
ET

Nonstop™ Systems
Nonstop 1+rM System

=·= 2

- m: mm

Transaction Application Language
(TALM) Reference Manual

Languages Library

82581

NOTICE

Effective with the BOO/EOB software release, Tandem introduced a more formal nomenclature for its software
and systems.

The term "l\lonStop 1+n~ system" refers to the combination of Nonstop 1+ processors with all software that
runs on them.

The term "l\lonStop™ systems" refers to the combination of Nonstop II™ processors, Nonstop TXP™ processors,
or a mixturei of the two, with all software that runs on them.

Some software manuals pertain to the Nonstop 1+ system only, others pertain to the Nonstop systems only,
and still others pertain both to the Nonstop 1+ system and to the Nonstop systems.

The cover and title page of each manual clearly indicate the system (or systems) to which the contents of the
manual pertain.

Nonstop™ Systems
Nonstop 1+™ System

Transaction Application Language (TAL™)
Reference Manual

Abstract
This manual provides reference information for TAL and the TAL compiler for
system and application programmers.

Product Version
TAL BOO
TAL E08

Operating System Version
GUARDIAN BOO (Nonstop Systems)
GUARDIAN E08 (Nonstop 1+ System)

Part No. 82581 AOO

March 1985

Tandem Computers Incorporated
19333 Vallco Parkway
Cupertino, CA 95014-2599

DOCUMENT HISTORY

Operating
Part System

Edition Number Version Date ----

1st Edition 82081 AOO GUARDIAN AOO/EOl April 1981
TAL Addendum 82182 GUARDIAN A04/E05 October 1982
2nd Edition 82581 AOO GUARDIAN B00/E08 March 1985

New editions incorporate all updates issued since the previous
edition. Update packages, which are issued between editions,
contain additional and replacement pages that you should merge
into the most recent edition of the manual.

Copyright © 1985 by Tandem Computers Incorporated.
Printed in U.S.A.

All rights reserved. No part of this document may be reproduced
in any form, including photocopying or translation to another
language, without the prior written consent of Tandem Computers
Incorporated.

The following are trademarks or service marks of Tandem Computers
Incorporated:

AXCESS BINDER CROSS REF DDL
DYNAMITE EDIT ENABLE ENCOMPASS
EN FORM ENSCRIBE ENTRY ENTRY520
EXCHANGE EXPAND FOX GUARDIAN
Nonstop Nonstop 1+ Nonstop I I Nonstop TXP
PCFORMAT PERUSE SNAX Tandem
TGAL THL TIL TMF
T-TEXT XRAY XREF

IN.FOSAT is a trademark in which both Tandem and American
Satellite have rights.

DYNABUS
ENCORE
ENVOY
INSPECT
PATHWAY
TAL
TRANSFER

HYPERchannel is a trademark of Network Systems Corporation.

IBM is a registered trademark of International Business Machines
Corporation.

Nonstop™ Systems
Nonstop 1+™ System

Transaction Application Language (TAL™)
Reference Manual

Abstract
This manual provides reference information for TAL and the TAL compiler for
system and application programmers.

Product Version
TAL BOO
TAL E08

Operating System Version
GUARDIAN BOO (Nonstop Systems)
GUARDIAN E08 (Nonstop 1+ System)

Part No. 82581 AOO

March 1985

Tandem Computers Incorporated
19333 Val lco Parkway
Cupertino, CA 95014-2599

"'82581 AOO 3/85

DOCUMENT HISTORY

Operating
Part System

Edition Number Version Date

1st Edition 82081 AOO GUARDIAN AOO/EOl April 1981
TAL Addendum 82182 GUARDIAN A04/E05 October 1982
2nd Edition 82581 AOO GUARDIAN BOO/E08 March 1985

New editions incorporate all updates issued since the previous
edition. Update packages, which are issued between editions,
contain additional and replacement pages that you should merge
into the most recent edition of the manual.

Copyright cg 1985 by Tandem Computers Incorporated.
Printed in U.S.A.

All rights reserved. No part of this document may be reproduced
in any form, including photocopying or translation to another
language, without the prior written consent of Tandem Computers
Incorporated.

The following are trademarks or service marks of Tandem Computers
Incorporated:

AX CE SS BINDER CROSS REF DDL
DYNAMITE EDIT ENABLE ENCOMPASS
EN FORM ENSCRIBE ENTRY ENTRY520
EXCHANGE EXPAND FOX GUARDIAN
Nonstop Nonstop 1+ Nonstop I I Nonstop TXP
PCFORMAT PERUSE SNAX Tandem
TGAL THL TIL TMF
T-TEXT XRAY XREF

INFOSAT is a trademark in which both Tandem and American
Satellite have rights.

DYNABUS
ENCORE
ENVOY
INSPECT
PATHWAY
':PAL
TRANSFER

HYPERchannel is a trademark of Network Systems Corporation.

IBM is a registered trademark of International Business Machines
Corporation.

Nonstop™ Systems
Nonstop 1+™ System

Transaction Application Language (TAL™)
Reference Manual

Abstract
This manual provides reference information for TAL and the TAL compiler for
system and application programmers.

Product Version
TAL BOO
TAL E08

Operating System Version
GUARDIAN BOO (Nonstop Systems}
GUARDIAN E08 (Nonstop 1+ System}

Part No. 82581 AOO

March 1985

Tandem Computers Incorporated
19333 Val lco Parkway
Cupertino, CA 95014-2599

~ 82581 AOO 3/85

DOCUMENT HISTORY

Operating
Part System

Edition Number Version Date

1st Edition 82081 AOO GUARDIAN AOO/EOl April 1981
TAL Addendum 82182 GUARDIAN A04/E05 October 1982
2nd Edition 82581 AOO GUARDIAN B00/E08 March 1985

New editions incorporate all updates issued since the previous
edition. Update packages, which are issued between editions,
contain additional and replacement pages that you should merge
into the most recent edition of the manual.

Copyright © 1985 by Tandem Computers Incorporated.
Printed in U.S.A.

All rights reserved. No part of this document may be reproduced
in any form, including photocopying or translation to another
language, without the prior written consent of Tandem Computers
Incorporated.

The following are trademarks or service marks of Tandem Computers
Incorporated:

AXCESS BINDER CROSS REF DDL
DYNAMITE EDIT ENABLE ENCOMPASS
EN FORM ENSCRIBE ENTRY ENTRY520
EXCHANGE EXPAND FOX GUARDIAN
Nonstop Nonstop 1+ Nonstop I I Nonstop TXP
PCFORMAT PERUSE SNAX Tandem
TGAL THL TIL TMF
T-TEXT XRAY XREF

INFOSAT is a trademark in which both Tandem and American
Satellite have rights.

DYNABUS
ENCORE
ENVOY
INSPECT
PATHWAY
rrAL
~rRANSFER

HYPERchannel is a trademark of Network Systems Corporation.

IBM is a registered trademark of International Business Machines
Corporation.

,.

NEW AND CHANGED INFORMATION

This manual is the second edition of the TAL Reference Manual. It
incorporates the TAL Reference Manual Addendum, Part Number 82182.

The manual is reorganized and rewritten and includes the following new
information:

• EXTENSIBLE procedure description

• Compiler directives--ABORT, DEFEXPAND, LINES, GMAP, PRINTSYM, and
WARN

• Additional error messages

Af' 82581 AOO 3/85 iii

CONTENTS

PREFACE

SYNTAX CONVENTIONS FOR THIS MANUAL

SECTION 1. INTRODUCTION
Applications and Uses
Processes•.........••.
Major Features
Interface with Operating System
Machine Dependencies
System Requirements
Program Development Tools
Compilation Cycle
Example Program

SECTION 2. PROGRAM STRUCTURE
Program Components

Global Declarations
Procedure Declarations
Local Declarations
Subprocedure Declarations
Sublocal Declarations
Statements•.

Program Structure
Modular Programming

...
Modular Structure

SECTION 3. LEXICAL ELEMENTS
Format of Source Code

BEGIN-END Construct
Comments

Character Set
Components
Reserved Words
Identifiers

Identifier Classes

"f 82581 AOO 3/85

xvii

xix

1-1
1-1
1-2
1-3
1-4
1-5
1-5
1-5
1-6
1-7

2-1
2-1
2-2
2-2
2-3
2-3
2-4
2-4
2-5
2-7
2-7

3-1
3-1
3-2
3-2
3-2
3-3
3-4
3-5
3-5

v

CONTENTS

Constants ..•...
Number Bases

Variables
Symbols and Operators

SECTION 4. DATA REPRESENTATION
Data Units

Bit Fields
Data Types

Address Modes
Operations and Functions
STRING Operands•..•

Syntax for Constants
Character String Constants (All Data
STRING Numeric Constants
INT Numeric Constants

Storage Format
INT(32) Numeric Constants

Storage Format••.
FIXED Numeric Constants

Storage Format •..•••..•••••.
REAL and REAL(64} Numeric Constants

Storage Format
Constant Lists

SECTION 5. ADDRESSING MODES
Process Environment
User Data Space
Addressing Modes

Byte and Word Addressing
Direct Addressing
Indirect Addressing

Standard Indirection
Extended Indirection
Primary and Secondary Storage
Storage Allocation

Indexing••..
Indexes and Data Type

SECTION 6. LITERALS AND DEFINES
LITERAL Declaration
DEFINE Declaration

Compiler Operation
Accessing Defined Text

Passing Parameters

SECTION 7. LABELS

Vl

Label Declaration
Local Labels
Sublocal Labels
Referencing Labels

Areas

Types)

3-6
3-7
3-7
3-8

4-1
4-1
4-2
4-3
4-3
4-4
4-4
4-5
4-6
4-7
4-8
4-9

4-10
4-11
4-12
4-13
4-14
4-15
4-17

5-1
5-1
5-2
5-4
5-4
5-5
5-5
5-5
5-6
5-6
5-8
5-9

5-10

6-1
6-2
6-4
6-5
6-5
6-6

7-1
7-1
7-2
7-2
7-2

"1f 82581 AOO 3/85

SECTION 8. SIMPLE VARIABLES •..•..
Simple Variable Declaration

Initializing Simple Variables
Storage Allocation
Accessing Simple Variables

SECTION 9. ARRAYS •....•.....
Array Declaration

Direct Versus Indirect Arrays
Array Base
Storage Allocation

Direct Array Allocation
Indirect Array Allocation

Data Access ..•••.........
Read-Only Array Declaration

Data Access

SECTION 10.
Pointer
Storage
Pointer
Data Access
Addresses
Temporary

POINTERS
Declaration
Allocation
Assignments

SECTION 11.

Through Pointers
of Other Items
Pointers

STRUCTURES
Structure Forms••.......
Structure Declarations

Definition Structure Declaration
Structure Storage Allocation

Template Structure Declaration
Referral Structure Declaration

Structure Body
Data Declarations

Storage Allocation
Substructure Declaration
FILLER Declaration •.....
Redefinitions

Data Item Redefinition
Substructure Redefinition

Accessing Structured Data
Structure Functions

Structure Pointer Declaration
Storage Allocation
Structure Pointer Assignments
Accessing Data Using Structure

SECTION 12. EQUIVALENCED VARIABLES
Equivalenced Variable Declaration

Pointers

Accessing Equivalenced Variables
Base-Address Equivalenced Variable Declaration

Af' 82581 AOO 3/85

CONTENTS

8-1
8-1
8-3
8-4
8-5

9-1
9-1
9-3
9-3
9-5
9-5
9-7
9-8

9-10
9-11

10-1
10-2
10-5
10-7
10-9

10-11
10-13

11-1
11-2
11-2
11-2
11-4
11-5
11-6
11-8
11-8
11-8

11-10
11-13
11-14
11-14
11-16
11-19
11-22
11-23
11-25
11-26
11-27

12-1
12-2
12-8

12-10

vii

CONTENTS

SECTION 13. EXPRESSIONS
Operators

Arithmetic Operators
Signed Arithmetic Operators
Unsigned Arithmetic Operators
Logical Operators
Summary of Arithmetic Operators
Scaling of FIXED Operands

Conditional Operators
Relational Operators•.•...
Boolean Operators

Precedence of Operators
Arithmetic Expressions .•••••.

General Form
Primaries

Assignment Form
CASE Form
IF-THEN-ELSE Form

Conditional Expressions
General Form .•••..

Conditions ...•..
Testing Hardware Indicators
Assigning Conditional Expressions

Group Comparison Form

SECTION 14. BIT
Bit
Bit
Bit

Extraction
Deposit
Shift

OPERATIONS

SECTION 15. STATEMENTS
Summary of Statements by Function

Program Control
Data Transfer
Data Scan
Machine Instruction

Rules for Forming Statements
Separating Statements

ASSERT Statement
Assignment Statement

Mixing Types
FIXED Variables

CALL Statement
CASE Statement
CODE Statement

Pseudocodes
DO Statement
DROP Statement

Dropping Labels
Dropping Registers

FOR Statement
Optimizing FOR Loops

Vlll

. •/• ..

13-1
13-2
13-2
13-2
13-3
13-4
13-4
13-6
13-7
13-7
13-9

13-10
13-12
13-12
13-13
13-14
13-15
13-17
13-18
13-18
13-19
13-20
13-20
13-21

14-1
14-2
14-4
14-6

15-1
15-1
15-2
15-2
15-2
15-3
15-3
15-4
15-5
15-7
15-7
15-8

15-10
15-12
15-15
15-16
15-18
15-20
15-20
15-20
15-22
15-23

-'f 82581 AOO 3/85

GOTO Statement .•......
IF-THEN-ELSE Statement

THEN-ELSE Pairing
Move Statement

Element Moves
RETURN Statement
Scan Statements
STACK Statement
STORE Statement
USE Statement
WHILE Statement

SECTION 16. PROCEDURES AND SUBPROCEDURES .•••••.•
Characteristics of Procedures and Subprocedures
Procedure and Subprocedure Declarations
Formal Parameter Specifications
Procedure and Subprocedure Bodies

Procedure Body
Subprocedure Body•.•.•.••..

Invoking Procedures, Subprocedures, and Functions
Attributes .•...•...

MAIN Attribute
INTERRUPT Attribute••
RESIDENT Attribute
CALLABLE Attribute
PRIV Attribute
VARIABLE Attribute

VARIABLE Parameter Mask
Parameter Checking•

EXTENSIBLE Attribute .•.•.........•
Converting Procedures from VARIABLE to EXTENSIBLE
EXTENSIBLE Parameter Mask •..•.•••
Number of Parameter Words Passed
Procedure Entry Sequence

Parameters
Parameter Area
Value Parameters

FIXED Value Parameters
Procedures as Value Parameters

Reference Parameters •....•..•••.
FIXED Reference Parameters
Mixing Data Types of Formal and Actual

Entry-Point Declarations
Procedure Entry Points
Subprocedure Entry Points

SECTION 17. STANDARD FUNCTIONS
Standard Functions by Operational Group

Type Transfer
Address Conversion
Character Test
Minimum-Maximum
Carry and Overflow Test

AiJ 82581 AOO 3/85

Parameters

CONTENTS

15-26
15-28
15-30
15-32
15-34
15-38
15-40
15-43
15-45
15-47
15-49

16-1
16-2
16-4
16-6
16-7
16-8
16-9

16-10
16-13
16-13
16-13
16-14
16-14
16-14
16-15
16-15
16-17
16-17
16-18
16-19
16-21
16-21
16-22
16-22
16-23
16-24
16-24
16-25
16-26
16-26
16-27
16-27
16-28

17-1
17-1
17-2
17-3
17-4
17-4
17-4

lX

CONTENTS

Fixed-Point Value and Scale
Structure a •••

Parameter-Checking and Register Pointer
Miscellaneous

$ABS Function
$ALPHA Function
$CARRY Function
$COMP Function
$DBL Function
$DBLL Function
$DBLR Function
$DFIX Function
$EFLT Function
$EFLTR Function
$FIX Function
$FIXD Function
$FIX! Function
$FIXL Function
$FIXR Function
$FLT Function
$FLTR Function
$HIGH Function
$!FIX Function
$INT Function
$.INTR Function
$LADR Function
$LEN Function
$LFIX Function
$LMAX Function
$LMIN Function
$MAX Function•.
$MIN Function
$NUMERIC Function
$OCCURS Function
$OFFSET Function
$OVERFLOW Function
$PARAM Function
$POINT Function
$RP Function
$SCALE Function
$SPECIAL Function
$TYPE Function
$UDBL Function
$XADR Function

SECTION 18. PRIVILEGED PROCEDURES

x

System Global Pointer Declaration
'SG'-Equivalenced Variable Declaration
Functions for Privileged Operations

$AXADR Function
$BOUNDS Function
$PSEM Function
$SWITCHES Function

17-5
17-5
17-5
17-5
17-6
17-7
17-8
17-9

17-10
17-11
17-12
17-13
17-14
17-15
17-16
17-17
17-18
17-19
17-20
17-21
17-22
17-23
17-24
17-25
17-26
17-27
17-28
17-29
17-30
17-31
17-32
17-33
17-34
17-35
17-36
17-38
17-39
17-40
17-41
17-42
17-43
17-44
17-45
17-46

18-1
18-2
18-4
18-7
18-8
18-9

18-10
18-11

..,._ 82581 AOO 3/85

SECTION 19. SAMPLE PROCEDURE

SECTION 20. COMPILER OPERATION
Compilation Process

TAL Compiler Process
BINSERV Process
SYMSERV Process

PARAM Commands
PARAM SAMECPU Command
PARAM SWAPVOL Command
PARAM SPOOLOUT Command

TAL Run Command
Compiler Directives
Directive Line ...••.
Summary of Compiler Dir~ctives

Input Control .•.....•.....
Listing Control•.....
Diagnostic Output Control
Code Generation Control
Toggle Control .•..•.
Internal Control
Object-File Control

Directive Descriptions
ABORT Directive
ABSLIST Directive
ASSERTION Directive
CODE Directive
COMPACT Directive
CPU Directive
CROSSREF Directive

Generating Cross References
Selecting Classes
CROSSREF Listing

DATAPAGES Directive
DECS Directive
DEFEXPAND Directive
DUMPCONS Directive
ENDIF Directive
ERRORS Directive
EXTENDSTACK Directive
GMAP Directive
!CODE Directive
IF Directive
INHIBITXX Directive
INNERLIST Directive
INSPECT Directive
LIBRARY Directive
LINES Directive
LIST Directive
LMAP Directive
MAP Directive

~ 82581 AOO 3/85

CONTENTS

19-1

20-1
20-1
20-1
20-2
20-2
20-2
20-2
20-3
20-3
20-4
20-6
20-6
20-7
20-7
20-7
20-8
20-8
20-9
20-9
20-9

20-10
20-11
20-12
20-13
20-14
20-15
20-16
20-17
20-17
20-18
20-18
20-20
20-21
20-22
20-23
20-24
20-25
20-26
20-27
20-28
20-29
20-31
20-32
20-33
20-35
20-36
20-37
20-38
20-40

Xl

CONTENTS

PAGE Directive
PEP Directive
PRINTSYM Directive
RELOCATE Directive
RESETTOG Directive
ROUND Directive
RP Directive
SAVEABEND Directive
SEARCH Directive
SECTION Directive
SETTOG Directive
SOURCE Directive
STACK Directive
SUPPRESS Directive
SYMBOLS Directive
SYNTAX Directive
WARN Directive

SECTION 21. COMPILER LISTING
Header
Banner
Compiler Messages
Source Listing

Edit-File Line Number
Code Address Field
Lexical-Level Counter
BEGIN-END Pair Counter

Local or Sublocal Map••.
CODE Listing
!CODE Listing
Global Map
Cross-Reference Listings

Source-File Cross References
Identifier Cross References

Identifier Qualifiers
Compiler Attributes
Declaring Source File
Reference Lines

LMAP Listings •••..•
Entry-Point Load Map
Data-Block Load Map

Compilation Statistics
Object-File Statistics

SECTION 22. SEPARATE COMPILATION
NAME Declaration
BLOCK Declaration

Rules for Coding Data Blocks
Sharing Data Blocks

Binding Compilation Units

xii

Compile-Time Binding
Interactive Binding
Run-Time Library Binding

20-41
20-42
20-43
20-44
20-45
20-46
20-47
20-48
20-49
20-50
20-51
20-52
20-53
20-54
20-55
20-57
20-58

21-1
21-2
21-3
21-3
21-4
21-4
21-4
21-5
21-5
21-7
21-8
21-9

21-10
21-11
21-11
21-12
21-12
21-13
21-13
21-13
21-14
21-15
21-16
21-18
21-18

22-1
22-2
22-3
22-4
22-5
22-6
22-6
22-7
22-7

"182581 AOO 3/85

CONTENTS

Data Space Image ... 22-7
Relocatable Global Data Blocks 22-7
Address Assignments•..............•........ 22-9
Directives for Relocatable Data•.••................... 22-10

Separate Compilation Sample Program ..•...................... 22-10
Pro g ram St r u ct u re • . . . • • . . • 2 2 - 1 0
File Naming Conventions•......•••..........•.•.•...... 22-11
Main 1 in e Mod u 1 e . 2 2 -12
I n i t i a 1 i z at ion Mod u 1 e • • • 2 2 - 13
Input Fi 1 e Mod u 1 e • . • • • . • • . . . • . • • • . . . • • • 2 2 -14
Output Fi 1 e Mod u 1 e • • • • • • • • . • • • • • . • • 2 2 -16
Message Module . . • • . • • • . • . • • • • • • . . • . . • • • • • • . • • • • • • • • • • • 2 2-1 7
Compilation Maps and Statistics .••••••••.••..•.••..•••••.. 22-19

Procedure Replacement Sample Program ••••••......•••.•••.•••• 22-21

APPENDIX A. MACHINE DEPENDENCIES .•.•.•••..........•......•...• A-1

APPENDIX B. OPTIMAL PERFORMANCE CONSIDERATIONS .•....•....•.... B-1

APPENDIX C. ERROR MESSAGES C-1

APPENDIX D. SYNTAX SUMMARY D-1

APPENDIX E. ASCII CHARACTER SET .•.••...•.•....•..•....•.•.•..• E-1

APPENDIX F. DATA TYPE CORRESPONDENCE •...••.••.....•...•....•.. F-1

INDEX•.•............•.....•.................•..•...•• Index-1

1-1.
1-2.
1-3.
1-4.

2-1.
2-2.

4-1.

5-1.
5-2.
5-3.
5-4.
5-5.

FIGURES

Code and Data Segments of a Process•....•.. 1-2
Compilation Cycle of Nonmodular Program .•.••....•..•.... 1-6
Compilation Cycle of Modular Program .•..........•..•...• 1-7
Example Source Program ·········••e••············· 1-8

Structure of Nonmodular Source Program ...•.............• 2-6
Structure of a Source Module••................. 2-8

Bit Field 4-2

Process Environment•.•......•..•.................. 5-2
Organization of Current Data Segment •.•.•.•••....••..•.• 5-3
Byte and Word Addressing•.•.•..................... 5-4
Primary and Secondary Storage in User Data Segment• 5-7
Indexing a Pointer•.•.................... 5-11

~ 82581 AOO 3/85 x 1 l l

CONTENTS

8-1.

9-1.
9-2.

10-1.

15-1.
15-2.
15"""3.
15-4.
15-5.
15-6.
15-7.
15-8.

16-1.
16-2.
16-3.
16-4.
16-5.

19-1.

21-1.
21-2.
21-3.
21-4.
21-5.
21-6.
21-7.
21-8.
21-9.
21-10.
21-11.
21-12.
21-13.
21-14.

