
rt-EK PROGRAMMERS
I I REFERENCE

Part No. 070-5607-01
Product Group 07

4400P30
FRANZ LISP

MANUAL REVISION STATUS

PRODUCT: 4400P30 Franz Lisp Programming Language

This manual supports the following versions of this product: Version 42

REV DATE

JAN 1985

FEB 1985

JUL 1985

Original Issue

Revised: Pages 13-1 through 13-6.
Added: Pages iv, v, vi, 13-7, and 13-8.

Completely revised and rewritten.

4404P30 FRANZ LISP PROGRAMMERS

DESCRIPTION

Contents

1. FRANZ LISP
Introduction to FRANZ LISP, details of data types, and description of notation

2. Data Structure Access
Functions for the creation, destruction and manipulation of lisp data obiects.

3. Arithmetic Functions
Functions to perform arithmetic operations.

4. Special Functions
Functions for altering flow of control. Functions for mapping other functions over
lists.

5. I/O Functions
Functions for reading and writing from ports. Functions for the modification of
the reader's syntax. '

6. System Functions
Functions for storage management, debugging, and for the reading and setting of
global Lisp status variables. Functions for doing operating system-specific tasks
such as process control.

7. The Reader
A description of the syntax codes used by the reader. An explanation of character
macros.

8. Program Forms
A description of various types of functional obiects including the use of foreign
functions.

9. Arrays and Vectors
A detailed description of the parts of an array and of Maclisp compatible arrays.

10. Exception Handling
A description of the error handling sequence and of autoloading.

11. The Lister Trace Package
A description of a very useful debugging aid.

12. Liszt, the Lisp Compiler
A description of the operation of the compiler and hints for making functions com
pilable.

13.The Top Level
A description of FRANZ LISP's top level which includes access to debugging tools, a
history mechanism, and single stepper.

14. Advanced Structured Programming: DeCstruct
15. The Lisp Stepper and Fixit

Programs which permits you to single-step through a Lisp program, and also
examine and modify the evaluation stack: fix bugs on the fly.

16. Lisp Editor
A structure editor for interactive modification of FRANZ LISP code.

17. Packages
Modular organization technique8 for Lisp.

18. The Foreign Function Interface
Linking LISP to subroutine8 written in other language8.

19. Objects, Message-Passing, and Flavors
Obiect-oriented programming.

Appendix A - Function Index
Appendix B - List oC Special Symbols
Appendix C - The Garbage Collector
Appendix D - LxreC
Appendix E - Reconfiguring Lisp

CHAPTER 1

FRANZ LISP

1.1. Introduction

This document is a reference manual for the FRANZ LISP system. It is not a LISP
primer or introduction to the language. It assumes that you are familiar with at least one
dialect of LISP, preferably a member of the MacLISP I Common LISP family.

A recommended text for learning LISP, with specific reference to FRANZ LISP is
LISPcraft by Robert Wilensky, published by W. W. Norton (1984).

This chapter describes the data types of FRANZ LISP and the conventions used in the
description of the FRANZ LISP. functions. In an attempt to be concise, we use a shorthand
given in §1.3. It is very important that these conventions be read for a full understanding
of subsequent sections. You should refer to the table in that section if the data types of
function arguments are in question.

L2. Data Types

FRANZ LISP has a collection of data types for system implementation and program
ming. This section describes each type briefly, and, if a type is divisible, the insides are
examined. There is a LISP function type that returns the type name of a LISP object.
This is the official FRANZ LISP name for that type and this name and this name only is
used in the manual to avoid confusing you. The types are listed in terms of importance
rather than alphabetically.

1.2.0. LISPval This is the name used to describe any LISP object. The function type
never returns 'LISPval'.

1.2.1. symbol This object corresponds to a variable in most other programming
languages. It may have a value or may be 'unbound'. A symbol may be lambda bound
meaning that its value (conceptually, at least) pushed on a stack, and the symbol is
given a new value for the duration of a certain context. When the LISP processor
leaves that context, the symbol's value is popped off the stack.

A symbol may also have a function binding. This function binding is static; it cannot
be lambda bound. Whenever the symbol is used in the· functional position of a LISP
expression the function binding of the symbol is examined. See Chapter 4 for more
details on evaluation.

A symbol may also have a property list, another static data structure. The property list
is a list of an even number of elements, considered to be grouped as pairs. The first ele
ment of the pair is the indicator; the second, the value of that indicator.

FRANZ LISP 1-1

FRANZ LISP 1-2

Each symbol has a print name (pnamej, which is how this symbol is identified from
input and referred to on (printed) output.

The function intern is the usual way of creating a symbol, but the functions concat,
maknam, and their derivatives also create symbols. Usually, symbols are a member of a
package, but not always (see chapter 19 for a description of packages).

Subpart name Get value Set value Type

value eval set LISPval
setq

property plist setplist list or nil
list get putprop

defprop
function getd putd array, binary, list
binding def or nil

print name get 'pname string
home package symbol-package package

1.2.2. list A list cell has two parts, called the car and cdr. List cells are created by the
function cons.

Subpart name Get value Set value Type

car car rplaca LISPval
cdr cdr rplacd LISPval

1.2.3. binary This type acts as a function header for machine coded functions. It has
two parts: a pointer to the start of the function and a symbol whose print name
describes the argument discipline. The discipline (if lambda, macro, or nlambda) deter
mines whether the arguments to this function are evaluated by the caller before this
function is called. If the discipline is a string (specifically "subroutine", "function",
"integer-function", "real-function", "c-function", "doub/e-c-function", "void-c-function",
or "vcctor-c-function") then this function is a foreign subroutine or function. (See §8.5
for more details on this.) Although the type of the cntry field of a binary type object is
usually string or other, the object pointed to is actually a sequence of machine
instructions.

Objects of type binary are created bymfunction, cfasl, and getaddrcs8.

Subpart name Get value Set value Type

entry getentry string or fixnum
discipline getdisc putdisc symbol or fixnum

FRANZ LISP 1-3

1.2.4. fixnum A fixnum is an integer constant in the range _229 to 229_1. Small fixnums
(-1024 to 1023) are stored in a special table so they needn't be allocated each time one
is needed.

1.2.5. Honum A Honum is a double-precision real number.

1.2.6. bignum A bignum is an integer of potentially unbounded size. When integer
arithmetic exceeds the limits of fixnums mentioned above, the calculation is automati
cally done with bignums. If calculation with bignums gives a result that can be
represented as a fixnum, then the fixnum representation is usedt . This contraction is
known as integer normalization. Many LISP functions assume that integers are normal
ized. Bignums are composed of a sequence of list cells and a cell known as an sdot.
You should consider a bignum structure indivisible and use functions such as haipart
and bignum-leftshift to extract parts of it.

1.2.7. string A string is a null terminated sequence of characters. Most functions of
symbols that operate on the symbol's print name also work on strings. The default
reader syntax is set so that a sequence of characters surrounded by double quotes is a
string.

1.2.8. port A port is a structure that the system I/O routines can reference to transfer
data between the LISP system and external media. Unlike other LISP objects there are
a very limited number of ports (20 on most machines, more on others). Ports are allo
cated by infile and outfile and deallocated by close and resetio. The print function
prints a port as a percent sign followed by the name of the file it is connected to (if the
port was opened by infile or outfile). During initialization, FRANZ LISP binds the sym
bol piport to a port attached to the standard input stream. This port prints as
#<port stdin>. There are ports connected to the standard output and error streams,
which print as #<port stdout> and #<port stderr>. This is discussed in more
detail at the beginning of Chapter 5.

1.2.9. vector Vectors are indexed sequences of data. They can be used to implement a
notion of user-defined types via their associated property list. They make hunks (see
below) logically unnecessary, except for compatability reasons. There is a second kind
of vector, called an immediate-vector, that stores binary data. The name that the
function type returns for immediate-vectors is vectori. For example, immediate
vectors can be used to implement strings and block-Honum arrays. Vectors are dis
cussed in chapter 9. The functions new-vector and vector can be used to create vectors.

tThe current algorithms for integer arithmetic operations return (in certain cases) a result as a bignum although
this could just barely be represented as a fixnum.

FRANZ LISP 1-4

Subpart name Get value Set value Type

datum[z1 vref vset LISPval
property vprop vsetprop LISPval

vputprop
SIze vsize - fixnum

1.2.10. array Arrays are rather complicated types and are fully described in Chapter 9.
An array consists of a block of contiguous data, a function to access that data, and aux
iliary fields for use by the accessing function. Since an array's accessing function is
created by the user, you can create the array to have any form you choose (e.g. n
dimensional, triangular, or hash table).

Arrays are created by the function marray.

Subpart name Get value Set value Type

access function getaccess putaccess binary, list
or symbol

auxiliary _getaux ~utaux LISPval
data arrayref replace block of contiguous

set LISPval
length getlength putlength fixnum
delta getdelta putdelta fixnum

1.2.11. value A value cell contains a pointer to a LISPval. This type is used mainly by
arrays of general LISP objects. Value cells are created with the ptr function. A value
cell containing a pointer to the symbol 'foo' is printed as '(ptr to)foo'.

1.2.12. hunk A hunk is a vector of from 1 to 128 LISPvals. Once a hunk is created (by
hunk or makhunk) it cannot grow or shrink. The access time for an element of a hunk
is slower than that for a list cell element but faster than for an array element. Hunks
are really only allocated in sizes that are powers of two, but can appear to you to be
any size in the 1 to 128 range. You must realize that {not (atom LISPval)) returns true
if LISPval is a hunk. Most LISP systems do not have a direct test for a list cell, and,
instead, use the above test and assume that a true result means LISPval is a list cell.
In FRANZ LISP, you can use dtpr (dotted pair) to check for a list cell. Although hunks
are not list cells, you can still access the first two hunk elements with cdr and car, and
you can access any hunk element with cxrt. You can set the value of the first two ele
ments of a hunk with rplacd and rplaca and you can set the value of any element of the
hunk with rplacx. A hunk is printed by printing its contents surrounded by { and }.
However, a hunk cannot be read in this way in the standard LISP system. It is easy to
write a reader macro to do this if desired.

tIn a hunk, the function cdr references the first element and car the second.

FRANZ LISP 1-5

1.2.13. package Chapter 17 describes the FRANZ LISP package system. The ideas,
adopted from Common LISP, are helpful for the development of large systems in a
modular fashion.

1.2.14. closure The fclosure functional object is introduced in chapter 2, but described
in greater detail in chapter 8.

1.2.15. other Occasionally, you can obtain a pointer to storage not allocated by the
LISP system. One example of this is the entry field of those FRANZ LISP functions writ
ten in C. Such objects are classified as of type other. Foreign functions, which call
malloc to allocate their own space, may also inadvertently create such objects. The
garbage collector ignores such objects.

1.3. Documentation The conventions used in the following chapters are designed to give a
great deal of information in a brief space. The first line of a function description contains
the function name in bold face and then lists the arguments, if there are any. The argu
ments all have names that begin with a letter or letters and an underscore. The initial
letter or letters give the allowable type or types for that argument according to this table.

Letter AlIQwable type(s}

g any type
s symbol (although nil may not be allowed)
t string
I list (although nil may be allowed)
n number (fixnum Honum bignum)
i integer (fixnum, bignum)
x fixnum
b bignum
f Honum
u function type (either binary or lambda body)
y binary
v vector
V vectori
H hash table
a array
e value
p port (or nil)
h hunk
k package
cl closure

In the first line of a function description we provide a template showing you how to call
the function from the top level, including appropriate quote marks. (In FRANZ LISP, the
form 'foo is the same as (quote foo).) For example, cons could be described via (cons

FRANZ LISP 1-6

'g_first 'g_rest), allowing us to say the result is the list cell x where (car x) = g_first, and
(cdr x) = g_rest. Referring to the previous table, we see that the 'g' prefix means 'general'
or 'any type'. The suffIXes first and rest are chosen to be mnemonically useful. Those argu
ments preceded by a quote mark are evaluated before the function is applied. This allows
us to refer to the result of the cons without saying "the result of evaluating its first argu
ment ... " etc.

Occasionally a function will utilize some special order of evaluation (or non-evaluation) but
if the arguments are generally evaluated, we will still use this notation.

When an argument is not quoted in the function description line, it is usually because
no evaluation is done on that argument. Rarely, however, the argument is evaluated but
at a time specifically mentioned in the function description.

Optional arguments are surrounded by square brackets. An ellipsis (...) means zero or
more occurrences of an argument of the directly preceding type.

1.4. Some History

The original version of FRANZ LISP was created as a research tool for symbolic and
algebraic manipulation, artificial intelligence, and programming languages at the University
of California at Berkeley. AJ5 FRANZ LISP grew, it adopted numerous features of Mac LISP
and LISP Machine LISP (Zetalisp). Substantial compatibility with other LISP dialects
(Interlisp, UCILISP) is achieved by means of support packages and compiler switches.
Beginning in 1984, Franz Inc.'s Common LISP compatibility features were introduced mak
ing this version of FRANZ LISP a unique combination of a proven LISP system with the
essential support for development and delivery of Common LISP programs.

The kernel of FRANZ LISP is written almost entirely in the programming language C,
with much of the support written in (compiled) LISP. For run-time efficiency, small por
tions of the kernel are written in assembly language.

FRANZ LISP's distinctive features include its capability of running very large LISP
programs in a timesharing environment, its excellent facilities for arrays and user-defined
structures, its user-controlled reader with character and word macro capabilities, and its
ability to interact directly with compiled LISP, C, Fortran, and Pascal code in most imple
mentations.

CHAPTER 2

Data Structure Access

The functions described in this chapter allow you to create and manipulate the various
types of lisp data structures. Refer to §1.2 for a brief overview of the data structures available in
FRANZ LISP.

2.1. Lists

The following functions exist for the creation and manipulation of lists. Lists are
composed of a linked list of objects. Various authors call these either 'list cells', 'cons cells'
or 'dtpr cells'. Lists are normally terminated with the special symbol nil. nil is both a
symbol and a representation for the empty list O.

2.1.1. list creation

(cons 'g_argl 'lLarg2)

RETURNS: A new list cell whose car is g_argl and whose cdr is g_arg2.

(xcons 'lLargl 'g_arg2)

EQUNALENT TO: (cons 'u-arg2 'u-argl)

(ncons 'g_arg)

EQUNALENT TO: (cons 'g_arg nil)

(list ['g_argl ...])
(list ... ['!Largl ...])

RETURNS: A list whose elements are the lLargi.

NOTE: List* differs from list in that the last argument is cons'd on to the list.

EXAMPLE: (list 'x 'y '(z w)) is {x y (z w))
(list* 'x 'y '(z w)) is (x y z w)

(append 'l_argl 'l_arg2 [...])

RETURNS: A list containing the elements of l_argl followed by l_arg2.

NOTE: To generate the result, the top level list cells of l_argl are duplicated and the cdr of
the last list cell is set to point to l_arg2. Thus this is an expensive operation if
l_argl is large. See the descriptions of nconc and tconc for cheaper ways of doing the
append if the list Largl can be altered.

Data Structure Access 2-1

Data Structure Access

(append! 'l_argl 'Larg2)

RETURNS: A list like l_argl with g_arg2 as the last element.

NOTE: This is equivalent to (append 'Cargl (list 'g_arg2)).

; A common mistake is using append to add one element to the end of a list
-> (append '(a bed) 'e}
(abed.e)
; The user intended to say:
-> (append '(a bed) '(e})
(a bed e)
j better i, append1
-> (append1 '(a bed) 'e}
(a bed e)

(quote! [g_qformtJ ... [! 'g_eforma] ... [I! 'I_forma] ...)

RETURNS: The list resulting from the splicing and insertion process described below.

2-2

NOTE: quote! is the complement of the list function. list forms a list by evaluating each
form in the argument list; evaluation is suppressed if the form is quoteed. In quote!,
each form is implicitly quoteed. To be evaluated, a form must be preceded by one of
the evaluate operations! or I!. ! g_eform evaluates g30rm and the value is inserted in
the place of the call; !! I_form evaluates I_form and the value is spliced into the place
of the call.

'Splicing in' means that the parentheses surrounding the list are removed as the
example below shows. Use of the evaluate operators can occur at any level in a form
argument.

Another way to get the effect of the quote! function is to use the backquote character
macro (see § 8.3.3).

(quote! con, ! (cons 1 2) 9} = (cons (1 . 2) 9}
(quote! 1 !! (li,t 2 94) 5} = (1 294 5)
(quote! tr/ll '(this lone)} = (tr/l (this! one)}

Data Structure Access

(bignum-to-list 'b_arg)

RETURNS: A list of the fixnums which are used to represent the bignum.

NOTE: The inverse of this function is list-to-bignum.

(list-to-bignum'l_ints)

WHERE: l_ints is a list of fixnums.

RETURNS: A bignum constructed of the given fixnums.

NOTE: The inverse of this function is bignum-to-list.

2.1.2. list predicates

(dtpr 'g_arg)

RETURNS: t if g_arg is a list cell.

NOTE: (dtpr '()) is nil. The name dtpr is a contraction for "dotted pair".

(listp 'g_arg)

RETURNS: t if g_arg is a list object or nil.

(tailp 'Cx '1.s)

2-3

RETURNS: I_x, if a list cell eq to I_x is found by cdring down l.s zero or more times, nil oth
erwISe.

=> (Betq z '(a bed) 1/ (cddr z))
(c d)
=> (and (dtpr z) (liBtp z)) ; x and y are dtprs and lists
t
=> (dtpr '()) ; 0 is the same as nil and is not a dtpr
nil
=> (Iistp '()) ; however it is a list
t
=> (tailp II z)
(c d)

(length 'l_arg)

RETURNS: The number of elements in the top level of list l_arg.

Data Structure Access

2.1.3. list accessing

(car 'l_arg)
(cdr 'Carg)

2-4

RETURNS: The appropriate part of cons cell. (car (cons x y)) is always x, (cdr (cons x y)) is
always y. In FRANZ LISP, the cdr portion is located first in memory. This is
hardly noticeable, and we mention it primarily as a curiosity.

(c •• r 'lh_arg)

WHERE: The .. represents any positive number of a's and d's.

RETURNS: The result of accessing the list structure in the way determined by the function
name. The a's and d's are read from right to left, a d directing the access down
the cdr part of the list cell and an a down the car part.

NOTE: lh_arg may also be nil, and it is guaranteed that the car and cdr of nil is nil. If
lh_arg is a hunk, then (car 'Ih_arg) is the same as (exr 1 'Ih_arg) and (cdr 'Ih_arg) is
the same as (exr 0 'Ih_arg).
It is generally hard to read and understand the context of functions with large strings
of a's and d's, but these functions are supported by rapid accessing and open
compiling (see Chapter 12).

(nth 'x_index 'I_list)

RETURNS: The nth element of Uist, assuming zero-based index. Thus (nth 0 I_list) is the
same as (car I_list). nth is both a function and a compiler macro so that more
efficient code might be generated than for nthe/em (described below).

NOTE: If x_arg1 is non-positive or greater than the length of the list, nil is returned.

(nthcdr 'x_index 'Uist)

RETURNS: The result of cdring down the list Uist x_index times.

NOTE: If x_index is less than 0, then (cons nil 'Llist) is returned.

(nthelem 'x_arg1 'l_arg2)

RETURNS: The x_arg1'st element of the list l_arg2.

NOTE: This somewhat non-standard name of this function comes from the PDP-ll Lisp sys
tem.

(last 'Larg)

RETURNS: The last list cell in the list l_arg.

EXAMPLE: last does NOT return the last element of a list!
{last '(a b)) = (b)

Data Structure Access 2-5

(ldiff 'l_x '1...Y)

RETURNS: A list of all elements in Cx but not in l"'y , i.e., the list difference of 1-" and l"'y.

NOTE: l"'y must be a tail of I_x, i.e., eq to the result of applying some number of cdr's to
I_x. Note that the value of IdiU is always a new list structure unless l"'y is nil, in
which case {ldiU Cx nil} is I_x itself. If 1...Y is not a tail of I_x, IdiU generates an
error.

EXAMPLE: {ldiU 'Cx {member 'gJoo 'Cx}} gives all elements in I_x up to the first g_foo.

2.1.4. list manipulation

(rplaca 'Ih_argl 'g_arg2)

RETURNS: The modified Ih_argl.

SIDE EFFECT: The car of lh_argl is set to g_arg2. H lh_argl is a hunk then the second ele
ment of the hunk is set to s-arg2.

(rplacd 'lh_argl 'g_arg2)

RETURNS: The modified Ih_argl.

SIDE EFFECT: The cdr of Ih_arg2 is set to g_arg2. H Ih_argl is a hunk then the first ele
ment of the hunk is set to g_arg2.

(attach 's-x '1_1)

RETURNS: 1 1 whose car is now g_x, whose cadr is the original {car Cl}, and whose cddr is
the original {cdr U}.

NOTE: What happens is that g_x is added to the beginning of list 1_1 yet maintaining the
same list cell at the beginning of the list.

(delete 's-val 'Uist ['x_count])

RETURNS: The result of splicing s-val from the top level of I_list no more than x30unt
times.

NOTE: x_count defaults to a very large number, thus if x_count is not given, all occurrences
of g_val are removed from the top level of I_list. s-val is compared with successive
car's of I_list using the function equal.

SIDE EFFECT: I_list is modified using rplacd, no new list cells are used.

(delq 'g_val 'Clist ['x_count])
(dremove 's-val 'I_list ['x_count])

RETURNS: The result of splicing s-val from the top level of I_list no more than x_count
times.

NOTE: delq {and dremove} are the same as delete except that eq is used for comparison
instead of equal.

Data Structure Access

; note that you should use the value returned by delete or delq
; and not assume that s-val will always show the deletions.
; For example

-> (Betq teBt '(a b cad e)}
(a b cad e)
-> (delete 'a teBt)
(b cd e) ; the value returned is what we would expect
-> teBt
(a b c d e) ; but test still has the first a in the list!

(remq 'ILX '1_1 ['X30unt])
(remove 'g_x '1_1)

2-6

RETURNS: A copy of 1_1 with all top level elements equal to g_x removed. remq uses eq
instead of equal for comparisons.

NOTE: remove does not modify its arguments like delete and delq do.

(insert 'g_object 'I_list 'u30mparefn 'ILnodups)

RETURNS: A list consisting of I_list with g_object destructively inserted in a place deter
mined by the ordering function u30mparefn.

NOTE: (compare/n 'g_x 'U-y) should return something non-nil, if g_x can precede gJ in
sorted order; nil, if gJ must precede ILX. H u_comparefn is nil, alphabetical order is
used. H g_nodups is non-nil, an element is not inserted, if an equal element is already
in the list. insert does a binary search to determine where to insert the new element.

(merge 'I_datal 'l_data2 'u_comparefn)

RETURNS: The merged list of the two input sorted lists I_datal and I_datal using binary
comparison function u_comparefn.

NOTE: (compare/n 'g_x 'g_y) should return something non-nil, if g_x can precede gJ in
sorted order; nil, if gJ must precede ~x. If u30mparefn is nil, alphabetical order is
used. u30mparefn should be thought of as "less than or equal to". merge changes
both of its data arguments.

(subst '~x 'gJ '1_5)
(dsubst '~x 'g-y '1_5)

RETURNS: The result of substituting g_x for all equal occurrences of g-y at all levels in l_s.

NOTE: H g-y is a symbol, eq is used for comparisons. The function subst does not modify
1_5 but the function dsubst (destructive substitution) does.

Data Structure Access 2-7

(lsubst 'l_x 'g""y 'l_s)

RETURNS: A copy of I_s with I_x spliced in for every occurrence of g""y at all levels. Splicing
in means that the parentheses surrounding the list I_x are removed as the example
below shows.

-> (subsl '(a b c) 'x '(x y z (x y z) (x y z)))
((a b c) y z ((a b c) y z) ((a b c) y z))
-> (lBUbsl '(a b c) 'x '(x y z (x y z) (x y z)))
(a b c y z (a b c y z) (a bey z))

(subpair 'I_old 'I_new 'l_expr)

WHERE: There are the same number of elements in I_old as 1 new.

RETURNS: The list Cexpr with all occurrences of an object in I_old replaced by the
corresponding one in I_new. When a substitution is made, a copy of the value to
substitute in is not made.

EXAMPLE: (subpair '(a c)' (x y) '(a bed)} = (x b y d)

(nconc 'l_argl 'l_arg2 ['I_arg3 ... J)
RETURNS: A list consisting of the elements of l_argl followed by the elements of l_arg2 fol-

lowed by l_arg3 and so on. '

NOTE: The cdr of the last list cell of l_argi is changed to point to l_argi+ 1.

; nconc is faster than append because it doesn't allocate new list cells.
-> (selq lisl '(a be))
(a b c)
-> (selq lis2 '(d e I))
(d e f)
-> (append tisl lis2)
(a b c d e f)
-> lisl
(a b c) ; note that lis! has not been changed by append
-> (nconc lisl lis2)
(a bed e f) ; nconc returns the same value as append
-> lisl
(a b c d e f) ; but in doing so alters lis!

Data Structure Access

(reverse 'l_arg)
(nreverse 'l_arg)

RETURNS: The list l_arg with the elements at the top level in reverse order.

2-8

NOTE: The function nrever8e does the reversal in place; that is, the list structure is modified.

(nreconc 'l_arg 'g_arg)

EQUIVALENT TO: (nconc (nrever8e 'Carg) 'g_arg)

2.2. Predicates

The following functions test for properties of data objects. When the result of the
test is either 'false' or 'true', then nil is returned for 'false' and something other than nil
(often t) is returned for 'true'.

(arrayp 'g_arg)

RETURNS: t if g_arg is of type array.

(atom 'Larg)

RETURNS: t if g_arg is not a list or hunk object.

NOTE: (atom '()) returns t.

(bcdp 'Larg)

RETURNS: t if g_arg is a data object of type binary.

NOTE: This function name is a throwback to the PDP-U Lisp system. It stands for binary
code predicate.

(bigp 'Larg)
RETURNS: t if g_arg is a bignum.

(dtpr 'Larg)

RETURNS: t if Larg is a list cell.

NOTE: (dtpr 'm is nil.

(hunkp 'g_arg)

RETURNS: t if g_arg is a hunk.

(listp 'g_arg)

RETURNS: t if g_arg is a list object or nil.

Data Structure Access

(stringp 'g_arg)

RETURNS: t if g_arg is a string.

(symbolp 'g_arg)

RETURNS: t if g_arg is a symbol.

(litatom 'g_arg)

RETURNS: t if g_arg is a string or symbol, not a number.

(valuep 'g_arg)

RETURNS: t if g_arg is a value cell

(vectorp 'v_vector)

RETURNS: t if the argument is a vector.

(vectorip 'v_vector)

RETURNS: t if the argument is an immediate-vector.

(keywordp's_sym)

RETURNS: t if the argument is a symbol and is in the keyword package.

(packagep 'k-package)

RETURNS: t if the argument is a package.

(hash-table-p 'H_arg)

RETURNS: t if H_arg is a hash table, nil otherwise.

NOTE: A hash table is implemented using vectors, and the function typep returns vector
when given a hash table.

(type 'g_arg)
(typep 'g_arg)

RETURNS: A symbol whose pname describes the type of g_arg.

(signp s_test 'g_val)

RETURNS: t if g_val is a number and the given test s_test on g_val returns true.

NOTE: The fact that 8ignp simply returns nil if g_val is not a number, is probably the most
important reason that 8ignp is used. The permitted values for s_test and what they
mean are given in this table.

s_test tested

g_val < 0
Ie g_val ~ 0
e ~val = 0
n g_val =/: 0
ge g_val ~ 0
g g. val> 0

Data Structure Access 2-10

(eq 'g_argl 'g_arg2)

RETURNS: t if g_argl and g_arg2 are the exact same lisp object.

NOTE: Eq simply tests if g_argl and g_arg2 are located in exactly the same place in
memory. Lisp objects that print the same are not necessarily eq. The only objects
guaranteed to be eq are interned symbols with the same print name. Unless a symbol
is created in a special way (such as with uconcat or maknam) it is interned.

(neq '(LX 'g""'y)
(nequal '(LX 'g....,Y)

RETURNS: (for neq,) t if g_x is not eq to g""'y, otherwise nil. (for nequal,) t if {LX is not equal
to g....,Y, otherwise nil.

(equal 'g_argl '(Larg2)
(eqstr '(Largl 'g_arg2)

RETURNS: t if g_argl and g_arg2 have the same structure as described below.

NOTE: {Larg and g_arg2 are equal if

(1) They are eq.

(2) They are both fixnums with the same value

(3) They are both fionums with the same value

(4) They are both bignums with the same value

(5) They are both strings and are identical.

(6) They are both lists and their cars and cdrs are equal.

; 6q is much faster than equal, especially in compiled code.
; However, you cannot use eq to test for equality of numbers outside
; of the range -1024 to 1023. equal always works.
-> (ell,10881089)
t
-> (eq 1084 1084)
nil
-> (6qua11084 1084)
t

(not 'g_arg)
(null 'g_arg)

RETURNS: t if g_arg is nil.

Data Structure Access

(member 'g_argl 'l_arg2)
(memq '~argl '1_arg2)

2-11

RETURNS: That part of the l_arg2 beginning with the first occurrence of g_argl. If g_argl is
not in the top level of l_arg2, nil is returned.

NOTE: member tests for equality with equal; memq tests for equality with eq.

2.3. Symbols and Strings

In many of the following functions, the distinction between symbols and strings is
somewhat blurred. For FRANZ LISP, a string is a null terminated sequence of characters,
stored as compactly as possible. Strings are used as constants in FRANZ LISP. They eval to
themselves. A symbol has additional structure: a value, property list, function binding,
package-cell, as well as its external representation (or print-name). If a symbol is given to
one of the string manipulation functions below, its print name is used as the string.

Another popular way to represent strings in Lisp is as a list of fixnums which
represent characters. The suffix 'n' to a string manipulation function indicates that it
returns a string in this form.

2.3.1. symbol and string creation

(concat ['stn_argl ...])
(uconcat ['stn_argl '"])
(strcat ['stn_argl ...])

RETURNS: A symbol whose print name (or in the case of strcat, a string) is the result of con
catenating the print names, string characters, or numerical representations of the
stn_argi.

NOTE: If no arguments are given, a symbol with a null pname is returned. concat interns
(see intern) the symbol in the current package; the function uconcat does the same
thing but does not intern the symbol.

EXAMPLE: {concat 'abc (add 9 4) "de!) = abc7def

(concatl 'l_arg)

EQUNALENT TO: (apply 'concat 'Larg)

(implode 'l_arg)
(implodes'l_arg)
(maknam. 'l_arg)

WHERE: l_arg is a list of symbols, strings and/or small fixnums.

RETURNS: The symbol whose print name (or in the case of implodes, the string) that is the
result of concatenating the first characters of the print names of the symbols and
strings in the list. Any fixnums are converted to the equivalent ASen character.
In order to concatenate entire strings or print names, use the function concat.

NOTE: implode interns the symbol it creates, maknam does not.

Data Structure Access 2-12

(copysymbol 's_arg 'g-pred)

RETURNS: An uninterned symbol with the same print name as s_arg. If g-pred is non nil,
then the value, function binding, and property list of the new symbol are made eq
to those of s_arg.

(ascii 'x_charnum)

WHERE: x3harnum is between 0 and 255.

RETURNS: A symbol whose print name is the single character whose fixnum representation is
x_charnum.

(intern 's_arg ['k-package])

RETURNS: s_arg

SIDE EFFECT: s_arg is installed in the package k-package or (by default) the current pack
age.

NOTE: When a symbol is interned, a mapping between the external print-name and the sym
bol itself is established. Most symbols are interned so that when the user types in
say, /00, this is the same symbol as previously used. It is possible to change an exist
ing /00 to be uninternedj in that case when a token /00, is read in, a new symbol,
unrelated to the old one except by its coincidentally matching print-name, is created.
The two symbols will ordinarily have different values, etc. One can refer to the old
/00 only by having an internal pointer to it. As far as the reader is concerned, there's
no /00 like the old /00.

(remob 's_symbol)

RETURNS: s_symbol

SIDE EFFECT: s_symbol is removed from the current package. Historically, the name
"remob" comes from "remove from the object list".

(rematom 's_arg)

RETURNS: t if s_arg is indeed an atom.

SIDE EFFECT: s_arg is put on the free atom list, effectively reclaiming an atom cell.

NOTE: This function does not check to see if s_arg is accessible. While rematom enables you
to reclaim a small amount of storage, and can be used effectively with gensym'd
atoms, you must be extremely cautious. If you use it on an interned atom which is
referenced by some s-expression, you may be find that one or more different atoms
are synonymous. This can lead to errors which are very difficult to detect. This func
tion should be used only when storage optimization is important and you are creating
many atoms with short lifetimes.

Data Structure Access 2-13

The following functions are recommended for use in the orderly management of gen
erated symbols:

(newsym's_name)
(gensym 's_name)

RETURNS: a new uninterned symbol whose name will be s_name with an integer con
catenated to the right.

SIDE EFFECT: The integer used (by default initially 0) will be incremented at each use (and
can be initialized to some other value by initsym, described below.

NOTE: Gensym, the original system function, uses only the first letter of s_name, and
manufactures a symbol with that prefix and a six-digit suffix which is the number of
times gensym has been called.

(oldsym 's_name)

RETURNS: the last symbol returned from newsym in the series generated from s_name. If
s_name has not been used, the return value is just s_name.

(allsym 'sCarg)

RETURNS: a list of symbols generated by newsym.

NOTE: If sl_arg is a symbol, all newsymed symbols with that prefix will be in the list
returned. If sCarg is a pair: (name number), then only symbols beginning with the
name and generated with suffix equal to number or higher will be listed.

(initsym 'Uistl ...)

WHERE: each Uisti is of the form (symbol fixnum).

RETURNS: a list of generated symbols serving as the initialization of symbol generators.

SIDE EFFECT: Future calls to newsym may be affected by this initialization.

EXAMPLE: - > (initsym '(foo 10) '(bar 3))
(foolO bar3) - > (newsym 'bar) bar4

(remsym 'sClistl ...)

WHERE: each sl_listi is a symbol or a list.

SIDE EFFECT: If sl_listi is a symbol, all the generated symbols with that prefix are unin
terned. If sl_listi is a pair (name number), uninterning is done on symbols
beginning with the name and with suffix equal to the given number or higher.

(symstat 's_namel ...)

RETURNS: a list of pairs: (name number) for each s_namel, where s_namei is presumably a
prefix for generated symbols, the number in the pair is the last number used in a
gensym with that prefix. If the name has not been used at all the second element
of the pair will be nil.

Data Structure Access 2-14

2.3.2. string and symbol predicates

(boundp 's_name)

RETURNS: nil if s_name is unbound; that is, it has never been given a value. If x name has
the value g_val, then (nil. g_val) is returned. See also makunbound.

(alphalessp 'st_argl 'st_arg2)

RETURNS: t if the 'name' of st_argl is alphabetically less than. the name of st_arg2. If st_arg
is a symbol, then its 'name' is its print name. If st_arg is a string, then its 'name'
is the string itself.

(str= 't_stringl 't_string2)

RETURNS: t if t_stringl is equal to t_string2.

NOTE: An error is signalled if the arguments are not strings.

2.3.3. symbol and string accessing

(symeval's_arg)
(symbol-value's_arg)

RETURNS: The value of symbol s_arg. Symbol-value is the Common Lisp name for this func
tion.

NOTE: It is illegal to ask for the value of an unbound symbol. . This function has the same
effect as eval, but compiles into much more efficient code.

(get-pname 's_arg)
(symbol-name's_arg)

RETURNS: The string that is the print name of s_arg.

NOTE: Symbol-name is the Common Lisp name for this function.

(getd 's_arg)
(symbol-function's_arg)

RETURNS: the function definition of s_arg. If there is no function definition, getd returns nil;
8ymbol-function, the Common Lisp function signals an error in this case.

NOTE: The function definition may turn out to be an array header. You might wish to use
jboundp to see if a function definition exists in a Common Lisp world, rather than
getd.

(symbol-package's_name)

RETURNS: the contents of the package cell for the symbol s_name. This will be nil if there is
no package associated with s_name.

Data Structure Access

(fboundp's_arg)

RETURNS: t if s_arg is bound to a function.

(getchar 's_arg 'x_index)
(nthchar 's_arg 'x_index)
(getcharn 's_arg 'x_index)

2-15

RETURNS: The x_indexth character of the print name of s_arg or nil if x_index is less than 1
or greater than the length of s_arg's print name.

NOTE: getchar and nthchar return a symbol with a single character print name; getcharn
returns the fixnum representation of the character.

(substring 'st_string 'x_index ['x_length])
(substringn 'st_string 'x_index ['x_length])

RETURNS: A string of length at most x_length starting at x_indexth character in the string.

NOTE: IT x_length is not given, all of the characters for x_index to the end of the string are
returned. IT x_index is negative, the string begins at the x_indexth character from
the end. If x_index is out of bounds, nil is returned.

NOTE: substring returns a list of symbols; substringn returns a list of fixnums. If substringn
is given a 0 x_length argument, then a single fixnum, which is the x_indexth charac
ter, is returned.

(char-index 't_string 'stx_char)
(char-rindex 't_string 'stx_char)

RETURNS: the index of stx_char in t_string, from the beginning of the string, in the case of
char-index, and the end of the string in the case of char-rindex. If stx_char is a
fixnum it will be treated as the ascii code for the character. If stx_char is a sym
bol or string, the first character of the print name or the string is used.

(substrp 't_stringl 'string2)

RETURNS: t if t_stringl is contained in t_string2, nil otherwise.

(string 'st_symbol-or-string)

RETURNS: a string, given a string or symbol. In case of a symbol arg it returns the symbol's
print name.

2.3.4. symbol and string manipulation

(set 's_argl 'g_arg2)

RETURNS: g_arg2.

SIDE EFFECT: The value of s_argl is set to g_arg2.

Data Structure Access

(setq s_atml 'g_vall [s_atm2 '~val2 J)
WHERE: The arguments are pairs of atom names and expressions.

RETURNS: The last g_vali.

SIDE EFFECT: Each s_atmi is set to have the value g_vali.

NOTE: set evaluates all of its arguments; setq does not evaluate the s_atmi.

(desetq sl...J>atternl 'g_expl [...... J)
RETURNS: g_expn

2-16

SIDE EFFECT: This acts just like setq if all the sl...J>atterni are symbols. If sl...J>atterni is a
list, then it is a template which should have the same structure as g_expi .
The symbols in sl...J>attern are assigned to the corresponding parts of g_exp.
(See also setf)

EXAMPLE: (desetq (a b (c . d)) '(1 2 (9 -I 5)))
sets a to 1, b to 2, c to 3, and d to (4 5).

(setplist 's_atm 'l-plist)

RETURNS: l...J>list.

SIDE EFFECT: The property list of s_atm is set to 1...J>list.

(makunbound's_arg)

RETURNS: s_arg

SIDE EFFECT: The value of s_arg is made 'unbound'. If the interpreter attempts to evalu
ate s_arg before it is again given a value, an unbound variable error occurs.

(explode '~arg)
(explodee 'g_arg)
(exploden 'g_arg)
(eseape-exploden '~arg)
(qualify-explode 'g_arg)
(qualify-explodee 'g_arg)
(qualify-exploden '~arg)
(qualify-eseape-exploden '~arg)

RETURNS: A list of the characters used to print out s_arg or ~arg.

NOTE: There are a set of functions called "aexplode" which mirror the above functions, except that
they only take symbols as arguments.

NOTE: If the function name ends in a cen", then the function returns a fixnum representation
of the character instead of the character itself. Also, the functions beginning with
"qualify" return a list of characters or fixnums which include package qualifiers.

NOTE: The functions explode, escape-exploden, qualify-explode and qualify-escape-exploden
return a list of characters or fixnums that print would use to print the argument,
which include all necessary escape characters. The functions explodec, exploden,
qualify-explodec and qualify-exploden return a list of characters or fixnums that patom
would use to print the argument (that is, no escape characters).

Data Structure Access

=> (setq x 'Iquote this \I okfl)
Iquote this \I ok?1
=> (explode x)
(q u 0 t e 1\\1 II t his 1\\1111\\11\111\\111 0 U)
; note that 1\\1 just means the single character: backslash.
; and 1\11 just means the single character: vertical bar
; and I I means the single character: space

=> (explodec x)
(q u 0 tell t his 111\1111 ok?)
=> (exploden x)
(113 117 111 116 101 32 116 104 105 115 32 124 32 111 107 63)

2.4. Vectors

See Chapter 9 for a discussion of vectors.

2.4.1. vector creation

(new-vector 'x_size ['g_fill ['g-prop]])

2-17

RETURNS: A vector of length x_size. Each data entry is initialized to g_fill, or to nil, if the
argument g_fill is not present. The vector's property is set to g-prop, or to nil,
by default.

(new-vectori-byte 'x_size ['g_fill ['g-prop]])
(new-vectori-word 'x_size ['g_fill ['g-prop]])
(new-vectori-Iong 'x~size ['g_fill ['g-prop]])
(new-vectori-Hoat 'x_size ['g_fill ['g-prop]])
(new-vectori-double 'x_size ['g_fill ['g-prop]])

RETURNS: A vectori with x_size elements in it. The actual memory requirement is two long
words + x_size*(n bytes), where n is 1 for new-vector-byte, 2 for new-vector-
word, 4 for new-vectori-long or new-vectori-float, or 8 for new-vectori-double.
Each data entry is initialized to g_fill, or to zero, if the argument g_fill is not
present. The vector's property is set to g-prop, or nil, by default.

NOTE: new-vectori-float and new-vectori-double are intended to be used in passing float and
double arrays to C routines.

Data Structure Access 2-18

Vectors may be created by specifying multiple initial values:

(vector ['g_vaIO 's-vall ... J)
RETURNS: A vector with as many data elements as there are arguments. It is quite possible

to have a vector with no data elements. The vector's property is a null list.

(vector i-byte ['x_valO 'x_val2 ... J)
(vectori-word ['x_valO 'x_val2 ... J)
(vector i-long ['x_valO 'x_val2 ... J)
(vector i-float ['CvalO 'Cval2 ... J)
(vectori-double ['CvalO 'Cval2 ... J)

RETURNS: A vectori with as many data elements as there are arguments. The arguments
are required to be fixnums, except in the case of float and double, where they
must be flonums. Only the low order byte or word is used in the case of vectori
byte and vectori-word. The vector's property is null.

2.4.2. vector reference

(vref'v_vect 'x_index)
(vrefl-byte 'V _vect 'x_bindex)
(vrefl-word 'V _vect 'x_windex)
(vrefl-Iong 'V _vect 'x_Iindex)
(vrefl-float 'V _vect 'x_lindex)
(vrefi-double 'V _vect 'x_lindex)

RETURNS: The desired data element from a vector. The indices must be fixnums. Indexing
is zero-based. The vrefi functions sign extend the data.

(vprop'Vv_vect)

RETURNS: The Lisp property associated with a vector.

(vget 'Vv _vect 'g_ind)

RETURNS: The value stored under s-ind if the Lisp property associated with 'Vv_vect is a
disembodied property list.

(vsize'Vv_vect)
(v size-byte 'V _vect)
(vsize-word 'V _vect)
(vsize-float 'V _vect)
(vsize-double 'V _vect)

RETURNS: The number of data elements in the vector. For immediate-vectors, the functions
vsize-byte and vsize-word return the number of data elements, if you think of the
binary data as being comprosed of bytes or words.

Data Structure Access

2.4.3. vector modification

(v set 'v_vect 'x_index 'g_val)
(vseti-byte 'V _vect 'x_bindex 'x_val)
(vseti-word 'V _vect 'x_wind ex 'x_val)
(vseti-Iong 'V _vect 'x_Iindex 'x_val)
(vseti-float 'V _vect 'x_Iindex 'Cval)
(vseti-double 'V _vect 'x_Iindex 'Cval)

RETURNS: The datum.

2-19

SIDE EFFECT: The indexed element of the vector is set to the value. AB noted above, for
vseti-word and vseti-byte, the index is construed as the number of the data
element within the vector. It is not a byte address. Also, for those two func
tions, the low order byte or word of x_val is what is stored.

(vsetprop 'Vv_vect 'g_value)

RETURNS: g_value. This should be either a symbol or a disembodied property list whose car
is a symbol identifying the type of the vector.

SIDE EFFECT: The property list of Vv _vect is set to g_value.

(vputprop 'Vv_vect 'g_value 'g_ind)

RETURNS: g_value.

SIDE EFFECT: If the vector property of Vv _vect is a disembodied property list, then
vputprop adds the value g_value under the indicator g_ind. Otherwise, the
old vector property is made the first element of the list.

2.5. Hash Tables

A hash table is an object that can efficiently map one object to another. Each hash
table is a collection of entries, each of which associates a unique key with a value. There
are functions to add, delete, and find entries based on a particular key. Finding a value in
a hash table is relatively fast compared to looking up values in, for example, an assoc list
or property list.

The hash table is not a true data type, but rather a type which is constructed from
objects of the type vector. Because of this, the vector predicate returns a non-nil value
when handed a hash table. It should be noted that using v8et to set a element of the hash
table will yield unpredictable results.

Adding a key to a hash table modifies the hash table, and is therefore a destructive
operation.

There are two different kinds of hash tables: those that use the function equal for the
comparing of keys, and those that use eq, the default. When a hash table is created, the
type of comparator is set. If eq is chosen as the comparator, and a lookup of a key is being
performed, then the given key is compared to the keys in the table using eq.

Hashing provides an efficient basis for the construction of the package8 facility and
for various sorts of data retrieval techniques.

Data Structure Access 2-20

This hash table package is completely compatible with the one in Common Lisp.

2.6.1. hash table functions

(make-hash-table :size :test :rehash-size :rehash-threshold)

RETURNS: A hash table object of some number of buckets, given by the :size argument. H
the function to compare hash table keys is be something other than eq, then the
:test argument should be used to set this (the choices are eq, equal, or nil).

NOTE: The :rehash-size and :rehash-threshold parameters are ignored at this time, and no
automatic rehashing is done.

NOTE: For an explanation of keyword arguments, see section 8.2.

(gethash 'g_key 'H_htab ['(Ldefval])

RETURNS: two values, first, the value associated with the key g_key in hash table HJltab, or
nil if the key was not in the table, and then a Boolean value to indicate whether
or not there was a match. If (Ldefval is given and there is no entry in the hash
table, then (Ldefval is returned. As is the standard with a multiple-value return,
if only one value is expected, the first is used.

NOTE: set! may be used to set the value associated with a key.

(addhash '(Lkey 'H_htab 'g_val)

RETURNS: gJcey, after installing it with its value g_val to the hash table.

(remhash 'g_key 'H_htab)

RETURNS: t if there was an entry for (Lkey in the hash table lChtab, nil otherwise. In the
case of a match, the entry and associated object are removed from the hash table.

(maphash 'u_fun 'H_htab)

RETURNS: nil.

NOTE: The function uJun is applied to every element in the hash table lChtab. The func
tion should expect two arguments: the key and value of an element. The mapped
function should not add or delete objects from the table because the results would be
unpredictable. It is, however, acceptable to use remhash or setf of gethash on the
entry currently being mapped over.

(clrhash 'Otab)

RETURNS: the hash table cleared of all entries.

(hash-table-count 'HJltab)

RETURNS: the number of entries in H_htab. Given a hash table with no entries, this func
tion returns zero.

Data Structure Access

; make a vanilla hash table using "eq" to compare items ...
=> (setq black-box (makehash-table :size 20))
#<hash-table 26>
=> (hash-table-p black-box)
t
=> (hash-table-count black-box)
o
=> (setf (gethash 'any key black-box) '(this list is the value))
anykey
=> (gethash 'anykey black-box)
(this list is the value)
=> (hash-table-count black-box)
1
=> (addhash 'composer black-box 'franz)
composer
=> (gethash 'composer black-box)
franz
=> (maphash '(lambda (key val) (msg "key=" key" ,value=" value N))
black-box)
key=composer,value=franz
key=anykey,value=(this list is the value)
nil
=> (c1rhash black-box)
hash-table[26]
=> (hash-table-count black-box)
o
=> (maphash '(lambda (key val) (msg "key=" key" ,value=" value N))
black-box)
nil

; here is an example using "equal" as the comparator
=> (setq ht (make-hash-table :size 10 :test #'equal))
#<hash-table 16>
=> (setf (gethash '(this is a key) ht) '(and this is the value))
(this is a key)
=> (gethash '(this is a key) ht)
(and this is the value)
; the reader makes a new list each time you type it ...
=> (setq x '(this is a key))
(this is a key)
=> (setq y '(this is a key))
(this is a key)
; these two lists are really different lists
; they are "equal" but not "eq"
=> (equal x y)
t
=> (eq x y)
nil
; since we are using "equal" to compare keys, we are OK ...
=> (gethash x ht)
(and this is the value)
=> (gethash y ht)
(and this is the value)

2-21

Data Structure Access 2-22

2.6. Arrays

See Chapter 9 for a complete description of arrays. Some of these functions are part
of a Maclisp array compatibility package representing only one simple way of using the
array structure of FRANZ LISP.

2.6~1. array creation

(marray 'lLdata 's_access 'g_aux 'x_length 'x_delta)

RETURNS: An array type with the fields set up Crom the above arguments whose meanings
are indicated in chapter 9 (see also § 1.2.10).

(*array 's_name 's_type 'x_dim1 ... 'x_dimn)
(array sJlame s_type x_dim1 ... x_dimn)·

WHERE: s_type may be one of t, nil, fixnum, flonum, fixnum-block, or flonum-block.

RETURNS: An array of type s_type with n dimensions of extents given by the x_dimi.

SIDE EFFECT: IT s_name is non nil, the function definition of s_name is set to the array
structure returned.

NOTE: These functions create a Maclisp compatible array. In FRANZ LISP arrays of type t,
nil, fixnum, and flonum are equivalent and the elements of these arrays can be any
type of lisp object. Fixnum-block and flonum-block arrays are restricted to fixnums
and flonums respectively and are used mainly to communicate with foreign Cunctions
(see §8.5).

NOTE: *array evaluates its arguments, array does not.

2.6.2. array predicate

2.6.3. array accessors

(getaccess 'a_array)
(getaux 'a_array)
(getdelta 'a_array)
(getdata 'a_array)
(getlength 'a_array)

RETURNS: The field of the array object a_array given by the function name.

Data Structure Access 2-23

(arrayref 'a_name 'x_ind)

RETURNS: The x_indth element of the array object a_name. x_ind of zero accesses the first
element.

NOTE: arrayref uses the data, length, and delta fields of a_name to determine which object
to return.

(arraycall s_type 'as_array 'x_indl ...)

RETURNS: The element selected by the indices from the array a_array of type s_type.

NOTE: If as_array is a symbol, then the function binding of this symbol should contain an
array object.
s_type is ignored by arraycall but is included for compatibility with Maclisp.

(arraydims's_name)

RETURNS: A list of the type and bounds of the array s_name.

(listarray 'sa_array ['x_elements])

RETURNS: A list of all of the elements in array sa_array. If x_elements is given, then only
the first x_elements are returned.

; This creates a 3 by 4 array of general lisp objects.
=> (array ernie t 94)
array [12]

; The array header is stored in the function definition slot of the
; symbol ernie.
=> (arrayp (getd 'ernie))
t
=> (arraydims (getd 'ernie))
(t 3 4)

; Store in ernie[2][2] the list (test list).
=> (store (ernie 2 2) '(test list))
(test list)

; Check to see if it is there.
=> (ernie 2 2)
(test list)

; Now use the low level function arrayre! to find the same element.
; Arrays are 0 based and row-major (the last SUbscript varies the fastest);
; thus, element [2][2] is the 10th element, starting at O.
=> (arrayre! (getd 'ernie) 10)
(ptr to)(test list) ; The result is a value cell (thus the (ptr to)).

Data Structure Access

2.0.4. array manipulation

(putaccess 'a_array 'su_func)
(putaux 'a_array 'g_aux)
(putdata 'a_array 'g_arg)
(putdelta 'a_array 'x_delta)
(putlength 'a_array 'xJength)

RETURNS: The second argument to the function.

2-24

SIDE EFFECT: The field of the array object given by the function name is replaced by the
second argument to the function.

(store 'l_arexp 's-val)

WHERE: l_arexp is an expression that references an array element.

RETURNS: g_val

SIDE EFFECT: The array location that contains the element that l_arexp references is
changed to contain g.,.val.

(fillarray 's_array 'l_itms)

RETURNS: s_array

SIDE EFFECT: The array s_array is filled with elements from ljtms. If there are not enough
elements in Citms to fill the entire array, then the last element of l_itms is
used to fill the remaining parts of the array.

2.7. Hunks

Hunks are vector-like objects whose size can range from 1 to 128 elements. Inter
nally, hunks are allocated in sizes that are powers of 2. In order to create hunks of a given
size, a hunk with at least that many elements is allocated, and a distinguished symbol
EMPTY is placed in those elements not requested. Most hunk functions respect those dis
tinguished symbols, but there are two (*makhunk and *rplacz) that overwrite the dis
tinguished symbol.

2.7.1. hunk creation

(hunk 's-val1 ['g_val2 ... 's-valn])

RETURNS: A hunk of length n whose elements are initialized to the g_vali.

NOTE: The maximum size of a hunk is 128.

EXAMPLE: (hunk 4. 'Bharp 'keYB) = {4 sharp keys}

Data Structure Access 2-25

(makhunk 'xl_arg)

RETURNS: A hunk of length xCarg initialized to all nils if xl_arg is a fixnum. If xl_arg is a
list, then a hunk of size (length 'zearg) is returned, initialized to the elements in
xl_argo

NOTE: (makhunk '(a b e)) is equivalent to (hunk 'a 'b 'e).

EXAMPLE: (makhunk 4) = {nil nil nil nil}

(*makhunk 'x_arg)

RETURNS: A hunk of size 2x_arg initialized to EMPTY.

NOTE: This is only to be used by such functions as hunk and makhunk, which create and ini
tialize hunks for users.

2.7.2. hunk accessor

(cxr 'x_ind 'h_hunk)

RETURNS: Element x_ind (starting at 0) of hunk h_hunk.

(hunk-to-list 'h_hunk)

RETURNS: A list consisting of the elements of h_hunk.

2.7.3. hunk manipulators

(rplacx 'x_ind 'h_hunk 'g3al)
(*rplacx 'x_ind 'h_hunk 'g_val)

RETURNS:h_hunk

SIDE EFFECT: Element x_ind (starting at 0) of h_hunk is set to g_val.

NOTE: rplaez does not modify one of the distinguished (EMPTY) elements whereas *rplaez
does.

(hunksize 'h_arg)

RETURNS: The size of the hunk h_arg.

EXAMPLE: (hunksize (hunk 1 29)) = 3

2.8. Bcds

A bcd object contains a pointer to compiled code and to the type of function object
the compiled code represents.

Data Structure Access

(getdisc 'y _bcd)
(getentry 'y _bcd)

RETURNS: The field of the bcd object given by the function name.

(putdisc 'y _func 's_discipline)

RETURNS: s_discipline

SIDE EFFECT: Sets the discipline field of y _func to s_discipline.

2.9. Structures

2-26

There are three common structures constructed out of list cells: the assoc list, the
property list, and the tconc list. The functions below manipulate these structures.

2.9.1. assoc list

An 'assoc list' (or alist) is a common lisp data structure. It has the form
((keyl . valuel) (key2 . value2) (key3 . value3) ... (keyn . valuen))

(assoc 'g_argl 'l_arg2)
(assq 'g_argl 'l_arg2)
(rassq 'g_argl 'l_arg2)

RETURNS: The first top level element of l_arg2 whose ear is equal (with assoe) or eq (with
assq) to !Largl.

NOTE: Usually l_arg2 has an a-list structure and g_argl acts as key. Rassq is similar to
assq, with the 'r' indicating the reversal that it looks at cdr's instead of car's in
l_arg2.

(sassoc 'g_argl 'l_arg2 'sI3unc)

RETURNS: The result of {eond ({assoe 'g_arg 'Carg2) (apply 'slJune nil)))

NOTE: sassoc is written as a macro.

(sassq 'g_argl 'l_arg2 'sCfunc)

RETURNS: the result of {eond ({assq 'g_arg 'Larg2) (apply 'slJune nil)))

NOTE: sassq is written as a macro.

Data Structure Access

; aB80e or a88q is given a key and an assoc list and returns
; the key and value item if it exists. They differ only in how they test
; for equality of the keys.

=> {8etq ali8t '{(alpha. a) ((eomplez key) . b) (junk. z)}}
((alpha. a) ((complex key) . b) (junk. x))

; You should use a88q when the key is an atom;
=> (a88q 'alpha ali8t)
(alpha. a)

; but it may not work when the key is a list.
=> (a8Bq '(eomplez key) aliBt}
nil

; However, a8Boe always works.
=> (a88oe '(eomplez key) ali8t)
((complex key) . b)

(sublis 'l_alst 'l_exp)

WHERE: l_alst is an a-list.

RETURNS: The list l_exp with every occurren~e of keyi replaced by vali.

2-27

NOTE: A new list structure is returned to prevent modification of l_exp. When a substitu
tion is made, a copy of the value to substitute in, is not made.

2.9.2. property list

A property list consists of an alternating sequence of keys and values. Normally a
property list is stored on a symbol. A list is a 'disembodied' property list if it contains
an odd number of elements, the first of which is ignored.

(plist 's_name)
(symbol-plist 's_name)

RETURNS: The property list of s_name.

NOTE: Symbol-pla'st is the Common Lisp name for this function.

(setplist 's_atm 'l-plist)

RETURNS: l-plist.

SIDE EFFECT: the property list of s_atm is set to l-plist.

Data Structure Access 2-28

(get 'Is_name 'g_ind)

RETURNS: The value under indicator g_ind in ls_name's property list if ISJlame is a symbol.

NOTE: If there is no indicator g_ind in ls_name's property list, nil is returned. If Is_name is
a list of an odd number of elements, then it is a disembodied property list. get
searches a disembodied property list by starting at its cdr and comparing every other
element with !Lind, using eq.

(getl 'Is_name 'I_indicators)

RETURNS: The property list Is_name beginning at the first indicator that is a member of the
list Cindicators, or nil, if none of the indicators in I_indicators are on ls_name's
property list.

NOTE: If Is_name is a list, then it is assumed to be a disembodied property list.

(putprop 'Is_name 'g_val 'g_ind)
(defprop ISJlame !Lval gjnd)

RETURNS: g_val.

SIDE EFFECT: Adds to the property list of Is_name the value g_val under the indicator
gjnd.

NOTE: putprop evaluates its arguments; de/prop does not. Is_name may be a disembodied
property list. See get.

(remprop 'Is_name 'g_ind)

RETURNS: The portion of ISJlame's property list beginning with the property under the
indicator gjnd. If there is no !Lind indicator in ISJlame's plist, nil is returned.

SIDE EFFECT: The value under indicator g_ind and g_ind itself is removed from the pro
perty list of Is_name.

NOTE: Is_name may be a disembodied property list. See get.

=> (pu'prop ':dl.l'e '1.1 'o/phl.l)
a
=> (pu'prop '~ll.l'e 'b 'betl.l)
b
=> (pliB' '~/I.I'e)
(alpha a beta b)
=> (get '~/l.Ite '1.Ilphl.l)
a
; You can use a disembodied property list this way:
=> (get '(nilll.l'eml.ln rjl Bklower klB loderl.lro jkl) 'Bklower)
kls

Data Structure Access 2-29

2.9.3. tconc structure

A tconc structure is a special type of list, designed to make it easy to add objects
to the end. It consists of a list cell whose ear points to a list of the elements added
with teone or leone and whose edr points to the last list cell of the list pointed to by
the ear.

(tconc 'l-ptr 'g_x)

WHERE: l-ptr is a tconc structure.

RETURNS: l-ptr with g...x added to the end.

(lconc 'l-ptr 'I_x)

WHERE: l-ptr is a tconc structure.

RETURNS: l-ptr with the list l...x spliced in at the end.

; A leone structure can be initialized in two ways.
; Nil can be given to leone, in which case leone generates
; a leone structure.

=>(8elg /00 (leone nUl))
((1) 1)

; Since teone destructively adds to
; the list, you can now add to roo without using Betg again.

=>(teone /00 e)
((1 2) 2)
=>100
((1 2) 2)

; Another way to create a null teone structure
; is to use (neons nil).

=>(setg /00 (neonB nil))
(nil)
=> (teone /00 1)
((1) 1)

; Now see what leotle can do:
=> (leone /00 nil) .
((1) 1) ;There is no change.
=> (leone /00 '(e!J 4))
((1 2 3 4) 4)

2.9.4. fclosures

An fclosure is a functional object that admits some data manipulations. They are
discussed in §8.4. Internally, they are constructed from vectors.

Data Structure Access 2-30

(fclosure 'l_vars 'g_funobj)

WHERE: l_vars is a list of variables; g_funobj is any object that can be funcalled (includ
ing, fclosures).

RETURNS: A vector that is the fclosure.

(fclosure-alist 'v _fclosure)

RETURNS: An association list representing the variables in the fclosure. This is a snapshot of
the current state of the fclosure. If the bindings in the fclosure are changed, any
previously calculated results of !closure-alist do not change.

(fclosure-function 'v_fclosure)

RETURNS: The functional object part of the fclosure.

(fclosurep 'v _f closure)

RETURNS: t if the argument is an fclosure.

(fclosure-list 'Cvarsl 'g_fcnobjl [...... J)
RETURNS: a list of fclosures where variables with the same name are shared between fclo

sures.

NOTE: !closure-list creates a set of fclosures which share variables. If you create fclosures
with the !closure function, they will not share closed-over variables. The following
example shows the difference between !closure-list and a pair of !closure calls.

Data Structure Access

; intialize x and then make two closures over it
=> (setq x 10)
10
=> (setq cIa (fclosure '(x) '(lambda (y) (setq x y))))
#<fcIosure 2>
; This fclosure will have the same initial value as the one above but
; it will not share the value of x
=> (setq c1b (fclosure '(x) '(lambda 0 (print x))))
#<fclosure 2>
; To demonstrate that the closures don't share the value of x
; we call the first closure function:
=> (funcall cla 20)
(funcall cla 20)
20
; and then see that the value of the second has not been affected:
=> (funcall cIb)
10nil

; now we create two closures with fclosure-list
; since both closures are over x, the value of x will be shared
=> (setq clc (fclosure-list '(x) '(lambda (y) (setq x y))

'(x) '(lambda 0 (print x))))
(#<fcIosure 2> #<fcIosure 2»
; to demonstrate this, we call the first one to set the value of x
=> (fun call (car dc) 15)
15
; ... and then call the second one to print the value of x
=> (run call (cadr cIe))
15nil
=>

(symeval-in-fclosure 'v _fclosure 's_symbol)

RETURNS: The current binding of a particular symbol in an fclosure.

(set-in-fclosure 'v _fclosure 's_symbol 'g_newvalue)

RETURNS: g_newvalue.

SIDE EFFECT: The variable s_symbol is bound in the fclosure to g_newvalue.

2.10. Random functions

The following functions do not fall into any of the classifications above.

2-31

Data Structure Access 2-32

(bcdad 's_funcname)

RETURNS: A fixnum that is the address in memory where the function s_funcname begins. If
sJuncname is not a machine coded function (binary), then bcdad returns nil.

(copy'g_arg)

RETURNS: A structure equal to g_arg but with new list cells.

(copyint* 'x_arg)

RETURNS: A fixnum with the same value as x_arg but in a freshly allocated cell.

(cpyl 'xvt_arg)

RETURNS: A new cell of the same type as xvt_arg with the same value as xvt_arg.

(getaddress 'S_en~ryl 's_~~)lrl 'st_disciplinel [......... J)
RETURNS: The binary object that s_binderl's function field is set to.

NOTE: This looks in the running lisp's symbol table for a symbol with the same name as
s_entryi. It then creates a binary object whose entry field points to s_entryi and
whose discipline is st_disciplinei. This binary object is stored in the function field of
s_binderi. If st_disciplinei is nil, then "subroutine" is used by default. This is espe
cially useful for cfa81 users.

(macroexpand's-form)

RETURNS: gJorm after all macros in it are expanded.

NOTE: This function only macroexpands expressions that could be evaluated, and it does not
know about the special nlambdas such as cond and do; thus, it misses many macro
expansions.

(ptr 'g_arg)

RETURNS: A value cell initialized to point to Larg.

(quote g_arg)

RETURNS: g_arg.

NOTE: The reader allows you to abbreviate (quote foo) as 'foo.

(kwote 'g_arg)

RETURNS: {lid (quote quote) g_arg).

(replace 'Largl 'g_arg2)

WHERE: g_argl and s-arg2 must be the same type of lispval and not symbols or hunks.

RETURNS: g_arg2.

SIDE EFFECT: The effect of replace dependents on the type of the g_argi, although you may
notice a similarity in the effects. To understand what replac e does to fixnum
and flonum arguments, you must first understand that such numbers are
'boxed' in FRANZ LISP. This means that if the symbol x has a value 32412,
then, in memory, the value element of x's symbol structure contains the
address of another word of memory (called a box) with 32412 in it.

Thus, there are two ways of changing the value of x. The first way is to
change the value element of x's symbol structure to point to a word of
memory with a different value. The second way is to change the value in the

Data Structure Access 2-33

box that x points to. The former method is used almost all of the time; the
latter is used very rarely and may cause great confusion. The function
replace allows you to do the latter, i.e., to actually change the value in the
box.

You should watch out for these situations. If you do (8etq y x), then both x
and y point to the same box. If you now (replace x 12945), then y also has
the value 12345. And, in fact, there may be many other pointers to that box.

Another problem with replacing fixnums is that some boxes are read-only.
The fixnums between -1024 and 1023 are stored in a read-only area and
attempts to replace them result in an "Illegal memory reference" error. See
the description of copyint* for a way around this problem.

For the other valid types, the effect of replace is easy to understand. The
fields of g_vall's structure are made eq to the corresponding fields of g_vaI2's
structure. For example, if x and y have lists as values then the effect of
(replace x y) is the same as {rplaca x (car y)) and {rplacd x (cdr y)).

(scons 'x_arg 'bs_rest)

WHERE: bs_rest is a bignum or nil.

RETURNS: A bignum whose first bigit (digit in the bignum base) is x_arg and whose higher
order bigits are bs_rest.

(setf ~refexpr 'g_value)

NOTE: 8et! is a generalization of setq. Information may be stored by binding variables,
replacing entries of arrays, and vectors, or by being put on property lists, among oth
ers. Setf allows you to store data into some location by mentioning the operation
used to refer to the location. Thus, the first argument may be partially evaluated,
but only to the extent needed to calculate a reference. 8et! returns g_value. (Com
pare to de8etq)

(setf x 3) = (setq x 3)
(setf (car x) 3) = (rplaca x 3)
(setf (get faa 'bar) 3) = (putprop faa 3 'bar)
(setf (v ref vector index) value) = (vset vector index value)

(sort 'Cdata 'u_comparefn)

RETURNS: A list of the elements of I_data ordered by the comparison function u30mparefn.

SIDE EFFECT: The list I_data is modified rather than allocated in new storage.

NOTE: (compare!n 'g_x 'g_y) should return something non-nil, if g_x can precede g.s in
sorted order; nil, if g.s must precede g_x. If u_comparefn is nil, alphabetical order is
used.

Data Structure Access 2-34

(sortcar 'I_list 'u_comparefn)

RETURNS: A list of the elements of I_list with the car's ordered by the sort function
u_comparefn.

SIDE EFFECT: The list I_list is modified rather than copied.

NOTE: Like sort, if u_comparefn is nil, alphabetical order is used.

CHAPTER 3

Arithmetic and Logical Functions

This chapter describes FRANZ LISP's functions for manipulation of numeric quantities.
Often the same function is known by several names for the sake of compatibility with several lisp
dialects. For example, add is also plus and sum. However, you should avoid using functions with
names such as + and * in this version of FRANZ LISP unless their arguments are fixnums. The +
function in Common Lisp has been defined to allow mixed mode arguments (an incompatibility
with pre-existing lisps such as FRANZ LISP) and corresponds to the FRANZ LISP function plus. The
mapping of + to plus (etc.) may be easily achieved via the package system for Common Lisp com
patibility. Note that FRANZ LISP compiler can take advantage of implicit declarations.

An attempt to divide or to generate a floating point result outside of the range of floating
point numbers causes a floating exception signal from the operating system. You can catch and
process this interrupt if desired. See the description of the signal function.

3.1. Simple Arithmetic Functions

(add ['n_argl ... J)
(plus ['n_argl ... J)
(sum ['n_argl ... J)
(+ ['x_argl ... J)

RETURNS: The sum of the arguments. If no arguments are given, 0 is returned.

NOTE: If the size of the partial sum exceeds the limit of a fixnum, the partial sum is con
verted to a bignum. If any of the arguments are flonums, the partial sum is con
verted to a flonum when that argument is processed and the result is thus a flonum.
Currently, if, in the process of doing the addition, a bignum must be converted into a
flonum, an error message results.

(addl 'n_arg)
(1+ 'x_arg)

RETURNS: Its argument plus 1.

(diff ['n_argl ...])
(difference ['n_argl ...])
(- ['x_argl ...])

RETURNS: The result of subtracting from n_argl all subsequent arguments. If no arguments
are given, 0 is returned.

NOTE: See the description of add for details on data type conversions and restrictions.

Arithmetic and Logical Functions 3-1

Arithmetic and Logical Functions

(sub1 'n_arg)
(1- 'x_arg)

RETURNS: Its argument minus 1.

(minus 'n_arg)

RETURNS: Zero minus n_arg.

(product ['n_argl ...])
(times ['n_argl ...])
(* ['x_argl ...])

3-2

RETURNS: The product of all of its arguments. It returns I if there are no arguments.

NOTE: See the description of the function add for details and restrictions to the automatic
data type coercion.

(quotient ['n_argl ... J)
(f ['x_argl ... J)

RETURNS: The result of dividing the first argument by succeeding ones.

NOTE: If there are no arguments, I is returned. See the description of the function add for
the details and restrictions of data type coercion. A divide by zero causes a floating
exception interrupt. See the description of the aignal function.

(*quo 'i..x 'i.s)

RETURNS: The integer part of i_x / i.s.

(Divide 'i_dividend 'i_divisor)

RETURNS: A list whose car is the quotient and whose cadr is the remainder of the division of
i_dividend by i_divisor.

NOTE: This is restricted to integer division.

(Emuldiv 'x_facti 'x_fact2 'x_addn 'x_divisor)

RETURNS: A list of the quotient and remainder of this operation:
«x_facti * x_fact2) + (sign extended) x_addn) / x_divisor.

NOTE: This is useful for creating a bignum arithmetic package in Lisp.

(*invmod 'xJlumber 'x_modulus)

RETURNS: This function returns the inverse of x_number in the finite field of the integers
modulo the odd prime x_modulus. The result is expressed as a positive or negative
fixnum of magnitude less than x_modulus/2.

NOTE: This is useful in algebraic manipUlation and number theory calculations.

3.2. predicates

(numberp 'g_arg)

(numbp 'g_arg)

RETURNS: t iff ~arg is a number: fixnum, flonum, or bignum.

Arithmetic and Logical Functions

(fixp '~arg)

RETURNS: t iff ~arg is a fixnum or bignum.

(floatp 'g_arg)

RETURNS: t iff ~arg is a flonum.

(evenp 'x_arg)

RETURNS: t iff x_arg is even.

(oddp 'x_arg)

RETURNS: t iff x_arg is odd.

(zerop 'g_arg)

RETURNS: t iff ~arg is a number equal to o.

(onep 'g_arg)

RETURNS: t iff g_arg is a number equal to 1.

(plusp 'n_arg)

RETURNS: t iff n_arg is greater than zero.

(minusp 'g_arg)

RETURNS: t iff ~arg is a negative number.

(greaterp ['n_argl ... J)
(> 'fx_argl 'fx_arg2)
(>& 'x_argl 'x_arg2)

RETURNS: t iff the arguments are in a strictly decreasing order.

3-3

NOTE: In the functions greaterp and >, the function ds"fference is used to compare adjacent
values. If any of the argum~nts are non-numbers, the error message comes from the
difference function. The arguments to > must be fixnums or both flonums. The
arguments to > f! must both be fixnums.

