
DNOS ~

System
Design Document

Part No. 2270512·9701 *8
15 November 1983

TEXAS INSTRUMENTS

© Texas Instruments Incorporated 1981, 1982, 1983

All Rights Reserved, Printed in U.S.A.

The information and/or drawings set forth in this document and all rights in and to inventions disclosed
herein and patents which might be granted thereon disclosing or employing the materials, methods,
techniques or apparatus described herein, are the exclusive property of Texas Instruments
Incorporated.

MANUAL REVISION HISTORY

DNOS System Design Document (2270512-9701)

Original Issue 1 August 1981
Revision 1 October 1982
Revision 15 November 1983

The total number of pages in this publication is 706.

The computers offered in this agreement, as well as the programs that TI has created to use
with them, are tools that can help people better manage the information used in their busi­
ness; but tools-including TI computers-cannot replace sound judgment nor make the
manager's business decisions.

Consequently, TI cannot warrant that its systems are suitable for any specific customer
application. The manager must rely on judgment of what is best for his or her business.

N
N
....... o
~
N
to
.......
~

DNOS Software Manuals
This diagram shows the manuals supporting ONOS, arranged according to user type. Refer to the block identified by your user
group and all blocks above that set to determine which manuals are most beneficial to your needs .

ONOS Concepts and Facilities
2270501·9701

ONOS Operations Guide
2270502·9701

High-Level
Language Users:

COBOL Reference Manual
2270518·9701

ONOSCOBOL
Programmer's Guide
2270516·9701

ONOS Performance
Package Documentation
2272109·9701

TI Pascal Reference Manual
2270519·9701

ONOS TI Pascal
Programmer's Guide
2270517·9701

FORTRAN·78 Reference
Manual
2268681·9701

ONOS FORTRAN·78
Pr3rammer's Guide
22 680·9701

MATHSTAT·78
Programmer's Reference
Manual
2268687·9701

FORTRAN·78 ISA
Extensions Manual
2268696·9701

TI BASIC Reference Manual
2308769·9701

RPG II Programmer's
Guide
939524·9701

All DNOS Users:

ONOS System Command
Interpreter (SCI) Reference Manual
2270503-9701

ONOS Text Editor
Reference Manual
2270504·9701

. Assembly Productivity
Language Users: Tools Users:

990/99000 Assembly ONOS Sort/Merge
Language Reference User's Guide
Manual 2272060·9701
2270509·9701

ONOSTIFORM
ONOS Assembly Reference Manual
Language 2276573·9701
Programmer's Guide
2270508·9701 ONOS Query-990

User's Guide
ONOS Link Editor 2276554·9701
Reference Manual
2270522·9701 ONOS Data Base

Management System
ONOS Supervisor Call Programmer's Guide
(SVC) Reference 2272058·9701
Manual
2270507·9701 ONOS Data Base

Administndor User's
Guide
2272059·9701

Data Dictionary
User's Guide
2276582·9701

ONOSTIPE
Reference Manual
2308786·9701

ONOSTIPE
Exercise Guide

Security 2308787·9701

Managers: ONOS COBOL Program
Generator User's Guide

ONOS Security 2234375·9701
Manager's Guide
2308954·9701

ONOS Messages and
Codes Reference Manual
2270506·9701

ONOS Reference Handbook
2270505·9701

Communications
Software Users:

ONOS ONCS/SNA
User's Guide
2302663·9701

ONOSONCS
Operations Guide
2302662·9701

ONOS ONCS 914A
User's Guide
2302664·9701

ONOS 3270 Interactive
Communications Software
(ICS) User's Guide
2302670·9701

ONOS 3780/2780
Emulator User's Guide
2270520·9701

ONOS ONCS System
Generation Reference
Manual
2302648·9701

ONOS ONCS X.25
Remote File Transfer
(RFn User's Guide
2302640·9701

ONOS Remote Terminal
Subsystem (RTS)
User's Guide
2302676·9701

ONOS Master Index to
Operating System Manuals
2270500·9701

Systems
Programmers:

ONOS System Generation
Reference Manual
2270511·9701

ONOS Systems
Programmer's Guide
2270510·9701

ONOS Online Diagnostics
and System Log Analysis
Tasks User's Guide
2270532·9701

ROM Loader User's Guide
2270534·9701

Source
Code Users:

ONOSSystem
Design Document
2270512·9701

ONOS SCI and Utilities
Design Document
2270513-9701

DNOS Software Manuals Summary

Concepts and Facilities
Presents an overview of DNOS with topics grouped by operating system functions. All new users (or
evaluators) of DNOS should read this manual.

ONOS Operations Guide
Explains fundamental operations for a DNOS system. Includes detailed instructions on how to use each
device supported by DNOS.

System Command Interpreter (SCI) Reference Manual
Describes how to use SCI in both interactive and batch jobs. Describes command procedures and gives
a detailed presentation of all SCI commands in alphabetical order for easy reference.

Text Editor Reference Manual
Explains how to use the Text Editor on DNOS and describes each of the editing commands.

Messages and Codes Reference Manual
Lists the error messages, informative messages, and error codes reported by DNOS.

ONOS Reference Handbook
Provides a summary of commonly used information for quick reference.

Mastor Index to Operating System Manuals
Contains a composite index to topics in the DNOS operating system manuals.

Programmer's Guides and Reference Manuals for Languages
Contain information about the languages supported by DNOS. Each programmer's guide covers oper­
ating system information relevant to the use of that language on DNOS. Each reference manual covers
details of the language itself, including language syntax and programming considerations.

Performance Package Documentation
Describes the enhanced capabilities that the DNOS Performance Package provides on the Model 990/12
Computer and Business System 800.

Link Editor Reference Manual
I Describes how to use the Link Editor on DNOS to combine separately generated object modules to
form a single linked output.

Supervisor Call (SVC) Reference Manual
Presents detailed information about each DNOS supervisor call and DNOS services.

DNOS System Generation Reference Manual
Explains how to generate a DNOS system for your particular configuration and environment.

User's Guides for Productivity Tools
Describe the features, functions, and use of each productivity tool supported by DNOS.

User's Guides for Communications Software
Describe the features, functions, and use of the communications software available for execution
under DNOS.

Systems Programmer's Guide
Discusses the DNOS subsystems and how to modify the system for specific application environments.

Online Diagnostics and System log Analysis Tasks User's Guide
Explains how to execute the online diagnostic tasks and the system log analysis task and how to inter­
pret the results.

ROM loader User's Guide
Explains how to load the operating system using the ROM loader and describes the error conditions.

DNOS Design Documents
Contain design information about the DNOS system, SCI, and the utilities.

ONOS Security Manager's Guide
Describes the file access security features available with DNOS.

iv 2270512·9701

DNOS System Design Document

PREFACE

This DNOS system design document contains the information that is
needed to understand the operation of the system but is not
provided in other DNOS manuals. The document describes the flow
of control of the operating system in general and of each of its
subsystems in particular. It also includes data structure
pictures, link streams, and directory information for DNOS
modules. Revisions made to this manual since DNOS 1.1 are marked
with revision bars in the margins.

This manual is divided into the following sections:

Section

1 How to Use the Design Document -- Explains how to use
this manual.

2 Overview of DNOS -- Discusses the general features of
the DNOS system.

3 Naming and Coding Conventions Explains the
conventions used in writing DNOS modules.

4 DNOS Structure and Nucleus Functions -- Discusses the
overall structure of DNOS, COmmon interface routines,
map file usage, major data structures, and queue
server structures.

5 IPL and System Loaders Describes the process of
Initial Program Load and the structures that support
system loading.

6 SVC Processing -- Discusses the preprocessing done by
the system, the several paths of control through
supervisor call (SVC) processing, and how new SVC
processors can be added to DNOS.

7

8

Segment Management
function, and use of
DNOS.

Explains the structures,
facilities of segment management

Job Management -- Discusses the job
of control and the data structures
management.

management flow
that support job

9 Program Management -- Describes the flow of control
and the data structures used by DNOS in controlling
bidding, loading, and synchronizing tasks.

2270512-9701 v

DNOS System Design Document

10 I/O Subsystem -* Reviews the overall I/O processing
structure and the details of handling of device I/O,
I/O utility calls, interprocess communication (IPC),
file security, and name management.

11 Disk Structures and File I/O ** Includes an overview
of file management, a description of disk and in­
memory file structures, and a detailed description of
key indexed file management.

12 DNOS System Tasks -- Discusses the conventions used
in writing DNOS system tasks and provides detailed
descriptions of many system tasks provided with DNOS.

13 System Generation Utility -- Provides an overview of
the system generation utility and the data structures
used.

14 Logging and Accounting ~4 Describes the functions and
the flow of control for the system log and job
accounting functions.

15 DNOS Performance Package -- Discusses the conventions
used in system source code to enable the performance
package and describes the routines executed in
microcode.

16 DNOS Development and Analysis Tools Describes
several tools available' to Texas Instruments internal
users for development purposes only and several tools
and' command procedures available for general access.

17 Analyzing a System Crash -~ Describes the ANALZ
utility functions and how to use them in analyzing a
system crash file or in studying a running system.

18

19

XOP Processing .- Describes the XOP processors
DNOS and how to add a new XOP processor.

in

Special SVCs -- Describes
operating system.

SVCs used only by the

20 Linking Information for DNOS -~ Explains how to link
DNOS and provides examples of link streams and link
maps from building a DSR link, a link of a system
task, and the link of the DNOS root.

21 DNOS Source
directories
kit.

Texas Instruments

Disk Structure -* Describes the
and files provided with a DNOS source

vi 2270512*9701

DNOS System Design Document

22 Data Structure Pictures Provides data structure
pictures for DNOS data structures commonly needed to
understand the system.

A Keycap Cross-Reference - Discusses the generic keycap
names that apply to all terminals that are used for
keys on keyboards through out this manual.

For further information related to the use of DNOS, refer to the
following document and those shown in the frontispiece.

Title Part Number

DNOS Source Installation Guide 2270515-9701

2270512-9701 vii/viii

DNOS System Design Document TABLE of CONTENTS

TABLE of CONTENTS

Paragraph Title

2 • 1
2.2
2.3
2.4

3 • 1
3.2
3.3
3.4
3.5
3.6

4 • 1
4.2
4.3
4.4
4.5
4 .5 • 1
4 .5 .2
4 .5 .3
4 .5 .4
4 .5 .5
'+.5.6
1+.5.7
1+ .6

4 .6. 1
4 .6 • 2
j~.6.3

SECTION 1 HOW TO USE THE DESIGN DOCUMENT

SECTION 2 OVERVIEW OF DNOS

INTRODUCTION •• • • • • •
GENERAL STRUCTURE
FLOW OF CONTROL OF DNOS
DXIO COMPATIBILITY

.

SECTION 3 NAMING AND CODING CONVENTIONS

NAMES OF ROUTINES •••••••••••
GLOBAL DATA AND STRUCTURE TEMPLATES
ASSEMBLY LANGUAGE CODING CONVENTIONS
PASCAL CODING CONVENTIONS
ERROR HANDLING •• • • • •
GENERATING NEW ERROR CODES

SECTION 4 DNOS STRUCTURE AND NUCLEUS FUNCTIONS

OVERVIEW • • • • • • • •
SYSTEM MEMORY MAPPING • • •
SYSTEM DATA STRUCTURES • • • • • • •
SYSTEM FILES •••••••••••
NUCLEUS SUPPORT FUNCTIONS ••••

Linkage Support •••• • •••••••••
Queuing Support ••• • • • • • • •
Synchronization and Coordination
Inhibiting Scheduling •••
Map File Changing •••••••••
Table Area Management •••••••••••
System Crash Routine • •• • ••••••

NUCLEUS FUNCTIONS FOR TASK SCHEDULING AND
EXECUTION

Data Structures
Execution Priorities
Time Slicing •• • •

.

2270512-9701 ix

Page

2-1
2-1
2-2
2-4

3-1
3-4
3-6
3-10
3-13
3-13

4-1
4-1
4-3
4-4
4-6
4-6
4-7
4-8
4-8
4-9
4-9
4-12

4-12
4-13
4-14
4-16

4.6.4
4.6.5
4.6.6
4.7
4.7.1
4 .7 .2
4 .7 .3
4.8
4.9
4.10

5.1
5.2
5.3
5 .3. 1
5.3.2
5.3.3
5.3.4
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.4.7
5.4.8
5.4.9
5.4.10
5.4.11
5.4.12
5.4.13

6.1
6.2
6 .3
6.4
6.5
6 .5 • 1
6 .5 .2
6 .5 .3
6.5.4
6.5.5
6.6
6 .6. 1
6 .6 .2

TABLE of CONTENTS

Task Bid
Task Activation
Table Area Scheduling

INTERRUPT PROCESSING
.

Clock Interru~t Processor
Internal Interrupt Processor ••
Power-Up and Power-Down Interrupt Processors

SVC PROCESSING •••••••••• . . .
TASK TERMINATION • • • • • • • • . . .
SPECIAL COpy ROUTINE

SECTION 5 IPL AND SYSTEM LOADERS

. IPL SEQUENCE • • • • • •
SYSTEM LOADER OVERVIEW •• •
SYSTEM LOADER DATA STRUCTURES

Disk Volume Information ••••••••••••
WCS File ••••••••••••••••••
Kernel Program File ••••••••• . . .
System Loader Internal Working Storage

FLOW OF CONTROL THROUGH THE SYSTEM LOADER
Relocating ~he Loader • •• •• • •
Load Device Initialization •••••••••
Opening a File for I/O •••••••• ~
Loading the System Root ••••••••••••
Loading a Module ••• •••••• •••
Initializing the Crash File ••• • ••••
CPU Type Dependent Initialization $ ••••••

Loading the Special Table Areas ••••••
Loading the JCAs ••••••••••••••••
Loading the DSRs ••••••••••••••••
Loading Memory-Resident Tasks • • • • •
Disk System Initialization •••••••••
Installing Disk Volumes ••••• • ••

SECTION 6 SVC REQUEST PROCESSING

OVERVIEW OF SVC PROCESSING •• • • • • • • • • • •
MODULES USED FOR REQUEST PROCESSING • • • • •
MAPPING STRUCTURE ••••••••••••••••
DATA STRUCTURES USED FOR SVC PROCESSING • • •
DETAILS OF SVC PROCESSING • • • • • •

Decoding Routine (RPROOT) •••••••••
SVC Buffering Routine (RPBUF) •••••••
Dequeuing and Unbuffering Routine (RPDQUE) •••
Other Request Processor Support Routines
DNOS SVCs and Processors ••• •••••••

USER-WRITTEN SVC PROCESSORS • • • • • • •
User SVC Table
Processors for User-Written SVCs

4-16
4-16
4-16
4-19
4-19
4-19
4-20
4-20
4-20
4-21

5-1
5-2
5-5
5-5
5-6
5-6
5-7
5-7
5-8
5-10
5-10
5-11
5-11
5-13
5-13
5-13
5-14
5-14
5-15
5-15
5-16

6-1
6-3
6-5
6-5
6-8
6-8
6-10
6-10
6-11
6-11
6-14
6-14
6-18

x 2270512-9701

DNOS System Design Document TABLE of CONTENTS

7 • 1
7 .2
7 .3
7 .4
7 .4 • 1
7 .4 .2
7 .4 .3
7 .4 .4
7 .4 .5
7 .4 .6
7 .4 .7
7 .4.8
7 .4.9
7.4.10
7.4.11
7.4.12
7.4.13
7.4.14
7 .5

8.1
8.2
8.3
8.4
8.5
8.6
8.6.1
8.6.2
8.6.3
8.6.4
8.6.5
8.6.6
8 .6 • 7
8.6.8
8.6.9
8.6.10
8.6.11
8.7

9 • 1
9.2
9.3
9 .3 • 1
9 .3 • 2

SECTION 7 SEGMENT MANAGEMENT

OVERVIEW • • • • • • • • • • • • •
ARCHITECTURE OF SEGMENT MANAGEMENT ••••••••
SEGMENT MANAGEMENT DATA STRUCTURES
SEGMENT MANAGEMENT ROUTINES •••

SVC Preprocessor (SMPREP) ••• • •••
Change Segment Processor (SMCHGS) •••••
Create Segment Processor (SMCRES) •••••••
Reserve Segment Processor (SMRSVE) •••••••
Release Reserved Segment Processor (SMRLSE)
Check Segment Status Processor (SMCHKS) ••
Forced Write Segment Processor (SMFWRS)
Release Job Segments Processor (SMJRLS) ••••
Set/Reset Modified and Releasable (SMMDFY) •••
Bias Segment Address Within Task (SMBIAS) •••
Set Exclusive Use of a Segment (SMEXCU) ••
Reset Exclusive Use of a Segment (SMREXC) •••
Load a Segment (SMLOAD) ••••••••••
Unload a Segment (SMUNLD) • •• • •••

SEGMENT MANAGEMENT TABLE AREA • • • • • •

SECTION 8 JOB MANAGEMENT

JOB CONSTRUCT • • • • • •• •••••••
OVERVIEW OF JOB MANAGEMENT ••••••••
ARCHITECTURE OF JOB MANAGEMENT ••••••••
JOB MANAGEMENT DATA STRUCTURES • •• • ••
JOB STATES ••••••••••••••••••••
DETAILS OF JOB MANAGER ROUTINES • • • • •

Job Manager Preprocessor (JMPREP) •••••••
Job Manager Request Processing Task (JMMAIN) ••
Create Job Processor (JMC$) ••••••••••
Halt Job Processor (JMHALT) ••• • ••
Resume Job Processor (JMRESU) • • • • •
Modify Job Priority Processor (JMPRIO) •••
Map Job Name Processor (JMMAP) •••• • ••
Get Job Information Processor (JMINFO) •••••
Kill Job Processor (JMKILL) • • • • • • • •
Job Clean-Up Routine (JMD$) ••••••
Verify Job ID Routine (JMVRFY) •••

IMPLICATIONS OF JOB BOUNDARIES • • • •

SECTION 9 PROGRAM MANAGEMENT

7-1
7-1
7-2
7-3
7-3
7-4
7-7
7-9
7-9
7-10
7-10
7-11
7-12
7-12
7-12
7-13
7-13
7-13
7-14

8-1
8-1
8-2
8-2
8-3
8-4
8-4
8-4
8-4
8-6
8-6
8-7
8-7
8-7
8-7
8-8
8-9
8-9

OVERVIEW • 9-1
DATA STRUCTURES USED BY PROGRAM MANAGEMENT 9-1
DETAILS OF PROGRAM MANAGEMENT ROUTINES • • • • 9-2

Task Bid Processor (PMTBID) • • • • • • • • 9-2
Task Loader (PMTLDR) •••••••••••••• 9-3

2270512-9701 xi

TABLE of CONTENTS

9 .3 .3
9.4
9 .4 • 1
9.4.2
9.4.3

Task Termination Processor (PMTERM)
TASK SYNCHRONIZATION • • • •

Semaphores •••••
Lo c k s ••••••••
Event Synchronization

SECTION 10 I/O SUBSYSTEM

10.1 OVERVIEW..... • •• • ••••
10.2 DEVICE I/O DATA STRUCTURES •• • • •• ••
10.3 DEVICE I/O HANDLING ••••••••• • •••
10.3.1 Details of I/O System Routines •• • ••
10.3~2 I/O Processing by the DSR •••••••••••
10.3.3 Returning Information to the Requester •••••
10.3.4 Bidding a Task from a DSR •••••••••••
10.3.5 Handling Large I/O Buffers •••••••••
10.3.6 Converting a DXI0 DSR for DNOS •••
10.4 TELEPRINTER TERMINAL DSR •••••••••
10.4.1 DSRTPD Structures ••• • •••••
10.4.2 PDT Structures •••••••
10.4.3 DSRTPD Functions • • • • ••
10.4.4 DSRTPD Details • • • •• • •••••••
10.4.5 DSRTPD Defaults .••••••••••
10.5 ASYNCHRONOUS DSR STRUCTURE •• • •••••••
10.5.1 Data Structures Linkage ••• • ••••••
10.5.2 Data Structure Allocation •• • ••••
10.5.3 PDT Extension Definitions •••••••••
10.5.3.1 Asynchronous Local PDT Extension •••••••
10.5.3.2 Asynchronous Long-Distance Device Extension
10.5.3.3 CI401 HSR Local Extension ••••••••••
10.5.3.4 CI401 HSR Long-Distance Extension ••
10.5.3.5 CI403/CI404 HSR Local Extension •••••
10.5.3.6 CI403/CI404 HSR Long-Distance Extension •••
10.5.3.7 9902/9903 HSR Local Extension ••••••••
10.5.3.8 9902/9903 HSR Long-Distance Extension ••••
10.5.3.9 931/940 TSR/ISR Local Extension •••••••
10.5.3.10 931/940 TSR/ISR Long-Distance Extension •••
10.5.3.11 Serial Printer HSR Local Extension ••••••
10.5.3.12 Serial Printer HSR Long-Distance Extension ••
10.6 I/O UTILITY (IOU) ••••••••••
10.6.1 Configurability • • • • • •••
10.6.2 Memory Layout •••••••• • ••••
10.6.3 Structures Maintained by IOU ••
10.6.3.1 Directory Tree Construction •• • ••
10.6.3.2 LDT Structure ••••••••••••••••
10.6.4 Details of IOU Processing •••••••••
10.6.4.1 IOU Preprocessor (IUPREP) ••••••••
10.6.4.2 Initial Processing in the IOU Task •••••
10.6.4.3 Channel Operations ••••••••••••••
10.6.4.4 Concatenated Files and Multifile Sets
10.6.4.5 Temporary Files •••••••• • ••
10.6.5 Operating System Support SVCs •••••••

9-6
9-7
9-7
9-8
9-9

10-1
10-2
10-4
10-4
10-8
10-11
10-13
10-14
10-16
10-22
10-23
10-22
10-25
10-25
10-27
10-27
10-31
10-31
10-31
10-32
10-35
10-37
10-39
10-41
10-43
10-44
10-46
10-48
10-51
10-54
10-56
10-57
10-58
10-58
10-58
10-60
10-61
10-64
10-64
10-66
10-66
10-68
10-69
10-70

xii 2270512-9701

DNOS System Design Document TABLE of CONTENTS

10.7 DEVICE I/O UTILITY (DIOU) ••••••••••
10.7.1 DIOU Functions ••••• • •••••••
10.7.2 DIOU Data Base •• •• ••• • •••••
10.7.3 Data Structures Used by DIOU ••• • ••••
10.8 FILE ACCESS SECURITY •••••••••••••
10.8.1 Establishing a Job's Security Environment •••
10.8.2 Enforcing Security ••• • • • • •• ••
10.8.2.1 File Manager • • • • •••••
10.8.2.2 Program Manager ••• • •••••••
10.8.2.3 Segment Manager ••• • •••••••••
10.8.2.4 Sysgen... • ••••••••
10.8.3 Volume Security • • • • ••
10.8.4 Networking...... • ••••••••••
10.8.4.1 Manipulation of the Access Control List •••
10.9 INTERPROCESS COMMUNICATION (IPC) •••
10.9.1 IPC SVC Interface ••••• • •••••••
10.9.2 Channel Characteristics ••••••••••
10.9.2.1 Symmetric Channel Activity ••••••
10.9.2.2 Master/Slave Channel Activity ••••••
10.9.3 Details of IPC Processing •• • ••••
10.9.3.1 Structures Used for IPC Processing ••••
10.9.4 Detailed Operation of IPC Routines •••
10.9.4.1 IPC Preprocessor (IPCPRE) ••••
10.9.4.2 IPC Queue Server (IPCTSK)
10.9.4.3 IPC XOP level request processor (IPCXOP)
10.9.4.4 IPC request processors (IPCPRO, IPCMRD and

10.9.4.5
10.10
10.10.1
10.10.2
10.10.3
10.10.4
10.10.5

11. 1
11 .2
11 .3
11.3.1
11.3.2
11 .4
11.4.1
11.4.1.1
11.4.1.2
11.4.2
11.4.3
11.4.4
11.4.5
11.4.6
11 .5

IPCMWT) •••••••••••
IPC Support Routines •••••

NAME MANAGEMENT ••••••••••
Architecture of the Name Manager •••
Data Structures Used by the Name Manager
Name Manager SVC Preprocessing

. .
Details of Name Manager Modules
Stage Scope Rules ••••••

.

SECTION 11 DISK STRUCTURES AND FILE I/O

OVERVIEW OF FILE MANAGEMENT
STRUCTURE OF A NEW DISK
DISK DATA STRUCTURES •••

. . . .

Volume Information
Allocation Bit Map

FILE STRUCTURES

.
Relative Record Files

Unblocked Relative Record Files
Blocked Relative Record Files

Sequential Files •••••••• • • • •
Key Indexed Files • • • • • • • • • • • • •
Program Files • • • • • • • • •
Directory Files • • • • • •••
Image Files •••••••••• • •••••

ALLOCATION OF SPACE FOR EXPANDABLE FILES •••••

2270512-9701 xiii

10-70
10-71
10-71
10-72
10-76
10-76
10-78
10-78
10-79
10-79
10-80
10-80
10-80
10-80
10-82
10-83
10-83
10-83
10-86
10-87
10-87
10-88
10-88
10-89
10-90

10-90
10-92
10-94
10-95
10-95
10-99
10-100
10-105

11-1
11-1
11-2
11-4
11-4
11-5
11-5
11-5
11-6
11-7
11-10
11-13
11-21
11-23
11-23

TABLE of CONTENTS

11 .6
11.6.1
11.6.2
11.6.3
11.6.4
11.6.5
11.6.6
11.6.6.1
11.6.6.2
11.6.6.3
11.6.6.4
11.6.6.5
11.6.7
11.6.7.1

IN-MEMORY DATA STRUCTURES
XOP-Level Preprocessing
Task-Level Processing

11.6.7.2
11.6.7.3

Flow of Control in File Management
Overlay Management • • • • • •
Buffer Management ••••••••
Details of I/O Sub-Opcode Processors

Read
Write •••••••••••
Clo se ••••••••••••••••••
Multiple-Record Read
Multiple-Record Write

Lower Level Support Routines
Concatenated Files and Multifile Sets

Unblocked Relative Record Files
Blocked Relative Record Files
Sequential Files
Multifile KIF Sets
Closing Blocked Files

Unblocked Relative Record Files

· .
· .

Blocked Files •••••••
Record Transfers
Relative Record Files
Sequential Files
Blank Adjustment

. .

11 .7
11.7.1
11.7.2
11.7.3
11.7.3.1
11.7.3.2
11.7.3.3
11.7.3.4

KIF MANAGEMENT •• • •
KIF Data Structures

. . . .
· . . .

11.7.3.5
11.7.3.6
11.7.3.7
11.7.3.8
11.7.3.9
11.7.3.10
11.7.3.11
11.7.4

KIF Management Code Structure
Details of KIF Operations

Close ••••••••••

.
Open Random •••••••• •••
Rea~ Greater and Read Greater or Equal ••
Read by Key, Read Current, and Read by Primary
Ke y •••••• ••• • • • •
Read Next •••••••••••••
Read Previous • • • • • • • • ••
Insert ••• • ••••••••
Rewrite •••••••••••••••
Delete by Key and Delete by Current
Set Currency Equal, Greater, Equal or Greater
Forward Space, Backspace, Read ASCII, Rewind

Details of KIF Subroutines •••••••••

SECTION 12 DNOS SYSTEM TASKS

12 • 1
12.2
12.3
12.3.1
12.3.2
12.3.3
12.3.4

SYSTEH TASK ENVIRONMENT AND CONVENTIONS •••••
WRITING AND LINKING AN ASSEMBLY LANGUAGE TASK
USING OVERLAYS IN ASSEMBLY LANGUAGE SYSTEM TASKS

Overlay Data Structures ••••••
System Support Routines for Overlays
Size of Overlay Areas •••••
Coding Overlays ••• • ••••

11-26
11-30
11-32
11-32
11-36
11-39
11-40
11-40
11-41
11-41
11-41
11-42
11-42
11-42
11-42
11-42
11-43
11-43
11-43
11-43
11-43
11-43
11-44
11-44
11-44
11-44
11-45
11-48
11-49
11-50
11-50
11-50

11-50
11-51
11-51
11-51
11-52
11-52
11-53
11-53
11-54

12-1
12-1
12-2
12-2
12-3
12-4
12-4

xiv 2270512-9701

DNOS System Design Document TABLE of CONTENTS

12.3.5
12.3.6
12.4
12.5
12.5.1
12.5.2

12.5.3
12.5.4

13.1
13.2
13.3
13.3.1
13.3.2
13.4
13.4.1
13.4.2
13.4.3
13.4.4
13.4.5
13.4.6
13 .5
13.5.1
13.5.2
13.5.3
13.5.4
13.5.5
13.5.6
13.6
13.7
13.7.1
13.7.1.1
13.7.1.2
13 .. 7 • 1 .3
13.7.1.4
13.7.1.5
13.7.2
13.7.3
13.8

14.1
14.2
14.2.1
14.2.2
14.3

Calling Routines in an Overlay
Internal Design Considerations

WRITING AND LINKING A PASCAL SYSTEM TASK
DETAILS OF DNOS SYSTEM TASKS

Log-On Task (LOGON)
System Initialization Tasks (RESTART and
RESTART2)
RPRCP
IOBREAK

SECTION 13 SYSTEM GENERATION UTILITY

OVERVIEW
SYSJEN STRUCTURE
DETAILS OF THE SYSJEN ROOT PHASE

STOPRT
Support Routines

DETAILS OF THE INITIALIZATION PHASE
INIT
INITAL
INITCN
INITDB
INITHD
INITOP

DETAILS OF THE INTERACTIVE PHASE
General Support Routines
Asking System Questions
Defining Structures
Changing Structures
Deleting Structures
Listing Structures

DETAILS OF THE BUILDING PHASE
JENDAT FILE

Interactive Use of the JENDAT File
Number Questions
Name Questions
Element Questions
Pathname Questions
Yes/No Questions

BUILD Use of the JENDAT File
Sample Copy Module

JENDAT EDITOR

. .

SECTION 14 LOGGING AND ACCOUNTING

LOGGING AND ACCOUNTING FUNCTIONS
LOGGING AND ACCOUNTING TASKS

LGFORM
LGACCT

SUPPORT ROUTINES

2270512-9701 xv

. .

12-6
12-6
12-7
12-9
12-11

12-13
12-13
12-15

13-1
13-1
13-3
13-3
13-3
13-5
13-5
13-5
13-6
13-6
13-6
13-6
13-7
13-7
13-7
13-9
13-11
13-12
13-12
13-13
13-15
13-15
13-16
13-17
13-17
13-18
13-19
13-19
13-20
13-21

14-1
14-2
14-2
14-2
14-3

14.4

15.1
15.2
15.3
15.4
15.4.1
15.4.2
15.4.3
15.4.4
15.4.5

16.1
16.2
16.3
16.3.1
16.3.2
16.3.3
16.4
16.4.1
16.4.2
16.5
16.5.1
16.5.2
16.5.3
16.5.4
16.6
16.7
16.8
16.8.1
16.8.2
16.8.3
16.8.4
16.8.5
16.8.6
16.8.7

1 7 • 1
17 .2
17 .3
1 7 .4

TABLE of CONTENTS

MISCELLANEOUS MODULES

SECTION 15 DNOS PERFORMANCE PACKAGE

OV E RV I EW • • •• •••••••• • • •
DNOS SOURCE CONVENTIONS • • • • • • • • • • •
MICROCODE CHARACTERISTICS ••••••••••••
MICROCODE CODING CONVENTIONS • • • • • • •

Standard Syntax For Microcode States ••••
Labeling Conventions • • • • • • • • ••
Commenting Conventions • • • • • • • • • • •
Common Routines • • •• ••••••
Debugging •••••• • ••••••••

SECTION 16 DEVELOPMENT AND ANALYSIS TOOLS

OVERVIEW • • • • • • • • • • • • • • •
SHOW RELATIVE TO FILE INTERACTIVELY UTILITY (SRF1)
THE TIGRESS TEST FACILITY • • •• • •

Details of Tigress Commands ••
Directives of Tigress ••• . .
User Defined Commands For Tigress

THE SYSTEM DEBUG UTILITY •• • • •
Details of Debug Commands •••••••••••
Establishing the Debug Environment

THE PICT UTILITY •• • • • • • • • • • • • • • • •
Assembly Language Output • • • • • • • • • •
Pascal Template Output • •• ••• • • •
PICT Picture Output •••••••••• • •
Input Format ••••••••••••••••••

THE JENDAT EDITOR ••••••••••••••
XJENED Command Procedure
JENED Commands

EDIT Command
PRINT Command
QUIT Command
REMOVE Command
SHOW Command

. · ·
VERSION Command ·
MOVE Command

SECTION 17 ANALYZING A SYSTEM CRASH

OVERVIEW • • • • • • • • •
DETAILS OF CRASH ANALYSIS COMMANDS
GUIDELINES FOR CRASH ANALYSIS
HARDWARE TRACE INFORMATION •• • •

.

14-3

15-1
15-1
15-2
15-3
15-3
15-3
15-4
15-4
15-4

16-1
16-1
16-2
16-4
16-12
16-13
16-13
16-14
16-19
16-22
16-25
16-27
16-30
16-33
16-35
16-35
16-36
16-37
16-40
16-40
16-40
16-41
16-41
16-41

17-1
17-3
17-12
17-14

xvi 2270512-9701

DNOS System Design Document TABLE of CONTENTS

IB.l
18.2
18.3
IB.3.1
18.3.2

19.1
19.2
19.2.1
19.2.1.1
19.2.1.2
19.2.2

19.2.3
19.2.4
19.2.5
19.2.5.1
19.2.5.2
19.2.5.3
19.2.5.4
19.2.5.5
19.2.5.6
19.2.5.7
19.2.5.B
19.2.5.9
19.2.6
19.2.7

SECTION IB INTERRUPTS AND XOP PROCESSING

OVERVIEW OF INTERRUPT PROCESSING
OVERVIEW OF XOP PROCESSING •••
BUILDING AN XOP PROCESSOR •••

.
System Generation Requirements for User XOPs
XOP Processor Details •••••••••••

SECTION 19 SPECIAL SVCs

OVERVIEW •• • • • • • • • • • • • • • • • • •
I/O SVCs ••••• • •••••••••••

DSRTPD Diagnostics Control (Subopcode)OB) •••
Write Interface Image ••••••••••••
Read Interface Image •• • • • • • • •

Communications DSR Diagnostics Control
(Subopcode)OB) ••••••••••
Open Unblocked (Subopcode)13) •••• • ••
Close Without Updating FDR (Subopcode)14) •••
DSRTPD Communications Control - (Subopcode)15)

Set File Transfer Parameters)lC •••••
Modify Timing Characteristics)16 ••
Modify Line Chara~teristics)17 ••• ••
Modify Terminal Type)18 •• • ••••••
Modify Special Characters)19 ••••••••
Connect)IA •••••••••••••••••
Flush Character Queue)lB ••••
Set Exclusive Access)lD •••••••••
Set Shared Access)lE ••••••••••

VDT Extended Edit Flags (Subopcode)15) ••
Asynchronous Multiplexor Operation (Subopcode
) 1 5) ••••••••• • • •• •••

19.2.7.1 Write UART Registers •••••••••••
19.2.7.2 Read UART Registers •••••••••••
19.2.B TILINE Diagnostic Port (Subopcode)16) •••
19.2.9 Read with Initial Value (Subopcode)17) ••
19.2.10 Assign Diagnostic Device (Subopcode)94) ••
19.2.11 Attach File (Subopcode)AO) ••••
19.2.12 Detach File (Subopcode)Al) ••••••••
19.2.13 Detach File by Number (Subopcode)A3) •••
19.2.14 Modify FDR Bit (Subopcode)A4) •••••.••
19.2.15 Release LUNO in Another Job (Subopcode)A5)
19.2.16 Assign System LUNO FF (Subopcode)A6) •••••
19.2.17 Release File Structures (Subopcode)A7) ••
19.2.1B DIOU Operations (Subopcodes)C2,)C3,)C6,)C7)
19.2.18.1)C2 - Get Selected Device Parameters •••
19.2.18.2)C3 - Set Selected Device Parameters •••
19.2.18.3)C6 - Get CDE From CDT •• • •• • ••
19.2.18.4)C7 - Process Device Task Bid ••••••
19.3 SPECIAL FEATURE OF EXECUTE TASK SVC •••
19.4 SEGMENT MANAGEMENT ••••••••• • ••
19.5 NAME MANAGEMENT ••••••• • •••••

2270512-9701 xvii

1B-1
1B-2
1B-2
IB- 2
1B-3

19-1
19-1
19-1
19-2
19-3

19-4
19-5
19-5
19-6
19-7
19-7
19-B
19-8
19-9
19-9
19-10
19-10
19-10
19-10

19-11
19-12
19-14
19-16
19-20
19-21
19-22
19-23
19-24
19-25
19-26
19-27
19-2B
19-2B
19-31
19-32
19-33
19-34
19-34
19-35
19-35

19.5.1
19.5.2
19.5.3
19.5.4
19.5.5
19.5.6
19.5.7
19.5.8
19.5.9
19.5.10
19.5.11
19.6
19.7
19.8

20.1
20.2
20.3
20.4
20.5

21 • 1
21.2
21.3
21.4

22.1
22.2
22.3

A. 1

TABLE of CONTENTS

Determine Next Pathname (Subopcode >01) · · Append Pathname to Name (Subopcode > 03) · · Return Next Name (Subopcode >05) · · · · · Purge Names (Subopcode >06) · · · · · · Enter New Stage (Subopcode >07) · · · · Return to Previous Stage (Subopcode >08) · · · Return Next Error Entry (Subopcode >09)
Determine Segment Size (Subopcode >OA) · · · Copy Name s to New Segment (Subopcode >OB) · · · Creating an Empty Name Segment (Subopcode >OD)
Saving a Name Segment (Subopcode >OE) · · · · · MODIFY BTA OR JCA SIZE · · · · · · · · HALT/RESUME TASK . . . · · · · · · • · · · · · EXPAND JCA · · · · · · · · · ·

SECTION 20 LINKING INFORMATION FOR DNOS

OVERVIEW • • • • •• •••••••••
LINKING A SYSTEM TASK • • • •
LINKING A DSR ••••••••••
LINKING THE DNOS SEED •• · .
LINK CONTROL FILES BUILT DURING SYSTEM GENERATION

SECTION 21 DNOS SOURCE DISK STRUCTURE

DIRECTORY STRUCTURE ••••••
COMPONENTS USED IN BUILDING DNOS
THE PROCEDURE FOR BUILDING DNOS
DNOS PROGRAM FILES •••••••• ·

SECTION 22 DATA STRUCTURE PICTURES

OVERVIEW •• • • • • • • • • • •
STRUCTURES FROM THE COMMON DIRECTORY
STRUCTURES FROM THE ATABLE DIRECTORY

·

APPENDIX A KEYCAP CROSS-REFERENCE

OV ERV I E W .

19-41
19-42
19-43
19-44
19-45
19-45
19-47
19-47
19-48
19-48
19-49
19-50
19-51
19-52

20-1
20-2
20-3
20-4
20-6

21-1
21-3
21-8
21-8

22-1
22-6
22-27

A-I

xv iii 2270512-9701

DNOS System Design Document

Figure

2-1
4-1
4-2
5-1
6-1
6-2
6-3
7-1
7-2
7-3
7-4
7-5
7-6
7-7
9-1
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
10-13
10-14
11-1
11-2
11-3
11- 4
11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13
11-14
11-15
11-16
11-17
11-18

LIST of FIGURES

Flow of Control in DNOS
DNOS Nap Files •

Title

Flow of Control in Task Scheduling •
System Loader Subroutine Calls •
SVC Entry Form in RPSTAB •
Examples of RDB and RIB Structures
Format of RPUDAT Module
Flow of Control in Segment Manager
Flow of Control in Change Segment
Flow of Control During Initial Load
Flow of Control in Create Segment
Flow of Control in Forced Write
Flow of Control in Release Job Segments
Segment Manager Table Organization •
Flow of Control in Task Loader •
Overview of Device I/O Handling
Beginning Device Request Processing
DSR Control Paths
Returning Information to the Requester •
Device I/O Buffering •
DSR Link Control Stream
DSR Structure
Asynchronous Data Structure Linkages •
Asynchronous Local PDT Extension •
Asynchronous Long-Distance PDT Extension •
LDT Chains •
Symmetric Channel States •
Owner SVCs for Master/Slave Channels •
Name Segment Structure •
Sequential File Format •
Blank-Suppressed Record
Key Indexed File B-Tree
Program File Format
Program File Available Space List
Task Description Entry •
Procedure/Segment Description Entry
Overlay Description Entry
Directory File Structure •
Computing a Hash Key •
Dump of Directory File •
In-Memory File Representation
Flow of Control in File Management •
Overlay Area Structure •
Buffered KIF Request •
KIF Currency Block •
Example of Root Node Split •
Example of Regular B-Tree Node Split

2270512-9701 xix

LIST of FIGURES

Page

2-3
4-3
4-18
5-8
6-6
6-7
6-17
7-4
7-6
7-7
7-8
7-11
7-12
7-15
9-6
10-4
10-5
10-11
10-13
10-16
10-21
10- 28
10-33
10-34
10-36
10-63
10-85
10-87
10-96
11-8
11-10
11-12
11-14
11-16
11-17
11-19
11-20
11-22
11-22
11-25
11-27
11-33
11-38
11-45
11-47
11-55
11-56

LIST 0 f FIGURES

12-1 Example of Link Control for System Task · · · 12-2
16-1 PCKREC Input Format · · · · • • · • 16-34
16-2 DORG Input Format . . · · • • 16-34
16-3 Template Picture Format · · · · · · · · · · · · 16-35
18-1 XOP Processor · · · • · · · · · · · • 18-4
19-1 Write UART Register Format . · · · · · · • · 19-13
19-2 Read DART Registers Format . · · · · · · · · · · · · 19-15

xx 2270512-9701

DNOS System Design Document LIST of TABLES

Table

1-1
3-1
3-2
3-3
5-1
6-1
6-2
6-3
6-4
10-1
10-2
10-3
10-4
10-5
11-1
11-2
11-3
11-4
11-5
12-1
12-2
15-1
16-1
16-2
16-3
16-4
16-5
16-6
17-1
17-2
18-1
21-1
21-2
21-3
22-1
22-2

LIST of TABLES

Title

Acronyms Used in this Manual
DNOS Subsystem Abbreviations
Major Directories of DNOS
Macros from DSC.MACROS.FUNC

. .

System Loader Phases • • • •• • •
Major Request Processor Routines ••••••
SVC Processors and Modules • •• •• •
Request Definition Block (RDB) Format
Return Information Block (RIB) Format ••••
Location of Support Subroutines for DSRs •••
Asynchronous DSR Module Functions • • •
DSR/TSR Entry Points •••••••••• • ••
Asynchronous Local PDT Extension Template •••••
Asynchronous Long-Distance PDT Extension Template
Format Information for Available Disks ••••
Capabilities of Available Disks ••••
File Management Mod~les •• ••• • • •
KIF Main Routines • •• ••••••
KIF Subroutines • • • • • • • • • • •
DNOS System Tasks •••••••
System Tasks to Support SCI and Utilities
Location of the Microaddress Bus •••
Types of Arguments for Tigress Commands •••
Predefined Labels for Tigress Commands ••••
Tigress Commands •••••••••••••••
Parameter Types for Debug Commands ••••••
Commands for System Debug Program •• • • • • • • •
Verbs Used in Generating Structures •• • •••
Crash Analysis Commands • • • • • • • • • • • •
Format of Hardware Trace Information •••••
System Generation Prompts for XOPs
DNOS Batch Stream Files •••
Map of Utility Program File ••••••
Map of System Program File • • •• ••••
Template Acronyms • • • • • • • •• • •
Templates Described in SCI and Utilities Document

2270512-9701 xxi/xxii

Page

1-2
3-2
3-3
3-10
5-3
6-4
6-12
6-15
6-16
10-21
10-29
10-30
10-35
10-36
11-3
11-3
11-28
11-48
11-49
12-10
12-11
15-5
16-5
16-5
16-7
16-14
16-15
16-24
17-3
17-15
18-3
21-6
21-9
21-11
22-3
22-5

DNOS System Design Document

SECTION 1

HOW TO USE THE DESIGN DOCUMENT

The description of DNOS design is divided into sections according
to major operating system functions. The nucleus routines are
described first, along with their data structures and the overall
operating system structure. This section is followed by separate
sections describing each of the major subsystems in DNOS. For an
overview of all subsystems, skim through this document, reading
carefully the overview portion of each subsystem section. For
details on a particular subsystem or module within a subsystem,
consult the detailed diagrams and discussion that follow the
overview.

Section 3 details naming conventions for the DNOS modules. When
searching for details about a particular module, use the module
name to determine which subsystem description is relevant. For
details about particular data structures being used, consult the
section on data structure pictures.

The section on linking information provides example link control
streams used to build pieces of the operating system. To build a
device service routine (DSR) or a new system task, use these link
examples as a guide in building the required link streams. Link
streams are also shown for several other parts of the operating
system to show how these pieces are structured. The DNOS link
streams should be considered the primary source of information
about the modules included to support a particular task or
subsystem. The link streams are also the primary source for full
pathnames for modules in DNOS.

Most data structure pictures in this document are built directly
from the templates copied into operating system source code. The
structures are shown with hexadecimal byte counts, special
comments, flags, and a diagram.

Most of the special terms used to describe DNOS can be found in
the glossary in the DNOS Concepts and Facilities manual. Other
terms are defined in this document as they are needed. Acronyms'
for system structures and routine names are introduced at various
points throughout the manual. If you read a section from the
manual without reading all preceding sections, an acronym may be
encountered without an explanation of its meaning. Table 1-1
lists most of the acronyms used in the manual. Refer to this
list in conjunction with the glossary for a complete description
of the term.

2270512-9701 1-1 How to Use

How to Use

DNOS System Design Document

Table 1-1 Acronyms Used in this Manual

Acronym Meaning

ACC
ADR
ADU
BRB
BRO
BTA
BTB
CCB
CDE
CDR
CDT
DIA
DIB
DOR
DPO
DPR
DSR
FCB
FOB
FDR
FlO
FIR
FMT
FSC
IOU
IPC
IRB
JCA
JIT
JMR
JSB
KCB
KDB
KDR
KIB
KIT
KSB
LDT
LFD
LPO
LSE
MRB
NOB
NDS

Accounting record contents
Alias descriptor record
Allocatable disk unit
Buffered request block
Buffered request overhead
Buffer table area
B-tree block
Channel control block
Command definition entry
Channel descriptor record
Command definition table
Diagnostic status
Device information block
Directory overhead record
Disk PDT extension data
DIOU Device Parameters
Device Service Routine
File control block
File directory block
File descriptor record
File identification
File information record
File management task area
File structure common
I/O utility task
Interprocess Communication
I/O request block
Job communication area
Job information table
Job manager request block
Job status block
KIF currency block
KIF descriptor block
Key descriptor record
KIF information block
KIF task area
Keyboard status block
Logical device table
Log file definition
Line printer PDT extension
Load segment entry
Master Read/Master Write buffer
Name definition block
Name definition segment

1- 2 2270512-9701

DNOS System Design Document

Table 1-1 Acronyms Used in this Manual (Continued)

Acronym

NRB
OAD
OAW
OSE
OVB
OVT
PBM
PDT
PFI
PFZ
PRM
QHR
RDB
RIB
RLT
ROB
ROM
RPB
RST
SAT
SCO
SCI
SDB
SGB
SLB
SMT
SOB
SSB
STA
STE
TDL
TOL
TPCS
TSB
UDR
WCS
WOM
XTK

2270512-9701

Meaning

Name manager request block
Overlay area description
Overlay area wait block
Owned Segment Entry
Overhead beet
Overlay table entry
Partial bit map
Physical device table
Program file directory index
Program file record zero
DIOU/IOU Parameters
Queue header
Request definition block
Return information block
Record lock table
Resource ownership block
Read-only memory
Resource privilege block
Reserve segment table
Secondary allocation table'
Track 0, sector 0 format
System Command Interpreter
Stage descriptor block
Segment group block
System log block formats
Segment manager table
Segment Owner block
Segment status block
System table area
Swap table entry
Time delay list entry
Time-ordered list
TILINE peripheral control space
Task status block
User descriptor record
Writable control store
Waiting for memory queue
Extension for a terminal with keyboard

1-3/1-4 How to Use

DNOS System Design Document

SECTION 2

OVERVIEW OF DNOS

2.1 INTRODUCTION

DNOS, a general purpose operating system for the 990 computer, is
designed to meet a variety of computing needs. DNOS is a
configurable operating system, allowing users to generate small
systems with minimal software development capability; medium~

range systems with a limited number of options; and large systems
with a wide variety of system options.

Among the special features available for DNOS are program and
overlay loading, program swapping, key indexed files, dynamic job
creation, output spooling, dynamic system configuration,
interprocess communication (IPC), multiprogramming support, file
access security, and a wide variety of utilities.

A performance package is available for DNOS. It uses microcode
implementations of a number of DNOS routines to enhance the
processing speed of DNOS.

2.2 GENERAL STRUCTURE

DNOS is composed of memory-resident and disk-resident code. The
memory~resident portion includes the following:

* Device service routines

* Interrupt processors

* Extended operation (XOP) processors

* System tables and device buffers

* Many supervisor call (SVC) processors

* Task scheduler

* Nucleus support functions

* Memory-resident tasks

2270512-9701 2-1 Overview

DNOS System Design Document

These parts are ~inked when DNOS is generated, and they are
loaded into memory during initial program load (IPL). This
memory-resident portion is referred to as the kernel of DNOS.
The first portion of the kernel is referred to as the root; it
forms the first segment of the mapping structure for kernel
activities and for system tasks.

Disk-resident parts of DNOS include system tasks and overlays for
some system tasks. These tasks include the I/O Utility, the Job
Manager, and a number of miscellaneous SVC processors. These
tasks are loaded into memory whenever their services are
required.

Most of the DNOS functions are performed by routines that serve
queues of requests. A queue is a f~rst-in, first·out list of
data to be processed. Each queue consists of a queue anchor,
from which blocks of data are linked. Most queue anchors are
located in the system root; those for file management are in the
job communication area of the user job. The queues are singly
linked, and the anchor points to the first data block, the first
block points to the second, and so on. The anchor also points to
the last block in the queue to enable efficient queue handling.
The queue header format is displayed in the section of data
structure pictures as the QHR.

2.3 FLOW OF CONTROL OF DNOS

While DNOS is running user jobs, the control paths vary. The
diagram in Figure 2-1 shows an overview of DNOS initialization,
functioning, and termination. Detailed paths for the various
subsystems are described in the following sections.

Overview 2-2 2270512-9701

DNOS System Design Document

*-410- > I
V

Execute
Task
Code

I
\

\

Halt-Load Sequence
on 990 Front Panel

I
V

Initial Program Load
(loads kernel and memory~resident
tasks, installs disk volumes, etc.)

I
V

System Restart Task
(sets up system log and accounting log,
bids required system tasks, etc.)

I

V
Serve a Request of the

Functioning System

I
V

Process
SVC

Request
I
/

/

I
V

I
V

Process
Hardware

Interrupt
or
XOP

I

I
V

Provide Op~rating System
Support for Memory
Management, Timing,
Performance, etc.

Time Slice
Expired

I
I

I
I
I
I

?

no yes

Figure 2-1

2270512-9701

V

error path only
I

V

I Forced error condition, error in
I a system task, error in DNOS, or
I error in hardware
V

DNOS Crash Routine
I
V

System Halt

Flow of Control in DNOS

2-3 Overview

DNOS System Design Document

2.4 DXIO COMPATIBILITY

For a number of users, DNOS is an upgrade from the DXIO operating
system. Most software that executes under DXIO executes without
source change under DNOS. It needs only to be relinked with DNOS
run·time support. The notable exceptions are user·written DSRs,
XOP processors, system tasks and utilities, and SVC processors.
Several sections of this document describe the changes needed to
make these pieces of software function under DNOS.

Several system
for use in DNOSj
a new SVC.

Overview

SVCs that were used with DX10
in most cases, their functions

2- 4

are
are

not available
performed by

2270512-9701

DNOS System Design Document

SECTION 3

NAMING AND CODING CONVENTIONS

3.1 NAMES OF ROUTINES

DNOS modules are written in either assembly language or Pascal.
In most cases, a module consists of one routine. When several
small routines perform related functions, those routines appear
in a single module. Each routine and module is named using the
form aabbbb where aa is an abbreviation for the subsystem in
which the routine fits and bbbb is a set of characters that
describe the function of the routine. For example, JMHALT is the
job management routine that processes the Halt Job SVC.

Abbreviations for subsystems in the DNOS kernel and major
utilities are shown in Table 3·1.

Modules are organized into directories that correspond to DNOS
subsystems. Table 3-2 lists the major directories that comprise
DNOS and indicates the section in which each directory is
described. Other directories include modules for the various
utilities of DNOS. The major directories labeled DNOS are
detailed in this document; those labeled SCI, UTILITIES are
detailed in the DNOS SCI and Utilities Design Document.

The source library for DNOS has one or more of
subdirectories for each of the directories:

* PSOURCE for Pascal source

* FSOURCE for Fortran source

* SOURCE for Assembly language source

* MSOURCE for /12 microcode

* MOBJECT for assembled microcode

* MLIST for Microcode assembly listing

the following

* TSOURCE for Link Editor modules needing to be
transliterated from POPs code to assembly language

* UTILITY for the
code

2270512-9701

transliteration utilities for linker

3-1 Coding Conventions

I

·DNOS System Design Document

Table 3-1 DNOS Subsystem Abbreviations

Abbreviation

D$
DM
DS
DU
E$
FM
10
IP
IU
JM
KM
LG
MB
NF
NM
01
PL
PM
RP
SE
SL
SM
SO
SP
TP
UT
aaa

Coding Conventions

Subsystem or Utility

Debugger
Disk management
Device service routines (DSRs)
Device I/O Utility
Text Editor
File management
I/O routines
Interprocess communication (IPC)
I/O utilities
Job management
Key indexed file (KIF) management
System log and accounting log
Mailbox
Nucleus functions
Name management
Operator Interface
Pasca1·to*assemb1y*language interface
Program and memory management
Request processing • SVC support
Security
System loaders
Segment management
System overlay management
Output spooler
Teleprinter device utilities
Subroutines common to several utilities
SCI utilities * aa or aaa is the SCI command

2270512-9701

DNOS System Design Document

Table 3"'2 Major Directories of DNOS

Directory Location of Documentation -.......... .,..~~ * •• * ~..,.~~ ••• *

ANALZ DNOS ... Section 17
BATCH DNOS ... Section 21
DEBUG DNOS ... Section 16
DEBUGGER SCI, UTILITIES
DEVDSR DNOS Section 10
DIOU DNOS Section 10
DISKMGR DNOS ... Section 12
EDITOR SCI, UTILITIES
FILEMGR DNOS ... Section 11
IOMGR DNOS ..;. Section 10
IOU DNOS - Section 10
IPC DNOS ... Section 10
JOBMGR DNOS ... Section 8
KIFMGR DNOS - Section 11
LINK DNOS - Section 20
LOADERS DNOS ... Section 5
LOG DNOS ... Section 14
LOGON DNOS - Section 12
MACROS DNOS Section 3
MAILBOX SC I, UTILITIES
MESSAGES SC I, UTILITIES
NAMMGR DNOS - Section 10
NUCLEUS DNOS - Section 4
OPERATOR SCI, UTILITIES
PASASM DNOS .. Section 3
PERFORM DNOS - Section 15
PROGMGR DNOS ... Section 9
REQPROC DNOS ... Section 6
RESTART DNOS ~ Section 12
S$ SC I, UTILITIES
SCI990 SCI, UTILITIES
SECURITY DNOS - Section 10
SEGMGR DNOS ... Section 7
SPOOLER SCI, UTILITIES
SYSJEN DNOS ... Section 13
SYSOVLY DNOS - Section 12
TEMPLATE DNOS ... Section 3,22
TIGRESS DNOS ... Section 16
TPCALANS SCI, UTILITIES
UTCOMN SCI, UTILITIES

2270512-9701 3-3 Coding Conventions

DNOS System Design Document

3.2 GLOBAL DATA AND STRUCTURE TEMPLATES

Names of system tables and data structures are generally three
characters long, with the characters chosen to reflect the
structure name. Fields within the structure have six~character

names (whether part of Pascal records or assembly language code);
the first three characters are the same as the structure label.
Flag fields within the structure are detailed using equates, with
each flag bit (or set of bits) identified by aaFbbb where aa
represents the first two characters of the structure name, F
indicates a flag, and bbb describes the flag. For example, the
task status block is thi TSB. TSBPRI is the name a field within
the TSB that carries the task priority. TSFSYS names a flag in
the TSB that indicates whether a task is a system task.

Global constants and error equates are named using these formats:

WDaaaa
ERRaa
BYTEaa

DATA
BYTE
EQU

>aaaa
>aa
ERRaa

where a is a hexadecimal digit and > is used
hexadecimal value.

to represent a

The TEMPLATE directory contains the global constants and
variables used by DNOS source code. In the following list of
subdirectories of the TEMPLATE directory, DSC is a synonym for
the entire DNOS source directory. All of these directories,
except the PREAMBLE directory, also appear in the linkable parts
directory .S$OSLINK on an installed DNOS system.

DSC.TEMPLATE.ATABLE
DSC.TEMPLATE.COMMON
DSC.TEMPLATE.DECLARE
DSC.TEMPLATE.PREAMBLE
DSC.TEMPLATE.PTABLE

The DSC.TEMPLATE.ATABLE directory contains templates
data structures that are used by assembly language
Files in this directory are copied into an assembly
module to reference fields within the data structures.

for DNOS
routines.

language
A module

accesses a particular field in a structure by using a template
offset with a pointer. The pointer can be passed to the module
or retrieved from some other DNOS structure. This directory also
includes a template of system crash codes (NFCRSH) and a template
of task states (NFSTAT). Files from this directory are shown in
detail in the section on data structure pictures. They are built
using the picture macros described in the section on DNOS
Development and Analysis Tools.

Coding Conventions 2270512-9701

DNOS System Design Document

The DSC.TEMPLATE.COMMON directory contains the Common data used
by assembly language routines. It consists of files of CSEG
blocks, including the following major files:

*

*

*

DSC.TEMPLATE.COMMON.NFDATA • Global data values for
current state of the system

the

DSC.TEMPLATE.COMMON.NFERnO - Byte constants (>nO through
>nF) and equates for system error codes (16 such
templates)

DSC.TEMPLATE.COMMON.NFPTR - System pointers
lists and structures

to global

* DSC.TEMPLATE.COMMON.NFWORD - Word constants

Any assembly language module that makes use of a byte constant or
a word constant copies the appropriate common template and uses
the constant in that module. Similarly, NFPTR an~ NFDATA are
copied into a module to allow access to a system pointer or
global data item. Use of the templates provides documentation of
all uses of a particular error code, constant, or system
variable.

NFPTR includes pointers to system queues, pointers to beginnings
of structure lists, addresses of segment management tables,
pointers to device information, and several miscellaneous
pointers. Full details on NFPTR appear in the section on data
structure pictures.

NFDATA includes anchors for several system data structures,
counts for jobs and tasks in the system, parameters for system
time units, sizes of the system and system files, scheduling
data, a word of flags which define system options chosen at
system generation, and several other items. Details of NFDATA
are shown in the section on data structure pictures.

The DSC.TEMPLATE.DECLARE directory is used by Pascal routines.
It consists of files of procedure declarations, which are copied
into Pascal modules. Each subsystem or utility written in Pascal
has a file of declarations for its own set of modules. Also,
declarations are included for run-time routines and for interface
routines from Pascal code to assembly language modules.

The DSC.TEMPLATE.PREAMBLE directory has
documentation preambles to assembly language
modules.

2270512-9701 3-5

the templates for
and Pascal source

Coding Conventions

I

I

DNOS System Design Document

The DSC.TEMPLATE.PTABLE directory has data structure templates
and common segment templates for use by Pascal code. The
directory includes files corresponding to each of those in the
DSC.TEMPLATE.ATABLE and DSC.TEMPLATE.COMMON directories. Also,
it has a number of files that have no counterparts in the other
directories but are needed by Pascal routines.

3.3 ASSEMBLY LANGUAGE CODING CONVENTIONS

Each assembly language module begins with a preamble that
describes that module. Fields in the preamble template that are
not used for a particular module are omitted in that module. In
the assembler template, the following are required sections:

copyright statement
routine name
abstract

errors
revision
environment
IDT name entry

exit PSKG, code, and END

When more than one routine is included in a module, each routine
is preceded by a description that includes abstract, entry, exit,
and error information.

The abstract gives a brief English description of the general
purpose of the module, while the algorithm section describes how
the routine works. The environment section points out what table
areas are used by the module. Revision information is provided
in the format shown below. Other entries are self·explanatory.

where:

* REVISION: <creation date mm/dd/yy - ORIGINAL
* <revision ID> - <date> - <purpose> - <OS release no>
* repeated, with latest revision last

<revision ID> is a pair of decimal digits, beginning
with 01.

<date> is the form mm/dd/yy, where each field
is decimal.

<purpose> is description of the change, including
the number of any STR on design request
being satisfied by this revision.

<OS release no> is the release for which this revision
was prepared.

Coding Conventions 2270512~970l

DNOS System Design Document

To keep track of which lines of code were
revisions, each added line is flagged. In columns
of the line added to an assembly language module,
Rmn are inserted, where <mn> is the revision ID
this revision in the preamble.

added for what
58 through 60
the characters
specified for

Templates copied into assembly language programs with the COpy
statement are by default UNListed. (Data templates and other
structures are surrounded by UNL and LIST. To see the copied
items, the program may be assembled with the FUNLST (F) option of
the assembler enabled.)

For the most part, assembly language code uses tab settings of 1,
8, 13, 31, and a right margin of 60 to make the assembly listing
as legible as possible. Comments are included in the preamble
and in atoms within each routine. An atom is several lines of
comments, set off from the code it describes.

Labels used within an assembly language routine are composed of
three characters followed by three digits (for example, OPNI00
for a label in a routine performing open processing). The
characters are chosen from the routine name unless another set of
characters is clearly more useful. The numeric portion ends in
zero to allow room for inserted labels, and labels appear in
ascending numeric order from beginning to end of a module.

The format of the assembly language preamble is as follows:

2270512-9701 Coding Conventions

*
*
*
*
*
*
*
*

DNOS System Design Document

TITL '(MODULE ID - SHORT DESCRIPTION)'

(C) COPYRIGHT, TEXAS INSTRUMENTS INCORPORATED, 1983.
ALL RIGHTS RESERVED. PROPERTY OF TEXAS INSTRUMENTS
INCORPORATED. RESTRICTED RIGHTS • USE, DUPLICATION
OR DISCLOSURE IS SUBJECT TO RESTRICTIONS SET FORTH
IN TI'S PROGRAM LICENSE AGREEMENT AND ASSOCIATED
DOCUMENTATION.

* ROUTINE NAME: (NAME OF ROUTINE(S)

* * ABSTRACT: (DESCRIBE THE GENERAL PURPOSE OF THIS ROUTINE)

* * ENTRY: (INSTRUCTION/STATEMENT/INTERRUPT USED TO ENTER)

* «RN») (DESCRIPTION)

* * EXIT: «RN») (VALUE) IF (CONDITION)

* * ERRORS: (ACTION OR CODE) IF (CONDITION)

* * STACK REQUIREMENTS: (N) WORDS

* * ALGORITHM:

*
(DESCRIPTION OF ALGORITHM IF NECESSARY)

* REVISION: (CREATION DATE IN MM/DD/YY) - ORIGINAL
* (REVISION DATE; LATEST LAST) - (NATURE)

* * ENVIRONMENT: 990/10 ASSEMBLER

*
*
*
*
*
* * NOTES:

*
*
*

CALLABLE FROM (assembler,Pascal)
TABLE SEGMENTS MAPPED IN WHEN ENTERED:

(LIST)
TABLE SEGMENTS MAPPED IN DURING ROUTINE:

(LIST)

(SPECIAL CONDITIONS/ASSUMPTIONS OR OTHER
SPECIAL INFORMATION)

* SUBROUTINE REFS:
REF (NAME) (DESCRIPTION)

* * CONDITIONAL ASSEMBLY:
* (VARIABLE) (DESCRIPTION)

* * MACROS TO BE USED:
LIBIN DSC.MACROS.TEMPLATE

* LIBIN DSC.(MACRO LIBRARY PATHNAME)

* * EQUATES:
(NAME) EQU (VALUE) (DESCRIPTION)
* (INSERT COPIES OF EQUATE FILES IF ANY)

* * GLOBAL DATA (TO SHARE AND ACCESS DATA IN COMMON AREAS)

Coding Conventions 3-8

DNOS System Design Document

* * <INSERT COPIES OF ANY RELEVANT CSEG FILES)

*
PAGE

IDT '<MODULE NAME)'
DEF <MODULE NAME)
PSEG

<ROUTINE CODE)
END

Several macro libraries are available in the MACROS directory for
use by assembly language routines. In each case, the SOURCE file
shows the macro definitions and documents their use. To find out
how a particular macro functions, read the comments in the source
file for the macro.

The DSC.MACROS.TEMPLATE library must be included with a LIBIN
statement in most modules that use data structure templates.
Many of the templates in the DSC.TEMPLATE.ATABLE directory are
defined using macros that allow processing in assembly language
and Pascal structures. It includes macros for ADDR, BITS, CHAR,
FLAG, FLAGS, LONG, PTR, RECORD, WORD, INT, PCKREC, ENDREC, REC,
ARRAY, POSINT, and VARNT.

In the rare instance that a CSEG must be used as a DSEG, the set
of macros in DSC.MACROS.DORGCSEG should be used. This set
includes macros for CSEG, CEND, and DZERO directives. These
macros are often used by modules that issue the Retrieve System
Data SVC ()3F) to access a part of a system common area. The SVC
expects the user to specify an offset into the common area (as a
DSEG would allow) rather than an absolute CSEG address.

The DSC.MACROS.FUNC library includes macros to inhibit and enable
scheduling, to initialize a block of data, to test conditions
during assembly of code, and to provide common subroutine access.
This set includes macros for ASSUME, DATAM, ENAB, INHB, SCALL,
SPOP, SPUSH, GTA, GTAO, RTA, PRCK, SGCK, SRTN, and TRTN. These
macros must be used for the purposes desc~ibed in Table 3-3. See
the FILE DSC.MACROS.FUNC.SOURCE for the descriptions of the macro
details. All accesses to the routines indicated in Table 3-3
must be made using the macros, since the macros provide access to
performance microcode~

3-9 Coding Conventions

DNOS System Design Document

Table 3-3 Macros from DSC.MACROS.FUNC

MACRO NAME PURPOSE

ASSUME Test an assembly condition, (generally
a template field)

DATAM Generate data fields
DCLOSE Door Close
DOPEN Door Open
ENAB Access NFENAB to enable scheduling
INHB Inhibit scheduling
SCALL Call another routine
SPOP Access NFPOP
SPUSH Access NFPSH
GTA Access NFGTA
GTAO Access NFGTAO
PRCK Access RPPRCK
SGCK Access RPSGCK
RTA Access NFRTA
SRTN Access NFSRTN
TRTN Access NFTRTN

Macros in DSC.MACROS.UTILITY are used by a number of DNOS and SCI
utility programs to perform commonly needed operations. It
includes macros to terminate a program under abnormal error
conditions and a variety of special field initialization macros.

A set of macros is available to build assembly language routines
to be called by Pascal routines. These macros yield code
compatible with Pascal subroutine conventions. The macros are in
the library named DSC.MACROS.RIFLE.MACROS.

3.4 PASCAL CODING CONVENTIONS

Several subsystems are written in a subset of TI Pascal. These
include job management, system generation (sysgen), system log
processing, accounting log processing, and many SCI utilities.

Statements are written one per line, and segments of programs are
visibly separated to facilitate readability. As with assembly
language programs, Pascal programs are documented in the preamble
and throughout the code. To allow printing of source code on ~ny
available printer, only uppercase characters are used.

In the Pascal template, the following fields are required:

Coding Conventions 3-10 2270512 9701

DNOS System Design Document

compiler options
copyright statement
program statement
abstract

revision
environment
procedure (function) and code

The revision information must be of the following format:

.. REVISION: <creation date mm/dd/yy - ORIGINAL)

.. <revision ID) - <date) - <purpose) - <OS release no)
" repeated. with latest revision last

To keep track of which lines of code were added for what
revisions. each added line is flagged. For Pascal code. the
characters Rmn are inserted with a comment indicator after column
60.

The preamble template for a Pascal module is of the following
form:

(*&FILL-.ADJT-,SLIM(72)*)
"
" (C) COPYRIGHT. TEXAS INSTRUMENTS INCORPORATED, 1983.

ALL RIGHTS RESERVED. PROPERTY OF TEXAS INSTRUMENTS
INCORPORATED. RESTRICTED RIGHTS - USE. DUPLICATION
OR DISCLOSURE IS SUBJECT TO RESTRICTIONS SET FORTH IN
TI'S PROGRAM LICENSE AGREEMENT AND ASSOCIATED
DOCUMENTATION.

(*$WIDELIST,NO MAP,LOCALS,GLOBALS*)
PROGRAM <DUMMY NAME);

"
" ROUTINE NAME: <NAME OF ROUTINE(S»
"
"ABSTRACT <DESCRIBE THE GENERAL PURPOSE OF THE ROUTINE)
"
" NOTES:
"
"

<SPECIAL CONDITIONS, ASSUMPTIONS. OR OTHER SPECIAL
INFORMATION)

"METHOD: <DESCRIPTION OF ALGORITHM IF NECESSARY)
"
" REVISIONS: ORIGINAL <MM/DD/YY);
.. REVISION <INTEGER): <MM/DD/YY), <PURPOSE OF REVISION)
"
" ENVIRONMENT: 990/10 PASCAL X.X
" TABLE SEGMENTS MAPPED IN WHEN ENTERED
" <STA, JCA OR OTHER TABLE)
" TABLE SEGMENTS MAPPED IN DURING ROUTINE
" <STA, JCA OR OTHER TABLE)
(*$PAGE*)
"
" GLOBAL DECLARATIONS

2270512-9701 3-11 Coding Conventions

DNOS System Design Document

"
CONST <IDENTIFIER) = <CONSTANT EXPRESSION); (*<DESCRIPTION)*)
?COPY <FILENAME OF GLOBAL CONSTANTS);
TYPE <IDENTIFIER) = <TYPE); (*<DESCRIPTION)*)
?COPY <FILENAME OF GLOBAL TYPES);
COMMON <IDENTIFIER) : <TYPE); (*<DESCRIPTION)*)
?COPY <FILENAME OF COMMONS);
ACCESS <IDENTIFIER),

<IDENTIFIER);
"
" FUNCTIONS OR PROCEDURES DEFINED EXTERNAL TO THIS MODULE
II

<INSERT THE ?COPY THAT BRINGS IN PROCEDURE DECLARATIONS FOR THIS
SUBSYSTEM, WHERE EACH PROCEDURE IS DEFINED WITH ITS PARAMETERS AND
DECLARED AS BEING FORWARD);

II

(*$PAGE*)
II

PROCEDURE <PROCEDURE NAME»;
"<COMMENT HERE THE PROCEDURE NAME WITH ITS PARAMETERS AS A READING AID)
"
" LOCAL DECLARATIONS
"
LABEL

CONST

TYPE

VAR

COMMON

ACCESS

II

"

<INTEGER),
<INTEGER),
<IDENTIFIER)
<IDENTIFIER)
<IDENTIFIER)
<IDENTIFIER)
<IDENTIFIER),
<IDENTIFIER),
<IDENTIFIER),
<IDENTIFIER),
<IDENTIFIER),
<IDENTIFIER),

BEGIN (*$MAP*)
"
-*INSERT PROCEDURE CODE~·

"
END;
"
BEGIN (*$NO OBJECT*)
END.

(*<DESCRIPTION)*)
(*<DESCRIPTION)*)

<CONSTANT EXPRESSION);
<CONSTANT EXPRESSION);
<TYPE);
<TYPE);

<IDENTIFIER)
<IDENTIFIER)

<TYPE);
<TYPE);

<TYPE);
<TYPE);

(*<DESCRIPTION)*)
(*<DESCRIPTION)*)

(*<DESCRIPTION)*)
(*<DESCRIPTION)*)

Pascal routines make use of the templates in the
DSC.TEMPLATE.PTABLE directory through use of ?COPY statements.
The data structure templates are copied in as type declarations,
and the CSEG template equivalents are copied as common
declarations. In addition to templates for DNOS structures, the
DSC.TEMPLATE.PTABLE directory also includes a standard set of
types for DNOS in DSC.TEMPLATE.PTABLE.TYPES.

Coding Conventions 3-12 2270512*9701

DNOS System Design Document

The. PASASM directory includes interface routines written in the
Pascal.MACROS to allow routines written in Pascal to call DNOS
kernel routines written in assembly language. Routine names
begin with the letters PL and have the same last four characters
as the nucleus routine to which they interface.

For utilities written in Pascal, a collection of routines is
available for interface to SCI. These routines are like the S$
routines used by assembly language and are found in the Pascal
object directory.

3.5 ERROR HANDLING

Errors detected by assembly language routines are encoded using
error code constants and equated symbols from the collection
defined in these copy modules:

DSC.TEMPLATE.ATABLE.NFCRSH (for system crash codes)
DSC.TEMPLATE.COMMON.NFEROO (error codes)00 through)OF)
DSC.TEMPLATE.COMMON.NFER10 (error codes)10 through)IF)
DSC.TEMPLATE.COMMON.NFER20 (error codes)20 through)2F)
DSC.TEMPLATE.COMMON.NFER30 (error codes)30 through)3F)
DSC.TEMPLATE.COMMON.NFER40 (error codes)40 through)4 F)
DSC.TEMPLATE.COMMON.NFER50 (error codes)50 through)5F)
DSC.TEMPLATE.COMMON.NFER60 (error codes)60 through)6F)
DSC.TEMPLATE.COMMON.NFER70 (error codes)70 through)7F)
DSC.TEMPLATE.COMMON.NFER80 (error codes)80 through)8 F)
DSC.TEMPLATE.COMMON.NFER90 (error codes)90 through)9 F)
DSC.TEMPLATE.COMMON.NFERAO (error codes)AO through)AF)
DSC.TEMPLATE.COMMON.NFERBO (error codes)BO through)BF)
DSC.TEMPLATE.COMMON.NFERCO (error codes)CO through)CF)
DSC.TEMPLATE.COMMON.NFERDO (error codes)DO through)DF)
DSC.TEMPLATE.COMMON.NFEREO (error codes)EO through)EF)
DSC.TEMPLATE.COMMON.NFERFO (error codes)FO through)FF)

All SVC error codes and crash codes are documented in these copy
modules. Errors detected by Pascal routines use the same codes,
defining constants to have the appropriate error number. The
meaning of each error code is described in detail in the DNOS
Messages and Codes Reference Manual. These errors are also
viewable with the Show Expanded Message (SEM) command.

3.6 GENERATING NEW ERROR CODES

The current set of error codes must be very carefully examined
when a new error code is added. For SVCs, the new error code
must not duplicate any previously defined code which might arise
for that SVC. The DSC.TEMPLATE.COMMON.NFERxx files and the SVC
code list in the DNOS Me~~~~_~~~~~~~~~_~~f~re!!.~~._~~~~~!. must be

2270512-9701 3-13 Coding Conventions

I

DNOS System Design Document

examined. In addition to codes listed explicitly, an SVC
processor may return an error code defined for I/O SVC 00 if an
I/O SVC is executed by the processor. Thus, for SVCs in the
following set,any new error code cannot duplicate any defined
for SVC 00:)14,)1F,)20,)22,)25,)26,)27,)28,)29,)2A,
)2B,)31,)34,)37,)38,)40,)43 and)48. The error codes
reserved for I/O are annotated in the NFERxx files as being used
for SVC 00, IOU, FILEMGR, DIOU, or IPC. Also, SVC)40 and SVC
)43 must not share an error code, since SVC)43 returns errors
from SVC)40.

Once a new error code has been chosen for an SVC error, that code
must be documented in the appropriate NFERxx file. It also must
be documented in the SVC files used by the error processing
utilities. These files are DSC.MESSAGES.TEXT.SVC and
DSC.MESSAGES.EXPTEXT.SVC. If the message employs variable text
pulled from the offending call block, the appropriate entries
must also be made to the tables in DSC.REQPROC.SOURCE.RPRCDA for
use by the Return Code Processor SVC. The section on system
tasks includes a description of the task RPRCP and its required
data structures for handling the Return Code Processor SVC.

When adding error codes for non·SVC purposes, several sources
must be examined. Task errors are documented in ihe NFERxx files
as well as in the DNOS Messages and Codes Reference Manoal. Any
additions to the set must not duplicate previously defined codes,
and appropriate updates must be made to the NFERxx files and the
manual.

Additional system crash codes must be checked with the file
DSC.TEMPLATE.ATABLE.NFCRSH and with the DNOS Messages and Codes
Reference Manual. Additional error codes for SCI or utilities
must be checked against currently defined codes as documented in
the DNOS Messages and Codes Reference Manual. Further
information about assigning error codes for SCI or utilities can
be found in the DNOS SCI and Utilities Design Document.

Coding Conventions 3-14

DNOS System Design Document

SECTION 4

DNOS STRUCTURE AND NUCLEUS FUNCTIONS

4.1 OVERVIEW

DNOS uses the memory mapping option of the 990/10, 990/10A and I
990/12 to efficiently divide the operating system code. It uses
a number of common data structures and a set of system files to
facilitate communication between subsystems. The DNOS nucleus
includes the code for miscellaneous support functions, task
scheduling and execution, interrupt processing, task termination,
and SVC processing.

4.2 SYSTEM MEMORY MAPPING

Parts of DNOS run in map file 0, some parts run 'in map file 1 and
other parts alternate use of each map file. Each map file is
divided into three segments that may total up to 64K bytes of
physical memory.

Task code is executed in map file 1. SVC support, device service
routines (DSRs), interrupt support, and scheduling code are
executed in map file O. Several nucleus support routines may
execute in either map file (depending on which is in use by the
caller). Figure 4-1 shows the arrangements used by DNOS.

Map file 0 contains the following: s1

* First map segment (system root):

Interrupt and XOP vectors, interrupt decoder and
tables

Nucleus common support routines

Common data segments

System table area (STA)

* Second map segment:

Job communication area
currently executing, or

2270512-9701

(JCA) for the task

Nucleus Functions

I

DNOS System Design Document

Special table areas as needed by subsystems, or

Buffers for I/O

* Third map segment:

Scheduler overlay including some SVC support, or

SVC support not included in scheduler overlay, or

DSR code as required by devices.

Task code running in a fast transfer mode

Map file 1 is set up in one of two ways, depending on whether or
not the task is installed in a program file as a system task. If
the task is a system task, the first map segment is set up the
same as map file 0, the second map segment is set up with the JCA
of the task, and the third map segment is set up with the task
code. For nonsystem tasks, all three map segments may be used
for task and procedure code (no system area is mapped into the
task).

Nucleus Functions 4~ 2 2270512-9701

DNOS System Design Document

First Segment Second Segment Third Segment

+*.*.-.*.*~**-~.~ •• +
JCA IScheduler/SVC Codel map

Kernel Code +**.******.* •• ~ *.+
+ +

ISystem Table Areal SM Table 5 t 6 SVC Code map
+ •••••• *~ •• ~ ••• - •• + + ••• ~ •• ~.- •••••••• +

+ ••••••••••••••••• +
+ •••••••••••••••••• +

1

2 ...
3
4 "*
5 •
6 ...

mapped only by
mapped only by
mapped only by
mapped only by
memory·resident
fixed size

FM Table
+ ••• * •• ~ ••••••• * •• +
+ ••••••••••••••••• +

Synonym and Namel
Segment I

+ ••••••••••••••••• +
Physical Record

buffer
+ ••••••••••••••••• +
+*.*~ •••• * ••• * •••• +

5 t 6

1

2

+ ••• ~ •••••••••••••• +
DSR

+ •••••••••••••••••• +

+ •••••••••••••••••• +
System Task Code

+ •••••••••••••••••• +

Disk Bit Map 3 t 5 t 6
+*~ ••••••••••••••• +
+* •••••••••••••••• +
IDevice I/O Bufferl 4 t 5
+~ •••••••••••••••• +

name management
file management
disk management
DSRs and I/O subsystem

Figure 4~1 DNOS Map Files

4.3 SYSTEM DATA STRUCTURES

map

map
or

DNOS data structures include both common segments and dynamically
allocated tables.

0

0

°

1

°

The two common segments that contain most of the system variables
and pointers are NFDATA and NFPTR. The common segments I
containing most of the constants used in DNOS include: NFWORD t

NFEROO t NFERIO, NFER20 t NFER30, NFER40, NFER50, NFER60 t NFER70,
NFER80 t NFER90, NFERAO, NFERBO t NFERCO t NFERDO t NFEREO t and
NFERFO.

See the section on detailed data structures for more information.

2270512"'9701 Nucleus Functions

I

DNOS System Design Document

The four areas from which system data structures may be allocated
are as follows:

* STA, in the system root, where structures needed by more
than one job are located

* JCAs, one for each job in the system,
structures are located

where job*local

* Segment Manager special table areas (see the section on
segment management for details)

* File Manager special table areas (see the section on the
I/O subsystem for details)

Each job in the system is represented by a job status block (JSB)
in the STA. The JSB contains job identification information,
links for various queues, and priority information.

Tasks (programs) executing in each job are represented by TSBs,
kept in the JCA for the job in which the task is running. The
TSB contains all of the information concerning the state of a
task. This includes the current task status indicators of
workspace pointer (WP), program counter (PC), and status register
(ST); task state; task priority; flags; installed and- run·time
IDs; segment identifiers; map file registers; outstanding I/O
counts; execution time; and end*action pointers for the WP and
PC.

4.4 SYSTEM FILES

DNOS requires certain files to be on the system disk (primary
disk) for its operation. These files are:

* The loader file, .S$IPL, containing the image of the IPL
program (see the section on IPL and System Loaders)

* The kernel program file, containing the tasks,
procedures, an~ overlays comprising DNOS

* The utilities program file, containing tasks and
procedures for system utility programs

* The applications program file specified in SYSGEN,
containing tasks and procedures for user programs

* The shared program file, .S$SHARED, on which users may
place procedures to be shared by other program files,
and where tasks and procedures are placed when installed
to LUNa 0

Nucleus Functions 2270512~9701

DNOS System Design Document

* The swap file, .S$ROLLD.S$ROLLA, where task images are
temporarily placed to make room in memory for higher~
priority tasks

* The crash file, .S$CRASH, where an image
written in the event of a system crash

of memory is

Other files are also on the system disk for proper execution of
SCI and various DNOS features. These files are:

* The command procedures directory of
.S$CMDS

* The directory of command definition
process keyboard bids, .S$CDT, with one
system booted on this disk

SCI

tables
file

commands,

used to
for each

* The messages directories, .S$MSG and .S$EXPMSG. If
these are not present, messages appear in cryptic form.

* The spooler queue directory, .S$SDTQUE,
for each system booted on this disk

* The system generation directory, .SSGU

with one file

* The overlay management directory, .S$SYSLIB

* A library of system programmer commands and the system
history file in the directory .S$SYSTEM

* The user ID directory, .S$USER and the capabilities list
file, .S$CLF

* Accounting files, .S$ACTI
accounting is enabled

and .S$ACT2, used when

* The initialization batch stream .S$ISBTCH, used to start
the Spooler and for user~specified activities

* System log files, .S$LOGI and .S$LOG2

* The file .S$MVI, used by the Modify Volume Information
processor to record changes to the disk

* The file .S$SCA, used by LOGON and SCI

* The program file .S$SECURE, used if file access security
is generated with the system

File structures are described in detail in the
management.

section on file

Nucleus Functions

I

I

I

I

I

DNOS System Design Document

4.5 NUCLEUS SUPPORT FUNCTIONS

The nucleus provides support routines for system tasks as well as
for other parts of the nueleus. The routines support such things
as routine linkage, queuing, synchronization, inhibiting
scheduling, map file changes, table area management, and system
crash analysis.

4.5.1 Linkage Support.

Most of the linkage between DNOS routines is accomplished by the
push and pop routines (NFPSHn and NFPOPn, where n is the number
of registers to push or pop). RIO is used throughout the DNOS
code as a stack pointer. On entry to a routine, the return
address is pushed on the stack, and a push routine is called to
save registers on the stack. To exit from the routine, the
return code is placed in the leftmost byte of RO and a branch is
made to the pop routine that corresponds to the push routine that
was used. The assembly language macros SPUSH and SPOP must be
used to set up the linkage to subroutines, since the performance
microcode depends on their use. For example, the following code
shows linkage using three registers:

Entry: Exit:
-~*.~* ~~~~~

MOV R11,*R10+ MOVB @ERR30,RO
BL @NFPSH3 B @NFPOP3

or
SPUSH 3 SPOP @ERR30

Most of the code in the kernel makes use of the stack defined in
the scheduler segment. The scheduler stack is initialized at the
NFSCHD and RPROOT entry points.

When the called routine makes use of SPOP to return to a caller,
the calling routine can specify three types of error returns.
The word following the BL instruction contains a return address
to be used if an error occurs in the called routine. When the
called routine branches to NFPOP, a test is made to see whether
or not the leftmost byte of RO is zero. If it is not zero, the
return is made to the address specified for error handling. Two
special cases can be specified as error addresses:

Nucleus Functions 2270512*9701

DNOS System Design Document

* 0 * indicates that there is no error possible or that I
the error should be ignored and, if one occurs, return
to the same address that would have been used if no
error had occurred

* ~l - indicates that no error return is expected and if
one occurs a system crash (0029) should occur. (This
case is primarily used during debugging of DNOS code.)

4.5.2 Queuing Support.

Many of the DNOS system tasks are queue servers, tasks dedicated
to processing entries on queues. When an entry is placed on a
queue server's queue, the queue server is activated (if it is not
already active) and begins processing entries. When the
processing is finished, the queue server either suspends and
waits for more entries to be placed on the queue, or it
terminates; depending upon the time~critical nature of the
function being performed.

System data structures can be queued and dequeued to the
following types of queues, using the nucleus queuing routines:

* Queues with one-word headers, whose entries form a
singly linked list. The routines NFQUE1 and NFDQ1 are
used to queue and dequeue the entries in a first~in,

first~out manner.

* Queues with a six-word header, whose entries form a
singly linked list. The header includes fields pointing
to the first entry and to the last entry, and it
contains a count of the entries. If the queue is being
served by a queue server, the header also contains the
task identifier for the queue server task as well as the
TSB address, the JSB address, and the program file
identifier. The routines NFQUEH and NFDQH are used to
queue and dequeue entries in a first in, first out
manner. NFQUEH activates the queue server when
necessary.

* Queues of overhead beets (OVBs), whose entries form a
doubly linked list. The routines for queuing and
dequeuing overhead beets are NFLOVB and NFDLOV memory
management lists and NFQOVB and NFDOVB for six~word

headers.

Queue headers for system queues are maintained in two locations.
Some queue servers execute in the system job and have their queue
headers in the system root. Other queue servers execute in the
user's job and have their queue headers in the user's job
communication area (JCA). Queue headers are defined with an

2270512-9701 Nucleus Functions

I

I

DNOS System Design Document

assembly language DEF directive for the header so that queue
servers running in the system job can use an assembly language
REF directive for the label and access the queue header address
directly. Queue servers in the user's job receive ths queue
header address as their second task bid parameter and access the
queue header using this address.

The form of a system queue header is shown in the queue header
template, QHR. All system root queue headers are defined in the
template, DSC.TEMPLATE.COMMON.NFQHDR. NFQHDR is copied during
sysgen to initialize the queue headers. Some of the queues are
optional, depending upon sysgen choices. If a queue is not used,
the symbol for the queue header is defined as a word of zeros in
the system root. The bid of a queue server is done by NFACTQ and
the queue server terminates after processing the queue of
requests.

During system start~up, to prevent premature request processing,
the queue server IDs in several queue headers are temporarily set
to zero. When the system is ready to handle the requests, the
queue server ID is restored. These operations are done by
RESTART.

Queue headers in the job communication area are built when a job
is created. The queues for program file SVC operations (install,
delete, assign space, map name to 10), Initialize New Volume SVC,
and Return Code Processor SVC are in the user job communication
area. The section on writing system tasks describes how to build
tasks for each of these environments.

4.5.3 Synchronization and Coordination.

Some nucleus routines aid in coordinating access to the same
system structure or code by more than one routine. One such
coordination aid is the door. A door is described by a two~word

descriptor record that is passed to the door*handling routines.
The routine NFDCLO closes a door and prevents other tasks from
accessing the door until it is opened by NFDOPN. A task trying
to access a door that is closed is suspended until the door is
opened. The macros DCLOS and DOPEN are used to call these
routines. These macros are in DSC.MACROS.FUNC. (This type of
coordination may also be accomplished by using the semaphore SVC.
See the section on program management.)

4.5.4 Inhibiting Scheduling.

When a task is executing critical code, scheduling must not
occur. One assembly language macro is used to inhibit the
scheduler (INHB) and another to enable the scheduler (ENAB).
Between the execution of INHB and ENAB, the task will not be
rescheduled. These macros are located in DSC.MACROS.FUNC.

Nucleus Functions 2270512~9701

DNOS System Design Document

4.5.5 Map File Changing.

Occasionally, a system task (which normally executes in map file
1) must call a routine that can execute only in map file O.
Interface routines are available for switching to map file ° upon
entering a routine and returning to map file 1 upon exit. A
routine is entered in map file 0 by executing a BLWP @NFMAPO,
with the next word of program code specifying the address of the
routine to be entered. The second word following the BLWP
contains an error address, zero, or ~1. If an error address is
specified and an error occurs, the return from the called routine
is made to the error address. If zero is specified and an error
occurs, no special action is taken; execution continues. If ~1
is specified and an error occurs, the system crashes with a crash
code of)0029 (this is used primarily during debugging of DNOS).
The called routine returns to the caller in map file 1 by
branching to NFRTNO.

When a routine executes in map 0, it expects to be using the
scheduler workspace. Thus it is necessary to set up any required
registers in that workspace before calling NFMAPO. It is also
necessary to pass back any data, (including any error code in RO)
before calling NFRTNO.

4.5.6 Table Area Management.

The routines in module NFTMGR allocate and deallocate table area
in the dynamic table areas. Allocation is performed by NFGTA and
NFGTAO (initialized to zero after allocation), and deallocation
is performed by NFRTA. The smallest block of table area
allocated is eight bytes. When memory in the specified table
area is exhausted, an error is returned to the caller. Macros
GTA, GTAO, and RTA must be used to access these routines. These I
routines may not be called from code which processes interrupts
or requires interrupts to be masked.

The Segment Manager support routines enable system function~ to
map special table areas, find segment status block (SSB)
addresses for segments, create and delete SSBs and SGBs, and
force load segments into memory. Descriptions of these routines
follow:

2270512~9701 Nucleus Functions

DNOS System Design Document

SMMJCA, SMMJC1, and SMMJC2
Maps JCAs into the second segment of the executing task or
processor map file. When called from map file 0, each of
these routines performs the same processing, simply mapping
the requested JCA into the current map file 0. When called
from map file 1, SMMJCA does not change the releasable and
modified status of the 014 segment. SMMJCl allows the
caller to specify the releasable and modified status.
SMMJC2 is used if the caller needs an error code rather than
loading of the JCA when the JCA is not in memory; otherwise
SMMJC2 functions like SMMJCA.

SMMTBL and SMMTB1
Maps special table areas into the second segment of the
executing task or processor map file. These two routines
function like SMMJCA and SMMJCl.

SMMSEG
Maps an arbitrary segment into the second segment of the
executing task map file. SMMSEG allows the caller to
specify a byte offset which is to be the beginning of the
mapped portion of the segment. Specifying an offset of zero
causes the entire segment to be mapped.

SMCSGO
Maps an arbitrary segment into the second segment of the
executing task map file. SMCSGO does the actual work of and
is a common subroutine of SMMJCA, SMMTBL, and SMMSEG.

SMSRCH
Returns an SMT/SSB pair for a specified ID/file descriptor
packet (FDP) pair. SMSRCH calls SMFSID to see if an SSB
exists for the specified ID. If so, it verifies that the
caller has access to the segment, which may include an
SMCHUC call. If the caller has access, the SMT/SSB pair is
returned. If not, SMSRCH will return a replicated SSB if
the segment is replicatable; otherwise an error is returned.
If no SSB already exists, 5MBLDS is called to create one.

5MBLDS
Creates an SSB (and an SGB if necessary) for a given segment
type. The caller specifies an FDP and a task/procedure
flag. If the FDP is zero, a memory·based segment is built.
5MBLDS first builds an SGB if there is none for the
specified file. It then builds an SSB of the correct size,
supplies a run*time ID, and links the SSB onto the SGB. For
data files, the length and attributes are set; for program
files, certain flags are set.

Nucleus Functions 2270512~9701

DNOS System Design Document

SMFSID
Searches a segment group for a segment with a specified ID.
The caller specifies the segment group via an FDP address.
If the FDP address is zero, the memory·based segment group
is assumed. The caller can search for the segment via an
installed or run~time ID. Also, the caller can search for a
task segment. If a match is found, the Segment Manager
table area that contains the segment's SSB is mapped. This
routine is callable by system tasks and processors.

SMCHUC
Checks to see if the use counts of a given segment can all
be accounted for by the mapped or loaded segments of a task.

SMLOAD
Loads a segment into memory for system tasks if the segment
is not already in memory. The segment is not mapped into
the task address space but remains in memory as long as the
task is in memory. A segment may be loaded by more than one
task, regardless of its attributes. The use count and task*
in~memory count of the segment are incremented. This
routine also serves the function of an SVC processor.

SMUNLD
Unloads a segment loaded by SMLOAD. SMUNLD detaches the
segment from the task; consequently, the segment need not be
in memory when the task is in memory. This routine
decrements the use and task~in~memory counts for the
segment. This routine also serves the function of an SVC
processor.

SMDSSB
Deallocates segment memory and deletes a specified SSB. If
the segment (specified by the SMT/SSB pair) is not used,
reserved, or owned and not memory·resident, the SSB is
eligible for deletion. If the segment is reusable, it is
left cached. If it is updatable and modified, it is placed
on the write queue. If the segment is not in memory, the
swap table entry is released; if in memory, the segment is
placed on the loader queue for deallocation. The SSB is
then delinked and released. If no more SSBs exist for the
associated SGB, SMDSGB is called.

SMDSGB
Deletes a specified SGB. SMDSGB verifies that there are no
more SSBs linked onto the SGB and no LUNOs assigned to the
associated file, then delinks and releases the SGB. If the
SGB is deleted, an)A7 call is placed on the IOUQUE to clean
up the file structures.

2270512-9701 Nucleus Functions

DNOS System Design Document

SMRMVE
Removes a segment from a task. SMRMVE is called when a
segment loses its association with a task on the TOL,
whether because of a segment manager SVC or task
termination. The task 6 in-memory count for the segment is
decremented and, if it goes to zero, the segment is placed
on the. cache list. SMDSSB is then called to finish
processing the removal.

SMFLSH
Writes cached buffer segments to disk and deallocates the
memory. SMFLSH processes all segments associated with a
specified LUNO (JSB/LDT pair). If they are modified, it
places them on the write queue and waits for the write to
complete. SMDSSB is called to delete the segment. SMFLSH
must be called only by task code.

5MBUFF

4.5.7

Accesses the SSB address of a buffer in a specified task.
The caller specifies a JSB, TSB, and buffer address. 5MBUFF
returns the SSB address for the buffer and the offset of the
buffer into the segment.

System Crash Routine.

Whenever an internal operating system error is detected, a branch
is made to the system crash routine (NFCRSH), passing a crash
code indicating the type of error. The crash routine halts the
system and displays the crash code on the front panel of the
computer. When the HALT and RUN indicators on the front panel
are pressed, the crash routine saves the state of the system at
the time of. the crash and writes an image of memory to the crash
file on disk. This crash file may then be analyzed by systems
programmers.

4.6 NUCLEUS FUNCTIONS FOR TASK SCHEDULING AND EXECUTION

The DNOS component that places tasks into execution is the task
scheduler (NFSCHD). A task must first be bid and activated
before the scheduler can select it for execution. The scheduler
selects the highest-priority task ready to execute and causes the
central processing unit (CPU) to start executing it. The task
then executes for a quantum of time until it voluntarilY or
involuntarily releases control of the CPU. At this point, the
next task in priority order is selected for execution. The
execution period may be limited to a value known as a time slice.
The scheduler also collects the accounting and performance data
related to CPU execution.

Nucleus Functions 4-12 2270512-9701

DNOS System Design Document

The following is
algorithm:

a metacode description of

BEGIN
IF a task is currently active
THEN BEGIN

increment execution time for task;
IF task is a timesharing task
THEN BEGIN
update I/O-bound indicator;
recompute run-time priority;
adjust run-time priority for aging;
END;
IF task is to remain active

the

THEN requeue task on active queue;
clear active task;

END;
REPEAT

scheduler

check for reenter and time-out flags (from DSRs);
IF DSR task bid is outstanding

4.6.1

END

THEN call task bid routine for task;
IF a time-delayed task needs reactivation

THEN call activate task routine;
IF any buffered requests need processing

THEN call end of buffered request processor;
IF no task is on active queue

THEN idle (wait for next interrupt);
UNTIL task found to execute;
set up highest-priority task for execution;
IF task needs I/O requests unbuffered

THEN call unbuffering processor;
place task into execution;

Data Structures.

The data structures referenced
TSBs. Each JCA includes a queue
execute, ordered by execution
priority of the highest-priority
queue of JSB

by the scheduler are JSBs and·
of TSBs for tasks ready to
priority. Each JSB carries the

task on its active queue; 'the

execution. When a task reaches the end of its allotted execution
time, its TSB is returned to the JCA active queue if it is to
remain active; it is left unqueued if the task is to be
suspended. When a task suspends, it may be necessary to change
the priority of the highest-priority active task in the JSB and
reorder the JSB on the system JSB queue.

2270512-9701 4-13 Nucleus Functions

DNOS System Design Document

4.6.2 Execution Priorities.

Every task has three associated priority values: a run-time
priority, an initial priority, and an installed priority. Task
run-time priorities range from a high of 0 to a low of 255. The
run-time priority is used by the scheduler when selecting tasks
for execution. The initial priority is the initial value of the
run-time priority and also ranges from 0 to 255. The installed
priority is the priority assigned to the task when it is
installed in a program file. The calculation of the initial
priority is based on the installed priority, the priority of the
job in which the task is being bid, and the mode in which the
task is being bid (foreground or background). Job priorities
range from a high of 0 to a low of 31.

Installed priority 0 is limited to certain system tasks. An
installed priority of 0 always maps to an initial priority and a
run-time priority of O. The task's run-time priority does not
vary during execution.

Real-time tasks have installed priorities ranging from 1 to 127.
The initial priority of a real-time task is always the same as
its installed priority. The priority of real-time tasks does not
vary during execution. Therefore, the run-time priority is
always equal to the initial priority and ranges from 1 to 127.

All other tasks are time-sharing tasks. They have installed
priorities of 1, 2, 3 or 4. Installed priority 1 is intended for
highly interactive tasks. Installed priority 2 is intended for
foreground tasks that are less interactive. Installed priority 3
is intended for tasks that execute exclusively in background.
Priority 4 is intended for use by tasks that can run either in
foreground or background. Priority 4 is appropriate for almost
all user tasks.

The following discussion of initial priority mapping and dynamic
priority modification applies only to time-sharing tasks.

Each of the four time-sharing task priority classes (1, 2, 3 or
4) have associated parameters that determine the mapping from
installed priority to run-time priority. These parameters can be
modified with the Modify Scheduler/ Swap Parameters (MSP) SCI
command. The run-time and initial priorities for all background
tasks (regardless of their installed priority) are calculated
using the scheduling parameters for priority class 3.

The first parameter used in calculating a run-time priority is
the Initial Priority Mapping Value. The initial priority for a
task is a function of the Initial Priority Mapping Value
parameter, the job priority of the job in which the task is being
bid, and the Weight of Job Priority parameter. The Weight of Job

Nucleus Functions 4-14 2270512-9701

DNOS System Design Document

Priority specifies the range over which an initial priority can
vary based on the job priority. For example, aSSume that the
task being bid has an installed priority of 4 and that the task
is being bid in foreground mode. Assume that the Initial
Priority Mapping Value parameter for priority class 4 is 190 and
that the Weight of Job Priority parameter for class 4 is 32. If
the job priority were 0, the initial priority for the task would
be 190 - 32 = 158. If the job priority were 31, the initial
priority would be 190 + 32 = 222. If the job priority were 7,
the initial priority would be 190 - 16 = 174. The mapping from
the Initial Priority Mapping Value to the actual initial priority
is proportional to the job priority, within the range specified
by the Weight of Job Priority parameter.

DNOS has optional dynamic modification of priorities. As a time­
sharing task executes, an indicator shows whether the task is
I/O-bound or compute-bound. The indicator shows the number of
suspensions over a fixed time period and is recomputed at the end
of each execution period for a task. This indicator is used to
modify the initial priority to create the run-time priority
(raising it for I/O-bound tasks and lowering it for compute-bound
tasks). The variation of the run-time priority from the initial
priority depends on the Dynamic Priority Range parameter for that
priority class. A Dynamic Priority Range value of 16 would
indicate that the run-time priority could differ from the initial
priority by +/-16. A Dynamic Priority Range of ° would indicate
that the run-time priority would never differ from the initial
priority.

The default Dynamic
priority classes is 0.
disabled by default.

Priority Range parameter for all four
That is, dynamic priority modification is

Performance tests have indicated that
dynamic priority modification does not improve response time and
can cause unacceptable deviations in performance between stations
when the computing environment is characterized by homogeneous
activity (basically similar tasks executing at most stations).
However, dynamic priority modification can improve response time
without causing significant performance deviations in
heterogeneous computing environments (varied computing activity,
possibly occurring at irregular intervals). If a system
administrator wishes to try dynamic priority modification, the
Dynamic Priority Range parameters should be set to 4,4,0,8 using
the MSP command. Dynamic priority modification can always be
disabled again by setting the parameters back to 0,0,0,0.

The Aging on Priority parameter is a YES/NO value indicating
whether task aging is used for a given priority class. Task
aging should only be used for background tasks (priority class
3). If task aging is in effect, the priority of an older task is
raised slightly more than the priority of a new task. To raise
the priority, the power of 4 that represents the execution time
in seconds is used. A task that has executed for 4 seconds is
raised 1 priority level, one that executed for 16 seconds is

2270512-9701 4-15 Nucleus Functions

I

I

I
I

DNOS System Design Document

raised
Aging

2 levels, etc. Task aging can be disabled by setting the
On Priority parameters to NO,NO,NO,NO using the MSP

command.

4.6.3 Time Slicing.

Time slicing allows a task to run during a quantum of time and
then forces the task to release control of the CPU. This is
accomplished by an interface with the clock interrupt processor.
The clock interrupt routine counts the number of clock ticks for
which a task executes. (A clock-tick is 8.33 MS in the United
States, 10 MS in Europe.) When the count reaches a specified
number, control returns to the scheduler rather than to the
executing task. During sysgen, the user can specify the length
of the time slice or can disable time slicing. The length of a
time slice can also be changed using the Modify Scheduler/Swap
Parameters (MSP) command.

4.6.4 Task Bid.

The process of preparing a task for execution is called bidding a
task. This is accomplished by the nucleus routine NFTBID. The
process involves building and initializing the necessary data
structures, such as the TSB, and activating the task.

4.6.5 Task Activation.

The NFPACT routine activates a task. If the task segments are
already in memory, checks are made to see that the task is not
being killed and that its job is not terminating; if these
conditions are met, the task is put on the active queue. If the
segments are not in memory (as is the case following a task bid),
the task is put on the waiting-on-memory (WOM) list to be
processed by the task loader. (See the section on program
management for details.) After the task is loaded into memory,
NFPACT is again called to place the task on the active queue.

NFPACT calls the routine NFACTL to place a task on the active
queue. The routine NFDACT removes a task from the active queue.
The routines NFWOML and NFDWOM place tasks on the WOM list and
remove them from the WOM list. The routine NFWOMJ places a JSB
on the WOM list.

Figure 4-2 shows the flow through the task scheduler.

I 4.6.6 Table Area Scheduling.

I If a GTA(O) request fails, NFPWOT may be called
active task on the Waiting On Table area (WOT)

Nucleus Functions 4-16

to place the
queue. NFPWOT

2270512-9701

DNOS System Design Document

causes the active task's context
below. NFDACT is called to remove
and NFWOTL places the task on
through NFSRTN.

to be set back as outlined
the task from the active list,

the WOT. NFPWOT then returns

When any RTA is executed, the WOT is examined. by NFRTA. If a
task is on the WOT, NFWAKE is called to restart the task. NFWAKE
calls NFDWOT to remove the first waiting task from the WOT and
makes it active.

NFPWOT makes certain assumptions about the environment in which
the GTA(O) was issued. If the GTA(O) was issued from Map 1
(task) code, NFPWOT expects entry through the GTA(O) error
return. The restart context will be set back to the GTA(O) XOP
which will be reissued when the task is restarted. If the GTA(O)
was issued from Map 0, NFPWOT assumed the failure occurred while
processing an SVC. In this case the active task's context is set
back to reissue the SVC. This means only modules which process
SVC's may call NFPWOT from Map O. It is also necessary for the
SVC processor to restore all system structures to the state they
were in before the SVC was issued as it will be reprocessed
entirely.

2270512-9701 4-17 Nucleus Functions

DNOS System Design Document

I
V NFSCHD

+-----------+
I CLEAN UP I
I EXEC TASK 1
+-----------+

------------------)1

+------+
1 IDLE I(--no---
+------+

V NFTBID
DSR bidding +---------+

a task? --yes--)I BID TASKI
1 +---------+

no 1

1(-----------------
V NFPACT

+--------+ Time delay
expired? --yes--)IACTIVATEI

1 1 TASK 1

no +--------+
1 1
V----------(------- NFEOBR

Any requests +------------+
to unbuffer? --yes--)I PERFORM 1

1 1 UNBUFFERINGI
no +------------+

1 I

V----------(-----------
Any tasks ready

to execute?

yes
1

1
V

+-------------+
I SET UP TASK 1

1 TO EXECUTE 1

+-------------+
1
V

Figure 4-2 Flow of Control in Task Scheduling

Nucleus Functions 4-18 2270512-9701

DNOS System Design Document

4.7 INTERRUPT PROCESSING

When an interrupt occurs, it is processed by the anpropriate
interrupt processor. When the interrupt processor is finished,
it branches to a return routine (NFTRTN), which returns to either
the interrupted code or to the scheduler if the time slice for
the task has expired.

4 • 7 • 1 Clock Interrupt Processor.

NFCLOK, the clock interrupt processor, gathers performance
statistics, keeps track of time, and decides when a time slice
occurs. The time and date are kept in the following form: year,
day (Julian), hour, minute, second, and tick. Also, a 32-bit
tick counter keeps track of time in clock ticks. The time, the
date, and the tick counter are updated each clock tick. The tick
counter counts clock ticks for 14 months before returning to
zero; it is used for timing system functions such as task time
delays. (A clock tick is 8.33 ms in the United States, 10 ms in
Europe.)

Statistics gathering involves sampling a set of flags. The flags
may be set and reset by the operating system at the beginning and
end of critical functions. The frequency with which a flag is
set determines the percentage of time that the operating system
spends within the section of code between the set and reset. A
variable contains the number of flags to be sampled; a two-word
counter counts the number of times that the flags are sampled.
Each flag is a full word and is followed by a two-word counter.
The counter is incremented each time the flag is found to be
nonzero. The first two flags, representing the CPU and disk
utilization, are displayed as a bar graph on the front panel,
with CPU utilization in the leftmost eight lights and disk
utilization in the rightmost eight lights. This can be changed
using the System Configuration Utility. The remainder of the
flags are defined to measure other aspects of system performance
as shown by the Execute Performance Display (XPD) command.

4.7.2 Internal Interrupt Processor.

An internal interrupt (interrupt level 2) is caused by
instruction execution errors (for example, illegal opcode,
illegal memory address, or privileged instruction). Internal
interrupts are processed by the internal interrupt processor,
NFINT2. If the interrupt occurs in task code, the task is killed
or placed into end-action code, and control returns to the
scheduler. If the interrupt occurs in operating system code, in
interrupt processing code, .or while scheduling is inhibited, the

2270512-9701 4-19 Nucleus Functions

I

I

I

DNOS System Design Document

system crash routine is called.

4.7.3 Power-Up and Power-Down Interrupt Processors.

When a power-down interrupt (interrupt level 1) occurs, the
power-down interrupt processor (NFPWDN) idles and waits for the
power-up interrupt (interrupt level 0). When the power-up
interrupt occurs, the power-up processor (NFPWUP) chains back
through contexts saved by interrupt processors (interrupts are
not reentered after power up) to find the noninterrupt code that
was executing at the time of power down. When the code is found,
the map files are set up for that code, the devices are all
reinitialized by entering each DSR at its power-up entry point,
the microcode is reloaded by calling NFLWCS, and the code is
restarted.

4.8 SVC PROCESSING

When a task issues an SVC, the SVC runs with scheduling inhibited
until it either completes or suspends the task that issued the
SVC. The requesting task is suspended if completion requires a
task driven SVC processor.

When an SVC processor terminates, it may reactivate the calling
task by branching to NFTRTN. NFTRTN either reactivates the task
or, if the time slice has expired, forces rescheduling. SVC
processors that suspend the executing task and wish to return to
the scheduler do so through the scheduler return routine, NFSRTN.
NFSRTN saves the status of the executing task in its TSB and
exits to the scheduler.

I/O requests and buffered SVC requests usually require
unbuffering of information to the requesting task when the
request completes. Unbuffering must occur when the task is in
memory. This is accomplished by queuing the buffered request
block (BRB), using NFEOBR, to the TSB if the TSB is in memory and
to the JSB if the TSB is not in memory. The task may then be
activated. Queued BRBs are unbuffered when the task is selected
for scheduling.

4.9 TASK TERMINATION

Task execution is terminated when the task issues a termination
SVC, another task issues a Kill Task SVC, or the task aborts by
executing an illegal or privileged instruction. Task termination
is processed by NFTERM. If the task is not terminating normally,
NFTERM builds a diagnostic packet and, if the task is active
(executable) and has specified end-action (execution after

Nucleus Functions 4-20 2270512-9701

DNOS System Design Document

termination), NFTERM restarts the task at the end-action address.
The diagnostic packet includes the task program counter,
workspace pointer, status, task termination error code, and the
time by which the task must finish end action (see the DIA
template in the section of data structure pictures).

End action can continue for no more than five seconds, unless the
Modify Scheduler/Swap Parameters (MSP) command is used to change
the limit

If the task is terminating normally or did not specify end­
action, NFTERM deactivates the task (if active), places a task
termination entry on the accounting queue, then releases the
memory used by the task and system structures that describe that
memory by calling NFDTOL and NFDTSK. Finally, if the task was
not restarted, an entry is placed on the task termination queue
to be processed by the termination processor task, PMTERM. (See
the section on program management.)

4.10 SPECIAL COPY ROUTINE

The routines in the module NFCOPY are used to copy blocks of data
from one segment to another. There are three ma'jn ent ry points,
NFCOPY, NFXCPY, and NFCXFR. NFCXFR is used to copy large blocks
of data from one place to another within the current map file.
It can be used in either map file 0 or map file 1. NFCOPYand
NFXCPY are used to copy data from one segment to another where
neither of the blocks need be mapped. NFXCPY must be called from
map file 0 and NFCOPY must be called from map file 1 through the
NFMAPO interface. NFCOPY calls NFXCPY which then calls NFCMAP to
set up a special map file which is used for a call to NFCXFR.
The routine NFCMAP can be called to set up map files for special
purposes by other routines which run in map file 0 and are
located in the system root.

2270512-9701 4-21/4-22 Nucleus Functions

DNOS System Design Document

SECTION 5

IPL AND SYSTEM LOADERS

5.1 IPL SEQUENCE

The DNOS initial program load (IPL) process consists of several
logical steps:

1. A read-only memory (ROM) loader on the CPU loads the
track 1 loader (a simple bootstrap program).

2. The track 1 loader loads the system loader.

3. The system loader loads the operating system and any
memory-resident tasks from the user's application
program file.

ROMs are discussed in other documents about the 990 computer.
See, for example, the Universal ROM Loader User's Manual.

After being loaded, the track 1 loader relocates itself to the
last 8K bytes of the first 64K bytes of memory and then reads the
disk volume information from track 0, sector O. From this
information, the track 1 loader determines whether it is to load
a diagnostic (stand-alone) program, a secondary loader, or an
operating system. The file to be loaded may be either an image
file or an object (compressed or noncompressed) file. After
determining what is to be loaded, the track 1 loader loads the
program into a portion of the first 64K bytes of memory, starting
at address)AO. Note that this loader cannot load any program
larger than 54K bytes.

The system loader loads DNOS from the kernel program file, using
the steps shown in Table 5-1.

After the system is loaded, the loader passes control to the
power-up interrupt handler of the loaded operating system.

The following paragraphs describe in more detail the operation
and logic of the DNOS system loader, as well as the data
structures used by the loader.

2270512-9701 5-1 IPL and System Loaders

DNOS System Design Document

5.2 SYSTEM LOADER OVERVIEW

The system loader resides on disk in an image file called
DSC.S$IPL and is loaded into memory by the track 1 loader. It is
linked as if it were a system task; that is, it expects to be
mapped in with the operating system root and a JCA while
executing. This allows the loader to call subroutines in the
root after the root has been loaded into memory. The loader
executes with interrupts masked to level 2, inhibiting interrupts
from devices.

Once loaded into memory, the loader enables mapping, creating for
itself a two-segment map file. The first segment contains the
loader code, which is located in the first 8K bytes of physical
memory. The second segment maps in the 8K bytes of physical
memory immediately following the loader code.

The first section of code (located in module SLIPL) initializes
physical memory to reset any correctable memory errors and to
determine the actual size of physical memory. This procedure
involves writing to each word mapped into the second segment,
changing the map file to map in the next 8K bytes, and writing
into each word in that segment. This process is repeated until
the loader tries to write to memory that does not exist.

Having found the end of physical memory, the loader maps in the
last 16K bytes as its second map segment and relocates itself to
that segment resetting its map file such that the first map
segment maps in the memory starting at physical address 0 and
logical address 0, and the second map segment maps in the memory
containing the loader code, starting at logical address)COOO.
From this point on, as the loader finishes a particular phase of
the load process, it displays the phase on the front panel
lights, starting at the left. Table 5-1 lists the different
phases and indicates the significance of each.

IPL and System Loaders 5-2 2270512-9701

DNOS System Design Document

Phase

1
2
3

4
5

6
7
8
9

Table 5-1 System Loader Phases

Description

Successful relocation of the loader
Successful open of kernel program file
Successful load of root, verification of

system version, and load of writable
control store (WCS)

Successful load of special table areas
Successful initialization of system overlay

table and crash file
Successful load of JCA segments
Successful load of DSRs and scheduler
Successful load of memory resident system tasks
Successful load of memory-resident user tasks

Next, the loader initializes its load device (disk drive) for
I/O. It then determines whether the machine being loaded is a
990/12.

The system root, consisting of a procedure and a task segment
from the kernel program file, is then loaded into memory,
starting at location O. The loader creates a new three-segment
map file, mapping in the root as the first segment, the following
physical memory (up to address)COOO) as the second segment, and
the loader code as the third segment. As soon as the root is
loaded, the loader verifies that the loader file (.S$IPL), the
kernel program file, and the utilities program file (.S$UTIL),
are all of the same version. Then the loader checks the volume
information from the disk being loaded to see if a writable
control store (WCS) file is specified. If so, it then loads the
WCS from the file.

Next, the loader loads or creates the memory-based segments of
the operating system. The loader traverses the memory-based SSB
list located in the STA. Each SSB represents a file manag~ment~

or segment management table area and indicates whether to load a·
segment from the kernel program file or to build a segment in
memory (a nonzero SSBADR value indicates that the overlay is'to
be loaded from the kernel program file). After loading or
creating a segment, the loader initializes that segment's I
overhead words.

2270512-9701 5-3 IPL and System Loaders

I

I

DNOS System Design Document

The loader then performs the following:

* Determines which of the disk drives defined is the disk
from which the system was initially loaded and marks it
as the system disk

* Installs the system disk

* Initializes the system overlay table

* Builds the file structures for the
crash file

swap file and the

After all of the special table areas are in memory, the loader
scans the JSB list in the system table area. Each JSB points to
an SSB for a JCA that needs to be loaded from the kernel program
file. JCA segments may also require name segments; if so, the
loader creates the segments. Table management overhead words are
initialized in both JCA and name segments.

The next phase consists of loading the DSRs, the scheduler, and
the SVC processor segments. The map files of these various
segments, which are in an array for the scheduler and in the
physical device tables (PDTs) for the DSRs, contain the installed
IDs of the overlays on the kernel program file. The loader scans
the map files, loading any segments indicated.

The loader then reads the memory-resident system task bit maps
from the kernel program file and the utilities program file,
loading each task indicated. Any associated procedures are also
loaded. SSBs are created and initialized for all segments loaded
in this phase. If a user application program file was specified
during sysgen, the loader reads the bit map for that file and
loads all memory-resident tasks, procedures, and segments.

The next step in the load process is installing all on-line disk
volumes. Installing a volume includes initializing PDT
information, creating an FDB for VCATALOG for that disk, and
initializing the disk manager data structures.

The final phase of the loader execution allocates the buffer
table area (BTA), loads the I/O utility task, and initializes the
system anchor for BTA. BTA is located in user memory,
immediately following the memory-resident portion of the
operating system and all memory-resident tasks. The I/O utility
task is then loaded, and the system anchor is initialized for the
file memory list. The memory containing the loader is part of
user memory. After the initialization is performed, the loader
transfers control to the power-up interrupt processor of the
operating system.

IPL and System Loaders 5-4 2270512-9701

DNOS System Design Document

5.3 SYSTEM LOADER DATA STRUCTURES

Since the data structures created by the system loader are also
used by other parts of the operating system, the data structures
themselves are not described in detail. The loader's use of
these structures and the reasons for their existence are
described in the remainder of this section. The descriptions
assume that the load medium is a disk. In the loader modules,
device-dependent code is localized to as few modules as possible.
As a result, the loader is easily configurable as a download
program that uses a communication port as its load device.

The system loader uses the following data structures on the disk:

* Volume information (track 0, sector 0)

* Volume directory (VCATALOG)

* Kernel program file, named during sysgen

* Utilities program file, .S$UTIL (or a name chosen by the
user)

* Shared program file, .S$SHARED

* Application program file

* Writable control store (WCS) file

* Partial bit maps (while installing the disk)

All except the volume information and the WCS file are
structures, as described in the section on data
pictures.

standard
structure

In addition, the system loader uses modules SLDATA and SLDISK for
internal working storage. These storage areas are part of the
system loader object itself, and are available to the system
loader for the duration of its execution.

5.3.1 Disk Volume Information.

The volume information contains the following data used by the
system loader:

* Starting allocatable disk unit (ADU) of VCATALOG, the
volume directory

* Names of the following files:

kernel program file

2270512-9701 5-5 1PL and System Loaders

I

I

I

DNOS System Design Document

utilities program file

WCS file (If the Performance Package is present)

* Total number of ADUs on the disk

* Starting sector of the partial bit maps

* Volume name

* Number of sectors per ADU on the disk

5.3.2 WCS File.

The WCS file is an image file Whose content is of
form:

* Word 1 - number of bytes of overhead

* Word 2 - microcode word size

* One or more repetitions of

Word 3 - microcode starting address

Word 4 - number of microcode words

Microcode

5.3.3 Kernel Program File.

the following

Although the kernel program file is standard in format, its
contents are slightly unusual. The kernel program file is
created by the Assemble and Link Generated System (ALGS) portion
of sysgen and contains all of the system segments that are
configurable during sysgen. The file contains the following:

* System root (two procedure segments)

* System JCA (overlay)

* First segment management table area (overlay)

* All DSRs included during sysgen (overlays)

* Configurable system tasks (starting with task ID 2) and
their overlays

I * JCAs for sysgen-defined jobs (overlays)

IPL and System Loaders 5-6 2270512-9701

DNOS System Design Document

5.3.4 System Loader Internal Working Storage.

The modules SLDATA and SLDISK contain the following data items
local to the system loader.

* SLDATA

System loader MAP files

Linkage to system file structures

Memory management and allocation information

* SLDISK

Disk initialization routine (SLINIT) workspace

Disk I/O routine (SLDIO) workspace

I 5.4 FLOW OF CONTROL THROUGH THE SYSTEM LOADER

SLIPL is the main routine of the system loader. It includes the
loader relocation code and calls to subroutines··that perform all
of the actual loading. Figure 5-1 shows the calling

~ relationships between the different loader modules.

2270512-9701 5-7 IPL and System Loaders

DNOS System Design Document

+------+ +-----------+
------1 SLINIT

+-----------+ +----------+
----------------------1 SLVRFY 1

+-----------+ +----------+
------1 SLWCS 1

S +-----------+-------+
--------------------- 1

L +-----------+ 1 1
------1 SLDSR 1 I +-----------+--------------

I +-----------+ ----I SLOP EN 1 ----------- \
\ +-----------+ \ \

P \ \ 1

+-----------+\ 1 +-----------+ 1 I
L ------1 SLTABL 1 \ +-----1 SLDIO 1 1 1

+-----------+ \ +-----------+ 1 I
1 \ 1 1 I
+------\ 1 1 1

\ 1 I 1
+-----------+ \ +-----------+ 1 1

------1 SLJCA 1-------\ I SLPFIO 1 1 1
+-----------+ \ +-----------+1 1

\ 1 1 1
+-----------+ +-----------+ I 1 1

------1 SLSTSK 1-----1 SLLMOD 1-------+ 1 1
+-----------+ 1+-----------+ 1 1
+-----------+ 1 1 1

------1 SLUTSK 1--1 1 1
+-----------+ 1 +-----------+---------- 1

+---1 1 SLFDB 1 1
1 +-----------+ 1------1

+-----------+ 1 1
------1 SLDINT 1-------+ 1 1

+-----------+ 1 1 1 +-----------+ ------------------------1 SLIV 1 +------+ +-----------+

Figure 5-1 System Loader Subroutine Calls

S.4.1 Relocating the Loader.

As described in the overview of the system loader, the first
activity of SLIPL is to determine the size of physical memory.
This is accomplished by using a second map file segment (the
first segment maps in the loader code). Initially, the loader
map file maps memory as shown:

IPL and System Loaders 5-8 2270512-9701

DNOS System Design Document

1st segment 2nd segment
+------------+-----------+-----------------/
I I I \
I loader I 8K bytes I /
I I I \
+------------+-----------+-----------------/
o

The memory initialization code then writes to every word in the
second map segment, comparing the contents of each word after the
write to verify that the contents are the same. If the
comparison fails, the loader assumes that it is at the end of
physical memory.

After 8K bytes have been checked, the loader resets its map file
as shown:

1st segment 2nd segment
+------------+-----------+-----------+-----/
I I I I \
I loader I 8K bytes I 8K bytes I /
I I I I \
+------------+-----------+-----------+-----/
o

This process is repeated until the end of physical memory is
found.

NOTE

If the computer being loaded contains the
maximum amount of memory allowed, or if the
search for the end of memory causes the
loader to write to the TILINE peripheral
control space (TPCS), the write/compare test
will fail on the first write to the TPCS;
thus, no accidental TILINE commands can be
issued. (TILINE is a registered trademark of
Texas Instruments Incorporated.)

After finding the end of memory, SLIPL relocates the loader to
the upper 16K bytes of physical memory, mapping memory as shown:

2270512-9701 5-9 IPL and System Loaders

DNOS System Design Document

1st segment 2nd segment
+------------+---------//----------+------------+
I old I \\ I ,
'loader , / / I loader,
I code I \ \ , ,
+------------+---------//----------+------------+
o)COOO end of memory

After the relocation t SLIPL calls SLINIT to initialize the load
device for I/O.

SLIPL also determines the CPU type and saves it as
NFDATA.

5.4.2 Load Device Initialization.

CPUID in

SLINIT has two entry points t SLINIT and SLIVSU. SLINIT performs
some device initialization t dependent on values found in the
loader ROM workspace (location)80 through)9E), and is called by
SLIPL. SLIVSU is an entry point used by the disk installation
routine, SLIV, to gather the information about a disk drive
necessary to install the volume. The device initialization logic
consists of performing a Store Registers command to the disk
drive and then reading the volume information (track 0, sector
0). From this information, SLINIT initializes the workspace used
by the disk I/O routine (SLDIO), saves the important file names,
and saves the ADU address of VCATALOG. Since the device
information is saved in common segments, it is accessible by the
other loader routines.

5.4.3 Opening a File for I/O.

Befoie loading the system root t SLIPL calls SLOPEN to open the
kernel program file for I/O. SLOPEN is an important routine in
the loader; it accepts as input a file name, which is assumed to
be cataloged in the volume directory VCATALOG. It then
calculates the hash value of the file name and searches VCATALOG
for the File Descriptor Record (FDR) for that file. When the
file is found, SLOP EN reads the FDR into the loader's internal
buffer (located after the last module in the loader) and then
builds a file control block (FCB) and file descriptor block (FDB)
for the file. The FCB and FDB are built in the file manager
table (FMT) if the FMT has been loaded, otherwise, they are built
in a temporary area in one of the loader common segments. The
FCB information is used by the program file I/O routine t SLPFIO,
to read and write to the file on disk.

IPL and System Loaders 5-10 2270512-9701

DNOS System Design Document

NOTE

The loader is designed so that it can perform
I/O to only one file at a time; in other
words, only one file can be open at a time.

5.4.4 Loading the System Root.

After the kernel program file is open, SLIPL loads the system
root. It calls the module load routine, SLLMOD, to load
procedure 1 and procedure 2 from the kernel program file. These
two modules are loaded in adjacent memory, starting at location
0, and combine to form the system root segment. After the root
is loaded, SLIPL resets its map file to be a three-segment map
file. It maps the root as the first segment, the physical memory
immediately following the root as the second segment, an the
loader code as the third segment, as shown:

1st segment 2nd 3rd segment

+---------+------+-----//----------+------------+
I system I I \\ I I
I roo t I I / / I" loade r I
I I I \ \ I I
+---------+------+-----//----------+------------+ o JCASTR)COOO end of memory

After loading the root, SLIPL calls SLVRFY to verify that the
versions of the kernel program file, the utility program, and
S$IPL match.

5.4.5 Loading a Module.

The loader calls SLLMOD to load a segment (task, procedure, or
overlay) from the currently open program file. The module is
always loaded into memory, starting at the next available beet
address. (A beet address is an address evenly di vi si ble by' 32_)
Memory is allocated linearly from physical location 0 to the end
of memory. SLLMOD is used for three purposes:

* Loading a kernel segment (a segment that is not a system
or user task, such as a JCA or a DSR)

* Loading a task or procedure segment

* Reading the program file directory index (PFI) for a
segment

2270512-9701 5-11 IPL and System Loaders

DNOS System Design Document

When loading a kernel segment, SLLMOD does- not create any system
overhead (such as an SSB or OVB for the segment). It does,
however, make an entry in an internal table to indicate which
kernel segments have already been loaded. Thus, if a segment is
requested more than once (as is the case for the system JCA) it
will be loaded only once. This internal table has the following
form:

+--+
o I type I ID I load beet I seg. length I

+--+
1 I I I I
· +--+
• II II II II
· +--+
n I I I I

+--+
Each table entry is three words long and contains four fields as
follows

* The first byte of the first word is the segment type
(O=task, 4=procedure, 8=overlay) on the program file.
Note that a segment installed as a procedure or a task
on the kernel is not necessarily loaded into memory as a
procedure or task. The system root is an example of
this.

* The second byte of the first word is the installed ID on
the program file.

* The second word is the beet address where the segment
was loaded.

* The third word is the byte length of the segment.

When a kernel segment is requested, SLLMOD first searches the
table to determine if the segment is already loaded; if so,
SLLMOD immediately returns the load beet and segment length to
the caller.

If the segment requested is a task or procedure segment, SLLMOD
loads the segment and builds system overhead for it (SSB and
OVB). Before trying to load the segment from the program file,
SLLMOD calls a routine in the system root, SMFSID, to search the
SSB group for the SSB of the currently open program file. If the
SSB is found, the segment is already in memory and need not be
reloaded; otherwise, the segment must be loaded.

IPL and System Loaders 5-12 2270512-9701

DNOS System Design Document

5.4.6 Initializing the Crash File.

After the system root is loaded t SLIPL calls SLCRSH to initialize
the crash file information in the system root. This information
is kept in the CSEG NFDATA and consists of the TILINE address;
the head t cylinder t and sector addresses of the crash file; and
the size of the crash file (in- beets). SLCRSH obtains the
information by opening the file and extracting information from
the FDR for the file. I

5.4.7 CPU Type Dependent Initialization.

After the load device is initialized t SLIPL determines the CPU
type. This is done by examining a CRU location. If the CPU is a
990/10 or a 990/10A t no special initialization is done. If the
CPU is a 990/12 t SLWCS is called to load the WCS file if one is
specified in the volume information. If the CPU is an S300 t the
clock handler is initialized for a 50hz clock.

5.4.8 Loading the Special Table Areas.

The special table areas for segment management t file management,
and system common are represented by SSBs in the memory-based
segment groupt located in the STA in the root. These SSBs t built
during sysgen in the $BLOCK module in the D$SOURCE file, can be
initialized with either of the following formats:

* The beet address field of the SSB contains an overlay ID

* The beet address is 0 and the length field contains the
length of the segment to be created.

Only the first segment management table area SSB and the system
common SSB are of the first format; none of the others represent
actual program file segments.

If the table area is a segment in the program file, it is
constructed during sysgen to include only the defined data area,
thus occupying less disk space than if free area was also
allocated. The SSB for the table area contains the correct
length in the SSBLEN field. SLLMOD allocates the difference
between the SSBLEN value and the segment installed length as free
table area. When the system loader loads one of these segments t
it adds the size of the free area to the memory already allocated
for the segment; the result is a segment in memory that includes
all of the free area.

If the segment has no program file image (it is completely empty
and so sysgen built only an SSB for it), SLTABL allocates the

2270512-9701 5-13 1PL and System Loaders

I

I

I

I

DNOS System Design Document

amount of memory indicated in the length field of the SSB; SLTABL
then initializes the table area management overhead words in the
segment to indicate that it is completely empty.

5.4.9 Loading the JCAs.

The SSBB that represent JCA segments are also in the memory-based
segment group but are not located in the STA in the root. They
are located in the first segment management special table area,
which is built during sysgen and loaded in the preceding phase of
the system load. To load the JCAs into memory, SLIPL calls the
routine SLJCA. This routine scans the JSB list, maps in the
segment management special table area and then uses the SSBADR
field to indicate which segment is to be loaded. SLJCA never
creates a JCA segment, since they are all built during sysgen and
have a segment in the kernel program file.

NOTE

Normally, JCA segments are considered
swappable (except for the system JCA).

As SLJCA loads each JCA segment, it inspects the job information
table (JIT) in the JCA to see if any name segment must be created
for the job. This is indicated by a nonzero value in the SSB
address field for the segment. If the value is nonzero, it is
used as the size of the area that must be created. SLJCA creates
an empty segment and initializes it as a name segment. (For
details, see the description of name management in the section on
the I/O subsystem.)

5.4.10 Loading the DSRs.

The next phase of the load process is the loading of the DSRs,
the scheduler, and the SVC processor segments. The routine SLDSR
loads these. SLDSR first loads the scheduler and SVC processor
segments, then the DSRs. It determines which segments to load by
inspecting the map files for the scheduler and DSRs.

The scheduler/SVC map files are in an
the root. The array begins with
MAPSHD in the NFPTR common segment in
array. Each entry in the array
initialized during sysgen as follows:

array located in the STA in
the scheduler map file, and

the root points to the
is a six-wurd map file,

1. Limit 1 is set to the length of the root.

2. Bias 1 is set to O.

IPL and System Loaders 5-14 2270512-9701

DNOS System Design Document

3. Limit 2 is set to)4000 (one's complement of)COOO).

4. Bias 2 is the overlay ID of the system JCA.

5. Limit 3 is set to the negative value -1. (This is a
signal used by 1PL to determine whether or not the DSR
map file has been initialized.)

6. Bias 3 is the overlay ID of
segment to be loaded.

the scheduler or SVC

SLDSR inspects each map file, loading the segments indicated by
the bias 2 and bias 3 fields and initializing each map file with
the correct bias and limit values.

After the map file array has been processed, SLDSR scans the PDT
list, loading the segments indicated by the map file in each PDT.
The PDT map files are initialized in the same way as the
SVC/scheduler map files, with the value in bias 3 being the
overlay ID of the DSR for the device.

5.4.11 Loading Memory-Resident Tasks.

After all of the JCAs are in memory, SLIPL is ready to load all
of the memory-resident tasks for the system and for user jobs.
SLIPL first calls SLSTSK to load all of the tasks defined in the
system job. SLSTSK calls SLMRES to load all memory-resident
tasks on the kernel program file. SLSTSK then opens the utility
program file and calls SLMRES to load all memory-resident tasks
in that program file. SLIPL calls SLUTSK to load user-defined
tasks from the user's application program file. SLUTSK operates
in the same manner as SLSTSK.

5.4.12 Disk System Initialization.

SLIPL calls SLDINT to perform some system disk initialization.
SLDINT performs the following functions:

1. Searches the PDT list for the disk PDT, which
represents the disk from which the system was loaded~
This PDT is then marked to be that of the system disk
by setting the system disk flag and setting the pointer
SYSPDT to point to the PDT.

2. Opens the system swap file by calling SLOPEN.

3. Installs the system disk volume by calling SLIV.

4. Initializes the system overlay table used by the system
overlay loader.

2270512-9701 5-15 IPL and System Loaders

DNOS System Design Document

5.4.13 Installing Disk Volumes.

The next phase of the system loader is the installation of all
disk volumes that are on-line during 1PL. To do this, SLIPL
calls SLIV, which scans the PDT list in the STA, searching for a
disk.

IPL and System Loaders 5-16 2270512-9701

DNOS System Design Document

SECTION 6

SVC REQUEST PROCESSING

6.1 OVERVIEW OF SVC PROCESSING

In the 990 hardware architecture, 16 levels of extended
operations (XOPs) are defined. Level 15 is reserved for use as
an interface between user software and operating system services.
This interface is named the Supervisor Call (SVC) interface.

When an SVC is issued, the 990 computer hardware transfers
control to a software routine, which begins decoding and
processing the SVC. The activity of the decoding routine varies,
depending on the particular SVC request. Some SVCs are ~rocessed
quickly, with little information passed from requester to
processor. Other SVCs require extensive effort and time or
require much information transfer between requester and
processor. To allow optimum use of the 990 resources, an SVC
that requires much time to process is copied into a block of
system table area (STA) along with information identifying the
requester; then the requester task is suspended and its memory is
relinquished to other tasks.

The amount of effort involved plus several other factors
determine the method used by an SVC processor. The SVC request
is copied (buffered) into registers if the processor meets the
following conditions:

* It is a memory-resident processor

* It completes processing of the SVC in a short period of
time

* It processes an SVC that may be issued by any task

* It processes an SVC that cannot be an initiated event
(using SVC >41)

* It returns
space

all results directly to the requester task

Otherwise, the SVC request is buffered into the STA.

While a task is having an SVC decoded, that task cannot lose its
time slice or be preempted by the scheduler. When the SVC issued

2270512-9701 6-1 SVC Processing

DNOS System Design Document

is one that finishes quickly, the request is decoded and is
processed, and control returns to the requester task before the
scheduler can schedule another task for execution. Essentially,
the sequence of events is as follows:

1. Requester task issues the SVC by
(or equivalent)

using XOP @block,l~

2. Decoding routine is entered from the XOP interface

3. Decoder determines
finishes quickly

that this is a request which

4. Decoder copies some or all
processor routine registers

of request block into

5. Decoder transfers control to processor

6. Processor performs requested
information to requester task

service and

7. Processor returns control to requester task

returns

If the SVC request issued is not a fast request, the SVC decoder
copies the request block into a buffer in STA and then follows
one of two possible paths. For requests that require much time
and effort, usually the request is queued to a processor task and
the requester task is suspended until the request completes.
Processors that are disk-resident tasks follow this path. Such
processors are either seldom used or very large in size.

Certain special processors, such as those for I/O and job
management use an alternate path for processing buffered
requests. Some preprocessing is required before control goes to
a processing task. When following this path, the decoder copies
the request block into a buffer in STA or JCA and transfers
control to the preprocessor. The preprocessor examines the
buffered request and performs whatever processing it can. For
some subopcodes, all processing is completed in the preprocessor.
In these cases, control is returned to the requester task. In
other cases, the preprocessor queues the request to the processor
task and suspends the requester task.

When the requester task is suspended while the SVC is being
processed, the requester task may be removed from memory to make
room for another task. When the SVC request is finished, the
buffered request must be returned to the requester task; then the
requester task can again be scheduled for execution. To allow
this, the SVC processor queues the finished buffered request
block to the requester task's TSB (or to the task's JSB if the
TSB is not in memory). When ready for a new task, the scheduler
examines these blocks, ensures that the task is in memory, calls

SVC Processing 6-2 2270512-9701

DNOS System Design Document

a routine to return information to the task,
task for execution.

and schedules the

The decoding routine examines the SVC request not only to
determine whether processing will be fast or slow, but also to
verify several other characteristics. Some SVC requests must be
aligned on a word boundary in order to execute properly. This is
the first characteristic the decoder checks for. If the request
block is not aligned but should be, an error code of)Fl is
returned in the return code field of the request block, and the
requesting task resumes control.

Another characteristic to be checked is the privilege level of
the request. Some SVC requests can only be issued by operating
system tasks. If this requirement is not met, an error code of
)F2 is returned in the return code field of the request block,
and the requesting task resumes control. Some SVC requests
require that the requesting task be installed as software
privileged. If this requirement is not met, the task receives an
error code of)F3, and the requesting task resumes control.

Since some of the SVC requests (and their processors) are
configurable when a DNOS system is generated, it is possible for
a task to issue an SVC that is not supported on a particular DNOS
system. When this occurs, an error code of)FO is returned to
the request block, and control returns to the requesting task.
This error code is also returned when a request specifies an SVC
code that is not defined in the DNOS set.

Some DNOS users extend the capabilities of the operating system
by adding their own SVC codes and processors during sysgen.
(Such user-defined SVCs have operation codes)80 or greater.)
The same checks are performed on user-defined SVCs as on the DNOS
SVCs, and the same set of error codes is used for these checks.

6.2 MODULES USED FOR REQUEST PROCESSING

Most of the routines for processing SVC requests are written in
990 assembly language; several are written in Pascal. The
routines are found in modules either in the subsystems that they
directly support, or in the DSC.REQPROC directory. Modules in
REQPROC support the decoding, buffering, and unbuffering of
requests and also process some of the requests that do not belong
in any other DNOS subsystem. Table 6-1 lists and describes some
of the request processor modules found in the REQPROC directory. I

2270512-9701 6-3 SVC Processing

DNOS System Design Document

Table 6-1 Major Request Processor Routines

Name Description

RPBUF

RPCONV
RPDQUE

RPGSVC

RPIDSC
RPINV
RPINVI

RPINV2
RPINV3
RPINV4

RPIOR

RPIV

RPPRCK

RPPEVT
RPPSVC

RPRCDA
RPRCP
RPRETR
RPROOT
RPSDAT

RPSGCK
RPUDAT

RPUTIL

RPVOL

RPWAIT
RPWTIO

Routine that copies request blocks to buffers in
STA
Processors for SVC OA,OB,OC,OD (data conversion)
Routine that dequeues and unbuffers SVC requests
to requester tasks
Processors for SVC 02,03,06,07,09,OE,11,2E,2F,3S,
3B,3E (miscellaneous general-support SVCs)
Processor for SVC 38 (Initialize New Disk Volume)
Main driver for the initialize new task volume
Routines used to support the ini~ialize volume
process
Same as RPINV1
Routines used to initialize disc process
Utility routines for the initialize new volume
process
Utility routines for the IV, UV, and INV SVC
handlers
Handles the main portion of installation of a
disc volume
Routine that checks for memory protection
violations
Processor for SVC)4F (Post Event)
Processors for SVC 04,10,lB,24,2B,2C,33
(miscellaneous) (program-support SVCs)
Data base for SVC 4C (Return Code Processor)
Processor for SVC 4C (Return Code Processor)
Processor for SVC 3F (Retrieve System Data)
Decoder for SVC requests
Module that includes the system static buffer
and a table (RPSTAB) built during sysgen, .
showing characteristics and processors for DNOS
SVCs
Routine that checks for mapping violations
Includes the table RPUTAB built during sysgen,
showing characteristics and processors for
user-defined SVCs
Utility routines and data areas for the IV, UV,
and INV SVC handlers
Processors for SVC 20,34 (Install Disk and
Unload Disk)
Processor for SVC 42 (Wait for Event)
Processors for SVC 01,36 (Wait for I/O)

Other modules that process SVC requests are found in the
subsystems for I/O, name management, job management, program
management, and segment management. Short descriptions of the

SVC Processing 6-4 2270S12-9701

DNOS System Design Document

routines that process SVCs can be found in the relevant subsystem
descriptions.

6.3 MAPPING STRUCTURE

Due to the large number of SVC processors, one map file segment
cannot contain all of them. Therefore, two arrangements of map
file 0 are set up during sysgen. One arrangement has these three
segments mapped in: system root, requester JCA, scheduler/first
SVC segment. The other arrangement has these three,segments
mapped in: system root, requester JCA, second set of SVC
processors. A flag in the RPSTAB entry shows which of the map
arrangements is needed for processing a particular SVC. Before
passing control to the processor, the decoding routine makes sure
that the correct map file is being used. When the processor
terminates, the return routines ensure that the map file with the
scheduler segment is restored.

6.4 DATA STRUCTURES USED FOR SVC PROCESSING

The primary structure used by the SVC decoding routine is the SVC
definition table built during sysgen. This table, RPSTAB, is
created to define completely all DNOS SVCs included in the
current system configuration. Users who supply any of their own
SVCs must build a similar table, RPUTAB, to describe those SVCs.
The RPSTAB table is located in a module named RPSDAT; the user
defined table is placed into a file named .SSGU.USERSVC.RPUDAT.

Each DNOS-supported SVC code has a two-word description field in
RPSTAB. For codes that are undefined in a particular
configuration, both words are zero. Figure 6-1 shows the two­
word description format.

