
NonStopm
SYSTEMS

T/TAL
LANGUAGE

PROGRAMMING MANUAL

T16/8013 A03
82013

--

INTRODUCTION TO PROGRAMMING THE TANDEM 16

AND

TANDEM/TRANSACTION APPLICATION LANGUAGE

PROGRAMMING MANUAL

Copyright {C) 1977
Copyright (C) 1978

TANDEM COMPUTERS INCORPORATED
19333 Vallee Parkway

Cupertino, California 95014

Product No. Tl6/8013 A03
Part No. 82013

November 1978
Printed in U.S.A.

NOTICE

This document contains information which is protected by copyright.
No part of this document may be photocopied, reproduced or trans
lated to another program language without the prior written consent
of Tandem Computers Incorporated.

The following are trademarks of Tandem Computers Incorporated, and may
be used only to describe products of Tandem Computers Incorporated.

EN FORM
EN SCRIBE
ENVOY

EXPAND
EXTEND
GUARDIAN

Nonstop
TANDEM
TGAL

.1

LIST OF EFFECTIVE PAGES

Pages Effective Software Product
Date and Version

Title ••••••••••••••••••••••••••• Nov. 1978
List of Effective Pages ••••••••• Nov. 1978
Preface ••••••••••••••••••••••••• Nov. 1978
Reader's Guide •••••••••••••••••• Mar. 1978
(1)-1 ••••••••••••••••••••••••••• Feb. 1977
1-1 thru 1-2 •••••••••••••••••••• Feb. 1977
1-3 thru 1-4 •••••••••••••••••••• Mar. 1978
1-5 thru 1-12 ••••••••••••••••••• Feb. 1977
(2)-1 ••••••••••••••••••••••••••• Mar. 1978
(2)-2 ••••••••••••••••••••••••••• Feb. 1977
(2)-3 ••••••••••••••••••••••••••• Mar. 1978
(2)-4 ••••••••••••••••••••••••••• Nov. 1978
(2)-5 ••••••••••••••••••••••••••• Mar. 1978
(2)-6 ••••••••••••••••••••••••••• Aug. 1978
2.1-1 thru 2.1-2 •••••••••••••••• Mar. 1978
2.1-3 thru 2.1-7 •••••••••••••••• Feb. 1977
2.1-8 thru 2.1-9 •••••••••••••••• Mar. 1978
2.1-10 thru 2.1-21. ••••••••••••• Feb. 1977
2.2-1 thru 2.2-5 •••••••••••••••• Feb. 1977
2 • 3-1 •••••••••••••••••••••••••• Mar • 197 8
2.3-2 thru 2.3-4 •••••••••••••••• Feb. 1977
2.4-1 thru 2.4-6 •••••••••••••••• Feb. 1977
2.5-1 thru 2.5-4 •••••••••••••••• Feb. 1977
2.6-1 thru 2.6-2 •••••••••••••••• Feb. 1977
2 • 6 - 3 • Ma r • 1 9 7 8
2.7-1 thru 2.7-5 •••••••••••••••• Mar. 1978
2.8-1 thru 2.8-39 ••••••••••••••• Feb. 1977
2.9-1 ••••••••••••••••••••••••••• Mar 1978
2.9-2 Feb. 1977
2.10-1 thru 2.10-5 •••••••••••••• Mar. 1978
2.11-1 thru 2.11-6 •••••••••••••• Feb. 1977
2 • 11-7 •••••••••••••••••••••••••• Ma r • 1 9 7 8
2.11-8 thru 2.11-20 ••••••••••••• Feb. 1977
2.12-1 thtu 2.12-8 •••••••••••••• Feb. 1977
2.13-1 thru 2.13-2 •••••••••••••• Feb. 1977
2.14-1 thru 2.14-7 •••••••••••••• Feb. 1977
2.15-1 thru 2.15-22 ••••••••••••• Feb. 1977
2.15-23 thru 2.15-26 •••••••••••• Mar. 1978
2.16-1 thru 2.16-17 ••••••••••••• Feb. 1977
2.17-1 thru 2.17-15 ••••••••••••• Feb. 1977
2 • 1 7 -1 6 ••••••••••••••••••••••••• Ma r • 1 9 7 8
2.17-17 thru 2.17-19 •••••••••••• Feb. 1977
2.17-20 thru 2.17-21 •••••••••••• Mar. 1978
2.17-22 thru 2.17-32 •••••••••••• Feb. 1977
2.18-1 thru 2.18-14 ••••••••••••• Feb. 1977
2.19-1 thru 2.19-9 •••••••••••••• Mar. 1978
2.20-1 thru 2.20-2 •••••••••••••• Mar. 1978
2.20-3 Nov. 1978
2.21-1 thru 2.21-8 •••••••••••••• Feb. 1977
2.22-1 thru 2.22-15 ••••••••••••• Feb. 1977
2 • 2 2 -1 6 Ma r • 1 9 7 8

A03

T9200B08
T9200B08
T9200B08
T9200B08
T9200B08
T9200808
T9200B08
T9200B08
T9200B08
T9200B08
T9200B08
T9200B08
T9200B08
T9200808
T9200B08
T9200B08
T9200B08
T9200808
T9200B08
T9200808
T9200B08
T9200B08
T9200B08
T9200808
T9200808
T9200B08
T9200B08
T9200808
T9200B08
T9200B08
T9200808
T9200B08
T9200808
T9200C01
T9200808
T9200808
T9200B08

i-1

LIST OF EFFECTIVE PAGES

2.22-17 thru 2.22-33 •••••••••••• Feb.
2.23-1 thru 2.23-5 •••••••••••••• Mar.
2.23-6 Nov.
2.23-7 thru 2.23-10 ••••••••••••• Mar.
2.23-11 ••••••••••••••••••••••••• Nov.
2.23-12 thru 2.23-26 •••••••••••• Mar.
2.24-1 thru 2.24-6 •••••••••••••• Aug.
(app)-1 ••••••••••••••••••••••••• Nov.
A-1 thru A-8 •••••••••••••••••••• Feb.
B-1 thru B-11 ••••••••••••••••••• Mar.
C-1 thru C-4 •••••••••••••••••••• Feb.
D-1 thru D-15 ••••••••••••••••••• Nov.
Index-1 thru Index-15 ••••••••••• Nov.

1977 T9200B08
1978 T9200B08
1978 T9200B08
1978 T9200B08
1978 T9200B08
1978 T9200B08
1978 T9200COO
1978
1977 T9200B08
1978 T9200B08
1977
1978 T9200C01
1978

MANUAL VERSION
MANUAL VERSION
MANUAL VERSION
MANUAL VERSION

AOO.
AOL
A02.
A03.

DATE: FEBRUARY 15, 1977
DATE: MARCH 15, 1978
DATE: AUGUST 15, 1978
DATE: NOVEMBER 30, 1978

Note: This manual will be updated as necessary to correct errors in
the manual or to reflect changes or additions to the software.
The changes to the manual will be made available in the form of
individual changed pages in a "manual update package". A
subscription service is available for our customers who would
like to receive manual update packages automatically.

A03
i-2

PREFACE

The programming manual is organized into two sections followed by the
appendices and an index. The sections are:

Section 1.

Section 2.

Introduction to Programming the Tandem 16
Program Characteristics
T/TAL
GUARDIAN
P.rogram Development
Conventions in this Manual

T/TAL Language
Language Characteristics
Program Organization
Data Declarations
Statements
Compiler Commands
Advanced Features
Structures

Generally, the information in section two falls into either of two
categories. The first (and largest) part of the section contains
information requiring that the programmer have a good understanding of
the overall system but a less than thorough knowledge of specific
hardware details. The second part of the section deals with
so-called advanced features and requires a knowledge of the Tandem 16
hardware registers, machine instructions, and/or operating modes.

The four appendices contain the following information:

Appendix A. T/TAL Language Summary

B. BNF Syntax for T/TAL

C. ASCII Character Set

D. T/TAL Compiler Diagnostic Messages

For more information regarding the Tandem 16 Computer System, refer
to the following manuals:

* Tandem 16 System Description [Product no. Tl6/8 000]

- Overview of the Tandem 16 system, hardware and software
- Details of the hardware from a programming standpoint
- Tandem 16 approach to Nonstop programming
- Tandem 16 machine instructions
- Description of the operating system and its responsibilities

* Tandem 16 Operating Manual [Product no. Tl6/8019

- Interactive Command Interpreter (COMINT)
- Interactive Text Editor (EDIT)
- File Utility Program (FUP)
- Backing up/restoring disc files (BACKUP/RESTORE)

A03
i-3

PREFACE

- Peripheral Utility Program (PUP)
- Program File Editor (UPDATE)
- System Generation (SYSGEN)
- Console error messages
- System Load Procedures
- Peripheral User's Guide

A03
i-4

READER'S GUIDE

The following is a list of computer system functions and applicable
manuals. The manuals are

Tl6/8000 SYSTEM DESCRIPTION MANUAL

Tl6/8008 SORT OPERATING AND PROGRAMMING MANUAL

Tl6/8013 T/TAL PROGRAMMING MANUAL

Tl6/8014 GUARDIAN PROGRAMMING MANUAL

Tl6/8015 GENERAL PURPOSE PROCEDURES PROGRAMMING MANUAL

Tl6/8017 ENSCRIBE PROGRAMMING MANUAL

Tl6/8018 ENVOY PROGRAMMING MANUAL

Tl6/8019 OPERATING MANUAL

To obtain a comprehensive understanding of the Tandem 16 Computer
System, read the first six items in the given order.

If it is desired to:

acquire general information about the
system

acquire general information about
programming the system

acquire general information about
operating system services

acquire general information about the
human interface to the system

acquire specific knowledge about the
T/TAL language

Read:

Tl6/8000, INTRODUCTION

Tl6/8013, INTRODUCTION

Tl6/8014, INTRODUCTION

Tl6/8019, INTRODUCTION,
COM INT

Tl6/8013, TAL

programmatically create, read, write, and Tl6/8014, FILE SYSTEM
purge unstructured disc files, communicate
with terminals, printers, magnetic tapes,
and programs

programmatically create, read, write and Tl6/8017, ENSCRIBE
purge key-sequenced, relative, or entry-
sequenced files

communicate over data communication lines Tl6/8018, ENVOY

create and modify source language programs Tl6/8019, EDIT

programmatically run and stop programs, Tl6/8014, PROCESS
change execution priority, etc. CONTROL

AOl i-5

READER'S GUIDE

i-6

perform utility operations such as
number conversion, requesting the time-of
day, requesting the file name of the home
terminal, etc.

acquire specific knowledge about the
interface between the Tandem-supplied
Command Interpreter program and
application programs

read EDIT-format disc files

perform general-purpose file error
recovery

compile a source program

run an object program

debug a program

write a Nonstop program using the
Checkpointing Facility

display disc file information, rename,
and purge disc files

create disc files and display detailed
disc file information

alter disc file characteristics

load data into structured disc files

sort data records by commanding SORT
through the Command Interpreter

sort data records by commanding SORT
programmatically

sort data in memory

display system status information (see
what programs are running and where)

make a backup copy of one or more disc
files on magnetic tape

restore one or more disc files from a
backup copy on magnetic tape

AOl

Tl6/8014, UTILITY
PROCEDURES

Tl6/8013, COMINT/
APPLICATION
INTERFACE

Tl6/8015, GENERAL
PURPOSE PROCEDURES

Tl6/8015, GENERAL
PURPOSE PROCEDURES

Tl6/8019, COMINT,
TAL/XREF

Tl6/8019, COMINT

Tl6/8014, DEBUG

Tl6/8014, CHECKPOINTING
FACILITY

Tl6/8019, COMINT, FUP

Tl6/8019, FUP

Tl6/8019, FUP

Tl6/8019, FUP

Tl6/8008, SORT

Tl6,8008, SORT

Tl6/8015, GENERAL
PURPOSE PROCEDURES

Tl6/8019, COMINT

Tl6/8019, BACKUP

Tl6/8019, RESTORE

READER'S GUIDE

make a copy of a file (i.e., disc to disc, Tl6/8019, FUP
disc to tape, tape to disc, etc.)

display all or part of the contents of Tl6/8019, FUP
a file

introduce a new disc pack into the system Tl6/8019, PUP
by formatting or labeling the pack, mount
a previously labeled pack

cause further open requests to a file to Tl6/8019, PUP
be rejected

list spare tracks, bad tracks, and free Tl6/8019, PUP
space on a disc volume

copy all files from one volume to another Tl6/8019, PUP
volume

revive the failed device of a mirror Tl6/8019, PUP
volume by copying the image on the up
device to it

list characteristics of i/o devices Tl6/8019, PUP

specify the device where console messages Tl6/8019, PUP
are to be listed

acquire specific knowledge about the Tl6/8000, HARDWARE
Tandem 16 hardware

acquire specific knowledge about the Tl6/8000, OPERATING
Tandem 16 operating system SYSTEM

make the alternate path to a device Tl6/8019, PUP
become the primary path

remove an interprocessor bus from system Tl6/8019, COMINT
use, reinstate an interprocessor bus for
system use

remove (i.e., down) a device from system Tl6/8019, PUP
use. Reinstate a "downed" device for
system use.

select procedures from existing object Tl6/8019, UPDATE
program files to create a new object file

display or modify an object program file Tl6/8019, UPDATE

generate a configured operating system, Tl6/8019, SYSGEN
run the SYSGEN program

AOl i-7

READER'S GUIDE

i-8

acquire a definition of console messages
and processor halts

backup all files in the system on a
regular basis and restore files in the
event files are lost

put a newly-installed system into
operation, install a new operating system,
cold load a system

use and maintain system peripheral devices

install user-written procedures into the
operating system library code area

install user-written i/o drivers or i/o
processes into the system process code
area

program the Tandem 16 at an assembly
language level

AOl

Tl6/8019, MESSAGES

Tl6/8019, SYSTEM
BACKUP/RESTORE
PROCEDURES

Tl6/8019, SYSTEM
LOAD PROCEDURES

Tl6/8019,
PERIPHERAJ~ USER'S
GUIDE

Tl6/8019, SYSGEN

Tl6/8019, SYSGEN

Tl6/8000,
INSTRUCTION SET;
Tl6/8013, TAL

SECTION 1 TABLE OF CONTENTS

INTRODUCTION TO PROGRAMMING THE TANDEM 16

INTRODUCTION TO PROGRAMMING
Program Characteristics.
T /TAL •••••••••••••
Guardian ••••••••••

File Management.

THE

Process Control •••••••••••••
Utility Procedures ••
Checkpointing Facility.

General Purpose Procedures.
Program Development Tools ••

Command Interpreter Program.
Text Editor Program ••••••
T/TAL Compiler Program •••
Cross Reference Program.

TANDEM

Object File Editor Program •..••••
Debugging Facility •••••••

Running the Object Program ••.
Conventions in this Manual.

16.

Reserved Symbols and Syntactic Elements •.
Required Elements •••
Optional Elements .••
Choice of Elements ••
Element Lists •••••••••••.

.1-1
• ••• 1-1

• •• 1-1
• •••• 1-4

.•. 1-4
..... . 1-4

.•. 1-5

. 1-5
. ••. 1-5

.1-7
• •• 1-7

• ••. 1-7
• •••. 1-7

••. 1-7
• .1-8

. 1-9
• ••• 1-9

.•.•.• 1-10
.1-10

. • 1-11
.1-11
.1-11
.1-12

(1) -1

INTRODUCTION TO PROGRAMMING THE TANDEM 16

PROGRAM CHARACTERISTICS

The basic unit of information in the Tandem 16 is the 16-bit word.
The word defines the Tandem 16's machine instruction length and its
logical addressing range.

A Tandem 16 program executing in a processor module consists of 1) a
code area that contains the executable machine instruction codes and
2) a separate data area that contains the program's variables and
buffers. The code area for a given program consists of a maximum of
65,536 words. Likewise, the maximum size of the data area for a given
program is 65,536 words.

PROGRAM AREAS IN MEMORY

CODE DATA
AREA AREA

INSTRUCTION VARIABLES
CODES BUFFERS

NONMODI Fl ABLE, MODI Fl ABLE,
SHARABLE PRIVATE

A code area is comprised of one or more procedures. A procedure is a
block of machine instructions that can be called into execution to
perform some specific task. A procedure {i.e., the block of
instructions that a procedure represents) can be invoked {called)
from any point in the program. When a procedure is called, the
current environment is automatically saved by the hardware; when the
procedure finishes, the previous environment is automatically
restored. The procedure itself executes in an environment separate
from other procedures.

The code part of a program is not modifiable. Therefore, all code is
inherently sharable and reentrant.

T/TAL

Programs for the Tandem 16 are written in Tandem's Transaction
Application Language {T/TAL). T/TAL is a high-level, block
structured, procedure-oriented language designed for ease of
programming and efficient use of the many architectural features of
the Tandem 16 {such as separate code and data).

A typical statement written in T/TAL looks like this:

IF item= taxable THEN payment:= price+ {price* taxrate);

1-1

INTRODUCTION TO PROGRAMMING THE TANDEM 16

The upper case elements are reserved words in T/TAL, the lower
case elements are data variables, := means "is assigned the
value of", and* means multiply.

Some characteristics of T/TAL are:

* Free-form Structure

The free-form structure of T/TAL permits programmers to format
their programs in a manner providing readability and self
documentation.

* Machine Independent

T/TAL programs are written using such high-level constructs as: IF
THEN, WHILE DO, DO UNTIL, CASE, etc. The T/TAL compiler generates
optimum code taking advantage of the Tandem 16's hardware
characteristics.

Features are provided in T/TAL for programmers desiring to
explicitly operate on hardware registers {STACK and STORE
statements} and program at an assembly language level {CODE
statement}.

* Identifiers

*

*

Program elements such as constants, variables, labels, and
procedures are identified throughout a source program by use of
symbolic, programmer-assigned identifiers. This eliminates the
need for a programmer to keep track of specific memory addresses.
An identifier can contain up to 31 alphanumeric characters~

Data types

INT {integer}, INT{32} {double word integer}, STRING {byte), and
FIXED (18-digit fixed point}.

Block {multiple element} Operations

T/TAL provides multiple element operations such as move block,
compare blocks, and scan block.

* Bit Operations

T/TAL provides bit operations such as bit deposit, bit extraction,
and bit shifts.

* Procedures

1.-2

As previously mentioned, a procedure is a block of machine
instructions that exists only once in a program but can be called
into execution from any point in the program. Procedures, as
implemented in the T/TAL language, have special properties that
make them nearly as versatile as complete programs. A program has

INTRODUCTION TO PROGRAMMING THE TANDEM 16

a global data area that is accessible only by statements within
that program; a procedure has its own (local) data area that is
accessible only by statements within that procedure. Unlike the
program's global data area, however, a procedure's local data area
is allocated and initialized only when the procedure executes.
This provides two major benefits: 1) storage is not allocated
except when needed (keeping the total amount of storage required
by a program to a dynamic minimum) and 2) the data area is
initialized when the procedure is entered.

The procedure oriented structure of T/TAL permits the programmer to
separate a complex application program into relatively simple
procedures. When designing a program, the programmer determines
the basic operations to be performed, then writes procedures to
perform each operation. Procedures are generalized in that the
programmer need not be aware of the actual data variables involved
when writing a procedure. Instead, the names of the actual
variables can be passed to a procedure as parameters when the
procedure is invoked.

* Recursive Procedures

Because a procedure has its own local data area and the data area
is initialized each time the procedure is entered, a procedure can
call itself.

* Subprocedures

Subprocedures are similar to procedures in that they can have
their own variables and can be called recursively. However, a
subprocedure is a part of a procedure and therefore can be called
only from the procedure in which it resides.

* Structures

T/TAL provides a feature - the STRUCT declaration - for describing
and accessing a set of related data variables such as the fields of
a file record STRUCT declarations are generated by the Data
Definition Language (DDL) used for data base applications. This
allows you to copy DDL-generated record descriptions into a T/TAL
program.

The STRUCT statement also provides a means for describing and
accessing multi-dimensional arrays.

AOl 1-3

INTRODUCTION TO PROGRAMMING THE TANDEM 16

GUARDIAN

Programs execute in a processor module under control of Tandem's
Guardian Operating System. Some functions that Guardian performs are:
loading a program into the system for execution, bringing absent
memory pages in from disc, and allocating processor module time among
multiple processes. (The term "process" denotes a program running in
a processor module.) This means that the programmer can write a
program as though it will be the only program executing in a processor
module and as though the entire program will always be resident in
memory.

An additional function of Guardian is to continually check the
integrity of the system. Periodically, Guardian in each processor
module transmits an "I'm alive" message to all other processor
modules in the system. Each processor module, in turn, periodically
checks for receipt of an "I'm alive" message from every other
processor module. If Guardian in a processor module finds that a
message has not been received, it first verifies that it can transmit
a message to its own processor module. If it can, it assumes that the
non-transmitting processor module is malfunctioning. If it can't, it
takes action to ensure that its own module does not impair the
operation of other processor modules. In either case, Guardian then
informs system processes and interested application processes of the
failure.

File Management

An important service provided by Guardian is file management. File
management is the means by which application programs perform
input/output operations in the Tandem 16 computer system~ A "file"
can be all or a portion of a disc pack, a non-disc device such as a
terminal or line printer, a process (i.e., running program), or the
operator console. Files are identified by symbolic "file names".
This frees the programmer from needing to know the physical addresses
of i/o devices and permits addition and reconfiguration of input/
output devices without the need to rewrite or recompile programs.

File management operations are performed by calling procedures that
are part of the operating system. All files are accessed through this
same set of procedures thereby providing a single, uniform access
method. Additionally, the file management procedures are designed so
as to mask the peculiarities of various devices.

Process Control

Process control is another important service provided by Guardian.
Through the process control functions, an application process can run
and stop processes in any processor module in the system and can
monitor the operation of any processor module or any process running

1-4 AOl

INTRODUCTION TO PROGRAMMING THE TANDEM 16

in the system. If a module fails or a process stops, or if a failed
module becomes operable, Guardian will notify the application process.
Process control functions are invoked by making calls to operating
system procedures.

Utility Procedures

Utility procedures are provided that convert numbers from internal
machine representation (i.e., binary) to a human readable form, and
provide the current time of day.

Checkpointing Facility

The Checkpointing Facility provides the capability for writing
application programs that can recover from a failure of a procelftfor
module. To use the Checkpointing Facility, an application program
is executed as a process-pair. (A process-~air is the execution of
the same program in two separate processor modules. One member of a
pair is designated the "primary": it performs the work. The other
member is designated the "backup": it monitors the operation of the
primary) •

The Checkpointing Facility is used by a primary member of a pair to
periodically send "checkpoint" information to its backup. The
checkpoint information includes a "picture" of (all or a portion of)
the primary's data area and may include control information regarding
files in use by the primary. For the backup, the Checkpointing
Facility is used to receive and process the checkpoint information and
to monitor the operability of the primary's processor module. In the
event that the primary's processor module fails, the Checkpointing
Facility turns control over to the backup as indicated by the latest
checkpoint.

GENERAL PURPOSE PROCEDURES

The general purpose procedures provide such functions as: expanding
file names from the "external" form used by Tandem-supplied programs
to the "internal" form used by the file system, a general purpose file
management error recovery routine, a routine for reading from the
specially formatted file used by the Tandem-supplied EDIT program.

The general purpose procedures are not strictly a part of Guardian.
Rather, they are supplied in object form and, if one is used, it is
either made part of the operating system's library of procedures (at
system generation time) or made part of the application object program
(via the UPDATE Program - see "Program Development Tools").

1-5

INTRODUCTION TO PROGRAMMING THE TANDEM 16

OPERATING SYSTEM SERVICES

FILE MANAGEMENT PROCEDURES
PROVIDE:

- INPUT/OUTPUT BETWEEN AN
APl'LICATION Pl'°GRAM AND
1/0 DEVICES AND OTHER
l'ROGRAMI

- ACCEU TO DEVICES VIA
SYMBOLIC FILE NAMES

- DISC FILE Ul'DATE AND
LOCKING

L ___ _

1-6

GENERAL
PURPOSE

PROCEDURES

PROCESS
CONTROL

PROCEDURES

PROCESS CONTROL
PROCEDURES PROVIDE
THE CAPABILITY TO:

- RUN AND STOP
PROGRAMS

- MONITOR PROCESSOR
MODULE FAILURES

- CHANGE EXECUTION
PRIORITY

- HOME TERMINAL NO.

UTILITY
PROCEDURES

UTILITY PROCEDURES
PROVIDE:

- DERUG

- NUMBER CONVERSION

- TIMESTAMP

CHECKPOINTINJ
FACILITY

PROCEDURES

CHEC~:POINTING FACILITY
PROVIDES:

- CHECKPOINTING OF
ENVIRONMENT TO BACKUP

- MOl"llTORING OF PRIMARY

- ORDERLY TAKEOVER BY
BACKUP

_J

INTRODUCTION TO PROGRAMMING THE TANDEM 16

PROGRAM DEVELOPMENT TOOLS

Five Tandem-supplied programs are provided that aid in program
development:

* COMINT - the Command Interpreter,

* EDIT - the text editor:

* TAL - the T/TAL language compiler,

* XREF - the T/TAL cross reference generator, and

* UPDATE - the object file editor.

Additionally, DEBUG, the interactive debugging facility is provided.

Command Interpreter Program

The Command Interpreter (COMINT) is a program that is used
interactively to run programs, check system status, create and delete
disc files, and alter system hardware states. An important fe~ture of
the Command Interpreter is its ability to pass user specified
parameter information to a program at run time (see Running the Object
Program, below).

Text Editor Program

The text editor program (EDIT) is used to initially prepare source
programs (written in T/TAL). The text editor is an interactive
program that allows the programmer to enter and make changes to the
source program through an interactive terminal. Text entered through
the text editor is stored in a file on disc under a name given by the
programmer. This name also specifies the source program to the T/TAL
compiler and is used later if the programmer wishes to "edit" the
file.

T/TAL Compiler Program

The T/TAL compiler program (TAL) reads source statements from one or
more files and compiles the statements into a ready-to-run object
program. Like the source program file, the object program file is
given a name. The object program name is used to run or modify the
program. As a by-product of the compilation, a completely annotated
listing of the source program is provided. Certain listing options
provide the machine instruction code generated and a map of all the
identifiers used in the program.

Cross Reference Program

The cross reference program (XREF) reads T/TAL source programs and
provides a listing showing where each identifier in a program is used.

1-7

INTRODUCTION TO PROGRAMMING THE TANDEM 16

Object File Editor Program

rrhe object file editor (UPDATE) provides the capability to create new
object program files from procedures existing in previously compiled
object program files. Additionally, UPDATE can be used to display
and modify the content~ of existing object program files~

PROGRAM DEVELOPMENT

1-8

PROGRAM DEVELOPMENT USING THE INTERACTIVE

COMMAND INTERPRETER

/ - - - - ~9~~;~00 TIEDIT

\

" "

• ADD
1 INT A. B, C; ! DATA DECLARATIONS

NAME THE NEW FILE: MYSOURCE
2 PROC MAINPROC MAIN,

BEGIN

105 END; ' OF MAINPROC
106 II

• EXIT

\

' ---. TAL/IN MYSOURCE, OUT $LPIMYOBJECT

\

/

' ----"
+

/" - - - : RUN MYOBJECTllN $TERM1, OUT $TERM1/
...__ __ _,_ __ _/

'
PARAMETERS SENT BY

THE COMMAND INTERPRETER
TOMYOBJECT

COMPILER
LISTING ON

l.INE

-->

INTRODUCTION TO PROGRAMMING THE TANDEM 16

PROGRAM DEVELOPMENT (cont'd)

UPDATE PROGRAM FOR EDITING
OBJECT PROGRAMS

I

+ ,,..-- --- : UPDATE/OUT $LP/MYOBJECT
I · T9602AOO T /UPDATE

I
I
\
'----,

· FILE SUBSYSLB
·ADD
· BUILD NEWOBJ
· EXIT

\
I
I
I
I
I

,,. - - - - : RUN NEWOBJ ·
I

Debugging Facility

OLD OBJECT
FILE ON

DISC:

The debugging facility (DEBUG), which is an integral part of the
operating system, enables a programmer to isolate problems in an
application program. Programs are debugged through an interactive
terminal while running: breakpoints can be set and the values
contained in variables can be displayed or modified.

RUNNING THE OBJECT PROGRAM

Programs are run in a Tandem 16 processor module when either the
Command Interpreter RUN command is given, the process control
NEWPROCESS procedure is called, or, if so specified, when a processor
module is loaded and initialized.

To run a program using the Command Interpreter, the file name of the
object program is given, and optionally, the priority to be assigned
to the new process, the number of data pages required, the processor
module where the program is to run, the input and output files, and a
program-dependent parameter string to be passed to the new process.

For example, to run an application program called "myprog", the
following run command might be given:

1-9

INTRODUCTION TO PROGRAMMING THE TANDEM 16

RUN myprog

During application process execution, certain abnormal conditions may
occur. If this happens, a "trap" occurs. A trap causes the
application process to enter either the debug state or, if one is
specified, a trap handling mechanism in the application process. A
trap is caused by any of the following conditions:

* An illegal memory address reference

* An illegal instruction specification

* An arithmetic overflow

* A memory Sta.ck overflow

* A memory manager (i.e., virtual memory) read error

* A non-availability of memory for overlay

* An uncorrectable memory error

* A map parity error

CONVENTIONS IN THIS MANUAL

Reserved Symbols and Syntactic Elements

Reserved symbols in T/TAL and calls to operating system procedures are
shown in upper case. Syntactic entities are shown in lower case,
surrounded by less-than and greater-than symbols< .•. >:

IF <conditional expression> THEN <statement> ELSE <statement>

IF, THEN, and ELSE are reserved symbols: <conditional
expression> and <statement> are syntactic entities~

If a less-than or a greater-than symbol is required in the syntax, it
i s s u r r o und ed by quot at ions mar ks - 11 < " •.• 11 > 11

:

<a>. "< 11 : <c> 11 >"

here the 11 <" and 11 >" are required in the syntax. If <a> is an
alphabetic character and and <c> are digits, the following
could be written

Z.<10:15>

Identifiers used in examples are shown in lower case, and when
referenced in text are also surrounded by quotation marks " .•. 11

•

1-10

INTRODUCTION TO PROGRAMMING THE TANDEM 16

Required Elements

Underlined elements are required:

<d> <e> [<f>

these elements are required.

Optional Elements

Elements that are surrounded by brackets [••••] are optional:

<d> <e> [<f>] ;

this element is optional.

If a left or right bracket is required in the syntax, it is
surrounded by quotations marks - "[" •.• "] ":

<g> "[" <h> "]"

here the"[" and"]" are required in the syntax. If <g> is an
alphabetic character and <h> is a digit, the following could be
written

z [10]

Choice of Elements

Required elements where a choice is involved are surrounded by braces:

{ <h> }
{ <i> }
{ <j> }
{ <k> }

means choose one from the list.

Optional elements where a choice is involved are surrounded by
brackets:

<l>
<m>
<n>
<o>

means choose none or one from the list.

1-11

INTRODUCTION TO PROGRAMMING THE TANDEM 16

Element Lists

Where a list of like elements can be written, the syntactic element is
followed by a "separator" symbol and an ellipsis consisting o:E three
periods:

<p> a "blank" is the separator

<q> ' a "comma" is the separator

<r> a "semicolon" is the separator

Each element of a list is separated from the other by the designated
separator symbol. If the list is composed of none or one elements,
the separator symbol is not used. The separator symbol does not
follow the last element in the list.

For example, for

<q> ' ...

where <q> is a digit, the following list could be written

1,2,3,4,5,6,7,8,9

If a list is formed of repeated groups of elements, the group that is
repeated is surrounded by braces"{ ... }"; following the right brace is
the separator symbol followed by three periods.

For example, for

{ <q> <s>

where <q> is a digit and <s> is an alphabetic character, the following
list could be written

1 A; 2 B; 3 C; 4 D; 5 E; 6 F; 7 G; 8 H

If the entire list is optional, it is shown in the form

[<t> . • •]

or

{ <u> <v> } . • .]

with the applicable separator symbol.

1-12

T/TAL

SECTION 2 TABLE OF CONTENTS

THE T/TAL PROGRAM ••••••••
Declarations.
Expressions •••••••••
Statements •••••••••
Program Organization ••

.2.1-1
.2.1-1
.2.1-4

Global Declarations •••
Procedure Declarations ••

Comments ••••••••
Example Program.

DATA FORMATS ••
Bi ts •••
Words.
Bytes ••
Doublewords ••••••••
Quadruplewords.

NUMBER REPRESENTATION •••
Single Word Integer.
Double word Integer ••
Byte
Four-word Fixed Point •••.

OBJECT
Code
Data

PROGRAM
Area ••
Area.

CHARACTERISTICS.

. . .

.

.

ADDRESSING MODES •••••••••••••••••
Direct and Indirect Addressing.
Element Indexing •••••.••••••••••

IDENTIFIERS ••.•••••
Reserved Symbols ••

CONSTANTS •••.••••••••
Integer Constants ••
Doubleword Integer Constants •.•••••.
String Constants.
Fixed Constants ••
Constant Lists ••••••••••••••••••••
Repetition Factors ••

DATA DECLARATIONS .••
Data Types ••....
Initialization ••••.••
Address Equivalencing.

Decl~ring Simple Variables ••.
Initializing Simple Variables •.

Declaring Array Variables •••••••
Direct Versus Indirect Arrays.
Direct Arrays.
Indirect Arrays •••••••.

AOl

••• 2.1-6
.2.1-10
.2.1-12

• ••• 2.1-12
•• 2.1-18

•••••• 2.1-18

.2.2-1

.2.2-2

.2.2-2

.2.2-3

.2.2-4

.2.2-5

•• 2.3-1
.2.3-1
.2.3-2
.2.3-2
.2.3-2

• •• 2.4-1
.2.4-2
.2.4-2

.2.5-1

.2.5-1

.2.5-3

. ·2. 6-1
• .••••• 2.6-3

. 2.7-1
.2.7-1

..2.7-2
.2.7-3
.2.7-3
.2.7-4

• .•••• 2.7-5

. 2.8-1
.2.8-1
.2.8-2

• •• 2.8-2
• ••• 2.8-3

. 2.8-4
•• 2.8-7
..2.8-9

••• 2.8-9
• •••••• 2.8-12

(2) -1

SECTION 2 TABLE OF CONTENTS

(2)-2

Declaring Array Variables (cont'd)
Base Address •.••.•••••••
Initializing Arrays •••••.

Declaring Read-Only Arrays.
Declaring Pointer Variables.

Initializing Pointer Variables.
Dynamic Initialization of Pointer Variables.
Arithmetic with Pointer Variables ••••••••.••.
Making a STRING Pointer Point to a Word Variable.
Making a Word Pointer Point to a String Variable.

Declaring Equivalenced Variables.
Address Assignments.

Global Variables .•..
Local Variables .•...
Sublocal Variables.

LITERAL DECLARATION.

DEFINE DECLARATION.
Parametric Form ..

PROCEDURE DECLARATION.
Procedure Heading ..

<type>•..
<name> .•.••..
<attributes>

Procedure Body.
Forward and External ..

Procedure Parameters
<formal parameter names>.
<parameter specifications>
Parameter Area•.......

•• 2.8-14
• ..•• 2.8-16

.2.8-20

.2.8-21

.2.8-22
.•• 2.8-25
• 2.8-25

..2.8-26

..2.8-27
.2.8-28
.2.8-34
.2.8-34
.2.8-36
.2.8-38

.2.10-1
. 2.10-4

.2.11-·l
. 2.11-·4

. 2.11-6
.. .• 2.11-6
. .. 2.11-6
. .. 2.11-8

.2.11-9
.2.11-11

. .. 2.11-11
.2.11-11

. ... 2.11-13
FIXED Va 1 u e Pa r am et er s: • • 2 •
FIXED Reference Parameters ... 2.

INT, INT(32), STRING, and
INT, INT(32), STRING, and
<type> PROC Value Parameters.

11-14
11-15

SUBPROCEDURE DECLARATION.
Subprocedure Heading ..

<type> •.............
<name> •............
<formal parameters> ..
<parameter specifications>.

Subprocedure Body

ENTRY DECLARATION.

BIT FUNCTIONS
Bit Extraction.
Bit Deposit.
Bit Shift

•••••e•••••••••••••••••·••2.ll-18

. .2.12-1

..2.12-3

..2.12-4
.2.12-·5
.2.12-5
.2.12-5

..2.12-·7

.2.13-1

.2.14-1
. .. 2.14-2

•••••••it••2.14-4
. .2.14-5

SECTION 2 TABLE OF CONTENTS

EXPRESSIONS.......................... • •••••••• 2.15-1
Ar i t hm et i c Ex pr es s i on s • 2 • 1 5 - 3

Primary •• 2 .15-4
Arithmetic Operators.... •••••• • ••••••••••••• 2.15-4

Signed Arithmetic................ • •••••••••••••••• 2.15-5
Unsigned Arithmetic •••••••••••••••••••••••••••••••••• 2.15-6
Logical Operations ••••••••••••••••••••••••••••••••••• 2.15-7

Precedence of Operators •••••••••••••••••••••••••••••••• 2.15-8
How String Elements are Treated in Expressions ••••••••• 2.15-9
How Fixed Operands are Scaled in Expressions ••••••••••• 2.15-9
How Function Procedures are used in Expressions ••••••• 2.15-11

Arithmetic Expressions: assignment form ••••••••••••••••• 2.15-12
Arithmetic Expressions: IF THEN Form •••••••••••••••••••• 2.15-13
Arithmetic Expressions: CASE Form............ • •••• 2.15-14
Conditional Expressions..................... • •••• 2.15-16

How Conditional Expressions are Evaluated ••••••••••••• 2.15-17
Conditions •• 2.15-17
Conditional Operators........... • •• 2.15-19
Precedence of Operators............ • •••••• 2.15-20
Using Conditional Expressions ••••••••••••••••••••••••• 2.15-21

Comparing Arrays •• 2.15-23
Using <next address> •••••••••••••••••••••••••••••••••• 2.15-25
Checking Condition Code ••••••••••••••••••••••••••••••• 2.15-25

DATA ACCESS CONCEPTS ••••••••••••••••••••••••••••••••••••••• 2.16-1
Accessing Variables •••••••••••••••••••••••••••••••••••••• 2.16-2

Simple Variables without Index ••••••••••••••••••••••••• 2.16-2
Array Variables without Index........ . •••••••••• 2.16-3
Pointer Variables without Index •••••••••••••••••••.•••• 2.16-4
Equivalenced Variables without Index......... • ••••• 2.16-4
Use of Index ••••••••••••••••••••••••••••••••.•••••••••• 2.16-5
Array Variables with Index ••••••••••••••••••••••••••••• 2.16-6
Pointer Variables with Index ••••••••••••••••••••••••••• 2.16-7
Simple Variables with Index •••••••••••••••••••••••••••• 2.16-8
Equivalenced Variables with Index •••••••••••••••••••••• 2.16-8

Symbol for Removing Indirection ••••••••••••••••••••••••• 2.16-11
Symbol for Specifying Indirection •.••••••••••••••••••••• 2.16-13
Procedure/Subprocedure Parameters ••••••••.•••••••••••••• 2.16-14

Value Parameters •••••••••••••••••••••••••••••••••• 2.16-14
Reference Parameters •• .2.16-16

T/TAL STATEMENTS................................. • •• 2.17-1
Use of Semicolon to Terminate Statements... ..2.17-2
Assignment Statement..................... ..2.17-3

Assigning Int Values to String Variables ••••••••••••••• 2.17-4
Fixed Point Scaling in an Assignment Statement ••••••••• 2.17-4

Compound Statement •••••••••••••••••••••••• ~ •••••••••••••• 2.17-6
GOTO Statement.. ••••• ••••••••••• • •••••• 2.17-7
IF Statement ••••••
CASE Statement ••••
FOR Statement •••••
WHILE Statement ••
DO Statement ••••••••

......... .. 2 .. 17-9
..2.17-12

. 2.17-.14
. •••• 2.17-17

• ••••••••• 2.17-19

(2)-3

SECTION 2 TABLE OF CONTENTS

(2) -4

T/TAL STATEMENTS (cont'd)
Move Statement •••••••••••••••

Using Concatenating Moves.
Scan Statement ••••
CALL Statement •••••••••••••••••••••
RETURN Statement ••

STANDARD FUNCTIONS •••••••••
Type Transfer Functions ••

$INT ••
$HIGH.
$DBLL ••
$DBL ••
$UDB L ••••••
$COMP.
$ABS •••
$!FIX.
$LFI X ••
$DFIX ••••••
$FI XI ••
$FI XL ••••••
$FI XD •••

Character Test Functions.
$ALPHA •••
$NUMERIC ••.•••
$SPEC !AL •••••

Min/Max Functions.
$MIN • ••••••.•••••
$MAX ••••••••••••••

Carry and Overflow Test Functions.
$CARRY •••••••••••••••
$OVERFLOW ••••••••••••

Fixed Point Scale and Point Functions ••
$SCALE ••••••••••
$POINT •••••.•••••.•••.

COMPILER CONTROL COMMANDS.
Command Options •••••••••

Page Command Option •••
Listing Command Options.
Errors Command Option .•••
Section Command Option ••••
Datapages Command Option.
Pep Command Option ••••••••
Fixed Point Rounding Control
Assertion Command Option.

Source Command ••••••••
Toggle Commands.

Command

RUNNING THE
Disc File

RUNNING THE

T/TAL
Space
CROSS

COMPILER PROGRAM ••••••
used By The Compiler.
REFERENCE PROGRAM •••••

A03

Option.

.2.17-20
• •••..•• 2.17-24

• •••••••• 2.17-25
, .•• 2.17-29

..2.17-31

•••••••1••••2.18-1
.2.18-2

• •• 2.18-4
.2.18-4

•• 2.18-4
• •• 2.18-5

• 2.18-5
..2.18-6

• 2.18-6
• •• 2.18-6
•• 2.18-6

• •••••• 2.18-6
• .2.18-7

• •••••••• 2.18-7
•• 2.18-7

• ••• 2.18-8
..2.18-9

• ••• 2.18-9
• • 2.18-9

• ••••••• 2.18-10
• • 2 .18-·10

•••• 2.18-11
..2.18-12

. ••• 2.18-12
• 2.18-12

• •• 2.18-13
•• 2.18-14

. .•• 2.18-14

......... 2.19-1
. 2.19-3

•• 2.19-3
.2.19-3

..2.19-4

..2.19-5
• ••..••• 2.19-5

. 2.19-6
, .••• 2.19-6

.• 2.19-7

..2.19-7
• ..•••• 2.19-8

..2.20-1

..2.20-2
•• 2.20-3

SECTION 2 TABLE OF CONTENTS

READING THE COMPILER LISTING •.
Page Heading (?PAGE) •••••••.
Compiler Heading ••••.•..••••
Sequence Numbers and Source Program
Secondary Global Storage ••••••••••••
Code Address •••••••.••••••••
Lexical Level ••••••
Begin/End Counter ••
Map (?MAP) ••••
Codes (?CODE) ••••••
Procedure Map (?LMAP)
Completion Message.

ADVANCED FEATURES •••.•••••••••••••••••

Lines.

. . .

•••.•• 2.21-1
..2.21-1
.2.21-1
.2.21-1

.••.•• 2.21-2
..2.21-2

. •• 2.21-3
• •. 2.21-4

.2.21-5
.•• 2.21-5

. ••••••• 2.21-6
.2.21-8

. 2.22-1
..2.22-2 Base Address Equivalencing ••••••••••

Procedures: Advanced <attributes> ••
<attribute> VARIABLE ••

..................... 2.22-4

<attribute> CALLABLE ••
<attribute> PRIV •.•..••
<attribute> INTERRUPT.

. 2.22-6
• •••••••••• 2.22-10

• •••••.. 2.22-10
• •• 2.22-10

VARIABLE.. .2.22-11 Subprocedures: <attribute>
Symbol For Removing Indirection:
Label Declaration ..•••
Advanced Statements •••••••••••

Labels and Procedures •• 2.22-13
.• 2.22-13

CODE Statement •••••.
Tandem 16 Instruction Set Mnemonics.

USE and DROP Statements.
STACK
STORE

Statement .•••••••••••••••••••.•••
Statement ••••••••••••••••••••••••

• ••••• 2.22-15
. •••• 2.22-16

. .••••• 2.22-17
• ••••..•• 2.22-26

.2.22-28

FOR Statement: Advanced
Standard
Compiler
Compiler

Functions:
Feature and Precautions.

$RP and $SWITCHES ••••

.2.22-29
. .• 2.22-30

•• 2.22-31
.2.22-32 Control Commands:

Control Commands:

STRUCTURES ••••••••••
Structure heading.

Name •••••••••••••
lower bound: upper bound.
Definition Form ••••
Referral Form •.••.
(*) Template Form ••

Structure Body •••••.
Variable Declarations.

?RP and ?DECS ••
?RP and ?DECS.

STRUCT Substructure Declaration.
FILLER Constant Expression ••
Redefinitions ••••••••••••••••

Accessing Structured Data ••••
Qualification ••.••••.•.•••••

Structure Pointer Declaration.
Ex ample s ••••••••••••••••••••••

Storage Allocation for Structures.
Multi-Dimensional Arrays ••••••••••
Passing Structures as Parameters ••
Additional Examples ••••••••••••••

AOl

.•••••• 2.22-32

.2.23-1
• ••••.•• 2.23-4

••• 2.23-4
• •••• 2.23-5

• •• 2.23-5
• •• 2.23-5

.2.23-6
. 2.23-7

.2.23-8
..2.23-9

• •••• 2.23-9
.2.23-10
.2.23-11

..2.23-11

..2.23-12
• ••• 2.23-13

..2.23-12

..2.23-16

..2.23-20
.2.23-21

(2)-5

SECTION 2 TABLE OF CONTENTS

(2)-6

Standard Functions for Structures•......... 2. 23-23
Compiler listing for Structures~ •...••..............•..• 2.23-25

FLOATING-POINT DATA ... 2. 24-1
Floating-Point Variables•....•........•••••..... 2.24-1

Internal Format of <type> REAL Data•.•••.•....•.•.. 2.24-1
Extended Floating-Point Variables ...•....•..•.•.•.•...•.• 2. 24-2

Internal Format of <type> REAL(64) Data ...••.......•... 2.24-2
REAL Constants••....•.•..••••.••.••..........••••••.. 2.24-3
REAL(64) Constants •...•............•.•••.•..•..•.••.••..• 2.24-3
Initializing Floating-Point variables ••.•••••...••.••..•• 2.24-3
Equivalencing Floating-Point Variables•...... 2.24-4
Floating-Point Quantities•............•.....•...••. 2.24-4
Floating-Point Type Transfer Functions ..•..........•..... 2.24-5

Conversion Considerations•.•...•..•..••...•.•. 2.24-6

A02

THE T/TAL PROGRAM

A T/TAL source program contains three basic elements:

"declarations",

"expressions", and

"statements".

DECLARATIONS

A declaration defines the use of an identifier. A declaration
consists of:

* An identifier.
* A "class"
* An initialization value (optional in many cases).
* A terminating semicolon ":".

An "identifier" is a symbolic name, assigned by a programmer, that
identifies an element used in a program. All identifiers must be
defined before they can be used elsewhere in a program. An identifier
consists of a maximum of 31 alphabetical and/or numerical characters.
Circumflex symbols "A" can be included as part of an identifier.

i

is an identifier.

compute"'number

is also an identifier. Here the circumflex symbol makes a
single identifier appears as two words.

The "class" of an identifier defines the meaning that the identifier
has when it is used elsewhere in the program. The classes are:

class

data variable

LITERAL

DEFINE

LABEL

PROC

SUBPROC

ENTRY

STRUCT

meaning

= one or more contiguous memory locations

= a constant numerical value

= a block of source text

= a program location

= a procedure

= a subprocedure

= a secondary entry point into a procedure or
subprocedure

= a data variable grouping (see section 2.23)

AOl 2.1-1

THE T/TAL PROGRAM

A "data variable" is a word or group of words in memory from which
values can be fetched and results of computations stored.. Associated
with a data variable is a data <type>. The <type> of a variable
determines the hardware instructions (i.e., single word, double word,
byte, etc.) that the compiler will emit when a variable :is referenced
in the source program. The <types> associated with data variables
are:

INT
IN'I' (32)
STRING

description

16-bit word
32-bit doubleword
8-bit byte

FIXE~ [(<fpoint>) 64-bit quadrupleword

The class data variable is further defined as:

"simple" - contains one element of a specified data <type>. A
simple variable is used to store a one element item
such as the result of a calculation

"array" - contains multiple elements of a specified data <type>.
An array variable is used to store a multiple element
item such as a string of characters

"pointer" - contains the address of another data variable.
Referencing a pointer accesses the variable whose
address is contained in the pointer. The variable is
treated as the data <type> declared for the pointer.
A pointer is typically used when it is desirable to
use a single identifier to access many different data
variables during the execution of a program

Some examples of declarations:

To define an identifier as a simple (one element) variable having a
data type of INT (16-bit word), the following declaration could be
written in a source program:

INT number;

defines "number" to be a <type> INT variable and allocates one
word of memory for the variable "number":

"number" = I (one word) -----

To define an identifier as an array of variables having a data type of
STRING (8-bit byte) consisting of ten elements, the following
declaration could be written:

2.1-2 AOl

THE T/TAL PROGRAM

STRING bytes[0:9]:

"[0:9]" defines the length and the first and last elements of
the array "bytes" and allocates five words of memory for the
variable "bytes".

"bytes" = I· I (ten bytes)
-~0---:-1--=2--=3---..4--=5---=6~-=7,__~8~__,,,9~ = element

To define an identifier as a pointer variable having a data type of
STRING, the following declaration could be written:

STRING .spointer:

"." indicates that the contents of the variable "spointer" are
to be used as the indirect address of another, as yet
unspecified, variable. (A pointer variable must be initialized
with the address of another variable before its use has any
meaning.) One word is allocated for a pointer variable.

".spointer" = I (one word) -----
Data variables can be given initial values when declared. This is
accomplished by following the name of the variable with the symbol
":=" (the assignment operator) followed by the initializing value.

Some examples:

INT count := l:

assigns the initial value of 1 to the variable "count".

"count" = 1

STRING buffer[0:9] :="ENTER NAME":

assigns the initial value "ENTER NAME" to the array variable
"buffer".

"buffer" =

STRING .sp := @bytes:

assigns the address of the array "bytes" to the pointer "sp".
Preceding the name of a variable with a commercial at symbol "@"
obtains the address of that variable.

The LITERAL declaration is used to associate a 16-bit value with an
identifier:

2.1-3

THE T/TAL PROGRAM

LITERAL minute = 60;

The identifier "minute" has the value 60 when used in the
program.

A procedure declaration assigns an identifier to a procedure:

PROC computeAvalue;
BEGIN

END;

Using the identifier "computeAvalue" elsewhere in the program
causes the procedure to be executed.

EXPRESSIONS

There are two kinds of <expressions> used in T/TAL

<arithmetic expressions> and <conditional expressions>

An <arithmetic expression> is a rule (i.e., formula) for computing a
numeric value. An <arithmetic expression> consists of one or more
operands and arithmetic operators:

<operand> <arithmetic operator> <operand> ••.

An operand can be a variable, a part of a variable, a constant, or a
function. (A function is a program element that produces a value of a
specific data <type> when referenced in an expression. The return
value is usually the result of an operation involving one or more
variables.) An arithmetic operator specifies the kind of arithmetic
operation to be performed. The basic <arithmetic operators> are

+ addition
subtraction

* multiplication
I division

Some examples of arithmetic expressions:

£!.Eression description

number + 2 the contents of the variable "number" plus 2

4 * 3 - 2 four times three minus two.

20/4 twenty divided by four.

The language permits arithmetic operations on any data type, but does
not permit operands having different data types to be mixed in the

2.1-4

THE T/TAL PROGRAM

same expression. There are, however, a number of standard functions
for treating an operand of one data type as another data type.

A <conditional expression> is a rule for establishing the relationship
between two operands. Th~ result of a conditional expression is
either a true or a false state. The result is used to control the
flow of program execution.

A <conditional expression> is made up of one or more "conditions". A
condition is:

<left operand> <relational operator> <right operand>

An operand may be a variable (including arrays), a constant, or a
function. The relational operator defines the relationship between
the two operands that will produce a true state. The basic
<relational operators> are:

= the values of the operands are equal
< the value of the left operand is less than that of the

right operand
> the value of the left operand is greater than that of the

right operand
<= the value of the left operand is less than or equal to that

of the right operand
>= the value of the left operand is greater than or equal to

that of the right operand
<> the values of the operands are not equal

A condition is tested for a false state rather than a tru~ state if it
is preceded by the "NOT" operator. Several conditions can be combined
into one expression using the "AND" and "OR" operators. The use of
the AND operator means that the adjacent conditions must both be true
for the expression to be true; the use of the OR operator means that
either adjacent condition can be true.

There is also a form of "condition" that tests a single operand for a
true (i.e., non-zero) state and another form that tests the state of
certain hardware indicators.

Some examples of conditional expressions:

expression

a < b

a

a AND b

NOT a OR b

description

the expression is true if "a" is less than "b"

the expression is true if "a" has a nonzero value.

the expression is true if both "a" and "b" have
nonzero values.

the expression is true if "a" has a value of zero or
"b" has a nonzero value.

2.1-5

THE T/TAL PROGRAM

STATEMENTS

A T/TAL <statement> is an order to perform some action. A statement
consists of:

*

*

*

*

a reserved symbol (i.e., a word or group of special characters)
that identifies the action to be performed.

One or more identifiers indicating program elements that are to be
used or that are affected when the statement is executed.

In many cases, an <arithmetic expression>.

In many cases, a <conditional expression>.

The T/TAL statements are:

assignment
compound

GOTO

IF

CASE

FOR

WHILE

DO

move

SCAN
CALL
RETURN

stores a value into a variable
groups multiple statements together so that they
will be executed as a block of statements
directs the flow of program execution to a labeled
statement
causes a statement to be executed if a specified
condition is true
selects one of a set of statements to be executed
depending on the value of an expression
repeatedly executes the same statement a specified
number of times
repeatedly executes the same statement while a
specified condition is true
repeatedly executes the same statement until a
specified condition becomes true
moves a block of elements from one location to
another
scans a block of elements for a specified character
invokes a procedure or subprocedure
returns to the caller from a procedure or
subprocedure

Some examples of T/TAL statements:

The assignment statement is used to store a value into a data
variable:

number : = 99;

":=" is the symbol identifying the assignment statement. In
this case, the value 99 is stored in the data variable "number".

"number" = 99

number := finish * 2 - start;

2.1-6

THE T/TAL PROGRAM

"finish * 2 - start" is an <arithmetic expression>. The value
represented by the identifier "finish" is multiplied by two, the
value represented by the identifier "start" is then subtracted.
The result is stored in the data variable "number".

"number" = 99 }
}
}

"finish" = 32 } before
}
}

"start" = 10 }

"number" = 54 } after

The "compound statement" is used to group a number of T/TAL statements
together to be treated as if they formed a single statement:

BEGIN
<statement>;
<statement>;

END;

The BEGIN-END pair brackets the <statements> to form a single
statement known as a compound statement.

A GOTO statement is used to direct the flow of program execution to
another point in a program:

GOTO next;

next: a := l;

GOTO is the symbol identifying the GOTO statement. "next" is
called a <label> and identifies a <statement> elsewhere in the
program.

The IF statement uses a <conditional expression> to control the flow
of program execution:

IF a = b THEN GOTO next;

"a= b" is a <conditional expression>. "IF •• THEN" are symbols
identifying an IF statement. In this case, IF the value
represented by the identifier "a" is equal to the value of the
identifier "b" the conditional expression is true and the GOTO

2.1-7

THE T/TAL PROGRAM

statement is executed. If "a" did not equal "b" th1e next
statement in the program would be executed (the GOTO statement
would be bypassed) .

There are other statements that use <conditional expressions> to
control the flow of program execution. For example, the WHILE
statement forms a program loop:

WHILE a < 10 DO
BEGIN

n := n - a;
a := a + l;

END;

The statements in the <compound statement> formed by the
BEGIN-END pair are executed until the value of "a" equals 10.

The DO statement also forms a program loop:

DO
BEGIN

END
UNTIL b > a;

The compound statement is executed until the value of the
identifier "b" is greater than the value represented by "a".

The FOR statement is used to repeatedly execute the same statement
a specified number of times:

FOR index : = 0 TO 12 BY 1 DO a r ray [index] : = " " ;

2.1-8

The data variable "index" is referred to as the "step" variable
and is assigned the initial value 0. The value "12" is referred
to as the "limit" value.

At the beginning of the FOR loop, the step variable "index" is
tested to see if it exceeds the "limit" value (12 in this case).
If the step variable is less than or equal to the limit value,
the statement following DO (i.e., the assignment statement) is
executed. If the step variable "index" exceeds the limit value
12, FOR statement execution is completed and the next statement
in the program is executed.

At the end of the FOR loop, after the assignment statement is
executed, 1 is added to the contents of the step variable
"index". Program execution returns to the beginning of the FOR
loop where the new value of "index" is compared with limit value
12. If "index" is less than or equal to 12, the assignment
statement is executed again (using the new value of "index").
When "index" exceeds 12, the next statement in the program is
e:xecuted.

AOl

THE T/TAL PROGRAM

The move statement is used to move a block of data from one array
to another:

outbuffer ':=' inbuffer FOR 72:

"':='" is one of the symbols identifying a move statement. In
this example, 72 elements of an array "inbuffer" are moved into
an array "outbuffer".

The scan statement is used to search an array for a particular
character:

SCAN inbuffer UNTIL " " -> @nonblank:

scans the array "inbuffer" until an ASCII blank character is
encountered. When a blank character is encountered, its address
is put into the address pointer "nonblank" and the statement
following the SCAN statement is executed.

The CALL statement is used to invoke a procedure or subprocedure:

CALL compute~value:

"compute~value" is an identifier assigned to a procedure. When
"compute~value" completes, the statement following the CALL
statement is executed.

