
to pass information back to the requesting task; the second byte
of the call block should always be used for returning a status
code. If necessary, the processor can also access the requester
task area to get or return data by wusing long distance
instructions with register 5 as the map file pointer.

The call block as received by the processor has several words of
overhead as detailed 1in the buffered request overhead (BRO)
template., This overhead 1includes the requester’s TSB address,
JSB address, call block address, and several other pieces of
information. Each of these is accessible using negative offsets
from the buffered call block pointer in register 1.

When the processor finishes its work, it must return to the
operating system by 1issuing the dnstruction SPOP 1. The
operating system returns information as specified in the RIB for
the SVC performed. Control is then passed back to the task that
’ssued the SVC. The DNOS Systems Programmer’s Guide includes an
example of a user-written SVC processor.

SVC Processing 6-18 2270512-9701

DNOS System Design Document

SECTION 7

SEGMENT MANAGEMENT

7.1 OVERVIEW

The segment management subsystem enables tasks to dynamically
change the segment set mapped by the task. Segment management
also enables a task to guarantee accessibility to a segment until
it 1s no longer needed. Finally, segment management enables a
task to write segments to disk if their attributes allow this
function.

Segment management also provides the operating system with
mechanisms to manipulate data structures even when they are not
contained in the same address space. Since DNOS is a job-
oriented operating system, system data structures whose scopes
are contained within a job are located in separate segments.
Thus, the operating system is able to service job-level requests
by mapping only the job-level system data structures.

Segment management enables the file management subsystem to
manage file buffers. By treating file buffers as segments, file
management 1is able to access any buffer, whether in memory or on
disk.

7.2 ARCHITECTURE OF SEGMENT MANAGEMENT

The Segment Manager is implemented as three distinct levels of
supporte. The first level <contains routines for mapping the
various table areas (JCAs and special table areas), finding
Segment Status Blocks (SSB) for specific segments, creating and
deleting SSBs and Segment Group Blocks (SGB), and causing
segments to be loaded into memory. These routines reside in the
system root and are described in the section on nucleus
functions.

The second level of segment management consists of SVC
Processorse. These processors reside in the second SVC processor
segment of map file O. This 1level consists of an SVC
preprocessor and several SVC processors. These processors enable
user and system tasks to dynamically change the address spaces of
their tasks. -

2270512-9701 7-1 Segment Management

DNOS System Design Document

The third level of segment management is task=-level support that
enables the Segment Manager to read a program file directory
entry for a segment. This support 1s needed when a Change
Segment SVC 1is executed on a program file segment whose SSB is
not in memory. The program file directory is read to get the
segment attributes, length, load address, image record number,
and attached procedure IDs (task segment). The task 1loader
contains this support. A special interface 1is used between the
task loader and the segment management SVC processors to perform
the segment change after the directory is read.

7.3 SEGMENT MANAGEMENT DATA STRUCTURES

Program files are used to support segment management. A program
segment entry 1is located in the procedure section of the program
file, thus 1limiting the total number of procedures and program
segments in a program file to 255. The Install Program Segment
SVC builds a segment entry. The format is shown as the program
file directory index entry (PFI) in the sectlion on data structure
details.

The SGB is the in-memory anchor for a set of segments. The SGB
resides 1in the segment management table area. The FCB points to
the SGB for a file. If all segments of a group cannot be
contained in the same table area, an overflow SGB is created in a
different table area and the SGB points to it.

Each segment group consists of one or more segments. Each
segment is described by an SSB, which is allocated in the segment
management table area. Special table area SSB’s are in STA. An
SSB is created by Segment Manager when a task requests a segment
that does not currently exist.

The overhead beet (OVB) is used to contain information about a
segment when it is in memory. The OVB is located in the beet (32
bytes) preceding the segment.

The reserved segment table (RST) contains a list of segments
reserved by a job. The job information table (JIT) contains a
pointer to the RST chain, which resides in the JCA. The RST is
built when the first Reserve Segment SVC is done or when the
current RST overflows. The RST i1s deleted when it contains no
more segment entries or when the job terminates (after releasing
all of the segments). The format of the RST is shown in the
section on data structure pictures.

A Set Exclusive Use operation creates an Owned Segment Entry
(OSE) which points 'to the owned segment. The SSB points to an
Segment Owner Block (SOB) which points back to the TSB of the
task that has exclusive wuse of it. A Load Segment operation
creates a Load Segment Entry (LSE) which points to the segment to

Segment Management 7-2 2270512-9701

DNOS System Design Document

be loaded. OSEs and LSEs are chained off the TSB in the JCA.
SOBs are allocated in the segment management table area.

The segment management SVC block is shown in the section on data
structure pictures as the SMR structure.

7.4 SEGMENT MANAGEMENT ROUTINES

Segment management SVC processing begins 1in the preprocessor
routine SMPREP. Depending on which subopcode 1s specified,
control then 1is transferred to the appropriate subopcode
processor.

7.4.1 SVC Preprocessor (SMPREP).

SMPREP receives control from the SVC decoder, RPROOT, with the
pointer to the SVC call block in the task as dinput. SMPREP
verifies that the following conditions are met:

* All of the call block is within the task.
* The subopcode is within range.

* If the operation is a Change or Create Segment, the I/O
count and the initiate count for the task are zero,
unless the task is software privileged.

NOTE

The O0S does not provide general support for
proper completion of I/0 when the call block
or buffer 1is mapped out of the task. When
DNOS unbuffers the data of an IPC read-type
operation, it does not use the task map file,
so mapping out IPC read or master read
buffers is supported.

* If a LUNO is specified, it is assigned to a file of a
valid type and in certain cases, is open.

SMPREP uses a pointer in the Logical Device Table (LDT) for the
specified LUNO to determine the File Descriptor Packet (FDP) that
contains the File. Management Table and File Control Block
(FMT,FCB) pair. The FMT,FCB addresses are saved in the segment
management SVC block. If the memory-based segment group 1is
specified, an FMT,FCB address of zero is used. The FMT,FCB pair
is used to identify the segment group in which the requested

2270512-9701 7-3 Segment Management

DNOS System Design Document

segment resides. If the operation is not change or create
segment, the SMT,SSB pair for the specified segment is obtained.
If it cannot be found, an error is returned. Figure 7-1 shows
the overall flow of control to and from SMPREP.

fmmmm——————— +
XOP | REQUESTER |
----------- | TASK |
| fmmm———————— +
\'
o ——— +
| RPROOT |
fm——————- +
|
\Y
tm——————- +
| SMPREP | SMLOAD-Load a Segment
tommm—m——— + SMUNLD-Unload a Segment
| (BL) SMEXCU-Set Exclusive Use of a Segment
v SMREXC-Reset Exclusive Use of a Segment
- + SMCHGS-Change Segment
] SvVC | SMCRES~Create Segment
| PROCESSORS | SMRSVE~-Reserve Segment
e ——— + SMRLSE-Release a Reserved Segment
| SMCHKS~-Check Segment Status :
| SMFWRS-Forced Write Segment
| SMJRLS-Job Manager Release Segment
I SMMDFY-Set/Reset Modified and Releasable
| SMBIAS-Bias Segment Address Within Task
\

See SVC Processing Description
for interface to return to user.

Figure 7-1 Flow of Control in Segment Manager

7.4.,2 Change Segment Processor (SMCHGS).

The Change Segment operation enables a task to change the segment

set that comprises 1its logical address space. The caller
specifies either the LUNO for the file in which the segment
resides or a flag to signify a memory-based segment. An ID

(installed or run—-time) uniquely identifies the new segment. The
segment to be mapped out of the task is identified by a run-time
ID or a map position number.

The Change Segment processor first decides whether the caller 1is

adding, removing, or changing a segment. If the caller 1is
removing a segment, the last segment of the task is unmapped
unless it 1s a task segment. (This removal constitutes an

error.) The routine SMRMVE is called to decrement the count of
tasks that currently require the segment to be in memory (the

Segment Management 7-4 2270512-9701

DNOS System Design Document

task-in-memory count). When this count goes to zero, the segment
can be swapped or released from memory; therefore, SMRMVE is
responsible for either caching or releasing the segment. (Refer
to the program management section for more details.)

Add Segment and Change Segment processing are essentially the
same except that during an add there is no old segment to be
removed from the task, The routine SMSRCH is called to search
for the requested new segment. If it is found, SMSRCH verifies
that it may be used by the requesting task. SMSRCH first calls
SMFSID to see if the segment is defined. SMFSID uses the FDP and
ID to wuniquely identify the segment. If the segment is found,
the SSB address is returned. SMSRCH then validates the segment
attributes for the task. If a non-task segment is share
protected, SMCHUC is called to verify that it is used only by the
requesting task before SMCHGS is allowed to map it. If a segment
is owned but not by this task, mapping is not allowed. If the
segment 1is replicatable and in use, SMSRCH duplicates the SSB.
If SMFSID does not find the segment defined in memory, SMSRCH
calls SMBLDS to build an SSB. If the segment 1is a file
management buffer or is memory-based, the ©SSB can be defined
completely. However, if the segment is a program file segment,
the program file directory on disk must be read to obtain the
segment information. Thus, SMBLDS will ©place program file
segments in the initial load state to be processed by the task
loader.

Control 1is received in SMCHGS with the new SSB address. If the
new segment 1s an initial load segment, control is ©passed
immediately to the routine SMEXIT. Otherwise, certain conditions
are checked before the segment change is allowed. The task must
fit into user memory with the new segment, and the task must not
map more than 64K bytes. Also, if any segment other than the
last one in the task is being changed, the new segment must be
the same size as the o0ld segment. An exception to this rule is
made for system tasks, which may change in different-sized
segments; however, the segments’ logical starting addresses do
not change. If these conditions are met, the old segment 1is
removed from the task address space. SMRMVE disposes of it
accordingly (not required when adding a segment). SMEXIT is then
called to map the new segment.

The routine SMEXIT is responsible for incrementing the use count
in the SSB, updating the WCS bit in the status register, building
the 1limit register for the new segment, and updating the
protection bits in the limit register. SMEXIT decides whether
the new segment 1is 1in memory. If not, the calling task 1is
deactivated and suspended while waiting for memory. If the new
segment is in memory, its task-in-memory count is incremented,
the map base value 1is calculated, and the calling task is placed
into execution with the new segment in its address space.

2270512-9701 7-5 Segment Management

DNOS System Design Document

When an 1initial load segment is processed, SMEXIT suspends the
task on the WOM list. This places the task loader into execution
and determines that an initial load segment is being requested
(TSBSBN 1is nonzero). The task loader then tests the SSBs to see
if the task is in the initial load state. If so the program file
directory entry for the segment is read and the SSB fields are
initialized. Now that a segment SSB with the specified ID exists
in memory, the task loader calls SMCHGS via an interface routine,
PMSMIR. SMCHGS processes the Change Segment as usual except that
control d1s returned to the task loader from SMEXIT (instead of
suspending the calling task or placing it into execution). The
task loader then loads the task as usual. Figure 7-2 shows the
flow of control through the Change Segment processor.

tom——— e +
| SMCHGS |
fommm—————— +
(BL)
O ittt ———————m— e +
A : v
tmmm - + e
| SMSRCH | | SMRMVE |
tmmm—— - + ' tomm——————— +
(BL) I
tommmmmmmm e + (B)
v I \4 1
tommeme e + jtemmmm—————— + fmmm——————— +
| SMFSID | || SMBLDS | | SMEXIT |
tommm——————— + |tmm—m—————- + tmm - +
v I
tmm———————— + fmmmmm——— e +
| SMCHUC | (B) (B)
Fmm————— - + tomm——————— + dmmm—eemee- +
| NFTRTN | | NFSRIN |
tom———————— + - +

Figure 7-2 Flow of Control in Change Segment

Figure 7-3 shows the flow of control if an initial 1load segment
is being accessed.

Segment Management 7-6 2270512-9701

DNOS System Design Document

e +
| SMCHGS |
s +

(BL)

e +

| (B)

v v
fmmmm—————— + e T +
| SMSRCH | | SMEXIT |
fmmm—————— + ettt T +

(BL) [

et e + (B)

v \/ v
o ——————— I S I +
| SMFSID | | SMBLDS | | NFSRTN |
o + mmmmm———e- I +

TASK LOADER ACTIVATED WHEN ENTRY PLACED ON
ITS QUEUE BY SMEXIT

R —— +
| TASK |
| LOADER |
. +
(BLWP)
+ ---------------
\ '
e ———— + femmmm————— +
| NFMAPO | | LOAD |
S - + | TASK |
(BL) s +
\
fommm————— +
| PMSMIR |
o ————— +
(BL)
\'

EXECUTE SMCHGS EXCEPT THAT
SMEXIT WILL RETURN TO PMSMIR

Figure 7-3 Flow of Control During Initial Load

7.4.3 Create Segment Processor (SMCRES).

The Create Segment operation enables a task to create
segment of a certain size with specific attributes. Two
segments may be created: relative record segments and
based segments.

an empty
types of
memory-

2270512-9701 7-7 Segment Management

DNOS System Design Document

When relative record segments are created, the segment length is
the physical record size of the file (obtained from the FCB).
The 1length and attributes for memory-based segments are defined
in the call block. Default attributes are readable, nonsystem,
disk resident, nonreplicatable, non-WCS, reusable, and
noncopyable, though the user may set or reset the execute-protect
and share-protect attributes through the call block. The write-
protect and updatable attributes are set based on the file
protection flags.

The Create Segment processor first decides whether the request is
to add an empty segment or to change one. Much of the same
validation 1is required here as in Change Segment to ensure that
the new segment can be mapped by the calling task. If the
specified conditions are met, SMBLDS is called to build the SSB
for the empty segment. An empty segment flag is set in the SSB
to inform the task 1loader that the segment does not reside on
disk., If a segment is not being added, SMRMVE 1is <called to
dispose of the o0ld segment. SMEXIT 1is called to finish
processing before returning control to the calling task. The
task 1s suspended by SMEXIT since the empty segment is not in
memory at this time.