22-1.
22-2.
22-3.
22-4.

xiv

Storage Allocation for Simple Variables••........... 8-4

Storage Allocation for Direct Arrays 9-6
Storage Allocation for Indirect Arrays 9-7

Pointer Storage Allocation 10-6

CALL Statement Execution 15-11
CASE Statement Execution 15-13
DO S t at em en t Exec u t i on . 1 5 - 18
FOR Statement Execution 15-24
GOTO Statement Execution• 15-26
IF-THEN Form Execution ..•...............•............. 15-29
IF-THEN-ELSE Form Execution ••.........••.•..........•. 15-29
WHILE Statement Execution•..•... 15-50

VARIABLE Single-Word Parameter Mask 16-16
VARIABLE Doubleword Parameter Mask 16-17
EXTENSIBLE Single-Word Parameter Mask 16-20
EXTENSIBLE Doubleword Parameter Mask 16-20
Parameter Storage ...••.............•...........•...... 16-23

Sample Procedure . . . • • . 19-3

Page Headers ... 21-2
Banner ... 21--3
Source Listing•............................... 21-6
Local Map .. 21-8
CODE List i ng . 21- 9
I CODE List i ng . • 21-- 9
Global Map .. 21-10
Source-File Cross-Reference Listing 21-11
Identifier Cross-Reference Listing•.... 21-14
Entry-Point Load Map by Name 21-15
Data-Block Load Map by Location 21-17
Read-Only Data-Block Load Map by Location 21-17
Comp i 1 er St at is t i cs . 21-18
Object-File Statistics•.......... 21-19

Global Data-Space Allocation 22-9
Entry-Point Load Map of Mainline Compilation 22-19
Data-Block Load Map 22-20
Comp i 1 at on St at is t i cs . 2 2 - 2 0

~ 82581 AOO 3/85

3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.

4-1.
4-2.
4-3.

10-1.

13-1.
13-2.
13-3.
13-4.

14-1.

17-1.

22-1.

TAL Statements
Reserved Words
Identifier Classes
Variables
Indirection Symbols
Address Base Symbols
Delimiters
Operators

Data Units
Data Types
Operations and Functions

Addresses of Items

TABLES

Arithmetic Operators and Operand Types
Relational Operators and Operand Types
Boolean Operators and Operand Types
Precedence of Operators

Bit-Shift Operators

Type-Transfer Functions by Data Type

Data Blocks by Modules

Af' 82581 AOO 3/85

CONTENTS

3-3
3-4
3-6
3-7
3-9
3-9

3-10
3-11

4-2
4-3
4-4

10-11

13-5
13-8

13-10
13-11

14-7

17-3

22-11

xv

PREFACE

This manual provides reference information for the Transaction
Application Language (TAL) used on Tandem systems. This manual is
intended for:

• Systems programmers writing operating system components, compilers,
interpreters, special subsystems, drivers for non-standard
input/output devices, and special routines that support data
communications activities.

• Applications programmers writing code for server processes used
with the PATHWAY transaction processing system and other data
management software supplied by Tandem, conversion routines that
facilitate transfer of data between Tandem software products and
various applications, specialized procedures callable from COBOL
or FORTRAN programs, and other applications software where optimal
performance has high priority.

The following manuals provide additional information:

• Introduction to Tandem Computer Systems for an overview of the
system hardware and software.

• System Description Manual for the Nonstop or Nonstop 1+ system for
details about the hardware aspects of the system and the process
oriented organization of the GUARDIAN operating system.

• System Procedure Calls Reference Manual for the syntax for calling
operating system procedures.

• GUARDIAN Operating System Programmer's Guide for information about
using the operating system procedures.

• BINDER Manual for information about binding modules.

-'182581 AOO 3/85 xvii

SYNTAX CONVENTIONS IN THIS MANUAL

The following list summarizes the conventions for syntax notation
in this manual.

Notation

UPPERCASE
LETTERS

<lowe1·case
letters>

Brackets []

Braces {}

Vertical
Bar I

Ellipsis

Percent
Sign %

Spaces

Punctuation

Af' 82581 AOO 3/85

Meaning

Uppercase letters represent keywords and reserved words;
you must enter these items exactly as shown.

Lowercase letters within angle brackets represent
variables that you supply.

Brackets enclose optional syntax items. A vertically
aligned group of items enclosed in brackets represents a
list of selections from which you can choose one or none.

Braces enclose required syntax items. A vertically
aligned group of items enclosed in braces represents a
list of selections from which you must choose only one.

Two horizontally aligned items separated by a vertical
bar represent a pair of selections surrounded by either
brackets or braces.

An ellipsis immediately following a pair of brackets or
braces indicates that you can repeat the enclosed syntax
items any number of times.

Precedes a number in octal notation.

If two items are separated by a space, that space is
required between the items. If one of the items is a
punctuation symbol, such as a parenthesis or a comma,
spaces are optional.

Parentheses, commas, semicolons, and other symbols or
punctuation not described above must be entered precisely
as shown. If any of the punctuation above appears
enclosed in quotation marks, that character is not a
syntax descriptor but a required character and you must
enter it as shown.

XlX

SECTION 1

INTRODUCTION

The Transaction Application Language (TAL) is a high-level, block
structured language used to write systems software and routines that
support transaction-oriented applications. The TAL compiler compiles
source programs written in TAL into executable object programs. The
TAL compiler and the object programs it generates execute under
control of the GUARDIAN operating system.

APPLICATIONS AND USES

TAL is most often used for writing systems software or transaction
oriented applications where optimal performance has high priority.
You can, for example, use TAL to write:

• Operating system components, command interp·reters, source-language
compilers and interpreters, and special subsystems

• Input/output processes, drivers, and protocols that support
nonstandard devices and integrate them into the operating system

• Data communications routines for interfacing with the ENVOY data
communications manager or message-switching functions

• Special procedures callable by COBOL or FORTRAN programs

• Server processes used with the PATHWAY transaction processing
system and other data management software produced by Tandem

TAL works efficiently with the hardware to provide optimal object
program performance. Many software products supplied by Tandem are
written in TAL.

-'182581 AOO 3/85 1-1

INTRODUCTION
Processes

PROCESSES

Object programs execute as individual processes. While a program is a
static group of machine instructions and initialized data residing in
a file, a process is a dynamically running program. Thus, the same
program can execute concurrently many times, and each execution
comprises a different process.

Each process has its own user code space and user data space. The
code space consists of one or more code segments; the data space
consists of a data segment and one or more extended segments. For
each executing process, the system maintains two physical areas in
memory, the current user code segment and the current user data
segment, as shown in Figure 1-1.

The code segment is not modifiable by a user process but is sharable
among processes. The data segment is modifiable but private to the
running process. Thus, many processes can execute the same code, but
the data on which the code operates remains exclusive to each processe

1-2

Current
Code Segment

Instructions

Nonmodifiable,
Sharable

Current
Data Segment

Variables

Modifiable,
Private

S5013-001

Figure 1-1. Code and Data Segments of a Process

"182581 AOO 3/85

INTRODUCTION
Major Features

MAJOR FEATURES

The major features of TAL are:

• Procedures--The code space for each program contains one or more
procedures. A procedure is a block of machine instructions that
performs a specific task. It exists once in the program but is
callable from anywhere in the program.

When the current procedure invokes another procedure, the system
automatically saves the current process environment. When the
called procedure terminates, the system restores the environment of
the previous procedure. Thus, each procedure executes in its own
environment and is not affected by the actions of other procedures.

Each activation of a procedure has its own local data area. That
is, the system allocates and initializes a new local data area each
time a procedure is entered. When each activation completes
execution, it relinquishes its local data area. Thus, the memory
space that a program requires is continuously held to a minimum.

• Recursion--Because each activation of a procedure has its own local
data area, a procedure can call itself. This feature, called
recursion, can enhance programming efficiency for certain
applications.

• Parameter Passing--You can declare optional or required parameters
for procedures.

• Subprocedures--A procedure can contain subprocedures, callable
only from within the same procedure. Since each activation of a
subprocedure has its own private data, subroutines can be
recursive.

• Six Data Types--You can declare and reference six types of data:

--STRING 8-bit integer byte

--INT 16-bit integer word

--INT(32) 32-bit integer doubleword

--FIXED 64-bit fixed-point quadword

--REAL 32-bit floating-point doubleword

--REAL(64) 64-bit floating-point quadword

• Data Structures--You can describe and reference sets of related
data variables such as records and arrays.

..,. 82581 AOO 3/85
1-3

INTRODUCTION
Interface With Operating System

• Data Operations--You can move a contiguous group of words or bytes
and compare one group with one another. You can scan a series of
bytes for the first byte that matches (or fails to match) a given
character.

• Bit Operations--You can perform bit deposit, bit extraction, and
bit shift operations.

• Pointers--Pointer variables can contain byte addresses or word
addresses. You can use pointers to access locations throughout
memory. You can initialize them when you declare them or at any
time during program execution.

• Modular Prograrnrning--TAL supports modular programming with
separate compilation and relocatable global data blocks. You can
compile each module that contains one or more procedures as a
separate compilation unit. The compile-time binder cooperates with
the TAL compiler to build a bound object file from each module.

INTERFACE WITH OPERATING SYSTEM

Object programs run under the control of the GUARDIAN operating
system. It provides an environment that allows your program to ignore
many things such as the presence of other programs and whether your
program fits into memory. For example, the operating system loads
programs into memory, brings absent pages from disc into memory as
needed, and allocates CPU time.

The operating system performs all file system functions for programs.
It treats all devices as files including disc files, disc packs,
terminals, printers, and processes running on the system. Programs
can reference a file by its symbolic name without regard for its
physical address or configuration status. File system procedures
provide a single, uniform file access method that masks the
peculiarities of devices from applications.

Process control system procedures let processes activate and terminate
other processes in any processor on the system. Processes can monitor
the operation.of any process or processor. If a process stops or a
processor fails, your program can determine this fact.

Operating system procedures are described in the System Procedure
Calls Reference Manual and GUARDIAN Operating System Programmer's
Guide.

1-4 Afil 82581 AOO 3/85

INTRODUCTION
Machine Dependencies

MACHINE DEPENDENCIES

The TAL compiler is a disc-resident program on each Tandem system and
runs under the control of the GUARDIAN operating system.

For previous versions of the operating system, the same version of the
TAL compiler executes on all Tandem systems. Operating system version
BOO requires TAL compiler version BOO. Operating system version E08
requires TAL compiler version E08.

Certain features, such as extended pointers, extended data segments,
user library segments, and multiple user code segments, are not
available on the Nonstop 1+ system. A summary of machine dependencies
appears in Appendix A.

SYSTEM REQUIREMENTS

Some object programs require optional microcode such as:

• Decimal arithmetic option for operations with quadword operands and
arithmetic operations

• Floating-point option for doubleword and quadword (extended)
floating-point arithmetic and related operations

Some object programs require other software products such as the
PATHWAY transaction processing system.

PROGRAM DEVLOPMENT TOOLS

Other Tandem utilities that provide additional program development
features are:

• EDIT--a full text editor with screen and conversational editing
features, described in the EDIT Manual, that can help you create
TAL source programs

• CROSSREF--a process that creates a cross-reference listing of
variables, functions, and keywords in a program, either as an
interactive process described in the CROSSREF Manual or a
compiler-driven process as described in this manual

• INSPECT--an interactive debugger that lets you stop and start
program execution and display and modify program values
symbolically as described in the INSPECT Interactive Symbolic
Debugger User's Guide

/182581 AOO 3/85
1-5

INTRODUCTION
Compilation Cycle

• DEBUG--an interactive debugger that lets you stop and start
program execution and display and modify program values by location
as described in the DEBUG Manual

• BINDER--an interactive binder that lets you examine, modify and
combine object files and produce optional load maps and
cross-reference listings as described in the BINDER Manual

COMPILATION CYCLE

The object file is the output of the compiler or BINDER. The output
of each compilation is an object program that is either an entire
executable program or a part of a modular program. You can compile
each part (module) of a program separately, then bind the resulting
object files into a new object file called the target file.

Figures 1-2 and 1-3 show the compilation cycle of a nonmodular
program and of a modular program, respectively.

Source ~1 TAL ~1 Object
Code File

85013-002

Figure 1-2. Compilation Cycle of Nonmodular Program

1-6
~ 82581 AOO 3/85

INTRODUCTION
Example Program

Interim
Source TAL Object
Code File

Target
BIND Object

File

Source
Interim

TAL Object
Code File

or

Interim
Source TAL Object
Code File

Target
TAL Object

File

Source
Code

$5013-003

Figure 1-3. Compilation Cycle of Modular Program

EXAMPLE PROGRAM

Figure 1-4 shows an example of a TAL source program. The program
opens the home terminal, then loops forever. Each iteration of the
loop consists of the following actions:

1. The program displays the prompt "ENTER STRING" and accepts
a character string of up to 72 characters.

2. The program scans the input string for an asterisk. If one
occurs, it displays a circumflex at the position of the asterisk.

~ 82581 AOO 3/85 1-7

INTRODUCTION
gxample Program

1-8

File number of home terminal INT hometerm,
left""side,
num""xf erred,
count,
asterisk,
buffer[0:40];

sbuf fer address of 1st character after prompt
Number of bytes transferred by file system
General-purpose variable
Location of asterisk
Input/output (I/O) buffer

STRING
.sbuffer := @buffer '<<' 1,
blanks[0:71] := 72 * [" "];

!STRING pointer to I/O buffer
!Blanks for initialization

?SOURCE $SYSTEM.SYSTEM.EXTDECS(MYTERM,OPEN,WRITEREAD,WRITE,STOP)
! Operating system procedure declarations

PROC main""proc MAIN;
BEGIN

CALL MYTERM(buffer);
CALL OPEN(buffer, hometerm);

!Get name of home terminal
!Open home terminal

WHILE 1 DO !Infinite loop
BEGIN

sbuffer ':=' "ENTER STRING" -> left""side;
CALL WRITEREAD(hometerm, buffer, 12, 68, num""xferred);
sbuffer[numAxferred] := O; !Delimit the input
SCAN sbuffer UNTIL "*" -> asterisk; !Scan for asterisk
IF NOT $CARRY THEN !Asterisk found

BEGIN
sbuffer ':=' blanks FOR

(count := asterisk '-' @sbuffer +
(leftAside '-' @sbuffer));

sbuffer[count] :="A";
CALL WRITE(hometerm, buffer, count + 1);

END;
END;

END;

!End of IF

Figure 1-4.

!End of WHILE
!End of procedure

Example Source Program

-~ 82581 AOO 3/85

SECTION 2

PROGRAM STRUCTURE

This section summarizes the structure of a TAL source program. The
source code for a program consists of one or more compilation units.
Each compilation unit contains all declarations, statements, and
compiler directives needed for a single compilation but does not
necessarily contain everything needed for an executable program.

The overview describes:

• The components and structure of a nonmodular source program

• Additional components and the structure of a module of a modular
source program

PROGRAM COMPONENTS

Program components are parts of the source program that define objects
and specify operations on these objects. The primary components of a
nonmodular program are:

• Global Declarations

• Procedure Declarations

• Local Declarations

• Subprocedure Declarations

• Sublocal Declarations

• Statements

Af' 82581 AOO 3/85 2-1

PROGRAM STRUCTURE
Program Components

Each primary component in turn can contain other components such as
variables, pointers, numeric constants, character strings, reserved
words, operators, delimiters, and other symbols. These are discussed
in later sections.

Global Declarations

Global declarations define identifiers you can reference throughout
the program. Global identifiers are accessible for the duration of
the compilation.

Declarations that can have global scope are:

• Data Declarations--These associate identifiers with memcry
locations and allocate memory for storing values and the results of
computations.

• LITERAL Declarations--These associate constant values with
identifiers.

• DEFINE Declarations--These associate text with identifiers.

• FORWARD Procedure Declarations--These specify that the declaration
for the procedure body occurs later in the source file.

• EXTERNAL Procedure Declarations--These specify that the declaration
for the procedure body occurs in another compilation.

Procedure Declarations

Procedure declarations specify discrete portions of source code within
a program. They define the executable parts of the program.

A procedure can contain local declarations and subprocedure
declarations.

2--2 -'1J 82581 AOO 3/85

PROGRAM STRUCTURE
Program Components

Local Declarations

Local identifiers are accessible only during execution of the
encompassing procedure. They can be accessed only by statements and
subprocedures within the procedure in which they are declared, unless
the procedure passes them as parameters to another procedure.

Declarations that can have local scope are:

• Data Declarations

• LITERAL Declarations

• DEFINE Declarations

• Label Declarations--These reserve identifiers for later use as
names of locations in the procedure.

• Entry-Point Declarations--These specify additional entry points
into a procedure or subprocedure body.

• FORWARD Subprocedure Declarations--These specify that the
declaration for the subprocedure body occurs later in the same
procedure.

The system allocates and initializes a separate local data area for
each activation of a procedure. When each activation completes
execution, the system deallocates its local data area.

Subprocedure Declarations

Subprocedure declarations specify discrete blocks of source code
within a procedure. A procedure can contain any number of
subprocedures, all nested at the same level.

A subprocedure can contain sublocal declarations, but it cannot
contain other subprocedures.

4J 82581 AOO 3/85 2-3

PROGRAM STRUCTURE
Program Components

Sublocal Declarations

Sublocal declarations define identifiers that are accessible only
during execution of the encompassing subprocedure. Sublocal
identifiers can be accessed only by statements within the
subprocedure, unless the subprocedure passes them as parameters to
another subprocedure or procedure.

Declarations that can have sublocal scope are:

• Data Declarations

• LITERAL Declarations

• DEFINE Declarations

• Label Declarations

• Entry-Point Declarations

The system allocates and initializes a separate sublocal data area for
each activation of a subprocedure. When each activation completes
execution, the system deallocates its sublocal data area.

Statements

Statements request specific actions. Local statements appear within a
procedure. Sublocal statements appear within a subprocedure.

Local statements in a procedure can invoke any procedure previously
declared in the program and any subprocedure previously declared
within the same procedure. They can reference global identifiers and
local identifiers in this procedure but not those in other procedures
or in subprocedures.

Sublocal statements in a subprocedure can invoke any procedure
previously declared in the program, or any subprocedures previously
declared within the same procedure. They can reference global
identifiers, local identifiers in the encompassing procedure, and
sublocal identifiers in this subprocedure but not those declared in
other subprocedures.

2--4 .,,, 82581 AOO 3/85

PROGRAM STRUCTURE
Program Structure

, PROGRAM STRUCTURE

The TAL compiler expects source declarations and statements in the
following order:

1. All global declarations must appear before the first procedure
declaration.

2. A procedure declaration comes next.

3. All local declarations for this procedure come next.

4. A subprocedure declaration, if any, appears next, followed in
order by:

--All sublocal data declarations for this subprocedure

--All sublocal statements for this subprocedure

5. For each subsequent subprocedure, the primary components listed in
item 4, if present, appear in the order given

6. All local statements for the encompassing procedure follow the
last subprocedure contained in this procedure. If no
subprocedures appear in this procedure, all local statements
follow the local data declarations for this procedure.

7. For each subsequent procedure, the primary components listed in
items 2 through 6, if present, must appear in the order given.

You must declare procedures and subprocedures before you reference
them in statements unless you use FORWARD declarations. For further
information, see Section 16, "Procedures and Subprocedures."

Figure 2-1 shows the structure of a nonmodular program that has three
procedures, one of which contains a subprocedure.

In the figure, the scope of the declarations in each box is inward
only. That is, global data is accessible to all items in the program.
Local data is accessible only to items in the procedure in which it
appears. Sublocal data is accessible only to items within the
subprocedure in which it appears.

-'182581 AOO 3/85 2-5

PROGRAM STRUCTURE
Program Structure

.--·--------

2-·6

Global Declarations

Procedure Declaration

Local Declarations

Subprocedure Declarations

Sublocal Declarations

Sublocal Statements

Local Statements

Procedure Declaration

Local Declarations

Local Statements

MAIN Procedure Declaration

Local Declarations

Local Statements

S5013-004

Figure 2-1. Structure of a Nonmodular Source Program

Afj1182581 AOO 3/85

PROGRAM STRUCTURE
Modular Structure

MODULAR PROGRAMMING

Modular programming provides several advantages. For example, it
allows you:

• To divide a large program into smaller, more manageable modules

• To work independently on a module, while other programmers work on
other modules

• To bind new code to existing debugged object code including
general-purpose library routines

• To code different procedures for the same program in different
languages

Compiler and binder support for modular programming is described
in Section 22, "Separate Compilation." The differences between
modular programs and nonmodular programs are summarized below.

Modules can have the f~llowing additional components:

• NAME Declaration--This declaration assigns a name to the module.

• BLOCK Declarations--These group global data declarations into
relocatable global data blocks. Each module can have one private
data block and any number of user-named data blocks. The private
block is global only to that module. The named blocks are global
to all modules in the program.

Any global data declarations not contained in a BLOCK declaration must
appear before the first BLOCK declaration. TAL treats the unblocked
declarations as an implicit data block that is global to all modules
in the program.

Modular Structure

The structure of a source module is shown in Figure 2-2. The NAME,
unblocked, and BLOCK declarations, if present, must appear in the
order shown in the figure.

..,. 82581 AOO 3/85 2-7

PROGRAM STRUCTURE
Modular Structure

NAME Declaration

Unblocked Global Declarations (Implicit Data Block)

BLOCK Declarations (Private Block and Named Blocks)

Procedure Declaration

Local Declarations

Subprocedure Declarations

Sublocal Declarations

Sublocal Statements

Local Statements

._------------------------------~-----------------------

2--8

Procedure Declaration

Local Declarations

Local Statements

--------------------------------·-----------------

MAIN Procedure Declaration

Local Declarations

Local Statements

S5013-005

--------··-----·

Figure 2-2. Structure of a Source Module

"'182581 AOO 3/85

SECTION 3

LEXICAL ELEMENTS

This section describes the format you can use for source code and
lists the lexical elements that make up the TAL language.

Elements include the character set supported, components, reserved
words, identifiers, constants, variables, indirection symbols, address
base symbols, delimiters, and operators.

FORMAT OF SOURCE CODE

The maximum line length is 132 characters.

TAL allows almost a free format for source code. This flexibility
lets you design a format that is readable and maintainable. The
following example shows a legal format:

INT a,
b,
c:

STRING charl,
char2,
char3;

PROC formatAexample MAIN;
BEGIN

a : = 1;
b : = 2:
c := a + b;
charl := "A";
char2 := "B";
char3 := "C";

END;

4l 82581 AOO 3/85 3-1

LEXICAL ELEMENTS
Format of Source Code

BEGIN-END Construct

The BEGIN-END construct is an integral part of the TAL language. For
example:

• It encloses the body of a procedure, as in the following example:

PROC a;
BEGIN

END;

• It forms a compound statement, as in the following example:

IF a < b THEN
BEGIN

END
ELSE

BEGIN

END;

Comments

Comments begin with an exclamation point (!) and terminate with either
another exclamation point or the end of the line. Valid examples are:

CALL calc; !Comment
CALL calc; ! Comment
! Comment
!Comment! CALL !Comment! calc; !Comment!

CHARACTER SET

TAL supports the complete ASCII character set including uppercase and
lowercase alphabetics, numerics 0 through 9, and special characters.
The ASCII character set appears in Appendix E.

3--2
_.,, 82581 AOO 3/85

COMPONENTS

LEXICAL ELEMENTS
Components

TAL program components consist of declarations and statements.

• Declarations associate identifiers with data variables and other
declarable objects in a program:

--Variable objects such as simple variables, arrays, structures,
pointers, and equivalenced variables

--Other objects such as procedures, literals, defines, labels, and
entry points

• Statements specify operations to be performed on declared objects.
Statements are summarized in Table 3-1 and described in Section 15.

Statement

ASSERT
Assignment
CALL
CASE
CODE
DO-UNTIL
DROP
FOR-DO
GOTO

Move
IF-THEN-ELSE

RETURN

RS CAN
SCAN
STACK
STORE
USE
WHILE-DO

'1' 82581 AOO 3/85

Table 3-1. TAL Statements

Meaning

Conditionally calls error-handling procedure.
Stores value in variable.
Invokes procedure or subprocedure.
Executes statement based on index value.
Specifies machine codes for inclusion in object code.
Executes posttest loop until true condition.
Frees index register or removes label from symbol table.
Executes pretest loop for <n> times.
Unconditionally branches to label within procedure or
subprocedure.
Moves group of elements from one location to another.
Executes THEN statement for true state or ELSE statement
for false state.
Returns from procedure or subprocedure to caller. For
functions, also can specify returned value.
Searches scan area, right to left, for test character.
Searches scan area, left to right, for test character.
Loads value on register stack.
Stores register stack element in variable.
Reserves index register for user manipulation.
Executes pretest loop during TRUE condition.

