
Nonstop™ Systems
Nonstop 1+™ System

ENSCRIBE™
Programming Manual

Data Management Library

82583

--·--------,--------------------------·------NOTICE

Effective with the BOO/E08 software release, Tandem introduced a more formal nomenclature for its software
and systems.

The term "Nonstop 1+™ system" refers to the combination of Nonstop 1+ processors with all software that
runs on them.

The term "Nonstop™ systems" refers to the combination of Nonstop II™ processors, Nonstop TXP™ processors,
or a mixture of the two, with all software that runs on them.

Some software manuals pertain to the Nonstop 1+ system only, others pertain to the Nonstop systems only,
and still others pertain both to the Nonstop 1+ system and to the Nonstop systems.

The cover and title page of each manual clearly indicate the system (or systems) to which the contents of the
manual pertain.

Nonstop™ Systems
Nonstop 1+™ System

ENSCRIBE™
Programming Manual

Abstract
This manual describes each of the four types of disc files supported by
ENSCRIBE and how to access, create, and fill those files.

Product Version
ENSCRI BE BOO (Nonstop Systems)
ENSCRI BE E08 (Non Stop 1+ System)

Operating System Version
GUARDIAN BOO (Nonstop Systems)
GUARDIAN E08 (Nonstop 1+ System)

Part No. 82583 AOO

March 1985

Tandem Computers Incorporated
19333 Vallco Parkway
Cupertino, CA 95014-2599

---DOCUMENT HISTORY

Edition

First Edition
Second Edition
Third Edition

Part
Number

82083 AOO
82083 BOO
82583 AOO

Operating System
Version

GUARDIAN AOO/EOO
GUAl~DIAN A05/E06
GUARDIAN BOO/E08

New editions incorporate all updates issued since the previous edition.

Date

April 1981
April ·1983
March 1985

__ , ________ _
Copyright © 1985 by Tandem Computers Incorporated.
Printed in U.S.A.

All rights reserved. No part of this document may be reproduced in any form, including photocopying or translation to
another language, without the prior written consent of Tandem Computers Incorporated.

The following are trademarks or service marks of Tandem Computers Incorporated:

AXCESS
BINDER
CROSS REF
DDL
DYNA BUS
DYNAMITE
EDIT

ENABLE
ENCOMPASS
ENCORE
EN FORM
ENSCRIBE
ENTRY
ENTRY520

ENVOY
EXCHANGE
EXPAND
FOX
GUARDIAN
INSPECT
Non Stop

Nonstop 1+
Nonstop II
NonStopTXP
PATHWAY
PCFORMAT
PERUSE
SNAX

INFOSAT is a trademark in which both Tandem and American Satellite have rights.

HYPERchannel is a trademark of Network Systems Corporation.

IBM is a registered trademark of International Business Machines Corporation.

Tandem
TAL
T-TEXT
TGAL
THL
TIL
TMF

TRANSFER
XRAY
XREF

Af' 82583 AOO 3/85

NEW AND CHANGED INFORMATION

This is the third edition of the ENSCRIBE Programming Manual.

Technical and typographical errors have been corrected and
product changes for the current release have been incorporated,
primarily the effects of the new, optional DP2 disc process.

Also, much redundant material has been removed. The
procedure-call syntax descriptions, which were the bulk of
Section 3 in the previous editions, have been included in the new
System Procedure Calls Reference Manual. Also, much of Section 1
has been removed because it is included in the GUARDIAN Operating
System Programmer'§ Guide.

4J 82583 AOO 3/85 111

TABLE OF CONTENTS

PREFACE

SECTION 1. INTRODUCTION TO ENSCRIBE
Basic Concepts
File Identifiers

External File Identifiers
Internal File Identifiers
Permanent Disc-File Identifiers
Temporary File Identifiers
Network File Identifiers

Disc-File Organization
Characteristics Common to All ENSCRIBE Files ...•..
Structured Files•....••..

Key-Sequenced File Structure
Relative File Structure
Entry-Sequenced File Structure ..•..
Multi-Key Access to Structured Files
Relational Access•.
Automatic Maintenance of All Keys
Data and Index Compression .•....•

Unstructured Files
Multiple-Volume (Partitioned) Files
File Directory
Audited Files
Coordination among Multiple Accessors
Locking
"Wait" I/0 and "No-Wait" I/0
Buffering ..•............

Cache
Sequential Block-Buffering (Structured Files Only)

Operations on Files•.
Creating Files
Describing Record Formats (DDL)
Loading Files•
Refreshing FCB Information
Purging Data
Viewing Data

Generating Applications
Record-Management Functions
File-System Implementation

~ 82583 AOO 3/85

' ...

xiii

1-1
1-2
1-2
1-3
1-4
1-5
1-5
1-6
1-7
1-8
1-8
1-10
1-10
1-11
1-11
1-16
1-16
1-16
1-16
1-17
1-18
1-18
1-18
1-19
1-19
1-20
1-20
1-21
1-22
1-22
1-22
1-23
1-23
1-23
1-24
1-24
1-25
1-25

v

Contents

SECTION 2. FILE STRUCTURES ·························~··
Unstructured Files

EDIT Files "
File Pointers and Relative Byte-Addressing
Buffer Size (DP2 Only)
Other Characteristics

Structured Files
Key-Sequenced Fi 1 es
Relative Files
Entry-Sequenced Files

Positioning within Structured Files
Current Key Specifier and Current Access Path
Current Key Value and Current Position
Positioning Mode and Comparison Length

Approximate
Generic···"················"····················
Exact "

Alternate Keys ~
Alternate-Key Attributes
Alternate Keys in a Key-Sequenced File
Alternate Keys in a Relative File
Alternate Keys in an Entry-Sequenced File

Comparison of Structured-File Characteristics

SECTION 3. USE OF PROCEDURE CALLS
File-System Procedures ·········~····················

File-System Procedures Summary
Characteristics of ENSCRIBE Procedure Calls

Comp let ion .•....................................
File-Number Parameters
Tag Par am et er s . •
Buff er Parameter
Transfer-Count Parameter
Condition Codes
Errors
Checking Access Mode and Security

External Declarations
Sequential I/0 Procedures (SIO)

2-1
2-2
2-2
2-2
2-2
2-2
2-2
2-2
2-5
2-7
2-8
2-8
2-9
2-10
2-10
2-11
2-11
2-11
2-13
2-13
2-13
2-14
2-14

3-1
3-1
3-1
3-5
3-5
3-5
3-6
3-6
3-6
3-6
3-6
3-7
3-8
3-8

Vl Lj 82583 AOO 3/85

Contents

SECTION 4. FILE CREATION
File Utility Program (FUP)
CREATE Procedure
Considerations for Structured and Unstructured Files

File Types
Key-Sequenced Files
Relative Files
Entry-Sequenced Files
Unstructured Files

Partitioned (Multivolume) Files
Adv an t a g e s
File Identifiers
Few Differences among Partitions
Partial-Key Value

Block Sizes and Extents
File Codes

Considerations for Structured Files
Logical Records
Blocks
Considerations for Key-Sequenced Files

Compression and Compaction
Primary Key
Index Blocks

Considerations for Files Having Alternate Keys
Type of Disc Process
Unique Alternate Keys
Key Specifier
Alternate-Key Files
Key Length
Key Offset
Null Value
No Automatic Updating

Creation Examples
Example 1: Key-Sequenced File
Example 2: Key-Sequenced File with Alternate Keys
Example 3: Alternate-Key File
Example 4: Relative, Partitioned File•.......
Example 5: Key-Sequenced, Partitioned File

SECTION 5. FILE ACCESS
Opening and Closing a File
Opening Partitioned or Alternate-Key Files
Access Types (DP2 Files Only)
End-of-File Pointer
Audit-Checkpoint Compression (DP2 Files Only)
Access Rules for Structured Files

Sequential Access
Random Access
Inserting Records
Deleting Records
Alternate Keys
Current Position

...,. 82583 AOO 3/85

4-1
4-2
4-3
4-3
4-3
4-3
4-3
4-4
4-4
4-4
4-4
4-5
4-5
4-5
4-5
4-6
4-6
4-7
4-7
4-8
4-9
4-10
4-11
4-11
4-11
4-12
4-12
4-12
4-13
4-14
4-14
4-15
4-15
4-16
4-18
4-20
4-21
4-22

5-1
5-1
5-3
5-3
5-4
5-5
5-7
5-7
5-7
5-8
5-8
5-8
5-9

vii

Contents

Current Key Value
Current Primary-Key Value . ········~······
Sequential Block-Buffering

Caveats
OPEN Parameters
Alternate-Key Files
Shared File Access
Sharing Buffer Space

Access Rules for Unstructured Files
File Pointers and Relative Byte-Addressing
Sequential Access

Example .. .
Encountering the End of the File

Random Access
Appending to the End of a File
Heeding Sector Boundaries
Resident Buffering (Nonstop l+ System Only)
Adjustable Buffering (DP2 Disc Processes Only)

Locking Files and Records ························~··
Fi le-Locking , ..
Record-Locking
Key-Locking (DPl Only)
Locking Modes,
Interaction between File Locks and Record Locks
Deadlock .. .
Record-Locking with Unstructured Files
TMF Locking Considerations

Repeatable READs
Opening Audited Files--Errors
Reading Deleted Records
Batch Updates ,, ..

Other Considerations for Struct. and Unstruct. Files
Purging Data
WRITE Verification•..•.........•...
Refreshing .. .
Programmatic Extent Allocation
Extent Allocation Errors
Programmatic Extent Deallocation

Disc CONTROL and SETMODE Operations
Errors and Error Recovery

Error Categories•.............
Communication-Path Errors•.............
Data Errors
Dev i c e - Ope r a t i on E r r o r .
Failure of the Primary Application Process
Error Recovery ..•.................................
Error Considerations for DPl Key-Sequenced Files ..
Error Considerations for Files with Alternate Keys
Error Considerations for Partitioned Files

Action of Current Key, Key Specifier, and Key Length
Access Examples
Relational Processing Example ······•••&••···········

5-9
5-9
5-9
5-10
5--11
5--12
5--12
5-13
5--13
5--13
5-16
5-17
5-17
5-19
5·-20
5·-21
5·-22
5-25
5-25
5-26
5-26
5-28
5-28
5-29
5-30
5-31
5-31
5-34
5-34
5-35
5-35
5-35
5-36
5-37
5-37
5-38
5-39
5-40
5-40
5-40
5-40
5-41
5-41
5-42
5-42
5-42
5-43
5-43
5-44
5-44
5-48
5-65

Vlll 1J 82583 AOO 3/85

Contents

SECTION 6. FILE LOADING 6-1
Example 1. Load a Key-Sequenced File 6-2
Example 2. Add an Alternate Key to a File Having an

Alternate Key•..•.........•. 6-2
Example 3. Add an Alternate Key to a File Not Having

Alternate Keys•....................•. 6-3
Example 4. Reload a Single Partition of a Partitioned,

Key-Sequenced File 6-4
Example 5. Load a Single Partition of a Partitioned,

Alternate-Key Fi le 6-4

APPENDIX A. ASCII CHARACTER SET A-1

APPENDIX B. BLOCK FORMATS OF STRUCTURED FILES B-1
DPl Disc Process •..............•.................... B-2
DP2 Disc Process•..................... B-6

APPENDIX C. THE DPl AND DP2 DISC PROCESSES C-1
Comparison of DPl and DP2 C-1
File-System Compatibility between DPl and DP2 C-4

Detection of Version Levels ...•...•.•............. C-4
File Creation•....•......... C-5
Files with More than 16 Extents C-5
Partitioned and Alternate-Key Files •.............. C-6
Other Considerations C-6

INDEX . Index-1

"" 82583 AOO 3/85 ix

1-1.
1-2.
1-3.
1-4.
1-5.

1-6.
1-7.
1-8.
1-9.
1-10.
1-11.

2-1.
2-2.
2-3.
2-4.
2-5.
2-6.

Contents

LIST OF FIGURES

Elements of File Identifiers .•.•..•............•.
Key-Sequenced File Structure .•.•.•••.•••••.....•.
Relative File Structure .•..•••.•....•••••••.....•
Entry-Sequenced File Structure .•...•..•..••....•.
A Record, with Three Fields, in a Key-Sequenced

Fi 1 e•••...•..•..•.......•••.••.••.......
Primary Keys in Structured Files ..•.•.•..•.......
An Alternate-Key Field•..•.•........
Using Key Values to Locate Specific Records
Access Paths
Approximate, Generic, and Exact Subsets ..•.......
Relational Access among Structured Files

Key-Sequenced File Structure•...........•..
Relative File Structure•.•....••••••••....•••
Entry-Sequenced File Structure .•...•..•.••.....••
Key Fields and Key Specifiers •.•.•••..••.••...•.•
Current Position •••••.•.•.........••••........•..
Alternate-Key Implementation .•.•.••..••.•..•..•••

1-3
1-9
1-9
1-10

1-11
1-12
1-12
1-12
1-13
1-14
1-15

2-4
2-7
2-8
2-9
2-10
2-12

4-1. Record Structure of an Alternate-Key File .•...•.• 4-13

5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.

B-1.
B-2.
B-3.
B-4.
B-5.
B-6.
B-7.
B-8.

Example of Encountering EOF•.••.......•.•
~Example of Encountering EOF (short read) .•....•..

Example of File-Pointer Action ...••...•.......•••
Example of Crossing Sector Boundaries .•.•.•.....•
Resident Buffering .•.••....•••.....••••••••••.•••
Record-Locking for TMF ...•...•....•.•.•..•.....•.
Record-Locking by Transaction Identifier .•....•..
Example Showing Extent-Allocation Error .•...•....

Block Format for Structured Files (non-DP2)•.
Block Format for DP2 Structured Files .•.••....•.•
Header for DP2 Key-Sequenced Index Block ••.......
Header for DP2 Key-Sequenced Data Block
Header for DP2 Entry-Sequenced Data Block •.....••
Header for DP2 Relative Data Block .•..••.•..•..••
Header for DP2 Bit-Map Block .•.•..•.•.•.•.•...•.•
Arrangement of DP2 Bit-Map Blocks .•.••.•••.•..••.

5-18
5-19
5-21
5-22
5-23
5-32
5-33
5-39

B-2
B-6
B-8
B-8
B-9
B-9
B-9
B-10

C-1. Differences in DPl and DP2 Disc Processes .••..•.• C-1

~ 82583 AOO 3/85 Xl

Contents

LIST OF TABLES

1-1. Record-Management Functions Summary 1-24

2-1. Comparison of Key-Sequenced, Relative, and
Entry-Sequenced Files•............... 2-14

3-1. File-System Procedures 3-2
3-2. Error-Number Categories · · 3-7
3-3. SIO Procedures 3-9

4-1. FUP Commands Related to File Creation•....... 4-2

5-1. File-Pointer Action 5-15

A-1. ASCII Character Set •••••••••••••••••••••••••• ti ••• A-1

xii -1' 82583 AOO 3/85

PREFACE

This manual documents ENSCRIBE, Tandem's data-base record
manager. It is written for programmers and administrators whose
job is to design, develop, and maintain data-base applications
for any Tandem computer system.

Throughout this document, all references to Nonstop systems
indicate the software that runs on Tandem Nonstop II processors
or Nonstop TXP processors. This manual also applies to older,
Nonstop 1+ processors.

A disc volume on a Nonstop system can operate under either the
DP2 disc process or the DPl disc process, which is an enhanced
version of the disc process used on all Nonstop l+ systems.
References to DPl can apply either to Nonstop systems or to
Nonstop 1+ systems but references to DP2 apply to Nonstop systems
only.

Strictly speaking, the names DPl and DP2 refer only to disc
processes. The phrases "DPl file" and "DP2 file" are used,
however, to indicate files structured under a specific kind of
disc process.

Section 1 of this manual summarizes the product. Every ENSCRIBE
programmer and administrator should read this section at least
once.

Section 2 describes, in detail, each of the four types of files
supported by ENSCRIBE: key-sequenced files, relative files,
entry-sequenced files, and unstructured files.

Section 3 summarizes the file-system and sequential I/0
procedures which are available for manipulation of ENSCRIBE
files.

Section 4 describes how to create ENSCRIBE disc files.

Section 5 describes how to access ENSCRIBE files.

Section 6 describes how to load data into ENSCRIBE files.

...,1 82583 AOO 3/85 xiii

Pref ace

Appendix A shows the ASCII character set.

Appendix B describes the block format of ENSCRIBE-structured
files, under both DPl and DP2 disc processes.

Appendix C is a chart of major differences between the DPl and
DP2 disc processes.

xiv .., 82583 AOO 3/85

SECTION 1

INTRODUCTION TO ENSCRIBE

ENSCRIBE provides high-level access to, and manipulation of,
records in a data base. As an integral part of the GUARDIAN
Operating System, distributed across two or more processors,
ENSCRIBE helps ensure data integrity if a processor module, I/0
channel, or disc drive fails.

Some of ENSCRIBE's important features are:

• Four disc-file structures: key-sequenced, relative, entry
sequenced, and unstructured

• Multiple-volume (partitioned) files

• Multi-key access to records

• Relational access among files

• Optional automatic maintenance of all keys

• Optional compression of data, index, and audit-checkpoint
records

• Support of TMF's transaction auditing

• Record-locking and file-locking

• Cache buffering

• Sequential-access buffering option

• Nonstop disc processes

• Mirrored discs

..,., 82583 AOO 3/85 1-1

Introduction to ENSCRIBE
Basic Concepts

BASIC CONCEPTS

Understanding of these basic concepts is essential for any
ENSCRIBE programmer:

• A file is a collection of related records.

• A record is a collection of one or more data items.

• A key is a value associated with a record (a record number,
for example) or contained in a record (as a field) that can be
used to locate one record or a subset of records in a file.

• Each record in an ENSCRIBE structured file is uniquely
identified by the value of its primary key.

For key-sequenced files, the primary key is a byte field
within the record and determines where a record is added to
a file. The primary-key field for a key-sequenced file is
defined when the file is created.

For relative files, the primary key is a record number.

For entry-sequenced files, the primary key is the relative
byte address of the record.

• An alternate key is a byte field within a record that can be
used to provide a logically independent access path through a
file. The values of an alternate key can be used to identify
a subset of records in an access path. A file's alternate-key
fields are defined when the file is created. Any ENSCRIBE
structured file type can have 0 to 255 alternate-key fields.
Alternate key values may or may not be unique.

FILE IDENTIFIERS

You use a symbolic file identifier whenever you create, purge,
rename, read, or write to a disc f ileQ You assign this file
identifier when you create the file.

File identifiers have two forms: external and internal. The
external form is used when entering file identifiers from outside
the file system (for example, by a user to identify a file to the
GUARDIAN Command Interpreter). The internal form is us1ed within
the system when file names are passed between application
processes and the operating system.

1-2 '1J 82583 AOO 3/85

Introduction to ENSCRIBE
File Identifiers

External File Identifiers

Within a system, the file identifier has three parts:

1) A volume name to identify a particular disc pack in the
system

2) a subvolume name to identify the disc file as a member of
a related set of files on the volume (as defined by the
application)

3) a file name to identify the file within the subvolume.

This structure is illustrated in Figure 1-1.

VOLUME NAME SUBVOLUME NAMES

~ /SVOL1

~
------ SVOL2 ------- ACCT1 ------_ __,_ __

FILEA

DISC FILE NAMES

(1)

(1) FULL FILE NAME= "$VOL 1.SVOL 1.FILEA"
(2) FULL FILE NAME= "$VOL 1.SVOL2.FILEA"
(3) FULL FILE NAME= "$VOL 1.ACCT1.INFILE"

Figure 1-1. Elements of File Identifiers

85033-001

In a multisystem network, the file identifier may also include a
system name. For example, \PARIS.$DATA.JONES.JAN12 identifies
the file named JAN12, in subvolume JONES, on volume $DATA, in
system \PARIS.

For I/0 purposes, the system considers processes, peripheral
devices, etc., to be "files," but their identifiers do not have
subvolume or file-name components. For example, a process within
the same system might be named $PROC1 and one in another system
(in a network) might be named \LONDON.$PROC2.

~ 82583 AOO 3/85 1-3

Introduction to ENSCRIBE
File Identifiers

Internal File Identifiers

The internal form of a file identifier is:

<file name> 12 words, blank-filled.

where

to access a permanent disc file, use

file name[0:3] =
file name[4:7] =
file namelo:ll] =

$<volume-name><blank fill>
<subvolume-name><blank fill>
<disc-f ile-name><blank fill>

to access a temporary disc file, use

$<volume-name><blank fill> file name[0:3] =
file name[4:11] = the <temporary-file-name> (which

is blank-filled) returned by CREATE

to access a non-disc device, use

file name[O:ll] = $<device-name> or
$<logical-device-number>

to use READ or READUPDATE on another process, use

file name[O:ll] = $RECEIVE <blank fill>

to use WRITE or WRITEREAD on another process, use

file name[O:ll] = $<process-identifier><blank fill>

to write to the operator console, use

file name[O:ll] = $0 <blank fill>

For network-distributed access, see "Network File Identifiers"
below.

The conversion from external to internal form is performed
automatically by the GUARDIAN Command Interpreter for the IN and
OUT file parameters of the RUN command. (See the COMINT section
of t~e GUARDIAN Operating Srstem Utilities Reference Mar~ for
details of the RUN command. The FNAMEEXPAND procedure is
provided for general conversion of file names from the external
to the internal form. The FNAMECOLLAPSE procedure is provided
for conversion from internal to external form.

1-4 ~ 82583 AOO 3/85

Introduction to ENSCRIBE
File Identifiers

Permanent Disc-File Identifiers

The internal form of a permanent disc-file identifier is:

word: [0: 3] [4:7] [8:11]
$<volume name> <subvolume name> <file name>

A unique volume name identifies each disc pack in the system.
The name is assigned during system generation or when a new disc
pack is introduced into the system. A <volume name> must be
preceded by a dollar sign ($) and consists of one to seven
alphanumeric characters, the first of which must be alpha~etical.

A subvolume name identifies a subset of files on one disc and is
assigned prograrrunatically when a disc file is created. A
<subvolume name> consists of one to eight alphanumeric
characters; the first character must be alphabetical.

A disc file name identifies a specific disc file and is assigned
prograrrunatically when the disc file is created. A <disc file
name> consists of one to eight alphanumeric characters; the first
character must be alphabetical.

For example,

INT .fileAname[O:ll] := "$STORE1 ACCTl MYFILE

is a valid identifier for a permanent disc file.

Temporary File Identifiers

" . ,

The CREATE procedure assigns a temporary file identifier when it
creates a temporary file. A <temporary file name> consists of a
crosshatch (#) followed by four numerical characters. To specify
a temporary file on volume $STORE1, for example, you might use

INT .fileAname[O:ll] := ["$STORE1 ", 8 * [" "]];
CALL CREATE(fileAname);

Only the <volume name> is supplied. CREATE returns the
<temporary file name> .

..,, 82583 AOO 3/85 1-5

Introduction to ENSCRIBE
File Identifiers

Network File Identifiers

A file identifier can include a <system number> that identifies a
file as belonging to a particular system on a network. (See the
gxPAND Reference Manual for information regarding networks of
irandem systems.)

In this context, a file identifier beginning with a dollar sign
($) is said to be in local form, to distinguish it from a file
identifier beginning with a backslash (\) which characterizes the
network form. Specifically, the network form is:

<network file identifier> 12 words, blank-filled

word[0].<0:7> = \ (ASCII backslash)
word[0].<8:15> =<system number>, in octal
word[1:3] = <volume name>, <device name>, or

<process identifier>
word[4:11] = same as in local file identifier

where

<system number>

is an integer between 0 and 254 that designates a
particular system. System numbers are assigned during
system generation (SYSGEN).

<volume name>

consists of one to six alphanumeric characters, the
first of which must be alphabetic.

Note that the name of a disc volume or other device, when
embedded within a network file identifier, can have no more than
six characters and does not begin with a dollar sign. Similar
restrictions apply to the network form of process identifier; the
<process identifier> in words 1 and 2 can have no more than four
characters (the first one must be alphabetic, as usual) and does
not include the initial dollar sign.

The application program rarely, if ever, concerns itself with
octal system numbers in network file identifiers. Usually, the
application passes the external form of the file identifier
(which contains a system name, rather than a number) to the
procedure FNAMEEXPAND, which converts the system name into the
corresponding number.

1-6 ..., 82583 AOO 3/85

Introduction to ENSCRIBE
File Identifiers

Network file identifiers are converted between internal and
external forms by the procedures FNAMEEXPAND and FNAMECOLLAPSE.

DISC-FILE ORGANIZATION

A disc file must be created before it can be accessed. You can
create a file by calling the CREATE procedure or by using the
File Utility Program (FUP)'s CREATE command. When created, a
file can be designated as either permanent or temporary. A
permanent file remains in the system after access is terminated;
a temporary file is deleted when access is terminated.

You also specify the file's type when you create it. ENSCRIBE
supports four file types: key-sequenced, relative, entry
sequenced, and unstructured files. Taken as a group, key
sequenced, relative, and entry-sequenced files are known as
structured files. The facilities available with structured files
differ significantly from those available with unstructured
files. Each of the four file types is described briefly below,
beginning with the structured files. Section 2, "File
Structures," discusses them in more detail.

Physical storage for a disc file is allocated by the file system
in the form of discontiguous file extents. A file extent itself
is a contiguous block of storage, starting on a sector boundary
and containing a multiple of 2,048 bytes--one page.

With the DPl disc process, a file can have as many as 16 extents.
A DP2 partitioned file is also limited to 16 extents per
partition. The maximum number of extents in a nonpartitioned DP2
file is limited only by the maximum label size and the number of
alternate keys (see Appendix C), which normally allow more than
900 extents to a file. Within this limit, you can use the
MAXEXTENTS attribute to set an arbitrary limit for any DP2 file.

In any case, the first extent is designated the primary extent
and can differ in size from the remaining secondary extents.
This allows a file to be created with a large primary extent, to
contain all the data to be initially placed in the file, and
smaller secondary extents to use minimal increments of disc space
as the file grows.

An application process can allocate one or more extents in an
open file via a call to CONTROL, with <operation> = 21. CONTROL
can also deallocate unused extents.

Some further information about extent sizes is in the "Block
Sizes and Extents" discussion in Section 4.

Af' 82583 AOO 3/85 1-7

Introduction to ENSCRIBE
Common Characteristics

CHARACTERISTICS COMMON TO ALL ENSCRIBE FILES

For all ENSCRIBE files:

• An application process can remove all data from a file,
without deleting the file, by use of the CONTROL procedure's
"purge data" operation.

• File-locking procedures are available to coordinate access to
a sharable file.

• The disc process automatically retries parity and overrun
errors.

• The file system automatically retries communication-path
errors if the file is open with a "synchronization depth''
greater than zero. Return of a path error in this case
indicates that the file is no longer accessible.

• The maximum number of files in a volume is a function of
system configuration.

STRUCTURED FILES

All data transfers between an application process and a
structured disc file are done in terms of logical records.
Placement of (and access to) records in a disc file is determined
by the file structure, which is specified when the file is
created.

For structured files, the maxim11• 11 length of a logical record
(that is, the maximum number of bytes that can be inserted in a
single operation) is specified for each file when the file is
created. The actual number of bytes in a logical record can vary
up to the specified record length; the minimum number of bytes
depends on the file structure.

Each record has a length attribute. The length attribute is a
count of the number of bytes inserted when the record was
written. A record's length is returned when the record is read.

Several utilities, such as DDL, ENFORM, and ENABLE, exist to aid
in use of structured files.

1-8 ._, 82583 AOO 3/85

Introduction to ENSCRIBE
Structured Files

KEY-SEQUENCED FILE:

PRIMARY ACCESS IS BY
A VALUE IN THE PRIMARY·
KEY FIELD.
EXAMPLE:

FIND "KING"---z-

..

PRIMARY
KEY

ADAMS

BROWN

COLLINS

FISH

JACKSON

KING

RECORD

I

I
I

I
I

I

I

I
MASTERS

J_

OBRIEN l
RYAN l

1

~L r._,

Fl---;-:~-~~-N ---'-----4 j
t

RECORDS ARE STORED IN ASCENDING ORDER
OF "PRIMARY KEV" FIELD VALUE.

KEY SEQUENCED
FILE

85033-002

Figure 1-2. Key-Sequenced File Structure

RELATIVE FILE:
RECORD
NUMBER RECORD

~------~1-----~,

PRIMARY ACCESS IS VIA
"RECORD NUMBER".

0th

1st

2nd

EXAMPLE: 3rd

FIND6thL4th

5th

6th

7th

~ .. • • • • • "f f _____ J
RECORDS ARE STORED ACCORDING TO A "RECORD NUMBER"

SUPPLIED BY THE APPLICATION PROGRAM

RELATIVE FILE

85033-003

Figure 1-3. Relative File Structure

~ 82583 AOO 3/85 1-9

Introduction to ENSCRIBE
Structured Files

ENTRY-SEQUENCED FILE:

PRIMARY ACCESS IS 1st

IN THE SEQUENCE 2nd
IN WHICH RECORDS
ARE STORED IN 3rd

THE FILE. 4th
EXAMPLE:

5th
READ (READS FIRST)

RECORD
_l

/

-

READ (READS SECOND)
READ (READS THIRD)

6th

7th
ENTRY-SEQUENCED
Fl LE ----

8th
-·----- -···-··-,.,_,

LATEST T -~
T

RECORDS ARE STORED IN THE ORD ER IN WHICH THEY ARE
CHRONOLOGICAL ORDER) PRESENTED TO THE SYSTEM (LE., IN

Figure 1-4. Entry-Sequenced File Structure

Key-Sequenced File Structure

$5033-004

Figure 1-2 illustrates the structure of a key-sequenced file.
Records are stored in ascending sequence, ordered by the value of
a field within each record called the prima_£y key field. The
primary key field is designated when a key-sequenced f 1le is
created. It can be any set of contiguous bytes within the data
record. Physical and logical record lengths can be variable; a
record occupies only the amount of space specified for it when
inserted into the file.

Relative File Structure

Figure 1-3 illustrates the structure of a relative file. Records
are stored in a position relative to the beginning of the file,
according to a record number supplied by the application program.
A record number is an ordinal value and corresponds directly to a
physical record position in a file. Each physical record
position in a relative file occupies a fixed amount of space
(although logical record lengths may be variable).

1-10 ~ 82583 AOO 3/85

Entry-Sequenced File Structure

Introduction to ENSCRIBE
Structured Files

Figure 1-4 illustrates the structure of an entry-sequenced file.
Records are appended to the end of an entry-sequenced file in the
order in which they are presented to the system. Once added to a
file, a record's contents can be updated but the record's size
cannot be changed and the record cannot be deleted (although an
application program may use a field within the record to indicate
that it has been logically deleted). Physical and logical record
lengths can be variable; a record occupies only the amount of
space specified for it when inserted into the file.

Multi-Key Access to Structured Files

A record consists of one or more fields, as shown in Figure 1-5.

CUSTOMER

I NAME
fields: t

ADDRESS
t

REGION I
----~--·

Figure 1-5. A Record, with Three Fields, in a Key-Sequenced File

Each record in a file is uniquely identified among other records
in that file by the valve of its primary key. For key-sequenced
files, the primary key is a byte field within a record; for
relative files, the primary key is a record number; for
entry-sequenced files, the primary key is a record address.
Records in a file are physically ordered by ascending value of
the primary key, as shown in Figure 1-6.

Also, one or more byte fields within a record can be designated
as alternate keys (see Figure 1-7). Any structured file can have
as many as 255 alternate-key fields. Alternate-key values need
not be unique.

ENSCRIBE lets you use the primary-key value to locate one unique
record among other records in the same file. For example, in
Figure 1-8, the primary key is the name field and the primary-key
value J.A. Jones locates the only record having that name.

By using alternate-key values, ENSCRIBE lets you locate several
associated records of the same type. For example, using Figure
1-8 again, the REGION field is an alternate key and the value
CENTRAL locates two records.

AfJ 82583 AOO 3/85 1-11

Introduction to ENSCRIBE
Structured Files

The primary key field for a key-sequenced file:

NAME ADDRESS

primary key

The primary key for a relative file:

<record number> --> i---NAME
t

primary key

REGION T

The primary key field for an entry-sequenced file:

<record address> -> ~TEM i-
t

primary key

DESCRIPTION --r ------

Figure 1-6. Primary Keys in Structured Files

NAME ADDRESS REGION!
t

an alternate key

Figure 1-7. An Alternate-Key Field

Only one record of this record type (in a key-sequenced
file) can have the primary-key value JONES, J.A.

t
JONES, J.A. I DAYTON, OHIO I CENTRA~
MOORE, Q.A I LOS ANGELES, CA I WESTER~!
SMITH, S.A I CHICAGO, ILL I CENTRA:Y:--1

Two records of this record type have the t ~-
value CENTRAL in their REGION alternate-key fields-

Figure 1-8. Using Key Values to Locate Specific Records

1-12 ..-, 82583 AOO 3/85

..., 82583 AOO 3/85

RECORDS IN ORDER
OF "EMPLOYEE
NUMBER" ACCESS
PATH

SAME FILE.
RECORDS IN ORDER
OF "NAME" ACCESS
PATH

SAME FILE.
RECORDS IN ORDER
OF "DEPT" ACCESS
PATH

Introduction to ENSCRIBE
Structured Files

EMPLOYEE NAME ADDRESS DEPT
NUMBER (NOT AN

ACCESS PATH)

001

002

003

005

007

008

010

011 ::::STEVENS :: :::::::::::::::::::::::::::::::::::::: :::::; C ::::

012 t~~~-1-~~---:~ :/{:/:/:/{:/\:.1?.>
013 ::::;MASTERS : :::::::::::::::::::::::::::::::::::::: ;::::: C ::::

016 :)WATSON

I t I
IAccEssl
I PATH I

/()08} ADAMS

\.'?~.~-:} BROWN)(\{:\:}:\::\A {

:}oo5)~ FISH /:\){)(\:~/:.~}
::::: 003 \ JACKSON :}:):{::(}}:\ }: <;:_ >
·/ 002} KING :}}}}}}{}~:}A}
(:: 013 ::::: MASTERS ~:\:\:}{:}\:} :\ ~ {
\:012:} OBRIEN (){()}}(~/:~:}
:'.;'.;'. 001 './ RYAN :\:\:\:}{:}} } ·c· ::::
:):011 ;:;: STEVENS }:\:}\:\{\ :/¢}
'.) 007 { TUTTLE \{\'.}:}}:\ ::::: B ::::

/'. 016 \ WATSON .:::::::/:\::::\:\:} \ B \

t
ACCESS

PATH

f
ACCESS

PATH 55033-005

Figure 1-9. Access Paths

1-13

Introduction to ENSCRIBE
Structured Files

Each key in a structured file provides a separate access path
through records in that file. Records in an access path are
logically ordered by ascending access-path key values. A simple
employee file with three separate access paths, provided by three
different key fields, is shown in Figure 1-9.

A subset of records in a designated access path can be described
by a 2ositioning mode and a key value. The positioning modes are
approximate, generT'C""; and exact. The approximate mode selects
all records whose access-path key values are equal to oir greater
than the supplied key value. The generic mode selects all
records whose access-path key value matches a supplied partial
value. The exact mode selects only those records whose access
path key value matches the supplied key value exactly. Examples
of subsets returned with these three positioning modes are shown
in Figure 1-10.