Special processing is required by Create Segment for relative
record segments. Before a new SSB is built, a check is made to
see if a segment with the same ID already exists in memory. If
so, an error is returned. Figure 7-4 shows the flow of control
through the Create Segment processor.,

L +

| SMCRES |

fm————————— +
(BL)

o mmmmmmmm—mem fmmm———————— +

| I I (B)

' ' ' v
- — + e + tmmm—————— T +
| SMFSID | | SMBLDS | | SMRMVE | | SMEXIT |
o ——— e T T P + tmmmmm————— + Fmmm—————— +

(FILE (B)
BUFFERS +
ONLY) |
'
fomm—————— +
| NFSRTN |
fmmmm————— +

Figure 7-4 Flow of Control in Create Segment

Segment Management 7-8 2270512-9701

DNOS System Design Document

7.4.4 Reserve Segment Processor (SMRSVE).

The Reserve Segment operation enables a task to maintain access
to a nonupdatable segment when needed, even though the segment 1is
not in any task’s address space. Since segments which are not
memory-resident may be released from memory when they are no
longer in use, this operation is needed to retain access to these
segments. The segment 1s reserved at the job level until a
Release Reserved Segment operation 1is executed or the job
terminates. All segments reserved by tasks within a job are
contained in the RST to which the JIT points. Segments are
removed from the RST whenever a Release Reserved Segment
operation is done. When the job terminates and the RST is not
empty, the job management subsystem 1is responsible for releasing
the remaining segments. Reserved segments are swapped 1if their
memory 1is mneeded. The S5SB for the reserved segment remains in
memory as long as the segment is reserved.

SMRSVE searches the RST chain for a free entry to contain this
segment’s run-time 1ID. If no free entries exist, a new RST is
built. The reserve count in the SSB is incremented. Control is
then returned to the calling task via the Request Processing
subsystem. -

7.4.5 Release Reserved Segment Processor (SMRLSE).

The Release Reserved Segment operation 1is used to release a
segment that has previously been reserved within the job. The
RST includes an entry for the segment if it was reserved in the
job. The processor returns an error if an entry is not found; in
effect, a job cannot release segments it has not reserved.

SMRLSE first decides if the requested segment was reserved by the
job. If so, the entry is deleted from the RST. 1If the RST is
empty, it is delinked from the RST chain and deleted. The SMT,
SSB pair is used to find the segment that is being released. The
reserve count is decremented. If the segment is no longer in use
or reserved, the segment 1is left cached or is deleted from
memory. SMDSSB does the following processing, If the segment 1is
in memory and is reusable, the segment remains cached in memory
(unless the releasable flag is set in the SSB, in which case the
segment is deleted). If the segment is in memory but is not
reusable, the segment is queued for deleting by the task loader,
and the S5SB is deleted. If the segment is not in memory, the
swap table entry for the segment is deleted along with the SSB.
Control then returns to the «calling task wvia the request
processing subsystem.

2270512-9701 7-9 Segment Management

DNOS System Design Document

7.4.6 Check Segment Status Processor (SMCHKS).

The Check Segment Status processor returns information about a
certain segment. Such information includes the segment run-time
and installed 1IDs, length, attributes, whether the segment 1is a
task and whether the segment is memory-based. If the segment 1is
mapped by the task, the logical address of the segment is
returned. The segment need not be mapped or reserved by the task
requesting the status.

If the segment is mapped by the task, the status information is
returned along with the logical address. If the segment is not
found in the task, the segment group 1is searched. If the
specified 1ID is found, the status information for the segment is
returned.

7.4.7 Forced Write Segment Processor (SMFWRS).

The Forced Write Segment processor writes a segment to 1ts home
file position (if wupdatable and modified). The segment is
represented by an SMT and SSB. The task requesting the write 1is
suspended until completion of the write. The disk I/0 is
accomplished by a dedicated queue server of the write queue,
PMWRIT.

If the segment does not exist, an error is returned. If the
segment exists, a check is made to determine 1f it is updateable.
If not, an error is returned. If it is updateable, is in memory,
and is modified, the write will occur. The OVB for the segment
is queued to the write queue. The calling task is then suspended
until completion of the write.

PMWRIT 1is activated whenever an entry is placed on the write
queue. PMWRIT calls the file management routine FMIO to write
the segment to its home file. It determines whether the segment
is a program file or data file segment. If it is a program file
segment, the home file ¥ecord number is contained in the SSB word
SSBREC. For a data file segment, this record number is contained
in the installed 1ID field of the SSB. After FMIO is called to
perform the disk I/0, SMDSSB is called. Finally, if a task is
suspended for the write (that is, the OVB points to a forced
write call block through the OVBBRB field), the task is placed
back into execution via NFEOBR. Figure 7-5 1s a diagram of the
flow of control through the Forced Write processor and task.

10 2270512-9701

Segment Management 7

DNOS System Design Document

o —————— +
| SMFWRS |
o ————— +

(BL)

o e -

| (B)

v '
o + o —————— +
| NFQOVB | | NFSRTN |
- + fomm———————— +

FORCED WRITE TASK(PMWRIT) ACTIVATED WHEN ENTRY PLACED ON
ON ITS QUEUE BY SMFWRS

e +
| PMWRIT |
o ———— +
(BL)
+ ———————————————
' | V (THROUGH NFMAPO INTERFACE)
e + | Ammm—————— -+
| FMIO | | | NFEOBR |
e —————— + | e +
I I
o ——— + - > PLACES CALLING TASK BACK
| SMDSSB | INTO EXECUTION
fom—————— +

Figure 7-5 Flow of Control in Forced Write

7.4.8 Release Job Segments Processor (SMJRLS).

This operation is used by job management to release reserved
segments in a specified job when the Job Manager is terminating
that job. This operation may be executed only by a system task
(specifically Job Manager).

SMJRLS is called with the SMT,SSB address and the JSB of the
terminating job. The JCA of the terminating job is mapped in for
the segment to be released. SMRLSE 1is called to process the
Release Segment operation as usual. SMRLSE then returns control
to SMJRLS, which returns control to the caller wvia the request
processing subsysteme. Figure 7-6 shows the flow of control
through the Release Job Segments processor.

2270512-9701 7-11 Segment Management

DNOS System Design Document

fommm +
| SMJRLS |
fmmmmm————— +
(BL)

fmmm———————— e T +

| | \

v v RETURN TO TASK VIA
fommm—————— + Hommmm———— + REQUEST PROCESSING
| SMMJCA | | SMRLSE | SUBSYSTEM
it + Fmmmmmm———o +

Figure 7-6 Flow of Control in Release Job Segments

7.4.9 Set/Reset Modified and Releasable (SMMDFY).

The Set/Reset Modified and Releasable operation is used to mark a
segment of a task as releasable or nonreleasable and to mark an
updatable segment as modified or not modified. The default
conditions for segments are nonreleasable and not modified.

The SSB of the segment 1is8 located, and the flags for the
releasable and modified states are set according to the SVC
request.

7.4.10 Bias Segment Address Within Task (SMBIAS).

The Bias Segment Address Within Task operation 1s used to
position segment two or three of a task at a new logical address.
This 1s used primarily by the System Configuration Utility. This
subopcode (>08) is not available to users.

7.4.11 Set Exclusive Use of a Segment (SMEXCU).

The Set Exclusive Use of a Segment operation is used to extend
the share-protection attribute to segments not currently mapped
in by a task. A segment which has had exclusive use set is said
to be an owned segment. Other users who try to map in the owned
segment will get a shared segment violation error (unless it is
replicatable, in which case a replicated copy will be mapped).
The set operation also has the functionality of a reserve segment
operation. That is, even if an owned segment has use and reserve
counts of zero, the segment will not be deallocated.

12 2270512-9701

Segment Management 7

DNOS System Design Document

If the operation is to succeed, the following conditions must be
met:

* The segment must not currently be owned by either the
task issuing the SVC or another task.,

* The segment must not be in use by any task but the
issuing task.

SMEXCU calls SMCHUC (Segment Management Check Use Count) to
perform this function. Exclusive wuse of special table areas
(SMTs, FMTs, PBMs) is not allowed. Once it is determined that
the preceding conditions are met, a segment owner block (SOB) is
linked to the SSB, indicating which task owns this segment. An
owned segment entry (OSE) is linked to the issuing task’s TSB,
indicating which segments the task owns.

7.4.12 Reset Exclusive Use of a Segment (SMREXC).

The Reset Exclusive Use of a Segment operation relinquishes a
task’s ownership of a segment. The operation will succeed only
if the segment is currently owned by the task issuing the SVC.
The ©SOB 1s delinked from the SSB and its memory released. The
OSE is removed from the list of owned segments linked to the TSB
and 1ts memory released. If the segment 1is not 1in use or
reserved, it is deleted.

7.4.13 Load a Segment (SMLOAD).

The Load Segment operation assures the user that the specified
segment will be in memory while the task that issued the SVC 1is
executing. The segment will not be mapped into the task address
space. A segment may be loaded by more than one task regardless
of its attributes. When loading a segment, a load segment entry
(LSE) is built and attached to the loading task’s TSB.

SMLOAD 1is mnot only an SVC processor but 1is accessed with a BL
interface by nucleus routines. It executes in Map 0. ‘

7.4.14 Unload a Segment (SMUNLD).

The Unload Segment operation detaches the segment from the task
so the segment does not need to be in memory when the task is in
memory. An error is returned if the segment was not loaded by
the task. The LSE is delinked from the TSB. If the reserve, use
and exclusive use counts are zero, the segment may be cached or
deleted.

SMUNLD is not only an SVC processor but is accessed with a BL
interface by nucleus routines. It executes in Map 0.

2270512-9701 7-13 Segment Management

DNOS System Design Document

7.5 SEGMENT MANAGEMENT TABLE AREA

Segment Manager maintains its internal data structures in special
table areas that are separate from the STA. These blocks contain
SSBs and SGBs. During sysgen, a variable number (one or more) of
these areas are defined to fit into the second segment of the
system mapping scheme (replaces JCA segment).

Sysgen creates an SSB in the STA for each segment management
table area. These SSBs are used by the Segment Manager to access
each table area. The tables reside in the memory-based segment
group; thus, a memory-based SGB resides in the STA. Each table .
area has the standard memory management overhead along with a
pointer to the first SGB in the table and information required to
generate run-time IDs for SSBs. The Get and Release table area
routines (NFGTA and NFRTA, respectively) are used to allocate
memory 1in the special table areas.

Whenever a new segment group is being created, Segment Manager
decides which table area has the most unused memory and allocates
the segment group into this area. Segment Manager will attempt
to allocate all segments of a group within the same table area.
If this 1is not possible, an overflow SGB 1is created in a
different table area. The overflow SGB contains the same
information as the SGB (which points to the overflow SGB). Thus,
Segment Manager can search all segments of a group by searching
the segments that reside in the table, then search the segments
that reside in a table to which the overflow SGB points. Figure
7-7 is a general diagram of the Segment Manager table scheme
(given two table areas).

i
[
S

Segment Management 7 2270512-9701

DNOS System Design Document

Contains Memory-based SGB and SSBs
for special table areas, ROOT and

| l
| |
| H=——— + COMMON. | STA
| | SGB |=--+ |
| +==—=—-- + | et + A=——-- + I
| | +==>| SSB |==>| SSB |=s.e==>0 I
| | fom——— + Ae———- + I
t-—-—- R e L E L L L S P L e e +

|

| Overflow SGB pointer
tom——— R T +
| v |
| === + |
| | SGB |-=+ +-=—-== + - + |
| === + +=>] SSB |-=>| SSB |=eee==>0 |Special table #1
[tm———- + - + I
| Am———- + [
| | SGB |-=+ +===== + e + |
I Fm———— + +“>| SSB I"->| SSB l-ooo"">0 l
I | +m——— + e + I
tm———= R ettt L L L P +

|

| overflow SGB pointer -
tom——- | w——— e e e — - — e —————— +
| \ |
| A== + |
| | SGB |~==+ H===—=—- + o + |
| 4=——-- + +=>| SSB |-=>| SSB |=ecee==>0 |Special table #2
I t-———- + - + I

ETC.

trmmm e — e — e m e m e — e e ——m————————————————— +

Figure 7-7 Segment Manager Table Organization

2270512-9701 7-15/7-16 Segment Management

DNOS System Design Document

SECTION 8

JOB MANAGEMENT

8.1 JOB CONSTRUCT

A job is the fundamental work wunit to which DNOS logical
resources are allocated. These resources include files, devices,
IPC channels, and environments of names.

The goals of the job construct in DNOS are the following:

* To provide a structure for the information about a group
of related tasks (for example, resources allocated,
security level, and accounting information)

* To provide the capability of divorcing tasks from an
active physical terminal

* To provide a vehicle for easy migration of applications
between DNOS configurations by isolating a set of tasks
from all others in a system

A job consists of one or more tasks, a set of job-local
variables, a set of resources, a set of job-local LUNOs, and a
job ID. The operating system constitutes a job in that it owns
files, devices, and channels and <consists of a group of
cooperating tasks.

A job has an associated priority. This priority 1is wused for
scheduling various system services. Such as disk events and
positioning requests into the spooler queue.

Management of resource allocation by jobs in DNOS provides a
level of 1isolation between different jobs. Once resources have
been allocated to a job, the execution of the job can be
independent of the existence of other jobs. Hence, jobs also
provide a migration vehicle from a single- to a multiple-
application environment.