2270512-9701 6-5 SVC Processing

DNOS System Design Document

BYTE 0 - FLAG BYTE
BIT 0 - 0= Do not check alignment; l=check alignment

1 - 0= Use registers to buffer; 1=use table area
2 - 0= Use first SVC segment of processors;

1= Use second SVC segment of processors
3,4 - Reserved
5-7 - Length to buffer, if going to registers;

otherwise 0
BYTE 1 - LENGTH BYTE

)00 if buffering in table area
Length of whole call block if buffering in registers

BYTES 2,3 - ADDRESS WORD
Address of request definition block (RDB) if
buffering in STA
Address of processor if buffering in registers

Figure 6-1 SVC Entry Form in RPSTAB

SVC processors that execute quickly and require little
information from the SVC call block have the required information
buffered in registers. Upon entry to the SVC processor, the
following registers are set:

* RO - bytes 0,1 of call block (or zero if unused)

* R1 - bytes 2,3 of call block (or zero if unused)

* R2 - bytes 4,5 of call block (or zero if unused)

* R3 - requester call block address

* R4 - requester TSB address

* R5 - requester map file pointer in TSB

When using a buffer in STA, a structure called the request
definition block (RDB) is used to tell how much and which fields
to buffer. The RDB is defined in the module with the memory­
resident processor or preprocessor, if one is used. For SVCs
processed by tasks with no preprocessors or for SVCs that are
configurable options of DNOS, the RDB is defined in the RPSDAT
module. The RDB is labeled RDBSxx for system SVC opcode xx. A
template for the RDB is shown in the section on data structure
pictures. Figure 6-2 shows examples of RDBs.

For many of the requests buffered according to an RDB,
information must be returned from the processed buffered request
to the requesting task. The structure used to govern this
transfer is the return information block (RIB) built for the SVC.
A RIB is needed if information in addition to the return code

SVC Processing 6-6 2270512-9701

DNOS System Design Document

must be passed back to the requester task. The RIB for system
opcode xx is RIBSxx and is shown in detail in the section on data
structure pictures. Figure 6-2 shows an example of an RIB.

RDBS14 EQU
DATA
DATA
DATA
DATA
BYTE
BYTE
DATA

$
)0800
OVYQUE
o
)0007
)07
o
o

RDBS48 EQU $

RIBS48

DATA)1800
DATA JMPREP
DATA RIBS48
DATA)0010
BYTE)10
BYTE 0
DATA 0

EQU
DATA
BYTE
BYTE
DATA

$
o
o
)10
o

LOAD OVERLAY RDB'
USE DYNAMIC BUFFER IN STA
OVERLAY QUEUE SERVER HEAD
NO RIB NEEDED
MAX BUFFER SIZE
BASIC BLOCK LENGTH
ACCOUNTING FACTOR
RESERVED

JOB MANAGER RDB
PREPROCESSOR, DYNAMIC BUFFER
ADDRESS OF PREPROCESSOR
RIB ADDRESS
MAX BUFFER NEEDED IS 16 BYTES
BUFFER 16 BYTES
ACCOUNTING FACTOR
RESERVED

NO POST PROCESSOR "NEEDED
START UNBUFFERING AT BYTE 0
UNBUFFER 16 BYTES
END OF RIB

Figure 6-2 Examples of RDB and RIB Structures

The job management SVC is one example of an SVC that must be
rebuffered for certain sub-opcodes. The flags defined in the RDB
for expansion govern that rebuffering. This technique is used
because request blocks for sub-opcodes within the SVC opcode vary
in size. The preprocessor of the SVC must make a call to RPBUF
with a revised RDB to rebuffer special cases.

SVC processing uses several data structures in addition to the
RDB, RIB, and RPSDAT. Among these are the queue headers for the
queue server SVC processing tasks. The queue headers 'are
described in the section on nucleus functions. The SVC decoder
uses the queue header pointer in the RDB to queue a buffered
request to a queue server.

SVC processing uses TSBs of the requesting tasks to access map
file information and to return completed requests. It uses JSBs
to return completed requests if the TSBs are not available.
Other structures are used by particular SVC processors but not by
the decoder or buffering routines.

2270512-9701 6-7 SVC Processing

I

I

DNOS System Design Document

6.5 DETAILS OF SVC PROCESSING

SVC processing begins in the routine RPROOT. This routine
accesses tables to locate the appropriate processor and to
determine buffering details. The routine RPBUF is used to copy
(buffer) the SVC request into a temporary work area. The routine
RPDQUE is used to return the finished request to the task issuing
the SVC. A set of miscellaneous routines is used throughout
processing.

6.5.1 Decoding Routine (RPROOT).

When an SVC is executed, the hardware transfers control via the
interrupt processing routines to the SVC decoding routine RPROOT.
RPROOT first checks for a special SVC (XOP 15,15) used by the SCI
Debugger. If this special call was issued, a flag is set in the
requesting task's TSB.

A check is then made for the Initiate Event SVC. If that SVC is
specified, it is now processed in RPROOT. The SVC being
initiated is checked to ensure that it is a legal opcode and can
be initiated. (In the current version of DNOS, only I/O and
semaphore operations can be initiated.) If no errors occur, the
initiated SVC is processed like any other request.

At this point I/O and Segment Manager SVCs are checked for
alignment and then routed directly to their preprocessors. This
is done to speed up the processing of those SVCs.

RPROOT then examines the RPSTAB entry for the requested SVC. The
first check verifies that the opcode is defined in this
configuration. If there is no RPSTAB entry and no RPUTAB entry,
error code)FO is returned, SVC processing terminates, and
control returns to the requester task.

If the SVC is defined, the next check is for alignment. If the
RPSTAB or RPUTAB entry shows that the request must be aligned on
a word boundary, the address of the request is checked. If it is
not legal, error code)Fl is returned, and SVC processing
terminates.

The RPSTAB entry for the requested operation is checked to see
whether buffering occurs in registers or in STA. If the request
is to be buffered in registers, RPROOT performs the follOWing:

1. Checks the call block for mapping and protection
violations

2. Transfers the required amount of information from the
requester call block to registers RO, Rl, and R2

3. Ensures that the correct map file is in use

SVC Processing 6-8 2270512-9701

DNOS System Design Document

4. Transfers control to the processor. When the processor
completes its work, it transfers control back to the
requester task

If the RPSTAB entry for the SVC shows that the SVC is
buffered into STA, RPROOT performs the following:

1. Accesses the RDB

to be

2. Checks the call block for mapping and protection
violations

3. Calls the buffering routine RPBUF to
information from the requester call block
according to the RDB, creating a BRB (Buffered
Block)

transfer
to STA
Request

4. Checks whether the request is to be queued to a queue
header for a task or sent on to a processor in memory

a. If the request is to be queued, RPROOT queues the
buffered block to the queue header and suspends
the requester task

b. If the request is to be sent to a processor,
RPROOT transfers control to the processor, which
either returns to the requester or queues the
buffered request to a task

After RPROOT transfers control to an SVC processor, that
processor may return control to the scheduler by branching to
NFSRTN or NFTRTN. It may also return to RPROOT in case an error
occurs in the processing logic. The return points are as
follows:

* RPRTNE - an error completion. RPROOT must check whether
this was an initiated event and return only the error
byte to the requester task.

* RPRTNF - a task error in the requester task. RPROOT
must check whether this was an initiated event and
terminate the requester task with the task error passed
from the SVC processor. If the SVC processor itself
encounters a logic error, RPROOT terminates the
requester task with task error)04 to show an SVC
processor error. ~

2270512-9701 6-9 SVC Processing

DNOS System Design Document

6.5.2 SVC Buffering Routine (RPBUF).

RPBUF is a general request buffering routine called by RPROOT and
by several SVC preprocessors that have received a partially
buffered block from RPROOT. RPBUF uses the RDB provided by the
caller to determine how to buffer the information.

RPBUF first checks the RDB flags to see if this buffering is to
use the single system static buffer (provided as part of the
RPSTAB module) or a dynamic buffer. If a dynamic buffer is to be
used, a flag is checked to see whether the buffer COmes from STA
or from the requester JCA. A dynamic buffer of the size
specified in the RDBMAX field of the RDB is then allocated via
the nucleus routine NFGTA.

If RPROOT called for this buffering, RPBUF now sets up the
buffered request by first building the buffered request overhead
(BRO). The BRO is shown in the section of data structure
pictures. It includes a pointer to the requester TSB and JSB,
the address of the call block in the requester task, a set of
flags, and several fields filled during SVC processing.

After the BRO is completed, RPBUF includes as much of the call
block as indicated in the RDBBAS field of the RDB. RPBUF then
checks to see if expansions to this basic block are to be
included. If so, the next several words of the RDB indicate
where to buffer the information (table area or JCA), how much to
buffer, and at which offset into the buffered information to
place the new information.

If the buffering request is for revision of a partially buffered
block, RPBUF copies the BRO and the basic request block from the
partially buffered block to the newly acquired block. The old
block of memory is released via the nucleus function NFRTA, and
expansions are treated like those in buffering for RPROOT.

6.5.3 Dequeuing and Unbuffering Routine (RPDQUE).

When a task is to be scheduled for execution, the scheduler
examines the TSB to see if any SVC requests are to be unbuffered
to the requester task. If so, RPDQUE is called to remove all
queued SVC requests. RPDQUE works with each queued request,
returning information from the buffered request block to the
requester task. It passes back the return code byte and then
uses an RIB to pass back any other information, if the RIB is
defined. RPDQUE returns the number of bytes specified in RIBLEN
from the offset RIBOFF in the BRB to the offset RIBOFF in the
requester call block. Several sets of paired specifications may
be present, terminated by pair of zeros. When these pairs are
completed, a postprocessor is called, if one is specified in the

SVC Processing 6-10 2270512-9701

DNOS System Design Document

RIBPRO field. When unbuffering is complete, RPDQUE releases the
buffer via the nucleus routine NFRTA and returns to its caller.

A Wait for Event SVC requires special handling by RPDQUE, which
checks the requester task TSB to see which event flags have
completed. The flags being tested in the Wait for Event block
are then matched against those in the TSB to generate a correct
reply in the requester task area.

6.5.4 Other Request Processor Support Routines.

RPMAP2
This routine is part of the DNOS root. It is used by RPROOT
to access a processor in the second SVC map file. RPMAP2
adjusts global pointer CURMAP, loads the second map file,
and transfers control to the processor routine. If the
processor returns to RPROOT, it passes back through RPMAP2,
restoring the original map file.

RPPRCK
This routine checks the memory-protection attributes of a
portion of memory. It first examines the protection bit in
the status word of the task. If protection is enabled,
RPPRCK then checks to see if the map" regi ster limi t
indicates write protection. If so, an error is returned.
To allow unbuffering of SVC request results, write
protection must not be enabled; thus, the error causes the
task to terminate.

RPSGCK
The requester call block must be mapped in by a single base
and limit register pair to simplify processing. RPSGCK
verifies this condition. Given any address and length,
RPSGCK uses the relevant map file to ensure that the block
addressed is correctly mapped. If not, an error is
returned, which may cause the task to terminate.

6.5.5 DNOS SVCs and Processors.

Table 6-2 shows the processors for each of the system-defined SVC
opcodes for DNOS. In Some cases, a preprocessor is shown, since
that module is the one accessed from RPROOT; it may in turn call
one of several processors. Some small processors that perform
related functions have been collected into a single module; the
listing shows both the module name and the processor name for I
these processors.

2270512-9701 6-11 SVC Processing

DNOS System Design Document

Table 6-2 SVC Processors and Modules

NOTATION: MEANING

A
I

Alignment on word boundary required
May be initiated with SVC 41

(Not Supported)
(pre)

This SVC code is intentionally omitted.
This is a preprocessor

P Software privileged task required
(P)

S
Some of the set require software privilege
System task required

(S)
(task)

Some of the set require a system task
This processor runs as a task

[nn] Name of module containing processor

SVC /I Name
Processor/Preprocessor

Notes [Module if Different]

00 I/O Operations A,I,(P) lOP REP (pre)
01 Wait for I/O A RPWTOI [RPWTIO]
02 Time Delay A RPTDLY [RPGSV C]
03 Get Date and Time A RPGDT [RPGSVC]
04 End of Task RPENDT [RPPSVC]
05 (Not Supported)
06 Suspend Task RPUNCW [RPGSVC]
07 Activate Suspended Task RPAST [RPGSVC]
08 (Not Supported)
09 Extend Time Slice RPETS [RPGSVC]
OA Convert Binary to Decimal RPCBDA [RPCONV]
OB Convert Decimal to Binary RPCDAB [RPCONV]
OC Convert Binary to Hexadecimal RPCBHA [RPCONV]
OD Convert Hexadecimal to Binary RPCHAB [RPCONV]
OE Activate Time-Delayed Task RPATDL [RPGSVC]
OF Abort I/O Request by LUNO IOABRT
10 Get Common Data Address PMGRCM
11 Change Task Priority RPCTP [RPGSVC]
12 Get Memory A PMGRMM
13 Release Memory A PMGRMM
14 Load Overlay A PMOVYL (task)
15 (Not Supported)
16 (Not Supported)
17 Get Task Bid Parameters A RPGTBP [RP G SV C]
18 (Not Supported)
19 (Not Supported)
lA (Not Supported)

SVC Processing 6-12 2270512-9701

DNOS System Design Document

Table 6-2 SVC Processors and Modules (Continued)

SVC II

IB
lC
ID
IE
IF
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48

Name

Return Common Data Address
Put Data
Get Data
(Not Supported)
Scheduled Bid Task
Install Disk Volume
System Log Queue Request
Disk Management
(Not Supported)
Suspend for Queue Input
Install Task
Install Procedure/Segment
Install Overlay
Delete Task
Delete Procedure/Segment
Delete Overlay
Bid Task
Read/Write TSB
Read/Write Task
Self Identification
Get End Action Status
(Not Supported)
Map Program Name to ID
(Not Supported)
Kill Task
Unload Disk Volume
Poll Status of Task
Wait for Multiple I/O
Assign Program File Space
Initialize New Disk Volume
(Not Supported)
(Not Supported)
Set Date and Time
(Not Supported)
Semaphore Operations
Reset End Action Status
Retrieve System Data
Segment Management
Initiate Event
Wait for Event
Name Management
Reserved
Get Encrypted Value
Get Decrypted Value
Log Accounting Entry
Job Management

2270512-9701 6-13

Notes

A
A

A
A,P
A
A,S

S
A,P
A,P
A,P
A,P
A,P
A,P
A
A,P
A,P
A
A

A

A
A,P

A,P
A,P

A

A,I

A
A, (S)

A
A
A

A
A
A
A

[Module if Different]

PMGRCM
PMGDAT
PMGDAT

RPXSBT [RPPSVC]
RPVOL (task)
LGSVC
DMTASK (task)

RPQSUS [RPPSVC]
PMPINS (task)
PMPINS (task)
PMPINS (task)
PMPDEL (task)
PMPDEL (task)
PMPDEL (task)
RPXTSK [RPP SVC]
PMRWTB
PMRWTK (task)
RPGSID [RPGSVC]
RPGEAS [RPGSVC]

PMPMAP (task)

RPKILT
RPVOL
RPPTS
RPWT36
PMPASP
RPINV

RPIDT

PMSEMA
RPREA
RPRETR
SMPREP
RPROOT
RPWAIT
NMPREP

[RPP SV C]
(task)
[RPGSVC]
[RPWTIO]
(task)
(task)

[RPGSVC]

[RPGSVC]

(pre)

(pre)

SECRYP
SECRYP
PMACCT
JMPREP (pre)

SVC Processing

DNOS System Design Document

Table 6-2 SVC Processors and Modules (Continued)

SVC # Name

49 Get Accounting Info from
4A Modify BTA or JCA Size
4B Halt/Resume Task
4C Return Code Processor
4D (Not Supported)
4E Comm I/O
4F Post Event

TSB

50 DNOS Performance Functions

80+ User-defined SVCs

6.6 USER-WRITTEN SVC PROCESSORS

Notes [Module if Different]
----- ---------------------

A PMACCT
A,P PMSBUF (task)
A,P PMHALT
A RPRCP (task)

A RPPEVT

The standard set of SVCs uses operation codes that range from)0
through)7F. The user may implement SVCs using codes from)80
through)FF. One or more codes may be specified, using any codes
within the user-defined range. The user must design- the SVC
block, build an RDB to describe buffering, build an RIB if
information is to be unbuffered, and set up a module of
information with the IDT name RPUDAT. During sysgen, the user
supplies a file name for the module containing RPUDAT object and
ensures that object modules for the SVC processor(s) are in the
directory .SSGU.USERSVC of the data disk.

6.6.1 User SVC Table.

The user specifies the RDB and RIB information, as well as a set
of general information about all SVCs being defined, in a module
of tables that contains the following:

* An IDT name of RPUDAT

* DEF statements for RPUMAX and RPUTAB

* REF statements for each SVC processor entry point

* A byte named RPUMAX with a value of the largest user­
defined SVC code

* A table named RPUTAB with a two-word entry for each SVC
code in the range)80 through RPUMAX

* An RDB for each user-defined SVC code

SVC Processing 6-14 2270512-9701

DNOS System Design Document

* An RIB for each user-defined SVC that must return
information to the caller

The entries in the table RPUTAB consist of two words each. The I
first word is the value)EOOO and the second word is the address
of the RDB for the SVC code being defined. The first entry in
the table is for SVC code)80. Each successive entry is for the
next sequential SVC code. If a particular code is not defined in
the system being generated, the entry in RPUTAB must consist of
two words of zero. Figure 6-3 includes the format of RPUTAB when
the user is defining several SVCs.

An RDB for a user-defined SVC includes the address of the SVC I
processor, flags showing how to copy the call block for
processing,· and the address of an RIB used to return information
to the calling task. Table 6-3 shows the format of an RDB.

Table 6-3 Request Definition Block (RDB) Format

Field Size

Word
Word
Word

Word
Byte

Byte
Word

Contents

Flags,)1000 for user-defin~d SVCs
Address of the SVC processor
Address of the RIB fbr thi~ SVC
(zero if no RIB is defined)
Size of the call block in bytes
Number of bytes of call block to
be copied by the operating system
Zero
Zero

Figure 6-3 shows several RDB definitions for user-defined SVCs.

An RIB is used by the operating system to return data from the
system copy of the call block to the task that issued the SVC.
If only the error byte of the call block must be returned, no RIB
is needed. If any other information is to be returned, an RIB
must be specified in the RPUDAT module. Table 6-4 shows the
format of an RIB for a user-defined SVC. The pair of byte fields
may be repeated if information is to be returned from several
noncontiguous areas in the call block.

2270512-9701 6-15 SVC Processing

DNOS System Design Document

Table 6-4 Return Information Block (RIB) Format

Field Size Contents

Word Zero
Byte Offset in the call block from which the

return of data should begin
Byte Number of bytes to return
Word Zero

The RPUDAT module must be assembled and its object module
pathname must be supplied during sysgen in response to the
question about the user SVC table. Figure 6-3 shows a source
module for defining two user SVCs, using SVC opcodes >80 and >82.
Assume that there is Some legitimate reason to omit opcode >81.

SVC Processing 6-16 2270512-9701

DNOS System Design Document

*------
* THIS MODULE HAS THE DATA TABLES TO ENABLE PROCESSING OF
* USER-DEFINED SVCS. RPUTAB IS THE TABLE OF RDB AND PROCESSOR
* ADDRESSES FOR THE SVCS. THE SET OF RDB DEFINITIONS FOLLOWS,
* AND RIB DEFINITIONS ARE INCLUDED FOR RELEVANT CASES. IN
* ADDITION, RPUMAX IS DEFINED TO BE THE MAXIMUM USER-DEFINED
* SVC CODE.
*------

IDT 'RPUDAT'
DEF RPUMAX,RPUTAB L~BELS TO ACCESS USER DATA
REF SVC080,SVC082 LABELS OF ENTRY POINTS

RPUTAB DATA)EOOO SVC80 - FIN~ CPU TIME
DATA RDBU80 i

DATA 0 SKIP SVC81
DATA 0
DATA)EOOO SVC82 - SPECIAL ADD
DATA RDBU82

RPUMAX BYTE)82 MAXIMUM USER-DEFINED CODE

*
RDBU80 DATA)1000 FLAGS

DATA SVC080 PROCESSOR
DATA RIBU80 RETURN INFORMATION BLOCK
DATA 6 MAXIMUM CALL BLOCK SIZE
BYTE 2 COpy ONLY TWO BYTES
BYTE 0 RESERVED
DATA 0 RESERVED

RDBU82 DATA)1000 FLAGS
DATA SVC082 PROCESSOR
DATA RIBU82 RETURN INFORMATION BLOCK
DATA 16 MAXIMUM CALL BLOCK SIZE
BYTE 16 COpy ALL
BYTE 0 RESERVED
DATA 0 RESERVED

RIBU80 DATA 0 RESERVED
BYTE 2,4 START AT OFFSET 2 , RETURN 4 BYTES
DATA 0 RESERVED

RIBU82 DATA 0 RESERVED
BYTE 2 ,6 START AT OFFSET 2, RETURN 6 BYTES
BYTE 12,4 AND AT OFFSET 12, RETURN 4 BYTES
DATA 0
END

Figure 6-3 Forma t of RPUDAT Module

2270512-9701 6-17 SVC Processing

I

I

DNOS System Design Document

6.6.2 Processors for User-Written SVCs.

The SVC processor must define (DEF) its own entry point. It
needs to use SPUSH 1 on entry to save Rl and SPOP 1 to return to
the OS. The processor runs as part of the operating system
kernel, making use of an operating system workspace. Upon entry
to the processor, the following registers are set:

* Rl - Points to the system copy of
block

the requesting call

* R4 - Points to the requester TSB

* R5 - Points to the requester saved map file

* RIO - Points to an internal operating system stack

* R13 - The requesting task workspace pointer (WP)

* R14 - The requesting task program counter (PC)

* R15 - The requesting task status register (ST)

The SVC processor must not alter registers 13, 14, and 15.
Register 10 should be used only for pushing and popping items on
the stack.

Register 1 points to the system copy of the requester's call
block. The processor usually gathers all of the information it
needs from this copy. The processor alters the copied call block
to pass information back to the requesting task; the second byte
of the call block should always be used for returning a status
code. If necessary, the processor can also access the requester
task area to get or return data by using long distance
instructions with register 5 as the map file pointer.

The call block as received by the processor has several words of
overhead as detailed in the buffered request overhead (BRO)
template. This overhead includes the requester's TSB address,
JSB address, call block address, and several other pieces of
information. Each of these is accessible using negative offsets
from the buffered call block pointer in register 1.

When the processor finishes its work, it must return to
operating system by issuing the instruction SPOP 1.
operating system returns information as specified in the RIB
the SVC performed. Control is then passed back to the task
yssued the SVC. The DNOS Systems Programmer's Guide includes
example of a user-written SVC processor.

the
The
for

that
an

SVC Processing 6-18 2270512-9701

DNOS System Design Document

SECTION 7

SEGMENT MANAGEMENT

7.1 OVERVIEW

The segment management subsystem enables tasks to dynamically
change the segment~set mapped by the task. Segment management
also enables a task to guarantee accessibility to a segment until
it is no longer needed. Finally, segment management enables a
task to write segments to disk if their attributes allow this
function.

Segment management also provides the operating system with
mechanisms to manipulate data structures even when they are not
contained in the same address space. Since DNOS is a job­
oriented operating system, system data structures whose scopes
are contained within a job are located in separate segments.
Thus, the operating system is able to service job-level requests
by mapping only the job-level system data structures.

Segment management enables the file management subsystem to
manage file buffers. By treating file buffers as segments, file
management is able to access any buffer, whether in memory or on
disk.

7.2 ARCHITECTURE OF SEGMENT MANAGEMENT

The Segment Manager is im~lemented as three distinct levels of
support. The first level contains routines for mapping the
various table areas (JCAs and special table areas), finding
Segment Status Blocks (SSB) for specific segments, creatin~ and
deleting SSBs and Segment Group Blocks (SGB), and causing
segments to be loaded into memory. These routines reside in the
system root and are described in the section on nucleus
functions.

The second level of segment management consists of SVC
processors. These processors reside in the second SVC processor
segment of map file O. This level consists of an SVC
preprocessor and several SVC processors. These processors enable
user and system tasks to dynamically change the address spaces of
their tasks.

2270512-9701 7-1 Segment Management

DNOS System Design Document

The third level of segment management is task-level support that
enables the Segment Manager to read a program file directory
entry for a segment. This support is needed when a Change
Segment SVC is executed on a program file segment whose SSB is
not in memory. The program file directory is read to get the
segment attributes, length, load address, image record number,
and attached procedure IDs (task segment). The task loader
contains this support. A special interface is used between the
task loader and the segment management SVC processors to perform
the segment change after the directory is read.

7.3 SEGMENT MANAGEMENT DATA STRUCTURES

Program files are used to support segment management. A program
segment entry is located in the procedure section of the program
file, thus limiting the total number of procedures and program
segments in a program file to 255. The Install Program Segment
SVC builds a segment entry. The format is shown as the program
file directory index entry (PFI) in the section on data structure
details.

The SGB is the in-memory anchor for a set of segments. The SGB
resides in the segment management table area. The FCB points to
the SGB for a file. If all segments of a group cannot be
contained in the same table area, an overflow SGB is created in a
different table area and the SGB points to it.

Each segment group consists of one or more segments. Each
segment is described by an SSB, which is allocated in the segment
management table area. Special table area SSB's are in STA. An
SSB is created by Segment Manager when a task requests a segment
that does not currently exist.

The overhead beet (OVB) is used to contain information about a
segment when it is in memory. The OVB is located in the beet (32
bytes) preceding the segment.

The reserved segment table (RST) contains a list of segments
reserved by a job. The job information table (JIT) contains a
pointer to the RST chain, which resides in the JCA. The RST is
built when the first Reserve Segment SVC is done or when the
current RST overflows. The RST is deleted when it contains no
more segment entries or when the job terminates (after releasing
all of the segments). The format of the RST is shown in the
section on data structure pictures.

A Set Exclusive Use operation creates an Owned Segment Entry
(OSE) which points "to the owned segment. The SSB points to an
Segment Owner Block (SOB) which points back to the TSB of the
task that has exclusive use of it. A Load Segment operation
creates a Load Segment Entry (LSE) which points to the segment to

Segment Management 7-2 2270512-9701

DNOS System Design Document

be loaded. OSEs and LSEs are chained off the TSB in the JCA.
SOBs are allocated in the segment management table area.

The segment management SVC block is shown in the section on data
structure pictures as the SMR structure.

7.4 SEGMENT MANAGEMENT ROUTINES

Segment management SVC processing begins in the preprocessor
routine SMPREP. Depending on which subopcode is specified,
control then is transferred to the appropriate subopcode
processor.

7.4.1 SVC Preprocessor (SMPREP).

SMPREP receives control from the SVC decoder, RPROOT, with the
pointer to the SVC call block in the task as input. SMPREP
verifies that the following conditions are met:

* All of the call block is within the task.

* The subopcode is within range.

* If the operation is a Change or Create Segment, the I/O
count and the initiate count for the task are zero,
unless the task is software privileged.

NOTE

The OS does not provide general support for
proper completion of I/O when the call block
or buffer is mapped out of the task. When
DNOS unbuffers the data of an IPC read-type
operation, it does not use the task map file,
so mapping out IPC read or master read
buffers is supported.

* If a LUNO is specified, it is assigned to a file of a
valid type and in certain cases, is open.

SMPREP uses a pointer in the Logical Device Table (LDT) for the
specified LUNO to determine the File Descriptor Packet (FDP) that
contains the File- Management Table and File Control Block
(FMT,FCB) pair. The FMT,FCB addresses are saved in the segment
management SVC block. If the memory-based segment group is
specified, an FMT,FCB address of zero is used. The FMT,FCB pair
is used to identify the segment group in which the requested

2270512-9701 7-3 Segment Management

DNOS System Design Document

segment resides. If the operation is not change or create
segment t the SMT,SSB pair for the specified segment is obtained.
If it cannot be found, an error is returned. Figure 7-1 shows
the overall flow of control to and from SMPREP.

+-----------+
XOP 1 REQUESTER 1

-----------1 TASK 1
I +-----------+
V

+--------+
I RPROOT I

+--------+
I
V

+--------+
I SMPREP I

+--------+
I (BL)
V

+----------+
I SVC I
IPROCESSORSI

+----------+
I
I
I
I
I
V

SMLOAD-Load a Segment
SMUNLD-Unload a Segment
SMEXCU-Set Exclusive Use of a Segment
SMREXC-Reset Exclusive Use of a Segment
SMCHGS-Change Segment
SMCRES-Create Segment
SMRSVE-Reserve Segment
SMRLSE-Release a Reserved Segment
SMCHKS-Check Segment Status
SMFWRS-Forced Write Segment
SMJRLS-Job Manager Release Segment
SMMDFY-Set/Reset Modified and Releasable
5MBIAS-Bias Segment Address Within Task

See SVC Processing Description
for interface to return to user.

Figure 7-1 Flow of Control in Segment Manager

7.4.2 Change Segment Processor (SMCHGS).

The Change Segment operation enables a task to change the segment
set that comprises its logical address space. The caller
specifies either the LUNO for the file in which the segment
resides or a flag to signify a memory-based segment. An ID
(installed or run-time) uniquely identifies the new segment. The
segment to be mapped out of the task is identified by a run-time
ID or a map position number.

The Change Segment processor first decides whether the caller is
adding t removing, or changing a segment. If the caller is
removing a segment, the last segment of the task is unmapped
unless it is a task segment. (This removal constitutes an
error.) The routine SMRMVE is called to decrement the count of
tasks that currently require the segment to be in memory (the

Segment Management 7-4 2270512-9701

DNOS System Design Document

task-in-memory count). When this count goes to zero, the segment
can be swapped or released from memory; therefore, SMRMVE is
responsible for either caching or releasing the segment. (Refer
to the program management section for more details.)

Add Segment and Change Segment processing are essentially the
same except that during an add there is no old segment to be
removed from the task. The routine SMSRCH is called to search
for the requested new segment. If it is found, SMSRCH verifies
that it may be used by the requesting task. SMSRCH first calls
SMFSID to see if the segment is defined. SMFSID uses the FDP and
ID to uniquely identify the segment. If the segment is found,
the SSB address is returned. SMSRCH then validates the segment
attributes for the task. If a non-task segment is share
protected, SMCHUC is called to verify that it is used only by the
requesting task before SMCHGS is allowed to map it. If a segment
is owned but not by this task, mapping is not allowed. If the
segment is replicatable and in use, SMSRCH duplicates the SSB.
If SMFSID does not find the segment defined in memory, SMSRCH
calls 5MBLDS to build an SSB. If the segment is a file
management buffer or is memory-based, the SSB can be defined
completely. However, if the segment is a program file segment,
the program file directory on disk must be read to obtain the
segment information. Thus, 5MBLDS will place program file
segments in the initial load state to be processed by the task
loader.

Control is received in SMCHGS with the new SSB address. If the
new segment is an initial load segment, control is passed
immediately to the routine SMEXIT. Otherwise, certain conditions
are checked before the segment change is allowed. The task must
fit into user memory with the new segment, and the task must not
map more than 64K bytes. Also, if any segment other than the
last one in the task is being changed, the new segment must be
the same size as the old segment. An exception to this rule is
made for system tasks, which may change in different-sized
segments; however, the segments' logical starting addresses do
not change. If these conditions are met, the old segment is
removed from the task address space. SMRMVE disposes of it
accordingly (not required when adding a segment). SMEXIT is' then
called to map the new segment.

The routine SMEXIT is responsible for incrementing the use count
in the SSB, updating the WCS bit in the status register., building
the limit register for the new segment, and updating the
protection bits in the limit register. SMEXIT decides whether
the new segment is in memory. If not, the calling task is
deactivated and suspended while waiting for memory. If the new
segment is in memory, its task-in-memory count is incremented,
the map base value is calculated, and the calling task is placed
into execution with the new segment in its address space.

2270512-9701 7-5 Segment Management

DNOS System Design Document

When an initial load segment is processed, SMEXIT suspends the
task on the WOM list. This places the task loader into execution
and determines that an initial l~ad segment is being requested
(TSBSBN is nonzero). The task loader then tests the SSBs to see
if the task is in the initial load state. If so the program file
directory entry for the segment is read and the SSB fields are
initialized. Now that a segment SSB with the specified ID exists
in memory, the task loader calls SMCHGS via an interface routine,
PMSMIR. SMCHGS processes the Change Segment as usual except that
control is returned to the task loader from SMEXIT (instead of
suspending the calling task or placing it into execution). The
task loader then loads the task as usual. Figure 7-2 shows the.
flow of control through the Change Segment processor.

+----------+
1 SMCHGS 1

+----------+
(BL)

+-----------------------------+
V V

+----------+
1 SMSRCH 1

+----------+
(BL)

+--------------+
V 1 V

+----------+ 1+----------+
1 SMFSID I II 5MBLDS I
+----------+ 1+----------+

V

+----------+
I SMCHUC I
+----------+

+----------+
I SMRMVE I
+----------+

I
(B)

V

+----------+
I SMEXIT I
+----------+

I
+-------------+

(B) (B)

+----------+ +----------+
I NFTRTN I I NFSRTN I
+----------+ +----------+

Figure 7-2 Flow of Control in Change Segment

Figure 7-3 shows the flow of control if an initial load segment
is being accessed.

Segment Management 7,-6 2270512-9701

DNOS System Design Document

+----------+
I SMCHGS I
+----------+

(BL)
+-----------------------------+
I (B)
V V

+----------+
I SMSRCH I
+----------+

(BL)
+--------------+
V V

+----------+ +----------+
I SMFSID I I 5MBLDS I
+----------+ +----------+

+----------+
I SMEXIT I
+----------+

I
(B)

V
+----------+
I NFSRTN I
+----------+

TASK LOADER ACTIVATED WHEN ENTRY PLACED ON
ITS QUEUE BY SMEXIT

+----------+
I TASK I
I LOADER I
+----------+

(BLWP)
+---------------
V V

+----------+
I NFMAPO I
+----------+

(BL)
V

+----------+
I PMSMIR I
+----------+

(BL)
V

+----------+
I LOAD I
I TASK I
+----------+

EXECUTE SMCHGS EXCEPT THAT
SMEXIT WILL RETURN TO PMSMIR

Figure 7-3 Flow of Control During Initial Load

7.4.3 Create Segment Processor (SMCRES).

The Create Segment operation enables a task to create an empty
segment of a certain size with specific attributes. Two types of
segments may be created: relative record segments and memory­
based segments.

2270512-9701 7-7 Segment Management

DNOS System Design Document

When relative record segments are created, the segment length is
the physical record size of the file (obtained from the FCB).
The length and attributes for memory-based segments are defined
in the call block. Default attributes are readable, nonsystem,
disk resident, nonreplicatable, non-WCS, reusable, and
noncopyable, though the user may set or reset the execute-protect
and share-protect attributes through the call block. The write­
protect and updatable attributes are set based on the file
protection flags.

The Create Segment processor first decides whether the request is
to add an empty segment or to change one. Much of the same
validation is required here as in Change Segment to ensure that
the new segment can be mapped by the calling task. If the
specified conditions are met, 5MBLDS is called to build the SSB
for the empty segment. An empty segment flag is set in the SSB
to inform the task loader that the segment does not reside on
disk. If a segment is not being added, SMRMVE is called to
dispose of the old segment. SMEXIT is called to fin~sh

processing before returning control to the calling task. The
task is suspended by SMEXIT since the empty segment is not in
memory at this time.

Special processing is required by Create Segment for relative
record segments. Before a new SSB is built, a check is made to
see if a segment with the same ID already exists in memory. If
so', an error is returned. Figure 7-4 shows the flow of control
through the Create Segment processor.

+----------+
I SMCRES I
+----------+

(BL)

+------------+------------+------------+
I I I (B)
V V V V

+----------+
I SMFSID I
+----------+

(FILE
BUFFERS

ONLY)

+----------+ +----------+ +----------+
I 5MBLDS I I SMRMVE I I SMEXIT I
+----------+ +----------+ +----------+

(B)
+
I
V

+----------+
I NFSRTN I
+----------+

Figure 7-4 Flow of Control in Create Segment

Segment Management 7-8 2270512-9701

DNOS System Design Document

7.4.4 Reserve Segment Processor (SMRSVE).

The Reserve Segment operation enables a task to maintain access
to a nonupdatable segment when needed, even though the segment is
not in any task's address space. Since segments which are not
memory-resident may be released from memory when they are no
longer in use, this operation is needed to retain access to these
segments. The segment is reserved at the job level until a
Release Reserved Segment operation is executed or the job
terminates. All segments reserved by tasks within a job are
contained in the RST to which the JIT points. Segments are
removed from the RST whenever a Release Reserved Segment
operation is done. When the job terminates and the RST is not
empty, the job management subsystem is responsible for releasing
the remaining segments. Reserved segments are swapped if their
memory is needed. The SSB for the reserved segment remains in
memory as long as the segment is reserved.

SMRSVE searches the RST chain for a free entry to contain this
segment's run-time ID. If no free entries exist, a new RST is
built. The reserve count in the SSB is incremented. Control is
then returned to the calling task via the Request Processing
subsystem.

7.4.5 Release Reserved Segment Processor (SMRLSE).

The Release Reserved Segment operation is used to release a
segment that has previously been reserved within the job. The
RST includes an entry for the segment if it was reserved in the
job. The processor returns an error if an entry is not found; in
effect, a job cannot release segments it has not reserved.

SMRLSE first decides if the requested segment was reserved by the I
job. If so, the entry is deleted from the RST. If the RST is
empty, it is delinked from the RST chain and deleted. The SMT,
SSB pair is used to find the segment that is being released. The
reserve count is decremented. If the segment is no longer in use
or reserved, the segment is left cached or is deleted from
memory. SMDSSB does the following processing. If the segment is
in memory and is reusable, the segment remains cached in memory
(unless the releasable flag is set in the SSB, in which case the
segment is deleted). If the segment is in memory but is not
reusable, the segment is queued for deleting by the task loader,
and the 8SB is deleted. If the segment is not in memory, the
swap table entry for the segment is deleted along with the SSB.
Control then returns to the calling task via the request
processing subsystem.

2270512-9701 7-9 Segment Management

DNOS System Design Document

7.4.6 Check Segment Status Processor (SMCHKS).

The Check Segment Status processor returns information about a
certain segment. Such information includes the segment run-time
and installed IDs, length, attributes, whether the segment is a
task and whether the segment is memory-based. If the segment is
mapped by the task, the logical address of the segment is
returned. The segment need not be mapped or reserved by the task
requesting the status.

If the segment is mapped by the task, the status information is
returned along with the logical address. If the segment is not
found in the task, the segment group is searched. If the
specified ID is found, the status information for the segment is
returned.

7.4.7 Forced Write Segment Processor (SMFWRS).

The Forced Write Segment processor writes a segment to its home
file position (if updatable and modified). The segment is
represented by an SMT and SSB. The task requesting the write is
suspended until completion of the write. The disk I/O is
accomplished by a dedicated queue server of the write queue,
PMWRIT.

If the segment does not exist, an error is returned. If the
segment exists, a check is made to determine if it is updateable.
If not, an error is returned. If it is updateable, is in memory,
and is modified, the write will occur. The OVB for the segment
is queued to the write queue. The calling task is then suspended
until completion of the write.

PMWRIT is activated whenever an entry is placed on the write
queue. PMWRIT calls the file management routine FMIO to write
the segment to its home file. It determines whether the segment
is a program file or data file segment. If it is a program file
segment, the home file wecord number is contained in the SSB word
SSBREC. For a data file segment, this record number is contained
in the installed ID field of the SSB. After FMIO is called to
perform the disk I/O, SMDSSB is called. Finally, if a task is
suspended for the write (that is, the OVB points to a forced
write call block through the OVBBRB field), the task is placed
back into execution via NFEOBR. Figure 7-5 is a diagram of the
flow of control through the Forced Write proce~sor and task.

Segment Management 7-10 2270512-9701

DNOS System Design Document

+----------+
I SMFWRS I
+----------+

(BL)

+-----------------------------+
I (B)
V V

+----------+ +----------+
I NFQOVB I I NFSRTN I
+----------+ +----------+
FORCED WRITE TASK(PMWRIT) ACTIVATED WHEN ENTRY PLACED ON

ON ITS QUEUE BY SMFWRS

+----------+
I PMWRIT I
+----------+

(BL)

+---------------
V I V (THROUGH NFMAPO INTERFACE)

+----------+ I +----------+
I FMIO I I I NFEOBR I
+----------+ I +----------+

I I +--------+ - > PLACES CALLING TASK BACK
I SMDSSB I INTO EXECUTION
+--------+

Figure 7-5 Flow of Control in Forced Write

7.4.8 Release Job Segments Processor (SMJRLS).

This operation is used by job management to release reserved
segments in a specified job when the Job Manager is terminating
that job. This operation may be executed only by a system task
(specifically Job Manager).

SMJRLS is called with the SMT,SSB address and the JSB of the
terminating job. The JCA of the terminating job is mapped in for
the segment to be released. SMRLSE is called to process the
Release Segment operation as usual. SMRLSE then returns control
to SMJRLS, which returns control to the caller via the request
processing subsystem. Figure 7-6 shows the flow of control
through the Release Job Segments processor.

2270512-9701 7-11 Segment Management

DNOS System Design Document

+----------+
I SMJRLS I
+----------+

(BL)

+------------+-----------------------------+
I I V
V V RETURN TO TASK VIA

+----------+ +----------+ REQUEST PROCESSING
I SMMJCA I I SMRLSE I SUBSYSTEM

+----------+ +----------+

Figure 7-6 Flow of Control in Release Job Segments

7.4.9 Set/Reset Modified and Releasable (SMMDFY).

The Set/Reset Modified and Releasable operation is used to mark a
segment of a task as releasable or nonreleasable and to mark an
updatable segment as modified or not modified. The default
conditions for segments are nonreleasable and not modified.

The SSB of
releasable
request.

the
and

segment
modified

is located,
states are

and
set

the flags for the
according to the SVC

7.4.10 Bias Segment Address Within Task (SMBIAS).

The Bias Segment Address Within Task operation is used to
position segment two or three of a task at a new logical address.
This is used primarily by the System Configuration Utility. This
subopcode (>08) is not available to users.

7.4.11 Set Exclusive Use of a Segment (SMEXCU).

The Set Exclusive Use of a Segment operation is used to extend
the share-protection attribute to segments not currently mapped
in by a task. A segment which has had exclusive use set is said
to be an owned segment. Other users who try to map in the owned
segment will get a shared segment violation error (unless it is
replicatable, in which case a replicated copy will be mapped).
The set operation also has the functionality of a reserve segment
operation. That is, even if an owned segment has use and reserve
counts of zero, the segment will not be deallocated.

Segment Management 7-12 2270512-9701

DNOS System Design Document

If the operation is to succeed, the following conditions must be
met:

*

*

The segment must not currently be owned by either
task issuing the SVC or another task.

the

The segment must not be
issuing task.

in use by any task but the

SMEXCU calls SMCHUC (Segment Management Check Use Count) to
perform this function. Exclusive use of special table areas
(SMTs, FMTs, PBMs) is not allowed. Once it is determined that
the preceding conditions are met, a segment owner block (SOB) is
linked to the SSB, indicating which task owns this segment. An
owned segment entry (OSE) is linked to the issuing task's TSB,
indicating which segments the task owns.

7.4.12 Reset Exclusive Use of a Segment (SMREXC).

The Reset Exclusive Use of a Segment operation relinquishes a
task's ownership of a segment. The operation will succeed only
if the segment is currently owned by the task issuing the SVC.
The SOB is delinked from the SSB and its memory released. The
OSE is removed from the list of owned segments linked to the TSB
and its memory released. If the segment is not in use or
reserved, it is deleted.

7.4.13 Load a Segment (SMLOAD).

The Load Segment operation assures the user that the specified
segment will be in memory while the task that issued the SVC is
executing. The segment will not be mapped into the task address
space. A segment may be loaded by more than one task regardless
of its attributes. When loading a segment, a load segment entry
(LSE) is built and attached to the loading task's TSB.

SMLOAD is not only an SVC processor but is accessed with a BL
interface by nucleus routines. It executes in Map O.

7.4.14 Unload a Segment (SMUNLD).

The Unload Segment operation detaches the segment from the task
so the segment does not need to be in memory when the task is in
memory. An error is returned if the segment was not loaded by
the task. The LSE is delinked from the TSB. If the reserve, use
and exclusive use counts are zero, the segment may be cached or
deleted.

SMUNLD is not only an SVC processor but is
interface by nucleus routines. It executes

2270512-9701 7-13

accessed with
in Map O.

a BL

Segment Management

DNOS System Design Document

7.5 SEGMENT MANAGEMENT TABLE AREA

Segment Manager maintains its internal data structures in special
table areas that are separate from the STA. These blocks contain
SSBs and SGBs. During sysgen, a variable number (one or more) of
these areas are defined to fit into the second segment of the
system mapping scheme (replaces JCA segment).

Sysgen creates an SSB in the STA for each segment management
table area. These SSBs are used by the Segment Manager to access
each table area. The tables reside in the memory-based segment
group; thus, a memory-based SGB resides in the STA. Each table
area has the standard memory management overhead along with a
pointer to the first SGB in the table and information required to
generate run-time IDs for SSBs. The Get and Release table area
routines (NFGTA and NFRTA, respectively) are used to allocate
memory in the special table areas.

Whenever a new segment group is being created, Segment Manager
decides which table area has the most unused memory and allocates
the segment group into this area. Segment Manager will attempt
to allocate all segments of a group within the same table area.
If this is not possible, an overflow SGB is created in a
different table area. The overflow SGB contains the same
information as the SGB (which points to the overflow 8GB). Thus,
Segment Manager can search all segments of a group by searching
the segments that reside in the table, then search the segments
that reside in a table to which the overflow SGB points. Figure
7-7 is a general diagram of the Segment Manager table scheme
(given two tabl~ areas).

Segment Management 7-14 2270512-9701

DNOS System Design Document

+---+
1 Contains Memory-based SGB and SSBs 1
1 for special table areas, ROOT and 1
1 +-----+ COMMON. 1 STA
1 1 SGB 1--+ 1
1 +-----+ 1 +-----+ +-----+ 1
1 1 +--) 1 S S B 1 - -) 1 S S B 1 - ••• --) 0 1
1 1 +-----+ +-----+ 1
+-----1-------------------------------------+

1
1 Overflow SGB pointer

+-----1-------------------------------------+
1 V 1
1 +-----+ 1
1 1 SGB 1 --+ +-----+ +-----+ 1
1 +-----+ +-)1 SSB 1--)1 SSB 1- ••• --)0 ISpecial table #1
1 +-----+ +-----+ 1
1 +-----+ 1
1 1 SGB 1--+ +-----+ +-----+ 1
1 +-----+ +-)1 SSB 1--)1 SSB 1- ••• --)0 1
1 1 +-----+ +-----+ 1
+-----1-------------------------------------+

1
1 overflow SGB pointer

+-----I-------------------~-----------------+

1 V 1
1 +-----+ 1
1 1 SGB 1--+ +-----+ +-----+ 1
1 +-----+ +-)1 SSB 1--)1 SSB 1- ••• --)0 ISpecial table #2
I +-----+ +-----+ 1

ETC.

+---+

Figure 7-7 Segment Manager Table Organization

2270512-9701 7-15/7-16 Segment Management

DNOS System Design Document

SECTION 8

JOB MANAGEMENT

8.1 JOB CONSTRUCT

A job is the fundamental work unit
resources are allocated. These resources
IPC channels, and environments of names.

to which DNOS logical
include files, devices,

The goals of the job construct in DNOS are the following:

* To provide a structure for the information about a group
of related tasks (for example, r~sources allocated,
security level, and accounting information)

* To provide the capability of divorcing tasks from an
active physical terminal

* To provide a vehicle for easy migration of applications
between DNOS configurations by isolating a set of tasks
from all others in a system

A job consists of one or more tasks, a set of job-local
variables, a set of resources, a set of job-local LUNOs, and a
job ID. The operating system constitutes a job in that it owns
files, devices, and channels and consists of a group of
cooperating tasks.

A job has an associated priority. This priority is used for
scheduling various system services. Such as disk events and
positioning requests into the spooler queue.

Management of resource allocation by jobs in DNOS provides a
level of isolation between different jobs. Once resources have
been allocated to a job, the execution of the job can be
independent of the existence of other jobs. Hence, jobs also
provide a migration vehicle from a single- to a multiple­
application environment.

8.2 OVERVIEW OF JOB MANAGEMENT

The Job
number of
security.

Manager assigns and manages job identifiers, limits the
jobs in the system, and provides system access
To support these functions, the Job Manager processes

2270512-9701 8-1 Job Management

DNOS System Design Document

the following SVCs:

* Create Job

* Halt Job

* Resume Job

* Modify Job Priority

* Map Job Name

* Get Job Information

* Kill Job

A task requests creation of a job via the Create Job operation of
the Job Management SVC ()48). The Job Manager performs security
checks to validate the integrity of the request and generates a
unique job ID. The job is created and is set into execution if
it will not exceed the system job limit. If this is a batch job,
it must not exceed the background job limit also. If either
limit will be exceeded, the job is placed on a queue, waiting for
some other job to terminate. Security on the Halt, Resume, Kill,
Get Job Information, and Modify Job Priority oper«tions is
provided so that only a user with the same user ID or a part of
the system job may perform these operations. A job determines
its own job ID through the use of the Self Identification SVC
()2E). Status information on jobs is obtained via system
utilities.

8.3 ARCHITECTURE OF JOB MANAGEMENT

Job Manager is a system task that executes in the system job. It
is coded in Pascal with minimal run-time support and is a disk­
resident queue server. It has an assembly language
initialization routine, which contains the stack space for the
Pascal routines. Like other system tasks written in Pascal, Job
Manager uses routines in DSC.PASASM to call nucleus functions.

Job Manager serves a singly linked list of entries. The Job
Manager logical address space consists of the system root, a JCA
segment, and task code. Any task requesting a Job Management SVC
is suspended until the request has completed.

8.4 JOB MANAGEMENT DATA STRUCTURES

Among the
structures

data structures
particular to

Job Management

used by Job Manager are several
segment management and nuclens

8-2 2270512-9701

DNOS System Design Document

functions. These include SSBs, BRBs, and TSBs.
structures ~rimarily used by Job Manager include
and JIT.

The job-related
the JCA, JSB,

The JCA contains all data structures local to a given job. The
JCA is allocated from free memory and can be swapped when all the
tasks in a job are swapped out of memory. The JCA may be
expanded, as necessary, up to the maximum size specified during
sysgen.

The JSB carries all global data
address of the JCA, job ID,
allocated from the STA.

about the
job name,

job, including the
and priority. It is

The job management SVC request block is the JMR.

The JIT contains the list headers for structures in the
is allocated as the first portion of the JCA.

JCA and

Details of each of these structures are shown in the section on
data structure pictures.

8.5 JOB STATES

The state of a job is maintained in its JSB and changes only in
response to SVCs initiated by the user. The following states are
possible:

* Creating A job is in this state only during the
execution of the SVC that creates that job, or while
waiting for the active or background job count to drop
below this limit.

* Halted - A job is in this state when halted by a Halt
Job SVC. Only queue server tasks in this job can
continue to execute. Any other tasks that attempt to
become active while the job is in this state are
suspended.

* Executable - A job in the executable state can have
tasks scheduled for memory and CPU.

its

* Terminating A job is placed in this state when it is
killed or after its last task has terminated. At this
point, no more tasks may be bid in the job, and Job
Manager begins releasing all resources and data
structures within the job.

2270512-9701 8-3 Job Management

DNOS System Design Document

* JCA being expanded - A job is placed in this state while
its job communication area is being expanded due to job
requirements for more data structures than the current
JCA can accommodate.

In addition to these job states, Job Manager can also cause a
task to enter the job suspended state. This state is used when
halting a job.

8.6 DETAILS OF JOB MANAGER ROUTINES

Job management SVC processing begins in the routine JMPREP.
Depending on which operation is requested, control then is
transferred to the appropriate operation processor.

8.6.1 Job Manager Preprocessor (JMPREP).

JMPREP is a small a~sembly language routine that resides in the
scheduler segment of map file O. It causes the BRBs for certain
sub-opcodes to be rebuffered to include more information than
originally buffered by the SVC decoder. To rebuffer; JMPREP
builds an RDB showing what to rebuffer and calls the request
processor buffering routine, RPBUF, to perform the data movement.
JMPREP then queues the BRB to the Job Manager queue for
processing and returns to the scheduler to suspend the requester
task.

8.6.2 Job Manager Request Processing Task (JMMAIN).

JMMAIN is the main module for Job Manager. It acquires and
releases segments as necessary and initializes local variables.
It also provides all functions COmmon to the SVC processors, such
as retrieving the BRB and getting the proper JCA. At the end of
SVC processing, it will start any jobs on the waiting queue,
provided that the job limit and batch job limit are not exceeded.

8.6.3 Create Job Processor (JMC$).

JMC$ must map in the caller's JCA area and retrieve some of the
values stored in the JIT. When the new user ID flag is not set
in the flag word of the BRB, then the user ID, passcode, account
number, and privilege level are copied out of the caller's JCA
into the BRB for use at a later time.

Job Management 8-4 2270512-9701

DNOS System Design Document

Once the call block is buffered, a JSB is built in the STA. A
unique job ID is generated and is used to identify the job while
it remains in the operating system. This ID is placed in the JSB
and is returned to the caller in the BRB. The job priority is
checked to see if it is in the range of 0 through 31. If not,
the request is returned with an error status. Otherwise, the JSB
state is set to indicate that it is being created.

Next, Job Manager obtains memory for the JCA area by executing a
Create Segment SVC. This segment is placed in the second map
segment of Job Manager, replacing the system JCA segment. The
size of this JCA area is specified in the call block as 1, 2, or
3. The code 1 is for the smallest JCA size; the code 3 is the
maximum JCA size. The logon default is the medium JCA size. All
of the memory management overhead is initialized in the JCA, and
segment manager SSB addresses for the JCA are stored in the JSB.
The queue headers for the job level queue servers are
initialized, and the JCA segment is reserved.

The station ID of the job being bid is next verified to be sure
that the station specified exists and is available for use. If
an illegal station is specified, the job creation request is
denied and an error is returned. If the station is legal,
creation continues, with Job Manager assigning a job-local LUNO
to DUMY.

The requester may specify a logical name and synonym segment in
the SVC block. (The function of this segment is detailed in the
section on I/O.) When this field is zero, no action is taken.
Otherwise, the segment is checked to see if it is a memory-based
segment. When it is located, the segment manager SSB addresses
are stored in the JIT, and the segment is included in the job
reserved segment list. If the segment is not found or is not
memory based, the request to bid the job is aborted and an error
is returned to the user.

After the synonym segment is processed, the user ID and passcode
are verified. When the new user ID flag is set, all information
must be verified before it can be used. The user ID and passcode
are k e p ton dis kin a p re d e fin e d s y s t emf i Ie. A sea r chi s' ma de
for this user ID in this file. Once the ID is found, the
passcode specified is encrypted and compared against the
encrypted passcode on disk. Any error in this process aborts job
creation. If the file .S$ACCVAL exists, the account ID is
verified against the file entries. If a match is not found, the
job is aborted. If the file .S$ACCVAL does not exist, no
checking is done.

The final step in creating a job is to bid the initial task.
First, the JSB is linked into the system JSB list. Then the
parameters for the task are built into a Bid Task SVC, which is
issued from Job Manager. {Note that because Job Manager is
issuing the SVC, the specified program file LUNO must be global

2270512-9701 8-5 Job Management

DNOS System Design Document

so that it appears in the new job's LUND hierarchy.) Any error
returned from the Bid Task SVC is placed in the BRB and aborts
the Create Job SVC.

The new task is initially bid in a halted state. After the bid
has been completed, a job initialization entry is placed on the
accounting queue and the job is put on a wait queue.

Whenever the Create Job SVC has been aborted, the JCA and JSB
must be returned to free memory. The BRB for the call is sent
back to the caller, along with the error. A temporary BRB is
created to indicate job termination and is placed on the Job.
Manager queue. This entry is processed by JMD$, releasing all
the resources the job had and returning them to the system.

8.6.4 Halt Job Processor (JMHALT).

JMHALT calls the verify routine, JMVRFY, to verify that the
specified job ID exists and that the requesting job has the
authnrity to perform the halt. The job state is then checked to
ensure that the job is active. If it is not active, an error is
returned. Otherwise, the job state is changed to halted. The
TSB list for the job is then searched for all active tasks.
During this search, the scheduler must be inhibited to prevent
any change in the list. When active tasks are found, if they are
not queue server tasks they are delinked from the job active list
and the task state is changed to indicate that the job is
suspended. After all of the active tasks are found, the
scheduler is enabled and the BRB is returned to the caller with a
successful completion code.

While the job is in a halted state, only queue server tasks in
the job can be made active. If any other task tries to become
active, the nucleus function NFPACT places the task in the job
suspended state.

8.6.5 Resume Job Processor (JMRESU).

After JMRESU calls JMVRFY, if no error was found, it checks the
job state to see if it is halted. If it is not halted, an error
is returned to the caller. If the job is halted, the job state
is changed to executable, and the TSB list is searched for tasks
in the job suspended state. When such a task is found, Job
Manager calls NFPACT to place the task back on the active list.
The scheduler must be inhibited during the TSB search so that the
TSB list is not altered. After the search, a successful
completion code is placed in the BRB, and the BRB is returned to
the requester.

Job Management 8-6 2270512-9701

DNOS System. Design Document

8.6.6 Modify Job Priority Processor (JMPRIO).

JMPRIO calls JMVRFY and, if no error was found, it checks that
the caller is the system operator. If not, an error is returned.
The new job priority is checked to see if it is within the valid
priority range. If not, the request is aborted. Otherwise, the
tasks within the job are updated to reflect the new priority.
Job Manager calls a nucleus routine to obtain the new task
priorities. During this time, the scheduler must be inhibited.
After all of the priorities are modified, Job Manager delinks the
first active task in the job and then relinks it. This inserts
the JSB in the right position for the scheduling queue. The new
priorities take effect when Job Manager completes its SVC
requests. Job Manager then enables the scheduler and returns the
BRB with a successful completion code.

8.6.7 Map Job Name Processor (JMMAP).

The Map Job Name processor searches the JSB list for the job name
specified in the BRB block. It returns the job ID of the first
job that it finds with the same user ID as the calling task.
Jobs in terminating state are not considered. An error is
returned if no matching job name is found under that user ID, or
if the job name is duplicated. In the latter case, the job ID of
the first matching job is returned. The user ID and job names of
each job are kept in the JSB (which is memory resident) to avoid
excessive swapping during this operation.

8.6.8 Get Job Information Processor (JMINFO).

The Get Job Information processor returns information about the
job identified by the job ID in the requestor call block. If an
ID of zero is specified, information about the caller's job is
returned. JMVRFY is called, and if no error is returned, this
processor returns the job name, priority, user ID, account ID,
privilege level, and the run ID of the calling task.

8.6.9 Kill Job Processor (JMKILL).

The Kill Job processor terminates jobs within the system. JMKILL
verifies that the user has access to the specified job and that
the job exists. The job state is then checked to see if the job
is already in a terminating state. If it is, an error is
returned in the BRB to indicate this condition. When the job is
in the create state, it must be deleted from the waiting-to­
execute job queue. At this point, the job state is changed to
terminating so that no new tasks are bid in this job. The
scheduler is then inhibited during the kill process for each
task.

2270512-9701 8-7 Job Management

DNOS System Design Document

Job Manager kills each task by calling the nucleus function
NFTERM. The TSB contains a flag to indicate whether end action
is allowed on a kill request. If it is not set, the task may
take end action but will not be able to reset its own end action
bit. A time-out value for end action prevents the task from
executing indefinitely. Job Manager returns a successful
completion code in the BRB when all of the tasks have been
processed through NFTERM.

Job Manager suspends (awaiting queue input) at this point to
allow all of the tasks to terminate. The termination processor,
PMTERM, places an entry on the Job Manager queue to notify Job
Manager that the last task has terminated. When the entry
arrives, control is given to JMD$ to complete the job termination
process.

8.6.10 Job Clean-Up Routine (JMD$).

JMD$ is a support routine that can be activated only by an
aborted Create Job SVC or by PMTERM. The call is made when the
last task of a job has terminated. JMD$ is responsible for
releasing any attached resources and all memory blocks associated
with the job.

JMD$ may be called during the create process to clean up an
aborted Create Job SVC. JMD$ first determines if the JCA area
for the job exists. Job manager releases the JSB if the JCA was
not created.

The first set of operations required for the JCA is to release
any job-local LUNas still assigned. The I/O sub-opcode to
Release LUNa in Another Job is used for this purpose. The entire
list of LUNas is searched, and a call block for each of these
LUNas is created and passed on to the I/O Utility (IOU).

After all of the LUNas have been released, all resources that
have been attached by the job are released via calls to IOU for
each resource found. The resource list is searched, and for each
entry found a Detach by Number SVC sub-opcode is issued.

The next structure to be deleted is the reserved segment list.
For each reserved segment, a call is made to the Segment Manager
to cancel the reserve. This includes the reserve on the JCA
segment. The JCA segment is mapped into Job Manager during this
release process and is not released from memory until Job Manager
changes its second map segment. All other segments, such as
logical name and synonym segments, are released and become
eligible for deletion if no other job has reserved them. All
clean-up of memory-based segments is accomplished by Segment
Manager when Job Manager releases the reserved segments. The
table memory for the reserved blocks is also released from the
JCA by Segment Manager during this process.

Job Management 8-8 2270512-9701

DNOS System Design Document

At this point in the clean-up process, the JCA should not have
any dynamic memory allocations in it. If no other job has
reserved this JCA segment before the job was put in the
terminated state, this JCA is deleted as soon as Job Manager
releases it from its address space.

The last step in JMD$ is to release the JSB from the STA. The
JSB is deleted from the JSB list, and the memory is returned. A
job termination entry is placed on the accounting queue and the
active job count is decremented.

8.6.11 Verify Job ID Routine (JMVRFY).

The verify routine is used by JMKILL, JMINFO, JMRESU, JMHALT, and
JMPRIO to determine if the caller is allowed to execute the SVC
in question. This routine searches the JSB chain to find the
appropriate job ID. Jobs in terminating state are not
considered. If the job ID is not found, an error is placed in
the BRB and the request is aborted. Otherwise, JMVRFY checks to
see if the operation is being executed on the system job. Any
attempt to perform one of these SVCs on the system job receives
an error. The last check made is to verify that the requesting
task has the privilege to perform the SVC. Valid requesters are
the system operator, tasks whose jobs have a flag set to bypass
ownership tests, and tasks whose jobs have the same user ID. All
other requesters receive errors. On successful completion,
JMVRFY returns to the calling routine with the JCA of the
requested job mapped into the second map file segment of Job I
Manager and with the JSB address of the job requested.

8.7 IMPLICATIONS OF JOB BOUNDARIES

In theory, a task running in a job is not aware of any other job.
It may interact with the system job by issuing an SVC or it may
interact with another job by using a global IPC channel, but it
theoretically is independent of and unaware of any other job. In
reality, it may be necessary for two tasks in different jobs to
communicate with each other.

There are two major mechanisms supported by DNOS for cross-j~b

communication: global IPC channels, and event SVCs. The major
difficulty with global channels is that the owner task must be
the first task to assign a LUNO to the channel, but, aside from
that, they have all the power that the various channel
configurations provide. Events provide a more limited
capability, being mainly a synchronization feature. Any task
which knows another task's job ID and task run-time ID can issue
a Post-Event SVC which causes a specified event to complete for
the task specified by the job ID and run-time ID. The specified
task must issue a Wait for Event SVC for the event number of the

2270512-9701 8-9 Job Management

I expected event.
SVC is issued.

Job Management

DNOS System Design Document

It will then be activated when the Post Event

8-10 2270512-9701

DNOS System Design Document

SECTION 9

PROGRAM MANAGEMENT

9.1 OVERVIEW

Program management supports task-level requests to execute tasks,
load overlays, and terminate tasks. Support is also available to
perform sychronization operations, to read and write task memory
or TSBs, to get and release user memory, and to get and release
system common. Program management includes processors for the
full set of SVCs to support program files.

Program management is implemented in three distinct levels. The
first level includes support routines that reside in the root of
the operating system. These routines are callable by various
program management routines and perform specific functions. The
second level is the set of processors for the program management
SVCs which execute at XOP level. The third level is the
processors for program management SVCs that execute as queue
serving tasks. Many program management SVCs are implemented in
the second level only, but some require a third level (for
example, disk I/O may be performed only at the third level).

9.2 DATA STRUCTURES USED BY PROGRAM MANAGEMENT

In addition to JSBs, TSBs, various segment management structures,
and the JCA, program management uses a number of lists and queues
to coordinate the efforts of its components. These structures
include the following:

Waiting-on-Memory (WOM) list
A list of JSBs anchored by the NFPTR field WOMJSB, with each
JSB having one or more TSBs for tasks that must be loaded.
The TSBs of each job are linked from the JITWOM anchor in
the JIT of the JCA. The JSBs are ordered by JSB waiting
priority as carried in the JSBWPR field.

Loader Queue
A linked list of OVBs, each representing a block of user
memory to be released. The queue is anchored at LDRQUE in
NFQHDR.

2270512-9701 9-1 Program Management

DNOS System Design Document

Cache List
A linked list of OVBs for segments currently in memory but
not currently used by any active task. (These are the most
recently used segments, and they may be used later or
deallocated.) This list is anchored at CHELST in NFDATA.

Active List
A list of JSBs for jobs with tasks ready to execute. This
list is anchored in the NFPTR field ACTJSB, organized by
priority JSBAPR. The TSBs for the active tasks are linked
from the JITACT anchor in the JCA.

Time-ordered List (TOL)
A list of task segments (OVBs) representing all tasks in the
system eligible for the active list, ordered by most
recently loaded.

Time Delay List
A linked list of time delay entries, anchored by
list header TDLHDR. The entries reside in
consist of task identification information and
values. Wait for Event SVC's are also linked on

Swap Table

the NFPTR
the STA and
time delay
this list.

A linked list of swap table entries used to keep track of
allocated space and segments on the swap file. Whenever a
segment is swapped to the swap file, a swap table entry is
built for that segment in the system JCA, and a pointer to
it is placed in the SSB. This table is used by the segment
swapper task to keep track of which records are allocated in
the swap file. The anchor for this list is ROLDIR in
PMDATA.

9.3 DETAILS OF PROGRAM MANAGEMENT ROUTINES

Program management routines perform the functions of bidding a
task, loading a task for execution, and deallocating resources
when a task terminates.

9.3.1 Task Bid Processor (PMTBID).

When a Bid Task SVC ()2B) is executed, the nucleus function
NFTBID attempts to add the task to the active list. If NFTBID is
unable to bid the task, the SVC block is placed on the task bid
queue that places the queue server PMTBID into execution.

PMTBID performs the initial setup for a task. It ensures that
the task exists by locating the task segment in memory or by
reading the program file directory. Then, the procedure segments

Program Management 9-2 2270512-9701

DNOS System Design Document

(if any) are located in memory, or they are built from the
program file directory. The map file limit registers are built
for the task and the TSB for the task is placed on the WOM list
so that its segments will be loaded by the task loader.

Execution of PMTBID proceeds as follows. The routine PMGSSB is
called to find or build an SSB for the task segment. The routine
SMSRCH is called to search the program file segment group for the
requested segment. If found, it is used by the task being bid
(assuming the segment attributes allow this). If the segment is
not found, 5MBLDS is called to build an initial load SSB for the
segment. (For details see the description of segment
management.) When control is returned to PMGSSB and if the SSB
returned is in the initial load state (that is, the program file
directory has not been read for the segment), PMRDIR is called to
read the program file directory entry for the segment. PMMPRI is
then called to calculate the initial runtime priority. Next,
PMTBID calls PMITSB which calls PMGSSB for the attached
procedures, sets up the map file limit registers (including
protection), determines the total mapped length and memory used,
and initializes the task status. A loaded segment entry (LSE) is
built for the JCA of the task, so that the JCA will be loaded
into memory when the task is loaded. PMTBID calls PMNMGR to
inform the name manager that a new task exists in the job, then
links the TSB into the TSB tree and activates the task. The task
is now ready to be loaded by the task loader. Finally, the
calling task, if any, is killed or suspended if such action is
requested in the SVC block.

9.3.2 Task Loader (PMTLDR).

PMTLDR loads tasks into memory when they are initially bid, when
they have been swapped out of memory and are rescheduled to run,
and when a Change Segment or Create Segment operation is done for
a segment that is not in memory. The task loader serves the
loader queue and the WOM list. Included in the task loader task
are the get and release user memory routines and the task
swapping routine.

PMTLDR begins to execute whenever an entry is placed on the
loader queue or WOM list. The loader queue is processed first.
It contains a list of segments whose memory must be deallocated.
The return user memory (PMRUM) routine is called for each
segment.

After processing the loader queue, PMTLDR checks the WOM list for
a task to be loaded. If one is found, PMTLDR attempts to load
the task into memory. PMTLDR first ch~cks to see if the task is
doing a Change Segment operation which requires initialization of
an SSB. If so, PMRDIR and PMSMIR is called to allow the segment
manager to complete its processing. PMTLDR calls the routine
PMALSG to allocate memory for the task's JCA and later for each

2270512-9701 9-3 Program Management

I

I

I

DNOS System Design Document

segment of the task. The JCA must be in memory before the task
can be loaded, since the JCA contains the TSB. PMALSG first
checks to see if the segment is already in memory. If so, the
segment is removed from the cache list if the task-in-memory
count is zero. If the segment is not in memory, the get user
memory (PMGUM) routine is called to allocate memory. If memory
is available, PMALSG increments the task-in-memory count and
returns the segment to PMTLDR. If memory is not available,
PMROLL is called to attempt to obtain memory for the segment.

After memory is allocated for all of the task segments, PMLDSG is
called to load each segment into memory. If the segment is
already in memory or is empty, the load is skipped. Otherwise,
the segment is loaded from its home file or roll file. The
record number for the segment is computed, and the file
management routine FMIO is called to load the segment from disk
into memory. After the load is completed, the OVB is initialized
and control is returned to PMTLDR.

After all of the task segments are loaded, the map file bias
registers are calculated and. the task segment is placed on the
TOL by calling NFATOL. The task is put on the active list, and
PMTLDR continues processing the loader queue and the WOM list.

If insufficient memory is available to load a task, the task
loader calls a swapping routine (PMROLL) to attempt to free
memory by temporarily writing segments to the swap file. The
swapping routine includes two phases. The first phase processes
the cache list (segments in memory that are reusable but not
currently in use), freeing any available memory. If the first
phase does not yield enough memory, the second phase begins
processing the TOL to find a task that can be deactivated and
swapped.

Processing the cache list involves searching the list, last to
first, for available segments. A segment on the cache list can
be swapped if its TILINE I/O count is zero. A maximum count for
buffer segments and program file segments is maintained to ensure
that memory does not become too fragmented by cached segments.
(See the roll parameters shown in the NFDATA template in the
section on data structure pictur~s.) PMROLL tries to prevent the
rolling of JCAs and, in an attempt to improve performance, tasks
doing file I/O and file buffer segments.

When a swap candidate is found, it is queued to the write queue
to be written to its home file, written to the swap file, or
released, based on its attributes, use count, and whether it was
modified. PMROLL returns a code of zero if it was able to free
enough memory before returning. However, PMROLL might have
queued an entry on the write queue, in which case PMROLL returns
a code of 2 to the task loader, indicating that memory will not
be available until I/O completes. If PMROLL finds an eligible
segment doing file I/O, it returns a code of 4, indicating that

Program Management 9-4 2270512-9701

DNOS System Design Document

task loader should serve the file I/O request first. I
If none of these conditions arises after processing the cache I
list, PMROLL processes the TaL. The TaL is searched, last to
first, to find the most eligible task for deactivation and
swapping. The following are three categories of tasks on the
TaL, listed in the order of most eligible to least eligible for
swapping:

1. tasks suspended for more than a minimum amount of time
or suspended while waiting for coroutine activation.
The longer the suspension, the more eligible for
swapping.

2. Tasks of lower priority than the task being loaded by
the task loader. The lower the priority, the more
eligible the tasks are for swapping.

3. Tasks that have the same priority as the task being
loaded by the task loader and that have executed for a
minimum amount of time since they were last loaded.
The longer the execution time, the more eligible the
tasks are for swapping.

After an eligible task entry is found on the TaL, the task is
deactivated and its segments are placed on the cache list if they
are not being used by other active tasks. The cache list is then
processed again before returning to the task loader with the
return code from the cache list processor. If no eligible
entries are found on the TaL, a return code of 3 is given to the
task lo~der, indicating that no memory was found to release.

Figure 9-1 shows the flow of control through the task loader.

2270512-9701 9-5 Program Management

I

I

DNOS System Design Document

ENTRY PLACED ON LOADER QUEUE OR WOM LIST
I
V

+----------+
I PMTLDR I
+----------+

(BL)
I
V

+--------------------+
I I
V I

+----------+ I
I PMRUM I I
+----------+ I

Loader I
Queue I

V

+-----------------+----------------------+
I for JCA and I I
Veach segment V V

+----------+ +----------+ +----------+
I PMALSG I I PMLDSG I I NFPACT I

+----------+ +----------+
(BL) (BL)

I I
V I

+------+-----+ I
(BL) (BL) I

I I I
V V V

+----------+ +---------+ +----------+
I PMGUM I I PMROLL I I FMIO I
+----------+ +---------+ +----------+

+----.:;.-----+
I
V

ACTIVATES
TASK

Figure 9-1 Flow of Control in Task Loader

9.3.3 Task Termination Processor (PMTERM).

When a task terminates by issuing an End Task SVC or is killed by
another task or by the operating system, the initial processing
is done by NFTERM (see the section on nucleus functions). That
processing includes placing an entry on the task termination
queue, which is served by PMTERM. PMTERM cleans up the memory
structures associated with the task (TSB).

If there is no end-action and the task was a task- or job-local
channel owner, PMTERM notifies IPC. For each LUNO on the TSBLDT
chain PMTERM issues an abort request. If no end-action is
specified, PMTERM closes the LUNO and waits for I/O to complete.

Program Management 9-6 2270512-9701

DNOS System Design Document

Then PMTERM either waits for or causes all other outstanding
requests to complete and if end-action is specified, the task is
activated. Otherwise, PMTERM releases all LUNOs, logs a task
error (if necessary), informs the name manager that a task is
terminating, and delinks the TSH from the TSB tree. This may
involve killing descendant tasks or activating a parent task. If
there is only one task left in the job (file manager), it is
killed. If there are no more tasks left, job manager is
activated to terminate the job.

9.4 TASK SYNCHRONIZATION

DNOS provides synchronization on several functional levels.
These levels correspond to the assumed commonality between the
tasks requiring synchronization. The synchronization tools
involved are interprocess communication (IPC) messages,
semaphores, locks, and events. IPC is discussed in the section
on I/O.

9.4. 1 Semaphores.

Semaphores enable two tasks to exchange timing signals. A
semaphore is implemented as an integer variable and a queue of
waiting tasks. The integer variable indicates the number of
unconsumed timing signals. If no signals are present,the
integer indicates the number of tasks waiting for a timing
signal.

Semaphore operations are provided on job-local variables via SVC
)3D. The subopcodes in this SVC have the following meanings:

Subopcode 0: SIGNAL
The value of the semaphore specified by byte 3 of the SVC
call block is incremented. The oldest task queued on the
semaphore queue is activated.

Subopcode 1 WAIT
The value of the semaphore specified by byte 3 of the SVC
call block is decremented. If the resulting semaphore value
is negative, the task is suspended and queued to the
specified semaphore.

Subopcode 2 TEST
The value of the semaphore specified by byte 3 of the SVC
call block is returned in bytes 4 and 5 of the SVC block.

Subopcode 3: INITIALIZE
The semaphore specified by byte 3 of the SVC call block is
initialized to the value specified in bytes 4 and 5 of the
SVG block. If any tasks are queued waiting for this

2270512-9701 9-7 Program Management

DNOS System Design Document

semaphore, the action taken depends on the new value of the
semaphore as follows:

* If the new value is greater than or equal to 0, activate
all suspended tasks.

* Given that n· is (new value - old value), if the new
value is less than ° and n is greater than 0, activate n
tasks, starting with the oldest queued task.

Subopcode 4: MODIFY
The semaphore specified by byte 3 is set to the sum of its
old value and the two's complement (negative) value
furnished in bytes 4 and 5 of the SVC block. If any tasks
are queued waiting for the semaphore, the action taken
depends on the new value of the semaphore, as described in
the initialize operation. The modify operation combines the
test and initialize operations so that correct results are
obtained, even if other tasks are using that semaphore.

Semaphore values are represented as signed integers ranging from
the negative value of -128 to a positive value of 127. A
positive value indicates the number of signals sent but not
received. A negative value represents the number of receivers
waiting for signals unless the semaphore has been negative since
the last time it was changed in a negative direction to a
negative value by an initialize or modify operation.

9.4.2 Locks.

The synchronization tool available to tasks that share the same
task address space is the lock. Locks enable tasks to implement
mutual exclusion on critical sections of their code or data.
Locks are represented as boolean data items, which indicate the
state of the lock.

Locks can be implemented in assembly language by using the ABS
and SETO instructions on a data variable. If tasks spend
relatively little time executing in locked regions, the following
code will achieve the desired mutual exclusion:

INITLK SETO LOCK

AGAIN ABS
JLT
SVC
JMP

GOTLOK •

LOCK
GOTLOK
TDELAY
AGAIN

SETa LOCK

Program Management 9-8

initialize the lock

test the lock
* got the lock, use it
* no, delay and retry

*

free the lock

2270512-9701

DNOS System Design Document

The higher-level synchronization primitives (SVC semaphores and
IPC messages) are available to tasks at this level that do not
meet the general assumptions about locks.

9.4.3 Event Synchronization.

To improve throughput, DNOS allows the execution of some SVCs in
parallel with the task execution. The Initiate Event SVC ()41)
provides this concurrency. It also eliminates polling in those
situations where polling might be used because concurrency is
unavailable. A set of 32 event flags is maintained in each TSB,
showing which of the allowed 32 events is currently initiated or
completed for the task.

The Initiate Event SVC points to an SVC to be initiated. An
event number is generated by DNOS to identify this event. Event
numbers range from 0 through decimal 31. In the current release
of DNOS, I/O SVCs and semaphore SVCs can be initiated. If the
operating system permits the specified SVC to be initiated,
control is returned to the task after that request block has been
buffered. If not, an error is returned to the user. The user
must exercise caution, since the operating system may return
information to the initiated SVC block at any time.

The Wait for Event SVC ()42) allows a task to wait for any of a
set of events to occur. This SVC waits until one of several
events has completed or until the maximum wait time is exceeded.
The events to be waited for are specified by an event mask. The
leftmost bit of the first word of the event mask corresponds to
event O. If this bit is set in the mask, the task is activated
when event 0 is completed. The event flags returned to the call
block indicate which (one or more) of the 32 events have
completed.

The Post Event SVC ()4F) permits the user to post any event in
any task in any job but the system job. This means that any Wait
For Event may be aborted before its event is completed or its
wait time has expired. The Post Event SVC should not be used to
abort a wait for a valid initiated event; it should be used to
provide a cross-job synchronization mechanism. If task A in job
ONE executes a Wait For Event with a large time delay without
initiating an event, then it will delay until either its time
delay expires or it is posted, either from job ONE or from
another job. This provides a method to deactivate and reactivate
user-written queue server tasks, across job boundaries. To
facilitate this operation, issuing a Wait For Event with a
maximum time delay of -1 ()FFFF) is special cased to cause a
virtually infinite maximum delay time.

2270512-9701 9-9/9-10 Program Management

DNOS System Design Document

SECTION 10

I/O SUBSYSTEM

10.1 OVERVIEW

The I/O subsystem moves data between any combination of logical
and physical I/O resources and programs (tasks) that process the
data. The logical resources are the files located on disk or
magnetic tape and the channels between programs. The physical
resources are the devices attached to the computer.

An I/O request enters the I/O system via the SVC interface. This
interface provides resource-independent, resource-specific, and
utility paths through a single SVC opcode, SVC 00. Most I/O is
achieved via the resource-independent call because programmers
usually want only to obtain data, process that data, and output
the processed data without knowledge of special features of the
I/O resource.

However, some special-purpose programs require knowledge of the
I/O resource. They must use specific techniques and formats to
obtain, process, and output data. These programs use resource­
dependent I/O.

The utility path allows for dynamic management of resources
without intervention from outside the computer. Actions such as
reserving a resource, specifying access privileges, and releasing
access are performed via the utility path.

The general form of the I/O SVC request block (IRB) is shown in
the section on data structure pictures. The basic block is 12
bytes long, while the full IRB for complex requests is
considerably longer.

An I/O request enters the I/O subsystem from RPROOT, the SVC
decoder. The I/O system screens out the utility requests via the
subopcode and passes them to the I/O Utility (IOU). The I/O
system then finds the request routing information for those that
are not utility requests. The routing information provides for
checking on the operations allowed to the requester. A copy of
the request call block is made in the STA so that the requester's
memory space may be free for other tasks while the request is
being processed.

The routing information
correct resource handler.

2270512-9701

is used to move the request to the
Channel requests are handed to the IPC

10-1 I/O Subsystem

DNOS System Design Document

processor. File requests are given to the file management (FM)
processor. Device requests are handed to the device manager.
The device manager is responsible for setting up the data buffer.

The request data buffer is moved to the buffer table area (BTA)
if the destination resource transfers data relatively slowly.
This copy of the request data buffer is made so that the task
memory space may be released while the request is being
processed. Resources that move data quickly need not have the
data buffer copied; they access the data directly from the
requester task memory space. The device manager passes the
buffered request copies to the physical device handler, the DSR,
for processing.

The DSR moves the data between computer memory and the physical
device. This transfer usually occurs at the maximum rate of the
device. During this transfer, the scheduler selects other
programs to execute.

When the transfer has completed, the hardware causes a device
interrupt to signal the DSR, indicating that the request has
completed. The DSR sets up conditions such that the next time
the scheduler selects a program to execute, it finds that the
request has finished processing. The scheduler then activates
the requesting task. Also, any request waiting to be processed
by that DSR is passed to the DSR.

When a program is activated by the scheduler, a check is made
before the program is allowed to execute to see if any buffered
SVC requests are to be returned to the program. For I/O SVCs,
status information and buffered data are returned.

10.2 DEVICE I/O DATA STRUCTURES

Data structures used for handling device I/O are of two types.
One set describes the devices and is built by the system
generation utility. The other type of structure is built by the
I/O and I/O Utility subsystems when requests are made to use
devices. The following structures are built during system
generation:

* Physical device table (PDT) Memory-resident data
structure, one built for each device defined for the
system. Contains information about the device name,
characteristics, and workspace for the device service
routine.

* Alternate PDT A short version of a PDT, built for
subdevices of a device. An example is the cassette unit
of an ASR terminal. The DSFAiD flag in the field PDTDSF
identifies the PDT as an alternate. The field PDTDIB

I/O Subsystem 10- 2 2270512-9701

DNOS System Design Document

points to the master PDT, that is, the PDT for which
this represents a subdevice. The byte PDTTYP is a
binary indicator of the subdevice. There can be no more
than 256 subdevices per master PDT. Note that these
structures must be carefully avoided by Some processors;
power-up must bypass all alternate PDTs, for example,
and abort processing must also avoid them.

* Disk PDT extension (DPD) - Structure appended to the PDT
for a disk device. Used as a work area by the device
service routine and the Disk Manager.

* Keyboard status block (KSB) - Structure appended to the
PDT for a device with a keyboard. Used as a workspace
by the device service routine when handling the
keyboard.

* Line printer PDT extension (LPD) - Structure appended to
the PDT for a line printer device. Carries flags and
pointers for use by the device service routine.

*

*

Magnetic tape PDT extension (MTX) - Structure appended
to the PDT for a mag tape device. Carries flags and
counters for use by the DSR.

Extension
Structure
keyboard.

for a terminal
appended to the

with
KSB

a keyboard (XTK)
for a device with a

* Extension for a 940 or 931 terminal Structures
appended to the KSB for a 940 or 931 terminal. These
are described in the paragraph on asynchronous DSRs.

The following structures are built when a request is issued to a
device:

* Logical device table (LDT) - Built by the I/O utility to
carry the logical unit number to be used for requests,
characteristics of the device, and the current
processing state.

* I/O request block (IRB) - Built by the I/O preprocessor
as a buffered copy of the I/O SVC issued by the
requester.

* Buffered request overhead (BRO) - Built by the request
processing root and by the I/O subsystem to describe the
originator of the IRB and the current state of the
request, this is appended to the front of the IRB.

2270512-9701 10-3 I/O Subsystem

DNOS System Design Document

10.3 DEVICE I/O HANDLING

Figure 10-1 and Figure 10-2 show the flow of control through
device handling. Figure 10-1 is an overall view, while Figure
10-2 details the entrance to device processing. The figures show
the major I/O modules involved, as well as support routines from
the nucleus and SVC request processing systems.

+----------+
+------------(XOP)-IREQUESTER 1<---------------------
1 1 TASK 1

V +----------+
+----------+
1 RPROOT 1
+----------+

I +-------)-----)----------------
VII 1

+----------+ 1 V -)--------1
1 lOP REP 1 1 +----------+ 1 V
+----------+ 1 1 NFSRTN 1 1 +----------+

1 1 +----------+ 1 1 NFTRTN 1
VII 1 +----------+

+----------+ 1 VII
1 IODEVR 1 1 +----------+ 1 V-----)----
+----------+ 1 1 NFSCHD 1 1 +----------+

1 1 +----------+ 1 1 RPDQUE 1
.--------)--- 1 1 +----------+ ----)---- ...

Figure 10-1 Overview of Device I/O Handling

10.3.1 Details of I/O System Routines.

When the requester task issues an I/O SVC, control is passed to
the SVC decoder, RPROOT. After determining that request is for
the I/O system, RPROOT passes it directly to the I/O request
preparation routine, IOPREP.

IOPREP functions as a preprocessor that is a uniform entrance
into the I/O system and prepares the I/O request for the
destination resource. If any error is detected by IOPREP, the
error bit is set in the user call block flags, and IOPREP exits
to RPRTNE in RPROOT. RPRTNE returns the error byte to the user
call block and checks flags for initiated events.

I/O Subsystem 10-4 2270512-9701

DNOS System Design Document

+----------+
+------------(XOP)-IREQUESTER I
I 1 TASK 1
V +----------+

+----------+
1 RPROOT 1
+----------+

(B)

1
V

+----------+
1 IOPREP 1
+----------+

(B)
1

V
+----------+
1 IOCHKX 1
+----------+

(B)
1----------------+----------------+-----------------+
V V V V

+----------+ +----------+ +----------+ +----------+
1 IODEVR 1 1 IUPREP 1 1 IPCPRE 1 1 FMPREP 1
+----------+ +----------+ +----------+ +----------+

(BL)
I--(B)------------------+-----------------------+
V V V

+----------+ +----------+ +----------+
1 IOPEL 1 1 NFSRTN 1 1 NFTRTN 1

+----------+ +----------+ +----------+
(BL)

1-----------------------+-----------------------+
V V V

+-.---------+ +----------+ +----------+
1 IODBGN 1 1 LGDEV 1 1 NFEOBR 1
+----------+ +----------+ +----------+

(BLWP)
1
V

+----------+
1 DSR 1
+----------+

(BL)
1-----------------------+
V V

+----------+ +----------+
1 IONRCD 1 OTHER DSR SUPPORT ROUTINES
+----------+ +----------+

Figure 10-2 Beginning Device Request Processing

2270512-9701 10-5 I/O Subsystem

I

DNOS System Design Document

IOPREP passes the request and control to IUPREP if the request is
a utility request. Otherwise it builds a copy of the request in
the STA static buffer, SYSBUF, including buffered request
overhead (BRO) and the entire call block. IOPREP then calls
IOFLDT to locate the LDT. The LDT contains information about the
destination resource as a logical unit number (LUNO). If the
resource pointer in the LDT is zero, the request is for the dummy
device (DUMY); consequently, the request is simply returned as
complete via RPRTNE.

For a device other than DUMY, the LDT is examined to see if the
device has been opened, that is, some task has issued an I/O SVC
with the Open subopcode. If the device is open, the LDT carries
the TSB and JSB addresses of the task that opened it. The task
attempting to use the resource must be the task that opened the
LUNO.

If the LUNO is open to the requester task, various subopcodes in
the I/O requests are treated differently. The Modify Access
Privilege subopcode is treated as an Open. Otherwise, control is
transferred around the open process. Read Characteristics
subopcode requests are allowed to bypass the requirement that the
LUNO be open.

If the LUNO is not open, the subopcode is checked to see that it
is an Open. The open process checks for a Resource Privilege
Block (RPB) to see if the Open is allowed. If it is, the LDT is
opened and the access privileges are placed into the LDT and RPB.
Requests of all subopcodes are channeled through the next part of
IOPREP, which tests again to determine if the request is allowed
with the current access privileges. If the request is legal,
control is passed to IOCHKX for further processing.

IOCHKX buffers the remaining portion of the request into SYSBUF
according to the device type specified in the LDT. The STA is
used since it is available to devices and file management when
the JCA is not in memory. The data buffer is not allocated or
buffered at this time. Using more information from the LDT,
control transfers to the IPC processor, IPCPR2; to the file
management processor, FMPREP; or to the device processor, IODEVR.

IODEVR functions as
It has an alternate
system tasks that
primary entry point
from the BTA and

a uniform I/O entrance to device resources.
entry point (IODDIO) for direct device I/O of

must bypass checks on general requests. The
determines if a buffer should be allocated
if data should be buffered. After these

decisions are made, the paths from the
together.

two entry points come

IODEVR now checks to see if the device in use is represented by
an alternate PDT, that is, is a subdevice of Some master device.
If so, the flag BRFAPI is set in the field BROOF2 of the buffered
request overhead of the I/O request block. The binary ID of the

I/O Subsystem 10-6 2270512-9701

DNOS System Design Document

device is copied from the alternate PDT to the field BROAID. The
master PDT pointer is retrieved from PDTDIB of the alternate PDT
and now used as the PDT pointer for processing.

The request is then inserted on the PDT waiting queue, PDTWQ, and
control is given to the PDT end-of-record logic routine, 10PEL.
When control returns from 10PEL, the request is checked to see if
it is complete in 10RTN. If so, control passes to the nucleus
return routine, NFTRTN. If the request is not complete and it is
not an initiate mode request, the task state is set to suspended
for I/O, and control is given to the nucleus suspend routine,
NFSRTN. If the request is an initiate mode request, control is
given to NFTRTN.

IOPEL functions as a device control module outside of hardware
interrupts, setting up requests to devices and returning requests
to tasks. The loop for processing begins by calling a system log
routine, LGDEV, to log any errors stored in the PDT. Requests
are set up for the device if the PDT saved request block address,
PDTSRB, is zero and PDTWQ is not zero. Before any processing,
IOPEL sets the hardware interrupt level in the status register to
prevent interrupts. The first request is removed from PDTWQ, the
device map file is changed to map in the request, the data buffer
address in the BRB is adjusted, and control is given to the
device begin routine, IODBGN.

When control returns from IODBGN or if PDTSRB is nonzero, the PDT
spent request queue, PDTSRQ, is examined. If PDTSRQ is nonzero,
a request is removed from it, and NFEOBR is called to insert the
request on the TSBEOR queue. This then loops back to the logging
process. If the device is busy or there are no more waiting
requests and no more completed requests, control returns to the
calling routine.

IODBGN is an interface routine that changes the map file from the
current state to a state in which the DSR is mapped with its data
buffer. IODBGN must be in the first of the three segments of map
file 0 in order to perform this function. After the new map file
has been set up, the DSR is entered at the request entry point
(one of several entry points). Alternate entry points in IODBGN
correspond to some of the other entry points in the DSR. These
alternate entry points are IODREE for system interrupt entry,
IODABT for request abort, and IODTO for time-out, IODPDS for
priority scheduling, and IODPU for power-up. Before giving
control to the DSR, IODBGN saves the address of the PDT workspace I
for power failure.

2270512-9701 10-7 I/O Subsystem

DNOS System Design Document

10.3.2 I/O Processing by the DSR.

A DSR is the request processor for a physical resource. The
first, five instructions beginning at relative location 0 of the
DSR must be branch instructions. These branch instructions
correspond to five alternate entry points in the DSR. A sixth
branch instruction must be included if the DSR uses priority DSR
scheduling. The branch instructions correspond to the following
alternate entry points.

* Hardware interrupt, the routine that handles
from the device

interrupts

* System interrupt, the routine that handles the request
for the system to reenter at approximately 50
milliseconds later.

* Power up, the routine that initializes the device.

* Request abort, the routine that handles the abort of a
request that the DSR is processing

* Request time-out, the routine that processes·· the
condition in which the device has not responded in a
certain length of time.

* Initial request processing. If priority DSR scheduling
is used then this must be a branch instruction to the
routine that handles initial request processing. If
priority DSR scheduling is not used, then initial
request processing code begins here.

* Priority DSR scheduler (optional)

If priority DSR scheduling is used, the instruction folloWing the
initial request processing entry point is the routine for
processing requests for priority DSR scheduling. Priority DSR
scheduling is used by DSRs which need to be reentered but do not
want to wait the 50 milliseconds for a system interrupt. This
mechanism reenters the DSR after all interrupt processing to the
system is complete but before the task scheduler initiates any
task execution.

DSRs which use priority scheduling must link in the routine
IOPDSQ. The DSR requests priority scheduling by issuing a BLWP
@IOPDSQ instruction. The routine IOPDSQ will queue the PDT to
the priority scheduling queue. NFSCHD and NFTRTN check for PDTs
on this queue and reenter the DSR at the earliest opportunity.
This is intended for use only by high priority interrupt
processing. Using this mechanism arbitrarily may interfere with
other devices that use this entry point.

I/O Subsystem 10-8 2270512-9701

DNOS System Design Document

When a hardware interrupt occurs, the interrupt vector tables
(initialized during sysgen) are used to transfer to the
appropriate interrupt decoder. There are four decoders provided
with DNOS, each serving a class of devices:

* A single device at a unique interrupt level

* MUltiple devices at a single interrupt level

* An expansion chassis at a single interrupt level with
multiple devices, each at a unique interrupt level
within the chassis or multiple devices sharing a unique
interrupt level within the chassis.

* Single device or multiple devices
device controller

on a multiplexed

Each interrupt decoder goes
process the interrupt:

through the following steps

1. Save the current system map file pointer (accessed via
CURMAP).

2. Set CURMAP to the DSR map
appropriate DSR.

3. Load the map file using CURMAP.

file pointer

4. Enter the DSR at the hardware interrupt entry.

for the

5. When the DSR completes, restore CURMAP to point to the
previous system map file.

6. Load the map file using CURMAP.

7. Exit via NFTRTN.

to

The text of the interrupt decoder can be found in the section on
writing a DSR in the DNOS Systems Programmer's Guide.

Whether handling hardware interrupts or entering the DSR at other
points, the DSR uses the PDT for the device as a reference point.
The section on data structure pictures includes details on the
PDT.

A queue header in the PDT allows the DSR to accept multiple
requests for the device and to call the DSR end-of-record
routine, ENDRCD, as many times as necessary to dispose of
completed requests. (ENDRCD is one of several routines in the
module IONRCD.) To handle the multiple requests, the DSR must
remove the request from PDTSRB (clearing PDTSRB) and insert the
request on the PDT hidden request queue, PDTHRQ. By clearing

2270512-9701 10-9 I/O Subsystem

DNOS System Design Document

PDTSRB, the DSR appears to be not busy. PDTHRQ is used as an
internal queue anchor for the DSR; the operating system can use
PDTHRQ to abort requests or to allow the task to wait for
requests.

ENDRCD is the first step in returning the request to the task.
Not much can be done at this level because of the time spent with
hardware interrupts masked to the interrupt level of the device.
ENDRCD expects PDTSRB to contain the address of the request that
has just completed. If PDTSRB is zero, ENDRCD returns to the
DSR. If PDTSRB is nonzero, ENDRCD removes the request from
PDTSRB, clears PDTSRB, and inserts the request at the end of
PDTSRQ. If the PDT end-of-record queue (PDTERQ) is zero, the PDT
is inserted at the end of the list of PDTs that need end-of­
record processing. This list is anchored by EORNKR, found in
NFPTR, and has PDTs queued via their PDTERQ fields. The priority
of the executing task is compared with the priority for the
requesting task. If the request priority is higher, the global
forced reschedule flag, RESCHD (found in NFDATA), is set to
preempt the running task. Control then returns to the DSR.

Figure 10-3 shows timing, system interrupt, hardware interrupt,
and end-of-record support for DSRs. The figure highlights only
the main modules or routines.

The task scheduler, NFSCHD, interacts with the I/O system to
handle system interrupt and end-of-record functions. When a
system time unit (SO milliseconds) has elapsed, NFSCHD calls the
device timer routine, IODTMR. IODTMR traverses the PDT list,
examining it for flags set to reenter a DSR and to wait for
request time-out. When the reenter me flag is on, it is turned
off and IODREE· is called. If the PDT is busy, the time-out flag
is on, and the PDT times out, an error code for device time-out
is placed in the active request and IODTO is called. (IODREE and
IODTO are alternate entry points to module IODBGN.)

NFSCHD determines that device end-of-record processing is
required by finding a nonzero value in the global queue anchor,
EORNKR. When this occurs, the end-of-request routine for PDTs,
IOEOR, is called. IOEOR removes the first PDT on EORNKR and then
calls IOPEL to process the end-of-record. IOEOR removes each PDT
from the list until it is empty. IOEOR then returns to the
scheduler.

I/O Subsystem 10-10 2270512-9701

DNOS System Design Document

+----~-----+
NFSCHD

+----------+
(BL)

I
------------------------+
I I
V V

+----------+
I IODTMR I

+----------+
(BL)

I
I
I
I
I
I
I

+----------+-
I IOEOR I

+----------+
(BL)

I
V

+----------+
I IOPEL I

+----------+
(BL)

I
I +---------------------+-----------------------+
V V V V

+----------+ +----------+ +----------+
I IODBGN I I LGDEV I I NFEOBR I
+----------+ +----------+ +----------+

(BLWP)
I (BLWP) +----------+
V------(------------I hardware I

+----------+ I interrupti
I DSR I I decoder I
+----------+ +----------+

(BL)

1-----------------------+
V V

+----------+ +--------------------------+
I IONRCD I 10THER DSR SUPPORT ROUTINESI

+----------+ +--------------------------+
Figure 10-3 DSR Control Paths

10.3.3 Returning Information to the Requester.

Figure 10-4 shows how information is returned to the requester
task. After a task is scheduled and prior to execution, NFTRTN
is called. (NFTRTN is also the exit point for nonsuspending SVC
processors.) Before NFTRTN returns control to the requester
task, the TSBEOR field of its TSB is examined for a nonzero
value. When TSBEOR is zero, control drops through for the other
checks. Otherwise, RPDQUE is called.

2270512-9701 10-11 I/O Subsystem

DNOS System Design Document

NFSRTN is similar in nature to NFTRTN except that it is the exit
~oint for SVCs that suspend task scheduling. Before suspending
the task, NFTRTN examines TSBEOR for a nonzero value. When it is
zero~ control drops through and the task is suspended.
Otherwise, RPDQUE is called.

RPDQUE removes the first entry from TSBEOR. RPDQUE examines the
SVC code in the BRB, unbuffers the error code, and calls the SVC
post processor if one exists. The post processor for I/O is
IOPOST. When control returns from IOPOST, RPDQUE releases the
BRB, checks for another entry on the queue and processes any.
When no entries remain, it returns to its caller.

IOPOST examines the subopcode to determine if it is an I/O
utility opcode. If so, parameter buffers are released and other
information is unbuffered to the task. If the request was made
through IODDIO in IODEVR, the LDT address is zero and requests
are not unbuffered. Otherwise, the system flags are unbuffered.
For relative record files, the record number is returned to the
task. For VDT requests, the extended user information is
unbuffered. The SVC subopcode is then used to index into a table
to unbuffer Open, Read, and Write information.

For Open subopcodes, the resource type is returned to the task.
If an error code is in the BRB for an Open or a Close, both the
LDT and the RPB are closed. For a Read subopcode, the data
buffer is move'd to the task data buffer if the buffer beet
address in the BRO, BROBBA, is a nonzero value. If BROBBA is
zero, the buffer has already been moved by Some other processor.
Control then passes back to the caller, RPDQUE.

I/O Subsystem 10-12 2270512-9701

DNOS System Design Document

+----------+
IREQUESTER 1<-------------------------+
1 TASK I 1
+----------+ I

I
+----------+ +-----------+ I
I V I V 1

+----------+ I +----------+ I +----------+ J

J NFSRTN J 1 I NFSCHD 1 I I NFTRTN J 1
+----------+ I +----------+ J +----------+ J

(BL) I (B) I (BL) I
I-(B)--------+ +-----------+ J 1
I I--(RTWP)+
1 +---+
V V

+----------+
I RPDQUE I
+----------+

(BL)
1-----------------------+
V V

+----------+ +-------------------------+
I IOPOST I 10THER SVC POST PROCESSORSI
+----------+ +-------------------------+

Figure 10-4 Returning Information to the Requester

10.3.4 Bidding a Task from a DSR.

DNOS provides a means to bid a task from a DSR. A two character
sequence must be entered to initiate the task bid. The- first
character entered is the arming character, Attention. The second
character entered is used to identify the task to be bid. For
example, the sequence Attention! can be used to bid SCI. In
addition to the task bid sequences, DNOS processes the following
character pairs as indicated:

Attention Attention - halt current output to screen,
resume output

Attention Return - abort I/O to the screen
Attention Control-X - break - terminate current task
Attention N - bid the network logon task

These can be redefined or more character sequences can be defined
by the user. For each task to bid, the user must supply a
Command Definition Entry (CDE). The CDE is associated with the
type of device at which the bid can be made. During IPL, a file
of CDE tables is initialized for each type of device that might
be used for task bidding. This file is assumed to be in
VOL.S$CDT.xxx, where VOL is a synonym for the disk volume being

2270512-9701 10-13 I/O Subsystem

DNOS System Design Document

used as a data disk and xxx is the name of the generated system.

The format of a CDE is shown in the section on data structure
pictures. Each CDE includes a task ID for a logon task to be
bid, as well as a task ID for the task to be bid by the logon
task, flags, and parameters for the task to be bid by the logon
task. The logon task is either the task supplied with DNOS or
some user-written substitute. The supplied logon task solicits
user ID and passcode, verifies their accuracy, and bids the task
specified in byte 3 of the CDE. (More detail on the logon task
can be found in the section on system tasks.)

When a keystroke defined by a CDE is used at a terminal, the DSR
makes several entries to system data structures. If no other
task is currently awaiting bid for the terminal in question, the
PDTCHR field of the terminal PDT is set to the character entered.
The PDT is linked to the global list of PDTs with pending bids,
using the PDTBQ field as a link field. The global list is
anchored at BIDREQ, located in NFPTR.

When the scheduler is scanning lists to find an activity to
begin, it examines the BIDREQ anchor to see if any PDT needs a
task bid. If the anchor is nonzero, the scheduler bids the
system task IOTBID to serve the queue of requests.

IOTBID takes the first request from the queue and examines it for
validity. It first ensures that the terminal is on-line and
available for use.

IOTBID then issues a Bid Task from a DSR ()C7) subopcode of the
I/O SVC to bid the appropriate task as defined by the CDE. Refer
to the section on the device I/O utility (DIOU) for more details
of that bid process.

10.3.5 Handling Large I/O Buffers.

The use of full-duplex operations for communication requires a
strategy to handle many large data buffers. DNOS uses the BTA
for large buffers rather than allocating them from STA. Figure
10-5 shows in general how buffers are mapped with I/O processing.

The BTA was designed to accommodate transient buffers; therefore,
the BTA dynamically expands and contracts. During sysgen, static
allocation limits are set. By using the Static Buffer Forced
Roll SVC ()4A), the system can interrogate, increase, or decrease
the size of the BTA. The BTA immediately precedes available user
memory; when increased, the BTA causes user memory to decrease.
This may cause forced swap of user segments that are occupying
the requested area. SVC)4A is detailed in the section on
special SVC support.

I/O Subsystem 10-14 2270512-9701

DNOS System Design Document

Since the buffers are not in STA, it is possible to dynamically
get and release BTA buffers from a DSR. Subroutines are provided
for the DSR to get BTA (IOGBLK) or release BTA (IORBLK). To use
IOGBLK, BL to the subroutine with workspace register 10 (RIO)
containing the size of the buffer (bytes). On returning from the
subroutine, workspace register 0 contains the status code for the
request. It will be 0 if no errors occurred while getting BTA.
RIO will contain the beet address of the allocated memory. The
value returned in RIO should be stored in the buffered beet
address field (BROBBA) of the BRB that will be receiving this
buffer. The I/O system uses BROBBA as a beet address within the
BTA to release the buffer. The first usable address relative to
the start of the allocated BTA buffer is the value of BBAOFF
found in the CSEG NFWORD.

The BTA can be addressed locally by the DSR if the BTA is mapped
in. Before mapping in the BTA, it is necessary to map out the
buffer currently mapped in (if one is present and if it is
different from the new one). This is accomplished by a call to
the subroutine IOMPOT, which uses RI as a pointer to the BRB
containing the pointer to the buffer to be mapped out. Mapping
in the new buffer is achieved by pointing RI and PDTSRB to the
desired BRB and by placing the value of BBAOFF in the IRBDBA
field of the BRB. Then the DSR calls the subroutine IOMPIN to
map in the BTA. This causes the IRBDBA field to contain a buffer
address within the logical address space of the DSR.

To release BTA, the DSR calls the subroutine IORBLK, with RIO
containing the beet address in the BTA of the buffer to release.
On returning from the subroutine, RO contains the status code for
the request. RO will be zero if no error was detected. After a
buffer in the BTA is released, BROBBA in the corresponding BRB
must be set to zero.

Control of buffering for a DSR is specified by information
contained in the PDT of each device. PDTDSF contains the two
flags, DSFBI and DSFBO. DSFBI controls the input. When it is 1,
a buffer is allocated in the BTA for a read request. When it is
0, a buffer is not allocated for read requests. DSFBO controls
the output. When it is 1, a buffer is allocated in the BTA for a
write request, and the output data is copied to the buffer from
the task address space. When DSFBO is 0, a buffer is not
allocated and not copied for write requests.

2270512-9701 10-15 I/O Subsystem

DNOS System Design Document

Physical memory

+--+
1 DNOSIMemory-Resident 1 IMemory-Resident 1 Buffer 1 User 1
1 Root 1 DNOS Code 1 DSRI DNOS Code 1 Table 1 Task 1
1 1 1 1 1 Area 1 Memory 1
+-1--------------------1------------------1---------1------+

1 1 1 1
1 1 +---------------1 1
1 1 1 +----------------------1
1 +--1--1------+
1 1 1 1
+-----------------+ 1 1 1

+--1-----1--1------1---+
1 DNOS 1 Data 1 1
1 Root 1 Buffer 1 DSR 1
+----------------------+

o 6000

DSR Logical Memory

Figure 10-5 Device I/O Buffering

10.3.6 Converting a DX10 DSR for DNOS.

Because of different internal operating system structures and
because of some added functions, DNOS DSRs are slightly different
from their DXIO counterparts. A user who has his own DXIO DSR
must change his DSR to meet DNOS standards.

Before making any code changes, the user should study the
relevant data structure templates used in DNOS: the PDT, IRB,
BRO, and any other templates whose counterparts were used in the
DXIO DSR.

Within the DSR code itself, the set of definitions (DEFs) and
references (REFs) must be changed. The DNOS I/O system uses no
DEFs supplied by the DSR. The only DEFs that must be supplied
are those required by modules used by the user's DSR. Any other
DEFs may be deleted.

Several DXIO REFs are not used by the DNOS DSR. Delete the REFs
to the subroutines SETWPS, BZYCHK, and MAPCHK. Replacements for
these references are discussed in the following paragraphs. The
REF for KEYFUN should be replaced by IOFCDT, and the template for
NFPTR, DSC.TEMPLATE.COMMON.NFPTR, should be copied into the DSR.
The REF for BRCALL or JMCALL should be replaced by BRSTAT. REFs
to byte and/or word constants should be deleted and replaced by
copying in the appropriate template:

I/O Subsystem 10-16 2270512-9701

DNOS System Design Document

BYTEOO - BYTEOF
BYTEIO - BYTE1F
BYTE20 - BYTE2F
BYTE30 - BYTE3F
BYTE40 - BYTE4F
BYTE50 - BYTE5F
BYTE60 - BYTE6F
BYTE70 - BYTE7F
BYTE80 - BYTE8F
BYTE90 - BYTE9F
BYTEAO - BYTEAF
BYTEBO - BYTEBF
BYTECO - BYTECF
BYTEDO - BYTEDF
BYTEEO - BYTEEF
BYTEFO - BYTEFF
WDOOOI - WD8000

DSC.TEMPLATE.COMMON.NFEROO
DSC.TEMPLATE.COMMON.NFERIO
DSC.TEMPLATE.COMMON.NFER20
DSC.TEMPLATE.COMMON.NFER30
DSC.TEMPLATE.COMMON.NFER40
DSC.TEMPLATE.COMMON.NFER50
DSC.TEMPLATE.COMMON.NFER60
DSC.TEMPLATE.COMMON.NFER70
DSC.TEMPLATE.COMMON.NFER80
DSC.TEMPLATE.COMMON.NFER90
DSC.TEMPLATE.COMMON.NFERAO
DSC.TEMPLATE.COMMON.NFERBO
DSC.TEMPLATE.COMMON.NFERCO
DSC.TEMPLATE.COMMON.NFERDO
DSC.TEMP~ATE.COMMON.NFEREO
DSC.TEMPLATE.COMMON.NFERFO
DSC.TEMPLATE.COMMON.NFWORD

To allow for the addition of new devices at IPL and for the
reinstallation of a new, modified, or corrected DSR without
linking the entire system, the first addresses of the DSR must be
the following instructions:

B @Hardware interrupt entry address
B @System reenter me entry address
B @Power up entry address
B @Abort entry address
B @Time-out entry address
B •• @Request entry address
B @Priority DSR scheduler

No data or subroutine code can precede these instructions.
replace the following DX10 entry points:

DATA power-up entry address
DATA abort entry address

DSR executable code for request entry

In DXIO, the following is the first DSR executable code:

LIMI 0
BL @SETWPS

They

This code is not required and should be deleted for DNOS because
the I/O system performs this function prior to entering the DSR.

Two differences in the data structures affect code in the DSR.
They involve the pointers in Rl and R4 of the PDT. Rl is the
pointer to the BRB. The BRB, a concatenation of the BRO and the
IRB, is called the UCB in DX10. The relevant change in DNOS is
the position to which Rl points in the BRB. In DXIO, Rl pointed

2270512-9701 10-17 I/O Subsystem

DNOS System Design Document

to the word containing the subopcode and LUNO of the BRB. In
DNOS, Rl points to the word containing the SVC code and error
byte. PDTSRB points to the same place. The DSR code must be
changed to reflect the new pointer. Any references to the DXIO
structures named PRB and UCB must be changed to the equivalent
references to the DNOS structure named IRB.

R4 points to the device information block (DIB) of the PDT. (The
device information block is the PDT and any PDT extensions.) In
DXIO, R4 pointed to the word beyond the end of the PDT. In DNOS,
R4 points to the first word of the PDT, the PDT link word PDTPDT.
The DSR must be changed to reflect the new pointer location.
References to DXIO PDT offsets must be changed to equivalent
references to PDT template offsets. PDT labels should be used
rather than hard-coded offset values.

The subopcode processor, BRCALL or JMCALL, has been enhanced to
collect information for on-line diagnostics. BRCALL can still be
called, but note that RIO will be modified. The replacement
subroutine call is to BRSTAT. It uses RIO as a pointer to a byte
table that contains relative offsets into the PDT. If RIO is
zero, it is not used as a pointer. The table is built with
entries for each subopcode. The on-line diagnostics code counts
types of requests for physical I/O. The entries in the byte
table are chosen from 0, PDTRC, PDTWC, or PDTMC; these correspond
to the null request counter, the read request counter, the write
request counter, and the miscellaneous request counter,
respectively. Build the diagnostics table appropriately for the
physical device if this function is chosen. The table for BRSTAT
is the same as for BRCALL.

One of the subroutines for keyboard devices has a different name
in DNOS and DXIO. The subroutine KEYFUN in DXIO is named IOFCDT
in DNOS. IOFCDT performs the same function as KEYFUN; it also
performs a new function, bidding a task from a DSR. (See the
paragraphs describing bidding a task from a DSR for details.)
All task bids in a DX10 DSR must be removed in the DNOS
equivalent.

IOFCDT controls processing of all bids, including the bid of SCI
at the terminal. (SCI may be bid with or without the logon
task.) IOFCDT also processes the hard break sequence, bidding
the IOBREAK task. The keys used to bid SCI and the hard break
sequence are defined in the CDE for the terminal type during IPL.

I/O Subsystem 10-18 2270512-9701

DNOS System Design Document

For devices with no KSB associated with the PDT, a bid can be
accomplished by direct queue manipulation in place of a call to
IOFCDT. To place the entry on the queue, first examine the byte
field PDTCHR. If the field is nonzero, a task is waiting to be
bid and another entry is not allowed. If PDTCHR is zero, place
the character in the PDTCHR field. Mask interrupts to level 2
and find the end of the queue whose anchor is BIDREQ (found in
NFPTR). Link the PDT to the last one on the queue using the
field PDTBQ. Clear PDTBQ in this PDT, and enable interrupts to
the proper level.

The REFs for BZYCHK, SETWPS, and MAPCHK must be deleted. Replace
the call to BZYCHK with code like the following:

MOV
JNE
RTWP

@PDTSRB(R4),R7
device busy code

The function previously performed by MAPCHK is now performed by
the I/O system prior to entering the DSR. Therefore, any code
that references MAPCHK must be removed from the DXI0 DSR for use
with DNOS.

In addition to the features already mentioned, some others are
provided by the I/O system. The error code is placed into the
BRB in power-up and abort situations. The error flag for the IRB
is
set in the BRB whenever a nonzero value is detected in the error
byte of the BRB.

For processing an end-of-record for a DSR, the subroutine ENDRCD
has been enhanced to accommodate successive calls to perform
mUltiple end-of-record requests. To take advantage of this
feature, correctly set up the pointer PDTSRB before calling
ENDRCD. PDTSRB is the point~r to the saved request block and
must point to the SVC and error byte of the BRB. If PDTSRB is
zero, nothing occurs in the subroutine ENDRCD.

For a DSR that must multiplex its input and output, a queue
anchor for this purpose is included in the PDT. When a DSR
wishes to receive a second request, it must appear to the I/O
system to be not busy. The DSR achieves this by mapping out the
current request and clearing PDTSRB. It must then keep the first
request available by queuing it to the hidden request queue,
PDTHRQ, using the link word BROBRO in the BRB. In this way, the
I/O system can find a request ?eing aborted and flag the error
byte with a)10 error code. During an abort, the DSR is entered
at the abort entry and must examine PDTHRQ and abort the requests
marked with an error code of)10.

If the DSR multiplexes two or more requests at the same time, it
must be careful when accessing a buffer. The buffer for only the
request given to the DSR is mapped into the DSR address space.

2270512-9701 10-19 I/O Subsystem

DNOS System Design Document

The mapping information for the other request remains with the
request. Therefore, the subroutine lOMPOT must be called to map
out a request buffer before inserting the request on the queue
anchor PDTHRQ. R1 must point to the SVC and error code byte of
the BRB. To map the request buffer into the DSR address space,
the subroutine lOMPlN must be called. R1 must point to the word
of the BRB that contains the SVC code and error byte. Neither of
these subroutines modifies PDTSRB.

While it should cause no code changes, the size of
DNOS is larger than that in DX10.

the PDT in

Special problems that will cause some re-design of the DSR are
the inaccessibility of the LDT and the TSB. Although pointers
exist in the BRO portion of the BRB, the segments containing the
structures may be swapped out of memory. No mechanism is
provided to the DSR to place one of these structures into memory
or to map the structure into the logical address space of the
DSR.

Typical problems encountered while debugging the converted DSR
are attempts to access flags contained in the PDT registers and
improper use of the pointers in R1 and R4. Check the PDT flags
used by the DSR to make certain that they exist and are
referenced by label.

The problems associated with R1 and R4 usually result from using
the same method of reference in DNOS as in DX10. Since the
values in R1 and R4 are pointers to the start of a structure,
referencing must be via the appropriate template fields as
follows:

DX10 •• DNO S ••••••••
MOV *R 1 , ••• MOV @lRBSOC(R1) , •••
MOV *R4, ••• MOV @PDTSIZ(R4), •••
ABS *R4 ABS @PDTSIZ(R4)

or
MOV ••• , *R 1 MOV ••• ,@IRBSOC(R1)
MOV ••• , *R4 MOV ••• ,@PDTSIZ(R4)

After assembling the DSR, it must
required support subroutines.
release of the operatLng system,
releases. Figure 10-6 shows a
to link a DSR.

be linked with all of the
This must be done with each

not with each sysgen between
typical link control stream used

I/O Subsystem 10- 20 2270512-9701

DNOS System Design Document

NOPAGE
ERROR
FORMAT COMPRESSED
PROCEDURE DUMROOT
DUHMY
INCLUDE VOL.SSGU.DUMROOT
PHASE O,DUMROOT
DUMMY
PHASE I,DSRname,PROG)COOO
INCLUDE VOL.DSRobject pathname
INCLUDE VOL.IOMGR.OBJECT.IONRCD

(include any other support routines)
END

Figure 10-6 DSR Link Control Stream

The linked object should be placed in the file
VOL.SSGU.DSRname. VOL is a synonym for the volume name of the
data disk being used for sysgen.

Table 10-1 shows the modules required for the support subroutines
and the registers altered by each of the subroutines.

Table 10-1 Location of Support Subroutines for DSRs

Registers
Module Name Subroutine Changed

VOL.IOMGR.OBJECT.IOBMGT IOMPIN RO
10MPOT RO
IOGBLK RO,RI0
IORBLK RO

VOL.IOMGR.OBJECT.IOKB 10FCDT R6
CMODE R5,R7,R9,RIO
PUTEBF
PUTCBF
GETC R9
ASCCHK RIO
ASCCK2 RIO

VOL.IOMGR.OBJECT.IONRCD BRSTAT RO,RIO
BRCALL RO,RI0
ENDRCD RO,RIO

VOL.IOMGR.OBJECT.IOTILN GTADDR R9,RI0
XFERM R6,R9,RI0
TILERR R8,R9

2270512-9701 10-21 I/O Subsystem

DNOS System Design Document

10.4 TELEPRINTER TERMINAL DSR

DNOS contains several hardcopy terminal-driver DSR's:

DSR TERMINALS FUNCTIONALITY

DSRTPD 703,707,743,745,763,765, Local, remote KSR
78X,820,825

DSRKSR 713, 742, 782 Local, remote KSR

This section describes details about DSRTPD as a detailed example
of a DNOS DSR.

Direct connection for teleprinter terminals is supported using
the following cable combinations:

TERMINALSI CON T R 0 L L E R S
-------+--

I /10A 9902 PORT S300 AUX 2 PORT
I TTY/EIA COMMIF CI402 CI422
+--

743/745 0948968-0001 0946117-0001

763/765

78X/820

703/707

2265151-0001
+2263351-0001
+2200051-0001

2262093-0001

+2263351-0001
+0983848-0001

0946117-0001
+2263351-0001
+2200051-0001

0946117-0001
+2263351-0001
+2207634-0001

or0946117
+0993210-0001

2303077-0001 2230504

2303077-0001 2230504

Full-duplex modems compatible with Bell 103, 212a, 113, and Vadic
VA3400 series are supported, with cable 2265151-0001 from the
TTY/EIA board, cable 946117-0001 from the COMM board, cable
2303070-0001 from non S300 9902 ports, and cable 2532883-0001
from S300 9902 ports. Half-duplex operation is not available to
these terminals through the TTY/EIA interface module. Auto-call
support is provided through the Teleprinter Device Utilities of
SCI.

DNOS has adopted a philosophy of generat.ing a dedicated DSR for
each kind of I/O device supported, and of limiting access to
interface cards (within a given configuration) to one of these
dedicated DSRs. DSRTPD is to some extent a departure from this
approach, as it allows a number of different kinds of computer
terminals to be serviced from one DSR and one piece of interface
hardware at different times without re-generation of the
operating system. SCI functions with DSRTPD and the DNOS sysgen

I/O Subsystem 10-22 2270512-9701

DNOS System Design Document

processor comprehends
by DSRTPD.

the parameters and PDT structure required

10.4.1 DSRTPD Structures.

The teleprinter device family (designated KSR) is identified by
sysgen to include a wide variety of teleprinter terminals. The
teleprinter device type code returned by an open operation is
)0001 for this device family. The resource type returned on an
assign luno for the teleprinter device family is)0902.

10.4.2 PDT Structures.

The TPD PDT is structured as follows:

+------------------------+
PDT (built by SYSGEN)

non-interrupt WS
DNOS flags

xxxxxxxxxxxxxxxxxxxxxxxx

KSB (built by SYSGEN)
interrupt WS
DNOS flags

xxxxxxxxxxxxxxxxxxxxxxxx

DIB (built by SYSGEN)
working parameter set
scratch area
default parameter set
error counters

KSBCBF
input character buffer
(built by SYSGEN)

<---+
I
I

----+

----+
I
I
I
I
I
I
I
I
I

<---+

The Device Information Block (DIB) is a data structure appended
to the PDT which contains information about the current status of
the device as well as information about how it was configured
during system generation. The DSRTPD DIB has the following
structure:

DIBACR DATA 0
DIBHWR BYTE 0

*
*

2270512-9701

'*' DENOTES FIELDS INITIALIZED BY SYSGEN

*ACU CRU ADDRESS()FFFF IF NONE)
*INTERFACE TYPE

I=COMM/IF
2=FCCC

10-23 I/O Subsystem

*
*
*
*

BYTE 0
DIBRTO DATA 0
DIBWTO DATA 0
DIBDTI D'ATA 0
DIBDT2 DATA 0
DIBGFL FLAGS 8

*
*
*
*

DIBSTF

FLAG GFLECO
BITS 1
FLAG GFLXPE
BITS 2

FLAG
BITS
FLAGS
FLAG
FLAG
FLAG
FLAG
FLAG
FLAG

2
GFLRPE

8
STFONL
STFCIP
STFOP N
STFDLE
STFHDX
STFRSD

DIBLNF FLAGS 8
FLAG LNFHDX
FLAG LNFSWT
FLAG LNFRCL
FLAG LNFADE
FLAG LNFDLE
FLAG LNFSCF
FLAG LNFEXC
FLAG LNFHDL

DIBTFL FLAGS 8
FLAG TFLECO
BITS 1
FLAG TFLXPE
BITS 2
FLAG TFLRPE

DIBSPD BYTE a
*
*
*
*
*
*
*
*

I/O Subsystem

DNOS System Design Document

3=BCAIM
4=HSCC
5=TTY/EIA
6= 9902

RESERVED
*READ TIMEOUT (IN 1/4 SECONDS)
*WRITE TIMEOUT(IN 1/4 SECONDS)
*FIRST DIRECT TIMEOUT (IN 1/4 SEC)
*SECOND DIRECT TIMEOUT (IN 1/4 SEC)
*SYSGEN FLAGS (SAME AS DIBTFL)

ECHO (I=NO ECHO)
UNUSED
XMIT PARITY ENABLED(I=ENABLED)
XMIT PARITY TYPE
OO=EVEN
01=ODD
10=HARK
II=SPACE
RECEIVE PARITY ENABLED
RECEIVE PARITY TYPE

STATE FLAGS
O=ONLINE
I=CONNECT IN PROGRESS
2=OPEN
3= DLE RE CE I VED
4=HDUX LINE BELONGS TO REMOTE
5=RESEND FLAG
6=UNUSED
7-8=BIT DATA QUEUEING

*LINE FLAGS
*HALF DUPLEX (I=HALF DUPLEX)
*SWITCHED LINE (l=SWITCHED)

REFUSE CALL
AUTO-DISCONNECT ENABLED
DLE/EOT FOR DISCONNECT
SCF READY/BUSY MONITOR
FILE XFER EXCLUSIVE ACCESS
HALF DUPLEX LTA ENABLE

TEMPORARY ACCESS FLAGS
ECHO (l=NO ECHO)
UNUSED
XMIT PARITY ENABLED
UNUSED
RECEIVE PARITY ENABLED

*BAUD RATE (SPEED)
-1=300 OR 1200 SELECTED

BY 212 MODEM
0= 11 0
1=300
2=600
3=1200
4=2400
5=4800

10-24 2270512-9701

DNOS System Design Document

*
DIBEOR BYTE 0
DIBEOF BYTE 0
DIBLTA BYTE 0
DIBSUB BYTE 0
DIBDLA BYTE 0
DIBPCR DATA 0
DIBPSR DATA 0
DIBMXC DATA 0
DIBTRM BYTE 0
DIBLCR BYTE 0
DIBXFL FLAGS 16
DIBSVE BYTE 0
DIBGSP BYTE 0
DIBISR DATA 0
DIBGTO DATA 0
DIBPEC DATA 0
DIBLCC DATA 0
DIBSIZ EQU $-DIBBGN

6=9600
*END OF RECORD (=CR)
*END OF MEDIUM (=EM)
*LINE TURNAROUND (=EOT)
*PARITY ERROR SUBSTITUTE (='?')

CARRIAGE RETURN DELAY INTERVAL
PARITY CHECK ROUTINE ADDRESS
PARITY SET ROUTINE ADDRESS
MAXIMUM CHARACTERS BUFFERED

*TERMINAL TYPE (=TYPE-700)
LAST CHARACTER RECEIVED
SAVED EXTENDED FLAGS
SAVED ERROR CODE FROM DSR

*CURRENT SPEED (SAME AS DIBSPD)
RESERVED

*GENNED TIMEOUT(IN 1/4 SECONDS)
NUMBER OF PARITY ERRORS
NUMBER OF LOST CHARACTERS
SIZE OF DIB

10.4.3 DSRTPD Functions.

The DSR has a power up entry point labelled PWRON. Powerup
processing consists of copying default paramete~s to the DIB,
setting the state of the interface module accordingly, and
setting values for the EIA lines which are appropriate to the
line mode:

1. For switched lines, all lines are forced low until Ring
Indicate is sensed or until the modem's online signal
is detected: Data Carrier Detect for full duplex, Data
Set Ready for half-duplex. Because DCD is not present
for the 9902 port on the /lOA controller, switched line
is nDt supported for that configuration.

2. For unswitched lines, Data Terminal Ready is asserted
and the DSR looks for Data Set Ready before each
character is transmitted.

The DSR has an abort I/O entry point labelled ABORT. Abort I/O
processing consists of terminating any I/O in progress with ~he
abort error code ()10) and returning the DSR to the idle state.
Timeouts appear to DNOS to be disabled, but the DSR handles
timeouts internally.

10.4.4 DSRTPD Details.

DSRTPD is built of five modules: DSRTPD, DSCOMISR, DSTTYISR,
DSISR402, and DSTPDCOM. The DSR uses a vector table to access
various hardware-related functions.

2270512-9701 10-25 I/O Subsystem

DNOS System Design Document

DSRTPD
This module is the request processor interface. Its code is
completely hardware independent. When a hardware-dependent
function needs to be performed, it goes through a vector
table and enters the appropriate hardware-dependent module.
This module uses the PDT workspace exclusively. It
maintains a set of state tables that are used to control
interrupt-driven functions.

DSCOMISR
The COMM board driver module is named DSCOMISR. It contains
code that is executed from both the PDT and KSB workspaces.

DSTTYISR
Th~ TTY/EIA driver is called DSTTYISR.

DSISR402
All 9902 controllers (CI402, CI421, CI422, 110A 9902 port)
use this hardware driver. It contains code that is executed
frum both PDT and KSB workspaces.

DSTPDCOM
This module performs character processing for DSTTYISR,
DSCOMISR and DSISR402. It is entered when read interrupts
are detected. This module places characters in the KSB fifo
in such a way that event and Katakana characters are
recognizeable to DNOS. When reads are outstanding to the
port, it enters DSRTPD at the interrupt level via a BLWP for
processing the Read request.

Vector Table
The vector table contains entries for discrete hardware­
related functions. A subroutine call to a fixed table
offset indexed by the table address is sufficient to
transfer into hardware-dependent code. Vector table entries
are provided for the following functions:

1. Initialize power up

2. Disconnect

3. Control half-duplex Modem

4. Select speed

5. Output 8-bit characters

6. Report carrier and Data Set Ready status

7. Read interface image

8. Write interface image

I/O Subsystem 10-26 2270512-9701

DNOS System Design Document

9. Start timer and schedule completion processor

10. Decode interrupt and service through state table

11. Monito~ line for incoming call

12. Establish connection

13. Abort without waiting to drop RTS

10.4.5 DSRTPD Defaults.

The defaults maintained by DSRTPD correspond to the current 990
operating parameters for the terminal family and to the mode of
operation used by DNOS utilities (such as SCI).

Parameters pertaining to communication line management and to
modem operation default to the following set:

1. Accept incoming call.

2. Disconnect on receipt of DLE EOT.

3. Transmit even parity

4. Set receive parity bit to O.

5. End of record character CR

6. End of file character EM

7. LTA character = EOT

8. Parity error substitute character = ?

10.5 ASYNCHRONOUS DSR STRUCTURE

A unique DSR structure has been designed for asynchronous device
support. Information about this structure and the routines used
to write a custom DSR can be found in the DNOS System
Programmer's Guide. The material in this manual is
implementation detail about the asynchrous DSRs. The information
in the DNOS System Programmer's Guide should be read before this
section.

2270512-9701 10-27 I/O Subsystem

I/O Subsystem

DNOS System Design Document

OPERATING SYSTEM
/1\

I
I

\1/
+-------------+
I TSR I
I Terminal I
I Service I
I Routine I
I I
+-------------+

/1\
I

BL I TSR
ISchedule
I

+-------------+
I ISR I
I Interrupt I
I Service I
I Routine I
I I
+-------------+

I / \
BLI

I
\ / \ 1/

+-------------+
I HSR I
I Controller I
I Service I
I Routine I
I I
+-------------+

/1\
I
I

\1/

Controller
Interrupt

+---------------------+
I CONTROLLER I
+---------------------+

Figure 10-7 DSR Structure

10- 28 2270512-9701

DNOS System Design Document

The asynchronus DSR design separates controller and device
support into different software modules. The DSR consists of
three basic modules. The controller support is provided by the
HSR (Hardware controller Service Routine) module. The device
support is provided by the TSR (Terminal Service Routine) module.
The ISR (Interrupt Service Routine) has interrupt and high
priority processing responsibility. Table 10-2 lists the basic
functions of the DSR components. The functions are discussed in
detail in the DNOS Systems Programmer's Guide.

Table 10-2 Asynchronous DSR Module Functions

TSR - TERMINAL
SERVICE ROUTINE

ISR - INTERRUPT
SERVICE ROUTINE

* All DSR entry points
(Request/Initial, Power up, Abort/Timeout,

Delayed Reentry, and Interrupt Entry)
* Request and completion reporting I/F to DNOS
* Runs in PDT workspace
* Provides software interface to device
* Contains device-dependent logic

* Interface to HSR for interrupt processing
* High priority receive character processing
* Runs in DSR interrupt workspace

HSR - CONTROLLER * Generic (subroutine) software interface
SERVICE ROUTINE to the controller hardware

* Contains all controller-dependent logic
* Contains all direct access to controller
* Emulation of buffered controller

- Hardware/Software FIFOs

There are two mechanisms for scheduling the TSR from an ISR:

* Reenter-me

* DSR priority schedule

Both of these mechanisms enter the DSR in the PDT workspace. The
DSR is reentered when the next system clock interval expires if
the reenter-me mechanism is invoked. Refer to the description of
the reenter-me mechanism in the section on device I/O handling
for further details. Another mechanism for scheduling DSR non­
interrupt processing (TSR) from DSR interrupt processing (ISR) is
the DSR priority schedule mechanism. This mechanism reenters the
DSR after all interrupt processing for the system is complete,
but before the operating system task scheduler or any task
executes. This is a more direct reentry path to the DSR. It is
intended only for the highest priority (non-interrupt)
processing. If this mechanism is used arbitrarily, it can

2270512-9701 10-29 I/O Subsystem

DNOS System Design Document

interfere with high priority processing of other DSRs.

Table 10-3 describes the requirements for DSR (TSR) entry
when the DSR priority schedule mechanism is used.
priority schedule entry point is at relative address)14.

Table 10-3 DSR/TSR Entry Points

0000 B @HINT Hardware interrupt entry
0004 B @SINT System interrupt entry
0008 B @PWRUP Power-up entry
OOOC B @ABORT I/O abort entry
0010 B @TIMOUT Timeout entry
0014 B @REQUEST Request processing
0018 B @PRISCH Priority scheduler entry

points
The DSR

Refer to the description of the DSR priority schedule mechanism
in the section on Device I/O Handling for further details. Other
interface mechanisms between the TSR and ISR can be defined by
the user within the constraints of the operating system. The
interface to the HSR will be defined in a separate section. Each
class contains several subroutines. These subroutines provide
one or more HSR functions. The other subroutines are documented
in the DNOS Systems Programmer's Guide. A list of the HSR
subroutine classes are as follows:

* Power-up initialization.

* Write output signal or function.

* Read input signal or function.

* Enable/disable status change notification.

* Transmit a character.

* Write operational parameters.

* Read operational parameters.

* Request timer interval notification.

* Controller interrupt decoding.

* CI403/CI404 UART direct access.

The HSR consists of a set of subroutines. All HSR subroutines
are called via branch and link (BL) instructions, and thus, use
the caller's workspace during execution. Parameters required by
the subroutines are passed to the HSR in workspace registers.
Information is returned to the caller in one of two ways. Data
is returned to the caller in workspace registers. Status

I/O Subsystem 10-30 2270512-9701

DNOS System Design Document

information is returned via alternate subroutine returns. The
caller specifies alternate return addresses as operands of DATA
assembler directives immediately following the BL subroutine
call.

BL @HSRSUB
DATA ALT1
DATA ALT2

Subroutine Call
First Alternate Return
Second Alternate Return
Normal Return (Code)

The caller execution resumes at one of the alternate return
addresses or at the normal return address (the instruction
following all alternate return DATA statements). The number of
alternate returns varies for different HSR subroutines.

Some general register conventions are followed by HSR
subroutines. In general, RO and RIO are used as working
registers by HSR subroutines. In general, these two registers
are used when parameters are passed to or from the HSR.
Exceptions will be noted for some HSR subroutines. R7, in most
cases, is used as a pointer to the PDT.

10.5.1 Data Structures Linkage.

Figure 10-10 illustrates data structure linkages for asynchronous
DSRs.

10.5.2 Data Structure Allocation.

The PDT extension is divided into two segments. One segment is
physically contiguous to the PDT, and it contains data requiring
the most efficient access. The other segment contains data for
which the increased access time is not as great a penalty
relative to overall performance. The second segment must be
accessed using long-distance instructions. Other data structures
included in the long-distance extension are VDT screen images for
screen image DSRs.

All the data structures not accessed via long-distance
instructions are allocated during system generation. These data
structures are available when the operating system is loaded into
memory from disk. The long-distance data structures must be
allocated during initial powerup code by the DSR. The method
used for this allocation is described in the next section.

10.5.3 PDT Extension Definitions.

The section documents PDT extensions used by the asynchronous DSR
to support specific devices and controllers. Software use of
these data structures for a set of specific hardware is also

2270512-9701 10- 31 I/O Subsystem

DNOS System Design Document

discussed. Controller information is documented for
following set of asynchronous controllers:

* CI403/CI404
* CI401
* 9902/9903

Four channel multiplexers
Communications Interface Module
TMS9902 and TMS9903 based controllers:

- S300 Base Station
- CI421
- CI422
- 990/10A 9902 port
- CI402

Extensions are also documented for the
peripheral devices:

* 931 and 940 VDTs
* Serial Printers

10.5.3.1 Asynchronous Local PDT Extension.

following set

the

of

The asynchronous DSR structure requires a PDT extension as
defined in Figure 10-11. Table 10-4 contains a template used by
source code to reference the local PDT extension. The' pathname
for this template is DSALLLEX. It is available in the DNOS
directory (vol>.S$OSLINK.TEMPLATE.ATABLE with the other system
data structure templates. Notice that the detailed descriptions
indicate a zero based index for the extension. However, in
reality the extension entries will be accessed using an index
relative to the beginning of the PDT as is indicated by the DORG
directive of the template in Table 10-4.

This extension starts immediately after the KSB. The first two
words of this extension are used to access a second DSR data
structure (PDT extension) outside the local address space of the
DSR. The next five words, PDXFLG through PDXCP3, are reserved
for HSR use. The remaining local PDT extension words are for
TSR/ISR use.

Detailed descriptions of asynchronous PDT extensions are
presented in separate sections. There are descriptions for each
controller type and each device type.

I/O Subsystem 10-32 2270512-9701

N
N
-......J
o
V1
N
I
\0
-......J
o

.....
o
I

w
w

1-1
""'-

931940 PDT
DATA STRUCTURE

PDT

R4

KSB

R7

LOCAL
PDT EXTENSION

MAP FILE

o 2284702

CIl
c::
r::f
rn
'<l
en
rt
rJ)

a

..

.....

.. ..

Figure 10-8

.... .

.... ..

931 940
ATTACHED PRINTER
DATA STRUCTURE

PDT
R4

R7

DEVICE EXTENSION

DEVICE
EXTENSION

SCREEN
IMAGE

:

SERIAL PRINTER
ON CI403

DATA STRUCTURE

PDT

R4

PSEUDO
KSB

R7

LOCAL
PDT EXTENS ION

MAP FILE

..

..

.. ..

DEVICE EXTENSION

u

DEVICE
EXTENSiON

Asynchronous Data Structure Linkages

t;
Z
o
CIl

CIl
'<l
rn
rt
(1)

a
t;
(1)

rn
OQ
::s
t;
o
(')

c:: a
rJ)

::s
rt

DNOS System Design Document

Hex.
Byte

+---+
)00 PDXSMB - LONG DISTANCE EXT. MAP BIAS

)02 PDXSMP - LONG DISTANCE EXT. MAP POINTER

)04 PDXFLG - HSR PARAMETER BYTE 0

)05 PDXCHN - HSR PARAMETER BYTE 1

)06 PDXCPl - HSR PARAMETER BYTES 2 & 3

)08 PDXCP2 - HSR PARAMETER BYTES 4 & 5

)OA PDXCP3 - HSR PARAMETER BYTES 6 & 7

)OC PDXCP4 - TSR/ISR PARAMETER BYTES 0 & 1

)OE PDXCP5 - TSR/ISR PARAMETER BYTES 2 & 3

)10 PDXCP6 - TSR/ISR PARAMETER BYTES 4 & 5

)12 PDXCP7 - TSR/ISR PARAMETER BYTES 6 & 7

)14 PDXCP8 - TSR/ISR PARAMETER BYTES 8 & 9

)16 PDXCP9 - TSR/ISR PARAMETER BYTES 10 & 11

)18 PDXCPA - TSR/ISR PARAMETER BYTES 12 & 13

)IA PDXCPB - TSR/ISR PARAMETER BYTES 14 & 15

)IC PDXCPC - TSR/ISR PARAMETER BYTES 16 & 17

)IE PDXCPD - TSR/ISR PARAMETER BYTES 18 & 19

)20 PDXCPE - TSR/ISR PARAMETER BYTES 20 & 21

)22 PDXCPF - TSR/ISR PARAMETER BYTES 22 & 23
+---+

Figure 10-9 Asynchronous Local PDT Extension

I/O Subsystem 10-34 2270512-9701

DNOS System Design Document

Table 10-4 Asynchronous Local PDT Extension Template

DORG KSBSIZ
PDXSMB BSS 2 LONG DIST EXT MAP BIAS
PDXSMP BSS 2 LONG DIST EXT MAP POINTER
PDXFLG BSS 1 HSR MEMORY AREA
PDXCHN BSS 1 "
PDXFCT BSS 2 "
PDXCPl BSS 2 "
PDXCP2 BSS 2 "
PDXCP3 BSS 2 "
PDXCP4 BSS 2 TSR/ISR MEMORY AREA

" "
" "
" "

RORG

10.5.3.2 Asynchronous Long-Distance Device Extension.

The asynchronous DSRs are designed to use a long-distance
extension (Figure 10-12) for part of the PDT extension area.
This memory must be accessed using long-distance instructions.
The long-distance extension is divided into several areas as
defined by the following figure (Table 10-5). The pathname for
this template is DSALLREX. It is available in the DNOS directory
<vol).S$OSLINK.TEMPLATE.ATABLE with the other system data
structure templates.

The first 32 bytes beginning with HSRBGN are reserved for HSR
module use. The next 112 bytes provide memory for a software
transmit FIFO maintained by' the HSR for non-buffered controllers.
(The only buffered asynchronous controllers are the CI403 and the
CI404.) The remainder of the long-distance extension is for
TSR/ISR use. Its size varies with the functions performed by the
TSR and ISR modules. The example template defines areas for an
implementation that keeps a memory copy of the screen image for
VDT support. 48 bytes are for TSR/ISR use. The memory starting
at SIBUFF can be used by the TSR to maintain a memory image of
the CRT screen.

2270512-9701 10-35 I/O Subsystem

DNOS System Design Document

Hex.
Byte

+---+
)00 HSRBGN - HSR PORTION OF EXTENSION

(32 BYTES)
)IF

)20 SWFBGN - SOFTWARE FIFO BEGIN

(112 BYTES)
)8F

)90 TSRBGN - TSR/ISR PORTION OF EXTENSION

(48 BYTES)
)BF

)CO SIBUFF - SCREEN IMAGE BUFFER

(1920 BYTES)
)83F

+---+
Figure 10-10 Asynchronous Long-Distance PDT Extension

Table 10-5 Asynchronous Long-Distance PDT Extension Template

DORG 0
HSRBGN EQU $

BSS)20
HSREND EQU $

*
SWFBGN EQU HSREND

BSS)70
SWFEND EQU $

*
TSRBGN EQU SWFEND

BSS)30
TSREND EQU $

*
SIBUFF EQU TSREND

BSS)780
SIEND EQU $

RORG

I/O Subsystem

HSR PORTION OF DEVICE EXTENSION
HSR DEPENDENT BLOCK

SOFTWARE XMIT FIFO

TSR PORTION OF DEVICE EXTENSION

SCREEN IMAGE BUFFER
1920 BYTE SCREEN IMAGE BUFFER

10-36 2270512-9701

DNOS System Design Document

10.5.3.3 CI401 HSR Local Extension.

Hex.
Byte

)00

)02

)04

Field
Name

PDXSMB

PDXSMP

PDXFLG

Bit 0

Bi t 1

Bit 2

Bit 3

Bit 4

Bit 5

2270512-9701

Description

This word contains the inverted value of the
byte count requested for the long distance
buffer. The DSR initializes this word during
the power-up sequence.

This word contains the beet bias address of
the long distance buffer requested by the DSR
during the power-up sequence. The DSR
requests the buffer by calling the system
routine 10GUB.