AOl 2.1-9

THE T/TAL PROGRAM

PROGRAM ORGANIZATION

In its most basic form, a T/TAL program is comprised of

"global declarations" and "procedure declarations".

global declaration ! optional.

global declaration

procedure declaration optional.

procedure declaration

MAIN procedure declaration required.

valid global declarations are

- data declaration
- LITERAL declaration
- DEFINE declaration

procedure declaration is

PROC <name> [(<formal parameters>)] [MAIN]

<parameter specifications> ;]

BEGIN

[local declaration

local declaration

subprocedure declaration

subprocedure declaration

<statement>

<statement>

END

2.1-10

THE T/TAL PROGRAM

valid local declarations are

- data declaration
- LITERAL declaration
- DEFINE declaration
- ENTRY declaration

subprocedure declaration is

SUBPROC <name> [(<formal parameters>)]

[<parameter specifications> :]

BEGIN

sublocal declaration

sublocal declaration

<statement>

<statement>

END

valid sublocal declarations are

- data declaration
- LITERAL declaration
- DEFINE declaration
- ENTRY declaration

<statement> is

- assignment
- compound
- GOTO
- IF
- CASE
- FOR
- WHILE
- DO
- move
- [R]SCAN
- CALL
- RETURN

2.1-11

THE T/TAL PROGRAM

Global Declarations

The global declarations assign identifiers to program elements that
are to be referenced throughout the program. The program elements
that can be declared globally are:

- data variables
- LITERALS
- DEFINES

Procedure Declarations

The procedure declarations contain the program's executable parts. A
program may contain many procedures but must contain at least one
procedure. One procedure must be declared as being the "MAIN"
procedure. {The MAIN procedure is the first one executed when the
program is run.)

A procedure declaration consists of a

procedure heading

and a

procedure body.

assigns a name to a procedure
describes the procedure
defines its parameters

may contain local declarations
may contain subprocedures
contains statements {that are compiled into
instruction codes)

A procedure heading is of the general form:

PROC <name> [MAIN]

<name> is the identifier to be assigned to the procedure.
"MAIN" indicates that the procedure is the main procedure.

A procedure body is of the general form:

2.1-12

THE T/TAL PROGRAM

BEGIN

[local declaration

local declaration

subprocedure declaration

subprocedure declaration

<statement>] ;]

<statement>

END

LOCAL DECLARATIONS: The "local declarations" (optional) define
program elements that can be referenced only within the procedure's
body. The purpose of local declarations is to permit each procedure
to have program elements (e.g., variables) that are completely
separate from other procedures. Identifiers declared locally can b~
referenced only by statements within the procedure body (and by
subprocedures within the same procedure body). Local identifiers
cannot be referenced directly by other procedures. (Local identifiers
can be passed as parameters to other procedures however.)

Program elements that can be declared locally are:

- data variables
- LITERALS
- DEFINES
- ENTRY points

An example of a local declaration within a procedure declaration is:

PROC a;
BEGIN

INT b,c,d;

END;

local declaration.

SUBPROCEDURE DECLARATIONS: The "subprocedure declarations" (optional)
define the procedure's subprocedures. A subprocedure declaration
assigns a name to a subprocedure, defines characteristics of the
subprocedure and its parameters, _and contains the statements that are
compiled into instruction codes. Subprocedures are discussed later.

2.1-13

THE T/TAL PROGRAM

STATEMENTS: A procedure is called into execution through use of a
CALL statement. Procedure execution begins with the first statement
of the procedure body. Statements are executed until the "END:" of
the procedure body is encountered. At this point, program execution
returns to the statement following the call to the procedure:

CALL a: --------------
<statement>: <-----

1

PROC a:
BEGIN

INT b,c,d:
I
I
I
I

-----------> <statement>
<statement>

I
I <statement>
------------- END:

first statement.

last statement.

Additional "return" points can be specified in a procedure body
through use of the RETURN statement:

CALL a: --------------
<statement>: <----- I

I
I

PROC a:
BEGTN

INT b,c,d:

-----------> <statement>
<statement>

IF b = c THEN
<- - - - - - - - - RETURN:

IF d = 0 THEN
<- - - - - - - - - RETURN:

<statement>
-------------- END:

first statement.

last statement.

The statements within a procedure can reference identifiers declared
within that procedure as well as identifiers declared globally. This
means that statements within a procedure can call subprocedures
declared in that procedure's body and can call any procedure in the
program. Statements within a given procedure body cannot reference
identifiers declared in other procedures or in subprocedures.

SUBPROCEDURES: Subprocedures are similar to procedures in that they
can be called into execution from statements within the procedure body
and that they have their own (sub) local variables. Like procedures,
subprocedures can be passed parameters and can return results.
Subprocedures, however, have limited sublocal storage capabilities and
cannot be called from other procedures.

A subprocedure is of the general form:

2.1-14

SUBPROC <name>

BEGIN

[sublocal declaration

sublocal declaration

<statement>

[[<statement>
END

THE T/TAL PROGRAM

The "sublocal declarations" {optional) are similar to a procedure's
local declarations; they define program elements that can be
referenced only by statements within the subprocedure body. Program
elements that can be declared sublocally are:

- data declaration
- LITERAL declaration
- DEFINE declaration
- ENTRY declaration

The statements with a subprocedure can reference identifiers declared
within that subprocedure's body, identifiers declared locally in its
procedure (including the procedure's parameters, if any), and
identifiers declared globally. Therefore, statements within a
subprocedure can call subprocedures declared within its procedure and
can call any procedure in the program.

PARAMETERS: Procedures and subprocedures can be passed parameters.
Parameters are defined where a procedure (or subprocedure) is
declared. The general form of a procedure having parameters is:

PROC <name> <formal parameter names>

<parameter specifications>

BEGIN ! procedure body.

END;

The <formal parameter names> assign identifiers to the procedure's
parameters. The <parameter specifications> describe each parameter as
to its data <type> and whether the parameter is passed by "value" or
by "reference" (value and reference are described in section 2.15,
"Procedure Declaration").

For example:

2.1-15

THE T/TAL PROGRAM

PROC a (x , y, z) ;
INT x,y,z;

formal parameter names are between parentheses.
parameter specifications.

BEGIN
INT num;

num := x * y + z;

END;

"x", "y", and "z" are the formal parameter names.

Formal parameters can be thought of as actual variables when writing a
procedure. A formal parameter has meaning only within the body of a
procedure.

When a call to a procedure is written, the programmer substitutes the
names of actual variables in place of the formal parameters.

INT f ,g,h; ! actual variables

CALL a (f, g, h) ;

Invokes the procedure "a". "f", "g", and "h" are the actual
names of variables that are passed to the procedure. Calling
procedure "a" with those actual parameters is equivalent to
writing the statement

num := f * g + h;

except that the instruction codes for procedure "a" exist only
once in the object program.

The same procedure can be called for other sets of variables:

CALL a (3, 4, 5) ;

In this case, constants are substituted for the formal
parameters. This call to procedure "a" is equivalent to writing
the statement

num := 3 * 4 + 5;

FUNCTIONS: A procedure or subprocedure can be declared to be a
function--:- A function returns a value of a specific data <type> when
invoked (a function is invoked when it is referenced in an arithmetic
expression). The general form of a function procedure is:

2.1-16

THE T/TAL PROGRAM

<type> PROC <name> ;

BEGIN procedure body.

RETURN <expression> the return value.

END

The <type> indicates the data <type> of the value that the function
returns when it is invoked. Like a non-function (sub)procedure,
execution begins with the first statement of the (sub)procedure body.
Unlike a non-function (sub)procedure, a function (sub)procedure must
have at least one RETURN statement (it can have more). The RETURN
statement is used to return the value that the function produces {as
well as return to the point where the function was invoked) ;
<expression> is the value to be returned. Functions can also have
pa r am et er s •

An example of a function procedure:

INT PROC computeAvalue;
BEGIN

RETURN 4 * 5;
END;

The procedure name is "computeAvalue". It returns a <type> INT
value when invoked. The return value is a result of the
expression "4 * 5".

The function "computeAvalue" is then invoked by using its name in an
arithmetic expression:

number := computeAvalue + 2;

"computeAvalue" executes when the arithmetic expression
"computeAvalue + 2" is evaluated.

computeAvalue + 2
I A

I { 2 o)
I I INT PROC computeAvalue;
--------!----------------> BEGIN

I
I
------------------- RETURN 4 * 5;

END;

The result of the arithmetic expression "computeAvalue + 2", 22,
is stored in the variable "number".

2.1-17

THE T/TAL PROGRAM

COMMENTS

Textual comments can be freely embedded in source language programs.
A comment begins with an exclamation point

this is a comment.

On a line, all text to the right of an explanation point is treated
as a comment unless the comment is terminated by another exclamation
point

IF a = b THEN ! they are equal ! GOTO finish

causes the compiler to treat the text"! they are equal !"as a
comment; other text on the line is compiled.

Comments are not continued from line to line; each comment in a new
line must begin with an exclamation point.

EXAMPLE: PROGRAM

The following example program is used to show how the basic constructs
of TAL are used to form a complete program. It consists of one
procedure called "main~proc". "mainftproc" is designated a main
procedure, therefore program execution begins with its first
executable statement.

The example program executes as follows:

*

*

*

*

*

*

The home terminal associated with the program's execution is opened

The user is prompted to enter a string into the home terminal

The string is read

The program scans the string for an asterisk "*"· If one is found,
its location in the string is calculated, and a circumflex symbol
is printed directly underneath.

The program repeats indefinitely.

The program is stopped by typing the "break" key on the terminal,
then entering a Command Interpreter "STOP" command.

2.1-18

THE T/TAL PROGRAM

! EXAMPLE PROGRAM

file number of home terminal
sbuffer address of asterisk

INT horneterrn,
left"'side,
nurn"'xferred,
count,
asterisk,
buffer[0:40];

number of bytes transferred by file system
general purpose variable
location of asterisk
input/output buffer

,STRING
.sbuffer :=@buffer '<<' 1, ! string pointer to i/o buffer
blanks[0:71] := 72 * [" "]; ! blanks for initialization

?SOURCE $SYSTEM.SYSTEM.EXTDECS(MYTERM,OPEN,WRITEREAD,WRITE,STOP)
Guardian procedure declarations

PROC rnain"'proc MAIN;

BEGIN

CALL MYTERM(buffer); ! get name of home terminal.
CALL OPEN(buffer, horneterrn); ! open the home terminal.

WHILE 1 DO ! infinite loop
BEGIN

sbuffer ':=' "ENTER STRING"-> ~1eft"'side;
CALL WRITEREAD(horneterrn, buffer, 12, 72, nurn"'xferred);
sbuffer[nurn"'xferred] := O; ! delimit the input
SCAN sbuffer UNTIL "*" -> asterisk; ! scan for asterisk
IF NOT $CARRY THEN ! asterisk found

END;
END;

BEGIN
sbuffer ':=' blanks FOR

(count := asterisk - @sbuffer +
(left"'side - @sbuffer));

sbuffer[count] := ""'";
CALL WRITE(horneterrn, buffer, count+ l);

END;

The example program can be broken down to illustrate the basic
constructs used in T/TAL.

In the example program, the global data declarations are:

INT hornete rm,
left"' side,
n urn"' x fer red ,
count,
asterisk,
buffer [0: 40];

2.1-19

THE T/TAL PROGRAM

STRING
.sbuffer := @buffer '<<' 1,
blanks[0:71] := 72 * [" "];

There is one procedure declaration. It is

PROC rnainAproc MAIN;
BEGIN

END;

There are no local data declarations.

The statements are:

CALL MYTERM(buffer);
CALL OPEN(buffer, hometerm, 0);
WHILE 1 DO

BEGIN
sbuffer ':=' "ENTER STRING" -> leftAside;
CALL WRITEREAD(horneterm, buffer, 12, 72, numAxferred);
s buffer [n urn Ax fer red] : = 0 ;
SCAN sbuffer UNTIL "*" -> asterisk;
IF NOT $CARRY THEN

END;

BEGIN ! compound statement.
sbuffer ':=' blanks FOR

(count := asterisk - @sbuffer +
(leftAside - @sbuffer));

sbuffer[count] := "A";
CALL WRITE(hometerm, buffer, count + 1);

END;

A compound statement is formed by

WHILE 1 DO
BEGIN

sbuf fer

END;

Within the above compound statement, another compound statement is
formed by

IF NOT $CARRY THEN
BEGIN

sbuffer ' . - ' . -

END;

An arithmetic expression used in an assignment statement is

2.1-20

THE T/TAL PROGRAM

(count :=asterisk - @sbuffer + (leftAside - @sbuffer));

The calls to Guardian procedures are

CALL MYTERM(buffer);
CALL OPEN(buffer, horneterm);

CALL WRITEREAD(hometerrn, buffer, 12, 72, numAxferred);

CALL WRITE(hometerrn, buffer, count+ l);

2.1-21

DATA FORMATS

The basic unit of information in the Tandem 16 is the 16-bit word. In
T/TAL, individual access to and operations on single or multiple bits
(bit fields) in a word, 8-bit bytes, 16-bit words, 32-bit
doublewords, and 64-bit quadruplewords are provided.

DATA FORMATS

BASIC ADDRESSABLE UNIT IS A WORD:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I I I I I I I I I I

A WORD CAN CONTAIN

TWO BYTES

0 7 8 15

I I I I

BYTE 0 BYTE 1

TWO WORDS FORM A DOUBLEWORD

0 15 0 15 ____ I_> _l ______ l_[~l __ I _______ I < ~_l _______ l_I

FOUR WORDS FORM A QUADRUPLEWORD (FOR PROCESSOR MODULES WITH DECIMAL ARITHMETIC OPTION)

0 15 0 15 0 15 0 15

--.......I I ___ I U_I ...__[] I lnl I [] I I lITJ~] I I n_I_
'-~~~~~/ '~~~~~/ '-~~-.----~~/

WORDO WORD1 WORD2 WORD3

2.2-1

DATA FORMATS

BITS

The individual bits in a word are numbered from zero (0) through
fifteen (15), from left to right:

1 1 1 1 1 1
word: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

The following notation is used in this manual (and in the T/TAL
language) to describe bit fields:

<identifier>.<left bit:right bit>

For example, to indicate a field starting with bit four and extending
through bit 15 of a variable called "var", the following notation
would be used:

var.<4:15>

Or to indicate just bit 0 (zero), the following is used:

var.<O>

WORDS

The 16-bit word defines the Tandem 16's machine instruction length and
its logical addressing range. The 16-bit word is the basic
addressable unit stored in memory. The first word in logical memory
is addressed as word[O], the last addressable location is
word[65,535].

WORD ADDRESSES
0 15

WORD [OJ 4--- FIRST ELEMENT

[1]

[2]

(3)

(4)

(5)

j
ASCENDING ADDRESSES

(6]

(71

[8]

~

(65.5331

(65.534)

(65.535) +--- LAST ELEMENT

2.2-2

DATA FORMATS

In this manual, a number surrounded by brackets is used to denote an
individual element (i.e., word, doubleword, byte, or quadrupleword) in
a block (i.e., array) of elements:

<identifier>[element]

For example, to indicate the fourth element in an array called
"array", the following notation is used:

array[4]

For purposes of illustration, the following notation is used in this
manual (but not in the T/TAL language) to denote a block of elements:

<identifier>[first element:last element]

For example, to indicate the second through twentieth words in a
block, the following notation is used:

array[2:20]

BYTES

The 16-bit word has the capability to store two bytes. The most
significant byte in a word occupies word.<0:7> (left half); the least
significant byte occupies word.<8:15>.

The 16-bit address provides for element addressing of 65,536 bytes.
Byte locations are addressed starting at byte[O] and extend through
byte[65,535]. Two bytes are stored per word, therefore only the first
32,768 words of logical memory can be addressed on byte boundaries.
The CPU converts a byte address to a word and element address as
shown in the following illustration:

2.2-3

DATA FORMATS

BYTE ADDRESSES

0 7 8 15

(OJ 111

BYTE
(2) [31

(4) [5)

(6) [7)

(8] [9]

(10) I 11 I

[12) ['13)

~~

[65,532) (65.533)

UPPER LIMIT OF [65,534) [65,535)
BYTE ADDRESSING ---+-

L----·-----·-----..J

BYTE ADDRESS TO WORD ADDRESS CONVERSION

0 0 15

WORD (0)

WORD (1)

WORD (2)

WORD (31

WORD (4)

WORD (5]

WORD [6)

WORD [32,766)

WORD [32,767)

___________ __.. ______ ..___I TII I BYTE ADDRESS [0:65,535)

\
\ _BYTE: O=WORD. <0:7>, I =WORD. <8:15,..,

\ \
_I _o_l _________________ I. I l_...__.f woRD ADDRESS 10:32,7671

DOUBLEWORDS

Two 16-bit words can be referenced as a single 32-bit element.
Doubleword elements are addressed on word boundaries, therefore
doubleword addressing is permitted in all 65,536 words of logical
memory.

DOUBLEWORD

A DOUBLEWORD CONSISTS OF ANY TWO CONSECUTIVE MEMORY LOCATIONS:

OOUBLEWORO -(~---------...... = ::::::: -=I-------------·
WORD (7) - - - - -t------------·

)- OOUBLEWORO

2.2-4

DATA FORMATS

QUADRUPLEWORDS

Four 16-bit words can be referenced as a single 64-bit element.
Quadrupleword elements are addressed on word boundaries, therefore
quadrupleword addressing is permitted in all 65,536 words of logical
memory.

QUADRUPLEWORD

A QUADRUPLEWORD CONSISTS OF ANY FOUR CONSECUTIVE MEMORY LOCATIONS

{

WORD (10)

WORD (11)
QUADRUPLE WORD 1-----------

WORD (12)

WORD (13)

2.2-5

NUMBER REPRESENTATION

The Tandem 16 hardware, when performing arithmetic, can treat an
operand as either a signed or unsigned number. Signed numbers are
represented in 16 bits (a word), 32 bits (doubleword), or 64 bits
(quadrupleword). Representation of unsigned numbers is restricted to
8- and 16-bit quantities.

Positive numbers are represented in true binary notation. Negative
numbers are represented in two's complement notation with the sign bit
(word.<0>) of the most significant word set to one. The two's
complement of a number is obtained by inverting each bit position in
the number then. adding a one in word.<15> (with carry propagated
through the word). For example, in 16 bits, the number 2 is
represented:

1 1 1 1 1 1
word: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

And the number -2 is represented

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

The range of numbers that a variable can represent is determined by
the data <type> assigned when the variable is declared. Four types of
data variables are defined in T/TAL: single word integer, double word
integer, byte, and four word fixed point.

SINGLE WORD INTEGER

Single word integer variables are defined as <type> INT. An INT
variable can represent signed integers in the range of

-32,768 to +32,767

or unsigned integers in the range of

0 to +65,535.

Whether an INT is treated as a signed or unsigned value is
determined by the <arithmetic operator> used when a calculation is
performed. Signed arithmetic is indicated by using the basic
operators

+ - * I (add, subtract, multiply, divide)

Unsigned arithmetic is indicated by surrounding an arithmetic
operator with apostrophes

'+' 1_1 I*' I/'

Unsigned arithmetic should be used when performing calculations
involving addresses.

AOl 2.3-1

NUMBER REPRESENTATION

INT variables can also represent the logical FALSE (zero) or TRUE
(nonzero) states.

DOUBLE WORD INTEGER

Double word integer variables are defined as <type> INT(32). An
INT(32) variable can represent signed integers in the range of

-2,147,483,648 to +2,147,483,647

or 9+ digits.

BYTE

Byte variables are defined as <type> STRINGo A STRING variable
represents unsigned values that can be contained in eight bits.
The range of represe~table unsigned numbers is 0 to 255 (decimal).
This of course includes the ASCII character set. STRING variables
can also represent the logical FALSE and TRUE states.

FOUR-WORD FIXED POINT

Four word fixed point variables are defined as <type> FIXED. A
FIXED variable can represent any 19-digit number in the range of

-9,223,372,036,854,775,808 to +9,223,372,036,854,775,B07.

All or part of a FIXED variable, at the programmer's discretion,
can be treated as a fraction. The implied position of the decimal
point is indicated by the (optional) <fpoint> specifier when a
FIXED variable is declared (the word "implied" is used because a
FIXED variable is represented internally as a 64-bit integer):

FIXED (<fpoint>)

where <fpoint> is a number from -19 to +19.

If <fpoint> is a positive value, it indicates the number of implied
fractional digit(s) to the right of the decimal point. For
example, an <fpoint> of "3":

FIXED (3)

represents numbers of the form

d d.ddd

"d" = decimal digit.

If initialized with the value 1, the internal representation of a
FIXED(3) variable, in the least significant word, is:

2.3-2

NUMBER REPRESENTATION

1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 = 1000 internally

If <fpoint> is omitted, it means that the implied decimal point
is immediately to the right of the least significant digit. An
omitted <fpoint> (or an <fpoint> of 0) represents numbers of the
form:

d d.

If initialized with the value 1, the internal representation of a
FIXED(O) variable, in the least significant word, is:

1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 = 1 internally

IF <fpoint> is a negative value, it indicates the number of digits
to the right of the least significant digit that the implied
decimal point is positioned. For example, an <fpoint> of "-3"
(verbally, minus three}:

FIXED (-3)

represents numbers of the form

d dooo.

A FIXED(-3) variable cannot be initialized with a value less than
1000. However, if initialized with the value 1000, the internal
representation of a FIXED(-3) variable, in the least significant
word, is:

1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 = 1 internally

Scaling: "Scaling" is the act of moving the position of the implied
decimal point. Internally, scaling involves multiplying or dividing
an operand by a power of ten. For example: A FIXED(3) variable
contains the value 1.000, internally that is represented by

1 0 0 0 (de c im a 1) •

If scaled by a factor of two, to represent the value 1.00000 (i.e.,
the implied decimal point is moved two positions to the left), the
internal representation is multiplied by 100 (10A2), resulting in

1 0 0 0 0 0 (d e c im a 1) •

2.3-3

NUMBER REPRESENTATION

Arithmetic is permitted among FIXED operands having different implied
decimal point positions; the compiler automatically emits instructions
for normalizing {i.e., matching the decimal point positions or
"scaling") the operands {see "Arithmetic Expressions" for a complete
explanation of fixed point scaling).

When a value is assigned to a FIXED variable, the value is scaled up
or down as required to match the <fpoint> of the variable. If the
value must be scaled down, then some order of precision will be lost.
If, for example, the value

2.345F FIXED(3) value

is stored in a FIXED{2) variable, the value is scaled down one
position causing a loss of one digit of precision. In this example,
the value

2.34F ! FIXED(2) value

is stored.

The compiler has the ability to automatically generate instructions
for "rounding" a FIXED operand when an assignment to a variable
occurs. Rounding is enabled and disabled by the two compiler control
commands ?ROUND and ?NOROUND, respectively (see "Compiler Control
Commands" for a complete explanation). The default condition,
?NOROUND, causes the value to be truncated if the value must be
scaled down prior to the assignment (as shown in the preceding
example). Specifying the ?ROUND compiler command, causes the value
to be rounded up, if appropriate, after truncation occurs. For
example, specifying the compiler command

?ROUND

and assigning the value 2.345 to a FIXED(2) variable causes the value
to be truncated one digit and rounded up to the value 2.35.

Additionally, two predefined functions are available in the T/TAL
language for dealing with FIXED operands. One is used to move (scale)
the position of the implied decimal point; the other is provides the
<fpoint> value of a FIXED operand. See "Standard Functions" for a
complete explanation of these functions.

2.3-4

OBJECT PROGRAM CHARACTERISTICS

A Tandem 16 object program executing in memory is physically separated
into two parts: An area called the code area that contains the
program's machine instructions and an area called the data area that
contains the program's data variables. The code area cannot be
modified (i.e., written into) while the program is executing.

OBJECT PROGRAM IN MEMORY

NON MODIFIABLE, SHARABLE
CODE AREA

COMPILER GENERATED
PROCEDURE ENTRY
POINT (PEP) TABLE

GLOBAL
READ-ONLY

ARRAYS

FIRST
RESIDENT

PROCEDURE
(IF ANY)

SECOND
RESIDENT

PROCEDURE
(IF ANY)

LAST RESIDENT
PROCEDURE

FIRST
NON-RESIDENT

PROCEDURE

SECOND
NON-RESIDENT

PROCEDURE

ETC.

t- -

-C[O) G [0)

BASE OF DATA AREA

G (32,767)

UPPER LIMIT OF DYNAMICALLY
ALLOCATED AREA (i.e., MEMORY
STACK)

UPPER LIMIT (66,536)

B
y
T
E

A
D
D
R
E
s
s
A
B
L
E

MODIFIABLE, PRIVATE
DATA AREA

f- -

PRIMARY
AND

SECONDARY
GLOBAL

STORAGE

STORAGE
AREA

DYNAMICALLY
ALLOCATED

TO
PROCEDURES

AND
SUBPROCEDURES

(MEMORY
STACK)

t- -
t- - ---

ADDITIONAL
SECONDARY

STORAGE

2.4-1

OBJECT PROGRAM CHARACTERISTICS

CODE AREA

The code area (called code because it contains instruction codes)
consists of a PEP, read-only arrays, and executable instructions.

The PEP (procedure entry point table) is a list of all procedure entry
points in the program. The total number of entries in the PEP is two
plus the number of procedure entry points. The PEP is automatically
configured by the compiler and the operating system and is referenced
by the hardware when a procedure is called.

If global read-only arrays are used, they immediately follow the PEP~

Following any read-only arrays are any procedures which are designated
as main memory resident. Resident procedures are physically placed
in memory in the order in which they appear in the source program.
The remainder of the procedures follow the main memory rE~sident
procedures. They are also physically placed in the same order as
they appear in the source program.

The hardware provides word and byte addressing of constants in all of
the code area. Doubleword and quadrupleword addressing of constants
in the code area is provided automatically in the T/TAL language.

DATA AREA

The maximum memory data storage area allowable for any single program
is 65,536 words. The first word in the data area, the base address,
is designated 'G' [0] (for global address zero). Words in the data
area are numbered consecutively, starting from the base, extending
through 'G' [65535].

At any given moment, the data area is logically comprised of up to
three separately and independently accessed areas:

1. The GLOBAL area - data variables within this area are declared at
the beginning of the source program and can be accessed by any
instruction in the program.

2. The LOCAL area of the currently executing procedure - data
variables within this area are defined at the beginning of the
procedure declaration and are accessible only by instructions in
the currently executing procedure (and any subprocedures within
the procedure). Local data variables that are assigned initial
values when declared are initialized each time the procedure is
entered.

At any given moment, there may be a number of other LOCAL areas
that are associated with procedures which are active (i.e., have
been called but have not finished) but not currently executing.
Any other LOCAL areas are not known to the currently executing
procedure.

2.4-2

OBJECT PROGRAM CHARACTERISTICS

3. The SUBLOCAL area of the currently executing subprocedure - data
variables within this area are defined at the beginning of the
subprocedure declaration and are accessible only by instructions
in the currently executing subprocedure. Sublocal variables that
are assigned initial values when declared are initialized each
time the subprocedure is entered.

At any given moment, there may be a number of other SUBLOCAL
areas that are associated with subprocedures that are active but
not currently executing. Any other SUBLOCAL areas are not known
to the currently executing subprocedure.

The GLOBAL and LOCAL areas are further subdivided into a directly
addressable, or "primary" area, and an area called the "secondaryh
area. The "secondary" area can only be addressed indirectly through
an address pointer or addressed by means of an element index {address
pointers and element indexing are described later).

All addressing in the global area is relative to the base of the
global area - 'G'. In the global data area only the first 256 words,
'G' [0:255], can be addressed directly. This "primary" area is used
for simple variables, address pointers, and directly addressable
arrays. The space in the primary area is allocated by the compiler as
required, so it does not necessarily use the entire 256 words. The
remainder of the global area, the area not "allocated" to primary
storage, is addressed indirectly through address pointers located in
the primary area. The "secondary" area is used for indirectly
addressable arrays.

All addressing in a local area is relative to the base of that local
area - 'L'. In a local data area only the first 127 words,
'L' [1:127], are directly addressable. Like the global area, space is
allocated only as required. The secondary local area is addressed
through pointers in the primary local area. The physical space for a
local area is allocated when a procedure is called and is
de-allocated when a procedure is finished.

All addressing in a sublocal area is relative to the base of that
sublocal area - 'S'. {The addresses are actually a negative offset
from 'S' .) The entire 31 words comprising a sublocal data area,
'S' [-30:0] are addressed directly. Any parameters passed to a
subprocedure count as part of the sublocal area. Therefore, the
maximum number of words allocated a given subprocedure is 31 minus the
number of parameter words passed to that subprocedure. Like local
areas, physical space for sublocal areas is only allocated while a
subprocedure executes.

2.4-3

OBJECT PROGRAM CHARACTERISTICS

GLOB.AL, LOCAL, AND SUBLOCAL DATA AREAS

CODE

PROCEDURE

PROCEDURE

PROCEDURE

,s y

SUBPROC
:..V...J<x" ~)('I<

--------------·---+-

PROCEDURE

)c SUBPROC
ty<.X

r;oov'
OF ~

~~'i.:DxU~~
...

PROCEDURE

2.4-4

DATA

PRIMARY
GLOBAL

STORAGE
(256 WORDS

MAXIMUM)

SECONDARY
GLOBAL

STORAGE

-G(O]

GLOBAL
DATA IS
ACCESSIBLE
FROM ANY
POINT IN
THE PROGRAM

-Lill

LOCAL DATA
IS ACCESSIBLE
ONLY WITHIN
A PROCEDURE

SUBLOCAL DATA
IS ACCESll•LE
ONLY WITHIN
A SUllPROCEDUftE

-S(Ol

DYNAMIC ALLOCATION OF LOCAL STORAGE

PROC •EXECUTES

THEN a CALLS b

PROC a

CALL b

}

3 THEN b ENDS AND RETURNS TO•

PROC • EXECUTES

PROC •

CALL b }

OBJECT PROGRAM CHARACTERISTICS

A
c
c
E
s
s

A
c
c
E
s
s

A
c
c
E
s
s

{ j

A
c
c
E
s
s

PRIMARY
AND

SECONDARY
GLOBAL

STORAGE

A's
PRIMARY

AND
SECONDARY

LOCAL

PRIMARY
AND

SECONDARY
GLOBAL

STORAGE

PRIMARY
AND

SECONDARY
LOCAL

STORAGE

-G[O]

-L[l]

-G[O]

}

A'S LOCAL
STORAGE IS
NOT ACCESSIBLE
BY B

L[l)

______ ..

PRIMARY
AND

SECONDARY
GLOBAL

STORAGE

- G[Ol

{
gs

AE t- A's - L(1]
PRIMARY

AND
SECONDARY

LOCAL
STO .. A_g_E

PRl::RY : }

SEC~~ARY :

I LOCAL I
STORAGE L ___ _J

DEALLOCATED,
THIS SPACE IS
AVAILABLE FOR
THE NEXT PROCEDURE
CALLED BY•

2.4-5

OBJECT PROGRAM CHARACTERISTICS

The storage areas that the hardware dynamically allocates to
procedures and subprocedures are limited to the first 32,768 words of
the program's data area (an attempt by the hardware to allocate local
or sublocal storage above 'G' [32767] results in a memory stack
overflow trap occurring. See the "Guardian Programming Manual" for an
an explanation of traps)

The entire data area is addressable by the hardware on word,
doubleword and, if a particular processor module has the Decimal
Arithmetic option installed, quadrupleword boundaries. The hardware
also provides byte addressing anywhere in the first 32,767 words of
the data area.

When a program is run, the amount of data area that it is allocated in
(main and/or virtual) memory is one page (i.e., 1024 words) past the
area required for global data. The upper limit to the number of
pages in a program's data area can be specified as a larger amount
(up to 64 pages) when the piogram is run.

2.4-6

ADDRESSING MODES

DIRECT AND INDIRECT ADDRESSING

Data elements are addressed either directly by means of an address
field in a machine instruction or indirectly through an address
pointer in memory. An address pointer is a word that contains the
'G' [0] relative address of another word. Direct addressing is faster
because only one memory reference is made; however the range of direct
addressing is limited. Indirect addressing requires two memory
references {one to get the pointer contents, the second to get the
actual data) but can access any location in the data area.

The addressing mode isi for the most part, implied when a data
variable is declared. Direct addressing is indicated by NOT preceding
the name of a variable with period " " Indirect addressing is
indicated by preceding the name of a variable with a period:

INT <variable>

is addressed directly.

INT .<variable>

is used as indirect address pointer.

DIRECT VERSUS INDIRECT ADDRESSING

G[O]

DIRECT (LIMITED RANGE)

a----·-

INDIRECT (0: 65,535)
1----------1 ¥ADDRESS POINTER .b----·

SYMBOL FOR)

SPECIFYING

INDIRECTION''."

500

G[500]

2.5-1

ADDRESSING MODES

The 'G' [0] relative address of a variable can be obtained by preceding
the name of the variable with a commercial at "@" symbol:

@<variable>

A programmer may often find that it is necessary to access a
word-addressed variable (i.e., word, doubleword or quadrupleword) as
a string variable or vice versa.

To access a word-addressed variable as a string variable, the
programmer must declare a STRING pointer and initialize the pointer
with the byte address of the variable. Initialization is accomplished
by shifting the 'G' [0] relative word address of a variable left one
position (see "Pointer Variables" and "Bit Shift" for a full
explanation) :

STRING .strApointer := @wordAvariable '<<' l; ! logical left shift.

To access a STRING variable as a word-addressed variable, a word
address must be generated. This is accomplished by declaring an INT
(or INT(32) or FIXED) pointer and initializing the pointer with the
string address shifted right one position:

INT .wordApointer := @strAvariable '>>' l; ! logical right shift.

To access a word-addressed variable of one <type> as a word-addressed
variable of another <type>, no address conversion is needed.

2.5-2

ADDRESSING MODES

ELEMENT INDEXING

Data element indexing is provided for both directly and indirectly
addressed variables. In the language, indexing is accomplished by
appending an indexing subscript to the name of a variable:

<variable> [<index>

<index> indicates an element offset from the <variable>.

The range of indexing subscripts is [O] through [%177777]. This
provides direct access to any element in the data area.

--
ELEMENT INDEXING

DIRECT, INDEXED al311-·
INDEX +J

INDIRECT, INDEXED

.b[5]

l_

a

500

b

G(O]

G[500) 4-

+5

G[505] J
Indexing in the hardware is performed using one of the index
registers; the address of a variable is determined, then the indexing
value is added to provide the address of the desired element (post
indexing).

2.5-3

IDENTIFIERS

Identifiers are symbols used to name elements (such as variables,
labels, procedures, etc.) in a T/TAL program. They consist of letters
and numbers, and are assigned uses when declared. There is no
implicit data type assumed for identifiers.

An identifier always starts with a letter or a circumflex symbol 11
"

11

and contains from 1 to 31 contiguous characters (letters, digits, and
circumflexes). Lower case characters are allowed, but are consid€red
the same as uppercase when processed by the compiler.

The following are valid identifiers:

al

number"of"bytes

TANDEM

zl234567890"31 ""

The following are invalid:

labc

is invalid because it starts with a number.

ab%99

is invalid because it contains 11 %11
•

An identifier can be known to one part of a program, but not to
another:

*

*

*

Identifiers assigned globally are known throughout the program

Identifiers assigned locally are known only in the procedure where
declared

Identifiers assigned sublocally are known only in the subprocedure
where declared

The same identifier can be assigned at the global, local, and sublocal
levels. The hierarchy of identifiers is illustrated in the following
example:

2.6-1

IDENTIFIERS

INT a; ! global declaration

PROC pl;
BEGIN

INT a; ! local declaration
SUBPROC spl;

BEGIN
INT a; ! sublocal declaration
a : = 1;

uses the identifier declared sublocally

END;
SUBPROC sp2;

BEGIN
a : = 1;

END;
a : = 1;

uses the identifier declared locally

uses the identifier declared locally

END;

PROC p2;
BEGIN

a : = 1;

uses the identifier declared globally

END;

2.6-2

IDENTIFIERS

RESERVED SYMBOLS

The T/TAL reserved symbols cannot be used as identifiers.
Additionally, an external procedure name such as that of a Guardian
Procedure cannot be used as an identifier if the procedure is to be
called in the program.

List of Reserved Symbols

AND END LOR STACK
ASSERT ENTRY MAIN STORE
BEGIN EXTERNAL NOT STRING
BY FIXED OF STRUCT
CALL FOR OR SUBPROC
CALLABLE FORWARD OTHERWISE THEN
CASE GOTO PRIV TO
CODE IF PROC UNTIL
DEFINE INT REAL USE
DO INTERRUPT RESIDENT VARIABLE
DOWNTO LABEL RETURN WHILE
DROP LAND RSC AN XOR
ELSE LITERAL SCAN

AOl 2.6-3

CONSTANTS

Constants are literal values that stand for themselves. Constants are
used when initializing variables, declaring literals, in arithmetic
and conditional expressions; anywhere a number can stand for itself.

There are four forms of constants: integer, doubleword integer,
string, and fixed.

INTEGER CONSTANTS

Integer constants represent signed or unsigned 16-bit quantities
(i.e., INT). An integer constant can be used anywhere a string
constant is permitted.

There are two representations for integer constants: decimal integers
and based integers.

Decimal integer constants represent signed or unsigned 16-bit
quantities (i.e., INT). A decimal integer constant consists of an
optional plus or minus sign followed by any of the decimal digits 0
through 9. The range of decimal integer constants is

-32,767 to +32,767.

Integer values greater than 32,767 decimal must be represented using
based integer constants.

Note: When using an integer constant in a byte move operation, the
constant should be surrounded by brackets "[.••]" if a
one-byte value is desired. If an integer constant value is not
surrounded by brackets, it is treated as two bytes in a byte
move operation.

Some examples:

13579

is a decimal integer constant.

-15791

is a signed decimal integer constant.

Based integer constants (ie, base 2 or base 8) consist of a % percent
sign, followed by the character "B" if base 2, followed by the digits
legal for the designated base:

%100000

is a base 8 (octal) integer constant (equivalent to 32,768
decimal).

%Bl010111

AOl 2.7-1

CONSTANTS

is a base 2 (binary} integer constant.

An integer constant can also be represented by a constant expression~
A constant expression is an arithmetic expression containing constants
and literals that can be evaluated to a constant value;

3 * s + 12 I 4

evaluates to the constant value <18>.

LITERAL six = 6; ! LITERAL declaration

30 I six

evaluates to the constant value <5>.

OOUBLEWORO INTEGER CONSTANTS

Ooubleword integer constants represent signed 32-bit quantities
(i.e. , INT (3 2}) .

There are two representations for doubleword integer constants:
decimal integers and based integers.

There are two representations for integer constants: decimal integers

Ooubleword decimal integer constants are represented by appendin~ the
character "O" to a digit string consisting of a maximum of ten of the
digits 0 through 9. The range of doubleword decimal integer
constants is

-2,147,483,647 to +2,147,483,647.

An example:

147690

is a 32 bit integer.

A doubleword based integer constant is indicated by appending the
character "O" to a based constant:

%17072543610

is a base 8 (octal) 32-bit integer constant.

%80001001011000100010100010010

is a base 2 (binary)32-bit integer constant.

Like integer constants, doubleword integer· constants can be
represented by a constant expression.

2.7-2 AOl

CONSTANTS

STRING CONSTANTS

A string constant is a sequence of one or more ASCII characters
bounded by quotation marks. A one- or two-character string constant
can be used wherever an integer constant is permitted.

Lowercase characters are not upshifted in strings. To avoid confusion
with the string terminator, a quote within a character string is
represented by a pair of quotes.

Some examples:

"ABCDEFG12345"

is a string constant

"Tandem Computers Incorporated"

illustrates that lower case characters are not upshifted.

" " " "

is a string constant consisting of a single quote.

A string constant must be wholly contained within one line of text.
(However, a constant list can be used to represent strings that extend
over more than one line.)

FIXED CONSTANTS

Fixed constants represent signed 64-bit fixed decimal quantities.

There are two representations for fixed constants: decimal and based.

A fixed decimal constant consists of an optional plus or minus sign
followed by up to 19 of the decimal digits 0 through 9 followed by an
"F" (for fixed). A fixed decimal constant may have a fraction as
indicated by the position of a decimal point. The range of fixed
decimal constants is

-9,223,372,036,854,775,807 to +9,223,372,036,854,775,807.

Some examples:

1200.09F
0.1234567F
0.5F
239840984939873494F
-10.09F

are all fixed decimal constants.

AOl 2.7-3

CONSTANTS

Fixed based constants (ie, base 2 or base 8) consist of a % percent
sign, followed by the character "B" if base 2, followed by the digits
legal for the designated base followed by an "F":

%765235512F

is a base 8 (octal} fixed constant

%Bl010111010101101010110F

is a base 2 (binary} fixed constant.

Like integer constants, fixed constants can be represented by a
constant expression.

CONSTANT LISTS

A group of constants, called a constant list, can be used wherever
a multiple-element constant is needed.

The general form of a constant list is:

"[" <constant> ' ... II] II

where

<constant> is an integer, double integer, string, or fixed
constant

example

[1,2,3,4,5,6,7,8 ! integer constant list.

An example of an integer constant list:

[-32131, %117, 32, 64, 128, %B01010111

A constant list composed of a number strings is treated as one
contiguous string:

II A II '

"BCD",
II II '
"Z"

is the same as

"ABCD •••••• z II

2.7-4 AOl

CONSTANTS

Integer and string constants can be intermixed in a constant list:

["abcdef" , 1, 2, 3, "XYZl", %120]

REPETITION FACTORS

Repetition factors can be used to represent a list containing a
recurring integer or string constant. The general form of repetition
factors is:

<repetition factor>*"[" <constant> "]"

where

<repetition factor> is an integer constant

Some examples of using repetition factors to represent an integer
constant list:

10 * [0] is equivalent to

[O,O,O,O,O,O,O,O,O,O]

3 * [2 * [1], 2 * [0]]] is equivalent to

1,1,0,0,l,l,O,O,l,l,O,O]

Some examples of using repetition factors to represent a string
constant list:

10 * [II II] is equivalent to

[II II]

2 * [3 * ["ab"] , 2 * ["xyz"]]] is equivalent to

"ab", "ab", "ab", "xyz", "xyz", "ab", "ab", "ab", "xyz", "xyz"]

Constants using repetition factors as well as constants not using
repetition factors can be intermixed:

1,2,3, 3 * ["a"], "B", "C", 2 * [0]] is equivalent to

1,2,3,"a" ,"a" ,"a" ,"B" ,"C" ,0,0

AOl 2.7-5

DATA DECLARATIONS

A variable is a symbolic representation of an element or group of
elements in a program's data area. A variable can be used in an
expression to produce a value. The contents of a variable can be
changed through use of an assignment statement.

Data Types

Four types of data variables are defined: single word integer, do~ble
word integer, byte, and four word fixed point:

*

*

*

*

Single word integer variables are declared as <type> INT.

Double word integer variables are declared as <type> INT(32).

Byte variables are declared as <type> STRING.

Four word fixed point variables are declared as <type> FIXED.
Associated with a fixed point variable declaration is an optional
<fpoint> specifier:

FIXED [(<fpoint>

where

<fpoint> specifier gives the number of positions that the
implied decimal point is located to the left (<fpoint> > 0)
or to the right (<fpoint> <= 0) of the least significant
digit. If <fpoint> is omitted, 0 is implied. <fpoint> is
represented by an integer constant. The range of <fpoint>
is -19 to + 19

examples

FIXED(3)

represents decimal numbers of the form

d d.ddd

"d" is a decimal digit.

FIXED

represents decimal numbers of the form

d d.

FIXED(-3)

represents decimal numbers of the form

d dooo.

2.8-1

DATA DECLARATIONS

All defined data types can be either simple variables (containing
one element), array variables containing more than one element, or
pointer variables (containing an address of another data element).

Initialization

Any data variable can be initialized when declared. Generally, the
constant used to initialize a variable must match the <type> of the
variable being declared. However, string constants can be used to
initialize any type data variable. Additionally, a string variable
can be initialized with an integer constant that can be represented
in eight bits.

Initialized global variables have their initial values when the
program starts executing. local and sublocal variables that have
initial values are initialized each time the procedure or
subprocedure is entered.

Address Equivalencing

Address equivalencing is provided so that a memory location can be
represented by more than one variable (and more than one data type).

2.8-2

Declaring Simple Variables

A simple variable represents a one element data item. A simple
variable is declared by assigning a data type to an identifier.

The general declaration for a simple variable is:

<type> <name> [:=<initialization>] } , •..

where

<type> is { INT }
{ INT(32) }
{ STRING }
{ FIXED [(< fpo int>) }

<name> is an identifier assigned to the simple variable

<initialization> is a constant or, if declared locally or
sublocally, can be an arithmetic expression

more than one simple variable of the same <type> can be
specified and initialized per declaration (separated by
commas " , ")

examples

INT simpleAvariable;
INT(32) intial Avariable := 99D;
STRING varl, var2 := 0, var3;
FIXED(3) fvar := 1234.456F;

Simple variables are allocated space in the next available primary
area as they are declared. The space allocated depends on the data
type:

MEMORY ALLOCATION FOR SIMPLE VARIABLES

INT simpleAint;

INT(32) simpleAdbl;

STRING simpleAstring;

FIXED simpleAfixed;

.__ ____ _.I INTEGER; 1 WORD

r 1 DOUBLEWORD _r _____ l INTEGER: 2WOROS

0 7 8 15

I <byt•> ~im BYTE,, WORD

~ ~
OUADRUPLEWORD

FIXED POINT

NUMBER : 4 WORDS ------

2.8-3

Declaring Simple Variables

Note that when a simple STRING variable is declared, the single STRING
element occupies bits 0 through 7 of the word (bits 8 through 15 are
set to zeros) .

INITIALIZING SIMPLE VARIABLES

When an simple variable is initialized, it takes the value of the
initializing constant or expression.

*

*

*

*

*

Simple INT variables are initialized with integer constants and, if
desired and declared locally or sublocally, expressions whose
results can be represented within 16 bits.

Simple INT(32) variables are initialized with double integer
constants, and, if desired and declared locally or sublocally,
arithmetic expressions that produce double integer values.

Simple STRING variables, for purposes of initialization, are
treated as INT variables with one exception. If an integer
constant or an integer expression is used for initialization, only
the least significant eight bits of the initializing value are used
(the most significant eight bits are lost).

Simple FIXED variables are initialized with fixed constants and, if
desired and declared locally or sublocally, arithmetic expressions
that produce FIXED values.

Any <type> simple variable can be initialized with a string
constant. The characters comprising the string constant are left
justified in the variable being initialized. If the number of
characters in the string constant does not match the number of
characters that the variable can represent, the trailing (or
right-side) character position(s) are set to zero(s). For example,
if an INT is initialized with a single string constant, the value
of the constant is placed in the left half of the INT variable
and the right half is set to zero.

If the number of characters in the string constant is greater than
that representable in the variable, only the first (left side)
representable characters are used. The compiler issues a warning
message.

Note that STRING initialization is also treated as INT when using
string constants.

2.8-4

Declaring Simple Variables

EXAMPLES OF VALID INITIALIZATION AND CORRESPONDING MEMORY
ALLOCATION FOR SIMPLE VARIABLES

INT sirnple"int := 2 * 617;

INT(32) sirnple"dbl := 987654D;

STRING sirnple"string := "T";

FIXED(3) sirnple"fixed := 3065.00lF;

INT is"string := "AB";

INT octal"value := %124;

STRING s"octal"value := %124;

INT rninus"one := -1;

INT binary"value := %Bl010111;

INT one"byte : = "T";

INT two"bytes := " T";

INT(32) four"bytes := "$RCV";

FIXED eight"bytes := "TANDEM " . '

1234

f 987654 D

"T" 0

-
3065.001 F -

-

"A" "B"

%124

%124 0

<all one bits>

% 81010111

"T" 0

"T" I

L _ _:·!·--t! -~·~·:__J
["C" . "V"]

"T" "A" ----r----
''N'' ''D'' - ---1----

- "E" _4 _ _:_·~·-

-->

2.8-5

Declaring Simple Variables

EXAMPLES OF VALID INITIALIZATION (cont'd)

Initialization expressions containing variables are permitted
locally and sublocally:

INT local~int := 1234; 1234 J
INT lcl~int2 := localAint * 2; [2468 J
INT lcl3 := localAint + lc1Aint2; 3702 J
STRING strl := 125; 125 0 J
STRING str2 := strl * 2; 250 0 l
STRING str3 := strl + str2; 119 0 J

' /
I

THIS IS THE EIOHT L.S.
BtTS OF THE RESULT

Examples of invalid initialization:

INT globalAint := 2 * vary;

is invalid if declared globally.

INT tooAlong := 7650;

is not an integer value.

INT(32) tooAmany := "12345";

cannot be represented in 32 bits.

INT(32) notAdouble := -1;

is not a double integer constant.

INT tooAbig := 64000;

cannot be represented in 16 bits as a signed integer.

STRING dbl := 250;

is not an integer or string constant.

2.8-6

Declaring Array Variables

An array variable represents a contiguous block of elements in a
program's data area. An array can be thought of as a group of simple
variables each having the same data type, all accessed through the
same identifier. Individual elements of an array are accessed by
appending an indexing subscript to the name of the array.

Some definitions regarding arrays:

*
*

*

Base - element [0] of the array.

Lower bound - The first element of the array for which storage is
allocated.

Upper bound - The last element of the array for which storage is
allocated.

The base of an array need not be within the lower and upper bounds of
the array, but the base must be within the logical address space of
the data area - 'G' [0: 65535].

ARRAY: EXAMPLES OF BASE, LOWER BOUND, AND UPPER BOUND

<type> array [0:9);

ELEMENT (0] [1] [2) [3) (4) [5) (6) [7) [8) [9)

BASE
AND

LOWER BOUND

STORAGE IS ALLOCATED
FOR TEN ELEMENTS

UPPER
BOUND

<type> array [-5:5];

ELEMENT [-5] [-4) (-3] [-2] l-11 [0) (1) [2) [3) [4] [5]

'--y--/

LOWER
BOUND

'---,-/'

BASE

STORAGE IS ALLOCATED
FOR ELEVEN ELEMENTS

~
UPPER
BOUND

<type> array [60: 85);

BASE

I [60) I (61] I [62] I (63] I (64] I \. . (1 [81] 1 [821 1 (83] 1 [84] I (85] I
~
LOWER
BOUND

STORAGE IS ALLOCATED
FOR 26 ELEMENTS

'-,----/
UPPER
BOUND

2.8-7

Declaring Array Variables

Arrays can be either directly addressable, and allocated storage in a
primary area, or indirectly addressable, and allocated storage in a
secondary area. (If indirectly addressable, an address pointer is
allocated in a primary area.)

An array variable is declared by assigning a data type and lower and
upper bounds to an identifier. The bounds specifications must be an
integer or string constants. An indirect array is declared by
preceding the identifier with a period ".".

The general declaration for an array variable is:

<type> •] <name>"[" <lower bound> : <upper bound> 18
]"

:=<initialization>] } , •.•

where

<type> is { INT }
{ INT{32) }
{ STRING }
{ FIXED [{ < f point>)] }

• is the indirection symbol. Its presence means allocate
storage for the array in the appropriate global or local
secondary area. Its absence means allocate storage for the
array in the appropriate global, local, or sublocal primary
area

<name> is an identifier assigned to the array

<lower bound> is an integer constant defining the first array
element. The <lower bound> must be less than or equal to the
<upper bound>

<upper bound> is an integer constant defining the last array
element

<initialization> is a constant or constant list {including
repetition factors) to be assigned as an initial value

more than one array variable of the same <type> can be
specified per declaration {separated by commas","}

examples

2.8-8

INT d~array [0:9];
INT .ind~array [0:71];
STRING alphabet ["A":"Z"];
STRING arrayl[0:9], .array2[0:9]

direct, 10 elements.
indirect, 72 elements.
direct, 26 elements.

: = 10 * [" "] , array 3 [0 : 1] ;

Declaring Array Variables

DIRECT VERSUS INDIRECT ARRAYS

Direct arrays are accessed faster than indirect arrays but have a
limited amount of storage area available. They are typically used
where a limited amount of information is accessed a relatively high
number of times throughout the execution of a program. The amount of
space available to indirect arrays is limited only by the total data
area allocated when a program is run.

DIRECT ARRAYS

When an array is declared as directly addressable, the array is
allocated in the next available primary locations. There is no
address pointer associated with a direct array. The amount of space
allocated to a direct array is dependent upon its data type:

INT arrays
INT{32} arrays
STRING arrays
FIXED arrays

= one word per element
= two words per element
= one-half word per element
= four words per element

EXAMPLE OF "INT" ARRAY MEMORY ALLOCATION (ONE WORD PER ELEMENT}

INT intAarray[0:9];

BASE AND LOWER BOUND ___.

UPPER BOUND ___...

int array [O]

int array[1]

int '' array [21

int array [3]

int , array [4]

int array [5]

int · array[6]

int array [7]

int ,. array [8 I

int array [9]

TEN WORDS OF
PRIMARY STORAGE
ALLOCATED

2.8-9

Declaring Array Variables

EXAMPLE OF "INT(32)"ARRAY MEMORY ALLOCATION (TWO WORDS PER
ELEMENT)

INT(32) db1Aarray[0:2];

BASE AND LOWER BOUND
___...

f- dbl · array I OJ ..,
..,___.

SIX WORDS OF
t- dbl arrav[1]

PRIMARY STORAGE
t-· ALLOCATED

I- dbl ' array(2) -UPPER BOUND ____..

EXAMPLE OF "STRING" ARRAY MEMORY ALLOCATION (ONE-HALF WORD PER
ELEMENT,)

STRING s[0:8];

BASE AND LOWER BOUND

~
r I

'
s(O] s(1)

---·
s(2] s(3]

FIVE WORDS OF
s[4] s(5] PRIMARY STORAGE

s(6]
ALLOCATED

sl71

sl81

' /
I

UPPER BOUND /I

Note that if the lower bound of the array is an odd number, the first
element of the array is in the right half of a word. Therefore, if
the array in the preceding example were declared as

STRING s [1: 8] ;

the preceding diagram is still valid.

2.8-10

Declaring Array Variables

EXAMPLE OF "FIXED" ARRAY MEMORY ALLOCATION (FOUR WORDS PER
ELEMENT)

FIXED quad~array[0:4];

2.8-11

Declaring Array Variables

INDIRECT ARRAYS

When an indirect array is declared, an address pointer to the array is
allocated in a primary (directly addressable) word; the storage for
the array is allocated in a secondary (indirectly addressable) area.
The address pointer contains the 'G' [0] relative address of the base
(i.e., element [0]) of the array.

The amount of space allocated to an indirect array is dependent upon
its data type:

INT arrays = a one word pointer in the primary area
+ one word per el ernent in the secondary area

IN'r (3 2) arrays = a one word pointer in the primary area
+ two words per element in the secondary area

STRING arrays = a one word pointer in the primary area
+ one-half word per el ernent in the secondary area

FIXED arrays = a one word pointer in the primary area
+ four words per element in the secondary area

EXAMPLES OF POINTER AND STORAGE ALLOCATION FOR INDIRECT ARRAYS

INT .ind~int[0:9];
I NT (3 2) . ind~ dbl [0 : 2] ;
STRING .ind~st[0:7];
FIXED . ind~quad [0: 4·];

.ind/\ int ~

.ind/\ dbl ~

ADDRESS
POINTERS

.ind' st
__....

.ind!\ quad ___..

BASE AND LOWER BOUND
OF ind I\ int ~

UPPER BOUND OF ind/\ int -+

2.8-12

200

505 I -

*2754] -

1420 J

ONIE WORD
OF PRIMARY
STORAGE
ALLOCATED FOR
EACH ADDR IESS p
POINTER R

TEllJ WORDS
OF SECONDARY
STORA.GE
ALLOCATED

I
M
A
R
y

-->

Declaring Array Variables

EXAMPLES OF POINTER AND STORAGE ALLOCATION FOR INDIRECT ARRAYS
(cont'd)

BASE AND LOWER BOUND
OF ind /\dbl

UPPER BOUND OF ind.~ dbl ___.

BASE AND LOWER
BOUND OF ind st

UPPER BOUND OF ind/\ st

BASE AND LOWER BOUND
OF ind/\quad

UPPER BOUND OF ind/\quad

I-

I-

I-

ind 11 dbl[OJ

ind/\ dbl[l)

ind /\dbl [21

ind l\st[OI ind 1\ st [1)

ind l\st[21 ind/\st[3)

ind/\ st[4) ind/\ st[5)

ind/' st[6) ind/\ stf7)

ind/\quad[OJ

ind/\quad[4)

-

-

-

G[505) .J

G[1377)

G[1420)

SIX WORDS

OF SECONDARY
STORAGE
ALLOCATED

FOUR WORDS
OF SECONDARY
STORAGE
ALLOCATED

TWENTY WORDS
OF SECONDARY
STORAGE
ALLOCATED

*WORD ADDRESS= BYTE ADDRESS
2

s
E
c
0
N
D
A
R
y

2.8-13

Declaring Array Variables

BASE ADDRESS

The base address of the array (the address used when referencing the
array without a subscript) is adjusted to point to element [0] of the
array (even though element [OJ may not be within the bounds of the
array declaration).

EXAMPLE OF ARRAY BASE NOT WITHIN BOUNDS OF ARRAY

INT noAbase [-10:-5];

is a direct integer array containing six elements whose base
is not within bounds.

LOWER BOUND OF no /\ base __.., no/\ base[-10)

no/\ base[-9)
t--·----

no/\ base[-8)

no 1' base[-7)
-

no,\ base [-6)

UPPER BOUND OF no/\ base __.. no~ base[-5)

I--·

--
BASE 0 F no /\ base __..

~

SIX WORDS OIF
PRIMARY STORAGE
ALLOCATED t=OR

no 1\ base

no 1\ base[O)

Any reference to "noAbase" element [0] will access a location
outside of the area allocated to "noAbase".

2.8-14

Declaring Array Variables

EXAMPLE OF ARRAY BASE NOT WITHIN BOUNDS OF ARRAY

STRING . b [3: 9] :

is an indirect byte array containing seven elements whose
base is not within bounds •

. b __. 1000

BASE OF b

'
b[O]

b[4]

b[6]

b[S]

b[3]

b(5]

b[7]

b[9]

J
G[500) LOWER BOUND OF b

4-- FOUR WORDS OF
SECONDARY STORAGE
ALLOCATED FOR b

+- UPPER BOUND OF
b

Any reference to "b" element [0] will access a location outside
of the area allocated to "b".

2.8-15

Declaring Array Variables

INITIALIZING ARRAYS

An array can be initialized with a numerical and/or string constant or
constant list when declared. If initialization is with a numerical
constant and the array is not an INT array, the constant must be of
the proper type: STRING arrays are initialized only with integer
constants: INT(32) arrays are initialized only with double integer
constants: FIXED arrays are initialized only with fixed constants.
INT arrays can be initialized with integer, double integer, or fixed
numerical values (double integer initialization occupies two words,
fixed initialization occupies four words). The initialization
characteristics of arrays, as far as numerical initialization is
concerned, is identical to that of simple variables.

Arrays of any data type can be initialized with string constants. A
contiguous block of characters that comprises a string constant can
initialize multiple elements of an array. A string constant occupies
one-half word: string constant initialization always begins on an
element boundary.