8.2 OVERVIEW OF JOB MANAGEMENT
The Job Manager assigns and manages job identifiers, limits the

number of jobs in the system, and provides system access
security. To support these functions, the Job Manager processes

2270512-9701 8-1 Job Management

DNOS System Design Document

the following SVCs:
* Create Job
* Halt Job
* Resume Job
* Modify Job Priority
* Map Job Name:
* Get Job Information
* Kill Job

A task requests creation of a job via the Create Job operation of
the Job Management SVC (>48). The Job Manager performs security
checks to wvalidate the integrity of the request and generates a
unique job ID., The job is created and is set into execution if
it will not exceed the system job limit. If this is a batch job,
it must not exceed the background Jjob limit also. If either
limit will be exceeded, the job is placed on a queue, walting for
some other job to terminate. Security on the Halt, Resume, Kill,
Get Job Information, and Modify Job Priority operations is
provided so that only a user with the same user ID or a part of
the system job may perform these operations. A job determines
its own job ID through the use of the Self Identification SVC
(>2E). Status information on jobs 1is obtained via system
utilities.

8.3 ARCHITECTURE OF JOB MANAGEMENT

Job Manager is a system task that executes in the system job. It
is coded 1in Pascal with minimal run-time support and is a disk-
resident queue server., It has an assembly language
initialization routine, which contains the stack space for the
Pascal routines. Like other system tasks written in Pascal, Job
Manager uses routines in DSC.PASASM to call nucleus functions.

Job Manager serves a singly linked list of entries. The Job
Manager logical address space consists of the system root, a JCA

segment, and task code. Any task requesting a Job Management SVC
is suspended until the request has completed.

8.4 JOB MANAGEMENT DATA STRUCTURES

Among the data structures used by Job Manager are several
structures particular to segment management and nucleus

Job Management 8-2 2270512-9701

DNOS System Design Document

functions. These include SSBs, BRBs, and TSBs. The job-related
structures primarily used by Job Manager include the JCA, JSB,
and JIT.

The JCA contains all data structures local to a given job. The
JCA is allocated from free memory and can be swapped when all the
tasks in a job are swapped out of memory. The JCA may Dbe
expanded, as necessary, up to the maximum size specified during
sysgen.

The JSB carries all global data about the job, including the
address of the JCA, job 1ID, job mname, and priority. It is
allocated from the STA.

The job management SVC request block is the JMR.

The JIT contains the list headers for structures in the JCA and
is allocated as the first portion of the JCA.

Details of each of these structures are shown in the section on
data structure pictures. '

8.5 JOB STATES

The state of a job is maintained in its JSB and changes only 1in
response to SVCs initiated by the user. The following states are
possible:

* Creating - A job is in this state only during the
execution of the SVC that creates that job, or while
waiting for the active or background job count to drop
below this limit.

*# Halted - A job is in this state when halted by a Halt
Job SVC. Only queue server tasks din this job can
continue to execute. Any other tasks that attempt to
become active while the job 1is in this state are
suspended.

* Executable - A job in the executable state can have its
tasks scheduled for memory and CPU.

* Terminating =~ A job is placed in this state when it is
killed or after its last task has terminated. At this
point, mno more tasks may be bid in the job, and Job
Manager Dbegins releasing all resources and data
structures within the job.

2270512-9701 8-3 Job Management

DNOS System Design Document

*# JCA being expanded - A job is placed in this state while
its job communication area is being expanded due to job
requirements for more data structures than the current
JCA can accommodate. '

In addition to these job states, Job Manager can also cause a
task to enter the job suspended state. This state is used when
halting a job.

8.6 DETAILS OF JOB MANAGER ROUTINES

Job management SVC processing begins 1in the routine JMPREP.
Depending on which operation 1is requested, control then is
transferred to the appropriate operation processor.

8.6.1 Job Manager Preprocessor (JMPREP).

JMPREP is a small assembly language routine that resides in the
scheduler segment of map file 0. It causes the BRBs for certain
sub-opcodes to be rebuffered to include more information than
originally buffered by the SVC decoder. To rebuffer, JMPREP
builds an RDB showing what to rebuffer and calls the request
processor buffering routine, RPBUF, to perform the data movement.
JMPREP then queues the BRB to the Job Manager queue for
processing and returns to the scheduler to suspend the requester
task.,

8.6.2 Job Manager Request Processing Task (JMMAIN).

JMMAIN is the main module for Job Manager. It acquires and
releases segments as necessary and initializes local variables.
It also provides all functions common to the SVC processors, such
as retrieving the BRB and getting the proper JCA. At the end of
SVC processing, it will start any Jjobs on the waiting queue,
provided that the job limit and batch job limit are not exceeded.

8.6.3 Create Job Processor (JMCS).

JMCS$ must map in the caller’s JCA area and retrieve some of the
values stored in the JIT. When the new user ID flag is not set
in the flag word of the BRB, then the user ID, passcode, account
number, and privilege 1level are copied out of the caller’s JCA
into the BRB for use at a later time.

\

Job Management 8-4 2270512-9701

DNOS System Design Document

Once the call block is buffered, a JSB is built in the STA. A
unique job ID is generated and is used to identify the job while
it remains in the operating system. This ID is placed in the JSB
and is returned to the caller in the BRB. The job priority is
checked to see if it is in the range of 0 through 31. If not,
the request is returned with an error status. Otherwise, the JSB
state 1s set to indicate that it is being created.

Next, Job Manager obtains memory for the JCA area by executing a
Create Segment SVC. This segment is placed in the second map
segment of Job Manager, replacing the system JCA segment. The
size of this JCA area 1is specified in the call block as 1, 2, or
3. The code 1 is for the smallest JCA size; the code 3 1s the
maximum JCA size. The logon default is the medium JCA size. All
of the memory management overhead is initialized in the JCA, and
segment manager SSB addresses for the JCA are stored in the JSB.
The queue headers for the job 1level queue servers are
initialized, and the JCA segment is reserved.

The station ID of the job being bid is next verified to be sure
that the station specified exists and 1s available for use. If
an i1llegal station is specified, the job <creation request 1is
denied and an error 1is returned. If the station 1s legal,
creation continues, with Job Manager assigning a job-local LUNO
to DUMY. "

The requester may specify a logical name and synonym segment in
the SVC block. (The function of this segment is detailed in the
section on I/0.) When this field is zero, no action is takene.
Otherwise, the segment is checked to see if it is a memory-based
segment. When it is located, the segment manager SSB addresses
are stored in the JIT, and the segment is included in the job
reserved segment list. If the segment is not found or is not
memory based, the request to bid the job is aborted and an error
is returned to the user.

After the synonym segment is processed, the user ID and passcode
are verified. When the new user ID flag is set, all information
must be verified before it can be used. The user ID and passcode
are kept on disk in a predefined system file. A search is made
for this user ID in this file. Once the ID 1is found, the
passcode specified is encrypted and compared against the
encrypted passcode on disk. Any error in this process aborts job
creation. If the file .S$ACCVAL exists, the account ID is
verified against the file entries. If a match is not found, the
job is aborted. If the file «.S$ACCVAL does not exist, no
checking is done.

The final step in creating a job is to bid the initial task.
First, the JSB is linked into the system JSB 1list. Then the
parameters for the task are built into a Bid Task SVC, which is
issued from Job Manager. (Note that ©because Job Manager is
issuing the SVC, the specified program file LUNO must be global

2270512-9701 - 8-5 Job Management

DNOS System Design Document

so that it appears in the new job’s LUNO hierarchy.) Any error
returned from the Bid Task SVC is placed in the BRB and aborts
the Create Job SVC.

The new task is initially bid in a halted state. After the ©bid
has been completed, a job initialization entry is placed on the
accounting queue and the job is put on a wait queue.

Whenever the Create Job SVC has been aborted, the JCA and JSB
must be returned to free memory. The BRB for the call is sent
back to the caller, along with the error. A temporary BRB is
created to indicate job termination and is placed on the Job
Manager queue. This entry is processed by JMD$§, releasing all
the resources the job had and returning them to the system.

8.6.4 Halt Job Processor (JMHALT).

JMHALT calls the verify routine, JMVRFY, to verify that the
specified job ID exists and that the requesting job has the
authority to perform the halt. The job state is then checked to
ensure that the job is active. If it is not active, an error 1is
returned. Otherwise, the job state is changed to halted. The
TSB 1ist for the job is then searched for all active tasks.
During this search, the scheduler must be inhibited to prevent
any change in the list. When active tasks are found, if they are
not queue server tasks they are delinked from the job active list
and the task state 1s changed to indicate that the job 1is
suspended. After all of the active tasks are found, the
scheduler is enabled and the BRB is returned to the caller with a
successful completion code.

While the job is in a halted state, only queue server tasks in
the job <can be made active. If any other task tries to become
active, the nucleus function NFPACT places the task in the job
suspended state.

8.6.5 Resume Job Processor (JMRESU).

After JMRESU «calls JMVRFY, if no error was found, it checks the
job state to see 1if it is halted. If it is not halted, an error
is returned to the caller. If the job 1is halted, the job state
is changed to executable, and the TSB list is searched for tasks
in the job suspended state. When such a task is found, Job
Manager calls NFPACT to place the task back on the active list.
The scheduler must be inhibited during the TSB search so that the
TSB 1list 1is not altered. After the search, a successful
completion code is placed in the BRB, and the BRB is returned to
the requestere.

Job Management 8-6 2270512-9701

DNOS System Design Document

8.6.6 Modify Job Priority Processor (JMPRIO).

JMPRIO calls JMVRFY and, if no error was found, it checks that
the caller is the system operator. If not, an error is returned.
The new job priority is checked to see if it is within the wvalid
priority range. If not, the request 1is aborted. Otherwise, the
tasks within the job are updated to reflect the new priority.
Job Manager «calls a nucleus routine to obtain the new task
priorities. During this time, the scheduler must ©be inhibited.
After all of the priorities are modified, Job Manager delinks the
first active task in the job and then relinks it. This inserts
the JSB in the right position for the scheduling queue. . The new
priorities take effect when Job Manager completes 1its SVC
requests. Job Manager then enables the scheduler and returns the
BRB with a successful completion code.

8.6.7 Map Job Name Processor (JMMAP).

The Map Job Name processor searches the JSB list for the job name
specified in the BRB block. It returns the job ID of the first
job that it finds with the same user ID as the calling task.
Jobs in terminating state are not considered. An error is
returned 1f no matching job name is found under that user ID, or
if the job name is duplicated. In the latter case, the job ID of
the first matching job is returned. The user ID and job names of
each job are kept in the JSB (which is memory resident) to avoid
excessive swapping during this operation.

8.6.8 Get Job Information Processor (JMINFO).

The Get Job Information processor returns Iinformation about the
job identified by the job ID in the requestor call block. If an
ID of zero 1is specified, information about the caller’s job is
returned. JMVRFY is called, and if no error is returned, this
processor returns the job name, priority, user ID, account ID,
privilege level, and the run ID of the calling task.

8.6.9 Kill Job Processor (JMKILL).

The Kill Job processor terminates jobs within the system. JMKILL
verifies that the user has access to the specified job and that
the job exists. The job state is then checked to see if the job
is already in a terminating state. If it 1is, an error 1is
returned in the BRB to indicate this condition. When the job is
in the create state, it must be deleted from the waiting-to-
execute job queue. At this point, the job state is changed to
terminating so that no new tasks are bid in this job. The
scheduler 1is then inhibited during the kill process for each
task.

2270512-9701 8-7 Job Management

DNOS System Design Document

Job Manager kills each task by «calling the nucleus function
NFTERM. The TSB contains a flag to indicate whether end action
is allowed on a kill request. If it is not set, the task may
take end action but will not be able to reset its own end action
bit. A time-out value for end action prevents the task from
executing indefinitely. Job Manager returns a successful
completion code in the BRB when all of the tasks have been
processed through NFTERM.

Job Manager suspends (awaiting queue input) at this point to
allow all of the tasks to terminate. The termination processor,
PMTERM, places an entry on the Job Manager queue to notify Job
Manager that the 1last task has terminated. When the entry
arrives, control is given to JMD$ to complete the job termination
process.

8.6.10 Job Clean-Up Routine (JMD§).

JMD$ 1is a support routine that can be activated only by an
aborted Create Job SVC or by PMTERM. The call 1is made when the
last task of a job has terminated. JMD$ is responsible for
releasing any attached resources and all memory blocks associated
with the job.

JMD$ may be called during the c¢reate process to clean wup an
aborted Create Job SVC. JMD$§ first determines if the JCA area
for the job exists. Job manager releases the JSB if the JCA was
not created.

The first set of operations required for the JCA 1s to release
any job-local LUNOs still assigned. The I/0 sub-opcode to
Release LUNO in Another Job is used for this purpose. The entire
list of LUNOs 1s searched, and a call block for each of these
LUNOs is created and passed on to the I/0 Utility (IOU).

After all of the LUNOs have been released, all resources that
have been attached by the job are released via calls to IOU for
each resource found. The resource list is searched, and for each
entry found a Detach by Number SVC sub-opcode is issued.

The next structure to be deleted 1s the reserved segment 1list.
For each reserved segment, a call is made to the Segment Manager
to cancel the reserve. This iIncludes the reserve on the JCA
segment. The JCA segment is mapped into Job Manager during this
release process and 1s not released from memory until Job Manager
changes its second map segment. All other segments, such as
logical name and synonym segments, are released and become
eligible for deletionm if no other job has reserved them. All
clean-up of memory-based segments is accomplished by Segment
Manager when Job Manager releases the reserved segments. The
table memory for the reserved blocks is also released from the
JCA by Segment Manager during this process.

Job Management 8-8 2270512-9701

DNOS System Design Document

At this point in the clean-up process, the JCA should not have
any dynamic memory allocations in it. If no other job has
reserved this JCA segment Dbefore the job was put in the
terminated state, this JCA 1is deleted as soon as Job Manager
releases it from its address space.