(lessp ['n_argl ... J)
« 'fx_argl 'fx_arg2)
«& 'x_argl 'x_arg2)

RETURNS: t iff the arguments are in a strictly increasing order.

NOTE: In functions Ie ssp and < the function difference is used to compare adjacent values.
If any of the arguments are non numbers, the error message comes from the
difference function. The arguments to < may be either fixnums or flonums but must
be the same type. The arguments to < f! must be fixnums.

Arithmetic and Logical Functions

(= 'fx_argl 'fx_arg2)

(=& 'x_argl 'x_arg2)

3-4

RETURNS: t iff the arguments have the same value. The arguments to = must be the either
both fixnums or both flonums. The arguments to =& must be fixnums.

(primep 'x_arg)

RETURNS: t iff x_arg is a prime integer in the range of fixnums.

NOTE: This is intended to be fast and convenient for, for example, hash-table construction.

3.3. Trignometric Functions

Some of these functions are taken from the host math library, and therefore have the
same accuracy and other performance characteristics.

(cos 'fx_angle)

RETURNS: The (flonum) cosine of fx_angle (which is assumed to be in radians).

(sin 'fx_angle)

RETURNS: The sine of fx_angle (which is assumed to be in radians).

(aeos 'fx_arg)

RETURNS: The (flonum) arc cosine of fx_arg in the range 0 to 11".

(asin 'fx_arg)

RETURNS: The (flonum) arc sine of fx_arg in the range -11"/2 to 11"/2.

(atan 'fx_argl 'fx_arg2)

RETURNS: The (flonum) arc tangent of fx_argl/fx_arg2 in the range -11" to 11".

3.4. Bignum/Fixnum Manipulation

(haipart bx_number x_bits)

RETURNS: A fixnum (or bignum) that contains the x_bits high bits of (abs bx_number) if
x_bits is positive; otherwise, it returns the (abs x_bits) low bits of
(abs bx_number).

(haulong 'bx_number)
(integer-length 'bx_number)

RETURNS: The number of significant bits in bx_number.

NOTE: The result is equal to the least integer greater than or equal to the base two loga
rithm of one plus the absolute value of bx_number. Common Lisp's integer-length
differs from haulong in that if the argument is negative, the result is equal to the
least integer greater than or equal to the base two logarithm of the absolute value of
bx_number.

Arithmetic and Logical Functions 3-5

(bignum-Ieftshift bx_arg x_amount)

RETURNS: bx_arg shifted left by x_amount. If x_amount is negative, bx_arg is shifted right
by the magnitude of x_amount.

NOTE: If bx_arg is shifted right, it will be rounded to the nearest even number.

(sticky-bignum-Ieftshift 'bx_arg 'x_amount)

RETURNS: bx_arg shifted left by x_amount. If x_amount is negative, bx_arg will be shifted
right by the magnitude of x_amount and rounded.

NOTE: Sticky rounding is done this way: after shifting, the low order bit is changed to I if
any I's were shifted off to the right.

3.5. Bit Manipulation

In this section numerous functions based on the boole function are defined for Com
mon Lisp compatibility. Many are merely macro-expanded into calls to boole, and in the
current implementation are restricted to fixnum-Iength integers.

(boo Ie 'x_key 'x_vI 'x_v2 ...)

RETURNS: The result of the bitwise boolean operation as described in the following table.

NOTE: If there are more than 3 arguments, then evaluation proceeds left to right with each
partial result becoming the new value of x_vI. That is,

(boole 'key 'vi 'v2 'v9) = (boole 'key (boole 'key 'vi 'v2) 'v9).
In the following table, * represents bitwise and + represents bitwise, or E9 represents
bitwise xor and -, represents bitwise negation and is the highest precedence operator.

(boole 'key 'x 'y)

key 0 1 2 3 4 5 6 7

result 0 x*y -,x*y y x*-,y x x@y x+y

common
names and bitc\ear xor or

key 8 9 10 11 12 13 14 15
result -, (x + y) -,(x@y) -,x -,x+y -,y x + -, Y -,x+-'y -1

common
names nor equiv implies nand

Arithmetic and Logical Functions

(Ish 'x_val 'x_amt)
(ash 'x_val 'x_amt)

3-6

RETURNS: x_val shifted left by x_amt if x_amt is positive. If x_amt is negative, then Ish
returns x_val shifted right by the magnitude if x_amt.

NOTE: This always returns a fixnum even for those numbers whose magnitude is so large
that they would normally be represented as a bignum; i.e., shifter bits are lost. Func
tionally "arithmetic shift" ash, is the same as Ish. For more general bit shifters, see
bignum-Ieftshift and sticky-bignum-Ieftshift.

(rot 'x_val 'x_amt)

RETURNS: x_val rotated left by x_amt if x_amt is positive. If x_amt is negative, then x_val
is rotated right by the magnitude of x_amt.

(Iogand ['n_argl ... J)
RETURNS: the (numeric) result of the bitwise logical and of the n_argi's.

NOTE: If there are no arguments, -1 is returned.

(Iogior ['n_argl ... J)
RETURNS: the (numeric) result of the bitwise logical inclusive or of the n_argi's.

NOTE: If there are no arguments, zero is returned.

(Iogxor ['n_argl ... J)
RETURNS: the (numeric) result of the bitwise logical exclusive or of the n_argi's.

NOTE: If there are no arguments, zero is returned.

(Iogeqv ['n_argl ... J)
RETURNS: the (numeric) result of the bitwise logical equivalence of the n_argi's.

NOTE: If there are no arguments, -1 is returned. Equivalence is the same as exclu8ive nor.

(Iognot 'n_arg)

RETURNS: the (numeric) result of the bitwise logical not of n_arg. (The logical complement
of n_arg).

Additional Common Lisp logical operators which require exactly two fixnum argu
ments are as follow:

(logandcl 'n_argl 'n_arg2)

RETURNS: (logand (Iognot n_argl) n_arg2)

(logandc2 'n_argl 'n_arg2)

RETURNS: (logand n_argl (lognot n_arg2))

Arithmetic and Logical Functions 3-7

(logbitp 'x_index 'n_number)

RETURNS: t if the bit in n_number with index indexis

(logcount 'n_number)

RETURNS: the number of one bits in n_number if n_number is positive; the number of zero
bits if n_number is negative.

(Iogiorcl 'n_argl 'n_arg2)

RETURNS: (logior (lognot n_argl) n_arg2)

(logiorc2 'n_argl 'n_arg2)

RETURNS: (logior n_argl (lognot n_arg2))

(lognand 'n_argl 'n_arg2)

RETURNS: (lognot (logand n_argl n_arg2))

(lognor 'n_argl 'n_arg2)

RETURNS: (lognot (Iogor n_argl n_arg2))

(logtest 'n_argl 'n_arg2)

RETURNS: (not (zerop (Iogand n_argl n_arg2)))

NOTE: Logtest is true if anyone's are in corresponding locations in the two arguments.

3.6. Other Functions

As noted above, some of the following functions are inherited from the host math
library.

(abs 'n_arg)
(absval 'n_arg)

RETURNS: The absolute value of n_arg.

(exp 'fx_arg)

RETURNS: e raised to the fx_arg power (Bonum).

(expt 'n_base 'n_power)

RETURNS: n_base raised to the n.J>ower power.

NOTE: If either of the arguments are Bonums, the calculation is done using log and expo

Arithmetic and Logical Functions 3-8

(fact 'x_arg)

RETURNS: x_arg factorial -- fixnum or bignum.

(fix 'n_arg)

RETURNS: A fixnum as close as we can get to n_arg.

NOTE: fix rounds down. Currently, if n_arg is a Honum larger than the size of a fixnum, this
fails.

(float 'n_arg)

RETURNS: A Honum as close as we can get to n_arg.

NOTE: If n_arg is a bignum larger than the maximum size of a Honum, then a Hoating excep
tion occurs.

(log 'fx_arg)

RETURNS: The natural logarithm of fx_arg.

(max 'n_argl ...)

RETURNS: The maximum value in the list of arguments.

(min 'n_argl ...)

RETURNS: The minimum value in the list of arguments.

(mod 'i_dividend 'i_divisor)
(remainder 'i_dividend 'i_divisor)

RETURNS: The remainder when i_dividend is divided by i_divisor.

NOTE: The sign of the result has the same sign as i_dividend.

(*mod 'x_dividend 'x_divisor)

RETURNS: The balanced representation of x_dividend modulo x_divisor.

NOTE: The range of the balanced representation is abs(x_divisor}/2 to (abs(x_divisor}/2) -
x_divisor + 1.

(random ['x_limit])

RETURNS: A fixnum between 0 and x_limit - 1 if x_limit is given. If xJimit is not given,
any fixnum, positive or negative, might be returned.

(sqrt 'fx_arg)

RETURNS: The square root of fx_arg.

CHAPTER 4

Special Functions

4.1. Introduction

This chapter describes the special functions, or forms of FRANZ LISP. While Lisp is
generally thought of as very simple, in fact serious programming in Lisp uses a large help
ing of these special forms. What makes them special is that they generally do not conform
to the usual function evaluation methodology.

4.2. Functions

(and [g_argl ... J)
RETURNS: The value of the last argument if all arguments evaluate to a non-nil value; other

wise, and returns nil. It returns t if there are no arguments.

NOTE: The arguments are evaluated left to right and evaluation ceases with the first nil
encountered.

(apply 'u_func ['g_argl ... J 'l_args)

RETURNS: The result of applying function u_func to the arguments contained in the list
Cargs.

NOTE: If ujunc is a lambda, then the length of Larg8 should equal the number of formal
parameters for the u_func. If u_func is a nlambda or macro, then l_args is bound to
the single formal parameter.

For application of a lambda (or lexpr), apply will take the optional g_arg's and just
push them on the stack (like funcall). The LAST argument, Larg8 should be a list
which will be spread on the stack. This version of apply (Opus 42.03 and later) is
upward compatible with Common Lisp. If the argument is a nlambda or macro, it
still must be given only one argument.

Special Functions 4-1

Special Functions

; add1 is a lambda of ! argument
=> (apply 'add1 '(9))
4

; You can define plus1 as a macro that is equivalent to
add1.
=> (deJ plus1 (maero (arg) (list 'add1 (cadr arg))))
plus!
=> (plus19)
4

; Now if you apply a macro, you obtain the form it changes to.
=> (apply 'plus1 '(plus1 9))
(add! 3)

; If you Juneall a macro ,however, the result
of the macro is eualed
; before it is returned.
=> (Juneall 'plus1 '(plusl 9))
4

; For this particular macro, the ear of the arg is not checked
; so that this too works.
=> (apply 'plus1 '(foo 9))
(add! 3)

(apropos 'st_arg)

RETURNS: nil

4-2

NOTE: All packages are searched for symbols whose print name contains the substring
st_arg. Matching symbols are printed, along with information about their function
definition and current value.

(apropos-list'st_arg)

RETURNS: a list of symbols which is the result of seaching all packages for symbols which
have a print name containing the substring st_arg.

(arg ['x_numb])

RETURNS: If x_numb is specified, then the x_numb'th argument to the enclosing lexpr. If
x_numb is not specified, then this returns the number of arguments to the enclos
ing lexpr.

NOTE: It is an error to the interpreter if x_numb is given and out of range.

Special Functions 4-3

(break [g_message ['g,..pred]])

WHERE: If g_message is not given, it is assumed to be the null string, and if g,..pred is not
given, it is assumed to be t.

RETURNS: The value of (*brcak 'g-prcd 'g_mc88agc)

(*break 'g,..pred 'g_message)

RETURNS: nil immediately if g,..pred is nil; otherwise, the value of the next (return 'value)
expression typed in at top level.

SIDE EFFECT: If the predicate, g,..pred, evaluates to non-null, the Lisp system stops and
prints out 'Break ' followed by g_message. It then enters a break loop that
allows you to interactively debug a program. To continue execution from a
break, you can use the return function. To return to top level or another
break level, you can use ~pop or rcsct.

(caseq 'g_key-form 13lausel ...)
(case 'g_key-form l_clausel ...)

WHERE: Cclausei is a list of the form (g_comparator ['lLformi ... J). The comparators may
be symbols, small fixnums, a list of small fixnums or symbols.

NOTE: The way caseq works is that it evaluates g_key-form, yielding a value called the
selector. Each clause is examined until the selector is found consistent with the com
parator. For a symbol, or a fixnum, this means the two must be cq. For a list, this
means that the selector must be cq to some element of the list.

The comparator consisting of the symbol t has special semantics: it matches anything
and, consequently, should be the last c.omparator.

In any case, having chosen a clause, C4SCq evaluates each form within that clause and
returns the value of the last form

RETURNS: The value of the last form as indicated above. If no comparators are matched,
cascq returns nil.

Here are two ways of defining the same function:

== > (defun fate (personna)

fate

{caseq personna
{cow '(jumped over the moon))
(cat '(played nero))
({dish Bpoon) '(ran away with each other))
{t '(lived happily ever after))))

=>{defun fate (personna)
{cond

fate

({eq personna 'cow) '(jumped over the moon))
((eq personna 'cat) '(played nero))
{(memq personna '(dish spoon)) '(ran away with each other))
{t '(lived happily ever after))))

Special Functions

(cateh g_exp [Is_tag])

WHERE: If Is_tag is not given, it is assumed to be nil.

RETURNS: The result of (*catch 'Is_tag g_exp)

NOTE: Catch is defined as a macro.

("'cateh 'Is_tag g_exp)

WHERE: Is_tag is either a symbol or a list of symbols.

4-4

RETURNS: The result of evaluating g_exp or, if the 'throw' pseudo-function is invoked with
the argument Is_tag within the execution of g3XP, the value given by throw. (see
throw, *throw) The *catch and throw or *throw construction is used for a non
local return of a value, and is typically used in an error return or some kind of
break in the normal modularization of a program.

SIDE EFFECT: This proceeds as follows: *catch first sets up a 'catch frame' on the Lisp run
time stack. Then it begins to evaluate g_exp. If g_exp evaluates normally,
its value is returned. If, however, a value is thrown during the evaluation of
g_exp, then this *catch returns with that value if one of these cases is true:

(1) The tag thrown to is Is_tag.

(2) Is_tag is a list and the tag thrown to is a member of this list.

(3) Is_tag is nil.

NOTE: Errors are implemented as a special kind of throw. A catch with no tag does not
catch an error, but a catch whose tag is the error type catches that type of error. See
Chapter 10 for more information.

(comment [Larg ...])

RETURNS: The symbol comment.

NOTE: This does nothing but return a constant value. You should be caution to avoid using
this in a place where the value might be used.

(cond [13lausel ... J)
(w hen pred formi ...)
(unless pred formi ...)
(if pred formi [form2])

RETURNS: The last value evaluated in the first satisfied clause. If no clauses are satisfied,
then nil is returned.

NOTE: Cond is the basic conditional 'statement' in Lisp. The clauses are processed from left
to right. The first element of a clause is evaluated. If it evaluates to a non-null
value, then that clause is satisfied and all following elements of that clause are
evaluated. The last value computed is returned as the value of the condo If there is
just one element in the clause, then its value is returned. If the first element of a
clause evaluates to nil, then the other elements of that clause are not evaluated and
the system moves to the next clause. The forms when, unless, and if are expanded
into cond '8 as follows:
(when p a b ...) = (cond (p a b ...))
(unless p a b ...) = (cond ((not p) a b ...))
(if p a b) = {cond (p a) (t b))

Special Functions 4-5

(cvttointlisp)

SIDE EFFECT: The reader is modified to conform with the Interlisp syntax. The character
% is made the escape character and special meanings for comma, backquote,
and backslash are removed. Also the reader is told to convert upper case to
lower case.

(cvttofranzlisp)

SIDE EFFECT: FRANZ LISP's default syntax is reinstated. You should run this function after
having run any of the other cvtto- functions. Backslash is made the escape
character, super-brackets work again, and the reader distinguishes between
upper and lower case.

(cvttomaclisp)

SIDE EFFECT: The reader is modified to conform with Maclisp syntax. The character / is
made the escape character, and the special meanings for backslash, left and
right bracket are removed. The reader is made case-insensitive.

(cvttoucilisp)

SIDE EFFECT: The reader is modified to conform with DCI Lisp syntax. The character / is
made the escape character; tilde is made the comment character; exclamation
point takes on the unquote function normally held by comma, and backslash,
comma, and semicolon become normal characters. Here too, the reader is
made case-insensitive.

(debug s_msg)

SIDE EFFECT: Enter the Fixit package described in Chapter 15. This package allows you to
examine the evaluation stack in detail. To leave the Fixit package type 'ok'.

(debugging 'g_arg)

SIDE EFFECT: If g_arg is non-null, FRANZ LISP unlinks the transfer tables, does a (*rset t)
to turn on evaluation monitoring and sets the all-error catcher (ER%all) to
be debug-err-handler. If g_arg is nil, all of the earlier changes are undone.

(declare [g_arg ... J)
RETURNS: nil

NOTE: This is a no-op to the evaluator. It has special meaning to the compiler (see Chapter
12).

(def s_name (s_type l_argl g_expl ...))

WHERE: s_type is one of lambda, nlambda, macro or lexpr.

RETURNS: s_name

SIDE EFFECT: This defines the function s_name to the Lisp system. If s_type is nlambda or
macro then the argument list l_argl must contain exactly one non-nil symbol.

Special Functions 4-6

(defmacro s_name l_arg g_expl ...)
(defcmacro s_name Carg g_expl ...)

RETURNS: s.Jlame

SIDE EFFECT: This defines the macro s_name. de/macro makes it easy to write macros since
it makes the syntax just like de/un. Further information on de/macro is in
§8.3.2. de/cmacro defines compiler-only macros, or cmacros. A cmacro is
stored on the property list of a symbol under the indicator cmacro. Thus a
function can have a normal definition and a cmacro definition. For an exam
ple of the use of cmacros, you can examine the definitions of nthcdr and nth
in /lisp/lib/common2.l

(defsubst s_name l_llist g_form [...])

RETURNS: s_name.

NOTE: defsubst is like defun (below), except that a compiler macro is defined (see defcmacro
above) which expands to the definition of s_name as a lambda. It's use is to allow an
easy method of defining functions which are to be macro expanded out at compile
time. Note, also, that the & lambda list parameters, which are valid to defun, are
not to defsubst.

(defun s_name [s_mtype]ls_argl ~expl ...)

WHERE: s_mtype is one of fexpr, expr, args or macro.

RETURNS: s.Jlame

SIDE EFFECT: This defines the function s_name.

NOTE: Some of these options exist for Maclisp compatibility. Defun rearranging the informa,
tion you provide and then invokes the 'def' procedure. For example, the MacLisp
'fexpr' is automatically converted to a FRANz LISP nlambda. A MacLisp s_mtype of
expr is simply the same thing as FRANZ LISP's lambda. The s_type of macro exists in
the same form. If ls_argl is a non-nil symbol, then the type is assumed to be lexpr
and ls_argl is the symbol that is bound to the number of args when the function is
entered.
For compatibility with the Lisp Machine Lisp, there are four types of optional param
eters that can occur in ls_argl: i!Joptional, i!Jrest, i!Jauz and i!Jkey. For an explanation
of use of these forms, see section 8.2.
An additional form accepted by defun is provided to set up property lists. To place
the value ~value on the property list of symbol s_name under indicator sjnd, use
the form
(defun (s.Jlame sjnd) ~value)

Special Functions

; de/ and de/un here are used to define identical
functions.
; You can decide for yourself which is easier to use.
=> (de/ appendl (lambda (liB extra) (append lie (liet extra))))
appendl

=> (de/un appendl (lie extra) (append liB (list extra)))
appendl

; Using the & forms ...
=> (de/un test (a b &optional c &aux (retval 0) &reet z)

(i/ c them (msg "Optional arg present" N
"c is" eN))

(meg "rest is" z N
"retval is " ret val N))

test
=> (teBt 1 284)
Optional arg present
cis 3
rest is (4)
retval is 0

(defvar s_variable ['g_init])

RETURNS: s_variable.

NOTE: This form is put at the top level in files, like de/un.

4-7

SIDE EFFECT: This declares s_variable to be special. If g_init is present and s_variable is
unbound when the file is read in, s_variable is set to the value of g_init. An
advantage of '(defvar foo)' over '(declare (special foo))' is that if a file con
taining defvars is loaded (or fasl'ed) in during compilation, the variables men
tioned in the defvar's are declared special. The only way to have that effect
with '(declare (special foo))' is to include the file.

(do l_vrbs I_test g_expl ...)

RETURNS: The last form in the cdr of Ctest evaluated, or a value explicitly given by a
return evaluated within the do body.

NOTE: This is the basic iteration form for FRANZ LISP. l_vrbs is a list of zero or more var
init-repeat forms. A var-init-repeat form looks like:

(s_name [g_init [!LrepeatlJ)
There are three cases depending on what is present in the form. If just s_name is
present, this means that when the do is entered, s_name is lambda-bound to nil and
is never modified by the system (though the program is certainly free to modify its
value). If the form is (s_name 'g_init) then the only difference is that s_name is
lambda-bound to the value of g_init instead of niL If !Lrepeat is also present then
s_name is lambda-bound to g_init when the loop is entered and after each pass
through the do body s_name is bound to the value of g_repeat.
I_test is either nil or has the form of a cond clause. If it is nil then the do body is
evaluated only once and the do returns nil. Otherwise, before the do body is
evaluated the car of I_test is evaluated, and, if the result is non-null, this signals an
end to the looping. Then the rest of the forms in I_test are evaluated and the value
of the last one is returned as the value of the do. If the cdr of I_test is nil, then nil is
returned. Thus, this is not exactly like a cond clause.

Special Functions 4-8

tLexp1 and those forms that follow constitute the do body. A do body is like a prog
body and, thus, may have labels. You can use the functions go and return.
The sequence of evaluations is this:

(1) The init forms are evaluated left to right and stored in temporary locations.

(2) Simultaneously, all do variables are lambda bound to the value of their init forms or
to nil.

(3) If I_test is non-null, then the car is evaluated, and, if it is non-null, the rest of the
forms in I_test are evaluated, and the last value is returned as the value of the do.

(4) The forms in the do body are evaluated left to right.

(5) If I_test is nil the do function returns with the value nil.

(6) The repeat forms are evaluated and saved in temporary locations.

(7) The variables with repeat forms are simultaneously bound to the values of those
forms.

(8) Go to step 3.
NOTE: There is an alternate form of do that can be used when there is only one do variable.

It is described next.

NOTE: For Common Lisp compatability, the var-init-repeat form may be an atom, which is
equivalent to specifing a g_init of nil.

NOTE: This is another, less general, form of do. It is evaluated by:

(1) Evaluating tLinit.

(2)
(3)
(4)

Lambda binding s_name to value of tLinit.

g_test is evaluated, and, if it is not nil, the do function returns with nil.

The do body is evaluated beginning at g_expl.

(5) The repeat form is evaluated and stored in s_name.

(6) Go to step 3.
RETURNS: Nil.

(do,," l_vrbs I_test tLexp1 ...)

RETURNS: the value of the last form in the cdr of I_test, or a value explicitly given by a
return evaluated within the do body. '

NOTE: This is the Common Lisp do* form. It is very similar to do except that: (1) The var
init-repeat forms are evaluated sequentially rather than simultaneously. (2) There is
no analogue of the old-style mac lisp do. In particular, Cvrbs must be a list of var
init-repeat forms.

Special Functions 4-D

(dolist (s_var I_form g_resultform) g_form)

RETURNS: if present, g_resultform, nil otherwise. Dolist provides a mechanism to iterate
over the elements of the list I_form, successively binding the elements to s_var,
while executing the body of the loop g_form.

(dotimes (s_var i_countform g_resultform) g_form)

RETURNS: if present, ILresultform, nil otherwise. Dotimes provides a mechanism to iterate
over a sequence of integers. First, i_countform is evaluated to produce an integer,
and then evaluates g30rm once for each integer from zero (inclusive) to
i_countform (exclusive), in order, binding s_var to this integer.

; This is a simple function that numbers the elements of a list.
; It uses a do function with two local variables.
=> (de/un printem (lis)

printem

(do ((zz liB (cdr zz))
(i 1 (1+ i)))

((null zz) (patom »all done") (terpr))
(print i)
(patom»:")
(print (car zz))
(terpr)))

=> (printem '(a bed))
1: a
2: b
3: c
4: d
all done
nil
=> (setq x 100)
100
=> (dolist (x '(a bed e f g) 'result) (msg x" "»
abc d e f g result
=>x
100
=> (dotimes (x 10) (mag x","»
0,1,2,3,4,5,6,7,8,9,nil
=>x
100
=>

(environment [l_whenll_whatl Cwhen21_what2 ... J)
(environment-maclisp [1_whenll_whatll_when2 l_what2 ... J)
(environment-Imlisp [1_whenll_whatll_when21_what2 ... J)

WHERE: The when's are a subset of (eval compile load), and the symbols have the same
meaning as they do in 'eval-when'.

The what's may be:
(files filel file2 ... fileN)

which insure that the named files are loaded. To see if filet" is loaded, these func
tions look for a 'version' property under filei's property list. In order to make this
work to prevent multiple loading, you should put

(putprop 'myfile t 'version),
at the end of myfile.l.

Special Functions

Another acceptable Corm Cor a what is
(syntax type)
Where type is either maclisp, intlisp, ucilisp, or Cranzlisp.

SIDE EFFECT: environment-maclisp sets the environment to what'liszt +m' generates.

4-10

environment-Imlisp sets up the Lisp machine environment. This is like
mac lisp but it has additional macros.

For these specialized environments, only the files clauses are useCui.
(environment-mac lisp (compile eval) (files Coo bar))

RETURNS: The last list oC files requested.

(err ['s_value [nillJ)

RETURNS: Nothing (it never returns).

SIDE EFFECT: This causes an error, and, iC this. error is caught by an errset then that errset
returns s_ value instead oC nil. If the second arg is given, then it must be nil
(Cor MAclisp compatibility).

(error ['s_messagel ['s_message2]])

RETURNS: Nothing (it never returns).

SIDE EFFECT: s_messagel and s_message2 are patomed iC they are given and then err is
called (with no arguments), which causes an error.

(cli:error 's3ormat-string ['argsJ)

WHERE: s3ormat-string is a command string to the Cormat-program, and the arg(s) are
passed to Cormat.

RETURNS: Nothing. This Cunction signals a Catal error~

NOTE: The prefix "cli" must be used normally because it is part oC the Common LISP pack
age, and conflicts with the FRANZ LISP Cunction oC the same name.

(cerror 's_continue-Cormat-string 's_error-format-string ['arg ... J)

RETURNS: nil, if the program is continued after the error.

SIDE EFFECT: This Cunction (which is intended Cor use with continuable errors) signals an
error and enters a break loop. The program may be continued after resolution
of the error by typing ?ret to the break loop. The two strings given are
intended as control strings to the Cormat Cunction to construct a continuation
message and an error message. This is entirely compatible with the Common
LISP cerror Cunction. Explanations oC use can be Cound in Common LISP the
Language.

Special Functions 4-11

(errset g_expr [s_Bag])

RETURNS: A list of one element that is the value resulting from evaluating g_expr. If an
error occurs during the evaluation of g_expr, then the locus of control returns to
the errset, which then returns nil (unless the error was caused by a call to err
with a non-null argument).

SIDE EFFECT: S_Bag is evaluated before g_expr is evaluated. If s_Bag is not given, then it is
assumed to be t. If an error occurs during the evaluation of g_expr, and
s_Bag was evaluated to a non-null value, then the error message associated
with the error is printed before control returns to the errset.

(eval 'g_val ['x_bind-pointer])

RETURNS: The result of evaluating g_val.

NOTE: The evaluator evaluates g_val in the following way:
If g_val is a symbol, then the evaluator returns its value. If g_val had never been
assigned a value, then this causes an 'Unbound Variable' error. If x_bind-pointer is
given, then the variable is evaluated with respect to that pointer. See eva/frame for
details on bind-pointers.

If g_val is of type value, then its value is returned. If g_val is of any other type than
list, g_val is returned.

If g_val is a list object, then g_val is either a function call or array reference. Let
g_car be the first element of g_val. g_car is continually evaluated until it results in a
symbol with a non-null function binding or a non-symbol. Call the result: g_func.

G_func must be one of three types: list, binary, or array. If it is a list, then the first
element of the list, which is called g_functype, must be either lambda, nlambda,
macro, or lexpr. If g_func is a binary, then its discipline, which is called g_functype,
is either lambda, nlambda, macro, or a string. If g3unc is an array, then this form is
evaluated specially. See Chapter 9 on arrays. If g_func is a list or binary, then
ILfunctype determines how the arguments to this function, the cdr of g_val, are pro
cessed. If g_functype is a string, then this is a foreign function call. See §8.5 for
more details.

If g_functype is lambda or lexpr, the arguments are evaluated (by calling eval recur
sively) and stacked. If g_functype is nlambda, then the argument list is stacked. If
g_functype is macro, then the entire form, g_val, is stacked.

Next, the formal variables are lambda bound. The formal variables are the cadr of
g_func. If g_functype is nlambda, lexpr, or macro, there should only be one formal
variable. The values on the stack are lambda bound to the formal variables except
in the case of a lexpr, where the number of actual arguments is bound to the formal
variable.

After the binding is done, the function is invoked, either by jumping to the entry
point in the case of a binary or by evaluating the list of forms beginning at cddr
g_func. The result of this function invocation is returned as the value of the call to
eval.

Special Functions 4-12

(evalframe 'x-pdlpointer)

RETURNS: An evalframe descriptor for the evaluation frame just before x-pdlpointer. If
x-pdlpointer is nil, it returns the evaluation frame of the frame just before the
current call to evalframe.

NOTE: An evalframe descriptor describes a call to eval, apply, or funcal/. The form of the
descriptor is
(type pdl-pointer expression bind-pointer np-index lbot-index),
where type is 'eval' if this describes a call to evalor 'apply' if this is a call to apply or
funcall. pdl-pointer is a number that describes this context. It can be passed to eval
frame to obtain the next descriptor and can be passed to freturn to cause a return
from this context. bind-pointer is the size of variable binding stack when this
evaluation began. The bind-pointer can be given as a second argument to eval in
order to evaluate variables in the same context as this evaluation. If type is 'eval',
then expression has the form (function-name argl ...). If type is 'apply', then expres
sion has the form {function-name (argl ...)). np-index and lbot-index are pointers
into the argument stack (also known as the names tack array) at the time of call.
lbot-index points to the first argument; np-index points one beyond the last argu
ment.
In order for there to be enough information for evalframe to return, you must call
(*rset t).

EXAMPLE: {progn (evalframe nil))
returns {eval 21.1.7478600 {progn (evalframe nil)) 1 8 1)

(evalhook 'S'-form 'su_evalfunc ['su_funcallfunc 1)
RETURNS: The result of evaluating g_form after lambda binding 'evalhook' to su_evalfunc,

and, if it is given, lambda binding 'funcallhook' to su_funcallhook.

NOTE: .As explained in §15.4, the function eval may pass the job of evaluating a form to a
user 'hook' function when various switches are set. The hook function normally
prints the form to be evaluated on the terminal and then evaluates it by calling
evalhook. Evalhook does the lambda binding mentioned earlier and then calls eval to
evaluate the form after setting an internal switch to tell eval not to call the user's
hook function just this one time. This allows the evaluation process to advance one
step and yet insure that further calls to eval cause traps to the hook function (if
su_evalfunc is non-null).
In order for evalhook to work, (*rset t) and (sstatus evalhook t) must have been done
previously.

(exec s_argl ...)

RETURNS: the result of forking and executing the command named by concatenating the
s_argi together with spaces in between.

(exece 's_fname ['l_args ['l_envir]])

RETURNS: The error code from the system if it was unable to execute the command s_fname
with arguments l_args and with the environment set up as specified in l_envir. If
this function is successful, it is not returned, instead the Lisp system is overlaided
by the new command.

Special Functions 4-13

(freturn 'x""'pdl-pointer 'g_retval)

RETURNS: g_retval from the context given by x_pdl-pointer.

NOTE: A pdl-pointer denotes a certain expression currently being evaluated. The pdl-pointer
for a given expression can be obtained from evalJrame.

(funcall 'u_func ['Largl ... J)
RETURNS: the value of applying function u_func to the arguments g_argi and then evaluat

ing that result if u_func is a macro.

NOTE: If u_func is a macro or nlambda, then there should be only one g_arg. JuneaU is the
function that the evaluator uses to evaluate lists. If Joo is a lambda, lexpr, or array,
then (JuneaU ,/00 'a 'b 'c) is equivalent to (Joo 'a 'b 'c). If Joo is an nlambda, then
(JuneaU ,/00 '(a b c)) is equivalent to (Joo a b c). Finally, if Joo is a macro, then
(JuneaU ,/00 '(Joo a b c)) is equivalent to (Joo a be).

(funcallhook 'IJorm 'su_funcallfunc ['su_evalfunc])

RETURNS: the result of the following sequence of actions. First, it lambda-binds 'fun
callhook' to su_funcallfunc and, if it is given, lambda binds 'evalhook' to
sU3valhook. Then it proceeds to JuneaU the (car IJorm) on the already evaluated
arguments in the (cdr lJorm)

NOTE: This function is designed to continue the evaluation process with as little work as
possible after a funcallhook trap has occurred. It is for this reason that the form of
I_form is unorthodox: its car is the name of the function to call and its cdr are a list
of arguments to stack (without evaluating again) before calling the given function.
After stacking the arguments but before calling JuneaU, an internal switch is set to
prevent JuneaU from passing the job of funcalling to su_funcallfunc. If JuneaU is
called recursively in funcalling I_form and if su_funcallfunc is non-null, then the
arguments to JuneaU are actually given to su_funcallfunc (a lexpr) to be funcalled.
In order for eva/hook to work, (*rset t) and (sstatus eva/hook t) must have been done
previously. A more detailed description of evalhook and Juncallhook is given in
Ohapter 14.

(function u_func)

RETURNS: The function binding of u_func if it is a symbol with a function binding; other
wise, u_func is returned.

(getenv 'st_name)

RETURNS: the value of looking up st_name in current environment. Not all operating sys
tems have an environment.

(go g_labexp)

WHERE: g_labexp is either a symbol or an expression.

SIDE EFFECT: If g_labexp is an expression, that expression is evaluated and should result in
a symbol. The locus of control moves to just following the symbol g_labexp
in the current prog or do body.

NOTE: This is only valid in the context of a prog or do body. The interpreter and compiler
allow non-local go's, although the compiler does not allow a go to leave a function
body. The compiler does not allow g_labexp to be an expression.

Special Functions

(help sx_arg)

RETURNS: nil.

4-14

NOTE: a portion of the online FRANZ LISP manual is printed. If sx_arg is an function, then
manual description of that function is printed. If sx_arg is a number or "b" or "c",
then print that chapter or appendix. If sx_arg is "tc", then a table of contents is
printed.

(if '~a 'g_b)
(if '~a 'g_b 'g3 ...)
(if 'g_a then 'g_b [...] [elseif 'g3 then '~d ...] [else 'g3 [...])
(if '~a then 'g_b [...] [else if 'g_c thenret] [else 'g_d [...])

NOTE: The various forms of il are intended to be easily readable conditional statements -- to
be used in place of condo There are two varieties of if: with and without keywords.
The keyword-less variety is inherited from common Maclisp usage. A keyword-less,
two argument il is equivalent to a one-clause cond, i.e., (cond (a b)). Any other
keyword-less il must have at least three arguments. The first two arguments are the
first clause of the equivalent cond, and all r!!maining arguments are shoved into a
second clause beginning with t. Thus, the second form of il is equivalent to

(cond (a b) (t c ...)).

The keyword variety has the following grouping of arguments: a predicate, a then
clause, and an optional else-clause. The predicate is evaluated, and if the result is
non-nil, the then-clause is performed, in the sense described later. Otherwise, that is,
the result of the predicate evaluation was precisely nil, the else-clause is performed.

Then-clauses are either consist entirely of the single keyword thenret, or start with
the keyword then, and followed by at least one general expression. (These general
expressions must not be one of the keywords.) To actuate a thenret means to cease
further evaluation of the il and to return the value of the predicate just calculated.
The performance of the longer clause means to evaluate each general expression in
turn and then return the last value calculated.

The else-clause may begin with the keyword else and be followed by at least one gen
eral expression. The rendition of this clause is just like that of a then-clause. An
else-clause may begin alternatively with the keyword elseif and be followed (recur
sively) by a predicate, then-clause, and optional else-clause. Evaluation of this
clause, is just evaluation of an ii-form, with the same predicate, then- and else
clauses.

(I-throw-err 'I_token)

WHERE: Ctoken is the cdr of the value returned from a *catch with the tag ER%unwind-
protect.

RETURNS: Nothing (never returns in the current context).

SIDE EFFECT: The error or throw denoted by I_token is continued.

NOTE: This function is used to implement unwind.protect which allows the processing of a
transfer of control though a certain context to be interrupted, a user function to be
executed, and then the transfer of control to continue. The form of Ctoken is either
(t tag value) for a throw or
(nil type meS8age va/ret contuab uniqueid [arg ... j) for an error.
This function is not to be used for implementing throws or errors and is only docu
mented here for completeness.

Special Functions 4-15

(let l_args g_expl ... g_exprn)

RETURNS: The result of evaluating g_exprn within the bindings given by Cargs.

NOTE: l_args is either nil (in which case let is just like progn) or it is a list of binding
objects. A binding object is a list (symbol expression). When a let is entered, all of
the expressions are evaluated and then simultaneously lambda-bound to the
corresponding symbols. In effect, a let expression is just like a lambda expression
except that the symbols and their initial values are next to each other, making the
expression easier to understand. There are some added features to the let expression:
A binding object can just be a symbol, in which case the expression corresponding to
that symbol is 'nil'. If a binding object is a list and the first element of that list is
another list, then that list is assumed to be a binding template and let does a desetq
on it.

(let. l_args g_expl ... g_expn)

RETURNS: The result of evaluating g_exprn within the bindings given by l_args.

NOTE: This is identical to let except the expressions in the binding list Cargs are evaluated
and bound sequentially instead of in parallel.

(lexpr-funcall 'g_function ['g_argl ... J 'l_argn)

NOTE: This is a cross between funcall and apply. The last argument must be a list (possibly
empty). The elements of list arg are stacked and then the function is funcalled.

EXAMPLE: (lexpr-funcall 'list 'a '(b c d)) is the same as
(funcall 'list 'a 'b 'c 'd)

(listify 'x_count)

RETURNS: A list of x_count of the arguments to the current function (which must be a
lexpr).

NOTE: Normally arguments 1 through x_count are returned. If x_count is negative then a
list of last abs{x_count) arguments are returned.

(map 'u_func 'l_argl ...)

RETURNS: l_argl

NOTE: The function u_func is applied to successive sublists of the l_argi. All sublists should
have the same length.

(mapc 'u_func 'l_argl ...)

RETURNS: l_argl.

NOTE: The function u_func is applied to successive elements of the argument lists. All of
the lists should have the same length.

Special Functions 4-16

(mapcan 'u_func 'l_argl ...)

RETURNS: nconc applied to the results of the functional evaluations.

NOTE: The function u_func is applied to successive elements of the argument lists. All sub
lists should have the same length.

(map car 'u_func 'l_argl ...)

RETURNS: A list of the values returned from the functional application.

NOTE: The function uJunc is applied to successive elements of the argument lists. All sub
lists should have the same length.

(mapcon 'u_func 'l_argl ...)

RETURNS: nconc applied to the results of the functional evaluation.

NOTE: The function u_func is applied to successive sublists of the argument lists. All sub
lists should have the same length.

(maplist 'u_func 'l_argl ...)

RETURNS: A list of the results of the functional evaluations.

NOTE: The function u_func is applied to successive sublists of the arguments lists. All sub
lists should have the same length.

You may find the following summary table useful in remembering the differences between
the six mapping functions:

Value returned is

Argument to func- l_argl list of results nconc of results
tional is

elements of list mapc mapcar mapcan

sublists map maplist mapcon

(mfunction t_entry 's_disc)

RETURNS: A Lisp object of type binary composed of t_entry and s_disc.

NOTE: t_entry is a pointer to the machine code for a function, and s_disc is the discipline
(e.g., lambda).

(oblist)

RETURNS: a list of every interned symbol in the current lisp environment.

NOTE: The name of this function is historical, and means "object list". It used to be the
case that all symbols lived on the same entity called the oblist or obarray (for object
array).

Special Functions 4-17

(or [g_argl ... J)
RETURNS: The value of the first non-null argument or nil if all arguments evaluate to nil.

NOTE: Evaluation proceeds left to right and stops as soon as one of the arguments evaluates
to a non-null value.

(pop 'I_stack ['g_into])

RETURNS: The top element on the stack I_stack. If g_into is given, a set! of g_into is done
with the top element as the value. See push below.

(prog l_vrbls g_expl ...)

RETURNS: The value explicitly given in a return form or else nil if no return is done by the
time the last g_expi is evaluated.

NOTE: The local variables are lambda-bound to nil, then the g_expi are evaluated from left
to right. This is a prog body (obviously) and this means that any symbols seen are
not evaluated, but are treated as labels. This also means that return's and go's are
allowed.

(progl 'Lexpl ['g_exp2 ... J)
RETURNS: g3xpl

(prog2 'g_expl 'g_exp2 ['g_exp3 ... J)
RETURNS: g_exp2

NOTE: The forms are evaluated from left to right and the value of g3xp2 is returned.

(progn 'g_expl ['g_exp2 ... J)
RETURNS: The last g_expi.

(progv 'Llocv 'Unitv lLexpl ...)

WHERE: l_locv is a list of symbols and l_initv is a list of expressions.

RETURNS: The value of the last g_expi evaluated.

NOTE: The expressions in l_initv are evaluated from left to right and then lambda-bound to
the symbols in Llocv. If there are too few expressions in l_initv, then the missing
values are assumed to be nil. If there are too many expressions in l_initv, then the
extra ones are ignored (although they are evaluated). Then the g_expi are evaluated
left to right. The body of a progv is like the body of a progn, it is not a prog body.
(C.f. let)

(pur copy 'g_exp)

RETURNS: A copy of g_exp with new pure cells allocated wherever possible.

NOTE: Pure space is never swept up by the garbage collector, so this should only be done on
expressions that are not likely to become garbage in the future. In certain cases, data
objects in pure space become read-only after a dumplisp, and then an attempt to
modify the object results in an illegal memory reference.

Special Functions

(purep 'g_exp)

RETURNS: t iff the object g3XP is in pure space.

(push 'g_element 'I_stack)
(pushnew '(Lelement 'I_stack)

RETURNS: I_stack.

4-18

NOTE: l.-stack is a fifo stack, and push cons'es (Lelement into l.-stack. pushnew only pushes
the element if it is not already there. See pop above.

(putd 's_name 'uJunc)

RETURNS: u_func

SIDE EFFECT: This sets the function binding of symbol s_name to u_func.

(return ['g_valJ)

RETURNS: g_val (or nil if g_val is not present) from the enclosing prog or do body.

NOTE: This form is only valid in the context of a prog or do body.

(selectq 'g_key-form [l_clausel ... J)

NOTE: This function is just like caseq (see earlier), except that the symbol otherwise has
the same semantics as the symbol t, when used as a comparator.

(setarg 'x_argnum '(Lval)

WHERE: x_argnum is greater than zero and less than or equal to the number of arguments
to the lexpr.

RETURNS: g_val

SIDE EFFECT: The lexpr's x_argnum'th argument is set to g-val.

NOTE: This can only be used within the body of a lexpr.

(throw 'g_val [s_tag])

WHERE: If s_tag is not given, it is assumed to be nil.

RETURNS: The value of (*throw 's_tag 'Lval).

(*throw 's_tag 'g_val)

RETURNS: g_val from the first enclosing catch with the tag s_tag or with no tag at all. Thus
the value is accompanied by a change in control.

NOTE: This is used in conjunction with *catch to cause a clean jump to an enclosing con
text.

(unwind-protect g-protected[g_cleanupl ... J)

RETURNS: The result of evaluating g-protected.

NOTE: Normally g-protected is evaluated and its value remembered, then the g_cleanupi are
evaluated, and, finally, the saved value of g-protected is returned. If something
should happen when evaluating g-protected which causes control to pass through
LProtected, and, thus, through the cfl-ll to the unwind-protect, then the g_cleanupi is
still evaluated. This is useful if g-protected does something sensitive which must be
cleaned up whether or not g-protected completes itself. Programs which 'tem
porarily' mess up a structure and then straighten the structure can use this scheme to
protect the straightening-up process from being cut off by a keyboard interrupt.

Special Functions 4-19

4.3. Multiple Value Returns

Sometimes a function logically needs to return more than one value, but in most
cases only one of them is used and it is therefore considered uneconomical to "cons-up" a
structure for the unusual case. A function performing a division might returning the quo
tient and then as a second part, number might return the remainder. A neat way to do
this is by using multiple value returns. Only those functions which expect multiple values
can receive them, and thus the default is to return a single value. The mechanism for
using multiple values is explained below.

There are special functions which must be used to produce and receive multiple
value. If a called function produces multiple values and the calling function does not
request them, then all but the first value are discarded. If no values are produced, then the
caller receives nil for a value. The maximum number of multiple values which can be
returned by a functions is bound to the global variable multiple-values-limit.

The multiple value facility is completely compatible with Common Lisp.

Here are the functions to produce and receive multiple values:

(values ['g_arg1 ... 'g_argn])

RETURNS: g_arg1, or nil if given no arguments. The g_argi are returned as multiple values.
With the exception of the first, they can be accessed only by using one of the spe
cial forms below to receive them.

(values-list 'l_arg)

RETURNS: the car of l_arg; but if received appropriately will exhibit the elements in the list
Carg as multiple values. This form is equivalent to (apply 'values 'l_arg).

EXAMPLE: (values-list '(1 2 3)) is equivalent to (values 1 2 3)

(multiple-value-call 'u_fun 'g_form1 ['~form2 ...])

RETURNS: the result of calling u_fun with the results of all g_formi as arguments.

(multiple-value-list 'g_form)

RETURNS: a list oC the multiple values returned by g_form. This Corm IS equivalent to
(multiple-value-call #'list 'g_form).

(multiple-value-progl 'g_form1 ['g_form2 ...])

RETURNS: the values produced by g_Corml, aCter evaluating all gJormi.

(multiple-value-setq 'l_varlist 'g_Corm)

RETURNS: the first value returned by g_Corm after setting each variable in l_varlist to the
corresponding value returned by ~Corm (the first variable gets the first value, and
so on).

NOTE: If there are more variables than returned values, then the remaining variables are
given the value nil.

Special Functions 4-20

(multiple-value-bind 'l_varlist 's-values-form 's-form! ['g_form2 ...])

RETURNS: the result of evaluating g_formi. The variables in l_varlist are bound to the
values returned by s-values-form, and then all the g_formi are evaluated.

CHAPTER 5

Input/Output

5.1. Introduction

The following functions are used to read from and write to external devices (e.g. files)
and programs through pipes. All I/O goes through the Lisp data type called the port. A
port may be open for either reading or writing but usually not both simultaneously (see
jileopen). There are only a limited number of ports (20) and they are not reclaimed unless
they are clo8ed. All ports are reclaimed by a resetio call, but this drastic action is not
necessary if the program closes ports that it uses.

If a port argument is not supplied to a function that requires one, or if a bad port
argument (such as nil) is given, then FRANZ LISP uses the default port according to this
scheme: if input is being done, then the default port is the value of the symbol piport and,
if output is being done, then the default port is the value of the symbol poport. Further-
more, if the value of piport or poport is not a valid port, then the standard input or stan
dard output is used, respectively.

The standard input and standard output are usually the keyboard and terminal
display unless your job is running in the background and its input or output is connected
to a pip~. All output that goes to the standard output also goes to the port ptport, if it is
a valid port. Output destined for the standard output does not reach the standard output
if the symbol AW is non-nil, although it still goes to ptport if ptport is a valid port.

FRANZ LISP has borrowed a convenient shorthand notation from the Unix operating
system '0' shell concerning naming files. If a file name begins with - (tilde), and the sym
bol tilde-expansion is bound to something other than nil, then FRANZ LISP expands the
file name. It takes the string of characters between the leading tilde, and the first slash as
a user-name. Then, that initial segment of the filename is replaced by the home directory
of the user. The null username is taken to be the current user.

On Unix systems, having gone to the effort of searching the password file, FRANZ LISP
remembers the user directory, in case it gets asked to do so again. Tilde-expansion is per-
formed in most places in which file names are expect, and in particular, the following func
tions: clasl, chdir, lasl, ffa81, jileopen, injile, load, outjile, probe/, sys:access, sys:unlink.

The programmer should be careful to note which of the functions reference file names
and which refer to ports.

Input/Output 5-1

Input/Output

5.2. Functions

(eras} 'st_file 'st_entry 'st_funcname ['st_disc ['st_Iibrary]])

RETURNS: T

5-2

SIDE EFFECT: This is used to load in a foreign function (see §8.4). The object file st_file is
loaded into the Lisp system. St3ntry should be an entry point in the file
just loaded. The function binding of the symbol s_funcname is set to point
to st_entry so that, when the Lisp function sjuncname is called, st_entry is
run. st_disc is the discipline to be given to sjuncname. st_disc defaults to
"subroutine" if it is not given or if it is given as nil. H st_library is non-null,
then after st_file is loaded, the libraries given in st_library are searched to
resolve external references. The form of st_Iibrary should be something like
"+llibname". The C library (" +lclib ") is always searched so that when
loading in a C file, you probably will not need to specify a library.

NOTE: This function may be used to load the output of the assembler, C compiler, Fortran
compiler, and Pascal compiler but NOT the Lisp compiler. Use last for that. If a file
has more than one entry point, then use getaddress to locate and setup other foreign
functions.
It is an error to load in a file that has a global entry point of the same name as a glo
bal entry point in the running Lisp. As soon as you load in a file with clast, its global
entry points become part of the Lisp's entry points. Thus, you cannot clast in the
same file twice unless you use remove address to change certain global entry points to
local entry points.

(close 'p-port)

RETURNS: t

SIDE EFFECT: The specified port is drained and closed, releasing the port.

NOTE: The standard defaults are not used in this case since you probably never want to
close the standard output or standard input.

(cprintf'st_format 'xfst_val ['p-portJ)

RETURNS: xfst_ val

SIDE EFFECT: The operating system formatted output function printf is called with argu
ments st_format and xfst_val. If xfst_val is a symbol, then its print name is
passed to printf. The format string may contain characters that are printed
literally, and it may contain special formatting commands preceded by a per
cent sign. The complete set of formatting characters is described in the
operating system manual. Some useful ones are %d for printing a fixnum in
decimal, %f or %e for printing a flonum, and %s for printing a character
string (or print name of a symbol).

EXAMPLE: (cprintl" Pi equals %/' 3.14159) prints 'Pi equals 3.14159'

(drain ['p-portJ)

RETURNS: nil

SIDE EFFECT: H this is an output port, then the characters in the output buffer are all sent
to the device. H this is an input port, then all pending characters are flushed.
The default port for this function is the default output port.

Input/Output

(fasl 'st_name ['st_mapf ['g_warn]])

WHERE: st_mapf and g_ warn default to nil.

RETURNS: t if the function succeeded, nil otherwise.

5-3

SIDE EFFECT: This function is designed to load in an object file generated by the Lisp com
piler Liszt. File names for object files usually end in '.0', so /a81 append '.0'
to st_name, if it is not already present. If st_mapf is non-nil, then it is the
name of the map file to create. Fa81 writes in the map file the names and
addresses of the functions it loads and defines. Normally, the map file is
created (i.e. truncated if it exists), but if (88tat'l/,8 appendmap t) is done, then
the map file is appended. If ~ warn is non-nil and if a function is loaded
from the file that is already defined, then a warning message is printed.

NOTE: /a81 only looks in the current directory for the file to load. The function load looks
through a user-supplied search path and calls /a81 if it finds a file with the same root
name and a '.0' extension. In most cases, you should use the function load rather
than calling /a81 directly.

(fileopen 's_filename 's_mode])

RETURNS: a port for reading or writing based on the file s_filename. The s_mode is one of r,
W, or a, (for read, write, append), or r+, w+, or a+ each of which permits both
reading and writing on a port provided that /8eek is done between changes in
"direction". In the case of writing, the file will be created if it does not already
exist. The directory search-path for file name resolution is not used.

(filepos 'p-port ['x-POsJ)

RETURNS: The current position in the file if x-pos is not given or else x-pos if x-pos is
given.

SIDE EFFECT: If x-pos is given, the next byte to be read or written to the port is at position
x-pos.

(filestat 'st_filename)

RETURNS: A vector containing various numbers that the operating system assigns to files. If
the file does not exist, an error is invoked. Use probe/ to determine if the file
exists.

NOTE: The individual entries can be accessed by mnemonic functions of the form filestat
field, where field may be any of: dev, ino, mode, mtime, nlink, size, type, or uid.
See the operating system programmers manual for a more detailed description of
these quantities.

(Hate '~form ['x_max])

RETURNS: The number of characters required to print g_form using patom. If x_max is
given and, if fiate determines that it returns a value greater than x_max, then it
gives up and returns the current value it has computed. This is useful if you just
want to see if an expression is larger than a certain size.

Input/Output 6-4

(flatsize '~form ['x_max])

RETURNS: The number of characters required to print g_form using print. The meaning of
x_max is the same as for flatc.

NOTE: Currently this just explode's g_form and checks its length.

(fseek 'p-port 'x_offset 'x_flag)

RETURNS: The position in the file after the function is performed.

SIDE EFFECT: this function positions the read/write pointer before a certain byte in the file.

(help sx_arg)

RETURNS: nil.

If x_flag is 0 then the pointer is set to x_offset bytes from the beginning of
the file. If x_flag is 1 then the pointer is set to x_offset bytes from the
current location in the file. If x_flag is 2 then the pointer is set to x_offset
bytes from the end of the file.

NOTE: a portion of the online FRANZ LISP manual is printed. If sx_arg is an function, then
manual description of that function is printed. If sx_arg is a number or "b" or "c",
then print that chapter or appendix. If sx_arg is "tc", then a table of contents is
printed.

(infile 's_filename)

RETURNS: A port ready to read s_filename.

SIDE EFFECT: This tries to open s_filename, and, if it cannot or if there are no ports avail
able, it gives an error message.

NOTE: To allow your program to continue on a file-not-found error, you can use something
like:
{cond {{null {setq myport {car {err8et {infile name} nil}}}}

{patom "' couldn't open the file" }}}
which sets myport to the port to read from if the file exists or prints a message if it
could not open it and also sets myport to nil. To simply determine if a file exists, use
probef·

(load 's_filename ['st_map ['g_warn]])

RETURNS: t

NOTE: The function of load has changed since previous releases of FRANZ LISP and the fol
lowing description should be read carefully.

SIDE EFFECT: load now serves the function of both fa81 and the old load. Load searches a
user-defined search path for a Lisp source or object file with the filename
s_filename (with the extension .1 or .0 added as appropriate). The search

~ path that load uses is the value of {8tatus load-8earch-path}. The default is
- .(1.1 /lisp/lib), which means: look in the current directory first and then

/lib/lisp. The file that load looks for depends on the last two characters of
s_filename. If s_filename ends with ".1", then load only looks for a file name
sJlename and assumes that this is a FRANZ LISP source file. If s_filename
ends with ".0", then load only looks for a file named s_filename and assumes
that this is a FRANZ LISP object file to be fa8led in. Otherwise, load first
looks for s_filename.o, then s_filename.l, and, finally, s_filename itself. If it
finds s_filename.o, it assumes that this is an object file; otherwise, it assumes
that it is a source file. An object file is loaded using fasl and a source file is
loaded by reading and evaluating each form in the file. The optional argu
ments st_map and g_warn are passed to fa81 should fasl be called.

Input/ Output 5-5

NOTE: load requires a port to open the file s_filename. It then lambda binds the symbol
piport to this port and reads and evaluates the forms.

(makereadtable ['s_Hag])

WHERE: If s_Hag is not present it is assumed to be nil.

RETURNS: A readtable equal to the original readtable if s_Hag is non-null, or else equal to
the current readtable. See Chapter 7 for a description of readtables and their
uses.

(msg [Coption ... J ['~msg ...])

NOTE: This function is intended for printing short messages. Any of the arguments or
options presented can be used any number of times in any order. The messages
themselves (~msg) are evaluated, and then they are transmitted to patom. Typi
cally, they are strings, which evaluate to themselves. The options are interpreted
specially:

m8g Option Summary

(P pJlortname) Causes subsequent output to go to the port p-portnamej
port should be opened previously.

B Print a single blank.

Evaluate n_b and print that many blanks.

N Print a single newline by calling terpr.

Evaluate nJl and transmit
that many newlines to the stream.

D drain the current port.

(nwritn ['p-port])

RETURNS: The number of characters in the buffer of the given port but not yet written out
to the file or device. The buffer is Hushed automatically when filled or when terpr
is called.

(outfile 's_filename ['st_typeD

RETURNS: A port or nil

SIDE EFFECT: This opens a port to write s_filename. If st_type is given and if it is a sym
bol or string whose name begins witQ' 'a', then the file is opened in append
mode; that is, the current contents are not lost, and the next data is written
at the end of the file. Otherwise, the file opened is truncated by outfile if it
existed beforehand. If there are no free ports, outfile returns nil. If one can
not write on s_filename, an error is signalled.

Input/ Output

(patom 'g_exp ['p-port])

RETURNS: g_exp

5-6

SIDE EFFECT: g_exp is printed to the given port or the default port. If g_exp is a symbol or
string, the print name is printed without any escape characters around spe
cial characters in the print name. If lLexP is a list, then patom has the same
effect as print.

(pntlen 'xfs_arg)

RETURNS: The number of characters needed to print xfs_arg.

(portp '~arg)

RETURNS: T iff g_arg is a port.

(pp [I_option] s_namel ...)

RETURNS: t

SIDE EFFECT: If s_namei has a function binding, it is pretty-printed; otherwise, if s_namei
has a value, then that is pretty-printed. Normally, the output of the pretty
printer goes to the standard output port poport. The options allow you to
redirect it.

PP Option Summar1l

(F • ...filename)

(P p,...portname)

Direct future printing to s_filename.

Causes output to go to the port p-portnamej
port should be opened previously.

Evaluate 8-expression and do not print.

(prine 'g_arg ['p-port])

EQUNALENT TO: patom.

(print '~arg ['p...,port])

RETURNS: nil
SIDE EFFECT: Prints g_arg on the port p...,port or the default port. For objects that can't be

read back in, the convention is used that a sharp-sign (#) prefixes the data
printed. For example,

The lisp objects other, bcd, vector, hash-table, package, array, and port now
print as "#< ... >". Reading the value of printing one of the above objects is
an error.

Input/Output 5-7

=> ·package*
#<package user>
=> (getd 'car)
#<bcd Ox16B2E lambda>
=> (make-hash-table)
#<hash-table 20>
=> Standard-Input
#<port $stdin>
=> (vector 10)
#<vector 1>
= > (marray nil nil nil 10 nil)
#<array 10>
= > (getd 'format)
#<bcd OxD4800 lambda> ; known to be compiled code, which is of type other
=> (fake #xd4800)
#<other OxD4800>

(sprintt't_control ['argl ... J)

RETURNS: the formatted string corresponding to the returned value of the C library sprintf
function.

NOTE: The (backslash) escapes do NOT work. T_control must be a string.

(wide-print-list 'g_exp [:port 'p_whereJ [:left-margin 'x_wheretostartJ)

RETURNS: Nil

SIDE EFFECT: Prints the expression g_exp to to the port p_where, starting at the column
number x_wheretostart. wide-print-list prints as many entities on one line as
will fit assuring that no lisp object other than a list is broken across a line
boundary. In particular, atoms and numbers remain on one line.

(prober 'st_file)

RETURNS: T iff the file st_file exists.

NOTE: Just because it exists doesn't mean you can read it.

(pp-rorm 'g_form ['p-portJ)

RETURNS:T

SIDE EFFECT: g_form is pretty-printed to the port p-port (or poport if p-port is not given).
This is the function that pp uses. pp-form does not look for function
definitions or values of variables, it just prints out the form it is given.

NOTE: This is useful as a top-level-printer. See top-level in Chapter 6.

Input/Output 5-8

(ratom ['p-port ['g_eof]])

RETURNS: The next atom read from the given or default port. On end of file, g_eof (default
nil) is returned.

(read ['p-port ['g_eof]])

RETURNS: The next Lisp expression read from the given or default port. On end of file,
Leof (default nil) is returned.

NOTE: An error occurs if the reader is given an ill-formed expression. The most common
error is too many right parentheses. (Note that this is not considered an error in
Maclisp).

(reade ['p-port ['g_eoflJ)

RETURNS: The next character read from the given or default port. On end of file, g30f
(default nil) is returned.

(read line ['p_port])

RETURNS: a string containing all characters in the stream p-port up to, but not including,
the next newline. The null string is returned if the first character is a newline.

(eharent 'p-port)

RETURNS: The number of characters left on the current line in p-port.

5;) ~ ; rtallJ.,(
treaddir ['t_dirname])

RETURNS: A list of strings, one for each file in the named directory.

NOTE: t_dirname is a string representing the name of a directory. It may be ".", meaning
return a list of the current working directory (This is the default if the argument is
omitted.) All files are listed except"." and " .. ". No tilde-expansion is done on the
argument.

(readlist 'Carg)

RETURNS: The Lisp expression read from the list of characters in l_arg.

(removeaddress 's_namel ['s_name2 ...])

RETURNS: Nil

SIDE EFFECT: The entries for the s_namei in the Lisp symbol table are removed. This is
useful if you wish to clasl in a file twice, since it is illegal for a symbol in the
file you are loading to already exist in the Lisp symbol table.

(resetio)

RETURNS: Nil

SIDE EFFECT: All ports except the standard input, output, and error are closed.

Input/Output 5-9

(sload's_file)

SIDE EFFECT: The file s_file (in the current directory) is opened for reading, and each form
is read, printed, and evaluated. IT the form is recognizable as a function
definition, only its name is printed; otherwise, the whole form is printed.

NOTE: This function is useful when a file refuses to load because of a syntax error and you
would like to determine where the error is.

(tab 'x_col ['p-port])

SIDE EFFECT: Enough spaces are printed to put the cursor on column x_col. IT the cursor is
beyond x301 to start with, a terpr is done first.

(terpr ['p-portJ)

RETURNS: Nil

SIDE EFFECT: A terminate line character sequence is sent to the given port or the default
port. This also drains the port.

(terpri ['p-port])

EQUIVALENT TO: terpr.

(tilde-expand 'st_name)

RETURNS: st_name will all - 's expanded with absolute pathnames in their place.

NOTE: this function is not available in all versions of FRANZ LISP.

(truenam.e 'p...,port)

RETURNS: The name of the file to which p...,port refers.

(tyi ['p...,portj)

RETURNS: The fixnum representation of the next character read. On end of file, -1 is
returned.

(tyipeek ['p...,port])

RETURNS: The fixnum representation of the next character to be read.

NOTE: This does not cause an official 'read' of the character, it just peeks at it and returns
the value which would be returned if it were read. (It 'peeks'.)

(tyo 'x3har ['p...,portj)

RETURNS: x3har.

SIDE EFFECT: The character whose fixnum representation is x30de is printed as a character
on the given output port or the default output port.

Input/Output 5-10

(untyi 'x_char ['p-port])

SIDE EFFECT: x_char is put back in the input buffer so a subsequent tyi or read reads it
first.

NOTE: A maximum of one character may be put back.

(y-or-n-p ['t_message])

RETURNS: t if an answer of "y" is read from the user, nil otherwise. H t_message is given,
then prompt the user with this string before reading.

NOTE: piport and poport are used as the querying ports.

(zap line)

RETURNS: nil

SIDE EFFECT: All characters up to and including the line termination character are read
and discarded from the last port used for input.

NOTE: This is used as the macro function for the semicolon character when it acts as a com
ment character.

5.3. Format

Format is a output formatter somewhat in the style of the fprintf cO' run-time library
program. The arguments to format include an output port, a control string, and the values
to be printed. The values passed to format are printed according to the directives in the
control string.

In the simplest case, the format control string has no directives and is passed no vari
ables. In this case, format just prints:

(/orm(Jt t "HeUo world") ==> "HeUo world"nil

As we see from the previous example, format prints some expression, and then
return8 a value nil. H, instead of t, (which indicates the standard output), we had used nil
as the value for the port, format would have printed nothing, but returned a symbol, IHello
worldl. Values returned by format are uninterned.

(format 'p-port 's_ctrl ['g_arg ...])

RETURNS: nil if p-port is non-nil otherwise returns a 8ymbol determined by s_ctrl and the
arguments.

WHERE: p-port is one of: t (the user's terminal), an output port opened with o'ILtjile (or
jileopen), or nil (which causes format to return a symbol).

s_ctrl is a control string, enclosed in double quotes ("). It may also contain direc
tive8, prefaced by a tilde r), as explained, below.

The number of arguments should correspond to the number of values expected by
the control string. All arguments are processed according to the number of direc
tives contained in the control string. Extra arguments are discarded. When an

Input/Output 0-11

insufficient number of arguments are given, default values may be inserted.

SIDE EFFECT: when p-port is non-nil, prints a string to p-port.

In the example, above, the control string was a simple string, containing no directives
and there were no arguments to the string. The remainder of this section will deal with
more complex control strings wpich contain directives which are used to manipulate the out
put. Directives are invoked using the directive prefix, - , (a tilde). In addition, there are a
number of modifiers, which can be used to further manipulate the output. These modifiers
may be in the form of a special character, such as the atsign ("@"), or the colon (":"), or,
they may simply be a combination of numbers, indicating, perhaps, the number of
significant digits in a numeric expression. Finally, there is a control character, which is
flagged by the tilde signifies the directive to be followed. In some cases, directives may only
apply to the next item to be printed, and as such, will appear alone in the text of the con
trol string. In other cases, directives may involve more complex strings, and may require a
matching "closing" directive (much like the closing right parenthesis of a list). All of these
variations will be described and illustrated in the following text. In general, however, the
form of the control string is (with the optional end-directive in brackets):

,,- <prefix> <modifier> <directive> string ... r <end-directive>!,

In certain cases, more than one modifier may be used for a single directive. In such
cases, individual modifiers may be separated by a comma. For example, the directive - d
causes the argument to be printed in decimal format. However, - nd causes the argument to
be printed to n decimal places (using a space as a pad character), while - n,md will cause
the integer to be printed to n decimal places using the character whose decimal representa
tion is m as the pad character. (In the previous discussion, nand m are prefixes, in contrad
istinction to modifiers such as the atsign and the colon.)

; the - % outputs a carriage return.

=> (format t " Today'8 daily number i8: - d - %" 10f4)
Today's daily number is: 1024
nil
; the number will be printed to four places but the pad character
; will be a space.
=> (format t "Today's daily number is:- 4d - %" 304)
Today's daily number is: 304
nil
; 48 is the decimal representation of a zero (0)
=> (formal I" Today'8 daily number i8: - 4,48d- %" 904)
Today's daily number is: 0304
nil
=>

In some cases, the prefix parameter will indicate a character to be printed, such as the
padding character in the case of - d, above. Since format expects a decimal number, ascii
characters should either be specified by their decimal values (e.g., 48 = "0"), or using a
quote sign (e.g., ,,- 4, 'Od") In addtion, the prefix character can be the letter v or the sharp
sign character, =IF. The v prefix directs format to use the value of the current argument as
the prefix to the directive. This syntax is illustrated in description of the - q directive. The
other option, =IF, substitutes the number of remaining arguments for the prefix character.
The use of the sharpsign is illustrated in a number of examples, below.

Input/ Output 5-12

5.3.1. format directives

The following is a description of the format directives have been modeled after
those in MacLISP and ZetaLISP. The symbol arg will be used to indicate the
corresponding argument to the directive.

a prints any argument, arg as it would be printed by prine (without escaping).
- na prints the argument filling it to width n with spaces.

s is identical to - a except that the print function is prin1.

- d as described in the previous example, prints the decimal representation of arg
(without a decimal point). If arg is not a number, it is printed in - a format. - nd
prints arg to n spaces, the padding character is indicated by - mineolw,padehard
where padchar is the decimal representation of the padding character (default is a
space but a useful value is decimal 48 which is an ascii 0).

o similar to - d except that it prints the argument in octal form (radix 8). Note
that arg must be a number. See also - r. - nf
print8 arg to a precision of n digits (minimum 2, because of the decimal point).

The decimal pointed is floated to be consistent with standard scientific notation so
that extremely large numbers and extremely small number are printed in
exponential notation. If arg is not a number it is printed in - a format. Unlike the
previous directives, the prefix is not mine 01, rather, it is total number of digits
printed (n-l decimal places).]

e [arg is printed in exponential notation. The prefix case is identical to - f indica,
tive of the number of significant digits. Unlike - f, all values for arg are printed in
exponential notation.]

r a general purpose number formatter. The full form of this directive is
- radiz,mineoiw,padehar,eommachar r where each of these prefix values has
the same meaning as in the - d directive. The radix prefix causes the argument to
be printed in that base, i.e, - lOr is equivalent to - d. Non-numeric arguments
are printed using - a.

If no prefix is given, the numerical argument is printed as text, i.e, if the argu
ment is "4", then - r prints "four" (cardinal value), - :r prints "fourth" (ordinal
value), and - @r prints N (Roman numeral). r :@r prints IIII (old-style Roman
numeral).]

=> (format t "The - :r one on the right.- %" 1)
The first one on the right.
nil
; - % prints a carriage return.
=> (format t "Total value of door number - r: - r doUarsr %" a teaae)
Total value of door number three: twelve thousand three hundred thirty-two dollars!
nil
; the next example illustrates the use of the - • directive which
; allows the user to evaluate the arguments out of order.
=> (format t "The octal representation of- dis - :* - Br. - %" 1B)
The octal representation of 18 is 22.
nil

c prints arg (which should be a fixnum representing an ascii character), in a more
human-readable form. - c prints the non-printable (control) characters
represented by the fixnum argument in a slashified octal form. - :c prints the
non-printable characters as an upper case character prefixed by a carat (e.g.,

Input/Output 5-13

"'C"); some characters such as decimal 32 (a space) is printed in a text form (e.g.,
"space"). The - @e form prints the character in LISP readable form (slashified).
In all cases, the printable characters are printed in their keyboard form.

[The - e allows the character to be displayed along with any control bits which
may be set. In ZetaLISP, an alternate character set may be used to indicate non
printing characters such as control characters (using the - e directive) while chaI'
acters printed with the - :e directive will have the control bits spelled out. For
example, a character may print out as "Control-Meta-x". Mouse characters will
print out "Mouse-<button number>-<number of clicks>". This is not, yet,
available in FRANZ LISP.

- % outputs a carriage-return. In most UNIX modes, the operating system will gen
erate a line-feed automatically upon receipt of the carriage-return. A carriage
return may also be inserted directly into the control string, but this can be used
to create more readable code. If it becomes necessary to insert a carriage-return,
which should not be printed, into code to make it more readable, a simple tilde
prefixing the carriage-return will "escape" it. A tilde in front of a space will
prevent the space from being echoed on the output. The form - n% prints n caI'
riage returns.

x outputs a space. - n '.25'x outputs n spaces.

- & calls for a "fresh line", meaning that if the cursor is not in the first column of the
current line, output a carriage return, else do nothing.

- 1 outputs a formfeed on a line oriented output. - nl outputs n formfeeds. - :1 will
output an operation to clear the screen on a screen-oriented output (this requires
that the screen has been initialized in a manner described in the next section),
otherwise a formfeed will be output.

outputs a tilde. If - n - is used, n tildes are printed.