Initialization always begins with the lower bound of an array. Each
constant in a constant list begins on an element boundary (i.e., word
for INT, double word for INT(32), half-word for STRING, and quadruple
word for FIXED) •

EXAMPLES OF ARRAY INITIALIZATION

INT int" stuff [0:89] := [O, 23398, 145, "ABC", "DEF", "G"] :

int·' stuff[O) 0

int: stuff[1] 23398

mt/\ stuff[2) 145

int \ stuff[3) "A" "B"

int '·stuff [4) "C" 0

int ' stuff[5) "D" "E"

int \ stuff [6] "F" 0

int stuff [7) "G" 0

int f' stuff[8) undefined

~i.

mt stuffl88l undefined

int stuff[89] undefined

-->

2.8-16

Declaring Array Variables

EXAMPLES OF ARRAY INITIALIZATION (cont'd)

INT(32) array"'32 [0:8] := [4598710, "ABCD"

array .I\ 32 (OJ

array /\ 32 I 1 I

array/\ 32(7]

array/\ 32(8]

STRING bytes [-5:17] :=

bytes (-5)

bytes (-4: -3)

bytes [-2: -1]

bytes (0: 1]

bytes (2: 3)

bytes (4: 5)

bytes (6: 7)

bytes (8: 9)

bytes [1 0: 11]

bytes (12:13]

bytes (14: 15]

bytes [16: 17]

459871D

"A" "B"
t-

"C" "D"

t- undefined

t- undefined

"Tandem",
"Computers",
"Inc."] ;

"T"

''a" "n''

"d" ''e''

''m"" "C"

''o" "m"

"p" "u"

"t" "e"

''r" "s"

"I" Unll

''c''
,, ,,

undef. undef.

undef. undef.

undef =UNDEFINED

-I

-->

2.8-17

Declaring Array Variables

EXAMPLES OF ARRAY INITIALIZATION (cont'd)

STRING numbers [0:8] : = [70, 65, 73, 76, %40, %123, %117,
%106, %124];

numbers [O: 1) 10 65

numbers (2: 3) 73 76

numbers (4: 5) %40 %123

numbers (6: 7) %117 %106 ..._.
numbers (8: 9) %124 0

FIXED(2) quad"'stuff[0:9] := [125.SSF, 7600F];

2.8-18

Note that the constant "7600F is scaled by a factor of two
to match the <fpoint> of "fixed"'stuff".

quad/\stuff(O] 125.55F

quad 1\ stuff (1] 7600.00F

-------------11

quad/\stuff(9] undefined

Declaring Array Variables

By using repetition factors large arrays can be initialized with
recurring constants without having to actually write each part:

STRING blanks [0:79] := 80 * [" "] ;
is a string containing 80 blanks.

STRING heading [0:62]
STRING undline [0:62]

is equivalent to

STRING heading [0:62]

: = 4
: = 8

: =

*
*

"ITEM
4 * [

COST
" - "] '"

"ITEM COST ITEM COST ITEM COST ITEM

STRING undline [0:62) :=
"

INT zeros [0:31] := 32 * [0];

is an array containing 32 zeros.

"] , " TOTAL"] ;
"] ' " - - -- - "] ;

COST TOTAL";

-----"· I

2.8-19

Declaring Read-Only Arrays

Arrays containing data that will only be read can be embedded in the
code area, thereby saving space in the data area. Read-only arrays
must be initialized when declared.

The general form for read-only arrays is:

*

*

*

<type> { <name> [" [" <lower bound> : <upper bound> "] "] = 'P'

:=<initialization> } , ..•

where

<type> is { INT }
{ INT{32} }
{ STRING }
{ FIXED [{ < f po int> } }

<name> is an identifier assigned to the read-only array

<lower bound> is an integer constant defining the first array
element

<upper bound> is an integer constant defining the last array
element

<initialization> is an initializing constant or constant list
{including repetition factors}

more than one array variable of the same <type> can be
specified per declaration {separated by commas","}

examples

STRING message = 'P' := "** LOAD MAG TAPE #00144":
INT a = 'P' := 1234: ! constant

If the <lower bound> and <upper bound> are omitted, a <lower bound>
of [0] is implied, and <upper bound> of number of initialized
elements minus one is implied.

The identifier representing a read-only array cannot be passed as a
variable to a procedure or subprocedure. The data in the read-only
array must first be moved to an array in the data area.

If any procedures are designated main memory residentv any global
read-only arrays will also be main memory resident.

2.8-20

Declaring Pointer Variables

A pointer variable represents a word in memory whose contents are
used as the address of an element in the data area.

POINTER VARIABLE

UNINITIALIZED
POINTER

undefined

INITIALIZED
POINTER

To use a pointer variable, it must first be initialized with the 'G'
[0] relative address of a data element. The pointer variable is then
used in the same manner as a simple variable in an expression or
statement. The data element accessed through the pointer is treated
as the data type assigned to the pointer variable.

A pointer variable is declared by preceding a typed identifier with a
period ".". The general declaration for a pointer variable is:

<type> { <name> [:=@<variable> "[" <index> "]"] } , .•.

where

<type> is { INT }
{ INT { 32) }
{ STRING }
{ FIXED [{ <fpoint>)] }

. is the indirection symbol

<name> is an identifier assigned to the pointer variable

@<variable> provides the G[O] relative address of <variable>.
The 'G' [O] relative address of an indexed element can be
obtained by appending an <index> value to the <variable>.

A pointer variable can also be initialized with a an integer
constant or, if declared locally or sublocally, an <arithmetic
expression>

more than one pointer variable of the same <type> can be
specified per declaration {separated by commas ",")

-->

2.8-21

Declaring Pointer Variables

examples

INT .pointer := @array;
STRING .sApointer := @bytes[3], sAptr2;

Pointer variables are allocated one word, regardless of their type,
in the next available primary area as they are declared.

INT .intApointer; integer pointer ..
doubleword pointer.
string pointer.
fixed pointer.

INT (32) .dbl "'pointer;
STRING .string"'ptr;
FIXED(3) .fpointer;

INITIALIZING POINTER VARIABLES

When a pointer variable is initialized, the address that the pointer
represents is determined by the value of the initializin9 address,
constant, or expression. The initialization value must be capable of
being represented within 16 bits, otherwise the compiler issues an
error message.

Examples of valid initialization and corresponding allocation:

INT
INT (3 2)

STRING

INT .pl,

• p2

.p3

. b[0:3];
c,

.d[O:S];
• e[0:9];

indirect INT array containing four elements .
simple INT(32) variable.
indirect INT(32) array containing six elements~
indirect STRING array containing ten elements .

is an uninitialized INT pointer variable •

: = @b,

is initialized with the 'G' [0] relative address of the base
of "b".

:= @c,

i s in i ti a 1 i zed w i th the ' G ' [0] r e 1 at iv e add res s o f " c" • The
contents of "c" are then treated as INT values when
accessed through the pointer "p3" •

• p4 := %100000,

2.8-22

is initialized to point at 'G' [32768]. Accessing through
"p4" gets to the upper half of the data area

• p 5 : = @d;

Declaring Pointer Variables

is initialized with the 'G' [0] relative address of "d".
The contents of "d" are treated as INT values when accessed
through the pointer "pS".

STRING .p6 := @e[S]:

is a STRING pointer that is initialized with the 'G' [0]
relative address of the fifth element of "e" (in STRING
form). Accessing through "p6", with no subscript, gets
"e[S] ".

2.8-23

Declaring Pointer Variables

EXAMPLES OF POINTER INITIALIZATION AND ALLOCATION

INT .b[0:3];
INT(32) c,

.d[O:S];
STRING .e[0:9]

INT .pl,
.p2 := @b,
.p3 : = @c,
.p4 := %100000,
.p5 := @d;

STRING
.p6 := @e[S];

2.8-24

.b

.d

.e

.p1

.p2

"p3

"p4

"p5

"p6

G[O]

200 -----,
G[2] .. 4..---+-I----·--....

-. 400
t---·-----t _.

1~00

_. C undefined

I
____ I_

I ' ----- t-
i I I
I I I

i I I

I I I
-. C_2_00~---- ----..-1-r-r-

' I I -. C_i ___ ----++-, --,---rT---1--../

----+-~, _. c_32-76_a __ _

I I I
-----L~·-t-t---1-----+----\

I l I

__. c_4_~_i ___ _
___. C_12_05 ___ ---,- I I

: I I
G[200) ..-LU

I I
I I

b[1) & p2[1J

b(2] & p2[2)

I I
l I

b[3J & p2[3)

J I
G (400) ..,.___.....,_-+-

1

___ __......./

d[1J &

d[5] &

p6[2)

p5[3)

p5[10l

p5[11J

I
I
I
I
I
I

~ - - - -- - - -- _,l
/---L----...._

e[O) e[1)
G[600)

e(2] e[3]

~
1---~,~-+L---E:.l!<.l-.-<--1 G (602)

• G[32768)

Declaring Pointer Variables

Dynamic Initialization of Pointer Variables

Pointer variables contents can be initialized or changed in the
executable part of the program (i.e., the statements) through use of
the assignment statement. Initialization is accomplished by preceding
the name of the pointer with an at "@" symbol:

@<pointer variable>:= @<variable> ["["<index> "]"]

where

@ is the symbol for removing indirection.

:= is the assignment operator

puts the 'G' [0] relative the address of "someAarray" is placed
in "intApointer".

@pointer := @intAarray[3];

"pointer" is initialized with 'G' [O] relative address of the
third element of "intAarray".

@stringApointer := 29;

points to the 30th byte in the data area.

Arithmetic with Pointer Variables

Unsigned arithmetic should always be used when dealing with the
contents of pointer variables. Unsigned arithmetic is characterized
by not being subject to the arithmetic overflow condition. Unsigned
arithmetic is indicated by surrounding an arithmetic operator (i.e.,
+, -, *, /, \) by apostrophes.

For example, to increment the address in a pointer variable, unsigned
add should be used:

@pointer := @pointer '+' l;

2.8-25

Declaring Pointer Variables

Making a STRING Pointer Point to a Word-addressed Variable

If a STRING pointer is initialized to point to an INT, INT(32), or
FIXED variable, the word address must be shifted left one position to
provide a byte address.

<string· po inter> : = @<word variable> [11
[

11 <index> 11
]

11
] • < <' 1

where

'<<' means logical shift left one position (multiply by two)

EXAMPLE OF STRING POINTER TO WORD ADDRESSED VARIABLE

INT .i[0:39]: ! indirect INT array containing 40 elements

STRING .s := @i '<<' 1:

.i ___.,.. 1000 J-----,

.s
___.,.. c--;;;-~

+
/ '

i[O) ___.. ~jG[1000I-+-
i[1 I --+ s[2] s(J].

i[2) --+ s[4) s[5]

i[38] ___.. s[76) ~ i[39] ____.,.. s(78] s(79]

The above could be performed in the executable part of the program by
using an assignment statement:

@s := @i '<<' 1:

2.8-26

Declaring Pointer Variables

Making a Word-address Pointer Point to a String Variable

If an INT, INT(32), or FIXED pointer is to point to a STRING variable,
the byte address must be shifted right one position (divided by two)
to provide a word address. Note that this action truncates the byte
address down to an even number.

<word pointer> :=@<string variable> ["["<index> "]"] '>>' 1

where

'>>' means logical right shift one position (divide by two)

2.8-27

Declaring Equivalenced Variables

Address equivalencing permits more than one variable to represent a
given location and in doing so, permits that location to be treated as
more than one data type (e.g., a declared INT can be accessed as
STRING). No storage is allocated for an equivalenced variable.

The general form for address equivalencing is :

<type> { [.] <name> = <variable>
"[" <index> "]"

<word offset> } , ...
------ ------ - ----------
where

<type> is { INT
{ INT (3 2)
{ STRING
{ FIXED [(<fpoint>)]

• is the indirection symbol. Its presence means that the
equivalenced variable is treated as a pointer variable. Its
absence means that the equivalenced variable is treated as a
simple variable

<variable> is either a simple, array, pointer, or another
equivalenced variable that was previously declared

<index> is an integer constant and is permitted only if
<variable> is directly addressed

<word offset> is an integer constant and is permitted with
either directly or indirectly addressed <variables>

more than one <equivalenced variable> of the same <type> can
be specified per declaration (separated by commas "' ,")

example

INT word = double;

The location indicated by <index> and <word offset> must be within
the range of direct addressing for the particular data area:

for global variables the range is 'G' [0:255]

for local variables the range is 'L' [-31:127]

for sublocal variables the range is 'S' [-31:0]

2.8-28

Declaring Equivalenced Variables

EXAMPLE OF EQUIVALENCING ONE SIMPLE VARIABLE WITH ANOTHER

INT vary;
STRING st = vary;

vary st

EXAMPLE OF EQUIVALENCING TWO "INT" VARIABLES TO AN "INT{32)"
VARIABLE

INT(32) double;

INT msAhalf = double,
lsAhalf = rnsAhalf + l;

double
ms/\ half

Is/' half

This provides a means of referencing either half of an INT(32)
variable independently from the other

The above example could also be accomplished as follows:

INT msAhalf, lsAhalf;

INT(32) double = msAhalf;

2.8-29

Declaring Equivalenced Variables

EXAMPLE OF EQUIVALENCING A II STRING" VARIABLE TO AN "INT1
(3 2) "

VARIABLE

IWr(32) double;

STRING byte = double;

double

The INT(32) variable can then be referenced as a direct STRING
array consisting of four elements.

EXAMPLE USAGE OF EQUIVALENCING TO REFERENCE AN ARRAY OF ONE TYPE
AS ANOTHER TYPE

INT in ts [0: 3]; ! direct array

STRING byts = ints;

INT{32) dbls = byts;

.----------------~--- - ------------·-------ints(O] llyts[O) byts[1 J
dbls(CI]

ints[1] byts[2) byts(3]

byts[4) byts(5]
-----! dbls[11]

ints[3) byts(6] byts[7) ------------- - - - __________ ..

Referencing "byts" elsewhere treates "ints" as STRING values.
Referencing "dbls" elsewhere treates "ints" as INT(32) values.

2.8-30

Declaring Equivalenced Variables

An <index> or a <word offset> can be appended to the variable to
equivalence to a location different than the variable. <element
index> means that the number of words of offset from <variable> are
related to the data type of <variable>. <word offset> means that the
offset will be the number of words specified.

EXAMPLE OF USING AN "INDEX" WHEN EQUIVALENCING

INT (32) iA32[0:2]: ! direct INT(32) array consisting of three
! elements.

~ i /\ 32(0)

I- j I J2 (1)

I- i .\32(2)

equivalences to two elements (four word~)
from the base of "iA32".

equivalences to two words (one element)
from the base of "iA32".

-I

+1

.... _ +2 = l ___ i_/_w_o_rd-'_2 __ _

- --= ~ l ___ i /_e1_em_e_nt_s_"_2 _ _.

.EXAMPLE OF ANOMALY WHEN USING AN INDEX AND EQUIVALENCING STRING
VARIABLES

STRING a,
b = a[l]:

a ==-'-b----
Equivalences to the same word and therefore the same element
(both are are simple variables and simple STRING variables
occupy the left-half of a word).

2.8-31

Declaring Equivalenced Variables

EXAMPLE OF EQUIVALENCING TWO WORD-ADDRESSABLE ARRAYS 01? DIFFERENT
DATA TYPES

INT .i[0:39]: indirect array

I NT (3 2) • d = i ;

.d 1
--------20-0-------,~~-r------2-0_0 ______ _

i[O) G[200]
d[OJ

i[1]

i[2)
d[1]

i[3)

--~~-:-::-9:~~~-I - __ t _______ d_[,_9) ______ _

Referencing "d" elsewhere treats "i" as INT(32) values.

2.8-32

Dedlaring Equivalenced Variables

EXAMPLE OF USING A "WORD OFFSET" WHEN EQUIVALENCING A SIMPLE
VARIABLE WITH AN INDIRECT VARIABLE

INT .i[0:39], indirect array
an"int = i + 2;

.i __. 200

+1

1----------11 = +~ = _I ___ a_n_A_in_t __ _

Referencing "an"int" elsewhere accesses two words above the
address pointer for "i".

A variable CANNOT be equivalenced to an indirect variable with an
<index>:

INT .i[0:39]; ! indirect array

INT no"good = i[l];

is ILLEGAL.

One method of equivalencing to an indirect, indexed array is to assign
a pointer:

INT(32) .dbl"array := @int"array[4];

A STRING array should not be equivalenced to an indirect INT or
INT(32) array:

INT .sorne"array [0:79];
STRING .use"less = sorne"array;

Because no new pointer is assigned, the address referenced by
"use"less" is a word address, not a byte address.

In this case it is useful to equivalence the INT.array by assigning a
pointer:

STRING .use"ful :=@ sorne"array '<<' l;

2.8-33

Address Assignments

The following three illustrations are provided as examples of how
direct and indirect addresses are assigned in the global, local, and
sublocal areas.

GLOBAL VARIABLES

Global data variables are assigned starting at 'G'[O] in the same
order as written in the source program. Note that in the case of
indirect arrays, address pointers are assigned in the direct
locations; the space allocated to the arrays proper follows all of the
direct (simple) variables and address pointers.

INT a, ! simple variable

2.8-34

is the first variable declared in the program and is
assigned to 'G' [0].

b[O:S], direct array

is assigned to 'G' [1:6] •

. c[O:S], ! indirect array

• d,

the address pointer ".c" is assigned to 'G' [7], the array
proper is assigned following the direct and pointer
variables to 'G' [10: 15].

! pointer variable

is assigned to 'G' [8].

.e[S:lO]; ! indirect array

the address pointer ".e" is assigned to 'G' [9], the array
proper is assigned, following the array "c", to 'G' [16:21].

EXAMPLE OF GLOBAL ADDRESS ASSIGNMENTS

INT a,
b[O:S],

.c[O:S],
• d'
.e[S:lO];

simple variable
direct array
indirect array
pointer variable
indirect array

a

BASE AND LOWER BOUND OF b ____.. b(O]

b [1]

b(2]

b(3]

b(4]

UPPER BOUND OF b ___. b[5)

.c ---. 10

.d ---. undefined

.e-+ 11

BASE ANO LOWER BOUND OF c --+ c(O]

BASEOF e -+ c[l) and

c(2]

c(3]

c(4]

UPPER BOUND OF c --+ c[5]

LOWER BOUND OF e ___.. e[5)

e[6]

e[7]

e[8]

e[9]

UPPER BOUND OF e ___.. e[10)

Address Assignments

RELATIVE ADDRESS

G[Ol

G [1]

•
•

p
R •
I
M • A
R

G[6] y

G[7]

G(8]

G[9l

G [10)

e[O) G [11]

•
•

s
E • c
0 G[15]
N
D

G[16]
A
R
y •

•
•
•

G (21]

2.8-35

Address Assignments

LOCAL VARIABLES

Local data variables are assigned starting at 'L' [l] in the same order
as written in the source program.

INT a, ! simple variable

2.8-36

is the first variable declared in the procedure and is
assigned to 'L' [l].

b[O:S], direct array

is assigned to 'L' [2: 7] •

.c[O:S], ! indirect array

. d'

the address pointer 11 .c 11 is assigned to 'L' [8]. The 'G' [0]
address of the array proper is determined when the
procedure executes.

! pointer variable

is assigned to 'L' [9].

. e[S:lO]; ! indirect array .

the add res s pointer 11
• e" i s assigned to ' L ' [9] . The ' G ' [0]

relative address of the array proper is determined when the
procedure executes. Array "e" will follow array "c" in any
case.

Address Assignments

EXAMPLE OF LOCAL ADDRESS ASSIGNMENTS

INT a,
b[O:S],

.c[O:S],
• d'
.e[5:10];

simple variable
direct array
indirect array
pointer variable
indirect array

a

BASE AND LOWER BOUND OF b _., b(O]

b[1 I

b[2)

b(3]

b[4]

UPPER BOUND OF b __,. b(5]

.c _. *

d _.. undefined

.e -+- *

BASE AND LOWER BOUND OF c _., c(O]

BASE OF e _.. c[1) and

c[2]

c(3]

c[4]

UPPER BOUND OF c _.. c(5]

LOWER BOUND OF e -+- e[5]

e(6]

e[7]

e[8]

e(9]

UPPER BOUND OF e __., e[10!

e(O]

RELATIVE ADDRESS

p
R
I
M
A
R
y

s
E
c
0
N
D
A
R
y

L (1)

L(2]

•
•
•
•

L[7]

L(8]

L(9]

L[10)

* addresses of indirect local arrays are determined when the
procedure begins executing

2.8-37

Address Assignments

SUBLOCAL VARIABLES

In the SUBLOCAL area addresses are negative offsets from 'S' [0]. The
first data variable declared is given the most negative offset from
'S'; the last variable declared is always addressed as 'S' [O]e Note
that the limit of sublocal storage is 31 words.

INT a, ! direct variable

is assigned to 'S' [-13] because the total number of
sublocal words of storage that are required is 14.

b[O:S], ! direct array

is assigned to 'S' [-12:-7].

.d ! pointer variable

is assigned to 'S' [-6].

e[S:lO]; ! direct array

is assigned to 'S ' [- 5: 0] •

EXAMPLE OF SUBLOCAL ADDRESS ASSIGNMENTS

INT a,
b[O:S] I

.d
e[5:10];

direct variable
direct array
pointer variable
direct array

BASE AND LOWER BOUND OF b _,.

BASEOF c _,.

UPPER BOUND OF b -·

.d __.

LOWER BOUND OF e __....,

UPPER BOUND OF e _.....

2.8-38

b[2)

a

b[O)

b[1)

and e[O]

b[3]

b[4)

b[5]

undefined

e[5]

e[6)

e[7]

e[8)

e[9)

e[10]

S[-13)

S[-12)

S[-11)

S[-10]

S[-9]

S[-8)

S[-7]

S[-6]

S[-5]

S[-4]

S[-3]

S[-2]

S[-1]

S[-0]

LITERAL DECLARATION

The LITERAL declaration assigns an integer constant value to an
identifier.

The general form for a LITERAL declaration is:

LITERAL { <name> = <constant> } , •••

where

<name> is an identifier assigned to a LITERAL

<constant> is any value that can be represented in one word

more than one LITERAL can be specified per declaration
(separated by commas ",")

example

LITERAL minute = 60, day = 24;

A literal identifier can be used anywhere an integer constant can be
used. When a literal identifier is used, the assigned constant value
is substituted in its place. LITERALS are only a programming
convenience; they are not allocated any storage.

Note: When using a literal identifier in a byte move operation, the
identifier should be surrounded by brackets"[•••]" if a
one-byte value is desired. If a literal value is not
surrounded by brackets, it is treated as two bytes in a byte
move operation.

Literals are assigned constant values:

LITERAL second = l;
LITERAL minute = second * 60;
LITERAL hour = minute * 60;

Literals can be used in initialization:

INT normalAtime :=hour + 20 *minute;
INT maximumAtime := 2 * hour;

Literals can be used in array bound specifications:

STRING array[O:minute];

is equivalent to

STRING array[0:60];

AOl 2.9-1

LITERAL DECLARATION

Using literals in place of constants permits significant changes to be
made in a convenient manner:

Records in an inventory file
are formatted as follows:

I partAnum I
1---------------1
I price I
1---------------1
I tax I
1---------------1
I numAitems I
1---------------1
I I - -

Then used in the program

inventoryAarray[partAnum] :=
inventoryAarray[price] :=
inventoryAarray[tax] := •
inventoryAarray[numAitems] :=

At some point a new item is
defined and added to the
inventory record format:

partAnum

price

Literals could be used to
define the record format
to the program:

LITERAL partAnum = O;
LITERAL price = partAnum + l;
LITERAL tax = price + l;
LITERAL numAitems = tax + l;
LITERAL recAlength = numAitems;

INT .inventoryAarray[O:numAitems];

The literals defining the
the inventory record can
be changed:

LITERAL partAnum = O;
LITERAL price = partAnum + l;
LITERAL tax = price + l;

tax
inserted => LITERAL discount = tax + l;
changed => LITERAL numAitems = discount + l;

LITERAL reclength = numAitems;
discount <= added

numAitems

The program is re-compiled to reflect the changes to the literal
declarations, but other references in the program to those literals
need not be changed.

2.9-2

DEFINE DECLARATION

A DEFINE declaration assigns a block of text to an identifier.
Subsequent reference to the identifier in a context where an
identifier is not being declared causes the compiler to process the
block of text at the point of reference.

The general form for a DEFINE declaration is:

DEFINE { <name> =<block of text> # } , •••

where

<name> is an identifier assigned to a DEFINE

<block of text> is any character or sequence of characters
(including literals and other defines) to be invoked when
<name> is referenced

more than one block of text can be defined per declaration
(separated by number sign, comma "#,")

example

DEFINE error = total < subtotal#, timeout = lOOOOOD#,
bit~field = <0:15>#;

No evaluation is made of the text when declared. The define is
invoked where the define identifier is encountered as long as the
identifier is not being declared at that point. For example

DEFINE error = total < subtotal#; ! global declaration.

PROC a;
BEGIN

INT error;

does not invoke the define "error" because the identifier
"error" is being declared as an INT variable in this context.

END; ! a.

PROC b;
BEGIN

IF error THEN ••.

invokes the define "error" because the identifier is not
being declared in this context.

END; ! b.

AOl 2.10-1

DEFINE DECLARATION

When invoked, the text is processed as though it actually exists where
the identifier appears (that is, the text is checked to determine if
it is proper in its context and, possibly, machine instructions are
emitted).

Some examples:

DEFINE error = total < subtotal#;

If used as follows

IF error THEN ••••• ;

is equivalent to

IF total < subtotal THEN '
DEFINE timeout = lOOOOOD#; ! too large for LITERAL.

If used as follows

someAdouble := timeout;

is equivalent to

someAdouble := lOOOOOD;

DEFINE bitAfield = <10:15>#; bit extract/deposit field.

If used as follows

is equivalent to

word.<10:15>

A define could be used to define part of a header line:

DEFINE version = "VOOOl"#;

If used as follows

STRING header[0:33] := ["TANDEM APPLICATION LANGUAGE: ",version];

is equivalent to

STRING header[0:33] := "TANDEM APPLICATION LANGUAGE: VOOOl";

Caution should be taken when using a defined identifier in a
conditional expression. For example, a common operation is to

2.10-2 AOl

DEFINE DECLARATION

increment a variable and compare the result with a limit. This could
be done using a DEFINE declaration:

INT a;

DEFINE inc~a = a := a + 1#;

IF the defined identifier "inc~a" is used by itself

inc~a;

"a" is simply incremented by one and the expected result occurs.

But if the defined identifier is used in a conditional expression, the
expected result does not occur:

IF inc~a < 10 THEN •••

is equivalent to

IF a := a + 1 < 10 THEN

tests the result of the arithmetic expression "a + l" for being
less than 10, then assigns the result of the comparison (true,
-1, or false, 0) to "a". See Conditional expressions for a more
complete explanation.

The proper way to invoke this type of defined identifier in a
conditional expression is to surround the identifier with parentheses.
This gives the assignment operation a higher precedence than the
comparison:

IF (inc~ a) < 10 THEN •••

which is equivalent to

IF (a := a + 1) < 10 THEN

AOl 2.10-3

DEFINE DECLARATION: Parametric Form

There is another form of DEFINE having parameters. The general form
for a parametric define is:

DEFINE { <name> (<formal parameter name> ' ...
=<block of text> # } , .••

where

<name> is an identifier assigned to a parametric DEFINE

<formal parameter name> is a parameter. Each parameter must
be referenced within <block of text>

<block of text> is any character or sequence of characters
(including literals and other defines) to be invoked when
<name> is referenced

example

DEFINE bad~result(a,b) = IF a < b THEN#:

Some examples are:

DEFINE bad~result(a,b) = IF a < b THEN#:

if invoked as

bad~result(total,subtotal)

is equivalent to

IF total < subtotal THEN •••• :

A commonly used operation such as initializing an array with blanks
can be defined:

DEFINE blankAbuf (array,numAblanks) =
BEGIN

array :=
array[l]

END#:

II II •
I

I:= I array FOR numAblanks - 1:

puts a blank in [O]. Then moves [0] to [l], [l] to [2], [2] to
[3], etc.

Then invoked as

2.10-4 AOl

DEFINE DECLARATION: Parametric Form

STRING inAbuffer[0:71];

.
blankAbuf(inAbuffer,72);

is equivalent to

BEGIN
inAbuffer :=
inAbuffer[l]

END;

" " . I

I:= I inbuffer FOR 71;

data declaration •

which fills "inAbuffer" with 72 blanks

A comma "," can be part of the text in the parameter part of the
define if surrounded by apostrophes "'":

DEFINE varproc (procname , params) = CALL procname (params)#;

then

varproc (FILEINFO, fnum','error);

is equivalent to

CALL FILEINFO (fnum , error) ;

Additionally, parentheses may be used in a parameter providing that
opening and closing parens are matched.

AOl 2.10-5

PROCEDURE DECLARATION

Procedures comprise the executable part of a T/TAL program. All
programs must contain at least one procedure (designated "MAIN") and
typically contain many procedures.

An important characteristic of procedures is that they can be written
without regard for the actual variables to be processed and that the
same procedure can be used to process information involving many
different sets of variables.

Other characteristics of procedures are:

*

*

*

*

*

*

*

*

*

The calling environment is saved when a procedure is called and
restored when a procedure finishes.

Function procedures can be written that produce a value. The
procedure name can be used like a variable in an expression.

Variables, constants, expressions, and other procedures can be
passed as parameters.

A procedure's local variables are known only to the procedure and
occupy space only while the procedure executes.

A procedure's initialized local variables are initialized each time
the procedure is entered.

All items that can be declared globally {except procedures) can be
declared locally {i.e., within a procedure).

Procedures themselves can have subprocedures.

Because the calling environment is saved when a procedure is
called, procedures can be written that call themselves {recursive).

A procedure's instruction codes can be made to reside in main
memory at all times.

2.11-1

PROCEDURE DECLARATION

The general form of a procedure declaration is

procedure heading: gives the procedure a name and lists and
describes any parameters

procedure body: contains local declarations (optional),
subprocedure declarations (optional), and
statements

procedure heading:

<type>] PROC <name> [<attributes>]

or

<type>] PROC <name> <formal parameter name> ' ti ••

[<attributes>] ;

<parameter specifications>

~cedure body:

BEGIN

[local declaration

local declaration

subprocedure declaration

subprocedure declaration

<statement>] ;]

<statement>

END

or
FORWARD or EXTERNAL

-->

2.11-2

PROCEDURE DECLARATION

example

INT PROC findAlast (array, limit) RESIDENT; heading.
INT limit;
STRING .array;

BEGIN body.
INT addr; !
RSCAN array[limit] WHILE " " -> addr; !
RETURN addr ·-~ @array;

END;

2.11-3

Procedure Heading

The procedure heading assigns an identifier to the procedure, lists
and describes any formal parameters, optionally assigns the procedure
a type, and specifies any attributes.

There are two forms of a procedure heading: one for procedures without
parameters; one for procedures having parameters. The forms are:

without parameters

<type>] PROC <name> [<attributes>]

with parameters

<type>] PROC <name> <formal parameter name> , ...
[<attributes>] ;

<parameter specifications>

where

2.11-4

<type>, if included, means that the procedure is a function.
It is one of

{ INT }
{ INT(32) }
{ STRING }
{ F IX ED [(< f po i n t >)] }

<name> is the identifier assigned to the procedure

<attributes> are MAIN [, RESIDENT

where

MAIN indicates that the procedure is the first one to
execute when the program is run

RESIDENT indicates that the procedure's instruction codes
are to be made main memory resident when the program is run

<formal parameter name> is the identifier that is used within
the procedure body to reference the parameter. The formal
parameter has the value of the actual parameter when the
procedure is invoked

-->

Procedure Heading

<parameter specifications> describe each <formal parameter> by
<type> and whether it is a "value" or a "reference" parameter.
<parameter specifications> is of the form

<param type> { [.] <formal parameter name> } , .•.

where

<pa rm type> is

examples

{ INT }
{ INT (3 2} }
{ STRING }
{ FIXED [(<fpoint> }
{ [(* }
{ PROC } (by value only}
{ <type> PROC } (by value only}

is the indirection symbol.

If absent, a VALUE parameter is indicated. The
parameter is evaluated and the value that it
represents is passed to the procedure in the
parameter area (statements within the procedure body
access a copy of the actual parameter}

If present, a REFERENCE parameter is indicated. The
'G' [0] relative address of the variable is put in the
parameter area (and statements within the procedure
body access the variable indirectly through the
parameter location}. If the parameter is type
STRING, then a byte address is passed. Otherwise, a
word address is passed

PROC aproc;

INT PROC find~last (array, limit}
MAIN, RESIDENT;

INT limit;
STRING .array;

function proc with params.
attributes.
parameter specifications.

value.
reference.

2.11-5

Procedure Heading

<type>

If a procedure is assigned a type, it is a function procedure and
using its name in an expression causes it to be invokedfl A value of
the specified type (i.e., INT, INT(32), STRING, or FIXED) is returned
and used in the expression where the procedure name exists. The
value is returned to the expression through use of a RETURN statement
in the body of the function procedure.

In the preceding example, the type is INT and the value returned is
a result of the expression

addr '-' @array "addr" minus "~~array".

<name>

<name> is an identifier used to name the procedure. <name> is used
when invoking the procedure with a CALL statement or, if the procedure
is a function, when it is referenced in an expression.

INT length := 71: data declarations.
STRING .buffer [0: 72] :

INT PROC findAlast (array, limit) RESIDENT: head in9.
INT 1 imit:
STRING .array:

BEGIN body.
INT addr:
RSCAN array[limit] WHILE " " -> addr:
RETURN addr '-' @array:

END:

could be called by using

CALL findAlast (buffer, length):

however, the value assigned to "findAlast" is lost.

or in an expression

IF (findAlast(buffer, length)) > 0 THEN '

<attributes>

The <attributes> specify certain operating environments of a
procedure. The <attributes> are:

RESIDENT

2.11-6

When the program is run, the procedure's instruction codes
will be made to reside in main memory at all times (will
not be written over). Resident procedures will be placed

MAIN

Procedure Heading

as the first (physically) procedures in a program (just
after global read-only arrays).

This indicates that the procedure is to be the first one
executed when the program is run. More than one procedure
can be designated a "MAIN" procedure. However, the last
procedure designated "MAIN" is the the one that is first
executed when the program is run.

Additionally, when any procedure designated "MAIN" is
finished (i.e., last statement is executed or a RETURN
statement is encountered) a call is made to the Guardian
Operating System STOP procedure if the STOP procedure has
been declared as an external procedure. This stops program
execution and causes a message to be sent to the creating
process.

AOl 2.11-7

Procedure Body

The procedure body contains statements that are executed when the
procedure is called. The body can contain data, define, literal,
entry, and/or subprocedure declarations as well as any T/TAL
statements.

Statements in a procedure are executed until either the last statement
is executed or a RETURN statement is encountered. Program execution
then returns following the point where the procedure was invoked
(unless the procedure was designated MAIN; in that case, program
execution stops) .

The general form of the procedure body is:

BEGIN

[<local declaration>

<local declaration>

subprocedure declaration

subprocedure declaration

<statement>] ;]

<statement>

END

or
FORWARD or EXTERNAL

where

2.11-8

<local declaration> is data, LITERAL, DEFINE, or ENTRY

FORWARD indicates that the actual procedure declaration
is located later in the source program

EXTERNAL indicates that the actual procedure is part of the
operating system

-->

Procedure Body

example

BEGIN
RETURN aAchar - bAchar:

END:

Note: The storage available for directly addressed local variables is
limited to 127 words. Indirectly addressed local variables
occupy space in the secondary local area (which is limited to
the first 32,768 words in the data area).

Any item declared locally in the procedure body is known only to the
procedure and subprocedures declared within the procedure. If an item
is declared locally that has the same name as a global item, the
locally declared item is used within the procedure body (and any
associated subprocedures).

FORWARD AND EXTERNAL

The purpose of declaring a procedure with the word EXTERNAL or FORWARD
in_ place of the body, is to inform the compiler that a particular
identifier is a procedure name and specify what parameters are
required to call that procedure.

EXTERNAL is used if the actual procedure is part of the operating
system. Procedures callable by application programs that are part of
the operating system are sharable by all programs running on the
system.

PROC READ (filenum, buf, count, countread, tag) CALLABLE, VARIABLE:
INT filenum, .buf, count, .countread:
INT(32) tag:
EXTERNAL:

then called somewhere in the program

CALL READ(inAfile, inAbuffer, 72, numAread):

Note: So that the external declarations for the callable operating
system procedures won't have to be entered into each source
program, there is a Tandem-supplied file containing all of the
external declarations for the callable procedures.

This file is designated -

$SYSTEM.SYSTEM.EXTDECS

and can be invoked using the compiler SOURCE command

2.11-9

Procedure Body

?SOURCE $SYSTEM.SYSTEM.EXTDECS

which compiles the external declarations for all of the
operation system callable procedures into the application
program

Or a particular external declaration can be selected using the
SOURCE command and specifying the operating system procedure
name:

?SOURCE $SYSTEM.SYSTEM.EXTDECS(READ)

compiles the external declaration for the READ procedure
into the application program.

FORWARD is used if the actual procedure declaration (having the actual
body) is to be found further down in the source program. This is
necessary so that a procedure can call another procedure that has not
yet been actually declared. This is desirable for a number of
reasons:

* so that two procedures can call each other

* So that procedures can be ordered in a program in a manner that
enhances clarity or efficiency

An example:

PROC anyproc; FORWARD;

.Another example:

INT PROC first (pl, p2);
INT pl, p2;
FORWARD;

PROC second;

BEGIN

INT local"int; .
local"int := first(3,6);

END;

INT PROC first (pl, p2);
INT pl, p2;

BEGIN

RETURN pl + p2;
END;

2.11-10

local data declaration •

call to "first" procedure.

actual body of "first".

Procedure Parameters

Each procedure parameter must be assigned a <formal parameter name>
and be described in the <parameter specification>.

<formal parameter names>

The formal parameter names provide local identifiers so that
parameters can be referenced within the procedure body. A formal
parameter assumes the value of the actual (i.e., calling) parameter
when the procedure is invoked. The formal parameter names have
meaning only within the body of a procedure, so can duplicate global
identifiers.

In the preceding example, the formal parameters are "array" and
"limit". The actual variables are "buffer" and "length".

<parameter specifications>

This part of the procedure heading describes each parameter (as to its
type) and indicates whether a parameter is to be passed to the
procedure by value or by reference:

<param type> [. <formal parameter name> } , .••

<parm type>

Two classes of <parm type> are permitted - data variables and
procedures:

PROC myAproc (intAparam, int32Aparam, stringAparam, fixedAparam,
procAparam, sAprocAparam);

INT intAparam; integer parameter.
INT(32) int32Aparam; double integer parameter.
STRING stringAparam; string parameter.
FIXED(3) fixedAparam; fixed parameter.
PROC procAparam; procedure parameter.
STRING PROC sAprocAparam; type proc parameter.

An identifier assigned to a <formal parameter> is treated as the
specified <parm type> within the body of the procedure.

For example:

PROC p (a,b,c);
INT a;
PROC b;
INT PROC c;

"a" is specified as <parm type> INT, "b" is specified as <parm
type> PROC, "c" is specified as <parm type> INT PROC (function
procedure).

2.11-11

Procedure Parameters

When used in the body of the procedure

BEGIN
INT n;

n : = a;

"a" is treated as a variable with a data typE? of INT. The
value that a represents is stored into the local variable
"n".

CALL b;

"b" is treated as a procedure with the name of "b". The
actual procedure that "b" represents is invoked.

n : = c;

"c" is treated as an type INT function procedure.
actual procedure that "c" represents is invoked.
value that it returns is stored into "n".

The
The

END; of "p"

Notes:

1. Multiple element variables (i.e., arrays) must be passed by
reference if more than a single element is to be accessed.

2. Procedures are passed by value. Any parameters of a passed
procedure are treated as type INT by value.

3. Read-only array variables cannot be passed as parameters.

4. The <fpoint> of a FIXED variable passed as reference parameter
must match the <fpoint> value in the parameter specification.
If they do not match NO scaling is performed and the compiler
issues a warning message; statements within the procedure body
treat the variable as though is has the <fpoint> specified in
the parameter specification.

5. FIXED operands passed as value parameters are scaled up or
down as necessary to match the <fpoint> specified in the
parameter specification. If the <fpoint> value of an operand
'passed as a parameter is greater than that of the <fpoint>
specified in the parameter specification, the internal
representation of the operand will be scaled down and
precision will be lost.

6. A special form of <parm type> for FIXED parameters is
permitted. It is FIXED(*). This form permits a parameter
having any <fpoint> value to be passed without having the
compiler emitting instructions to scale the operand. Within

2.11-12

Procedure Parameters

the procedure body, the parameter will be treated as though is
has an <fpoint> of zero.

7. INT, INT(32), and FIXED variables can be passed for STRING
reference parameters. The compiler will emit code to convert
the word address to a byte address.

Para.meter Area

Parameters are passed to a procedure in the data area preceding its
local data area. Twenty-nine words are available in this area for
parameter passing. INT and STRING value parameters use one word each,
INT(32) value parameters use two words each, FIXED value parameters
use four words each. All reference parameters use one word each.

PARAMETER AREA

CODE

PROC a

CALL z(c,d,e);

PROCz

{

PUT HERE WHEN THE {
CALL STATEMENT IS
EXECUTED

DATA

PROC z's

Ll-3]

LOCAL L[1 I
DATA

MORE SPECIFICALLY FOR
PROC z(c, d, e);

I I I
I I I

' I I I ,-,-------- c __...---:
'-..!.-----· d -', ___________ ..,.

'----• e

LI -51

L[--41

L[31

2.11-13

Procedure Parameters

INT, INT(32), STRING, and FIXED Value Parameters

If the indirection symbol is absent, a VALUE parameter is indicated.
The parameter is treated as an expression and the value that it
represents is passed to the procedure in the parameter area (and
statements within the procedure body access the parameter value
location directly) •

Note: A value parameter can be used as working space within the body
of the procedure without affecting the actual variable(s) used
to generate the value for that parameter.

Examples of value parameters:

INT varyl := 1, vary2; ! data declaration.

PROC someAproc (firstAone, secondAone);
INT firstAone; value parameter.
INT .secondAone; ! reference parameter.

BEGIN

END;

When :invoking a procedure, the names of variables can be used for
value parameters:

CALL someAproc(varyl, vary2);

The value represented by "varyl" is assigned to "firstAone".

An expression can be used as a value parameter:

CALL sorneAproc(2 * varyl, vary2);

the value assigned "firstAone" is 2 times "varyl".

Another form of expression used as a value parameter:

CALL someAproc(IF vary2 > 0 THEN 1 ELSE 2 'varyl);

the value assigned "firstAone" is conditional, dependent on the
value of "vary2".

A function procedure or subprocedure can be used as a value parameter:

CALL someAproc(findAlast,vary2);

"findAlast" is called and executed, its value is then assigned
to "firstAone".

2.11-14

Procedure Parameters

Note: An anomaly exists when passing and referencing STRING value
parameters. The compiler converts the STRING parameter to an
integer value (i.e., <param>.<0:7> = 0, <param>.<8:15> =
parameter). When the parameter is referenced in the procedure
body, it is again treated as a STRING variable (i.e.,
<param>.<0:7>). This results in the value of the STRING
parameter being lost. Therefore, if STRING value parameters
are used, the STRING value should be passed in the form

<expression> '<<' 8

which shifts the significant portion of the STRING value
into <param>.<0:7>.

INT, INT(32), STRING, and FIXED Reference Parameters

If the indirection symbol is present, a REFERENCE parameter is
indicated. The 'G' [0] relative address of the variable is put in the
parameter area (and statements within the procedure body access the
variable indirectly through the parameter location). Values can be
stored in the actual variables represented by reference parameters.

An example:

INT array [0:9]; ! data declaration.

PROC someAproc(firstAone, secondAone);
I NT f i r st A one ,·

.secondAone;

BEGIN
.

secondAone[S] := O;

END;

then "someAproc" is invoked as follows:

CALL someAproc(varyl, array[3]);

puts the value 0 into "array[8]".

A constant, representing a 'G' [0] relative address, can be passed as a
reference parameter (the compiler will issue a warning message):

CALL someAproc(varyl, 10);

puts the value 0 into 'G' [15]

A function procedure or subprocedure that returns a 'G' [0] relative
address can be passed as a reference parameter (the compiler will
issue a warning message):

2.11-15

Procedure Parameters

For example

STRING .array[0:72] :="
.outAbuffer[0:72];

INT PROC findAstart (buffer);
STRING .buffer;

BEGIN

INT start;

VERSION 1 ", ! global declaration
global declaration

SCAN buffer WHILE " " -> start;
RETURN start;

END;

Another procedure is declared as follows:

PROC format~line(format);
STRING .format; ! reference parameter.

BEGIN

outAbuffer ':=' "HEADER " & format FOR 10;

END;

moves the string "HEADER" into "out~buffer", followed by ten
bytes starting from the address represented by "format".

Then "formatAline" is invoked as follows:

CALL formatAline(find~start(array));

which results in the global array "out~buffer" containing

"HEADER VERSION 1 "

2.11-16

VALUE VERSUS REFERENCE PARAMETERS

INT a:= 2,b;

a

b

PROC x (y, z);

INT y, ! value parameter

. z; ! reference parameter

BEGIN

z: = y * 3;

THEN

CALL x (a, b);

y

,,,,..---------
' __ _i ________ ...,

f I z I .
l •

z:=y*3

(6) : = (2) * 3

"copy" of a

to b

USING A VALUE PARAMETER AS LOCAL STORAGE

y: = 100;

I
I
\ y ._ _________ ..,.

G[10]

G (111

G[10]

G [11]

L[-4]

L[-3]

Procedure Parameters

2.11-17

Procedure Parameters

<type> PROC Value Parameters

A procedure can be specified as a <formal parameter>. The identifier
associated with a <type> PROC <formal parameter> is treated as a
procedure name within the procedure body.

For example:

PROC z (pname) ;
PROC pname;

BEGIN

CALL pname;

invokes the procedure represented by "pname"
END;

The actual procedure passed is invoked at the time of the call

PROC a; ! procedure declaration
BEGIN

END;

PROC b;
BEGIN

END;

procedure declaration

'11hen

CALL z (a) ;

"z" executing is equivalent to

BEGIN

CALL a;

procedure "a" is invoked

OR

CALL z(b);

"z" executing is equivalent to

BEGIN

CALL b;

procedure "b" is invoked

2.11-18

Procedure Parameters

If the actual procedure(s) to be passed, themselves have parameters,
the programmer must be certain that all parameters are supplied (the
compiler cannot check). These parameters are treated as type INT
value parameters.

For example:

PROC c (g,h,i)
INT g,h,i;

BEGIN

END;

In this case, a procedure that would be passed procedure "c" as a PROC
parameter, must pass three parameters to the proced~re it invokes:

PROC y(pname);
PROC pname;

BEGIN
INT pl,p2,p3;

CALL pname{pl,p2,p3);

The parameters - "pl", "p2", and "p3" - are passed to the
procedure represented by "pname" as type INT value
parameters.

If the actual procedure to be invoked has reference parameters, the
parameters must be preceded by an at "@" symbol in the call:

PROC d (j , k , 1) ;
INT . j , . k, .1;

BEGIN

END;

reference parameters

In this case, a procedure that calls "d" must be written as follows:

PROC x(pname);
PROC pname;

BEGIN
INT pl,p2,p3;

CALL pname(@pl,@p2,@p3};

passes the 'G' [0] relative addresses of the parameters -
"pl", "p2", and "p3" - to the procedure represented by
"pname".

END;

2.11-19

SUBPROCEDURE DECLARATION

Functionally, a subprocedure is quite similiar to a procedure. That
is, a subprocedure is a contiguous block of machine instructions
called (with parameters) to perform a specific operation.

Some characteristics of subprocedures are:

*

*

*

*

*

*

*

Subprocedures are invoked and exited faster than procedures.

Like procedures, the calling environment is saved when the
subprocedure is called and restored when the subprocedure finishes
(permitting recursive subprocedures).

Function subprocedures can be written that return a value to the
subprocedure name when used in an expression.

Variables, constants, expressions, and procedures can be passed as
parameters.

Sublocal variables are known only to the subprocedure and occupy
space only while the subprocedure is active.

A subprocedure's initialized local variables are initialized each
time the subprocedure is entered.

All items that can be declared globally (except procedures) can be
declared sublocally (i.e., within a subprocedure).

Because subprocedures can directly access the procedure's local
variables and are entered and exited faster than procedures, they are
typically used when a specific operation is needed at various points
within a particular procedure body. (If such an operation is needed
throughout a program, a procedure must be used.)

2.12-1

SUBPROCEDURE DECLARATION

The general form of a subprocedure declaration is

subprocedure heading: gives the subprocedure a name and lists and
describes any parameters

subprocedure body: contains sublocal declarations (optional)
and statements

subprocedure heading:

<type>] SUBPROC <name>

or

<type>] SUBPROC <name> (<formal parameter name> , •• 41

<parameter specifications>

subprocedure body:

BEGIN

[sublocal declaration

sublocal declaration

<statement>] ;]

<statement>

END

or
FORWARD

2.12-2

Subprocedure Heading

The subprocedure heading is like a procedure heading: it assigns an
identifier to the subprocedure, lists and describes any formal
parameters, and optionally assigns the subprocedure a type.

There are two forms of a subprocedure heading: one for subprocedures
without parameters; one for subprocedures having parameters.

The forms are:

! without parameters.

<type>] SUBPROC <name>

! with parameters.

<type>] SUBPROC <name> (<formal parameter name> , ...
<parameter specifications>

where

<type>, if included, means that the subprocedure is function.
It is one of

{ INT }
{ INT(32) }
{ STRING }
{ FIXED [(<fpoint>)] }

<name> is the identifier assigned to the subprocedure

<formal parameter name> is the identifier that is used within
the subprocedure body to reference the parameter. The formal
parameter has the value of the actual parameter when the
subprocedure is invoked

<parameter specifications> describe each <formal parameter> by
<type> and whether it is a "value" or a "referenc~" parameter.
<parameter specifications> is of the form

<param type> { [.] <formal parameter name>} , ••.

where

-->

2.12-3

Subprocedure Heading

<parm type> is

{ INT
{ INT (3 2)
{ STRING
{ FIXED [(<fpoint>
{ [(*
{ PROC
{ <type> PROC

}
}
}
}
}
} (by value only)
} (by value only)

is the indirection symbol.

If absent, a VALUE parameter is indicated. The
parameter is evaluated and the value that it
represents is passed to the subprocedure in the
parameter area (statements within the subprocedure
body access a copy of the actual parameter)

If present, a REFERENCE parameter is indicated. The
'G' [0] relative address of the variable is put in the
parameter area (and statements within the
subprocedure body access the variable indirectly
through the parameter location). If the parameter is
type STRING, then a byte address is passed.
Otherwise, a word address is passed

examples

<type>

SUBPROC aproc;

INT SUBPROC find~last (array,
MAIN, RESIDENT;

INT limit;
STRING .array;

limit) ! function with params.
attributes.
parameter specifications.

value.
reference.

The functions and characteristics of a subprocedure assigned a type
are identical to that of a function procedure. That is, if a
subprocedure is assigned a type, it is a function subprocedure and
its <name> can be used in an expression. A value of the specified
type (i.e., INT, INT(32), or STRING) is returned in place of the
subprocedure <name> through use of a RETURN statement.

2.12-4

Subprocedure Heading

<name>

The functions and characteristics of the subprocedure <name> are
identical to the procedure <name>. That is, <name> is an identifier
used to name the subprocedure. <name> is used when invoking the
subprocedure with a CALL statement or, if the subprocedure is a
function, when it is referenced in an expression.

<formal parameters>

The functions and characteristics of a subprocedure's formal
parameters are similiar to a procedure's. They provide sublocal
identifiers so that the subprocedure can be written without regard for
actual variable names. The formal parameters are then used in
expressions in the subprocedure body (global and local variables can
also be used if desired). The formal parameters assume the value of
the actual (i.e., calling) parameters when the subprocedure is
invoked. The formal parameters have meaning only within the body of a
subprocedure, therefore they can duplicate global and local
identifiers.

<parameter specifications>

The functions and characteristics of <parameter specifications> are
identical to the corresponding part in the <procedure heading>. That
is, this part of the subprocedure head describes each parameter (as to
its <parm type>) and indicates whether a parameter is to be passed to
the subprocedure by value or by reference.

Notes:

1. Multiple element variables (i.e., arrays) must be passed by
reference if more than element [0] is to be accessed.

2. Procedure names must be passed by value. Any parameters of a
passed procedure are treated as type INT by value.

3. A value parameter can be used as working space within the body
of a subprocedure without affecting the actual variab~e(s) used
to generate the value for that parameter.

4. A parameter must be declared by reference if a value is to be
stored into the actual variable that the parameter represents.

5. Read-only array variables cannot be passed as parameters.

6. The <fpoint> of a FIXED variable passed as reference parameter
must match the <fpoint> value in the parameter specification.
If they do not match NO scaling is performed and the compiler
issues a warning message; statements within the subprocedure
body treat the variable as though is has the <fpoint>
specified in the parameter specification.

2.12-5

Subprocedure Heading

7. FIXED operands passed as value parameters are scaled up or down
as necessary to match the <fpoint> specified in the parameter
specification. If the <fpoint> value of an operand passed as
a parameter is greater than that of the <fpoint> specified in
the parameter specification, the internal representation of
the operand will be scaled down and precision will be lost.

8. A special form of <parm type> for FIXED parameters is
permitted. It is FIXED(*). This form permits a parameter
having any <fpoint> value to be passed without having the
compiler emitting instructions to scale the operand. Within
the subprocedure body, the parameter will be treated as though
is has an <fpoint> of zero.

9. INT, INT(32), and FIXED variables can be passed for STRING
reference parameters. The compiler will emit code to convert
the word address to a byte address.

10. If STRING value parameters are used, the STRING value should be
passed in the form

<expression> '<<' 8

2.12-6

Subprocedure Body

The subprocedure body is like a procedure body; it contains statements
that are executed when the subprocedure is called. The body can
contain data, define, literal, and entry declarations as well as any
T/TAL statements.

Statements in a subprocedure are executed until either the last
statement is executed or a RETURN statement is encountered. Program
execution then returns following the point where the subprocedure was
invoked.

There is also a special form of the body to tell the compiler that the
actual subprocedure body will be found further along in the
compilation (FORWARD).

The general form of the subprocedure body is

BEGIN

<sublocal declaration>

<sublocal declaration>

<statement>] ;]

<statement>

END

or
FORWARD

where

<sublocal declaration> is data, LITERAL, DEFINE, or ENTRY

FORWARD indicates that the actual subprocedure declaration
is located later in the source program

example

BEGIN
array := " ";
array [1] ': =' array FOR length - 1;

END;

body.

2.12-7

Subprocedure Body

Note: The total storage available for a subprocedure's sublocal
variables and parameters is limited to 31 words. Indirect
arrays cannot be declared in a subprocedure.

Any item declared sublocally in the subprocedure body is known only to
the subprocedure. If an item is declared sublocally that has the same
name as a global item, the sublocally declared item is used within the
subprocedure body.

Like a procedure, the purpose of declaring a subprocedure with the
word FORWARD in place of the body, is to inform the compiler that a
particular identifier is a subprocedure name and specify what
parameters are required to call that subprocedure. This is necessary
so that a subprocedure can call another subprocedure that has not yet
been actually declared (and so two subprocedures can call each other).

2.12-8

ENTRY DECLARATION

An ENTRY declaration is used to specify additional entry points (i.e.,
start of execution) into a procedure or subprocedure body. When an
ENTRY declaration is used to call a procedure or subprocedure, it is
treated as though it is the actual name (i.e., the formal parameters
and specifications apply to the <entry point name>).

The general form of an ENTRY declaration is:

ENTRY <entry point name> ' ...

where

<entry point name> is a label in the procedure or
subprocedure body that indicates an entry point and an
identifier used when invoking the procedure or subprocedure

more than one entry point can be specified per declaration
(separated by commas ",")

example

ENTRY first~entry, second~entry;

For example, a subprocedure could be written with multiple entry
points:

SUBPROC blanks (array, length) ;
STRING .array;
INT length;

BEGIN

ENTRY points, dashes;

array := " ";
GOTO spread;

points:

array:=".";
GOTO spread;

dashes:

array • = "-". • I

spread: array[1
END;

':=' array FOR length - l;

2.13-1

ENTRY DECLARATION

then could be called in the following forms:

CALL blanks (buffer , num~chars) ;

or

CALL points (inarray , limit) ;

or

CALL dashes (outarray, 71);

execution begins with
first statement..

execution begins with
"po in ts:".

execution begins with
"dashes:".

If an entry point to a procedure (or subprocedure) body is to be
called prior to where the actual body exists, the entry point must be
declared FORWARD. This is done by substituting the entry point name
for the procedure or subprocedure name in a FORWARD declaration.

Using the example entry point "points", the following FOHWARD
declaration would be made:

SUBPROC points(array, length) ;
STRING .array;
INT length;

FORWARD;

2.13-2

BIT FUNCTIONS

T/TAL provides the following bit-level operations:

* Bit Extraction (one word quantities only)

* Bit Deposit (one word quantities only)

* Bit Shift (one or two word quantities)

Using bit extraction and bit deposit permits operations on portions of
words rather than just an entire word.

2.14-1

Bit Extraction

Bit extraction permits access to a portion of a word. The result of
the extraction is treated as though it is right justified with the
unspecified left bits set to O.

The general form for bit extraction is:

<primary> • "<" <left bit> [: <right bit>] ">"

where

<primary> is a constant, variable, function procedure,
<arithmetic expression> in parentheses, <assignment
statement> in parentheses, standard function, or a bit
function. (The <primary> is not altered by bit extraction.)

<left bit> is an integer constant specifying the left bit of
the bit field

<right bit> is an integer constant specifying the right bit of
the bit field

example

some"vary.<8:11> accesses bits 8 through 11.

Note:

Because of the way the hardware handles STRING variables,
the left bit of a STRING variable should be considered
bit 8 when using bit extraction.

example

STRING str"vary;

IF str"vary.<8> = 0 THEN

INT old := -1, new := O;

.
• • I

data declaration.

checks leftmost bit of
<st.r"vary>.

! data declaration.

then extracting bits 8 and 9 and assigning the result

new := old.<8:9>;

results in

2.14-2

Bit Extraction

1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

"old" = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1.
\ I
T

I
/-\

"new" = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3.

bit extraction can be used in a conditional expression:

IF someAword.<0:7> = "A" THEN .•• :

checks bits 0 through 7 for the ASCII character "A".

or

IF someAword.<15> THEN .•• :

checks bit 15 of "someAword" for non-zero value.

Bit extraction can be used on array elements:

vary:= someAarray[8].<8:15>:

accesses right half of "someAarray[8]".