The last step in JMDS is to release the JSB from the STA, The
JSB 1is deleted from the JSB list, and the memory is returned. A
job termination entry 1is placed on the accounting queue and the
active job count is decremented.

8.6.11 Verify Job ID Routine (JMVRFY).

The verify routine is used by JMKILL, JMINFO, JMRESU, JMHALT, and
JMPRIO to determine if the caller is allowed to execute the SVC
in question. This routine searches the JSB chain to find the
appropriate job ID. Jobs in terminating state are not
considered. If the job ID is not found, an error is placed in
the BRB and the request is aborted. Otherwise, JMVRFY checks to
see if the operation 1s being executed on the system job. Any
attempt to perform one of these SVCs on the system job receives
an error., The last check made 1s to verify that the requesting
task has the privilege to perform the SVC. Valid requesters are
the system operator, tasks whose jobs have a flag set to bypass
ownership tests, and tasks whose jobs have the same user ID. All
other requesters receive errors. On successful completion,
JMVRFY returns to the calling routine with the JCA of the
requested job mapped 1into the second map file segment of Job
Manager and with the JSB address of the job requested.

8.7 IMPLICATIONS OF JOB BOUNDARIES

In theory, a task running in a job is not aware of any other job.
It may interact with the system job by issuing an SVC or it may
interact with another job by using a global IPC channel, but it
theoretically is independent of and unaware of any other job. In
reality, it may be necessary for two tasks in different jobs to
communicate with each other.

There are two major mechanisms supported by DNOS for cross-job
communication: global IPC channels, and event SVCs. The major
difficulty with global channels is that the owner task must be
the first task to assign a LUNO to the channel, but, aside from
that, they have all the power that the various channel
configurations provide. Events provide a more limited
capability, Dbeing mainly a synchronization feature. Any task
which knows another task’s job ID and task run-time ID can issue
a Post-Event SVC which causes a specified event to complete for
the task specified by the job ID and run-time ID. The specified
task must 1ssue a Wait for Event SVC for the event number of the

2270512-9701 8-9 Job Management

DNOS System Design Document

I expected event. It will then be activated when the Post Event
SVC is issued.

Job Management 8-10 2270512-9701

DNOS System Design Document

SECTION 9

PROGRAM MANAGEMENT

9.1 OVERVIEW

Program management supports task-level requests to execute tasks,
load overlays, and terminate tasks. Support is also available to
perform sychronization operations, to read and write task memory
or TSBs, to get and release user memory, and to get and release
system common. Program management includes processors for the
full set of SVCs to support program files.

Program management is implemented in three distinct levels. The
first 1level includes support routines that reside in the root of
the operating system. These routines are callable by various
program management routines and perform specific functions. The
second level is the set of processors for the program management
SVCs which execute at XOP 1level. The third 1level is the
processors for program management SVCs that execute as queue
serving tasks. Many program management SVCs are implemented in
the second level only, but some require a third level (for
example, disk I/0 may be performed only at the third level).

9.2 DATA STRUCTURES USED BY PROGRAM MANAGEMENT

In addition to JSBs, TSBs, various segment management structures,
and the JCA, program management uses a number of lists and queues
to coordinate the efforts of its components. These structures
include the following:

Waiting-on-Memory (WOM) 1list
A list of JSBs anchored by the NFPTR field WOMJSB, with each
JSB having one or more TSBs for tasks that must be 1loaded.
The TSBs of each job are linked from the JITWOM anchor in
the JIT of the JCA. The JSBs are ordered by JSB waiting
priority as carried in the JSBWPR field.

Loader Queue
A 1linked 1ist of OVBs, each representing a block of user
memory to be released. The queue 1s anchored at LDRQUE in
NFQHDR.

2270512-9701 9-1 . Program Management

DNOS System Design Document

Cache List
A 1linked 1list of OVBs for segments currently in memory but
not currently used by any active task. (These are the most
recently used segments, and they may be wused later or
deallocated.) This 1list is anchored at CHELST in NFDATA.

Active List
A list of JSBs for jobs with tasks ready to execute. This
list 1is anchored in the NFPTR field ACTJSB, organized by
priority JSBAPR. The TSBs for the active tasks are 1linked
from the JITACT anchor in the JCA.

Time-ordered List (TOL)
A 1list of task segments (OVBs) representing all tasks in the
system eligible for the active 1list, ordered by most
recently loaded.

Time Delay List
A linked list of time delay entries, anchored by the NFPTR
list header TDLHDR. The entries reside in the STA and
consist of task identification information and time delay
values. Wait for Event SVC’s are also linked on this list.

Swap Table .
A linked 1list of swap table entries used to keep track of
allocated space and segments on the swap file. Whenever a

segment 1is swapped to the swap file, a swap table entry is
built for that segment in the system JCA, and a pointer to
it 1is placed in the SSB. This table is used by the segment
swapper task to keep track of which records are allocated in
the swap file. The anchor for this 1list is ROLDIR in
PMDATA.

9.3 DETAILS OF PROGRAM MANAGEMENT ROUTINES

Program management routines perform the functions of bidding a
task, loading a task for execution, and deallocating resources
when a task terminates.

9.3.1 Task Bid Processor (PMTBID).

When a Bid Task SVC (>2B) is executed, the nucleus function
NFTBID attempts to add the task to the active list. If NFTBID is
unable to bid the task, the SVC block is placed on the task bid
queue that places the queue server PMTBID into execution.

PMTBID performs the initial setup for a task, It ensures that

the task exists by locating the task segment 1in memory or by
reading the program file directory. Then, the procedure segments

Program Management 9-2 2270512-9701

DNOS System Design Document

(if any) are 1located 1in memory, or they are built from the
program file directory. The map file limit registers are built
for the task and the TSB for the task is placed on the WOM list
so that its segments will be loaded by the task loader.

Execution of PMTBID proceeds as follows. The routine PMGSSB 1is
called to find or build an SSB for the task segment. The routine
SMSRCH is called to search the program file segment group for the
requested segment. If found, it is used by the task being bid
(assuming the segment attributes allow this), If the segment is
not found, SMBLDS is called to build an initial load SSB for the
segment. (For details see the description of segment
management.) When control is returned to PMGSSB and if the SSB
returned is in the initial load state (that is, the program file
diréctory has not been read for the segment), PMRDIR is called to
read the program file directory entry for the segment. PMMPRI is
then called to <calculate the initial runtime priority. Next,
PMTBID calls PMITSB which «calls PMGSSB for the attached
procedures, sets up the map file 1limit registers (including
protection), determines the total mapped length and memory used,
and initializes the task status. A loaded segment entry (LSE) is
built for the JCA of the task, so that the JCA will be loaded
into memory when the task is 1loaded. PMTBID calls PMNMGR to
inform the name manager that a new task exists in the job, then
links the TSB into the TSB tree and activates the task, The task
is now ready to be loaded by the task 1loader. Finally, the
calling task, 1if any, is killed or suspended if such action is
requested in the SVC block.

9.3.2 Task Loader (PMTLDR).

PMTLDR loads tasks into memory when they are initially bid, when
they have been swapped out of memory and are rescheduled to run,
and when a Change Segment or Create Segment operation is done for
a segment that is not in memory. The task 1loader serves the
loader queue and the WOM list. Included in the task loader task
are the get and release user memory routines and the task
swapping routine.

PMTLDR begins to execute whenever an entry is placed on the
loader queue or WOM 1list. The loader queue is processed first.
It contains a list of segments whose memory must be deallocated.
The return user memory (PMRUM) routine 1is called for each
segment.

After processing the loader queue, PMTLDR checks the WOM list for
a task to be loaded. If one is found, PMTLDR attempts to load
the task into memory. PMTLDR first checks to see if the task is
doing a Change Segment operation which requires initialization of
an SSB. If so, PMRDIR and PMSMIR is called to allow the segment
manager to complete its processing. PMTLDR <calls the routine
PMALSG to allocate memory for the task’s JCA and later for each

2270512-9701 9-3 Program Management

DNOS System Design Document

segment of the task. The JCA must be in memory before the task
can be loaded, since the JCA contains the TSB. PMALSG first
checks to see if the segment is already in memory. If so, the
segment is removed from the cache list if the task-in-memory
count is zero. If the segment is not in memory, the get wuser
memory (PMGUM) routine is called to allocate memory. If memory
is available, PMALSG increments the task-in-memory count and
returns the segment to PMTLDR. If memory is not available,
PMROLL is called to attempt to obtain memory for the segment.

After memory is allocated for all of the task segments, PMLDSG is
called to load each segment into memory. If the segment 1is
already in memory or is empty, the load is skipped. Otherwise,
the segment is loaded from its home file or roll file. The
record number for the segment 1s computed, and the file
management routine FMIO is called to load the segment from disk
into memory. After the load is completed, the OVB is initialized
and control is returmed to PMTLDR.

After all of the task segments are loaded, the map file bias
registers are calculated and the task segment is placed on the
TOL by calling NFATOL. The task is put on the active list, and
PMTLDR continues processing the loader queue and the WOM list.

If insufficient memory is available to load a task, the task
loader calls a swappling routine (PMROLL) to attempt to free
memory by temporarily writing segments to the swap file. The
swapping routine includes two phases. The first phase processes
the cache list (segments in memory that are reusable but not
currently 1in use), freeing any available memory. If the first
phase does not yield enough memory, the second phase Dbegins
processing the TOL to find a task that can be deactivated and
swapped.

Processing the cache list involves searching the 1list, last to
first, for available segments. A segment on the cache list can
be swapped if its TILINE I/0 count is zero. A maximum count for
buffer segments and program file segments is maintained to emnsure
that memory does not become too fragmented by cached segments.
(See the roll parameters shown in the NFDATA template in the
section on data structure pictures.) PMROLL tries to prevent the
rolling of JCAs and, in an attempt to improve performance, tasks
doing file I/0 and file buffer segments.

When a swap candidate is found, it is queued to the write queue
to be written to its home file, written to the swap file, or
released, based on its attributes, use count, and whether it was
modified. PMROLL returns a code of zero if it was able to free
enough memory before returning. However, PMROLL might have
queued an entry on the write queue, in which case PMROLL returns
a code of 2 to the task loader, indicating that memory will not
be available wuntil I/0 completes. If PMROLL finds an eligible
segment doing file I/0, it returms a code of 4, dindicating that

Program Management 9-4 2270512-9701

DNOS System Design Document

- task loader should serve the file I/0 request first.

If none of these <conditions arises after processing the cache
list, PMROLL processes the TOL. The TOL is searched, 1last to
first, to find the most eligible task for deactivation and
swapping. The following are three categories of tasks on the
TOL, listed 1in the order of most eligible to least eligible for
swapping:

1. Tasks suspended for more than a minimum amount of time
or suspended while waiting for coroutine activation.
The longer the suspension, the more eligible for
swapping.

2. Tasks of lower priority thanm the task being 1loaded by
the task 1loader. The 1lower the priority, the more
eligible the tasks are for swapping.

3. Tasks that have the same priority as the task Dbeing
loaded by the task loader and that have executed for a
minimum amount of time since they were 1last 1loaded.
The longer the execution time, the more eligible the
tasks are for swapping.

After an eligible task entry is found on the TOL, the task 1is
deactivated and its segments are placed on the cache list if they
are not being used by other active tasks. The cache list is then
processed again before returning to the task loader with the
return code from the cache 1list processor. If no eligible
entries are found on the TOL, a return code of 3 is given to the
task loader, indicating that no memory was found to release.

Figure 9-1 shows the flow of control through the task loader.

2270512-9701 9-5 Program Management

DNOS System Design Document

ENTRY PLACED ON LOADER QUEUE OR WOM LIST

A

fommm— - +

| PMTLDR |

Fommmmm e +

(BL)

|
\'
et +
I |
v |
fmmmm—————— + I
| PMRUM] |
tommr - + |
Loader |
Queue |
'

tmmm—mm—————— e Fomm e +

| for JCA and |]

\Y each segment V v
fmmm—————— + tmmm——m + fm—m - +
| PMALSG | | PMLDSG | | NFPACT |
o ——— + e + Fommmt e +

(BL) (BL) I
I | v
v | ACTIVATES
fomm———— tm———- + i TASK
(BL) (BL) I
| I |
\ v \
Fmmmm—————— + tmmmm————— + mm—mmmmmm— +
| PMGUM] { PMROLL | | FMIO |
tommmm—————— + dmmmm————— + tmmmm————— +

Figure 9-1 Flow of Control in Task Loader

9.3.3 Task Termination Processor (PMTERM).

When a task terminates by issuing an End Task SVC or is killed by
another task or by the operating system, the initial processing
is done by NFTERM (see the section on nucleus functions). That
processing includes placing an entry on the task termination
queue, which 1s served by PMTERM. PMTERM cleans up the memory
structures associated with the task (TSB).

If there is no end-action and the task was a task- or job-local
channel owner, PMTERM notifies IPC. For each LUNO on the TSBLDT
chain PMTERM issues an abort request. "If no end-action is

specified, PMTERM closes the LUNO and waits for I/O to complete.

Program Management 9-6 2270512-9701

DNOS System Design Document

Then PMTERM either waits for or causes all other outstanding
requests to complete and if end~action is specified, the task 1is
activated. Otherwise, PMTERM releases all LUNOs, 1logs a task
error (if necessary), informs the name manager that a task is
terminating, and delinks the TSB from the TSB tree. This may
involve killing descendant tasks or activating a parent task. If
there is only one task left in the job (file manager), it is
killed. 1If there are no more tasks 1left, job manager is
activated to terminate the job.

