
'-....-"

'-

2.0 INSTRUCTION SET

2.1 9900 CPU Overview

2.1.1 Introduction

The 9900 CPU is not the only 16-bit microprocessor, but it
ranks as one of the most powerful ones. The architecture of
the 9900 is unlike that of most other microprocessors (8 or
16 bits). It has an architecture close to that of a
minicomputer. In fact, the 9900 instruction set is identical
to that of the Texas Instruments 990 minicomputer. This
section _provides an overview of. the 9900 CPU from a
programming viewpoint. Combined with the individual
instruction descriptions in section 2. 2 you have all the
tools to begin writing code.

As already mentioned, the 9900 CPU is a l&-bit computer. Its
architecture is vastly different from the simpler 8-bit
computers. One difference is that the working registers are
contained in memory. The only registers within the processor
j,. tself are: the program counter, status register, and a
pointer to the working registers in memory. The overall
proc.essor architecture is shown in Figure 2. 1. The program
counter (PC) contains the address of the current instruction.
The workspace pointer (WP) is a 16-bit register which holds
the address of the first working register in memory. The
sixteen general registers RO-Rl6, called workspace registers,
are contained in the sixteen sequential memory locations
addressed by the WP.

For easy reference, the entire 9900 instruction set is
described in detail in section 2.2 and summarized at the end
of that section.

Computations in the 9900 CPU are performed between the
registers, between the registers and memory, or between two
memory locations. The memory of the 9900 is addressed by
byte or word. The processor always references a word because
the least significant address bit is not available as an
external pin on the processor. Internally, however, you can
address either words (two consecutive bytes, starting with an
even byte) , or bytes. All ins true t ions are stored as one,
two, or three consecutive words. The addressing mod•s
available in the 9900 CPU are:

(1) immediate - The operand is contained in the word
following the instruction. For example,

LI Rl,>1234 ; load Rl with 1234 (hex)

will load register Rl with the value 1234 hexadecimal.

2.0-1

will load R2 with the memory location addressed by the
contents of Rl plus 10.

(6) relative - Relative addressing is used to obtain
the destination address for most of the 9900's jump
instructions. To obtain the final destination address,
the second byte of the instruction is multiplied by two
and added to the address of . the next sequential
instruction. The addition is performed using two's
complement arithmetic. This allows the programmer to
transfer control to an address within the range of -254
to +256 of the present instruction. Since all
instructions are stored as words (two bytes), you can
transfer control to a word within the range of -127 to
+128 of the present instruction. An example of relative
addressing is:

JMP +10

This instruction will transfer control to the address of
the next sequential instruction plus 20 (10*2). If the
jump were at >1200, this would transfer control to
address >1216.

All of the op-codes are one word long. If immediate,
indirect, or indexed addressing is used, the constant is
stored in the word (s) £ ollowing the op-code• The constant
for the source operand is stored in the first word following
the op-code and the constant for the destination operand is
stored in the next available word. This means that 9900
instructions are one to three words long, or two to six
bytes. The following six byter will transfer the contents of
variable VARl to VAR2:

KOV @VAR1,@VAR2 ; VAR2•VAR1

2.0-3

Jigure 2.1 Processor Architecture

CPU

•.

-

WP 1-- ALU
PC
ST

4
RO
R1

- . • • •

R15

MEMORY

2.0-4

2.1.2 Subroutine Linkage

Unlike many machines, the 9900 does not use a stack to hold
subroutine return addresses. Instead, the processor saves
the return address in workspace register Rll. For example,
the following instruction will save the address of BACK in
Rll and will transfer control to ROUT:

BL
BACK •

•

•

@ROUT ; call ROUT

To return from the subroutine, all you need to do is jump to
the contents of Rll (B *Rll).

If one subroutine must call upon another, it must save the
contents of Rll prior to that call, since the new return
address will be placed in Rll thus destroying the old
return address. There are several different ways to approach
this problem. The first, and simplest, method is to save the
return address in one of the general registers. For example,
if ROUT is called as indicated a·bove and must then call
ROUT2, the sequence below can be used:

MOV
BL

B

Rll,Rl
@ROUT2

*Rl

; save return address
; call next subroutine

; exit

If you have only two or three levels of subroutine, this may
be the most efficient approach. However, in larger systems
there are usually too many levels of subroutines to store all
the return addresses in the registers. In that case, the
return address can be saved in RAM. One way to do that is:

MOV Rll,@TEMP ; save return

To exit the subroutine, the following two instructions are
used:

MOV
B

@TEMP, Rl 1
*Rll

; get return
; exit

The major disadvantage of this technique is that four words
of instruction memory are required for the exit sequence, not
to mention the word us e d to hold the return address. If the
program is always to be run in RAM (never put in PROM/ROM
storage), an alternate entry/exit sequence is:

2.0-s

MOV Rll,@EX+2 ; save return in exit branch
•

•
EX B @0 ; exit

This time we saved the return address in the second word of
the branch instruction, thus eliminating the move. The
disadvantage here is that the program modifies itself. This
means that the program can never be placed in ROM. Most
microprocessor programs are eventually stored in ROM so this

. sequence couldn't be used. However, if you are writing a
quick and dirty routine, to be run . only from RAM, this
approach works well.

There is yet another way to save the return address. We can
put it on a stack. What stack, you say? Because of the
flexible modes of addressing, creation of a software stack is
a very simple task. During the initial start of the program,
we load one of the general registers, let's say Rl5, with the
address of the first location of the stack. Then, an entry
can be placed on the stack with the following move:

MOV Rll,*Rl5+ ; stack Rll

The st·ack pointer is incremented after the store, so the
stack builds up instead of down as in other micros. To
retrieve an entry from the stack, the following instructions
are used:

DECT Rl5 ; Rl5•R15-2
MOV *R15,Rll ; get the top entry

The stack could also be used to save some of the other
general registers that would be used by the subroutine.

If a subroutine requires a number of registers, another
method of call is the Branch and Link Workspace Pointer
(BLWP). This instruction. is also a subroutine call, but
before performing the call it resets the workspace pointer.
This means that the subroutine has a whole new set of
registers to work with - without having to store the old
ones! This instruction is very valuable, but should be used
with discretion because it requires more memory. More memory
for the call and sixteen words more memory for the new set of
registers.

2.1.3 Passing Parameters

There are
subroutines

many different methods for passing data to
in the registers, following the subroutine

2.0-6

call, or addresses following the subroutine call. Since the
return address of the routine is already in one of the
general registers (Rll), passing parameters or their
addresses following the call is especially useful with the
9900. For example, consider the floating point subroutines
called FMUL and FADD which are the multiply and add floating
point routines, respectively. Each one requires three
parameters, the address of which cou'id be placed after. the
subroutine call. If this approach is used with the 9900, the
following sequence is used to calculate Xl=X2*X3+X4:

BL @FMUL ; TMP•X2*X3
DATA X2
DATA X3
DATA TMP
BL @FADD ; Xl•TMP+X4
DATA TMP
DATA X4
DATA Xl

Before we can manipulate the parameters, it may be necessary
to place them in the registers. This is easily accomplished
by the following:

MOV
MOV
MOV

*Rll+, Rl
*Rll+,R2
*Rll+,R3

_; Rl•address of param 1
R2•address of param 2

; R3•address of param 3

Notice how the indirect with auto increment addressing mode
avoids the need for intermediate increments.

2.1.4 Returning Results

Many subroutines must return results to the calling program.
The easiest way is to return the result in one of the general
registers. This works fine if the subroutine is called via a
BL instruction. On the other hand, if a BLWP (or XOP - which
will be discussed later) is used, the calling routine uses a
different set of registers than the subroutine. Therefore,
if we place the results in. the registers, they will be lost
when control is returned to the calling program since the
workspace pointer will be reset. Since the 9900's registers
are located in memory, there is a simple way around this
problem. Let's assume that we want to return a value in RO
and Rl - in the · old workspace. When the BLWP is executed,
the old workspace pointer is saved in Rl3. Using this fact,
we can create a sequence to store values in the previous
workspace:

MOV
MOV

RO,*Rl3
Rl,@2(Rl3)

; old RO=new RO
old Rl=new Rl

2.0-1

, ..

·- .. _. ·- .. . - - - J ::m

As you see, the old register Rl is the same as memory
location Rl3+2*1· That location may be addressed by @2(R13).
RO is a special case since @O(Rl3) is the same as *Rl3.

2.1.s Byte Operations

Although the 9900 is a 16-bit processor, it can still handle
byte operations. There are a few aspects of the byte
operations that are initially confusing. First, whenever, a
register is addressed in the byte mode, the left byte of the
register is used (not the right byte). Second, whenever the
processor references memory it reads ·a full word. The proper
byte of that word is selected within the processor. This
means that it is not necessary for the processor to supply
the external memory addressing circuitry with the least
significant address bit - so it does not. If you examine the
hardware carefully you will note that there are only fifteen
address bi ts. The missing bit is the least sign if ican t
address bit. It is unnecessary because the processor
performs the byte selection.

Recognizing the special byte addressing operation, you will
quickly discover that the 9900 can cope with byte operands
nearly as well as it can with full word operands. To add the
contents of byte Bl to B2 we can use:

AB @Bl,@B2 ; B2•B2+Bl

2.1.6 Extended Operations

The 9900 offers a unique instruction, Extended Operation
(XOP) • The XOP execution is similar to the BLWP, but the
target address is determined by the XOP transfer vectors.
There are sixteen possible XOPs. During the XOP call, the
source operand is placed in Rll of the new workspace. For
example, the following:

XOP @X, 15

will perform an extended operation 15 and will place the
address of variable X in the new Rll. The workspace pointer
and address for extended operation 15 is in memory locations
7C-7F. For other extended operations, the extended operation
transfer vector is stored in location 40+4*I through 43+4*I.

The monitor uses three extended operations. Refer to the
monitor description details of the monitor XOP'S.

2.1.7 Multiply/Divide

2.0-8

One of the truly unique operations offered in the 9900 is the
hardware multiply and divide. Notice, however, that they
require unsigned operands. This is different than the other
instructions, which use two's complement operands. We can
easily form a signed two's complement multiply. If Xl and X2
are two arbitrary numbers, then Xl*X2's sign is the
exclusive-or of the signs of Xl and X2. Using this fact we
can devise the routine to perform signed multiply • . The
sequence below will calculate X3=Xl*X2.

Assume: Xl is @>200, X2 is @>202, X3 is @>204

MOV @>200,Rl . Rl•Xl '
KOV @>202,R3 R3•X2
MOV Rl, R2 R2(SIGN)=SIGN OF Xl*X2
XOR R3,R2 ;
ABS Rl . GET RID OF SIGNS ' ABS R3 ;
MOV R2,R2 . TEST SIGN OF ANSWER ' MPY R3,Rl (Rl,R2)=ANSWER
JGT OK . CORRECT THE SIGN ' NEG R2 ;

OK MOV R2,@>204 . SAVE ANSWER '

The multiply operation produces a 32-bit result (in Rl, R2
for the example above), but does not affect any of the
condition bits (thats why the test can be performed before
the multi ply) • After the multiply, the result can be
converted back to two's compl ement. Since you will often use
the result for some further add/subtract operation, only the
lower word of the product wa s converted. If you need to
convert both words, its a bit more difficult. The following
sequence will not work:

NEG R2
NEG R3

Why not? if R2=1 and R3=1, then the two's complement of
(R2,R3) is >FEFF. However, the two's complement of 1 is FF.
So you see that the above sequence would yield >FFFF instead
of the required >FEFF. The solution is to take the one's
complement of R2 except in the case where R3=0. The required
code is:

INV R2 ; R2•one's comp. of R2
NEG R3 . R3•R3 ' JNE ZRO if R3 • 0, adjust R2
INC R2 . R2•two's comp. of R2 ' ZR.O
•

2.0-9

• I .