Bit extraction can be used on expressions:

or

result := {firstAnum + secondAnum) .<4:7>:

"firstAnum" and "secondAnum" are added together, bits 4 through
7 of the result are assigned to "result".

IF {result := {firstAnum + secondAnum) .<4:7>) > 0 THEN • • • I

this is the same as the previous example except that the value
assigned to "result" is also checked for being greater than b.

2.14-3

Bit Deposit

Bit deposit provides a method to assign a value to a specific portion
of a word. Values are assigned through use of an assignment statement.

The general form for bit deposit is:

is

<variable> "<" <left bit> [: <right bit>] ">" := <expression>

where

<left bit> is an integer constant specifying the left bit of
the bit field

<right bit> is an integer constant specifying the right bit of
the bit field

:= is the assignment operator

example

some"vary.<8:11> := %17: sets bits 8 thru 11 to l's

Note

Because of the way the hardware handles STRING variables,
the left bit of a STRING variable should be considered
bit 8 when using bit deposit.

example

STRING str"vary:
str"vary.<8> := O:

INT old := -1:

represented as

0 1 2 3 4

"old" = 1 1 1 1 1

5 6

1 1

1 l
7 8 9 0 1

1 1 1 1 1

1
2

1

data declaration.
sets leftmost bit of
<str "vary> to 0 ..

1 1 1
.3 4 5

1 1 1 -1 ..

then assigning the value 0 to bits 10 and 11 to "old"

old.<10:11> := 0:

results in

"old" = 1 1 1 1 1 1 1 1 1 1 O O 1 1 1 1 %177717.

2.14-4

Bit Shift

Bits, within one or two word elements, can be shifted a specified
number of positions to the left or right by applying a shift operator.

The general form for using shift operators is:

<primary> <shift op> <number of positions>

where

<primary> is a constant, variable, function procedure,
<arithmetic expression> in parentheses, <assignment
statement> in parentheses, standard function, or a bit
function. (The <primary> is not altered by bit shift.)

<shift op> is

<< signed left shift (sign bit not changed, O's filled
from right)

'<<' unsigned left shift (through bit 0, O's filled
from right)

>> signed right shift (sign bit propagated)

'>>' unsigned right shift (from bit 0, O's filled
from left)

<number of positions> is a <primary> indicating the number
of positions to be shifted

example

new := old >> 3; arithmetic right shift,
three positions.

The type of the <primary> determines whether the shift operates on one
or two words.

An example of signed left shift versus unsigned left shift:

INT old := %33333, new; ! data declaration.

is represented as

1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

"old" = 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 %33333.

2.14-5

Bit Shift

then performing a signed left shift two positions

new := old << 2;

results in

"new" = 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 %55554.

or performing an unsigned left shift two positions

new :=old '<<' 2;

results in

"new" = 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 %155554.

An example of signed right shift versus unsigned right shift:

INT old := -256, new; ! data declaration.

is represented as

1 l 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

"old" = 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 %177400.

then performing a signed right shift five positions

new := old >> 5;

results in

"new" = 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 %177770.

or performing an unsigned right shift five positions

new :=old '>>' 5;

results in

"new" = 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 %3770.

Bit shifts can be used on any <primary> including partial word
quantities:

INT first, second := -1; ! data declaration.

then extracting bits 8 through 15 and performing an signed left shift
three positions

first := second.<8:15> << 3;

2.14-6

Bit Shift

results in

"first" = 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 O ! %3770.

<number of positions> can be any <primary> such as an expression.

first := second.<8:15> '>>' (2 * someAvary);

the number of positions shifted is the value of 2 times
"someAvary".

or a function procedure

INT PROC numAbits;
BEGIN

RETURN varyl + vary2;
END;

first := second.<8:15> << numAbits;

the number of positions shifted is determined by the value
returned from "numAbits".

2.14-7

EXPRESSIONS

An expression is a sequence of operations upon constants and variables
that can be evaluated to a single value or state. Expressions are
used in certain program components (those components, in turn, can be
used in expressions). Two types of expressions are used in T/TAL;
arithmetic expressions (evaluates to a value) and conditional
expressions (evaluates to a state):

I

<expression> is

<arithmetic expression>

<conditional expression>

Arithmetic expressions are used to compute values that are assigned to
variables, to index array elements, to assign values to value
parameters when invoking procedures and subprocedures, and to supply
values for certain parts of statements.

A typical use of an arithmetic expression is in an assignment
statement:

INT result, variable; data declaration.

result := 3 * variable I 2;

the result of the expression (3 times "variable" divided by 2)
is stored in "result".

Conditional expressions are used in statements to make decisions
concerning the path of program execution.

A typical use of a conditional expression is in an IF statement:

IF result> variable THEN .•. ;

the conditional expression ("result > variable") is
evaluated. If the expression is true the statement following
THEN is executed.

Three hardware indicators are subject to change as the result of the
instructions executed to evaluate an arithmetic or conditional
expression. Th~y are:

* Condition Code Indicator (CC) -- generally, indicates if the result
of an operation was a negative value, zero, or a positive value.
When a value is assigned to a variable through use of an assignment
statement, the condition code reflects the new value in the
variable. The condition code indicator can be checked by using one
of the relational operators "< = > <= >= <>" in a conditional
expression.

* Carry -- indicates that a carry out of the high order bit position
occurred. The carry indicator can be checked by using the standard
function "$CARRY" in a conditional expression.

2.15-1

EXPRESSIONS

* Overflow -- indicates that the result of an operation could not be
represented in the available number of bits in the data format.
The overflow indication can be checked using the standard function
"$OVERFLOW" in a conditional expression.

An Overflow condition causes an interrupt to the operating system
Overflow trap handler.

If a hardware indicator is to be checked, it must be done before
another arithmetic operation is performed.

2.15-2

Arithmetic Expressions

An arithmetic expression is a rule for computing a single numeric
value of a specific data type. More than one type of data is not
permitted in an expression unless a type transfer function is used.
There are four (interchangeable) forms of arithmetic expression:

* General form
* Assignment form
* IF THEN form
* CASE form

The general form of an arithmetic expression is:

[+ I -] <primary> [{ <arith op> <primary> } •••]

where

+ - are unary plus and minus indicating the sign of the
leftmost <primary>. If omitted, plus is assumed

<primary> is one or more syntactic elements that represents a
single value. <primary> has several forms, they are:

<constant>

<variable>

function procedure

standard function

bit function

(<arithmetic expression>)

<arith op> - arithmetic operator - is:

{ + } signed add
{ } signed subtract
{ * } signed multiply
{ I } signed divide
{ }
{ '+' } unsigned add
{ ,_, } unsigned subtract
{ I* I } unsigned multiply
{ I/' } unsigned divide
{ '\' } unsigned modulo divide (provides remainder)
{ }
{ LOR } logical or
{ LAND } logical and
{ XOR } exclusive or

-->

2.15-3

Arithmetic Expressions

examples

varyl
- varyl
- varyl * 2
varyl + vary2
varyl * (-vary2)

PRIMARY

<primary> only form.
- <primary> form.
+- <primary> <arith op> <primary> form.
<primary> <arith op> <primary> form.
<primary> <arith op> <primary> form - the
right <primary> is an arithmetic
expression in parentheses.

A <primary> is one or more syntactic elements that represent a single
value. Some examples of <primarys> are

<primary>

<constant>

<variable>

function procedure

standard function

bit function

(<arithmetic expression>)

example

10 decimal integer constant.

vary[lO] variable with index.

findftlast (buffer, length)

$MIN (a,b)

vary[l0].<8:15>

(vary[lO] + 10) in parentheses.

An <arithmetic expression> in parentheses is treated as a single
entity. This is sometimes used when an arithmetic expression contains
of more then one <primary>. For example

2 * (3 + 4)

The <primary> indicated by " (3 + 4)" is evaluated. The result
is then multiplied by "2". (If the parentheses were omitted,
the multiplication would be performed first, then the result of
the multiplication would be added to "4".)

ARITHMETIC OPERATORS

The arithmetic operators (i.e., add, subtract, multiply, divide, and
the logical operators) are combined with <primarys> to form
arithmetic expressions. Three kinds of arithmetic operations are
provided: signed arithmetic on INT, INT(32), and FIXED quantities;
unsigned arithmetic on INT quantities; and logical operations on INT
quantities. Note that signed arithmetic, unsigned arithmetic, and

2.15-4

Arithmetic Expressions

logical operations can be mixed in an expression (provided that the
proper data types are used).

Note: Byte operands are treated as the least significant half (i.e.,
word.<8:15>) of an INT operand (the most significant half is
set to zero). Normal INT signed or unsigned arithmetic or
logical operations are performed as indicated.

BYTE OPERANDS

0

Signed Arithmetic

A BYTE IS TREATED AS THE LOWER ORDER POSITION IN A 16-BIT WORD:

0

BYTE I I I I I I I I I

I I
7 8 15

Signed arithmetic is indicated by using the arithmetic operators not
surrounded by apostrophes"'" (legal operand types are indicated):

<arith op> legal operations

+ signed add: INT + INT, INT (3 2) + INT (3 2) , and
FIXED + FIXED

signed subtract: INT - INT, INT (3 2) - INT (3 2) , and
FIXED - FIXED

* signed multiply: INT * INT and FIXED * FIXED
I signed divide: INT / INT and FIXED I FIXED

If the result of a signed operation can not be represented within the
number of bits indicated by the operand type (i.e., 15 bits for an
INT, 31 bits for an INT(32), 63 bits for a FIXED), an Overflow occurs.
Overflow also occurs if a divide operation is attempted with divisor
of 0 (zero).

Some examples of signed arithmetic:

INT integerl, integer2;
INT(32) double!, double2;
STRING bytel, byte2;

integer! * integer2 + integer!;
integer2 I integerl;
double! + double2;

bytel + byte2
integer! I bytel

data declarations.

2.15-5

Arithmetic Expressions

STRING variables treated as right half of INT variables.

these are invalid:

integer! + double!

requires type transfer.

double! / double2

INT(32) divide not permitted.

double! * double!

INT(32) multiply not permitted.

Unsigned Arithmetic

Unsigned arithmetic is indicated by using the arithmetic operators
surrounded by apostrophes"'" (legal operand types are indicated):

<arith op> legal operations

I+ I unsigned add: INT '+' INT only
unsigned subtract: INT ' -- ' INT only

I* I unsigned multiply: INT '*' INT only (INT (3 2) result)
I/' unsigned divide: INT (3 2) I/' INT only (INT result)
'\' unsigned modulo divide: INT (3 2) '\' INT only (INT result)

(returns remainder)

The results obtained from a unsigned add and subtract are identical to
that obtained by signed add and subtract except that unsigned add and
subtract do not set the Overflow indicator. The 16-bit result, the
condition code setting, and the Carry indicator setting are the same.
Unsigned divide ('/' or '\'),however, sets the Overflow indicator if
the quotient cannot be represented in 16 bits.

Typically, unsigned arithmetic is used when operating with quantities
whose values ranges from 0 to 65,535. This is particularly useful
when dealing with pointer variables because they contain 16-bit
addresses.

Some examples of unsigned arithmetic (using the preceding data
declarations):

integer! '+' integer2
integer! ' ' bytel
integer! '*' integer2

provides INT(32) product.

double! '\' integer!

provides INT remainder.

2.15-6

Arithmetic Expressions

these are invalid:

integerl '\' integer2

requires type transfer.

doublel '+' double2

unsigned INT{32) operations not permitted {except left side of
modulo divide).

integerl '*' integer2 '+' integerl

unsigned multiply provides an INT{32) result and type mixing is
not permitted {type transfer could be used)

Logical Operations

The logical operations {i.e., LOR, LAND, and XOR) apply to INT
quantities only.

An example of LOR:

STRING asciiAchar := "A": data declaration.

asciiAchar LOR %40

logically "or" %40 to value of "asciiAchar".

is equivalent to

"asciiA char" 0 1 0 0 0 0 0 1 big "A".
LOR %40 0 0 1 0 0 0 0 0

results in 0 1 1 0 0 0 0 1 little "a".

An example of LAND:

STRING ' 'A char Ha II: asc11 := data declaration.

' 'A char LAND %337 asc11

logically "and" %337 to value of "asciiAchar".

is equivalent to

"asciiA char" 0 1 1 0 0 0 0 1 little Ha II •

LAND %337 1 1 0 1 1 1 1 1

results in 0 1 0 0 0 0 0 1 big "A"•

An example of XOR:

2.15-7

Arithmetic Expressions

INT wordl : = %052525, word2 : = %031463;
! data declaration.

wordl XOR word2

is equivalent to

"wordl" 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 %052525.
XOR "word2" 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 %031463.

results in 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 %063146.

PRECEDENCE OF OPERATORS

To avoid ambiguity, arithmetic operations and bit functions are
performed according to a prec~dence. An operation can be given
precedence over other operations by enclosing it in parentheses. The
precedence is:

1. Bit extraction or deposit highest precedence.

2. Bit shift

3. multiply and divide operators (* I '*' '/' '\I

4. add and subtract operators (+
operations (LOR LAND XOR}

'+I I_ I and logical

Operations having equal precedence are performed from left to right:

a - b + c
I I I
-,- I

---I-result

Operations having highest precedence are performed first:

a + b * c
I I I
I I
-Tresult

Operations can be enclosed in parentheses, giving them a higher
precedence than operations outside of parentheses:

(a + b} * c
I I I
1- I

result

Left to right operation occurs until a higher precedence operator is
encountered:

2.15-8

Arithmetic Expressions

a - b + c * d
I I I I -1- -1-

result

HOW STRING ELEMENTS ARE TREATED IN EXPRESSIONS

When a string element is used in an arithmetic expression, it is
treated as the right-half of an INT variable with the left half set to
zeros:

For example, a string variable is stored in memory as follows:

STRING byte := "W"; data declaration.

is represented as

1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

"byte" = 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 ! "W" (%127).

then when used in an arithmetic expression, "byte" is treated as

0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 ! %000127.

HOW FIXED OPERANDS ARE SCALED IN EXPRESSIONS

FIXED variables and constants used in FIXED calculations need not have
the same <fpoint> value. Instead, the compiler emits instruction$ to
scale the operands when addition or subtraction is performed or, when
multiplication or division is performed, determines a new <fpoint>
value for the result.

For addition or subtraction:

So that precision is not lost, the operand having smaller <fpoint>
value is scaled up to match the larger <fpoint> value. The
<fpoint> value of the result of an addition or subtraction is the
same as the larger <fpoint> value. For example, performing the
addition

3.00SF + 6.0lF

causes the right operand to be scaled up by a factor of one. So
that, in effect, the following calculation is actually made:

3.00SF + 6.0lOF

and the result is 9.015F. Keep in mind, however, that the result
would be scaled down if assigned to a variable with an <fpoint>
less than 3.

2.15-9

Arithmetic Expressions

Per multiplication:

The operands are not scaled when a multiplication is performed.
However, the <fpoint> value of the result of a multiplication is
the sum of the <fpoint> values of the two operands. For example,
performing the multiplication

3.091F * 2.56F ! FIXED(3) * FIXED(2)

results in the FIXED(S) value 7.91296F.

For division:

The operands are not scaled when a division is performed.
However, the <fpoint> value of the result is the difference of the
<fpoint> value of the dividend minus the <fpoint> value of the
divisor. For example, performing the division

4.0SF I 2.lOF FIXED(2) / FIXED(2)

results in the FIXED(O) value 1. Note that prec1s1on is lost.
Remember that integer division is actually being performed and the
internal representation of those two operands is actually

405 I 210

To retain precision when performing division with operands having
nonzero <fpoint> values, the <fpoint> value of the dividend should
be scaled up by a factor equal to the <fpoint> value of the
divisor. This can be accomplished by using the standard function
$SCALE. For example, using the same values as in the preceding
example:

$SCALE(4.05F,2) I 2.lOF

scales the dividend up by a factor of two. This is equivalent to
the expression

4.0SOOF I 2.lOF

the result of which is the FIXED(2) value l.92F.

The following example illustrates the scaling involved in evaluating
an expression containing FIXED operands having different <fpoint>
values. The example also shows how the result of an expression is
scaled to match the variable it is assigned to.

2.15-10

Arithmetic Expressions

FIXED a: data declarations.
FIXED (2) b:
FIXED(-1) c:

a := 2.0lSF * (b + c) :
I I I
I I
I I

up 3
I

<c> is scaled up by three to match ,
which is 2

I -1-
3 I

5
I 2 the result of the multiplication is an

implied <fpoint> of 5

down 5
a <---------1

the result of the expression is scaled
down by 5 to match <a>. Note that
precision is lost

HOW FUNCTION PROCEDURES ARE USED IN EXPRESSIONS

If a function procedure or subprocedure is used in an expression, it
is called and executed in the process of evaluating the expression:

LITERAL recordsAperAblock = 16: data declarations.
INT comAaccount = 123:
INT itemAnumber:

INT PROC blockAno acctAno):
INT acctAno:
BEGIN

RETURN acctAno * 2:
END:

Then "blockAno" is used in an expression and evaluated as shown:

blockAno (cornAaccount) * recordsAperAblock +
I I

BEGIN I
RETURN 123 * 2: I

END: I
I result is 246 I 16
I I
~~~~~~~~r_e_s_u_l_t~-i-s-3936 

i t em A n urn be r 
I 
I 
I 
I 
I 
I 
I 11 
I 

~~~~~~~~-.--r-e_s_u_l=--t--.-i-s~3~947 

2.15-11

Arithmetic Expressions: assignment form

The assignment form of arithmetic expression pe~mits an assignment
statement to be used as an arithmetic expression.

Its fo:rm is:

<variable> [• "<" <left bit> ">" [: "<" <right bit> ">"]]

:= <arithmetic expression>

whe:re

<variable> is a declared data variable with an optional bit
deposit field

:= is the assignment operator

<arithmetic expression> represents a value of the same type as
<variable>

The resultant value of this form of arithmetic expression is
the value of <variable> after the assignment

example

a := a + 1

This type of arithmetic expression is used when the value assigned to
a variable can also be used where an expression is required.

For example, the <index> used to indicate an offset from a variable
can be an arithmetic expression. A method to automatically reference
the next element in an array is

IF array[a := a + l] <> 0 THEN

"a := a + l" is an assignment statement that is used as an
arithmetic expression. Each time the IF statement is executed,
the next element of "array" is referenced.

2.15-12

Arithmetic Expressions: IF THEN Form

The IF •• THEN form of arithmetic expression permits a conditional
expression to select either of two arithmetic expressions.

Its form is:

IF <conditional expression> THEN <arithmetic expression>

ELSE <arithmetic expression>

where

<conditional expression> is evaluated to determine the
<arithmetic expression> to be computed.

example

IF length > 0 THEN 10 ELSE 20

If <conditional expression> is evaluated as being true, then the
<arithmetic expression> following THEN is computed. If false, the
<arithmetic expression> following ELSE is computed.

This type of arithmetic expression is typically used to select either
of two values to be assigned through use of an assignment statement.

For example

a := IF num = 10 THEN 20 ELSE 30:

If the variable "num" has the value of 10 then the value 20 is
assigned to "a", otherwise the value 30 is assigned.

a := IF flag THEN b ELSE c:

If the variable "flag" contains a nonzero value (true), the
value contained in the variable "b" is assigned, otherwise the
value in "c" is assigned.

If surrounded by parentheses, this form of <arithmetic expression> can
be mixed with the other form:

vary * index + (IF index > limit THEN vary * 2 ELSE vary * 3)

2.15-13

Arithmetic Expressions: CASE Form

The CASE form of arithmetic expression permits the value of one
arithmetic expression to select one expression from a list of
arithmetic expressions.

Its form is:

CASE <index> OF

BEGIN

<expression for index = 0>

<expression for index = l>

<expression for index = n>

[OTHERWISE <expression> ;
END

where

<index> is an arithmetic expression indicating which of the
list of arithmetic expressions is to be evaluated

OTHERWISE (which is optional) indicates an alternate
arithmetic expression to be evaluated if <index> does not
point to one of the expressions

example

CASE a + 2 OF
BEGIN

b;
c;
d;
OTHERWISE O;

END

A typical use of the case form of arithmetic expression would be to
select one of a number of values to be assigned through use of an
assignment statement.

For example:

2.15-14

Arithmetic Expressions: CASE Form

i : = CASE a OF
BEGIN

b;
c;
d;
OTHERWISE -1;

END;

If the value of the variable "a" is 0, the value of "b" is
assigned.

If the value of "a" is 1, the value of "c" is assigned.

If the value of "a" is 2, the value of "d" is assigned.

If "a" has any other value, the value of -1 is assigned.

2.15-15

Conditional Expressions

A conditional expression can evaluate the relationship between two
expressions or arrays, test an expression for a non-zero state, and/or
check hardware condition code settings. The result of a conditional
expression is a true (indicating that the tested condition was found)
or false state.

The form of a conditional expression is:

[NOT] <condition> [{ { AND OR [NOT] <condition> } ..•]

where

<condition> is one or more syntactic elements that represents
a single state. <condition> has four forms, they are:

<relation> ! tests hardware condition code.

<arithmetic expression>

<arithmetic expression> <relation> <arithmetic c=xpression>

(<conditional expression>)

array comparison ! see "Array Comparison".

where

<relation> is

{ < } signed less than
{ = } signed equal to
{ > } signed greater than
{ <= } signed less than or equal
{ >= } signed greater than or equal
{ <> } signed not equal
{ }
{ I (I } unsigned less than
{ I= I } unsigned equal
{ I) I } unsigned greater than
{ '<=' } unsigned less than or equal
{ I)= I } unsigned greater than or equal
{ I() I } unsigned not equal

NOT means that <condition> is tested for a false state

AND means both <conditions> must be true

OR means either <condition> can be true

-->

2.15-16

examples

a
NOT a
a OR b
a AND b
a AND NOT b OR c

Conditional Expressions

<condition> only form.
NOT <condition> only form.
<condition> OR <condition> form.
<condition> AND <condition> form.
<condition> AND [NOT] <condition> .•. form.

HOW CONDITIONAL EXPRESSIONS ARE EVALUATED

Conditional expressions are evaluated from left to right {according to
precedence of associated operators). <conditions> combined using OR
operators are evaluated until a condition is found true; other
associated "ored" <conditions> are not evaluated. <conditions>
combined using AND operators are evaluated until a condition is found
false; other associated "anded" <conditions> are not evaluated.

A numerical value is associated with the true and false states
resulting from the evaluation of a conditional expression. If a
conditional expression evaluates to a true state, a value of -1
(%177777) is produced; a conditional expression evaluating to a false
state produces a value of zero. The value can be used in an
arithmetic expression.

For example:

a := b OR c;

The conditional expression is "b OR c." If either "b" or "c" is
a nonzero value {true), the conditional expression evaluates to
a true state and a -1 is assigned to "a". If both "b" and "c"
are zero {false), the conditional expression evaluates to a
false state and a zero is assigned to "a".

CONDITIONS

A <condition> is one or more syntactic elements that represents a
single state. Some examples of <condition> are:

2.15-17

Conditional Expressions

<condition> example

<relation> < tests condition code.

<arithmetic expression> a + b

<arith exp> <relation> <arith exp> a + b <> c + d

(<conditional expression> (a + b <> c + d)

array comparison arrayl = array2 FOR 10

A <condition> consisting of only a <relation> is used to test the
hardware condition code indicator. For example, a common operation
after calling a file management procedure is to test the condition
code for a less-than state:

CALL READ(fnum,buffer,count);
IF< THEN •.•

The <condition>, indicated by the <relation> "<" is true if the
hardware condition code is set to CCL-

A <condition> consisting of a single <arithmetic expression> is used
to test the expression for a true state. For example,

INT a;

IF a THEN •••

The <condition> indicated by the <arithmetic expression> "a" is
true if the variable "a" contains a non-zero value.

A <condition> consisting of <arith exp> <relation> <arith exp> is used
to compare to the relative values of two expressions. For example,

INT a,b;

IF a = 10 THEN

The <condition> indicated by "a = 10" is true if the value of
"a" is decimal 10.

IF a <> b THEN .•

The <condition> indicated by "a <> b" is true if the value of
"a" is not the same as the value of "b".

A <conditional expression> in parentheses is treated as a single
entity. This is sometimes used when a conditional expression contains
of more then one <condition>. For example

2.15-18

Conditional Expressions

INT a,b;

IF NOT {b OR c) THEN ..

The <condition> indicated by "{b OR c)" is evaluated. Then the
"NOT" operator is applied. Therefore, the expression "NOT (b OR
c)" is true if both "b" and "c" are false. {This is equivalent
to "NOT b AND NOT c").

A <condition> that is an array comparison is used to compare the
contents of two arrays. Array comparison is described in this section
under the heading "Comparing Arrays".

CONDITIONAL OPERATORS

The conditional operators (i.e., <relation>, NOT, AND, and OR) are
combined with <conditions> to form conditional expressions. The
<relation> operators permit two expressions to be compared in either
of two ways: signed comparison on 16- or 32-bit expressions (i.e., INT
and INT{32)) and unsigned comparison on 16-bit expressions (i.e., INT
only) .

<relation> operators not surrounded by apostrophes"'" compare signed
quantities; those surrounded by apostrophes compare unsigned
quantities.

Note that type mixing is not permitted within conditional expressions,
but type transfer functions can be used.

Some examples:

INT neg := -255, pos := 256; data declaration.

is equivalent to

"neg"

"pos"

1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

then performing the signed comparison

neg < pos

%177401.

%000400.

results in a true state. But performing the unsigned comparison on
the full 16-bit quantity

neg '<' pos

results in a false state.

2.15-19

Conditional Expressions

some" int

the condition is true if "some"int" is a non-zero value ..

<

the condition is true if the hardware condition code setting is
less than.

first <= middle AND middle <= last

the condition is true if "middle" is in the range of "first" and
"last".

PRECEDENCE OF OPERATORS

To avoid ambiguity, conditional expressions are evaluated according to
a precedence. Precedence can be altered by use of parentheses. The
precedence is:

1. Evaluate <condition> highest precedence.

a. Evaluate <arithmetic expression>

b. <relation> operators

2. NOT (complement) operator

3. AND (conjunction) operator

4. OR (disjunction) operator ! lowest precedence.

Conditions having equal precedence are evaluated from left to right:

a OR b OR c
I I I -r- I

state

Conditions having precedence are evaluated first:

a OR b AND c
I I I
I I

I state

or

a OR b AND NOT c
I I I I
I I -I-
I

state

2.15-20

Conditional Expressions

Conditions can be enclosed in parentheses, causing them to be
evaluated before other conditions:

(a OR b) AND c
I I I
~ I

state

(a OR b) AND (c OR d AND e)
I I I I I
~ I

I
state

Conditions are evaluated from left to right until a higher precedence
condition is encountered:

a OR b AND c OR d AND e
I I I I I I -.......----

I state

USING CONDITIONAL EXPRESSIONS

There are some precautions to be taken when using conditional
expressions, especially in the nature of precedence of operations.

For example:

IF a := b = 0 THEN ..

evaluates the conditional expression "b = O" and stores either a
minus one or a zero into "a" depending on the result.

IF (a : = b) = 0 THEN ..

stores the value of "b" into "a" then checks for equality with
zero.

The same is true when mixing arithmetic expressions with conditional
expressions:

IF a :=a+ 1 < 10 THEN ..

tests the result of the arithmetic expression "a + l" for being
less than 10 then assigns the outcome of the test (true, -1, or
false, 0) to "a".

IF (a : = a + 1) < 10 THEN ..

performs the arithmetic operation and assignm~nt in parenthesis,
then compares the result with 10.

2.15-21

Conditional Expressions

Conditional expressions using the AND operator are evaluated from
left-to-right until a false (zero) condition is found. It may be
desireable, in some cases, to force the entire expression to be
evaluated.

For example, two function procedures are used in a conditional
expression:

IF fprocl AND fproc2 THEN ..

If the value returned from "fprocl" is zero, the conditional
expression is false and the procedure "fproc2" is not invoked.

To force "fproc2" to be invoked, the LAND arithmetic operator could be
used (and, logically, the results would be the same):

IF fprocl LAND fproc2 THEN ..

invokes both procedures.

A similar situation exists between OR and LOR.

2.15-22

Comparing Arrays

The array comparison form of <condition> is used to compare the
contents of two arrays (of any data type) with each other or to
compare the contents of an array with a constant. This form of
<condition> is:

{ <s array> FOR <number of elements> }
<d array> <relation> { <constant> }

[-> <next address>

where

<number of elements> is an <arithmetic expression> of the
general form specifying the maximum number of elements in
<s array> to be compared. An unsigned comparison is performed

<next address> is a variable that will contain the address of
the first element in <d array> that did not match the
corresponding element in <s array>. If <d array> is a word
addressed variable, <next address> is a word address; if
<d array> is a byte-addressed variable, <next address> is a
byte address

Word-addressed arrays of different data types (e.g., INT and
INT(32)) can be compared with each other. The maximum number
of elements to be compared is dependent on the data type of
<s array>

Byte-addressed arrays can only be compared with each other or
with constant values

At the end of an array comparison, the hardware condition code
indicator will be set as follows:

< (CCL) if <d array> ' < ' <s array>
= (CCE) if <d array> = <s array>
> (CCG) if <d array> ' > ' <s array>

example

in~array file ~ name FOR 9 =

Notes:

1. During an array comparison, the elements being compared are
treated as unsigned values.

2. If a read-only array is to be compared, it must be specified
as the "s array".

AOl 2.15-23

Comparing Arrays

3. When a comparison involves an INT(32) array or a PIXED array, a
word comparison is actually performed. This means that the
<next address> variable at the conclusion of such a comparision
may not point to an element (i.e., double- or quadruple-word)
boundary.

Array comparisons are typically done by using an IF THEN statement.
Here are some examples:

IF file"'name = ["$RECEIVE" , 8 * [" "]] THEN ••

uses a constant list.

IF in"'array <> compare"'mask FOR (2 * some"'vary / 3) THEN •.

uses an arithmetic expression to determine the maximum number of
elem~nt to be compared

Array comparisons can be mixed with other <conditions>:

IF length > 0 AND name = user"'name FOR 8 AND NOT abort THEN

IF (file= "TERM" OR file= "term") AND mode= 5 THEN ••

2.15-24 AOl

Comparing Arrays

USING <next address>

<next address> provides the 'G' [0] relative address of the first
element of <d array> that did not match the corresponding element of
<s array>.

EXAMPLE OF "NEXT ADDRESS" USAGE

INT .sAarray [0:11]
.dAarray [0:11]
.pointer;

:= "$SYSTEM
:= "$SYSTEM

Then performing the array comparison

SYSTEM
USER

MYFILE
MYFILE

IF dAarray = sAarray FOR 12 -> @pointer THEN

[OJ [1) [2] [3] [4] [5) [6] [7) [8) [9) [10)

"
II

[11 I

s A array I $! S I Y ! S I T ! E I M ! I S l Y I S ! T I E ! M I

d A array I $! S I Y i S I T · ! E I M ! I U ! S I E ! R I
IM!vjFJ1{LlEI i]

IM!v}FJ1[L!EI }]

t
ADDRESS IN pointer

causes the comparison to stop with element [4].
then contains the address of "dAarray[4]".

"pointer"

The address in "pointer" can then be used to determine the
number of elements that matched:

n : = @pointer ' - ' @d A array ;

stores the value four into the variable "n".

CHECKING CONDITION CODE

If the hardware condition code indicator is to be checked, it must be
checked before an arithmetic operation is performed or a value is
assigned to a variable.

For example

IF dAarray = s array FOR 10 -> @pointer THEN
BEGIN ! they matched

END
ELSE

IF< THEN •••

AOl 2.15-25

Comparing Arrays

If the conditional expression "<" is true, the value of the
element in "dAarray" that did not match is less than the
corresponding element in "sAarray" (using unsigned comparison).

2.15-26 AOl

DATA ACCESS CONCEPTS

Some characteristics of data access:

* A variable is accessed by using an identifier in a statement or
expression:

*

varl := 2;
var2 := varl;

Data is stored in a variable by using an assignment
statement.

Individual array elements are accessed by appending a indexing
subscript to an array identifier:

array[3] := 2;
var2 := array[3];

An indexing subscript can be appended to a variable identifier to
provide access to data elements relative to the variable:

varl [3] := 2;
var2 := varl[3];

* A direct variable can be used as an address pointer by preceding
the identifier with the symbol for indirection (a period - .) :

.varl := 2;
var2 := .varl;

* The address of a variable can be obtained by preceding the
identifier with the symbol for removing indirection (an at - @):

var2 := @varl;

Data can be stored in an address pointer by preceding the
identifier with the symbol for removing indirection:

@pointer := 2;

2.16-1

Accessing Variables

A variable is accessed by using its name in a statement or expression.
The data type a variable represents is specified when declared (but a
variable can be treated as another data type through the use of a
type transfer function) • The memory location that a variable
represents can be changed through use of an assignment statement.

The general form for accessing a variable is:

<variable> ["[" <index> "]"]

where

<variable> is simple, array, or pointer variable

<index> is an integer constant or arithmetic expression
specifying an element in an array whose base is <variable>.
Normally, <index> is used only with array and pointer
variables

example

var := l; array[index] := l;

SIMPLE VARIABLES WITHOUT INDEX

Using a simple variable in a statement or expression references the
variable.

EXAMPLE OF SIMPLE VARIABLE ACCESS WITHOUT INDEX

INT varl; data declaration.

If assigned a value through an assignment statement:

varl := l;

varl

puts the value of 1 into the word represented by "varl"

2.16-2

Accessing Variables

ARRAY VARIABLES WITHOUT INDEX

Using an array variable in a statement or expression references
element [0] of the array.

EXAMPLE OF ARRAY ACCESS WITHOUT INDEX

INT d"array[0:9], ! direct array .
. i"array[0:9]: ! indirect array.

If assigned a value through an assignment statement:

d"array := 1:
i"array := 2:

d ,. array [OJ

d "array [1]

d I\ array (2)

•
•

1 /\array [OJ

i I\ array [1)

i A array (2)

•
•

2

puts the value of 1 into the word represented by
"d"array[O]" and 2 into the word represented by
"i"array[O]"

2.16-3

Accessing Variables

POINTER VARIABLES WITHOUT INDEX

Using a pointer variable in a statement or expression accesses the
variable pointed to by the address in the pointer.

EXAMPLE OF POINTER USAGE WITHOUT INDEX

INT .pointer := @iAarray[2]: pointer variable initialized
with address of "iAarray[2]".

If assigned a value through an assignment statement:

pointer := 3:

1 Aarray[O]

i I\ array [1)

pointer il\array[2]

puts the value 3 into the word represented by "pointer"
(i.e., "i"array[2]).

EQUIVALENCED VARIABLES WITHOUT INDEX

Using an equivalenced variable in a statement or expression treats the
memory location as the declared data type of the equivalenced
variable.

For example:

IN'I1 (32) dbl:

INT a = dbl, b = a + 1:

If used in an expression

a := a * 2:

treats the most significant half of "dbl" as type INT.

dbl := -lD:

treats "dbl" as type INT(32)

2.16-4

Accessing Variables

USE OF INDEX

Note: The compiler does not perform bounds checking to determine if
an <index> value is legitimate. It is possible (and sometimes
desirable) to access elements outside of a declared array.

The <index> can be an integer constant:

array [3] : = n;

accesses element 3 of "array"

or a variable:

INT arrayAelementAindex; data declaration.

array[arrayAelementAindex] := n;

the array location accessed depends on the value of
"arrayAelementAindex".

The <index> can be an arithmetic expression:

INT vary; ! data declaration.

array[vary * 2] := •••••• ;

the "array" element accessed is two times the value of "vary".

array[IF vary = 3 THEN 0 ELSE 6] := n;

the "array" element accessed is conditional depending on the
value of "vary".

2.16-5

Accessing Variables

ARRAY VARIABLES WITH INDEX

An individual array element is accessed by appending an <index> to
the array identifier.

EXAMPLES OF ARRAY ACCESS WITH INDEX

INT array[0:6] := [1,2,3,4,5,6,7],
simple"vary;

is allocated as:

array [OJ 1

array [1] 2

array [2] 3

array [3] 4
1--·

array (4]
1--·

5

array (5] 6

array[6] 7

simple A vary undefined

data declarations.

An array <variable> can be used in an assignment statement:

array[6] := O;

puts the value 0 into "array" element 6.

Or in an arithmetic expression:

simple"vary := array[4] + 10;

puts the value 15 into "simple"vary".

Or in a conditional expression:

IF array[S] = 6 THEN simple"vary := array[2];

2.16-6

Accessing Variables

POINTER VARIABLES WITH INDEX

An <index> can be appended to a pointer variable.

EXAMPLE OF POINTER USAGE WITH INDEX

S TR ING . b t [0 : 7] , data declarations .
. pt := @bt[3];

.bt ---... 2000

.pt --+- 2003

/ '
bt[O) bt[1)

bt[2) bt[3)

- -,---- - r- --,
pt[-3) pt[-2] G[1000)

r- - - ---------pt [- 11 pt (0 I ___ _,
bt[4) bt[5) pt[1) pt[2)

1-----1-----~

bt[6) bt[7) pt[3) pt[4)

i.e.

bt [OJ (1) [2) (3) (4) (5) (6) [7)

pt (OJ (1) (2) (3) (4)

pt[2] := bt;

puts the value of "bt[O]" into "bt[S]".

OR

vary:= pt[l] + pt[4];

is equivalent to

OR

vary:= bt[4] + bt[7];

bt[pt [2]] := n;

uses the value in "bt [5]" as an index into the array
"bt" •

2.16-7

Accessing Variables

SIMPLE VARIABLES WITH INDEX

An <index> can be appended to a simple variable.

EXAMPLE OF SIMPLE VARIABLE ACCESS WPI'H INDEX

INT int"vary: data declarations.
INT(32) dbl"vary:
STRING str:

int ''vary

dbl/\ vary

str I 0

vary:= int"vary[l]:

accesses the left half of "dbl"array".

OR

vary:= int"vary[3]:

accesses " st r " in 1 e ft ha 1 f of word , 0 in r i g ht ha 1 f •

EQUIVALENCED VARIABLES WITH INDEX

An <index> can be assigned to an equivalenced variable.

2.16-8

Accessing Variables

EXAMPLE OF EQUIVALENCED VARIABLE ACCESS WITH INDEX

OR

INT varyl;
INT vary2;
INT vary3;
STRING st = varyl;

vary 1

vary 2

vary 3

st[3] := 0;

data declarations.

st[O) st[1)

st[2) st[J)

st[4] st(5]

sets the right half of "vary2" to zero.

IF st[4] = 2 THEN •..•

checks the left half of "vary3" for the value 2.

A number of arrays could be declared:

I NT . a [0 : 3 9] ,
. b[0:39],
.c[0:39],
.d[0:39],

data declarations .

A variable could then be equivalenced to the first array:

arrays = a,
.pointer;

data declarations.

"pointer" could be initialized in a statement such as

@pointer := arrays[index];

Then accessing

OR

pointer := some~value;

puts "some~value" in element [0] of the array specified by
"index".

po inter [3] : = 0 ;

assigns the value 0 to element [3] of the array specified by
"index".

2.16-9

Accessing Variables

EXAMPLE OF USING EQUIVALENCING TO CONSTRUCT AN ARRAY OF POINTERS

INT .a[0:39], arrays a. .a ___..
.b[0:39],

@a& arrays[O)

.c[0:39], .b ___...,.. @b& arrays[1 I

.d[0:39]' .c _.....,.. @c& arrays(2]

arrays = a,
.pointer: .d _.....,.. @d& arrays(3]

. pointer _....,. ._[_~ ---u-nd_e_fin_e_d __ _

a[O) --t-··~--------------1

a[1)

a[2)

----------·~--~

~I"'

--
a[39]

b[O)

b[1 I

b[2)
~-

t'

b[39]

c[O)

c[1)

c[2)
t-·
l. l.

2.16-10

Symbol for Removing Indirection

One level of indirection can be removed from a variable by preceding
the name of the variable with the symbol for removing indirection
(commercial at "@ ") .

The general form is:

@ <variable> ["[" <index> "]"]

where

@ is the symbol for removing indirection.

For direct variables (simple variables or direct arrays):

used in an expression, provides the 'G' [0] relative address
(plus <index>) of the direct variable <index>) contained in
the address pointer. If the direct variable is a STRING
variable then the address provided is a byte address

For indirect variables (indirect arrays or pointer variables):

used in an expression, provides the address (plus <index>)
contained in the address pointer. If the the indirect
variable is a STRING variable then the address provided is
a byte address

used on the left side of an assignment statement permits
modification to the contents of an address pointer

example

@pointer := @array~name; ! assignment statement.

2.16-11

Symbol for Removing Indirection

EXAMPLES OF REMOVING INDIRECTION

INT a,
b[O:S],

• c[O:S],
• d,
n:

n := @a:

simple.
direct array.
indirect array •
pointer
simple

a

b[O]

b[1)

b[2]

b[J)

b(4]

b(5]

.c

.d

n

c[O]

c[1]

c[2]

c(J]

c[4]

c[5)

G[O)

G[1]

G[2]

G[J]

G[4]

G[5]

G[6)

G(7]

G[8]

G[9]

G[10]

G[11)

G[12]

G[13]

G[14]

G[15]

puts the 'G' [0] relative address of "a", 0, into "n".

n := @b[3]:

puts the 'G' [0] relative address of the third element of "b",
4, into "n".

n := @c:

puts the 'G' [0] relative address of the base of "c", 10, into
II n II •

@d : = 1:

puts the value 1 into the pointer "d".

@d := @c[S]:

puts the 'G' [0] relative address of the fifth element of "c",
15, into the pointer "d".

@a : =. 1

is illegal.

2.16-12

Symbol for Specifying Indirection

One level of indirection can be specified for a directly addressed
variable by preceding the name of the variable with a period " "

The general form is:

• <direct variable> [" [" <index> "]"]

where

is the symbol for specifying indirection. The contents of
the <direct variable> are used as a 'G' [0] relative address
pointer. If the <direct variable> is a STRING variable
then the contents are used as a byte address

example

.some"vary := O;

Preceding a variable with a period
variable to be used as an address.

INT a : = 5;

.a := O;

! assignment statement.

" " . causes the value of the

data declaration.

puts the value 0 in cell five of the global area.

A simple variable can be used as a pointer:

INT not"pointer;
I NT . a r r a y [0 : 7] ;

not"pointer := @array;

data declarations.

puts address of "array" in "not"pointer".

Then

.not"pointer := some"value;

puts value of "some"value" in element [0] of "array".

OR

.not"pointer[l] := some"value + 10;

puts value of "some"value" plus 10 in element [l] of "array".

2.16-13

Procedure/Subprocedure Parameters

The location actually accessed when a parameter is passed to a
procedure or subprocedure and how the variable represented by the
parameter is treated depends on the following:

* Whether the parameter was declared by VALUE or by REFERENCE.

* Whether the variable is a direct or indirect variable~

* Whether or not the addressing mode for a variable was changed
through use of the symbol for removing indirection or symbol for
specifying indirection.

Using the following declarations, the above is clarified:

INT direct := 5,
.indirect := 10;

direct

.indirect

VALUE PARAMETERS

5

10

~
I A =i

G(O]

G(1]

G[5]

G[10)

G[15]

l _____ s __ ~ G[20]

A value parameter is a copy of an actual variable. The copy is passed
in the parameter area and is accessed directly by statemE!nts within a
procedure.

For example:

2.16-14

Procedure/Subprocedure Parameters

PROC v (a, b, c) ;
INT a,b,c; value parameters

BEGIN
INT n;
n := a; n := . a;
n := b; n := .b;
n := c; n := . c;

END;

If invoked as follows:

CALL v(direct, @direct, .direct);

results in the following values being passed in the parameter area:

a

b

c

5

0

15

L(-5)

L(-4)

Ll-3)

and the local variable "n" taking on the following values:

for a, "n" is 5; for •a I "n" is 15;
for b, "n" is O; for • b I "n" is 5;
for CI "n" is 15; for •CI "n" is II A";

(@a or @b or @c provides the 'G' [0] relative
parameter location)

If invoked with indirect variables as follows:

CALL v(indirect, @indirect, .indirect);
\ I

address

is not permitted

of the

results in the following values being passed in the parameter area:

a

~
Ll-5)

b L(-4)

c 'Ll-3)

2.16-15

Procedure/Subprocedure Parameters

and the local variable "n" taking on the following values:

for a, "n" is 20; for • a, "n" is "B";
for b, "n" is 10; for .b, "n" is 20;

(@a or @b provide the 'G' [0] relative address of the parameter
location)

REFERENCE PARAMETERS

Reference parameters are address pointers to actual variables.

For example:

PR OC r (a , b , c) ;
I NT • a , • b , • c ;

BEGIN
INT n;
n := a; n :=
n := b; n :=
n := c; n :=

END;

reference parameters

@a;
@b;
@c;

If invoked as follows:

CALL r (direct, @direct, .direct);
\ I

is not permitted

results in the following values being passed in the parameter area:

G[O)

L[-5)_J G[5)

.a 0

.b L(-4)

.c 5 L[-3)

and the local variable "n" taking on the following values:

for a, "n" is 5; for @a, "n" is O;
for c, "n" is 15; for @c, "n" is 5;

(.a or .b or .c is not permitted)

2.16-16

Procedure/Subprocedure Parameters

If invoked with indirect variables as follows:

CALL r(indirect, @indirect, .indirect);
\ I

is not permitted

results in the following values being passed in the parameter area:

G[10]

L(-S)_J G[1]

J .a 10

.b Ll-4)

.c l(-3)

and the local variable "n" taking on the following values:

for a, "n" is 20; for @a, "n" is 10;
for b, "n" is 10; for @b, "n" is l;

Note that the contents of a pointer variable passed as a parameter
cannot be changed unless the parameter is declared by reference and
the name of the pointer variable is preceded by an at @ symbol at the
time of the call. -

2.16-17

T/TAL STATEMENTS

A T/TAL statement is an order to perform an action. The T/TAL
statements are:

assignment

compound

GOTO

IF THEN

CASE

FOR

WHILE DO

DO UNTIL

move

SCAN

CALL

RETURN

arithmetic

assigns a value to a variable

blocking

groups one or more statements into one statement

transfer of control

transfers control to a specific point in a
procedure or subprocedure

selects either of two statements for execution
depending upon the evaluation of a conditional
expression

selects one of a list of statements for execution
depending upon the evaluation of an arithmetic
expression

looping

repeatedly executes a statement while incrementing
a variable until a predetermined limit is reached

repeatedly executes a statement while a specified
condition is true

repeatedly executes a statement until a specified
condition becomes true

block (multiple element) operations

moves a block of data from one location to another

scans a block of data for a particular character

procedure/subprocedure

invokes a procedure or subprocedure

returns from a procedure or subprocedure to the
caller and, if a function procedure or
subprocedure, optionally returns a value to the
caller ,

2.17-1

T/TAL STATEMENTS

USE OF SEMICOLON TO TERMINATE STATEMENTS

Each statement that is at the outermost level within a procedure or
subprocedure body must terminated by a semicolon. Statements that are
within other statements are not terminated by a semicolon unless the
form of the outer statement requires a terminating semicolon.

The general form of a procedure or subprocedure body is:

(SUB)PROC <name>

BEGIN

<statement>
<statement>

<statement>
END;

<-- these statements are at the outermost level of
<-- the (sub)procedure body and, therefore, must

be terminated by a semicolon.

<--

An example of semicolon usage for a statement of the form

DO <statement> UNTIL <conditional expression>

at the outermost level of a procedure body:

PROC myproc;
BEGIN

DO a := a + l UNTIL a > 10 ;

END;

2.17-2

A.

terminating semicolon at outer
level.

this assignment statement within the DO .• UNTIL
statement is not terminated by a semicolon.

Assignment Statement

The purpose of the assignment statement is to assign a value (the
result of an expression) to a variable or part of a variable.

The general form of an assignment statement is:

<variable> [. "<" <left bit> ">" [: "<" <right bit> ">"]]

:= <expression>

where

<variable> is a declared data variable with an optional bit
deposit field

:= means "is assigned the value of"

<expression> represents a value of the same type as <variable>
(type STRING is treated as type INT)

Because an assignment statement is a form of arithmetic
expression, multiple assignments can be performed with a
single assignment statement

example

intl := int2 := int3 := vary * 2;

Some examples using the following declarations:

INT intl, int2;
INT(32) dbll dbl2;
STRING bytel, byte2;

intl := intl + l;

increments "intl" by one.

type STRING is treated as type INT:

int2 := bytel * byte2;

type mixing is not permitted:

dbll := intl;

is not valid.

data declarations.

However, a type transfer function could be used:

2.17-3

Assignment Statement

dbll :=$DBL{ intl);

Bit deposit fields may be used with any of the variables:

intl.<8:15> := int2.<0:7> := bytel;

The variables can be indexed:

bytel[8] := byte2;

ASSIGNING INT VALUES TO STRING VARIABLES

Caution should be taken when assigning INT values to simple STRING
variables and vice-versa:

bytel := "AB";

results in bytel.<0:7> = "B", bytel.<8:15> = 0.

intl := "A";

results in intl.<0:7> = 0, intl.<8:15> = "A";

FIXED POINT SCALING IN AN ASSIGNMENT STATEMENT

When a value is assigned to a FIXED variable, the value is scaled up
or down as required to match the <fpoint> of the variable. If the
value must be scaled down, then some order of precision will be lost.
For example:

FIXED(2) a; data declaration.

Assigning the value

a := 2.345F ! FIXED(3) value

causes the value to be scaled down one position causing a loss
of one digit of precision.

In this example, the value

2.34F FIXED(2) value

is stored in "a".

The compiler has the ability to automatically generate instructions
for "rounding" a FIXED operand when an assignment to a variable
occurs. Rounding is enabled and disabled by the two compiler control
commands ?ROUND and ?NOROUND, respectively (see "Compiler Control
Commands" for a complete explanation). The default condition,
?NOROUND, causes the value to be truncated if the value must be scaled
down prior to the assignment (as shown in the preceding example).

2.17-4

Assignment Statement

Specifying the ?ROUND compiler command, causes the value to be
rounded up, if appropriate, after truncation occurs. For example,
specifying the compiler command

?ROUND

and assigning the value 2.345 to a FIXED(2) variable causes the value
to be truncated one digit and rounded up to the value 2.35.

2.17-5

Compound Statement

The purpose of the compound statement is to group a number of
statements together to form a single statement.

The general form of a compound statement is:

BEGIN

[[<statement>

[<statement>
END

where

<statement>, optional, is any T/TAL statement including other
compound statements

example

BEGIN
integerl := O;
integer2 := IF limit = 0 THEN 1 ELSE 2;

END;

An example of the use of compound statements:

BEGIN
limit := 71;
IF size > maximum THEN

BEGIN
index := -1;
WHILE index <= limit DO

BEGIN
array[index] :=index;
index := index + l;

END;
END

ELSE
BEGIN

END;

array := O;
index := O;

END;

! first compound statement.

second compound statement.

third compound statement.

third compound statement.
second compound statement.

fourth compound statement.

fourth compound statement.
first compound statement.

Notice that there is no semi-colon ";" on the END terminating the
second compound statement (the second compound statement is embedded
within the IF statement).

2.17-6

GOTO Statement

The purpose of the GOTO statement is to unconditionally transfer
program control to a "labeled" statement.

The form of the GOTO statement is:

GOTO <label>

where the form of the label is:

<label>: <statement>;

where

<label> is an identifier, followed by a colon":",
indicating the statement to be executed as a result of the
GOTO statement

example

GOTO start;

A label is the only element in T/TAL that need not be declared before
being used.

GOTO STATEMENT ACTION

Any <statement> can be labeled:

GOTO <label> ;

<label>:
<statement> ;

IF a > b THEN <statement> ELSE <label>: <statement> ;

the following is invalid (ELSE does not start a <statement>):

IF a> b THEN <statement> <label>: ELSE ... ;

2.17-7

GOTO Statement

A GOTO cannot be used to leave a procedure, but can be used to leave a
subprocedure back to the calling procedure (but not to another
subprocedure) •

For example:

PROC main"proc MAIN; BEGIN

2.17-8

SUBPROC search (a);
INT .a;

BEGIN

IF NOT found THEN

END;

IF NOT error THEN CALL search(a)
ELSE GOTO main"; ! error occurred, bail out~

calls "a" recursively if "error" is false, otherwise
goes directly back to the where "a" was invoked
originally (i.e., does not have to make return through
the nested calls)

is the normal return (i.e., back through the nested
calls) .

CALL search(list);

starts the recursive calls to "search".

main"

is a label for the error return from "search"

IF Statement

The purpose of the IF statement is to permit the state of a
conditional expression {ie, true or false) to determine which of two
statements is to be executed.

The general form of the IF statement is:

IF <conditional expression> THEN [<statement>]

or

IF <conditional expression> THEN [<statement>]

ELSE [<statement>]

where

<statement> ,optional, is any T/TAL statement including
compound statements and IF statements

example

IF number = limit THEN number := 0;

Using the form without the ELSE part, the <statement> following THEN
is executed if the condition is true, otherwise it is skipped:

IF STATEMENT ACTION {IF THEN FORM)

THEN .,.., statement/ ;

IF__.,.

next <statement? ;

Using the form with the ELSE part, the <statement> following THEN is
executed if the condition is true, otherwise the <statement> following
ELSE is executed:

2.17-9

IF Statement

IF STATEMENT ACTION (IF THEN ELSE FORM)

THEN <statement..->

IF

ELSE <statement>

--·--------

next <statement > ;

Some examples:

IF itemAnum = taxable THEN tax := computeAtax;

IF cost >= limit THEN
BEGIN

bad" i tern : = 1 ;
iternAcount := 0;

END
ELSE iternAcount := itern"count + l;

IF statements can be nested indefinitely:

IF <conditional expression> THEN
IF <conditional expression> THEN

IF <conditional expression> THEN
IF <conditional expression> THEN

BEGIN ! compound statement.
expression> THEN <statement>; IF <conditional

END
ELSE <statement>

ELSE <statement>
ELSE <statement>;

! compound statement.

! outermost ELSE not required~

The innermost THEN is paired with the closest ELSE and pairing
proceeds outward. However, compound statements can be used to
override pairing.

An IF statement can be used to check a variable for a non-zero state~

IF invalid"item THEN CALL ABEND;

checks "invalid"item" for non-zero value.

2.17-10

IF Statement

An IF statement can be used to check the hardware condition code
setting:

CALL READ(filenum, ••••);
IF < THEN

BEGIN
printAerrmsg;
CALL STOP;

END;

is a call to the file system READ Procedure. The condition code
is set to less-than if an error occurs.

An IF statement can be used to compare two arrays:

IF inAarray = maskAarray FOR 25 THEN itemAfound := 1
ELSE itemAfound := O;

compares "inAarray" to "maskAarray" for 25 elements.

IF f ileAname = "$RECEIVE" THEN thisAmessage := cpuApin;

The <statement> parts of the IF statement are optional. For example:

IF notAfirstAtime THEN ELSE
BEGIN A

omitted statement.
END;

2.17-11

CASE Statement

The purpose of the CASE statement is to selectively execute one of a
list of statements, the statement executed being determined by an
index value.

The general form of the CASE statement is:

CASE <index> OF

BEGIN

<statement for index = 0>

<statement for index = l>

<statement for index = n>

[OTHERWISE [<statement>]
END

where

<index> is an arit6metic expression indicating the statement
number of the <statement> to be executed

<statement>, optional, is any T/TAL statement including
compound statements and CASE statements

OTHERWISE, optional, indicates an alternate (optional)
statement to be executed if <index> does not point to one of
the statements in the CASE body

example

CASE some~variable OF

2.17-12

BEGIN
varyO := 0;
varyl := l;
OTHERWISE CALL DEBUG;

END;

CASE Statement

CASE STATEMENT ACTION

l
CASE< index> OF

BEGIN

(<index>=)

-----~ (0) <statement>;------

-----~ (1) <statement>;------

_____ __.., (2) <statement>;-------...•

-----~ (3) <'statement>; -------....1

•--------~ (4) <statement>;------~•

\..___ ____ _.._., OTHERWISE "''statement>; ---

END;

next <statement.>;

Unless the OTHERWISE <statement> is used, the value of <index> must
point to one of the statements in the CASE compound body. Otherwise,
the results will be unpredictable.

The <statement> parts of the CASE statement are optional. A semicolon
holds the place (i.e., indicates the index) of an omitted statement.
For example:

CASE index OF
BEGIN

CALL a;
CALL b;
OTHERWISE

END;
I

<----

<---
<----

placeholder, no O'th index value or no
action to be taken.
l'st index value.
2'nd index value.

omitted statement. However, the use of "OTHERWISE"
means the a value of "index" that is greater than two
has a predictable result.

2.17-13

FOR Statement

The purpose of the FOR statement is to repeatedly execute a
<statement> while stepping a variable until that variable exceeds a
specified limit.

The FOR statement provides an efficient means of indexing through
array elements.

The general form of the FOR statement is:

{ TO }
FOR <variable> := <initial> { DOWNTO } <limit> [BY <step>]

DO [<statement>]

where

<variable> is incremented or decremented by the <step> value
each time the <statement> is executed

<initial> is an arithmetic expression specifying an initial
value to be assigned to <variable>

TO means increment the <variable> by the <step> value

DOWNTO means decrement the <variable> by the <step> value

<limit> is a variable or an arithmetic expression that is
compared to <variable>. If <variable> is less than or equal
to <limit>, the <statement> following DO is executed. When
<variable> exceeds)imit, the FOR statement is finished

<step> is a variable or an arithmetic expression specifying a
positive amount <variable> is to be incremented (TO) or
decremented (DOWNTO) each time the <statement> is executed.
If <step> is not included, one (1) is assumed

<statement>, optional, is any T/TAL statement including
compound statements and FOR statements

example

FOR index := 0 TO length - 1 DO array[index] := " "~

Execution of the FOR statement proceeds as follows:

* When the FOR statement is initially entered, the value of <initial>
is calculated and stored in <variable>. If <limit> and <step> are
arithmetic expressions, their values are also calculated.

2.17-14

FOR Statement

* <variable> is then tested to check whether it exceeds the <limit>
value. If not, the <statement> following DO is executed.

* After <statement> is executed, the <step> value is added to (TO) or
subtracted from (DOWNTO) <variable> and compared with the <limit>
value. If <variable> does not exceed <limit>, the <statement> is
again executed.

* If <variable> exceeds <limit>, <statement> is not executed and
program execution falls through to the statement following the FOR
statement.

If the TO form of the FOR statement is used, <variable> exceeds
<limit> when it is more positive than <limit>. If the DOWNTO form is
used, <variable> exceeds <limit> when it is more negative than
< 1 imi t>.