This byte contains bit flags for the CI401
HSR. The flags are defined as follows:

Controller Master Reset Failed. This flag is
set to one during HSR power-up processing
when a controller hardware failure is
detected. This flag is also set to one if
the controller is not present in the chassis.
This flag is monitored by HSR interrupt
processing as a means of gracefully handling
controllers that are included as part of the
configuration during system generation but
which are not physically present in the
chassis. This only becomes important when
the controller in question is sharing an
interrupt level with other controllers that
are present in the chassis.

Secondary Data Carrier Detect (SDCD) State.
This flag is set to one when the current
state of the SDCD signal is on (logic I) and
is set to zero when the current state of the
SDCD signal is off (logic 0).

Reserved.

Reserved.

Reserved.

Secondary Data Character Detect Notify Flag.
This flag indicates if notification of status
change has been requested. This flag is set
to one when the HESSDC HSR subroutine is
called to enable notification of status
change. This flag is set to zero when the
HDSSDC subroutine is called to disable

10-37 I/O Subsystem

Bit 6

Bit 7

)05 PDXCHN

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

I/O Subsystem

DNOS System Design Document

notification of status change.

Reserved.

Reserved.

This byte contains bit flags for the CI401
HSR. The flags are defined as follows:

Data Carrier Detect (DCD) State. This flag
is set to one when the current state of the
DCD signal is on (logic 1) and is set to zero
when the current state of the DCD signal is
off (logic 0).

Ring Indicator (RI)
to one when the
signal is on (logic
when the current
off (logic 0).

State. This flag is set
current state of the RI
1) and is set to zero
state of the RI signal is

Data Set Ready (DSR) State. This flag is set
to one when the current state of the DSR
signal is on (logic 1) and is set to zero
when the current state of the DSR signal is
off (logic 0).

Clear To Send (CTS) State.
to one when the current
signal is on (logic 1) and
when the current state of
off (logic 0).

This flag is set
state of the CTS

is set to zero
the CTS signal is

Data Character Detect (DCD) Notify Flag.
This flag indicates if notification of status
change has been requested. This flag is set
to one when the HESDCD HSR subroutine is
called to enable notification of status
change. This flag is set to zero when the
HDSDCD subroutine is called to disable
notification of status change.

Ring Indicator (RI) Notify Flag. This flag
indicates if notification of status change
has been requested. This flag is set to one
when the HRSRI HSR subroutine is called to
enable notification of status change. This
flag is set to zero when the HDSRI subroutine
is called to disable notification of status
change.

Data Set Ready (DSR) Notify Flag. This flag
indicates if notification of status change

10-38 2270512-9701

DNOS System Design Document

Bit 7

)06 PDXFCT

)08 PDXCP1

)OA PDXCP2

)DC PDXCP3

)OE-)24 PDXCP4

has been requested. This flag is set to one
when the HESDSR HSR subroutine is called to
enable notification of .status change. This
flag is set to zero when the HDSDSR
subroutine is called to disable notification
of status change.

Clear To Send (CTS) Notify Flag. This flag
indicates if notification of status change
has been requested. This flag is set to one
when the HESCTS HSR subroutine is called to
enable notification of status change. This
flag is set to zero when the HDSCTS
subroutine is called to disable notification
of status change.

This word contains the entry byte count for a
software transmit FIFO maintained by the HSR.

Thi s word contains the insertion pointer for
the software FIFO maintained by the HSR. It
contains the address of the next FIFO
location in which to store a transmit
character.

This word contains the removal pointer for
the software transmit FIFO maintained by the
HSR. It contains the address of the next
transmit FIFO entry to be removed.

This word is used by the HSR as a transmit
state vector. It contains an address of an
HSR transmit routine. The HSR changes this
address as the HSR transmit state changes.

Reserved for TSR/ISR usage.

10.5.3.4 CI401 HSR Long-Distance Extension.

Hex.
Byte

)00

)02

Field
Name

EXTTNR

EXTFLG

Bi t 0

2270512-9701

Description

HSR timer word. This word is counted down,
or decremented, once every 250 milliseconds
until it reaches zero. The ISR is notified
of timer expiration when this value is
decremented to zero. The timer count is set
by calling the HSR routine HTIMER.

This word is used as a bit flag word by the
HSR. The flag definitions are as follows:

Channel transmit halt flag. When this flag

10-39 I/O Subsystem

Bi t 1

DNOS System Design Document

is set to one, the HSR accepts transmit data
from the TSR/ISR until the software FIFO
fills, but does not transmit data on the
communication line. This flag is set to one
by a call to the HSTCTH HSR subroutine. It
is set to zero by a call to the HRTCTH HSR
subroutine.

This flag indicates the mode of the HSR.
When this flag is set to one, the channel is
in a channel reset mode. A call to the HSTCR
HSR subroutine sets this flag to one. Once
in the channel reset mode, a call to the
HRTCR (Reset channel reset mode) HSR
subroutine is required to set the flag to
zero and restore the HSR to normal operation.
When in the channel reset mode, no CI401
interrupts are enabled.

Bit 2-F Reserved.

)04 EXTTMP

)06 EXTSPD

)08 EXTPSL

)OA EXTFLI

)OC EXTFL2

)OE EXTFL3

)10 EXTOVR

)12 EXTFER

I/O Subsystem

This word is used as a temporary storage word
by HSPPSL and HSPSPD subroutines.

This word contains the speed selection code.
It contains the value passed as a parameter
to the HSPSPD subroutine. The contents of
this word are returned by the HSR subroutine
HRPSPD.

This word contains the data format
parameters. It contains the value of the
parameters passed to the HSR subroutine
HSPPSL. The contents of thi s word are
returned to the caller of the HSR subroutine
HRPPSL.

This word contains a receive data mask. The
mask value is set by the HSR subroutine
HSPPSL. The mask value is used by the HSR
receive data processing routine to isolate
the receive data bits.

This word is used as a temporary storage word
by the HSR subroutine HSTCR.

Reserved.

This word is used as a receive overrun error
counter by the HSR.

Thi s word is used as a receive framing error
counter by the HSR.

10-40 2270512-9701

DNOS System Design Document

>14 EXTPER This word is used as a receive 'parity error
counter by the HSR.

10.5.3.5 CI403/CI404 HSR Local Extension.

Hex.
Byte

>00

)02

>04

Field
Name

PDXSMB

PDXSMP

PDXFLG

Bit 0

Bi t 1

Bi t 2

Bit 3

2270512-9701

Description

This word contains the inverted value of the
byte count requested for the long distance
buffer. The DSR initializes this word during
the power-u~ sequence.

This word contains the beet bias address of
the long distance buffer requested by the DSR
during the power-up sequence. The DSR
requests the buffer by calling the system
routine IOGUB.

This byte contains bit flags for the
CI403/CI404 HSR. The flags are defined as
follows:

Transmit in hold. This flag is set to one
whenever one or both of the following
conditions exists: the common transmit FIFO
is near full, or the channel-specific
transmit FIFO is full. This flag bit 0 is
reset whenever all holding conditions have
been satisfied. See the explanation below
for bits 2 and 3.

Reserved.

Controller transmit hold. Whenever the
common transmit FIFO is near full, the
controller issues the halt transfer status
(status 4, substatus 1) to the HSR; this bit
is set to one, and bit 0 is set to one. 'Bit
2 is reset when the Common transmit FIFO is
empty and the controller issues the resume
transfer status (status 4, substatus 2) to
the HSR.

FIFO exhausted transmit hold. Whenever the
HSR FIFO count goes to zero, the HSR sets
this bit to one, sets bit 0 to one, and
enables transmit FIFO empty interrupt. The
HSR resets bit 3 whenever the controller
notifies the HSR that the channel specific
FIFO is empty.

10-41 I/O Subsystem

Bit 4

Bit 5

Bit 6

Bit 7

)05 PDXCHN

)06 PDXFCT

)08 PDXCP1

Bit 0

I/O Subsystem

DNOS System Design Document

Data Character Detect (DCD) notification
flag. This bit is set to one when the
TSR/ISR calls the HSR subroutine HESDCD to
enable notification of DCD status changes.
This bit is set to zero when the HDSnCD
subroutine is called to disable notification
of DCD status changes.

Ring Indicator (RI) change notification flag.
This bit is set to one when the TSR/ISR calls
the HSR subroutine HESRI to enable
notification of RI status changes. This bit
is set to zero when the HDSRI subroutine is
called to disable notification of RI status
changes.

Data Set Ready (DSR) change notification
flag. This bit is set to one when the
TSR/ISR calls the HSR subroutine HESDSR to
enable notification of DSR status changes.
This bit is set to zero when the HDSDSR
subroutine is called to disable notification
of DSR status changes.

Clear To Send (CTS) change notification flag.
This bit is set to one when the TSR/ISR calls
the HSR subroutine HESCTS to enable
notification of CTS status changes. This bit
is set to zero when the HDSCTS subroutine is
called to disable notification of CTS status
changes.

This byte contains the channel number of the
CI403/CI404. It is specified during system
generation and initialized by the system
generation program.

This word contains the byte count of the
available CI403/CI404 channel-specific
transmit FIFO as maintained by the HSR. This
word is not necessarily an accurate
representation of the actual state of the
controller FIFOs.

This word
CI403/CI404
follows:

contains bit
HSR. The

flags for the
flags are defined as

Reset mode. This flag is set to one when the
TSR/ISR calls the HSR subroutine HSTCR to
reset a particular channel. While this bit
is set to one, all controller interrupts are
ignored. This bit is reset to zero when the

10-42 2270512-9701

DNOS System Design Document

Bit 1

TSR/ISR calls the HSR subroutine HRTCR to
allow controller interrupts.

Secondary Data Character Detect (SDCD) change
notification flag. This bit is set to one
when the TSR/ISR calls the HSR subroutine
HESSDC to enable notification of SDCD status
changes. This bit is set to zero when the
HDSSDC subroutine is called to disable
notification of SDCD status changes.

Bit 2-r Reserved.

)OA PDXCP2 Reserved.

)OC PDXCP3 Reserved.

)OE-)24 PDXCP4 Reserved for TSR/ISR usage.

10.5.3.6 CI403/CI404 HSR Long-Distance Extension.

Hex.
Byte

)00

)02

)04

)06

)08

)OA

)OC

Field
Name

EXTTMR

EXTRG3

EXTRG4

EXTRG7

EXTSPD

EXTRO

EXTR7

2270512-9701

Description

HSR timer duration value. This word is
decremented once every 250 milliseconds until
it reaches zero. The TSR/ISR is notified of
timer expiration when this value is
decremented to zero. The timer count is set
by calling the HSR subroutine HTIMER.

This word contains a copy of the ACE register
3 contents for the specified channel.

This word contains a copy of the ACE register
4 contents for the specified channel.

This word contains a copy of the ACE register
7 contents for the specified channel.

This byte contains a copy of the speed code
that is currently programmed in the ACE. If
the TSR/ISR specified an illegal speed then
this byte contains an)FF. The second byte
of the word is reserved.

This word contains a copy of the TSR's RO
whenever the HSR is delaying after a write to
an ACE register.

This word contains a copy of the TSR's R7
whenever the HSR is delaying after a write to
an ACE register.

10-43 I/O Subsystem

)OE EXTRII

DNOS System Design Document

This word contains a copy of the TSR's Rl1
whenever the HSR is delaying after a write to
an ACE register.

10.5.3.7 9902/9903 HSR Local Extension.

Hex.
Byte

)00

)02

)04

Field
Name

PDXSNB

PDXSMP

PDXFLG

Bit 0

Bit 1

Bi t 2

Bi t 3

Bit 4

I/O Subsystem

Description

This word contains the inverted value of the
byte count requested for the long distance
buffer. The DSR initializes this word during
the power-up sequence.

This word contains the beet bias address of
the long distance buffer requested by the DSR
during the power-up sequence. The DSR
requests the buffer by calling the system
routine IOGUB.

This byte contains bit flags for the
9902/9903 HSR. The flags are defined as
follows:

Data Carrier Detect (DCD) State. ~his flag
is set to one when the current state of the
DCD signal is on (logic 1), and is set to
zero when the current state of the DCD signal
is off (logic 0).

Ring Indicator (RI)
to one when the
signal is on (logic
when the cur- rent
off (logic 0).

State. This flag is set
current state of the RI
1), and is set to zero
state of the RI signal is-

Da t a Set Re ad y (D S R) S tat e • Th is f lag iss e t
to one when the current state of the DSR
signal is on (logic 1), and is set to zero
when the current state of the DSR signal is
off (logic 0).

Clear To Send (CTS) State.
to one when the current
signal is on (logic 1), and
when the current state of
off (logic 0).

This flag is set
state of the CTS

is set to zero
the CTS signal is

Data Character Detect (DCD) Notify Flag.
This flag indicates if notification of status
change has been requested. This flag is set
to one when the ~ESDCD HSR subroutine is
called to enable notification of status

10-44 2270512-9701

DNOS System Design Document

Bit 5

Bit 6

Bit 7

)05 PDXCHN

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

2270512-9701

chan~e. This flag is set to zero when the
HnSDCD subroutine is called to disable
notification of status change.

Ring Indicator(RI) Notify Flag. This flag
indicates if notification of status change
has be~n requested. This flag is set to one
when the HESRI HSR subroutine is called to
enable notification of status change. This
flag is set to zero when the HDSRI subroutine
is called to disable notification of status
change.

Data Set Ready (DSR) Notify Flag. This flag
indicates if. notification of status change
has been requested. This flag is set to one
when the HESDSR HSR subroutine is called to
enable notification of status change. This
flag is set to zero when the HDSDSR
subroutine is called to disable notification
of status change.

Clear To Send (CTS) Notify Flag. This flag
indicates if notification of status change
has been requested. This flag is set to one
when the HESCTS HSR subroutine is called to
enable notification of status change. This
flag is set to zero when the HDSCTS
subroutine is called to disable notification
of status change.

This byte
9902/9903
follows:

Reserved.

contains
HSR. The

bit flags for the
flags are defined as

Secondary Data Carrier Detect (SDCD) State.
This flag is set to one when the current
state of the SDCD signal is on (logic 1)~ and
is set to zero when the current state of the
SDCD signal is off (logic 0).

Transmit Shift Register Empty (TSRE) State.
This flag is set to one when the current
state of the TSRE signal is on (logic 1), and
is set to zero when the current state of the
TSRE signal is off (logic 0).

Reserved.

Reserved.

10-45 I/O Subsystem

Bit 5

Bi t 6

Bi t 7

)06 PDXFCT

)08 PDXCP1

)OA PDXCP2

)OC PDXCP3

)OE-)27 PDXCP4

DNOS System Design Document

Secondary Data Character Detect Notify Flag.
This flag indicates if notification of status
c han g e has bee n r e que s ted. Thi s f I a g iss e t
to one when the HESSDC HSR subroutine is
called to enable notification of status
change. This flag is set to zero when the
HDSSDC subroutine is called to disable
notification of status change.

Transmit Shift Register Empty (TSRE) Notify
Flag. This flag indicates if notification of
status change has been requested. This flag
is set to one when the HESTSR HSR subroutine
is called. This flag is set to zero when the
HDSTSR subroutine is called.

Reserved.

This word contains the entry byte count for a
software transmit FIFO maintained by the HSR.

This word contains the insertion pointer for
the software FIFO maintained by the HSR. It
contains the address of the next FIFO
location in which to store a transmit
character.

This word contains the removal pointer for
the software transmit FIFO maintained by the
HSR. It contains the address of the next
transmit FIFO entry to be removed.

This word is used by the HSR as a transmit
state vector. It contains an address of an
HSR transmit routine. The HSR changes this
address as the HSR transmit state changes.

Reserved for TSR/ISR usage.

10.5.3.8 9902/9903 HSR Long-Distance Extension.

Hex.
Byte

)00

)02

Field
Name

EXTTMR

EXTCDY

I/O Subsystem

Description

HSR timer word. This word is decremented
once every 250 milliseconds until it reaches
zero.' The ISR is notified of timer
expiration when this value is decremented to
zero. The timer count is set by calling the
HSR routine HTIMER.

HSR timer word. This word
approximately once every

10-46

is decremented
16 milliseconds

2270512-9701

DNOS System Design Document

)04 EXTCST

)06 EXTFLG

Bit 0

Bit 1

Bit 2

Bit 3

until it reaches zero. The EXTTMR
then decremented, and this word is
from EXTCST.

word is
restored

HSR timer word. This word is loaded at
initial DSR power-up entry to be used to
determine how many 9902/9903 timer interrupts
are required to time 250 milliseconds.

This word is used as a bit flag word by the
HSR. The flag definitions are as follows:

Channel transmit halt flag. When this flag
is set to one the HSR accepts transmit data
from the TSR/ISR until the software FIFO
fills, but does not transmit data on the
communication line. This flag is set to one
by a call to the HSTCTH HSR subroutine. It
is set to zero by a call to the HRTCTH HSR
subroutine.

This flag indicates the mode of the HSR.
When thi s flag is set to one the channel is
in a channel reset mode. A call to the HSTCR
HSR subroutine sets this flag to one. Once
in the channel reset mode, a call to the
HRTCR (Reset channel reset mode) HSR
subroutine is required to set the flag to
zero and restore the HSR to normal operation.
When in the channel reset mode, no 9902/9903
interrupts are enabled.

UART Internal Loopback Enabled Flag. This
flag is set to one when the TSR requests that
the 9902/9903 chip be placed in UART loop back
mode. This bit is set to one by a call to
the HSTUIL HSR subroutine. It is set to zero
by a call to the HRTUIL HSR subroutine.

Transmit Break Enabled Flag. This flag is
set to one when the TSR requests that the
9902/9903 chip transmit a break condition.
This bit is set to one by a call to the HSTTB
HSR subroutine. It is set to zero by a call
to the HRTTB HSR subroutine.

Bit 4-F Reserved.

)08 EXTTMP

)OA EXTTHI

2270512-9701

This word is used as a temporary storage word
by the HSR.

This word is used as a temporary storage word
by the HSR.

10-47 I/O Subsystem

)OC EXTSPD

)OE EXTPSL

)10 EXTLDC

)12 EXTTYP

)14 to)BF

DNOS System Design Document

This word contains the speed selection code.
It contains the value passed as a parameter
to the HSPSPD subroutine. The contents of
this word are returned by the HSR subroutine
HRPSPD.

This word contains the data format
parameters. It contains the value of the
parameters passed to the HSR subroutine
HSPPSL. The contents of this word are
returned to the caller of the HSR subroutine
HRPPSL.

This word contains the CRD instruction
required to load the 9902/9903 DART with
transmit data for the communications line.

This word is set up at initial DSR entry on
power-up, to define the hardware interface
type as follows:

Value
o
2
4
6
8

)A

Port
990/10A 9902
CI402 9902
CI4219902
CI422 9902
S300 Base Station 9902
CI421 9903

Device Type
)0007
)0008
)0009
)OOOA
)0006
)0030

These words are reserved for future HSR
development.

10.5.3.9 931/940 TSR/ISR Local Extension.

Hex.
Byte

)00

)02

)04-)OD

)OE

Field
Name

PDXSMB

PDXSMP

PDXCP4

I/O Subsystem

Description

This word contains the inverted value of the
byte count requested for the long distance
buffer. The DSR initializes this word during
the power-up sequence.

This word contains the beet bias address of
the long distance buffer requested by the DSR
during the power-up sequence. The DSR
requests the buffer by calling the system
routine IOGUB.

HSR Information.

System generation puts in this word the
location of RO of the attached printer if one
is present. At power-up time, this is moved

10-48 2270512-9701

DNOS System Design Document

>10 PDXCP5

>12 PDXCP6

Bit 0

Bi t 1

Bi t 2

Bit 3

Bit 4

Bi t 5

Bi t 6

Bi t 7

Bit 8

Bit 9

2270512-9701

to the remote extension,
as the TSR's copy of the
flags.

and the word is
IRB extended

used
user

System -generation puts in this word the speed
of the communication line and a flag
indicating if the line is a dial-in line. At
power-up time, this is moved to the remote
extension, and the word is used as the
current cursor position by the TSR.

This word is a TSR flag word.

Terminal Type.
the terminal
is a 940.

This flag is set to one if
is a 931 and set to zero if it

Re adS c he d u Ie. Th i s f I a g iss e t to _ 0 n e wh en
the TSR requests to be resecheduled upon
receipt of a read character.

Printer Has Channel. This flag is set to one
when the printer has control of the channel.

Printer Wants Channel. This flag is set to
one when the printer requests control of the
channel, and the CRT currently has control of
the channel.

CRT Has Channel. This flag is set to one
when the CRT has control of the channel.

CRT Wants Channel. This flag is set to one
when the CRT requests control of the channel,
and a printer currently has control of the
channel.

Cursor Is On. This flag is set to one when
the cursor is on.

Cursor Not Eeen Moved. This flag indicates
that the cursor is not physically at the
location that the internal pointer says it is
located. This is to avoid sending
unnecessary commands.

Graphics Flag. This flag indicates that the
command has been made to the terminal to be
in graphics mode.

Graphics Input Flag. This flag indicates
that the t~rminal has notified the host that
input from the terminal will be in graphics

10-49 I/O Subsystem

)14

)16-)IA

)IC

)IE

)20

)22

DNOS System Design Document

mode.

Bit 10 Reserved.

Bit 11 Clear Flag. This flag indicates that the
screen has been cleared and nothing has yet
been sent to it. This is to avoid sending
unnecessary commands.

Bit 12 Cursor is Blinking. This flag is set to one
when the cursor is blinking.

Bit 13 Initialized Flag. This flag indicates that
the terminal has been initialized.

Bi t 14 Extent Flag. This flag
command has been made
define the end of the
insert and delete.

indicates that the
to the terminal to
current field for

Bit 15 Insert Flag. This flag
TSR is in insert mode.

indicates tha t the

PDXCP7 This word is used as
address by the TSR.

an internal buffer

PDXCP7-A These words are temporary save locations
the TSR.

for

PDXCPB

PDXCPC

PDXCPD

PDXCPE

Bit 0

Bi t 1

Bi t 2

Bi t 3

This word contains the current attribute sent
to the terminal.

This word contains the
optimization routine.

counter for the

This word contains an internal TSR counter.

This word is an opcode 15 flag.

Pass Through. This flag is set to one when
the data is to be sent and received with no
conversion. The only characters that are
acted upon are DCI and DC3 (ready/busy).

ETX Flag. Terminate a Pass Through
receipt of an "ETX" character.

Read on

ESC Flag. Terminate a Pass Through Read on
receipt of an "ESC)" character string.

Extended Event Flag.
extra 940 characters

This flag allows
to be entered.

the

I/O Subsystem 10-50 2270512-9701

DNOS System Design Document

)24

Bit 4 Reserved.

Bit 5 Special Attribute Flag. This flag is set to
one when the the TSR will allow "SI" , "SO",
or "ESC 4" to be sent to the terminal from a
user buffer.

Bit 6 Disable Attributes. This flag means that no
attributes are to be sent to the terminal by
the TSR.

Bit 7 Reserved.

Bit 8 Modified Flag. This flag indicates that if
any data has been modified in a field, the
task should be notified.

Bit 9 Extended Character Validation. This flag
indicates that the character validation is to
be handled before the character is echoed.

Bit 10 Null Truncation flag.

Bits 11-15 Reserved.

PDXCPF This word contains the current state of input
as follows:

Value Meaning
o Ignore input and do not produce output.

4 Accept input and produce output.

10.5.3.10 931/940 TSR/ISR Long-Distance Extension.

Hex.
Byte

)00-)8F

)90

)91

)92

)94

Field
Name

VDTFIL

VDTEVT

VDTDEF

VDTPSR

2270512-9701

Description

HSR Words.

This byte contains the current fill
character.

This byte contains the event character that
terminated the read.

This word contains the sequential
position of the beginning of the
field.

cursor
current

This word is a temporary location for the
printer portion of the TSR.

10-51 I/O Subsystem

)96 VDTPTP

)97

)98

)9A

)9C

Bi t 0

Bi t 1

Bit 2

Bit 3

Bi t 4

Bi t 5

Bit 6

I/O Subsystem

DNOS System Design Document

This byte contains the current printer type
as follows:

Value Meaning
0 150 cps

1 75 cp s

2 40 cps

3 20 cps

4 300 cps

Rese rved.

Run-time location for speed in PDXCPS.

Mask to determin~ if
connected.

Value Meaning
)AOOO DCD and DSR

)2000 DSR only

Remote Flags:

Reserved.

the terminal is

Blinking. This flag is set if blinking is
allowed for the terminal (940 only).

Wait for Positive Feedback. This flag is set
when a printer buffer has been sent and the
TSR is waiting for terminal acknowledgement
(931 only).

Schedule on Positive Feedback. This flag is
set when a printer buffer has been sent and
the TSR wants to be scheduled when the
terminal acknowledges the buffer (931 only).

Terminal has started power-up,
completed yet.

but has not

An immediate open has occurred on the CRT,
the next close will be an immediate close.

An immediate open has occurred on the
printer, the next close will be an immediate
close.

10-52 2270512-9701

DNOS System Design Document

Bit 7-D Reserved.

Bit E

Bit F

)9E VDTERR

)AO VDTOVR

)A2 VDTPAR

)A4 VDTFRM

)A6 VDTPTR

)A8 PRTTIM

)AA VDTEDL

Bi t 0

Bit 1

Bit 2

Bi t 3

Bit 4

Bit 5

Bit 6

Bit 7

Bi t 8

Bit 9

Bit A

Bit B

Bit C

Bi t D

2270512-9701

ESC Found. This flag indicates that an ESC
was just found in a string in the TSR.

Rese rved.

This word is used to pass an error code from
the ISR to the TSR.

This word is a counter of the number of
overrun e-r ror s detected.

This word is a counter of the number of
parity errors detected.

This word is a counter of the number of
framing errors detected.

Run-time location for printer address in
PDXCP4.

Timer for printer delay (940 only).

This word is an opcode 15 Edit Flag.

Erase Field is an Event.

Right Field is an Event.

Cursor Left out of a Fi,eld is an Event.

Tab is an Event.

Reserved.

Skip is an Event.

Home is an Event.

Return is an Event.

Erase Input is an Event.

Reserved.

Delete Character is an Event.

Insert Character is an Event.

Cursor Right out of a Field is an Event.

Enter is an Event.

10-53 I/O Subsystem

Bi t E

Bi t F

)AE STATBD

)BO STATGR

)B2 STATFN

DNOS System Design DDcument

Left Field is an Event.

Rese rve d.

This word contains the state of the board as
follows:

Value Meaning
0 Board disconnected.

4 Board connected.

8 Board waiting on time ou t.

12 Board waiting on ring.

16 Board is in DSR diagnostic

This word contains the
graphics.

state of

Value Meaning
o Input is not graphics.

4 Input is graphics.

Thi sword
mapping.

Value
o

contains the

Meaning
Regular keys.

4 ESC was received.

8 Aid was received.

state

12 Pass Through Mode.

16 DSR Diagnostic Mode.

20 Read Status Mode.

of

mode.

the input

the key

10.5.3.11 Serial Printer HSR Local Extension.

Hex.
Byte

)00

)02

Field
Name

PDXSMB

PDXSMP

I/O Subsystem

Description

This word contains the inverted value of the
byte count requested for the long distance
buffer. The DSR initializes this word during
the power-up sequence.

This word contains the beet bias address of

10-54 2270512-9701

DNOS System Design Document

)04 -)OF

)10 PDXCP4

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bi t 5

Bit 6

the long distance buffer requested by the DSR
during the power-up sequence. The DSR
requests the buffer by calling ~he system
routine IOGUB.

Reserved for HSR use.

This byte contains bit flags for
printer HSR. The flags are
follows:

the serial
defined as

Reserved.

This bi t , when set to one, indicates tha t a
write SCB is being processed by the TSR.

Rese rve d.

This bit, when set to one, indicates tha t' a
non-write command is being processed by the
TSR.

This bit, when set to one,
data transmission to the
stopped because the data
signal is not present.

indicates that
device has been

set ready (DSR)

This bit, when set to one, indicates that
data transmission to the device has been
stopped due to reception of a DC3 character
from the device.

This bit, when set to one, indicates
KATAKANA mode select character is
transmitted.

that a
being

Bit 7 This bit, when set to one, indicates that the
device supports extended print (lower case
letters).

Bit 8 Reserved.

Bit 9 This bit, when set to one, indicates that the
ISR section has detected a condition that
requires scheduling of the TSR section.

Bit 10 Reserved.

Bit 11 Reserved.

Bi t 12 This bit, when set to one, indicates
TSR is not able to operate due
condition (hardware interface not

that the
to Some
present,

2270512-9701 10-55 I/O Subsystem

)12

)14

)16

10.5.3.12

Hex.
Byte

)00 -)8F

)90

)92

)94

)96

)98

)9A

)9C -)BF

DNOS System Design Document

requested baud rate
hardware interface,
on) •

not supported by the
power up failure, and so

Bit 13 This bit, when set to one, indicates
initial power-up has occurred.

that

Bit 14 Reserved.

Bit 15 Reserved.

PDXCP5

PDXCP6

PDXCP7

Serial

Field
Name

RTEXTO

RTEXT 1

RTEXT2

RTEXT3

RTEXT4

RTEXT5

This word contains the transmit and receive
baud rate word. This word is initialized by
sysgen or the MVPC command.

This word contains the operation pa rame te r
word for the hardware interface.

This word contains the total error count seen
by the TSR (the count of all parity errors,
overrun errors, framing errors, and so on).

Printer HSR Long-Distance Extension.

Description

These words are reserved for use by the HSRs.

This word is a count of the number of receive
break conditions sensed.

This word is a count of the number of framing
errors received.

This word is a count of the number of
errors received.

parity

This word is a count of the
receiver overrun errors received.

number of

This word is a count of the number
errors received.

of other

This word is a count of the number of illegal
UART interrupts received.

These words are reserved for future ISR/TSR
use.

I/O Subsystem 10-56 2270512-9701

DNOS System Design Document

10.6 I/O UTILITY (IOU)

The initial processing of a utility request is similar to that
for device I/O. The SVC is decoded by RPROOT, which passes
control to IOPREP, the I/O preprocessor. IOPREP passes control
to the I/O Utility preprocessor, IUPREP, when it recognizes an
IOU SVC.

The IOU preprocessor buffers the call block and any extensions to
the call block as required by the individual subopcodes. Call
block extensions include pathname, key definitions, and
parameters. The preprocessor checks for illegal subopcodes and
mapping errors during the buffering process. BRBs for SVCs that
do not require an access name (or whose access name begins with a
period) are placed directly on the input queue for the IOU task.
Other BRBs are first queued for the Name Manager task for
resolution of any logical names. After logical name resolution, I
Name Manager places the BRB on the input queue for the IOU task.

The IOU task has a main driver that calls other routines to
process the individual IOU subopcodes. The IOU task consists of
a root segment and three or four system overlays depending upon
the sysgen options chosen. Assign LUNa, Release LUNa, and Delete
File SVCs are handled by code in the IOU root segment. Create
File SVCs are handled by code residing in one overlay; Add Alias,
Delete Alias, and Rename ~file in a second overlay; and the
remaining IOU SVCs are handled by code in the third overlay. A
fourth overlay to handle security is included if the security
option was chosen during sysgen. File security will be discussed
in a separate section. The main driver, a stack, and subroutines
required by all overlays are included in the IOU root segment.

When IOU is activated, it dequeues an entry from its queue and
processes the entry. If the IOU SVC processor that handles the
SVC resides in an overlay, the overlay is loaded into memory
(unless it already resides in memory). The SVC processor is
called to perform the required operations; when it complet~s,
control is returned to the IOU main driver. The processing of
the SVC may require that the BRB be queued for processing by a
channel owner task. If so, the request is passed to the IPC
preprocessor for routing to the channel owner.

The IOU main driver takes the appropriate exit path after the SVC
processor has handled the SVC. If the request was queued to a
channel owner, the BRB will be unbuffered later, after it has
been processed by the channel owner and placed back on the IOU
input queue by IPC. If the SVC required the creation of a job
temporary file, the BRB is placed on the input queue for Name
Manager for final processing and unbuffering. If neither of
these special conditions exists, the BRB is queued for

2270512-9701 10-57 I/O Subsystem

DNOS System Design Document

unbuffering to the calling task. IOU then requests the next
entry from its queue. If the input queue is empty, IOU suspends,
awaiting queue input.

The range of IOU operations includes those that process SVC
requests to create and delete files, assign and release LUNOs,
rename files, protect and unprotect files, add and delete aliases
for filenames, and create and delete channels. IOU also
processes requests for special operating system services such as
releasing LUNOs in another job.

10.6.1 Configurability.

IOU is configurable during sysgen when the user specifies the
features desired. The modules to process these features are then
selected for inclusion in the IOU task. The following feature
levels can be selected:

* Dynamic KIF creation and deletion

* File access security

10.6.2 Memory Layout.

IOU runs as a system task in map file 1.
are used as follows:

Its three map segments

* The first segment contains the system root.

* The second segment
contains either the
file management table

changes during processing
user JCA, the system job JCA,
area (FMT).

* The third segment contains the IOU code.

10.6.3 Structures Maintained by IOU.

and
or a

The file management table areas (FMTs) are memory resident
segments, the number and size of which are defined during sysgen.
The FMT is used primarily for in memory representation of files
currently in use. One may monitor the usage of the FMT by using
the Execute Performance Display (XPD) command. If the system is
approaching maximum utilization, the error message INSUFFICIENT
FILE MANAGEMENT TABLE AREA AVAILABLE will be issued. In any
case, if it is determined that more table area is needed, the
Modify System Table (MST) command may be issued to increase the
FMT size up to 256K bytes.

I/O Subsystem 10-58 2270512-9701

DNOS System Design Document

The following structures are built by or used by IOU, and they
are found in several different areas, as noted in the
descriptions. Detailed descriptions of the structures are shown
in the section on data structure pictures.

* Directory overhead record (DOR) - Disk structure that
shows the number of files in a directory, the number of
available entries, the number of temporary files, and
several other pieces of miscellaneous directory data.

* File descriptor record (FDR) Disk directory record
that describes the name, location, and characteristics
of a disk file and the ID of the user who created the
file.

* Alias descriptor record (ADR) Disk structure that
contains an alternate pathname component for some file
pathname and points to the FDR for which this name is an
alias.

* Key descriptor record (KDR) Disk structure that
describes the keys of a key indexed file; a KDR for a
multifile KIF set contains additional fields to detect
illegal attempts to combine files.

* Channel descriptor record (CDR) - Disk directory record
that describes the name and characteristics of an IPC
channel. The CDR is located in the directory containing
the FDR of the program file that contains the channel
owner task, and it contains the record number of that
FDR.

* File structure common (FSC) - Template to define the FDB
and FCB variants.

* File directory block (FDB) - A single node of the in­
memory directory tree structure located in the file
management table areas. Provides tree linkage and the
information required to perform direct disk I/O to a
directory. An FDB is created for each pathname
component on an assign or attach operation. The FDB is
a variant of the FSC structure.

* File control block (FCB) - In-memory equivalent of the
FDR, located in the file management table area. The FCB
is built for only the last component of a file pathname.
The FCB points to its corresponding FDB. The FCB is a
variant of the FSC structure.

* Resource ownership block (ROB) - The ROB represents a
job's ownership of a file resulting from an Attach
Resource operation. The ROB points to an FCB. ROBs are
always built in the JCA and are chained in a list

2270512-9701 10-59 I/O Subsystem

DNOS System Design Document

anchored by JITROB.

* Channel control block (CCB) - In-memory equivalent of a
CDR, built on an Assign LUNO to an IPC channel. CCBs
contain a pointer to the File Descriptor Packet (FDP) of
the program file containing the channel owner task and
the eight-character name of the last component of the
channel pathname. CCBs for global channels are built in
the STA, and are anchored from CCBSTR in NFPTR. CCBs
for job-local and task-local channels are chained in a
single list anchored from JITCCB in the JCA. The CCB
points to the JSB and TSB of the owner task.

* Logical device table (LDT) The LDT includes a
description of an I/O resource, usage flags, ownership
information, and file rights. Job-local and task-local
LDTs are built in the JCA and are anchored from JITLDT
and TSBLDT, respectively. Global LDTs are built in the
STA and are anchored from LDTLST in NFPTR. LDTRLK
points to a CCB, FCB, or PDT, depending on the LUNO
assignment.

* Resource privilege block (RPB) - The RPB is a structure
used to control access privileges for resources. The
RPB is built on each Assign LUNO to a device, file, or
IPC channel. The RPB contains the open access privilege
flags (2 bits), the address of its associated LDT, and
the JSB address of the job that assigned the LUNO (the
JSB field is zero for global LUNOS). An RPB for a
device is chained to the PDT, an RPB for a channel is
linked to the CCB, and an RPB for file is chained to the
FCB. The RPB contains currency information for LUNOs
assigned to files.

10.6.3.1 Directory Tree Construction.

In DNOS, an FDB is built in the file management table area for
each component of a file pathname, and an FCB is built there for
the last component of the pathname.

Each disk PDT extension for a file contains the address of the
VCATALOG FDB and the SSB address of the file management table
area in which it resides. The VCATALOG entry is placed there by
IPL for all devices which are on line during IPL. They are
placed there by Install Volume (IV) otherwise. IOU maps this
area into its second segment to begin the tree search. Each
pointer to a node of the tree contains the SSB address of the
file management table area where that node resides. Since each
FDB could potentially reside in a different table area, IOU must
be sure that it has the correct segment mapped in before
following an FDB pointer.

I/O Subsystem 10-60 2270512-9701

DNOS System Design Document

When a new node is to be added to the tree, an attempt is made to
allocate it in the same table area as its parent. If no space
remains, other file management table areas are checked, if any
exist. FMSTR in NFPTR contains the SSB address of the first file
management table area, and FMEND contains the SSB address of the
last. The SSBs for the table areas are chained together. IOU
maps in each successive table area and attempts to obtain space
for the FDB. The requester is given an error if no table space
is available. When linking a new FDB into the tree, IOU must be
sure it has the correct table mapped in when changing parent and
sibling FDB linkages.

For files to which global LUNas are assigned, the LDT is built in
the STA.

10.6.3.2 LDT Structure.

The LDT is composed of two parts built by IOU when a LUNa is
assigned to an I/O resource. These parts are the LDT and an RPB.
The LDT is linked into the LDT chain. The RPB for a file is
allocated in the same segment as the FDB of the corresponding
node. It is impractical to chain together all LDTs assigned to a
file because the LDTs may be distributed to various JCAs. The
RPB chain is the chain that can be traversed to find all users of
a given resource. Figure 10-13 shows typical LDT chains for a
task that is associated with a station and a task that is not
associated with a station.

When a LUNa is opened, IOPREP searches the RPB chain to check for
access privilege conflicts. Each RPB contains a two-bit field
representing its access privileges and a flag indicating an open
LUNa. A privilege conflict could occur with other open LUNas.
If no conflicts arise, the access privileges are recorded in the
RPB and it is marked open.

The RPB contains currency information (including the current file
index set up by file management for concatenated files).
Currency for any LUNas assigned to a file may be updated by File
Management as necessary by updating the currency in the RPB.
(Note that this is not the same as the KIF currency informati~n.)

Parameters may be included in the parameter field of an IOU
operation. The following parameters may be included, organized
in the sublists shown. See the format of parameters described in
the Name Management paragraph in the section on Special SVCs. I

2270512-9701 10-61 I/O Subsystem

Sublist
Type

00

02
04
05

Parameter
Number

03
04
05
06
07
08
09
OD
OE
OF
10
11
12
14
15
16

Pa rame ter
Description

DNOS System Design Document

Job access level
File type
Job local temporary file
Initial file allocation
Secondary allocation
Logical record length
Physical record length
Expandable
Forced write
Blank suppressed
Max /I of tasks
Max /I of procedures
Max /I of overlays
Max /I of directory entries
Default physical record size
KIF definition block
User ID parameter (see UIP template)
Modify file name security option
Continue LAN session on release Luno

Each of the parameters is optional and mayor may not have been
specified by the user. If a system parameter is chosen (those
with a sublist # of 0), the parameter overrides what is given in
the call block. System parameters are used to communicate
information between NAMMGR and IOU. They are not intended for
general use. Parameters 2, 4 and 5 are described in more detail
in the SVC manual.

I/O Subsystem 10-62 2270512-9701

DNOS System Design Document

System Table Area

I LDT LDT LDT I
I +-------+ +-------+ +-------+ I

------) I • -------) I • -------). • • --) I 00 I I
I I I ------- I I ------- I I ------- I I
I I Iglobal I Iglobal I Iglobal I I
I I ILUNO nIl ILUNO n21 ILUNO nnl I
I I +-------+ +-------+ +-------+ I
I *---*
I Job Communications Area

-----------1---
LDT LDT LDT I

+------+ +-------+ +-------+ I
1---) I • -----------) I • -----. • .-) I .----)--1
I 1------1 1-------1
I I job I PDT I job I
I Ilocal--)+----+ I local I
I ILUNO 01 IDUMYI ILUNO nIl
I +------+ +----+ +-------+
I

1-------1
I job I
I local I
ILUNO nnl
+-------+

task A - at a station 1---<-----
TSB I

+-----+ I
I I LDT LDT LDT I
I I +------+ +-------+ +-------+ I
I .-----)1 ·------)1 .---- •••)1 .----)-1
I I I ------ I I ------- I 1-------1
+- - - - - + I t ask I I t ask I I t ask I

Ilocal--- Ilocal I Ilocal I
ILUNO 01 I ILUNO nIl ILUNO nnl
+------+ I +-------+ +-------+

I PDT
I +-------+

task B - not at a --------------) I for I
station Istationl

TSB +-------+
+-----+
I I LDT LDT
I I +-------+ +-------+
I .-----)1 .-----. • ·)1 .----)------------)-------
I I I ------- I
+-----+ Itask I

Ilocal I
I LUNO nIl
+-------+

1------ I
I task I
I local I
ILUNO nnl
+-------+

Fig u reI 0 - 1 1 L D T Ch a ins

2270512-9701 10-63 I/O Subsystem

DNOS System Design Document

10.6.4 Details of IOU Processing.

IOU processing occurs in a number of modules. Those described
here include the preprocessor, IUPREP, the IOU task, and a number
of modules that support special functions.

10.6.4.1 IOU P~eprocessor (IU1REP).

IUPREP runs in map file 0 as XOP-level code. The call block is
buffered according to the format required by each subopcode. IOU
processes the following subopcodes. (Starred codes are NOT
documented in user manuals; they are to be used only by operating
system tasks.)

90 Create File
91 Assign LUNO to Pathname
92 Delete File
93 Re lease LUNO from Pathname

* 94 Assign Diagnostic Device
95 Rename File (Assign New Filename)
96 Unprotect File
97 Write Protect File
98 Delete Protect File
99 Verify Pathname
9A Add Alias
9B Delete Alias
9C Define Forced Write Mode
9D Create IPC Channel
9E Delete IPC Channe 1

* AO Attach Resource

* Al Detach Resource

* A3 Detach Resource by Number

* A4 Modify FDR Bit

* AS Release LUNO in Another Job

* A6 Assign System LUNO FF

* A7 Release File Structures

* Not dncumented to users.

Pathname characters must be in the following ranges to allow for
international character support by DNOS:

)24,)28,)29,)2E,)30 through)39,)41 through)SA,
)61 through)7A (standard English pathnames)

)SB through)SD (European characters)

)A6 through)DF (Katakana characters)

Pathname length is checked for all subopcodes that have a
pathname. If the length is zero or is greater than 48, error
code)92 (Bad Pathname Syntax) is set in the user call block, and
an exit is made to RPRTNE in RPROOT.

I/O Subsystem 10-64 2270512-9701

DNOS System Design Document

The module IUVRFY is used to verify pathname syntax. It can be
linked with any code that performs pathname verification. When
the routine is called, register 1 must have the address of the
buffer containing the pathname. The buffer has the length of the
pathname in its first byte. Register 10 must be a seven word
buffer to be used as a stack by IUVRFY. Register 0 will be
modified by IUVRFY, but no other registers of the calling code
will be modified. If the pathname is correct in syntax, register
o receives a value)0000. If the pathname is incorrect, register
o receives)9200.

There are two entry points in IUVRFY. IUVPND is used if the
pathname can contain both upper and lower case letters, numerals,
the dollar sign, periods, left and right parentheses around the
last pathname element, and the pound sign(#). The katakana
character set and special European characters are also permitted.
The entry point IUVLET is used if the pound sign is not permitted
in the pathname. Entry to the routine is via a branch and link
(BL) to IUVPND or IUVLET, with a data word following the BL
instruction containing the return address for error conditions.

The IOU preprocessor defines an RDB that specifies the buffering
of the standard IOU call block. IUPREP builds RDB expansions
dynamically to specify additional buffering as follows:

* If the subopcode requires a pathname, it is set up to be
buffered in the STA along with the call block, with the
pathname pointer placed in the BRB.

* A flag in IRBFLG indicates whether the IRB parameter
pointer is valid on Assign LUNO operations. If it is
valid, the parameter list is buffered into the caller's
JCA and the parameter pointer is set in the BRB. The
use of parameters on Assign LUNO is for the operating
system only and is not documented in user manuals.

* If the utility flags specify KIF, either of
following may apply:

If the subopcode is)91 (Assign Luno) and either
the temporary file bit or the autocreate bit is
set, buffer the keys to the STA and set a pointer
in the BRB.

If the subopcode is)90 (Create File), buffer the
keys to the STA and set a pointer in the BRB.

the

A call is issued to the
RPBUF, to perform the
expansion definitions.

request processor buffering routine,
buffering as defined by the RDB and RDB

BRBs for all subopcodes that have pathnames are
Name Manager queue, unless the first character of

2270512-9701 10-65

placed on the
the pathname is

I/O Subsystem

DNOS System Design Document

a period. In the last case, the BRB is placed directly on the
queue for the IOU task.

Name Manager checks to see if the access name is a logical name.
If so, the true pathname(s) are buffered into the STA, and the
buffered pathname pointer is reset. Name Manager may add
parameters to the IRB.

If parameters exist on an Assign LUNO, they are buffered into the
STA, the IRB parameter pointer is set, and the IRB flag is set
indicating that the parameter pointer is valid.

10.6.4.2 Initial Processing in the IOU Task.

If the IRB flag indicates that the parameter pointer
IUPRM is called to process the parameter list.

is valid,

IUPRM is a table-driven module. Each parameter has an associated
parameter ID. The parameter ID is used as an index into the
table of subroutine entry points. Each subroutine translates a
parameter from Name Manager format to the call block format and
places the parameter in the correct position of the call block.
(See the paragraphs on name management for the format of a
parameter list.) For parameters that have no place in the IRB,
the parameter (or its address) is saved in the IOU address space
for later processing.

10.6.4.3 Channel Operations.

In a Create Channel operation, the channel pathname must be
identical to that of the program file containing the owner task,
except for the last component. For example, for a program file
named .DIRECT.PROGFILE, a valid channel pathname is
.DIRECT.CHANNEL. If the SVC call block specifies LUNO 0 as the
program file LUNO for the owner task, IOU assumes that the owner
task resides on program file .S$SHARED. The SVC returns an error
if the owner task is the owner of an existing channel with
different scope or if the specified scope is task local and the
owner is already the owner of an existing task-local channel.

The SVC causes a CDR to be built in the same directory as the FDR
for the program file. The CDR contains the channel description,
the installed ID of the owner task, and the record number of the
FDR for the program file. The CDR is similar to an ADR and is
linked into the chain of ADRs (that is, each CDR or ADR contains
the record number of the next CDR or ADR). The CDR can be
protected from an accidental Delete Channel operation. The
channel access name can be specified in the delete-protect and
unprotect I/O operations. When a program file is deleted, its
CDRs and ADRs are also deleted. Only the delete-protect flag for
the program file is checked when the program file is deleted.
See the section on data structure pictures for details of the ADR
and CDR.

I/O Subsystem 10-66 2270512-9701

DNOS System Design Document

In a Delete Channel operation, the CDR for the specified channel
name is deleted. The program file containing the owner task is
not affected.

Channel LDTs have a flag to indicate that they are assigned to a
channel. The LDT points to the CCB. The LDT shows the default
resource type and type flags carried in the CCB. Each time a
LUNO is assigned to a channel, the LUNO count in the CCB is
incremented. The count is decremented as LUNOS are released, and
the CCB is deleted when the count equals zero.

IOU cannot distinguish an Assign to a channel from an Assign to a
file until the CDR is read. After it is read, an FDB and FCB are
created for the program file of the owner task. The Assign
causes the creation of the CCB and the bidding of the owner task
(unless the relevant structures already exist). The"CCB contains
the eight-character name of the last pathname component for the
channel. After an owner task is bid, the run-time ID is used to
search the TSB list for the TSB address of the owner task. The
calling job JSB address and owner task TSB address are placed in
the CCB. Each CCB created by an Assign points to an FDP of the
program file containing the owner task. To search for an
existing CCB, IOU searches for a CCB with an FMT,FCB pair that
matches the desired program file FMT,FCB pair. This indicates
that the owner task came from the same program file. The
installed ID of the owner task must match that of the owner task
of the channel to which the caller is assigning; a match on the
last pathname component for the channel is also required.

To establish a global channel, the owner task must be running and
issue an Assign to the channel. The CCB is built in the STA, and
subsequent Assigns to the channel cause the creation of LDTs that
point to this same CCB. Any requester Assigns that precede the
owner's Assign will receive errors. The owner of a global
channel is identified by its installed ID and the value for
TSBFMT and TSBFCB, the description of the program file from which
the task was bid.

The first Assign to a job-local channel causes a CCB to be built
in the caller's JCA. The owner task is bid by IOU in the
caller's job via the SVC option that allows a task to be bid in a
different job. Subsequent Assigns to the same channel use the
same CCB and owner task.

For task-local channels, a CCB is created and an owner task is
bid on each Assign to the channel (excluding Assigns by the owner
task). IOU must match up the owner task's Assign with the
correct CCB, which was previously created. An error is returned
if the owner is the first to assign to a task-local channel.

During initial IOU processing of an Assign to a channel for which
the owner processes Assigns, an LDT flag is set to indicate that
the LDT is nonusable. The address of the LDT is placed in the

2270512-9701 10-67 I/O Subsystem

DNOS System Design Document

BRO, and a BRO flag is set to indicate that IOU has partially
processed this request. IRBSID (session ID) is cleared. An
NFMAPO call is issued to the IPC pre-processor to transmit the
BRB to the owner task. Parameters associated with this call are
passed to the owner task along with the call block.

After the owner task processes the Assign, IPC returns the BRB to
the IOU queue. The BRO flag tells IOU that the request has
already been processed. The LDT address is obtained from the
BRO. If the IRB error code is nonzero, the CCB LUNO count is
decremented, and the LDT is released. If no error occurred, the
LDT is completed. The resource type is placed in the LDT, and
the nonusable flag in the LDT is cleared.

The LDT is built before the owner processes the Assign because
the number being assigned must be checked for conflicts before
owner task processing. In addition, while the owner is
processing the Assign, it must be ensured that no other task
assigns the same job-local or global LUNO.

10.6.4.4 Concatenated Files and Multifile Sets.

FCBs for concatenated files are linked together via pointers in
the FCBs. The FCBs are flagged as being members of a
concatenation, and the first FCB of the set contains th~ number
of files in the concatenation. Concatenated files may be shared
as a set. IOU provides error checking to prevent concurrent use
of individual files of a set. This provides protection against
unanticipated changes in the structure of the concatenated file
set. (For example, this prevents another task from changing the
end-of-medium on the second of three concatenated files.)

A zero in the first byte of the pathname indicates that multiple
pathnames are present. The second byte contains the number of
pathnames. Only Name Manager can provide a pathname in this
format, because the IOU preprocessor disallows a zero-length
pathname. The Name Manager generates a pathname when processing
a logical name for the concatenated file.

IOU builds an FCB for each file of a concatenated set. An error
is returned if the files are special usage files or if not all of
the files are of the same file type. If LUNOS are assigned to
any of the individual files, an error is returned. The FCBs are
flagged and linked, and the number of files is placed in the
first FCB. An RPB is built and linked to the first FCB. Access
privileges for concatenated files apply to the set of files, not
to each individual file. Open processing checks access
privileges for the set of files by searching the RPB chain for
the first FCB only.

On an attempt to share a concatenated set, IOU provides error
checking. IOU checks to see that the same number of files is
specified, and that the requested files are in the same order as

I/O Subsystem 10-68 2270512-9701

DNOS System Design Document

those already concatenated. An error is returned if these
conditions do not hold. Each usage of the concatenated set
causes the creation of an RPB chained to the first FCB. When the
concatenated set is no longer in use (when the last RPB is
deleted), all FCBs in the set are released.

When key indexed files are combined, they are not considered to
be concatenated, but are called a multifile set. This is because
after files are concatenated, they can still be used as
individual files. This is not true for key indexed files; once a
set of files has been combined into a multifile KIF set, they
cannot, be handled separately using KIF operations.

Multifile KIF sets require special handling. IOU uses the FDR
end-of-medium field to determine whether a key indexed file is
empty. If all the specified files being combined are empty, and
are not members of an existing multifile set, IOU formats them as
a single file. The creation date and time of the first file are
placed in the KDR of each file in the set. Each file is given a
sequence number, which is an integer value that ranges from one
to the number of files being combined. The sequence number of
each file is also stored in the KDR of the file. The KDR for the
first file contains the total number of files in this set.

Error checking is provided when nonempty key indexed files are
combined. Each KDR must contain the same creation date and time.
Also, the total number of files from the KDR must be the same as
the number of files specified in the current combination request.
The sequence numbers of the files must start at one and continue
sequentially up to the total number indicated in the first KDR.
If any of the above conditions is not met, an error is returned.
An empty key indexed file may be used as the last (and ONLY the
last) file of a nonempty multifile set. The new file must not be
a member of an existing multifile set. The new file is formatted
and given a sequence number and a time and date to match the
other file(s). The file count in the first KDR is incremented.

When a LUNO is assigned to a single key indexed file, the KDR is
checked for a sequence number. If one is present, a flag is set
in the FCB to indicate that the file can be opened only' for
unblocked I/O. This is the mode used by the directory utilities,
for example.

10.6.4.5 Temporary Files.

DNOS supports two types of temporary files: task and job local.
Task temporary files are created either by using the temporary
file bit in the Create File operation, or by issuing an Assign
LUNO with the temporary file bit set. When the Create File is
used, a standard file name can be specified; when an Assign LUNO
is used, a name is created in the form Un, where n is a 7-digit
integer. Task temporary files are often used as scratch files by
system utilities. They are deleted when the last LUNO assigned

2270512-9701 10-69 I/O Subsystem

I

DNOS System Design Document

to the file is released.

Job temporary files are created by specifying the temporary
option on an Assign Logical Name operation. The job temporary
file is created when an Assign LUNa is done to the logical name
or when a Create File specifies the logical name. The access
name associated with the logical name is the disk or volume name
on which the file is to be created.

IOU creates job temporary files under VCATALOG, and it sets the
temporary flag in the FDR. After the file is created, IOU
automatically attaches the resource to the job. The file is not
detached until the job terminates or the logical name is
released. The file is deleted when the count of attaches and
LUNas assigned in the FCB is zero.

After a job temporary file is created, the file name must be
entered in the Name Manager data base. For job temporary files,
the Name Manager allocates 18 bytes for the pathnBme (enough for
the length, eight-character volume name, period, and eight­
character file name). The actual length of the disk or volume
name is in the first byte of the pathname buffer. IOU places the
length and file name of the newly created file in the buffer.
The already-processed flag is set in the BRa, and the BRB is
placed on the Name Manager's queue. Name Manager is responsible
for calling the routine to queue the BRB for unbuffering.

10.6.5 Operating System Support SVCs.

IOU provides SVC support for several subopcodes that are not
available to the general user community. These codes, described
in detail in the section on special SVC support, include the
following:

10.7

Subopcode

94
AO
Al
A3
A4
A5

Purpose

Assign Diagnostic Device
Attach Resource
Detach Resource
Detach Resource by Number
Modify FDR Bit
Release LUNa in Another Job

DEVICE I/O UTILITY (DIOU)

Device utility functions (bidding tasks from a device; changing
device state; disarming hard break at a terminal; allowing 8-bit
characters) are performed by issuing device utility operations'.
These operations are IOU subopcodes and are transportable through

I/O Subsystem 10-70 2270512-9701

DNOS System Design Document

IPC. Since none of these subopcodes conflict with other IOU
subopcodes, they are processed by the DIOU task to get
concurrency. Some of the subopcodes require software privilege.
The operations and their subopcodes are:

Subopcode

C2
C3
C6
C7

Purpose

Get Selected Device Parameters
Set Selected Device Parameters
Get CDE From CDT
Process Device Task Bid

10.7.1 DIOU Functions.

All I/O subopcodes are passed by the SVC request processor RPROOT
to IOPREP, the I/O preprocessor. IOPREP hands all I/O subopcodes
greater than)90 to IUPREP. IUPREP verifies that DIOU subopcodes
are in the proper range. IUPREP buffers the parameter field (if
specified) along with the call block in system table area.
Control is then transferred to to DUMAIN for specific subopcode
processing.

DSRs bid tasks by calling IOFCDT. IOFCDT places the bid
character in the PDT and then places the PDT on the BIDREQ queue.
When the scheduler finds something on the BIDREQ queue, it
activates IOTBID. IOTBID gets the device number and bid
character from the PDT and places them in a Process Device Task
Bid ()C7) call block. The PDT is removed from the BIDREQ queue,
the bid character is cleared in the PDT, and the call is issued
to DIOU.

When the CDFPEA flag is set to"l, DIOU passes the bid character
in the first byte of the first parameter and leaves the second
byte O. The device number is placed in the second parameter.
Logon tasks that need to CDE can then perform a Get CDE from CDT
operation ()C6). If the task is to be bid in the same job as
PDTJOB, the CDE parameters are placed in the)2B call block
parameter fields CDEPV1 and CDEPV2.

10.7.2 DIOU Data Base.

There is one data file for each operating system generated. The
file is in the directory S$CDT under VCATALOG. The file within
S$CDT has the same name as the system to which it is associated.
Each file has 25 CDTs. The file is initialized by the Modify
Command Definition Table (MCDT) command using SCI, or by DIOU
during IPL if it does not exist.

2270512-9701 10-71 I/O Subsystem

DNOS System Design Document

Each record of the CDT file is a command definition table (CDT).
Each record contains the SCI command definition entry (CDE) and
hard break CDE, the DXP CDE, and 13 zeroed CDEs. That is, each
CDT has a maximum of 16 COEs. The last four characters of the
CDT contains the characters CDT.

Each time a system is loaded, OlOU runs the PDT list and places
device numbers into the PDTs.

Each device has a three-byte field in its PDT to represent the
CDEs that apply to it. One byte indicates the CDT to use and a
word represents the CDEs in the table that are valid for the
device. If the first bit is on in the word, the first COE will
be valid for the device; second bit, second CDE; and so on. This
way each device may have an unique set of CDEs, with a maximum of
sixteen.

10.7.3 Data Structures Used by OlOU.

System data structures
template of parameters.

used by DIOU include the PDT and
Relevant fields in the PDT include

* POTNAM - an eight-byte device name field

* PDTNUM - a two-byte device number

* POTCHR
10FCOT

a one-byte field for the bid character set by

* POTCDT - a one-byte COT number

* PDTCDE - the CDE mask for this device's CDT

a

The structure template for device parameters (DPR) is a set of
equates, one for each field in the DIOU data base (multiple flags
are stored in one field). Any not marked as read only require
either software privilege, hardware privilege or system task
status to modify.

I/O Subsystem 10-72 2270512-9701

DNOS System Design Document

UNL

* *
*
*
*
*

DUTIL DEVICE PARAMETERS (DPR) 03/11/83

CHANGES TO THIS TEMPLATE REQUIRE CORRESPONDING
CHANGES TO THE PASCAL TEMPLATE "DPRPAS".

*
*
*
*

* THE DPR TEMPLATE DESCRIBES THE DEVICE PARAMETERS MANAGED
* BY THE DEVICE I/O UTILITY (DUTIL). IT INCLUDES PARAMETERS
* IN THE FOLLOWING RANGES:

*
*
*
*
*
*

PARAMETER RANGE

)01 -)5F
)60 -)FF

PARAMETER USAGE

OPERATING SYSTEM RESERVED
NOT SUPPORTED

* IN THE FIELD COMMENTS, RO INDICATES THAT A PARAMETER IS
* READ ONLY AND CANNOT BE MODIFIED.

*
* SPECIAL FIELD COMMENTS:
* DPRNAM - ONE TO EIGHT ALPHANUMERIC CHARACTERS WITH A LETTER
* AS THE FIRST CHARACTER.
* DPRNUM - ONE WORD NUMBER BETWEEN)0001 AND)07FF, EXCLUDING
* 100 THROUGH 255 ()64 THROUGH)FF).
* DPRTYP LIKE THE PDTTYP FIELD. ON AN ASSIGN LUNO, THE VALUE
* OF THIS FIELD IS PUT INTO THE LDTTYP FIELD OF THE
* LDT AND IS RETURNED TO THE CALL BLOCK IN THE UPPER
* BYTE OF THE DATA BUFFER FIELD.
* DPRJOB - JSB OF THE FIRST JOB TO ASSIGN A LUNO TO A TERMINAL.

*
DPRNAM EQU)01 RO *DEVICE NAME
DPRNUM EQU)02 RO *DEVICE NUMBER
DPRFLG EQU)03 *WORD OF FLAGS
DPRDSF EQU)04 *DEVICE STATUS
DPRTYP EQU)05 RO *DEVICE TYPE
DPRJOB EQU)06 RO *OWNER JOB
DPRRPB EQU)07 RO *RPB LIST HEADER
DPRLC EQU)08 RO *LUNO COUNT
DPRCDT EQU)09 *CDT NUMBER
DPRCDE EQU)OA *CDE MASK
DPRPDT EQU)OB RO *PDT ADDRESS
DPRDTF EQU)OC RO *DEVICE TYPE FLAGS
DPRSTK EQU)OD *SECTORS PER TRACK
DPROHD EQU)OE *OVERHEAD PER RECORD
DPRWTK EQU)OF *WORDS PER TRACK
DPRDRS EQU)10 *DEFAULT PHYSICAL RECORD SIZE
DPRFMS EQU)11 *VCAT FD SPECIAL AREA SSB ADDRESS
DPRFDB EQU)12 *VCATALOG FDB ADDRESS
DPRTFL EQU)13 *TEMPORARY FILE NAME SEED
DPRECT EQU)14 *RETRY COUNT
DPRVNM EQU)15 *VOLUME NAME
DPRCHR EQU)16 *BID CHARACTER

2270512-9701 10-73 I/O Subsystem

DPRBLN EQU)17
DPRMAX EQU)18
DPROSM EQU)5F
* EQUATES FOR DPRFLG
DP1IRB EQU 0 RO
DP1RSI EQU 1 RO
DPIRS2 EQU 2 RO
DPISTA EQU 3
* 00 - ONLINE
* 01 - OFFLINE
* 10 - DIAGNOSTIC
* 11 - SPOOLER
DP10PF EQU 5 RO
* EQUATE FOR DPRDSF
DP2RSI EQU 0 RO
DP2AID EQU 1 RO
DP2BI EQU 2 RO
DP2BO EQU 3 RO
DP2JIS EQU 4
DP2REN EQU 5 RO
DP2JAR EQU 6 RO
DP2JAT EQU 7 RO
DP2RS2 EQU 8 RO
DP2RS3 EQU 9 RO
DP2WPM EQU)A RO
DP2IRE EQU)B RO
DP2INT EQU)C RO
* EQAUTES FOR DPRDTF -
DP3FIL EQU 0 RO
DP3TIL EQU 1 RO
DP3TIM EQU 2 RO
DP3PRI EQU 3 RO
DP3KSB EQU 4 RO
DP3COM EQU 5 RO
DP3SYD EQU 6 RO
SP3RES EQU 7 RO

LIST

DPRNAM

DNOS System Design Document

*BUFFER LEN OR # VIRT TERMINALS
* THE LIMIT FOR CURRENT OS PARMS
*MAXIMUM O.S. PARAMETER

*COPY IRB TO SYSTEM LOG
*RESERVED
*RESERVED
* DEVICE STATE

*OPEN FAILED

*RESERVED
*ALTERNATE PDT
*BUFFER INPUT
*BUFFER OUTPUT
*JISCII, 8-BIT ASCII MODE
*RE ENTER ME
*JISCII RECEIVE
*JISCII TRANSMIT
*RESERVED
*RESERVED
*WORD PROCESSING MODE
*INITIAL REQUEST
*DEVICE INTERRUPT LEVEL MASK

DEVICE TYPE FLAGS
*FILE ORIENTED
*TILINE DEVICE
*ENABLE TIME-OUT
*PRIVILEDGED DEVICE
*TERMINAL WITH A KSB
*COMM DEVICE
*SYSTEM DISC
*RESERVED

One to eight alphanumeric characters with a letter as the
first character.

DPRNUM
A one word number between)0001 and)07FF excluding 100
through 255.

DPRFLG
DPRFLG is a flag word with the following bit definitions.

I/O Subsystem 10-74 2270512-9701

DNOS System Design Document

DPIIRB (X •••••••••••••••) - COpy IRB TO SY STEM LOG
DPIRSI = (• X ••••••••••••••) - RO RESERVED
DPIRS2 (•• X •••••••••••••) - RO RESERVED
DPlSTA (••• XX •••••••••••) - DEVICE STATE

00 - ONLINE
01 - OFFLINE
10 - DIAGNOSTIC
1 1 - SPOOLER

DPIOPF (••••••••••••• X ••) - OPEN FAILED
DPIRS3 (•••••••••••••• XX) - RO

DPRDSF
DSPDSF is a flag word with the following bit definitions.

DP2RSl
DP2AID
DP2BI
DP2BO
DP2JIS
DP2REN
DP2JAR
DP2JAT
DP2RS2
DP2RS3
DP2WPM
DP2 IRE
DP2INT =

(X •••
(• X ••
(•• X.
(••• X
(. . . .
(... .
(... .
(... .
(. . . .
(. . . .
(....
(. . . .
(. . . .

· ... · ... · ... · ...
X •••

• X ••
• • X.
• •• X · ... · ... · ... · ... · ...

· ... · ... · ... · ... · ... · . . . · ... · ...
X •••

• X ••
• • X.
• •• X · ...

· ...) · ...) · ...) · ...) · ...) · ...) · ...) · ...) · ...) · ...) · ...) · ...)
XXXX)

RO
RO
RO
RO
RO
RO
RO
RO
RO
RO
RO
RO
RO

RESERVED
ALTERNATE PDT
BUFFER INPUT
BUFFER OUTPUT
JISCII, 8-BIT ASCII MODE
RE ENTER ME
JISCII RECEIVE
JISCII TRANSMIT
RESERVED
RESERVED
WORD PROCESSING MODE
INITIAL REQUEST
DEVICE INTERRUPT LEVEL MASK

DPRTYP
The DPRTYP field corresponds to the PDTTYP field. On an
Assign LUNO, the value of this field is placed in the LDTTYP
field of the LDT as well as being returned in the upper byte
of the data buffer field of the Assign LUNO call block.

DPRJOB
DPRJOB is the same as PDTJOB. It is only valid for devices
with a KSB (terminals). The JSB of the first JOB to assign
a LUNO to terminal is placed in DPRJOB. This prevents any
other JOB from assigning a LUNO to the terminal.

DPRRPB

DPRLC

DPRRPB is the same as PDTRPB. For devices that validate
opens an RPB must be generated during assign LUNO
processing. DPRRPB contains the address of the beginning of
the RPB list.

DPRLC is the same as PDTLC. This field contains a count of
the'number of LUNOs assigned to the device.

DPRCDT
The first
terminal.

2270512-9701

byte
The

of DPRCDT identifies
next two bytes are

10-75

the CDT
the word

for this
mask that

I/O Subsystem

I

DNOS System Design Document

identifies the CDEs within the CDT that are valid
terminal.

for this

10.8 FILE ACCESS SECURITY

DNOS 1.2 includes security on a per file basis. Directory
security and volume security are not implemented in this release.

A user's security environment is defined at the job level.
Associated with each job in the system is a user ID and the list
of access groups of which he is a member. A collection of users
which are expected to have similar access to files belong to an
access group. All secured files have a list of access groups and
rights which determine who may access the file and in what
manner. This list is called an access control list. Permission
is granted if the user is a member of an access group in the
access control list.

Since security is enforced on a per job basis, it is not possible
for a server job to accept files from other jobs and perform
operations on those files with the original user's security. The
spooler is an example of such a server job. To solve this
problem, an option for secured IOU SVCs is supported. A task can
specify the user ID with which the access rights for the LDT will
be generated. Such a task must have the security bypass feature
and enforce its own security, unless the passcode for the user ID
is also specified. Specific operations that have this feature
include Assign LUNa, Create File, Delete File, Modify File Name,
and the Modify File Protection SVCs.

Assigning a LUNa to the disk (using direct disk I/O) and bidding
a task in another job are potential security bypass operations
that are not restricted by the operating system. These are
better handled through the use of functional security or by
allowing tasks to be members of access groups, features that may
be implemented in a future release.

10.8.1 Establishing a Job's Security Environment.

A user's security environment is determined during
The logon task solicits a user ID and passcode.
turned off through use of the MTS command, this
located in the S$SCA file. The user ID and
validated against the entries in the S$CLF file.

job creation.
If logon is

information is
passcode are

Job Manager, during create job processing, validates the user ID
and passcode against the S$CLF. This check is necessary since
not all create jobs are issued by the logon task. Job manager
reads the S$CLF to find the user ID, passcode and access groups.
The user ID is copied into the JSB. The encoded passcode is

I/O Subsystem 10-76 2270512-9701

DNOS System Design Document

copied into the JIT. A capability list is built. This list
includes a count of access groups followed by a list of encrypted
access group names, each name followed by a flag word. This list
resides in the JCA, pointed to by JITCAP.

The security manager function is performed by an overlay of IOU.
This overlay is not included as part of the kernel program file
if the security option is not chosen during sysgen. In general,
a user's security access to a file is determined during assign
LUNO processing. The rights are stored in the LDT. Subsequent
operations to the file check the rights in the LDT to determine
whether the user has appropriate access.

All IOU operations are first processed by IUMAIN. IUMAIN
maintains a table of secured IOU operations. These operations
include Create File, Assign LUNO, Delete File, Modify File Name,
Unprotect File, Write Protect File and Delete Protect File.
Several conditions must be met before security checking is done:
the system must be secured, one of the above secured subopcodes
must have been encountered, and the pathname must be longer than
a single node (indicating possibly a file as opposed to a
device).

IUSPRE is the security manager preprocessor routine. If a user
ID parameter is passed with the IRB, IUSPRE verifies that it is
valid. If the parameter was not specified by a security bypass
task, the passcode is also verified. A capabilities list is
generated from the S$CLF file instead of using the capabilities
list pointed to by JITCAP.

For all secured suboperations except Create File, IUSPRE calls
IUGAR to generate the user's access rights to the file. IUGAR
calls the IOU routines that build the FDB tree and FCB for the
file. It calls a routine to compare the capabilities list with
the file's access control list. If the access group in the
capabilities list is SYSMGR, the user receives total access to
the file. If no access groups are associated with the job the
user will receive PUBLIC access to the file. If no access groups
are found and no PUBLIC rights are specified, the operation will
fail. The user will be returned a security violation error. If
some access is determined, control is returned to IUSPRE.

If the operation is an Assign LUNO, the rights are saved off to
be later entered into the LDT during the Assign LUNO routines.
If the operation is a Delete File or a Modify Protection SVC, the
proper access is verified. In the case of a Modify File Name,
the access is verified for the new pathname, if it existed. The
access for the old pathname is verified by looking at the LDT
rights field. A Modify File Name of a directory is specifically
not allowed.

A Modify File Name option exists which allows the user to keep
the security of the new pathname. If this option is specified,

2270512-9701 10-77 I/O Subsystem

DNOS System Design Document

the security is copied to system table area in a structure known
as an access control packet. After the Modify File Name takes
place, the security is copied from the access control packet to
the file and the packet is released. If the option is not
chosen, the default results of the Modify File Name leave the
file secured with the old pathname's access rights.

If a LUNO is being assigned to a concatenated
concatenated file processor calls the security
determine the access rights for each file. These
ANDed to determine the final access rights.

file,
routines
rights

the
to

are

In the case of file creation or Assign LUNO with auto-creation of
a file, IUSPRE calls a routine to search the capability list to
find the creation access group- If no such group is specified,
the default is taken as PUBLIC. When the file is created, the
encrypted group name is written to the FDR with all access right
flags set, and the public bits are turned off.

Aliases inherit the security of the file to which they refer.
The addition or deletion of aliases is not secured.

Minimal channel security is implemented. IUSPRE saves the rights
to the channel owner program file. Before a channel owner is
auto bid by an assign LUNO to the channel, the rights are checked
for execute access.

10.8.2 Enforcing Security.

The security manager does Some set up of the security environment
and enforces security for IOU operations. Security is enforced
in each process that performs a protected or a particularly
dangerous function.

10.8.2.1 File Manager.

There are differences between open access privileges and security
rights. The access privileges specified on an Open operation
enable a user to limit access by others while performing a file
operation. It may be desirable for a user who has only read
access rights to a file, for example, to open it with exclusive
use. That is, he may only read the file, but while doing so, no
operation to this file by others may take place.

File manager enforces read and write security to files. The file
manager routine IOPREP compares the I/O subopcode against a table
of allowable operations. The tables and required access are
given below.

I/O Subsystem 10-78 2270512-9701

DNOS System Design Document

File operations allowed only if the requestor has read access:

)09 - Read ASCII
)OA - Read Direct
)41 - Read Greater
)42 - Read by Key, Read Current
)44 - Read Greater Than
)45 - Read Next
)48 - Read Previous
)59 - Multiple Record Read

File operations allowed only if the requestor has write access:

)02 - Close with EOF
)OB - Write ASCII
)OC - Write Direct
)OD - Write logical EOF
)10 - Rewrite
)46 - Insert
)47 - Rewrite
)49 - Delete by Key
)5B - Multiple Record Write

File operations which will succeed if Assign LUNO was successful:

Open
Set Currency
Forward, Backward Space LUNO
Read File Characteristics
Unlock
Close
Specify Write Mode
Rewind

10.8.2.2 Program Manager.

Program management enforces security on task bids and overlay
loads. NFTBID checks the program file LDT for execute access
when bidding tasks. Overlay loads are checked by PMOVYL. Task
installations, deletions and assigning program space are enforced
by file manager when the user tries to read or write to the
program file. S$SHARED is assumed to be a public program file
and cannot be secured. When LUNO)FF is specified, no security
check is made since execute access to the program file has
already been established.

10.8.2.3 Segment Manager.

In order to do a Change Segment operation for a program file
segment, the user must have execute access to the program file.
In order to do relative record I/O using a Change Segment SVC,

2270512-9701 10-79 I/O Subsystem

DNOS System Design Document

the user must have read and write access to the relative record
file. In order to do relative record I/O using a Create Segment
SVC, the user must have write access to the relative record file.
The above is enforced by segment management in SMPREP.

10.8.2.4 Sysgen.

In DNOS 1.1, if the SVC for security was specified the Encrypt
and Decrypt SVCs were included. In DNOS 1.2, the ENCRYPTION SVC
group includes those SVCs. In DNOS 1.2, a YES response to the
global SECURITY question causes the system option word security
bit in NFDATA is to be set, the security overlay for IOU to be
added to the kernel program file, and the encryption SVC group to
be included.

10.8.3 Volume Security.

A utility called Modify Volume Security (MVS) is supplied to make
it impossible to install a secured DNOS volume on a DX10 or an
unsecured DNOS system. It is located in the .S$SECURE program
file. This task modifies a field in sector zero which indicates
to the install volume processor that this can only be installed
on a secure system.

10.8.4 Networking.

For DNOS 1.2, the security access one will receive doing remote
I/O will be the access of the remote LAN job, as the SVCs are
issued remotely by this job. When performing a remote logon, one
acquires the security associated with the user ID used to log on.

10.8.4.1 Manipulation of the Access Control List.

Modifications to the access control list for a file are made by a
system task called MSAR. This utility task allows a user to
modify the security access rights of any file for which the user
has the control access right. It also allows a user to display
the list of access groups which currently have access to the file
and what access rights each group has to the file.

MSAR is bid by the MSAR and LSAR SCI command procedures. The
PARMS list is as follows:

I/O Subsystem 10-80 2270512-9701

DNOS System Design Document

PARM Definition

1 Function code: O=LSAR ;' I=MSAR
2 User's passcode
3 File pathname
4 Listing access name (not used for MSAR)
5 Access group name (not used for LSAR)
6 Read access (YES/NO) (not used for LSAR)
7 Write access (YES/NO) (not used for LSAR)
8 Delete access (YES/NO) (not used for LSAR)
9 Execute access (YES/NO) (not used for LSAR)

10 Control access (YES/NO) (not used for LSAR)

The MSAR task consists of the modules MSMAIN, MSMSAR, MSLSAR,
MSDOOR, MSDDIO, MSFUDR, and MSRCLF from the VOLOBJ.MSAR.OBJECT
directory, several low level subroutines from the
VOLOBJ.IOU.OBJECT directory, the passcode encryption subroutine
from the VOLOBJ.SECURITY.OBJECT directory, and stardard UTCOMN
and S$ routines.

MSMAIN verifies that the utility is being run on a DNOS 1.2 (or
later) system. It then assigns and opens a LUNO to .S$CLF, picks
up the user's ID from the JSB, finds the user deScriptor record
(UDR) within .S$CLF for the user, and verifies the passcode
entered by the user. If the passcode verifies, MSMAIN then
assigns a LUNO to the user specified file, finds the LDT for the
LUNO just assigned, and verifies that the file is a local file,
not a directory, and that the user has the control access right
for the file. If all goes well, MSMAIN then calls IUGFCB to map
in the FCB for the file and saves the FCB address for later
direct disk I/O operations. MSMAIN then goes to either MSLSAR or
MSMSAR depending on the operation specified.

MSLSAR closes and releases the LUNO to .S$CLF as the utility is
done with that file. It then calls S$OPNS to open the listing
file with the security rights of the requesting user ID. This
special entry point in the S$OPEN routine must be used because
the MSAR task is installed with the security bypass attribute,
but the user must not be allowed to put the listing on top of
files to which he does not have write access. MSLSAR then calls
MSRFDR to read the FDR for the user specified file and formats
the listing to show the various access groups that have access to
the file and the access rights for each group.

MSMSAR calls S$PARM to get the user specified access group name.
If the name is SYSMGR, MSMSAR terminates with an error message.
Otherwise, MSMSAR verifies that the access group name is valid on
this system. If the name is PUBLIC, then it is considered valid.
Otherwise, MSMSAR calls MSRCLF to read records from .S$CLF and
verifies that the name is a valid existing access group name. At
this point, MSMSAR closes and releases the LUNO to .S$CLF since

2270512-9701 10-81 I/O Subsystem

I

DNOS System Design Document

the utility is now done with that file. MSMSAR then calls S$PARM
several times to determine the various access rights which the
specified for the access group to have. MSMSAR then calls MSDCLO
to close the door on the directory in which the FDR for the user
specified file resides, calls MSRFDR to read the FDR for the
file, changes the access control list appropriately, calls MSWFDR
to write the FDR back to disk, and then calls MSDOPN to open the
door for the directory. MSMSAR then releases the LUNO to the
user specified file and terminates.

10.9 INTERPROCESS COMMUNICATION (IPC)

IPC provides the capability for two or more tasks to exchange
information. The information exchanged may take the form of a
synchronization signal, a short message, a request for a service,
or a high-volume data transfer. The distinction between these
categories is often blurred in practice.

The primary IPC operations are to read and write messages. The
task to which a write or read is addressed may be identified in
several ways. In a message-oriented IPC mechanism, no permanent
channel exists between the two communicating processes. Writes
and reads are addressed to specifically named processes, and the
IPC supervisor must utilize a rendezvous table to resolve
matching operations. The IPC approach in DNOS is channel
oriented. Channels are created and exist independently of the
tasks that use them; IPC requests are directed to the appropriate
channels.

In DNOS, a channel is defined as an IPC path between two
different tasks within the same computer, with one of the tasks
designated as the owner of the channel. A channel owner has
control over how the channel is used, while the second task (the
requester) has less flexibility and fewer privileges.

IPC processing in DNOS has the following characteristics:

* Each write or read operation is addressed to a channel,
to which a LUNO has been assigned.

* Each operation issued to a channel by a requester must
be matched by ~n operation of the channel owner.
Depending on the operation issued and the current
environment, the requester mayor may not be suspended
until the operation completes.

* Each channel has a queue of pending requests to the
owner, ordered chronologically.

IPC channels may be used via SCI like other I/O resources on a
DNOS system. Some of the SCI commands available for use with IPC

I/O Subsystem 10-82 2270512-9701

DNOS System Design Document

channels are the Create IPC Channel (CIC), Delete IPC Channel
(DIC), and Show Channel Status (SCS) commands.

10.9.1 IPC SVC Interface.

All program-level access to the IPC facility is through the DNOS
SVC mechanism. The general SVC parameter block used for IPC
service calls to symmetric channels is like that used for
resource-independent I/O. The SVC parameter block used for
request SVCs to master-slave channels may be like that used. for
resource-specific I/O. The parameter block for utility calls is
like that used for file and I/O utility calls. The IPC opcodes
are shared with the DNOS I/O facility, with the operation
performed depending on the context.

Every channel has one owner. The owner of a channel is always
involved in every message exchange or other operation on that
channel. Any user other than the owner of the channel may
communicate only with the owner. This results from the matching
rules used by IPC when handling requests to channels. These
rules are given in the description of the IPC support routine,
IPCGQR.

10.9.2 Channel Characteristics.

DNOS channels can be defined as either symmetric or master/slave.
Symmetric channels function with simple read and write requests,
where one correspondent on the channel issues a read while
another issues a write. The data written is passed to the
reader's buffer when a pair of requests match. In a master/slave
channel, the master task receives the entire buffered SVC block
for processing. The master task processes and returns the
modified request to the requester (slave) task.

10.9.2.1 Symmetric Channel Activity.

Symmetric channels are used for communicating messages or data in
a relatively restricted fashion. Tasks may be written in high­
level languages or in assembly language to synchronize, exchange
information, or facilitate use of COmmon files. The operations
addressed to the channel by such tasks are limited to Open,
Close, Close EOF, Read Status, Read, Write, and Write EOF.

From the point of view of an owner or requester task, a symmetric
channel is always in one of three states:

* Closed - The task must issue an Open to use channel.

* Open - The task may issue any operation that is legal in
this channel access mode.

2270512-9701 10-83 I/O Subsystem

DNOS System Design Document

* Dormant - The task must issue a Close and then may again
open and use the channel.

The transitions between states are shown in Figure 10-14.

An Open to a channel, when fielded by the I/O preprocessor, is
checked against current access privileges held by other
requesters. The same rules apply for channels as for other I/O
resources when granting or denying access to any user after the
first. For example, if one requester opens a channel with
privileges of exclusive all, no other requester can open the
channel.

Most symmetric channel requesters issue Opens with shared access.
When the requester wishes to be the only requester served, the
channel should be created as a non-shared channel.

IPC uses the access privileges specified on an Open to allow or
deny particular I/O operations to a symmetric channel. For
example, a user who opens with read only privileges might issue a
Write. That Write is not allowed (just as it is not allowed to a
read-only device like a card reader).

Although requesters may not be aware of the fact, the channel
definition may dictate more stringent access privileges ~han they
specify. For example, a symmetric channel established as a
nonshared channel can be opened by a requester in any mode, but
it will function with only one requester at a time. This is
necessary for the read/write channel resource mode of a symmetric
channel, since the owner task has no way of differentiating
between requesters.

A Close may be issued by an owner or a requester, or it may be
issued by DNOS when processing an abnormal termination by a task
on the channel. IPC adjusts the CCB to reflect the Close; the
I/O postprocessor modifies the LDT as it does for devices. Any
queued requests from the closing task are removed from CCB
queues.

When a Close is issued by an owner, IPC fields the request and
the channel is marked as dormant for all requesters currently
open. This setting causes requesters to receive errors on any
operations except Open and Close. As soon as a requester on a
dormant channel issues a Close, the channel is again closed for
that requester; however,it is available to be opened. Opens to
a dormant channel are queued to the CCB until each Close has been
processed and the channel owner can again issue an Open.

A Read Device Status operation is queued to IPC for processing as
soon as the IPC task executes.

I/O Subsystem 10-84 2270512-9701

DNOS System Design Document

+---------------+ req. open
ICLOSED to 1---------+
1 owner 1 1
1 CLOSED to 1 1
1 requester 1 1
1 OOP=NO 1 (-------+
1 OCL=NO I req. hangs
I RCL=NO I

req.+----)I OPN=O 1(---+
closel +---------------+ I

I I lowner close
+----------+ I ownerl lowner 1 +--------+

req. req. gets I close 1 lopen 1 owner owner
non-)A7 error 1 I 1 I non- gets)E6
close I I I I 1 close error

I I I I 1 1 1
1 V I 1 VII V

+------------------+ +-----------------+ +-----------------+
ICLOSED to 1 10PEN to I IDORMANT to I
I owner I I owner I I owner I
IDORMANT to I ICLOSED to I ICLOSED to I
I requester I I requester I I requester I
I OOP=NO I 1 OOP=YES I I OOP=YES I
1 OCL=YES I I OCL=NO I 1 OCL=NO I
1 RCL=NO I 1 RCL=NO I I RCL=YES I
I OPN=1 I I OPN=l I 1 OPN=1 I
+------------------+ +-----------------+ +-----------------+

lowner open I I
I(owner I Ireq. I Ireq. I
I hangs) I Ireq. Iclose I lopen I
+-----)-----+ lopen I(shared I +--(---+

I I channel) I (hang)
owner I V I I
closel +------------------+ Ireq. close

+---(--IOPEN to owner I--)--+(non-shared

OOP - Owner Open
OCL - Owner Closed
RCL - Requester Closed
OPN - Number of tasks

open

IOPEN to requester I channel)
I OOP=YES I
I OCL=NO I
I RCL=NO I
I OPN=2 I
+------------------+

IAII operations
I lexcluding opens
+----(--+and closes

Figure 10-12 Symmetric Channel States

On other operations to a symmetric channel, a match must be found
by IPC before the operation will be performed. That is, one task
must issue a Read and the other a Write before either operation
will be processed.

2270512-9701 10-85 I/O Subsystem

I

DNOS System Design Document

The owner task may have only one request outstanding to a
particular channel at anyone time. If an owner issues a request
to a channel to which an owner request is already pending, the
second request will be returned with an error.

10.9.2.2 Master/Slave Channel Activity.

A master/slave channel is established so that an owner task may
process all requests of the requester tasks. The master/slave
owner task can be written in assembly language using the Master
Read, Master Write, Redirect Assign Luno, and Read Call Block
operations. It may be written in a high-level language with
subroutine support to issue these SVCs.

When accessing a master/slave channel,
pass a set of parameters to the master
parameters may be specified as part of
command and passed to the owner task
operation.

a requester may need to
(owner) task. These
an Assign Logical Name
via an Assign LUNO

In this and other cases an owner task may process requester
Assign LUNO and Release LUNO operations, gathering and supplying
data from and to IOU. This option is specified by the Create IPC
Channel SVC operation or SCI command. The owner receives the
request with Master Read and modifies it to reflect appropriate
processing. The owner task then issues a Master Write of the
Assign LUNO call block. IPC queues the request back to IOU to be
completed. The owner task must not modify certain fields in the
SVC block, so that IPC can correctly return the block.

Similarly, the owner may process Abort I/O SVCs ()OF) or I/O
utility operations other than Assign LUNO and Release LUNO.
These options can be specified by the Create IPC Channel SVC
operation or SCI command.

While using a master/slave channel, a requester task may issue
any I/O operation to a channel, and the owner task processes the
operation depending on how the owner task is designed. The owner
task issues a Master Read to obtain a request for processing and
a matching Master Write to return messages or status information
to the requester.

Owners of master-slave channels may have only one request
outstanding to a particular channel at anyone time. The Master
Write and Redirect Assign LUNO operations are exceptions to this
rule. An owner may issue either a Master Write or a Redirect
Assign LUNO while a Master Read, Read Call Block, or Read Status
operation is pending.

All I/O operations issued by the requester are passed to the
owner task by IPC. Figure 10-15 shows the operations used by the
owner task.

I/O Subsystem 10-86 2270512-9701

DNOS System Design Document

--
00 Open IPCexecutes the Open

I I checks for legal access 1
----------+-----------------+-----------------------------I

01 1 Close 1 IPC executes the Close I

----------+-----------------+-----------------------------I
05 1 Read Status I Owner receives status data 1

----------+-----------------+-----------------------------+
19 1 Master Read 1 Owner gets whole call blockl

1 1 of requester 1
----------+-----------------+-----------------------------I

lA 1 Read Call Block 1 Owner gets first part of 1

1 1 requester call block 1
----------+-----------------+-----------------------------I

IB 1 Master Write 1 Owner sends information 1

lito requester 1

----------+-----------------+-----------------------------I
lC 1 Redirect Assign 1 IPC sends call block to 1

1 LUNO 1 another channel owner 1
--*

Figure 10-13 Owner SVCs for Master/Slave Channels

10.9.3 Details of IPC Processing.

Service calls to IPC channels are first routed through the I/O
preprocessor, IOPREP, for common I/O handling. They are then
passed on to the IPC preprocessor, IPCPRE. This routine checks
for some error conditions. If no error is found, IPCPRE
determines whether fast transfer is possible. If fast transfer
is possible, the exchange is performed immediately. Otherwise,
the request is queued to the IPC queue server, IPCTSK, and the
requester task is suspended.

10.9.3.1 Structures Used for IPC Processing.

Each channel is represented by a channel control block (CCB) in
the system table area or the job communication area. The CCB
contains two queue headers: the pending queue (CCBPBQ) and the
already-processed queue (CCBABQ). All requests awaiting
processing by IPC other than Master Write and Redirect Assign
LUNO requests are placed on the CCBPBQ. Master Write and
Redirect Assign LUNO requests are placed on the CCBABQ.
Requester call blocks which have been master read but have not
yet been master written or redirected are stored on the CCBABQ.
There is never more than one owner request on any queue. If
there is an owner request on a queue, it will always be the first
entry on the queue.

2270512-9701 10-87 I/O Subsystem

I

DNOS System ,Design Document

The IPCQUE, which is in the system table area, contains requests
for task level IPC processing. The queued requests are pr~cessed
by the IPC queue server IPCTSK. The queue entry is a QIR, shown
in the section on data structure pictures. The queue link field
is used to chain all current requests to be performed by IPCTSK.
If the channel being used for this queue entry is global, the JSB
address (to find the CCB) is zero. This indicates that the CCB
and BRBs are in the STA. For other typ~s of channels, the JSB is
used to find the segment information so that the JCA segment can
be loaded into memory and the CCB and BRBs can be located.

The anchor for IPCQUE is in the STA. The anchor is a standard
DNOS queue header, shown by the QHR template in the section on
data structure pictures. When NFQUEH places an entry on the IPC
queue, IPCTSK is bid. IPCTSK processes each queue request by
examining the CCBABQ and CCBPBQ for the CCB specified in the QIR
and matching as many requests as possible.

10.9.4 Detailed Operation of IPC Routines.

There are two paths through the IPC subsystem: a task level path
and an XOP level (fast transfer) path. All IPC requests are
handled by the IPC preprocessor, IPCPRE. IPCPRE. determines
whether a request can be handled in fast transfer mode. '. If so,
IPCXFR is called to transfer the request to the IPC task (which
must be in memory). The IPC task, running in XOP mode (map 0),
processes the request. The routine IPCXOP in the IPC task
handles the request. If IPCPRE determines that fast transfer is
not possible, the request is queued and later processed by the
IPC queue server, IPCTSK. The same code (IPCPRO, IPCMRD and
IPCMWT) is used to perform both XOP level and task level IPC
processing. Fast transfer is only possible when the IPC task and
all necessary buffer segments are in memory.

If a channel owner releases its LUNO to the channel, or if the
owner of a task-local or job-local channel terminates, the
channel is considered dead. This is indicated by the CCB flag
CCFDED. IOU or PMTERM will set the CCFDED flag, build a QIR for
that channel, and queue it to IPCQUE in order to activate IPC.
IPC will return outstanding and subsequent requester requests
with an owner aborted error, (error code)A7).

10.9.4.1 IPC Preprocessor (IPCPRE).

IPCPRE runs at XOP level when an I/O or IOU call buffered by
IOPREP or IUPREP is detected as being for a channel or remote
resource. The following is a description of the IPCPRE
algorithm:

I/O Subsystem 10-88 2270512-9701

DNOS System Design Document

IF the request is an I/O request or an Abort I/O request
THEN BEGIN

*
*
*
*
*

IF the request requires a buffer
THEN call IPCCB to build a Buffer Address Packet (BAP)

for the buffer.
IF the channel is not busy and the IPC task is in memory and the

request is not a Redirect
THEN BEGIN

call IPCXFR to process request in fast transfer mode.
IF IPCXFR returns without error
THEN return.

END

If IPCXFR returns an error, one of the task
segments or buffer segments was not in memory,
so fast transfer was not possible. The request
ha~ been queued by IPCXOP to the CCB. All we
have to do now is queue a QIR to the end of IPCQUE

ELSE IF request is a Master Write or Redirect Assign LUNO
THEN queue request to head of CCBABQ.

END

ELSE IF request is an owner request
THEN queue request to head of CCBPBQ.
ELSE queue request to end of CCBPBQ.

generate a Queued IPC Request (QIR).
queue the QIR to the end of IPCQUE.
set the Channel Busy flag in the CCB.

return.

10.9.4.2 IPC Queue Server (IPCTSK).

When a request cannot be processed in XOP mode, the request is
processed at the task level by IPCTSK. IPCTSK is activated by
NFQUEH when a QIR is queued to IPCQUE. The following is a
description of the IPCTSK algorithm.

2270512-9701 10-89 I/O Subsystem

I

I

DNOS System Design Document

WHILE the IPCQUE is not empty
BEGIN
get request from IPCQUE.
IF channel is job or task local
THEN map the JCA that contains the CCB
WHILE there exist processable requests on the

CCBPBQ or CCBABQ
BEGIN
call IPCGQR to get a request or a pair of

requests.
IF IPCGQR returned an owner request
THEN IF the owner request requires a buffer

THEN load the buffer segment.
IF IPCGQR returned a requester request
THEN IF the requester request requires a buffer

THEN load the buffer segment.
IF this is a master/slave channel and the owner

request is not a Redirect or a Read Call Block
THEN load all requester task segments.

END

call IPCPRO to execute the data exchange.
IF owner request was not processed

THEN requeue the request to the CCB.
IF requester request was not processed

THEN requeue the request to the CCB.
unload any task segments that were loaded.

reset the Channel Busy flag in the CCB.
END

10.9.4.3 IPC XOP level request processor (IPCXOP).

The routine IPCXOP is in the IPC task, although it is only
executed in map O. If IPCPRE determines that the IPC task is in
memory, a branch and link is performed to IPCXFR, which transfers
con~rol to IPCXOP.

IPCXOP queues the request to the CCB and calls IPCGQR to get a
request or pair of requests from the CCBABQ or CCBPBQ. The
subroutine IPCCHK is called to determine whether the requests
returned by IPCGQR can be processed in fast transfer mode. If a
request cannot be processed, either because of an error or
because fast transfer is not possible, the request is requeued
for processing by IPCTSK.

IPCXOP continues to process requests from the CCBPBQ and
until a request cannot be processed.

CCBABQ

10.9.4.4 IPC request processors (IPCPRO, IPCMRD and IPCMWT).

IPCPRO, IPCMRD, and IPCMWT are the routines in the IPC task that

I/O Subsystem 10-90 2270512-9701

DNOS System Design Document

actually perform the data exchange between requests. IPCPRO is
called by IPCTSK or IPCXOP for all requests. IPCPRO calls IPCMRD
and IPCMWT to process Master Reads, Master Writes and Redirect
Assign LUNa operations. Other operations to master/slave
channels and all operations to symmetric channels are performed
directly by IPCPRO.

On a Master Read or Read Call Block, IPCMRD or IPCPRO copies the
requester's call block into the master task's master read buffer
(MRB). On a Master Read, the call is dequeued from the CCBPBQ
and placed on the CCBABQ to await a Master Write or a Redirect
Assign LUNa. On a Read Call block operation, the requester call
block is left on the CCBPBQ. On a Master Write, IPCMWT unbuffers
selected fields of the requester call block from the copy in the
MRB into the copy buffered in system table area. Assign LUNa and
Release LUNa call blocks are queued for reprocessing by IOU. End
of record processing is performed on all other call blocks.

The initial processing of the Redirect Assign LUNa operation is
similar to that of a Master Write of an Assign LUNa call block.
Selected fields of the call block are unbuffered from the MRB
into the copy of the call block in system table area. Additional
processing required for Redirect Assign LUNa is as follows:

1. The LDT that was built by IOU while it was processing
the requester call block must be deleted. IPC
accomplishes this by obtaining some table area,
building a call block for an)A5 I/O operation, and
queueing it to IOU. An)A5 is a Release Luno in
Another Job SVC. It is documented in the section on
special SVCs. The call block must look to IOU as if it
has already been processed once by IOU (otherwise, IOU
will note that the channel processes assigns and
releases and will give the call block back to IPC).
IOU normally converts an)A5 into a)93 (Release Luno)
by changing the subopcode to)93, setting the)A5 flag
(BRFA5) and the Already Seen flag (BRFARS) in the BRa
flags, and swapping the JSB and TSB in the)A5 call
block with the BROJSB and BROTSB. IPC must duplicate
all of these actions. When IOU processes the call
block, the LDT will be deleted.

2. The pathname in the MRB must be buffered into the
requester call block in system table area. IPC does a
Get Table Area SVC, copies the pathname into the table
area buffer, and changes the pathname pointer in the
requester call block (IRBPNA) to point to the new
pathname. This pathname specifies the channel to which
the Assign LUNO is to be redirected. The field IRBRPN
(redirected resolved pathname), which is a null pointer
for all call blocks that have not been redirected, is
set to the previous value of IRBPNA. Subsequent

2270512-9701 10-91 I/O Subsystem

DNOS System Design Document

redirects of this call block will not alter the IRBRPN
field. The IRBRPN field points to the resolved
original pathname.

3. The Already Seen flag (BRFARS) in the BRO flags is
reset so that the Assign LUNO call block appears not to
have been processed by IOU. The call block is then
queued to Name Manager. Name Manager will queue the
call block to IOU, and IOU will build a new LDT for
this Assign LUNO call block.

4. End of record processing is done on the Redirect Assign
LUNO call block.

10.9.4.5 IPC Support Routines.

IPCEOR
IPCEOR performs end of record processing on requests. The
BAP is released and any buffer segments are unreserved. If
the processing is being done in map 1, IPCEOR calls NFEOR to
perform end of record processing. If in map 0, IPCEOR calls
IPCOBR to complete the end of record processing.

IPCOBR (in module IPCXFR)

IPCCB

IPCOBR loads the scheduler map file, calls NFEOBR to perform
end of record processing, and then reloads the IPC map file.

IPCCB creates a BAP, which is described in the section on
data structure pictures. The BAP describes the data buffer
of an IPC request.

IPCXFR
IPCXFR transfers control between the SVCSHD segment and the
IPC code segment in map 0, both of which must be mapped as
the third segment. The IPC map file is loaded and IPCXOP is
called. After IPCXOP returns, the original map file is
reloaded and control returns to IPCPRE.

IPCGQR
IPCGQR dequeues entries from an IPC channel for processing
by IPC opcode processors using the following algorithm:

I/O Subsystem 10-92 2270512-9701

DNOS System Design Document

WHILE there are processable requests on the CCBABQ or CCBPBQ
BEGIN
IF there is an owner request on the CCBABQ
THEN BEGIN

dequeue the owner request.
get the MRBSSI and MRBRCB fields from the call

block in the MRB.
IF there is a requester PRB on the CCBABQ

at the address specified by the MRBSSI and the
BRORCB field equals the MRBRCB field.

THEN BEGIN
dequeue the requester call block from the CCBABQ.
RETURN to the calling task, returning the matched

pair of requests.
END

ELSE do end-of-record processing on the Master Write,
returning a NO MATCHING REQUEST error.

END
ELSE IF the channel is dead (CCFDED is set) and there is

a request on the CCBABQ
THEN dequeue and RETURN the request.

ELSE IF there is a request on the CCBPBQ
THEN BEGIN

IF the request is not from an owner
THEN IF the request does not require a matching

owner request OR IF the channel is dead
THEN dequeue and RETURN the request.
ELSE RETURN no requests (no match is

available since owner requests always
precede requester requests on the
queue)

ELSE BEGIN

END

2270512-9701

dequeue the request
IF the owner request does not require a

matching request
THEN RETURN the request
ELSE IF there is a requester request on

the CCBPBQ
THEN IF the requester request requires a

match
THEN dequeue the requester request

and RETURN both requests.
ELSE BEGIN

requeue the owner request.
RETURN the requester request.
END

ELSE requeue the owner request

10-93 I/O Subsystem

DNOS System Design Document

IPCOPY
IPCOPY is used by the IPC request processing routine to copy
data buffers. IPCOPY uses the nucleus routines NFXCPY and
NFCOPY to perform the data transfer. IPCOPY expects a
source address, a destination address, and the number of
bytes to transfer. The addresses are either specified as
BAPs (for long distance data transfer) or local addresses.

10.10 NAME MANAGEMENT

The Name Manager task handles synonym and logical name segments
for jobs running under DNOS. It serves SVC requests from user
tasks and supplies support functions to various pieces of the I/O
subsystem and to task management. The form of the Name
Management SVC block is shown in the section on data structure
pictures as the NRB.

Each DNOS task operates with a set of synonyms and/or logical
names which is known as a stage. A stage descriptor block (SDB)
is maintained in the synonym and logical name segment to describe
the stage and its relationship with other stages within a job.
Stages are maintained in a hierarchical order. When a daughter
stage is created, it is given a snapshot of its paient's names.
This is implemented logically rather than making physical copies.
The stage under which a task is executing when it issues an SVC
is known as the current stage of the task.

The Name Manager serves a queue of requests that include user­
issued SVCs for SVC opcode)43 and task management entries to
show when a task is bid or terminated. Also, IOU queues BRBs for
the following I/O SVCs:

I/O Subsystem 10-94 2270512-9701

DNOS System Design Document

Subopcode

90
91
92
94
9S
96
97
98
99
9A
9B
9D
9E
AO
Al
A4

Description

Create File
Assign LUNO
Delete File
Assign Diagnostic Device
Rename Fi Ie
Unprotect File
Write Protect File
Delete Protect File
Verify Pathname
Add Alias
Delete Alias
Create IPC Channel
Delete IPC Channel
At tach Resource
Detach Resource
Modify FDR Bit

Several of the Name Management SVC subopcodes are described in
the DNOS SVC Reference Manual, since they are useful in user­
written code. The subopcodes not described in that manual are
described in the section on special SVCs in this manual.

For IOU requests, the Name Manager resolves logical names and
then places the BRBs on the IOU queue along with any applicable
information, such as parameters. These entries may be placed
back on the Name Manager queue by IOU if a pathname for a job
temporary file has been autogenerated.

10.10.1 Architecture of the Name Manager.

The Name Manager consists of a preprocessor that works in
conjunction with the SVC request processor to completely buffer
the request, a queue server task, and a special postprocessor
that works in conjunction with the main SVC unbuffering routine
to return ipformation into the user's address space.

10.10.2 Data Structures Used by the Name Manager.

Each name segment used by Name Manager uses several data
structures. Names are organized in stages, with each stage
representing a complete environment of names. Each stage is
described by a Stage Definition Block (SDB), including a pointer
to the stage from which it was built, a task count of the number
of tasks using the stage, and a pointer to the descendent error
1 i st.

Names and their values are organized in balanced binary trees of
Name Definition Blocks (NDB). An NDB has the name, pointers to

2270512-9701 10-95 I/O Subsystem

DNOS System Design Document

the left and right son, a pointer to the lexical
pointer to the parent name, and a pointer to the
block (SVB) list.

successor, a
stage value

The SVB has flags, a stage number, a pointer to a value
definition block (VDB) and a pointer to the next SVB. The SVBs
are kept in descending numerical order of stage number. The VDB
has a value of a name, a count of the number of SVBs with this
value, and a pointer to a value continuation block (VCB). The
VCB has a value and a pointer to another VCB. A VCB is used when
a name has concatenated files or parameters as values. Figure
10-14 shows the relationship of these various structures for a
segment with three names: A, B, and C. Name A is used in three
stages and has the value .X.Y.FILE.

NDS
+-------+

+-----)1 B 1<-------+
1 +-------+ 1

NDS V NDS V
+------+
1 A 1
+------+

1
SVC V

+-----+
1 4 1------+
+-----+ 1

1 1
SVB V 1

+-----+ 1
2 1------+

+-----+ 1
1 1

SVB V V VDB

+-----+
1 c 1
+-----+

+-----+ +-+---------+
1 1 1-----)131 X.Y.FILEI
+-----+ +-+---------+

1

Figure 10-14 Name Segment Structure

Logical names which are defined to have parameters make use of a
parameter list structure in the logical name segment. The
structure is chained to the VCB and is of the following form:

I/O Subsystem 10-96 2270512-9701

DNOS System Design Document

Dec Hex *--------------------+--------------------* --------
0 0 I Lengt h I 0 I

+--------------------+--------------------+
2 2 1 Type for Sublist I Length of Sublist I

+--------------------+--------------------+ Required
4 4 I I

Parameter
Entry Blocks

2+n 2+n I I
+--------------------+--------------------+ --------

4+n 4+n I Type for Sublist I Length of Sublist I
+--------------------+--------------------+

6+n 6+n I I Optional
Parameter

Entry Blocks
2+n+m 2+n+ml

The parameter list contains the following:

BYTE

o

1

One or more
2

3

4-3+n

CONTENTS

Length of entire structure; the sum of 1
plus two times the number of sublists.

Zero.

sets of the following fields:
Type for sublist. The type of the parameters in
the sublist. Types of parameters are:

o - System parameters
1 - Spooler parameters
2-)7F - Reserved
)80-)FF - User IPC parameters

Length of sublist. The sum of the lengths of all
parameter entry blocks in the sublist, referred
to as n.

Parameter entry blocks, one for each parameter.
Formats of parameter entry blocks are described
in subsequent paragraphs.

Three formats are defined for parameter entry blocks, one for
each of the parameter sizes. A parameter may be a single-bit
binary value, a byte value, or a value of more than one byte.
Each parameter format includes a parameter number, and one or two
bits that identify the format. The parameter entry block format
for a single-bit value is:

2270512-9701 10-97 I/O Subsystem

DNOS System Design Document

----------------+-+-
Parameter No. IIIVI

----------------+-+-
The parameter entry block contains the foll~wing:

BIT

0-5

6

7

CONTENTS

Parameter number, 0 through 63. Parameter numbers
need not be assigned or ordered in sequence, but
must be unique within the sublist.

1

Value, 0 or 1.

The parameter entry block format for a one-byte parameter is:

----------------+-+-
I Parameter No. 10101
+----------------+-+-+
I Value I

The parameter entry block contains the following:

BYTE

o

1

I/O Subsystem

CONTENTS

Parameter number byte:
Bits 0-5 - Parameter number, 0 through 63.

Bit 6 - 0
Bit 7 - 0

Parameter numbers need not be assigned
or ordered in sequence, but must be
unique within the sublist.

A numeric value, 0 through 255, or an ASCII
character.

10-98 2270512-9701

DNOS System Design Document

The parameter entry block format for a multi-byte parameter is:

----------------+-+-
I Parameter No. 10111
+----------------+-+-+
I Parameter Length I
+--------------------+
I I

Parameter
Value

The parameter entry block contains the following:

BYTE

o

1

2-nn

CONTENTS

Parameter number byte:
Bits 0-5 - Parameter number, 0 through 63.

Bit 6 - 0
Bit 7 - 1

Parameter numbers need not be assigned
or 6rdered in sequence, but must be
unique within the sublist.

Parameter length. The number of bytes required
for the parameter value.

Parameter value. The numbers or characters of
the parameter.

The parameter list consists of one or two sublists. All
parameters in a sublist are of the same type. Each parameter is
identified by a parameter number in the range of 0 through 63.
The parameters in a sublist must have unique parameter numbers.
They may be numbered in any sequence, skipping numbers, or not,
as required.

10.10.3 Name Manager SVC Preprocessing.

When a Name Manager SVC is issued, control is passed to the SVC
decoding routine. This routine buffers the user call block into
STA along with the BRO. The decoding routine then passes control
to the Name Manager preprocessor, with the BRB on the Name
Manager queue. This BRB has the form:

2270512-9701 10-99 I/O Subsystem

DNOS System Design Document

Buffered Request Overhead _
User's call block as follows:

SVC code 43, error code
subopcode , flags
other fields depending on the entry type

Space for extra words of Name Manager information

The Name Manager preprocessor works with the SVC buffering
routine to buffer call block extensions as needed, depending on
the SVC number and subopcode. It also retrieves (from the user's
JCA) the ID of the requesting task,. the stage number, and the
name segment SSB address. It stores these values in the extra
words of space for Name Manager information. Before an IOU
request reaches the Name Manager, the IOU preprocessor also
gathers the stage number and the name segment SSB address and
stores them in a three-word block following the standard buffered
I/O request block.

10.10.4 Details of Name Manager Modules.

The Name Manager consists of several processors and a short
section of code that selects one of these processors dep~nding on
the SVC code and the subopcode. The entries are:

NMMAPN
NMGNPN
NMSETN
NMAPNV
NMDELN
NMFLEX
NMPURG
NMENS
NMRTPS
NMGDEL
NMGSSZ
NMSAVE
NMCTC
NMIOU

NMREST

Determine Name's Value
Determine Next Pathname of Name's Value
Create Logical Name/Assign Synonym
Append Pathname to Present Value of Name
Delete Name
Find Lexical Successor
Purge Names
Enter New Stage
Return to Previous Stage
Get Next Descendent Error List Entry
Get Segment Size
Save Names to a File
Notice of Task Bid or Termination
Pass SVC to IOU after Resolving
Logical Names
Restore Names from a File

A description of each of the entry processors follows.

NMMAPN - Determine Name's Value
For either synonyms or logical names, this operation returns
the value of the name to the requester. If the Name Manager
finds the name specified, it returns the value string to the
buffer specified by bytes 6 and 7 in the call block. For
logical names, any parameters defined for the name are also
returned, using the buffer to which bytes 8 and 9 of the

I/O Subsystem 10-100 2270512-9701

DNOS System Design Document

call block point. Byte 10 is set to O. If the logical name
is assigned to a set of files that have been logically
concatenated, only the first file pathname is returned and
byte 11 is set to the value 1. Otherwise, byte 11 is set to
O.

NMGNPN - Determine Next Pathname of Name's Value
This is used to determine the various pathnames in a set of
logically concatenated files. OnlY one pathname is returned
by this operation. This pathname corresponds to the
pathname number specified in bytes 10 and 11. (The number 0
returns the first pathname, 1 returns the second, and so
on.) In addition to returning a pathname, the processor
also increments this word (bytes 10 and 11) if the pathname
returned is not the last one in the list of concatenated
files. If the pathname is the last one, the processor
returns 0 to bytes 10 and 11.

NMSETN - Create Logical Name/Assign Synonym
This serves either of two functions, depending on the flag
set by the user to tell whether this is a synonym or a
logical name operation. If it is a synonym operation, the
Assign Synonym operation is performed, using the name as a
synonym name and giving that name the specified value. Any
previous value for the synonym is replaced with the new
value. Stage scope rules (described in paragraphs that
follow) are strictly followed in the process of assigning
the new value to the name.

If a logical name operation is indicated, a Create Logical
Name operation is performed. The specified name is given
its value (pathname), and any parameters specified are
associated with the logical name. As with synonyms, any
previous value for the logical name is replaced, and stage
scope rules are strictly followed. If the logical name is
for a pathname that is to have its last component filled in
by IOU (unique pathname to be autogenerated), space for the
pathname to be supplied is reserved at the end of the value
field within the table entry. However, the length of the
value is recorded as the length specified by the user and
does not change until IOU notifies the Name Manager of the
full pathname.

NMAPNV - Append Pathname to Present Value of Name
This operation adds to a logical name that represents a set
of logically concatenated files. The pathname for the first
file and all parameters to be associated with the logical
name are specified with the Create Logical Name operation.
Additional pathnames may then be appended, one at a time, by
using this operation. The additional pathnames are stored
separately in the logical name segment to avoid having to
move the previous name definition to a location large enough
to accommodate the additional pathnames. The additional

2270512-9701 10-101 I/O Subsystem

I

DNOS System Design Document

pathnames are linked to the name definition in the order
they are supplied by the user.

NMDELN - Delete Name
Depending on the flag setting, the name is deleted from the
synonym table or the logical name table. Any appended
pathnames are also deleted. If the name represents a job­
local temporary file, a Detach Resource operation is
performed on the resolved name. Stage scope rules are
strictly followed so that deleting the name does not affect
the definition seen by other stages within the same job.

NMFLEX - Find Lexical Successor
This routine searches the synonym or logical name
definitions, as specified, for the name (if one exists) that
is the immediate alphabetic predecessor or successor of the
specified name (pointed to by bytes 4 and 5). Whether the
predecessor or successor is found depends on the value of
the word at bytes 10 and 11 (0 indicates successor, -1
indicates predecessor). If the desired name is found, its
name replaces the specified name (pointed to by bytes 4 and
5) and its value is placed in the buffer pointed to by bytes
6 and 7. If parameters are associated with the name and the
parameters buffer pointer (bytes 8 and 9) is nonzero and
points to a nonzero-length buffer, the parameters are
returned in the buffer. If no name is found to meet the
requirements, a null string (zero length) replaces the
specified name. If the specified name points to a zero­
length string, the alphabetically smallest name and its
value is returned if the successor was requested; the
alphabetically largest name and its value are returned if
the predecessor was requested. If the value pointer
originally is zero or points to a zero-length string, any
name found is returned as usual, but its corresponding value
is omitted.

The name buffer to which the call block points must be large
enough to hold the maximum results possible, even though the
first byte shows only the length of the string that
currently occupies the buffer. This routine cannot check to
ensure that the buffer is large enough.

NMPURG - Purge Names
This SVC provides the capability to delete a series of names
that are (in some sense) logically related. It searches all
names for those that have the first n-l bytes exactly the
same as the first n-l bytes of the specified name. Each
time such a name is found, the nth bytes are compared. If
the nth byte of the name is greater than or equal to the nth
byte of the specified name, the name found is deleted.
Otherwise, the name is left intact. The length of the name
deleted may be greater than or equal to the specified name.

I/O Subsystem 10-102 2270512-9701

DNOS System Design Document

NMENS - Enter New Stage
A new stage is created with a stage number equal to the
lowest number not currently used in the job, and the
requesting task is placed into the new stage. This involves
allocating an SDB for the new stage, and placing a new stage
number in the TSB of the requestor.

NMRTPS - Return to Previous Stage
This operation returns the task to the stage in which it was
running previous to its last Enter New Stage operation.
This operation is valid only when the task is returning to a
stage from which it issued an Enter New Stage SVC. If the
task count of the current stage is greater than one, the
task count is decremented and the stage number field is
adjusted in the TSB of the requesting task. If the task
count is only one, the current stage must be deleted. This
requires the following:

* Appending any entries in the current stage's descendant
error list onto the descendant error list of the parent
stage for the current stage

* Searching the current stage's synonyms for
it is found, building another entry on
stage's descendent error list

$$CC
the

and, if
parent

* Deleting all synonyms and logical names that are defined
at the level of the current stage

* Delinking and deallocating the current stage's SDB

The descendent error list is a set of synonyms used for SCI
to pass error information from one stage to its parent and
to allow a background task to report error information to
the foreground SCI. It consists of values for the synonyms
$$CC, $$ES, $$FN, $$MN, and $$VT.

Whether or not the stage is to be deleted, the requesting
task may also specify a list of synonym names to be passed
to the parent stage. The names must be placed back-to-back
in a buffer to which bytes 4 and 5 point, with the length of
each name (in bytes) immediately preceding the name. The
length of the entire list must be specified in the first
byte of the buffer.

NMGDEL - Get Next Descendent Error List Entry
This returns the first entry on the descendent error list
and then deletes that entry. The entry is returned in the

2270512-9701 10-103 I/O Subsystem

DNOS System Design Document

value buffer to which bytes 6 and 7 point and consists of
the values that the synonyms $$CC, $$ES, $$MN, $$FN t and
$$VT had when the entry was made. Entries are made when a
daughter stage that has values defined for these five
synonyms terminates. The values are returned back-to-back
in the buffer. The first byte of the buffer must be set up
by the requester to indicate the length of the buffer. Upon
completion of the SVC, the first byte contains the length of
the entry returned (0 if none).

NMGSSZ - Get Segment Size
This returns no error if the
otherwise, an error is returned.

NMSAVE - Save Names to a File

job contains synonyms;

This physically copies all currently accessible names to the
file whose pathname is specified in bytes 4 and 5. The file
is built with only the names that are linked to the SDB for
that stage. The file can be on any disk. The pathname is
of the same format used to assign LUNOs.

NMCTC - Notice of Task Creation or Termination
Since the Name Manager must maintain a task count for each
stage, task management places an entry on the Name Manager
queue whenever a task is bid and whenever a task t~rminates.
Task management does not suspend while this entry is
processed. A task inherits its stage number from the
creator task. The initial task of a job gets a stage number
of zero. The call block format for this call is shown as
the name request block (NRB) in the section on data
structure pictures. It uses a pseudo-subopcode)OC.

NMIOU - Pass SVC to IOU after Resolving Logical Names
All IOU operations that have an access name as one of their
arguments are queued to the Name Manager to be processed and
passed to IOU. The Name Manager resolves any logical names
to their full pathnames and then passes the BRB to IOU. The
Name Manager allocates STA for the full pathname and for any
associated parameters and modifies the BRB to point to those
structures. When IOU autogenerates a pathname for a logical
name, it places the BRB back on the Name Manager queue so
that the Name Manager can update the logical name with the
full pathname.

NMREST - Restore Names from a File
Names are restored to a name segment from the file pointed
to by bytes 4 and 5 of the call block. The name segment ID
is returned in bytes 12 and 13 of the call block. Only one
stage exists in this segment, stage O.

I/O Subsystem 10-104 2270512-9701

DNOS System Design Document

10.10.5 Stage Scope Rules.

Stage scope rules are used to ensure that each stage has its own
set of synonyms and logical names. These rules also enable one
stage to make changes to these names without affecting the values
of these same names for other stages. These rules are
circumvented only when executing a Return to Previous Stage
operation with names specified or when executing an IOU request
that involves autocreation of a file whose logical name was
previously assigned.

Rule 1
When a previously undefined name is defined, the value
definition block is queued to the NDB of the requesting
stage only and is not accessible by other stages.

Rule 2
When a name's value (as seen by the requesting stage) is
changed, the previous (if any) value definition block in the
chain of the requesting stage is discarded and a value
definition block for the name is built and queued to the SDB
of the requesting stage only and is not accessible by other
stages.

2270512-9701 10-105/10-106 I/O Subsystem

DNOS System Design Document

SECTION 11

DISK STRUCTURES AND FILE I/O

11. 1 OVERVIEW OF FILE MANAGEMENT

File management handles I/O operations directed to disk files.
Code in the subsystem runs at either task level or XOP level,
depending on the stage of processing and the particular operation
involved. As with other I/O operations, handling begins in the
request processing modules of the operating system, with some
preliminary work handled by the general I/O preprocessor IOPREP;
then, action is taken by the file management code itself. The
initial work of file management occurs at the XOP level, with the
JCA of the calling job mapped into the second segment of map file
O. Processing proceeds until an SVC (or direct I/O) must be
issued. At this point, a change is made to the file management
task-level code.

1 1 • 2 STRUCTURE OF A NEW DISK

Before a disk can be initialized for use by file management, it
must be checked for surface defects. This is done by the
Initialize Disk Surface (IDS) utility. Any defective tracks
found by vendor testing must be entered when the IDS command is
executed. The IDS utility does not always find all defective
tracks on a disk.

When using the IDS utility, the user has the option
initializing the disk for DNOS use or leaving the
uninitialized. When left uninitialized for DNOS, the format
the disk after running the IDS utility is as follows:

of
disk

of

1. Track 0, sector 0 has all zeros except in the word that
shows the state of the disk (SCOSTA). This word has
the value 2.

2. Track 0, sector 1 contains a list of bad (defective)
tracks. The list consists of pairs of words terminated
by a word of zero. The first word of each pair
contains the head and cylinder number of the first
track of a contiguous set of bad tracks. The head
number is in bits 0 through 4 of the word, and the

2270512-9701 11-1 File I/O

I

DNOS System Design Document

cylinder number is in bits 5 through 15. The second
word of each pair is the number of bad tracks in this
contiguous set.

The disk surface is required to be initialized with IDS only
once. The disk may then be initialized for use by DNOS with the
Initialize New Volume (INV) command as often as needed. The
information about defective tracks is preserved when an INV is
done, but the information can be extended by specifying
additional defective tracks.

The INV utility functions only if the disk has a value of 2 or 3
in SCOSTA of track 0, sector O. The value of 2 is placed there
by the IDS utility, and the value of 3 is placed there by INV.
For all other values of SCOSTA, the disk is considered not to
have the surface initialized.

11.3 DISK DATA STRUCTURES

File management uses a number of data structures on disk volumes
as well as a number of in-memory data structures to process disk
I/O requests. The structures on disk include information
describing the disk and structures describing each file on the
volume. Each of these structures is described in the section on
data structure pictures.

Under DNOS, all tracks on disks are
records of one sector per record.
disk characteristic and is not the same
size specified when files are created.

initialized in physical
Note that this record is a
as the physical record

DNOS disks are logically divided into allocatable disk units
(ADUs), an integral number of sectors on the disk; the number of
sectors per ADU varies according to disk size (see Table 11-1).
The number of ADUs is always less than 65,536 (that is, each ADU
on the disk can be addressed in a 16-bit word). The number of
sectors per ADU is always 1 or a multiple of 3. ADUs are
numbered from 0, with the first starting on track 0, sector 0.
Table 11-2 shows the capabilities of available disks.

File I/O 11-2 2270512-9701

DNOS System Design Document

Table 11-1 Forma t Information for Available Disks

Avail No. No.
Space of of No. of Sectors Sectors Bytes

Disk Type (MB) ADUs Heads Cylinders /Track /ADU /Sector
----------- ------ ------ ----- --------- ------ ------- -------

DSI0 4.7 16320 2 408 20 1 288
DS25 22.3 25840 5 408 38 3 288

DS31/DS32 2.81 9744 2 203 24 1 288
DS50 44.6 51616 5 815 38 3 288
DS200 169.5 65381 19 815 38 9 288
FDI000 1 .15 4004 2 77 26 1 288
CMD 16 13.5 53196 1 806 66 1 256
CMD 80 67.3 44330 5 806 66 6 256
DS80 62.7 40819 5 803 61 6 256
DS300 238.3 62045 19 803 61 15 256
WD800-18 18.5 22311 3 603 37 3 256
WD800-43 43.2 52059 7 603 37 3 256

WD800A-43 42.8 55744 3 871 64 3 256
WD800A-100 99.9 65034 7 871 64 6 256

WD500 4.75 18560 4 145 32 1 256
WD500A 17.0 22208 3 694 32 3 256

Table 11-2 Capabilities of Available Disks

Read Read Variable Bad
Disk With With Inter- Diagnostic Transfer Track
Type Strobing Offsets leave Cylinders Inhibit Mapping

--------- -------- ------- -------- ---------- -------- -------
DSI0 NO NO NO NO YES NO
DS25 YES YES NO NO YES NO

DS31/DS32 NO NO NO NO NO NO
DS50 YES YES NO NO YES NO
DS200 YES YES NO NO YES NO
FDI000 NO NO YES NO YES NO
CMD 16 YES YES NO YES YES NO
CMD 80 YES YES NO YES YES NO
DS80 YES YES NO YES YES YES
DS300 YES YES NO YES YES YES

WD800-18 YES NO NO YES YES NO
WD800-43 YES NO NO YES YES NO

WD500 NO NO YES YES YES NO
WD500A NO NO NO YES YES NO

WD800A-43 YES NO NO YES YES YES
WD800A-IOO YES NO NO YES YES YES

2270512-9701 11-3 File I/O

I

I

I
I

DNOS System Design Document

All disks that have been
following physical layout:

initialized under DNOS have

* Track 0, sector 0 -- Contains information about the disk
volume, such as the volume name and pointers to the
volume directory (VCATALOG). Template sca describes the
information here.

* Track 0, sector 1 -- Contains a list of bad (physically
imperfect) areas on the disk. Each entry is two words:
the first word is the address of the first bad ADU; the
second word is the address of the last bad ADD. A zero
word terminates the list.

*

*

*

The remainder of track 0 contains
information in the form of bit maps.

disk allocation

Track 1, sectors 0 to N-2 -- Optionally reserved for the
disk program image loader.

Track 1, next
sector O.

to last sector -- A copy of track 0,

* Track 1, last sector -- A copy of track 0, sector 1.

* Highest numbered (innermost)
information. This appears
.S$DIAG.

on
cylinder -- Diagnostic

disk maps as the file

* The remaining tracks are available for file allocation.

11.3.1 Volume Information.

the

The information contained in track 0, sector 0 of
initialized under DNOS is called volume information.
is detailed in the section on data structure pictures
Sector 0, Track 0.

all disks
This block

as SCO,

11.3.2 Allocation Bit Map.

To keep track of which areas on the disk are allocated and which
are free, the DNOS disk manager maintains a bit map of allocated
ADUs. The bit map is located on track 0 of each disk, starting
at sector 2 and continuing through as many sectors as necessary.

maps (PBMs).
O. The first

begins the
of the disk

The bit map is divided into 1~8-word partial bit
Each PBM is located in a separate sector on track
word of each PBM contains the number of the ADU that
largest block of free disk space located in the part
that is mapped by the PBM. Each bit in the remaining
represents an ADU. If a bit is 0, the ADU is free;

File I/O 11-4

127 words
if a bit is

2270512-9701

DNOS System Design Document

1, the ADU is allocated or bad. Each PBM contains
words of information and maps 2,032 ADUs.

11.4 FILE STRUCTURES

127 16-bit

DNOS supports three file types: relative record files (blocked
and unblocked), sequential files, and key indexed files. All
file types are based on the unblocked relative record type, with
extra system overhead need~d to implement sequential and key
indexed files. Also, three special types of relative record
files are available: program files, directory files, and image
files.

In the following discussion of file types and structures, a
physical record of a file is the amount of data actually
transferred by the operating system during an I/O operation to
the file; a logical record of a file is the amount of information
the user transfers in one (not multiple) Read or Write SVC call.
The ratio of the logical record size to the physical record size
is called the blocking factor.

1 1 .4. 1 Relative Record Files.

A relative record file is a file in which all logical records are
of a fixed length and each record can be randomly accessed by its
unique record number. Relative record files may be unblocked
(physical record size accommodates only one logical record) or
blocked (physical record size accommodates more than one logical
record).

1 1 .4. 1 • 1 Unblocked Relative Record Files.

Each logical record of an unblocked relative record file occupies
one physical record of the file. A physical record may be any
integral multiple of contiguous sectors. File accesses require
reading or writing this number of sectors (reads and writes of
multiple contiguous sectors can be accomplished via one disk
access). Records read from unblocked relative record files are
transferred directly from the disk to the user buffer, without
intermediate system buffering. When the user specifies a
particular record of the file, the record number is converted by
file management to an absolute ADU number and a sector offset
within the ADU. The absolute disk address is then passed to the
disk DSR to perform the actual data transfer. The disk DSR
converts the ADU and relative sector to a physical track and
sector disk address to communicate with the disk controller
hardware.

2270512-9701 11-5 File I/O

DNOS System Design Document

The diagrams that follow show examples of long unblocked relative
record files and short unblocked relative record files. Assume
that the disk in use has 9 sectors per ADU. In the first
example, the record might span 3 ADUs, perhaps occupying a total
of 25 sectors. Thus, 2 sectors are wasted per physical record.
In the second example, each physical record might occupy 2
sectors, wasting 1 sector of each ADU.

Long Unblocked Relative Record File
Record Size > ADU Size

LONG UNBLOCKED RELATIVE RECORD. RECORD SIZE> ADU 51 ZE

RECORD

I " I ALL DATA I I ALL DATA I ALL DATA

\
V

ADU
2278129

PHYSICAL
,,-__/A\,. ___ "'"

I ,
V I ,

ADU

Unblocked Relative Record File
Record Size < ADU Size

\

D
UNUSED

V I
ADU

DATA ~ DATA ~ DATA ~ DATA ~ ~

~-------------------------------~v~----------------------------------~
ADU

2278486

Note that each physical record must begin on a sector boundary.
Also, a physical record that starts in the middle of an ADU may
not span the ADU boundary.

11.4.1.2 Blocked Relative Record Files.

Files of blocked relative
unblocked files except that

File I/O

records
multiple

11-6

are treated the
logical records

same
may

as
be

2270512-9701

DNOS System Design Document

stored in each physical record. Logical records may not span
physical records. Records are transferred via intermediate
blocking buffers, which are ~urnished from the general pool of I
user space by buffer management.

Note that each physical record must begin on a sector boundary
and that a physical record that starts within an ADU cannot span
theADU boundary. Also, when physical records are less than an
ADU, the number of sectors actually taken up by a physical record
is the number of sectors per ADO divided by the number of
physical records per ADU.

In the figure which follows, assume that the disk in use has 9
sectors per ADU. If a physical record occupies 3 sectors, three
of these physical records would fit into each ADO. Each physical
record begins on a sector boundary, so there is no unused space
at the end of each ADU, but there may be unused space at the end
of each physical record if the logical record size is not an
exact multiple of the physical record size. The figure shows
each physical record composed of 4 logical records and some
unused space.

Blocked Relative Record File

PHYSICAL RECORD 1 PHYSICAL RECORD 2 PHYSICAL RECORD 3

I REC1IREC2IREC3IREC4~ IREC5IREC6IREC7IREC8~ IREC9 1 Rfg I Rff IR1Ef ~
4 LOGICAL RECORDS 4 LOGICAL RECORDS 4 LOGICAL RECORDS

UNUSED UNUSED UNUSED

\~------------------------------------~v~---------------------------------------JI
ADU

2278485

1 1 • 4 • 2 Sequential Files.

Sequential files are blocked relative record files with variable­
length logical records. Logical records may span physical record
boundaries regardless of ADO boundaries. When a logical record
spans a physical record boundary, it is broken into partial
records contained in separate blocks. The first word of each
physical record has two flags indicating whether the first
logical record is continued from the preceding physical record
and whether the last logical record is continued in the following
physical record.

2270512-9701 11-7 File I/O

BYTE

o
2
4

6

8

A

C

E

10
12
14
16
18
1A
tc

1 E

20

22

24

26

28

2A

2278132

File I/O

o 1, I

1 101

PHYSICAL RECORD 0

LOGICAL RECORD 0 DATA

LOCICAL RECORD 1 DATA

LOGICAL RECORD 2 DATA

PHYSICAL RECORD 1

LOGICAL RECORD 2 DATA

LOGICAL RECORD 3 DATA

LOGICAL RECORD 4 DATA

DNOS System Design Document

8

8

E

E

8

8

4

4

A

A

A

A

0

0

2

FLAGS

RECORD 0 HEADER

RECORD 0 TRAI LER

RECORD 1 HEADER

RECORD 1 TRAI LER

RECORD 2 HEADER (PARTIAL)

RECORD 2 TRAI LER (PARTIAL)

FLAGS

RECORD 2 HEADER (PARTIAL)

RECORD 2 TRAI LER (PARTI AL)

RECORD 3 HEADER

RECORD 3 TRAI LER

RECORD 4 HEADER

RECORD 4 TRAI LER

THIS WORD POI N rs BACK ro EOF HEADER
NEXT RECORD STARTS IN NEX r BLOCK

Figure 11-1 Sequential File Format

11-8 2270512-9701

DNOS System Design Document

When set to 1, flag bits have ~h~ following meanings:

* Bit 0 - First logical reco~d in this physical record is
continued from the precedin~ record

* Bit 1 Last logical record in this physical record
continues in the next record

Each logical record or partial record is preceded by a header
word and followed by a trailer word. The content of the header
and trailer is the number of bytes of data between them. An end­
of-file is signified by a zero value header and trailer •. A zero
length record is indicated by a header and trailer containing
)FFFF.

A special condition exists when a record or last partial record
ends with only one or two words remaining in the physical block.
Since there is not room for another partial record
(header/data/trailer), the next record begins in the following
block. The last word of the current block contains the number in
the last trailer plus the number of unused bytes (two or four).
Figure 11-1 shows how a sequential file is arranged.

Logical records of a sequential file may be blank-suppressed
(defined as blank-suppressed when created). In blank-suppressed
files, all full words of blanks -are removed. A blank-suppressed
logical record includes a header word, a set of data, and a
trailer word. The set of data includes one or more repetitions
of a byte containing a count of words of blanks, a byte
containing a count of words of characters with no words of I
blanks, and data characters. If a logical record has a length of
zero, the physical record shows two words of FFFF. Figure 11-2
shows a blank-suppressed record.

2270512-9701 11-9 File I/O

Input Record:
column: 0 0

1 5

FIRST

1
o

Physical Record on File:

1
5

LAST

2
o

/ 0016 /
+----------+-----------+
J 00 J 03 J

+----------+-----------+
J 46 J 49 J

+----------+-----------+
J 52 J 53 J

+----------+-----------+
J 54 J 20 J

+----------+-----------+
J 04 J 02 J

+----------+-----------+
J 4C J 41 J

+----------+-----------+
J 53 I 54 J

+----------+-----------+
I 05 J 02 I
+----------+-----------+
J 20 J 41 I
+----------+-----------+
J 47 J 45 I
+----------+-----------+
I 18 J 00 I
+----------+-----------+
/ 0016 /

2
5

DNOS System Design Document

3
o

AGE

3
5

4
o

4
5

50-80

(columns 33-80 blank)

(counts in diagram in hex,
characters in hex ASCII)

header record

(0 words blanks, 3 words data)

F I

R S

T blank

(4 words blanks, 2 words data)

L A

S T

(5 words blanks, 2 words data)

blank A

G E

(24 words blanks, 0 words data)

trailer record

Figure 11-2 Blank-Suppressed Record

11.4.3 Key Indexed Files.

Key indexed files have variable-length logical records that can
be accessed either randomly, by any of up to 14 keys, or
sequentially, in the sort order using any key. On the disk, a
key indexed file with n keys is arranged as follows:

* The first 18n+3 (n=number of keys) physical records are
the KIF prelog blocks. Be fore a record in the file is
modified, it is written into a prelog block to prevent
data loss in case of an error (for example, power
failure) during the data transfer or in case the

File I/O 11-10 2270512-9701

DNOS System Design Document

operation is parti~lly compfeted when an error occurs.
If an error occurs, ihe loiged blocks are written back
into the original ·file 'reco~d when the file is next
opened (in the case of a system crash) or before the
operation terminates (in the case of user errors), and
the file operation may be~~t~ied.

* The next n physical records are the roots of the
balanced trees (B-trees) that are used to locate each
logical record within the file by key. Every defined
key has a corresponding B-tree (up to 14 B-trees);
therefore, each key indexed file has n B-tree roots.

* Following the B-tree root nodes are physical records
that contain data as well as ·those that contain other B­
tree nodes.

B-trees are made up of a root node, branch nodes, and leaf nodes.
A root node is the first node of the tree. Leaf nodes contain
pointers to the data records. Branch nodes are all of the nodes
between the root and leaf nodes. A·root node may be a leaf node,
in which case there are no branch nodes.

A DNOS B-tree has multiple branches per node and all leaf nodes
are at the same level. DNOS,"B-trees may not exceed nine levels.
Figure 11-3 shows a sample B-tree in which the key values are
single letters.

Each node of a B-tree occupies one physical record of a key
indexed file, and is called a B-tree block (BTB). Each BTB
contains 18 bytes of overhead and several pointer/key value
entries. These entries are sorted in increasing order of key
value (smallest key value is the first entry).

If the block is not a leaf entry, each pointer field points to a
subtree that contains key values less than or equal to the key
value associated with the pointer. In fact, the highest key
value contained in the subtree is the key value associated with
the pointer (as shown in the sample B-tree).

Further information on general B-tree structure is available in
The Art of Computer Programming, Volume III by Donald Knuth.

2270512-9701 11-11 File I/O

DNOS System Design Document

File I/O 11-12 2270512-9701

DNOS System Design Document

All of the data records (logical records) of a key indexed file
are contained in data blocks •. A. data block is a physical record
of the file and contains 14 bytes of overhead and several logical
records. The word following the ~ast logical record has a zero
value. The structure of a KIF in£ormation block (KIB) is shown
in the section on data structure pictures.

Whenever a data record is to be-inserted in a data block, it is
assigned an ID that is unique within the block. The data record
is then inserted after the last logical record in the block.

11.4.4 Program Files.

In ad~ition to the three basic file types, three special uses of
the relative record file warrant description: program files,
directory files, and image files.

Program files are unblocked relative record files with a logical
record size of one sector. The sector size is hardware
dependent, with the smallest se~tor size being 256 bytes. Figure
11-4 shows the format of a program file. The program file
directory index entry (PFI) and the program file record zero
(PFZ) are shown in detail in the section on data structure
pictures.

The sections of information describing the contents of the
program file do not always start at the beginning of records or
in the same place for all program files. The following equations
define the record number and the offset into the record which
defines the beginning of the information. In the equations, R
designates a record and F designates the offset.

R1 1
F1 0

R2 R1 + {«MAX # TASKS +2)/2) *)10) + F1} /)100

F2 remainder of {«MAX # TASKS +2)/2) *)10 + F1} /)100

R3 R2 + {(MAX # TASKS +1) *)10 + F2} /)100

F3 remainder of {(MAX # TASKS +1) *)10 + F2} /)100

R4 R3 +{«MAX # PRoes +2)/2) *)10 + F3} /)100

F4 remainder of {«MAX # PRoes +2)/2) *)10 + F3} /)100

R5 R4 +{(MAX # PRoes +1) *)10 + F4} /)100

F5 remainder of {(MAX # PROeS +1) *)10 + F4} /)100

R6 R5 +{«MAX # OVLYS +2)/2) *)10 + F5} /)100

2270512-9701 11-13 File I/O

DNOS System Design Document

F6 remainder of { ((MAX II OVLYS +2)/2) *)10 + F5} /)100

F7 = R6 +{(MAX II OVLYS +1) *)10 + F6} /)100

F7 remainder of {(MAX # OVLYS +1) *)10 + F6} /)100

R8 R7 + {«MAX # HOLES * 4) "+2) + F7} /)100

F8 = remainder of {«MAX # HOLES * 4) +2) + F7} /)100

If F8 is not equal to zero, then R8 = R8 + 1

Rl,Fl: Record number and offset for names of tasks.
R2,F2: Record number and offset for task directory entries.
R3,F3: Record number and offset for names of procedures.
R4,F4: Record number and offset for procedures directory entries.
R5,F5: Record number and offset for names of overlays.
R6,F6: Record number and offset for overlay directory entries.
R7,F7: Record number and offset for unused space directory.
R8: Record number of first image record.

The first record (record number 0) of a program file contains six
bit maps. These bit maps, in order of occurrence within record
0, are for memory-resident tasks, memory-resident procedures or
segments, all tasks, all procedures, all nonreplicatable tasks,
and all overlays.

o OVERHEAD RECORD I

+---+
1 I NAME ENTRIES FOR TASKS I

+---+
R2:02 I DESCRIPTION ENTRIES FOR TASKS I

+---+
R3:03 I NAME ENTRIES FOR PROCEDURES/SEGMENTS I

+---+
R4:04 I DESCRIPTION ENTRIES FOR PROCEDURES/SEGMENTS I

+---+
R5:05 I NAME ENTRIES FOR OVERLAYS I

+---+
R6 :06 I DESCRIPTION ENTRIES FOR OVERLAYS I

+---+
R7:07 I AVAILABLE SPACE LIST I

+---+
R8 I IMAGE FORMATS FOR TASKS, PROCEDURES AND OVERLAYS I

Figure 11-4 Program File Format

When record 0 is
except the first bit

File I/O

initialized,
in the tasks,

11-14

all bits in the bit map are 0
procedures/segments, overlays,

2270512-9701

DNOS System Design Document

and nonreplicatable tasks bit maps (the bit maps occupying bytes
)54 through)D3). The first bit of these is a 1, restricting
user tasks from allocating ID O.

Each bit map has 16 words, with 16 bits per word; therefore, each
bit map can represent 256 IDs. A bit set to 1 indicates that the
ID corresponding to the bit position (0 through 255) is assigned
to a task, procedure, or overlay segment installed in the file.
The format of record 0 of the program file is shown in the
section on data structure pictures as PFZ, Program File - Record
Zero.

When a program file is created, the maximum number of tasks,
procedures/segments, and overlays to be set into bytes)D4,)D8,
and)DC of record 0 are defined by the creator of the program
file. The maximum number of holes, which equals the sum of these
three values, is used to calculate the number of bytes required
in the overhead records for the available space list. This list
is headed by a word containing the number of entries in the list.
The rest of the list consists of two-word entries that describe
the unallocated spaces (holes) in the image portion of the
program file. Each entry contains the starting record number and
the number of available records in each hole. A hole appears
when an image is deleted. The hole. is recorded to be used again
if a new image that is the same size or smaller than the deleted
one is installed in the file. Adjacent images, when deleted,
create only one hole. Figure 11-5 sho~s the format of the
available space list.

2270512-9701 11-15 File I/O

DNOS System Design Document

NUMBER OF ENTRIES I

+---+--+
I RECORD NUMBER I I

+---+ ENTRY 1
I RECORDS AVAILABLE I I

+---+--+
I I

/
I

+---+--+
I RECORD NUMBER I I

+---+ ENTRY n
I RECORDS AVAILABLE I I

-----+
Figure 11-5 Program File Available Space List

The available space list uses the entire record, not 256 bytes of
it as the other overhead records do. Therefore, if the list
spans records, an entry is split across two records. (The first
word of the entry is the last word of one record, and the second
word of the entry is the first word of the next record.) The
available space list is initialized at the same time record a is
initialized. Its values are as follows:

1 ONE HOLE

+--------------------------+
I R8 I BEGINS AT RECORD 8

+--------------------------+
I)FFFF-R8 I IS)FFFF - R8 RECORDS LONG

R8 is the record number of the first record following
the available space list.

The maximum number of records permitted in a program is)FFFF.
Thus, the maximum number of image records permitted in a program
file is)FFFF minus the number of overhead records.

The actual image of a task, procedure, or overlay must start on a
record boundary in the program file. If the segment has a
relocation bit map, the map begins at the first word folloWing
the program segment image. However, any part of a program file
can be split across secondary allocations. The relocation bit
map begins at the first word following the program segment image.
The length of the relocation bit map is the length of the program
segment image, in bytes, divided by eight and rounded to a word
boundary

File I/O 11-16 2270512-9701

DNOS System Design Document

The task, procedure/segment, and overlay name entries in the
program file contain the names oj ~ll tasks, procedures/segments,
and overlays installed in the program file. A name entry is
eight bytes long, blank-filled to the right. The name entry is
placed in the name block positio~ that corresponds to the ID
assigned to that segment. For example, if task GENTX is assigned
ID 1, the name GENTX is entered in bytes 8 through 15 (second
position) of the name entries block for tasks.