- .. , .•

•

A similar approach can be used to construct a signed divide.
The sign of Xl/X2 is again the exclusive-or of Xl,X2. If Xl
and X2 are both 16-bit two's complement variables, then the
routine below will calculate X2=Xl/X2.

Assume: Xl is @>200, X2 is @>202

MOV @>200,R2 ; R2•Xl
MOV @>202,R3 . R3•X2 ' MOV R2,R4 ; R4(SIGN)=SIGN OF Xl/X2
XOR R3,R4
ABS R2 . GET RID OF SIGNS ' ABS R3 ;
CLR Rl . CLEAR UPPER BITS OF NUMERATOR ' DIV R3,Rl . Rl•(Rl,R2)/R3 ' MOV R4,R4 ; CORRECT SIGN
JGT OK ;
NEG Rl

OK MOV Rl,@>202 ; SAVE ANSWER

As you may have observed in that sequence, the divide
operation divides a 32-bi t operand by a 16-bi t ope rand.
Since we used only a 16-bit operand, the operand is placed in
the lower register of the pair of registers and the upper
register of the pair is cleared. If we want to use the full
divide · capability, the routine must be recoded as:

Assume: Xl is @>200 to >203 and X2 is @>204 to >207

MOV @>200,Rl (Rl,R2)=Xl
MOV @>202,R2 .

' MOV @>204,R3 . R3•X2 ' MOV Rl,R4 R4(SIGN)=SIGN OF XI/X2
XOR R3,R4 .

' ABS R3 ; GET RID OF SIGN OF X2
ABS RI . GET RID OF SIGN OF XI ' JGT OKl ; IF Xl<O, INVERT LOWER HALF
NEG R2 ;
JEQ OKI ; IF R2 NOT ZERO, ADJUST RI
DEC RI .

' OKI DIV R3,Rl ; Rl•XI/X2
MOV R4, R4 ; CORRECT THE SIGN
JGT OK2 ;
NEG Rl ;

OK2 MOV Rl,@>204 . X2•Xl/X2 '

The multiply is restricted to integer operands, but that does

2.0-10

L•

~ t" ·- •

\

not mean you cannot use it to perform fractional operations.
The approach for fractional multiplication is called scaling.
Lets take a sample case. If the decimal point of Xl is at
the extreme right and the decimal point of X2 is at the
extreme left, then the decimal point of Xl*X2 is between the
two registers. Using this approach, we can multiply ABC by
• 75:

CON DATA >COOO
•

•
MOV @ABC,Rl
MPY @CON,Rl

; constant of .75 (decimal at left)

; get operand
; Rl•integer part, R2•fraction part

In the beginning of this discussion, We indicated that it
was u~usual that the multiply was unsigned. Yet, we can turn
this into an asset. Consider the problem of creating a
double precision multiply (32-bits times 32-bits). If we
consider unsigned numbers only (signs can be handled as in
the previous examples), then a 32-bit multiply (which
produces a 64-bit result) can be formed using four single
precision multiplies. Figure 2.2 illustrates the concept.
We use what is commonly called "cross multiply" techniques.
Before presenting the double precision multiply, lets look at
the double precision add which is an integral part of the
multiply routine. To calculate (Rl,R2)=(Rl,R2)+{R3,R4) we
can use the following (all values are assumed to be
unsigned):

Ll

A
JNC
INC
A

R4,R2
Ll
Rl ·
R3,Rl

; add lower half .
if Cy, correct upper

; add upper half

Now, using this same concept for the subproduct additions, we
can create the 32-bit multiply routine:

2.0-11

.l.. \:!. U •..::\ ·J. •

MOV Rl,RS . (RS,R6)•Rl*R3 '
MPY R3,RS .

' MOV R2,R7 . (R7,R8)•R2*R4 '
".....__.- MPY R4, R 7

MOV Rl,R9 ; (R9, R10)=Rl*R4
MPY R4,R9 .

' MPY R2,R3 . (R3, R4) ,..R2*R3 '
CLR RO . RO•CARRY ACCUMULATOR ' A R3, R 7 ;
JNC OKl ;
INC RO .

' O'Kl A R10,R7 .
' JNC OK2 .
' INC RO

OK2 CLR Rl Rl•CARRY ACCUMULATOR
A R2, R6 .

' JNC OK3 .
' INC Rl .
' OK3 A R9,R6 ;

JNC OK4 .
' INC Rl .
' OK4 A RO,R6 . ADD FIRST CARRY ' JNC OKS

INC Rl
OKS A Rl, RS ; ADD SECOND CARRY

2.0-12

\

. - · - - - 1 •

Figure 2.2 32-Bit Multiply Technique

.
Rl R2 R3 :R4 •

•
R9 iRlO

'
R2 iR3 ~ RS !R6

RS :R6
•

. '
: R7 : RS
'

. 2.0-13

2.1.8 ARITHMETIC

The advanced instruction set of the 9900 CPU, opens up a new
microprocessor application area - signal processing. Because
of the mathematics involved, most signal processing tasks
cannot be done with the off-the-shelf microprocessor. The
9900 certainly cannot handle all of the signal processing
applications, but it can tackle a few· of them.

Many signal processing algorithms use the SIN, COS, or other
trigonometric functions. An algorithm to compute trig
functions ideally suited to the 9900, is the CORDIC
(Coordinate Rotation Digital Computer) algorithm. Although
you may not recognize it, it is the same algorithm used in
many hand calculators. • We will see later why the 9900 is
ideally suited for the CORDIC procedure.

The CORDIC algorithm relies on a few very simple mathematical
facts. First, any given angle (we will restrict the angle
to 0-90 degree) can be represented as a sum/difference of a
set of base angles. Mathematically this can be expressed:

A•SuM(d(i)*a(i)), where d(i)=+/-1 a(i)~base angle

This identity is certainly not true for any random delection
of base angles, but you can intuitively sees that 90 degrees,
45 degrees, 22.S degree, is .one possible base set. The
second cornerstone of this algorithm is a pair of
trigonometric identities:

SIN(a+b)=(SIN(a)+TAN(b)COS(a))COS(b)
COS(a+b)=(COS(a)-TAN(b)SIN(a))COS(b)

Now, if we have a given angle represented as a sum/difference
of a set of base angles, which are as yet unspecified, then
we can devise a simple process for calulating the SIN and COS
of that angle (called A):

X(i)•A
Y(i)•l
X(i)•X(i-l)+TAN(d(i)a(i))*Y(i-1)
Y(i)•Y(i-1)-TAN(d(i)a(i))*X(i-l)

After executing the above procedure, we don't really have the
SIN and COS. Instead, we have X(n) = R(n)SIN(A) and Y(n) =
R(n)COS(A), where the constant R(n) is 1/(COS(d(i)a(i))* •••
*COS(d(i)a(i)). So far, we have nothing to cheer about
because our algorithm involves many more multiplies, than a
simple Taylor series. But, the plot thickens. If we define
the base angles as:

2.0-14

a(i)-ArcTan(.5**(1-1))

then

TAN(a(i))•(.S**(i-1))

This means that all of the multiply operations can be
reduced to a right shift. We must, of course, prove that all
angles can be represented as a sum 0£ our base angles or the
whole algorithm collapses. I will not do so here, but it can
be done rather easily. No·w, if we use the base angles
defined above, the algorithm may be restated as:

V(i)•-A
X(i)•O
Y(i)•l/R(i)=.60725
X(i)-X(i-1)-SIGN(V(i-l))*Y(i-1)/2**(i-l)
Y(i)•Y(i-l)+SIGN(V(i-l))*X(i-1)/2**(i-1)
V(i)•V(i-1)-SIGN(V(i-l))*ATAN(l/(2**(i-l))

If we store the ArcTan values in a table, then this
algorithm requires only shift, add, and subtract. The shift
operation requires a vari~ble shift constant. This is why
the algorithm fits nicely in the 9900. If the shift count is
stored in RO, the variable shift can be performed by a single
9900 instruction:

SRA Rl, RO ; shift Rl right by (RO)

Since the SIN and COS are fractional values, we must scale
the input to our routine. To keep matters simple, we scale
the angle so that Rl=angle*256. This provides 8-bits of
integer and 8-bits of fraction. We scale the X,Y values so
that X=SIN*32768, and Y=COS*32768. This provides 16-bits of
signed fraction. The entire algorithm is shown in Figure
2.3. The input angle is in Rl, and the outputs are in R2 and
R3. This subroutine calculat.es both the SIN and COS. The
TAN can be calculated by one additional divide. As you see,
this algorithm is a very fast and efficient way to obtain the
trigonometric values.

2.0-15

. , ...

Figure 2.3

CLR R2
LI R3, 19898
CLR R4
MOV R3, RS
CLR RO
CLR R6
NEG Rl

LOOP MOV Rl,Rl
JLT LESS
S R5,R2
A R4, R3
S @TAB(R6),Rl
JMP CONT

LESS A R5,R2
S R4, R3
A @TAB(R6),Rl

CONT INC RO
INCT R6
MOV R2, R4
SRA R4, RO
MOV R3,R5
SRA R5,RO
CI RO, 12
JNE LOOP
B *Rll

TAB DATA 11520
DATA 6800
DATA 3593
DATA 1824
DATA 916
DATA 458
DATA 229
DATA 115
DATA 57
DATA 29
DATA 14
DATA 7

Cordie Routine

; x-o
; Y•.6072526*(2**15)
; xo-o
; YO•Y

SHIFTmO
; COUNT•O
; Vl•-V
; TEST SIGN OF ANGLE
; JUMP IF MINUS
; c-c-Y /2 **I

Y•Y+X/2**I
; V•V-ATAN(l/2**I)

; x-x+Y/2**I
; Y•Y.:..X/2**I
; v~v+ATAN(l/2**I)
; UPDATE SHIFT COUNT
; UPDATE ANGLE INDEX
; R4•X/2**I

; R.S•Y /2 **I

; END? . ,
; RETURN TO CALLER

; ATAN(l/1)*256
; ATAN (1/2) * 2 5 6
; A TAN (l / 4) * 2 5 6

ATAN (1/8) * 2 5 6
ATAN (l / 16) * 2 5 6

; ATAN(l/32)*256
; ATAN(l/64)*256
; ATAN(l/128)*256
; ATAN(l/256)*256
; ATAN(l/512)*256
; ATAN(l/1024)*256
; ATAN(l/2048)*256

2.0-16

- ·- -· - - - - -- ·~-- -.. - ·-·· --- - . - ~

2.2 Instructions and Addressing

2.2.1 Workspace Register Addressing

The contents of the indicated workspace register is the
operand. (e.g. R3, R7)

2.2.2 Workspace Register Indirect Addressing

The contents
contains the
*R3,*R6)

of the indicated
memory address of

workspace register
the operand. (e.g.