3-3

LEXICAL ELEMENTS
Reserved Words

RESERVED WORDS

Reserved words are keywords that have predefined meanings when you use
them in declarations and statements. Table 3-2 lists the reserved
words in alphabetic order. You cannot use reserved words for
user-defined identifiers unless noted otherwise below.

Table 3-2. Reserved Words

AND END LITERAL RS CAN
ASSERT ENTRY LOR SCAN
BEGIN EXTENSIBLE ** MAIN S'I'ACK
BLOCK * EXTERNAL NAME * S'I'ORE
BY FILLER *** NOT S'I'RING
CALL FIXED OF ST'RUCT
CALLABLE FOR OR SUBPROC
CASE FORWARD OTHERWISE THEN
CODE GOTO PRIV TO
DEFINE IF PRIVATE * UNTIL
DO INT PROC USE
DOWNTO INTERRUPT REAL VP.RI ABLE
DROP LABEL RESIDENT WHILE
ELSE LAND RETURN XOR

* NAME is reserved only when used in the first declaration in a
compilation unit. BLOCK and PRIVATE are reserved in a named
compilation unit. In an unnamed compilation unit, you cannot
declare data blocks using BLOCK declarations, but you can use
BLOCK and PRIVATE as user-defined identifiers. For details, see
Section 22, "Separate Compilations."

** EXTENSIBLE is a procedure attribute, as described in Section 16,
"Procedures and Subprocedures." However, you can also use
EXTENSIBLE as a user-defined identifier.

3-4

FILLER is a reserved word only within the scope of a structure
declaration, as described in Section 11, "Structures."

1182581 AOO 3/85

LEXICAL ELEMENTS
Identifiers

IDENTIFIERS

Identifiers are symbolic names you use for objects in declarations
and statements. The following rules apply when forming identifiers:

• They can be up to 31 characters in length.

• They must begin with an alphabetic character or a circumflex (A).

• They can consist only of alphabetics, numerics, and circumflexes.

• You can use lowercase characters, but TAL treats them as uppercase.

The following examples show valid identifiers:

a2
numberAofAbytes
A

TANDEM
A23456789012AOO
NameAwithAexactlyA31Acharacters

The following examples show invalid identifiers:

2abc
ab%99
Variable
ThisAnameAisAtooAlongAsoAitAisAinvalid

Identifier Classes

!Begins with number
! Illegal symbol
!Reserved word
!Too long

Each identifier is a member of an identifier class. TAL determines
the identifier class based on the declaration of the identifier and
stores the information in the symbol table.

Table 3-3 summarizes the identifier classes and the sections in
this manual in which each class is described.

-'if 82581 AOO 3/85 3-5

LEXICAL ELEMENTS
Constants

Class

Block
Code
Constant
Variable

DEFINE
Function
Label
LITERAL
PROC
Register
Template

CONSTANTS

Table 3-3. Identifier Classes

Meaning

Global data block
Read-only (P-relative) array
Unnamed numeric or character string constant
Simple variable, array, pointer, structure,
substructure, or structure data item
Named text
Procedure or subprocedure with a return value
Statement label
Named constant
Procedure or subprocedure with no return value
Index register (R5, R6, or R7) (See USE statement)
Structure template

Section

22
9
4

8-11

6
16

7
6

16
15
11

A constant is a value you can store in a variable, declare as a
LITERAL, or use as part of an expression. Constants can be numbers or
character strings. The kind and size of constants a variable can
accommodate depends on the data type of the variable, as de?scribed in
Section 4, "Data Representation."

A constant expression is an arithmetic expression that contains no
variables. You can use a constant expression anywhere a single
constant is allowed.

The following are examples of constants and constant expressions:

3-6

255
"xyz"
2 * 5

!Numeric constant
!Character string constant
!Constant expression

11 82581 AOO 3/85

Number Bases

LEXICAL ELEMENTS
Variables

You can specify numeric constants in binary, octal, decimal, or
hexadecimal base depending on the data type of the item, as described
in Section 4. Examples are:

Binary:
Octal:
Decimal:
Hexadecimal:

VARIABLES

%8101111
%57
47
%H2F

A variable is a symbolic representation of an item or a group of
elements. It stores data that can change during program execution.
Table 3-4 summarizes variables.

Table 3-4. Variables

Variable Meaning Section

Simple
Variable

Array

A variable that contains one item of a specified 8
data type

A variable that contains multiple elements of the 9
same data type, all accessible by one identifier

Structure A variable that contains multiple elements of one 11
or more data types, all accessible by one identifier

Substructure A structure declared within another structure or 11
substructure

Structure An array or simple variable declared within a 11
data item structure or substructure

Pointer A variable that contains the address of another item 10
of a specified data type; referencing a pointer
accesses the item to which the pointer points

-'182581 AOO 3/85 3-7

LEXICAL ELEMENTS
Symbols and Operators

SYMBOLS AND OPERATORS

Symbols are indirection symbols, address base symbols, prefix symbols,
and delimiters (punctuation symbols):

• Indirection symbols are the period (.), .EXT, .SG, and@, as
summarized in Table 3-5.

• Address base symbols are 'SG', 'P', 'G', 'L', and 'S', as
summarized in Table 3-6.

• Delimiters start or end a field of information as summarized in
Table 3-7.

• Other symbols are "$" and "?", as follows:

$ --specifies a standard function, such as $ABS and $DBL, as
described in Section 17.

? --specifies a directive line that contains one or more compiler
directives, as described in Section 20.

Operators specify assignment, move, bit shift, arithmetic, boolean,
and relational operations, as summarized in Table 3-8.

3--8 4J82581 AOO 3/85

Symbol

@

.EXT

.SG

Symbol

'P'

'G'

'L'

'S'

'SG'

LEXICAL ELEMENTS
Indirection and Base Address Symbols

Table 3-5. Indirection Symbols

Meaning

Declares indirect array (standard indirection)
Declares indirect structure (standard indirection
Declares 16-bit standard pointer
Declares 16-bit standard structure pointer
Uses direct INT variable as a temporary pointer

Removes indirection (accesses address contained in
pointer or address of any other item)

Declares 32-bit extended pointer
Declares 32~bit extended structure pointer

Declares 16-bit system global pointer
Declares 16-bit system global structure pointer

Table 3-6. Address Base Symbols

Section

9
11
10
11
10

10

10
11

18
18

Meaning Section

P-register addressing (read-only array declaration) 9

Base-address equivalencing, global user data area 12

Base-address equivalencing, local user data area 12

Base-address equivalencing, sublocal user data area 12

Base address, system global space (privileged
procedures) 18

""182581 AOO 3/85 3-9

LEXICAL ELEMENTS
Delimiters

Symbol

<:>

()

(*)

*
[]

[:]

->

" "
""

Table 3-7. Delimiters

Meaning

Begins and optionally ends a comment

Separates fields of information
Constant lists
Declarations
Parameters (DEFINEs, procedures,

standard functions, CALL statements)

Terminates declarations
Separates statements

Word.<bit> specification
Structure name qualification

Bit field

Label, ASSERT statement, entry point

Expression precedence
CODE statement
Parameters (DEFINES, procedures,

standard functions, CALL statements)
Structure pointer referral mode
FIXED (<fpoint>)

FIXED (*) formal parameter specification
Template structure declaration

Repetition factor
Constant list; index; array element

Array bounds
Structure or substructure bounds

<next-addr> in SCAN, RSCAN, move statements
<next-addr> in group comparison expression

Begins and ends character strings
Embedded quotation mark in character strings
Terminates DEFINE declaration text
Embedded comma in DEFINE parameter

Section

3

4
6-12
6,16

17,15

6-12
15

14
11

4,14

7,15,16

13
15

6,16
17,15

11
8

16
11

4
4,5,9

9
11

15
13

4
4
6
6

3-10 ~ 82581 AOO 3/85

Operation

Assignment

Representation

Move

Bit Shift

Arithmetic

Boolean

Relational

Af' 82581 AOO 3/85

Operator

:=

=

r : = r
r _. r -.
<<
>>
'<<'
'>>'

+

*
I
r + r
r -'

r *'
r /'

r \ r

LOR
LAND
XOR

AND
OR
NOT

<
=
>
<=
>=
<>
r < r
r = r

r >'
'<='
'>='
'<>'

LEXICAL ELEMENTS
Operators

Table 3-8. Operators

Meaning

Data declaration initialization
Assignment and FOR statements

Section

Assignment form of arithmetic expression

8-11
15
13

LITERAL or DEFINE declaration
Equivalenced variable declaration
Redefinitions inside structures

Left-to-right move
Right-to-left move

Signed left shift
Signed right shift
Unsigned left shift
Unsigned right shift

Signed addition
Signed subtraction
Signed multiplication
Signed division
Unsigned addition
Unsigned subtraction
Unsigned multiplication
Unsigned division
Unsigned modulo division
Logical OR bit-wise operation
Logical AND bit-wise operation
Exclusive OR bit-wise operation

Logical conjunction
Logical disjunction
Logical negation

Signed less than
Signed equal to
Signed greater than
Signed less than or equal to
Signed greater than or equal to
Signed not equal to
Unsigned less than
Unsigned equal to
Unsigned greater than
Unsigned less than or equal to
Unsigned greater than or equal to
Unsigned not equal to

6
12
11

15

14

13

13

13

3-11

SECTION 4

DATA REPRESENTATION

Data is the information on which a program operates.

Variables store data that can change during program execution. When
you declare a variable, you specify a data type, which determines its
storage, range of values and precision, and the way it can be used in
a program.

This section describes the following:

• Data units in which you can access variables

• Data types for variables and constants

• Syntax for character string constants, numeric constants, and
constant lists

DATA UNITS

Data units are the formats in which you can access data stored in
memory. The system stores all data in 16-bit word units, but you can
access this data as any of the five units listed in Table 4-1.

"182581 AOO 3/85
4-1

DATA REPRESENTATION
Data Units

Data Unit

Bit field

Byte

Word

Doubleword

Quadword

Bit Fields

Table 4-1. Data Units

Number
of Bits Description

1-16 One or more contiguous bits within a word

8 Two bytes comprise a word, with byte 0 (most
significant) in the left half and byte 1 (least
significant) in the right half

16 Basic addressable unit of memory

32 Four contiguous bytes or two contiguous words

64 Eight contiguous bytes or four contiguous words

A bit field specifies one or more contiguous bits in a data unit by
bit number. For a word unit, the bit numbers are 0 through 15 from
left to right, as shown in Figure 4-1.

0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15

I I I I I I I I I I I I I I I I I
Most

Significant

Figure 4-1. Bit Field

Least
Significant

55013-006

For a one-bit field, specify the bit number enclosed in angle
brackets, as in <O>, <7>, or <14>.

For a multiple-bit field, specify the leftmost and rightmost bit
numbers of the field separated by a colon and enclosed in angle
brackets, as in <2:3>, <0:7>, or <4:15>.

4--2
'1'' B2581 AOO 3/85

DATA REPRESENTATION
Data Types

DATA TYPES

The data type of a variable determines the values it can represent,
the operations you can perform on it, byte or word addressing and
alignment, data length, indexing offsets, and kind of machine
instructions generated.

Data can be character strings or numbers. Table 4-2 shows the six
data types and the numeric range each represents.

Data Type Data Unit

STRING Byte

INT Word

INT(32) Doubleword

Table 4-2. Data Types

Number Representation

ASCII character or 8-bit integer
in the range 0 through 255 unsigned

16-bit integer in the range
0 through 65,535 unsigned or
-32,768 through 32,767 signed

32-bit integer in the range
-2,147,483,648 through +2,147,483,647

FIXED Quadword 64-bit fixed-point number in the range
-9,223,372,036,854,775,808 through
+9,223,372,036,854,775,807

REAL

REAL(64)

Doubleword

Quadword

32-bit floating-point number

64-bit floating-point number

REAL and REAL(64) data are in the range
-78 78

+/-8.62 * 10 through +/-1.16 * 10

Address Modes

The data type of a variable determines byte or word addressing,
alignment, and indexing, as discussed in Section 5, "Addressing
Modes."

/1' 82581 AOO 3/85
4-3

DATA REPRESENTATION
Data Types

Q~rations and Functions

The data type of a variable determines the operations you can perform
on it and the standard functions you can use with it, as shown in
Table 4-3.

Table 4-3. Operations and Functions

STRING INT INT(32) FIXED REAL REAL(64)

Operations
Unsigned arithmetic
Signed arithmetic
Logical operations
Relational operations
Bit shifts
Byte scans

Standard Functions
rype transfer
Character test
Minimum/Maximum
Scaling
Structure
Address conversion
Miscellaneous

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•

•
•

•
•
•

•
•
•

•
•
•
•
•

•*

•*

•
•*
•
•
•

•**
•**

•
•**

•
•

•**

•**

•
•**

•
•

* Fixed-point optional microcode required on the Nonstop 1+ system
** Floating-point optional microcode required

STRING Operands

In expressions, the system treats STRING variables and constants as
if they were 16-bit quantities. For more information on expressions,
see Section 13.

4-·4
~ 82581 AOO 3/85

SYNTAX FOR CONSTANTS

DATA REPRESENTATION
Syntax for Constants

The remaining pages of this section give the following syntax
definitions for specifying constants in your program:

• Character String Constants (All Data Types)

• STRING Numeric Constants

• INT Numeric Constants

• INT(32) Numeric Constants

• FIXED Numeric Constants

• REAL and REAL(64) Numeric Constants

• Constant Lists

Af' 82581 AOO 3/85 4-5

DATA REPRESENTATION
Character String Constants (All Data Types)

Character String Constants (All Data Types)

A character string consists of one or more ASCII characters stored in
a contiguous group of bytes.

The syntax for specifying a character string constant is:

"<string>"

<string>

is a sequence of one or more ASCII characters enclosed in
quotation mark delimiters. If a quotation mark is a
character within the string, use two quotation marks (in
addition to the quotation mark delimiters). TAL does not
upshift lower case characters.

Each ASCII character in the character string requires one byte of
storage. Thus, the number of characters that each element can
accommodate depends on its data type:

STRING = 1 byte
INT = 1 to 2 bytes

INT(32) or REAL = 1 to 4 bytes
REAL(64) or FIXED 1 to 8 bytes

In initializations, a character string can contain up to 128
characters. The character string must be on one line unless enclosed
in a constant list, described later in this section. The system left
justifies the character string. For examples initializing simple
variables and arrays with character strings, see Sections 8 and 9.

In expressions, a character string can contain one to four characters,
as in "a" or "abed". The system right justifies the character string.
For examples, see "Assignment Statement" in Section 15.

Example of Character String Constant

This example declares a FIXED variable and initializes it with a
character string:

FIXED fixAnum := "ABCD1234";

4-6 ·-'IJ 8 2 5 8 1 A 0 0 3 I 8 5

STRING Numeric Constants

Representation: Unsigned 8-bit integer

Range: 0 through 255

DATA REPRESENTATION
STRING Numeric Constants

The syntax for specifying a STRING numeric constant is:

[<base>] <integer>

<base>

is one of:

% = Octal
%B Binary
%H Hexadecimal

The default base is decimal.

<integer>

is one or more digits. The digits allowed are:

Binary
Decimal
Hexadecimal
Octal

0 or 1
0 through 9
0 through 9, A through F
0 through 7

Examples of STRING Numeric Constants

Decimal:
Octal:
Binary:
Hexadecimal:

-'182581 AOO 3/85

255
%12
%B101
%h2A

4-7

DATA REPRESENTATION
INT Numeric Constants

INT Numeric Constants

Representation: Signed or unsigned 16-bit integer

Range (Unsigned): 0 through 65,535

Range (Signed): -32,768 through 32,767

'rhe syntax for specifying an INT numeric constant is:

[+] [<base>] <integer>
[-]

<base>

is one of:

% =
%B =
%H =

Octal
Binary
Hexadecimal

The default base is decimal. Unsigned integers greater than
32,767 must be in octal, binary, or hexadecimal base.

4-8

<integer>

is one or more digits. The digits allowed for each base are:

Binary
Decimal
Hexadecimal
Octal

0 or 1
0 through 9
0 through 9, A through F
0 through 7

Aft 82581 AOO 3/85

Examples of INT Numeric Constants

Decimal:

Octal:

3
-32045

%177
-%5

Binary: %801010
%b1001111000010001

Hexadecimal: %H1A
%h2f

Storage Format

DATA REPRESENTATION
INT Numeric Constants

The system stores signed numbers in two's complement notation. It
obtains the negative of a number by inverting each bit position in the
number, then adding a 1. For example:

2 is stored as 0000000000000010

-2 is stored as 1111111111111110

/f 82581 AOO 3/85 4-9

DATA REPRESENTATION
INT(32) Numeric Constants

INT(32) Numeric Constants

Representation: Signed or unsigned 32-bit integer

Range: -2,147,483,648 through 2,147,483,647

The syntax for specifying an INT(32) numeric constant is:

-------·-------·-----

[+] [<base>] <integer> { D }
[-] { %D }

<base>

is one of:

% = Octal
%B = Binary
%H = Hexadecimal

The default base is decimal.

<integer>

is one or more digits. The digits allowed for each base are:

4-10

Binary
Decimal
Hexadecimal
Octal

D and %D

0 or 1
0 through 9
0 through 9, A through F
0 through 7

are suffixes that specify INT(32) constants:

D = Decimal, octal, or binary
%D Hexadecimal

AP 8 2 5 81 A 0 0 3 I 8 5

Examples of INT(32) Numeric Constants

Decimal: OD
+14769D
-327895066d

Octal: %1707254361d
-%24700000221D

DATA REPRESENTATION
INT(32) Numeric Constants

Binary: %B000100101100010001010001001d

Hexadecimal: %h096228d%d
-%H99FF29%D

Storage Format

The system stores signed numbers in two's complement notation.

~ 82581 AOO 3/85 4-11

DATA REPRESENTATION
FIXED Numeric Constants

FIXED Numeric Constants

Representation: Signed 64-bit fixed-point number

Range: -9,223,372,036,854,775,808 through +9,223,372,036,854,775,807

The syntax for specifying a FIXED numeric constant is:

[+ [<base>] <integer> [.<fraction>] { F }
[- { %F }

<base>

is one of:

%
%B =
%H =

Octal base
Binary base
Hexadecimal base

The default base is decimal.

<integer>

is one or more digits. The digits allowed for each base are:

Binary
Decimal
Hexadecimal
Octal

0 or 1
0 through 9
0 through 9, A through F
0 through 7

<fraction>

is one or more decimal digits. <fraction> is legal only for
decimal base.

F and %F

4·-12

are suffixes that specify FIXED constants:

F
%F

Decimal, octal, or binary
Hexadecimal

'1' 82581 AOO 3/85

Examples of FIXED Numeric Constants

Decimal: 1200.09F
0.1234567F
239840984939873494F
-10.09F

Binary: %B1010111010101101010110F

Octal: %765235512F

Hexadecimal: %H298756%F

Storage Format

DATA REPRESENTATION
FIXED Numeric Constants

The system stores a FIXED number in binary notation. When the system
stores a FIXED number, it scales the constant as dictated by the
declaration or expression. Scaling means the system multiplies or
divides the constant by powers of 10 to move the decimal.

For information on scaling of FIXED values in declarations, see
Section 8, "Simple Variables." For information on scaling of FIXED
values in expressions, see Section 13, "Expressions."

-'1f 82581 AOO 3/85 4-13

DATA REPRESENTATION
REAL and REAL(64) Numeric Constants

REAL and REAL(64) Numeric Constants

Representation: Signed 32-bit REAL or 64-bit REAL(64) floating-point
number

Range:
-78

+/-8.62 * 10
77

through +/-1.16 * 10

Precision: REAL--to approximately seven significant digits
REAL(64)--to approximately 17 significant digits

The syntax for specifying a REAL or REAL(64) numeric constant is:

[+] <integer>.<fraction> { E } [+] <exponent>
[-] { L } [-]

<integer>

is one or more decimal digits comprising the integer part.

<fraction>

is one or more decimal digits comprising the fractional part.

E and L

are suffixes that specify floating-point constants:

E = REAL constant
L = REAL(64) constant

<exponent>

is one or two decimal digits comprising the exponential part.

4-· 14 4J 82581 AOO 3/85

DATA REPRESENTATION
REAL and REAL(64) Numeric Constants

Examples of REAL and REAL(64) Numeric Constants

Decimal Value

0

2

-17.2

Storage Format

REAL

O.OEO

2.0eO
0.2E1
20.0E-1

-17.2EO
-1720.0E-2

REAL(64)

O.OLO

2.0LO
0.2Ll
20.0L-1

-17.2LO
-1720.0L-2

The system stores the number in binary scientific notation in the
form:

y
x * 2

X is a value of at least 1 but less than 2. Since the integer part
of X is always 1, only the fractional part of X is stored.

The value y is an exponent in the range 0 through 511 (%777). The
system adds 256 (%400) to y before storing it. Thus, the exponent is
the stored value minus 256. This provides for exponents from -256
(represented by %0) through 255 (represented by %777).

The system stores the parts of a floating-point constant as follows:

REAL
REAL(64)

..-,. 82581 AOO 3/85

Sign Bit

<O>
<O>

Fraction

<1:22>
<1:54>

Exponent

<23:31>
<55:63>

4-15

DATA REPRESENTATION
HEAL and REAL(64) Numeric Constants

Examples of Storage Formats

1. For the REAL constant shown, the sign bit is 0, the fraction
bits are 0, and the exponent bits contain %400 + 2, or %402:

2
4 = 1.0 * 2 stored as 000000 000402

2. For the REAL constant shown, the sign bit is 1, the fraction
bits contain %.2 (decimal .25 is 2/8), and the exponent bits
contain %400 + 3, or %403:

3
-10 = -(1.25 * 2) stored as 120000 000403

3. For the REAL(64) constant shown, the sign bit is 0, the fraction
bits contain the octal representation of .333333 ..• , and the
exponent bits contain %400 - 2, or %376:

-2
1/3 = .333333 ..• * 2 stored as 025252 125252 125252 125376

4--16 Af' 82581 AOO 3/85

DATA REPRESENTATION
Constant Lists

Constant Lists

A constant list is a list of one or more constants. You can use
constant lists in:

• Array declarations not in structures (Section 9)

• Group comparison expressions (Section 13)

• Move statements but not assignment statements (Section 15)

The syntax of the constant list is:

[<repetition-factor> *] "[" <constant-list> "]"

<repetition-factor>

is an INT constant that specifies the number of times
<constant-list> occurs

<constant-list>

is a list of elements stored on an element boundary. It
has the form:

<constant> [, <constant] •••

<constant>

is a character string, a number, or a LITERAL. For INT
arrays only, the constants can be different types. The
range and syntax for specifying constants depends on the
data type.

~ 82581 AOO 3/85 4-17

DATA REPRESENTATION
Constant Lists

Examples of Constant Lists

1. The two examples in each pair below are equivalent:

["A", "BCD" , " ... ",
["ABCD ..• Z"]

10 * [0];
[0,0,0,0,0,0,0,0,0,0]

"Z"]

[3 * [2 * [1], 2 * [0]]]
[1,1,0,0,1,1,0,0,1,1,0,0]

10 * [" "]
[" "]

2. These examples declare arrays and initialize them using constant
lists:

4-·18

STRING a[0:99] := ["A constant list that is a single "
"character string can continue on ",

"more than one line."];

INT b[0:79] := 80 * [" "]; !Repetition factor

INT{32) c[0:4] :=["abed", lD, 3D, "XYZ", %20D];
!Mixed constant list

..,..1 H2581 AOO 3/85

SECTION 5

ADDRESSING MODES

This section summarizes the process environment, the user data space,
and the addressing modes used in this environment. The addressing
modes described are:

• Byte and word addressing

• Direct and indirect addressing

• Standard and extended addressing

• Indexing

For more information than is given in this section, see the System
Description Manual for your system.

PROCESS ENVIRONMENT

Figure 5-1 shows the current process environment. The following
registers are shown in this figure:

• Program Counter (P) Register--Contains the address of the next
instruction in the code area

• Instruction (I) Register--Contains the instruction that is
currently executing

• Local (L) Register--Contains the address of the beginning of the
local data area for the most recently called procedure.