- t outputs a relative tab (5 spaces).[- n,m'.25~ will cause spaces to be printed to the
absolute column n, or if it is past n, to column n+mk where k is the smallest unit
of increment (1 column on a terminal, 1 pixel on a bitmap). If the colon flag is
used, the unit values for n,m, and k will be in characters (columns) on a standard
terminal and in units of pixels on a bitmapped display. If the colon flag is not
used, the units are in columns. The syntax is - n,m:t. Absolute tabs (as opposed
to relative tabs), are only possible when the screen mode is such that the cursor
position is always known. In ZetaLISP, this means that :read-eursorpos and
:set-eursorpos must be in operation. Currently, there is no equivalent in FRANZ
LISP and only relative tabs are allowed.]

the tilde character can also be used to "escape" characters which appear in the
control string but which should not be printed. Most commonly these characters
consist of the space and the carriage return. For example, in some circumstances
the control string may stretch out over two or more lines, and the user may wish
to insert carriage returns to make more readable code. This can be done if the
carriage return is the character immediately following the tilde. Similarly, a single
space immediately following a tilde will not be printed.

p Modifies text to include plural syntax. For example, if arg is not" 1", then the
character "s" is printed. - @p prints "ies" if the argument is not one, else it
prints "y". The colon modifier causes the last argument, rather than the current
argument to be used. arg need not be a number.

Input/Output 5-14

=> (Iormat t" Ye" we have - a banana- :pr - %" "no")
Yes, we have no bananasl
nil
; the "- I" directive is explained in the rollowing section
=> (Iormat t "Here - r l;i,- :;are- J - :*- r pupp- :Qp. - %" 8)
Here are three puppies.
nil

q This directive provides a means of calling functions from within format control
strings. The name of the function should be argo The called function can deter
mine if the ":" or "@" modifiers have been used be referencing the global vari
ables colon-flag and at8ign-flag. Arguments may be passed to the called function
with the v modifier. The value returned by the function is ignored by format (i.e.,
not printed).

=> (delun te,t (arg)
(printoul I" The value 01 al,ign-jlag iB:" al,ign-jlag I)
(prinloul I "The value 01 colon-jlag iB:" colon-jlag I)
(prinloul I "The value 01 arg i,:" arg I)j

test

=> (Iormal t"- Oq" "dummy" 'Ie,t)
The value or atsign-llag is: t
The value of coion-llag is: nil
The value of arg is: dummy
nil

5.3.1.1. argument processing

The following directives control the application of arguments to the control
string. Normally, the arguments are applied in order, according to the requirements
of the directives. In circumstances, it is desirable to alter that order, and these
directives provide a means of doing so. We have alread seen, in the last example, a
way of applying a single argument to more than one directive using the - * direc
tive. The complete list of directives includes the following.

- * Causes the current argument to be ignored. The form - n* causes the next n
•• arguments to be ignored. The last argument processed is - :*; the nth previous

argument is - n:*. This directive is used for processing of arguments relative
to the current argument; to use absolute argument addressing use - n g.
The effect of this directive in iterative operations (described below) is
described in the next section.

ng
Causes the nth argument to become the current argument. All other argument
references will be relative to argument n. Arguments are zero indexed, there
fore - Og will go to the first argument. The use of this directive in iterative

Input/ Output 5-15

operations is detailed, below.

5.3.1.2. conditional evaluation and iterative forms

The following directives allow the user to specify alternate control strings
which can be evaluated in a particular sequence or on a conditional basis. In gen
eral, the form of these directives is a block of text beginning with one of - [, - {, or
- < and ending with a corrsponding directive C], - }, or - ». Clau8e8 or item8
in the block are demarcated by the separator directive - ;. In some instances a
default control string can be included as the last element of the block and prefixed
by a special form of the clause separator: - :;. In most cases, if no default is
specified and none of the conditions are satisfied, no alternative is printed.

5.3.1.2.1. alternate strings

- [8trO- ;8trr ; ... - ;8trn-]
The - [•.• -] directive contains a zero-ordered list of alternatives,
separated by the - ; directive. The single argument, arg, is the index of
the list ("0" prints the first element, "1" the second, and so on). Unless a
default is given (using - :;), no alternative is printed if the value for arg is
out of range. The - p example illustrates a simple use of - [••• -].

- :lfaI8e- ;true-]
This directive will select the fal8e string if arg evaluates to nil, else it will
select the true string.

- @[true-]
An alternative to the previous directive; the control string true is only used
if arg is non-nil. If the value of arg is nil, it is discarded and the argument
pointer is advanced to the next argument. If arg evaluates to t, then the
pointer is not advanced and arg will be the current argument for the next
directive.

- [- tagOl,tag02, ... ;8trO- tagll,tag12, ... ;8tr1. .. -]

[The most complicated of the alternative string directivest . The tagn
strings are comma separated lists of values which may serve as a tag for
the corresponding 8tr. If arg is eq to one of the tag8, the corresponding Btr
is used. If a colon is used in the separator character (e.g.,
- tagOO,tagOl:;8trO), then the tags list should be a list of pair8 of values,
representing a range of values for argo For example, - [- '0,'9:;numeral-]
will use the string "numeral" if the value for arg is between "0" and "9".J

5.3.1.2.2. iteration strings

In certain circumstances, format may be called, repeatedly, to process data
which is in the same form, for example, the elements of an association list or
property list. To illustrate, let us assume that we wanted a formatted way of
listing the elements of the property list of some symbol. We might try the fol
lowing:

tNote, for example, that the syntax of the separator directive is slightly different from that in the previous eases. In
the current example, the tag is actually part of the separator, and so, the tilde precedes the tag, which is followed either
by a colon, or a colon-semicolon pair.

Input/Output 5-16

=> (putprop 'Olyde 'elephant 'type)
elephant
=> (putprop 'Olyde 'grey 'color)
grey
=> (putprop 'Olyde 'African 'subtype)
African
=> (plist 'Olyde)
(subtype African color grey type ...)
=> (format t" Symbol: - a-%" { property: - lOs value: - lOs - %" }" 'Olyde
(pli8t 'Olyde)}

Symbol: Clyde
property: subtype
property: color
property: type

nil
=>

value: African
value: grey
value: elephant

- {str- }
This directive demarcates the iteration construct which takes one argu
ment, arg, a list. The control string is reiterated until all of the elements of
the list have been used as arguments to the control string. The number of
directives requiring arguments in the control string will be the number of
elements fetched from the list argument in a single iteration. If the control
string requires no arguments, format will reiterate ad infinitum. Prior to
each iteration, the number of remaining elements is checked; iteration is
terminated if the list is null.

The - {str- } directive can accept both a prefix and a postfix value.
- n{ str- } guarantees that the iteration will occur no more than n times. If
the directive is terminated with colon form, - :}, the iteration will occur at
least once, even if the list is null (however a prefix of "0" will override this
and iteration will not occur).

- :{str- }
Instead of a list, the argument should be a list of sublists (for example, an
aBSot list). On each iteration the next sublist will be used, even if there are
elements remaining in the current sublist

=> (8etl} liBtpoB '((car l)(cadr e)(caddr 8)(cadddr 4)}}
((car 1) (cadr 2) (caadr 3) (caaadr 4»
=> (format t"- :{!unction: - lOa position: - 10a- %" }" liBtpo8}

function: car
function: cadr
function: caddr
function: cadddr

nil
=>

position: 1
position: 2
position: 3
position: 4

Input/Output 5-17

- @{str- }
Similar to the the forms described, above, but instead of recursively pro
cessing the current argument, this form processes the list of all of the
remaining arguments, recursively.

- @:{str- }
A combination of the previous two forms; all of the remaining arguments
are processed and each one should be a list which will be used as the argu
ment to str on that iteration.

=> (format t" Ship8 8potted at: - @:{ <- d, - d> - }" '(22) '(.I 8) '(35)
Ship8 spotted at: <2, 2> <4, 8> < 3 , 5> < 7 , 7> nil
=>

- C }
If the directive does not contain a control string, the next argument is
taken to be the control string. Arguments following the string argument
are processed by the iteration. Evaluation of the control string occurs prior
to the first iteration.

< ... >
[- m£nco/w, col£ncr, minpad,padchar< texC > causes text to be justified
within a field which is, at least mincolw wide. If the column width given
would be insufficient to print text, mincolw is adjusted, upward, by colz·ncr.
The remaining prefixes are explained, elsewhere. The number of columns is
determined by the number of fields in text; fields are separated by - ;. If no
prefixes appear, the leftmost field is left-justified; the rightmost field is
right justified (if there is only one field it is right justified). The: modifier
causes spacing to be added before the first field is printed; the @ causes
spaces to be added to the last field.

If the first clause of the - < ... - > directive is terminated with a - :; a
special evaluation occurs in which the remaining forms are first evaluated
and the the form of the output determined. Then, if the form of the pad
ded text will fit on the current line according to the pre-determined pad
ding, it will be output and the first clause discarded, else, the first clause
will be output first, followed by the padded text. For example, to output a
list so that the the each line after the first is indented 5 spaces and no ele
ment runs over the current column boundaries we can use the string (note
the use of the" 5" prefixt);

In all of the cases described so far, an error will be caused if format runs
out of arguments. The - A directive causes the current evaluation to be
halted if there are no more arguments to be processed. Within one of itera
tive and alternate clauses it will cause the entire clause to be aborted,
without error. If a prefix parameter is given, then the iteration is stopped if
the prefix is zero (hence - A is equivalent to - # A). If two parameters are
given, the iteration is stopped if they are equal, for example, - 1,#A will

tA second prefix can be given which will become the maximum line length.

Input/Output 5-18

halt iteration if only one argument remains. If three prefixes are specified,
termination occurs if the second is between the first and the third in order
of ascendency. Both # and v are acceptable prefixes.

When - A is used within a - :{ directive, only the current iteration is
halted; remaining iterations begin with the next argument. To escape from
the entire construct, use - :A.

CHAPTER 6

System Functions

This chapter describes the functions used to interact with internal components of the Lisp
system and operating system.

(allocate 's_type 'x-pages)

WHERE: s_type is one of the FRANZ LISP data types described in §1.3 except for port or
hunk.

RETURNS: x-pages.

SIDE EFFECT: FRANZ LISP attempts to allocate x_pages of type s_type. If there are fewer
than x..J>ages of memory available for allocation, no space is allocated and an
error occurs. The storage that is allocated is not given to the caller. Rather,
it is added to the free storage list of s_type. By contrast, the functions seg
ment and smail-segment allocate blocks of storage and return it to the caller.

NOTE: You cannot allocate additional ports, and although you can allocate more hunk
space, you must specify which size, e.g. you can allocate more hunkO, hunkl, ... ,
hunk6 space. (Hunkn holds up to 2A(n+l) items).

(argv 'x_argnumb)

RETURNS: A symbol whose pname is the x_argnumbth argument (starting at 0) on the com
mand line that invoked the current Lisp.

NOTE: If x_argnumb is less than zero, a fixnum whose value is the number of arguments on
the command line is returned. (argv 0) returns the name of the Lisp you are running.

(baktrace)

RETURNS: nil

SIDE EFFECT: The Lisp runtime stack is examined and the name of (most) of the functions
currently in execution are printed, most active first.

NOTE: This occasionally misses the names of compiled Lisp functions due to incomplete
information on the stack. If you are tracing compiled code, then baktrace is not able
to interpret the stack unless (s,~tatus trans/ink n~1) was done. See the function shows
tack for another way of printing the Lisp runtime stack. This misspelling is for com
patibility with Maclisp.

System Functions 6-1

System Functions 6-2

(chdir 's-path)

RETURNS: t iff the system call succeeds.

SIDE EFFECT: The current directory is set to s-path. Among other things, this affects the
default location where the input/output functions look for and create files.

NOTE: chdir follows the standard operating system conventions. tr s-path does not begin
with a slash, the default path is changed to the current path with s-path appended.

(eommand-Iine-args)

RETURNS: A list of the arguments typed on the command line either to the Lisp interpreter,
or saved Lisp dump, or application compiled with the autorun option (liszt +r).

(deref 'x_addr)

RETURNS: The contents of x_addr, when thought of as a longword memory location.

NOTE: This may be useful in constructing arguments to C functions out of 'dangerous' areas
of memory.

(dumplisp s_name)

RETURNS: nil

SIDE EFFECT: The current Lisp is dumped to the named file. When s_name is executed,
you are in a Lisp in the same state as when the dumplisp was done.

NOTE: dumplisp fails if you try to write over the current running file. The operating system
does not allow you to modify the file you are running.

(eval-when I_time ~expl ...)

SIDE EFFECT: I_time may contain any combination of the symbols load, e'l)al, and compile.

(exit ['x30de])

The effects of load and compile are discussed in §12.3.2.1 on the compiler. If
eval is present, however, this simply means that the expressions ~expl, and
so on, are evaluated from left to right. If eval is not present, the forms are
not evaluated.

RETURNS: Nothing (it never returns a lisp value).

SIDE EFFECT: The Lisp system dies with exit code x_code or 0 if x30de is not specified.

(fake'x_addr)

RETURNS: The Lisp object at address x_addr.

NOTE: This is intended to be used by people debugging the Lisp system.

(fork)

RETURNS: nil to the child process and the process number of the child to the parent.

SIDE EFFECT: A copy of the current Lisp system is made in memory, and both Lisp systems
now begin to run. This function can be used interactively to temporarily
save the state of Lisp (as shown later), but you must be careful that only one
of the Lisp's interacts with the terminal after the fork. The wait function is
useful for this.

System Functions 6-3

(gc)

-> (8etq /00 'bar)
bar
-> (cond ((!ork)(wait)))
nil
-> /00
bar
-> (setg /00 'baz)
baz
-> /00
baz
-> (exit)
(5274.0)
-> /00
~ar

RETURNS: nil

;; Set a variable.

;; Duplicate the Lisp system and
;; make the parent wait.
;; Check the value of the variable.

;; Give it a new value.

;; Make sure it worked.

;; Exit the child.
;; The wait function returns this.

;; Check to make sure parent was
;; not modified.

SIDE EFFECT: This causes a garbage collection.

NOTE: The function gcafter is not called automatically after this function finishes. Nor
mally, the user does not have to call gc since garbage collection occurs automatically
whenever internal free lists are exhausted.

(gcafter s_type)
(gcbefore s_type)

WHERE: s_type is one of the FRANZ LISP data types listed in §1.3.

NOTE: The function gcbefore is called before the execution of the garbage collector when
space of type s_type is exhausted. The flag gcdisable will be bound to t for the dura
tion of the call. The argument to gcafter which is called by the garbage collector
after the garbage collection is the same data type s_type. Usually the function
gcafter should determine if more space need be allocated, and, if so, should allocate
it. There is a default gcafter function, but if you want control over space allocation,
you can define your own. However, be sure that it is an nlambda.

(include s_filename)

RETURNS: nil

SIDE EFFECT: The given filename is loaded into the Lisp system.

NOTE: This is similar to load except that the argument is not evaluated. Include means
something special to the compiler.

System Functions

(include-if 'g..,predicate sJilename)

RETURNS: nil

6-4

SIDE EFFECT: This has the same effect as include but is only actuated if the predicate is
non-nil.

(includef 's_filename)

RETURNS: nil

SIDE EFFECT: This is the same as include except that the argument is evaluated.

(includef-if 'g..,predicate s_filename)

RETURNS: nil

SIDE EFFECT: This has the same effect as includef but is only actuated if the predicate is
non-nil.

(maknum 'Larg)

RETURNS: The address of its argument converted into a fixnum.

(opval 's_arg ['Lnewvalj)

RETURNS: The value associated with s_arg before the call.

SIDE EFFECT: IT Lnewval is specified, the value associated with s_arg is changed to
gJlewval.

NOTE: opval keeps track of storage allocation. IT s_arg is one of the data types, then opval
returns a list of three fixnums representing the number of items of that type in use,
the number of pages allocated, and the number of items of that type per page. You
should never try to change the value that opval associates with a data type using
opval.
IT s_arg is pagelimit, then opval returns (and sets if Lnewval is given) the maximum
amount of Lisp data pages it allocates. This limit should remain small unless you
know your program requires lots of space because this limit catches programs in
infinite loops, which gobble up memory.

(*process 'st_command ['ueadp ['g_writep]])

RETURNS: Either a fixnum if one argument is given, or a list of two ports and a fixnum if
two or three arguments are given.

NOTE: *proce88 starts another process by passing st_command to the shell. (lbin/shell).

On the Tektronix 4404 there are two shells: /bin/shell and /bin/script. IT the user
assigns a value to the operating system's Li8pSHELL environment variable, then that
value will be used for the shell.

IT only one argument is given to *proce88, *proce88 waits for the new process to die
and then returns the exit code of the new process. IT more than two or three argu
ments are given, *proce88 starts the process and then returns a list which, depending
on the value of Lreadp and g_writep, may contain i/o ports for communicating with
the new process. IT Lwritep is non-null, then a port is created that the Lisp program
can use to send characters to the new process. IT ueadp is non-null, then a port is
created that the Lisp program can use to read characters from the new process. The
value returned by *proce88 is (readport writeport pid), where readport and writeport
are either nil or a port based on the value of g_readp and g_writep. Pid is the pro
cess id of the new process. Since it is hard to remember the order of g_readp and
Lwritep, the functions *proce88-8end and *proce88-receive are written to perform the

System Functions

common functions.

(*process-receive 'st_command)

RETURNS: A port that can be read.

6-5

SIDE EFFECT: The command st30mmand is given to the shell, and it is started running in
the background. The output of that command is available for reading via
the port returned. The input of the command process is set to / dev /null.

(*process-send 'st_command)

RETURNS: A port that can be written to.

SIDE EFFECT: The command st_command is given to the shell, and it is started runing in
the background. The Lisp program can provide input for that command by
sending characters to the port returned by this function. The output of the
command process is set to / dev /null.

(process s..J>grm [s_frompipe s_topipe])

RETURNS: If the optional arguments are not present, a fixnum that is the exit code when
s..J>rgm dies. If the optional arguments are present, it returns a fixnum that is the
process id of the child.

NOTE: This command is obsolete. New programs should use one of the *process commands
given earlier.

SIDE EFFECT: If s_frompipe and s_topipe are given, they are bound to ports that are pipes
that direct characters from FRANZ LISP to the new process and to FRANZ
LISP from the new process respectively. Process forks a process named
s_prgm and waits for it to die if and only if there are no pipe arguments
given.

(ptime)

RETURNS: A list of two elements. The first is the amount of processor time used by the Lisp
system so far, and the second is the amount of time used by the garbage collector
so far.

NOTE: The time is measured in those units used by the times(2) system call, usually 60ths of
a second (lOOths of a second on the Tektronix 4404). The first number includes the
second number. The amount of time used by garbage collection is not recorded until
the first call to ptime. This is done to prevent overhead when the user is not
interested in garbage collection times.

(reset)

SIDE EFFECT: The Lisp runtime stack is cleared and the system restarts at the top level.

(*rset '!Lflag)

RETURNS: g_flag

SIDE EFFECT: If g_flag is non-nil, then the Lisp system maintains extra information about
calls to eval and Juncal/. This record keeping slows down the evaluation, but
this is required for the functions evalhook, Juncallhook, and evalJrame to
work. To debug compiled Lisp code, the transfer tables should be unlinked:
(sstatus translink nil)

System Functions

(segment 's_type 'x_size)

WHERE: s_type is one of the data types given in §1.3.

RETURNS: A segment of contiguous lispvals of type s_type.

6-6

NOTE: In reality, segment returns a new data cell of type s_type and allocates space for
x_size - 1 more s_type's beyond the one returned. Segment always allocates new
space and does so in 512 byte chunks. If you ask for 2 fixnums, segment actually
allocates 128 of them, thus, wasting 126 fixnums. The function small-segment is a
smarter space allocator and should be used whenever possible.

(shell)

RETURNS: The exit code of the shell when it dies.

SIDE EFFECT: This forks a new shell and returns when the shell dies.

(showstack)

RETURNS: nil

SIDE EFFECT: All forms currently in evaluation are printed, beginning with the most recent.
For compiled code, showstack reveals only the function name, and it may
miss some functions which you might expect from interpreted code.

(signal 'x_signum 's_name)

RETURNS: nil if no previous call to signal has been made, if a previous call has occurred, it
will return the previously installed s_name.

SIDE EFFECT: This identifies the function named s_name to handle the signal number
x_signum. If SJlame is nil, the signal is ignored. Presently, only four
operating system signals are caught. They and their numbers are: Inter
rupt(2), Floating exception(8), Alarm(14), and Hang-up(1).

(sizeof 'g_arg)

RETURNS: The number of bytes required to store one object of type g_arg, encoded as a
fixnum.

(small-segment 's_type 'x_cells)

WHERE: s_type is one of fixnum, flonum, and value.

RETURNS: A segment of x_cells data objects of type s_type.

SIDE EFFECT: This may call segment to allocate new space, or it may be able to fill the
request on a page already allocated. The value returned by small-segment is
usually stored in the data subpart of an array object.

(sstatus g_type Lval)

RETURNS: g_val

SIDE EFFECT: If Ltype is not one of the special sstatus codes described in the next few
pages, this simply sets g_val as the value of status type g_type in the system
status property list.

System Functions

(sstatus appendmap g_val)

RETURNS: g_ val

6-7

SIDE EFFECT: If g_val is non-null, when fast is told to create a load map, it appends to the
file name given in the fast command rather than creating a new map file.
The initial value is nil.

(sstatus automatic-reset g_val)

RETURNS: g_val

SIDE EFFECT: If g_val is non-null when an error occurs that no one wants to handle, a reset
is done instead of entering a primitive internal break loop. The initial value
is t.

(sstatus chainatom g_val)

RETURNS: g_val

SIDE EFFECT: If g_val is non-nil and a car or cdr of a symbol is done, then nil is returned
instead of an error being signaled. This only affects the interpreter not the
compiler. The initial value is nil.

(sstatus dump core g_val)

RETURNS: g_val

SIDE EFFECT: If g_val is nil, FRANZ LISP tells the operating system that a segmentation vio
lation or bus error should cause a core dump. If g_val is non-nil then FRANZ
LISP catches those errors and prints a message advising the user to reset.

NOTE: The initial value for this flag is nil, and only those knowledgeable of the inner charac
teristics of the Lisp system should ever set this flag non-nil.

(sstatus evalhook g_val)

RETURNS: g_val

SIDE EFFECT: When g_val is non-nil, this enables the evalhook and funcallhook traps in the
evaluator. See §14.4 for more details.

(sstatus feature g_val)

RETURNS: g_val

SIDE EFFECT: g_val is added to the (status features) list.

(sstatus nofeature g_val)

RETURNS: g_val

SIDE EFFECT: g_val is removed from the status features list if it is present.

(sstatus translink g_val)

RETURNS: g_val

SIDE EFFECT: If g_val is nil, then all transfer tables are cleared and further calls through
the transfer table do not cause the fast links to be set up. If g_val is the
symbol on, then all possible transfer table entries are linked and the flag is
set to cause fast links to be set up dynamically. Otherwise, all that is done is
to set the flag to cause fast· links to be set up dynamically. The initial value
is nil.

NOTE: For a discussion of transfer tables, see §12.8.

System Functions

(sstatus uctolc Lval)

RETURNS: g_val

6-8

SIDE EFFECT: If g_val is not nil, then all unescaped capital letters in symbols read by the
readeris converted to lower case.

NOTE: This allows FRANz LISP to be compatible with single case Lisp systems (e.g. Maclisp,
Interlisp and UCILisp).

(status g_code)

RETURNS: The value associated with the status code Lcode if g_code is not one of the spe
cial cases given later

(status ctime)

RETURNS: A symbol whose print name is the current time and date.

EXAMPLE: (status ctime) = ISun Jun 29 16:51:26 19801

NOTE: This has been made obsolete by time-string, described later.

(status feature Lval)

RETURNS: T iff g_val is in the status features list.

(status features)

RETURNS: The value of the features code, which is a list of features that are present in this
system. You add to this list with (88tatusfeature 'g_val) and test if feature g_feat
is present with (status feature 'gJeat). or with feature-present described below.

(feature-present 'Lexp)

RETURNS: T or nil depending upon the evaluation of the g_exp in the context of the features
present in the Lisp.

NOTE: Feature-present is used as follows:
(feature-present 'f) [== (memq 'f (status features)) 1
(feature-present '(not fi))
(feature-present '(and f1 f2))
(feature-present '(or f1 (2))

Lexp evaluation is calculated as follows. If the feature fi is on the (status features)
list, replace it with a non-nil value otherwise with nil. Then perform the specified operations
('and', 'not', or 'or'), returning the value.

EXAMPLE: = > (status features)
(long-filenames mvr hasht 168kl string Franz franz)
= > (feature-present 'mvr)
(mvr hasht 168k I string Franz franz
= > (feature-present '(not mvr»
nil
= > (feature-present '(or vax 68k»
t
= > (feature-present '(and mvr hasht»
t

System Functions

(status isatty)

RETURNS: T iff the standard input is a terminal.

(status localtime)

RETURNS: A list of fixnums representing the current time.

EXAMPLE: (status loealtime) = (3 51 13 31 6 81 5 2111)

6-9

means 3rd second, 51st minute, 13th hour (1 p.m), 31st day, month 6 (0 = Janu
ary), year 81 (0 = 1900), day of the week 5 (0 = Sunday), 211th day of the year
with daylight savings time in effect.

(status syntax s_char)

NOTE: This function should not be used. See the description of getsllntaz, in Chapter 7, for
a replacement.

(status undeffunc)

RETURNS: A list of all functions that transfer table entries point to, but that are not defined
at this point.

NOTE: Some of the undefined functions listed could be arrays which are not yet created.

(status version)

RETURNS: A string that is the current Lisp version name.

EXAMPLE: (status version) = "Franz Lisp, Opus 42.12"

(sys:chmod 'st_filename 'xl_mode)

WHERE: st_filename is the name of the file whose mode will be set and xl_mode is the
mode to set.

RETURNS: t if successful. If unsuccessful (e.g. if the user doesn't have the required permis
sions or if the file doesn't exist), then an error is signalled.

NOTE: xl_mode can be a fixnum representing the mode or it can be a list of symbolic mode
descriptors. Use of a fixnum mode is discouraged as it is operating system dependent.

Only the low 7 bits of the fixnum are important. The bits have this meaning:

1 user read permission
2 user write permission
4 user execute permission
8 other read permission

16 other write permission
32 other execute permission
64 other execute permission

128 set user id upon execution

In order to set a combination of permISSIons you add the individual permISSIon
numbers. For example to get user read, user write and other read permission: 1+2+8
= 11.

An alternative to the fixnum mode is a list of symbolic modes, each symbolic mode
describing one or more permission bits.

Each symbolic mode is a string or symbol whose name is s or has the form
[uoaJ=[rwxJ. The brackets are meta-syntax denoting the fact that one or more of the

System Functions 6-10

enclosing characters can be present. The brackets themselves are not typed. The
meaning of the symbolic mode's' is that the set user id bit should be set. In
[uoa]=[rwx], the 'u' and '0' stand for user and other, and 'a' stands for all, meaning
both 'u' and '0' (on operating system which support group permission, the 'g' option
is provided and 'a' also includes group permissions). 'r' stands for read permission,
'w' for write permission and 'x' for execute permission. To specify a symbolic bit,
you must specify both a class (user, other and/or all) and a set of bits (read, write
and/or execute). The symbolic mode is a list of these symbolic mode descriptors.

If the global symbol 'tilde-expansion' is non-nil, then the filename will be expanded to
include the path-name to the conventional directory.

EXAMPLE: To set the mode of the file foo to be read/write by the user Who owns the file, but
only readable by others, use the following:
(sys:chmod 'foo '(u-rw o=r))
or

(sys:chmod 'foo '(u=r U=W o=r))
or

(sys:chmod 'foo '(a=r u=w)).

(sys:access 'st_filename 'x_mode)

RETURNS: True if the file has the given mode.

(sys:getpid)
(sys:link. 'st_oldfilename 'st_newfilename)
(sys:time)
(sys:unlink 'st_filename)

NOTE: This set of functions is intended to provide symbolic access to various operating sys
tem features in a reasonably portable way. Tilde-expansion of file-names is pel'
formed on all filename arguments if the global variable "tilde-expansion" is non-nil.

(sys:getuid)

RETURNS: the user identification number of the user running lisp.

NOTE: This number uniquely identifies the user on a machine.

(sys:getpwuid 'x_uid)

RETURNS: a vector containing the information from the password file on the user whose id is
x_uid. It returns nil if no user with that id exists.

The vector has the following form: index 0: the user's name (a string)
index 1: the user id (a fixnum) index 2: the group id (a fixnumj nil if this

notion is unimplemented). index 3: the user's login directory (a string).

System Functions . 6-11

(sys:getpwnam'st_name)

RETURNS: the same inCormation as sys:getpwuid but it searches Cor a given entry in the pass
word file using the user's name, not the user's id.

(time-string ['x_seconds l)
RETURNS: An ASCII string gIvmg the time and date that was x_seconds after operating

system's idea oC creation (Midnight, Jan 1, 1970 GMT). IT no argument is given,
time-string returns the current date. This should be used rather than (8tat'U8
ctime), and may be used to make the results oC ji/e8tat more intelligible.

(top-level)

RETURNS: Nothing (it never returns)

NOTE: This Cunction is the top-level read-eval-print loop. It never returns any value. Its
main use is that iC you redefine it and do a (reset), then the redefined (top-level) is
invoked.

(wait)

RETURNS: A dotted pair (proce88id . Btat'Us) when the next child process dies.

CHAPTER 7

The Lisp Reader

7.1. Introduction

The read function is responsible for converting a stream of characters into a Lisp
expression. Read is table driven and the table it uses is called a readtable. The print func
tion does the inverse of read; it converts a Lisp expression into a stream of characters.
Typically, the conversion is done in such a way that if a stream of characters is read by
reod, the result is an expression equal to the one print is given. Print must also refer to
the readtable in order to determine how to format its output. The explode function, which
returns a list of characters rather than printing them, must also refer to the readtable.

A readtable is created with the makereadtab/e function, modified with the setsyntax
function and interrogated with the getsyntax function. The structure of a readtable is hid
den from the user -- a read table should only be manipulated with the three functions men
tioned earlier.

There is one distinguished readtable called the current readtab/e whose value deter
mines what read, print, and explode do. The current readtable is the value of the symbol
readtab/e. Thus, it is possible to rapidly change the current syntax by lambda-binding a
different readtable to the symbol readtable. When the binding is undone, the syntax
reverts to its old form.

7.2. Syntax Classes

The readtable describes how each of the 128 ASCII characters should be treated by
the reader and printer. Each character belongs to a syntax class, which has three proper
ties:

character class -
Tells what the reader should do when it sees this character. There are a large
number of character classes. They are described later.

separator -
Most types of tokens the reader constructs are one character long. Four token types
have an arbitrary length: number (1234), symbol print name (franz), escaped symbol
print name (Ifranzl), and string ("franz"). The reader can easily determine when it
has come to the end of one of the last two types: it just looks for the matching delim
iter (lor "). When the reader is reading a number or symbol print name, it stops
reading when it comes to a character with the separator property. The separator
character is pushed back into the input stream and is the first character read when
the reader is called again.

escape -
Tells the printer when to put escapes in front of, or around, a symbol whose print
name contains this character. There are three possibilities: (1) always escape a sym
bol with this character in it, (2) only escape a symbol if this is the only character in
the symbol, and (3) only escape a symbol if this is the first character in the symbol.

The Lisp Reader 7-1

The Lisp Reader 7-2

(Note that the printer always escapes a symbol which, if printed out, looks like a
valid number.)

When the Lisp system is built, Lisp code is added to a C-coded kernel and the result
becomes the standard Lisp system. The readtable present in the C-coded kernel, called the
raw readtable, contains the bare necessities for reading in Lisp code. During the construc
tion of the complete Lisp system, a copy is made of the raw readtable and then the copy is
modified by adding macro characters. The result is what is called the standard readtable.
When a new readtable is created with makereadtable, a copy is made of either the raw
readtable or the current readtable, which is likely to be the standard readtable.

7.3. Reader Operations

The reader has a very simple algorithm. It is either scanning for a token, collecting a
token, or processing a token. Scanning involves reading characters and throwing away
those that do not start tokens, such as blanks and tabs. Collecting means gathering the
characters that make up a token into a buffer. Processing may involve creating symbols,
strings, lists, fixnums, bignums, or flonumsi or calling a user written function called a char
acter macro.

The components of the syntax class determine when the reader switches between the
scanning, collecting, and processing states. The reader continues scanning as long as the
character class of the characters it reads is cseparator. When it reads a character whose
character class is not cseparator, it stores that character in its buffer and begins the collect
ing phase.

If the character class of that first character is ccharacter, cnumber, cperiod, or csign,
then it continues collecting until it runs into a character whose syntax class has the separa
tor property. (That last character is pushed back into the input buffer and is the first
character read next time.) Now, the reader goes into the processing phase, checking to see
if the token it reads is a number or symbol. It is important to note that after the first
character is collected the component of the syntax class that tells the reader to stop col
lecting is the separator property, not the character class.

If the character class of the character that stopped the scanning is not ccharacter,
cnumber, cperiod, or csign, then the reader processes that character immediately. The
character classes csingle-macro, csingle-splicing-macro, and csingle-infix-macro acts like
ccharacter if the following token is not a separator. The processing that is done for a
given character class is described in detail in the next section.

7.4. Character Classes_

ccharacter

A normal character.

raw readtable:A-Z a-z "H !#$%&*,/:i<=>?@"-'{r
standard readtable:A-Z a-z "H !$%&*/:i<=>?@"-O-

cnumber raw readtable:0-9
standard readtable:0-9

This type is a digit. The syntax for an integer (fiXIlUm or bignum) is a string of cnumber
characters optionally followed by a cperiod. If the digits are not followed by a cperiod,
then they are interpreted in base ibase, which must be eight or ten. The syntax for a float
ing point number is either zero or more cnumber's followed by a cperiod and then followed

The Lisp Reader 7-3

by one or more cnumber's. A floating point number may also be an integer or floating
point number followed by 'e' or 'd', an optional '+' or '-' , and then zero or more
cnumber's.

csign raw readtable:+-
standard readtable:+

A leading sign for a number. No other characters should be given this class.

cleft-paren

A left parenthesis. Tells the reader to begin forming a list.

raw readtable:(
standard readtable:(

cright-paren raw readtable:)
standard readtable:)

A right parenthesis. Tells the reader that it has reached the end of a list.

cleft-bracket raw readtable:[
standard readtable:[

A left bracket. Tells the reader that it should begin forming a list. See the description of
cright-bracket for the difference between cleft-bracket and cleft-paren.

cright-bracket raw readtable:]
standard readtable:]

A right bracket. A cright-bracket finishes the formation of the current list and all enclosing
lists until it finds one that begins with a cleft-bracket or until it reaches the top level list.

cperiod raw readtable:.
standard readtable:.

The period is used to separate element of a cons cell; that is, (a. (b . nil)) is the same as
(a b). cperiod is also used in numbers as described earlier.

cseparator raw readtable: AI_ AM esc space
standard read table: AI_ AM esc space

Separates tokens. When the reader is scanning, these character are passed over. Note:
there is a difference between the cseparator character class and the separator property of a
syntax class.

csingle-quote raw readtable:'
standard readtable:'

This causes read to be called recursively and the list (quote <value read>) to be returned.

csymbol-delimiter raw readtable:1
standard readtable:1

This causes the reader to begin collecting characters and to stop only when another identi
cal csymbol-delimiter is seen. The only way to escape a csymbol-delimiter within a symbol
name is with a cescape character. The collected characters are converted into a string

The Lisp Reader 7-4

which becomes the print name of a symbol. H a symbol with an identical print name
already exists, then the allocation is not done, rather the existing symbol is used.

cescape raw readtable:\
standard readtable:\

This causes the next character that is read in to be treated as a vcharacter. A character
whose syntax class is vcharacter has a character class ccharacter and does not have the
separator property so it does not separate symbols.

cstring-delimiter raw readtable:"
standard readtable:"

This is the same as csymbol-delimiter except that the result is returned as a string instead
of a symbol.

csingle-character-symbol raw readtable:none
standard readtable:none

This returns a symbol whose print name is the the single character that has been collected.

cmacro raw readtable:none
standard readtable:',

The reader calls the macro function associated with this character and the current readt
able, passing it no arguments. The result of the macro is added to the structure the reader
is building, just as if that form were directly read by the reader. More details on macros
are provided later.

csplicing-macro raw readtable:none
standard readtable:#i

A csplicing-macro differs from a cmacro in the way the result is incorporated in the struc
ture the reader is building. A csplicing-macro must return a list of forms (possibly empty).
The reader acts as if it read each element of the list itself without the surrounding
parenthesis.

csingle-macro raw readtable:none
standard readtable:none

This causes the reader to check the next character. H it is a cseparator, then this acts like
a cmacro. Otherwise, it acts like a ccharacter.

csingle-splicing-macro raw readtable:none
standard readtable:none

This is triggered like a csingle-macro. However, the result is spliced in like a csplicing
macro.

cinfiz-macro raw readtable:none
standard readtable:none

This differs from a cmacro in that the macro function is passed a form representing what
the reader has read so far. The result of the macro replaces what the reader had read so
far.

The Lisp Reader 7-5

csz"ngle-z"njix-macro raw readtable:none
standard readtable:none

This differs from the cinfix-macro in that the macro is only triggered if the character fol
lowing the csingle-injix-macro character is a cseparator.

cillegal raw readtable:A@_AGAN_AZA_A_rubout
standard readtable: A@- AGAN_ A ZA_ A _rubout

The characters cause the reader to signal an error if read.

7.5. Syntax Classes

The read table maps each character into a syntax class. The syntax class contains
three pieces of information: the character class, whether this is a separator, and the escape
properties. The first two properties are used by the reader, the last by the printer (and
explode). The initial Lisp system has the following syntax classes defined. You may add
syntax classes with add-syntax-class. For each syntax class, the properties of the class and
which characters have this syntax class by default are listed. More information about each
syntax class can be found under the description of the syntax class's character class.

vcharacter
ccharacter

vnumber
cnumber

vsign
csz"gn

vleft-paren
cleft-paren
escape-always
separator

vright-paren
crz"ght-paren
escape-always
separator

vleft-bracket
cleft-bracket
escape-always
separator

vright-bracket
cright-bracket
escape-always
separator

raw readtable:A-Z a-z AH !#$%&*,/:;<=>?@A_'{r
standard readtable:A-Z a-z AH !$%&*/:;<=>?@A_O-

raw readtable:0-9
standard readtable:0-9

raw readtable:+
standard readtable:+-

raw readtable:(
standard readtable:(

raw readtable:)
standard readtable:}

raw readtable:[
standard readtable:[

raw readtable:]
standard readtable:]

The Lisp Reader

vperiod
cperiod
e8cape-when-ttniqtte

vseparator
c8eparator
e8cape-alwa1l8
8eparator

vsingle-quote
c8ingle-qttote
e8C ape-alwa1l8
8eparator

vsymbol-delimiter
c8ingle-delimiter
e8C ape-alwa1l8

vescape
ce8cape
e8cape-alwa1l8

vstring-delimiter
cBtring-delimiter
e8C ape-alwa1l8

vsingle-character-symbol
c8ingle-character-sllmbol
separator

vmacro
cmacro
eacape-alwalls
separator

vsplicing-macro
caplicing-macro
escape-alwalla
separator

vsingle-macro
c8ingle-macro
eacape-when-ttnitJtte

vsingle-splicing-macro
csingle-aplicing-macro
eacape-when-ttniqtte

7-6

raw readtable:.
standard readtable:.

raw readtable:AI-AM esc space
standard readtable:AI- AM esc space

raw read table: '
standard readtable: '

raw readtable:1
standard readtable:1

raw readtable:\
standard readtable:\

raw readtable:"
standard readtable:"

raw readtable:none
standard readtable:none

raw readtable:none
standard readtable:',

raw readtable:none
standard readtable:#i

raw readtable:none
standard readtable:none

raw readtable:none
standard readtable:none

The Lisp Reader

vinfix-macro
cinfix-macro
escape-always
separator

vsingle-infix-macro
csingle-infix-macro
esc ape-when-unz'que

villegal
cillegal
escape-always
separator

7.6. Character Macros

7-7

raw readtable:none
standard readtable:none

raw readtable:none
standard readtable:none

raw readtable:A@_AGAN_AZA_A_rubout
standard readtable:A@_AGAN_AZA_A_rubout

Character macros are user-written functions that are executed during the reading
process. The value returned by a character macro mayor may not be used by the reader,
depending on the type of macro and the value returned. Character macros are always
attached to a single character with the setsyntax function.

7.6.1. Types There are three types of character macros: normal, splicing, and infix.
These types differ in the arguments they are given or in what is done with the result
they return.

7.6.1.1. Normal

A normal macro is passed no arguments. The value returned by a normal
macro is simply used by the reader as if it had read the value itself. Here is an
example of a macro that returns the abbreviation for a given state.

=>(defun stateabbrev nil
(cdr (assq (read) '((california. cal (pennsylvania. pal))))

stateabbrev
=> (setsyntaz \! 'vmacro 'stateabbrev)
t
=> '(! california! wyoming! pennsylvania)
~anilp~ .

Notice what happened to !wyoming. Since it was not in the table, the associated function
returned nil. The creator of the macro may have wanted to leave the list alone, in such a case,
but could not with this type of reader macro. The splicing macro, described next, allows a char
acter macro function to return a value that is ignored.

The Lisp Reader 7-8

7.8.1.2. Splicing

The value returned from a splicing macro must be a l~t or nil. If the value is
nil, then the value is ignored; otherwise, the reader acts as if it read each object in
the list. Usually, the list only contains one element. If the reader is reading at the
top level (that is, not collecting elements of list), then it is illegal for a splicing
macro to return more than one element in the list. The major advantage of a splic
ing macro ov~r a normal macro is the ability of the splicing macro to return noth
ing. The comment character (usually;) is a splicing macro bound to a function
which reads to the end of the line and always returns nil. Here is the previous
example written as a splicing macro

=> (de/un ,tateabbrev nil
((lambda (value)

(cond (value (liBt value))
(t nil)))

(cdr (UBf (read) '((california . ca) (penn,ylvania . pa))))))
=> (BetByntaz '! 'vBplicing-macro ',tateabbrev)
=> '(!pennBylvania! /00 !cali/ornia)
(pa ca)
=> '!/oo !bar !pennBylvania
pa
=>

7.8.1.3. Infix

Infix macros are passed a tconc structure representing what has been read so
far. Briefly, a tconc structure is a single list cell whose car points to a list and
whose cdr points to the last list cell in that list. The interpretation by the reader of
the value returned by an infix macro depends on whether the macro is called while
the reader is constructing a list or whether it is called at the top level of the reader.
If the macro is called while a list is being constructed, then the value returned
should be a tconc structure. The car of that structure replaces the list of elements
that the reader has been collecting. If the macro is called at top level, then it is
passed the value nil, and the value it returns should either be nil or a tconc struc
ture. If the macro returns nil, then the value is ignored and the reader continues to
read. If the macro returns a tconc structure of one element, that is, whose car is a
list of one element, then that single element is returned as the value of read. If the
macro returns a tconc structure of more than one element, then that list of elements
is returned as the value of read.

The Lisp Reader 7-9

=> (de/un pluBop (z)
(eond ((null z) (teone nil '\ +)}

(t (leone nil (liBt 'pluB (eaar z) (read}}}}})

plusop
=> (BetByntaz '\ + 'vinjiz-maero 'pIUBop)
t
=> '(a + b)
(plus a. b)
=> '+
1+1
=>

7.6.2. Invocations

There are three different circumstances in which you would like a macro function
to be triggered.

A/ways -
Whenever the macro character is seen, the macro should be invoked. This is
accomplished by using the character classes cmacro, csplicing-macro, or cinfiz
macro and by using the separator property. The syntax classes vmacro,
vsplicing-macro, and vsingle-macro are defined this way.

When first-
The macro should only be triggered when the macro character is the first charac
ter found after the scanning process. A syntax class for a when first macro is
defined using cmacro, csp/icing-macro, or cinfiz-macro but not including the
separator property.

When unique -
The macro should only be triggered when the macro character is the only charac
ter collected in the token collection phase of the reader; that is, the macro charac
ter is preceded by zero or more cseparators and followed by a separator. A syn
tax class for a when unique macro is defined using csingle-macro, csingle-splicing
macro, or csingle-infiz-macro but not including the separator property. The syn
tax classes so defined are vsingle-macro, vsingle-splicing-macro, and
vsingle-infix-macro.

7.7. Functions

The Lisp Reader 7-10

(setsyntax 's_symbol 's_synclass ['ls_func])

WHERE: ls_func is the name of a function or a lambda body. H, s_synclass is macro or
splicing, then ls_func is the associated function.

RETURNS: t

SIDE EFFECT: S_symbol should be a symbol whose print name is only one character. The
syntax class for that character is set to s_synclass in the current readtable. If
s_synclass is a class that requires a character macro, then Is3unc must be
supplied.

NOTE: The symbolic syntax codes are new to this version of FRANZ LISP. For compatibility,
s_synclass can be one of the fixnum syntax codes that appeared in older versions of
the FRANZ LISP Manual. This compatibility is only temporary: existing code which
uses the fixnum syntax codes should be converted.

(getsyntax 's_symbol)

RETURNS: The syntax class of the first character of s_symbol's print name. s_symbol's print
name must be exactly one character long.

NOTE: This function is new to this version of FRANZ LISP. It supersedes (status syntax) that
no longer exists.

(add-syntax-elass 's_synclass 'l-properties)

RETURNS: s_synclass

SIDE EFFECT: Defines the syntax class s_synclass to have properties l-properties. The list
l-properties should contain a character class mentioned earlier. l-properties
may contain one of the escape properties: escape-always, escape-when-unique,
or escape-when-first. l-properties may contain the separator property. After
a syntax class has been defined with add-8yntax-class, the setsyntax function
can be used to give characters that syntax class.

; Define a non-separating macro character.
; This type of macro character is used in UCI-Lisp, and
; it corresponds to a FmST MACRO in Interlisp.

=> {add-8I1ntaz-class 'vuci-macro '(cmacro escape-when-jirst))
vuci-macro
=>

CHAPTER 8

Program Forms

8.1. Valid Function Objects

There are many different program forms in FRANZ LISP. These objects can occupy
the function field of a symbol object and be "called" by other functions. The traditional
forms in earlier versions of FRANZ LISP have been augmented by the Common-Lisp
required modified lambda expressions, and by closures. Various constructions on top of
these (such as Flavors, described in chapter 19) are also useful. Table 8.1 at the end of
this chapter shows all of the possibilities, how to recognize them, and where to look for
documentation.

8.2. Functions

The basic technique for defining a function in Lisp is to use de! or de!un and use nor
mal lambda binding. For example

(def foo (lambda(x y) ...))
or equivalently

(defun foo (x y) ...)

When a lambda function is called, the actual arguments are evaluated from left to
right and are lambda-bound to the formal parameters of the lambda function.

FRANZ LISP provides an nlambda function-type which is often used for functions that
are invoked at top level, and give the program more control over evaluation of arguments.
Some built-in functions which evaluate their arguments in special ways are defined in
FRANZ LISP as nlambdas (for example cond, do, and or). When an nlambda function is
called, the list of unevaluated arguments is lambda-bound to the single formal parameter
of the nlambda function. For example

(def foo (nlambda (I) I)).
=> (foo a be)
(a b c)

FRANZ LISP also supplies lexprs, which allow for a arbitrary number of evaluated
arguments. When a lexpr function is called, the arguments are evaluated and a fixnum,
whose value is the number of arguments, is lambda-bound to the single formal parameter
of the lexpr function. The lexpr can then access the arguments using the arg function.
For example,

Program Forms 8-1

Program Forms

(def roo (lexpr (nargs) (list nargs (arg 1) (arg 2) (arg 3)))
=> (roo 'a 'b 'e)
(3 a b e)

8-2

When a function is compiled, special declarations may be needed to preserve the
behavior of functions using its lambda-bound arguments as "free" or "global" variables. It
is important in the case of such access to dynamic variable to declare the corresponding
formal parameter special (see §12.3.2.2).

Lambda and lexpr functions both compile into a binary objects which have the same
formal calling discipline, lambda.

In order to provide compatibility with Common Lisp functions, it is possible to use
the expanded lambda-expression in a function definition as indicated below:

(defun function-name ({ req-var}*
[&optional {opt-var I (opt-var [initform [opt-svarll))*]
[&rest rest-var]
[&key {key-var I ({key-var I (keyword key-var)} [initform [key-svar]])}*
[&allow-other-keys]]
[&aux {aux-var I (aux-var [initform])}*])

{form}*)
This admittedly daunting specification follows Common Lisp, and the description given in
G. L. Steele's Common Lisp the Language (Digital Press, 1984) [referred to as CLTL]. On
a first reading, you may prefer to skip to the examples at the end of this section. before
embarking on the detailed explanation which follows immediately, as is based on CLTL.

Each element of the formal parameter specification list, or the lambda-list (that is,
the list following the function name above) is either a parameter specifier or a lambda-list
signifier. Lambda-list signifiers begin with the ampersand character (&).

In all cases a var or svar must be a symbol, the name of a variable; each keyword
must be a keyword symbol which begins with a colon, such as :start. An initform may be
any form.

A lambda-list has five parts, any or all of which may be empty:

Specifiers for the required parameters: These are all the names (req-vars) up to the first
lambda-list signifier; if there is no lambda-list signifier, then all the specifiers are for
required parameters.

Specifiers for &optional parameters: If the lambda-list signifier &optional is present, the
optional names are those following the lambda-list signifier &optional up to the next
lambda-list signifier or the end of the list.

A specifier for a &rest parameter: The lambda-list signifier &rest, if present, must be fol
lowed by a single name (rest-var), which in turn may be followed by another lambda-list
signifier or the end of the lambda-list.

Specifiers for &key parameters: If the lambda-list signifier &key is present, all names (key
vars) up to the next lambda-list signifier or the end of the list are &key names. The key
word names may optionally be followed by the lambda-list signifier &allow-other-keys.

Program Forms 8-3

Specifiers for &aux variables: These are not really parameters. If the lambda-list signifier
&aux is present, all names (aux-vars) after it are auxiliary variables.

When the function represented by the lambda-expression is applied to arguments, the argu
ments and parameters are processed in order from left to right. In the simplest and most
usual case, only required parameters are present in the lambda-list; each is specified simply
by a name req-var for the parameter variable. When the function is applied, there must be
exactly as many arguments as there are parameters, and each parameter is bound to one
argument.

In the more general case, if there are n required parameters (n may be zero), there must be
at least n arguments, and the required parameters are bound to the first n arguments. The
other parameters are then processed using any remaining arguments.

If &optional parameters are specified, then each one is processed as follows. If any unpro
cessed arguments remain, then the parameter variable opt-var is bound to the next remain
ing argument, just as for a required parameter. If no arguments remain, however, then the
initform part of the parameter specifier is evaluated, and opt-var is bound to the resulting
value (or to nil if no initform appears in the parameter specifier). If another variable name
opt-svar appears in the specifier, it is bound to t if an argument was available, and to nil if
no argument remained (and therefore initform had to be evaluated). The variable opt-svar
is called a supplied-p parameter; it is bound not to an argument but to a value indicating
whether or not an argument had been supplied for its associated parameter.

After all &optional parameter specifiers have been processed, then there mayor may not
be a &rest parameter. If there is a &rest parameter, it is bound to a list of all as-yet
unprocessed arguments. (If no unprocessed arguments remain, the &rest parameter is
bound to nil.) If there is no &rest parameter and there are no &key parameters, then there
should be no unprocessed arguments (it is an error if there are).

Next, any &key parameters are processed. For this purpose the same arguments are pro
cessed that would be made into a list for a &rest parameter. (Indeed, it is permitted to
specify both &rest and &key. In this case the remaining arguments are used for both pur
poses; that is, all remaining arguments are made into a list for the &rest parameter, and
are also processed for the &key parameters. This is the only situation in which an argu
ment is used in the processing of more than one parameter specifier.) If &key is specified,
there must remain an even number of arguments; these are considered as pairs, the first
argument in each pair being interpreted as a keyword name and the second as the
corresponding value. It is an error for the first object of each pair to be anything but a
keyword.

In each keyword parameter specifier must be a name key-var for the parameter variable. If
an explicit keyword is specified, then that is the keyword name for the parameter. Other
wise the name key-var serves to indicate the keyword name, in that a keyword with the
same name (in the keyword package) is used as the keyword. Thus

(defun foo (&key radix (type 'integer» ...)

means exactly the same as

(defun foo (&key ((:radix radix» ((:type type) 'integer)) ...)

The keyword parameter specifiers are, like all parameter specifiers, effectively processed
from left to right. For each keyword parameter specifier, if there is an argument pair
whose keyword name matches that specifier's keyword name (that is, the names are eq),

Program Forms 8-4

then the parameter variable for that specifier is bound to the second item (the value) of
that argument pair. If more than one such argument pair matches, it is not an error; the
leftmost argument pair is used. If no such argument pair exists, then the initform for that
specifier is evaluated and the parameter variable is bound to that value (or to nil if no init
form was specified). The variable key-svar is treated as for ordinary optional parameters: it
is bound to t if there was a matching argument pair, and to nil otherwise.

It is an error if an argument pair has a keyword name not matched by any parameter
specifier, unless at least one of the following two conditions is met:

• &allow-other-keys was specified in the lambda-list .

• Among the keyword argument pairs is a pair whose keyword is :allow-other-keys
and whose value is not nil.

If either condition occurs, then it is not an error for an argument pair to match no
parameter specified, and the argument pair is simply ignored (but such an argument pair is
accessible through the &rest parameter if one was specified). The purpose of these
mechanisms is to allow sharing of argument lists among several functions and to allow
either the caller or the called function to specify that such sharing may be taking place.

After all parameter specifiers have been processed, the auxiliary variable specifiers
(those following the lambda-list keyword &aux) are processed from left to right. For each
one, the initform is evaluated and the variable aux-var bound to that value (or to nil if no
initform was specified). Nothing can be done with &aux variables that cannot be done
with the special form let*, and the following two forms are equivalent:

(defun foo (x y &aux (a 1) (b 2) c) ...)
and

(defun foo (x y) (let* ((a 1) (b 2) c) ...)).

Whenever any initform is evaluated for any parameter specifier, that form may refer
to any parameter variable to the left of the specifier in which the initform appears, includ
ing any supplied-p variables, and may rely on the fact that no other parameter variable
has yet been bound (including its own parameter variable).

Once the lambda-list has been processed, the forms in the body of the lambda
expression are executed. These forms may refer to the arguments to the function by using
the names of the parameters. On exit from the function, either by a normal return of the
function's value(s) or by a non-local exit, the parameter bindings are no longer in effect.
(The bindings are not necessarily permanently discarded, for a binding can later be rein
stated if a closure over that binding was created and saved before the exit occurred).

Examples of &optional and &rest parameters:

(defun baz (x &optional (y 2)) (+ x (* y 3)))
(baz 4 5) ==> 19
(baz 4) == > 10
(defun foo (&optional (x 2 y) (z 3 w) &rest q) (list x y z w q))
(foo) ==> (2 nil 3 nil nil)
(foo 6) ==> (6 t 3 nil nil)
(foo 6 3) ==> (6 t 3 t nil)
(foo 638) ==> (6 t 3 t (8))
(foo 6 3 8 9 10 11) ==> (6 t 3 t (8 9 10 11))

Examples of &key parameters:

(defun fum (u &key c d) (list u c d))
(fum 1) ==> (1 nil nil)

Program Forms

(fum 1 :c 6) ==> (1 6 nil)
(fum 1 :d 8) ==> (1 nil 8)
(fum 1 :c 6 :d 8) ==> (168)
(fum 1 :d 8 :c 6) ==> (168)
(fum :u :d 8 :c 6) ==> (:u 68)
(fum :u :c :d) ==> (:u :d nil)

Examples of mixtures:

(defun fie (a &optional (b 3) &rest x &key c (d a)) (list abc d x))
(fie 1) ==> (1 3 nil 1 nil)
(fie 1 2) ==> (1 2 nil 1 nil)
(fie :c 7) == > (:c 7 nil :c nil)
(fie 1 6 :c 7) ==> (1 671 (:c 7))
(fie 1 6 :d 8) ==> (1 6 nil 8 (:d 8))
(fie 1 6 :d 8 :c 9 :d 10) ==> (1 6 9 8 (:d 8 :c 9 :d 10))

8-5

All symbols whose names begin with & are conventionally reserved for use as
lambda-list signifiers and should not be used as variable names. (Note: In CLTL, the
phrase "lambda-list keyword" is confusingly used for signifier.)

8.3. Macros

An important feature of Lisp is its ability to manipulate programs as data. As a
result of this, most Lisp implementations have very powerful macro-definition facilities.
The FRANZ LISP language's macro facility can be used to incorporate popular features of
other languages into Lisp. For example, there are macro packages that allow you to create
records (as in Pascal) and refer to elements of those records by the field names. The 8truet
and defstruet packages imported from Maclisp does this. Another popular use for macros is
to create more readable control structures which expand into eond, or, and and.

8.3.1. macro forms

A macro is a function that accepts a Lisp expression as input and returns another
Lisp expression. The action the macro takes is called macro expansion. Here is a sim
ple example:

=> (def first (macro (x) (cons 'car (cdr x))))
first
=> (first '(a b e))
a
=> (apply 'first '(first '(a be)))
(car '(a be))

The first input line defines a macro called first. Notice that the macro has one formal parameter,
x. On the second input line, you ask the interpreter to evaluate (first '(a be)). Eval sees that first
has a function definition of type macro, so it evaluates first's definition, passing to first, as an
argument, the form eval itself was trying to evaluate: (first '(a b e)). The first macro discards the

Program Forms 8-6

car of the argument with cdr, cons's a car at the beginning of the list and returns {car '{a b c}},
which eval evaluates. The value a is returned as the value of {first '{a b c}}. Thus, whenever eval
tries to evaluate a list whose car has a macro definition, it ends up doing (at least) two operations:
the first of which is a call to the macro to let it macro expand the form, and the second of which
is the evaluation of the result of the macro. The result of the macro may be yet another call to a
macro, so eval may have to do even more evaluations until it can finally determine the value of
an expression. One way to see how a macro expands is to use apply as shown on the third input
line earlier.

8.3.2. defmaero

The macro delmacro makes it easier to define macros because it allows you to
name the arguments to the macro call. For example, suppose you find yourself often
writing code like {setq stack {cons newelt stack}. You could define a macro named push
to do this. One way to define it is:

= > {del push
{macro {x} {list 'setq {caddr x} {list 'cons {cadr x} {caddr x}}}}}

push

then {push newelt stack} expands to the form mentioned earlier. The same macro writ,.
ten using defmacro would be:

=> {delmacro push {value stack}
{list 'setq ,stack {list 'cons ,value ,stack}}}

push

Defmacro allows you to name the arguments of the macro call and makes the macro
definition look more like a function definition.

8.3.3. protection against re-evaluation

Defmacro in FRANZ LISP takes a &protect option which allows the programmer to
declare that one or more of the arguments should be protected against re-eyaluation.

Consider, for example:
{delmacro printtwice {x} '{progn {print ,x} {print ,x}}}.

If we execute (printtwice "foo") It would print "foo" "foo" , probably just what we
intended, since it expands to

{progn {print 1/100"){print "100" }}

Something more mysterious happens if we execute
{setq i Q}
(printtwice (setq i (1+ i)}}. The expression printed is 12 instead of 11. In this case

the printtwice macro expands to
(progn (print (setq i (1+ i)}} {print (setq i (1+ i)}}}

which increments i twice.

Any argument to a macro may be protected against re-evaluation by using the
&protect keyword as follows:

(delmacro printtwice {x 8protect (x}) '(progn {print ,x} {print ,x}}}

Program Forms 8-7

The macro expansion will then evaluate x once. IT the evaluation of x could possibly
have side effects (i.e. x is not an atom), the evaluation will be done once, and the value
lambda-bound. This makes it simple to use a macro to replace a lambda. In compiled
code there is no time penalty in using &protect if the protected arguments are atoms.

8.3.4. the backquote character macro

The default syntax for FRANZ LISP has four characters with associated character
macros. One is semicolon for comments. Two others are the backquote and comma,
which are used by the back quote character macro. The fourth is the sharp sign macro
described in the next section.

The backquote macro is used to create lists where many of the elements are fixed
(quoted). This makes it very useful for creating macro definitions. In the simplest case,
a backquote acts just like a single quote:

=> '(a bed e)
(a b c d e)

If a comma precedes an element of a backquoted list, then that element is evaluated
and its value is put in the list.

=>(8etq d '(X'D z))
(x Y z)
=> '(a b c ,d e)
(a b c (x y z) e)

IT a comma, followed by an at sign, precedes an element in a backquoted list, then that
element is evaluated and spliced into the list with append.

=> '(a b c ,@d e)
(a b c x y z e)

Once a list begins with a backquote, the commas may appear anywhere in the list as
this example shows:

=> '(a b (c d ,(cdr d)) (e / (g h ,@(cddr d) ,@d)))
(a b (c d (y z)} (e f (g h z x y z)))

It is also possible, and sometimes even useful, to use the backquote macro within itself.
As a final demonstration of the backquote macro, define the first and push macros using
all the power at your disposal: defmacro and the backquote macro.

= > (de/macro jir8t (lid) '(car, 1i8t))
first
=>(de/macro pU8h (value 8tack) '(8etq ,8tack (con8 ,value ,8tack)))
stack

8.3.S. sharp sign character macros

The sharp sign macro can perform a number of different functions at read time.
The character directly following the sharp sign determines which function is done, and
the following Lisp s-expressions may serve as arguments.

Program Forms 8-8

Sharp sign macros are invoked by a two character sequence, consisting of the
sharp (or pound) sign (#), followed by an additional character, which will be discussed
shortly. Here are the macros, listed by the two character sequences:

#' This is an abbreviation of function. # ,/00 is read as (function fool.

#(read the following forms, up to a right parenthesis, into a lisp vector. The forms
are evaluated.

#,
#. The following form is evaluated at read time. See discussion below. read.

#\ If the form after the #\ is a one of newline, space, rubout, page, tab, backspace,
return, lz'nefeed, vert, sharp, [par, or rpar then the character code for the above is
read. And otherwise, the form must be a single character, and the form read is
the character code for that character.

#1 The characters read between this marker and the characters 1# are discarded.
This form does nest, so "#1 #11# 1#" is valid.

#+

#- The following form is read (or not read) depending on whether (or not) the follow
ing form is on the (status features) list. See discussion below.

#0
#0 read the following form as an octal number.

#x

#X read the following form as a hexidecimal number.

#/c returns the fixnum representation of the character c.

8.3.5.1. conditional inclusion

If you plan to run one source file in more than one environment, then you may want
some. pieces of code to be included or not included depending on the environment.
The 0 language uses "#ifdef" and "#ifndef" for this purpose, and Lisp uses "#+"
and "#-". The environment that the sharp sign macro checks is the
(status features) list, which is initialized when the Lisp system is built and which
may be altered by (sstatus feature fool and (sstatus nofeature bar). The form of
conditional inclusion is

#+when what
where when is either a symbol or an expression involving symbols and the functions
and, or, and not. The meaning is that what is only read in if when is true. A sym
bol in when is true only if it appears in the (status features) list.

Program Forms

; Suppose you want to write a program that references a file
; and that can run at ucb, ucsd, and cmu where the file naming conventions
; are different.
,
=> (de/un howold (name)

(terpr)
(load #+(or ucb ucsd) " jusr/libjlispjages.r

The form

#+cmu "jusr/li8p/ doc/ ages.r)
(patom name)
(patom " is")
(print (cdr (a88oc name ageJile)))
(patom "year8 old")
(terpr))

#-when what
is equivalent to

#+{not when} what

8.3.5.2. read time evaluation

8-9

Occasionally you want to express a constant as a Lisp expression, yet you do not
want to pay the penalty of evaluating this expression each time it is referenced.
The form

#. expression
evaluates the expression at read time and returns its value.

; Here is a function to test if any of bits 1, 3 or 12 are set in a fixnum.
,
=> (de/un te8tit (num)

(cond ((mop (boole 1 num #.(+ (Ish 11) (18h 1 8) (18h 1 12))))
nil)

(t t)))

8.4. Closures and Fclosures

A closure is a type of functional object useful for implementing advanced control
structures and data access mechanisms. Its purpose is to remember the values of some
variables between invocations of the functional object and to protect this data from being
inadvertently overwritten by other Lisp functions. This environment can then be re-used.
Closures in FRANZ LISP provide the same functionality as closures in the MIT Lisp
Machine Lisp (Zetalisp) design. Closures are also used as the implementation basis for
flavors (described in chapter 19).

Program Forms 8-10

++ llsp

The form (closure var-list function), where var-list is a list of variables and function
is any function, creates and returns a closure. When this closure is applied to some argu
ments, all of the value cells of the variables on var-list are saved aWay, and the value cells
that those variables had at the time closure was called are made to be the value cells of
the symbols. Then function is applied to the arguments. (This paragraph is somewhat
complex, but it completely describes the operation of closures)

Fclosures, a simplified version of closures may be available in your version of FRANZ
LISP. In later releases, fclosures are preserved (although with a different and more efficient
underlying implementation strategy) for compatibility.

Fclosures are related to closures in this way:
(fclosure '(a b) 'foo) <==> (let ((a a) (b b)) (closure '(a b) 'foo))

We proceed with an example in the next section.

8.4.1. an example

Franz Lisp, Opus 42.03
= > (defun code (me count)

(print (llst 'In x»
(setq x (+ 1 x»
(cond «greaterp count 1) (funcall me me (subl count))))
(print (llst 'out x)))

code
=>(defun tester (object count)

(funcall object object count) (terprl»
tester
=>(setq x 0)
o
=>(setq z (closure '(x) 'code»
closure
=> (tester z 3)
(in O)(in l)(in 2)(out 3)(out 3)(out 3)
nil
=>x
o

The function closure creates a new object called a closure, containing a functional
object including an environment in which variables (symbols) and the values exist. In
the given example, the closure functional object is the function 'code'. The environ
ment set of symbols and values contains the symbol 'x' and 0, the value of 'x' when the
closure was created.

When a closure is funcall'ed:

1) The Lisp system lambda-binds the symbols in the closure to their values in the
closure.

2) It continues the funcall on the functional object of the closure.

3) Finally, it un-lambda binds the symbols in the closure and at the same time stores
the current values of the symbols in the closure.

Notice that the closure is saving the value of the symbol 'x'. Each time a closure
is created, new space is allocated for saving the values of the symbols. Thus, if you exe
cute closure again, over the same function, you can have two independent counters:

Program Forms

=> (setq zz (closure '(x) 'code))
closure
=> (tester zz 2)
(in O)(in l)(out 2)(out 2)
= > (tester zz 2)
(in 2)(in 3)(out 4)(out 4)
=> (tester z 3)
(in 3)(in 4)(in 5)(out 6)(out 6)(out 6)

8.4.2. useful functions

(closure '1_ vars 'g_funcobj)

RETURNS: a closure.

8-11

WHERE: l_vars is a list of symbols (not containing nil); g_funcobj is any object that can be
funcalled. (Objects that can be funcalled include compiled Lisp functions, lambda
expressions, symbols, foreign functions, etc.)

NOTE: In general, if you want a compiled function to be closed over a variable, you must
declare the variable to be special within the function. Another example is:

(closure '(a b) #'(lambda (x) (plus x (setq a (plus a 1)))))
Here, the #' construction is a special kind of quote which, if run through the com
piler indicates that this should be compiled as a function rather than a quoted sym
bolic expression.

Other functions imported from Lisp Machine Lisp are

(symeval-in-closure 'cl_a 's_x)

RETURNS: the binding of the symbol s_x in the closure cl_a. You can look around inside a
closure with this.

(set-in-closure 'cl_a 's_symbol 'g_x)
This sets the binding of s_symbol in the environment of the closure cl_a to g_x.

(let-closed argument-list function-body)
This is best described by an example:

EXAMPLE: (let-closed «a 5) b (c 'x)) (function (lambdaO ...)))
expands into
(let «a 5) b (c 'x))

(closure '(a b c) function (lambdaO ...)))))

Program Forms 8-12

8.5. Functional Objects table

informal name obiect type documentation
interpreted list with car 8.2

lambda function eq to lambda
interpreted list with car 8.2

nlambda function eq to nlambda
interpreted list with car 8.2

lexpr function eqto lexpr
interpreted list with car 8.3

macro eq to macro
fclosure vector with vprop 8.4

eq to fclosure
closure vector with vprop 8.4

eq to closure
compiled binary with discipline 8.2

lambda or lexpr eq to lambda
function
compiled binary with discipline 8.2

nlambda function eq to nlambda
compiled binary with discipline 8.3

macro eq to macro
foreign binary with discipline 18.

subroutine of "subroutine"
foreign binary with discipline 18

function of "function"
foreign binary with discipline 18

integer function of "integer-function"
foreign binary with discipline 18

real function of "real-function"
foreign binary with discipline 18

C function of "c-function"
foreign binary with discipline 18

double function of "double-c-function"
foreign binary with discipline 18

structure function of "vector-c-function"
foreign binary with discipline 18

void function of "void-c-function"
array array object 9

package package 17

Table 8.1

CHAPTER 9

Arrays and Vectors

Arrays and vectors are two means oC expressing aggregate data objects in FRANZ LISP. Vec
tors may be thought oC as sequences oC data. They are intended as a vehicle Cor user-defined data
types. This use oC vectors is still experimental and subject to revision. As a simple data struc
ture, they are similar to hunks and strings. Vectors are used to implement closures and are use Cui
to communicate with Coreign Cunctions. Both oCthese topics were discussed in Chapter 8. Later
in this chapter, the current implementation oC vectors is described and you are advised what is
most likely to change.

Arrays in FRANZ LISP provide a programmable data structure access mechanism. One possi
ble use Cor FRANZ LISP arrays is to implement Maclisp style arrays, which are simple vectors oC
fixnums, Honums, or general Lisp values. This is described in more detail in §9.3, but first how
array reCerences are handled by the Lisp system is described.

The structure oC an array object is given in §1.3.10 and reproduced here. lisp values.

Subpart name Get value Set value Type

access Cunction getaccess putaccess binary, list
or symbol

auxiliary getaux putaux lispval
data arrayreC replace block oC contiguous

set lispval
length getlength putlength fixnum
delta getdelta putdelta fixnum

9.1. general arrays Suppose the evaluator is told to evaluate (foo a b) and the Cunction
cell oC the symbol Coo contains an array object, which is called Coo_arr_obj. First. the
evaluator evaluates and stacks the values oC a and b. Next, it stacks the array object
Coo_arr_obj. Finally, it calls the access Cunction oC Coo_arr_obj. The access Cunction
should be a lexprt or a symbol whose Cunction cell contains a lexpr. The access Cunction is
responsible Cor locating and returning a value Crom the array. The array access function is
free to interpret the arguments as it wishes. The Maclisp compatible array access Cunction,
which is provided in the standard FRANZ LISP system, interprets the arguments as sub
scripts in the same way as languages like Fortran and Pascal.

The array access Cunction also is called upon to store elements in the array. For
example, (store (foo a b) c) automatically expands to (Coo c a b), and, when the evaluator
is called to evaluate this, it evaluates the arguments c, b, and a. Then it stacks the array
object, which is stored in the Cunction cell oC Coo, and calls the array access Cunction with
(now) Cour arguments. The array access Cunction must be able to tell this is a store opera
tion, which it can do by checking the number oC arguments it has been given. (A lexpr can
do this very easily.)

tA lexpr is a function that accepts any number of arguments, which are evaluated before the function is called.

Arrays and Vectors 9-1

Arrays and Vectors 9-2

9.2. subparts of an array object An array is created by allocating an array object with
marray and filling in the fields. Certain Lisp functions interpret the values of the subparts
of the array object in special ways as described in the following text: Placing illegal values
in these subparts may cause the Lisp system to fail.

9.2.1. access function The purpose of the access function has been described earlier.
The contents of the access function should be a lexpr: either a binary (compiled func
tion) or a list (interpreted function). It may also be a symbol whose function cell con
tains a function definition. This subpart is used by eval, /uneall, and apply when
evaluating array references.

9.2.2. auxiliary This can be used for any purpose. H it is a list and the first element of
that list is the symbol unmarked_array, then the data subpart is not marked by the
garbage collector. Note that this is used in the Maclisp compatible array package and
has the potential for causing strange errors if used incorrectly.