2.2.3 Indexed Addressing

The contents of the indicated workspace register (RO is
· ·not allowed as · an i:ndex register) are added to the
address enclosed in the second command word. (e.g.
@2(Rl),@6(R4))

2.2.4 Direct Addressing

The word f oliowing the
address of the operand.

instruction contains
(e.g. @6, @123)

the memory

2.2.5 Workspace Register Indirect with Auto Increment
Addressing

The contents of the indicated workspace register contain
the memory address of the operand. The workspace

. register is automatically ·incremented after the access
(plus 2 for word operations and plus 1 for byte
operations). (e.g. *Rl+,*R9+,*14+)

2.2.6 Immediate Addressing

The word following the instruction contains the operand.
(e.g. 26)

2.2.7 Relative Addressing

The 8-bit displacement of the instruction is added to
the updated program counter in jump instructions or to
the base address in single-bit CRU instructions.

2.0-11

...

2.2.a Status Register

The CPU status register holds the condition bits as
follows:

0 1 2 3 4

LGT AGT EQ c ov

LGT - Logical Greater Than
AGT - Arithmetic Greater Than
EQ - Equal
C - Carry
OV - Overflow
P - Odd Parity

2.2.9 Instruction Description

5 6-11 12-15

I
OP N/A !Interrupt

I

The following shorthand notation is used to describe the
9900 CPU instruction set.

s General address for the source operand. Any
addressing mode is acceptable.

D - General address for the destination operand. Any
addressing mode is acceptable.

IOP - Immediate operand

W - Workspace register

DISP - Relative displacement

WP - Workspace pointer

PC - Program counter

ST - Status Register

{) - Contents of address or register

---> - Replaces

2.0-18

-- ._

...

·..__.,..

INSTRUCTION: ADD

INST FORMAT: A S,D

HEX. OPCODE: AOOO

STAT CHANGE: LGT,AGT,EQ,C,OV

DESCRIPTION: The source operand
destination operand.
destination operand.

INST RESULT: (S)+(D)--->(D)

is added to the
The sum replaces the

APPL. NOTES: Use to add 16 bit numbers from:

Memory to Memory
Register to Register
Memory to Register
Register to Memory

2 . 0-19

A @SCALE,@TABLE
A Rl0,R9
A @PRIME,R6
A Rl4,@SUM

•· ·. ·---.J ..

·.

INSTRUCTION: ADD BYTES

INST FORMAT: AB S,D

BEX. OPCODE: BOOO

STAT CHANGE: LGT,AGT,EQ,C,OV,OP

DESCRIPTION: Add two 8-bit bytes. The 8-bit source
operand is added to the 8-bit destination
operand. If either address is a workspace
register, then the left-most eight bits of
that workspace register will be used.

INST RESULT: (S)+(D)--->(D)

APPL. NOTES: Used to add signed 8-bi t numbers from:

Memory to Memory
Register to Memory
Memory to Register
Register to Register

2.0-20

AB @X, @Y
AB Rl,@Y
AB @X,Rl
AB Rl, R2

-----·

INSTRUCTION: ABSOLUTE VALUE

INST FORMAT: ABS S

HEX. OPCODE: 0740

STAT CHANGE: LGT,AGT,EQ,C,OV

DESCRIPTION: Compute the absolute
operand and replace
with that result.

value of the source
the source operand

INST RESULT: Absolute value of (S)--->(S)

APPL. NOTES: Used to compute the absolute value of a
16- bit number.

ABS @LISTA
ABS @LISTB

LISTA
LIS TB

BEFORE

FFF4
oooc

2.0-21

AFTER

oooc
oooc

0

INSTRUCTION: ADD IMMEDIATE

INST FORMAT: AI W,IOP

HEX. OPCODE: 0220

STAT CHANGE: LGT,AGT,EQ,C,OV

DESCRIPTION: Add the immediate value to the specified
workspace register .

INST RESULT: (W)+IOP--->(W)

APPL. NOTES: Add a constant to a workspace register.

AI R4,100
AI Rll,10

Add 100 to register R4
Add ten to register Rll

2.0-22

INSTRUCTION: AND IMMEDIATE

IBST FORMAT: ANDI W,IOP

BEX. OPCODE: 0240

STAT CHANGE: LGT,AGT,EQ

DESCRIPTION: Perform a bit-by-bit logical AND operation
between the workspace register and the
immediate operand. Place the result in the
workspace register.

INST RESULT: (W) AND IOP--->(W)

APPL. NOTES: Use to isolate certain bits of a workspace
register.

ANDI 6, >FOOE

Before: (R6) =>9 87 7
Immed. Operand=>FOOE
After: (R6)•>9006

2.0-23

1001 1000 0111 0111
1111 0000 0000 1110
1001 0000 0000 0110

--- - . - . - I :JI

INSTRUCTION: UNCONDITIONAL BRANCH

IBST FORMAT: B S

BEX. OPCODE: 0440

STAT CHANGE: None

DESCRIPTION: Replace PC with the
Effectively, transfers
source address.

INST RESULT: S--->(PC)

source address.
control to the

APPL. NOTES: This is the most flexible jump and can be
used to transfer control to any location in
memory. If the jump is out of range (+127,
-128 words) for a relative jump
instruction, use B.

B @107 will cause PC to be set to 107

2.0-24

'--.--·

INSTRUCTION: BRANCH AND LINK TO SUBROUTINE

INST FORMAT: BL S

HEX. OPCODE: 0680

STAT CHANGE: None

DESCRIPTION: Place source address in PC and place the
address of the instruction · following the BL
instruction in workspace register Rll.

INST RESULT: (PC)--->(Rll)
S--->(PC)

APPL. NOTES: Use to transfer control to a subroutine.
Return from the subroutine is accomplished
with a branch indirect through register 11.

BL @SUB --------------> SUB •
• •

•
<-------------- B *Rll

2.0-25

- _____ _ __ ___ J

INSTRUCTION: BRANCH AND LOAD WORKSPACE POINTER

INST FORMAT: BLWP S

HEX. OPCODE: 0400

STAT CHANGE: None

DESCRIPTION: Place source operand into WP and the word
following it into the PC. Place previous
contents of WP into R13 of the new
workspace, PC(address immediately following
BLWP) into the new R14 and ST into the new
R15.

INST RESULT: (S)--->(WP)
(S+2)--->(PC)
(original WP)--->(R13)
(original PC)--->(R14)
(original ST)--->(R15)

APPL. NOTES: Use to call a subroutine and change the
workspace environment. The subroutine must
return via RTWP command.

BLWP R4
BLWP @SBR

Place (R4) in WP, (R5) in PC
WP=(SBR), PC=(SBR+2)

The calling routine's registers can be
accessed using indexed addressing since R13
is the old workspace pointer. For example,
*R13 is the calling routine RO, @8(R13) is
the calling R4, etc.

- 2.0-26

- - - - :___ - -- ______ ___i_m

INSTRUCTION: COMPARE

INST FORMAT: C S,D

BEX. OPCODE: 8000

STAT CHANGE: LGT,AGT,EQ

DESCRIPTION: Compare the contents of the source operand
with the contents of the destination
operand and set/reset designated status
register bits.

INST RESULT: Status register
comparison.

bits set/reset

APPL. NOTES: Use to compare 16-b it numbers

Memory to Memory
Register to Register
Memory to Register
Register to Memory

2.0-21

C @TOP,@LAST
C Rl,R6
C @BOT,R5
C R7,@ll

after

from:

- • • . • _ . ___.L..9

INSTRUCTION: COMPARE BYTES

INST FORMAT : CB S,D

HEX. OPCODE: 9000

STAT CHANGE: LGT,AGT,EQ,OP

DESCRIPTION: Compare the contents of the source operand
byte with the contents of the destination
operand byte and set/reset the designated
status register bits.

.,...,..'.?· I<N·S-T~ -RESULT: Status~· - Register bits set/reset - - afteT
comparison.

APPL. NOTES: Use to compare 8-bit numbers. If a
workspace register is used for S or D, the
left-most 8-bits will be used.

CB Rl, R2 Compare Rl(byte) to R2(byte)

2.0-28

• · ·-- - --- - ... i .-

__ ,

INSTRUCTION: COMPARE IMMEDIATE

INST FORMAT: CI W,IOP

BEX. OPCODE: 0280

STAT CHANGE: LGT,AGT,EQ

DESCRIPTION: Compare
register
set/reset
bits.

the contents of the specified
with the immediate operand and
the designated status register

.,..,. ,,, '°' :r.- "~ I 'NS T "RESULT··: stratus- ·,,. •r 'egi st er " bi ts
comparison

se>tr/reset · ' iift't¥r

APPL. NOTES: Compare the contents of workspace register
. with some known value and set status
regist~r bits accordingly.

CI R2,>73
CI R3,0

Compare register R2 to >73
Compare register R3 to zero.
(A more efficient way is:
MOV R3,R3)

2.0-29

INSTRUCTION: CLEAR

INST FORMAT: CLR S

BEX. OPCODE: 04CO

STAT CHANGE: None

DESCRIPTION: Replace source operand with a full 16-bit
word of zeroes.

INST RESULT: 0--->(S) ·

APPL. NOTES: Use to zero workspace registers or memory
locations.

CLR RS
CLR @SUM

LOOP

Clear register RS
Clear location SUM

LI Rl,X Clear (X) to (X+lO)
CLR *Rl+
CI Rl,X+l2
JL LOOP

2.0-30

- ----- -- . l ..

INSTRUCTION: COMPARE ONES CORRESPONDING

INST FORMAT: COC S,W

HEX. OPCODE: 2000

STAT CHANGE: EQ

DESCRIPTION: When all ones in the source operand have a
corresponding one in .the destin• tion
workspace register, set the equal bit in
the status register.

INST RESULT: EQ status bit is set/reset.

APPL. NOTES: Use to check if a bit or bits in a
destination workspace register are set to
one. Bits correspond to the one bits in
'the source operand. - If corresponding bits

• in destination are als.o set, the equal bit
in Status Register is also set.

Assume TEST•Cl02=1100 0001 0000 0010
R8•E306=1110 0011 0000 0110

Then COC @TEST,R8

Every one bit in. TEST has
one bit in register R8.
equal status bit is set.

a corresponding
Therefore the

MASK DATA 8000
COC @MASK,Rl
JEQ ADD

Is sign in Rl set?
If so, jump to ADD

2.0-31

- - ---- __ __J.11

...___

INSTRUCTI ON: COMPARE ZEROES CORRESPONDING

INST FORMAT: CZC S,W

HEX. OPCODE: 2400

STAT CHANGE: EQ

. DESCRIPTION: When the bits in the destination workspace
register cor:r-esponding to the one bits in
the source operand are all equal to a logic

- zero, set equal status bit. - -- - ··-

APPL • ..NOTES: Use to test single/multiple bits within a
workspace register.

Assume .