• Stack (S) Register--Contains the address of the last allocated
word in the dynamic data stack (see also Figure 5-2)

~82581 AOO 3/85 5-1

ADDRESSING MODES
Process Environment

• Register Stack--Eight registers (RO through R7) for computation:
R5, R6, and R7 double as index registers: the register pointer (RP)
points to the top of the register stack

• Environment (ENV) Register--Contains information about the current
process such as the current RP pointer and whether traps are
enabled

..-----------------------------------,-------------.

Current
Code Segment

Proc 1

Proc 2

I Register

G[O]

P Register

Current
Data Segment

Global
Data

Local
Data

Register
Stack

J L Register
L J

~ s Register ~--_]
~Register

RP (3 bits)

85013-007

, ____________________ , __________________ , ______ ..
Figure 5-1. Process Environment

USER DATA SPACE

The user data space consists of the current user data segment and
extended data segments, if any. (A segment is a non-extended segment
except where the word "extended" is specifically used.)

The organization of the current data segment is shown in Figure 5-2.

5·-2
4'82581 AOO 3/85

G[O]

L[O]

L[l]

S[O]

G[32767]

G[65535]

Global data
variables

ADDRESSING MODES
User Data Space

i------------- ...--- Dummy stack marker
Local storage for

MAIN procedure

Local storage for
other called
procedures

Parameter area for
current procedure

Saved P register
Saved ENV register

Saved L register

Local storage for
current procedure

Sublocal data and
parameter storage

for current
subprocedure

} Three-word stack marker
precedes local data for each
called procedure except MAIN

t--------------t ~ Top of data stack

~ Available for v
'1 dynamic data stack ,{

Upper 32K area
v v
/Not available for ,{

dynamic data stack

-

t- This area is extra buff er
space for user application

-

Figure 5-2. Organization of Current Data Segment

Af' 82581 AOO 3/85 5-3

ADDRESSING MODES
Byte and Word Addressing

ADDRESSING MODES

Addressing modes are byte and word addressing, direct addressing,
standard and extended indirection, and indexing.

Byte and Word Addressing

Figure 5-3 sho~s byte and word addresses in the data segment.

G[O]

)I
1"

v
/'

G[65535]

5-4

Byte Addresses Word Addresses

[0] [1] [0]

[2] [3] [l]

[4] [5] [2]

[6] [7] [3]

. v . . / . . .
[65534] [65535] [32767]_ Up

16
ad

Upper 32K area .
.

Access through v .
16-bit word ,(
pointer or

extended pointer
only

(65535]

Figure 5-3. Byte and Word Addressing

per limit for
-bit byte
dresses

L'1f1 82581 AOO 3/85

ADDRESSING MODES
Direct and Indirect Addressing

Except for structures and substructures, the data type of a variable
determines whether it has a byte or a word address. Variables of type
STRING have byte addresses: variables of any other data type have word
addresses.

Structures always have a word address: substructures always have a
byte address. (Variables contained in structures and substructures
have byte or word addresses based on the data type of the variable.)

For examples specific to simple variables, arrays, and structures, see
Sections 8, 9, and 11.

Direct Addressing

Direct addressing is data access that requires only one memory
reference. Direct addressing is not absolute but is relative to the
base of the global, local or sublocal area of the current data
segment.

The range for direct addressing is limited to the lower 32K words of
memory. The upper 32K always requires indirect addressing (described
next) since it is not part of the dynamic data stack. That is, the
upper 32K is not directly addressable using the L or S register.

Indirect Addressing

Indirect addressing is data access through a pointer (a data element
that contains the memory address of another data element). Indirect
addressing requires two memory references, one to get the pointer
contents and the second to get the data element to which the pointer
points. Indirect addressing is standard or extended.

Standard Indirection

Standard 16-bit addresses allow access to the current data segment
(byte or word addresses in the lower 32K area and word addresses in
the upper 32K area). Standard indirection is data access through
either:

• Standard pointers and structure pointers you declare and initialize
yourself

• Standard pointers TAL provides and initializes when you declare
indirect arrays and structures

..-, 82581 AOO 3/85 5-5

ADDRESSING MODES
Primary and Secondary Storage

Extended Indirection

Extended 32-bit addresses allow access to byte addresses in the entire
data segment, code segment, and extended data segment. Extended
indirection is data access through extended pointers and structure
pointers you declare and initialize.

For examples showing standard and extended indirection, see the
following sections: Section 9 (indirect arrays), Section 10 (standard
or extended pointers), Section 11 (indirect structures and standard or
extended structure pointers).

Primary and Secondary Storage

The global and local areas in the data segment each have a primary and
secondary storage area. The sublocal area has only primary storage.

The primary areas are directly addressable; they contain pointers and
direct variables based on global, local, or sublocal scope. The size
of each primary area is:

Global primary area:
Local primary area:
Sublocal primary area:

256 words
127 words

31 words

The secondary areas are indirectly addressable; they contain the data
for indirect arrays and structures depending on global or local scope.
The secondary areas have no explicit size limit, except that the total
data storage cannot exceed the lower 32K area.

Figure 5-4 shows the global and local primary and secondary storage
areas and the sublocal primary area.

5--6 "1i' 82581 AOO 3/85

G[O]

L[l]

S[O]

G[32767]

Global direct
variables and

pointers
t-------------

y
/

Global indirect
arrays and
structures

Stack marker

Local direct
variables and

pointers

Local indirect
arrays and
structures

Sublocal direct
variables

v
/

}
}

]-

}
}
}

ADDRESSING MODES
Primary and Secondary Storage

Global primary area
(256 words)

Global secondary area

Three-word stack marker
precedes local data for each
called procedure except MAIN

Local primary area
(127 words)

Local secondary area

Sublocal primary area
(31 words)

l=============I..._ Upper limit of directly
addressable area

Y Upper 32K area v

G(65535] L f

Figure 5-4.

"'182581 AOO 3/85

Primary and Secondary Storage in
User Data Segment

5-7

ADDRESSING MODES
Storage Allocation

Storage Allocation

TAL allocates space for each variable in the order in which you
declare them as follows:

• Global Variables--TAL allocates space at compilation for each
variable at an offset from the beginning of the data block in
which it appears. The data blocks are relocatable at bind time.

• Local and Sublocal Variables--TAL allocates space for each variable
when a call to a procedure or subprocedure occurs.

Primary Storage. For global or local variables, TAL allocates primary
storage for each direct variable and each pointer. Allocation starts
at G[O] (global scope) or L[l] (local scope). Each successive
variable or pointer is allocated space at an increasingly higher
offset.

For sublocal variables, TAL allocates storage starting at S[O]. Each
successive sublocal variable is allocated storage at a negative offset
from S[O].

Secondary Storage. TAL allocates storage for the data in each
Indirect array and structure in the global or local secondary area.
The secondary area begins immediately after the last direct variable
or pointer.

Examples specific to simple variables, arrays, pointers, structures,
and equivalenced variables are given in Sections 8 through 14.

5--8
~ 82581 AOO 3/85

ADDRESSING MODES
Indexing

Indexing

You can access data by appending an index to the name of a variable.

The syntax for indexing a variable is:

<identifier> "[" <index> "]"

<identifier>

is the name of a previously declared variable (simple
variable, array, structure, substructure, structure data
item, or pointer). The variable can be direct or indirect.

<index>

is one of the following values:

• For standard addressing, it is a signed INT arithmetic
expression that represents either:

--an element offset from the address of a simple variable
or array (when appended to a simple variable, array,
pointer, or structure data item)

--an occurrence offset from the address of a structure
(when appended to a structure or structure pointer) or
from the address of a substructure (when appended to a
substructure). An occurrence is one copy of a structure
or substructure.

• For an extended pointer, it is a signed INT or INT(32)
arithmetic expression.

• For an extended structure pointer, it must be a signed INT
arithmetic expression.

Afl 82581 AOO 3/85 5-9

ADDRESSING MODES
Indexing

The following example shows use of indexes:

I NT var[0 : 4] ;
INT .ptr := %100000;
var[2] := 5;

!Declares array
!Declares pointer
!Assigns 5 to third element of "var"
!Moves constant list to location to which
! "ptr" points

pt r ' : =' [1, 2, 3] ;

var[3] := ptr[2]; !Assigns 3 to fourth element of "var"

Indexes and Data Type

The data type impacts the amount of offset yielded by an index. For
type STRING, the index yields a byte offset from the variable base.
For INT, a word offset; for INT(32) and REAL, a doubleword offset; for
REAL(64) and FIXED, a quadword offset.

In the following example, "var" contains five doubleword elements:

INT(32) var[0:4];
var[3] := 2;

Indexing Examples

!Declares array
!Accesses the fourth element of "var"

1. The following example shows an indexed direct variable:

PROC x MAIN;
BEGIN a[O] --.. L[1]

INT a[0:2];
a[l] __. L[2]

a[2] := 5;
END; a[2] -+- L[3] 5

5--10 -'182581 AOO 3/85

ADDRESSING MODES
Indexing

, 2. This example of an indexed pointer initializes an INT pointer with
the address of an INT(32) array, then assigns a value to the last
word of the array via the indexed pointer:

PROC z MAIN;
BEGIN

INT(32) d[0:4] ~=
I NT . p : = @d [0] ;

p [9] := 5:
END:

[10, 20, 30, 40, OD]:
!View "d" as single words

!Last word of "d" is a
! nine-word offset from p[O]

Figure 5-5 shows the array before and after the assignment. (L[O]
contains the third word of the 3-word stack marker.)

Before After

L[O] L[O] . . .
d[O] ~ L[l] 0 L[l] 0 ..._ p[O]

I- -
L[2] 1 L[2] 1

d[l] ~ L[3] 0 L[3] 0
I- -

L[4] 2 L[4] 2

d[2] ~ L[5] 0 L[5] 0
I- -

L[6] 3 L[6] 3

d[3] ~ L[7] 0 L[7] 0
1-- __..,

L[8] 4 L[8] 4

d[4] -.. L[9] 0 L[9] 0
1-- -

L[lO] 0 L[lO] 5 ~ p[9]

.p ~ L[11] @d[O] .p __.. @d[O]

Figure 5-5. Indexing a Pointer

4J 82581 AOO 3/85
5-11

SECTION 6

LITERALS AND DEFINES

This section describes the following declarable objects:

• LITERALS--Named constants

• DEFINES--Named text with or without parameters

For each, the following information is given:

• Declarations

• Compiler action

• Data access

LITERAL and DEFINE declarations let you define constants and text once
in a program, then reference them by name many times throughout the
program. They allow you to make significant changes in the source
code efficiently. You only need to change the declaration, not every
reference to it in the program.

"''f 82581 AOO 3/85
6-1

LITERALS AND DEFINES
LITERAL Declaration

L. I TERAL DECLARATION

The LITERAL declaration associates an identifier with a constant.

The syntax for the LITERAL declaration is:

LITERAL <identifier> = <constant>

[, <identifier> = <constant>] •••

<identifier>

is an identifier associated with <constant>.

<constant>

is an INT, INT(32), FIXED, REAL, or REAL(64) constant
expression or a character string of one to two characters.

It must not be the address of a global variable because all
global variables are relocatable.

You access a LITERAL constant by referencing its identifier in other
declarations and in statements.

TAL allocates no storage for LITERAL constants. It substitutes the
associated value at each occurrence of the identifier.

LITERAL identifiers make the source code more readable. In the
e.xample shown on the next page, identifiers such as "buffer"'length",
"table"'size", "table"'base", and "entry"'size" are more readable than
their corresponding constant values (80, 128, %1000, and 4).

6--2 AJ 82581 AOO 3/85

Examples

LITERALS AND DEFINES
LITERAL Declaration

1. The following example shows various LITERAL declarations:

LITERAL true = -1,
false 0'
buff er"length 80,
table"size 128,
table"base %1000,
entry"size 4'
timeout = %100000D,
CR %15,
LF = %12;

2. The following example declares the length of an array as a LITERAL
constant, then references the LITERAL identifier in an array
declaration:

LITERAL length = 50;
INT buffer[O:length - 1];

!Length of array
!Array declaration

3. The following example declares LITERAL constants, then references
their identifiers in subsequent LITERAL declarations:

LITERAL second

-'f 82581 AOO 3/85

minute
hour
over"time =
double"time =

1,
second * 60,
minute * 60,

hour + 30,
2 * hour;

6-3

LITERALS AND DEFINES
DEFINE Declaration

DEFINE DECLARATION

A DEFINE declaration associates an identifier (and parameters if any)
with specified text.

The syntax for the DEFINE declaration is:

DEFINE <identifier> <par am> [<pa ram> ...) = <text> #

[<identifier> <pa ram> [<par am> ...) =
'

<text> #] ...

<identifier>

is the name associated with <text>~

<par am>

is the name of a formal parameter.

<text>

is all characters between = and #. Enclose character strings
in quotation marks ("). To use# in the <text>, enclose it
in quotation marks or embed it in a character string.

terminates a definition.

When specifying <text>, the following rules apply:

• The expanded text must produce legal TAL constructs.

• The text must not be recursive; that is, it must not call itself.

6-4 4~82581 AOO 3/85

LITERALS AND DEFINES
DEFINE Declaration

Examples of DEFINE Declarations

1. This example shows a DEFINE declaration with no parameters:

DEFINE value = ((45 + 22) * 8 / 2) #;

2. This example provides incrementing and decrementing utilities:

DEFINE increment (x)
DEFINE decrement (y)

= x := x + 1 #;
y := y - 1 #;

3. This example loads numbers into particular bit positions:

DEFINE wordAval (a, b) = (a '<<' 12) LOR b #;

Compiler Operation

TAL allocates no storage for defined text. When TAL encounters a
DEFINE identifier in a statement, it replaces the identifier with the
text, compiles it, and emits any machine instructions needed.

Accessing Defined Text

You access defined text by using its identifier in a statement.

If you use a DEFINE identifier in an expression, make sure that proper
evaluation occurs. For example, if the DEFINE identifier represents
an expression to be evaluated first, you must enclose the text in
parentheses:

DEFINE expr = (5 + 2) #;
j := expr * 4; !Means (5 + 2) * 4 and assigns 28 to "j"

Without parentheses, the same example has a different result:

DEFINE expr = 5 + 2 #;
j : = expr * 4;

AfJ 82581 AOO 3/85

!Means 5 + 2 * 4 and assigns 13 to "j"

6-5

1, I TERALS AND DEFINES
DEFINE Declaration

Passing Parameters

If the DEFINE declaration has formal parameters, you supply the actual
parameters when you reference the DEFINE identifier in a statement.
The following rules apply to actual parameters:

•f If an actual parameter requires commas, enclose the comma in
apostrophes ('). An example is an actual parameter that is a
parameter list:

DEFINE varproc (procl, param) = CALL procl (param) #~
varproc (myproc, i ',' j ',' k); !Expands to

! "CALL myproc (i~ j, k);"

• An actual parameter can include parentheses. For example:

DEFINE varproc (procl, param)
varproc (myproc, (i+j) * k);

CALL procl (param) #~
!Expands to
! "CALL myproc ((i+j)*k);"

E!xamples of Accessing Defined Text

1. The following example shows a DEFINE declaration and the statement
that references it:

DEFINE cube (x) = (x * x * x) #;
INT result;

result : = cube (3) '>>' 1: !Means (3 * 3 ·1c 3) '>>' 1 =
! 27 '>>' 1 13

2. This example provides incrementing and decrementing utilities and
a statement that references one of them:

6-6

DEFINE increment (x)
DEFINE decrement (y)
INT index := O;

increment(index);

= x := x + 1 #;
y := y - 1 #;

!Means "index := index + 1;"

~j 82581 AOO 3/85

LITERALS AND DEFINES
DEFINE Declaration

3. The following example fills an array with zeros:

DEFINE zeroAarray (array, length) =
BEGIN

array[O] := O;
array[!] ':=' array FOR length - 1;

END #;

LITERAL len = 50;
INT buffer[O:len - l];

zeroAarray (buffer, len); !Fill buffer with zeros

4. The following example displays a message, checks the condition
code, and returns an error if one occurs:

INT error;
INT file;
INT .buffer[0:50];
INT countAwritten;

DEFINE emit (filenum, text, bytes, count) =
BEGIN

.
IF i =

"f 82581 AOO 3/85

CALL WRITE (filenum, text, bytes, count);
IF < THEN

BEGIN
CALL FILEINFO (filenum, error);
RETURN error;

END;
END #;

1 THEN emit (file, buffer, 80, countAwritten);

6-7

SECTION 7

LABELS

This section describes how to declare and use labels. A label is an
identifier you use with the GOTO statement.

LABEL DECLARATION

The LABEL declaration reserves an identifier for later use as a label.

The syntax of the LABEL declaration is:

LABEL <identifier> [, <identifier>] •.•

<identifier>

is the name of the label. It cannot be a global declaration.

Labels are the only declarable objects you do not need to declare
before using them. However, declaring them ensures that you access
the label rather than a variable in the event they have the same name.
(See Examples 4 and 5.)

Aft 82581 AOO 3/85 7-1

IJABELS
Label Declaration

Local Labels

'I'he steps for declaring, using, and referencing local labels are:

1. Declare the label name inside a procedure.

2. Place the label name and a colon (:) preceding a statenent in the
same procedure (not in a subprocedure).

3. Reference the label in another statement located in the~ same
procedure or in any subprocedure contained in that procedure.

Sublocal Labels

The steps for declaring, using, and referencing sublocal lc1bels are:

1. Declare the label name inside a subprocedure.

2. Place the label name and a colon (:) preceding a statement in the
same subprocedure.

3. Reference the label in another statement located in the same
subprocedure.

Referencing Labels

Statements you can use for referencing labels include:

• A GOTO statement to branch to the label

A GOTO statement in a procedure can reference a label in the same
procedure, but not in any subprocedure.

A GOTO statement in a subprocedure can reference a label in either
the same subprocedure or the encompassing procedure.

• An assignment statement to store the address of the label in a
variable

7-2 ~ fl2581 AOO 3/85

Examples

LABELS
Label Declaration

1. This example shows valid placements of undeclared local labels:

PROC a;
INT a, b;

label"a

label"b

label"c

IF a>b
THEN

<statement>
ELSE

<statement>;

!Valid placement of labels

2. This example is not a legal use of labels because a label cannot
have global scope, and you must place it at the start of a
statement:

LABEL label"a;

PROC b;
INT a, b;

label"a

IF a>b

!Invalid label declaration; a
! label cannot be global

!Invalid placement of label;

THEN
<statement>

ELSE
<statement>; ! ELSE does not begin a statement

3. This example declares a label and makes two branches to it:

INT opl, op2, result;

PROC p;
BEGIN

addr

4182581 AOO 3/85

LABEL addr;
opl := 5;
op2 := 28:
GOTO addr:

result := opl + op2:
opl := op2 * 299;

IF result < 100 GOTO addr:

!Global declarations

!Label declaration

!Branches to the label

!Labeled location

!Branches to the label

7-3

LABELS
Label Declaration

4. This example uses an undeclared label name that is also the name
of a global variable. Using the name accesses the address of the
variable, not the address of the label as intended.

INT loop, data;

PROC p;
BEGIN

data := @loop;

loop : a := O;

!Global variables

!Stores address of variable
! instead of label

!Uses undeclared label

~i. This example corrects example 4 by declaring the label. It stores
the address of the label in a variable:

7-4

INT loop, data;

PROC p;
BEGIN

loop
END;

LABEL loop;

data := @loop;

<statement>

!Global variables

!Label declaration

!Stores label address
! in "data"

!Labeled location

Lf 82581 AOO 3/85

SECTION 8

SIMPLE VARIABLES

A simple variable is a single-element variable of a specified data
type. You allocate storage for it through a data declaration, then
use it in statements to access or change its data.

This section gives information on simple variables:

• Declaration

• Initialization

• Storage allocation

• ,Data access

SIMPLE VARIABLE DECLARATION

The simple variable declaration associates an identifier with
a single-element variable and optionally initializes it.

"'1'f 82581 AOO 3/85
8-1

SIMPLE VARIABLES
Simple Variable Declaration

·rhe syntax for the simple variable declaration is:

8-2

<type> <identifier> [:= <initialization>]

[, <identifier> [:=<initialization>]] ...

<type>

is one of the following data types:

STRING
INT
INT(32)
FIXED [<fpoint>)]
REAL
REAL(64)

<fpoint>

is the position of the decimal point. It is a value in the
range -19 through 19. The default value is 0 (no decimal
places). A positive value is the number of decimal places.
A negative value is the number of integer places between the
least significant digit and the decimal point.

If <initialization> has a different decimal setting than
<fpoint>, the system scales <initialization> to match
<fpoint>. If the value is scaled down, some precision is
lost.

<identifier>

is the name of the simple variable in the form described in
Section 3 under "Identifiers."

<initialization>

is a constant expression (global data) or an arithmetic
expression (local or sublocal data).

.,, 82581 AOO 3/85

SIMPLE VARIABLES
Simple Variable Declaration

Initializing Simple Variables

The data type of the initializing value must match that of the
variable, except for character strings. If a character string is
smaller than the space allocated, TAL left justifies the characters in
the variable and sets the extra bytes to O. If it is too large, TAL
truncates the excess characters and emits a warning.

Examples of Simple Variable Declarations

1. The following examples declare simple variables:

STRING b;
INT(32) dblwdl;
REAL(64) long;

2. The following examples declare and initialize simple variables:

STRING y := "A";
STRING z := 255;
I NT a : = "AB" ;
INT b := 5 * 2;
INT c := %B110;
INT(32) dblwd2 := %B1011101D;
REAL flt2 := 365335.6E-3;
REAL(64) b := 2718.2818284590452L-3;

!Character string
!Unsigned number
!Character string
!Expression
!Binary value
!Doubleword value
!Real value
!Quadword value

3. The following examples show FIXED declarations and how the
<fpoint> affects storage (and scaling):

FIXED(-3) f := 642000F; !Stores 642
FIXED(3) g := 0.642F; !Stores 642 (three implicit decimal

! places)
FIXED(2) h := 1.234F; !Scales rightmost digit; stores

! (two implicit decimal places)

4. This example illustrates use of constants (any level) and
variables (local or sublocal only) as initialization values:

123

INT global := 34; !Constants allowed at global,
! local, or sublocal levels

PROC mymain MAIN;
BEGIN

INT local := global + 10;
INT local2 := global * local;
FIXED local3 := $FIX(local2);

END;

-'182581 AOO 3/85

!Variables allowed at
local or sublocal levels

! but not at global level

!End of "mymain" procedure

8-3

SIMPLE VARIABLES
Storage Allocation

STORAGE ALLOCATION

Figure 8-1 shows simple variable declarations and the offset
allocation that results.

Por a simple variable of type STRING, TAL allocates one word of
storage. The initializing value is stored in the left byte and a zero
is stored in the right byte.

STRING a;
INT(32) b; !Global data

PROC proc"a;
BEGIN

STRING c; !Local data
REAL d;

SUBPROC subproc"a;
BEGIN

INT e; !Sublocal data
FIXED f;

END;
END;

Global
Data

t

Local
Data

t

Sublocal
Data

__________ ..,

Word Offset

0
i G[O] a

G[l]
b

;,-
I'

c 0 L[l]

L[2]
d

e S(-4]

f

S[O]

---~

Figure 8-1. Storage Allocation for Simple Variables

8-4
·~J82581 AOO 3/85

SIMPLE VARIABLES
Accessing Simple Variables

ACCESSING SIMPLE VARIABLES

To access a declared simple variable, you use its name in a statement,
with or without an index.

Examples of Accessing Simple Variables

1. The following example declares and initializes a simple variable,
then assigns a new value to it:

INT count := O; !Declaration and initialization

count := count + 1; !Assignment

2. This example shows how initialization left justifies a one-byte
character string, whereas an assignment right justifies it (unless
you assign a character and a space):

INT v :="A";

INT x, z;

X ·-. -
z : =

"A";
"A ";

!Declares "v"; initializes
! it with character
!Declares "x" and "z"

!Assigns character to "x"
!Assigns character and
! space to "z"

v "A"

x 0

z "A"

3. This example shows indexed access to a simple variable:

INT i;
INT j;
INT k;

i[2] := O;

Af' 82581 AOO 3/85

!"k" gets 0

0

"A"

8-5

SECTION 9

ARRAYS

An array is a collectively stored set of elements of the same data
type. You can use the same identifier to access the elements
individually or as a group.