APPROXIMATE

FIND "JONES", APPROX.

~~~!.·.~·'=-)(?: 
IRWIN,F.J. :;:;:;:;:::_ 

START_..., JONES, A.B. 

LAST 

JONES, K.A. 

JONES, M.P. 

JONES, Z.Z. 

JORDAN, W.R. 

KANE, C.T. 

KING, M.L. 

LACEY, G.T. 

LANG, K.L. 

LANG, M.N. 

McGRAW, H.E. 

RECORD-+- MEYER, D.J. 

IN FILE T 
READING THE FILE 
SEQUENTIALLY 
RETURNS 12 RECORDS, 
THEN EOF 

GENERIC 

FIND "JONES", GENERIC 

< ~~l'.'l"f !·.~ .. (.}}\ 

) IR~~~ •. F.J. :}}:;: 

EXACT 

FIND "JONES, K.A."', EXACT 

START-..! JONES, A.B. 

JONES, K.A. 

JONES, M.P. 

JONES, Z.Z. 

:~: .·~·~~!~· -~£ \:)~ 
:? f.~·Vi!·~:. )i: :j_:}{} 

} 

START~ ::: JONES, A.B. :;:::\ 

~~=ER~C "I ; ~::::: .:.~ :}::: 
:-. JO!'J ES, Z.Z. ·:······· 

)-
EXACT 
SUBSET 

APPROX I· 
MATE 
SUBSET 

;_-~~ROAN, W.R.}:; 

) .~f'NE, C.T .. }}( 

::: KING, M.L ::::;~) 

< LAC~X! .C? . .':i::.\( 
;~ :~~~G, K.L. }){ 

::: L.A.NG~ ·M.N. :::::::::: 
~;~McGRAW, H.E.} 

·:;MEYER, I?:~:.{{ 

f 
READING THE FILE 
SEQUENTIALLY 
RETURNS 4 RECORDS, 
THEN EOF 

~: JoRoAN:w.R~) 
: "K°A·N·E: ·e::;;: ~}\ 
.. ······· 
;:; KING, rv1.-L .. ~)}}: 
' ~ ~ ·.·.·.·. 

:: .1:-.".\~~y._ ~:! ... ::::::;: 
:;: LANG, K.L. :;}} 

) M~GRAw;·i-i·.e:~: 
/ ri.ii"EYER, D.J._ ~;} 

t 
READING THE FILE 
SEQUENTIALLY 
RETURNS 1 RECORD, 
THEN EOF 

85033-006 

'------~----------------------------~------~·----------------------~-------~ 
Figure 1-10. Approximate, Generic, and Exact Subsets 

1-14 "1 82583 AOO 3/85 



ORDER HEADER FILE 

ORDER NO. NAME DATE TOTAL 

~ ~ 

0021 JONES, J.A. 10-17-76 

:: 0022) :: ADAMS: A.B.)/ < 1·0-1~:?~} <Gwr1 

.•·::,,:~~~~:.N}·.••••:::;m \ 
::0034'.'.(~"RTER,~._M.: /:11:~?~?~}:/):}\{ 

..._ ~v 

~ 
l 

,-i--. ORDER DETAIL FILE 

ORDER/ITEM QUAN· 
NO. PART NO. TITY 

, I V' I v I 

0021 I 0001 0201 0001 

0021 ~ 0002 0310 0002 

' NAME 

ITEM 
TOTAL 

v,..~I~-.., 

:" 0022 j 0001 : ::::: 0115 / ?. ()~()~_<:: ){)\/: 
: 002~ 1 ()~~~. }: 0205 ::::: :> 0002 / >>>><:> 
:.o~-~~10002· :::::·0206 :> / 0025 <<<:>>>< 

~ ~ 

Introduction to ENSCRIBE 
Structured Files 

CUSTOMER FILE 

ADDRESS REGION 

f INVENTORY FILE 

PART NO. 
.l. 

DESCRlPTION ON-HAND PRICE 
-v--'- v--1-----. 

/.tfr15·\:\Xf.~.~~f.~~-:?t>> :<: 20 :: ::;-12.~oJ 
0201 T.V. SET 5 200.00 

/ ·c,205 ::::· ::t P.-tC>l\IOGR.APH >> t ·52 ::: } 55.oo :: 

{ 0206 } }) RADIO//}}'.}) 210 ::: './: 5.50 :: 

0310 FRY PAN 19 37.50 

55033-007 

Figure 1-11. Relational Access among Structured Files 

..-, 82583 AOO 3/85 1-15 



Introduction to ENSCRIBE 
Structured Files 

Relational Access 

Relational access among structured files in a data base is 
accomplished by obtaining a value from a field in a record in one 
file and using that value to locate a record in another file. An 
example of relational access is shown in Figure 1-11. ENFORM 
automates this access. (See the Introduction to ENFORM manual.) 

Automatic Maintenance of All Keys 

When a new record is added to a file or a value in an alternate
key field is changed, ENSCRIBE automatically updates the indices 
to the record (the value of a record's primary key cannot be 
changed). This operation is entirely transparent to the 
application program. 

If more key fields are later added to a file, but existing fields 
in that file are not relocated, existing programs that access the 
file need not be rewritten or recompiled. 

Data and Index Compression 

For key-sequenced files, an optional data-compression technique 
permits storing more data in a given disc area, thereby reducing 
the number of head repositionings. 

Similarly, an optional index-compression technique is provided 
for key indices to data records. 

Data and index compression can be specified for a file when the 
file is created. (See "Compression" in Section 4). 

With the DP2 disc process, audit-checkpoint records can be 
compressed to increase I/0 efficiency and to decrease TMF audit
trail consumption. You can set this feature when you create the 
file or you can alter it later by using the SETMODE procedure or 
the File Utility Program (FUP) command ALTER. (See the "Audit
Checkpoint Compression" discussion in Section 5.) 

UNSTRUCTURED FILES 

An unstructured disc file is essentially a byte array. It is 
normally used as a code file or EDIT file, not as a data file. 
The organization of an unstructured disc file (the lengths and 
locations of records within the file) is the responsibility of 
the application process. 

1-16 ...,, 82583 AOO 3/85 



Introduction to ENSCRIBE 
Unstructured Files 

Data stored in an unstructured file is addressed in terms of a 
relative byte address (RBA). A relative byte address is an 
offset, in bytes, from the first byte in the file; the first byte 
is at RBA zero. 

Associated with each open file are three pointers: a 
current-record pointer, a next-record pointer, and an 
end-of-file pointer. 

When a file is opened, the current-record and next-record 
pointers are set to point to the first byte in the file. A read 
or write operation always begins at the byte pointed to by the 
next-record pointer. The next-record pointer is advanced with 
each read or write operation by the number of bytes transferred; 
this provides automatic sequential access to a file. Following a 
read or write operation, the current-record pointer is set to 
point to the first byte affected by the operation. 

The next-record and current-record pointers can be set to an 
explicit byte address in a file, thereby providing random access. 
The end-of-file pointer contains one plus the relative byte 
address of the last byte in a file. The end-of-file pointer is 
automatically advanced by the number of bytes written when a 
record is appended to the end of a file. 

MULTIPLE-VOLUME (PARTITIONED) FILES 

When a file is created, the file can be designated to reside 
entirely on a single volume or it can be partitioned to reside on 
separate volumes. Moreover, the separate volumes need not reside 
on the same system; a file can be partitioned accross network 
nodes. As many as 16 partitions are permitted, each with as many 
as 16 extents. 

In addition to providing a much larger maximum file size, the use 
of partitioned files provides for simultaneous access to a file's 
records: 

• If the file resides on several volumes connected to the same 
control device, seeking (disc-head repositioning) can be 
occurring on all volumes simultaneously. 

• If each file resides on a volume that is connected to a 
different control device, several data transfers (as well as 
seeks) with the file can occur concurrently. 

• If each volume's control device is connected to a different 
processor module, simultaneous processing of the file's data 
can occur, as well as simultaneous seeking and data transfers. 

..,, 82583 AOO 3/85 1-17 



Introduction to ENSCRIBE 
File Directory 

FILE DIRECTORY 

A disc volume's file directory holds information about all the 
files on that volume. You govern the size of this directory, 
either during system generation or when using the Peripheral 
Utilities Program (PUP) to label the disc, by estimating how many 
files you want it to hold. The system translates this to an 
approximate extent size when it creates the actual directory 
file. The actual number of files that will fit in a directory 
extent varies according to the types of files involved, because 
some file types need larger file labels than other types. 
Therefore, the actual capacity may not be precisely what you 
specified. 

With the DPl disc process, the directory has only one extent. If 
you create enough files to overflow that extent, an error is 
returned. Therefore, when you estimate the size of a DPl 
directory, you should provide space for the greatest possible 
number of files. 

The DP2 disc process, however, can create as many as 987 
directory extents, so the creation of too many files merely 
causes the disc process to allocate another directory extent. 

AUDITED FILES 

In a system with TMF, any data-base file can be designated to be 
an audited file. To help maintain data-base consistency, the 
Transaction Monitoring Facility (TMF) audits all transactions 
involving files designated as audited files. That is, TMF 
maintains images (in an audit trail) of the data-base changes 
wrought by those transactions. If necessary, it can use the 
audit trail later to back out failed transactions or to restore 
audited files that some system failure has rendered inconsistent. 
With the DP2 disc process, audited files and audit trails cannot 
coexist on the same volumes. 

TMF also uses a record-locking mechanism to perform concurrency 
control for audited files. This ensures that none of a given 
transaction's changes are visible to other, concurrent 
transactions until all the given transaction's changes are 
committed. 

COORDINATION AMONG MULTIPLE ACCESSORS 

Several different processes can have access to one file at the 
same time. For coordination of simultaneous access, each process 
must indicate (when opening the file) how it intends to use the 

1-18 ...., 82583 AOO 3/85 



Introduction to ENSCRIBE 
Access Coordination 

file. Both an access mode and an exclusion mode must be 
specified. 

The access mode specifies the operations to be performed by an 
accessor. The access mode is specified as either read/write 
(default access mode), read-only, or write-only. 

The exclusion mode specifies how much access other processes will 
be allowed. It can provide shared, exclusive, or protected 
access, as described in the GUARDIAN Operating System 
Programmer'§ Manual description of the OPEN procedure. 

LOCKING 

The access and exclusion mode operate on a file from the time it 
is opened until the time it is closed. To prevent concurrent 
access to a disc file for shorter periods of time, two locking 
mechanisms are provided: file-locking and record-locking. TMF 
enforces a special set of locking rules for audited files. 

Locking is discussed in more detail in Section 5, "File Access". 

"WAIT" I/0 AND "NO-WAIT" I/0 

ENSCRIBE can let an application process execute concurrently with 
its file operations, via "no-wait" I/O. 

The default is "wait" I/O; when designated file operations are 
performed (via file-system procedure calls), the application 
process is suspended, waiting for the operation to complete. 

"No-wait" I/0 means that, when designated file operations are 
performed, the application process is not suspended. Rather, the 
application process executes concurrently with the file 
operation. The application process waits for an I/0 completion 
in a separate file-system procedure call. 

"Wait" and "no-wait" I/0 are described in the GUARDIAN Operating 
System Programmer'§ Guide. See also the descriptions of the 
OPEN, READ, and AWAITIO procedures in the System Procedure Calls 
Reference Manual. 

~ 82583 AOO 3/85 1-19 



Introduction to ENSCRIBE 
Buffering 

BUFFERING 

Cache buffering and sequential block-buffering can help make I/0 
operations more efficient. 

Cache 

The cache, or buffer pool, is an area of main memory reserved for 
buffering blocks read from disc. With the DP2 disc process, you 
use the PUP commands SETCACHE and LABEL to specify the cache 
size. With DPl, the cache size is specified during system 
generation. 

When a process reads a record, ENSCRIBE first checks the cache 
for the block that contains the record. If that block is already 
in the cache, the record is transferred from the cache to the 
application process. If the cache does not contain the block, 
the block is read from the disc into the cache, then the 
requested record is transferred to the application process. 

If no space is available in the cache when a block must be read 
in, a least-recently-used (LRU) algorithm determines which block 
to overlay. The purpose of this algorithm is to keep the most 
recently used blocks in main memory whenever possible. (For DPl 
key-sequenced files, the algorithm is weighted to favor index 
blocks.) 

When a process writes a record, what happens differs according to 
the type of disc process and the options used in openinq the 
file. Under the DP2 disc process if the buffered cache feature 
is not used, or under DPl for a nonaudited file, the cache block 
that contains the record is modified then immediately written to 
disc. (If the block to be modified is not in the cache, it is 
first read from the disc.) However, the modified block remains in 
the cache until the buffer space is needed for overlay. This is 
called write-through cache. 

Under DP2, you can open a file with buffered cache, so the cache 
contents are written to disc, or flushed, less frequently. If 
several data changes occur to records in the same block in the 
cache, transaction time is faster because less I/0 to the disc is 
required. On the other hand, data-base changes do not get into 
the actual disc file until the cache block is flushed for some 
reason. These situations cause a block to be flushed: 

• Any opener closes the file. 

• The SETMODE procedure forces flushing. 

• The control-point mechanism of TMF forces flushing. 

1-20 ...., 82583 AOO 3/85 



Introduction to ENSCRIBE 
Buffering 

• Space is needed for a new block to be read into cache. The 
disc process selects the least recently used block and flushes 
it to make room for the new one. 

• Some aspect of cache configuration, such as an unstructured 
file's buffer size, is changed dynamically. 

• The REFRESH procedure, or equivalent PUP command, is used on 
the file. 

• When the disc process has been idle for a sufficient period of 
time, it uses the free time to flush modified cache buffers 
until it receives a user request. 

Audited files always use buffered cache. DP2 nonaudited files 
can use either buffered or write-through cache. 

Write-through cache is the default for nonaudited files, because 
a system failure or disc process takeover (with <sync depth> = 0) 
could cause the loss of buffered updates and an unmodified 
application may not detect or handle such a loss properly. Such 
a loss of buffered updates would be indicated by error 2. 
Buffered cache is used for audited files because TMF can recover 
committed, buffered updates lost due to a system failure. 

DP2 avoids fragmentation of cache memory space, even if files of 
all different block sizes are buffered, by grouping all 4096-byte 
blocks in one area, all 2048-byte blocks in another area, etc. 
You set the amount of cache memory devoted to each block size 
during system configuration. You can alter this arrangement 
dynamically by using the PUP command LABEL. 

Sequential Block-Buffering (Structured Files Only) 

If a program reads a file sequentially, its access time to 
individual records can be greatly reduced if it opens the file 
with sequential block-buffering. Basically, this option allows 
the record-deblocking buffer to be in the application process's 
data area (rather than in a disc process). ENSCRIBE then uses 
this buffer to deblock the file's records. The advantage of this 
buffering is that it eliminates the request to the disc process 
to retrieve each record in a block. Instead, a request retrieves 
an entire block of records. 

If sequential block-buffering is to be used, the file usually 
should be opened with protected or exclusive access. Shared 
access can be used, although it can cause some problems. 

Sequential block-buffering is discussed in detail in Section 5, 
"File Access." 

~ 82583 AOO 3/85 1-21 



Introduction to ENSCRIBE 
Sequential-Access Buffering 

OPERATIONS ON FILES 

Common file operations include creating files, describing record 
formats, loading files, refreshing file control block (FCB) 
information, purging data, and viewing data. 

Creating Files 

Disc files are created (defined) by either calling the file 
system's CREATE procedure or using the File Utility Program 
( FUP): 

• Programmatic creation of disc files is accomplished by 
supplying the appropriate parameters to the CREATE procedure. 

• The FUP commands SET, RESET, and SHOW let you specify, 
display, and modify creation parameters (file type, record 
length, key description, etc.) before actually creating a 
file. If you like, you can set the creation parameters to be 
like another, existing file. FUP's CREATE corrunand then 
creates a file with the currently set parameters. The ALTER 
command allows changing some of those parameters after the 
file is created. FUP accepts commands from an online terminal 
or from a command (OBEY) file. 

File creation is described in Section 5, "File Creation." 

Describing Record Formats (DDL) 

The Data Definition Language (DDL) provides a uniform method of 
describing record formats, regardless of the programming language 
used (COBOL, FORTRAN, or TAL) to access the record. DDL also 
provides a system-wide definition of record formats so all 
programs have a consistent definition of a given record format. 
(See the Data Definition Langua~ Reference Manual.) In addition 
to programmTng-language source code, DDL can produce FUP file
creation commands for data-base files which are then accessible 
through ENSCRIBE. File creation is described in Section 5, "File 
Creation." 

1-22 ~ 82583 AOO 3/85 



Loading Files 

Introduction to ENSCRIBE 
Loading Files 

You can use the File Utility Program (FUP) to load data into 
existing ENSCRIBE files. You specify the set of records to be 
loaded and the file's data- and index-block loading factor. (The 
loading factor determines how much free space to leave within a 
block). FUP attempts to optimize access to a file by placing the 
lowest-level index blocks on the same physical cylinder as their 
associated data blocks, thus reducing the amount of head 
repositioning. 

File-loading is described in Section 6, "File Loading". 

Refreshing FCB Information 

The information in an open file's file control block (FCB), such 
as the end-of-file (EOF) pointer, is kept in main memory. To 
maximize performance, the EOF pointer normally is not written to 
the file's disc label each time the EOF is advanced. 

At the expense of some processing throughput, however, you can 
specify when creating a file that the disc label should be 
refreshed automatically each time the FCB information changes. 
This autorefreshing is always on for DP2 key-sequenced files~ any 
REFRESH setting is ignored. 

Alternatively, you can use the REFRESH procedure or an equivalent 
Peripheral Utility Program (PUP) command to update the disc 
label. (See "End-Of-File Pointer" and "Refreshing" in Section 
5. ) 

Purging Data 

Either the File Utility Program (FUP) command PURGEDATA or the 
CONTROL procedure's "purge data" operation can logically--but not 
physically--remove all data from a file by resetting pointers to 
relative byte 0. Also, either the PURGE procedure or the FUP 
command PURGE can delete a file from the disc directory. 

If you have set the CLEARONPURGE flag for a file, using either 
function 1 of the SETMODE procedure or the FUP command SECURE, 
all data will be physically erased (overwritten with zeros) when 
the file is deleted (see "Purging Data" in Section 5). 
CLEARONPURGE has no effect after execution of PURGEDATA, however. 

~ 82583 AOO 3/85 1-23 



Introduction to ENSCRIBE 
Viewing Data 

Viewing Data 

ENFORM is the query language and report writer designed for 
ENSCRIBE data files. See the Introduction to ENFORM manual. 

Table 1-1. Record-Management Functions Summary 

Function Description 

Find Set the current position, access 
path, and positioning mode for a 
file. This can indicate the start 
of a subset of records in antici
pation of reading the set sequen
tially, or it can specify a record 
for subsequent updating. 

Insert Insert a new record into a file 
according to its primary-key value. 

Read Read a subset of records sequen
tially. 

Update Update a record in a random posi
tion in a file. 

Delete Delete the record in a key
sequenced or relative file as 
indicated by a primary-key value. 

Lock Lock the whole file or just the 
current record. 

Unlock Unlock the current record in a 
file or all records in the file. 

Define Define a new file. 

GENERATING APPLICATIONS 

Procedure 

KEYPOSITION, 
POSITION 

WRITE 

READ 

READUPDATE, 
WRITEUPDATE 

WRITEUPDATE 

LOCKREC, 
LOCKFILE, 
READLOCK, 
READUPDATELOCK 

UNLOCKREC, 
UNLOCKFILE, 
WRITEUPDATEUNLOCK 

CREATE 

ENABLE is a software product that automatically generates 
applications for ineractively updating and retrieving records in 
an ENSCRIBE data file. ENABLE-generated applications can be used 

1-24 ·1J 82583 AOO 3/85 



Introduction to ENSCRIBE 
Generating Applications 

for temporary requirements or as modules in custom applications. 
The ENABLE User'~ Guide describes how to use this product. 

RECORD-MANAGEMENT FUNCTIONS 

Manipulation of records in an ENSCRIBE file is performed by 
calling file-system procedures. Record-management functions and 
their associated procedures are summarized in Table 1-1. The 
procedures listed there are described in the System Procedure 
Calls Reference Manual. 

FILE-SYSTEM IMPLEMENTATION 

Internal operation of the file system is described thoroughly in 
the GUARDIAN Operating System Programmer'~ Guide. The ENSCRIBE 
programmer may find it useful to be familiar with that 
information. In particular, the programmer should understand the 
action that the file system takes when a communication-path 
failure occurs and the corresponding action that the application 
program must take to recover . 

..,....1 82583 AOO 3/85 1-25 





SECTION 2 

FILE STRUCTURES 

ENSCRIBE provides these four disc-file structures: 

• Structured files: key-sequenced, relative, and entry
sequenced 

• Unstructured files 

This section lists some characteristics unique to unstructured 
files, then describes the three structured-file types and their 
basic access concepts. Finally, it describes alternate keys, 
which apply to all three types of structured files. 

UNSTRUCTURED FILES 

This subsection lists some characteristics of unstructured disc 
files. 

EDIT Files 

Files created by the EDIT utility are unstructured files. Such 
structure as they have is imposed by EDIT, not ENSCRIBE. These 
files can be read by the EDITREAD procedure, by the sequential 
I/0 (SIO) routines, or by EDIT. EDIT files are identifiable by 
their file-type code, 101. 

File Pointers and Relative Byte-Addressing 

Data access in an unstructured disc file is via a relative byte 
address. Three file pointers are associated with each open 
unstructured disc file: a next-record pointer, a current-record 

~ 82583 AOO 3/85 2-1 



File Structures 
Unstructured Files 

pointer, and an end-of-file pointer. (See "File Pointers and 
Relative Byte-Addressing'' in Section 5). 

Buffer Size (DP2 Only) 

When a user performs I/0 on a DP2 unstructured file, the file is 
transparently blocked using one of the four valid DP2 block sizes 
(512, 1024, 2048, or 4096 bytes). The default size is 4096 
bytes. You can set this transparent block size, called 
BUFFERSIZE, when you create the file or you can alter it later by 
using the SETMODE procedure or the File Utility Program (FUP) 
command ALTER. 

DP2 performance with unstructured files is best when transfers 
begin on BUFFERSIZE boundaries and are integral multiples of 
BUFFERSIZE. 

Other Characteristics 

With unstructured files: 

• It is the application's responsibility to determine optimum 
record sizes and to block records in an efficient manner. 

• Data are physically located on discs in 512-byte sectors. 

• For a DPl data transfer to be possible, 

mod (current-record-pointer,512) ~ 4096 - (transfer-length) 

Thus, an attempt to transfer 3585 to 4095 bytes (inclusive) 
may fail if the current-record pointer is positioned such that 
the transfer spans more than eight sectors or three extents. 

STRUCTURED FILES 

Structured files are key-sequenced, relative, or entry-sequenced. 

Key-Sequenced Files 

A key-sequenced file consists of a set of variable-length 
records. Each record is uniquely identified among other records 
in a key-sequenced file by the value of its primary-key field. 
Records in a key-sequenced file are logically stored in order of 

2-2 ..., 82583 AOO 3/85 



File Structures 
Structured Files 

ascending primary-key values. The primary-key value must be 
unique and cannot be changed when updating a record. 

A record can vary in length from one byte to the maximum record 
size specified when the file was created. With the DP2 disc 
process, the maximum record size for a key-sequenced file is 4062 
bytes (assuming a 4096-byte block size). With DPl, at least two 
records must fit in a key-sequenced block, so the maximum record 
size is 2035 bytes. The number of bytes allocated for a record 
is the same as that written when the record was inserted into the 
file. Each record has a length attribute that is optionally 
returned when a record is read. A record's length can be changed 
after the record has been entered (with the restriction that the 
length cannot exceed the specified maximum record size). Records 
in a key-sequenced file can be deleted. 

A key-sequenced file is physically organized as one or more bit
map blocks (DP2 files only) and a tree structure of index blocks 
and data blocks. The bit-map blocks organize the free space of a 
DP2 structured file (see Appendix B). With DPl, a linked list 
performs this function. 

Each DP2 data block contains a header plus one or more data 
records, depending on the record size and data-block size; a DPl 
data block must have room for a header plus two or more records. 
For each data block there is an entry in an index block 
containing the value of the key field for the first record in the 
data block and the address of that data block. 

The position of a new record inserted into a key-sequenced file 
is determined by the value of its primary-key field. If the 
block where a new record is to be inserted into a file is full, a 
block split occurs. This means that the disc process allocates a 
new data block, moves part of the data from the old block into 
the new block, and gives the index block a pointer to the new 
data block. 

When an index block fills up, it is split as described above: a 
new index block is allocated and some of the pointers are moved 
from the old index block to the new one. The first time this 
occurs in a file, the disc process must generate a new level of 
indices. It does this by allocating a higher-level index block 
containing the low key and pointer to the two lower-level index 
blocks (which in turn point to many data blocks). The disc 
process must do this again each time the "root" (highest-level) 
block is split. 

The DP2 disc process sometimes performs a three-way block split, 
creating two new blocks and distributing the original block's 
data or pointers (plus the new record or pointer) among all 
three. 

/1 82583 AOO 3/85 2-3 



rv 
I 
~ 

~ 
CXl 
I\.) 

U1 
CXl 
w 

:;i:.. 
0 
0 

w 
........ 
OJ 
(J1 

t'%j 
....... 

l.O 
c 
"'1 
CD 

rv 
I 

t-..a. 

~ 
CD 
~ 

I 
Ul 
CD 

..a 
c 
CD 
:::l 
() 
(I) 

0. 
t'%j 
....... 
~ 
(I) 

(/l 
rt 
'"i 
c 
n 
rt 
c 
'"i 
(I) 

FIND"PAP/r' 

.eJ:: ·J MOLLY } FIRST CHIGHESTI LEVFL INDEX BLOCK 

_ _.< ... ,r · , r e:i.Ro..:. 1 DANA ::r JANET :: :f LOUISE:· SECOND LEVEL INDEX BLOCK 

A DATA l'IECORD 
I 

r ' 

'----+----+-------------+---------'[:7.Ar.1v::c:r-cc- 7"8hl-Y:Y:::f· :cA.NDtcE~c~.\r-- EMPTY I 
-······· '.,,,· · .. ~-···· ...... ·.·- . ····· .! ~'r- -

'-----r--" 
KEY 

, I I • r CAROL , 1 CHLOE i 1 ·: CLEO 1 1 < ) ) EMPTY 1 

, , • 1 DANA · i 1 F.LLEN · , . • 1 FLOSSY r ~ \ EMPTY I 

SECOND LEVEL INDEX BLOCK 

' "'MO'.LY' I oc;• r RUTH { >AMMv I)~ ·I MOLCY F · 1 NANCY !< I "NATAL•}! I .... TY-] 

DATA 
I 

/ " 
--------------+------.-J:·aLGA~r-.< TP.l\Mif7EiiiNY.:.·· \~-- EMPTY ·-1 

'--1----' 
KEY 

-------rw·1..:.t:v-:1 CF ZELDA+ , , :<: I \\--EMPTY- J 

I I I 
(I) ,...._ .,. ., 
01 

~ VARIABLE LENGTH 
SAVED FOR 

FUTURE INSERTIONS 
I 

l DATA 

!'llOCKS 

(<) PHYSICAL RECORDS 

g I O:l 

(/l l"'IJ 
rt ....... 
'"i ~ c (I) 
n 
rt Ul 
c rt 
"'1 '"i 
(I) c 
o..n 

rt 
t'%j c 
....... '"i 
~(I) 

(I) Ul 
Ul 



File Structures 
Structured Files 

If your record size is large, you should also use a large block 
size. If the block size is too small to hold more than a few 
records, block splits occur more frequently and disc-space usage 
is less efficient. 

Typically, in a changing data base, most blocks will be 
approximately two-thirds full at any given time. When you load 
data into a key-sequenced file, you can specify how much slack 
(empty space for future growth) to provide (see the LOAD command 
in the FUP section of the GUARDIAN Operating System Utilities 
Reference Manual. 

Note that data records are never chained together in ENSCRIBE 
key-sequenced files. Instead, the tree structure is dynamically 
rebalanced to ensure that any record in the file can be accessed 
with the same number of READ operations, that number being the 
number of levels of indices plus one for the data block. 

An example of an application for a key-sequenced file is an 
inventory file where each record describes a part. The key field 
for that file would be the part number, so the file would be 
ordered by part number. Other fields in the record could contain 
the vendor name, quantity on hand, etc. Note that ENSCRIBE is 
concerned only with key fields. The content of all fields and 
the location within the record of fields other than key fields is 
determined solely by the application. 

Key-sequenced files can be accessed sequentially or randomly. An 
example of sequential access is the generation of a report of the 
quantity on hand of all parts. Random access would be used to 
determine the vendor of a particular part. 

Figure 2-1 shows the structure of a key-sequenced file. 

Relative Files 

A relative file consists of a set of records. Each record is 
uniquely identified among other records in a relative file by a 
record number, which denotes an ordinal position in a file. The 
first record in a relative file is designated by record number 
zero; succeeding records are designated by ascending record 
numbers in increments of one. 

A logical record can vary in size from zero (an empty record) to 
the maximum record size specified when the file was created. 
Each record position, however, is always allocated a fixed 
quantity of storage to ensure that a maximum-length record can be 
written to any position. (A record's logical length can be 
changed after the record has been entered.) Each record has a 
length attribute that can be returned when a record is read . 

..,, 82583 AOO 3/85 2-5 



File Structures 
Structured Files 

Records in a relative file can be deleted. 

A record occupies a position in a file whether or not the 
position has been written in or the record has been deleted. For 
example, for a relative file in which only record number 10 has 
been written, the FILEINFO procedure's <end-of-file location> 
parameter would indicate that there are 11 records (including 
record 0), not just one. 

The position where a new record is inserted into a relative file 
is specified by supplying a record number to the POSITION 
procedure. Alternatively, you can specify that records be 
inserted into any available position in a relative file by 
supplying a record number of "-2D" to POSITION before inserting 
records into the file. Likewise, you can specify that subsequent 
records be appended to the end of a file by supplying a record 
number of "-lD" to the POSITION procedure. 

For example, in a relative file in which only record number 10 
exists, you can position to an empty location (such as record 
number 5) and use the WRITE procedure to insert a new record in 
that location. If you posit ion to record number "-2D", the 
record is written to some (not necessarily the lowest) empty 
location. Using the READUPDATE procedure after positioning to an 
empty location returns file-system error 11 ("record not in 
file"): the same positioning causes the READ procedure to read 
the next nonempty record. 

When "-20" or "-10" is specified for inserting records into a 
relative file, the actual record number associated with the new 
record can be obtained through the FILEINFO procedure. 

Figure 2-2 shows the structure of a relative file. 

Relative files are best suited for applications where random 
access to fixed-length records is desired and the record number 
can function as the key to the file. In the earlier inventory 
example, it would be possible to make the inventory file a 
relative file where the relative record number was equal to the 
part number. However, this would probably be wasteful of space 
since part-numbering schemes typically leave large gaps in the 
numbers and this would result in many records allocated but not 
used. On the other hand, an invoice file where the relative 
record number is equal to the invoice number would be a good 
application for a relative file, since there are typically no 
large gaps in this kind of file. Data fields in the record could 
contain customer number, part number, quantity, price, e~tc. 

2-6 Af' 82583 AOO 3/85 



FIRST RECORD 

RECORDO RECORD 1 RECORD 2 RECORD 3 • • • • 
,----'-~~~~-'------.,--_.__~~ ~ 

DATA DATA <~~Q#:~.P. >d DATA I ) p 
/ v v -----... 

~'D-A-TA_:_:>~i(_:>~:J.___D_A_TA __ _..__D_A_TA__.l:~:)_)l~>-\~~:·~-(y~~~-·P~>-<I..._~)~ 

/ v v 

DATA 

EACH RECORD HAS A 
LENGTH ATTRIBUTE. • 
THEREFORE RECORDS • 
MAY "LOGICALLY" VARY IN LENGTH • 

I· 
I 
, .. 

• .. I . 
I 

/ v 
DATA V>J DATA DATA 

. , .. .., .. 
FIXED LENGTH PHYSICAL RECORDS. 
EACH RECORD POSITION OCCUPIES 
A FIXED AMOUNT OF SPACE, WHETHER 
OR NOT THE RECORD HAS BEEN 
WRITTEN IN. 

v 

DATA 

v 

.., 

File Structures 
Structured Files 

DATA 
BLOCKS 

85033-009 

Figure 2-2. Relative File Structure 

Entry-Sequenced Files 

An entry-sequenced file consists of a set of variable-length 
records. Each record is uniquely identified among other records 
in an entry-sequenced file by a record address. Records inserted 
in an entry-sequenced file are always appended to the end of the 
file and, therefore, are physically ordered by the sequence 
presented to the system. To let records be accessed randomly, 
the FILEINFO procedure returns the record address of an appended 
record. 

A record may vary in length from zero bytes (empty} to the 
maximum record size specified when the file was created. The 
number of bytes allocated for a record is the number of bytes 
written when the record was inserted into the file. Each record 
has a length attribute that is optionally returned when a record 
is read. A record's length cannot be changed after the record is 
written into the file. Records in an entry-sequenced file cannot 
be deleted. 

Figure 2-3 shows the structure of an entry-sequenced file. 

"1 82583 AOO 3/85 2-7 



FIRST RECORD 

RECORDO RECORD 1 RECORD 2 RECORD 3 • • • • 
~-'-~-~~~--...,-~~·~ ~ 

DATA DATA :)!%~~.P. >J DATA I ) p 
/ v v v "v- ----..._ 

I DATA k> >I DATA DATA :ttrtv~µ.~:~.P..<<I ~O 

/ v v v v- -----.. 

DATA l:<:::~:~9#:~<>Vi/ti'N~~faIJ DATA <H )p 

EACH RECORD HAS A 
LENGTH ATTRIBUTE. 
THEREFORE RECORDS 
MAY "LOGICALLY" VARY IN LENGTH 

·I / v 

• 
• • 
• • I 

I DATA l:<A DATA DATA 

·I· 
FIXED LENGTH PHYSICAL RECORDS. 
EACH RECORD POSITION OCCUPIES 
A FIXED AMOUNT OF SPACE, WHETHER 
OR NOT THE RECORD HAS BEEN 
WRITTEN IN. 

v v-- ----..._ 

DATA ))::] 

·I 

File Structures 
Structured Files 

DATA 
BLOCKS 

85033-009 

Figure 2-2. Relative File Structure 

Entry-Sequenced Files 

An entry-sequenced file consists of a set of variable-length 
records. Each record is uniquely identified among other records 
in an entry-sequenced file by a record address. Records inserted 
in an entry-sequenced file are always appended to the end of the 
file and, therefore, are physically ordered by the sequence 
presented to the system. To let records be accessed randomly, 
the FILEINFO procedure returns the record address of an appended 
record. 

A record may vary in length from zero bytes (empty) to the 
maximum record size specified when the file was created. The 
number of bytes allocated for a record is the number of bytes 
written when the record was inserted into the file. Each record 
has a length attribute that is optionally returned when a record 
is read. A record's length cannot be changed after the record is 
written into the file. Records in an entry-sequenced file cannot 
be deleted. 

Figure 2-3 shows the structure of an entry-sequenced file. 

"f' 82583 AOO 3/85 2-7 



File Structures 
Structured Files 

Entry-sequenced files are best suited to sequential processing of 
variable-length data. An example of this type of application is 
a transaction-logging file. Each transaction becomes a record in 
the file; the records are stored in the file in the order in 
which the transactions are made. 

1ST 2ND 3RD 4TH 5TH 
RECORD RECORD RECORD RECORD RECORD 

~~'----... ,__.....__ ....... ----~ " 
DATA DATA I DATA I DATA rn~~~~o:I 

&TH 7TH BTH 9TH 1 OTH 11TH 
RECORD RECORD RECORD RECORD RECORD RECORD 

,_......__ ____ _._ __ ,____.~--,--.L.--,~~-'--~ 

12TH 
RECORD 

13TH 14TH 15TH 16TH 
RECORD RECORD RECORD RECORD 

DATA DATA LititWI 

17TH 18TH 
RECORD RECORD 

/" 

I DATA I DATA 

I· ~I· -----..! 
VARIABLE LENGTH 
PHYSICAL RECORDS 

19TH 20TH 21ST 
RECORD RECORD RECORD 

DATA DATA H:@~~~::I 

DATA 
BLOCKS 

55033-010 

Figure 2-3. Entry-Sequenced File Structure 

POSITIONING WITHIN STRUCTURED FILES 

This subsection describes how a process can select a subset of a 
structured file. 

Current Key Specifier and Current Access Path 

A two-byte key specifier uniquely identifies each key field as an 
access path for positioning. The key specifier for primary keys 
is defined as binary zero (ASCII <null><null>). Key specifiers 
for alternate-key fields are defined by the application and are 
assigned when the file is created. 

2-8 ..., 82583 AOO 3/85 



File Structures 
Positioning within Structured Files 

The current-key specifier defines the current access path--the 
order in which the file's records are read sequentially. 

The current-key specifier, and therefore the current access path, 
is implicitly set to the file's primary key when a file is opened 
or a call is made to the POSITION procedure (for relative and 
entry-sequenced files only). The access path is set explicitly 
by calling the KEYPOSITION procedure. Figure 2-4 shows a typical 
record structure with a primary key and three alternate keys. 

AN INVENTORY RECORD 

PRIMARY KEY ALTERNATE KEY FIELDS 

/ ' / ' / ' 
PART NO. /Hi~~~.~~h~.i.9.~.\\\ ON-HAND .\~.~j:~:~t LOCATION VENDOR 

'---r--/ '----.------/ 
SYSTEM-DEFINED APPLICATION-DEFINED 
KEY SPECIFIER = 0 KEY SPECIFIERS ="OH" 

EXAMPLES: 
1. TO POSITION VIA PRIMARY KEY 

KS: = O; ! KEY SPECIFIER, PRIMARY 
CALL KEYPOSITION (FNUM, KEY, KS); 

2. TO POSITION VIA AN ALTERNATE KEY 
KS:= "OH";! ON-HAND KEY FIELD 
CALL KEYPOSITION (FNUM, KEY, KS); 

"LO" 

Figure 2-4. Key Fields and Key Specifiers 

Current Key Value and Current Position 

"VN" 

85033-011 

The current key value defines a subset of records in a file's 
current access path (see the "Positioning Mode and Comparison 
Length" subsection below) and sets a file's current position. 

You can set current key value explicitly by calling the POSITION 
or KEYPOSITION procedure. KEYPOSITION sets a position by primary 
key for key-sequenced files and by alternate key for key
sequenced, relative, and entry-sequenced files. POSITION sets a 
position by primary key for relative and entry-sequenced files. 
After a call to READ, the current key value is implicitly set to 
the key value of the current access path in the record just read. 

The current position determines the record to be locked (by a 
call to LOCKREC) or accessed (by a call to READ[LOCK], 

-1' 82583 AOO 3/85 2-9 



File Structures 
Positioning within Structured Files 

READUPDATE[LOCK], or WRITEUPDATE[UNLOCK]). A record need not 
exist at the current position. When a file is opened, the 
current position is that of first record in the file as defined 
by the file's primary key. Figure 2-5 demonstrates the use of 
KEYPOSITION in a key-sequenced file. 

KEY':=' "FISH"; 

0 - CALL KEYPOSITION (FNUM, KEY) 
I.E. APPROXIMATE VIA PRIMARY KEY. 

1 - CALL READ (FNUM, •. ); 
2 - CALL READ (FNUM, •.. ); 
3 - CALL READ (FNUM, ... ); 

/ 

PRIMARY 
KEY 

I 

ADAMS 

BROWN 

COLLINS 

FISH 

JACKSON 

KING 

MASTERS 

OBRIEN 

RYAN 

RECORD 

f.-
r--
r--

CURRENT POSITION AIFTER 
KEYPOSITION AND READ 1. 

CURRENT POSITION AIFTER READ 2. 

CURRENT POSITION AIFTER READ 3. 

85033-·012 

Figure 2-5. Current Position 

Positioning Mode and Comparison Length 

The positioning mode, comparison length, and current key value 
determine a subset of records and the first record in that subset 
to be accessed. The subset of records in the current access path 
can consist of all, part of, or none of the records in a file. 

The positioning mode and comparison length (as well as the 
current-key specifier and current key value) are set explicitly 
by the KEYPOSITION procedure and implicitly by the OPEN and 
POSITION procedures. ENSCRIBE has three positioning modes: 
approximate, generic, and exact. 

APPROXIMATE. Approximate positioning means the first record 
accessed is the one whose key field, as indicated by the current
key specifier, contains a value equal to or greater than the 
current key value. After approximate positioning, sequential 
READ operations to the file return ascending records until the 
last record in the file is read: an end-of-file indication is 
then returned. When a file is opened, the positioning mode is 
set to approximate and the comparison length is set to 0 • 

2-10 ..,, 82583 AOO 3/85 



File Structures 
Positioning within Structured Files 

After approximate positioning, sequential READ operations to a 
relative file will skip non-existent records. 

GENERIC. Generic positioning means the first record accessed is 
the one whose key field, as designated by the current-key 
specifier, contains a value equal to the current key value for 
the number of bytes specified by the comparison length. After 
generic positioning, sequential READ operations to the file 
return ascending records whose key matches the current key value 
(for the comparison length). When the current key no longer 
matches, an end-of-file indication is returned. 

For relative and entry-sequenced files, generic positioning by 
the primary key is equivalent to exact positioning. 

EXACT. Exact positioning means the only records accessed are 
those whose key field, as designated by the current-key 
specifier, contains a value that is (1) exactly as long as the 
specified comparison length and (2) equal to the current key 
value. When the current key no longer matches, an end-of-file 
indication is returned. If the key field has a unique value, 
exact positioning accesses no more than one record. 

ALTERNATE KEYS 

For each file having one or more alternate keys, at least one 
alternate-key file exists. Each record in an alternate-key file 
consists of: 

• Two bytes for the <key specifier> 

• The alternate-key value 

• The primary-key value of the associated record in the primary 
file 

The length of an alternate-key record is at least 

2 + alternate-key field length + primary-key length 

Figure 2-6 shows how alternate keys are implemented. 

"1 82583 AOO 3/85 2-11 



File Structures 
Alternate Keys 

RECORD IN PRIMARY FILE 

PRIMARY KEY ALTERNATE KE.VS 

/ 
I r-_i________ ,r .. _ _l ____ _ 

ON-HAND PRICE LOCATION VENDOR J 
'----~--'/ "-----~-_/'~---_./ 

KEY SPECIFIERS 0 
'--~,-~/ 

"OH" "LO" "VN" 

RECORD IN ALTERNATE FILE FOR KEY FIELD "OH" 

'"OH" I ON-HAND I PART NO. I 
~ 
KEY FIELD PRIMARY-KEY 

SPECIFIER VALUE VALUE 

EXAMPLE 

PRIMARY FILE DATA 

PART NO. DESCRIPTION ON-HAND PRICE LOCATION VENDOR 

-~/ 

___ 0 __ 1_1_5_---l,__ __ TO_A_S_T_E_R ____ -+ ____ 2 __ 0 ___ +-~~_l_ __ c_.--+---TW_R ___ ~ 
0201 T.V. SET 5 200.00 I A A.CME 

1------~---------+-----+--~-+--··------+--------1 
0205 PHONOGRAPH 52 55.00 ! B ACR 

11------~---------+----~-~---+----·---+-------~ 
0206 RADIO 210 5.50 1 A BROWN 

0310 FRY PAN ·--t---1-9--~~=r------0-----+---S-M-IT_H __ __. 

0322 MIXER 12 32.95 j D ACME 

ALTERNATE-KEY FILE DATA (THE ALTERNATE-KEY FILE IS KEY-SEQUENCED) 

A 

A 

r' I'-" -, 

"LO" D 0322 

"OH" 5 0201 

"OH" 12 0322 
,.. ...... ...... ... 

"OH" 210 

"VN" ACME 0201 

"VN" ACME 0322 

l·vN"l TWA 1 0115 r 
'-r' A / 

I 
KEY ALTERNATE- PRIMARY-

SPECIFIER KEY VALUE KEY VALUE 

85033-0',13 

Figure 2-6. Alternate-Key Implementation 

2-12 .. , 82583 AOO 3/85 



Alternate-Key Attributes 

?ile Structures 
Alternate Keys 

When an alternate key is defined, these attributes can be 
assigned: 

• Null value 
• Unique alternate key 
• No automatic update. 

A null value is a byte value that, when encountered in all 
positions of the indicated key field during a record insertion, 
causes the alternate-key file entry for the field to be omitted. 
Any records containing only the null value in the alternate-key 
field are skipped when the file is read sequentially via an 
alternate-key field having a null value defined. 

If an alternate-key field is defined as requiring a unique value, 
any attempt to insert a record having a duplicate key value in 
that field is rejected with file-system error 10, "record already 
exists." 

The data-base designer can specify that an alternate-key field 
not be updated by the system when a change to that field occurs. 

Alternate Keys in a Key-Sequenced File 

An example of alternate-key usage in a key-sequenced file would 
be a file whose records consist of the vendor name and the part 
number. The primary key to this file would be the part number 
(it could not be the vendor name, because that is not unique). 
To produce a report listing of all parts supplied by a given 
vendor, generic positioning would be done via the desired vendor. 
Then the file would be read sequentially until the vendor name 
field is not equal to the desired vendor (at which time the 
system will return an end-of-file indication). The records 
associated with a given vendor would be returned in ascending 
order of the part number. 

Alternate Keys in a Relative File 

An example of alternate-key usage in a relative file would be a 
file of employee data. The primary key (a record number) would 
be an employee number. One alternate-key field would be an 
employee name. 

~ 82583 AOO 3/85 2-13 



File Structures 
Alternate Keys 

Alternate Keys in an Entry-Sequenced File 

An example of alternate-key usage in an entry-sequenced file 
would be in a transaction-logging file. The primary key (a 
record address) would indicate the order in which transactions 
occurred. An alternate-key field might show the terminal in the 
system that initiated a transaction. To list all transactions 
for given terminal in the order in which they occurred, generic 
positioning would be done using the field value of the desired 
terminal, then the file would be read sequentially. 

COMPARISON OF STRUCTURED-FILE CHARACTERISTICS 

Table 2-1 compares the characteristics of the three structured 
file types. 

Table 2-1. Comparison of Key-Sequenced, Relative, 
and Entry-Sequenced Files 

Key-Sequenced 

Records are ordered 
by value in 
primary-key field. 

Access is by 
primary or 
alternate key. 

Space occupied by a 
record depends on 
length specified 
when written. 

Free space in block 
or at end of file 
is used for adding 
records. 

Records can be de
leted, shortened, 
or lengthened. 
(within the maximum 
size specified). 

2-14 

Relative 

Records are ordered 
by relative record 
number. 

Access is by record 
number or alternate 
key. 

Space allowed per 
record is specified 
when the file is 