Then

TEST=Cl02=1100 0001 0000 OBLO
RB=2201=0010 0010 0000 0001

CZC @TEST, RB

Every logic one bit in TEST correspofids to
a logic zero in register RB. Therefore,
the equal status bit is set •

2.0-32

-··-. ·-·-·----'---

l . ~

INSTRUCTION: DECREMENT BY ONE

INST FORMAT: DEC S

HEX. OPCODE: 0600

STAT CHANGE: LGT,AGT,EQ,C,OV

DESCRIPTION: Subtract
operand.

one

INST RESULT: (S)-1--->(S)

-· r " r ·. ·'·.

from the 16-bit source

APPL. NOTES: Used for indexing or controlling loops.

DEC @TEC
JNE LOOP

TEC,..TEC-1
Jump if TEC not zero

2.0-33

. -- _ _) ...

INSTRUCTION: DECREMENT BY TWO

INST FORMAT: DECT S

BEX. OPCODE: 0640

STAT CHANGE: LGT,AGT,EQ,C,OV

DESCRIPTION: Subtract
operand.

two

INST RESULT: (S)-2--->(S)

from the 16-bit source

APPL. NOTES: Useful for counting and indexing full word
arrays.

DECT @COUNT Subtract two from COUNT
DECT RlO Subtract two from register 10

._____,,· 2 • 0 - 3 4

. . . - --- - --·- · ·-·. -~~i..:m

INSTRUCTION: DIVIDE

INST FORMAT: DIV S,W

BEX. OPCODE: 3COO

.STAT CHANGE: OV

DESCRIPTION: Divide the destination operand (a 32-bit
unsigned integer) by the source operand (a
16-bit unsigned integer) . using integer
arithmetic and place the quotient in the

• destination operand and the remainder in
the second word of the destination operand.
If eh·e• ' ' cq u o t i en t exceeds 1 6-b i t'S ; 0 · the ·
over f 1 ow is set •

INST RESULT: (W,W+l)/(S)-·~->(W) quotient;
(W+l) remainder

APPL. NOTES: Use divide for integer division (unsigned).

DIV R3,R4
DIV @SUM,2

Divide R4,RS by (R3)
Divide R2,R3 by (SUM)

2.0-35

- . ------L:;m

INSTRUCTION: IDLE COMPUTER

INST FORMAT: IDLE

BEX. OPCODE: 0340

STAT CHANGE: None

DESCRIPTION: Place the computer in an IDLE state.

INST RESULT: Computer is IDLE.

... . APPL. NOTES: Us.ed t-.o-:. h.al.t .the processor. -and.-,..wa:f..t for ... an ',_,,__ e"'"'"· 01 ,,~ r.

interrupt.

2.0-36

INSTRUCTION: INCREMENT BY ONE

INST FORMAT: INC S

HEX. OPCODE: 0580

STAT CHANGE: LGT,AGT,EQ,C,OV

DESCRIPTION: Add one to the 16-bit source operand.

INST RESULT: (S)+l--->(S)

,,,A.-3,.... 0 .. A·P.PL-• ..-~NOTES :" Usefu1. '" -fcrr 'cbntrolling byte· 'a:'tfdr'essing of
an index.

INC R6
INC @T (R 1)

R6•R6+1
increment table location
selected by Rl

2.0-37

. -4 ------ --- ----"""""~

. ----· ---·- -- - - Tm

INSTRUCTION: INCREMENT BY TWO

INST FORMAT: INCT S

HEX. OPCODE: OSCO

STAT CHANGE: LGT,AGT,EQ,C,OV

DESCRIPTION: Add two to the 16-bit source operand • ..

INST RESULT: (S)+2---> (S)

?:~ ".'.'.. r~ ~ !!.4.l'-J>L.:e ... ·N-O:t·B.:S: · JJs.ef u1·.1 -:f·.o~:: ..i_c-1'n trolling word" ad7d res sing of
an index.

2.0-38

INSTRUCTION: INVERT

· INST FORMAT: INV S

BEX. OPCODE: 0540

STAT CHANGE: LGT,AGT,EQ

DESCRIPTION: The 16-bit source operand is replaced with
its one's complement.

INST RESULT: One's complement of {S)--->{S)

APPL. NOTES: Use this opera ti on to "£lip" the bi ts in
some memory location or register.

INV R2
INV *R3

Invert location (SUM)
Invert location in register R3

2.0-39

·--·· --· ---~ ~~

INSTRUCTION: JUMP EQUAL

INST FORMAT: JEQ DISP

BEX. OPCODE: 1300

STAT CHANGE: None

•DESCRIPTION: When the equal . status bit is set, the
signed displacement is added to the PC.

INST RESULT: (PC)+(displacement)--->PC (EQ=l)
(PC)+2--->PC (EQ=O)

APPL. NOTES: Used to transfer if equal

C @X,@Y
JEQ YES go to YES if (X)-(Y) ·

2.0-40

,
·~

INSTRUCTION: JUMP IF GREATER THAN

INST FORMAT: JGT DISP

REX. OPCODE: 1500

STAT CHANGE: None

DBSCRIPTION: When the arithmetic greater than status bit
is set, add the signed displacement to the
PC.

INST RESULT: (PC)+Displacement--->(PC) (AGT•l)
(PC+2--->(PC) (AGTaO)

•

APPL. NOTES: Used following
operation:

a 16-bit arithmetic

(TWO)

C @ONE,@TWO
JGT @OUI go to our if (ONE)is

arithmetically greater than

The arithmetic greater than is the result
of a signed comp a re, so >FFFF (-1) is not
arithmetic greater than >7FFF, but it is
logical greater than.

2.0- 41

. "' .1 ..

INSTRUCTION: JUMP ON HIGH

INST FORMAT: JH DISP

BEX. OPCODE: lBOO

STAT CHANGE: None

-DESCRIPTION: When the - logical greater than status bit is
set and-the equal status bit is clear then
the signed di.spla.cement i.s added· .to the PC.

"' ' "'"' " .·I-N&T· ·RESULT: (PC)+D4.sp-'i-a-cement--->(PC) (LGT=l "and· EQ=O·) · - ·· = · w

(PC+2---> (PC) (LGT =O or EQssl)

APPL. NOTES: Used when comparing logical or . unsigned
values.

C @BIG,@GOOD
JH @BAD go to BAD if (BIG) is

logically greater than
(GOOD) - (unsigned)

Since the logical greater than is an
unsigned compare, this instruction is most ·
often used for addres"S comparisons. But
beware, nothing is higher than >FFFF.

2.0-42

.,
~' - ..

INSTRUCTION: JUMP ON HIGH OR EQUAL

, INST FORMAT: JHE DISP
. ~

HEX. OPCODE: 1400

STAT CHANGE: None

- DE,SCR'IPTION: ·when the e·qua1 status bit or the logical
.., ~."- - great;;er _than status bit . is . s-et, the ·signed

displacement is added to the PC.

INST RESULT: (PC)+Displacement---> (PC) (LGT zl or EQ• l)
i , . . ,. , i • • ·, • . , (PC)-+2---> (PC) ' (LGT=O and E·Q=O·) & • • ' ~

APPL. NOTES: Use to branch or ttansfe~ control
greater than or

when
equal either logical

status bits=!.

JHE $+4

JHE SUB

If SR bits 0 or 2=1, skip one
word.
If SR bits 0 or 2=-1, jump to
SUB

2.0-43

...
i;

IBSTRUCTION: JUMP ON LOW

INST FORMAT: JL DISP

BEX. OPCODE: lAOO

STAT CHANGE: None

- - -= - n-E-SCR."'IPTi:-ON·-:- ·When tQ.e· - iogi·cal greater than and ·equal - - - - - - - ·- ·'- - - · · - -
•£. c 1li::S <> :s. -. ,,,::;.. • .:,. ,sta:tus; h f:.t.S -ar._e , both ·reset 9 . the..n; the _;signed .- ... -:: c <> c \:, ': l<:U6n ; 1i ru

displacement is added · to . the PC. . •

INST RESULT: (PC)+Displacement--->(PC) (LGT=EQ=O)
q ; • - •·"» t P <~ · - l r:1· ... -i , {P-&)+2---> (PC) (LGT•l or EQ""l·}!-- - n

APPL. - NOTES: Use to trans~e~ control when a logical or
· - - ·- - -unsigned less than conditio.n is detected. · .

C @ONE,@TWO
JL @GO g ·o · to GO· ·if (ONE) logically

less than (TWO) (unsigned)

2.0-44

•

INSTRUCTION: JUMP ON LOW OR EQUAL

INST FORMAT: JLE DISP

HEX. OPCODE: 1200

STAT CHANGE: None

· - --DESCRIPTION: ·When · the · - equal status bit - is set ·o·r · the
~:c~ . ,:.:n;ai:. _ ~ _ ,,log.i.,c-a:l • . g-r.e,a .ter than is .reset, t:hen : the
; no 11r.-.~ • . si.gned ,.. -displacement is added .,; .to the PC.

INST RESULT: (PC)+Displacement--->(PC) (LGT•O or EQ=l)
• - 1 ··,-· :.1 ·: {P-C1)+f2:..-->(PC) (LGT•l and . EQ:l..9) ·· ~~

. APPLr NOTES: Us~ to test status· register - bits and
transfer control if LGT•O or EQ=l.

JLE ADDNO If SR bits O=O or 2=1,
go to ADDNO

2.0-45

' ..

INSTRUCTION: JUMP ON LESS THAN

INST FORMAT: JLT DISP

HEX. OPCODE: 1100

STAT CHANGE: None

DESCRIPTION: If the ari'thmetic greater than and ·equal
4- "".J. ec , .,~ :.,; "-:.:. • .statn.s ·b.i~s:,. ~ a re reset thellt·..adid .,the... ~i.gn.:ed __ ...: ~ ·

"·.:::::• • .1 ~ · d:f:.splacement to the PC. . .s:~ i. :: ;!, •. . ·1:> , ~ . ~ _

INST RESULT: (PC)+Displacement--->(PC) (LGT•EQ•O)
• r (P·C)+2--->(LGT=l or EQ=l) :.. \ .~ .: ----" · , .,..,....

APPL. - N-OTES: ·· Used when comparing ar-ithmetic values. ··

C @A,@B
JLT LESS go to LESS if (A) ~s

arithmetically less than (B)

2.0-46

-!'.... ~ ~ 15-U.,~ ;J:. J.! .;:. ~,: .
. _ m~. L 4t. :~ i } ~~~~ t :l

INSTRUCTION: UNCONDITIONAL JUMP

INST FORMAT: JMP DISP

BEX. OPCODE: 1000

STAT CHANGE: None ~

DESCRIPTION: · Add the -signed displacement to the PC and
place the sum into the PC.

INST RESULT: (PC)+Displacement--->PC

APPL. NOTES: Use to transfer control unconditionally •

JMP LOOP
JMP $

. JMP $+4

. Begin execution at loop
Remain at this location
Jump over next address

The destination address must be within the
range+l27 to -128 words . If not~ use the
branch (B) instruction.

2.0-47

=- -------------------------

INSTRUCTION: JUMP ON NO CARRY

INST FORMAT: JNC DISP

BEX. OPCODE: 170 0

STAT CHANGE : None

···· DESCRIPTION: ·If the carry status bit is clear, add the · ·
signed displacement to the PC.

INST RESULT : (PC)+Displacement---> (PC) (C•O)
(PC)+2--->(PC) (C=l)
•

APPL. NOTES: Use to branch when carry cleared.

JNC YES If carry clear, go to YES

Can be used to check fot 16-bit carry fBr
multi-precision arithmetic. The following
will calculate (Rl,R2)+(R3,R4).