This section describes one-dimensional arrays:

• Arrays stored in the current user data segment

• Read-only arrays stored in a user code segment

Information discussed includes:

• Array declarations

• Storage allocation

• Data access

Arrays within structures and multidimensional arrays are described in
Section 11, "Structures."

ARRAY DECLARATION

An array declaration associates an identifier with a set of elements
of the same data type collectively stored in the user data segment.

/'f 82581 AOO 3/85 9-1

ARRAYS
Array Declaration

The syntax for the array declaration is:

<type> [.] <identifier> "[" <lower-bound> : <upper-bound> "]"

[:= <initialization> ~

[, [.] <identifier> "[" <lower-bound> : <upper-bound> "]"

[:=<initialization>]] ... ;

<type>

is one of the following data types:

STRING
INT
INT(32)
FIXED [<fpoint>)]
REAL
REAL(64)

<fpoint> is as described for simple variables in Section 8.

. (period)

is the indirection symbol for standard addressing.

<identifier>

is the name of the array in the form shown in Section 3
under "Identifiers."

<lower-bound>

is an INT constant expression in the range -32768 through
32767 that defines the first array element. Both lower and
upper bounds are required .

..._ ____________________________________ , ______ _

9--2 Af' 82581 AOO 3/85

,

ARRAYS
Array Declaration

<upper-bound>

is an INT constant expression in the range -32768 through
32767 that defines the last array element. For arrays
outside of structures, <upper-bound> must be equal to or
greater than <lower-bound>.

<initialization>

is a numeric or character string constant or a constant list
to assign to the array elements.

Direct Versus Indirect Arrays

In the global and local areas, you can declare direct or indirect
arrays. In the sublocal area, arrays must be direct.

Because the global and local primary areas are limited to 256 and 127
words of direct data each, you should declare most arrays by using the
indirection symbol. TAL manages indirection for you by providing a
pointer and initializing it with the location of the data. To access
an indirect array, you reference it by name as if it were a direct
array.

Array Base

To the TAL compiler, the base of an array is element [O] regardless of
the lower and upper bounds specified. For example, if you declare
array bounds of [-5:5] or [3:7], TAL allocates space only for the
specified range, but the array base is still element [0].

For direct arrays, the array base must be addressable.
reside between 'G' relative word addresses [0:32767].

The base must
For example:

• If the first global array is direct, its lower bound must be a 0 or
negative value, since the global area has 'G' plus addressing only.

• The upper bound of the last sublocal array must be a 0 or larger
value, since the sublocal area has 'S' minus addressing only.

..-, 82581 AOO 3/85 9-3

A.RRAYS
Array Declaration

Examples of Array Declarations

1. This example declares indirect arrays with various bounds:

INT
INT
FIXED
INT

.array"'a[O:O];

.array"'b[-1:0];

. arr ay"'c[0: 3] ;

.array"'d[0:49];

!One-element array
!Two-element array
!Four-element array
!Fifty-element array

2. In this example, the simple variable and the array base (logical
element [0]) are located at the same address:

INT var; var ~· array[O]
INT array[1:2];

array[l]

array[2]

3. These examples declare and initialize arrays using constant lists:

9--4

INT .b"'array[0:9] := [1,2,3,4,5,6,7,8,9,10]; !Constant list

STRING .buffer[0:108] := ["You can use a constant list when "
"a character string constant is too ",

"long to fit on one line."];

INT(32) .mixed[0:4] := ["abed", lD, %B0101011D, %20D]; !Mixed
! constant list

LITERAL len = 80;
STRING .buffer[O:len - 1] := len * [" "];

INT .rec[O:ll] := ["$RECEIVE", 8*[" "]];

!Length of array
!Repetition factor

!GUARDIAN file name

FIXED .f[0:20] := 3*[2*[1F,2F], 4*[3F,4F]]; !Repetition factors

LITERAL er = %15,
lf = %12;

STRING .err"'msg[0:15] := [c r , 1 f , "ERROR" , c r , 1 f , 0] ;

"1' 82581 AOO 3/85

Storage Allocation

ARRAYS
Storage Allocation

The data type and number of elements determine the amount of storage
TAL allocates for array data. Direct or indirect addressing
determines if the data is allocated in primary or secondary storage.

Direct Array Allocation

For global direct arrays, TAL allocates primary storage at offsets
from the beginning of the global data block that contains the arrays.

For local or sublocal arrays, TAL allocates primary storage at offsets
from the base of the local or sublocal storage area.

Figure 9-1 shows an example of direct array declarations and the
offset storage that results.

/182581 AOO 3/85 9-5

ARRAYS
Storage Allocation

Global
Arrays

t
INT(32) a[O:l]; !Global
INT b[1:2]; ! arrays

PROC proc"a;
BEGIN

STRING c[0:2]; !Local
FIXED d[0:3]; ! arrays -. .
SUBPROC subproc"a; Local
BEGIN Arrays

INT e[O:l]; !Sublocal
STRING f[0:3]; ! arrays t END:

END;

-
Sub local

Arrays

t
-

1--

f--

v
~

1--

1--

t-

}'
/

t-

t-

t-

a[O]

a[l]

b[l]

b[2]

...
c[O] c

c[2]

d[O

...

d[3]

e[O]

e[l]

f[O] f

f[2] f

G[O]

Word
Off set

G[4]

[1] L[l]

L[3]

L[5]

S[-3]

[1] S[-1]

[3] S[O]

Figure 9-1. Storage Allocation for Direct Arrays

9--6 ~, 82581 AOO 3/85

ARRAYS
Storage Allocation

Indirect Array Allocation

For each indirect array, TAL allocates storage for a 16-bit pointer in
the global or local primary area. It then allocates the array data in
the corresponding global or local secondary area. Finally, the system
initializes the pointer with the base address of the array. For a
STRING array, the pointer contains a byte address. For any other type
of array, the pointer contains a word address.

Figure 9-2 shows allocation for global indirect arrays. In this
example, the global secondary storage area begins at location G[4].

.a

.b
Contains

byte off set-. • c

INT(32) .a[O:l];
INT .b[1:2];
STRING .c[O:l];
INT .d[-1:49];

.d

Base of array "b"_,...

Byte offset--.G[20]

1--

1--

}'

4

7

20

12

a[O]

a[l]

b[l]

b[2]

c[O]lc[l]

d[-1]

d[O]

d[49]

--1

--1

v

r

Word Offset

G[O]

G[l]

G[2]

G[3]

G[4]

G[7]

G[lO]

G[l2]

-

._,_J

*

Figure 9-2. Storage Allocation for Indirect Arrays

-'182581 AOO 3/85 9-7

ARRAYS
Data Access

Data Access

The method for accessing data in direct and indirect arrays is the
same. You reference the array name in a statement.

To access a particular element, you reference the array name suffixed
with an index value, as in "buffer[2]". If you reference the array
name with no index, you access element [0]. Thus, the references
"buffer" and "buffer[O]" are equivalent.

Because TAL does no bounds checking, you access an address outside the
array if the index value is outside the upper and lower bounds
declared for the array.

To access byte elements in a word-aligned array, you must convert the
word address of the array element to a byte address. You can use a
bit shift operation for address conversions. Operating system
procedures, for example, require INT arrays, but the SCAN statement
requires byte elements. (See Example 3.)

Array operations include:

• Assigning values to elements one at a time using assignment
statements

• Moving values into multiple elements using a move statement

• Scanning multiple elements using an SCAN or RSCAN statement

• Comparing multiple elements using a group comparison expression

Examples

1. The following example shows how accessing of direct and
indirect arrays is the same:

9--8

INT dirAarray[0:2]:
INT .indAarray[0:2]:

dirAarray[2] := 5:
indAarray[2] := 5;

Afil fl2581 AOO 3/85

ARRAYS
Data Access

2. The following example assigns a value to an out-of-bound address:

INT num; array[0]--. num
INT array[l:2];

array[l]
array[O] := 4; !"num" gets 4

array[2]

3. This example uses a bit shift operation('>>' 1) to convert the
word address of an INT array to a byte address. It loads the byte
address into a STRING pointer to scan bytes in the array:

INT .array(-1:8] := [0,"Doe, J",0];

STRING .sAptr := @array(O] '<<' 1;

SCAN sAptr[O] UNTIL ",";

!Declares INT array

!Declares STRING pointer;
! initializes it with byte
! address of array

!Scans bytes in array

4. This example accesses an array element by using index variables:

INT .b[O:lO]; !Declares arrays
INT .c[0:9];
INT x·

'
!Declares indexes

INT y;
INT z;

!Code to manipulate indexes

.
b [x] : = c[y- z] ; !Accesses array element

5. This example compares the contents of two arrays and fills the
first array with zeros if the contents match:

LITERAL count = 99;
INT .array[O:count - 1];
INT .text[O:count - 1];

!Code to manipulate arrays

.
IF array[O] = text[O] FOR count
THEN array[O] ':=' count * (O];

-'182581 AOO 3/85

!Declares array length
!Declares arrays

!Compares arrays
!Fills "array" with
! zeros if contents
! match

9-9

ARRAYS
Read-Only Array Declaration

READ-ONLY ARRAY DECLARATION

A read-only array declaration allocates storage for a nonmodif iable
array in a user code segment.

The syntax for the read-only array declaration is:

<type> <identifier> ["[" <lower-bound> : <upper-bound> "]"]

= 'P' := <initialization>

[, <identifier> ["[" <lower-bound> : <upper-bound> "]"]

= 'P' := <initialization>] ... ;

<type>

is one of the following data types:

STRING
INT
INT(32)
FIXED [<fpoint>)]
REAL
REAL(64)

<fpoint> is as described in Section 8 for simple variables.

<identifier>

is the name of the read-only array.

<lower-bound>

is an INT constant expression defining the first array element.
The default value is [O].

<upper-bound>

9--10

is an INT constant expression defining the last array element.
The default value is the number of elements initialized minus
one.

~ 82581 AOO 3/85

ARRAYS
Read-Only Array Declaration

'P'

specifies a read-only array. Read-only arrays are addressed
using the program counter (the P register).

<initialization>

is a numeric or character string constant or a constant list
to assign to the array elements. Initialization at
declaration is mandatory.

Because code segments have no primary or secondary areas, read-only
arrays must be direct.

If you declare a read-only array in a RESIDENT procedure, the array is
also resident in main memory.

The binder binds each global read-only array into any code segment
containing a procedure that references the array.

Data Access

You access global read-only arrays in the same manner as any other
array, except that you cannot modify read-only arrays. That is, you
cannot specify them on the left side of an assignment operator (:=).

Procedures can access any global read-only array in the same 32K of
the code segment.

Procedures in the upper 32K of the code segment can access global
STRING read-only arrays in the lower 32K words only by using
extended pointers (described in Section 10, "Pointers"). You declare
and load an extended pointer with the address of the read-only array,
then use the pointer in a procedure to access the array in the same
code segment.

You can pass the data of a read-only array by reference to a procedure
only if the read-only array, the called procedure, and the calling
procedure all reside in the same code segment.

"182581 AOO 3/85 9-11

ARRAYS
Read-Only Array Declaration

~~xamples

1. The following example declares read-only arrays using default
lower and upper bounds:

STRING prompt = 'P' := ["Enter Character: " O];
INT error = 'P' : = ["ILLEGAL INPUT"];

2. The follbwing example moves a read-only array into a data array:

9-12

STRING message = 'P' := ["** LOAD MAG TAPE #00144"];
STRING .array[0:22];

array ':=' message FOR 23;

·~J82581 AOO 3/85

SECTION 10

POINTERS

A pointer is a variable that contains the address of a data item.
When you reference a pointer, you access the variable whose address is
stored in the pointer.

Pointers are standard or extended:

• Standard pointers can access data in the current data segment
(word-addressed data in the entire data segment; byte-addressed
data in the lower 32K area).

• Extended pointers can access data in the current data segment, in
an extended data segment created as described in Appendix A, or in
the current user or system code segments (read access only).

This section describes pointers you declare and manage yourself:

• Declaring and initializing pointers

• Assigning values to pointers

• Accessing data by using pointers

It also tells how to get addresses of other items and how to use INT
variables as temporary pointers.

This section does not describe the following kinds of pointers:

• Pointers that TAL provides when you declare indirect arrays
(see Section 9) or indirect structures (see Section 11)

• Structure pointers (see Section 11)

• System global pointers (see Section 18)

-''f 82581 AOO 3/85 10-1

POINTERS
Pointer Declaration

POINTER DECLARATION

The pointer declaration associates an identifier with a memory
location containing the user-initialized address of another variable
or buffer area.

The syntax for the pointer declaration is:

<type> { } <identifier> [:= <initialization>]
{ .EXT }

[, { } <identifier> [:= <initialization>]] ...
{ .EXT }

<type>

is one of the following data types and specifies the type of
value to which the pointer points:

STRING
INT
INT(32)
FIXED [<fpoint>)]
REAL
REAL(64)

. (period)

is the indirection symbol for standard addressing .

. EXT

is the indirection symbol for extended addressing.
reserved word only when followed by <identifier>.
one space must precede and follow the symbol.

<identifier>

is the name of the pointer.

10-2

It is a
At least

AP 82581 AOO 3/85

POINTERS
Pointer Declaration

<initialization>

is a constant expression (global scope) or an arithmetic
expression (local or sublocal scope) as follows:

• If <identifier> is a standard STRING pointer, use a 16-bit
byte address in the lower 32K area.

• If <identifier> is a standard non-STRING pointer, use a
16-bit word address in the 64K area.

• If <identifier> is an extended pointer of any type, use a
32-bit byte address. For details, see Appendix A.

If <initialization> represents the contents of another pointer
or the address of an array or structure, the form for
<initialization> is:

@<previous-identifier>

@

is the symbol for removing indirection.

<previous-identifier>

is the name of a previously declared pointer, array, or
structure, with or without an index.

Before you reference a declared pointer, be sure you have assigned a
value to it, either in the pointer declaration or in a subsequent
statement (see "Pointer Assignments" in this section). References to
uninitialized pointers cause undefinable program execution.

Global pointers receive their initialized values when you compile the
source code. Local and sublocal pointers receive their initialized
values at each activation of the encompassing procedure or
subprocedure.

Extended pointer declarations should precede other global or local
declarations. TAL emits more efficient machine code if it can store
extended pointers between G[O] and G[63] or between L[O] and L[63].

~ 82581 AOO 3/85 10-3

POINTERS
Pointer Declaration

Examples of Standard Pointer D~~~~~~tio~_§_

All examples apply to global, local, and sublocal pointer, unless
otherwise noted.

1. This example declares but does not initialize a standard pointer:

I NT (3 2) • pt r ; !Declares pointer

2. This example declares a standard pointer and initializes it with
the location of the last element in an indirect array:

STRING .bytes[0:3];
STRING .sAptr := @bytes[3];

!Declares indirect array
!Declares pointer; initializes
! it with location of "bytes[3]"

3. This example declares a standard pointer and initializes it with
the starting address of the upper 32K area of the data segment:

FIXED .ptr := %100000; !Declares pointer; initializes
! it with first address in upper
! 32K area

4. This example declares standard pointers and initializes them with
the contents of another pointer:

INT .ptrl := %100000;
INT .ptr2 := @ptrl;
INT .ptr3 := @ptrl [2];

!Contains first word of upper 32K
!Contains same address
!Contains third word of upper 32K

5. This example declares a STRING pointer and initializes it with the
converted byte address of an INT array. This allows byte access
to the word-addressed array:

I NT . i[0 : 3 9] ;
STRING . pt : = @i [0] I<< I 1;

!Declares INT array
!Declares STRING pointer;
! initializes it with array byte
! address that results from bit
! shift operation('<<' 1)

6. This example declares an INT pointer and initializes it with the
converted word address of a STRING array. This allows word access
to the byte-addressed array. Any indexes appended to this pointer
must be even.

STRING .b [0:4];
I NT . pt r : = @b [O] ' > > ' 1 ;

10-4

!Declares STRING array
!Declares INT pointer; initializes

it with array word address that
! results from bit shift operation

"1' 82581 AOO 3/85

POINTERS
Storage Allocation

7. This example declares a direct array and local or sublocal
standard pointers and initializes them with values derived from
the array declaration:

INT var[O:l] := [%100000, %110000]; !Declares array

INT .intAptrl := var[O];

INT .intAptr2 := var[l];

!Declares pointer; initializes it
! with value of first array element

!Declares pointer; initializes it
! with value of second array
! element

Examples of Extended Pointer Declarations

1. This example declares an extended pointer and initializes it with
the first location in the upper 32K of the current data segment:

INT .EXT ptr := %200000D; !Declares extended pointer;
! initializes it with first
! location of upper 32K area

2. This example declares a local or sublocal extended pointer and
initializes it with the 32-bit address returned by the $XADR
standard function for array "a", which has a standard address:

INT .a[O:l];
STRING .EXT s := $XADR(a);

!Declares INT array
!Declares exended pointer;
! initializes it with 32-bit
! address retruned for array "a"

3. This example declares an extended pointer and initializes it with
the first address in a previously allocated extended data segment:

INT .EXT ptr := %2000000D; !Declares extended pointer;
! initializes it with first address
! in extended data segment

For additional examples using extended pointers to access data in
extended segments, see Appendix A.

STORAGE ALLOCATION

TAL allocates primary storage for each pointer in the order in which
you declare them. For a standard pointer, TAL allocates one word.
For an extended pointer, it allocates two words. Figure 10-1 shows
example pointer declarations and the resulting storage allocation.

"1J 82581 AOO 3/85 10-5

POINTERS
Storage Allocation

INT(32)
INT
STRING
INT
INT
INT
INT(32)

10-6

G[O] .a 200

b
Contains

byte offset_. . c 408

.pl Undefined

.a[O:l]; .p2 200
b;

.c[0:3]; .p3 1

.pl;

.p2 := @a; .p4

.p3 := @b; 1-- %200000

.EXT p4 := %2000000;

"
.

1' . .
Word Offset-+- G[200]

a[O]

a[l]

G[408] G[204] c[O] c[l]
(Bytes) (Words)

c[2] c(3]

t---i

~-I t---·

..)'
/

......... ...

'------------------------·--

•
Upper

32K

-··---·---------------·-----·--·

Figure 10-1. Pointer Storage Allocation

..,, 32581 AOO 3/85

POINTERS
Pointer Assignments

POINTER ASSIGNMENTS

The syntax for a pointer assignment is:

@<pointer-name> := <arithmetic-expression>

@

is the symbol for removing indirection. It means get the
contents of <pointer-name>, not the item pointed to.

<pointer-name>

is the name of a previously declared standard or extended
pointer.

<arithmetic-expression>

is an arithmetic expression that evaluates to one of the
following values:

• If <pointer-name> is a standard STRING pointer, use a
16-bit byte address in the lower 32K area.

• If <pointer-name> is a standard non-STRING pointer, use a
16-bit word address in the 64K area.

• If <pointer-name> is an extended pointer of any type, use a
32-bit byte address. For details, see Appendix A.

If the value represents the contents of another pointer or the
address of an array or structure, use the following form as
described under "Pointer Declaration" in this section:

@ <previous-identifier>

-'1J 82581 AOO 3/85
10-7

POINTERS
Pointer Assignments

Examples of Standard Pointer Assi9!!_~ent~

1. This example assigns the address of an INT array to standard
pointers of different types. The FIXED pointer allows viewing of
the array four words at a time; the INT(32) pointer al:ows viewing
two words at a time.

INT .array[0:99];
FIXED .quad"pt;
INT(32) .dbl "pt;

@quad"pt := @array[O];

@dbl"pt := @array[O];

!Declares INT array
!Declares FIXED pointer
!Declares INT(32) pointer

!Assigns array address to
! FIXED pointer
!Assigns array address to
! INT(32) pointer

2. This example assigns the converted byte address of an INT array
element to a STRING pointer, allowing byte access to the word
element:

STRING .s"ptr;
INT .word[0:5];

@s"ptr := @word[3] '<<' 1;

!Declares STRING pointer
!Declares INT array

!Assigns byte address of
! "word[3]" (converted by
! bit shift operation)

Examples of Extended Pointer Assigments

1. This example uses the $XADR standard function to return a 32-bit
address for a STRING array, then assigns the address to an
extended pointer:

INT .EXT ext"ptr;
STRING s"array[O:l];

@ext"ptr := $XADR(s"array);

!Declares extended pointer
!Declares STRING array

!Assigns 32-bit address of
! array returned by $XADR

2. This example uses the $XADR standard function to return the 32-bit
address of an INT item to which a standard pointer points, then
assigns the address to an extended pointer:

INT .EXT ext"ptr;
INT .std"ptr := %100000;

@ext"ptr := $XADR(std"ptr);

10-8

!Declares extended pointer
!Declares INT standard pointer

!Assigns 32-bit address of INT
! item returned by $XADR

-'ff 82581 AOO 3/85

POINTERS
Data Access Through Pointers

3. The following example assigns the first byte address in the
upper 32K of the current data segment to an extended pointer:

INT .EXT topAptr;

@topAptr := %200000D;

!Declares extended pointer

!Assigns first byte address in
! upper 32K area to extended
! pointer

4. This example shows how to build your own address in the user code
space. The $DBLL standard function returns an INT(32) value from
two INT values, the first becoming the upper 16 bits and the
second becoming the lower 16 bits. After the assignment, the
pointer can point to the fourteenth byte or seventh word of the
code space.

INT .EXT extAptr; !Declares extended pointer

@extAptr : = ($DBLL (2, 7)) '<<' 1;
!Assigns~user-code-segment address

DATA ACCESS THROUGH POINTERS

To access the data to which a pointer points, you simply use its name
in statements. You can use standard and extended pointers in any
statement, except that an extended pointer cannot be the obj~ct of a
SCAN or RSCAN statement.

Examples of Data Access Through Pointers

1. This example assigns a new value to the item to which a standard
pointer points:

INT .addr[0:2] := [1,2,3];
INT .sp := @addr[O];

sp := 4;

!Declares and initializes array
!Declares and initializes standard
! pointer with address of "addr[O]"
!Assigns 4 to "addr[O]"

2. This example assigns a value to the location to which an extended
pointer points:

INT .EXT ep := %200000D;

ep := 5;

4' 82581 AOO 3/85

!Declares and initializes extended
! pointer with address of first
! word in upper 32K area
!Assigns 5 to location %2000000

10-9

POINTERS
Data Access Through Pointers

3. The following example shows data being accessed through extended
pointers in various statements:

INT var"' a;
INT var"'b;
INT .ptr;
INT .EXT ptr"'a;
INT .EXT ptr"'b;

var"'a := ptr"'a;
ptr"'a := var"' a;
ptr"'a := ptr"'b;
var"'a ' : =' ptr"'a FOR 10;
ptr"'a ': =' var"' a FOR 10;
ptr"'a ' : =' ptr"'b FOR 10;
IF var"'a = ptr"'a FOR 10 THEN

SCAN ptr"'a WHILE " ";
var"'a ':=' var"'b FOR 10 -> @ptr"'a;
ptr"'a ':=' var"'b FOR 10 -> @ptr;

!Declares variables

!Declares standard pointer
!Declares extended pointers

!Assignment statements

!Move statements

! IF-THEN-ELSE statement

!Invalid SCAN statement
!Invalid move; see Note 1
!Invalid move; see Note 2

Note 1. Since "var"'a" and "var"'b" have 16-bit addresses, the
variable to the right of the -> symbol must also be a
16-bit variable.

Note 2.

10-10

Since "ptr"'a" is a 32-bit extended address, the variable
to the right of the -> symbol must also be a 32-bit
variable; "ptr" is a 16-bit variable.

'1" t12581 AOO 3/85

ADDRESSES OF OTHER ITEMS

POINTERS
Addresses of Other Items

In addition to its use with pointers, the @ symbol lets you obtain the
addresses of other items.

The syntax for getting addresses of other items is:

@<item-name>

@

is the symbol for removing indirection. It means get the
address of <item-name>.

<item-name>

is the name of an existing variable, label, subprocedure, or
procedure.

Table 10-1 summarizes the address yielded by the @ symbol for each
item. This table does not apply to pointers.