9.4 TASK SYNCHRONIZATION

DNOS provides synchronization on several functional levels.
These levels correspond to the assumed commonality between the
tasks requiring synchronization. The synchronization tools
involved are interprocess communication (1IPC) messages,
semaphores, locks, and events. IPC is discussed in the section
on I/0.

9.4.1 Semaphores.

Semaphores enable two tasks to exchange timing signals. A
semaphore 1is 1implemented as an integer variable and a queue of
waiting tasks. The integer wvariable indicates the number of
unconsumed timing signals. If no signals are present, the
integer indicates the number of tasks waiting for a timing
signal.

Semaphore operations are provided on job-local variables via SVC
>3D. The subopcodes in this SVC have the following meanings:

Subopcode 0 : SIGNAL
The value of the semaphore specified by byte 3 of the SVC
call block 1is incremented. The oldest task queued on the
semaphore queue is activated.

)

Subopcode 1 : WAIT
The value of the semaphore specified by byte 3 of the SvVC
call block is decremented. If the resulting semaphore value
is negative, the task 1is suspended and queued to the
specified semaphore.

Subopcode 2 : TEST
The value of the semaphore specified by byte 3 of the SVC
call block is returned in bytes 4 and 5 of the SVC block.

Subopcode 3 : INITIALIZE
The semaphore specified by byte 3 of the SVC call block is
initialized to the value specified in bytes 4 and 5 of the
SVC block. If any tasks are queued waiting for this

2270512-9701 9-7 Program Management

DNOS System Design Document

semaphore, the action taken depends on the new value of the
semaphore as follows:

* If the new value 1s greater than or equal to 0, activate
all suspended tasks.

* Given that n. is (new value - o0ld value), if the new
value is less than 0 and n is greater than 0, activate n
tasks, starting with the oldest queued task.

Subopcode 4 : MODIFY
The semaphore specified by byte 3 is set to the sum of its .
old value and the two’s complement (negative) value
furnished in bytes 4 and 5 of the SVC block. If any tasks
are queued waiting for the semaphore, the action taken
depends on the new value of the semaphore, as described in
the initialize operation. The modify operation combines the
test and initialize operations so that correct results are
obtained, even if other tasks are using that semaphore.

Semaphore values are represented as signed integers ranging from
the negative wvalue of -128 to a positive wvalue of 127. A
positive value indicates the number of signals sent but not
received. A negative value represents the number of receivers
waiting for signals unless the semaphore has been negative since
the last time it was changed in a negative direction to a
negative value by an initialize or modify operation.

9.4.2 Locks.

The synchronization tool available to tasks that share the same
task address space 1is the lock. Locks enable tasks to implement
mutual exclusion on critical sections of their code or data.
Locks are represented as boolean data items, which indicate the
state of the lock.

Locks can be implemented in assembly language by wusing the ABS
and SETO instructions on a data variable. If tasks spend
relatively little time executing in locked regions, the following
code will achieve the desired mutual exclusion:

INITLK SETO LOCK initialize the 1lock
AGAIN ABS LOCK test the lock
JLT GOTLOK * got the lock, use it
SVC TDELAY * no, delay and retry
JMP AGAIN *
GOTLOK . .
SETO LOCK free the 1lock

Program Management 9-8 2270512-9701

DNOS System Design Document

The higher-level synchronization primitives (SVC semaphores and
IPC messages) are available to tasks at this level that do not
meet the general assumptions about locks.

9.4.3 Event Synchronization.

To improve throughput, DNOS allows the execution of some SVCs in
parallel with the task execution. The Initiate Event SVC (>41)
provides this concurrency. It also eliminates polling 1in those
situations where polling might be used because concurrency 1is
unavailable. A set of 32 event flags 1is maintained in each TSB,
showing which of the allowed 32 events is currently initiated or
completed for the task.

The Initiate Event SVC points to am SVC to be initiated. An
event number is generated by DNOS to identify this event. Event
numbers range from 0 through decimal 31, In the current release
of DNOS, 1I/0 8SVCs and semaphore SVCs can be initiated. 1If the
operating system permits the specified SVC to be initiated,
control is returned to the task after that request block has been
buffered. If not, an error is returned to the user. The user
must exercise caution, since the operating system may return
information to the initiated SVC block at any time.

The Wait for Event SVC (>42) allows a task to wait for any of a
set of events to occur. This SVC waits wuntil one of several
events has completed or until the maximum wait time is exceeded.
The events to be waited for are specified by an event mask. The
leftmost bit of the first word of the event mask corresponds to
event 0. If this bit is set in the mask, the task is activated
when event 0 is completed. The event flags returmned to the call
block indicate which (one or more) of the 32 events have
completed.

The Post Event SVC (>4F) permits the user to post any event in
any task in any job but the system job. This means that any Wait
For Event may be aborted before its event 1s completed or 1its
walt time has expired. The Post Event SVC should not be used to
abort a wait for a valid initiated event; it should be wused to
provide a cross-job synchronization mechanism. If task A in job
ONE executes a Wait For Event with a large time delay without
initiating an event, then it will delay until either its time
delay expires or it is ©posted, either from job ONE or from
another job. This provides a method to deactivate and reactivate
user-written queue server tasks, across job boundaries. To
facilitate this operation, issuing a Wait For Event with a
maximum time delay of -1 (>FFFF) is special cased to cause a
virtually infinite maximum delay time.

2270512-9701 9-9/9-10 Program Management

DNOS System Design Document

SECTION 10

I/0 SUBSYSTEM

10.1 OVERVIEW

The I/0 subsystem moves data between any combination of 1logical
and physical 1/0 resources and programs (tasks) that process the
data. The logical resources are the files located on disk or
magnetic tape and the channels between programs. The physical
resources are the devices attached to the computer.

An I/0 request enters the I1/0 system via the SVC interface. This
interface provides resource-independent, resource-specific, and
utility paths through a single SVC opcode, SVC 00. Most I/0 is
achieved via the resource-independent call because programmers
usually want only to obtain data, process that data, and output
the processed data without knowledge of special features of the
I1/0 resource.

However, some special-purpose programs require knowledge of the
I/0 resource. They must use specific techniques and formats to
obtain, process, and output data. These programs use resource-
dependent 1/0.

The utility path allows for dynamic management of resources
without intervention from outside the computer. Actions such as
reserving a resource, specifying access privileges, and releasing
access are performed via the utility path.

The general form of the I/0 SVC request block (IRB) is shown in
the section on data structure pictures. The basic block is 12
bytes 1long, while the full IRB for complex requests is
considerably longer.

An I/0 request enters the 1I/0 subsystem from RPROOT, the SVC
decoder. The I/0 system screens out the utility requests via the
subopcode and passes them to the I/0 Utility (IOU). The I/0
system then finds the request routing information for those that
are not utility requests. The routing information provides for
checking on the operations allowed to the requester. A copy of
the request call block is made in the STA so that the requester’s
memory space may be free for other tasks while the request is
being processed.

The routing information is wused to move the request to the
correct resource handler. Channel requests are handed to the IPC

2270512-9701 10-1 I/0 Subsystem

DNOS System Design Document

processor. File requests are given to the file management (FM)
processor. Device requests are handed to the device manager.
The device manager is responsible for setting up the data buffer.

The request data buffer is moved to the buffer table area (BTA)
if the destination resource transfers data relatively slowly.
This copy of the request data buffer is made so that the task
memory space may be released while the request 1is Dbeing
processed. Resources that move data quickly need not have the
data buffer copied; they access the data directly from the
requester task memory space. The device manager passes the
buffered request copies to the physical device handler, the DSR,
for processing.

The DSR moves the data between computer memory and the physical
device. This transfer usually occurs at the maximum rate of the
device. During this transfer, the scheduler selects other
programs to execute.

When the transfer has completed, the hardware causes a device
interrupt to signal the DSR, indicating that the request has
completed. The DSR sets up conditions such that the next time
the scheduler selects a program to execute, it finds that the
request has finished processing. The scheduler then activates
the requesting task., Also, any request waiting to be processed
by that DSR is passed to the DSR,

When a program 1s activated by the scheduler, a check is made
before the program is allowed to execute to see 1f any buffered
SVC requests are to be returnmed to the program. For I/0 SVCs,
status information and buffered data are returned.

10.2 DEVICE I/0 DATA STRUCTURES

Data structures used for handling device I/0 are of two types.
One set describes the devices and is built by the system
generation utility. The other type of structure is built by the
I/0 and 1I/0 Utility subsystems when requests are made to use
devices. The following structures are built during system
generation:

* Physical device table (PDT) - Memory-resident data
structure, one built for each device defined for the
systeme. Contains information about the device name,
characteristics, and workspace for the device service
routine.

* Alternate PDT - A short version of a PDT, built for
subdevices of a device. An example is the cassette unit
of an ASR terminal. The DSFAID flag in the field PDTDSF
identifies the PDT as an alternate. The field PDTDIB

I/0 Subsystem 10-2 2270512-9701

DNOS System Design Document

points to the master PDT, that is, the PDT for which
this represents a subdevice. The byte PDTTYP is a
binary indicator of the subdevice. There can be no more
than 256 subdevices per master PDT. Note that these
structures must be carefully avoided by some processors;
power—-up must bypass all altermate PDTs, for example,
and abort processing must also avoid them.

* Disk PDT extension (DPD) - Structure appended to the PDT
for a disk device. Used as a work area by the device
service routine and the Disk Manager.

* Keyboard status block (KSB) =~ Structure appended to the
PDT for a device with a keyboard. Used as a workspace
by the device service routine when handling the
keyboard. ’

* Line printer PDT extension (LPD) - Structure appended to
the PDT for a line printer device. Carries flags and
pointers for use by the device service routine.

* Magnetic tape PDT extension (MTX) = Structure appended
to the PDT for a mag tape device. Carries flags and
- counters for use by the DSR.

* Extension for a terminal with a keyboard (XTK) -
Structure appended to the KSB for a device with a
keyboard.

* Extension for a 940 or 931 terminal - Structures
appended to the KSB for a 940 or 931 terminal. These
are described in the paragraph on asynchronous DSRs.

The following structures are built when a request is issued to a
device:

* Logical device table (LDT) - Built by the I/O0 utility to
carry the logical unit number to be used for requests,
characteristics of the device, and the current
processing state.

* I/0 request block (IRB) =~ Built by the I/0 preprocessor
as a buffered copy of the I/0 SVC issued by the
requester.

* Buffered request overhead (BRO) - Built by the request
processing root and by the I/0 subsystem to describe the
originator of the IRB and the current state of the
request, this is appended to the front of the IRB.

2270512-9701 10-3 I/0 Subsystem

DNOS System Design Document

10.3 DEVICE I/0 HANDLING

Figure 10-1 and Figure 10-2 show the flow of control through
device handling. Figure 10-1 is an overall wview, while Figure
10-2 details the entrance to device processing. The figures show
the major I1/0 modules involved, as well as support routines from
the nucleus and SVC request processing systems.

i +
Fmmmmmmmmm e (XOP)=|REQUESTER |{==m==--=-=—-==—ocee——-
| | TASK | |
v i + |

mmm + |

| RPROOT | |

tmmm——————— + |
| o ———— Sommm- dmmmmmemm—m— e ——— |
\ | I | I
tmmmmmoome- + ! v —>mmmmemmn | !
| IOPREP | | fmmm—————— + v |

o ————— + | | NFSRTN | | A====—————a + |
| | Fmm———————— + | NFTRTN | |
v | ! | Ammmmmmmee- +

Fomommomoe- + ! v ! ! !

| IODEVR | | i + V---=-~ e

o + I | NFSCHD | | fmmmmm e +
I | pommm - + | RPDQUE |
R it >—-- | | Aemm———————- +

o e .o----->"--"

Figure 10-1 Overview of Device I/0 Handling

10.3.1 Details of I/0 System Routines.

When the requester task issues anm I/0 SVC, control is passed to
the SVC decoder, RPROOT. After determining that request is for
the I/0 system, RPROOT passes it directly to the I/0 request
preparation routine, IOPREP,

IOPREP functions as a preprocessor that is a uniform entrance
into the 1I/0 system and prepares the I/0 request for the
destination resource. If any error is detected by IOPREP, the
error bit is set in the user call block flags, and IOPREP exits
to RPRTNE in RPROOT. RPRTNE returns the error byte to the user
call block and checks flags for initiated events.

I/0 Subsystem 10-4 2270512-9701

DNOS System Design Document

fom———————— +
Fmm e (XOP)-|REQUESTER |
I | TASK |
\ Fomm——————— +
toee +
| RPROOT |
Fre e ———— +
(B)
I
\
Fomm—————— +
| IOPREP |
tomm e ———— +
(B)
|
\'
Fomm e +
| IOCHKX |
Fmmmm - +
(B)
| m—mmm— e Fomm e e +
\4 v v \
Fom———————— + Fomm e + R + fomm——————— +
| IODEVR | | IUPREP | | IPCPRE | | FMPREP |
tom e ———— + Fom———————— + frmm—————— + fom e ——— +
(BL)
|==(B)=mmcmm e c— = e e L LD LD L e D +
' v v
o m e + Fommm—————— + fom— e ————— +
i IOPEL I | NFSRTN | | NFTRTN |
tomm e ———— + trm———————— + tomm e ———— +
(BL)
e e D B T L e e e L L +
\ \ '
tom e ———— + tom e ———— + tomm——————— +
| IODBGN | | LGDEV | | NFEOBR |
Fomm - + fomm——————— + tommm—————— +
(BLWP)
|
\
Fom e +
I DSR |
e +
(BL)
It ittt +
\ \
tom———————— + tom——————— +
| IONRCD | OTHER DSR SUPPORT ROUTINES
tomm e ——— + fomm—————— +

Figure 10-2 Beginning Device Request Processing

2270512-9701 10-5 I/0 Subsystem

DNOS System Design Document

IOPREP passes the request and control to IUPREP if the request is
a utility request. Otherwise 1t builds a copy of the request in
the STA static buffer, SYSBUF, including buffered request
overhead (BRO) and the entire call block. IOPREP then calls
IOFLDT to locate the LDT. The LDT contains informatiom about the
destination resource as a logical unit number (LUNO). If the
resource pointer in the LDT is zero, the request is for the dummy
device (DUMY); consequently, the request is simply returned as
complete via RPRTNE.