GO

A R4, R2
JNC GO
INC Rl
A R4, Rl

2.0-48

'
I -

: ... ! • • ~ -· ·

- __._.._ ____ __ . ______ ~·--

INSTRUCTION: JUMP ON NOT EQUAL . I

INST FORMAT: JNE DISP

BEX. OPCODE: 1600

STAT CHANGE : None ·~
,I

·· DESC,R·IPTI-ON·: if the ··equal '' status bit is reset, add the - -·· '-,. -.
_ •- .. __ . . signed displacement to the~ .;EC •.

INST RESULT : (PG)+Di sp lac ement---> (PC) (EQ=O)
(PC)+2 - -->(PC) (EQ=l)

APPL. NOTES: Used to branch when not equal.

A Rl, R2
JNE X
MOV Rl,Rl
JNE NO

go to· X if Rl+R2 not zero

go to NO if Rl not zero

2.0-49

- -· ~ d~;.; .

..... _

INSTRUCTION: JUMP ON NO OVERFLOW

INST FORMAT: JNO DISP

HEX. OPCODE: 1900

STAT CHANGE: None

_ DESCRIPTION: When the ~~erflow status bit is reset, . add
.. --~ th~signed displacement to _J:he PC •.

INST RESULT: (PC)+Displacement--->(PC) (OV=O)
(PC)+2---> (PC) (OV•l)

APPL. NOTES: Used to

A Rl,R2
JNO GOOD

test arithmetic overflow.

go to GOOD IF Rl+R2 does
not overflow

An overflow occurs during an add . if the
sign of the two operands are the same but
the sign of the sum is not the same.

2.0-so

•

·.

l

.,

' •

· ~ ·

INSTRUCTION: JUMP ON CARRY

INST FORMAT: JOC DISP

BEX. OPCODE: 1800

STAT CHANGE: None

DESCRIPTION: When the carry status bit is set, add the
signed displacement to the P,C-• .

INST RESULT: (PC)+Displacement--->(PC) (C•l)
(PC)+2---> (PC) (C=O)

APPL. NOTES: Use to branch or transfer control if carry
is set•

JOC START
JOC $-2

If Carry, Go to Start
If Carry, Go to Previous
Ins·truc tion

2.0-51

INSTRUCTION: JUMP ON ODD PARITY

INST FORMAT: JOP DISP

BEX. OPCODE: 1000

STAT CHANGE: None

DESCRIPTION: When the odd parity status bit is set, add
the signed di~placement . to the . PC.

INST RESULT: (PC)+Displacement--->(PC) (OP=-1)
(PC)+2---> (PC) (O P-0)

APPL. NOTES: Used to test parity of 8-bit values.

MOVB @CH, Rl
JOP ODD go to ODD if CH is odd parity

Note that the OP flag is only changed by
byte instructi.ons (e.g. MOVB,CB)

2.0-52

~ --.
'S

- .. ··----- -. ___ ___ . ·- . . ____ ,_.-

INSTRUCTION: LOAD COMMUNICATIONS REGISTER UNIT (OUTPUT)

INST FORMAT: LDCR S,C

BEX. OPCODE: 3000

STAT CHANGE: LGT,AGT,EQ,OP (IF C<9)

· -- ,, - ·· -' - ·D-ES-C-RIPTIO·N: Transfer - the · •number ·of bits · 'S"pe-c-ified (C) ·
. ... ,.>, , -e. . ~ ~ ~ .fro.m __ the ~s.o.ur.ce. operand to .cons.e..c.ut,i .v.e CRU
.::'": ~ • •" i. ' ·.; ,,, . . lines. The -c-ontents of Rl2 -determines · the

least significant CRU line.

INST RESULT: (S)--->CRU for C bits

APPL,. NOTES: Use this .to output a bit pat.tern 4"-to CRU·
lines for versatile I/O. If the - number of
bits specified is less than nine, then S is
a byte address. If the number -0f bits is

·nine· o·r more, · ·S is a · word address. -' The·
least· significant memory· bit goes to the
least significant CRU bit. If the bit
count (C) is zero, then 16 bits are output.
Prior to an LDCR instruction, resigter Rl2
(CRU Base Address) must be loaded witheth
appropriate address. For the T99SS CPU
module, Rl2z0 will address bit O.

LDCR 2, 0
LDCR @NM, 8

16 bits to CRU from R2
8 bits to CRU from NM

2.0-53

- ·- -; ... -e .. - - -=

INSTRUCTION: LOAD IMMEDIATE

INST FORMAT: LI W,IOP

HEX. OPCODE: 0200

STAT CHANGE: LGT,AGT,EQ

IDESCRIPTION: Place -the immediate
specified ·register •

operand ·· · i.n ' the

. ' ; I ·' i:

INST RESULT: IOP--->(W)

APPL. NOTES: Use to initialize register for counters or
addresses.

LI R5,TABLE
LI Rl,10
LI R2, >100

Load RS with address of TABLE
Set Rl to 10
Set R2 to 100 (Hex)

2.0-54

... - ~ -- -. .

.. ~ ~ . .. ·--~-.. --------~~........_

INSTRUCTION: LOAD INTERRUPT MASK IMMEDIATE

IBST FORMAT: LIMI IOP

BEX. OPCODE: 0300

STAT CHANGE: Interrupt Mask

., ., · ·, ., ·DESCRIPTION: Pt·ace -· the four least signif-icifnt b"i ,ts of
l V i :i -. .. IOP• i.nt:o . the interrupt mask: (.b:i--:trs 15--12 of

the Status Register). ~

INST RESULT: IOP (15-12)--->ST (15-12)

APPL. NOTES: Used to enable or disable interrupts.

LIMI 0
LIMI >F

di&able all interrupts
enable all interrupts

2.0-ss

INSTRUCTION: LOAD WORKSPACE POINTER IMMEDIATE

INST FORMAT: LWPI IOP

BEX. OPCODE: 02EO

STAT CHANGE: None

DESCRIPTION: Replace contents of workspace pointer
..:i ~.,,. ,_ __ regis·t'e·r , -w±th the beginning •a·ddres-s ~ of 16

contiguous words. This chan·g·e's the current
workspace pointer and environment.

INST RESULT: IOP--->(WP)

-- - - - - APPL~ NOTES:· Us~ t~±nitialize the WP register · to alter
workspace environment.

LWPI >100
LWPI WSP

Place >100 in workspace pinter
Location WSP ~ Register 0

2.0-56

~. ______ J..ml

4- -.:- -- -

INSTRUCTION: MOVE WORDS

INST FORMAT: MOV S,D

REX. OPCODE: COOO

STAT CHANGE : LGT,AGT,EQ

- : i>ESCRIPTION: Replace destination operand ·with a copy of ··
_ ~• _ . the source operand. ~'"' ... ~ ·-- _

INST RESULT : (S)---> (D)

t.. !t: 1· .:. !"l· I ~ 11 • Meuiory ' tO ·Memory
Register to Register
Register to Memory (STORE)
Memory •to register (LOAD)

2.0-57

MOV ·@TABLE,@TEMP
MOV R5,R9
MOV R3, @ANSWER
MOV @TABL,R8

. - ~ ~· -· -. . - ·.. -. . -

· "- ,. · · .:;..

INSTRUCTION: MOVE BYTES

INST FORMAT: MOVf>S,D

HEX. OPCODE: DOOO

STAT CHANGE: LGT,AGT,EQ, OP

..;; •H1 <.,DESCRIPTION: . Move, --.the s-0urce - byte · ope·rand ~. to. · .. the
""""-•"'."''"~ ~. dellJtin~.t.i..on .byt~ <;>perand. Whenever S or D
_ _ __ _ . .is a . workspace register, then the leftmost

8-bits are used.

~ - ·: ~ 1INST RESULT: (S)--~> (D) ~ '!.

APPL. NOTES: Tra~sfer bytes of data.

Load register
Store register
Move .Memory to Memory .
Move Register to Register

2.0-58

MOVB @X,Rl
MOVB R3,@13(Rl0)
MOVB @X,@Y
MOVB R3,R4

•

. ,, ~ ~.\,,.

. INSTRUCTION: MULTIPLY ·l
·~

IBST FORMAT: MPY S,W

HEX. OPCODE: 3800

STAT CHANGE: None

D.·ESCR.IPTION: Mutipl¥ · th~ destin~tion. op~rand, · ad
unsigu-ed..-. -L6.-b it in t "eger· '!3-:b~~-.th-e l Saur ce _ 11 r. ei! t: t ·m.-r. - .,u;-"'e

l

:ope·rand,• r -:an : · unsigned 1·6~b-it-··. integer ·.--: · ~·e · - ~ - o i "E - ~!1 "!

Place the pro d uct · in to t ·he 32 bit (two
word) . destination field right justified ...

- • l •

INST RESULT: (W)*{S)--->(W,W+l)

APPL. NOTES: .Use multiply (MPY) to multi ply . . two .. 16-:b~i .t
· unsigned .intewers. The · destination operand
mus·t be a workspace Register, there£ ore th.e .,
·re·sult·· wi·ll . b"e · .in .. the · workspa·ce : . .r.eg.ister ·

J.;: w ... 11a ... 3 u ;.; c .,-. · ". ·•· ·11 .specifi-ed- ?·a:nd -the next one'·· · ,·If' ... · wo•rk.sp-a·-c:e
register 15 is s pecified then the next
memory location following the workspace
area is the second half of the product.

MPY *1,4
MPY @NUM, 4

Mult. reg R4 by reg Rl (ind)
Mul t. r~ R4 b'y ·(NUM)'

2.0-59

.. .. _ _ _ __ _ J_ ,, - -··----·

INSTRUCTION: NEGATE

INST FORMAT: NEG S

-·
HEX. OPCODE: 0500

STAT CHANGE: LGT,AGT,EQ,C,OV

,,._~ ,, DESCRIPTION:. . . Re.place ,source operand with . . two..' -s .. - .
- · ·-.........- · ... ->t-. • C01!p ~em~11-t . ~alµe : of t;he so~~- !.O-P.erand ! . .

INST RESULT : O~! S)--->(S)

APPL. NOTES: Use NEG to .replace the operand with its
additive inverse.

NEG R7

. ·-·-- - ·- ---- - ----

. "
The contents of workspace re·gister R7 is. · ;:: :.:o-:..::-:- :

·. r,e,-pl_a c;ed Uti;t;h i:.t<S· two's c omlp)l:e.m:en,t -value • . :: . ..,. _ _, .:; c o-mn.bern;e.nli

2.0-60

INSTRUCTION: OR IMMEDIATE

INST FORMAT: ORI W,IOP

BEX. OPCODE: 0260

STAT CHANGE: LGT,AGT,EQ

~ •"- -~---.- DESG·RIPTION: Perform a log"ical OR operation ·b ·etwee·ir tfre~
~ ;o.. .::. .,_;:;i r w . ._,. .• ·-Specified,. .. -.wo r.kspace regi·aote-r- . -~ and " · the

• immediate ·operand. ·Pla.ce the" result in t'tre•
workspace register.