FOR STATEMENT ACTION

FOR <variable•~· : = <initial>

next <statement>;

YES

<variable , is incremented (TO)
or decremented (OOWNTO)
BY <step,.,

---~----

The BY part can be omitted providing an implicit <step> of 1:

FOR index := 0 TO length-I DO
IF array[index] <> " " THEN lastAnonAblank := index:

BY part included (in DOWNTO form):

FOR index := length - 1 DOWNTO 1 BY 2 DO
IF array[index] = " " THEN firstAnonAblank := index:

2.17-15

FOR Statement

Using a compound statemerit:

FOR vary := 0 TO numAitems BY 2 DO
BEGIN

outAarray[index] := inAarray[vary];
index := IF outAarray[index] = specialAcase THEN 0

ELSE index +l;
END;

Using a nested FOR statement:

FOR outerAvar := 0 TO 20 DO
FOR innerAvar := 0 TO 20 DO <statement>;

<statement> is executed 21 times each time the inner FOR
statement is executed (total of 441 times).

Some restrictions to the use of the FOR statement:

* FOR statements should be entered only from the beginning.
branch into the loop <statement>.

2.17-16 AOl

Never

WHILE Statement

The purpose of the WHILE statement is to repeatedly execute a
statement as long as a specified condition is true.

The general form of the WHILE statement is:

WHILE <conditional expression> DO [<statement>]

where

<statement>, optional, is any T/TAL statement including
compound statements and WHILE statements

example

WHILE number < limit DO number := number + l;

The <conditional expression> is evaluated and tested before the
<statement> is executed. When the condition becomes false, program
execution continues with the statement following the WHILE statement:

WHILE STATEMENT ACTION

DO < statement> ;

WHILE

next <statement>;

The <statement> can be a compound statement:

WHILE NOT alpha~found DO
BEGIN

IF $SPECIAL(array[index]) THEN index :=index+ l;
IF = THEN alpha~found := l;

END;

2.17-17

WHILE Statement

A WHILE statement can be used to indefinitely execute a statement:

WHILE 1 DO
BEGIN
<statement>;

END;

the compound statement will be executed indefinitely because 1
is always evaluated to a non-zero value.

The <conditional expression> part of the WHILE statement can be a
function procedure:

WHILE cmdAnum := findAcommand DO
CASE cmdAnum OF

BEGIN
<statement>;
<statement>;

OTHERWISE GOTO abortAloop;
END;

executes as long as "cmdAnum" is a non-zero value.

The <statement> part of the WHILE statement is optional. For example:

index := -1;
WHILE $ALPHA(array[index :=index+ l]) DO;

I
omitted statement.

increments "index" until a non-alphabetical character is
referenced.

2.17-18

DO Statement

The purpose of the DO statement is to repeatedly execute a statement
until a specified condition becomes true.

The general form of the DO statement is:

DO [<statement>] UNTIL <conditional expression>

where

<statement>, optional, is any T/TAL statement including
compound statements and DO statements

example

DO array[index := index + l] := 0 UNTIL index >= limit;

The <statement> is executed before the <conditional expression> is
evaluated, therefore <statement> is always executed at least once.
When the condition becomes true, program execution continues with the
statement following the DO statement.

DO STATEMENT ACTION

DO ... ~statement.-> UNTIL •

next <"statement>;

An example:

DO index :=index+ 1 UNTIL $ALPHA(array[index]);

2.17-19

Move Statement

The purpose of the move statement is to move a block of information
from a source array or a constant list into a destination array. When
a move is executed, elements are moved into the destination array, one
element at a time, in the direction specified by the move operator.

The general form of the move statement is:

{ I : =I

<d array> { I - • I -.
} { <s array> FOR <number of elements> }
} { <constant> }

[-> <next address>]

where

<d array> is the name of the destination array

':=' is a left-to-right move operator
'=:' is a right-to-left move operator

<s array> is the name of the source array

<number of elements> is an <arithmetic expression> of the
general form specifying the maximum number of elements in
<s array> to be moved. <number of elements> is treated as an
unsigned value thereby permitting {0:65535} elements to be
moved in a single operation

<next address> is a variable that is assigned an address
following completion of the move. The address points to the
next location in <d array> following the last element moved.
If <d array> is a word-addressed variable, then this is a
'G' [0]-relative word address; if <d array> is a byte-addressed
variable, then this is a 'G' [0]-relative byte address

several "<s array> FOR <elements>" and/or "<constant>" can be
combined using ampersands "&" to provide concatenating moves

Moves between word-addressed variables of different data types
(e.g., INT and INT(32)) are permitted. The number of words
moved is dependent on the data type of <s array>

For byte-addressed variables, both <d array> and <s array>
must be byte-addressed or <s array> must be a constant

example

out~array ':=' in~array FOR 72;

Note: When using an integer constant or a literal identifier in a
byte move operation, the constant/identifier should be

2.17-20 AOl

Move Statement

surrounded by brackets"[•••]" if a one-byte value is
desired. If a constant value is not surrounded by brackets, it
is treated as two bytes in a byte move operation.

LEFT-TO-RIGHT MOVE

A left-to-right move starts with low order addresses in the <s array>
and <d array> arrays and increments the addresses as the move
progresses (i.e., picks up elements from left-to-right).

EXAMPLE OF LEFT-TO-RIGHT MOVE

inf, array

out/\ array

[OJ I [1] I [2J I [3} I [4] I [5J I <'source >

i 1 i 2 i 3 i 4 i 5 i 6 ORDER

I [OJ I [1J I [2) I [3) I [4) I [5J I <destination>

~ DIRECTION OF MOVE

A left-to-right move can be used for a deletion operation. For
example, it is desired to delete two elements from an array containing
eight elements, starting with element [3]:

EXAMPLE OF LEFT-TO-RIGHT MOVE TO PERFORM DELETION

I NT a r r a y [O : 7] ;

array[3] ':=' array[S] FOR 3;

array BEFORE [OJ [1) [2J [3J [4) (5) [6J (7J I <source>

array AFTER [OJ (1) (2)

~3
(3) I (4) I (5) I <destination>

moves "array[5:7]" over "array[3:5]"

AOl 2.17-21

Move Statement

A left-to-right move can also be useful for initializing an a~ray.

EXAMPLE OF LEFT-TO-RIGHT MOVE FOR INITIALIZING AN ARRAY

array := O;
array[l] ':=' array FOR 7;

array [OJ I (1) I [2J I (3J I (4J I (5) I (6) I (7)

\ 14\ 24\ 34\ 44\ 54\ 6~\ 14
THE RESULT IS: '-../ \..._/ \..._/ \..._/ \..._/ \..._/ \J

• array I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0

\Y \:_) \:_} \Y \:) \:) \V

fills eight elements of "array" with zeros

RIGHT-TO-LEFT MOVE

A right-to-left move starts with high order addresses in the <s array>
and <d array> arrays and decrements the addresses as the move
progresses (i.e., picks up elements from right-to-left):

EXAMPLE OF RIGHT-TO-LEFT MOVE

out""array[S] '=:' in"'array[S] FOR 6;

in/\ array [OJ I [1J I (2J I [3) I [4J I [5~
iG ~S i· ~3 ~2 ~1 ORDER

out/\ array [OJ I [1J I (2) I [3J I ~~ <destination.>

DIRECTION OF MOVE 4---

A right-to-left move can be used for an insertion operation. For
example, two elements are to be inserted in a eight-element array
starting with element[3].

2.17-22

Move Statement

EXAMPLE OF RIGHT-TO-LEFT MOVE TO PERFORM INSERTION

array[?] '=:' array[S] FOR 3;

•ray BEFORE EJ~?BJ£(a2J~(~C4Xt~~~;J <source>

~
array AFTER ~j§3PJt1;J~>Ea (3) I [4] (c;f~f4x·0a <destination>

provides space for two elements, starting with "array[3]"

USING <next address>

<next address> provides the 'G' [0] relative address of the next
location in memory after the last item moved.

STRING .pointer,
.in"array[0:71],
.out"array[0:71],
.join"array[0:71];

then performing a left-to-right move

data declarations.

join"array ':=' in"array FOR 4 ->@pointer;

results in "pointer" equal to "@join"array[4]"

Then subtracting

num "moved : = @pointer ' ' @join" array;

results in "num"moved" = 4 (four elements moved)

"pointer" could then be used as the <d array> array:

pointer ':=' out"array FOR 4;

"join"array" would then consist of four elements of "in"array"
followed by four elements of "out"array"

Similar results are obtained if a right-to-left move is performed:

join"array[lO] '=:' in"array[71] FOR 6 -> @pointer;

results in "pointer" equal to "@join"array[4]"

2.17-23

Move Statement

Then subtracting

num"'moved := @join"'array[lO] '-' @pointer;

results in "num"'moved" = 6 (six elements moved)

Another move could then be performed as follows:

pointer '=:' out"'array FOR @pointer '-' @join"' array;

"join"'array" would then consist of four elements of "out"'array"
followed by six elements of "in"'array"

USING <constant>

f i 1 e name ' : = ' [" $REC E I VE " , 8 * [" "]] - > @ n ex t add r ;

"file"'name" then contains the constant list, "next"'addr" points
to "file""name[l2]"

subtracting

:results in "num"'moved 11 = 12 (twelve elements)

USING CONCATENATING MOVES

A number of arrays and/or constant lists can be joined together using
a concatenating move.

INT varyl := 2;
s TR ING d ate [0 : 1 0] : = II MA y 1 , 1 9 7 6 II ;

STRING account"'num (0:10] := 11 123-456-789 11
;

STRING amount [0: 10] : = "24. 99";

then performing the left-to-right move

print"' line I • - I . - "DATE: " & date FOR varyl * 5 + 1 & " ACCT NO:
& account"'num FOR 11 & " ***$"
& amount FOR varyl * 2 + 1 -> @pointer;

results in "print"'line" containing;

~DATE: MAY 1, 1976 ACCT NO: 123-456-789 ***$24.99"

and subtracting

num~moved := @pointer '-' @print"'line;

provides the number of elements moved into "print"'line"

2.17-24

II

Scan Statement

The purpose of the scan statement is to search a STRING array for a
particular character.

The general form of the scan statement is:

{ SCAN } { WHILE }
{ RSCAN } <array> { UNTIL } <test character> [-> <next address>]

where

SCAN indicates a left-to-right scan

RSCAN indicates a right-to-left scan

<array> is the <type> STRING array to be scanned

WHILE indicates that the scan continues while the <test
character> is found

UNTIL indicates that the scan continues until the <test
character> is found

A scan will terminate if an ASCII null (i.e., 0) character is
encountered

<test character> is an <arithmetic expression> of the general
form resulting in no more than eight significant bits

<next address> is a variable that will contain an address
following completion of the scan. If a scan WHILE was
performed, <next address> points to the first character that
did not match. If a scan UNTIL was performed, <next address>
points to the first character that matched. <next address>
will, in either case, point to any terminating null character

The SCAN statement also sets the hardware CARRY bit if the
scan was terminated because a null character was found

example

SCAN in"array WHILE " " -> @first"non"blank;

Any array that is to be scanned should terminate, on the opposite end
from the start of the scan, with an ASCII null character (i.e., 0).

For the following examples, assume that the following record was
placed in a byte array "in"buffer":

" APR 1, 1976 " . I

2.17-25

Scan Statement

and the "in"buffer" was delimited with a null character as follows:

in"buffer := in"buffer[20] := O;

resulting in

" I\ I\ I\ APR 1\ 1, /\ 1976 I\ I\ I\ I\ I\ "

'"A" I "P" I "R" I
in'" buffer [0] [1) [2) [3) [4) (5) [6) [7) [8) (9) [10] [11) (20)

SCAN WHILE

EXAMPLE OF LEFT-TO-RIGHT SCAN WHILE

SCAN in"buffer[l] WHILE" " ->@pointer;

'"A" I "P" I "R" I ' 'T' , .. ," I ' "l" I(~ ~TI
in ,'\buffer [0) [1) (2) (3) (4) (5) (6) [7) (8) [9) [10) (11) [20)

t
@pointer

after SCAN WHILE " "

The scan stops when the first non-blank character (i.e.,
"A") is found. The address of the first non-blank is
stored in "pointer" (i.e., "@in"buffer [4] "):

Then the relative location of "A" can be computed as follows: ·

month : = @pointer ' ' @in"buffer;

four.

SCAN UNTIL

Using the value of "pointer" that resulted from the preceding example,
another left-to-right scan could be made to determine the length of
the first item:

2.17-26

Scan Statement

EXAMPLE OF LEFT-TO-RIGHT SCAN UNTIL

SCAN pointer UNTIL " " -> @pointer;

I "A", "P" l "R" ' I .. 1 .. I ,, ,, I .. 1" 1\)1 0
I ?

in."buffer (OJ [1J [2J [3J [4J [5J [6J [7J [8J [9J [10] [11 J [20J

t
@pointer

after SCAN UNTIL" "

The scan stops when the next blank is found. The address
of the next character is stored in "pointer" (i.e.,
"@inAbuffer[7]"):

Then the length can be computed as follows:

monthAlength :=@pointer - @inAbuffer[month];

three characters.

RSCAN UNTIL

Again using the original declarations and performing a right-to-left
scan:

EXAMPLE OF RIGHT-TO-LEFT SCAN UNTIL

data declaration .
.

testAword := ",";
RSCAN inAbuffer[l9] UNTIL testAword ->@pointer;

I _a ________ ,_ .. A·-·j·_·p"-'"R~"'--'-"1"_l .. _ .. ____ .. 1 .. _IHl0 I J
in/\ buffer (OJ [1 J [2J [3J [4J [5J [6J [7) [8J [9J [10) [11 l [20J

t
@pointer

after RSCAN UNT-1 L "."

The scan stops when the character "," is found. Then the
address where"," is located is stored in "pointer" (i.e.,
"inAbuffer [9] ") •

2.17-27

Scan Statement

RSCAN WHILE

Using the contents of "pointer" from the preceding example and
performing the following right-to-left scan

EXAMPLE OF RIGHT-TO-LEFT SCAN WHILE

RSCAN pointer WHILE " " -> @pointer;

I "A" I "P" I "R" I l .. 1 .. I I I .. 1 .. I f~ I 0 I i
in/\ buffer (OJ (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (20)

t
@pointer

after RSCAN WHILE " "

In this case, the scan stops immediately (i.e., on the
first character). The address stored in "pointer" is the
same as the starting address (i.e., "@in~buffer[9]").

CHECKING CARRY

If the CARRY indicator is to be checked, it should be checked before
performing any arithmetic operations (arithmetic operations change the
state of the CARRY indicator).

IF $CARRY THEN ... ; test character not found.

IF NOT $CARRY THEN test character found~

2.17-28

CALL Statement

The purpose of the CALL statement is to execute a procedure or
subprocedure.

The general form of the CALL statement is:

CALL <name>

CALL <name> <param l> , <param 2> , <param n>

where

<name> is the name given to a previously declared procedure or
subprocedure

<param> is the actual parameter to be passed to <name> for a
corresponding <formal parameter name>. If the formal
parameter is a value parameter, either a <variable> or an
<expression> can be passed. If the formal parameter is a
reference parameter, a <variable> must be passed

Unless <name> has been declared as having optional parameters,
a <param> must be supplied for each formal parameter that was
declared

If <name> has optional parameters, omitted parameters are
indicated by no entry in the corresponding <param> position.
However, placeholder commas"," must be included (except for
rightmost missing parameters)

example

CALL computeAtax(item, 5, result);

When a procedure or subprocedure is invoked, the body of the procedure
is executed, program execution then returns to the statement following
the CALL statement:

CALL computeAtax (item, 5, result);
<statement> <---------

1 execute body of
I "computeAtax"
I I
~~~~~~~~~~~~~~~~~~ 

The CALL statement can be used to call function procedures. However, 
the value assigned to the procedure or subprocedure is lost. 

An example of calling a procedure with optional parameters: 

2.17-29 



CALL Statement 

CALL FILEINFO {filenum, err~num,,dev~num,,,eof): 

Note: The compiler has no way of knowing which parameters are 
required by a procedure having optional parameters. This 
checking must be performed by the called procedure itself. 

2.17-30 



RETURN Statement 

The RETURN statement has two functions: to provide additional points 
within the procedure or subprocedure body to exit back to the caller 
and additionally, to return a value from a function procedure or 
subprocedure. Note that, if a procedure is designated MAIN, program 
execution stops if a RETURN statement is encountered. 

The two forms of the RETURN statement are: 

RETURN (simple form) 

and 

RETURN <expression> (expression form) 

where 

<arithmetic expression> is a value of the same type as the 
procedure or subprocedure 

example 

RETURN local~vary; expression form. 

Some examples using the simple form of the RETURN statement: 

PROC some~proc; 

BEGIN 

IF a < b THEN RETURN; returns to caller. 

RETURN; 

END; 

OR 

PROC main~proc MAIN; 

BEGIN 
. 

IF end~of~program THEN RETURN; program execution stops. 

END; program execution stops. 

2.17-31 



RETURN Statement 

An example of using the expression form of the RETURN statement. An 
INT type subprocedure is declared: 

INT SUBPROC find"'record (acct"'no); 
INT acct"'no; 

BEGIN 

INT temp"store; 

. 
temp"'store := acct"no * 10; 

RETURN temp"'store; 
END; 

Then used in an expression as follows: 

returns to caller. 

IF ( read"'this := find"record(account"no)) <> 0 THEN tt••··· 

2.17-32 



STANDARD FUNCTIONS 

As part of T/TAL, a number of commonly used functions are provided. 
These include: 

* Type Transfer functions (treats a variable of one data type as 
another data type) 

* Character Test functions (tests an ASCII character for being an 
alpha, numeric, or special (ie, not alpha or numeric). 

* MIN/MAX functions (provides the minimum or maximum value of two 
expressions) 

* Carry and Overflow tests (tests the hardware Carry and Overflow 
indicators) 

* Fixed point functions scale and point (scales a fixed operand and 
returns the <fpoint> value of an expression) 

The standard functions are <primarys> (see "Expressions"). 

Note: Using a standard function does not alter the original contents 
of a variable specified as a parameter to the function. 

2.18-1 



Type Transfer Functions 

T/TAL does not permit data type mixing within expressions. The type 
transfers functions are used when computing values involving more than 
one data type. 

The type transfer functions are: 

$INT ( <dbl expression> ) 

returns an INT from the right half of an INT(32) 

$HIGH ( <dbl expression> ) 

returns an INT from the left half of an INT(32) 

$DBLL ( <int expression> , <int expression> 

returns an INT(32) from two INTs 

$DBL ( <int expression> ) 

returns a signed INT(32) from a signed INT (ie, performs 
a signed right shift, 16 positions) 

$UDBL ( <int expression> 

returns an INT(32) from an unsigned INT (left half of INT(32) 
set to O's) 

$COMP ( <int express ion> 

returns the one's complement of an INT 

$ABS ( <int expression> 

returns the absolute value of an INT 

$!FIX ( <int expression> , <fpoint> 

returns a 64-bit integer from a signed integer expression 
(i.e., performs the equivalent to a signed right shift of 48 
positions). $IFIX is treated as having an assumed d€cimal 
position of <fpoint>. 

$LFIX ( <int expression> , <fpoint> 

2.18-2 

returns a 64-bit integer from an unsigned integer expression 
(i.e., the unsigned integer is put in the least significant 
word of the quadrupleword: the three most significant words 
are set to zero). $LFIX is treated as having an assumed 
decimal position of <fpoint> 

--> 



Type Transfer Functions 

$DFIX ( <dbl expression> , <fpoint> ) 

returns a 64-bit integer from a signed double word integer 
expression (i.e., performs the equivalent to a signed right 
shift of 32 positions). $DFIX is treated as having an assumed 
decimal position of <fpoint> 

$FIXI ( <fixed expression> } 

returns the signed integer equivalent of a fixed expression. 
The fixed expression is treated as a 64-bit integer; an 
(implied) decimal point is ignored. $FIXI causes Overflow to 
be set if the result cannot be represented in a signed 
integer (i.e., 15 bits) 

$FIXL ( <fixed expression> 

returns the unsigned integer equivalent of a fixed expression. 
The fixed expression is treated as a 64-bit integer; an 
(implied) decimal point is ignored. $FIXL causes Overflow to 
be set if the result cannot be represented in an unsigned 
integer (i.e., 16 bits) 

$FIXD ( <fixed expression> 

returns the INT(32) equivalent of a fixed expression. The 
fixed expression is treated as a 64-bit integer; an (implied) 
decimal point is ignored. $FIXD causes Overflow to be set if 
the result cannot be represented in a signed doubleword 
integer (i.e., 31 bi ts) 

where 

<int expression> is an arithmetic expression giving an INT 
result. 

<dbl expression> is an arithmetic expression giving an 
INT(32) result 

<fixed expression> is an arithmetic expression giving a FIXED 
result 

<fpoint> is the number of positions that the implied decimal 
point is to the left (<fpoint> > 0) or to the right (<fpoint> 
<= 0) of the least significant digit. <fpoint> is represented 
by an integer constant, the range of which is -19 to + 19 

example 

someAint := $INT(someAdouble); 

2.18-3 



Type Transfer Functions 

Some examples using the following declarations: 

INT some"int; 
INT(32) some"double; 
FIXED(3) some"fixed; 

INT PROC int"proc; 
BEGIN 

RETURN 2 * some"int; 
END; 

data declaration. 

procedure declaration. 

$INT 

or 

some" int := $INT(some"double); 

assigns the value of right half of 11 some"double 11 to some"int. 

IF $INT(some"double) = %255 THEN . 
• • • • • I 

checks right half of 11 some"double 11 for equality with %255. 

$HIGH 

some"int := $HIGH(some"double); 

assigns the value of left half of 11 some"'double 11 to 11 some"int 11 or 

IF $HIGH(some"double) THEN ••. ; 

checks left half of 11 some"'double 11 for nonzero value. 

$DBLL 

some"double := $DBLL(some"int, intproc); 

2.18-4 

assigns the value of 11 some" int 11 to 1 eft half of 11 some"' double", 
the value returned from "int"proc 11 to the right half. 



Type Transfer Functions 

INT some"int := -1; data declaration. 

then 

some"double := $DBL(some"int); 

assigns the value of "some"int" to right half of "some"double", 
propagating the sign bit. 

results in the 32-bit quantity -lD) : 

1 1 1 1 1 1 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 

left half of "some"double" 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

right half of "some"double" 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

or 

some"double := some"double + $DBL(int"proc); 

converts the value returned from "int"proc" to an INT(32) then 
adds that value to "some"double". 

$UDBL 

INT some"int := -1; data declaration. 

then 

some"double := $UDBL(some"int); 

assigns the value of "some"int" to the right half of 
"some"double", the left half is filled with zeros. 

results in "some"double" = %1777770 

2.18-5 



Type Transfer Functions 

$COMP 

some"int := $COMP(l0); 

assigns the one's complement of 10 to "some"int". 

1 1 1 1 1 1 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 

10 is equivalent to: 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 

then complementing 10 results in: 

1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 

$ABS 

some ""int := $ABS(-2); 

assigns the absolute value of -2 to "some "int". 

1 1 1 l 1 1 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 

--2 is equivalent to: 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

then the absolute value of -2 is: 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

$IFIX -----

some""fixed := $IFIX(-l, 3); 

assigns the value -0.00lF to "some"fixed". 

$LFIX 

some"fixed := $LFIX(-l, 3); 

assigns the value 65.535F to "some""fixed". 

$DFIX 

someAfixed := DFIX(some"double, 3); 

converts the value of "some"double" to its 64-bit integer 
equivalent then assigns the result to "some""fixed". 

2.18-6 



Type Transfer Functions 

$FIX! 

someAint := $FIXI( 234.05F); 

assigns the value 23405 to "someAint". 

Note that the Overflow i~dicator is set if the value of the <fixed 
expression> is less than '-32768 or greater than 32767. 

$FIXL 

someAint := $FIXL(someAfixed); 

assigns the least significant word of "someAfixed" too 
"someAint". 

Note that the Overflow indicator is set if the value of the <fixed 
expression> is greater than 65535. 

$FIXD 

someAdouble := $FIXD{someAfixed); 

assigns the two least significant words of "someAfixed" to 
"someAdouble". 

Note that the Ov~rflow indicator is set if the value of the <fixed 
expression> is less than -2,147,483,648 or greater than 2,147,483,647. 

2.18-7 



Character Test Functions 

The character test functions are used to determine if a character 
falls into the range of ASCII alphabetical characters, ASCII numerical 
characters, or ASCII special characters. If the tested character 
passes the test, a true state (i.e., value of -1) is returned~ if the 
test fails, a false state (i.e., value of 0) is returned. 

The character test functions are typically used in conditional 
expressions to make decisions about the flow of program execution. 

The general form for testing a character is: 

$ALPHA ( <expression> 

tests <expression> for an ASCII alphabetical character: 

<expression> >= "A" AND <expression> <= "Z" OR 
<expression> >= "a" AND <expression> <= "z" 

$NUMERIC ( <expression> ) 

tests <expression> for an ASCII numerical character: 

<expression> >= "O" AND <expression> <= "9" 

$SPECIAL ( <expression> ) 

tests <expression> for an ASCII special character: 

<expression> <> alphabetical and <expression> <> numerical 

where 

<expression> is a 16-bit value: the character tests check only 
<expression>.<8:15>, bits 0 through 7 are ignored 

the character tests also provide a condition code setting that 
indicates the class of character tested (if the state of the 
condition code is to be checked, it must be checked before an 
arithmetic operation is performed or an assignment is made to 
a variable) 

< indicates numerical was found 
= indicates alphabetical was found 
> indicates special was found 

example 

IF $ALPHA(some~char) THEN • • • I 

Some examples using the following declarations: 

2.18-8 



Character Test Functions 

INT index: data declarations. 
INT intAarray[O:lO]: 
STRING stringAarray[0:72]: 

$ALPHA 

IF $ALPHA( stringAarray[index] ) THEN ..• : 

test "stringAarray[index]" for being an ASCII alphabetical 
character. 

$NUMERIC 

DO index :=index+ 1 UNTIL NOT $NUMERIC( intAarray[ index] ): 

increments "index" until the right half of an element in 
"intAarray" is found to be other than numerical. 

$SPECIAL 

WHILE $SPECIAL(stringAarray[index]) DO index :=index - l: 
IF = THEN .•.••.. : 

decrements index while ASCII special characters are encountered, 
then checks the condition code indicator for alphabetical 
character. 

2.18-9 



Min/Max Functions 

These two functions provide the signed minimum or maximum of two 
expressions. 

The general form is: 

$MIN ( <arithmetic expression> , <arithmetic expression> ) 

returns the minimum of two signed integer, double word 
integer, or fixed expressions 

$MAX ( <arithmetic expression> , <arithmetic expression> ) 

returns the maximum of two signed integer, double word 
integer, or fixed expressions 

$LMIN ( <arithmetic expression> , <arithmetic expression> ) 

returns the minimum of two unsigned integer expressions 

$LMAX ( <arithmetic expression> , <arithmetic expression> ) 

returns the maximum of two unsigned integer expressions 

example 

vary:= $MIN( integerl, integer2); 

Some examples using the following declarations: 

INT smaller := !,larger := 10,vary; ! data declaration. 

PROC intAproc INT; 

BEGIN 
RETURN smaller +larger; 

END; 

$MIN 

vary := $MIN(smaller, larger); 

assigns lesser of "smaller" and ·11 1arger" to "vary" (ie, 1). 

WHILE $MIN(larger, smaller) DO ... ; 

determines the lesser of "larger" and "smaller" then checks for 
the lesser value being nonzero 

2.18-10 



Min/Max Functions 

$MAX 

IF $MAX{larger, intAproc * 2) >vary THEN ••.• ; 

determines the greater of "larger" and "intAproc" times 2 then 
checks for greater value being greater than "vary". 

2.18-11 



Carry and Overflow Test Functions 

These two tests check the states of the Carry and Overflow indicators 
in the machine. If the the tested indicator is on, a true state 
(i.e., value of -1) is returned; if the tested indicator is off, a 
false state (i.e., value of 0) is returned. 

The Carry and Overflow tests are typically used in conditional 
expressions to make decisions conc~rning the flow of program 
execution. 

The form of these tests are: 

$CARRY 

test for a Carry condition 

$OVERFLOW 

tests for an Overflow condition 

examples 

IF $CARRY THEN .... ; 
IF NOT $OVERFLOW THEN 

2.18-12 



Fixed Point Scale and Point Functions 

The scale function is used to change the position of the implied 
decimal point of an expression. The point function returns the 
<fpoint> value associated with a fixed expression. 

The form of the fixed point scale and point functions are: 

$SCALE <fixed expression> , <scale> ) 

moves the position of the implied decimal point by adjusting 
the internal representation of the expression (i.e., 
multiplying or dividing by <scale> power of ten) 

Precision may be lost if the operand is scaled down 

The Overflow indicator is set if the result of the scale 
exceeds the range of a 64-bit integer 

where 

<fixed expression> is an arithmetic expression giving a FIXED 
result 

<scale> is the number of positions that the implied decimal 
point is to be moved to the left (<scale> > 0) or to the right 
(<scale> <= 0) of the least significant digit. <scale> is 
represented by an integer constant, the range of which is -19 
to + 19 

$POINT <fixed expression> 

returns the <fpoint> value, in integer form, associated with a 
fixed expression. 

Note: The compiler does not emit any instructions when 
evaluating the <fixed expression>. Therefore, <fixed 
expression> cannot be used invoke a function procedure 
or assign a value to a variable 

examples 

result := $SCALE(a, 3) I b; 

point := $SCALE(a, $POINT( b )) I b; 

Some examples using the following declarations: 

INT point; data declarations. 
FIXED(3) result, a, b; 

2.18-13 



Fixed Point Scale and Point Functions 

$SCALE 

result := $SCALE(a, 3) I b; 

$POINT -----

scales the value of "a" by +3 so that "a" is treated as a 
FIXED(6) value. The result of the divide operation is then a 
1~IXED(3) value. 

result := $SCALE(a, $POINT( b ) ) / b; 

This illustrates how to automatically retain precision when 
performing fixed point division. The operation is identical to 
the preceding example except that the $POINT function is used 
to determine the <scale> value to $SCALE. The value returned 
from $POINT is 3 (the <fpoint> value of <b>); <a> is scaled by 
that factor. 

2.18-14 



COMPILER CONTROL COMMANDS 

The compiler commands are used to control listing features, declare 
sections in source files, specify source files (and sections in source 
files) for compilation, specify the number of data pages desired in 
the object program, and to selectively compile portions of source 
files. 

The general form of the compiler commands is: 

? <compiler command> 

where 

? in column one of a source file line designates a compiler 
command line. The compiler command line has one of the 
following forms: 

<command option> [ , <command option> ] •.• 

<toggle command> 

<source command> 

Note that multiple <command options> can be specified per 
line. If the line includes <source> or <toggle> commands, the 
command must be last in the line. Therefore, <source> and 
<toggle> commands cannot appear in the same line 

the <comm~nd options> consist of 

the page option: 

PAGE [ "<heading string>" ] 

the listing options {"->" indicates the default setting): 

-> LIST NOLI ST 

-> MAP NO MAP 

-> LMAP [ * ] NOL MAP 

-> CODE NOC ODE 

I CODE -> NO I CODE 

INNERLIST -> NOINNERLIST 

ABS LIST -> NOABSLIST 

--> 

AOl 2.19-1 



COMPILER CONTROL COMMANDS 

-> WARN 

-> SUPPRESS 

NOWARN 

NOSUPPRESS 

the errors option: 

ERRORS [=] <max errors> 

the section option: 

SECTION <section name> 

the datapages option: 

DATAPAGES [=] <number of pages> 

the pep option: 

PEP [=] <pep table size> 

the fixed point rounding control option: 

ROUND -> NOROUND 

the assertion control option: 

ASSERTION [=] <assertion level> , <procedure name> 

the <source command> is 

SOURCE <file name> [ ( <section name> , .•• ) ] 

the <toggle commands> are 

SETTOG [ 1,2, ••• , n 

RESETTOG 1,2, ..• , n] 

IF <toggle no.> 

IFNOT <toggle no.> 

ENDIF <toggle no.> 

2.19-2 AOl 



COMPILER CONTROL COMMANDS 

COMMAND OPTIONS 

Page Command Option 

PAGE [ " <heading string> " ] 

The PAGE command option ejects the current page of the <list file>, 
prints the optional <heading string>, and skips two more lines. The 
<heading string> must be enclosed in quotes (which are deleted). PAGE 
is enabled only if the LIST optiqn is on. If a <heading string> is 
specified, it replaces any preceding <heading string>. 

Example: 

?PAGE 

causes a skip to the next top of page. The previous <heading 
string> (if any) is retained 

?PAGE "FORWARD DECLARATIONS" 

causes a skip to the next top of page. The string "FORWARD 
DECLARATIONS" is printed on that and subsequent page headings 
(until changed by another PAGE command) 

Note: The PAGE command option is ignored if the <list> file is not a 
line printer. The first ?PAGE option in a source program does 
not cause a page eject. Rather it is used to specify a heading 
string. 

Listing Command Options 

Prefixing the following listing command options with "NO" disables 
that option: 

LIST 

MAP 

Transmits each source image to <list file>. LIST also 
enables the other listing options. 

If LIST is specified, a table of sublocal identifiers is 
printed following each subprocedure, a table of local 
identifiers is printed following each procedure, and a 
table of global identifiers is printed following the 
last procedure in the source program. 

LMAP [ * ] If LIST is specified, a table of procedure base 
addresses, entry point addresses, and limit addresses is 
printed following the last procedure in the source 
program. 

The table is printed in alphabetical order of procedure 
names. If the form "LMAP*" is specified, the table is 
also printed in ascending order of procedure base 
addresses. 

AOl 2.19-3 



COMPILER CONTROL COMMANDS 

CODE If LIST is specified, the instruction codes, in octal, 
are listed following each procedure. 

!CODE If LIST is specified, the mnemonics representing the 
instruction codes are printed following each procedure. 

INNERLIST If LIST is specified, the mnemonics representing the 
instruction codes are printed after each statement is 
compiled. Additionally, the compiler's RP (register 
stack pointer) setting is indicated. 

ABSLIST 

WARN 

SUPPRESS 

Examples: 

?NOLI ST 

INNERLIST is useful, when using the compiler 
interactively, for determining the specific machine 
instructions generated for a particular statement (i.e., 
to see how the compiler works). 

If LIST is specified, the instruction location printout 
will be relative to the base of the code area - C[O]. 
(Normally, the instruction locations are given relative 
to the base of a procedure.) If ABSLIST is to be used, 
the compiler must know the size of the PEP (procedure 
entry point) table before any actual procedure body is 
encountered in the source program. This can be 
accomplished in either of two ways: 1) by including a 
"PEP" command option at the beginning of the source 
program or 2) by having a FORWARD declaration for each 
internal procedure. These FORWARD declarations must 
precede any procedure having an actual body. 

If WARN is specified, compiler warning messages are 
listed (regardless of the setting of LIST). If NOWARN 
is specified, compiler warning messages are suppressed. 

If SUPPRESS is specified, all compiler listing output 
except error messages and the compiler's trailer message 
are suppressed. Use of this command overrides the state 
of the LIST option. 

?LIST, LMAP*,NOCODE,ICODE 
?INNERLIST 
?SUPPRESS 

Errors Command Option 

ERRORS [=] <max errors> 

The ERRORS command option limits the maximum number of errors allowed 
during a compilation to <max errors>. If this limit is exceeded, the 
compilation terminates. <max errors> is an integer in the range of 
{0:32767}. If omitted, the compilation continues regardless of the 
number of errors encountered. 

2.19-4 AOl 



COMPILER CONTROL COMMANDS 

Section Command Option 

SECTION <section name> 

The SECTION command option (which is used in conjunction with the 
SOURCE command) gives a name to a portion of a source file. A 
<section name> applies to all source text subsequent to the SECTION 
command or until another <section name> is given. 

Note: A <section name> has the same characteristics as a T/TAL 
identifier. That is, it is composed of one to 31 contiguous 
letters, numbers, or circumflex symbols. 

An example. Suppose a programmer has written a source library of 
application procedures. It might be desirable to give a <section 
name> to each procedure so that individual procedures could be 
selected for compilation using a SOURCE statement: 

?SECTION sortAonAkey 
PROC sortAonAkey(keyl, key2, key3, length); 

INT .keyl, .key2, .key3, length; 
BEGIN 

END; 
?SECTION nextAprocedure 

Then invoking a SOURCE command (with a file name of "appllib") as 
follows: 

?SOURCE appllib (sortAonAkey) 

this c·ompiles the procedure "sortAonA key". 

Note: Although, in this example the name of the procedure was used 
as the section name, any name could have been used. 

Datapages Command Option 

DATAPAGES [=] <number of pages> 

The DATAPAGES command option is used to override the number of data 
pages that the compiler assigns to the object program. The compiler, 
by default, assigns enough data pages for the global data area plus 
one extra page for local storage allocation. 

If the number specified by DATAPAGES is not sufficient, the compiler 
assigns the default value. 

Example: 

?DATAPAGES = 64 

AOl 2.19-5 



COMPILER CONTROL COMMANDS 

Note: The number of data pages can be also be increased from the 
compiler assigned setting at run time. This is done via the 
MEM parameter of the RUN command or the <memory pages> 
parameter of the NEWPROCESS procedure. 

Pep Command Option 

PEP [=] <pep table size> 

The PEP command option tells the compiler the anticipated size, in 
words, of the program's Procedure Entry Point Table. This command 
option is intended to be used when the ABSLIST listing option is 
specified so that the compiler will know how much space is to be 
allocated for the PEP. (This permits the compiler to list code 
relative addresses for instruction locations). The <pep table size> 
must be large enough to contain the PEP and can be specified as a 
larger value if desired. 

Example: 

?PEP 60 

Fixed Point Rounding Control Comman~_QEtion 

ROUND 
NO ROUND ! default setting. 

These command options are used to determine if rounding should take 
place when a fixed value with one <fpoint> value is assigned to a 
fixed variable having a smaller <fpoint> value. 

If NOROUND is specified, the value of a fixed operand that is 
assigned to a fixed variable is scaled, if necessary, to match the 
<fpoint> value of the fixed variable. If the <fpoint> value of the 
operand is greater than that of the variable, then the operand is 
scaled down and precision of the operand is lost. 

If ROUND is specified, the value of a fixed operand is also scaled, if 
necessary, to match that of the assignment variable. If the <fpoint> 
value of the operand is greater than that of the variable, then the 
operand is first scaled, if necessary, so that its <fpoint> value is 
one greater than the variable. The scaled operand is then rounded as 
follows: 

(IF operand < 0 THEN operand - 5 ELSE operand + 5) / 10 

That is, if the operand is negative, 5 is subtracted: if positive, 5 
is added. Then an integer divide by ten is executed to round the 
operand and scale it down by a factor of one. Therefore, if the 
absolute value of the least significant digit.of the operand, after 
initial scaling, is 5 or greater, one is added to the absolute value 
of the final least significant digit. 

2.19-6 AOl 



COMPILER CONTROL COMMANDS 

Assertion Command Option 

ASSERTION.[=] <assertion level> , <procedure name> 

The ASSERTION command option is a program debugging aid that is used 
in conjunction with an ASSERT statement. An ASSERT statement has the 
form: 

ASSERT <assertion level> : <conditional expression> 

The procedure specified by <procedure name> is invoked if the 
<conditional expression> is true and the level set by the ASSERTION 
command option is lower than or equal to the level specified in an 
ASSERT statement. 

For example. While initially debugging a program, a call to the 
operating system DEBUG procedure is made if a certain unexpected 
condition is encountered. Therefore, the <assertion level> is set to 
five and the DEBUG procedure is specified: 

?ASSERTION = 5, DEBUG 

Then at some critical point in the program, an ASSERT statement is 
used: 

SCAN array WHIL& " " -> @pointer~ 
ASSERT 10: $CARRY 

The compiler generates the instruction codes necessary to check 
the carry indicator and call the DEBUG procedure. The result 
being that the DEBUG procedure is called if the carry indicator 
is set because of the SCAN (i.e., a condition that was not 
expected to occur). 

Later on, when the program is fully debugged, the <assertion level> is 
raised to 20 

?ASSERTION = 20, DEBUG 

and the code necessary to check the carry indicator and call the 
DEBUG procedure is not generated by the compiler. 

SOURCE COMMAND 

?SOURCE <file name> [ ( <section name> , ••• ) ] 

The SOURCE command specifies a file (and optionally a section) from 
which source statements are to be compiled. <file name> is of the 
form 

[$<volume name>.] [<subvol name>.]<disc file name> 

AOl 2.19-7 



COMPILER CONTROL COMMANDS 

The current default volume and subvol names will be substituted for 
the corresponding omitted portions of <file name>. 

The source file is processed until an end-of-file indication is 
encountered, at which point the compiler begins reading at the line 
following the SOURCE command. The maximum number of source files open 
at any given time (i.e., nested SOURCE commands) is four~ 

When the SOURCE command is included in a line with other compiler 
commands, the SOURCE commands must be the last commands in the line. 

Example: 

?SOURCE $SYSTEM.SYSTEM.EXTDECS 

Section names can be continued on subsequent source lines. Column one 
of each continuation line must contain a question mark "?". 

TOGGLE COMMANDS 

The toggle commands are used to selectively compile portions of source 
files. A flag, called a toggle, is set or r~set somewhere near the 
beginning of the source program. Commands are then entered at other 
points in the source program that test the toggles to determine if 
subsequent text should be compiled. 

When the toggle commands are included in a line with other compiler 
commands, the toggle commands must be last in the line. 

There are fifteen separate toggles available~ all are initially 
reset. Toggles are set using: 

?SRTTOG [ 1, 2, ••• , n ] 

Sets the specified toggles. Omitting the toggle numbers, sets 
all toggles. 

Toggles are reset using: 

?RESETTOG [ 1, 2, ••. , n ] 

Clears the specified toggles. Omitting the toggle numbers, 
clears all toggles. 

Toggles are tested using: 

?IF <toggle no.> 

ignores the subsequent text unless <toggle no.> is set. 

?IFNOT <toggle no.> 

ignores the subsequent text unless <toggle no.> is not set. 

2.19-8 AOl 



COMPILER CONTROL COMMANDS 

In any case, the compiler resumes compiling when 

?ENDIF <toggle no.> 

is encountered 

Example: 

?RESETTOG 1 

?IF 1 

PROC sorne"'proc: 
BEGIN 

END: 

?ENDIF 1 

The compiler skips over the source text between "IF l" and 
"ENDIF l" 

AOl 2.19-9 





RUNNING THE T/TAL COMPILER PROGRAM 

The T/TAL compiler program resides in a file designated 

$SYSTEM.SYSTEM.TAL 

Normally, it is run through use of the Command Interpreter program. 
The command to run TAL is: 

TAL / [ IN <source file> ] [, OUT [ <list file> ] ] / ] 

<object file> ] [ ; <compiler command> , •.. ] 

where 

IN <source file> 

specifies disc file, non-disc device, or process where TAL 
reads source language statements and compiler commands. TAL 
reads 132-byte records from <source file> until the 
end-of-file is encountered. 

If this option is omitted, the <command file> of the Command 
Interpreter is used (if the Command Interpreter is being 
used interactively, which is the usual case, this will be 
the home terminal} 

OUT <list file> 

specifies a non-disc device, process, or existing disc file 
where TAL directs its listing output. If the <list file> is 
an unstructured disc file, each <list file> record is 132 
characters (partial lines are blank filled through column 
13 2} . 

If this option is omitted, the <list file> of the Command 
Interpreter is used (if the Command Interpreter is being 
used interactively, which is the usual case, this will be 
the home terminal} 

<object file> 

is a disc file, not necessarily existing, where the compiler 
puts the ready-to-run object program. It is of the form: 

[$<volume name>.] [<subvol name>.]<disc file name> 

If omitted, a file designated 

$<default volume>.<default subvol>.OBJECT 

--> 

AOl 2.20-1 



RUNNING THE T/TAL COMPILER PROGRAM 

is created. If a file exists with the same name as <object 
file> {or OBJECT, if applicable), the compiler purges the 
old file 

<compiler command> 

is one of 

[NO] LIST 
[NO] MAP 
[NO] LMAP [ *] 
[NO] CODE 
[NO]ICODE 
[NO]INNERLIST 
[NO] ABSLIST 
[NO] WARN 
[NO] SUPPRESS 
[NO] ROUND 
SETTOG [ 1,2, ••• , n] 
RESETTOG [ 1,2, ••• , n 
PEP [ = ] <pep size> 
ERRORS [ = ] <max errors> 

See section 2.19 for an explanation of these commands 

example 

TAL/IN mysource, OUT $LP/myobject 

DISC FILE SPACE USED BY THE COMPILER 

During the course of a compilation, T/TAL makes use of five temporary 
disc files. Their sizes and where they reside are: 

file extent size volume 

1 5 * 2048 bytes default volume 
2 4 * 2048 bytes default volume 
3 4 * 2048 bytes default volume 
4 1 * 2048 bytes default volume 
5 depends on size volume specified in <object file> 

of object program 

2.20-2 AOl 



RUNNING THE CROSS REFERENCE PROGRAM 

The T/TAL cross reference program provides an alphabetical listing of 
all identifiers in a source program. The class of each identifier is 
given, as well as the procedure or subprocedure where declared (if 
applicable). Additionally, for each occurrence of an identifier in a 
source program, a number identifying the source file is given as well 
as the line number within the source file. 

The cross reference program reads standard T/TAL source programs. The 
SOURCE, SECTION, and Toggle compiler commands are processed in the 
same manner as processed by the compiler. Other commands are ignored. 

The T/TAL cross reference program resides in a file designated 

$SYSTEM.SYSTEM.XREF 

Normally, it is run through use of the Command Interpreter program. 
The command to run the cross reference program is: 

XREF [ / [ IN <source file> ] [, OUT <list file> ] / ] 

where 

IN < so u r c e f i 1 e > 

specifies disc file, non-disc device, or process where XREF 
reads source language statements and compiler commands. 
XREF reads 132-byte records from <source file> until the 
end-of-file is encountered. 

If this option is omitted, the <list file> of the Command 
Interpreter is used (if the Command Interpreter is being 
used interactively, which is the usual case, this will be 
the home terminal) 

OUT <list file> 

specifies a non-disc device, process, or existing disc file 
where XREF directs its listing output. If the <list file> 
is an unstructured disc file, each <list file> record is 132 
characters (partial lines are blank filled). 

If this option is omitted, the <list file> of the Command 
Interpeter is used (if the Command Interpreter is being used 
interactively, which is the usual case, this will be the 
home terminal) 

example 

XREF/IN mysource, OUT $LP/ 

A03 
2.20-3 



RUNNING THE CROSS REFERENCE PROGRAM 

2.20-4 



READING THE COMPILER LISTING 

The section describes the T/TAL Compiler listing format. 

PAGE HEADING (?PAGE) 

The Page Heading contains a page number, the name and compiler index 
number of the current source file being compiled, and an optional 
title if a ?PAGE command was specified: 

PAGE 1 
" 

$SYSTEM.MOl~AOO.NSTPSRCE [!] 

page number file name file number 

COMPILER HEADING 

The Compiler Heading gives the version number of the T/TAL compiler in 
use (and the data and time it was last updated), the current date and 
time, and the default listing options: 

TAL - TANDEM COMPUTERS VERSION BOO ( 2/12/77 - 10 AM) 
SOURCE LANGUAGE: TAL - TARGET MACHINE TANDEM/16 

DATE - TIME 2/14/77 - 11:57:28 
OPTIONS: ON (LIST,CODE,MAP,WARN,LMAP) - OFF (ICODE,INNERLIST) 

SEQUENCE NUMBERS AND SOURCE PROGRAM LINES 

The sequence numbers are the EDIT line numbers of each source program 
line in the source file (in decimal). 

1. 
2. 
3. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
1 7. 
18. 
19. 

000000 0 
000000 0 
000000 0 
000000 0 
000000 0 
000000 0 
000000 0 
000000 0 
000000 0 
000000 0 
000000 0 
000000 0 
000000 0 
000000 0 
000000 0 
000000 0 
000000 0 
000000 0 

sequence numbers 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

?IF 1 
?NOLI ST 
?ENDIF 1 

this program is run with the following RUN c 

:RUN xnonstop I IN <data base file>, OUT <te 

begin global declarations. 

INT backup"cpu, this variable is not 

--> 

io"busy := O, flag to determine if 
be restarted. Set be 
cleared in <noerror> 
completes. 

. r e CV " f name [ 0 : 11 ] : = [ " $ RE c EI VE " , 8 * [ " 

source program lines 

2.21-1 



READING THE COMPILER LISTING 

SECONDARY GLOBAL STORAGE 

These numbers are a cumulative count of the am-0unt of secondary 
global storage allocated (in octal). The count is relative to the 
first secondary global location (last primary global address + 1). 

For example: 

12" 
13. 
14'" 
18 .. 
19 .. 
20 .. 
21.. 
22. 

000000 
000000 
000000 
000000 
000000 
000014 
000014 
000060 
" 

INT backup"cpu, this variable is not chec 

io"busy := 0, flag to determine if no-w 

.recv"fname[O:ll] := ["$RECEIVE", 8 * [" "]], 
recv"fnum, 

. r ecv" bu f [ 0: 3 5] , 

secondary storage allocation 

The indirect array "recv"fname" is the first array allocated in 
secondary storage and therefore its storage is allocated starting 
in the initial secondary location (%000000). The "recv"fname" 
array occupies %14 words of secondary storage. Notice that the 
count d-0es not increase when primary storage is allocated (e.g., 
for direct variable "recv"fnum"). The storage for indirect array 
"recv"buf" is allocated beginning at %14 of secondary storage and 
occupies %60 - %14 words of secondary storage (i.e, %44 words). 

CODE ADDRESS 

These numbers reflect the address (in octal) of the first instruction 
code that executes the T/TAL statement to its right. If the $ABSLIST 
listing option is not specified, the address is an offset from the 
base of the procedure (the first instruction in a procedure then has 
an offset of zero). If $ABSLIST is specified, the address is a C 
Relative address (i.e., offset from base of code area). 

An example of code addresses produced without the $ABSLIST listing 
option: 

69. 
70. 
71. 
7 2. 

80. 
81. 

2.21-2 

000000 0 
000000 1 
000000 1 
000000 1 

000000 1 
000014 1 ,... 

procedure 

0 PROC abort; 
0 
0 BEGIN 
1 INT p = 'L' [-2], 

1 CALL MYTERM(buf); 
1 CALL OPEN(buf ,home"fnum); 

relative address 



READING THE COMPILER LISTING 

The number %000014 indicates that the first instruction code 
associated with the statement on the right, "CALL OPEN •• ", is 
located in the %14th word of the procedure "abort". 

To determine the actual C relative address of an instruction when the 
$ABSLIST option is not used, the base address of the procedure must be 
known. Procedures' base addresses are listed in the LMAP at the end 
of the compilation listing. In this example, the base of the 
procedure "abort" is in C relative location %000011. Therefore, the 
instruction is in C relative location %000025 {%11 {base) + %14 
{offset from base)). 

LMAP: 

PEP BASE LIMIT ENTRY ATTRIBUTES NAME 

002 000011 000102 000011 ABORT 

LEXICAL LEVEL 

This number indicates the lexical level; 0 = global, 1 = procedure, 2 
= subprocedure. 

For example 

63. 0 ! end of global declarations. 
68. 0 
69. 0 PROC abort; 
70. 1 
71. 1 BEGIN 
72. 1 INT p = 'L' [-2], 

90. 1 CALL ABEND; 
91. 1 END; 

269. 0 this is the transaction loop. 
270. 0 
271. 0 PROC main"loop; 
272. 1 
273. 1 BEGIN 

279. 1 SUBPROC get"term"entry {error); 
280. 2 INT .error; 
281. 2 BEGIN 
282. 2 INT reason; 

2.21-3 



READING THE COMPILER LISTING 

297. 
.298. 

349. 
3 50. 
351. 
352 • 

. 
385. 
386. 
387. 

BEGIN/END COUNTER 

2 
2 

1 
1 
1 
1 

1 
1 
0 
A 

WHILE 1 DO 
BEGIN 

CALL getAtermAentry (error); 
IF error = 1 THEN RETURN; ! eof. signa 

END; ! of infinite loop. 
END; ! of mainAloop; 

lexical level 

This number is the BEGIN/END counter. One is added each time a BEGIN 
is encountered, one is subtracted each time an END is encountered: 

138 .. 
139 .. 
140 (9 

14L 
142 .. 
143 .. 
144 .. 
145. 
146. 
147 (9 

152 .. 
153 .. 
154 .. 
155 .. 

16L 
162 .. 

168. 
169. 
171.. 
172 .. 
173" 
1 74. 

2.21-4 

0 PROC mycheckpoint; 
0 
0 BEGIN 
1 INT reason; 
1 
1 DO 
1 BEGIN 
2 CASE (reason := CHECKPOINT(stackbase,, 
2 BEGIN 
3 ! 0, good checkpoint. 

3 BEGIN 
4 CASE reason.<8:15> OF 
4 BEGIN 
5 ! 0, primary stopped. 

5 END; 
4 

4 END; 
3 ! 3, parameter error. 
3 END; 
2 END 
1 UNTIL reason.<0:7> < 2; ! repeat checkpoin 
! END; ! mycheckpoint. 

begin/end counter 



READING THE COMPILER LISTING 

MAP (?MAP) 

The "MAP" listing option provides a map of identifiers. Three levels 
of maps are provided: sublocal (i.e., identifiers declared in a 
subprocedure), local (i.e., identifiers declared in a procedure), and 
global (i.e., identifiers declared globally). The form of a map is: 

<identifier> <class> <type> <rel address> <address mode> 

where 

<class> specifies the class associated with the <identifier> 
(i.e., VARIABLE, PROC, SUBPROC, ENTRY, LABEL, DEFINE, 
LITERAL, etc.) 

<type> is the declared data type of a VARIABLE. (i.e., INT, 
INT(32), STRING, or FIXED) 

<rel address> is the relative address of a VARIABLE. In 
subprocedures addresses for both parameters and sublocal 
variables are addressed S - (verbally, S minus) relative. In 
procedures, parameters are addressed L - relative, local 
variables are addressed L +. All global variables are 
addressed G + relative 

<address mode> indicates whether a VARIABLE is addressed 
directly or indirectly (i.e., through a pointer). Value 
parameters are indicated by DIRECT addressing; reference 
parameters are indicated by INDIRECT addressing. 

-----------------------------------------------------------------~----

An example map of local identifiers: 

DB"'EOF VARIABLE INT L+003 DIRECT 
ERROR VARIABLE INT L+OOl DIRECT 
GET"'TERM"'ENTRY SUBPROC 
LIST"'DB"'ENTRY SUBPROC 
LIST"' MODE VARIABLE INT L+002 DIRECT 
NEXT"'DB"'ENTRY SUBPROC 

identifier class type rel address mode 

CODES (?CODE) 

The "CODE" listing option lists the instruction codes emitted for a 
procedure. The format of the code listing is: 

2.21-5 



READING THE COMPILER LISTING 

An 

<address> <code> .•. ! to eight per <codes> per <address> 

where 

<address> is address (in octal) for adjacent code. If the 
$ABSLIST listing option is not specified, <address> is an 
offset from the base of the procedure. If $ABSLIST is 
specified, <address> is a C Relative address (i.e., offset 
from base of code area) 

<code> is the octal representation of the instruction code 
emitted by the compiler 

example instruction code listing: 

00000 040001 007100 015460 040005 014404 040005 100000 024711 
00010 027000 170040 000002 040001 006017 170037 070000 024755 
00020 027000 040000 015440 040001 004440 044001 170037 070005 
00030 100000 024722 027000 015025 100000 144031 040005 170031 
00040 103777 143031 024722 002003 100034 024700 02:7000 012005 
00050 170037 100001 024711 027000 010403 040001 004500 044001 
00060 010402 100000 044005 125003 
" --> 
address codes 

PROCEDURE MAP (?LMAP) 

The "LMAP" listing option provides a map of all internal procedures i.n 
the program. The form of the map is: 

2.21-6 



An 

READING THE COMPILER LISTING 

PEP BASE LIMIT ENTRY ATTRIBUTES NAME 

<adr> <adr> <adr> <adr> [PICIRIIIMIV] <procedure name> 

where 

PEP <adr> is the 'C' relative address, in octal, of the PEP 
entry for <procedure name> 

BASE <adr> is the 'C' relative address, in octal, of the base 
(i.e., first word) of <procedure name> 

LIMIT <adr> is the 'C' relative address, in octal, of the 
limit (i.e., last word) of <procedure name> 

ENTRY <adr> is the 'C' relative address, in octal, of the 
entry point (i.e., first instruction) of <procedure name> 

ATTRIBUTES are any attributes of <procedure name>. Where 

p = PRIV 
c = CALLABLE 
R = RESIDENT 
I = INTERRUPT 
M = MAIN 
v = VARIABLE 

<procedure name> is the name of an internal procedure in the 
source program 

example procedure map is: 

PEP BASE LIMIT ENTRY ATTRIBUTES NAME 

002 000011 000102 000011 ABORT 
003 000103 000212 000103 CREATEBACKUP 
004 000522 001000 000700 MAIN"'LOOP 
005 000213 000305 000213 MYCHECKPOINT 
006 000427 000521 000427 NOERROR 
007 001001 001235 001001 M STARTUP 
010 000306 000426 000306 v WAIT 

2.21-7 



READING THE COMPILER LISTING 

COMPLETION MESSAGE 

The completion message gives the following information (all numeric 
values are given in decimal representation): 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

The name of the object file created as a result of the compilation. 

The total number of error messages issued. 

The total number of warning messages issued. 

The total number of words of primary global storage needed. 

The total number of words of secondary global storage needed. 

The total number of words of code area needed. 

The minimum number of (virtual) memory data pages to be allocated 
to the program when it is run. 

The number of (virtual) memory code pages to be allocated to the 
program when it is run. 

The number of words that the compiler needed for its symbol table. 

The elapsed (or wall) time used to compile the source program. 

An example completion message: 

OBJECT FILE NAME IS $SYSTEM.M013AOO.XNSTP 
NO. ERRORS=O ; NO. WARNINGS=O 
PRIMARY GLOBAL STORAGE=l8 
SECONDARY GLOBAL STORAGE=208 
CODE SIZE=661 
DATA AREA SIZE=2 PAGES 
CODE AREA SIZE=l PAGES 
MAXIMUM SYMBOL TABLE SIZE=887 
NUMBER OF SOURCE LINES=421 
ELAPSED TIME - 0: 1:25 

Notes: 

1. 'S' and 'L', when the· object program is run, are initially set to 

<primary global storage> + <secondary global storage> 

2. The number of (virtual) memory data pages can be increased when 
the program is run. 

2.21-8 



ADVANCED FEATURES 

The following advanced features of T/TAL are discussed in this 
section: 

* Base address equivalencing 

* Procedures: advanced <attributes> 

* Subprocedures: <attribute> variable 

* Symbol for removing indirection 

* Advanced statements 

* Advanced standard functions 

* Advanced compiler control commands 

2.22-1 



BASE ADDRESS EQUIVALENCING 

Base address equivalencing provides a method for assigning variables 
to locations relative to the four base addresses used in the Tandem 
16. No storage is allocated for a variable equivalenced to a base 
address. 

The form for base reference equivalencing is: 

{ 'GI 
{ 'L' 
{ IS I 

<type> [ . ] <name> = { 'SG' 
"["<word index> "]" 
[+I-] <word offset> 

where 

<type> is { INT } 
{ INT(32) } 
{ STRING } 
{ FIXED [ ( <fpoint> ) } 

. is the indirection symbol. It presence means that the 
equivalenced variable is treated as a pointer variable. Its 
absence means that the equivalenced variable it treated as a 
simple variable 

' G ' , ' L ' , ' S ' , and ' S G ' a r e the add r es s bases 

where 

'G' indicates global addressing - the variable is addressed 
relative to 'G' [0] 

'L' stands for local addressing - the variable is addressed 
relative to 'L' [0] 

'S' stands for top-of-stack addressing - the variable is 
addressed relative to 'S' [0] 

'SG' stands for system global addressing - the variable is 
addressed relative to 'SG' [0]. This requires privileged 
mode 

<word index> and <word off set> are integer constants and are 
equivalent 

Example 

INT 1 = IL I; 

----------------------------------------------------------------------

2.22-2 



BASE ADDRESS EQUIVALENCING 

The location indicated by <word index> and <word offset> must be 
within the range of direct addressing for the particular base address: 

for 'G' the range is [0:255] 

for 'L' the range is [-31: 127] 

for 'SI the range is [-31:0] 

for 'SG' the range is [0:63] 

Some exarnpl es: 

To access the upper 32K words of the data area, the following base 
register equivalencing could be used: 

INT g = 'GI; 

base of the data area 

Then using the identifier "g" 

n := g[%100000]; 

accesses data area location 'G' [32768]. 

To equivalence a variable to the current location of the stack marker, 
the following is written: 

INT mark = 'L'; 

Then using the identifier "mark" 

n :=mark; 

accesses the "L" word in the current stack marker. 

To equivalence a variable to the "E" part of the current stack marker, 
the following could be written: 

INT e = 'L ' [ -1] ; 

Base address equivalencing is used to access the system data area {if 
in privileged mode}: 

INT system= 'SG'; 

Then used as follows: 

n := systern[num]; 

accesses 'SG' [nurn] if in privileged mode. If not in privileged 
rn od e , ' G ' [ n urn ] i s a cc e s s e d . 

2.22-3 



PROCEDURES: ADVANCED <attributes> 

Procedures have a number of <attributes> not previously mentioned. 
That is: 

* The ability to have a variable number of parameters passed at the 
time of the call. 

* To execute in privileged mode but be callable by non-privileged 
procedures. 

* To execute in privileged mode but be callable only from procedures 
already executing in privileged mode. 

* To be designated an interrupt procedure and execute an IXIT 
instruction when returning to the caller rather than an EXIT 
instruction. 

2.22-4 



PROCEDURES: ADVANCED <attributes> 

<attributes> are designated in the procedure heading. The complete 
form of the procedure heading is: 

without parameters 

<type> ] PROC <name> [ <attributes> ] 

with parameters 

<type> ] PROC <name> <formal parameter name> , ... 
[ <attributes> ] : 

<parameter specifications> 

where 

<type>, <name>, <formal parameter name>, and <parameter 
specifications> are described in "Procedure Declaration" 

<attributes> are [ MAIN [, RESIDENT [, VARIABLE 
[, CALLABLE I PRIV [, INTERRUPT ] ] ] ] ] 

where 

MAIN indicates that the procedure is the first one to 
execute when the program is run 

RESIDENT indicates that the procedure's instruction codes 
are to be made main memory resident when the program is run 

VARIABLE indicates that the procedure's <formal parameters> 
are to be considered optional and any or all parameters can 
be omitted at the time that the procedure is called 

CALLABLE indicates that the procedure executes in priv
ileged mode and is callable by procedures executing in 
non-privileged mode 

PRIV indicates that the procedure executes in privileged 
mode and is callable only by other procedures executing in 
privileged mode 

INTERRUPT indicates that the procedures executes an IXIT 
instruction when returning to the caller. This <attribute> 
is used only by the operating system interrupt handlers 

2.22-5 



PROCEDURES: ADVANCED <attributes> 

<attribute> VARIABLE 

When a procedure is written with the <attribute> VARIABLE, the 
compiler considers ALL parameters to be optional. At the call to a 
procedure having this <attribute>, the compiler emits instruction 
codes to generate a parameter "mask". The "mask" is used to indicate 
the presence or absence of each parameter and is located in the 
parameter area just above the procedure's parameters. 

The parameter "mask" consists of one word if the procedure has 
sixteen or less parameters or a doubleword if the procedure has more 
than sixteen parameters. If a one word mask, it is placed in 
'L' [-3]; if a doubleword, it is placed in 'L' [-4:-3]. Each bit in 
the mask corresponds to one of the procedure's <formal parameters>. 
The mask bit is set to a "l" if the corresponding actual parameter is 
supplied at the time of the call and a "0" if the parameter is 
omitted. It is the responsibility of statements within a procedure 
with the <attribute> VARIABLE to check this mask. 

The mask has the form: 

for VARIABLE procedure <p>, with left-to·-right paramet.ers -
<pl>, <p2>, <p3>, .. <pn> - that is: 

PROC p {pl, p2, p3, ..• pn); 

the corresponding parameter mask bits (for a one word mask) are 

2.22-6 

for <pl>, <mask>.<15 - n + 1) 
for <p2>, <mask>.<15 - n + 2) 
for <p3>, <mask>.<15 - n + 3) 

for <pn>, <mask>.<15> 



PARAMETER MASK FORMAT 

PROC p (pl, p2, p3, ...... , pn); 
! "n" is the number of parameters. 

PROCEDURES: 

{ 

L 

t' 

ADVANCED <attributes> 

pl L[-4-n+ 1) 

p2 L[-4-n+2) 

p3 L[-4 - n + 3) 

pn L[-4) 

____ I ___ ) ) ____ r= - -__ M_A_sK __ L[-3) 

~ mask . < 15 - n + 1 ? 

mask . < 15 - n + 2 > 

mask.< 15 - n + 3> 

mask.< 15..> 

The parameter mask resides beginning at 'L' [-3] if the procedure has 
16 or less parameters and at 'L' [-4] if the procedure has from 17 to 
27 parameters (27 is the maximum amount for variable procedures). 

PARAMETER MASK LOCATION 

L[-3) 

L[O) 

NUMBER OF PARAMETERS 
< = 16 

MASK WORD 

} HARDWARE 
GENERATED 

STACK MARKER { 

NUMBER OF PARAMETERS 

> 16 

~ 
MASK 

DOUBLEWORD 
.... 

L[-4) 

L[O) 

2.22-7 



PROCEDURES: ADVANCED <attributes> 

The following illustration depicts the parameter area for a call to a 
procedure having optional parameters: 

EXAMPLE OF PARAMETER AREA FOR VARIABLE PROC 

INT a,b,c,d,e; ! data declarations. 

PROC vv{pl,p2,p3,p4,p5,p6,p7,p8) VARIABLE; 
INT pl,p2,p3,p4,p5,p6,p7,p8; 

BEGIN 

END; 

The following procedure call is made: 

CALL vv (a, b, , c , d, , e) ; 

..-------- --+- a__. 
( 

I ( 

_______ .,.. 
b __. 

I I ,,.-----------. 
( 

I I I ------· c __. 
( 

I I I I ----+ d __. 

I I I I 
( 

I --------. 
I I I I I 

( 

I I I ---· e __. 
I I I I ( 

I ( ____ _., 
I I I I I I I 

I 1l1lol1 I 1 I 0 I 1 I 0 I= MASK • 

8 15 

p1 p2 P3 P4 P5 PS P7 PB 

2.22-8 

p1 
--------

p2 

omitted 

p4 

p5 

omitted 

p7 

omitted 

%332 

p 

E 

L 

PROC vv's 
LOCAL DATA 

L[-11) 

• 
• 
• 
• 
• 
• 

L[-4) 

L[-3] 

} HARDWARE 
GENERATED 
s·rACK 

L[O) MARKER 



PROCEDURES: ADVANCED <attributes> 

A standard function, $PARAM, is available for checking the presence or 
absence of a parameter. $PARAM is a <primary>. 

The form of $PARAM is: 

$PARAM <formal parameter> 

where 

$PARAM returns a "l" if the parameter is present and returns a 
"0" if the parameter is absent 

<formal parameter> is the name, as specified in the procedure 
(or subprocedure) heading, of the parameter whose presence is 
to be checked 

example 

IF $PARAM(pl) THEN .. 

An example using the following procedure declaration: 

PROC var~proc (buffer, length, key) VARIABLE: 
INT .buffer, ! required. 

length, ! required. 
key: ! optional. 

The presence of an optional parameter is checked: 

IF $PARAM( key) THEN •.. 

is true if the optional parameter "key" is present. 

It is up to the programmer to ensure that required parameters are 
present. Required parameters are checked in the same manner as 
optional parameters. For example: 

IF NOT $PARAM( buffer) AND NOT $PARAM( length) THEN .. 

this condition is true if both of the required parameters 
are absent. 

2.22-9 



PROCEDURES: ADVANCED <attributes> 

<attribute> CALLABLE 

The CALLABLE <attribute> is a nonprivileged program's only way to 
become privileged. Procedures declared with this attribute are 
callable by nonprivileged procedures. 

An example. An application wants to access data in the operating 
system's data area. This can be done by non-system programs only if 
they are executing in privileged mode. This is accomplished as 
follows: 

INT PROC read~system(address) CALLABLE; 
INT address; 

BEGIN 
'INT sg = 'SG'; ! system global addressing mode 

RETURN sg[address]; 
END 

The procedure uses the 'SG' addressing mode which is possible 
only in privileged mode 

<attribute> PRIV 

Procedures declared with the PRIV attribute are callable only by 
procedures executing in privileged mode. The PRIV attribute is the 
operating system's mechanism for protecting against unauthorized calls 
to internal operating system procedures. 

That is: 

nonprivileged ----> CALLABLE ----> PRIV 

(application) (operating system) 

<attribute> INTERRUPT 

Procedures declared with the INTERRUPT attribute execute an IXIT 
{interrupt exit) instruction when returning to the caller. The 
INTERRUPT attribute is usable only by the operating system interrupt 
handlers. 

2.22-10 



SUBPROCEDURES: <attribute> VARIABLE 

Like a procedure, a subprocedure may have optional parameters by 
specifying the attribute VARIABLE. The <attribute> VARIABLE is 
declared in the subprocedure heading. The form of the <subprocedure 
heading> is: 

without parameters 

<type> ] SUBPROC <name> [ VARIABLE ] 

with parameters 

<type> ] SUBPROC <name> <formal parameter name> ' ... 
[ VARIABLE ] ; 

<parameter specifications> 

where 

<type>, <name>, <formal parameter name>, and <parameter 
specifications> are described in "Subprocedure Declaration" 

VARIABLE is an <attribute> that indicates that the 
subprocedure's <formal parameters> are to be considered 
optional and any or all parameters can be omitted at the time 
that the subprocedure is called 

When a subprocedure is written with the <attribute> VARIABLE, the 
compiler considers ALL parameters to be optional. At the call to a 
subprocedure having this <attribute>, the compiler emits instruction 
codes to generate a parameter "mask" of the same form as that for a 
call to a procedure having the <attribute> VARIABLE. 

The parameter "mask", whether one or two words, is located in the 
memory stack just above where the right-hand parameter of the 
subprocedure is passed and just below where the caller's return 
address is stored. 

The following illustration depicts the parameter area for an call to a 
subprocedure having optional parameters: 

2.22-11 



SUBPROCEDURES: <attribute> VARIABLE 

EXAMPLE OF PARAMETER AREA FOR VARIABLE SUBPROC 

INT a,b,c; 

SUBPROC v"'subproc(pl, p2, p3, p4, p5) VARIABLE; 
INT pl, p2, p3, p4, p5; 

BEGIN 
INT sl"'l, sl"'2, sl"'3; 

END; 

The following subprocedure call is made: 

CALL v"'subproc(,a,b,,c); 

---------/ 
_.., 

I ------ a 
I I 
I I ,,,---- b 

_.., 
--.j 

( -----1 ,, --.j 

I I I : (- - c 

I 0 I 0 I 0 I 1 I 1 I 0 I 1 I = MA~ ...... -
-

11 15 

SUBPROC v ""subproc 
SUBLOCAL VARIABLES 

P1 P2 P3 P4 PS { 

CAI.LING PROC'S 
LOCAL DATA 

MISSING p1 

p2 

p3 
~-

MISSING p4 

pS 

%15 

RETURN ADDRESS 

sl "1 

sl '2 

sl"3 

S[-9] 

S[-SJ 

Sl-41 

) 
PUT HERE BY 
HARDWARE 

S[O] 

Note that the parameter "mask" is located two words before the first 
sublocal variable: 

INT mask = sl"'l - 2; 

This is the mask position in all cases for a one-word mask. If a 
subprocedure has more than 16 parameters, the mask consists of two 
words and is located starting three words before the first sublocal 
variable: 

INT maskl = sl"'l - 3, 
mask2 = maskl + l; 

The standard function $PARAM (see "Procedures: Advanced <attributes>") 
can be used to check for the presence of parameters passed to a 
subprocedure with the attribute VARIABLE: 

IF $PARAM( pl) THEN ••• 

2.22-12 



SYMBOL FOR REMOVING INDIRECTION: LABELS AND PROCEDURES 

The symbol for removing indirection can be used to obtain an address 
relative to the base of the code area ('C' [0]) of a label or 
subprocedure: 

@<label> or @<subproc name> 

For example, to obtain the address of the label 

loop: 

the following statement could be written 

address := @loop; 

The symbol for removing indirection can be used to obtain the 
procedure entry point (PEP) table number of a procedure: 

@<proc name> 

For example, to obtain the PEP number of the procedure 

PROC p; 

the following statement could be written 

n := @p; 

LABEL DECLARATION 

Because identifiers for labels could duplicate globally declared 
identifiers, an ambiguity could arise when assigning the address of a 
label to a variable. Therefore the label declaration is provided. 

The form of the label declaration is: 

LABEL <label name> 

where 

<label name> is an identifier assigned to the labelled 
statement 

more than one <label name> can be specified per declaration 
(separated by commas",") 

example 

LABEL loop; 

2.22-13 



SYMBOL FOR REMOVING INDIRECTION: LABELS AND PROCEDURES 

An example showing the reason for the LABEL declaration. A variable 
is declared globally 

INT loop; 

Then in a procedure, the same identifier is used for a label: 

PROC p; 
BEGIN 

LABEL loop; 

The address of the label "loop" is stored in the variable "n": 

n := @loop; 

loop: 

If "loop" had not been declared a label, the 'G' [0] relative address 
of the global variable "loop" would have been stored in ~n". 

2.22-14 



ADVANCED STATEMENTS 

The use of the following statements requires an advanced knowledge of 
the Tandem 16 hardware. These statements are: 

CODE permits the programmer to specify machine level 
instruction codes to be compiled into the object program 

USE allocates an index register permitting the programmer to 
optimize index register use 

DROP deallocates an index register 

STACK loads the contents of variables onto the register stack 

STORE stores register stack elements into variables 

FOR uses the BOX instruction to provide the loop if an index 
register has been allocated 

2.22-15 



CODE Statement 

The CODE statement provides the means for generation of :specific 
instruction codes. 

The general form of the CODE statement is: 

CODE <instruction> . 
I • • • 

where 

<instruction> is a Tandem 16 mnemonic representing the 
machine instruction to be executed, followed by one or more 
parameters if necessary 

<instruction> has six forms, represented by six classes. The 
forms are: 

2.22-16 

class 1 - <mnemonic> 

class 2 - <mnemonic> <variable> 

class 3 - <mnemonic> <constant> 

class 4 - <mnemonic> <index register> 

class 5 - <mnemonic> <variable> <index register> 

class 6 - <mnemonic> <constant> , <index register> 

where 

<mnemonic> represents an instruction code as described 
in the Tandem 16 System Description and in this section 

<variable> can be represented by 

<identifier> 

.<identifier> 

@<identifier> 

If <variable> is declared as an indirect variable and is 
specified without "@", the instruction emitted will be 
an indirect reference through <variable> 

<index register> is an integer constant specifying an 
index register (i.e., [5:7]) or an identifier assigned 
to an index register in a USE statement. If omitted, 
no indexing is performed 

AOl 



CODE Statement 

Some examples showing the different classes of instructions: 

CODE(ZERD; !ADD); 

These are class 1 instructions 

CODE(LADR a; STOR .b); 

These are class 2 instructions 

CODE(LDI 21; ADDI -4); 

These are class 3 instructions 

CODE(STAR 7; STRP 2); 

These are class 4 instructions 

CODE(LDX a,7; LDB .stg, x); 

These are class 5 instructions 

CODE(LDXI -15,5); 

This is a class 6 instruction 

TANDEM 16 INSTRUCTION SET MNEMONICS 

16-Bit Arithmetic (implicit top of Register Stack) 

Integer (signed) Add A to B 
CODE ( !ADD ) 

Logical (unsigned) Add A to B 
CODE ( LADD ) 

Integer (signed) Subtract A from B 
CODE ( !SUB ) 

Logical (unsigned) Subtract A from B 
CODE ( LSUB ) 

Integer (signed) Multiply A times B 
CODE ( IMPY ) 

Logical (unsigned) Multiply A times B 
CODE ( LMPY ) 

Integer (signed) Divide B by A 
CODE ( !DIV ) 

Logical (unsigned) Divide CB by A 
CODE ( LDIV ) 

Integer (signed) Negate A 
CODE ( !NEG ) 

class 1 

class 1 

class 1 

class 1 

class 1 

class 1 

class 1 

class 1 

class 1 
--> 

2.22-17 



CODE Statement 

Logical (unsigned) Negate A 
CODE ( LNEG ) class 

Integer (signed) Compare A with B 
CODE ( ICMP ) class 

Logical (unsigned) Compare A with B 
CODE ( LCMP ) class 

Compare Immediate Operand with A 
CODE ( CMPI <immediate operand> ) class 

Add Immediate Operand to A 
CODE ( ADDI <immediate operand> ) class 

Logical (unsigned) Add Immediate Operand to A 
CODE ( LADI <immediate operand> ) class 

32-Bit Signed Arithmetic (implicit top of Register Stack) 

Double Add DC to BA 
CODE ( DADD ) class 

Double Subtract BA from DC 
CODE ( DSUB ) class 

Double Negate BA 
CODE ( DNEG ) class 

Double Compare BA with DC 
CODE ( DCMP ) class 

Double Test BA 
CODE ( DTST ) class 

Minus One Double 
CODE ( MOND ) class 

Put Zero Double into BA 
CODE ( ZERD ) class 

One Double 
CODE ( ONED class 

16-Bit Signed Arithmetic (explicit Register Stack Element) 

2.22-18 

Add Register to A 
CODE ( ADRA <register number> 

Subtract Register from A 
CODE ( SBRA <register> 

Add A to a Register 
CODE ( ADAR <register> ) 

Subtract A from a Register 
CODE ( SBAR <register> ) 

Add Immediate Operand to an Index Register 
CODE ( ADXI <immediate operand> , <index 

class 

clasrs 

class 

class 

register> ) 

! class 

1 

1 

1 

3 

3 

3 

1 

1 

1 

1 

1 

1 

1 

1 

4 

4 

4 

4 

6 

--> 



CODE Statement 

Register Stack Manipulation 

Exchange A and B 
CODE ( EXCH ) class 1 

Double Exchange BA with DC 
CODE ( DXCH ) class 1 

Double Duplicate BA in DC 
CODE ( DDUP ) class 1 

Store A in a Register 
CODE ( STAR <register> ) class 4 

Non-destructive Store A into a Register 
CODE ( NSAR <register> ) class 4 

Load A from a Register 
CODE ( LORA <register> ) class 4 

Load Immediate Operand into A 
CODE ( LOI <immediate operand> ) class 3 

Load Index Register with Immediate Operand 
CODE ( LDXI <immediate operand> , <index register> ) 

class 6 
Load Left Immediate Operand 

CODE ( LOLI <immediate operand> 

Boolean Operations 

Logical (unsigned) AND A with B 
CODE ( LAND ) 

Logical (unsigned) OR A with B 
CODE ( LOR ) 

Logical (unsigned) Exclusive OR A with B 
CODE ( XOR ) 

One's Complement A 
CODE ( NOT ) 

OR Right Immediate Operand with A 
CODE ( ORR! <immediate operand> 

OR Left Immediate Operand with A 
CODE ( ORLI <immediate operand> 

AND Right Immediate Operand to A 
CODE ( ANRI <immediate operand> 

AND Left Immediate Operand with A 
CODE ( ANLI <immediate operand> 

Bit Shift and Deposit 

Deposit Field in A 
CODE ( DPF ) 

Logical (unsigned) Left Shift 
CODE ( LLS <shift count> ) 

! class 3 

class 1 

class 1 

class 1 

class 1 

class 3 

class 3 

class 3 

class 3 

class 1 

class 3 
--> 

2.22-19 



CODE Statement 

Double Logical (unsigned) Left Shift 
CODE ( DLLS <shift count> ) 

Logical (unsigned) Right Shift 
CODE ( LRS <shift count> ) 

Double Logical (unsigned) Right Shift 
CODE ( DLRS <shift count> ) 

Arithmetic (signed) Left Shift 
CODE ( ALS <shift count> ) 

Double Arithmetic (signed) Left Shift 
CODE ( DALS <shift count> ) 

Arithmetic (signed) Right Shift 
CODE ( ARS <shift count> ) 

Double Arithmetic (signed) Right Shift 
CODE ( DARS <shift count> ) 

Byte Test 

Byte Test A 
CODE ( BTST 

Memory Stack <--> Register Stack 

2.22-20 

Load Word from Program (Code) Area into A 
CODE ( LWP <variable> , <index register> 

Load Byte from Program (Code) Area into A 
CODE ( LBP <label> , <index register> ) 

Load Index Register from Memory Stack 
CODE ( LDX <variable> , <index register> ) 
CODE ( NSTO <variable> , <index register> 

Load A from Memory Stack 
CODE ( LOAD <variable> , <index register> 

Store A into Memory Stack 
CODE { STOR <variable> , <index register> 

Load A with Byte from Memory Stack 
CODE ( LDB <variable> , <index register> 

Store Byte from A.<8:15> to Memory Stack 
CODE { STB <variable> , <index register> 

Load Double from Memory Stack into BA 
CODE ( LDD <variable> , <index register> 

Store Double from BA into Memory Stack 
CODE { STD <variable>, <index register> ) 

Load G-Relative Address of Variable into A 
CODE { LADR <variable> , <index register> 

Add A to Variable in Memory Stack 
CODE { ADM <variable> , <index register> ) 

Push Registers to Memory Stack 
CODE ( PUSH <nnn 111 ccc> ) 

class 3 

class 3 

class 3 

class 3 

class 3 

class 3 

class 3 

class 1 

class 5 

class 5 

class 5 
class 5 

class 5 

class 5 

class 5 

class 5 

class 5 

class 5 

class 5 

class 5 

class 3 

--> 



Pop Memory Stack to Registers 
CODE ( POP <nnn 111 ccc> ) 

Branching 

Branch if CARRY 
CODE ( BIC <label> ) 

Branch unconditionally 
CODE ( BUN <label> ) 

Branch on X Less Than A or Increment X 
CODE ( BOX <label> I <index register> 

Branch if CC is Greater 
CODE ( BGTR <label> ) 

Branch if CC is Equal 
CODE ( BEQL <label> ) 

Branch if CC is Greater or Equal 
CODE ( BGEQ <label> ) 

Branch if CC is Less 
CODE ( BLSS <label> 

Branch on A Zero 
CODE ( BAZ <label> ) 

Branch if CC is not equal 
CODE ( BNEQ <label> ) 

Branch on A Not Zero 
CODE ( BANZ <label> ) 

Branch if CC is Less or Equal 
CODE ( BLEQ <label> ) 

Branch if no OVERFLOW 
CODE ( BNOV <label> ) 

Branch if no CARRY 
CODE ( BNOC <label> ) 

Branch Forward Indirect 
CODE ( BF! ) 

Moves/Compares/Scans 
--------------------

Move Words 
CODE ( MOVW <m ssd nnn> 

Move Bytes 
CODE ( MOVB <m ssd nnn> 

Compare Words 
CODE ( COMW <m ssd nnn> 

Compare Bytes 
CODE ( COMB <m ssd nnn> 

Scan Bytes While 
CODE ( SBW <m ssd nnn> 

Scan Bytes Until 
CODE ( SBU <m ssd nnn> 

CODE Statement· 

class 3 

class 2 

class 2 

class 5 

class 2 

class 2 

class 2 

class 2 

class 2 

class 2 

class 2 

class 2 