For a device other than DUMY, the LDT is examined to see 1if the
device has been opened, that is, some task has issued an I/0O SVC
with the Open subopcode. If the device is open, the LDT carries
the TSB and JSB addresses of the task that opened it. The task
attempting to use the resource must be the task that opened the
LUNO.

If the LUNO is open to the requester task, various subopcodes in
the 1/0 requests are treated differently. The Modify Access
Privilege subopcode is treated as an Open. Otherwise, control 1is
transferred around the open process. Read Characteristics
subopcode requests are allowed to bypass the requirement that the
LUNO be open.

If the LUNO is not open, the subopcode is checked to see that it
is an Open. The open process checks for a Resource Privilege
Block (RPB) to see 1f the Open is allowed. If it is, the LDT is
opened and the access privileges are placed into the LDT and RPB.
Requests of all subopcodes are channeled through the next part of
IOPREP, which tests again to determine if the request is allowed
with the current access privileges. If the request is legal,
control is passed to IOCHKX for further processing.

IOCHKX buffers the remaining portion of the request into SYSBUF
according to the device type specified in the LDT. The STA is
used since it is available to devices and file management when
the JCA is not in memory. The data buffer is not allocated or
buffered at this time. Using more information from the LDT,
control transfers to the IPC processor, IPCPR2; to the file
management processor, FMPREP; or to the device processor, IODEVR,

IODEVR functions as a uniform I/0 entrance to device resources.
It has an alternate entry point (IODDIO) for direct device I/0 of
system tasks that must bypass checks on general requests. The
primary entry point determines 1f a buffer should be allocated
from the BTA and 1if data should be ©buffered. After these
decisions are made, the paths from the two entry points come
together.

IODEVR now checks to see if the device in use is represented by
an alternate PDT, that is, is a subdevice of some master device.
If so, the flag BRFAPI is set in the field BROOF2 of the buffered
request overhead of the I/0 request block. The binary ID of the

I/0 Subsystem 10-6 2270512-9701

DNOS System Design Document

device is copied from the alternate PDT to the field BROAID. The
master PDT pointer is retrieved from PDTDIB of the alternate PDT
and now used as the PDT pointer for processing,

The request is then inserted on the PDT waiting queue, PDTWQ, and
control is given to the PDT end-of-record logic routine, IOPEL.
When control returns from IOPEL, the request 1is checked to see if
it is complete in IORTN. If so, control passes to the nucleus
return routine, NFTRTN. If the request is not complete and it is
not an Initiate mode request, the task state is set to suspended
for I/0, and control is given to the nucleus suspend routine,
NFSRTN. If the request is an initiate mode request, control 1is
given to NFTRTN.

IOPEL functions as a device control module outside of hardware
interrupts, setting up requests to devices and returning requests
to tasks. The loop for processing begins by calling a system log
routine, LGDEV, to 1log any errors stored inm the PDT. Requests
are set up for the device if the PDT saved request block address,
PDTSRB, is zero and PDTWQ is not zero. Before any processing,
IOPEL sets the hardware interrupt level in the status register to
prevent interrupts. The first request is removed from PDTIWQ, the
device map file is changed to map in the request, the data buffer
address in the BRB 1is adjusted, and control is given to the
device begin routine, IODBGN.

When control returns from IODBGN or if PDTSRB is nonzero, the PDT
spent request queue, PDTSRQ, is examined. If PDTSRQ is nonzero,
a request is removed from it, and NFEOBR is called to insert the
request on the TSBEOR queue. This then loops back to the logging
process. If the device is busy or there are no more waiting
requests and no more completed requests, control returmns to the
calling routine.

IODBGN is an interface routine that changes the map file from the
current state to a state in which the DSR is mapped with its data
buffer. IODBGN must be in the first of the three segments of map
file 0 in order to perform this function. After the new map file
has been set up, the DSR is entered at the request entry point
(one of several entry points). Alternate entry points in IODBGN
correspond to some of the other entry points in the DSR, These
alternate entry points are IODREE for system interrupt entry,
IODABT for request abort, and IODTO for time-out, I0ODPDS for
priority scheduling, and IODPU for power-up. Before giving
control to the DSR, IODBGN saves the address of the PDT workspace
for power failure.

2270512-9701 10-7 I/0 Subsystem

DNOS System Design Document

10.3.2 1I/0 Processingbby the DSR.

A DSR is the request processor for a physical resource. The
first . five instructions beginning at relative location 0 of the
DSR must be Dbranch instructions. These ©branch instructions

correspond to five alternate entry points in the DSR., A sixth
branch instruction must be included if the DSR uses priority DSR
scheduling. The branch instructions correspond to the following
alternate entry points.

* Hardware interrupt, the routine that handles interrupts
from the device

* System interrupt, the routine that handles the request
for the system to reenter at approximately 50
milliseconds later.

* Power up, the routine that initializes the device.

* Request abort, the routine that handles the abort of a
request that the DSR is processing

* Request time-out, the routine that processes - the
condition in which the device has not responded in a
certain length of time.

* Initial request processing. If priority DSR scheduling
is wused then this must be a branch instructionm to the
routine that handles initial request processing, If
priority DSR scheduling 1is not wused, then initial
request processing code begins here.

* Priority DSR scheduler (optional)

If priority DSR scheduling 1s used, the instruction following the
initial request ©processing entry point Is the routine for
processing requests for priority DSR scheduling. Priority DSR
scheduling is used by DSRs which need to be reentered but do not
want to wait the 50 milliseconds for a system interrupt. This
mechanism reenters the DSR after all interrupt processing to the
system 1s complete but before the task scheduler initiates any
task execution.

DSRs which use priority scheduling must 1link in the routine
IOPDSQ. The DSR requests priority scheduling by issuing a BLWP
@IOPDSQ instruction. The routine IOPDSQ will queue the PDT to
the priority scheduling queue. NFSCHD and NFTRTN check for PDTs
on this queue and reenter the DSR at the earliest opportunity.
This 1is intended for wuse only by high priority interrupt
processing. Using this mechanism arbitrarily may interfere with
other devices that use this entry point.

I/0 Subsystem 10-8 2270512-9701

DNOS System Design Document

When a hardware interrupt occurs, the interrupt vector tables
(initialized during sysgen) are wused to transfer to the
appropriate interrupt decoder. There are four decoders provided
with DNOS, each serving a class of devices:

*# A single device at a unique interrupt level

% Multiple devices at a single interrupt level

* An expansion chassis at a single interrupt level with

multiple devices, each at a wunique interrupt level

within the chassis or multiple devices sharing a unique
interrupt level within the chassis.,

* Single device or multiple devices on a multiplexed
device controller

Each interrupt decoder goes through the following steps to
process the interrupt:

1. Save the current system map file pointer (accessed via
CURMAP).

2, Set CURMAP +to the DSR map file pointer for the
appropriate DSR. '

3. Load the map file using CURMAP.
4. Enter the DSR at the hardware interrupt entry.

5. When the DSR completes, restore CURMAP to point to the
previous system map file.

6. Load the map file using CURMAP.
7. Exit via NFTRTN.

The text of the interrupt decoder can be found in the sectlon on
writing a DSR in the DNOS Systems Programmer’s Guide.

Whether handling hardware interrupts or entering the DSR at other
points, the DSR uses the PDT for the device as a reference point.
The section on data structure pictures includes details on the
PDT.

A queue header in the PDT allows the DSR to accept multiple
requests for the device and to call the DSR end-of-record
routine, ENDRCD, as many times as necessary to dispose of
completed requests. (ENDRCD is one of several routines in the
module TIONRCD.) To handle the multiple requests, the DSR must
remove the request from PDTSRB (clearing PDTSRB) and insert the
request on the PDT hidden request queue, PDTHRQ. By clearing

2270512-9701 10-9 I/0 Subsystem

DNOS System Design Document

PDTSRB, the DSR appears to be not busy. PDTHRQ is used as an
internal queue anchor for the DSR; the operating system can use
PDTHRQ to abort requests or to allow the task to wait for
requests.

ENDRCD is the first step in returning the request to the task.
Not much can be done at this level because of the time spent with
hardware interrupts masked to the interrupt level of the device.
ENDRCD expects PDTSRB to contain the address of the request that
has just completed. If PDTSRB is zero, ENDRCD returns to the
DSR. If PDTSRB is nonzero, ENDRCD removes the request from
PDTSRB, clears PDTSRB, and inserts the request at the end of .
PDTSRQ. If the PDT end-of-record queue (PDTERQ) is zero, the PDT
is inserted at the end of the list of PDTs that need end-of-
record processing. This list is anchored by EORNKR, found 1in
NFPTR, and has PDTs queued via their PDTERQ fields. The priority
of the executing task 1s compared with the priority for the
requesting task., If the request priority is higher, the global
forced reschedule flag, RESCHD (found in NFDATA), is set to
preempt the running task. Control then returns to the DSR.

Figure 10-3 shows timing, system interrupt, hardware interrupt,
and end=-of-record support for DSRs. The figure highlights only
the main modules or routines.

The task scheduler, NFSCHD, interacts with the I/0 system to
handle system interrupt and end=-of-record functions. When a
system time unit (50 milliseconds) has elapsed, NFSCHD calls the

device timer routine, IODTMR. IODTMR traverses the PDT 1list,
examining it for flags set to reenter a DSR and to wait for
request time-out. When the reenter me flag is on, it is turned

off and IODREE is called. If the PDT is busy, the time-out flag
is on, and the PDT times out, an error code for device time-out
is placed in the active request and IODTO is called. (IODREE and
IODTO are alternate entry points to module IODBGN.)

NFSCHD determines that device end-of-record processing is
required by finding a nonzero value in the global queue anchor,
EORNKR. When this occurs, the end-of-request routine for PDTs,
IOEOR, is called. IOEOR removes the first PDT on EORNKR and then
calls IOPEL to process the end-of-record. IOEOR removes each PDT
from the 1list until it 1s empty. IOEOR then returns to the
scheduler.

I/0 Subsystem 10-10 2270512-9701

DNOS System Design Document

fmmmmmmm—
| NFSCHD |
o= +
(BL)
!
________________________ +
I |
v \Y
fmmm— e + pommm e +
] TIODTMR | | IOEOR |
o + o —————— +
(BL) (BL)
| |
| \
I fommm——— - +
| | IOPEL |
I o m - +
I (BL)
! I '
| tmmmm——— e e R +
A\ \ \
fmmmm + fommm——————— + o m———————
| IODBGN | | LGDEV | | NFEOBR
fmmm———— e + it + fmmm———————
(BLWP)
I (BLWP) +=—====—=—= +
Voo {emommm e | hardware |
Femmm——————— + | interrupt|
[DSR | | decoder |
o ———— + i +
(BL)
R +
v v
Fommmm—————— + e e +
| JIONRCD | |OTHER DSR SUPPORT ROUTINES|
tmmmmm - + e ettt +

Figure 10-3 DSR Control Paths

10.3.3 Returning Information to the Requester.

Figure 10-4 shows how information is returned to the requester
task. After a task is scheduled and prior to execution, NFTRTN
is called. (NFTRTN is also the exit point for nonsuspending SVC
processors.) Before NFTRTN returns control to the requester
task, the TSBEOR field of its TSB 1is examined for a mnonzero
value. When TSBEOR is zero, control drops through for the other
checks. Otherwise, RPDQUE is called.

2270512-9701 10-11 I/0 Subsystem

DNOS System Design Document

NFSRTN is similar in nature to NFTRTN except that it is the exit
point for SVCs that suspend task scheduling. Before suspending
the task, NFTRTN examines TSBEOR for a nonzero value. When it is
zero, control drops through and the task is suspended.
Otherwise, RPDQUE is called.

RPDQUE removes the first entry from TSBEOR. RPDQUE examines the
SVC code in the BRB, unbuffers the error code, and calls the SVC
post processor 1if one exists. The post processor for I/0 is
IOPOST. When control returns from IOPOST, RPDQUE releases the
BRB, checks for another entry on the queue and processes any.
When no entries remain, it returns to its caller.

IOPOST examines the subopcode to determine 1if it 1is an I/0
utility opcode. 1If so, parameter buffers are released and other
information is unbuffered to the task., If the request was made
through IODDIO in IODEVR, the LDT address is zero and requests
are not unbuffered. Otherwise, the system flags are unbuffered.
For relative record files, the record number is returmned to the
task. For VDT requests, the extended wuser 1information 1is
unbuffered. The SVC subopcode is then used to index into a table
to unbuffer Open, Read, and Write information.

For Open subopcodes, the resource type is returmned to the task.
If an error code is in the BRB for an Open or a Close, both the
LDT and the RPB are closed. For a Read subopcode, the data
buffer 1s moved to the task data ©buffer 1if the buffer beet
address in the BRO, BROBBA, is a nonzero value. If BROBBA is
zero, the buffer has already been moved by some other processor.
Control then passes back to the caller, RPDQUE.