The task, procedure/segment, and overlay description entries in
the program file contain information about all segments installed
in the program file as well as pointers to the segment images.
Each description is 16 bytes long. The figures that follow show
the formats of the program file description entries, with field
descriptions following each format. Figure 11-6 shows the format
of the task description; Figure 11-7 shows the format of a
procedure/segment description; and Figure 11-8 shows the format
of an overlay description.

Hex.
Byte

)00

)02

)04

)06

)08

)OA

)OC

)OE

LENGTH OF TASK SEGMENT

+---+
I FLAGS I
+---+
I RECORD NUMBER I

+---+
I DATE INSTALLED I
+---+
I LOAD ADDRESS I
+--------------------------+--------------------------+
I OVERLAY LINK I PRIORITY OF THE TASK I
+--------------------------+--------------------------+
I PROCEDURE 1 ID I PROCEDURE 2 ID I
+--------------------------+--------------------------+
I TASK LENGTH I

)10 maximum size

Figure 11-6 Task Description Entry

2270512-9701 11-17 File I/O

Hex.
Byte

)00

)02

)04

)06

)08

)OA

)OE

File I/O

DNOS System Design Document

Description of Selected Fields

Length of task segment in bytes. Length of task root
plus length of the task's longest overlay path.

Flags, as follows:

Bit Meaning When Set

o Privileged
1 System
2 Memory resident
3 Delete protected
4 Replicatable
5 Procedure 1 is on the system program file
6 Procedure 2 is on the system program file
7 Directory entry in use
8 Overflow
9 Writable control store (WCS)
10 Execute protected
11 Software privileged
12 Updatable
13 Reusable
14 Copyable
15 Security bypass

Record number. Logical record number of the start
of the task ima~e in the program file.
Date installed, i~ the following format:

Bit

0-6
7-15

Meaning

Year (displacement)
Julian date

Load address. Relative starting address within a
mapped task segment. Must be on a beet boundary.

Overlay link. The ID of the most recently installed
overlay associated with the task~ Each overlay entry is
in turn linked to the next entry so that tasks can be
associated with their overlays when status or delete
commands are executed. A value of 0 is used to
terminate the list.

Task length. Last defined task code. If a BSS is the
last instruction in the task, its length is not included
in the value.

11-18 2270512-9701

DNOS System Design Document

Hex.
Byte

)00

)02

)04

)06

)08

)OA

I LENGTH OF PROCEDURE/SEGMENT (BYTES) I

+---+
1 FLAGS 1

+---+
I RECORD NUMBER I
+------------------------~----------------------------+
I DATE INSTALLED I

+---------------------~-------------------------------+
I LOAD ADDRESS I

+---+
I I

UNUSED (=0)

)10 * maximum size

Hex.
Byte

)02

)04

Figure 11-7 Procedure/S~gment Description Entry

Description of Selected Fields

Flags, as follows:

Bit Meaning When Set

o Unused (set to zero)
1 System (segment only)
2 Memory resident
3 Delete protected
4 Replicatab1e (segment only)
5 Share protected
6 Unused (set to zero)
7 Directory entry in use
8 Unused (set to zero)
9 Writable-control store(WCS)
10 Execute protected
11 Write protected
12 Updatab1e (segment only)
13 Reusable (segment only)
14 Copyab1e (segment only)
15 Unused (set to zero)

Record number. Logical record number of the start

2270512-9701 11-19 File I/O

)06

)08

Hex.
Byte

)00

)02

)04

)06

)08

)OA

)OC

)10

Hex.
Byte

)02

)04

DNOS System Design Document

of the procedure image in the program file.

Date install~d, in the following format:

Bit

0-6
7-15

Meaning

Year (displacement)
Julian date

Load address. Relative starting address within a
mapped procedure segment. Must be on a beet boundary.

LENGTH OF OVERLAY SEGMENT (BYTES) I

+---+
I FLAGS I

+---+
I RECORD NUMBER I

+---+
I DATE INSTALLED I

+---+
I LOAD ADDRESS I

+--------------------------+--------------------------+
I LINK TO NEXT OVERLAY I ID OF ASSOCIATED TASK I

+--------------------------+--------------------------+
I UNUSED (=O) J

I I
--- * maximum size

Figure 11-8 Overlay Description Entry

Description of Selected Fields

Flags, as follows:

Bit

o
1-2
3
4-6
7
8-15

Meaning When Set

Relocation bit map is present
Unused (set to zero)
Delete protected
Unused (set to ~ero)
Directory entry in use
Unused (set to zero)

Record number. Logical record number of the starting

File I/O 11-20 2270512-9701

DNOS System Design Document

)06

address of the overlay image in the program file.

Date installed, in the following format:

Bit

0-6
7-15

Meaning

Year (displacement)
Julian date

)08 Load address. Relative starting address within a
mapped overlay segment. Must be on a beet boundary.

11.4.5 Directory Files.

Directory files are unblocked relative record files and have a
record length of)86 or .)100 characters. Record 0 of the
directory file contains an overhead record. The remaining records
in the file may contain one of the following types of data blocks:

* File Descriptor Record (FDR) -- Every file cataloged in
the directory is represented by an FDR, which describes
the file and its locatibn on the disk.

* Alias Descriptor Record (ADR) -- Every alias of
cataloged in the directory is represented by
which gives the location of the file and points
FDR of the actual file.

a file
an ADR,
to the

* Channel Descriptor Record (CDR) -- Every channel that has
an owner task in a program file in the directory is
represented by a CDR, which describes ·the channel
characteristics and identifies its owner task.

* Key Descriptor Record (KDR) Each key indexed file
cataloged in the directory is represented by an FDR,
which in turn points to another record, the KDR. The KDR
describes all of the keys (1 through 14) that are defined
for the file. Note that the use of the KDR implies that
each key indexed file cataloged in a directory uses two
directory entries.

Figure 11-9 shows the general structure of a directory file.
Entries are made by hashing the name of the file being entered.
The hash algorithm results in a record number from 1 through n,
where n is the last record in the directory file. Figure 11-10
shows the hash algorithm. If the directory file record is unused,
an FDR for the file being inserted is placed in that record. If
the record is already used, a free record is found by a linear
search from the hashed record.

2270512-9701 11-21 File I/O

DNOS System Design Document

Re co rd No.

o

1

2

I OVERHEAD RECORD I

+---------------------------+
I I
+---------------------------+
I I

\
I
I

+---------------------------+ > DIRECTORY ENTRIES
I

+---------------------------+ I
n I I /

Figure 11-9 Directory File Structure

PROCEDURE HASH (N : number of records in directory minus 1,
NAME : name of the file being entered)

BEGIN
KEY : = 1;
I : = 1;
C := NAME[I];
WHILE C <> ' , AND I < 9 DO

BEGIN
KEY := «KEY * C) MOD N) + 1;
I := I + 1;
C : = N AM E [I] ;
END

END

Figure 11-10 Computing a Hash Key

If the file being inserted is a key indexed file, another
directory record must be found to contain the KDR. This record is
found by searching linearly from the FDR for the file. The KDR is
inserted into the first available directory record following the
FDR.

The different types of directory records are described in the
following paragraphs.

The directory overhead record (DOR), which is record 0 of all
directories, contains:

* The maximum number of records (entries) in the directory

* The number of currently defined f~les

File I/O 11-22 2270512-9701

DNOS System Design Document

* The number of available rec~rds (entries)

* The file name of the directory

* The level
(VCATALOG)

number of the directory in the disk hierarchy
is level 0)

* The file name of the parent directory

* The default physical record length

Each file cataloged under the directory is represented by an FDR.

Files can be given other names, each name being a separate alias.
Each alias is hashed to find an entry in the directory just like a
file name, and an ADR is inserted in that entry. The ADR points
to the actual file. It also points to the next alias for the
file.

Figure 11-11 shows a dump of the directory file .JB.DIR. The
directory contains a sequential file (.JB.DIR.SEQ), an image file
(.JB.DIR.IMAG), a program file (.JB.DIR.PROG), and a key indexed
file (.JF.DIR.KIF). The directory also contains an alias for the
key indexed file. The directory was created to have 11 entries in
addition to record 0 which is the DOR.

11.4.6 Image Files.

Image files are contiguous nonexpandable, unblocked relative
record files that contain memory images of programs. They are not
organized in any format; that is, each sector of the image file,
starting with the first sector, is completely filled with data.
There are no overhead records or words. Image files are designed
so that a program image can be read into memory in a single disk
access.

11.5 ALLOCATION OF SPACE FOR EXPANDABLE FILES

When a file must be expanded, the amount allocated for the
expansion depends on how much space is needed and where the space
is available on the disk. If there is a space available
contiguous with the last allocation of the file, that space is
allocated for the expansion. In this case, the amount of space
allocated may be less than that asked for by the file definition.
If space is not available contiguous with the current file
allocation, one of two secondary allocations is made. If a
contiguous block is available with the size requested, that block
is allocated. Otherwise, the largest available contiguous block
of space is allocated as the secondary allocation.

2270512-9701 11-23 File I/O

I

DNOS System Design Document

The amount of space asked for initially is the larger of

SAS * (2 ** USA)

and

TIMTBL(UEXT) converted to ADUs

where:

is the defined secondary allocation size in ADUs SAS
USA is the number of noncontiguous secondary allocations

(ranging from 0 through 16)
UEXT is the number of file extensions, ranging from 0 through

15, initialized to USA when a LUND is assigned
TIMTBL(O) is 1 physical record
TIMTBL(I) is 2 physical records
TIMTBL(2) is 4 physical records
TIMTBL(3) is 8 physical records
TIMTBL(4) is 12 physical records
TIMTBL(5) is 16 physical records
TIMTBL(6) is 20 physical records
TIMTBL(7) through TIMTBL(15) are 24 physical records

Each type of file can have secondary allocations. An image
program file can also have a secondary allocation.

in a

File I/O 11-24 2270512-9701

DNOS System Design Document

FILE ACCESS NAME: .JB.DIR
F:EC OF:D: (11)01)(")
')(H)i) OOOB (u)04 1)(105 0000 444';- 5220 :20F! 2(,20
on 1 I) ilt)!).: 4A4 2 i02 i) 2020 2020 O:?,I)(.' 0000 O(l(l(i

:;AME
(IOFE 1)(li)(1

HECORD: OI)(Jl)Ol
0000 0002 0(~1 5345 5120
O(l1(! I)AOO (361) (1)51) O(Ji) 1
;)1:'20 0000 0000 0000 0000
0(1::::(· i)({H) 0000 1)000 (17Be
(li)40 0'7'5B 01(11 (1(100 (/(lOO

202(~ 2020
2289 1)001
(1000 O(h)O
020:: 095B
(t(/(h) (10(10

({IOO O(Il)O
O(I(ln ()(/()]

i~IMH~) liH~li)
07B(: 0203
(1000 0000

SAME
(1090 4A4F 594:;: 4520 202(! ')000 0000 ,)00(1 000(1

SAME
i)OFE 0(;00
RECOF:[t: 000002
(1(1()(i 0000 0001 494[1 4147 2(120 2020 0000 0000
(1010 C 4 20 (.i 120 (1120 0022 3952 0001 ()(;OO (H) (I!)

SAME
0036 (l7BC 0203 09[16 07Be 0203 09[16 010:; 0000

'~;AME
(11)90 4A4F 5943 4ti2(J 2020 ({IOI) 0000 0000 0000

SAME
(I0FE (1(I(;el
RECORD: 00000.3
0000 00(11 000:3 414(: 4941 5:320 2020 (10(10 000(1
001(1 !)A 10 0000 0000 0000 0000 (1)00 0000 0000
0020 (10(11 1)000 000(1 (if)O!) (iI)')(l 0000 1)i)O(l 0000

SAME
(lOFE ()(II"j(.

RECORD: 1)(Jn(lil4
(1000 1)t:IO(t 0000 0000 (H)(Il) 0000 OOCH) O(li)(l (tOOO

SAME
OOFE 1.I!JiJt)
RECORD: 000005
(1000 0000 0000 0000 0000 0000 0000 0000 O!)(IO

SAME
(I(IFE 0000
RECORD: 0(i0006
0000 0000 (1t)(l0 0000 0000 0000 (11)(11) 0000 0000

SAME
(I0FE (1000
RECORD: 000007
(10(10 0001 0007 5(152 4F47 2020 2(21) 0000 0000
(011) :3C20 0120 0120 001 D 3B2A 0001 0000 00(11)
0020 0000 (104A OOO() (I04A 0000 0000 0000 0000
(1030 0000 0000 0000 07B(: 020:3 OBFC 07BC 0203
0040 OBF!;' 010:3 0000 0000 0000 0000 0000 0000

SAME
(1090 4A4F 5943 4520 2020 0000 (1000 0000 (1000

SAME
(lOFE 00(11)
RECORD: 000008
(1000 (i(II)(! 1)(100 0000 0000 0000 0000 1)000 0000

SAME
OOFE 0000
RECORD: 000009
(1000 (1001 0(;09
0010 lEO:3 00140
0020 0000 0000
0030 0011:. 01F7
U!)40 (ten (ito.?

SAME

4B45 5946 494C 4520 000(1 0000
(h)50 OOBO 72B9 0022 0000 1)1)1)1)

(III/XI 0016 0001 0000 0016 0015
t~I(~H~)A 07BC 020:3 Oe23 (i7BC 0203
.)(H)A (H)(I(! (h)Ot) 0009 0000 0000

(li)'iO 4A4F 594:3 4520 2020 (lI)(H) 000(1 0000 (1000
:3AME

OOFE 0000
HECOF:D: OOOOOA
0000 0000 FFFD () 1 F 4 0001 (,BOA 0000 0000 0000

SAME
(I0FE 0000

. [
,JO

....

.-.. :.~
,JO

,_'B

Sf C'
.P

Y·C E

1M Alj
H

.V

YC E

AL IA

•• FR 013

• ,J • .J
.. (

,JO YC E

[11 R

. [

9R

IJ .. '

r
"

if

KE YF IL E
.P .0 rot "

.#

,JO YC E

," .'.

Figure 11-11 Dump of Directory File

2270512-9701 11- 25 File I/O

DNOS System D~sign Document

11 .6 IN-MEMORY DATA STRUCTURES

The primary data structure used by file management during its
execution is a record of the state of the request being processed,
the File Manager work area (FWA). With each FM request, extra
storage is allocated for the FWA when the IRB is processed by
FMPREP. The extra storage is required for the following
information:

* A workspace for execution

* Information about the request including block numbers,
offsets, several fields of the FeB needed when the FCB is
not available", a description of the user buffer, a
description of the blocking buffer, and vectors used to
terminate processing at XOP level and reactivate at task
level

* A stack in which called routines save registers

The part of the buffered request allocated for working storage is
pointed to by register 15 (RI5), except in FMPREP and FMTASK, and
is addressed with the template FWA. The FWA is detailed in the
section on data structure pictures, as are the other -in-memory
structures.

Other in-memory structures used by file management include the
following:

* File Control Block (FCB) In-memory structure
representing the last component of a file pathname, used
to access the file for direct disk I/O in conjunction
with the file directory block

* File Directory Block (FDB) - Single node of the in-memory
directory tree structure located in the file management
table area. Provides tree linkage and information needed
to perform direct disk I/O to the file

* File Descriptor Packet (FDP) A two-word in-memory
structure that is used to access an FCB

* Logical Device Table (LDT) - A description of the file
resource, including usage flags, ownership information,
parameters, and a pointer to the relevant FDP

* Resource Privilege Block (RPB) A structure used to
control access privileges for resources

Figure 11-12 shows the location and relationships between the
various file structures maintained in memory in DNOS.

File I/O 11-26 2270512-9701

DNOS System Design Document

File Management Table Area
+---------~--------------------+

I FDB
I +--------+
I IVCATALOGI<----------------I
I I I I
I +--------+ FDB FDB I
I I +---+ +---+ I
I I ---)Iforl---)Ifor --I
I ---------1 A 1<---1 B I
I FDB +---+ +---+
I +---+ I I

I--)Iforl<-------I I
I I I C I I
I I +---+ I
I +-----------------------1------+
I I I I
I I I I
I I I I
I +----------------------+1 I
I I I FCB I I I
+-1---+-------+ +------+-+ I

I I for I I for II I
I I .A.C I I .B II I
I .+-------+ +------+1 I
+------------------1---+-------+

+------------------------
I I Segment Manager Table Area
I I +-------------------------------+
I I I SGB SSB SSB I
I I I +---+ +---+ +---+ I
I ---)1 1---)1 1---···---)1 I I
I I +---+ +---+ +---+ I
I I I
I I SGB SSB SSB I
I I +---+ +---+ +---+ I
--------)1 1---)1 1---···---)1 I I

I +---+ +---+ +---+ I

+--------------------------------+
Figure 11-12 In-Memory File Representation

File management routines fall into the following categories:

* XOP-Ievel preprocessing

* Task-level preprocessing

* Address space
XOP-Ievel and
overlays

2270512-9701

management, including transfers between
task-level code and the management of

11-27 File I/O

DNOS System Design Document

* Buffer management

* Routines to perform file I/O operations (IODRCT)

* Low-level
processing

routines that support I/O SVC sub-opcode

File management code resides in four different areas. Some code
is found in the map 0 segment SVCSHD with other SVC processors,
some is in the variable part of the operating system root, some is
in the file management task segment, and some is found in overlays
on disk.

Table 11-3 shows the major modules found in the file management
source directory and where they fit into the six major categories
of routines. In addition to those listed, modules of stub
routines are included for those systems that do not support
particular file management options. The names of these modules
include an S after the functional module name (for example,
FMBKOFS is the stub for FMBKOF). Stubs are found in modules
FMBKOFS, FMCKEXS, FMFBSQS, FMOPSXS, FMRDBFS, FMRDUBS, FMRWSQS,
FMSQORS, FMWRBFS, FMWRUBS, and KMBEGS. The last stub is for
systems that do not support KIF.

Table 11-3 File Management Modules

XOP-Level Preprocessing
FMACTV Driver for opcode processors
FMPREP XOP-Ievel preprocessing - base routine

Task-Level Preprocessing
FMTASK Task-level driver

Address and
FMOVLO
FMOVL1
FMOVL2
FMOVL3
FMOVLYC

FMOVLYD

FMPMGR
FMTRAN

Overlay Ma na geme nt
Overlay header tables, one for each overlay
Overlay header tables, one for each overlay
Overlay header tables, one for each overlay
Overlay header tables, one for each ove rIa y
Overlay code location tables - memory-resident

systems
Overlay code location tables - disk-resident

systems
Set of overlay pool management routines
Transfer at XOP level between SVCSHD and FMTASK

Buffer Management
FMBIO Set of routines to buffer I/O and map blocked

FMCPB
FMCPBI

File I/O

files
Copy buffer - blocked file
Interface routine for FMCPB

11-28 2270512-9701

DNOS System Design Document

Table 11-3 File Manag~ment Modules (Continued)

I/O SVC Sub-opcode Processors
FMCLEF Close with EOF processor
FMCLOS Close operation processor
FMFBSP Forward Space/Backspace operation processor
FMFBSQ Forward Space/Backspace processor for

FMOPEN
FMOPRW
FMOPSX
FMOPUB
FMOPXT
FMRDF
FMRDUF
FMRWF
FMSQOR
FMLKUL
FMWEOF
FMWTF
FMWTUF

Lower Level
FMBKAD
FMBKOF
FMBLAJ
FMBSRT
FMCKEX
FMEXFL
FMMREC
FMFIO
FMIO
FMLKNF

FMLSET

FMRDBR
FMRDSQ
FMRDST
FMRDUB
FMRWBC
FMRWSQ
FMUPFD
FMUTLY

FMWTBR
FMWTCK
FMWTSQ
FMWTUB

2270512-9701

sequential files
Open operation processor
Open Rewind operation processor
Open Extend sequential file operation processor
Unblocked Open operation processor
Open Extend operation processor
Read operation processor
Read Unblocked operation processor
Rewrite operation processor
Open Rewind for sequential files
Unlock operation processor
Write with EOF operation processor
Write operation processor
Write Unblocked operation processor

Support Routines
File extension
Block number computation
Blank adjustment
Blank suppression routines
Check file extension
File extension
Compute ADU and sector from block number
Unblocked relative record I/O interface to FMIO
Read/write file block
Lock operation processor; set of routines to
check for locks; add them, and remove them

Creates LUNO for FMBIO on first buffer I/O
of each FM task

Read blocked relative record files
Read sequential file
Read file status
Unblocked read of blocked files
Rewrite blank compressed counter
Rewrite sequential file
Update FDR
Set of routines to check EOM; set
parameters, and find structures

Write blocked relative record file
Check write privileges on a file
Write sequential files
Unblocked write of a blocked file

11-29 File I/O

I

DNOS System Design Document

To avoid the extra overhead required for preprocessing SVCs and
I/O calls, a special interface to I/O, FMIO, is used to perform
file reads and writes. This same interface is used by the task
loader to perform reads and writes to the swap file, and by IOU
and the File Manager to update FDR records. The calling program
obtains a block of STA sufficient to buffer the disk I/O call
block and initializes it as follows:

BROOFL SMT address for segment containing buffer
BROBBA SSB address for segment containing buffer
BROLDT = PDT address for device desired
BRORCB 0 (supplied by IODRCT)
BROTSB EXTSB
BROJSB = EXJSB
BROBRO = 0
IRBSOC = 0 SVC opcode/error code
IRBOC = 09/0B subopcode/O (no LUNO)
IRBSFL 0 system/user flags = 0
IRBDBA = offset into buffer segment
IRBICC =
IRBOCC =
IRBRNI
IRBRN2

character count
character count
ADU of disk device to be read/written
sector in ADU to be read/written

The call block built is passed to the direct I/O routine; IODRCT.
It then proceeds like an I/O SVC, but the overhead of SVC
processing has been avoided.

11.6.1 XOP-Level Preprocessing.

FMPREP initiates XOP-Ievel preprocessing for the File Manager, and
resides in SVCSHD. It takes the I/O call block buffered by IOPREP
and creates the FWA needed by the File Manager to execute at XOP­
level.

The routines in FMTRAN (File Manager task call, FMTCAL, and File
Manager task return, FMTRTN) change map file 0 to map in the File
Manager task segment so that it can execute at XOP level. When
XOP-Ievel work completes, control is transferred back to FMPREP;
consequently, the map file must be changed to its previous state.
Some requests can complete execution at XOP level without changing
to task-level code. The follOWing conditions must be met for
execution of a file management request to complete at XOP level;
such execution is referred to as fast transfer.

* If the operation is active (such as write, rewrite), no
other operations are outstanding for the FCB; if the
operation is passive (such as read), no active operation
is outstanding for the same FCB.

* No requests are outstanding for the LUNO (that
initiate I/O count must be zero).

File I/O 11-30

is, the

2270512-9701

DNOS System Design Document

* The overlay area is available when the opcode requires a
system overlay.

* If the operation is Read or Write, the file is a blocked
file.

* The LDT does not have the unblocked I/O flag set.

* If the request is a Write, the LDT does not have the
forced. write bit set.

* The required blocks are in memory.

A file management request begins execution at XOP level. If a
transfer to task-level code is required, the routine FMTSET from
module FMUTLY is called. Such conditions can be detected at
several points, both in FMACTV and in the operation processor.
The following processing occurs at the level indicated:

1. (XOP) IOPREP sets the bu~y flag in the IRB prior to
calling FMPREP. FMPREP passes control to FMACTV, which
can call FMTSET to enter task mode. Other routines may
also call FMTSET.

2. (XOP) FMPREP sets up the vector in FWAXWP (in the FMT)
such that a BLWP instruction transfers control to FMTRTN

I

(in FMUTLY). I
3. (XOP) FMTSET checks to see if execution is already in I

task mode. If so, it exits. If not, it executes a BLWP
instruction through FWAXWP (RI5). The only purpose of
the error is to enable the caller to determine the
previous execution mode.

4. (XOP) The BLWP executed by FMTSET takes control to
FMTRTN, which changes the map 0 file back to SVCSHD and
branches into FMPREP at label FMFXRT, which checks the
busy flag in the IRB. If the flag is clear, the request
is complete and the call block is directly unbuffered.
Initiate event flags are checked; if one is set, the
event is marked in the TSB as completed. Upon
completion of the unbuffering, FMFXRT returns via a
branch to NFTRTN.

5. (XOP) If the request is not complete, the value in R14
from the BLWP is stored in FWAPC (in the FWA). The busy
flag is still set, causing FMPREP to queue the operation
for task-level file management and exit through IORTN.
The busy flag causes IORTN to suspend the calling task
(if this is not initiate I/O) and exit to the scheduler.

6. (TASK) Eventually, either the scheduler chooses a file
management task for execution (starting at FMTASK), or a

2270512-9701 11-31 File I/O

DNOS System Design Document

file management task already in execution dequeues the
operation. If a buffer is required, the segment of the
user program containing the buffer is also loaded. The
JCA is mapped in.

7. (TASK) FMTASK puts the contents of FWAPC into its R14,
computes the WP address in R13, and puts its own status
in RIS. The FWAXWP and FWAXPC vector is set up to point
to FMP210 in FMTASK. An RTWP is executed, thus resuming
the activity in FMTSET immediately following the BLWP
that transferred control to FMTRTN. FMTSET sets no
error and exits.

11.6.2 Task-Level Processing.

FMTASK is the driver routine that processes the start-up procedure
and handles the processing between requests at task level. FMTASK
is activated by the operating system queue server mechanism. When
a file management task begins, the STA is mapped into the first
segment, the user job JCA into the second segment, and the file
management code into the third segment. FMTASK uses a workspace
and stack that is allocated the first time the task is bid. That
workspace is associated with the task, not with a BRB, and is used
for the dequeuing and queuing calls and for acquiring the
execution environment needed by the activity. FMTASK transfers
execution to the point of suspension in XOP-level processing by
activating the workspace in the BRB via an RTWP instruction.

File management overlays are read into and executed in a pool of
overlay areas allocated with the file management task segment. A
set of subroutines is used to transfer control between the file
management root and an overlay.

11.6.3 Flow of Control in File Management.

Figure 11-13 shows the flow of control through the various parts
of the file management processor and how a request is handled.
Each transition in the figure is numbered. These numbered
transitions are described in the list that follows.

File I/O 11-32 2270512-9701

DNOS System Design Document

+--------+ 1 +-------------+ 2 +--------+
I IOPREP 1-----) I FMPREP 1------------------) I FMTCAL I
+--------+ I I +--------+

I I I 3
I I V
I I +--------+ 6 +--------+
I I I FMTSET 1<----1 FMACTV 1<---+
I I +--------+<-+ +--------+
I J I I * 4
I / \ I V I *

10 YES I / OP \ 1 9 +--------+ 17 V
+--------- <COMPLETED)<-----I FMTRTN I +-op PROCESSOR<--+
I I \ ? / I +--------+<-+ *

UNBUFFERING I \ / I I *
I I V I 1*5
I I 11 I NO I I V
V I I I 18 +--------+

+--------+ IQUEUE REQUESTI +--1 FMACTV I
I NFTRTN I I TO FM QUEUE I +--------+
+--------+ +-------------+

XOP Level
Task Level

** XOP or Task Level

I • 14
V 12

+--------+ +--------+
I IORTN I I V
+--------+ I +--------+ 13

I I I FMTASK 1-----------------+
V I I 1

+--------+ I I I
I NFSCHO 1---+ I 1<-------+
+--------+ +--------+

I 15
NFEOR

I 16
V

SVC 24

Figure 11-13 Flow of Control in File Management

1. IOPREP buffers the call block, sets the busy flag in the
IRB system flags field, and examines the LOT to
determine the nature of the request. All extensions to
the call block appropriate to the file type and access
mode are buffered. Note that if the unblocked I/O flag
is on in the LOT, all files appear as relative record
files and the call blocks are buffered accordingly.
Control is passed to FMPREP by a Branch instruction.

2270512-9701 11-33 File I/O

DNOS System Design Document

2. FMPREP is contained in the,SVCSHD segment, along with
IOPREP, and continues running with the caller's JCA
mapped into segment two. The context of the caller is
saved in the TSB. A check is made to allow
initialization on the first call (discussed below).
Next, the I/O opcode is examined. If it requires a data
buffer, the user's buffer is checked by calling RPSGCK.
If the opcode is a' read (of various forms), the
protection of the buffer is also checked by calling
RPPRCK. The file management activity record, the FWA,
is initialized with the stack pointer, FWA address, and
IRB address. FWAXWP and FWAXPC are set up to transfer
control to FMTRTN. A branch to FMTCAL is executed.

3. FMTCAL (module FMTRAN) saves the third segment's limit
and bias register values on the current stack, which is
the scheduler stack. Then an LWPI instruction is
executed to access the transition workspace, which is a
partial workspace (contains RIO through RI5) in FMTRAN
used to manipulate the system map file 0 on the way to
the workspace in the FWA. The third segment limit and
bias are set to map in the file manager code segment.
An RTWP instruction is executed which places execution
control at the beginning of FMACTV.

4. FMACTV locates the FCB and RPB and makes some
preliminary checks to see that operation can be
continued at XOP level. If there is any active
operation outstanding for the FCB, or if the current
request is active and there is any passive operation
outstanding for the FCB, FMACTV queues this request on
FCBRLA queue and calls FMTSET. Processing continues at
step 6. Otherwise, the opcode is decoded and the
appropriate processor called.

5. A processor is included for each one of the file
management I/O opcodes. Processing can continue at XOP
level if the following three conditions are met:

* A Write operation must not have
write bit set in the LDT

* The file must be blocked

* The block must be in memory

the forced

Sequential files may be entirely or partially processed
at XOP level. When a required block is not in memory,
FMBRD calls FMTSET to transfer to task-level code. When
the opcode processor completes, it returns to its
caller, which is usually FMACTV. Exceptions are when
FMWTF and FMFBSP are called for the Rewrite operation,

File I/O 11-34 2270512-9701

DNOS System Design Document

and when FMFBSP is called for the multirecord
operation and for Open Extend on sequential files.

Read

6. At several points in processing the call, processing at
XOP level can be interrupted. This is denoted by
transitions 6 and 7. Whenever this happens, the code
call FMTSET, and FMTSET executes a BLWP through FWAXWP,
which was set up in step 2 to transfer control to
FMTRTN.

7. (See step 8.)

8. After completion at XOP level, FMACTV calls internal
subroutine FMNEXT to dequeue appropriate number of
requests from FCBRLA queue, and executes a BLWP through
FWAXWP, which transfers control to FMTRTN. Processing
completes through steps 9 and 10.

9. FMTRTN (module FMTRAN) re,stores the map file to the
point of the call to FMTCAL. It then branches to
FMFXRT, an entry point in FMPREP. An incomplete call
causes processing to continue at step 11.

10. The operation has been completed at XOP level and exits
to IORTN.

11. The operation has not been· completed at XOP level.
NFQUEH is called to queue the operation for task-level
action; to exit, a branch is made to IORTN. IORTN
handles initiate I/O, and branches to the scheduler.

12. Eventually, the scheduler chooses the activated file
management task for execution. Control is passed to
FMTASK, which is the task-level driver for ·file
management requests that must complete at task level.

13. FMTASK begins in a workspace and stack that is unique to
the task. It dequeues the first request whose FWAQW is
not set from JITFMQ. Using the state information in the
FWA, it sets up the environment of the request by
performing an SMLOAD calIon the caller task segment if
a buffer is required. The PC stored in FWAPC by FMPREP
is placed in the FMTASK R14. FWAXWP and FWAXPC are set
up to transfer control back to FMP210. An RTWP is
executed, transferring control to the point in FMTSET
after the BLWP, using the workspace and stack allocated
with the BRB and begun in step 5.

14. After completing an operation at task level, FMACTV
executes a BLWP through FWAXWP, which FMTASK set up in
step 13 to cause completion of the operation to return
to FMTASK.

2270512-9701 11-35 File I/O

DNOS System Design Document

15. FMTASK queues the completed request for unbuffering by
calling NFEOR.

16. If requests that need to be processed are queued to the
request queue t file management continues processing. If
JITFMQ has no more requests t an SVC)24 is executed to
await the next file management request.

When file management takes end action t a system crash occurs with
crash code)AO. This crash indicates that file management
encountered an error from which it could not recover.

11.6.4 Overlay Management.

File management overlays are used according to conventions similar
to those used for system overlays. File management routines in
overlays can be coded in one of two ways.

* By using the conventions for standard subroutines.
Register 11 and some other registers are pushed onto a
stack upon entrYt and these are popped from the stack
upon exit. These routines can be called from inside the
overlay with FPRCAL. They can be entered from outside
the overlay if a word pointing to the routine is defined
in the table at the beginning of the overlay.

* By using a convention that allows routines to be entered
only from outside the overlay. Nothing is pushed onto a
stack t and the exit is a branch to FPORTN. The entry
point for these routines must be defined in a word in a
table at the beginning of the overlay. The entry point
is reached from inside or outside the overlay by a call
to FPOCAL.

Both types of routines use
root; the resident root
operating system.

FPRCAL to call routines in the resident
may be either File Manager or the

The routines for managing the overlay pool are found in the module
FMPMGR. The following routines are included:

FPOCAL - Pooled Overlay Call
Used to enter an overlay either
different overlay. Any routine
in the table at the beginning of
with this call.

from the root or from a
that has its address defined
the overlay can be entered

FPORTN - Returning From an Overlaid Routine
Used to return from a routine in an overlay. It can be
entered either directly or indirectly. If the called routine

File I/O 11-36 2270512-9701

DNOS System Design Document

directly branches to FPORTN, it must return with the stack in
the same form as upon entry to the called routine.

FPRCAL - Overlay Pool Routine Caller
Need arises frequently for routines that are overlay resident
to call subroutines within the same overlay or within code
resident outside the overlay structure. Such routines are
called with FPRCAL. All subroutines called from within
overlays must be called using either FPOCAL or FPRCAL. When
FPRCAL enters a root subroutine, the overlay entry stack
frame is built and Rll points to FPORTN. The normal NFPOP
exit performed by such routines will cause exit to occur
through FPORTN.

FMEXFL - Extend File Processor
One routine in an overlay, FMEXFL, must be exempt from the
overlay rules. FMEXFL performs the extend file function. It
must be callable from both the File Manager, which uses
pooled overlays, and from the task loader, which does not.
(The task loader uses FMEXFL to extend the roll file.)
Hence, FMEXFL must never call anything that calls another
overlay. FMEXFL calls certain root routines, but does so
directly because it cannot assume the availability of the
pool manager routines. An overlay area is not marked
available until the calling task needs another overlay;
consequently, the overlay area in which FMEXFL is executing
is never marked available as long as it does not call
anything that calls an overlay.

An overlay area consists of enough reserved space for the largest
overlay plus its relocation bit map, preceded by seven words of
overhead, as shown in Figure 11-14. The first three words should
be initialized to zero by the assembly and link process that
creates the file management subsystem. They are initialized by
the overlay load software the first time the overlay area is used.
The SIZ field is initialized to the size in bytes of the COD area.
OVN is initialized to -1 to flag that no overlay is in the area.
USE is initialized to zero. OAD is set up to point to the next
overlay area in the pool; OAD points to zero for the last overlay
in the pool. COD is the area reserved for code. When an overlay
is in use, the field FWAOAD points to OADCOD of the overlay area
containing the code.

2270512-9701 11-37 File I/O

DNOS System Design Document

+--+
OADSMT I SMT SSB ADDRESS FOR OVERLAY AREA I

+--+
OADSSB I SSB ADDRESS FOR OVERLAY AREA I

+--+
OADOFF I OFFSET OF AREA IN SEGMENT I

+--+
OADSIZ I SIZE OF AREA I

+--+
OADOVN I OVERLAY NUMBER I

+--+
OADUSE I USE COUNT I

+----------------_._----------------------------+
OADOAD I ADDRESS OF NEXT OVERLAY AREA I

+--+
OADCOD I I

/ SPACE FOR CODE OF OVERLAY /
I I
+--+

Figure 11-14 Overlay Area Strueture

Overlays are read into an area obtained from a pool. The- pool is
a linked list of areas, and each area is a piece of memory large
enough for the largest File Manager overlay plus its relocation
bit map. When a new overlay is entered (FPOCAL), a piece of STA
is obtained for the overlay to use for its run-time stack.
Whenever any routine call is made to or from an overlay (FPOCAL or
FPRCAL), an overlay return frame is built on the stack.

Overlays are relocated at load time, eliminating the necessity for
self-relocating code. The relocation algorithm relocates only
those references that are within the address space of the overlay.
Relocation requires that all return addresses that reference an
overlay be made relative to the beginning of the overlay before
being stored on the stack.

When an overlay is needed, a search is made of all areas. If an
area is found with the desired overlay, the use count is
incremented and the code is entered. If an area is not found,
either of two paths are possible. In the first, the overlay is
loaded into an area with a zero use count, and the code is
entered. The return code links any area Whose use count goes to
zero to th~ new end of the list; also, note that the search
prefers the oldest available area. Consequently, tasks calling a
second overlay tend to keep the first in memory. In the second
path, no areas are available (nonzero use count) and the task must
queue itself to wait until an overlay area becomes available.
Each time an overlay is exited and the use count goes to zero,
that overlay area is linked onto the head of the overlay area
list. Since the search for an available area proceeds from head

File I/O 11-38 2270512-9701

DNOS System Design Document

to tail of the list, preemption prefers the least recently used
overlay areas.

Whenever a call is made to a routine via FPOCAL or FPRCAL, a two­
word return frame is built on the caller's stack. The first word
pushed on the stack is the return address made relative to the
beginning of the overlay. This allows a preempted overlay to be
reloaded into a different overlay area, and the return addresses
can be rebiased to return to the proper code. The second word
pushed on the stack is the overlay index from the contents of R9
when the overlay was originally called. A call from the root
produces a stack frame with the return address and -1 for the
overlay number. The return logic recognizes the overlay number
and marks FWAOAD with zero, indicating no overlay; and FWAOAD
activates a waiting task if the overlay area becomes available.

11.6.5 Buffer Management.

The buffer management module (FMBIO) contains routines used to
access physical blocks of files. The routines are called from the
modules that process blocked files: relative record, sequential,
and key indexed. Blocking buffers are mapped into the middle
segment, in place of the FMT, making it necessary for file
management to copy parts of the FCB that must be accessed while a
buffer is being accessed.

FMBRD - Reading a Block from Disk
FMBRD checks the mode of execution. If in XOP mode, SMFSID
is called to determine whether the block is in memory. If
so, the block is mapped into the current map file 0, and the
routine enters NRCOOO at label NRCOIO to complete processing.
If the block is not in memory, FMBRD transfers to task mode
and calls FMBSEG.

If FMBRD is executing in task mode to begin with, the memory
residence checked is skipped and the routine calls FMBSEG.
FMBSEG is called from the entry point NRCOOO, an entry point
that performs common processing for FMBRD and FMBNEW. NRCOOO
obtains the flags from the OVB used to initialize th~ File
Manager flags in the FMT; these flags are used for buffer
management operations.

FMBSEG calls FMCHGS to get the buffer. The buffer is
obtained from memory (cached), from disk, or is empty (if
routine FMBNEW was called). FMCHGS first tries to get the
buffer from memory. If the buffer is not in memory, File
Manager is placed on the WOM queue. The task loader is then
responsible for loading the buffer from disk or for creating
the empty segment.

If execution is in task mode, NRCOOO inhibits the scheduler
after obtaining the buffer segment. This routine initializes

2270512-9701 11-39 File I/O

DNOS System Design Document

the FWA parameters that describe the block.
are used in the blocked record transfer.

FMBNEW - Obtaining a Fresh Block

Those parameters

FMBNEW always calls FMTSET at entry to guarantee task-level
execution. Then, it enter"s NRCOOO to finish processing for
the new block. It also calls an internal entry, FMBCKS, to
extend the file, if necessary.

FMBW - Writing a Block to Disk
FMBW always executes in task mode and processes an operation
equivalent to a Forced Write Segment SVC.

FMBREL - Releasing a Block After Use
FMBREL returns a block to the cache list ready for future
use. If the memory is needed, the block can be released.
The modified flag is left in its current state. The JeA is
mapped in to replace the block. In XOP level, special code
sets the modified and releasable flags in the OVB.

FMBRMD - Releasing a Block After Modification
FMBRMD releases a modified block to the cache list. Marked
modified, the block will be written before the memory is
released. This routine clears the not modified flag in the
File Manager's segment flags and passes execution control to
to FMBREL.

FMBWRN - Rename and Write Block
FMBWRN is called by the KIF Manager to write a record to a
new record position in a key indexed file. FMBWRN modifies
the buffer segment ID, writes the record to the new position,
and restores the buffer segment ID to its original value.

11.6.6 Details of I/O Sub-Opcode Processors.

The following paragraphs describe the processing of the operations
of Read, Write, Close, Multiple-record Read, and Multiple-record
Write for files.

11.6.6.1 Read.

FMRDF handles all requests for disk files (except requests for key
indexed files). FMRDF calls FMBKOF to compute the block number
and offset and to place the results in the FWA. FMRDF calls
CHKEOM to ensure that the desired record is within the range of
the file. Next, record locking is checked. FMSETR is called to
check for odd buffer addresses and record lengths.

FMSETR places the minimum of the user-specified buffer length and
the logical record size of the file into RS, and leaves the user­
specified buffer length in R4. The values remain in these
registers and are used by the blocked file handlers. Inside the

File I/O 11-40 2270512-9701

DNOS System Design Document

blocked file handlers, the value in R5 is stored in the fourth
word of the block specified for relative record files; R4 is
stored there for sequential files. Unblocked files are
transferred to task level for processing, which occurs in FMRDF.

11.6.6.2 Write.

FMWTF processes all requests for writing to disk files (except
requests for key indexed files). FMWTCK is called to determine
whether the file is write protected and whether the user has write
privileges for the file. - FMBKOF is called to compute the block
number, offset, and file part needed to satisfy the user's
request. Next, the locked record chains are checked. If the
record is locked by another LUNO, an error is returned. If the
record is locked by the requesting LUNO and the unlock bit in the
BRB is on, the record is unlocked. Next, FMSETR is called to set
up the user buffer descriptor. In R5 it returns the the file
logical record length or the user-specified buffer length,
whichever is smaller. It returns R4 as the user-specified buffer
length. For relative record files, R5 is used as the record
length for writing. For sequential files, R4 is used. When the
user's request is shorter than the logical record, the record is
zero-filled on the right.

11.6.6.3 Close.

The close function (FMCLOS) ensures that all modified blocks and
the FDR are updated on disk.

11.6.6.4 Multiple-Record Read.

Multiple-record I/O is supported to all file types except KIF.

The format for multiple-record I/O is as follows: the length of
each individual record is stored in the word immediately preceding I
the data. Odd-length records are supported; the record is placed
in the user buffer with the proceeding length word containing an
odd number, but the next record begins on the next word boundary
following the odd-length record.

For a read, the user specifies in the read character count the
total size in bytes of the space available for data. The system
places records in the user's buffer, beginning with the length (in
bytes) of the first record, followed by the record, followed by
the length (in bytes) of the next record, and so on. Only Whole
records are transmitted. When the read completes, the output
character count specifies the total buffer length in use,
including the length words preceding each data record.

If an end-of-file record is encountered and the read buffer
contains at least one record, the end-of-file flag is not set and
the buffer is returned to the user. The end-of-file flag is set
on the following read, and an empty buffer is returned.

2270512-9701 11-41 File I/O

DNOS System Design Document

Blank adjustment is ignored on multiple-record reads. For
example, if the record consists of 20 bytes, 20 bytes are read and
the header word contains 20. If the file contains a record with
80 bytes, of which the last 60 are blanks, 80 bytes are read. The
padding that occurs when blank adjustment is requested on a normal
read is not done on multiple-record reads. All multiple-record
read logic is contained in FMMRR.

11.6.6.5 Multiple-Record Write.

The user defines a buffer for a multiple-record write in the same
format as created by a multiple-record read. Each record is
transmitted to the file in order of increasing memory address.
Blank adjustment is honored on each record. Take care to ensure
that the character count is accurate. It must include all header
words and data. However, if the length of the last record is odd,
the character count may include the byte folloWing the'proper end
of the last record. All multiple-record write logic is contained
in FMWRW.

11.6.7 Lower Level Support Routines.

The following paragraphs describe the support routines for
concatenated files, unblocked relative record files, and blocked
files.

1 1 .6. 7 • 1 Concatenated Files and Multifile Sets.

Concatenated file and multifile set handling involves
predominantly three routines: FMBKOF (for nonkeyed files), KMBEG
(for key indexed files), and FMBCLO (for both key indexed and
nonkeyed files).

Unblocked Relative Record Files.

FMBKOF is called to map the logical record number to a block
number and offset. For unblocked files, this consists of
determining which part of the concatenation has the specified
record. The logical record is checked against the allocations of
each file in the concatenation list. The correct FCB address is
placed in the FWA. The record number is biased by the allocations
of the preceding files, and the result is stored in the FWA for
use in direct disk I/O.

Blocked Relative Record Files.

FMBKOF checks the logical record number against the allocations of
all files in the chain, and the" FDP of the correct file is placed
in the FWA. The logical record number is then biased by
subtracting the allocations of previous files, and the result is
used with the physical record length of the individual file to
compute the block number and offset of the specified record. The

File I/O 11-42 2270512-9701

DNOS System Design Document

block number and offset are placed in the FWA.

Sequential Files.

FMBKOF uses the currency information in the RPB. The FCBs are
scanned to find the file containing the current record. The
appropriate FCB address is placed in the FWA t and the block number
and offset are copied from the RPB to the FWA.

Multifile KIF Sets.

Multifile KIF sets are handled in KMBEG t in the KMRD routine. The
block number desired is checked against the allocations of each of
the files t and the FCB address of the correct one is placed in the
FWA. The block number needed is biased by the allocations of the
previous files to obtain a relative block number.

Closing Blocked Files.

To close a concatenated filet IOPREP closes the assigned LUNO.
Then t file management completes the Close operation. FMCLOS calls
FMBCLO to obtain all modified buffers written to the disk. FMBCLO
calls SMFLSH and loops through each part of the
obtain all modified blocks written.

11.6.7.2 Unblocked Relative Record Files.

concatenation to

Records for unblocked relative record files are transferred
directly to and from the user buffer. Each record begins on a
sector boundary and occupies contiguous disk for the specified
length of the logical record. File management must queue requests
for unblocked files through task level.

11.6.7.3 Blocked Files.

Records for blocked files are transferred through an intermediate
buffer allocated from free memory. The physical block on disk
begins on a sector boundary and occupies contiguous disk for the
specified length of the physical record. If the block size is
larger than an ADU, only an integral number of blocks are placed
in an ADU, and the first block must begin on the ADU boundary.

Record Transfers.

The transfer of the record from blocking buffer to user address
space is handled in map 0 by routines called through NFMAPO. The
routines used are NFCXFR, FMBSRD, and FMBSWT. The first one is
used for relative record and unsuppressed sequential files. The
other two are used for blank suppressed sequential files. FMBSRD
unsuppresses from blocking buffer to user buffer, and FMBSWT
suppresses from user buffer to blocking buffer. These routines
are called by FMCPB, a routine in the root entered by the NFMAPO
call. One of the parameters of the call is the address of the

2270512-9701 11-43 File I/O

DNOS System Design Document

transfer routine (one of the three routines listed above). The
calling sequence to FMCPB is set up by routines in FMCPBI, a
module containing the routines FMCIRD and FMCIWT. These routines
use the information in the FWA, the user buffer descriptor, and
the blocking buffer parameters to set up the call to FMCPB.

Relative Record Files.

FMRDBR is the blocked relative record handler. It calls FMBRD to
obtain the block. If the needed block is not in memory, FMBRD
call s F M T SET too b t a i nth e b 10 c k • Th e b 1 0 c k , of f set , and use r
buffer descriptor are then used in FMCIRD (module FMCPBI) to call
FMCPB, which transfers the record. Blocked relative record files
store data by the following algorithm. The block number is
determined by dividing the logical record number requested by the
blocking factor. The quotient is the block number. The remainder
is multiplied by the logical record size of the file to determine
the byte offset into the block at which the record is found.

Sequential Files.

FMRDSQ is the sequential file read handler. It calls FMBRD to
obtain the blocks needed to process the request. If the block is
not in memory, FMBRD calls FMBSEG to execute the Change Segment
SVC. As for relative record files, the block, offset and user
buffer descriptor are passed to FMCPB via FMCIRD to transfer the
record. For blank suppressed files, the address of the
appropriate routine is supplied in the calling &equence.

Blank Adjustment.

Blank adjustment on read is performed after the record 1s
transferred to the user's buffer. Space left unfilled in the
user's buffer after the read is filled with blanks. This function
is selected by the blank adjust bit in the user's IRB. It is
performed by FMRDSQ.

Blank adjustment on write is performed before the record is
transferred to the blocking buffer. The length specified to be
written is used to find the end of the record in the user's
buffer. Trailing blanks are counted, and only the characters up
to and including the last nonblank character are transferred to
the blocking buffer. This function is performed by FMWTSQ.

11 • 7 KIF MANAGEMENT

A set of routines used only for key indexed files is supplied.
These routines, each having KM as the first two characters of its
name, should be thought of as a subsystem of file management. The
buffer management routines of file management are used to perform
low-level I/O functions. Eight system overlays are used by the

File I/O 11-44 2270512-9701

DNOS System Design Document

KIF manager to perform specific functions.

When a user issues a KIF request, control is passed to IOPREP from
RPROOT, the SVC processor. IOPREP performs standard preprocessing
and passes control to IOCHKX to finish preprocessing. In addition
to performing the same functions as for other files, IOCHKX
performs special processing for KIF. The key number is validated
to ensure that it is legal for the file. Space for an IRB and KIF
currency block (KCB) is allocated. If currency is required, that
is, if the sub-opcode is greater than)40, IOCHKX validates that
the currency block is contained in one map segment and that the
segment is not write protected. The currency block is then
buffered into the STA, and control is passed to FMPREP for further
preprocessing.

After determining the size of the largest key, FMPREP allocates
enough space for a KIT, which contains a FWA, plus three times the
sum of the largest key and six. The extra six bytes for each of
the three keys is for overhead. Next, if a currency block is
present and the currency block contains a valid key pointer,
FMPREP validates that the key is contained in one map segment and
copies the key into the first of the three key buffers at the end
of the KIT. IRBFWA is set to point to the KIT. FMPREP then
branches to FMTCAL, which causes FMACTV to be entered using the
workspace in the KIT

FMACTV transfers control directly to KMBEG, the main driver for
the KIF subsystem. Control is passed to KMBEG with the address of
the buffered request in register 12 (RI2). The format of the
complete buffered request is illustrated in Figure 11-15.

+-------+ +-)+--+
I BRa I I / WORKSPACE FOR KIF (FWA) /

+-------+ 1 +--+
1 1 1 / WORKING STORAGE FOR KIF (FWA) /

+-------+ 1 +--+
IIRBFWA 1----+ / STACK SPACE FOR KIF (FWA) /
+-------+ +--+
1 I / MORE WORKING STORAGE FOR KIF (KIT) /

+-------+ 1 (INCLUDES AREA FOR THREE BUFFERED 1

1 KCB 1 1 KEYS AND OVERHEAD) 1

+-------+ +--+
Figure 11-15 Buffered KIF Request

The FWA and KIT are always referenced using R15 as a base
register; the BRa, IRB, and KCB are referenced using R12.

11.7.1 KIF Data Structures.

KIF routines use various data structures
structures used by the File Manager (that is,

2270512-9701 11-45

in
FeB,

addition to the
FDR, and FWA).

File I/O

I

I
I

DNOS System Design Document

These structures are the B-Tree Block (BTB), KIF Currency Block
(KCB), KIF Information Block (KIB), and KIF Task Area (KIT). Each
of these is shown in detail in the section on data structure
pictures.

B-Tree Block (BTB)
The BTB is a disk-resident structure that contains the
overhead for a key file. When a data record must be located,
each level of the B-tree associated with the key is read in
tree order to locate the record. KIF maps the BTB into its
second map segment to access it.

KIF Currency Block(KCB)
The KCB is used by KIF to maintain currency for the user from
operation to operation. When an operation is performed on a
key file, the user's currency block is buffered into the STA
along with the IRB. The KCB is shown in detail in Figure
11-16.

The first four bytes of the KCB. are defined in the DNOS SVC
Reference Manual. Bytes 4 through 9 (a three-word entry) are
the data block key for the data record. The first two words
contain the block number for the current data record. The
last word is the logical record ID for the current record.
Bytes)A through)F are the B-tree pointer. The-first two
words contain the block number for the current B-tree entry.
The last word is the address of the current B-tree entry when
it is mapped into the KIF task (that is, the address when
mapped into the second segment of the task). Bytes)10 and
)11 are the size (in bytes) of this B-tree entry (that is,
the size of the current key plus six bytes of overhead,
rounded up to an even number). Byte)12 is used to store the
last opcode used (for those operations that perform different
functions depending on the last operation).

KIF Information Block (KIB)
The KIB is a disk-resident data structure.
records for the file.

KIF Task Area (KIT)

It contains data

The KIT is used by KIF as additional working storage. First,
the KIT contains a FWA, which contains a workspace, stack and
other data. Next, several fields of the FCB are buffered so
that the FCB need not be mapped in when these fields are
required. These fields are the file extent (or allocation)
(FCBEXT), the block end-of-medium (FCBBKM), and the KIF
extension to the FCB (includes current command number,
current log block, free block queue head, and the B-tree
roots). Next, the KIT has pointers to the three key buffers
that reside at the end of the KIT, the key number and size of
the key being processed, and a B-tree stack used to contain
the block number and B-tree entry address for each level of a
B-tree. (This address is built when transversing down each

File I/O 11-46 2270512-9701

DNOS System Design Document

Dec.
Byte

o

2

level of a B-tree searching for an entry. This allows
tracing back up the B-tree to modify a higher-level entry.)
Next, the KIT contains temporary storage for the KIF
routines. Finally, the three key buffers reside at the end
of the KIT. Each buffer contains rOOm for the longest key
plus six bytes of overhead.

--
INFORMATIVE CODE KEY NUMBER

--
KEY VALUE POINTER

--
4 DATA BLOCK RECORD NUMBER 1--- DATA

IBLOCK

-----------------------------~-------------------- IKEY
8 LOGICAL RECORD ID VALUE 1---

--
10 B-TREE LEAF NODE RECORD NUMBER 1---

liB-TREE

-- IPOINTER
14 MEMORY POSITION OF KEY VALUE IN B-TREE ENTRY 1---

--
16 B-TREE ENTRY SIZE

--
18 LAST OPCODE USED CURRENT O~CODE

--
Figure 11-16 KIF Currency Block

Bytes (Dec) Field Use

User-Supplied

o Used as an input value when the partial key feature
is used. Used for set currency operations, read
greater, and read greater or equal. Used as an
output field for return of informative codes under
all circumstances

1 For a key dependent operation, used as an input value
to specify the number of the key to be used, ranging
from 1 through 14

2-3 Address of the buffer containing the key to be used in
a key dependent operation

System-Defined

4-7 Two-word number giving the physical record number of

2270512-9701 11-47 File I/O

I

8-9

10-13

14-15

16-17
18

19

DNOS System Design Document

the physical record that holds the logical record
associated with the currency

A number, unique within the physical record, associated
with the logical record within the physical record
that is associated with the currency

Two-word number of the physical record of the key
indexed file that holds the leaf node with the
key associated with the currency

Address of the currency related B-tree entry when the
physical record containing the leaf ,node is mapped
into the key indexed file manager address space.
A B-tree entry is composed of a two-word physical
record number, a logical record ID, and a key value

The length of the key plus six
Opcode of the last operation performed using this

currency block. Read next and read previous
operations check this value and if it is equal to
the set currency opcode, they perform a read current.
Read previous also checks for the delete opcode, in
which case a read current is also performed. Other
operations also use this field

Current opcode

I 11.7.2 KIF Management Code Structure.

I

I

KMBEG is the main driver for key indexed file operations. It
decodes the operation code and passes control to the processor for
the specified operation. Table 11-4 lists the main processor for
each operation.

Name

KMCLOS
KMDEL

KMINSR
KMOPEN
KMRN
KMRP
KMRR
KMRSQ

KMRW
KMSC

Table 11-4 KIF Main Routines

Operation Performed

Close (overlay residing in KMOPCL module)
Delete by Key and Delete by Current
(overlay residing in KMDLSR module)
Insert (overlay)
Open Random (overlay in KMOPCL module)
Read Next
Read Previous (contained in KMRN module)
Read by Key, Read Current, Read by Primary Key
Forward Space, Backspace, Read ASCII, Rewind
(overlay in KMOPCL module)
Rewrite (overlay)
Set Currency Equal, Equal or Greater, and Greater
(overlay residing in KMDLSR module)

The Read Greater and Read Greater or Equal operations are
performed by first calling KMSC, then KMRRC (entry point in KMRR).
Several subroutines are used by KIF in addition to the buffer

File I/O 11-48 2270512-9701

DNOS System Design Document

management routines of File Manager.
11-5.

These are listed in Table

Name

KMBDEL
KMBIN
KMBS
KMBSC
KMBTD
KMBTI
KMBTIS
KMBTS
KMCNV
KMEK
KMGEB

KMGFB

KMKC
KMKDG
KMLOC
KMLOG
KMPLG

KMRDK
KMRWSO

KMRWSI

KMRWS2

KMRWS3

KMRF

KMSUK
KMTAB
KMULG
KMWRN

Table 11-5 KIF Subroutines

Function Performed

Modify higher level BTB (overlay)
Search for key value in given BTB
See KMBTS (entry point in KMBTS)
Compute blank suppressed size
Delete B-tree entry
Insert entry into specified B-tree
Perform B-tree split (overlay)
Search a key's B-tree for match on key value
Convert character strings by country code
Extract key from blank-suppressed file and unblank
Get empty block for B-tree splits
(entry point in KMGF)
Get free block for record insert or rewrite
(entry point in KMGF)
Compare two character strings of given size
Find key descriptor entry, given key number
Locate B-tree entry, given user currency
Log current block
Recover from an insert error while in partial
logging mode
Read in data record by key
Delete old key and insert new key
(overlay in KMRWS module)
Get new block for record
(overlay in KMRWS module)
Map in new block and write out old
(overlay in KMRWS module)
Update B-trees for new record position
(overlay in KMRWS module)
Return block to free chain
(entry point in KMGF)
Compute key size and B-tree entry size
Character conversion tables
Unlog blocks to their position in file
Force write a segment to a specified address

11.7.3 Details of KIF Operations.

Once File Manager has determined that an
performed on a key indexed file, control is
KMBEG buffers certain fields of the FCB
validity of input parameters t initializes the
KIT, and passes control to the processor

2270512-9701 11-49

operation is being
passed to KMBEG.

into the KIT, tests
save area in the

for the specified

File I/O

I

I

DNOS System Design Document

operation. If an error is encountered in the ope ra t ion processor,
control is returned to KMERR (entry point in KMBEG), which call s
KMULG to unlog any records that have been logged, skips the
unbuffering of the KIT into the FCB and returns control to the
caller (with an error). If the operation completes with no
errors, control is returned to KMCDN (entry point in KMBEG) , which
unbuffers the KIT into the FCB and updates the FDR if the free
chain has been modified and returns to the caller.

11.7.3.1 Close.

The Close operation is performed by KMCLOS. Record 0 is updated
by setting the log command number to 0 so that no unlogging can
occur on the subsequent open. Then, FMCLOS is called to perform
the close processing for a file. When control returns from
FMCLOS, the Close operation is complete.

11.7.3.2 Open Random.

The Open operation is performed by KMOPEN. FMOPEN is called to
open the file. Upon return from FMOPEN, KMOPEN calls KMULG if
there are no other LUNOs open to the file. FMOPEN does not use
the currency block.

11.7.3.3 Read Greater and Read Greater or Equal.

These operations are handled by two separate processors. First,
KMSC is called to establish the currency for the subsequent read
operation. KMSC calls KMBTS to search the B-tree of the specified
key for a matching key value; if no match is found, KMBTS searches
the first B-tree entry with a key of greater value. If no match
exists, an informative code is returned to the caller. Otherwise,
KMSC returns to KMBEG, which calls KMRRC to process the Read
operation. If the file is single keyed, KMLOC is called to read
the B-tree record described by the currency set up by KMSC. This
is required since the key value is blanked out in the data block
and therefore must be obtained from the B-tree block.

Next, KMRRC calls KMRDK to read the data block to which the
currency block points. The data block is moved to the user's
buffer via the FMCIRD routine. If the file is single keyed, the
key value is moved into the user's record. Finally, record
locking, if specified, is accomplished by the FMLKCK and FMLKON
routines.

11.7.3.4 Read by Key, Read Current, and Read by Primary Key.

The Read Current operation is processed the same as the Read
Greater operation except that the KMSC step is eliminated (since
the currency is already set.) The Read by Key and Read by Primary
Key operations are also processed like the Read Greater operation
except that the currency must be set before control is turn~d over
to KMRRC. The currency is set in KMRR by calling KMBTS to search

File I/O 11-50 2270512-9701

DNOS System Design Document

the B-trees to find the block holding the specified key. If the
block is found, the currency is established and control is passed
to the KMRRC routine.

11'.7.3.5 Read Next.

The Read Next operation is performed by KMRN. KMLOC is called to
locate the next entry from the current entry set up by a previous
operation. If such an entry is found, the Read Random (KMRR) code
is entered at entry point KMRRB. KMRRB reads the data block,
moves the record to the user's buffer, and moves in the key value
(if the file is single keyed).

11.7.3.6 Read Previous.

The Read Previous operation is performed by KMRP (entry point in
KMRN module). This operation is identical to the Read Next
operation except that KMLOC is called to locate the entry that
precedes the current one.

1 1 • 7 .3. 7 Insert.

The Insert operation is performed by KMINSR. KMINSR first checks
to see if the file is single keyed. If so, the key value is
blanked in the user's buffer (Note: The key value is not
duplicated in the data block, thereby freeing disk space.) KMBSC
is called to compute the blank-suppressed size of the user's
record. If the size is greater than the physical record size of
the file, an error is returned to the caller. (Before the error
is returned, the key is restored to the caller if the file is
single keyed.) KMGFB is called to find a free block with enough
space to hold the blank-suppressed data record. The record number
of this block is stored in the currency block, and the user's data
record is transferr~d to it via the FMCIWT routine. Once
completed, the data record is written and the key value is
restored to the user's buffer.

Now that the data record is in the data block, an insert into the
B-tree is required for each key of the record. KMBTS is called to
search the B-tree of the key for a matching key value. If no
match is found, KMBTS searches for the first entry with a greater
key value. If a match exists, a check is made to see if
duplicates are allowed on the key. If not, an informative code is
returned to the user. Next, KMBTI is called to insert the entry
into the B-tree for the key. This sequence is followed for each
key. The end-of-medium record number is incremented, and a flag
is set to inform KMBEG that the FDR must be updated.

When the partial logging bit is set in the primary key flag word
of the KDB, KMINSR force writes the data block and defers the
writing of all other blocks. If an error occurs after the first
key insert and before the last, an error recovery overlay is
loaded. The error recovery overlay (KMPLG) uses KMBTD to delete

2270512-9701 11-51 File I/O

DNOS System Design Document

the data record from the data block and deletes the keys which
were just inserted. This alloHs the capability of unlogging an
insert while taking advantage of huffer caching to increase the
speed of an insert.

11.7.3.8 Rewrite.

The Rewrite operation is performed by KMR\v. First, KMRW checks to
see if the file is single keyed; :.f so, KMRW blanks out the key in
the user's buffer. (Refer to th~! description of this function in
the paragraph on Insert.) A checl~ is made to ensure that the
record size is less than the)hysical record size of the file.
The key is then replaced in the u:;er's buffer (if single keyed).
Next, if the file is single key~!d, KMLOC is called to obtain the
key value for the key specified b:r currency. KMRDK is called to
rea d the b I 0 c k t hat con t a ins t h I ~ 0 I d r e cor d, and a c he c k i s rna d e
to determine if the new record wi II fit in the old record. If
not, the old record is prelogged by KMLOG, and the overlay KMRWSI
is called to obtain a new block tl) hold the record.

KMEK is called to copy the old keJ into the second key buffer (in
KIT) , and the use r ' s key i s ~ 0 pie din tot h e fir s t ke y bu f fer.
KMKC is called to compare the val'les of both keys. If the values
are different, a check is malie to ensure that the key is
modifiable. If not, an error is returned to the caller. However,
if the key value is different anI the key is modifiable, the
KMRWSO overlay is called to delete the old key value and insert
the new. If more keys exist for ~he file, the key values are
updated for each one.

Once the key values are updat,~d, the new record must be placed
into the appropriate block. This is accomplished by first seeing
if the new record is the same siz~ as the old record. If not, the
old record space is removed from its block. If the new record is
smaller than the old record, it i; inserted into the old block.
If the new record is larger, the <MRWS2 overlay is called to write
out the old block and map in tle new block, which was retrieved
earlier in a call to KMRWSI. Finilly, the new record is moved
into the block by FMCIWT. (If the file is single keyed, the key
value is blanked out.) The data block is written; if a new block
was used for the data record, the KMRWS3 overlay is called to
update the B-tree for the neN location. If unlocking was
specified, FMLKOF is called to turn off locking on the record.

11.7.3.9 Delete by Key and Delet~ by Current.

The Delete by Key and Delete by Current operations are performed
by KMDEL. If Delete by Key was r~quested, the currency is set up
by a call to KMBTS. KMLOC is called to read the BTB described by
the user's currency in order to locate the data record for the
key. A check is made to ensure that the record being deleted is
not locked. KMRDK is called to read the data record described by
currency. The key value is copied into a buffer (by KMEK). For

File I/O 11-52 2270512-9701

DNOS System Design Document

each key of the file, KMBTD is called to perform the delete.
After the key is deleted, the data record is deleted. This is
achieved by first prelogging the data block, then moving up each
entry below the entry to be deleted. The block is then linked to
the free chain, if it is not already there, by calling KMRF. The
data block is written to its file position, and currency is
modified to point to the preceded entry in the data block. The
end-of-medium record number is decremented, and a flag is set to
inform KMBEG that the FDR must be updated.

11.7.3.10 Set Currency Equal, Greater, Equal or Greater.

The Set Currency Equal, Set Currency Greater, and Set Currency
Equal or Greater is performed by the KMDLSR overlay. If a Set
Currency Greater is executed, a value of 1 is added to the last
byte of the key in order to get the next greater entry. KMBTS is
called to perform the B-tree search for the specified key. If a
unique match is found, the B-tree and data block currency are set
to point to the specified key. If a match is found with
duplicates, an informative code is returned to the caller and
currency is set up. If a match is not found and a Set Currency
Equal was executed, an informative error is returned without
currency being set. Otherwise, currency is set to the next
greater entry than the specified key. Upon exit, a check is made
to determine whether the re~ord is locked; if it is, an
informative code is returned.

1 1 • 7 .3. 1 1 Forward Space, Backspace, Read ASCII, Rewind.

The Forward Space, Backspace, read ASCII, and Rewind operations
are performed in KMRSQ. Each of these operations stores currency
into the last five words of the RPB. To make six words of
currency fit into five words, the first byte of the data base key
and the B-tree pointer physical record numbers is not stored.
This fact causes no trouble, however, since a file cannot be large
enough to use these bytes. If a Rewind operation is performed,
the currency in the RPB is simply zeroed. KMRSQ executes Forward
Space and Backspace operations by making repeated calls to KMLOC,
which locates either the immediately preceding or the immediately
following record and sets the KCB to the currency of the record
found. KMRSQ calls KMLOC the number of times specified by the
IRBOCC field of the call block. After the last call, it copies
the currency in the KCB to the RPB. For a Read ASCII operation,
KMRSQ calls KMLOC one time to locate the next record and moves the
currency from the KCB to the RPB. KMBEG will then call KMRRC to
actually read the record.

2270512-9701 11-53 File I/O

I

I

DNOS System Design Document

11.7.4 Details of KIF Subroutines.

KMBDEL

KMBIN

KMBSC

KMBTD

This routine is an overlay called by KMBTD whenever a B-tree
entry of the greatest value is deleted. The next-higher­
level B-tree must be modified as follows to reflect the new
greatest value. First, the new highest key value is copied
into the first key buffer for later use. The lower-level
block is written back to the file, with the B-tree entry of
greatest value deleted. If this was the last entry in the
block, it is returned to the free chain by calling KMRF.
When the block is returned to the free chain, the predecessor
and successor must be linked. Once the lower-level block is
released, the higher-level block is read. Before modifying
the higher-level block, the block is prelogged by calling
KMLOG. Then, if the lower-level block is not empty, the new
greatest key value is moved into the higher-level block. If
the new key value is also the greatest key value in the
higher-level block, the next-higher~level B-tree must also be
modified. If the lower-level block is empty, the B-tree
entry for the block is deleted; KMBDEL is reentered if either
the greatest entry or the last entry was removed. Upon exit
the higher-level block is written back to the file.

KMBIN is called to perform a binary search for a given key
value within a given B-tree block. This routine receives a
pointer to the key value. The B-tree block which is to be
searched is mapped in, and R5 is set to point to the B-tree
block. KMKC is called to determine in which half of the
partition the key resides. The partition is halved until it
converges, and KMKC is called to set up the comparison
results for output.

KMBSC is called to compute the number of characters that a
field would have if it were blank suppressed. A pointer to
the field and the number of characters is input. This
routine simply computes the number of nonblank characters and
includes the blank-suppression overhead word where needed.

KMBTD is called to delete a B-tree entry. First, KMBS (an
entry point in KMBTS) is called to search the B-tree with the
given key value. If the entry is not found, KMBTD is exited.
Otherwise, the B-tree record is read, and the entry is
located in the block. The BTB is prelogged by KMLOG; if this
key is the one specified by the currency block, the currency
information is updated to print the preceding B-tree entry.
The entry is deleted by moving up all entries below it in the

File I/O 11-54 2270512-9701

DNOS System Design Document

KMBTI

BTB. If the block is now empty and the key was the one
specified by currency, currency is set up to point to the
predecessor BTB. If the greatest key in the block was
deleted, the KMBDEL overlay is invoked to modify the higher-
level B-tree structure.

KMBTI is called to insert an entry into the B-tree associated
with the key specified by the caller. The specified BTB is
read and its image is prelogged by KMLOG. If the BTB cannot
accommodate the size of the new entry, the block must be
split by the KMBTIS overlay. Once a block large enough for
the new entry is received, the entry is placed in the block.
It may be necessary to move some of the entries in the block
down in order to insert the new entry in its required
location. The B-tree overhead is updated, and the block is
written to its file position.

KMBTIS
KMBTIS is called to perform a B-tree split for KMBTI. A
descriptor of the B-tree to be split is input. Figure 11-17
and Figure 11-18 illustrate how the B-tree looks before and
after a split. Note that in Figure 11-17 the root is
splitting, whereas in Figure 11-18 a regular B-tree node is
splitting.

Before Split *----------*
root

After Root Splits

root (modified)

Inew Inew
--------- *---------*

(left I B-tree I ---------) I B-tree I(right
block) I entries I <-------- I entries I block)

--------- *---------*
Figure 11-17 Example of Root Node Split

2270512-9701 11-55 File I/O

I

DNOS System Design Document

Before Split

After Right
(Block B)
BTB Splits

IA

B-tree
entries

root

root

IB

1 B-tree
1 entries

IA(modified) Inew IB(modified)
--------- *---------* *---------*
1 B-tree
1 entries

1-) 1 B-tree 1-) 1 B-tree 1
I <-I entries 1 <-I entries 1

--------- *---------* *---------*

Figure 11-18 Example of Regular B-Tree Node Split

First, an empty block is retrieved by calling KMGEB (an entry
point in KMGF). This block is used for the left BTB. If the
B-tree root (lowest-level BTB) is being split, another empty
block is retrieved to hold the right BTB. The block that
needs to be split is read, and the last entry is copied into
the second key buffer. The new entry is inserted into the
data block, which may require moving down other entries.
Next, a check is made to determine whether the block should
be split 50/50 or 90/10. If records are inserted
sequentially into the B-tree, th~ new left block contains 90
percent of the entries, and the new right block contains 10
percent of the entries. Thus, if the user continues to
insert sequentially, the next B-tree split will be delayed.

Depending on the split ratio, the number of entries to use in
the left block is calculated and the block overhead is
updated to reflect the number of B-tree entries and the
amount of free space. The successor and predecessor pointers
are set up, the new block number "is updated, and the new left
block is written to the file. The greatest key value in the
left block is saved in the first key buffer for later
insertion into the higher-level BTB.

Next, the right block is set up by determining the number of
entries in it, moving the B-tree entries up to the top of the
block, and restoring the last (greatest) entry to the block

File I/O 11-56 2270512-9701

DNOS System Design Document

KMBTS

KMCNV

KMEK

(saved in the first key buffer at the start). The pointer
fields are set up, and entries are defined for the space
remaining and the number of entries in use. If the root is
split, the new right block number is stored in the block and
the block is written to its new file position. A new root
block is created, and the two new greatest entries are stored
in the root. If the root is not being split, the right block
is written to its original file position and the original
block's predecessor block has its successor pointer modified
to point to the new left block (via the FXPPTR subroutine in
KMBTIS).

KMBTS is call~d to search a given key's B-tree for a matching
key value. If no match is found, KMBTS searches the first B­
tree entry with a key value greater than that specified.
This routine also builds a B-tree stack (saved in KIT) that
contains three words (block number and index) for each B-tree
level. Each level of the key's B-tree is read, beginning
with the root. KMBIN is called to find the matching key
value or the next greater value for each B-tree. If a match
is found, a check is made for a duplicate entry. If a
duplicate entry is found, an output flag is set accordingly.
If duplicates exist, the B-tree stack will be set up to point
to the last duplicate. The B-tree is read and the B-tree
stack is updated for each level until the leaf node is
reached. If the specified key value matches the last entry
of a block, the successor block is read to determine if a
duplicate exists in it. If a duplicate does exist, the above
process is repeated until the last duplicate is found (many
successors may be read). The B-tree stack is set to the
record that contains the last duplicate. Once the leaf node
is reached, the output flags are initialized for duplicates
and unique match.

KMCNV is called
conversion tables

to convert strings,
set up by KMBEG.

using the country

KMEK is called to extract a key from a blank-suppressed file,
unblank it, and move it to a buffer specified upon input.
First, KMKDG is called to find the key descriptor for the
specified key. The key size and offset into the record can
be determined from the key descriptor. If the file is single
keyed, the key value is taken from the first key buffer
(which was set up by File Manager) and KMEK is exited. For
multi-key files, the key must be unblanked by KMEK rather
than by File Manager.

KMGEB
KMGEB is called to obtain an empty block for B-tree splits.
The file end-of-medium is advanced, and FMCKEX is called to

2270512-9701 11-57 File I/O

KMGFB

KMKC

KMKDG

KMLOC

check the file extension.
extended.

DNOS System Design Document

If necessary, the file will be

KMGFB is called to obtain a free block with adequate space to
accommodate a record that is being inserted or rewritten.
First, KMGFB checks the free chain pointer in the KIT to
determine if there are any free blocks. If not, the end-of­
medium of the file is incremented and a new block is read in.
The overhead of the block is initialized (block number, space
remaining, and free chain pointer), and this block is
returned. If free blocks are available, the first one is
read, prelogged by KMLOG,. and a check is made to determine if
it has enough free space to accommodate the record. If the
space is sufficient, this block is returned to the caller.
If the space is insufficient, the block is removed from the
free chain (the free block pointer in the block is set to the
value negative 1) and written to the file. The next free
chain block is then tried. If a large enough blnck of free
space has not been found after three tries, the new block is
taken from the end-of-medium.

KMKC is called to perform a logical comparison on two
character strings. If the two strings are ASCII, the result
corresponds to the ASCII sort order. If the strings are of
different lengths, the longer string is truncated and
ignored. KMCNV is called to perform any conversion on
international text.

KMKDG is called to find the key descriptor entry (located in
KIT) with a given key number.

KMLOC is called to read a B-tree record and locate the unique
entry described by currency. The caller may specify the
current entry, the previous-to-current entry, or the
successor to the current entry. KMLOC starts by reading the
B-tree record contained in the currency block. The address
of the B-tree entry described by currency is located in the
currency block (the third word of the B-tree pointer). If
this address is zero, either of two situations can result.
If the previous-to-current entry is needed, the predecessor
block is read to find the entry. If no predecessor exists,
an informative code is returned. If the successor to the
current entry or the current entry is desired, the first
entry in the BTB is used. When the address of the current B­
tree entry is non-zero, a check is made to see if this B-tree
address points to the data block in the currency. If not,
the correct B-tree entry is found by searching through the B­
tree. Once the B-tree entry that points to the correct data
block is found, the currency is modified according to what

File I/O 11-58 2270512-9701

DNOS System Design Document

KMLOG

KMPLG

KMRDK

was requested (previous-to-current, current, or successor-to­
current). When a single-keyed file is used, the key value is
copied into the first key buffer.

KMLOG is called to prelog the block currently mapped by the
caller. The position in the log records to which the block
should be written is kept in the KIT (KITCLB). Also, the log
command number for the logging is kept in the KIT (KITCMD).
Blocks will not be logged if the force write flag is turned
off (that is, a Modify Key File Logging (MKL) command was
executed).

KMPLG is called from the insert overlay (KMINSR) to recover
from selected insert errors while a file is set to partial
logging. KMPLG recovers from insert errors by simulating the
roll back action of KMULG. Any keys inserted by the current
insert operation are deleted using KMBTD. The data record
from the current insert is deleted from the data block. No
errors are returned by KMPLG.

KMRDK is called to read a data record with a given data base
key. The data base key consists of a block number and key
10. The record is read in an attempt to locate the specified
key ID. If the ID is found, the address of the entry is
returned. If it is not found, a zero is returned for the
address.

KMRWSO
KMRWSO is called by the Rewrite processor (KMRW) to delete an
old key and insert a new key. The old key is passed in the
second key buffer, while the new key is in the first key
buffer. First, a check is made to see if an old key exists.
If a)FF resides in the first byte of the key or the key is
blank, the key does not exist. If an old key does exist, it
is deleted by the KMBTD routine.

The new key is now inserted into the B-tree. Again, if 'a)FF
resides in the first byte of the key or the key is blanked,
the insert is not performed. If a new key exists, KMBTS is
called to search the B-tree for the specified key. If a
matching key value is found, a check is made to ensure that
duplicates are allowed. KMBTI is called to insert the new
key into the B-tree. If this key was the currency key, the
user's currency is set up to point to the new insert B-tree
entry.

KMRWSI
KMRWS1 is called by the Rewrite processor (KMRW) to obtain a
new block for a data record. KMGFB is called to return a
free block. A new key ID is generated for the record, given

2270512-9701 11-59 File I/O

I

ONOS System Design Document

the current maximum key 10 used. Also, the address where the
new record will reside is computed.

KMRWS2
KMRWS2 is called by the Rewrite processor (KMRW) to map in a
new block and write out the old block. This routine writes
the block currently mapped, reads the new data block,
increments the highest key ID used in the block, and sets up
the currency for the new block.

KMRWS3

KMRF

KMSUK

KMTAB

KMULG

KMWRN

KMRWS3 is called by the Rewrite processor (KMRW) to update B­
trees when a data record moves. For each key of the file,
the key value is located (if it exists), and the BTBs are
searched by KMBTS to find the entry for the key. The block
returned by KMBTS is read and searched for the location of
the key. When the key that has the same data base 10 (that
is, pointer to data record) as the old record is found, the
new data base ID is stored in the B-tree entry.

KMRF is called to return a block to the free chain. The
block 1s simply linked to the free chain and written back to
the file.

KMSUK is called to compute the key size and B-tree entry size
given the key number. This routine passes a key number to
KMKOG, which returns the key descriptor entry containing the
key size. The B-tree entry size is the key size plus six.

KMTAB contains conversion tables used to convert standard
ASCII characters into a nonstandard collating sequence.

KMULG is called to write preimages logged at the beginning of
the file (in the preimage log area) to their true positions
in the file. This routine is called whenever an Open is
executed (to clean up operations only partially completed)
and whenever an error occurs in an operation. If the Open
routine calls KMULG, unlogging begins at record O. If the
command number in the block is zero, unlogging does not
occur.

KMWRN is
specified
installed
position
called.

called to force write a buffer segment to a
address. Thi s routine temporarily modifies the

ID in the SSB of the buffer segment mapped into
two ann sets the modified flag. FMBW is then

After the buffer has been written to the file, the
SSB is restored to its original state.

File I/O 11-60 2270512-9701

DNOS System Design Document

SECTION 12

DNOS SYSTEM TASKS

12. 1 SYSTEM TASK ENVIRONMENT AND CONVENTIONS

A system task executes with the following segments mapped in by
map file 1: the system root, the JCA of the executing job, and
the task code. Tasks that run under the system job have the
system JCA mapped in. System tasks may need to map out the
system JCA and map in another table area using the set of nucleus
routines described in a previous section.

A system task that runs in a user job has the user JCA mapped in
as its second segment of map file 1. If the task is a system
queue server, it has a queue header in the user JCA. RPROOT
examines flags in the request definition block (RDB) for an SVC
to determine whether or not the server is to be bid in the user's
job. If so, RPROOT calls NFQUEH to queue the request to the
appropriate queue header in the user's JCA and to bid the server
task in the user's job. The queue server is bid with its second
parameter being the queue header address. Using this address,
the queue server can process its requests and terminate when the
queue is empty.

All routines in the system root can be directly accessed by
system tasks. In addition, a system task can transfer into map
file 0 to use routines in map file 0 or to do work that cannot be
done in map file 1. The nucleus function NFMAPO is used to
access map file 0 code; NFMAPO is described in the section on
nucleus functions.

A system task has access to data structures as well as common
operating system routines in the system root. The available
structures include queue headers, global pointers, global data,
and any other structure located in the system table area.

12.2 WRITING AND LINKING AN ASSEMBLY LANGUAGE TASK

System tasks should follow the conventions used for
(see the section on naming and coding conventions).

DNOS code

The link of a system task needs to include the system root. The
link control file shown in Figure 12-1 shows an example, where
the object code for the task is in the file PROG.TASK.OBJECT.

2270512-9701 12-1 System Tasks

DNOS System Design Document

VOLOBJ is the volume name of the disk on which the linkable DNOS
code resides (that is, the response to the DATA DISK prompted
during system generation).

NOPAGE
ERROR
PROCEDURE DUMROOT
DUMMY
INCLUDE VOLOBJ.SSGU.DUMROOT
PHASE 0, NEWTASK,PROG)COOO
INCLUDE PROG.TASK.OBJECT
END

Figure 12-1 Example of Link Control for System Task

12.3 USING OVERLAYS IN ASSEMBLY LANGUAGE SYSTEM TASKS

System overlays are overlays of system tasks that have an entry
in a table built during system generation to enable loading in
one disk access. They are used in the following subsystems:
file management, key indexed file management, disk marr'agement,
the I/O Utility, and error processing for program management.
Such tasks must reside on the kernel program file and sysgen must
be aware of the overlays in order to build appropriate
linkstreams.

System tasks may also use standard user overlays.
require no knowledge by system generation.

12.3.1 Overlay Data Structures.

User overlays

The data structures used to support system overlays are shown in
detail in the section on data structure pictures. The following
paragraphs describe the major aspects of the structures used.

OAD - Overlay Area Descriptor
The OAD is a block of OADSZ bytes of storage immediately
preceding the overlay area start address. The OAD includes
information needed by the overlay loader: size of overlay,
overlay number, use count, and link to the next overlay
area. These pieces of data must be initialized by the
subsystem planning to use the overlay. (The link and use
count words are needed only for pooled overlays.) The size
is the size in bytes of the area available for reading the
image and relocation bit map. If the overlays are never to
be relocated, the size does not have to include space for
the relocation bit map. The overlay number should be
initialized to -1. Immediately following the link word

System Tasks 12-2 2270512-9701

DNOS System Design Document

OADSIZ bytes are reserved for the overlay area itself.

OVT - Overlay Disk Location Table
The OVT is a table in the system root that contains the disk
locations and other pertinent information for system
overlays. The copy module SOV contains indexes into this
table for the information on each overlay. The table is as
follows:

SOVT
E1
E2

where:

EQU $
DATA OVTREC,OVTSIZ,OVTLOD
DATA 0,0,0

OVTREC is the beginning record number of the overlay image
on the kernel program file.

OVTSIZ is the size in bytes of the image, not including
the relocation bit map.

OVTLOD is the natural load address (as assigned by the Link
Editor) of the overlay.

System generation creates the OVT; IPL initializes it.

SOV - System Overlay Load Table
SOV is a template which describes the OVT built by system
generation. It contains definitions for the names of all
the system overlays in the system. Routines referencing
overlays do so by name and copy in this module. The value
of a name is an index into the OVT.

12.3.2 System Support Routines for Overlays.

The module DSC.SOVLY.SOVCPR in the system root provides three
entry points for accessing overlay code. Two of these are for
entering overlay code and one is for returning from overlay code.

An overlay may be called from task code using SOVLTO (link to
overlay). SOVLTO preserves linkage information on the task
stack. The called overlay may itself call an overlay via SOVBTO
(branch to overlay). The second overlay executes, returning to
the task code via the linkage preserved on the stack by SOVLTO.

SOVLTO - Link to Overlay
SOVLTO is used to enter an overlay from system task code.
The caller places the overlay index from SOV in R9 and the
address of an overlay area in R8. The overlay is loaded,
relocated if necessary, and the code is entered in such a
way that if R11 is used for a return address, return will go

2270512-9701 12-3 System Tasks

DNOS System Design Document

through SOVRFO. Hence t routines can be called that do or do not
use push/pop for their entry/exit convention. Any routine that
has a pointer in the entry vector can be called by this routine.

SOVBTO - Branch to Overlay
SOVBTO is used to enter an overlay from another overlay when
a return path to the first overlay is not needed. It is
used when continuity of logic is needed but the code will
not fit within one overlay. The same R8 and R9 inputs are
used as for SOVLTO.

SOVRFO - Return from Overlay
SOVRFO is used to return
registers are needed.
routine, including RO,
indicated by the contents

to the caller of SOVLTO. No input
All registers of the returning
are preserved, and any error exit
of RO is taken.

12.3.3 Size of Overlay Areas.

The system overlay loader does not support returning control
(i.e., after calling root-resident code) to an overlay which is
loaded at a different address from where it was loaded when it
executed the call to the root-resident code. The system overlay
loader does not support a pool of overlays.

The overlay area must be large enough for the overlay and the
relocation bit map. Overlay areas can be located anywhere
convenient for the subsystem. Most are allocated in the task
segment for the subsystem.

12.3.4 Coding Overlays.

System overlays are coded like normal user
free to reference (REF) symbols defined in the
root and to define data words referencing
overlay code itself. This characteristic
relocating overlays at load time.

overlays. Code is
overlay and in the
locations in the

is achieved by

Each overlay must have a table at the physical beginning of the
overlay that defines the locations of the routines in the
overlay. When using R9 to specify which overlay to enter, the
first five bits of R9 indicate which of 31 possible routines is
to be used. In the following example, the following link control
and modules illustrate the construction of code that is to be
overlay resident. A line with three dots indicates missing code.

System Tasks 12-4 2270512-9701

DNOS System Design Document

PHASE 3,DMOV37
INCLUDE IN.DISKMGR.OBJECT.DMOTBL
INCLUDE IN.DISKMGR.OBJECT.DMRTNI
INCLUDE IN.DISKMGR.OBJECT.DMRTN2
INCLUDE IN.DISKMGR.OBJECT.DMRTN3
PHASE •••

where the routines include:

IDT 'DMOTBL'
REF DMRTNI
REF DMRTN2
DATA DMRTNI
DATA DMRTN2
END

IDT 'DMRTNl'
DEF DMRTNI

DMRTNI MOV Rll,*RlO+

DIRECTLY CALLABLE FROM
WITHIN OVERLAY AND CALLABLE
THROUGH SOVLTO

BL @NFPSHX

B @NFPOPX
END

IDT 'DMRTN2' CALLABLE ONLY BY SOVLTO
REF DMRTNI CALLABLE FROM HERE BY BL
REF DMRTN3 CALLABLE FROM HERE BY BL
DEF DMRTN2

DMRTN2 ...
BL @DMRTN3
DATA X

x BL @DMRTNI
DATA Y

B @SOVRFO
END

IDT 'DMRTN3'
DMRTN3 MOV Rll,*RlO+ CALLABLE ONLY FROM t\TITHIN

BL @NFPSHX OVERLAY VIA BL

B @NFPOPX
END

Th e ove rlay
sequence of
routines, as

loader is capable of handling the call and return
either the standard push.pop or the enter/exit
illustrated in the preceding examples.

2270512-9701 12-5 System Tasks

DNOS System Design Document

12.3.5 Calling Routines in an Overlay.

Overlay-resident code is called with the calling sequence
illustrated below. Entry from the root code into each of the
routines in the preceding example is shown. All registers except
RO are transmitted to the called routine unchanged. RO is
cleared.

COPY DSC.TEMPLATE.ATABLE.SOV

LI R9,DMOV37 TO ENTER DMRTNI
LI R8,<overlay area address>
BL @SOVLTO
DATA <error return>

LI R9,DMOV37+)800 TO ENTER DMRTN2
LI R8,<overlay area address>
BL @SOVLTO
DATA <error re turn) ...

12.3.6 Internal Design Considerations.

The entry SOVLTO pushes the return address onto the current run­
time stack. Calling one overlay from another is not supported in
that the stack does not have information on which overlay to load
and therefore the first overlay is not loaded on the return path.

When an overlay is loaded into memory, a check is made to see if
relocation is needed. If so, the relocation bit map is also read
in. If the load address of the overlay and the address of the
overlBY area in which to load it are equal, no relocation is
performed. Otherwise, relocation may be needed. Each location
indicated in the bit map is examined. If the reference is less
than the natural load address of the overlay (computed by the
Link Editor), relocation is not necessary for that location. If
the reference is greater than or equal to the natural load
address, the reference is altered by the following formula:

NRV = ORV - (NLA - ALA)

where:

System Tasks

NRV is new reference value
ORV is old reference value
NLA is natural load address
ALA is actual load address

12-6 2270512-9701

DNOS System Design Document

Hence, the overlay area must be large enough to contain both the
bit map and the overlay, when the overlay area is part of a pool.

12.4 WRITING AND LINKING A PASCAL SYSTEM TASK

System tasks written in Pascal may be written in several ways,
depending on what portions of the task are in Pascal. If the
entire task is written in Pascal and enough space is available to
accommodate the Pascal run-time support, the task can make use of
Pascal routines for stack and heap management, as well as other
run-time support.

If task space is not abundant, Pascal run-time routines for stack
and heap management can be replaced by other routines to
economize on space. These routines define entry points that are
replacements for labels known to the Pascal base routine,
R$TASKDP. The routines are described in the paragraphs that
follow.

UTR$ST
This module in DSC.UTCOMN.SOURCE.UTR$ST contains routines
that perform stack and heap initialization and that perform
termination processing. The routines aTe named R$GSHS,
R$GSHP, and S$STOP. The module references labels RSTACK,
STKSIZ, HEPSIZ, MDNAME, and CLNUP that are defined in a data
module supplied by the user.

Parameters Module
If using UTR$ST for stack and heap management, the user must
build a module that defines the parameters RSTACK, STKSIZ,
HEPSIZ, MDNAME and CLNUP. The CLNUP parameter is optional;
it specifies the address of an end action routine. A label
MDNAME can be defined to contain the ASCII string which
should be shown in a message to the system log when the task
aborts. For example, the following portion of code in
DSC.LOG.SOURCE.LGADAT sets the parameters for the DNOS
accounting log processor. In this example DATAM is a macro
that generates the number of occurrences, specifie~ in
argument two, of the value in argument one.

2270512-9701 12-7 System Tasks

DNOS System Design Document

IDT ' LGADAT'
DSEG
DEF RSTACK,STKSIZ,HEPSIZ,MDNAME

MDNAME TEXT 'LGACCT'
RSTACK DATAM) 3 33 3 ,200 USE 200 WORDS OF STACK
STKSIZ EQU $-RSTACK
RHEAP DATAM)3636,300 AND 300 WORDS OF HEAP
HEPSIZ EQU $-RHEAP

DATAM)4242,32 MARGIN BUFFER
END

When the Pascal task is linked, the modules which replace the
Pascal run-time modules must be explicitly included so that they
override the default modules collected from the run-time library.
The following example link control file for building a task
includes its own parameters module (LGDATA) from
VOLOBJ.LOG.OBJECT and the UTR$ST module from
VOLOBJ.UTCOMN.OBJECT. It is the link stream for the log
formatter task from DSC.LINK.SYSTEM.LGFORM.

NOPAGE
NOSYMT
LIBRARY
LIBRARY
LIBRARY
LIBRARY
PROCEDURE
DUMMY

VOLOBJ.LOG.OBJECT
PASCAL.MINOBJ,PASCAL.LUNOBJ,PASCAL.OBJ
VOLOBJ.UTCOMN.OBJECT
VOLOBJ.PASASM.OBJECT

DUMROOT

INCLUDE VOLOBJ.SSGU.DUMROOT
PHASE O,LGFORM,PROG)COOO ; SYSTEM LOG FORMATTER TASK
INCLUDE (R$TASKDP)
INCLUDE (LGFORM)
INCLUDE (LGDATA)
INCLUDE (UTR$ST)
INCLUDE (UTPTCH)
END

An alternate to building the parameters module such as LGDATA is
to make use of the Pascal exception handler. In this case, the
text for MDNAME must be defined in an assembly language module so
that messages to the system log have a module name text. The
routine ONEXCEPTION must be declared in the Pascal task as:

PROCEDURE ONEXCEPTION(HANDLER_LOCATION: INTEGER); EXTERNAL;

When the task aborts, this procedure is called, passing to it the
location of the Pascal procedure which is to perform the cleanup
processing. The exception handler has access to any variables in
common or in the main program's stack frame, but other stack
frames cannot be assumed to still be accessible. Optionally, the

System Tasks 12-8 2270512-9701

DNOS System Design Document

exception handler may be declared to accept a single integer
parameter, which will then be set to the internal message number
of the error condition.

The following example shows how a procedure CLEANUP might be used
to handle exceptions. In this case, it merely writes a message
ERROR IN PROCESSING to file F.

PROGRAM EXAMPLE;
VAR F: TEXT;
PROCEDURE ONEXCEPTION(HANDLER LOCATION: INTEGER); EXTERNAL;
PROCEDURE CLEANUP; -

BEGIN
WRITELN(F, 'ERROR IN PROCESSING');

END;
BEGIN

REWRITE(F);
ONEXCEPTION(LOCATION (CLEANUP)):

main body of program

END;

12.5 DETAILS OF DNOS SYSTEM TASKS

The kernel program file (named according to the system name
specified during system generation) and the utilities program
file .S$UTIL include a number of system tasks that support
execution of DNOS. Those which carry a section indication in
Table 12-1 are described in detail in that section of this
document; those with no section number are described only in this
table. I

2270512-9701 12-9 System Tasks

DNOS System Design Document

Table 12-1 DNOS System Tasks

Task Name Section Purpose

DEBUG
DIOU
DISKMGR
FILEMGR
INV
IOBREAK
IOTBID
IOU
IPC

IUV

JOBMGR
LGACHN
LGACCT
LGFORM
LGGLOG
LGRCRT
LOGON
NAMMGR
PMOVYL
PMPASP

PMPDEL

PMPINS

PMPMAP
PMRWTK

PMSBID
PMSBUF
PMTBID
PMTERM

PMTLDR
PMWRIT
RPRCP
RESTART
RESTART2
SAYRES

System Tasks

16 Aids in debugging system code
10 Performs device I/O utility functions

Performs the Disk Management SVCs
11 Performs file management operations

Performs the Initialize New Volume SVC
12 Performs the break key function
10 Bids a task from DSR
10 Performs I/O utility operations
10 Swaps IPC data for tasks that do not

simultaneously fit in memory
Performs the Install Disk Volume and

Unload Disk Volume SVCs
8 Performs job management

14 Puts spooler data in the accounting log
14 Formats accounting log messages)
14 Formats system log messages
14 Recovers system log data after crashes
14 Creates log files
12 Processes user log-on procedure
10 Performs name management SVC

Performs the Load Overlay SVC
Performs the Assign Program File Space

SVC
Performs the SVC processing for Delete

Task, Delete Procedure or Program
Segment, and Delete Overlay

Performs the SVC processing for Install
Task, Install Procedure or Program
Segment, and Install Overlay

Performs the Map Program File SVC
Performs the Read/Write Task SVC

information transfer
Processes the Scheduled Bid Task SVC
Processes the Modify BTA/JCA Size SVC

9 Processes Bid Task SVC
9 Cleans up a task that has terminated

abnormally
9 Loads tasks into memory
7 Writes modified segments to disk

12 Processes Return Code Processor SVC
12 Establishes initial system conditions
12 Establishes initial system conditions
10 Saves and restores name manager segments

to and from disk

12-10 2270512-9701

DNOS System Design Document

The remaining system tasks in S$UTIL support SCI and utility
functions and some of these are described in detail in the DNOS
SCI and Utilities Design Document. Table 12-2 lists the system I
tasks that support SCI or utilities.

Table 12-2

Task Name

CRV
LTS
MLP
OPERATOR
RAL
SCS
SCU
SIS
SJSSTS
SMM
SMS
XJM
XPD

System Tasks tD Support SCI and Utilities

Function

Checks and resets disk volumes
Lists terminal status
Modifies LUNa protection
Channel owner for the operator interface
Releases all LUNas for a job
Shows channel status
Performs system configuration commands
Shows I/O status
Shows job and task status
Shows system memory map
Shows memory status
Monitors execution of jobs
Displays performance data

Many other tasks found in the S$UTIL program file are not system
tasks, but they do support SCI and utilities. They are described
in the SCI and Utilities Design Document.

The paragraphs that follow describe some of the system tasks that
are part of DNOS but are not described elsewhere in this
document.

12.5.1 Log-On Task (LOGON).

The log-on task is bid by IOTBID whenever a command definition
table (CDT) gives the LOGON ID as the primary task to be bid.
The supplied log-on task can be replaced by a user-written task
if the user wishes to have a different system environment than
that provided. That task must be a system task if it is to
examine system structures for currently executing jobs.

One of the special responsibilities of LOGON is to initialize the
system time and date. The first time LOGON is bid, the year
field (kept in the CSEG NFCLKD as YEAR) is zero. LOGON prompts
for time and date and initializes the system to the data
supplied. In subsequent bids of LOGON, the year field is
checked; if it is nonzero, no time and date are queried.

The supplied log-on task solicits a user ID, passcode, account
ID, and job name from the terminal performing the bid if the
.S$SCA file indicate that log-on is required at that terminal.
This data is kept for each terminal, and it is modifiable by a
Modify Terminal Status (MTS) command to SCI. Before the job is

2270512-9701 12-11 System Tasks

DNOS System Design Document

started,
used.

the break key sequence is enabled at the terminal being

If a job already exists for the user ID, passcode, and job name
given, and reconnect is specified for the terminal, the user is
asked if he wishes to reconnect (that is, run in the same job).
If the user answers affirmatively, LOGON bids the desired task
under the already existing job.

If the user does not want to reconnect to an already existing
job, or if the job named does not already exist, LOGON issues a
Create Job SVC to start a job at the terminal being used. Among·
the parameters supplied in the SVC are the segment identifier of
the name manager segment, the initial task to be bid, program
file LUNO required, and any bid parameters passed from the CDT.

If the user makes an error in supplying log-on data, the Create
Job SVC fails. In the case of failure, LOGON prompts again for
the log-on data. A maximum of three attempts is allowed before
LOGON terminates. Exceeding the limit is logged to the system
log so that violations of system security may be monitored.

For some log-ons, the data gathered from the user is different.
If the CDE for the key used to log-on indicates that even loading
is to occur, log-on establishes the new terminal within an
existing job. If the CDE indicates that a default user ID should
be used, LOGON will not prompt for user ID and passcode. Using
the appropriate ID and job name, the. terminal is then set up
within one of the jobs specified by the CDE.

The S$SCA file contains information referenced by the LOGON task
to determine mode and the proper LOGON prompts for terminals in a
system. An S$SCA entry is created by the Modify Terminal Status
(MTS) processor. The first field in the record is the device
number associated with a specific terminal. The next four fields
contain the default values for the user ID, account number,
passcode and/or job name if they are not prompted for at logon.
Finally, an entry contains eight flags (Y for YES and N for NO)
that specify the following options:

* Login required

* VDT mode

* Do not solicit job name

* Reconnect disabled

* Solicit account number

* Solicit name

* Manager files

System Tasks 12-12 2270512-9701

DNOS System Design Document

* Terminal off

* VDT mode default

If an entry has not been created for a station through the use of
MTS, the following defaults are used:

LOGIN REQUIRED
VDT MODE
DON'T SOLICIT JOB NAME
RECONNECT 'DISABLED
SOLICIT ACCOUNT NUMBER
SOLICIT NAME MANAGER FILES
TERHINAL OFF
VDT MODE DEFAULT

- NO
- NO
- NO
- NO
- NO
- NO
- NO
- NO

The S$ SCA
processor.

file is also used by the List Terminal Status (LTS)
If an entry does not exist, LTS outputs the defaults.

12.5.2 System Initialization Tasks (RESTART and RESTART2).

The initialization task is the first task to run after IPL. It
checks for the existence of the system log files. If they do not
exist, RESTART attempts to create them. If the files cannot be
created, RESTART outputs a message to the system log device.
RESTART then attempts to create the accounting log files. If the
accounting log files cannot be initialized, a message is output
to the system log.

RESTART then initializes the capabilities list file, S$CLF and
restores the global logical name segment. It deletes temporary
files and bids all global channel owner tasks which support DNOS
and the utilities. RESTART then bids a user-defined
initialization task if one was specified during system
generation.

12.5.3 RPRCP.

This task processes the Return Code Processor SVC (SVC)4C). It
retrieves variable text information from the call block supplied
as an argument in the call. If the supplied call block has an
error for which the message requires variable text and the
calling task has supplied a variable text buffer, then RPRCP
extracts the appropriate variable text from the call block and
places it into the buffer. To do the extraction, RPRCP follows a
set of tables found in the module DSC.REQPROC.SOURCE.RPRCDA.

RPRCDA includes an entry for each SVC message in
DSC.MESSAGES.TEXT.SVC that has variable text as part of the
message. In addition, the table has entries for the following:

2270512-9701 12-13 System Tasks

DNOS System Design Document

* Each SVC which can return .an I/O error has an entry for
each return code which is not to be replaced by the
corresponding I/O message. For example t disk manager
error)202A must appear in the table since the disk
manager SVC can report I/O SVC errors t but 2A is a
special disk manager error which is not to be replaced
by the corresponding I/O error. This error has no
variable text and appears in the table with such an
indication. The exceptions to this rule are F3 and F4 t

which do not need to be duplicated for each SVC.

* The last code in the table must be
allow error codes)FO and)F3
output for all SVCs.

a dummy entry to
to generate the same

If an error is encountered while processing the variable text t

searching for an LDT t or accessing a task segment the error
condition is returned as an error of the)4C SVC. This allows
the calling task to terminate and pass back the error condition
without doing error checking on the error processing SVC. If the
SVC block passed to RPRCP has no error byte t a similar 4Cxx error
is returned.

A number of special cases are considered by RPRCP. The Poll Task
Status SVC (SVC)35) returns status (error) byte 00 when the
status message needs to specify the state in byte 3. When RPRCP
detects the Poll Task Status t it retrieves the state information,
passes it back as variable text, and exits the RPRCP code.

Another special case is that of Activate Suspended Task (SVC)07)
and Activate Time Delayed Task (SVC)OE). Each of these can
return a status byte of 00 as a meaningful status message. These
cases are passed along for scanning in the RPRCDA table. All
other SVCs with status bytes of 00 cause RPRCP to report a 4Cxx
error saying that the passed error byte is not an error.

The cases of FO and F3 error bytes all use the same table entry,
passing back the SVC code byte as variable text for the message
that indicates that an unsupported SVC was issued (for the FO
error) or that a privileged SVC was issued (for the F3 error).

A number of SVCs have no room for an error byte. The table named
EXCTBL is searched to see if the supplied SVC block uses one of
these exceptions. If so, the 4Cxx error indicating no error byte
is returned to the caller.

For all other cases, the table in RPRCDA is scanned for the
specified SVC and status byte. If an entry is found, the
appropriate variable text is inserted into the buffer. If no
entry is found, the SVC is examined to see if- it might return I/O
errors. This test is made by scanning the table IOTBL in RPRPC.
If the SVC code in the supplied block is in this table, variable
text is built using the SVC code and status byte for the message

System Tasks 12-14 2270512-9701

DNOS System Design Document

number which indicates an I/O error in processing another SVC.

The table in RPRCDA carries a two-word entry for each SVC code,
status byte combination that RPRCP must find. The first word is
the SVC code, status byte pair and the second word is the address
of decoding information. The decoding information is composed of
the following types of entries:

1. NOVAR - No variable text is needed; this
those cases that must appear in the
replacement by I/O error codes

is used for
table to rna sk

2. Cxy - Convert the byte of information at offset xy in
the call block into hexadecimal ASCII for variable text

3. Dxy - Convert the byte of information at offset xy in
the call block intd decimal ASCII for variable text

4. Eabxy - Echo the ab words of data at offset xy in the
call block exactly as they are for variable text (xy
must be an even offset into a call block on an even
bounda ry)

5. P - Use the address as offset 22 into the call block as
a pathname
text

poi n t era n d m 0 vet h epa t h n a m'e for va ria b I e

6. L - Use the LUNO at offset 3 into the call block to
search the LDT list and return the resource name for
variable text

Rules about combining these codes
found in the RPRCDA module.

12.5.4 IOBREAK.

into legal combinations are

The IOBREAK task performs the hard break function. It uses the
following order to cause tasks to terminate: foreground down to
1 task, then background tasks, then the last foreground 'task,
with highest priority first.

In addition, the following rules hold:

* Skip file manager

* Skip self

* If this task already being
stop

terminated by hard break,

* Skip task at different terminal

2270512-9701 12-15 System Tasks

DNOS System Design Document

* Skip non-leaf mode task (that is, kill at lowest level
first)

System Tasks 12-16 2270512-9701

DNOS System Design Document

SECTION 13

SYSTEM GENERATION UTILITY

13 • 1 OVERVIEW

System generation (sysgen) is the process of creating an
operating system. This process involves specifying all necessary
features, describing the devices that will be available to the
new operating system, and constructing an operating system with
the stated features and devices. The difficulty of this process
is compounded by the flexibility required in the sysgen software
to configure only the desired features into the operating system.

The DNOS user is given a utility called SYSJEN, which asks
questions that may be answered in English. These questions
determine which features will be included in the new operating
system and which devices will be used. The SYSJEN utility
collects this data and produces a file called a configuration
file. This file contains all of the information needed to
construct an operating system with the desired features. SYSJEN
also produces a file that describes the data structures needed to
produce an operating system with the desired features in the
internal format of the new operating system. This file is called
the source f~le. The parts needed to complete the construction
of the operating system with the desired features are then chosen
by the SYSJEN utility. This information is placed in the link
control files. These files describe which modules are needed in
the operating system and the order in which they are to be used.
If communications devices are to be included, these files also
describe which modules are to be included in the communications
device service routines and the communications software
scheduler. Combining these modules in the desired way is
controlled by a batch stream. After the batch stream combines
the different parts of the new operating system, the system is
available for use.

13 • 2 SYSJEN STRUCTURE

SYSJEN is a Pascal task, consisting of a root phase and three
overlays. The flow of execution is from the first overlay to the
second, and from the second to the third. The root contains the
main driver for the program, a collection of support routines
needed in more than one overlay, and all of the I/O routines.

2270512-9701 13-1 System Generation

I

I

DNOS System Design Document

The main driver consists of a loop that calls other routines.
This main loop is called the INQUIRE loop. SYSJEN begins by
loading the initialization (INIT) overlay and calling procedure
IN!T. The second overlay, INTERACT, is then loaded, and the main
loop is entered. Another loop calls ASKQST to ask system
questions. When all system questions have been asked, DEFSTR is
called to define system structures, devices, jobs, channels,
XOPs, and SVCs. DEFSTR is called from the main loop so that
whenever a user changes a system question, he is asked that
question immediately, even if he was in DEFSTR at the time of the
change. The stop routine, STOPRT, is also in the main loop; this
permits the user to change answers after entering the stop
routine (for example, when a warning message is issued from
STOPRT). If a user answers yes to the build question, STOPRT
loads the third overlay, BUILD, and calls the major routine in
that overlay, BILDRT. The "error-handling routines are in the
root phase; since the program is written in Pascal, the run-time
support routines are also in the root.

The INIT overlay initializes all of the data structures used by
SYSJEN, opens the JENDAT file, and opens the interactive device.
This overlay also verifies that the JENDAT file is the correct
one for the program. The device characteristics of the
interactive device are read to make the listing routines work for
that device. Many data structures are initialized in the INIT
phase. The data needed to define devices is kept as sets of
device types, device names, and PDT names. The locations of
questions in the JENDAT file ~re stored in array QTX, and the
type of each question is placed in array TQ. The "preanswered"
questions are answered and marked as nonlistable. Next, the
implication tables are filled. Pascal heap space needed for
names and pathnames is allocated. The XOP and SVC tables are
emptied, and all list headers are made NIL. The flow of control
is linear.

The INTERACT overlay contains all routines that ask questions
about system data and system structures. The command mode
routines are also in this overlay, since they are interactive.
The major routines ask the system parameter, device, XOP, and SVC
questions. The command mode routines permit the user to change,
add, and list the previously entered data. This overlay also
contains the module that reads old configurations, since they
appear to be interactive responses.

The INTERACT overlay has a complicated flow structure, since the
command mode is called from the TRAN routine, which parses user
answers; also, command mode ~alls the major routines in the
INTERACT over1ay. These routines in turn call the parser. The
user can quickly exhaust all stack space because of this indirect
recursion if the CMD key is struck repeatedly.

The BUILD overlay
sysgen. One file

System Generation

produces
produced

the files necessary to complete
is D$SOURCE, which contains the

13- 2 2270512-9701

DNOS System Design Document

initial STA; the interrupt vectors; the special table area SSBs;
the system JSB, PDTs, RPSDAT, and system JCA. SYSLINK, IOULINK,
and DMLINK are the files that link the operating system. Other
link control files for communications device service routines and
the communication software scheduler are generated if there is
any communication device. ALGSSTRM is the batch stream used to
build the system. These files are built by calling a COpy module
whose parameter is the record number at which to start the copy.
This routine copies data from JENDAT to the appropriate file and
makes any modifications necessary for tailoring the data to the
current configuration. The processing is linear in this overlay.

13.3 DETAILS OF THE SYSJEN ROOT PHASE

The major root routines are SYSJEN and STOPRT. SYSJEN begins
execution. After SYSJEN has called INIT to initialize all
constants and pointers, the INITI procedure is called to read an
old configuration, if needed. The value of the synonym INCON
specifies which configuration and indicates that nothing need be
read if the value returned is INCON. The program then enters a
loop. The answer tables (QANS,QANSBUS) are scanned to find any
unanswered questions. The first one found is then asked by
calling ASKQST, with the number of the question ~tored in common
variable QTA. If the user hits the CMD key at any time, s/he
enters the command mode. (In command mode, a previous answer may
be changed.) The loop begins each scan at the start of the
question list so that questions with changed answers will be
asked next. If no questions are found unanswered, DEFSTR is
called to define devices, XOPs, and SVCs. When the routine
returns from DEFSTR, STOPRT is called to ask whether to save the
configuration only, or to build the system.

13.3.1 STOPRT.

STOPRT determines if a build is possible. If it is possible,
STOPRT then asks if a build is desired. If a system does not
have a disk defined, a warning message is given. The user can
hit CMD and then INQUIRE to return to DEFSTR (to add a device).
If a build is not possible (caused by typing STOP), the user is
asked if a save is desired. If a build is chosen, the BUILD
overlay is loaded and procedure BILDRT is called. If the save
option is chosen, the save routine (SAVECN) from the second
overlay is called and the configuration listing is produced.

13.3.2 Support Routines.

Two types of support routines are included: I/O routines and
string manipulation routines. The majority are I/O routines.

2270512-9701 13-3 System Generation

I
I

DNOS System Design Document

The I/O routines perform the calls needed to read data from the
JENDAT file, to read the input configuration, to backspace the
input configuration, to write the output files, and to read and
write to the user station. The JENDAT records are always read
into the same buffer, JMSG. The sequential file routines always
use buffer TXT, whether reading or writing. The interactive
writes use buffer BUF. The interactive reads use buffer RPBUF.
The sequential call blocks are allocated from the heap on opens
and released on closes. The JENDAT and interactive call blocks
are in common variables G and CALLBLK, respectively.

The I/O routines, their uses and parameters are as follows:

* GJ(X) - Read JENDAT record number X

* LONGPR(X) - Read JENDAT record numbers starting at X,
and display to user until logical link is 0

* PRINT - Direct output to the user or batch listing file
.SSGU.<NAME>.ERRFIL

* RSET(LUNO) - Open a sequential file for reading

* REWRIT(LUNO) - Open a sequential file for writing

* CLOS(LUNO) - Close a sequential file

* MEOF(LUNO) - Detect end-of-file

* BKSPAC(LUNO) - Backspace the LUNO

* RWSEQ(LUNO) - Read/write buffer TXT

* ENCOD(STR,LOC,X,P,B) - Write X into field STR,
at LOC in base B, with P digits of precision.

starting

* DECODE(STR,LOC,STAT,VALUE) Read
field STR, starting at the location
status of the operation in STAT.

number
LOC,

VALUE
putting

from
the,

The string manipulation utilities add strings to the output
buffer TXT. They all use the common variable BC to point to the
location at which the insertion begins in the text. The routines
and their uses and parameters are as follows:

* ADDNMB(X) - Insert decimal number X (left justified)

* ADDHEX(X) - Insert X as a four-digit hexadecimal number
(includes »

* ADDNAM(X,LEN) - Insert the name X of length LEN

* ADDPAT(X) - Insert a pathname to which X points

System Generation 13-4 2270512-9701

DNOS System Design Document

13.4 DETAILS OF THE INITIALIZATION PHASE

There are six routines in the INIT overlay: INIT, INITCN,
INITDB, INITHD, INITAL, and INITOP.

*

*
*

*

*
*

13.4.1

INIT - Opens the JENDAT file and verifies compatibility
between the file and the program. It also opens the
interactive device and checks the values of synonyms
assigned by the SCI command procedure used to start
sysgen.

INITCN - Loads the arrays of constants used by SYSJEN

INITDB Initializes list headers, implication tables,
the XOP tables, all answers to system questions,
questions unanswered by the user, questions that are
nonlistable, and questions that are preanswered to be
false

INITOP - Initializes the SVC tables

INITAL - Assigns LUNOs to input and output files

INITHD - Initializes preanswered questions

INIT.

INIT first finds the value of $$MO. This indicates whether the
program is running in batch mode. Then, the value of $CSNAM is
found to indicate the name of the system being built. The
station is opened next. A Read Device Characteristics SVC is
issued to find the number of lines used by the device. The
listing routine uses this number to get a maximum amount of data
to the screen before waiting for the user to signal
acknowledgment. Finally, JENDAT is opened, and the first record
(record 0) is read to find the version number of the file. If an
incompatibility is found, an error message is sent to the user
and processing stops. If no problem is found, INITCN is called,
followed by a call to INITDB.

13.4.2 INITAL.

INITAL creates the SSGU directory on the target disk, if one
does not exist. It then creates' the configuration directory in
the SSGU directory, if one does not exist. It then creates all
output files needed by sysgen and assigns LUNOs for use by the
program.

2270512-9701 13-5 System Generation

DNOS System Design Document

13.4.3 INITCN.

INITCN begins by printing an informative message to the user
indicating that execution has begun. Next, the array indicating
the presence of TILINE devices (TILPRE) is set to zero. All
positions on the seven expansion chassis are marked unused. Six
sets of devices are filled with devices containing the desired
characteristics. These are LEGALDEVICES, TILINETYPES,
XCESSREQUIRED, TIMEOUTDEVICES, CHARQTYPES and ASYNCTYPES. The
array of device names (DEVNAM) is filled. Array QTX is
initialized with constants from file JDICONS. QTX holds the
pointers to question text in the JENDAT file. TQ, the array of
system question types, is the last array to be filled in this
routine.

13.4.4 INITDB.

INITDB initializes all answers to system questions (QANS),
questions unanswered by the user (QANSBUS), all questions that
are nonlistable (QLIST), and all questions that are preanswered
(QHASDEF) to be false. Next, all implications are cleared (that
is, YESINF and NOINF are made false). Now the implica~ions are
made. All names and pathnames for system questions are allocated
from the heap. The list headers are made null, and the array of
PDT names (PDTNAM) is initialized with text.

13.4.5 INITHD.

INITHD establishes preanswered questions. QANS is made true or
false (as needed), QANSBUS is made true, QHASDEF is made true,
and NUMBIN is filled where needed. (NUMBIN holds either a number
or a pointer to a name or pathname.)

13.4.6 INITOP.

INITOP begins by initializing all SVC information to false. The
array, (DESVC), is two dimensional; of size NOSVCGROUPS by
SVCPARMS. NOSVCGROUPS is a small integer constant, currently 14.
SVCPARMS is a scalar, with components DESIRED, and REQOND. These
components represent whether the user wants to include the SVC
and whether it is required. The array of SVC IDs (OPSVC) is
initialized to false. This array is used to build RPSDAT and to
decide which optional processors to include in the link stream
built in the BUILD phase. INITOP then initializes DESVC by
assigning those values that are initially true. Next the SVCGRP
array is filled. This array is used in the BUILD phase to decide
which SVCs have been chosen. A value of 0 indicates that the SVC
is required, -2 indicates nonexistence, -3 indicates that the SVC

System Generation 13-6 2270512-9701

DNOS System Design Document

is included if the COmmon option is chosen, and other numbers I
indicate an SVC group chosen by group name.

13.5 DETAILS OF THE INTERACTIVE PHASE

Major routines in the INTERACTIVE phase are ASKQST, DEFSTR,
COMMND, CHANRT, DELRT, and LISTRT. The translation routine,
TRAN, is also in this overlay and is called by any routine
needing a response parsed. Several other support routines are
available throughout the phase.

13.5.1 General Support Routines.

TRAN
TRAN parses the user response and returns a token in common
variable TR. If the user terminates a call with the CMD
key, TRAN directly calls COMMND. This routine removes
blanks from the answer. It also intercepts a STOP any time
one is entered by a user.

COMMND

SETUP

COMMND calls TRAN on each user command
proper routine is called to perform
The routines called from COMMND are
LISTRT. The INQUIRE command causes
COMMND routine.

entered. Then the
the desired function.

CHANRT, DELRT, and
an escape from the

SETUP is used by INITI to
configuration file to

convert answers
what looks like

read from a
interactively

collected data.

Error Routines
Two error routines in the INTERACTIVE phase are ERRMSG and
PUNT. ERRMSG produces the set of questions and error
messages that result from answering a question incorrectly
that was asked by ASKNAM, ASKNMB, ASKYN, OR ASKPAT. If the
error occurs while a configuration is being read, PUNT is
called to indicate which record was in error. PUNT
terminates the program.

13.5.2 Asking System Questions.

The ASKQST routine asks all system questions by looking for the
question type of QTA in array TQ. Then, one of the five
prompting routines (ASKNAM, ASKNMB, ASKYN, ASKPAT, ASKELM) is
called to prompt for and validate the answer. This is one of two
major drivers in the INQUIRE mode. These five routines all use
the numeric fields of the JENDAT file for information about

2270512-9701 13-7 System Generation

DNOS System Design Document

acceptable answers to the question. The fields that contain
answer information are DEFt AAT t LB t UB and NEXT. DEF contains a
default answer. AAT is .the acceptable answer type. LB and UB
are lower and upper bounds on the answers. NEXT is the record
number which logically follows this question.

ASKNAM
ASKNAM is used to ask name questions. This routine uses the
DEF field to represent the ordinal of the default answer, if
any exists. The possible values for AAT are as follows: 0
indicates that any answer is acceptable; 1 indicates that
the only acceptable answer is either LB or UB (that is, an
answer must begin with a letter whose ordinal is LB or UB);
and 2 indicates that the question must be answered. If DEF
is 0, no default answer exists.

ASKNMB

ASKYN

ASKNMB uses DEF as the default numeric answer. The possible
vBlues for AAT are as follows: 0 indicates that any answer
is acceptable; 1 means that an answer must be larger than LB
to be acceptable; 2 indicates that the answer must be
between LB and UB inclusively; and 3 indicates that the only
acceptable answers are LB or UB. This routine is a
function.

ASKYN uses DEF in a type transfer to Boolean values as the
default answer, such that 0 represents false and 1
represents true. The possible values for AAT are as
follows: 0 indicates that a default exists and 1 indicates
that no default exists. This routine is a function.

ASKPAT
ASKPAT uses the logic of ASKNAM for producing prompts and
error messages. Then, this routine checks for valid
pathname syntax, producing any prompting necessary because
of pathname syntax.

ASKELM
ASKELM uses the logic of FNDANS. It will not stop unless
the answer is found or the command key is entered.

FNDANS
FNPANS starts with record number NEXT, comparing the TXT
fi~ld of each record with the answer supplied by the user.
When a match is found, the DEF field is returned as the
an s·w e r • F N DAN Sis a fun c t ion, ret urn i n g f a I s e i f noma t c h
is found.

System Generation 13-8 2270512-9701

DNOS System Design Document

13.5.3 Defining Structures.

DEFSTR, the other driver in the INQUIRE mode, defines devices,
XOPs, and system-supplied optional supervisor calls. The
routines used are ADDDEV, ADDXOP, and ADDSVC. They include the
logic needed to call the prompt~ng routines for user interaction,
answer validation, and error message production.

ADDDEV
ADDDEV asks questions that allow the user to define devices.
Also included are the routines ADV2, ADV3, ADV4, DEVINT,
RENAME, ADDTPD, ADDVDT, ADDSD, and ADDCOM, which are
continuations of ADDDEV. ADDDEV initializes a local copy of
an empty device definition and calls DEVINT to ask interrupt
and address-related questions. ADV2, ADV3 and ADV4 are
called to ask other devi£e questions. These routines ask
all of the unanswered questions. Then, RENAME is called to
revison bar off name this device. If the user answers all
questions, a permanent copy is created from the heap and
linked to all other devices on a singly linked list. ADDTPD
is called to ask more TPD questions. ADDVDT is called to
ask more VDT questions. ADDCOM is called to ask more
communications device questions. ADDSD is called from ADV3
to ask more special device questions.

The declaration for a device is as follows:

DEVICE = RECORD
LINK
DVTP
INTRPT
POSITION
CHASSIS
SYSNAME
TIMEOUT
CHARQ
XCESS
CRUBIT
NODR
INTERFACE
CHNNMB
ADDRESS
CASE DEVTYPE OF
DS, DK : (RECSIZ

) ;
LP : (WIDTH

PMODE
XCHAR
MULATOR
LP SPEED

) ;

2270512-9701

DEVPTR;
DEVTYPE;
INTEGER;
INTEGER;
INTEGER;
ARRAY [1 •• 4] 0 F WRD;
INTEGER;
INTEGER;
BOOLEAN; (* RECORD
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;

: INTEGER

TRUE *)

(* SERIAL = TRUE *)
INTEGER;
BOOLEAN;
BOOLEAN;
INTEGER;
INTEGER;

(* EXTENDED = TRUE *)

13-9 System Generation

VDT

KSR

ASR

COM

SD

VT

END;

(

) ;
(

) ;
(
) ;
(

) ;

DNOS System Design Document

VDT TYPE INTEGER;
GOT-A PRINTER BOOLEAN;
SPEED- INTEGER;
SWITCHED BOOLEAN;
OUTPUT FIFO INTEGER;

TERMINAL TYPE INTEGER;
BAUD RATE INTEGER;
ACU PRESENT BOOLEAN;
ACU-ADDRESS INTEGER;
ECHO BOOLEAN;
FULL DUPLEX BOOLEAN;
COMM- INTERFACE INTEGER;
SWITCHED LINE BOOLEAN

CASXCESS : BOOLEAN " RECORD = TRUE

BOARDTP
USRBRDTP
SPNAME
BUFSIZ
NOMDL
IPCNOSES
PROTOCLS

COMBRDTP;
COMBRDTP;
WRD;
INTEGER;
INTEGER;
INTEGER;
ARRAY [0 •• 3] OF PROTO_REC;

(SDNUMB
SDTIL

(VTNUMB

INTEGER;
BOOLEAN);
INTEGER);

" SD NUMBER
" TILINE DEVICE
." " 0 F VT

ADDSVC
ADDSVC adds system optional SVCs to the user-generated
system. This routine asks for a group name. The user
enters an abbreviation or the whole name, and ADDSVC calls
FNDANS to find the group number of that group name. If this
group is available on the generated system, it is added to
the table of desired SVCs (DESVC). Otherwise, an error
message results. The definition of the DESVC is as follows:

SVCPARMS = (DESIRED, REQOND, NSONC);
DESVC : ARRAY [1 •• NOSVCGROUPS,SVCPARMS] OF BOOLEAN;

ADDXOP
ADDXOP asks for the level of the XOP first. If that level
is available the user is asked for the entry point of the
XOP processor, the workspace pointer (WP) of the processor,
and the pathname of the object code of the processor. The
information is kept in the table XOPA. The pathname is kept
in the heap as are all other pathnames. The definition of
XOPA is as follows:

System Generation 13-10 2270512-9701

DNOS System Design Document

XOPVECTOR = RECORD
BOOLEAN;:" XOP DEFINED
ASMNAM; -'" ENTRY POINT LABEL
ASMNAM; "WORKSPACE LABEL

HERE
XOPPC
XOPWP
XOPNAHE PPTH " PATHNAME OF OBJECT POINTER
END;

XOPA : ARRAY [0 •• 14] OF XOPVECTOR;

13.5.4 Changing Structures.

To change a structure, the user must first identify it. The
system then searches for the specified structure. If it is
found, it is deleted and redefined. The routine CHADEV handles
this processing for devices, ~hile CHANRT handles it for XOPs.
CHANRT calls routines FNDQST, CSYQST, FNDXOP, and ADDXOP. CHADEV
calls FNDDEV, DELDEV, RENAME, and ADDDEV.

FNDQST
FNDQST is used by CHANRT to decide which question is being
abbreviated by the user. The questions are scanned
sequentially until one that has been correctly abbreviated
is found. To correctly abbreviate a keyword, both the
keyword and the abbreviation must begin' with the same
letter. All letters in. the abbreviation must appear in the
keyword and in the same order. The first letter following a
blank in the keyword must match the first otherwise
unmatched letter in the abbreviation. If the abbreviation
is unmatched, the value returned by this function is false.

CSYQST
CSYQST changes system questions. If the question is
currently preanswered, it is marked unanswered and made
listable. Any other questions between this question and the
expansion card questions are unanswered.

FNDDEV
FNDDEV asks for the device name and searches the device list
for a device with that name. The pointer to the device is
returned, if found, or an error message is produced.

FNDXOP
FNDXOP verifies that a given XOP has been defined on the
level that the user enters. If that level has not been
defined, an error message is produced. If the XOP was
defined, the value is returned in common variable CXOP.

DELDEV
This delete routine deletes an item by linking around the
item and disposing of the heap space used by the structure.
Devices are kept in singly linked lists in the heap. XOPS
are kept in an array in common; consequently, they require

2270512-9701 13-11 System Generation

I

I

I
I

I
I

I

I

I

I

I

DNOS System Design Document

no delete routine.

13.5.5 Deleting Structures.

DELRT operates similarly to CHANRT except that DELRT never issues
a call to add a new structure; it issues calls only to the
routine that finds the desired item and to the routine that
deletes that item.

13.5.6 Listing Structures.

LISTRT is the routine that produces configuration listings.
These listings may be produced at the station for viewing by the
user or to a file to be read by another use of SYSJEN or for
later reference. The routines used by LISTRT are FORM, SHOWDV,
and LIST2. LIST2 is a continuation of LISTRT, which calls
FRMXOP. These routines all call DUMYUP and LOOK which transfer
text from the JENDAT file to the output buffer, eliminating
string constants from the program. All of these routines call
ADDHEX, ADDNAM, ADDNMB, and ADDPAT for string operations~ DISPAT
is called by all of these routines. It directs the output to
either a file or the interactive device. If the program is, in
the INTERACTIVE phase, the' user sees the list; otherwise, the
information is written to the CONFIG file.

FORM

LOOK

FORM is used to fill in the answers to system questions.
The type of question is found in array TQ, and the answer is
added to a line of text read from the JENDAT file.

LOOK reads a record from JENDAT, scans for the question mark
in the text field, and initializes common variable BC to
point to the question mark. Thus, answers may be encoded
into the field.

SHOWDV
SHOWDV uses the
information about

FORMDV, FRMXOP

logic of
a device.

FORMDV to show all pertinent

FORMDV, and FRMXOP build the lines of text for displaying
information about devices and XOPs to the configuration file
or the user.

FILLTB
FILLTB is called after every system question is answered to
update the question-answered table by implication. This
routine uses common arrays YESINF and NOINF to answer
certain questions for the user.

System Generation 13-12 2270512-9701

DNOS System Design Document

13.6 DETAILS OF THE BUILDING PHASE

The flow through the BUILD phase is linear. The first module
called is INITBL, which initializes data structures that cannot
be initialized as long as the user can change his mind. The next
routine called is SYSJCA, which defines the system job. BLDWSR
is called to build interrupt decoder tables. PDTBLD builds the
PDTs. BLDSSB builds the SSBs. If communications devices are I
genned, BLDSWS and BLDDSR build the files required to build the
communications software scheduler and communications device
service routines, respectively.

Throughout the process, all of these routines and BILDRT itself
depend heavily on the COpy routine. Although the COpy routine is I
physically split into 17 different routines, they all function as
one routine. COpy is used to access data in the JENDAT file,
process it as specified in that file, and output it to the files
for the built system.

INITBL
INITBL marks the SVCs required by system common and system
disk in addition to those that were chosen by the user. The
OPSVC array is then filled by assigning the values indicated
by SVCGRP and the DESVC array. The use of each interrupt
level is then determined (INTUSE) and expansion chassis .use
is marked in array CHSINUSE. INITBL marks the combinations
of communications boards and protocols which have been
chosen by the user. This information will be saved in the
COMSTATUS array. If communications devices have been
genned, INITBL will call INITCM to create all files required
for communications link. Finally, INITBL will set the flags
used 0 load the DSR overlays.

SYSJCA
SYSJCA scans the job list, looking for a job with an ID of
O. If such a job exists, it becomes the system job. If
this job does not exist, it is created. This routine is
used to prevent special case coding for the system job in
later routines.

BLDWSR
BLDWSR first builds the workspaces for the interrupt
decoder. This routine uses array INTUSE, which was
initialized in INITBL to decide what devices are available
at each interrupt level. The workspace is different for
single device per interrupt, multiple device per interrupt,
one or more asynchronous TILINE controllers per interrupt,
and each of the expansion chassis. If an interrupt level
has more than one device, a multiple interrupt decoder table
is built for that interrupt level. The table consists of
interrupt bit positions used for polling in the interrupt
decoder, and interrupt vector pointers. The table is of
variable length. If an interrupt level has one or more

2270512-9701 13-13 System Generation

I

I
I
I

I

DNOS System Design Document

asynchronous TILINE controllers, a multiple interface table
is built. This table consists of the controller address and
a pointer to the table of channel entries. The table of
channel entries consists of the interrupt vector pointers
and the controller chanriel number. If a device has been
defined on an expansion chassis, a table of interrupt vector
pointers for that chassis is built. The size of the table
is 24 entries. Then, all interrupt vectors are built, one
for each device that shared an interrupt level on the main
chassis and each device on an expansion chassis.

PDTBLD
PDTBLD is the main driver used in building PDTs. Note,
however, that PDTFIL builds the fields needed to fill in the
template kept in the JENDAT file, and PDTGO calls for the
correct pieces of the template that are kept in the JRNDAT
file. PDTBLD sets either a flag in the common variable
DCODE to indicate that the current device is the first
device of a multiple drive cont~oller, or a flag in COmmon
variable CASFLAG, to indicate that the current device is a
cassette drive. PDTBLD also chooses the correct name to be
used in filling the PDT template. PDTBLD is also
responsible for producing the trailer equate for the end of
the PDT chain. Note that this trailer equate is not
produced if RTS is present. PDTFIL defines the values of
flag words, labels, and special constants used in filling
the template. These include the device type flags, device
status flags, the address, and the interrupt level. PDTGO
decides where to begin copying in the JENDAT file. Some
PDTs have no extensions, while others have as many as three.

BLDSSB
BLDSSB builds the SGB in the system table area, then builds
SSBs for the segment management table area, file management
table area, system root, and system COmmon. The fields that
must be initialized are the link field, run-time ID, segment
attributes, use count, segment group block pointer, segment
beet address, and length of the segment. This routine
initializes these fields and calls the correct copy routine
to build the SSBs of the STA.

System Generation 13-14 2270512-9701

DNOS System Design Document

13.7 JENDAT FILE

SYSJEN maintains a large amount of data in the JENDAT file, which
is a random file of Pascal records. The definition of the record
type is as follows:

TYPE GENMSG = RECORD
DEF
AAT

INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;

LB
UB
NEXT
LEN
TXT PACKED ARRAY [1 •• 76] OF CHAR END;

The uses of each field are described first for the INTERACTIVE
phase of SYSJEN and then for the BUILD phase. (The uses differ
greatly.) Since the field names are based on their original uses
in the INTERACTIVE phase, they do not accurately portray their
uses in the BUILD phase. The names were chosen from the
following uses of each field:

Name

DEF
AAT
LB
UB
NEXT
LEN
TXT

Use

Default answer
Acceptable answer type
Lower bound on answers
Upper bound on answers
Record number that logically follows
Length of the text that follows
Message text

13.7.1 Interactive Use of the JENDAT File.

I

The length field is used in the call block as the number of
characters to be written. The text field contains the message to I
be written to the user's screen. Five types of questions asked
by sysgen determine how the fields of the record are to be used.
The types of questions asked are as follows:

* Number questions

* Name questions

* Element questions

* Pathname questions

2270512-9701 13-15 System Generation

DNOS System Design Document

* YES/NO questions

13.7.1.1 Number Questions.

Number questions use the default field to find the answer to be
used if the user hits the RETURN key in response to a
question.63No conversion is necessary. The value in the AAT
field signifies the following:

o any numerical answer is acceptable
1 any number greater than LB is acceptable
2 any number X such that LB <= X <= UB is acceptable
3 only LB or UB is acceptable

This scheme allows the ASKNMB routine to determine the validity
of answers without special case code for each question that
requires a number answer. If only one of three or more
noncontiguous numbers are acceptable, special case code is still
required.

Consider the following example:

REC /I
20

DEF AAT
60 3

LB UB NEXT LEN TXT
50 60 21 20 LINE FREQUENCY? (60)

Record number 20 asks for the frequency of the line voltage. The
default answer is 60. The default is always included in
parentheses in the text to inform the user of the default. Since
AAT = 3, the only acceptable answers are 50 or 60. The length of
the text string to be written is 20 characters. This permits the
response to be accepted directly after the question, without
scanning the text string. The NEXT field indicates that if the
user responds by entering a ? or incorrectly answers the
question, the longer form of the question is at location 21.
This permits many changes to be made to the JENDAT file with no
changes in program logic, and recompiling is not necessary.

Often, several records are logically followed by the same record.
Such is the case when, in answering the second question, the user
incorrectly defines the interrupt levels. All of these error
messages may be provided with the same text, as shown in the
following example. (Note that all of the text will not fit
across the page in this example.)

REC /I DEF AAT
179 9 2

REC /I DEF AAT
180 7 2

LB UB NEXT LEN TXT
3 15 185 49 WHAT IS THE INTERRUPT LEVEL

LB UB NEXT LEN TXT
3 15 185 46 WHAT IS THE INTERRUPT LEVEL

This example asks for the interrupt level of a tape unit and then
the interrupt level of a flexible diskette. The default is
either 9 or 7. The acceptable- answers are the same, but the
question lengths differ slightly. N~tice that the next logical

System Generation 13-16 2270512-9701

DNOS System Design Document

record is the same for each. question.
use the same text at recor.d 185.

Seven other questions also

Often, the value of NEXT is O. This indicates that the current
record is the last of a chain. This will be the last record that
the current request will di.splay.

13.7.1.2 Name Questions.

Name questions assume that only the first character of the answer
is significant. The default contains the ordinal of the first
character of the name. The value of AAT is as follows: 0
indicates that any answer is acceptable, 1 indicates that only
ORD(LB) or ORD(UB) is acceptable, and 2 indicates that the user
must answer the question.

If AAT is 1 and DEF is 0, no default exists. As a result. the
question (or a similar question) is asked until it is answered
correctly. The following example asks for the type of line
printer being defined. The user is expected to answer either
serial or parallel. The default is serial. The ordinal of S is
83, and the ordinal of P is 70. Thus the user may hit the RETURN
key to indicate serial (the default). Any answer except a RETURN
or words that begin in S or P are treated as incorrect answers.

REC II
272

DEF AAT
83 1

LB UB NEXT LEN TXT
70 83 273 20 PRINT MODE? (SERIAL)

In the next example, the user is asked for the workspace label of
a special DSR. Any answer is acceptable, but note that an answer
must be given.

REC II
344

DEF AAT
o 2

LB UB NEXT LEN TXT
o 0 345 14 DSR WORKSPACE?

13.7.1.3 Element Questions.

Element questions use the default answer if AAT is 1 and the user
hits the RETURN key in response to the answer. Otherwise the
value of NEXT points to a list of valid answers.

The list can then be searched using ASKELM, which compares the
user response to the TXT (message TEXT). If a match is found,
the DEF field is returned as the answer. Otherwise, the next
logical record is searched. (The next logical record is pointed
to by the field NEXT. If NEXT is 0, this signifies the end of
the list). This process is continued until a match is found or
the CMD key is pressed. If an invalid answer is entered, then
the longer form of question is asked.

An example of an element question is one that asks baud rate, as
follows:

2270512-9701 13-17 System Generation

REC #
1820

DEF ATT LB
000

DNOS System Design Document

UB NEXT LEN TXT
o 1822 10 BAUD RATE?

The next physical record of the file has the first line of the
explanation of the question and records starting at 1822 have the
valid options. The entries for the valid responses include as
the DEF field the internal value needed by SYSJEN.

NOTE

The first line of the longer question must be
physically after the short question. The
valid answers must be logically after the
short form. This applies only for the
element questions.

WARNING

The internal value (the DEF field) usually
plays a significant role during the build
(and sometimes the inquiry phase) of Sysgen.
When adding or deleting elements from these
lists, great caution should be used.

13.7.1.4 Pathname Questions.

Some questions are answered by pathnames. These questions use
the logic of the name questions. When a valid name has been
entered, (almost anything is an acceptable name), the syntax of
pathnames is checked. Thus, no special entries are made in the
file. In the following example, the user is forced to enter a
name. The syntax requirements are treated in no special way in
the JENDAT file; only the text gives any indication of the
requirements of the answer.

REC#
870

DEF AAT
o 2

LB UB NEXT LEN TXT
o 0 867 25 APPLICATION PROGRAM FILE?

In the following example (defining the KSB for a special device),
the user is not forced to answer the question; this means that
the device does not have a keyboard.

REC#
337

DEF AAT
o 0

System Generation

LB UB NEXT LEN TXT
o 0 338 11 KSB? (NONE)

13-18 2270512-9701

DNOS System Design Document

13.7.1.5 Yes/No Questions.

Yes/No questions have as default answers the internal Pascal
representation of true and false, 1 and O. The value of AAT is
as follows: 0 indicates that a default exists, 1 indicates that
no default exists and the user. must answer.

In the following example, the user is defining a line printer.
The question determines whether an extended character set is
available on that printer.-

UB NEXT LEN TXT REC II

277
DEF AAT LB
000 o 278 14 EXTENDED? (NO)

The default is NO, and the user may press RETURN to get the
default.

13.7.2 BUILD Use of the JENDAT File.

The JENDAT file is predominantly used for building source code in
the various modules that describe the system being generated by
SYSJEN in the BUILD phase. The DEF field is used as follows: if
DEF is 0, no processing is required on the field; if DEF is 1,
AAT contains the type of modification that is required. This
value is used as the case statement variable of the COpy routines
in SYSGEN. The use of the values of NEXT and LEN in the BUILD
phase is similar to their use in the INTERACTIVE phase. The
remaining fields are of variable usage. The LB field is almost
always a pointer into the record. This value is the column
number of the first column that requires modification. In the
example that follows, a label is inserted on a PDT.

REC II
378

DEF AAT LB
103

UB NEXT LEN TXT
o 379 13 PS EQU $

The DEF flag signals that the record must be modified. Case 0 is
used to indicate adding the current device name into location LB.
If the current device is DSOl, this name is inserted at column 3
and the record is modified as follows:

PSDSOI EQU $

Generally, the UB field is O. However, it is sometimes used to
mark a second column for modifications, as in the following
example where an interrupt vector is being defined.

REC II
594

DEF AAT
1 29

LB UB NEXT LEN TXT
15 29 0 57 IV DATA ,SG3BGN,MP

The device name is added at co~umn 15, and an offset determined
by the device type is added at location 30. Internal logic also
adds the name at column 3 and a field determined by the device

2270512-9701 13-19 System Generation

DNOS System Design Document

type at column 13. If the device type were VDT and the current
name were STI6, the record would be modified as follows:

IVST16 DATA KBSTI6,SG3BGN,MPSTI6

Sometimes the UB field does not hold a location in a specific
record; instead, it holds the current location in a section of
records. For example, consider building the expansion chassis
interrupt decoder table. This table is 24 records long, each
containing either 0 or a label of an interrupt vector (as in the
previous example).

REC #
830

DEF AAT
1 28

LB UB NEXT LEN TXT
15 6 831 14 DATA IV

In this example the UB signifies that the user is building the
seventh entry, the entry for interrupt position 6. If the
current device name was STI6, the seventh entry in the interrupt
table would become:

DATA IVST16

This use of UB is prevalent in the table building portions of
sysgen, although its use as a column number is more COmmon. The
only accurate means of determining its use is to examine the
source in the COPY modules.

13.7.3 Sample Copy Module.

The following copy module indicates the BUILD usage from the
SYSJEN program. The entries are divided into groups of ten to
simplify the requirements on the compiler. The COpy module has a
case statement that uses the AAT field.divided by ten to
determine which sub-COPY module to call to process the record.
The ATT field is a hexadecimal number. To determine which sub­
COpy module is going to be used, convert ATT to decimal and
divide by ten. The example given determines whether to include
the given record in the link stream. The record in question
should be included if the system is a DNOS/D.