9.2.3. data This is either nil or points to a block of data space allocated by 8egment or
8mall.8egment.

9.2.4. length This is a fixnum whose value is the number of elements in the data block.
This is used by the garbage collector and by arrayre/ to determine if your index is in
bounds.

9.2.5. delta This is a fixnum whose value is the number of bytes in each element of the
data block. This is four for an array of fixnums or value cells and eight for an array of
flonums. This is used by the garbage collector and arrayre/ as well.

9.3. The Maelisp compatible array package

A Maclisp style array is similar to what is known as an array structure in other
languages: a block of homogeneous data elements that is indexed by one or more integers
called subscripts. The data elements can be all fixnums, flonums, or general Lisp objects.
An array is created by a call to the function array or *array. The only difference is that
*array evaluates its arguments. This call: (array /00 t 9 5) sets up an array called foo of
dimensions 3 by 5. The subscripts are zero based. The first element is (/00 0 0), the next is
(/00 01) and so on up to (Joo e 4). The t indicates a general Lisp object array, which
means each element of foo can be any type. Each element can be any type since all that is
stored in the array is a pointer to a Lisp object, not the object itself. Array does this by
allocating an array object with marray and then allocating a segment of 15 consecutive
value cells with 8mall.8egment and storing a pointer to that segment in the data subpart of
the array object. The length and delta subpart of the array object are filled in (with 15
and 4 respectively) and the access function subpart is set to point to the appropriate array
access function. In this case, there is a special access function for two dimensional value

Arrays and Vectors 9-3

cell arrays called arrac-twoD, and this access function is used. The auxiliary subpart is set
to (t 3 5) which describes the type of array and the bounds of the subscripts. Finally, this
array object is placed in the function cell of the symbol foo. Now when (foo 1 9) is
evaluated, the array access function is invoked with three arguments: 1, 3, and the array
object. From the auxiliary field of the array object it gets a description of the particular
array. It then determines which element (foo 1 9) refers to and uses arrayref to extract
that element.

Since this is an array of value cells, what arrayref returns is a value cell whose value is
what is wanted, so the value cell is evaluated and it is returned as the value of (foo 1 9).

In Maclisp, the call (array foo jixnum 25) returns an array whose data object is a
block of 25 memory words. When fixnums are stored in this array, the actual numbers are
stored instead of pointers to the numbers as is done in general Lisp object arrays. This is
efficient under Maclisp but inefficient in FRANZ LISP since every time a value was refer
enced from an array it had to be copied and a pointer to the copy returned to prevent
aliasingt. Thus t, fixnum, and Honum arrays are all implemented in the same manner.
This should not affect the compatibility of Maclisp and FRANZ LISP. If there is an applica
tion where a block of fixnums or flonums is required, then exactly the same effect of fixnuin
and flonum arrays in Maclisp can be achieved by using fixnum-block and Honum-block
arrays. Such arrays are required if you want to pass a large number of arguments to a
Fortran or C coded function and then get answers back.

The Maclisp compatible array package is just one example of how a general array
scheme can be implemented. Another type of array you can implement is the hashed
array. The subscript can be anything, not just a number. The access function hashes the
subscript and uses the result to select an array element. With the generality of arrays also
comes extra cost; if you just want a simple aggregate of less than 128 general Lisp objects,
you would be wise to look into using hunks.

9.4. vectors Vectors were invented to fix two shortcomings of hunks. They can be longer
than 128 elements. They also have a tag associated with them, which is intended to say,
for example, "Think of me as a Blobit." Thus, a vector is an arbitrarily sized hunk with a
property list.

Continuing the example, the Lisp kernel may not know how to print out or evaluate
blobits, but this is information that is common to all blobits. On the other hand, for each
individual blobit, there are particulars that are likely to change: height, weight, or eye
color. This is the part that would previously have been stored in the individual entries in
the hunk and are stored in the data slots of the vector. Here is a summary of the structure
of a vector in tabular form:

tAliasing happens when two variables share the same sto~age location. For example, if the copying mentioned were
not done, then, after (Beel} :r (100 e)) was done, the value of x and (foo 2) would share the same location. Then should the
value of (foo 2) change, x's value would change as well. This is considered dangerous and, as a result, pointers are never
returned into the data space of arrays.

Arrays and Vectors 9-4

Subpart name Get value Set value Type

datumr., vref vset lispval
property vprop vsetprop lispval

vputprop
SIze vSIze - fixnum

Vectors are created specifying size and optional fill value using the function (new-vector
'x_size ['g_fill ['g....prop]]) or by initial values: (vector ['g_val ... J).

9.5. anatomy of vectors There are some technical details about vectors that you should
know:

9 .5.1. size You are not free to alter this. It is noted when the vector is created and is
used by the garbage collector. The garbage collector coalesces two free vectors, which
are neighbors in the heap. The vector size, as reported by the vsize functions, return
the number of lisp objects in the vector.

9.5.2. property For other lisp objects which are implemented using vectors, the pro
perty list is reserved for internal use. For example, a package object has a special pro
perty list, which indicates how it is to be printed. Normally, property lists for vectors
follow the same rules as do symbols. Also, if the property is actually a (disembodied)
property-list, which contains a value for the indicator print. The value is taken to be
a Lisp function, which the printer invokes with two arguments: the vector and the
current output port.

9.5.3. internal order In memory, vectors start with a longword containing the size,
which is immediate data within the vector. The next cell contains a pointer to the pro
perty. Any remaining cells, if any, are for data. Vectors are handled differently from
any other object in FRANz LISP in that a pointer to a vector is a pointer to the first
data cell, that is, a pointer to the third longword of the structure. This was done for
efficiency in compiled code and for uniformity in referencing immediate-vectors
(described later). You should never return a pointer to any other part of a vector
because this may cause the garbage collector to follow an invalid pointer.

g.O. immediate-vectors Immediate-vectors are similar to vectors. However, they differ in
that binary data are stored in space directly within the vector. Thus, the garbage collector
preserves the vector itself, if used, and only traverses the property cell. The data may be
referenced as longwords, shortwords, or even bytes. Shorts and bytes are returned sign
extended. The compiler open-codes such references, and avoids boxing the resulting
integer data, where possible. Thus, immediate vectors may be used for efficiently process
ing character data. They are also useful in storing results from functions written in other
languages.

Arrays and Vectors 9-5

Subpart name Get value Set value Type

datum[.] vrefi-byte vseti-byte fixnum
vrefi-word vseti-word fixnum
vrefi-long vseti-long fixnum

property vprop vsetprop lispval
vputprop

size vsize - fixnum
vsize-byte fixnum
vsize-word fixnum

To create immediate vectors specifying size and fill data, you can use the functions new
veetori-byte, new-veetori-word, or new-veetori-Iong. You can also use the functions
vee tori-byte, veetori-word, or veetori-Iong. All of these functions are described in Chapter
2.

CHAPTER 10

Exception Handling

10.1. Errset and Error Handler Functions

FRANZ LISP allows you to handle in a number of ways the errors that arise during
computation. One way is through the use of the err8et function. IT an error occurs during
the evaluation of the err8et's first argument, then the locus of control returns to the errset
which returns nil (except in special cases, such as err). The other method of error handling
is through an error handler function. When an error occurs, the error handler is called and
is given as an argument a description of the error that just occurred. The error handler
may take one of the following actions:

(1) It could take some drastic action like a re8et or a throw.

(2) It could, if that the error is continuable, return to the function that noticed the error.
The error handler indicates that it wants to return a value from the error by return
ing a list whose car is the value it wants to return.

(3) It could decide not to handle the error and return a non-list to indicate this fact.

10.2. The Anatomy of an error

Each error is described by a list of these items:

(1) Error type - This is a symbol that indicates the general classification of the error.
This classification may determine which function handles this error.

(2) fixnum id - a fixnum identifying the error. In the future each error will have a
unique number.

(3) Continuable - IT this is non-nil, then this error is continuable.

(4) Message string - This is a symbol whose print name is a message describing the error.

(5) Data - There may be from zero to three Lisp values that help describe this particular
error. For example, the unbound variable error contains one datum value, the sym
bol whose value is unbound. The list describing that error might look like:

(ER%misc 0 t IUnbound Variable:1 foobar)

10.3. Error handling),algorithm

This is the seq~ence of operations when an error occurs:

(1) IT the symbol ER%all has a non-nil value, then this value is the name of an error
handler function. That function is called with a description of the error. IT that
function returns (and, of course, it may choose not to) and the value is a list and this
error is continuable, then the car of the list to the function which called the error is
returned. Presumably, the function uses this value to retry the operation. On the
other hand, if the error handler returns a non-list, then it has chosen not to handle

Exception Handling 10-1

Exception Handling 10-2

this error, which leads to step (2). Something special happens before the ER%all
error handler is called, which does not happen in any of the other cases described
later. To help insure that infinitely recursive errors do not occur, if ER%all is set to
a bad value, the value of ER%alI is set to nil before the handler is called. Thus, it
is the responsibility of the ER%all handler to 'reenable' itself by storing its name in
ER%all.

(2) Next, the specific error handler for the type of error that just occurred is called, if
one exists, to see if it wants to handle the error. The names of the handlers for the
specific types of errors are stored as the values of the symbols whose names are the
types. For example, the handler for miscellaneous errors is stored as the value of
ER %misc. Of course, if ER %misc has a value of nil, then there is no error
handler for this type of error. Appendix B contains a list of all error types. The pro
cess of classifying the errors is not complete, and, thus, most errors are lumped into
the ER%misc category. Just as in step (1), the error handler function may choose
not to handle the error by returning a non-list, which leads to step (3).

(3) Next, a check is made to see if there is an errset surrounding this error. If so the
second argument to the errset call is examined. If the second argument was not given
or is non-nil then the error message associated with this error is printed. Finally, the
stack is popped to the context of the errset and then the errset returns nil. If there
was no errset step (4) is executed.

(4) If the symbol ER%tpl has a value, then it is the name of an error handler that is
called in a manner similar to that discussed earlier. If it chooses not to handle the
error, step (5) is executed.

(5) At this point, it has been determined that you do not want to handle this error.
Thus, the error message is printed out and a reset is done to send the flow of control
to the top-level.

To summarize the error handling system: When an error occurs, you have two
chances to handle it before the search for an errset is done. Then, if there is no errset, you
have one more chance to handle the error before control jumps to the top level. Every
error handler works in the same way: It is given a description of the error (as described in
the previous section). It mayor may not return. If it returns, then it returns either a list
or a non-list. If it returns a list and the error is continuable, then the car of the list is
returned to the function that noticed the error. Otherwise, the error handler has decided
not to handle the error.

10.4. Default aids

There are two standard error handlers that probably handle the needs of most users.
One of these is the Lisp-coded function tpl-err-tpl-Jen, which is the default value of
ER%tpl. Thus, when all other handlers have ignored an error, tpl-err-tpl-Jen takes over.
It prints out the error message and goes into a read-eval-print loop. The other standard
error handler is tpl-err-all-Jen. This handler is designed to be connected to ER%all and is
useful if your program uses errset and you want to look at the error before it is thrown up
to the errset.

10.5. Autoloading

When eval, apply, or Juneall are told to call an undefined function, an ER%undef
error is signaled. The default handler for this error is undeJ-June-handler. This function
checks the property list of the undefined function for the indicator, autoload. If it is
present, the value of that indicator should be the name of the file that contains the

Exception Handling 10-3

definition of the undefined function. Undef-func-handler loads the file and check if it has
defined the function which caused the error. If it has, the error handler returns and the
computation continues as if the error did not occur. This provides a way for you to tell
the Lisp system about the location of commonly used functions. The trace package sets up
an autoload property to point to /lisp/lib/trace.

10.6. Interrupt processing

The operating system provides one user-interrupt character that defaults to ·C.t You
may select a Lisp function to run when an interrupt occurs. Since this interrupt could
occur at any time and, in particular, could occur at a time when the internal stack pointers
are in an inconsistent state, the processing of the interrupt may be delayed until a safe
time. When the first ·C is typed, the Lisp system sets a flag that an interrupt has been
requested. This flag is checked at safe places within the interpreter and in the qlinker
function. If the Lisp system does not respond to the first ·c, another ·C should be typed.
This causes all of the transfer tables to be cleared, forcing all calls from compiled code to
go through the qlinker function where the interrupt flag is checked. If the Lisp system still
doesn't respond, a third ·C causes an immediate interrupt. This interrupt is not neces
sarily in a safe place, so the user should reset the Lisp system as soon as possible.

tActually there are two but the lisp system does not allow you to catch the QUIT interrupt.

CHAPTER 11

The Lister Trace Package

The Lister Trace package is an important tool for the interactive debugging of a Lisp pro
gram. It allows you to examine selected calls to a function or functions, and optionally to stop
execution of the Lisp program to examine the values of variables.

The trace package is a set of Lisp programs located in the Lisp program library (usually in
the file /lisp/lib/trace.l). Although not normally loaded in the Lisp system, the package is loaded
when the first call to trace is made.

(trace [ls_argl ... J)
WHERE: The form of the ls_arg£ is described later.

RETURNS: A list of the function sucessfully modified for tracing. If no arguments are given
to trace, a list of all functions currently being traced is returned.

SIDE EFFECT: The definitions of the functions indicated in the argument list are (usually
temporarily) modified.

The ls_argi can have one of the following forms:

foo - When foo is entered and exited, the trace information is printed.

(foo break) - When foo is entered and exited, the trace information is printed. Also, just
after the trace information for foo is printed upon entry, you are put in a special
break loop. The prompt is 'T{l}' and you may type any Lisp expression and see its
value printed. The ith argument to the function just called can be accessed as
(arg z).

To leave the trace loop, just type ?ret and execution continues.

(foo if expression) - When foo is entered and the expression evaluates to non-nil, then the trace
information is printed for both exit and entry. If expression evaluates to nil, then no trace
information is printed.

(foo ifnot expression) - When foo is entered and the expression evaluates to nil, then the trace
information is printed for both entry and exit. If both if and ifnot are specified, then the if
expression must evaluate to non nil AND the ifnot expression must evaluate to nil for the
trace information to be printed out.

(foo evalin expression) - When foo is entered and after the entry trace information is printed,
expression is evaluated. Exit trace information is printed when foo exits.

(foo evalout expression) - When foo is entered, entry trace information is printed. When foo
exits, and before the exit trace information is printed, expression is evaluated.

The Lister Trace Package 11-1

The Lister Traee Paekage 11-2

(faa evalinout expression) - This has the same effect as (trace (foo evalin expression evalout
expression)).

(foo Iprint) - This tells trace to use the level printer when printing the arguments to and the
result of a call to foo. The level printer prints only the top levels of list structure. Any
structure below three levels is printed as an &. This allows you to trace functions with mas
sive arguments or results.

Ordinarily the output from the trace package is printed with prinlevel bound to trace
prinlevel (default 4) and prinlength bound to trace-prinlength (default 5). Prinlevel and
prinlength, which are useful in cutting off verbose or infinite (cyclical) structures, are
described in Appendix B. H you wish to always print full lists then setting trace-prinlevel
and trace-prinlength each to nil, will accomplish this.

The following trace options permit you to have greater control over each action that
takes place when a function is traced. These options are only meant to be used by program
mers who need special hooks into the trace package. Most programmers should skip reading
this section.

(faa traeeenter tefune) - This tells trace that the function to be called when foo is entered
is tefunc. tefunc should be a lambda of two arguments. The first argument is bound
to the name of the function being traced, foo in this case. The second argument is
bound to the list of arguments to which foo should be applied. The function tefunc
should print some sort of "entering foo" message. It should not apply foo to the
arguments, however. That is done later on.

(faa traeeexit txfune) - This tells trace that the function to be called when foo is exited is
txfunc. txfunc should be a lambda of two arguments. The first argument is bound to
the name of the function being traced, foo in this case. The second argument is
bound to the result of the call to foo. The function txfunc should print some sort of
"exiting foo" message.

(faa evfen evfune) - This tells trace that the form evfunc should be evaluated to get the
value of foo applied to its arguments. This option is a bit different from the other
special options since evfunc is usually an expression, not just the name of a function,
and that expression is specific to the evaluation of function foo. The argument list to
be applied is available as T-arglist.

(faa printargs prfune) - This tells trace to use prfunc to print the arguments to be applied
to the function foo. prfunc should be a lambda of one argument. You may want to
use this option if you want a print function which can handle circular lists. This
option works only if you do not specify your own traeeenter function. Specifying
the option Iprint is just a simple way of changing the printargs function to the level
printer.

(faa printres prfune) - This tells trace to use prfunc to print the result of evaluating foo.
prfunc should be a lambda of one argument. This option works only if you do not
specify your own traeeexit function. Specifying the option Iprint changes printres
to the level printer.

The Lister Trace Package 11-3

You may specify more than one option for each function traced. For example:

{trace {foo if {eq 3 (arg 1)) break lprint) {bar evalin (print xyzzy)))

This tells trace to trace two more functions, foo and bar. Should foo be called with the first
argument eq to 3, then the entering foo message is printed with the level printer. Next it
enters a trace break loop, allowing you to evaluate any lisp expressions. When you exit the
trace break loop, foo is applied to its arguments and the resulting value is printed, again
using the level printer. Bar is also traced, and each time bar is entered, an entering bar
message is printed and then the value of xyzzy is printed. Next bar is applied to its argu
ments and the result is printed. If you tell trace to trace a function that is already traced,
it first untraces it. Thus, if you want to specify more than one trace option for a function,
you must do it all at once. The following is not equivalent to the preceding call to trace for
foo:

{trace {foo if {eq 3 (arg 1))) (foo break) (foo lprint))

In this example, only the last option, lprint, is in effect.

If the symbol $tracemute is given a non nil value, printing of the function name and
arguments on entry and exit is surpressed. This is particularly useful if the function you are
tracing fails after many calls to it. In this case, you would tell trace to trace the function,
set $tracemute to t, and begin the computation. When an error occurs, you can use tra
cedump to print out the current trace frames.

Generally, the trace package has its own internal names for the Lisp functions it uses,
so that you can feel free to trace system functions like cond and not worry about adverse
interaction with the actions of the trace package. You can trace any type of function:
lambda, nlambda, lexpr, or macro, whether compiled or interpreted, and you can even trace
array references. However, you should not attempt to store in an array that has been traced.

When you are tracing compiled code, keep in mind that many function calls are
translated directly to machine language or other equivalent function calls. A full list of
open-coded functions is listed at the beginning of the Liszt compiler source. Trace does a
(sstatus trans/ink nil) to insure that the new traced definitions it defines are called instead of
the old untraced ones. You may notice that compiled code runs slower after this is done.

(traceargs s_func [x_level])

WHERE: If x_level is missing, it is assumed to be 1.

RETURNS: The arguments to the x_Ievelth call to traced function s_func are returned.

(tracedump)

SIDE EFFECT: The currently active trace frames are printed on the terminal. It returns a
list of functions untraced.

The Lister Trace Package 11-4

(untrace [s_argl ... J)
RETURNS: A list of the functions that were untraced.

NOTE: If no arguments are given, all functions are untraced.

SIDE EFFECT: The old function definitions of all traced functions are restored except in the
case where it appears that the current definition ofa function was not
created by trace.

CHAPTER 12

Liszt - the Lisp compiler

12.1. General strategy of the compiler

The purpose of the Lisp compiler, Liszt, is to create an object module that, when
brought into the Lisp system using fasl, has the same effect as bringing in the correspond
ing Lisp-coded source module with load with one important exception: functions are defined
as sequences of machine language instructions instead of Lisp S-expressions. Liszt is not a
function compiler; it is a file compiler. Such a file can contain more than function
definitions; it can contain other Lisp S-expressions, which are evaluated at load time.
These other S-expressions are also stored in the object module produced by Liszt and are
evaluated at fasl time.

Ai:; is almost universally true of Lisp compilers, the main pass of Liszt is written in
Lisp.

12.2. Running the compiler

The compiler is normally run in this manner:
++ Iiszt foo
This compiles the file foo.1 or foo. (The preferred way to indicate a Lisp source file is to
end the file name with '.1'.) The result of the compilation is placed in the file foo.o, if no
fatal errors were detected. All messages that Liszt generates go to the standard output.
Normally each function name is printed before it is compiled. (However, the +q option
suppresses this.)

12.3. Special forms

Liszt makes one pass over the source file. It processes each form in this way:

12.3.1. macro expansion

If the form is a macro invocation (that is, it is a list whose car is a symbol whose
function binding is a macro), then that macro invocation is expanded. This is repeated
until the top level form is not a macro invocation. When Liszt begins, there are
already some macros defined, in fact some functions, such as defun, are actually mac
ros. You may define your own macros as well. For a macro to be used, it must be
defined in the Lisp system in which Liszt runs.

Liszt - the Lisp compiler 12-1

Liszt - the Lisp compiler 12-2

12.3.2. classification

After all macro expansion is done, the form is classified according to its car. If
the form is not a list, then it is classified as an other.)

12.3.2.1. eval-w hen

The form of eval-when is

{eva/-when (time1 time2 ...) forml form2 .. .)

where the timei are one of eval, compile, or load. The compiler examines the formi
in sequence and the action taken depends on what is in the time list. If compile is
in the list then the compiler invokes evalon each formi as it examines it. If load is
in the list, then the compile recursively calls itself to compile each formi as it exam
ines it. Note that if compile and load are in the time list, then the compiler both
evaluates and compiles each form. This is useful if you need a function to be
defined in the compiler at both compile time, perhaps to aid macro expansion, and
at run time after the file is faBled in.

12.3.2.2. declare

Declare is used to provide information about functions and variables to the
compiler. It is (almost) equivalent to

(eval-when (compile) .. .).

You may declare functions to be one of three types: lambda (*expr), nlambda
(*fexpr), or lexpr (*lexpr). The names in parenthesis are the Maclisp names and are
accepted by the compiler as well, and not just when the compiler is in Maclisp
mode. Functions are assumed to be lambdas until they are declared otherwise or
are defined differently. The compiler treats calls to lambdas and lexprs equivalently,
so you need not worry about declaring lexprs either. It is important to declare
nlambdas before the compiler encounters a call to them This can be done either via
the declare directive, or will be done implicitly by the compiler when compiling the
definition of an nlambda.

Another attribute you can declare for a function is localf, which makes the
function 'local'. A local function's name is known only to the functions defined
within the file itself. The primary advantage of a local function is that its entry and
exit protocol is simpler and faster. Short functions can be speed up considerably by
declaring them localf's. Bacuse the local functions are not known outside the file,
these functions can have the same names as functions defined in another file,
without a name conflict. This can be a benefit or a hazard. Compiled local func
tions cannot be used from the functions funcall or apply.

Variables may be declared special or unspecial. When a special variable is
lambda bound, either in a lambda, prog, or do expression, its old value is stored
away on a stack for the duration of the lambda, prog, or do expression. This takes
time and is often not necessary. Therefore, the default classification for variables is
unspecial. Space for unspecial variables is dynamically allocated on a stack. An
unspecial variable can only be accessed from within the function where it is created
by its presence in a lambda, prog, or do expression variable list. It is possible to
declare that all variables are special as will be shown later.

You may declare any number of things in each declare statement. A sample

Liszt - the Lisp compiler

declaration is:
{declare

{lambda fund /unc2}
{*/expr /unc9}
{*Iexpr /unc4}
{local/ /unc5}
{special varl var2 var9}
{unspecial var4}}

12-3

You may also declare all variables to be special with {declare {specials til.
You may declare that macro definitions should be compiled as well as evaluated at
compile time by {declare (macros til. In fact, as was mentioned earlier, declare is
much like (eval-when (compile) ...). Thus, if the compiler sees {declare (/oo bar)}
and foo is defined, then it evaluates (/oo bar). If foo is not defined, then an
undefined declare attribute warning is issued.

12.3.2.3. (progn 'compile form! form2 ... formn)

When the compiler sees this it simply compiles form! through formn as if they
too were seen at top level. One use for this is to allow a macro at top-level to
expand into more than one function definition for the compiler to compile.

12.3.2.4. include/include!

Include and include/ cause another file to be read and compiled by the com
piler. The result is the same as if the included file were textually inserted into the
original file. The only difference between include and include/ is that include does
not evaluate its argument and includef does. Nested includes are allowed.

12.3.2.5. def

A def form is used to define a function. The macros d~/un and de/macro
expand to a def form. If the function being defined is a lambda, nlambda, or lexpr,
then the compiler converts the Lisp definition to a sequence of machine language
instructions. If the function being defined is a macro, then the compiler evaluates
the definition - thus defining the macro within the running Lisp compiler. Further
more, if the variable macros is set to a non-nil value, then the macro definition also
is translated to machine language and, thus, is defined when the object file is fasled
in. The variable macros is set to t by {declare {macros til.

When a function or macro definition is compiled, macro expansion is done
whenever possible. If the compiler can determine that a form would be evaluated if
this function were interpreted, then it macro-expands it. It does not macro-expand
arguments to an nlambda unless the characteristics of the nlambda are known, as is
the case with condo The map functions (map, mapc, mapcar, and so on) are
expanded to a do statement. This allows the first argument to the map function to
be a lambda expression that references local variables of the function being defined.

Liszt - the Lisp compiler 12-4

12.3.2.6. other forms

All other forms are simply stored in the object file and are evaluated when the
file is lasted in.

12.4. Using the compiler

The previous section describes exactly what the compiler does with its input. Gen
erally, you do not have to worry about all that detail because files that work interpreted,
work compiled. The following is a list of steps you should follow to insure that a file com
piles correctly.

[1 J Make sure all macro definitions precede their use in functions or other macro
definitions. If you want the macros to be around when you las I in the object file, you
should include this statement at the beginning of the file: (declare (macros t))

[2J Make sure all nlambdas are defined or declared before they are used. If the compiler
comes across a call to a function that has not been defined in the current file, that
does not currently have a function binding, and whose type has not been declared,
then it assumes that the function needs its arguments evaluated. That is, it is a
lambda or lexpr and generates code accordingly. This means that you do not have to
declare nlambda functions like status since they have an nlambda function binding.

[3J Locate all variables that are used for communicating values between functions.
These variables must be declared special at the beginning of a file. In most cases,
there aren't many special declarations, but, if you fail to declare a variable special
that should be declared, references to those variables which are used 'free' will not
access the expected values. Examining the compiler listing will provide indications of
variables used 'free' but not declared 'special'. You may eliminate all such messages
by adding declarations. Unusual constructions calling interpreted code with 'free'
variables can still fail if called from compiled code in which those variables are not
declared 'special'. Here is an example. Assume that a file contains just these three
lines:

{del aaa (lambda (glob lac) (bbb lac)))
{del bbb {lambda (myloc) (add glob myloc)))
{del ccc (lambda (glob lac) (bbb lac)))

You can see that if you load in these two definitions, then (aaa 3 4) is the same as
(add 3 4) and gives us 7. Suppose you compile the file containing these definitions.
When Liszt compiles aaa, it assumes that both glob and loc are local variables and
allocates space on the temporary stack for their values when aaa is called. Thus, the
values of the local variables glob and loc do not affect the values of the symbols glob
and loc in the Lisp system. Now, Liszt moves on to function bbb. Myloc is assumed
to be local. When it sees the add statement, it finds a reference to a variable called
glob. This variable is not a local variable to this function, and, therefore, glob must
refer to the value of the symbol glob. Liszt automatically declares glob to be special,
and it prints a warning to that effect. Thus, subsequent uses of glob always refer to
the symbol glob. Next, Liszt compiles ccc and treats glob as a special and loc as a
local. When the object file is lasred in and (ccc 3 4) is evaluated, the symbol glob is
lambda-bound to 3, bbb is called and returns 7. However, (aaa 3 4) fails since when
bbb is called, glob is unbound. What should be done here is to put
{declare (special glob) at the beginning of the file.

Liszt - the Lisp compiler 12-5

[4] Make sure that all calls to arg are within the lexpr whose arguments they reference.
If foo is a compiled lexpr and it calls bar, then bar cannot use arg to get at foo's
arguments. If both foo and bar are interpreted, this works however. The macro lis
tify can be used to put all or some of
a lexpr's arguments in a list, which can then be passed to other functions.

12.5. Compiler options

The compiler recognizes a number of options that are described later. The options
are typed anywhere on the command line preceded by a plus sign. The entire command
line is scanned and all options recorded before any action is taken. Thus
++ liszt +mx foo
++ liszt +m +x foo
++ liszt foo +mx
are all equivalent. The meanings of the options are:

C The assembler language output of the compiler is commented. This is useful when
debugging the compiler and is not normally done since it slows down compilation.

I The next command line argument is taken as a filename and loaded prior to compila
tion.

e Evaluate the next argument on the command line before starting compilation. For
example,
@ liszt +e '(setq foobar "foo string")' foo
evaluates the earlier s-expression. Note that the shell requires that the arguments be
surrounded by single quotes.

m Compile this program in Maclisp mode. The reader syntax is changed to the Maclisp
syntax and a file of macro definitions is loaded in, usually named /lisp/lib/machacks.
However FRANZ LISP cannot guarantee that this switch allows you to compile any
given program without some change.

o Select a different object or assembler language file name. For example,
++ liszt foo +0 xxx.o
compiles foo and into xxx.o instead of the default foo.o, and
++ liszt bar +S +0 xxx.s
compiles to assembler language into xxx.s instead of bar.s.

q Run in quiet mode. The names of functions being compiled and various "Note" 's are
not printed.

Q Print compilation statistics and warn of strange constructs. This is the inverse of the
q switch and is the default.

r Place bootstrap code at the beginning of the object file, which, when the object file is
executed, causes a Lisp system to be invoked and the object file fasled in. This is
known as 'autorun' and is described later.

S Create an assembler language file only.
++ liszt +S foo
Creates the assembler language file foo.s but does not attempt to assemble it. If this
option is not specified, the assembler language file is put in the temporary disk area
under an automatically generated name based on the Lisp compiler's process id.
Then, if there are no compilation errors, the assembler is invoked to assemble the file.

T Print the assembler language output on the standard output file. This is useful when
debugging the compiler.

u Run in VCI-Lisp mode. The.character syntax is changed to that of VCI-Lisp and a
VCI-Lisp compatibility package of macros is read in.

Liszt - the Lisp compUer

w Suppress warning messages.

x Create a cross reference file.
++ liszt +x foo

12-6

not only compiles foo into foo.o but also generates the file foo.x. The file foo.x is
Lisp-readable and lists for each function all functions which that function could call.
The program lxref reads one or more of these ".x" files and produces a human
readable cross reference listing.

12.6. autorun

The object file that Liszt writes does not contain all the functions necessary to run
the Lisp program, which was compiled. In order to use the object file, a Lisp system must
be started and the object file fasled in. When the +r switch is given to Liszt, the object
file created contains a small piece of bootstrap code at the beginning, and the object file is
made executable. Now, when the name of the object file is given to the operating system
command interpreter (shell) to run, the bootstrap code at the beginning of the object file
causes a Lisp system to be started. The first action the Lisp system takes is to fasl in the
object file that started it. In effect, the object file has created an environment in which it
can run.

Autorun is an alternative to dumplisp. The advantage of autorun is that the object
file that starts the whole process is typically small, whereas the minimum dumplisped file is
very large - one half megabyte. The disadvantage of autorun is that the file must be
fasled into a Lisp system each time it is used, whereas the file which dumplisp creates can
be run as is. Liszt itself is a dumplisped file since it is used so often and is large enough
that too much time is spent fasfmg it in each time it is used. The Lisp cross reference pro
gram, lxref, uses autorun, since it is a small and rarely used program. - ..

In order to have the program fasled in, begin execution (rather than starting a Lisp
top level), the value of the symbol user-top-Ievel should be set to the name of the function
to get control. An example of this is shown next.

Liszt - the Lisp compiler

Suppose you want to replace the operating system
date program with one written in Lisp.

++ list Iispdate.l
(defun mydate nil

(patom "The date is ")
(patom (status ctime))
(terpr)
(exit 0))

(setq user-top-level 'mydate)

++ llszt +r llspdate
Compilation begins with Lisp Compiler 5.2
source: lispdate.l, result: lispdate.o
mydate
%Note: lispdate.l: Compilation complete
%Note: lispdate.l: Time: Real: 0:3, CPU: 0:0.28, GC: 0:0.00 for 0 gcs
%Note: lispdate.l: Assembly begins
%Note: lispdate.l: Assembly completed successfully

This changes the name to remove the" .0", (this isn't necessary).
++ move lispdate.o lisp date

This tests it out.
++ llspdate
The date is Sat Aug 1 16:58:33 1984
++

12.7. pure literals

12-7

Normally, the quoted lisp objects (literals) that appear m functions are treated as
constants. Oonsider this function:

{def foo
{lambda n£l {cond {{not {eq 'a {car {setq x '(a b)))))

(print 'impossible!!))
{t (rplaca x'd)))))

At first glance it seems that the first cond clause is never true, since the car of (a b) should
always be a. However, if you run this function twice, it prints 'impossible!!' the second
time. This is because the following clause modifies the 'constant' list (a b) with the rplaca
function. Such modification of literal Lisp objects can cause programs to behave strangely
as the earlier example shows, but, more importantly, it can cause garbage collection prob
lems if done to compiled code. When a file is fasled in, if the symbol $purcopylits is non
nil, the literal Lisp data is put in 'pure' space; that is, it is put in space that need not be
looked at by the garbage collector. This reduces the work the garbage collector must do,
but it is dangerous, since if the literals are modified to point to non-pure objects, the
marker may not mark the non-pure objects. If the symbol $purcopylits is nil, then the
literal Lisp data is put in impure space and the compiled code acts like the interpreted
code when literal data is modified. The default value for $purcopylits is t.

Liszt - the Lisp compiler 12-8

12.8. transfer tables

A transfer table is setup by fasl when the object file is loaded in. There is one entry
in the transfer table for each function that is called in that object file. The entry for a call
to the function foo has two parts whose contents are:

[1] Function address - This initially points to the internal function ql£nker. It may
some time in the future point to the function foo, if certain conditions are satisfied.
(See later for more on this.)

[2] Function name - This is a pointer to the symbol foo. This is used by qlinker.

When a call is made to the function foo, the call actually is made to the address in the
transfer table entry and ends up in the qlinker function. Qlinker determines that foo is the
function being called by locating the function name entry in the transfer tablet. If the
function being called is not compiled, then qlinker just calls funeaU to perform the function
call. If foo is compiled and if (status translink) is non-nil, then qNnker modifies the func
tion address part of the transfer table to point directly to the function foo. Finally, qlinker
calls foo directly. The next time a call is made to foo the call goes directly to foo and not
through qlinker. This results in a substantial speedup in compiled code to compiled code
transfers. A disadvantage is that no debugging information is left on the stack, so shows
taek and baktrace are useless. Another disadvantage is that if you redefine a compiled
function either through loading in a new version, or interactively defining it, then the old
version may still be called from compiled code, if the fast linking described earlier has
already been done. The solution to these problems is to use (sstatus translink value). If
value is

nil All transfer tables are cleared. That is, all function addresses are set to point to
qlinker. This means that the next time a function is called qlinker is called and looks
at the current definition. Also, no fast links are set up since (status translink) is nil.
The result is that showstaek and baktraee work and the function definition at the
time of call is always used.

on This causes the Lisp system to go through all transfer tables and set up fast links
wherever possible. This is normally used after you have fas/ed in all of your files.
Furthermore, since (status trans/ink) is not nil, qlinker makes new fast links if the
situation arises, which is not likely unless you fasl in another file.

t This or any other value not previously mentioned just makes (status translink) be
non-nil and, as a result, fast links is made by qlinker if the called function is com
piled.

12.9. Fixnum functions

The compiler generates inline arithmetic code for fixnum only functions. Such func
tions include +, -, *, I, \, 1+ and 1-. The code generated is much faster than using add,
difference, etc. However it only works if the arguments to and results of the functions are
fixnums. No type checking is done.

t QUnker does this by tracing back the call stack until it finds the calls machine instruction that called it. The ad
dress field of the calls contains the address of the transfer table entry.

CHAPTER 13

TPL: the Top-Level Listener

13.1. Introduction

Tpl is the default top-level "listener" for FRANZ LISP. This program reads input
from the keyboard, evaluates the input, and prints the value(s) returned by the evaluation.
While it is possible for a Lisp system to provide just this bare "read-eval-print loop" and
be quite useful, most users prefer a more "user-friendly" top level.

Part of the attraction of Lisp is that this or any other top-level interface to the user
is easy to change for special uses. In many cases, serious application programs replace tpl
with a different top level. Several widely-used programs replace it with an algebraic infix
parser; others use a natural language (English) parser, or a database command language.
Since the source text for tpl is available in the lisp library as tpl.l, the code can be used by
programmers as a basis for other top-level "listeners".

13.2. A top-level for debugging Lisp program.s

The particular goal of this top-level listener is to provide a natural link to FRANZ
LISP debugging facilities, and support the programmer with various mechanisms to keep
track of command histories, simplify the setting and examination of debugging flags, etc.
Tpl provides enhanced debugging facilities, history command substitution, a file package,
frame evaluation, and lisp stack manipulating functions.

13.3. How to use tpl

If you start up the FRANZ LISP system as delivered, tpl is the program which reads
your keyboard input and determines what is done with it. Tpl prints a prompt "=> ".

Any input that is valid use at any level in FRANZ LISP will have exactly the same
meaning to tpl, with the exception that new lines beginning with a question mark (1) are
interpreted as special commands to tpl, and not passed immediately to Lisp for evaluation.

In the description of the tpl commands, the notation [... j indicates optional argu
ments, and the notation [a I bj means 'a' or 'b' or neither.

1help [topic 1
prints the help text associated with a particular command within tpl. 'topic' can be
selected from one of the tpl keywords; if no argument is given, a list of the keywords
and a brief summary of their meanings is printed. For example:

= > ?help history
prints an explanation of what you get when you type "?history".
=> ?help?
similarly, prints an explanation of "?1"

TPL: the Top-Level Listener 13-1

TPL: the Top-Level Listener 13-2

?? [location-specifier]
finds a particular previous command line identified by the location-specifier, and re
executes it as if it were retyped to tpl directly. If the location-specifier is a non
numeric ymbol, tpl scans backward through the commands to find an expression
whose 'car' is equal to the symbol. For example, "77 print" will repeat the last com
mand beginning (print). It is not necessary to type the whole symbol: you can
type an asterisk to match "the rest of the atom". For example, "77 pr *" will also
find (print ...) unless some more recent command also begins with (pr). If the
location-specifier is a positive integer, the command line with that number is re
executed. If location-specifier is a negative number (-N) then the Nth previous com
mand is redone. If location-specifier is not given, then the last command is redone.
Thus "??" is equivalent to "77 -I".

?his[tory] [r]
prints the history list of recent Lisp commands. You may set the variable tpl
history-show to alter the number of the most recent commands which are displayed.
Invoking the 'r' option will display the results of those commands.

?re[set]
is equivalent to typing the Lisp command (reset).

?tr [fnI fn2 ...]
traces 'fnI fn2 .. .'. While this will usually be a simple enumeration of functions to be
traced, more options can be passed to the trace function by using (name option-list)
expressions as in the normal trace package (e.g. "?tr (foo break)").

?untr [fnI fn2 ...]
untraces the specified functions, or if given no argument, will untrace all traced func
tions.

?step [t IfnI fn2 ...]
initiates a mode of single-step execution of Lisp, If It' is the argument, this is done
immediately. Otherwise stepping is initiated upon entry to any of the functions fnI
fn2, The next two commands control this mode.

?soff turns stepping off.

?sc [n]
(step counter) steps en' times, then enters a Lisp (break). en' defaults to one. if en' is
the symbol 'inf' then steps forever without breaking. When in stepping mode, typing
a <return> is equivalent to ?sc 1.

?state [symI vall ...]
prints/ changes the state of tpl flags and variables. The variables listed by '?state' are
the only ones which can be changed via this command. 8ymI is set to vall, etc.

?prt 'pop and retry': does a ?pop, followed by a retry of the command which caused the
last break to be entered. This is one of the most commonly useful tpl commands,
since it resumes computation, probably after a fix-up, from the last error.

?ld [file 1 file2 ...]
loads the given files, or re-loads the just previously loaded file if no arguments are
supplied.

?fast sets up Lisp for fast execution, by: turning off debugging mode (?debug off), setting
translink to 'on', and setting displace-macros to t. Debugging information will be
lost when this mode is entered. These settings generally would be used during the
running of compiled programs which are known to be correct and in which high-speed
execution is important.

?pop pops up one break level. If at the top level, it has no effect.

?ret [val]
returns 'val' from this break level. If the argument is missing, nil is returned. The

TPL: the Top-Level Listener 13-3

value is returned to the function which produced the error, allowing it to continue.
The break must have originated from invoking the break function or from the signal
ling of a continuable error. The argument 'val' is evaluated.

?zo views (Zooms) a portion of the Lisp stack. You may use ?up and ?dn to move the
pointer to the current stack frame. Prior to using this you should execute the tpl
command ?debug so that sufficient information is stored on the stack.

7dn [n]
without arguments, moves the current frame pointer down one level and executes a
?zo. If n is given, it moves that number of frames down. The stack grows upward,
so the oldest frames are on the bottom.

?up [n]
is the same as ?dn, except the current frame pointer is moved in the up direction.

?ev symbol
determines the value of symbol in the context of the current stack frame, as if the
frames above the current one had not yet been created.

?pp "pretty prints" the current frame with neat indentation and without ellipsis. Ordi
narily this would be used after ?zo is used to locate a frame of interest.

<eof>
(a single character, without a '7' prefix) pops up one break level if it is typed to tpl
from a keyboard input stream. Depending upon the catching of signals, if it is typed
on the top level, it may be used to exit from lisp. This is AD on many machines.

13.4. Tpl special symbols

The following are special symbols:

user-top-Ievel
may be bound to a function (i.e. a lambda-expression, or more likely a symbol which
is the name of a defined function), which will be evaluated instead of (tpl) as the
read-eval-print loop.

top-Ievel-eofs
if bound to a fixnum, used as the number of end-of-files to read at the top level
read-eval-print loop before exiting. The default value is 5. It is still true that the
top level will exit is an eof is read and the input device in not a tty.

top-level-prompt
if bound to a non-nil S-expression, will be used as the top-level prompt.

top-Ievel-init
if bound to a function, will be used to initialize tpl. Normally, the lisprc file is read,
and the copyright notice and version number are printed.

top-level-print
if bound to a function, will be used to print values returned by the read-eval part of
the read-eval-print loop.

tpl-number-prompt
if t, will cause tpl to print an index number with the '=>' prompt.

tpl-prinlevel
the maximum nesting level to print lists. Beyond that point, lists are abbreviated to
&.

tpl-prinlength
the maximum length to print a list. Beyond that point, lists are abbreviated to &.

TPL: the Top-Level Listener 13-4

tpl-history-show
the number of history items to show with the ?history command.

displace-macros
if t, then displace macros with their expansion. This will speed execution, occupy
more space, and possibly interfere with debugging by replacing macro calls by possi
bly obscure expansions.

13.5. A sample session with TPL

; first we load in a factorial function:
=> ?ld fact
[load fact.!]
(fact)
; we 'prettyprint' the fact function
=> (pp fact)
(def fact

(lambda (n)
(cond ((= n 0) (bug)) ((times n (fact (subl n)))))))

t
; we somehow fail to notice that there is a bug in when n equals 0
; so we try it out:
=> (fact 10)
Error: eval: Undefined function bug
Form: (fact 10)
; we could use showstack or backtrace to find out what is wrong, but
; for this example we decide that we want to use the more powerful
; ?zo (zoom) function. In order to use ?zo, we have to be in debugging
; mode before the error occurs. Since we aren't, we decide to turn
; on debugging and run the function again so it gets an error
c{1} ?debug
Debug is on
t
; the ?prt function pops up a break level and retries the function that
; caused the error. The line just below which says '=> (fact 10)' was
; printed by tpl. It was not typed by the user. tpl is showing the
; function it is retrying.
c{l} ?prt
=> (fact 10)
Error: eval: Undefined function bug
Form: (fact 10)
; the error occurred again. Now that we are in debug mode, we can do
; a zoom
c{l} ?zo
Should I re-calc the stack(y /n):y

*** top ***
/ / current \
(bug)
(cond ((= n 0) (bug)) ((times n &)))
(fact (sub1 n))
(times n (fact (subl n)))
nil
i it shows that the current frame is the top frame and that is the

TPL: the Top-Level Listener

; evaluation of (bug).
; We can ask what the value of n is at this point:
c{l} ?ev n
o
; it is pretty clear that the problem is that the bug function is
; undefined. Before we correct it, we show a bit more of tpl. Here
; we go down five frames:
c{l} ?dn 5
(cond«= nO) (bug)) «times n &)))
(fact (sub! n))
(times n (fact (sub! n)))
(cond «= nO) (bug)) «times n &)))
/ / current \
(fact (sub! n))
(times n (fact (sub! n)))
(cond «= nO) (bug)) «times n &)))
(fact (sub! n))
nil
; now we inquire as to n's value at this point in the execution:
c{l} ?ev n
2
; Now let us fix the bug. The function fact could be edited by using
; editf (see chapter 16), or we can define (bug) as returning 1.
c{l} (defun bug 0 I)
bug
; Now we pop and retry. Notice that we didn't have to move the
; current frame to the top.
c{l} ?prt
=> (fact 10)
3628800
; this time it works.
=>
,
; sample session 2.
; things work slightly differently when fact is compiled
,
=> ?ld fact
[fasl fact.o]
(fact)
; we turn on debugging since we know that an error will occur
=> ?debug
Debug is on
t
=> (fact 10)
Error: Undefined function called from compiled code bug
Form: (fact 10)
; look at the stack
c{l} ?zo
Should I re-calc the stack(y /n}:y
*** top ***
/ / current \
a:(fact (0))
a:(fact (1))
a:(fact (2))
a:(fact (~))

13-5

TPL: the Top-Level Listener

nil
; The call to (bug) isn't visible on the stack, since undefined functions
; are detected in compiled code in a different manner.
; Notice that the frames are preceded by 'a:' and the arguments look
; unusual. This is an 'apply' form, which you may think of as a shorthand for
; (apply 'fact '(2». This is how frames showing calls from compiled
; code look.
c{l} (defun bug (1)
bug
; again we fix the bug and retry
c{l} ?prt
=> (fact 10)
3628800
; and it works.
=>

13.6. The File Subsystem

13-6

The FRANZ LISP file package helps support the residential environmental style of lisp
programming in which most or all program editing is done within lisp itself, probably using
edit!, editv, editp to create and debug programs. Although ordinary data files are used by
the file package to store the programmer's alterations to the function definitions and other
data that persist between runnings of programs, management of those files is controlled by
the FRANZ LISP system .

.As an interactive session proceeds, the file package (in cooperation with the top level)
tracks the changes the user makes to the lisp environment. Those changes are of three
types: function (or macro) definitions, values of variables (symbols) altered, and properties
of symbols altered. At any point the user can find out what has been changed by typing
?changed to the top level, which will print the information out in a table form.

Each item (function, value or property) may be associated with a file. The list
printed by '?changed' will show the associated file for each changed item. In order to save
a change, the user must request that the associated file be written out (using '?fileout',
described below). If an item doesn't have an associated file, then one can be declared using
'?add-function', '?add-var' or '?add-prop" depending on the type of item.

Command Summary for the File Package

?filein [namel name2 ... J
loads the named files using a read-eval loop, printing the names (not the values)
being loaded. The files being read should have been written with ?fileout. If no files
are named as arguments, a list of all previously loaded files is returned. The com
mand

?fileout [namel name2 ... J
writes the given files if any of the items in the file have changed. With no arguments,
all files that need updating are rewritten.

?changed
reports on those data items which have changed but not stored on files, and the
names of associated files.

?add-function filen fcnl {fcn2 ... J
adds 'fcnl', 'fcn2', etc. to the list of functions associated with the the file 'filen'. The
file 'filen' should either not exist or should be the name of a file which has been
loaded with ?filein.

TPL: the Top-Level Listener 13-7

?add-var filen varl [var2 ... j
adds the given symbols 'varl', 'var2', etc. to the list of symbols stored in the file
'filen'. The file 'filen' should either not exist or should be the name of a file which
has been loaded with ?filein.

?add-prop
adds symi's indi property to the list of properties stored in the file 'filen'. The file
'filen' should either not exist or should be the name of a file which has been loaded
with ?filein.

?rem-function filen fcni [fcn2 ... j
?rem-var filen varl [var2 ... j
?rem-prop filen (symi indl) [(sym2 ind2) ... j

remove the named items from filen. They do this by deleting the association of the
item from the file. When the file is next written with '?fileout', the items will not be
written out.

?whichfile fcn I var I (symbol ind) ...
for each item (which can be a function, variable or (symbol ind)), prints the associ
ated filename, if there is one. H a symbol is both a function and a variable (in
different files), both associated files are printed.

?filestatus [fileni filen2 ... j
prints the names of the items in each file listed. H no filenames are given, prints a
summary status report of all files.

Backup Variables in the File Package

There are several variables which the user might wish to alter to assist in backup
maintenance:

file-backup-prepend
is a string (or symbol) to prepend to the filename to generate a backup filename dur
ing a '?fileout'

file-backup-append
is a string (or symbol) to append to the filename to generate a backup filename dur
ing a '?fileout'

13.7. File subsystem implementation notes

The file package maintains a database of knowledge about files. For each file it keeps
track of the items stored in that file. The file package also maintains a list of items which
have changed, called the changed-list.

Filein notes:

Filein recognizes three types of items: functions, variables and properties.

A function item has this form: (kwd functionname anything ...) where kwd is an ele
ment of the list which is the value of file-function-modifiers. The initial value of file
function-modifiers is (defun def defmacro). The user may wish to add something to this
list to read in a file not created by '?fileout'. The '?fileout' function-printing function will
only use the 'def' form, which provides a superset of the capabilities of the other forms.

A variable item has this form: (kwd .variablename anything ...) where kwd is an ele
ment of the list which is the value of file-variable-modifiers. The initial value of file
variable-modifiers is (setq).

TPL: the Top-Level Listener 13-8

A property item has this form: (kwd symbol anything indicator) where kwd is an ele
ment of the list which is the value of file-property-modifiers. The initial value of file
property-modifiers is (defprop). Note that the symbol and indicator are not evaluated
before they are added to the list of items, so 'putprop' is not a valid kwd to be added to
file-property-modifiers.

FiJeo'Ut note8:

Files created by ?fileout contain only a few types of forms (def, setq and defprop). If
the file is edited externally from the lisp system and other forms are inserted (such as
declares or comments), and then the file is filed in-and-out, the other forms will be lost. It
is also important to keep forms syntactically correct (e.g. with parentheses balanced),
because then forms following the error will not be read in to the lisp system. It is generally
safe to edit or merge files to add, delete or alter 8yntactically proper definitions of the forms
already known to the file package.

?fileout performs the following sequence of operations: it opens up a file in /tmp and
writes all items in the file. As each item is written, it is also removed from the global
changed-list if it was on that list. If a file with the same name as the one being written
exists then ?fileout will preserve the previous file by changing its name, if the user has set
one or both of the variables file-backup-prepend and file-backup-append. If both of these
variables are nil, then a backup will not be done. If file-backup-prepend is non-nil, then its
value should be a symbol or string which will be prepended to the filename in order to
create the backup name. Likewise file-backup-append will be appended to the filename to
create the backup name. If both variables are non-nil, then both will be used. Finally, the
file in /tmp is renamed to the name of the file being filed out.

A caution is appropriate: suppose you start lisp and define the function 'solveit'. You
would like to add this function to the file 'eqn.l' which you created earlier and which
already contains a number of functions. Your first thought may be to type:
?add-function eqn.l solveit
Since the file 'eqn.l' exists on the disk but hasn't been loaded yet, the file package is
ignorant of any functions other than 'solveit' associated with 'eqn.l'. Executing
?fileout eqn.l
would cause the contents of 'eqn.l' to be replaced with the definition of the single function
'solveit'. As a guard against this situation, the file package asks you if you want to abort
the ?add-function operation when you mention an existing file which however has not been
read-in. It is best to type 'yes' at this point, then
?filein eqn.l
and then
7add-function eqn.l solveit

CHAPTER 14

Advanced Structured Programming: Delstruct

14.1. Introduction

Chapter 2 described the basic data types of FRANZ LISP objects and the functions
which access and manipulate them. In most advanced LISP applications, however, these
simple types are used to create more complex forms which may combine or even nest these
data types to form a structure. There are no built-in functions for manipulating these
user-defined structures; they must be created by the user. However, this implementation of
FRANZ LISP contains a number of facilities for assisting the user in the creation and
maintenance of structures.

14.2. Setf and Defsetr

Consider, for a moment the list (call it alist):

{foo bar}.

We refer to foo as the car of the list; bar is the cadr. The LISP function which returns the
car of a list is the function car. In the above example, foo can be thought of either as the
result of evaluating {car alist} or as the car of alist where car of alist is used as another
name for foo.

Another way of looking at this is to think of each LISP data type as having a func
tion which accesses it and a function which modifies it. However, the function which
accesses a data type can also be thought of as the name of object which is accessed. The
simplest case of this occurs in variable binding. For example:

{setq var 'value}

assigns the value of var to point to value. The access form is var itself, since typing "var"
to the top-level will cause it to return 'value. The name of the variable is the form by
which it is accessed. It would be useful to be able to eliminate the need for a separate
modifier function by using the access function to modify the data type as well. The func
tion setf accomplishes this.

This chapter to the FRANZ LISPmanuai describes additions by contributors from MIT, Berkeley, and University of
Pittsburgh.

Advanced Structured Programming: Derstruct 14-1

Advanced Structured Programming: Defstruct 14-2

(setf ~accessfnl 'g_vall)

WHERE: g_accessfn is the complete function call which would access the desired data and
g_val is the value to which it will be assigned.

SIDE EFFECT: setf is a macro which replaces itself with a call to the proper update function.

RETURNS: whatever the value of the macro expansion returns.

In the simplest case, then, setf can be used to replace the function setq. But consider,
for a moment, some other data types. Returning to the example of the list, above, we
referred to the first element of the list as the car of the list. The function which would
update this value is the function rplaca. But with setfwe could use car, instead.

; we can use setl as we would setq:
=> (setl alist '(100 bar))
(foo bar)

; now, to replace the car of alist:
=> (setl (car alist) 'baz)
(baz bar)

; is it a miracle! no, not really:
=> (macroezpand '(Betl (car alist) 'haz))
(rplaea alist 'baz)

Lest one think that setf is all done with magic, it should be pointed out that the
objects which can be updated by setf must be predefined using the macro defsetf. For
instance, to make the access function car known to set/, we must define it:

(defsetf car (e v) '(rplaca ,(cadr e) ,v}}

(defsetf s3name l_setfvars 'g_body)

RETURNS: a lambda form which describes the expansion of the setf.

WHERE: s_fname is the name of the access function, Lsetfvars is a list of the arguments to
the setf call, and g_body which is the body of the lambda expression to be created.

SIDE EFFECT: Defsetf is a macro whose argument list is in the same form as defunt. The
only substantial difference between defsetf and defun is that in the case of
defsetf the lambda form is not defined at the top-Ievelt , but rather as the
value of the property setf-expand on the the property list of s3name.

In order to better understand the workings of defset/, it is useful to examine the imple
mentation of set/. The following example illustrates some of the "inner workings" of the setf
evaluation:

tThe defining forms of a lambda expression are described in Chapter 8 in the section on del un. Since delBetl is,
essentially, a. delun, all of the delun defining forms will work for delBetl.

*Meaning the lambda expression created by (delsetlsJname Lllars 'g_body) will not become th~ function binding of
sjname.

Advanced Structured Programming: Derstruct

; as in the example, above

=> (delsetl car (argl arg2) '(rplaca ,(cadr argl) ,arg2))
(lambda (argi arg2) (list 'rplaca (cadr argI) arg2))

; now, if we examine the property list of car:
=> (pp-Iorm (plist 'car))
(setf-expand (lambda (argi arg2)

'(rplaca ,(cadr argI) ,arg2)))
nil

In evaluating (setf g_accessfn 'g_val) the following algorithm is followed:

(1) If g_accessfn is atomic and a symbol, then g_accessfn is setqed to g_val.

(2) If ~accessfn is non-atomic and the car of g_accessfn is a symbol, then the
property list of g_accessfn is searched for the indicator setf-expand and the
property value (presumably a lambda expression created by defsetf) is then
apply'd to g_val.

(3) If g_accessfn is non-atomic and the car of g_accessfn is a symbol representing
some combination of car and cdr, then an update function is created and
applied to g_valt .

(4) If g_accessfn is non-atomic and the car of g_accessfn is a cmacro or macro,
then the macro is expanded and setf reapplied to the result.

(5) If g_accessfn is non-atomic and the car of g_accessfn is a function, then setf is
reapplied using the function binding of the car of g_accessfn.

(6) If no other condition is satisfies, setf g_accessfn is is continually reapplied (or
expanded), until either setf quits or the situation is resolved.

14-3

For convenience, a number of setf macros have already been defined in FRANZ LISP.
These are shown in the following table. In addition, setf is can be used to update structures
defined by defstr'l.lct.

8etl form update form object type

(setf (arg argnum) newval) (setarg argnum newval) nlambda
(setf (arraycall type arr key) newval) (store arexp newval) array
(setf (cxr key obj) newval) (rplacx key obj newval) hunk
(setf (get obj key) newval) (putprop obj newval key) property list
(setf (gethash obj key)newval) (puthash obj newval key) hash array
(setf (get hash-equal key obj) newval) (puthash-equal obj newval key) hash array

(setf (nth keyex list) newval) (rplaca (nthcdr keyex list) newval) list
(setf (nth cdr keyex list) newval) (rplacd (nthcdr (subi keyex) Jist) newval) list
(setf (nthelem keyex list) newval) (rplaca (nthcdr (subi keyex) list) newval) list
(setf (plist obj) newval) (setplist obj newval) property list

(setf (symeval obj) newval) (set obj newval) symbol

(setf (vref obj key) newval) (v set obj key newval) vector

tBy implication (unless otherwise specified), there is no property setf-e:tpand for most of the car, cdr com
binations as these are "created" on the fly.

Advanced Structured Programming: Defstruct 14-4

14.3. Detstruct

The notion of using an access function as an update function (as manifested in the
,et/ macro) can be carried even further. It is not hard to imagine, for example, that the
user may want to "nest" lists within lists and data forms within data forms to create more
complex data structures. In such a complex structure it might be useful to name "com
ponents"t to provide an easy way to access the imbedded data forms. Furthermore, access
and update functions would have to be created for each element of that structure.

Consider the following example: Suppose we wished to write a FRANZ LISP program
that dealt with ships. Insofar as we are concerned, the relevant data regarding each ship is
its z and , position in a two-dimensional co-ordinate system; its velocity in each co
ordinate, and its total mass. We could represent the information regarding this ship as a
list of five elements, an array, a vector, or any other combination of LISP data types. But
how easy would it be to manipulate this data? In reading over our programs would we
remember that (cadddr ,hip) was the velocity in direction, of ,hip?

Instead, what we would like to see is some way of representing ship so that the
names of the components of the ship provided a way to access and update ship informar
tion. That facility exits with defdruct.

(defdruct ,hip
,hip-z-po8ition
,hip-,-po,ition
,hip-z-velocity
,hip-y-velocity
8hip-m(88)

says that every 8hip has five components. For each of these five components there will be
defined an acce880r function which will return the value of that particular component
which it names. For example, for any object (say QEf!) , which is an instance of ,hip the
value of ,hip-z-po,ition for QEe will be:

r,/u,-z-po,ition QEf!)

Furthermore, de/druct will define a macro, make-,h." which can be used to create new
instances of ship. This macro is known as a condructor macro since it constructs new
structures of type 'hip.

Finally, as we might have expected from the previous section, structures defined by
defdruct can be updated using the ,et/macro, e.g.:

(,etf (8hip-z-po,ition QEe) 50)

will set the value of the ,hip-z-po,ition of QEe to be 50.

tThe notion of ,tructure, such as those we will be talking about has been described for many languages (in one
variety or another), so that it becomes impossible to find "neutral" terms to describe the rorm or these structures. For ex
ample: the term record has meaning to both PASCAL and INTERLISP users, though it would not describe exactly the
same thing to both. Similarly, we will refer to ,tructure, in FRANz LISP although the name is familiar to PL/l and C
users, as well. In the present case, the term component, is used to describe what might also be called field" element" or
,lot" principally because that term has precedent in other texts [Weinreb and Moon; Steele]. The user is cautioned to
con!lider these structures in FRANZ LlSP as being ,imilar to rather than equivalent to structures in other languages.

Advanced Structured Programming: Derstruct

(derstruct sl_nameargs sl_slotdescriptl [... sl_slotdescriptll)

RETURNS: the name of the structure created.

14-5

SIDE EFFECT: creates a structure and the corresponding accessor and constructor functions
for that structure.

WHERE: the arguments to de/struct correspond to the forms illustrated, below.

sCnameargs: In the simplest case, sl_nameargs can be a symbol which will be the
name of the structure created. This was illustrated by the case or the ship, above. In a more
complex fashion, sl_namelist can be a list containing the structure name and a list of key
words. In most cases, the keywords may have an argument. When a keyword-argument pair
is given, it should be in the form (keyword argument), unless indicated, otherwise. In FRANZ
LISP, the argument is not evaluated. The following keywords have been defined for FRANZ
LISP.

:conc-name:
This argument can have two forms, both of which provide automatic prefixing of
access function names. When :conc-name is not given an argument, the name of the
structure IS concatenated to the component name with an intervening hyphen. For
example:

{de/struct {person :conc-name} name age sex}

will create a structure person, with the slots name, age and sex, and the access
runctions named person-name, person-age, and person-sex. On the other hand, when
given an argument, expressions like:

{de/struct {person (:conc-name human}) name age sex}

will create a structure person with the access functions human name, humanage, and
humansex. (Notice the absence of the hypen in this case.)

:named
Means that, where possible, the structure created will be a named type (i.e., if the type
would have been a :list, it will be a :named-/ist, instead). In addition, certain functions
exist which operate on named structures.

:include
The :include option can be used to build new structures which are composites of other
structures. The structure so defined will have the all of the slots of the :included struc
ture in addition to to the newly defined slots. Access functions which are defined for
the :included structure will operate for the structure in which it is included but the
converse is not truet .

tThis is also the case in ZetaLISP, but not the case in Common LISP, that is, in Common LISP, the structure IJ,
tronaut which :included the structure perlon would ha.ve two a.ccess functions for the slots in a,tronaut which were also in
per,on. That is to say, for a,tronaut as defined in the next example, there would be two accessor functions for the nlJme
slot: per80n-nlJme and a,tronaul-name. This may, someday, be the case for FRANz LlSP as well.

Advanced Structured Programming: Derstruct

Oonsider the following*:

; suppose we wish to create a structure, IJBtronaut.
; since astronauts are people, too
=> (defrtruct (IJBtronaut :conc-name (:include perron))

helmel-8ize
(favorite-drink 'Tang))

astronaut

; now, to create an instance of a8tronaut
=> (Betq Glenn (make-a8tronaut

name 'John
age 45
8e:: 'male
helmet-8ize 17.5))

#<astronaut 5>

=> (perron-nlJme Glenn)
John

; since perron-name was inherited from the :included file
; a8tronaut-name is not defined
=> (a8tronaut-name Glenn)
Error: eva!: Undefined function astronaut-name

=> (a8tronaut-helmet-8ize Glenn)
17.5

14-6

Notice that :conc-name in the structure was only passed to the structures uniquely
defined within the defstruct. Those components which were :included inherited their
accessor function names from their parent structures. In addition, if default values
exist for the structure which is :included, these values are inherited by the new struc
ture unless an alternate form is used, such as:

{defstruct {astronaut {:include person sez (age 45)
:conc-name)
helmet-size
(favorite-drink 'Tang)

which says that the default value for sez is nil and for age is 45. As we can see from
this example, the proper way to specify defaults values is either as a list whose car is
the slot and whose cadr is the value for that slot or as a symbol, where the value
defaults to nil.

Multiple :includes cannot be used. For example, suppose that structure "A" has 5 slots
and structure "B" has three, the result of:

{defstruct {O (:include A)
(:include B))

slotlc slot2c slot Sc)

will be a structure whose first three slots come from "B" and whose last three slots are
from "0"; no slots from "A" will be used. This "feature" is is present because of the
fact that the slots of a structure are allocated starting from the beginning of that

Advanced Structured Programming: Defstruct 14-7

structuret . Since the accessor functions of "B" cannot be changed by their subsequent
use in another structure, the reference point for accessor functions is almost always the
first element of the type in which that structure was implemented. IT a second struc
ture were included, it would, by necessity, be forced to start at the first slot of the new
structure since the accessor functions were previously defined. For this reason, only the
last structure is :included if :include is used more than once. IT this is not entirely
clear, read through the next section before coming back to this point.

In FRANZ LISP :included structures must be of the same :type as the aggregate struc
ture which :includes them. This is further explained in the next paragraph.

:type
The :type option specifies which type of LISP object will be used to implement the
structure. In FRANZ LISP the default type is a named-vector. & mentioned, above, the
:type of an aggregate structure cannot be different from the :type of the structures
which are :included in it. By implication, this means that structures cannot be com
posed of other structures of more than one type. The reason for this is clear: the acces
sor functions are defined at the time that the structure is created. Since these accessor
functions are type dependent one cannot create a structure which would alter the type
of a parent structure.

Structures which are :named are implemented as named types; by default, :named
vectors & always, aggregate structures can only :include structures of the same type,
therefore, in the previous example, if astronaut is named so must be person. The types
available in FRANZ LISP are described in the next section.

:constructor
This option may have, zero, one or two options. IT the argument is not given or if
:constructor is not given as an option to defstruct, then a keyword driven constructor is
defined whose name is the symbol "make-" concatenated to the name of the structure
defined (e.g., make-person in the case of person). IT one argument is given and is nil,
no constructor will be defined. IT one non-nil argument is given then the keyword
driven constructor macro is named with that argument. IT two arguments are given,
the first must be a symbol (the name of the constructor), and the second a list of the
slots initialized by that macro. In this last case, . any iniiializations which are done in
the constructor will override the initializations defined in the body of the defstruct. In
contrast to the previous cases, :constructor with two arguments is by-position rather
than keyword driven.

The use of :constructor will be illustrated in the next section.

:default-pointer
In the definition of defstruct we outlined the procedure for assigning default values to
slots of the structure being defined. In other applications, we may wish to create a
structure which, apart from the structure definition, can serve as a model or default
case of that structre. One way to do this is through the :default-pointer option.

Under normal conditions, accessor functions such as person-name take one argument,
the name of the instance we wish to reference. By using :default-pointer, the argu
ment to the accessor function becomes optional. IT it is not specified, the value
returned by the accessor function is the the value of the slot for the instance pointed
to by the argument to :default-pointer. To illustrate:

tHence, the first slot in a structure of :type :liBt will be the car of the list.

Advanced Structured Programming: Defstruct 14-8

=> (de/struct (apple :conc-name
(:de/ault-pointer dPPLE*))
(tl/pe 'fruit) name color)

apple
=> (setl} *APPLE* (malee-apple color 'red))
#<apple 3>
=> (vector-dump *APPLE*)
size = 3, prop= apple
0: fruit
1: nil
2: red
nil
=> (setl} crabapple (malee-apple color 'green name 'crab))
#<apple 3>

; by default, the accessor runctions will point to*APPLE*:
=> (apple-color)
red
=> (apple-color crabapple)
green

:size-symbol
This option allows a user to specify a global variable which will be bound to the aizet
of the structure being created. H no option is given the variable will be called
"Btruct-size" where atruct is the name of the structure. Otherwise the variable will be
named by the argument to :aize-a1lmbol ..

:size-macro
This option is, in every respect, equivalent to :aize-a1lmbol except that rather than
creating a symbol, this option creates a macro which expanda to the value of the size
of the structure.

:initial-offset
This option requirea one argument (a fixnum), which will tell de/atruct to skip some
number of slots before assigning the slot names. No accessor functions are created for
these slots, so the use pof this option presupposes some knowledge about the imple
mentation of defstruct on the part of the user. IT the structure :includes another struc
ture, then the order of slot assignments is: :include -> :initial-offaet -> de/atruct.

:callable-accessors
Normally in FRANZ LISP, acessor Cunctions are not Cunctions but macros*. IT the
option :callable-aeeeaaorB appears in the de/atruet with an argument oC t or no argu
ment at all, the accessor functions are defined as lambda functions, rather than as
macros.

NOTE: While this option provides accessors which can be used as conveniently as
functions (i.e., they can be passed as arguments to mapear), the accessor functions
created cannot be used to update slots using aet/.

:eval-when
This option behaves just as the compiler function eval-when and has the same argu
ments only in keyword Corm (preceded by a colon. ":"). By default structure-associated

fBy Bize we are rererring to the the number of elements at the top-level of the structure, therefore, the Bize of the
list (a (b c) d (e! g)) is 4.

tIn contrast to acces80r functions in ZetaLISP which are, by default, subsls, (functions).

Advanced Structured Programming: Derstruct 14-9

functions are:

(:eval-when (:eval :compile :load))

:alterant
Normally when a structure is created a function is also defined which can be used to
alter, en masse all of the slots in a particular instance of that structure. The name of
this function* is made by concatenating" alter-" to the structure name, (e.g., alter
person, in the example, above). The argument to :alterant should be either a symbol
(which will be the name of the alterant instead of the default), or nil, which means no
alterant function will be defined. Using :alterant without an argument is equivalent to
not using it at all; in these cases the default function will be defined.

Alterant functions are described in the next section.

:but-first
In some instances, a structure will be defined which will always be part of another
structure, so that the accessors of that structure must reference the structure of which
it is a part. The :but-first option is a means of expressing this relationship. Consider
the following example:

; using person as an example, we may wish to subdivide
; name into three more slots (of type :Iist)

=> {delstruct {name :li8t (:but-first per8on-name))
firstname middlename lastname)

name

; and to create an instance of person called generic-person:
; (with a name more colorful than" John Q. Public)

=> {setq generic-person {make-perBon name (make-name))
#<person 3>

=> (alter-name generic-person firBtname 'RuluB
middlename 'ThaddeuB lastname 'Firefly)

(Firefly)

; to alter the head field of body

=> {setl (middlename generic-person 'T.)
(T. Firefly)
=> {person-name generic-person
(Rufus T. Firefly)

The :but-first option is used to create accessor functions which apply their arguments
to the result of another accessor function which was the argument to :but-firstt . This
option always takes one argument, and always defines a structure which will exist only
within the context of another structure.

Notice how an instance of person is created in the example, above. The call to make
person includes the assignment of the name slot to a call to make-name. This pro
cedure must be followed when using :but-first structures: the substructures must be

tActually, a macro.

tIn fact, the argument to :but-first should always be the name of an accessor function.

Advanced Structured Programming: Defstruct 14-10

created (uBing the make- functions), at the same time that the top-level structure is
instantiated. To see what would happen if this procedure is not followed, imagine the
case if one had defined teBt-perBon without including make-name:

=> (setq test-person (make-person))
#<person 3>

; note tha.t there will be e:lactill one
; slot for the va.1ue of person-name

j since aller-name expects person-name to
j be a. three element list:
=> (ater-name test-person

jir8tname 'John middlename 'Q la8tname 'Public)
Error: Attempt to rpla.c[adj nil.
<1>:

:print'
Structures which are of a type :named-vector are allowed an addition option not avail
able to other :typeB, the :print option. Basically, :print allows the user to define a for
mat for printing the structure, using the directives defined for the format output pack
age (see Chapter 5 for further details). The form of the arguments to :print is:

(:print control-Btring &reBt argB)

where argB can reference any of the slots within the structure. For example, using a
modified form of our Bhip structure:

Advanced Structured Programming: Defstruct

=> (defstruet
(ship (:print·- f3A 8hip at position < - s, - 8> - f3 with velocity r s, - 8f %"

(ship-x-position ship](ship-y-position ship)
(ship-x-ve/oeity 8hipj(ship-y-velocity 8hip)))

(ship-x-position 0)
(ship-y-position 0)
(ship-x-veloeity 0)
(ship-y-velocity 0)
ship-mass)

ship

; now, using make-ship, note the form of the output
=> (setq x (make-8hip ship-x-position 10))
A ship at position < 10,0>

with velocity [0,0]

; if we modify some fields:
=> (setf (ship-y-ve/ocity x) 25)
25
=> (setf (ship-x-velocity x) 'unknown)
unknown

; this time:
=>x
A ship at position < 10,0>

with velocity !unknown,25]

14.3.1. Using Defstruct

14.3.1.1. :types of structures

14-11

As was mentioned, previously, by default, structures are implemented as
named-vectors. In the case of vectors, the property of the vector becomes the name
of the structuret .