created. 

Empty positions in 
file are used for 
adding records. 

Records can be de-
1 eted, shortened, 
or lengthened 
(within the maximum 
size specified). 

Entry-Sequenced 

Records are in 
the order in 
which they are 
entered. 

Access is by 
record address or 
alternate~ key. 

Space occupied by 
a record depends 
on length speci
fied when written 

Space at end of 
file is used for 
adding re?cords. 

Records cannot be 
deleted, 
shortened, or 
lengthene~d. 

...., 82583 AOO 3/85 



File Structures 
Comparison of Structured-File Characteristics 

Table 2-1. Comparison of Key-Sequenced, Relative, 
and Entry-Sequenced Files (continued) 

Key-Sequenced 

Space freed by 
deleting or 
shortening a record 
is reused within 
its block. 

"' 82583 AOO 3/85 

Relative 

Space freed by 
deleting a record 
can be reused. 

Entry-Sequenced 

A record cannot 
be deleted, but 
its space can be 
used for another 
record of the 
same size. 

2-15 





SECTION 3 

USE OF PROCEDURE CALLS 

Application processes have access to ENSCRIBE disc files through 
a set of file-system procedures or through a separate set of 
sequential I/0 procedures. These two sets of procedures should 
not be used together. 

This section introduces those procedures that affect ENSCRIBE 
files. 

FILE-SYSTEM PROCEDURES 

This subsection contains a brief surrunary of the file-system 
procedures and a discussion of their corrunon characteristics. 
Detailed syntax descriptions of all file-system procedures and 
parameters are included in the System Procedure Calls Reference 
Manual. 

File-System Procedures Surrunary 

Table 3-1, on the next three pages, surrunarizes the functions of 
file-system procedures. 

'1" 82583 AOO 3/85 3-1 



Use of Procedure Calls 
File-System Procedures Summary 

Procedure 
AWAI TIO 

CANCELREQ 

CLOSE 

CONTROL 

CREATE 

DEVICEINFO 

DEVICEINF02 
(Nonstop 
systems only) 

FILEERROR 

FILEINFO 

FILERECINFO 

FNAMECOLLAPSE 

FNAMECOMPARE 

3-2 

Table 3-1. File-System Procedures 

Function 
waits for completion of an outstandli1gl:/O 
operation pending on an open file. 

cancels the oldest outstanding operation, 
optionally identified by a <tag>, on an 
open file. 

stops access to an open file and purges a 
temporary disc file. 

executes device-dependent operations to an 
open file. 

creates a new disc file (permanent or 
temporary). 

provides the device type and physical 
record size for a file (open or closed). 
The <device type> codes are described in the 
System Procedure ~alls Reference Manual. 

provides the device type and physical 
record size for a file (open or closed) 
and determines whether the volume is 
formatted as a DPl or DP2 volume. The 
<device type> codes are described in the 
System Procedure ~alls Reference Manual. 

helps determine whether a failed call 
should be retried~ 

provides error and characteristic 
information about a file. 

provides characteristic information about 
an open disc file~ 

collapses an internal file identifier to 
external form. 

compares two internal file identifiers to 
determine whether they ref er to the same 
file or device. 

AJ1 82 1583 AOO 3/85 



Table 3-1. 

Procedure 
FNAMEEXPAND 

GETDEVNAME 

KEYPOSITION 

LOCKFILE 

LOCK REC 

NEXTFILENAME 

OPEN 

POSITION 

PURGE 

READ 

READ LOCK 

..,1 82583 AOO 3/85 

Use of Procedure Calls 
File-System Procedures Summary 

File-System Procedures (continued) 

Function 
expands an external f 1le ident1f 1er to 
internal form. 

returns the $<device name> or $<volume 
name> associated with a logical device 
number if such a device exists; otherwise, 
the name of the next-higher logical device 
number is returned. 

sets position by primary key within a key
sequenced file or by alternate key within 
any structured file; defines a subset of 
the file for subsequent access, by setting 
the current position, access path, and 
positioning mode. 

locks an open disc file, making the file 
inaccessible to other accessors. 

locks a record in an open disc file so that 
other processes cannot access the record. 

returns the next disc-file name in 
alphabetical sequence following the 
designated file name. 

establishes communication with a file. 

sets position by primary key within a 
relative or entry-sequenced file; defines a 
subset of the file for subsequent access, by 
setting the current position, access path, 
and positioning mode; also can specify new 
current position in an unstructured file. 

erases a closed disc file from the system. 

returns the record indicated by the value 
of the current key; READ is used when 
sequentially reading an open file. 

is the same as READ but locks the record 
before reading it. 

3-3 



Use of Procedure Calls 
File-System Procedures Summary 

Table 3-1. 

Procedure 
READUPDATE 

READUPDATELOCK 

REFHESH 

RENAME 

REPOSITION 

SAVEPOSITION 

SETMODE 

SETMODENOWAIT 

UNLOCKFILE 

UNLOCKREC 

WRITE 

3-4 

File-System Procedures (continued) 

Function 
returns the record indicated by the current 
key value: READUPDATE is used to randomly 
read an open file. 

is the same as READUPDATE except that it 
locks the record before reading it. 

writes information (such as the end-of-file 
pointer), contained in file control blocks 
(FCBs) in main memory, to the associated 
physical disc volume. 

renames an open disc file and makes a 
temporary disc file permanent. 

restores the disc-file position information 
saved with a previous SAVEPOSITION call. 

saves the current disc-file position 
information: a later call to REPOSITION 
restores the saved position. 

sets device-dependent functions in an open 
file. 

sets device-dependent functions in a 
"no-wait" manner for an open file. 

unlocks an open disc file currently locked 
by the caller. UNLOCKFILE also unlocks any 
records in the designated file that are 
currently locked by the caller. 

unlocks a record currently locked by the 
caller, so other processes can access the 
record. 

inserts (adds) a new record into an open 
disc-file location read by the last call to 
READ or READUPDATE. 

~ 82:i83 AOO 3/85 



Use of Procedure Calls 
File-System Procedures Summary 

Table 3-1. File-System Procedures (continue~' 

Procedure Function 
WRITEUPDATE replaces (updates) or deletes data in the 

existing record indicated by an open file's 
current key value. 

WRITEUPDATEUNLOCK is the same as WRITEUPDATE, but unlocks the 
record after it is updated or deleted. 

Characteristics of ENSCRIBE Procedure Calls 

This section describes features common to all ENSCRIBE file
system procedure calls. 

COMPLETION. If a file is open with "no-wait" I/0 specified, 
calls to CONTROL, LOCKFILE, LOCKREC, READ, READLOCK, READUPDATE, 
READUPDATELOCK, UNLOCKFILE, UNLOCKREC, WRITE, WRITEUPDATEUNLOCK, 
or SETMODENOWAIT must be completed by a corresponding call to 
AWAITIO. 

If a file is open with "no-wait" I/0 specified, calls to 
KEYPOSITION, POSITION, RENAME, REPOSITION, SETMODE, or 
SETMODENOWAIT are rejected with file-system error 27 if there are 
any outstanding (uncompleted) operations pending. 

Regardless of whether the file was opened with "wait" or "no
wai t" I/O specified, a return from a call to CANCELREQ, 
CLOSE, CREATE, DEVICEINFO, DEVICEINF02, FILEINFO, FILERECINFO, 
KEYPOSITION, NEXTFILENAME, OPEN (unless flag <8> is set to 1), 
POSITION, PURGE, RENAME, or SETMODE indicates a completion. 

FILE-NUMBER PARAMETERS. All file-system procedures except 
DEVICEINFO, DEVICEINF02, CREATE, OPEN, NEXTFILENAME, REFRESH, and 
PURGE use the <file number> parameter, returned from the OPEN 
procedure, to identify which file the call refers to. The 
DEVICEINFO, DEVICEINF02, CREATE, OPEN, and PURGE procedures refer 
to the file by its file identifier; the LASTRECEIVE and REPLY 
procedures always refer to the $RECEIVE file (i.e., interprocess 
communication). For every procedure that has a <file number> 
parameter, except OPEN and AWAITIO, the file number is an 
INT:value parameter. 

..., 82583 AOO 3/85 3-5 



Use of Procedure Calls 
Characteristics of ENSCRIBE Calls 

TAG PARAMETERS. An application-specified double integer 
(INT(32)) tag can be passed as a calling parameter when an I/0 
operation (read or write) is initiated with a "no-wait" file. 
The tag is passed back to the application process, through the 
AWAITIO procedure, when the I/0 operation completes. The tag is 
useful for identifying individual file operations and can be used 
in application-dependent error-recovery routines~ 

BUFFER PARAMETER. In an application program used to transfer 
data between the application process and the file system, the 
data buffers must be integer (INT) or double-integer (INT(32)) 
and must reside in the program's data area ('P' relative read
only arrays are not permitted). 

TRANSFER-COUNT PARAMETER. The <transfer count> paramete·r of any 
file-system procedure refers to the number of bytes to be 
transferred. From 0 to 4096 bytes can be transferred in a single 
operation with an ENSCRIBE disc file. The actual maximum 
transfer count may be less than 4096, due to the amount of buffer 
space assigned to the disc during system generation (SYSGEN). 
(The amount of buffer space configured for a disc volume can be 
obtained via the DEVICEINFO procedure.) 

CONDITION CODES. All file-system procedures return a condition 
code indicating the outcome of the operation. THE CONDITION CODE 
SHOULD ALWAYS BE CHECKED AFTER A CALL TO A FILE SYSTEM PROCEDURE 
and should be checked before an arithmetic operation is performed 
or a value is assigned to a variable. Generally, the condition 
codes have these meanings: 

< (CCL) 

> (CCG) 

= ( CCE) 

An error occurred (call the file-system FILEINFO 
procedure to determine the error). 

A warning message was generated (typically end-of
file, but see the individual procedures for the 
meaning of CCG or call FILEINFO to obtain an error 
number). 

The operation was successful. 

ERRORS. An error number is associated with each call completion. 
The error numbers fall into three major categories, as shown in 
Table 3-2. The setting of the condition code indicates the 
category of the error associated with a completed call. 

The error number associated with an operation on an open file can 
be obtained by calling the FILEINFO procedure and passing the 
file number of the file in error, as in this example: 

3-6 .-, 82~>83 AOO 3/85 



Use of Procedure Calls 
Characteristics of ENSCRIBE Calls 

CALL FILEINFO(inAfile, errAnum); 

The error number of a preceding AWAITIO on any file or of a 
waited OPEN that failed can be obtained by calling FILEINFO with 
file number -1, as in this example: 

CALL FILEINF0(-1, errAnum); 

Note: If the OPEN procedure fails, it returns -1 to the <file 
number> parameter. 

Similarly, the error number of a preceding CREATE or PURGE 
operation that failed can be obtained by calling FILEINFO with 
file number -1. 

Section 5 describes error recovery in detail. The System 
Messages Manual for your system contains a complete list of the 
error numbers and their meanings. 

Error CC 

0 CCE 

1-9 CCG 

10-255 CCL 

300-511 CCL 

Table 3-2. Error-Number Categories 

Category 

No error. The operation was executed 
successfully. 

Warning. The operation was executed, with the 
indicated exception condition. For message 6 
("system message received"), data are returned 
in the application process's buffer. 

Error. The operation encountered an error. 
For data-transfer operations, either none or 
part of the specified data were transferred 
(except data communication error 165, which 
indicates normal completion with data returned 
in the application process's buffer). 

Error. These errors are reserved for process 
application-dependent use. 

CHECKING ACCESS MODE AND SECURITY. The disc file must be open 
with read or read/write access for a READ, READLOCK, READUPDATE, 
or READUPDATELOCK call to be successful. Otherwise, the call 
will be rejected with file-system error 49, "access violation." 

'1' 82583 AOO 3/85 3-7 



Use of Procedure Calls 
Characteristics of ENSCRIBE Calls 

The disc file must be open with write or read/write access for 
CONTROL, WRITE, WRITEUPDATE, or WRITEUPDATEUNLOCK calls to be 
successful (otherwise the call will be rejected with file-system 
error 49, "access violation." 

The caller must have purge access to a disc file for PURGE or 
RENAME calls to be successful (otherwise the call will be 
rejected with file-system error 48, "security violation." 

External Declarations 

Like all other procedures in an application program, the file
system procedures must be declared before being called. These 
procedures are declared as having "external" bodies. The 
external declarations for these procedures are provided in system 
file $SYSTEM.SYSTEM.EXTDECS. The compiler command SOURCE, 
specifying this file, should be included in the source program 
after the global declarations but before the first call to one of 
these procedures, as in this example: 

<global declarations> 
?SOURCE $SYSTEM.SYSTEM.EXTDECS (<external procedure name>, ... ) 
<procedure declarations> 

Each external procedure used in the program should be specified 
in the SOURCE command. For example, 

?SOURCE $SYSTEM.SYSTEM.EXTDECS ( OPEN, READ, WRITE, POSITION, 
? KEYPOSITION, WRITEUPDATE, CLOSE 

compiles only the external declarations for the OPEN, READ, 
WRITE, POSITION, KEYPOSITION, WRITEUPDATE, and CLOSE procedures. 

SEQUENTIAL I/0 PROCEDURES (SIO) 

The sequential I/0 (SIO) procedures provide TAL programmers with 
a standardized set of procedures for performing common input and 
output operations. These operations include reading and writing 
IN and OUT files, and handling BREAK from a terminal. These 
procedures are primarily intended for TANDEM subsystem and user 
utility programs. The primary benefit is that programs using 
these procedures can treat different file types in a consistent 
and predictable manner. 

The sequential I/O procedures and their functions are listed in 
Table 3-3. 

3-8 .,. 82583 AOO 3/85 



Use of Procedure Calls 
Sequential I/0 (SIO) 

Procedure 
CHECK A BREAK 

Table 3-3. SIO Procedures 

Function 
checks whether the break key was pressed 

retrieves file characteristics 

closes a file 

disables the break key 

opens a file for access by the SIO procedures 

reads from a file 

sets or alters file characteristics 

enables the break key 

waits for the completion of an outstanding I/O 
operation 

writes to a file 

The SIO procedures also contain a set of DEFINES and LITERALS 
that allocate control-block space, specify file-opening 
characteristics, set file-transfer characteristics, and check 
file-transfer characteristics. 

Some characteristics of the SIO procedures are: 

• All file types are accessed in a uniform manner. File access 
characteristics, such as access mode, exclusion modes, and 
record size, are selected according to device type and the 
intended access. The SIO procedures' default characteristics 
are set to facilitate their most general use. 

• Error recovery is automatic. Each fatal error causes the 
display of a comprehensive error message, all files to close 
and the process to abort. Both the automatic error-handling 
and the display of error messages can be turned off, so the 
program can do the error-handling. 

• The OPENAFILE procedure lets an application alter the 
characteristics of SIO operations when a file is opened. 
Also, the SETAFILE procedure makes this possible before or 
after the file is opened. Some optional characteristics are: 

..,.1 82583 AOO 3/85 3-9 



Use of Procedure Calls 
Sequential I/0 (SIO) 

--record blocking and deblocking 

--duplicative file capability where data read from one file 
are automatically echoed to another file 

--an error-reporting file, where all error messages are 
directed. When a particular file is not specified, the 
error-reporting file is the home terminal. 

• The SIO procedures can be used with the INITIALIZER procedure 
to make run-time changes. File-transfer characteristics, such 
as record length, can be changed using the GUARDIAN Operating 
System Command Interpreter's ASSIGN command. 

• The SIO procedures retain information about the files in file 
control blocks (FCBs). There is one FCB for each open file 
plus one common FCB which is linked to the other FCBs. 

A thorough discussion of the SIO procedures is in the GUARDIAN 
Operating System Programmer'~ ~uide. 

3-10 ..,,. 82583 AOO 3/85 



SECTION 4 

FILE CREATION 

Files on a disc must be created before being opened for access. 
This section discusses the concepts necessary for choosing 
appropriate parameters when creating a disc file. 

An ENSCRIBE file is created through the File Utility Program 
(FUP) or through a programmatic call to the CREATE procedure. 
The Data Definition Language (DDL) compiler can automatically 
generate a FUP command file that can be used to create files 
described by the DDL source schema. 

All partitions of a multivolume file are automatically created 
when the first partition is created. 

For each structured file having one or more alternate-key fields, 
the user must create the associated alternate-key files. An 
alternate-key file is created as a key-sequenced file. 

When you create an ENSCRIBE disc file, you must consider: 

• File type 
• File code 
• Extents 
• Logical records 
• Blocks 
• Characteristics of key-sequenced files 
• Characteristics of structured files having alternate keys 
• Characteristics of partitioned (multivolume) files 

Also, creation of a DP2 file offers several options not available 
for a DPl file, including: 

• Maximum number of file extents 
• Audit compression 
• Buffering 
• Verification 

-'1J 82583 AOO 3/85 4-1 



File Creation 
File Utility Program (FUP) 

FILE UTILITY PROGRAM (FUP) 

Typically, ENSCRIBE files are created through use of the File 
Utility Program (FUP). The FUP commands related to file creation 
are summarized in Table 4-1. 

Table 4-1. FUP Commands Related to File Creation 

Command Function 

SET establishes one or more creation-parameter values 
for a subsequent creation. Parameter values can be 
specified explicitly and can be set to match those 
of an existing file. 

SHOW displays current settings of the creation parameter 
values. 

CREATE creates a file using the current creation-parameter 
values. The current parameter values can be 
overridden in the CREATE command (without affecting 
the current settings) by specifying alternate values 
for designated parameters. 

RESET sets one or more creation-parameter values to their 
default settings. 

INFO displays file characteristics of one or more files. 

For creating disc files, FUP is intended to be used in this 
manner: 

1. 

2. 

3. 

4-2 

The user sets the creation parameters, describing the file to 
be created, by executing one or more SET commands. The SET 
command can set the creation parameters to match those of an 
existing file: this is useful for duplicating file 
structures. 

The user verifies the settings of the creation parameters by 
executing a SHOW command. Necessary changes can be made to 
parameter values by using the SET command again. 

Once the creation parameters have the desired settings, the 
file is created by means of the CREATE command. An option to 
the CREATE command permits the user to override current 
creation-parameter settings. 

Af' 82583 AOO 3/85 



File Creation 
File Utility Program (FUP} 

4. After file creation, the current settings are still in force. 
Other files can be created using these settings. 

FUP resides in volume $SYSTEM. Normally, it is run through use 
of the GUARDIAN Operating System Command Interpreter. For a 
complete description of all the FUP commands, see the GUARDIAN 
O~erating srstem Utilities Reference Manual. Also see the FUP 
discussion in the GUARDIAN Operating System User'~ Guide. 

CREATE PROCEDURE 

The CREATE procedure defines a new structured or unstructured 
disc file. The file can be either temporary (and deleted when 
closed} or permanent. If a temporary file is created, CREATE 
returns a file name suitable for passing to the OPEN procedure. 

The syntax of the CREATE procedure call is described in detail in 
the System Procedure Calls Reference Manual. 

CONSIDERATIONS FOR STRUCTURED AND UNSTRUCTURED FILES 

This subsection describes file-creation parameters common to all 
four file types: key-sequenced, relative, entry-sequenced, and 
unstructured. 

File Types 

KEY-SEQUENCED FILES. A key-sequenced file consists of a set of 
variable-length records, each of which is uniquely identified by 
the value of its primary-key field. Records in a key-sequenced 
file are logically stored in order of ascending primary-key 
values. 

RELATIVE FILES. A relative file consists of a set of variable
length records, each of which is uniquely identified by a record 
number. A record number denotes an ordinal position in a file. 
The first record in a relative file is designated by record 
number zero~ succeeding records are designated by ascending 
record numbers in increments of one. A record occupies a 
position in a file whether or not the position has been written 
to. 

~ 82583 AOO 3/85 4-3 



File Creation 
Considerations for Structured and Unstructured Files 

ENTRY-SEQUENCED FILES. An entry-sequenced file consists of a set 
of variable-length records. Records inserted in an entry
sequenced file are always appended to the end of the file and, 
therefore, are physically ordered by the sequence in which they 
are presented to the system. 

UNSTRUCTURED FILES. An unstructured disc file is essentially a 
byte array, starting at byte zero and continuing to the last byte 
of the file, marked by the end-of-file pointer. The file system 
imposes no structure on an unstructured disc file. Grouping of 
data into records and where records are located within the file 
are the responsibility of the application process. 

Unstructured files are accessed on the basis of a relative byte 
address. The current location in a file is automatically 
incremented by the file system after a READ or a WRITE. The 
application process can position to a specific location within 
the file by supplying the file system a relative byte address 
with the POSITION procedure. After a call to POSITION, the 
application process can issue any other file-system call (READ, 
WRITE, READUPDATE, etc.). 

Partitioned (Multivolume) Files 

A file may be partitioned into as many as 16 disjoint subfiles, 
each residing on a different volume. Moreover, each volume can 
be on a different node in a network. 

ADVANTAGES. After a partitioned file is created, the fact that 
it resides on more than one volume (and perhaps on more than one 
node) is transparent to the application program. The entire file 
is opened for access by supplying the name of the primary 
partition to OPEN. Attempts to separately open secondary 
partitions of the file are rejected, except when using 
unstructured access, which deals with only one partition (see the 
OPEN procedure in the System Proced~re Calls Reference Manua~). 

Partitioned files can be valuable for a number of reasons. The 
most obvious one is that a file can be created whose size is not 
limited by the size of a physical disc pack. In addition, by 
spreading a file across more that one volume, the concurrency of 
access to records in the file can be increased. 

If the file is located on multiple volumes on the same 
controller, the operating system will take advantage of the 
controller's overlapped seek capability (that is, many drives can 
be seeking while one is transferring). If the file spans volumes 
connected to different controllers on the same processor, 
overlapping transfers will occur (up to the limit of the I/O 

4-4 ._, 82583 AOO 3/85 



File Creation 
Considerations for Structured and Unstructured Files 

channel's bandwidth). And if the r11e resides on volumes 
connected to controllers on different processors, the system will 
perform overlapped processing of requests and overlapped 
transfers not limited by the bandwidth of a single I/0 channel. 

Partitioned files can also accommodate more locks, because the 
locking limit applies to each partition rather than the whole 
file. (Locking limits are discussed in Section 5, "File 
Access". ) 

Partitioned file records can also reside in multiple caches, 
which can result in fewer disc accesses. 

FILE IDENTIFIERS. Each partition has a directory entry on the 
volume on which it resides. The file names for all partitions 
are identical except for the difference of the volume name. 

FEW DIFFERENCES AMONG PARTITIONS. All partions of a file must be 
on either DPl or DP2 volumes, and all partitions must be either 
audited or unaudited. They cannot be mixed. 

Primary and secondary extent sizes can differ from one partition 
to another within the same partitioned file. This and the volume 
names are the only file attributes on which partitions can 
differ. 

PARTIAL-KEY VALUE. For key-sequenced files, a partial-key 
value of from one to <key length> bytes is supplied for each 
partition. All records with keys greater or equal to the 
partition's key, but less than the next partition's key, are 
assigned to the partition. The partial key for the primary 
partition is a string of all nulls. 

For file types other than key-sequenced, the size of a partition 
and its order in the partition-parameter list determines which 
records are located in that partition. 

Block Sizes and Extents 

The sizes of a DP2 key-sequenced file's index blocks (!BLOCK in 
FUP's SET command) and data blocks (BLOCK) must be identical. 
When creating a file, the DP2 disc process ignores the specified 
IBLOCK size and uses the size specified in BLOCK. 

If a DPl file's index-block size and data-block size differ, then 
no extent size should be smaller than the larger of the two block 
sizes. If this rule is ignored, multiple extents are allocated 

~ 82583 AOO 3/85 4-5 



File Creation 
Considerations for Structured and Unstructured Files 

every time a block is acquired and some operations (such as FUP's 
LOAD command on a key-sequenced file) return file-system error 21 
("illegal <count> specified"). 

The block size of a key-sequenced file should be large, relative 
to the record size and especially relative to the key size, to 
reduce the number of block splits as records are inserted into 
the file. Also, a larger data block implies more data records 
per block and therefore fewer index records and fewer index 
blocks. 

The extent size of a DP2 file must be an integral multiple of the 
file's buffer size (for an unstructured file) or block size (for 
a structured file), which in turn must be one of 512, 1024, 2048, 
or 4096. When the file is created, the file system rounds up the 
extent size to enforce this requirement, if necessary. 

The file system also rounds up any extent size specified as an 
odd number of pages (one page = 2048 bytes) when the block size 
(of a structured file) or buffer size (of an unstructured file) 
is 4096. Therefore, if you want to have a file with one-page or 
three-page extents, the buffer size or block size must be set to 
2048 or less when the file is created. 

If a DPl file's block size is 4096, the DPl disc process rounds 
an extent size of 1 page up to 2 pages because no block of a 
structured file can span more than 2 extents. DPl does not round 
up other extent sizes, including the odd ones larger than 1 page. 

File Codes 

An application-defined file code can be assigned to a disc file 
when the file is created. The file code is typically used to 
categorize files by the information they contain. File codes 100 
through 999 are reserved. Use of file codes with this reserved 
range may cause unpredictable results such as system failures or 
erroneous results. 

CONSIDERATIONS FOR STRUCTURED FILES 

This section describes ENSCRIBE facilities that apply to 
structured files only (key-sequenced, relative, and entry
sequenced files). 

4-6 "°P 82583 AOO 3/85 



File Creation 
Considerations for Structured Files 

Logical Records 

A logical record is the unit of information transferred between 
an application program and the file system. For each file, a 
maximum logical record length must be specified. If an 
application program attempts to insert a record longer than the 
specified record length, the insert operation is rejected with an 
"illegal count" error. 

Record length is determined by the needs of the application, 
within these guidelines: 

• Records in a file can be of varying lengths but cannot be 
larger than the <record length> defined when the file is 
created. 

• The maximum possible record size is determined by the data
block size and the type of file. 

~or relative and entry-sequenced files, the maximum record length 
cannot exceed <data-block size> - 24. This means, for relative 
and entry-sequenced files with a data-block size of 4096 (the 
maximum), the maximum record length is 4072. 

For key-sequenced files with the DPl disc process, the maximum 
record length is 1/2 * (<data-block size> - 26): with a data
block size of 4096, this means the maximum record length is 2035 
bytes. 

Under the DP2 disc process, the record length can be as long as 
(<block size> - 34): thus, with a block size of 4096, the maximum 
record length is 4062 bytes. 

Blocks 

The block is the unit of information transferred between the file 
system and a disc volume. A block consists of one or more 
logical records and associated control information. This control 
information, which is used only by the system, differs between 
DPl files and DP2 files. Both block formats are shown in 
Appendix B. 

These points should be considered when choosing a structured 
file's block size: 

• The block size must be a multiple of sector size (512 bytes) 
and cannot be greater than 4096 bytes. For DP2 files, the 
block size is further restricted to 512, 1024, 2048, or 4096 
bytes. 

..,.1 82583 AOO 3/85 4-7 



File Creation 
Considerations for Structured Files 

• Regardless of the record length, the maximum number of records 
that can be stored in a single block is 511. 

• Block size under the DPl disc process must include 22 bytes 
for block control and two bytes per record for record control. 
Therefore, the number of records per block is 

N = (B - 22) I (R + 2) 

where B is <block size> and R is <record length>. If records 
are of varying lengths, then N is the average number of 
records per block and R is given as the average record length. 

Under the DP2 disc process, the block-control allowance is 32 
for key-sequenced files and 22 for entry-sequenced and 
relative files. Therefore, the number of records per block is 

N = (B - 32) I (R + 2) 

for key-sequenced files and 

N = (B - 22) I (R + 2) 

for entry-sequenced and relative files. 

Records cannot span blocks. Therefore, the block size must be 
at least 

<record length> + 2 + 32 

for a key-sequenced file under the DP2 disc process or 

<record length> + 2 + 22 

for any other file. 

For key-sequenced files, the block size (under the DP2 disc 
process) or data-block size (under the DPl disc process) 
determines the maximum record length that can be defined for the 
file. The maximum lengths for DPl and DP2 records are given in 
the "Logical Records" subsection above. 

Considerations for Key-Sequenced Files 

Considerations for key-sequenced files include compression, 
primary keys, and index blocks. 

4-8 "1 82583 AOO 3/85 



File Creation 
Considerations for Structured Files 

COMPRESSION AND COMPACTION. Data files and index files can be 
compressed for more space-efficient storage. Compression, 
sometimes called front compression, often reduces disc-head 
movement because more data can fit in a smaller area, but it can 
also incur some extra system overhead. 

ENSCRIBE compresses data records by eliminating leading 
characters that are duplicated from one record to the next and 
replacing them with a one-byte count of the duplicate characters. 
For example, if these three records are inserted in a file after 
FRANKLIN, BEN: 

JONES, JANE 
JONES, JOHN 
JONES, SAM 

what is actually written on the disc is: 

OJONES, JANE 
SOHN 
7SAM 
t 

count of duplicate characters. 

because the second record's first eight bytes are identical with 
those of the first record and the third record's first seven 
bytes are identical with those of the second record. 

When a file is created by the File Utility Program (FUP), the SET 
command's DCOMPRESS, !COMPRESS, and COMPRESS parameters establish 
whether compression will be applied to the data file, its index 
file, or both. When a file is created by the CREATE procedure, 
bits 11 and 12 of the <file type> parameter establish 
compression. 

When deciding whether compression should be used, you should 
consider these facts: 

• If compression is used, one additional byte per record may be 
required in each block. Moreover, additional system 
processing is required to expand the compressed records. 

• If data compression is used, the record's primary-key field 
must begin at offset [0] of the record. Therefore, variable
length primary keys cannot be used unless the entire record is 
the primary-key field. 

• If there is considerable similarity among the record's 
primary-key values then data compression is desirable. If 
not, then compression just adds unnecessary system overhead. 

'1J 82583 AOO 3/85 4-9 



File Creation 
Considerations for Structured Files 

• If there is enough similarity among records that the first 
records of successive blocks have similar primary-key values, 
then index compression is desirable. 

• Data compression is useful for alternate-key files where 
several alternate keys tend to have the same value. 

A similar mechanism is used to compact all index records, 
regardless of whether compression is specified. However, index 
compaction eliminates the trailing part of similar records where 
compression eliminates the leading part. 

The file system uses one index record per data block, rather than 
one per data record. This index record is formed by comparing 
the first primary key of the block with the last primary key of 
the previous block. If these keys are identical for the first N 
bytes, then the first N + 1 bytes of the block-starting key are 
used for the index record. For example, with these four data 
blocks: 

ALLEN, HARRY FRASER, IAN JONES, JOHN LARIMER, JO 

FRANKLIN, BEN JONES, JANE LANSON, SAM MARNER, SID 

these three index records are actually written to disc: 

FRAS 
JONES, JO 
LAR 

The primary-key field in an alternate-key file's data record is 
not compacted. However, since the alternate-key file is itself a 
key-sequenced file, the index records for the alternate-key file 
are compacted. 

With the DP2 disc process, you can apply audit-checkpoint 
compression to any file that is audited or opened with <sync 
depth> greater than 0. This is decribed in detail under "Audit
Checkpoint Compression" in Section 5. 

PRIMARY KEY. For a key-sequenced file, the offset in the record 
where the primary-key field begins and the length of key field 
must be specified. 

Some considerations when choosing the offset of the primary-key 
field: 

• The primary-key field can begin at any offset within a record 
and can be of any length up to 

$min(<record length> minus <offset>, 255) 

4-10 ~ 82!583 AOO 3/85 



File Creation 
Considerations for Structured Files 

• If data compression is to be used, then the primary-key field 
must be at the beginning of the record. 

• If the primary-key field is the trailing field in the record, 
the primary-key values can be of variable lengths. 

• If the key field is to be treated as a data type other than 
STRING, the <offset> should be chosen so the field begins on 
on a word boundary. 

INDEX BLOCKS. The length, in bytes, of a DPl file's index blocks 
must be specified. The block size must be a multiple of sector 
size (512 bytes) and can not be greater than 4096 bytes. For DP2 
files, the index block size is the same as the file's data-block 
size, which must be 512, 1024, 2048, or 4096 bytes. 

If a DPl file's index-block size is not specified, it defaults to 
the data-block size. With DP2, it always defaults to the 
specified data-block size, regardless of whether you have 
specified an index-block size. 

When choosing block lengths, remember that longer index blocks 
require more space in the cache buffer but a longer index block 
may reduce the number of indexing levels and, therefore, accesses 
to the disc. 

Considerations for Files Having Alternate Keys 

Files having alternate keys involve several important 
considerations, including: 

• Type of disc process 
• Unique alternate keys 
• Key specifier 
• Alternate-key files 
• Key length 
• Key off set 
• Null value 
• No automatic updating 

TYPE OF DISC PROCESS. A primary-key file and its associated 
alternate-key files must all be on the same kind of disc volumes 
--DPl or DP2. They cannot be mixed. 

..., 82583 AOO 3/85 4-11 



File Creation 
Considerations for Structured Files 

UNIQUE ALTERNATE KEYS. An alternate-key field can be designated 
to require a unique value in each record. If an application 
tries to insert a record that duplicates an existing record's 
value in a unique key field, the insertion is rejected. A 
"duplic-ate record" error indication will be returned to the 
application program in a subsequent call to FILEINFO. With 
nonunique alternate keys, the insertion above would be permitted. 

If a file has one or more unique alternate keys, remember that: 

• For each unique alternate key having a different <key length>, 
the user must create a separate alternate-key file. 

• More than one unique alternate key of the same <key length> 
can be referred to by the same alternate-key file. 

KEY SPECIFIER. To identify a particular key field as an acce~ss 
path when positioning, each key field must be uniquely identified 
among other key fields in a record by a two-byte 
key specifier. The key specifier for primary keys is predefined 
as ASCII "<null><null>" (binary zero). Key specifiers for 
alternate-key fields are application-defined and must be supplied 
when the primary file is created. 

ALTERNATE-KEY FILES. For each primary structured file havin9 
one or more alternate keys, you must create at least one 
corresponding alternate-key file. 

Each record in an alternate-key file refers to only one alternate 
key, but the file can contain references to one or more alternate 
keys. Thus, with five alternate keys, the alternate-key file 
would have five records for each primary-file record. The 
primary file can have multiple alternate-key files; for example, 
one might contain references to three of the alternate keys, with 
a second alternate-key file containing references to the other 
two keys. 

Some reasons to have separate alternate-key files are: 

• Each individual alternate-key file is smaller than a combined 
file with several alternate-key references, so fewer index 
references are needed to locate a given alternate key. 

• Frequent updating of one alternate key can cause fragmentation 
of the file. With separate files, this fragmentation would 
not affect references to the other keys. 

• A unique alternate key cannot share a file with other keys of 
different lengths. 

4-12 """ 82583 AOO 3/85 



File Creation 
Considerations for Structured Files 

Some reasons not to have separate alternate-key files are: 

• System control-block space is allocated for each opening of an 
alternate-key file (that is, each opening of the primary 
file). 

• A file control block is allocated for the first opening of an 
alternate-key file. 

Alternate-key files can be partitioned to span multiple volumes. 

Key 
Specifier 

(two bytes) 
Alternate 

Key 

Data File's 
Primary 

Key 

Figure 4-1. Record Structure of an Alternate-Key File 

The record structure of an alternate-key file is shown in Figure 
4-1. Its record length is 

2 for the <key specifier> 
+ the <key length> of the longest alternate key included in 

the record 
+ the <key length> of the associated primary key 

An alternate-key file is itself a key-sequenced file, so the 
maximum record length under the DPl disc process is limited to 

<data-block size> - 26 
2 

Under the DP2 disc process, the maximum record length is 

<block size> - 34 

KEY LENGTH. The primary-key length of an alternate-key file-
distinguished from the data file's primary key--depends on 
whether the file contains unique key references. With nonunique 
key references, the file's primary key is the entire record, so 
its primary-key length is the same as its record length. 

""f' 82583 AOO 3/85 4-13 



File Creation 
Considerations for Structured Files 

If an alternate-key file contains a single, nonunique key, then, 
that key can be no longer than 

255 (maximum <key length> of the alternate-key file) 
- 2 for the <key specifier> 
- the <key length> of the data file's primary key 

Thus, if the data file's primary key is 33 bytes long, no 
nonunique alternate key can be more than 255 - 2 - 33 = 220 bytes 
long. 

If the alternate-key file contains unique key references,, its 
primary key is the key specifier and the unique key. Therefore, 
the primary-key length is 

2 for the <key specifier> 
+ <key length> of the unique alternate-key field 

Thus, a unique alternate key can be as long as 255 - 2 = 253 
bytes, regardless of the data file's primary key. 

KEY OFFSET. For each alternate key, you must specify the offset 
in the record--where the alternate-key field begins. 

Some considerations when choosing the offset of an alternate-key 
field are: 

• An alternate-key field can begin at any offset in the record. 

• Alternate-key fields can overlap each other and the primary
key field of a key-sequenced file. 

• Alternate-key fields are fixed-length but need not be written 
when inserting or updating a record. 

• If any part of a given alternate-key field is present when 
inserting or updating a record, the entire field must be 
present. 

• If the key field is to be treated as a data type other than 
STRING, the <offset> should be chosen so the field be~Jins on a 
word boundary. 

NULL VALUE. Any alternate key can be assigned a null value. 
When a record is inserted, if each byte in such an alternate-key 
field contains the null value, the alternate-key reference is not 
added to the alternate-key file. In the case of an update, if 
such an alternate-key field is changed to contain only bytes of 
the null value, the alternate-key reference is deleted from the 
alternate-key file. 

4-14 ~, 82583 AOO 3/85 



File Creation 
Considerations for Structured Files 

If the file is read sequentially via such an alternate key, 
records containing the null value will not be found. Instead, 
the record returned (if any) is the next record in the access 
path not having the null value in the alternate-key field. 

The most common null values are ASCII blank (%40) and binary 0. 

NO AUTOMATIC UPDATING. The data-base designer can designate that 
the alternate-key-file contents for an alternate key not be 
automatically updated by the system when the value of an 
alternate-key field changes. 

Some reasons for not having automatic updating by the system are: 

• Certain fields may not be referred to until a later date. 
Therefore, they can be updated in a batch (one-pass) mode more 
efficiently. 

• A field can have multiple null values. In this case, the 
application program must have the alternate-key file open 
separately. The program must determine whether the field 
contains a null value. If it does not, the application 
program then inserts the alternate-key reference into the 
alternate-key file. 

CREATION EXAMPLES 

The next eight pages contain file-creation examples for five 
kinds of DPl files: 

1) key-sequenced file 
2) key-sequenced file with alternate keys 
3) alternate-key file for programmatically created primary 
4) partitioned relative file 
5) partitioned key-sequenced file 

If these were DP2 files, IBLOCK would be ignored because all 
blocks in a DP2 file are the same size. They could also have 
additional parameters specified, such as MAXEXTENTS or BUFFERED. 

Af' 82583 AOO 3/85 4-15 



File Creation 
Creation Examples 

Example 1: Key-Sequenced File 

To create a key-sequenced file for this record: 

byte: 
[O] [34] [134] [142] [150] 
!<name> I <address> I <curbal> r--<fim1 t>T 

Primary key 

using FUP, you could use these commands: 

:FUP 
GUARDIAN FILE UTILITY PROGRAM - T9000E05 - (010CT82) SYSTEM \AB 
-SET TYPE K 
-SET CODE 1000 
-SET EXT (16,1) 
-SET REC 150 
-SET BLOCK 2048 
-SET COMPRESS 
-SET IBLOCK 2048 
-SET KEYLEN 34 
-SHOW 

TYPE K 
CODE 1000 
EXT ( 16 PAGES, 1 PAGES ) 
REC 150 
BLOCK 2048 
IBLOCK 2048 
KEYLEN 34 
KEYOFF 0 
DCOMPRESS, ICOMPRESS 

-CREATE myf ile 
CREATED - $STORE1.SVOL1.MYFILE 

4-16 4°' 82583 AOO 3/85 



File Creation 
Creation Examples 

Using the CREATE procedure, you could write this in an 
application program: 

INT .cust"'filename [0:11] := "$STORE1 SVOLl MYFILE II • , 

.keyAparameters [0:2] := 

LITERAL 
priAextent = 16, 
file"'code = 1000, 
sec''extent = 1, 
file"'type = %33, 

rec"'len = 150, 
data"'blockAlen = 2048; 

34, key length. 
0, ! key off set. 
0, ] ; ! index-block size, uses 

the data-block size. 

primary-extent size = 16*2048 

secondary-extent size=1*2048. 
file type=key-sequenced, with 

data and index compression. 
record length. 

CALL CREATE (custAfilename, pri"'extent, fileAcode, sec"'extent, 
file"'type, rec"'len, data"'block"'len, key"'parameters); 

I F < THEN . . . ! error . 

~ 82583 AOO 3/85 4-17 



File Creation 
Creation Examples 

Example 2: Key-Sequenced File with Alternate Keys 

To create a DPl key-sequenced file for this INVENTORY record: 

byte: 
[0] [2] [32] [40] [42] [46] [54] 
I <partno> I <descr> 

t 
primary key 

I <price> I <av a i ,~_>_1 _<_1-.-o_c_> __ < __ v_e_n-T"~-o._r_>_I 

alternate alternate alternate 
key AQ key LO key VN 

using FUP, you could use these commands: 

-SET TYPE K 
-SET CODE 1001 
-SET EXT (32,8) 
-SErr REC 54 
-SET BLOCK 4096 
-SET IBLOCK 1024 
-SET KEYLEN 2 
-SErr ALTKEY ( "AQ", KEYOFF 40, KEYLEN 2) 
-SET ALTKEY ("LO",KEYOFF 42,KEYLEN 4) 
-SET ALTKEY ("VN",KEYOFF 46,KEYLEN 8) 
-SET ALTFILE (0,INVALT) 
-SHOW 

TYPE K 
CODE 1001 
EXT ( 32 PAGES, 8 PAGES ) 
REC 54 
BLOCK 4096 
IBLOCK 1024 
KEYLEN 2 
KEYOFF 0 
ALTKEY ( "AQ", FILE 0, KEYOFF 40, KEYLEN 2 
ALTKEY ( "LO", FILE 0, KEYOFF 42, KEYLEN 4 
ALTKEY ( "VN", FILE 0, KEYOFF 46, KEYLEN 8 
ALTFILE ( 0, $STORE1.SVOL1.INVALT ) 
ALTCREATE 

-CREATE inv 
CREATED - $STORE1.SVOL1.INV 
CREATED - $STORE1.SVOL1.INVALT 

The DP2 disc process ignores the !BLOCK specification. If this 
were a DP2 file, all blocks in this file would be 4096 bytes 
long. 

4-18 ~ 82583 AOO 3/85 



File Creation 
Creation Examples 

Using the CREATE procedure, you could write this in an 
application program: 

INT . inv"'f i lename [ 0: 11] : = "$STORE1 SVOLl INV "; 
.pri"'key [0:2] := [ 2, key length = 2. 

. alt"'keys [0:24] := 

LITERAL 
pri"'extent = 32, 

0, key offset = 0. 
1024 ]; index-block len.=1024 . 

%000403, 1 alternate-key file, 
3 alternate keys. 

! key description for key 1. 

"AQ"' 
40, 

2 ' 
0 , 

key specifier= "AQ". 
key offset = 40. 
key length = 2. 
key file number. 

! key description for key 2. 

"LO" 
42, 
4 I 

0 , 

key specifier= "LO". 
key offset = 42. 
key length = 4. 
key file number. 

! key description for key 3. 

"VN" 
46, 
8, 
0 , 

! key file name 

"$STORE1 " 
"SVOLl ", 
"INVALT "]; 

key specifier= "VN". 
key offset = 46. 
key length = 8. 
key file number. 

volume, 
subvolume, 
disc file name. 

primary extent size= 32*2048. 
f ile"'code = 1001, 
sec"'extent = 8, 
file""type = %03, 