REC #
1621

DEF AAT
1 SF

LB UB NEXT LEN TXT
o 0 1622 20 PHASE 3,CFDFOV

The AAT field of SF indicates that case number 95 of
module is called to process this record. The code is
COPY9.

the COpy
taken from

System Generation 13-20 2270512-9701

DNOS System Design Document

BEGIN
DISK := QANS[DISKQST];
KIF := QANS[KIFQST];
CD := QANS[CDFQST];
FM := QANS[FMQST];

CASE JMSG.AAT MOD 10 OF
o PRFLAG:= QANS[EXFQST];
1 PRFLAG:= NOT FM;
2 PRFLAG:= NOT CD;
3 PRFLAG:= FM;
4 PRFLAG.- CD;
5 PRFLAG:= DISK;
6 PRFLAG:= NOT DISK;
7 PRFLAG:= NOT KIF;
8 PRFLAG:= KIF;
9 PRFLAG:= NOT QANS[EXFQST];

OTHERWISE ; END;
END;

The variable PRFLAG indicates that the record should be printed
if the value is true; otherwise it should not be printed.

13.8 JENDAT EDITOR

A special editing program is available to the DNOS development
staff to maintain and modify the JENDAT file. This editing
program is documented in the section on DNOS tools.

2270512-9701 13-21/13-22 System Generation

DNOS System Design Document

SECTION 14

LOGGING AND ACCOUNTING

14.1 LOGGING AND ACCOUNTING FUNCTIONS

The DNOS logging system logs information
(.S$LOGI and .S$LOG2) and "an optionally
The log is used to inform the operator
the hardware and/or oper~ting system.
following types of messages:

to the system log files
specified log device.
or user of the state of
The log contains the

* Device errors with the controller images before and
after an operation

* Device errors with the offending call block

* Abnormal task termination

* Statistics from a DSR

* Operating system informative messages

* User messages (from SVC)21)

* Cache memory errors

* Memory parity errors

The DNOS accounting system logs information concerning use of
system resources by user tasks to the system accounting files
(.S$ACT1 and .S$ACT2). Entries are made for the following
events:

* Job initialization

* Task termination

* Job termination

* Spooler device use

* Initial program load (IPL)

* User-defined (from SVC)47)

2270512-9701 14-1 Logging and Accounting

DNOS System Design Document

14.2 LOGGING AND ACCOUNTING TASKS

The logging and accounting systems each have a queue server task
to write data to the disk files. Whenever data is to be written
to either the log or accounting files, an entry containing the
data is put on the appropriate queue to be processed by the queue
server. Since the function of writing data to the disk files is
similar in both queue servers, several subroutines are shared
between the tasks. If errors are encountered while writing to
the files, then a message is generated for the log device and th~

attention device.

14.2.1 LGFORM.

The system log formatter task (LGFORM) serves the system log
queue. This queue has system log blocks (SLBs) generated by user
tasks using SVC)21 and from a variety of operating system
sources.

LGFORM first ensures that logging is functional. It then
dequeues one entry after another until the queue is empty. For
each log entry, LGFORM builds one or more lines of system log
text and outputs it to the system log file (one of two possible
system files) and, optionally, to a system log device.

Since the log queue is a finite limit, there may be times when
more messages are sent to the queue than will fit. In that case,
DNOS increments a lost message count in the newest entry on the
log queue. When LGFORM processes a log entry, it checks the lost
message count. If it is greater than zero, LGFORM outputs a
message showing how many log entries were lost.

Other error conditions are also monitored and reported. If the
files and/or log device should become inoperative, a message is
sent to the attention device specified during system generation.
When one of the log files becomes full, a message is also sent to
the attention device. The alternate file will then become the
log file in use.

14.2.2 LGACCT.

LGACCT is the task that processes the accounting queue. For each
entry on the accounting queue, LGACCT builds an accounting record
and writes it to the accounting file that is currently in use.
Like the log files, when one accounting file is filled, LGACCT
switches to the other accounting file. Errors in the accounting
files are also reported to the log attention device. Unlike the
log files, the accounting files contain binary data instead of
text. For information on processing the data in the accounting
files see the DNOS System Programmer's Guide.

Logging and Accounting 14-2 2270512-9701

DNOS System Design Document

14.3 SUPPORT ROUTINES

Since many of the functions of the log and accounting system are
similar, many of the following routines are linked into both
systems.

LGALUN
LGALUN is used to assign a LUNO to the output file currently
in use. It may be used for either the log files or the
accounting files.

LGATTN
LGATTN is used to write a message to the attention device if
one has been specified.

LGCHEK
If an error is encountered while writing to the log files
and log device, then LGCHEK will delay and continue retrying
the request until it succeeds.

LGSWTH
When an output file fills up, LGSWTH is called to close the
current file and open the other file. The new file is
marked as the current file. If there is a task specified to
process the files, then that task is bid after the files are
switched. If both a system-supplied task and a user-defined
task are supplied, the system-supplied task is bid first.
This routine can be used for either the log or accounting
files.

LGWACC
LGWACC outputs an accounting record
accounting file.

LGWDEV

to the current

LGWDEV writes a message to a device.
log device or the attention device.

It may be used for the

LGWLOG
LGWLOG outputs a log message to the current log file. It
also ensures that the log files are switched when one fills
up and that the message goes to the log device if one has
been specified.

14.4 MISCELLANEOUS MODULES

Several modules are used throughout DNOS to generate log entries.

LGACHN
LGACHN is a task that runs
IPC messages from the

in the spooler
spooler system

job. It receives
containing device

2270512-9701 14-3 Logging and Accounting

LGDEV

DNOS System Design Document

accounting records. LGACHN is responsible for putting those
accounting records on the accounting queue.

LGDEV is a routine in the DNOS kernel that is used to
generate log messages 'for device errors. It calls LGQBLK
after setting up a device message.

LGGLOG
LGGLOG is a task that is invoked during system restart to
read the crash dump from the previous crash and retrieve any
log messages that were generated before the crash but did
not make it to the log file. Those messages are then
written to the log file.

LGQACC
LGQACC is a kernel routine that queues an accounting record
to the accounting queue.

LGQBLK
LGQBLK is a kernel routine that queues a log message to the
log queue.

LGRCRT

LGSVC

LGRCRT is a task that is invoked when the log or accounting
files need to be created or recreated. When recreating a
pair of files, it ensures that the new files are created
before destroying the old files.

LGSVC is the module in the DNOS kernel that processes user
log message SVCs (SVC)21). It generates a log record to be
queued to the log queue.

PMACCT
PMACCT is the kernel routine that processes the accounting
SVCs (SVCs)47 and)49). For the log accounting entry SVC
()47), it creates an accounting record and queues it to the
accounting queue. For the get accounting information SVC
()49), it returns the accounting information for the
requested task in the call block.

Logging and Accaunting 14-4 2270512-9701

DNOS System Design Document'

~ECTION 15

DNOS PERFORMANCE PACKAGE

1 5 • 1 OVERVIEW

The DNOS Performance Package uses the 990/12 writable control
store (WCS) to enhance DNOS speed. This section describes the
WCS component and also describes the way DNOS operates without
the WCS component.

15.2 DNOS SOURCE CONVENTIONS

DNOS source has two components that enable use of WCS for speed
enhancement. These are a set of XOPs and a' routine in the
NUCLEUS source directory named NFMAT. For a number of system
routines, the execution takes place in WCS when the performance
package is available and otherwise, takes place in memory
(referred to as default code). The access to the system routines
is via XOP instructions, placed into the DNOS source code by
macros. These macros are described briefly in the section on
naming and coding conventions. In addition, NFTBID ensures that
all system tasks that are bid have their WCS status bits turned
on. This will cause routine calls to go to microcode.

The XOP assignments are as follows.

XOP
XOP
XOP
XOP
XOP
XOP
XOP

10,Rl
10,R2
10,R3
10,R4
10,R5
11,RX
12,RX

RPPRCK
RPSGCK
NFRTA
NFGTA
NFGTAO
NFPOPX
NFPSHX

It is important to note that the microcode assumes that bit 11 of
the instruction is a zero. This is used to quickly decide what
map file the caller is in. This means that only direct register
addressing can be used in the XOP instructions. Any violation of
this rule generates unpredictable results.

NFMAT is a data area that starts at location)EO.
to tell the microcode the location of things it

NFMAT is used
wants to access

2270512-9701 15-1 DNOS Performance Package

I

I

DNOS System Design Document

in memory. For example, it cont~ins the address of JCASTR.
Since the microcode uses its own equates, the order of the data
in NFMAT must not be changed without changing both the default
and performance microcode modules. Data used to crash and
provide addresses for the default microcode starts at location
)100. Since the microcode can only map an eight bit constant,
this area is addressed by shifting an eight bit number to the
left one bit and using that as the address. For this reason,
some addresses have equates in the microcode that are only half
of their expected value. This also means that if new data is
added after)100, the corresponding equate in the microcode must
be divided by two to force it into eight bits and 'multiplied by
two to generate the correct value. The end of NFMAT contains a
set of ASSUME statements. These ASSUME macros are needed because
the microcode will reference fields within a block (like TSBMLl).
If these assumes should fail, then the equates in the default and
performance code must be changed.

If the microcode should ever need to crash, the PC will be placed
into Rl1 and the crash code written to location)104. The
program will then return out of microcode at location)100 which
contains a BLWP to NFCRSH.

15.3 MICROCODE CHARACTERISTICS

The microcode is divided into two modules: the performance code
and the default code. The performance code is used to speed up
DNOS and the default cOlde provides an interface when performance
code is not installed so "that a 990/12 can execute XOPs
efficiently. XOPs are decoded in the following manner:

1. The XOP instruction is vectored into WCS

2. The XOP level provides a first level of decoding

3. The correct routine is found from a branch table

The default control store is used so that XOPs can be executed on
a 990/12 quickly_ Since it is always loaded, it is linked in
with the IPL procedure. If SLWCS finds no WCS image file on
disk, it moves the default code into the WCS segment. Located
before the WCS object is a module called PFWCSO. This module
simulates the overhead found in an image file. It contains the
number of microwords in the file, the start address, and other
information. If default code is being changed, PFWCSO must be
changed to reflect the new length. Equates for new symbols must
also be added to the microcode.

DNOS Performance Package 15-2 2270512-9701

DNOS System Design Document

15.4 MICROCODE CODING CONVENTIONS

This section describes th~ standard conventions used to write
microcode. It specifies the",syntax, labels, and comments that
microcode should contain. It is assumed that the reader has read
the 990/12 Microcode Development System Programmer's Guide or
that he knows 990/12 microcode language.

15.4.1 Standard Syntax For Microcode States.

Since the microassembler does not specify an order in which
microcode mnemonics are written, an informal standard has been
adopted for DNOS microcode. This order makes the microcode
states more orderly and facilitates reading. The format of a
state is:

LABEL: READ,
ALUI. XAC<A+B,
A<ABUS ABUS1<WK R(2),
B<BBUS BBUS<CBUS,
CBUS<MDI,
ABUS2<SUM AREG<ABUS,
MAP<MC MC<MC+2,
MDI<BTL,
IF. ALU-EQ TRUE JUMP GTAI00

The label is put at the top of the state. After the label COmes
the memory I/O mnemonic. On the next line, the ALU form is
specified followed by the ALU destination and the operands.
Next, the A operand is traced from the ALU to its source (in this
case WK R2). The B operand is then traced from the ALU to its
source (the MDI). The ABUS phase two source and destination are
then given (the SUM BUS and AREG respectively). After that, the
destination of a memory read is given (the MDI in this case).
Following that line, any conditional or unconditional jumps are
specified (IF.).

15.4.2 Labeling Conventions.

Whenever possible, labels in the microcode correspond to the
labels in the assembly language version of the module. If the
microcode being written does not have equivalent assembly code
(like for interrupt return code), then descriptive labels must be
used.

2270512-9701 15-3 DNOS Performance Package

DNOS System Design Document

15.4.3 Commenting Conventions.

Comments have two parts. The first part of a comment is the
assembly language code being emulated. For example, when
emulating an AI R4,STALNK instruction, AI R4,STALNK should be in
the comments. The second part is just the normal comment put in
to clarify what is happening. It is also advisable that the
programmer should stop periodically in the code and write a
paragraph that describes what data is in what registers. Between
the labeling conventions and the commenting conventions, it
shou1d- be relatively easy for a programmer to read microcode when
he has the corresponding assembly language available.

15.4.4 Common Routines.

There are a number of routines provided in the microcode to
perform common functions. The programmer may use them or, if
faster, execute them inside his own states. The routines are:

NFCRSH
IAQZERO
BADXOP
ERREX
CDUMP

NFCRSH is used by the microcode to cause a crash. It assumes
that the MDO contains the crash code. The routine writes the
crash code to)104 and then branches to)100 to crash. IAQZERO
is used to end an instruction. It assumes that the next
instruction address is mapped and that the PC points two beyond
that. The routine reads the instruction into the IR and returns.
BADXOP is used to signal an illegal XOP. It sets an illegal
instruction interrupt and aborts. ERREX is used to take error
returns. It assumes that RO contains the error code and that the
map and PC point to the address of the word containing the error
return. The routine checks the error return and takes the
correct action. This routine is similar to NFPOPO. CDUMP is
used to dump the cache. It loads the MC from RF 15 (where a copy
of the WP is kept) and dumps the cache. This routine destroys
the MC.

All routines mentioned above except CDUMP are executed via the
JUMP mnemonic. CDUMP is executed using the CALL mnemonic.

15.4.5 Debugging.

Most microcode debugging is done by code reading. The solution
is usually obvious once the error is isolated. In cases where
code reading of both assembly language and microcode does not

DNOS Performance Package 15-4 2270512-9701

DNOS System Design Document

isolate the error it may be useful to get a trace of the
microcode. This can be done using a logic analyzer. If a logic
analyzer is used t Table 15-1 shows where to connect the analyzer
to the AU board of the system. The table only shows the location
of the microaddress bus. To look at other signals t consult the
schematic found in Processors and Memories Vol. lIt Part Number
0945421-9702 *B.

Table 15-1 Location of the Microaddress Bus

Location Pin Function

Y5 8 Clock
XI0 4 Ground
DI0 8 UPC Bit 1 1
DI0 7 UPC Bit 10
DI0 6 UPC Bit 9
DI0 5 UPC Bit 8
DI0 4 UPC Bit 7
DI0 3 UPC Bit 6
DI0 2 UPC Bit 5
DI0 1 UPC Bit 4
Dll 23 UPC Bit 3
Dll 22 upe Bit 2
D12 21 UPC Bi t 1
H8 12 UPC Bit 0

2270512-9701 15-5/15-6 DNOS Performance Package

DNOS System Design Document

SECTION 16

DEVELOPMENT AND ANALYSIS TOOLS

16.1 OVERVIEW

The tools described in this section are for two purposes: DNOS
development and DNOS analysis. The tools described first are
shipped with DNOS. These include SRFI, TIGRESS, the System
Debugger and PICT. The JENDAT editor is currently available only
for Texas Instruments internal use.

16.2 SHOW RELATIVE TO FILE INTERACTIVELY UTILITY (SRFI)

I
The SRFI command displays and/or modifies the internal contents I
of files to VDT terminals. It assumes that the user has
knowledge of the file structures involved. The file is accessed
by physical records rather than logical records. The command is
invoked by entering SRFI. Respond to the prompts as follows:

SHOW RELATIVE TO FILE INTERACTIVELY
FILE NAME:

EDIT ACCESS?: NO

PROMPT DETAILS:

FILE NAME: The name of the file to be displayed/modified.

EDIT ACCESS?: Determines file access privileges. NO gives
read only access, while YES gives exclusive write
access. If no editing is desired, take the default
NO response.

This utility works only on VDT terminals. The user is prompted
for the record number by the utility. The utility starts with
record 0 being displayed. The user may enter the record number
desired in the field marked RECORD: 0000. If the record exists,
it is displayed. If it does not exist, a)0030 error will be
displayed as ERR: 0030. The F1 key moves forward through the
file displaying data and updating the data displayed, while F2
moves backward through the file. If the entire record will not
fit on the screen, the user may advance the data up through the
data window by pressing the Previous Line key. The Next Line key
moves the data down through the window.

2270512-9701 16-1 DNOS Tools

I

I

DNOS System Design Document

To enter the edit mode press the Fa key. The cursor will move
into the data fields at the upper left field of the data being
displayed. The cursor can be moved through the data fields one
at a time by pressing the Return key. This will advance the
cursor to the next editable field. Previous Line will move the
cursor up one line if it is available. Next Line will move the
cursor down one line if it is available. Previous Field moves
back one editable field. If the movement desired is not possible
the cursor remains in the current field. The window will be
moved across the file record as required to display large
records. When the user moves the cursor through fields, the
ASCII representation of th~ data will be modified to reflect the
data that was in the field when the cursor left the field.

The data entered is not written to the file until the Enter key
is pressed. SRFI then returns to the show mode on the same
record that was being edited. The user may abort the update by
pressing the Command key, which returns the user to show mode.
The Fl and F2 keys also abort the edit before moving to the
appropriate record in show mode.

Note that this utility provides a convenient means of recovering
from)15 errors. Position the record containing the disk error
on the screen, press F8 and then Enter. If the write was
successful the error field will go to zero. Any data which may
yet be invalid because of the)15 error may then be edited for
correction.

It is also possible to edit the ASCII representation fields by
entering the F7 key. This positions the cursor on the equivalent
field in ASCII mode. F6 returns the cursor to the hexadecimal
representations.

CAUTION

The data returned is 7-bit ASCII. The high
order bit will be returned as binary O. The
user may inadvertently alter data by editing
in the ASCII fields.

16.3 THE TIGRESS TEST FACILITY

The Tigress program is used to establish an environment and
exercise a test program using SVCs to the operating system.
Tigress allows the user to define strings and values in Tigress
task memory, to issue SVCs, to examine areas of Tigress task

DNOS Tools 16-2 2270512-9701

DNOS System Design Document

memory, and to use a file of data for input.

Tigress can be used interactively with commands input from a
terminal, commands echoed to a terminal, and display information
output to a terminal. Tigress can also be used in a batch stream
with input and data from files or various devices.

Tigress is activated by direct task bid or by issuing the TIGR
command to SCI. The command has the following prompts:

TIGR
EXECUTE TIGRESS

COMMAND ACCESS NAME:
LISTING ACCESS NAME:

DATA ACCESS NAME:
ECHO ACCESS NAME:

TASK ID:
FIRST LUNO:

2ND TIGRESS NEEDED?:
STOP ON END ACTION?:

BUFFERED COMMAND ECHO?:

PROMPT DETAILS:

COMMAND ACCESS NAME

[pathname@]
[pathname@]
[pathname@]
{pathname@]
integer
integer
yes/no
yes/no
yes/no

(A5)
(DAD)
(no)
(yes)
(no)

This prompt requests the source of the commands to be issued
to Tigress. If a file name is used, input will be from that
file. If the response is null, the terminal issuing the
TIGR command is assumed to be the source of Tigress
commands.

LISTING ACCESS NAME
If a file name is specified, output from Tigress display and
status commands are placed in the file. If the response is
null, the terminal issuing the TIGR command is used for such
listings. Messages output to the listing file are preceded
by XXXX: where XXXX is the line number of the command
causing the message to be printed. Messages generated by
Tigress in response to I/O errors to any of its files are of
the form XXXX:YY-msg where XXXX is the line number of the
command that was being processed, YY is an I/O error code,
and msg is the Tigress message describing the error
situation. An error count is kept, and a maximum of 25
errors is allowed before Tigress terminates. If output is
not desired, enter DUMY.

DATA ACCESS NAME
If a file name is specified here, that file can be used for
data input using the third LUNO of the set assigned by the
TIGR proc.

2270512-9701 16-3 DNOS Tools

DNOS System Design Document

ECHO ACCESS NAME
When a command is parsed by Tigress, the command is echoed
for the user to see. If a file name is specified for this
prompt, the echo output goes to the file. If the response
is null, the echo goes to the terminal issuing the TIGR
command. This feature is especially useful if commands are
coming from a file and the user wants to watch the progress
of the Tigress test at a terminal. If output is not
desired, enter DUMY.

TASK ID
The task ID specified is that of the Tigress program to be
used for the current tests. If you wish, you may put
several versions of the program in the system program file,
each with specific attributes needed for tests.

FIRST LUNO
Tigress uses four LUNOs to access the files or devices
specified for COMMAND ACCESS NAME, LISTING ACCESS NAME, DATA
ACCESS NAME, and ECHO ACCESS NAME. The LUNOs are four
sequential numbers, beginning with the FIRST LUNO prompt
response. These LUNOs are assigned by the TIGR proc before
activating Tigress and released by the TIGR proc after
Tigress terminates.

2ND TIGRESS NEEDED
If the Tigress task is to bid a second copy of Tigress,
using its own access name, enter YES. Otherwise, enter NO.
A YES response will bring up a second screen of prompts for
access names and task ID for the second copy of Tigress.

STOP ON END ACTION
If YES is entered, Tigress will terminate if it encounters
an error that causes it to go to end-action. If NO is
entered and Tigress goes into end-action, it sets the
command and list access names to be ME and processing
resumes with commands from the terminal.

BUFFERED COMMAND ECHO
If buffered commands are to be executed with
enter YES. This is most useful when debugging
file.

16.3.1 Details of Tigress Commands.

echo output,
a new command

Table 16-3 shows the set
parameters. Table 16-1

of Tigress commands and their required
shows the argument types used in

describing the commands.

DNOS Tools 16-4 2270512-9701

DNOS System Design Document

Table 16-1 Types of Arguments for Tigress Commands

Type

Address

Number

String

Label

Meaning

Number or expression whose value is a
valid Tigress task address

Decimal value whose first digit is
non-zero, hexadecimal value preceded
by 0 or >, or an expression whose
value is numeric

Alphanumeric characters surrounded by
quo t e rna r k s (")

1 to 6 ASCII characters

An expression is any combination of numbers or addresses using
addition or subtraction. The addresses used in an expression may
be stated as labels that have been previously defined to have a
numeric value. Arguments to the commands may also use signed
numbers, preceding the number by a plus (+) or minus (-) sign.
Indirect arguments can be specified by preceding the argument
with an asterisk (*). In addition to labels defined by the user
with the EQU command, there are a number of predefined labels.
Table 16-2 lists and defines the predefined labels.

Table 16-2 Predefined Labels for Tigress Commands

La bel

ADDRND
CMDSCB
DATSCB
ECHSCB
LSTSCB
NEWMEM
PC
RO - R15
SVCB

STK

Meaning

First illegal (upper) Tigress address
Address of SVC b~ock used to read commands
Address of SVC block used to read data file
Address of SVC blo~k used to write echo
Address of SVC block used for listing file
Start of memory acquired with GET command
The record number of the current command
Tigress user registers 0 through 15
Address of start of the SVC block used by

Tigress to issue user specified SVCs
Address of stack of arguments from last BRL

command

The labels in Table 16-2 can be used in the DSP command to find
the location of special Tigress structures. These labels cannot
be redefined by the user.

The address space used by TIGRESS looks as follows:

2270512-9701 16-5 DNOS Tools

DNOS System Design Document

+---------------------------------+
0000 I REGISTERS RO - RlS I

I I
+---------------------------------+

0032 I SERVICE CALL CONTROL BLOCK I
I I
+---------------------------------+

? I USER DEFINABLE ADDRESS SPACE I
I I ,

,

I I
+---------------------------------+

X I FIRST INVALID ADDRESS I

The entire set of command options is listed in Table 16-3. In
addition to these, users may specify a comment line in a cOmmand
file by placing an asterisk in the first column of the line.

The 3 letter command must begin in column 1 and the argument list
must begin in column S. Each argument, except strings, generates
2 bytes of data. The commands are described in the paragraphs
following the table.

DNOS Tools 16-6 2270S12-9701

DNOS System Design Document

Command

2270512-9701

BRL
DSP
END
EQU
GET
INC
INP
JMP
JPB
JPF
LBL
MSG
MVI
MVS
RBT
RTE
RTN
SBS
SBR
SBT
SCB
SEI
SRI
SLI
SNI
SES
SHS
SLS
SNS
SVC

Table 16-3 Tigress Commands

Parameters

label [••• number/address/string]
number,address

string,number
number
address,number
address,number1,number2
number
"label"
"label"
"string"
string
address,numberl,number2[,number3 •••]
addressl,number,address2
address,number

address,number
address,number
address,number
numberl,[,number2]
address,numberl,number2[,number3 •••]
address,numberl,number2[,number3 •••]
address,numberl,number2[,number3 •••]
address,numberl,number2[,number3 •••]
addressl,number,address2
addressl,number,address2
addressl.,number,address2
address1,number,address2
[num be r , •••]

16-7 DNOS Tools

DNOS System Design Document

BRL [label, ••• string]
The branch and link to subroutine command saves the current
value of PC, builds an argument list in the stack area, and
branches to a specified subroutine. (See also RTN and RTE.)
For example, BRL SUBl,)0400,@)100,A,B,23,"ABC" would cause
subroutine SUBI to be called with a stack as follows:

PC
)0400
@)100
A

Location of the BRL command within the command file

Whatever 16 bit address this resolves to
Whatever this is equated to

B Whatever this is equated to
23
)4142
)4320
14

AB
C
The length of the argument list in bytes

The value of STK is changed to point to the length word (the
14 in the above example). The stack itself resides within
the Tigress task area, but is not modifiable by the user.
It is expected that a subroutine would pick up its arguments
as follows:

DNOS Tools

EQU "ARGIAD",STK-*STK
EQU "ARG2AD",ARGIAD+2

EQU "ARG1",*ARGIAD

NOTE

(1) Subroutines may call other subroutines
several levels deep if needed. However, the
total stack area is 120 bytes. An error will
occur if a BRL is attempted which will
overflow the 120 bytes limit and the BRL will
be ignored.

(2)Text strings may be passed as arguments.
They are put directly in the stack with a
blank at the end if the length would be odd.
The subroutine must either be capable of
determining the length or the length should
be passed as a separate argument. Also, such
strings will quickly consume the 120 bytes of
stack space, so use this feature with
discretion. Since a variable length string
in the stack would make it inconvenient to
find an argument which followed the string,

16-8 2270512-9701

DNOS System Design Document

it is recommended that only the last argument
(if any) of a subroutine be such a string.

(3) The subroutine address (SUBl in the above
example) must have been previously defined
with an EQU command before the subroutine can
be called.

DSP number,address

END

This command displays the number of bytes specified,
starting at the address specified. The address is rounded
to an even numbered address if necessary. Memory is
displayed in multiples of 8 words per line of output. Each
line of output shows the memory address of the first word
displayed, eight words of data in hexadecimal, and the same
eight words of data in ASCII.

The END command is used to terminate execution of Tigress.
A termination message is output, and control returns to the
task that activated Tigress.

EQU string,number
This command is used to assign a value to a label. The
label can then be used as a parameter or as part of an
expression in other commands. The string specified is the
label to be used, and the number specified (or expression
that evaluates to a number) is the value retrieved whenever
the label is used.

GET number
This command gets 32 times the number of bytes of memory to
be included in the Tigress address space. The address of
the first word of this block of memory is equated to the
string NEWMEM. Note that NEWMEM is undefined until this
command is executed. On subsequent executions of the
command, NEWMEM points to the start of the new block of
memory acquired.

INC address,number
The number specified
address specified.

INP address,number1,number2

is added to the current value at the

This command causes number1 bytes of data to be read from
the data file into memory at the address specified, starting
from record number2 of the file.

JMP number
This causes Tigress to execute next the command that is
located at a distance specified by number. JMP 0 indicates

2270512-9701 16-9 DNOS Tools

DNOS System Design Document

that this same command should be executed. JMP -2 indicates
that Tigress should proceed to the command preceding this
command by two, JMP 3 indicates that the next two commands
should be skipped. This command is not meaningful if
command input is from a terminal. (Comments count as
commands.) JMP is an unconditional command but can be used
with the skip commands below to accomplish branching.

JPB "label"
The jump backward to label causes a jump back in the command
file until an LBL command is found with the same string
operand as is on the JPB command. For example, JPB "ABC"
jumps back in the file until a command of LBL "ABC" is
encountered. The operand must be in quotes since it is not
entered in the symbol tahle. It is treated as an ASCII
string. The string may be of any length, but only the first
six characters are used in the comparison.

JPF "label"
The jump forward to label command works like JPB except that
the jump is in the forward direction rather than backward
through the command file.

LBL "string"
This command denotes a place for a destination of a- JPF or
JPB command. The string may be from 1 to 6 characters long.

MSG string
The string specified is output to the listing file. This is
useful for noting success or failure in a test stream and
for documenting the test in progress.

MVI address,numberl,number2[,number3 •••]
This command causes a move to the address specified of
numberl bytes of data specified in number2 through the last
parameter. Each argument creates two bytes of data.
Example: MVI ADDR,l,)FF will move zero not)FF since the
data value is)OOFF.

MVS addressl,numberl,address2
This command causes a move to addressl of numberl bytes from
address2.

RBT address,number
This command resets (sets to zero) the bit at
specified by the number argument in the
specified address.

DNOS Tools 16-10

the position
word at the

2270512-9701

DNOS System Design Document

RTE

RTN

The return with error command returns from
subroutine to the second command after the
last encountered. The stack is popped so that
STK is changed to the location of the saved
for the previous subroutine call (if any).

the current
BRL which was
the value of
argument list

The return from subroutine command returns from the current
subroutine to the first command after the BRL which was last
encountered. As with RTE, the stack is popped.

SBR address,number
The SBR command tests the bit at the given position number
in the specified address and skips the next command if the
bit is reset (equal to zero).

SBS address,number
The SBS command tests the bit at the given position number
in the word at the specified address and skips the next
command if the bit is set to one.

SBT address,number
This command sets to 1 the bit at the given position number
in the word at the specified'address.

SCB numberl[,number2]
This command builds the SVC at the address specified by the
first argument, with the argument list beginning at the
second argument address, and executes the SVC. If only one
argument is specified, then the currently existing SVC at
that address is executed. (This is similar to the SVC
command except that the address is specified instead of
defaulting to location SVCB)

SEI address,numberl,number2[,number3 •••]

SRI address,numberl,number2[,number3 •••]

SLI address,numberl,number2[,number3 •••]

SNI address,numberl,number2[,number3 •••]

Each of these commands compares the string of length numberl at
the address specified with the value expressed in number2 through
the last argument. If the comparison succeeds, the next command
is skipped. SEI causes a skip if the comparison is equal, SRI if
the first argument is high, SLI if the first argument is low, and
SNI if the first argument is not equal to the immediate data.
These commands are not meaningful if command input is from a
terminal.

2270512-9701 16-11 DNOS Tools

DNOS System Design Document

SES addressl,number,address2

SHS addressl,number,address2

SLS addressl,number,address2

SNS addressl,number,address2

Each of these commands compares the number of bytes specified at
addressl with the data at address2. If the comparison succeeds,
the next command is skipped. SES causes a skip if the comparison.
is equal, SHS if the first argument is high, SLS if the first
argument is low, and SNS if the arguments are not equal. These
commands are not meaningful if command input is from a terminal.·

SVC [number, •••]
If the argument list is null, the SVC currently at address
SVCB is executed. If an argument list is presented, it
replaces the data currently at SVCB, and the new SVC
specified at SVCB is executed.

16.3.2 Directives of Tigress.

There are two directives which can be used to modify the manner
in which Tigress reads and processes commands. These directives
allow for buffering of Tigress commands to reduce file I/O
interference for test instructions and test data. Like commands
they consist of 3 characters and must begin in column 1 with
column 4 left blank. Columns 5 through 80 may contain comments
and are ignored. Directives are treated as commands and comments
by the jump and skip commands. The directives are as follows:

BUF

UNB

Upon encountering
and buffer commands

this directive Tigress proceeds to read
in its memory space. Approximately 200

commands may be buffered.

Upon encountering this directive Tigress discontinues
buffering commands and begins executing commands in memory
beginning with the first command buffered.

If a jump is made from a buffered command to a command outside
the range of buffered commands the buffered mode is discontinued.
If a jump is made into an area of buffered commands buffering
mode is not initiated because Tigress did not encounter the BUF
command. A BUF command following a BUF command but preceding the
UNB command causes no action. An UNB command not preceeded by a
BUF command causes no action. While in buffering mode any
messages output by the MSG command will also be buffered. If MSG
commands are included in a BUF-UNB. block of commands then the

DNOS Tools 16-12 2270512-9701

DNOS System Design Document

number of commands which may be buffered is reduced. Echo output
while in buffer mode i~ suppressed. The DSP command output is
not affected by the buffet mode of operation.

16.3.3 User Defined Commands For Tigress.

When Tigress encounters a command it searches its definition
table and if the command is found a BLWP is made with the value
of the command in the table being the address of the start of the
code to be executed for that command.

This method of implementing command execution enables the user to
define his own command as if if it were a Tigress command. The
procedure for doing this is to equate a 3 character label to a
location at which code is to be executed. By using MVI commands
the machine code is placed in memor-y. The last machine
instruction must be a RTWP ()0380). When the code is to be
executed simply enter the label equated as a command. Tigress
will search the table of equates and, finding the label, will
process it as a command. This feature can be used for things
such as initiate mode I/O where a separate call block must be
built and executed.

16.4 THE SYSTEM DEBUG UTILITY

Since it is not always possible or convenient to use the SCI
debugger or some other testing task, an interactive system debug
program is available. This program allows the user to display
and/or modify the workspace pointer, program counter, registers,
and memory; to set as many as 16 software breakpoints in the code
being debugged, and to step through the code one instruction at a
time. The program interacts with the user by doing I/O to a 911
VDT or an ASR device. This program does not work on a 940 or 931
VDT.

About twenty-five commands are available for use with the debug
program. Each command is specified by a single character. When
the character is recognized as a command, the debug program calls
the appropriate processor, that may in turn require additional
parameters to be input. Whenever the program is expecting a
command to be input, it prompts with a question mark (?).
Parameters that are entered are usually hexadecimal constants of
up to four digits. A parameter is terminated by the fourth digit
or by a period or Return key if less than four digits are
specified. If an invalid digit is typed, the entire parameter is
ignored and may be reentered for most commands. In Some cases,
invalid input causes the debug program to terminate.

2270512-9701 16-13 DNOS Tools

I

I

DNOS System Design Document

16.4.1 Details of Debug Commands.

The entire set of commands and parameters is shown in Table 16-5.
Each command is detailed in the paragraphs that follow. Commands
that allow the user to modify contents of some location first
display the current value. If no value is entered, no change is
made. Table 16-4 shows the command parameter types and their
meanings. Brackets indicate optional parameters.

Table 16-4 Parameter Types for Debug Commands

DNOS Tools

Type Meaning

reI Offset relative to the current base address
adr Absolute address in a task
bt Beet bias address for the segment being

addressed, located via map file information
carried in the TSB

NOTE

Breakpoints should not be used on
instructions that change CURMAP (for example,
instructions that move something to the OS
label CURMAP) or on instructions that change
map file ° (for example, LMF Rn,O). They
must never be set on interruptable
instructions; that is, XOP, MOVS, and a
number of /12 instructions.

16-14 2270512-9701

DNOS System Design Document

Ta ble 16-5

Command

A adrl[bt adr2]

B reI

C

D a dr 1 adr2[bt

E rell[re12]

F

I [adrl adr2]
J
L
M adr

N

0

P

Q
Rn

S adr

U [adrJ
W

X

Z

+ n m
- n m
?

Commands for System Debug Program

Description

Display and alter memory long
distance

Set a breakpoint relative to
current base

Display condition code in
status register

adr] Display memory long
distance

Examine locations relative to
current base

Display and alter following
memory long distance

Inspect local memory
Show all local workspace registers
List all instruction breakpoints
Display and alter contents of

memory address
Display and alter contents of

next" memory address
Set add res s for bas e 0 f" reI a t i ve

offsets
Display and alter current program

counter
Quit debugging session
Display and alter contents of

register n (Hex)
Set breakpoint at address in local

address space
Unset one or all breakpoints
Display and alter address of

workspace pointer
Execute a single instruction and

stop
Continue after current breakpoint
Add the numbers nand m
Subtract the number n from m
Display a menu of all commands

A - Display and alter memory long distance
This command is used to display and alter memory that is not
mapped into the current task address space. The form of the
command is A xxxx bbbb yyyy where xxxx is the address of
the memory location to be displayed and altered and bbbb is
the starting beet bias of the segment in which the memory
'location resides. The optional yyyy parameter specifies a
logical address at which the segment bbbb is supposed to

2270512-9701 16-15 DNOS Tools

DNOS System Design Document

start. The appropriate beet bias can be determined from the
map file information in the task status block (TSB) or the
segment status block (SSB) of the task being debugged. The
bbbb and yyyy values default to their previous values.

B - Set a breakpoint relative to current base
This command is valid only if the base address has been set
correctly using the 0 command or the base address of the
program being debugged is zero. The form of the command is
B xxxx where xxxx is the offset from the base value at
which a breakpoint should be set. When the program is
executing and reaches the breakpoint, all current workspace.
registers are displayed; and the debug program prompts for a
debug command.

C - Display condition code in status register
The form of this command is C=xxxx yyyy where xxxx is
displayed as the current contents of the status register and
yyyy is entered by the user as the new status register
contents.

D - Display memory long distance
This command is used to inspect a portion of memory that is
not mapped in the current task address space. The form of
the command is D xxxx yyyy bbbb zzzz where xxxx is the
starting address of the to memory to be displayed, yyyy is
the ending address, and bbbb is the starting beet bias of
the segment in which this portion of memory resides. The
bbbb and ZZ&Z default to their previous values. The
optional zzzz specifies the starting logical address of the
segment at bbbb. The beet bias can be retrieved from the
task status block (TSB) of the task being debugged (use
TSBML1, TSBML2, or TSBML3 depending on whether segment 1, 2,
or 3 is being examined), or use the SSB to get the address.
Like the I command, this command displays memory in blocks
of)10 bytes, showing the starting address of each line of
the display.

E - Examine locations relative to current base
This command is valid only when the base address has been
set using the 0 command or the starting address of the
program being debugged is zero. The form of the command is
E xxxx where xxxx is an offset from the current base. _The
)20 bytes of memory starting at the offset is displayed in
the same format as used for the I command.

F - Display and alter following memory location long distance
This command can be used after an A command to examine the
following memory location, similar to the N command is used
after an M command.

DNOS Tools 16-16 2270512-9701

DNOS System Design Document·

I - Inspect local memory
This command allows the user to inspect a range of memory
locations in the local task address space. The form of the
command is I xxxx yyyy where xxxx is the starting address
of the range to be inspected and yyyy is the ending address
of the range. If an invalid address is specified, the debug
program will terminate.

Both the starting address and ending address are optional.
If neither is specified,)20 bytes of memory are displayed,
starting at the current program counter address.. The
display shows)10 bytes per line of the display, preceding
the data with the first address of the data. If only the
starting address is specified,)20 bytes of memory are
displayed, starting at that address. If both arguments are
supplied, a multiple of)10 bytes is shown, starting at an
even address and including at least the amount specified.

J - Show all local workspace registers
This command displays all workspace registers on one line of
the display.

L - List all instruction breakpoints
This command lists all breakpoints currently set in the
program. If an initial base address has been set using the
o command, this list includes the relative offset from the
base for each breakpoint as well as the absolute address of
each breakpoint.

M - Display and alter contents of memory address
This displays M xxxx=yyyy zzzz where yyyy is the
value at local memory address xxxx and zzzz is the
new value at that address. Only addresses currently
in the task space may be modified with this command.

N - Display and alter contents of next memory address

current
desired

mapped

This command is used after an R, M, or another N instruction
to display and/or alter the next memory address after the
address examined previously. The command form is
N xxxx=yyyy zzzz where xxxx is the address displayed by
the debug program, yyyy is the current value, and zzzz is
the new value supplied by the user.

o - Set address for base of relative offsets
The form of this command is 0 xxxx yyyy where xxxx is
supplied by the debug program to show the current base and
yyyy is supplied by the user as the new base. After this
command has been used to specify the initial address of a
program, the Band E commands can be used to set breakpoints
and examine memory locations according to offsets from that
base. This feature enables a user to work from an assembly
language listing and easily determine where to stop

2270512-9701 16-17 DNOS Tools

DNOS System Design Document

execution and where to examine data.

P - Display and alter program counter
This displays PC=xxxx yyyy where yyyy is typed by the user
to indicate the new value desired for the program counter.

Q - Quit debugging session
The Q command terminates the debug program. If the debug
program is linked as part of the operating system, this
causes the system to idle. If linked with a user task, the
Q command terminates that task.

Rn - Display and alter register n
This displays Rn=xxxx yyyy where yyyy is typed by the user
to indicate the new value desired in register n.

S - Set a breakpoint
With this command, the user can set a breakpoint at any
address currently mapped in the task space. The form of the
command is S xxxx where xxxx is the local memory address
at which execution should halt. When the breakpoint is
reached, all current workspace registers are displayed; and
the debug program prompts for a debug command.

U - Unset one or all breakpoints
The form of this command is U xxxx where xxxx is the
address at which a breakpoint has been set by either the S
or the B command. The breakpoint specified is unset. If
xxxx is not specified, all currently set breakpoints are
unset.

W - Display and alter workspace pointer
This displays WP=xxxx yyyy where yyyy is typed by the user
to indicate the new value desired for the workspace pointer.

x - Execute a single instruction
This command allows the user to step through the program
being debugged, one instruction at a time. After one
instruction is executed, all current workspace registers are
displayed; and the debug program prompts for a "debug
command. This command may not work predictably when used on
a breakpoint which is currently set.

Z - Continue after breakpoint
When this command is issued, execution proceeds from the
current breakpoint to the next breakpoint, if there is any.
Unless a U command is used, the breakpoint that was just
used rema~ns in th~ code and can be reached again.

+ - Add numbers
The form of this command is + xxxx yyyy zzzz where the
user types xxxx and yyyy and the debug program computes zzzz
as xxxx+yyyy.

DNOS Tools 16-18 2270512-9701

DNOS System Design Document

Subtract numbers
The form of this command is - xxx x yyyy zzzz where the
user types xxxx and yyyy and the debug program computes zzzz
as yyyy-xxxx.

? - Display a menu
This displays the menu of all available debug commands,
showing the characters required and an English description
of the commands.

16.4.2 Establishing the Debug Environment.

The system debugger can be added to the disk image of a DNOS
system by executing the DEBUG command, located in the
.S$SYSTEM.S$$CMDS command library. Before executing the DEBUG
command, the following preparations should be made:

1. Verify that the DEBUG procedure is
procedure ID 1.

in .S$SHARED as

2. Make the two root segments on the image program file
updateable. This can be done by issuing the XSCU and
QSCU commands. Issue the XSCU command with the
following responses.

2270512-9701

[] XS CU

EXECUTE SYSTEM CONFIGURATION UTILITY

SYSTEM VOLUME:
SYSTEM NAME:

where:

<volume name>
<system name>

An LDC listing appears. Press the Command key.

Now issue the QSCU command with the following response:

[] QS CU

QUIT CONFIGURATION UTILITY SESSION

ABORT?: NO

16-19 DNOS Tools

DNOS System Design Document

3. Determine the illegal XOP WP and PC values by issuing
the LSM command with these responses:

[] L SM

LIST SYSTEM MEMORY

OVERLAY NAME OR ID:
STARTING ADDRESS:

NUMBER OF BYTES:
LISTING ACCESS NAME:

ROOT
>SO
040

Record the first two values starting at address OOSO
(for example, 2CA8, CS6A). These are the illegal XOP
WP and PC values, respectively.

4. Now you are ready to install the debugger. Enter .USE
.USE to give access to the DEBUn command ([]

S$SYSTEM.S$$CMDS, .S$CMDS).

S. Then enter the DEBUG command:

[] DEBUG

ADD/REMOVE SYSTEM DEBUGGER

ADD/REMOVE/MODIFY?: alphanumeric
TARGET DISK/VOLUME: device name@ (*)

SYSTEM NAME: alphanumeric (*)
XOP LEVEL (0 - 14): integer (1)

DEBUG TERMINAL CRU: integer (>100)
DEBUG TERMINAL TYPE: {9I1,KSR,ASR,VDT,EIA,TTY} (911)

ILLEGAL XOP WP: integer (>2C48)
ILLEGAL XOP PC: integer (>CS6A)

Use the debug command to add or remove the system
debugger from the disk image of a DNOS system, which is
located in program file <target disk/volume>.<system
name>. The command may also be used to modify the
operating characteristics (for example, debug terminal
CRU address) of a previously installed system debugger.

PROMPT DETAILS:

ADD/REMOVE/MODIFY?

DNOS Tools

Enter ADD to add the debugger to a system. Enter
REMOVE to delete the debugger from a system.
Enter MODIFY to change the operating
characteristics of a previously added debugger.

16- 20 2270512-9701

DNOS System Design Document

TARGET DISK/VOLUME
Enter the name of~ the disk volume containing the
system to be debugged.

SYSTEH NAME
Enter the name of the system to be changed. The
system kernel image file resides on a program file
with the name <TARGET DISK/VOLUME).<SYSTEM NAME).

XOP LEVEL [0 - 14]
Enter the XOP level to be used by the debugger as
a breakpoint instruction. The default is 1, but
if the XOP level 1 is already in use, another
level between 0 and 14 may be selected.

DEBUG TERMINAL CRU
The system debugger uses direct CRU I/O to
terminal. Enter the CRU address of the terminal
where you want debugger output to go.

DEBUG TERMINAL TYPE
Enter the type of termin~l the debugger will write
to. Ch 0 ice s are 9 11, V DT , TTY, E I A, AS R , KS R.
The ASR or KSR must be connected through an EIA
interface module.

ILLEGAL XOP WP
Enter the WP value recorded from the earlier LSM.

ILLEGAL XOP PC
Enter the PC value recorded from the earlier LSM.

Messages:
The DEBUG command will produce a listing
terminal local file which shows
instruction to use for a breakpoInt,
address, and the terminal type.

Notes:

in
the
the

the
XOP
CRU

If the XOP level default is not seiected, the
normal breakpoint instruction (>2C40) set by the B

I

I

instruction, will change. I

6. Note the third word of the display returned by the
DEBUG command. This is the value which will be used as
the breakpoint instruction. It should be equivalent to
the assembly language instruction

XOP RO,<xop level>

where <xop level> is the number you entered for the
fourth prompt of the DEBUG command. Using listings and

2270512-9701 16- 21 DNOS Tools

DNOS System Design Document

linkmaps, choose the address of the task (DSR, SVC
processor, etc.) where you wish to set your initial
breakpoint. Use the MPI (or MRF) command to modify the
executable code image at that address to contain the
value noted above. Remember the proper value so that
the instruction can be be restored when you are
debugging.

7. Reboot the system or execute the task or whatever it
takes to cause entry to the code of interest at the
selected address. Use the M debug command to restore
the code at the initial breakpoint address, then set up
the debug environment that you require. Use the X or Z
debug command to proceed with the execution of the code
to be debugged.

16.5 THE PICT UTILITY

The PICT utility is used in the DNOS source library to create
tables from the assembly language templates to be used by Pascal
code and to generate documentation pictures of the assembly
input, generating Pascal record descriptions and/or line- drawing
picture files. PICT is controlled by the use of macros (verbs)
in the assembly language input files. These macros expand to
appropriate assembly language code when used with the macros
defined in the DNOS file .S$OSLINK.MACROS.TEMPLATE directory.

The PICT utility can be accessed by using the PICT command in the
.S$SYSTEM.S$$CMDS directory. The command has the following
prompts, with descriptions as outlined below.

PICT (CREATE DATA TABLE PICTURE)

SOURCE FILE(S): filename
PICTURE FILE: [filename]

PASCAL OUTPUT FILE: [filename]
PAGE CONTROL?: (YES,NO,Y,N)

I Prompt Details:

SOURCE FILE(S)

(YES)

Specify the file or files you want to have examined by the
picture processor. If more than one file is specified, the
files are concatenated and processed as a single file.

PICTURE FILE
Specify the pathname for the picture file to be created

DNOS Tools 16-22 2270512-9701

DNOS System Design Document

PASCAL OUTPUT FILE
Specify the pathname for the file of equivalent Pascal
statements.

PAGE CONTROL?
Specify NO if you want no embedded carriage control in the
picture file that is being built. Specify YES if you want
carriage control. If you specify YES, the picture file will
have a notation of (CONTINUED) after every 55 lines.

The complete set of verbs available with PICT is shown in Table
16-6 along with the intended purpose of each verb.

The verbs are shown with brackets [] to indicate optional
arguments and braces {} to indicate that a choice must be made
from the indicated options.

.~

Since the assembly language macros automatically generate the
label xyzSIZ for the structure named xyz, users must avoid using
their own labels of the same format.

The verbs are used in appropriate groupings to define various
types of structures. The major structures are framed by DORG and
RORG, CSEG and CEND, and PCKREC and ENDREC. The" first pair of
verbs is used to to define an assembly language DSEG and a
corresponding Pascal packed record variable declaration. The
second is used to define an assembly language CSEG (with data to
be initialized in an assembly language routine) and a
corresponding Pascal packed record variable declaration. The
third pair of framing verbs provide an assembly language DSEG and
a Pascal packed record type declaration. The first and second
set of framing verbs are intended to be close to the work done in
assembly language, while the third set provides easy definition
of Pascal packed record structures with variants.

2270512-9701 16-23 DNOS Tools

DNOS System Design Document

Table 16-6 Verbs Used in Generating Structures

VERB
[label] ADDR)
[label] ARRAY

BITS
[label] BSS
[label] BYTE

[label]

[label]

label
[label]

[label]
[label]

[label]

CEND
CHAR
COpy
CSEG
DATA
DORG
ECHO
ENDREC
EQU
EVEN
FLAG
FLAGS
INT
LIST
LONG
PAGE
PCKREC

[label] POSINT
[I a be 1] P TR
[label] REC

RORG
UNL
VARNT

[label] WORD

o
number of elements,
{INT,LONG,POSINT,WORD}
or a type defined with
[label,] number of bits
number of bytes
o

number of characters
filename
'label'
o
n or label

n or label

label
{8,16}
o

o

label
o
type
type specified
by PCKREC above

n or label
o

[comment]

PCKREC
[comment]
[comment]
[comment]

[comment]

[comment]
[comment]

[comment]
[comment]
[comment]
[comment]
[comment]
[comment]

[comment]

[comment]
[comment]
[comment]
[comment]

[comment]
[comment]

The COpy verb is used to bring in a file before the PICT utility
processes the entire input file. If the input file refers to a
user-defined type or constant, the appropriate file must be
copied in to supply the definition. Any number of COpy verbs may
be used, but they cannot be nested. That is, a file may not copy
in a file which uses the COpy verb.

Most of the other verbs can be used independently of each other,
and they can appear in any of the three framing verb pairs. An
exception is the set of verbs used to define flags fields. The
verbs FLAGS, FLAG, and BITS must be used in a relatively
restricted fashion. The FLAGS verb must appear first, defining
the number of flags being generated to be either 8 or 16. This
can be followed by an appropriate number of FLAG and or BITS
verbs to complete the field of 8 or 16. The entire field does

DNOS Tools 16- 24 2270512-9701

DNOS System Design Document

not need to be explicitly defined. PICT will generate a filler
label and allocation in the Pascal structure, and the assembly
language macros generate only the required equates for the flags
defined.

For many of the verbs, the operand field is optional. However,
if a comment is used, the,operand field must be supplied to avoid
parsing part of the comment as operand.

16.5.1 Assembly Language Output.

The following paragraphs describe the effect of each of the verbs
for the assembly language output. The succeeding set of
paragraphs describe the Pascal output, and a third set of
paragraphs describe the picture output generated by PICT.

[1 abe 1] AD DR 0
This generates a one word integer

[label] ARRAY n,type
This generates an optionally labeled field with a BSS for
the appropriate number of bytes to allocate n instances of
the type specified.

BITS [label,]n
If a label is specified, an EQU is generated with the label
equated to the current autogenerated bit number within the
FLAG field.

[1 a be 1] B S S 5
This is a standard assembly language directive.

[label] BYTE 0
This is a standard assembly language directive.

CEND
This is a standard assembly language directive.

[1 a be 1] CHAR n
This generates a BSS for the number of characters specified.

COpy filename
This is a standard assembly language directive.

CSEG label
This is a standard assembly language directive.

[label] DATA 0
This is a standard assembly language directive.

DORG n or label
This is a standard assembly language directive.

2270512-9701 16-25 DNOS Tools

I

DNOS System Design Document

ECHO
This is ignored.

ENDREC
This terminates a record definition begun with PCKREC. It
generates a size equate aaaSIZ where aaa is the name of the
packed record and an RORG 0 statement.

label EQU n or label
This is a standard assembly language directive.
BLOCK 3

RESERVE

[label] EVEN
This is a standard assembly language directive.

FLAG label
This generates an EQU, with the label equated to the current
autogenerated bit position within the FLAGS field. The
first flag position is always position O.

[label] FLAGS {8,I6}
If the operand is 8, this generates a BSS 1.
is 16, it generates a BSS 2.

IF the operand

[label] INT 0
This generates a BSS 2.

LIST
This is a standard assembly language directive.

[label] LONG 0
This generates a BSS 4.

PAGE
This is a standard assembly language directive.

PCKREC name
This begins a packed record, indicated by a DORG O. Notice
that if the packed record is to be assembled as well as used
with PICT, the structure name is limited to a maximum of
three characters.

[label] POSINT 0
This generates a BSS 2.

[label] PTR type of pointer
This generates a BSS 2.

[label] REC type
This uses the aaaSIZ equate built during processing of a
PCKREC to generate a BSS of the appropriate size.

DNOS Tools 16- 26 2270512-9701

DNOS System Design Document

RORG
This is a standard as~embly language directive.

UNL
This is a standard ,assembly language directive.

VARNT n or label
This generates a DORG n, where n is the supplied value or
the value of the label.

[label] WORD 0
This generates a BSS '2.

16.5.2 Pascal Template Output.

The following paragraphs describe the output generated by PICT
for use in Pascal code. In cases where a label is output to the
Pascal file but no label is supplied by the input line, PICT
generates a label of the form FILLxy where xy begins at 00 and is
incremented by 1 with each new filler label used.

In most cases, the comment found on an input line which generates
an output line is also found on that output line. The exceptions
are output lines of PACKED RECORD, CASE INTEGER OF, and variant
labels.

Each output file is intended to be unlisted in a Pascal program.
The first line is always (*$ NO LIST *) and the last line is
always (*$ RESUME LIST *).

[label] ADDR
This generates: label: ADDRESS; (ADDRESS is defined in the
DNOS file .TEMPLATE.PTABLE.TYPES as O •• #FFFF)

[label] ARRAY n,type
This generates: label PACKED ARRAY [1 •• n] OF type;

BITS [labe1,]n
This generates: label: O •• m; where m is the maximum value
which can be expressed in n bits. For example, BITS ALPHA,3
generates ALPHA: 0 •• 7;

[label] BSS n
This generates: labe,l PACKED ARRAY [1 •• n] OF BYTE;

[label] BYTE 0

CEND

This generates: label: BYTE; (BYTE is defined in the DNOS
file .TEMPLATE.PTABLE.TYPES as O •• #FF)

This generates: END; for a CSEG file.

2270512-9701 16- 27 DNOS Tools

DNOS System Design Document

[label] CHAR n
This generates: label PACKED ARRAY[l •• n] OF CHAR;

COpy filename
This causes no Pascal output.

CSEC label
This is the beginning of a packed record named by the CSEC
label. It generates: label = PACKED RECORD (where the
label has no quotes, though the CSEC label does)

[label] DATA 0
This generates: label: WORD; (WORD is defined in the DNOS.
file .TEMPLATE.PTABLE.TYPES as O •• #FFFF)

DORC n or label

ECHO

Depending on where it appears in an input file, this might
be the start of a packed record or the beginning of a
variant in the packed record. It is recommended that PCKREC
be used when creating new structures and that DORC be used
only for compatibility purposes. (DORC will also be needed
if the structure must have a starting location counter value
that is non-zero.)

When encountered the first time in a file, DORG 0 generates
xxx = PACKED RECORD where xxx is the first three characters
in the next line with a label (unless that line has an EQU
directive, in which case it is skipped). When encountered
in succeeding lines of the file, DORG generates a variant at
the current level. Thus several DORC statements in
succession with the same operand will generate variants at
the same level. A new operand on a succeeding DORC defines
a deeper level of nesting. It is necessary, of course, to
have all variants (and variants within variants) at the end
of the structure being defined. (See the description of
VARNT for further details.)

The entire input file is ignored and no Pascal output is
generated other than the NO LIST and RESUME LIST directives.
The ECHO option is intended for files of equates needed only
for assembly language use.

ENDREC
This generates: END; for the packed record under
construction.

label EQU n or label
This generates no Pascal output.

[label] EVEN
Th i sis i g nor e d •

DNOS Tools 16-28 2270512-9701

DNOS System Design Document

[label] FLAGS {8,16}
This begins a flags field, that is
boolean values. It gen~rates: label

FLAG label

a packed record of
PACKED RECORD

This identified a flag and generates: label BOOLEAN;

[label] INT 0
This generates: label INTEGER;

LIST
This is ignored.

[label] LONG 0
This generates: label LONGINT;

PAGE
This is ignored.

PCKREC name
This generates: name = PACKED RECORD

[label] POSINT 0
This generates: label: POSINT; (POSINT is defined in the
DNOS file .TEMPLATE.PTABLE.TYPES as O •• #7FFF)

[label] PTR type of pointer
This generates: label

[label] REC type
This generates: label

RORG

@type;

type;

T his i sus edt 0 t e r min a t.e 'a pac ked r e cor d s tar ted by DO R GO.
It generates END;

UNL
This is ignored.

2270512-9701 16-29 DNOS Tools

DNOS System Design Document

VARNT n or label
This begins a variant of the current packed record at the
current level if the operand is the same as the start of the
current level. If the operand is not the same, a next level
of variant is begun. This requires that variants be defined
in correct order of nesting. That is, variants of a
structure (or of variants) appear at the end of the
structure. At the first VARNT of a given level, the
following is generated:

CASE INTEGER OF
1: (

Succeeding variants at the same level generate succeeding
integer labels and open parentheses for the case statement.
Variants of variants generate a CASE statement and the label
1: (for the first such variant and succeeding integer
labels and open parentheses for the following variants. The
termination of the structure (ENDREC, RORG, or CEND) cause
the output of all required matching parentheses to close the
CASE(s) currently open.

[label] WORD 0
This generates: label: WORD; (WORD is defined in the
file .TEMPLATE.PTABLE.TYPES as O •• #FFFF)

16.5.3 PICT Picture Output.

DNOS

The following paragraphs describe the output generated by PICT in
its picture output file. Consult Figure 16-3 for an example of
some of the output generated. Any structure that must output
more than four words of unlabeled blocks outputs a broken picture
but maintains an accurate location counter value. Fields that
must start on word boundaries do so, with the picture showing an
unlabeled byte preceding that word boundary.

Each line of the picture carries the associated comment of the
input line, as well as portraying the space occupied by the verb
in use on that line. Some input lines do not affect the picture
but are used for information which appears after that picture.
Flag details, equate information, and special comments follow the
picture. A PAGE verb must appear at the end of the input file to
cause output of flag details, equate information, and special
comments.

[label] ADDR
This outputs a labeled block of one word on a word boundary.

[label] ARRAY n,type
This generates a labeled block of one byte (if the array
occupies only one byte or begins on an odd byte boundary) or

DNOS Tools 16-30 2270512-9701

DNOS System Design Document

a labeled block of one word, followed by unlabeled blocks
filling out the structure.

B.I T S [la be I ,] n
This generates an entry in the equates listing at the end of
the picture file, specifying the label and its location in
the structure.

[label] BSS n
This generates a labeled block of one byte in the diagram
and an appropriate number of unlabeled blocks.

[I a be 1] BYTE 0
This generates a labeled block of one byte.

CEND
This is ignored.

[label] CHAR n
This generates a labeled block of one byte
appropriate number of unlabeled blocks.

and an

COpy filename
This is ignored.

CSEG label
This is assumed to occur only at the start of the picture.
Thus all initial conditions hold -- the location counter is
zero, no output is generated.

[label] DATA 0
This generates a labeled block of one word on a word
boundary.

DORG n or label

ECHO

This sets the location counter to the operand value,
terminates any picture in progress, outputs the comment on
the DORG line, and sets conditions to start another picture
segment (indicated by *----------+----------*).

This causes the entire input file to be written to the
picture file as it is read. It is assumed to be a file
which otherwise generates no meaningful picture.

ENDREC
This finishes a picture section, drawing a line below any
partially completed block and outputting the size of the
packed record just completed. It also outputs the message
**END OF PACKED RECORD.

label EQU n or label
This generates a line of output in the listing of equates

2270512-9701 16-31 DNOS Tools

DNOS System Design Document

which follows the picture.

[label] EVEN
If the picture is currently not at a word boundary, an
unlabeled block of one byte is output.

[label] FLAGS {8,16}
A labeled block of one byte is output if the operand is 8; a
block of one word on a word boundary is output if the
operand is 16.

FLAG label
This generates an entry in the flags descriptions which
follow the picture. Each flag is shown with its relative
position in the field as well as any comment describing that
flag. Comments on lines following the FLAG input line are
also echoed in the flags description in the picture output
file.

[label] INT.O

LIST

This generates a labeled block of one word on a word
boundary.

This is ignored.

[label] LONG 0

PAGE

This generates two words, with the first word
label and appearing on a word boundary.

carrying the

This is used to determine that the end of the structure has
been reached. It causes flags and equate descriptions to be
output. Any comment lines which follow the PAGE line will
be output at the end of the picture listing under the
heading COMMENTS ON THIS STRUCTURE. This verb is REQUIRED
in order to output flags and equates information to the
picture file.

PCKREC name
This begins a picture section, with the location counter set
to zero. It outputs a line with **BEGINNING PACKED RECORD
name.

[label] POSINT 0
This outputs a labeled block of one word on a word boundary.

[label] PTR type of pointer
This outputs a labeled block of one word on a word boundary.

[label] REC type
This outputs a labeled word
appropriate number of unlabeled

DNOS Tools 16-32

on a word boundary and an
blocks to encompass the

2270512-9701

DNOS System Design Document

total required by the type specified.

RORG
This is ignored.

UNL
This is ignored.

VARNT n or label
This finishes the current picture section, sets the location
counter to the operand specified, and initiates a new
section. It outputs any comment on the VARNT input. line.

[I a be I] WO RD 0
This outputs a labeled block of one word on a word boundary.

16.5.4 Input Format.

The input file may be in one of several forms, one of which is
shown in Figure 16-1 and another which is shown in Figure 16-2.
The name of the structure is shown as aaa. The heading comments
are of the form used for DNOS structures and are not enforced by
the PICT utility. Any comments that precede the first structure
verb appear in the output files before the structure. Comments
to be printed at the end of the picture file must appear after a
PAGE statement.

Figure 16-3 shows the format of the picture drawn by PICT. Each
line of the drawing is preceded by the hexadecimal offset into
the template. Each field carries its own label.

2270512-9701 16-33 DNOS Tools

DNOS System Design Document

UNL
**

*
* <full structure nam~> «aaa»

*
<date>*

* *
* LOCATION: <location in system> *
**
<any comments to appear before the structure>
<any COpy statements needed by statements in this file>

PCKREC name
<label> <verb> <value> descriptive comment

<label> <verb> <value>
ENDREC

descriptive comment

<more packed records might be defined here>
PAGE
LIST

Figure 16-1 PCKREC Input Format

UNL
**

*
*
*

<structure name> «aaa»
*

<date>*

*
* LOCATION: <location in system> *
**
<any comments to appear before the structure>

DORG <value> or CSEG 'label'
<label> <verb> <value> descriptive comment

<label> <verb> <value> descriptive comment
aaaSIZ EQU $

RORG or CEND
PAGE
LIST

Figure 16-2 DORG Input Format

DNOS Tools 16-34 2270512-9701

DNOS System Design Document

<all comments which preceded the first structure verb>

----------+---------- .
>00 <label>! <label> <comment>

+----------+----------+
>02 <label> <comment>

+----------+----------+
<etc>

+----------+----------+
>mn! <label> !

----------+----------
FLAGS FOR FIELD: <fieldname> #mm - <label>

<flagname> = (x ••• • •••) - <comment>
<special comments>
<etc>

<flagname> = (•• x •••••••••••••) - <comment>
<etc>

<repeated for each flag field>

EQUATES:
FIELD OFFSET EQUATE VALUE DESCRIPTION-

<label> #nn <label> #mm <comment>
<etc>

Figure 16-3 Template Picture Format

16.6 THE JENDAT EDITOR

The JENDAT editor is used to edit the JENDAT file used by DNOS
system generation. It includes commands to show the current
content of the JENDAT file, to edit any field, to format a file
for printing, to remove records from the file, to change the
version number of the file, and to e~it the JENDAT editor.

16.7 XJENED Command Procedure

The DNOS JENDAT editor is invoked from SCI through the XJENED
command procedure. No prompts are included. The program expects
to find a value for synonym JENDAT, which specifies the file that
the editor edits. The normal value of the synonym is
.S$SGU.JENDAT. If the synonym is not defined, a file named
.JENDAT@$ST is created (where SST is a synonym for the users
station ID). This file is empty and does not produce the desired

2270512-9701 16-35 DNOS Tools

DNOS System Design Document

results. This error is easy to detect. A SHOW or REMOVE command
responds with NUMBER OUT OF RANGE in the error field. The EDIT
command responds with NEW RECORD to any entry in the record
number field. Quit the edit and assign the proper value to
synonym JENDAT.

The program also expects a value for synonym PFILE, which
specifies the file used for producing a formatted copy of the
JENDAT file. This data goes to .PFILE@$ST otherwise. This file
should be precreated with a logical record length of 132. If the
file has a logical record length 'less than 132, the file will
have twice the normal number of records. For example, the first
line becomes two lines, the first containing the numeric data
from the JENDAT record, the second containing the text portion.
The file contains escape sequences that compress the print of the
810 printer and then restore it for normal operation at the end
of the file. The file should be printed with 82 lines per page.

NOTE

The DNOS JENDAT editor requires a 911 VDT.
Otherwise, it will not function properly.

16.8 JENED Commands

The commands available for the maintenance of the DNOS JENDAT
file are as follows:

COMMAND

EDIT
PRINT
QUIT
REMOVE
SHOW
VERSION
MOVE

MEANING

Edit any field of a record)
Format a file for printing)
Exit the JENED editor)
Remove records from the JENDAT file)
Show the text of the JENDAT records)
Change the version number of the JENDAT file
Relink records of the file

The JENED program begins with a display of the main menu, which
lists the commands available to the user. The main menu is as
follows:

DNOS Tools 16-36 2270512-9701

DNOS System Design Document"

SELECT ONE OF THE FOLLOWING :

P - PRODUCE A FILE FOR PRINTING
V - CHANGE VERSION NUMBER OF JENDAT
R - ZERO FIELDS OF JENDAT RECORDS
S - SHOW TEXT OF JENDAT RECORDS
E - EDIT FIELDS OF JENDAT RECORDS
M - RELINK JENDAT RECORDS
Q - QUIT

COMMAND :

The character entered does not terminate the
the command, the user must hit RETURN.
ignored.

16.8.1 EDIT Command.

call. To process
Invalid entries are

When the EDIT command is entered, the menu field is replaced by
the editing template. The following is an editing template:

EDIT RECORD NUMBER

• • • • • • • • • 1 • • • • • • • • .2. • • • • • • • .3. • • • • • • • .4. • • • • • • • .5. • • • • • • • .6. • • • •

DEF AAT LB UB NEXT

The number entered is a decimal number. A zero entry or empty
entry places the editor in the append mode. As a result, the
first field indicates that a new record is being entered. The
first field is modified as follows:

EDIT RECORD NUMBER NEW RECORD

The text field is initialized with blanks. The first four
numeric fields are initialized with 0000, and the NEXT field is
initialized to the record number of the record following the
current record.

If an error is detected in the field, the following error message
is displayed:

EDIT RECORD NUMBER 12AE
ERROR IN NUMERIC FIELD

If the record number is larger than that of the last record of
the current file, the editor enters the insert mode. The record
displayed is one larger than the last record, and the message NEW

2270512-9701 16-37 DNOS Tools

DNOS System Design Document

RECORD is displayed. If the record number exists, the
corresponding data appears on the screen. The cursor is
positioned in the first column of the text field when a valid
record number has been chosen.

The JENDAT editor requires a call termination character for each
read
vary

*
*
*
*
*
*
*
*
*
*

CMD

that is issued. The valid termination characters, which
with the call that is outstanding, are as follows:

CMD

RETURN (SKIP)

ENTER

Up Arrow

Down Arrow

Fl (function key 1)

F7 (function key 7)

F8 (function key 8)

TAB

Left Field

Key
The CMD always returns the user to the main menu from the
edit mode, whether editing existing records or inserting new
records. The current record is never updated with the data
on the screen.

RETURN Key
The RETURN key causes the call to progress from the text
field to the DEF field, then to AAT, LB, VB, and NEXT, in
that order. When the RETURN key is entered from the NEXT
field, the data on the screen is moved to the file. The
next physical record is entered on the display, and a read
is issued to the text field. The record number field is
updated to the record number of the data that is displayed.
The SKIP key causes the same effect as RETURN but blanks out
the remainder of the field. This produces acceptable
results in the record number field and the text field but
should be avoided in the numeric fields.

DNOS Tools 16-38 2270512-9701

DNOS System Design Document

ENTER Key

NOTE

The JENDAT file is not a forced write file.
Therefore, the data is moved to the memory
buffer that will be written by file
management when necessary to free buffer
space.

The ENTER key causes the data on the screen to be written to
the file. The next physical record is entered into the
display, and a read is issued for the text portion of the
record.

Down Arrow Key
The Down
displayed.

Fl Key

Arrow key causes the next physical record to be
The file is not altered in any manner.

Function key Fl causes the next logical record to be
displayed (that is, the record whose -record number is,
currently displayed in the NEXT field). No data is written
to the file by this key.

F7 Key
Function key F7 causes. the editor to enter the find mode
when entered in any field of the record. The message FIND
MODE is displayed, and the record displayed is empty.
Altering any field causes all records of the JENDAT file to
be searched for a record that matches in all of the chosen
fields. If no match is found, the editor returns,
displaying the NEW RECORD message at the end of the file.
This indicates that the search failed. If the record is
found, the editor returns to the edit mode, displaying the
record that it found.

The text field is searched only when nonblank characters are
entered in the text field when the FIND MODE message is
displayed. A numeric field is searched when the field is the
search. Entering any other valid termination characters returns
the editor to edit mode at the displayed record number.

F8 Key
The F8 key returns to the record number field. This permits
the user to jump from editing record number 15 to record
number 65 by entering F8, followed by 65, and RETURN (SKIP).

TAB Key
The TAB key is acceptable only in the text field. Tab

2270512-9701 16-39 DNOS Tools

DNOS System Design Document

settings are fixed at 1, 8, 13, 31 and 76. Entering TAB
causes the read to be reissued at the next tab setting. The
fields rotate; that is, a TAB key entered at column 76
returns to column 1. TAB is not accepted in the numeric
fields.

Left FIELD Key
The Left FIELD key acts as a reverse tab in the text field.
A Left FIELD issued from column 1 is ignored and returns to
column 76. In the numeric fields, pressing Left Field
causes a return to the previous field, including a return to
the text field from the DEF field.

If an error is detected in a numeric field, the message ERROR IN
NUMERIC FIELD is displayed. When the error is corrected, the
m~ssage disappears. Entering CMD corrects the error condition
but also returns the user to the main menu~ Some errors will not
be detected. The RIFLE DECODE procedure terminates the scan when
it finds letters while decoding a hexadecimal field. Thus,
entering OlWQ in a hexadecimal field places 01 in that field.

16.8.2 PRINT Command.

Entering the PRINT command produces a file for printing. The
display is informative only, displaying the record number of the
file currently being processed.

16.8.3 QUIT Command.

Entering QUIT closes the JENDAT file and updates record 0 to
reflect the current version number and number of records in the
file.

16.8.4 REMOVE Command.

Entering REMOVE displays the following message:

REMOVE RECORDS

FROM TO

ARE YOU SURE?

The numbers entered are validated and may produce either the
NUMBER OUT OF RANGE message or the ERROR IN NUMERIC FIELD
message. If the response to ARE YOU SURE? is Y, the records
from the first number to the _second are deleted. This removes
the text and enters zero in each numeric field except NEXT, which
has the next physical record. To return to the first field from

DNOS Tools 16-4~ 2270512-9701

DNOS System Design Document

the second, enter the Left FIELD key. This requires that a
number for the second field be entered. If the fill character
() fills the field, the Left FIELD key is not accepted.

16.8.5 SHOW Command.

The SHOW command produces the following prompt:

SHOW TEXT FROM RECORD

The field is validated; and if it is correct, the text of the
records beginning with that record and extending through the next
22 records is displayed. If less than 22 records follow the
number entered, only those records that exist are displayed.

This command accepts the up arrow, down arrow, Fl, and F2 keys in
the same fashion as SHOW FILE. F6 is a toggle switch that rolls
the file horizontally.

16.8.6 VERSION Command.

The VERSION command produces the following prompt:

VERSION NUMBER 01

The number shown is the version number checked by SYSJEN to
verify compatibility. The number entered replaces the current
one. No error checking is done.

16.8.7 MOVE Command.

The MOVE command produces the following prompt:

MOVE A RECORD

INSERT RECORD BETWEEN AND

This command causes the first record to be logically inserted
between the second and third records. All records which
originally pointed to the first record, now point to the logical
successor of the first record.

2270512-9701 16-41/16-42 DNOSTools

DNOS System Design Document

SECTION 17

ANALYZING A SYSTEM CRASH

17.1 OVERVIEW

When DNOS detects a system failure, it displays an error code in
the lights of the front panel and idles the CPU. To analyze the
problem, copy the memo~y image to the predefined crash file
.S$CRASH on the system disk by pressing HALT and then RUN on the
programmer panel. When activity ceases, and the error code is
redisplayed, perform an initial program load by pressing HALT,
and LOAD. When DNOS is ready, log on to a terminal and study the
crash file using the crash analysis utility.

The crash analysis utility can be used to study a crash file or a
running system. The paragraphs that follow discuss the commands
available with the crash analysis utility and tell when each
command is useful. In addition, guidelines are presented for
analyzing several particular system crash conditions.

The crash analysis utility is invoked with the XANAL command to
SCI. The XANAL command procedure is of the following format:

XANAL
EXECUTE CRASH ANALYSIS UTILITY

CONTROL ACCESS NAME: pathname@
LISTING ACCESS NAME: pathname@

ANALYZE RUNNING SYSTEM: YES/NO
CRASH FILE NAME: pathname@

(ME)
(ME)
(NO)
(.S$CRASH)

The prompts and responses are described in detail below.

CONTROL ACCESS NAME
This field prompt asks for the access name of the file or
device that will be used to issue commands to the utility.
Most often~ the initial value is accepted, and commands are
input from the station at which the XANAL command was
issued. In certain cases, you may want to use a standard
set of analysis commands from a file. If so, each command
must start in column 1 of a separate record of the file.

LISTING ACCESS NAME
If the crash analysis is to be written to a file, specify a
file name. If the station is to receive the listing, accept
the initial value.

2270512-9701 17-1 Analyzing a System Crash

DNOS System Design Document

ANALYZE RUNNING SYSTEM
Accept the initial value of NO if you wish to examine a
crash file on disk. Enter a YES to analyze portions of the
running system.

CRASH FILE NAME

When

When examining a running system, accept the initial value
for this prompt. When analyzing a crash dump, specify the
name of the file. Each time a system crash dump occurs, the
information is written to the file .S$CRASH on the system
disk. To protect a crash file from being overwritten, copy
it to a new file using the CD (Copy Directory) command.
Specify .S$CRASH as the input pathname and the desired
directory as the output pathname. Upon completion, the
crash file will be found as S$CRASH within the directory
specified.

the crash analysis utility is used interactively, the
listing comes to the screen at a rapid pace. To stop the
display, press the Attention key; to resume the display, press
the Attention key again. To exit a command display, press the
Command key.

The ANALZ task is an RBID task, therefore you can enter and exit
the analysis of a crash to use SCI. Table 17-1 shows the set of
commands used with ANALZ to examine a running system or a crash
file. The commands are described in detail in the paragraphs
which follow.

Analyzing a System Crash 17-2 2270512-9701

DNOS System Design Document

Table 17-1 C~ash Analysis Commands

Command Display Contents

ALL Displays from all the commands
AQ Contents of task active queue
CCB Channel control blocks
OM Specific area of memory
FCB File control blocks
GI General information
JSB Job status blocks
LOT Logical device tables
MM Memory maps
OVB Overhead beets
PBM Partial bit maps
PDT Physical device tables
PQ System queues (other than active qu~ue)
QU No display; terminates session
ROB Resource ownership blocks
RPB Resource privilege blocks
SGB Segment group blocks
SSB Segment status blocks
ST Secondary table areas
TA Task areas in memory
TR Registers for all tasks
TS Task status
TSB Task status blocks
11 List of all available commands

17.2 DETAILS OF CRASH ANALYSIS COMMANDS

When analyzin* a crash, th~ initial step should be to examine the
general information about the crash, followed by an examination
of task states and then of the detailed information about
particular queues and data stuctures. First issue a GI command,
then a TS command, and then the relevant structure examination
command. All of the commands and their parameters are presented
in alphabetic order in the following paragraphs.

ALL
This co~mand lists the information for all the commands
available. It is frequently used to process a crash file to
a listing file which can then be sent to someone for
inspection. When the ALL command is processed, it generates
output for the commands in this order: GI, TS, JSB, TSB,
SGB, SSB» PDT, FeB, LOT, ROB, CCB, MM, OVB, AQ, PQ, ST, TR,
and TA.

2270512-9701 17-3 Analyzing a System Crash

AQ

CCB

DM

DNOS System Design Document

This command causes the display of three lists, the list of
tasks on the active queue, the list of tasks waiting for
system table area, and the list of tasks on the waiting on
memory queue. Each list shows the JSB address, priority,
TSB address, and IDs for the tasks involved.

If the queues are empty, the system was idle. If the queues
have many entries, the system was busy. Scanning the
queues, you can see what tasks were eligible to execute or
be loaded into memory. This information is helpful when
forcing a crash during a situation where the system appears
to be idle or hung in a loop.

This command shows the channel control blocks for all
channels currently in use. It first shows the global
channel list from the system table area then the job local
list from the JCA of each job in the system. Each job local
list is identified by its JSB address.

Before displaying memory, this command solicits data for the
following:

LOWER LIMIT - the starting address (rounded to even number)
UPPER LIMIT - the ending addres~
JSB ADDRESS - a JSB address, an SSB address for any SSB, or 0
TSB ADDRESS - the TSB address for the task memory being

displayed
or PDT ADDRESS - the PDT address of a device being viewed
or BEET BIAS - for any beet in memory

If the answer to the JSB ADDRESS prompt is 0, the PDT
ADDRESS prompt appears. If the answer to the PDT ADDRESS
prompt is 0, the BEET BIAS prompt appears.

The first time DM is used, the prompt for LOWER LIMIT is O.
After the first time, the prompt has an initial value of the
previously used LOWER LIMIT. The UPPER LIMIT is initialized
with a value)2E greater than the LOWER LIMIT value. The
default listing is a three-line display of)30 bytes of
data, each line preceded by the address of the first word on
that line. The data is shown in hexadecimal and in ASCII
equivalent. Initial values for JSB ADDRESS and TSB ADDRESS
are the values used previously, after the first DM has been
specified.

To examine a physical TILINE address, specify the address as
LOWER LIMIT, and specify zero for all other fields of the DM
command.

Analyzing a System Crash 17-4 2270512-9701

DNOS System Design Document

FCB

GI

This command causes a display of all in-memory file
structures for files currently in use. It presents the set
of structures for each disk device defined for the system,
showing for each file the FDB, FCB, and SAT.

General information about a crash is shown by this command,
including all of the following for analysis of a crash file.
For analysis of a running system, the information beginning
with SYSTEM PATCH AREA is presented.

VERSION
The release/version/revision level
file being analyzed is shown here.
verification of the current level of

CRASH CODE

of the system or crash
This field provides

software in use.

The code is shown as a four-digit hexadecimal value. If the
crash code is one of those included in internal tables, an
English description of the code is also output. Details on
system crash codes are provided in the DNOS Messages and
Codes Reference Manual.

EXECUTING TASK
The next item displayed is the TSB address of the executing
task at the time of the crash. If the TSB address is shown
as 0, there was no executing task at the time of crash. The
error was probably within the operating system during a
scheduling cycle.

If the crash was an end action crash, this field identifies
the task which took end action. If the crash was forced,
this field identifies the task which was in a loop when the
crash occurred. The information here may not be useful for
crashes in the range)13 through)IF (illegal interrupts) or
for the)60 series crashes (operating system failures).

EXECUTING TASK JSB
This displays the address of the JSB of the task executing
when the crash occurred. Paired with the EXECUTING TASK
data, it identifies the task executing at the time of the
crash.

LOCATION OF FAILURE
This is the address from which the crash routine NFCRSH was
called or, in some cases, the location of an illegal
instruction or other cause of the crash.

For crashes in the)60 series, this is not useful. For a
)29 crash (unexpected error return), this field identifies
whether NFPOPO or NFRTNO encountered the error.

2270512-9701 17-5 Analyzing a System Crash

I

I

I

I

DNOS System Design Document

STATUS REGISTER AT TIME OF FAILURE
This shows the contents of the status register when the
crash occurred. Bit 8 indicates whether the error occurred
while executing in map file 0 (bit 8=0) or in map file 1
(bit 8=1). The last four bits show the interrupt mask. If
the interrupt mask is less than (IS, the error probably
occurred in a DSR or in the clock interrupt handler. This
display is not useful for)60 series crashes.

JCASTR
This is the starting address of all JCAs and other table
area second segments mapped in by DNOS.

COUNTRY CODE
This entry shows the country code of the system.

IMAGE NAME
The name of
shown.

the kernel program file that was executing is

MEMORY SIZE
This shows the total memory available to the system while
operating. This value is less than or equal to the total
physical memory available.

CRASH FILE SIZE
This shows the size of the crash file in use. If this is
not as large as MEMORY SIZE, Some portions of the crash dump
will be missing, and the following message will appear at
the start of the GI display:

*** WARNING *** ALL MEMORY NOT IN DUMP FILE

This generally means the dump is not useful.
increase the size of your crash file.

CURMAP ADDRESS

You should

This entry shows the address of the current map 0 map file
at the time of the crash. Bias values might be used to
examine portions of memory. This field is not generally
useful if the crash occurred in map file 1.

SYSTEM PATCH AREA
This shows the system patch area in hexadecimal and the
ASCII equivalent. The area might be scanned to ensure that
all appropriate patches have been applied to the system.
The starting address of the patch area should be the same as
the symbol NFPATCH in the system link map.

Analyzing a System Crash 17-6 2270512-9701

DNOS System Design Document

EXECUTING WORKSPACE AT TIME OF DUMP
These registers are the workspace registers of the executing
code at the time of the crash. If the crash occurred in map
file 0, this area shows the true contents of the registers
at the time of the crash. If the crash is for a task taking
end action, these registers are those of its end action
workspace, which mayor may not be those in effect at the
time the error occurred.

TOP 64 WORDS OF CURRENT STACK
This display assumes that register 10 of the executing
workspace is a stack pointer. The utility displays 32 words
preceding the address in register 10 and 32 words following
the address in register 10.

This data is most useful if the crash occurred in map
0, or in a system task.

file

If the executing code does not use the stack, this area may
be useless. Unused memory appears as initialized to)FOOD
values.

HARDWARE TRAP VECTORS
The hardware interrupt vectors occupy the first 32 words of
physical memory and are defined during system generation.
These vectors should not be changed unless destroyed by a
system task that branches to location 0 by mistake or
modifies location ° when using an incorrectly established
address field. If a BLWP instruction is executed to
location 0, the return context information of the calling
task is stored in locations)IA through)IF.

When the crash code is for an illegal interrupt ()13 through
)1F), these vectors are meaningful and should be examined
carefully. When a crash code for internal interrupt ()60
through)6F) occurs and the interrupt mask in register 15 of
the trap 2 workspace indicates a defined interrupt (mask
value minus one), the interrupt trap values should be
checked to determine if they are within range. The correct I
values can be determined by examining locations 0 through
)3F of procedure ROOT in the kernel program file.

XOP VECTORS
The XOP vectors occupy the second 32 words of physical
memory and are defined during system generation. These
vectors should not be changed unless destroyed by a system
task in error. Their correct values can be found in the
same way as the HARDWARE TRAP VECTORS values.

2270512-9701 17-7 Analyzing a System Crash

I

JSB

DNOS System Design Document

CLOCK INTERRUPT WORKSPACE
This area shows one of the two clock workspaces. This
display workspace shows the current state of the clock
interrupt processor. Registers 13 through 15 show the
return context of the last entry to the clock interrupt
processor. When a crash is forced during a system hang
condition, this workspace may point to the location of an
infinite loop in a task, that is, the location at which the
last clock interrupt occurred.

MACHINE ERROR (TRAP 2) WORKSPACE
This workspace contains diagnostic information about a crash
for internal interrupts (>60 through >6F). The context of
the crash can be found in registers 13 through 15. If bit 8
of register 15 is set to 1, the error occurred in task
driven code (map file 1). If bit 8 is set to 0, the error
occurred in system code (map file 0). Register 1 of this
workspace carries a status code, reflected as the second
digit of the >60 series crash. A >62 crash can be
recognized as a forced crash if R14 points to an instruction
whose preceding instruction is a zero. If R14 has a value
less than that of JCASTR, the error occurred in the root.
Otherwise, if in map file 0, check the CURMAP address of the
GI information against a system link map for the" correct
segment of code. If executing in map file 1, consult the
appropriate task link map for the correct segment of code.

TRAPPED WORKSPACE
This workspace is found using R13 of the machine error
workspace as the starting address.

LOCATIONS AROUND TRAPPED PC
This display shows the 16 bytes before and 16 bytes after
the address found in R14 of the machine error workspace.

SVC (XOP 15) WORKSPACE
This workspace is used by both the scheduler and SVC
processing. The workspace contains the current state for
whichever of those processors last used it. Registers 13
through 15 may contain the return context (workspace
pointer, program counter, and status) from the last SVC
issued by a task. If the crash occurred in map file 0, this
workspace is probably the executing workspace. If the
workspace is not that of the scheduler, it may be a DSR
workspace; if the starting address is in one of the PDTs, it
reflects the workspace of a DSR.

This command displays the job status blocks for every job in
the system. The last JSB presented is that for the system
job.

Analyzing a System Crash 17-8 2270512-9701

DNOS System Design Document

LDT

MM

OVB

PBM

This command displays, with appropriate headers, all global
LDTs, followed by all job-local LDTs identified by JSB
address, and finally all task-local LDTs identified by TSB
and JSB addresses.

Memory map information, specifying starting address, length,
current use, highest address, and free block chain, is
presented for each of the following:

* System table .area
* Special table areas for segment management and for

file management
* Job communication areas for each job in the system

Information is then presented on user memory available, both
that available to be swapped and that not available to be
swapped. This is followed by tables of linked lists for.
these structures:

* Free list of user memory
* Deallocate queue
* Time ordered list
* Cache queue
* Write queue
* Buffer table area free list

The MM information is especially useful for analyzing)21
(inconsistent free user memory structure), and)22
(inconsistent table area structures) crashes.

For each segment in memory, there is an overhead beet (OVB).
This command lists all OVBs first by SSB address within the
segment manager tables 0 and 1. Several of the initial
segments in this list do not have an OVB associated with
them (these are segments of resident DNOS). For these
segments, the beet preceeding the segment is displayed as
the OVB, and will appear as an inconsistent structure. Then
the OVBs are listed in sequence in memory order. This list
is useful to scan the integrity of structures when a)21
(inconsistent free user memory structure) or)46
(inconsistent segment manager structure) crash occurs.

This command displays the contents of the partial bit maps
for each disk installed in the current system. It is useful
when analyzing disk manager crashes.

2270512-9701 17-9 Analyzing a System Crash

PDT

PQ

QU

ROB

RPB

SGB

DNOS System Design Document

The PDT for each device known to the system is shown.

This command lists the queue server ID and the list of items
currently on the queue for each of the following system
queues:

* Task bidder
* I/O Utility
* Device I/O Utility
* Disk Manager
* Task diagnostic (kill task) processor
* Job Manager
* IPC task
* Name Manager
* User overlay loader
* Forced roll processor
* Return code processor
* System log formatter
* Accounting log formatter

The PQ lists usually provide clues to any crash. Most of
the queues should be empty, except those requiring disk
access to handle the queue. If other queues are not empty,
the queue entries and queue servers need to be examined for
errors. The log queue shows valuable information, too,
since it carries the most recent errors sent to the system
log.

This command provides
utility.

All resource
identifier.

ownership

no display.

blocks are

It terminates the

displayed by JSB

This command prompts for an I/O resource pointer. The
resource pointer can be an FCB for a file, a PDT for a
device, or a CCB for a channel. This command then displays
the RPB along with the other relevant structures. For a
file, it displays the FDB, FCB, and RPBs. For a device, it
displays the PDT and the RPBs. For a channel, it displays
the CCB and the RPBs.

The segment group blocks (SGBs) for all segments currently
in memory are displayed, first those in table area 0, then
those in table area 1.

Analyzing a System Crash 17-10 2270512-9701

DNOS System Design Document

SSB

ST

TA

TR

TS

TSB

All segment status blocks (SSBs) for all segments currently
in memory are displayed, identified by SGB.

The starting address, length, usage, highest address, and
contents of the secondary table areas are displayed. This
information is provided for each of the special table areas
used by segment management and file management and for each
JCA in the system.

A memory area is displayed for each of the tasks
in memory identified by TSB and JSB address.

currently

The registers are displayed for each task in the system,
identified by TSB and JSB addresses.

A table is displayed, showing the following information for
each task in the system:

* TASK NAME - Installed name of the task
* ID - Installed ID and run-time ID of the task
* WP - Workspace pointer
* PC - Program counter
* ST - Status register
* STATE - Code for the task state (see DSC.TEMPLATE.

ATABLE.NFSTAT or the DNOS Messages and Codes Reference
Manual for details. The first two digits are the
runtime priority of the task, the second two digits
are the task state. Tasks in state)04 (terminating)
may have an inconsistent display as structures may
have been released.

* FLAGS - The first word of task flags from the TSB
of the task

* STATION - The station ID from the TSB of the task;
if the task was not bid at a station, no station
ID is displayed

* TSBADR - The TSB address
* JSBADR - The JSB address
* PROG FILE - The name of the program file from which

the task was bid; only the last portion of the
pathname is listed

This command displays each of the TSBs for each of the jobs
whose JCA is currently in memory.

2270512-9701 17-11 Analyzing a System Crash

DNOS System Design Document

??
This command lists all available crash analysis commands.

17.3 GUIDELINES FOR CRASH ANALYSIS

It is impossible to give a set of rules by which crash analysis
can be done. There are several general guidelines which should
be known, and for specific crashes, there are some specific
guidelines. The following paragraphs address general hints
first, then some specific suggestions.

In general, an operating system crash occurs when some data
structure has been destroyed. The problem in analyzing the crash
is then to find what structure has been changed, and what code or
combination of circumstances changed the structure. To conduct
such an analysis, you must be familiar with the DNOS data
structures and be able to detect inconsistencies. Data structure
pictures are available in this manual to guide you through the
structures displayed by the crash analysis utility. In addition,
you will need to understand as much as yuu can about how the
structures are built, used, and released by the relevant DNOS
subsystems. The subsystem descriptions in this manual' discuss
how they use DNOS data structures.

The paragraphs which follow give Some specific suggestions for
handlin~ particular crash codes.

Codes)13 through)1F
These crashes are for illegal interrupts from devices.
Verify that all devices have been specified at the correct
interrupt levels during system generation. If this is not
the case, perform a new system generation or change the
interrupt level using XSCU. If the devices are at the
correct interrupt levels, examine the HARDWARE TRAP VECTOR
information given by GI and see that it is correct. If not,
you need to find the source of the modification. If the
information is correct, check the workspace for the
interrupt (3 through)F) for clues to the crash.

Code)21 - PMUMGR inconsistent structure
Check register 4 in the MACHINE ERROR (TRAP 2) WORKSPACE
data. If it is greater than the value in MEMSIZ, a request
has been made to return memory beyond the end of free
memory. If the value in Register 4 is less than UADSTR, a
request has been made to return memory before the start of
free user memory. If neither of these is the case, the free
memory list is incorrect. If register 1 is zero, a block of
length zero has been specified. If the value at the address
in register 10 is greater than MEMSIZ, a block which is too
large has been specified. If the value at the address in

Analyzing a System Crash 17-12 2270512-9701

DNOS System Design Document,

register 10 is greater than the value in register 11, two
blocks of memory overlap. If register 4 is less than
register 0, two blocks will overlap when merged in the free
list. UADSTR is the start of the free memory list shown by
the MM command and MEMSIZ is the end of that list.

Code)22 - NFTMGR inconsistent structure
Examine the executing stack for the return address of the
caller of NFTMGR and the address of the item to release in
that order.

Code)23 - NFSCHD queueing error
Register 9 of the EXECUTING WORKSPACE has the TSB address of
the task that issued the SVC which encountered the error.
Verify with the TSB address in EXTSB to see that it is still
valid. Check the last SVC issued by that task to find the
processor which is in error.

Code)24 - IOBM inconsistent structure
Perform an analysis like that for code)21, using registers
2 and 4. If register 2 has a value less than BTAADD or
register 4 has a value greater than UADSTR, a request to
return buffer space is incorrect.

Code)26 - PMROLL cannot extend the swap file
This error occurs during task loading; an error indicator is
in register ° of the MACHINE ERROR (TRAP 2) WORKSPACE. If
the error indicator is)30, the file is not extendable. If
the error is)3F, there is a structure error. If the error
is)EO, the disk is full. If the error is)DA, the
secondary allocation table is full.

Code)29 - NFPOP or NFMAPO unexpected error returned
Register 11 of the EXECUTING ·WORKSPACE AT TIME OF DUMP has
the address of the return. The return context tells which
location was called.

Code)2C - NFENAB - scheduler inhibit count is negative
Register 11 of the MACHINE ERROR (TRAP 2) WORKSPACE points
to the caller of NFENAB. That routine mayor may not be
responsible for the error.

Code)46 - SEGMGR inconsistent structure

End

The executing stack has the return address, the caller's
register 2, and the caller's register 1. Register 1 had the
address of the SSB to delete. Use this data to detect an
illegal request.

action codes
Use the TSB list to find the terminating task and examine
the diagnostic packet which follows the TSB. The DIA
structure identifies the various fields in this packet,
showing the error code which caused termination, the

2270512-9701 17-13 Analyzing a System Crash

I

DNOS System Design Document

workspace pointer, program counter, and status at
end action was taken.

Codes)60 through)6F - internal interrupts

the time

Examine the return context (R13 R15) of the Trap 2
workspace in the GI information for the address of the
error. Check the stack for recent routine calls and data
saved. If none of the information in the GI information or
structures lists is helpful, you might be able to find clues
to the crash in the instruction trace kept by the 990/12.
The 990/12 hardware keeps 32 words of trace information,
reflecting the most recent instruction execution. When an.
internal interrupt occurs, the interrupt handler copies the
hardware trace to the 32 words preceding the scheduler
workspace in the system root. The address can be calculated
as 32 less than the start of the SVC (XOP 15) WORKSPACE
displayed as part of the GI information.

17.4 HARDWARE TRACE INFORMATION

Hardware trace information for a 990/12 can be found in the 64
bytes proceeding the SVC (XOPI5) workspace. This data must be
used with caution. Because of optimizations being done by the
/12, the sequence of hardware instruction pairs may include
repetitious data or pairs that appear to logically be out of
order.

The format of the trace data is shown in Table 17-2. These words
are kept on the processor board for a /12, updated continually
with every memory cycle. With a level 2 interrupt, updating
ceases after the next memory cycle. The interrupt processor
dumps this data to memory proceeding the SVC workspace. The
trace data consists of 16 pairs of words of the form shown here
as Word 0 and Word 1. The set of entries appears in order of
latest instruction executed first, something of a pushdown stack.

Analyzing a System Crash 17-14 2270512-9701

DNOS System Design Document

Table 17-2 Format of Hardware Trace Information

Bit Meaning Setting
Word 0

0 Execution violation 1=Yes
1 TILINE timeout 1=Yes
2 Memory data error 1=Yes
3 Mapping error 1=Yes

4 Illegal opcode 1=Yes
5 Privileged instruction attempted 1=Yes
6 Workspace read/write flag I=Wri te
7 TILINE access flag I=Access

8 TILINE R/W FLAG I=Write
9 Workspace access flag I=Access

10 Instruction fetch flag I=Fetch
11-15 Most significant bits of TILINE address

Word 1
0-14 Least significant bits of TILINE address
15 Write violation I=Yes

The overlap of instruction execution in the 990/12 often causes
pairs of indicators to be set in a word, showing the activity of
the current instruction and the last instruction executed. Some
typical examples of word 0 might be

ooco
0100
0120 =
0160 =

01CO
02CO

Workspace access; TILINE write on previous instruction
TILINE address
Instruction fetch
Instruction fetch; workspace reference on previous
instruction
TILINE write; TILINE access on previous instruction
Workspace write; TILINE write and workspace access on
previous instruction

Note that the TILINE address field is not cleared from one
pair to the next. Therefore, if the TILINE access flag is
set, the TILINE address is meaningless.

trace
not

Information given about each of the crash codes in the DNOS
Messages and Codes Reference Manual might also be helpful~
resolving the cause of a system crash. Each of the crash codes
is described there, with a general indication of its cause.

2270512-9701 17-15/17-16 Analyzing a System Crash

DNOS System Design Document

SECTION 18

INTERRUPTS AND XOP PROCESSING

18.1 OVERVIEW OF INTERRUPT PROCESSING

The 990 computer has sixteen interrupt levels to serve interrupt
requests from various devices and mechanisms. They also have
sixteen extended operation codes (XOPs) available to allow
extensions to the standard instruction set. Users cannot make
use of the XOP feature, since Texas Instruments software makes
use of many XOPs and is likely to use the available set for
future products.

Interrupt levels are numbered from 0 through 15, with 0 having
highest priority. There is a 4-bit interrupt mask which stores
the level number of any interrupt presently executing and
prevents interrupts of the same or lower levels from interrupting
the CPU. The mask is displayed as the last four bits of the
status register. The mask may be changed by a LIMI instruction
to enable or disable interrupts to the desired level.

Each interrupt level is uniquely associated with a two-word
location in memory, referred to as the interrupt trap. This pair
of words includes the workspace pointer and program counter
values for the program which services the interrupt. The
interrupt traps for DNOS are built during system generation and
can be found in the sysgen directory in file D$SOURCE (or in its
listing form in D$LIST).

DNOS uses the interrupt levels as follows:

* 0 - Power up

* 1 - Power down

* 2 - DNOS internal error

* 5 - cPU clock

* Each of the others is one of: standard device
interrupt, expansion chassis interrupt, multiple device
interrupt, undefined interrupt

When an interrupt occurs and is not masked out by the current
interrupt mask value, CPU control is transferred to the workspace
and program counter specified in the trap table. If an undefined

2270512-9701 18-1 Interrupts and XOPs

DNOS System Design Document

interrupt occurs or an internal error is encountered in DNOS, the
trap table directs the CPU to a system crash routine. In all
other cases, the interrupt trap table causes a transfer to an
interrupt processing routine. In DNOS, all interrupt processors
are found in the system root.

18.2 OVERVIEW OF XOP PROCESSING

Extended operations (XOPs) are available on the 990 to build the
equivalent of machine instructions not provided in the hardware.
There are 16 extended operation codes (levels) available. One of
these, level 15, is reserved by DNOS for handling supervisor
calls (SVCs); levels 9 through 12 are used by the DNOS
performance package, and the remaining levels are reserved for
future DNOS use.

When the CPU encounters an XOP instruction, it tests first to
determine if a hardware XOP processor is present. If so, control
is passed to that processor for execution. If no hardware
processor is present, control is transferred to a software
routine via a table of processor addresses built during system
generation. This table is referred to as the XOP transfer table
and can be found in the sysgen directory in the file D*SOURCE (or
in its listing form in D$LIST).

18.3 BUILDING AN XOP PROCESSOR

In special situations, a programmer may wish to implement an
instruction or devise a service of DNOS which is not available in
the supplied version of DNOS. To meet these situations, DNOS
allows the programmer to build his own supervisor calls (SVCs),
as described in the DNOS Systems Programmer's Guide. In cases
where this feature is not sufficient, DNOS system software may
need to use an XOP processor.

To add an XOP processor to DNOS, a processor must be written and
details must be provided during system generation.

18.3.1 System Generation Requirements for User XOPs.

The XOP related prompts during system generation are described in
Table 18-1. The system generation program inserts the XOP
processor entry point and workspace address into the XOP transfer
table it builds for the system. The system generation program
also includes the XOP processor object module in the linkstream
for DNOS.

Interrupts and XOPs 18-2 2270512-9701

DNOS System Design Document

Table 18-1

Prompt

ENTITY?
XOP LEVEL?

PC label?
WP label?
Pathname?

System Generation Prompts for XOPs

Response required

XOP
Level number (0 through decimal 14) that

is to be used
Entry point label of the XOP processor
Workspace label of the XOP processor
Name of the file that contains the object

module for the XOP processor

18.3.2 XOP Processor Details.

When an XOP instruction is executed, control transfers to the XOP
processor via the XOP transfer table. In the workspace of the
XOP processor, the following registers are loaded and must not be
destroyed by the processor:

Register 11 - the address of the XOP operand,
relative to the calling task address space

Register
pointer

13 the requesting task workspace

Register 14 - the requesting task program counter

Register 15 - the requesting task status register

The XOP processor should execute quickly and be relatively short.
It cannot issue supervisor calls, but must perform all operations
locally. It can access the calling task address space by using
long distance instructions with the saved map file of the calling
task. This map file is at the offset TSBMLI in the task status
block (TSB) pointed to by the system pointer named EXTSB
(executing task TSB). Figure 18-1 shows long distance access to
three parameters from the calling task address space.

The XOP processor must define (DEF) its entry point and its
workspace address, and it must reference (REF) the system return
point, NFTRTN. If it makes use of EXTSB, it must copy two system
templates, using the following statements:

COPY DSC.TEMPLATE.ATABLE.TSB
COpy DSC.TEMPLATE.COMMON.NFPTR

The first statement copies a template which has the offset TSBMLI
within a TSB. The second copies a set of system pointers that
includes EXTSB. Other data structures might also be accessed by
an XOP processor. Consult the section on data structure pictures

2270512-9701 18-3 Interrupts and XOPs

DNOS System Design Document

in this manual for details on the structures to be used.

*------
* THIS EXAMPLE SHOWS HOW AN XOP PROCESSOR
* INTERFACES WITH THE OPERATING SYSTEM TO ACCESS A CALLER'S
* TASK AREA AND RETURN TO THE CALLER. THE EXAMPLE IS FOR
* XOP LEVEL 10, WHERE THE PROCESSOR MOVES N WORDS OF DATA.

*
* CALLED BY: XOP @ARGS,10
* WITH:

*
*
*
*

ARGS DATA X,Y,N WITH X
Y
N

= SOURCE ADDRESS
DESTINATION ADDRESS
NUMBER OF WORDS TO MOVE

*------
* EQUATES

*
COPY DSC.TEMPLATE.ATABLE.TSB

* GLOBAL DATA
TO ACCESS TSB FIELDS

* COPY DSC.TEMPLATE.COMMON.NFPTR TO ACCESS EXTSB

*
REF
IDT
DEF
DEF

WPAD BSS
USRXOP EQU

MOV
AI
LDS
MOV
LDS
MOV
LDS
MOV

LOOP EQU
LDS

NFTRTN
'USRXOP'
USRXOP
WPAD
32
$
@EXTSB,R8
R8,TSBML1
*R8
*R11+,R1
*R8
*R11+,R2
*R8
*R11,R3
$
*R8

MOV *R1+,R4
LDD *R8
MOV R4, *R2+
DEC R3
JNE LOOP
B @NFTRTN
END

SYSTEM RETURN POINT

ENTRY POINT FOR SYSGEN RESOLUTION
WORKSPACE ADDRESS FOR SYSGEN
LOCAL WORKSPACE
ROUTINE STARTS HERE
GET CALLER TSB ADDRESS
POINT TO THE MAP FILE
USING XOP OPERAND IN R11
GET ADDRESS OF ARGUMENT X

AND ADDRESS OF Y

AND OF N
MOVE N WORDS; ASSUME GOOD ADDRESSES
GET A WORD OF SOURCE INFORMATION

MOVE IT TO DESTINATION

COUNT DOWN
MORE TO DO IF COUNT POSITIVE
ELSE RETURN TO OPERATING SYSTEM

Figure 18-1 XOP Processor

Interrupts and XOPs 18-4 2270512-9701

DNOS System Design Document

SECTION 19

SPE CI AL SVCs

19.1 OVERVIEW

This set of SVC operations is supported for DNOS operating system
tasks only. They are not documented in user manuals and must not
be issued by user-written code.

Each of the SVC blocks is shown with a hexadecimal offset at the
left of each word. The upper right of the block shows special
conditions which must be met, such as alignment on a word
boundary, if such a condition is relevant.

19.2 I/O SVCs

Several of the
operating system
otherwise.

subopcodes of the I/O SVC can be issued only by
tasks. They generate error conditions

19.2.1 DSRTPD Diagnostics Control (Subopcode)08).

DSRTPD supports diagnostics control of the communications
hardware. The mechanism to support this is I/O subopcode)08.
The extended call block is used for further subopcodes and
parameters.

The following functions are supported:

SUBOPCODE 08 FUNCTIONS

SUB-SUBOPCODE

2270512-9701

56
66

19-1

DESCRIPTION

Write interface image
Read interface image

Special SVCs

DNOS System Design Document

The call block has the following format:

Hex Offset Align on Word Boundary

+------------------+----------------+
)00 I 00 I <Return Code) I

+------------------+----------------+
)02 I 08 I LUNO I

+------------------+----------------+
)04 I <System Flags) I User Flags I

+------------------+----------------+
)06 I Unused I

+------------------+----------------+
)08 I Unused I

+------------------+----------------+
)OA I Unused I

+------------------+----------------+
)OC I Unused I

+------------------+----------------+
)OE I Unused I

+------------------+----------------+
)10 I Parameters I

+------------------+----------------+
)12 I Parameters I

+------------------+----------------+
)14 I SUbopcode I Unused I

+-----------------------------------+
Byte 5, Bit 6 = -1 (Extension flag)

Byte 14, Bit 0 = Error bit

19.2.1.1 Write Interface Image.

Sub-subopcode)56 performs the diagnostic write. The call block
format depends on the kind of interface card that is in use at
the port. For ports using the COMM INTERFACE board, the format
is as follows:

Byte

10

1 1

Special SVCs

Description

Bit 0 - Character length select 1
1 - Character length select 0
2 - Sync mode selection
3 - Odd parity select
4 - Alternate clock select
5 - Clock select A2
6 - Clock select Al
7 - Clock select AO

Modem leads (O=low, l=high)
Bit 0 - Self test mode

1 - Transmit hreak
2 - 1 = 2 stop bits, 0 = 1 stop bit

19-2 2270512-9701

DNOS System Design Document

12

13

14
15

3 - Echo enable
4 - Parity enable
5 - Receiver enable
6 - Request to Send
7 Data Terminal Ready

Interface Control
Bits 0-7 - Sync character-first load
DLE character - second load
Bit 0 - Analog loopback

1 - Half duplex
2 - Master reset
3 - Pulsed modem lead out
4 - Reserved modem lead out
5 - Secondary request to send
6 - Clock select Bl
7 - Clock select BO

Subopcode (>56)
Reserved for board compatibility

For the TTY/EIA card the format is as follows:

Byte

10

Description.

Modem. lea ds
Bit 0 - Ignored

1 - Data terminal ready
2 - Request to send
3 - Clear read request
4 - Clear write request
5 - Clear new status
6 - Enable interrupts
7 - Diagnostic mode

Ignored
Ignored
Ignored
Subopcode (>56)

1 1
12
13
14
15 Reserved for board compatibility

19.2.1.2 Read Interface Image.

Sub-subopcode)66 performs the diagnostic read. Modem and
interface information is returned in the call block as follows:

For the COMM board:

Byte

10

2270512-9701

Description

Interface information
Bit 0 - Write request

1 - Interrupt summary

19-3 Special SVCs

1 1

12

13
14
15

DNOS System Design Document

2 - Timer expiration
3 - New status flag
4 - Scan Busy
5 - Transmit underrun
6 - Readable copy of sync selection
7 - Read request

Modem leads
Bit 0-1 Unused

2 - Data carrier detect
3 - Ring indicator
4 - Reserved modem lead out
5 - Sec~ndary request to aend
6 - Clear to send
7 - Data set ready

Bits 0-3 - Unused
4 - Parity error
5 - Framing error
6 - Receiver over~un
7 - Receive error summary

Bits 0-7 - Receive data byte
Subopcode
Reserved for board compatibility

For the TTY/EIA board:

Byte

10
1 1

12
13
14
15

Description

Bits 0-7 - Receive data byte
Modem leads
Bit 0 - Interrupt

1 - Data set ready
2 - Data carrier detect
3 - Read request
4 - Write request
5 - Ring indicator (cable 2265151-0001)

reverse channel receive (other cables)
6 - Timing error (overrun)
7 - Xmit in progress

Ignored
Ignored
Subopcode
Reserved for board compatibility

19.2.2 Communications DSR Diagnostics Control (Subopcode)08).

The DSRs used by communications software use a call block like
DSRTPD to support diagnostic control of the communications
hardware. The following functions are supported, using the
specified subopcodes in the extended call block at offset >14.
Note that for each subopcode that bits 0 through 3 are defined
specially for that operation.

Special SVCs 19-4 2270512-9701

DNOS System Design Document

Sub-Subopcode

)XO
)X1
)X2
)X3
)X4
)X5
)X6
)X7
)X8
)X9
)XA
)XB
)XC
)XD
)XE
)XF

Meaning

Abort/Timeout
Open
Close
Write
Read
Chained write
Miscellaneous ~hannel commands - diagnostics
Reserved for Protocol - immediate
Reserved for Protocol - data
Reserved for Protocol - data
Reserved for Protocol - data
Reserved for Protocol - data
Miscellaneous board - data
Miscellaneous board - immediate
Stand-alone diagnostics (not supported)
Immediate diagnostics

19.2.3 Open Unblocked (Subopcode)13).

The Open Unblocked SVC block has the following format:

Align on word boundary
Hex Offset

)00

)02

)04

----------------+-----------------
I 00 I <Return Code) I
+----------------+-----------------+
I 13 I LUNO I
+----------------+-----------------+

Reserved

()OA - maximum size)

It is used by I/O utility and several other utilities to access
files in a special way. This same opcode is used by Unload
Volume to dump statistics to the system log. In this case, the
LUNO field is ignored and bytes 6 and 7 point to a special' area
designating use of VCATALOG.

19.2.4 Close Without Updating FDR (Subopcode)14).

The Close Without Updating FDR is used by the directory utilities
in conjunction with the Open Unblocked operation when copying a
file. Since the normal copy of a file description record (FDR)
would change the date of latest modification, it cannot be used
by the directory utilities. The format of the block is as
follows:

2270512-9701 19-5 Special SVCs

Hex Offset
)00

)02

)04

DNOS System D~sign Document

Align on word boundary

----------------+-----------------
I 00 I <Return Code) I

+----------------+-----------------+
I 14 I LUNO I

+----------------+-----------------+
Reserved

()OA - maximum size)

The Open Unblocked SVC is
allow reading of any file as a

used by the directory utilities to
relative record file.

19.2.5 DSRTPD Communications Control - (Subopcode)15).

DSRTPD supports task access to device dependent communications
control using subopcode)15. The call block is the same format
as the Write ASCII subopcode. Further subopcodes and parameters
are contained inside the data buffer. Most of these functions
are also performed by the SCI command MHPC.

Hex Offset

)00

)02

)04

)06

)08

)OA

Special SVCs

Align on Word Boundary

+---------------------+------------------+
I 00 I <Return Code) I

+---------------------+------------------+
I 15 I LUNO I

+---------------------+------------------+
I <System Flags) I User Flags I
+---------------------+------------------+
IBuffer Address, Secondary Control Block I
+---------------------+------------------+
I Unused (0) I

+---------------------+------------------+
I Buffer Byte Count I

+--+
Data Buffer Descriptions

Byte

o
1
2-N

Value

Subopcode
Reserved ()OO)
Parameters if needed

19-6 2270512-9701

I

DNOS System Design Document

The following functions are supported;
indicated being placed in the data buffer.

with the subopcodes

Subopcode

)16
)17
)18
)19
)IA
)IB
)IC
)ID
)IE

Opcode 15 Functions

Function

Modify timing characteristics
Modify line characteristics
Modify terminal type
Modify special characters
Connect
Flush character queue
Set file transfer parameters
Set exclusive access
Set shared access

19.2.5.1 Set File Transfer Parameters)IC.

This command enables selection of a parity checking mode, selects
timeouts, selects a parity. error substitute character, and
disables the DC3-driven functions: bid, hold output, abort task,
and timeout. Parameters are located as follows in the call
block:

Btye

2-3
4-5
6
7, Bi t 0

Bit 1
Bit 2
Bits 3-4

Bit 5
Bits 6-7

The values
disconnected.

so

Meaning

Primary timeout, read direct
Secondary timeout, read direct
Parity error substitute character
Suppress echo=l, echo=O
Unused
Enable transmit parity=1
Transmit parity type
OO=even
01=odd
10=mark
11=space
Enable receive parity=1
Receive parity type
(Same as transmit)

selected disappear when the terminal

19.2.5.2 Modify Timing Characteristics)16.

is

The default timeouts are changed.
primary control block:

Values are gathered from the

2270512-9701 19-7 Special SVCs

I

Byte

2-3
4-5
6-7
8-9

DNOS System Design Document

Value (250 ms increments)

Rea d time ou t
Wr it e time ou t
Read direct timeout (first character)
Read direct timeout (other characters)

19.2.5.3 Modify Line Characteristics >17.

This call modifies the line configuration with the following
options:

Byte Value

2
3

LTA character (OO=don't change)
Speed **

4 , Bit 0 Half-duplex = 1
Bit 1 Switched
Bit 2 Disabled
Bit 3 Auto-disconnect enabled
Bit
Bit

4
5

Require DLE+EOT for auto-disconnect
SCF ready/busy monitor

Bit 6 Exclusive access
Bit 7 LTA enable (half-duplex only)

**The following table gives the speed translations for the value
of byte 20

Value Speed (ASYNC BPS)

o 110
1 300
2 600
3 1200
4 2400
5 4800
6 9600

-1 300 or 1200 depending on state of pin 12
at the COMM l/F. This is used for automatic
speed selection in conjunction with VA3400
and 212A modems.

19.2.5.4 Modify Terminal Type >18.

This call allows parameters related to the expected terminal type
to be altered.

Byte

2

3, BI T 0

Special SVCs

Value

Terminal model**
(3=703, 7F=763)
Echo = 0

19-8 2270512-9701

DNOS System Design Document

No echo = 1

**The following table gives the terminal type translation:

Value Terminal Type

03 703
07 707
2B 743
2D 745
3F 763
41 765
51 781
53 783
55 785
57 787
78 820
7D 825

19.2.5.5 Modify Special Characters)19.

This call modifies the characters used for end of record and end
of file.

Byte Value

2 End of record (OO=don't change)
3 End of file (OO=don't change)

19.2.5.6 Connect)IA.

This call establishes a connection in the indicated way. If bit
o of the user flags is set (INITIATE I/O) the task is not
suspended pending the establishment of connection. revisifon bar
on If the TPD is not the call originator, DTR is asserted only
after Ring Indicator or Data Set Ready is detected. Once Ring or
Data Set Ready is detected, the timeout reverts to 10 seconds for
the completion of the connection. Thus, if a port is s~t to
answer incoming calls with an infinite time-out, and some non­
modem device calls in, the DSR will timeout the call 10 seconds
after the phone rings. In full-duplex environments, Data Carrier
Detect must be sensed for the call to complete successfully.

Byte

2
3

4,5

2270512-9701

Value

Assert RTS (00= do not assert)
Assert DTR (00= do not assert)
Timeout (250 ms increments, O=infinite)

19-9 Special SVCs

I

DNOS System Design Document

19.2.5.7 Flush Character Queue)IB.

This call removes any characters buffered in the character queue
of the KSB. If an extended call block is used with bit 4 of
extended user flags set, the DSR is placed in 8-bit data mode.
If an extended call block is not used or if bit 4 is not set, the
DSR is placed in normal mode.

19.2.5.8 Set Exclusive Access)ID.

This call places the port under control of file transfer tasks.
These tasks have bit 5 of the user flags in the PRB set to one on
opens.

19.2.5.9 Set Shared Access)IE.

This call releases the port to tasks that do not have bit
the user flags set to one on opens.

19.2.6 VDT Extended Edit Flags (Subopcode)15).

5 of

Device dependent edit modes for the 911, 931 and 940 VDTs are
accessed like the DSRTPD Communications Control (Subopcode)15).
When using subopcode 00 in the data buffer, bytes 2 through 5 of
the data buffer form 2 words of flags. The following bit setting
cause the described functions to be performed.

First flag word (Bytes 2-5 of the subopcode 15 data buffer)
Bit 0 - 931,940 - enable pass through mode

1 - 931,940 - in pass through mode, terminate read on
EXT ()03)

2 931,940 - in pass through mode, terminate read on
ESC-) pair

3 - 931,940 - allow extended event characters
911 - map hardware generated codes 00 -)IF to

event characters in range)EO -)FF
4 reserved
5 931,940 - allow ESC and SOH characters in Write

ASCII BUFFER (access to reverse video,
underline, and blink)

6 reserved
7 - reserved
8 - 911,915 - report modified data to caller on Read

ASCII (DSR sets bit 7 of system flags
byte)

9 - 911,915 - extended character validation (invalid
characters are not echoed, error flag not
set, beep occurs if warning beep flag is
set)

10 - 911,915 - Suppress null characters on input, allow
null character on either 7 or 8 bit Write

Special SVCs 19-10 2270512-9701

DNOS System Design Document

ASCII
11 - 911,915 - convert embedded nulls to spaces on Read

ASCII
12 - Kanji - toggle screen edit mode and 911 emulation
13-15 - reserved - must be set to zero

Second flag word (bit set to 1 indicates key is enabled for
911 and 940 as an event key in the PDT. The existence of the
second flag word enables its use. (All the indicated keys
are mapped to the 913 code, as they would be in the WP mode
that is no longer available.

o Erase Field
1 Right Field
2 Left Arrow at left margin
3 Tab
4 Down Arrow
5 Skip
6 Home
7 Return
8 Erase Input
9 Blank Gray (default anyway)

10 Delete Character
11 Insert Character
12 Right Arrow at right margin
13 Enter
14 Left Field
15 Up Arrow (default)

The first three bits of the first flag word allow the "pure pass­
thru" support needed to use the 940 in block mode or as a
replacement for the old SVCs)8 and)18 character mode. These
functions are not perceived to be particularly useful, but will
be left in the DSR as a hook to any features not supported by our
software. An application that uses these functions must restore
the screen image and terminal state to standard modes on exit
from pass thru mode.

Bit 3 (the fourth bit) of the first flag word allows the 3270
package (and any others) to get at the extended function keys on
the 940 keyboard.

BiL 5 allows access to setting the extended display attributes of
reverse video, underline and blinking.

19.2.7 Asynchronous Multiplexor Operation (Subopcode)15).

Two requests for the Modify Device Characteristics SVC (opcode
)00, subopcode)15) are supported for both VDT and printer DSRs
that execute on buffered TILINE multiplexers (CI403/CI404).
These two requests are Read UART Registers and Write UART

2270512-9701 19-11 Special SVCs

DNOS System Design Document

Registers. These requests are provided for the use of diagnostic
programs. Their use requires detailed knowledge of the
CI403/CI404 controllers and the WD8250 UART used on the
controllers. Refer to the CI403/CI404 hardware documentation for
more detailed information.

The Read and Write DART Registers both directly access the
functions of slave word 1 of the CI403/CI404 TILINE Peripheral
Control Space (TPCS). A diagnostic task is allowed direct access
to seven DART registers for each channel of the multiplexer.

19.2.7.1 Write DART Registers.

The primary function of the Write DART Registers request is
setting and resetting specific DART inputs and RS-232-C signals
for a diagnostic program. The request is implemented by using
the Modify Device Characteristics SVC (I/O subopcode >15) with
the sub-subopcode >31. This opcode provides direct, device­
dependent access to slave word 1 of the CI403/CI404 TPCS. The
operation must be issued with an extended call block; otherwise,
an error is returned.

Parameters furnished by the online diagnostic task include the
output data buffer length, the contents of the data buffer, the
DART register number to which the data is to be written (call
block byte 18), and the register data (call block byte 19). If
the device (PDT) to which the operation is issued is not in
diagnostic mode, the request is rejected. Figure 19-0 shows the
call block formats and applicable fields in the Write DART
Registers request.

Special SVCs 19-12 2270512-9701

DNOS System Design Document

+-------------------~-------------+
o)00 I ,STATUS BYTE 1

----------------+--~------------~I
2 I/O SUB-OPCODE 1 LUNO I

----------------+----------------
4 SYSTEM FLAGS r USER FLAGS

----------------+----------------
6 DATA BUFFER ADDRESS -----------+

8

10

RESERVED
LOGICAL RECORD LENGTH

CHARACTER COUNT

12 REPLY BLOCK ADDRESS - RESERVED

14 EXTENDED USER FLAGS

RESERVED
16 FILL CHARACTER I EVENT BYTE

18 REG II RES I REGISTER DATA

RESERVED
20 FIELD ROW POS. I FIELD COL POS.

+---------------------------------+
+---------------------------------+
1)31 1 IGNORED 1<----------+
+---------------------------------+

Figure 19-1 Write UART Register Format

Affected fields of the SVC call block and their meanings are as
follows:

Byte

o
1
2

3
4
5

6,7

2270512-9701

Bit

5

Meaning

Specifies SVC call type. Enter)00 for I/O.
Used to return operation error codes.
Subopcode. Enter)15 for Modify Device
Characteristics

LUNO. Use the LUNO from the diagnostic assign.
System flags. Standard OS definitions apply.
User flags. Standard OS definitions apply.
Extended call block. 1 = Read or Write UART
Registers.

Data buffer address. Points to the buffer that
contains the sub-subopcode.

19-13 Special SVCs

8,9
10,11

18

19

7-4

DNOS System Design Document

Logical record length. Not used.
Character count. 2 = Read or Write DART Registers.
Register number (0-7) left justified in byte.
Specifies the DART register to which
the operation is directed.

Register data. For the Write UART subopcode,
specifies data to be written.

19.2.7.2 Read UART Registers.

The primary function of the Read UART Registers request is
sensing UART inputs and RS-232-C signals for a diagnostic
program. The request is implemented by using the Modify Device
Characteristics SVC (I/O subopcode)15) with the sub-subopcode
)j2. This opcode provides direct, device-dependent access to
slave word 1 of the CI403/CI404 TPCS. The operation is issued
with an extended SVC call block.

Parameters furnished by the online diagnostic task include the
output data buffer length, the contents of the data buffer, and
the UART register number from which the data is to be read (call
block byte 18). The register data is returned in call block byte
19. If the device (PDT) to which the operation is issued is not
in diagnostic mode, the request is rejected. Figure 19-2 shows
the SVC call block formats and applicable fields in the Read DART
Registers request.

Special SVCs 19-14 2270512-9701

DNOS System Design Document

+---------------------------------+
o)00 1 STATUS BYTE--

----------------+----------------
2 I/O SUB-OPCODE 1 LUNO

----------------+----------------
4 SYSTEM FLAGS 1 USER FLAGS

----------------+----------------
6 DATA BUFFER ADDRESS -----------+
8 LOGICAL RECORD LENGTH - RESERVED

o CHARACTER COUNT

----------------------~----------
12 REPLY BLOCK ADDRESS

14 EXTENDED USER FLAGS.

RESERVED
16 FI LL CHARACTER 1 EVENT BYTE

18 REG II RES 1 REGISTER DATA

RESERVED
20 FIELD ROW POSe 1 FIELD COL POSe

+---------------------------------+
+---------------------------------+
1)32 I IGNORED 1<----------+
+---------------------------------+

Figure 19-2 Read UART Registers Format

Affected fields of the SVC call block and their meanings are as
follows:

Byte

o
1
2

3
4
5

6

8

2270512-9701

Bit

5

Meaning

Specifies SVC call type. Enter)00 for I/O.
Used to return operation error codes.
SUbopcode. Enter)15 for Modify Device
Characteristics.

LUNO. Use the LUNO from the diagnostic assign.
System flags. Standard OS definitions apply.
User flags. Standard OS definitions apply.
Extended call block. 1 = Read or Write UART

Regi ste rs •
Data buffer address. Points to the buffer that
contains the sub-subopcode.

Logical record length. Not used.

19-15 Special SVCs

DNOS System Design Document

10, 11 Character count. 2 = Read or Write UART
Registers.

18 7-4

19

Register number (0-7) left justified in byte.
Specifies the UART register to which
the operation is directed.

Register data. For the Read UART subopcode,
the data read from the device is returned
in this location.

19.2.8 TILINE Diagnostic Port (Subopcode >16).

The TILINE Diagnostic Port operat~on allows the passing of a
sixteen byte controller image buffer to a device from a
nonprivileged task. The TILINE controller image after the
execution of the command is returned in the controller image
buffer. This subopcode is only valid for disk and magnetic tape
devices and is used by online diagnostics.

The call block has the following format:

Hex Offset Align on Word Boundary
+-----------------+------------------+

>00 I 0 I (Return Code> I
+-----------------+------------------+

> 02 I 16 I Luno I
+-----------------+------------------+

>04 I (System Flags> I User Flags I
+------------------------------------+

>06 I TILINE Image Buffer Address I
+------------------------------------+

> 08 I Re s e r v e d = > 1 0 I
+------------------------------------+

> 0 A I Re s e r v e d = > 1 0 I
+-----------------+------------------+

>OC IBinary OS Ver/Rell Diagnostic Flags I
+-----------------+------------------+

>OE I Dynamic Passcode I
+------------------------------------+

(>10 - maximum size)

Byte Description

3

4

5

Special SVCs

LUNO assigned to the disk or mag tape

Flags set by system - when set mean:

Bit 0
Bit 1
Bit 2-7

LUNO is bu sy
Error
Reserved (set to 0)

Flags set by user - when set mean:

19-16 2270512-9701

DNOS System Design Document

6-7

12

13

Bit 0
Bi t 1- 6
Bit 7

Initiate I/O
Reserved (set to 0)
No retries are to be performed

Address of TILINE image buffer. This buffer will
contain the TILINE controller image after the
command completion. Must begin on word boundary
and be sixteen bytes in length.

This byte must contain the version and release of the
operating system in binary. For example, to execute
this I/O supervisor calIon DNOS 1.1, this byte must
contain the value >11.

Diagnostic flags set by the user - when set mean:

Bit 0

Bi t 1-7

-0 = Bytes 10 and 11 in the TILINE
image buffer do not contain a
logical address,

1 Bytes 10 and 11 in the TILINE
image buffer contain a logical
address

Reserved (set to 0)

14-15 Dynamic passcode - must contain the current value
of the system minute.

When bit 0 of the "diagnostic flags" (byte 13) is set, the
controller image buffer is modified by the operating system prior
to execution of the command. In particular, bytes 10 and 11 are
assumed to contain a logical address; this address is converted
to a physical 21 bit TILINE address which is inserted into bytes
10/11 (LSB), and bits 4-7 of byte 13 (MSB) of the TILINE image
buffer.

CAUTION

If the command passed in the TILINE
controller image transfers data to or from
the device, it is the responsibility of the
task issuing the Diagnostic Port operation to
set bit 0 of the diagnostic flags to 1, and
provide the logical address (bytes 10 and 11)
and byte length (bytes 8 and 9) of the
read/write buffer in the controller image
buffer.

The operating system performs address space verification when bit
o of the diagnostic flags is set. If this bit is not set, no

2270512-9701 19-17 Special SVCs

DNOS System Design Document

address space verification is performed. The address space
verification checks that the buffer address (bytes 10 and 11) and
buffer byte length (bytes 8 and 9) fit entirely in one segment of
the issuing task. Write and execute protection of the segment
are not checked.

The unit select field is ignored in the TILINE controller image
buffer; the DSR sets the unit select field properly to indicate
the device to which the luno is assigned. It should be noted
that certain fields in the TILINE controller image buffer have
meaning only after the command is ex€cuted. The controller image
buffer has the following format:

FOR DISK DEVICES:

+---+
o I DISK STATUS I

+---+
2 I COMMAND I

+---+
4 I FORMAT/SECTOR I

+---+
6 I CYLINDER I

+---+
8 I COUNT I

+---+
10 I LOGICAL ADDRESS (16 BIT) I

+---+
12 I SELECT/MSB'ADDRESS I

+---+
14 I CONTROLLER STATUS I

+---+

Special SVCs 19-18 2270512-9701

DNOS System Design Document

FOR TAPE DEVICES:

+---+ o I TAPE TRANSPORT STATUS J

+---+
2 I READ OVERFLOW STATUS COUNT J

+---+
4 I READ OVERFLOW STATUS COUNT I

+-------------------~-----------------------+
6 I READ OFFSET I

+---+
8 I COUNT J

+---+
10 I LOGICAL ADDRESS (16 BIT) I

+---+
12 I COMMAND/SELECT/MSB ADDRESS I

+---+
14 I STATUS/CONTROL I

+---+

The following error codes are unique to the Diagnostic Port. All
other error codes that occur when using the Diagnostic Port are
standard SVC error codes.

Error

)00E8

)00E9

Meaning

Invalid TILINE Diagnostic Port passcode. The
passcode is -invalid if the following conditions
are not met in the SVC call block: Byte 8 =)00,
Byte 9 =)10, Byte 10 =)00, Byte 11 =)10,
Byte 12 = Binary OS version/release (described
above), Byte 14-15 = value of system minute.

Invalid TILINE command used with TILINE Diagnostic
Port.

The disk DSR handles TILINE Diagnostic Port requests in a unique
manner. (Other than returning the TILINE controller image, the
tape DSR does not handle Diagnostic Port requests in a unique
manner.) The disk DSR i~sures that no requests are outstanding
on any of the devices attached to the same controller (as the
device receiving the request), before issuing the Diagnostic Port
operation. After all outstanding requests are completed, the
Diagnostic Port operation will be initiated. Following the
completion of the Diagnostic Port operation, all requests queued
to the devices attached to the same controller are initiated.
During the interval between the receipt of a Diagnostic Port
request and the completion of that request, no other requests
will be initiated to any device attached to the same controller.

2270512-9701 19-19 Special SVCs

I

DNOS System Design Document

CAUTION

Because the disk DSR was not designed to
handle seek and restore commands initiated by
the user, a seek or restore command should
never be issued in the TILINE image buffer.
System error conditions will result if a seek
or restore is issued.

19.2.9 Read with Initial Value (Subopcode >17).

The Read with Initial Value subopcode is implemented for the 911,
931 and 940 devices. This operation performs the same functions
as Read ASCII, except that the field initial value is taken from
the user's buffer rather than from the terminal display memory.
When using this operation, the user must rationalize any
discrepencies between the visible initial value in the field and
that which is passed to the DSR in the buffer. The operation is
used by 3270 communications software.

The following call block is used: -

Dec
0

2

4

6

8

10

12

14

16

18

20

Hex
0

2

4

6

8

A

C

E

10

12

14

Byte
04

Align on Word Boundary
+--+
I 00 I <Return Code> I
+----------------------+-----------------------+
I 17 I LUNO I
+----------------------+-----------------------+
I <System Flags> I User Flags I
+----------------------+-----------------------+
I Data Buffer Address I
+----------------------+-----------------------+
I Read Character Count I
+----------------------+-----------------------+
I <Actual Read Count> I
+----------------------+-----------------------+
I Validation Table Address J

+----------------------+----~------------------+
I Extended User Flags I
+----------------------+-----------------------+
I Fill Character I <Event/Byte> I
+----------------------+-----------------------+
I Cursor Position Row I Column I
+----------------------+-----------------------+
I Field Beginning Ro~ I Column I
+--+

<)16 - Maximum size)

System flags

Special SVCs 19-20 2270512-9701

DNOS System Design Document

o - Busy
1 - Error
2 - EOF
3 - Event
7 - Modify data tag- (operator pressed a valid

data key or erase key)
05 User flags

5 - Extended block --must be set 1
08-09 Output character count on initial read option

size of initial value in the buffer
OA-OB Actual count of characters read (always less than

or equal to size of initial value)
OC-OD Specify the address of a validation table if

character validation is set in the extended user
flags. Otherwise set to zero.

OE Extended user flags
o - Field start position
1 - Intensity
2 - Blink cursor
3 - Graphics
4 - Eight-bit characters (intensity bit)
5 - Task edit
6 - Beep
7 - Right boundary

OF Extended user flags
o - Cursor position in read field
1 - Fill character
2 - Do not initialize field
3 - Require termination char for return
4 - No echo
5 - Character validation
6 - Ignored
7 - Warning beep

11 Programmable key or blank returned

The "do not initialize field" flag set to 1 indicates that the
DSR will not replace the data on the screen by what is in the
buffer before doing the Read operation.

19.2.10 Assign Diagnostic Device (Subopcode)94).

The Assign Diagnostic Device is issued by a task that is
assigning a LUNO to a device that is in the diagnostic state.
The call block is of exactly the same format as the Assign LUNO
(subopcode)91); but subopcode)94 is required to assign a LUNO
to a device that is in the diagnostic state. Only one task can
successfully execute this SVC at anyone time. Other tasks
attempting the assign will receive a)9C error.

2270512-9701 19-21 Special SVCs

DNOS System Design Document

19.2.11 Attach File (Subopcode)AO).

The Attach File SVC is used to reserve access to a file. The FCB
representing the file to be attached is built (or located if
already in memory). The SVC is currently used. by the O.S. to
support job local temporary files.

If the request is the first attachment to this file by this job,
an ROB is built to point to the FCB representing the file. An
attachment number between 0 and 255 (unique to this job) is
generated and placed in the ROB. (See the discussion of Detach
File by Number SVC for details of it"s use.) The LUNO count for
the FCB is incremented.

If the File was already attached by this job, the count of attach
operations in the ROB is incremented.

The Attach Resource SVC block has the following format:

Hex Offset
)00

)02

)04

Align on word boundary

----------------+-----------------
I 00 I <Return Code) I
+----------------+-----------------+
J AO J Rese rved I

+----------------+-----------------+
)06 Reserved

+----------------------------------+
)16 J Pathname Pointer J

+----------------------------------+
)18 Reserved

<)24 - maximum size)

Special SVCs 19-22 2270512-9701

DNOS System Design Document

19.2.12 Detach File (Subopcode)Al).

The format of the Detach File SVC call block is as follows:

Hex Offset
)00

)02

)04

)08

)16

)18

Align on word boundary
----------------+-----------------
I 00 I <Return Code) I
+----------------+-----------------+
I Al I Reserved I
+----------------+-----------------+

Reserved
+----------------------------------+
I JSB Address I
+----------------------------------+
I Pathname Pointer I
+----------------------------------+

Reserved

()24 - maximum size)

If the JSB field is zero, the file is detached from the issuer's
job. In order to specify another job, the issuing task must be
software privileged, hardware privileged or a system task. The
ROB associated with the JCB which corresponds to the given
pathname is located. If more than one attach has been issued,
the attach count is decremented and control is returned. If the
attach count is zero, the ROB is deleted and the FCB luno count
is decremented. When the luno count is zero the memory
structures are released, and if the file was a temporary file, it
is deleted.

2270512-9701 19-23 Special SVCs

DNOS System Design Document

19.2.13 Detach File by Number (Subopcode)A3).

The Detach File by Number SVC call block has the following
format:

Hex Offset
)00

)02

)04

)06

)08

)OA

Align on word boundary
----------------+-----------------

00 <Return Code) I
+----------------+-----------------+
I A3 I Detach Number I
+----------------+-----------------+
I Reserved I
+----------------------------------+
I Reserved I
+----------------------------------+
I JSB Pointer I
+----------------------------------+

Reserved

()24 - maximum size)

The Detach File by Number SVC is issued by the Job Manager for
each ROB that still exists for a job at its termination. Job
Manager obtains the attach number from the ROB and places it into
byte 3 of the Detach File by Number call block.

Special SVCs 19-24 2270512-9701

DNOS System Design Document

19.2.14 Modify FDR Bit (Subopcode)A4).

The Modify FDR Bit SVC is available to turn on or off a
particular bit in an FDR. One of the flags in the call block
indicates which bit to change and another flag indicates how to
change that bit.

The format of the SVC call block is as follows:

Align on word bouridary
Hex Offset

)00
----------------+--------~--------

00 <Return Code> I
+----------------+-----------------+

)02 I A4 I Rese rved I
+----------------+-----------------+

)04 I <System Flags) I User Flags I
+----------------------------------+

)06 Reserved

+----------------------------------+
)16 I Pathname Pointer I

+----------------------------------+
)18 Reserved

---------------------------------~
()24 - maximum size)

Byte 5 - user
Bit 0
Bit 1
Bits 2-7

2270512-9701

flags
I=Set, O=Clear specified bit
I=Use temporary file bit
Reserved, must be zero

19-25 Special SVCs

DNOS System Design Document

19.2.15 Release LUNO in Another Job (Subopcode >AS).

The Release LUNO in Another Job SVC is used by the Job Manager
and by PMTERM to clean up job-local and task-local LUNOs when a
job or task terminates.

The format of the SVC call block is as follows:

Align on word boundary
Hex Offset

)00

)02

)04

)06

)08

)OA

)OC

)10

)12

--~-------------+-----------------
00 <Return Code> I

+----------------+-----------------+
I AS I LUNO to Release I
+----------------+-----------------+
I <System Flags) I Reserved I
+----------------------------------+
I Reserved I
+----------------------------------+
I JSB of job from which to releasel
+----------------------------------+
I TSB of job from which to releasel
+----------------------------------+

Reserved

+----------------------------------+
I Utility Flags I
+----------------------------------+

RESERVED

()24 - maximum size)

Special SVCs 19-26 2270512-9701

DNOS System Design Document

19.2.16 Assign System LUNa FF (Subopcode)A6).

The Assign System LUNa FF· is used to create a logical device
table (LDT) for a given program' file, using its file control
an c h 0 r (F C A) • Th e for rna t· 0 f the b 1 0 c k i s a a follow s :

Hex Offset
)00

)02

)04

)08

)Oa

. Align on word boundary
----------------+-~---------------
I 00 I <Return Code) I
+----------------+-----------------+
I A6 I Reserved I
+----------------+-----------------+

Reserved

+----------------------------------+
I FMT Address I

+----------------------------------+
I FeB Address I

()OC - maximum size)

2270512-9701 19-27 Special SVCs

DNOS System Design Document

19.2.17 Release File Structures (Subopcode)A7).

The Release File Structures operation is used by the I/O
subsystem to remove file structures during certain abort
conditions. It releases file control block (FCB), and the file
directory block (FDB). The format of the block is as follows:

Align on word boundary
Hex Offset

)00

)02

)04

)08

)OA

----------------+-----------------
I 00 I Reserved I
+----------------+-----------------+
I A7 I Reserved I
+----------------+-----------------+

Reserved

+----------------------------------+
I FMT Address I
+----------------------------------+
I FDB Address I

()OC - maximum size)

19.2.18 DIOU Operations (Subopcodes)C2,)C3,)C6,)C7).

The DIOU operations use a call block described in a template
named DCB. It is designed to simplify any buffering and
unbuffering that has to be performed by placing the string field
at the same location as the st~ing field of the IRB (pathname
field). The subopcodes that use the DIOU call block are:

)C2 - Get selected device parameters
)C3 - Set selected device parameters
)C6 - Get CDE From CDT
)C7 - Process device task bid

Special SVCs 19-28 2270512-9701

DNOS System Design Document

Th e D IOU Ca 11 B 1 0 c k (D C B) ~ Ii,~ the follow i n g for rna t :

Aiign-on Word Boundary
Hex Offset *----------~~--+--------------*

)00 ! 00 !,~Return Code)!
+--------------+--------------+

) 02 ! DeB 0 C . . ! DC BL UN!
+--------~-----+--------------+

)04 DCBSFL ! DCBCDE
+-----------~--+--------------+

)06 Reserved
+--------------+--------------+

) 08 ! DC B N AM! !
+-------~------+--------------+

/ / /
/ / /
+--------------+--------------+

)10 Reserved
+--------------+--------------+

)12! DCBNUM
+--------------+--------------+

)14 DCBUFL !
+----------~---+--------------+

)16! .DCBBUF
+--------------+--------------+-
()18 - ma~imum size)

FLAGS FOR FIELD: DCBSFL #04 - *SYSTEM FLAGS

DCFBSY (X •••••••••••.•••) - BUSY
DCFERR = (.X •........•....) - ERROR

FLAGS FOR FIELD: DCBUFL #14 - *REQUESTOR FLAGS

DCFCON - CONDITIONAL SET
DCFNAM - NAME SPECIFIED
DCFRES = RESERVED FLAG
DCFWCH =

(X •••••••••••••••)
(• X ••••••••••••••)
(•• X •••••••••••••)
(••• XX •••••••••••)
(••••• X ••••••••••)
(•••••• X •••••••••)
(••••••• X ••••••••)

- WHICH RELATIVE DEVICE
DCFREP - REPLACE
DCFVOL - VOLUME NAME PROVIDED
DCFSDK - USE SYSTEM DISK

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

DCBCHR DCBCDE)05 *BID CHARACTER

2270512-9701 19-29 Special SVCs

DCBOC

DNOS System Design Document

The operation code of the desired SVC is placed in this byte
by the requester. The value ret,urns unaltered.

DCBSFL
DCFBSY, when set to 1, indicates the SVC is being worked on.
DCFERR, when set to 1, indicates an error was returned in
DCBEC.

DCBCDE
All operations that require a CDE number (position within a
CDT) get the number from this field. If the first CDE is
desired this field is 0, second CDE is 1, and so on up to
>F.

DCBCHR
DCBCHR is an equate for the DCBCDE field. The bid character
on a bid task SVC is placed in this field.

DCBNAM
Up to eight character, left-adjusted, blank filled name of
the device. This is provided by the requestor when DCFNAM
is set to 1 for the SVCs that require a device name or
number. It is filled" in by DIOU when a device name is
requested.

DCBNUM
The DIOU assigned number for the device. It is returned by
DIOU when a device number is requested. It is provided by
the user when DCFNAM is set to ° for the SVCs that require a
device name or number.