The following types are available in FRANZ LISP. The user writing portable
code should be cautious in specifying only those types common to all LISPs of
interest.

:list Implements the structure as a simple list.

:named-lis t

:list*

Like :list but the first element of the list will be the name of the structure
(therefore the length of a :named-list implementation of a structure will be one
greater than the same structure implemented as a simple :Iist.

Like :list, but the last cons of the list created is a dotted pair. There IS no
:named-list*.

tIf the structure is implemented as a list, the name is the car; if the structure is an array, the name is the first ele
ment, and so on.

Advanced Structured Programming: Defstruct 14-12

:array
Implements the structure as an array.

:named-array

:hunk

Like :list but the first element of the array will be the name of the structure.
This type mayor may not be available in your FRANZ LISP implementation.

At one time the default in FRANZ LISP whose use is, now, discouraged. Use
vectors instead. Also available as a:

:named-hunk
The zeroth element of the hunk is the name of the structure.

:tree This structure is implemented as a binary tree of cons cells with the leaves
serving as the slots. The advantage of using a tree as opposed to a list is that
the access time for any slot at some level of branching is the same as the
access time for any other slot at that same level. A disadvantage of using :tree
structures is that they may not include or be included by any other structure.

:fixnum
A fixnum structure is a structure of one slot which is implemented as a single
fixnum which, itself, may contain a number of slots, corresponding to the bits
which make up the fixnum. These can be particularly useful in those LISPs
where fixnums are implemented in byte sizes of 15 or 20 since many commonly
used numbers can be represented in less than 10 bytes and, therefore, more
than one number can be "packed" into a single fixnum space. In FRANZ LISP
fixnums are only 10 bits and the utility of this type is questionable.

:vector

:named-vectors
Structures are, by default, named-vectors. A named vector is called thus
because it prints as #< structure-name size>. Vectors are described in
Chapter 9.

14.3.1.2. :constructor functions

In the previous section we described a way to define the constructor function
for a structure. This section describes the uses of :constructor.

When defstruct is applied without the :constructor option, a constructor func
tion is automatically defined and named as the concatenation of "make-" to the
structure name, (e.g, make-person in the case of the structure person). The con
structor defined is a keyword driven function, that is, arguments to the function are
preceeded by keywords which indicate which slots to fill. For example:

(setq fred (make-person name 'Fred age 22 sex 'male)}

creates an instance of person, with the slots initialized according to the given key
words, name, age, and sex. In contrast, :constructor functions which are explicitly
defined are by-position constructor functions, that is, values are assigned to the indi
vidual slots on the basis of their position in the function call. This is analogous to
the scheme used to apply lambda functions in which lambda variables are assigned
on the basis of the the position of the arguments to the function.

When explicitly defined, constructor provide a means for creating instantia
tions of a particular structure which can be tailored to the individual application.
For example, in the case of the structure person, we know from experience that this
category can be further subdivided according to certain criteria, some of which were

Advanced Structured Programming: Defstruct 14-13

used as 8/ot8 in the definition of per80n. On the basis of age and sex, we can further
subdivide per80n into male, female, adult, and minor.

Consider, as an example, the following expanded version of per80n:

(def8truct (per80n :conc-name :named :con8tructor
(:con8tructor create-female (&aux (8ex 'female)}}
{:con8tructor create-male (&optional name age &aux (8ex 'male)}}
(:con8tructor create-adult (&optional 8ex &aux (age,> 21)}}}
name age (8ex 'unknown)}

This says to define the named structure per80n, and in addition, define three func
tions for constructing certain instantiations of per80n, create-male, create-female,
and create-adult. The default sex for a person so created is 'unknown. In addition,
specific kinds of persons can be instantiated using one of the constructors. These
have been defined, arbitrarily, to indicate the various ways that an argument list
might appear; the argument list corresponds to a lambda list with a few minor vari
ations:

• &optional arguments are given the value of the calling arguments, if they
exist, else the default value for the arguments, if given in the form (arg
default), else the default value for the slot, as assigned by thedef8truct (unk
nown for the component 8ex in the example above), else nil.

• &aux arguments are given the default value, when in the form (arg default);
when they are alone, the value of the arguments are una88igned (unbound).
This differs from the case of defun where symbolic arguments to &aux are ini
tialized to nil.

Notice that the arguments to the :con8tructor function are NOT named arbi
trarily, but according to the slots to be filled. This is a requirement; using an argu
ment name which is not a slot name will cause an error ("unknown slot to construc
tor").

(make-name ('8_8tOtl 'g_val1 ...])

RETURNS: a structure of the form of name.

WHERE: the values for each slot is either given using a keyword argument or defined by a
default value with def8truct.

EXAMPLE: see Example 2.20.

14.3.1.3. :alterant macros In most cases, updating slots in a structure can be done,
adequately, with the 8etf function, but this can be cumbersome to use if we want to
update many slots instead of just one. The keyword-driven alterant macro provides
a tool for doing such a update.

*This first occurrence of :eonstruetor tells deJstruet to create a keyword defined constructor function for person
(which will be called make-person). Normally this would automatically be done by deJstruet but by using the :eonstructor
argument to create additional constructor functions we turn this feature "off" and force defstruct to look for explicitly de
clared constructors. If we had neglected to include this, the constructor make-person would not have been defined.

Advanced Structured Programming: Defstruct 14-14

(alter-name '8_in8t ('8_810tl 'g_val1 ...])

RETURNS: the structure s_inst with the given slots altered.

WHERE: s_slot is the slot as described in the defstruct not the slot as referenced by the
accessor functiont

Each g_val is evaluated before any slot is changed, therefore, constructs such as
the following are possible:

=> {de/etruct (ship :hunk :conc-name)
x-position
y-position
x-velocity
y-velocity
mass)

ship
=> {setq QE2 (make-ship x-position 99 y-position 12

x-velocity 15 y-velocity 0 mass 500000))
{33 12 15 0 500000}

; now, to exchange the values for x-position and y-position

=> {alter-ship QE2 x-position (ship-y-position QE2)
y-position (ship-x-position QE2))

{12 33 15 0 500000}
=>

14.3.1.4. Other caveats

Consider, for a moment, the following:

=> (de/atruct box heighth length width)

This is an error. Recall that when a structure is created, accessor functions are
defined to access the slots of the structure. In the case of the example, above, an
accessor function, length was defined. It so happens that the function length already
exists in FRANZ LISP and is used in some fairly significant ways. It is for this reason
that the :conc-name option exists, since this provides a means for defining accessor
functions which are specific for the structure defined.

*For example, in person the slot is name and the accessor function person name.

CHAPTER 15

The Lisp Stepper and FIXIT

Note: this debugger (step and debug) has functionally been replaced by feeatures in the
current top level, tpl, which is described in chapter 13 (see the tpl commands ?debug and ?step).

Several handy debugging tools are described in detail in this chapter.

15.1. Simple Use Of Stepping

(step s_argl...)

NOTE: The Lisp "stepping" package is intended to give the Lisp programmer a facility
analogous to the Instruction Step mode of running a machine language program. The
user interface is through the function (fexpr) step, which sets switches to put the Lisp
interpreter in and out of "stepping" mode. The most common step invocations fol
low. These invocations are usually typed at the top-level, and will take effect
immediately (i.e. the next S-expression typed in will be evaluated in stepping mode).
The facilities of this package are similar to those in the 'tpl' system, but can be used
separately. The capabilities of the two systems will be unified and expanded in the
future.

(step t) ; Turn on stepping mode.
(step nil) ; Turn off stepping mode.

SIDE EFFECT: In stepping mode, the Lisp evaluator will print out each S-exp to be
evaluated before evaluation, and the returned value after evaluation, calling
itself recursively to display the stepped evaluation of each argument, ·if the
S-exp is a function call. In stepping mode, the evaluator will wait after
displaying each S-exp before evaluation for a command character from the
console.

The Lisp Stepper and FIXIT 15-1

The Lisp Stepper and FIXIT 15-2

STEP COMMAND SUMMARY
<return> Continue stepping recursively.

c

e

g

Show returned value from this level
only, and continue stepping upward.

Only step interpreted code.

Turn off stepping mode. (but continue
evaluation without stepping).

n <number> Step through <number> evaluations without
stopping

p Redisplay current form in full
(Le. rebind prinlevel and prinlength to nil)

b Get breakpoint

q Quit

d Call debug

15.2. Advanced Features

15.2.1. Selectively Turning On Stepping

If
(8tep 1001 1002 .. .)

is typed at top level, stepping will not commence immediately, but rather when the
evaluator first encounters an S-expression whose car is one of 1001, 1002, etc. This form
will then display at the console, and the evaluator will be in stepping mode waiting for
a command character.

Normally the stepper intercepts calls to luneall and eval. When luneaU is inter
cepted, the arguments to the function have already been evaluated but when eval is
intercepted, the arguments have not been evaluated. To differentiate the two cases,
when printing the form in evaluation, the stepper prints intercepted calls to luneaU with
"f:". Calls to luneall are normally caused by compiled Lisp code calling other func
tions, whereas calls to eval usually occur when Lisp code is interpreted. To step
through only calls to eval, use: (8tep e)

15.2.2. Stepping With Breakpoints

Step is turned off for the duration of error breaks, but not by explicit use of the
break function. Executing (8tep nil) inside a error loop will turn off stepping globally,

The Lisp Stepper and FIXIT 15-3

i.e. within the error loop, and after return the return from the break loop.

15.3. Overhead of Stepping

If stepping mode has been turned off by (step nil), there is no execution overhead for
having the stepping packing in your Lisp. If one stops stepping by typing "g", every call to
eval incurs a small overhead--several machine instructions, corresponding to the compiled
code for a simple cond and one function pushdown. Running with (step 1001 1002 .. .) can
be more expensive, since a 'member' computation of the car of the current form into the
list (1001 1002 .. .) is required at each call to eval.

15.4. Evalhook and Funcallhook

For 'step' and potentially other user-written functions to gain control of the evalua
tion process, hooks were installed in the FRANZ LISP interpreter. In fact there are two
hooks and they have been strategically placed in the two key functions in the interpreter:
eval (which controls execution of interpreted code) and luneaU (which controls compiled
code if (sstatus translink nil) has been executed). The hook in eval is compatible with
MacLisp, but there is no MacLisp equivalent of the hook in luneaU.

To arm the hooks two forms must be evaluated: (*rset t) and (sstatus evalhook t).
Once that is done, eval and luneaU do a special check when they are invoked.

If eval is given a form to evaluate, say (100 bar), and the symbol 'evalhook' is non-nil,
say its value is 'ehook', then eval will lambda-bind the symbols 'evalhook' and 'fun
callhook' to nil and will call ehook, passing (100 bar) as the argument. It is ehook's respon
sibility to evaluate (100 bar) and return its value. Typically ehook will call the function
'evalhook' to evaluate (100 bar). Note that 'evalhook' is a symbol whose function binding
is a system function described in Chapter 4, and whose value binding, if non-nil, is the
name of a user written function (or a lambda expression, or a binary object) which will
gain control whenever eval is called. 'evalhook' is also the name of the status tag which
must be set for all of this to work.

If luneaU is called on a function, say foo, and a set of already evaluated arguments, .
say barv and bazv, and if the symbol 'funcallhook' has a non nil value, say 'fhook', then
luneaU will lambda-bind 'evalhook' and 'funcallhook' to nil and will call fhook with argu
ments barv, bazv and foo. Thus fhook must be a lexpr since it may be given any number
of arguments. The function to call, foo in this case, will be the last of the arguments given
to fhook. It is fhook's responsibility to do the function call and return the value. Typi
cally fhook will call the function luneallhook to do the funcall. This is an example of a
funcallhook function which just prints the arguments on each entry to funcall and the
return value.

The Lisp Stepper and FIXIT

-> {de/un /hook n {let {{form {cons (arg n) {listi/1I (1- n))))

fhook

(retval))
{patom "calling")(print /orm)(terpr)
{setq retval (/uncallhook form '/hook))
{patom "returns")(print retval)(terpr)
retval))

-> (*TBet I) (BBlatuB evalhook t) (BBtatuB translink nil)
-> (Betq /uncallhook '1hook)
calling (print fhook) ;; now all compiled code is traced
fhookreturns nil
calling (terpr)

returns nil
calling (patom "- > ")
-> returns "-> "
calling (read nil QOOOOO)
(array/oo I 10)
returns (array foo t 10)
calling (eval (array foo t 10»
calling (append (10) nil)
returns (10)
calling (lessp 11)
returns nil
calling (apply times (10»
returns 10

;; to test it, we see what happens when
;; we make an array

calling (small-segment value 10)
calling (boole 4 137 127)
returns 128
... there is plenty more '"

15.5. The FIXIT Debugger

15-4

FOOT is a debugging environment for FRANZ LISP written and documented by David
S. Touretzky of Carnegie-Mellon University for MacLisp, and adapted to FRANZ LISP by
Mitch Marcus of Bell Labs. One of FOOT's goals is to get a program being tested running
again as quickly as possible. The user is assisted in making changes to his functions "on
the fly", i.e. in the midst of execution, and then computation is resumed.

To enter the debugger type (debug). The debugger goes into its own read-eval-print
loop. Like the top-level, the debugger understands certain special commands. One of
these is help, which prints a list of the available commands. The basic idea is that you are
somewhere in a stack of calls to eval. The command "bka" is probably the most a.ppropri
ate for looking at the stack. There are commands to move up and down. If you want to
know the value of "x" as of some pla.ce in the stack, move to that place and type "x" (or
(cdr x) or anything else that you might want to evaluate}. All evaluation is done as of the
current stack position. You can fix the problem by changing the values of variables, edit
ing functions or expressions in the stack etc. Then you can continue from the current
stack position (or anywhere else) with the "redo" command. Or you can simply return the
right answer with the "return" command.

When it is not immediately obvious why an error has occurred or how the program
got itself into its current state, FOOT comes to the rescue by providing a powerful

The Lisp Stepper and FIXIT 15-5

debugging loop in which the user can:

- examine the stack

- evaluate expressions in context

- enter stepping mode

- restart the computation at any point

The result is that program errors can be located and fixed more rapidly.

The debugger can only work effectively when extra information is kept about forms
in evaluation by the Lisp system. Evaluating (*r8et t) tells the Lisp system to maintain
this information. If you are debugging compiled code you should also be sure that the exe
cute (88tatu8 tran81ink nil).

(debug [s_msg])

NOTE: Within a program, you may enter a debug loop directly by putting in a call to debug
where you would normally put a call to break. Also, within a break loop you may
enter FOOT by typing debug. If an argument is given to debug, it is treated as a
message to be printed before the debug loop is entered. Thus you can put (debug
\iu8t before loopl) into a program to indicate what part of the program is being
debugged.

The Lisp Stepper and FIXIT

FIX1T Command Summary

TOP
BOT
P
PP
WHERE
HELP

U
Un
Uf
Un f
UP
UPn

OK
REDO

REDOf

STEP

RETURN e

BK..

.. F ..

.. A ..

.. V ..

.. E ..

.. c ..

BK.. n

BK.. f
BK.. n f

go to top of stack (latest expression)
go to bottom of stack (first expression)
show current expression (with ellipsis)
show current expression in full
give current stack position
types the abbreviated command summary found
in /lisp/lib/fixit.ref. Hand 7 work too.
go up one stack frame
go up n stack frames
go up to the next occurrence of function f
go up n occurrences of function f
go up to the next user-written function
go up n user-written functions
... the DN and DNFN commands are similar, but go down
.. .instead of up.
resume processing; continue after an error or debug loop
restart the computation with the current stack frame.
The OK command is equivalent to TOP followed by REDO.
restart the computation with the last call to function f.
(The stack is searched downward from the current position.)
restart the computation at the current stack frame,
but first turn on stepping mode. (Assumes the stepper is loaded.)
return from the current position in the computation
with the value of expression e.
print a backtrace. There are many back trace commands,
formed by adding sullixes to the BK command. !lBK" gives
a backtrace showing only user-written functions, a.nd uses
ellipsis. The BK command may be sullixed by one or more
of the following modifiers: '
show function names instead of expressions
show all functions/expressions, not just user-written ones
show variable bindings as well as functions/expressions
show everything in the expression, i.e. don't use ellipsis
go no further tha.n the current position on the stack
Some of the more useful combinations are BKFV, BKFA,
and BKFAV.
show only n levels of the stack (starting at the top).
(BK n counts only user functions; BKA n counts all functions.)
show stack down to first call of function f
show stack down to nth call of function f

15-6

15.5.1. Interaction with trace FOOT knows about the standard Franz trace package,
and tries to make tracing invisible while in the debug loop. However, because of the
way trace works, it may sometimes be the case that the functions on the stack are
really uninterned atoms that have the same name as a traced function. (This only hap
pens when a function is traced WHEREIN another one.) FOOT will call attention to
trace'8 hackery by printing an appropriate tag next to these stack entries.

The Lisp Stepper and FIXIT 15-7

15.5.2. Interaction with step The step function may be invoked from within FOOT via
the STEP command. FOOT initially turns off stepping when the debug loop is entered.
If you step through a function and get an error, FOOT will still be invoked normally.
At any time during stepping, you may explicitly enter FOOT via the "D" (debug) com
mand.

15.5.3. Multiple error levels FOOT will evaluate arbitrary Lisp expressions in its
debug loop. The evaluation is not done within an errset, so, if an error occurs, another
invocation of the debugger can be made. When there are multiple errors on the stack,
FOOT displays a barrier symbol between each level that looks something like < -------
---UDF-->. The UDF in this case stands for UnDefined Function. Thus, the upper
level debug loop was invoked by an undefined function error that occurred while in the
lower loop.

CHAPTER 16

The Lisp Editor

16.1. Introduction

Many people use standard text editors to edit their Lisp programs. However there
are also Lisp "structure-oriented" embedded editors which are particularly handy for the
editing of Lisp programs and data. These operate in a rather different fashion, namely
within a Lisp environment. Such an editor is handy for rapid fixes and re-evaluating of
tests without exiting from the Lisp system. For example, you can fix a bug and then con
tinue your computation from a break-point. The editor has its own command structure
which includes the ability to evaluate arbitrary Lisp expressions.

The Lisp editor "editf" and its related components in FRANZ LISP differ from
file/text editors in that editor commands directly change the internal structure of Lisp
expressions rather than an external character representation. In particular, it is not possible
for the Lisp editor to create an expression with unbalanced parentheses because such
expressions cannot occur in the internal representation of a Lisp object. This editor
modifies the structure of existing Lisp objects but does not automatically update any copies
of the objects on files. See, for example, the function "pp" in chapter 5, for writing func
tions to files.

This editor is based on the InterLisp editor and has an almost identical command syntax.

16.2. Tutorial

Suppose that we wish to define a function foo which adds five to its argument if it is a
number, and returns nil otherwise. We might type the following (incorrect) expression into
the interpreter:

=> {defun foo (x) ; incorrect

foo

((numberp x) (plus x 5))
(t nil))

Executing foo will cause an error because the conditional function cond has been left out.
We can correct it by editing the function foo:

=> (editf foo)
edit

Weare now in edit mode, with the attention of the editor focused on the expression which
defines faa. To print the expression on the screen, type:

#p
(lambda (x) (& &) (t nil))

The Lisp Editor 16-1

The Lisp Editor 16-2

This is not exactly what was typed in. delun is really a macro which expands into some
thing involving del and lambda, so that is why the lambda is there. The comment has been
omitted and the spacing is different. The reason for these differences is that we are editing
a Lisp object, and not the characters which were typed to define the Lisp object. The sym
bol "&" is just a shorthand for a more complicated subexpression. To see the full expres
sion, type:

#7
(lambda (x) ((numberp x) (plus x 5)) (t nil))

This is the current expression being edited. To insert cond before the third expression in
the current expression, type:

#(-3 cond)
(lambda (x) cond (& &) (t nil))

Now we need a pair of parentheses. The editor requires that they be entered as a pair. To
insert a left parenthesis before the third element of the current expression and a matching
right parenthesis at the end, type:

#(li 3)
(lambda (x) (cond & & & &))

The expression appears even more abbreviated as the default print function only shows
parenthesis nesting up to a level of two. For the full expression, type:

#7
(lambda (x) (cond ((numberp x) (plUS x 5)) (t nil)))

This definition for 100 will work, so we can save the change and return to Lisp by typing:

#Ok
foo
=> (foo 20)
25
=> (foo 'not-a-number)
nil
=>

Now suppose that we wish to change 100 so that it adds ten instead of adding five. We
reenter the editor:

=> (editf fool
edit
#7
(lambda (x) (cond ((numberp x) (plus x 5)) (t nil)))

The current expression only has three elements and "5" is not one of them, so we cannot
change "5" directly. Typing "3" causes the editor to focus attention on the third element,
and to consider that to be the current expression.

#3
(cond ((numberp x) (plus x 5)) (t nil))
#2
((numberp x) (plus x 5))
#2
(plus x 5)

The following command replaces the third element with a 10.

#(3 10)
(plUS x 10)

Typing "0" (zero) takes us to a higher level:

#0

LISP EDITOR

«numberp x) (plus x 10»
#0
(cond «numberp x) (plus x 10» (t niI)
#0
(lambda (x) (cond «numberp x) (plus x 10» (t nil»)

Suppose that we wish to change /00 so that it returns "not-a-number" if the argument is
not a number. A quick way to find ni!in the current expression is to type:

#f nil

The current expression is a valid Lisp object, but it is called the "tail" of an expression
because a left parenthesis would be misleading. The following commands replace ni(
check the result, and exit the editor.

#(1 'not-a-number)
#A
(lambda (x) (cond & & & &»
#?
(lambda (x) (cond «numberp x) (plus x 10» (t 'not-a-number»)
#ok
->

Variable values and property lists can also be edited. The following example illustrates
assigning a value and a property list to a variable, and then using the editor to make
modifications.

-> (setq foo '(this is a chair»
(this is a chair)
-> (putprop 'foo 'blue 'color)
color
-> foo
(this is a chair)
-> (get 'roo 'color)
blue
-> (editv foo)
edit
#p
(this is a chair)
#(4 pillow)
pillow
#p
(this is a pillow)
#ok
foo
-> (editp foo)
edit
#p
(color blue)
#(2 red)
(color red)
#ok
foo
-> (get 'foo 'color)
red

While within the editor, you can reverse the most recent change, type the command
undo. The command lundo undoes all changes made during the editing session.

16-3

The Lisp Editor 16-4

16.3. Editor Functions

(editf s_xl ...)

SIDE EFFECT: Edits a function with the name s_xl. Any additional arguments are optional
commands to the editor.

RETURNS: s_xl.

NOTE: H s.....xl is not an editable function, editf generates a "fn not editable" error.

(editv s_var [Lcoml ...])

SIDE EFFECT: Edits values in a manner similar to the way editf edits functions. The value
of the variable can be changed by subsequent editing commands.

RETURNS: the name of the variable whose value was edited.

(editp s_x)

SIDE EFFECT: Edits property lists.

RETURNS: the atom whose property list was edited.

(editfns s_x [g_comsl ...])

SIDE EFFECT: Performs the same editing operations,on several functions. The symbol s_x is
the function or list of functions, and the following arguments are the editing
commands. Evaluation of editfns will map down the list of functions, print
the name of each function, and call the editor (via editf) on each function.

RETURNS: nil.

EXAMPLE: (editfns foofns (r fie fum)) will change every fie to fum in each of the functions
in the list called foofns.

NOTE: The call to the editor is errset protected, so that if the editing of one function causes
an error, editfns will proceed to the next function. In the above example, if one of
the functions did not contain a fie, the r command would cause an error, but editing
would continue with the next function.

(editraceln s_com)

NOTE: This is available to help the user debug complex edit macros, or subroutine calls to
the editor. It is initially an undefined function, to be defined by the user. Whenever
the value of editracefn is non-nil, the editor calls the function editracefn before
executing each command (at any level), giving it that command as its argument.

The Lisp Editor 16-5

(editfindp x pat nil)

NOTE: Allows a program to use the editor find command as a pure predicate from outside
the editor. It searches for the pattern pat in the expression x.

RETURNS: t if the editor command f pat would succeed, nil otherwise.

16.3.1. The Edit Chain The edit-chain is a list of which the first element is the expres
sion you are now editing ("current expression"), the next element is what would
become the current expression if you were to type a 0, etc., until the last element which
is the expression that was passed to the editor.

EDIT CHAIN COMMAND SUMMARY

mark. Adds the current edit chain to the front of the list marklst.

_. Makes the new edit chain be (car marklst).

(_ pattern). Ascends the edit chain looking for a link which matches pattern.

. A dou ble underscore is similar to a single underscore () but also erases the mark.

/ . Makes the edit chain be the value of unfind. Unfind is set to the current edit chain by each command that makes a
"big jump", Le., a command that usually performs more than a single ascent or descent, namely A, _, -' !nx, all com
mands that involve a search, e.g., f, Ie, II, below, et al and / and /p themselves. If the user types f cond, and then f car, /
would take him back to the condo Another / would take him back to the car, etc.

/ p. Restores the edit chain to its state as of the last print operation. If the edit chain has not changed since the last
printing, /p restores it to its state as of the printing before that one. If the user types p followed by 3 2 1 p, /p will
return to the first p, Le., would be equivalent to 000. Another /p would then take him back to the second p.

(\# g_coml ...)

RETURNS: what the current expression would be after executing the edit commands coml
starting from the present edit chain, generating an error if any of comi cause
errors. The current edit chain is never changed.

EXAMPLE: (i r (quote x) (\ # (cons .. z))) replaces all x's in the current expression by the first
cons containing a Z.

16.4. Printing Commands

PRINTING COMMAND SUMMARY

p Prints current expression in abbreviated form. (p m) prints mth element of current expression in abbreviated form. (p
m n) prints mth element of current expression as though printlev were given a depth of n. (p 0 n) prints the current
expression as though printlev were given a depth of n. (p 100) will search for the first occurrence of 100 and then print
it.

The Lisp Editor 16-6

? . prints the current expression as though printlev were given a depth of 100.

pp. pretty-prints the current expression.

pp*. is like pp, but forces comments to be shown.

16.5. Scope of Attention

Attention-changing commands allow you to look at a different part of a Lisp expression
you are editing. The sub-structure upon which the editor's attention is centered is called
"the current expression". Changing the current expression means shifting attention and
not actually modifying any structure.

SCOPE OF ATTENTION COMMAND SUMMARY

n (n> 0) . Makes the nth element of the current expression be the new current expression.

-n (n> 0). Makes the nth element from the end of the current expression be the new current expression.

o. Makes the next higher expression be the new correct expression. If the intention is to go back to the next higher
left parenthesis, use the command !O.

up. Unless the current expression is a tail, up changes the current expression to the one which has the previous current
expression as its first element. Tails are unchanged. (A tail is an expression which starts with " ... " when printed with
the p command.)

10 . Goes back to the next higher left parenthesis.

A • Makes the top level expression be the current expression.

nz. Makes the current expression be the next expression. It will not go through an unmatched right parenthesis, so it
generates an error if the current expression is the last

(nz n) n> 0 equivalent to n consecutive nz commands.

Inz. Makes current expression be the next expression at a higher level. Goes through any number of right parentheses to
get to the next expression. It always gives a different result from nz.

bl:. Makes the current expression be the previous expression in the next higher expression.

(nth n) n> o. Makes the list starting with the nth element of the current expression be the current expression.

(nth $) . This generalized nth command locates $, and then backs up to the current level, where the new current expres
sion is the tail whose first element contains, however deeply, the expression that was the terminus of the location opera
tion.

!! , as in (pattern!! . $). Searches for an expression or tail which starts with pattern and ends with $. For example,
(cond!/ return) finds a cond that contains a return, at any depth.

(below com z) . This ascends to higher levels searching for com and then changes the current expression to the one which
is z levels below com. The default value of z is 1. For example (below conti) will cause the conti clause containing the
current expression to become the new current expression.

(nez z). same as (below z) followed by nx. For example, if you are deep inside of a selectq clause, you can advance to the
next clause with (nez 8electq).

The Lisp Editor 16-7

nex. The atomic form of nex is useful if you will be performing repeated executions of (nex x). By simply marking
the chain corresponding to x, you can use nex to step through the sublists.

16.6. Pattern and Search Commands

ill many of the editor commands it is possible to specify a pattern to direct an opera
tion to a sub expression or change the attention of the editor. This section describes the
types of patterns and searches.

PATTERN SPECIFICATION SUMMARY

A pattern pat matches with x if:

- pat is eq to x. In this case, x may not be a tail, so (a b) will not match ... a b).

- x is a list, (car pat) matches (car x), and (cdr pat) matches (cdr x).

- pat is &.

- pat is a number and equal to x.

- (car pat) is the atom *any*, (cdr pat) is a list of patterns, and one of those patterns matches x.

- pat is a literal atom or string, and (nthchar pat -1) is @, then pat matches with any literal atom or string which has the
same initial characters as pat, e.g. ver@ matches with verylongatom, as well as "verylongstring".

- if (car pat) is the atom --, pat matches x if (a) (cdr pat)=nil, i.e. pat=(--), e.g., (a --) matches (a) (a b c) and (a. b) in
other words, -- can match any tail of a list. (b) (cdr pat) matches with some tail of x, e.g. (a -- (&)) will match with (a b
c (d)), but not (a b c d), or (a b c (d) e). however, note that (a -- (&) --) will match with (a b c (d) e). in other words,-
will match any interior segment of a list.

- if (car pat) is the atom ==, pat matches x if and only if (cdr pat) is eq to x. (This pattern is for use by programs that
call the editor as a subroutine, since any non-atomic expression in a command typed in by the user obviously cannot be eq
to existing structure.)

- pat has I!! for its car, and either its cdr matches with x or x is a tail which would match if it had a left parenthesis. For
example, searching for a match with (!!! b c) will succeed on (a (b c)) as well as on (a b c).

SEARCH COMMAND SUMMARY

1 pattern. Finds the next instance of pattern. If no pattern is given then the last pattern is used.

(I pattern n). Finds the next instance of pattern. (Here, n stands for next, and not an integer.)

(I pattern t). Similar to f pattern, except, for example, if the current expression is (cond ..), f cond will look for the next
cond, but (f cond t) will not.

(I pattern n) n> O. Finds the nth place that pattern matches. If the current expression is (fool f002 fo03), (f foo@ 3) will
find f003.

The Lisp Editor 16-8

(I pattern) or (J pattern nil). only matches with elements at the top level of the current expression. If the current expres
sion is (prog nil (setq :e (cond eJ eJ)) (cond eJ) ...) f (cond --) will find the cond inside the setq, whereas (f (cond --)) will
find the top level cond, i.e., the second one.

(Is patternl ... patternn). Is equivalent to I patternl followed by I patternS ... followed by I patternn, so that if a search
fails, the edit chain is left at the place where the previous pattern matched.

(1= e:epression :e). Searches for a structure eq to e:epression.

(orl patternl ... patternn). Searches for an expression that is matched by either patternl or ... patternn.

bl pattern. This backwards find searches for the first previous occurrence of the pattern. If the current expression is the
top-level expression, then the entire expression is searched in reverse print order. For example, if the current expression is
(prog nil (setq :e (setq II (liBt z))) (print :e)) , then I liBt followed by bl setq will change the current expression to (Betq II
(liBt z)), as will I print followed by hI setq.

(bl pattern t). This is similar to the above backwards find. Search always includes current expression, i.e., starts at end
of current expression and works backward, then ascends and backs up, etc.

16.7. Location Specifications

Many editor commands use a method of specifying position called a location
specification. The meta-symbol $ is used to denote a location specification. $ is a list of
commands interpreted as described above. $ can also be atomic, in which case it is inter
preted as (list $). A location specification is a list of edit commands that are executed in
the normal fashion with the following exception. All commands not recognized by the edi
tor are interpreted as though they had been preceded by f The location specification (cond
29) specifies the third element in the first clause of the next condo

The if command and the \# function provide a way of using in location
specifications arbitrary predicates applied to elements in the current expression.

LOCATION COMMAND SUMMARY

$. In descriptions of the editor, the meta-symbol $ is used to denote a location specification. $ is a list of commands
interpreted as described above. $ can also be atomic.

(Ic . $). Provides a way of explicitly invoking the location operation. (Ic cond 2 3) will perform a search for a cond clause
and then change the current expression to the third element of the cond clause.

(Icl . $). Same as Ic except search is confined to current expression. To find a cond containing a return, one might use
the location specification (cond (Icl return) /) where the / would reverse the effects of the Icl command, and make the final
current expression be the condo

(Becond . $). same as (Ic. $) followed by another (Ic. $) except that if the first succeeds and second fails, no change is
made to the edit chain.

(third . $). Similar to second.

The Lisp Editor 16-9

16.8. Structure Modification Commands

All structure modification commands are undoable. See section 16.11 for a descrip
tion of undoing commands.

In insert, delete, replace and change, if $ is nil (empty), the corresponding operation
is performed on the current edit chain, i.e. {replace with (car x)) is equivalent to (! (car x)).
For added readability, here is also permitted, e.g., (insert (print x) before here) will insert
(print x) before the current expression (but not change the edit chain). It is perfectly legal
to ascend to insert, replace, or delete. For example (insert (return) after A prog -1) will go
to the top, find the first prog, and insert a (return) at its end, and not change the current
edit chain.

The a, b, and! commands all make special checks in e1 thru em for expressions of the
form (\# . coms). In this case, the expression used for inserting or replacing is a copy of
the current expression after executing coms, a list of edit commands. (insert (\# f cond -1
-1) after3) will make a copy of the last form in the last clause of the next cond, and insert
it after the third element of the current expression.

STRUCTURE MODIFICATION COMMAND SUMMARY

(n) n> 1 deletes the corresponding element from the current expression.

(n e1 ... em) n,m>1, replaces the nth element in the current expression with e1 ... em.

(-n e1 ... em) n,m>1 inserts e1 ... em before the n element in the current expression.

(n e1 ... em) (the letter "n" for "next" or "nconc", not a number) m>1 attaches el ... em at the end of the current
expression.

(a e1 ... em). inserts el ... em after the current expression (or after its first element if it is a tail).

(6 e1 .•. em). inserts e1 ... em before the current expression. To insert foo before the last element in the current expres
sion, perform -1 and then (b foo).

(/ e1 ... em). replaces the current expression by e1 ... em. If the current expression is a tail then replace its first ele
ment.

(r z y) replaces each occurrence of z with y in the current expression. The term z can be an atom, a list, or a location
specification.

(sw n m) switches the nth and mth elements of the current expression. For example, if the current expression is (list
(cons (car x) (car y)) (cons (cdr y))), (sw 23) will modify it to be (list (cons (cdr x) (cdr y)) (cons (car x) (car y))). (sw
car cdr) would produce the same result.

delete or (/) . deletes the current expression, or if the current expression is a tail, deletes its first element.

(delete. $). does a (Ic. $) followed by delete. current edit chain is not changed.

(insert e1 ... em before. $). similar to (\c. $) followed by (b e1 ... em).

(in8ert e1 ... em after. $). similar to insert before except uses a instead of b.

(in8ert e1 ... em for. $). similar to insert before except uses! for b.

(replace $ with e1 ... em). here $ is the segment of the command between replace and with.

(change $ to e1 ... em). same as replace with.

The Lisp Editor 16-10

EXTRACTION AND EMBEDDING COMMAND SUMMARY

(:ltr . $). Replaces the original current expression with the expression that is current after performing (Icl . $).

(mbd :I). II' X is a list, substitutes the current expression for all instances of the atom * in x, and replaces the current
expression with the result of that substitution. II' x is atomic, (mbd x) is the same as (mbd (x *)).

(e:ltract $1 from $e). This is an editor command which replaces the current expression with one of its sub expressions
(from any depth). ($1 is the segment between extract and from.) For example, if the current expression is (print (cond
«null x) y) (t z))) then following (extract y from cond), the current expression will be (print y). (extract 2 -1 from cond),
(extract y from 2), (extract 2 -1 from 2) will all produce the same result.

(embed $ in . :I). Replaces the current expression with a new expression which contains it as a subexpression. ($ is the
segment between embed and in.) Some examples: (embed print in setq x), (embed 32 in return), (embed cond 31 in (or

* (null x))).

MOVEAND COPY COMMAND SUMMARY

(move $1 to com. $e). ($1 is the segment between move and to.) where com is before, after, or the name of a list com
mand, e.g., :, n, etc. If $2 is nil, or (here), the current position specifies where the operation is to take place. If $1 is nil,
the move command allows the user to specify some place the current expression is to be moved to. II' the current expres
sion is (a b d c), (move 2 to after 4) will make the new current expression be (a cd b).

(mv com. $). is the same as (move here to' com. $).

(coP1I $1 to com. $e) is like move except that the source expression is not deleted.

(cp com. $). is like mv except that the source expression is not deleted.

16.9. Parentheses Moving Commands The commands presented in this section permit
modification of the list structure itself, as opposed to modifying components. Their effect
can be described as inserting or removing a single left or right parenthesis, or pair of left
and right parentheses. Some people find that use of only 'bi' and 'bo' to be less confusing
and quite adequate for use instead of the 4 additional commands.

PARENTHESES MOVING COMMAND SUMMARY

(bi n m). This "both in" command inserts parentheses before the nth element and after the mth element in the current
expression. example: if the current expression is (a b (c d e) f g), then (bi 2 4) will modify it to be (a (b (c d e) f) g). (bi
n): same as (bi n n). example: if the current expression is (a b (c d e) f g), then (bi -2) will modify it to be (a b (c d e)
(f) g).

(bo n). This "both out" command removes both parentheses from the nth element. example: if the current expression
is (a b (c d e) f g), then (bo d) will modify it to be (a b cd e f g).

(Ii n). This "left in" command iJiserts a left parenthesis before the nth element (and a matching right parenthesis at the

The Lisp Editor 16-11

end of the current expression). example: if the current expression is (a b (c d e) f g), then (Ii 2) will modify it to be (a (b
(c d e) f g)).

(10 n). This "left out" command removes a left parenthesis from the nth element. all elements following the nth ele
ment are deleted. example: if the current expression is (a b (c d e) f g), then (10 3) will modify it to be (a b c de).

(ri n m). This "right in" command moves the right parenthesis at the end of the nth element in to after the mth ele
ment. inserts a right parenthesis after the mth element of the nth element. The rest of the nth element is brought up
to the level of the current expression. example: if the current expression is (a (b c d e) f g), (ri 2 2) will modify it to be
(a (b c)d e f g).

(ro n). This "right out" command moves the right parenthesis at the end of the nth element out to the end of the
current expression. removes the right parenthesis from the nth element, moving it to the end of the current expression.
all elements following the nth element are moved inside of the nth element. example: if the current expression is (a b
(c d e) f g), (ro 3) will modify it to be (a b (c d e f g)).

Certain commands can be made to made to operate on several contiguous elements of a list by
using the to or thru command in their respective location specifications. These commands are to,
thr'U, extract, embed, delete, rep/ace, and move. to and thru can also be used directly with xtr
(which takes after a location specification), as in {xtr (2 thru 4)) (from the current expression).

TO AND THRU COMMAND SUMMARY

($1 to $2) . same as thru except last element. not included.

($1 to). same as ($1 thru -1)

($1 thru $2) . If the current expression is (a (b (c d) (e) (f g h) i) j k), following (c thru g), the current expression will be
((c d) (e) (f g h)). If both $1 and $2 are numbers, and $2 is greater than $1, then $2 counts from the beginning of the
current expression, the same as $1. in other words, if the current expression is (a b c d e f g), (3 thru 4) means (c thru d),
not (c thru f). in this case, the corresponding bi command is (bi 1 $2-$1+1).

($1 thru). same as ($1 thru -1).

16.10. Undoing Commands Each command that causes structure modification automati
cally adds an entry to the front of a list called undo/8t. The undo command undoes the
most recent such command based on information in 'Undo/8t.

UNDO COMMAND SUMMARY

undo. the undo command undoes most recent, structure modification command that has not yet been undone, and prints
the name of that command, e.g., mbd undone. The edit chain is then exactly what it was before the 'undone' command
had been performed.

lundo. undoes all modifications performed during this editing session, i.e., this call to the editor.

unblock. removes an undo-block. If executed at a non-blocked state, Le., if undo or !undo could operate, types not
blocked.

The Lisp Editor 16-12

test adds an undo-block at the front of undolst. Note that By using tl1st together with !undo, the user ca.n perform a.
number of changes, and then undo all of them with a single Jundo command.

'If prints the entries on undolst. The entries are listed most recent entry first.

16.11. Commands that Evaluate

These commands allow you to execute arbitrary Lisp expressions, perhaps including
calling a function you are editing! All the changes you have made are "in place" in the
interpreted version of the function under edit.

EVALUATION COMMAND SUMMARY

e. when typed in as a single atomic command, passes the next s-expression to the Lisp reader and evaluates and prints
it. Other uses of the symbol "e' are unaffected: (i.e., (insert d before e) will treat e as a pattern) (11 z) evaluates x and
prints the result. (e x t) is the same as (e x) but does not print.

(i c zl ... zn) same as (c y1 ... yn) where yi=(eval xi). example: (i 3 (cdr fool) will replace the 3rd element of the
current expression with the cdr of the value of foo. (i n foo (car fie» will attach the value of foo and car of the value of
fie to the end of the current expression. (i f= foo t) will search "for an expression eq to the value of foo. If e is not an
atom, it is evaluated as well. (The coms and comsq commands below provide more general ways of computing com
mands.)

(corns z1 ... zn). Each xi is evaluated and its value executed as a command. For example, (coms (cond (x (list 1 x»)))
will replace the first element of the current expression with the value of x if non-nil, otherwise do nothing. (Note that nil
as a command does nothing.)

(comsq coml ... comn). Executes com1 ... comn and used mainly useful in conjunction with the corns command. For
example, suppose the user wishes to compute an entire list of commands for evaluation, as opposed to computing each
command one at a time as does the corns command. He would then write (corns (cons 'comsq x» where x computed the
list of commands, e.g., (corns (cons 'comsq (get foo 'commands)))

16.12. Commands that Test

TESTING COMMAND SUMMARY

(if z) Generates an error unless the value of (eval x) is non-nil. Thus an error is generated if either (eval x) causes an
error or if (ev al x) is nil.

(if z comsl) Evaluates x and if it is non-nil, executes comsl. Otherwise, generates an error.

(if z comsl comst) Evaluates x and if it is non-nil, executes comsl. If (eval x) causes an error or is equal to nil, corns2 is
executed.

(lp . corns). repeatedly executes coms, a list of commands, until an error occurs. (Ip f print (n t)) will attach a t at
the end of every print expression. (lp f print (if (\ # 3) nil ((n t »» will attach a t at the end of each print expression
which does not already have a second argument. (i.e. the form (\# 3) will cause an error if the edit command 3 causes
an error, thereby selecting ((n t» as the list of commands to be executed. The if could also be written as (if (cddr

The Lisp Editor 16-13

(\#)} nil ((n t))).).

(Ipq . corns) same as lp but does not print n occurrences.

(orr comsl ... comsn). orr begins by executing comsl, a list of commands. If no error occurs, orr is finished. otherwise,
orr restores the edit chain to its original value, and continues by executing coms2, etc. If none of the command lists
execute without errors, i.e., the orr "drops off the end", orr generates an error. Otherwise, the edit chain is left as of the

completion of the first command list which executes without error.

16.13. Editor Macros

Many of the more sophisticated branching commands in the editor, such as orr, if, etc.,
are most often used in conjunction with edit macros. The macro feature permits the
user to define new commands and thereby expand the editor's repertoire. (However, built in
commands always take precedence over macros, i.e., the editor's repertoire can be
expanded, but not modified.) Macros are defined by using the m command. If a macro is
redefined, its new definition replaces its old.

(m c . corns) defines c as an atomic command, where c is an atom and coms is a list. Exe
cuting c is then the same as executing the list of commands coms. see the next para
graph for an example. Macros can also define list commands, i.e., commands that take
arguments. (m (c) (arg[l] ... arg[n]) . coms) c an atom. m defines c as a list command.
Executing (c el ... en) is then performed by substituting el for arg[l]' ... en for
arg[n] throughout coms, and then executing corns. a list command can be defined via a
macro so as to take a fixed or indefinite number of 'arguments'. The form given
above specified a macro with a fixed number of arguments, as indicated by its argument
list. If the of arguments. (m (c) args . coms) c, args both atoms, defines c as a list
command. executing (c el ... en) is performed by substituting (el ... en), i.e., cdr of the
command, for args throughout coms, and then executing coms.

(m bp bk up p) will define bp as an atomic command which does three things, a bk, an
up, and a p. note that macros can use commands defined by macros as well as built in
commands in their definitions. For example, suppose z is defined by (m z -1 (if (null
(\#)) nil (p))), i.e. z does a -I, and then if the current expression is not nil, a p. now we
can define zz by (m zz -1 z), and zzz by (m zzz -1 -1 z) or (m zzz -1 zz). We could define
a more general bp by (m (bp) (n) (bk n) up pl. (bp 3) would perform (bk 3), followed
by an up, followed by a p. The command second can be defined as a macro by (m (2nd)
x (orr ((lc . x) (lc. x)))).

Note that for all editor commands, 'built in' commands as well as commands defined by
macros, atomic definitions and list definitions are completely independent. In other
words, the existence of an atomic definition for c in no way affects the treatment of c
when it appears as car of a list command, and the existence of a list definition for c in no
way affects the treatment of c when it appears as an atom. In particular, c can be used as
the name of either an atomic command, or a list command, or both. In the latter case, two
entirely different definitions can be used. Note also that once c is defined as an atomic
command via a macro definition, it will not be searched for when used in a location
specification, unless c is preceded by an f. (insert -- before bp) would not search for bp,
but instead perform a bk, an up, and a p, and then do the insertion. The corresponding
also holds true for list commands.

The Lisp Editor 16-14

(bind. corns) This is an edit command which is useful mainly in macros. It binds three
dummy variables #1, #2, #3, (initialized to nil), and then executes the edit commands
corns. Note that these bindings are only in effect while the commands are being executed,
and that bind can be used recursively; it will rebind #1, #2, and #3 each time it is
invoked.

usermacros is a Lisp variable which contains a list of the user-defined editing macros with
their definitions. These macros remain in effect from one editing session to another. you
can save your macros for another Lisp session by saving usermacros on a disk file.

editcomsl is a Lisp variable which contains a list of the "list commands" recognized by the
editor. (These are the commands such as H whose execution takes the form (command
argl arg2 ...).)

16.14. Miscellaneous Editor Commands

This section contains a descriptions of those editing functions which can be called from the
lisp top level. These include functions for merely entering the editor as well as some which
perform some editing tasks and return to the top level.

MISCELLANEOUS EDITOR COMMAND SUMMARY

ok. Exits from the editor.

nil. Unless preceded by for bf, is always a null operation.

tty . Calls the editor recursively. The user can then type in commands, and have them executed. The tty command
is completed when the user exits from the lower editor (with ok or stop). The tty command is extremely useful. It
enables the user to set up a complex operation, and perform interactive attention-changing commands part way
through it. For example the command (move 3 to after cond 3 p tty) allows the user to interact, in effect, within the
move command. He can verify for himself that the correct location has been found, or complete the specification "by
hand". In effect, tty says "I'll tell you what you should do when you get there."

stop. Exits from the editor with an error. This is mainly for use in conjunction with tty commands that the user wants
to abort. Since all of the commands in the editor are errset protected, the user must exit from the editor via a command.
The stop command provides a way of distinguishing between a successful and unsuccessful (from the user's standpoint)
editing session.

tl. Calls (top-level). To return to the editor just use the return top-level command.

repack. Permits the 'editing' of an atom or string.

(repack $) Does (lc . $) followed by repack, e.g. (repack this@).

(makefn form arg8 n m) n,m > O. Makes (car form) an expr with the nth through mth elements of the current expres
sion with each occurrence of an element of (cdr form) replaced by the corresponding element of args. The nth through
mth elements are replaced by form.

(makefn form arg8 n). Same as (makefn form args n n).

(8 var). Sets var (using setq) to the current expression. If the current expression is a tail, the appropriate left parenthesis
is generated.

(8 var . $). Performs the location command (Ic . $) and then sets var to the new current expression. For example, (s foo
-11) will set foo to the first element in the last element of the current expression.

CHAPTER 17

Packages

17.1. Introduction

LISP systems have traditionally had "flat" name-spaces. That is, all symbols resided
in a common pool, and could be used by any program. Although there were some tech
niques that could be used to restrict conflicts, large LISP systems with modules written by
many different programmers benefit from a mechanism for the avoidance of accidental
name collisions. FRANZ LISP promotes modular programming and addresses this name
space problem through its package system. The implementation in FRANZ LISP is designed
to conform to that of the COMMON LISP design as given in COMMON LISP the Language
by Guy Steele, (Digital Press, 1984), which we refer to as CLTL in this chapter.

The programmer who is used to the interactive nature of LISP program development
should be aware that the design of the package system in COMMON LISP is based on a file
centered view of program development. Attempts to resolve the meaning of the multiple
name-space scoping rules in the midst of the run-time system and interpreter have resulted
in heated debate (after the publication of CLTL). Nevertheless, packages provide a useful
facility, especially for debugged programs. It is possible to get substantially tangled up if
the programmer is defining and modifying several inter-related packages with common
names while interactively debugging and editing.

A package is a vector of data which establishes a mapping from external names to
internal symbols. The single current package is used by the LISP reader and printer in con
verting lexical strings into symbols. The value of the global variable *package * is bound
to the current package. You can refer to symbols in other packages by the use of package
qual£jiers. A package qualifier is a string (the name of the home package for the symbol)
used as a prefix to to the symbol name. Usually one colon is used to separate the prefix
from the symbol name. For example, you can use the name restaurant:order to refer to
the symbolic object order which is defined in the restaurant package, if, within that pack
age, order is defined to be an external symbol. In some programming languages, any sym
bols not declared external would simply not be accessible from outside the defining pack
age. In LISP, it is merely made inconvenient. If order were not external, but internal, it
could be reference by the syntax restaurant::order. Any symbol is either external or
internal relative to a package.

External symbols are advertised outside a package to be available for use by pro
grams in other packages. Their names should be chosen to be unique and associated with
the useful abstractions of the package module you are building. On the other hand, you
should use internal symbols for implementation of abstractions which you wish to. conceal
from ordinary external users. By default all symbols are created as internal symbols. You
explicitly use the export command to identify external symbols. An important consequence
of this is that different packages can reuse the same internal name without conflict.

Each symbol is implemented with a package cell containing a pointer to its unique
home package in which it is said to be interned. That is, its representation is internalized in
the Lisp interpreter's symbol table. It is possible and sometimes useful to create unin
terned symbols which have nil in their package cell.

Packages 17-1

Packages 17-2

In using packages, you have the option of creating a hierarchy of naming by inheri
tance. By using the functions intern, import and export, can be used to make a previously

. unaccessible symbols accessible in a package from other packages.

The function 'Unintern makes a symbol inaccessible from a package. H the package
was its home package, the symbol is said to be 'Uninterned.

17.1.1. Consistency Rules

These package consistency rules hold true so long as you do not change the value
of *package *:

• Read-read consistency: Reading the same string always results in the same (eq)
symbol.

• Print-read consistency: An interned symbol always prints as a sequence of charac
ters that, when read back in, yields the same (eq) symbol.

• Print-print consistency: H two interned symbols are not eq, then their printed
representations will be different sequences of characters.

The rules may not hold if you change the value of *package *, or doing so impli
citly by continuing execution from an error break, or if you call one of the "dangerous"
functions described subsequently. These functions are 'Unintern, 'Unexport, shadow,
shadowing-import, and 'Un'Use-package.

17.2. Package Names

When a package is created, it is given a character string name. Nicknames or shor
tened versions of the "official" name can also be assigned at that time. A number of func
tions described below provide mappings between these concepts (find-package, package
name, package-nicknames, find-package, rename-package). Any of the functions that
require a package-name argument from the user accept either a symbol or a string. H the
user supplies a symbol, its print name will be used. A package, if printed, will look like
#<package "package name">.

17.3. Translating Strings to Symbols

At any time there is a current package object in effect. It is the value of the global
symbol *package *.

The current package affects the way a string, read in by the FRANZ LISP reader, is
interpreted as a symbol. Since the current package may also (and usually will) inherit
names from other packages, these must be searched as well as the package currently in
effect. H the string is associated with no symbol at all, a new symbol must be created and
"interned" in the current package. The point of all this is to make sure that if the same
string is later read in the same package context, then the the same symbol will be used.

When you wish to refer to an external symbol in a package other than the current
package, you can use a q'Ualified name, which is a concatenation of the package name, a
colon (:) , and the name of the symbol. H you need to refer to an internal symbol of some
package other than the current one, you can use a qualified name using a double- colon (::)
instead of the usual single colon as the separator for the qualified name.

There is a distinguished package named keyword which contains all keyword symbols
used by the LISP system itself and by user-written code. Because keyword symbols are

Packages 17-3

used so frequently and must be accessible from everywhere, there is a special reader syntax
for them which omits the package name, leaving just the colon and the symbol. Further
more, all symbols in the keyword package are external constants and are also implicitly
quoted. For example, the symbol :foo is the same as keyword:foo, and has the value :foo .
.AJ5 implemented in FRANZ LISP, each symbol contains a package cell (accessed by the func
tion symbol-package) that points to the home package of the symbol. Uninterned symbols
have nil home package pointers.

Symbols are printed in a form which would allow them to be read-in and identified
with themselves, assuming the same package is current. For example, keywords are
printed with a preceding colon. Normally accessible symbols are printed without colon
qualifications. Symbols which are accessible only by internal or external qualification with
respect to an accessible package are printed with the appropriate colons. An uninterned
symbol is printed preceded by #:. When read in, such a string causes an uninterned sym
bol to be created.

17.4. Exporting and Importing Symbols

While the principal advantage of using packages is to allow for the creation of
separate modules and name spaces, this would not be of much use without features for con
trolled inter-package access to names. Other than the use of the colon syntax for reference
to external or internal symbols in packages, two other mechanisms are available: import
and use-package.

The function import will not allow you to shadow (i.e. make inaccessible) a currently
accessible distinct symbol either in the current package or available by inheritance. (If the
same exact symbol is already present, then import has no effect.) If you really want to sha
dow a symbol you can use the function shadowing-import.

Use-package makes symbols accessible by inheritance, but does not import them. It
checks for name conflicts between the newly imported symbols and those already accessible
in the importing package. The function unuse-package undoes this.

FRANZ LISP uses the standard COMMON LISP prescriptions for resolution of name
conflicts.

17.5. Built-in Packages

The following packages are built into every FRANZ LISP system, Opus 42 and later:
lisp: This package contains the standard user-visible functions and global variables that are
present in the FRANZ LISP system. Unless it is the intention to hide the standard Lisp
functionality from the user-level program, any package should use lisp so that these sym
bols will be accessible without qualification. The nickname fl is available for this package.

commonlisp: This package, with nickname eli contains the primitives of the COMMON LISP
core-compatibility package. Its external symbols include the user-visible functions and glo
bal variables that are present in the COMMON LISP system, including functions which
(because of the incompatible re-use of the same name) must shadow the default FRANZ
LISP system. The user can access the original FRANZ LISP functions by using the fl: prefix.
Other packages based on COMMON LISP should use eli so that these symbols will be accessi
ble without qualification.

user: This package is the default current package at the time a LISP system is started.
This includes the usual top-level interpreter and debugger in FRANZ LISP. In order to pro
vide the usual Lisp environment, this package uses the Hsp package.

Packages 17-4

keyword: All the symbols in this package are treated as constants that evaluate to them
selves, so that the user can type :test instead of ':test. All the keywords used by built-in or
user-defined LISP functions are automatically placed in this package as external symbols,
and are always represented with an initial colon.

editor: This package contains the resident editor and its subroutines. This package uses
lisp and has the nickname ed. The editor and its package are loaded by the autoloading
facility when certain of its external functions are invoked. See chapter 13 for details.

system: This package contains system-dependent hooks such as "getuid" (get user
identification).

system-internals: (nickname sz) This package contains programs which are FRANZ LISP sys
tem internal primitives usually not used directly by applications programmers.

flavors: This package contains an object-oriented programming system. See chapter 19 for
details.

17.6. Package System Functions and Variables

In order to promote compatibility resulting from loading compiled or "source" files,
certain package operations are treated as though they were surrounded by (eval-when
(compile load eval) .. .}; eval-when is described in the compiler chapter. These operations
are make-package, in-package, shadow, shadowing-import, export, unexport, use-package,
unuse-package, and import. These functions should appear only at top level within a file.
The recommended procedure is to write files so that all of the package setup forms precede
actual programs. Normally, then, at most one package would be defined per file. In a large
package, it would be usual for several files to collectively define all the required programs.

For the functions described here, all optional arguments named package ·default to
the current value of *package *. Where a function takes an argument that is either a sym
bol or a list of symbols, an argument of nil is treated as an empty list of symbols. The
value of the variable *package* must be a package (not the name of a package: see find
package below to see how to obtain a package from its name). The value of *package* is
referred to as the current package. Its value is initially the user package. During loading,
package is lambda-bound to its current value, so that it is restored automatically at the
conclusion of the loading process.

(make-package 'k-pkname [:nicknames 'Cnames][:use 'l-packs])

RETURNS: a new package with the specified package name.

NOTE: K-pkname may be either a string or a symbol. L-names is a list of strings or sym
bols to be used as alternative names for the new package. L-packs is a list of pack
ages or the names of those packages whose external symbols are to be inherited by
the package being defined. These packages must already exist. If not supplied, The
default value of :use is a list of one package, the lisp package.

Packages 17-5

(in-package 'k....,pkname [:nicknames 'IJlicklist][:use 'p_usepack])

SIDE EFFECT: the in-package function is intended to be used as a declaration placed at the
start of a file containing a subsystem that is to be loaded into some package
other than U8er. If there is not already a package named k_pkname, this
creates this package as though make-package were called, and then sets.
*package * to this. Although this can be changed during the loading of the file
by another call to in-package, normally the programmer will just allow the
*package * variable to reverts to its old value at the completion of the load
operation.

NOTE: If k....,pkname is any existing package, presumably this is a re-Ioading or augmentation
of a package that was loaded previously.

(find-package's_name)

RETURNS: the package with the name or nickname s_name, otherwise nil.

(package-name 'k....,pack)

RETURNS: A string which is the name of the package k....,Pack.

(package-nicknames 'k....,pkname)

RETURNS: A list of strings which are nicknames for the indicated package. If there are no
nicknames, nil.

(rename-package 'k....,pkname 's_newname ['l_newnicknames])

SIDE EFFECT: The package denoted by the name k....,pkname is now denoted by the
s_newname and the nicknames, if any. The old name and nicknames no
longer access a package.

(package-use-list 'k....,pack)

RETURNS: A list of all packages used by k....,Pack.

(package-used-by-list 'k....,pack)

RETURNS: A list of other packages that use k....,Pack.

(package-shadowing-symbols 'k....,pack)

RETURNS: a list of symbols that have been. declared as shadowing symbols in k""'pack by 8ha
dow or shadowing-import. All symbols on this list are present in the specified
package.

(list-aU-packages)

RETURNS: a list of all packages, regardless of usage, which exist in the current LISP system.

Packages 17-6

(intern t_string ['k..,package])

WHERE: The indicated package k..,package (or if mlssmg, the default *package*), is
searched for a string t_string. This search will include inherited symbols. IT a
symbol with the specified name is found, it is returned. If no such symbol is
found, one is created and is installed in the specified package as an internal sym
bol (as an external symbol if the package is the keyword package); the specified
package becomes the home package of the created symbol.

RETURNS: A multiple value (two values): The first is the symbol that was found or created.
The second value is one of four possibilities:

NOTE: intern may also be given a symbol (instead of a string), in which case, the symbol, if
not found, will be inserted into the specified package. This allows uninterned symbol
to be given a home package.

nil if t_string is being established for the first time with this call;

:internal
if t_string was already in the named package as an internal symbol.

:external
if t_string was already in the named package as an external symbol.

:inherited
if t_string was inherited in the named package.

=> (setq r (make-package 'newpack»
#<package newpack>
=> (intern "roo" r)
multiple values returned: newpack::foo nil
newpack::foo
=> (intern "foo" r)
multiple values returned: newpack::foo :internal
newpack::foo

(find-symbol s_string ['k..,package])

RETURNS: multiple values: nil nil if the indicated symbol is inaccessible; otherwise a result
identical to intern.

(unintern 's_symbol ['k..,package])

RETURNS: t if s_symbol is found and removed, and nil otherwise.

NOTE: 'Unintern changes the state of the package system and may cause problems with con
sistent reading and writing.

Packages

(export 'syms ['packageD

RETURNS: t

WHERE: syms is a symbol or a list of symbols.

SIDE EFFECT: These symbols become accessible as external symbols in the package.

17-7

NOTE: A call to export at the beginning of a file should be used to announce its public sym
bols. An error break will result from various questionable practices; ?ret will continue.

RETURNS: t.

(unexport 'lg_sym ['k-package])

WHERE: 19_sym is a list of symbols, or a single symbol. These symbols, which presumably
were external symbols in the indicated package (or the current *package*) become
internal symbols in package.

RETURNS:t.

(import 'lg_sym ['k_package])
(shadowing-import 'lg_sym ['k_packageD
The argument should be a list of symbols, or possibly a single symbol. These symbols become
internal symbols in package and can therefore be referred to without having to use qualified-name
(colon) syntax. import signals a correctable error if any of the imported symbols has the same
name as some distinct symbol already accessible in the package. Shadowing-import plows
through without the correctable error, and furthermore notes the symbols as shadowing.

RETURNS: t.

=> (import 'newpack::foobar)
If continued (with fret), Import these symbols with Shadowing-Import.
Break: Importing these into the user package causes a name conflict:
(foobar)
c{l} fret
t

(shadow 'lg_sym [kJ>ackage])

SIDE EFFECT: For each symbol in the list 19_sym, if it is directly present in the specified
package, nothing is done. Otherwise it is instantiated as an internal symbol
and placed on the shadowing-symbols list of kJ>ackage.

RETURNS: t.

Packages 17-8

(use-package 'lkst..J>acks [k..J>ackage])

WHERE: Ikst..J>acks is a list of packages, a single package, a list of (string or symbol)
package names, or a single package name;

SIDE EFFECT: These packages are merged onto the use-list of k..J>ackage. All external sym
bols in the packages to use become accessible in package as internal symbols.

RETURNS: t.

(unuse-package 'lkst..J>acks [k..J>ackage])

SIDE EFFECT: reverses the effect of use-package.

RETURNS: t.

(find-all-symbols st_name)

RETURNS: a list of all symbols whose print name is the specified string. If a symbol is pro
vided, its print-name is used for the search.

(do-all-symbols l_ilist I_body)

WHERE: The iteration list Ulist has the form (s_var [g_result])

SIDE EFFECT: do-all-symbols provides iteration over all symbols in all packages. The I_body
is performed once for each symbol, where, each time through I_body, the
s_var is bound to a different symbol.

RETURNS: nil or the result of evaluating the optional result-form g_result.

(do-symbols l_ilist I_body)
(do-external-symbols l_ilist I_body)

WHERE: The iteration list l_ilist has the form (s_var [k-package [g_result]])

SIDE EFFECT: do-symbols provides iteration over the symbols of a package. The t .. body is
performed once for each symbol accessible in the specified package, where,
each time through I_body, the s_var is bound to a different symbol.

RETURNS: nil or the result of evaluating the optional result-form g_result.

NOTE: return may be used to terminate the iteration prematurely. The function do
external-symbols iterates over the external symbols only.

=> (do-symbols (i (find-package 'system) 'done) (progn (print i)(terpri)))
;; all the system package symbols <many omitted> .. concluding with
system:link
system:time
system:int-serv
system:nice
system:unlink
system:gethostname
system:getuid
system:fpeint-serv
done
=>

Packages 17-9

17.7. Modules

A module is a COMMON LISP subsystem that is loaded from one or more files. A
module is normally loaded as a single unit, regardless of how many files are involved. A
module may consist of one package or several packages. The file-loading process is neces
sarily implementation-dependent, but COMMON LISP provides rudimentary machinery for
naming modules, for keeping track of which modules have been loaded, and for loading
modules as a unit.

*modules * is a list of names of the modules that have been loaded into the LISP sys
tem so far. This list is used by the functions provide and require. Each module has a
unique name (a string). The provide and require functions accept either a string or a sym
bol as the module-name argument. If the module consists of a single package, it is cus
tomary for the package and module names to be the same.

(provide's_name)
this declarative function is used in a file defining a set of functions.

SIDE EFFECT: adds the module name s_name to the list of modules *modules*, indicating
that the s_name module has been previously loaded.

(require 's_name ['sl...,pathname])

SIDE EFFECT: The require function tests whether the s_name module is already present. If
not, it proceeds to load the appropriate file or set of files. The pathname
argument, if present, is a single pathname or a list of pathnames whose files
are to be loaded in order, left to right. Conventional path search-names will
be used if necesary to find the files.

A convenient way to customize a system is to require certain modules to be loaded
into user package whenever FRANZ LISP is started afresh. Typically an installation or a
group of programmers will set up an initialization file in the .Iisprc file when FRANZ LISP
for this purpose. Usually such an initialization file simply causes other facilities to be
loaded.

17.8. Creating Packages in Files

When each of two files uses some symbols from the other, one must be careful to
arrange the contents of the file in the proper order. Typically each file contains a single
package that is a complete module. The contents of such a file should include the follow
ing items, in order:

A call to provide that announces the module name.

A call to in-package that establishes the package.

A call to shadow that establishes any local symbols that will shadow symbols that would
otherwise be inherited from packages that this package will use.

A call to export that establishes all of this package's external symbols.

Any number of calls to require to load other modules that the contents of this file might
want to use or refer to. (Because the calls to require follow the calls to in-package, shadow,
and export, it is possible for the packages that may be loaded to refer to external symbols
in this package.)

Any number of calls to use-package, to make external symbols from other packages

Packages 17-10

accessible in this package.

Any number of calls to import, to make symbols from other packages present in this pack
age.

Finally, the definitions making up the contents of this package/module.

For very large modules whose contents are spread over several files it is recommended
that the user create the package and declare all of the shadows and external symbols in a
separate file, so that this can be loaded before anything that might use symbols from this
package.

CHAPTER 18

Interfacing Foreign Functions to Franz

Contents:
18.1. A simple example
18.2. Rules for loading C functions
18.3. Function disciplines
18.4. Rules for calling C functions
18.5. The C program
18.6. Fortran and Pascal
18.7. Pipes

[Adapted in part from "Parlez-vous Franz" by J. Larus, University of California, Berkeley.]

FRANZ LISP is unusual in its capability to load object modules into a running system and to
call "foreign" functions, i.e., functions and subroutines written in other programming languages.
This document describes how FRANZ LISP can interface with functions written in C and languages
following similar conventions. Pascal and Fortran generally fall in this category under most ver
sions of the Unix operating system. The FRANZ LISP process can also interface with other
processes by means of Unix pipes.

18.1. A simple example

This section gives an example of a C function which can be compiled and loaded into
FRANZ LISP. It can then be called as if it were a LISP function. The example is a function
of two arguments, an integer and a real, and returns an integer value.

The basic integer and real types in FRANZ LISP are called fixnums and flonums,
respectively. Fixnums are 32-bit two's complement integers and flonums are 64-bit
floating-point numbers. The corresponding types in 0 are ints and doubles. (Note: The size
of an int depends on the implementation of O. If int is not 32 bits but long is, then the 0
program must specify long instead of int.)

The following 0 function takes an integer and a real argument, and returns 1 if the
integer is larger, and 0 otherwise.

int
great(x,y)
int Xi
double Yi
{

return x > y ? 1 : 0 i
}

In the Unix operating system, this function can be put into a file called file. c and compiled
with

cc -c file.c

Interfacing Foreign Functions to Franz 18-1

Interfacing Foreign Functions to Franz 18-2

The resulting object file is file.o. Within Franz LISP, the C object file can be loaded
with:

(cfasl 'file.o '~reat 'greater 'c-function)

The function cfasl loads the file file.o, looks for an entry-point called ~reat, and
makes it into a LISP function with the name greater. (It is a peculiarity of most implemen
tations that the C compiler prepends an underscore to function names.) The symbol c
function indicates that the function arguments are to be treated as "call by value" as in C,
rather than as in LISP functions, which pass and return pointers to LISP objects. The
function can then be called in LISP just like any other LISP function:

=> (greater 7 3.1)
1
=> (greater 5 6.2)
o

The C function can use any of the features normally available to C functions. It can
read and write to the standard I/O, open and close files, and call C library functions. More
complicated interfaces with LISP are treated in the following sections. While most foreign
functions merely compute a value and return it as indicated above, it is possible to use
foreign functions for system call interfaces, graphics, multi-processing, etc.

18.2. Rules for loading C functions

As illustrated above, a function can be loaded into LISP and then invoked. A func
tion not written in LISP must still maintain certain environmental consistencies with the
LISP environment. Usually, such foreign functions are written so they can be treated as
"black boxes" that take arguments and produce answers, but produce no side effects on the
environment.

Before being loaded into LISP, a function must be incorporated into an object
module along with whatever functions it calls. The C compiler's output (e.g., work. 0) is an
object module, but the loader's usual output (e.g., a.out) is an executable file, not an object
module. If all the functions of interest are in one file, and it is compiled with the -e flag,
an object module will be produced.

If the functions are in more than one file and refer to each other, then the compiled
object modules should be combined into a single module that can be loaded into LISP
while resolving external references. The modules are combined by the loader, with its -r
switch. The resulting file, either a.out or whatever follows the -0 switch, is in this case, an
object, not an executable, module.

For example, suppose we want to combine the files in. e, out. c, and work. e into the
object module code.o:

cc -c in.c out.c work.c
ld -r in.o out.o work.o -0 code.o

Once in LISP, you load an object module with the efasl function:

Interfacing Foreign Functions to Franz

(cfasl 'Cname 's_cname 's_lispname ['s_discipline [s_libraries]])
(ffasl 'Cname 's_cname 's_lispname ['s_discipline [s_libraries]])

18-3

WHERE: Cname is the module's file name, s3name is the entry point of the C function
name; s_lispname is the LISP symbol name bound to the code, and can be
different from the entry-point name; s_discipline is function's "calling discipline"
(see below); s_libraries is also optional and lists the libraries to be searched to
resolve references in the object module.

NOTE: some C compilers prepend an underscore C) to functions' names; if yours does, you
should do the same. ffasl is just like cfasl except that it is intended for loading For
tran modules, and the proper Fortran libraries are loaded. The loading of Fortran
programs is not supported in all versions of FRANZ LISP.

SIDE EFFECT: Gfast normally prints out the command line passed to the loader. This mes
sage can be suppressed by binding the variable $Idprint to nil. Normally, the
file is loaded and the function s_lispname is consequently available from
LISP.

In our example above, we loaded the function greater from the module file. 0 and made
the function available in LISP under the name greater:

(dasl 'code '~reater 'greater 'c-function)

If, in addition to the function loaded by cfasl, you wish to use other functions from a
module, notify LISP of their names and disciplines with the getaddress function (do not call
cfast again). For example, suppose that the file file. 0 also containes the function less defined
below.

int
less(x,y)
int x;
double y;
{

return x < y ? 1 : 0 ;
}

To make this function available in LISP, use the following command:

(getaddress '_less 'less 'c-function)

To make several functions available, it is more efficient to call getaddress once with a
sequence of triples as arguments than to call getaddress several times.