rec""len = 54, 
data"'block"'len = 4096; 

secondary extent size=8*2048. 
file type = key-sequenced. 
record length = 54. 
data-block size = 4096. 

CALL CREATE (inv"'filename, pri""extent, file"'code, 
sec""extent, file"'type, rec"'len, 
data"'block"'len, pri"'key, alt"'keys); 

I F < THEN • . • ! e r r o r • 

Note that the alternate-key file must be created separately. 

~ 82583 AOO 3/85 4-19 



File Creation 
Creation Examples 

Example 3: Alternate-Key File 

The alt~rnate-key file for Example 2's key-sequenced file is 
created automatically when FUP is used for file creation. 

If the primary file is created programatically, the alternate 
file must be created in a separate operation. To create the 
alternate-key file for Example 2's key-sequenced file, you could 
write this sequence in an application program: 

INT .altAfilename [0:11] := "$STORE1 SVOLl INV ALT " 

.priAkey[0:2] := [ 12, 

LITERAL 
pri'"extent = 32, 
fileAcode = 1002, 
secAextent = 8, 
file"'type = %13, 

0' 
1024 ] ; 

recAlen = 12, 
dataAblock"'len = 4096; 

maximum alt.-key length 
! + primary-key length 
! + 2. 

key offset = O. 
index-block size = 1024. 

primary-extent size = 32*2048 

secondary-extent size=8*2048. 
file type = key-sequenced, 

with data compression. 
record length = 12. 
data-block size = 4096. 

CALL CREATE (altAfilename, priAextent, fileAcode, 
secAextent, fileAtype, recAlen, 
dataAblockAlen, priAkey); 

IF < THEN ! error. 

4-20 ~ 82583 AOO 3/85 



File Creation 
Creation Examples 

Example 4: Relative, Partitioned File 

To create a relative file with a record length of 128 bytes that 
spans four partitions, using FUP, you could use these commands: 

-SET TYPE R 
-SET EXT (64,8) 
-SET REC 128 
-SET BLOCK 4096 
-SET PART (l,$PART1,64,8) 
-SET PART (2,$PART2,64,8) 
-SET PART (3,$PART3,64,8) 
-SHOW 

TYPE R 
EXT ( 64 PAGES, 8 PAGES ) 
REC 128 
BLOCK 4096 
PART ( 1, $PART1, 64, 8 
PART ( 2, $PART2, 64, 8 
PART ( 3, $PART3, 64, 8 

-CREATE f ilea 
CREATED - $PART0.USERA.FILEA 

Using the CREATE procedure, you could write this in an 
application program: 

INT .relAfilename[O:ll] := "$PART0 

.partarray [0:17] := [ 3, 
"$PART1 
"$PART2 
"$PART3 
64, 
64, 
64, 

8 ' 
8' 
8 ] : 

LITERAL 
priAextent = 64, 
secAextent = 8, 
fileAtype = %01, 
recAlen = 128, 
dataAblockAlen = 4096: 

" 
" 
" 

USERA FILEA ", 
partition parameters array 
number of extra partitions 
volume name of first extra 
volume name of second extra 
volume name of third extra 
primary ext. for first extra 
pri. extent for second extra 
pri. extent for third extra 
second. ext. for first extra 
sec. extent for second extra 
sec. extent for third extra 

primary extent size = 64*2048 
secondary extent size=8*2048 
file type = relative. 
record length = 128. 
data-block size = 4096. 

CALL CREATE (relAfilename, priAextent,, 
secAextent, fileAtype, recAlen, 
dataAblockAlen,,,partarray): 

IF < THEN . . . ! error. 

~ 82583 AOO 3/85 4-21 



File Creation 
Creation Examples 

Example 5: Key-Sequenced, Partitioned File 

This example partitions a key-sequenced file having this record 
format: 

byte: 
[0] [36] 
~,--<-n_a_m_e_> ___ I ·---

primary key 

The file resides on six volumes and is partitioned in this 
manner: 

<names> whose first two 
letters are in the range reside on 

00 \ 

I 
DA \ 

I 
HA \ 

I 
LA \ 

I 
PA \ 

I 
TA \ 

I 

> ------------------> $PARTO 

> ------------------> $PART1 

> ------------------> $PART2 

> ------------------> $PART3 

> ------------------> $PART4 

> ------------------> $PART5 

Using FUP to create this file, you could use these commands to 
describe the partitioning: 

-SET PART (1,$PART1,64,8,"DA") 
-SET PART (2,$PART2,64,8,"HA") 
-SET PART (3,$PART3,64,8,"LA") 
-SET PART (4,$PART4,64,8,"PA") 
-SET PART (5,$PART5,64,8,"TA") 

4-22 ._, 82!)83 AOO 3/85 



File Creation 
Creation Examples 

Using the CREATE procedure to create this file, the partitioning 
would be described in this partition array: 

.partarray [0:36] := [ 5, 
"$PART1 
"$PART2 
"$PART3 
"$PART4 
"$PART5 
64, 

"1 82583 AOO 3/85 

64, 
64, 
64, 
64, 
8' 
8' 
8' 
8' 
8' 
2 ' 
"DA", 
"HA", 
"LA", 
"PA", 
"TA" 
]: 

II 

" 
" 
" 
" 

partition-parameters array 
number of extra partitions 
volume name of first extra 
volume name of second extra 
volume name of third extra 
volume name of fourth extra 

' volume name of fifth extra 
primary extent for first extra 
primary extent for second extra 
primary extent for third extra 
primary extent for fourth extra 
primary extent for fifth extra 
secondary extent for first extra 
secondary extent for second extra 
secondary extent for third extra 
secondary extent for fourth extra 
secondary extent for fifth extra 
partial-key length = 2 
key value for $PART1 
key value for $PART2 
key value for $PART3 
key value for $PART4 
key value for $PART5 

4-23 





SECTION 5 

FILE ACCESS 

Topics discussed in this section are: 

• Opening files 

• Access rules for structured files 

• Access rules for unstructured files 

• Other considerations for both structured and unstructured 
files, such as locking records and files, verifying write 
operations, refreshing, and programmatic allocation and 
deallocation of extents 

• Error-recovery considerations for key-sequenced files, for 
files having alternate keys, and for partitioned files 

• Access examples 

File creation is discussed in Section 4, "File Creation," and in 
the descriptions of the File Utility Program (FUP) in the 
GUARDIAN Operating System Utilities Reference Manual and GUARDIAN 
Operating System User'~ Guide. 

OPENING AND CLOSING A FILE 

Communication is established with a disc file through use of the 
OPEN procedure. For example, this code opens a permanent disc 
file: 

Af' 82583 AOO 3/85 5-1 



File Access 
Opening and Closing a_ File 

I NT . f i 1 e"' name [ 0 : 11 ] : = " $VOL 2 STOREl TRANFILE"; 

CALL OPEN ( file"'name, file"'number,,1 ); 

IF <> THEN 

wait I/0, 
shared access, 
read/write access, 
sync depth = 1. 

Subsequently, the file is identified to other procedures by the 
file number returned by the OPEN procedureo 

Access to a disc file is terminated by use of the CLOSE 
procedure, as shown here: 

CALL CLOSE ( file"'number ); 

Communication is established with a temporary file by passing the 
array containing the temporary file name, returned from CREATE, 
to the OPEN procedure: 

CALL OPEN ( temp"'file, temp"'file"'number,, 1 ); ! wait I/0, 

IF <> THEN ... 

! shared access, 
read/write access, 
sync depth = l ,. 

As with a permanent file, other procedures access the temporary 
file by using the file number returned by OPEN. 

A temporary file is purged when you close it. In the example 
above, 

CALL CLOSE ( temp"'file"'number ); 

would delete the temporary file from volume $VOL2. 

If you do not want the file purged when it is closed, a temporary 
file can be made permanent by use of the RENAME procedure. In 
this example, 

5-2 

newAname ':=' "$VOL2 STOREl NEWFILE "; 
CALL RENAME ( temp"'file"'number, newAname ); 
IF< THEN .•.• 

CALL CLOSE ( temp"'file"'number ); 

._, 82583 AOO 3/85 



File Access 
Opening and Closing a File 

the temporary file is renamed, making it permanent. The volume 
name supplied to RENAME must be the same as that used when the 
temporary file was created, but both the subvolume and the file 
name can be different. 

OPENING PARTITIONED OR ALTERNATE-KEY FILES 

When the first partition of a partitioned file is opened, all 
partitions are automatically opened. If one of the partitions 
cannot be opened, access to the file is still granted but OPEN 
returns a CCG warning indication (see "Condition Codes" in 
Section 3) and some operations may not work. You can call the 
FILEINFO procedure to obtain the file-system error number and the 
FILERECINFO procedure to identify the highest-numbered partition 
that did not open. 

Individual partitions cannot be opened separately unless 
"unstructured access" (OPEN <flags>.<2> = 1) is specified. See 
the OPEN procedure in the System Procedure Calls Reference Manual 
for details on unstructured access. 

If the file has one or more alternate keys, all alternate-key 
files are automatically opened when the primary file is opened. 
If an alternate-key file cannot be opened, OPEN returns a CCG 
warning indication. You can then call the FILEINFO procedure to 
obtain the file-system error number and the FILERECINFO procedure 
determine which key file couldn't be opened. The file is still 
accessible. However, an attempt to use an access path associated 
with an alternate-key file that did not open results in an error 
46 ("invalid key specified"). 

Alternate-key files can be opened and accessed separately from 
their primary files. 

If the file is not partitioned and does not have alternate keys, 
there are no special considerations. 

ACCESS TYPES (DP2 Files Only) 

Buff er and cache management under the DP2 disc process are more 
efficient if you specify the proper access ~ when you open a 
file. Which one you should specify depends on how you intend to 
use the file. 

• If you specify system-managed access, the default access 
type, the disc process uses previous I/O requests as a basis 
for predicting whether the user is performing random or 
sequential access and optimizes its behavior accordingly. 

~ 82583 AOO 3/85 5-3 



File Access 
Access Types 

• If you specify random access, the disc process employs a 
"least recently used" (LRU) method when reusing cache space. 
This helps ensure that a frequently used block can remain in 
the cache instead of being read in each time it is needed. 

• If you specify sequential access, the disc process allocates 
a single cache buffer, reusing Tt when the next data block is 
requested. This prevents the cache space from being filled 
with data blocks that the user probably will not need again. 

• If you specify direct I/O, the disc process bypasses the 
cache completely when the file has been opened with write
through, unstructured access in either exclusive read/write 
or protected read-only mode. Direct I/0 could be desirable 
in an application which requires fast unstructured access and 
receives no benefit from the cache mechanism. 

The SETMODE procedure lets you set or examine the access type for 
any DP2 file. 

END-OF-FILE POINTER 

An end-of-file (EOF) pointer is associated with each disc file. 
This pointer contains the relative byte address of the first byte 
of the next available block. When appending to a file, the end
of-file pointer is advanced automatically each time a new block 
is allocated at the end of the file. 

The system maintains the working copy of a file's end-of-file~ 
pointer in the file control blocks (FCBs) that are in both of the 
two system processes that control the associated disc volumeo A 
file's end-of-file address is physically written on disc every 
time one of these events occurs: 

• The file is created. 

• An extent is allocated for the file. 

• A CONTROL operation is performed for the file. 

• The last accessor closes the file. 

• The REFRESH procedure is called for the file. 

• The PUP command REFRESH is executed for the file's volume. 

• The end-of-file pointer is changed (if the autorefresh option 
is in effect). 

• A block split or collapse occurs in a DP2 key-sequenced file. 

5-4 ~ 82583 AOO 3/85 



File Access 
Access Types 

The autorefresh option can be specified when the file is first 
created. Even if a file is created without the autorefresh 
option specified, it can be modified at some later date to 
include the autorefresh option. DP2 key-sequenced files always 
have this option on. 

When creating a file with the CREATE procedure, you can specify 
the autorefresh option by setting <file type>.<12> = 1. When 
creating a file with FUP, you can specify the autorefresh option 
with the SET REFRESH command. For files created without the 
autorefresh option, the option can specified at any time with the 
FUP command ALTER ... REFRESH ON. 

The "Refreshing" subsection below discusses when and how 
frequently files should be refreshed. 

AUDIT-CHECKPOINT COMPRESSION (DP2 Files Only) 

If a file is audited or is opened with "sync depth" greater than 
0, updating a record in that file causes an audit-checkpoint 
(AC) record to be created. The AC record, describing changes 
incurred for the update, is sent to the backup disc process. If 
the file is audited by TMF, the AC record also is sent to the 
audit trail's disc process. 

If the file is audited, the AC record gets copied from place to 
place several times. It occupies permanent space in the audit
trail file and also occupies resident memory in the backup disc 
process until the backup determines that the updated record has 
been written to disc. If the file is not audited, the AC record 
is sent as a checkpoint message to the backup disc process, where 
it occupies resident memory until it is no longer needed for 
takeover recovery. 

An AC record includes (1) an AC-record header approximately 64 
bytes long, (2) a copy of the record before the update, or 
before-image, and (3) a copy of the record after the update, or 
after-image. If a data record is 1000 bytes long, therefore, the 
AC record for its update would be 2064 bytes long. 

When you create a DP2 file, you can specify audit-checkpoint 
compression to lessen this overhead. Later, you can turn this 
feature on or off by using the SETMODE procedure or the File 
Utility Program (FUP) command ALTER. 

AC compression shortens parts (2) and (3) of the AC record by 
omitting the changed fragments of the data record. The AC record 
must include the record key (in a key-sequenced file), record 
number (in a relative file), or relative byte address (in an 
entry-sequenced or unstructured file), but no other unchanged 

~ 82583 AOO 3/85 5-5 



File Access 
Audit-Checkpoint Compression 

fields. For example, if only two 10-byte fields in a 1000-byte 
record were updated, the compressed AC record could be about 130 
bytes long instead of 2064 bytes. Although AC compression uses 
some extra CPU cycles, it has several advantages: 

• CPU and memory cycles are reduced during message transferral, 
although some extra cycles are required to perform the 
compression. If the file in our example is audited, the 
compressed AC record causes only 1040 bytes of I/0 (8 * 130) 
instead of 16,512 bytes (8 * 2064). 

• Resident memory requirements in the backup CPU are reduced. 

• If the file is audited, audit-trail consumption is reduced and 
audit-blocking is more efficient because of the smaller AC 
records. 

When you create a data file of any type, you can establish 
whether AC compression should be enabled or disabled when the 
file is opened. After you open the file, you can use the SETMODE 
procedure to enable or disable AC compression. 

Even when AC compression is enabled for a file, not every AC 
record is compressed. Also, some limits are imposed to keep the 
space used for recording the compression from becoming ~1reater 
than the unchanged fragments that would be omitted. 

• If the record length is less than a certain limit, the disc 
process does not compress the record. This limit, 20 bytes in 
the BOO release, is subject to change. 

• If an update changes the record length, the disc process does 
not compress the AC record. 

• If two changed fragments of a record are sufficiently close to 
each other, they and the bytes between them are considered one 
changed fragment. 

• If more than a certain limit of fragments are changed, the 
entire remainder of the record is considered the last 
fragment. 

• After the changed fragments are identified, the total size of 
the prospective compressed AC record is computed and compared 
to the size of a noncompressed AC record. If the savings are 
insufficient, the noncompressed AC record is used. 

Key-sequenced records with large keys reduce the effectiveness of 
AC compression because the key must be kept in the AC record. 

5-6 ~ 82583 AOO 3/85 



File Access 
Access Rules for Structured Files 

ACCESS RULES FOR STRUCTURED FILES 

The best way to get access to a structured file depends on what 
you want to do with that file. 

Sequential Access 

Sequential processing, in which a related group (subset) of 
records is to be read in ascending order using the current access 
path, is accomplished by the READ and READLOCK procedures. 

The records comprising a subset are indicated by the file's 
current positioning mode: approximate, generic, or exact. A 
subset can be all or part of a file or it can be empty. An 
attempt to read beyond the last record in a subset or to read an 
empty subset returns an end-of-file indication. 

The first call to READ or READLOCK, after a file-opening or 
positioning operation, reads the record (if any) at the current 
position. Subsequent calls to READ or READLOCK, without 
intermediate positioning, return successive records (if any) in 
the designated subset. 

Sequential reading of a relative file, after a call to OPEN, 
POSITION, or approximate KEYPOSITION by primary key, reads the 
file sequentially and skips omitted or deleted records. 

After each call to READ or READLOCK, the position of the returned 
record becomes the current position. 

Random Access 

The update procedures, READUPDATE, WRITEUPDATE, READUPDATELOCK, 
and WRITEUPDATEUNLOCK, are used for random-access processing. 
The updating operation occurs at the record indicated by the 
current position. Random processing implies that a record to be 
updated must exist. Therefore, if no record exists at the 
current position (as indicated by an exact match of the current 
key value with a value in the key field designated by the 
current-key specifier), a "record not found" error (<error>= 11) 
is returned. 

WRITEUPDATE or WRITEUPDATEUNLOCK cannot be used to alter a 
record's primary key. If this is to be done, the record must 
first be deleted, then inserted (via WRITE) using the new value 
of the primary key. 

~ 82583 AOO 3/85 5-7 



File Access 
Access Rules for Structured Files 

If updating or locking is attempted immediately after a call to 
KEYPOSITION where a non-unique alternate key is specified, the 
updating or locking fails with an "invalid key" error (<error> = 
46). However, if an intermediate call to READ or READLOCK is 
performed, the updating or locking is permitted. 

Inserting Records 

Record insertion is accomplished via the WRITE procedure. 
Insertion implies that no other record exists with the same 
primary-key value as the record being inserted. Therefore, if 
such a record already exists, the operation is not performed and 
a "duplicate record error" (<error> = 10) is returned. 

If an alternate key has been declared to be unique and an attempt 
is made to insert a record having a duplicate value in such an 
alternate-key field, the operation is not performed and a 
''duplicate record error" (<error> = 10) is returned. 

Insertion of an empty record (one where <write count> = 0) is not 
valid for key-sequenced and relative f ilesv but is valid for 
entry-sequenced files. The length of a record to be inserted 
must be less than or equal to the record length defined for the 
file. If not, the insertion is not performed and an "invalid 
count" error (<error> = 21) is returned. 

Deleting Records 

Record deletion (that is, WRITEUPDATE or WRITEUPDATEUNLOCK where 
<count> = 0) always applies to the current position in at file. 

Alternate Keys 

Alternate-key fields are fixed-length but need not be written 
when inserting or updating a record. If any part of a given 
alternate-key field is present when inserting or updating a 
record, the entire field must be present. 

5-8 "1J 82583 AOO 3/85 



File Access 
Access Rules for Structured Files 

Current Position 

The current position is subject to change only after a call to 

• READ or HEADLOCK from any structured file 

• WRITE for a relative or entry-sequenced file 

• KEYPOSITION for a key-sequenced, relative, or entry-sequenced 
file 

• POSITION for a relative, entry-sequenced, or unstructured file 

After a call to READ or HEADLOCK, the current position becomes 
the position of the record just read. After a call to WRITE for 
a relative or entry-sequenced file, the current position becomes 
the position of the record just written. 

Current Key Value 

Except for insertions to key-sequenced files, the current key 
value will be set to the value of the record transferred. 

Current Primary-Key Value 

A file's current primary-key value is taken from the primary key 
associated with the last 

• READ or HEADLOCK operation from any structured file 

• WRITE operation to a relative or entry-sequenced file 

• KEYPOSITION operation by primary key for a key-sequenced file 

• POSITION operation by primary key for a relative or entry
sequenced file 

Sequential Block-Buffering 

In a Nonstop 1+ system, a process can optionally specify (when a 
file is opened) that the file system should use an array in the 
process's data area for deblocking records. In a Nonstop system, 
the array is in the process file segment (PFS), not in the data 
stack. The use of such an array is called sequential 
block-buffering. 

....,..1 82583 AOO 3/85 5-9 



File Access 
Access Rules for Structured Files 

Without sequential block-buffering, the system separately 
requests each record from a disc process; for each record, this 
involves sending an interprocess message, changing the 
environment, and possibly waiting to obtain some of the system 
data space. With sequential block-buffering, an entire block is 
returned from the disc process and stored in the application 
process's data area or in the PFS. Once a block is there, 
subsequent access to records within that block is performed by 
file-system code, not the disc process, and requires no disc 
access, no communication with the disc process, and no 
environment changes. Therefore, sequential reading from a block 
buffer can eliminate many messages. 

Reading the buffered data does not use the disc process until: 

• The block has been traversed, at which time the disc process 
fetches another block. 

• An intervening POSITION or KEYPOSITION is performed. In this 
case, the next READ request causes a new block to be fetched. 

• A disallowed request (such as READUPDATELOCK, READLOCK, or 
READUPDATE) is specified. In this case, the single record 
requested is read from the disc file to the user process, as 
in a normal procedure call, and the buffer is cleared. 

CAVEATS. Note that this option is meaningful only for sequential 
reading of multiple records of a structured file. Neither random 
reading nor any writing can take advantage of the sequential 
buffer. In fact, writing operations automatically clear the 
buffer, because they must go to the disc process. 

Also, you should be very careful when using the buffer with a 
key-sequenced file, because record access within the buffer is 
unstructured. 

Sequential block-buffering ignores any record locks that may be 
in effect for the block. It does not, however, bypass file 
lockse 

To change a record that has been read from a block buffer, you 
should first perform intervening POSITION, KEYPOSITION, JREADLOCK, 
or READUPDATELOCK operations to fetch the record via normal 
methods. This ensures that the record has not been altered or 
deleted by another user since the block was read. It also 
ensures that the record is not currently locked by another 
process and locks out other processes from the record to be 
updated. 

5-10 .,,. 82583 AOO 3/85 



File Access 
Access Rules for Structured Files 

OPEN PARAMETERS. Nonstop systems and Nonstop 1+ systems differ 
in their handling of these buffers. In either system, however, 
the OPEN procedure's <sequential block buffer> and <buffer 
length> parameters govern creation of a buffer. 

In a Nonstop 1+ system, the <sequential block buffer> parameter 
contains the address of a storage area to be used as the block 
buffer. The <buffer length> parameter must be greater than or 
equal to the data-block length of the primary file or any 
associated alternate-key files. (The data-block length is 
specified when a file is created.) If the specified length is 
too short, the OPEN operation succeeds but returns a CCG 
indication (a subsequent call to FILEINFO returns <error> = 5, a 
"failure to provide sequential buffering" warning) and the 
application process's sequential buffer is not used; instead, 
normal system buffering is used. For example: 

INT .seqAbuffer [ 0:2047 ]; sequential block buffer. 

flags := %2060; ! read-only, protected, wait I/0. 
CALL OPEN fileAname,fileAnumber,flags,,,,seqAbuffer,4096 ); 
IF < THEN ! OPEN failed. 

ELSE 
IF > THEN 

BEGIN ! file successfully opened 
CALL FILEINFO ( fileAnumber , error ); 
IF error = 5 THEN ! sequential buffer request rejected. 

END the file is successfully opened 

The file is then read sequentially in the normal manner. 

eof := 0; 
WHILE NOT eof DO 

BEGIN 
CALL READ ( fileAnumber, buffer, reclen, countread ); 
IF > THEN eof := 1 
ELSE 

END; 

When READ is called and the sequential block buffer is empty 
(either this is the first record read from the file or all 
records in the block have been read), the file system transfers a 
data block from the disc-I/0 process to the sequential block 
buffer ("seqAbuffer") in the application process's data area. 
For each call to READ, a record is deblocked from the sequential 
block buffer and transferred into the array called "buffer". 

In a Nonstop system, however, the <sequential block buffer> 
parameter serves only as a numeric buffer identifier, because the 

~ 82583 AOO 3/85 5-11 



File Access 
Access Rules for Structured Files 

file system allocates the buffer space from the PFS. This 
parameter can be omitted if buffer space is not to be shared (see 
"Sharing Buffer Space" below); <buffer length> is the more 
significant parameter because: 

• If the <buffer length> parameter is zero or absent, or is 
longer than the space available in the PFS, the OPEN operation 
succeeds but returns a CCG indication with error 5 (a "failure 
to provide sequential buffering" warning) and block-buffering 
is not used. 

• If the <buffer length> parameter is greater than the filevs 
block size, the buffer will be created with the specified 
size. 

• If the <buffer length> parameter is nonzero but not greater 
than the file's block size, the buffer size will equal the 
block size. For example, if a file with block size 4096 is 
opened with <buffer length> 128 specified, the buffer will be 
created for a block size of 4096. This is often the easiest 
way to provide the most efficient usage of buffer space. 

ALTERNATE-KEY FILES. If you want to use an alternate-key access 
path and the alternate-key file's block size is larger than that 
of the primary file, be certain to open the primary file with the 
larger <buffer length> parameter. 

If access to a primary file uses sequential block-buffering, so 
does access to its alternate-key records. 

After KEYPOSITION with a nonzero key specifier, the first READ 
request causes the disc process to fetch a data block from the 
alternate-key file into the buffer area. The disc process then 
fetches a single record from the primary data file via the 
alternate-key specification in the buffer. Thus the benefits and 
limitations of sequential block-buffering apply to the alternate
key-file I/0, not to the primary-file I/0. 

SHARED FILE ACCESS. For sequential block-buffering, the file 
usually should be opened with protected or exclusive access. 
Combining sequential block-buffering and shared access is allowed 
on either a Nonstop system or a Nonstop 1+ system, but you should 
beware that this combination can cause some concurrency problems. 

If another process is updating data copied into the block buffer, 
those updates may not be seen by the process using the buffer. 
For example, assume process A is reading a buffered block of data 
while process B inserts a new record into that block on the disc. 
The new record will not be in the buffer that process A is 
reading. Although process A's user might expect to see the 

5-12 ~ 82583 AOO 3/85 



File Access 
Access Rules for Structured Files 

record that process B inserted, that record will not be in the 
buffer unless process A reads that block again. 

SHARING BUFFER SPACE. In either kind of system, you can have two 
or more files share the same buffer space by specifying identical 
<sequential block buffer> parameters in OPEN. This can cause 
significant memory-consumption savings in some applications. 

When using this feature, however, be certain that the first file 
opened either has the largest block size or is opened with enough 
buffer space to accommodate the largest file. If a file tries to 
share a buffer that was already created with a smaller block 
size, the OPEN operation succeeds but returns a CCG indication 
with error 5 (a "failure to provide sequential buffering" 
warning) and block-buffering is not used. 

A shared buff er can be useful when reading whole blocks of data 
from several files, but it would be inefficient when reading a 
single record or switching back and forth between files, because 
the buffer is refilled each time a new file or random record is 
read. 

If you omit the <sequential block buffer> parameter when opening 
a file on a Nonstop system, the file cannot share a buffer. 

ACCESS RULES FOR UNSTRUCTURED FILES 

The best way to get access to an unstructured file depends on 
what you want to do with that file. 

File Pointers and Relative Byte-Addressing 

Data access in an unstructured disc file is via a relative byte 
address (RBA). The first byte in a file is at RBA zero. A 
relative byte address is an offset, in bytes, from the first 
byte. 

Three pointers are associated with each open, unstructured disc 
file: 

• The next-record pointer contains the RBA of the location where 
the next disc transfer (READ or WRITE) begins. 

• The current-record pointer contains the RBA of the location 
just read or written, which is the address where a disc 
transfer due to a READUPDATE or WRITEUPDATE begins. 

..., 82583 AOO 3/85 5-13 



File Access 
Access Rules for Unstructured Files 

• The end-of-file pointer contains the RBA of the next even
numbered byte after the last significant data byte in a file 
(unless the file has ODDUNSTR set). The end-of-file pointer 
is incremented automatically when a record is appended to the 
end of a file (WRITE). It can be set explicitly by calls to 
the POSITION and CONTROL procedures. 

Separate next-record and current-record pointers are associated 
with each opening of an unstructurej disc file so, if the same 
file is open several times simultaneously, each opening provides 
a logically separate access. The next-record and current-record 
pointers reside in the file's access control block (ACB) in the 
application process environment. 

A single end-of-file pointer, however, is associated with all 
openings of a given unstructured disc file. This permits data to 
be appended to the end of a file by several different accessors. 
The end-of-file pointer resides in the file's file control block 
(FCB) in the disc-I/0-process environment. A file's end-of-file 
pointer value is copied from the file label on disc when the file 
is opened and is not already open; the end-of-file pointer value 
in the file label is updated (1) when any CONTROL operation to 
the file is performed, (2) when a file extent is allocated for 
the file, and (3) when the file is closed and there are no other 
openings of the file. 

An unstructured file's end-of-file address is physically written 
on disc every time one of these events occurs: 

• The file is created. 
• An extent is allocated for the file. 
• A CONTROL operation is performed for the file. 
• The last accessor closes the file. 
• The REFRESH procedure is called for the file. 
• The PUP REFRESH command is executed for the file's volume. 
• The end-of-file pointer is changed (if the autorefresh option 

is in effect). 

The autorefresh option can be specified when the file is first 
created. Even if a file is created without the autorefresh 
option specified, it can be modified at some later date to 
include the autorefresh option. 

When creating a file with the CREATE procedure, you can specify 
the autorefresh option setting <file type>o<12> to 1. When 
creating a file with FUP, you can specify the autorefresh option 
with the SET REFRESH command. For files created without the 
autorefresh option, you can specify the option at any time with 
the FUP command ALTER REFRESH. 

Table 5-1 summarizes pointer action with unstructured disc files. 

5-14 Afj 82583 AOO 3/85 



File Access 
Access Rules for Unstructured Files 

Table 5-1. File-Pointer Action 

In this table, <count> is the specified transfer count. If 
the file was created with the CREATE procedure's ODDUNSTR 
parameter set, the value specified for <count> is the number 
of bytes transferred. If the ODDUNSTR parameter was not set 
when the file was created, <count> is rounded up to an even 
number before the data are transferred. 

CREATE 

file label's end-of-file pointer := OD: 

OPEN (first) 

end-of-file pointer := file label's end-of-file pointer: 

OPEN (any) 

current-record pointer := next-record pointer := OD: 

READ 

current-record pointer := next-record pointer: 
next-record pointer := next-record pointer + 

$min (<count>, eof pointer - next-record pointer): 

WRITE 

if next-record pointer = -lD then 
begin 

current-record pointer := end-of-file pointer: 
end-of-file pointer := end-of-file pointer + <count>; 

end 
else 

begin 
current-record pointer := next-record pointer: 
next-record pointer := next-record pointer + <count>; 
end-of-file pointer := $max( end-of-file pointer, 

next-record pointer ); 
end; 

READUPDATE 

file pointers are unchanged 

~ 82583 AOO 3/85 5-15 



File Access 
Access Rules for Unstructured Files 

Table 5-1. File-Pointer Action (continued) 

WRITEUPDATE 

file pointers are unchanged 

CONTROL (write end-of-file) 

end-of-file pointer := next-record pointer; 
file label's end-of-file pointer := end-of-file pointer; 

CONTROL (purge data) 

current-record pointer := next-record pointer := 
end-of-file pointer := OD; 

file label's end-of-file pointer := end-of-file pointer; 

CONTROL (allocate/deallocate extents) 

file pointers are unchanged 
file label's end-of-file pointer :- end-of-file pointer; 

POSITION 

current-record pointer := next-record pointer := 
<relative byte address>; 

CLOSE (last) 

file label's end-of-file pointer := end-of-file pointer; 

Sequential Access 

READ and WRITE increment the next-record pointer by the number of 
bytes transferred; therefore, automatic sequential access is 
provided to the unstructured file. 

If the file was created with the ODDUNSTR parameter setv the 
number of bytes transferred and the amount the pointers are 
incremented are exactly the number of bytes specified with <write 
count> or <read count>. If the ODDUNSTR parameter was not set 
when the file was created, the values of <write count> and <read 
count> are rounded up to an even number before the transfer takes 
place and the file pointers are incremented by the rounded-up 
value. 

5-16 ~ 82!583 AOO 3/85 



File Access 
Access Rules for Unstructured Files 

EXAMPLE. This sequence of ENSCRIBE calls shows how the file 
pointers are used when sequentially accessing an unstructured 
disc file. Assume these are the first operations to the file 
after OPEN: 

CALL READ fileAa, buffer, 512 ); 

CALL READ fileAa, buffer, 512 ); 

CALL WRITEUPDATE ( fileAa, buffer, 512 ); 

CALL READ ( fileAa, buffer, 512 ); 

The first READ transfers 512 bytes into "buffer" starting at 
relative byte 0. The next-record pointer now points to relative 
byte 512 and the current-record pointer points to relative byte 
o. 
The second READ transfers 512 bytes into "buffer" starting at 
relative byte 512. The next-record pointer now points to 
relative byte 1024 and the current-record pointer points to 
relative byte 512. 

The WRITEUPDATE procedure then replaces the just-read data with 
new data in the same disc location. The file system transfers 
512 bytes from "buffer" to the file, at the position indicated by 
the current-record pointer (relative byte 512). The next-record 
and current-record pointers are not affected by the WRITEUPDATE 
procedure. 

The third READ transfers 512 bytes into "buffer" starting at 
relative byte 1024 (the address in the next-record pointer). The 
next-record pointer then points to relative byte 1536, and the 
current-record pointer points to relative byte 1024. 

ENCOUNTERING THE END OF THE FILE DURING SEQUENTIAL READING. When 
the end-of-file (EOF) boundary is encountered during reading of 
an unstructured disc file, data up to the EOF location are 
transferred. A subsequent READ will return an EOF indication 
(condition code of CCG) because it is not permissible to read 
data past the EOF location. If the file is not repositioned, the 
EOF indication will be returned with every subsequent READ. 

For example, assume an unstructured file is written on disc, with 
the EOF location at relative byte 4096. Sequential readings of 
512 bytes each are executed, starting at relative location 0: 

AfJ 82583 AOO 3/85 5-17 



File Access 
Access Rules for Unstructured Files 

file"'eof := O: 
WHILE NOT f ile"'eof DO 

BEGIN 
CALL READ ( file"'a, buffer, 512, num"'read, .. ): 
IF > THEN file"'eof := 1 
ELSE 
IF = THEN 

BEGIN 
.•• process the data ... 

END 
ELSE . . . ! error. 

END: 

Each of the first eight READ calls transfers 512 bytes into 
"buffer", returns "num"'read" = 512, and sets the condition-code 
indicator to CCE (operation successful). 

READ 1 READ 2 READ 3 READ 8 READ 9 
(512 BYTES) {512 BYTES) (512 BYTES) (512 BYTES) (EOF) 

/-~~J__--v---~, 

c ·r_ c 
t t t t t t 
0 512 1024 1536 3584 
RELATIVE BYTE ADDRESS 

Figure 5-1. Example of Encountering EOF 

4096 
(EOF) 

$5033-014 

The next READ fails, so no data are transferred into "buffer", 
"num"'read" is returned as zero (0), and the condition-code 
indicator is set to CCG (end-of-file indication). 

Figure 5-1 shows a sample EOF encounter. 

If sequential READS of 400 bytes are executed from the same file, 
the results are slightly different: 

5-18 Afj 82583 AOO 3/85 



File Access 
Access Rules for Unstructured Files 

file""eof := O; 
WHILE NOT f ileAeof DO 

BEGIN 
CALL READ ( fileAa, buffer, 400, numAread, .. ): 
IF > THEN fileAeof := 1 
ELSE 
IF = THEN 

BEGIN 
... process the data ... 

END 
ELSE ... ! error. 

END: 

In this case, the first 10 READ calls each transfer 400 bytes 
into "buffer", return "num"'read" = 400, and set the condition
code indicator to CCE (operation successful). The eleventh READ 
transfers 96 bytes into "buffer", returns "numAread" = 96, and 
sets the condition-code indicator to CCE. The next READ fails 
and sets the condition-code indicator to CCG. This situation is 
illustrated in Figure 5-2. 

READ 1 
(400 BYTES) 

READ 2 READ 3 READ 10 READ 11 READ 12 
(400 BYTES) (400 BYTES) 

I I v v I 
/ v 

t t t t 
0 400 800 1200 

RELATIVE BYTE ADDRESS 

(400 BYTES) (96 BYTES) (EOF) 

-~ 

t 
3600 

l I 
t t 

4000 4096 
{EOF) 

85033-015 

Figure 5-2. Example of Encountering EOF (Short READ) 

Random Access 

Random access to an unstructured disc file is accomplished by 
setting the file pointers explicitly. This is done by calling 
the POSITION procedure and specif ing the starting location to be 
accessed in the <relative byte address> parameter. 

For example, to update data in an unstructured disc file at 
relative byte address 81920, you could use this sequence of 
calls: 

.,.1 82583 AOO 3/85 5-19 



File Access 
Access Rules for Unstructured Files 

CALL POSITION ( fileAa, 819200 ); 

CALL READUPDATE ( fileAa, buffer, 512 ); 

CALL WRITEUPDATE ( fileAa, buffer, 512 ); 

The call to POSITION sets the next-record and current-record 
pointers to relative byte 81920. 

The call to READUPDATE transfers 512 bytes from the file to 
"buffer", starting at relative byte 81920. Following the read, 
the next-record and current-record pointers are unchanged. 

The WRITEUPDATE procedure replaces the just-read data with new 
data in the same location on disc. The file system transfers 512 
bytes from "buffer" to the file at relative byte 81920. 

Appending to the End of a File 

The POSITION procedure can be used to append data to the end of 
an unstructured disc file. To set the pointer to the current 
end-of-file, pass -lD as the <relative byte address> parameter: 

CALL POSITION ( fileAa, -lD ): 

The next-record pointer now contains -lD. This indicates to the 
file system that subsequent WRITE calls should append to the end 
of the file. 

A subsequent WRITE, then, appends 512 bytes to the end of the 
file: 

CALL WRITE ( fileAa, buffer, 512, numAwritten ): 

The file system transfers 512 bytes from "buffer" to the current 
end-of-file location (131072). The next-record and end-of-file 
pointers .now point to relative byte 131584: the current-record 
pointer points to relative byte 131072; the next-record pointer 
still contains -lD, so a subsequent WRITE also appends to the end 
of the file. 

Figure 5-3 shows an example of using POSITION for both random 
access and appending to the end of an unstructured disc :file. 

5-20 ,,, 82583 AOO 3/85 



r OPEN 
READ 2, 

READ 1 WRITEUPDATE 

I 512 

I 
512 

I 

t t t 
CUR-REC PTR 0,0 512 1024 
NEXT-REC PTR 0 512 1024 
EOF PTR 

File Access 
Access Rules for Unstructured Files 

POSITION (81920D) 
~POSITION (-10) l READUPDATE, 

READ 3 WRITEUPDATE WRITE 
/~ ~ 

512 

I J 
512 G 

t t t t t 
81920 131,072 

1536 81920 131,072 131,584 
131,072 131,584 

85033-016 

Figure 5-3. Example of File-Pointer Action 

Heeding Sector or Buffer Boundaries 

Disc storage is divided into physical sectors, each containing 
512 bytes. Any disc READ or WRITE operation, regardless of the 
number of bytes transferred, involves at least one sector and can 
involve as many as eight sectors (4096 bytes). 

It is most efficient to transfer whole sectors of information. 
This means the most efficient transfers are multiples of 512 
bytes on 512-byte boundaries. These boundaries are easy to find 
because a file always starts on a sector boundary. 

The DP2 disc process treats the buffer size of an unstructured 
file as a substitute for sector size. This buffer size must be 
512, 1024, 2048, or 4096 bytes. For a DP2 unstructured file, 
then, the most efficient transfer starts on a <buffer-size> 
boundary and is an integral multiple of the buffer size. Thus, 
if the buffer size is 4096, you can plan efficient transfers as 
you would with a DPl disc having 4096-byte sectors. 

Consider a disc operation transferring two full sectors of 
information (1024 bytes) to an unstructured disc file, starting 
at relative address 512: 

POSITION (outAfile, 512); 
CALL WRITE ( outAfile, rodney, 1024, ... >: 

This call involves only one disc operation: the 512 bytes of 
"rodney" are transferred to one disc sector. 

~ 82583 AOO 3/85 5-21 



File Access 
Access Rules for Unstructured Files 

Now consider a WRITE that does not fall on sector boundaries. 
Suppose you write only 200 bytes, starting at relative location 
400, using these calls: 

POSITION (outAfile, 400): 
CALL WRITE ( outAfile, king, 200 ): 

This situation, illustrated in Figure 5-4, transfers two disc 
sectors, even though "king" is shorter than "rodney." Also, 
because only part of each sector is to receive data from "king," 
two disc operations are required: 

1. The two sectors, containing relative addresses [0:1023], are 
read from the disc into the disc's buffer area in main 
memory. The first 200 bytes of "king" are moved into the 
appropriate location in the disc's buffer (address [400]). 

2. The updated sectors are written back to the disc. 

SECTOR BOUNDARY 

+ SECTOR 0 (512 BYTES) SECTOR 1 (512 BYTES)~ 

[. __ _ 
I ~~;;!f0:; 

J ::~::~IL 

i i 
~ ~ z;::-" 
: - .,,-r: ~ 

' t t t t 
0 400 512 600 1024 

RELATIVE BYTE ADDRESS 
85033-017 

Figure 5-4. Example of Crossing Sector Boundaries 

Although full-sector transfers are most efficient for the system 
to perform, they are not necessarily the most efficient for a 
particular application. If the application can block data to 
fill a buffer or sector, however, its I/0 will be more efficient. 

Resident Buffering (Nonstop 1+ System Only) 

For unstructured files on a Nonstop 1+ system, resident buffering 
can save some data transferral and avoid suspension of an 
application process waiting for file-system buffer spacE~ for I/O. 

With resident buffering, any data transferred because of an I/0 

5-22 ~ 82583 AOO 3/85 



File Access 
Access Rules for Unstructured Files 

request are transferred directly between the application 
process's data area and an I/0 buffer in the processor running 
the primary I/0 process controlling a device. This bypasses the 
normal intermediate transfer to a file-system buffer in the 
processor running the application process. 

The effect of using resident buffering is shown in Figure 5-5. 

RESIDENT 
BUFFER IN 

APPLICATION 
PROGRAM 

IN GUARDIAN'S DATA AREA 

~~:', 
" 

~ 
FILE '-

SYSTEM 

DATA 

liO 
BUFFER 

DATA (::\ .. ·v 

IN SAME PROCESSOR MODULE IN SAME PROCESSOR MODULE 

SAME OR DIFFERENT PROCESSOR MODULE 

85033-018 

Figure 5-5. Resident Buffering 

Resident buffers are specified on a file-by-file basis through 
bit <flags>.<6> of the OPEN procedure. If resident buffers are 
specified, the application process must make resident any buffers 
(arrays) used with the file in main memory. Additionally, the 
resident buffer in the application's data area must be 
addressable through the system data map. Both are done through a 
call to the process-control LOCKDATA procedure. LOCKDATA can be 
called only if the application process is executing in privileged 
mode (otherwise, an "instruction failure" trap will occur). 

For example: 

~ 82583 AOO 3/85 5-23 



File Access 
Access Rules for Unstructured Files 

INT .buffer[0:255]; ! application buffer to be 
! locked into memory. 

INT PROC privAlockdata ( address , count , sysrnap ) CALLABLE; 
INT address, count, sysmap; 

BEGIN 
RETURN LOCKDATA ( address , count , sysrnap ); 

END; ! privAlockdata. 

is a application procedure that executes in privileged mode. 
This is used instead of a direct call to LOCKDATA, so the process 
does not execute in privileged mode when not necessary. 

Now, invoke LOCKDATA: 

n := privAlockdata ( @buffer, 256, 1 ); 

This specifies that the physical pages where "buffer" is located 
are to be made main-memory-resident and are to be assigned to 
entries in the system data map. If the pages are successfully 
locked, 1 is returned in n. 

Then call OPEN, specifying resident buffers: 

LITERAL resAbuf := %1000; 

CALL OPEN ( fileAname, fileAnumber, flag LOR resAbuf ); 
IF < THEN ! open failed. 

A subsequent call to a file-system I/O procedure would then 
specify "buffer" in the procedure's <buffer> parameter. For 
example: 

buffer ':=' data FOR writeAcount; ! move data into 
! resident buffer. 

CALL WRITE ( fileAnumber, buffer, writeAcount ); ! write it. 
IF< THEN ... ; ! error. 

If a resident buffer is specified for the $RECEIVE file or a 
process file, the 12 words immediately preceding word[O] of the 
buffer must also be resident and available for use by the file 
system (that is, this space must be unused by the application 
process). For example: 

INT .buffer[-12:255]; ! application buffer to be locked ! in 
memory. 

LOCKDATA is invoked in this fashion: 

n := privAlockdata ( @buffer[ -12 ], 264, 1 ); 

5-24 /'1 82583 AOO 3/85 



File Access 