Y -- INST RESULT: (W) OR IOP--~>(W)

.. ~. - -·--____ . _ _...._

.. - - - ...,. --~~- · ~ -'" ~ -

1 '• ./ I ; : .>

€ <'"P - vo~ M1'.L::-o.,.. NO.XES.:, U·s-e -ta-1pe.r ·fo,r-m- .:logical OR bet?ween. works~aee~ i ca .i. u is. o E:"L~ee~·" W •
·~ - -- "':" ~~· . i·· - . r-e·gis·ter and some known immediate ·value. ~ '.· ·~-:,:-, : :!: ~s~ .::. "it: ~ ~ ·

"l l :: -~

Eltample : ORI R10,>202D - • • ,• .:. :..: ..:.JJ

: ' : s ... :::.'I' . ""

Before:
~med.
After:

R1'0=>1AD5
Operand•

Rl0=>3AFD

---~ OR~ R5 ; >8000
ORI RlO, >F

2.0-61

0001 1010 1101 0101
0010 ~000 · 0010 1101
0011 1010 1111 1101

Set R5 s'ign' ·b"tt'
Set four LSB of RlO

lBSTaUCTION: RETURN WITH WORKSPACE POINTER

INST FORMAT: RTWP

HEX. OPCODE: 0380

STAT CHANGE: All status bits set by R15, including
interrupt mask •

.. .
' "t-.J '11..C,1)!1:-nE·S,(;;JrI.P..T !O~:~ <Be.p.lac e •. 10:0;.n.t:e n ts 0 f WP vi·th. 1.. •C onte.n,t s .;; vOf

·11J· ·!\. -~ _.._ curreub : R13,- PC with cont~nts ~ o .f R14, ST
- ~-·.. -· - with current value of R15 • .,. ... ~,., --,-· ..

».- .-;,; ~- lNS.T RESULT: (Rl3)--->(WPJ
(R14)--->(PC)
(R 15)--->(ST)

:,,t\ .i.J..-.~ ~ · !.• 1· ""..

. . - - ~ "'

i

APPL. NOTES: Use to return

~

from
... , ·: .. -· hardware interrupt.

2.0-62

,,.. ~ . :tv.~

-.• - . .
a ·BLWP, XOP or

z:. :' :.. r .. , ! Ir ~ l.

-.

a
.].

,,. .. l' .• .,... ,. ,_..,.. 1

._ l •

' - ...

INSTRUCTION: SUBTRACT WORDS

INST FORMAT: S S,D

HEX. OPCODE: 6000

STAT CHANGE: LGT,AGT,EQ,C,OV

i-. :::r .1.·T! DESCRIPTION:_. . S.ubtr.act _. t .he source operand . . fromo the
·:.. - ~~ -·.:--.-..:-~-·· ~- .. 4.~~ ~-in~t.io,nt operand and pJ ac.e ._ .the r.e~ul~·

'l - · ·

.it\. the de st ina t ion ope rand.

INST RESULT: {D)-{S)--->{D)

APPL. NOTES: Use to subtract signed 16-bit integers
from:

Memory to Memory
Re.gister to Register
Register to Memory
Me4o~y to Register

2.0-63

S @OLDVAL,@NEWVAL
S R8,.)t.7
S RlO,@DTET
S @CONS , ,Rl 4

'

.. --

INSTRUCTION: SUBTRACT BYTES

INST FORMAT: SB S,D

HEX. OPCODE: 7000

STAT CHANGE : LGT,AGT,EQ,C,OV,OP

r t· .cD.E S.-C:R:IPTIO·N: · Subtract the;t; source op er and'.:!. :b...yte-: fTom the · -=:

destination operand byte and place the
.. dif£e:rence - .,. _in the destinat.io.n _ _ operand
byte .

INST RESULT : (D)-(S)- - ->(D)

<='!, •~. L .. ,- -:A.P:PL . NO'I;ES: Us.e ~o ~ subtract signed i -n..teg.er b}?.tes .

- J - -

SB @3,@>503
SB Rl ,.R2

Res.ult in address. >503
.Result in upper h~te of R2

2 . 0-64

c oerana . ri :P-t: e

IRSTRUCTION: SET BIT ONE

INST FORMAT: SBO DISP

IRSTRUCTION: SET BIT ZERO

INST FORMAT: SBZ DISP

HEX. OPCODE: lEOO

STAT CHANGE: None

•1 • ..,. .,.,,. n •.,DESCllIPTION: ·S·e t: · -o·u t ·put· GRU1 ~'1. t to a 1 o-g-i.c al' "·ze-ro:P-1! Thtl?' ?-r-. -' "' •! "' "' ti r .;o !! ,. .,,,.,,. IT"

~·- - -· CRU . . bit - .address is determined b.y . add.i.ng . :.. ----- · - - . c. ~ ,
:.::c ::..:.. ... _... . .cont-ents1, ·of-:. .hits 3-14 of R·l-·2 .·t:.a. ~the ·ai..g.n.ed.-.:.« '-'.:.. D-11..it ;;. :; t:.•u:e

displacement.

:1 _,- l-4 c INST RESULT: 0--.... :>(G!RU~ b,14: specified by bits .. 1~14 ·i af : R12 i.~iea a·.; o:..c.s J - .t-i

+ displacement)

APPL. NOTES: Use -To get - the particular CRU line , to a -
logical zero.

LI 12,>280
SBZ >2.8
SBZ -2

- ' -

CRU base address,..>14.0 (Rl2/2) ·--· .
Clears CRU bi·t >16.8 (140+-2.8:).;.:.::
~lears CRU bit >13E (140-2)

.. . - ~ ..

2.0-66

INSTRUCTION: · SET TO ONES

INST FORMAT: SETO S

HEX. OPCODE: 0700

STAT CHANGE: None

.f· :,. "' ·' , :..., 1JJE-::f<Mt·I ·P·T I-6 N-: ---R:"e'p-1 a: c e,... the ti's ·o ii ~·c! e I 0 per and ... 1W1:'t'h '" '"ti· ~ H r::. D'"i e '
~"'-··· ... -,.. .. -.... wo,rd o.f one's. -- .. --r- :;i ·i>..· ··~ ~ "" .·

"' ~ ··"

INST RESULT :. FFFF--->(S)

y - •• l l ·t" .. _ ~· ·' . . l , I

APPL. NOTES: Use to initialize · a table with -1 values •
instead of zeroes if your application

.... .,. .,., _ "'_, ,.,, ., _. · -requires - such ·. ·· Us-e to initialize register -~ ~ ~·i · -. · .,--.- <> ~

-- ~· - · ~ ,,,.

~, ·.•~wt th -1. "-' . .. /!'> - · ·"' ,..~ ~·-·..:.""'" ~•r.-n" - '-'

SE·TO- -5 -. ,~ 0 '

S'ETO @SUM
Set register s~ ~o · >FFFF
Set SUM to -1 ~~ ~ ~~ 2 · •

. - · ..

2 . 0-67

... .:.. '6;i.· ... -_..·~ .

INSTRUCTION: SHIFT LEFT ARITHMETIC

INST FORMAT: SLA W,C

HEX. OPCODE: OAOO

STAT CHANGE: LGT,AGT,EQ,C,OV

~-<'!.~ '.l?ifC~ESi.G:-~LP ... TL&_N,: t{ sr!PFeri .cont~nt·s1 "t>I~ ~..ae WOTkspaeeS" reg.i:sten>-'Bre~~ OJ"(} i;:' KS p ~ ~ll'J'i'S
i~~r- i- ;':..;:..- .:, .:_.z...: _:.. : - tl'bifJ:-24 -c.J:e_f t .~ t.he .. specified mumhex:.. r. O f l> its _ ·,..-.:..: :;_:. ·'- e. o,; .oe~~r ..

""',a.i.;.~1 .\..t:u -o-., _ :.. ,__: 2 (Ci) with "'z..er-.o e.s .. filling the .., yaca te:d . b.:J. t __ _ ,_ ... u ~ ~e -..·;;..a.ca
~~•h!! <::- . , .. ., : _ positions. -The last bit · shifted out is ., ~-. _ '• -~'!Ll:! '~~u-

- ... -· - ·-~~ p-lcrced i-n the· carry out bit• · - If -· C=e ;· the - -- ~ - · ... ~ - - - · - · -
right four bits of register RO are used as

c:,11 · 1· ·• 1 the shift count. ' "? ~ r-- 1 r:- •nu-;::-. ri,:> :;01rr

,~li.\'.;1,.2.a. .., ~..?. FRJ!!. S~~T:: ·: . .;fW1)>.~J~l..fS-h;_:i:.f,t~~il-.ef .t the ~pec.i.£.:E~ .i: s41~; 1;:- F.:: .::_ i:ne @·'''H'lft~-a.
coun t (C).

: · ...

-.. ""'"' AP,PL,.. NOTES ·: .. · Use · to ·· shift ~· th·e contents -~of· ·a -workspace .. rn.-:-._<:,el"r.-.: -· .-., "'.<J.£

• "- · .. ._ ,_ .. .,...,, _ • .. _ ""' reg is t..e .r . l.e.f.t. _ . by some ,.,s .h.i Lt c.o.un.t • • -· ..,,...., ._ ·= """,_. ~'4'-'- .

SLA R4, S.
~LA R4, 2
SLA R4,0

Shift reg R4 left 8 places ·
Effectively mult. reg R4 by 4
Shift reg R4 by contents of RO

Note that S LA R 4 , 0 w i 11 shift R 4 by the
contents of the lower four bits of RO. If
RO•l7, the shift count is one · because
17•10001 (binary).

2.0-68

INSTRUCTION: SET ONES CORRESPONDING (LOGICAL OR)

INST FORMAT: SOC S,D

BEX. OPCODE: EOOO

STAT CHANGE: LGT,ACT,EQ

~W<L .::~.;,\;~ S,G~ P.T I-O.N.:11 . .1.S.e,-t.~u.;'t Of..' .t.ho,g i.~i111:r, o~~~# a 1 J.. .. ,.o..f .. ~ '1e •. bi t.s>ig i tll;n. "fiil, .a .1.. J. . 0 J:

__ ..,,_ _ "'"""' . _, __ ... --4.~~ t_;l.n,aJ :ion OP.~Htnd that; cp r.r .e.s..p_ond_ to_ Jlll..Y . ~
,,_.. , .. _ __ ~- lo,gic on~ val_u_e _ i n the s_o_,u.rce o_per.an~-':

... t , L •

This result is placed in the destination.
This is e-f fectively a logica-1 . OR oper.a•t.io.nc • .

'; \ ., 1 J .; •

INST RESULT: (S) OR (D)--->(D)
.. -:. :: ' : .. • c

.•

·l
1

-...,. ~ -.::'~ ~ -

.n a ·; -! , ~ .t

.. ; t' • ! .

u vcL <=- ._ ,il.J>.L • . NOTES: . . Use to per.farm . a logical OR operation.- .. -u .c -'- "",_ ,.,,,,<=La

;;~ .:. :.. ,<..a..:. ;:~ . · ~ Th:i.s .. _is _ similar . to ORI ex.c .ept .. it .• may _.;b.:e :: v · ... t..: e "Ji:ce :;Jr;.. . :..~

-:.'~ '!-: .;--::;;;;:-:· .: :_: _ done b _e-t-ween ·· two gener.al addresses· . ~ ..., ; ·:. ·~ ::i <::'r:..~-!! -~ an:= ~

.. •
Before:

...., Ltl. ., .. ',J • •

(PATRNl) = >E06B=lllO . OOOO 0110 .. 1101
(PATRN2) • >4482 =0100 0100 1.000 .. 0010 .. - _,,.