Table 10-1. Addresses of Items

Item 16-Bit Value

STRING variable
Non-STRING variable
Structure
Substructure
Label

Subprocedure

Procedure

~ 82581 AOO 3/85

Byte address of variable
Word address of variable
Word address of structure occurrence
Byte address of substructure occurrence
Word address of label in current user code
segment
Word address of entry point in current user
code segment
Procedure entry point (PEP) number of the
procedure LORed with code space information

10-11

POINTERS
Addresses of Other Items

E.Kamples

1. This example returns the address of a simple variable:

INT a;
INT b;

b := @a;

!Declares simple variables

!Returns address of "a"

2. This example returns the addresses of array elements:

INT .m[0:2]
INT nl;
INT n2;

nl : = @m[0];
n2 : = @m[1] ;

!Declares array
!Declares simple variable
!Declares simple variable

!Returns address of "m[O]"
!Returns address of "m[l]"

3. This example returns the address of a label:

LABEL loop;
INT address;

loop : <statement>;

address := @loop;

!Declares label
!Declares variable

!Labels statement

!Returns label address

4.. The following example returns the PEP table number in bits 7
through 15 of the address. (For more information on the PEP, see
the System Description Manual for your system).

10-12

PROC mainAproc MAIN;
BEGIN

INT pepnum;

pepnurn := @mainAproc.<7:15>;

END;

!Declares procedure

!Declares variable

!Returns PEP information

~ 82581 AOO 3/85

TEMPORARY POINTERS

POINTERS
Temporary Pointers

A temporary pointer is a direct INT variable whose contents become the
address of another data item.

The syntax for specifying a temporary pointer is:

.<direct-int-variable>

. (period)

is the indirection symbol for standard addressing. It causes
the contents of <direct-int-variable> to be used as a word
address.

<direct-int-variable>

is a previously declared direct variable of type INT located
in the current data segment.

You can specify a temporary pointer in any INT arithmetic expression.

Referencing the variable without the period accesses the variable.
Using the period accesses the item to which the variable points.

Example

In this example, the direct variable "a" becomes a temporary pointer:

INT b;
INT a := 5;

b : = a;
.a := O;
b := .a;

'1' 82581 AOO 3/85

!Declares "b"
!Declares "a" and initializes it with 5

!"b" equals "a" now
!Temporary pointer; assigns 0 to G[5]
!"b" equals 0 now

10-13

SECTION 11

STRUCTURES

This section describes structure and structure pointer declarations,
storage, and data access.

A structure is a collectively stored set of data items that you can
access individually or as a group. Structures can contain simple
variables, arrays, and other structures (called substructures).

Structures usually contain related data items such as the fields of a
file record. For example, in an inventory control application, a
structure can contain an item number, the unit price, and the quantity
on hand.

They can contain multidimensional arrays, each consisting of any
number of arrays.

Global or local structures can be direct or indirect. Sublocal
structures must be direct. Since the primary storage areas are
limited in size, you should declare indirect global and local
structures. TAL manages indirection for you by providing a standard
pointer and initializing it with the location of the structure data.
You access structure items by referencing the qualified structure
name.

A structure pointer associates a previously declared structure with
the location to which the pointer points. You manage indirection by
declaring a standard or extended structure pointer and initializing it
with a value. You access structure items by referencing the qualified
pointer name.

"'182581 AOO 3/85
11 -1

STRUCTURES
Structure Forms

STRUCTURE FORMS

A structure declaration can have one of three forms:

• Definition--This form declares a structure, describes its body, and
allocates storage for it.

• Template--This form declares a structure template. It describes
the structure body but allocates no storage for it.

• Referral--This form declares a structure and allocates storage
for it. It describes the structure body by referencing a
previously declared structure or structure pointer.

The structure body contains declarations for arrays, simple variables,
substructures, FILLER bytes, or redefinitions.

STRUCTURE DECLARATIONS

Definition, template, and referral structures and structure body
entities are described separately on the following pages. This
discussion is for global, local, and sublocal data, not for formal
parameters.

Definition Structure Declaration

The definition form declares a structure, describes its body, and
allocates storage for it.

11-2 '1j82581 AOO 3/85

STRUCTURES
Definition Structure Declaration

The syntax for the definition structure declaration is:

STRUCT [.] <identifier>

"[" <lower-bound> <upper-bound> "]"]

<structure-body>

• (a period)

is the indirection symbol for standard addressing.

<identifier>

is the name of the structure.

<lower-bound>

is a constant expression in the range -32768 through 32767
that specifies the first structure occurrence for which to
allocate storage. The default value is 0 (one occurrence).
Each occurrence is one copy of the structure.

<upper-bound>

is a constant expression in the range -32768 through 32767
that specifies the last structure occurrence for which to
allocate storage. The default value is 0 (one occurrence).

<structure-body>

contains declarations for data, substructures, FILLER bytes,
or redefinitions, as described under "Structure Body" in this
section.

The size of one occurrence of a structure must not exceed
32,767 bytes.

"'f 82581 AOO 3/85 11-3

STRUCTURES
Definition Structure Declaration

The following example declares 50 occurrences of a definition
structure:

STRUCT .inventory1[0:49];
BEGIN
INT item;
INT price;
INT quantity;
END;

Structure Storage Allocation

For direct structures, TAL allocates storage for each occurrence of
the structure in a primary global or local area or in the sublocal
area. Sublocal structures must be direct.

For indirect structures, TAL allocates primary global or local storage
for a 16-bit standard pointer. It then allocates storage in the
corresponding secondary area for each structure occurrence.

Structures are word addressed. That is, TAL starts each structure
occurrence on a word boundary. Within each structure occurrence, TAL
allocates storage for each item and adds a pad byte as needed to fill
an unused byte caused by the need for INT structure items to be
aligned on word boundaries.

The following example shows storage allocation for two occ~.rrences of
a structure (slants denote a pad byte):

STRUCT a[O:l];
BEGIN
STRING sl;
INT x;
STRING s2;
END

11-4

a[O]

a[l]

sl

s2

sl

s2

Ill

x

Ill

Ill
--

x

Ill

~ 82581 AOO 3/85

STRUCTURES
Template Structure Declaration

Template Structure Declaration

The template form describes a structure body but allocates no space
for it. The syntax for the template structure declaration is:

STRUCT <identifier> (*)

<structure-body>

<identifier>

is the name of the template structure.

(*)

is the symbol that identifies the structure as a template.

<structure-body>

contains declarations for data, substructures, FILLER bytes,
or redefinitions, as described under "Structure Body" in this
section.

Templates have meaning only when you reference them in subsequent
referral structure declarations or structure pointer declarations.
The subsequent declarations allocate space for a structure body
identical to that of the template.

TAL ignores the indirection symbol if specified.

An example of a template structure declaration is:

STRUCT inventory2
BEGIN
INT item;
INT price;
END;

-'f 82581 AOO 3/85

(*) ;

11-5

STRUCTURES
Referral Structure Declaration

Referral Structure Declaration

The referral form declares and allocates storage for a structure
described in a previously declared structure or structure pointer.
The referral form has no body of its own.

The syntax for the referral structure declaration is:

STRUCT [.] <identifier> (<referral>)

["[" <lower-bound> : <upper-bound> "]"]

. (a period)

is the indirection symbol for standard addressing.

<identifier>

is the name of the new structure.

<referral>

is the name of a previously declared structure or structure
pointer.

<lower-bound>

is a constant expression in the range -32768 through 32767
that specifies the first structure occurrence for which to
allocate storage. The default value is 0 (one occurrence).
Each occurrence is one copy of the structure.

<upper-bound>

11-6

is a constant expression in the range -32768 through 32767
that specifies the last structure occurrence for which to
allocate storage. The default value is 0 (one occurrence).

"'f 82581 AOO 3/85

STRUCTURES
Referral Structure Declaration

, TAL allocates storage for a structure with the addressing mode and
number of occurrences specified in the referral declaration, not those
specified in the previous declaration. TAL uses only the body of the
previous declaration for the new structure.

The following example declares a template structure and a referral
structure that references the template structure:

STRUCT record (*);
BEGIN
INT name;
INT addr;
INT acct;
END;

STRUCT .customer (record) (1:50];

Aff 82581 AOO 3/85

!Declares template structure

!Declares referral structure

11-7

STRUCTURES
Structure Body - Data Declarations

STRUCTURE BODY

The structure body is a BEGIN-END construct that can contain
declarations for:

• Data Items--Arrays and simple variables

• Substructures--Structures nested within the primary structure

• FILLER Bytes--Place-holding bytes

• Redef initions--Items that redefine data i~ems or substructures

Data Declarations

Syntax for data declarations is described in Section 8, "Simple
Variables," and Section 9, "Arrays," with the following differences:

• You cannot initialize any variables.

• You cannot declare read-only arrays.

• You cannot use indirection.

• You can specify array bounds of [0:-1].

Bounds of [0:-1] place the identifier in the symbol table so you
can reference it, but allocates no storage for the array.

Storage Allocation

TAL allocates storage for data within structures by aligning word
addressed items on word boundaries and STRING items on byte
boundaries, adding a pad byte where needed to fill an unused byte.

11-8 ;fl 82581 AOO 3/85

Examples of Data Declarations

STRUCTURES
Structure Body - Data Declarations

1. The following example shows data declarations in a structure body:

LITERAL len = 100;

STRUCT .strl;
BEGIN
STRING s[O:len-1];
INT index;
INT count;
END;

!Number of array elements

!Begins structure body
!Declares array
!Declares simple variable
!Declares simple variable
!Ends structure body

2. The following example shows storage allocation for data inside a
structure (slants denote a pad byte):

STRUCT .padding;

BEGIN

STRING first;

INT second;

STRING a[0:2];

STRING b[0:2];

STRING c[l:3];

INT third;

END;

first Ill

second

a[O] a[l]

a[2] b[O]

b[l] b[2]

c[l] c[2]

c[3] Ill

third

3. This example declares an array with bounds of [0:-1], which allows
access to subsequent structure items using the array identifier:

STRUCT x;
BEGIN
INT(32) d[0:-1];
STRING a;
STRING b[0:2];
END;

a

b[l]

x.d := OD; !Sets "a" and "b[0:2]" to 0

"f 82581 AOO 3/85

b[O]

b[2]

11-9

STRUCTURES
Structure Body - Substructure Declaration

Substructure Declaration

A substructure is a structure embedded within another structure or
substructure.

The syntax for the substructure declaration is the same as the syntax
previously defined under "Definition Structure Declaration," except
that you cannot use the indirection symbol.

Substructures differ from structures as follows:

• Substructures must be directly addressed.

• You can nest substructures to any practical level; that is, you can
declare a substructure within a substructure within a substructure,
and so on.

• You can specify lower and upper bounds of [0:-1]. This places the
substructure in the symbol table but allocates no storage; the
substructure is addressable but uses no memory.

• Substructures are byte addressed. Structures are word addressed.

• TAL allocates storage for substructures starting on byte
boundaries, if possible. Structures always start on word
boundaries.

Examples of Substructure Declarations

1~ This example constructs a two-dimensional array. It consists of
two occurrences of a structure, each of which contains 50
occurrences of a substructure:

11.-10

LITERAL last = 49;

STRUCT .warehouse[O:l];
BEGIN
STRUCT inventory [O:last];

BEGIN
INT item"'number;
INT price;
INT on"'hand;
END;

END;

!Last item in inventory

!Two warehouses

!Fifty items in each warehouse

-'1 H2581 AOO 3/85

STRUCTURES
Structure Body - Substructure Declaration

2. The following example shows substructures used for the Command
Interpreter start-up message:

STRUCT .startup;
BEGIN
INT msgcode;
STRUCT default;

BEGIN
INT volume[0:3];
INT subvol[0: 3];
END;

STRUCT inf ile;
BEGIN
INT volume[0:3];
INT subvol[0: 3];
INT fname[0:3];
END;

STRUCT outf ile;
BEGIN
INT volume[0:3];
INT subvol[0: 3];
INT fname[0:3];
END;

STRING param[0:131];
END;

!Substructure declaration

!Substructure declaration

!Substructure declaration

!Program parameters

3. The following example shows nested substructure declarations:

STRUCT .milAbranch;
BEGIN
STRUCT div[0:3];

BEGIN
STRUCT reg[0:3];

BEGIN
STRUCT batt[O:l];

BEGIN
STRUCT comp[0:3];

BEGIN
STRUCT plat[0:3];

BEGIN
INT infantry;
END; !Of "plat"

END; !Of "comp"
END; !Of "batt"

END; !Of "reg"
END; !Of "div"

END; !Of "milAbranch"

"'82581 AOO 3/85

!Substructure

!Nested substructure

!Nested substructure

!Nested substructure

!Nested substructure

11-11

S'I~RUCTURES

Structure Body - Substructure Declaration

4. This example shows storage for substructure occurrences that begin
on byte boundaries because the substructure not only follows a
STRING item ("x") and but also starts with a STRING item ("aa"):

STRUCT s;
BEGIN x aa
STRING x; ----
STRUCT sub[0:2]; !Substructure b

BEGIN ! declaration ---
STRING aa; c aa
INT b;
STRING c; b
END;

INT y; c aa
END; ---

b

c Ill

y

5. This example shows storage for substructure occurrences that begin
on word boundaries because the substructure starts with an INT
item ("aAa"):

11-12

STRUCT tl;
BEGIN
STRING x;
STRUCT t2 [0:1];

BEGIN
INT aAa;
INT b;
STRING c;
END;

INT y;
END;

!Substructure
! declaration

!Of substructure

!Of structure

x

c

c

///

a A a

b

///

a A a

b

///

y

~182581 AOO 3/85

STRUCTURES
Structure Body - FILLER Declaration

~ FILLER Declaration

A FILLER byte provides a place holder for structure data or space that
your program does not use.

The syntax for the FILLER declaration is:

FILLER <constant-expression>

<constant-expression>

is a positive INT constant value that specifies the number of
bytes of FILLER.

The word FILLER is a reserved word only within the scope of a
structure declaration. You cannot reference FILLER byte locations.

FILLER declarations contribute to clearer source code. For example,
you can use FILLER bytes:

• To define data that appears in a structure but is not used by your
program

• To document word-alignment pad bytes inserted by TAL

• To provide place holders for unused space

The following example shows FILLER declarations:

LITERAL last = 11;

STRUCT .filler[l:last];
BEGIN
STRING byte[0:2];
FILLER 1;
INT wordl;
INT word2;
INT(32) integer32;
FILLER 30;
END;

!Last occurrence

!Documents word-alignment pad byte

!Place holder for unused space

For a FILLER example defining unused data, see "Substructure
Redefinition" (example 4) in this section.

Af' 82581 AOO 3/85 11-13

STRUCTURES
Structure Body - Redefinitions

Redefinitions

A redefinition declares a new name and description for an existing
data item or substructure within a structure.

Data Item Redefinition

The syntax for the data item redefinition declaration is:

<type> <identifier> ["[" <lower-bound> : <upper-bound> "]"]

<previous-identifier>

<type>

is one of the following data types:

STRING
INT
INT(32)
FIXED [<fpoint>)]
REAL
REAL(64)

<identifier>

is the name of the new data item that redefines an existing
data item in the structure. A data item is a simple variable
or an array.

<lower-bound>

11-14

is an INT constant expression in the range -32768 through
32767 that defines the first array element. The default
value is 0 (one element).

AJI 13 2 5 81 AO 0 3 I 8 5

STRUCTURES
Structure Body - Redefinitions

<upper-bound>

is an INT constant expression in the range -32768 through
32767 that defines the last array element. The default value
is 0 (one element).

<previous-identifier>

is the name of a data item previously declared in the same
structure. You cannot specify an index with this name.

When you redefine data items, the following rules apply:

• The new item must be on the same level as the previous item.

• The new item must have the same, or shorter, length as the
previous item.

• You can redefine arrays contained in structures and substructures.
For arrays outside structures, see Section 12, "Equivalenced
Variables."

• The redefinition must start at element [O] of the previous
identifier.

• You cannot redefine the data type of a STRING item that begins on
an odd-byte address.

The following example redefines an INT array as an INT(32) array. The
redefinition begins at "a[O]":

STRUCT .s;
BEGIN
INT a[-2:3];
INT(32) b[1:2] = a;
END;

_,.1182581 AOO 3/85

s[O] a[-2]

a[-1]

a[O]
I- b[l] -

a[l]

. .

11-15

STRUCTURES
Structure Body - Redefinitions

Substructure Redefinition

The syntax for the substructure redefinition declaration is:

STRUCT <identifier> ["[" <lower-bound> : <upper-bound> "]"

= <previous-identifier> ;

<structure-body>

<identifier>

is the name of the new substructure that redefines a
previously declared substructure.

<lower-bound>

is a constant expression in the range -32768 through 32767
that defines the first substructure occurrence. The default
value is 0 (one occurrence). Each occurrence is one copy of
the substructure.

<upper-bound>

is a constant expression in the range -32768 through 32767
that defines the last substructure occurrence. The default
value is 0 (one occurrence).

<previous-identifier>

is the name of a substructure that was previously declared
in the same structure. No index is allowed with this name.

<structure-body>

contains declarations for data, substructures, FILLER bytes,
or redefinitions.

If you do not specify lower and upper bounds, or if the upper bound
is equal to O, the new substructure and the previous substructure

11-16 Af 82581 AOO 3/85

STRUCTURES
Structure Body - Redefinitions

occupy the same space and have the same offset from the beginning of
the structure.

Rules for redefining substructures are:

• The new substructure must be on the same level as the previous
substructure.

• The new substructure should have the same, or shorter, length as
the previous substructure.

• Both substructures must have the same alignment. If the previous
substructure starts on an odd byte, the first data item in the new
substructure must be a STRING item.

Examples for redefinition declarations are shown below.

1. In this example, the new substructure is smaller than the previous
substructure; the redefinition is proper:

STRUCT strl;
BEGIN
STRUCT subl;

BEGIN
INT intl;
END;

STRUCT sub2 = subl;
BEGIN
STRING strl;
END;

END;

!Declares "subl"

!Redefines "subl" as "sub2"

subl__ __ i_n_t_i __ __.I ~ sub~I _s_t_r_1 __ 1_1_1___.

2. In this example, the new substructure is larger than the previous
substructure; TAL issues a warning:

STRUCT strl;
BEGIN
STRUCT subl;

BEGIN
STRING strl;
END;

STRUCT sub2 = subl;
BEGIN
INT intl;
END;

END;

~ 82581 AOO 3/85

!Declares "subl"

!Redefines "subl" as "sub2"

subl_s_t_r_1_....._1_1_1___.I ~ sub~ I ___ i_n_t_1 __ __,

11-17

STRUCTURES
Structure Body - Redefinitions

3. In this example, both substructures ("b" and "c") have the same
alignment as required. In this case, both begin on an odd-byte
boundary:

STRUCT a;
BEGIN
STRING x;
STRUCT b;

BEGIN
STRING y;
END;

STRUCT c = b;
BEGIN
STRING z;
END;

END;

!"b" starts on odd byte

!Redefines "b" as "c", also on odd byte

b c

,_x___,___Y___.I ~ ~ I z

4. This example redefines the format of a substructure record:

11-18

STRUCT .nameArecord;
BEGIN
STRUCT wholeAname;

BEGIN
STRING firstAname[O:lO];
STRING middleAname[O:lO];
STRING lastAname[0:15];
END;

STRUCT initials = wholeAname;
BEGIN
STRING f irstAinitial;
FILLER 10;
STRING middleAinitial;
FILLER 10;
STRING last~initial;
FILLER 15;
END;

END;

!Declares "wholeAname"

!Redefines "whole"'name" as
! "initials"

4~82581 AOO 3/85

ACCESSING STRUCTURED DATA

STRUCTURES
Accessing Structured Data

To access a definition or referral structure (whether direct or
indirect), you specify its identifier in a statement. For a move,
SCAN, or RSCAN statement or a reference parameter, specify the
unqualified structure or substructure identifier.

For an assignment statement, specify the fully qualified identifier of
the structure item, using the following form, with or without indexes:

<struct-name> [[.<substruct-name>] ...] .<item-name>

All indexes must be signed INT arithmetic expressions. An example of
an indexed structure identifier is:

record[i].table[2].item[x]

Examples of Accessing Structured Data

1. The following example shows how nesting affects the qualification
level. In the declaration on the left, the full qualification for
"item" is "outer.innerA3.item." In the declaration on the right,
it is "outer.innerA1.innerA2.innerA3.item."

STRUCT .outer
BEGIN
STRUCT innerAl;

BEGIN

END;
STRUCT innerA2;

BEGIN

END;
STRUCT innerA3;

BEGIN
INT item;
END;

END;

"'82581 AOO 3/85

STRUCT .outer;
BEGIN
STRUCT innerAl;

BEGIN
STRUCT innerA2;

BEGIN
STRUCT innerA3;

BEGIN
INT item;

END;
END;

END;
END;

11-19

STRUCTURES
Accessing Structured Data

2. The following example shows how to access an item in a. definition
structure:

STRUCT .d;
BEGIN
INT a;
STRING b;
REAL c[0 : 2] ;
END;

d.a := 2;

!Declares definition structure "d"

!Assigns value to "a" in structure "d"

3. The following example shows how to access an item in a referral
structure that references a template structure:

11-20

STRUCT t (*);
BEGIN
INT a;
STRING b;
REAL c[0 : 2] ;
END;

STRUCT .r (t);

r.a := 2;

!Declares template structure "t"

!Declares referral structure "r"

!Assigns value to "a" in structure "r"

~ 82581 AOO 3/85

STRUCTURES
Accessing Structured Data

4. These code fragments access a three-dimensional array structure:

INT s;
INT d;
INT c;

STRUCT .chain;
BEGIN
INT(32) chainAtot;
STRUCT store[0:2];

BEGIN

!Index for store sales
!Index for department sales
!Index for each clerk's sales

INT(32) storeAtot;
STRUCT dept[0:2];

BEGIN
INT(32) deptAtot;
STRUCT clerk[O:l];

BEGIN
INT elk;
INT amt;
END; !Ends "clerk"

END; !Ends "dept"
END; !Ends "store"

END; !Ends "chain"

!The following code updates each clerk's records using the
! clerk number and amount entered from terminal:

FOR s := 0 TO 2 DO
FOR d := 0 TO 2 DO

FOR c := 0 TO 1 DO
IF chain.store[s].dept[d].clerk[c].clk =
THEN chain.store[s].dept[d].clerk[c].amt

enteredAclkAno
:= enteredAamt;

!The following code updates department, store, and chain
! totals:

FOR s := 0 TO 2 DO
BEGIN

FOR d := 0 TO 2 DO
BEGIN

FOR c := 0 TO 1 DO
chain.store[s].dept[d].deptAtot :=

chain.store[s].dept[d].deptAtot +
$DBL(chain.store[s].dept[d].clerk[c].amt);

chain.store[s].storeAtot := chain.store[s].storeAtot +
chain.store[s].dept[d].deptAtot;

END;
chain.chainAtot := chain.chainAtot +

chain.store[s].storeAtot;
END;

Afj 82581 AOO 3/85 11-21

STRUCTURES
Structure Functions

Structure Functions

TAL provides the following standard functions for processing of
structured data:

• $LEN--Returns the length in bytes of one occurrence of an item.

• $0FFSET--Returns an item's offset in bytes from the structure base~

• $0CCURS--Returns the number of occurrences of an item.

• $TYPE--Returns the data type of an item.

The following example uses the $OCCURS and $LEN functions to read
structured data:

INT record""num;

STRUCT emp""data(*);
BEGIN
INT number;
INT dept;
STRING ssn[O:ll];
FIXED(2) salary;
END;

PROC main""proc MAIN;
BEGIN

STRUCT .job""data (emp""data) [0:5];

!Template structure

!Referral structure

FOR record""num := 0 TO $OCCURS (jobAdata) - 1 DO
CALL READ(discf ile,

job""data[recordAnum],
$LEN(job""data),
numAread);

END;

!Buffer
!Record length

For more information on these functions, see Section 17, "Standard
Functions."

11-22
A~ 82581 AOO 3/85

STRUCTURE POINTERS
Structure Pointer Declaration

STRUCTURE POINTER DECLARATION

The structure pointer declaration associates a structure with the
memory location to which the pointer points. Therefore, you can
access the location to which the pointer points by referencing a
structure item.