I/0 Subsystem 10-12 2270512-9701

DNOS System Design Document

Fmm——————— +
| REQUESTER |(==-===mem—mccccc— e e - +
| TASK | I
Fommm—————— + |
|
Fmm— - + L L + i
| \ 1 \ |
to————————- + | e ——— - + | fm————————— +
| NFSRTN | | | NFSCHD | I | NFTRTN | |
e + | tmm———————— + I fmmm——————— +
(BL) I (B) | (BL) I
| =(B)===m===- + Fomm + | |
| |==(RTWP)+
| tmmmmm e e e e +
VvV
b +
| RPDQUE |
Fmm———————— +
(BL)
| == e +
\Y '
tmm—m - + ittt +
| I0POST | |OTHER SVC POST PROCESSORS|
Fommm— + ettt +

Figure 10-4 Returning Information to the Requester

10.3.4 Bidding a Task from a DSR.

DNOS provides a means to bid a task from a DSR. A two character
sequence must be entered to initiate the task bid. The: first
character entered is the arming character, Attention. The second
character entered is wused to identify the task to be bid. For
example, the sequence Attention ! can be used to bid SCI. In
addition to the task bid sequences, DNOS processes the following
character pairs as indicated:

Attention Attention - halt current output to screen,
resume output

Attention Return - abort I/0 to the screen

Attention Control-X - break - terminate current task

Attention N - bid the network logon task ‘

These can be redefined or more character sequences can be defined
by the user. For each task to bid, the wuser must supply a
Command Definition Entry (CDE). The CDE is associated with the
type of device at which the bid can be made. During IPL, a file
of CDE tables is initialized for each type of device that might
be used for task ©bidding. This file 1s assumed to be in
VOL.S$CDT.xxx, where VOL is a synonym for the disk volume being

2270512-9701 10-13 I/0 Subsystem

DNOS System Design Document

used as a data disk and xxx is the name of the generated system.

The format of a CDE is shown in the section on data structure
pictures. Each CDE includes a task ID for a logon task to be
bid, as well as a task ID for the task to be bid by the 1logon
task, flags, and parameters for the task to be bid by the logon
task. The logon task is either the task supplied with DNOS or
some user-written substitute. The supplied logon task solicits
user ID and passcode, verifies their accuracy, and bids the task
specified 1in byte 3 of the CDE. (More detail on the logon task
can be found in the section on system tasks.)

When a keystroke defined by a CDE is used at a terminal, the DSR
makes several entries to system data structures. If no other
task is currently awaiting bid for the terminal in question, the
PDTCHR field of the terminal PDT is set to the character entered.
The PDT is linked to the global list of PDTs with pending bids,
using the PDTBQ field as a 1link field. The global 1list is
anchored at BIDREQ, located in NFPTR.

When the scheduler 1is scanning lists to find an activity to
begin, it examines the BIDREQ anchor to see if any PDT needs a
task bid. If the anchor 1is nonzero, the scheduler bids the
system task IOTBID to serve the queue of requests,

IOTBID takes the first request from the queue and examines it for
validity. It first ensures that the terminal is on-line and
available for use.

IOTBID then 1issues a Bid Task from a DSR (>C7) subopcode of the
I/0 SVC to bid the appropriate task as defined by the CDE. Refer
to the section on the device I/0 utility (DIOU) for more details
of that bid process.

10.3.5 Handling Large I/0 Buffers.

The wuse of full-duplex operations for communication requires a
strategy to handle many large data buffers. DNOS wuses the BTA
for 1large buffers rather than allocating them from STA. Figure
10-5 shows in general how buffers are mapped with I/0 processing.

The BTA was designed to accommodate transient buffers; therefore,
the BTA dynamically expands and contracts. During sysgen, static
allocation limits are set. By using the Static Buffer Forced
Roll SVC (>4A), the system can interrogate, increase, or decrease
the size of the BTA. The BTA immediately precedes available user
memory; when increased, the BTA causes user memory to decrease,
This may cause forced swap of user segments that are occupying
the requested area. SVC >4A is detailed in the section on
special SVC supporte.

I/0 Subsystem 10-14 2270512-9701

DNOS System Design Document

Since the buffers are not in STA, it is possible to dynamically
get and release BTA buffers from a DSR. Subroutines are provided
for the DSR to get BTA (IOGBLK) or release BTA (IORBLK). To use
IOGBLK, BL to the subroutine with workspace register 10 (R10)
containing the size of the buffer (bytes). On returning from the
subroutine, workspace register O contains the status code for the
request., It will be O if no errors occurred while getting BTA.
R10 will contain the beet address of the allocated memory. The
value returned in R10 should be stored in the buffered beet
address field (BROBBA) of the BRB that will be receiving this
buffer. The 1/0 system uses BROBBA as a beet address within the
BTA to release the buffer. The first usable address relative to
the start of the allocated BTA buffer is the value of BBAOFF
found in the CSEG NFWORD.

The BTA can be addressed locally by the DSR if the BTA is mapped
in. Before mapping in the BTA, it is necessary to map out the
buffer currently mapped in (if one is present and if it 1is
different from the new one). This is accomplished by a call to
the subroutine IOMPOT, which uses Rl as a pointer to the BRB
containing the pointer to the buffer to be mapped out. Mapping
in the new buffer is achieved by pointing R1 and PDTSRB to the
desired BRB and by placing the value of BBAOFF in the IRBDBA
field of the BRB. Then the DSR calls the subroutine TIOMPIN to
map in the BTA. This causes the IRBDBA field to contain a buffer
address within the logical address space of the DSR.

To release BTA, the DSR calls the subroutine IORBLK, with R10
containing the beet address in the BTA of the buffer to release.
On returning from the subroutine, RO contains the status code for
the request. RO will be zero if no error was detected. After a
buffer in the BTA is released, BROBBA in the corresponding BRB
must be set to zero.

Control of ©buffering for a DSR is specified by information
contained in the PDT of each device. PDTDSF contains the two
flags, DSFBI and DSFBO. DSFBI controls the input. When it is 1,
a buffer is allocated in the BTA for a read request. When it is
0, a buffer is not allocated for read requests. DSFBO controls
the output. When it is 1, a buffer is allocated in the BTA for a
write request, and the output data is copied to the buffer from
the task address space. When DSFBO is 0, a buffer 1is not
allocated and not copied for write requests.

2270512-9701 10-15 I/0 Subsystem

DNOS System Design Document

Physical memory

ettt L e L L L P PR P e e e +
DNOS	Memory-Resident		Memory—-Resident	Buffer	User
Root	DNOS Code	DSR	DNOS Code	Table	Task
				Area	Memory
el e e e bt	=== e i	=== +			
	Fmmmmmmmmmms e				
		A=—m—memmsssss e			
to=	== == +				
Fomm e +	i				
te-	- f==f==—=--	===+			
DNOS	Data				
Root	Buffer	DSR			
ittt +
0 6000

DSR Logical Memory

Figure 10-5 Device I/0 Buffering

10.3.6 Converting a DX10 DSR for DNOS.

Because of different internal operating system structures and
because of some added functions, DNOS DSRs are slightly different
from their DX10 counterparts. A user who has his own DX10 DSR
must change his DSR to meet DNOS standards.

Before making any code changes, the wuser should study the
relevant data structure templates used in DNOS: the PDT, 1IRB,
BRO, and any other templates whose counterparts were used in the
DX10 DSR.

Within the DSR code itself, the set of definitions (DEFs) and
references (REFs) must be changed. The DNOS I/0 system uses no
DEFs supplied by the DSR. The only DEFs that must be supplied
are those required by modules used by the user’s DSR. Any other
DEFs may be deleted.

Several DX10 REFs are not used by the DNOS DSR. Delete the REFs
to the subroutines SETWPS, BZYCHK, and MAPCHK. Replacements for
these references are discussed in the following paragraphs, The
REF for KEYFUN should be replaced by IOFCDT, and the template for
NFPTR, DSC.TEMPLATE.COMMON.NFPTR, should be copied into the DSR.
The REF for BRCALL or JMCALL should be replaced by BRSTAT. REFs
to byte and/or word constants should be deleted and replaced by
copying in the appropriate template:

I/0 Subsystem 10-16 2270512-9701

DNOS System Design Document

BYTEOO - BYTEOF DSC.TEMPLATE,COMMON.NFEROO
BYTE10 - BYTEILF DSC.TEMPLATE.COMMON.NFER1O
BYTE20 - BYTE2F DSC.TEMPLATE.COMMON.NFER20
BYTE30 -~ BYTE3F DSC.TEMPLATE.COMMON.NFER30
BYTE40 - BYTE4F DSC.TEMPLATE, COMMON.NFER4O0
BYTE50 - BYTESF DSC.TEMPLATE,COMMON.NFER50
BYTE60 - BYTEGF DSC.TEMPLATE,COMMON.NFER60
BYTE70 - BYTETJF DSC.TEMPLATE .COMMON.NFER70
BYTE80 - BYTES8F DSC. TEMPLATE.COMMON.NFER8O
BYTE90 - BYTE9F DSC.TEMPLATE, COMMON.NFER90
BYTEAO - BYTEAF DSC.TEMPLATE, COMMON.NFERAOQO
BYTEBO - BYTEBF DSC.TEMPLATE, COMMON.NFERBO
BYTECO - BYTECF DSC.TEMPLATE.COMMON.NFERCO
BYTEDO - BYTEDF DSC.TEMPLATE.COMMON.NFERDO
BYTEEO - BYTEEF DSC.TEMPL'ATE ., COMMON.NFEREO
BYTEFO - BYTEFF DSC.TEMPLATE .COMMON.NFERFO
WDOOO1 - WD800O DSC. TEMPLATE ., COMMON.NFWORD

To allow for the addition of new devices at IPL and for the
reinstallation of a new, modified, or <corrected DSR without
linking the entire system, the first addresses of the DSR must be
the following instructions:

@Hardware interrupt entry address
@System reenter me entry address
@Power up entry address

@Abort entry address

@Time-out entry address

@Request entry address

@Priority DSR scheduler

W W

No data or subroutine code can precede these instructions. They
replace the following DX10 entry points:

DATA power-up entry address
DATA abort entry address
oo DSR executable code for request entry

In DX10, the following is the first DSR executable code:

LIMI O
BL @SETWPS

This code is not required and should be deleted for DNOS because
the I/0 system performs this function prior to entering the DSR.

Two differences in the data structures affect code in the DSR.
They dinvolve the pointers in Rl and R4 of the PDT. Rl is the
pointer to the BRB. The BRB, a concatenation of the BRO and the
IRB, 1is called the UCB in DX10. The relevant change in DNOS is
the position to which Rl points in the BRB. In DX10, R1 pointed

2270512-9701 10-17 I/0 Subsystem

DNOS System Design Document

to the word <containing the subopcode and LUNO of the BRB. 1In
DNOS, Rl points to the word containing the SVC code and error
byte. PDTSRB points to the same place. The DSR code must be
changed to reflect the new pointer. Any references to the DXI10
structures named PRB and UCB must be changed to the equivalent
references to the DNOS structure named IRB.

R4 points to the device information block (DIB) of the PDT. (The
device information block is the PDT and any PDT extensions.) In
DX10, R4 pointed to the word beyond the end of the PDT. 1In DNOS,
R4 points to the first word of the PDT, the PDT link word PDTPDT.
The DSR must be changed to reflect the new pointer location.
References to DX10 PDT offsets must be changed to equivalent
references to PDT template offsets. PDT labels should be used
rather than hard-coded offset values.

The subopcode processor, BRCALL or JMCALL, has been enhanced to
collect information for on-line diagnostics. BRCALL can still be
called, but note that R10 will be modified. The replacement
subroutine call is to BRSTAT. It uses R10 as a pointer to a byte
table that contains relative offsets into the PDT. If R10 is
zero, it 1is mnot used as a pointer. The table is built with
entries for each subopcode. The on-line diagnostics code counts
types of requests for physical I/0. The entries in the byte
table are chosen from 0, PDTRC, PDTWC, or PDTMC; these correspond
to the null request counter, the read request counter, the write
request counter, and the miscellaneous request counter,
respectively. Build the diagnostics table appropriately for the
physical device if this function is chosen. The table for BRSTAT
is the same as for BRCALL.

One of the subroutines for keyboard devices has a different name
in DNOS and DX10. The subroutine KEYFUN in DX10 is named IOFCDT
in DNOS. IOFCDT performs the same function as KEYFUN; it also
performs a new function, bidding a task from a DSR. (See the
paragraphs describing bidding a task from a DSR for details.)
All task bids 1in a DX10 DSR must be removed 1in the DNOS
equivalent.

IOFCDT controls processing of all bids, including the bid of SCI
at the terminal. (SCI may be bid with or without the 1logon
task.) IOFCDT also processes the hard break sequence, bidding
the IOBREAK task. The keys used to bid SCI and the hard ©break
sequence are defined in the CDE for the terminal type during IPL.

I/0 Subsystem 10-18 2270512-9701

DNOS System Design Document

For devices with no KSB associated with the PDT, a bid can be
accomplished by direct queue manipulation in place of a call to
IOFCDT. To place the entry on the queue, first examine the byte
field PDTCHR. If the field is nonzero, a task is waiting to be
bid and another entry is not allowed. If PDTCHR is zero, place
the character in the PDTCHR field. Mask interrupts to 1level 2
and find the end of the queue whose anchor is BIDREQ (found in
NFPTR). Link the PDT to the last one on the queue wusing the
field PDTBQ. Clear PDTBQ in this PDT, and enable interrupts to
the proper level. '

The REFs for BZYCHK, SETWPS, and MAPCHK must be deleted. Replace
the call to BZYCHK with code like the following:

MOV @PDTSRB(R4),R7
JNE device busy code
RTWP

The function previously performed by MAPCHK is now performed by
the 1I/0 system prior to entering the DSR. Therefore, any code
that references MAPCHK must be removed from the DX10 DSR for use
with DNOS.

In addition to the features already mentioned, some others are
provided by the I/O system. The error code is placed into the
BRB in power-up and abort situations. The error flag for the IRB
is

set in the BRB whenever a nonzero value is detected in the error
byte of the BRB.