SOC @PATRN1,PATRN2

After : (PATRN 1) = >EO 6B
(PATRN2)=>E4EF- 1110 0100 1110 1111

2.0-69

INSTRUCTION: SET ONES CORRESPONDING BYTE (LOGICAL OR)

INST FORMAT: SOCB S,D

HEX. OPCODE: FOOO

STAT CHANGE: LGT,AGT,EQ,C

~ 't~qi;· !l.MtE:&£'4B.r1P.X·I:.oN:: • S.a" t o t.: :«a : l..o-gL!llZtil -' . one th'e: b:::tits ..'.!'. -i nt'io t:-1\~"a l l ·. <bn:e ' 't;lite '~ .b'J.t21:: ·'St"
"" "" .. a-.-.. ...-~--:-- ~d~,.s_tin~a.t.iDn. o .. perand byte that ... co.i::..%'.-e.sp..on.d "'" to _ - .J _ i... ~iS ,~ .~.;J.1;-".L.;;; ;
,, __ ...;____ a lo_gi..c _, .o_ne i.n the source ..operand .. byt..e~ • _ -·- ·-- ~.._ .. __ _
- , .. ,,, _~ . .., ... ,, .• _,_,.,. · ·- 'Jlb.f.s is e.ffec·ti-vely an 8-bi"'t -~ f<>g4.eai"' ..-OR: .::. • "" ..._ _ _..,.,.

operation .

INST RESULT : (S) OR (D)--->(D)

A~PL. NOTES: Use to perform an 8-bit QR.

;;!.;<;,. : :: s:
...,so_c,B R 1, @x (X)•(X) OR Rl _ ,,, __, •JA J:\ ~ d-

2.0-10

- . . - --- - ---- , ___

INSTRUCTION: SHIFT RIGHT ARITHMETIC

INST FORMAT: SRA W,C

HEX. OPCODE: 0800

STAT CHANGE: LGT,AGT,EQ,C'

? '=!:,.~ ~ ~-D.JfSG-1'r~PJr ·I-ON: ~· Shi f fr' "-! th•e, ... ,~~tien t ~f· l·. ·-of t 4-'! ~trre :;. ~s"p·ec"fff~~~'!" .,., · ~,,, f' : l.<·t'f!~ · ~~~
~.-e.<4 -•rn.ie)~ · ..,.,.,... · • , .. • · w&.:tks:paece-: 1.r>egr-irst<e T right b~· 't".t>he ~ nutlt'bei;#;;i "O..f • ~ -; (' l'\ T h""' r !t'_;:.~~~1

, ~ .,,.._ ... ,,,.,....,.., .,.. "~"" "' · ,. pla·c-es~,,.-.s·pec if'i.ed "' .by C • . · · Tlre """"Bign <>·•b":i.<t~ *~:f:::!s ""~' ' -- ~- """"~ -~~ _,_..,.,..,,.. ,

. ~ ~-· ·~" ..=. · ~·-"2~. ext·en'd 'edr to f ·ill the vacated ~ bit13. +-- -l•f"' 'C'i=O, , ··~- . ~~ ,..}- :J.. .. ; _.,..,.,

then the right four bi ts of worksp.a-ce . ~ _
register RO are used for the shift count.

" ' Thte" la-s::t- c-bif. t r· s hi ft e d 0 u t is p lac ed>'l ±n .;t ·ne' t- .,. rl " l' t l ;;µ n ll !J:l«•b:> f1)

· carr·y ·bit · of · th·e status- · register. - · - • · - · -

INST RESULT: (W) shifted right c places--->(W)

APPL. NOTES: Use to shift to the right a signed integer.

SRA Rl4,5

Shift right the contents of Rl4 by 5
places~ This is a divide by · 32. 1• ~ ...: - .J l ... - .J ~ -

2.0-11

INSTRUCTION: SHIFT RIGHT CIRCULAR

INST FORMAT: SRC W,C

HEX. OPCODE: OBOO

STAT CHANGE: LGT,AGT,EQ,C

- - ·J).ESCRIPTION: Shift the specified workspace ·regi·s ·te·r - · ·--
- right by ... the' s·pe·cified number of 'places .. .

(C), with the bi ts being shifted out of _ .
bit 15 placed in bit o. If C=-0, the -right · ' -
four bits of register RO are used as the _ .
shift count.

INST RESULT: (W) shifted right circ. C places---> (W)

APPL. NOTES: Shift right cireular some specified
wcnkspace register.

SRC R9,5

2.0-12

- --- .. -·--

. ___ ._...;_

INSTRUCTION : SHIFT RIGHT LOGICAL

INST FORMAT: SRL W,C

HEX. OPCODE: 0900

STAT CHANGE: LGT,AGT,EQ,C

1;1D&.SGAil~/!t.IO.N...: ;. ~hi £ tl ·i. ~t•h·er0 s pe.c.,f..,f;:t.re·d. . work · <re g:d..s :t-e1r 4"~>.:t:lhil!~ e ao wo ·rt;. · .<r. e g ,:t.-s t:.e~

right the specified shift count fill~ng the

(i;:.; .

vacated bi ts with zeroes. The last , bit
- .· .<· ;: ·shif,t,ed o.ut: -~:is. , .. p-1-aced in .,, t:he=- - c a ir.ry .1 .ou t.; _,_a.c~ J · '1 n:; .;;,a . .i-! .i .r .. ;;:.

bit. , I .f . . c .-o ,- ...-.:.~_t_he right - J: ou_r~ ~ -b :ii.t;-,s ; · .. of ••;; :- • '.' . r , · i, c ·u r

register RO are used as the· shift count.

INST RESULT: (W) shifted right C places--->(W)

- ~~-~ ~ --- - .A~~l.. .. N.OT.ES.: . Use ~ tp~ _s.bift . - ~ .. workspace
~- - logica~.

SRL Rl0,5
SRL R9,l

.. Shift reg RlO right 5 places . ~ _ _
E f f e c t iv e 1 y d iv id e r e g 9 b y - -2-- :· · ., - ~ ..

2.0-13

- - - . .;,. ·- -

INSTRUCTION: STORE COMMUNICATION REGISTER UNIT (INPUT)

INST FORMAT: STCR S,C

BEX. OPCODE: 3400

STAT CHANGE: LGT,AGT,EQ,OP(<9 bits)

DESCRIPTION: Transfer number of bits specified (C) from
the CRU lines addressed by R12 to the
source operand. If the number of bits does
not fill entire mamory word, then zeroes
are added on the left. If C<9 , then S is
a byte address.

INST RESULT: CRU lines--->(S) for C bits

APPL. NOTES: Use to store contents of CRU lines in some
memory location. The least significant CRU
line is transferred to the least
significant memory bit.

If C<9 byte addressing
If C>9 word addressing

2.0-74

INSTRUCTION: STORE STATUS REGISTER

INST FORMAT: STST W

BEX. OPCODE: 02CO

STAT CHANGE: None

DESCRIPTION: Transfer the status register to workspace
register w.

INST RESULT: Status Register--->(W)

APPL. NOTES: Used to transfer
workspace so it

the status register to
can be manipulated.

STST RS R5=status

2.0-75

I__....,

INSTRUCTION: STORE WORKSPACE POINTER

INST FORMAT: STWP W

BEX. OPCODE: 02AO

STAT CHANGE: None

DESCRIPTION: Transfer the workspace pointer to workspace
register w.

INST RESULT: WP--->(W)

APPL. NOTES : Used to determine the address of the
register file.

STWP R6 R6 = address of RO

After execution of
the following two
same.

INC
INC

RO
*R6

2.0-76

the above instruciton~
instructions are the

INSTRUCTION: SWAP BYTES

INST FORMAT: SWPB S

BEX. OPCODE: 06CO

STAT CHANGE: None

, .

DESCRIPTION: Swap the upper byte of the source operand
with the lower byte of the source operand.

INST RESULT: Swap (S) upper and (S) lower.

APPL. NOTES: Used for character manipulation.

MOVB @C 1, Rl
SWPB Rl
MOVB @C2, Rl

Rl=character one
reverse bytes
RI-character two,one

2.0-11

INSTRUCTION: SET ZEROES CORRESPONDING

INST FORMAT: SZC S,D

HEX. OPCODE: 4000

STAT CHANGE: LGT,AGT,EQ

DESCRIPTION: Set to a logic zero the bits in the
destination operand that correspond to bit
positions equal to logic one in the source
operand. The source is not changed.
Effectively this is a logical AND with the
source being inverted prior to the AND.

INST RESULT: NOT (S) AND D--->D

APPL. NOTES: Use to turn off
contents of one's
destination.

flag bits or AND
complement source

the
and

Before: (PAT1)=>3030=0011 0000 0011 0000
(PAT2)=>5511=0101 0101 0001 0001

SZC @PAT1,@PAT2

After: (PAT 1)=>3030
(PAT2)=>4501 =0100 0101 0000 0001

2.0-78

INSTRUCTION: SET ZEROES CORRESPONDING (BYTE)

INST FORMAT: SZCB S,D

HEX. OPCODE: 5000

STAT CHANGE: LGT,AGT,EQ,OP

DESCRIPTION: Set to a logical zero the bits in the
destination operand byte that correspond to
bit positions equal to a logical one in the
source operand byte.

INST RESULT: NOT (S) AND (D)--->(D)

APPL. NOTES: Useful for character or flag manipulation.

SZCB @X,@Y Y=not X and Y

2.0-79

INSTRUCTION: TEST BIT

INST FORMAT: TB DISP

HEX. OPCODE : lFOO

STAT CHANGE: EQ

DESCRIPTION: Read the specified CRU input bit whose
address is computed by adding the signed
displacement to bits 3-14 of R12 . Set the
equal status register bit to the value
read.

INST RESULT: CRU line read--->EQ

APPL. NOTES: Use to read a particular CRU line and
depending on the result, make appropriate
decisions.

CLR Rl 2
TB 14
JNE $-2

set CRU base
wait for bit 14 to be set

2.0-ao

INSTRUCTION: EXECUTE

INST FORMAT: X S

HEX. OPCODE: 0480

STAT CHANGE: None (remote instruction may, however)

DESCRIPTION: The instruction at the source operand is
executed.

INST RESULT: Used to execute an instruction out of line,
typically in a table.

X @TAB(Rl) execute the instruction in
table TAB pointed to by Rl

INSTRUCTION: EXTENDED OPERATION

INST FORMAT: XOP S,N

HEX. OPCODE: 2COO

STAT CHANGE: None

DESCRIPTION: Place extended
The (N) field

operation
indicates

location to utilize.

into execution.
which XOP trap

INST RESULT: S--->(Rll) of XOP workspace
(0040+4n)--->(WP)
(0042+4n)--->(PC)
(WP)--->(Rl3) of XOP workspace
(PC)--->(Rl4) of XOP workspace
(ST)--->(Rl5) of XOP workspace

APPL. NOTES: Use to implement software routines which
are used frequently. For example:
floating point arithmetic, signed multiply,
extended precision integer arithmetic. The
monitor uses XOP 0 as a breakpoint call.
That is, a breakpoint replaces the users
instruction by an XOP O. XOP 1 and XOP 2
are used for input and output. The
following will print the letter "A".