Access Rules for Unstructured Files 

When you use resident buffering, these considerations apply: 

• For each concurrent process running with resident buffering in 
any one CPU, at least lK of system global data space must be 
left unassigned when generating the system (by SYSGEN). 

• Although resident buffering is specified on a file-by-file 
basis, you can use the same resident buffer for several 
different files (if, of course, the structure of the program 
permits). 

• It is not necessary to call LOCKDATA before OPEN is called. 
However, LOCKDATA must be called before the first I/0 transfer 
(READ, WRITE, CONTROL, etc.) with a file is performed. 

• The resident buffer is not used for accesses to structured 
ENSCRIBE files; it is for unstructured files only. 

Adjustable Buffering (with DP2 Disc Processes Only) 

The BUFFERSIZE attribute lets you define the internal buffer size 
to be used for access to an unstructured DP2 file. The buffer 
can be any valid DP2 block size--512, 1024, 2048, and 4096 bytes. 
You can set this attribute when the file is created and change it 
by either a call to SETMODE or use of the FUP command ALTER. If 
you specify an invalid size, the next higher valid size is used. 
The default buffer size is 4096, the highest possible. The 
buffer size you specify has no effect on the format of the data 
accessed by the user. 

An appropriate buffer size lets the disc process use its fixed
length cache management scheme more efficiently. For instance, 
if some application usually accesses a DP2 unstructured file in 
1024-byte quantities and on 1024-byte boundaries, the most useful 
buffer size would be 1024. 

LOCKING FILES AND RECORDS 

Access to a sharable file among two or more processes is 
coordinated by means of file locks, record locks, and key locks. 
A process requests a lock before performing a critical operation, 
to temporarily exclude other accesses. It releases the lock when 
a critical operation is completed, to allow access by other 
processes. 

"1J 82583 AOO 3/85 5-25 



File Access 
Locking Files and Records 

File-Locking 

ENSCRIBE disc files can be locked and unlocked by the LOCKFILE 
and UNLOCKFILE procedures. Multiple processes accessing· the same 
disc file can call LOCKFILE before performing a critical sequence 
of operations to that file. If the file is not currently locked, 
it becomes locked and the process continues executing. This 
prevents other accesses to the file until it is unlocked through 
a call to UNLOCKFILE. If the file is locked, then the action 
taken depends on the locking mode in effect at the time of the 
call (see "Interaction between File Locks and Record Locks" 
below). 

If a process attempts to write to a locked file, the access is 
rejected with a "file is locked" error indication~ if a process 
attempts to read from a locked file, it is suspended until the 
file is unlocked. 

An alternate mode for file-locking can be specified via a call to 
the SETMODE procedure. Instead of suspending the caller to 
LOCKFILE if the requested file is locked, the lock request is 
rejected and the call to LOCKFILE completes immediately with a 
"file is locked" error indication. Moreover, if a process 
attempts to read from a locked file, the attempt is immediately 
rejected. 

Record-Locking 

Record-locking operates in essentially the same manner as file
locking, but it allows a greater degree of concurrent access to a 
single file than file-locking does. 

Individual records of a file are locked by one of these 
procedures: 

• The LOCKREC procedure locks the current record (as indicated 
by the last operation with the file). 

• The READLOCK or READUPDATELOCK procedure locks the record to 
be read before reading it. 

When a lock is requested for a record, if no other process has it 
locked, the lock is immediately granted. If the record or the 
file is locked, then the action taken depends on the locking mode 
in effect at the time of the call (see "Interaction between File 
Locks and Record Locks" below). 

If a file lock is attempted on a file when one or more records 
are locked, the file lock must wait for all records to be 
unlocked before it will be granted. Similarly, a record lock 

5-26 ·11 82583 AOO 3/85 



File Access 
Locking Files and Records 

must wait if the file is currently locked. 

Records are unlocked by one of these procedures: 

• The UNLOCKREC procedure unlocks the current record. 

• The UNLOCKFILE procedure unlocks all records in the file 
locked by the caller. 

• The WRITEUPDATEUNLOCK procedure unlocks the record after 
writing it. 

If a record is deleted, it is automatically unlocked. If a 
record is deleted from a file audited by the Transaction 
Monitoring Facility (TMF), the lock is not relinquished until the 
transaction is committed or aborted. See the GUARDIAN Operating 
System Programmer'~ Guide or the PATHWAY SCREEN COBOL Reference 
Manual for details. 

Record-locking allows the maximum concurrency of access to a file 
while still guaranteeing the integrity of the file's contents 
when it is to be simultaneously updated by more than one process. 
However, for complex updating of a file involving many records, 
record-locking may not be desirable, because of the amount of 
system processing required or because it increases the 
possibility of "deadlock" (see "Deadlock" below). In such cases, 
file-locking may be preferable. 

In a Nonstop 1+ system, the maximum number of concurrent locks 
depends on how much control-block space is available, up to a 
maximum of 922 key locks or 1808 record locks. In a Nonstop 
system with DPl disc processes, no more than 3000 concurrent 
record locks or 2000 key locks can be pending on a given file. 
If the file is partitioned, the limit applies to each partition, 
rather than to the entire file, because each partition has its 
own file control block (FCB). 

In a Nonstop system with DP2 disc processes, no more than 2000 
locks (of all kinds) can be held concurrently by any user--that 
is, by any file opener or any TMF transaction identifier. 

If the maximum is reached and an additional lock request is made, 
the lock request will be rejected with <error> = 35 ("unable to 
obtain I/0 process control block") on a Nonstop system or <error> 
= 32 ("unable to obtain main memory space for a control block") 
on a Nonstop 1+ system. 

When a process reads a file that was opened with sequential 
block-buffering, the process ignores all record locks (although 
it does honor file locks). The File Utility Program (FUP) 
command COPY, for example, uses sequential block-buffering and 
therefore it can read locked records. 

...,, 82583 AOO 3/85 5-27 



File Access 
Locking Files and Records 

Key-Locking (DPl Only) 

Key locks are used only for deleted records in audited DPl files, 
because there is no address to define a record lock. TMF 
implicitly sets these locks when records are deleted. 

The key-lock entry size varies with the key length, unlike record 
locks, whose entries are of a fixed size. This means you are not 
always guaranteed space for 2000 key locks; if the keys being 
locked are long, fewer key locks will be allowed. Therefore, the 
application designer should try not to delete large numbers of 
records in a single transaction. 

Locking Modes 

Locks are granted on an file-opening (<file number>) basis. 
Therefore, if a process has multiple openings of the same file, a 
lock through one file number excludes access to the file through 
other file numbers. 

Two locking modes are available. The locking mode determines the 
action taken if the file or record is already locked when a 
request is made to lock it. 

• In the default locking mode, if a process requests to lock 
or read a locked record---rt.hat is not locked by the <file 
number> supplied in the call), that process is suspended 
until the file or record becomes unlocked. 

• In the alternate locking mode, if a process requests to lock 
or read a locked record (that is not locked by the <file 
number> supplied in the cal 1), that request is imrne~diately 
rejected with a "file/record is locked" error indication 
(<error>= 73), so the requesting process can take 
alternative action. 

The locking mode is specified via <function> 4 of the SETMODE 
procedure. 

In either mode, if a control or write request is made and the 
requested record is locked but not through the <file number> 
supplied in the call, the call is rejected with a "file/record is 
locked" error indication (<error>= 73). 

5-28 ~ 82:i83 AOO 3/85 



File Access 
Locking Files and Records 

Interaction between File Locks and Record Locks 

This subsection applies only if the default locking mode is in 
effect. 

With the DPl disc process, mixed record-locking and file-locking 
in a given file is not supported. Record locks cannot be granted 
while the file is locked. With DP2, a user (file-opener or TMF 
transaction identifier), having locked a file, still can lock a 
record in that file separately. 

For a file having one or more pending lock requests, there is a 
queue of file-locking requests. Attempting to read from a locked 
file, when the file is not locked through the file number 
supplied in the call, queues the read request with the file
locking requests. When the current lock is cleared (by means of 
a call to the UNLOCKFILE procedure), the request at the head of 
the file-locking queue is granted. If the request is a lock 
request, the lock is granted and the request continues 
processing: if it is a read request, the file is read. 

Similarly, for a record having one or more pending lock requests, 
there is a queue of record-lock requests. Attempting to read 
from a locked record, when the record is not locked through the 
file number supplied in the call, queues the read request with 
the record-locking requests. When the current lock is cleared, 
the system grants the request at the head of the locking queue 
for that record. If the request is a lock request, the lock is 
granted and the processing continues: if it is a READ request, 
the record is read. 

A call to LOCKFILE is not equivalent to locking all records in a 
file: for instance, locking all records would still allow someone 
else to insert new records but file-locking would not. 

With the DP2 disc process, locking requests do not wait behind 
other locks held by the same user. If a user holds record locks 
and later requests a file lock, and no other user holds record 
locks in that file, the record locks are given up and replaced by 
the file lock. 

With the DPl disc process, if a user requests a file lock while 
any records in the file are locked, the request is queued behind 
the record locks. If a user requests a record lock in a file it 
has already locked, that request is usually queued behind any 
file locks for the file. 

The exception to the DPl queuing of record locks is: if a user 
has one or more records locked, then requests another record lock 
for that file, the record lock will preempt any pending (but not 
yet granted) file locks for that file (the request will not 
preempt other record locks for the same record). This exception 

~ 82583 AOO 3/85 5-29 



File .Access 
Locking Files and Records 

minimizes the possibility of a deadlock condition occurring, as 
illustrated below: 

User A 

LOCKREC: $A.B.C,rec 1 
(lock granted) 

User B User C 

LOCKFILE: $A.B.C 
(lock queued) 

LOCKREC: $A.B.C,rec 12 
(lock granted) 

LOCKREC: $A.B.C,rec 12 
(lock queued) 

Note that a deadlock condition occurs in this situation: 

1. A process opens a certain file more than once, with file 
numbers 1, 2, ... , n, using the default locking mode. 

2. The process locks file number 1. 

3. The process calls READ or READUPDATE, using file number 2. 

Now the READ must wait until the file lock is removed, so the 
process is suspended. The suspended process, however, cannot 
remove the lock, so a deadlock condition exists. If this process 
uses the alternate locking mode, the READ request would be 
rejected and processing would continue. Deadlocks are discussed 
further in the next subsection. 

Deadlock 

One problem that can occur when multiple processes require 
multiple record locks or file locks is a deadlock condition. An 
example of deadlock is: 

User A User B 

LOCKREC: record 1 LOCKREC: record 2 

LOCKREC: record 2 LOCKREC: record 1 

Here, user A has record 1 locked and is requesting a lock for 
record 2, while user B has record 2 locked and is requesting a 
lock for record 1. 

5-30 ...,. 82583 AOO 3/85 



File Access 
Locking Files and Records 

One possible way to avoid deadlock is to always lock the records 
in the same order. Thus, the situation described above would 
never happen if each user requested the lock to record 1 before 
it requested the lock to record 2. 

Since it is sometimes impossible for an application program to 
know in which order the records it must lock are going to be 
encountered, another solution is offerred. For updates to single 
records of the file, no special processing need be done. For an 
update involving two or more records, however, the solution is to 
first lock some designated common record, and then lock the 
necessary data records. This prevents deadlock among those users 
requiring multiple records, since they must first gain access to 
the common record, but still allows maximum concurrency and 
minimum overhead for accessors of single records. 

Record-Locking with Unstructured Files 

ENSCRIBE permits record-locking in unstructured files, so 
applications can define their own file structures and still use 
the capabilities of record-locking. 

Record-locking with unstructured files is accomplished by 
positioning the file to the relative byte address of the record 
to be locked, then locking the address through the LOCKREC, 
READLOCK, or READUPDATELOCK procedure. Any other user attempting 
to access the file at a point beginning at exactly that address 
will see the address as being locked (the action will then be 
appropriate for the current locking mode). 

Unstructured files are unlocked in the same way as structured 
files. 

TMF Locking Considerations 

In a system using the Transaction Monitoring Facility (TMF), a 
transaction must lock all records that it updates, either on a 
record-by-record basis or for an entire file at a time. For 
server processes to change a TMF-audited data base, TMF imposes 
certain record-locking rules to prevent transactions from reading 
uncommitted changes of other concurrent transactions: 

• Whenever a transaction inserts a new record into an audited 
file, that record is locked automatically. 

• Before a process can successfully change or delete an existing 
record in an audited file, it must previously have locked the 
record or file. When a transaction deletes a record from an 

..,, 82583 AOO 3/85 5-31 



File Access 
Locking Files and Records 

audited file, TMF sets a key lock based on the deleted 
record's primary-key value. For the duration of the record
deleting transaction, the key lock effectively prevents any 
other transaction from inserting a record having the same key 
value as the deleted record. 

• All locks on audited files are held until the transaction 
completes (that is, until it either is committed or aborts and 
is backed out). 

• At the discretion of the programmer, all records read and not 
changed, but used by a transaction in producing its output, 
should be locked. Following this rule guarantees that all 
reading operations are repeatable. 

All but the last rule are enforced by TMF on audited files. 

A TMF transaction is begun by a call to BEGINTRANSACTION and 
terminated by a call to ENDTRANSACTION. 

Figure 5-6 illustrates (1) how processes can acquire locks and 
update audited files and (2) when TMF will release the locks. 

LOCK RECORD 1 
CHANGERECORD1 
UNLOCK RECORD 1 

LOCK RECORD 2 
DELETE RECORD 2 

LOCKFILE 
CHANGE RECORD 1 

CHANGE RECORD 2 
UNLOCKFILE 

LOCK RECORD 1 
CHANGE RECORD 1 

LOCK RECORD 2 
NO CHANGE TO 
RECORD2 

UNLOCKFILE 

d~ 
~~,~~~o::;:~~::i !, I 

UNLOCKFILE 

55033-019 

Figure 5-6. Record-Locking for TMF 

5-32 1J 82583 AOO 3/85 



File Access 
Locking Files and Records 

If the whole set of current active transactions tries to acquire 
too many locks (see "Record-Locking" above), the attempt will be 
rejected with <error> = 35 ("unable to obtain I/0 process control 
block") on a Nonstop system or <error> = 32 ("unable to obtain 
main memory space for a control block") on a Nonstop l+ system. 

The file lock or record locks are owned by the current
transaction identifier of the TMF process that issued the lock 
request. For example, a single transaction can send requests to 
several servers or multiple requests to the same server class. 
In this situation, where several processes share a common 
transaction identifier and the locks are held by the same 
transaction identifier, the locks do not cause conflict among the 
processes participating in the transaction (see Figure 5-7). 

"transaction mode" 

END-TRANSACTION 
\.. ~ 

85033-020 

Figure 5-7. Record-Locking by Transaction Identifier 

Figure 5-7 illustrates these principles: 

• The terminal control process (TCP) interprets BEGIN
TRANSACTION and obtains the transaction identifier before 
requesting data-base activity from the servers. 

• The transaction identifier is transmitted to the servers in 
the request message and any disc activity performed by the 
servers is associated with the transaction identifier. 

~ 82583 AOO 3/85 5-33 



File Access 
Locking Files and Records 

• The transaction identifier owns the lock(s); all servers that 
acquired the same transaction identifier can read, lock, add, 
delete, and change records in the audited files. For example: 
server A can read and lock a record and server B can read or 
change the same record, if both servers A and B have the same 
current-transaction identifier. 

REPEATABLE READS. Generally, a TMF transaction should lock any 
data it reads and uses in producing its output, regardless of 
whether it modifies the data. Following this rule guarantees that 
all -0f a transaction's reading operations are repeatable and that 
data on which the transaction depends does not change before the 
transaction is committed. 

OPENING AUDITED FILES--ERRORS. In TMF, because locks are owned 
by the transaction identifier instead of the process identifier 
or the identifier of the file opener, they can persist longer 
than the opener process. This means that even if a file has been 
closed by all its openers, the disc process will keep it 
effectively open until all transactions owning locks in the file 
have ended or have been aborted and backed out. 

For files with pending transaction locks, these types of errors 
are possible: 

• Attempting to open an audited file with exclusive access will 
fail with <error>=12 ("file in use"), regardless of whether 
openers of the file exist. 

• FUP operations requiring exclusive access such as PURGE and 
PURGEDATA will fail. PURGE will fail with file error 12 and 
PURGEDATA will fail with file error 80. 

Additionally, error 80 ("invalid operation on audited file") will 
be returned for attempting to open a file if: 

• It is a nonaudited file whose automatically updated key file 
that is audited. 

• It is an audited file whose automatically updated key file 
that cannot be opened or is not audited. 

• It is a structured audited file with unstructured access. 

• It is an audited, partitioned file having a nonaudited 
secondary partition. 

• It is a nonaudited, partitioned file having an audited 
secondary partition. 

5-34 ...-, 82583 AOO 3/85 



File Access 
Locking Files and Records 

READING DELETED RECORDS. If transaction Tl deletes a record and 
another transaction T2 attempts to read the same record while Tl 
is still active, then: 

• If T2's request is from the READ procedure after exact 
positioning, error 1 ("end-of-file") will be returned. 

• If T2's request is from the READUPDATE procedure, error 73 
("file or record locked") will be returned (in alternate 
locking mode) or the request will wait for Tl to complete (in 
default locking mode). 

BATCH UPDATES. When programming for batch-updating of audited 
files, you should either have the transaction lock an entire file 
at a time by using the LOCKFILE procedure or carefully keep track 
of the number of locks held. If you do not use LOCKFILE, TMF 
sets these implicit locks: 

• When a new record is inserted in an audited file, TMF 
implicitly locks that record. 

• When a record is deleted from an audited file, TMF implicitly 
retains a lock on the key of that record. 

These locks are not released until the transaction is committed 
or is aborted and backed out. This means that transactions doing 
batch updates to audited files, if they involve deleting, 
updating, or inserting a large number of records, can seek too 
many locks. (The maximum number of locks that can be acquired 
for each DPl file or by each DP2 transaction is specified in the 
"Record-Locking" subsection above.) This situation will return 
<error> = 35 ("unable to obtain I/0 process control block") on a 
Nonstop system or <error> = 32 ("unable to obtain main memory 
space for a control block") on a Nonstop 1+ system. 

If a TMF transaction calls LOCKFILE for a primary file, LOCKFILE 
is automatically applied to any associated alternate-key files. 
This prevents primary-file updates from causing the alternate-key 
files to obtain record or key locks. 

OTHER CONSIDERATIONS FOR BOTH STRUCTURED AND UNSTRUCTURED FILES 

This subsection describes data purging, WRITE verification, file 
refreshing, and allocation and deallocation of extents. 

"1J 82583 AOO 3/85 5-35 



File Access 
Structured and Unstructured Files 

Purging Data 

Either the File Utility Program's (FUP's) PURGE command or the 
PURGE procedure can logically remove all data from a file by 
removing the file from the disc directory. The file data are not 
overwritten or erased, but rather pointers are changed to show 
the data to be absent. 

Later, if that space is re-allocated for another file, the new 
file's owner may be able to read the logically purged data. For 
security reasons, you may want to actually erase the data. If 
you have set the CLEARONPURGE flag for a file, using either 
function 1 of the SETMODE procedure or the FUP command SECURE, 
all data will be physically erased (overwritten with zeros) when 
the file is purged. (See the "SETMODE and SETMODENOWAIT 
Functions" table in the System Procedure Calls Reference Manual. 

Also, either the FUP command PURGEDATA or the CONTROL procedure's 
"purge data" operation can logically remove all data from a 
nonaudited file by resetting the file's current-record, next
record, and end-of-file (EOF) pointers to relative byte 0 and 
updating the EOF pointer in the file label on disc. CLEARONPURGE 
has no effect after PURGEDATA, however. 

For example, this CONTROL call would logically purge all data 
from file <fileAa>. 

LITERAL purgedata = 20; 

CALL CONTROL 
IF < THEN .•. 

fileAa, purgedata ); 

This CONTROL operation can be used in conjunction with the 
CONTROL procedure's "allocate/deallocate" operation to deallocate 
all of a file's extents: 

LITERAL allocAop = 21, 
dealloc = O; 

CALL CONTROL ( fileAa, purgedata ); 
IF< THEN ••. 
CALL CONTROL ( fileAa, allocAop, dealloc ); 
IF< THEN .•. 

sets the EOF pointer to relative byte 0 then deallocates all 
extents. 

5-36 ~ 82583 AOO 3/85 



WRITE Verification 

File Access 
Structured and Unstructured Files 

Using the "verify write" operation ensures the integrity of each 
WRITE operation to a disc file. The disc-controller hardware 
makes a byte-by-byte comparison of the just-written data on disc 
with the corresponding data in the controller's memory. Note, 
however, that this requires an additional disc revolution. The 
"verify write" option is enabled by the SETMODE procedure 
(<function>= 3): the default setting disables it. Also, you can 
enable this option when you open a DP2 file. 

Refreshing 

The information in an open file's FCB, such as the end-of-file 
(EOF) pointer, is kept in main memory. To maximize performance, 
the EOF pointer is normally written to the file's disc label only 
when needed, as described in the "End-of-File Pointer" subsection 
above. 

Although refreshing the file's disc label (under these conditions 
only) maximizes system performance, certain considerations should 
be taken into account: 

• If an open file is backed up, the file label copy on tape does 
not reflect the actual state of the file .. An attempt to 
restore such a file will result in an error. 

• If the system is shut down (each processor module has been 
reset) while a file is open, the file label on disc will not 
reflect the actual state of the file. 

• If a total system failure occurs (such as that caused by a 
power failure that exceeds the limit of memory battery backup) 
while a file is open, the file label on disc will not reflect 
the actual state of the file. 

An autorefresh option is available, indicated by setting 
<file type>.<10> of the CREATE procedure, that causes the file 
label to be written to disc each time the end-of-file pointer is 
advanced. You can also use the FUP command ALTER ... REFRESH to 
specify the autorefresh option (see the the descriptions of the 
File Utility Program (FUP) in the GUARDIAN Operating System 
Utilities rteference Manual and the GUARDIAN Operating System 
User'~ Guide). REFRESH 1s always ON for DP2 key-sequenced files. 

However, the additional I/O caused by the REFRESH ON option can 
decrease processing throughput significantly. For applications 
(other than DP2 key-sequenced files) that cannot afford this 
overhead, the file label on disc can be forced to represent the 
actual state of a file through periodic use of the REFRESH 

...,, 82583 AOO 3/85 5-37 



File Access 
Structured and Unstructured Files 

procedure or the equivalent Peripheral Utility Program (PUP) 
REFRESH command. Execution of REFRESH writes the information 
conta1ned in any file control blocks (FCBs) to the file labels on 
the associated disc volume. 

REFRESH is useful before backing up a file that is always open-
for example, where the application is always running. At some 
point during the day when the system is quiescent (no 
transactions are taking place), issue a REFRESH command for all 
volumes in the system. Then, when the files are backed up, the 
file labels on backup tape will represent the actual states of 
the files backed up. 

You can also use REFRESH before a total system shutdown to ensure 
that the file labels on disc will represent the actual states of 
files on disc. 

To minimize the effect of a total system failure, have an 
application process call the REFRESH procedure periodically (say, 
every ten minutes). Note that this is useful only when a power 
failure occurs that exceeds the limit of memory battery backup; 
therefore, it is necessary only where the computer site is 
susceptible to frequent and severe power outages. 

For DP2 files, using the ALL option with REFRESH ensures that 
FCBs and all file blocks are flushed. 

Programmatic Extent Allocation 

An application process can cause the file system to allocate one 
or more file extents in an open file by means of the CONTROL 
procedure's "allocate/deallocate" operation. 

For example, to allocate all 16 extents in a newly created DPl 
file, the file is opened then CONTROL is called, as shown here: 

LITERAL allocAop = 21, 
maxAext = 16; 

CALL CONTROL ( fileAa, allocAop, maxAext ); 
IF< THEN ... ! extent allocate error. 

This allocates all 16 extents of "fileAa". 

5-38 Af' 82583 AOO 3/85 



File Access 
Structured and Unstructured Files 

Extent Allocation Errors 

Two errors are associated with allocating disc extents: 43 
("unable to obtain disc space for file extent") and 45 ("disc 
file full"). 

The next example shows both kinds of error. A file is created 
with an extent size of 2048 bytes, then repetitive WRITEs of 400 
bytes are executed to the file: 

loop: CALL WRITE ( fileAa, buffer, 400, nurnberAwritten ); 
IF < THEN 

BEGIN 
CALL FILEINFO ( fileAa, error);. 

END 
ELSE GOTO loop; 

The first five WRITES are successful ("nurnberAwritten" = 400), 
but the sixth fails after transferring 48 bytes of "buffer" to 
the disc ("nurnberAwritten" = 48). If all disc soace has been 
allocated to other files, the <error> returned by FILEINFO is 43 
("out of disc space"). If the current extent is the last one 
permitted in the file (extent number 15 in a DPl file), then the 
<error> returned by FILEINFO is 45 ("disc file full"). This 
situation is illustrated in Figure 5-8. 

Note that <error> = 43 can also occur when allocating extents via 
the CONTROL procedure's operation 21 ("allocate/deallocate"). 

/ 

WRITE 1 
(400) 

I v 

WRITE 2 
(400) 

I v 

WRITE 3 
(400) 

I 
v 

FILE EXTENT ZERO 

WRITE 4 
(400) 

I v 

WRITE 5 WRITE 6 
(400) (48) 

I ~ 

2048 

___A___ 

85033-021 

Figure 5-8. Example Showing Extent-Allocation Error 

~ 82583 AOO 3/85 5-39 



File Access 
Structured and Unstructured Files 

Programmatic Extent Deallocation 

An application process can cause the file system to deallocate 
any file extents past the extent where the end-of-file pointer is 
pointing, by means of the CONTROL procedure's 
"allocate/deallocate" operation. 

For example, to deallocate any unused extents in a file, the file 
is opened, then CONTROL is called, as shown here: 

LITERAL allocAop = 21, 
dealloc = O; 

CALL CONTROL ( fileAa, allocAop, dealloc ); 

This deallocates any extents past the end-of-file extent. 

DISC CONTROL AND SETMODE OPERATIONS 

Complete descriptions of the CONTROL operations and SETMODE and 
SETMODENOWAIT functions are given in the System Procedure Calls 
Reference Manual. 

ERRORS AND ERROR RECOVERY 

The file system produces a number of messages indicating errors 
or other special conditions. These messages can occur during 
execution of almost any user application or Tandem-supplied 
program, since most programs use the file system. 

An error number is associated with the completion of each 
procedure call. (See "Characteristics of ENSCRIBE Procedure 
Calls" in Section 3.) 

Error Categories 

File-system errors are grouped into three major categories, as 
described in Table 3-2. These categories are: 

5-40 Af' 82583 AOO 3/85 



File Access 
Errors and Error Recovery 

• Errors reserved for process application-dependent use (error 
numbers 300 through 511) 

• Errors encountered by standard operations (error numbers 10 
through 255) 

• Warnings (error numbers 1 through 9) 

A " fourth category" i s <error> = 0 ', w h i ch i s " no er r or . " 

Many of the file-system errors imply that invalid parameters were 
supplied to the file-system procedures or that illegal operations 
were attempted. These could be considered programming errors. 
Other types of errors imply that the system is not being operated 
properly. And other types are simply informational messages 
informing the application about a particular device-oriented 
problem. 

Errors occuring during disc file access can be separated into 
these categories: communication-path errors, data errors, device
operation errors, and failure of the primary application process. 

Communication-Path Errors 

A cornmunication-p~th error is a failure of a processor module, 
I/0 channel, or disc-controller port that is part of the primary 
path to disc device. For errors of this type, the file system 
automatically switches to the alternate path and completes the 
I/0 operation if a synchronization depth greater than zero was 
specified when the file was opened. Therefore, if an error >= 
200 is returned to the application program, the disc device is no 
longer accessible. 

Data Errors 

Data errors are error numbers 50 through 59, 120 through 139, and 
190 through 199. The file system automatically retries 
operations associated with this type of error. Therefore, if one 
.of these errors is returned, all or part of the file can be 
considered invalid. Error 120 ("data parity error") indicates a 
hardware error. A bad track on a Nonstop 1+ system, or a bad 
sector on a Nonstop system, can be assigned to an alternate track 
or sector through use of the Peripheral Utility Program (PUP) 
command SPARE. 

Af' 82583 AOO 3/85 5-41 



File Access 
Errors and Error Recovery 

Device-Operation Error 

Device-operation errors are error numbers 60 through 69 and 103. 
None of these errors are retried by the file system. Errors 60-
69 i~dicate that the device has been deliberately been made 
inaccessible and, therefore, the associated operation probably 
should not be retried. Error 103 occurs if the entire system has 
experienced a power failure and that the disc is in the process 
of becoming ready. Therefore, an operation associated with error 
103 should be retried periodically. 

Failure of the Primary Application Process 

A failure of the primary application process is not a disc error 
in the strictest sense. Rather, this is a failure of the 
processor module where the primary process of a primary/backup 
process pair is executing. Operations associated with this type 
of failure must be retried by the backup application process when 
it takes over the applications work. The GUARDIAN Operating 
System Programmer's Guide discusses recovery from this type of 
error, under "Checkpoint1ng." 

Error-Recovery Routines 

When writing error-recovery routines, the programmer must 
consider the type of device (disc, magnetic tape, line printE~r, 
etc.); the type of error (whether it is recoverable 
programmatically); and the number of "no-wait" operations 
outstanding when the error is detected. 

If a disc file is opened with a <sync depth> greater than or 
equal to 1, all recoverable errors, including path errors, are 
automatically retried by the file system. 

When using "no-wait" I/0 and executing more than one concurrent 
operation to the same file, it is quite possible for one 
operation to fail, but subsequent operations to succeed, as 
illustrated here: 

Three "no-wait" WRITE operations are initiated to a line printer: 

5-42 ~ 82583 AOO 3/85 



File Access 
Errors and Error Recovery 

• WRITE "no-wait" 1 initiated to printer 
print: "line one" 

• WRITE "no-wait" 2 initiated to printer 
print: "line two" 

• WRITE "no-wait" 3 initiated to printer 
print: "line three" 

Then the three WRITE operations are completed with calls to 
AWAI TIO: 

• AWAITIO 1 indicates "no-wait" 1 succeeded (line printed) 

• AWAITIO 2 indicates "no-wait" 2 failed (line not printed) 

• AWAITIO 3 indicates "no-wait" 3 succeeded (line printed) 

The three "no-wait" WRITE operations generate this output: 

"line one" 
"line three" 

Note that "line two" is missing. When order is important, you 
should not permit concurrent operations on the same file. 

Error Considerations for DPl Key-Sequenced Files 

DPl users are cautioned that if a key-sequenced file is opened 
with a <sync depth> of zero, a failure occuring while a record is 
being inserted or updated may leave the structure of the file in 
an indeterminate state (and therefore inaccessible). 

Error Considerations for Files with Alternate Keys 

Users are cautioned that if an application process opens a file 
having alternate keys with a <sync depth> of zero or opens with a 
nonzero <sync depth> but does not have a backup to complete an 
operation in case of a failure, a failure occurring while a 
record is being inserted or updated will have indeterminate 
results. It is possible in such cases for the insertion (or 
update) of the primary record to be successful but the insertion 
(or update) to the alternate-key file to have not been made. In 
this instance both files will appear valid (their structures are 
intact); however, there will be no alternate-key reference to the 
primary record. 

~ 82583 AOO 3/85 5-43 



File Access 
Errors and Error Recovery 

Error Considerations for Partitioned Files 

Each partition of a file can get errors apart from the file's 
other partitions. This is especially significant for errors 42 
through 45, which pertain to disc-space allocation. You may be 
able to avoid these errors by using FUP to alter the size 
characteristics of the partition where the error occurred. 

In any case, after a CCL (or possibly CCG) return from a file
system procedure call, the file-system error number is obtained 
by calling the FILEINFO procedure; the partition number of the 
partition in error is obtained by calling the FILERECINFO 
procedure. The volume name of the partition in error can be read 
by examining the file's partition-parameter array (eithe~r 
programmatically or via FUP). 

ACTION OF CURRENT KEY, KEY SPECIFIER, AND KEY LENGTH 

To briefly describe the basic file-system operations and their 
relationships to file-currency information, we first define some 
variable names and some functions. We then use those variable 
names and functions to write miniprograms defining the OPEN, 
KEYPOSITION, POSITION, READ, READUPDATE, WRITEUPDATE, and WRITE 
procedures. 

First, we define some variables: 

• CKV = <current key value> 
• CKS = <current key specifier> 
• CKL = <current key length> 
• CMPL = <comparison length> 
• MODE = <positioning mode>: approximate = 0 

generic = 1 
exact = 2 

• primary = 0 
• next = true if the next record in sequence is to be the 

reference 
• rip = relative file insertion pointer 
• present = true if parameter is supplied 
• keyseq = file type 3 
• entryseq = file type 2 
• relative = file type 1 

Next, we define some functions: 

• keyf ield ( record, specifier 

returns the value of the "specified" key field in the record. 
If the file is not key-sequenced and specifier = 0, then a 

5-44 ~ 82583 AOO 3/85 



File Access 
Current Key, Key Specifier, and Key Length 

<record specifier> is returned. 

• keylength ( record, specifier ) 

returns the length of the "specified" key field in the record. 
If record = 0, this returns the defined key-field length. 

• find (mode, specifier, key value, comparison length) 

returns the position of the first record in the file according 
to mode, specifier, key value, and comparison length. 

If mode= 0 (approximate), positioning is to the first record 
whose key field, as designated by the <key specifier>, is 
greater than or equal to the <key value>. If no such record 
exists, an end-of-file indication is returned. 

If mode= 1 (generic), positioning is to the first record 
whose key field, as designated by the <key specifier>, 
contains a value equal to <key> for <comparison length> bytes. 
If no such record exists, an end-of-file indication is 
returned. 

If mode= 2 (exact), positioning is to the first record whose 
key field, as designated by the <key specifier>, contains a 
value of exactly <comparison length> bytes and is equal to 
<key>. If no such record exists, an end-of-file indication is 
returned. 

• findAnext (mode, specifier, key value, comparison length) 

returns the position of the next record in the file according 
to mode, specifier, key value, and comparison length. 

If mode= 0 (approximate), positioning is to the next record. 

If mode= 1 (generic), positioning is to the next record. If 
the key field designated by the <key specifier> does not equal 
<key> for <comparison length> bytes, an end-of-file indication 
is returned. 

If mode= 2 (exact), an end-of-file indication is returned. 

• insert ( key value, key length ); 

returns the position where a record is to be added, according 
the specified key value and key length. If a record already 
exists at the indicated position, a "duplicate record" 
indiction is returned. For relative and entry-sequenced 
files, a key value of "-lD" returns the end-of-file position 
and a key value of "-2D" returns the position of the first 
available record. 

Lf' 82583 AOO 3/85 5-45 



File Access 
Current Key, Key Specifier, and Key Length 

Now we can use the variables and functions defined above to show 
miniprograms that briefly describe the basic file-system 
operations and their relationships to file-currency information: 

OPEN: 
CKS := primary; 
if keyseq then CKL := CMPL := 0 
else 

begin 
CKL := 4; 
CKV := rip := OD; 

end; 
MODE := approx; 
next := false; 

KEYPOSITION: 
CKV := rip := <key>; 
CKS := if present then <key specifier> else primary; 
CKL := CMPL := if present then <comparison length> 

else keylength(O, CKS); 
MODE := if present then <positioning mode> else approx; 
next := false; 

POSITION: 
CKV := rip := <record specifier>; 
CKS := primary; 
CMPL := CKL := 4; 
MODE := approx; 
next := false; 

READ: 
position := if next then findAnext(MODE,CKS,CKV,CMPL) 

else find (MODE,CKS,CKV,CMPL); 
if <error> then return; 
record := file[position]; 
CKV := keyfield (record,CKS); 
CKL := keylength(record,CKS); 
next := true; 

READUPDATE: 
position := find(exact,CKS,CKV,CKL); 
if <error> = 1 then <error> := 11; if <error> then return; 
record := file[position]; 

WRITEUPDATE: 

5-46 

position := find(exact, CKS, CKV, CKL); 
if <error> = 1 then <error> := 11; if <error> then return; 
if <write count> = 0 then 

if entryseq then begin <error> := ##; return; end: 
else delete the record 

else f ile[position] := record; 

~ 82583 AOO 3/85 



File Access 
Current Key, Key Specifier, and Key Length 

WRITE: 
if keyseq then 

begin 
position := insert(keyfield(record,primary), 

keylength(record,primary)); 
if <error> then return; 
f i 1 e [ k e ypo s i t ion ] : = record ; 

end; 
if relative then 

begin 
if CKS then begin <error> := ##; return; end; 
if rip <> -2D and rip <> -lD and next then rip := 
position := insert(rip,4); 
if <error> then return; 
file[position] := record; 
CKV := keyfield(record,primary); 
next := true; 

end; 
if entryseq then 

begin 
if CKS then begin <error> := ##; return; end; 
position := insert(-lD,4); ! end-of-file 
file[position] := record; 
CKV := keyfield(record,primary); 
next := true; 

end; 

AJ1 82583 AOO 3/85 

rip+l; 

5-47 



File Access 
Access Examples 

ACCESS EXAMPLES 

All examples in this subsection use this CUSTOMER record 
definition: 

byte: 
[0] [34] [134] [136] [144] [152] 
-y--~~~....--"-~~~~~-.-~~~~~.--~-~~~-...-~~~~--,. 

I "name" I "address" "region" I "curbal" "1 im it" 
I I I 

primary key alternate key "RG" 

INT .cust[0:75]; 

STRING 
.scust := @cust '<<' 1; 

FIXED(2) 
. fcust := @cust; 

DEFINE 
cust"'len = 
cust"'name = 
cust"'name"'len = 
custAaddress = 
cust"'addressAlen = 
custAregion = 

custAregionAlen = 
custAcurbal = 
custAlimit = 

152#, 
scust#, 
34#, 
scust[34]#, 
100#, 
scust[136]#, 

2#, 
fcust[17]#, 
fcust[18]#; 

The contents of the CUSTOMER file are: 

name address region 
I ADAMS MIAMI' FL. I so I 
I BROWN,A REEDLEY, CA. I WE I 
I BROWN,B BOSTON, MA. I EA I 
l~EV_A_N_s __________ B_U_T_T_E_,~M-T--.--~~1~·wE I 
I HARTLEY CHICAGO, IL. -rNo 
I JONES DALLAS, TX. I so 
I KOTTER NEW YORK, NY. I EA 
I RICHARDS MINNI, MN. I NO 
I ROGERS BOISE, ID. I WE 
I SANFORD L.A., CA. I WE 
I SMITH DAYTON, OH. -rNo 

5-48 

customer record. 

byte addressable. 

fixed addressable . 

customer-rec. length. 
name field. 
name-field length. 
address field. 
address-field length. 
region field: 

NO = northern, 
SO = southern, 
EA = easte?rn, 
WE = weste?rn. 

region-field length. 
current balance. 
credi- limit field. 

curbal 
0000.00 
0256.95 
0301.00 
0010.00 
0433.29 
1234.56 
0089.00 
0000.00 
1024.00 
0301.00 
0010.00 

limit 
0500.CWT 
0300.00 I 
1000.00 I 
0100.00 I 
0500.00 I 
2000.00 I 
0500.00 I 
0500.00 I 
1500.00 I 
1000.00 I 
0500.00 I 

~ 82!583 AOO 3/85 



File Access 
Access Examples 

Example 1. Action of Current Position 

• Position via primary key "ROGERS" 

key : = " "; 
key[l] ':=' key FOR custAnameAlen - 1; 

key ':=' "ROGERS"; 

blank the 
key. 

CALL KEYPOSITION ( custAfileAnumber, key); 

ADAMS MIAMI, FL. SO 0000. 00 T--0500. 00 
BROWN,A REEDLEY, CA. WE 0256.95 I 0300.00 

_B_R_O~W-N~,-B-----r--B-OS~T~O~N-,__,__MA_.----.---EA--......--0~3~0~1-.~0-=-0-l-iOOO.OO 

EVANS BUTTE, MT. WE 0010.00 10100.00 I 
_H_A_R_T_L_E_Y __ -.--_c_H_r c_A_G,__o_,_r_L-.-----.--N-o--..__0-4-3-3,.... • ....,,._,2 ~r- r·-05 o o-::oo 1 

JONES DALLAS, TX. SO 1234.56 I 2000.00 I 
KOTTER NEW YORK, NY. EA 0089.00 I 0500.00 I 
RICHARDS MINNI, MN. NO 0000.00 I 0500.00 I _R_o_G_E_R_s ___ ___,.... __ B_o_I s_E__;_.., -r-D-.-----..--w-E __ .._,_1_0,__2_4 __ -o-=-o-r1 so o . o o 1 

SANFORD L.A., CA. WE 0301. 00 11000. 00 I 
<---+ 
<+ I 

SMITH DAYTON, OH. NO 0010.00 I 0500.00 I 
next of subset 

current/ 
• Position via alternate key "RG" - "NO": 

key':=' "NO"; 
CALL KEYPOSITION ( custAfileAnumber, key, "RG"); 

BROWN,B BOSTON, MA. EA 0301.00 I 1000.00 
KOTTER NEW YORK, NY. EA 0089.00 10500. 00 

I 
I 
I 

HARTLEY CHICAGO, IL. NO 0433.29 lb500. 00 <---+ 
RICHARDS MINNI, MN. NO 0000.00 10500.00 <+ I 
SMITH DAYTON, OH. NO 0010.00 r-0500-:00 I 
ADAMS MIAMI, FL. so 0000.00 10500. 00 I 
JONES DALLAS, TX. so 1234.56 I 2000.00 I 
BROWN REEDLEY, CA. WE 0256.95 r-o 3 o o-::oo I 
EVANS BUTTE, MT. WE 0010.00 10100.00 I 
ROGERS BOISE, ID. WE 1024.00 I 1500.00 I 
SANFORD L.A., CA. WE 0301. 00 11000. 00 I 

next of subset I 
I 

current/ 

'1" 82583 AOO 3/85 5-49 



File Access 
Access Examples 

Example 2. Approximate Subset by Primary Key After OPEN 

INT .custAfileAname[O:ll], 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

custAfileAnumber, 

custAeof := O: 
WHILE NOT custAeof DO 

BEGIN ! read loop. 
CALL READ (custAfileAnumber, cust, custAlen): 
IF > THEN custAeof := 1 
ELSE 

IF< THEN ... ! error. 
ELSE 

BEGIN ! process the record. 

END; 
END; ! read loop. 

Primary Key 
t 

ADAMS MIAMI, FL. lsoToooo.oo 

BROWN,A REEDLEY, CA. !WE 0256.95 

BROWN,B BOSTON, MA. -IEA 0301.00 

EVANS BUTTE, MT. IWE 0010.00 

HARTLEY CHICAGO, IL. -!NO 0433.29 

JONES DALLAS, TX. lso 1234.56 

KOTTER NEW YORK, NY. --IEA 0089.00 

SMITH DAYTON, OH. -I-NO 0010.00 

I ROGERS BOISE, ID. !WE 1024.00 

SANFORD L.A. , CA. I-WET 0301. oo 

SMITH DAYTON, OH. INO I 0010.00 

EOF 

0500.00 I 

0300. oo I 

1000.001 

0100. oo I 

0500.001 

2000. oo I 

0500.ool 

0500.001 

1500.ool 

1000.001 

0500.001 

5-50 ~ s2~;a3 AOO 3/85 



File Access 
Access Examples 

Example 3. Approximate Subset by Alternate Key 

Key specifier= "RG". 

CALL KEYPOSITION ( custAfileAnumber, key, "RG" ); 
! position to first record. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

cust"'eof := O; 
WHILE NOT custAeof DO 

BEGIN ! read loop. 
CALL READ (cust"'file"'number, cust, custAlen); 
IF > THEN custAeof := 1 
ELSE 

I F < THEN . • . ! error . 
ELSE 

BEGIN ! process the record. 

END; 
END; ! read loop. 

Alternate Key "RG" 
t 

BROWN,B BOSTON, MA. EA 0301.00 

KOTTER NEW YORK, NY. EA 0089.00 

HARTLEY CHICAGO, IL. NO 0433.29 

RICHARDS MINNI, MN. NO 0000.00 

SMITH DAYTON, OH. NO 0010.00 

ADAMS MIAMI, FL. so 0000.00 

JONES DALLAS, TX. so 1234.56 

BROWN REEDLEY, CA. WE 0256.95 

EVANS BUTTE, MT. WE 0010.00 

ROGERS BOISE, ID. WE 1024.00 

SANFORD L.A., CA. WE 0301.00 

EOF 

...,...1 82583 AOO 3/85 

1000.00 

0500.00 

0500.00 

0500.00 

0500.00 

0500.00 

2000.00 

0300.00 

0100.00 

1500.00 

1000.00 

5-51 



File Access 
Access Examples 

Example 4. Generic Subset by Primary Key 

Primary-key value = "BROWN". 

1 

2 

key ' : =' "BROWN"; 
compareAlen := 5; 
CALL KEYPOSITION 

( custAfileAnurnber, key, ,cornpareAlen ,generic ); 
cust"'eof := O; 
WHILE NOT custAeof DO 

BEGIN ! read loop. 
CALL READ (cust"'file"'number, cust, cust"'len); 
IF > THEN custAeof := 1 ! end-of-file. 
ELSE 

IF< THEN •.. ! error. 
ELSE 

BEGIN process the record. 

END; 
END; ! read loop. 

BROWN,A REEDLEY, CA. TWE 0256.95 0300.00 T 
BROWN, B BOSTON I MA. ~~A 0301. 00 1000. 00 T 