DCBUFL
DCFCON, when set to 1, indicates that the operation being
performed is a Conditional Set Parameters. DCFNAM, when set
to 1, in~icates the name of the device is specified in the
call block. When set to ° the device number is specified.
DCFWCH is a two bit flag that is used by the Get Device
Parameters operation to indicate the parameters of the
specified device are desired (00), or the parameters of the
device that is lexically less thBn (01) or greater than (10)
the specified device are desired. DCFREP is used when
modifying a CDT. If DCFREP is set to 1, the specified CDE
will replace the current CDE of that number. If DCFRGP is
set to 0, the specified CDE will be added to the CDT only if
none currently exists with the same CDE number. DCFVOL is
set to 1 if a volume name instead of a disk name is provided
in the call block. DCFSDK is set to 1 if the operation is
applied to the system disk. The order in which DCFSDK,
DSFVOL, and DCFNAM are checked is DCFSDK, DSFVOL, and then
DCFNAM. In other words, DCFSDK overrides DCFVOL and DCFNAM,

Special SVCs 19-30 2270512-9701

DNOS System Design Document

and DSFVOL overrides DCFNAM.

DCBBUF
The address of the device parameters or the CDE, depending
on the subopcode. The address may be odd. When a buffer is
used, the first byte contains the length of the buffer
excluding the length byte.

19.2.18.1)C2 - Get Selected Device Parameters.

The Get Selected Device Parameters operation return the values of
the parameters identified in the bu"ffer pointed to by the DCBBUF
field. The name and number of the device are always returned in
the call block when this operation completes successfully.

DCB fields used
and DCBBUF.

include: DCBOC ()C2), DCBNUM, DCBNAM, DCBUFL,

DCBNUM
If the DCFNAM flag (see DCBFLG) is 0, the parameters
requested are those of the device specified by the device
number in this field. If it is 1 the device number will be
returned in this field even if it is not one of the
parameters requested.

DCBNAM
If the DCFNAM flag is 1, the parameters requested are
of the device specified by the device name in this
If it is 0, the device name will be returned in this
even if it is not one of the parameters requested.

DCBUFL

those
field.
field

If the DCFNAM flag is 0, the number in the device number
field ident~ifies which device's parameters are requested;
otherwise, the name in the device name field does. The
DCFWCH flag field indicates which device's parameters
relative to the specified one are to be returned. If the
field is 00 use the specified device, 01 use the device that
is lexically less than the specified device, or 10 use the
device that is lexically greater than the specified device.

DCBBUF
The buffer pointed to by this field is set up by the user in
the following manner.

length of the buffer
parameter number of a parameter
parameter number of a parameter

parameter number of a parameter
o

2270512-9701 Special SVCs

DNOS Syst~m Design Document

All of the values are bytes. The length of the buffer is the
total number of bytes available for DIOU to place the specified
parameters back into the buffer. If the name or number parameter
is in the list of parameters the value will not be returned in
the buffer but instead it will be placed in the name or number
field of the call block. The buffer will be returned using the
following format.

length of the buffer
parameter number of a parameter ----+
length of the parameter 1
parameter 1- repeated

------------------------+

°
The length of the buffer will be the number of bytes taken up by
the parameter overhead (one word per parameter) and the
parameters. It will include a byte for the 0 terminator. If a
parameter is not defined, the length byte for that parameter will
be zero.

19.2.18.2)C3 - Set Selected Device Parameters.

The Set Selected Device Parameters operation adds or changes the
values of the parameters identified in the buffer pointed to by
the DCBBUF field.

DCB fields used include: DCBOC ()C3), DCBNUM, DCBNAM, DCBUFL,
and DCBBUF.

DCBNUM
If the DCFNAM flag (see DCBFLG) is 0, the parameters to be
set are those of the device specified by the device number
in this field.

DCBNAM
If the DCFNAM flag is 1, the parameters to be set are those
of the device specified by the device name in this field.

DCBUFL
If the DCFNAM flag is 0, the number in the device number
field identifies which device's parameters are to be set,
otherwise; the name in the device name field does. If the
DCFCON flag is 1, the parameters in the list will be set if
the verification value provided with the new value is the
present value of the parameter.

DCBBUF
If DCFCON is 0, the buffer pointed to by this field will be

Special SVCs 19-32 2270512-9701

DNOS System Design Document

set up by the user in the following form.

length of the buffer
parameter number of a parameter ----+
length of the parameter 1
parameter 1- repeated

-----------------------+

o

DIOU processes the buffer until it encounters a 0 parameter
number or the end of the buffer as defined by the first byte of
the buffer. The length byte does not include itself.

If DCFCON is 1, the buffer pointed to by this field is set up by
the user in the following form.

length of the buffer
parameter number of a parameter ----+
length of the parameter 1
verification value 1- repeated
parameter 1

-----------------------+
o

The verification value must be the same length as the parameter.
DIOU processes the buffer until it encounters a 0 parameter
number or the end of the buffer as defined by the first byte of
the buffer. The length byte does not include itself. Note that
only those parameters not declared as READ ONLY may be altered.

19.2.18.3)C6 - Get CDE From CDT.

The Get CDE From CDT operation returns the requested command
definition entry from the specified command definition tabl~.

DCB fields used include: DCBOC <)C6), DCBCDE, DCBNUM, and
DCBBUF.

DCBCDE
This field contains a value between 0 and)F that identifies
the CDE to be retrieved.

DCBNUM
The CDT number from which the CDE is to be retrieved is
placed in this field. The first CDT is number O.

2270512-9701 19-33 Special SVCs

DNOS System Design Document

DCBBUF
The CDE is returned in the buffer pointed to by this field.
The first byte will be thH length of the CDE.

1 9 • 2 • 18 • 4 > C 7 - Pro c e s s De vic E~ Ta s k Bid.

The Process Device Task Bid operation processes the CDE
corresponding to the character passed in the call block if the
character is in the specified terminal's CDEs.

DCB fields used include: DCBOe (>C7),
and DCBUFL.

DCBCDE
The character of a CDE.

DCBNUM

DCBCDE, DCBNUM, DCBNAM,

If the DCFNAM flag (see DCBFLG) is 0, the task bid is from
the device specified by the device number in this field.

DCBNAM
If the DCFNAM flag is 1, the task bid is from the device
specified by the device name in this field.

DCBUFL
If the DCFNAM flag is 0, the number in the device number
field identifies which device the task is bid from;
otherwise, the name in th.e device name field identifies the
device.

19.3 SPECIAL FEATURE OF EXECUTE TASK SVC

The Execute Task SVC (>2B) uses a bit in the flag byte of the
call block for implementing the RBID funetion. When the bit is
set, the SVC processor bids the task and unconditionally suspends
the caller. The caller is placed in state 6, as opposed to state
17. This allows the task that is bid and the task that bid it to
alternate execution. When the task that was originally bid
terminates, the caller is reactivated.

The sole function of the R.BID bit is to support the SCI RBID
capability. The RBID process is described in detail in the DNOS
SCI and Utilities Design Document.

Special SVCs 19-34 2270512-9701

DNOS System Design Document

19.4 SEGMENT MANAGEMENT

The Reset Exclusive Use Across Job Boundaries suboperation ()13)
of the Segment Management SVC ()40) is used by the task
termination processor (PMTERM) to clean up any segments still
owned at task termination. PMTERM will continue to issue this
SVC as long as there are owned segment entries (OSEs) linked to
the TSB. This operation uses the same SVC processor as the Reset
Exclusive Use suboperation but uses a different entry point. If
the task in which exclusive use is being reset is not in state 04
(task termination), the SVC will fail. Otherwise, the segment
owner block (SOB) is delinked" from the SSB and its memory
released. The OSE is removed from the list of owned segments
linked to the TSB and its memory released. If the segment is not
in use or reserved, it is cached or. deleted.

19.5 NAME MANAGEMENT

The Name Management SVC (SVC)43) supports 15 subopcodes, most of
which are not useful to user programs. Four of the operations
are documented in the DNOS SVC Reference Manual. These are:

* Return the pathname and parameters for a logical name

* Create a logical name (Setting a name's value)

*., Delete a logical name

* Restore name segment

The following
since they are
tasks:

operations are documented only in this
useful only to operating system and DNOS

section,
utility

* Return an additional pathname of a set of pathnames for
a logical name

* Add a pathname to the set of
name

pathnames for a logical

* Return the logical name that immediately precedes or
follows in alphabetical order the specified logical name
in the current stage

* Delete a defined subset of
current stage

* Create a new stage

2270512-9701 19-35

the logical name s in the

Special SVCs

DNOS System Design Document

* Return to the previous stage

* Return error information

* Return segment size

* Copy logical names to new segment

* Create empty name segment

* Save name segment

A task that requires a new logical name performs a Set Name's
Value (subopcode)02) operation, supplying the logical name, the
value (pathname), and the parameters, if any. When the value of
a logical name is a set of pathnames, the task performs an Append
Pathname to Name (subopcode)03) operation, supplying the logical
name and a pathname. The append operation is performed for each
additional pathname.

When a task needs the pathname or parameters of a logical name,
it performs a Determine Name's Value (subopcode)00) operation.
When the value of the logical name is a set of pathnames, the
task performs a Determine Next Pathname (subopcode)01) operation
for each additional pathname. The task supplies the logi~al name
for either of these two operations. Within DNOS, most Assign
LUNO operations go through the Name Manager for resolution of
names, therefore a task rarely needs to use this operation.

The Delete Name (subopcode)04) operation deletes a specified
logical name. The Return Next Name (subopcode)05) operation
returns a logical name that is adjacent to the supplied name in
the current name list. A flag specifies the preceding name or
the following name.

The Purge Names (subopcode)06) operation supplies a logical name
and its length. The name is compared to each logical name in the
current name list. If an equal name is found, that name is
deleted. When all but the rightmost character of the names are
equal, and the rightmost character of the name in the table is
greater than the corresponding character of the specified name,
the operation deletes the name.

The Enter New Stage (subopcode)07) operation creates a new stage
with the calling task as the only task in the stage. The Return
to Previous Stage (subopcode)08) operation may only be executed
by the task that created the current stage. It returns that task
to the previous stage of the task. It deletes the stage if it
has no daughter stage and if the calling task is the only task in
the stage.

The Return Next Error Entry (subopcode)09) returns the values of
error synonyms stored in the first entry in the list of error

Special SVCs 19-36 2270512-9701

DNOS System Design Document

entries.

Several operations have to do with the- segments that contain
logical names and synonyms. The Determine Segment Size
(subopcode)OA) operation returns the size required for a segment
that would hold the names available to the calling task. The
Copy Names to New Segment (subopcode)OB) operation copies all
names ,available to the calling task to the specified segment.
The Create Empty Name Segment (subopcode)OD) creates a new
segment for names and Save Name Segment (subopcode)OE) copies
the name segment to disk. The Restore Name Segment (subopcode
)OC) retrieves a disk copy of a name segment into memory.

The supervisor call block is of the following form:

Align on word boundary
Hex Offset *--------------------+--------------------*

)00)43 <Return Code) I
+--------------------+--------------------+

)02 I Subopcode I Flags I
+--------------------+--------------------+

)04 I Address of Name I
+---+

)06 I Address of Value I
+---+

)08 I Address of Parameter List I
+---+

)OA I Miscellaneous I
+---+

)OC I Reserved I

The call block contains the following:

Byte

o

1

2270512-9701

Contents

Opcode,)43.

Return code. DNOS returns zero when the operation
completes satisfactorily. When the operation
completes in error, DNOS returns an error code.

19-37 Special SVCs

2

3

4-5

6-7

8-9

10-11

12-13

Special SVCs

DNOS System Design Document

Subopcode, as follows:

)00 - Determine Name's Value
)01 - Determine Next Pathname
)02 - Set Name's Value
)03 - Append Pathname to Name
)04 - Delete Name
)05 - Return Next Name
)06 - Purge Names
)07 - Enter New Stage
)08 - Return to Previous Stage
)09 - Return Next Error Entry
)OA - Determine Segment Size
)OB - Copy Names to New Segment
)OC Reserved
)OD - Create Empty Name Segment
)OE - Save Name Segment
)OF - Restore Name Segment

Flags:

Bit 0 - Name type. Set as follows:
1 - Logical Name
o - Synonym

Bits 1-7 - Reserved

Address of name. Address of a buffer that contains
the name (or name list for the return to previous
stage operation). The first byte of the buffer
contains the length of the name (or name list).

Address of value. Address of a buffer that contains
a pathname or other value for a logical name. The
first byte of the buffer contains the length of the
pathname.

Address of parameter list. Address of a buffer that
contains a parameter list for a logical name. The
first byte of the buffer contains the length of the
list.

Miscellaneous. Used as a flag by the determine name's
value and the return next name operations. Used for
the parameter number by the determine next pathname
operation. Used for the segment size by the determine
segment size operation. Used for segment ID by the
copy names to new segment operation.

Reserved.

19-38 2270512-9701

DNOS System Design Document

The task that requests a Set Name's Value operation for a logical
name with parameters must supply the parameters in a list. The
Determine Name's Value operation returns a parameter list also
when the name is a logical name having a parameter list. The
format of the parameter list is as follows:

Hex Offset
00

02

04

2+n

4+n

6+n

4+n+m

--------------------+-------------------- --------
I Length 0 I
+--------------------+--------------------+
I Type for Sublist I Length of Sublist I
+--------------------+--------------------+ Required
I I

Parameter
Entry Blocks

I I
+--------------------+--------------------+ --------
I Type for Sublist I Length of Sublist I
+--------------------+--------------------+
I I Optional

Parameter
Entry Blocks

The parameter list contains the following:

Byte

o

1

Contents

Length. Length of entire structure; the sum of
1 plus twice the number of sublists.

Zero.

One or more of the follo~ing sublists:

2

3

4-3+n

Type for sublist. The type of the parameters in
the sublist. Types of parameters are:

o - System parameters
1 - Spooler parameters
2-)7F - Reserved
)80-)FF - User IPC parameters

Length of sublist. The sum of the lengths of all
parameter entry blocks in the sublist, referred
to as n.

Parameter entry blocks, one for each parameter.
Formats of parameter entry blocks are described
in subsequent paragraphs.

Three formats are defined for parameter
which may be used for any type of parameter.

entry blocks, any of
The three formats

2270512-9701 19-39 Special SVCs

DNOS System Design Document

are related to three parameter sizes. A parameter may be a
single-bit binary value (a flag, for example), or it may be a
value that can be stored in one byte, or it may be a value that
occupies more than one byte. Each format includes a parameter
number, and one or two bits that identify the format. The
parameter entry block format for a single-bit value is:

--------------~-+-+-
I Parameter No. 111VI

----------------+-+-
The parameter entry block contains the following:

Byte

0-5

6

7

Contents

Parameter number, 0 through 63. Parameter numbers
need not be assigned or ordered in sequence, but
must be unique within the sublist.

1

Value, 0 or 1.

The parameter entry block format for a one-byte parameter is:

----------------+-+-
I Parameter No. 10101

+----------------+-+-+
I Value I

The parameter entry block contains the following:

Byte

o

1

Special SVCs

Contents

Parameter number byte:
Bits 0-5 - Parameter number, 0 through 63.

Bit 6 - 0
Bit 7 - 0

Parameter numbers need not be assigned
or ordered in sequence, but must be
unique within the sublist.

Value. A numeric value, 0 through 255, or an ASCII
character.

19-40 2270512-9701

DNOS System Design Document

The parameter entry block format for a multi-byte parameter is:

----------------+-+-
I Parameter No. 10111
+----------------+-+-+
I Parameter Length I
+--------------------+
I I

Paramete~

Value

The parameter entry block contains the following:

Byte

o

1

2-nn

Contents

Parameter number" byte:
Bits 0-5 - Parameter number, 0 through 63.

Bit 6 - 0
Bit 7 - 1

Pa~ameter numbers need not be assigned
or orde~ed in sequence, but must be
unique within the sublist.

Parameter length. The number of bytes required
for the parameter value.

Parameter value. The numbers or characters of
the parameter.

The parameter list consists of one or more sublists. All
parameters in a sublist are of the same type. When the list
contains only one sublist,the parameters of that sublist may be
of any type. Each parameter is defined in a parameter entry
block, the format of which depends on the size of the parameter.
Each parameter is identified by a parameter number in the range
of 0 through 63. The parameters in a sublist must have unique
parameter numbers. They may be numbered in any sequence,
skipping numbers, or not, as required.

19.5.1 Determine Next Pathname (Subopcode >01).

When the Determine Name's Value operation returns 1 in the
miscellaneous field, the task executes one or more Determine Next
Pathname operations (subopcode >01). Each operation returns a
pathname and indicates whether or not there is another pathname.

2270512-9701 19-41 Special SVCs

DNOS System Design Document

The following fields of the supervisor call block apply:

* Opcode -)43

* Return code

* Subopcode -)01

* Flags

* Address of name

* Address of value

* Miscellaneous

The operation is defined only for logical names.
name type must be set to 1.

The flag for

The address of name field must contain the address of a buffer
that contains the length of the name in the first byte, and the
characters of the logical name in succeeding bytes.

The address of value field must contain the address of a buffer
large enough to contain the pathname expected. The first byte in
the buffer contains the length of the buffer. The operation
replaces that value with the length of the pathname, and places
the characters of the pathname in succeeding bytes.

The miscellaneous field contains the number of the next pathname
(the pathnBme to be returned). Pathname 0 is the first pathname,
pathname 1 is the second, etc. The operation increments the
number, or sets the field to zero when the last pathname is
returned.

19.5.2 Append Pathname to Name (Subopcode)03).

When a logical name represents a set of pathnames, the Append
Pathname to Name operation (subopcode)03) adds the pathnames,
one at a time. The logical name must have been created, and must
have a pathname and parameters (if required) prior to performing
this operation.

The following fields of the supervisor call block apply:

* Opcode -)43

* Return code

* Subopcode -)03

* Flags

Special SVCs 19-42 2270512-9701

DNOS System Design Document

* Address of name

* Address of value

The operation is defined only for logical names.
name type must be set to 1.

The flag for

The address of name field must contain the address of a buffer
that contains the length of the name in the first byte, and the
characters of the logical name in succeeding bytes.

The address of value field must contain the address ofa buffer
that contains an additional pathname. The first byte in the
buffer contains the length of ~he pathname. Successive bytes
contain the characters of the pathname. Pathnames for files
being concatenated must be unique.

19.5.3 Return Next Name (Subopcode)05).

The Return Next Name operation (subopcode 05) returns the next
logical name and, optionally, the pathname of the logical name.
The next logical name is either the preceding or following name
in alphabetic order, selected by a flag supplied in the call
block.

The following fields of the supervisor call block apply:

* Opcode -)43

* Return code

* Subopcode -)05

* Flags

* Address of name

* Address of value

* Miscellaneous

When the name type
operation expects the
synonym.

flag
name

in the flags byte is
to be a synonym,

set to zero, the
and returns a

The address of name field must contain the address of a buffer
that contains the length of a name in the first byte, and the
characters of that logical name in succeeding bytes. The buffer
may contain zero in the first byte when no logical name is
supplied. The operation returns the first name in alphabetical
order when no logical name is supplied.

2270512-9701 19-43 Special SVCs

DNOS System Design Document

The operation returns the next logical name in the buffer at the
address in the address of name field. When the next logical name
does not exist, the operation returns a zero in the first byte of
the buffer. This buffer must be large enough to contain an
eight-character logical name.

The address of value field must contain the address of a buffer
in which the operation returns the pathname. When the calling
task places zero in the first byte of this buffer, the operation
does not return a pathname. The buffer must be large enough to
contain the longest pathname that could be returned.

The contents of the miscellaneous field determines which name is
the next name. When the field contains 1, the operation returns
the preceding name in alphabetical order. When the field
contains 0, the operation returns the succeeding name.

19.5.4 Purge Names (Subopcode)06).

The Purge Names operation (subopcode)06) deletes related logical
names from the set of logical names available to the task. The
calling task supplies a name containing N characters. A name is
deleted if any of the following statements is true of that name:

* The name contains N characters, and these characters are
equal to those of the supplied name.

* The name contains N
equal to those of the
character is greater
supplied name.

characters, all but the last are
supplied name, and the last

than the last character of the

* The name contains more than N characters and the first N
characters are equal to those of the supplied name.

* The name contains more than N characters, the first N-l
characters are equal to the corresponding characters of
the supplied name, and the Nth character is greater than
the Nth character of the supplied name.

No name that is shorter than the supplied name is deleted.
Otherwise, the length of the name does not determine whether or
not it is deleted. The pathname of the name is ignored in
selecting a name for deletion.

The following fields of the supervisor call block apply:

* Opcode -)43

* Return code

* Subopcode -)06

Special SVCs 19-44 2270512-9701

DNOS System Design Document

* Flags

* Address of name

When the name type flag in the flags byte is set
operation expects the name to be a synonym, and
synonyms available to the calling task.

to zero,
purges

the
the

The address of name field must contain the address of a buffer
that contains the length of a name in the first byte, and the
characters of that logical name in succeeding bytes.

As an example,
task:

the folloWing logical names are defined for a

INFILE
ABCD

OUTFILE
ABCDE

INPUT
ABCDEF

If a purge names operation were performed supplying name IN,
names INFILE and INPUT would be deleted. If the name supplied
were INF, the same two names would be deleted. If ABCDE were
supplied as a name, names ABCDE and ABCDEF would be deleted.

19.5.5 Enter New Stage (Subopcode)07).

When the Enter New Stage operation (subopcode 07) is issued, the
calling task becomes the first and only task in a new stage.
Tasks bid by the calling task also execute in the new stage.
Logical names and synonyms ava1lable to the task prior to
entering the new stage become the logical names and synonyms for
the new stage. Additions and changes made by tasks in the stage
apply only to the stage.

The following fields of the supervisor call block apply:

* Opcode -)43

* Return code

* Subopcode -)07

19.5.6 Return to Previous Stage (Subopcode)08).

Only a task that has created a new stage may return to the
previous stage (the stage it belonged to before creating the new
stage). The Return to Previous Stage operation (subopcode)08)
returns the calling task to the previous stage, optionally taking
a set of synonym names.

When other tasks
stages remain,

2270512-9701

remain in the current stage, or when descendant
the calling task returns to the previous stage,

19-45 Special SVCs

DNOS System Design Document

and the current stage remains. When the calling task is the only
task in the current stage and no descendant stages exist, the
calling task returns to the previous stage and the current stage
is deleted.

The descendant error list is the mechanism for retaining the
values of error synonyms $$CC, $$ES, $$MN, $$FN, and $$VT when a
stage is deleted. When a descendant stage is deleted, and that
stage has error synonym $$CC in the synonym table, a descendant
error list entry is built. The entry becomes the first entry in
the descendant error list for the stage, or an additional entry
in an existing list.

The descendant error list consists of a byte that contains the
length of the list, followed by the entries of the list. Each
entry consists of the following:

* The value of error synonym $$CC~ preceded by a byte that
contains the length of the value.

* The value of error synonym $$ES, preceded by a byte that
contains the length of the value, or zero if no value
has been assigned.

* The value of error synonym $$MN, preceded by a byte that
contains the length of the value, or zero if no value
has been assigned.

* The value of error synonym $$FN, preceded by a byte that
contains the length of the value, or zero if no value
has been assigned.

* The value of error synonym $$VT, preceded by a byte that
contains the length of the value, or zero if no value
has been assigned.

When a stage is deleted, the following actions occur:

* Add the entries, if any, in the descendent error list of
the terminating stage to the list of the previous stage.

* When error synonym $$CC has been assigned for the
terminating stage, place a descendant error list entry
in the list of the previous stage.

* Delete synonyms and
terminating stage.

logical names defined for the

The following fields of the supervisor call block apply:

* Opcode -)43

* Return code

Special SVCs 19-46 2270512-9701

DNOS System Design Document

* SUbopcode -)08

* Address 6f name

The address of name field contains the address of a buffer, or
zero. When the field contains zero, no synonym names are
returned. When the field contains an address, the address is the
address of a synonym buffer. The buffer contains a byte that
contains the length of the synonym list, followed by the names of
the synonyms in the list. Each synonym is preceded by a byte
that contains the length of the synonym. The synonym buffer is
returned to the previous stage, and the Name Manager adds the
synonyms to those of the previous stage, obtaining the values
from the synonym segment.

19.5.7 Return Next Error Entry "(Subopcode)09).

The Return Next Error Entry opera~ion (subopcode)09)
first entry on the descendant error list previously
The operation also deletes the entry. This operation
performed by system tasks that process errors.

obtains the
described.

is normally

The following fields of the supervisor call block apply:

* Opcode -)43

* Return code

* Subopcode -)09

* Address of value

The address of value field contains the addFess of a buffer in
which the operation returns a descendant error list entry. The
first byte of the buffer contains the length of the buffer. When
there is no entry, the operation returns zero in the first byte
of the buffer. Otherwise, the operation returns the length of
the entry in the first byte of the buffer, followed by the
characters of the entry.

19.5.8 Determine Segment Size (Subopcode)OA).

The Determine Segment Size operation (subopcode)OA) returns the
size required for a segment large enough to contain all the
logical names or synonyms available to the calling task.

The following fields of the supervisor call block apply:

* Opcode -)43

* Return code

2270512-9701 19-47 Special SVCs

DNOS System Design Document

* Subopcode -)OA

* Flags

* Miscellaneous

The name type flag in the flags field is set to 0 to obtain the
size for a synonym segment, or to 1 to obtain the size for a
logical name segment.

The size, in bytes, required for the specified name
returned in the miscellaneous field.

19.5.9 Copy Names to New Segment (Subopcode)OB).

segment is

The Copy Names to New Segment operation (subopcode)OB) copies
the logical names or synonyms available to the calling task to a
specified segment. The segment size should be obtained using the
Determine Segment Size operation, and a segment of that size
should be allocated. The segment should be a memory-based
segment with the share-protect and reusable attributes.

The following fields of the supervisor call block apply:

* Opcode -)43

* Return code

* Subopcode -)OB

* Flags

* Miscellaneous

The name type flag in the flags field is set to 0 to copy a
synonym segment, or to 1 to copy a logical name segment. The
segment ID of the allocated segment is placed in the
miscellaneous field.

19.5.10 Creating an Empty Name Segment (Subopcode)OD).

The Create Empty Name Segment operation (subopcode)OD) creates
an empty logical name segment. The following fields of the
supervisor call block apply:

* Opcode -)43

* Return Code

* Subopcode -)OD

Special SVCs 19-48 2270512-9701

DNOS System Design Document

* Flags

* Segment size

* Segment ID

The only flag examined is the global flag. This operation can be
performed only once. This is done by the system restart task.

The address of name field, address of value field, and address of
parameter must be zero.

The segment size is a value in bytes, specifying the initial size
of the segment. The run ID of the segment is returned.

The following is an example of coding for a supervisor call block
for a Create Empty Name Segment operation and for the required
buffers:

EVEN CREATE EMPTY NAME SEGMENT
CEMNAM BYTE)43
CENS BYTE 0

BYTE)OD
BYTE)00
DATA 0
DATA 0
DATA 0
DATA)400

CID DATA 0

19.5.11 Saving a Name Segment (Subopcode)OE).

The Save Name Segment operation (subopcode)OE)
name segment to a disk file. The following
supervisor call block apply:

* Opcode -)43

* Return Code

* Subopcode -)OE

* Flags

* Address of name

* Segment ID

saves a logical
fields of the

The only flags examined are the global flag and the run ID flag.
The global flag set to one indicates that the global names are to
be saved. The run ID flag indicates that the segment to save is
passed in the call block in the run ID field. If no flags are

2270512-9701 19-49 Special SVCs

DNOS System Design Document

set the job local synonyms are saved.

The address of name field must contain the address of a buffer
that contains the length of the name in the first byte and the
characters of the logical name definition in succeeding bytes.
Names can be saved on any disk on any system. The one
restriction is job-local logical names may not be used to specify
the pathname.

The address of value field, and address of parameter list field
must be zero.

If the user flag for global operation is set to one, the global
names will be written, otherwise the job local names will be
written, unless the run ID flag is set to one, in which case the
segment passed in the run ID field will be saved.

The following is an example of coding for a supervisor call block
for a Save Name Segment operation and for the required buffers:

EVEN SAVE NAME SEGMENT
SAVNAM BYTE)43
SVNS BYTE 0

BYTE)OE
BYTE)00
DATA LNME
DATA 0
DATA 0

LNME BYTE 1 1
TEXT

,
.DISK.FILE2'

19.6 MODIFY BTA OR JCA SIZE

The Modify BTA or JCA Size SVC ()4A) is of the following format:

Hex Offset
00

02

04

06

Special SVCs

Align on word boundary
Software privileged

----------------+-----------------
I 4A I <Return Code) I

+----------------+-----------------+
I Subopcode I Reserved I

+----------------+-----------------+
I Number of Beets Requested I
+----------------------------------+
I Segment Run ID (subopcode 3) I

19-50 2270512-9701

DNOS System Design Document

Byte 2 - subopcodes:

o - Allocate more static buffer
1 - Deallocate static buffer
2 - Find amount of static buffer currently in use
3 - Expand the segment ID specified

Subopcode 0 of this SVC is used to expand the BTA used by the I/O
subsystem. Memory is taken from dynamic user memory to expand
the BTA as one contiguous block at the end of system memory.

Subopcode 1 is used to release memory (number of beets specified)
from the BTA and return it to dynamic user memory. Subopcode 2
retrieves the number of beets of BTA currently in use. Subopcode
3 is used to expand the size of a JCA segment that is currently
in memory but is not a memory-resident segment. The segment is
expanded by the amount specified in bytes 4 and 5 of the call
block. The new size must be less than >800 beets and it must be
less than the maximum JCA -size.

19.7 HALT/RESUME TASK

The Halt/Resume Task SVC is of the following format:

Align on word boundary
Software privileged

Hex Offset
00

02

04

06

----------------+-----------------
I 4B I <Return Code> I
+----------------+-----------------+
I Task Run ID I Task Station ID I
+----------------+-----------------+
I <Task State> I Sub-Opcode I
+----------------------------------+
I Reserved I

Byte 5 - Subopcodes:

o - Halt task
1 - Resume task

The Halt/Resume Task SVC is used by the SCI Debugger to halt a
task before showing debugging information and to resume the task
once that information has been displayed to the user.

The program management routine PMHALT executes this SVC at XOP
level. If the station ID supplied is nonzero, the routine first
checks to be sure a task with the supplied run-time ID is running
at that station. If no such task is running, an error code of 1
is returned.

2270512-9701 19-51 Special SVCs

DNOS System Design Document

If a task is found, the current state of the task is returned in
the byte reserved for the task state. If the subopcode requested
is Halt, PMHALT sets the halt bit in the TSB flags TSBFL2. If
the current task state is active, PMHALT calls the deactivate
routine and sets the task state to 6 (unconditional wait).

If the subopcode requested is Resume, PMHALT clears all of the
debug (breakpoint) bits and the halt bit in the TSB flags TSBFL2.
If the task is in state 6, PMHALT calls NFPACT to place the task
on the active queue. In other cases, it exits after setting the
TSB flags.

19.8 EXPAND JCA

The job communication area (JCA), one of the data structures
maintained for each job by the system, is expandable. The system
uses the Expand JCA operation to provide more space for the JCA
as required. This operation is not available to user tasks.

Subopcode)08 specifies the Expand JCA operation. Only the first
16 bytes of the supervisor call block apply. The specific fields
are:

* Opcode

* Return code

* Subopcode

* Job run ID

The job run ID is supplied by the system task.

The following is an example of coding for a supervisor call block
for an Expand JCA operation:

EVEN EXPAND THE JCA FOR JOB)4F.
EXPJCA BYTE)48
XJERR BYTE °

BYTE)08
BYTE °
DATA °
DATA)4F
DATA 0,0,0,0

Special SVCs 19-52 2270512-9701

DNOS System Design Document

SECTION 20

LINKING INFORMATION FOR DNOS

20.1 OVERVIEW

Linking the portions of DNOS involves standard use of the Link
Editor for assembly language and for Pascal modules. Link
control files for the nonconfigurable portions of DNOS are found
in the directories DSC.LINK.SYSTEM and DSC.LINK.UTILITY.
Configurable portions of DNOS are determined during system
generation and appropriate selections are included in the link
control files DMLINK, IOULINK, and SYSLINK.

Conventions used in building the link control files are simple.
Each file makes use of the NOPAGE and ERROR options of the Link
Editor. Wherever possible LIBRARY and INCLUDE statements are
used to keep the files short and easy to read.

Tasks written in assembly language generally include only their
own object library. If they make use of S$ routines, they
include the library VOLOBJ.SCI990.S$OBJECT. In addition to the
S$ library, tasks written in Pascal have three run-time libraries
available to them. These are located via the PASCAL synonym in
the libraries PASCAL.MINOBJ, PASCAL.LUNOBJ, and PASCAL.OBJ. The
MINOBJ library is a minimum size library for a non-debug
environment. The LUNOBJ library is for a non-SCI environment and
includes routines to support I/O by LUNO. The OBJ library is the
run-time collection for either environment.

Pascal tasks which make use of standard initialization must use
the statement INCLUDE (R$TASKDP) as the first item in the
link control stream after the TASK or PHASE 0 statement. When
linking a Pascal task which has a single procedure segment, the
PROCEDURE declaration must be followed by INCLUDE (R$PROCDP).
If a procedure is shared by more than one task, a SEARCH command
must appear at the end of the include statements for the
procedure, and an ALLOCATE command must immediately follow the
R$TASKDP include statement. This is to ensure that all the
shareable run-time routines are included in the procedure
segment.

The directory DSC.LINK.SYSTEM includes link control files for
each of the DNOS system tasks. The directory DSC.LINK.UTILITY
includes link control files for each of the utility tasks. The
directory DSC.LINK.DSR has link control files for DSRs, and the
directory DSC.LINK.DNOSPROG has link control files for the

2270512-9701 20-1 Linking Information

DNOS System Design Document

programs used to build DNO~. Linkmaps for each of these are
found in the directories VOLLST.LINKMAP.SYSTEM and
VOLLST.LINKMAP.UTILITY, where VOLLST is the volume to which
listings are written during a build of DNOS. The .SYSTEM
directory includes linkmaps for each of the DNOS system tasks;
the .UTILITY subdirectory for each of the utility tasks which
supports SCI commands. To find the appropriate linkmap for a
given SCI command, check the task name being bid by the command
procedure and search for that name as a linkmap file name in the
DSC.LINKMAP.UTILITY directory.

The paragraphs below describe the linking information from link
control files for a system task written in assembly language, a
system tBsk written in Pascal, a DSR, and the system nucleus
(seed). Examples of link control files generated during system
generation are also presented.

20.2 LINKING A SYSTEM TASK

The link control stream for a system task must provide for the
task to be loaded at address)COOO. This requires use of the
PHASE command with the base option set to)COOO. The starting
address of)COOO allows the task address space to include the
system root and a JCA prior to the task code. All system tasks
are linked with the procedure DUMROOT, which enables access to
the system root. DUMROOT is built from the interrupt tables, the
system seed, and the common blocks 'initialized by sysgen.

Appropriate libraries must be specified if subroutine support
modules are included. The link control stream for the IPL task
is shown below. It includes support routines from the DISKMGR
and UTCOMN directories as well as the set of IPL object modules.
The synonym VOLOBJ is used throughout this section t'o represent
the volume on which the operating system object directories
reside.

NOPAGE
ERROR
FORMAT IMAGE,REPLACE
LIBRARY VOLOBJ.DISKMGR.OBJECT
LIBRARY VOLOBJ.UTCOMN.OBJECT
LIBRARY VOLOBJ.NAMMGR.OBJECT
PROCEDURE DUMROOT
DUMMY
INCLUDE VOLOBJ.SSGU.DUMROOT
PHASE O,IPL,PROG)COOO
INCLUDE VOLOBJ.LOADERS.OBJECT.SLIPL
INCLUDE VOLOBJ.LOADERS.OBJECT.SLCRSH
INCLUDE VOLOBJ.LOADERS.OBJECT.SLDINT
INCLUDE VOLOBJ.LOADERS.OBJECT.SLDIO
INCLUDE VOLOBJ.LOADERS.OBJECT.SLDISP

Linking Information 20-2 2270512-9701

DNOS System Design Document

INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
END

VOLOBJ.LOADERS.OBJECT.SLDSR
VOLOBJ.PERFORM.OBJECT.PFWCSO
VOLOBJ.PERFORM.MOBJECT.PFDWCS
VOLOBJ.LOADERS.OBJECT.SLFDB
VOLOBJ.LOADERS.OBJECT.SLINIT
VOLOBJ.LOADERS.OBJECT.SLIV
VOLOBJ.LOADERS.OBJECT.SLJCA
VOLOBJ.LOADERS.OBJECT.SLLMOD
VOLOBJ.LOADERS.OBJECT.SLOPEN
VOLOBJ.LOADERS.OBJECT.SLPFIO
VOLOBJ.LOADERS.OBJECT.SLTABL
VOLOBJ.LOADERS.OBJECT.SLTASK
VOLOBJ.LOADERS.OBJECT.SLVRFY
VOLOBJ.LOADERS.OBJECT.SLWCS

(UTPTCH)
(UTVERS)

VOLOBJ.LOADERS.OBJECT.SLEND

The following link control stream links the log formatter task,
LGFORM. It is written in Pascal and requires run time support,
S$ routine support, interface with assembly language routines
using the PASASM directory, and routines from the UTCOMN
directory. The file specifies the Pascal base routine R$TASKDP
as the first portion of the LGFORM task and includes required
modules from the various directories as needed.

NOPAGE
NOSYMT
LIBRARY
LIBRARY
LIBRARY
LIBRARY
PROCEDURE
DUMMY

VOLOBJ.LOG.OBJECT
PASCAL.MINOBJ,PASCAL.LUNOBJ,PASCAL.OBJ
VOLOBJ.UTCOMN.OBJECT
VOLOBJ.PASASM.OBJECT

DUMROOT

INCLUDE VOLOBJ.SSGU.DUMROOT
PHASE O,LGFORM,PROG)COOO SYSTEM LOG FORMATTER TASK
INCLUDE (R$TASKDP)
INCLUDE (LGFORM)
INCLUDE (LGDATA)
INCLUDE (UTR$ST)
INCLUDE (UTPTCH)
END

20.3 LINKING A DSR

A DSR must be linked as a system task, including the
source code modules written by the user as well
appropriate modules from VOLOBJ.IOMGR.OBJECT to access

relevant
as the
support

2270512-9701 20-3 Linking Information

DNOS System Design Document

subroutines. The section on writing DSRs lists the location and
function of each of the support subroutines. The example DSR
link given below is for the 911 VDT and includes the modules
which provide keyboard support (IOKB) and end of record
processing (IONRCD).

NOPAGE
ERROR
PROCEDURE DUMROOT
DUMMY
INCLUDE VOLOBJ.SSGU.DUMROOT
PHASE O,DSR911,PROG)COOO
INCLUDE VOLOBJ.DEVDSR.OBJECT.DSR911
INCLUDE VOLOBJ.IOMGR.OBJECT.IONRCD
INCLUDE VOLOBJ.IOMGR.OBJECT.IOKB
INCLUDE VOLOBJ.UTCOMN.OBJECT.UTPTCH
INCLUDE VOLOBJ.DEVDSR.OBJECT.PWRFY
END

20.4 LINKING THE DNOS SEED

The common nucleus functions are linked into a task nanr'ed SEED
using the link control file in DSC.LINK.SYSTEM.SEED. Modules are
included if they must be used by operating system code in any of
a number of mapping configurations. The SEED is included as part
of the system root when the system is generated. The following
is an example of the link control file for the SEED.

ERROR
PARTIAL
TASK SEED
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

VOLOBJ.NUCLEUS.OBJECT.NFMAT
VOLOBJ.IOMGR.OBJECT.IOBM
VOLOBJ.IOMGR.OBJECT.IODBGN
VOLOBJ.IPC.OBJECT.IPCPR
VOLOBJ.IPC.OBJECT.IPCXFR
VOLOBJ.LOG.OBJECT.LGQACC
VOLOBJ.LOG.OBJECT.LGQBLK
VOLOBJ.NUCLEUS.OBJECT.NFACTL
VOLOBJ.NUCLEUS.OBJECT.NFACTQ
VOLOBJ.NUCLEUS.OBJECT.NFATOL
VOLOBJ.NUCLEUS.OBJECT.NFCLOK
VOLOBJ.NUCLEUS.OBJECT.NFCOPY
VOLOBJ.NUCLEUS.OBJECT.NFCRSH
VOLOBJ.NUCLEUS.OBJECT.NFDACT
VOLOBJ.NUCLEUS.OBJECT.NFCEOR
VOLOBJ.NUCLEUS.OBJECT.NFDEF
VOLOBJ.NUCLEUS.OBJECT.NFDLNK
VOLOBJ.NUCLEUS.OBJECT.NFDLOV
VOLOBJ.NUCLEUS.OBJECT.NFDOOR

Linking Information 20-4 2270512-9701

DNOS System Design Document

INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

2270512-9701

VOLOBJ.NUCLEUS.OBJECT.NFDOVB
VOLOBJ.NUCLEUS.OBJECT.NFDQl .
VOLOBJ.NUCLEUS.OBJECT.NFDQH
VOLOBJ.NUCLEUS.OBJECT.NFDTOL
VOLOBJ.NUCLEUS.OBJECT.NFDTSK
VOLOBJ.NUCLEUS.OBJECT.NFDWOM
VOLOBJ.NUCLEUS.OBJECT.NFDWOT
VOLOBJ.NUCLEUS.OBJECT.NFENAB
VOLOBJ.NUCLEUS.OBJECT.NFEOR
VOLOBJ.NUCLEUS.OBJECT.NFINT2·
VOLOBJ.NUCLEUS.OBJECT.NFLOVB
VOLOBJ.NUCLEUS.OBJECT.NFLWCS
VOLOBJ.NUCLEUS.OBJECT.NFMAPO
VOLOBJ.NUCLEUS.OBJECT.NFPACT
VOLOBJ.NUCLEUS.OBJECT.NFPOP
VOLOBJ.NUCLEUS.OBJECT.NFPSH
VOLOBJ.NUCLEUS.OBJECT.NFPWOT
VOLOBJ.NUCLEUS.OBJECT.NFPWUP
VOLOBJ.NUCLEUS.OBJECT.NFQERR
VOLOBJ.NUCLEUS.OBJECT.NFQOVB
VOLOBJ.NUCLEUS.OBJECT.NFQUEI
VOLOBJ.NUCLEUS.OBJECT.NFQUEH
VOLOBJ.NUCLEUS.OBJECT.NFSRTN
VOLOBJ.NUCLEUS.OBJECT.NFTBDO
VOLOBJ.NUCLEUS.OBJEC~.NFTERM
VOLOBJ.NUCLEUS.OBJECT.NFTMGR
VOLOBJ.NUCLEUS.OBJECT.NFTRTN
VOLOBJ.NUCLEUS.OBJECT.NFWAKE
VOLOBJ.NUCLEUS.OBJECT.NFWOMJ
VOLOBJ.NUCLEUS.OBJECT.NFWOML
VOLOBJ.NUCLEUS.OBJECT.NFWOTL
VOLOBJ.NUCLEUS.OBJECT.NFXOPS
VOLOBJ.NAMMGR.OBJECT.NMTRAN
VOLOBJ.PROGMGR.OBJECT.PMMPRI
VOLOBJ.PROGMGR.OBJECT.PMTSCH
VOLOBJ.REQPROC.OBJECT.RPDQl
VOLOBJ.REQPROC.OBJECT.RPMAP2
VOLOBJ.REQPROC.OBJECT.RPPRCK
VOLOBJ.REQPROC.OBJECT.RPSGCK
VOLOBJ.SEGMGR.OBJECT.SMBLDS
VOLOBJ.SEGMGR.OBJECT.SMBUFF
VOLOBJ.SEGMGR.OBJECT.SMCHUC
VOLOBJ.SEGMGR.OBJECT.SMCSGO

.VOLOBJ.SEGMGR.OBJECT.SMDSGB
VOLOBJ.SEGMGR.OBJECT.SMDSSB
VOLOBJ.SEGMGR.OBJECT.SMFSID
VOLOBJ.SEGMGR.OBJECT.SMLOAD
VOLOBJ.SEGMGR.OBJECT.SMMJCA
VOLOBJ.SEGMGR.OBJECT.SMMSEG
VOLOBJ.SEGMGR.OBJECT.SMMTBL
VOLOBJ.SEGMGR.OBJECT.SMRMVE
VOLOBJ.SEGMGR.OBJECT.SMSRCH
VOLOBJ.SEGMGR.OBJECT.SMUNLD

20-5 Linking Information

DNOS System Design Document

END

20.5 LINK CONTROL FILES BUILT DURING SYSTEM GENERATION

Based on the options specified during system generation, a set of
link control files is built as SYSLINK, IOULINK, and DMLINK.
These files are in the directory .SSGU.(system name> for the
system you generate. SYSLINK is the link of the major portions
of the operating system and varies according to user
specification of the following:

* System SVC options

* User SVCs

* File Security

* KIF support

The IOULINK file varies depending on whether or not
included.

security is

The DMLINK file is
task.

the link control file for the disk manager

Linking Information 20-6 2270512-9701

DNOS System Design Document

SECTION 21

DNOS SOURCE DISK STRUCTURE

21.1 DIRECTORY STRUCTURE

The following is a directory listing of the directorie.s on a DNOS
source disk. Throughout this section, DSC is used as a synonym
for the volume on which DNOS source code resides.

AGTASK
ALN
ANALZ
ASP
AUI
AXREF
BATCH
BDD
BEMF
BLDPROCS
BMF
CB
CC
CD
CKD
CKR
COM
CONDASM
CONDPASC
CP
CPI
CRV
CSK
CSM
CV
CVD
DCOPY
DD
DEBUG
DEBUGGER
DEVDSR
DIOU
DISKMGR
DNCMS

2270512-9701 21-1 DNOS Source Structure

DNOS System Design Document

DSCBLD
DXDP
EDITOR
FILEMGR
IBMUTL
IDS
IDT
IFSVC
IOMGR
IOU
IPC
JENED
JOBl>1GR
KIFMGR
LAGFR
LD
LINK
LINKER
LLR
LOADERS
LOC
LOGON
LS
LSC
LTS
MACROS
MAD
MAILBOX
MCDT
MD
MESSAGES
MKL
MLP
MPC
MPF
MPI
MRF
MS
MSAR
MTE
MVI
NAMMGR
NUCLEUS
0$
OPERATOR
PASASM
PATCH
PERFORM
PF
PICT
PROCMGR
RAL
REQPROC

DNOS Source Structure 21-2 2270512-9701

DNOS System Design Document

RESOLVE
RESTART
RVI
RWCRU
S$
SSGU
SCI990
SCS
SCU
SD
SDSMAC
SECURITY
SEGMGR
SEM
SIS
SJS
SMMAP
SMS
SND
SOS
SPOOLER
SRFI
SVS
SYSJEN
SYSOVLY
TEMPLATE
TFTPC
TIGRESS
TINFO
TPCALANS
TPDISC
TPLHPC
TPMHPC
UTCOMN
XBJ
XJM
XOI

The following files also appear on the DNOS source disk:

DNOSPROG
TAPEOBJ

21.2 COMPONENTS USED IN BUILDING DNOS

Building DNOS involves creating several batch streams as well as
using some batch streams which already exist in the
DSC.BATCH.BUILD directory. The batch streams which are created

2270512-9701 21-3 DNOS Source Structure

DNOS System Design Document

during the build are a product of the Create Batch (CB) utility
working with the batch stream templates in the DSC.BATCH.CBINPUT
directory. Any process (batch stream) which needs to be
performed on a directory of files is generated by CB.

All of the files necessary for building DNOS reside in the
DSC.BATCH directory. The components of this directory are
described in the paragraphs which follow.

ASSEMBLE

BUILD

This is a directory of batch streams, each of which
assembles a directory of DNOS source code. In general, a·
DNOS code directory comprises the modules of a subsystem or
single utility. This directory is built using CB and exists
only after a DNOS build has been done. Executing the batch
stream DSC.BATCH.ASSEMBLE.ALL causes all of the batch
streams in this directory to be executed.

This directory consists of the batch streams to build DNOS
as well as those used to build the DNOS SCI menus and SCI
command procedures. Its files are described further in
other portions of this section.

CBINPUT
When CB is used to create some of the DNOS build batch
streams, templates for those batch streams are found in this
directory. The templates are described further in other
portions of this section.

COMPILE

LINK

PICT

Like the ASSEMBLE directory, the COMPILE directory is built
using CB. This directory is composed of the batch streams
which compile all of the Pascal source in DNOS. The COMPILE
directory exists only after a DNOS build has been done.
Executing the batch stream DSC.BATCH.COMPILE.ALL causes all
of the compilation batch streams in this directory to be
executed.

This directory contains batch streams to link the whole
system. It is built using CB and exists only after a DNOS
build has been done. Executing the batch stream
DSC.BATCH.LINK.ALL links the whole system.

This directory consists of two batch streams, one of which
generates PTABLE templates for the ATABLE directory in
DSC.TEMPLATE and one of which generates PTABLE templates for
the COMMON directory. This directory exists only after a
DNOS build has been done.

TRANSLIT

DNOS Source Structure 21-4 2270512-9701

DNOS System Design Document

This directory is composed of a set of batch streams which
transliterate the source modules of the LINKER directory.
It exists only after a DNOS build has been done. Executing
the batch stream DSC.BATCH.TRANSLIT.ALL causes all of the
transliteration batch streams in this directory to be
executed.

The Create Batch (CB) utility processes an input directory,
applying to each element of the directory a specified batch
stream template. It generates an output batch stream to a file
specified when the CB command is issued. The command prompts are
documented in the DNOS System Command Interpreter (SCI)
Reference Manual.

Files within the DSC.BATCH.CBINPUT directory are used as batch
template files for CB when creating many of the DNOS build batch
streams. These CBINPUT files are described in the paragraphs
which follow.

ALL
This template is used to create a batch stream which
executes a directory of batch streams. It is used in the
DNOS build process to create the DSC.BATCH.(D).ALL where (D)
is ASSEMBLE, AXREF, COMPILE, DELETE, or PICT, depending on
which is needed.

ASSEMBLE

AXREF

CB

This template is used to create the batch stream to assemble
all the modules in one DNOS source directory.

This template is used to create a batch
cross-reference listing for a given
listings.

stream to produce a
directory of DNOS

This template is used to create the DSC.BATCH.BUILD.(?)
batch stream where (?) is on~ of ASSEMBLE, AXREFS, COMPILE,
DELETE, PICT, and TRANSLIT. Each of these batch streams
creates the directory of batch streams to process each
appropriate directory of DNOS. For example, the batch
stream e DSC.BATCH.BUILD.ASSEMBLE built using CB is a batch
stream which creates the assembly batch streamS (using CB)
for each of the source directories of DNOS. This set of
assembly batch streams resides in DSC.BATCH.ASSEMBLE. the
whole DNOS directory using one of the other CBINPUT
templates. For example, it is used to build the directory
of assembly batch streams using the ASSEMBLE template.

COMPILE
This template is used to create the batch
all of the Pascal source modules in
directories.

streams
one of

to compile
the DNOS

2270512-9701 21-5 DNOS Source Structure

DNOS System Design Document

DELETE
This template is used to create the batch stream to delete
the old, outdated object and listing directories for the
corresponding DNOS source directory.

FORTRN78

LINK

PICT

This template is
all of the FORTRAN
directories.

used to create a batch stream to compile
source modules in one of the DNOS

This template is used to build a batch stream to link a part
of DNOS.

This template is used to create the batch stream to build
the PTABLE template directory for the appropriate ATABLE or
COMMON template directory.

TRANSLIT
This template is used to create the batch stream to
transliterate the modules in a given DNOS source directory.
The only directory for which this is needed is the LINKER
source directory.

The files in the DSC.BATCH.BUILD directory are listed in Table
21-1. The purpose of each file is indicated. Those created
during the build process exist only after a DNOS build has been
done; these are indicated by a star in the second column of the
table. All those not created during a build are further
explained in the paragraphs which detail the steps in doing a
DNOS build.

Table 21-1 DNOS Batch Stream Files

File Name Purpose

ASSEMBLE * Creates the DSC.BATCH.ASSEMBLE directory
of batch streams to assemble all source

AXREFS * Creates the DSC.BATCH.AXREF directory of

BATCH
BSD2
BST2
BST3
BST4
CD1400
COMPILE

DELETE

batch streams to generate cross-reference
lists

Creates batch streams
Used for building DNOS from floppy disks
Used for building DNOS from tape
Used for building DNOS from tape
Used for building DNOS from tape
Builds a CD1400 system disk

* Creates the DSC.BATCH.COMPILE directory of
batch streams to compile all source

* Creates the DSC.BATCH.DELETE directory of
batch streams to delete object and

DNOS Source Structure 21-6 2270512-9701

DNOS System Design Document

DNOS
DNOSPROG

DSSO
DS200
DS300
DS80
LNKDNOS

MENU
MESSAGEI

MESSAGE2

OBJECT

OBJKIT

PICT *

PROCO

PROC2

PROC4

PROC6

PROCSYS
S$LANG

S$OBJECT
S$SECURE

S$UTIL

SRCKIT
TAPE
TRANSLIT *

2270512-9701

listings
Builds the DNOS system disk to be shipped
Builds a program file with DXI0 versions

of DNOS utilities needed to build DNOS
Builds DSSO system disk
Builds DS200 system disk
Builds DS300 system disk
Builds DS80 system disk
Builds the linkable parts needed to

generate DNOS
Builds the DNOS SCI menus
Builds the source directories and the

DNOS usable
directories of short and long form
messages as well as the batch streams to
build DNOS SCI command procedures

Builds the DNOS object from the source by
executing the ASSEMBLE, COMPILE, and
TRANSLIT batch streams

Builds a shippable DNOS object disk from
DNOS object libraries

Creates the PTABLE templates from the
corresponding ATABLE and COMMON
templates

Creates the privilege level 0 ~NOS SCI
procedures

Creates the privilege level 2 DNOS SCI
procedures

Creates the privilege level 4 DNOS SCI
procedures

Creates the privilege level 6 DNOS SCI
procedures

Creates the procedures for .SSYSTEM.S$CMDS
Creates the .S$LANG program file and

installs the Assembler and Link Editor
Builds the directory .SCI990.S$OBJECT
Performs the task, procedure, and overlay

installations to build the .SSECURE
program file.

Performs the task, procedure, and overlay
installations to build the .S$UTIL
program file.

Builds from source kit
Builds DNOS onto tape
Creates the DSC.BATCH.TRANSLIT directory

of batch streams to transliterate DNOS
source directories

21-7 DNOS Source Structure

DNOS System Design Document

21.3 THE PROCEDURE FOR BUILDING DNOS

The DNOS source disk includes the set of DNOS source modules, a
program file of special tasks to build DNOS, and a command
procedure library with special commands to build DNOS. The
process must be executed using DNOS, following the instructions
in the DNOS Source Installation Document.

21.4 DNOS PROGRAM FILES

Table 21-2 and Table 21-3 are maps of the DNOS utility and system
program files, respectively. The following flags are used in
both tables:

Flags in Program File Maps

FLAG DEFINITIONS
PRI - PRIORITY
S - SYSTEM
P - PRIVILEGED
M - MEMORY RESIDENT
R - REPLICATARLE
RU - REUSABLE
CP - COPYABLE
E - EXECUTE PROTECTED
SP - SOFTWARE PRIVILEGED
PIIS - PROCEDURE 1 IS ON SAME
P2/S - PROCEDURE 2 IS ON SAME

DNOS Source Structure

D - DELETE PROTECTED
U - UPDATABLE
o - OVERFLOW
C - WRITABLE CONTROL STORE
W - WRITE PROTECTED
SH - SHARABLE
MAP - RELOCATION BIT MAP PRESENT
OVLY- OVERLAY LINK
B - BYPASS SECURITY

PROGRAM FILE AS TASK
PROGRAM FILE AS TASK

21-8 2270512-9701

DNOS System Design Document

Table 21-2 Map of Utility Program File

FILE MAP OF .S$UTIL
TODAY IS 13:34:26 TUESDAY, SEPTEMBER 27, 1983.

TASK SEGMENTS: MAX POSSIBLE = 176
ID NAME LENGTH LOAD PRI S P M R D U RU CP E 0 C SP B OVLY PI/S P2/S DATE
01 SCI990 2056 7FAO 1 R 02/Y 03/Y 8/19/83
02 TINFO 30B8 7FAO 4 P R 02/Y 03/Y 8/19/83
03 MS OC28 lAOO 4 R 02/Y 8/19/83
04 PMTERM 09CA COOO 0 S P SP Ol/Y 8/19/83
05 IOTBID 0132 COOO 0 S P M SP 01/Y 8/19/83
06 IPC IB76 COCO 0 S P SP 01/Y 8/19/83
07 MAILBOX 24AA 0000 4 8/19/83
08 CKD 2096 lAOO 4 P R SP 02/Y 8/19/83
09 HPC IF96 lAOO 4 R 02/Y 8/19/83
OA LOGON 2568 COOO 0 S P R SP 01/Y 8/19/83
OB XPD ODE A COOO 1 S P R 01/Y 8/19/83
OC SMM OBEC COOO 1 S P R Ol/Y 8/19/83
OD DEBUGGER 70E8 lAOO 4 P R SP 02/Y 8/19/83
OE EDITOR 159C 5600 1 R 02/Y 05/Y 8/19/83
OF TIGR 5194 15AO 4 R SP 04/Y 8/19/83
10 MRFSRF 2202 lAOO 4 R SP 02/Y 8/19/83
11 CCAF 1224 lAOO 4 R 02/Y 8/19/83
12 LS OC42 lAOO 4 R 02/Y 8/19/83
13 RD 74EO 0000 4 P R SP 8/30/83
14 VB 6DEC 0000 4 P R SP 8/30/83
15 CP 4FFO lAOO 4 P R 02/Y 8/19/83
16 IOBREAK 023C COOO 0 S P R RU 01/Y 8/19/83
17 SVS lE28 0000 4 P R 8/19/83
18 RVI OA48 lAOO 4 P R SP 02/Y 8/19/83
19 RESTART 399A COOO a s P 01/Y 8/19/83
IA ANALZ 65B2 1AOO 1 P R 02/Y 8/19/83
IB IFSVC 2108 lAOO 4 P R SP 02/Y 8/19/83
lC XBJS 2454 lAOO 4 R 02/Y 8/19/83
ID MPFMKF 2090 lAOO 4 R 02/Y 8/19/83
IE SCS 24F6 COOO 4 S P R 01/Y 8/19/83
IF PMSBID 02F4 COOO 0 S P 01/Y 8/19/83
20 IUV OD58 COOO 0 S P SP Ol/Y 8/19/83
21 LGFORM 3F2A COCO 0 S P RU Ol/Y 8/19/83
22 DD lB92 lAOO 4 R 02/Y 8/19/83
23 LD 22EE lAOO 4 R 02/Y 8/19/83
24 LLR lD4A lAOO 4 R 02/Y 8/19/83
25 PMPINS 25CO COOO 0 S P R Ol/Y 8/19/83
26 MPISPI IB70 lAOO 4 R SP 02/Y 8i19/83
27 SMS OD98 COOO 4 S P R Ol/Y 8/19/83
28 PMPDEL lCA4 COOO 0 S P R Ol/Y 8/19/83
29 CKR 1580 lAOO 4 R SP 02/Y 8/19/83
2A IDT 0952 lAOO 4 SP 02/Y 8/19/83
2B SIS 304C COOO 4 S P R Ol/Y 8/19/83
2C MADSAD 1576 1AOO 4 P R SP 02/Y 8/19/83
2D PMRWTK 029C coon a s P RU Ol/Y 8/19/83
2E SCU 3130 COOO 4 S P R SP 49 Ol/Y 8/19/83
2F SND OA74 lAOO 4 R 02/Y 8/19/83

2270512-9701 21-9 DNOS Sou rce Structure

DNOS System Design Document

Table 21-2 Map of Utility Program File (Continued)

30 SJSSTS 2AEE COOO 4 S P R 01/Y 8/19/83
31 PMPNAP OD7A COOO a S P R RU 01/Y 8/19/83
32 MD 2C12 1AOO 4 R 02/Y 8/19/83
33 SYSGEN 6EC2 0000 4 R 03 8/19/83
34 CD 67C6 0000 4 P R SP 8/30/83
35 BD 6258 0000 4 P R SP 8/30/83
36 VC 5C68 0000 4 P R SP 8/30/83
37 PMPASP 1978 COOO a S P R 01/Y 8/19/83
38 INV 1FFE COOO a S P R SP 01/Y 8/19/83
39 AUIDUI 34CO lAOO 4 02/Y 8/19/83
3A CRV OD5C COOO 4 S P R SP OliN 8/19/83
3B LTS 1794 COOO 4 S R 01/Y 8/19/83
3C BMF 307E 1AOO 4 R 02/Y 8/19/83
3D LGGLOG 0606 COOO a S P Ol/Y 8/19/83
3E MOEMPE 2D24 lAOO 4 P R 02/Y 8/19/83
3F CPI lCE6 0000 4 P R SP 8/19/83
40 MKL OFE8 1AOO 4 P R OZ/Y 9/13/83
41 CVD 3E08 0000 4 P SP 8/19/83
42 MVI lCDA 0000 4 P R SP 8/19/83
43 NAMMGR 2000 COOO a S P SP Ol/Y 8/19/83
44 RAL 06C8 COOO 4 S P R 01/Y 8/19/83
45 CSKCKS 1B9C lAOO 4 R 02/Y 8/19/83
46 RWCRU OAlE lAOO 4 P R 02/Y 8/19/83
47 LGACCT 301A COOO 0 S P RU Ol/Y 8/19/83
48 JOBMGR 26E4 COOO a s P RU SP Ol/Y 8/19/83
49 BEMF 2D92 1AOO 4 R 02/Y 8/19/83
4A PMSBUF 0562 COOO a S P 01/Y 8/19/83
4B IBMUTL 1EF2 0000 4 P R 8/19/83
4C RPRCP 254C COOO a S P R RU SP 01/Y 8/19/83
4D SP$DST 4AOA l1CO 1 P SP 06/Y 8/19/83
4E SPINIT 1C22 11 CO 1 SP 06/Y 8/19/83
4F ASP OD36 1AOO 4 R 02/Y 8/19/83
55 SEM 303E 1AOO 4 R 02/Y 8/19/83
56 IDS 4AOE 0000 4 P R SP 8/19/83
57 PF 227A IAOO 4 R 02/Y 8/19/83
58 MLP OC3E COOO 4 S R 01/Y 8/19/83
59 LPWRITER 1F54 4580 4 R RU 07/Y 8/19/83
SA LGACHN 01B2 COOO a S P R 01/Y 8/19/83
5B SPTASK OA80 0000 4 R 8/19/83
5C ALN 3940 IAOO 4 R 02/Y 8/19/83
5D DCOPY 41CA 0000 4 P SP 8/19/83
5E CSM 3850 0000 4 8/19/83
SF SCI NIT OCA4 1AOO 1 R 02/Y 8/19/83
60 SOS 3332 1AOO 4 R 02/Y 8/19/83
61 OPERATOR 3D92 COOO 1 S 01/Y 8/19/83
62 XOI 4A5E lAOO 4 R 02/Y 8/19/83
63 LGRCRT 25B6 COOO 4 S RU 01/Y 8/19/83
64 LSC 2F24 1AOO 4 R 02/Y 8/19/83
65 CB 2436 1AOO 4 R 02/Y 8/19/83
66 SRFI OFEC 1AOO 4 P R SP 02/Y 8/19/83
67 DEBUG OFFA COOO 4 S P R 01/Y 8/19/83

DNOS Source Structure 21-10 2270512-9701

DNOS System Design Document

Ta ble 21-2 Map of Utility Program File (Continued)

68 SAVRES 12B2 COOO a S p R Ol/Y 8/19/83
6F TPCALANS OF72 0000 4 R 8/19/83
70 TPDISC OCF8 0000 4 R 8/19/83
71 TPMHPC OF5A 0000 4 R 8/19/83
72 TPLHPC OEDE 0000 4 R 8/19/83
74 XJM 193E COOO 1 S P R 01/Y 8/19/83
75 DIOU OFEC COOO a S p R SP 01/Y 8/19/83
83 MCDT 1912 0000 4 R 8/19/83
85 BDD A934 0000 4 P SP 8/19/83
86 CV 5ECO 0000 4 P SP 8/19/83
87 CVINIT 515E 0000 4 P R SP 8/19/83
88 SD D800 0000 4 P R 8/19/83
8E RESOLVE OC7e 1AOO 4 R 02/Y 8/19/83
8F XBJM 03A4 0000 4 R SP 8/19/83
90 RESTART2 2C24 COOO a S p 01/Y 8/19/83
93 TFTPC 52C4 0000 4 R 8/19/83

PROCEDURE/PROGRAM SEGMENTS: MAX POSSIBLE = 20
ID NAME LENGTH LOAD S M R D U SH RU CP E W C OVLY DATE
02 S$SYSTEM 19F6 0000 SH W 8/19/83
03 SCI990 6586 1AOO SH W 8/19/83
04 TIGRESS 159A 0000 SH 8/19/83
as EDITOR 3BEC 1AOO SH 8/19/83
06 SPCOMN 11BC 0000 SH E 8/19/83
07 LPWRITER 4576 0000 SH W 8/19/83

'\
OVERLAYS: MAX POSSIBLE = 96
ID NAME LENGTH LOAD MAP D OVLY DATE
01 IN IT 1572 21EO 8/19/83
02 INTERACT 4CE2 21EO 01 8/19/83
03 BUILD 4C2A 21EO 02 8/19/83
04 VERSION 0006 0000 MAP 8/19/83
41 SCUINIT OC4C E492 8/19/83
42 SCUDEV 0478 E492 41 8/19/83
43 SCULDC 05C2 E90A 42 8/19/83
44 SCUADD 0434 E492 4E 8/19/83
45 SCUPDT 0580 E8C6 44 8/19/83
46 SCUDSR 045A E8C6 4B 8/19/83
47 SCUDEL 05B6 E90A 4F 8/19/83
48 SCUMISC OA98 E492 53 8/19/83
49 SCUMSP OB70 E492 l.8 8/19/83
AA SCUAINT 05C4 E8C6 46 8/19/83
4B SCUNAME 0462 E8C6 4D 8/19/83
4C SCUPD1 040C E8C6 45 8/19/83
4D SCUPD2 055A E8C6 4C 8/19/83
4E SCUMDS 043C E90A 47 8/19/83
4F SCUDATA 0558 E90A 43 8/19/83
53 SCUAHUX 02A6 EE8A 54 8/19/83
54 SCUAEXP 0248 EE8A 4A 8/19/83

2270512-9701 21-11 DNOS Source Structure

DNOS System Design Document

Table 21-3 Map of System Program File

FILE MAP OF .S$SHIP
TODAY IS 13:35:05 TUESDAY, SEPTEMBER 27, 1983.

TASK SEGMENTS: MAX POSSIBLE = 8
ID NAME LENGTH LOAD PRI S P H R D U RU CP E 0 C SP B OVLY Pl/S P2/S

Ol/Y 02 PMTBID OA12 COOO 0 S P M SP
03 IOU 3DAA COOO 0 S P RU SP
04 PMTLDR 18EO COOO asp M SP
05 FILEMGR 380A COOO asp N SP
06 DISKMGR 0730 COOO 0 S P M
07 PMOVYL 047C COOO 0 S P
08 PMWRIT 02C6 COOO 0 S P M

PROCEDURE/PROGIW1 SEGMENTS: MAX POSSI BLE = 2

SP
SP

ID NAME LENGTH LOAD S M R D U SH RU CP E W C OVLY
01 ROOT 3464 0000 U
02 S$SHIP 39AA 3480 U

OVERLAYS: MAX POSSIBLE = 69
ID NAME LENGTH LOAD MAP D OVLY
01 SMTAOI 008A 9000
03 SVCSHD 3800 COOO
04 SVCTWO 3800 COOO
05 KORW 0392 F80A 16
06 FORWFB 03FO F80A
07 FOMISC 0158 F80A 06
08 FOXFIL 024C F80A 07
09 FOOPEX 0366 F80A 08
OA KOINSR 03E8 F80A 09
OB KODLSR 02E2 F80A OA
OC KOOPCL 03D2 F80A OB
OD KOBDEL 025C F80A OC
OE KOBTIS 03A8 F80A aD
OF KORWS 038E F80A OE
10 DMOV37 02A6 C48A
11 DMOV38 0280 C48A 10
12 CFOVLY OF44 EE66
13 IUMISCOV OC18 EE66 12
14 IURFAADA OC74 EE66 13
15 PMERRS 0212 D8EO
16 KOPLG 01A6 F80A OF
IB DSRDSK ODOC COOO
20 DSR911 1226 COOO
3C JCAOOO 3000 9000
43 DSR93B 35C6 COOO
44 DSR93C 379A COOO

14 01/Y
15 01/Y
05 01/Y
11 01/Y

Ol/Y
01/Y

DATE
8/19/83
8/19/83
8/19/83
8/19/83 .
8/19/83
8/19/83
8/19/83

DATE
8/19/83
8/19/83

DATE
8/19/83
8/19/83
8/19/83
8/19/83
8/19/83
8/19/83
8/19/83
8/19/83
8/19/83
8/19/83
8/19/83
8/19/83
8/19/83
8/19/83
8/19/83
8/19/83
8/19/83
8/19/83
8/19/83
8/19/83
8/19/83
8/19/83
8/19/83
8/19/83
8/19/83
8/19/83

DNOS Source Structure 21-12 2270512-9701

DNOS System Design Document

SECTION 22

DATA STRUCTURE PICTURES

22.1 OVERVIEW

This section includes details of the templates found in the
DSC.TEMPLATE.COMMON directory atid in the DSC.TEMPLATE.ATABLE
directory. The DSC.TEMPLATE.COMMON directory includes templates
for the tables used as assembly language CSEG modules throughout
DNOS. It also includes sp~cial-purpose templates used only by a
single subsystem. The special-purpose templates are not shown in
detail here; consult the appropriate TEMPLATE directory for
details.

The DSC.TEMPLATE.ATABLE directory contains all of the assembly
language versions of the DNOS data structure templates. It
includes templates for structures used throughout the operating
system as well as templates for special purposes in a single
subsystem. This section includes detailed pictures of the
general-purpose structures; consult the source directory for
details on special-purpose structures.

The template pictures include descriptions of various fields of
data structures used by DNOS, their locations, meanings of flags,
and special comments. The following features are found in one or
more of the structure pictures:

* Header showing the structure name,
system, and abbreviat~on for the name

location

* Comments describing the use of the structure

in the

* Hexadecimal starting location (or offset relative to the
beginning of the structure) for each word of the
structure

* Label for each field, chosen from three types:

Blank if no label

Label of the form FILLxy,
generated by software

Label of 6 or fewer characters

2270512-9701 22-1

if the label is

Structure Pictures

DNOS System Design Document

* Size of field indicated by space allocated in structure
picture

* Comment to right of field, describing that field

* List of flag definitions for each flag field in the
structure

Flag name

Diagram showing position of flag, initial position
being O. The flag is always defined as an
assembly language equate fGr the first bit
position shown with an X in the diagram.

Description of flag

Optional lines of extended explanations of flag
settings

* List of equated labels for fields in the structure

Label being equated

Argument of the equate

Value of the equate (or location of the argument)

Description of the label being equated

Table 22-1 lists the templates detailed in this section.

Structure Pictures 22-2 2270512-9701

DNOS System Design Document

Table 22-1 Template Acronyms

Acronym Meaning

From DSC.TEMPLATE.COMMON

JMDATA
LGACOM
LGLCOM
NFCLKD
NFDATA
NFJOBC
NFPTR
PMDATA

Job Management Common Area in JCA
Accounting Log Common Data
System Log Common Data
Clock Data Area
Global Data Values
Job Manager Common Area
System Pointers
Global Data Areas for Program Management

From DSC.TEMPLATE.ATABLE

ACC
ADR
AGR
BAP
BRO
BTB
CCB
CDE
CDR
CLR
DDB
DIA
DIT
DOR
DPD
DPR
DUS
FCB
FDB
FDP
FDR
FID
FIR
FSC
FWA
IRB
JIT
JMR
JSB
KCB
KDB
KDR
KIB
KIT

2270512-9701

Accounting Record Contents
Alias Descriptor Record
Access Group Record
Buffer Address Packet
Buffered Request Overhead
B-Tree Block
Channel Control Block
Command Definition Entry
Channel Descriptor Record
Capabilities List File Record
DIOU Data Base Definition
Diagnostic Status
Disk Information Table
Directory Overhead Record
Disk PDT Extension
Device Utility Parameters
Device Utility Session Table
File Control Block - See FSC
File Directory Block - See FSC
File Descriptor Packet
File Descriptor Record
File Identification
File Information Record
File Structure Common
File Manager Work Area
I/O Request Block
Job Information Table
Job Management Request
Job Status Block
KIF Currency Block
Key Descriptor Block (Memory Structure)
Key Descriptor Block (Disk Structure)
KIF Information Block
KIF Task Area

22-3 Structure Pictures

DNOS System Design Document

Table 22-1 Template Acronyms (Continued)

Acronym

KSB
LDT
LFD
LPD
LSE
MRB
MTX
NDB
NDS
NFCRSH
NFSTAT
NRB
OAD
OAW
OSE
OTI
OVB
OVT
PBM
PDT
PFI
PFZ
QHR
QIR
RDB
RIB
RLT
ROB
RPB
RST
SAT
SCO
SDB
SGB
SLB
SLH
SMR
SMT
SOB
SOV
SSB
STA
STE
SVB
TDL
TSB

Structure Pictures

Meaning

Keyboard Status Block
Logical Device Table
Log File Definition
Line Printer PDT Extension
Load Segment Entry
Master Read/Master Write Buffer
Extension for a Magnetic Tape
Name Definition Block
Name Definition Segment Overhead
System Crash Code Equates
Task State Definitions
Name Manager Request Block
Overlay Area Description
Overlay Area Wait Block
Owned Segment Entry
Opening Task Identifier
Overhead Beet
Overlay Table Entry
Partial Bit Map Table/Buffer
Physical Device Table
Program File Directory Index Entry
Program File Record Zero
Queue Header
Queued IPC Request
Request Definition Block
Return Information Block
Record Lock Table
Resource Ownership Block
Resource Privilege Block
Reserve Segment Table
Secondary Allocation Table
Track 0, Sector 0
Stage Descriptor Block
Segment Group Block
System Log Block Formats
Semaphore List Header
Segment Manager- Request Block
Segment Manager Table
Segment Owner Block
System Overlay Load Table
Segment Status Block
System Table Area Overhead
Swap Table Entry
Stage Value Block
Time Delay List Entry
Task Status Block

22-4 2270512-9701

DNOS System Design Document

Table 22-1 Template Acronyms (Continued)

Acronym

UDO
UDR
UIP
VCB
VDB
VRB
XTK

Meaning

User Descriptor Overflow Record
User Descriptor Record
User ID Parameter
Value Continuation Block
Value Definition Block
Virtual Request Block
Extension for a Terminal with a Keyboard

Several templates are described in the DNOS SCI and Utilities
descriptions of the

lists the· templates
Design Document, along with detailed
utilities that use them. Table 22-2
described in that manual.

Table 22-2

Acronym

ACC
CNT
FIR
SCA
SDEDOR
SDEMD
SDQ
SDT
SPM
UDR

2270512-9701

Templates Described in SCI and Utilities Document

Meaning

Accounting Record Contents
Class Name Table
File Information Record
System Communications Area
Memory Resident DOR (UTSORT Structure)
Sorted Directory File Entries Table
Spooler Device Queue Entry
Spooler Device Table Entry
Spooler Message Format
User Descriptor Record

22-5 Structure Pictures

JMDATA DNOS System Design Document

22.2 STRUCTURES FROM THE COMMON DIRECTORY

**
* *
*
*
*

JMDATA - JOB MANAGER COMMON AREA 06/08/82
LOCATED IN JOB MANAGER TASK AREA

*
*
*

**
*

----------+----------
)00 CURJSB

+----------+----------+
)02 JMRPTR

+----------+----------+
)04 BROPTR

+----------+----------+
)06 PARFMT

+----------+----------+
)08 PARFCB

+----------+----------+
)OA JSTCRE JSTEXC

+----------+----------+
)OC JSTHLT JSTTRM

+----------+----------+
)OE TSTJHT! TSTJMR

+----------+----------+

+

Structure Pictures

CURRENT JSB POINTER

CURRENT JOB REQUEST

CURRENT BRO REQUEST

PARENTS FMT POINTER

PARENTS FCB POINTER
=============== JOB & TASK STATES =

CREATING
EXECUTABLE

HALTED
TERMINATING

TASK SUSPENDED BY JOBMGR
TASK WAITING ON JMR SVC

22-6 2270512-9701

DNOS System Design Document LGACOM

**
* * * LGACOM - ACCOUNTING LOG COMMON 04/26/82 *
* TEMPLATE : LFD *
* (40 MAX = 2 KB OF MESSAGES) *
**

---~------+----------
)00 FILLOO !

+----------+----------+
)02 ! FILL01 !

+---~------+----------+
.)04! FILL02 ! FI"LL03 !

+-------~--+---------~+
)06 ! FILL04

+----------+----------+
)08 FILLOS !

+----------+----------+

EQUATES:

LABEL EQUATE TO VALUE

LGACOM $)00

+

FLAGS AND ERROR BYTE

MAX MESSAGE COUNT (0 = NONE)

ID Or ~ASK TO BID ON FULL
ID OF USER TASK TO BID ON FULL

ACCOUNTING FILE ALLOCATION

LUNOS

DESCRIPTION

2270512-9701 22-7 Structure Pictures

LGLCOH DNOS System Design Document

**
*
*
*
*

LGLCOM - SYSTEM LOG COMMON
TEMPLATE : LFD

09/09/83
*
*
*
* **

----------+----------
)00 FILLOO

+----------+----------+
)02 FILLOl

+----------+----------+
)04 FILL02 FILL03

+----------+----------+
)06 FILL04

+----------+----------+
)08

+----------+----------+
)OA FILL05

+----------+----------+
/ / /
/ / /
+----------+----------+

)12! FILL06 !
+----------+----------+
/ / /
/ / /
+----------+----------+

)IA FILL07
+----------+----------+

)IC FILL08
+----------+----------+

EQUATES:

LABEL EQUATE TO VALUE

LGLCOM $)00

+

FLAGS (SEE LFD TEMPLATE)

MAX MESSAGE COUNT (O=)NO MAX)

ID OF TASK TO BID ON FULL
ID OF USER TASK TO BID ON FULL

LOG DEVICE NAME (BLANKS=)NONE)"

FILENAME 1

FILENAME 2

LOG FILE ALLOCATION

LUNOS

DESCRIPTION

Structure Pictures 22-8 2270512-9701

DNOS System Design Document NFCLKD

**
* * * NFCLKD - CLOCK DATA AREA 01/31/82 *
* *
**
* THIS COMMON SEGMENT INCLUDES FLAGS AND COUNTERS USED FOR
* PERFORMANCE DATA GATHERING AND SYSTEM CLOCK WORKSPACES.
* THE WORKSPACE STARTING AT CLKWP2 IS USED FOR UPDATING THE
* CLOCK; THAT AT CLKWP IS THE NORMAL CLOCK WORKSPACE. IN
* THE LATTER, THE ESTIMATED UTILIZATION VARIABLES (R4,RS)
* CONTAIN VALUES IN THE RANGE 0 THROUGH)8000 WHERE 0
* REPRESENTS 0% UTILIZATION AND)8000 REPRESENTS 100%
* UTILIZATION.

*

----------+----------
)00 ! NBFLGS NUMBER OF STATISTIC FLAGS

+----------+----------+
)02 NBSAM1 NUMBER SAMPLES ON FLAGS (WD

+----------+----------+
)04 ! NBSAM2 ! NUMBER SAMPLES ON FLAGS (WD

+----------+----------+
)06 ! STFLGO ! FLAG 0 - FOR DISK UTILITY

+----------+----------+
)08 ! FLGOH1 HIT COUNT FOR FLAG 0 (WD 1)

+----------+----------+
)OA FLGOH2 HIT COUNT FOR FLAG 0 (WD 2)

+----------+----------+
)OC ! STFLG1 FLAG 1 - CPU UTILIZATION

+----------+----------+
)OE FLG1H1 HIT COUNT FOR FLAG 1 (WD 1)

+----------+----------+
)10 FLGIH2 HIT COUNT FOR FLAG 1 (WD 2)

+----------+----------+
)12 ! STFLG2 FLAG 2 - SCHEDULER

+----------+----------+
)14 FLG2H1 HIT COUNT FOR FLAG 2 (WD 1)

+----------+----------+
)16 FLG2H2 HIT COUNT FOR FLAG 2 (WD 2)

+----------+----------+
)18 ! STFLG3 FLAG 3 - FILE MANAGER

+----------+----------+
)lA ! FLG3H1 ! HIT COUNT FOR FLAG 3 (WD 1)

+----------+----------+
)lC ! FLG3H2 ! HIT COUNT FOR FLAG 3 (WD 2)

+----------+----------+
)lE ! STFLG4 FLAG 4 - TASK LOADER

+----------+----------+
)20 ! FL G4 H 1 HIT COUNT FOR FLAG 4 (WD 1)

+----------+----------+
)22 FLG4H2 HIT COUNT FOR FLAG 4 (WD 2)

1)

2)

2270512-9701 22-9 Structure Pictures

NFCLKD DNOS System Design Document

+----------+----------+
)24 ! STFLG5 ! FLAG 5 - MAP ONE ACTIVITY

+----------+----------+
)26 ! FLG5Hl ! HIT COUNT FOR FLAG 5 (WD 1)

+----------+----------+
)28 FLG5H2 HIT COUNT FOR FLAG 5 (WD 2)

+----------+----------+
)2A STFLG6 FLAG 6 - SVC CODE FILE MGR

+----------+----------+
)2C FLG6Hl ! HIT COUNT FOR FLAG 6 (WD 1)

+----------+----------+
)2E FLG6H2 HIT COUNT FOR FLAG 6 (WD 2)

+----------+----------+
)30 STFLG7 FLAG 7

+----------+----------+
)32 ! FLG7Hl ! HIT COUNT FOR FLAG 7 (WD 1)

+----------+----------+
)34 ! FLG7H2 ! HIT COUNT FOR FLAG 7 (WD 2)

+----------+----------+
)36 STFLG8 ! FLAG 8

+----------+----------+
)38 FLG8Hl HIT COUNT FOR FLAG 8 (WD 1)

+----------+----------+
)3A FLG8H2 HIT COUNT FOR FLAG 8 (WD 2)

+----------+----------+
)3C STFLG9 FLAG 9

+----------+----------+
)3E FLG9Hl HIT COUNT FOR FLAG 9 (WD 1)

+----------+----------+
)40 FLG9H2 ! HIT COUNT FOR FLAG 9 (WD 2)

+----------+----------+
)42 STFLGA FLAG 10

+----------+----------+
)44 FLGAHI HIT COUNT FOR FLAG 10 (WD 1)

+----------+----------+
)46 FLGAH2 ! HIT COUNT FOR FLAG 10 (WD 2)

+----------+----------+
)48 STFLGB FLAG 11

+----------+----------+
)4A FLGBHl HIT COUNT FOR FLAG 11 (WD 1)

+----------+----------+
)4C FLGBH2 ! HIT COUNT FOR FLAG 11 (WD 2)

+----------+----------+
)4E STCNTO COUNTER 0 - II JOBS COMPLETED

+----------+----------+
)50 STCNTl COUNTER 1 - II TASKS COMPLETED

+----------+----------+
)52 STCNT2 COUNTER 2 - /I SEG MGR CALLS

+----------+----------+
)54 STCNT3 COUNTER 3 - II FILE MGR CALLS

+----------+----------+
)56 STCNT4 COUNTER 4 - II IPC CALLS

+----------+----------+

Structure Pictures 22-10 2270512-9701

DNOS System Design Document NFCLKD

) S8 STCNTS COUNTER S - If ROLL OUTS
+----------+----------+

)SA STCNT6 COUNTER 6 - If FILE MGR Q REQ
+----------+----------+

)SC STCNT7 ! COUNTER 7 - If SYSTEM OVLY LDS
+----------+----------+

)SE STCNT8 ! COUNTER 8 - If NAME MANAGER CALLS
+----------+----------+

)60 ! STCNT9 COUNTER 9 - II IOU CALLS
+----------+----------+

) 62 STCNTA COUNTER lO- 11 SYSTAB SCHED CALLS
+----------+----------+

)64 ! STCNTB ! COUNTER II
+----------+----------+

)66 CLKWP2 ! RO
+----------+----------+

)68 ! CKTICI Rl - 32 BIT CLOCK TIC COUNTER
+----------+----------+

)6A CKTIC2 ! R2 WORDS 1 AND 2
+----------+----------+

)6C ! YEAR ! R3 - CLOCK YEAR COUNTER
+----------+----------+

)6E ! DAY R4 - CLOCK DAY COUNTER
+----------+----------+

)70 HOUR ! RS - CLOCK HOUR COUNTER
+----------+----------+

)72 MIN ! R6 - CLOCK MINUTE COUNTER
+----------+----------+

)74 SEC ! R7 - CLOCK SECOND COUNTER
+----------+----------+

)76 ! TIC ! R8 - CLOCK TIC COUNTER
+----------+----------+

)78 FILLOO ! R9 - SECONDS PER MINUTE
+----------+----------+

)7A FILLOI RIO - HOURS PER DAY
+----------+----------+

)7C FILL02 ! Rll - DAYS PER YEAR
+----------+----------+

)7E FILL03 R12 - SCRATCH
+----------+----------+

)80 FILL04 . ! RI3 - SCRATCH
+----------+----------+

)82 FILLOS .- ! R14
+----------+----------+

)84 FILL06 RIS - TIC COUNT FOR TIME UNITS
+----------+----------+

)86 CLKWP ! RO - SCRATCH
+----------+----------+

)88 FILL07 ! Rl - SCRATCH
+----------+----------+

)8A FILL08 ! R2 - SCRATCH
+----------+----------+

)8C FILL09 R3 - FOR BAR GRAPH

2270S12-9701 22-11 Structure Pictures

NFCLKD

+----------+----------+
)8E ! DSUTIL !

+----------+----------+
)90 CPUTIL

+----------+----------+
)92 TSTIC !

+----------+----------+
)94 DSPFG1

+----------+----------+
)96 ! DSPFG2

+----------+----------+
)98 FILLOA

+----------+----------+
)9A FILLOB

+--------~-+----------+
)9C ! FILLOC

+----------+----------+
)9E FILLOD

+----------+----------+
)AO FILLOE !

+----------+----------+
)A2 FILLOF

+----------+----------+
)A4 FILL10

+----------+----------+
)A6 PFGOH2

+----------+----------+
)A8 ! PFG1H2 !

+----------+----------+

EQUATES:

DNOS System Design Document

R4 - ESTIMATED DISK UTILIZ

R5 - ESTIMATED CPU UTILIZ

R6 - TIME SLICE TIC COUNT

R7 - INDEX TO FLAGS TO DISPLAY

R8 ON FRONT PANEL

R9 - FOR FRONT PANEL DISPLAY

RIO - FOR FRONT PANEL DISPLAY

Rl1 - SCRATCH

R12 - FRONT PANAL ADDRESS

R13 - WORKSPACE POINTER

R14 - PROGRAM COUNTER

R15 - STATUS

PREV NUMBER HITS FLAG 0 (WD 2)

PREV NUMBER HITS FLAG 1 (WD 2)

LABEL EQUATE TO VALUE DESCRIPTION

SFESIZ 6)06 STATISTICS FLAGS ENTRY SIZE
NFCSIZ $-NBFLGS)AA

Structure Pictures 22-12 2270512-9701

DNOS System Design Document NFDATA

**
*
*
*

NFDATA - GLOBAL DATA VALUES 03/08/83
*
*
*

**
* THIS COMMON SEGMENT CONTAINS GLOBAL DATA VALUES INCLUDING
* THE FOLLOWING: BEET ANCHORS FOR THE TIME ORDERED LIST
* (TOL), CACHE LIST, FREE MEMORY LIST, STATIC BUFFER AREA,
* AND THE TEMPORARY MEMORY BUFFER; PARAMETERS FOR PRIORITY
* COMPUTATION AND SCHEDULING; ROLL OUT AND LOAD PARAMETERS.
* A NUMBER OF MISCELLANEOUS DATA VALUES ARE ALSO FOUND IN
* THIS CSEG. COMMENTS IN THIS TEMPLATE'S SOURCE FILE SHOW
* PRIORITY, AGING, AND ROLLOUT PARAMETERS.

* * NOTE: CHANGES TO THIS TEMPLATE REQUIRE CORRESPONDING
* CHANGES TO SYSGEN.

*

----------+----------
)00 TMTOL

+----------+----------+
)02 TOLBET

+----------+----------+
)04 TMTOLN

+----------+----------+
)06 TMTOLO !

+----------+----------+
)08 TMTTYP

+----------+----------+
)OA FILLOO

+----------+----------+
)OC ! FILL01 !

+----------+----------+
)OE FILL02

+----------+----------+
)10 FILL03

+----------+----------+
)12 FILL04

+----------+----------+
)14

+----------+----------+
)16 INTCDT

+----------+----------+
)18 RESPFL RESTSK

+----------+--------~-+
)lA RESTRT

+----------+----------+
)lC ! FILL05

+----------+----------+
)lE RELOCA

+----------+----------+

START OF TIME ORDERED LIST

BEET ADDRESS OF TOL HEADER

FORWARD POINTER

BACKWARD POINTER

TYPE OF BLOCK

SCHEDULER ENTRY VECTOR (WP)

(PC)

(ST)

RESERVED

FAKE CDT FOR SYSTEM INIT. TASK

PROGRAM FILE LUNa
ID OF SYSTEM RESTART TASK

ID OF USER RESTART TASK

RELOCATION VALUE FOR LOADER

2270512-9701 22-13 Structure Pictures

NFDATA

)20 CHELST

+----------+----------+
)22 ! CHEBET !

+----------+----------+
)24 CHEFWD

+----------+----------+
)26 CHEBKW

+----------+----------+
)28 CHETYP

+----------+----------+
)2A SMTBMP

+----------+----------+
)2C USERPF !

+----------+----------+
/ / /
/ / / +--------~--+----------+

)34 TSKDOA !

+----------+----------+
)36 FILL06

+----------+----------+
)38 CPU12

+----------+----------+
)3A AJSBCT

+----------+----------+
)3C ! ATSBCT

+----------+----------+
)3E WTSBCT

+----------+----------+
)40 UAHEAD

+----------+----------+
)42 UAPTR

+----------+----------+
)44 UAFWD

+----------+----------+
)46 UABKW

+----------+----------+
)48 UABADD

+----------+----------+
)4A UATLEN

+----------+----------+
)4C UADSTR

+----------+----------+
)4E UADLEN

+----------+----------+
)50 UADMIN

+----------+----------+
)52 USEMEM

+----------+----------+
)54 USEFRG !

+----------+----------+
)56 TICFRQ !

+----------+----------+

DNOS System Design Document

START OF CACHE LIST

BEET ADDRESS OF LIST HEADER

FORWARD POINTER

BACKWARD POINTER

TYPE OF BLOCK

SEG MANAGER SCRATCH WORD

NAME OF PF CONTAINING USER-

FOR INTERRUPT 2 PROCESSOR TO
RETURN TASK ERR CODE TO SCHD.

* RESERVED * (SMRID)

SET IF 990/12 CPU

ACTIVE JSB COUNT

ACTIVE TSB COUNT

COUNT OF TSB'S ON WOM

START OF FREE USER AREA

BEET ADDRESS OF BLOCK

FOWARD LINK POINTER

BACKWARD LINK POINTER

START ADDRESS OF USER MEMORY

TOTAL LENGTH OF USER MEMORY

START OF DYNAMIC USER MEMORY

LENGTH OF DYNAMIC USER MEMORY

MIN AMOUNT OF DYNAMIC MEMORY

SUM OF ALL CURRENT FREE MEMORY

NUMBER OF FREE MEMORY FRAGMENT

CLOCK FREQUENCY (TICS/SEC)

Structure Pictures 22-14 2270512-9701

DNOS System Design Document

>58 UNTSLC
+----------+----------+

>5A TPU .!
+----------+----------+

>5C TSENAB
+----------+----------+

>5E TICLMT
+----------+----------+

>60 BTAHED
+----------+----------+

>62 BTAPTR
+----------+----------+

>64 ! BTAFWD !
+----------+----------+

>66 BTAREV !
+----------+----------+

>68 BTAADD
+----------+----------+

>6A ! BTALEN !
+----------+----------+

>6C BTAMAX !
+----------+----------+

>6E BTAALL
+----------+----------+

>70 ! BTAHDN !
+----------+----------+

>72 FILL07
+----------+----------+

>74 ! MEMSIZ !
+----------+----------+

>76 ! CMEMSZ !
+----------+----------+

>78 ! CRSHTL !
+----------+----------+

>7A CRSHHD CRSHSC
+----------+----------+

>7C CRSHCL
+----------+----------+

>7E CRSHSL
+----------+----------+

>80 TMBHED
+----------+----------+

>82 TMBPTR
+----------+----------+

>84 TMBFWD
+----------+----------+

>86 TMBBWD
+----------+----------+

>88 TMBADD
+----------+----------+

>8A TMBLEN
+----------+----------+

>8C FILL08

NFDATA

CLOCK TICS PER TIME SLICE

TICS PER TIME UNIT

TIME SLICE ENABLE FLAG

LIMIT FOR CURRENT TIME SLICE

SIZE OF ANCHOR BLOCK

BEET ADDRESS OF THIS BLOCK

FORWARD POINTER

REVERSE POINTER

BEET ADDRESS OF TABLE AREA

LENGTH OF TABLE AREA IN BEETS

MAXIMUM AREA FOR BUFFERS

ALLOCATED TABLE AREA

HIDDEN TABLE AREA

RESERVED

SIZE OF SYSTEM IN BEETS

SIZE OF CRASH FILE IN BEETS

CRASH FILE TILINE ADDRESS

CRASH FILE HEAD ADDRESS
CRASH FILE SECTOR ADDRESS

CRASH FILE CYLINDER ADDRESS

CRASH FILE TILINE SELECT

SIZE OF ANCHOR BLOCK

BEET ADDRESS OF THIS BLOCK

FORWARD POINTER

BACK POINTER

TEMP ADDRESS BOUNDARY

TEMP BUFFER LENGTH

RESERVED

2270512-9701 22-15 Structure Pictures

NFDATA

+----------+----------+
)8E FILL09

+----------+----------+
)90 EXTIME

+----------+----------+
)92 FUTPDT

+----------+----------+
)94 UNLPDT

+----------+----------+
)96 SYSUNT

+----------+----------+
)98 JCABT

+----------+----------+
)9A TDLEXP

+----------+----------+
)9C WJSBCT

+----------+----------+
)9E LDTDSC

+----------+----------+
/ / /
/ / /
+----------+----------+

)AC IOINDX
+----------+----------+

)AE INTPRI
+----------+----------+

)BO
+----------+----------+

)B2 JPRMOD
+----------+----------+

)B4
+----------+----------+

)B6 DYNMOD
+----------+----------+

)B8 !
+----------+----------+

) BA AGE IND
+----------+----------+

) BC
+----------+----------+

)BE ENDLMT
+----------+----------+

)CO CLMXBF
+----------+----------+

)C2 CLMXPS
+----------+----------+

)C4 CLMNBF
+----------+----------+

)C6 CLNBUF
+----------+----------+

)C8 CLNPRG
+----------+----------+

)CA TLSPND

DNOS System Design Document

RESERVED

EXTEND TIME SLICE FLAG

IOU PDT CURRENTLY IN USE

UNLOAD VOLUME PDT IN USE

ELASPED SYSTEM TIME UNITS

BEET ADDRESS OF JCA

TIME DELAY EXPIRED FLAG

WOM LIST JSB COUNT

VALUE OF X IN I/O INDICATOR
FORMULA.

INSTALLED PRI 1 -) 188

VALUE FOR INSTALLED PRI OF 1

VALUE FOR INSTALLED PRI OF 1

VALUE FOR INSTALLED PRI OF 1

END ACTION EXECUTION TIME LIMIT
IN SYSTEM TIME UNITS

MAX # BUFFERS ON CACHE LIST

MAX # PROGRAM SEGS ON CACHE LIST

RESERVED
WAS MIN # BUFFERS ON CACHE LIST

BUFFERS CURRENTLY ON CACHE LIST

PROG SEGS CURRENTLY ON CACHE LIST

MIN # SYS TIME UNITS TASK MUST

Structure Pictures 22-16 2270512-9701

DNOS System Design Document

+----------+----------+
)CC TLEXEC !

+----------+----------+
)CE TOLCNT

+----------+----------+
)DO TOLS24

+----------+----------+
)D2 LDRTDY

+----------+----------+
)D4 NUMROL

+----------+----------+
)D6 ROLSPA

+----------+----------+
)D8 LDREXC

+----------+----------+
)DA ! TSKCNT !

+----------+----------+
)DC FRCROL !

+----------+----------+
)DE PMSTSB

+----------+----------+
)EO! SITENM

+----------+----------+
/ / /
/ / /
+----------+----------+

)E8 MGRCG
+----------+----------+
/ / /
/ / /
+----------+----------+

)FO! PUBLIC
+----------+----------+
/ / /
/ / /
+----------+----------+

) F8 ! SYSOPT
+----------+----------+

)FA JCARES
+----------+----------+

)FC ! EXPLEN
+----------+----------+

)FE CONTRY
+----------+----------+

)0100 ITSKMX
+----------+----------+

)0102 ITSKCR
+----------+----------+

)0104 ! DCPYAC
+----------+----------+

)0106 VERS
+----------+----------+

)0108

NFDATA

BE SUSPENDED BEFORE ELIGIBLE FOR
MIN # SYS TIME UNITS OF EXECUTION

TASK MUST RECEIVE BEFORE
TASKS ON TOL ELIGIBLE FOR ROLL

OUT (NOT MEMORY RESIDENT)
IF NOT 0 STATE 24 TASKS ARE

IMMEDIATELY ELIGIBLE FOR
TASK LOADER TIME DELAY VALUE

IN SYSTEM TIME UNITS
NUMBER OF SEGMENTS ROLLED OUT

AMOUNT OF ROLL SPACE USED

TASK LOADER IS EXECUTING FLAG

COUNT OF TASKS IN SYSTEM

FORCED ROLL-OUT COUNT

ADDRESS OF TSB TO ROLL

SITE NAME

SYSTEM MANAGER CONTROL GROUP

PUBLIC ACCESS GROUP

SYSGEN OPTIONS WORD(FLAGS BELOW)

RESERVED TABLE AREA AMOUNT

LENGTH TO EXPAND TABLE AREA

COUNTRY CODE FOR THIS SYSTEM

MAX ALLOC FOR GET AND PUT DATA

CURR ALLOC FOR GET & PUT DATA

DCOPY ACTIVE INDICATOR
O=DCOPY NOT ACTIVE, I=ACTIVE

VERSION NUMBER

2270512-9701 22-17 Structure Pictures

NFDATA

+----------+----------+
)010A

+----------+----------+
) 0 10 C ! ME MT I C

+----------+----------+
)010E SYSTEM

+----------+----------+
/ / /
/ / /
+----------+----------+

)0116 COMFLG
+----------+----------+

)0118 ! WCSMAP !
+----------+----------+

)OIIA FILLOB
+----------+----------+

)OIIC FILLOC
+----------+----------+

)OIIE ! IOTFLG
+----------+----------+

)0120 ! CLOCNT
+----------+----------+

)0122 ! CPUID !
+----------+----------+

)0124 ATTNDV
+----------+----------+

)0126 !
+----------+----------+

)0128 FILLOD !
+----------+----------+

)012A !
+----------+----------+

)012C CLFLUN FILLOE
+----------+----------+

)012E UALGFB !
+----------+----------+

)0130 ! TILADD !
+----------+----------+

)0132 PWRFLG
+----------+----------+

FLAGS FOR FIELD: SYSOPT

DNOS System Design Document

COUNT BEFORE MEM CNTRL CHECK

NAME OF SYSTEM

TO SCHEDULE OR NOT TO SCHEDULE

LD MAP TO LOAD WCS (LIMIT)

(BIAS)

RESERVED

SCHEDULER, IOTBID FLAG
O=BID REQ OUTSTANDING-)BID NFTBID

FILE CLOSES OUTSTANDING

CPU ID

ATTENTION DEVICE NAME

RESERVED

STORAGE PLACE FOR LUNO TO .S$CLF
RSVD-FORCE CLFLUN IN LEFT BYTE

LARGEST FREE BLOCK OF DYNAMIC MEM

SAVE TILINE ADDR FOR POWER UP-MUX

CONTROLLER POWERUP FLAG-MUX

#F8 - SYSGEN OPTIONS WORD(FLAGS BELOW)

OPTDSK
OPTMFM
OPTCDF
OPTBLK
OPTBSF
OPTEXF
OPTACC
OPTOSP
OPTIPC

(x •••••••••.•••••) - SYSTEM DISK PRESENT
(.X) - MINIMUM FILE MANAGEMENT PRESENT
(•• X •••••••••••••) - CREATE/DELETE FILE CAPABILITY
(••• X ••••••••••••) - BLOCKED FILE CAPABILITY
(•••• X •••••••••••) - BLANK SUPPRESSED FILE CAPABILITY
(••••• X ••••••••••) - FILE EXTENSION CAPABILITY
(•••••• X •••••••••) - ACCOUNTING DATA COLLECTED
(••••••• X ••••••••) - OUTPUT SPOOLING
(•••••••• X •••••••) - IPC PRESENT

Structure Pictures 22-18 2270512-9701

DNOS System Design Document NFDATA

= (••••••••• X ••••••) - SECURITY
- KIF PRESENT
- EXPANDABLE JCA

OPTSEC
OPTKIF
OPTEXJ =
OPTRAW
OPTWCS
OPTPFR

(•••••••••• X •••••)
(••••••••••• X ••••)
(•••••••••••• X •••)
(••••••••••••• X ••)
(•••••••••••••• X.)
(••••••••••••••• X)

- DM READ AFTER WRITE ENABLED
- I=PERFORMANCE WCS
- I=POWER FAIL RECOVERY
- RESERVED

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

NFSBWP $-26)FFF2
NFSIZE $-TMTOL)134 SIZE OF THIS CSEG

2270512-9701 22-19 Structure Pictures

NFJOBC DNOS System Design Document

**
*
*
*

NFJOBC - JOB MANAGER COMMON AREA
*

11/09/79 *
* **

* THIS COMMON SEGMENT CONTAINS DATA VALUES USED BY THE
* JOB MANAGER.

----------+----------
)00 NXTJID NEXT AVAILABLE JOB ID

+----------+----------+
)02 FSTJID BEGINING AVAILABLE JOB ID

+----------+----------+
)04 LSTJID LAST AVALIBLE ID IN LIST

+----------+----------+
)06 JOBCNT NUMBER OF JOBS IN SYSTEM

+----------+----------+
)08 JOBLMT ! SYSTEM LIMIT ON ACTIVE JOBS

+----------+----------+
)OA JCAMIN ! SIZE OF JCA IN BYTES (SMALL)

+----------+----------+
)OC JCAAVG SIZE OF JCA IN BYTES (MED)

+----------+----------+
)OE JCAMAX SIZE OF JCA IN BYTES (LARGE)

+----------+----------+
)10 JWTQUE FOREGROUND JOB WAIT LIST

+----------+----------+
)12 JOBQ JOB MANAGER REQUEST QUEUE

+----------+----------+
)14 JOBBCT BACKGROUND JOB COUNT

+----------+----------+
)16 JOBBLM BACKGROUND JOB LIMIT

+----------+----------+
)18 JOBBWT BACKGROUND JOB WAIT LIST

+----------+----------+

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

NFJSIZ $-NXTJID)lA CSEG SIZE

+

Structure Pictures 22-20 2270512-9701

DNOS System Design Document NFPTR

*****************************~******************************

*
*
*

NFPTR - SYSTEM POINTERS 09/20/83
*
*
* **

* THIS COMMON SEGMENT CONTAINS POINTERS USED BY MANY PARTS
* OF DNO S.

----------+----------
)00 TDLHDR TIME DELAY LIST HEADER

+----------+----------+
)02 WOMQUE WAITING ON MEMORY QUEUE HEADER

+----------+----------+
)04 EXTSB CURRENTLY EXECUTING TASK

+----------+----------+
)06 EXJSB ! EXECUTING TASK JSB ADDRESS

+----------+----------+
)08 PDTLST START OF PDT LIST

+----------+----------+
)OA LDTLST START OF LDT LIST

+----------+----------+
)OC ! JSBLST START OF JSB LIST

+----------+----------+
)OE ACTJSB START OF ACTIVE JSB LIST

+----------+----------+
)10 ! WOMJSB START OF JSBS WAITING ON MEMORY

+----------+----------+
)12 JCASTR START OF ALL JCA AREAS

+----------+----------+
)14 MBSSTR POINTER TO SYSTEM SGB

+----------+----------+
)16 ! PDTSAV ! POINTER TO SAVED PDT FOR DSRS

+----------+----------+
)18 ! MAPSHD ! POINTER TO SCHEDULER MAP FILE

+----------+----------+
)lA MAPSV2 POINTER TO SVC SECOND MAP FILE

+----------+----------+
)lC ! CURMAP POINTER TO CURRENT MAP 0 FILE

+----------+----------+
)lE ! RUTSSB POINTER TO SSR FOR ROOT

+----------+----------+
)20 COMSSB SSB ADDR OF SY STEM COMMON

+----------+----------+
)22 SMSTR SSB ADDR OF FIRST SM SEGMENT

+----------+----------+
)24 SMEND ! SSB ADDR OF LAST SM SEGMENT

+----------+----------+
)26 FMSTR SSB ADDR OF FIRST SM SEGMENT

+----------+----------+
)28 ! FMEND SSB ADDR OF LAST SM SEGMENT

+----------+----------+

2270512-9701 22-21 Structure Pictures

NFPTR

)2A YRPTR
+----------+----------+

(CONTINUED)

+
+----------+----------+

)2C SYSTAB
+----------+----------+

)2E SPATCH
+----------+----------+

)30 ! IXPTR
+----------+----------+

)32 PCAPTR !
+----------+----------+

)34 DTMRAD
+----------+----------+

) 36 FILLOO
+----------+----------+

)38 ! FILLOl !
+----------+----------+

)3A FILL02 !
+----------+----------+

)3C FILL03
+----------+----------+

)3E ! TRCPTR
+----------+----------+

)40 BIDREQ !
+----------+----------+

)42 EORNKR !
+----------+----------+

)44 ! SYSJSB !
+----------+----------+

)46 CCBSTR
+----------+----------+

)48 SCOTID
+----------+----------+

)4A MAPISV
+----------+----------+

)4C MSGQUE
+----------+----------+

)4E SOPJSB
+----------+----------+

)50 SYSPDT
+----------+----------+

)52 ETBPTR
+----------+----------+

)54 ! PCSPTR
+----------+----------+

)56 ! PCMPTR !
+----------+----------+

)58 ! PCEPTR
+----------+----------+

)5A OVYTAB

DNOS System Design Document

PTR TO YEAR COUNTER (DATE&TIME)

OVERHEAD PTR FOR TABLE AREA

START OF PATCH AREA S$$PAT

ILLEGAL PC

MUX DEVIINT ENTRY

ADDRESS OF IODTMR

RESERVED

RESERVED

RESERVED

RESERVED

POINTER TO 112 TRACE SAVR AREA

ANCHOR FOR BID REQUESTS

ANCHOR FOR EOR REQUESTS

POINTER TO SYSTEM JOB JSB

START OF THE GLOBAL CCBS

NFTBID TASK ID AND LUNO

POINTER TO MAP FILE 1 SAVE
AREA FOR LEVEL 2 INTERRUPTS

PTR TO PUT DATA MESSAGES

SYSTEM OPERATOR JSB ADDRESS

$YSTEM DISK PDT ADDRESS

EXPANSION CHASSIS TABLE

SINGLE DEVIINT ENTRY

MULTIPLE DEVIINT ENTRY

EXPANSION CHASSIS ENTRY

SYSTEM OVERLAY TABLE ADDRESS

Structure Pictures 22-22 2270512-9701

DNOS System Design Document NFPTR

+----------+----------+
)5C ! IDTAB ! IPL LOADED OVERLAY TABLE ADDR.

+----------+----------+
)5E COMPTR POINTER TO COMM MODULE

+----------+----------+
)60 BADWP ILLEGAL XOP WORKSPACE

+----------+----------+
)62 CLOK12 12 MS CLOCK VECTOR

+----------+----------+
(CONTINUED)

+
+----------+----------+

)64 WOTJSB TABLE AREA WAIT QUEUE
+----------+----------+

)66 PDSOLD PRIORITY DSR SCHEDULER QUE HEAD
+----------+----------+

)68 ! PDSNEW ! PRIORITY DSR SCHEDULER QUE TAIL
+----------+----------+

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

NFPSIZ $-TDLHDR)6A

+

2270512-9701 22-23 Structure Pictures

PMDATA DNOS System Design Document

*.***.*******.*k************************************** ******
*
*
*
*

PMDATA - GLOBAL DATA VALUES
FOR PROGRAM MANAGEMENT

04/09/81
*
*
*
* **

* THIS COMMON SEGMENT CONTAINS THE PROGRAM MANAGEMENT ERROR
* RECOVERY SAVE AREA (IN THIS AREA SEG1SB THROUGH SEGID2
* MUST BE CONTIGUOUS), THE COMMON DATA FOR TASK BID
* ROUTINES, THE COMMON DATA FOR TASK LOADER ROUTINES, THE
* PROGRAM FILE DIRECTORY DOOR, THE PATHNAME FOR THE SYSTEM
* PROGRAM FILE, AND THE PATHNAME FOR THE SHARED PROGRAM FILE.

----------+----------
)00 SEG1SB SEGMENT 1 SSB ADDRESS

+----------+----------+
)02 SEG1ST SEGMENT 1 SM TABLE SSB ADDRESS

+----------+----------+
)04 SEG2SB SEGMENT 2 SSB ADDRESS

+----------+----------+
)06 SEG2ST ! SEGMENT 2 SM TABLE SSB ADDRESS

+----------+----------+
)08 ! SEG3SB ! SEGMENT 3 SSB ADDRESS

+----------+----------+
)OA SEG3ST SEGMENT 3 SM TABLE SSB ADDRESS

+----------+----------+
)OC CPYLDT ADDRESS OF LDT COpy

+----------+----------+
)OE CPYRPB ! ADDRESS OF RPB COpy

+----------+----------+ ***************************
)10 SEGID1 SEGMENT INSTALLED ID(2 WORDS)

+----------+----------+
)12 SEGID2

. +----------+----------+
)14 ! ATRSG1 ATTRIBUTES OF 1ST ATT. SEG.

+----------+----------+
)16 ATRSG2 ATTRIBUTES OF 2ND ATT. SEG.

+----------+----------+
)18 ATRTSK ATTRIBUTES OF TASK SEC.

+----------+----------+
)lA ! LENSG1 BYTE LENGTH OF 1ST ATT. SEC.

+----------+----------+
)lC ! LENSG2 BYTE LENGTH OF 2ND ATT. SEC.

+----------+----------+
)lE LENTSK BYTE LENGTH OF TASK SEG.

+----------+----------+
)20 ! LODTSK LOAD ADDRESS OF TASK SEG.

+----------+----------+
)22 TSKREP SSB REPLICATED IN MEMORY FLAG

+----------+----------+
)24 JCASSB SSB FOR JCA OF JOB FOR TASK BID

Structure Pictures 22-24 2 2 7 0 5-1 2 - 9 7 0 1

DNOS System Design Document

+----------+----------+
)26 JCASMT

+----------+----------+
)28 SG1BET

+----------+----------+
)2A SG2BET

+----------+--------~-+
)2C SC3BET !

+----------+----------+
)2E LODFLG !

+----------+----------+
)30 ROLDIR

+----------+----------+
)32 ROLPRS !

+----------+----------+
)34 SYSFDP !

+----------+----------+
)36 SYSFMT

+----------+----------+
)38 SYSFCB

+----------+----------+
)3A ROLFDP !

+----------+----------+
)3C ROLFMT

+----------+----------+
)3E ROLFCB

+----------+----------+
)40 APLFDP

+----------+----------+
)42 APLFMT

+----------+----------+
)44 APLFCB !

+----------+----------+
)46 IMGFDP

+----------+----------+
)48 IMGFMT

+----------+----------+
)4A IMGFCB

+----------+----------+
)4C SHRFDP !

+----------+----------+
)4E SHRFMT

+----------+----------+
)50 ! SHRFCB

+----------+----------+
)52 TIMSPN

+----------+----------+
)54

+----------+----------+
)56 ! SYSPN

+----------+----------+
)58 SYSPNC

+----------+----------+

PMDATA

SMT FOR JCA OF JOB FOR TASK BID
** TASK LOADER COMMON DATA ***

BEET ADDRESS OF SEGMENT 1

BEET ADDRESS OF SEGMENT 2

BEET ADDRESS OF SEGMENT 3

FLAG FOR LOADED/NOT LOADED SEG

ROLL DIRECTORY POINTER

PHYSICAL RECORD LENGTH ROLL FILE

SYSTEM PF FDP ADDR.

SYSTEM PF FMT ADDR.

SYSTEM PF FCB ADDR.

ROLL FILE FDP ADDR.

FMT OF ROLL FILE

FCB OF ROLL FILE

APPLICATION PF FDP ADDR.

APPLICATION PF FMT ADDRESS

APPLICATION PF FCB ADDRESS

IMAGES PF FDP ADDR.

IMAGES PF FMT ADDR.

IMAGES PF FCB ADDR.

S$SHARED PF FDP ADDR.

S$SHARED PF FMT ADDR.

S$SHARED PF FCB ADDR.

TIME DELAY SVC FOR TASK LOADER
SPIN ON DISK ERRORS

PATHNAME SYSTEM UTILITy PROG FL

2270512-9701 22-25 Structure Pictures

PMDATA

/
/

/
/

/
/

+----------+----------+
)60 SHRPN

+----------+----------+
)62 WOMPRI FILLOO

+----------+----------+

EQUATES:

LABEL EQUATE TO VALUE

PMDSIZ $-SEGISB)64

DNOS System Design Document

PATHNAME FOR S$SHARED PROG FL

PRIORITY OF TASK BEING LOADED
RESERVED

DESCRIPTION

Structure Pictures 22-26 2270512-9701

DNOS System Design Document

22.3 STRUCTURES FROM THE ATABLE DIRECTORY

**
* * ACCOUNTING RECORD CONTENTS (ACC)

*
09/09/83 *

* *
* LOCATION: SYSTEM TABLE AREA OR DISK *
**
* THE ACC DESCRIBES THE FORMAT OF ENTRIES ON THE QUEUE FOR
* PROCESSING BY THE ACCOUNTING FORMATTING TASK (LGACCT).
* WITH THE EXCEPTION OF THE QUEUE LINK, THE ENTRIES ARE
* EXACTLY THE SAME WHEN ON DISK IN THE ACCOUNTING LOG FILE.
* EACH BLOCK TYPE HAS ITS OWN SET OF INFORMATION FOLLOWING
* A STANDARD HEADER. THE EXCEPTION IS IPL (RECORD TYPE 6),
* WHICH USES ONLY THE HEADER INFORMATION.

FIXED PART
----------+----------

)00 ACCLNK QUEUE LINK
+----------+----------+

FIELD DESCRIPTOR VARIANT
----------+----------

)02 ACCTYP ACCLEN
+----------+----------+

)04 ! ACCYRD
+----------+----------+

)06 ACCHOU ACCMIN
+----------+----------+

)08 ACCSEC! ACCPRI !
+----------+----------+

)OA ACCJID !
+----------+----------+

RECORD TYPE
LENGTH OF RECORD

YEAR/DAY

HOUR
MINUTE

SECOND
PRIORITY

JOB ID

TYPE 1 - JOB INITIALIZATION
----------+----------

)OC ACCAID ACCOUNT ID
+----------+----------+
/ / /
/ / /
+----------+----------+

)lC ACCUID USER ID
+----------+----------+
/ / /
/ / /
+----------+----------+

)24 ACCJNM JOB NAME
+----------+----------+
/ / /

ACC

2270512-9701 22-27 Structure Pictures

ACC DNOS System Design Document

/ / /
+----------+----------+

TYPE 2 - TASK TERMINATION
----------+----------

)OC ACCTID ACCTCD TASK ID
+----------+----------+ TASK TERM CODE

)OE ACCCPU TASK CPU TIME (CLOCK TICKS)
+----------+----------+

)10 !
+----------+----------+

)12 ACCSVC NUMBER SVC'S ISSUED
+----------+----------+

)14 !
+----------+----------+

)16 ACCIOB NUMBER I/O BYTES TRANFERED
+----------+----------+

)18
+----------+----------+

)lA ACCMEM MAX MEMORY ALLOCATED(BEETS)
+----------+----------+

)lC ! ACCWAL WALL CLOCK EXECUTION TIME
+----------+----------+

)lE !
+----------+----------+

)20! ACCIID ACCSTN
+----------+----------+

)22 ACCATR !
+----------+----------+

)24 ACCTNM !
+----------+----------+
/ / /
/ / /
+----------+----------+

INSTALLED TASK ID
STATION ID

TASK ATTRIBUTES

TASK NAME

TYPE 3 - JOB TERMINATION
----------+----------

)OC ACCJUD JCA AREA USED
+----------+----------+

)OE ACCJSZ JCA TOTAL SIZE
+----------+----------+ .

)10 ACCJEX JOB EXECUTION TIME
+----------+----------+

)12
+----------+----------+

TYPE 4 - DEVICE ENTRy
----------+----------

)OC ACCTPF ACCDTP
+----------+----------+

)OE ACCNAM
+----------+----------+

)10

DEVICE TYPE FLAGS
DEVICE TYPE

DEVICE NAME

Structure Pictures 22-28 2270512-9701

DNOS System Design Document ACC

+----------+----------+
)12 ACCNRQ NUMBER I/O REQUESTS

+----------+----------+
)14

+----------+----------+
)16 ACCTMU RESERVED-TIME USED(MINUTES)

+----------+----------+

TYPE 5 - USER ENTRY
----------+----------

)OC ACCCHR USER DATA
+----------+----------+
/ / /
/ / /
+----------+----------+

TYPE 7 - CO~M ENTRY
----------+----------

)OC ACCCOM COMM DATA
+----------+----------+
/ / /
/ / /
+----------+----------+

SINGLE ENTITY VARIANT
----------+----------

)02 ACCTXT !
+----------+----------+
/ / /
/ / /
+----------+----------+

FLAGS FOR FIELD: ACCYRD "04 - YEAR/DAY

ACCYER = (XXXXXXX •••••••••) - YEAR (7 BITS)
ACCDAY (••••••• XXXXXXXXX) - DAY (9 BITS)

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION
----- --------- ----- ------------------------------
ACCVNT $)02
ACTJIT 1)01 JOB INITIALIZATION
ACTTTM 2)02 TASK TERMINATION
ACTJTM 3)03 JOB TERMINATION
ACTDET 4)04 DEVICE ENTRY
ACTUET 5)05 USER ENTRY
ACTIPL 6)06 IPL ENTRy
ACCORD $)OC END OF OVERHEAD
ACCJIZ $)2C
ACCTTZ $)2C

2270512-9701 22-29 Structure Pictures

ACC

ACCJTZ
ACCDSZ
ACCUSZ
ACCISZ
ACCCTZ

$
$
$
$
$

Structure Pictures

)14
)18
)52
)OC
)52

22-30

DNOS System Design Document

2270512-9701

DNOS System Design Document

**
* * ALIAS DESCRIPTOR RECORD

*
* LOCATION: DISK

(ADR)
*

02/28/79 *
*
*

**
* THE ADR IS A VARIANT OF A FILE DESCRIPTOR RECORD (FDR),
* USED TO DESCRIBE AN ALIAS FOR A FILE NAME. THE FIELDS
* MARKED HERE WITH *** ARE IN THE ADR TEMPLATE TO MAINTAIN
* COMPATABILITY WITH THE FDR TEMPLATE.

----------+----------
)00 ! ADRHKC ! HASH KEY COUNT

+----------+----------+
)02 ! ADRHKV HASH KEY VALUE

+----------+----------+
)04! ADRFNM FI LE NAME

+----------+----------+
/ / /
/ / /
+----------+------~---+

) OC ADRPSW PASSWORD
+----------+----------+

)OE !
+----------+----------+

)10 ADRFLG FLAGS(SAME AS FDRFLG FLAGS)
+----------+----------+

)12 FILLOO *** PHYSICAL RECORD SIZE
+----------+----------+

)14 FILL01 *** LOGICAL RECORD SIZE
+----------+----------+

)16 ! FILL02 ! *** PRIMARY ALLOCATION SIZE
+----------+----------+

ADR

)18 FILL03 ! *** PRIMARY ALLOCATION ADDRESS
+----------+----------+

)1A ! FILL04 *** SECONDARY ALLOCATION SI ZE
+----------+----------+

)lC FILL05 ! *** SECONDARY ALLOCATION ADDRESS
+----------+----------+

)1E ADRRNA RECORD NUMBER OF NEXT ADR
+----------+----------+

)20 ADRRAF RECORD # OF ACTUAL FDR
+----------+----------+

2270512-9701 22-31 Structure Pictures

BAP DNOS System Design Document

**
* * BUFFER ADDRESS PACKET (BAP)

*
* LOCATION: SYSTEM AREA

9/30/81
*
*
*
* **

* THE BAP IS THE ADDRESS OF AN I/O BUFFER WHICH IPC APPENDS
* TO A BUFFERED I/O REQUEST.

** BEGINNING PACKED RECORD BAP

----------+----------
)00 BAPSMT ! POINTER TO SMT SSB

+----------+----------+
)02 ! BAPSSB ! POINTER TO BUFFER SEG. SSB

+----------+----------+
)04 BAPOFF OFFSET TO BUFFER WITHIN SEG.

+----------+----------+
)06 SIZE ** END OF PACKED RECORD

Structure Pictures 22-32 2270512-9701

DNOS System Design Document"

**
* * * BUFFERED REQUEST OVERHEAD (BRO)

*
09/09/83 *

* * LOCATION: SYSTEM TABLE AREA AND JCA *
**
* THE BRO APPEARS AT THE HEAD OF EACH BUFFERED SVC REQUEST
* BLOCK WHILE BEING PROCESSED BY DNOS. THE REQUEST IS
* QUEUED USING THE BROBRO FIELD.

----------+----------
)FFEE BROOFL BROPRI

+----------+----------+
)FFFO BROOF2 BROAID

OVERHEAD FLAGS
TASK PRIORITY

OVERHEAD FLAGS PART 2

BRO

+----------+----------+
)FFF2 BROBBA

ALTERNATE REQUEST ID FOR M/D DSR
BUFFER BEET ADDRESS

+----------+----------+
)FFF4 ! BROLDT LDT ADDRESS

+----------+----------+
)FFF6 BROSID SESSION/DEVICE ID

+----------+----------+
)FFF8 BRORCB REQUESTOR CALL BLOCK ADDRESS

+----------+----------+
)FFFA BROTSB TSB ADDRESS

+----------+----------+
)FFFC BROJSB JSB ADDRESS

+----------+----------+
)FFFE BROBRO QUEUE LINK ADDRESS

+----------+----------+

FLAGS FOR FIELD: BROOFL #FFEE - OVERHEAD FLAGS

BRFINR
BRFARS
BRFA5
BRFERN

(x ••.••••••••••••) - INITIATE EVENT REQUEST
(.X ••••••••••••••) - ANOTHER ROUTINE HAS SEEN REQ
(•• X •••••••••••••) -)A5 CALL GIVEN TO IPC (IURL)
(••• XXXXX ••••••••) - INITIATE REQUEST NUMBER

FLAGS FOR FIELD: BROOF2 #FFFO - OVERHEAD FLAGS PART 2

BRFAPI (X .•...••••.••••.) - ALTERNATE REQUEST ID SPECIFIED
BRFRAV (.X ...•••...••••.) - REQUEST ACCEPTS EVENT KEYS
BRFMRO (•• X •••••••••••••) - MULTI-RECORD READ/WRITE REQUEST
BRFTID (••• X ••••••••••••) - TASK ID SPECIFIED IN BROTSB
BRFSB (•••• X •••••••••••) - SECURITY BYPASS
BRFSAB (••••• X ••••••••••) - SUSPENDING ABORT
BRFDNR (•••••• X •••••••••) - DO NOT RELEASE MEMORY

= (••••••• X ••••••••) - UNUSED

2270512-9701 22-33 Structure Pictures

BRO DNOS System Design Document

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

BRFEOR BRFA5)02 END OF RECORD DONE IMMEDIATELY
BRFABT BRFSAB)05 ABORTED OPERATION
BROSIZ $-BROOFL)12

Structure Pictures 22-34 2270512-9701

DNOS System Design Document

**
* * * B - TREE BLOCK (BTB) 09/07/79 *
* * * LOCATION: DISK AND BUFFER SEGMENTS *
**
* THE BTB DESCRIBES THE OVERHEAD INFORMATION REQUIRED TO SORT
* THE LOGICAL RECORDS OF A KEY INDEXED FILE. THE BTB RESIDES
* ON DISK AND IS READ INTO MEMORY WHEN USING A RECORD THAT
* IT DESCRIBES.

* * SPECIAL FIELD COMMENTS:
* BTBPPT -
*
*
*
*
* * BTBNIE

* * BTBNEA -
*
*
*
* * BTBNEC -
*
*
*
*
*
*
*
*

IF THIS BLOCK IS BEING USED AS A B-TREE NODE, THIS
FIELD IS THE PHYSICAL RECORD NUMBER OF THE
PRECEDING NODE ON THE SAME LEVEL (ZERO IF THIS IS
THE LEFTMOST NODE). IF THIS BLOCK IS AVAILABLE
FOR USE, THIS FIELD POINTS TO THE NEXT AVAILABLE
BLOCK.
NUMBER OF POINTER/KEY VALUE PAIRS CURRENTLY
CONTAINED IN THIS BLOCK.
THIS BYTE IS ZERO WHEN THE BLOCK IS INITIALIZED
BECAUSE OF A B-TREE SPLIT. WHEN THE FIRST ENTRY
IS MADE TO THE BLOCK, THIS BYTE CONTAINS THE
NUMBER OF ENTRIES IN THE BLOCK THAT ARE GREATER
THAN THE NEW ENTRY.
WHEN THE BLOCK IS INITIALIZED DUE TO A B-TREE
SPLIT, THIS VALUE IS THE MAXIMUM ENTRIES THAT MAY
BE INSERTED INTO THE BLOCK, PLUS ONE. FOR EACH
SUBSEQUENT ENTRY TO THIS BLOCK, IF THE NUMBER OF
ENTRIES IN THE BLOCK THAT ARE GREATER THAN THE NEW
ENTRY EQUALS THE NUMBER IN BTBNEA, BTBNEC IS
DECREMENTED BY ONE. WHEN THIS B-TREE BLOCK
IS ABOUT TO SPLIT, IF BTBNEC IS ZERO, THE SPLIT IS
AT A RATIO OF THE LOWER 90% OF THE ENTRIES ARE IN

BTB

*
*

ONE BLOCK AND THE UPPER 10% IN THE OTHER. OTHERWISE,
THE SPLIT IS 50% TO EACH.

* BTBDBK - IF THIS IS A NON-LEAF NODE, THE FIRST FOUR BYTES
*
*
*
*
*

CARRY THE RECORD NUMBER OF A BRANCH OR LEAF NODE AND
THE LAST TWO BYTES ARE NOT MEANINGFUL. IF THIS IS' A
LEAF NODE, THE FIRST FOUR BYTES CONTAIN A RECORD NUMBER
OF A DATA RECORD AND THE LAST TWO BYTES CONTAIN THE
ID OF THE LOGICAL RECORD WITHIN THE DATA RECORD.

* BTBCMD - THIS FIELD IS USED WHEN THIS RECORD HAS TO BE PRELOGGED.
IT IDENTIFIES ALL THE RECORDS PRELOGGED BY THE OPERATION. *

----------+----------
)00 ! BTBBLK

+----------+----------+
)02 !

+----------+----------+
)04 BTBCMD

BLOCK NUMBER (2 WORD PHYSICAL
RECORD NUMBER OF THIS BTB)

PRELOG NUMBER

2270512-9701 22-35 Structure Pictures

BTB

+----------+----------+
)06 BTBSR

+----------+----------+
)08 ! BTBPPT

+----------+----------+
)OA !

+----------+----------+
)OC BTBSPT

+----------+----------+
)OE

+----------+---------~+
)10 BTBNIE BTBLE

+----------+----------+
)12 BTBNEA BTBNEC

+----------+----------+
)14 BTBDBK

+----------+----------+
)16 !

+----------+----------+
)18 !

+----------+----------+
)lA BTBKVL !

+----------+----------+

EQUATES:

LABEL EQUATE TO VALUE

BTBSIZ $)lC

DNOS System Design Document

SPACE REMAINING (BYTES) IN BTB

PREDECESSOR OR FREE POINTER

SUCCESSOR POINTER

NUMBER OF INDEX ENTRIES
LEAF ENTRY FLAG(l=THIS IS A LEAF)

OF ENT. AFTER LAST INSERT
COUNT OF # SEO. INSERTS

B-BLOCK DATA BASE KEY

FIRST POINTER/KEY VALUE PAIR

DESCRIPTION

Structure Pictures 22-36 2270512-9701

DNOS System Design Document

* * CHANNEL CONTROL BLOCK (CCB) *

06/09/83 *
* *
* LOCATION: SYSTEM AREA AND JCA * ***
* THE CCB IS THE IN-MEMORY REPRESENTATION OF A CHANNEL. IT
* RESIDES IN SYSTEM TABLE AREA FOR GLOBAL CHANNELS, IN THE
* JCA FOR JOB-LOCAL OR TASK-LOCAL CHANNELS. MOST OF THIS
* STRUCTURE IS BUILT FROM THE CHANNEL DESCRIPTOR RECORD ON
* DISK.

----------+----------
)00 CCBCCB

+----------+----------+
)02 CCBFLG !

+----------+----------+
)04 CCBTYP CCBTF !

+----------+----------+
)06 CCBMXL !

+----------+----------+
)08 CCBASG CCBOPN

+----------+----------+
)OA CCBRPB

+----------+----------+
)OC CCBTSB

+----------+----------+
)OE CCBJSB

+----------+----------+

NEXT CCB ADDRESS

CHANNEL FLAGS

DEFAULT RESOURCE TYPE
RESOURCE TYPE FLAGS

MAXIMUM MESSAGE LENGTH

NUMBER OF CURRENT ASSIGNS
NUMBER OF CURRENT OPENS

RPB POINTER

OWNER TASK TSB ADDRESS

OWNER TASK JSB ADDRESS

CCB

)10 CCBPFL CCBIID
+----------+----------+

OWNER TASK PROG FILE LUNO (DPOS/M)
OWNER TASK INSTALLED ID

)12 CCBFMT OWNER TASK PROGRAM FILE FDP (D)
+----------+----------+

)14 CCBFCB !
+----------+----------+

) 1 6 ! CCB PBQ ! PENDING BRB QUEUE HEADER
+----------+----------+

)18 ! CCBABQ ! ALREADY BEING PROCESSED QUEUE HEAD
+--~-------+----------+

) 1A! CCBNAM ! CHANNEL NAME LENGTH AND NAME (M).
+----------+----------+
/ / /
/ / /
+----------+----------+

FLAGS FOR FIELD: CCBFLG #02 - CHANNEL FLAGS

CCFSCI = (XX ••••••••••••••) - SCOPE - GLOBAL,JOB,TASK
* OO=TASK-LOCAL
* 01=JOB-LOCAL

2270512-9701 22-37 Structure Pictures

CCB

*
*

*
*

CCFSHR
CCFTYP
CCFASG
CCFABT
CCFIOU

CCFBSY
CCFOOP
CCFOCL
CCFDED
CCFRCL
CCFRAB

EQUATES:

LABEL

CCFSC2
CCFSCM
CCFCHN
CCFDEV
CCFFIL
CCFREM
CCBDSZ
CCBCSZ

=
=

=

=
=
=

DNOS System Design Document

10=GLOBAL
11=RESERVED

(•• X •••••••••••••) - SHARED(I)/NOT SHARED
(••• X ••••••••••••) - SYMMETRIC(I) OR MASTER/SLAVE
(•••• X •••••••••••) - OWNER DOES(I) / NOT DO ASSIGN
(••••• X ••••••••••) - OWNER DOES(I) / NOT DO ABORTS
(•••••• X •••••••••) - OWNER DOES(I) / NOT DO IOU OP S
(••••••• X ••••••••) - RESERVED (AS IN CREATE CHAN RCB)
(•••••••• X •••••••).- CCB IS BUSY (IN USE BY IPC TASK)
(••••••••• X ••••••) - OWNER TASK HAS ISSUED OPEN
(•••••••••• X •••••) - OWNER TASK HAS CLOSED OR ABORTED
(••••••••••• X ••••) - CHANNEL IS DEAD
(•••••••••••• X •••) - NON-SH SYMMETRIC REQUESTER CLOSED
(••••••••••••• X ••) - NON-SH SYMMETRIC REQUESTER ABORTED
(•••••••••••••• XX) - RESERVED

NOTE: CCBTF=CCBTYP+l MUST BE TRUE

EQUATE TO VALUE DESCRIPTION
--------- ----- ------------------------------

CCFSCl+l)01
)COOO)COOO CHANNEL SCOPE MASK
13)OD CHANNEL
14)OE DEVICE
15)OF FILE
)0007)07 RESOURCE TYPE FLAGS MASK
$+8)22 DPOS/D CCB SIZE
$)4C DPOS/M CCB SIZE

Structure Pictures 22-38 2270512-9701

DNOS System Design Document

********************************~***************************

* * * COMMAND DEFINITION ENTRY (CDE) 04/02/82 *
* *
**
* THE CDE DESCRIBES ONE ENTRY IN THE COMMAND DEFINITION
* TABLE FOR A DEVICE. THE ENTRY SHOWS WHAT TASK IS TO BE
* BID WHEN A KEYBOARD TASK BID IS DONE.

----------+----------
)00 CDECHR CDEFLG!

+----------+----------+
)02 CDELL CDELID!

+----------+----------+
)04 CDEDL CDEDID!

+----------+----------+

ENTRy IDENTIFICATION CHARACTER
BID FLAGS

LUNO WITH WHICH TO BID LOGIN
LOGIN TASK ID

LUNO TO BID DESTINATION TASK
DESTINATION TASK ID

CDE

)06 ! CDEPVl ! PARAMETER VALUE 1 FOR DEST. TASK

+----------+----------+
)08 CDEPV2 PARAMETER VALUE 2 FOR DEST. TASK

+----------+----------+
)OA CDEUID DEFAULT USER ID

+----------+----------+
/ / /
/ / /
+----------+----------+

FLAGS FOR FIELD: CDEFLG 1101 - BID FLAGS

CDFBCJ
CDFPEA
CDFELB
CDFDUI

EQUATES:

= (X •••••••••••••••)
= <.X)
= (•• X •••••••••••••)

(••• X ••••••••••••)
(•••• XXXX ••••••••)

- BID DEST. TASK IN CURRENT JOB
- PASS THE CDE ADDRESS TO LOGIN
- EVEN LOADING BID
- DEFAULT USER ID FOR ELB
- * RESERVED *

LABEL EQUATE TO VALUE DESCRIPTION

CDESIZ $)12 COMMAND DEFINITION ENTRY SIZE

2270512-9701 22-39 Structure Pictures

CDR DNOS System Design Document

**
* * CHANNEL DESCRIPTOR RECORD

*
* LOCATION: DISK

(CDR)
*

08/14/81 *
*
*

**
* THE CDR IS THE PERMANENT RECORD OF A CHANNEL. IT IS
* CARRIED AS AN ALIAS OF THE PROGRAM FILE IN WHICH THE
* CHANNEL OWNER TASK RESIDES.

----------+----------
)00 CDRHKC

+----------+----------+
)02 CDRHKV

+----------+----------+
)04! CDRNAM

+----------+----------+
/ / /
/ / /
+----------+----------+

)OC FILLOO
+----------+----------+

)OE FILL01
+----------+----------+

)10 CDRFDF
+----------+----------+

)12 CDRFLG CDRIID
+----------+----------+

)14 CDRTYP CDRTF
+----------+----------+

)16 CDRMXL
+----------+----------+

)18 FILL04
+----------+----------+

)lA !
+----------+----------+

)lC !
+----------+----------+

)lE CDRRNA
+----------+----------+

)20 ! CDRRAF
+----------+----------+

)22! FILL05
+----------+----------+
/ / /
/ / /
+----------+----------+

)90! CDRUID !
+----------+----------+
/ / /
/ / /

HASH KEY COUNT

HASH KEY VALUE

CHANNEL NAME

RESERVED

RESERVED

FLAGS

CHANNEL FLAGS
OWNER TASK INSTALLED ID

DEFAULT RESOURCE TYPE
RESOURCE TYPE FLAGS

MAXIMUM MESSAGE LENGTH

RESERVED

RECORD NUMBER OF NEXT CDR OR ADR

RECORD NUMBER OF ACTUAL FDR

RESERVED

USER ID OF CHANNEL CREATOR

Structure Pictures 22-40 2270512-9701

DNOS System Design Document CDR

*
*
*
*

+----------+----------+
)98 CDRPSA PUBLIC SECURITY ATTRIBUTES

+----------+----------+
)9A CDRSCG SDT WITH 9 CONTROL GROUPS

+----------+----------+
/ / /
/ / /
+----------+----------+

)F8! FILL06 ! ! RESERVED
+----------+----------+
/ / /
/ / /
+----------+----------+

FLAGS FOR FIELD: CDRFDF 1110 - FLAGS

(XXXXXXXXXXXXXXX.) - STANDARD FDR FLAGS
CDFCDR = (••••••••••••••• X) - CDR(l) OR NOT(O)

FLAGS FOR FIELD: CDRFLG 1112 - .CHANNEL FLAGS

CDFSC1 =

CDFSHR

(Xx ••••••••••••••) - SCOPE - GLOBAL, JOB, TASK
OO=TASK-LOCAL
01=JOB-LOCAL
10=GLOBAL
11=RESERVED

(•• X •••••••••••••) - SHARED(I) OR NOT SHARED
CDFTYP (••• X ••••••••••••) - SYMMETRIC(l) OR MASTER/SLAVE
CDFASG
CDFABT
CDFIOU

EQUATES:

LABEL

CDRDPM
CDRCDM
CDFSC2
CDFSCH
CDFRM1
CDFCHN
CDFDEV
CDFFIL
CDFRM2
CDRSIZ
CDRMAX

(•••• X •••••••••••) - OWNER DOES(I) / NOT DO ASSIGN
(••••• X ••••••••••) - OWNER DOES(I) / NOT DO ABORTS
(•••••• X •••••••••) - OWNER DOES(l) / NOT DO IOU OPS
(••••••• X ••••••••) - RESERVED (AS CREATE CHANNEL)

EQUATE TO VALUE DESCRIPTION
--------- ----- ------------------------------

)0080)80 DELETE-PROTECT MASK
)0001)01 CDR FLAG MASK
CDFSC1+l)01
)COOO)COOO BASK FOR CHANNEL SCOPE
)FEOO)FEOO MASK TO ZERO RESERVED BITS
13)OD CHANNEL
14)OE DEVICE
15)OF FILE
)FF07)FF07 MASK TO ZERO RESERVED TYPE
$)100
)3000)3000 MAXIMUM VALUE FOR CDRMXL

FLAGS

2270512-9701 22-41 Structure Pictures

CLR DNOS System Design Document

*********************************~**************************

*
*
*
*

CAPABILITIES LIST FILE RECORD (CLR)

LOCATION .S$CLF ON DISK

01/21/83
*
*
*
*

* *
**
* THE CLR IS USED BY TASKS WHICH ADD, DELETE, OR MODIFY
* USER IDS OR ACCESS GROUPS. IT HAS 5 VARIANTS: FIR, AGR,
* UDR, UDO, AND VFY. THE STRUCTURE AND PURPOSE OF EACH VARIANT
* IS DESCRIBED BELOW.

*
* * THIS PACKED RECORD IS USED FOR USER ID ENTRIES IN FIR

* ** BEGINNING PACKED RECORD UID

----------+----------
)00 FIRID USER ID

+----------+----------+
/ / /
/ / /
+----------+----------+

)08 ! FIRRN ! USER'S UDR RECORD NUMBER
+----------+----------+

)OA SIZE ** END OF PACKED RECORD

* * THIS PACKED RECORD IS USED FOR ACCESS GROUP ENTRIES IN
* USER DESCRIPTOR RECORDS (UDR) AND USER DESCRIPTOR OVERFLOW
* RECORDS (UDO).

* ** BEGINNING PACKED RECORD AGE

ACCESS GROUP ENTRY
----------+----------

)00 AGERN ACCESS GROUP RECORD NUMBER
+----------+----------+

)02 AGEOFF AGEFLG OFFSET INTO ACCESS GROUP RECORD
+----------+----------+ ACCESS GROUP ENTRY FLAGS

)04 SIZE ** END OF PACKED RECORD

* * THIS PACKED RECORD IS USED FOR ACCESS GROUP NAMES IN
* ACCESS GROUP RECORDS (AGR)
* ** BEGINNING PACKED RECORD AGN

----------+----------
)00 AGNNAM ACCESS GROUP NAME

Structure Pictures 22-42 2270512-9701

DNOS System Design Document

*

*
*
*

+----------+----------+
/ / /
/ / /
+----------+----------+

)08 AGNRSV RESERVED
+----------+----------+

)OA SIZE ** END OF PACKED RECORD

** BEGINNING PACKED RECORD CLR

* FILE INFORMATION RECORD (FIR)

* * THIS VARIANT IS USED TO STORE USER IDs. IT CONTAINS A
* FLAG WORD, A POINTER TO ANOTHER FIR, AND 5 UID ENTRIES.
* EACH UID ENTRY CONTAINS A USER ID AND THE RECORD NUMBER
* OF ITS USER DESCRIPTOR RECORD (UDR).

*
*

----------+----------
)00 FIRFIR ! CONTINUATION RECORD NUMBER

+----------+----------+
)02 FIRRSV FIR USED/AVAILABLE FLAG

+----------+----------+
)04 FIRENT 5 UID ENTRIES

+----------+----------+
/ / /
/ / /
+----------+----------+

)OE !
+----------+----------+
/ / /
/ / /
+----------+----------+

)18 !
+----------+----------+
/ / /
/ / /
+----------+----------+

)22 !
+----------+----------+
/ / /
/ / /
+----------+----------+

)2C
+----------+----------+
/ / /
/ / /
+----------+----------+

CLR

2270512-9701 22-43 Structure Pictures

CLR DNOS System Design Document

* * ACCESS GROUP NAME RECORD (AGR)

* * THIS VARIANT IS USED TO STORE ACCESS GROUP NAMES.
* IT CONTAINS A FLAG WORD, A POINTER TO THE NEXT AGR, AND
* 5 AGN ENTRIES. EACH AGN ENTRY CONTAINS AN ACCESS GROUP
* NAME AND A WORD OF UNUSRD FLAGS.