The function removeaddress, removes a name from the foreign function symbol table
in LISP, thereby making it possible to cfasl another file that contains that name. Before
cfasling a file for the second time, you must remove from LISP all names in that file. Thus,
to remove the functions greater and less from LISP, use the following command:

(removeaddress '~reater '_less)

Gfasting a file is somewhat slower than loading a equivalent-sized file of LISP functions
with fasl. If a collection of C functions is commonly used (and sufficient disk space is avail
able), the process containing the cfasled functions can be saved by the dumplisp function.

When a file is cfasled into LISP, there is always the risk that a name conflict will
occur. If you use an external name which happens to be the same as an external name that
is used by the LISP system, then the loader will report an error that the name is multiply
defined. There is no way for you to change a name inside the LISP kernel, so you must
change the entry-point name in the file that you are cfasling in.

Interfacing Foreign Functions to Franz 18-4

18.3. Function disciplines

Every foreign function has a discipline that is declared when the function is incor
porated into LISP. The discipline tells LISP how to pass arguments to the function, and
what type of results to expect when the function is called, so that LISP can store it as a
conventional LISP value.

Franz LISP recognizes eight foreign function disciplines. The first four are more
suited for "call by address" languages, like Fortran, while the last four are designed for
"call by value" languages like C. The function disciplines are:

18.3.1. Call-by-address disciplines

function

This is a function which takes LISP values as arguments, and returns a LISP
value. This is as close to a LISP function as a foreign function can be. Recall that in
LISP, function arguments are normally evaluated, but a LISP value is a pointer to the
object. Thus the function must return a pointer to a valid LISP object, or a LISP error
may result. Normally this is accomplished by passing the function a LISP object which
is modified and then returned as the value of the function. Since the resulting value
originated in LISP, LISP treats it like any other LISP object.

subroutine

This is the default discipline. As with the previous (function) discipline, the argu
ments passed to the function are pointers to LISP objects. However, with a subroutine,
the return value, if any, is ignored. Franz always returns t from a subroutine.

integer-function

This returns an integer which Franz stores as a fixnum. Again the arguments
passed to the function are pointers to LISP objec.ts.

real-function

This is just like an integer-function except that the value returned is a double
precision real number which Franz stores as a Honum.

18.3.2. Call-by-value disciplines

c-function

This is a C function which returns an integer, which Franz stores as a fixnum.
This differs from an integer-function in that fixnum and Honum arguments are passed
by value. Other arguments (except possibly for structures) are passed unchanged.

void-c-function

This is a C function whose return value is ignored. It is just like c-function except
that in LISP, t is always returned. (In C, the function can be declared to be of type
'Void, or of any other type.)

Interfacing Foreign Functions to Franz 18-5

dou ble-c-function

This is a C function which returns a double, which Franz stores as a Honum.
Arguments are treated the same as for a c-function.

vector-c-function

This is a C function which returns a structure. This type of function is used less
frequently and is explained in a later section.

18.4. Rules for calling C functions

The major requirement for successfully using foreign functions is an understanding of
how values are passed to the functions and how the results are returned. LISP has a
definite conception of where particular types of objects belong and of their structure. C,
on the other hand, respects few, if any, conventions and C functions have difficulty in
using the intrinsic LISP functions for creating, modifying, or storing LISP objects. Foreign
functions can find the fields of LISP structures and use the values in them, but these func
tions cannot easily deduce the types of LISP objects. Hence arguments to foreign functions
and values returned are assumed to be of known correct types. Values created and
returned by foreign functions are either treated as LISP values, without any checking, or as
tightly closed "black b<;>xes".

LISP values passed to foreign functions are treated specially by LISP, with the exact
treatment depending on the value's type:

18.4.1. integers and real numbers

Integers and real numbers are copied and a pointer to the new value is passed.
The values are copied so that foreign functions cannot change a shared number (small
integers are stored uniquely). Arguments of this sort cannot be used for returning
results to LISP.

18.4.2. strings and symbols

Strings are passed as pointers to null-terminated sequences of characters.
Changes made by the C function to a string affect the original LISP string.

Symbols are passed as pointers to the symbol data structure (see Chapter 1). The
symbol's data structure has many useful fields, but the whole structure generally need
not be passed to a foreign function. If the foreign function needs only the symbol's
literal representation, use its print name (see geCpname), which is a string easily han
dled by C functions.

18.4.3. vectors and arrays

Vectors, immediate-vectors, and arrays may be created in LISP and passed to C
functions as arguments.

LISP immediate-vectors are similar to one-dimensional arrays in C. A vectori
byte corresponds to a C char array, a vectori-word corresponds to a C short int array,

Interfacing Foreign Functions to Franz 18-6

and a vectori-long corresponds to a C array of 32 bit integers. (Depending on the C
compiler, these could be ints or longs or both.) There are also objects which correspond
to C float and double arrays.

The following C function fills a given array with zeros:

int zero(n,a)
int n, a[J;
{ int i;

for (i=O; i <n; ++i)
ali] =0;

return n;
}

IT this is in a file called zero.c and compiled into an object file called zero.o, then
it can be loaded into LISP and called by LISP as follows:

=> (dasl 'zero.o '_zero 'zero 'c-function)
t
=> (setq x (new-vectori-long 10))
#vector[40]
=> (vseti-Iong x 0 27) ;; set x[O] := 27
27
=> (vrefi-long x 0) ;; print it out
27
=> (zero 10 x)
10
=> (vrefi-long x 0) ;; now it's gone
o
=>

A LISP vector is similar to an array of pointers in C. The following C function
rotates the pointers in a given array:

}

int rotate(n,a)
int n, *a[J;
{ int i, *p;

p= a[O];
for (i=O; i<n-l; ++i)

ali] = a[i+l];
a[n-l] = p;

return n;

IT this is in a file called rotate. c and compiled into an object file called rotate. 0,

then it can be loaded into LISP and called by LISP as follows:

=> (dasl 'rotate.o '_rotate 'rotate 'c-function)
t
=> (setq x (vector 01 2 3))
#vector[4]
=> (rotate 4 x)
4
=> (vref x 0)
1
=> (vref xI)
2
=> (vref x 2)
3

Interfacing Foreign Functions to Franz

=> (vref x 3)
o
=>

To pass floating point arrays, the following functions are available:

vectori-float
vectori-double
new-vectori-float
new-vectori-double
vrefi-float
vrefi-double
vseti-float
vseti-double

18-7

These functions work just like the corresponding vectori functions for bytes, words, and
longs. For example, the Lisp code to create a double vectori with size appropriate for
ten doubles, initialize it with zeros, and set the seventh entry equal to 12.3.

=> (setq x (new-vectori-double 10))
vectori[80]
=> (vseti-double x 7 12.3)
12.3

Since vectori-floats and vectori-doubles were not available in versions of FRANZ LISP
prior to Opus 42, the appendix to this chapter gives substitutes·which work on Opus
41.

Arrays can be passed to foreign functions, but they are somewhat more compli
cated than vectoris and in most cases it is preferable to use vectoris. For the "call by
address" disciplines, arrays are passed as pointers to an array's data field. The values
in the field are generally not stored sequentially in memory, but are pointed to by
sequentially-stored pointers. In order to pass an array using the C-style "call by value"
discipline, it is necessary to know what the array's data field looks like. The appropri
ate structure is defined in the header file lstructs.h which is part of the FRANZ LISP dis
tribution and is usually kept in the directory jusrjfranzjfranzjh.

Fz"xnum-block and flonum-block arrays are alternatives to immediate vectors for
passing numbers to Fortran routines other foreign routines using" call by address" dis
ciplines. Fz"xnum-block arrays are integer arrays and ftonum-block arrays are double
precision arrays. If you want to pass a contiguous block of objects in an array, then
the type of the array must be declared to be fixnum-block or ftonum-block, depending
on the type of LISP values that are stored in the array. (Hxnum-block and ftonum
block arrays are alternatives to immediate vectors for passing numbers to Fortran rou
tines. Fixnum-block arrays are integer arrays and ftonum-block. arrays are double
precision arrays.) Changing a value in an array propagates the new value back to LISP.

18.4.4. lists

It is possible to pass lists and other LISP objects to a C function, and have the C
function perform LISP-like operations on them. Creating new LISP data is somewhat
tricky, and recommended only for sophisticated Franz users .

.As an example of some of the pitfalls, consider a C function intending to return a
LISP list containing two integers. The C function might require that it be be passed a
workspace of a LISP list of length two as an argument and then proceed to modify it.
However, if the original list contains an integer between -1024 and 1023, then the C

Interfacing Foreign Functions to Franz 18-8

function cannot change ("clobber") the value of that integer since it is stored in read
only memory to preserve its uniqueness. If the numbers are larger, then they are not
stored uniquely and so can be changed.

The Franz files lstructs.h and global.h define most of the relevant structures. It is
usually kept in the directory /usr/franz/franz/h. In particular, lists are defined there
to be pointers to a data structure made of a pair of pointers (cdr followed by car, both
full 32-bit words).

The following 0 function is a simple example which manipulates lists. It takes
two arguments, both lists, and destructively appends the second one to the first.

#include "global.h"

lispval
nconc(a,b)
lispval a, b;
{

}

lispval x, y;

if(TYFE(a) != DTPR II TYFE(b) != DTPR)
{

}

printf("Error: arguments must be lists.\n");
return nil;

if (a == b) return b;

for (x = a; x != nil; x = x->d.cdr)
y =x;

y->d.cdr = b;
return a;

Notes:

1. The header file global.h must be included, as essential types and macros are
defined there. This header file includes other header files in the same directory as
global.h. In case these files are in the directory / 'Usr/ franz/ franz/h and the above 0
function is in a file called nconc.c, the Unix operating system command to compile the
file is

cc -c -0 -I/usr/franz/franz/h nconc.c

2. A lispval (LISP value) is the type by means of which s-expressions are refer
enced in O. It is a pointer to a lispobj (LISP object) which is a cell which might hold a
number of different things. If the LISP object is a dotted pair, it holds two lispvals, its
cdr followed by its car. In '0, these declarations are:

struct atom { lispval clb; ... };
typedef union lispobj *lispval;
struct dtpr { lispval cdr, car;};
union lispob j {

struct atom a;
FILE *p;
struct dtpr d;
double r;

Interfacing Foreign Functions to Franz 18-9

... }j
These structures are occasionally modified with new release of FRANZ LISP so "includ
ing" the header file is preferable to copying the type definition.

3. TYPE is a macro for testing types. Lists have the type DTPR (dotted pair).
Other type macros are in the file /types.h.

4. The macro nil is defined in global.h. It is a pointer to the atom called nilatom in
c. The macro nil is defined to be zero on some machines, but not all.

5. The above function is destructive in the sense that it usually modifies its first
argument, as does the FRANZ LISP nconc. No storage is allocated or released.

18.4.5. passing C structures by value

The C language has the feature that structures and unions can be passed by value,
either as an argument to a function or as the value returned by a function. Franz can
interface with a C function which passes as an argument a structure if:
1. The function's discipline is c-function, void-c-function, double-c-function, or vector

c-function.
2. The structure is represented as a vectori in LISP.
3. When the structure is passed by value, its property field is set to vaiue-structure

argument.

Franz can interface with a C function which returns a structure by value if:
1. The function's discipline is vector-c-function.
2. When the C function is called from LISP, the first argument in LISP is an immedi

ate vector (vectori) into which the result is to be stored. The second LISP argument is
then the first argument to the C function, and so on.

An example where structures are passed by value both to and from the C function
is the following function:

struct foo { int a, b, Cj}j
struct foo bar(x)
struct foo Xj
{

}

int tj
t = x.aj
x.a = x.bj
x.b =tj
x.c += 13;
return Xj

If this function is in a file called barfile.c and compiled into barfile.o, then it can
be loaded into LISP with:

=> (cfasl 'barfile.o '_bar 'bar 'vector-c-function)
t
=> (setq foo-in (vectori-Iong 12 23 34))
vectori[12]
=> (setq foo-out (new-vectori-Iong 3))
vectori[12]
=> (vsetprop foo-in 'value-structure-argument)
value-structure-argument
=> (bar foo-out foo-in)

Interfacing Foreign Functions to Franz

vectori[12]
= > (vrefi-Iong foo-out 0)
23
=> (vrefi-Iong foo-out 1)
12
=> (vrefi-Iong foo-out 2)
47
=>

18.4.6. accessing C structures from LISP

18-10

The file cstruct.l contains LISP functions which are useful for accessing a struc
tures passed back to Franz. It is a library file and it is located (along with its compila
tion) with the other LISP library files (usually /usr/lib/lisp). If you invoke the LISP
function c-declare it will be loaded into memory by the auto-load feature.

a-like structures are implemented in LISP with immediate vectors as the underly
ing data type. You can avoid structures in LISP just as you can avoid it in a by
counting byte offsets, but in either case the process is tedious and error-prone.

18.4.6.1. An example

Here are some structures taken from a popular window system:

struct pr-pos { int x,y; };
struct pr_subregion {

};

struct pixrect *pr;
struct pr-pos pos;
struct pr_size {int x,y; } size;

Suppose we want to call a function in a which takes, as an argument, a
pointer to an object of type pr_subregion, and assigns values to the fields of p. We
could allocate an immediate vector of size 20, and bind it to something, say,

(setq p (new-vectori 20)).

We could then call the a function with p as a parameter, and the a function would
have no trouble assigning values to the fields of p. However, it would be difficult to
decompose the structure in LISP and access the various fields of p. Futhermore, the
garbage collector would not handle the pointers correctly.

The above structures can be declared in FRANZ LISP in order to circumvent
these difficulties. The declarations are:

Interlacing Foreign Functions to Franz 18-11

(c-declare
(struct pr-pos

)
(c-declare

(x int)
(y int))

(struct pr_subregion
(pr * (struct pixrect»
(pos (struct pr-pos»
(size (struct pr_size

(x int)
(y int»))))

These declarations create a number of LISP functions. They create make
pr_8ubregion which allocates the necessary memory for the structure pr_subregion.
They also create functions which access the fields of the structure. The LISP state
ment

(setq p (make-pr_subregion»

allocates memory and- makes p a pointer to it. In LISP, p has the type vee tori. If p
is passed to C, it should have the C declaration

struct pr_subregion *Pi

The field which would be accessed in C by

p->pos.x

is accessed in LISP by

(pr_subregion- >pos.x p)

and assigned to the value of b by

(setf (pr_subregion->pos.x p) b)

18.4.6.2. Syntax

(c-deelare l_structl [l_struct2 ... J)
Each structure declaration is a list. The first element is either of the symbols struct

or union. The second element is a symbol, taken to be the name of the structure. Each
subsequent element is another list taken to a declaration of a member of the structure. The
first element of the member declaration is its formal name and the remaining elements in
the list are its type description.

The type description may be a symbol representing a scalar type. Scalar types from C
that are currently implemented are char, short, long, int, float, double, unsigned-char,
unsigned-short, unsigned-int, and unsigned-long. The types int and long are synonymous.

Another entry may be the symbol "*", indicating the type is a pointer to an object
whose type is given by the remainder of the list. Pointers can be to any type, including
unions and structures.

Interfacing Foreign Functions to Franz 18-12

An entry may be the symbol "function", indicating the type is a 0 function returning
an object described by the remainder of the list. It will always be preceded by * since
arrays or structures cannot contain functions directly. There is no facility in LISP for doing
anything with a pointer to a 0 function, except to pass it to another 0 function which could
make use of it.

Entries may be lists. To describe an array of objects, the entry is a list beginning with
the symbol array and the remaining entries are the dimensions of the array.

You may indicate structures or unions either by having a list whose first element is
either union or struct and whose second element identifies the structure. AB in the
language 0, you can formally declare the structure here.

The type lispval is provided for storing lisp data in a structure. In 0, such an object
is alwaysa pointer, whereas in Lisp it may be any Lisp object.

Here is a more complex example:

typedef struct { int *cdr, *car;} *lispva.i;
struct a { int m;

};

short n;
struct c *p;
struct box { int x, *y;} b;
int (*f[3[[4DO;
char c, el, c2;
lispvall;
float r[3114[;

struct c { int x, y;
lisp val Is;

};

(e-deelare (struct a
(m int)
(n short)
(p • (struct c»
(b (struct box (x int) (y * int)))
(f (array 3 4) * function int)
(c char)
(cl char)
(c2 char)
(I lisp val)
(r (array 3 4) float)
)

(struct c (x int) (y int) (Is lispval»
)

A structure s which is declared in C as
struct a *s;

has a float entry which is accessed in C as
s->r[11l2J;

and in Lisp ,as
(a->r s 12)

Interfacing Foreign Functions to Franz 18-13

18.4.6.3. Semantics

By writing one of these declarations, many functions may be generated. For
each structure, you will get a creation function whose name is the concatenation of
make- and the structure name. It is actually a macro and allows you to initialize
individual fields by member name. Initializers can be inserted as pairs of an
unevaluated member name and an expression to compute its value; Initialization
for arrays is not currently implemented. The LISP statement

(setq p (make-pr-pos x 50 y (+ 20 (* 5 40))))

is thus equivalent to the 0 statement

struct pr-pos p = { 50, 20 + 5*40 };

There are two classes of accessors created. The first assumes that the struc
ture is in an immediate vector allocated by FRANZ LISP. These functions are made
by concatenating the structure name, the symbol - >, and the member name. If
the member is a structure in its own right, additional accessor functions are gen
erated for each member of the substructure. Thus the LISP expression

(pr_subregion- >pos.y p).

is analogous to the 0 expression p->pos.y. The other class of accessors assume that
the first argument is an integer, whose value is really a pointer to a structure. Their
names have an asterisk prepended. This is particularly useful for structures which
contain pointers to other structures. For example, suppose one wished to create a
structure in Lisp to pass to 0 using the 0 declaration:

struct dog { int mice;
struct cat { char head,paw;} *teeth;
} *rover;

Then one would say in LISP,

(c-declare (struct dog
(mice int)
(teeth * (struct cat (head char) (paw char)))))

(setq rover (make-dog teeth (make-cat)))

The 0 expression rover->teeth->head has as its Lisp equivalent

(*cat- > head (dog- > teeth rover))

18.4.6.4. array accessors If a member is an array, the corresponding accessor is a
function of several arguments: the base structure and as many indices as were
declared. It returns an element of the array.

18.4.6.5. pointers to structures One potentially confusing aspect of interfacing
LISP to 0 is that LISP generally uses one more level of indirection than 0 does. In
LISP, an integer is really a pointer to an integer. Likewise, the structures and
pointers to structures in 0 become pointers to structures and pointers to pointers to
structures in LISP. Thus, when a structure contains a pointer to another structure,
and that pointer is accessed in LISP, it is really a pointer to a pointer to a structure.
The function maknum is useful in this context, since it effectively creates a pointer
to its argument. The following example illustrates using pointers to structures.

Interfacing Foreign Functions to Franz

(c-decIare (struct outer
(x int)
(pt * (struct inner (a short)

(b short)))))

(setq s (make-outer x 7))
(set! (outer->pt s) (maknum (make-inner a 12 b 23)))
(msg (*inner->b (outer->pt s)) " should be 23" N)

18-14

18.4.6.6. LISP data Putting LISP data into a C structure presents a garbage collec
tion problem. The garbage collector assumes that the contents of a vectori is raw
data, and does not pay any attention to what pointers within the vectori point to.
For this reason, there are some special procedures for protecting LISP data in a C
structure from garbage collection.

When a C structure has a field of type lispval in it, and Bet! is used with the
cstructs accessor functions to assign a LISP object to that field, then a copy is put
on the property list of the vectori. Likewise, if a lispval field of a new structure is
being initialized, a copy is also put on the property list.

If LISP data is put into a C structure by a C function, or by a LISP function
other than setf, a copy of that LISP data must be kept elsewhere in order to protect
it from garbage collection. Each c-declare of a structure which contains lispvals
creates a function with the name protect- concatenated with the structure name.
This function takes one argument, a vectori which has been created by cstructs, and
copies all of the lispval fields within the structure into the property list of the vec
tori. For example, (protect-slop) will save the lispval fields in a vectori created by
(make-slop). .

18.4.6.7. debugging tools

(describe-cs v_item)

WHERE: v-item is a vectori which has been created by a cstructs "make-" function.

SIDE EFFECT: Information about the structure is printed out, including the structure tag,
the field names, the C type of each field, and the current value of each field.
The list of accessor macros is also printed out.

Interfacing Foreign Functions to Franz 18-15

(double-to-ftoat 'eHo)

RETURNS: a fixnum, which may be passed to a C routine expecting an argument of type
float.

NOTE: In FRANZ LISP, Honums are double precision Hoating point numbers which correspond
to the C type double. This function and float-to-double provide a way to convert
between a lisp Honum (a C double) and a CHoat (which is the same size as a lisp
fixnum).

(ftoat-to-double 'x_fix)

RETURNS: a Honum, after converting the fixnum x_fix from a C float to a lisp Honum.

NOTE: See the discussion at double-to-float.

18.5. The C program

18.5.1. external references

Foreign Cunctions can do much oC what they would do if executed autonomously.
They can use and change extern and static variables and invoke other functions that
are in eJa61ed files or are part oC FRANZ LISP. Even input and output from Coreign func
tions is fine.

18.5.2. memory allocation

C functions can use the C library Cunction malloe{} to dynamically allocate
memory. Memory allocated in this way will not be garbage-collected by LISP. The
LISP system knows that this value is foreign and does not allow it to be used in place
of a LISP value. The only use oC these Coreign values is as arguments to foreign func
tions. However, LISP objects cannot be allocated this simply, because the LISP system
must know the data type at memory allocation time. Allocating LISP objects from your
own foreign function is complicated, and not recommended. It is usually much better to
allocate LISP objects in LISP, and pass pointers to the C Cunction.

18.5.3. calling Franz from C

LISP functions cannot get the value of a C variable unless it is returned by a C
function. However, C Cunctions can call the built-in function matom, which takes a
symbol's name (as a string) as its argument and returns a pointer to the symbol's data
structure. If the symbol does not exist, it is created. The C code can look at the
symbol's value field to find a variable's binding. Usually, passing this value as an argu
ment is safer and easier than finding it from the C code.

C Cunctions can invoke LISP functions. The built-in Cunction JtoI6P'S first argu
ment is an integer indicating how many arguments Collow. The next argument is the
symbol whose function binding is to be invoked. The rest of the arguments to Jtolsp
are LISP values that are passed to the LISP function. Ftolsp returns the result
returned by the LISP function. Ftol6P has the same arguments and effect as the Juneall

Interlacing Foreign Functions to Franz 18-16

function does in LISP.

For example, suppose a 0 function is set up to find the time consumed by LISP.
The following 0 code invokes the LISP function ptime:

x = ftolsp(l,matom("ptime"))i

Ftol8p returns a value of type li8pval, which in this case is a pointer to a dtpr cell.

Passing arguments to LISP from 0 requires some knowledge of FRANZ LISP inter
nals. For example, the following function returns the product of its arguments by cal
ling the function time8.

prod(x,y)
int x, Yi
{
/* .Ai!, long as there is no overflow, the next line produces

the same result as return x * Yi * /
return * (int *) ftolsp(3,matom("times"),inewint(x),inewint(Y))i

} -
In LISP, integers are "boxed" in the sense that a LISP value of type fixnum is really a
pointer to a memory location where the integer is stored. The built-in function inewint
takes an integer argument and returns a corresponding LISP value, i.e., a valid LISP
pointer to a memory location where the integer is stored. Ftol8p returns a LISP value
which in this case is a fixnum, and hence a pointer to what 0 would understand as an
integer.

On some systems, notably V AXes and Suns, the function Jtol8p_ is available. It
allows the number of arguments to be omitted, so the above example is equivalent to:

x = ftolspJmatom("ptime"))i

Ftol8p_ thus has the same arguments and effect as the JuneaU function does in LISP.

18.6. Fortran and Pascal

{This languages may not be available on your system.}

The cfasl function loads into LISP an object file which has the format specified by
the 0 compiler. On those systems where Fortran and Pascal use the same object-module
format as 0, routines written in these languages may be loaded into LISP much the same
way 0 functions can be. The differences are:

a. Oalling conventions. 0 is call by value, Fortran is call by address,
and Pascal allows either.
b. Fortran does not have pointer types.
c. Pascal allows passing arrays and structures by value, but interfacing

such a procedure with Franz is different.
d. Libraries must be explicitly invoked for Fortran and Pascal.

The method a foreign function uses to access the arguments provided by LISP is
dependent on the language of the foreign function. The following scripts demonstrate how
how LISP can interact not only with 0, as previously discussed, but with two additional
languages: Pascal and Fortran.

o and Pascal have pointer types and the first script shows how to use pointers to
extract information from LISP objects. There are two functions defined for each language.
The first (cfoo in 0, pfoo in Pascal) is given four arguments, a fixnum, a flonum-block
array, a hunk of at least two fixnums and a list of at least two fixnums. To demonstrate

Interfacing Foreign Functions to Franz 18-17

that the values were passed, each function prints its arguments (or parts of them). The
function then modifies the second element of the Honum-block array and returns a 3 to
LISP. The second function (cmemq in C, pmemq in Pascal) acts just like the LISP memq
function (except it will not work for fixnums whereas the LISP memq will work for small
fixnums). In the script, typed input is in bold, computer output is in roman and com
ments are in italic8.

These are the C coded Junctions
% cat ch8auxc.c
/* demonstration of c coded foreign integer-function */

/* the following will be used to extract fixnums out of a list of fixnums */
struct listoffixnumscell
{ struct Iistoffixnumscell *cdr;

int *fixnum;
};

struct listcell
{ struct Iistcell *cdr;

int car;
};

cfoo(a,b,c,d)
int *a;
double b[];
int *c[];
struct IistofflXnumscell *d;
{

printf("a: %d, bIOI: %f, bll]: %fO, *a, bIO], bll]);
printf(" c (first): %d c (second): %dO,

}

*cIO],*cll]);
printf(" (%d %d ...)", *(d->fixnum), *(d->cdr->fixnum));
b[ll = 3.1415926;
return(3);

struct Iistcell *
cmemq(element,list)
int element;
struct listcell *list;
{

}

for(; list && element != Iist->car; list = list->edr);
ret urn(list);

These are the Pascal coded Junctions
% cat ch8auxp.p
type pinteger = Ainteger;

realarray = arrayI0 .. l0] of real;
pintarray = array 10 .. 101 of pinteger;
listofIixn umscell = record

plistcell = Alistcell;
IistcelJ = record

end;

cdr : plistcell;
car : integer;

end;

cdr : Alistoffixnumscell;
fixnum : pinteger;

Interfacing Foreign Functions to Fran.

function pfoo (var a : integer;

var b : reaIarray;
var c : pintarray;
var d : listolJixnumscell) : integer;

begin
writeln(' a:',a, ' bIOI:', bIOI, ' b[l]:', b[l]);
writeln(' c (first):', c[Or,' c (second):', c[l]');
writeln(' (" d.fixnum A, d.cdrA.fixnumA, ' ...) ');
b[l] := 3.1415926;
pfoo:= 3

end;

{ the function pmemq looks for the LISP pointer given as the first argument
in the list pointed to by the second argument.

}

Note that we declare" a : integer" instead of " var a : integer" since
we are interested in the pointer value instead of what it points to (which
could be any LISP object)

function pmemq(a : integer; list: plistcell) : plistcell;
begin
while (list < > nil) and (list A .car < > a) do list := list A .cdr;
pmemq := list;

end;

The files are compiled
% cc -c ch8auxc.c
LOu 1.2s 0:15 14% 30+39k 33+20io 147pf+Ow
% pc -c ch8auxp.p
3.0u 1.7s 0:37 12% 27+32k 53+32io 143pf+Ow

% lisp
Franz Lisp, Opus 42.04

18-18

First the files are loaded and we set up one foreign function binary. We have two functions in each file so we must choose
one to tell cfasl about. The choice is arbitrary.
=> (clasl 'ch8auxc.o '_cloo 'cloo "Integer-function")
/usr/lib/lisp/nld -N -A /usr/local/lisp -T 63000 ch8auxc.o -e _cfoo -0 /tmp/Li7055.0 -Ie
t
=> (clasl 'ch8auxp.o '.J)loo 'ploo "Integer-function" "-Ipe")
/usr/lib/lisp/nld -N -A /tmp/Li7055.0 -T 63200 eh8auxp.o -e -1>foo -0 /tmp/Li7055.1 -Ipe -Ie
t
Here we set up the other foreign function binary objects
=> (getaddress '_cmemq 'cmemq "function" '.J)memq 'pmemq "function")
#6306c-"funetion"
We want to create and initialize an array to paS8 to the cfoo function. In this case we create an unnamed array and store
it in the value ceU of testarr. When we create an array to pass to the Pascal program we wiU use a named array just to
demonstrate the different way that named and unnamed arrays are created and accessed.
=> (setq testarr (arl'ay nll8onum-block 2»
array [2]
=> (store (tuncall testarl' 0) 1.234)
1.234
=> (store (funcall testarl' 1) 6.678)
5.678
=> (cloo 386 test&l'l' (hunk 10 1113 14) '(16 16 17»
a: 385, bIOI: 1.234000, b[I]: 5.678000
e (first): 10 c (second): 11
(15 16 ...)
3
Note that cfoo has returned 9 as it should. It also had the side effect of changing the second value of the array to
9.1415916 which check ne:&t.
=> (funcaU testaI'I' 1)
3.1415926

In preparation for calling pfoo we create an array.
=> (array test 8onum-block 2)
array [2]

Interfacing Foreign Functions to Franz

=> (store (test 0) 1.234)
1.234
=> (store (test 1) 5.(78)
5.678
=> (pfoo 385 (getd 'test) (hunk 10 11 13 14) '(15 16 17))
a: 385 b[O]: 1.23400000000000E+OO b[l]: 5.67800000000000E+00
c (first): 10 e (second): 11
(15 16 ...)

3
=> (test 1)
3.1415926

Now to test out the memq's
=> (cmemq 'a '(h cad e f))
(a d e /)
=> (pmemq 'e '(a d f g a x»
nil

18-19

The Fortran example is much shorter since in Fortran you cannot follow pointers as
you can in other languages. The Fortran function froo is given three arguments: a fixnum,
a fixnum-block array and a flonum. These arguments are printed out to verify that they
made it and then the first value of the array is modified. The function returns a double
precision value which is converted to a flonum by LISP and printed. Note that the entry
point corresponding to the Fortran function froo is _froo_ as opposed to the C and Pascal
convention of preceding the name with an underscore.

% cat ch8auxf.f
double precision function ffoo(a,b,e)
integer a,b(10)
double precision c
print 2,a,b(1),b(2),c

2 formatC a=',i4,', b(1)=',i5,', b(2)=',i5,' c=',f6.4)
b(l) = 22
ffoo = 1.23456
return
end

% f77 -c ch8auxf.f
ch8auxf.f:

ffoo:
0.9u 1.8s 0:12 22% 20+22k 54+48io 158pf+Ow
% lisp
Franz Lisp, Opus 42.04
=> (cfasl 'ch8auxf.o '_ffoo_ 'ffoo 'real-function "-1177 -IF77")
/usr/lib/lisp/nld -N -A /usr/local/lisp -T 63000 ch8auxf.o -e _ffoo_
-0 /tmp/Li11066.0 -IF77 -1I77 -Ie
t

=> (array test ftxnum-block 2)
array [2]
= > (store (test 0) 10)
10
=> (store (test 1) 11)
11
=> (ffoo 385 (getd 'test) 5.(78)
a= 385, b(l)= 10, b(2)= 11 c=5.6780

1.234559893608093
=> (test 0)

Interfacing Foreign Functions to Franz 18-20

22

18.7.
Pipes

{If you are using a non-Unix operating system, pipes may be unavailable on your sys
tem.}

Pipes are the principal method of program composition in the Unix operating system.
They offer the considerable virtues of being easy to understand, quick to program, and
standard throughout Unix. However pipes also consume substantial overhead in comparison
to function calls described earlier in this chapter, and are ill-suited to passing structured
data. Nevertheless, pipes are important, particularly since they are the only method used
for many existing programs.

18.7.1. LISP in a Pipeline

Frequently, a program - e.g. the shell - creates a pipeline, one of whose com
ponent programs is written in LISP. The LISP program reads its data from the stan
dard input and writes its results to the standard output (i.e. neither read nor print
requires a port be specified as an argument).

At this point, a quick reader may wonder how a LISP program, which is usually
run by an interpreter, can be executed by the shell. If the LISP program is interpreted,
the commands that invoke lisp, load the requisite files, and start the program running
can be put in a shell command file, which can be invoked in the same way as any other
Unix command. If the LISP program is compiled, it can be compiled in a way that
allows it to execute without being explicitly loaded into the interpreter (see the liszt
compiler's -r switch). The executable file produced by liszt with the-r flag is invoked
as is any other compiled program; but before the LISP code is run, the LISP interpreter
is invoked and the compiled code loaded.

18.7.2. Using Sub-Processes

The complementary situation is not as simple - a LISP program invokes another
program, perhaps supplying it with data and retrieving its results. In addition to start
ing this program running, someone must connect the pipes that service the program.
LISP provides functions to handle this.

Releases of FRANZ LISP after Opus 38.30 have a very flexible set of functions -
*process, *process-send, and *process-receive.

*process takes between one and three arguments. The first is the subprocess's file
name. The other two are optional boolean flags that, if present and non-nil, cause
*process to open ports to and from the subprocess, respectively .. *process returns a list
of up to three items. If ports are opened, they are the first items. If a port is not
opened, nothing is put into its place in the list (i.e. if only one port is opened, the list
contains two items). The last item in the list is always the subprocess's id number.
The values in the list are easily assigned to individual variables by the desetq function.

The example above reduces to:

Interfacing Foreign Functions to Franz

(let* ((ResultPort (car (*process 'pwd nil t)))
(Result (read ResultPort)))

(close ResultPort)
Result)

18-21

; NB args evaluated

Since communication with a process is frequently in one direction and the order of
arguments to *proce88 is difficult to remember, the other two function - *proce88-8end
and *proce88-receive - take only the subprocess's name and return a list of an open
port and a process id.

Hence the example is best written:

(let* «ResultPort (*process-receive 'pwd))
(Result (read ResultPort)))

(close ResultPort)
Result)

18.7.3. The Perils of Pipes

In addition to the usual care which must be exercised by users of pipes, LISP pro
grammers must observe additional cautions unique to FRANZ LISP. Pipes belong to the
LISP process, not the executing LISP program.

Most important, each pipe uses a port from LISP's limited repertoire (20, but two
are dedicated to the standard input and output). H a LISP function does not close its
pipes for any reason (e.g. the function dies), the ports continue to be "used" and the
associated subprocesses continue to exist. If all the ports are used up while you are
debugging a program or running an erroneous program that fails to close ports, you will
get an error from the process-creation function that it cannot open a port.

Execution of LISP's resetio function which closes the open ports (with the excep
tion of standard input and output) will cure this problem; however, this indiscrim
inately severs the connections to all subprocesses and kills them. Unless you run out of
ports by erroneously leaving them in use, you should probably avoid the re8etio func
tion. (if you must call resetio to close all pipes, remember to call wait repeatedly; see
below).

You should call wait every time a process dies. Calling wait ensures that a dying
process does not linger as a zombie, which can cause you to exceed your process limit.
(If a process creation function fails for no apparent reason, check for "zombies" by
CTRL-Zing and running p8.) Wait returns a dotted-pair consisting of the terminated
process's id and status. Contrary to the implication in some previous editions of the
LISP manual, wait always returns immediately. If no processes have died since the last
calion wait, then the returned process-id is -1.

18.8. Appendix

To make it easier for users of FRANZ LISP to pass floating-point arrays to C func
tions, vectori-floats and vectori-doubles have been added to Opus 42. Users of Opus 41
systems can use the following functions as substitutes for the Opus 42 features.

Interfacing Foreign Functions to Franz

; Tbis file bu a few functioaa which make it easier
; to p .. floating point Arraya to • C functioD.
; It. vaDd for Opus 41 only.
; These functioaa shoUl NOT be ued with Opus 42
; u they will be built into Opus 42 and IJi&bcr.

; create DCW vectori to bold pvc. D1IIDber of fIoa ..
(dcfun Dcw-vectori-float (x)

(do «v (Dcw-vcc:tori-101II x»
(D 0 (1+ D») «cq D x) v)

(VIed-float v D (float 0»»
; create DCW vectori to bold JiveD D1IIDber of doublea
(dcfun Dew-vectori-double (x)

(do «v (DCW-vectori-101II (- 2 x»)
(D 0 (1+ D») «cq D x) v)

(VIed-double" D (60at 0»»
; aCCCIB a float at of&et iad of vec:tori ftC:t
(defun vrefi.6oat (ftC:t iad)

(int:vref (maka1llD 'fCCl) (. 4 ind) 1)

; ACCCIB a double at offlct ind of vec:tori ftC:t
(defun vreft-double (ftC:t ind)

(int:vref (maka_ vcet) (. 8 ind) 8»

; at offict ind of vectori ftC:t, UIIIip val
(defun VIed-Boat (vcet ind val)

(iat:VIICt (maka_ ftC:t) (- 4 ind) (Boat val) 1)

; at offici ind of vectori ftC:t, UIign val
(defua VIed-double (vcet ind val)

(inl:VIICt (maka1llD vcet) (. 8 ind) (Boat val) 8»
; 1IIC wize to compate the D1IIDber of 6oa .. in a vectori

; compute D1IIDber of doublea in vec:tori 'fCc:l

(defua wize.double (ftC:t)
(inl:wize vcet 3»

CHAPTER 19

Objects, Message Passing, and Flavors

19. Introduction

The object-oriented programming style used in the Smalltalk and Actor families of
languages is available in FRANZ LISP. Its purpose is to perform
generic operation8 on objects. Part of its implementation is simply a convention in

procedure-calling style; part is a powerful language feature, called Flavors, for defining
abstract objects. This chapter explains the principles of object-oriented programming and
message passing, and the use of Flavors in implementing these in FRANZ LISP. It assumes no
prior knowledge of any other languages.

This chapter is a heavily-edited version of Chapter 20 from the MIT LISP Machine
Manual, as made available through MIT's Project Athena. It has been subsequently edited by
the staff of Franz Inc. for inclusion in the FRANZ LISP manual. An entirely new and much
more efficient implementation of Flavors is forthcoming from Franz Inc; this chapter docu
ments the existing public-domain version.

In general, the Franz implementation of Flavors is quite similar to that in Zetalisp,
although details and extensions may differ. Most code should port easily between versions.

19.1. Objects

When writing a program, it is often convenient to model what the program does in
terms of object8, conceptual entities that can be likened to real-world things. Choosing
what objects to provide in a program is very important to the proper organization of the
program. In an object-oriented design, specifying what objects exist is the first task in
designing the system. In a text editor, the objects might be "pieces of text", "pointers
into text", and "display windows". In an electrical design system, the objects might be
"resistors", "capacitors", "transistors", "wires", and "display windows". Mter specifying
what objects there are, the next task of the design is to figure out what operations can be
performed on each object. In the text editor example, operations on "pieces of text" might
include inserting text and deleting text; operations on "pointers into text" might include
moving forward and backward; and operations on "display windows" might include
redisplaying the window and changing which "piece of text" the window is associated with.

In this model, we think of the program as being built around a set of objects, each of
which has a set of operations that can be performed on it. More rigorously, the program
defines several type8 of object (the editor above has three types), and it can create many
in8tance8 of each type (that is, there can be many pieces of text, many pointers into text,
and many windows). The program defines a set of types of object and, for each type, a set
of operations that can be performed on any object of the type.

The new type abstractions may exist only in the programmer's mind. The mapping
into a concrete representation may be done without the aid of any programming features.
For example, it is possible to think of an atom's property list as an implementation of an
abstract data type on which certain operations are defined, implemented in terms of the

Objects, Message Passing, and Flavors 19-1

Objects, Message Passing, and Flavors 19-2

LISP functions get and putprop. AB another example, it is also possible to use "disembo
died property lists". These are property lists (association lists of pairs) which are however
not stored in the global structure of an atom. A disembodied property list has an odd
number of items, the first being nil. Get and put prop still work. This type can be instan
tiated with (cons nil nil) (that is, by evaluating this form you can create a new disembo
died property list); the operations are invoked through functions defined just for that pur-
pose. The fact that disembodied property lists are really implemented as lists indistin
guishable from any other lists, does not invalidate this point of view. However, such con
ceptual data types cannot be distinguished automatically by the system; one cannot ask "is
this object a disembodied property list, as opposed to an ordinary list".

The de!struct for ship used as an example of the LISP deftype type-structure
definitional capability in chapter 19 is another application. This is reviewed in section 19.2
following. defstruct automatically defines some operations on the objects: the operations
to access its elements. We could define other functions that did useful computation with
ships, such as computing their speed, angle of travel, momentum, or velocity, stopping
them, moving them elsewhere, and so on.

In both cases, we represent our conceptual object by one LISP object. The LISP
object we use for the representation has structure and refers to other LISP objects. In the
disembodied property list case, the LISP object is a list of pairs; in the ship case, the LISP
object is an array whose details are taken care of by defstruct. In both cases, we can say
that the object keeps track of an internal state, which can be examined and altered by the
operations available for that type of object. get examines the state of a property list, and
putprop alters it; ship-x-position examines the state of a ship, and (set! (ship-x
position ship) 5.0) alters it.

This is the essence of object-oriented programming. A conceptual object is modeled
by a single LISP object, which bundles up some state information. For every type of
object, there is a set/of operations that can be performed to examine or alter the state of
the object.

19.2. Modularity

An important benefit of the object-oriented style is that it lends itself to a particu
larly simple and lucid kind of modularity. If you have modular programming constructs
and techniques available, they help and encourage you to write programs that are easy to
read and understand, and so .are more reliable and maintainable. Object-oriented program
ming lets a programmer implement a useful facility that presents the caller with a set of
external interfaces, without requiring the caller to understand how the internal details of
the implementation work. In other words, a program that calls this facility can treat the
facility as a black box; the calling program has an implicit contract with the facility
guaranteeing the external interfaces, and that is all it knows.

For example, a program that uses disembodied property lists never needs to know
that the property list is being maintained as a list of alternating indicators and values; the
program simply performs the operations, passing them inputs and getting back outputs.
The program only depends on the external definition of these operations: it knows that if it
putprop's a property, and doesn't remprop it (or putprop over it), then it can do get
and be sure of getting back the same thing it put in. This hiding of the details of the
implementation means that someone reading a program that uses disembodied property
lists need not concern himself with how they are implemented; he need only understand
how what abstract operations are represented. This lets the programmer concentrate his
energies on building a higher-level program rather than understanding the implementation
of the support programs. This hiding of implementation means that the representation of
property lists could be changed and the higher--Ievel program would continue to work. For

Objects, Message Passing, and Flavors 19-3

example, instead of a list of alternating elements, the property list could be implemented
as an association list or a hash table. Nothing in the calling program would change at all.

The same is true of the ship example. The caller is presented with a collection of
operations, such as ship-x-position, ship-y-position, ship-speed, and ship-direction; it
simply calls these and looks at their answers, without caring how they did what they did.
In our example above, ship-x-position and ship-y-position would be accessor functions,
defined automatically by defstruct, while ship-speed and ship-direction would be func
tions defined by the implementor of the ship type. The code might look like this:

(defstruct (ship :conc-name)
x-position
y-position
x-velocity
y-velocity
mass)

(defun ship-speed (ship)
(sqrt (+ (' (ship-x-velocity ship) 2)

(' (ship-y-velocity ship) 2))))

(defun ship-direction (ship)
(atan2 (ship-y-velocity ship)

(ship-x-velocity ship)))

The caller need not know that the first two functions were structure accessors and
that the second two were written by hand and perform arithmetic. Those facts would not
be considered part of the black-box characteristics of the implementation of the ship type.
The ship type does not guarantee which functions will be implemented in which ways;
such aspects are not part of the contract between ship and its callers. In fact, ship could
have been written this way instead:

(defstruct (ship :conc-name)
x-position
y-position
speed
direction
mass)

(defun ship-x-velocity (ship)
(* (ship-speed ship) (cos (ship-direction ship))))

(defun ship-y-velocity (ship)
(* (ship-speed ship) (sin (ship-direction ship))))

In this second implementation of the ship type, we have decided to store the velocity
in polar coordinates instead of rectangular coordinates. This is purely an implementation
decision. The caller has no idea which of the two ways the implementation uses; he just
performs the operations on the object by calling the appropriate functions.

Objects, Message Passing, and Flavors 19-4

We have now created our own types of objects, whose implementations are hidden
from the programs that use them. Such types are usually referred to as abstract types.
The object-oriented style of programming can be used to create abstract types by hiding
the implementation of the operations and simply documenting what the operations are
defined to do.

Some more terminology: the quantities being held by the elements of the ship struc
ture are referred to as instance variables. Each instance of a type has the same operations
defined on it; what distinguishes one instance from another (besides eq-ness) is the values
that reside in its instance variables. The example above illustrates that a caller of opera
tions does not know what the instance variables are; our two ways of writing the ship
operations have different instance variables, but from the outside they have exactly the
same operations.

One might ask: "But what if the caller evaluates (arrayref ship 2) and notices that he
gets back the x-velocity rather than the speed? Then he can tell which of the two imple
mentations were used." This is true; if the caller were to do that, he could tell. However,
when a facility is implemented in the object-oriented style, only certain functions are docu
mented and advertised, the functions that are considered to be operations on the type of
object. The contract from ship to its callers only speaks about what happens if the caller
calls these functions. The contract makes no guarantees at all about what would happen if
the caller were to start poking around on his own using arrayref. A caller who does so is
in error; he is depending on the concrete implementation of the abstraction: something
that is not specified in the contract. No guarantees were ever made about the results of
such action, and so anything may happen; indeed, if ship were reimplemented, the code
that does the arrayref might have a different effect entirely and probably stop working.
This example shows why the concept of a contract between a callee and a caller is impor
tant: the contract specifies the interface between the two modules.

Unlike some other languages that provide abstract types, FRANZ LISP makes no
attempt to have the language automatically forbid constructs that circumvent the con
tract. This is intentional. One reason for this is that LISP is an interactive system, and so
it is important to be able to examine and alter internal state interactively (usually from a
debugger). Furthermore, there is no strong distinction between the "system" and the
"user" portions of the FRANZ LISP system; users are allowed to get into nearly any part of
the language system and change what they want to change.

ill summary: by defining a set of operations and making only a specific set of external
entry-points available to the caller, the programmer can create his own abstract types.
These types can be useful facilities for other programs and programmers. Since the imple
mentation of the type is hidden from the callers, modularity is maintained and the imple
mentation can be changed easily.

We have hidden the implementation of an abstract type by making its operations
into functions which the user may call. The important of the concept is not that they are
functions--in LISP everything is done with functions. The important point is that we have
defined a new conceptual operation and given it a name, rather than requiring each user
who wants to do the operation to write it out step-by-step. Thus we say (ship-x-velocity
s) rather than (arrayref s 2).

Often a few abstract operation functions are simple enough that it is desirable to
compile special code for them rather than really calling the function. (Compiling special
code like this is often called open-coding.) The compiler is directed to do this through use
of macros for example. defstruct arranges for this kind of special compilation for the
functions that get the instance variables of a structure.

When we use this optimization, the implementation of the abstract type is only hid
den in a certain sense. It does not appear in the LISP code written by the user, but does
appear in the compiled code. The reason is that there may be some compiled functions
that use the macros (or other concrete manifestation of the implementation). Even if you

Objects, Message Passing, and Flavors 19-5

change the definition of the macro, the existing compiled code will continue to use the old
definition. Thus, if the implementation of a module is changed, programs that use it may
need to be recompiled. This sacrifice of compatibility between interpreted and compiled
code is usually quite acceptable for the sake of efficiency in debugged code.

In the FRANZ LISP implementation of Flavors which is discussed below, there is no
such compiler incorporation of non modular knowledge into a program, except when the
:ordered-instance-variables feature is used; this is explained in the section on "ordered
instance-variables-option". If you don't use the :ordered-instanee-variables feature,
you don't have to worry about this.

19.3. Generic Operations

Consider the rest of the program that uses the ship abstraction. It may want to deal
with other objects that are like ships in that they are movable objects with mass, but
unlike ships in other ways. A more advanced model of a ship might include the concept of
the ship's engine power, the number of passengers on board, and its name. An object
representing a meteor probably would not have any of these, but might have another attri
bute such as how much iron is in it.

However, all kinds of movable objects have positions, velocities, and masses, and the
system will contain some programs that deal with these· quantities in a uniform way,
regardless of what kind of object is being modeled. For example, a piece of the system
that calculates every object's orbit in space need not worry about the other, more peri
pheral attributes of various types of objects; it works the same way for all objects. Unfor
tunately, a program that tries to calculate the orbit of a ship needs to know the ship's
attributes, and must therefore call ship-x-position and ship-y-veloeity and so on. The
problem is that these functions won't work for meteors. There would have to be a second
program to calculate orbits for meteors that would be exactly the same, except that where
the first one calls ship-x-position, the second one would call meteor-x-position, and so
on. This would be very bad; a great deal of code would have to exist in multiple copies, all
of it would have to be maintained in parallel, and it would take up space for no good rea
son.

What is needed is an operation that can be performed on objects of several different
types. For each type, it should do the thing appropriate for that type. Such operations
are called gener£c operations. The classic example of generic operations is the arithmetic
functions in many programming languages, including FRANZ LISP. The plus function
accepts integers, floats or bignums; (and in Common Lisp compatibility mode, + accepts
ratios and complex numbers), and perform an appropriate kind of addition, based on the
data types of the objects being manipulated. In Macsyma, an algebraic manipulation sys
tem written in FRANZ LISP, the + operation works for matrices, polynomials, rational func
tions, and arbitrary algebraic expression trees. In our example, we need a generic x
position operation that can be performed on either ship's, meteor's, or any other kind of
mobile object represented in the system. This way, we can write a single program to cal
culate orbits. When it wants to know the x position of the object it is dealing with, it sim
ply invokes the generic x-position operation on the object, and whatever type of object it
has, the correct operation is performed, and the x position is returned.

In the following discussion we use another idiom adopted from the Smalltalk
language: performing a generic operation is called sending a message. The message consists
of an operation name (a symbol) and arguments. The objects in the program are thought
of as little people, who get sent messages and respond with answers (returned values). In
the example above, the objects are sent x-position messages, to which they respond with
their x position.

Objects, Message Passing, and Flavors 19-6

Sending a message is a way of invoking a function without specifying which function
is to be called. Instead, the data determines the function to use. The caller specifies an
operation name and an object; that is, it said what operation to perform, and what object
to perform it on. The function to invoke is found from this information.

The two data used to figure out which function to call are the type of the object, and
the name of the operation. The same set of functions are used for all instances of a given
type, so the type is the only attribute of the object used to figure out which function to
call. The rest of the message besides the operation is data which are passed as arguments
to the function, so the operation is the only part of the message used to find the function.
Such a function is called a method. For example, if we send an x-position message to an
object of type ship, then the function we find is "the ship type's x-position method". A
method is a function that handles a specific operation on a specific kind of object; this
method handles messages named x-position to objects of type ship.

In our new terminology: the orbit-calculating program finds the x position of the
object it is working on by sending that object a message consisting of the operation x
position and no arguments. The returned value of the message is the x position of the
object. If the object was of type ship, then the ship type's x-position method was
invoked; if it was of type meteor, then the meteor type's x-position method was
invoked. The orbit-calculating program just sends the message, and the right function is
invoked based on the type of the object. We now have true generic functions, in the form
of message passing: the same operation can mean different things depending on the type of
the object.

19.4. Generic Operations in LISP

How do we implement message passing in LISP? Our convention is that objects that
receive messages are always functional objects (that is, you can apply them to arguments).
A message is sent to an object by calling that object as a function, passing the operation
name as the first argument and the arguments of the message as the rest of the arguments.
Operation names are represented by symbols; normally these symbols are installed in the
keyword package, if your system includes the Common LISP- compatibility "package" sys
tem. The principal operational difference is that with the package system, you may omit
certain quotes. See the example below. So if we have a variable my-ship whose value is
an object of type ship, and we want to know its x position, we send it a message as fol
lows:

(send my-ship ':x-position) ;; no packages

If you have an installed package system as in Franz Opus 42.09 and later (as we
assume for future examples) you may use the unquoted symbol as in:

(send my-ship :x-position) ;; package system installed

To set the ship's x position to 3.0, we send it a message like this:

Objects, Message Passing, and Flavors 19-7

(send my-ship :set-x-position 3.0)

A variation supported in some Flavor systems would allow

(send my-ship :set :x-position 3.0) ;; not supported

but this is not provided in FRANZ LISP.

It should be stressed that no new features are added to LISP for message sending; we
simply define a convention on the way objects take arguments. The convention says that
an object accepts messages by always interpreting its first argument as an operation name.
The object must consider this operation name, find the function which is the method for
that operation, and invoke that function.

To emphasize the relationship between well-known features and the new object;..
oriented version, we define the two basic functions for message passing as follows:

(send 's_object 's_operation [arguments])

NOTE: Same as
Juncal/.

Conceptually, this sends 8_obfect a message with operation and arguments as specified.
The function send is preferable to funcall, when a message is being sent, since it reminds
the programmer of the usage.

In some implementations of Flavors, the semantics of 8end may differ from Juncall in
those cases where 8_obfect is a symbol, list, number, or other object that does not normally
handle messages.

(lexpr-send)

NOTE: Same as
apply.

How does this all work? The object must somehow find the right method for the mes
sage it is sent. Furthermore, the object now has to be callable as a function. However,an
ordinary function will not do: we need a data structure that can store the instance variables
(the internal state) of the object. Of the FRANZ LISP features available,
the most appropriate is the closure. A message-receiving object could be implemented as a

closure over a set of instance variables. The function inside the closure would have a big
selectq form to dispatch on its first argument.

While using closures as given does work, it has several problems. The main problem is
that in order to add a new operation to a system, it is necessary to modify code in more
than one place: you have to find all the types that "understand" that operation, and add a
new clause to the selectq. The problem with this is that you cannot textually separate the
implementation of your new operation from the rest of the system: the methods must be
interleaved with the other operations for the type. Adding a new operation should only

Objects, Message Passing, and Flavors 19-8

require adding LISP code; it should not require modifying LISP code.

For example, the conventional way of making generic operations for arithmetic on
various new mathematical objects is to have a procedure for each operation (+, *, etc),
which has a big selectq for all the types; this means you have to modify code in (generic
plus, generic-times, ...) to add a type. This is inconvenient and error-prone.

The flavor mechanism is a streamlined, more convenient, and time-tested system for
creating message-receiving objects. With flavors, you can add a new method simply by
adding code, without modifying existing code. Furthermore, many common and useful
things are very easy to do with flavors. The rest of this chapter describes flavors.

19.5. Simple Use or Flavors

A flavor, in its simplest form, is a definition of an abstract type. New flavors are
created with the deffiavor special form, and methods of the flavor are created with the
dermethod special form. New instances of a flavor are created with the make-instance
function. This section explains simple uses of these forms.

For an example of a simple use of flavors, here is how the ship example above would
be implemented.

(delllavor ship (x-position y-position
x-velocity y-velocity mass)

o
:gettable-instance-variables)

(defmethod (ship :speed) 0
(sqrt (+ r x-velocity 2)

r y-velocity 2))))

(defmethod (ship :direction) 0
(atan2 y-velocity x-velocity»

The code above creates a new flavor. The first subform of the deffiavor is ship,
which is the name of the new flavor. Next is the list of instance variables; they are the five
that should be familiar by now. The next subform is something we will get to later. The
rest of the subforms are the body of the deffiavor, and each one specifies an option about
this flavor. In our example, there is only one option, namely :gettable-instance
variables. This means that for each instance variable, a method should automatically be
generated to return the value of that instance variable. The name of the operation is a
symbol with the same name as the instance variable, but interned on the keyword package.
Thus, methods are created to handle the operations :x-position, :y-position, and so on.

Each of the two defmethod forms adds a method to the flavor. The first one adds a
handler to the flavor ship for the operation :speed. The second subform is the lambda
list, and the rest is the body of the function that handles the :speed operation. The body
can refer to or set any instance variables of the flavor, just like variables bound by acon
taining let. When any instance of the ship flavor is invoked with a first argument of
:direetion, the body of the second dermethod is evaluated in an environment in which
the instance variables of ship refer to the instance variables of this instance (the one to
which the message was sent). So the arguments passed to atan are the the velocity

Objects, Message Passing, and Flavors 19-9

components of this particular ship. The result of atan becomes the value returned by the
:direction operation.

Now we have seen how to create a new abstract type: a new flavor. Every instance
of this flavor has the five instance variables named in the deftlavor form, and the seven
methods we have seen (five that were automatically generated because of the :gettable
instance-variables option, and two that we wrote ourselves). The way to create an
instance of our new flavor is with the make-instance function. Here is how it could be
used:

(setq my-ship (make-instance 'ship))

This returns an object whose printed representation is something like #<SHIP
13731210 >. (the details of the print form will vary; it is an object which cannot be read
back in from the short-hand representation). The argument to make-instance is the
name of the flavor to be instantiated. Additional arguments, not used here, are in it
options, that is, commands to the flavor of which we are making an instance, selecting
optional features. This will be discussed more in a moment.

Examination of the flavor we have defined shows that it is quite useless as it stands,
since there is no way to set any of the parameters. We can fix this up easily by putting
the :settable-instance-variables option into the deftlavor form. This option tells
deftlavor to generate methods for operation :set for first argument :x-position, :y
position, and so on. Each such method takes one additional argument and sets the
corresponding instance variable to that value. It also generates methods for the operations
:set-x-position, :set-y-position and so on. Each of these takes one argument and sets the
corresponding variable.

Another option we can add to the deftlavor is :inittable-instance-variables,
(alternative spelling for compatibility is :initable-instance-variables) which allows us to
initialize the values of the instance variables when an instance is first created. :inittable
instance-variables does not create any methods; instead, it makes initialization keywords
named :x-position, :y-position, etc., that can be used as init-option arguments to
make-instance to initialize the corresponding instance variables. The list of init options
is sometimes called the init-plist because it is like a property list.

Here is the improved deftlavor:

(defflavor ship (x-position y-position
x-velocity y-velocity mass)

o
:gettable-instance-variables
:settable-instance-variables
:inittable-instance-variables)

All we have to do is evaluate this new deftlavor, and the existing flavor definition is
updated and now includes the new methods and initialization options. In fact, the instance
we generated a while ago now accepts the new operations! We can set the mass of the ship
we created by evaluating

Objects, Message Passing, and Flavors 19-10

(send my-ship :set-mass 3.0)

and the mass instance variable oC my-ship is properly set to 3.0. Whether you use :set
mass or the general operation :set is a matter oC style; :set is used by the expansion oC
(set! (send my-ship :mass) 3.0).

[IMPORTANT REMINDER: IF YOU ARE USING EARLIER VERSIONS OF
THIS SYSTEM IT WILL BE NECESSARY FOR YOU TO 'QUOTE' THE
ATOMS IN THE MESSAGES: e.g. (send my-ship ':set-mass 3.0)]

If you want to play around with flavors, it is useCul to know that describe oC an
instance tells you the flavor oC the instance and the values oC its instance variables. If we
were to evaluate (describe my-ship) at this point, the Collowing would be printed:

#<ship 3214320>, an object of flavor ship,
has instance variable values:

x-position: nil
y-position: nil
x-velocity: nil
y-velocity: nil
mass: 3.0

Now that the instance variables are inittable, we can create another ship and initial
Ize some oC the instance variables using the init-plist. Let's do that and describe the
result:

=> (setq her-ship (make-instance 'ship :x-position 0.0 :y-position 2.0 :mass 3.5))

#<SHIP 3242340>

=> (describe her-ship)
#<SHIP 3242340>, an object of flavor ship,
has instance variable values:

x-position: 0.0
y-position: 2.0
x-velocity: nil
y-veloeity: nil
mass: 3.5

A flavor can also establish deCault initial values Cor instance variables. These deCault
values are used when a new instance is created iC the values are not initialized any other
way. The syntax Cor specifying a deCault initial value is to replace the name oC the
instance variable by a list, whose first element is the name and whose second is a Corm to
evaluate to produce the deCault initial value. For example when read in the definitions:

Objects, Message Passing, and Flavors

(defvar *default-x-velocity* 2.0)
(defvar *default-y-velocity* 3.0)

(deffiavor ship ((x-position 0.0)
(y-position 0.0)
(x-velocity *default-x-velocity*)
(y-velocity *default-y-velocity*)
mass)
o

:gettable-instance-variables
:settable-instance-variables
:inittable-instance-variables)

Then the system works as follows:

=> (setq another-ship (make-instance 'ship :x-position 3,4))
#<SHIP 2342340>
= > (describe another-ship)
#<SHIP 2342340>
an object of flavor ship,
has instance variable values:

x-position: 3,4
y-position: 0.0
x-velocity: 2.0
y-velocity: 3.0'
mass: nil

19-11

The value oC x-position was initialized explicitly, so the default was ignored. The
value oC y-position was initialized Crom the default value, which was 0.0. The two velo
city instance variables were initialized. from their deCault values, which came Crom two glo
bal variables. The value oC mass was not explicitly initialized and did not have a deCault
initialization, so it was left as nil. Some flavor implementations use a special value "void"
rather than nil.

There are many other options that can be used in deffiavor, and the init options can
be used more flexibly than just to initialize instance variables; full details are given later in
this chapter. But even with the small set oC Ceatures we have seen so far, it is easy to write
object-oriented programs.

19.6. Mixing Flavors

Now we have a system Cor defining message-receiving objects so that we can have
generic operations. If we want to create a new type called meteor that would accept the
same generic operations as ship, we could simply write another deIDavor and two more
dermethod's that looked just like those of ship, and then meteors and ships would both
accept the same operations. Objects oC type ship would have some more instance vari
ables for holding attributes specific to ships and some more methods Cor operations that are
not generic, but are only defined Cor ships; the same would be true of meteor.

Objects, Message Passing, and Flavors 19-12

However, this would be a a wasteful thing to do. The same code has to be repeated
in several places, and several instance variables have to be repeated. The code now needs
to be maintained in many places, which is always undesirable. The power of flavors (and
the name "flavors") comes from the ability to mix several flavors and get a new flavor.
Since the functionality of ship and meteor partially overlap, we can take the common
functionality and move it into its own flavor, which might be called moving-object. We
would define moving-object the same way as we defined ship in the previous section.
Then, ship and meteor could be defined like this:

(detnavor ship (engine-power number-of-passengers name)
(moving-object)

:gettable-instance-variables)

(detnavor meteor (percent-iron)
(moving-object)

:inittable-instance-varia.bles)

These deftlavor forms use the second subform, for which we previously used O. The
second subform is a list of flavors to be combined to form the new flavor; such flavors are
called component8. Concentrating on ship for a moment (analogous statements are true of
meteor), we see that it has exactly one component flavor: moving-object. It also has a
list of instance variables, which includes only the ship-specific instance variables and not
the ones that it shares with meteor. By incorporating moving-object, the ship flavor
acquires all of its instance variables, and so need not name them again. It also acquires all
of moving-object's methods, too. So with the new definition, ship instances still imple
ment the :x-velocity and :speed operations, with the same meaning as before. However,
the :engine-power operation is also understood (and returns the value of the engine
power instance variable).

What we have done here is to take an abstract type, moving-object, and build two
more specialized and powerful abstract types on top of it. Any ship or meteor can do any
thing a moving object can do, and each also has its own specific abilities. This kind of
building can continue; we could define a flavor called ship-with-passenger that was built
on top of ship, and it would inherit all of moving-object's instance variables and
methods as well as ship's instance variables and methods. Furthermore, the second sub
form of deftlavor can be a list of several components, meaning that the new flavor should
combine all the instance variables and methods of all the flavors in the list, as well as the
ones tho8e flavors are built on, and so on. All the components taken together form a big
tree of flavors. A flavor is built from its components, its components' components, and so
on. We sometimes use the term "components" to mean the immediate components (the
ones listed in the deftlavor), and sometimes to mean all the components (including the
components of the immediate components and so on). (Actually, it is not strictly a tree,
since some flavors might be components through more than one path. It is really a
directed graph; it can even be cyclic.)

The order in which the components are combined to form a flavor is important. The
tree of flavors is turned into an ordered list by performing a top-down, depth-fir8t walk of
the tree, including non-terminal nodes before the subtrees they head, ignoring any flavor
that has been encountered previously somewhere else in the tree. For example, if flavor
l's immediate components are flavor-2 and flavor-3, and flavor-2's components are
flavor-4 and fiavor-5, and fiavor-3's component was fiavor-4, then the complete list of
components of fiavor-1 would be: (flavor-I, flavor-2, flavor-4, flavor-5, flavor-3) The
flavors earlier in this list are the more specific, less basic ones; in our example, ship-with-

Objects, Message Passing, and Flavors 19-13

passengers would be first in the list, followed by ship, followed by moving-object. A
flavor is always the first in the list of its own components. Notice that flavor-4 does not
appear twice in this list. Only the first occurrence of a flavor appears; duplicates are
removed. (The elimination of duplicates is done during the walk; if there is a cycle in the
directed graph, it does not cause a non-terminating computation.)

The set of instance variables for the new flavor is the union of all the sets of instance
variables in all the component flavors. If both flavor-2 and flavor-3 have instance vari
ables named foo, then flavor-l has an instance variable named foo, and any methods
that refer to foo refer to this same instance variable. Thus different components of a
flavor can communicate with one another using shared instance variables. (Typically, only
one component ever sets the variable; the others only look at it.) The default initial value
for an instance variable comes from the first component flavor to specify one.

The way the methods of the components are combined is the heart of the flavor sys
tem. When a flavor is defined, a single function, called a combined method, is constructed
for each operation supported by the flavor. This function is constructed out of all the
methods for that operation from all the components of the flavor. There are many
different ways that methods can be combined; these can be selected by the user when a
flavor is defined. The user can also create new forms of combination.

There are several kinds of methods, but so far, the only kinds of methods we have
seen are primary methods. The default way primary methods are combined is that all but
the earliest one provided are ignored. In other words, the combined method is simply the
primary method of the first flavor to provide a primary method. What this means is that
if you are starting with a flavor foo and building a flavor bar on top of it, then you can
override foo's method for an operation by providing your own method. Your method will
be called, and foo's will never be called.

Simple overriding is often useful; for example, if you want to make a new flavor bar
that is just like foo except that it reacts completely differently to a few operations. How
ever, often you don't want to completely override the base flavor's (foo's) method; some
times you want to add some extra things to be done. This is where combination of
methods is used.

The usual way methods are combined is that one flavor provides a primary method,
and other flavors provide daemon methods. The idea is that the primary method is "in
charge" of the main business of handling the operation, but other flavors just want to keep
informed that the message was sent, or just want to do the part of the operation associated
with their own area of responsibility.

daemon methods come in two kinds, before and after. There is a special syntax in
defmethod for defining such methods. Here is an example of the syntax. To give the
ship flavor an after-daemon method for the :speed operation, the following syntax would
be used:

(dermethod (ship :after :speed) 0 body)

Now, when a message is sent, it is handled by a new function called the combined
method. The combined method first calls all of the before daemons, then the primary
method, then all the after daemons. Each method is passed the same arguments that the
combined method was given. The returned values from the combined method are the
values returned by the primary method; any values returned from the daemons are
ignored. Before-daemons are called in the order that flavors are combined, .while afte

Objects, Message Passing, and Flavors 10-14

daemons are called in the reverse order. In other words, if you build bar on top of foo,
then bar's before-daemons run before any of those in foo, and bar's after-daemons run
after any of those in roo.

The reason for this order is to keep the modularity order correct. If we create
:8avor-1 built on fiavor-2, then the components of fiavor-2 should not matter. Our new
before-daemons go before all methods of fiavor-2, and our new after-daemons go after all
methods of fiavor-2. Note that if you have no daemons, this reduces to the form of com
bination described above. The most recently added component flavor is the highest level
of abstraction; you build a higher-level object on top of a lower-level object by adding new
components to the front. The syntax for defining daemon methods can be found in the
description of dermethod below.

To make this a bit more clear, let's consider a simple example that is easy to play
with: the :print-self method. The LISP printer (i.e. the print function) prints instances
of flavors by sending them :print-self messages. The first argument to the :print-self
operation is a port (we can ignore the others for now), and the receiver of the message is
supposed to print its printed representation on the port. In the ship example above, the
reason that instances of the ship flavor printed the way they did is because the ship flavor
was actually built on top of a very basic flavor called vanilla-fiavor; this component is
provided automatically by deftlavor. It was vanilla-fiavor's :print-selr method that
was doing the printing. Now, if we give ship its own primary method for the :print-self
operation, then that method completely takes over the job of printing: vanilla-fiavor's
method will not be called at all. However, if we give ship a before-daemon method for the
:print-selr operation, then it will get invoked before the vanilla-fiavor method, and so
whatever it prints will appear before what vanilla-fiavor prints. So we can use before
daemons to add prefixes to a printed representation; similarly, after-daemons can add
suffIXes.

There are other ways to combine methods besides daemons, but this way is the most
common. The more advanced ways of combining methods are explained in a later section.
The details of vanilla-fiavor and what it does for you are also explained later.

19.7. Flavor Functions

We've been using this special form informally:

(deftlavor flavor-name ([var] ..) ([flav] ...) [options] ...))

WHERE: flavor-name is a symbol which serves to name this flavor.

var's are the names of the instance-variables containing the local state for this
flavor. A list of two elements: the name of an instance-variable and a default ini
tialization form is also acceptable; the initialization form is evaluated when an
instance of the flavor is created if no other initial value for the variable is
obtained. If no initialization is specified, the variable has value nil.

flav's are the names of the component flavors out of which this flavor is built.
The features of those flavors are inherited as described previously.

opt's are options; each option may be either a keyword symbol or a list of a key
word symbol and arguments. The options to deftlavor are described under
deffiavor-options.

SIDE EFFECT: The symbol flavor-name is given a flavor property which is the internal data
structure containing the details of the flavor.

Objects, Message Passing, and Flavors 19-15

NOTE: Objects which are instances of flavors are FRANZ LISP vectors. More detail can be
obtained with the function :typep, below.

(:typep 's_item 's_flavor)

RETURNS: t if the sybol s_item is an instance of s_flavor, nil otherwise.

NOTE: The name of this function is of historical origin.

(:typep my-ship 'ship)
=>t
(type my-ship)
=> vector

An important and useful global variable IS available: A list of the names of all the
flavors that have ever been defi1avor'ed.

(defmethod (flavor-name method-type operation) lambda-list [form] ... »
WHERE: flavor-name is a symbol which is the name of the flavor which is to receive the

method. operation is a keyword symbol which names the operation to be han
dled. method-type is a keyword symbol for the type of method; it is omitted when
you are defining a primary method. For some method-types, additional inform~
tion is expected. It comes after operation.

SIDE EFFECT: Defmethod defines a method, that is, a function to handle a particular oper~
tion for instances of a particular flavor. The meaning of method-type depends
on what style of method combination is declared for this operation. For
instance, if :daemon combination (the default style) is in use, method types
:before and :after are allowed. See section 19.11 for a complete description
of the way methods are combined.

lambda-list describes the arguments and aux variables of the function. The
first argument to the method, which is the operation name itself, is automati
cally handled and so is not included in the lambda-list. Note that methods
may not have unevaluated ("e) arguments; that is, they must be func
tions, not special forms. forms, are the function body; the value of the last
form is returned when the method is applied.

The variant form

(defmethod (flavor-name operation) junction)

where function is a symbol, says that flavor-name's method for operation is function, a sym
bol which names a function. That function must take appropriate arguments; the first argu
ment is the operation. When the function is called, seif will be bound.

If you redefine a method that is already defined, the old definition is replaced by the
new one. Given a flavor, an operation name, and a method type, there can only be one
function (with the exception of :case methods) so if you define a :before daemon method

Objects, Message Passing, and Flavors 19-16

for the roo flavor to handle the :bar operation, then you replace the previous before
daemon; however, you do not affect the primary method or methods of any other type,
operation or flavor.

This is useful to know if you want to trace a method, or if you want to poke around
at the method function itself.

(make-instance flavor-name [init-option value] ...)