~~~--''--~~~~-----'---~~~~--~--·~~--------~ 

3 EOF

5-52 ,_, 82583 AOO 3/85

Example 5. Exact Subset By Primary Key

key :=
key[l]

" " .
' ' : ='

key ': =' "SMITH":

File Access
Access Examples

blank the
key.

CALL KEYPOSITION (custAfileAnumber, key,,, exact);

custAeof := O:
WHILE NOT custAeof DO

BEGIN ! read loop.
CALL READ (custAfileAnumber, cust, custAlen);
IF > THEN custAeof := 1 ! end-of-file.
ELSE

IF< THEN ... ! error.
ELSE

BEGIN process the record.

END:
END; ! read loop.

1 SMITH DAYTON, OH. NO 0010. 00. r 0500. oo-r

2 EOF

"1 82583 AOO 3/85 5-53

File Access
Access Examples

Example 6. Exact Subset by Non-Unique Alternate Key

key':=' "NO";
CALL KEYPOSITION cust"'file"'number, key, "RG",, exact) ;

1

2

3

4

cust"'eof := O;
WHILE NOT cust"'eof DO

BEGIN ! read loop.
CALL READ (cust"'file"'number, cust, cust"'len);
IF > THEN cust"'eof := 1 ! end-of-file.
ELSE

IF < THEN ... ! error.
ELSE

BEGIN process the record.

END;
END; ! read loop.