class 2 

class 2 

class 1 

class 3 

class 3 

class 3 

class 3 

class 3 

class 3 
--> 

2.22-21 



CODE Statement 

Program Register Control 

Set L with A 
CODE ( SETL 

Set S with A 
CODE ( SETS 

Set E with A 
CODE ( SETE 

Set P with A 
CODE ( SETP 

Read E into A 
CODE ( RDE 

Read P into A 
CODE ( RDP 

Set RP 
CODE ( STRP <register> ) 

Add Immediate Operand to S 
CODE ( ADDS <immediate operand> 

Set Condition Code to Less 
CODE ( CCL ) 

Set ~ondition Code to Equal 
CODE ( CCE ) 

Set Condition Code to Greater 
CODE ( CCG ) 

Routine Calls/Returns 

Procedure CaLL 
CODE ( PCAL <procedure name> ) 

System Call 
CODE ( SCAL <system procedure name> 

Dynamic Procedure Call 
CODE ( DPCL ) 

Exit from Procedure 
CODE ( EXIT <number from S> ) 

Debug Exit ** Privileged ** 
CODE ( DXIT ) 

Branch to subprocedure 
CODE ( BSUB <subproc name> 

Return from Subroutine 
CODE ( RSUB <number from S> 

Interrupt 

2.22-22 

Reset Interrupt Register 
CODE ( RIR ) 

** Privileged ** 

class 1 

class 1 

class 1 

class 1 

class 1 

class 1 

class 4 

class 3 

class 1 

class 1 

class 1 

class 2 

class 2 

class 1 

class 3 

class 1 

class 2 

class 3 

class 1 

--> 



CODE Statement 

------------------------------------------------------------------~---

Exchange Mask with A ** Privileged ** 
CODE ( XMSK ) class 1 

Dispatch ** Privileged ** 
CODE ( DISP class 1 

Interrupt Ex it ** Privileged ** 
CODE ( IXIT class 1 

Bus 

Send Data over Interprocessor Bus 
CODE ( SEND ) ** Privileged ** class 1 

Input/Output 
------------

Execute Input/Output ** Privileged ** 
CODE ( EIO ) class 1 

Interrogate Input/Output ** Privileged ** 
CODE ( IIO ) class 1 

High Priority Interrogate ** Privileged ** 
CODE ( HIIO ) class 1 

Map 

Set Map ** Privileged ** 
CODE ( SMAP ) class 1 

Read Map into A ** Privileged ** 
CODE ( RMAP ) class 1 

Age Map ** Privileged ** 
CODE AMAP class 1 

Miscellaneous 
-------------

Read the Switch Register into A 
CODE ( RSW ) class 1 

Store A into Switch Register 
CODE ( SSW ) class 1 

No Operation 
CODE ( NOP class 1 

Halt ** Privileged ** 
CODE ( HALT ) class 1 

--> 

2.22-23 



CODE Statement 

Decimal Arithmetic Option 

2.22-24 

Quad Store 
CODE ( QST <index register> 

Quad Load 
CODE ( QLD <index register> 

Quad Add 
CODE ( QADD 

Quad Subtract 
CODE ( QSUB 

Quad Multiply 
CODE ( QMPY 

Quad Divide 
CODE ( QDIV 

Quad Negate 
CODE ( QNEG 

Quad Compare 
CODE ( QCMP ) 

Convert Quad to Logical (unsigned) 
CODE ( CQL ) 

Convert Quad to Double 
CODE ( CQD ) 

Quad Scale Up 
CODE ( QUP <scale> 

Quad Scale Down 
CODE ( QDWN <scale> ) 

Convert Quad to ASCII 
CODE ( CQA ) 

Convert ASCII to Quad with Initial Value 
CODE ( CAQV ) 

Convert ASCII to Quad 
CODE ( CAQ ) 

Quad Round 
CODE ( QRND ) 

Convert Quad to Integer (signed) 
CODE ( CQI ) 

Convert Double to Quad 
CODE ( CDQ ) 

Convert Integer to Quad 
CODE ( CIQ ) 

Convert Logical to Quad 
CODE ( CLQ ) 

class 4 

class 4 

class 1 

class 1 

class 1 

class 1 

class 1 

class 1 

class 1 

class 1 

class 3 

class 3 

class 1 

class 1 

class 1 

class 1 

class 1 

class 1 

class 1 

class 1 



CODE Statement 

PSEUDO OPERATOR CODES 

Two pseudo operator codes are included in the set of <mnemonics> 
recognized by the compiler. They are CON and FULL. 

CON is treated as a class 3 instruction. Its function is to emit 
inline simple or string constants and indirect branch locations. 

Some examples: 

CODE(CON %125); 

emits' an %125 in the next instruction location 

CODE(CON "the con pseudo operator code"); 

emits 14 words of constant information starting in the next 
instruction location 

CODE(CON @labelid); 

emits a code-relative indirect pointer to "labelid" in the next 
instruction location 

FULL is treated as a class 1 instruction. Its purpose is to specify 
to the compiler that the register stack is full (i.e., the compiler's 
internal RP counter is set to seven). No code is emitted for this 
mnemonic. 

CONSIDERATIONS 

* The identifier associated with a PCAL or SCAL instruction must be a 
procedure name 

* The identifier associated with a branch instruction must be a label 
or entry identifier 

* The compiler may insert indirect branch cells between instructions 
emitted in a CODE statement. A branch will be emitted around these 
areas if required. Normally, these values will be emitted behind 
the first unconditional branch instruction encountered. 

2.22-25 



USE and DROP Statements 

The USE statement assigns an identifier to an index register. This 
permits the programmer to make explicit references to an index 
register. The compiler will not use that index register for indexing 
until the identifier is dropped by a corresponding DROP statement. 

The forms of the USE and DROP statement are: 

USE <name> 

DROP <name> 

example 

USE x; 

DROP x; 

EXAMPLE OF COMPILER INDEX REGISTER ASSIGNMENT 

USE a"index; 
USE b"index; 

INDEX REGISTERS { 

R(5] 

b ,.... index R [6) 
----------

a" index R [7] 

USED FOR 
ARITHMETIC 

USED IMPLICITLY WHE"' ANY 
INDEXING VALUE NOT 
INDICATED BY A "USE" 
STATEMENT IS SPECIFIED. 

USED EXPLICITLY BY 
SPECIFYING THE IDENTIJ=IER 
AS AN INDEXING VALIJE. 

The compiler assigns index registers starting with R[7] down 
to R [ 5] 

Another example, this time showing a use of an index register. 

The programmer knows that the same indexing value will be used 
throughout a series of statement, therefore and index register is 
assigned using 

2.22-26 



USE and DROP Statements 

USE x; 

Then an initial value is assigned to "x" 

x : = 0; 

and "x" is used in a loop to access some array elements: 

DO 
BEGIN 

array[x] := vary; 

n : = array [ x] + n; 

END 
UNTIL (x := x + 1) > 10; 

The "x" register remains assigned until a DROP statement is 
encountered: 

DROP x; 

A register specified by a USE statement can also be used for temporary 
storage: 

PROC p; 
BEGIN 

USE temp; 

temp := n 

RETURN temp; 
END; 

the index register is dropped when the procedure finishes 

CONSIDERATIONS 

* 

* 

* 

The compiler assigns index registers to USE statements starting 
with R [ 7] . 

An attempt to use more than three index registers will result in an 
error message being displayed. 

An error message will be displayed if the compiler needs an index 
register and none is available. 

2.22-27 



STACK Statement 

The STACK statement is used to load a list of variables or values onto 
the register stack. 

The form of the STACK statement is: 

STACK <expression> ' . . . 

where 

a list of <expressions> is loaded onto the register stack. 
Loading starts at the current setting of RP: RP is incremented 
with each <expression> stacked. The amount that RP is 
incremented is dependent on the data type of an <expression>. 
The <expressions> are loaded in a left-to-right order 

example 

STACK num, 5 * amount, vary: 

EXAMPLE OF STACK STATEMENT 
(assume that the register stack is empty) 

STRING .byte[0:3]: ! data declarations. 
INT int"': 
INT(32) dbl: 

STACK byte[3], int"'* 2, 50, dbl: 

results in 
REGISTER 

DATA STACK 

int/\ 3000 "T" R[O) 

60())0 R[1) 

[ J 
50 R[2) 

921617230 B R[3) 
921617230 

A R[4) '4- RP 

dbl 

after 
STACK 

I 
.. rj R[7] "4-- RP 

before 
STACK 

byte[O) 

2.22-28 



STORE Statement 

The STORE statement is used to store register stack elements into 
memory stack variables. 

The form of the STORE statement is: 

STORE <variable> , .•. ! maximum of eight <variables>. 

where 

a list consisting of a maximum of eight <variables>, separated 
by commas, indicates where register stack elements are to be 
stored. The STORE begins at the current RP setting; RP is 
decremented with each element stored. The amount RP is 
decremented is dependent on the data type of the variable 
where the individual element is stored. Storing occurs to the 
list of <variables> in a left-to-right order 

example 

STORE vl, v2, v3; 

EXAMPLE OF STORE STATEMENT 

INT .array[0:2]; 
STRING byte; 

STORE array[O], array[l], array[2], byte; 

results in 

array(O] ___. 800 

array [ 1] ___. 600 

array[2] ___. 400 

byte ........ 200 

2!>0 R[O] 

400 R[1] 

600 R[2] 

800 R[3].,_ RP 
BEFORE 

STORE 

R[7)4-- RP 
AFTER 
STORE 

2.22-29 



FOR Statement: Advanced Feature and Precautions 

If an index register is assigned before executing a FOR statement, 
using that index register as the <variable> part in a FOR statement 
that has a <step> value of one causes the compiler to emit a BOX 
instruction to implement the FOR loop. 

For example: 

USE index; 

FOR index := 0 TO length DO 
BEGIN 

array [index] : = n; 
END; 

causes the compiler to emit a BOX instruction to implement the 
FOR loop. 

Note that the compiler would not emit a BOX instruction in this case 
if the <step> value of the FOR statement was not one. There is 
precaution that should be taken in this instance. The register stack 
should not be modified inside the FOR loop unless it is restored 
before the end of the loop part. 

There is a restriction to the use of the FOR statement that uses the 
BOX instruction. FOR statements of the form 

USE x; 
FOR x := x TO x + 5 DO 

cannot be used. That is, where the <variable> part is also used to 
compute the <limit> value. 

There is another precaution to be taken when using FOR loops. When 
arithmetic expressions are specified for the <limit> and <step> parts 
of the FOR statement, the top two memory stack locations are used as 
temporary storage of these values. Therefore, the top-of-memory-stack 
area should not be modified in the loop part (unless explicitly 
restored} and PUSH and POP instructions should not be executed. 

2.22-30 



STANDARD FUNCTIONS: $RP and $SWITCHES 

These two standard functions provide: 1) the current setting of the 
complier's RP setting and 2) the current setting of the SWITCH 
register switches. These standard functions are <primarys> (see 
"Expressions") • 

The form of these expressions is: 

$RP returns the current setting of the compiler's RP counter 

$SWITCHES returns the current setting of the SWITCH register 

example 

n := $SWITCHES; 

2.22-31 



COMPILER CONTROL COMMANDS: ?RP and ?DECS 

These two compiler commands are used to 1) set the compiler's internal 
RP counter and 2) set the compiler's internal S register counter. 

The form of these commands is 

RP = <register number> 

where 

<register number> specifies the value RP is to be set to. If 
seven is specified, the compiler will consider the registers 
empty 

DECS = <sdec value> 

where 

<sdec value> is an unsigned integer specifying a value to be 
subtracted from the compiler's S register counter 

example 

?RP = 4 
?DECS = 3 

Note: Following each high level statement (i.e., not CODE, STACK, or 
STORE constructs) the compiler's internal RP setting is always 
- 1 (indicating that the register stack is empty) o 

An example of the use of ?RP: 

FOR i := 0 TO 4 DO STACK( i ) ; ?RP = 4 

In this example, the compiler cannot keep track of the elements loaded 
into the register stack. However, the programmer knows that five 
elements have been loaded and therefore the final RP setting should be 
four. 

An example of the use of ?DECS: 

2.22-32 



COMPILER CONTROL COMMANDS: ?RP and ?DECS 

SUBPROC sp; 

BEGIN 

STACK parml, parm2, parm3 load the parameters into the 
register stack. 

CODE( PUSH %722); 

CODE( PCAL procAname); 
?DECS 3 

push the parameters onto the 
top of the memory stack. 
call the procedure. 

In this example, the parameters to a procedure are put onto the memory 
stack by the programmer specifying a PUSH instruction rather than 
being put there as a result of a CALL statement. The EXIT instruction 
of "procAname" decrements the hardware S register setting by 3 (for 
the number of parameter words passed). However, the compiler's 
internal S register setting is unchanged because the compiler is 
unaware of how many words of parameters were passed. Therefore, ?DECS 
3 is used to decrement the compiler's internal S register setting by 
3. 

2.22-33 





STRUCTURES 

Structures provide a method for describing and accessing a set of 
related data variables such as the fields of a file record. In an 
inventory control application, for example, a structure can be 
defined to contain an item number, its unit price, and the 
quantity on hand: 

STRUCT .inventory; 
BEGIN 

INT itemAno, 
price, 
onAhand; 

END; 

Accessing a structure variable requires the use of qualification: 

inventory.onAhand := inventory.onAhand - numAsold; 

Structures can also be arrays. Assume, for example, that this 
inventory contains 50 items: 

STRUCT .inventory[l:50]; 
BEGIN 

INT itemAno, 
price, 
onAhand; 

END; 

This declaration generates 50 occurrences or copies of the "inventory" 
structure, or a total of 150 words of storage. The following 
statement accesses the 31st occurrence of the "inventory" structure: 

inventory[31].onAhand := inventory[31].onAhand - numAsold; 

Structures can also be (or contain) multi-dimensional arrays. For 
example, this inventory might be stored in two warehouses: 

STRUCT .warehouse[l:2]; 
BEGIN 

STRUCT inventory[l:50]; 
BEGIN 

INT itemAno, 
price, 
onAhand; 

END; 
END; 

This declaration generates two occurrences of the "inventory" 
structure, or a total of 300 words of storage. The following 
statement accesses the 20th occurrence of the "inventory" structure in 
"warehouse" number 2: 

warehouse[2].inventory[20] .onAhand 
:= warehouse[2] .inventory[20] .onAhand - numAsold; 

AOl 2.23-1 



STRUCTURES 

The compiler treats a structure as a data variable. This allows the 
program to manipulate individual items in the structure as in the 
previous examples, or to treat the structure as a single entity: 

CALL WRITEUPDATE(filenum,warehouse,$LEN(warehouse)) ~ 

Structures can also be specified as a formal parameter in a PROC or 
SUBPROC declaration. The actual parameter passed to the procedure 
can be either a structure name or a structure pointer. Structure 
pointers are described later in this section. 

A structure declaration may contain elementary items, substructure 
declarations, and FILLER declarations: 

* 

* 

* 

An elementary item is any item that has a type declaration (INT I, 
for example). Such an item is elementary since it cannot be 
defined further. 

Substructures provide additional structuring within the primary 
structure. For example, the primary structure "address" may 
contain the substructure "name." "Name" may contain the elementary 
items "last," "first," and "middle." This substructure provides 
useful documentation by identifying the components of "name." It 
also provides programming convenience by creating additional 
identifiers for accessing the data. 

FILLER declarations provide a place-holder for data that is not 
used in the program. For example, when a prqgram manipulates only 
part of a file record, the unused portions can be declared as 
FILLER. 

2.23-2 AOl 



STRUCTURES 

The general form of a structure declaration is 

STRUCT {<structure heading> [;<structure body>]} , •.• ; 

<structure heading> gives the structure a name and identifies 
it as a structure definition, referral, 
or template. 

<structure body> contains data declarations (optional), 
substructure declarations (optional), 
FILLER declarations (optional), and 
redefinitions {optional). 

<structure heading> 

!definition form. 

STRUCT <name> [ "[" <lower bound> <upper bound> "]" ] 

<structure body> 

or 

! referral form. 

STRUCT <name> ( <referral> ) 

[ "[" <lower bound> :<upper bound> "]" ] 

or 

!template form. 

STRUCT <name> (*) 

<structure body> 

The general form of <structure body> is 

BEGIN 

<variable declaration(s)> ;] 

AOl 

--> 

2.23-3 



STRUCTURES 

STRUCT <substructure declaration(s)> ;] 

FILLER <constant expression> 

<redefinition(s)> ;] 

END 

example 

STRUCT addressArecord; 
BEGIN 

STRING socAsecAno[l:ll]; 
STRUCT names; 

BEGIN 
STRING last[l:26], 

first[l:26], 
middle [ 1: 26] ; 

END; 
STRUCT address[l:3]; 

BEGIN 
STRING addressAline[l:20]; 

END; 
STRING zip [ 1: 5]; 

END; 

<STRUCTURE HEADING> 

!structure head~ng. 

!elementary item. 
!substructure heading. 

!elementary item. 

!substructure heading. 

!elementary item. 

!elementary item. 

The structure heading identifies the structure declaration as having 
the definition, referral, or template form. Also, the heading 
supplies the structure or substructure with a name, the direct or 
indirect addressing mode (this applies to structure headings only, 
not substructures), and specifies its number of occurrences. 

<name> 

A structure or substructure name may be any valid T/TAL identifier. 
Optionally, a structure name may be preceded by the indirection 
symbol. 

Note: The addressing mode of a substructure is always the same as 
that of the structure in which it appears. Therefore, 
substructure names may not use the indirection symbol. 

2.23-4 AOl 



<lower bound: upper bound> 

When used, the optional bounds specifications indicate the number of 
occurrences of the structure or substructure being defined. In the 
previous example, the substructure "address" has the bounds 
specification [1:3]. This indicates that there are three occurrences 
of "addressAline." Therefore, the compiler allocates 60 bytes of 
storage for the substructure. The following declarations also 
allocate 60 bytes. However, the second declaration provides 
better documentation and simpler access. 

STRUCT address[l:3]; 
BEGIN 

STRING addressAline[l:20]; 
END; 

STRUCT address; 
BEGIN 

STRING street[l:20], 
city[l:20], 
state[l:20]; 

END; 

To access the first character of a city name in the two examples 
requires the identifiers "address[2].addressAline" for the 
first declaration and "address.city" in the second. These 
identifiers use qualification, a technique explained later in this 
section. 

Definition Form: 

The definition form of a structure both declares the structure and 
allocates storage for the structure. By contrast, the template form 
declares a structure, but allocates no space for it. The referral 
form allocates storage, but has no body of its own. Instead, the 
referral form allocates storage for a structure with a body identical 
to a previously declared structure. The previous declaration may have 
either the definition form or the template form. All the examples 
given so far in this section have the definition form. 

Referral Form: 

A structure declaration by referral assigns the new structure a body 
identical to that of the referral structure. A referral must name the 
identifier assigned to a previously defined structure. The referral 
identifier must be enclosed in parentheses. When a structure heading 
uses the referral format, no body is declared for the structure. 

2.23-5 



The following structures are equivalent: 

STRUCT outputAline; STRUCT address"record(outputAline); 
BEGIN 

STRING soc"secAno[l:ll]; 
STRUCT names; 

BEGIN 
STRING last[l:26], 

first[l:26], 
middle[l:26]; 

END; 
STRUCT address[l:3]; 

BEGIN 
STRING addressAline[l:20]; 

END; 
STRING zip [ 1: 5]; 

END; 

Notice that data items in "output"line" have the same names as data 
items in "addressArecord." These names must be qualified when 
accessed, as explained later in this section. 

Two attributes of the referral structure are not carried over to the 
new structure: addressing mode and bounds specifications. 

The addressing mode of the new structure is determined by the presence 
or absence of the indirection symbol in its name. Thus, the compiler 
assigns "output"line" to directly addressed memory and ".outputAline" 
to indirectly addressed memory. For ".output"line," the compiler also 
also builds a one-word INT pointer containing the base address of 
the structure. The program should not modify this address. 

A structure declaration by referral may include its own bounds 
specifications when multiple occurrences are· required. The compiler 
ignores any bounds specifications declared in the referral structure. 
When a structure declaration omits bounds specifications, the 
compiler allocates memory for only one occurrence of the structure 
regardless of the bounds specifications of the referral structure. 

You cannot declare a substructure by referring to a previously-defined 
structure. Similarly, substructures cannot be used as referral 
structures. 

(*) Template Form: 

An asterisk in parentheses following a structure name identifies that 
structure as a template. The compiler allocates no space to a 
template structure. Therefore, template structures have meaning only 
when referenced in subsequent structure declarations. Attempting to 
access a template structure causes an error since no memory is 
allocated for the template. 

A03 
2.23-6 



STRUCTURES 

Notice that you can declare a structure template as a global without 
using any global data space. Any number of procedures and 
subprocedures can then declare subsequent structures with a body 
identical to the template's by using the referral structure heading 
format. 

Some examples: 

STRUCT addrAtemplate(*); 
BEGIN 

!heading for template structure 

STRING socAsecAno[l:ll]; 
STRUCT names; 

BEGIN 
STRING last[l:25], 

first [l: 25], 
middle [ 1: 25]; 

END; 
STRUCT address[l:3]; 

BEGIN 

!structure body 

STRING addressAline[l:20]; 
END; 

STRING zip [ 1: 5]; 
END; 

As mentioned previously, the template structure is simply a definition 
that is available within your program. It has no meaning until 
it is referenced in a subsequent STRUCT declaration: 

STRUCT .addressArecord(addrAtemplate); 

This declaration causes the compiler to allocate 154 bytes of 
memory for the indirectly addressed "addressArecord." The compiler 
also allocates a one-word pointer that contains the base address of 
"addressArecord." The "addressArecord" has a structure identical to 
that of template. 

Multiple occurrences of "addressArecord" are indicated by the use of 
bounds specifications: 

STRUCT .addressArecord(addrAtemplate) [1:2]; 

This declaration causes the compiler to allocate 308 bytes for two 
occurrences of "addressArecord," plus a pointer that contains 
the base address of "addressArecord." 

<STRUCTURE BODY> 

The structure body may contain any or all of the following items: 

* variable declarations 
* substructure declarations 
* FILLER declarations 
* redefinitions 

AOl 2.23-7 



STRUCTURES 

Variable Declarations 

Variable declarations may include any T/TAL variable declarations 
except for the following: 

* 

* 

Initialization values are not allowed in structures. 

Bit field declarations are not allowed in structures. 

Structured read-only arrays are not allowed. Such arrays must 
be initialized, which violates the first rule above. 

In certain cases, the compiler adds padding bytes to the variable 
declarations so that subsequent declarations have the proper word 
boundary alignment, as in the following example: 

STRUCT paddingAexample; 
BEGIN 

INT x, 
y, 
z; 

!aligned on word boundary 

STRING threeAbytes[0:2]; 

INT a, 
b, 
c; 

END; 

!<<compiler inserts one byte of 
!<<padding here 

•rhe compiler allocates memory for the structure as shown below: 

x 
y 

z 
three"bytes 

1· >····· .... / 
.} . ~undefined padding byte 

A 

B 

c 

The compiler aligns INT, INT(32), and FIXED items on the next 
available word boundary, which causes the following conditions: 

2.23-8 AOl 



STRUCTURES 

* The structure may contain padding bytes. For example, a padding 
is added at the end of the string in the following declarations: 

* 

INT X: 
STRING Y[l:S]: 
INT Y: 

The next available word boundary may not provide maximum efficiency 
for INT(32) items. INT(32) items are most efficient when aligned 
on a word boundary with an even address. The compiler generates 
additional instructions when the item is aligned on a word with an 
odd address. For maximum efficiency, check the map for this 
structure in the program listing to determine the INT(32) item's 
byte offset from the base of the structure. If the offset is an 
octal number ending in 0 or 4, the item is already aligned at an 
even word address. Otherwise, you can insert two bytes of FILLER 
immediately before the INT(32) item declaration to force it to an 
even word address. 

STRUCT <substructure declaration> 

A substructure is a structure declaration embedded within another 
structure or substructure declaration. For example, the previously 
defined structure "addressArecord" contains the substructure "names:" 
"names" contains the elementary items "last," "first," and "middle." 

The compiler .imposes no practical limitation on the nesting of 
substructure declarations. (You can declare a substructure 
within a substructure within a substructure, etc.) This provides 
all the flexibility required to allow you to define highly complex 
data structures. Examples of more complex structures are given at 
the end of this section. 

FILLER <constant expression> 

FILLER provides a place-holder for data that appears in a data 
structure, but that is not used in your program. For example, you 
may be interested in only a few characters of an input record. The 
unused portions of the record can be defined as FILLER. 

The <constant expression> specifies the number of bytes (not words) 
of FILLER. Bounds specifications are not allowed with FILLER. The 
expression must evaluate to a positive INT value appropriate for the 
size of the structure being declared. In many cases, the expression 
is simply a constant: 

STRUCT recordApart: 
BEGIN 

FILLER 30: 
STRING data[0:29] 
FILLER 10: 

END: 

You cannot explicitly reference data defined as FILLER since there may 

AOl 2.23-9 



STRUCTURES 

be numerous FILLER items in the same program. 

The word FILLER is unique in T/TAL because it is reserved only'within 
the scope of a structure declaration. Again, this is because 
structures may contain numerous FILLER declarations. Because the word 
FILLER is reserved only within a structure declaration, you can use it 
as an identifier elsewhere in your program. 

Another use for FILLER is to document the presence of padding bytes 
used for word boundary alignment within structures, as in the 
following example: 

STRUCT paddingAexample: 
BEGIN 

INT x, 
y, 
z: 

STRING threeAbytes[0:2]: 
FILLER 1: 
INT a, 

b, 
c; 

END: 

The FILLER declaration shown above simply documents the presence of 
a padding byte used for word alignment. The declaration is not 
required since the compiler provides the padding byte when the 
declaration is omitted. Such documentation can be helpful when 
declaring complex structures. 

<redefinition(s)> 

Substructures and elementary items can be redefined. Redefinition 
is especially useful when input records have multiple formats. Also, 
redefinition allows you to assign more than one data type to an item 
so that it can be handled more efficiently. 

The general form for redefinition is: 

<identifier> = <elementary item identifier> 

or 

STRUCT <identifier> = <substructure identifier> 

<identifier> can be any valid T/TAL identifier. The 
indirection symbol (.) cannot precede <identifier> because the 

--> 

2.23-10 AOl 



addressing mode of the redefined item is the same as that of 
the structure in which it appears. 

<elementary item identifier> must be the name assigned to an 
elementary item previously defined in the current structure 
declaration. 

<substructure identifier> must be the name assigned to a 
substructure previously defined in the current structure 
declaration. 

example 

STRUCT sample; 
BEGIN 

STRING letters[l:8]; 
FIXED numbers = letters; 

END; 

The redefinition item and the original item both occupy the same 
space and have the same offset from the beginning of the 
structure. The redefinition causes an error in either of two 
cases: 

* 

* 

The redefined item has different alignment requirements from the 
original item. This occurs when the original item is a string 
that begins at an odd byte address, and the redefined item requires 
word boundary alignment. 

The redefined item is not large enough to contain the original 
item. 

The compiler generates warning messages for these errors. 

ACCESSING STRUCTURED DATA 

Qualification 

Identifiers of data items within structures must be fully qualified 
when the item is accessed. The general format for qualifying 
identifiers is: 

<struct name>[.<substruct name> ••• [.<item name>]] 

example 

--> 

A03 
2.23-11 



addressArecord.last 

Full qualification of an identifier depends on the level of nesting 
used in the structure. You must always precede the identifier with 
the name of the structure plus the names of any substructures to 
which it is subordinate. Thus, "item" has different qualification 
requirements in the following declarations: 

STRUCT outer; 
BEGIN 

STRUCT inner"'l; 
BEGIN 

END; 
STRUCT inner"'2; 

BEGIN 

END; 
STRUCT innerA3; 

•. BEGIN 

END; 

INT i tern; 
END; 

STRUCT outer; 
BEGIN 

STRUCT innerAl; 
BEGIN 

END; 

STRUCT innerA2; 
BEGIN 

STRUCT innerA3; 
BEGIN 

INT item; 

; END; 
END; 

END; 

In the first declaration, "item" is subordinate only to "outer" and 
"inner"'3." Thus, "outer.inner"3.item" is the fully qualified 
identifier for "item." However, in the second example, "item" is 
subordinate to the structure "outer" and all of its nested 
substructures. Thus, "outer.inner"'l.inner"2.inner"3.item" is the 
fully qualified identifier for item. 

Each identifier in a qualified reference may also have an 
associated index specification. Therefore, a reference such as 
"record[I].table[2].item[X]" is possible. The examples later in this 
section illustrate such references. 

Structure Pointer Declaration 

The format for declaring pointers for structures is: 

INT 

--> 

2.23-12 



STRUCTURES 

<identifier> is the user-assigned name specified for this 
pointer. 

<referral name> is the identifier assigned to the structure 
to be accessed through this pointer. 

example 

STRUCT names[l:3]; 
BEGIN 

STRING name[l:25]; 
END; 

STRING .nameApointer(names); !String type structure pointer 

Each structure pointer declaration causes the compiler to allocate 
one word of storage for an address pointer. The pointer is not 
initialized; your program must initialize the pointer before 
using it. 

The type declared for a structure pointer must be compatible with 
the data type to be accessed through the pointer. A type INT 
pointer can access INT, INT(32), FIXED, and STRING data items. A 
STRING pointer can only access STRING data items. 

EXAMPLES 

Storage Allocation for Structures 

The following examples illustrate the allocation of memory for 
structure declarations: 

STRUCT exampleAl[O:l]; 
BEGIN 

STRUCT A[O:l]; 
BEGIN 

INT X; 
END; 

STRUCT B[O:l]; 
BEGIN 

INT Y; 
END; 

STRUCT C[O:l]; 
BEGIN 

INT Z [ 0: 2] ; 
END; 

END; 

STRUCT exampleA2[0:1]; 
BEGIN 

STRUCT A[O:l]; 
BEGIN 

INT X; 
STRUCT B[O:l]; 

BEGIN 
INT Y; 

STRUCT C[O:l]; 
BEGIN 

INT Z [ 0: 2] ; 
END; 

END; 
END; 

END; 

AOl 2.23-13 



STRUCTURES 

Although examples 1 and 2 both declare four substructures, specify a 
similar number of occurrences, and use similar identifiers, they are 
very different structures. The difference results from the different 
nesting levels in the declarations. Example 1 might be described as a 
list of arrays; example 2 is a multi- dimensional array (an array 
containing arrays of arrays). The two are mapped into memory 
differently and have different qualification requirements. The 
structures are allocated as follows: 

2.23-14 AOl 



example " l . A[O] 

A[l] 

B[O] 

B[l] 

C[O] 

c [ l J 

example"l[l] .A[O] 

A[ 1] 

B[O] 

B [ l ] 

C[O] 

C[l] 

x 
x 
y 

y 

Z[O] 
z [ l J 
Z[2] 
Z[O] 
z [ l J 
Z[2] 

x 
x 
y 

y 

Z[O] 
z [ l J 
Z[2] 
Z[O] 
z [ l J 
Z[2] 

example" 2[0] .A[O] 

.A[O] .B[O] 

.C[O] 

. c [ l J 

. B [l] 

.C[O] 

.C[l] 

. A[ l] 

.A[l] .B[O] 

.C[O] 

. c [ l J 

. B [l] 

.C[O] 

.C[l] 

example"2[1] .A[O] 

STRUCTURES 

x 
y 

Z[O] 
Z[l] 
Z[2] 
Z[O] 
Z[l] 
Z[2] 

y 

Z[O] 
Z[l] 
Z[2] 
Z[O] 
Z[l] 
Z[2] 

x 
y 

Z[O] 
Z[l] 
Z[2] 
Z[O] 
Z[l] << 
Z[2] 

y 

Z[O] 
Z[l] 
Z[2] 
Z[O] 
Z[l] 
Z[2] 

x 
y 

V" 
a second copy of the structure 
is generated for example A 2[1] 

AOl 

~ 
LJliLJ 

2.23-15 



STRUCTURES 

Example"2 is clearly the more complex structure. It also has more 
rigid qualification requirements for access. For example, the 
fully qualified identifier for the occurrence of Z indicated by 
the << characters in the illustration is as follows: 

ex amp l e "' 2 [ 0 ] • A [ l ] • B [ 0 ] • C [ l ] • Z [ l ] 

Indexes in this example are given as constants for the sake of 
clarity. In an application, you are more likely to use variables 
for indexes. 

The amount of qualification required for an identifier depends on 
how deeply embedded the item is within the structure. For example, 
example"2.A accesses the first item in the array. 

Multi-Dimensional Arrays 

One major use for structures is the definition of file records. 
Equally important is the structuring of data into multi-dimensional 
arrays. Multi-dimensional arrays organize data so that it can be 
manipulated efficiently for a variety of different purposes. The 
following example, a simple business application, suggests possible 
uses for multi-dimensional arrays. 

Each department in a store has two sales clerks. The following 
array stores the sales for each clerk and the total sales for the 
department: 

NOTE: The graphic representations in this example 
illustrate array concepts rather than the actual 
arrangement of the array in memory. Also, the 
example is quite simple for the sake of clarity. 

STRUCT .department; 
BEGIN 

INT(32) dept"total; 
STRUCT indiv"sales[l:2]; 

BEGIN 
INT clerk"no, 

amt; 
END; 

END; 

which is represented as: 

2.23-16 

dept "total~ 
clerk amt 

clerk amt 

AOl 



STRUCTURES 

Notice that dept~total can be calculated by adding amt[O] and amt[l]. 

An array comprising one copy of the previous array for each 
department contains the store's sales records: the store has four 
departments: 

STRUCT .store~sales: 
BEGIN 

INT(32) store~total: 
STRUCT department[l:4]: 

BEGIN 
INT(32) dept~total: 
STRUCT indiv~sales[l:2]: 

BEGIN 
INT clerk~no, 

amt: 
END: 

END: 
END: 

which is represented as: 

store"total 

dept"total 

clerk amt 
clerk amt 

dept"total 

clerk amt 

clerk amt 

dept"total 

clerk amt 

clerk amt 

dept"total 

clerk amt 

clerk amt 

This store is part of a chain of three stores. An array comprising 
one copy of the previous array for each store contains the sales 
records for the chain: 

AOl 2.23-17 



STRUCTURES 

STRUCT .chainAsales1 
BEGIN 

FIXED chainAtotal1 
STRUCT storeAsales[l:3]; 

BEGIN 
INT(32) storeAtotal; 
STRUCT department[l:4] 1 

BEGIN 
INT(32) deptAtotal; 
STRUCT indivAsales[l:2]; 

BEGIN 
INT clerkAno, 

' amt; 
END; 

END; 
END; 

END; 

which is represented as: 

cha i n A total 

storeAtotal storeAtotal storeAtotal 

dept"total deptAtotal dept A total 

clerk amt clerk amt clerk amt 
clerk amt clerk amt clerk amt 

dept A total dept"total depe total 

clerk amt clerk amt clerk amt 
·--1 

clerk amt clerk amt clerk amt 

dept"total dept A total dept"total 

clerk amt clerk amt clerk amt 

clerk amt clerk amt clerk amt 
dept"total deptA to ta 1 dept"total 

clerk amt clerk amt clerk amt 
clerk amt clerk amt clerk amt 

The above structure is a three-dimensional array. Subject only to 
the availability of memory, the structure can expand indE~finitely 

in size and complexity. For example, further structurin9 can be added 
to organize data by county, state, region, or perhaps even country. 

2.23-18 AOl 



STRUCTURES 

Notice that the indirection symbol moves to the outermost structure 
declaration each time a new dimension is added to the array. The 
substructure declarations may not specify indirection since their 
addressing mode is th~ same as that of the array in which they 
appear. 

As mentioned previously, multi-dimensional arrays organize data 
so that it can be manipulated efficiently for a variety of purposes. 
Multi-dimensional array~ are efficient because they allow you to 
create extremely power 'tet simple FOR, WHILE, and DO loops. Because 
of its structure, the data can be used many different purposes. For 
example, the obvious purpose of the relatively simple chainAsales 
structure is to keep track of total sales by department, store, and 
for the entire chain. However, the structuring makes it easy to 
obtain other data such as the following: 

* Which product line generates the most (or least) sales revenue 
for the chain (assuming that corresponding departments sell the 
same product line throughout the chain). 

* Which department generates the most (or least) revenue for a store. 

* What are the average sales revenues for a particular department? 

In the following examples, S, D, and I are indexes for storeAsales, 
department, and indivAsales, respectively: 

The following statements change individual.sales records using a clerk 
number and amount entered from a terminal: 

FOR S := 0 TO 2 DO 
FOR D := 0 TO 3 DO 

FOR I := 0 TO 1 DO 
IF chainAsales.store.sales[S].department[D].clarkAno[i] 

= enteredAclerkAnumber 
THEN chainAsales.storeAsales[S].department[D].amt[I] 

:= enteredAamount; 

The following statements update the cumulative department, store, and 
chain totals. Temp is an INT(32) variable. 

FOR S := 0 TO 2 DO 
FOR D := 0 TO 3 DO 

BEGIN 
temp := $DBL(chainAsales.storeAsales[S] .department[D] .amt[I] 

+ chainAsales.storeAsales[S].department[D].amt[I]); 
chainAsales.storeAsales[S].deptAtotal[D] 

:= chainAsales.storeAsales[S] .deptAtotal[D] +temp; 
chainAsales.storeAtotal[S] 

:= chainAsales.storeAtotal[S] +temp; 
END; 

chainAtotal.chainAsales := chainAtotal.chainAsales 
+ storeAtotal[S].chainAsales; 

AOl 2.23-19 



STRUCTURES 

Department[2] of this chain sells photographic equipment. The 
following statements calculate the sales revenues to date for 
photographic equipment: 

temp : = 0; 
FOR S := 0 TO 2 DO 

temp:= temp+ chainAsales.storeAsales[S].deptAtotal[2]; 

Passing Structures as Parameters 

A structure can be specified as a formal parameter in a JPROC or 
SUBPROC declaration. In the following procedure declaration, the 
"b" and "c" parameters are structures: 

PROC x ( a , b , c ) ; 
INT a; 
STRUCT .b; 

BEGIN 
INT first, 

last; 
STRING sl[l:lO], 

s2 [ 1: 7] ; 
FILLER l; 

END, 
.c (chain"sales); 

In this example, structure c is not related to structure b. This 
example shows a list of structure definitions; the syntax of the list 
is the same as the list of integer declarations for "first" and "last. 
Structure c is a declaration by reference to a previously defined 
structure. 

2.23-20 AOl 



STRUCTURES 

Additional Examples 

The following declarations are used in the remaining examples in 
this section: 

1. 

STRUCT • R [ 0: 3] : 
BEGIN 
INT I [ 0: 3}:: 
STRUCT GROUPl: 

BEGIN 
STRING 
FILLER 
STRING 

Sl[0:3]: 
1: 

END: 

S2, 
S3[0:5]=Sl: 

STRUCT GROUP2=GROUP1: 
BEGIN 
STRING S 1 [ 0: 5] : 
END: 

END: 
INT .Pl(R), !INT structure pointer 

.P2, 
v, 

.TAB[0:$0CCURS(R)*$0CCURS(R.I)*$LEN(R.I)>>l-l]: 
STRING .Sl(R), !STRING structure pointer • 

• SP !STRING pointer • 
• ST[O:S]: !STRING array. 

V := R.I: !store into I [0] from R[O]. 

This is equivalent to the statements 

@Pl:= @R: 
V := Pl.I: 

!initialize structure pointer Pl. 
!store into I[O] from Pl. 

2. USE X,Y: 

3. 

FOR X := 0 TO 3 DO 
FOR Y := 0 TO 3 DO 

TAB[X<<2+Y] := R[X].I[Y]: 

This is equivalent to the statements 

@P2 := @TAB: 
FOR X := 0 TO 3 DO 

P2 ':=' R[X].I FOR 4*$LEN(R.I)>>l -> @P2: 

@Sl := @R'<<'l: 
Sl.GROUPl ':=' "ABCD E": 

!initialize pointer Sl to address of R. 
!fill with string. 

This is equivalent to the statement 

R.GROUP2.Sl ':=' "ABCD E": 

4. @SP := @R[3] .GROUPl [2] .Sl [l]: 

AOl 2.23-21 



STRUCTURES 

The above statement initializes the STRING pointer SP to point 
at the specified structure component. 

5. @P2 := @R 

The pointer P2 is initialized to point at the first occurrence 
of structure R. 

6. ST[S] '~:' R.GROUP2 FOR 6: 

A reverse move of six bytes is performed. A string pointer to 
the last byte position in GROUP2 is emitted. 

7. ST ':=' R.GROUP2: 

Six bytes {the length of GROUP2) are moved into ST. 

2.23-22 AOl 



Structure Functions 

STANDARD FUNCTIONS FOR STRUCTURES 

The structure functions return information concerning·a previously 
defined data structure. For example, $OFFSET returns the number 
of bytes from the base of a structure to the beginning of a data 
item within the structure. 

The structure functions always return a constant value. 'This allows 
the use of structure functions in LITERAL expressions. 

Formats for the structure functions are as follows: 

$LEN <qualified item> 

returns the unit length of an item in bytes. For example, 
the unit length of a string item is one; the unit length of 
a substructure is the sum of the lengths of its subordinate 
items. 

$OFFSET <qualified item> ) 

returns the number of bytes from the base of the structure to 
the beginning of a data item within the structure. The base 
of the structure has offset zero. 

$OCCURS <qualified item> 

returns the number of occurrences of the specified item. For 
an item with a bounds specification of [0:3], $OCCURS returns 
the value 4. 

$TYPE <qualified item> 

returns a number that indicates the data type of the 
specified item. The returned values have the following 
meaning: 

value data type value data tyEe 

0 undefined 4 FIXED 
1 STRING 5 REAL(32) 
2 INT(l6) 6 REAL(64) 
3 INT(32) 7 Substruct 

8 STRUCT 

AOl 

--> 

2.23-23 



Structure Functions 

where 

<qualified item> is the fully qualified identifier 
of a structure element. Qualification of identifiers 
is described in section 2.23 of this manual. 

<qualified item> may also be the identifier of a 
simple variable, but this has little meaning except 
possibly for the $TYPE function. For simple 
variables, $LEN returns a unit length, $OFFSET 
returns zero, and $OCCURS returns 1. 

example 

line ':=' strucA2 FOR $LEN(strucA2) - $LEN(strucA2~subA7): 

2.23-24 AOl 



STRUCTURES -- COMPILER LISTING 

COMPILER LISTING FOR STRUCTURES 

When the MAP option is in effect, structures produce the information 
shown below. 

Structure Declaration 

STRUCT SAMPLE; 
BEGIN 

INT X, 
Y, 
z; 

STRUCT BYTES; 
BEGIN 

STRING CODE[l:2], 
ITEM [ 1: 7] ; 

INT A; 
END; 

END; 

Map Listing 

PAGE n $VOL.SUBVOL.FILE 

SAMPLE 
1 x 
1 y 
1 z 

2 
" 

I 
I 
I 
\ 

BYTES 
3 CODE 
3 ITEM 
3 A 
" " 

\ I identifier 
\I 

nesting level 

[ 1] 

VARIABLE,17 
0,2 
2,2 
4,2 
6,7 
6,1 

10,1 
16,2 
" " 

GLOBAL MAP 

STRUCTURE 
INT 
INT 
INT 
SUBSTRUCT 
STRING 
STRING 
INT 
" 

class 
($TYPE) 

unit length 
($LEN value) 

starting position 
($OFFSET value) 

* Nesting level is incremented when a substructure is declared 
within another structure or substructure or when a list of 
elementary items is encountered. 

AOl 2.23-25 



STRUCTURES -- COMPILER LISTING 

* 

* 

* 

* 

Identifier is the identifier specified in the data declaration. 

Starting position is the offset of the item from the base of 
the structure. The offset is expressed as an octal number. 

Unit length is the length of one occurrence of the data type. 
Thus, for a structure or substructure unit length is the length 
of the structure or substructure. Unit length for string data 
is one: for INT data, 2: for INT(32), 4: and for FIXED data, 10. 
Unit length is expressed as an octal number. 

Class identifies the data type associated with this identifier. 

2.23-26 AOl 



FLOATING-POINT DATA 

In addition to the types of data described previously {INT, INT{32), 
STRING, and FIXED), floating-point data is also available as an 
option. The <types> associated with floating-point data are: 

<type> 

REAL 
REAL{64) 

De script ion 

32-bit doubleword 
64-bit quadrupleword 

FLOATING-POINT VARIABLES 

Floating-point variables are defined as <type> REAL. A REAL 
variable can represent any number in the approximate range 

-78 
+8.62 * 10 

77 
through +1.16 * 10 

Numbers in this range can be represented by a REAL variable with a 
degree of accuracy approximately equal to seven significant digits. 

Internal Format of <type> REAL Data 

A REAL variable uses two words of storage. In the following 
description, visualize the two words as being side by side, with the 
bits numbered 0 through 31 from left to right. 

-----------------+-----------------
1 s I I I 
Iii fraction I exponent I 
lgl {22 bits) I (9 bits) I 
I nl I I 
-----------------+-----------------

0 1 1 1 2 2 3 
5 6 2 3 1 

I<--- word 1 --->!<---word 2 --->I 

Bit zero, the leftmost bit of word 1, is the sign bit. If it is O, 
it indicates that the number being represented is positive or zero; 
a 1-bit indicates that the number is negative. 

Numbers are represented in "binary scientific notation"; that is, 
in the form 

x * 2**y 

where x is at least 1, but less than 2. For example, the number 4 
would be represented as 1 * 2**2, and 10 would be 1.25 * 2**3. 

The "x" part of the representation is stored in bits 1 through 22 of 
the REAL variable. Since x always lies between 1 and 2, its integer 
part must be 1. Therefore, only the fractional part of x need be 
stored; the "l" is al ways assumed. 

A02 2.24-1 



FLOATING-POINT DATA 

The "y" part of the representation, the exponent, is stored in bits 
23 through 31, the rightmost nine bits of word 2. usin9 nine bits, 
exponents from 0 through 511 (octal 777} can be represented. To allow 
for negative exponents, 256 (octal 400) is added to y before it is 
stored. Therefore, the exponent is always understood to be the 
contents of bits <23: 31> minus 256. This method providE~s exponents 
from -256 (represented by %0} through 255 (represented by %777}. 

One convention is observed: A bit configuration of all zeros in both 
words is used to represent the number zero (instead of 1 * 2**-256}. 

Some examples of REAL representations: 

4 = 1. 0 * 2 ** 2 represented as 000000 000402 

The sign bit is 0, bits <1:22> are O (remember that a le~ading "l" is 
assumed}, and the exponent is %400 + 2, or %402. 

-10 = -(1.25 * 2**3) represented as 120000 000403 

The sign bit is 1. Decimal 1.25 is one and two-eighths, or 1.2 in 
octal (the 1 is assumed). The exponent is %400 + 3. 

EXTENDED FLOATING-POINT VARIABLES 

Extended floating-point variables are defined as <type> REAL(64}. 
A REAL(64) variable can represent any number in the same range as 
that described for REAL variables. The major differnece between 
the two types is in the degree of precision: A REAL(64) variable 
is accurate to approximately 17 significant digits. 

Internal Format of <type> REAL(64) Data 

A REAL(64) variable uses four words of storage. The additional two 
words provide the increased precision for this type of data. 

-----------------+----------------+----------------+------------------
' s I I I 
Iii fraction I exponent I 
lg! (54 bits) I (9 bits) I 
I nl I I 
-----------------+----------------+----------------+-----------------

0 1 1 1 3 3 4 4 5 5 6 
5 6 1 2 7 8 4 5 3 

I<--- word 1 --->!<---word 2 --->!<---word 3 --->!<---word 4 --->I 

Bit zero is still the sign bit, and the rightmost nine bits are still 
the exponent. The fractional part of the representation has been 
expanded from 22 bits to 54 to provide the additional accuracy. 

2.24-2 A02 



FLOATING-POINT DATA 

Example: 

1/3 = 1.3333 ... * 2**-2 

The sign bit is O, bits <1:54> contain the octal representation of 
0.3333 .•• (the 1 is assumed), and the exponent is %400 - 2, or %376. 
Thus, the internal representation of 1/3 is 

025252 125252 125252 125376 

REAL CONSTANTS 

Floating-point constants are represented in a T/TAL program with 
the syntax 

[ <sign> ]<integer part> ~<fractional part> E [ <sign> ]<exponent> 

where 

<integer part> consists of one or more digits 

<fractional part> consists of one or more digits 

<exponent> consists of one or two digits 

<sign> is "+" or "-" 

Examples: 

2 can be represented as "+2.0EO," "0.2E+l," "20.0E-l," etc. 

-17.2 can be represented as "-17.2EO," "-1720.0E-2," etc. 

Note that the integer part, fractional part, "E," and the exponent 
are required: therefore, 0 must be written as "O.OEO." 

REAL(64) CONSTANTS 

Extended floating-point constants have the same syntax as REAL 
constants, except that the letter "L" is used in place of the 
1 et t er " E • " Ex ample : 

2 can be represented as "2.0LO," "+0.2L+l," "20.0L-l," etc. 

INITIALIZING FLOATING-POINT VARIABLES 

Initialization of floating-point variables is performed in the same 
way as for simple variables, described previously in this manual. 

A02 2.24-3 



FLOATING-POINT DATA 

Examples of valid initializations: 

REAL twoAwords := 123.456E-43; 
REAL(64) fourAwords := 4211.012739L78; 

Memory allocation is as described previously: 

REAL values are stored in two consecutive words, REAL(64) 
values in four. 

EQU I VAL ENC ING FLOAT INq_-PQ_.!_NT _yARIABfiE S 

Individual words of floating-point quantities can be accessed by 
equivalencing them to an INT variable. For example, with the 
declarations 

REAL(64) fourAwords; 
INT wordAone = fourAwords, 

wordAfour = wordAone + 3; 

you can access the sign bit and the exponent of "fourAwords" with 
the DEFINE statements 

DEFINE signAbit = wordAone.<O>#, 
exponent= wordAfour.<7:15>#; 

The DEFINE statement and bit operations are discussed previously in 
this manual. 

FLOATI~G-POINT QUANTITIES 

Functions of <type> REAL and REAL(64) may be declared, such as 

REAL PROC realAproc; 

or 

REAL(64) PROC real64Aproc; 

These return 2- and 4-word floating-point values, respectively. 

Similarly, any procedure may have a REAL or REAL(64) parameter: 

PROC anyAproc( twoAwords, fourAwords ) ; 
REAL twoAwords; 
REAL(64} .fourAwords; 

Note that "fourAwords" has been declared to be an indirect parameter. 
This allows "anyAproc" to return a value in this variable. 

2.24-4 A02 



FLOATING-POINT DATA 

FLOATING-POINT TYPE TRANSFER FUNCTIONS 

The following type transfer functions are available for use with 
floating-point data. Some are existing functions, described 
previously in this manual, that have been modified to operate 
with floating-point values; others are expressly designed for 
floating-point conversions. 

§_INT i ~expression> l 

Converts an INT(32), FIXED(O), REAL, or REAL(64) to an INT. 

$INTE l <expression> l. 

Sarne as $INT, except that a rounding conversion is applied. 

$DB~ i <exEression~ l. 

Converts an INT, FIXED(O), REAL, or REAL(64) to an INT(32). 

$DBLR l <e!£E_ession> l. 

Sarne as $DBL, except that a rounding conversion is applied. 

$FIX i <exEression> l. 

Converts an INT, INT(32), REAL, or REAL(64) to a FIXED(O). 

$FIXR i <exEression> l. 

Same as $FIX, except that a rounding conversion is applied. 

Converts an INT, INT(32), FIXED, or REAL(64) to a REAL. 

$FLTR i ~ l_ 

Sarne as $FLT, except that a rounding conversion is applied. 

$EFLT i ~ l_ 

Converts an INT, INT(32), FIXED, or REAL to a REAL(64). 

$EFLTR i ~ l_ 

Same as $EFLT, except that a rounding conversion is applied. 

A02 2.24-5 



FLOATING-POINT DATA 

Conversion Considerations 

In conversions from FIXED to REAL or REAL(64), and from REAL or 
REAL(64) to FIXED, the FIXED quantity is always treated as an 
integer; that is, as a FIXED(O). For example, the functions 

$FLT(l), $FLT(O.l), and $FLT(0.00001) 

all yield the same floating-point value. It is the responsibility 
of the programmer to perform the appropriate scaling. 

2.24-6 A02 



APPENDICES TABLE OF CONTENTS 

APPENDICES 

APPENDIX A: T/TAL LANGUAGE SUMMARY •..•••.•.•...••••••.•.••••. A-1 

APPENDIX B: BNF SYNTAX FOR T/TAL ••••..••••..••.••••...•..•••• 8-1 

APPENDIX C: ASCII CHARACTER SET •••.•••.•••..••••.•.•••••.•••. C-1 

APPENDIX D: COMPILER DIAGNOSTIC MESSAGES ..•.••..•.•••.•...••. D-1 

A03 
( app) -1 





APPENDIX A: T/TAL LANGUAGE SUMMARY 

Constants 

"l" <constant> , •.• "l" 

<repetition factor> ~ "l" <constant> "l" 
Simple Variable Declaration 

< type > { <name > [ : = < in it i a 1 i z a t ion> ] } , • • • l. 

Array Variable Declaration 

<type> { [ • ] <name> "l" <lower bound> _:_ <upper bound> "l" 
[ := <initialization> ] } , •.• l. 

Read-Only Array Variable Declaration 

<type> { <name> [ " [" <lower bound> : <upper bound> "]" ] = 'P' 
:=<initialization> } , ••• l. 

Pointer Variable Declaration 

<type> { ~ <name> [ : = @<variable> " [" <index> "]" ] } , ••. l. 

Dynamic Initialization of Pointer Variable 

@ <pointer variable> := @<variable> 

Pointer Variable Address Conversion 

<string pointer> := @<word variable> 

<word pointer> := @<string variable> 

Equivalencing 

"["<index>"]"] 

" [" <index> "] " 

"["<index>"]" 

'<<' 1 

'>>' 1 

<type> { [ • ] <name> = <variable> <word offset> ] } , •.• l. 

Base Address Equivalencing 

{ 'G' } 
{ 'L' } 
{ 's' } 

< type > [ • ] < name > .::. { ' S G ' } 

LITERAL Declaration 

" [" <word index> "]" 
[+I-] <word offset> 

LITERAL { <name>= <constant> } , ••• l. 

--> 

A-1 



APPENDIX A: T/TAL LANGUAGE SUMMARY 

A-2 

DEFINE Declarations 

DEFINE { <name>= <block of text> # } , ••• i 

DEFINE { <name> ( <formal parameter name> , l 
~--~ =<block of text> # } , ••• i 

or 

or 

or 

or 

Procedure Declaration 

<type> ] PROC <name> <attributes> ] l. 

[<type> ] PROC <name> i <formal parameter name> , ... l 
[ <attributes> ] ; 
<parameter specifications> 

BEGIN -
[ local declaration 

local declaration ] 
subprocedure declaration 

subprocedure declaration 
[ <statement> ] ; ] 

[ [ <stat~ment> ] ; ] 
END ; -- -

FORWARD ; or EXTERNAL ; 

Subprocedure Declaration 

<type> ] SUBPROC <name> VARIABLE ] l. 

[ <type> ] SUBPROC <name> l <formal parameter name> , ... l 
[ VARIABLE G-
<par ameter specifications> 

BEGIN -------
- [ sublocal declaration 

sublocal declaration 
[ <statement> ] ] 

[ [ <statement> 
END ; 
··-- -

FORWARD ; 
--> 



APPENDIX A: T/TAL LANGUAGE SUMMARY 

ENTRY Declaration 

ENTRY <entry point name> , ... i 

LABEL Declaration 

LABE~ <label name> , ••• ; 

Bit Extraction 

<primary> ~ "~" <left bit> [ 

Bit Deposit 

<right bit> ] ">" 

<variable> • "<" <left bit> [ <right bit> ] ">" := <expression> 

Bit Shift 

<primary> <shift op> <number of positions> 

Arithmetic Expression: General Form 

+ I - ] <primary> [ <arith op> <primary> ] ... 

Arithmetic Expression: Assignment Form 

<variable> [ • "<" <left bit> ">" [ : "<" <right bit> ">" ] ] 
:= <arithmetic expression> 

Arithmetic Expression: IF THEN Form 

IF <conditional expression> THEN <arithmetic expression> 
ELSE <arithmetic expression> 

Arithmetic Expression: CASE Form 

CASE <index> OF 
---s-EGIN 

<expression for index = O> L 
<expression for index = l> L 

<expression for index = n> ; 
[ OTHERWISE <expression> T 

END 

Conditional Expression 

NOT] <condition> [ {AND I OR} [NOT] <condition>] .•• 
--> 

A-3 



APPENDIX A: T/TAL LANGUAGE SUMMARY 

A-4 

Array Comparison <condition> 

{ <s array> FOR <number of elements> } 
<d array> <relation> { <constant> } 

[ -> <next address> ] 

<variable> Reference 

<variable> II [II <ind ex> II] II ] 

Removing Indirection 

@ <variable> [ 11 
[

11 <index> "] 11 
] 

Specifying Indirection 

. <direct variable> [ 11 
[

11 <index> 11
] 

11 
] 

Assignment Statement 

<variable> [ • 11 < 11 <left bit> 11 > 11 
[ 

:= <expression> 

Compound Statement 

BEGIN 
---r-T <statement> ] ; 

[ [ <statement> 
END 

GOTO Statement 

GOTO <label> 

IF Statement 

IF <conditional expression> THEN 

IF <conditional expression> THEN 
ELSE [ <statement> ] 

11 <" <right bit> 11 >11 
] ] 

<statement> 

<statement> 

--> 



APPENDIX A: T/TAL LANGUAGE SUMMARY 

CASE Statement 

CASE <index> OF 
----sEGIN 

[ <statement for index = O> L 
[ <statement for index = l> L 

[ <statement for index = n> ; 
[ OTHERWISE [ <statement> ] T 

END 

FOR Statement 

{ TO } 
FOR <variable> := <initial> { DOWNTO } <limit> [ BY <step> ] 
~-DO [ <statement> ] 

WHILE Statement 

WHILE <conditional expression> DO [ <statement> ] 

DO Statement 

DO [ <statement> ] UNTIL <conditional expression> 

Move Statement 

{ ':=' } { <s array> FOR <number of elements> } 
<d array> { '=:' } { <constant> } 

[ -> <next address> ] 

SCAN Statement 

{ SCAN } { WHILE } 
{ RSCAN } <array> { UNTIL } <test character> [ -> <next address> ] 

CALL Statement 

CALL <name> 

CALL <name> l { <param l> L <param 2> L <par am n> l 

RETURN Statement 

RETURN <expression> 

CODE Statement 

CODE l <instruction> ; ••• L 
--> 

A-5 



APPENDIX A: T/TAL LANGUAGE SUMMARY 

USE Statement 

USE <name> 

DROP Statement 

DROP <name> 

STACK Statement 

STA~!5_ <expression> , •.. 

STORE Statement 

STOR~ <variable> , .•. ! maximum of eight <variables>. 

Type Transfer Functions 

$INT l <dbl expression> l 

$HIGH l <dbl expression> l 

$DBLL l <int expression> L <int expression> l 

$DBL l <int expression> l 

$UD~~ l <int expression> l 
$COMP l <int exEression> l 
$ABS ( <int expression> l --- -

$IF±_~ l <int expression> L <fpoint> l 

$LF_!_~ J. <int exEression> L <f12oint> l 
$DF _!_~ J. <dbl expression> L <f12oint> l 
$FI~!_ l <fixed expression> l 

$FI~~ l <fixed exEression> l 
$FIXD l <fixed expression> l 

Character Test Functions 

$ALPHA 1 <expression> l 
$NUMERIC ( <expression> ) 

--> 
----------------------------------------------------------------------
A-6 



APPENDIX A: T/TAL LANGUAGE SUMMARY 

$SPECIAL l <expression> l 

Min/Max Functions 

$MIN l <arithmetic expression> 

$MAX l <arithmetic expression> 

$LMIN ( <arithmetic expression> 

$LMAX l <arithmetic expression> 

.!... <arithmetic 

.!... <arithmetic 

.!... <arithmetic 

.!... <arithmetic 

Carry and Overflow Test Functions 

$CARRY 

$OVERFLOW 

Fixed Point Functions 

$SCALE l <fixed expression> .!... <scale> l 

$POINT l <fixed expression> l 

RP Standard Function 

$RP 

SWITCHES Standard Function 

$SWITCHES 

Compiler Commands 

? <compiler command> , ... 
PAGE [ "<heading string>" 

listing options: 

-> LIST 

-> MAP 

-> LMAP [ * ] 

-> CODE 

I CODE 

NOLI ST 

NO MAP 

NOLMAP 

NOC ODE 

-> NOICODE 

expression> l 
expression> l 

expression> ) 

expression> l 

--> 

A-7 



APPENDIX A: T/TAL LANGUAGE SUMMARY 

A-8 

INNERLIST 

ABSLIST 

warning control: 

-> WARN 

-> NOINNERLIST 

-> NOABSLIST 

NOWARN 

list only errors control: 

SUPPRESS 

SECTION <section name> 

SOURCE <file name> [ (<section name> , ... ) ] 

DATAPAGES = <number of pages> 

SETTOG [ 1,2, ... , n 

RESETTOG 1,2, ... , n] 

IF <toggle no.> 

IFNOT <toggle no.> 

ENDIF <toggle no.> 

ASSERTION = <assertion level> , <procedure name> 

fixed point rounding control: 

ROUND -> NOROUND 

RP = <register number> 

DECS = <sdec value> 

TAL Run Command 

TA L [ / [ IN < sour c e f i 1 e > ] [ , OUT < 1 i st f i 1 e > ] I ] 

[ <object file> 

XREF Run Command 

X REF [ I [ IN < sour c e f i 1 e > ] [ , OUT < 1 i st f i 1 e > ] / ] 



APPENDIX B: BNF SYNTAX FOR T/TAL 

The Backus-Naur Form (BNF) syntax is used to describe the grammar of 
T/TAL. The grammar consists of a number of "productions", each having 
the form: 

<syntactic entity> ::=<expression> 

where 

::=means "is defined as" 

<expression> is one or more sequence of syntactic terms 
(terminal and non-terminal symbols) 

For example, the "production" defining the <syntactic entity> 
<declaration> ·is 

<declaration> ::=<variable dee> : 
::=<routine dee> : 
::=<literal dee> : 
::=<define dee> : 
::=<entry dee> : 
::=<label dee> : 

meaning, <declaration> is defined as either a variable 
declaration, a routine declaration (i.e., PROC or SUBPROC), a 
literal declaration, a define declaration, an entry declaration, 
or a label declaration. 

The following example shows how a declaration breaks down into its 
syntactic terms: 

AOl B-1 



APPENDIX B: BNF SYNTAX FOR T/TAL 

INT(32) dbll, dbl2; 

breaks down as follows: 

INT (32) dbll dbl2 
I I 

<int> <constant> 
I 

<ident> 
I 

<ident> 

B-2 

I I 
I <size> 
\, ___ ! 

<type> 
I 

<var head> 
I 
I 
I 
\ 

I 
<uident> 

I 
<name> 

I 
<var elem2> 

I 
<var eleml> 

I 
<var elem> 

I 

<variable dee> 
\ I _____ I ______ _ 

<var head> <var elem> 
\ I ----,-----

<var ial:He dee> 
\ I 

<declaration> 

AOl 



APPENDIX B: BNF SYNTAX FOR T/TAL 

List of Reserved Symbols 

AND END LOR STACK 
ASSERT ENTRY MAIN STORE 
BEGIN EXTERNAL NOT STRING 
BY FIXED OF STRUCT 
CALL FOR OR SUBPROC 
CALLABLE FORWARD OTHERWISE THEN 
CASE GOTO PRIV TO 
CODE IF PROC UNTIL 
DEFINE INT REAL USE 
DO INTERRUPT RESIDENT VARIABLE 
DOWNTO LABEL RETURN WHILE 
DROP LAND RS CAN XOT 
ELSE LITERAL SCAN 

List of Terminal Symbols 

The Reserved Symbols 

< 
) 
@ 

<addop> 
<base> 
<constant> 
<error> 
<fclassO> 
<fclassl> 

<fclass2> 

<gmulop> 
<ident> 
<lrelop> 
<lshiftop> 
<moveop> 
<opcode> 
<replace> 
<saveop> 
<text> 

; 
( 

> 
, 
] 

& 
= 

* 

::= + - I '+' I '-' 
: : = I GI IL I I Is I I I SG I 

::=$CARRY I $OVERFLOW I $RP I $SWITCHES 
::=$INT I $HIGH I $DBL I $UDBL I $COMP I 

$ABS I $FIX! I $FIXL I $FIXD I $ALPHA 
$NUMERIC I $SPECIAL I $POINT I $PARAM 

: : = 

: : = 
: : = 
::= 
: : = 
: : = 
::= 
: : = 
: : = 
: : = 

$LEN I $OFFSET I $OCCURS I $TYPE 
$!FIX I $LFIX I $DFIX I $MIN I $MAX I 

$LMIN I $LMAX I $SCALE 
* I I I '*' I '/' I '\' 
<identifier> 
'<' I '=' I '>' I '<=' I '=>' I '<>' 
I<< I I I>> I 
I:= I I I=: I 
Tandem 16 Instruction Mnemonic 
:= ! assignment ! 
-> 
<any DEFINE text> 

AOl B-3 



APPENDIX B: BNF SYNTAX FOR T/TAL 

8-4 

<program> 

<dee head> 
<dee group> 

<declaration> 

<entry dee> 
<entry head> 

<entry> 
<literal dee> 
<literal head> 

<literal> 
<uident> 
<define dee> 
<define head> 

<define> 
<defhead> 
<defhead*> 

<dparam head> 

<label dee> 
<label head> 

<label> 
<variable dee> 
<var head> 

<struct dee> 
<struct head> 

<s-dec body*> 

<struct> 
<s-dec body> 

<s-dec name*> 

List of Productions 

: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
::= 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
::= 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
::= 
: : = 
: : = 
: : = 

<dee head> 
. 

(dee group> 
<declaration> 
<dee group> <declaration> 
<variable dee> ; 
<struct dee> ; 
<routine dee> ; 
<literal dee> ; 
<define dee> ; 
<entry dee> ; 
<label dee> ; 
<entry head> <entry> 
ENTRY 
<entry dee> , 
<uident> 
<literal head> <literal> 
LITERAL 
<literal dee> , 
<uident> = <expr> 
<ident> 
<define head> <define> 
DEFINE 
<define dee> , 
<defhead> <text> 
<defhead*> = 
<uident> 
<dparam head> <uident> 
<uident> ( 
<dparam head> <uident> , 
<label head> <label> 
LABEL 
<label dee> , 
<uident> 
<var head> <var elem> 
<type> 
<variable dee> , 
<struct head> <s-dec body*> 
<struct> 
<struc;t dee> , 
<s-dec body> <end> 
<s-referral*> 
STRUCT 
<s-dec name*> ; <begin> 
<s-dec body> <s-item> 
<s-dec name> 
<s-dec name> = <adr> 

AOl 

--> 



<s-dec name> 

<s-referral*> 

<s-referral> 

<name*> 
<s-item> 

<s-group> 
<s-group head> 
<s-group body> 

<typed item list> 
<typed item head> 

<filler item> 
<s-group name> 
<s-item name> 

<s-item name*> 

<type> 

<int> 
<real> 
<fixed> 
<size> 
<point> 
<var elem> 

<var eleml> 

<var elem2> 

<var elem3> 

<name> 

<bounds> 

APPENDIX B: BNF SYNTAX FOR T/TAL 

List of Productions (cont'd) 

: : = <name> 
::=<name> <bounds> 
: : = <name> ( * ) 
::= <s-referral> 
::= <s-referral> = <adr> 
: : = <name*> 
::=<name*> <bounds> 
::=<name> ( <ident> 
::= <s-group> 
::=<typed item list> 
::=<filler item> 
::= <s-group head> <s-group body> ; <end> 
::= <struct> <s-group name> <begin> 
::= <s-item> 
::= <s-group body> ; <s-item> 
::=<typed item head> <s-item name> 
: := <type> 
::=<typed item list> , 
::=FILLER <constant> 
::= <s-item name> 
::= <s-item name*> 
::= <s-item name*> = <uident> 
::= <uident> 
::= <uident> <bounds> 
: : = STRING 
::=<int> <size> 
::=<real> <size> 
::=<fixed> <point> 
::=<int> 
::=<real> 
: := <fixed> 
: : = INT 
::=REAL 
: : = FIXED 
::= ( <constant> 
::= ( <aexpr> ) 
::=<var eleml> 
::=<var eleml> <replace> <conlist elem> 
: : = <var elem2 > 
::=<var elem2> = <adr> 
: : = <var elem3> 
::=<name> ( <ident> 
: : = <name> 
::=<name> <bounds> 
::= <uident> 
: : = • <uident> 
: : = [ <expr> : <expr> ] 

--> 

AOl B-5 



APPENDIX B: BNF SYNTAX FOR T/TAL 

B-6 

<adr> 

<conlist elem> 

<conlist head> 

"<repeat> 
<lbrace> 
<routine dee> 

<spec part> 
<spec part*> 

<routine head> 

<routine name> 

<routine head*> 
<rhead> 

<routine type> 

<attributes> 

<attribute> 

<body> 

<local decs> 

List of Productions (cont'd) 

::= <ident> 
::= <ident> [ <expr> ] 
::= <ident> <addop> <primary> 
: : = <base> 
: := <base> [ <expr> ] 
::=<base> <addop>~ <primary> 
: : = <sum> 
::= <conlist head> ] 
::=<repeat>* <lbrace> <conlist elem> 
::= <lbrace> <conlist elem> 
::= <conlist head> , <conlist elem> 
::=<primary> 
: : = [ 
::=<spec part> FORWARD 
::=<spec part> EXTERNAL 
::=<spec part> <body> <statement> <end> 
::=<spec part> <body> <end> 
::=<routine type> <spec part*> 
::=<routine head> 
::=<spec part*> <spec> ; 
::=<spec part*> <struct spec> 
::=<routine name> ; 
::=<routine name> <attributes> 
::= <uident> 
::=<routine head*> 
::= <rhead> <uident> 
: := <uident> ( 
::= <rhead> <uident> , 
: : = PROC 
::=<type> PROC 
: : = SUBPROC 
::=<type> SUBPROC 
::=<attribute> 
::=<attributes> <attribute> 
::=CALLABLE 
: : = PRIV. 
::=INTERRUPT 
::=VARIABLE 
: : = RES !DENT 
: : = MAIN 
::=<local decs> 
::=<body> <statement> 
: : = <body> 
: : = <beg in> 
::=<local decs> <declaration> 

AOl 

--> 



<s-dec name> 

<s-referral*> 

<s-referral> 

<name*> 
<s-item> 

<s-group> 
<s-group head> 
<s-group body> 

<typed item list> 
<typed item head> 

<filler item> 
<s-group name> 
<s-item name> 

<s-item name*> 

<type> 

<int> 
<real> 
<fixed> 
<size> 
<point> 
<var elem> 

<var eleml> 

<var elem2> 

<var elem3> 

<name> 

<bounds> 

APPENDIX B: BNF SYNTAX FOR T/TAL 

List of Productions (cont'd) 

: : = <name> 
::=<name> <bounds> 
: : = <name> ( * ) 
::= <s-referral> 
::= <s-referral> = <adr> 
: : = <name*> 
::=<name*> <bounds> 
::=<name> { <ident> 
::= <s-group> 
::=<typed item list> 
::=<filler item> 
::= <s-group head> <s-group body> ; <end> 
::= <struct> <s-group name> <begin> 
::= <s-item> 
::= <s-group body> ; <s-item> 
::=<typed item head> <s-item name> 
::=<type> 
::=<typed item list> , 
::=FILLER <constant> 
::= <s-item name> 
::= <s-item name*> 
::= <s-item name*> = <uident> 
: := <uident> 
::= <uident> <bounds> 
: : = STRING 
::=<int> <size> 
::=<real> <size> 
::=<fixed> <point> 
::=<int> 
: := <real> 
: := <fixed> 
: : = INT 
: : = REAL 
: : = FIXED 
::= ( <constant> 
: := ( <aexpr> ) 
::=<var eleml> 
::=<var eleml> <replace> <conlist elem> 
::=<var elem2> 
::=<var elem2> = <adr> 
: : = <var elem3 > 
::=<name> ( <ident> 
: : = <name> 
::=<name> <bounds> 
::= <uident> 
: : = • <uident> 
: := [ <expr> : <expr> ] 

--> 

AOl B-5 



APPENDIX B: BNF SYNTAX FOR T/TAL 