The syntax for the structure pointer declaration is:

{ INT } { • } <identifier> (<referral>)
{ STRING } { .EXT }

:= <initialization>]

[, { • } <identifier> (<referral>)
{ . EXT }

[:=<initialization>]] ..•

INT

indicates the pointer contains a word address.

STRING

indicates the pointer contains a byte address.

• (period)

is the indirection symbol for standard addressing .

• EXT

is the indirection symbol for extended addressing.
reserved word only when followed by <identifier>.
one space must precede and follow the symbol.

It is a
At least

~ 82581 AOO 3/85
11-23

STRUCTURE POINTERS
Structure Pointer Declaration

<identifier>

is the name of the structure pointer.

<referral>

is the name of a previously declared structure or structure
pointer.

<initialization>

is a constant expression (global scope) or an arithmetic
expression (local or sublocal scope), as follows:

• If <identifier> is a standard STRING pointer, use a 16-bit
byte address in the lower 32K area.

• If <identifier> is a standard INT pointer, use a 16-bit
word address in the 64K area.

• If <identifier> is an extended pointer of any type, use a
32-bit byte address. For details, see Appendix A~

, ____________ ,

Before referencing a structure pointer, be sure you have assigned a
value to it, either in the declaration or in a subsequent statement
(see "Structure Pointer Assignments" in this section). References
to uninitialized pointers cause undefinable program execution.

Standard STRING structure pointers can access STRING structure items
only. Standard INT pointers and extended STRING or INT pointers can
access structure items of any type. However, if an INT pointer
contains an address in the upper 32K area, you cannot access STRING
items with that pointer.

Global pointers receive their initial values when you compile the
source code. Local and sublocal pointers receive their initial values
each time the procedure or subprocedure is activated.

11-24 .. ,J 82581 AOO 3/85

STRUCTURE POINTERS
Storage Allocation

Examples of Structure Pointer Declarations

1. This example declares a template structure and a structure pointer
that references the template and initializes the pointer with a
location in the upper 32K area:

STRUCT names (*): !Declares template structure
BEGIN
INT filename[O:ll]:
END:

INT .strucAptr (names) := %100000: !Declares structure pointer

2. This example declares an extended structure pointer that
references the structure pointer declared in Example 1 and
initializes it with a location in the upper 32K area:

STRING .EXT exAstrcAptr (strucAptr) := %200000D:

Storage Allocation

TAL allocates primary storage for the structure pointer. A standard
pointer gets one word of primary storage: an extended pointer gets a
doubleword. You must allocate the memory location to which the
pointer points.

TAL emits more efficient machine code if it can store extended
pointers between G[O] and G[63] or between L[O] and L[63]. Thus,
extended pointers should precede other global or local declarations.

~ 82581 AOO 3/85
11-25

STRUCTURE POINTERS
Structure Pointer Assignments

Structure Pointer Assignments

The syntax for a structure pointer assignment is:

@<pointer-name> := <expression>

@

is the symbol for removing indirection. It means get the
contents of <pointer-name>, not the item to which it points.

<pointer-name>

is the name of a previously declared standard or extended
structure pointer.

<expression>

11-26

is an arithmetic expression:

•

•

•

If <pointer-name> is a standard STRING structure pointer,
use a 16-bit byte address in the lower 32K area.

If <pointer-name> is a standard INT structure poin·ter, use
a 16-bit word address in the 64K area.

If <pointer-name> is an extended structure pointer of any
type, use a 32-bit byte address. For details, see Appendix
A.

~ B2581 AOO 3/85

STRUCTURE POINTERS
Accessing Data Using Structure Pointers

The following example assigns the address of the third occurrence of a
structure to a standard structure pointer:

STRUCT .struc[0:2];
BEGIN
INT i;
STRING s;
END;

INT .strAptr (struc):

!Declares structure "struc"

!Declares structure pointer

@strAptr := @struc[2]; !Assigns address of "struc[2]" to
! structure pointer

Accessing Data Using Structure Pointers

To access a structure item, you reference the pointer name in a
statement. In move, SCAN, or RSCAN statements or reference
parameters, specify the unqualified pointer name. Extended pointers
cannot be the object of SCAN or RSCAN operations.

In assignment statements, specify the fully qualified pointer name
using the following form, with or without indexes:

<pointer-name> [[.<substruct-name>] •••] .<item-name>

An example of a qualified structure pointer name is:

strucAptr.records.customer.name

For both standard and extended structure pointers, the index must be a
signed INT arithmetic expression.

~ 82581 AOO 3/85
11-27

STRUCTURE POINTERS
Accessing Data Using Structure Pointers

Standard Structure Pointer Accessing Examples

1. The following example uses standard structure pointers to access
INT structure items in the upper 32K of data space:

?DATAPAGES 64

STRUCT names (*);
BEGIN
INT filename[O:ll];
END;

!Gets maximum data stack

!Declares template structure

INT .nameAptrl(names) := %100000; !Points to beginning of
! upper 32K area

INT .nameAptr2(names) := %110000; !Points to upper half of
! upper 32K area

PROC mainAproc MAIN;

.
nameAptrl.filename[O]
nameAptr2.filename[O]

END;

' . - ' .-
' : ='

"$SYSTEM SYSTEM
"$DATA OFFICE

EDIT ";
PRODUCT ";

!Accesses structure items

2. In the following example, a structure pointer points into an
existing structure:

11-28

STRUCT .data2[0:2];
BEGIN
INT il;
INT i2;
INT i3;
STRING sl;
END;

!Declares definition structure

INT .pnt2 (data2) := @data2[1]; !Declares and initializes
! structure pointer

pnt2.i2 := %1414;
pnt2.sl := %3; !Accesses structure items

"''fii 82581 AOO 3/85

STRUCTURE POINTERS
Accessing Data Using Structure Pointers

3. In the following example, a structure pointer points to the
beginning of a buffer, thereby imposing the structure on top of
the buffer:

INT .recbuf[0:7] :=[1,%22,%23,%24,%25,"ABCDE"];
INT numl;

!Buffer

STRUCT data (*);
BEGIN
INT codel;
I NT i l[0 : 3] ;
STRING sl[0: 4];
END;

INT .pnt2 (data) := @recbuf;

numl := pnt2.il[2];

!Declares template structure

!Declares and initializes
! structure pointer

!Accesses structure item

4. In the following example, a STRING standard structure pointer
accesses a STRING item. You must convert the word address of the
structure to a byte address before assigning it to the pointer:

STRUCT .data[O:l];
BEGIN
STRING sl;
STRING s2;
STRING s3;
END;

!Declares definition structure

STRING .pnt (data) := @data[l] '<<' 1; !Declares and
! initializes structure pointer

pnt.s2 := %4; !Accesses structure item

Aft 82581 AOO 3/85 11-29

STRUCTURE POINTERS
Accessing Data Using Structure Pointers

Extended Structure Pointer Accessing Examples

1. In this example, extended INT structure pointers access byte
addressed variables. This example assumes previous allocation of
an extended segment as described in Appendix A.

STRUCT nameArec (*);
BEGIN
STRING name[0:25];
END;

!Declares template

INT .EXT extAptr(nameArec) := %200000D; !Points to beginning of
! upper 32K area

INT .EXT extAseg(nameArec) := %2000000D; !Points to beginning
! of extended segment

extAptr.name[O] ':=' "Anastasia L. Malatorious";
extAseg.name[O] ':=' "Octavious Q. Pumpernickle";

Additional examples for extended structure pointers are given at the
end of Appendix A.

11-30 1•82581 AOO 3/85

SECTION 12

EQUIVALENCED VARIABLES

Equivalencing lets you use more than one name to describe a location
in a primary storage area. Variables made equivalent to previously
allocated locations do not allocate additional memory space.

The variables that represent a location can have different data types
and byte or word addressing attributes. For example, you can
reference an INT(32) variable as two separate words or four separate
bytes, or you can use an INT array and a STRING array to access the
same buffer.

This section describes how to declare and access:

• Equivalenced variables--Variables made equivalent to a previously
declared variable.

• Base-address equivalenced variables--Variables made equivalent to a
global, local, or top-of-stack address base.

The new variable can be a simple variable, pointer, structure, or
structure pointer. The previous variable can be a simple variable, a
direct array element, pointer, structure, structure pointer, or
another equivalenced variable that you previously declared as
described in Sections 8 through 12.

For equivalenced items within structures, see "Redefinitions" in
Sect ion 11.

For equivalenced system global variables, see Section 18, "Privileged
Procedures."

-'182581 AOO 3/85 12-1

EQUIVALENCED VARIABLES
Equivalenced Variable Declaration

EQUIVALENCED VARIABLE DECLARATION

The equivalenced variable declaration associates a new var:Lable with a
previously declared variable.

Equivalenced variables (simple variables, pointers, and structure
pointers) are described first, followed by equivalenced structures.

The syntax for the equivalenced variable declaration is:

{ { .EXT } { <structure-pointer> (<referral>) } }
{ { . } { <pointer> } }

<type> { }
{ <simple-variable> }

= <previous-identifier> ["[" <index> "]"
[{+I-} <offset>

{ { .EXT } { <structure-pointer> (<referral>) }
{ { . } { <pointer> }

[, { }
{ <simple-variable> }

= <previous-identifier> ["[" <index> "]"
[{+I-} <offset>

<type>

For <structure-pointer>, <type> must be STRING or IN'I'.
For <simple-variable> or <pointer>, <type> is any data type •

. (period)

is the indirection symbol for standard addressing .

. EXT

is the indirection symbol for extended addressing.

12-2 4j 82581 AOO 3/85

EQUIVALENCED VARIABLES
Equivalenced Variable Declaration

<structure-pointer>

is the identifier of a structure pointer to be made
equivalent to <previous-identifier>.

<pointer>

is the identifier of a pointer to be made equivalent to
<previous-identifier>.

<simple-variable>

is the identifier of a simple variable to be made equivalent
to <previous-identifier>.

<referral>

is the identifier of a previously declared structure or
structure pointer.

<previous-identifier>

is the identifier of a previously declared simple variable,
direct array element, pointer, structure, structure pointer~
or equivalenced variable.

<index>

is an INT constant that specifies a number of elements of
the type declared. <index> is permitted only with direct
variables. <index> must end on a word boundary.

<offset>

is an INT constant that specifies a word offset. <offset> is
permitted with direct or indirect variables. For indirect
variables, the offset is from the location of the pointer,
not from the location of the data pointed to.

~ 82581 AOO 3/85 12-3

EQUIVALENCED VARIABLES
Equivalenced variable Declaration

The syntax for the equivalenced structure declaration is:

STRUCT [.] <structure> [{ <referral>)]

= <previous-identifier> ["[" <index> "]"]
[{+I-} <offset>]

[<structure-body>]

. (period)

is the indirection symbol for standard addressing.

<structure>

is the identifier of a definition or referral structure to be
made equivalent to <previous-identifier>.

<referral>

is the identifier of a previously declared structure or
structure pointer. Its presence means <structure> is a
referral structure and <structure-body> cannot be specified.

<previous-identifier>

is the name of a previously declared simple variable, direct
array element, structure, structure pointer, or equivalenced
variable.

<index>

12-4

is an INT constant that specifies a number of elements of
the type declared. <index> is permitted only with direct
variables. <index> must end on a word boundary.

"1f' 82581 AOO 3/85

<offset>

EQUIVALENCED VARIABLES
Equivalenced Variable Declaration

is an INT constant that specifies a word offset. <offset> is
permitted with direct or indirect variables. For indirect
variables, the offset is from the location of the pointer,
not from the location of the data pointed to.

<structure-body>

is a BEGIN-END construct that contains declarations as
described in Section 11. Its presence means <structure> is a
definition structure and <referral> cannot be specified.

Examples of Equivalenced Declarations

The leftmost box in each diagram represents the previously declared
variable to which the new variable is made equivalent.

1. This example makes an INT variable equivalent to a previous INT
variable:

INT wordl;
INT word2 = wordl;__w_o_r_d_l _ __.I ~ I word2

2. This example makes a STRING variable equivalent to another STRING
variable:

STRING sl := "A";
STRING s2 = sl; sl a I ~ s2

3. This example makes STRING and INT(32) variables equivalent to an
INT array:

INT i[O:l];
STRING b = i[O];
INT(32) d = b;

-1" 82581 AOO 3/85

i [0 J.

i[l]

b[O] b[l]

b[2] b[3]

12-5

EQUIVALENCED VARIABLES
Equivalenced Variable Declaration

4. This example makes an pointer equivalent to a direct variable:

INT dir := 200;
INT .ptr = dir;

G[200] [___ ___,

5. This example makes a word-addressed pointer equivalent to another
word-addressed pointer of a different type:

INT .ptrl := 200;
INT(32) .ptr2 = ptrl; .ptr1 _I __ 2_o_o_J ~pt~2 [200

___ _,, G [2 0 0 l E ___ _,
6. This example tries to make a byte-addressed pointer equivalent to

a word-addressed pointer. Howev~r, the pointers point to
different locations, since one pointer contains a word address and
the other contains a byte address:

INT .ptrl := 200;
STRING .ptr2 = ptrl;

7~ For INT variables, indexes and offsets are equivalent:

INT x[0:5];
INT y x[l];
INT z = x + 1;

! Index
!Offset

Index Offset

8. For non-INT variables, indexes and offsets are not equivalent:

12-6

INT(32) x;
INT a = x + 1; !Offset
I NT b = x [1] ; ! Index

Offset

.x+O

x+l

x+2

x+3

Index

x(O]

x(l]

Afd 132581 AOO 3/85

EQUIVALENCED VARIABLES
Equivalenced Variable Declaration

9. You can make a variable equivalent to an offset pointer but not to
an indexed pointer:

INT .pt;
INT a = pt + 2 • , !Offset pt ?

! allowed
pt+l

INT b = pt [2] ; ! Index
! not allowed pt+2 ~ I a

10. This example tries to make a STRING variable equivalent to an
odd-byte array element. The system ignores the index and and
issues a warning.

STRING a[O:l];
STRING b = a[l]; __] a_[o_] ___ a_[1__.l j ~ _I _b ___ __.

11. This example tries to make arrays equivalent to other variables,
which is not allowed:

INT a[0:5];
INT b;
I NT c[0 : 5] = a ;
INT d[0:5] = b;

!Not allowed
!Not allowed

12. This example makes a referral structure equivalent to a structure
pointer:

STRUCT record (*);
BEGIN
INT name[0:14];
INT address[0:49];
END;

I NT . p (record) : = % 1 0 0 0 0 0 ;

STRUCT .empl (record) = p;

"182581 AOO 3/85

!Declares template structure

!Declares structure pointer

!Makes new structure equivalent
! to structure pointer "p"

12-7

EQUIVALENCED VARIABLES
Accessing Equivalenced Variables

Accessing Equivalenced Variables

You access an equivalenced variable in the same way as any other
variable, by specifying its identifier in a statement.

Examples

1. This example makes an INT variable equivalent to each word of an
INT(32) variable, then accesses the location as an INT variable
and as an INT(32) variable:

INT(32) dbl;
INT a = dbl,

b = a + 1;

a : = 2 * 2; ! Access first
! word of "dbl"

_i--_db-1 __ - ~ t:B
dbl := -lD; !Accesses "dbl" as a doubleword

2.. This example makes a STRING variable equivalent to the first of
three INT variables, then accesses byte items by indexing the
STRING variable:

12-8

INT wordl;
INT word2;
INT word3;
STRING s = wordl;

s[3] := O;
IF s[4] > 2 THEN ..• ;

wordl s[O] s[l]

word2 s[2] s[3]

word3 s[4] s[5]

-'f 82581 AOO 3/85

EQUIVALENCED VARIABLES
Accessing Equivalenced Variables

3. These examples make a pointer equivalent to a direct variable,
then accesses them in different ways:

INT dir := 200;
INT .ptr = dir; dirl __ 2_0_0 _ ___.JI ~ .ptr .__ __ 2_0_0 __ _,

G [2 0 0]I ____ __,
An assignment to the direct variable changes the contents of both
the direct variable and the pointer:

dir := 45; di r l.__ __ 4_5 __ ___.I ~ . pt r ____ 4_5 __ ___,

G [4 5) I.___ ___ __,

An assignment to the pointer (using the @ symbol) changes the
contents of both the direct variable and the pointer:

@ptr := 66; di r 1 __ 6_6 __ I ~.pt r ..__ __ 6_6 __ __,

G [6 6] I.__ ____ __,

An assignment to the pointer (without the @ symbol) changes the
contents of only the variable to which the pointer points:

ptr : = 15; di r 1 ___ 6_6 ___ 1 ~.pt r .__ __ 6_6 __ __.

G [6 6]I.__ __ 15 __ __,

-'182581 AOO 3/85
12-9

EQUIVALENCED VARIABLES
Base-Address Equivalenced Variable Declaration

BASE-ADDRESS EQUIVALENCED VARIABLE DECLARATION

Base-address equivalencing lets you declare variables relative to the
global, local, and sublocal base addresses.

Equivalenced variables (simple variables, pointers, and structure
pointers) are described first, followed by equivalenced structures.

The syntax for the base-address equivalenced variable declaration is:

{ { .EXT } { <structure-pointer> (<referral>) } }
{ { • } { <pointer> } }

<type> { }
{ <simple-variable> }

<base-address>

{ { .EXT } { <structure-pointer>
{ { • } { <pointer>

[, {
{ <simple-variable>

["[" <index> "]"
[{+I-} <offset>

<referral>) } }
} }

}
}

= <base-address> ["[" <index> "]"
[{+I-} <offset>

<type>

For <structure-pointer>, <type> must be STRING or INT.
For <simple-variable> or <pointer>, <type> is any data type.

. (period)

is the indirection symbol for standard addressing .

. EXT

is the indirection symbol for extended addressing~

12-10
~ 82581 AOO 3/85

EQUIVALENCED VARIABLES
Base-Address Equivalenced Variable Declaration

<structure-pointer>

is the identifier of a structure pointer to be made
equivalent to <base-address>.

<pointer>

is the identifier of a pointer to be made equivalent to
<base-address>.

<simple-variable>

is the identifier of a simple variable to be made equivalent
to <base-address>.

<referral>

is the identifier of a previously declared structure or
structure pointer.

<base-address>

is one of:

'G'
'L'
'S'

Global addressing relative to G[O]
Local addressing relative to L[O]
Top-of-stack addressing relative to S[O]

<index> and <offset>

are equivalent INT values giving a location in the following
ranges:

'G' addressing:
'L' addressing:
'S' addressing:

/182581 AOO 3/85

[0:255]
[-31:127]
[-31:0]

12-11

EQUIVALENCED VARIABLES
Base-Address Equivalenced Variable Declaration

The syntax for the base-address equivalenced structure declaration is:

STRUCT [•] <structure> [{ <referral>)]

= <base-address> ["[" <index> "]"]
[{+I-} <offset>]

[<structure-body>]

. (period)

is the indirection symbol for standard addressing.

<structure>

is the identifier of a definition or referral structure to be
made equivalent to <base-address>.

<referral>

is the identifier of a previously declared structure or
structure pointer. Its presence means <structure> is a
referral structure and <structure-body> cannot be specified.

<base-address>

is one of:

'G'
'L'
'S'

Global addressing relative to G[O]
Local addressing relative to L[O]
Top-of-stack addressing relative to S[O]

<index> and <offset>

12-12

are equivalent INT values giving a location in the following
ranges:

'G' addressing:
'L' addressing:
'S' addressing:

(0:255]
(-31:127]
(-31:0]

"182581 AOO 3/85

,,,

<structure-body>

EQUIVALENCED VARIABLES
Base-Address Equivalenced Variable Declaration

is a BEGIN-END construct that contains declarations as
described in Section 11. Its presence means <structure> is a
definition structure and <referral> cannot be specified.

Example

1. This example makes an INT simple variable equivalent to 'L'
relative addressing:

INT var= 'L'[5]; L[5] _ ____,, ~ l....___v_ar ____,

For another example of base-address equivalencing, see the ARMTRAP
procedure in the System Procedure Calls Reference Manual.

"1' 82581 AOO 3/85 12-13

SECTION 13

EXPRESSIONS

This section gives information about expressions:

• Operators--Arithmetic and conditional (relational and boolean)

• Precedence of Operators--The order in which the system evaluates
operators in an expression

• Arithmetic Expressions--General form, assignment form, CASE form,
IF-THEN-ELSE form

• Conditional Expressions--General form and group comparison form

An exeression is a combination of operands and operators that make up
an arithmetic or conditional expression. The operands can be data or
constants. The operators specify an arithmetic or conditional
operation on the operands. Expressions can be type INT, INT(32),
FIXED, REAL, or REAL(64), but not type STRING. The system treats
STRING operands as 16-bit quantities.

An arithmetic expression specifies a rule (formula) for computing a
numeric value. It consists of one or more operands and arithmetic
operators such as:

3 + 5

A conditional expression specifies a rule for establishing the
relationship between values and results in a true or false state. It
consists of one or more conditions and conditional operators such as:

vary > 5

..-, 82581 AOO 3/85 13-1

EXPRESSIONS
Arithmetic Operators

OPERATORS

An operator is a reserved word or a symbol that directs TAL to perform
an arithmetic or conditional {relational or boolean) operation on
values in the program.

Arithmetic Operators

Arithmetic operators provide signed arithmetic, unsigned arithmetic,
and logical operations. You can mix signed and unsigned arithmetic
and logical operations in an expression.

Signed Arithmetic Operators

Signed arithmetic operators are +, -, *, and /. They can operate on
operands of any data type. All operands in an expression must be of
the same type, except that an INT expression can include INT and
STRING operands. When the system evaluates an INT expression, it
right justifies STRING operands in word units and treats them as
16-bit quantities.

INT expressions produce INT results, even if they contain S1rRING
operands. Expressions of other types produce results of the same data
type as their operands. For example, expressions that contain FIXED
operands produce FIXED results, and expressions that contain REAL(64)
operands produce REAL(64) results.

Signed arithmetic operations affect the condition code and carry
indicators. The overflow indicator is set when you divide by 0 or
when a result exceeds the bits allowed by the operand type {INT, 15
bits; INT{32) and REAL, 31 bits; REAL(64) and FIXED, 63 bits). If an
overflow occurs, the results will have unpredictable values.

Examples of signed arithmetic are:

wordl * word2 + wordl
word2 I wordl
doublel + double2
bytel + byte2
wordl + bytel

13-2

!INT operands produce INT result
!INT operands produce INT result
!INT(32) operands produce INT{32) result
!STRING operands produce INT result
!INT and STRING operands produce INT result

~ 82581 AOO 3/85

EXPRESSIONS
Arithmetic Operators

Unsigned Arithmetic Operators

Unsigned arithmetic operators are '+', '-', '*', '/', and '\'. They
can operate on operands of certain data types, as follows:

• Unsigned add and subtract allow STRING or INT operands in an
expression and produce INT results.

These operations do not set the overflow indicator, but do affect
the condition code and carry indicators.

• Unsigned multiplication allows STRING or INT operands and produces
INT(32) results.

• An unsigned division operation or an unsigned modulo operation
(which returns the remainder) requires an INT(32) dividend and an
INT divisor that produces an INT quotient.

If the quotient exceeds 16 bits, an overflow condition occurs and
the results will have unpredictable values.

For example, the modulo operation "1000000 '\' 2" (which should
result in a remainder of 0) causes an overflow because the quotient
(50000) exceeds 16 bits.

Typically, you use unsigned arithmetic on operands with values in the
range 0 through 65,535. An example is pointer variables that contain
standard addresses.

Examples of unsigned arithmetic are:

wordl '+' word2
wordl ' ' bytel
wordl '*' bytel
dbword '/' wordl
dbword '\' wordl

-'182581 AOO 3/85

!Unsigned addition produces INT result
!Unsigned subtraction produces INT result
!Unsigned multiplication produces INT(32) result
!Unsigned division produces INT result
!Unsigned mod division produces INT result

13-- 3

EXPRESSIONS
Arithmetic Operators

Logical Operators

The LOR, LAND, and XOR operators perform bit-by-bit operations on
and STRING operands only. They return 16-bit results as follows:

02erator Truth Table Exam2le

LOR 1 0 10 LOR 12 = :.-4
(Logical OR)

~ 1 10 1 0 1 0
12 1 1 0 0

0 0
14 1 1 1 0

LAND 1 0 10 LAND 12 = 8
(Logical AND) r:: 1 10 1 0 1 0

12 1 1 0 0
0 0

8 1 0 0 0

XOR 1 0 10 XOR 12 = 6
(Exclusive OR) r:: 1 10 1 0 1 0

12 1 1 0 0
0 0

6 0 1 1 0

The logical operators set the condition code indicator.