LETTER BYTE 'A'
XOP @LETTER, 2

2.0-82

INSTRUCTION: EXCLUSIVE OR

INST FORMAT: XOR S,W

HEX. OPCODE: 2800

STAT CHANGE: LGT,AGT,EQ

DESCRIPTION: Perform a bit by bit exclusive OR of the
16-bit source operand with the 16-bit
destination workspace register.

INST RESULT: (S) XOR (W) ---> (W)

APPL. NOTES: Use to perform an exclusive OR between a
workspace register and a source operand.

Assume: (R0)=>21BD = 0010 0001 1011 1101
(TC)=>E436 = 1110 0100 0011 0110

Then: XOR @TC,O

(RO)=>C58B = 1100 0101 1000 1011

2.0-83

.. i llii

INSTRUCTION : EXTERNAL CO~TROL

INST FORMAT: CKOF (Clock Off)
CKON (Clock On)
LREX (Load Ram/Execute)
RSET (Reset)

HEX. OPCODE: 03CO
03AO
03EO
0360

DESCRIPTION: These instructions can be decoded by
external hardware. The 9900 CPU does not
per form any function when they are
executed. The T99SS CPU module does not
decode these instructions, so they should
be avoided.

2. 0-84

2.3 Instruction Summary

It is frequently necessary to obtain the hex equivalent or
time required for a specific instruction. The 9900's
addressing often becomes confusing when trying to do that.
To assist the user, the instruction tables are provided. The
first gives the hexadecimal op-code and basic execution time;
the second defines the additional digits in the opcode for
addresssing; and the last one specifies operand address time.
For example, if the hex equivalent of MOV *Rl,@6(R2) is
needed, the following steps are used:

(1) op-code=Cxxx (from Table)
(2) xxx=89s (from Addressing Table)
(3) Thus, instruction=C89s=C891 (s=Rl)

The time for the instruction is "14AA" cycles. The two
letters after the time are the formula for source address and
destination address modification. The last table in this
section provides this time. For our example the first
operand is *Rl and requires 4 cycles of added time (WR
indirect). The second is @6(R2) so it requires 8 cycles more
(indexed). Thus the total time is 14+4+8=26 cycles. If two
times are shown (e.g. 8/10) then the first is for a jump not
taken and the second for a jump that is taken.

2.0-85

Mnemonic Op-code Time

A
AB
AI
ANDI
c
CB
CI
CKOF
CKON
coc
czc
DIV
IDLE
JEQ
JGT
JR
JHE
JL
JLE
JLT
JMP
JNC
JNE
JNO
JOC
JOP
LDCR
LI
LIM!
LREX
LWPI
MOV
MOVB
MPY
ORI
RSET
RTWP
s
SB
SBO
SBZ
SLA
soc
SOCB
SRA
SRC
SRL
STCR
STST

Axxx
Bx xx
022s
024s
8xxx
9xxx
028s
03CO
03AO
2aaa
2bbb
3ccc
0340
13yy
15yy
lByy
14yy
lAyy
12yy
llyy
lOyy
l 7yy
16yy
19yy
18yy
lCyy
3aaa
020s
0300
03EO
02EO
Cxxx
Dxxx
3ddd
026s
0360
0380
6:x:xx
7xxx
lDyy
lEyy
OAns
Ex xx
Fxxx
08ns
OBns
09ns
3bbb
02Cs

14AA
14BB
14--
14--
14AA
l 4BB
14--
12--
12--
14A-
14A-
see note l
12--
8/10
8/10
8/10
8/10
8/10
8/10
8/10
8/10
8/10
8/10
8/10
8/10
8/10
see note 2
12--
16--
12--
10--
14AA
14BB
52A-
14--
12--
14--
14AA
14BB
12--
12--
see note 3
14AA
14BB
see note 3
see note 3
see note 3
see note 4
8--

Description

add Rs to Rd
add Rs (byte) to Rd (byte)
add constant to Rs
AND Rs with Rd
compare Rs with Rd
compare Rs (byte) to Rd (byte)
compare constant with Rs
clock-off
clock-on
compare (Rd AND Rs) with Rs
compare (Rd AND Rs) with zero
Rd•(Rd,Rd+l)/Rs, Rd+l=rem.
idle
jump if equal
jump if greater than
jump if high
jump if high or equal
jump if low
jump if low or equal
jump if less than
jump unconditional
jump if no carry
jump if not equal
jump if no overflow
jump if carry set
jump if odd parity
d-bits of Rs to CRU
load Rs immediate
load interrupt mask immediate
load Rom and execute
load WP immediate
move Rs to Rd
move Rs (byte) to Rd (byte)
(Rd,Rd+l)=Rd times Rs
OR or constant with Rs
reset
return with workspace
subtract Rs from Rd
subtract Rs (byte) from Rd (byte)
set CRU bit yy
clear CRU bit yy
shift Rs left (alg.) by n
OR Rs with Rd
OR Rs (byte) to Rd (byte)
Shift Rs right (alg.) by n
Shift Rs right (circ.) by n
shift Rs right (log.) by n
d-bits of CRU to Rs
Rs = status register

2.0-86 .

STWP 02As 8-- Rs .. workspace pointer
szc 4xxx 14AA RD "' Rd AND NOT Rs
SZCB Sxxx 14BB Rd (byte) = Rd (byte) AND NOT Rs
TB lFyy 12-- test CRU bit yy
XOP 2ccc 36A- extended operation
XOR 2ddd 14A- ex-OR Rs with Rd

2.0-87

Rs *Rs *Rs+ @Rs
ABS 074s 075s 077s 076s 12A-(MSB=O) absolute value of Rs

14A-(MSB=l)
B 045s 047s 0 4 6s 8A- branch
BL 069s 06Bs 06As 12A- branch and link
BLWP 04ls 043s 042s 26A- branch and link
CLR 04Cs 04Ds 04Fs 04Es lOA- clear Rs
DEC 060s 06ls 063s 062s lOA- decrement Rs by
DECT 064s 065s 067s 066s lOA- decrement Rs b y
INC 05 8s 059s 05Bs 05As lOA- increment Rs b y
INCT 05Cs 05Ds 05Fs 05Es lOA- increme nt Rs by
INV 054 s 055s 05 7s 056s lOA- invert Rs (ones
NEG 050s 05ls 053s 052 s 12A- negate Rs (two s
SETO 070s 07ls 073s 072s lOA- set Rs to one s
SWPB 06Cs 06Ds 06Fs 06E s lOA- swap bytes o f Rs
x 048s 049s 04Bs 04As see note 5 execute inst. a t

Note 1: 16 cycles if OV is set.
Actua l · time depends upond the
clock cyc le during execution.

92 to 124 if OV is not s e t.
par ti al quotient after each

Note 2: 20+2*number of bits transf e rred

Not e 3: If C not z e ro, 12+2*numb e r o f bits shifted.
the n 2 0+2*numb e r of bits shi f t e d.

Note 4: Time dete rmined by numb e r of bits a s:

1 to 7
8
9 to 15
16

42
44
58
60

Note 5: 8+time for instruction e xecu t ed

2.0-ss ·

If C=O

Rl 1
WP

on e
two
one
two
comp.)
c omp.)

Rs

ADDRESSING

RO Rl R2 R3 R4 RS R6 R7
Rs ,Rd 00s 04s 08s OCs 10s 14s 18s lCs Rs ,Rd
*Rs ,Rd Ols OSs 09s ODs lls lSs 19s lDs *Rs,Rd
*Rs+,Rd 0 3s 07s OBs OFs 13s 17s lBs IFs *Rs+, Rd aaaa
@Rs, Rd 02s 06s OAs OEs 12s 16s lAs lEs @Rs, Rd

Rs, *Rd 40s 44s 48s 4Cs 50s 54s 58s SCs Rs, Rd
*Rs, *Rd 4ls 45s 49s 4Ds Sls SSs 59s SDs *Rds,Rd bbbb
*Rs+, Rd 43s 47s 4Bs 4Fs 53s 5 7s 5Bs SFs *Rs+, Rd
@Rs, *Rd 42s 46s 4As 4Es 52s 56s SAs SEs @Rs,Rd

Rs, *Rd+ cos C4s C8s CCs DOs D4s D8s DCs Rs,Rd
*Rs, *Rd+ C ls CSs C9s CDs Dls DSs D9s DDs *Rs,Rd cc cc
*Rs+, *Rd+ C 3s C7s CBs CFs D3s D7s DBs DFs *Rs+, Rd
@Rs,*Rd+ C2s C6s CAs CEs D2s D6s DAs DEs @Rs,Rd

Rs ,@Rd 80s 84s 88s 8Cs 90s 94s 98s 9Cs Rs,Rd
*Rs, @Rd 8ls 85s 89s 8Ds 9ls 95s 99s 9Ds *Rs, Rd dddd
*Rs+,@Rd 83s 87s 8Bs 8Fs 93s 97s 9Bs 9Fs *Rs+, Rd
@Rs ;@Rd 82s 86s 8As 8Es 92s 96s 9As 9Es @Rs,Rd

'---' RS R9 RIO Rll RI 2 Rl3 Rl4 RlS
Rs,Rd 20s 24s 28s 2Cs 30s 3~ 38s 3Cs Rs, Rd
*Rs, Rd 21s 25s 29s 2Ds 31s 35s 39s 3Ds *Rs,Rd aaaa
*Rs+, Rd 23s 27s 2Bs 2Fs 33a 37s 3Bs 3Fs *Rs+, Rd
@Rs ,Rd 22s 26s 2As 2Es 32s 36s 3As 3Es @Rs,Rd

Rs, *Rd 60s 64s 68s 6Cs 70S 74s 78s 7Cs Rs,Rd
*Rs, *Rd 6ls 65s 69s 6Ds 7ls 75s 79s 7Ds *Rs,Rd bbbbb
*Rs+, *Rd 63s 67s 6Bs 6Fs 73s 77s 7Bs 7Fs *Rs+, Rd
@Rs, *Rd 62s 66s 6As 6Es 72s 76s 7As 7Es @Rs,Rd

Rs,*Rd+ EOs E4s E8s ECs FOs F4s F8s FCs Rs,Rd
*Rs, *Rd+ Els ESs E9s EDs F ls FSs F9s FDs *Rs,Rd cc cc
*Rs+, *Rd+ E3s E7s EBs EFs F3s F7s FBs FFs *Rs+, Rd
@Rs,*Rd+ E2s E6s EAs EEs F2s F6s FAs FEs @Rs,Rd

Rs, @Rd A Os A4s A8s ACs BOs B4s B8s BCs Rs,Rd
*Rs ,@Rd Als ASs A9s ADs B ls BSs B9s BDs *Rs,Rd dddd
*Rs+,@Rd A3s A7s ABs AFs B 3s B7s BBs BFs *Rs+, Rd
@Rs, @Rd A2s A6s AAs A Es B2s B6s BAs BEs @Rs,Rd

2.0-89

ADDRESS MODIFICATION TIME

Mode Time(A) Time(B)

Register
Register Indirect
Register Indirect
with increment
indexed

0
4
8

8

0
4
6

8

2.0-90 .