RETURNS: an instance of the specified flavor which has just been created.

NOTE: Arguments after the first are alternating init-option keywords and arguments to those
keywords. These options are used to initialize instance variables and to select arbi
trary options, as described above. An :init message is sent to the newly-created
object with one argument, the init-plist. This is a disembodied property-list contain
ing the init-options specified and those defaulted from the flavor's :default-init-plist
(however, init keywords that simply initialize instance variables, and the correspond
ing values, may be absent when the :init methods are called). make-instance is an
easy-to-call interface to instantiate-flavor, below.

If :allow-other-keys is used as an in it keyword with a non-nil value, this error check
is suppressed. Then unrecognized keywords are simply ignored. Example:

(make-instance 'roo :Iose 5 :aJlow-other-keys t)

specifies the init keyword :lose, but prevents an error should the keyword not be handled.

(instantiate-flavor flavor-name init-plist [send-init-message-p return-unhandled-keywords area])

RETURNS: an instance.

NOTE: This is an extended version of make-instance, giving you more features. Note that
it takes the init-plist as an individual argument, rather than taking a rest argument
of init options and values.

The init-plist argument must be a disembodied property list, Beware! This property
list can be modified; the properties from the default init plist are putprop'ed on if not
already present, and some :init methods do explicit putprop's onto the init-plist.

In the event that :init methods remprop properties already on the init-plist (as
opposed to simply doing get and putprop), then the init-plist is rplacd'ed. This means
that the actual supplied list of options is modified. It also means that the caller of
instantiate-flavor should copy its init-plist argument (e.g. with append).

Do not use nil as the init-plist argument. This would mean to use the properties of
the symbol nil as the init options. If your goal is to have no init options, you must provide
a property list containing no properties, such as the list (nil).

Here is the sequence of actions by which instantiate-flavor creates a new instance:

First, the specified flavor's instantiation flavor function if it exists, is called to determine
which flavor should actually be instantiated. If there is no instantiation flavor function, the
specified flavor is instantiated.

If the flavor's method hash-table and other internal information have not been computed or
are not up to date, they are computed. This may take a substantial amount of time or even
invoke the compiler, but it happens only once for each time you define or redefine a

Objects, Message Passing, and Flavors 19-17

particular flavor.

Next, the instance itself is created. The area argument is irrelevant to FRANZ LISP but
refers to consing in specified areas, a feature used in some Lisp machines.

Then the initial values of the instance variables are computed. If an instance variable is
declared inittable, and a keyword with the same spelling as its name appears in init-plist,
the property for that keyword is used as the initial value.

Otherwise, if the default init plist specifies such a property, it is evaluated and the value is
used. Otherwise, if the flavor definition specifies a default initialization form, it is evaluated
and the value is used. The initialization form may not refer to any instance variables. It
can find the new instance in self but should not invoke any operations on it and should not
refer directly to any instance variables. It can get at instance variables using accessor mac
ros created by the :outside-accessible-instance-variables option or the function
symeval-in-instance.

If an instance variable does not get initialized either of these ways it is left nil; an :init
method may initialize it (see below).

All remaining keywords and values specified in the :default-init-plist option to deffiavor,
that do not initialize instance variables and are not overridden by anything explicitly
specified in init-piist are then merged into init-plist using putprop. The default init plist of
the instantiated flavor is considered first, followed by those of all the component flavors in
the standard order.

Then keywords appearing in the init-plist but not defined with the :init-keywords option
or the :inittable-instance-variables option for some component flavor are collected. If
the :allow-other-keys option is specified with a non-nil value (either in the original in it
plist argument or by some default init plist) then these unhandled keywords are ignored. If
the return-unhandled-keywords argument is non-nil, a list of these keywords is returned as
the second value of instantiate-flavor. Otherwise, an error is signaled if any unrecognized
init keywords are present.

If the send-init-message-p argument is supplied and non-nil, an :init message is sent to the
newly-created instance, with one argument, the init-plist. get can be used to extract
options from this property-list. Each flavor that needs initialization can contribute an :init
method by defining a daemon.

The :init methods should not look on the init-plist for keywords that simply initialize
instance variables (that is, keywords defined with :inittable-instance-variables rather
than :init-keywords). The corresponding instance variables are already set up when the
:init methods are called, and sometimes the keywords and their values may actually be
missing from the init-plist if it is more efficient not to put them on. To avoid problems,
always refer to the instance variables themselves rather than looking for the init keywords
that initialize them.

Objects, Message Passing, and Flavors 19-18

(:init init-plist)
This operation is implemented on all flavor instances.

SIDE EFFECT: This function examines the init keywords and perform whatever initializa
tions are appropriate. init-piist is the argument that was given to
instantiate-flavor, and may be passed directly to get to examine the value
of any particular init option.

(instancep object)

The default definition of this operation does nothing. However, many flavors
add :before and :after daemons to it.

RETURNS: t if object is an instance of a flavor.

(defwrapper lambda-list macro-body-arg)

NOTE: This is complex and you may not be able to follow the description until you have
tried to use flavors ..

Sometimes the way the flavor system combines the methods of different flavors (the
daemon system) is not powerful enough. In that case defwrapper can be used to
define a macro that expands into code that is wrapped around the invocation of the
methods. This is best explained by an example; suppose you needed a lock locked
during the processing of the :foo operation on flavor bar, which takes two argu
ments, and you have a lock-frobbol'l special-form that knows how to lock the lock
(presumably it generates an unwind-protect). lock-frobbol'l needs to see the first
argument to the operation; perhaps that tells it what sort of operation is going to be
performed (read or write).

(defwrapper (bar :foo) «argi arg2) . body)
'(Jock-frobboz (self argI)

. ,body»

The use of the body macro-argument prevents the macro defined by defwrapper from knowing
the exact implementation and allows several defwrapper's from different flavors to be combined
properly.

Note that the argument variables, argl and arg2, are not referenced with commas
before them. These may look like defmacro "argument" variables, but they are not.
Those variables are not bound at the time the defwrapper-defined macro is expanded and
the back-quoting is done; rather the result of that macro-expansion and back-quoting is code
which, when a message is sent, will bind those variables to the arguments in the message as
local variables of the combined method.

Consider another example. Suppose you thought you wanted a :before daemon, but
found that if the argument was nil you needed to return from processing the message
immediately, without executing the primary method. You could write a wrapper such as

Objects, Message Passing, and Flavors

(defwrapper (bar :foo) ((argl) . body)
'(cond ((null argl))

(t (print· About to do :FOO")
. ,body)))

19-10

Suppose you need a variable for communication among the daemons for a particular
operation; perhaps the :after daemons need to know what the primary method did, and it is
something that cannot be easily deduced from just the arguments. You might use an
instance variable for this, or you might create a special variable which is bound during the
processing of the operation and used free by the methods.

(defvar *communication*)
(de(wrapper (bar :(00) (ignore. body)

'(let ((*communication* nil))
. ,body))

Similarly you might want a wrapper that puts a catch around the processing of an
operation so that anyone of the methods could throw out in the event of an unexpected
condition.

Like daemon methods, wrappers work in outside-in order; when you add a
defwrapper to a flavor built on other flavors, the new wrapper is placed outside any
wrappers of the component flavors. However, all wrappers happen before any daemons hap
pen. When the combined method is built, the calls to the before-daemon methods, primary
methods, and after-daemon methods are all placed together, and then the wrappers are
wrapped around them. Thus, if a component flavor defines a wrapper, methods added by
new flavors execute within that wrapper's context.

:around methods can do some of the same things that wrappers can. If one flavor
defines both a wrapper and an :around method for the same operation, the :around
method is executed inside the wrapper.

Be careful about inserting the body into an internal lambda-expression within the
wrapper's code. Doing so interacts with the internals of the flavor system and requires
knowledge of things not documented in the manual in order to work properly. It is much
simpler to use an :around method instead.

Objects, Message Passing, and Flavors 19-20

(undeffiavor 'flavor)
Undefines flavor flavor. All methods of the flavor are lost. flavor and all flavors that depend on
it are no longer valid to instantiate.

If instances of the discarded definition exist, they continue to use that definition. When a mes
sage is sent to an object, the variable self is automatically bound to that object, for the benefit of
methods which want to manipulate the object itself (as opposed to its instance variables).

(send s_instance 's_message [argument] ...)
(funcall s_instance 's_message [argument] ...)

NOTE: This is the way a message is passed to an instance of a flavor. send and funcall
operate in essentially the same manner.

(send-self's_message [argument] ...)
(funcall-self's_message [argument] ...)

(lexpr-send-self message arguments .. list-of-arguments)
(lexpr-funcall-self operation arguments ... list-of-arguments)
funcall-self is nearly equivalent to funcall with self as the first argument, but funcall-self is a
little faster. The others are analogous.

(w ith-self-variables-bound body)
Within the body of this special form, all of self's instance variables are bound as specials to the
values inside self. (Normally this is true only of those instance variables that are specified in
:special-instance-variables when self's flavor was defined.) As a result, inside the body you
can use set, boundp and symeval, etc., freely on the instance variables of self.

(recompile-flavor flavor-name [single-operation (use-old-combined-methods t) (do-dependents
t)])
Updates the internal data of the flavor and any flavors that depend on it. If single-operation is
supplied non-nil, only the methods for that operation are changed. The system does this when
you define a new method that did not previously exist. If use-old-combined-methods is t, then the
existing combined method functions are used if possible. New ones are generated only if the set
of methods to be called has changed. This is the default. If use-old-combined-methods is nil,
automatically-generated functions to call multiple methods or to contain code generated by
wrappers are regenerated unconditionally. If do-dependents is nil, only the specific flavor you
specified is recompiled. Normally all flavors that depend on it are also recompiled.

recompile-flavor affects only flavors that have already been compiled. Typically this means it
affects flavors that have been instantiated, but does not bother with mixins. If this variable is
non-nil, automatic recompilation of combined methods is turned off.

If you wish to make several changes each of which will cause recompilation of the same combined
methods, you can use this variable to speed things up by making the recompilations happen only
once. Set the variable to t, make your changes, and then set the variable back to nil. Then use
recompile-flavor to recompile whichever combined methods need it.

NOTE: compile-flavor-methods and related functions are currently unimplemented in FRANZ

LISP.

Objects, Message Passing, and Flavors 19-21

(get-handler-for 'object 'operation)
Given an object and an operation, this returns the object's method for that operation, or nil if it
has none. When obiect is an instance of a flavor, this function can be useful to find which of that
flavor's components supplies the method.

This is related to the :handler function specification. It is preferable to use the gen
eric operation :get-handler-lor.

(flavor-allows-init-keyword-p 'flavor-name 'keyword)

RETURNS: non-nil if the flavor named flavor-name allows keyword in the init options when it
is instantiated, or nil if it does not. The non-nil value is the name of the com
ponent flavor that contributes the support of that keyword.

si:flavor-all-allowed-init-keywords flavor-name

RETURNS: a list of all the init keywords that may be used in instantiating flavor-name.

symeval-in-instance 'instance 'symbol ['no-error-p]

RETURNS: the value of the instance variable 8ymbol inside in8tance. If there is no such
instance variable, an error is signaled, unless no-error-p is non-nil in which case
nil is returned.

set-in-instance 'instance 'symbol 'value

SIDE EFFECT: Sets the value of the instance variable 8ymbol inside in8tance to value. If
there is no such instance variable, an error is signalled.

describe-flavor flavor-name

SIDE EFFECT: Prints descriptive information about a flavor; it is self-explanatory. An
important thing it tells you that can be hard to figure out yourself is the
combined list of component flavors; this list is what is printed after the
phrase 'and directly or indirectly depends on'.

Whenever a flavor instance is sent a message whose operation it does not handle, an
error is signalled.

19.8. Defflavor Options

There are quite a few options to defflavor. They are all described here, although
some are for very specialized purposes and not of interest to most users. Each option can
be written in two forms; either the keyword by itself, or a list of the keyword and argu
ments to that keyword.

Several of these options declare things about instance variables. These options can
be given with arguments which are instance variables, or without any arguments in which
case they refer to all of the instance variables listed at the top of the defflavor. This is
not necessarily all the instance variables of the component flavors, just the ones mentioned
in this flavor's deftlavor. When arguments are given, they must be instance variables that
were listed at the top of the deftlavor; otherwise they are assumed to be misspelled and an
error is signalled. It is legal to declare things about instance variables inherited from a
component flavor, but to do so you must list these instance variables explicitly in the
instance variable list at the top of the deftlavor.

:gettable-instance-variables
Enables automatic generation of methods for getting the values of instance variables.
The operation name is the name of the variable, in the keyword package (i.e. it has a
colon in front of it).

Note that there is nothing special about these methods; you could easily define them
yourself. This option generates them automatically to save you the trouble of

Objects, Message Passing, and Flavors 19-22

writing out a lot of very simple method definitions. (The same is true of methods
defined by the :settable-instance-variables option.) If you define a method for the
same operation name as one of the automatically generated methods, the explicit
definition overrides the automatic one.

:settable-instance-variables
Enables automatic generation of methods for setting the values of instance variables.
The operation name is ':set-' followed by the name of the variable. All settable
instance variables are also automatically made gettable and inittable. (See the note
in the description of the :gettable-instance-variables option, above.)

In addition, :case methods are generated for the :set operation with suboperations
taken from the names of the variables, so that :set can be used to set them.

:inittable-instance-variables
The instance variables listed as arguments, or all instance variables listed in this
deffiavor if the keyword is given alone, are made inittable. This means that they
can be initialized through use of a keyword (a colon followed by the name of the
variable) as an init-option argument to make-instance.

:special-instance-variables
The instance variables listed as arguments, or all instance variables listed in this
deffiavor if the keyword is given alone, will be bound dynamically when handling
messages. (By default, instance variables are bound lexically with the scope being
the method.) You must do this to any instance variables that you wish to be accessi
ble through symeval, set, boundp and makunbound, since they see only dynamic
bindings.

This should also be done for any instance variables that are declared globally special.
If you omit this, the flavor system does it for you automatically when you instantiate
the flavor, and gives you a warning to remind you to fix the deffiavor.

NOTE: This option has no effect in Franz, as all instance variables are implicitly special in
both interpreted and compiled code.

:init-keywords
The arguments are declared to be valid keywords to use in instantiate-Hav~r when
creating an instance of this flavor (or any flavor containing it). The system uses this
for error-checking: before the system sends the :init message, it makes sure that all
the keywords in the init-plist are either inittable instance variables or elements of
this list. If any is not recognized, an error is signalled. When you write a :init
method that accepts some keywords, they should be listed in the :init-keywords
option of the flavor.

If :allow-other-keys is used as an init keyword with a non-nil value, this error
check is suppressed. Then unrecognized keywords are simply ignored.

:default-init-plist
The arguments are alternating keywords and value forms, like a property list. When
the flavor is instantiated, these properties and values are put into the init-plist unless
already present. This allows one component flavor to default an option to another
component flavor. The value forms are only evaluated when and if they are used.
For example,

Objects, Message Passing, and Flavors 19-23

(:default-init-plist :frob-array
(make-array 100))

would provide a default "frob array" for any instance for which the user did not provide one
explicitly.

(:default-init-plist :allow-other-keys t)

prevents errors for unhandled init keywords in all instantiation of this flavor and other flavors
that depend on it.

:required-init-keywords defflavor
The arguments are init keywords which are to be required each time this flavor (or
any flavor containing it) is instantiated. An error is signalled if any required init key
word is missing.

:required-instance-variables
Declares that any flavor incorporating this one that is instantiated into an object
must contain the specified instance variables. An error occurs if there is an attempt
to instantiate a flavor that incorporates this one if it does not have these in its set of
instance variables. Note that this option is not one of those that checks the spelling
of its arguments in the way described at the start of this section (if it did, it would
be useless).

Required instance variables may be freely accessed by methods just like normal
instance variables. The difference between listing instance variables here and listing
them at the front of the deffiavor is that the latter declares that this flavor "owns"
those variables and accepts responsibility for initializing them, while the former
declares that this flavor depends on those variables but that some other flavor must
be provided to manage them and whatever features they imply.

:required-methods
The arguments are names of operations that any flavor incorporating this one must
handle. An error occurs if there is an attempt to instantiate such a flavor and it is
lacking a method for one of these operations. Typically this option appears in the
deffiavor for a base flavor. Usually this is used when a base flavor does a (send self
•••) to send itself a message that is not handled by the base flavor itself; the idea is
that the base flavor will not be instantiated alone, but only with other components
(mixins) that do handle the message. This keyword allows the error of having no
handler for the message to be detected when the flavor instantiated or when
compile-flavor-methods is done, rather than when the missing operation is used.

:required-flavors
The arguments are names of flavors that any flavor incorporating this one must

Objects, Message Passing, and Flavors 19-24

include as components, directly or indirectly. The difference between declaring
flavors as required and listing them directly as components at the top of the
deffiavor is that declaring flavors to be required does not make any commitments
about where those flavors will appear in the ordered list of components; that is left
up to whoever does specify them as components. The purpose of declaring a flavor to
be required is to allow instance variables declared by that flavor to be accessed. It
also provides error checking: an attempt to instantiate a flavor that does not include
the required flavors as components signals an error. Compare this with :required
methods and :required-instance-variables.

For an example of the use of required flavors, consider the ship example given ear
lier, and suppose we want to define a relativity-mix in which increases the mass
dependent on the speed. We might write,

(deffiavor relativity-mixin 0 (moving-object))
(defmethod (relativity-moon :mass) 0

(/ / mass (sqrt (- 1 (" (/ / (send self :speed)
speed-of-light)

2)))))

but this would lose because any flavor that had relativity-mix in as a component would get
moving-object right after it in its component list. As a base flavor, moving-object should be
last in the list of components so that other components mixed in can replace its methods and so
that daemon methods combine in the right order. relativity-mixin has no business changing the
order in which flavors are combined, which should be under the control of its caller. For example,

(deffiavor starship 0
(relativity-moon long-distance-mOOn ship))

puts moving-object last (inheriting it from ship).

So instead of the definition above we write,

(deffiavor relativity-moon 0 0
(:required-llavors moving-object))

which allows relativity-mixin's methods to access moving-object instance variables such as
mass (the rest mass), but does not specify any place for moving-object in the list of com
ponents.

It is very common to specify the ba8e flavor of a mixin with the :required-flavors option in this
way.

Objects, Message Passing, and Flavors 19-25

:included-flavors
The arguments are names of flavors to be included in this flavor. The difference
between declaring flavors here and declaring them at the top of the deftlavor is that
when component flavors are combined, if an included flavor is not specified as a nor
mal component, it is inserted into the list of components immediately after the last
component to include it. Thus included flavors act like defaults. The important
thing is that if an included flavor is specified as a component, its position in the list
of components is completely controlled by that specification, independently of where
the flavor that includes it appears in the list.

:included-flavors and :required-flavors are used in similar ways; it would have
been reasonable to use :included-flavors in the relativity-mixin example above.
The difference is that when a flavor is required but not given as a normal component,
an error is signalled, but when a flavor is included but not given as a normal com
ponent, it is automatically inserted into the list of components at a reasonable place.

:no-vanilla-flavor
Normally when a flavor is instantiated, the special flavor si:vanilla-:ftavor is
included automatically at the end of its list of components. The vanilla flavor pro
vides some default methods for the standard operations which all objects are sup
posed to understand. These include :print-sell, :describe, :which-operations, and
several other operations.

H any component of a flavor specifies the :no-vanilla-:ftavor option, then
si:vanilla-flavor is not included in that flavor. This option should not be used casu
ally.

:default-handler
The argument is the name of a function that is to be called to handle any operation
for which there is no method. Its arguments are the arguments of the send which
invoked the operation, including the operation name as the first argument. Whatever
values the default handler returns are the values of the operation.

Default handlers can be inherited from component flavors. H a flavor has no default
handler, any operation for which there is no method signals a sys:unclaimed
message error.

:ordered-instance-variables
This option is mostly for esoteric internal system uses. The arguments are names of
instance variables which must appear first (and in this order) in all instances of this
flavor,or any flavor depending on this flavor. This is used for instance variables that
are specially known about by microcode, and also in connection with the :outside
accessible-instance-variables option. H the keyword is given alone, the arguments
default to the list of instance variables given at the top of this deftlavor.

Removing any of the :ordered-instance-variables, or changing their positions in
the list, requires that you recompile all methods that use any of the affected instance
variables.

:outside-accessible-instance-variables
The arguments are instance variables which are to be accessible from outside of this
flavor's methods. A macro (actually a subst) is defined which takes an object of this
flavor as an argument and returns the value of the instance variable; setf may be
used to set the value of the instance variable. The name of the macro is the name of
the flavor concatenated with a hyphen and the name of the instance variable. These
macros are similar to the accessor macros created by defstruct

This feature works in two different ways, depending on whether the instance variable
has been declared to have a fixed slot in all instances, via the :ordered-instance-

Objects, Message Passing, and Flavors 19-26

variables option.

IT the variable is not ordered, the position of its value cell in the instance must be
computed at run time. This takes noticeable time, although less than actually send
ing a message would take. An error is signalled if the argument to the accessor
macro is not an instance or is an instance that does not have an instance variable
with the appropriate name. However, there is no error check that the flavor of the
instance is the flavor the accessor macro was defined for, or a flavor built upon that
flavor. This error check would be too expensive.

IT the variable is ordered, the compiler compiles a call to the accessor macro into a
subprimitive which simply accesses that variable's assigned slot by number. This
subprimitive is only three or four times slower than car. The only error-checking
performed is to make sure that the argument is really an instance and is really big
enough to contain that slot. There is no check that the accessed slot really belongs
to an instance variable of the appropriate name.

NOTE: In Franz, setf does not work on these functions.

: abstract-flavor
This option marks the flavor as one that is not supposed to be instantiated (that is, is
supposed to be used only as a component of other flavors). An attempt to instantiate
the flavor signals an error.

It is sometimes useful to do compile--flavor-methods on a flavor that is not going
to be instantiated, if the combined methods for this flavor will be inherited and
shared by many others. :abstract-flavor tells compile-flavor-methods not to
complain about missing required flavors, methods or instance variables. Presumably
the flavors that depend on this one and actually are instantiated will supply what is
lacking.

NOTE: :abstract-flavor is not implemented in FRANZ LISP.

:method-combination
Specifies the method combination style to be used for certain operations. Each argu
ment to this option is a list (style order operationl operation2 ...). operationl, opera
tion2, etc. are names of operations whose methods are to be combined in the declared
fashion. style is a keyword that specifies a style of combination. order is a keyword
whose interpretation is up to style; typically it is either :base--flavor-first or :base-
flavor-last.

Any component of a flavor may specify the type of method combination to be used
for a particular operation. IT no component specifies a style of method combination,
then the default style is used, namely :daemon. IT more than one component of a
flavor specifies the combination style for a given operation, then they must agree on
the specification, or else an error is signalled.

:run-time-alternatives deffiavor

:mixture deffiavor
A run-time-alternative flavor defines a collection of similar flavors, all built on the
same base flavor but having various mixins as well. Instantiation chooses a flavor of
the collection at run time based on the init keywords specified, using an automati
cally generated instantiation flavor function.

A simple example would be

Objects, Message Passing, and Flavors

(defflavor faa 0 (basic-faa)
(:run-time-alternatives

(:big big-foo-mixin))
(:init-keywords :big))

19-27

Then (make-instance 'foo :big t) makes an instance of a flavor whose components
are big-foo-mixin as well as foo. But (make-instance 'foo) or (make-instance
'foo :big nil) makes an instance of foo itself. The clause (:big big-foo-mixin) in
the :run-time-alternatives says to incorporate big-foo-mixin if :big's value is t,
but not if it is nil.

There may be several clauses in the :run-time-alternatives. Each one is processed
independently. Thus, two keywords :big and :wide could independently control two
mixins, giving four possibilities.

(defflavor faa 0 (basic-faa)
(:run-time-alternatives

(:big big-foo-mixin)
(:wide wide-foo-mixin))

(:init-keywords :big))

It is possible to test for values other than t and nil. The clause

(:size (:big big-foo-mixin)
(:small small-foo-mixin)
(nil nil))

allows the value for the keyword :size to be :big, :small or nil (or omitted). If it is
nil or omitted, no mixin is used (that's what the second nil means). If it is :big or
:small, an appropriate mixin is used. This kind of clause is distinguished from the
simpler kind by having a list as its second element. The values to check for can be
anything, but eq is used to compare them.

The value of one keyword can control the interpretation of others by nesting clauses
within clauses. If an alternative has more than two elements, the additional elements
are sub clauses which are considered only if that alternative is selected. For example,
the clause

Objects, Message Passing, and Flavors

(:etherial (t etherial-mixin)
(nil nil

(:size (:big big-roo-mixin)
(:small small-foo-mixin)
(nil nil))))

says to consider the :size keyword only if :etherial is nil.

19-28

:mixture is synonymous with :run-time-alternatives. It exists for compatibility
with Zetalisp or other Lisp Machine systems.

:documentation
Specifies the documentation string for the flavor definition, which is made accessible
through (documentation flavorname 'flavor).

This documentation can be viewed with the describe-flavor function.

19.9. Flavor Families

The following organization conventions are recommended for programs that use
flavors.

A ba8e flavor is a flavor that defines a whole family of related flavors, all of which
have that base flavor as a component. Typically the base flavor includes things relevant to
the whole family, such as instance variables, :required-methods and :required
instance-variables declarations, default methods for certain operations, :method
combination declarations, and documentation on the general protocols and conventions of
the family. Some base flavors are complete and can be instantiated, but most are cannot
be instantiated themselves. They serve as a base upon which to build other flavors. The
base flavor for the 100 family is often named basic-Ioo.

A mixin flavor is a flavor that defines one particular feature of an object. A mixin
cannot be instantiated, because it is not a complete description. Each module or feature of
a program is defined as a separate mixin; a usable flavor can be constructed by choosing
the mixins for the desired characteristics and combining them, along with the appropriate
base flavor. By organizing your flavors this way, you keep separate features in separate
flavors, and you can pick and choose among them. Sometimes the order of combining mix
ins does not matter, but often it does, because the order of flavor combination controls the
order in which daemons are invoked and wrappers are wrapped. Such order dependencies
should be documented as part of the conventions of the appropriate family of flavors. A
mixin flavor that provides the mumble feature is often named mumble-mixin.

If you are writing a program that uses someone else's facility, using that facility's
flavors and methods,your program may still define its own flavors, in a simple way. The
facility provides a base flavor and a set of mixins: the caller can combine these in various
ways depending on exactly what it wants, since the facility probably does not provide all
possible useful combinations. Even if your private flavor has exactly the same components
as a pre-existing flavor, it can still be useful since you can use its :default-init-plist to
select options of its component flavors and you can define one or two methods to customize
it "just a little".

Objects, Message Passing, and Flavors 19-29

19.10. Vanilla Flavor

The operations described in this section are a standard protocol, which all message
receiving objects are assumed to understand. The standard methods that implement this
protocol are automatically supplied by the flavor system unless the user specifically tells it
not to do so. These methods are associated with the flavor si:vanilla-flavor:

si :vanilla-flavor
Unless you specify otherwise (with the :no-vanilla-flavor option to deffiavor),
every flavor includes the "vanilla" flavor, which has no instance variables but pro
vides some basic useful methods.

:print-self stream prindepth escape-p
The object should output its printed-representation to a stream. The printer sends
this message when it encounters an instance or an entity. The arguments are the
stream, the current depth in list-structure (for comparison with prinlevel), and
whether escaping is enabled (a copy of the value of *print-escape*. si:vanilla
flavor ignores the last two arguments and prints something like #<flavor-name
oc tal-addre88 >. The flavor-name tells you what type of object it is and the octal
addre88 allows you to tell different objects apart.

:describe
The object should describe itself, printing a description onto the *standard
output* stream. The describe function sends this message when it encounters an
instance. si:vanilla-flavor outputs in a reasonable format the object, the name of
its flavor, and the names and values of its instance-variables.

:set keyword value
The object should set the internal value specified by keyword to the new value value.
For flavor instances, the :set operation uses :case method combination, and a
method is generated automatically to set each settable instance variable, with key
word being the variable's name as a keyword.

NOTE: This option is currently unimplemented in FRANZ LISP.

:which-operations
The object should return a list of the operations it can handle. si:vanilla-flavor
generates the list once per flavor and remembers it, minimizing consing and
compute-time. H the set of operations handled is changed, this list is regenerated the
next time someone asks for it.

:operation-handled-p operation
operation is an operation name. The object should return t if it has a handler for the
specified operation, nil if it does not.

:get-handler-for operation
operation is an operation name. The object should return the method it uses to han
dle operation. H it has no handler for that operation, it should return nil. This is
like the get-handler-for function, but, of course, you can use it only on objects
known to accept messages.

:send-if-handles operation [arguments] ...
operation is an operation name and arguments is a list of arguments for the opera
tion. H the object handles the operation, it should send itself a message with that
operation and arguments, and return whatever values that message returns. H it
doesn't handle the operation it should just return nil.

Objects, Message Passing, and Flavors

(:eval-insid~yourself form)
The argument is a form that is evaluated in an environment in which special variables with the
names of the instance v¢ables are bound to the values of the instance variables. It works to
setq one of these special variables; the instance variable is modified. This is intended to be used
mainly for debugging.

(:funcall-insid~yourself function &rest args)
f'Unction is applied to args in an environment in which special variables with the names of the
instance variables are bound to the values of the instance variables. It works to setq one of these
special variables; the instance variable is modified. This is a way of allowing callers to provide
actions to be performed in an environment set up by the instance.

(:break)
break is called in an environment in which special variables with the names of the instance vari
ables are bound to the values of the instance variables.

19.11. Method Combination

When a flavor has or inherits more than one method for an operation, they must be
called in a specific sequence. The flavor system creates a function called a combined
method which calls all the user-specified methods in the proper order. Invocation of the
operation actually calls the combined method, which is responsible for calling the others.

For example, if the flavor foo has components and methods as follows:

(deffiavor foo 0 (foo-,mixin foo-base»
(defflavor foo-mixin 0 (bar-mixin»

(defmethod (foo :before :hack) ...)
(detmethod (foo :after :hack) ...)

(defmethod (foo-mixin :before :hack) ...)
(defmethod (foo-mixin :arter :hack) ...)

(defmethod (bar-moon :before :hack) ...)
(defmethod (bar-mixin :hack) ...)

(defmethod (foo-base :hack) ...)
(defmethod (foo-base :after :hack) ...)

then the combined method generated looks like this (ignoring many important details not related
to this issue):

Objects, Message Passing, and Flavors

(defmethod (foo :combined :hack) (&rest args)
(apply #'(:method foo :before :hack) args)
(apply #'(:method foo-mixin :before :hack) args)
(apply #'(:method bar-mixin :before :hack) args)
(multiple-value-progl

(apply #'(:method bar-mixin :hack) args)
(apply #'(:method foo-base :after :hack) args)
(apply #'(:method foo-mixin :after :hack) args)
(apply #'(:method Coo :aCter :hack) args)))

19-31

This example shows the default style of method combination, the one described in the introduc
tory parts of this chapter, called :daemon combination. Each style of method combination
defines which method type3 it allows, and what they mean. :daemon combination accepts
method types :before and :after, in addition to untyped methods; then it creates a combined
method which calls all the :before methods, only one of the untyped methods, and then all the
:after methods, returning the value of the untyped method. The combined method is con
structed by a function much like a macro's expander function, and the precise technique used to
create the combined method is what gives :before and :after their meaning.

Note that the :before methods are called in the order foo, foo-mixin, bar-mixin and foo-base.
(foo-base does not have a :before method, but if it had one that one would be last.) This is the
standard ordering of the components of the flavor foo (see SEE ALSO(flavor-components)); since
it puts the base flavor last, it is called :base-Havor-last ordering. The :after methods are called
in the opposite order, in which the base flavor comes first. This is called :base-Havor-:6.rst ord
ermg.

Only one of the untyped methods is used; it is the one that comes first in :base-Havor-Iast ord
ering. An untyped method used in this way is called a primary method.

Other styles of method combination define their own method types and have their own ways of
combining them. Use of another style of method combination is requested with the :method
combination option to deftlavor. Here is an example which uses :list method combination, a
style of combination that allows :list methods and untyped methods:

Objects, Message Passing, and Flavors

(defflavor Coo 0 (roo-mixin Coo-base»
(defflavor Coo-moon 0 (bar-mixin»
(defflavor Coo-base 00

(:method-combination (:list :base-ftavor-last :win»)

(dermethod (Coo :list :win) ...)
(deCmethod (Coo :win) ...)

(deCmethod (Coo-mixin :list :win) ...)

(deCmethod (bar-mixin :list :win) ...)
(deCmethod (bar-mixin :win) ...)

(deCmethod (Coo-base :win) ...)

yielding the combined method

(deCmethod (Coo :combined :win) (&rest args)
(list

(apply #'(:method Coo :list :win) args)
(apply #'(:method Coo-mixin :list :win) args)
(apply #'(:method bar-mixin :list :win) args)
(apply #'(:method Coo :win) args)
(apply #'(:method bar-mixin :win) args)
(apply #'(:method Coo-base :win) args)))

19-32

The :method-combination option in the deIDavor for foo-base causes :list method combina
tion to be used for the :win operation on all flavors that have foo-base as a component, includ
ing foo. The result is a combined method which calls all the methods, including all the untyped
methods rather than just one, and makes a list of the values they return. All the :list methods
are called first, followed by all the untyped methods; and within each type, the :base-flavor-Iast
ordering is used as specified. If the :method-combination option said :base-flavor-first, the
relative order of the :list methods would be reversed, and so would the untyped methods, but the
:list methods would still be called before the untyped ones. :base-flavor-last is more often
right, since it means that foo's own methods are called first and si:vanilla-flavor's methods (if it
has any) are called last.

A few specific method types, such as :default and :around, have standard meanings
independent of the style of method combination, and can be used with any style. They are
described in a table below.

Here are the standardly defined method combination styles.

:daemon
The default style of method combination. All the :before methods are called, then
the primary (untyped) method for the outermost flavor that has one is called, then all
the :after methods are called. The value returned is the value of the primary
method.

:daemon-with-or
Like the :daemon method combination style, except that the primary method is
wrapped in an lor special form with all lor methods. Multiple values can be
returned from the primary method, but not from the lor methods (as in the or spe
cial form). This produces code like the following in combined methods:

Objects, Message Passing, and Flavors

(progn (foo- before-method)
(multiple-value-prog!

(or (foo-or-method)
(foo-primary-method))

(foo-arter-method)))

19-33

This is useful primarily for flavors in which a mlxm introduces an alternative to the primary
method. Each :or method gets a chance to run before the primary method and to decide whether
the primary method should be run or not; if any :or method returns a non-nil value, the primary
method is not run (nor are the rest of the :or methods). Note that the ordering of the combina
tion of the :or methods is controlled by the order keyword in the :method-combination option.

:daemon-with-and
Like :daemon-with-or except that it combines :and methods in an and special
form. The primary method is run only if all of the :and methods return non-nil
values.

:daemon-with-override
Like the :daemon method combination style, except an or special form is wrapped
around the entire combined method with all :override typed methods before the
combined method. This differs from :daemon-with-or in that the :before and
:after daemons are run only if none of the :override methods returns non-nil. The
combined method looks something like this:

(or (foo-override-method)
(progn (foo-before-method)

(foo-primary-method)
(foo-after- method)))

:progn
Calls all the methods inside a progn special form. Only untyped and :progn
methods are allowed. The combined method calls all the :progn methods and then
all the untyped methods. The result of the combined method is whatever the last of
the methods returns.

:or Calls all the methods inside an or special form. This means that each of the
methods is called in turn. Only untyped methods and :or methods are allowed; the
:or methods are called first. If a method returns a non-nil value, that value is
returned and none of the rest of the methods are called; otherwise, the next method
is called. In other words, each method is given a chance to handle the message; if it
doesn't want to handle the message, it can return nil, and the next method gets a
chance to try.

:and Calls all the methods inside an and special form. Only untyped methods and :and
methods are allowed. The basic idea is much like :or; see above.

Objects, Message Passing, and Flavors 19-34

: append
Calls all the methods and appends the values together. Only untyped methods and
:append methods are allowed; the :append methods are called first.

:nconc
Calls all the methods and neone's the values together. Only untyped methods and
meone methods are allowed, etc.

:list Calls all the methods and returns a list of their returned values. Only untyped
methods and :list methods are allowed, etc.

:inverse-list
Calls each method with one argument; these arguments are successive elements of the
list that is the sole argument to the operation. Returns no particular value. Only
untyped methods and :inverse-list methods are allowed, etc.

If the result of a :Iist-combined operation is sent back with an :inverse-Iist
combined operation, with the same ordering and with corresponding method
definitions, each component flavor receives the value that came from that flavor ..

:pass-on
Calls each method on the values returned by the preceding one. The values returned
by the combined method are those of the outermost call. The format of the declara
tion in the deftlavor is:

(:method-eombination (:pass-on (ordering. argliBt»
. operation-names)

where ordering is :base-ftavor-:6rst or :base-ftavor-Iast. argiist may include the &aux and
&optional keywords.

Only untyped methods and :pass-on methods are allowed. The :pass-on methods are called
first.

:case With :ease method combination, the combined method automatically does a seleetq
dispatch on the first argument of the operation, known as the suboperation. Methods
of type :case can be used, and each one specifies one suboperation that it applies to.
If no :ease method matches the suboperation, the primary method, if any, is called.

Objects, Message Passing, and Flavors 19-35

Example:
(deffiavor Coo (a b) 0

(:method-combination (:c3l!e :b3l!e-flavor-l3l!t :win»)

This method handles (send a-foo :wln :a):
(deCmethod (foo :C3l!e :win :a) 0

a)

This method handles (send a-foo :wln la*b):
(defmethod (foo :C3l!e :win :a*b) 0

(* a b»

This method handles (send a-foo :wln :somethlng-else):
(defmethod (foo :win) (suboperation)

(list 'something-random suboperation»

:case methods are unusual in that one flavor can have many :case methods for the same opera
tion, as long as they are for different suboperations.

The suboperations :which-operations, :operation-handled-p, :send-if-handles
and :get-handler-for are all handled automatically based on the collection of :case
methods that are present.

Methods of type :or are also allowed. They are called just before the primary
method, and if one of them returns a non-nil value, that is the value of the operation, and
no more methods are called.

NOTE: :case method combination is currently unimplemented in FRANZ LISP.

Here is a list of all the method types recognized by the standard styles of method
combination.

{no If no type i8 given to defmethod, a primary method is created. This is the most
common type of method.

:before

:after These are used for the before-daemon and after-daemon methods used by :daemon
method combination.

: default
H there are no untyped methods among any of the flavors being combined, then the
:default methods (if any) are treated as if they were untyped. H there are any
untyped methods, the :default methods are ignored.

Typically a base-flavor defines some default methods for certain of the operations
understood by its family. When using the default kind of method combination these
default methods are suppressed if another component provides a primary method.

:or, :and
These are used for :daemon-with-or and :daemon-with-and method combination.
The :or methods are wrapped in an or, or the :and methods are wrapped in an and,
together with the primary method, between the :before and :after methods.

Objects, Message Passing, and Flavors 19-36

:override
Allows the features of :or method combination to be used together with daemons. H
you specify :daemon-with-override method combination, you may use :override
methods. The :override methods are executed first, until one of them returns non
nil. H this happens, that method's value(s) are returned and no more methods are
used. If all the :override methods return nil, the :before, primary and :after
methods are executed as usual.

In typical usages of this feature, the :override method usually returns nil and does
. nothing, but in exceptional circumstances it takes over the handling of the operation.

:or, :and, :progn, :list, : inverse-list , pass-on, :append, :nconc.
Each of these methods types is allowed in the method combination style of the same
name. In those method combination styles, these typed methods work just like
untyped ones, but all the typed methods are called before all the untyped ones.
These method types can be used with any method combination style; they have stan
dard meanings independent of the method combination style being used.

:wrapper
This is used internally by defwrapper.

:combined
This is used internally for automatically-generated combined methods.

The most common form of combination is :daemon. One thing may not be clear:
when do you use a :before daemon and when do you use an :after daemon? In some
cases the primary method performs a clearly-defined action and the choice is obvious:
:before :launch-rocket puts in the fuel, and :after :launch-rocket turns on the
radar tracking.

In other cases the choice can be less obvious. Consider the :init message, which is
sent to a newly-created object. To decide what kind of daemon to use, we observe
the order in which daemon methods are called. First the :before daemon of the
instantiated flavor is called, then :before daemons of successively more basic flavors
are called, and finally the :before daemon (if any) of the base flavor is called. Then
the primary method is called. After that, the :after daemon for the base flavor is
called, followed by the :after daemons at successively less basic flavors.

Now, if there is no interaction among all these methods, if their actions are com
pletely independent, then it doesn't matter whether you use a :before daemon or an
:after daemon. There is a difference if there is some interaction. The interaction we
are talking about is usually done through instance variables; in general, instance vari
ables are how the methods of different component flavors communicate with each
other. In the case of the :init operation, the init-plist can be used as well. The
important thing to remember is that no method knows beforehand which other
flavors have been mixed in to form this flavor; a method cannot make any assump
tions about how this flavor has been combined, and in what order the various com
ponents are mixed.

This means that when a :before daemon has run, it must assume that none of the
methods for this operation have run yet. But the :after daemon knows that the
:before daemon for each of the other flavors has run. So if one flavor wants to con
vey information to the other, the first one should "transmit" the information ina
:before daemon, and the second one should "receive" it in an :after daemon. So
while the :before daemons are run, information is "transmitted"; that is, instance
variables get set up. Then, when the :after daemons are run, they can look at the

Objects, Message Passing, and Flavors 19-37

instance variables and act on their values.

In the case of the :init method, the :before daemons typically set up instance vari
ables of the object based on the init-plist, while the :after daemons actually do
things, relying on the fact that all of the instance variables have been initialized by
the time they are called.

The problems become most difficult when you are creating a network of instances of
various flavors that are supposed to point to each other. For example, suppose you
have flavors for "buffers" and "streams", and each buffer should be accompanied by
a stream. If you create the stream in the :before :init method for buffers, you can
inform the stream of its corresponding buffer with an init keyword, but the stream
may try sending messages back to the buffer, which is not yet ready to be used. If
you create the stream in the :after :init method for buffers, there will be no problem
with stream creation, but some other :after :init methods of other mixins may have
run and made the assumption that there is to be no stream. The only way to
guarantee success is to create the stream in a :before method and inform it of its
associated buffer by sending it a message from the buffer's :after :init method. This
scheme--creating associated objects in :before methods but linking them up in :after
methods-often avoids problems, because all the various associated objects used by
various mixins at least exist when it is time to make other objects point to them.

Since flavors are not hierarchically organized, the notion of levels of abstraction is
not rigidly applicable. However, it remains a useful way of thinking about systems.

19.12. Implementation of Flavors

An object that is an instance of a flavor is implemented as a closure whose associated
function is a message-dispatch function. The variables closed new are
self, .own-flavor. (containing the name of the flavor), and the instance variables. The

flavor name can be used to find an instance-descriptor, which is a defstruct that appears
on the si:flavor property of the flavor name. It contains, among other things, the name of
the flavor, the size of an instance, the table of methods for handling operations, and infor-
mation for accessing the instance variables.

deffiavor creates such a data structure for each flavor, and links them together
-III<'(according to the dependency relationships between flavors .

. 'B>'~" \""'(~::L~ .J~ A message is sent to an instance simply by calling it as a function, with the first
,.tY"''' ,'~'" ~ V'Jfo~ argument being the operation. The evaluator binds self to the object and binds those
(iJr~,((uJu"1 instance variables that are supposed to be special to the value cells in the instance. Then
u..f»,icI· ~(...o.t passes on the ope~ation and arguments to a funcallable hash table taken from the
~ ~ foi&:,j\. L" flavor-structure for thIS flavor. .

(4 ... ~b.

When the funcallable hash table is called as a function, it hashes the first argument (the
operation) to find a function to handle the operation. If there is only one method to be
invoked, this function is that method; otherwise it is an automatically-generated function
called the combined method. which calls the appropriate methods in the right order. If
there are wrappers, they are incorporated into this combined method. A consequence of
the implementation of flavors as closures in Franz is that all instance variables are impli
citly special, whether or not they are so declared, and this holds for both interpreted and
compiled code. Flavor methods operate compiled, as well as interpreted, although compil
ing does not get around the overhead of making the closure bindings for each message.

Objects, Message Passing, and Flavors 19-38

19.12.1. Order of Definition

There is a certain amount of freedom to the order in which you do deffiavor's,
defmethod's, and defwrapper's. This freedom is designed to make it easy to load
programs containing complex flavor structures without having to do things in a certain
order. It is considered important that not all the methods for a flavor need be defined
in the same file. Thus the partitioning of a program into files can be along modular
lines.

The rules for the order of definition are as follows.

Before a method can be defined (with defmethod or defwrapper) its flavor must have
been defined (with deffiavor). This makes sense because the system has to have a
place to remember the method, and because it has to know the instance-variables of the
flavor if the method is to be compiled.

When a flavor is defined (with deffiavor) it is not necessary that all of its component
flavors be defined already. This is to allow deffiavor's to be spread between files
according to the modularity of a program, and to provide for mutually-dependent
flavors. Methods can be defined for a flavor some of whose component flavors are not
yet defined; however, in certain cases compiling those methods may produce a warning
that an instance variable was declared special (because the system did not realize it was
an instance variable). If this happens, you should fix the problem and recompile.

The methods automatically generated by the :gettable-instance-variables and
:settable-instance-variables demavor options are generated at the time the
deffiavor is done.

The first time a flavor is instantiated, or when compile-Havor-methods is done, the
system looks through all of the component flavors and gathers various information. At
this point an error is signaled if not all of the components have been deffiavor'ed.
This is also the time at which certain other errors are detected, for instance lack of a
required instance-variable (see the :required-instance-variables demavor option.
The combined methods are generated at this time also, unless they already exist.

Mter a flavor has been instantiated, it is possible to make changes to it. Such changes
affect all existing instances if possible. This is described more fully immediately below.

19.12.2. Changing a Flavor

You can change anything about a flavor at any time. You can change the flavor's
general attributes by doing another deffiavor with the same name. You can add or
modify methods by doing defmethod's. If you do a defmethod with the same
flavor-name, operation (and suboperation if any), and (optional) method-type as an
existing method, that method is replaced by the new definition.

These changes always propagate to all flavors that depend upon the changed
flavor. Normally the system propagates the changes to all existing instances of the
changed flavor and its dependent flavors. However, this is not possible when the flavor
has been changed so drastically that the old instances would not work properly with the
new flavor. This happens if you change the number of instance variables, which
changes the size of an instance. It also happens if you change the order of the instance
variables (and hence the storage layout of an instance), or if you change the component
flavors (which can change several subtle aspects of an instance). The system does not

Objects, Message Passing, and Flavors 19-39

keep a list of all the instances of each flavor, so it cannot find the instances and modify
them to conform to the new flavor definition. mstead it gives you a warning message,
on the *error-output* stream, to the effect that the flavor was changed incompatibly
and the old instances will not get the new version. The system leaves the old flavor
data-structure intact (the old instances continue to point at it) and makes a new one to
contain the new version of the flavor. If a less drastic change is made, the system
modifies the original flavor data-structure, thus affecting the old instances that point at
it. However, if you redefine methods in such a way that they only work for the new
version of the flavor, then trying to use those methods with the old instances won't
work.

19.13. Property List Operations

It is often useful to associate a property list with an abstract object, for the same rea
sons that it is useful to have a property list associated with a symbol. This section
describes a mixin flavor that can be used as a component of any new flavor in order to pro
vide that new flavor with a property list. For more details and examples, see the general
discussion of property lists. The usual property list functions (get, putprop, etc.) are not
implemented by sending the instance the corresponding message.

The mixin flavor si:property-list-mixin provides the basic operations on property
lists:

(si:property-list-mixin :get property-name &optional default)
Looks up the object's property-name property. If it finds such a property, it returns the value;
otherwise it returns default.

(si:property-list-mixin :getl)
Like the :get operation, except that the argument is a list of property names. The :getl opera
tion searches down the property list until it finds a property whose property name is one of the
elements of property-name-li8t. It returns the portion of the property list begining with the first
such property that it found. If it doesn't find any, it returns nil.

(si:property-list-mixin :putprop value property-name)
Gives the object a property-name property of value.

(send object :set :get property-name value)

also has this effect.

Objects, Message Passing, and Flavors 19-40

(si:property-list-mixin :remprop property-name)

RETURNS: It returns one of the cells spliced out, whose car is the former value of the pro
perty that was just removed. If there was no such property to begin with, the
value is nil.

SIDE EFFECT: Removes the object's property-name property, by splicing it out of the pro
perty list.

(si:property-list-mixin :get-Iocation-or-nil property-name)
(si:property-list-mixin :get-Iocation property-name)

RETURNS: a locative pointer to the cell in which this object's property-name property is
stored.

NOTE: If there is no such property, :get-Iocation-or-nil returns nil, but :get-Iocation adds
a cell to the property list and initialized to nil, and a pointer to that cell is returned.

(si:property-list-mixin :push-property)

WHERE: the property-name property of the object should be a list (note that nil is a list
and an absent property is nil). This operation sets the property-name property of
the object to a list whose car is value and whose cdr is the former property-name
property of the list. This is analogous to doing

(push value (get object property-name))

(si:property-list-mixin :property-list)

RETURNS: the list of alternating property names and values that implements the property
list.

(si:property-list-mixin :property-list-Iocation)

RETURNS: a locative pointer to the cell in the instance which holds the property list data.

(si :property-list-mixin :set-property -list list)
Sets the list of alternating property names and values that implements the property list to list.
So does

(send object :set :property-list list)

Objects, Message Passing, and Flavors 19-41

(si:property-list-mixin :property-list list)
This initializes the list of alternating property names and values that implements the property list
to list.

19.14. Copying Instances

There are no built-in techniques to copy instances because there are too many ques
tions raised about what should be copied. These include:

* Do you or do you not send an :init message to the new instance? If you do, what
init-plist options do you supply?

* If the instance has a property list, you should copy the property list (e.g. with copy
list) so that putprop or rem prop on one of the instances does not affect the proper
ties of the other instance.

* If the instance is a pathname, the concept of copying is not even meaningful. Path
names are interned, which means that there can only be one pathname object with
any given set of instance-variable values.

* If the instance is a stream connected to a network, some of the instance variables
represent an agent in another host elsewhere in the network. Should the copy talk to
the same agent, or should a new agent be constructed for it?

* If the instance is a stream connected to a file, should copying the stream make a copy
of the file or should it make another stream open to the same file? Should the choice
depend on whether the file is open for input or for output?

In general, you can see that in order to copy an instance one must understand a lot
about the instance. One must know what the instance variables mean so that the values of
the instance variables can be copied if necessary. One must understand what relations to
the external environment the instance has so that new relations can be established for the
new instance. One must even understand what the general concept 'copy' means in the
context of this particular instance, and whether it means anything at all.

Copying is a generic operation, whose implementation for a particular instance
depends on detailed knowledge relating to that instance. Modularity dictates that this
knowledge be contained in the instance's flavor, not in a "general copying function". Thus
the way to copy an instance is to send it a message, as in (send object :eopy). It is up to
you to implement the operation in a suitable fashion, such as

(defflavor roo (a b c) 0
(:inittable-instance-variables a b))

(defmethod (roo :copy) 0
(make-instance 'roo :a a :b b))

The flavor system chooses not to provide any default method for copying an instance, and does
not even suggest a standard name for the copying message, because copying involves so many
semantic issues.

Objects, Message Passing, and Flavors 19-42

If a flavor supports the :reconstruction-init-plist operation, a suitable copy can be
made by invoking this operation and passing the result to make-instance along with the
flavor name. This is because the definition of what the :reconstruction-init-plist opera
tion should do requires it to address all the problems listed above. Implementing this
operation is up to you, and so is making sure that the flavor implements sufficient init key
words to transmit any information that is to be copied.

19.15. Miscellaneous Cautions

Since the Lisp-Machine compatibility package is used by the MIT-based flavor sys
tem, the read-macro definitions of the slash U)character are changed to that of the
backslash (\). This is of relatively slight importance unless you use the slash in names.
You do, of course use it in Unix file names. Instead of using "/usr/lib/lisp" you will have
to use "/ /usr/ /lib/ /lisp" .

.As mentioned earlier, if you are using a version of FRANZ LISP with packages
installed, all quotes used with symbols beginning with colons are unnecessary (although not
harmful).

APPENDIX A

Index to FRANz LISP Functions

(# g_coml ...) .. 16-5
(*array 's_name 's_type 'x_diml ... 'x_dimn) .. 2-22
(*break 'g-pred 'g_message)4-3
(*catch 'Is_tag g_exp) ... 4-4
(*invrnod 'x_number 'x_modulus) ... 3-2
(*makhunk 'x_arg) .. 2-25
(*mod 'x_dividend 'x_divisor) .. 3-8
(*process 'st_command ['gJeadp ['g_writepJ]) .. 6-4
(*process-receive 'st_command) ... 6-5
(*process-send 'st_command) .. 6-5
(*quo 'i_x 'i-y) ... 3-2
(*rplacx 'x_ind 'h_hunk 'g_val) ... 2-25
(*rset 'g_flag) .. 6-5
(*throw 's_tag 'g_val) ... 4-18
(/ ['x_argl ...]) ... 3-2
(1+ 'x_arg) ... 3-1
(1- 'x_arg) ... 3-2
(:break) .. 19-30
(:eval-inside-yourself form) ... 19-30
(:funcall-inside-yourself function &rest args) ... 19-30
(:init init-plist) ... 19-18
(:typep 's_item 's_flavor) .. 19-15
(< 'fx_argl 'fx_arg2) ... 3-3
(<& 'x_argl 'x_arg2) ... 3-3
(> 'fx_argl 'fx_arg2) ... 3-3
(>& 'x_argl 'x_arg2) ... 3-3
(Divide 'i_dividend 'i_divisor) .. 3-2
(Emuldiv'x3actl 'x_fact2 'x_addn 'x_divisor) ... 3-2
(I-throw-err 'I_token) ... 4-14
(* ['x_argl ...]) .. 3-2
(= 'fx_argl 'fx_arg2) .. 3-4
(==& 'x_argl 'x_arg2) .. 3-4
(- ['x_argl ...]) ... 3-1
(+ ['x_argl ...]) .. 3-1
(aOO 'n_arg) .. 3-7
(aOOval 'n_arg) .. 3-7
(acos 'fx_arg) .. 3-4
(add ['n_argl ...]) ... 3-1
(add-syntax-class 's_synclass 'l-properties) ... 7-10
(add! 'n_arg) .. 3-1
(addhash 'g_key 'H_htab 'g_val) .. 2-20
(allocate 's_type 'x-pages) .. 6-1
(allsym 'sl_arg) ... 2-13
(alphalessp 'st_argl 'st_arg2) ... 2-14
(altel'-name 's_inst ['s_slotl 'g_vall ...]) ... 14-14
(and [g_argl ...]) ... 4-1
(append'l_argl 'l_arg2 [...]) ... 2-1

A-I

A-2

(append! 'I_argl 'g_arg2) ... 2-2
(apply'u_func ['g_argl ...] 'I_args) ... 4-1
(apropos 'st_arg) .. 4-2
(apropos-list 'st_arg) .. 4-2
(arg ['x_numb]) .. 4-2
(argv 'x_argnumb) .. 6-1
(array SJlame s_type x_dim 1 ... x_dim n) .. 2-22
(arraycall s_type 'as_array 'x_indl ...) .. 2-23
(arraydhns 'sJlame) .. 2-23
(arrayp 'g_arg) .. 2-8
(arrayref' 'a_name 'xjnd) .. 2-23
(ascii 'x_charnum) ... 2-12
(ash 'x_val 'x_amt) .. 3-6
(asin 'fx_arg) .. 3-4
(assce 'g_argl 'l_arg2) .. 2-26
(assq 'g_argl 'l_arg2) ... 2-26
(atan 'fx_argl 'fx_arg2) .. 3-4
(atoIn 'g_arg) .. 2-8
(attach 'g..)C 'LI) ... 2-5
(baktrace) ... 6-1
(bcdad 's_funcname) ... 2-32
(bcdp 'g_arg) ... 2-8
(bignUlll-leftshift bx_arg x_amount) .. 3-5
(bignUlD-to-list 'b_arg) ... 2-3
(bigp '~arg) ... 2-8
(boole 'x_key 'x_vI 'x_v2 ...) ... 3-5
(boundp 's_name) ... 2-14
(break. [~essage ['g..,pred]]) .. 4-3
(c-deelare I_structl [l_struct2 ...]) ... 18-11
(c •• r 'Ih_arg) ... 2-4
(car 'I_arg) .. 2-4
(case '~key-form I_clause 1 ...) .. 4-3
(caseq 'g-.key-form I_clausel ...) .. 4-3
(catch ~exp [Is_tag]) ... 4-4
(cdr 'I_arg) ... ; .. 2-4
(cerror 's_continue-format-string 's_error-format-string ['arg ...]) ... 4-10
(dasl 'Cname 's_cname 's_lispname ['s_discipline [s_libraries]]) ... 18-3
(dasl 'st_file 'st_entry 'st_funcname ['st_disc ['sUibraryj]) ... 5-2
(c:haJ.-inc1ex 't_string 'stx_char) .. 2-15
(c:haJ.-rindex 't_string 'stx_char) .. 2-15
(charcnt 'p-port) .. 5-8
(chdir 's..,path) .. 6-2
(cli:error 'sJormat-string ['args])4-10
(close 'p..,port) ... 5-2
(closure 'I_vars 'g_funcobj) .. 8-11
(clrhash 'H.)ltab) ... 2-20
(COIIlIIl8Jld-line-args) .. 6-2
(COlIllIlent [Larg ...]) .. 4-4
(concat ['stn_argl ...]) ... 2-11
(concatl 'I_arg) ... 2-11
(cond [I_clausel ...]) ... 4-4
(cons 'Largl 'g_arg2) ... 2-1
(copy 'Larg) ... 2-32
(copyin"t* 'x_arg) .. 2-32
(c:opysymbol 's_arg 'g..,pred) ... 2-12

A-3

(cos 'fx_angle) .. 3-4
(cprintf 'st_format 'xfst_val ['p...port]) ... 5-2
(cpyl 'xvt_arg) .. 2-32
(cvttof'ranzlisp) ... 4-5
(cvttointJisp) .. 4-5
(cvttoJ:naclisp) .. 4-5
(cvttoucilisp) .. 4-5
(cxr 'x_ind 'h_hunk) .. 2-25
(debug [s_msg]) .. 15-5
(debug s_msg) ... 4-5
(debugging 'g_arg) .. 4-5
(declare [g_arg ...]) ... 4-5
(def s_name (s_type l_argl ~exp1 ...)) ... 4-5
(defcmacro s_name l_arg g_exp1 ...) ... 4-6
(defflavorflavor-name ([var] ..) ([flav] ...) [options] ...)) .. 19-14
(defmacro s_name l_arg g_exp1 ...) .. 4-6
(defmethod (flavor-name method-type operation) lambda-list [form] ...)) 19-15
(defprop Is_name g_val g_ind) .. 2-28
(defsetf s_fname l_setfvars 'Lbody) .. 14-2
(defstruct sl_nameargs sl_slotdescriptl [... sl_slotdescriptaJ) .. 14-5
(defsubst s_name l_llist g_form [.. ,]) ... 4-6
(defun s_name [s_mtype]ls_argl g_expl ...) ... 4-6
(defvar s_variable ['g_init]) .. 4-7
(defwrapper lambda-list macro-body-arg) ... 19-18
(delete '~val 'I_list ['x_count]) .. 2-5
(delq '~val 'I_list ['x_count]) .. 2-5
(deref 'x_addr) .. 6-2
(describe-cs v_item) ... 18-14
(desetq sI"'pattern1 'Lexpl [......]) .. 2-16
(diff ['n_arg1 ...]) ... 3-1
(difference ['n_arg1 ...]) .. 3-1
(do I_vrbs I_test g_expl ...) ... 4-7
(do s_name g_init g_repeat ~test g_exp1 ...) ... 4-8
(do* I_vrbs I_test g_exp1 ...) .. 4-8
(do-all-symbols I_ilist I_body) .. 17-8
(do-external-symbols l_ilist I_body) ... 17-8
(do-symbols l_ilist I_body) .. 17-8
(dolist (s_var I_form g_resultform) Lform) .. .4-9
(dotimes (s_var i_countform ~resultform) g_form) .. 4-9
(double-1:o-float 'f_flo) .. 18-15
(drain ['P...POrt]) ... 5-2
(dremove 'g_val 'I_list ['x_count]) .. 2-5
(<Eubst 'g_x 'g"'y 'I_s) ... 2-6
(dtpr '~arg) .. 2-3
(dtpr 'g_arg) .. 2-8
(dumplisp sJlame) ... 6-2
(editf s_x1 ...) .. 16-4
(editfindp x pat nil) .. 16-5
(editfns s_x [g_coms1 ...]) ... 16-4
(editp s_x) ... 16-4
(editracefn s_com) .. 16-4
(editv s_var [g_com1 ...]) ... 16-4
(environment [I_whenl I_whatl I_when2 I_what2 ...]) .. 4-9
(environment-Imlisp [Cwhen1 I_what1 I_when2 I_what2 ... J) ... 4-9
(environment-maclisp [I_when1 Cwhatl I_when2 l_what2 ... J) ... 4-9

A-4

(eq 'g_argl 'g_arg2) .. 2-10
(eqstr '!L-argl 'g_arg2) .. 2-10
(equal 'g_argl 'g_arg2) ... 2-10
(err ['s_value [nil]]) .. 4-10
(error ['s_messagel ['s_message2]]) ... 4-10
(errset g_expr [s_flag]) ... 4-11
(escape-exploden 'g_arg) .. 2-16
(eval '!L-val ['x_bind-pointer]) .. 4-11
(eval-when I_time !L-expl ...) ... 6-2
(evalfr8.lIle 'x...,pdlpointer) ... 4-12
(evalhook 'g_form 'su_evalfunc ['su_funcallfunc])4-12
(evenp 'x_arg) ... 3-3
(exec s_argl ...) ... 4-12
(exece's_fname ['l_args ['l_envir]]) .. .4-12
(exit ['x_code]) ... 6-2
(exp 'fx_arg) ... 3-7
(explode 'g_arg) .. 2-16
(explodec '!L-arg) .. 2-16
(exploden 'g_arg) .. 2-16
(export'syms ['package]) ... 17-7
(expt 'n_base 'n...,power) ... 3-7
(fact 'x_arg) .. 3-8
(fake 'x_addr) ... 6-2
(fasl 'st_name ['st_mapf ['g_warn]]) .. 5-3
(fOOundp 's_arg) ... 2-15
(fclosure 'I_vars 'g_funobj) ... 2-30
(fclosure-alist 'v _fclosure) ... 2-30
(fclosure-function 'v _fclosure) ... 2-30
(fclosure..list 'l_varsl 'g_fcnobjl [......]) .. 2-30
(fclosurep 'v _fclosure) .. 2-30
(feature-present' g_exp) ... 6-8
(fIasl 'Cname 's_cname 's_lispname ['s_discipline [s_libraries]]) .. 18-3
(fileopen 's_filename 's_mode]) .. 5-3
(filepos 'p...,port ['x...,pos]) .. 5-3
(filestat 'st_filename) .. : ... 5-3
(fillarray 's_array 'l_itms) .. 2-24
(find-all-symbols st_name) .. 17-8
(find-package 's_name) .. 17-5
(find-symbol s_string ['k...,package]) .. 17-6
(fix 'n_arg) .. 3-8
(fixp 'g_arg) .. 3-3
(flate 'g_form ['x_max]) ... 5-3
(flatsize 'g_form ['x_max]) .. 5-4
(flavol'-allows-init-keyword-p 'flavor-name 'keyword) .. 19-21
(float 'n_arg) ... 3-8
(float-to-double 'x_fix) ... 18-15
(floatp 'g_arg) ... 3-3
(fork) .. 6-2
(fonnat 'p...,port 's_ctrl ['g_arg ...]) ... 5-10
(fretum 'x...,pdl-pointer 'g_retval) ... 4-13
(fseek 'p...,port 'x_offset 'x_flag) .. 5-4
(funcall 'u_func ['g_argl ...]) ... 4-13
(funcall s_instance 's_message[argument] ...) .. 19-20
(funcall-self's_message [argument] ...) .. 19-20
(funcallhook '13orm 'su_funcallfunc ['Su3valfunc]) .. 4-13

A-5

(function u_func) ... 4-13
(ge) ... 6-3
(geafter s_type) ... 6-3
(gebefore s_type) ... 6-3
(gensym 's_name) .. 2-13
(get 'Is_name 'g...ind) .. 2-28
(get-handler-for 'object 'operation) .. 19-21
(get...,pnaIDe 's_arg) ... 2-14
(getaeeess 'a_array) ... 2-22
(getaddress 's_entry1 's_binder! 'st_discipline1 [......... J) .. 2-32
(getaux 'a_array) ... 2-22
(getchar 's_arg 'x_index) .. 2-15
(getcharn 's_arg 'x_index) .. 2-15
(getd 's_arg) .. 2-14
(getdata 'a_array) .. 2-22
(getdelta 'a_array) ... 2-22
(getdise 'y_bcd) .. 2-26
(getentry 'y_bcd) .. 2-26
(getenv 'st_name) ... 4-13
(gethash 'g_key 'H_htab ['g_defval]) ... 2-20
(get} 'Is_name 'I_indicators) ... 2-28
(getlength 'a_array) .. 2-22
(getsyntax 's_symbol) .. 7-10
(go g...labexp) .. 4-13
(greaterp ['n_arg1 ...]) .. 3-3
(haipart bx_number x_bits) ... 3-4
(hash-table-count 'H_htab) .. 2-20
(hash-table-p 'H_arg) ... 2-9
(haulong 'bx_number) ... ~ 3-4
(help sx_arg) ... 4-14
(help sx_arg) ... 5-4
(hunk 'g_val1 ['g_val2 ... 'g_valn]) .. 2-24
(hunk-tD-list 'h_hunk) ... 2-25
(hunkp 'g_arg) .. 2-8
(hunksize 'h_arg) ... 2-25
(if 'g_a 'g_b 'g_c ...) ... 4-14
(if 'g_a 'g_b) ... 4-14
(if 'g_a then 'g...b [...] [elseif 'g...c then 'g...d ...] [else 'g_e [... J) .. .4-14
(if'g_athen 'g_b [...] [elseif'g_cthenret] [else'g_d [...])4-14
(ifpred form1 [form2]) .. 4-4
(implode 'I_arg) .. 2-11
(implodes 'l_arg) ... 2-11
(import'lg_sym ['k...,package]) .. ; 17-7
(in-package 'k...,pkname [:nicknames 'l_nicklist] [:use 'p_usepackJ) .. 17-5
(include s_filename) ... 6-3
(include-if 'g...,predicate s_filename) ... 6-4
(includef 's_filename) ... 6-4
(includef-if 'g...,predicate s_filename) .. 6-4
(infile 's_filename) ... 5-4
(initsym 'l_list1 ...) ... 2-13
(insert 'g_object 'I_list 'u30mparefn 'g_nodups) .. 2-6
(instaneep object) ... 19-18
(instantiate-flavor flavor-name init-plist [send-init-message-p return-unhandled-keywords area]) 19-16
(integer-length 'bx..pumber) .. 3-4
{intern 's_arg ['k...,package]) .. 2-12

A-6

(intern t_string ['k..J>ackage]) ... 17-6
(keywordp 's_sym) ... 2-9
(kwote 'g_arg) ... 2-32
(last 'l_arg) ... 2-4
(leone 'l..ptr 'I_x) .. 2-29
(ldiff 'l_x 'l"y) .. 2-5
(length 'l_arg) ... 2-3
(lessp ['n_arg1 ...]) ... 3-3
(let l_args g_exp1 ... g_exprn) .. 4-15
(let"'l_args g_exp1 ... g_expn) .. 4-15
(let-closed argumentrlist function-body) .. 8-11
(lexpr-funeall 'g3unction ['~arg1 ...] 'l_argn) .. .4-15
(lexpr-funeall-self operation arguments ... listrof-arguments) .. 19-20
(lexpr-send) .. 19-7
(lexpr-send-self message arguments .. listrof-arguments) ... 19-20
(list ['g_arg1 ...]) ... 2-1
(list ... ['g_arg1 ...]) ... 2-1
(list-all-packages) .. 17-5
(list-to-bignmn 'l_ints) ... 2-3
(listarray 'sa_array ['x_elements]) ... 2-23
(listify 'x_count) .. 4-15
(Iistp 'g_arg) ... 2-3
(listp 'g_arg) ... 2-8
(li tatoIn 'g_arg) .. 2-9
(load's_filename ['st_map ['lLwarn]]) ... 5-4
(log 'fx_arg) .. 3-8
(logand ['n_arg1 ...]) .. 3-6
(logandel 'n_arg1 'n_arg2) ... 3-6
(logandc2 'n_arg1 'n_arg2) ... 3-6
(logbitp 'x_index 'n_number) ... 3-7
(logeount 'n_number) ... 3-7
(logeqv ['n_arg1 ...]) ... 3-6
(logior ['n_arg1 ...]) .. 3-6
(logiorel 'n_arg1 'n_arg2) ... 3-7
(logiorc2 'n_arg1 'n_arg2) ... : ... 3-7
(lognand 'n_arg1 'n_arg2) .. 3-7
(lognor 'n_arg1 'n_arg2) ... 3-7
(lognot 'n_arg) .. 3-6
(logtest 'n_arg1 'n_arg2) ... 3-7
(logxor ['n_arg1 ...]) ... 3-6
(Ish 'x_val 'x_amt) ... 3-6
(lsubst 'l...;x 'g"y 'l_s) .. 2-7
(macroexpand 'uorm) .. 2-32
(make-name ['s_slotl '~vall ...]) ... 14-13
(make-hash-table :size :test :rehash-size :rehash-threshold) ... 2-20
(make-instance Havor-name [initroption value] ...) ... 19-16
(make-package 'k-pkname [:nicknames 'Cnames] [:use 'l-packs]) .. 17-4
(makereadtable ['s_Hag]) ... 5-5
(makhunk 'xl_arg) ... 2-25
(maknam 'l_arg) ... 2-11
(maknmn 'g_arg) .. 6-4
(makunbound 's_arg) ... 2-16
(map 'u_func '1_arg1 ...) ... 4-15
(mapc 'u_func '1_arg1 ...) ... 4-15
(mapcan 'u_func 'l_arg1 ...) ... 4-16