For processing an end-of-record for a DSR, the subroutine ENDRCD
has been enhanced to accommodate successive calls to perform
multiple end-of-record requests. To take advantage of this
feature, correctly set up the pointer PDTSRB before calling
ENDRCD., PDTSRB is the pointer to the saved request block and
must point to the SVC and error byte of the BRB. If PDTSRB is
zero, nothing occurs in the subroutine ENDRCD.

For a DSR that must multiplex its input and output, a queue
anchor for this purpose 1is 1included in the PDT. When a DSR
wishes to receive a second request, it must appear to the 1I/0
system to be not busy. The DSR achieves this by mapping out the
current request and clearing PDTSRB. It must then keep the first
request available by queuing it to the hidden request queue,
PDTHRQ, wusing the link word BROBRO in the BRB. 1In this way, the
I/0 system can find a request being aborted and flag the error
byte with a >10 error code. During an abort, the DSR is entered
at the abort entry and must examine PDTHRQ and abort the requests
marked with an error code of >10.

If the DSR multiplexes two or more requests at the same time, it

must be careful when accessing a buffer. The buffer for only the
request given to the DSR is mapped into the DSR address space.

2270512-9701 10-19 I/0 Subsystem

DNOS System Design Document

The mapping information for the other request remains with the
requeste. Therefore, the subroutine IOMPOT must be called to map
out a request buffer before inserting the request on the queue
anchor PDTHRQ. Rl must point to the SVC and error code byte of
the BRB. To map the request buffer into the DSR address space,
the subroutine IOMPIN must be called. Rl must point to the word
of the BRB that contains the SVC code and error byte. Neither of
these subroutines modifies PDTSRB.

While it should cause no code changes, the size of the PDT 1in
DNOS is larger than that in DXI10.

Special ©problems that will cause some re-design of the DSR are
the inaccessibility of the LDT and the TSB. Although pointers
exist in the BRO portion of the BRB, the segments containing the
structures may be swapped out of memory. No mechanism 1is
provided ¢to the DSR to place one of these structures into memory
or to map the structure into the logical address space of the
DSR.

Typical problems encountered while debugging the converted DSR
are attempts to access flags contained in the PDT registers and
improper use of the pointers in Rl and R4. Check the PDT flags
used by the DSR to make certain that they exist and are
referenced by label. -

The problems associated with Rl and R4 usually result from wusing
the same method of reference 1in DNOS as in DXI10. Since the
values in Rl and R4 are pointers to the start of a structure,
referencing must be wvia the appropriate template fields as
follows:

DX10.. DNOS.seosseses

MOV #*Rl,... MOV @IRBSOC(R1), e

MOV #R4,... MOV @PDTSIZ(R4),...

ABS *R4 ABS @PDTSIZ(R4)

or

MOV ...,*R1 MOV ...,@IRBSOC(R1)

MOV ...,*R4 MOV ...,@PDTSIZ(R4)
After assembling the DSR, it must be linked with all of the
required support subroutines. This must be done with each
release of the operating system, not with each sysgen Dbetween
releases. Figure 10-6 shows a typical link control stream used

to link a DSR.

I/0 Subsystem 10-20 2270512-9701

DNOS System Design Document

NOPAGE

ERROR

FORMAT COMPRESSED
PROCEDURE DUMROOT
DUMMY
INCLUDE
PHASE 0,DUMROOT
DUMMY

VOL.S$SGUS . DUMROOT

~ PHASE 1,DSRname, PROG >C000

INCLUDE
INCLUDE

VOL.DSRobject pathname
VOL.IOMGR.OBJECT.IONRCD

(include any other support routines)

END
Figure 10-6

The linked object should
VOL.S$SGUS.DSRname.

data disk being used for sysgen.

Table 10-1 shows the modules required for the support

be

placed
VOL is a synonym for the volume

DSR Link Control Stream

in the file
name of the

subroutines

and the registers altered by each of the subroutines.

Table 10-1

Module Name

VOL.IOMGR.OBJECT.IOBMGT

VOL.IOMGR.OBJECT.IOKB

VOL.IOMGR,OBJECT.IONRCD

VOL.IOMGR.OBJECT.IOTILN

2270512-9701 10-21

Location of Support Subroutines for

Subroutine

IOMPIN
IOMPOT
IOGBLK
IORBLK

IOFCDT
CMODE
PUTEBF
PUTCBF
GETC
ASCCHK
ASCCK2

BRSTAT
BRCALL
ENDRCD

GTADDR
XFERM
TILERR

DSRs

Registers

Changed

RO
RO
RO,R10
RO

R6

R5,R7,R9,R10

R9
R10
R10

RO,R10
RO,R10
RO,R10

R9,R10

R6,R9,R10

R8,R9

I/0 Subsystem

DNOS System Design Document

10.4 TELEPRINTER TERMINAL DSR

DNOS contains several hardcopy terminal-driver DSR’s:
DSR TERMINALS FUNCTIONALITY

DSRTPD 703,707 ,743,745,763,765, Local, remote KSR
78x,820,825
DSRKSR 733, 742, 782 Local, remote KSR

This section describes details about DSRTPD as a detailed examplé
of a DNOS DSR.

Direct connection for teleprinter terminals 1s supported using
the following cable combinations:

TERMINALS| CONTROLTLETRS

——————— e e e e e e e e e e - - ——
i /10A 9902 PORT S300 AUX 2 PORT
| TTY/EIA COMMIF CI402 CIl422

743/7451 0948968-0001 0946117-0001

[+2263351-0001

| +0983848-0001
763/765] 2265151-0001 0946117-0001

|+2263351-0001 +2263351-0001

|+2200051-0001 +2200051-0001
78X/820} 2262093-0001 0946117-0001 2303077-0001 2230504

] +2263351-0001

| +2207634-0001

| or0946117

| +0993210-0001
703/707 2303077-0001 2230504
Full-duplex modems compatible with Bell 103, 212a, 113, and Vadic
VA3400 series are supported, with cable 2265151-0001 from the
TTY/EIA board, cable 946117-0001 from the COMM board, cable
2303070-0001 from non S300 9902 ports, and cable 2532883-0001
from S300 9902 ports. Half-duplex operation is not available to
these terminals through the TTY/EIA interface module. Auto-call
support is provided through the Teleprinter Device Utilities of
SCI.

DNOS has adopted a philosophy of generating a dedicated DSR for
each kind of I/0 device supported, and of 1limiting access to
interface cards (within a given configuration) to one of these
dedicated DSRs. DSRTPD is to some extent a departure from this
approach, as it allows a number of different kinds of computer
terminals to be serviced from one DSR and one piece of interface
hardware at different times without re-generation of the
operating system. SCI functions with DSRTPD and the DNOS sysgen

I/0 Subsystem 10-22 2270512-9701

DNOS System Design Document

processor comprehends the parameters and PDT structure required
by DSRTPD.

10.4.1 DSRTPD Structures.

The teleprinter device family (designated KSR) is identified by
sysgen to include a wide variety of teleprinter terminals. The
teleprinter device type code returned by an open operation 1is
>0001 for this device family. The resource type returned on an
assign luno for the teleprinter device family 1is >0902.

10.4.2 PDT Structures.

The TPD PDT is structured as follows:

PDT (built by SYSGEN) |
non-interrupt WS | ===+
DNOS flags | |

XXXXXXXXXXXXXXXXXXXXXXXX | |
| ===+

KSB (built by SYSGEN) |
interrupt WS | ===—t
DNOS flags i

XXXXXXXXXXXXXXXXXXXXXXXX |

DIB (built by SYSGEN)
working parameter set
scratch area

default parameter set
error counters

KSBCBF
input character buffer
(built by SYSGEN)

The Device Information Block (DIB) is a data structure appended
to the PDT which contains information about the current status of
the device as well as information about how it was configured
during system generation. The DSRTPD DIB has the following
structure:

‘*’ DENOTES FIELDS INITIALIZED BY SYSGEN

DIBACR DATA O *ACU CRU ADDRESS(>FFFF IF NONE)
DIBHWR BYTE O *#*INTERFACE TYPE

* 1=COMM/IF

* 2=FCCC

2270512-9701 10-23 I/0 Subsystem

% % % *

DIBRTO
DIBWTO
DIBDTI
DIBDT2
DIBGFL

* ¥ % *

DIBSTF

DIBLNF

DIBTFL

DIBSPD

¥ % ¥ ¥ ¥ F N ¥

BYTE O

DATA O

DATA O

DATA O

DATA O

FLAGS 8

FLAG GFLECO
BITS 1

FLAG GFLXPE
BITS 2

FLAG GFLRPE
BITS 2

FLAGS 8

FLAG STFONL
FLAG STFCIP
FLAG STFOPN
FLAG STFDLE
FLAG STFHDX
FLAG STFRSD
FLAGS 8

FLAG LNFHDX
FLAG LNFSWT
FLAG LNFRCL
FLAG LNFADE
FLAG LNFDLE
FLAG LNFSCF
FLAG LNFEXC
FLAG LNFHDL
FLAGS 8

FLAG TFLECO
BITS 1

FLAG TFLXPE
BITS 2

FLAG TFLRPE
BYTE O

I/0 Subsystem

DNOS System Design Document

3=BCAIM
4=HSCC
5=TTY/EIA
6=9902
RESERVED
*READ TIMEOUT (IN 1/4 SECONDS)
*WRITE TIMEOUT(IN 1/4 SECONDS)

*FIRST DIRECT TIMEOUT (IN 1/4 SEC)
*SECOND DIRECT TIMEOUT (IN 1/4 SEC)

*SYSGEN FLAGS (SAME AS DIBTFL)
ECHO (1=NO ECHO)
UNUSED

XMIT PARITY ENABLED(1=ENABLED)

XMIT PARITY TYPE

00=EVEN

01=0DD

10=MARK

11=SPACE

RECEIVE PARITY ENABLED

RECEIVE PARITY TYPE
STATE FLAGS

0=0ONLINE

1=CONNECT IN PROGRESS

2=0PEN

3=DLE RECEIVED

4=HDUX LINE BELONGS TO REMOTE

5=RESEND FLAG

6=UNUSED

7-8=BIT DATA QUEUEING
*LINE FLAGS

*HALF DUPLEX (1=HALF DUPLEX)
*SWITCHED LINE (1=SWITCHED)

REFUSE CALL

AUTO-DISCONNECT ENABLED
DLE/EOT FOR DISCONNECT
SCF READY/BUSY MONITOR

FILE XFER EXCLUSIVE ACCESS

HALF DUPLEX LTA ENABLE
TEMPORARY ACCESS FLAGS
ECHO (1=NO ECHO)
UNUSED
XMIT PARITY ENABLED
UNUSED
RECEIVE PARITY ENABLED
*BAUD RATE (SPEED)
-1=300 OR 1200 SELECTED
BY 212 MODEM
0=110
1=300
2=600
3=1200
4=2400
5=4800

10-24

2270512-9701

DNOS System Design Document

* 6=9600
DIBEOR BYTE *END OF RECORD (=CR)
DIBEOF BYTE *END OF MEDIUM (=EM)
DIBLTA BYTE *LINE TURNAROUND (=EOT)
DIBSUB BYTE *PARITY ERROR SUBSTITUTE (='?')
DIBDLA BYTE CARRIAGE RETURN DELAY INTERVAL
DIBPCR DATA PARITY CHECK ROUTINE ADDRESS
DIBPSR DATA PARITY SET ROUTINE ADDRESS
DIBMXC DATA MAXIMUM CHARACTERS BUFFERED
DIBTRM BYTE *TERMINAL TYPE (=TYPE-700)
DIBLCR BYTE LAST CHARACTER RECEIVED
DIBXFL FLAGS 16 SAVED EXTENDED FLAGS
DIBSVE BYTE 0 SAVED ERROR CODE FROM DSR
DIBGSP BYTE 0 *CURRENT SPEED (SAME AS DIBSPD)
DIBISR DATA 0 RESERVED
DIBGTO DATA 0 *GENNED TIMEOUT(IN 1/4 SECONDS)
0
0
$-

COOCOOOOOCOC

DIBPEC DATA NUMBER OF PARITY ERRORS
DIBLCC DATA NUMBER OF LOST CHARACTERS
DIBSIZ EQU DIBBGN SIZE OF DIB

10.4.3 DSRTPD Functions.

The DSR has a power wup entry point labelled PWRON. Powerup
processing consists of copying default parameters to the DIB,
setting the state of the interface module accordingly, and
setting values for the EIA lines which are appropriate to the
line mode:

l. For switched lines, all lines are forced low until Ring
Indicate 1is sensed or until the modem’s online signal
is detected: Data Carrier Detect for full duplex, Data
Set Ready for half-duplex. Because DCD is not present
for the 9902 port on the /10A controller, switched line
is not supported for that configuration.

2. For unswitched lines, Data Terminal Ready 1is asserted
and the DSR 1looks for Data Set Ready before each
character is transmitted.

The DSR has an abort I/0 entry point labelled ABORT. Abort I/O

processing consists of terminating any I/O in progress with the
abort error code (>10) and returning the DSR to the 1idle state.
Timeouts appear to DNOS to be disabled, but the DSR handles
timeouts internally.

10.4.4 DSRTPD Details.
DSRTPD is built of five modules: DSRTPD, DSCOMISR, DSTTYISR,

DSISR402, and DSTPDCOM. The DSR uses a vector table to access
various hardware-related functions.

2270512-9701 10-25 I/0 Subsystem

DNOS System Design Document

DSRTPD

This module is the request processor interface. Its code 1is
completely hardware independent. When a hardware-dependent
function needs to be performed, it goes through a vector
table and enters the appropriate hardware-dependent module.
This module uses the PDT workspace exclusively. It
maintains a set of state tables that are wused to control
interrupt—-driven functions.

DSCOMI SR
The COMM board driver module