*

----------+----------
)00 AGRAGR CONTINUATION RECORD NUMBER

+----------+----------+
)02 ! AGRRSV AGR USED/AVAILABLE FLAG

+----------+----------+
)04 AGRAGN 5 AGN ENTRIES

+----------+----------+
/ / /
/ / /
+----------+----------+

)OE
+----------+----------+
/ / /
/ / /
+----------+----------+

)18

+----------+----------+
/ / /
/ / /
+----------+----------+

)22
+----------+----------+
/ / /
/ / /
+----------+----------+

)2C
+----------+----------+
/ / /
/ / /
+----------+----------+

*
*
*

USER DESCRIPTOR RECORD (UDR)

* THIS VARIANT CONTAINS INFORMATION ASSOCIATED WITH A USER ID.
* THIS INFORMATION INCLUDES THE ENCRYPTED PASSCODE, DESCRIPTION,
* AND UP TO 5 ACCESS GROUP ENTRIES. EACH ACCESS GROUP ENTRy
* CONTAINS A RECORD NUMBER OF AN ACCESS GROUP RECORD (AGR)
* AND THE OFFSET INTO THE AGR FOR AN ACCESS GROUP NAME OF
* WHICH THIS USER IS A MEMBER.

*

----------+----------

Structure Pictures 22-44 2270512-9701

DNOS System Design Document CLR

)00 UDRUDO ! POINTER TO OVERFLOW
+----------+----------+

)02 ! UDRRSV ! UDR USED/AVAILABLE FLAG
+----------+----------+

)04 UDRPWD ENCRYPTED PASSCODE
+----------+----------+
/ / /
/ / /
+----------+----------+

)OC UDRFLG UDR FLAG WORD
+----------+----------+

)OE UDRDES DESCRIPTION OF USER
+----------+----------+
/ / /
/ / /
+----------+----------+

)22 UDRAGE 5 ACCESS GROUP ENTRIES (AGE)
+----------+----------+

)24 ! !
+----------+----------+

)26
+----------+----------+

)28
+----------+----------+

)2A !
+----------+----------+

)2C
+----------+----------+

)2E
+----------+----------+

)30 ! !
+----------+----------+

)32 !
+----------+----------+

)34
+----------+----------+

* * USER DESCRIPTOR OVERFLOW RECORD (UDO)

* * THIS VARIANT IS USED ONLY USED IN THE CASE THAT A USER IS
* A MEMBER OF MORE ACCESS GROUPS THAN WILL FIT IN HIS UDR.
* IT CONTAINS UP TO 12 ACCESS GROUP ENTRIES.

*

----------+----------
)00 UDOUDO POINTER TO NEXT UDO

+----------+----------+
)02 UDORSV UDO USED/AVAILABLE FLAG

+----------+----------+
)04 ! UDOFIL NOT USED

+----------+----------+
)06 UDOAGE 12 ACCESS GROUP ENTRIES (AGE)

2270512-9701 22-45 Structure Pictures

CLR DNOS System Design Document

+----------+----------+
)08 !

+----------+----------+
)OA !

+----------+----------+
)OC

+----------+----------+
)OE

+----------+----------+
) 10 ! !

+----------+----------+
)12 r

+----------+----------+
)14

+----------+----------+
) 16 ! !

+----------+----------+
)18

+----------+----------+
)lA

+----------+----------+
)lC

+----------+----------+
)lE

+----------+----------+
)20 !

+----------+----------+
) 22 ! !

+----------+----------+
)24 ! ! !

+----------+----------+
)26 !

+----------+----------+
)28 !

+----------+----------+
)2A

+----------+----------+
)2C

+----------+----------+
)2E !

+----------+----------+
)30

+----------+----------+
)32

+----------+----------+
)34

+----------+----------+
* * VERIFICATION RECORD (VFY)

* * THIS VARIANT IS USED BY THE SYSTEM RESTART TASK TO VERIFY
* THE EXISTENCE OF .S$CLF. IT IS ALSO USED BY TASKS WHICH
* CREATE AND MODIFY ACCESS GROUPS BECAUSE IT CONTAINS A

Structure Pictures 22-46 2270512-9701

DNOS System Design Document

* POINTER TO THE FIRST ACCESS GROUP RECORD.

*

----------+----------
)00 VFYNAM NAME OF S$CLF

+----------+----------+
/ / /
/ / /
+----------+----------+

)08 VFYBLK POINTER TO FIRST AGRBLK

+----------+----------+

CLR

)OA VFYFIL NOT USED, INITIALIZED TO BLANKS

+----------+----------+
/ / /
/ / /
+----------+----------+

)36 SIZE ** END OF PACKED RECORD

FLAGS FOR FIELD: AGEFLG #03 - ACCESS GROUP ENTRY FLAGS

AGELDR = (X •••••••••••••••) - TRUE=USER IS LEADER OF ACCESS GROUP
AGEFCG (.X ••••••••••••••) - TRUE=FILE CREATION ACCESS GROUP

FLAGS FOR FIELD: FIRRSV #02 - FIR USED/AVAILABLE FLAG

FIRFRE = (X •••••••••••••••) - TRUE=AVAILABLE RECORD

FLAGS FOR FIELD: AGRRSV #02 - AGR USED/AVAILABLE FLAG

AGRFRE = (X •••••••••••••••) - TRUE=AVAILABLE RECORD

FLAGS FOR FIELD: UDRRSV #02 - UDR USED/AVAILABLE FLAG

UDRFRE = (X •••••••••••••••) - TRUE=AVAILABLE RECORD

FLAGS FOR FIELD: UDRFLG HOC - UDR FLAG WORD

UDRPVL = (XXXXX •••••••••••) - USER PRIVELEDGE LEVEL
UDRAGC = (••••• XXXXXXXXXXX) - ACCESS GROUP COUNT

FLAGS FOR FIELD: UDORSV #02 - UDO USED/AVAILABLE FLAG

unOFRE = (X •••••••••••••••) - TRUE=AVAILABLE ENTRY

2270512-9701 22-47 Structure Pictures

CLR

EQUATES:

LABEL EQUATE TO
----- ---------
FIR $
AGR $
UDR $
UDO $
VFY $
FIRSIZ $
AGRSIZ $
UDRSIZ $
UDOSIZ $
VFYSIZ $

Structure Pictures

VALUE

)00
)00
)00
)00
)00
)36
)36
)36
)36
)36

22-48

DNOS System Design Document

DESCRIPTION

2270512-9701

DNOS System Design Document

**

* *
* DIOU DATA BASE DEFINITION (DDB) 12/01/81*

*
*
*

LOCATION: DIOU NAME MANAGER SEGMENTS AND
RELATIVE RECORD FILE

*
*
*

**
** BEGINNING PACKED RECORD DDB

* DEVICE NAMES
* DEVICE NUMBERS

*
* RELATIVE RECORD FILE RECORDS

*

----------+----------
)00 DDBOR1

+----------+----------+
)02 DDBORT !

+----------+----------+
)04! DDBODT DDBOCT

+----------+----------+
)06 DDBOCE

+----------+----------+
)08 DDBOWT DDBOR2

+----------+----------+

----------+----------
)00 DDB1NU

+----------+----------+
)02 DDB1RR !

+----------+----------+
)04 DDB1PA

+----------+----------+
)06 DDB1F1

+----------+----------+
)08 ! DDB1F2

+----------+----------+
)OA DDB1LC DDB1TC!

+----------+----------+
)OC DDBI0J

+----------+----------+
)OE DDBILP !

+----------+----------+
)10 ! DDBIRP

+----------+----------+

----------+----------
)OO! DDB2Rl ! DDB2NF

+----------+----------+

*RESERVED

*RESOURCE TYPE

*DEVICE TYPE
*CDT NUMBER

*CDE MASK

*WRITE TASK ID
*RESERVED

*DEVICE NUMBER

*RELATIVE RECORD NUMBER

*PDT ADDRESS

*FLAGS

*FLAGS

*ASSIGNED LUNO COUNT
*ATTACHED TASK COUNT

*OWNER JOB

*LOCKED PARAMETER LIST ANCHOR

*RPB ANCHOR

*RESERVED
*DEVICE NAME FILE

DDB

2270512-9701 22-49 Structure Pictures

DDB

)02 DDB2RR
+----------+----------+

)04 DDB2NA
+----------+

----------+----------
)00 OSPPRM OSPSTR

+----------+----------+
)02 OSPOFF OSPLEN

+----------+----------+

----------+----------
)00 STRES STID

+----------+----------+
)02 ! STFNAS

+----------+----------+
)04 STFNUS

+----------+----------+
)06 FILLOO !

+----------+----------+
/ / /
/ / /
+----------+----------+

)1A STPTNM
+----------+----------+
/ / /
/ / /
+----------+----------+

DNOS System Design Document

*RELATIVE RECORD NUMBER

*DEVICE NAME

*PARAMETER NUMBER
*STRUCTURE IDENTIFIER

*OFFSET INTO STRUCTURE
*LENGTH OF PARAMETER

*RESERVED
*SESSION IDENTIFIER

*FIRST NAME SEGMENT RUN ID

*FIRST NUMBER SEGMENT RUN ID

*REST OF THE RUN IDS

*PATHNAME OF SYSTEM

)2C SIZE ** END OF PACKED RECORD

EQUATES:

LABEL EQUATE TO
----- ---------
RELREC 0
NAMSEG 1
NUNSEG 2
DSKPDT 3
DDBOVL $
DDBOPD $
DDBOVD $
DDBOUP $
DDBNOS $
DDB1SZ $
DDF1DS)1800

Structure Pictures

VALUE

)00
)01
)02
)03
)OA
)OA
)OA
)OA
)OA
)12
)1800

22-50

DESCRIPTION

*RELATIVE RECORD FILE
*NAME MANAGER SEGMENTS ORDERED BY
*NAME MANAGER SEGMENTS ORDERED BY
*DISK PDT
*BEGINNING OF VARIABLE LENGTH PARMS
*PRINT DEVICE NAME
*VIRTUAL DEVICE SERVER
*USER PARAMETERS
*NON O.S. PARAMETERS
*SIZE

*DEVICE STATE MASK

2270512-9701

DNOS System Design Document

* * DIAGNOSTIC STATUS

*
* LOCATION: JCA

(DIA)
*

05/16/79 *
*
*

* THE DIA DESCRIBES A TASK WHICH IS TERMINATING ABNORMALLY.
* IT IS USED TO PROVIDE END ACTION STATUS TO A TASK AND TO
* BUILD A TERMINATION MESSAGE FOR THE SYSTEM LOG.

----------+----------
)OO! DIAEC FILLOO

+----------+----------+
)02 DIAWP

+----------+----------+
)04 DIAPC

+----------+----------+
)06 ! DIAST !

+----------+----------+

TASK ERROR CODE
RESERVED

TASK WORKSPACE POINTER

TASK PROGRAM COUNTER

TASK STATUS

DIA

)08 DIALM1 ! END ACTION TIME LIMIT(lST WORD)
+----------+----------+

)OA DIALM2 (SECOND WORD)
+----------+----------+

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

DIASIZ $)QC

2270512-9701 22-51 Structure Pictures

DIT DNOS System Design Document

* *
*
*

DISK INFORMATION TABLE (DIT) 09/09/83 *
* ***

* THIS TEMPLATE IS USED TO DESCRIBE EACH ENTRY IN THE DITDAT TABLE
* USED BY THE DISK VOLUME UTILITIES. THERE IS ONE ENTRY IN DITDAT
* FOR EACH DISK TYPE THAT IS SUPPORTED BY DNOS.

*
** BEGINNING PACKED RECORD DIT

----------+----------
)00 DITSR1

+----------+----------+
)02 DITSR2

+----------+----------+
)04 DITSR3

+----------+----------+
)06 DITFLG

+----------+----------+
)08 DITPRL

+----------+----------+
)OA DITNVE !

+----------+----------+
)OC DITNAM

+----------+----------+
/ / /
/ / /
+----------+----------+

)lC DITNSC DITSCM
+----------+----------+

)lE DITHIF
+----------+----------+

)20 ! DITTPP
+----------+----------+

)22 DITDSP
+----------+----------+

)24 DITNDS FILL03
+----------+----------+

)26 ! DITRTF
+----------+----------+

)28 DITCRL
+----------+----------+

)2A FILL05
+----------+----------+

DISK STORE REGISTERS 1.

DISK STORE REGISTERS 2

DISK STORE REGISTERS 3

DISK INFORMATION FLAGS

PHYSICAL RECORD LENGTH-DEFAULT

NUMBER VCATALOG ENTRIES-DEFAULT

DISK NAME

NUMBER SPARE CYLINDERS
SPARE CYLINDERS FOR MAPPING

HARDWARE INTERLEAVE FACTOR-DEFAULT

TEST PATTERNS POINTER

DIAGNOSTIC SECTORS POINTER

NUMBER OF DIAGNOSTIC SECTORS
SPARE BYTE - NOT USED

READ TYPES FLAGS FOR SURFACE ANALYSI

DISK CONTROLLER REVISION LEVEL

SPARE - NOT USED

)2C SIZE ** END OF PACKED RECORD

Structure Pictures 22-52 2270512-9701

DNOS System Design Document

**
* * DIRECTORY OVERHEAD RECORD (DOR) *

01/31/79 *
* * * LOCATION: DISK *
**
* THE DOR IS THE FIRST RECORD (RECORD 0) OF A DIRECTORY FILE
* AND SHOWS THE MAXIMUM SIZE AND CURRENT USE OF A DIRECTORY.

----------+----------
)00 ! DORNRC

+----------+----------+
)02 ! DORNFL !

+----------+----------+
)04 DORNAR !

+----------+----------+
)06 ! DORTFC !

+----------+----------+
)08 DORDNM

+----------+----------+
/ / /
/ / /
+----------+----------+

)10 ! DORLVL
+----------+----------+

)12! DORPNM ! !
+----------+----------+
/ / /
/ / /
+----------+----------+

)1A DORPRS !
+----------+----------+

EQUATES:

LABEL EQUATE TO VALUE

DORSIZ $)lC

RECORDS IN DIRECTORY

FILES CURRENTLY IN DIRECTORY

OF AVAILABLE RECORDS

NUMBER OF TEMPORARY FILES

DIRECTORY FILE NAME

LEVEL # OF DIRECTORY

NAME OF PARENT FILE

DEFAULT PHYSICAL RECORD LENGTH
(USED FOR FILE CREATION)

DESCRIPTION

DOR

2270512-9701 22-53 Structure Pictures

DPD DNOS System Design Document

**
* * DISK PDT EXTENSION

*
(DPD)

*
01/17/83 *

* LOCATION: SYSTEM TABLE AREA
*
* **

* THE DPD APPEARS AFTER THE StANDARD PDT INFORMATION FOR A
* DISK DEVICE. IT IS USED AS A WORK AREA BY THE DSR AND BY
* THE DISK MANAGER TASK.

----------+----------
)OO! DPDTIL ! !

+----------+----------+
/ / /
/ / /
+----------+----------+

) 10 DPDSLG! !

+----------+----------+
/ / /
/ / /
+----------+----------+

)20 ! DPDECT
+----------+----------+

)22 DPDWTK

+----------+----------+
)24 DPDSTK DPDOHD!

+----------+----------+
)26 DPDCYL

+----------+----------+
)28! DPDSRD ! DPDRTK !

+----------+----------+
)2A DPDWRD

+----------+----------+
)2C DPDILF !

+----------+----------+
)2E DPDMAD

+----------+----------+
)30 DPDSAD

+----------+----------+
)32 DPDDRS !

+----------+----------+
)34 DPDFLG !

+----------+----------+
)36 DPDIBF !

+----------+----------+
)38

+----------+----------+
)3A

+----------+----------+
)3C DPDFMS

+----------+----------+

TILINE IMAGE

TILINE IMAGE FOR SYSTEM LOG

TILINE UNIT ERROR COUNT

WORDS PER TRACK

SECTORS PER TRACK
OVERHEAD PER RECORD

HEADS & CYLINDERS

SECT~RS PER RECORD
RECORDS PER TRACK

WORDS PER RECORD

INTERLEAVING FACTOR

MAX NUMBER OF ADUS ON DISK

SECTORS PER ADU

DEFAULT PHYSICAL RECORD SIZE

FLAGS

INITIALIZATION BUFFER

VCAT FD SPECIAL AREA SSB ADDRESS

Structure Pictures 22-54 2270512-9701

DNOS System Design Document DPD

*
*
*

*
*
*
*

)3E DPDFDB

+----------+--------~-+
)40 DPDPBM

+----------+----------+
)42 DPDVNM

+----------+----------+
/ / /
/ / /
+----------+----------+

)4A DPDTFL
+----------+----------+
/ / /
/ / /
+----------+----------+

POINTER TO VCATALOG FCB

DISK MANAGER TABLE/BUFFER ADDR
(NON-ZERO = DISK INSTALLED)

VOLUME NAME

TEMPORARY FILE NAME SEED

)52 ! DPDIVD INSTALLED VOLUME CREATION DATE
+----------+----------+

)54 ! DPDIVT ! INSTALLED VOLUME CREATION TIME
+----------+----------+

FLAGS FOR FIELD: DPDFLG #34 - FLAGS

= (X •••••••••••••••) -
DPFRAW = (• X ••••••••••••••) - DISK READ AFTER WRITE
DPFBRW (•• X •••••••••••••) - BIT MAP READ AFTER WRITE
DPFRST (••• X ••••••••••••) - RESTORE FLAG
DPFSTR = (•••• X •••••••••••) - STORE REGISTER FLAG (1= STORE

REG COMMAND WAS ISSUED BY DSR
TO DETERMINE IF)lB ERROR IS
AN UNSAFE OR MEDIA CHANGE

DPFODI = (••••• X ••••••••••) - 1 = ONLINE DIAGNOSTIC REQUEST
DPFWRP = (•••••• X •••••••••) - SOFTWARE WRITE PROTECT FLAG
DPFBLF = (••••••• X ••••••••) - BUFFER LOCK FLAG.

1 = THIS DRIVE LOCKED THE
NON-RE ENTRANT BUFFER USED
BY MEDIA CHANGE VALIDATION
PROCESS.

DPFDTN = (•••••••• X •••••••) - DIRECT TILINE I/O FLAG
= (••••••••• XXXXXXX) -

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

DPDSIZ $)56 DISK PDT + EXTENSION SIZE

2270512-9701 22-55 Structure Pictures

DPR DNOS System Design Document

*
*
*
*
*

DUTIL DEVICE PARAMETERS (DPR) 10/04/83

CHANGES TO THIS TEMPLATE REQUIRE CORRESPONDING
CHANGES TO THE PASCAL TEMPLATE "DPRPAS".

*
*
*
*
* ***

* THE DPR TEMPLATE DESCRIBES THE DEVICE PARAMETERS MANAGED
* BY THE DEVICE I/O UTILITY (DUTIL). IT INCLUDES PARAMETERS
* IN THE FOLLOWING RANGES:

* PARAMETER RANGE PARAMETER USAGE *
*
*
*
*

)01 -)5F
)60 -)FF

OPERATING SYSTEM RESERVED
NOT SUPPORTED

* IN THE FIELD COMMENTS, RO INDICATES THAT A PARAMETER IS
* READ ONLY AND CANNOT BE MODIFIED.

* * SPECIAL FIELD COMMENTS:
* DPRNAM - ONE TO EIGHT ALPHANUMERIC CHARACTERS WITH A LETTER
* AS THE FIRST CHARACTER.
* DPRNUM - ONE WORD NUMBER BETWEEN)0001 AND)07FF, EXCLUDING
* 100 THROUGH 255 ()64 THROUGH)FF).
* DPRTYP LIKE THE PDTTYP FIELD. ON AN ASSIGN LUNO, THE VALUE
* OF THIS FIELD IS PUT INTO THE LDTTYP FIELD OF THE
* LDT AND IS RETURNED TO THE CALL BLOCK IN THE UPPER
* BYTE OF THE DATA BUFFER FIELD.
* DPRJOB - JSB OF THE FIRST JOB TO ASSIGN A LUNO TO A TERMINAL.

* * EQUATES FOR DPRFLG
* 00 - ONLINE
* 01 - OFFLINE
* 10 - DIAGNOSTIC
* 11 - SPOOLER
* EQUATE FOR DPRDSF
* EQUATES FOR DPRDTF - DEVICE TYPE FLAGS

Structure Pictures 22-56 2270512-9701

DNOS System Design Document

**
* * DEVICE UTILITY SESSION TABLE (DUS)

*
09/09/83 *

*
*
*

LOCATION: IN DUDATA
*
*
* **

----------+----------
)OO! DUSRES ! DUSLUN

+----------+----------+
)02 DUSNAM

+----------+----------+
)04 ! !

+----------+----------+
)06

+----------+----------+
)08 DUSVOL

+----------+----------+
/ / /
/ / /
+----------+----------+

)10! DUSSYS !
+----------+----------+
/ / /
/ / /
+----------+----------+

)18 DUSDTB
+----------+----------+
/ / /
/ / /
+----------+----------+

EQUATES:

RESERVED AT PRESENT
LUNO OF ACTIVE FILE

NAME MANAGER SEGMENT IDS

VOLUME NAME OF SYSTEM DISK

SYSTEM NAME

TABLE OF DEVICE TYPE COUNTS

LABEL EQUATE TO VALUE DESCRIPTION

MAXSEG 3)03 MAXIMUM NUMBER OF SEGMENTS
DUSSIZ $)26

DUS

2270512-9701 22-57 Structure Pictures

FDP DNOS System Design Document

**
* * FILE DESCRIPTOR PACKET (FDP)

*
* LOCATION: ALWAYS A SUB-STRUCTURE

*
06/22/81 *

*
*

**
* THE FDP IS A TWO WORD ADDRESS OF A FILE CONTROL BLOCK
* (FCB). THE FIRST WORD IS THE SSB ADDRESS OF THE TABLE IN
* WHICH THE SECOND WORD IS THE LOGICAL ADDRESS.

----------+----------
)00 ! FDPFMT SSB ADDRESS OF FILE MANAGER TABLE

+----------+----------+
)02 ! FDPFCB ! FCB ADDRESS

+----------+----------+

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

FDPSIZ $ >04

Structure Pictures 22-58 2270512-9701

DNOS System Design Document

**
* * FILE DESCRIPTION RECORD (FDR)

*
09/09/83 *

* * * LOCATION: DISK *
**
* THE FDR IS THE DISK-RESIDENT FILE DESCRIPTOR TELLING WHERE
* THE FILE RESIDES, ITS CHARACTERISTICS, AND SECURITY DATA.
* SECURITY DATA IS STORED IN ACCESS CONTROL ENTRIES (ACEs)

* ** BEGINNING PACKED RECORD ACE

----------+----------
)00 ACEAGN! ! ACCESS GROUP NAME

+----------+----------+
/ / /
/ / /
+----------+----------+

)08 ACEFLG FLAGS
+----------+----------+

)OA SIZE ** END OF PACKED RECORD

*

----------+----------
)00 ! FDRHKC HASH KEY COUNT

+----------+----------+
)02 ! FDRHKV ! HASH KEY VALUE

+----------+----------+
)04·! FDRFNM FILE NAME

+----------+----------+
/ / /
/ / /
+----------+----------+

)OC FDRRSV RESERVED

+-----~----+----------+
)OE FDRFL1 FLAGS WORD 1

+----------+----------+
)10 ! FDRFLG ! FLAGS WORD 2

+----------+----------+
)12 FDRPRS ! PHYSICAL RECORD SIZE

+----------+----------+
)14 ! FDRLRS ! LOGICAL RECORD SIZE

+----------+----------+
)16 FDRPAS PRIMARY ALLOCATION SIZE

+----------+----------+
)18 FDRPAA PRIMARY ALLOCATION ADDRESS

+----------+----------+
)lA FDRSAS SECONDARY ALLOCATION SIZE

+----------+----------+

FDR

2270512-9701 22-59 Structure Pictures

FDR

)lC FDRSAA
+----------+----------+

)lE ! FDRRFA !
+----------+----------+

)20 FDREOM
+----------+----------+

) 22 ! ! !
+----------+----------+

)24 FDRBKM
+----------+----------+

)26
+----------+----------+

)28 ! FDROFM !
+----------+----------+

)2A FDRFBQ
+----------+----------+

)2C
+----------+----------+

)2E FDRBTR
+----------+----------+

)30! FDREBQ
+----------+----------+

)32 !
+----------+----------+

)34 FDRKDR !
+----------+----------+

)36 FDRUD
+----------+----------+

)38
+----------+----------+

)3A
+----------+----------+

)3C FDRCD
+----------+----------+

)3E
+----------+----------+

)40 !
+----------+----------+

) 42! FDRAPB FDRBPA!
+----------+----------+

)44 FDRMRS
+----------+----------+

)46! FDRSAT !
+----------+----------+
/ / /
/ / /
+----------+----------+

)86! FDRRES
+----------+----------+
/ / /
/ / /
+----------+----------+

)90 FDRUID

DNOS System Design Document

OFFSET OF SCONDARY TABLE

RECORD NUMBER OF FIRST ALIAS

END OF MEDIUM RECORD NUMBER

END OF MEDIUM BLOCK NUMBER

END OF MEDIUM OFFSET/
PRELOG NUMBER FOR KIF

FREE BLOCK QUEUE HEAD

B-TREE ROOTS BLOCK #

EMPTY BLOCK QUEUE

KEY DESCRIPTIONS RECORD #

LAST UPDATE DATE

CREATION DATE

ADU'S PER BLOCK
BLOCKS PER ADU

MINIMUM KIF RECORD SIZE

SECONDARY ALLOCATION TABLE

RESERVED

USER ID OF FILE CREATOR

Structure Pictures 22-60 2270512-9701

DNOS System Design Document FDR

+----------+----------+
/ / /
/ / /
+----------+----------+"

)98 FDRPSA PUBLIC SECURITY ATTRIBUTES
+----------+----------+

)9A FDRACE ! 9 ACCESS CONTROL ENTRIES
+----------+----------+
/ / /
/ / /
+----------+----------+

)A4 !
+----------+----------+
/ / /
/ / /
+----------+----------+

)AE !
+----------+----------+
/ / /
/ / /
+----------+----------+

)B8
+----------+----------+
/ / /
/ / /
+----------+----------+

) C2

+----------+----------+
/ / /
/ / /
+----------+----------+

) CC
+----------+----------+
/ / /
/ / /
+----------+----------+

)D6 !
+----------+----------+
/ / /
/ / /
+----------+----------+

)EO
+----------+----------+
/ / /
/ / /
+----------+----------+

)EA
+----------+----------+
/ / /
/ / /
+----------+----------+

)F4 FDRFIL NOT USED
+----------+----------+

2270512-9701 22-61 Structure Pictures

FDR

/
/

/
/

/
/

+----------+----------+

DNOS System Design Document

FLAGS FOR FIELD: ACEFLG 1108 - FLAGS

(X •••••••••••••••)
(• X ••••••••••••••)
(•• X •••••••••••••)

ACERDF
ACEWRF
ACEDLF
ACEEXF = (••• X ••••••••••••)

= (•••• X •••••••••••) ACECTF

- READ ACCESS FLAG
- WRITE ACCESS FLAG
- DELETE ACCESS FLAG
- EXECUTE ACCESS FLAG
- CONTROL ACCESS FLAG

FLAGS FOR FIELD: FDRFLI IIOE - FLAGS WORD 1

FDFSEC = (X •••••••••••••••) - FILE SECURED BIT
(.XXXXXXXXXXXXXXX) - RESERVED

FLAGS FOR FIELD: FDRFLG 1110 - FLAGS WORD 2

FDFFU (XX ••••••••••••••) - FILE USAGE BITS
FDFFMT (•• XX ••••••••••••) - FILE FORMAT BITS
FDFALL = (•••• X •••••••••••) - EXTENDABLE FILE FLAG
FDFFT (••••• XX •••••••••) - FILE TYPE BITS
FDFWPB (••••••• X ••••••••) - WRITE PROTECT BI T
FDFDPB (•••••••• X •••••••) - DELETE PROTECT BIT
FDFTMP (••••••••• X ••••••) - TEMPORARY FILE FLAG
FDFBLB (•••••••••• X •••••) - BLOCKED FILE FLAG
FDFALI (••••••••••• X ••••) - ALIAS FLAG BIT
FDFFWT (•••••••••••• X •••) - FORCED WRITE/PARTIAL LOGGING

(••••••••••••• XX •) - RESERVED
FDFCDR (••••••••••••••• X) - RECORD IS CDR

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION
----- --------- ----- -------------------------~----
FDFFUM)COOO)COOO FILE USAGE MASK
FDFFMM)3000)3000 FILE FORMAT BI TS MASK
FDFFTM)0600)600 FILE TYPE MASK
FDFUPM)0180)180 WRITE AND DELETE PROTECT MASK
FDRMNT $)2A MAX NUMBER OF TASKS IN PF
FDRMNP $+ 1)2B MAX NUMBER OF PROCEDURES
FDRMNO $+2)2C MAX NUMBER OF OVERLAYS
FDRSIZ $)100 SIZE IN BYTES OF FDR
FDRMAG 9)09 MAXIMUM ACCESS GROUP S ALLOWED
FDRMNR 5)05 MAXIMUM II OF RIGHTS DEFINED

Structure Pictures 22-62 2270512-9701

DNOS System Design Document

**
* * FILE IDENTIFICATION (FID)

*
02/22/80 *

* * * LOCATION: FILES *
**
* THE FID IS USED TO IDENTIFY WITHIN A FILE ITS NAME AND
* VERSION NUMBER. THIS IS USED FOR SYSTEM FILES SUCH AS
* S$CLF AND S$SDTQUE.

* ** BEGINNING PACKED RECORD FID

----------+----------
)OO! FIDNAM ! ! FILE NAME

+----------+----------+
/ / /
/ / /
+----------+----------+

)08 FIDVER ! VERSION NUMBER
+----------+----------+

)OA ! !
+----------+----------+

)OC
+----------+----------+

)OE SIZE ** END OF PACKED RECORD

FID

2270512-9701 22-63 Structure Pictures

FIR DNOS System Design Document

* * FILE INFORMATION RECORD

*
* LOCATION: DISK

(FIR) 11/24/82
*
*
*
*

* THE FIR IS USED BY THE TASKS WHICH ASSIGN, MODIFY, LIST,
* AND DELETE USER IDS. IT IS A VARIANT OF THE CAPABILITIES
* LIST FILE RECORD (CLR). FOR DETAILS SEE CLR.

Structure Pictures 22-64 2270512-9701

DNOS System Design Document

**
* * FILE STRUCTURE COMMON (FSC)

*
02/23/82 *

* *
* LOCATION: FILE MANAGEMENT TABLE AREA *
* * **
* THE FSC IS COMPOSED OF A COMMON FIRST STRUCTURE THAT IS
* SHARED BY BOTH THE FILE CONTROL BLOCK (FCB) AND THE FILE
* DIRECTORY BLOCK (FDB) VARIANTS OF THE REMAINDER OF THE
* STRUCTURE.
* THE FCB IS AN IN-MEMORY REPRESENTATION THAT IS USED TO
* TRACK THE CHARACTERISTICS OF A FILE THAT IS IN USE. AN FCB
* REPRESENTS THE LAST COMPONENT OF THE FILE PATHNAME.
* THE FDB IS AN IN-MEMORY STRUCTURE REPRESENTING ONE NODE
* OF THE PATHNAME OF A FILE. IT PROVIDES TREE LINKAGE FOR
* THE ENTIRE FILE PATHNAME.

----------+----------
)00 FSCPDT

+----------+----------+
)02 FSCPDR

+----------+----------+
)04 FSCEOM !

+----------+----------+
)06

+----------+----------+
)08 FSCAPB FSCBPA!

+----------+----------+
)OA FSCPAS

+----------+----------+
)OC FSCPAA !

+----------+----------+
)OE FSCSAA

+----------+----------+
)10 FSCPRS

+----------+----------+
)12 FSCADU

+----------+----------+
)14 FSCOFF FSCMFG

+----------+----------+

PDT POINTER

PTR TO PARENT'S DIRECTORY DOOR

END OF MEDIUM LOGICAL REC #

ADUS PER BLOCK
BLOCKS PER ADU

PRIMARY ALLOCATION SIZE

PRIMARY ALLOCATION ADDRESS

SAT ADDRESS

PHYSICAL RECORD SIZE

FDR ADU OF THIS FILE

FDR OFFSET WITHIN ADU
MODIFIED ONLY FLAGS

FCB - FILE CONTROL BLOCK VARIANT
----------+----------

)16 FCBFCB ! LINK FOR CONCATENATED FILES
+----------+----------+

)18 ! FCBRPB START OF RPB CHAIN
+----------+-------~--+

)lA FCBCCT FCBFLB ! COUNT OF CONCATENATED FILES
+----------+----------+ FLAGS BYTE

)lC FCBSGB SGB ADDRESS

FSC

2270512-9701 22-65 Structure Pictures

FSC

+----------+----------+
)lE FCBSMT

+----------+----------+
)20 ! FCBFLG !

+----------+----------+
)22 FCBFDB !

+----------+----------+
)24 FCBSFD !

+----------+----------+
)26 FCBLRS

+----------+----------+
)28 FCBSAS

+----------+----------+
)2A FCBBKM

+----------+----------+
)2C ! !

+----------+----------+
)2E ! FCBOFM

+----------+----------+
)30 ! FCBLRL !

+----------+----------+
)32 ! FCBEXT !

+----------+----------+
)34

+----------+----------+
)36! FCBXCT FCBCLA!

+----------+----------+
)38 FCBRLA

+----------+----------+
)3A FCBCPO FCBCAW!

+----------+----------+

----------+----------
)3C FCBEBQ

+----------+----------+
)3E !

+----------+----------+
)40 ! FCBCLB !

+----------+----------+
)42! FCBFBQ

+----------+----------+
)44

+----------+----------+
)46 FCBBTR

+----------+----------+
)48 FCBSBB !

+----------+----------+
)4A FCBMRS

+----------+----------+
)4C FCBKDB

+----------+----------+
/ / /

DNOS System Design Document

SM TABLE AREA SSB OF SGB

FILE FLAGS

POINTER TO DIRECTORY ENTRY

SSB OF DIRECTORY ENTRY

LOGICAL RECORD SIZE

SECONDARY ALLOCATION SIZE

END OF MEDIUM BLOCK #

END OF MEDIUM OFFSET

LOCKED RECORD LIST HEAD

BLOCK COUNT FOR FILE EXTENT

FILE EXTENSION COUNT
COUNT OF THINGS POINTING HERE

REQUEST LIST ANCHOR

COUNT OF PASSIVE OPERATIONS
COUNT OF ACTIVE WAITERS

EMPTY BLOCK QUEUE

CURRENT LOG BLOCK #

FREE BLOCK QUEUE HEAD

B-TREE ROOTS BLOCK #

STARTING BUCKET BLOCK #

MINIMUM KIF RECORD SIZE

KEY DESCRIPTIONS BLOCK

Structure Pictures 22-66 2270512-9701

DNOS System Design Document

/ / /
+----------+----------+

----------+----------
)3C FCBMNT FCBTO

+----------+--~-------+
)3E FCBTR

+----------+----------+
) 40! FCBMNP FCBPO

+----------+-----~----+
)42 FCBPR

+----------+----------+
)44 FCBMNO FCBOO

+----------+----------+
)46 ! FCBOR

+----------+----------+

MAXIMUM NUMBER OF TASKS
TASK DIRECTORY ENTRY OFFSET

TASK DIRECTORY ENTRY RECORD #

MAXIMUM NUMBER OF PROCEDURES
PROC DIRECTORY ENTRY OFFSET

PROC DIRECTORY ENTRY RECORD #

FSC

MAXIMUM NUMBER OF OVERLAYS
OVERLAY DIRECTORY ENTRY OFFSET

OVERLAY DIRECTORY ENTRY RECORD

FDB - FILE DIRECTORY BLOCK VARIANT
----------+----------

)16 ! FDBRNM !
+----------+----------+

)18 FDBDDR
+----------+----------+

)IA! FDBFNM !
+----------+----------+
/ / /
/ / /
+----------+----------+

)22 FDBFCB !
+----------+----------+

) 24! FDBCDF FILL02
+----------+----------+

)26 FDBAFD !
+----------+----------+

)28 ! FDBSAF !
+----------+----------+

)2A FDBALS !
+----------+----------+

)2C FDBSAL !
+----------+----------+

)2E FDBANS
+----------+----------+

)30 FDBSAN !
+----------+----------+

)32 ! FDBAPF
+----------+----------+

)34 FDBSAP
+----------+----------+

)36 ! FDBFMT !
+----------+----------+

RECORD NUMBER OF FDR

ADDRESS OF DIRECTORY DOOR (DDR)

FILE NAME

ADDRESS OF FCB ANCHOR

COUNT OF DESCENDANTS
RESERVED

ADDRESS OF FIRST DESCENDANT (AFD)

SSB ADDRESS FOR AFD

ADDRESS OF LAST SIBLING (ALS)

SSB ADDRESS FOR ALS

ADDRE S S OF NEXT SIBLING (ANS)

SSB ADDRESS FOR ANS

ADDRESS OF PARENT FILE (APF)

SSB ADDRESS FOR APF

SSB ADDRESS FOR THIS FDB

2270512-9701 22-67 Structure Pictures

FSC DNOS System Design Document

*
*

*
*
*
*

*
*
*

*
*
*
*

FLAGS FOR FIELD: FSCMFG #15 - MODIFIED ONLY FLAGS

FSCMEC = (X •••••••••••••••) - 1 = END OF MEDIUM HAS CHANGED
FSCMWT = (.X ••••••••••••••) - 1 = FILE HAS BEEN WRITTEN IN
FSCFUI (•• XX ••••••••••••) - FILE USAGE BIT ONE
FSCDEL (•••• X •••••••••••) - FDB DELETE PROTECTION FLAG

FLAGS FOR FIELD: FCBFLB #IB - FLAGS BYTE

FCBFCC = (X •••••••••••••••) - FILE IS IN CONCATENATION
FCBFUB = (• X ••••••••••••••) - OPEN MUST BE UNBLOCKED
FCBBSY (•• X •••••••••••••) - FCB IS BUSY
FCBFSE = (••• X ••••••••••••) - SUPPRESS EOF BEFORE EOM

FLAGS FOR FIELD: FCBFLG #20 - FILE FLAGS

FCBFFU

FCBFDF

FCBFAT
FCBFFT

FCBFWP
FCBFDP
FCBFTF
FCBFBF
FCBFAF
FCBFFW
FCBFSC
FCBPLG
RESER

EQUATES:

LABEL

FSCFU2
FSCFUM
FSCSIZ

=

=

(XX ••••••••••••••) -

(•• XX ••••••••••••) -

(•••• X •••••••••••) -
(••••• XX •••••••••) -

(••••••• X ••••••••) -
(•••••••• X •••••••) -
(••••••••• X ••••••) -
(•••••••••• X •••••) -
(••••••••••• X ••••) -
(•••••••••••• X •••) -
(••••••••••••• X ••) -
(•••••••••••••• X.) -
(••••••••••••••• X) -

EQUATE TO VALUE

FSCFUl+1
)3000
$

)03
)3000
)16

FILE USAGE FLAGS
00 = NO SPECIAL USAGE
01 DIRECTORY
10 PROGRAM
11 = IMAGE
DATA FORMAT
00 NON-BLANK SUPPRESSED
01 = BLANK SUPPRESSED
10 & 11 = RESERVED
EXPANDABLE IF ON
FILE TYPE
00 RESERVED (FOR DEVICE)
01 SEQUENTIAL
10 = RELATIVE RECORD
11 KEY INDEXED
WRITE PROTECTED IF ON
DELETE PROTECTED IF ON
TEMPORARY FILE IF ON
BLOCKED FILE IF OFF
ALIAS ENTRY IF ON
FORCED WRITE IF ON
FILE SECURITY
FILE MARKED AS PARTIAL
RESERVED

DESCRIPTION

FILE USAGE BIT TWO
FILE USAGE MASK

FSC SIZE

LOGGING

Structure Pictures 22-68 2270512-9701

DNOS System Design Document

FCBFFM
FCBFAM
FCBFTM
FCBMSZ
FCBSIZ
FCBPSZ
FCBPDT
FCBPDR
FCBEOM
FCBAPB
FCBBPA
FCBPAS
FCBPAA
FCBSAA
FCBPRS
FCBADU
FCBOFF
FCBMFG
FCBMEC
FCBMWT
FDBMSZ
FDBPDT
FDBPDR
FDBEOM
FDBAPB
FDBBPA
FDBPAS
FDBPAA
FDBSAA
FDBPRS
FDBADU
FDBOFF
FDBMFG
FDBMEC
FDBMWT
FDBFUI
FDBFU2
FDBFDL

2270512-9701

)COOO
)3000
)0600
$
$
$
FSCPDT
FSCPDR
FSCEOM
FSCAPB
FSCBPA
FSCPAS
FSCPAA
FSCSAA
FSCPRS
FSCADU
FSCOFF
FSCMFG
FSCMEC
FSCMWT
$
FSCPDT
FSCPDR
FSCEOM
FSCAPB
FSCBPA
FSCPAS
FSCPAA
FSCSAA
FSCPRS
FSCADU
FSCOFF
FSCMFG
FSCMEC
FSCMWT
FSCFUI
FSCFU2
FSCDEL

)COOO
)3000
)600
)3C
)86
)48
)00
)02
)04
)08
)09
)OA
)OC
)OE
)10
)12
)14
)15
)00
)01
)38
)00
)02
)04
)08
)09
)OA
)OC
)OE
)10
)12
)14
)15
)00
)01
)02
)03
)04

22-69

FILE USAGE FLAGS MASK
FILE FORMAT FLAGS MASK

FILE TYPE FLAGS MASK
MIN FCB SIZE
MAX FCB SIZE
PROGRAM FILE FCB SIZE
PDT ADDRESS

FSC

PTR TO PARENT'S DIRECTORY DOOR
END OF MEDIUM LOGICAL REC. #
ADUS PER BLOCK
BLOCKS PER ADU
PRIMARY ALLOCATION SI.ZE
PRIMARY ALLOCATION ADDRESS
SAT ADDRESS
PHYSICAL RECORD SIZE
FDR ADU FOR THIS FILE
FDR OFFSET WITHIN ADU
MODIFIED ONLY FLAGS
1= EOM HAS CHANGED
1= FILE WAS WRITTEN IN
FDB SIZE
PDT ADDRESS
PTR TO PARENT'S DIRECTORY DOOR
END OF MEDIUM LOGICAL REC. #
ADUS PER BLOCK
BLOCKS PER ADU
PRIMARY ALLOCATION SIZE
PRIMARY ALLOCATION ADDRESS
SAT ADDRESS
PHYSICAL RECORD SIZE
FDR ADU FOR THIS FILE
FDR SECTOR OFFSET IN ADU
MODIFIED ONLY FLAGS
1 = EOM HAS CHANGED
1 = FILE WAS WRITTEN IN
FILE USAGE BIT ONE
FILE USAGE BIT TWO
FDB DELETE PROTECTION FLAG

Structure Pictures

FWA DNOS System Design Document

**
* * FILE MANAGER WORK AREA

*
(FWA)

*
01/21/82 *

* LOCATION: SYSTEM AREA
*
*

**
* THE FWA IS USED BY FILE MANAGEMENT AND BY KIF MANAGEMENT
* AS A GENERAL WORK AREA. R15 POINTS TO THE FWA.

----------+----------
)OO! FWAWP WORKSPACE USED BY FM

+----------+----------+
/ / /
/ / /
+----------+----------+

)20 f FWAFLG ! MIDDLE SEGMENT FLAGS
+----------+----------+

)22 ! FWATCT ! MULTIRECORD CHARS TRANSFERRED
+----------+----------+

)24 ! FWAOAD f CURRENT OVERLAY AREA ADDRESS
+----------+----------+

)26 ! FWAPC SAVED PROGRAM COUNTER
+----------+----------+

) 28 ! FWAXWP ! BLWP VECTOR FOR RETURNING
+----------+----------+

)2A FWAXPC
+----------+----------+

)2C ! FWABN ! SAVED RPBBN (2 WORDS)
+----------+----------+

)2E !
+----------+----------+

)30 FWAOCB ! SAVED RPBOCB
+----------+----------+

)32 FWALFG ! SAVED LDT FLAGS
+----------+----------+

)34 FWAFFC FIRST FCB FOR CC FILES
+----------+----------+

)36 ! FWAFMT ! SSB FOR THE FMT WITH THE FCB
+----------+----------+

)38 ! FWAFCB FCB ADDRES S IN THE FMT
+----------+----------+

)3A FWABST SMT SSB ADDR FOR BUFFER
+----------+----------+

)3C FWABSB SSB ADDR FOR BUFFER
+----------+----------+

)3E FWAPRS PHYSICAL RECORD SIZE
+----------+----------+

)40 FWAUBT USER BUFFER SMT SSB ADDR
+----------+----------+

)42 FWAUBS USER BUFFER SSB ADDRESS
+----------+----------+

Structure Pictures 22-70 2270512-9701

DNOS System Design Document FWA

)44 FWAUBO USER BUFFER OFFSET
+----------+----------+

)46 FWAUBL USER BUFFER LENGTH
+----------+----------+

)48 FWAFMB FMT BIAS
+----------+----------+

)4A ! FWARN1 ! RECORD # RELATIVE TO CURRENT
+----------+----------+

)4C ! FWARN2 ! FILE OF CONCATENATED SET
+----------+----------+

)4E FWAOOB OLD OFFSET IN USER BUFFER
+----------+----------+

)50 ! FWAUBR ! BUFFER LENGTH REMAINING
+----------+----------+

)52 FWAFFG FILE MGR FLAGS
+----------+----------+

)54! FWASTK ! ! STACK AREA
+----------+----------+
/ / /
/ / /
+----------+----------+

FLAGS FOR FIELD: FWAFFG #52 - FILE MGR FLAGS

(x ••..•.•..•.•••.) - PASSIVE OPERATION FLAG FWAPOP
FWAQW (.X .•.•.••.•..•..) - QUEUED TO WAITING QUEUE IN FeB

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

FWASIZ $)F4 SIZE OF FWA INCLUDING WSP

2270512-9701 22-71 Structure Pictures

IRB DNOS System Design Document

**

*
* I/O REQUEST BLOCK (IRB)

*
09/09/83*

*
*
*

LOCATION: SYSTEM TABLE AREA AND JCA
*
*
*

**
* THE IRB TEMPLATE HAS FOUR MAJOR VARIANTS. ONE OF THESE IS
* THE SIMPLE CALL BLOCK FOR RESOURCE INDEPENDENT I/O. ONE
* HAS EXTENSIONS FOR VDT DEVICES. ANOTHER IS THE CALL
* BLOCK USED FOR I/O UTILITY CALLS. IT INCLUDES INTERNAL
* VARIANTS FOR REMOTE I/O HANDLING AND FOR LOGICAL NAME
* SEGMENT HANDLING. THERE IS ALSO A SET OF EQUATES USED BY
* THE CODE WHICH CREATES PROGRAM FILES. EQUATES FOR SPECIAL
* PURPOSES IN CREATING KEY INDEXED FILES AND FOR REFERENCE
* TO SPECIAL APPLICATIONS OF THE BASIC I/O BLOCK ARE IMBEDDED
* IN THE TEMPLATE WHERE THE ORIGINAL FIELDS ARE DEFINED.
* A FINAL VARIANT IS USED FOR FILE I/O CALL BLOCKS.
*------
* NOTE THAT FOR DUPLICATE LABELS, THE PREFERRED USAGE IS
* STARRED IN THE COMMENT COLUMNS.

** BEGINNING PACKED RECORD IRB

----------+----------
)00 IRBSOC IRBEC

+----------+----------+
)02 IRBOC IRBLUN

+----------+----------+
)04 IRBSFL IRBUFL

+----------+----------+

SUPERVISOR REQUEST CODE
*REQUEST ERROR CODE

*SUB-OPERATION CODE
LOGICAL UNIT

*SYSTEM FLAGS
REQUESTOR (USER) FLAGS

RESOURCE-INDEPENDENT I/O VARIANT

----------+----------
)06 ! IRBDBA *DATA BUFFER ADDRESS

+----------+----------+
)08 ! IRBICC *INPUT CHAR COUNT / ACTUAL OUTPUT

+----------+----------+
)OA ! IRBOCC *OUTPUT CHAR COUNT / ACTUAL INPUT

+----------+----------+
FILE I/O VARIANTS

----------+----------
)OC IRBCBA CURRENCY BLOCK ADDRESS

+----------+----------+

----------+----------
)OC IRBRNI RELATIVE RECORD NUMBER

+----------+----------+
)OE

+----------+----------+

Structure Pictures 22-72 2270512-9701

DNOS System Design Document

)10 FILL01
+----------+----------+

DIAGNOSTIC PORT VARIANT
----------+----------

)OC IRBVRS IRBOLF
+----------+----------+

)OE IRBPCD
+----------+----------+

OS VERSION/RELEASE
ONLINE FLAGS

DYNAMIC PASS CODE

DIRECT DISK I/O
----------+----------

)OC IRBADU
+----------+----------+

)OE IRBOFF
+----------+----------+

----------+----------
)OC IRBTRK

+----------+----------+
)OE IRBSPR IRBSCT

+----------+----------+

ADU ADDRESS

SECTOR OFFSET

TRACK ADDRESS

SECTORS PER RECORD
SECTOR

SUBOPCODE)18 VARIANT
----------+----------

)OC IRBDKS TPCS (RO) DISK STATUS FOR)18
+----------+----------+

IRB

)OE IRBCRS TPCS (R7) CONTROLLER STAT FOR)18
+----------+----------+

TERMINAL DEVICE I/O VARIANTS
----------+----------

)OC IRBRPY
+----------+----------+

)OE IRBXFL
+----------+----------+

)10 IRBFCH IRBEVT
+----------+----------+

)12 IRBCRO IRBCCO!
+----------+----------+

)14 IRBFRO IRBFCO
+----------+----------+

----------+----------
)OC IRBVTA

+----------+----------+

REPLY BLOCK ADDRESS

EXTENDED REQUEST FLAGS

VDT FILL CHARACTER
VDT EVENT BYTE

VDT CURSOR IN FIELD ROW
VDT CURSOR IN FIELD COLUMN

VDT FIELD BEGINNING ROW
VDT FIELD BEGINNING COLUMN

VALIDATION TABLE ADDRESS

I/O UTILITY VARIANT
----------+----------

)06 IRBTYP IRBTFL RESOURCE TYPE
+----------+----------+ RESOURCE TYPE FLAGS

2270512-9701 22-73 Structure Pictures

IRB DNfrS System Design Document

)08 IRBJSB OWNER JSB ADDRESS (IOU SVC)A5)

+----------+----------+
)OA IRBTSB ! OWNER TSB ADDRESS (IOU SVC)AS)

+----------+----------+
)OC IRBKDB KEY DESCRIPTOR ADDRESS/OVERLAYS IRBA

+----------+----------+
)OE ! FILL04 ! OVERLAYS IRBOFF

+----------+----------+
)10 IRBFLG UTILITY FLAGS (2 BYTES)

+----------+----------+
)12 ! IRBDLL DEFINED LOGICAL RECORD LENGTH

+----------+----------+
)14 ! IRBDPL ! DEFINED PHYSICAL RECORD LENGTH

+----------+----------+
)16 ! IRBPNA PATHNAME ADDRESS

+----------+----------+
)18 ! IRBPRM PARAMETER POINTER

+----------+----------+
) 1A ! IRBRES ! RESERVED

+----------+----------+
)lC ! IRBIFA INITIAL FILE ALLOCATION (2 WORDS)

+----------+----------+
)lE

+----------+----------+
)20 IRBSFA SECONDARY FILE ALLOCATION (2 WORDS)

+----------+----------+
)22 !

+----------+----------+
IOU VARIANT FOR LOGICAL NAME SEGMENT

----------+----------
)24 IRBSTG! IRBNMF TASK STAGE NUMBER

+----------+----------+
)26 ! IRBRPN !

+----------+----------+
)28 SIZE ** END

NAME MANAGER FLAGS
REDIRECTED RESOLVED PATHNAME

EQUATES FOR CREATE PROGRAM
OF PACKED RECORD

FLAGS FOR FIELD: IRBSFL #04 - *SYSTEM FLAGS

IRFBSY = (X •••••••••••••••) - BUSY
IRFERR = (.X ••••••••••••••) - ERROR
IRFEOF = (•• X •••••••••••••) - END OF FILE
IRFVNT (••• X ••••••••••••) - EVENT CHAR

(•••• XXX •••••••••) -

FILE VAR

IRFMDT (••••••• X ••••••••) - MODIFIED DATA TAG (OPCODE)17)

FLAGS FOR FIELD: IRBUFL #05 - REQUESTOR (USER) FLAGS

IRFINT
IRFRPY

(X •••••••••••••••) - INITIATE REQUEST
(• X ••••••••••••••) - 0 U T PUT WIT H RE PLY

Structure Pictures 22-74 2270512-9701

DNOS System Design Document IRB

IRFSAR (•• X •••••••••••••) - SECURITY ACCESS RIGHTS (OP CODE
IRFACC = (••• XX •••••••••••) - ACCESS PRIVILEGES

* OO=EXCLUSIVE WRITE
* 01=EXCLUSIVE ALL
* 10=SHARED
* 11 =READ ONLY

IRFLOC (••••• X ••••••••••) - *LOCK/UNLOCK
IRFOWN (•••••• XX ••••••••) - OWNERSHIP LEVEL

FLAGS FOR FIELD: IRBOLF HOD - ONLINE FLAGS

OLDBFR = (X •••••••••.•••••) - BUFFER ADDRESS SPECIFIED
* O=NO BUFFER IN TIL. IMAGE
* I=BUFFER IN TILINE IMAGE

(.XXXXXXX ••••••••) - RESERVED (SET TO 0)

FLAGS FOR FIELD: IRBXFL HOE - EXTENDED REQUEST FLAGS

IRFCSF = (X •••••••••••••••) - CURSOR START OF FIELD DEFN
IRFNTN (• X ••••••••••••••) - INTENSITY
IRFFKR = (•• X •••••••••••••) - BLINKING CURSOR (FLICKER)
IRFGRA (••• X ••••••••••••) - GRAPHICS DISPLAY(CHAR LT)20)
IRFEBA = (•••• X •••••••••••) - 8-BI T ASCII
IRFTER (••••• X ••••••••••) - ENABLE TASK EDIT CHAR RETURN
IRFBP = (•••••• X •••••••••) - BEEP
IRFRDB (••••••• X ••••••••) - RIGHT DISPLAY EDGE BOUNDARY
IRFCIF = (•••••••• X •••••••) - CURSOR IN-FIELD DEF INED
IRFFC (••••••••• X ••••••) - FILL CHAR DEF I NED
IRFIF (•••••••••• X •••••) - INITIALIZE FIELD
IRFRFF = (••••••••••• X ••••) - REMAIN IN FULL FIELD
IRFECO = (•••••••••••• X •••) - ECHO
IRFVRQ (•• ,. •••••••••• X ••) - VALIDATION REQUIRED
IRFVER (•••••••••••••• X.) - VERIFICATION ERROR
IRFWBP = (••••••••••••••• X) - WARNING BEEP

FLAGS FOR FIELD: IRBTFL #07 - RESOURCE TYPE FLAGS

IRFVD
IRFREM =
IRFCHN
IRFDEV
IRFFIL

(XXX •••••••••••••)
(••• X ••••••••••••)
(•••• X •••••••••••)
(••••• X ••••••••••)
(•••••• X •••••••••)
(••••••• X ••••••••)

- RESERVED
- VIRTUAL DEVICE
- REMOTE CHANNEL
- CHANNEL
- DEVICE
- FILE

FLAGS FOR FIELD: IRBFLG #10 - UTILITY FLAGS (2 BYTES)

IRFFCA (X •••••••••••••••) - FILE CREATED BY ASSIGN
I RFFU 1 = (. XX •••••••••••••) - FI LE USAGE FLAG S

* OO=NO SPECIAL USAGE

2270512-9701 22-75 Structure Pictures

)5)

IRB

*
*
*

IRFSC1

*
*
*
*

IRFGEN
IRFACR
IRFPRM
IRFLRL =
IRFTMP
IRFIMW =
IRFDF1 =

*
*
*

IRFALL
IRFFT1

*
*
*
*

(••• XX •••••••••••)

(••••• X ••••••••••)
(•••••• X •••••••••)
(••••••• x ••••••••)
(•••••••• X •••••••)
(••••••••• X ••••••)
(•••••••••• X •••••)
(••••••••••• xx •••)

(••••••••••••• X ••)
(•••••••••••••• XX)

DNOS System Design Document

01=DIRECTORY FILE
10=PROGRAM FILE
11=IMAGE FILE
- LUNO SCOPE
OO=TASK LOCAL
01=JOB LOCAL
10=GLOBAL
11=SHARED
- AUTOGENERATELUNO
- REQUEST AUTOCREATE FILE
- l=IRBPRM VALID (PARMS PRESENT)
- I=VALID LOGICAL RECORD LENGTH
- FILE IS TO BE TEMPORARY
- IMMEDIATE WRITE DISK FILES
- DATA FORMAT
OO=NORMAL RECORD IMAGE
01=BLANK SUPPRESSED
10,11 RESERVED
- ALLOCATION MAY GROW
- FILE TYPE
OO=RESERVED
01=SEQUENTIAL FILE
10=RELATIVE RECORD FILE
11=KEY INDEXED FILE

FLAGS FOR FIELD: IRBNMF #25 - ,NAME MANAGER FLAGS

IRFRID
IRFNM1

EQUATES:

LABEL

IRBERR
IRBOP
IRBSFG
IRFVAL
IRFKFG
IRFBFI
IRFRES
IRFAC1
IRFRLN
IRFACM
IRFOS
IRFOSF
IRFMDS
IRFLFG
IRFTIH
IRFIMO
IRFPAS

(x •••.•••••••.•••) - USE SPECIFIED RUN ID
(.XXXXXXX ••••••••) - RESERVED AT PRESENT

EQUATE TO

IRBEC
IRBOC
IRBSFL
IRFRPY
IRFRPY
IRFRPY
IRFSAR
IRFACC+1
IRFACC
)0018
IRFACC
IRFACC+1
IRFLOC
IRFLOC
IRFLOC
IRFLOC
IRFLOC

VALUE

)01
)02
)04
)01
)01
)01
)02
)04
)03
)18
)03
)04
)05
)05
)05
)05
)05

DESCRIPTION

REQUEST ERROR CODE
SUB-OPERATION CODE
SYSTEM FLAGS
READ WITH VALIDATION
KEY SPECIFIES FLAG
BUFF HAS WRITE INTERLEAVED FMT

ACCESS PRIVILEGES
MASTER RESOLVE LOGICAL NAMES
ACCESS PRIV. BIT MASK
READ BY TRACK/OFFSET ENABLED
READ BY TRACK/OFFSET FORWARD
MASTER DO NOT SUSPEND
LOCK/UNLOCK
READ BY TRACK/TRANSFER INHIBIT
IMMEDIATE OPEN FLAG FOR TPD
PASS THRU MODE FOR COMM DSRS

Structure Pictures 22-76 2270512-9701

DNOS System Design Document

IRFEXR
IRFBAD
IRFBFG
IRFWPM
IRFRTY
VARNT1
IRBRLN
IRBLRL
IRBCHT
IRBCMD
IRBHD
VARNT2
IRBCYL
IRBRN2
IRBFWA
IRBRT
IRBLRN
IRBPRS
IRFFU2
IRFFUM
IRFSC2
IRFSCM
IRFDF2
IRFDFM
IRFFT2
IRFFTM
IRBIF2
IRBRCS
VARNT3
IRBMXT
IRBMXP
IRBMXO

2270512-9701

IRFOWN
IRFOWN+1
IRFBAD
IRFOWN+1
IRFOWN+1
$
IRB I CC
IRBICC
IRBOCC
IRBOCC
IRBOCC+1
$
IRBRN1
IRBRN1+2
$
IRBXFL
IRBKDB
IRBKDB
IRFFU1+1
)6000
IRFSC1+1
)1800
IRFDF1+1
)0018
IRFFT1+1
)0003
IRBIFA+2
$
$
IRBRPY+1
IRBXFL
IRBXFL+1

)06
)07
)07
)07
)07
)06
)08
)08
)OA
)OA
)OB
)OC
)OC
)OE
)10
)OE
)OC
)OC
)02
)6000
)04
)1800
)OC
)18
)OF
)03
)lE
)24
)24
)OD
)OE
)OF

22-77

EXTENDED REQUEST
*BLANK ADJ/SET EVENT MODE
BLANK ADJ/SET EVENT MODE
WORD PROCESSING MODE

IRB

READ BY TRACK WITH NO RETRIES

RECORD LENGTH
LOGICAL RECORD LENGTH
OUTPUT CHARACTER COUNT
COMMAND FOR SUBOPCODE)18
HEAD # FOR SUBOPCODE)18

CYLINDER ADDRESS FOR SUBOP)18
SECOND WORD OF RECORD NUMBER
POINTER TO FILE WORK AREA
RESOURCE TYPE/TYPE FLAGS FOR CC
LOGICAL RECORD NUMBER
PHYSICAL RECORD SIZE (DIR OVHD.)
FILE USAGE FLAGS

FILE USAGE BIT MASK
LUNO SCOPE

LUNO SCOPE BIT MASK
DATA FORMAT
DATA FORMAT BIT MASK
FILE TYPE
FILE TYPE BIT MASK
INITIAL FILE ALLOCATION (2ND WORD:
REQUESTOR CALL BLOCK SIZE

MAXIMUM NUMBER TASKS IN PROG FILE
MAX NUMBER PROCS IN PROG FILE
MAX NUMBER OVERLAYS IN PROG FILE

Structure Pictures

JIT DNOS System Design Document

**
* * JOB INFORMATION TABLE

*
* LOCATION: JCA

(JIT) 01/23/80
*
*
*
* **

* THE JIT DESCRIBES THE JOB COMMUNICATION AREA (JCA) CONTENTS
* AND IS FOUND AT THE ADDRESS JCASTR (FOUND IN NFPTR) IN
* EACH JOB. IT INCLUDES DESCRIPTIVE INFORMATION ABOUT THE
* JOB AND POINTERS TO MANY JOB-LOCAL STRUCTURES IN THE JCA.
* (NOTE THAT JITOVB MUST BE ON A BEET BOUNDARY.)

----------+----------
)00 JITHED !

+----------+----------+
)02 JITLNK !

+----------+----------+
)04 JITRES

+----------+----------+
)06 JITEND

+----------+----------+
)08 JITUSE

+----------+----------+
)OA ! JITHI !

+----------+----------+
)OC JITPTR

+----------+----------+
)OE JITCAP

+----------+----------+
)10 JITSEM

+----------+----------+
)12 ! JITLDT !

+----------+----------+
)14 JITIOC! JITLUN

+----------+----------+
) 16 JITTYP! JITTF

+----------+----------+
)18 JITFLG

+----------+----------+
)1A ! JITRLK !

+----------+----------+
)1C ! JITOTS

+----------+----------+
)1E JITJSB

+----------+----------+
)20 JITPRM

+----------+----------+
)22 JITROB

+----------+----------+
)24 JITCCB

+----------+----------+

SYSTEM TABLE AREA OVERHEAD

STA - LINK TO FIRST BLOCK

STA - RESERVE LIMIT

STA - END OF AREA

STA - TOTAL BYTES USED

STA - HIGHEST ADDR USED

POINTER TO JSB OF JCA OWNER

POINTER TO CAPABILITY LIST

POINTER TO SEMAPHORE LIST

JOB LOCAL LDT - LDT LINK

LDT - INITIATE I/O COUNT
LDT - LUNO

LDT - RESOURCE TYPE
LDT - RESOURCE FLAGS

LDT - LDT FLAGS

LOT - RESOURCE LINK

LDT - OWNER TSB

LOT - OWNER JSB

LOT - PARAMETER LIST

POINTER TO RESOURCE OWNER BLK

POINTER TO CHANNEL CONTROL BLK

Structure Pictures 22-78 2270512-9701

DNOS System Design Document

)26 JITPAS
+----------+----------+
/ / /
/ / /
+----------+----------+

)2E JITACC
+----------+----------+
/ / /
/ / /
+----------+----------+

)3E JITPVL JITLID
+----------+----------+

)40 JITTID
+----------+----------+
/ / /
/ / /
+----------+----------+

)60 JITJBI
+----------+----------+

)62 JITFTB
+----------+----------+

)64 JITFLK
+----------+----------+

)66 JITBLK !
+----------+----------+

)68 JITFTP
+----------+----------+

)6A ! JITFJB
+----------+----------+

)6C FILLOO!
+----------+----------+
/ / /
/ / /
+----------+----------+

)80 JITFMQ
+----------+----------+
/ / /
/ / /
+----------+----------+

)8C JITEXC
+----------+----------+

)8E
+----------+----------+

)90 FILL01
+----------+----------+

)92 JITWOT
+----------+----------+

)94 FILL02
+----------+----------+

)96 JITSSI
+----------+----------+

)98 JITSSS
+----------+----------+

PASSWORD FOR USER ID

ACCOUNT ID

USER PRIVILEGE LEVEL
LAST TASK ID GIVEN

TSB RUN TIME ID BIT MAPS

SEGMENT ID OF JCA

POINTER TO FM TSB

FORWARD TOL LINK FOR FM

BACKWARD TOL LINK FOR FM

FM TASK TYPE <)0100)

POINTER TO FM JSB

FILLER FOR DUMY OV B

FM QUEUE FOR JOB

EXECUTION TIME SINCE LOAD

CURRENTLY UNUSED

TABLE AREA WAIT QUEUE

RESERVED AT PRESENT

SYNONYM SEGMENT RUN ID

SYNONYM SEGMGR TAB AREA SSB

JIT

2270512-9701 22-79 Structure Pictures

JIT

)9A JITSSB
+----------+----------+

)9C JITRST !
+----------+----------+

)9E JITTSB
+----------+----------+

)AO JITACT
+----------+----------+

)A2 JITWOM !
+----------+----------+

)A4 JITFMW
+----------+----------+
/ / /
/ / /
+----------+----------+

)E2 JITINS
+----------+----------+
/ / /
/ / /
+----------+----------+

)EE JITDEL
+----------+----------+
/ / /
/ / /
+----------+----------+

)FA JITASP
+----------+----------+
/ / /
/ / /
+----------+----------+

)0106 JITMAP
+----------+----------+
/ / /
/ / /
+----------+----------+

)0112 JITINV
+----------+----------+
/ / /
/ / /
+------~---+----------+

)OllE JITRCP !
+----------+----------+
/ / /
/ / /
+----------+----------+

EQUATES:

LABEL

JITOVB
JITSIZ

EQUATE TO

$
$

VALUE

)60
)12A

DNOS System Design Document

SYNONYM SSB ADDRESS

PTR TO RESERVE SEGMENT TABLE

POINTER TO TSB TREE

POINTER TO ACTIVE TSBS

POINTER TO WOM TSBS

FILE MGR WORKING WP & STACK

INSTALL TASK QUEUE HEADER

DELETE TASK QUEUE HEADER

ASSIGN SPACE QUEUE HEADER

MAP NAME TO ID QUEUE HEADER

INITIALIZE NEW VOLUME QUEUE

RETURN CODE PROCESSOR QUEUE

DESCRIPTION

Structure Pictures 22-80 2270512-9701

DNOS System Design Document

* * JOB MANAGEMENT REQUEST (JMR)

*
04/28/79 *

* LOCATION: SYSTEM TABLE AREA *
* *

* THE JMR IS A DESCRIPTION OF A JOB MANAGEMENT SVC BLOCK.
* IT IS USED WITHIN JOB MANAGMENT TO SCAN THE USER'S SVC
* REQUEST.

----------+----------
)00 JMRSVC JMRERR

+----------+----------+
)02 JMROP JMRPRI!

+----------+----------+
)04 JMRFLG

+----------+----------+
)06 JMRJID

+----------+----------+
)08 JMRNAM

+----------+----------+
/ / /
/ / /
+----------+----------+

)10! JMRTID JMRSSZ
+----------+----------+

) 12! JMRPRM

+----------+----------+
)14 !

+----------+----------+
)16 JMRSID JMRPFL

+----------+----------+
)18 ! JMRSYN

+----------+----------+
)lA JMRLNM

+----------+----------+
)lC JMRUID

+----------+----------+
/ / /
/ / /
+----------+----------+

)24 JMRPWD
+--~-------+----------+
/ / /
/ / /
+----------+----------+

)2C JMRACC
+----------+----------+
/ / /
/ / /
+----------+----------+

SVC CODE (48)
ERROR CODE

JOB MANAGER SUBOPCODE
JOB PRIORITy

JOB MANAGER CONTROL FLAGS

JOB ID

USER SPECIFIED JOB NAME

TASK ID OF INITIAL TASK
SIZE OF JCA 1,2,3

TASK BID PARAMETERS

STATION ID OF TASK (JOB)
PROGRAM FILE LUNO OF TASK

SYNONYM SEGMENT SEGMENT ID

LOGICAL NAME BLOCK SEGMENT ID

USER ID

PASSWORD

ACCOUNT NUMBER

JMR

2270512-9701 22-81 Structure Pictures

JMR DNOS System Design Document

FLAGS FOR FIELD: JMRFLG #04 - JOB MANAGER CONTROL FLAGS

JMFNID (X •••••••••••••••) - NEW USED ID SPECIFIED (CREATE)
JMFVER (.X •••..•..•.••.•) - BYPASS VERFY CHECKS IN JM
JMFBCH (•• X •••••••••••••) - BATCH JOB
JMFRES (••• XXXXXXXX •••••) - FLAG BITS 3 - 10 RESERVED
JMFPVL = (••••••••••• XXXXX) - PRIVILEGE LEVEL

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

JMRSIZ $)10 SIZE OF BASIC CALL BLOCK
JMRSZ2 $)3C JMR SIZ FOR CREATE OPERATION

Structure Pictures 22-82 2270512-9701

DNOS System Design Document

***********************************~************************

* * * JOB STATUS BLOCK (JSB) 09/09/83 *
* *
* LOCATION: SYSTEM AREA *
**
* THE JSB PROVIDES THE INFORMATION ABOUT A JOB WHICH IS
* NEEDED BY DNOS WHETHER OR NOT THE JOB COMMUNICATION AREA
* IS IN MEMORY. THIS INFORMATION INCLUDES FLAGS, QUEUE
* LINKS, STATUS INFORMATION, AND JCA LOCATION DATA.

----------+----------
)00 ! JSBJSB

+----------+----------+
)02 JSBJID

+----------+----------+
)04 JSBFLG JSBTCT

+----------+----------+
)06! JSBPRI JSBSTA!

+----------+----------+
)08! JSBAPR JSBWPR

POINTER TO NEXT JSB

JOB ID (UNIQUE TO SITE)

JOB FLAGS
JOB TASK COUNT

JOB PRIORITY
JOB STATE

ACTIVE PRIORITY (HIGHEST)

JSB

+----------+----------+
)OA JSBQL

WAITING ON MEMORY PRI(HIGHEST)
ACTIVE QUEUE LINK

+----------+----------+
)OC JSBWOM LINK FOR WAITING MEMORY QUEUE

+----------+----------+
)OE ! JSBEOR END OF REQUEST PROCESSING ANCHOR

+----------+----------+
)10 ! JSBJCA SSB ADDRESS FOR JCA

+----------+----------+
)12 JSBSMT SM TABLE SSB ADDRESS FOR JCA

+----------+----------+
) 1 4 J S BN AM ! ! JOB NAME

+----------+----------+
/ / /
/ / /
+----------+----------+

)lC JSBUID! USER ID OF JOB
+----------+----------+
/ / /
/ / /
+----------+----------+

)24 JSBWOT ! TABLE AREA JSB WAIT QUEUE LINK
+----------+----------+

)26 JSBVER PTR TO SELF FOR VERIFICATION
+----------+----------+

FLAGS FOR FIELD: JSBFLG 1104 - JOB FLAGS

JSFVER = (X •••••••.•••••••) - BY-PASS VERIFICATION CHECKS

2270512-9701 22-83 Structure Pictures

JSB

JSFACC
JSFBAC

EQUATES:

LABEL

JSBSIZ

DNOS System Design Document

(.X•.•.•.•.) - ACCOUNTING STARTED FOR JOB
(•• X •••••••••••••) - BACKGROUND JOB

EQUATE TO VALUE DESCRIPTION

$)28

Structure Pictures 22-84 2270512-9701

DNOS System Design Document

**
* * * KIF CURRENCY BLOCK (KCB) 01/22/82 *
*
*
*

LOCATION: SYSTEM TABLE AREA
*
*
* **

* THE KCB IS USED TO MAINTAIN CURRENCY INFORMATION ABOUT A
* KEY INDEXED FILE IN USE. THE KCB IS BUFFERED ALONG WITH
* THE IRB DESCRIBING THE I/O RE~UEST.

* * SPECIAL FIELD COMMENTS:
* KCBKAD - FIRST TWO WORDS GIVE THE PHYSICAL RECORD NUMBER
* OF THE LOGICAL RECORD. THE THIRD WORD IS THE
* ID OF THE LOGICAL RECORD.
* KCBBTP - FIRST TWO WORDS GIVE THE PHYSICAL RECORD ~UMBER
* OF THE KEY FROM WHICH THE CURRENCY WAS CREATED.
* THE THIRD WORD IS THE LOGICAL ADDRESS OF THE KEY
* WHEN THE PHYSICAL RECORD IS MAPPED INTO KIF
* PROCESSING CODE.

----------+----------
)02! KCBINF KCBKNM

+----------+----------+
)04 KCBKAD

+----------+----------+
)06 KCBDBK

+----------+----------+
)08 ! FILLOO !

+----------+----------+
)OA FILL01

+----------+----------+
)OC KCBBTP

+----------+----------+
)OE ! FILL02 !

+----------+----------+
)10 FILL03

+----------+----------+
)12 KCBBES

+----------+----------+
) 14! KCBLOC KCBCOC

+----------+----------+

EQUATES:

LABEL EQUATE TO VALUE

KCBSIZ $-KCBINF)14

CURRENCY INFORMATION CODE
KEY NUMBER

KEY ADDRESS

DATA BASE KEY (3 WORDS)

B-TREE POINTER (3 WORDS)

B-TREE ENTRY SIZE

LAST OPCODE USED
CURRENT Op CODE

DESCRIPTION

KCB

2270512-9701 22-85 Structure Pictures

KDB DNOS System Design Document

**
* *
* KEY DESCRIPTOR BLOCK (KDB)

*
09/10/79 *

* * LOCATION: STA (PART OF IRB) *
**
* THE KDB IS PART OF A CREATE KEY INDEXED FILE I/O REQUEST
* BRB WHICH DESCRIBES THE KEYS TO BE CREATED.

----------+----------
)00 ! KDBOVH ! OVERHEAD

+----------+----------+
)02 KDBMLR MAX NUMBER LOGICAL RECORDS

+----------+----------+
)04 !

+----------+----------+
)06 ! KDBNKY ! NUMBER OF KEYS

+----------+----------+
)08! KDBOFF ! SPACE FOR MAXIMUM /I KEYS

+----------+----------+
/ / /
/ / /
+----------+----------+

DESCRIPTION OF ONE KEY
----------+----------

)OO! KDBFGS ! KDBSIZ FLAGS
+----------+----------+

)02 ! KDBO !
NUMBER OF CHARACTERS IN KEY

KEY OFFSET IN RECORD
+----------+----------+

FLAGS FOR FIELD: KDBFGS 1100 - FLAGS

(XXX •••••••••••••) - *** RESERVED ***
KDBPLG (••• X ••••••••••••) - BIT 3 SET IF PARTIAL LOGGING
KDB33 (•••• X •••••••••••) BIT 4 SET IF SEQUENTIAL KIF
KDBOFG = (••••• X ••••••••••) - BIT 5 SET IF KEY IS OPTIONAL
KDBSFG = (•••••• X •••••••••) - BIT 6 SET IF SEQUENTIAL CMNDS
KDBDFG (••••••• X ••••••••) - BIT 7 SET IF DUPLICATES OK

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

KDBMKY 14)OE MAXIMUM II OF KEYS IN FILE
KDBMSZ 100)64 MAXIMUM KEY SIZE
KDBNXT $)04 SIZE OF KEY DESCRIPTOR

Structure Pictures 22-86 2270512-9701

DNOS System Design Document

******************************~***************************

* * * KEY INDEXED FILE KEY DESCRIPTOR RECORD(KDR) 09/09/83 *
* *
* LOCATION: DISK RESIDENT STRUCTURE *
**
* THE KDR DESCRIBES THE KEYS OF A KEY INDEXED FILE. THE
* FIELD AT KDROFF IS ONE OR MORE REPLICATIONS OF THE
* FIELDS BEGINNING AT KDRFGS.

----------+----------
)00 KDRHKC ! HASH KEY COUNT

+----------+----------+
)02 ! KDRHKV HASH KEY VAL UE

+----------+----------+
)04 ! FILLOO ! (WORD COPIED FROM KDB)

+----------+----------+
)06 KDRNKY NUMBER OF KEYS

+----------+----------+
)08! KDROFF ! SPACE FOR MAXIMUM # KEYS

+----------+----------+
/ / /
/ / /
+----------+----------+

)40 KDRCD ! CREATION DATE AND TIME USED
+----------+----------+

)42 ! ! I
+----------+----------+

)44 ! ! !
+----------+----------+

)46! KDRSEQ ! KDRCCT ! CONCATENATED SET SEQUENCE NUM.
+----------+----------+ TOTAL CONCAT. FILES IN SET

FLAGS DESCRIPTION (NOT A VARIANT)
----------+----------

)OO! KDRFGS KDRSIZ!
+----------+----------+

)02 ! KDRO !
+----------+----------+

FLAGS
II CHARS IN KEY

KEY OFFSET IN RECORD

FLAGS FOR FIELD: KDRFGS #00 - FLAGS

(XXX •••••••••••••) - *** RESERVED ***
KDRPFG = (••• X ••••••••••••) - BIT 3 SET IF PARTIAL LOGGING
KDR33 (' •••• X •••••••••••) - BIT 4 SET IF SEQUENTIAL KIF
KDROFG (••••• X ••••••••••) - BIT 5 SET IF KEY IS OPTIONAL

KDR

KDRSFG (•••••• X •••••••••) - BIT 6 SET IF SEQUENTIAL CMNDS
KDRDFG (••••••• X ••••••••) - BIT 7 SET IF DUPLICATES OK

2270512-9701 22-87 Structure Pictures

KDR DNOS System Design Document

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

KDRMKY 14)OE MAX # OF KEYS IN FILE
KDRMSZ 100)64 MAX KEY SIZE
KDRNXT $)04 SIZE OF KEY DESCRIPTOR

Structure Pictures 22-88 2270512-9701

DNOS System Design Document

**
* * KIF INFORMATION BLOCK (KI B)

*
02/26/80 *

*
* LOCATION: DISK AND BUFFER SEGMENT *

* **
* THE KIB DESCRIBES A KEY INDEXED FILE DATA BLOCK.

* * SPECIAL FIELD COMMENTS:
* KIBBLK - THE PHYSICAL RECORD NUMBER OF THIS BLOCK. THIS
* FIELD IS MAINTAINED SO THAT IF A SYSTEM CRASH
* OCCURS WHILE THIS BLOCK IS BEING MODIFIED, THE
* LOGGED IMAGE CAN BE RESTORED TO THE CORRECT FILE
* RECORD.
* KIBCMD - THE OPCODE OF THE CURRENT COMMAND. THIS IS
* MAINTAINED FOR LOGGING PURPOSES.
* KIBSR THE NUMBER OF BYTES REMAINING IN THE PHYSICAL
* RECORD.
* KIBFCB - THIS FIELD IS USED TO LINK THE BLOCK ON THE FREE
* BLOCK CHAIN.
* KIBRSZ - THE SIZE IN BYTES OF THE FIRST LOGICAL RECORD
* INCLUDING THIS WORD.

----------+----------
)00 KIBBLK BLOCK NUMBER

+----------+----------+
)02 !

+----------+----------+
)04 KIBCMD ! COMMAND NUMBER

+----------+----------+
)06 ! KIBSR SPACE REMAINING IN BYTES

+----------+----------+
)08 KIBFCB FREE CHAIN POINTER

+----------+----------+
)OA !

+----------+----------+
)OC KIBHID HIGHEST LOGICAL RECORD ID USED

+----------+----------+
)OE KIBRSZ RECORD SIZE OF 1ST RECORD

+----------+----------+
)10 ! KIBRID ID OF FIRST LOGICAL RECORD

+----------+----------+

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

KIBOFB $)08 OVERFLOW BLOCK POINTER

KIB

2270512-9701 22-89 Structure Pictures

KIT DNOS System Design Document

**
* * KIF TASK AREA (KIT)

*
01/21/82 *

* * * LOCATION: SYSTEM TABLE AREA *
* (USED ONLY BY ASSEMBLY LANGUAGE CODE) *
**
* THE KIT IS ATTACHED TO THE FILE MANAGEMENT WORK AREA (FWA)
* FOR ADDITIONAL WORKING STORAGE FOR KIF PROCESSING. IT
* INCLUDES INFORMATION ABOUT THE CURRENT REQUEST, THE STATE
* OF THE FILE, AND SEVERAL FIELDS OF THE FCB TO MINIMIZE
* MAPPING DURING PROCESSING.
**
* * FILE MANAGER WORK AREA

*
(FWA)

*
01/21/82 *

*
* LOCATION: SYSTEM AREA * **
* THE FWA IS USED BY FILE MANAGEMENT AND BY KIF MANAGEMENT
* AS A GENERAL WORK AREA. R15 POINTS TO THE FWA.

----------+----------
)00 FWAWP ! WORKSPACE USED BY FM

+----------+----------+
/ / /
/ / /
+----------+----------+

)20 FWAFLG MIDDLE SEGMENT FLAGS
+----------+----------+

)22 FWATCT MULTIRECORD CHARS TRANSFERRED
+----------+----------+

)24 ! FWAOAD ! CURRENT OVERLAY AREA ADDRESS
+----------+----------+

)26 FWAPC SAVED PROGRAM COUNTER
+----------+----------+

)28 FWAXWP BLWP VECTOR FOR RETURNING
+----------+----------+

)2A FWAXPC !
+----------+----------+

)2C FWABN SAVED RPBBN (2 WORDS)
+----------+----------+

)2E
+----------+----------+

)30 FWAOCB SAVED RPBOCB
+----------+----------+

)32 FWALFG SAVED LDT FLAGS
+----------+----------+

)34 FWAFFC ! FIRST FCB FOR CC FILES
+----------+----------+

)36 FWAFMT SSB FOR THE FMT WITH THE FCB
+----------+----------+

Structure Pictures 22-90 2270512-9701

DNOS System Design Document KIT

)38 ! FWAFCB ! FCB ADDRESS IN THE FMT
+----------+----------+

)3A FWABST SMT SSB ADDR FOR BUFFER
+----------+----------+

)3C FWABSB ! SSB ADDR FOR BUFFER
+----------+----------+

)3E FWAPRS PHYSICAL RECORD SI ZE
+----------+----------+

)40 FWAUBT ! USER BUFFER SMT SSB ADDR
+----------+----------+

)42 FWAUBS ! USER BUFFER SSB AD DRES S
+----------+----------+

)44 ! FWAUBO ! USER BUFFER OFFSET
+----------+----------+

)46 FWAUBL USER BUFFER LENGTH
+----------+----------+

)48 FWAFMB FMT BIAS
+----------+----------+

)4A FWARN1 ! RECORD # RELATIVE TO CURRENT
+----------+----------+

)4C FWARN2 ! FILE OF CONCATENATED SET
+----------+----------+

)4E FWAOOB OLD OFFSET IN USER BUFFER
+----------+----------+

)50 FWAUBR BUFFER LENGTH REMAINING
+----------+----------+

)52 FWAFFG ! FILE MGR FLAGS
+----------+-----~----+

)54! FWASTK ! STACK AREA
+----------+----------+
/ / /
/ / /
+---~------+----------+

TEMPORARY KIF STORAGE IN TASK AREA
----------+----------

)54 ,! FILL01 KIF STACK
+----------+----------+
/ / /
/ / /
+----------+----------+

)0130 ! KITBKM LOGICAL BLOCK END OF MEDIUM
+----------+----------+

)0132
+----------+----------+

)0134 KITCMD ! CURRENT COMMAND NUMBER
+----------+----------+

)0136 KITEBQ ! EMPTY BLOCK QUEUE HEAD
+----------+----------+

)0138
+----------+----------+

)013A KITCLB CURRENT LOG BLOCK
+----------+----------+

2270512-9701 22-91 Structure Pictures

KIT DNOS System Design Document

)013C KITFBQ FREE BLOCK QUEUE HEAD
+----------+----------+

)013E

+----------+----------+
)0140 KITBTR ! B-TREE ROOTS

+----------+----------+
)0142 KITKDB KDB OF CURRENT REQUEST

+----------+----------+
/ / /
/ / /
+----------+----------+

)017C ! KBUFIA ADDRESS OF FIRST KEY BUFFER
+----------+----------+

)017E KBUF2A ! ADDRESS OF SECOND KEY BUFFER
+----------+----------+

)0180 KBUF3A ADDRESS OF THIRD KEY BUFFER
+----------+----------+

)0182 KEYNUM KEY # OF KEY CURRENTLY USING
+----------+----------+

)0184 KEYSZ SIZE (CHARS) OF THIS KEY
+----------+----------+

)0186 B'TSTK B-TREE STACK
+----------+----------+
/ / /
/ / /
+----------+----------+

)01C2 BTSTKA ! ADDR 1ST ENTRY OF B-TREE STACK
+----------+----------+

)01C4 BTSPTR ADDR 1ST UNUSED B-T STACK ENTRY
+----------+----------+

)01C6 ! NEIBTS ! NUMBER ENTRIES IN B-TREE STACK
+----------+----------+

)01C8 TSIL2 1 WORD OF LEVEL 1 TEMP STORAGE
+----------+----------+

)OICA TIL2A ADDRESS OF TSIL4
+----------+----------+

)OICC ! TSIL2A ! I WORD OF LEVEL 1 TEMP STORAGE
+----------+----------+

)OICE TSIL2B 1 WORD OF LEVEL 1 TEMP STORAGE
+----------+----------+

)OlDO ! TS1L2C I WORD OF LEVEL 1 TEMP STORAGE

+----------+----------+
)01D2 T1L2CA ADDRESS OF TSIL2C

+----------+----------+
)01D4 TS1L2D 1 WORD OF LEVEL 1 TEMP STO RAGE

+----------+----------+
)01D6 TIL2DA ADDRESS OF TSIL2D

+----------+----------+
)01D8 TS1L4 2 WORDS OF LEVEL 1 TEMP STORAGE

+----------+----------+
)OlDA

+----------+----------+
)OIDC T1L4A ADDRESS OF TSILY

Structure Pictures 22-92 2270512-9701

DNOS System Design Document KIT

+----------+----------+
)OlDE TS1L4A 2 WORDS OF LEVEL 1 TEMP STORAGE

+----------+----------+
)OlEO

+----------+----------+
)01E2 TIL4AA ADDRESS OF TSIL4A

+----------+----------+
)01E4 TSIL4B 2 WORDS OF LEVEL 1 TEMP STORAGE

+----------+----------+
)01E6

+----------+----------+
)OlE8 T 1 L4 BA ADDRESS OF TS1L4B

+----------+----------+
)OlEA TSIL6 3 WORDS OF LEVEL 1 TEMP STORAGE

+----------+----------+
)OlEC

+----------+----------+
)OlEE

+----------+----------+
)OlFO TIL6A ADDRESS OF TS1L6

+----------+----------+
)01F2 TS2L2 1 WORD OF LEVEL 2 TEMP STORAGE

+----------+----------+
)01F4 T2L2A ADDRESS OF TS2L2

+----------+----------+
)01F6 TS2L4 2 WORDS OF LEVEL 2 TEMP STORAGE

+----------+----------+
)01F8

+----------+----------+
)OlFA T2L4A ADD RES S OF TS2L4

+----------+----------+
)OlFC TS2L4A 2 WORDS OF LEVEL 2 TEMP STORAGE

+----------+----------+
)OlFE

+----------+----------+
)0200 T2L4AA ADDRESS OF TS2L4A

+----------+----------+
)0202 TS2L4B 2 WORDS OF LEVEL 2 TEMP STORAGE

+----------+----------+
)0204

+----------+----------+
)0206 T2L4BA ADDRESS OF TS2L4B

+----------+----------+
)0208 TS2L4C 2 WORDS OF LEVEL 2 TEMP STORAGE

+----------+----------+
)020A

+----------+----------+
)020C T2L4CA ADDRESS OF TS2L4C

+----------+----------+
)020E RQDBKA ADDRESS OF KCBDBK

+----------+----------+
)0210 RQBTPA ADDRESS OF KCBBTP

+----------+----------+

2270512-9701 22-93 Structure Pictures

KIT

)0212 BTDBKA
+----------+----------+

)0214 FDRCFG !
+----------+----------+

)0216 BTSPLT
+----------+----------+

)0218 TBTP
+----------+----------+

)021A
+----------+----------+

)021C
+----------+----------+

)021E r ATBTP
+----------+----------+

)0220 TDBK !
+----------+----------+

)0222 ! ! !
+----------+----------+

)0224 ! !
+----------+----------+

)0226 ! ATDBK
+----------+----------+

)0228 SBLK
+----------+----------+

)022A !
+----------+----------+

)022C ASBLK
+----------+----------+

)022E LEAFFL
+----------+----------+

)0230 RWSAV8
+----------+----------+

)0232 RRPDC !
+----------+----------+

)0234 RRPDFL
+----------+----------+

)0236 RQSAVE
+----------+----------+

)0238! CWSRO FILL02!
+----------+----------+

)023A CWSR1
+----------+----------+

)023C ! CWSR2 !
+----------+----------+

)023E CWSR3 !
+----------+----------+

)0240 CWSR4
+----------+----------+

)0242 CWSR5
+----------+----------+

FLAGS FOR FIELD: FWAFFG

DNOS System Design Document

ADDRESS OF BTBDBK

FDR CHANGE FLAG

B-TREE SPLIT FLAG

TEMPORARY B-TREE POINTER

ADR TEMPORARY B-TREE POINTER

TEMPORARY DATA BASE KEY

ADR OF TEMPORARy DATA BASE KEY

SAVED SUCCESSOR BLOCK NUMBER

ADR SAVED SUCCESSOR BLK NUMBER

SAVED LEAF FLAG

SAVE R8 HERE

DUP COUNT OF DUP WANTED

DUPLICATES FLAG

ORIG RQ FOR PASSIVE READS

ALT SEQ=)FF, STD SEQ=)OO
CONV REQ FLAG (BIT 8)

STORAGE FOR KEY1 ADDRESS

STORAGE FOR KEY2 ADDRESS

STORAGE FOR KEY LENGTH

KMCNV BASE DATA ADDRESS

KMUCV BASE DATA ADDRESS

#52 - FILE MGR FLAGS

Structure Pictures 22-94 2270512-9701

DNOS System Design Document KIT

FWAPOP
FWAQW

EQUATES:

LABEL

FWASIZ
MAXSSZ
KITSIZ

2270512-9701

(X •••••••••••••••) - PASSIVE OPERATION FLAG
(• X ••••••••••••••). - QUE U EDT 0 W A I TIN G QUE U E IN F C B

EQUATE TO

$
9
$

VALUE

)F4
)09
)244

22-95

DE SCRIP TION

SIZE OF FWA INCLUDING WSP
ONLY 9 STACK ENTRIES ALLOWED

SIZE INCLUDING WORKSPACE

Structure Pictures

KSB DNOS System Design Document

**
*
* KEYBOARD STATUS BLOCK (KSB)

*
09/28/79 *

*
* LOCATION: SYSTEM AREA

*
* **

* THE KSB IS APPENDED TO A PHYSICAL DEVICE TABLE (PDT) FOR
* A KEYBOARD DEVICE. IT IS USED BY THE DEVICE SERVICE
* ROUTINE (DSR) AS A WORKSPACE WHILE HANDLING THE KEYBOARD.

CHARACTER BUFFER LENGTH

----------+----------
)00 KSBPDT

+----------+----------+
)02 KSBQOC !

+----------+----------+
)04 KSBQIP

+----------+----------+
)06 KSBQOP

+----------+----------+
)08 KSBQEP

+----------+----------+
)OA KSBCRQ

+----------+----------+
)OC KSBFL ! KSBSN !

+----------+----------+
)OE KSBR7

+----------+----------+
)10 KSBTSB

+----------+----------+
)12 ! KSBR9

+----------+----------+
)14 ! KSBRI0 !

+----------+----------+
)16 ! KSBRII

+----------+----------+
)18 KSBCRU

+----~-----+----------+
)IA ! KSBR13

+----------+----------+
)IC ! KSBR14

+----------+----------+
)IE KSBR15

+----------+----------+

FLAGS FOR FIELD: KSBFL

RO - PDT POINTER

Rl - QUEUE OUTPUT COUNT

R2 - QUEUE INPUT POINTER

R3 - QUEUE OUTPUT POINTER

R4 - QUEUE END POINTER

R5 - GET CHAR REQUEST QUEUE

R6 - KSB FLAGS
- STATION NUMBER

R7 - SCRATCH I

R8 - TSB ADDRESS OF CHAR OWNER

R9 - SCRATCH

RIO - SCRATCH

Rl1 - SCRATCH

R12 - CRU BASE

R13 - SAVED WORKSPACE POINTER

R14 - SAVED PROGRAM COUNTER

R15 - SAVED STATUS

HOC - R6 - KSB FLAGS

KSBCHM
KSBCIE
KSBRCM
KSBCIB

(x •••••••••••••••) - CHARACTER MODE
(.X ••••••••••••••) - SCI ENABLED
(•• X •••••••••••••) - RECORD MODE
(••• X ••••••••••••) - SCI BID IN PROCESS

Structure Pictures 22-96 2270512-9701

DNOS System Design Document

KSBICP
KSBSET
KSBKIO
KSBBRK

EQUATES:

(.... x) - SCI ACTIVE
(••••• x ••••••••••) - COMMAND I/O HOLD
(•••••• X •••••••••) - COMMAND I/O ABORT
(••••••• X ••••••••) - DEACTIVATE BREAK KEY

LABEL EQUATE TO VALUE DESCRIPTION

KSBCBL 6)06 CHARACTER BUFFER LENGTH
KSBSIZ $)20

KSB

2270512-9701 22-97 Structure Pictures

LDT DNOS System Design Document

***************~***~**

* * LOGICAL DEVICE TABLE (LDT)
*

01/27/83 *
*
* LOCATION: SYSTEM AREA AND JCA

*
* **

* THE LDT CONTAINS INFORMATION DESCRIBING AN I/O RESOURCE TO
* WHICH A LOGICAL UNIT NUMBER (LUNO) HAS BEEN ASSIGNED. IT
* INCLUDES TYPE FLAGS, OWNERSHIP, AND STATE INFORMATION.

** BEGINNING PACKED RECORD LDT

----------+----------
)00 LDTLDT

+----------+----------+
)02 LDTIOC LDTLUN

+----------+----------+

----------+----------
)04 LDTTYP LDTTF!

+----------+----------+
)06 LDTFLG !

+----------+----------+
)08 LDTRLK

+----------+----------+
)OA LDTTSB !

+----------+----------+
)OC LDTJSB

+----------+----------+

LINK TO NEXT LDT

INITIATE I/O COUNT
LOGICAL UNIT NUMBER

I/O RESOURCE TYPE.
FLAGS FOR LDT TYPE (SEE LDTXFL)

FLAGS

RESOURCE LINK: FCA, PDT OR CCB

OWNER TSB LIST ANCHOR

OWNER JSB ADDRESS

DEVICE, CHANNEL LDT
----------+----------

)OE LDTSID ! SESSION ID
+----------+----------+

FILE LDT
----------+----------

)OE LDTFMT ! SSB FOR THE FMT
+----------+----------+

)10 LDTFCB FCB ADDRESS IN THE FMT
+----------+----------+

)12 LDTCAR COMPOSITE ACCESS RIGHTS
+----------+----------+

----------+----------
)04 LDTXFL ! RESOURCE TYPE / FLAGS

+----------+----------+
)14 SIZE ** END OF PACKED RECORD

Structure Pictures 22-98 2270512-9701

DNOS System Design Document LDT

FLAGS FOR FIELD: LDTFLG #06 - FLAGS

LDFDEL (X •••••••••••••••) - LDT IS DELETE PROTECTED
LDFFW,T (• X ••••••••••••••) ~ FORCED (IMMEDIATE) WRITE BIT
LDFCBA (•• X •••••••••••••) CREATED BY ASSIGN BI T
LDFNUS (••• X ••••••••••••) - LDT IS CURRENTLY NON-USABLE
LDFPRM (•••• X •••••••••••) - PARAMETERS ARE PRESENT
LDFUBI (••••• X ••••••••••) - UNBLOCKED(I)/BLOCKED(O) OPEN
LDFACU (•••••• XX ••••••••) - ACCESS PRIV. IN USE

* 00 EXCLUSIVE WRITE
* 01 EXCLUSIVE ALL
* 10 SHARED
* 11 = READ ONLY

LDFSCI (•••••••• XX ••••••) - LDT SCOPE (TASK, JOB, GLOBAL)
* 00 TASK-LOCAL
* 01 JOB-LOCAL
* 10 = GLOBAL
* 11 SHARED

LDFDWE (•••••••••• X •••••) - DEFERRED WRITE ERROR
LDFVNT (••••••••••• X ••••) - EVENTS REQUESTED (KB DEVICES)
LDFUSD = (•••••••••••• X •••) - LDT HAS BEEN USED
LDFDIA (••••••••••••• X ••) - DIAGNOSTIC STATE

(•••••••••••••• XX) - *** RESERVED ***

FLAGS FOR FIELD: LDTCAR #12 - COMPOSITE ACCESS RIGHTS

LDFRDF (X •••••••••••••••) - READ ACCESS FLAG
LDFWRF = (.X ••••••••••••••) - WRITE ACCESS FLAG
LDFDLF (•• X •••••••••••••) - DELETE ACCESS FLAG
LDFEXF (••• X ••••••••••••) - EXECUTE ACCESS FLAG
LDFCTF (•••• X •••••••••••) - CONTROL ACCESS FLAG

(••••• XXXXXXXXXXX) - **RESERVED**

FLAGS FOR FIELD: LDTXFL #04 - RESOURCE TYPE / FLAGS

(XXXXXXXX ••••••••) - ** ACTUALLY LDTTYP FIELD
LDFJLO (•••••••• X •••••••) - I=JOB LEVEL OPEN

(••••••••• XX •••••) - **RESERVED**
LDFVD (••••••••••• X ••••) - LDT FOR A VIRTUAL DEVICE
LDFREM (•••••••••••• X •••) - LDT FOR REMOTE RESOURCE
LDFCHN (••••••••••••• X ••) - LDT FOR CHANNEL
LDFDEV (•••••••••••••• X.) - LDT FOR DEVICE
LDFFIL (••••••••••••••• X) - LDT FOR FILE

*------
* VALUES FOR I/O RESOURCE TYPE (FIELD LDTTYP)
*------
*

EQUATES:

**

2270512-9701 22-99 Structure Pictures

LDT

LABEL

LDFACM
LDFSCM
LDFMM
LDTSZl
LDTSZ2
LDTFSZ
LDTRES
LDTSEQ
LDTRR
LDTKIF
LDTDIR
LDTPRG
LDTIMG
LDTDMY
LDTSD
LDTKSR
LDTASR
LDTCS
LDTRS2
LDTDK
LDTDS
LDTMT
LDTTPD
LDTVll
LDTLPS
LDTLPP
LDTC3Q
LDTCOM
LDTIND
LDTCR
LDT940
LDT931
LDTEN
LDTBCM
LDTVT

EQUATE TO

)0300
)OOCO
LDFDWE
$
$
$
o
1
2
3
4
5
6
o
1
2
3
4
5
6
7
8
9
)A
)B

)C
)D
)E
)F

)10
)11
)12
)13
)14
)15

Structure Pictures

DNOS System Design Document

VALUE DESCRIPTION

)300
)CO
)OA
)OE
)10
)14
)00
)01
)02
)03
)04
)05
)06
)00
)01
)02
)03
)04
)05
)06
)07
)08
)09
)OA
)OB
)OC
)OD
)OE
)OF
)10
)11
)12
)13
)14
)15

22-100

ACCESS PRIV. BIT MASK
SCOPE BIT MASK
MAGIC MODE FOR EVDT

DEVICE, CHANNEL LDT SIZE
FILE LDT SIZE
RESERVED
SEQUENTIAL
RELATIVE RECORD
KEY INDEX
DIRECTORY
PROGRAM
IMAGE
DUMY

- SPECIAL DEVICES
KSR
ASR
CASSETTE
RESERVED
SINGLE DENSITy DISKETTE
DISK
MAG TAPE (979,CARTRIDGE)
820
911 VDT
LINE PRINTER (SERIAL)
LINE PRINTER (PARALLEL)
COMM 9903 (FCCC)
COMM I/F
INDUSTRIAL DEVICES
CARD READER
940 EVT
931 EVT
ETHERNET
BCAIM
VIRTUAL TERMINAL BASE

2270512-9701

DNOS System Design Document

**
* * * LOG FILE DEFINITION

*
(LFD)

* LOCATION: SY~TEM ROOT

04/26/82 *
*
* **

* THE LFD IS BUILT DURING SYSTEM GENERATION AND IS USED TO
* KEEP TRACK OF THE STATE OF THE SYSTEM LOG OPTIONS.

----------+----------
)00 LFDFLG LFDERR FLAGS

LFD

+----------+----------+
)02 LFDMAX

ERROR BYTE FOR RECREATE TASK
MAX MESSAGE COUNT (0 = NONE)

+----------+----------+
)04 LFDTID LFDTDU

+----------+----------+
)06 LFDDNH

+----------+----------+
)08

+----------+----------+
)OA LFDFN1

+----------+----------+
/ / /
/ / /
+----------+----------+

)12 LFDFN2 !

+----------+----------+
/ / /
/ / /
+----------+----------+

)lA LFDALC !

+----------+----------+
)lC LFDLUN

+----------+----------+

FLAGS FOR FIELD: LFDFLG

TASK ID TO BID FOR FULL FILES
USER TASK ID TO BID ON FULL

LOG DEV I CE NAME (' , = NONE)

FILENAME 1

FILENAME 2

LOG FILE ALLOCATION

LUNOS

1100 - FLAGS

LDFFDS
LDFDDS
LDF2ND
LDFCSH
LDFRCR
LDFIMW
LDFSBE

(X •••••••••••••••) - FILES DISABLED
(.X ••••••••••••••) - DEVICE DISABLED

2270512-9701

(•• X •••••••••••••) - CURRENTLY USING 2ND FILE
(••• X ••••••••••••) - CRASH FILE PROCESSED
(•••• X •••••••••••) - RECREATE FILES
(••••• X ••••••••••) - FILE S ARE IMME D I AT E WR I TE
(•••••• X •••••••••) - SUPPRESS BID ERROR LOGGING

22-101 Structure Pictures

LFD DNOS System Design Document

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

LFDSIZ $)IE

Structure Pictures 22-102 2270512-9701

DNOS System Design Document

***************************~********************************

* * * LINE PRINTER PDT EXTENSION (LPD)

* * LOCATION: SYSTEM AREA

04/21/82 *
*
* **

* THE LPD IS AN EXTENSION TO THE PHYSICAL DEVICE TABLE (PDT)
* FOR A LINE PRINTER. IT CONTAINS POINTERS AND FLAGS USED
* BY THE LINE PRINTER DEVICE SERVICE ROUTINE (DSR).

----------+----------
)00 LPDIFF !

+----------+----------+
)02 LPDQCC !

+----------+----------+
)04 ! LPDQIP !

+----------+----------+
)06 LPDQOP !

+----------+----------+
)08 ! LPDQEP

+----------+----------+
)OA LPDBUF

+----------+----------+
)OC ! !

+----------+----------+
)OE LPDQSZ

+----------+----------+
) 10! LPDSPX LPDSPR!

+----------+----------+

FLAGS FOR FIELD: LPDIFF

INTERFACE FLAGS

QUEUE CHARACTER COUNT

QUEUE INPUT POINTER

QUEUE OUTPUT POINTER

QUEUE END POINTER

CHARACTER BUFFER

CHARACTER QUEUE SIZE

TRANSMIT SPEED
RECEIVE SPEED

#00 - INTERFACE FLAGS

LPFIF
LPFUC =

(X ..•.••..•••••••) - INTERFACE (O<=DM; O)EIA)
(.X •....•••...••.) - UPPERCASE ONLY (O=YES; I=NO)

I.PD

LPFBSY
LPF902

= (•• X •••••••••••••) - "RO" TERMINAL BUSY(O=NO ,1=YES)
(••• X ••••••••••••) - 9902 INTERFACE FLAG

LPFEOR (•••• X •••••••••••) END-OF-RECORD FLAG

* 1 = SAFE TO ISSUE ENDRCD

* o = DON'T ISSUE ENDRCD
(••••• XXXXXXXXXXX) - RESERVED

EQUATES:

LABEL EQUATE TO VALUE DE SCRIPTION

LPDSIZ $)12

2270512-9701 22-103 Structure Pictures

LSE DNOS System Design Document

**
* * * LOAD SEGMENT ENTRY

*
(LSE) 04/04/79 *

* * LOCATION: JCA *
~***********
* THE LSE DESCRIBES A SEGMENT WHICH IS LOADED INTO MEMORY
* WHILE THIS TASK IS RUNNING, BUT MAY NOT CURRENTLY BE MAPPED
* IN TO THE TASK. IT IS LINKED TO THE TSB.

----------+----------
)00 LSELSE LINK TO NEXT LOAD SEGMENT ENTRY

+----------+----------+
)02 ! LSESSB SSB ADDRESS OF LOADED SEGMENT

+----------+----------+
)04 ! LSESMT ! SM TABLE AREA SSB ADDR.

+----------+----------+

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

LSESIZ $)06

Structure Pictures 22-104 2270512-9701

DNOS System Design Document

**
* * * MASTER READ/MASTER WRITE BUFFER (MRB) 04/04/83 *
*
*
*

LOCATION: TASK AREA
*
*
* **

* THE MRB IS A DESCRIPTION OF THE DATA BUFFER RETURNED TO A
* CHANNEL OWNER TASK IN ITS MASTER READ BUFFER. THIS SAME
* BUFFER STRUCTURE IS USED IN THE MASTER WRITE OPERATION OF
* THE OWNER TASK. ALL BUFFER POINTERS IN THE MRB ARE
* RELATIVE OFFSETS FROM THE BEGINNING OF THE MRB, RATHER
* THAN BEING ABSOLUTE ADDRESSES.
* MRB VARIANTS ARE PROVIDED FOR THE MAJOR TYPES OF I/O CALL
* BLOCKS: BASIC FILE I/O, I/O WITH REPLY INFORMATION, I/O
* WITH VALIDATION, VDT EXTENSIONS, AND UTILITy OPERATIONS.
* THERE IS ALSO A VARIANT FOR ABORT I/O CALLS.

* ** BEGINNING PACKED RECORD MRB

----------+----------

MRB

)00 MRBSID SECURITY INFORMATION (SESSION ID)
+----------+----------+

)02 MRBRCB REQUESTOR CALL BLOCK ADDRESS
+----------+----------+

)04 MRBTSB REQUESTOR TSB ADDRESS
+----------+----------+

)06 MRBJSB REQUESTOR JSB ADDRESS
+----------+----------+

)08 MRBSSI SECURITY INFORMATION (QUEUE ADDR)
+----------+----------+

)OA MRBSOC MRBEC SVC OPERATION CODE
+----------+----------+ SVC RETURN (ERROR) CODE

ABORT I/O VARIANT

*----------+----------~
)OC MRBABF MRBABL FLAGS

+----------+----------+ LOGICAL UNIT NUMBER

I/O VARIANTS
----------+----------

)OC! MRBOC MRBLUN
+----------+----------+

)OE MRBSFL MRBUFL
+----------+----------+

SUB-OPERATION CODE
LOGICAL UNIT NUMBER

SYSTEM FLAGS
REQUESTOR (USER) FLAGS

CDE NUMBER WITHIN CDT
----------+----------

)10! FILL02 MRBSEG
+----------+----------+

)12 MRBNAM

**** RESERVED ****
SEGMENT IDENTIFIER

DEVICE NAME

2270512-9701 22-105 Structure Pictures

MRB DNOS System Design Document

+----------+----------+
/ / /
/ / /
+----------+----------+

)lA FILL03 RESERVED
+----------+----------+

)lC ! MRBNUM DEVICE NUMBER
+----------+----------+

)lE ! MRBDFL ! DIOU FLAGS
+----------+----------+

)20 ! MRBBUF PARAMETER BUFFER ADDRESS
+----------+----------+

I/O AND IOU VARIANTS
----------+----------

)10 ! MRBDBA ! BUFFER ADDR (OFFSET TO BUFFER)
+----------+----------+

)12 MRBICC ! INPUT CHAR COUNT / ACTUAL OUTPUT
+----------+----------+

)14 ! MRBOCC OUTPUT CHAR COUNT / ACTUAL INPUT
+----------+----------+

DISK I/O VARIANTS
----------+----------

)16 ! MRBTRK
+----------+----------+

)18 MRBSPR MRBSCT
+----------+----------+

----------+----------
)16 MRBADU

+----------+----------+
)18 ! MRBOFF !

+----------+----------+

TRACK ADDRESS

SECTORS PER RECORD
SECTOR NUMBER

ADU NUMBER

SECTOR OFFSET INTO ADU

TERMINAL I/O BLOCK WITH REPLY
----------+----------

)16 MRBRPY REPLY BLOCK ADDRESS (OFFSET)
+----------+----------+

)18 MRBRES ! (EXTRA WORD BUFFERED)
+----------+----------+

)lA ! MRBRPA ! REPLY BUFFER ADDR (OFFSET)
+----------+----------+

)lC MRBRIC REPLY INPUT COUNT FROM REQUESTOR
+----------+----------+

)lE MRBROC REPLY OUTPUT COUNT FOR REQUESTOR
+----------+----------+

VDT READ BLOCK WITH VDT EXTENSION
----------+----------

)16 MRBROV ZERO, REPLY PTR, OR VALIDATION PTR
+----------+----------+

Structure Pictures 22-106 2270512-9701

DNOS System Design Document MRB

*

) 18 ! MRBXFL !
+----------+----------+

)IA! MRBFCH MRBEVT!
+----------+----------+

)IC! MRBCRO MRBCCO!
+----------+----------+

)IE! MRBFRO ! MRBFCO .!
+----------+----------+

EXTENDED REQUEST FLAGS

VDT FILL CHARACTER
VDT EVENT BYTE

VDT CURSOR IN FIELD ROW
VDT CURSOR IN FIELD COLUMN

VDT FIELD BEGINNING ROW
VDT FIELD BEGINNING COLUMN

WRITE WITH VDT EXTN WITH REPLY
----------+----------

)20 ! MRBRS3 ! (EXTRA WORD BUFFERED)
+----------+----------+

)22 t MRBRY2 REPLY BUFFER POINTER (OFFSET)
+----------+----------+

)24 ! MRBRI2 ! REPLY INPUT COUNT FROM REQUESTOR
+----------+----------+

)26 ! MRBR02 REPLY OUTPUT COUNT FOR REQUESTOR
+----------+----------+

BASIC FILE I/O BLOCK
----------+----------

)16 MRBRNI RECORD NUMBER FOR REL REC (2 WORDS)
+----------+----------+

) 18 ! !
+----------+----------+

KIF I/O BLOCK
----------+----------

)16 ! MRBCBA CURRENCY BLOCK ADDRESS
+----------+----------+

)18 MRBRSO RESERVED
+----------+----------+

)1A
+----------+----------+

)lC! MRBCUR ! CURRENCY BLOCK
+----------+----------+
/ / /
/ / /
+----------+----------+

I/O UTILITY VARIANT
----------+----------

)10 MRBTYP MRBTFL
+----------+----------+

)12 1 FILL06
+----------+----------+

)14 FILL07
+----------+----------+

)16 MRBKDB
+----------+----------+

)18 MRBRS4

RESOURCE TYPE
RESOURCE TYPE FLAGS

RESERVED

RESERVED

KEY INDEX DEFINITION BLOCK (OFFSET)

RESERVED

2270512-9701 22-107 Structure Pictures

r-1RB DNOS System Design Document

+----------+----------+
)lA MRBFLG ! UTILITY FLAGS (2 BYTES)

+----------+----------+
)lC MRBDLL DEFINED LOGICAL RECORD LENGTH

+----------+----------+
)IE MRBDPL ! DEFINED PHYSICAL RECORD LENGTH

+----------+----------+
)20 MRBPNA ! PATHNAME ADDR (OFFSET)

+----------+----------+
)22 MRBPRM ! PARAMETER PTR (OFFSET)

+----------+----------+
)24 MRBRS5 RESERVED

+----------+----------+
)26 MRBIFA INITIAL FILE ALLOCATION (2 WORDS)

+----------+----------+
)28

+----------+----------+
)2A MRBSFA ! SECONDARY FILE ALLOCATION (2 WORDS)

+----------+----------+
)2C !

+----------+----------+
)30 SIZE ** END OF PACKED RECORD

FLAGS FOR FIELD: MRBABF /lOc - FLAGS

MRFDNC = (X •••••••••••••••) - DO NOT CLOSE
(.XXXXXXX ••••••••) - RESERVED

FLAGS FOR FIELD: MRBSFL /lOE - SYSTEM FLAGS

MRFBSY
MRFERR
MRFEOF
MRFVNT

= (X •••••••••••••••)
(• X ••••••••••••••)
(•• X •••••••••••••)
(••• X ••••••••••••)

- BUSY
- ERROR
- END OF FILE
- EVENT CHAR

FLAGS FOR FIELD: MRBUFL /lOF - REQUESTOR (USER) FLAGS

MRFINT
MRFRPY
MRFRES
MRFACC
MRFLOC
MRFOWN

(X •••••••••••••••) - INITIATE REQUEST
(.X ••••••••••••••) - OUTPUT WITH REPLY
(•• X •••••••••••••) - RESERVED
(••• XX •••••••••••) - ACCESS PRIVILEGES
(••••• X ••••••••••) - LOCK/UNLOCK
(•••••• XX ••••••••) - OWNERSHIP LEVEL

FLAGS FOR FIELD: MRBDFL /lIE - DIOD FLAGS

MRFLCK = (X •••••••••••••••) - LOCK/UNLOCK
MRFNAM (• X ••••••••••••••) - NAME SPECI FI ED

Structure Pictures 22-108 2270512-9701

DNOS System Design Document MRB

*
*
*
*

*
*
*
*

MRFVRD
MRFWCH =
MRFREP

(•• X •••••••••••••)
(••• X •••••••••. _ ••)
(•••• X •••••••••••)

- VIRTUAL DEVICE
- WHICH RELATIVE DEVICE
- REPLACE

FLAGS FOR FIELD: MRBXFL #18 - EXTENDED REQUEST FLAGS

MRFCSF (X •••••••••••••••) - CURSOR START OF FIELD DEFN
MRFNTN = (• X ••••••••••••••) - INTENSITY
MRFFKR = (•• X •••••••••••••), - BLINKING CURSOR (FLICKER)
MRFGRA (••• X ••••••••••••) - GRAPHICS DISPLAY (CHAR LT
MRFEBA (•••• X •••••••••••) - 8-BIT ASCII

)20)

MRFTER = (••••• X ••••••••••) - ENABLE TASK EDIT CHAR RETURN
MRFBP = (•••••• X •••••••••) - BEEP
MRFRDB (••••••• X ••••••••) - RIGHT DISPLAY EDGE BOUNDARY
MRFCIF (•••••••• X •••••••) - CURSOR IN-FIELD DEFINED
MRFFC (••••••••• X ••••••) - FILL CHAR DEFI NED
MRFIF = (•••••••••• X •••••) - INITIALIZE FIELD
MRFRFF (••••••••••• X ••••) - REMAIN IN FULL FIELD
MRFECO (•••••••••••• X •••) - ECHO
MRFVRQ (••••••••••••• X ••) - VALIDATION REQUIRED
MRFVER (•••••••••••••• X.) - VERIFICATION ERROR
MRFWBP (••••••••••••••• X) - WARNING BEEP

FLAGS FOR FIELD: MRBTFL #11 - RESOURCE TYPE FLAGS

= (XXX •••••••••••••) - RESERVED
MRFVD = (••• X ••••••••••••) - VIRTUAL DEVICE
MRFREM (•••• X •••••••••••) - REMOTE RESOURCE
MRFCHN (••••• X ••••••••••) - CHANNEL
MRFDEV (•••••• X •••••••••) - DEVICE
MRFFIL (••••••• X ••••••••) - FILE

FLAGS FOR FIELD: MRBFLG #IA - UTILITY FLAGS (2 BYTES)

MRFFCA (X •••••••••••••••)
MRFFUS = (.XX •••••••••••••)

MRFSCP (••• XX •••••••••••)

MRFGEN = (••••• X ••••••••••)
MRFACR (~ ••••• X •••••••••)
MRFPRM (••••••• X ••••••••)
MRFLRL (•••••••• X •••••••)
MRFTMP (••••••••• X ••••••)

- FILE CREATED BY ASSIGN
- FILE USAGE FLAGS
OO=NO SPECIAL USAGE
01=DIRECTORY FILE
10=PROGRAM FILE
11=IMAGE FILE
- LUNO SCOPE
OO=TASK LOCAL
01=JOB LOCAL
10=GLOBAL
11=RESERVED
- AUTOGENERATE LUNO
- REQUEST AUTOCREATE FILE
- I=MRBPRM VALID (PARMS PRESENT)
- USE LOGICAL REC. LENGTH GIVEN
- FILE IS TO BE TEMPORARY

2270512-9701 22-109 Structure Pictures

MRB DNOS System Design Document

MRFIMW (•••••••••• X •••••) - IMMEDIATE WRITE DISK'FILES
MRFDFT = (••••••••••• XX •••) - DATA FORMAT

* OO=NORMAL RECORD IMAGE

* 01=BLANK SUPPRESSED

* 10, 11 RESERVED
MRFALL (••••••••••••• X ••) - ALLOCATION MAY GROW
MRFFTP (•••••••••••••• XX) - FILE TYPE

* OO=RESERVED

* 01=SEQUENTIAL FILE

* 10=RELATIVE RECORD FILE

* II=KEY INDEXED FILE

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION
----- --------- ... ---- ~-----------------------------
VARNO $)OC
MRBASZ $)OE ABORT I/O MRB SIZE
MRFVAL MRFRPY)01 READ WITH VALIDATION
MRFMDS MRFLOC)05 MASTER DO NOT SUSPEND
MRFEXR MRFOWN)06 EXTENDED REQUEST
MRFBAD MRFOWN+l)07 BLANK ADJ/SET EVENT MODE
MRFWPM MRFOWN+1)07 WORD PROCESSING MODE
MRBOSZ $)10
MRBCDE MRBUFL)OF CDE NUMBER WITHIN CDT
MRBSZD $)22 SIZE OF DIOU VARIANT
MRBISZ $)16 BASIC I/O MRB SIZE
MRBDSZ $)IA DISK I/O MRB SIZE
MRBRSZ $)20 BASIC REPLY MRB SI ZE
MRBVAL MRBROV)16
MRBXSZ $)20 VDT EXTENSION MRB SIZE
MRBRS2 $)20 NO LONGER USED
MRBVXS $)20 READ WITH EXTN/VALIDATION MRB SIZE
MRBXRS $)28 WRITE WITH EXTN/REPLY MRB SIZE
MRBFSZ $)lA SIZE OF BASIC FILE I/O MRB
MRBKSZ $)30 SIZE OF KIF MRB
MRBUSZ $)2E SIZE OF IOU CALL BLOCK

Structure Pictures 22-110 2270512-9701

DNOS System Design Document

**

* * EXTENTION FOR A MAGNETIC (MTX) *
04/13/83 *

* TAPE DEVICE *
* REV 05/10/83 *

* LOCATION: SYSTEM AREA *
**
* THE MTX IS AN EXTENSION TO THE PDT USED TO DESCRIBE A
* MAGNETIC TAPE DEVICE. IT IS USED AS A WORK AREA BY
* THE DSR.

*

----------+----------
)OO! MTXTIL ! TILINE IMAGE

+----------+----------+
/ / /
/ / /
+----------+----------+

)10! MTXSLG ! TILINE IMAGE FOR SYSTEM LOG
+----------+----------+
/ / /
/ / /
+----------+----------+

) 20 ! MTXSVS ! TILINE UNIT ERROR COUNT
+----------+----------+

) 22 ! MTXMAJ MAJOR ERROR COUNT
+----------+----------+

)24 ! MTXMIN ! MINOR ERROR COUNT
+----------+----------+

) 26 ! MTXFLG ! FLAGS
+----------+----------+

FLAGS FOR FIELD: MTXFLG 1126 - FLAGS

MTFEOT = (X •••••••••••••••) - END-OF-TAPE FLAG
(.XXX ••••••••••••) - RESERVED

MTFODI = (•••• X •••••••••••) - ON-LINE-DIAGNOSTICS
(••••• XXXXXXXXXXX) - RESERVED

EQUATES:

LABEL EQUATE TO

MTXSIZ $

VALUE DESCRIPTION

MT PDT + EXTENSION SIZE
BYTE TRANSFER COUNT

MTX

MTXCNT MTXTIL+)
MTXCMD MTXTIL+)

)28
)08
)OC TRANSPORT SELECT/COMMAND/ADDR

2270512-9701 22-111 Structure Pictures

NDB DNOS System Design Document

*
*
*

NAME DEFINITION BLOCK (NDB)

LOCATION: A NAME DEFINITION SEGMENT

07/16/81 *
*
* ***

----------+----------
)00 ! NDBNDB FIXED LINK - SEQ PROCESSING

+----------+----------+
)02 ! NDBPAR POINTER TO PARENT NDB

+----------+----------+
)04 ! NDBLLL POINTER TO LEFT SON

+----------+----------+
)06 NDBRRR POINTER TO RIGHT SON

+----------+----------+
)08 ! NDBNAM PTR TO THE NAME

+----------+----------+
)OA NDBSVB ! ANCHOR OF STAGE VALUES

+----------+----------+
)OC NDBBAL NDBWAT ! BALANCE FACTOR

+----------+----------+ SON INDICATOR

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

NDBSIZ $)OE

Structure Pictures 22-112 2270512-9701

DNOS System Design Document

**
*
*
*

NAME DEFINITION SEGMENT OVERHEAD (NDS)
*

12/16/81 *
* * LOCATION: A NAME DEFINITION SEGMENT *

**

----------+----------
)00 NDSHED 1ST ENTRY ON FREE MEMORY LIST

+----------+----------+
)02 NDSLNK ! PTR TO FREE MEMORY CHAIN

+----------+----------+
)04 NDSRES RESERVED TABLE AREA BOUNDRY

+----------+----------+
)06 NDSEND ACTUAL ADDRESS OF END OF SEG

+----------+----------+
)08 NDSUSE CURRENT MEMORY USAGE

+----------+----------+
)OA NDSHI HIGHEST MEMORY ALLOCATION

+----------+----------+
)OC NDSJSB PTR TO JSB OR SSB OF OWNER

+----------+----------+
)OE NDSNUL! NDSOWN ! HANDY NULL STRING

+----------+----------+ SEGMENT IN USE IF NON- ZERO
)10 NDSSTR ! PTR TO ROOT OF SYN TREE

+----------+----------+
)12 NDSLTR PTR TO ROOT OF LGN TREE

+----------+----------+
)14 ! NDSSDB ! PTR TO 1ST SDB FOR THE JOB

+----------+----------+
)16 ! NDSSYN FIXED LINK OF SYNONYM NDBS

+----------+----------+
)18 NDSLGN FIXED LINK OF NAME NDBS

+----------+----------+
)lA NDSTMP TEMPORARY PACKET ADDRESS

+----------+----------+

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

NDSSIZ $)lC LENGTH OF NDS OVERHEAD

NDS

2270512-9701 22-113 Structure Pictures

NFCRSH DNOS System Design Document

**

*
* SYSTEM CRASH CODE EQUATES (NFCRSH)

*
06/08/83 *

* *
**
* NFCRSH LISTS ALL POSSIBLE SYSTEM CRASH CODES GENERATED BY
* DNOS. SOME CODES ARE ALSO RESERVED AS THEY ARE USED BY
* DXIO AND USE OF THOSE BY DNOS WOULD NOT BE DESIRABLE.

*
CSHOOE EQU)OOOE

*
*CSHOIO THRU CSHOI2
* CSHOI3 THRU CSHOIF
*CSH020

*
CSH02I EQU
CSH022 EQU
CSH023 EQU
CSH024 EQU
CSH025 EQU
CSH026 EQU
CSH027 EQU
CSH028 EQU
CSH029 EQU
CSH02A EQU
*CSH02B

*

)0021
)0022
)0023
)0024
)0025
)0026
)0027
)0028
)0029
)002A

CSH02C EQU)002C
*CSH02D

*
*CSH02E
CSH02F EQU)002F
CSH030 EQU)0030
*CSH031

*
*CSH032

*
*CSH033

*
*CSH034

*
*CSH035

*
*CSH036

*
*CSH040 THRU CSH045
CSH046 EQU)0046
CSH048 EQU)0048
CSH04A EQU)004A
CSH04B EQU)004B
CSH04C EQU)004C
CSH04D EQU)004D

Structure Pictures

PMTLDR - CANNOT ASSIGN TO ROLL
FILE

RESERVED-USED BY DXI0
ILLEGAL INTERRUPT AT LEVEL 3 THRU F

RESERVED-DXIO-ILLEGAL INTERNAL
INTERRUPT

PMUMGR - INCONSISTENT STRUCTURE
NFTMGR - INCONSISTENT STRUCTURE
NFSCHD - QUEUING ERROR
IOBM - INCONSISTENT STRUCTURE
ILLEGAL SYSTEM XOP
PMROLL - CANNOT EXTEND SWAP FILE
PMROLL - SWAP FILE WRITE ERROR
PMLDSG - SWAP FILE READ ERROR
NFPOP - UNEXPECTED ERROR RETURNED
NUCLEUS - INCONSISTENT STRUCTURE
RESERVED-DXI0-ERR IN LDT BUILT

FOR PROG. FILE
NFENAB - SCHEDULER INHIBIT NEG.
RESERVED-DXIO-TM$LDR TOOK END

ACTION
RESERVED-DXI0-S0$CPR ERROR
SYSTEM OVERLAY LOAD ERROR
NFTMGR - NO SYSTEM TABLE AREA
RESERVED-DXIO-UNEXP ERR RETURN

IN RM$REL
RESERVED-DXIO-UNEXP ERR RETURN

IN BM$TRW
RESERVED-DXIO-UNEXP ERR RETURN

IN BM$W
RESERVED-DXI0-UNEXP ERR RETURN

IN BM$CLO
RESERVED-DXIO-UNEXP ERR RETURN

IN BM$FLS
RESERVED-DXIO-UNEXP ERR RETURN

IN BM$SCH
RESERVED-DXI0-
SEGMGR - INCONSISTENT STRUCTURE
JOBMGR - END ACTION TAKEN
JOBMGR - TASK QUEUING ERROR
JOBMGR - ERROR FROM SEG MGR
JOBMGR - ERROR FROM IOU
JOBMGR - CANNOT GET TABLE AREA

22-114 2270512-9701

DNOS System Design Document

*CSH050
CSH051 EQU)0051

*
CSH060 EQU)0060

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*CSH070 THRU CSH076
CSH077 EQU)0077
CSH080 EQU)0080
*CSH081
CSH082 EQU)0082
CSH083 EQU)0083
CSH084 EQU)0084

*
CSH085 EQU)0085

*
CSH086 EQU)0086

*
CSH087 EQU)0087

*
*CSH088 THRU CSH089
CSH090 EQU)0090
CSH094 EQU)0094
CSHOAO EQU)OOAO
CSHOAI EQU)OOAI
CSHOA2 EQU)00A2
*CSHOA3 THRU CSHOA4
*CSHOAF
CSHOBO EQU
CSHOBI EQU
CSHOB2 EQU
CSHOB3 EQU
CSHOB5 EQU

2270512-9701

)OOBO
)OOBI
)00B2
)00B3
)00B5

RESERVED-DXI0-
PROGRAM FILE SVC'S -

INCONSISTENT LDT LIST
NFINT2 - INTERNAL INTERRUPT
60 THRU 6F RESERVED FOR
INTERNAL INTERRUPTS 0 - F

NFCRSH

60 - INVALID INTERNAL INTERRUPT
61 MEMORY PARITY
62 - ILLEGAL INSTRUCTION
63 - TILINE TIMEOUT
64 - ILLEGAL SUPERVISOR CALL

(RESERVED,SOFTWARE DETECTED)
65 - MAPPING ERROR
66 - PRIVILEGED OPCODE
67 - TASK IS BEING KILLED

(RESERVED,SOFTWARE DETECTED)
68 - NOT ENOUGH USER TASK AREA

SOFTWARE DETECTED
69 - SEGMENT NOT PRESENT
6A - EXECUTE PROTECT VIOLATION
6B - WRITE PROTECT VIOLATION
6C - STACK OVERFLOW
6D - HARDWARE BREAKPOINT
6E - 12 MS CLOCK EXPIRED
6F - ARITHMETIC OVERFLOW

DISK SPACE
RESERVED-DXI0-
MEDIA CHANGE OCCURRED ON SYS DISK
DSKMGR - END ACTION TAKEN
RESERVED-DXI0-
DSKMGR - UNDEFINED OP CODE
DSKMGR - ADU ALLOCATED ALREADY USED
DSKMGR - FIRST AVAILABLE ADU

OUT OF RANGE
DSKMGR - ILLEGAL PARTIAL BIT MAP

NUMBER REQUESTED
DSKMGR - CACHED BIT MAP HAS

BEE N MO D I FIE D
DSKMGR - READ AFTER WRITE OF
PARTIAL BIT MAP DOES NOT VERIFY'
RESERVED-DXI0-
INVALID USE OF VTOI
DSR940 - CAN'T GET BUFFER TABLE AREA
FILMGR - END ACTION TAKEN
FILMGR - ERROR LOADING FM OVERLAY
FILMGR-INCONSISTENT STRUCTURE
RESERVED-DXI0-
RESERVED-DXI0-
NAMMGR - END ACTION TAKEN
NAMMGR - PASCAL RUN-TIME ABORT
IOTBID - END ACTION TAKEN
IPCTSK - END ACTION TAKEN
PMOVYL - END ACTION TAKEN

22-115 Structure Pictures

NFCRSH

CSHOB6 EQU)00B6
CSHOB7 EQU)00B7
CSHOB8 EQU)00B8
CSHOB9 EQU)00B9
CSHOBA EQU)OOBA
CSHOBB EQU)OOBB
CSHOBD EQU)OOBD
CSHOBE EQU)OOBE
CSHOCO EQU)OOCO
*CSHOEO THRU CSHOE5
CSHI00 EQU)0100
CSHI0l EQU)0101
CSHI02 EQU)0102
*CSHI03 THRU CSHI06
CSHI07 EQU)0107
*CSHI08 THRU CSHI09
CSHI0A EQU)010A

*
*CSHI0B THRU CSHI0D
CSHI0E EQU)010E
*CSHI20 THRU CSH123
*CSHI30 THRU CSH131
CSH132 EQU)0132
*CSRI33 THRU CSH137
CSH138 EQU)0138
CSH139 EQU)0139
CSH13A EQU)013A
CSH13B EQU)013B
CSH13C EQU)013C
CSH13D EQU)013D
CSH13E EQU)013E
*CSHI3F
*CSHI40
CSH141 EQU)0141

*
CSH142 EQU)0142
CSH143 EQU)0143
*
CSH144 EQU)0144
*
CSH145 EQU)0145
CSH146 EQU)0146
*CSHI47
*
*CSHI50
*
CSH160 EQU)0160
CSH161 EQU)0161
*
CSH162 EQU)0162

*
*
CSH163 EQU)0163

Structure Pictures

ONOS System Design Document

PMTBID - END ACTION TAKEN
PMWRIT - END ACTION TAKEN
PMTLDR - END ACTION TAKEN
PMTERM - END ACTION TAKEN
PMSBUF - END ACTION TAKEN
PMRWTK - END ACTION TAKEN
PMSBID - END ACTION TAKEN
RCP - END ACTION TAKEN
NFEOBR - TSBIO HAS BECOME NEGATIVE
RESERVED-DXI0-
IOU - END ACTION TAKEN
IOU - WRONG SEGMENT MAPPED
IOU - LOOKUP, DE-LINK FAILURE
RESERVED-DXI0-
IOU - BAD FILE LDT LIST
RESERVED-DXI0-
IOU - ERROR RETURNING ADU

JUST OBTAINED
RESERVED-DXI0-
IOU - FCB BLOCK COUNT OVERFLOW
RESERVED-DXI0-
RESERVED-DXI0-
RPUTIL - END ACTION TAKEN
RESERVED-DXI0-
RPIV -BIT MAP TABLE ERROR
RPINV2 - DISK ALLOCATION FAILURE
RPINV2 - BAD BIT MAP NUMBER
RPINV2 - BAD ADU LIST RANGE OVERLAP
NFPWUP - NO POWER DOWN INTERRUPT
NFPWUP - CANNOT FIND RTWP CONTEXT
NFPWUP - INVALID RTWP CONTEXT
RESERVED-DXI0-
RESERVED-DXI0-
RESERVED-DX7 -NO POWER FAIL

RECOVERY SUPPORT
UNIV BLD -NO TERMINAL AVAILABLE
UNIV BLD -I/O ERROR TO TERMINAL

WHILE BUILDING DISK
UNIV BLD -NO RESPONSE TO INITIAL

MESSAGE
IPC - INCONSISTENT DATA STRUCTURES
DIOU TOOK END ACTION
RESERVED-DXI0-PDT'S POINTER TO

PRB IS INVALID
RESERVED-DX7 -DISK CHANGED WITH

NO UNLOAD (UV) COMMAND
(RESERVED DXI0-TM$BID END ACTION)
IOU (SECMGR) - UNABLE TO OPEN

LUNO TO .S$CLF
IOU (SECMGR) - UNABLE TO CREATE

OR MAP SPECIAL SEGMENT FOR
BUILDING CAPABILITy LIST

RESTART - JUST MADE CRASH FILE

22-116 2270512-9701

DNOS System Design Document

*
*CSH177

NFCRSH

BIGGER, SO WE FORCED CRASH
RESERVED-DX10-

**

*
*
*

SYSTEM LOADER FLASH CRASH CODES
*
*
*

**
FLSH01 EQU
FLSH02 EQU
FLSH03 EQU
FLSH04 EQU
FLSH05 EQU

*
FLSH06 EQU
FLSH08 EQU
FLSH09 EQU
FLSHOA EQU
FLSHOB EQU
FLSHOC EQU
FLSHOD EQU
FLSHOE EQU
FLSHOF EQU

*
FLSH11 EQU
FLSH13 EQU
FLSH14 EQU
*FLSH60-6F
FLSH68 EQU

2270512-9701

>0001
>0002
>0003
>0004
>0005

>0006
>0008
>0009
>OOOA
>OOOB
>OOOC
>OOOD
CSHOOE
>OOOF

>0011
>0013
>0014
EQU >60->6F
>0068

LOAD DEVICE I/O ERROR
NOT ENOUGH PHYSICAL MEMORY
CAN'T FIND SYSTEM DISK PDT
ERROR IN PROG FILE DIRECTORY
S$IPL INCONSISTENT WITH REV.

LEVEL OF CURRENT SYSTEM
ERROR IN DM BIT MAP ROUTINE
CAN'T FIND SYSTEM LOADER FILE
CAN'T FIND KERNEL PROGRAM FILE
CAN'T FIND A SYSTEM SEGMENT
NO PATCHES APPLIED TO SYSTEM
SOFTWARE VERSION TOO OLD
CAN'T FIND UTILITIES PROG FILE
CAN'T FIND SYSTEM ROLL FILE
KERNEL FILE LEVEL INCONSISTENT

WITH UTILITY FILE
CAN'T GET SYSTEM TABLE AREA
LOGICAL ADDRESS OVERFLOW
CAN'T LOAD WCS FILE
INTERNAL INTERRUPT (LEVEL 2)
NOT ENOUGH USER TASK AREA

22- 11 7 Structure Pictures

NFSTAT DNOS System Design Document

**
* * 7ASK STATE CODES (NFSTAT) 09/20/83

*
*

* * * NOTES: *
* 1) THIS MODULE REQUIRES NFEROO THRU NFER40 BE *
* COPIED ALSO. *
* * * 2) CHANGES TO THIS MODULE REQUIRE CORRESPONDING *
* CHANGES IN 3 OF THE MESSAGES IN THE SVC MESSAGES *
* FILE. (SVC >35, SVC >07, AND SVC OE) *
**
* THESE EQUATES DESCRIBE ALL THE LEGAL TASK STATE CODES AND
* JOB STATE CODES USED BY THE OS.
TSTACT EQU BYTEOO TASK IS ON ACTIVE LIST
TSTWOM EQU BYTE01 TASK IS WAITING ON MEMORY
TSTJWT EQU BYTE02 JOB IN A NONEXECUTABLE STATE
TSTLIP EQU BYTE03 TASK LOAD IN PROGRESS
TSTTRM EQU BYTE04 TASK HAS TERMINATED
TSTDLY EQU BYTE05 TASK IS IN A TIME DELAY
TSTSUS EQU BYTE06 TASK UNCONDITIONALLY SUSPENDED
TSTENX EQU BYTE07 WAITING FOR TEN X PROCESSOR

*
TSTSIO EQU BYTE09
TSTSAI EQU BYTEOF
TSTOVL EQU BYTE14
TSTCOA EQU BYTE17
TSTWIO EQU BYTE19
TSTDOR EQU BYTE1E
TSTSBT EQU BYTE! F
TSTIV EQU BYTE20
TSTDMG EQU BYTE22
TSTQIN EQU BYTE24
TSTIT EQU BYTE25
TSTIP EQU BYTE26
TSTIO EQU BYTE27
TSTDT EQU BYTE28
TSTDP EQU BYTE29
TSTDO EQU BYTE2A
TSTBID EQU BYTE2B
TSTRWT EQU BYTE2D
TSTWOT EQU BYTE30
TSTMNI EQU BYTE31
TSTUV EQU BYTE34
TSTAIO EQU BYTE36
TSTAPS EQU BYTE37
TSTINV EQU BYTE38
TSTSEM EQU BYTE3D
TSTSEG EQU BYTE40
TSTEWT EQU BYTE42
TSTNMG EQU BYTE43
TSTJMR EQU BYTE48

Structure Pictures

COMPLETION
TASK SUSPENDED FOR I/O
SUSPENDING FOR ABORTING I/O
WAITING FOR OVERLAY LOAD SVC
TASK AWAITING COROUTINE ACT
WAITING FOR INITIATED I/O
WAITING FOR DOOR TO OPEN
WAITING FOR SCHD TASK BID SVC
WAITING FOR INSTALL VOLUME SVC
WAITING FOR DISK MGR SVC
AWAITING QUEUE INPUT
WAITING FOR INSTALL TASK SVC
WAITING FOR INSTALL PROC SVC
WAITING FOR INSTALL OVLY SVC
WAITING FOR DELETE TASK SVC
WAITING FOR DELETE PROC SVC
WAITING FOR DELETE OVLY SVC
TASK SUSPENDED FOR BID SVC
WAITING FOR READ/WRITE TSK sve
WAITING FOR SYSTEM TABLE AREA
WAITING FOR MAP PROG NAME TO ID
WAITING FOR UNLOAD VOLUME SVC
WAITING FOR ANY I/O
WAITING FOR ASC PROG FILE SPACE
WAITING FOR INIT NEW VOL SVC
TASK SUSPENDED FOR SEMAPHORE
TASK AWAITING SEG MGR SERVICES
WAITING FOR EVENT COMPLETION
WAITING FOR NAME MGR SVC
TASK WAITING ON JOB MGR SVC

22-118 2270512-9701

DNOS System Design Document

TSTFRL EQU
TSTRCP EQU

BYTE4A
BYTE4C

WAITING FOR FORCED ROLL SVC
WAITING FOR RETURN CODE PROC

NFSTAT

**
*
* JOB STATE CODES *

*
* *
**
JSTCRE EQU
JSTEXC EQU
JSTHLT EQU
JSTTRM EQU
JSTEXP EQU

2270512-9701

BYTE01
BYTE02
BYTE03
BYTE04
BYTE05

JOB IS BEING CREATED
JOB IS IN A EXECUTABLE STATE
JOB IS HALTED
JOB IS TERMINATING
JCA IS BEING EXPANDED

22-119 Structure Pictures

NRB DNOS System Design Document

*
*
*
*

NAME REQUEST BLOCK (NRB)

LOCATION: SYSTEM TABLE AREA

*
09/09/83 *

*
* ***

NAME MGR REQUEST BLOCK
----------+----------

)00 NRBSOC NRBEC
+----------+----------+

)02 f NRBOC NRBFLG!
+----------+----------+

)04 ! NRBNAM !

+----------+----------+
)06 NRBVAL !

+----------+----------+
)08 ! NRBPRM !

+----------+----------+

----------+----------
)OA NRBPNO !