HARTLEY CHICAGO, I L . ------r-, -NO I 0 4 3 3 . 2 9
----------·---·

RICHARDS MINNI, MN .--------T-NO 0000.00

SMITH DAYTON, OH. -!NO 0010.00

EOF

0500.ool

0500.001

0500.001

5-54 ~ 82583 AOO 3/85

File Access
Access Examples

Example 7. Insertion of a Record into a Key-Sequenced File

Record to be inserted =

I HEATHCLIFF I PORTLAND, OR. WE I 0000.00-l 0500.00I
~~~~~~~~~~~~-'--~~~~~~~~-

cust : = " "; Blank the customer 
cust[l] ':=' cust FOR (cust"'len + 1) I 2; ! record. 

cust"'name 
cust"'address 
cust"'region 
cust"'curbal 
cust"'limit 

' : =' 
' . - ' . -
' . - ' . -
: = 
: = 

"HEATHCLIFF"; 
"PORTLAND, OR."; 
"WE"; 
O.OOF; 
500.00F; 

CALL WRITE (cust"'file"'number, cust, cust"'len); insert a 
new record. 

IF<> THEN ... ! error. 

"CUSTOMER" File after Insertion 

name address region curbal 1 im it 

ADAMS MIAMI, FL. so 0000.00 -Y-0500.00 
BROWN,A REEDLEY, CA. WE 0256.9~-T-o3oo.oo 
BROWN,B BOSTON, MA. EA o 3 o 1 . o cr· 11 o o o . o o 
EVANS BUTTE, MT. WE 0010.00 i--0100.00 
HARTLEY CHICAGO, IL. NO 0433.29 I 0500.00 I 
HEATHCLIFF PORTLAND, OR. WE 0000. oo-r-osoo---:-oo 1 <-in-
JONES DALLAS, TX. so 1234.56 -r-2000.00 lserted 
KOTTER NEW YORK, NY. EA oos9.oo -y-Q5oo.oo I 
RICHARDS MINNI, MN. NO 0000.00 I 0500.00 I 
ROGERS BOISE, ID. ---rwE 10240oo_T_Isoo--:-oo1 
SANFORD L.A. , CA. I WE 0301.00 r-1000.00 I 
SMITH DAYTON, OH. I NO 0010.00 T-0500.00 I 

~ 82583 AOO 3/85 5-55 



File Access 
Access Examples 

Example 8. Random Update 

EVANS BUTTE, MT. 
HARTLEY CHICAGO, IL. 
JONES DALLAS, TX. 

key . - " " . .- , 

I WE 
-r· NO 

I so 

key[l] ' : =' key FOR custAnameAlen 

key ' : =' "HARTLEY"; 

roo10.oo 
I 0433.29 
I 1234.56 

blank 
- 1 . ! key. , 

CALL KEYPOSITION (custAfileAnumber, key); 
IF<> THEN ... 

0100.00 
0500.00 
2000.00 

the 

CALL READUPDATE (custAfileAnumber, cust, custAlen); 
IF <> THEN ... 

<-

I HARTLEY CHICAGO, IL. r-No 0433.29 0500.00 T -- ----

custAcurbal := custAcurbal + 30.00F 

CALL WRITEUPDATE (custAfileAnumber, cust, custAlen); 
IF<> THEN ... 

I HARTLEY CHICAGO, IL. 0463.29 osoo.oo T 

5-56 ·" 82583 AOO 3/85 



File Access 
Access Examples 

Example 9. Random Update to Non-Existent Record 

Record to be updated = "BROWN, C" 

ADAMS MIAMI, FL. SO 0000.00 0500.00 I 
BROWN,A REEDLEY, CA. WE 0256.95 0300.00 I 
BROWN,B BOSTON, MA. EA 0301.00 1000.00 I 

--EV_A_N_s--'-----""""T--B_U_T_T_E_,...;_M_T_.--~-,--W-E~_.-o~o-1_0_._0_0--,--0100.00 -, 

key := 
key[l] 

" " . , 
r • _ r . -

key':=' "BROWN,C"; 
CALL KEYPOSITION (custAfileAnumber, key); 
IF<> THEN ... 

blank the 
key . 

CALL READUPDATE (custAfileAnumber, cust, custAlen); 
IF < THEN 

BEGIN 
CALL FILEINFO (custAfum, error); 
IF error= 11 THEN .• ! record not found. 

~ 82583 AOO 3/85 5-57 



File Access 
Access Examples 

Example 10. Sequential Reading via Primary Key with Updating 

The "limit" for each record having a "limit" >= 1000.00 and <= 
2000.00 is raised to 2000.00. 

compareAlen := O; 
CALL KEYPOSITION ( custAfileAnurnber, key, , compareAlen); 

position to first record via primary key. 
custAeof := O; 
WHILE NOT custAeof DO 

BEGIN ! read loop. 
CALL READ ( custAfileAnurnber, cust, custAlen); 
IF > THEN custAeof := 1 
ELSE 

IF< THEN ... ! error. 
ELSE 

BEGIN ! process the record. 
IF custAlirnit >= 1000.00F 
AND custAlirnit <= 2000.00F THEN 

BEGIN 
custAlimit := 2000.00F; 
CALL WRITEUPDATE 

(custAfileAnurnber, cust, custAlen); 
IF< THEN ... ! error. 

END; 
END; 

END; ! read loop. 

1 irn it 

i-ADAMS MIAMI, FL. ~so I 0000.00 I 0500.oo-T 
l~BR_o_w_N_,-A-~~-R-EE_D_L_E~Y-,-c-A-.---i-wE I 0256.95 I 0300.00 I 
I BROWN, B BOSTON, MA. ---r--EA--IOfOT:00-1200lf:OO I < - in-
1 EVANS BUTTE, MT. I WE I 0010.00 I 0100.00 lserted 
I HARTLEY CHICAGO, IL. I NO I 0463. 29 10500. 00 I 
,~Jo_N_E_s----..--D-A-LL_A_s_,~T-x-.---i-scs--1 1234.56 1 2000.00 1 
I KOTTER NEW YORK, NY.--i-EA I 0089.00 I 0500.00 I 
I RICHARDS MINNI' MN. --i-No Tcwoo. 00 I 0500. 00 I 
1 -.-Ro_G_E_R_s-----.--B-o_I_s_E_;_, -I-n. ---i-wY-1 1 o 2 4 . o o 1 2 o o o • o o 1 < - - - + 
I SANFORD L.A., CA. I WE I 0301.00 I 2000.00 I <---+ 
1_s_M_I_T_H ______ D_A_Y_T~o-N-,-o-H-.-·--i-No I 0010.00 I 0500.00 I 

inserted 

5-58 1' 82583 AOO 3/85 



Example 11. Random Deletion via Primary Key 

Primary key = "EVANS" 

BROWN,B I BOSTON, MA. EA 0301.00 
EVANS I BUTTE, MT. WE 0010.00 
HARTLEY I CHICAGO, IL. NO 0463.29 

key := " " . blank , 
key[l] I • - I key FOR custAnameAlen - 1; key. .-
key I • - I . - "EVANS" 
CALL KEYPOSITION (custAfileAnumber, key); 
IF <> THEN ... 
CALL WRITEUPDATE (custAfileAnumber, cust, 0} ; 
IF <> THEN 

File Access 
Access Examples 

1-2000. 00 
I 0100.00 <-
rosoo.oo 

the 

BROWN, B BOSTON, MA. EA 0301. 0 0 12 0 0 0 . 0 0 
~HA_R_T_L_E~Y-----.--C_H_I_C_A_G~O-,~I-L-.---.---N-O~r--0-4_6_3_.~2-9-r-osoo.oo 

..-, 82583 AOO 3/85 5-59 



File Access 
Access Examples 

Example 12. Sequential Reading via Primary Key with Deletions 

Each record having a "curbal" value of 0.00 is deleted. 

CALL KEYPOSITION cust"fileAnumber, key, , 0); !position to 
! first record via primary key. 

cust"eof := O; 
WHILE NOT cust"eof DO 

BEGIN ! read loop. 
CALL READ ( cust"file"number, cust, cust"len)~ 
IF > THEN cust"eof := 1 
ELSE 

IF< THEN ... ! error. 
ELSE 

BEGIN ! process the record. 
IF cust"curbal = O.OOF THEN 

BEGIN 
CALL WRITEUPDATE ( cust"file"number, cust, 0 ); 
IF < THEN . . . ! error. 

END; 
END; 

END; ! read loop. 

curbal 

IBROWN,A REEDLEY, CA. -r-wE -Tl'.f256.95 I 0300.00 T 
I BROWN, B BOSTON, MA. -r-EA - I 0301. 0 0 I 2 0 0 0 . 0 0 · 1 

I _H_A_R_T_L_;..E_Y __ ,.---C_H_I, CAGO ' I L . ~---NO T04 6 3 . 2 9 -T 0 5 0 0 . () 0 -I 
I JONES DALLAS' TX. -r-so-TT234. 56 I 2000. ()0 · 1 

I KOTTER NEW YORK, NY.--rEA-1 0089.00 I 0500.00 ·1 
I ROGERS BOISE, ID. I WE I 1024.00 I 2000.00 ·1 
I -SA_N_F_O_R_D---,--L-.-A--.-,-'--'.c-A-. ---r--wE T03 o 1. o o - I 2 o o o . o o -I 
I SM I TH DAYTON , OH • -C_NO - I 0 0 10 . 0 0 I 0 5 0 0 . 0 0 L 

5-60 ~ 82583 AOO 3/85 



File Access 
Access Examples 

Example 13. Positioning with a Relative or Entry-Sequenced File 

For these declarations: 

INT(32) recAaddr; 
STRING primaryAkey = recAaddr; 

positioning by primary key is done with: 

CALL POSITION (fileAnumber, recAaddr); 

positioning to end-of-file is done with: 

recAaddr := -lD; 
CALL POSITION (fileAnumber, -lD); 

and the current primary-key value (current position) can be 
obtained with either: 

CALL FILEINFO (fileAnumber,,,,,,,,,,,recAaddr); 
or 

CALL FILERECINFO (fileAnumber,,,,primaryAkey); 

.., 82583 AOO 3/85 5-61 



File Access 
Access Examples 

Example 14. Sequential Reading of a Relative or Entry-Sequenced 
File 

Reading begins at the beginning of the file. 

CALL OPEN (fileAname, fileAnumber, .. ); 

eof := O; 
WHILE NOT eof DO 

BEGIN ! read loop. 
CALL READ (fileAnumber, buffer, len, numread); 
IF > THEN eof := 1 
ELSE 

I F < THEN . . . ! error . 
ELSE 

BEGIN process the record. 

END; 
END; ! read loop. 

Note that the preceding statements are functionally identical 
to the example for sequential access of a key-sequenced file 
via its primary key. 

Example 15. Insertion to a Specific Position in a Relative File 

CALL POSITION (fileAnumber, 12345D); 
CALL WRITE (fileAnumber, buffer, count); 
IF < THEN 

BEGIN 
CALL FILEINFO (fileAnumber, error); 
IF error= 10 THEN •.. ! record already exists at 12345D. 

END; 

5-62 "1J 82583 AOO 3/85 



File Access 
Access Examples 

Example 16. Appending to the End of a Relative File 

CALL POSITION (fileAnumber, -lD); 
WHILE 1 DO 

BEGIN 

buffer':=' data FOR (count+ 1)/2; 

prepare a record to be written. 

CALL WRITE (fileAnumber, buffer, count); 
IF <> THEN ! error. 

CALL FILERECINFO (fileAnumber,,,,primaryAkey); 

returns the <record number> of where the new record is 
appended. 

END; 

Example 17. Insertion to Empty Positions in a Relative File 

CALL POSITION (fileAnumber, -2D); 
WHILE 1 DO 

BEGIN 

buffer':=' data FOR (count+ 1)/2; 

CALL WRITE (fileAnumber, buffer, count); 
IF <> THEN ! error. 

CALL FILERECINFO (fileAnumber,,,,primaryAkey); 

returns the <record number> of where the new record is 
appended. 

END; 

'1J 82583 AOO 3/85 5-63 



File Access 
Access Examples 

Example 18. Appending Records to an Entry-Sequenced File 

WHILE 1 DO 
BEGIN 

5-64 

buffer':=' data FOR (count+ 1)/2; 

CALL WRITE (fileAnumber, buffer, count); 
I F < > THEN . . . ! error . 

END; 

..,,, 82583 AOO 3/85 



File Access 
Relational Processing Example 

RELATIONAL PROCESSING EXAMPLE 

An "ORDER" Record: 

byte: 
[ 0] [ 2 ] 

"orderno" I "name" 

Primary 
Key 

I 

Alternate 
Key "NA" 

INT .order[0:26]; 

STRING 

[38] [46] 

"date" I "total" 
I 

Alternate 
Key "DT" 

.sorder := @order '<<' l: 

INT .orderAorderno = order; 

DEFINE 
orderAlen 
orderAname 
orderAnameAlen 
orderAdate 
order"'date"'len 

FIXED(2) 
. order"'total 

= 54#, 
= sorder[2]#, 
= 36#, 
= sorderhrd[38]#, 
= 8#: 

:= @order[23]: 

Contents of the "ORDER" File: 

order no name date total 
0020 SMITH 76/09/30 0000.00 
0021 JONES 76/10/01 0000.00 
0176 BROWN,B 76/10/17 0000.00 
0180 ADAMS 76/10/17 0000.00 
0410 SANFORD 76/10/22 0000.00 
0498 ROGERS 76/11/02 0000.00 
0568 EVANS 76/11/05 0000.00 
0601 SMITH 76/11/08 0000.00 
0621 RICHARDS 76/11/12 0000.00 
0622 HARTLEY 76/11/12 0000.00 
0623 KOTTER 76/11/12 0000.00 

..,, 82583 AOO 3/85 

order record. 

byte addressable. 

order number field. 

order record length. 
name field. 
name field length. 
date field. 
date field length. 

total field • 
"total" = 0 means 
order not filled. 
"total" <> 0 means 
order filled but not 
shipped. 

5-65 



File Access 
Relational Processing Example 

An "ORDER DETAIL" Record: 

byte: 
[0] [2] [4] [6] [8] r-,---=----...---- ----, I 
I "orderno" : "itemno" I "partno" I "qty" I "itemtot" 
I I I I 

Primary 
Key 

INT .orderdet[0:7]; 

INT(32) 
.orderdetAorditem 

DEFINE 
orderdetAlen 
orderdet"orderno 
orderdetAitemno 
orderdet"partno 
orderdetAqty 

FIXED(2) 
.orderdetAitemtot 

. -. -

= 
= 
= 
= 
= 

. -. -

Alternate 
Key "PN" 

@orderdet; 

16#, 
orderdet#, 
orderdet[l]#, 
orderdet[2]#, 
orderdet [ 3] #~; 

@orderdet[4]; 

Contents of the "ORDER DETAIL" File: 

orderno:itemno part no qty itemtot 

0020 0001 23167 00002 I 0000.00 
0020 0002 02010 oooofl- 0000. oo 
0020 0003 12950 00005 I 0000.00 
0021 0001 00512 0002mooo.oo 
0021 0002 23167 00001 I 0000.00 
0176 0001 32767 00001 I 0000.00 
0180 0001 12950 oooo5fcfooo. oo 
0180 0002 32767 00022 I 0000.00 
0180 0003 23167 00002 I 0000.00 
0410 0001 01234 00010 I 0000.00 
0410 0002 03379 00010 I 0000.00 

0623 0012 01234 00010 0000.00 

5-66 

T 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

order detail record. 

order-item field. 

order record length. 
order num. subfield. 
item number subfield. 
part number field. 
quantity field. 

item total field . 
total = 0 means item 
not available. 

..., 82583 AOO 3/85 



An "INVENTORY" Record: 

File Access 
Relational Processing Example 

byte: 
[ 0] [ 2] (32] [40] [54] 

"partno" 

Primary 
Key 

"descr" 

I NT . i n v [ 0 : 2 7 ] : 

STRING 

"price" I "availqty" 
I 

Alternate 
Key "AQ" 

I "loc" "vendor" I 
I I 

Alternate Alternate 
Key "LO" Key "VN" 

inventory record. 

.sinv := @inv '<<' l: byte addressable. 

DEFINE 
inv"'len 
inv"'partno 
inv"'descr 
inv"'descr"'len 
inv"'availqty 
inv"'location 
inv"'location"'len 
inv"'vendor 
inv"'vendor"'len 

FIXED(2) 

= 54#, 
inv#, 

= sinv[2]#, 
= 30#, 

inv[20]#, 
sinv[42]#, 

= 4#, 
= sinv[46]#, 
= 8#: 

inventory record len. 
part number field. 
part descript. field. 
descr. field length. 
avail. quant. field. 
location field. 
loc. field length. 
vendor field. 
vendor field length. 

. inv"'price := @inv[16]; price field • 

Contents of "INVENTORY" file: 

part no descr price availqty loc vendor 

00002 HI-FI 0129.95 00050 AOl TAYLOR I 
00512 RADIO 0010.98 00022 GlO GRAND I 
00987 TV SET 0200.00 00122 A76 TAYLOR I 
02010 TOASTER 0022.50 00000 F22 ACME I 
03379 CLOCK 0011.75 00512 A32 I ZARF I 
12950 TOASTER 0020.45 00010 --~--~----~----.,.--,~---=---..-~---,.--.--C~9~8-i-8M-Y-~I 

20211 WASHER 

23167 ANTENNA 
32767 IRON 
65535 DRYER 

'1' 82583 AOO 3/85 

0314.29 00005 B44 !SOAPY I 

I 10_0_2_2_. --5-0 __ 0_0_0_0_8~-A-O_l_IT AYLOR 
I 0025.95 00051 A82 T HOT 
I 0299.50 00022 Z02 I SOAPY 

5-67 



File Access 
Relational Processing Example 

The next example finds orders more than one month old and fills 
them. This involves these steps: 

1. Read the "order" file sequentially via the date field. 

2. When an order is found that must be filled, the corresponding 
"customer" record is read (random processing) and an order 
header consisting of customer name and address is printed. 

3 Next, the generic subset in the "order detail" file 
corresponding to the current "orderno" is read sequentially. 

4. For each line item (a record in the generic subset), the 
"inventory" file is read and updated (random processing), the 
line item record is updated, and the line item is printed. 

5. When all line items for the current order have been 
processed, the order record is updated with the total price 
of the order. Then the customer current balance is updated 
and the total are printed. 

5-68 .. , 82583 AOO 3/8~> 



The example code is 

compareAlen := O; 

File Access 
Relational Processing Example 

! position to beginning of file via date field. 
CALL KEYPOSITION (orderAfile"'number,key,"DT",compareAlen); 
order"'eof := O; 
WHILE NOT order"'eof DO 

BEGIN ! reading order file via date field. 
CALL READ (order"'fum, order, order"'len); 
IF > OR order"'date >= limit"'date THEN order"'eof .- 1 
ELSE 

BEGIN ! fill order. 
! read customer file. 
CALL KEYPOSITION (cust"'file"'number, orderAname); 
CALL READUPDATE (cust"'file"'number, cust, custAlen); 
PRINT (order header); 
! read order detail file for current order. 
compare"'len := 2; 
CALL KEYPOSITION (orderdet"'file"'number,order"'orderno,, 

compare"'len, generic); 
orderdet"'eof := O; 
WHILE NOT orderdet"'eof DO 

BEGIN 
! read line item. 
CALL READ 

(orderdet"'file"'number,orderdet,orderdet"'len); 
IF > THEN orderdet"'eof := 1 
ELSE 

END; 

BEGIN 
CALL KEYPOSITION 

(inv"'file"'number,orderdet"'partno); 
CALL READUPDATE (inv"'file"'number,inv,inv"'len); 
! next, update inventory record 
CALL WRITEUPDATE (inv"'file"'number,inv,invAlen); 
! next, update the order-detail record 
CALL WRITEUPDATE 

(orderdet"'file"'number, orderdet, ordetlen); 
! print the line item 
PRINT (line item) 

END; 

! update the order file 
CALL WRITEUPDATE (order"'fileAnumber, order, order"'len); 
! update the customer file. 
CALL WRITEUPDATE (custAfileAnumber, cust, custAlen); 
PRINT (total); 

END; ! of fill order. 
END: ! of read order file via date field. 

Af' 82583 AOO 3/85 5-69 



File Access 
Relational Processing Example 

Records and files used to fill the first order: 

10020 

!SMITH 

0020 
0020 
0020 

SMITH 

0001 
0002 
0003 

From the "ORDER" file -

1 16;09;30-1crooo:oo-T 
-·----------

From the "CUSTOMER" file -

From the "ORDER DETAIL" file -

23161 I o o o 0·21--·oo o-o . o 0-1 
02010 I 000011--0000:-00--1 
12950 I 0000510000. oo -, 

-"-------------- ---------

From the "INVENTORY" file -

12 316 7 ANTENNA 0 0 2 2. 5 0 T-000-08--1 AO 1 TAYLOR! 

ACME I 1o2 o i o To As TER o o 2 2 . so T-ocf o o o 1 F 2 2 --------------

112950 TOASTER 0020 .·45·r--ocfOTOl C98 SMYTHE! _c _________________ _ 

Records and files after filling the first order: 

10020 

!SMITH 

10020 
I 0020 
I 0020 

123167 

102010 

I 12950 

From the "ORDER" file -

SMITH I 7 6/ 0 9 I 3 01·014 i-:251-------

From the "CUSTOMER" file -

DAYTON, OH. -T-NoToT57.25T 0 5 0 0 • 0 0 

From the "ORDER DETAIL" file -

0001 23167 I 00000 I 0045.oo I 
0002 02010 I 000011--·aoa·o. 00--1 <- not filled 
0003 12950 I 00000 I 0102.25-I 

From the "INVENTORY" file -

ANTENNA 0022. 50 TU00006 I AOl I TAYLOR! ----------------·-------

TOASTER 0 0 2 2 . 50-roo_o _o o __ I __ F_2_2 __ A_C_M_E_ 

TOASTER 0 0 2 0 • 451---00 0 0 5 l c 9 8 SMYTHE:f 

T 

<--none 

5-70 ~ 82583 AOO 3/85 



SECTION 6 

FILE LOADING 

The File Utility Program (FUP) commands related to loading data 
into an existing file are LOAD, LOADALTFILE, and BUILDKEYRECORDS. 

• The LOAD command loads data into an existing structured disc 
file without affecting any alternate-key files. Existing data 
in the file being loaded are lost. 

For loading of key-sequenced files, the input records can be 
in sorted or unsorted order (unsorted is assumed unless the 
SORTED option is specified). Also for key-sequenced files, 
the slack space (the percentage of data block and index block 
space to be left for future insertions) can be specified. 

• The LOADALTFILE command generates alternate-key records from a 
specified primary-key file and loads those records into the 
specified alternate-key file. Slack space for future 
insertions can be specified. LOADALTFILE always sorts the 
alternate-key records before actually loading them. 

• Because some systems may have insufficient disc space for the 
sorting operation, the alternate-key file can be loaded in two 
separate steps by first performing a BUILDKEYRECORDS 
operation. 

The BUILDKEYRECORDS command generates alternate-key records 
for specified key fields of a specified structured disc file 
and writes those records to a designated file (not necessarily 
the ultimate-destination alternate-key file). This output 
(which can be to a magnetic-tape file) can then be loaded into 
the alternate-key file by means of a COPY or LOAD command. 

FUP resides in volume $SYSTEM. Normally, it is run through use 
of the GUARDIAN Operating System Command Interpreter. For a 
complete description of all the FUP commands, see the GUARDIAN 
O~erating sistem Utilities Reference Manual. Also see the FUP 
discussion in the GUARDIAN Operating System User'~ Guide. 

/1J 82583 AOO 3/85 6-1 



File Loading 
File Utility Program (FUP): File-Loading Examples 

The examples below illustrate file-loading operations that 
require a sequence of FUP commands. Example 1 loads a key
sequenced file. Example 2 adds an alternate key to a file having 
alternate keys. Example 3 adds an alternate key to a file not 
having alternate keys. Example 4 reloads a single partition of a 
partitioned key-sequenced file. Example 5 loads a single 
partition of a partitioned alternate-key file. 

EXAMPLE 1: LOAD A KEY-SEQUENCED FILE 

For this example, file $VOL1.SVOL.PARTFILE is a key-sequenced 
file having three partitions. The first secondary partition is 
$VOL2 and the second secondary partition is $VOL3. 

Any record having a primary-key value in the range of zero to 
(but not including) HA are to exist in the primary partition; 
records with primary-key values from HA to (but not including) RA 
are to exist on $VOL2; records with primary-key values of RA or 
greater are to exist on $VOL3. 

The records to be loaded into this file are 128 bytes long and 
are on tape in unsorted order. The tape is written with one 
record per block. 

The FUP commands to perform this operation are 

-VOLUME $voll.subvolurne 
-LOAD $TAPE, partf ile 

LOAD reads the records from tape drive $TAPE and sends them to 
the SORT process. When all records have been read, sorting 
begins. When the sort is finished, the records are read from the 
SORT process and loaded into the file according to the file's 
<partial-key value> specifications. The data and index block 
slack percentage is zero (0). 

EXAMPLE 2: ADD AN ALTERNATE KEY TO A FILE HAVING AN AUI1ERNATE 
KEY 

This example adds an alternate key to primary file 
$VOL1.SVOL.PRIFILE, which has one alternate-key file designated 
$VOL1.SVOL.ALTFILE. The alternate-key records for the new key 
field will be added to file ALTFILE. 

The <key specifier> for the new key is NM, the <key offset> in 
the record is four (4), the <key length> is twenty (20), a "null 
value" of " " (blank) is specified for the new key field. 

6-2 ""'f' 82583 AOO 3/85 



File Loading 
File Utility Program (FUP): File-Loading Examples 

The FUP commands to perform this operation are 

-VOLUME $voll.subvolume 
-ALTER prifile, ALTKEY ( "NM", KEYOFF 4, KEYLEN 20, NULL" " ) 
-LOADALTFILE 0, prifile, ISLACK 10 

The LOADALTFILE command loads PRIFILE's key file zero (0), 
$VOL1.SVOL.ALTFILE, with the alternate-key records for <key 
specifier> NM and for any other alternate keys defined for key 
file zero (0). An index-block slack percentage of 10 is 
specified. 

EXAMPLE 3: ADD AN ALTERNATE KEY TO A FILE NOT HAVING ALTERNATE 
KEYS 

This example adds an alternate key to primary file 
$VOL1.SVOL.FILEA, which is an entry-sequenced file. The new 
alternate-key file will be $VOL1.SVOL.FILEB. The alternate-key 
records for the new key field will be added to FILEB. 

The <key specifier> for the new key is XY, the <key offset> in 
the record is (0), and the <key length> is ten (10). 

The FUP commands to perform this operation are 

-VOLUME $voll.subvolume 
-CREATE fileb, type K, rec 16, keylen 16 
-ALTER filea, ALTFILE ( 0, fileb ), ALTKEY ( "XY", KEYLEN 10 ) 
-LOADALTFILE 0, filea 

The CREATE command creates the alternate-key file 
$VOL1.SVOL.FILEB. The record length and key length are specified 
as 16 bytes (2 for the key specifier + 10 for the alternate-key
field lengths+ 4 for the primary-key length). 

The ALTER command changes the file label for FILEA so that it 
refers to FILEB as <alternate-key file> 0, and contains the 
definition for the key field specified by <key specifier> XY. 

The LOADALTFILE command loads FILEA's key file zero (0), 
$VOL1.SVOL.FILEB, with the alternate-key records for <key 
specifier> XY. An index-block-slack percentage of zero (0) is 
implied. 

AfJ 82583 AOO 3/85 6-3 



File Loading 
File Utility Program (FUP): File-Loading Examples 

EXAMPLE 4: RELOAD A SINGLE PARTITION OF A PARTITIONED, 
KEY-SEQUENCED FILE 

For this example, the primary partition of the partitioned file 
is $VOL1.SVOL.PARTFILE. Its first secondary partition is on 
$VOL2 and its second secondary partition is on $VOL3. The 
secondary partition on $VOL2 is to be loaded. 

The FUP commands to perform this operation are 

-VOLUME $voll.subvolume 
-SET LIKE $vol2.partfile 
-SET NO PARTONLY 
-CREATE temp 
-DUP $vol2.partfile, temp, OLD, PARTONLY 
-LOAD temp, $vol2.partfile, SORTED, PARTOF $voll 
-PURGE temp 

The SET and CREATE corrunands create a file identical to 
$VOL2.SVOL.PARTFILE except that the file is designated a non
partitioned file by means of NO PARTONLY. 

The DUP command duplicates the data in the secondary partition 
($VOL2.SVOL.PARTFILE) into $VOL1.SVOL.TEMP. 

The LOAD command reloads the secondary partition 
$VOL2.SVOL.PARTFILE. The SORTED option is specified because the 
records in the TEMP file are already in sorted order. 

EXAMPLE 5: LOAD A SINGLE PARTITION OF A PARTITIONED, 
ALTERNATE-KEY FILE 

For this example, primary file $VOL1.SVOL.PRIFILE is a key
sequenced file having a primary-key field ten bytes long. It has 
three alternate-key fields defined by the <key specifiers> Fl, 
F2, and F3. Each of these alternate-key fields is ten bytes 
long. 

All alternate-key records are contained in one alternate-key file 
that is partitioned over three volumes; each volume contains the 
alternate-key records for one alternate-key field (the <key 
specifier> for the alternate-key field is also the <partial-key 
value> for the secondary partitions). 

The alternate-key file's primary partition is $VOL1.SVOL.ALTFILE. 
It contains the alternate-key records for the <key specifier> Fl. 
The first secondary partition, $VOL2.SVOL.ALTFILE, contains the 
alternate-key records for <key specifier> F2. The second 
secondary partition, $VOL3.SVOL.ALTFILE, contains the aJLternate
key records for <key specifier> F3. 

6-4 ...,."'f' 82583 AOO 3/85 



File Loading 
File Utility Program (FUP}: File-Loading Examples 

To load the alternate-key records for <key specifier> F2 into 
$VOL2.SVOL.ALTFILE, the FUP commands are: 

-VOLUME $voll.subvolume 
-CREATE sortin, ext 30 
-CREATE sortout, ext 30 
-BUILDKEYRECORDS prifile,sortin,"F2",RECOUT 22,BLOCKOUT 2200 
-EXIT 
:SORT 
<FROM sortin, RECORD 22 
<TO sortout 
<ASC 1:22 
<RUN 
<EXIT 
:FUP 
-VOLUME $voll.subvolume 
-LOAD sortout, $vol2.altfile, SORTED, PARTOF $voll, RECIN 22, 

BLOCKIN 2200 
-PURGE ! sortin, sortout 

The CREATE commands create the disc file used as the output of 
BUILDKEYRECORDS (which is also the input to SORT) and the disc 
file to be used as the output of SORT. 

The BUILDKEYRECORDS command generates the alternate-key records 
for <key specifier> F2 of PRIFILE and writes the records to 
SORTIN. Record-blocking is used, to improve the efficiency of 
disc writes. 

The SORT program sorts the alternate-key records. The key-field 
length for the sort is the same as the alternate-key record 
length (22, 2 for the <key specifier> + 10 for alternate-key
field length+ 10 for the primary-key-field length). The output 
file of the sort is SORTOUT. 

The LOAD cornrnand loads the secondary partition $VOL2.SVOL.ALTFILE 
with the alternate-key records for <key specifier> F2. Note that 
the record-blocking here is complementary to that used with 
BUILDKEYRECORDS. 

Af' 82583 AOO 3/85 6-5 





APPENDIX A 

ASCII CHARACTER SET 

The table below shows the USA Standard Code for Information 
Interchange (ASCII) character set, and the corresponding code 
values in octal notation. 

Octal Value Octal Value 
Character (left byte) (right byte) Meaning 
--------- ----------- ------------ ---------------------

NUL 000000 000000 Null 
SOH 000400 000001 Start of heading 
STX 001000 000002 Start of text 
ETX 001400 000003 End of text 
EOT 002000 000004 End of transmission 
ENQ 002400 000005 Enquiry 
ACK 003000 000006 Acknowledge 
BEL 003400 000007 Bell 

BS 004000 000010 Backspace 
HT 004400 000011 Horizontal tabulation 
LF 005000 000012 Line feed 
VT 005400 000013 Vertical tabulation 
FF 006000 000014 Form feed 
CR 006400 000015 Carriage return 
so 007000 000016 Shift out 
SI 007400 000017 Shift in 

DLE 010000 000020 Data link escape 
DCl 010400 000021 Device control 1 
DC2 011000 000022 Device control 2 
DC3 011400 000023 Device control 3 
DC4 012000 000024 Device control 4 
NAK 012400 000025 Negative acknowledge 
SYN 013000 000026 Synchronous idle 
ETB 013400 000027 End of transmission 

block 

~ 

"'11 82583 AOO 3/85 A-1 



ASCII Character Set 

Octal Value Octal Value 
Character (left byte) (right byte) Meaning 
--------- ----------- ------------ ---------------------

CAN 014000 000030 Cancel 
EM 014400 000031 End of medium 
SUB 015000 000032 Substitute 
ESC 015400 000033 Escape 
FS 016000 000034 File separator 
GS 016400 000035 Group separator 
RS 017000 000036 Record separator 
us 017400 000037 Unit separator 

SP 020000 000040 Space 
020400 000041 Exclamation point 

" 021000 000042 Quotation mark 
# 021400 000043 Number sign 
$ 022000 000044 Dollar sign 
% 022400 000045 Percent sign 
& 023000 000046 Ampersand 

023400 000047 Apostrophe 

024000 000050 Opening parenthesis 
024400 000051 Closing parenthesis 

* 025000 000052 Asterisk 
+ 025400 000053 Plus 

026000 000054 Corruna 
026400 000055 Hyphen (minus) . 027000 000056 Period (decimal point) 

I 027400 000057 Right slant 

0 030000 000060 Zero 
1 030400 000061 One 
2 031000 000062 Two 
3 031400 000063 Three 
4 032000 000064 Four 
5 032400 000065 Five 
6 033000 000066 Six 
7 033400 000067 Seven 

8 034000 000070 Eight 
9 034400 000071 Nine 

035000 000072 Colon 
035400 000073 Semicolon 

< 036000 000074 Less than 
= 036400 000075 Equals 
> 037000 000076 Greater than 
? 037400 000077 Question mark 

A-2 '1J 82583 AOO 3/85 



ASCII Character Set 

Octal Value Octal Value 
Character (left byte) (right byte) Meaning 
--------- ----------- ------------ ---------------------

@ 040000 000100 Commercial "at" 
A 040400 000101 Uppercase A 
B 041000 000102 Uppercase B 
c 041400 000103 Uppercase C 
D 042000 000104 Uppercase D 
E 042400 000105 Uppercase E 
F 043000 000106 Uppercase F 
G 043400 000107 Uppercase G 

H 044000 000110 Uppercase H 
I 044400 000111 Uppercase I 
J 045000 000112 Uppercase J 
K 045400 000113 Uppercase K 
L 046000 000114 Uppercase L 
M 046400 000115 Uppercase M 
N 047000 000116 Uppercase N 
0 047400 000117 Uppercase 0 

' 
p 050000 000120 Uppercase p 
Q 050400 000121 Uppercase Q 
R 051000 000122 Uppercase R 
s 051400 000123 Uppercase s 
T 052000 000124 Uppercase T 
u 052400 000125 Uppercase u 
v 053000 000126 Uppercase v 
w 053400 000127 Uppercase w 

x 054000 000130 Uppercase x 
y 054400 000131 Uppercase y 
z 055000 000132 Uppercase Z 
[ 055400 000133 Left square bracket 
\ 056000 000134 Left slant 
] 056400 000135 Right square bracket 

A 057000 000136 Circumflex 
057400 000137 Underscore -

• 060000 000140 Grave accent 
a 060400 000141 Lowercase a 
b 061000 000142 Lowercase b 
c 061400 000143 Lowercase c 
d 062000 000144 Lowercase d 
e 062400 000145 Lowercase e 
f 063000 000146 Lowercase f 
g 063400 000147 Lowercase g 

~ 

"1 82583 AOO 3/85 A-3 



ASCII Character Set 

Octal Value Octal Value 
Character (left byte) (right byte) Meaning 
---------- ----------- ------------ ---------------------

h 064000 000150 Lowercase h 
i 064400 000151 Lowercase 1 

j 065000 000152 Lowercase J 
k 065400 000153 Lowercase k 
1 066000 000154 Lowercase 1 
m 066400 000155 Lowercase m 
n 067000 000156 Lowercase n 
0 067400 000157 Lowercase 0 

p 070000 000160 Lowercase p 
q 070400 000161 Lowercase q 
r 071000 000162 Lowercase r 
s 071400 000163 Lowercase s 
t 072000 000164 Lowercase t 
u 072400 000165 Lowercase u 
v 073000 000166 Lowercase v 
w 073400 000167 Lowercase w 

x 074000 000170 Lowercase x 
y 074400 000171 Lowercase y 
z 075000 000172 Lowercase z 
{ 075400 000173 Opening brace 
I 076000 000174 Vertical line 
} 076400 000175 Closing brace 

077000 000176 Tilde 
DEL 077400 000177 Delete 

A-4 .,. 82583 AOO 3/85 



APPENDIX B 

BLOCK FORMATS OF STRUCTURED FILES 

This appendix describes the block formats for key-sequenced, 
entry-sequenced, and relative files. A block in a structured 
file usually consists of a header, a record area, and a map of 
offsets pointing to the beginning of each record. For a relative 
file under the DP2 disc process, an array of record lengths 
replaces the offsets map. 

The block format for Nonstop 1+ systems and for Nonstop systems 
with DPl disc processes is shown in Figure B-1 and described in 
detail on the subsequent pages. 

Under the DP2 disc process, a key-sequenced file begins with a 
bit-map block telling which data and index blocks are in use. 
The second block is the root (highest-level) index block for the 
file. The third block is either a second-level index block or 
the file's first data block. Under DPl, a key-sequenced file's 
first block is the root index block. 

In a relative file under DP2, the first block is a bit-map block 
telling which data blocks contain at least one record. The 
second block is always the first data block. A DPl relative 
file's first block is a data block. 

In an entry-sequenced or unstructured file under DPl or DP2, all 
blocks are data blocks. 

Figure B-2 shows the general block format for Nonstop systems 
with DP2 disc processes. DP2's five different block-header 
structures are shown in Figures B-3 through B-8. 

~ 82583 AOO 3/85 B-1 



Block Formats of Structured Files 
DPl Disc Process 

-----------------·----· 

<rba> Word Length 
(Decimal Addresses) in Words 

I [ 0] [ 0] I <next block at same level> T 2 
I !----------------------------

! [4] [2] <next block on free list> 
I ----------------------------

BLOCK [ 8] [ 4] <number of records> 
HEADER ----------------------------

! [10] [5] <level> 
I ----------------------------
! [12] [6] block checksum 
\ ----------------------------

\ [14] [7] unused (zeros) 
============================ 

I [20] (10] (record 0) 
I 

I 
I 
I 

DATA 
AREA 

' I I 
\ 

\ 

I 
/ 

I 
I 

OFFSETS 
MAP 
I 
I 
I 
I 
I 
I 
\ 

\ 

[ <block 
size> -

one word ] 

. 
1----------------------------
1 (record 1) I . . 
1----------------------------. . . . 
1----------------------------
1 (record N, where N = 
I <number of records> - 1) 

free space 
============================ 
byte <offset> 
from [OJ to free space 

byte <off set> 
from [O] to record N 

I byte <off set> 
I from [O] to record 1 
1----------------------------1 
I byte <offset> I 
I from [O] to record 0 I 
I I 

'--------------------·----

2 

1 

1 

1 

3 

1 

1 

1 

1 

Figure B-1. Block Format for Structured Files (non-DP2 systems) 

B-2 ~ 82583 AOO 3/85 



Block Formats of Structured Files 
DPl Disc Process 

<rba> 

A block is addressed by a doubleword relative byte address 
(RBA). In a key-sequenced file, (<rba> = 0) points to the root 
(highest-level) index block; in a relative or entry-sequenced 
file, (<rba> = 0) points to the first data block. 

To locate a given record in a key-sequenced file, the key value 
supplied to KEYPOSITION is used to search the block for a 
record having a key field that matches. 

To locate a given record in a relative file, the <record 
number> supplied to POSITION is converted to a block address 
and record number in the block, as shown here: 

<blocking factor> = 
( <block length> - 22 ) I ( <create record length> + 2 ) 

<rba of block> = 
<record number> I <blocking factor> * <block length> 

<record in block>= <record number> '\' <blocking factor> 

The format of a <record address> used to position to a record 
in an entry-sequenced file is 

I byte 0 byte 1 byte 2 I byte 3 I 

<rba of block> I 512 
<record in block> 

<next block at same level> 

For key-sequenced files, this is the block number of the next 
block at the same level; for relative and entry-sequenced 
files, this field is not used and is set to zero. 

<next block on free list> 

For key-sequenced and relative files, this serves two 
functions: It holds (1) the block number of the next block on 
the file's free list(s) (for a key-sequenced file, if the 
index- and data-block lengths differ, the file has two free 
lists; one for index blocks and another one for data blocks) 
and (2) the number of free blocks on the list. The doubleword 
is formatted as shown here: 

~ 82583 AOO 3/85 B-3 



Block Formats of Structured Files 
DPl Disc Process 

RBA of free block is the 
last nine bits are zeroed = 

I 
I \ 

<next block number> 
512 

l_b_y_t_e_O--.-__,b,--y_t_e_l--.--.,,--b-yt-e--2__ I ~1iY t_e_ 3 ~ 

-,-
$MIN ( 511 , <number of blocks in free list> ) 

If the entry = -10 for a key-sequenced or relative file, the 
block is the last block in the free list. 

If the entry = -20 for a key-sequenced file, the block is in 
use. 

If the entry = -20 for a relative file, there are no free 
records in the block. 

For entry-sequenced files, this entry is not used and is set to 
-lD. 

<number of records> 

is the number of records written in the block. 

<level> 

is the tree level of the block. <level> = 0 means the block is 
a data block: <level> > 0 means the block is an index block. 

<record> 

is a data record (if <level> = 0) or index record (if <level>> 
0 ). The length of record N is 

<offset to record N + 1> - <offset to record N> 

Also, a record must be able to fit into the record area of one 
block. The format of a OPl or Nonstop 1+ index record is 

[O] [<length(N) - 4>] [<length(N)>] 
t t t 
I key value I b~_Q~T~ _ _byt~ 1 I bl_!-e 2 T by=te 3 I 

\ I 
I 

<rba> of block at next level 

B-4 ~ 82!:i83 AOO 3/85 



<offset> 

Block Formats of Structured Files 
DPl Disc Process 

is the offset, in bytes, to the beginning of "free space" or a 
record. For relative files, the number of <offset>s is always 
the same as the <blocking factor>. 

<block size> 

is the block size in words, calculated as shown here: 

<block size> = ( <creation block length> + 1 } I 2 

"1' 82583 AOO 3/85 B-5 



Block Formats of Structured Files 
DP2 Disc Process 

[Offset] 
(Decimal) 

I [ 0 ] 
I 

I [ 1 ] 
I 

COMMON [ 4 ] 
BLOCK 
HEADER [ 5 ] 

\ 
\ [ 6] 

\ 
\ [12] 

[14] 

I [16, 18, 
I 22, or 28] 

I 
I 
I 

DATA 
AREA 

I 
I 
I 
\ 

\ 

I 
I 
I 
I 
I 

I 

OFFSETS MAP 
or 

RECORD-SIZE 
ARRAY 
I 
I 
I 
I 
\ 

\ 

<block 
size> 

- 2 ] 

<eye-ca-tcher> I 
--------------------------------! 

<relative sector number> I 
--------------------------------! 

<flags> I 
--------------------------------! 

<index level> I 
--------------------------------! 

<volume sequence number> I 
--------------------------------! 

<checksum> I 
================================! 

<type-specific block header> I 
================================! 

I (record 0) I . . . . 
1--------------------------------1 
I (record 1) I 
!--------------------------------! . . . . . . 
!--------------------------------! 
I (record N) I 
I ( N = <number of records> - 1) I 
1--------------------------------1 
I free space (key-sequenced or I 
I entry-sequenced files only) I 
================================! 
byte <offset> from I I 

[O] to start I (reserved) I 
of free space I I 

--------------------+-----------
byte <offset> from size of 
[O] to record N record N 
(key-sequenced or (relative 
entry-seq. only) file only) 

--------------------+-----------

--------------------+-----------
byte <offset> from size of 
[O] to record 0 record 0 
(key-sequenced or (relative 
entry-seq. only) file only) 

Length 
in Bytes 

1 

3 

1 

1 

6 

2 

[ 4 ' 6' 
10, or 16] 

2 

2 

2 

Figure B-2. Block Format for DP2 Structured Files 

B-6 ~ 82583 AOO 3/85 



Block Formats of Structured Files 
DP2 Disc Process 

<eye catcher> 

is currently set to ">" but may be changed in a future release. 

<relative sector number> 

identifies the relative 512-byte sector within the file. 

<flags> 

Bit 0: This bit is set (=1) if the block is broken 
(inconsistent). 

Bits 3-5: These three bits indicate the file type as follows: 

000 (reserved) 
001 Relative File 
010 Entry-Sequenced File 
011 Key-Sequenced File 
100 (reserved) 
101 (reserved) 
110 (reserved) 
111 Directory 

Bits 6-7: These two bits indicate the block type as follows: 

<index level> 

00 Data or Index 
01 Bit Map (file must be key-sequenced or relative) 
10 Free (file must be key-sequenced) 
11 (reserved) 

contains the tree level of the block. If the block is not an 
index block, <level> = O. 

<volume sequence number> 

identifies the last update of a structured block. This number 
is incremented each time a change is made to the block, 