B·-6 

<adr> 

<conlist elem> 

<conlist head> 

·<repeat> 
<lbrace> 
<routine dee> 

<spec part> 
<spec part*> 

<routine head> 

<routine name> 

<routine head*> 
<rhead> 

<routine type> 

<attributes> 

<attribute> 

<body> 

<local decs> 

List of Productions (cont'd) 

: := <ident> 
::= <ident> [ <expr> ] 
::= <ident> <addop> <primary> 
::=<base> 
::=<base> [ <expr> ] 
::=<base> <addop>· <primary> 
: : = <sum> 
::= <conlist head> ] 
::=<repeat>* <lbrace> <conlist elem> 
::= <lbrace> <conlist elem> 
::= <conlist head> , <conlist elem> 
::=<primary> 
: : = [ 
::=<spec part> FORWARD 
::=<spec part> EXTERNAL 
::=<spec part> <body> <statement> <end> 
::=<spec part> <body> <end> 
::=<routine type> <spec part*> 
::=<routine head> 
::=<spec part*> <spec> ; 
::=<spec part*> <struct spec> 
::=<routine name> 
::=<routine name> <attributes> 
: := <uident> 
::=<routine head*> 
::= <rhead> <uident> 
: := <uident> ( 
::= <rhead> <uident> , 
: : = PROC 
::=<type> PROC 
: : = SUBPROC 
::=<type> SUBPROC 
::=<attribute> 
::=<attributes> , <attribute> 
: : = CALLABLE 
: : = PRIV 
::=INTERRUPT 
::=VARIABLE 
: : = RES I DENT 
: : = MAIN 
::=<local decs> 
::=<body> <statement> 
: : = <body> 
: : = <beg in> 
::=<local decs> <declaration> 

AOl 

--> 



<spec> 

<vtype> 

<s-pointer> 
<struct spec> 
<struct spec head> 

<s-spec body*> 

<s-spec body> 

<struct*> 
<s-spec-name> 

<stype> 

<aexpr> 

<cexpr> 
<taexpr> 
<case expr head> 
<case expr body> 

<expr> 

<cond factor> 

<cond secondary> 

APPENDIX B: BNF SYNTAX FOR T/TAL 

List of Productions (cont'd) 

::= <vtype> <ident> 
::= <vtype> • <ident> 
::= <vtype> <s-pointer> 
::=<spec> , <ident> 
::=<spec> , • <ident> 
::=<spec> , <s-pointer> 
::= <stype> 
::= <stype> PROC 
: : = PROC 
: : = LABEL 
: : = 
: : = 
: : = 

• <ident> ( <ident> ) 
<struct spec head> <s-spec 
<struct*> 

: : = 
: : = 
: : = 
: : = 
: : = 
::= 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 

<struct spec> 
<s-spec body> 
<s-spec-name> 
<s-spec-name> 
<s-spec body> 
<struct> 
• <ident> 
<ident> 
STRING 
INT <size> 
REAL <size> 
FIXED <point> 
FIXED ( * ) 
INT 
REAL 

: := FIXED 
::= <expr> 

' <end> 
( <ident> 
: <begin> 
<s-item> : 

body*> 

::=IF <cexpr> THEN <taexpr> ELSE <aexpr> 
::=<case expr head> <case expr body> <end> 
::=<case expr head> <case expr body> 

OTHERWISE <aexpr> : <end> 
::=<left part> <aexpr> 
::= <aexpr> 
: : = <aexpr> 
::=<case> <aexpr> OF 
: : = <beg in> 
::=<case expr body> <aexpr> 
::= <cond factor> 
::= <expr> OR <cond factor> 
::= <cond secondary> 
::= <cond factor> AND <cond secondary> 
: := <compare> 
::=NOT <compare> 

AOl 

---> 

B-7 



APPENDIX B: BNF SYNTAX FOR T/TAL 

B-8 

<compare> 

<compare head> 
<compare tail> 

<sum> 

<term> 

<shift> 

<primary> 

<faexpr> 
<mu lop> 

<lop> 

<relation> 

<shiftop> 

<variable> 
<idref> 

<qual-name> 
<qual-name*> 

<qual-head> 
<ident ref> 

List of Productions (cont'd) 

: : = 
: : = 
: : = 
: : = 
: : = 
::= 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
:: : = 
: : = 
: : = 
: : = 
: : = 
: : = 
::= 
: : = 
: : = 

<sum> 
<relation> 
<compare head> <compare tail> 
<sum> <relation> 
<conlist elem> 
<conlist elem> FOR <sum> 
<conlist elem> FOR <sum> <save part> 
<term> 
<addop> <term> 
<sum> <addop> <term> 
<sum> <lop> <term> 
<shift> 
<term> <mulop> <shift> 
<primary> 
<shift> <shiftop> <primary> 
<constant> 
<variable> 
<function designator> 
( <aexpr> ) 
<fclassO> 
<fclassl> <aexpr> ) 
<fclass2> ( <faexpr> <aexpr> ) 
<field designator> 
<aexpr> 
* 
<gmulop> 
LOR 
LAND 
XOR 
< 

: : = = 
: : = > 
: : = < = 
: : = < > 
: : = > = 
::= <lrelop> 
: : = < < 
: : = > > 
::= <lshiftop> 
: := <idref> 
::= <qual-name> 
::= • <qual-name> 
::=@ <qual-name> 
::= <qual-name*> 
: : = < ident ref> 
::= <qual-head> <ident ref> 
::= <qual-name*> • 
::= <ident> 

AOl 

--> 



APPENDIX B: BNF SYNTAX FOR T/TAL 

List of Productions (cont'd} 

: : = <ident> <open-brkt> <aexpr> ] 
<open-brkt> ::= 
<function designator> ::= 

[ 
<actual head> <actual par am> } 

<actual head> 

<actual param> 
<label def> 
<statement> 

<open stmt> 

<closed stmt> 

<if clause> 
<closure> 

<for clause> 

<for head> 
<forvar> 

: : = <actual 
: : = <ident> 
: : = <actual 
::= <actual 
: := <aexpr> 
: := <ident> 

head> 
( 
head> 
head> 

: : = <open stmt> 
::=<closed stmt> 

} 

<actual par am> 
, 

::=<if clause> <statement> 
::=<if clause> 
::=<closure> <open stmt> 
::=<for clause> <open stmt> 
::=<while clause> <open stmt> 
::=<label def> <open stmt> 
: : = <do stmt> 
: : = <go s tm t > 
: := <case stmt> 
::=<assign stmt> 
: : = <call stmt> 
::=<return stmt> 
: : = <move stmt> 
: : = <scan stmt> 
: := <code stmt> 
::=<assert stmt> 
: : = <use stmt> 
: : = <drop stm t> 
::=<compound stmt> 
: : = <stack stmt> 
::=<store stmt> 
::=<closure> <closed stmt> 
::=<for clause> <closed stmt> 
::=<while clause> <closed· stmt> 
::=<label def> <closed stmt> 
::=<closure> 
::=<for clause> 
::=<while clause> 
::=<label def> 
::=IF <aexpr> THEN 

, 

::=<if clause> <closed stmt> ELSE 
::=<if clause> ELSE 
::=<if clause> ; ELSE 
::=<for head> <to clause> <by clause> DO 
::=<for head> <to clause> DO 
::=FOR <forvar> <replace> <aexpr> 
::=<variable> 

--> 

AOl B-9 



APPENDIX B: BNF SYNTAX FOR T/TAL 

<to clause> 

<by clause> 
<while clause> 
<compound stmt> 
<compound head> 

<begin> 
<end> 
<assign stmt> 
<left part> 

<field designator> 
<range> 

<go stmt> 
<case stmt> 

<ow-clause> 

<case head> 
<case body> 

<case> 
< cstm t> 
<do stmt> 

<do> 
< ca 11 s tm t > 

<return stmt> 

<code s tm t> 
<code head> 

<instruction> 

<instr> 

<var part> 
<xpart> 
<assert stmt> 
<assert head> 

B-10 

List of Productions (cont'd} 

::=TO <aexpr> 
::= DOWNTO <aexpr> 
: : = BY <aexpr> 
::=WHILE <aexpr> DO 
::=<compound head> <end> 
::=<begin> <statement> 
: := <begin> 
::=<compound head> <statement> 
::=<compound head> 
::=BEGIN 
: : = END 
::=<left part> <aexpr> 
::=<variable> <replace> 
::=<field designator> <replace> 
::=<primary> <range> 
::= • <<constant>> 
::=.<<constant> : <constant>> 
::=GOTO <ident> 
::=<case head> <case body> <end> 
::=<case head> <case body> <ow-clause> 

<end> 
::=OTHERWISE <statement> 
: : = OTHERWISE ; 
::=<case> <aexpr> OF 
: : = <beg in> 
::=<case body> <cstmt> 
: : = <case body> 
: : = CASE 
::=<statement> 
::=<do> <statement> UNTIL <aexpr> 
::=<do> UNTIL <aexpr> 
: : = DO 
::=CALL <function designator> 
::=CALL <ident> 
: : = RETURN 
::=RETURN <aexpr> 
::=<code head> <instruction> 
: : = CODE ( 
::=<code head> <instruction> 
::=<instr> 
::=<label def> <instr> 
::=<opcode> 
::=<opcode> <var part> 
::=<opcode> <var part> <xpart> 
::= <aexpr> 
::=, <aexpr> 
::=<assert head> <aexpr> 
::=ASSERT <constant> : 

AOl 

--> 



<use stmt> 
<use head> 

<use> 
<drop stmt> 

<move stmt> 

<dest part> 
<source part> 

<source body> 

<source var> 
<save part> 
<scan stmt> 

<scan body> 

<scan head> 

<testword> 
<stack stmt> 

<store stmt> 

<store part> 

APPENDIX B: BNF SYNTAX FOR T/TAL 

List of Productions (cont'd) 

::=<use head> <use> 
: : = USE 
: : = <use stmt> 
: := <uident> 
::=DROP <ident> 
::=<drop stmt> , <ident> 
::= <dest part> <source part> <save part> 
::= <dest part> <source part> 
::=<variable> <moveop> 
::=<source body> 
::=<source part> & <source body> 
::=<source var> FOR <sum> 
::= <conlist elem> 
: := <variable> 
::= <saveop> <variable> 
::=<scan body> <testword> <save part> 
::=<scan body> <testword> 
::=<scan head> UNTIL 
::=<scan head> WHILE 
::=SCAN <variable> 
::= RSCAN <variable> 
: : = <sum> 
::=STACK <aexpr> 
::=<stack stmt> , <aexpr> 
::=STORE <store part> 
::=<store stmt> , <store part> 
::=<variable> 
::=<field designator> 

AOl B-11 





Character 

NUL 
SOB 
STX 
ETX 
EOT 
ENQ 
ACK 
BEL 

BS 
HT 
LF 
VT 
FF 
CR 
so 
SI 

DLE 
DCl 
DC2 
DC3 
DC4 
NAK 
SYN 
ETB 

CAN 
EM 
SUB 
ESC 
FS 
GS 
RS 
us 

SP 

II 

# 
$ 
% 
& 

Octal Value 
(left byte) 

000000 
000400 
001000 
001400 
002000 
002400 
003000 
003400 

004000 
004400 
005000 
005400 
006000 
006400 
007000 
007400 

010000 
010400 
011000 
011400 
012000 
012400 
013000 
013400 

014000 
014400 
015000 
015400 
016000 
016400 
017000 
017400 

020000 
020400 
021000 
021400 
022000 
022400 
023000 
023400 

Octal Value 
(right byte) 

000000 
000001 
000002 
000003 
000004 
000005 
000006 
000007 

000010 
000011 
000012 
000013 
000014 
000015 
000016 
000017 

000020 
000021 
000022 
000023 
000024 
000025 
000026 
000027 

000030 
000031 
000032 
000033 
000034 
000035 
000036 
000037 

000040 
000041 
000042 
000043 
000044 
000045 
000046 
000047 

APPENDIX C: ASCII CHARACTER SET 

Meaning 

Null 
Start of heading 
Start of text 
End of text 
End of transmission 
Enquiry 
Ac kn owl edge 
Bell 

Backspace 
Horizontal tabulation 
Line feed 
Vertical tabulation 
Form feed 
Carriage return 
Shift out 
Shift in 

Data link escape 
Device control 1 
Device control 2 
Device control 3 
Device control 4 
Negatve acknowledge 
Synchronous idle 
End of transmission block 

Cancel 
End of medium 
Substitute 
Escape 
File separator 
Group separator 
Record separator 
Unit separator 

Space 
Exclamation point 
Quotation mark 
Number sign 
Dollar sign 
Percent sign 
Ampersand 
Ap9strophe 

--> 

C-1 



APPENDIX C: ASCII CHARACTER SET 

Character 

C-2 

( 
} 

* 
+ 

I 

0 
1 
2 
3 
4 
5 
6 
7 

8 
9 

< 
= 
> 
? 

@ 

A 
B 
c 
D 
E 
F 
G 

H 
I 
J 
K 
L 
M 
N 
0 

Octal Value 
(left byte} 

024000 
024400 
025000 
025400 
026000 
026400 
027000 
027400 

030000 
030400 
031000 
031400 
032000 
032400 
033000 
033400 

034000 
034400 
035000 
035400 
036000 
036400 
037000 
037400 

040000 
040400 
041000 
041400 
042000 
042400 
043000 
043400 

044000 
044400 
045000 
045400 
046000 
046400 
047000 
047400 

Octal Value 
(right byte} 

000050 
000051 
000052 
000053 
000054 
000055 
000056 
000057 

000060 
000061 
000062 
000063 
000064 
000065 
000066 
000067 

000070 
000071 
000072 
000073 
000074 
000075 
000076 
000077 

000100 
000101 
000102 
000103 
000104 
000105 
000106 
000107 

000110 
000111 
000112 
000113 
000114 
000115 
000116 
000117 

Meaning 

Opening parenthesis 
Closing parenthesis 
Asterisk 
Plus 
Comma 
Hyphen (minus} 
Period (decimal point} 
Right slant 

Zero 
One 
Two 
Three 
Four 
Five 
Six 
Seven 

Eight 
Nine 
Colon 
Semi-colon 
Less than 
Equals 
Greater than 
Question mark 

Commercial at 
Uppercase A 
Uppercase B 
Uppercase C 
Uppercase D 
Uppercase E 
Uppercase F 
Uppercase G 

Uppercase H 
Uppercase I 
Uppercase J 
Uppercase K 
Uppercase L 
Uppercase M 
Uppercase N 
Uppercase 0 

--> 



APPENDIX C: ASCII CHARACTER SET 

Character Octal Value Octal Value Meaning 
(left byte) (right byte) 

p 050000 000120 Uppercase p 
Q 050400 000121 Uppercase Q 
R 051000 000122 Uppercase R 
s 051400 000123 Uppercase s 
T 052000 000124 Uppercase T 
u 052400 000125 Uppercase u 
v 053000 000126 Uppercase v 
w 053400 000127 Uppercase w 

x 05~000 000130 Uppercase x 
y 054400 000131 Uppercase y 
z 055000 000132 Uppercase z 
[ 0 55400 000133 Opening bracket 
\ 0 56000 000134 Left slant 
] 0 56400 000135 Closing bracket ,... 

057000 000136 Circumflex 
057400 000137 Underscore 

0 60000 000140 Grave accent 
a 060400 000141 Lowercase a 
b 061000 000142 Lowercase b 
c 061400 000143 Lowercase c 
a 062000 000144 Lowercase a 
e 0 62400 000145 Lowercase e 
f 063000 000146 Lowercase f 
g 063400 000147 Lowercase g 

h 064000 000150 Lowercase h 
i 064400 000151 Lowercase i 
j 065000 000152 Lowercase j 
k 065400 000153 Lowercase k 
1 066000 000154 Lowercase 1 
m 066400 000155 Lowercase m 
n 067000 000156 Lowercase n 
0 067400 000157 Lowercase 0 

p 070000 000160 Lowercase p 
q 070400 000161 Lowercase q 
r 071000 000162 Lowercase r 
s 071400 000163 Lowercase s 
t 072000 000164 Lowercase t 
u 072400 000165 Lowercase u 
v 073000 000166 Lowercase v 
w 073400 000167 Lowercase w 

--> 
----------------------------------------------------------------------

C-3 



APPENDIX C: ASCII CHARACTER SET 

Character Octal Value Octal Value Meaning 
(left byte) (right byte) 

x 074000 000170 Lowercase x 
y 074400 000171 Lowercase y 
z 075000 000172 Lowercase z 
{ 075400 000173 Opening brace 
I 076000 000174 Vertical line 
} 076400 000175 Closing brace 

077000 000176 Tilde 
DEL 077400 000177 Delete 

C-4 



APPENDIX D: COMPILER DIAGNOSTICS 

When the T/TAL compiler detects an error in a source line, it prints 
a message to inform the programmer of that condition. On the line 
of the source listing following the erroneous sour~e line, the 
compiler prints a circumflex symbol (A) to indicate the location of 
the error within the line. The circumflex is printed under the first 
character position following the detection of the error (however, 
because the error detected may involve the relationship of the current 
source line with a previous line, the circumflex does not always point 
to the actual error itself). On the next line, the compiler prints a 
message describing the nature of the error. (Occasionally, a third 
line may be added to provide supplemental information, such as "IN 
PROC <procname>," when reference to an earlier procedure is necessary, 
or "PREVIOUS ON PAGE #<pagenum>," when an error is detected at the 
bottom of a source listing page and it is necessary to print the 
diagnostic message on the next page.) 

The compiler's diagnostic messages are of two types: error messages 
and warning messages. The former indicate conditions that must be 
corrected before the program can be properly compiled. The latter 
indicate conditions that may or may not be errors, depending on the 
programmer's intentions and the way in which the program is to be 
compiled and used; they alert the programmer to recheck his coding 
to make sure errors are avoided. 

Each message begins with a string of four asterisks, the word ERROR 
or WARNING, an identifying number, and a ·closing string of asterisks. 
A brief description of the detected condition then follows. Because 
these descriptions are necessarily abbreviated, the following text is 
provided to give a more detailed description of each diagnostic. 

NOTES: (1) Because of space limitations on these pages, some messages 
are continued on a second line. When printed in the compiler 
listing, however, each message is presented on a single line. 
(2) Some diagnostic messages are no longer in use and are not 
described here. The messages that follow are therefore not in 
strict ascending numerical sequence. 

A03 
D-1 



APPENDIX D: COMPILER DIAGNOSTICS 

The following diagnostic messages identify source errors that prevent 
program compilation or execution, and that must be corrected. 

**** ERROR 0 **** COMPILER ERROR <module number> 

A logic error has occurred in the compiler. A 1-digit number 
identifies the compiler module in which the error was found. 

<module number> 0 = LOAD"OPERAND 
1 = AEXPR 
2 = INDEX"F 
3 = FUN"F 
4 = CEXPR 
5 = EMIT"CONLIST 
6 = BUILDICODE 
7 = IDLOOKUP 
8 = FIX"BR"IA 

Report this occurrence to Tandem Computers Incorporated (please 
include a copy of the compiler listing). 

**** ERROR 1 **** PARAMETER MISMATCH 

The data type of one or more parameters passed to a procedure 
or subprocedure does not agree with the data types specified 
for the formal parameters of that routine. 

**** ERROR 2 **** IDENTIFIER DECLARED MORE THAN ONCE 

A data declaration contains an identifier that has already been. 
defined within that procedure or subprocedure. 

**** ERROR 3 **** RECURSIVE DEFINE INVOCATION 

The <name> in a DEFINE declaration is defined in terms of itself. 
For example: DEFINE A = B#, B = A#; When A is invoked, it is 
found to be, in effect, undefined, and the compiler prints the 
"error 3" message. 

**** ERROR 5 **** INT OVERFLOW 

Integer overflow occurred while converting an ASCII number string 
to binary, or while scaling a quadrupleword constant up or down. 

**** ERROR 6 **** ILLEGAL DIGIT 

D-2 

A number string contains a digit that is greater than the largest 
number that can be expressed in the specified number base (for 
example, an octal constant contains the numeral 8). 

A03 



APPENDIX D: COMPILER DIAGNOSTICS 

**** ERROR 7 **** STRING OVERFLOW 

A string contains more than 128 characters or extends over more 
than one line. 

**** ERROR 8 **** NOT DEFINED FOR INT(32) ,FIXED OR REAL 

An operation in the current source line produces undefined 
results when attempted using the stated data types, and is 
therefore not permitted. 

**** ERROR 9 **** ILLEGAL SHIFT COUNT 

A bit shift operation specifies an invalid number of positions 
to be shifted (for example, I<< 10000). 

**** ERROR 10 **** ADDRESS RANGE VIOLATION 

An operation has attempted to specify an address beyond the 
allowable address limits (for example, INT I = 'G'+300; is 
invalid since 'G'[255] is the highest address that can be addressed 
directly). 

**** ERROR 11 **** ILLEGAL REFERENCE 

A variable reference cannot be used in the present context; a 
constant is expected. 

**** ERROR 12 **** NESTED ROUTINE DECLARATION(S) 

One or more PROC declarations have been found within the body of a 
procedure. A procedure may contain subprocedures only; no other 
form of nesting is permitted. 

**** ERROR 13 **** ONLY INT(l6) VALUE(S) ALLOWED 

The programmer has attempted to use a STRING, FIXED, or other 
type of value in an operation that permits only INT values. 

**** ERROR 14 **** ONLY INITIALIZATION WITH 
CONSTANT VALUE(S) IS ALLOWED 

An arithmetic expression can be used to initialize an identifier 
only if that expression can be evaluated to produce a constant 
value. Otherwise, only constants can be used for the 
initialization of variables. 

**** ERROR 15 **** INITIALIZATION IS ILLEGAL WITH 
REFERENCE SPECIFICATION 

The same statement cannot both (1) declare an identifier to be 
a reference to another identifier and (2) initialize that other 
identifier (for example, the form INT .A = B := <expession>; 
is invalid). Separate declarations must be used. 

A03 
D-3 



APPENDIX D: COMPILER DIAGNOSTICS 

**** ERROR 17 **** FORMAL PARAMETER TYPE SPECIFICATION IS MISSING 

If a PROC or SUBPROC declaration contains parameter specifications, 
the body of the procedure or subprocedure must contain data type 
declarations for all of the specified parameters. This message 
indicates that one or more parameters have not been thus defined& 

**** ERROR 18 **** ILLEGAL ARRAY BOUNDS SPECIFICATION 

The upper and lower bounds specified in an array declaration must 
be constants or expressions that can be evaluated to produce 
constants; the value specified for the lower bound must be less 
than or equal to that of the upper bound. An array declaration in 
the current source line violates one or more of these requirements. 

This message can also result if an equivalenced variable is 
declared as an array (for example, A[O:S] = B); the bounds 
specification is ignored. 

**** ERROR 19 **** GLOBAL OR NESTED SUBPROC DECLARATION 

A SUBPROC declaration has been found that is not within the body of 
a procedure, or that is contained within a subprocedure. 
Subprocedures cannot exist independently, nor can one subprocedure 
contain another. 

**** ERROR 20 **** ILLEGAL BIT FIELD DESIGNATOR 

In a bit field designator, the ending position number must be 
greater than or equal to the starting position number, and both 
must be integer constants. A bit field designator has been found 
that violates one or both of these requirements. 

**** ERROR 21 **** LABEL DECLARED MORE THAN ONCE 

Labels must be unique within a given procedure. An identifier 
followed by a colon, which is identical to a previously-declared 
label, has been found. 

**** ERROR 22 **** BRANCH IDENTIFIER NOT A LABEL 

The destination location specified in a GOTO statement must be a 
label (an identifier followed by a colon). The branch identifier 
in the current statement has not been declared as a label~ 

**** ERROR 23 **** VARIABLE SIZE ERROR 

D-4 

Some data type declarations may include size specifications, such 
as INT(32) or REAL(64); an erroneous size specification has been 
detected (a declaration of INT(l2), for example, is invalid). 

A03 



APPENDIX D: COMPILER DIAGNOSTICS 

****ERROR 24 ****DATA DECLARATION(S) MUST PRECEDE 
PROC DECLARATION(S) 

A data declaration has been found following the first executable 
instruction of a procedure or subprocedure. 

**** ERROR 26 **** ROUTINE DECLARED FORWARD MORE THAN ONCE 

A PROC or SUBPROC declaration followed by the FORWARD declaration 
should appear only once for any given procedure or subprocedure. 
The next occurrence of a PROC or SUBPROC declaration containing 
the same procedure or subprocedure name should be followed by the 
declarations and statements that make up the actual routine. 

**** ERROR 27 **** ILLEGAL SYNTAX 

A source entry contains one or more violations of the requirements 
for its construction. 

NOTE: This message can be produced as a result of syntax errors 
in a source line other than the one actually indicated (it is 
frequently caused by the absence -- or erroneous presence 
of a semicolon in the preceding line). 

**** ERROR 28 **** ILLEGAL USE OF CODE RELATIVE VARIABLE 

A code-relative variable (read-only array) cannot be used in the 
present context. 

**** ERROR 30 **** ONLY LABEL OR USE VARIABLE ALLOWED 

A DROf operation refers to an identifier that is not a label or a 
USE variable. 

**** ERROR 31 **** ONLY PROC OR SUBPROC IDENTIFIER ALLOWED 

In the absence of any ENTRY declarations, a CALL statement can 
refer only to the name of the procedure or subprocedure that is 
to be invoked. 

**** ERROR 32 **** TYPE INCOMPATABILITY 

Certain operations do not permit values of different data types to 
be used together. For example, an INT(32) value and an INT value 
cannot be added to each other, and an INT field cannot be moved to 
a STRING field. 

**** ERROR 33 **** ILLEGAL GLOBAL DECLARATION(S) 

One or more declarations are invalid in the present context and 
lexical level (a label, for example, cannot be delared globally). 

A03 
o~s 



APPENDIX D: COMPILER DIAGNOSTICS 

**** ERROR 34 **** MISSING VARIABLE 

A required variable is not present in the current source line. 

**** ERROR 36 **** ILLEGAL RANGE 

A specified value exceeds the allowable range for a given 
operation; for example, the statement CODE (QUP 10); is invalid 
because the maximum range for this instruction is 4. 

**** ERROR 37 **** MISSING IDENTIFIER 

A required identifier is not present in the current source line. 

**** ERROR 38 **** ILLEGAL INDEX-REGISTER SPECIFICATION 

on 1 y i nd ex reg i st er s R [ 5 ] th ro ugh R [ 7 ] a re av a il ab 1 e f o r ex p 1 i c i t 
reference. The programmer has attempted to specify more than three 
index registers for such use. 

**** ERROR 40 **** ONLY ALLOWED WITH A VARIABLE 

The FOR <number of elements> option in a comparison or a Move 
statement can be used only if the item being moved or compared is 
a variable. For example, IF WORD = "ABCD" FOR 2 is contradictory, 
since "ABCD" is by definition an entity of four characters. 

**** ERROR 42 **** TABLE OVERFLOW <table number> 

One of the compiler's tables is completely filled, and an 
attempt has been made to place another entry in that table. 
A 1-digit number identifies the particular table. 

<table number> 0 = CONT AB (constant table) 
1 = TREE (expression tree table) 
2 = PLT (pseudo label table) 
3 = DTEXT (parametric define table) 
4 = SEC" TAB (?SOURCE ( 1 ist) table) 

No recovery from this condition is possible; changes must be made 
in the source program to eliminate the overflow problem. 

**** ERROR 43 **** ILLEGAL SYMBOL <symbol> or <identifier"name> 

The current source line contains a character that is invalid or 
that is used illegally in the present context. 

**** ERROR 44 **** ILLEGAL INSTRUCTION 

The specified instruction does not exist in this system. 

A03 
D-6 



APPENDIX D: COMPILER DIAGNOSTICS 

****ERROR 45 ****ONLY INT(32) VALUE(S) ALLOWED 

The programmer has attempted to use an INT, STRING, or other 
type of value in an operation that permits only INT(32) values. 

**** ERROR 46 **** ILLEGAL INDIRECTION SPECIFICATION 

An identifier with the indirection symbol ( .) refers to another 
identifier that has already been declared to be indirect. This 
implies two levels of indirection; only one level is permitted. 

**** ERROR 47 **** ILLEGAL WITH INT(l6) 

The unsigned divide and unsigned modulo divide operations ('/' and 
'\' operators) must be of the form 

I NT ( 3 2 ) v a 1 u e { ' I ' I ' \ ' } INT v a 1 u e 

An INT value has been entered instead of an INT(32) value in the 
first operand. 

**** ERROR 48 **** MISSING <item~specification> 

A reference has been made to a label, entry point, procedure, or 
subprocedure that does not exist. The word MISSING is immediately 
followed by the identity of the missing item. 

**** ERROR 49 **** UNDECLARED IDENTIFIER 

A reference has been made to a variable or array that has not been 
defined in a data type declaration. 

**** ERROR 50 **** CAN NOT DROP THIS LABEL 

The DROP statement, in addition to deallocating USE registers, can 
be used to delete labels from the symbol table when they are no 
longer needed. However, an attempt to DROP a label that has not 
yet been decl~red will cause this message to be printed. In a 
loop, for example, where the label is used in the first iteration 
only, the programmer should delete it after it is used, rather 
than at the beginning of (the next iteration of) the loop, since 
the compiler makes no distinction between iterations. 

**** ERROR 51 **** INDEX-REGISTER ALLOCATION FAILED 

The compiler was unable to allocate an index register. This can 
be caused by a condition such as multiple array indexing in a 
single statement coupled with maximum index register allocation 
by USE statements. 

**** ERROR 52 **** MISSING INITIALIZATION FOR CODE RELATIVE ARRAY 

A read-only array must be initialized at the time it is declared. 

A03 
D-7 



APPENDIX D: COMPILER DIAGNOSTICS 

**** ERROR 53 **** EDIT FILE:INVALID FORMAT OR SEQUENCE <n> 

An unrecoverable error has been detected in the source file; <n> 
i s a neg at iv e number th a t id en t i f i es the type o f e r r o r : 

-3 = Text file format error 
-4 = Sequence error (the line number of the current source line 

is less than that of the preceding line) 

Use the Text Editor program to correct the error. 

**** ERROR 54 **** ILLEGAL REFERENCE PARAMETER 

A call to a procedure or subprocedure has supplied an 
indirect (reference) parameter to a formal parameter that 
has also been declared indirect. This attempts to specify 
two levels of indirection, when only one is permissible. 

**** ERROR 55 **** ILLEGAL SUBPROC ATTRIBUTE 

A SUBPROC declaration contains an attribute specification 
other than VARIABLE, which is the only valid attribute 
for a subproced ure. 

**** ERROR 57 **** SYMBOL TABLE OVERFLOW 

The compiler's symbol table is completely filled and an attempt 
was made to add another entry. Changes in the source program 
may be required to eliminate this condition, but you may attempt 
to run the compiler with the MEM run-time option (for example, 
TAL /IN source, OUT $s, MEM 64/) to increase the number of memory 
pages available (the default is 48 pages). 

**** ERROR 58 **** ILLEGAL BRANCH 

If a FOR statement has a USE register as its counter, branching 
into the FOR loop is not permitted. 

**** ERROR 59 **** DIVISION BY ZERO 

Division by zero is mathematically undefined and is not 
permitted. 

**** ERROR 60 **** ONLY A DATA VARIABLE MAY BE INDEXED 

An index has been appended to an identifier that does not 
represent a data variable (label, entry point, etc.). 

**** ERROR 61 **** ACTUAL/FORMAL PARAMETER COUNT MISMATCH 

D-8 

A call to a procedure or subprocedure has supplied more, or 
fewer, parameters than were defined in the PROC or SUBPROC 
declaration. 

A03 



APPENDIX D: COMPILER DIAGNOSTICS 

**** ERROR 62 **** FORWARD/EXTERNAL PARAMETER COUNT MISMATCH 

A discrepancy exists between the number of parameters 
specified in a PROC declaration that is followed by a 
FORWARD or EXTERNAL declaration and the number specified 
in the PROC declaration that begins the actual forward or 
external precedure. 

**** ERROR 63 **** ILLEGAL DROP OF USE VARIABLE 
IN CONTEXT OF FOR LOOP 

A DROP statement must not be contained within the body of a FOR 
loop unless it is preceded, also within the loop, by its 
corresponding USE statement. If the USE statement is outside the 
loop and the DROP statement is inside the loop, the USE variable is 
deallocated with the first iteration; each subsequent execution of 
the DROP statement attempts to deallocate a variable that is no 
longer a USE variable. 

**** ERROR 64 **** SCALE POINT MUST BE A CONSTANT 

The <fpoint> declaration for a FIXED variable, and the <scale> 
parameter of the $SCALE function, must be an integer constant 
within the range of -19 through +19. The current source line 
contains a scale point that is not a constant. 

**** ERROR 65 **** ILLEGAL PARAMETER OR ROUTINE NOT VARIABLE 

The $PARAM function is used in variable procedures and 
subprocedures to check for the presence or absence of optional 
parameters. The <formal parameter> supplied to the $PARAM 
function is not in the formal parameter list for the routine, 
or the $PARAM function appears in a routine without the VARIABLE 
attribute. 

**** ERROR 66 **** UNABLE TO PROCESS REMAINING TEXT 

This message is usually the result of an extremely poorly 
structured program, when numerous errors have become compounded 
and concatenated to the point where the compiler is unable to 
proceed with the anal~sis of the remaining source lines. 

**** ERROR 67 **** SOURCE COMMANDS NESTED TOO DEEPLY 

Source coding invoked by the ?SOURCE command may itself contain a 
?SOURCE command to call in other coding, which may, in turn, call 
still other coding. The maximum limit for such nesting is four 
levels; that limit has been exceeded. 

**** ERROR 68 **** CODE SPACE OVERFLOW 

The program has exceeded the amount of memory available for 
the code area (maximum 64K bytes). The program must be 
restructured to decrease the size of its coding. 

A03 
D-9 



APPENDIX D: COMPILER DIAGNOSTICS 

**** ERROR 69 **** INVALID TEMPLATE ACCESS 

A template structure has meaning only when referred to in 
subsequent structure declarations; the compiler allocates no 
storage space to it. The current source line has attempted to 
access a template structure as if it were a normal data item. 

**** ERROR 70 **** ONLY ITEMS SUBORDINATE TO A STRUCTURE 
MAY BE QUALIFIED 

A qualified reference of the form <name>.<subname>.<itemname> 
applies only to data items within a structure. The programmer 
has entered a qualified reference to a data item that is not 
part of a structure. 

**** ERROR 71 **** ONLY INT OR STRING STRUCT POINTERS ARE ALLOWED 

The programmer has declared a structure pointer of a data type 
other than integer or string, the only acceptable types. 

**** ERROR 72 **** INDIRECTION MUST BE SUPPLIED 

When declaring a structure pointer, the indirection symbol (.) 
must precede the identifier that is to represent the pointer; 
the indirection symbol is missing. 

**** ERROR 73 **** ONLY STRUCTURE IDENTIFIERS MAY BE USED 
AS A REFERRAL 

In a referral form of a structure declaration, the referral 
identifier must be a structure identifier, previously declared 
in either the definition form or the template form of a STRUCT 
declaration. 

**** ERROR 74 **** WORD ADDRESSABLE ITEMS MAY NOT BE ACCESSED 
THROUGH A STRING STRUCTURE POINTER 

Although an INT structure pointer can access items of any data 
type, a STRING structure pointer can only access STRING data 
items. 

**** ERROR 76 **** ILLEGAL STRUCT OR SUBSTRUCT REFERENCE 

A structure or substructure reference may only appear in a MOVE 
or SCAN statement, or as an address reference. The current 
source line violates this restriction. 

A03 
D-10 



APPENDIX D: COMPILER DIAGNOSTICS 

**** ERROR 77 **** STACK SPACE OVERFLOW 

The program's data area has become too large for the program to be 
run (maximum size is 32K, less 512 bytes). Examine the program 
logic to determine if any dat~ variables can be deleted ox arrays 
decreased in size. (For example, if a number of variables are used 
in different parts of the program and are never used concurrently, 
a single "utility" variable could be used instead.) 

**** ERROR 78 **** INVALID NUMBER FORM 

A floating-point constant has been entered incorrectly. A REAL 
constant must be written in the form 

[ <sign> ]<integer part> • <fractional part>! [ <sign> ]<exponent> 

and a REAL(64) constant must be entered in the form 

<sign> ]<integer part>~ <fractional part> L [ <sign> ]<exponent> 

**** ERROR 79 **** REAL UNDERFLOW/OVERFLOW 

Underflow or overflow occurred during input conversion of a REAL 
or REAL(64) number. Floating-point numbers must be within the 
approximate range 

-78 77 
+8.62 * 10 through +1.16 * 10 

**** ERROR 80 **** INVOKED EXTERNAL PROC CONVERTED TO INTERNAL 

The current declaration is attempting to redefine as internal a 
PROC that has already been called as an external procedure. 

**** ERROR 81 **** INVOKED FORWARD PROC CONVERTED TO EXTERNAL 

The current declaration is attempting to redefine as external a 
PROC that has already been called as an internal procedure. 

A03 
D-11 



APPENDIX D: COMPILER DIAGNOSTICS 

The following diagnostic messages indicate conditions that may or may 
not affect program compilation or execution. The programmer should 
recheck his coding carefully to determine whether correction is 
necessary. 

**** WARNING 0 ***** ALL INDEX REGISTERS ARE RESERVED 

Three variables have been defined by USE statements as explicit 
references to index registers. An attempt to reserve another 
index register will result in an error message. 

**** WARNING 1 ***** IDENTIFIER EXCEEDS 31 CHARACTERS IN LENGTH 

An identifier in the current source line is longer than the 
maximum number of characters. All characters following the 31st 
are ignored. 

**** WARNING 2 ***** ILLEGAL OPTION SYNTAX 

A compiler control command option has been entered incorrectly; 
the option is not performed. (This may or may not affect the 
program itself, depending on the functi-0n of the option.) 

**** WARNING 3 ***** INITIALIZATION LIST EXCEEDS ALLOCATED SPACE 

An initialization list contains more values or characters than 
can be contained by the variable or array being initialized. 
The excess items are ignored. 

**** WARNING 9 ***** RP MISMATCH 

An operation contains conflicting instructions for the use of the 
register pointer (for example, IF A THEN STACK 1 ELSE STACK lD;), 
which cannot be resolved at compilation time. 

This message can also occur following a large number of errors 
that result in an RP conflict. 

**** WARNING 10 ***** RP OVERFLOW OR UNDERFLOW 

A calculation has produced an index register number that is 
greater than seven or less than zero. 

**** WARNING 12 ***** UNDEFINED OPTION 

The programmer has entered a compiler control command option that 
does not exist. The erroneous command is ignored. 

**** WARNING 13 ***** VALUE OUT OF RANGE 

A value is in excess of the permissible range for its context (for 
example, a shift count greater than the number of existing bits). 

A03 
D-12 



APPENDIX D: COMPILER DIAGNOSTICS 

**** WARNING 14 ***** INDEX WAS TRUNCATED 

It is not permissible to equivalence a variable to an indirect 
variable with an index (for example, INT .S[0:4]; INT Sl = S[l];). 
The compiler truncates the index from the equivalencing declaration 
(resulting in INT Sl = S). 

**** WARNING 15 ***** RIGHT SHIFT EMITTED 

A string address, passed as a parameter when a word address was 
expected, has been converted to a word address. Truncation of 
data is possible. 

**** WARNING 16 ***** VALUE PASSED AS REFERENCE PARAMETER 

A value has been passed to a procedure or subprocedure that 
expect~d that parameter to be a reference. If this was the 
programmer's intent, and if the value can be interpreted as 
a 16-bit address, no error may be involved. 

**** WARNING 17 ***** INITIALIZATION VALUE TOO COMPLEX 

An initialization expression is too complicated to evaluate in the 
current context. 

**** WARNING 18 ***** S-REGISTER MISMATCH 

A statement contains conflicting instructions for the setting of 
the S-register. For example, if a subprocedure contains the 
statement IF A THEN CODE(ADDS 1) ELSE CODE(ADDS 2), the setting 
of the S-register depends on the evaluation of A, which cannot be 
resolved at compilation time. 

**** WARNING 19 ***** PROC NOT DECLARED FORWARD WITH ABSLIST OPTION ON 

If the ABSLIST option is to be used, the compiler must know the 
size of the PEP table before any actual procedure body is found 
in the source program. This can be accomplished by either (1) 
entering a PEP command option at the beginning of the program, or 
(2) entering a FORWARD declaration for each internal procedure, 
preceding any procedure having an actual body. This message is 
printed when the PEP command is not used, and a procedure is 
encountered for which a FORWARD declaration was not previously 
entered. 

**** WARNING 20 ***** SOURCE LINE TRUNCATED 

A source line extends beyond 132 characters. The excess 
characters are ignored. 

A03 
D-13 



APPENDIX D: COMPILER DIAGNOSTICS 

**** WARNING 21 ***** ATTRIBUTE MISMATCH 

A procedure declaration, followed by the FORWARD declaration, was 
previously entered with a given set of attributes. When the actual 
PROC (or SUBPROC) declaration, with coding, was encountered, its 
attributes did not match those of the previous declaration. 

**** WARNING 22 ***** ILLEGAL COMMAND LIST FORMAT 

The format of the list of parameters supplied to a compiler 
control command is incorrect. The command is not performed. 

**** WARNING 23 ***** THE LIST LENGTH HAS BEEN USED FOR 
THE COMPARE COUNT 

The FOR <number of elements> specification was omitted from a 
Compare statement; the actual length of the item to be compared 
is assumed to be the number of elements intended. 

**** WARNING 24 ***** A USE REGISTER HAS BEEN OVERWRITTEN 

The evaluation of an expression has caused the value in a USE 
register to be destroyed (multiplication of two FIXED values, for 
example, can cause this to occur). 

**** WARNING 25 ***** FIXED POINT SCALING MISMATCH 

The scale factor of a FIXED value passed as a parameter does not 
match that of the formal parameter. 

**** WARNING 26 ***** MAIN PROCEDURE IS MISSING 

In a program that is to be executed, at least one procedure must 
have the attribute MAIN. If the current source coding is not to 
be executed but is intended for library use, this message can be 
ignored. 

**** WARNING 27 ***** FPOINT>ABS(l9) 

The <fpoint> in a FIXED declaration or the <scale> parameter of 
the $SCALE function is less than -19 or greater than +19. The 
fixed-point specification is set to its maximum limit, either 
-19 or +19. 

**** WARNING 28 ***** MORE THAN ONE MAIN SPECIFIED. LAST 
MAIN IS <procedure name> 

Although more than one procedure may have the attribute MAIN, only 
the last such procedure in the program is considered to be the 
actual main procedure. 

A03 
D-14 



APPENDIX D: COMPILER DIAGNOSTICS 

****WARNING 29 *****ILLEGAL SUBPROC ATTRIBUTE(S) 

The only attribute permitted for a subprocedure is VARIABLE. A 
SUBPROC declaration with additional attributes has been found. 
The VARIABLE attribute is implemented, but the others are ignored. 

**** WARNING 30 ***** PROC FORCED TO 32K BOUNDARY 

A procedure cannot extend across the boundary between the upper and 
lower 32K segments of the code area. If a procedure that would 
otherwise begin in the lower segment is too large to fit completely 
within that segment, the compiler automatically maps that procedure 
into the upper segment, beginning at the boundary. This can cause 
wasted space at the upper end of the lower segment. If efficiency 
in memory allocation is important, the sequence of procedures in 
the source program can be reorganized, or the FORWARD declaration 
used, to eliminate this condition. 

**** WARNING 31 ***** MISSING FOR PART 

The FOR <number of elements> specification was omitted from a Move 
statement. The actual length of the item to be moved is assumed to 
be the number of elements intended. 

**** WARNING 32 ***** RETURN NOT ENCOUNTERED IN TYPED PROC OR SUBPROC 

Although a procedure or subprocedure automatically returns control 
to the calling routine when the last END statement is reached, a 
function procedure or function subprocedure (identified by a <type> 
specification in its PROC or SUBPROC declaration) is expected to 
return a value. To do so, it must contain at least one RETURN 
statement with an identifier. 

**** WARNING 33 ***** REDEFINITION SIZE CONFLICT 

When redefining substructures or structure elements, the redefined 
item must be of sufficient size to contain the original item. 

**** WARNING 34 ***** REDEFINITION OFFSET CONFLICT 

In the redefinition of a structure element or substructure, the 
original item is a string beginning at an odd byte address, but 
the redefined item requires word boundary alignment. 

**** WARNING 35 ***** REAL OPERATIONS NOT SUPPORTED 

A source line specifies operations involving floating-point 
values, but the floating-point option has not been installed 
on this system. 

**** WARNING 36 ***** DOUBLE * OR / NOT SUPPORTED 

Multiplication and division of INT(32) values is not available. 

A03 
D-15 





T/TAL INDEX 

Page numbers in this index marked by an asterisk (*) indicate 
primary references for the related subject matter. 

! comment delimiter 
" string delimiter 
$ABS standard function 
$ABSLIST listing effect 
$ALPHA standard function 
$CARRY set by SCAN 
$CARRY standard function 
$COMP standard function 
$DBL standard function 
$DBLL standard function 
$DFIX standard function 
$FIXD standard function 
$FIX! standard function 
$FIXL standard function 
$HIGH standard function 
$!FIX standard function 
$INT standard function 
$LEN standard function 
$LFIX standard function 
$LMAX standard function 
$LMIN standard function 
$MAX standard function 
$MIN standard function 
$NUMERIC standard function 
$OCCURS standard function 
$OFFSET standard function 
$OVERFLOW 
$OVERFLOW standard function 
$PARAM standard function 
$POINT standard function 
$RP standard function 
$SCALE standard function 
$SPECIAL standard function 
$SWITCHES standard function 
$SYSTEM.SYSTEM.EXTDECS 
$SYSTEM.SYSTEM.TAL 
$SYSTEM.SYSTEM.XREF 
$TYPE standard function 
$UDBL standard function 
& in move statement 
' unsigned arithmetic symbol 
'*' unsigned operator 
'+' unsigned operator 
'-' unsigned operator 
'/' unsigned operator 
':=' move right statement 
'<<' unsigned shift symbol 
'=:' move left statement 
'>>' unsigned shift symbol 
'\' operator (remainder) 
* operator 

2.1-16 
2.7-3 
2.18-6 
2.21-2 
2.18-9 
2.17-25 
2.18-12* 
2.18-6 
2.18-5 
2.18-4 
2.18-6 
2.18-6 
2.18-6 
2.18-6 
2.18-4 
2.18-6 
2.18-4 
2.23-23 
2.18-6 
2.18-10 
2.18-10 
2.18-11 
2.18-10 
2.18-9 
2.23-23 
2.23-23 
2.15-2 
2.18-12 
2.22-9 
2.18-13 
2.22-31 
2.18-13 
2.18-9 
2.22-31 
2.11-9 
2.20-1 
2.20-3 
2.23-23 
2.18-5 
2.17-24 
2.8-25 
2.15-3 
2.15-3 
2.15-3 
2.15-3 
2.17-20 
2.14-5 
2.17-20 
2.14-5 
2.15-3 
2.15-3 

A03 

2.15-1 

2.22-12 

index-1 



T/TAL INDEX 

* symbol in structures 
+ operator 
- operator 
-> next address in Move 
-> next array address 
• indirection symbol 
• indirection symbol 
• symbol in bit functions 
• symbol in pointer 
/ operator 

in bit functions 
: in statement labels 
:= assignment statement 
:= with arithmetic express'n 
:=in FOR statement 
; in compound statements 
; statement terminator 
< relational operator 
<< logical shift left symbol 
<= relational operator 
<> relational operator 
= relational operator 
> relational operator 
>= relational operator 
>> shift right symbol 
? compiler command charact~r 
'.?DECS command 
?RP command 
@ direct addressing symbol 
@ direct addressing symbol 
ABSLIST compiler command 
Acces~ing arrays 
Accessing structures 
Accessing variables 
Address arithmetic 
Address assignments 
Address conversion 
Address Equivalencing 
Address pointer 
Address ranges 
Addressing bit fields 
Addressing bytes 
Addressing constraints 
Addressing system data 
Addressing upper memory 
Addressing words 
Advanced attributes 
Advanced features 
Advanced statements 
Altering pointers 
AND conditions 
AND relational operator 
Arithmetic assigmnent 
Arithmetic CASE expression 

ind ex-2 

2.23-6 
2.15-3 
2.15-3 
2.17-20 
2.15-32 
2.5-1 
2.16-13* 
2.14-2 
2.1-3 
2.15-3 
2.14-2 
2.17-7 
2.17-3* 
2.15-12 
2.17-14 
2.17-6 
2.17-2 
2.1-5 
2.5-2 
2.1-5 
2.1-5 
2.1-5 
2.1-5 
2.1-5 
2.5-2 
2.19-1 
2.22-32 
2.22-32 
2.1-3 
2.16-8* 
2.19-3 
2.16-6 
2.23-11 
2.16-2 
2.15-6 
2.8-34 
2.5-2 
2.8-2 
2.5-1 
2.22-3 
2.2-2 
2.2-3 
2.4-6 
2.22-3 
2.22-3 
2.2-2 
2.22-5 
2.22.1 
2.22-15 
2.8-25 
2.15-16 
2.1-5 
2.15-12 
2.15-14 

A03 

2.8-21 
2.16-1 
2.14-4 

2.14-4 

2.1-6 

2.8-26 

2.8-27 

2.5-2 
2.22-13 

2.8-26 

2.8-28 
2.22-2 

2.8-33 

2.14-5 

2.8-21 
2.15-24 

2.8-33 

2.12-4 

2.14-5 

2.16-1 



Arithmetic expression parts 
Arithmetic expression types 
Arithmetic Expressions 
Arithmetic IF THEN express'n 
Arithmetic on addresses 
Arithmetic on bytes 
Arithmetic on string data 
Arithmetic operators 
Arithmetic with pointers 
Array access 
Array access without index 
Array address pointer 
Array base 
Array base address 
Array bounds 
Array comparison 
Array Data Class 
Array declarations 
Array element addressing 
Array initialization 
Array memory allocation 
Array scanning 
Arrays, multi-dimensional 
ASCII character set 
ASCII NULL scan terminator 
ASSERT debugging control 
Assertion compiler command 
Assignment in comparisons 
Assignment in FOR statement 
Assignment statement 
Assignments to FIXED data 
Assignments to string data 
ATTRIBUTES listing 
Attributes, advanced 
Avoiding duplicate labels 
Base address equivalencing 
Base address of arrays 
BASE listing 
Base of arrays 
BEGIN statement 
BEGIN-END statement pair 
Begin/end counter listing 
Binary fixed constants 
Binary INT(32) constants 
Binary integer constants 
Bit addressing 
Bit deposit 
Bit extraction 
Bit fields (structures) 
Bit functions 
Bit shift operations 
Bits 
Bits in parameter mask 
BNF syntax for T/TAL 

2.15-4 
2.15-3 
2.1-4 
2.15-13 
2.15-6 
2.15-5 
2.15-5 
2.1-4 
2.8-25 
2.16-6 
2.16-3 
2.8-12 
2.8-7 
2.8-14 
2.8-7 
2.15-23 
2.1-2 
2.8-7 
2.5-3 
2.8-16 
2.8-9 
2.17-25 
2.23-18 
C-1 
2.17-25 
2.19-7 
2.19-7 
2.15-21 
2.17-14 
2.17-3 
2.17-4 
2.17-4 
2.21-7 
2.22-5 
2.22-13 
2.22-2 
2.8-14 
2.21-7 
2.8-7 
2.17-6 
2.1-7 
2.21-4 
2.7-3 
2.7-2 
2. 7-1 
2.2-2 
2.14-2 
2.14-2 
2.23-8 
2.14-1 
2.5-2 
2.2-2 
2.22-6 
B-1 

A03 

2.15-13 

2.15-9 
2.15-3 

2.8-8 

2.8-12 

2.17-6* 

2.14-5* 

T/TAL INDEX 

index-3 



•r/TAL INDEX 

Bounds in structures 
BOX instruction 
Branch instructions 
BY in FOR statement 
Byte arithmetic 
Byte variables 
Bytes 
C relative addresses 
CALL statement 
CALL with parameters 
CALLABLE attribute 
Calling procs or subprocs 
Carry indicator 
CARRY indicator set by SCAN 
Carry test function 
CASE arithmetic expression 
CASE statement 
CCE 
CCG 
CCL 
Character Test Functions 
Checking $CARRY in scan 
Checking condition codes 
Checkpointing Procedures 
Circumflex character (~) 

Class of identifiers 
Classes of instructions 
Code address listing 
Code area 
Code area constants 
CODE compiler command 
CODE effect in listing 
Code size listing 
CODE statement 
COMINT (description) 
Command Interpreter 
Comments 
Comparing array items 
Comparing DEFINE text 
Comparing read-only arrays 
Compiler command summary 
Compiler completion message 
Compiler control commands 
Compiler disc space needs 
Compiler error messages 
Compiler warning messages 
Compiler input file 
Compiler listing 
Compiler listing 
Compiler listing control 
Compiler listing device 
Compiler listing heading 
Compiler object output file 
Compiler operation 

index-4 

2.23-5 
2.22-15 
2.22-25 
2.17-14 
2.15-5 
2.3-2 
2.2-3 
2.22-13 
2.1-9 
2.17-25 
2.22-5 
2.17-25 
2.15-1 
2.17-25 
2.18-12 
2.15-14 
2.17-12 
2.15-23 
2.15-23 
2.15-23 
2.18-8 
2.17-25 
2.15-25 
1-5 
2.1-1 
2.1-1 
2.22-16 
2. 21-2 
2.4-2 
2.4-2 
2.19-3 
2.21-5 
2.21-8 
2.22-15 
1-7 
1-7 
2.1-18 
2.15-23 
2.10-2 
2.15-23 
2.19-1 
2. 21-8 
2.19-1 
2.20-2 
D-2 
D-12 
2.20-1 
2. 21·-l 
2.23-25 
2.19-3 
2.20-1 
2.19-2 
2.20-1 
2.20-1 

A03 

2.22-30* 

2.17-29* 

2.22-10* 

2.15-18 

2.22-25* 

2.22-16* 2.22-25 



Compiler table overflow 
Compiler toggle switches 
Completion message 
Compound statements 
CON pseudo 
Concatenation via Move 
Condition code checking 
Condition Code Indicator(CC) 
Condition evaluation 
Conditional Expressions 
Conditional operators 
Constant expressions 
Constants 
Constants in code area 
Constants, Integer 
Constants, repetition factor 
d-array (comparison) 
Data access concepts 
Data access via pointers 
Data area 
Data area divisions 
Data Declarations 
Data Formats 
Data Initialization 
Data variable 
Data, addressing system 
DATAPAGES compiler command 
DEBUG (description) 
DEBUG procedures 
Debugging assertion commands 
Debugging Facility 
Decimal integer constants 
Decimal point 
Decimal point, implied 
Declarations 
Declaring array variables 
Declaring duplicate labels 
Declaring equivalence 
Declaring labels 
Declaring literals 
Declaring pointer variables 
Declaring read-only arrays 
Declaring simple variables 
DECS command (?DECS) 
Default object file 
DEFINE declaration 
DEFINE, parametic form 
Deletion via Move 
Direct addressing 
Direct arrays 
Direct/indirect addressing 
Disc requirements,compiler 
Division by zero 
Division on FIXED operands 

2.20-2 
2.19-6 
2.21-8 
2.1-7 
2.22-25 
2.17-24 
2.15-25 
2.15-1 
2.15-17 
2.1-5 
2.15-19 
2.7-1 
2. 7-1 
2.4-2 
2.7-1 
2.7-5 
2.15-23 
1.16-1 
2.16-4 
2.4-2 
2.4-2 
2.1-2 
2.2-1 
1-3 
2.1-2 
2.22-3 
2.19-5 
1-9 
2.19-7 
2.19-7 
1-9 
2.7-1 
2. 8-1 
2.8-1 
2.1-1 
2.8-7 
2.22-13 
2.8-28 
2.17-7 
2.9-1 
2.8-21 
2.8-20 
2.8-3 
2.22-32 
2.20-1 
2.10-1 
2.10-4 
2.17-24 
2.4-3 
2.8-9 
2.5-1 
2.20-2 
2.15-5 
2.15-10 

A03 

2.17-6* 

2.15-16 

2.7-3 
2.22-25* 

2.8-1* 

T/TAL INDEX 

2.15-21 2.17-9* 

index-5 



T/TAL INDEX 

DO in FOR statement 
DO in WHILE statement 
DO statement 
DO/UNTIL statement 
Double word integer 
Doubleword 
Do ublewo rd integer cons tan ts 
DOWNTO in FOR statement 
DROP statement 
Duplicate labels 
Dynamic memory allocation 
EDIT (description) 
Element addressing (arrays) 
ELSE part IF statement 
END statement 
ENTRY declaration 
Entry point 
Equivalenced data access 
Equivalenced variables 
Equivalenced,indexed data 
Equivalencing addresses 
Equivalencing base addresses 
Equivalencing floating-point 
Error messages 
Evaluating conditions 
Evaluation of conditions 
Evaluation of expressions 
Example program 
Executing subprocedures 
Executing TAL 
Executing XREF 
Execution of FOR statement 
Exit subproc via GOTO 
Exiting from a procedure 
Expression evaluation 
Expression types 
Expressions 
Expressions 
Expressions with functions 
Expressions, constant 
Extended floating-point data 
EXTERNAL declaration 
Fi le Management 
FILLER 
Fixed constants 
Fixed constants, range of 
FIXED data rounding 
FIXED operand scaling 
Fixed point 
FIXED point rounding control 
FIXED scaling in assignments 
FIXED variables 
FIXED(*) parameters 
Floating-point constants 

index-6 

2.17-14 
2.17-17 
2.1-8 
2.17-19 
2.3-2 
2.2-4 
2.7-2 
2.17-14 
2.22-15 
2.22-13 
2.4-5 
1-7 
2.5-3 
2.17-9 
2.17-6 
2.13-1 
2.21-7 
2.16-4 
2.8-28 
2.16-8 
2.8-2 
2.22-2 
2.24-4 
D-2 
2.15-20 
2.15-17 
2.15-8 
2.1-18 
2.12-1 
2.20-1 
2.20-3 
2.17-14 
2.17-8 
2.11-7 
2.15-8 
2.15-1 
2.1-4 
2.15-1 
2.15-10 
2.7-1 
2.24-2 
2.11-9 
1-4 
2.23-9 
2.7-3 
2.7-3 
2.17-4 
2.15-9 
2.3-2 
2.19-7 
2.17-4 
2.3-2 
2.11-12 
2.24-3 

A03 

2.22-26* 

2.11-8 

2.15-1 

2.8-1 
2.12-6 



Floating-point functions 
Floating-point variables 
FOR in Move statement 
FOR option, array comparison 
FOR statement 
FOR statement execution 
FOR/DO statement 
Formal parameter names 
Formal parameter specs 
Formal parameters 
Format Conventions (T/TAL) 
FORWARD declaration 
Four-word fixed point 
Fraction (fixed variables) 
FULL pseudo 
Function procedure 
Function subprocedure 
Functions 
Functions, floating-point 
Functions in expressions 
Functions, standard 
G base address 
G relative addressing 
General Purpose Procedures 
Global address assignment 
Global address range 
GLOBAL data area 
Global Declarations 
Global read-only arrays 
GOTO exit from subproc 
GOTO statement 
GUARDIAN (description) 
Hardware instruction set 
Heading of subprocedure 
Heading, procedure 
Heading, structure 
Heading,compiler listing 
!CODE compiler command 
Identifier classes 
Identifiers 
Identifiers, scope of 
IF statement 
IF THEN arithmetic express'n 
IF toggle compiler command 
IF-THEN statement pair 
IF/THEN/ELSE statement 
IFNOT compiler command 
Implied decimal point 
IN (TA L so u r c e f il e) 
Index register assignment 
Index registers 
Index usage 
Indexed array variables 
Indexed po inters 

2.24-5 
2.24-1 
2.17-20 
2.15-23 
2.22-15 
2.17-14 
2.17-14 
2.11-11 
2.11-11 
2.1-16 
1-10 
2.11-9 
2. 3-2 
2.3-2 
2.22-25 
2.11-6 
2.12-4 
2.1-16 
2.24-5 
2.15-11 
2.18-1 
2.22-2 
2.4--3 
1-5 
2.8-34 
2.8-28 
2.4-2 
2.1-12 
2.4-2 
2.17-8 
2.17-7 
1-4 
2.22-17 
2.12-3 
2.11-4 
2.23-4 
2.19-2 
2.19-3 
2 .1-1 
2.1-1 
2.6-1 
2.17-9 
2.15-13 
2.19-6 
2.1-7 
2.17-9 
2.19-6 
2.8-1 
2.20-1 
2.22-26 
2.5-3 
2.16-5 
2.16-6 
2.16-7 

A03 

2.22-30* 

2.12-7 

2.5-1 

2.6-1 

T/TAL INDEX 

2.13-2 

index-7 



'!1/TAL INDEX 

Indexed simple variables 
Indexed, equivalenced data 
Indexing hardware 
Indexing structures 
Indexing subscripts 
Indirect address 
Indirect address pointer 
Indirect addressing 
Indirect arrays 
Indirection (structures) 
Ind i rec ti on s ym bo 1 ( . ) 
Indirection, removing (@) 
Initialization (structures) 
Initialized simple variables 
Initialized variables 
Initializing arrays 
Initializing floating-point 
Initializing local data 
Initializing pointers 
INNERLIST compiler command 
Instruction classes 
Instruction set mnemonics 
INT 
INT data type 
INT(32) 
INT(32) constants,range of 
INT(32) integer constants 
Integer constants 
Integer constants, range of 
Integers 
INTERRUPT attribute 
IXIT instruction 
L base address 
L relative addressing 
Label declaration 
Label embedded in statement 
Label, statement 
Labels, d~claring 
Labels, duplicate 
LAND logical AND 
Language summary 
Last procedure address 
Legal signed arithmetic 
Legal unsigned arithmetic 
Lexical level listing 
LIMIT listing 
LIST compiler command 
List of code addresses 
List of secondary storage 
Listing (structures) 
Listing description 
Listing page header 
Listing sequence numbers 
Listing, compiler 

index-8 

2.16-8 
2.16-8 
2.5-3 
2.23·-16 
2.5-3 
2.1-3 
2.5-1 
2.4-3 
2.8-12 
2.23-4 
2.16-13 
2.16-8 
2.23-8 
2.8-4 
2.8-2 
2.8-16 
2.24-3 
2.4-2 
2.8-21 
2.19-3 
2.22-16 
2.22-17 
2.3-1 
2 .1-2 
2.3-2 
2.7-2 
2.7-2 
2.7-1 
2.7-1 
2.3-1 
2.22-5 
2. 22·-4 
2.22-2 
2.4-3 
2.22-13 
2.17-7 
2.17-7 
2.17-7 
2.22-13 
2.15-3 
A-1 
2.21-7 
2 .15·-5 
2.15-6 
2.21-3 
2.21-7 
2.19-3 
2. 21-2 
2. 21-2 
2.23-25 
2. 21-1 
2.21-1 
2.21-1 
2.21-1 

A03 

2.16-1 

2.8-22 

2.22-10 



Lists of constants 
LITERAL data type 
Literal declaration 
LMAP compiler command 
LMAP effect in listing 
LMAP 1 isting 
LMAP* compiler command 
Local address assignment 
Local address range 
LOCAL data area 
LOCAL declarations 
Local storage limits 
Logical operations 
Logical shift left << 
Logical shift right >> 
LOR logical OR 
Loss of FIXED precision 
Lower array bound 
MAIN attribute 
MAIN declaration 
MAIN procedure 
Map (structures) 
MAP compiler command 
MAP effect in listing 
MAP levels 
Mask for parameter passing 
Memory address limitations 
Memory resident procedures 
Memory stack overflow 
Memory usage 
Memory, addressing upper 
Min/Max standard functions 
Mnemonics for instructions 
Move data left-to-right 
Move data right-to-left 
Move operator ( ' : =' , '=: • ) 
Move statement 
Multi-dimensional arrays 
Multiplication - FIXED data 
NAME listing 
Naming procedures 
Naming structures 
Next address in Move 
NOABSLIST compiler command 
NOCODE compiler command 
NOICODE compiler command 
NOINNERLIST compiler command 
NOLIST compiler command 
NOLMAP compiler command 
NOMAP compiler command 
NOROUND compiler option 
NOT condition 
NOT relational operator 
NOWARN compiler control 

2.7-4 
2.1-3 
2.9-1 
2.19-3 
2. 21-6 
2.21-3 
2.19-3 
2.8-36 
2.8-28 
2.4-2 
2.1-13 
2.11-9 
2.15-7 
2.5-2 
2.5-2 
2.15-3 
2.17-4 
2.8-7 
2.22-5 
2.1-12 
2.11-1 
2.23-25 
2.19-3 
2.21-5 
2. 21-5 
2.22-6 
2.4-6 
2.4-2 
2.4-6 
2.4-1 
2.22-3 
2.18-10 
2.22-17 
2.17-20 
2.17-20 
2.17-20 
2.17-20 
2.23-18 
2.15-10 
2.21-7 
2.11-6 
2.23-4 
2.17-23 
2.19-3 
2.19-3 
2.19-3 
2.19-3 
2.19-3 
2.19-3 
2.19-3 
2.17-4 
2.15-16 
2.1-5 
2.19-4 

A03 

T/TAL INDEX 

2.11-7 

2.19-7 

index-9 



T/TAL INDEX 

NULL scan terminator 
Numeric representation 
Object File Editor 
Octal code listing 
Octal fixed constants 
Octal INT(32) constants 
Octal integer constants 
Omitted ELSE 
Omitted OTHERWISE in CASE 
Omitted statement in CASE 
Omitted THEN 
Operators, Precedence of 
Optional parameters in CALL 
Optional PROC parameters 
OR condition 
OTHERWISE in CASE 
OTHERWISE in CASE statement 
OTHERWISE omitted in CASE 
OUT (TAL output files) 
Overflow conditions 
Overflow in scaling function 
Overflow indicator 
Overflow test function 
PAGE compiler command 
PARAM function 
Parameter area 
Parameter mask 
Parameter mask format 
Parameter passing 
Parameter passing rules 
Parameters (structures) 
Parameters for procedures 
Parameters for procedures 
Parameters in CALL statement 
Parametric DEFINE 
Parentheses in conditions 
Parentheses in expressions 
Parts of expressions 
Passing optional parameters 
Passing parameters 
Passing parameters in CALL 
Passing reference parameters 
Passing STRING parameters 
Passing value parameters 
PCAL instruction 
PEP 
PEP listing 
PEP number 
Point functions 
Point scaling in assignments 
Pointer 
Pointer arithmetic 
Pointer Data Class 
Pointer initialization 

index-10 

2.17-25 
2.3-1 
1-8 
2.21-6 
2.7-3 
2. 7-2 
2.7-1 
2.17-11 
2.17-13 
2.17-13 
2.17-11 
2.15-8 
2.17-25 
2.22-6 
2.15-16 
2.15-14 
2.17-12 
2.17-13 
2.20-1 
2.15-5 
2.18-13 
2.15-2 
2.18-12 
2.19-2 
2.22-9 
2.11-13 
2.22-6 
2.22-6 
2.11-5 
2.11-12 
2.23-20 
2.1-15 
2.16-14 
2.17-25 
2.10-4 
2.15-18 
2.15-4 
2.15-4 
2.22-6 
2.11-5 
2.17-25 
2.16-16 
2.11-15 
2.16-14 
2.22-25 
2.4-2 
2.21-7 
2.22-13 
2.18-13 
2. 1 7 -4 
2.5-1 
2 .15·-6 
2.1-2 
2.8-21 

A03 

2.22-12 

2.16-14 

2.15-8 

2.8-22 



Pointer memory allocation 
Pointer used for data access 
Pointer variable declaration 
Pointer, structure 
Pointers with index 
Precedence in conditions 
Precedence of operators 
Precision in FIXED data 
Precision of FIXED operands 
Primary addressing area 
Primary/secondary addresses 
PRIV attribute 
PROC declaration 
PROC/SUBPROC parameters 
Procedure attributes 
Procedure body format 
Procedure calls 
Procedure characteristics 
Procedure declarations 
Procedure end address 
Procedure entry point 
Procedure entry point list 
Procedure entry point table 
Procedure heading 
Procedure map in listing 
Procedure name 
Procedure name in listing 
Procedure named as parameter 
Procedure parameters 
Procedure type 
Procedure value parameters 
Procedure, general format 
Procedures (description) 
Procedures, resident 
Process Control 
Program Characteristics 
Program Development Tools 
Program organization 
Programs in memory 
Pseudo operator codes 
Quadrupleword 
Qualification (structures) 
Range of addresses 
Range of doubleword integers 
Range of fixed constants 
Range of INT(32) constants 
Range of integer constants 
Range of integers 
Range of subscripts 
Read-only array declaration 
REAL 
REAL constants 
REAL(64) 
REAL(64) constants 

2.8-22 
2.16-4 
2.8-21 
2.23-12 
2.16-7 
2.15-20 
2.15-8 
2.17-4 
2.15-9 
2.4-3 
2.8-34 
2.22-5 
2.11-2 
2.16-14 
2.11-4 
2.11-8 
2.17-25 
2.11-1 
2.1-12 
2.21-7 
2.22-13 
2.21-7 
2. 4-2 
2.11-4 
2.21-6 
2.11-6 
2.21-7 
2.11-18 
2.1-15 
2.11-6 
2.11-5 
2.11-2 
1-2 
2.11-4 
1-4 
1-1 
1-7 
2.1-10 
2.4-1 
2.22-25 
2.2-5 
2.23-11 
2.22-3 
2.3-2 
2.7-3 
2.7-2 
2. 7-1 
2.3-1 
2.5-3 
2.8-20 
2.24-1 
2.24-3 
2.24-2 
2.24-3 

A03 

2.22-10* 

2.11-6 

2.11-1 

T/TAL INDEX 

2.21-7 2.22-5 

index-11 



T/TAL INDEX 

Recursive Procedures 
Recursive Procedures 
Redefinition (structures) 
Reference ~arameter rules 
Reference parameters 
Reference parameters 
Referral structures 
Relational Operators 
Removing indirection (@) 
Repetition factor, constants 
Representation of numbers 
Reserved symbols 
RESETTOG compiler command 
RESIDENT attribute 
Resident code mapping 
Resident procedures 
RETURN statement 
ROUND compiler control 
ROUND compiler option 
Rounding FIXED data 
Rounding fixed variables 
RP 
RP command (?RP) 
RP function 
RSCAN control character 
RSCAN statement 
RSCAN terminator character 
Rules for parameter passing 
Run time memory allocation 
Running Object Programs 
Running TAL 
Running XREF 
s base address 
S register counter 
S relative addressing 
s-array (comparison) 
Sample program 
SCAL instruction 
Scaling FIXED parameters 
Scaling fixed variables 
Scaling functions 
Scaling passed parameters 
Scaling with rounding 
SCAN control character 
SCAN Statement 
Scan terminator character 
Scanning arrays 
Scope of identifiers 
Scope of local declarations 
Secondary addressing area 
Secondary global storage 
SECTION compiler control 
Section name 
Sequence numbers in listing 

index-12 

1-1 
1-3 
2.23-10 
2.11-15 
2.11-5 
2.16-16 
2.23-5 
2.1-5 
2.16-11 
2.7-5 
2.3-1 
2.6-3 
2.19-6 
2.22-5 
2.11-6 
2.4-2 
2.11-6 
2.19-7 
2.17-4 
2.17-4 
2.3-4 
2.22-28 
2.22-32 
2.22-31 
2.17-25 
2.17-25 
2.17-25 
2.11-12 
2.4-6 
1-9 
2.20-1 
2.20-3 
2.22-2 
2.22-32 
2.4-3 
2.15-23 
2.1-18 
2.22-25 
2.12-5 
2.3-3 
2.18-13 
2.11-12 
2.17-4 
2.17-25 
2.1-8 
2.17·-25 
2.17·-25 
2.6-1 
2.11-9 
2.4-2 
2.21-2 
2.19-4 
2.19-4 
2. 21-1 

A03 

2.15-1 

2 .11-4 
2.12-7 

2.15-9 

2.17-25* 

2.15-16 

2.17-31 



SETTOG compiler command 
SG base address 
Simple Data Class 
Simple variables 
Simple variables, indexed 
Single word integer 
SOURCE command 
SOURCE compiler command 
Source Program Elements 
Source program line numbers 
Stack marker 
STACK statement 
Standard Functions 
Standard functions, summary 
Starting position 
Statement labels 
Statement omitted in CASE 
Statement summary 
Statement terminator (;) 
Statements 
Statements, compound 
STOP procedure 
STORE statement 
String arithmetic 
STRING bit extraction 
STRING constants 
STRING data type 
STRING parameter passing 
String to word addressing 
Strings in assignments 
Structs as parameters 
St rue tu re body 
Structure heading 
Structure name 
Structure pointers 
Structure redefinition 
Structure referral 
Structure template 
Structure variables 
Sublocal address assignment 
Sublocal address range 
SUBLOCAL data area 
Sublocal memory limits 
Subproc body 
SUBPROC declaration 
Subproc FIXED parameters 
Subproc formal parameters 
Subproc memory limits 
Subproc parameter specs 
SUBPROC VARIABLE attribute 
Subprocedure calls 
Subprocedure characteristics 
Subprocedure declaration 
Subprocedure format 

2.19-6 
2.22-2 
2.1-2 
2.8-3 
2.16-8 
2.3-1 
2.11-9 
2.19-5 
2 .1-1 
2.21-1 
2.22-3 
2.22-15 
2.18-1 
2.18-2 
2.23-25 
2.17-7 
2.17-13 
2.17-1 
2.17-2 
2.1-6 
2.17-6 
2.11-7 
2.22-15 
2.15-5 
2 .14-2 
2.7-2 
2 .1-3 
2.11-15 
2.8-26 
2.17-4 
2.23-20 
2.23-7 
2.23-4 
2.23-4 
2.23-12 
2.23-10 
2.23-5 
2.23-6 
2.23-8 
2.8-38 
2.8-28 
2.4-3 
2.12-7 
2.12-7 
2.12-2 
2.12-5 
2.12-5 
2.12-7 
2.12-5 
2.22-11 
2.17-25 
2.12-1 
2 .1-13 
2.12-2 

A03 

2.22-28* 

2.1-14 

2.22-29* 
2.15-9 

2.12-1 

T/TAL INDEX 

2.17-1 

index-13 



'1~/TAL INDEX 

Subprocedure heading 
Subproced ure s (de script ion) 
Subscripts 
Subscripts, range of 
Substructures 
SWITCHES function 
Symbols, reserved 
System data, addressing 
System interrupt handlers 
'1~/TAL BNF syntax 
T/TAL Compiler (description) 
'r/TAL language summary 
T/TAL Manual Conventions 
T/TAL statement summary 
'11/TAL Statements 
TAL compiler operation 
'l~AL ·source file 
TANDEM 16 instruction set 
Templates (structures) 
Test carry function 
Test overflow function 
THEN part IF statement 
THEN part omitted 
TO in FOR statement 
Toggle compiler commands 
'l~rap Condit ions 
True/false states 
type codes ($TYPE function) 
Type transfer function 
Typed procedures 
Unit length 
Uni t 1 e ng th ( st r u ct u res) 
Unsigned Arithmetic 
UNTIL in DO statement 
UNTIL in RSCAN statement 
UNTIL in SCAN statement 
UPDATE (description) 
Upper array bound 
Upper memory addressing 
USE statement 
Using an index 
Using conditions 
Using index registers 
Utility Procedures 
Value parameter use rules 
Value parameters 
Value parameters 
VARIABLE attribute 
Variables, accessing 
Variables, simple 
WARN compiler control 
Warning messages 
WHILE in RSCAN statement 
WHILE in SCAN statement 

index-14 

2.12-3 
1-3 
2.5-3 
2.5-3 
2.23-9 
2.22-31 
2.6-3 
2.22-3 
2.22-5 
B-1 
1-7 
A-1 
1-10 
2.1-10 
2.1-6 
2.20-1 
2.20-1 
2.22-17 
2.23-6 
2.18-12 
2.18-12 
2.17-9 
2.17-11 
2.17-14 
2.19-5 
1-10 
2.15-17 
2.23-25 
2.16-2 
2.11-6 
2.23-26 
2.23-25 
2.3-1 
2.17-19 
2.17-25 
2.17-25 
1-8 
2.8-7 
2.22-3 
2.22-15 
2.16-5 
2.15-21 
2.22-16 
1-5 
2.11-14 
2 .11-5 
2.16-14 
2.22-5 
2.16-2 
2.8-3 
2.19-4 
D-12 
2.17-25 
2.17-25 

A03 

2.17-1 

2.15-21 

2.17-3 

2.15-6 

2.22-26* 

2.22-'5* 

2.17-9 

2.18-2* 2.24.5* 

2.22-11 



WHILE/DO statement 
Word to string addressing 
Words 
XOR exclusive OR 
XREF (description) 
XREF IN source file 
XREF OUT list file 
XREF program 

2.17-17 
2.8-27 
2.2-2 
2.15-3 
1-7 
2.20-3 
2.20-3 
2.20-3 

A03 

T/TAL INDEX 

index-15 





FOLD ...._ 

FOLD ..... I 

READER'S COMMENTS 

Tandem welcomes your feedback on the quality and usefulness of its publications. Please indicate 
a specific section and page number when commenting on any manual. Does this manual have the 
desired completeness and flow of organization? Are the examples clear and useful? Is it easily 
understood? Does it have obvious errors? Are helpful additions needed? 

Title of manual(s): ____________________________ _ 

FROM: 

Name 

Company -----------------------------~--

Address --------------------------------

City/State ------------------- Zip 

A written response is requested, yes no ? 



111111 

F1Rsrc~~SIN•;.~~o~~p:~ •• ~,~l~u] 
POSTAGE WILL BE PAID BY ADDRESSEE 

COMPUTERS, INC. 

Attn: Technical Publications 
19333 Vallco Parkway 
Cupertino, CA, U.S.A. 95014 

STAPLE HERE 

NO POSTAGE 
NECESSARY 

IF MAILED 
INTHE 

UNITED STATES 

-~FOLD 

I 

i 
-""CFOLD 

' 