A-7

(mapcar 'u_func 'l_arg1 ...) .. 4-16
(mapcon 'u_func 'l_arg1 ...) ... 4-16
(maphash 'u_fun 'H_htab) ... 2-20
(maplist 'u_func 'l_arg1 ...) ... 4-16
(marray 'g_data 's_access '!Laux 'x_length 'x_delta) ... 2-22
(max 'n_arg1 ...) .. 3-8
(member 'g_arg1 'l_arg2) .. 2-11
(memq 'g_arg1 'l_arg2) ... 2-11
(merge 'I_datal 'l_data2 'u_comparefn) .. 2-6
(mfunetion t_entry 's_disc) .. 4-16
(min 'n_arg1 ...) .. 3-8
(minus 'n_arg) .. 3-2
(minusp 'g_arg) .. 3-3
(mod 'i_dividend 'i_divisor) .. 3-8
(msg [I_option ...] ['!Lmsg ...]) .. 5-5
(multiple-value-bind 'l_varlist 'g_values-form 'gJorml ['g_form2 ...])4-20
(multiple-value-call 'u_fun 'gJorml ['g_form2 ...])4-19
(multiple-value-list 'g_form) ... 4-19
(multiple-value-progl 'g_form1 ['gJorm2 ...]) .. .4-19
(multiple-value-setq 'l_varlist 'g_form) ... 4-19
(noonc 'l_arg1 'l_arg2 ['I_arg3 ...]) ... 2-7
(noons 'g_arg) .. 2-1
(neq 'g_x 'gJ) .. 2-10
(nequal '!LX 'g....J) ... 2-10
(new-vector 'x_size [' g_fill [' g..,prop]]) ... 2-17
(new-vectori-byte 'x_size ['g_fill ['g..,prop]]) .. 2-17
(new-vectori-double 'x_size ['g_fill ['g..,prop]]) .. 2-17
(new-vectori-float 'x_size ['g_fill ['g..,prop]]) ... 2-17
(new-vectori-Iong 'x_size ['g_fill ['g-prop]]) ' ... 2-17
(new-vectori-word 'x_size ['!Lfill ['g..,Prop]]) ... 2-17
(newsym 's_name) .. 2-13
(not '!Larg) ... 2-10
(nreconc 'l_arg 'g_arg) .. 2-8
(nreverse 'l_arg) ... 2-8
(nth 'x_index 'I_list) ... 2-4
(nthcdr 'x_index 'I_list) .. 2-4
(nthchar 's_arg 'x_index) ... 2-15
(nthelem 'x_arg1 'l_arg2) ... 2-4
(null '!Larg) .. 2-10
(numberp 'g_arg) .. 3-2
(numbp 'g_arg) ... 3-2
(nwritn ['p..,port]) ... 5-5
(oblist) .. , 4-16
(oddp 'x_arg) ... 3-3
(oldsym 's_name) ... 2-13
(onep 'g_arg) ... 3-3
(opval 's_arg ['g_newval]) .. 6-4
(or [g_arg1 ...]) .. 4-17
(outfile 's_filename ['st_type]) .. 5-5
(package-n8.lIle 'k..,pack) ... 17-5
(package-nicknaIIles 'k..,pkname) .. 17-5
(package-shadowing-symbols 'k"'pack) .. 17-5
(package-use-Iist 'k..,pack) ... 17-5
(package-used-by-Iist 'k..,pack) .. 17-5
(packagep 'k..,package) .. 2-9

A-8

(patom 'g_exp ['p..port]) ... 5-6
(plist 's_name) ... 2-27
(plus [·'n_argl ...]) .. 3-1
(plusp 'n_arg) ... 3-3
(pntIen 'xfs_arg) ... 5-6
(pop 'I_stack ['g_into]) ... 4-17
(portp 'g_arg) .. 5-6
(pp [I_option] s_namel ...) ... 5-6
(pp-form 'g_form ['p..port]) ... 5-7
(primep 'x_arg) ... 3-4
(prine 'g_arg ['p...,port]) ... 5-6
(print' g_arg ['p....port]) ... 5-6
(probef 'st_file) ... 5-7
(process s"pgrm [s_frompipe s_topipe]) ... 6-5
(product ['n_argl ...]) .. 3-2
(prog l_vrbls g_expl ...) .. 4-17
(progl 'g_expl ['~exp2 ...]) ... 4-17
(pr0g2 'g_expl '~exp2 ['g_exp3 ...]) ... 4-17
(progn 'g_expl ['g_exp2 ...]) .. 4-17
(progv 'l_locv 'l_initv g_expl ...) .. 4-17
(provide 's_name) ... 17-9
(ptime) .. 6-5
(ptr 'g_arg) ... 2-32
(purcopy 'g_exp) .. 4-17
(purep 'g_exp) .. 4-18
(push 'g_element 'I_stack) .. 4-18
(pushnew '~element 'I_stack) ... 4-18
(putaccess 'a_array 'su_func) ... 2-24
(putaux 'a_array 'g_aux) .. 2-24
(putd's_name 'u_func) .. 4-18
(putdata 'a_array 'g_arg) .. 2-24
(putdelta 'a_array 'x_delta) ... 2-24
(putdise 'y_func 's_discipline) .. 2-26
(putlengtb. 'a_array 'xJength) .. 2-24
(putprop'lsJlame 'g_val 'g_ind) ; .. 2-28
(qualify-escape-exploden 'g_arg) ... 2-16
(qualify-explode 'g_arg) ... 2-16
(qualify-explodec 'g_arg) .. 2-16
(qualify-exploden '!t-arg) ... 2-16
(quote g_arg) ... 2-32
(quote! [g_qformll ... [! 'g3formll ... [II 'Cformll ...) ... 2-2
(quotient ['n_argl ...]) .. 3-2
(random ['x_limit]) .. 3-8
(rassq 'g_argl 'l_arg2) .. 2-26
(ratom ['p..port ['g_eof]]) ... 5-8
(read ['p..port ['g_eof]]) ... 5-8
(read!: ['p...,port ['~eof]]) .. 5-8
(readdir ['t_dirname]) ... 5-8
(readline ['p..port]) ... 5-8
(readlist 'l_arg) ... 5-8
(recompile-flavor flavor-name [single-operation (use-old-combined-methods t) (do-dependents t)]) 19-20
(• der ,. d"d d" d") . 3 8 relIl8.1n 1_ IVI en 1_ Ivlsor -
(rematom 's_arg) .. 2-12
(remhash 'g-l<ey 'H_htab) .. 2-20
(remob 's_symbol) .. 2-12

A-9

(remove 'g_x '1_1) ... 2-6
(removeaddress 's_name 1 ['s_name2 ...]) .. 5-8
(remprop 'Is_name 'g_ind) ... 2-28
(remq 'g_x '1_1 ['x_count]) ... 2-6
(remsym 'sl_lis tl ...) ... 2-13
(rename-package 'k""pkname 's_newname ['l_newnicknames]) ... 17-5
(replace 'g_argl 'g_arg2) .. 2-32
(require 's_name ['sl....Pathname]) ... 17-9
(reset) ... 6-5
(resetio) .. 5-8
(return ['g_val]) .. 4-18
(reverse 'l_arg) .. 2-8
(rot 'x_val 'x_amt) .. 3-6
(rplaca 'lh_argl 'g_arg2) ... 2-5
(rplacd'lh_argl 'g_arg2) ... 2-5
(rplacx 'x_ind 'h_hunk 'g_val) ... 2-25
(sassoc 'g_argl 'I_arg2 'sI_func) ... 2-26
(sassq '~argl 'I_arg2 'sI_func) .. 2-26
(scons 'x_arg 'bs_rest) .. 2-33
(segment 's_type 'x_size) ... 6-6
(selectq 'g_key-form [I_clausel ...]) ... 4-18
(send 's_object 's_operation [arguments]) .. 19-7
(send s_instance 's_message [argument] ...) .. 19-20
(send-self's_message [argument] ...) .. 19-20
(set's_argl 'g_arg2) ... 2-15
(set-in-closure 'cl_a 's_symbol 'g_x) .. 8-11
(set-in-fclosure 'v _fclosure 's_sym bol 'g_newvalue) .. 2-31
(setarg 'x_argnum '~val) ... 4-18
(se1f' g_accessfnl 'g_vall) ... 14-2
(se1f' g_refexpr 'g_value) ... 2-33
(setplist 's_atm 'I....plist) .. 2-16
(setplist 's_atm 'l....plist) .. 2-27
(setqs_atml '~val1 [s_atm2 'g_vaI2]) .. 2-16
(setsyntax 's_symbol 's_synclass['ls_func]) ... 7-10
(shadow 'lg_sym [k-J>ackage]) .. 17-7
(shadowing-import'lg_sym ['k""package]) ... 17-7
(shell) ... 6-6
(showstack) .. 6-6
(si:property-list-mixin :get property-name &optional default) .. 19-39
(si:property-list-mixin :get-Iocation property-name) ... 19-40
(si:property-list-mixin :get-iocation-or-nil property-name) ... 19-40
(si:property-list-mixin :getl) .. 19-39
(si:property-list-mixin :property-list list) ... 19-41
(si:property-list-mixin :property-list) .. 19-40
(si:property-list-mixin :property-list-Iocation) ... 19-40
(si:property-list-mixin :push-property) .. 19-40
(si:property-Iist-mixin :putprop value property-name) ... 19-39
(si:property-Iist-mixin :remprop property-name) .. 19-40
(si:property-list-mixin :set-property-list list) ... 19-40
(signal 'x_signum 's_name) ... 6-6
(signp s_test 'g_val) .. 2-9
(sin 'fx_angle) .. 3-4
(sizeof 'g_arg) ... 6-6
(sloOO 's_file) .. 5-9
(small-segment 's_type 'x_cells) .. 6-6

A-IO

(sort 'I_data 'u_comparefn) .. 2-33
(so~ 'I_list 'u_comparefn) ... 2-34
(sprintf 't_control ['argl ...]) .. 5-7
(sqrt 'fx_arg) .. 3-8
(sstatus appendInap S"-val) .. 6-7
(sstatus automatic-reset g_val) .. 6-7
(sstatus chainatom S"-val) .. 6-7
(sstatus dumpcore g_val) ... 6-7
(sstatus evalhook g_val) .. 6-7
(sstatus feature g_val) .. 6-7
(sstatus nofeature g_val) .. 6-7
(sstatus translink g_val) .. 6-7
(sstatus uctolc g_val) ... 6-8
(sstatus g_type g_val) ... 6-6
(status ctime) ... 6-8
(status feature g_val) ... 6-8
(status features) ... 6-8
(status isatty) ... 6-9
(status localtirne) ... 6-9
(status syntax s_char) .. 6-9
(status undeffunc) .. 6-9
(status version) .. 6-9
(status g_code) ... 6-8
(steps_argl ...) .. 15-1
(sticky-bignUIIl-leftBhift 'bx_arg 'x_amount) .. 3-5
(store 'l_arexp 'g_val) ... 2-24
(str= 't_stringl 't_string2) .. 2-14
(strcat ['stn_argl ...]) .. 2-11
(string 'st_symbol-or-string) ... 2-15
(stringp 'g_arg) ... 2-9
(subI 'n_arg) .. 3-2
(sublis 'l_alst 'l_exp) .. 2-27
(subpair 'I_old 'I_new 'l_expr) ... 2-7
(subst 'g..x 'g-y 'l_s) .. 2-6
(substring 'st_string 'x_index ['x_length]) ... 2-15
(substringn 'st_string 'x_index ['x_length]) ... 2-15
(substrp 't_stringl 'string2) ... 2-15
(sum ['n_argl ...]) .. 3-1
(symbol-function 's_arg) .. 2-14
(symbol-n8.llle 's_arg) , ... 2-14
(symbol-package 's_name) ... 2-14
(symbol-plist 's_name) ... 2-27
(symbol-value 's_arg) ... 2-14
(symbolp 'g_arg) ... 2-9
(syrneval 's_arg) ... 2-14
(syrneval-in-closure 'cl_a 's_x) ...•.. 8-11
(syrneval-in-fclosure 'v _fclosure 's_symbol) .. 2-31
(syxnstat's_namel ...) .. 2-13
(sys:access 'st_filename 'x_mode) ... 6-10
(sys:chmod 'st_filename 'xl_mode) .. 6-9
(sys:getpid) ... 6-10
(sys:gefpwn8.lll 'st_name} ... 6-11
(sys:getpwuid 'x_uid) ... 6-10
(sys:getuid) ... 6-10
(sys:link 'st_oldfilename 'st_newfilename) .. 6-10

A-ll

(sys:thne) ... 6-10
(sys:unlink 'st_filename) ... 6-10
(tab 'x_col ['p-port]) .. 5-9
(tailp 'l_x 'IJ) ... 2-3
(tconc 'l-ptr ' It-x) ... 2-29
(terpr ['p-port]) .. 5-9
(terpri ['p-port]) ... 5-9
(throw 'g_val [s_tag]) ... 4-18
(tilde-expand 'st_name) ... 5-9
(time-string ['x_seconds]) .. 6-11
(times ['n_argl ...]) ... 3-2
(top-level) ... 6-11
(trace [ls_argl ...]) .. 11-1
(traceargs s_func [x_level]) .. 11-3
(tracedump) .. 11-3
(truename 'p-port) ... 5-9
(tyi ['p-port]) ... 5-9
(tyipeek ['p-port]) .. 5-9
(tyo 'x_char ['p-port]) .. 5-9
(type 'It-arg) ... 2-9
(typep 'It-arg) ... 2-9
(uconcat ['stn_argl ...]) ... 2-11
(undefllavor 'flavor) .. 19-20
(unexport'lg_sym ['k-package]) .. 17-7
(unintern 's_symbol ['k-package]) ... 17-6
(unless pred forml ...) ... 4-4
(untrace [s_argl ...]) ... 11-4
(untyi 'x_char ['p-port]) .. 5-10
(unuse-package 'lkst-packs [k-package J) ... 17-8
(unwind-pratect g-protected [It-cleanupl ... J)4-18
(use-package 'lkst-packs [k-package]) ... 17-8
(valuep 'g_arg) .. 2-9
(values ['g_argl ... 'It-argn]) .. 4-19
(values-list 'l_arg) .. 4-19
(vector ['It-valO 'g_vall ...]) .. 2-18
(vectori-byte ['x_valO 'x_val2 ... J) .. 2-18
(vectori-double ['f_valO 'f_val2 ... J) .. 2-18
(vectori-float ['f_valO 'f_val2 ... J) ... 2-18
(vectori-long ['x_valO 'x_val2 ...]) .. 2-18
(vectori-word ['x_valO 'x_val2 ...]) ... 2-18
(vectorip 'v_vector) .. 2-9
(vectorp 'v_vector) ... 2-9
(vget 'Vv_vect 'g_ind) ... 2-18
(vprop 'Vv _vect) ... 2-18
(vputprop 'Vv _vect 'g_value 'g_ind) .. 2-19
(vref 'v_vect 'x_index) ... 2-18
(vrefi-byte 'V _vect 'x_bindex) .. 2-18
(vrefi-double 'V _vect 'x_lindex) ... 2-18
(vrefi-float 'V _vect 'x_Iindex) .. 2-18
(vrefi-Iong 'V _vect 'x_Iindex) .. 2-18
(vrefi-word 'V _vect 'x_windex) .. 2-18
(vset 'v _vect 'x_index 'g_val) ... 2-19
(vseti-byte 'V _vect 'x_bindex 'x_val) ... 2-19
(vseu-double 'V _vect 'x_lindex 'f_val) .. 2-19
(vseti-float 'V _vect 'x_lin de x 'f_val) .. 2-19

A-12

(vseti-long'V _vect 'x_lindex 'x_val) ... 2-19
(vseti-word'V _vect 'x_windex 'x_val) ... 2-19
(vsetprop 'Vv_vect 'g_value) .. 2-19
(vsize 'Vv _vect) .. 2-18
(vsize-byte 'V _vect) .. 2-18
(vsize-double 'V _vect) .. 2-18
(vsize-Hoat 'V _vect) ... 2-18
(vsize-word 'V _vect) .. 2-18
(wait) .. 6-11
(when pred form1 ...) ... 4-4
(wide-print-list 'g3xP [:port 'p_where] [:left-margin 'x_wheretostart]) 5-7
(with-self-variables-bound body) ... 19-20
(xcons 'g_argl 'g_arg2) ... 2-1
(y-oJ.'l-n-p ['t_message]) ... 5-10
(zapline) ... 5-10
(zerop 'g_arg) .. 3-3

APPENDIX B

Special Symbols

The values of these symbols have a predefined meaning. Some values are counters, while
others are simply flags whose value the user can change to affect the operation of the Lisp system.
In all cases, only the value cell of the symbol is important; the function cell is not. The value of
some of the symbols (like ER %misc) are functions. What this means is that the value cell of
those symbols either contains a lambda expression, a binary object, or symbol with a function
binding.

The values of the special symbols are:

$gccount$ - The number of garbage collections which have occurred.

$gcprint - If bound to a non nil value, then, after each garbage collection and subsequent
storage allocation, a summary of storage allocation is printed.

$ldprint - If bound to a non nil value, then, during each fa81 or cfa81, a diagnostic message IS

printed.

ER%all- The function that is the error handler for all errors. (See Chapter §1O)

ER%brk - The function that is the handler for the error signal generated by the evaluation of
the break function. (See Chapter §1O).

ER%err - The function that is the handler for the error signal generated by the evaluation of
the err function. (See Chapter §1O).

ER%misc - The function that is the handler of the error signal generated by one of the
unclassified errors. (See Chapter §1O). Most errors are unclassified at this point.

ER%tpl- The function that is the handler to be called when an error has occurred which has
not been handled. (See Chapter §10).

ER %undef - The function that is the handler for the error signal generated when a call to an
undefined function is made.

AW - When it is bound to a non-nil value, this prevents output to the standard output port
(poport) from reaching the standard output (usually a terminal). Note that AW is a two
character symbol and should not be confused with AW which is how control-w is denoted.
The value of AW is checked when the standard output buffer is flushed, which occurs after
a terpr, drain, or when the buffer overflows. This is most useful in conjunction with
ptport described later. System error handlers rebind AW to nil when they are invoked to
ensure that error messages are not lost. (This was introduced for Maclisp compatibility.)

defmacro-for-compiling - This has an effect during compilation. If it is non-nil, it causes mac
ros defined by defmacro to be compiled and included in the object file.

environment - The operating system environment in assoc list form.

B-1

B-2

err list - When a reset is done, the value of errlist is saved away and control IS thrown to the top
level. Eval is then mapped over the saved away value of this list.

errport - This port is initially bound to the standard error file.

evalhook - The value of this symbol, if bound, is the name of a function to handle evalhook
traps (see §14.4)

float-format - The value of this symbol is a string that is the format to be used by print to
print flonums. See the documentation on the operating system function printf for a list of
allowable formats.

funcallhook - The value of this symbol, if bound, IS the name of a function to handle fun
callhook traps. (See Chapter §14.4).

gcdisable - If it is non-nil, then garbage collections are not done automatically when a collect
able data type runs out.

ibase - This is the input radix used by the Lisp reader. It may be either eight or ten. Numbers
followed by a decimal point are assumed to be decimal regardless of what ibase is.

linel - The line length used by the pretty printer, pp. This should be used by print but it is not
at this time.

multiple-values-limit - The maximum number of multiple values that can be returned. This is
a read-only variable.

nil - This symbol represents the null list and, thus, can be written O. Its value is always nil.
Any attempt to change the value results in an error.

"'package ... - The value of this symbol is the current package. See chapter 17.

piport - Initially bound to the standard input (usually the keyboard). A read with no arguments
reads from piport.

poport - Initially bound to the standard output (usually the terminal console). A print with no
second argument writes to poport. See also: AW and ptport.

prinlength - If this is a positive fixnum, then the print function prints no more than prinlength
elements of a list or hunk and further elements abbreviated as ' .. .'. The initial value of
prinlength is nil.

prinlevel - If this is a positive fixnum, then the print function prints only prinlevel levels of
nested lists or hunks. Lists below this level are abbreviated by '&' and hunks below this
level are abbreviated by a '%'. The initial value of prinlevel is nil.

ptport - Initially bound to nil. If bound to a port, then all output sent to the standard output is
also sent to this port as long as this port is not also the standard output since this would
cause a loop. Note that ptport does not get a copy of whatever is sent to poport if
poport is not bound to the standard output.

readtable - The value of this is the current readtable. It is an array, but you should NOT try
to change the value of the elements of the array using the array functions. This is
because the readtable is an array of bytes and the smallest unit the array functions work
with is a full word (4 bytes). You can use setsyntax to change the values and (status

B-3

syntax .. .) to read the values.

t - This symbol always has the value t. It is possible to change the value of this symbol for short
periods of time, but you are strongly advised against it.

top-level- In a Lisp system without /lisp/lib/tpl.lloaded, after a reset is done, the Lisp system
JuncaU's the value of top-level if it is non-nil. This provides a way for you to introduce
your own top level interpreter. When /lisp/lib/tpl.l is loaded, it sets top-level to tpl and
changes the reset function so that once tpl starts, it cannot be replaced by changing top
level. tpl does provide a way of changing the top level however, and that is through
user-top-Ievel.

user-top-level - If this is bound, then after a reset the top level function Juncal/'s the value of
this symbol rather than going through a read eval print loop.

APPENDIX C

The Garbage Collector

The FRANZ LISP storage management "garbage collector" is invoked automatically when
ever a collectable data type's current allocation is exhausted. All data types are collectable
except for strings. After a garbage collection finishes, the collector calls the function gcafter,
which should be a lambda of one argument. The argument passed to gcafter is the name of the
data type that ran out and which caused the garbage collection. It is gcafter's responsibility to
allocate more pages of free space. The default gcafter makes its decision based on the percentage
of space still in use after the garbage collection. If there is a large percentage of space still in use,
gcafter allocates a larger amount of free space than if only a small percentage of space is still in
use. The default gcafter also prints a summary of the space in use if the variable $gcprint is non
nil. The summary always includes the state of the list and fixnum space, and includes an addi
tional type if that type caused the garbage collection. The type that provoked the garbage collec
tion is preceded by an asterisk.

0-1

APPENDIX D

Lxref: The Lisp Cross Reference Program

Lxref reads cross reference files written by the Lisp compiler Iz"szt and prints a cross refer
ence listing on the standard output. Lz"szt will create a cross reference file during compilation
when it is given the +x switch. Cross reference files usually end in '.x' and consequently Ixref will
append a '.x' to the file names given if necessary.

The Ixref command line looks like:

+ + lxref [+ N] xref-file ... [+ a source-file ..•] [+ A source-file]

The first option to Ixref is a decimal integer, N, which sets the z"gnore/evel. If a function is called
more than z"gnorelevel times, the cross reference listing will just print the number of calls instead
of listing each one of them. The default for z"gnorelevel is 50.

The +a option causes Ixref to put limited cross reference information in the sources named.
Ixref will scan the source and when it comes across a definition of a function (that is a line begin
ning with '(de!, it will precede that line with a list of the functions which call this function, writ
ten as a comment preceded by'; .. '. All existing lines beginning with '; .. 'will be removed from
the file. If the source file contains a line beginning ';.-' then this will disable this annotation pro
cess from this point on until a';. +' is seen (however, lines beginning with '; .. 'will continue to be
deleted). After the annotation is done, the original file ,/00.1' is renamed to '#./00.1"' and the new
file with annotation is named ,/00.1'

The +A switch, is like +a except it associates up to 2 function names per function. For
example if you have something "(def-md s-foo md-foo (x)" then lxref will write in the file the
names of the functions that call either s-foo or md-foo.

D-l

APPENDIX E

Reconfiguring Lisp

The file /Iisp/jranz/h/conjig.h contains the definitions of the parameters for lisp. In order
to modify this file you should have a familiarity with the C programming language.

A few of these parameters can be changed, others have values determined by the machine
and operating system. Some of the parameters are on a per-machine basis. The ones for the Tek
tronix 4404 are surrounded by "#ifdef pegasus ... #endif"

The important parameters that you may wish to alter are:

TTSIZE
the value is the maximum size that lisp can grow. It is measured in 512 byte 'pages', thus
the default value of 6120 means that the maximum size is slightly move than 3 megabytes.
There is an 18 byte overhead in static table space for each potential lisp page.

NAMESIZE
the number of entries in the 'namestack' whi~h is the stack used for holding function argu
ments and local variables. It is rare that a correctly functioning program will exceed the
default size of 3072 entries, so if you get a namestack overflow, make sure that your pro
gram isn't in a infinite loop before changing this value and rebuilding lisp.

XstackSize
the number of entries in the alternate stack. This stack is used for bignum arithmetic and
fasl. If you get an 'out of alternate stack' message, you can increase this parameter.

To rebuild lisp, change to the directory /lisp/jranz/68k and type "update updatefile". The
result will be a new version of lisp named "nlisp".

~ (l(~((h-o..l'lr r G8l.

E-l

TEK PROGRAMMERS
REFERENCE

First Printing JUL 1985

Product Group 07

4400
FRANZ LISP
GRAPHICS

COMMITlEO m EXCElLENCE

CONTENTS

1. Introduction 1

2. The C Graphics and Events Library Interface .. 1
2.1 Graphics Interface Functions ... ,. . .,... 1
2.2 Graphics Interface Structures,...................................... 6
2.3 Graphics Interface Special Variables .. 7
2.4 A Simple Example of Cstructs and BitBlt 9

3. Graphics Support ... 11
3.1 Graphics Mode .. 11
3.2 Drawing .. 13
3.3 Mouse ... 14
3.4 Text .. 14
3.5 Menus ... 15
3.6 Cursors and Halftones .. 15

4. Terminal Emulator Interface ~., ... 16

5. Smalltalk Forms for Lisp .. 16

6. Graphics Examples .. 17

- i -

4400 FRANZ LISP GRAPIDCS

1. Introduction

The Lisp library directory (Ilisp/lib) includes files (geUb.c, gelib.r, geUbJ, gelib.o) which
provide an interface to the 4404 C Graphics and Events Library. (See the 4404 AlS
Reference Manual.) Lisp structures that are equivalent to the C display structures are
defined, and a Lisp function interfaces to each function in the C library.

Additional graphics support is provided by the files of the Lisp examples directory
(/lisp/examples).

demo.l demo.o
draw.l draw.o
form.l form.o
menu.l menu.o
object.l object.o
telib.l telib.o

This support includes functions and related structures for setting graphics modes, drawing
primitives, painting text, using the mouse, and menus, definition of cursor and halftone
Forms, an example of flavors for graphical objects, and a terminal emulator interface.
Reading this code is one of the best ways to see how the graphics interface works.

These files are subject to change and are not supported by Tektronix.

2. The C Graphics and Events Library Interrace

The Lisp display structures used in the interface to the C Graphics and Events Library
correspond directly to underlying C structures defined in /Iib/includelgraphics.h. In Lisp,
the cstructs module is used by the geUb module to create and manipulate these struc
tures, which are garbage-collected like any other Lisp types. All structures (except the
actual screen bitmap) are maintained directly in Lisp. Structures are passed to the exter
nal functions of the graphics library, which are loaded automatically when the gelib
module is included in a Lisp program.

The Lisp functions of this interface have the same names as the C library functions. The
same number and types of arguments have been retained whenever possible. The seman
tics of the Lisp functions may differ in values returned.

An example of a simple bitblt operation follows the description of the functions and
structures of the Lisp graphics interface. The main purpose of this example is to demon
strate the creation and access functions generated for Lisp C structures.

2.1 Graphics Interface Functions

(BitBlt bbcom)
Perform the bitblt command described in the Bbcom structure argument. The
structure contains the source and destination rectangles, clipping regions, halftone
mask., and combination rule.

- 2 -

(Clear§creen)
Set the full screen bitmap to zeros. If the screen is set to normal video, this will
result in a white screen. The terminal emulator is not affected by this call, i.e., the
terminal emulator's idea of where to place its next character is unchanged.

(CursorTrack LOT-nil)
Force the cursor to track the mouse. If the argument is t, then moving the mouse
will cause the cursor to track the mouse position, otherwise the mouse will have no
affect on the cursor. The previous mode is returned (1 for tracking, 0 for non
tracking).

(Cur&orVisible Lor-Ilil)
Make the cursor visible or invisible. The cursor is made visible if the argument is t,
otherwise it is blanked. The previous mode is returned (1 for visible, 0 for invisi
ble).

(Display Visible LOT-nil)
Make the display visible or blanked. The display is made visible if the argument is
t, otherwise it is blanked. The previous mode is returned (positive integer for visi
ble, 0 for invisible). When the display is blanked, the screen goes black, and no
screen output of any kind is possilile until the display is again made visible. The
display should only be blanked with (Display Visible nil) in a program that includes a
subsequent (Display Visible t).

(EClear Alarm)
Clear any pending alarms that the process has requested.

(EGetCount)
Return the number of event values in the event buffer waiting to be processed. A
negative result indicates an error.

(EGetNewCount)
Return the number of event value,s in the event buffer which have occurred since
the previous call to this function.

(EGetNext)
Return the next value in the event buffer. Since some events require one value and
some require three values, this is either a complete event, an event header, or half
of a long time event parameter. The event type (see EGctType) will be a fixnum in
the range -1 to 5, inclusive. A negative value signals an error. Type values 1, 2, 3,
and 4 indicate that the event parameter is embedded in the event value (see EGct
Param). Otherwise (types 0 and 5) the embedded parameter field is ignored, and
the parameter is represented by the next two values in the event buffer.

(ECetParam event)
Return the parameter portion of an event value. The event argument should be a
value returned by (EGetNext) of type 1 through 4, inclusive (see EGetType).

(EGetTime)
Return the time, in milliseconds, since the system was powered up. A returned
value of 0 indicates an error.

(EGetType event)
Return the type portion of an event value. The event argument should be an event
value returned by (EGetNext).

- 3 -

(ESetAlarm time)
Request a signal when the specified time, in milliseconds, is reached.

(ESetSignal)
Request the event manager to signal the current process when events occur. The
event signal is disabled after being issued.

(EventDisable)
Disable event processing, i.e., turn off the event manager.

(EventEnable)
Enable event processing, i.e., turn on the event manager. Any subsequent user
input action will cause event values to be created. The terminal emulator is not
affected (if the terminal is enabled when events are enabled, then the keyboard will
start producing events in addition to ANSI character strings). If only mouse events
are desired, then keyboard events can be turned off (see SetKBCode).

(ExitGrapbics)
Map the bit-mapped display out of the address space of the calling process. This is
all that happens. Cursor, panning, event, keyboard and other modes are not
affected. If a return to the display state that existed prior to InitGraphics is desired,
then it is necessary to save that display state, and then restore it (see SaveDisplay
State and RestoreDisplayState).

(Form Create width height)
Allocate memory for a Form and its associated bit-map in the address space of the
Lisp process. Returns the new Form. Forms created with this function are han
dled by normal Lisp garbage collection.

(GetButtons)
Returns a fixnum which indicates the state of the mouse buttons. The button states
are reported in the low three bits of the fixnum, where bit 0 is the right button, bit
1 is the middle button, and bit 2 is the left button. If the bit is a 0 then the button
is up, if the bit is a 1 then the button is down (depressed). The button value,s are
defined as Lisp constants (see below).

(GetCPosition point)
Get the position where the cursor is currently displayed. If cursor/mouse tracking is
enabled, i.e., (CursorTrack t), then this is the same as GetMPositioD. Returns a
Point with x and y values in the range 0 to 1023, inclusive.

«(;etCursor form)
Returns a Form which is the current cursor image. The argument must be a 16x16
bit Form.

«ietMBounds pointl point2)
Get the limits on mouse motion. Returns a list of two Points with x and y values in
the range -32768 to 32767, inclusive. The mouse is limited within the rectangle
defined by the first Point at the upper left and the second Point at the lower right.

(GetMPosition point)
Get the position where the mouse is currently pointing. If cursor/mouse tracking is
enabled, i.e., (CursorTrack t), then this is the same as GetCPosition. Returns a
Point with x and y values in the range 0 to 1023, inclusive.

..

- 4 -

(GetViewport point)
Get the position which the panning hardware is displaying as the upper left comer
of the 64Ox480 display. Returns a Point with x and y values in the range 0 to 1023,
inclusive.

(InitGraphics LOrJlil)
Map the bit-mapped display into the address space of the calling process and put
the display in graphics mode. If the argument is nil, all other modes are
unchanged. If the argument is t, then in addition, the display is cleared, made visi
ble, and set to normal video (black on white) with both mouse and joy disk panning
enabled. Returns a Form which defines the screen bit-map.

(PaintLine bbcom point)
Paint a line on the display. A sequence of bitblt operations is performed while step
ping a pixel at a time toward the specified position. If one of the exclusive OR
rules is specified, and the source is null (ones), the response will instead be as if the
line was drawn by the above stepping method to a hidden bit-map, and then that
hidden bit-map was combined with the destination bit-map according to the speci
fied rule.

(PanCursorEnable Lor-nil)
Enable screen panning using the cursor. If the argument is t, then auto-panning
with the cursor is enabled, otherwise it is disabled. The previous mode is returned
(1 for cursor auto-panning enabled, 0 for cursor auto-panning disabled).

(PanDiskEnable Lor_nil)
Enable screen panning using the joydisk. If the argument is t, then auto-panning
with the joydisk is enabled, otherwise it is disabled. The previous mode is returned
(1 for joydisk auto-panning enabled, 0 for joydisk auto-panning disabled).

(PointToRC rowcol point)
COllvert the screen coordinates of a point to the row and column indices that define
the terminal emulator character cell which contains that point. Returns a Rowcol
with these values.

(ProteetCursor rectl rect2)
Tell the operating system that graphics operations will be occurring in one or both
of the screen areas defined by the two Rects (either Rect may be nil). The operat
ing system will respond by removing the cursor from the screen if it is in either of
the two areas. This instruction and its release (ReleaseCursor) should be used if the
user is writing or reading directly from the screen. This cursor protection is already
included in the routines of this library which draw on the screen.

(RCToRect rect row col)
Given row and column indices which define a terminal emulator character cell,
returns the Rect which describes that cell.

(ReleaseCursor)
Tell the operating system to restore the cursor if it was removed due to a Pro
tectCursor call. This call should be used to match every ProtectCursor call.

(RestoreDisplayState dispstate)
The state defined by the Dispstate argument is re-established. This includes the
coordinates of the viewport, the mouse bounds, the current cursor, the keyboard
code, and the modes for display, terminal emulator, cursor, panning, tracking,

- 5 -

screensaver, and video.

(SaveDisplayState dispstate)
Copy significant attributes of the current display state into the Dispstate argument.
These attributes will include at least the coordinates of the viewport, the mouse
bounds, the current cursor, the keyboard code, and the modes for display, terminal
emulator, cursor, panning, tracking, screensaver, and video. Returns the modified
Dispstate.

(ScrecnSaverEnable LOLnil)
Enable the screen saver timeout, which causes the screen to be blanked after 10
minutes of keyboard or mouse inactivity. If the argument is t, then the timeout is
enabled, otherwise it is disabled. The previous mode is returned (1 for screen saver
enable, 0 for screensaver disabled).

(SctCPmiition point)
Display the cursor at the specified psition. If cursor/mouse tracking is enabled, i.e.,
(CursorTrack t), this is the same as SetMPositioD. The x and y values of the Point
argument must be in the range of 0 to 1023, inclusive.

(SetCursor form)
Install a new cursor. The cursor argument is a Form which includes the 16x16 bit
representation for the new cursor.

(SetKBCode code)
Tell the keyboard to output ANSI character strings, if the code is 1, or event codes
in addition to ANSI character strings, if the code is O. Event processing must be
enabled before asking for event codes, and the terminal must be enabled to gen
erate ANSI. Enabling events automatically forces the keyboard into ANSI-plus
event mode. The call (SetKBCode 1) would normally be used after ena.bling the
event mechanism, to force the keyboard back to ANSI-only mode, while leaving
the mouse generating events.

(SeUrIBounds point1 point2)
Set the limits on mouse motion to be the rectangle defined by pointl at the upper
left and pointZ at the lower right. The x and y values of these Points may be in the
range -32768 to 32767, inclusive.

(SctMPosition point)
Position the mouse at the specified point. If cursor/mouse tracking is enabled, i.e.,
(CursorTrack t), this is the same as SetCPosition. The x and y values of the Point
argument must be in the range 0 to 1023, inclusive.

(SetViewport point)
Sets the panning hardware to display the upper left corner of the 640x480 display at
the specified position. The x and y values defined in the point must be in the physi
cal range of the screen, i.e., x in the range 0 to 383, inclusive, and y in the range 0
to 644, inclusive. Values out of these ranges have no effect.

(TerminalEnable LOLnil)
Enable the terminal emulator. If the argument is t, then the terminal emulator is
enabled, otherwise it is disabled. The previous mode is returned (1 for terminal
emulator enabled, 0 for terminal emulator disabled). If the terminal emulator is dis
abled, then the normal terminal emulator functions of transmitting and displaying
keyboard input are no longer performed automatically. The terminal should only

- 6 -

by disabled with (TerminalEnable nil) in a program that manages its own character
input and echoing, if needed, and that includes a subsequent (TerminalEnable t).

(VideoNormal Lor~nil)
Set the video mode of the display. The mode is set to normal video (black on
white) if the argument is t, and to inverse video (white on black) otherwise. The
previous mode is returned (1 for normal, 0 for inverse).

2.2 Graphics Interface Structures

Structures implemented for the Lisp Graphics and Events Library Interface are described
below. At the right of each structure name are two columns. Each entry in the first
column is the name of a field in the given structure. The field type is shown in the
second column, to the right of the field name. When these Lisp C structures are
declared, creation and access functions are created automatically. See the next section
for a few examples, and the Foreign Function Interface chapter of the Lisp Program
mers Reference for more information.

Point x short
y short

The Point structure is used to represent the location of one pixel in a bitmap. The
screen origin of (0,0) is the upper left corner of the screen, with x and y values
increasing right and down. For the 4404, the visible portion of the screen is a
64Ox480 bit viewport into a 1024x1024 bit frame buffer.

Rowcol row int

Reet

col int
The Rowcol structure is used to represent one character cell. The character cell
(0,0) is at the upper left with row and col values increasing down and right. The
4404 has 32 lines of text, with 80 characters per line.

x
y
w
h

short
short
short
short

The Rect structure is used to represent a rectangular region. The x and y values
define the upper left corner of the region in screen pixel coordinates. The width
and height in pixels are defined by wand h.

Form addr *vectori
w short
h short
offsetw short
offseth short
inc short

The Form structure is used to represent a rectangular bitmap. The addr is a Lisp
immediate vector which contains the bitmap itself (the one exception to this is the
screen bitmap Form, in which the addr is a pointer to the non-Lisp memory address
used for the screen bitmap). Width and height in pixels are stored in w and h. The
offset fields are usually used only in cursor Forms, to designate the "hot-spot" of the
cursor. The inc field is the number of bytes (always even) in one row of the bit
map.

- 7 -

Bbcom srcform *Form
destform *Form
srcpoint Point
destrect Rect
cliprect Rect
halftoneform *Form
rule short

The Bbcom structure is used to represent the arguments for a bitblt operation. The
srcform is a pointer to the source Form. The destform is a pointer to the destina
tion Form. The srcpoint, an embedded Point, is the location in the source Form
where copying begins. The destrect, an embedded Rect, is the destination Rect of
the destination Form. The cliprect, an embedded Rect, is the clipping Rect of the
destination Form. The halftoneform is a pointer to the halftone Form to be com
bined with the source Form. The rule, a short in the range 0 to 15, inclusive, is the
com bination rule for the bitblt operation.

Dispstate statebits
viewp
ulmouseb
lrmouseb
curarray
keycode
bLreserved

long
Point
Point
Point
(array 16) short
char
char

lineincr short
dispwidth short
dispheight short
viewwidth short
view height short
Lreserved (array 3) long

The Dispstate structure is used to represent various attributes of the display state to
saved and restored. These attributes include the coordinates of the viewport, the
mouse bounds, the current cursor, the keyboard code, and the modes for display,
terminal emulator, cursor, panning, tracking, screensaver, and video.

2.3 Graphics Interrace Special Variables

Below are the special variables defined in the Lh,p Graphics and Events Library Inter
face. At the right of each variable name is its type (or value, if known).

bbZero
bbSandD
bbSandDn
bbS
bbSnandD
bbD
bbSxorD

o
1
2
3
4
5
6

bbSorD 7
bbnSorD 8
bbnSxorD 9
bbDn 10
bbSorDn 11
bbSn 12
bbSnorD 13
bbnSandD 14
bbOnes 15

- 8 ~

These are the legal values for the combination rule of a bitblt operation. The
names of each is a meaningful abbreviation for the rule it represents. S is for
source, and D is for destination. The embedded boolean operators and, or, and xor
have the usual meanings. Not is represented by n. An n following an S or D means
the negation of just the Source or Destination, while a preceding n negates the full
expression that follows. Thus ''bbSnorD" is (or (not Source) Destination) and
IbbnSxorD" is (not (exclusive-or Source Destination)).

DRAW 0
ERASE 1
INVERT 2

These values are defined as constants, but are not currently used.

M_LEFT 4
MJ1IDDLE 2
M_RIGHT 1
M_ANY 7

These values are used to represent the various states of the mouse buttons. For
example the value of (equal (M_LEFT (GetButtons))) is t if the left button is down
and the other buttons are up. The values for middle and right are similar. The
value M_ANY is only returned by GetButtons if all three buttons were down.
However, the functions described in this document which accept M-ANY as an
argument use a different test when this value is passed, i.e., (Plusp (GetButtons)).

ScrWidth 1024
ScrHeight 1024
ViewWidth 640
ViewHeight 480

These variables represent the dimension of the full screen bitmap and the visible
viewport. Values shown are for the 4404.

- 9 -

DS_DISPON #xOOOl [1 =display enabled, O=disabled]
DS-oSCRSAVE #x0002 [1=screen saver enabled, O=disabled]
DS_VII)EO #x0004 [1=video normal, O=video inverse]
DS_TERMEM #x0008 [1=terminal emulator enabled, O=disabled]
DS __ CAPSLOCK #x0010 [l=caps lock on, O=off]
DS_CURSOR #x0100 [1=cursor enabled, O=disabled]
DS._TRACK #x0200 [1=cursor tracks mouse, O=no tracking]
DS_PANCUR #x0400 [1=cursor panning enabled, O=disabled]
DS-PANDISK #x0800 [1=ioydisk panning enabled, O=disabled]
DS.-KBEVENTS #xl0000 [1=keyboard generates event codes, O=ANSI]

These variables represent the values for specific bits in the statebits field of Disp
state structure. The hex value identifies the bit, and the values in brackets to the
right indicate the semantics for each possible bit value.

"''''origin Point
This Point is the upper left corner of every Form, with x and y equal to O.

**maxpoint Paint
This Point, with x and y eq:ml to 1023, is the lower right corner of ·*screen, the
actual screen bitmap.

**maxrect Rect
This Reet has the dimensions of *·screen, the physical screen bitmap. For the 4404,
*"'maxred has x and y values equal to 0, and wand h values equal to 1024.

**,·isrect Rect
This Reet has the dimensions of the visible portion of the screen. For the 4404,
**visrect has x and y values equal to 0, w equal to 640, and h equal to 480.

"''''screen Form
This is the Form which holds the actual screen bitmap. For the 4404, **screen has
an addr value equal to the address of the bitmap, wand h equal to 1024, offsetw
and offseth equal to 0, and inc equal to 128. Changes to ""*screen nre directly
mapped to the actual screen.

2.4 A Simple Example of Cstruds and mtBU

This example is primarily intended to explain the creation and access functions generated
automatically by Lisp C-structure definitions. For comprehensive explanation of bitblt,
see the SmaUtalk ''blue book" (Smalltalk"-80: The Language and its Implementation, pp.
329-362).

=> (load 'gelib)
nil

This loads the Lisp and external functions of the graphics interface.

=> (setq bb (make-Bbcom destform **screen cliprect **visrect rule bbOnes»
#<vectori 34>

A creation function is generated for each c-structure, and given the name of the
structure prefixed with "make-". Here a Bbcom is created with make-Bbcom. Struc
ture fields may be initialized by including alternating field names and values in the
function call. Fields not specified are initialized to nil or O. Note that cliprect is
embedded in the Bbcom structure, so the values of **visrect are copied.

=> (setq r (Bbcom->cliprect bb»
#<vectori 8>

- 10 -

This sets r to the cliprect field of the Bbcom structure. A new Rect is allocated,
and given values copied from the Bbcom cliprect.

=> (describe-cs r)
cstructs record
name: Rect occupying 8 bytes

field: x offset: 0 C-type: short
value: 0

field: y offset: 2 C-type: short
value: 0

field: w offset: 4 C-type: short
value: 640

field: h offset: 6 C-type: short
value: 480

access functions: (*Rect->x *Rect->y *Rect->w *Rect->h
Rect->x Rect->y Rect->w Rect->h)
nil'

The function dcscribe<s may be used to inspect the values of Lisp C structures.
Inspection of r shows that the subfield values of ··visred were used for the cliprect
a! hb, and then copied from bb to r.

=> (Bbcom->cliprect.w bb)
640

The dot notation is used to access subfields of embedded structures.

=> (Form->w (Bbcom->destform bb»
1024

Each of the Form fields (source, destination, and halftone) of a Bbeom is a lispval
pointer to a Form structure or nil, rather than an embedded structure. This is how
the width field of the destination Form is accessed. Note that the dot notation is
not appropriate, because the structure is not embedded.

=> (setf (Bbcom->destrect bb) **visrect)
t

The function setf is used with a structure access function and a value to set the
value of a field. Here the destination Reet is given the value of **vf~red.

=> (describe-cs (Bbcom->desrect bb))
cstructs record
name: Rect occupying 8 bytes

field: x offset: 0 C-type: short
value: 0

field: y offset: 2 C-type: short
value: 0

field: w offset: 4 C-type: short
value: 640

field: h offset: 6 C-type: short
value: 480

- 11-

access functions: (*Rect->x *Rect->y *Rect->w *Rect->h
Rect->x Rect->y Rect->w Rect->h)

nil
The access function Bbcom-:::destrect is used here with describe-cs to inspect the
values of the destination Rect of bb directly.

=-~> (BitBlt bb)
t

Here the bitblt operation is performed. If you have been typing in this example as
you read, you will have noticed that your screen just reversed color. All bits in the
visible portion of the screen bitmap were set to 1 (black if in normal video mode).

The bitblt operation described above is one of the simplest possible bitblt operations.
Since the combination rule is bbOnes, the values for source Form, source Point, and
halftone Form were not relevant and never set. Any different values for these fields
would have given the same result. Values for the other fields, however, are always man
datory. The destination Form, destination Rect, clipping Rect and combination rule
must all have meaningful values if a bitblt operation is to be performed correctly.

3. Graphics Support

The functions, macros, structures and variables described in the remaining sections of this
document are provided as examples of the Lisp graphics interface, and for interim use
until a more complete Lisp display library becomes available. All of the following may
be subject to change.

Functions with many options use the &key option for arguments (see the "Program
Form.s" chapter of the Lisp Manual). In the descriptions that follow, this is indicated
with ''KEY-ARG-PAIRS'' in the argument list. A list of the keywords supported for the
particular function immediately follows the argument list.

The formats for description of structures and variables are the same as are used in the
previous Lisp Graphics Interface sections.

3.1 Graphics Mode

The functions, macros, and variables below (defined in the file !lisp/examples/drawJ) are
used for setting characteristics of the Lisp graphics environment.

**grapbrect Rect

- 12 -

This global variable is the current graphics region, used as the default clipping U.ect.
Its value is set by inU-graphics-mode and by Bct-scrolling-region.

(init-graphics-mode KEY -ARG-PAIRS)
:cursor-Ioc initial graphics-cursor Point
:cursor-p graphics-cursor visible or invisible
:lines number of lines in text scrolling region
:mouse-bounds list of two Points defining mouse bounds
:pan-cursor-p pan cursor scrolling enable or disable
:pan-disk-p pan disk scrolling enable or disable
:video-normal-p normal or inverse video
:viewport-origin upper left display Point

Turn on Lisp graphics mode and set the current default clipping Rect or graphics
region (**graphrect). Defaults for keyword arguments are normal viewport (Set
Viewport "''''origin) and video mode (VideoNormal t), cursor and disk panning dis
abled, and a visible graphics-cursor in the upper right of the display. The default
graphics region is the entire screen bitmap. Macros are provided for common confi
gurations (see below), Cull.screen-graphics, viewport-graphics, and split-screen
graphics. When a text scrolling region is defined, **graphrect is set to the
remainder of the visible screen. At the first call to init-gra.phics-mode, the previous
display state is saved. When the next call to exit-graphics-mode is made, the saved
display state is restored. A change from one graphics mode to another, i.e., two
calls to init-graphics-mode without an intervening call to exit-grapWcs.mode, leaves
the previously saved display state unchanged.

(exit-graphics-mode)
Restore full-screen text-scrolling and the display state saved at the time of the first
call to init-graphics-mode. The screen is cleared and the text cursor is located in the
upper left-hand corner of the display. This is a no-op if not already in graphics
mode.

(set-scrolling-region KEY-ARG-PAIRS)
: lines lines in text scrolling region

Set the size of the text scrolling region and the value of **graphrect. The default
for :lines is 32, which restores the normal scrolling region for the terminal emulator.
Otherwise a text region of the size indicated is created at the bottom of the screen.
The text region is cleared, and the cursor moved to the upper left-hand corner of
the text region. The variable **graphrect is set to the portion of the visible screen
which is not used for text. The graphics region is not cleared.

(CuU-screen-graphics)
Set the graphics region to **maxrect, the full screen bitmap, with cursor and disk
panning enabled. Normal terminal emulator interactions will continue to scroll the
screen, so this mode would generally be used when all input and output is handled
graphically.

(viewport-graphics)
Set the graphics region to **visrect, the visible portion of the screen, with cursor
and disk panning disabled. Normal terminal emulator interactions will continue to
scroll the screen, so this mode would generally be used when all input and output is
handled graphically.

- 13-

(split-screen-graphics lines)
Create a text scrolling region at the bottom of the screen, and set the graphics
region to the remainder of the screen. The argument determines the number of
text lines in the scrolling region. A line drawn across the screen divides the regions.
Cursor and disk panning are disabled, and the mouse is limited to the graphics
region.

(clear-display)
Erase the graphics region by setting all bits to O.

(clear-text-region)
Erase the scrolling text region, and home the cursor to the upper left-hand corner
of the region.

3.2 Drawing

The functions below (defined in the file /lisp/examples/draw J) are used for drawing lines,
circles, rectangles, and boxes.

(draw-line pointl point2 KEY-ARG-PAIRS)
:bb Bbcom with destform, destrect, cliprect and rule set
:elipreet clipping Reet
:destform destination Form
:rule bitblt combination rule
:width number of pixels in line width

Draw a line from pointl to point2. If :bb is specified, then the :cliprect, :destform,
and :width values are ignored. Otherwise, defaults include ··screen for :destform,
·*graphrect for :elipreet and bbSorD for :rule.

(draw-lines points KEY-ARG-PAIRS)
:width number of pixels in line width
:closed-form-p first and last Point connected or not connected.

Draw a line connecting each Point in the points argument to its successor. The
defaults for keyword arguments are 1 for :width and nil for :closed-form-p.

(draw-circle center-point radius)
Draw a circle centered at center-point with the specified radius. The circle is drawn
on an intermediate Form, then bitblted on to ··screen with bbSorD.

(draw~r.ectangle rect KEY-ARG-PAIRS)
:bb Bbcom with destform, destrect, cliprect and rule set
:cliprect clipping Reet
:destform destination Form
:halftone halftone Form
:rule bitblt combination rule

Draw a solid rectangle at the region specified by recto Defaults include ·*screen for
:destform, ·*graphrect for :cliprect, nil for :halftone, and bbS for :rule.

(draw-box rect KEY-ARG-PAIRS)
:cliprect clipping Rect
:destform destination Form
:width number of pixels in border width

- 14-

Draw a box with the interior region specified by recto The border of the box is
drawn around this region. Defaults include "'*screen for :destform, ·*grapbrect for
:cliprect, and 1 for :width.

3.3 Mouse

The functions below (defined in the file /lisp/examples/draw J, except red-from-user,
defined in llisp/exampleslformJ) use the mouse. See also menu-choose, in the section on
menus.

(mouse-in-region reet)
Return t if the mouse cursor is positioned within the specified Rect, otherwise
return nil.

(wait-mouse-click button)
Wait for the press and release of the specified mouse button (M-LEFf,
M..MIDDLE, M_RIGHT, or M-ANY). The button pressed and the location of the
mouse are returned as multiple values.

(red-from-user &optional minwidth minheight)
Wait for the user to select a rectangular region of the display with the left mouse
button. Pressing the button specifies the upper left-hand corner of the region, and
releasing the button specifies the lower right-hand corner. The specified Reet and a
Bbcom are returned as multiple values. The returned Bbcom defines a bitblt opera
tion which will restore the screen pixel values in the region to what they were
before selection. The optional arguments are used to specify a minimum height and
widt.h.

3.4 Text

The functions and variables below (defined in the file Ilisp/examples/menuJ) are used for
painting text onto the screen and other bitmap Forms. These are independent of the ter
minal emulator, which is discussed in a different section.

"''''font Font

This variable is used to reference the current Font. A font contains the same character
images used by the terminal emulator has been defined. When the file
Ilisp/examples/menuJ is loaded, "'*font is initialized to this Font.

(paint-string x y string &optional font rule destform)
Paint the specified string onto a Form. The upper left corner of the first character
image is located at (x, y). Defaults include ·"'Cont for font, bbS for rule, and
·*screen for destform. The default font includes images for all ASCII character
codes, but in Lisp only certain characters are legal for strings. Use paint-char
instead of paint-string when it is necessary to circumvent this restriction.

(paint-char x y char &optional font rule destform)
Paint the character with ASCII value char onto a Form. The upper left corner of
the character image is located at (x, y). Defaults include "''''font for font, bbS for
rule, and ·*screen for destform.

(string-pixel-size item font)

- 15 -

Return the width in pixels required to paint item (a symbol or string) with the speci
fied Font.

3.5 Menus

The functions below (defined in the file /lisp/lib/exampleslmenuJ) are for the creation
and use of pop-up menus.

(muke-menu item-list &optional selector cliprect-var)
Create a menu from item-list. A menu is a symbol with associated structures and
values maintained on a property list. The item-list is a list of items, each of which
is associated with one slot of the menu. Each item is either a string, a symbol, or a
list with a string or symbol at the head of the list. The value displayed in the menu
is the string or the print name of the symbol. If the item is a string or symbol, then
the item itself is returned if selected. If the item is a list, then the second item of
the list is returned. The optional selector indicates the mouse button used to select
from the menu, which defaults to M-ANY. The cliprect-var is a quoted symbol to
be evaluated when the menu is used, to return the Rect in which the menu should
be displayed. The default cliprect-var is '·*maned.

(make-icon-menu item-list &optional selector cliprect-var)
Create a menu from item-list. This is identical to make-menu (see above), except
that Forms take the place of strings. A menu is a symbol with associated structures
and values maintained on a property list. The item-list is a list of items, each of
which is associated with one slot of the menu. Each item is either a Form, or a list
with a Form at the head of the list. The value displayed in the menu is the Form.
If the item is a Form, then the item itself is returned if selected. If the item is a
list, then the second item of the list is returned. The optional selector indicates the
mouse button used to select from the menu, which defaults to M_ANY. The·
cliprect-var is a quoted symbol to be evaluated when the menu is used, to return the
Rect in which the menu should be displayed. The default cliprect-var is '··manect.

(menu-choose menu)
Pop up a menu and wait for a selection. A menu is an object returned by make
menu or make-icon-menu. The value returned from selecting a menu item is
described above. The menu is centeied at the location of the graphics-cursor. Nil
is returned if no item is selected, i.e., if the selector is pressed and released outside
of the menu.

3.6 Cursors and Halftones

The variables below (defined in the file /lisp/examples/Corml) are Forms and lists of
Forms which represent cursors and halftones.

··cursors list of Forms
The variable ··cursors is a list of the cursors described below. A cursor is a 16x16
bit Form.

- 16-

ComerCursor Form
CrosshairCursor Form
DownCursor Form
NonnalCursor Form
OriginCursor Form
ReadCursor Form
SquareCursor Form
UpCursor Form
WaitCursor Form
WriteCursor Form
XeqCursor Form

These cursor Forms are equivalent to the standard Smalltalk cursors.

**halCtones list of Forms
This variable is a list of the halftones described below. A halftone is a 16x16 bit
Form.

BlackHalCtone Form
DarkGrayHalCtone Form
GrayHalftone Form
LightGrayHaiCtone Form
VeryLightGrayHalftone Form

These halftone Forms are equivalent to the standard Smalltalk halftones.

4. Terminal Emulator Interface

An interface to the terminal emulator (defined in Ilisp/examples/telibJ) is provided as a
Lisp package. The Lisp functions of this interface are used to generate the escape
prefixed and other special character strings necessary to issue terminal emulator com
mands. See Section 10 of the 4404 AIS Reference Manual for more information. Lisp
functions which use the terminal emulator interface include set-scrolling-region, and
clear-text-region.

s. SmaUtalk Forms for Lisp

The SmaUtalk bit editor may be used to create a Form that can be read and used for
graphics in Lisp. To create the Form newCursor.f, use the following steps:

1. Invoke smaHtalk.
2. Open up a workspace.
3. Enter the following Smalltalk statements (where

<- is replaced by the true Smalltalk back arrow):

aForm <- Form new extent: 16@16.
aForm <- aForm bitEdit.

4. Select those statements and Dolt.
5. Use the biteditor to create the cursor Form desired.
6. Use the middle button to 'accept' the Form.
7. Enter the following Small talk statement:

aForm writeOn: 'newCursor.f'.

- 17 -

8. Select the statement and Dolt.
9. Exit Smalltalk.

The function ReadForm (defined in Ilispllib/gellbJ) will make the Smalltalk Form avail
able to Lisp. To replace the current cursor with the new Form in newCursor.r,

1. Invoke lisp.
2. (include gelib)
3. (InitGraphics t)
4. (CursorVisible t)
5. (setq oldcursor (GetCursor (Form Create 16 16»)
6. (SetCursor (ReadForm "newCursor.f"»
7. To restore the normal cursor, (SetCursor oldcursor)

6. Graphics Examples

Demonstration functions (defined in llisp/examples/demoJ) which use the Lisp graphics
interface and other Lisp graphics support functions are included. To run these examples,

1. Invoke lisp.

2. (load '/lisp/examples/demo)
Other necessary files are loaded automatically.
This takes awhile.

3. (demos)
The screen is divided into two regions.
The upper region is used for graphics, and
the lower region is used for instructions
and explanation. A menu will pop up, and
instructions will appear in the text region.
The examples themselves are self-explanatory.

**cursors (variable)
*"'graphrect (variable)
**halftones (variable)
**maxpoint (variable)
**maxred (variable)
*"'origin (variable)
"''''screen (variable)
**visred (variable)
Bbeom (structure)
bbDn (variable)
bbD (variable)
bbnSandD (variable)
bbnSorD (variable)
bbnSxorD (variable)
bbOnes (variable)
bbSandDn (variable)
bbSandD (variable)
bbSnandD (variable)
bbSnorD (variable)
bbSn (variable)
bbSorDn (variable)
bbSorD (variable)
bbSxorD (variable)
bbS (variable)
bbZero (variable)
BitBlt (function)
BlackHalftone (variable)
clear-display (macro)
clear-text-region (macro)
Clear5creen (function)
ComerCursor (variable)
CrosshairCursor (variable)
CursorTrack (function)
CursorVisible (function)
DarkGrayHalftone (variable)
DisplayVisible (function)
Dispstate (structure)
DownCursor (variable)
draw-box (function)
draw-circle (function)
draw-lines (function)
draw-line (function)
draw-rectangle (function)
DRAW (variable)
DS_CAPSLOCK (variable)
DS_CURSOR (variable)
DSJ>ISPON (variable)
DSJeBEVENTS (variable)

- 18 -

INDEX

15
11
16
9
9
9
9
9
7
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
1

16
13
13
2

16
16
2
2

16
2
7

16
13
13
13
13
13
8
9
9
9
9

DS_PANCUR (variable)
DS_PANDISK (variable)
DS~CRSAVE (variable)
DS_TERMEM (variable)
DS_TRACK (variable)
DS_ VIDEO (variable)
EClearAlarm (function)
EGetCount (function)
EGetNewCount (function)
EGetNext (function)
EGetParam (function)
EGetTime (function)
EGetType (function)
ERASE (variable)
ESetAlarm (function)
ESetSignal (function)
EventDisable (function)
EventEnable (function)
exit-graphics-mode (macro)
ExitGraphics (function)
Font (structure)
FormCn~ate (function)
Form (structure)
full-screen-graphics (macro)
GetCPosition (function)
GetCursor (function)
GetMBounds (function)
GctMPosition (function)
GetViewport (function)
GrayHalftone (variable)
initMgraphics-mooe (function)
InitGraphics (function)
INVERT (variable)
LigbtGrayHalftone (variable)
make-icon-menu (function)
make-menu (function)
menu~boose (function)
mouse·in-region (function)
M-ANY (variable)
~LLEFf (variable)
M-.MIDDLE (variable)
M-RIGHT (variable)
NormalCursor (variable)
OriginCursor (variable)
paint-cbar (function)
paint-string (function)
PaintLine (function)
PanCursorEnable
PanDiskEnable (function)
PointToRC (function)
Point (structure)

- 19 -

9
9
9
9
9
9
2
2
2
2
2
2
2
8
3
3
3
3

12
3

14
3
6

12
3
3
3
3
4

16
12
4
8

16
15
15
15
14
8
8
8
8

16
16
14
14
4
4
4
4
6

ProtectCursor (function)
RCToRect (function)
ReadCUrsor (variable)
red-from-user (function)
Red (structure)
ReleaseCursor (function)
RestoreDisplayStatc (function)
Rowcol (structure)
SaveDisplayState (function)
ScreenSaverEnable (function)
ScrHeight (variable)
ScrWidth (variable)
set-scrolling-region (function)
SetCPosition (function)
SetCursor (function)
SetKBCode (function)
SctMBounds (function)
SetMPosition (function)
SetViewport (function)
split-scrceu-graphics (macro)
SquareCursor (variable)
string-pixel-size (function)
TerminalEnablc (function)
UpCursor (variable)
VeryLightGrayHalftone (variable)
VideoNormal (function)
ViewHeight (variable)
viewport-graphics (macro)
ViewWidth (variable)
wait-rnouse-click (function)
W aitCursor (variable)
WriteCursor (variable)
XeqCursor (variable)

- 20-

4
4

16
14
6
4
4
6
5
5
8
8

12
5
5
5
5
5
5

13
16
14
5

16
16
6
8

12
8

14
16
16
16

FRANZ LISP VERSION 42 INSTALLATION NOTES
These installation notes provide important information about your new release of Franz
Lisp. The major sections are: Installation, Release Notes, and Franz Lisp Files. Read
this document carefully before installing Franz Lisp on your system.

1. INSTALLATION

This version of Franz Lisp is compatible with Tektronix 4404 Operating System versions
1.5 and later. It is incompatible with earlier versions of the operating system and C
libraries. Be certain that you are running a compatible version of the operating system
before installing this release of Franz Lisp.

Perform the following procedure to install and verify your Franz Lisp files.

1. At the system prompt "-+-t!', log in as the system manager by typing:

login system

2. Invoke the restore utility to copy the Franz Lisp system from the floppy diskettes to
system disk. At the system prompt, type:

restore -II

3. Insert the distribution floppy diskettes, in sequence, as the restore utility prompts
you for them.

4. After you have finished with the restore utility, you should run diskrepair to verify
that the system disk structure is correct. At the system prompt, type: .

diskrepair !dev/disk

You are now finished with the installation of Franz Lisp. See the section FRANZ USP
FILES below for a descriptIon of the files included in the release.

2. RELEASE NOTES

2.1 Introduction

This is a description of the changes between Franz Lisp Versions 41 and 42. There are
many new features and some incompatibilities between these versions, but the conversion
of Lisp programs to VersIon 42 Franz Lisp should be simple.

2.2 Incompatibilities

There are two major changes that result in incompatibilities between Versions 42 and 41:
reader syntax for packages and fasl format. It is very important to read the following
sections about packages and fasl format.

2.3 New Features and Enhancements

2.4 Packages

This new feature provides multiple name spaces for Lisp symbols, and is completely com
patible with Common Lisp packages.

- 2-

Important: the syntax of the character ":" has changed, and programs which use ":" in
atom names will have to be changed. Please see chapter 17 for details about packages.

2.5 Fasl rormat

The format of fasl files (output of the Lisp compiler, liszt) has changed in an incompati
ble way. Compiled Franz Lisp programs created from earlier versions of the compiler
will not load into Version 42. All Franz Lisp programs should be recompiled.

2.6 Keyword Arguments

The Lisp function de/un has been enhanced to allow keyword arguments, as described in
chapter 8.

2.7 Derstruct

This is the structure package from Lisp Machine Lisp and Common Lisp. It is described
in chapter 14.

2.8 Flavors

A new implementation of flavors, object-oriented programming for Lisp, has been added
to Franz Lisp. See chapter 19 for a description of flavors.

2.9 Fonign Function Interface

The Franz Lisp to foreign function interface has been greatly enhanced. See chapter 18
for more details.

2.10 Lisp Compiler Speedups

For MC68000 versions of Franz Lisp, the compiler has been improved in the area of fix
num arithmetic. All versions of the compiler now allow vector bounds checking to be
turned off via the declarations: (declare (vector-hounds-chk nil)).

2.11 Closures

Lisp Machine closures have been fuUy implemented. See chapter 2 for more details.

2.12 Reader Syntax

The reader syntax has been modified for Common Lisp compatibility. See chapter 8 for
more details.

2.13 Documentation Additions and Errata

char-rindex (p. 2-15)

char-rindex returns the position of the first occurrence of stL.char from the end of
Lstring.

Exponential notation (p. 3-1)

Exponential format for flonums is accepted by the Lisp reader, even though the
manual does not mention it. For example, lelO returns 10000000000.0.

- 3-

cerror (p. 4-10)

The manual is in error when it states that the function cerror returns nil. The error
is continuable, via the tpl command ?ret, and may return particular values. For
example, to return a value of 10 from a call to cerror ?ret 10 would be typed at the
c{n} prompt.

readdir (p. 5-8)

The function readdir is in the system package, not in the Lisp package, so must be
called as sys:readdir from the user package.

signal (p. 6-6)

The function signal catches all signals, and not just the four that the manual indi
cates.

Reader (p. 7-1)

There is a new syntax class in the reader, vpackage. The character: is in this class.

Closures (p. 8-11)

The function closurep should be added to section 8.3.2 of the manual. It returns t if
the sole argument is a closure.

Also, if a symbol given to symeval-in-closure or set-in-closure is not one of the sym
bols closed over in the closure, then the effect of the function call is identical to
symeval and set, respectively.

cfasl (p. 18-3)

There are two definitions of the function c/asl. the correct one is found on page 5-
2.

2.14 Function List

The following is a list of all functions which are either new or changed in the new ver
sion of Franz Lisp. Functions with no comment next to them are new, otherwise the
comment should explain its status.

*invmod
allsym
apropos
apropos-list
ash
c-declare
case
cerror
char-index
char-rindex
charcnt
cli:error
closure
closurep
de/un
de/setf
de/subst

changed to include &key option

describe-cs
do-all-symbols
do-external-symbols
do-symbols
double-tolloat
escape-exploden
fboundp
feature-present
ffasl
fi/eopen
find-aU-symbols
finf] -package
find-symbol
float-to-·double
format
frexp
fseek
gcbefore
getenv
hashtabstat

if
implodes
import
in-package
initsym
integer-length
intern
keywordp
let-closed
list*
list-all-packages
litatom
logand
logandcJ
logandc2
logbitp
/ogcount
logeqv
logior
logiorcl
logiorc2
lognand
lognor
lognot
logtest
logxor
make-package
make-vectorlloat
map-over-obJist
oblist
nequa/

- 4 -

removed

removed
additional new form consistent with Common Lisp

functionality expanded to include packages

changed

replaced by new-vectori-float
removed
changed for packages

new-vectori-double
new-vectori{loat
newsym
oldsym
package-name
package-nicknames
package-shad owing-symbols
package-usc-list
package-used -by-list
packagep
pop
primep
provide
push
pushnew
qualify-escape-exploden
qualify-explode
qualify-explodec
qualify-exploden
rassq
readdir
readline
remsym
rename-package
set-in-closure
shadow
shadowing-import
sprint!
sstatus ignoreeof
str=
strcat
string
substrp
symbol{unction
symbol-name
symbol-package
symbol-plist
symbol-value
symeval-in-closure
symstat
sys:getpwnam
sys:getpwuid
sys:getuid
tilde-expand
truename
unexport
un intern
unless
unuse-package
use-package
vectori-double

- 5 -

removed

vectoriJloat
vrefJloat
vrefi-double
vrefiJloat
vsetJloat
vseti-double
vsetiJloat
vsize-double
vsizeJloat
when
wide-print-list
with-keywords
y-or-n-p

3. FRANZ LISP FILES

- 6 -

replaced by vrefi-float

replaced by vseti-float

replaced by defun &key option

The following files are distributed with Franz Lisp version 42. Files ending in the exten
sion .1 are human-readable Lisp source code. Files ending in the extension .0 are com
piled Lisp object code.

3.1 LISP EXECUTABLE FILES

The followings files are found in tbin:

lisp Lisp interpreter.

liszt Lisp compiler.

lxref Lisp cross reference program.

3.2 LISP HELP FILES

Three help files are accessible through the 4404 help command. These files are found in
Igenlhelp:

lisp
liszt
lxref

3.3 LISP SOURCE FILES

The following files, which are loaded into the standard Lisp interpreter, arc found in
llisp!franzt/ispsrc:

array]

autoload]

bUildlispl

charmacl

elJ

Array functions.

Manages autoload of functions.

U sed to build the Lisp system from the C kernel.

Backquote and sharp sign macros.

Common Lisp functions.

cliJ

-7 -

Common Lisp incompatible functions.

Fclosure functions. closureJ

commonDJ
common1l
common2J
commonll

Most Lisp-coded Lisp functions are in common/iles.

compiler! Compiler symbols.

JilepJ

Jormatl

loadl

File functions accessed through the tpl top level.

String formatting, compatible with Zetalisp.

macrosl

File functions.

Common macros for Franz Lisp.

Package functions.

Contains the setsyntax function.

Contains the system-internal or si package.

packagel

,\yntaxl

sysintl

systeml Contains system-interface functions in the system orsys
package.

tplJ

vectorl

versionl

3.3.1 System Rebuild

Franz Lisp top level.

Vector handling functions.

Franz Lisp version info.

The following files are used when rebuildinglreconfiguring Lisp (see Appendix E of the
Franz Lisp Reference Manual):

In Ilispl/ranz:

userdata.c

In IlisplJranzl68k:

loadlispl

ulispr

update file

3.3.2 Other Lisp Source Files

The following files are found in Ilispl/ranzlh:

68kframe.h aout.h aouLpeg.h
config.h debug.h dfuncs.h
gc.h global.h hooks.h
1conf.h lfuncs.h lispo.h
ltypes.h module.h package.h
sigtab.h space.h structs.h

catchfram.h
flavors.h
hpagsiz.h
lispo..mitas.h
public.h
types.h

chars.h
frame.h
ioext.h
lstructs.h
savelisp.h
vaxframe.h

- 8 -

3.4 LISP LIBRARY FILES

The following files are found in !lispllib:

arun.c, arun

as

cmueditl, cmuedit.o

cstructsl, cstructs.o

describeJ, describe.o

fixJ, fix.o

flavorsl,flavors.o

gelib.c, gelibr
gelibJ, gelib.o

Imhacksl,lmhacks.o

machacksl, machacks.o

ppl,pp.o

prof J, prof.o

recordJ, record.o

stepl, step.o

struct J, struct.o

structinil

tracel, trace.o

vanillaJ, vanilla.o

U sed to generate autorun files.

Assembler for liszt files.

Code for an interactive structure editor. Loaded when edit
functions are called.

Functions providing C structure compatibility. Loaded
when c-declare function is called.

Functions to describe any Lisp object, including flavors.

Fix package that is autoloaded when the function debug is
invoked.

Flavor system, object definition and creation.

Graphics library interface functions.

Miscellaneous functions compatible with Zetalisp.

Maclisp compatibility package. Autoloaded when the +m
option is specified for Iiszt.

Pretty printer. Loaded when the function pp is invoked.

Dynamic profiler for Lisp.

Record package.

Stepping package. Loaded when function step invoked.

Structure package.

Macros necessary for compiling the structure package.

Trace package. Loaded when trace function invoked.

Definition of vanilla flavors and methods.

3.5 ADDITIONAL LISP FILES

Graphics support and demo programs are distributed in !lisp/examples. They are subject
to change.

Additional Lisp files are distributed as a service to Lisp users. They are not supported by
Tektronix.

In Ilispllib:

cmuenvl

cmufileJ, cmufile.o

cmufncsl, cmufncs.o

Loads cmumacs, cmufncs, cmutop, and cmufile for a emu
environment.

Functions for Cmu file package.

Functions required by the emu macros.

cmumacsJ, cmumacs.o

cmutpll, cmutpl.o

loopJ, loop.o

ucidol, ucido.o

UCl! nc J, ucif nc .0

- 9 -

Macros required for compiling other cmu files, also useful at
runtime.

Cmu top level.

Loop macro.

VCI Lisp do loop.

VCI Lisp compatibility package.