regardless of whether the block is written to disc. For a TMF
audited file, the <volume sequence number> is included in the 
audit-checkpoint (AC) record. Later, during autorollback or 
takeover, the number in the block header is compared with the 
number in the AC record to determine whether the AC record must 
be applied. 

..,. 82583 AOO 3/85 B-7 



Block Formats of Structured Files 
DP2 Disc Process 

<checksum> 

is the software checksum over the entire block. 

<type-specific block header> 

is the block-header area that differs according to the type of 
file. The various block headers are illustrated in Figures B-3 
through B-7. Figure B-8 illustrates the arrangement of bit-map 
blocks with key-sequenced and relative files. 

--------------------------
Offset {Decimal} 

[ 0] 

[14] 

[16] 

[24] 

I <common block header> I 
!===========================! 
I <quantity of I 
I records allocated> I 
1---------------------------1 
I {reserved) I 
!===========================! 
I {record 0) I _____ , _____________________ _ 

Length in Bytes 

"') 

"· 

Figure B-3. Header for DP2 Key-Sequenced Index Block 

----------------------------

Offset (Decimal} 

[ 0] 

[14] 

[16] 

[24] 

[27] 

[30] 

<common block-header> 
=========================== 

<quantity of 
records allocated> 

(reserved) 

<relative sector number> 
of next data block 

<relative sector number> 
of previous data block 

=========================== 
(record 0) 

,__ ________________ , ______ _ 

Length in Bytes 

2 

3 

3 

Figure B-4. Header for DP2 Key-Sequenced Data Block 

B-8 ~ 82583 AOO 3/85 



Offset (Decimal) 

[ 0] 

(14] 

[ 16] 

[ 2 0] 

Block Formats of Structured Files 
DP2 Disc Process 

Length in Bytes 

I <common block header> I 14 
l===========================I 
I <quantity of I 2 
I records allocated> I 
1---------------------------1 
I (reserved) I 4 
l===========================I 
I (record 0) I 

Figure B-5. Header for DP2 Entry-Sequenced Data Block 

Offset (Decimal) Length in Bytes 

[ 0 ] 

(14] 

(16] 

(18] 

(20] 

I <common block header> I 
l===========================I 
I <quantity of I 
I records allocated> I 
1---------------------------1 
I <quantity of I 
I records present> I 
1---------------------------1 
I (reserved) I 
l===========================I 
I (record 0) I 

14 

2 

2 

2 

Figure B-6. Header for DP2 Relative Data Block 

Offset (Decimal) Length in Bytes 

[ 0] 

(14] 

(18] 

I <common block header> I 
l===========================I 
I <quantity of free bits> I 
l===========================I 
I <bit map> I [ 
I I 

14 

4 

<block size> 
- 18 ] 

Figure B-7. Header for DP2 Bit-Map Block 

-11 82583 AOO 3/85 B-9 



Block Formats of Structured Files 
DP2 Disc Process 

Block 0 is the first 
I header I bits b(l) b(2) b(3~:-b"{N) <-- bit-map block .. 
l--------'------------------------------
1 data or inde~ block <-- Block 1 
!---------------------------------------
! 
!---------------------------------------
! data or index block <-- Block N 
!======================================= 
I header I bits b(l) b(2) b(3) ... b(N) <--Block N+l 
!--------'------------------------------
' data or index block <-- Block N+2 
!---------------------------------------
' I !---------------------------------------! 
I data or index block I<-- Block 2N+l 
!=======================================! 

Figure B-8. Arrangement of DP2 Bit-Map Blocks 

<common block header> 

is illustrated in Figure B-2. 

<quantity of records allocated> 

tells how many records have been allocated in the block. This 
field occurs in the header of all four types of index or data 
blocks. 

<quantity of records present> 

tells how many records have been allocated in the block. This 
field occurs in the header of a relative data block only. 

<relative sector number> of next data block 

provides a link to the next logical block. The current block's 
<relative sector number> is given in the common block header. 
This field occurs in the header of a key-sequenced data block 
only. 

B-10 1J 82:i83 AOO 3/85 



Block Formats of Structured Files 
DP2 Disc Process 

<relative sector number> of previous data block 

provides a link to the previous logical block. This field 
occurs in the header of a key-sequenced data block only. 

<quantity of free bits> 

tells how many bits in this bit-map indicate blocks which are 
free (empty) in a key-sequenced file or not full in a relative 
file. This field occurs in the header of a bit-map block only. 

<bit map> 

is an array of bits describing availability of index or data 
blocks. For a key-sequenced file, each bit tells whether the 
corresponding block is free (0) or in use (1). For a relative 
file, each bit tells whether there is room for at least one 
more record in the corresponding block. This is analogous to 
the "free lists" which enable space management under the DPl 
disc process. 

An empty bit-map has (8 * (<block size> - 18) ) free bits. 
With a 1024-byte block, for example, the map has 8048 available 
bits. 

<record> 

can be a data or index record. The length of record N in a 
key-sequenced or entry-sequenced file is 

<offset to record N + 1> - <offset to record N> 

A record must be able to fit into the record area of one block. 
Thus the maximum key-sequenced record length is the block size 
minus 34 (30 bytes for the header and 4 for the smallest 
possible offsets map). 

DP2 index records differ from those of DPl disc processes or 
Nonstop 1+ systems because of the different internal structure 
of key-sequenced files. Where a DPl index block uses a four
byte relative byte address as a pointer, DP2 uses a three-byte 
relative sector number. Where DPl maintains a linked list of 
free blocks, DP2 uses bit-map blocks. 

The format of a DP2 index record is: 

..., 82583 AOO 3/85 B-11 



Block Formats of Structured Files 
DP2 Disc Process 

[ 0 J [<length(N) - 3>] 
t t 
I key value ~variable lenilll_ lbyte 

\ 

<relative sector number> 

[<length(N)>] 
t 

0 byte 1 I ~1=.~ 2 I 
I 

of block at next level 

The <relative sector number> field in an index record points to 
the start of the block associated with this key. A null key 
value is used when KEYLEN = O; this occurs in any index record 
pointing to an index block or to the first data record. 

<offset> 

is the distance, in bytes, from the beginning of the block 
(offset = 0) to the beginning of a record or free space. 

B-12 '1J 82583 AOO 3/85 



APPENDIX C 

THE DPl AND DP2 DISC PROCESSES 

This appendix compares the major features of the DPl and DP2 disc 
processes, then discusses file-system compatibility between DPl 
volumes and DP2 volumes within the same system or network. 
Section 2 discusses the structures of various types of ENSCRIBE 
files. 

COMPARISON OF DPl AND DP2 

Table C-1 shows how the DPl and DP2 disc processes differ from 
each other. 

Table C-1. Differences in DPl and DP2 Disc Processes 

Characteristic 
Maximum record 
length (if block 
size = 4096) 

key-sequenced 
relative 
entry-sequenced 
unstructured 

DPl 

Size-Header-Offsets 

(4096-20-6)/2=2035* 
4096-20-4=4072 bytes 
4096-20-4=4072 bytes 
4096 bytes 

*DPl requires that 
at least two records 
fit in a K-S block. 

DP2 
(see note #3) 
Size-Header-Offsets 

4096-30-4=4062 bytes 
4096-20-4=4072 bytes 
4096-20-4=4072 bytes 
4096 bytes 

--------------------+---------------------+--------------------
Legal block sizes 512, 1024, 1536, 512, 1024, 2048, 

2048, 2560, 3072, or 4096 bytes 
3584, or 4096 bytes 

...,, 82583 AOO 3/85 C-1 



The DPl and DP2 Disc Processes 
Comparison of DPl and DP2 

Table C-1. Differences in DPl and DP2 Disc Processes (continued) 

Characteristic DPl DP2 
Key-sequenced index! Can be different Must be the same 

size and data blocks I sizes 
--------------------+---------------------+-----------------·---
Block-header lengthl 

key-seq. data I 20 bytes 
key-seq. index I 20 bytes 
relative I 20 bytes 
bit-map blocks I (do not exist) 
entry-sequenced I 20 bytes 

30 bytes 
24 bytes 
20 bytes 
18 bytes 
20 bytes 

--------------------+---------------------+--------------------
Maximum number of N=(B-22)/(R+2) I N=B-H(type)/(R+2) 
records (N) in a I where B=Block length! where H(KS)=30+2=32 
block for different I and R=Record length! H(REL)=20+2=22 
record lengths I Also, N < 512 I H(ES)=20+2=22 

I I (see Note 3) 
Because the disc process uses a nine-bit, 

internal variable to store the record number, 
the maximum number of records of any size is 511. 

--------------------+---------------------+--------------------
Maximum extents 16 As many as 978 (see 

per file Note 1); limit is 
dynamically 
extensible 

--------------------+---------------------+--------------------
Number of directory! 1 As many as 987; the 

extents I limit is dynami-
1 cally extensible 

--------------------+---------------------+--------------------
Largest extent 65535 pages I (see Note 2) 

134,215,680 bytes I 
--------------------+---------------------+--------------------
Address Space (AS) 

key-sequenced 

C-2 

relative 

entry-sequenced 
unstructured 

AS=physical storage 

AS=physical storage 

AS=physical storage 
AS=physical storage 

AS=physical storage 
minus bit-map block 
AS=physical storage 
minus bit-map block 
AS=physical storage 
AS=physical storage 

.., 82583 AOO 3/85 



The DPl and DP2 Disc Processes 
Comparison of DPl and DP2 

Table C-1. Differences in DPl and DP2 Disc Processes (continued) 

Characteristic 
Cache 

DPl I 
•Binary search I 
•Not dynamic I 
•Buffered for audit-I 

ed files; write- I 
through for others I 

•"Least-recently- I 
used" (LRU) access I 
mode I 

I 

DP2 
•Hashed search 
•Dynamic 
•Buffered for au-
dited files; op
tional for others 

•Random ( LRU) , 
sequential, 
system-managed, or 
direct I/0 

--------------------+---------------------+--------------------
Maximum number of 16 16 

partitions 
--------------------+---------------------+--------------------

Maximum number In a Nonstop system, I Arbitrary limit of 
of locks 3000 concurrent re- I 2000 locks per user 

cord locks or 2000 I (that is, 
key locks on a file. I per opener or 
~n a Nonstop 1+ I per transaction 
system, the limits I identifier) 
are 1808 and 922, I 
respectively. I 

--------------------+---------------------+--------------------
Lock search I Sequential search I Hash search on 

I on locks appended I lock table 
I to an FCB I 

--------------------+---------------------+--------------------
Audited files and I May be on the same I May not be on the 
audit-trail files I volume I same volume 

--------------------+---------------------+--------------------
TMF monitor/master Monitor audit trail Master audit trail 
audit trail contains commit- can contain commit-

ment, and abortion ment, abortion, and 
records; separate I data records; aux
audi t trail contains! iliary audit trail 
data records I is optional 

Note 1: The maximum number of extents per file can depend on the 
number of alternate keys, because extent and alternate
key information share the same area of the file label. 
For example, consider a structured file having two 
alternate keys: 

..., 82583 AOO 3/85 C-3 



The DPl and DP2 Disc Processes 
Comparison of DPl and DP2 

Directory block size: 
Block header and trailer: 
Fixed part of DP2 file label: 
Information on two alternate keys: 

4096 bytes 
-·34 bytes 

-150 bytes 
-·66 bytes 

Space left for four-byte extent entries: 3846 bytes 

The maximum number of extents allowable for this file is 
3846/4 or 961 extents. 

Note 2: DP2 extent allocation for relative and key-sequenced 
files includes bit-map blocks that are not accessible to 
the user for data storage. Therefore, a DP2 extent can 
hold slightly fewer data bytes than a DPl extent of the 
same size. 

Note 3: If there are N records in a block, then there are N+l 
two-byte offset fields at the end of a key-sequenced or 
entry-sequenced block--one pointing to each record and 
one pointing to the free space. These offset fields and 
the header are not available for data storage, so they 
must be subtracted from the block size when you 
calculate available space. 

If a relative file under DP2 has N records, then there 
are only N overhead words (each two bytes long} at the 
end of the block. One two-byte field is unused in a DP2 
relative file, however, so a DP2 block can always be 
mapped back to a DPl format to comply with a file system 
call from a DPl node. 

FILE-SYSTEM COMPATIBILITY BETWEEN DPl AND DP2 

The DPl and DP2 disc processes treat files differently in many 
respects. This can cause some difficulties in operations dealing 
with mixtures of DPl and DP2 volumes. These considerations 
concern mixed sets of volumes within a single system or among two 
or more systems in a network. 

Detection of Version Levels 

When a file is opened on an A03 or later Nonstop system 1, the file 
system and the disc process exchange information about their 
respective version levels. Nonstop 1+ systems neither send nor 
look at this version information. 

Some interprocess messages differ with the version information at 
hand. For example, if a DP2 disc process is requested to perform 

C-4 ..-, 82:>83 AOO 3/85 



The DPl and DP2 Disc Processes 
File-System Compatibility between DPl and DP2 

sequential block-buffering, it returns a block in DP2 format to a 
BOO (or later) file system and in DPl format to any other file 
system. 

Also, when a file is opened under certain conditions, an A06 (or 
later) disc process sends file-system error 60 to pre-A06 or 
Nonstop 1+ file systems, but sends sequential I/0 (SIO) error 59 
to A06 or later file systems under the same conditions. 

File Creation 

Two forms of file~creation messages exist, one for DPl and 
another for DP2. A BOO or later Nonstop system determines which 
type of disc process is involved and sends the correct form of 
creation message. Other file systems send only the DPl form. A 
DP2 disc process can receive and handle either form. 

E08 and later Nonstop l+ systems accept, but do not use, the 
special creation parameters designed for DP2 files. These 
parameters are not defined for earlier Nonstop l+ systems or for 
A06 or earlier Nonstop systems. 

BOO or later Nonstop systems support a larger record length for 
DP2 key-sequenced files. A Nonstop 1+ or pre-BOO Nonstop system 
returns an error for this larger record length. 

Files with More than 16 Extents 

The DPl disc process, unlike DP2, limits a file to only 16 
extents. On a Nonstop 1+ or pre-BOO Nonstop system, the FILEINFO 
procedure returns an allocated-extents value of 16 for any DP2 
file having 16 or more extents. 

Similarly, if <file> has more than 16 extents and the FUP command 
INFO <file>, EXTENTS is used on a Nonstop 1+ or pre-BOO Nonstop 
system, the command returns information on only the first 16 
extents and returns an allocated-extents value of 16 for any DP2 
file having 16 or more extents. 

An error is returned if the CONTROL procedure on a Nonstop 1+ or 
pre-BOO Nonstop system attempts to allocate a 17th (or greater) 
extent. 

~ 82583 AOO 3/85 C-5 



The DPl and DP2 Disc Processes 
File-System Compatibility between DPl and DP2 

Partitioned and Alternate-Key Files 

All parts of a file must be under the same type of disc process. 
That is, the partitions of a file cannot be mixed among DPl and 
DP2 volumes, although they can be on different systems. 

Similarly, related alternate-key files cannot be on mixed sets of 
volumes. 

The OPEN and CREATE procedures on BOO or later Nonstop systems 
check for these restrictions, but older Nonstop and Nonstop 1+ 
systems do not. 

Other Considerations 

• Although a Nonstop system can have a mixture of DPl and DP2 
volumes, the Transaction Monitoring Facility (TMF) requires 
that all audit trails and audited files in the same system 
must be under the same kind of disc process. 

• The Nonstop 1+ system has no special handling for DP2 files. 
Therefore, it treats remote DP2 files exactly as DPl files. 

• A Nonstop l+ or pre-BOO Nonstop system receives error 49 
("access violation") if it attempts to open a partitioned, 
relative, DP2 file. All other DP2 files are accessible from 
all file systems. 

• A Nonstop l+ or pre-BOO Nonstop system receives error 49 
("access violation") if it attempts to gain unstructured 
access to a structured DP2 file. BOO or later Nonstop systems 
can gain such access, however. 

Because of the different structured block formats, an 
application that opens structured files for unstructured 
access under one type of disc process may not work correctly 
with the other type of disc process. 

• Some SETMODE and SETMODEMOWAIT operations apply to DP2 files 
only. A BOO or later Nonstop system issues these SETMODE 
requests to DP2 disc processes only, but a Nonstop 1+ or pre
BOO Nonstop system sends the request to the file's disc 
process regardless of type. A DPl disc process receiving such 
a request rejects it with error 2 ("invalid operation"). 

C-6 ~ 82583 AOO 3/85 



Access coordination 1-18 
Access examples 5-48 
Access modes 1-18 
Access paths 

INDEX 

approximate positioning mode 1-14 
descriptions 2-10 

exact positioning mode 1-14 
descriptions 2-11 

example 1-14 
generic positioning mode 1-14 

descriptions 2-11 
positioning modes 1-14 

descriptions 2-10 
positioning procedures 2-9 
relational access 1-16 

Access types 
direct I/O 5-4 
random access 5-4 
sequential access 5-4 
system-managed access 5-3 

Access, sequential 
(see Buffering) 

Alternate keys 
application example 2-13 
attributes 

automatic updating 2-13, 4-15 
null value 2-13, 4-14 
unique value 2-13 

automatic maintenance 1-16 
definition 1-2 
example 1-11 
file creation 4-1 
file description 2-11 
in a relative file 2-13 
in an entry-sequenced file 2-14 
inserting 5-8 
quantity and nonuniqueness 1-11 
record format 2-11 
unique value 4-12 
updating 5-8 
use of 1-11 

Alternate locking mode 5-28 
Alternate-key files 

..., 82583 AOO 3/85 
Index-1 



rndex 

contents 4-12 
disc-process type 4-11 
example of file creation 4-20 
key length 4-13 
key offset 4-14 
key specifier 

definition 4-12 
multiple 4-12 
opening 5-3 
record structure 4-13 

Application example 
for alternate keys 2-13 
for entry-sequenced files 2-8 
for key-sequenced files 2-5 
for relative files 2-6 

Applications, automatic generation of 1-24 
Approximate positioning mode 1-14 

descriptions 2-10 
ASCII character set A-1 
Audit-checkpoint compression 

definition 4-10 
description 5-5 

Audit-checkpoint record 
definition 5-5 

Audited files 
errors in opening 5-34 

Auditing 
definition 1-18 

Automatic-updating attribute 
description 4-15 

Autorefresh option 5-5, 5-14, 5-37 
AWAITIO procedure 

description 3-2 

Bit-map 
in DP2 block structure B-11 

Bit-map blocks 
in DP2 key-sequenced files 2-3, B-1 

Block 
definition 4-7 

Block formats 
DPl disc process B-2 
DP2 disc process B-6 
general description B-1 

Block size 4-5 
determining 4-7 
in DPl block structure B-5 
index blocks 4-11 
relative to extent size 4-5, 4-6 

Block splits 
in key-sequenced files 2-3 

Block-buffering 
(see Buffering) 
(see Sequential block-buffering) 

Index·-2 
"'1 82~i83 AOO 3/85 



Buffer parameter in procedure calls 3-6 
Buff er size 

relative to extent size 4-6 
setting or altering 2-2 

Buff er-size boundaries 5-21 
Buffering 

cache 
buffered 1-20 
definition 1-20 
description 1-20 
write-through 1-20 

resident buffering 5-22 
sequential block-buffering 1-21 

alternate-key access 5-12 
caveats 5-10 

Cache 

definition 5-9 
limited use of disc process 5-10 
OPEN procedure parameters 5-11 
shared file access 5-12 
sharing buff er space 5-13 

(see Buffering) 
CANCELREQ procedure 

description 3-2 
return indicates completion 3-5 

Catalog 
(see File directory) 

Checksum 
in DP2 block structure B-8 

CLOSE procedure 
description 3-2 
effects on end-of-file pointer 5-16 
example 5-2 
return indicates completion 3-5 

Common block header 
in DP2 block structure B-10 

Communication-path errors 5-41 
retrying 1-8 

Comparison of DPl and DP2 C-1 
Compatibility between DPl and DP2 C-4 
COMPRESS parameter 4-9 
Compression 

compaction 
definition 4-10 

front compression 
definition 4-8 

of audit trails 1-16, 4-10, 5-5 
of audit-checkpoint records 1-16, 4-10, 5-5 
of data records 1-16 

description 4-8 
of index records 1-16 

description 4-10 
Concepts 1-2 

~ 82583 AOO 3/85 

Index 

Index-3 



Index 

Condition codes 3-6 
CONTROL procedure 

allocating extents 1-7 
error 43 5-39 
example 5-36, 5-38 

AWAITIO required with no-wait I/0 3·-5 
deallocating extents 

example 5-40 
description 3-2 
effects on current-record pointer 5-16 
effects on end-of-file pointer 5-16 
effects on next-record pointer 5-16 
purging data 1-23 

example 5-36 
reference to all functions 5-40 
refreshing file information 1-23 
setting end-of-file pointer 5-14 
write access required 3-8 

CREATE procedure 
description 3-2, 4-3 
effects on end-of-file pointer 5-15 
enabling compression 4-9 
return indicates completion 3-5 
setting autorefresh option 5-5, 5-14 

Current key value 5-9 
Current position 

changing 5-9 
relation to locks 2-9 

Current-key specifier 
definition 2-9 
demonstration of action 5-44 

Current-record pointer 1-17, 5-13 
effects of various procedures 5-15 

Data Definition Language (DDL) 
generation of FUP commands 4-1 
purpose 1-22 

Data errors 5-41 
DCOMPRESS parameter 4-9 
DDL (Data Definition Language) 

generation of FUP commands 4-1 
purpose 1-22 

Deadlock 
example 5-30 

Deadlock example 5-29 
Default locking mode 5-28 
Deleting data 

example 5-36 
logically or physically 1-23, 5-36 

Deleting records 5-8 
Device names 1-4 
Device-operation errors 5-42 
DEVICEINFO procedure 

description 3-2 

Index-4 
"1 82~>83 AOO 3/85 



return indicates completion 3-5 
DEVICEINF02 procedure 

description 3-2 
return indicates completion 3-5 

Direct-I/O access 5-4 
Directory 1-18 
Disc processes 

comparison of DPl and DP2 C-1 
compatibility between DPl and DP2 C-4 

EDIT files 1-16 
how to read 2-1 
structure imposed by EDIT 2-1 

EDITREAD procedure 2-1 
End-of-file pointer 1-17, 5-14 

contents 5-4 
effects of various procedures 5-15 
encountered during sequential access 5-17 
updating of 5-4 

ENSCRIBE 
internal operation of 1-25 

Entry-sequenced files 
(see also Structured files) 
application example 2-8 
comparison with other types 2-14 
definition 2-7 
record address 

as the primary key 1-11 
record length 2-7 

determining maximum 4-7 
structure 1-11 
use of alternate keys 2-14 

Errors 
categories 5-40, 5-41 
communication-path errors 5-41 

retrying 1-8 
data errors 5-41 
device-operation errors 5-42 
failure of primary application process 5-42 
messages 5-40 
path errors 5-41 
recovery from 5-40 
recovery routines 5-42 
special considerations 

alternate keys 5-43 
DPl key-sequenced files 5-43 
partitioned files 5-44 

Errors from procedure calls 3-6 
Exact positioning mode 1-14 

descriptions 2-11 
Exclusion modes 1-18 
Exclusive access 1-19 
Extents 

allocation and deallocation of 1-7 

~ 82583 AOO 3/85 

Index 

Index-5 



Index 

error 43 5-39 
example 5-36, 5-38, 5-40 

definition 1-7 
in file directory 1-18 
more than 16 C-5 
number of 1-7 
primary 1-7 
secondary 1-7 
size 

relative to block size 4-5, 4-6 
External declarations of procedures 3-8 
External file identifiers 1-2 

conversion to internal form 1-4 
Eye-catcher 

in DP2 block structure B-7 

Failure of primary application process 5-42 
Field 

definition 1-11 
File 

definition 1-2 
File closing 

permanent disc file 
example 5-2 

temporary disc file 
example 5-2 

File code 4-6 
File control block (FCB) 

refreshing 1-23, 5-4, 5-14, 5-37 
File creation 

alternate keys 
unique value 4-12 

alternate-key files 4-1 
automatic updating 4-15 
contents 4-12 
disc-process type 4-11 
key length 4-13 
key off set 4-14 
key specifier 4-12 
multiple 4-12 
null value 4-14 
record structure 4-13 

autorefresh option 5-14 
block size 4-5 

determining 4-7 
relative to extent size 4-5, 4-6 

COMPRESS parameter 4-9 
DCOMPRESS parameter 4-9 
disc process messages C-5 
disc-process type 4-11 
examples 

alternate-key file 4-20 
key-sequenced file 4-16 
key-sequenced file with alternate keys 4-18 

Index-6 
.,,,, 82583 AOO 3/85 



key-sequenced, partitioned file 4-22 
relative, partitioned file 4-21 

extent size 
relative to block size 4-5, 4-6 

file code 4-6 
how to use FUP 4-2 
!COMPRESS parameter 4-9 
index blocks 4-11 
key specifier 

definition 4-12 
key-sequenced files 

index blocks 4-11 
primary-key offset 4-10 

lock capacity 4-5 
offset of alternate keys 4-14 
offset of primary key 4-10 
partitioned files 4-1 
primary key 

offset 4-10 
two methods 1-22 
with ODDUNSTR parameter 5-16 

File directory 1-18 
File extents 

(see Extents) 
File identifiers 

$0 1-4 
$RECEIVE 1-4 
external form 1-2 
File name 1-3 
internal form 1-4 
internal/external conversion 1-4 
network form 1-3, 1-5 
non-disc devices 1-4 
partitioned files 4-5 
permanent 1-4, 1-5 
processes 1-3 
subvolume name 1-3 
system number 1-6 
temporary 1-4, 1-5, 5-2 

making permanent 5-2 
two forms 1-2 
volume name 1-3 

File loading 6-1 
examples 

adding an alternate key 6-2, 6-3 
key-sequenced file 6-2 
loading a single partition 6-4 
reloading a single partition 6-4 

File locks 1-19 
description 5-26 

File name 1-3 
File number 3-5 

returned by OPEN procedure 5-2 
File opening 

..., 82583 AOO 3/85 

Index 

Index-7 



Index 

access types 5-3 
alternate-key files 5-3 
partitioned files 4-4, 5-3 
permanent disc file 

example 5-1 
temporary disc file 

example 5-2 
File renaming 5-2 
File types 

descriptions 4-3 
four types 1-7 

File Utility Program 
(see FUP) 

FILEERROR procedure 
description 3-2 

FILEINFO procedure 
description 3-2 
return indicates completion 3-5 

FILERECINFO procedure 
description 3-2 
return indicates completion 3-5 

Files 
loading 1-23 

Flags 
in DP2 block structure B-7 

FNAMECOLLAPSE procedure 
description 3-2 

FNAMECOMPARE procedure 
description 3-2 

FNAMEEXPAND procedure 
description 3-3 

Functions of record management 1-24 
FUP 

ALTER command 5-5 
BUILDKEYECORDS command 

description 6-1 
command summary for file creation 4--2 
COMPRESS parameter 4-9 
DCOMPRESS parameter 4-9 
ICOMPRESS parameter 4-9 
LOAD command 

description 6-1 
LOADALTFILE command 

description 6-1 
PURGEDATA command 1-23 
purging data 5-36 
SET command 4-9, 5-5 
setting buffer-size attribute 5-25 
setting or altering autorefresh option 5-5 
steps for file creation 4-2 

Generating applications automatically 1-24 
Generic positioning mode 1-14 

descriptions 2-11 

Index-8 
'f' 82583 AOO 3/85 



GETDEVNAME procedure 
description 3-3 

!COMPRESS parameter 4-9 
Index blocks 4-11 
Index level 

in DP2 block structure B-7 
Inserting records 5-8 
Internal file identifiers 1-4 

conversion to external form 1-4 

Key 
definition 1-2 

Key length 
demonstration of action 5-44 

Key locks 5-28 
Key specifier 

definition 2-8, 4-12 
Key-sequenced file 

examples of file creation 4-16 
Key-sequenced files 

(see also Structured files) 
application example 2-5 
audit-checkpoint compression 4-10 
bit-map blocks (in DP2) 2-3, B-1 
block 

definition 4-7 
block splits 2-3 
comparison with other types 2-14 
compression 1-16, 4-8 
definition 2-2 
examples of file creation 4-18, 4-22 
index blocks 4-11 
linked block list (in DPl) 2-3, B-1 
primary-key offset 4-10 
record length 2-3 

determining maximum 4-7 
structure 1-10 

KEYPOSITION procedure 
description 3-3 
error 27 for uncompleted operations 3-5 
return indicates completion 3-5 
use of 2-9 

Level 
in DPl block structure B-4 

Linked block list 
in DPl key-sequenced files 2-3, B-1 

Loading files 1-23 
LOCKFILE procedure 5-26 

· AWAITIO required with no-wait 1/0 3-5 
description 3-3 

Locking modes 
alternate 5-28 

~ 82583 AOO 3/85 

Index 

Index-9 



Index 

default 5-28 
LOCKREC procedure 5-26 

AWAITIO required with no-wait I/0 3-5 
description 3-3 

Locks 1-19 
(see also File locks) 
(see also Key locks) 
(see also Record locks) 
after KEYPOSITION procedure 5-7 
deadlock 

example 5-30 
deadlock example 5-29 
interaction between file & record locks 5-29 
maximum number of 5-27, 5-33 
maximum per file 5-35 
on whole files 5-35 
owner of 5-33 
partitioned files 4-5 
positioning for 2-9 
with sequential block-buffering 5-27 
with TMF 1-18, 5-31 

Logical record 
definition 4-7 

Manuals, references to 
Data Definition Language Ref. Manual 
ENABLE User's Guide 1-24 
EXPAND Reference Manual 1-6 

1-22 

1-19 GUARDIAN Operating System Programmer's 
GUARDIAN Operating System Programmer's Guide 1-19, 1-25, 

3-10, 5-27, 5-42 
User's Guide 4-3, 5-1, 5-37, 6-1 
Utility Reference Manual 1-4, 2-5, 

4-3, 5-1, 5-37, 6-1 

GUARDIAN Operating System 
GUARDIAN Operating System 

Introduction to ENFORM 1-16, 1-24 
PATHWAY SCREEN COBOL Reference Manual 
System Messages Manual 3-7 
System Procedure Calls Reference Manual 

Multiple accessors of a file 1-18 
Multiple-volume files 

(see Partitioned files) 

Network file identifiers 1-3, 1-5 
Next block at same level 

in DPl block structure B-3 
Next block on free list 

in DPl block structure B-3 
Next relative sector number 

in DP2 block structure B-10 
Next-record pointer 1-17, 5-13 

effects of various procedures 5-15 
NEXTFILENAME procedure 

description 3-3 

Index-10 

5--27 

1-19' 1-25' 3-2' 4-3' 
4-4' 5-3' 5-36, 5--40 

~ 82583 AOO 3/85 



return indicates completion 3-5 
No-wait I/O 

definition 1-19 
Null-value attribute 2-13 

description 4-14 
Number of records 

in DPl block structure B-4 

ODDUNSTR parameter 5-16 
Offset 

in DPl block structure B-5 
in DP2 block structure B-12 

OPEN procedure 
description 3-3 
effects on current-record pointer 5-15 
effects on end-of-file pointer 5-15 
example 5-1, 5-2 
return indicates completion 3-5 
sequential block-buffering 5-11 

Page 
definition 1-7 

Partitioned files 
advantages 1-17, 4-4 
creation of all partitions 4-1 
definition 1-17 
differences among partitions 4-5 
example of file creation 4-21, 4-22 
file identifiers 4-5 
opening 4-4, 5-3 
partial-key value 4-5 

Path errors 
retrying 1-8 

Permanent file identifiers 1-4, 1-5 
POSITION procedure 

description 3-3 
effects on current-record pointer 5-16 
error 27 for uncompleted operations 3-5 
return indicates completion 3-5 
use of 2-9 

Positioning 
in relative files 2-6 

-lD or -2D 2-6 
in structured files 

current key 5-44 
current-key specifier 2-9 
key specifier 2-8, 5-44 
procedures 2-9 

Positioning modes 1-14 
Previous relative sector number 

in DP2 block structure B-11 
Primary key 

definition 1-2 
example 1-11 

AfJ 82583 AOO 3/85 

Index 

Index-11 



Index 

in a relative file 1-11 
in an entry-sequenced file 1-11 
off set 4-10 
use of 1-11 

Procedures 
(see also individual procedure names) 
file-system 3-1 

buffer parameter 3-6 
condition codes 3-6 
external declarations 3-8 
summary table 3-1 
tag parameter 3-6 
transfer count parameter 3-6 
use of file numbers and file names 3-5 

sequential I/0 (SIO) 3-8 
general characteristics 3-9 
summary table 3-9 

Process names 1-3 
Protected access 1-19 
PURGE procedure 

description 3-3 
return indicates completion 3-5 

Purging data 
example 5-36 
logically or physically 1-23, 5-36 

Quantity of free bits 
in DP2 block structure B-11 

Quantity of records allowed 
in DP2 block structure B-10 

Quantity of records present 
in DP2 block structure B-10 

Random access 5-4, 5-19 
Random-access processing 5-7 
RBA 

(see Relative byte address) 
READ procedure 

AWAITIO required with no-wait I/0 3-5 
description 3-3 
effects on current-record pointer 5-15 
effects on next-record pointer 5-15 
for sequential access 5-16 
for sequential processing 5-7 
read access required 3-8 
sector boundaries 5-21 

Read-only access 1-18 
Read/write access 1-18 
Reading, repeatable 5-34 
READLOCK procedure 5-26 

AWAITIO required with no-wait I/0 3-5 
description 3-3 
for sequential processing 5-7 
read access required 3-8 

Index-12 
'1J 82583 AOO 3/85 



READUPDATE procedure 
AWAITIO required with no-wait I/0 3-5 
description 3-4 
effects on current-record pointer 5-15 
effects on end-of-file pointer 5-15 
effects on next-record pointer 5-15 
for random-access processing 5-7 
read access required 3-8 

READUPDATELOCK procedure 5-26 
AWAITIO required with no-wait I/0 3-5 
description 3-4 
for random-access processing 5-7 
read access required 3-8 

Record 
definition 1-2 
in DPl block structure B-4 
in DP2 block structure B-11 
structure 1-11 

Record address (in entry-sequenced files) 
as the primary key 1-11 

Record length 
in entry-sequenced files 1-11, 2-7 
in key-sequenced files 1-10, 2-3 
in relative files 1-10, 2-5 
maximum for entry-sequenced files 

determining 4-7 
maximum for key-sequenced files 

determining 4-7 
maximum for relative files 

determining 4-7 
maximum for structured files 1-8 

determining 4-7 
Record locks 1-19 

description 5-26 
unlocking 5-27 
unstructured files 5-31 

Record number (in relative files) 1-10 
as the primary key 1-11 

Record-management functions summary 1-24 
Records 

deleting 5-8 
inserting 5-8 

REFRESH procedure 
description 3-4 

Refreshing file information 1-23, 5-4, 5-14, 5-37 
automatically 1-23 
on command 1-23 

Relational access 1-16 
Relational processing example 5-65 
Relative byte address 

in DPl block structure B-3 
Relative byte address (RBA) 2-1 

definition 1-17, 5-13 
Relative files 

~ 82583 AOO 3/85 

Index 

Index-13 



Index 

(see also Structured files) 
application example 2-6 
comparison with other types 2-14 
definition 2-5 
example of file creation 4-21 
positioning 2-6 

·-lD or -2D 2-6 
record length 2-5 

determining maximum 4-7 
record numbers 1-10 

as the primary key 1-11 
structure 1-10 
use of alternate keys 2-13 

Relative sector number 
in DP2 block structure B-7 

Removing data 
example 5-36 
logically or physically 1-23, 5-36 

RENAME procedure 
description 3-4 
error 27 for uncompleted operations 3-5 
return indicates completion 3-5 

Repeatable reading 5-34 
REPOSITION procedure 

description 3-4 
error 27 for uncompleted operations 3-5 

Resident buffering 5-22 

SAVEPOSITION procedure 
description 3-4 

Sector boundaries 5-21 
Sequential access 5-4, 5-16 

encountering end of file 5-17 
Sequential block-buffering 

(see Buffering) 
Sequential processing 

definition 5-7 
SETMODE procedure 

description 3-4 
error 27 for uncompleted operations 3-5 
reference to all functions 5-40 
return indicates completion 3-5 
setting buffer-size attribute 5-25 
setting or examining access type 5-4 

SETMODENOWAIT procedure 
AWAITIO required with no-wait I/0 3-5 
description 3-4 
error 27 for uncompleted operations 3-5 
reference to all functions 5-40 

Shared access 1-19 
Structured files 

(see also Entry-sequenced files) 
(see also Key-sequenced files) 
(see also Relative files) 

Index-14 
~ 82583 AOO 3/85 



block formats 
DPl disc process B-2 
DP2 disc process B-6 
general description B-1 

comparison table 2-14 
definition 1-7 
entry-sequenced file structure 1-11 
key-sequenced file structure 1-10 
relative file structure 1-10 

Subvolume name 1-3 
System-managed access 5-3 

Tag parameter in procedure calls 3-6 
Temporary file identifiers 1-4, 1-5, 5-2 

making permanent 5-2 
TMF 

auditing 
definition 1-18 

locking rules 5-31 
record-locking 1-18 

Transactions 
locks for 5-31 

Transfer count parameter 3-6 
Type-specific block header 

in DP2 block structure B-8 

UNLOCKFILE procedure 5-26, 5-27 
AWAITIO required with no-wait I/0 3-5 
description 3-4 

UNLOCKREC procedure 5-27 
AWAITIO required with no-wait I/0 3-5 
description 3-4 

Unstructured files 
buff er size 

relative to extent size 4-6 
setting or altering 2-2 

current-record pointer 1-17, 5-13 
effects of various procedures 5-15 

definition 1-16 
end-of-file pointer 1-17, 5-14 

effects of various procedures 5-15 
next-record pointer 1-17, 5-13 

effects of various procedures 5-15 
random access 5-19 
record locks 5-31 
relative byte address (RBA) 2-1 

definition 1-17, 5-13 

Verification of WRITE operation 5-37 
Version levels 

detection of C-4 
Volume name 1-3 
Volume sequence number 

in DP2 block structure B-7 

Af' 82583 AOO 3/85 

Index 

Index-15 



Index 

Wait I/0 
definition 1-19 

WRITE procedure 5-8 
AWAITIO required with no-wait I/O 3-5 
buffer-size boundaries 5-21 
description 3-4 
effects on current-record pointer 5-15 
effects on end-of-file pointer 5-15 
effects on next-record pointer 5-15 
for sequential access 5-16 
verification 5-37 
write access required 3-8 

Write-only access 1-18 
WRITEUPDATE procedure 5-8 

description 3-5 
effects on current-record pointer 5-16 
effects on end-of-file pointer 5-16 
effects on next-record pointer 5-16 
for random-access processing 5-7 
write access required 3-8 

WRITEUPDATEUNLOCK procedure 5-8, 5-27 
AWAITIO required with no-wait I/0 3-5 
description 3-5 
for random-access processing 5-7 
write access required 3-8 

$0 (for operator console) 1-4 
$RECEIVE 1-4 

-lD or -2D positioning 2-6 

Index-16 
.., 82583 AOO 3/85 



READER COMMENT CARD 

Tandem welcomes your comments on the quality and usefuiness of its 
software documentation. Does this manual serve your needs? If not, how 
could we improve it? Your comments will be forwarded to the writer for review 
and action, as appropriate. 

If your answer to any of the questions below is "no," please supply detailed 
information, including page numbers, under Comments. Use additional 
sheets if necessary. 

..... Is this manual technically accurate? Yes D No D 

..... Is information missing? Yes D No D 

..... Are the organization and content clear? Yes D No D 

..... Are the format and packaging convenient? Yes D No D 

Comments 

Name Date 

Company 

Address 

-------------------------------- -----
City/State 

ENSCRIBE™ 
Programming Manual 
Nonstop™ Systems 
Nonstop 1+™ System 

82583 AOO 

Zip 



BUSINESS R E P LY MA IL 

FIRST CLASS PERMIT NO. 482 CUPERTINO, CA, U.S.A. 

POSTAGE WILL BE PAID BY ADDRESSEE 

Tandem Computers Incorporated 
Attn: Manager-Software Publications 
Location 01, Department 6350 
19333 Val lco Parkway 
Cupertino CA 95014-9990 

TAPE 

NO POSTAGE 
NECESSARY 

IF MAILED 
INTHE 

UNITED STATES 

TAPE 



Tandem Computers Incorporated 
19333 Vallco Parkway 
Cupertino, CA 95014-2599 