+----------+----------+
)OC NRBRSV

+----------+----------+
)OE NRBTSK NRBSTG

+----------+----------+
)10 NRBSMT

+----------+----------+
)12 NRBSSB

+----------+----------+
) 14! NRBVBL NRBPBL

+----------+----------+
)16 NRBLNA

+----------+----------+
)18 NRBLVA

+----------+----------+
)IA NRBLPA

+----------+----------+

----------+----------
)OA NRBSSZ

+----------+----------+

----------+----------
)OA NRBSPF

+----------+----------+

SVC CODE
ERROR CODE

SUBOPCODE
USER SET FLAGS

P T R TO" N AM E " (0 RNA MEL I S T)

PTR TO "VALUE" OR PATHNAME

PTR TO "PARMS" LIST

PATHNAME NUMBER

RESERVED

TASK ID
STAGE NUMBER

SMT FOR NAME SEGMENT

SSB FOR NAME SEGMENT

VALUE BUFFER LENGTH
PARMS BUFFER LENGTH

NAME POINTER -LOGICAL ADDRESS

VALUE POINTER-LOGICAL ADDRESS

PARMS POINTER-LOGICAL ADDRESS

SE GME NT SIZE

SUCCESSOR/PREDECESSOR FLAG

Structure Pictures 22-120 2270512-9701

DNOS System Design Document NRB

FLAGS FOR FIELD: NRBFLG #03 - USER SET FLAGS

NRFLOG
NRFINT
NRFBID
NRFGLO
NRFRID
NRFNMX
NRFPRO
NRF007

EQUATES:

=

(X •••••••••••••••) - LOG = 1, ELSE SYN OPERATION
(.X ..•..•...•..•.) - INITIAL TASK IN JOB IF TRUE
(•• X) - BID = 1, TERMINATION = 0
(••• X ••••••••••••) - GLOBAL REQUEST = 1
(•••• X •••••••••••) - RUN ID SPECIFIED = 1
(••••• X ••••••••••) - NAME SEGMENT CANNOT EXPAND
(•••••• X •••••••••) - PROTECT NAME
(••••••• X ••••••••) - FLAG BIT 7 UNUSED

LABEL EQUATE TO VALUE DESCRIPTION

NRBVAR $)OA
NRBSID $)OC SEGMENT ID
NRBSIZ $)IC SIZE OF BASIC BLOCK TO BUFFER

2270512-9701 22-121 Structure Pictures

OAD DNOS System Design Document

**
* * OVERLAY AREA DESCRIPTOR (OAD)

*
* LOCATION: WITH SYSTEM OVERLAY AREAS

*
12/07/79 *

*
*

**
* THE OAD PRECEDES A SYSTEM OVERLAY AND DESCRIBES ITS SIZE
* AND LOCATION.

SIZE OF OVERLAY DESCRIPTOR
----------+----------

)FFFO ! OADSMT SMT ADDRESS OF OVERLAY AREA
+----------+----------+

)FFF2 OADSSB SSB ADDRESS OF OVERLAY AREA
+----------+----------+

SEGMENT

SEGME NT

)FFF4 OADOFF OFFSET INTO SEGMENT OF OVERLAY CODE
+----------+----------+

)FFF6 I OADBSZ NUMBER OF BYTES TO READ
+----------+----------+

)FFF8 OADSIZ SIZE OF OVERLAY AREA
+----------+----------+

)FFFA ! OADOVN CURRENT OVERLAY IN AREA -l=NONE
+----------+----------+

)FFFC OADUSE NUMBER OF TASKS USING THE-- OVERLAY
+----------+----------+

)FFFE OADOAD ! POINTER TO NEXT OVERLAY AREA
+----------+----------+

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

OADSZ $)FFFO SIZE OF OVERLAY DESCRIPTOR'

Structure Pictures 22-122 2270512-9701

DNOS System Design Document

**
*
*
*
*

OVERLAY AREA WAIT BLOCK (OAW) *
11/08/79 *

LOCATION: SYSTEM TABLE AREA
*
* **

* THE OAW IS USED TO REPRESENT THE TASK WAITING FOR ONE
* SYSTEM OVERLAY OF A POOL OF OVERLAYS. THE POOL MANAGER
* MAINTAINS A LIST OF OAW ENTRIES AND WHEN AN OVERLAY IS
* FREE, CHECKS TO SEE IF ANY TASK IS WAITING FOR IT. IF SO,
* THE OVERLAY IS LOADED AND TH TASK IS ACTIVATED.

----------+----------
)00 OAWOAW NEXT WAIT BLOCK

+----------+----------+
)02 OAWJSB ! JSB OF WAITING TASK

+----------+----------+
)04 OAWTSB TSB OF WAITING TASK

+----------+----------+

OAW

)06 ! OAWOVN NUMBER OF OV AREA BEING WAITED FOR
+----------+----------+

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

OAWSIZ $)08

2270512-9701 22-123 Structure Pictures

OSE DNOS System Design Document

**
* * OWNED SEGMENT ENTRY

*
* LOCATION: JCA

(OSE) 09/23/81
*
*
*
*

**
* THE OSE DESCRIBES A SEGMENT WHICH IS EXCLUSIVELY USED BY A
* TASK. IT IS LINKED TO THE TSB.

----------+----------
)00 ! OSEOSE LINK TO NEXT OWNED SEGMENT ENTRY

+----------+----------+
)02 OSESSB SSB ADDRESS OF OWNED SEGMENT

+----------+----------+
)04 OSESMT ! SSB ADDRESS OF SEGMGR TABLE AREA

+----------+----------+

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

OSESIZ $)06

Structure Pictures 22-124 2270512-9701

DNOS System Design Document

* * OPENING TASK IDENTIFIER (OTI)

*
* LOCATION: JCA OR STA

*
08/25/81 *

*
* ***

* THE OTI IS AN ELEMENT OF A SINGLY LINKED LIST CONTAINING
* TSB ADDRESSES OF TASKS WHICH HAVE OPENED THE LUNO
* ASSOCIATED WITH THE PARENT LDT.

----------+----------
)00 OTIOTI LINK TO NEXT OTI

+----------+----------+
)02 OTITSB TSB ADDRESS OF OPENING TASK

+----------+----------+

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION"

OTISIZ $-OTIOTI)04 SIZE OF OTI

OTI

2270512-9701 22-125 Structure Pictures

OVB DNOS System Design Document

**
* * * OVE RHEAD BEET

*
(OVB) 10/04/83 *

*
* LOCATION: USER MEMORY *
~*~***
* THE OVB IS THE 32 BYTES PRECEDING A SEGMENT WHEN IT IS IN
* MEMORY. THE OVB INCLUDES LINKAGE, TYPE, AND STATUS
* INFORMATION ABOUT THE SEGMENT.

* * THE OVFROL FLAG ALSO HAS THE MEANING "SEGMENT LOGICALLY
* NOT IN MEMORY".
* THE OVBTIM IS THE COUNT OF TASKS WHICH BOTH:
* A) HAVE THE SEGMENT MAPPED IN OR LOADED, AND
* B) HAVE ALL THEIR MAPPED OR LOADED SEGMENTS PHYSICALLY
* IN MEMORY.
* AN OVERRUN BEET IS ALLOCATED AT THE END OF THE SEGMENT
* TO PREVENT PROBLEMS WHICH COULD OCCUR BECAUSE OF /12 CPU
* PRE-FETCH OR CACHE FLUSH.

*

----------+----------
)00 ! OVBLEN

+----------+----------+
)02 OVBPTR

+----------+----------+
)04 OVBFLK

+----------+----------+
)06 ! OVBBLK !

+----------+----------+
)08 OVBTYP! OVBIOC !

+----------+----------+
)OA OVBJSB

+----------+----------+
)OC ! OVBSSB !

+----------+----------+
)OE ! OVBSMT !

+----------+----------+
)10 ! OVBQLK

+----------+----------+
)12 ! OVBBRB !

+----------+----------+
)14 FILLOO

+----------+----------+
)16 OVBSTS FILLO!

+----------+----------+
)18 OVBEXC !

+----------+----------+
)lA FILL03

+----------+----------+
)lC

LENGTH OF SEGME NT + OVERH·EAD BEET + OVERRUN BEET (BEETS)
TSB ADDRESS WHEN BLOCK IS ON TOL

LDT ADDRESS IF BUFFER SEGMENT
FORWARD LINK TO NEXT BLOCK

BACKWARD LINK TO NEXT BLOCK

SE GME NT TYP E
TILINE AND 911 I/O OUTSTANDING

JSB POINTER CORRESPONDING TO OVBPTR

SEGMENT STATUS BLOCK POINTER

TABLE AREA SSB ADDRESS

QUEUE LINK (DEALLOCATE/WRITE Q)

POINTER TO FORCE WRITE BRB

RESERVED

SEGMENT STATUS (IN MEMORY STATUS)
RESERVED

EXECUTION TIME SINCE LOAD

RESERVED FOR FUTURE USE

Structure Pictures 22-126 2270512-9701

DNOS System Design Document OVB

+----------+----------+
)IE OVBTIM TASK IN MEMORY COUNT

+----------+----------+

FLAGS FOR FIELD: OVBSTS #16 - SEGMENT STATUS (IN MEMORY STATUS)

OVFWRT
OVFROL
OVFUBS

(x ••••••••••..•.•) - SEGMENT ON WRITE QUEUE
(.X ..•..•.•..•.•.) - FORCE ROLL THIS SEGMENT
(•• X.~ ••• ~ •••••••) - USER SEG USED AS FILE BUFFER

EQUATES:

LABEL EQUATE TO

OVSHDR)FF
OVSDAT)00
OVSPRO)01
OVSMEM)02
OVSFRE)03
OVSDEL)04
OVBSIZ $

2270512-9701

VALUE DESCRIPTION

)FF LIST HEADER = -1
)00 DATA FILE SEGMENT = 0
)01 PROGRAM FILE SEGMENT 1
)02 MEMORY BASED SEGMENT = 2
)03 FREE BLOCK = 3
)04 DEALLOCATE QUEUE SEGMENT = 4
)20

22-127 Structure Pictures

OVT DNOS System Design Document

.***
* * OVERLAY TABLE ENTRY (OVT) *

05/10/79 *
*
* LOCATION: IN RPSDAT

*
* **

* THE SYSTEM OVERLAY TABLE (SOV) CONSISTS OF A NUMBER OF
* OVERLAY TABLE ENTRIES (OVT). IT IS BUILT DURING SYSTEM
* GENERATION, BASED ON THE CHOICES REQUESTED THEN.

----------+----------
)00 OVTREC ! RECORD NUMBER OF OVERLAY IMAGE

+----------+----------+
)02 OVTSIZ SIZE OF OVERLAY CODE

+----------+----------+
)04 OVTLOD ! NATURAL LOAD ADDRESS OF OVERLAY

+----------+----------+

Structure Pictures 22-128 2270512-9701

DNOS System Design Document

**
* * PARTIAL BIT MAP (PBM)

*
03/06/80

*
*
* * LOCATION: DISK, PARTIAL BIT MAP TABLE *

**
* THE PBM DESCRIBES THE CURRENT ALLOCATION OF A DISK. THE
* IN-MEMORY PBM IS IN THE PARTIAL BIT MAP TABLE SET ASIDE
* FOR ONLY PBM TABLES. EACH TIME A FILE IS CREATED OR
* EXTENDED, THE PBM ISUPDATED IN BOTH MEMORY AND DISK
* REPRESENTATIONS.

----------+----------
)00 PBMMAX PBMNUM NUMBER OF PARTIAL MAPS

PBM

+----------+----------+
)02 PBMFAU

PARTIAL MAP NUMBER IN BUFFER
FIRST AVAILABLE ADU ON DISK

+----------+----------+
)04 PBMLRC LRC CHECKSUM OF MEMORY PBM

+----------+----------+
)06 PBMLCB ADU OF LARGEST CONTIGUOUS BLK

+----------+----------+
)08 PBMMAP PARTIAL BIT MAP

+----------+----------+
/ / /
/ / /
+----------+----------+

* * THIS SECTION MAPS EACH PBM; THE DISK MANAGER CAN EXAMINE
* THIS "MAP" TO DETERMINE ON A FIRST-FIT BASIS THE PARTIAL
* BIT MAP FROM WHICH TO ALLOCATE WITHOUT SEQUENTIALLY
* SEARCHING THE DISK-RESIDENT BIT MAPS. THE FOLLOWING
* STRUCTURE IS REPEATED AS REQUIRED FOR EACH PARTIAL BIT MAP:

*

----------+----------
)00 PBMBIG

+----------+----------+
)02 PBMBGN !

+----------+----------+
)04 PBMEND

+----------+----------+

EQUATES:

LABEL

PBMBLK
PBMLEN
PBMTAB

EQUATE TO

256
PBMBLK/2
$

VALUE

)100
)7FO
)106

LARGEST CONTIGUOUS BLK IN PBM

CONTIGUOUS BLK AT START

CONTIGUOUS BLK AT END

DESCRIPTION

PARTIAL BIT MAP BLOCK SIZE
ADU'S IN PARTIAL BIT MAP
START OF BIT MAP TABLE

2270512-9701 22-129 Structure Pictures

PBM

PBHSIZ
PBMTES

$
$

Structure Pictures

)106
)06

22-130

DNOS System Design Document

PBM BUFFER/TABLE SIZE
SIZE OF EACH TABLE ENTRY

2270512-9701

DNOS System Design Document

**
* * PHYSICAL DEVICE TABLE

*
(PDT)

*
06/22/83 *

* LOCATION: SYSTEM AREA
*
*

**
* EACH DEVICE GENERATED INTO A SYSTEM IS REPRESENTED BY A
* PDT. THE PDT IS USED AS A WORK AREA FOR THE DEVICE SERVICE
* ROUTINE WHILE PROCESSING REQUESTS FOR THE PARTICULAR DEVICE.

----------+----------
)00 PDTPDT

+----------+----------+
)02 PDTNAM !

+----------+----------+
)04 !

+----------+----------+
)06 PDTNUM

+----------+----------+
)08 PDTLC PDTIL!

+----------+----------+
)OA! PDTCHR PDTCDT!

+----------+----------+
)OC PDTCDE !

+----------+----------+
)OE PDTFLG !

+----------+----------+
)10 ! PDTMAP !

+----------+----------+
/ / /
/ / /
+----------+----------+

)lC PDTJOB !

+----------+----------+

FORWARD LINKAGE TO NEXT POT

DEVICE NAME

DEVICE NUMBER

LUNOS ASSIGNED COUNT
INITIATE REQUEST LIMIT

BID CHARACTER
CDT NUMBER

DEVICE CDE MASK

DEVICE STATUS FLAGS EXTENSION

DSR MAP FILE

JSB ADDRESS OWNER JOB

PDT

)lE PDTRPB ! RESOURCE PRIVILEGE BLOCK POINTER

+----------+----------+
)20 ! PDTBQ

+----------+----------+
)22 ! PDTRO !

+----------+----------+
)24 PDTPRB

+----------+----------+
)26 POTDSF

+----------+----------+
) 28! PDTDTF PDTTYP

+----------+----------+
)2A POTOIB

+----------+----------+
)2C ! PDTR5 !

+----------+----------+

BID REQUEST QUEUE

RO - DSR SCRATCH

R1 - QUEUED PRB ADDRESS

R2 - DEVICE STATUS FLAGS

R3 - DEVICE TYPE FLAGS
- DEVICE TYPE

R4 - DEVICE INFO BLOCK ADDRESS

R5 - DSR SCRATCH

2270512-9701 22-131 Structure Pictures

PDT DNOS System Design Document

)2E PDTR6 ! R6 - DSR SCRATCH
+----------+----------+

)30 PDTR7 R7 - DSR SCRATCH
+----------+----------+

) 32 PDTR8 ! R8 - DSR SCRATCH
+----------+----------+

)34 PDTR9 ! R9 - DSR SCRATCH
+----------+----------+

)36 ! PDTRI0 ! RIO - DSR SCRATCH
+----------+----------+

)38 PDTR 11 ! Rll - DSR SCRATCH
+----------+----------+

)3A PDTCRU R12 - CRU OR TILINE ADDRES S
+----------+----------+

)3C PDTR13 ! R13 - SAVED WP
+----------+----------+

)3E ! PDTR14 ! R14 - SAVED PC
+----------+----------+

)40 ! PDTR15 R15 - SAVED ST
+----------+----------+

)42 PDTERR PDTRTY SAVED ERROR CODE FOR SYS LOG
+----------+----------+ RETRIES ATTEMPTED COUNT

)44 PDTRC ! READ REQUEST COUNT
+----------+----------+

)46 PDTWC WRITE REQUEST COUNT
+----------+----------+

)48 PDTMC ! MISC REQUEST COUNT
+----------+----------+

)4A ! PDTREC ! READ ERROR COUNT
+----------+----------+

)4C PDTWEC ! WRITE ERROR COUNT
+----------+----------+

)4E PDTMEC MISC ERROR COUNT
+----------+----------+

)50 PDTSL1 SY STEM LOG INFO
+----------+----------+

)52 PDTSL2 SY STEM LOG INFO
+----------+----------+

)54 PDTBLN MAXIMUM BUFFER LENGTH
+----------+----------+

)56 PDTTMI TIME OUT COUNT
+----------+----------+

)58 PDTTM2 TIME OUT COUNT DOWN
+----------+----------+

)5A PDTHRQ ! HIDDEN REQUEST QUEUE
+----------+----------+

)5C ! PDTWQ WAITING REQUEST QUEUE
+----------+-----~----+

)5E ! PDTSRB SAVED REQUEST ADDRESS
+----------+----------+

)60 PDTERQ END -OF-RECORD QUEUE
+----------+----------+

)62 PDTSRQ SPENT REQUEST QUEUE

Structure Pictures 22-132 2270512-9701

DNOS System Design Document PDT

+----------+----------+
)64 PDTPDS PRIORITY DSR SCHEDULER QUE LINK

+----------+----------+

FLAGS FOR FIELD: PDTFLG HOE -, DEVICE STATUS FLAGS EXTENSION

DFGIRB (X •••••••••••••••) - COpy IRB TO SYSTEM LOG
(.XX •••••••••••••) - RESERVED

PDFSTA = (••• XX •••••••••••) - DEVICE STATE
* 00 ONLINE 01 OFFLINE
* 10 DIAGNOSTIC 11 SPOOLER

DFGOPF = (••••• X ••••••••••) - DEVICE OPERATION FAILED
(•••••• X •••••••••) - RESERVED

DFGVRT (••••••• X •••••• i.) - VIRTUAL DEVICE FLAG
(•••••••• XXXXXXXX) - NIO-KEYBOARD BID OWNER TASK RUN ID

FLAGS FOR FIELD: PDTDSF #26 - R2 - DEVICE STATUS FLAGS

DSFCMO (X •••••••••••••••) - OPENED WITH COMM OPEN ()4E)
DSFAID (• X ••••••••••••••) - USE ALTERNATE PDT
DSFBI (•• X •••••••••••••) - BUFFER INPUT (I=YES)
DSFBO (••• X ••••••••••••) - BUFFER OUTPUT (I=YES)
DSFJIS (•••• X •••••••••••) - JISCII FLAG(KATAKANA)
DSFREN (••••• X ••••••••••) - RE-ENTER-ME
DSFJAR (•••••• X •••••••••) - JISCII RECEIVE MODE
DSFJAT (••••••• X ••••••••) - JISCII TRANSMIT MODE

(•••••••• XX ••••••) - RESERVED
DSFWPM (•••••••••• X •••••) - WORD PROCESSING MODE
DSFIRE = (••••••••••• X ••••) - INITIAL REQUEST ENTRY
DSFINT (•••••••••••• XXXX) - DEVICE INTERRUPT LEVEL MASK

FLAGS FOR FIELD: PDTDTF #28 - R3 - DEVICE TYPE FLAGS

DTFFIL
DTFTIL
DTFTIM
DTFPRI
DTFKSB
DTFCOM
DTFSYD

EQUATES:

LABEL

PDFDSM
PDTOCN
PDTRDN

2270512-9701

(X •••••••••••••••) - FILE ORIENTED
(.X ••••••••••••••) - TILINE DEVICE
(•• X •••••••••••••) - ENABLE TIME-OUT
(••• X ••••••••••••) - PRIVILEDGED DEVICE
(•••• X •••••••••••) - TERMINAL WITH A KSB
(••••• X ••••••••••) - COMM DEVICE
(•••••• X •••••••••) - SYSTEM DISC
(••••••• X ••••••••) - RESERVED

EQUATE TO

)1800
PDTMAP
PDTR5

VALUE DESCRIPTION

)1800
)10
)2C

22-133

DEVICE STATE MASK
VIRT PDTS ONLY-OWNER CHANNEL LEN/NA
VIRT PDTS ONLY-REMOTE DEVICE LEN/NA

Structure Pictures

PDT

PDTRDJ
PDTSIZ

PDTCRU
$

Structure Pictures

)3A
)66

22-134

DNOS System Design Document

VIRT PDTS ONLY-REMOTE DEVICE JOB ID

2270512-9701

; DNOS System Design Document

**
* * * PROGRAM FILE DIRECTORY INDEX ENTRY (PFI) 04/20/79 *
* * * LOCATION: DISK *
**
* THE PFI IS USED TO DESCRIBE AN ENTRY IN A PROGRAM FILE.
* ENTRIES CAN BE TASK SEGMENTS, PROCEDURE SEGMENTS, PROGRAM
* SEGMENTS, AND OVERLAYS. IN ADDITION TO A COMMON FIRST
* PORTION, THERE IS A SEPARATE VARIANT FOR EACH TYPE OF
* ENTRY. IN THE FLAG COMMENTS, T INDICATES THE COMMENT APPLIES
* TO A TASK ENTRY, P TO A PROCEDURE ENTRY, S TO A PROGRAM
* SEGMENT ENTRY AND 0 TO AN OVERLAY ENTRY.

----------+----------
)00 ! PFILEN SEGMENT LENGTH (BYTES)

+----------+----------+
)02 PFIFLG FLAGS

+----------+----------+

PFI

) 0 4 ! P FIRE C I RECORD NUMBER OF START OF IMAGE
+----------+----------+

)06 ! PFIDAT DATE INSTALLED IN JULIAN FORMAT
+----------+----------+

)08 PFILOD I LOAD ADDRESS IN TASK
+----------+----------+

TYPE DEPENDENT DATA (ANY SET)
----------+----------

)OA PFIVAR ! SINGLE PORTION OF DATA
+----------+----------+

)OC !
+----------+----------+

)OE !
+----------+----------+

TASK ENTRY DESCRIPTION
----------+----------

)OA PFIOVL PFIPRI
+----------+----------+

)OC PFISGI PFISG2
+----------+----------+

)OE PFITND
+----------+----------+

OVERLAY LINK
TASK PRIORITy

ID OF PROCEDURE 1 FOR TASK
ID OF PROCEDURE 2 FOR TASK

TASK LENGTH

OV~RLAY ENTRY DESCRIPTION
----------+----------

)OA PFIOV2 PFITID
+----------+----------+

)OC PFIOND
+----------+----------+

OVERLAY LINK
ID OF ASSOCIATED TASK

RESERVED (SET TO ZERO)

2270512-9701 22-135 Structure Pictures

PFI DNOS System Design Document

*

PROCEDURE/PROGRAM ENTRy DESCRIPTION

----------+----------
)OA PFIPND ! RESERVED (SET TO ZERO)

+----------+----------+
FLAGS FOR FIELD: PFIFLG #02 - FLAGS

PFFPRI = (X •••••••••••••••) - PRIVILEGED (T)
PFFSYS = (.X ••••••••••••••) - SYSTEM (T,S)
PFFRES = (•• X •••••••••••••) - MEMORY RESIDENT (T,P,S)
PFFDEL (••• X ••••••••••••) - DELETE PROTECTED(T,P,S,O)
PFFREP - (•••• X •••••••••••) - REPLICATABLE (T,S)
PFFSG1 = (••••• X ••••••••••) - PROC 1 IS ON THE PROG FILE (T)
PFFSG2 = (•••••• X •••••••••) - PROC 2 IS ON THE PROG FILE (T)
PFFUSE = (••••••• X ••••••••) - PFI ENTRY IS IN USE (T,P,S,O)
PFFOVF = (•••••••• X •••••••) - OVERFLOW (T)
PFFWCS - (••••••••• X ••••••) - WRITEABLE CONTROL STORE (T,P,S)
PFFEXP = (•••••••••• X •••••) - EXECUTE PROTECTED (T,P,S)
PFFWRP = (••••••••••• X ••••) - WRITE PROTECTED (P,S)
PFFUPD - (•••••••••••• X •••) - UPDATABLE (T,S)
PFFREU = (••••••••••••• X ••) '- REUSABLE (T,S)
PFFCPY = (•••••••••••••• X.) - COPYABLE (T,S)
PFFSEC - (••••••••••••••• X) - SECURITY BYPASS (T)

EQUATES:

LABEL

PFFRED
PFFSHR
PFFSPR
PFISIZ

EQUATE TO

PFFPRI
PFFSG1
PFFWRP
$

VALUE

)00
)05
)OB
)10

DESCRIPTION

READABLE (P)
SEG. IS SHARE PROTECTED (S)
SOFTWARE PRIVILEGED (T)

Structure Pictures 22-136 2270512-9701

DNOS System Design Document

*******************************i********************** ******

* *
*
*
*

PROGRAM FILE RECORD ZERO

LOCATION: DISK

(PFZ) 3/7/78 *
*
*

**
* THE PFZ DESCRIBES THE FIRST RECORD (RECORD 0) OF THE
* PROGRAM FILE. IT INCLUDES BIT MAPS FOR ALL ELEMENTS IN
* THE PROGRAM FILE AS WELL AS DATA ABOUT CURRENT USE OF
*"THE FILE.

----------+----------
)00 PFZRES RESERVED

+----------+----------+
/ / /
/ / /
+----------+----------+

PFZ

)14 PFZMRT ! BIT MAP - MEMORY-RESIDENT TASKS
+----------+----------+
/ / /
/ / /
+----------+----------+

)34 PFZMRP
+----------+----------+
/ / /
/ / /
+----------+----------+

)54 PFZTSK
+----------+----------+
/ / /
/ / /
+----------+----------+

)74 PFZPRC
+----------+----------+
/ / /
/ / /
+----------+----------+

)94! PFZNRT
+----------+----------+
/ / /
/ / /
+----------+----------+

)B4! PFZOVL !
+----------+----------+
/ / /
/ / /
+----------+----------+

)D4 PFZMNT PFZTO
+----------+----------+

)D6 ! PFZTR
+----------+----------+

BIT MAP - MEMORY-RESIDENT PROCEDURES

BIT MAP - ALL TASKS

BIT MAP - ALL PROCEDURES

BIT MAP - NONREPLICATABLE TASKS

BIT MAP - ALL OVERLAYS

MAXIMUM NUMBER OF TASKS
FIRST TASK DIRECTORY ENTRY OFFSET

FIRST TASK DIRECTORY ENTRY REC #

2270512-9701 22-137 Structure Pictures

PFZ

)D8 PFZMNP PFZPO
+----------+----------+

)DA PFZPR
+----------+----------+

)DC PFZMNO ! . PFZOO
+----------+----------+

)DE PFZOR
+----------+----------+

)EO ! PFZMNH !
+----------+----------+

)E2 PFZHO !

+----------+---~------+
)E4 ! PFZHR !

+----------+----------+

EQUATES:

DNOS System Design Document

MAXIMUM NUMBER OF PROCEDURES
FIRST PROC DIRECTORY ENTRy OFFSET

FIRST PROC DIRECTORY ENTRy REC #

MAXIMUM NUMBER OF OVERLAYS
FIRST OVLY DIRECTORY ENTRY OFFSET

FIRST OVLY DIRECTORY ENTRY REC #

MAXIMUM NUMBER OF HOLES

FIRST AVAILABLE SPACE LIST OFFSET

FIRST AVAILABLE SPACE LIST REC #

LABEL EQUATE TO VALUE DESCRIPTION

PFZSIZ $)E6 SIZE OF INFORMATION SECTION OF REC

Structure Pictures 22-138 2270512-9701

DNOS System Design Document

**********************************~*************************

* * QUEUE HEADER

*
(QHR) 09/06/79

*
*
* * LOCATION: SYSTEM ROOT, JCA *

*****************************~******************************
* QUEUE HEADERS FOR SYSTEM QUEUE SERVERS THAT RUN IN THE
* SYSTEM JOB ARE BUILT DURING SYSTEM GENERATION IN THE
* SYSTEM ROOT. QUEUE HEADERS FOR SYSTEM QUEUE SERVERS
* THAT RUN IN A USER'S JOB ARE BUILD IN THE JCA WHEN THE
* JOB IS CREATED. EACH QUEUE HEADER FOLLOWS THE QHR FORM.

----------+----------
) 00 ! QHRNEW !

+----------+----------+
)02 ! QHROLD !

+----------+----------+
)04 QHRCNT! QHRTID !

+----------+----------+
)06 ! QHRTSB !

+----------+----------+
)08 ! QHRJSB

+----------+----------+"
)OA! QHRLUN FILLOO!

+----------+----------+

EQUATES:

LABEL EQUATE TO VALUE

QHRSIZ $)OC

ADDRESS OF NEWEST ENTRY

ADDRESS OF OLDEST ENTRy

NUMBER OF ENTRIES ON QUEUE
SERVER TASK ID

TSB ADDRESS OF SERVER TASK

JSB ADDRESS OF SERVER TASK

PROGRAM FILE LUNO FOR SERVER
RESERVED

DESCRIPTION

QHR

2270512-9701 22-139 Structure Pictures

QIR DNOS System Design Document

**
* * QUEUED IPC REQUEST (QIR) 8/15/81

*
*
* * * LOCATION: SYSTEM AREA *

***************~**

*
*

THE QIR IS PUT ON THE IPC TASK QUEUE WHEN AN IPC REQUEST
CANNOT BE PROCESSED IN FAST TRANSFER IPC.

** BEGINNING PACKED RECORD QIR

----------+----------
)00 ! QIRQIR !

+----------+----------+
)02 ! QIRJSB r

+----------+----------+
)04 r QIRCCB r

+----------+----------+
)06 SIZE ** END

POINTER TO NEXT QIR

JSB ADDRESS OF OWNER
(0 IF GLOBAL CHANNEL)

ADDRESS OF CCB TO BE PROCESSED

OF PACKED RECORD

Structure Pictures 22-140 2270512-9701

DNOS System Design Document

**
* * REQUEST DESCRIPTION BLOCK (RDB) *

OS/21/79 *
* *
* LOCATION: RPSDAT AND SOME SVC PROCESSORS * **
* THE RDB FOR A GIVEN SVC SPECIFIES HOW TO BUFFER THE USER'S
* REQUEST FOR PROCESSING BY THE SVC PROCESSOR. THE RDB IS
* LOCATED IN THE MODULE RPSDAT BUILT DURING SYSTEM GENERATION
* IF THE SVC IS AN OPTIONAL SVC OR IF THE SVC IS PROCESSED BY
* A QUEUE SERVER TASK. OTaERWISE, THE RDB IS LOCATED IN,
* THE FIRST PROCESSOR MODULE FOR THE SVC PROCESSOR. AN RDB
* EXISTS FOR A GIVEN SVC ONLY IF THE CALL BLOCK MUST BE
* BUFFERED INTO A PORTION OF MEMORY FOR THE DURATION OF THE
* PROCESSING.

----------+----------
)00 RDBFLG ! DESCRIPTION FLAGS

+----------+----------+
)02 ! RDBSRV ADDRESS OF PROCESSOR ENTRY OR

RDB

+----------+----------+
)04 RDBRIB

QUEUE HDR ADDRESS{RDFQIJ=O) OR
ADDRESS OF RETURN INFORMATION BLOCK

*

+----------+----------+
) 06 ! RDBMAX !

+----------+----------+
)08! RDBBAS ! RDBACC !

+----------+----------+
)OA FILLOI

+----------+----------+
)OC! RDBEXP RDBLEN

+----------+----------+
)OE RDBCOF RDBBOF

+----------+----------+

MAXIMUM BUFFER LENGTH (BYTES)

BASIC REQUEST BLOCK LENGTH (BYTES)
ACCOUNTING WEIGHTING FACTOR

RESERVED FOR FUTURE USE

EX PAN S ION FL A G S
EXPANSION LENGTH TO BUFFER

OFFSET IN CALL BLOCK
OFFSET IN BRB (O=CONTINUE FROM LAST

FLAGS FOR FIELD: RDBFLG #00 - DESCRIPTION FLAGS

RDFEXT
RDFRST
RDFRPT
RDFQOP
RDFSOD

(X •••••••••••••••)
(• X ••••••••••••••)
(•• X •••••••••••••)
(••• X •••••••••• ~.)
(•••• X •••••••••••)

= (••••• X ••••••••••) RDFDSJ
RDFREV
RDFINT =

RDFQIJ

(•••••• X •••••••••)
(••••••• X ••••••••)

(•••••••• X •••••••)
(••••••••• XXXXXXX)

- EXTENSIONS TO THE RDB(I=YES)
- REQUIRES SYSTEM TASK (I=YES)
- REQUIRES SOFT.PRIVILEGED TASK
- QUEUE SERVER(O) OR PROCESSOR
- STATIC(O) OR DYNAMIC BUFFER
- DYNAMIC BUFFER - STA(O) OR JCA
- REVISING A BUFFER (I=YES)
- CAN(I) OR CANNOT(O) BE

AN INITIATED EVENT
- QUEUE HDR IN STA(O) OR JCA
- RESERVED

FLAGS FOR FIELD: RDBEXP HOc - EXPANSION FLAGS

2270512-9701 22-141 Structure Pictures

RDB DNOS System Design Document

RDFTYP = (X •••••••••••••••) - TYPE OF CALL BLOCK OFFSET PTR

* O=START OF DATA WITH RDBLEN

* BYTES TO BUFFER

* l=POINTER TO EXPANSION

* BLOCK WITH OWN LENGTH

* BYTE AND DATA BUFFER
RDFJCA = (• X ••••••••••••••) - l=BUFFER THIS IN JCA BY ITSELF
RDFMOR (•• X •••••••••••••) - MORE EXPANSION BLOCKS (l=YES)

* (AFTER THIS ONE)
RDFJAV = (••• X ••••••••••••) - l=WERE ABLE TO GET JCA SPACE

= (•••• XXXX ••••••••) - RESERVED

EQUATES:

LABEL EQUATE TO VALUE DE SCRIP TION

RDBSIZ $)10

Structure Pictures 22-142 2270512-9701

DNOS System Design Document

**
* * RETURN INFORMATION BLOCK (RI B)

*
02/08/79 *

*
* LOCATION: RPSDAT AND SVC PROCESSORS

*
*

**
* THE RIB FOR A GIVEN SVC TELLS HOW MUCH AND WHERE TO
* RETURN INFORMATION FROM A BUFFERED CALL BLOCK THAT WAS
* USED BY THE SVC PROCESSOR. THE RIB IS IN THE MODULE
* RPSDAT BUILT DURING SYSTEM GENERATION IF THE SVC IS AN
* OPTIONAL SVC OR IS ONE PROCESSED BY A QUEUE SERVER TASK.
* OTHERWISE THE RIB IS IN ONE OF THE SVC PROCESSOR MODULES.
* THE RIB FOR A PARTICULAR SVC IS ACTUALLY SPECIFIED AS ONE
* FIELD FOR RIBPRO, THEN ANY NUMBER OF PAIRS OF VALUES FOR
* OFFSET AND LENGTH, THEN A WORD OF ZERO TO TERMINATE THE RIB.

----------+----------
)00 ! RIBPRO ! POSTPROCESSOR (IF SPECIAL ONE)

+----------+----------+
)02 RIBOFF! RIBLEN ! CALL BLOCK OFFSET

+----------+----------+ LENGTH TO UNBUFFER (BYTES)

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

RIBSIZ $)04

RIB

2270512-9701 22-143 Structure Pictures

RLT DNOS System Design Document

* RECORD LOCK TABLE (RLT)

*
05/09/79 *

* * LOCATION: SYSTEM TABLE AREA OR USER JCA *
* (WHEREVER FCB IS LOCATED) *

* FOR A FILE WHICH HAS LOCKED RECORDS, EACH LOCKED RECORD IS
* REPRESENTED BY A RLT CHAINED TO THE FILE CONTROL BLOCK OF
* THAT FILE.

----------+----------
)00 ! RLTRLT ! NEXT TABLE ENTRy ADDRESS

+----------+----------+
)02 ! RLTLDT ! LOCKING LDT ADDRESS

+----------+----------+
)04 RLTTSB LOCKING TSB ADDRESS

+----------+----------+
)06 ! RLTJSB ! OWNER JSB ADDRESS

+----------+----------+
)08 RLTBN LOCKED BLOCK NUMBER

+----------+----------+
)OA ! !

+----------+----------+
)OC ! RLTOFF LOCKED OFFSET

+----------+----------+
EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

RLTSIZ $)OE

Structure Pictures 22-144 2270512-9701

DNOS System Design Document

**
* * RESOURCE OWNERSHIP BLOCK (ROB)

*

*
08/29/83 *

* * LOCATION: JCA *
**
* AN ROB IS BUILT FOR AN I/O RE.SOURCE WHEN AN ATTACH RESOURCE
* OPERATION IS PERFORMED. THE ROB IS LINKED INTO THE ROB
* LIST ANCHORED IN THE JCA.

----------+----------
)00 ROBROB !

+----------+----------+
)02 ROBACT ROBATN!

+----------+----------+
)04 ROBFMT

+----------+----------+
)06 ROBFCB !

+----------+----------+
EQUATES:

LABEL EQUATE TO VALUE

ROBSIZ $)08

NEXT ROB ADDRESS

ATTACHED COUNT
ATTACH NUMBER

DESCRIPTION

ROB

2270512-9701 22-145 Structure Pictures

RPB DNOS System Design Document

**
* * RESOURCE PRIVILEGE BLOCK (RPB)

*
08/30/83 *

* *
* LOCATION: SYSTEM AREA OR JCA *
**
* AN RPB IS BUILT FOR AN I/O RESOURCE WHEN A LUNO IS ASSIGNED.
* IT IS ATTACHED TO THE APPROPRIATE RESOURCE STRUCTURE: CCB,
* FCB, OR PDT.

----------+----------
)00 t RPBRPB t

+----------+----------+
)02! RPBFLG RPBCFI

+----------+----------+
)04 RPBLDT

+----------+----------+
)06 RPBJSB !

+----------+----------+
)08 RPBLRN !

+-- -~- - - - - - -+- - - - - - - - - - +
)OA !

+----------+----------+
)OC ! RPBBN !

+----------+----------+
)OE ! !

+----------+----------+
)10 ! RPBOCB

+----------+----------+

LINK TO NEXT RP B

FLAG BYTE
CURRENT FILE INDEX (CONCAT. FILES)

LDT ADDRESS

JSB ADDRESS

LOGICAL RECORD NUMBER

BLOCK NUMBER

OFFSET IN CURRENT BLOCK

FLAGS FOR FIELD: RPBFLG 1102 - FLAG BYTE

RPFATT = (X •••••••••••••••) - 1 = ATTACHED
RPFOPN = (• X ••••••••••••••) - 1 = LUNO OPEN
RPFFBS (•• X •••••••••••••) - 1 FORWARD OR BACK SPACE

(••• XXX ••••••••••) - RESERVED
RPFACU = (•••••• XX ••••••••) - ACCESS PRIVILEGES IN USE

* 00 = EXCLUSIVE WRITE
* 01 EXCLUSIVE ALL
* 10 SHARED
* 11 READ ONLY

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

RPBACM
RPBMSZ
RPBSIZ

>0300
$
$

Structure Pictures

>300
>08
>12

22-146

ACCESS PRIVILEGES BIT MASK
MINIMUM SIZE
RPB SIZE

2270512-9701

DNOS System Design Document

**
*
*
*

RESERVE SEGMENT TABLE (RST) 09/21/81
*
*
* * LOCATION: JCA *

**
* THE RST DESCRIBES ALL OF THE SEGMENTS THAT A JOB HAS
* RESERVED WITH A RESERVE SEGMENT SVC CALL.
* EACH ENTRY IS:
* SEGMENT SSB ADDRESS
* SEGMENT SMT ADDRESS

MAX NUMBER OF ENTRIES IN RST
----------+----------

)00 I RSTRST I LINK TO NEXT RST
+----------+----------+

RST

)02 ! RSTSID !
+----------+----------+

ID'S OF RESERVED SEGMENTS (MAX 8)
(ZERO IF ENTRY NOT IN USE)

/ / /
/ / /
+----------+----------+

)22 FILLOO I RSTALC RESERVED FOR FUTURE USE
+----------+----------+ NUMBER OF ALLOCATED ENTRIES (MAX 8)

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

RSTCNT 8
RSTSIZ $

2270512-9701

)08 MAX NUMBER OF ENTRIES IN RST
)24

22-147 Structure Pictures

SAT DNOS System Design Document

**
* * * SECONDARY ALLOCATION TABLE (SAT) 01/25/77 *
* * * LOCATION:JCA OR SYSTEM AREA, WITH FCB *
**
* THE SLr SHOWS THE NUMBER AND LOCATION OF SECONDARY FILE
* ALLOCATIONS.

COUNT OF SAT ENTRIES
----------+----------

)00 ! SATASZ ! ALLOCATION SIZE
+----------+----------+

)02 SATADU ! ALLOCATION START

+----------+----------+
)04! FILLOO REMAINDER OF BLOCK

+----------+----------+
/ / /
/ / /
+----------+----------+

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

SATNSA 16)10 COUNT OF SAT ENTRIES
SATSIZ $)40

Structure Pictures 22-148 2270512-9701

DNOS System Design Document

**
* * * TRACK 0, SECTOR 0 (SCO) 09/09/83 *
* * * LOCATION: TRACK 0, SECTOR 0 OF EACH DISK *
**

----------+----------
)00 SCOVNM

+----------+----------+
/ / /
/ / /
+----------+----------+

)08 SCOTNA
+----------+----------+

)OA! SCOSBM SCOT,BM
+----------+----------+

)OC SCORL

+----------+----------+
)OE SCOSLT

+----------+----------+
)10 FILLOO

+----------+----------+
) 12 ! !

+----------+----------+
)14

+----------+----------+
)16 SCONBA !

+----------+----------+
)18 SCOSLE

+----------+----------+
)IA SCOSLL !

+----------+----------+
)IC FILLO!

+----------+----------+
/ / /
/ / /
+----------+----------+

)24 SCOLTI
+----------+----------t

)26! FILL02
+----------+----------+
/ / /
/ / /
+----------+----------+

)2E SCOPIl!
+----------+----------+
/ / /
/ / /
+----------+----------+

)36 SCOPI2

VOLUME NAME

TOTAL SCO ADU ON DISK

STARTING SECTOR OF BIT MAPS
TOTAL SCO BIT MAPS

TRACK 0 RECORD LENGTH

SYSTEM LOADER TRACK ADDRESS

* * RESERVED * *

TOTAL SCO BAD ADU ON DISK

SYSTEM LOADER ENTRy POINT

SYSTEM LOADER LENGTH

* * RESERVED * *

SYSTEM LOADER TRACK (COpy 2)

* * RESERVED * *

PRIMARY SYSTEM FILE NAME

SECONDARY SYSTEM FILE NAME

SCO

2270512-9701 22-149 Structure Pictures

SCO DNOS System Design Document

+----------+----------+
/ / /
/ / /
+----------+----------+

)3E SCOPIF SYSTEM SELECTOR
+----------+----------+

)40 ! SCOVDA ! VOLUME DIRECTORY ADU SCO
+----------+----------+

)42 ! SCOVPL VCATALOG PHYSICAL RECORD LENGTH
+----------+----------+

)44 SCOSPA SECTORS/ADU
+----------+----------+

)46! SCODCD ! ! DISK CREATION DATE
+----------+----------+

)48 !
+----------+----------+

)4A! SCOPFI ! ! PRIMARY PROGRAM FILE
+----------+----------+
/ / /
/ / /
+----------+----------+

)52! SCOPF2 ! ! SECONDARY PROGRAM FILE
+----------+----------+
/ / /
/ / /
+----------+----------+

)5A ! SCOPFF ! PROGRAM FILE SWITCH
+----------+----------+

)5C! SCOOF1 PRIMARY OVERLAY FILE
+----------+----------+
/ / /
/ / /
+----------+----------+

)64! SCOOF2 ! SECONDARY OVERLAY FILE
+----------+----------+
/ / /
/ / /
+----------+----------+

)6C SCOOFF OVERLAY FILE SWITCH
+----------+----------+

)6E SCOILI PRIMARY INTERMEDIATE LOADER
+----------+----------+
/ / /
/ / /
+----------+----------+

)76 SCOIL2! ! SECONDARY INTERMEDIATE LOADER
+----------+----------+
/ / /
/ / /
+----------+----------+

)7E SCOILF ! INTERMEDIATE LOADER FLAG
+----------+----------+

)80 SCODIN DIAGNOSTIC FILE NAME

Structure Pictures 22-150 2270512-9701

DNOS System Design Document

+----------+---------~+
/ / /
/ / /
+----------+----------+

)88 ! SCODIF !
+----------+----------+

)8A ! SCODRS !
+----------+----------+

)8C ! SCOBAL !
+----------+----------+

)8E ! SCOSPR
+----------+----------+

) 9 O! S C 0 WF 1 ! !
+----------+----------+
/ / /
1//
+----------+----------+

)98! SCOWF2 !
+----------+----------+
/ / /
/ / /
+----------+----------+

)AO ! SCOWFF !
+----------+----------+

)A2 ! SCOVIF !
+----------+----------+

)A4 ! SCOSTA !
+----------+----------+

)A6 SCODCT
+----------+----------+

)A8 ! SCOFSF !
+----------+----------+

EQUATES:

LABEL EQUATE TO VALUE

SCOSIZ $)AA

SCO

DIAGNOSTIC FLAG

DBUILD DETERMINES DEFAULT PRS

STARTING SECTOR OF BAD ADU LIST

TRACK 0 SECTORS PER RECORD

WCS PRIMARY MICROCODE FILE

WCS SECONDARY MICROCODE FILE

WCS FLAG SWI TCR

TRACK 1 SELECT FLAG

STATE OF DISK
1 - NOT AN A L Y ZE D

DISK CREATION TIME

* * RESERVED * *

DESCRIPTION

2270512-9701 22-151 Structure Pictures

SDB DNOS System Design Document

**
*
*
*

STAGE DESCRIPTOR BLOCK (SDB)
*

07/16/81 *
* * LOCATION: A NAME DEFINITION SEGMENT *

**

----------+----------
)00 SDBSDB !

+----------+----------+
)02 SDBCID SDBSNO!

+----------+----------+
)04! SDBTCT SDBRES!

+----------+----------+
)06 ! SDBPAR !

+----------+----------+
)08 ! SDBDEL !

+----------+----------+

FIXED LINK

CREATOR TASK ID
STAGE NUMBER

TASK COUNT
RESERVED

POINTER TO PARENT SDB

DESCENDANT ERROR LIST ANCHOR

Structure Pictures 22-152 2270512-9701

DNOS System Design Document

**
* * SEGMENT GROUP BLOCK

*
(SGB) *

04/09/81 *
* * LOCATION: SEGMENT MANAGER TABLE AREA *

**
* THE SGB IS AN ANCHOR FOR SSBS OF SEGMENTS WHICH FORM A
* LOGICAL SET. IT IS USED TO ACCESS SSBS FOR SEGMENT
* MANAGER CALLS MADE BY LUNO.

----------+----------
)00 ! SGBSGB ! POINTER TO NEXT SGB IN TABLE

+----------+----------+

SGB

)02 ! SCBOMT ! SMT SSB POINTER FOR OVERFLOW SGB

+----------+----------+
)04 SGBOCB ! SGB SSB POINTER FOR OVERFLOW SGB

+----------+----------+
)06 ! SGBSSB I SSB LI ST HEADER

+----------+----------+
)08 SGBFLG FLAGS

+----------+----------+
)OA SGBFMT FDP FOR THE SEGMENT GROUP

+----------+----------+
)OC ! SGBFCB !

+----------+----------+
FLAGS FOR FIELD: SGBFLG 1108 - FLAGS

SGFPFL (X •••••••••••••••) - PROGRAM FILE SEGMENT GROUP
SGFDFL = (.X ••••••••••••••) - DATA FILE SEGMENT GROUP
SGFMBS = (•• X •••••••••••••) - MEMORY-BASED SEGMENT GROUP
SGFRES = (••• XXXXXXXXXXXXX) - RESERVED

EQUATES:

LABEL

SGBOSB
SGBOLK
SGBSIZ

2270512-9701

EQUATE TO

SGBOMT
SGBOGB
$

VALUE

)02
)04
)OE

DESCRIPTION

22-153 Structure Pictures

SLB DNOS System Design Document

**
* *
*
*

SYSTEM LOG BLOCK FORMATS (SLB) 02/08/82 *
* * LOCATION: SYSTEM AREA *

**
* THIS TEMPLATE INCLUDES FORMATS FOR SEVERAL TYPES OF SYSTEM
* LOG MESSAGES. EACH FORMAT INCLUDES THE SAME QUEUE LINK
* FIELD AND FLAGS FIELD. EACH ALSO HAS A 4 BYTE TYPE FIELD.
* OTHER FIELDS ARE PARTICULAR TO A TYPE OF LOG BLOCK BEING
* BUILT.

COMMON PORTION FOR ALL TYPES
----------+----------

)00 ! SLBSLB !
+----------+----------+

)02! SLBFLG ! SLBCNT !
+----------+----------+

)04 SLBDAY !
+----------+----------+

)06 ! SLBHR !
+----------+----------+

)08 SLBMIN
+----------+----~-----+

)OA SLBTYP! !
+----------+----------+
/ / /
/ / /
+----------+----------+

QUEUE LINK

BLOCK TYPE
COUNT OF LOST MESSAGES

BINARY DAY

BINARY HOUR

BINARY MINUTES

LOG BLOCK TYPE

TYPE 1 - DEVICE ERROR WITH IMAGE
----------+----------

) 12! SLBEC SLBSTI
+----------+----------+

)14 ! SLBJOB
+----------+----------+

)16 SLBIID SLBRID
+----------+----------+

----------+----------
)18! SLBLUN SLBRTY!

+----------+----------+
)lA SLBRSF SLBACT!

+----------+----------+

----------+----------
)lC SLBAIM

+----------+----------+
/ / /
/ / /

ERROR CODE
STATION ID

JOB ID

TASK INSTALLED ID
TASK RUN ID

LUNO
RETRY COUNT

RETRY SUCCESS(O)/FAILURE(l)
IMAGE WORD COUNT

AFTER IMAGE

Structure Pictures 22-154 2270512-9701

DNOS System Design Document SLB

+----------+----------+
)2C SLBBIM I BEFORE IMAGE

+----------+----------+
/ / /
/ / /
+----------+----------+

TYPE 2 - DEVICE ERROR WITH CALL BLOC
----------+----------

)lC I SLBIRB I SPACE FOR 12 BYTES OF CALL BLK
+----------+----------+
/ / /
/ / /
+----------+----------+

TYPE 3 - ABNORMAL TASK TERMINATION
----------+----------

)18 I SLBWP I WORKSPACE POINTER AT ERROR
+----------+----------+

) 1A ! SLBPC ! PROGRAM COUNTER
+----------+----------+

)lC I SLBST ! STATUS AT ERROR
+----------+----------+

TYPE 4 - STATISTICS-- FROM A DSR
----------+----------

)12 ! SLBRDG ! NUMBER OF GOOD READS
+----------+----------+

)14 ! SLBWRG ! NUMBER OF GOOD WRITES
+----------+----------+

)16 ! SLBOTG ! NUMBER OF GOOD OTHER OPS
+----------+----------+

)18 ! SLBRDB ! NUMBER OF BAD READS
+----------+----------+

)lA r SLBWRB ! NUMBER OF BAD WRITES
+----------+----------+

)lC ! SLBOTB ! NUMBER OF BAD OTHER OPS
+----------+----------+

TYPE 5 - USER ISSUED SYSTEM LOG- SVC
----------+----------

)12 SLBLEN FILLOO
+----------+----------+

) 1 4! S L BUM S I !
+----------+----------+
/ / /
/ / /
+----------+----------+

)0112 ! I
+----------+

LENGTH OF USER MESSAGE
RESERVED

USER MESSAGE BEGINS HERE

TYPE 6 - MEMORY CACHE ERRORS
----------+----------

2270512-9701 22-155 Structure Pictures

SLB

)12 SLBANK SLBPRA
+----------+----------+

)14 SLBPRB SLBBA6
+----------+----------+

)16 SLBME6 SLBEVN
+----------+----------+

)18 SLBAD6
+----------+----------+

DNOS System Design Document

BANK (A OR B)
ADDRESS PARITY IN BANK A (G/B)

ADDRESS PARITY IN BANK B (G/B)
BASE ADDRESS OF CONTROLLER

AMOUNT OF MEMORY
ERROR ON EVEN WORD (YIN)

TPCS ADDRESS

TYPE 7 - MEMORY PARITy ERRORS
----------+----------

)12! SLBBIT SLBROW
+----------+----------+

)14 SLBCOR SLBBA7
+----------+----------+

)16 SLBME7 SLBCTY
+----------+----------+

)18 SLBAD7
+----------+----------+

EQUATES:

LABEL EQUATE TO VALUE
----- --------- -----
SLBVRI $)12
SLBVR2 $)18
SLBVR3 $)IC
SLBSZl $-SLBSLB)3C
SLBSZ2 $-SLBSLB)28
SLBSZ3 $-SLBSLB)IE
SLBSZ4 $-SLBSLB)IE
SLBMXL 255)FF
SLBSZ5 $-SLBSLB)113
SLBSZ6 $-SLBSLB)lA
SLBSZ7 $-SLBSLB)IA

BIT IN ERROR
ROW IN ERROR

CORRECTABLE? (yIN)
BASE ADDRESS OF CONTROLLER

AMOUNT OF MEMORY
CONTROLLER TYPE

TPCS ADDRESS

DESCRIPTION

DEVICE MESSAGE SIZE

MAX USER LENGTH

Structure Pictures 22-156 2270512-9701

DNOS System Design Document

**
* * SEMAPHORE LIST HEADER (SLH)

*
03/15/79

*
*
* * LOCATION: JCA *

**
* THE SLH IS USED TO DESCRIBE SEMAPHORES USED IN JOBS. FOR
* EACH SEMAPHORE IN USE, THERE IS A LIST HEADER SHOWING THE
* NUMBER OF THE SEMAPHORE, ITS VALUE, AND THE ENTRIES WAITING
* FOR SEMAPHORE ACTION.

----------+----------
)00 ! SLHSLH !

+----------+----------+
)02! SLHVAL SLHNUM!

+----------+----------+
)04 ! SLHNEW !

+----------+----------+
)06 SLHOLD

+----------+----------+
)08 SLHCNT SLHTID

+----------+----------+
)OA SLHTSB !

+----------+----------+

EQUATES:

LABEL EQUATE TO VALUE

SLHSIZ $)OC

NEXT SEMAPHORE ENTRY

SEMAPHORE VALUE
SEMAPHORE NUMBER

ADDRESS OF NEWEST ENTRy

ADDRESS OF OLDEST ENTRY

NUMBER OF ENTRIES ON QUEUE
SERVER TASK ID (NOT USED)

TSB ADDRESS OF SERVER TASK(NU)

DESCRIPTION

SLH

2270512-9701 22-157 Structure Pictures

SMR DNOS System Design Document

* SEGMENT MANAGEMENT REQUEST

*
(SMR) 11/05/81

* LOCATION: SYSTEM TABLE AREA

*
*
*

* THE SMR IS A SEGMENT MANAGEMENT SVC BLOCK WITH SEVERAL
* ADDITIONAL FIELDS DEFINED FOR USE BY SEGMENT MANAGER
* DURING PROCESSING OF THE SVC.

----------+----------
)OO! SMRSVC ! SMRERR ! SVC CODE

+----------+----------+ ERROR CODE
)02 SMROP SMRLUN! SEGMENT MANAGER SUB-OPCODE

+----------+----------+ LOGICAL UNIT
)04 SMRFLG ! FLAGS

+----------+----------+
)06 SMRNS1 NEW SEGMENT ID WORD 1

+----------+----------+
)08 SMRNS2 NEW SEGMENT ID WORD 2

+----------+----------+
)OA SMROSG ! OLD SEGMENT ID

+----------+----------+
)OC ! SMRADR SEGMENT ADDRESS

+----------+----------+
)OE ! SMRLEN ! SEGMENT LENGTH

+----------+----------+
)10 SMRATR SEGMENT ATTRIBUTE (AS IN 8SB)

+----------+----------+
)12 ! SMRFMT FDP ADDRESS

+----------+----------+
)14 ! SMRFCB

+----------+----------+

FLAGS FOR FIELD: SMRFLG 1'04 - FLAGS

SMFINS (X •••••••••••••••) - INSTALLED ID
SMFNMD (• X ••••••••••••••) - NOT MODIFIED
SMFREL = (•• X •••••••••••••) - RELEASABLE
SMFMBS (••• X ••••••••••••) - MEMORY BASED
SMFPOS (•••• X •••••••••••) -'0 IF POSITION NUMBER SPECIFIED

* FOR OLD SEGMENT. 1 IF RUNTIME
* ID SPECI FI ED.

SMFTSK (••••• X ••••••••••) - TASK SEGMENT
SMFVLD (•••••• X •••••••••) - VERIFY PROG. FILE LOAD ADDR
SMFSRE (••••••• X ••••••••) - SET/RESET FLAG ENABLE
SMFSEU (•••••••• X •••••••) - SET/RESET FLAG

* l=)SET EXCLUS IVE USE
* O=)RESET EXCLUS IVE USE

SMFSYS (••••••••• X ••••••) - SYSTEM TASK
(•••••••••• XXXX ••) - ***RESERVED***

Structure Pictures 22-158 2270512-9701

DNOS System Design Document SMR

SMFPSN (•••••••••••• ".,. XX) POSITION NUMBER(1,2, OR 3)

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

SMRSIZ $)16

2270512-9701 22-159 Structure Pictures

SMT DNOS System Design Document

**
*
*
*
*

SEGMENT MANAGER TABLE (SMT)

LOCATION: USER MEMORY

1/30/79
*
*
*
* **

* THE SMT IS THE TEMPLATE FOR THE STATIC DEFINITIONS IN
* THE SEGMENT MANAGER SPECIAL TABLE AREAS.

STARTS AFTER MM OVERHEAD
----------+----------

)00 ! SMTSGB SGB LIST HEADER
+----------+----------+

)02 SMTRID LAST RUN ID ALLOCATED
+----------+----------+

)04 SMTMAP ALLOCATED RUN ID BIT MAP
+----------+----------+
/ / /
/ / /
+----------+----------+

Structure Pictures 22-160 2270512-9701

DNOS System Design Document

**
* * * SEGMENT OWNER BLOCK (SOB) 09/23/81 *
*
* LOCATION: SMT

*
*

**
* THE SOB IS USED TO IDENTIFY THE TASK WHICH HAS EXCLUSIVE
* USE OF A SEGMENT. IT IS LINKED TO THE SSB.

----------+----------
)00 ! SOBJSB .JSB ADDRESS OF SSB OWNER

+----------+----------+
)02 SOBTSB TSB ADDRESS OF SSB OWNER

+----------+----------+

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

SOBSIZ $)04

SOB

2270512-9701 22-161 Structure Pictures

SOV DNOS System Design Document

**
* * SYSTEM OVERLAY LOAD TABLE

*
(SOV)

*
09/09/83 *

* LOCATION: SYSTEM ROOT
*
*

****~***
* THE SOV IS BUILT DURING SYSTEM GENERATION AS PART OF THE
* MODULE SOVT, DEPENDING ON THE OPTIONS CHOSEN DURING THE
* GENERATION. THE FORMAT OF EACH ENTRY IS SHOWN IN THE OVT.

** BEGINNING PACKED RECORD SOV

----------+----------
)00 FMORWT ! FM REWRITE RECORD OVERLAY

+----------+----------+
)02 !

+----------+----------+
)04 !

+----------+----------+
)06 ! FMOMSC FM WEOF,CLOSE/EOF,OPEN REWIND,UNLK

+----------+----------+
)08

+----------+----------+
)OA

+----------+----------+
)OC FMOEXT FM EXTEND FILE ALLOCATION OVERLAY

+----------+----------+
)OE

+----------+----------+
) 10 ! !

+----------+----------+
)12 FMOOPX FM OPEN EXTEND OVERLAY

+----------+----------+
)14 !

+----------+----------+
)16

+----------+----------+
)18 KMOINS ! KM INSERT PROCESSOR

+----------+----------+
)IA

+----------+----------+
) 1 C !

+----------+----------+
)IE ! KMODLS KM DELETE AND SET CURRENCY

+----------+----------+
)20

+----------+----------+
)22

+----------+----------+
)24 ! KMOOPC KM OPEN AND CLOSE PROCESSORS

+----------+----------+
)26

Structure Pictures 22-162 2270512-9701

DNOS System Design Document SOV

+----------+----------+
)28 ~ !

+----------+----------+
)2A KMOBDE ! KM DELETE SUBROUTINES

+----------+----------+
)2C

+----------+----------+
)2E

+----------~----------+
)30 ! KMOBTI KM B-TREE SPLIT FOR KMBTI

+----------+----------+
)32

+----------+----------+
)34

+----------+----------+
) 36 ! KMORWS ! KM REWRITE SUBROUTINES

+----------+----------+
)38 ! !

+----------+----------+
)3A !

+----------+----------+
) 3C ! DMALLC ! DM ALLOCATION SCAN OVERLAY

+----------+----------+
)3E !

+----------+----------+
)40

+----------+----------+
)42 DMCHPM ! DM CHANGE PARTIAL BIT MAPS

+----------+----------+
)44 !

+----------+----------+
)46 ! !

+----------+----------+
)48 CFDFOV IU CREATE/DELETE FILE OVERLAY

+----------+----------+
)4A

+----------+----------+
)4C

+----------+----------+
)4E OTHOVI IU OTHER FUNCTIONS OVERLAY·

+----------+----------+
)50 !

+----------+----------+
)52 !

+----------+----------+
)54 ! OTHOV2 IU RF, AA, DA, CIC, DIC OVERLAY

+----------+----------+
)56

+----------+----------+
)58 !

+----------+----------+
)SA PMERRS PM ERROR PROCESSING SUBROUTINES

+----------+----------+

2270512-9701 22-163 Structure Pictures

SOV DNOS System Design Document

)5C
+----------+----------+

)5E
+----------+----------+

) 60 ! KMOPLR ! KM PARTIAL LOG ERROR RECOVERY
+----------+----------+

)62

+----------+----------+
)64

+----------+----------+
)66 SECMGR IU SECURITY MANAGER OVERLAY

+----------+----------+
)68 !

+----------+----------+
)6A

+---~------+----------+
)6C KMORWT KM REWRITE MAIN ROUTINE

+----------+----------+
) 6E ! !

+----------+----------+
)70

+----------+----------+
)72 SIZE ** END OF PACKED RECORD

Structure Pictures 22-164 2270512-9701

DNOS System Design Document

**

* *
* SEGMENT STATUS BLOCK (SSB) 09/09/83 *

* *
* LOCATION: ROOT AND SEGMENT MANAGER TABLE AREA *
**
* EACH SEGMENT WHICH IS IN MEMORY IS DESCRIBED BY AN SSB.
* THE SSB INCLUDES CHARACTERISTICS OF THE SEGMENT, LOCATION,
* AND USE INFORMATION.

*
* SPECIAL FIELD COMMENTS:

*
* SSBWCT - THIS FIELD IS USED TO KEEP TRACK OF THE AMOUNT
* OF FREE AREA IN A SPECIAL TABLE AREA. APPLIES
* TO SSB'S FOR SMT'S AND FMT'S.

*
* SSBIDI/2 - THIS FIELD CONTAINS THE BLOCK NUMBER FOR A
* SEGMENT WHICH IS ASSOCIATED WITH A DATA FILE.

*

----------+----------
)00 SSBSSB SSB LINK

+----------~----------+

SSB

)02 SSBIDI SEGMENT INSTALLED ID FIRST WORD
+----------+----------+

)04 SSBID2
+----------+----------+

)06 SSBRID
+----------+----------+

)08 SSBATR
+----------+----------+

)OA ! SSBRCT !
+----------+----------+

)OC SSBUCT
+----------+----------+

)OE SSBSGB
+----------+----------+

)10 SSBADR
+----------+----------+

)12 ! SSBLEN
+----------+----------+

)14 SSBREC
+----------+----------+

)16 SSBLOD
+----------+----------+

)18 ! SSBFLG
+----------+----------+

)lA SSBOVL SSBPRI!
+----------+----------+

)IC ! SSBSTE
+----------+----------+

SEGMENT INSTALLED ID SECOND WORD

SEGMENT RUN-TIME ID

SEGMENT ATTRIBUTES

SEGMENT RESERVE COUNT

SEGMENT USE COUNT

SEGMENT GROUP BLOCK POINTER

SEGMENT BEET ADDRESS (PTS TO OVB+l)

LENGTH OF SEGMENT (BYTES)

REC. # OF PF SEG. ON HOME FILE

LOAD ADDRESS OF SEGMENT (FROM P.F.)

SEGMENT FLAGS

LAST OVERLAY NUMBER LOADED IN SEG
INSTALLED PRIORITy (TASKS ONLY)

POINTER TO SWAP TABLE ENTRY

2270512-9701 22-165 Structure Pictures

SSB DNOS System Design Document

*

*

)lE SSBSOB POINTER TO SEGMENT OWNER BLOCK
+----------+----------+

)20 SSBPRC SSBPR2
+----------+----------+

)22 SSBNAM!

THE ID'S OF PROCEDURES ASSOCIATED
WITH THE TASK (TASK SEG ONLY)

TASK NAME (TASK SEG ONLY)
+----------+----------+
/ / /
/ / /
+----------+----------+

FLAGS FOR FIELD: SSBATR #08 - SEGMENT ATTRIBUTES

SSFRED = (X ••••••••••••••• ·) - READABLE (NONTASK)
SSFSYS (.X ••••...•.•.•.•) - SYSTEM (BOTH)
SSFRES = (•• X •••••••••••••) - MEMORY RESIDENT (BOTH)

(••• X ••••••••••••) - RESERVED
SSFREP (•••• X •••••••••••) - REPLICATABLE (BOTH)
SSFSHR (••••• X ••••••••••) - SHARE PROTECT (NONTASK)
SSFPR2 = (•••••• X •••••••••) - PROC 2 ON SYS P.F.(TASK)

(••••••• X ••••••••) - RESERVED
SSFOVF = (•••••••• X •••••••) - OVERFLOW (TASK)
SSFWCS = (••••••••• X ••••••) - WRITEABLE CONTROL STORE (BOTH)
SSFEXC = (•••••••••• X •••••) - EXECUTE PROTECT (BOTH)
SSFWRT (••••••••••• X ••••) - WRITE PROTECT (NONTASK)
SSFUPD = (•••••••••••• X •••) - UPDATEABLE (BOTH)
SSFREU (••••••••••••• X ••) - REUSEABLE (BOTH)
SSFCPY = (•••••••••••••• X.) - COPYABLE (BOTH)
SSFSEC = (••••••••••••••• X) - SECURITY BYPASS (TASK)

FLAGS FOR FIELD: SSBFLG #18 - SEGMENT FLAGS

SSFTSK (X •••••••••••••••) - TASK SEGMENT
SSFEMP = (• X ••••••••••••••) - EMPTY SEGMENT (DO NOT LOAD)
SSFHOM (•• X •••••••••••••) - LOAD FROM HOME FILE
SSFINI = (••• X ••••••••••••) - INITIAL LOAD SEGMENT (SSB NOT

INITIALIZED)
SSFNRP (•••• X •••••••••••) - DO NOT REPLICATE SSB (SINCE A

GET MEMORY WAS DONE)
SSFREL = (••••• X ••••••••••) - RELEASABLE
SSFMOD = (•••••• X •••••••••) - MODIFIED
SSFMEM = (••••••• X ••••••••) - IN MEMORY
SSFLLM (•••••••• X •••••••) - LOGICALLY IN MEMORY

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

SSBWCT SSBIDI)02 UNALLOCATED WORDS IN SPECIAL TABLE
SSFPRI SSFRED)00 PRIVILEGED (TASK)
SSFPR1 SSFSHR)05 PROC 1 ON SYS P.F.(TASK)

Structure Pictures 22-166 2270512-9701

DNOS System Design Document

SSFSPR
SSBSIZ
SSBTSZ

2270512-9701

SSFWRT
$
$

)OB
)20
)2A

22-167

SOFTWARE PRIVILEGED (TASK)
BASIC SSB SIZE
TASK SEGMENT SSB SIZE

SSB

Structure Pictures

STA DNOS System Design Document

**
* * SYSTEM TABLE AREA OVERHEAD (STA)

*
01/20/79 *

*
* LOCATION: START OF ALL TABLE AREAS

*
* **

* THE STA DESCRIBES OVERHEAD INFORMATION AT THE START OF
* EACH OF THE SYSTEM TABLE AREAS: THE FILE MANAGEMENT TABLE
* AREA, THE BUFFER TABLE AREA, THE SEGMENT MANAGEMENT TABLE
* AREAS, AND THE STANDARD SYSTEM TABLE AREA.

----------+----------
)00 STARED !

+----------+----------+
)02 STALNK

+----------+----------+
)04 STARES

+----------+----------+
)06 STAEND

+----------+----------+
)08 STAUSE !

+----------+----------+
)OA ! STAHl !

+----------+----------+
)OC STAPTR

+----------+----------+
EQUATES:

LABEL EQUATE TO VALUE

STASIZ $)OE

FIRST ENTRY ON FREE MEMORY LST

POINTER TO FREE MEMORY CHAIN

RESERVED TABLE AREA BOUNDRY

ENDING ADDRES OF TABLE AREA

CURRENT TABLE USAGE

HIGHEST MEMORY ALLOCATION

POINTER TO TABLE OWNER(JSB IF
JCA OR SSB IF SPECIAL TABLE)

DESCRIPTION

Structure Pictures 22-168 2270512-9701

DNOS System Design Document

**
* * SWAP TABLE ENTRY (STE)

*
11/05/81

*
*
* * LOCATION: SYSTEM JCA *

**
* FOR EACH SEGMENT ON THE SWAP. FILE, THERE EXISTS AN STE
* IN MEMORY, LINKED IN FILE RECORD'ORDER ON THE FILE. THE
* ANCHOR OF STES IS ROLDIR IN PMDATA.

----------+----------
)00 ! STERDT LINK TO NEXT STE

+----------+----------+
)02 ! STEPRC ! ROLL FILE PHYS. RECORD NUMBER

+----------+----------+
)04 ! STERRL ! NUMBER RECORDS IN ROLL FILE

+----------+----------+
)06 ! STELDT ! CONTENTS OF OVBPTR

+----------+----------+

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

STESIZ $)08

STE

2270512-9701 22-169 Structure Pictures

TDL DNOS System Design Document

**
*
*
*
*

TIME DELAY LIST ENTRY

LOCATION: SYSTEM TABLE AREA

(TDL) 03/15/78
*
*
*
*

**
* A TDL DESCRIBES AN ENTRY ON THE TIME DELAY LIST.

----------+----------
)00 TDLSVC !

+----------+----------+
)02 ! TDLTM1 !

+----------+----------+
)04 TDLTM2

+----------+----------+

EQUATES:

LABEL EQUATE TO

TDLVAL $
TDLSIZ $

VALUE

)02
)06

OP CODE (200)

REACTIVATION TIME (WD 1)

DESCRIPTION

TIME DELAY VALUE
SIZE OF BLOCK

Structure Pictures 22-170 2270512-9701

DNOS System Design Document

**
* * * TASK STATUS BLOCK

*
* LOCATION: JCA

04/04/83 *
*
* **

* EACH TASK WHICH HAS BEEN BID IS REPRESENTED BY A TSB IN
* ITS JOB'S JCA. THE TSB INCLUDES STATE INFORMATION, LINKS
* TO VARIOUS QUEUES, CHARACTERISTICS' OF THE TASK, LOCATION
* INFORMATION, MAPPING INF9RMATION, AND STATISTICS COUNTERS.

* * DETAILS ABOUT PARTICULAR FIELDS:
* TSBTSK - OFFSET INTO MAP FILE AND SSB ADDRESSES FOR THE

TSB

* SEGMENT THAT IS THE TASK SEGMENT (O=FIRST SEGMENT,
* 4=SECOND SEGMENT, 8=THIRD SEGMENT)

* * TSBIOI - I/O BOUND INDICATOR, MODIFIED BY THE SCHEDULER

* * TSBGEN - GENERATION NUMBER IS ONE GREATER THAN THAT OF THE
* PARENT OF THIS TASK. IF THE PARENT TASK DIES, THE
* GENERATION NUMBER OF THIS TASK IS REDUCED BY 1,
* AS ARE THE GENERATION NUMBERS OF ANY DESCENDENTS
* OF THIS TASK. THIS VALUE IS 0 FOR QUEUE SERVERS.

* * TSBSBN - SMT AND SSB PAIR FOR THE NEW SEGMENT WHEN A CHANGE
* TSBSTN SEGMENT OPERATION IS ISSUED. TSBPSN IS THE
* TSPPSN POSITION OF THE SEGMENT (0,4, OR 8). THESE ARE
* USED ONLY WHEN THE SSB FOR THE NEW SEGMENT MUST
* BE INITIALIZED.

* * TSBLSE - LOAD SEGMENT ENTRIES INCLUDE THE JCA AND ANY OTHER
* SEGMENTS THAT NEED TO BE LOADED IN MEMORY WHEN
* THIS TASK EXECUTES, THOUGH THEY MAY NOT BE MAPPED
* IN TO THE TASK. .

* * TSBOSE - OWNED SEGMENTS ARE TEMPORARILY SHARE-PROTECTED

* ** BEGINNING PACKED RECORD TSB

----------+----------
)00 ! TSBQL !

+----------+----------+
)02 ! TSBWP !

+----------+----------+
)04 TSBPC !

+----------+----------+
)06 TSBST

+----------+----------+
)08! TSBPRI TSBSTA

+----------+----------+
)OA TSBIPR TSBINP

QUEUEING LINK FOR DYNAMIC QUEUES

ACTIVE WORKSPACE POINTER

ACTIVE PROGRAM COUNTER

ACTIVE STATUS

TASK PRIORITY (RUN TIME)
TASK STATE

INITIAL TASK PRIORITy

2270512-9701 22-171 Structure Pictures

TSB

+----------+----------+.
)OC TSBIID TSBRID

+----------+----------+
)OE TSBSTG TSBIEC

+----------+----------+
)10 ! TSBFL1

+----------+----------+
)12 TSBFL2

+----------+----------+
) 1 4 ! T S B JS B !

+----------+----------+
)16 ! TSBXOP

+----------+----------+
)18 TSBTSK TSBIO

+----------+----------+
)lA TSBIOI TSBPSN

+----------+----------+
) 1 C ! TSBCPT

+----------+----------+
)lE

+----------+----------+
)20 TSBRPC !

+----------+----------+
)22 !

+----------+----------+
)24 TSBBY1 !

+----------+----------+
) 26 ! TSBBY2

+----------+----------+
)28 I TSBSPN

+----------+----------+
)2A TSBTSB !

+----------+----------+
)2C TSBSTI TSBGEN

+----------+----------+
)2E TSBPM1 !

+----------+----------+
)30 TSBPM2

+----------+----------+
)32 ! TSBINI !

+----------+----------+
)34 TSBIN2

+----------+----------+
)36 TSBLDT

+----------+----------+
)38 TSBEOR

+----------+----------+
)3A TSBEAP !

+----------+----------+
)3C ! TSBEAW

+----------+----------+
)3E TSBDIA !

+----------+----------+

DNOS System Design Document

INSTALLED TASK PRIORITy
INSTALLED TASK IDENTIFIER

RUN TIME TASK IDENTIFIER
TASK STAGE NUMBER

INITIATED EVENT COUNT
TASK FLAGS - SYSTEM FLAGS

TASK FLAGS - CONTROL FLAGS

JSB ADDRESS

EFFECTIVE XOP ADDRESS

2 WORD OFFSET TO TASK (0,4,8)
GENERAL I/O COUNT

I/O BOUND INDICATOR
POSITION OF NEW SSB

CPU EXECUTION TIME (TICKS)

NUMBER SERVICE CALLS· ISSUED

NUMBER I/O BYTES TRANSFERRED

I/O BYTES TRANSFERRED - WORD 2

TICK COUNTER AT TIME SUSVENDED

TSB FIXED LINK IN SET FOR JOB

STATION ID (FF=NO STATION)
GENERATION NUMBER

PARAMETER 1

PARAMETER 2

COMPLETED EVENT FLAGS - WORD 1

COMPLETED EVENT FLAGS - WORD 1

LOT LIST HEADER POINTER

END OF REQUEST PROCESSING
LI ST HEADER

END ACTION PROGRAM COUNTER

END ACTION WORKSPACE

END ACTION STATUS INFORMATION
(DIAGNOSTIC DATA ADDRESS)

Structure Pictures 22-172 2270512-9701

DNOS System Design Document TSB

)40 TSBSBN ADDRESS OF NEW SSB
+----------+----------+

)42 TSBSTN SM TABLE SSB FOR NEW SEGMENT
+----------+---------~+

)44 TSBSBI ! SSB ADDRESS FOR 1ST SEGMEMT
+----------+----------+

)46 TSBSTI ! SM TABLE SSB FOR 1ST SEGMENT
+----------+----------+

)48 TSBSB2 ! SSB ADDRESS FOR 2ND SEGMEMT
+----------+----------+

) 4A ! TSBST2 ! SM TABLE SSB FOR 2ND SEGMENT
+----------+----------+

)4C ! TSBSB3 ! SSB ADDRESS FOR 3RD SEGMENT
+----------+----------+

)4E TSBST3 SM TABLE SSB FOR 3RD SEGMENT
+----------+----------+

)50 TSBMLI ! MAP LIMIT ONE REGISTKR
+----------+----------+

)52 TSBMBI ! MAP BIAS ONE REGISTER
+----------+----------+

)54 TSBML2 ! MAP LIMIT TWO REGISTER
+----------+----------+

)56 TSBMB2 MAP BIAS TWO REGISTER
+----------+----------+

)58 TSBML3 MAP LIMIT THREE REGISTER
+----------+----------+

)5A TSBMB3 MAP BIAS THREE REGISTER
+----------+----------+

)5C TSBBLN LENGTH OF MAPPED SEGMENTS (BEETS)
+----------+----------+

)5E ! TSBTLM ! TOTAL ROLLABLE MEMORY (BEETS)
+----------+----------+

)60 TSBMXM MAX VALUE OF TSBTLM
+----------+----------+

)62 TSBLSE LOAD SEGMENT ENTRY LIST HEADER
+----------+----------+

)64 ! TSBOSE ! OWNED SEGMENT ENTRY LIST HEADER
+----------+----------+

)66 TSBSRT TICK COUNTER WHEN TASK STARTED
+----------+----------+

)68
+----------+----------+

)6A TSBFMT THE FDP OF PROGRAM FILE FOR
+----------+----------+

)6C ! TSBFCB ! THE TASK SEGMENT
+----------+----------+

)6E TSBAIC! TSBRES ABORTING I/O COUNT
+----------+----------+ RESERVED

)70 SIZE ** END OF PACKED RECORD

FLAGS FOR FIELD: TSBFLI #10 - TASK FLAGS - SYSTEM FLAGS

2270512-9701 22-173 Structure Pictures

TSB DNOS System Design Document

TSFSYS (X •••••••••••••••) - SYSTEM TASK
TSFPRI (• X ••••••••••••••) - PRIVILEGED TASK
TSFMEM (•• X •••••••••••••) - CURRENT SEGMENT SET IN MEMORY
TSFENA (••• X ••••••••••••) - TAKE END ACTION ON ERROR
TSFIOA (•••• X •••••••••••) - I/O HAS BEEN ABORTED FOR TASK
TSFABT (••••• X ••••••••••) - TASK BEING ABORTED
TSFSEC = (•••••• X •••••••••) - BYPASS SECURITY
TSFQSR (••••••• X ••••••••) - QUEUE SERVER TASK
TSFACT (•••••••• X •••••••) - ACTIVATE TASK OUTSTANDING
TSFBID (••••••••• X ••••••) - INITIAL TASK BID
TSFSPR (•••••••••• X •••••) - SOFTWARE PRIVILEGE
TSFTOA (••••••••••• X ••••) - ABORT TIMEOUT FLAG
TSFIOE (•••••••••••• x •••) - I/O EVENT PEND. UNBUFF

* RESERVED - BITS 13 - 15

FLAGS FOR FIELD: TSBFL2 #12 - TASK FLAGS - CONTROL FLAGS

TSFCNT = (X •••••••••••••••) - TASK BEING CONTROLLED
TSFSSC = (• X ••••••••••••••) - STOPPED BY SCHEDULER
TSFSBK = (•• X •••••••••••••) - STOPPED BY BREAKPOINT
TSFHLT (••• X ••••••••••••) - TASK TO BE HALTED
TSFRST (•••• X •••••••••••) - RESTART PARENT ON TERM
TSFRBD (••••• X ••••••••••) - RBID TASK
TSFXOP (•••••• X •••••••••) - REISSUE XOP
TSFCHO = (••••••• X ••••••••) - JOB-LOCAL CHANNEL OWNER

* E.ESERVED - BITS 8 - 15

Structure Pictures 22-174 2270512-9701

DNOS System Design Document-

* * USER DESCRIPTOR OVERFLOW RECORD (UDO)

*
11/24/82

*
*
* * LOCATION: S$CLF ON DISK *

* THE UDO IS USED ONLY IN THE CASE THAT A USER IS A MEMBER
* OF MORE ACCESS GROUPS THAN WILL FIT IN HIS UDR. IT CONTAINS

UDO

* ACCESS GROUP INFORMATION. IT IS A VARIANT OF THE CAPABILITIES
* LIST FILE RECORD (CLR). FOR DETAILS SEE CLR.

2270512-9701 22-175 Structure Pictures

UDR DNOS System Design Document

* * USER DESCRIPTOR RECORD

*
* LOCATION: DISK

(UDR) 11/24/82
*
*
*
*

* THE UDR DESCRIBES THE DISK STRUCTURES THAT REPRESENTS A
* GIVEN USER OF THE SYSTEM. IT INCLUDES LOGON INFORMATION
* AND SECURITY INFORMATION. IT IS A VARIANT OF THE CAPABILITIES
* LIST FILE RECORD (CLR). FOR DETAILS SEE CLR.

Structure Pictures 22-176 2270512-9701

DNOS System Design Document

**
*
* USER ID PARAMETER (UIP)

* * LOCATION: POINTED TO BY IRBPRM FIELD

*
12/01/82 *

*
*

* *
**
* * THE USER ID PARAMETER IS CHECKED BY SECURITY
* MANAGER AND WILL BE USED IN PLACE OF THE
* ISSUER'S USER ID IF A VALID PASSCODE IS
* SUPPLIED OR THE TASK HAS SECURITY BYPASS.
* THIS PARM MAY BE SUPPLIED BY A USER, OR
* MAY BE CREATED BY IOU TO PASS INFO ACROSS
* THE NETWORK.

*

----------+----------
)00 UIPSLN! UIPLEN ! SUBLIST NUMBER <)02)

UIP

+----------+----------+
)02 UIPUID I !

LENGTH OF PARM-2 IN BYTES ()10)
USER ID

+----------+----------+
/ / /
/ / /
+----------+----------+

)OA UIPPWD! !
+----------+----------+
/ / /
1//
+----------+----------+

EQUATES:

PASSWORD

LABEL EQUATE TO VALUE DESCRIPTION

UIPSIZ $)12 TOTAL LENGTH OF UIP

2270512-9701 22-177 Structure Pictures

VCB DNOS System Design Document

**
* VALUE CONTINUATION BLOCK (VCB) 07/16/81 *
* * * LOCATION: A NAME DEFINITION SEGMENT *
**

----------+----------
)00 VCBVCB POINTER TO NEXT NCB

+----------+----------+

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

VCBSIZ $)02 LENGTH OF NCB OVERHEAD

Structure Pictures 22-178 2270512-9701

DNOS System Design Document VDB

* VALUE DEFINITION BLQCK (VDB) 07/21/81
* * LOCATION: NAME DEFINITION SEGMENT

----------+----------
)00 VDBVCB ! NEXT NAME CONTINUATION BLOCK

+----------+----------+
)02! VDBUSE ! ! NUMBER OF USERS OF THIS VALUE

+----------+----------+
EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION

VDBSIZ $)03 SIZE OF THE VDB OVERHEAD

2270512-9701 22-179 Structure Pictures

..
VRB DNOS System Design Document

*
*
*
*
*

VIRTUAL REQUEST BLOCK (VRB)

LOCATION: SYSTEM TABLE AREA AND JCA

8/22/83
*
*
*
*
*

* * * * * * * * * * * * * * * * * *.*
* DEFINITIONS OF FIELDS IN DSR CALL BLOCK (DATA BUFFER FOR I/O
* SVC SUBOPCODE)17) FOR VIRTUAL TERMINAL DSR.

* ** BEGI~NING PACKED RECORD VRB

----------+----------
)OO! VRBOC ! VRBEC !

+----------+----------+
VTDSR REQURST CODE

VTDSR RETURN CODE
)02 ! VRBVT VIRTUAL TERMINAL NUMBER (HEX)

+----------+----------+
)04 VRBCHR VRBLC BID CHAR

+----------+----------+ LUNO USE COUNT
)06 ! VRBJOB PDTJOB

+----------+----------+
)08 ! VRBRDN REMOTE DEVICE NAME

+----------+----------+
/ / /
/ / /
+----------+----------+

)16 ! VRBJID REAL TERM JOB I.D.
+----------+----------+

)18 ! VRBIPC ! OWNER IPC NAME
+----------+----------+
/ / /
/ / / +----------+----------+

)24 SIZE ** END OF PACKED RECORD

Structure Pictures 22-180 2270512-9701

DNOS System Design Document

**
* * EXTENTION FOR A TERMINAL
* WITH A KEYBOARD

*

(XTK)
*

02/12/82 *
*
* * LOCATION: SYSTEM AREA *

**
* THE XTK IS AN EXTENSION TO THE' PDT USED TO DESCRIBE A
* DEVICE WITH A KEYBOARD. IT IS USED AS A WORK AREA BY
* THE DSR.

----------+----------
)00 ! XTKXUF EXTENDED USER FLAGS FROM BRB

+----------+----------+
)02 XTKFLG XTKSCH! XTK GENERAL FLAGS

XTK

+----------+----------+
)04 ! XTKCRD !

SAVED CHAR FOR JISCII TERMINAL
CARRIAGE RETURN DELAY COUNT

+----------+----------+
)06 XTKICD ! INTER-CHARACTER DELAY COUNT

+----------+----------+
)08 XTKSSC SAVED STATUS OF CASSETTES

+----------+----------+
)OA XTKABT CODE ADDRESS TO PERFORM ABORT

+----------+----------+
)OC XTKTMO TIME-OUT COUNT FOR HANG CONDITION

+----------+----------+
)OE XTKPFR POWER FAIL FLAG/BUFFER BIAS

+----------+----------+
)10 ! EDTFLO ! EXTENDED EDIT FLAGS - WORD 0

+----------+----------+
)12 ! EDTFLI EXTENDED EDIT FLAG - WORD 1

+----------+----------+

FLAGS FOR FIELD: XTKFLG #02 - XTK GENERAL FLAGS

KSFHNG
KSFTMS
KSFSCI
KSFDCD
KSFSIO
KSFDIF

(X •••••••••••••••) - HANG UP CONDITION ON 745
(.X ••••••••••••••) - TIME-OUT SWITCH FOR 745
(•• X •••••••••••••) - SCI ACTIVE DURING HANG UP
(••• X ••••••••••••) - DATA CARRIER DROP DETECTED
(•••• X •••••••••••) - SHIFT IN/SHIFT OUT JISCII
(••••• X ••••••••••) - DIRECT CHAR INPUT REQUESTED

FLAGS FOR FIELD: EDTFLO #10 - EXTENDED EDIT FLAGS - WORD 0

2270512-9701

(X •••••••••••••••) - PASS-THROUGH MODE
(.X ••••••••••••••) - 940-IN PTM, TERMINATE READ ON ETX
(•• X •••••••••••••) - 940-IN PTM, TERMINATE READ ON ESC-)
(••• X ••••••••••••) - USED, BUT NOT DOCUMENTED _
(•••• X •••••••••••) - 940-DISABLE USE OF BIT 0 FOR INTEN

22-181 Structure Pictures

XTK DNOS System Design Document

*

(••••• X ••••••••••) - 940-ALLOW ESC & SOH IN WRITE ASCII B
= (•••••• X •••••••••) - 940-IGNORE DISPLAY CHARACTERS, ETC.

(••••••• X ••••••••) - 940-1=132 COL MODE; 0=80 COL MOD
MDTCHK (•••••••• X •••••••) - POST DATA MODIFIED ON READ
EXVAL (••••••••• X ••••••) - EXTENDED CHAR VALIDATION
NULFLG (•••••••••• X •••••) - NULL CHARACTER SUPPRESSION
CNBFLG (••••••••••• X ••••) - CONVERT NULL TO BLANK

(•••••••••••• X •••) - KANJI
(••••••••••••• XXX) - RESERVED

FLAGS FOR FIELD: EDTFLI 1112 - EXTENDED EDIT FLAG - WORD 1

(X •••••••••••••••) - TERMINATE READ ON ERASE FIELD
(• X ••••••••••••••) - TERMINATE READ ON RIGHT FIELD

LEFARO = (•• X •••••••• " ••••) - TERMINATE READ ON LEFT ARROW
= (••• X It •••••••••••) - TERMINATE READ ON TAB
= (•••• X •••••••••••) - TERMINATE READ ON UP ARROW
= (••••• X ••••••••••) - TERMINATE READ ON SKIP

(•••••• X •••••••••) - TERMINATE READ ON HOME
(••••••• X ••••••••) - TERMINATE READ ON RETURN
(•••••••• X •••••••) - TERMINATE READ ON ERASE INPUT
(••••••••• X ••••••) - TERMINATE READ ON BLANK GRAY
(•••••••••• X •••••) - TERMINATE READ ON DELETE CHAR
(••••••••••• X ••••) - TERMINATE READ ON INSERT·· CHAR

RITARO (•••••••••••• X •••) - TERMINATE READ ON RIGHT ARROW
(••••••••••••• X ••) - TERMINATE READ ON ENTER
(•••••••••••••• X.) - TERMINATE READ ON LEFT FIELD
(••••••••••••••• X) - TERMINATE READ ON DOWN ARROW

EQUATES:

LABEL EQUATE TO VALUE DESCRIPTION
----- ------ -- ----- ------------------------------
XTKFIL XTKFLG)02 FILL CHARACTER
XTKEVT XTKFLG+l)03 EVENT CHARACTER
XTKPOS XTKCRD)04 WITHIN FIELD CURSOR POSITION
XTKDEF XTKICD)06 START OF FIELD CURSOR POSITION
XTKJIN XTKSSC)08 ASCII/JISCII INTENSITy MASK
XTKSCI XTKABT)OA SCRATCH /I 1
XTKSC2 XTKTMO)OC SCRATCH /I 2
XTKSIZ $)14
XTKBUF XTKSIZ)14 CHARACTER BUFFER

Structure Pictures 22-182 2270512-9701

Appendix A

Keycap Cross-Reference

Generic keycap names that apply to all terminals are used for keys on keyboards throughout this
manual. This appendix contains specific keyboard information to help you identify individual keys
on any supported terminal. For instance, every terminal has an Attention key, but not all Attention
keys look alike or have the same position on t~e keyboard. You can use the terminal information in
this appendix to find the Attention key on any terminal.

The terminals supported are the 931 VDT, 911 VDT, 915 VDT, 940 EVT, the Business System
terminal, and hard-copy terminals (including teleprinter devices). The 820 KSR has been used as a
typical hard-copy terminal. The 915 VDT keyboard information is the same as that for the 911 VDT
except where noted in the tables.

Appendix A contains three tables and keyboard drawings of the supported terminals.

Table A-1 lists the generic keycap names alphabetically and provides illustrations of the
corresponding keycaps on each of the currently supported keyboards. When you need to press
two keys to obtain a function, both keys are shown in the table. For example, on the 940 EVT the
Attention key function is activated by pressing and holding down the Shift key while pressing the
key labeled PREY FORM NEXT. Table A-1 shows the generic keycap name as Attention, and a
corresponding illustration shows a key labeled SHIFT above a key named PREY FORM NEXT.

Function keys, such as F1, F2, and so on, are considered to be already generic and do not need
further definition. However, a function key becomes generic when it does not appear on a certain
keyboard but has an alternate key sequence. For that reason, the function keys are included in the
table.

Multiple key sequences and simultaneous keystrokes can also be described in generic keycap
names that are applicable to all terminals. For example, you use a multiple key sequence and
simultaneous keystrokes with the log-on function. You log on by pressing the Attention key, then
holding down the Shift key while you press the exclamation (I) key. The same information in a table
appears as Attention/(Shift)!.

Table A-2 shows some frequently used multiple key sequences.

Table A-3 lists the generic names for 911 keycap designations used in previous manuals. You can
use this table to translate existing documentation into generic keycap documentation.

Figures A-1 through A-5 show diagrams of the 911 VDT, 915 VDT, 940 EVT, 931 VDT, and Business
System terminal, respectively. Figure A-6 shows a diagram of the 820 KSR.

2274834 (1/14)

2270512·9701 A·1

Keycap Cross-Reference

A·2

Generic Name

Alternate
Mode

Attention 2

Back Tab

Command 2

Control

Delete
Character

Enter

Erase Field

Notes:

911
VDT

Table A·1. Generic Keycap Names

940
EVT

931
VDT

SHIFTO; [8'"
..• , •. ,.,.,.,.,.,., .•. ,:.,.,., .•..... : .. ,." .. ".::

~EL".
HAFt:

.. ,.,.,.,.,.,",.,',.,.,.,." ' •.

ness
System
Termin

'The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service
Routine (DSR). Keys on otherTPD devices may be missing or have different functions.

'On a 915 VDT the Command Key has the label F9 and the Attention Key has the label F10.

2284734 (2/1 4)

820'
KSR

F(71I
~

2270512-9701

Generic Name

Erase Input

Exit

Forward Tab

F1

F2

F3

, F4

Notes:

Table A·1. Generic.Keycap Names (Continued)

911
VOT

~ ..••.•••..••. F .••. ~ ..••.•• < .••.••
~

~
~

940
EVT

iii: , . ~:

.... :•.•.•• ~":"".'' .;:

931
VOT

ness
System
Terminal

'The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service
Routine (DSR). Keys on other TPD devices may be missing or have different functions.

2284734 (3/14)

2270512-9701

Keycap Cross-Reference

820 1

KSR

Fa
~

A·3

Keycap Cross-Reference

A·4

Generic Name

F5

F6

F7

F8

F9

F10

Notes:

Table A·1. Generic Keycap Names (Continued)

911
VOT

940
EVT

931
VOT

Bus ness
System
Tori," I I"' ... I

'The 820 KSR terminal has been used as a tYPical hard-copy terminal with the TPD Device Service
Routine (DSR). Keys on other TPD devices may be missing or have different functions.

2284'734 (4/14)

820 1

KSR

2270512-9701

Generic Name

F11

F12

F13

F14

Home

Initialize Input

Notes:

Table A·1. Generic Keycap Names (Continued)

911
VOT

940
EVT

931
VOT

[8';;
SHIFT 0 ::

•• ;=:.: : •••.• :.:.:.: ••. :.:.:.:.: •.••••• :.:.:.: •• ~

[80Me::
.. ,.,.,.,',.,.,." ..)

ness
System
Terminal

'The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD DevlcP StHVlce
Routine (DSR). Keys on other TPD devices may be missing or have different functions.

2284734 (5/14)

2270512-9701

Keycap Cross-Reference

820 1

KSR

FrE11 ~

A·5

Keycap Cross-Reference

A·6

Generic Name

Insert
Character

Next
Character

Next Field

Next Line

Previous
Character

Previous Field

Notes:

Table A·1. Generic Keycap Names (Continued)

911
VOT

or

rEi
~

or

riI

940
EVT

Fiiiiij' -

931
VOT

Business
System
Terminal

fiiit1
~

'The 820 KSR terminal has been used as a typical hard-copy termindl with the TPD Devlcf' St'fVICl'
Routine (DSR). Keys on other TPD devices may be missing or have different functions

2284734 (6(/14)

820 1

KSR

None

None

None

[1]" "••

~
or

~
~

None

Non",

2270512·9701

Generic Name

Previous Line

Print

Repeat

Return

Shift

Skip

Uppercase
Lock

Notes:

Table A·1. Generic Keycap Names (Continued)

911
VOT

940
EVT

r-=--

931
VOT

See
Note 3

~
~
~

~:" ::
RETURN ; .

. .. : , ~:. .~ .. :~ :.~ .

Fa. "C",.,.,.A,",.p ,.s ·' .•.• , •. ~

Business
System
erminal

See
Note 3

'The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service
Routine (DSR). Keys on other TPD devices may be missing or have different functions.

'The keyboard is typamatic, and no repeat key is needed.

2284734 (7/14)

2270512-9701

Keycap Cross-Reference

820 1

KSR

None

None

A·7

Keycap Cross-Reference

2284734 (8/14)

A·a

Table A·2.

Function

Log-on
Hard-break
Hold
Resume

Frequently Used Key Sequences

Key Sequence

A ttention/(Sh ift)!
Attention/(Control)x
Attention
Any key

Table A·3. 911 Keycap Name Equivalents

911 Phrase

Blank gray
Blank orange
Down arrow
Escape
Left arrow
Right arrow
Up arrow

Generic Name

Initialize Input
Attention
Next Line
Exit
Previous Character
Next Character
Previous Line

2270512-9701

I\)
I\)
......
o
~
I\)

cO
........

~

»
cD

\
V

CURSOR CONTROL
AND EDIT

2284734 (9/14)

Fl

SPEC IAL CONTROL __ A~ __ ~

F2 F3 F4 FS F6 F7

\ v~------------------..J
DATA ENTRY

Figure A·1. 911 VOT Standard Keyboard Layout

NUMERIC PAD

" (I)

'" (')
Q)

"'0

Q
o
C/)
C/)

:X,
(I)

Ci)
Ci3
:J
(')
(I)

~
o

I\.)
I\.)
....... o
~
I\.)

<0
.......
~

~----~vr-------J

CURSOR CONTROL
AND EDI T KEYS

2284734 (10/14)

FUNCTION
KEYS STATUS LEOs

I 1\ \ " ~------,.

\
V

DATA ENTRY
KEYS

Figure A·2. 915 VOT Standard Keyboard Layout

o o o 0
IDLE EXEC TEST COMM

o o o o
ERR MODE OSOl OS02

~------~v~--------

NUMERIC
KEY PAD

~
(1)
'<:
(')
Q)

"C
()

C3
('J)
('J)

:h
(1)

<i)
q;
::::l
(')
(1)

I\)
I\)
......
o
~
I\)

cO
......
~

l>
.:...

~KI[[I~@]JKI[!]J]]~~[[lJlD~ [II

2284734 (11/14)

raJDI ~1lDII
MARGIN

Figure A·3. 940 EVT Standard Keyboard Layout

[11

~
CD

'<:
(')
!l:l
"tJ
()
..... o
(I)
(I)

:iJ
CD

CD
Cti
:;,
(')
CD

~
~

I\)
I\)
:--..I o
~
I\)

to
........

~

STATUS

2 284734 (1 2/1 4)

ON/OFF REV DISPLAY
LINE BKGND BRIGHT DIM

SPEC
CHAR

BELL
VOLUME

._._._._'_.~.~.~.~.~." ••• ~~.;--.T •• ~ •••••. ;- ••••••••• I •••••••••• ~.~.~.~ ••••• ~.~ ••••••• ~~~.;:W.~MW:0M~~:.;:-;;;:«~:;:;.~.:-;'"?-.

Figure A·4. 931 VOT Standard Keyboard Layout

l]il.IN. s lfj.lD ..•... 0. 8.·Rj~t· em ~
AxLAW&dXXL

~
<b
'<:

2
1)

~
en
en
:h
<b

CD
Cti
:::3
C')

<b

I\)
I\)
....... o
~
I\)

cO
.......
~

~
~

~

L~1L.:]r....:!...lr":"'1L:JL:JL:JL:.J I~j~[]

2284734 (13/14)

Figure A·5. Business System Terminal Standard Keyboard Layout

" (])
"'<:: o
Q)

"'tJ
o a
C/)
C/)

:iJ
(])

<b
<ti
:::J
o
(])

» .:...
A

I\.)
I\.)
-....J o
~
I\.)

<b
.......
~

[g][QJ[QJ

0 0

t:l t:l
------ __ .. -.J

.-.-.-.-.7'~'~'-.-'·'·'~'_'_.' •• _._._._._ •••• ~.~.~.~ •••• :.:~;~.~.~.~ •••••• .-

2284734 (14/'4)

Figure A·6. 820 KSR Standard Keyboard Layout

~
'<:

2
"t)

()

a
(I)
(I)

:lJ
CD

CD
Cti
:::,
(')
CD

DNOS System Design Document

ALPHABETICAL INDEX

In t.r 0 due t ion

The following index lists key words and concepts from the subject
material of this manual together with the area(s) in the manual
that supply coverage of the listed concept. The numbers along
with the right side of the listing reference the following manual
areas:

* Sections -- References to Sections of the manual appear
as "Section x" with the symbol x reresenting any
numeric quantity.

* Appendixes -- References to Appendixes of the manual
appear as "Appendix y" with the symbol y representing
any capital letter.

* Paragraphs -- References to paragraphs of the manual
appear as a series of alphanumeric or numeric
characters punctuated with decimal points. Only the
first character of the string may be a letter; all
subsequent characters are numbers. The first
chartacter refers to the section or appendix of the
manual in which the paragraph is found.

* Tables References to tables in the manual are
represented by the capital letter T followed
immediately by another alphanumeric character
(representing the section or appendix of the manual
containing the table). The second character is
followed by a dash (-) and a number:

Tx-yy

* Figures -- References to figures in the manual are
represented by the capital letter F followed
immediately by another alphanumeric character
(representing the section or appendix of the manual
containing the figure). The second character is
followed by a dash (-) and a number:

Fx-yy

Should you be unable to find the item of interest in the index,
re'view the Table of Contents, List of Tables and List of Figures
for general categories of information.

2270512-9701 1 Index

DNOS System Design Document

Alphabetical

Abbreviated Preamble
Abbreviations, DNOS Subsystem
Abort Screen I/O Sequence
Access:

Con t ro I :
List
Packet

Group, Creation
Groups
Privilege, Concatenated File
Secur i ty, Fi Ie

Activation Routine NFPACT, Task
Active:

List

Index

Task on WOT Queue Routine, NFPWOT, Place
Address, Beet
ADR, Alias Descriptor Record
ADU, Allocatable Disk Unit
Algorithm:

Key Hashing
Task Scheduler

Alias Descriptor Record ADR
Allocatable Disk Unit ADU
Allocate Table Area
Allocation:

Bi t Map
Secondary

Alternate Physical Device Table
Anchor, DNOS"Queue
Applications Program File
Architecture:

File Management
I/O Utility IOU Task
Job Management
Name Manager
Segment Management

Area:
Scheduling, Table
(WOT) Queue, Waiting On Table

Areas, File Management Table
Assembly Language:

Coding Conventions
Label
Macro Library
Preamble

Asynchronous Data Structures Linkage
Asynchronous:

Atom

DSR •
Local PDT Extension
Long-Distance PDT Extension

Index 2

3.3
• T3-1
10.3.4

10. 8
10.8.1
10.8.1

10.8
10.6.4.4

10.8
4.6.5

10.6.3,

9.2
4.6.6
5.4.5

11.4.5
1 1 • 3

10.6.3,
..

11.4.5
4.6

11.4.5
11 • 3

4.5.6

11.3.2
11 • 5
10.2

2.2
4.4

11 • 6
10.6, 10.6.2

8.3
10.10.1

7.2

4.6.6
4.6.6

10.6.3

3.3
3.3
3.3
3.3

10.5.1

10.5, 10.5.1
10.5.3.1
10.5.3.2

3. 3

2270512-9701

DNOS System Design Document

Attributes, File Buffer Segment
Available Space List, Program File
Available Space, Program File

Beet Address
Bias Segment Addr~ss Within Task Processor
Bid:

Keyboard
Processor, Task

Bid Routine NFTBID, Task
Bit Map:

Allocation
PBM, Partial
Program File
Relocation

Blank Suppressed Sequential File
Blocked Relative Record File
Blocking Factor
Boundaries, Job
Branch Node, B-Tree
BRB:

Buffered Request Block
Format, Name Manager

BRO, Buffered Request Overhead
BTB, B-Tree Block
Buffer, Large I/O
Buffer Table Area:

Expansion
Reduction

Buffered Request Block BRB
Buffered Request Overhead BRO
Buff.ering:

Device I/O
SVC Request

Bypass, Securi ty
B-Tree
B-Tree Block BTB
B-Tree:

Branch Node
KIF
Leaf Node
Root Node

Cache List
Caching, Segment
Capability List
C C B, Ch ann e 1 Con t r 0 1 B 1 0 c k
CDE, Command Definition Entry
CDR, Channel Descriptor Record
Change, Map File
Change Segment:

Flow
Limitation

2270512-9701 3

•

•

•

•

•

•

7.4.3
FII-5

11.4.4

5.4.5
7.4.10

10.3.4
9.3. 1
4.6.4

11.3.2
11.3.2
11.4.4
11.4.4
11.4.2

11.4.1.2
11 .4

8.7
11.4.3

10.3.6
10.10.3

10.2
11.4.3
10.3.5

10.3.5
10.3.5
10.3.6

10.2

FI0-5
6. 1

10.8
11.4.3
11.4.3

11.4.3
FII-3

11.4.3
11.4.3

9.2

10.3.4,
10.6.3,

7.4.2
10.8.1
10.6.3
10.3.6
11.4.5
4.5.5

F7-2
7.4.2

Index

DNOS System Design Document

Channel
Characteristics

Channel Control Block CCB
Channel Descriptor Record CDR
Channel:

LUNO Count
Master/Slave
Name Syntax

Channel Owner SVC, Master/Slave
Channel:

Request Pending Queue
Security
Symmetric

Character Set, Pathname
Characteristics, Channel
Check, Memory Error
Check Segment Status Processor
CI401 :

Local PDT Extension
Long-Distance PDT Extension

CI403/CI404 Local PDT Extension
Clock Interrupt Processor
Clock Tick
Code:

Constant, Error
Crash
Device-Dependent

Coding:
Conventions:

Assembly Language
Pascal

Command Definition Entry CDE
Command:

Definition Table
Modify:

Scheduler/Swap Parameters
Scheduler/Swap Parameters

Communications, Cross-Job
Compatibility, DNOS/DXIO
Concatenated File:

Access Privilege
Pathname Format

(MSP)
(MSP) SCI

Configurability, I/O Utility IOU Task
Constant:

Equate, Global
Error Code

Continuation Flag, Logical Record
Control:

List, Access
Packet, Access

Controller Service Routine, Hardware
Conventions:

Assembly Language Coding

Index 4

• I

10.9
10.9.2
10.6.3

10.6.3, 11.4.S

10.6.4.3
10.9.2.2
10.6.4.3

FlO-IS

10.9
10.8.1

10.9.2.1
10.6.4.1

10.9.2
S.2

7.4.6

10.3.4,

TI0-S
TI0-S
TI0-S
4.7.1
4.6.3

3.S
3.2
S.3

3.3
3.4

10.3.6

10.3.4

4.9
4.6.2

8.7
2.4

10.6.4.4
10.6.4.4

10.6.1

3.2
3.S

11.4.2

10.8
10.8.1

10.S

3.3

2270512-9701

DNOS System Design Document

Pascal Coding
Conversion, DX10-to-DNOS DSR
Coordination Support, Nucleus,
Copying Routine, NFCOPY, Data
Count, Channel LUNO
Crash:

Code
File

Initialization
Routine NFCRSH, System

Create Job:
Processor
SVC

Create Segment
Flow
Processor

Creation Access Group
Cross-Job Communications

Data:
Copying Routine, NFCOPY,
Module:

SLDATA, System Loader
SLDISK, System Loader

Data Structure:
Task Scheduler
Template, Global

Deallocate Table Area
Decoder, Interrupt
Definition Table, Command
Definition Table:

Entry, SVC •
SVC • •
User-Written SVC

DEL, Descendant Error List
Descendant Error List DEL •
Description Entry, Program File
Description Entry, Program File
Device:

Dummy
I/O

Buffering
Request Processing

Device Service Routine:
DSR Interrupt Processing
Loading
Support Routines

Device-Dependent Code
Diagnostic File .S$DIAG, Disk
Diagnostic Packet
Directory

DNOS Major
File Structure

2270512-9701 5

•

•

•
•

•

Overlay
Task

•

•

•

•

•
•

•
•
•

•

•

•

•

3.4
10.3.6

4 .5.3
4.10

10.6.4.3

3 • 2
4.4

5.4.6
4.5.7

8.6.3
8.2

F7-4
7.4.3

10.8.1
8.7

4.10

5.3.4
5.3.4

4.6.1
3.2

4.5.6
10.3.2
10.3.4

F6-1
6.4

6.6.1
10.10.4
10.10.4
11.4.4
11.4.4

'10.3.1
10.3, F 10-1

FI0-5
10.3.1

10.3.2
5.4.10
10.3.6

5.3
11 • 3
4.9

10.6.3.1
T3-2

11.4.5

Index

DNOS System Design Document

Directory Overhead Record DOR
Directory:

.MACROS

.TEMPLATE
Di sk:

Diagnostic File .S$DIAG
Format

Initialized
Uninitialized

PDT Extension DPD
Structure, New
Volume:

Information
Installation

Display
DNOS:

(XPD), Execute Performance

File Type
Flow
Job

ID
State

Kernel
Major Directory
Map File
Performance Measurement
Queue

Anchor
Root
Structure
Subsystem:

Abbreviations
Documentation

DNOS/DXI0 Compatibility
Documentation, DNOS Subsystem
Door
DOR, Directory Overhead Record
DPD, Disk PDT Extension
DSR:

Asynchronous
Conversion, DXI0-to-DNOS

•

•

Interrupt Processing, Device Service Routine
Scheduling, Priority
Teleprinter

DSR/TSR Entry Points
Dummy Device
DDMY
DXI0 DCB
DXI0-tfr-DNOS DSR Conversion
Dynamic Buffer, SVC
Dynamic Priority Modification

End-of-Record Queue,
Entry Block, Logical

Physical Device Table
Name Parameter List

Index 6

•

10.6.3, 11.4.5

•

3 • 3
3 • 2

1 1 • 3
T 1 1-1

1 1 • 3
1 1 • 2
10.2
11 • 2

5.3.1, 11.3.1
5.2, 5.4.13

•

•

•

10.6.3

11 • 4
F2-1

8. 1
8.6.3

• 8.5
2.2

T3-2
4.2, F4-1

•
4.7.1

2.2
2.2
2.2
2.2

10.6.3,

T3-1
T3-2

2.4
T3-2

4.5.3
11.4.5

10.2

10.5,
•

10.5.1
10.3.6
10.3.2
10.3.2

10.4
TI0-3

10.3.1
10.3.1
10.3.6
10.3.6
6.5.2
4.6.2

10.3.2
10.10.2

2270512-9701

DNOS System Design Document

Entry:
Program File:

Procedure/Segment Description
Task Description

SVC Definition Table
EOF, Sequential File
Equate:

Global:

Error:

Constant
Error

Check, Memory
Code Cons tan t
Equate, Global
Recovery, KIF

Event:
Mask
Number

Event SVC, Post
Event Synchronization
Exclusive Use of Segment
Exclusive Use of Segment, Reset
Execute Performance Display (XPD)
Execution Priority
Expandable File Space Allocation
Expansion, Buffer Table Area
Extention (MTX, Magnetic Tape PDT

Fast Transfer, IPC
FCB, File Control Block
FDB, File Directory Block
FDP, File Descriptor Packet
FDR, File Descriptor Record
File Access Security
File Buffer Segment Attributes
File Control Block FCB
File, Crash
File Descriptor Packet FDP
File Descriptor Record FDR
File Directory Block FDB
File Initialization, Crash
File Management

Architecture
Hodules
Table Area

File Management Table
File Manager Task Area
File Manager Work Area
File:

Relative Record
Security

Areas
FMT
FWA

Space Allocation,
File Structure Common

Expandable
FSC

2270512-9701 7

•

10.6.3,
10.6.3,

10.6.3,

10.6.3,

11.4.4
11.4.4

F6-1
11.4.2

3.2
3.2

5.2
3.5
3.2

11.4.3

9.4.3
9.4.3
9.4.3
9.4.3

7.4.11
7.4.12
10.6.3
4.6.2

11 • 5
10.3.5

10.2

10.9.3, 10.9.4
10.6.3.1, 11.6
10.6.3.1, 11.6

11 • 6
10.6.3, 11.4.5

10.8
7.4.3

10.6.3.1, 11.6
4.4

11 • 6
10.6.3, 11.4.5
10.6.3.1, 11.6

5.4.6
11 • 1
11 • 6

TII-3
10.6.3.1

10.6.3
F11-12

11 • 6

11.4.1
10.8

,. 11.5
10.6.3

Index

DNOS System Design Document

File:
Structure, Directory
Swap
System

Loader
S$$CLF
S$$SCA

File Type, DNOS
File:

WCS
Writable Control Store

Flow:
Change
Create
DNOS

Segment
Segment

Forced Write
Initial Load Segment
Release Job Segment
Segment Manager
System Loader
Task:

Loader
Scheduler

FMT, File Manager Task Area
Forced Swap
Forced Write Flow
Forced Write Segment Processor
Format:

Concatenated File Pathname
Disk
Initialized Disk
Multifile Set Pathname
Name Manager BRB
Program File
Request Definition Block RDB
Return Information Block RIB
Revision
Sequential File
Uninitialized Disk

Free Space, Special Table Area

.~

. -

•

from WOT Queue Routine, NFDWOT, Remove Waiting Task
FSC, File Structure Common
Function Linkage, Nucleus
FWA, File Manager Work Area

Get Job Information Processor
Global:

Constant Equate
Data Structure Template
Error Equate

Group, Creation Access
Groups, Access

Index 8

11.4.5
4.4, 5.4.12

4.4
4.4

10.8.1
10.8.1

11 .4

...

5.4.7
5.4.7

F7-2
F7-4
F2-1

7.4.7
F7-3
F7-6
F7-1

5.4

F9-1
F4-2

Fll-12
10.3.5
7.4.7
7.4.7

10.6.4.4
T11-1

11 .3
10.6.4.4

10.10.3
F11-4

T6-3
T6-4

3.3, 3.4
F 11-1

11 • 2
5.4.8
4.6.6

10.6.3
4.5.1

11 • 6

8.6.8

3.2
3.2
3.2

10.8.1
10.8

2270512-9701

DNOS System Design Document

Halt Job Processor
Halt/Resume Screen Output Sequence
Hard Break Sequence ..
Hardware Controller Service Routine
Hashing Algorithm, Key
Header, Queue
Hidden Request Queue, Physical Device Table
Home File Record Number
HSR •

ID, DNOS Job
IDS, Initialize Disk Surface Utility
Image File

.S$IPL System Loader
Information, Disk Volume
Inhibit Scheduling
Initial Load Segment Flow
Initialization, Crash File • •
Initialize Disk Surface Utility IDS
Initialize New Volume Command INV
Initialized Disk Format
Initiate Event SVC
Input:

Queue:
I/O Utility IOU •
Name Manager

Installation, Disk Volume
Interface Routine, PLname
Internal Interrupt Processor
Interprocess Communication IPC
Interrupt:

Decoder
Masking
Processing •

Device Service Routine DSR .•
Processor:

Clock
Internal
Power-Down
Power-Up

Service Routine
INV, Initialize New Volume Command
IOU:

Input Queue, I/O Utility
I/O.Utility
Sub-Opcode, Undocumented
Task:

Architecture, I/O Utility
Configurability, I/O Utility

IPC:
Fast Transfer
Interprocess Communication

IRB:

2270512-9701 9

•

5.2,

4.5.4, 8.6.4,

•

. '.
5.2,

•

8.6.4
10.3.4
10.3.4

10.5
11.4.5
4.5.2

10.3.2
7.4.7
TI0-2

8.6.3
11 .2

11.4.6
5.2

5 .3. 1
8.6.9

F7-3
5.4.6

11.2
11 • 2
11 • 3

9.4.3

10.6
10.6

5.4.13
3.4

4.7.2
10.9

10.3.1, 10.3.2,
10.3.2
10.3.6

4.7
10.3.2

4.7.1
4.7.2
4.7.3
·4 • 7 • 3

10.5
11 • 2

10.6
10. 1

10.6.4.1

10.6, 10.6.2
10.6.1

10.9.3, 10.9.4
10.9

Index

ISR
I/O:

I/O Request Block
Parameter Pointer

Buffer, Large
Buffering, Device
Device
Postprocessor

I/O Request Block IRB
I/O Request Processing
I/O Utility:

JCA:

IOU
Input Queue
Task Architecture
Task Configurability

Job Communication Area
Size

JIT, Job Information Table
Job Boundaries
Job Communication Area:

JCA
Loading

Job:
DNOS
ID, DNOS

Job Information Table JIT
Job Management Architecture
Job Manager:

SVC:
Preprocessor
Processor

Job State, DNOS
Job Status Block JSB
Job Temporary File
JSB, Job Status Block

KDR:
Key Descriptor Record
KIF Key Descriptor Record

Kernel:
DNOS
Program File
Segment

Table Format
Key Descriptor Record KDR
Key Hashing Algorithm
Key Indexed File KIF
Keyboard:

Bid
PDT Extension XTK

Keyboard Status Block KSB

Index 10

DNOS System Design Document

10.2
10.6.4.1

TIO-2

10.3.5
FIO-5

10.3, F 10-1
10.3.3

10.2
10.6

10.1
10.6

10.6, 10 .. 6.2
10.6.1

4.3, 8.4, FII-12
8.6.3

5.4.9, 7.3
8.7

4.3, 8.4, FII-12
5.4.9

8. I
8.6.3

5.4.9, 7.3
8.3

8.6. 1
8.6.2

8.5
8.4

10.6.4.5
8.4

10.6.3
11.4.5

2.2
4.4, 5.3.3

5.4.5
5.4.5

10.6.3
11.4.5
11.4.3

10.3.4
10.2
10.2

2270512-9701

DNOS System Design Document

KIB, KIF Data Block
KIF B-Tree
KIF Data Block KIB
KIF Error Recovery
KIF Key Descriptor Record KDR
KIF:

Key Indexed File
Multifile Set
Prelog Block

Kill Job Processor
KSB, Keyboard Status Block

Label, Assembly Language
Large I/O Buffer
LDT:

Logical Device Table
Parameter Flag
Structure

Leaf Node, B-Tree
Library, Assembly Language Macro
Limitation, Change Segment
Line Printer PDT Extension LPD
Linkage:

Asynchronous Data Structures
Nucleus Function

List:
Access Control
Active
Cache
Capability
Entry Block, Logical Name Parameter
Time Delay
Waiting-on-Memory WOM

Load Segment
Loader:

Data:
Module, SLDATA,
Module, SLDISK,

File, System
Flow, Task
Queue
Task

System
System

Loading:
Device Service Routine
Job Communication Area
Special Table Area

Local:

Lock

PDT Extension:
Asynchronous
CI401
CI403/CI404

Logical Device Table LDT

•

•

11.4.3
FII-3

11.4.3
11.4.3
11.4.5

11.4.3
10.6.4.4

11.4.3
8.6.9

10.2

3.3
10.3.5

10.2, 10.6.3, 11.6
10.6.3.2

10.6.3.2, FI0-13
11.4.3

3.3
7.4.2

10.2

10.5.1
4.5.1

10.8
9.2
9.2

10.8.1
10.10.2

9.2
9.2

7.4.13

5.3.4
5.3.4

4.4
F9-1

9.2
9.3.2

5.4.10
5.4.9
5.4.8

10.5.3.1
T10-5
TI0-5
9.4.2

10.2, 10.6.3, 11.6

2270512-9701 11 Index

Logical Name:
Parameter List
Parameter:

List Entry Block
Types

Segment
Logical Record Continuation Flag
Long-Distance:

PDT Extension:
Asynchronous
CI401
Serial Printer

LPD,
LUNO

Line Printer PDT Extension
Count, Channel

Macro Library, Assembly Language
Magnetic Tape PDT Extention (MTX
Major Directory, DNOS
Management:

Nucleus Table Area
Table Areas, File

Map File:
Change
DNOS
Physical Device Table
Scheduler
SVC Processor
Switching

Map Job Name Processor
Mask, Event
Masking Interrupt
Master Read
Master Write
Master/Slave:

Channel
Channel Owner SVC

Measurement, DNOS Performance
Memory:

Error Check
Size Determination

Microcode
Modification, Dynamic Priority
Modify Job Priority Processor
Modify:

Scheduler/Swap:
Parameters (MSP) Command
Parameters (MSP) SCI Command

Table (MST) System
Module:

SLDATA,
SLDISK,
SVC

System Loader
System Loader

Modules, File Management

Index

Data
Data

12

DNOS System Design Document

5.2,

2 • 1 ,

10.3.1,

•

10.10.2

10.10.2
10.10.2

5.2, 10.10
11.4.2

."

•

10.5.3.2
TI0-5
T10-5

10.2
10.6.4.3

3.3
10.2
T3-2

4.5.6
10.6.3

4.5.5
4 • 2, F 4- 1

5.4.10
5.4.10

6.3
6.5.4
8.6.7
9.4.3

10.3.2, 10.3.6
10.9.2.2
10.9.2.2

10.9.2.2
FlO-IS
4.7.1

3.3, 4.5.1, 5.2,

5.2
5.2

5.3.2
4.6.2
8.6.6

4.9
4.6.2

10.6.3

5.3.4
5.3.4

T6-2
TII-3

2270512-9701

DNOS System Design Document

MSAR Task
Multifile Set:

KIF
Pathname Format •

Name Entry, Program File
Name Management
Name Manager:

Architecture
BRB Format
Input Queue
Queue
Subopcode

10.6.4.1,

Name Syntax, Channel
New Disk Structure
NFCOPY, Data Copying Routine
NFCRSH, System Crash Routine

•

. .
NFDWOT
NFDWOT,
NFPACT,
NFPWOT

Remove Waiting Task from WOT Queue
Task Activation Routine

•

•

Routine

NFPWOT,
NFSCHD,
NFTBID,
Node:

Place Active Task
Task Scheduler

on WOT Queue Routine

Task Bid Routine

B-Tree:

.Nucleus:

Branch
Leaf
Root

Coordination Support
Function Linkage
Queue Types

•

Queuing Support
Synchronization Support
Table Area Management

Number, Event •

of Segment, Exclusive Use
Offset, Program File

•

On Table Area (WOT) Queue, Waiting

•

•

on WOT Queue Routine, NFPWOT, Place Active Task
One-Word Header Queue
Opcode:

Semaphore
SVC

Operator, System
OVB, Overhead Beet
Overhead Beet:

OVB
Queue

Overlay Description Entry, Program File
Owned Segment

2270512-9701 13

10.8.4.1

10.6.4.4
10.6.4.4

11.4.4
10.10

10.10.1
10.10.3

10.6
10.6.4.5, 10.10

10.10
• 10.6.4.3

11 • 2
4.10

4.5.7
4.6.6
4.6.6
4.6.5
4.6.6
4.6.6

4.6
4.6.4

11.4.3
11.4.3
11.4.3

4.5.3
4.5.1
4.5.2
4.5.2
4.5.3
4.5.6
9.4.3

7.4.11
'11.4.4

4.6.6
4.6.6
4.5.2

9.4.1
T6-2

8.6.11
7.3

7.3
4.5.2

11.4.4
7.4.11

Index

DNOS System Design Document

Packet:
Access Control
Diagnostic

Parameter Flag, LDT
Parameter List Entry Block, Logical Name
Parameter List, Logical Name
Parameter Pointer, IRB
Parameter Types, Logical Name
Parameters

(MS P) :
Command, Modify Scheduler/Swap
SCI Command, Modify Scheduler/Swap

Partial Bit Map PBM •
Pascal:

Coding Conventions
Preamble

Pathname:
Character Set
Format:

Concatenated File
Mu 1 t if i 1 e Se t

Syntax, Verify
PBM, Partial Bit Map
PDT Extension:

PDT:

Asynchronous:
Local
Long-Distance

CI401 :
Local
Long-Distance

CI403/CI404 Local
DPD, Disk
LPD, Line Printer
Serial Printer Long-Distance
XTK, Keyboard

Extention (MTX, Magnetic Tape
Physical Device Table •

Pending Bid Queue, Physical Device Table
Performance:

Display (XPD), Execute
Measurement, DNOS

•

•

10.8.1
4.9

10.6.3.2
10.10.2
10.10.2

10.6.4.1
10.10.2

10.6.3.2

4.9
4.6.2

11.3.2

3.4
3.4

10.6.4.1

10.6.4.4
10.6.4.4
10.6.4.1

11.3.2

10.5.3.1
10.5.3.2

T10-5
T10-5
TI0-5

10.2
10.2

TI0-5
10.2

10.2
10.2

10.3.4

Performance Package '. 2.1, 3.3, 4.5.1,

10.6.3
4.7.1

5.2, 5.3.2
7.3

T5-1
PFI, Program File Directory Index
Phase, System Loader
Physical Device Table:

Alternate
End-of-Record Queue
Hidden Request Queue
Map File
PDT
Pending Bid Queue

Index 14

10.2
10.3.2
10.3.2
5.4.10

10.2
10.3.4

2270512-9701

DNOS System Design Document

Waiting Queue
Place Active Task on WOT Qu~ue RQutine, NFPWOT,
PLname Interface Routine
Post Event SVC
Postprocessor, I/O
Power-Down Interrupt Processor
Power-Up Interrupt Processor
Preamble:

Abbreviated
Assembly Language
Pascal
Template

Prelog Block, KIF
Preprocessor:

Job Manager SVC
Segment Management SVC
SVC

Priority
DSR Scheduling
Execution
Modification, Dynamic

. '
•

•

Privilege, Concatenated File Access
Procedure/Segment Description Entry, Program File
Processing:

Device Request
Device Service Routine DSR Interrupt
Interrupt
I/O Request
Segment Management SVC
SVC

Processor:
Bias Segment Address Within Task
Check Segment Status
Clock Interrupt
Create Job
Create Segment
Forced Write Segment
Get Job Information
Halt Job
Internal Interrupt
Job Manager SVC
Kill Job
Map Fi Ie, SVC
Map Job Name
Modify Job Priority
Power-Down Interrupt
Power-Up Interrupt
Release Job Segment
Reserve Segment
Resume Job
Set/Reset Modified/Releasable
SVC
Task Bid

2270512-9701 15

,.

10.3.1
4.6.6

3.4
9.4.3

10.3.3
4.7.3
4.7.3

3.3
3.3
3.4
3.2

11.4.3

8.6. 1
7.4.1

6.1
4.6.2

10.3.2
4.6.2
4.6.2

10.6.4.4
11.4.4

10.3.1
10.3.2

4.7
10.6
7.4
4.8

7.4.10
7.4.6
4.7.1
8.6.3
7.4.3
7.4.7
8.6.8
8.6.4
4.7.2
8.6.2
8.6.9

6.3
8.6.7
8.6.6
4.7.3
4.7.3
7.4.8
7.4.4
8.6.5
7.4.9

T()-l, T6-2
9.3.1

Index

DNOS System Design Document

User-Written SVC
Program File

Applications
Available Space
Available Space List
Bit Map

Program File Directory Index PFI
Program File:

Forma t
Kernel
Name Entry
Offset
Overlay Description Entry
Procedure/Segment Description Entry
Record Number
Segment Entry
Shared
Task Description Entry
Utilities

Queue:
Anchor, DNOS
Channel Request Pending
DNOS
Header
I/O Utility IOU Input
Loader
Name Manager

Input
One-Word Header
Overhead Beet
Physical Device Table:

End-of-Record
Hidden Request
Pending Bid
Waiting

Routine:

10.6.4.1,

NFDWOT, Remove Waiting Task from WOT
NFPWOT, Place Active Task on WOT

Server
Six-Word Header
TSBEOR

Queue Types, Nucleus
Queue, Waiting On Table Area (WOT)
Queuing Support, Nucleus

RDB:
Format, Request Definition Block
Request Definition Block
Structure, Request Definition Block

Read Call Block
Rebuffering, SVC
Record Number:

Index 16

6.6.2
11.4.4

4.4
11.4.4
FII-5

11.4.4
7.3

FII-4
4.4, 5.3.3

11.4.4
11.4.4
11.4.4
11.4.4
11.4.4

7.3
4.4

11.4.4
4.4

2.2
10.9

2.2
• 4.5.2

10.6
9.2

10.6.4.5, 10.10
10.6

4.5.2
4.5.2

10.3.2
10.3.2
10.3.4
10.3.1

4.6.6
4.6.6
4.5.2
4.5.2

10.3.1
4.5.2
4.6.6
4.5.2

T6-3
6.4

F6-2
10.9.2.2

6.4

2270512-9701

DNOS System Design Document

Home File
Program File

Recovery, KIF Error
Reduction, Buffer Table
Relative Record File
Relative Record File:

Blocked
Unblocked

Relative Record Segments
Release Job Segment

Flow
Processor

Release:
Segment
Ta ble Area

Relocation Bit Map

Area

•

.- . -

Remove Waiting Task from WOT Queue
Request Buffering, SVC

Routine,

Request Definition Block:
RDB

Format
Structure

Request Pending Queue, Channel
Request:

Processing:
Device
I/O

Reserve Segment Processor
Reserved Segment Table RST
Reset Exclusive Use of Segment
Resource Ownership Block ROB
Resource Privilege Block RPB
Resume Job Processor
Return Information Block:

RIB
Format
Structure

Revision Format
RIB:

•

Format, Return Information Block
Return Information Block

•

Structure, Return Information Block

•

•

ROB, Resource Ownership Block •
Root:

DNOS
Node, B-Tree
System

Routine:
Hardware Controller Service
Interrupt Service
NFCOPY, Data Copying
NFCRSH, System Crash

•

NFDWOT,

•

NFDWOT, Remove Waiting Task from WOT Queue

2270512-9701 17

•

7.4.7
11.4.4
11.4.3
10.3.5
11.4.1

11.4.1.2
11.4.1.1

7.4.2

F7-6
7.4.8

7.4.2
4.5.6

11.4.4
4.6.6

6. 1

6.4
T6-3
F6-2
10.9

10.3.1
10.6

7.4.4
7.3

7.4.12
10.6.3

10.6.3, 11.6
8.6.5

6.4
T6-4
F6-2

3.3, 3.4

T6-4
6.4

F6-2
10.6.3

5.2,

2.2
11.4.3
5.4.4

•
10.5
10.5
4.10

4.5.7
4.6.6

Index

DNOS System Design Document

NFPWOT, Place Active Task
Terminal

RPB, Resource
RST, Reserved
Rules, Stage

Scheduler:

Service
Privilege Block
Segment Table

Scope

Algorithm, Task
Data Structure, Task
Flow, Task
Map File
NFSCHD, Task

Scheduler/Swap:
Parameters:

on WOT Queue

(MSP) Command, Modify
(MSP) SCI Command, Modify

Scheduling:
Inhibit 4.5.4,
Priority DSR
Table Area

SCI Command, Modify Scheduler/Swap Parameters (MSP)
Scope Rules, Stage
Secondary Allocation
Sector
Security:

Bypass
Channel
File

Access
Segment Caching
Segment Entry, Program File
Segment, Exclusive Use of
Segment Group Block SGB
Segment:

Kernel
Logical Name

Segment Management:
Architecture
SVC:

Preprocessor
Processing

Ta ble Area
Segment Management Table Area SMT
Se gmen t Ha nage r

Flow
Segment:

Owned
Release
Reset Exclusive Use of

Segment Status Block SSB Use Count
Segment:

Synonym
Table Format, Kernel

Index 18

4.6.6
10.5

10.6.3, 11.6
7.3

10.10.5

4.6
4.6. 1

F4-2
5.4.10

4.,6

4.9
4.6.2

8.6.4, 8.6.9
10.3.2
4.6.6
4.6.2

10.10.5
11 • 5
11 • 3

•

10.8
10.8.1

10.8
10.8

7.4.2
7.3

7.4.11
7.3

5.2,
5.4.5
10.10

7.2

7.4.1
7.4

7.5, F7-7
F11-12
4.5.6

F7-1

7.4.11
7.4.2

7.4.12
7.4.2

5.2, 10.10
5.4.5

2270512-9701

DNOS System Design Document

Unload
Segments, Relative Record
Semaphore

Opcode
Sequence:

Abort Screen I/O
Halt/Resume Screen Output
Hard Break

Sequential File
Blank Suppressed
EOF
Format
Zero Length Record

Serial Printer Long-Distance PDT Extension
Server, Queue
Service:

Rou tine:
Hardware Controller
Interrupt
Terminal

Set/Reset Modified/Releasable Processor
SGB, Segment Group Block
Shared Program File
Six-Word Header Queue
Size Determination, Memory
Size, JCA
SLDATA, System Loader Data Module
SLDISK, System Loader Data Module
Slice, Time
SMT, Segment Management Table Area
Source Sturcture
Space Allocation, Expandable File
Special:

Ta ble Area:
Free Space
Loading

SSB Use Count, Segment Status Block
STA, System Table Area
Stage

Scope Rules
Standard Temporary File
State:

DNOS Job
Task

Structure:
Directory File
DNOS
LDT
New Disk
Request Definition
Return Information

Sturcture,
Subopcode,

Source
Name Manager

2270512-9701

Block RDB
Block RIB

19

..

7.4.14
7.4.2
9.4.1
9.4.1

10.3.4
10.3.4
10.3.4
11.4.2
11.4.2
11.4.2
Fl1-1

11.4.2
T10-5
4.5.2

10.5
10.5
10.5

7.4.9
7.3
4.4

4.5.2
5.2

8.6.3
5.3.4
5.3.4
4.6.3

Fll-12
3. 1

11 • 5

5.4.8
5.4.8
7.4.2

4.3, 4.5.6, F11-12
10.10

10.10.5
10.6.4.5

10.6.3.2,

8.5
3.2

1 1 .4. 5
2.2

FI0-13
11 • 2
F6-2
F6-2

3. 1
10.10

Index

DNOS System Design Document

Mod ul e , Data
File

System Loader:

SLDISK,_ -- -. -~.

Flow
Image File, .S$IPL
Phase
Subroutine Calls

System:
Operator
Root

System Table Area STA
System Table (MST), Modify
S$$CLF File
S$$SCA File

Table Area:
Allocate
Deallocate

•

File Management
Free Space, Special
Loading ~pecial

•

Management, Nucleus.
Release •

Table Area Scheduling •

. .

" ..
..

•

•

Table Area, Segment Management
Ta ble :

",I" •

Area (WOT) Queue, Waiting On
Areas, File Management
Command Definition

Table Format, Kernel Segment •
Ta ble:

Swap
(MST), Modify System

Tape PDT Extention (MTX, Magnetic
Task:

Activation Routine NFPACT
Architecture, I/O Utility IOU
Bid Processor '.

•

•

.0

•
4.3,

•

• •

•

•

•
• •

• •

Bid Routine NFTBID
Configurability, I/O Utility IOU
Description Entry, Program File
from WOT Queue Routine, NFDWOT, Remove Waiting
Loader •

Flow
MSAR •
on WOT Queue Routine, NFPWOT, Place Active
Scheduler:

Algorithm
Data Structure
Flow
NFSCHD

State
Swapping Criteria

2270512-9701 21

•

5.3.4
4.4

5.4
5.2

T5-1
F5-1

8.6.11
5.2, 5.4.4

4.5.6, Fll-12
10.6.3
10.8.1
10.8.1

4.5.6
4.5.6

10.6.3.1
5.4.8
5.4.8
4.5.6
4.5.6
4.6.6

7.5, F7-7

4.6.6
10.6.3
10.3.4
5.4.5

9.2
10.6.3

10.2

4.6.5
10.6, 10.6.2

9.3. 1
4.6.4

10.6.1
11.4.4
4.6.6
9.3.2

F9-1
10.8.4.1

4.6.6

4.6
4.6.1

F4-2
4.6
3.2

9.3.2

Index

tDNOS System Design Document

Synchronization
Termination

Teleprinter DSR
Template:

Global Data Structure
Preamble

Temporary File
Job
Standard
• f/nnnnnnn

Terminal Service Routine
Termination, Task
Tick Counter
Time Delay List
Time Slice
Time-ordered List TOL
TOL, Time-ordered List
Track
TSBEOR Queue
TSR

-.

. .

Types, Logical Name Parameter

UCB, DXI0
Unblocked Relative Record
Undocumented:

IOU Sub-Opcode
SVC

Uninitialized Disk Forma t
Unload Segment
Use Count, Segment Status
User-Written:

SVC
Definition Table
Processor

Utilities Program File

VCATALOG
Verify Pathname Syntax
Volume:

Information,
Installation,

Disk
Disk

Wait for Event SVC
Waiting:

File

Block

On Table Area (WOT) Queue
Queue, Physical Device Table

•

SSB

Task from WOT Queue Routine, NFDWOT, Remove
Waiting-on-Memory:

WOM
List

WCS:
File
Writable Control Store

Index 22

•

9.4
4.9

10.4

3.2
3.2

10.6.4.5
10.6.4.5
10.6.4.5
10.6.4.5

10.5
4.9

4.7.1
-9.2

4.6.3
9.2
9.2

11 • 3
10.3.1
TI0-2

10.10.2

10.3.6
11.4.1.1

10.6.4.1
10.6.5

11 .2
7.4.14
7.4.2

6.6
6.6.1
6.6.2

4.4

5.4.2
10.6.4.1

5.3.1,
5.2,

11.3.1
5.4.13

6.5.3

4.6.6
10.3.1
4.6.6

4.6.5
9.2

5.4.7
5.2

2270512-9701

.-

DNOS System Design Document

-.
WOM:

List, Waiting-on-Memory •
Waiting-on-Memory

WOT:
Queue:

Routine, NFDWOT, Remove Waiting Task from
Routine, NFPWOT, Place Active Task on

Writable Control Store
File
WCS •

XTK, Keyboard PDT Extension.

Zero Length Record, Sequential File.
(MSP) :

Command, Modify Scheduler/Swap Parameters
SCI Command, Modify Scheduler/Swap Parameters

(MST), Modify System Table
(MTX, Magnetic Tape PDT Extention
(WOT) Queue, Waiting On Table Area
(XPD), Exectite Performance Display
.MACROS Directory .
• S$DIAG, Disk Diagnostic File­
.S$IPL System Loader Image File.
.TEMPLATE Directory • ~

.#nnnnnnn Temporary File

2270512-9701 23/24

9.2
4.6.5

4.6.6
4.6.6
5.3.2
5.4.7

5.2

• 10.2

11.4.2

4.9
4.6.2

10.6.3
• 10.2
4.6.6

10.6.3
3.3

• 11.3
5.2
3.2

• 10.6.4.5

Index

w z
::::i

" z
o
..J
<C
I­
;:)

o

USER~S;:·RE~,PONSE SHEET
~ "" «.. ...:,......"

~ .; , .. : ", .. ':'
,: .. '"

Manual Title:. DNOS System Design Document (2270512-9701)

Manual Date: 15 November 1983 Date of This Letter: -----__

User's Name: ________________ _ Telephone: _________ _

Company: ____________________ __ Office/Department: ______ _

Street Address: __ _

City/State/Zip Code: __________________________________ _

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in the
following space. If there are any other suggestions that you wish to make, feel free to include
them. Thank you. .

Location in Manual Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL

FOLD

111111

1~~~~l~E~E~'T~~~!-Y ~~I~ J
POSTAGE WIU BE PAID BY ADDRESSEE

TEXAS INSTRUMENTS INCORPORATED
DATA SYSTEMS GROUP

. ATTN: TECHNICAL PUBLICATIONS
P.O. Box 2909 MIS 2146
Austin, Texas 787~9

FOLD

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	01-01
	01-02
	01-03
	02-01
	02-02
	02-03
	02-04
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	10-001
	10-002
	10-003
	10-004
	10-005
	10-006
	10-007
	10-008
	10-009
	10-010
	10-011
	10-012
	10-013
	10-014
	10-015
	10-016
	10-017
	10-018
	10-019
	10-020
	10-021
	10-022
	10-023
	10-024
	10-025
	10-026
	10-027
	10-028
	10-029
	10-030
	10-031
	10-032
	10-033
	10-034
	10-035
	10-036
	10-037
	10-038
	10-039
	10-040
	10-041
	10-042
	10-043
	10-044
	10-045
	10-046
	10-047
	10-048
	10-049
	10-050
	10-051
	10-052
	10-053
	10-054
	10-055
	10-056
	10-057
	10-058
	10-059
	10-060
	10-061
	10-062
	10-063
	10-064
	10-065
	10-066
	10-067
	10-068
	10-069
	10-070
	10-071
	10-072
	10-073
	10-074
	10-075
	10-076
	10-077
	10-078
	10-079
	10-080
	10-081
	10-082
	10-083
	10-084
	10-085
	10-086
	10-087
	10-088
	10-089
	10-090
	10-091
	10-092
	10-093
	10-094
	10-095
	10-096
	10-097
	10-098
	10-099
	10-100
	10-101
	10-102
	10-103
	10-104
	10-105
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	11-40
	11-41
	11-42
	11-43
	11-44
	11-45
	11-46
	11-47
	11-48
	11-49
	11-50
	11-51
	11-52
	11-53
	11-54
	11-55
	11-56
	11-57
	11-58
	11-59
	11-60
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	14-01
	14-02
	14-03
	14-04
	15-01
	15-02
	15-03
	15-04
	15-05
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	16-19
	16-20
	16-21
	16-22
	16-23
	16-24
	16-25
	16-26
	16-27
	16-28
	16-29
	16-30
	16-31
	16-32
	16-33
	16-34
	16-35
	16-36
	16-37
	16-38
	16-39
	16-40
	16-41
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	18-01
	18-02
	18-03
	18-04
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-11
	19-12
	19-13
	19-14
	19-15
	19-16
	19-17
	19-18
	19-19
	19-20
	19-21
	19-22
	19-23
	19-24
	19-25
	19-26
	19-27
	19-28
	19-29
	19-30
	19-31
	19-32
	19-33
	19-34
	19-35
	19-36
	19-37
	19-38
	19-39
	19-40
	19-41
	19-42
	19-43
	19-44
	19-45
	19-46
	19-47
	19-48
	19-49
	19-50
	19-51
	19-52
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	21-08
	21-09
	21-10
	21-11
	21-12
	22-001
	22-002
	22-003
	22-004
	22-005
	22-006
	22-007
	22-008
	22-009
	22-010
	22-011
	22-012
	22-013
	22-014
	22-015
	22-016
	22-017
	22-018
	22-019
	22-020
	22-021
	22-022
	22-023
	22-024
	22-025
	22-026
	22-027
	22-028
	22-029
	22-030
	22-031
	22-032
	22-033
	22-034
	22-035
	22-036
	22-037
	22-038
	22-039
	22-040
	22-041
	22-042
	22-043
	22-044
	22-045
	22-046
	22-047
	22-048
	22-049
	22-050
	22-051
	22-052
	22-053
	22-054
	22-055
	22-056
	22-057
	22-058
	22-059
	22-060
	22-061
	22-062
	22-063
	22-064
	22-065
	22-066
	22-067
	22-068
	22-069
	22-070
	22-071
	22-072
	22-073
	22-074
	22-075
	22-076
	22-077
	22-078
	22-079
	22-080
	22-081
	22-082
	22-083
	22-084
	22-085
	22-086
	22-087
	22-088
	22-089
	22-090
	22-091
	22-092
	22-093
	22-094
	22-095
	22-096
	22-097
	22-098
	22-099
	22-100
	22-101
	22-102
	22-103
	22-104
	22-105
	22-106
	22-107
	22-108
	22-109
	22-110
	22-111
	22-112
	22-113
	22-114
	22-115
	22-116
	22-117
	22-118
	22-119
	22-120
	22-121
	22-122
	22-123
	22-124
	22-125
	22-126
	22-127
	22-128
	22-129
	22-130
	22-131
	22-132
	22-133
	22-134
	22-135
	22-136
	22-137
	22-138
	22-139
	22-140
	22-141
	22-142
	22-143
	22-144
	22-145
	22-146
	22-147
	22-148
	22-149
	22-150
	22-151
	22-152
	22-153
	22-154
	22-155
	22-156
	22-157
	22-158
	22-159
	22-160
	22-161
	22-162
	22-163
	22-164
	22-165
	22-166
	22-167
	22-168
	22-169
	22-170
	22-171
	22-172
	22-173
	22-174
	22-175
	22-176
	22-177
	22-178
	22-179
	22-180
	22-181
	22-182
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	I-16
	I-17
	I-18
	I-19
	I-21
	I-22
	I-23
	replyA
	replyB