Summary of Arithmetic Operators

INT

Table 13-1 summarizes the arithmetic operators and the data. types of
operands on which each can operate.

TAL does not provide automatic type conversions on operands: instead,
it provides built-in type-transfer functions for converting an operand
from one type into another. (See Section 17.)

13-4 Afj 82581 AOO 3/85

Table 13-1. Arithmetic

Operator Function **STRING

+ Signed Addition •
Signed Subtraction •

* Signed Multiplication •
I Signed Division •
'+' Unsigned Addition •
'-' Unsigned Subtraction •
'*' Unsigned Multiplication •
'/' Unsigned Divison •
'\' Unsigned Modulo

Division (remainder) •
LOR Logical OR •
LAND Logical AND •
XOR Exclusive OR •

EXPRESSIONS
Arithmetic Operators

Operators and Operand Types

*Data Type of Operand

INT INT(32) FIXED REAL REAL(64)

• • • • •
• • • • •
• • • • •
• • • • •
•
•
• (See Note 1)

• • (See Note 2)

• • (See Note 2)

•
•
•

* Except as noted, operand types in an expression must match and the
expression yields results of the same type as its operands. To
convert an operand type, use a type-transfer standard function
described in Section 17.

**The system treats STRING operands as 16-bit quantities; there is no
STRING expression. INT expressions can have STRING or INT operands,
but always yield INT results.

Note 1: Unsigned multiplication always yields an INT(32) result.

Note 2: Unsigned division and modulo operations require an INT(32)
dividend and an INT divisor that produce an INT quotient.
See also "Unsigned Arithmetic Operators" in this section.

Af' 82581 AOO 3/85
13-5

gXPRESSIONS
Arithmetic Operators

Scaling of FIXED Operands

FIXED operands in an arithmetic expression need not have the same
<fpoint> value. The system makes adjustments as follows:

• In addition or subtraction, the system scales the smaller <fpoint>
up to match the larger <fpoint>. The <fpoint> of the result
matches the larger <fpoint>. For example, the system scales the
smaller <fpoint> in "3.005F + 6.0lF" up by a factor of one, and the
result is 9.015F.

• In multiplication, the <fpoint> of the result is the sum of the
<fpoint> values of the two operands. For example, "3.091F * 2.56F"
results in the FIXED(5) value 7.91296F.

•, In division, the <fpoint> of the result is the <fpoint> of the
dividend minus the <fpoint> of the divisor. (Some precision is
lost.) For example, "4.0SF I 2.lOF" results in the FIXED(O) value
of 1.

To retain precision when dividing operands having nonzero <fpoint>
values, use the $SCALE function to scale up the <fpoint> of the
dividend by a factor equal to the <fpoint> of the divisor. $SCALE
is described in Section 17, "Standard Functions."

The following example shows scaling of FIXED operands having different
<fpoint> values and scaling of the result to match the variable to
which it is assigned:

FIXED a:
FIXED(2) b;
FIXED(-1) c:

a := 2.015F * (b + c):

3
5

down 5

a ,. ___ _.I

13-6

I
up 3

!Data declarations

...- "c" is scaled up by a factor of 3
to match "b"

...._ Result of multiplication is an
implied <fpoint> of 5

.-- Result of expression is scaled
down by 5 to match "a", with some
loss of precision

..-, 82581 AOO 3/85

EXPRESSIONS
Conditional Operators

Conditional Operators

Conditional operators are either relational or boolean. You can
combine them with conditions to form conditional expressions. The
result of a conditional expression is a true or false state.

You usually use conditional expressions to direct program execution.
For example, in an IF-THEN-ELSE statement, if the IF condition is
true, the THEN clause executes, or if it is false, the ELSE clause
executes. Conditions are described under "Conditional Expressions" in
this section.

Relational Operators

Signed relational operators are <,
relational operators are '<', '='
in Table 13-2. They perform:

=, >, <=, >=, <>, and unsigned
'>' , '<=' , '>=' , '<>' , as defined

• Signed comparison of two INT, INT(32), FIXED, REAL, or REAL(64)
operands

• Unsigned comparison of two INT operands

The operands in a relational expression must have the same data type,
except that an INT expression can have STRING and INT operands.

Relational operations set the condition code indicator.

The following example controls program execution based on signed and
unsigned comparisons:

INT a . -.- -2, !Value = %177776
c := 3, !Value = %000003
x := 271;

IF a '<' c THEN x := 314; !False; "x" still contains 271

IF a < c THEN x := 313; !True; "x" is assigned 313

IF a <> c THEN !True, but this is an arithmetic
IF < THEN x := 314; ! comparison; since -2 < 3'

! CCL is set

IF a '<>' c THEN !True; this is a logical
IF > THEN x := 315; ! comparison; since %177776 '>'

! CCG is set
%3

"''f 82581 AOO 3/85 13-7

EXPRESSIONS
Relational Operators

Table 13-2. Relational Operators and Operand Type!s

*Data Type of Operand

Operator Function **STRING INT INT(32) FIXED REAL REAL(64)

< Signed Less Than • • • • • •

= Signed Equal To • • • • • •

>

<=

>=

<>

'<'

'>'

'<='

'>='

'<>'

Signed Greater Than

Signed Less
Than or Equal to

Signed Greater
Than or Equal to

Signed Not Equal to

Unsigned Less Than

Unsigned Equal to

Unsigned Greater
Than

Unsigned Less
Than or Equal to

Unsigned Greater
Than or Equal to

Unsigned Not
Equal to

• • • • •

• • • • •

• • • • •
• • • • •· •
• •
• •

• •

• •

• •

• •

* You cannot mix operand types in an expression except STRING and INT.
To convert an operand type, use a type-transfer standard function
described in Section 17.

**The system treats STRING operands as 16-bit quantities.
expressions can contain STRING and INT operands.

13-8

INT

"'it 82581 AOO 3/85

Boolean Operators

Boolean operators have the following meanings:

• NOT tests a condition for a false state.

EXPRESSIONS
Boolean Operators

• OR produces a true state if either adjacent condition is true.

• AND produces a true state if both adjacent conditions are true.

Conditions connected by AND are evaluated from left to right until
a false state occurs. The second condition is evaluated only if
the first condition is true.

A condition is one or more syntactic elements that represent a single
state. It can consist of a relational operator, a relational
expression, a conditional expression, or an arithmetic expression, as
described under "Conditional Expressions" beginning on page 13-18.

If a condition is an arithmetic expression, it must evaluate to an tNT
value. Thus, the operands in the condition must be type STRING or
INT. If the arithmetic expression evaluates to a value of any other
type, use a relational expression instead.

Boolean operations set the condition code indicator.

Examples of boolean operators are:

1. In this example, the conditions are arithmetic expressions, so
"a" and "b" must be type STRING or INT. The expression is true
if either condition is true; that is, if "a" or "b" contains a
nonzero value:

INT a, b:
IF a OR b THEN . . •

2. In this example, the conditions are relational expressions, so "a"
and "b" can be any data type. The expression is true if either
condition is true; that is, if "a" or "b" contains a nonzero
value:

FIXED a, b:
IF a <> OF OR b <> OF THEN

3. The conditions in this expression are arithmetic expressions that
evaluate to INT values. The expression is true if either "a" is
false or both "b" and "c" are true:

STRING a, b, c;
IF NOT a OR b AND c . . •

Table 13-3 summarizes boolean operators and the data types of operands
on which they can operate.

-'f 82581 AOO 3/85
13-9

EXPRESSIONS
Precedence of Operators

Table 13-3. Boolean Operators and Operand Types

Operator Function

AND

OR

NOT

Logical
Conjunction

Logical
Disjunction

Logical
Negation

Data Type of Operand**

*STRING INT INT(32) FIXED REAL REAL(64)

• •

• •

• •

* The system treats STRING operands as 16-bit quantities. An
expression can contain INT and STRING operands.

**This table applies to operands in arithmetic expressions. For types
of operands allowed in relational expressions, see Table 13-2.

Precedence of Operators

TAL evaluates operations in expressions from left to right according
to standard rules of precedence. Table 13-4 shows the leve?l of
precedence for each operator, from highest (0) to lowest (9).

To override the standard order of operations, place parentheses around
the operation to be performed first. Examples are:

c * (a + b) (a OR b) AND c

~ I I I
I

Result Result

13-10
A~ 32581 AOO 3/85

Operator

@

< ••• >
< ••• >

<<
>>
'<<'
'>>'

*
I

'*'
'/'
'\'

+

'+'
'-'
LOR
LAND
XOR

<
=
>
<=
>=
<>
'<'
'='
'>'
'<='
'>='
'<>'

NOT
AND
OR

. -. -

"'182581 AOO 3/85

EXPRESSIONS
Precedence of Operators

Table 13-4. Precedence of Operators

Operation
Order of

Precedence

Indirection
Address of Identifier

Bit Extraction
Bit Deposit

Bit Shift
Bit Shift
Bit Shift
Bit Shift

Signed Multiplication
Signed Division

Unsigned Multiplication
Unsigned Division
Unsigned Modulo Division

Signed Addition
Signed Subtraction
Unsigned Addition
Unsigned Subtraction
Logical OR
Logical AND
Exclusive OR

Signed Less Than
Signed Equal to
Signed Greater Than
Signed Less Than or Equal to
Signed Greater Than or Equal to
Signed Not Equal to
Unsigned Less Than
Unsigned Equal to
Unsigned Greater Than
Unsigned Less Than or Equal to
Unsigned Greater Than or Equal to
Unsigned Not Equal to

Boolean Negation
Boolean Conjunction
Boolean Disjunction

Assignment

0
0

1
1

2
2
2
2

3
3

3
3
3

4
4
4
4
4
4
4

5
5
5
5
5
5
5
5
5
5
5
5

6
7
8

9

Section

10
10

14
14

14
14
14
14

13
13

13
13
13

13
13
13
13
13
13
13

13
13
13
13
13
13
13
13
13
13
13
13

13
13
13

15

13-11

EXPRESSIONS
Arithmetic Expressions

ARITHMETIC EXPRESSIONS

An arithmetic expression is a rule for computing a single numeric
value of a specific data type. It has a general, assignment, CASE, or
IF-THEN-ELSE form.

General Form

The general form of an arithmetic expression is:

[+] <primary> [[<arith-operator> <primary>] •••]
[-]

+ -

are unary plus and minus, indicating the sign of the leftmost
<primary>. Plus is the default sign.

<primary>

is one or more items that represent a single value. <primary>
can consist of the following as described under "Primaries" in
this section:

Constant
Variable
Function reference
Bit shift
Bit extraction
(<arithmetic-expression>
Code space item

<arith-operator>

13-12

is an arithmetic operator:
('+', '-', '*', '/', '\');

signed (+, -, *, /); unsigned
logical (LOR, LAND, XOR).

"'82581 AOO 3/85

EXPRESSIONS
Arithmetic Expressions

Examples of arithmetic expressions are:

varyl
- varyl
+ varyl * 2
varyl + vary2
varyl * (-vary2)

Primaries

<primary> only
- <primary>
+ <primary> <arith-operator> <primary>
<primary> <arith-operator> <primary>
<primary> <arith-operator> <primary>

A <primary> is one or more syntactic elements that represent a single
value. It can be any of the following:

• Constant--A character string or numeric constant as described in
Section 4

• Variable--A direct or indirect variable as described in Sections 8
through 12 for simple variables, arrays, pointers, structures,
substructures, structure data items and equivalenced variables
(with or without an indirection symbol (. or@) and index)

• Function reference--A reference to a procedure that returns a
value, including standard functions listed in Section 17.

• Bit shift or bit extraction--As described in Section 14.

• Arithmetic expression--The general, assignment, CASE, or
IF-THEN-ELSE form described in this section, enclosed in
parentheses.

• Code space item--A procedure, subprocedure, or label name prefixed
with the @ symbol or a read-only array optionally prefixed with the
@ symbol, with or without an index.

Examples of primaries are:

10
vary[lO]
(IF vary THEN 1 ELSE 2)

4J 82581 AOO 3/85

!Constant
!Variable
!(<arithmetic-expression>

13-13

EXPRESSIONS
Assignment Form

Assignment Form

The assignment form of arithmetic expression assigns the value of an
expression to a variable.

The syntax for the assignment form is:

<variable> := <expression>

<variable>

is a declared data variable.
deposit field).

(It can have an optional bit

<expression>

is an arithmetic or conditional expression that represents a
value of the same type as <variable>. This value is the value
of the assignment expression form.

·---·--------'

Examples

1. This example increments "a"; as long as "a + l" is not 0, the
condition is true and the THEN clause is executed:

IF (a := a + 1) THEN .

2. This example shows the assignment form used as an index; "a" is
incremented and accesses the next array element:

IF array[a := a + l] <> 0 THEN

3. This example mixes the assignment form with a relational form; it
assigns the value of "b" to "a", then checks for equality with 0:

I F (a : = b) = 0 THEN . . .

13-14 Aj 82581 AOO 3/85

EXPRESSIONS
CASE Form

CASE Form

The CASE form of arithmetic expression selects one of several
expressions for assignment to a variable.

The syntax for the CASE form is:

CASE <index> OF
BEGIN

<expression>
<expression>

!For <index> = 0
!For <index> = 1

<expression> ; !For <index> = n
[OTHERWISE <expression> ;]

END

<index>

is an INT arithmetic expression that selects the <expression>
to evaluate.

<expression>

is an arithmetic or conditional expression.

OTHERWISE <expression>

indicates the expression to evaluate if <index> does not
select an expression within the index range 0 through <n>.
If you omit the OTHERWISE clause and an out-of-range case
occurs, results are unpredictable.

The CASE expression form resembles the CASE statement except that:

• It selects one of several expressions instead of statements

• The selected expression must be assigned to a variable

-'1' 82581 AOO 3/85 13-15

gXPRESSIONS
CASE Form

gxample

This example selects and assigns the value resulting from one of
several expressions and assigns it to a variable:

i := CASE a OF

! If the
! If the
!If the

BEGIN
b;
c;
d;
OTHERWISE -1;

END;

value of "a" is
value of "a" is
value of "a" is

0, the value of
1, the value of
2, the value of

! If "a" has any other value, the value

13-16

"b" is assigned to " i" .
"c" is assigned to " i" .
"d" is assigned to " i" .

of -1 is assigned to "i" .

""t· 82581 AOO 3/85

EXPRESSIONS
IF-THEN-ELSE Form

IF-THEN-ELSE Form

The IF-THEN-ELSE form of arithmetic expression conditionally selects
one of two expressions, usually for assignment to a variable.

The syntax of the IF-THEN-ELSE form is:

IF <conditional-expression> THEN <expression> ELSE <expression>

<conditional-expression>

is evaluated to determine the <expression> to compute.

<expression>

is an arithmetic or conditional expression.

If <conditional-expression> is true, the THEN clause is computed;
otherwise, the ELSE clause is computed. The IF-THEN-ELSE expression
resembles the IF-THEN-ELSE statement except that:

• Both the THEN and ELSE clauses are required

• The THEN and ELSE clauses contain expressions, not statements

• The IF-THEN-ELSE form is typically part of an assignment statement

Examples

1. This example assigns one of two arithmetic expressions:

var := IF length > 0 THEN 10 ELSE 20;

2. You can mix this form, enclosed in parentheses, with other forms:

vary * index + (IF index> limit THEN vary * 2 ELSE vary * 3)

4°t 82581 AOO 3/85 13-17

EXPRESSIONS
Conditional Expressions

CONDITIONAL EXPRESSIONS

A conditional expression specifies a rule for establishing the
relationship between values. It has a general form and a group
comparison form.

General Form

The general form of conditional expression is:

[NOT] <condition> [[{ AND } [NOT] <condition>] ~ . .]
{ OR }

<condition>

is one or more syntactic elements that represent a single
state. <condition> can consist of the following as described
under "Conditions" in this section:

Relational operator
Arithmetic expression
Relational expression
(<conditional-expression>
Group comparison form

AND, OR, and NOT are boolean operators:

AND produces a true state if both <conditions> are true.
OR produces a true state if either <condition> is true.
NOT tests <condition> for a false state.

Examples of conditional expressions are:

a
NOT a
a OR b
a AND b
a AND NOT b OR c

13-18

!<condition>
!NOT <condition>
~<condition> OR <condition>
!<condition> AND <condition>
!<condition> AND [NOT] <condition>

4~82581 AOO 3/85

Conditions

EXPRESSIONS
Conditional Expressions

A <condition> is one of the following:

• Relational operator--An operator (<, >, <=, >=, <>, '<' , '=' ,
'>', '<=', '>=', or '<>') that tests a condition code (see "Testing
Hardware Indicators" in this section)

• Arithmetic expression--general, assignment, CASE, or IF-THEN-ELSE
form discussed previously in this section

Any arithmetic expression used as a condition must evaluate to an
INT value. If it evaluates to a value of any other type, use a
relational expression. (See examples of conditions below.)

The condition is true if the value of the arithmetic expression
contains a nonzero value.

• Relational expression--Two general arithmetic expressions connected
by a relational operator

• Conditional expression--The general form enclosed in parentheses

• Group comparison form of conditional expression--See "Group
Comparison Form" in this section

Examples of conditions are:

<condition>

Relational
operator

Arithmetic
expression

Relational
expression

(<conditional
expression>)

..,, 82581 AOO 3/85

Example

IF < THEN

IF a THEN ...

IF a <> OF
THEN

IF a = b
THEN ...

IF NOT (b OR
THEN ... c)

Description

Expression is true if condition code
setting is CCL

Expression is true if condition "a"
contains nonzero value: "a" must be
type INT or STRING

"a" is type FIXED: expression is true
if "a" contains a nonzero value

Expression is true if "a" equals "b"

Expression is true if both "b" and
"c" are false: the parenthesized
condition evaluates first, then NOT
is applied

13-19

E:XPRESS IONS
Conditional Expressions

Testing Hardware Indicators

The state of hardware indicators (condition code, carry, and overflow)
are affected by arithmetic and conditional operations and most file
system calls. If you are checking a hardware indicator, do so before
another arithmetic operation occurs in the program.

The condition code setting indicates if the result of an operation is
a negative value (CCL), a 0 (CCE), or a positive value (CCG). After
an assignment statement, the indicator reflects the new value in the
variable. To check this indicator, use a relational operator in a
conditional expression, as in the example "IF < THEN ..•. "

The carrf setting indicates if a carry out of bit 0 occurred.
check this indicator, use the standard function $CARRY in a
conditional expression, as in the example "IF $CARRY THEN ..

To

"

The overflow setting indicates if a division by 0 occurred or if the
result of a signed arithmetic operation exceeds the number of bits
allowed by the data type. An overflow causes an interrupt to the
operating system overflow trap handler. To check the overflow
indicator, turn off the overflow trap bit (bit 8) in the ENV register,
then use the standard function $OVERFLOW in a conditional expression,
as in the example "IF NOT $OVERFLOW THEN ••.. "

Assigning Conditional Expressions

Usually conditional expressions direct program execution without
returning a value as shown in previous examples. However, if you
assign a conditional expression to a variable, TAL returns a -1 for
the true state and a 0 for the false state.

1. This example assigns the result of a comparison to a variable:

INT neg := -1;
INT pos := 1;
INT result;

result := neg <
result := neg '<'

pos;
pos;

!Value = %177777
!Value = %000001

!Signed comparison produces -1
!Unsigned comparison produces 0

2. This example produces a -1 if either "x" or "y" is a ncnzero value
(true), or a 0 if both "x" and "y" are zeros (false):

13-20

INT x, y, answer;
answer := x OR y; !Assigns -1 or 0 to "answer"

-''f 82581 AOO 3/85

EXPRESSIONS
Group Comparison Form

Group Comparison Form

The group comparison form of conditional expression performs an
unsigned comparison of a group of contiguous bytes or words with
another group of contiguous bytes or words or with a constant.

The syntax for the group comparison form is:

<varl> <rela-operator> { <var2> FOR <count> [-> <next-addr>] }
{ <constant> }

<varl>

is the name of a variable, with or without an index, to
compare to <var2> or <constant>. <varl> can be a simple
variable, array, pointer, structure, substructure, structure
item, or structure pointer, but not a read-only array.

<re la-operator>

is a relational operator (<, =, >, <=, >=, <>, '<', '='
'>', '<=', '>=', '<>') as defined in Table 13-2.

<var2>

is the name of a variable, with or without an index, to which
<varl> is compared. It can be a simple variable, array,
read-only array, pointer, structure, substructure, structure
item, or structure pointer.

<count>

is a positive INT arithmetic expression of the general form
that specifies the number of bytes or words in <var2> to
compare. <count> is in bytes if <var2> is a STRING variable
or pointer or a substructure. It is in words if <var2> is a
non-STRING pointer or variable or a structure.

"'f 82581 AOO 3/85
13-21

EXPRESSIONS
Group Comparison Form

<next-addr>

is a variable to contain the address of the first byte or
word in <varl> that does not match the corresponding byte or
word in <var2>. The address returned is:

• a 32-bit byte address if either <varl> or <var2> has an
extended address

• a 16-bit byte address if <varl> and <var2> have standard
byte addresses

• a 16-bit word address if <varl> and <var2> have standard
word addresses

<constant>

is a numeric or character string constant or a constant list
to which <varl> is compared.

The system treats the elements being compared as unsigned values.
After a comparison, the condition code setting is:

<
=
>

(CCL) if <varl> '<'
(CCE) if <varl> =
(CCG) if <varl> '>'

The following rules apply:

<var2>
<var2>
<var2>

• If neither <varl> or <var2> are extended, both must have 16-bit
byte addresses or both must have 16-bit word addresses.

• If <varl> and <var2> are word addressed, they can be different data
types. The number of elements compared depends on the data type of
<var2>.

• You can compare byte-addressed data only with byte-addressed data
or with constants. However, you can compare data pointed to by
an extended STRING pointer with data of any type.

For INT(32) or FIXED variables, the system performs a word :omparison,
and <next-addr> might not point to an element boundary.

13-22 -'1 E12581 AOO 3/85

EXPRESSIONS
Group Comparison Form

Examples

1. The following example compares two arrays:

2. This example compares an array to a constant list:

IF fileAname = ["$RECEIVE" ' 8 * [" "]] THEN .

3. This example uses an arithmetic expression for <count>:

IF inAarray <> compareAmask FOR (2 * someAvary I 3) THEN

4. The following example is a group comparison using the optional
<next-addr> variable:

INT .sAarray (0:11] := "$SYSTEM
.dAarray (0:11] := "$SYSTEM
.pointer;

SYSTEM
USER

MYFILE
MYFILE

IF dAarray = sAarray FOR 12 -> @pointer THEN . . .

"
"

The comparison stops with element [4]; "pointer" contains the
address of "dAarray[4]", as follows:

sAarray --->
dAarray --->

0 1 2 3 4 5 • •
$SYSTEM SYSTEM MYFILE
$SYSTEM USER MYFILE

You can then use the address in "pointer" to determine the number
of array elements that matched:

n := @pointer '-' @dAarray; !"n" gets 4 (fifth element)

5. These examples mix group comparisons with other conditions:

IF length > 0 AND name = user FOR 8 AND NOT abort THEN, .
IF (file = "TERM" OR file = "term") AND mode = 5 THEN .•.

6. This example compares two arrays then tests the condition code
setting to see if the element in "dAarray" that stopped the
comparison is less than the corresponding element in "sAarray":

IF dAarray = sAarray FOR 10 -> @pointer THEN
BEGIN !They matched

!Do something
END

ELSE
IJ:t' < THEN !"pointer" points to element of

!Do something else ! "dAarray" that is less than the
! corresponding element of "sAarray"

-'1f 82581 AOO 3/85
13-23

SECTION 14

BIT OPERATIONS

TAL allows you to access bit fields of arbitrary size and location.
You can access individual bits or groups of bits to perform the
following operations:

• Bit extraction--Accesses a bit field

• Bit deposit--Assigns a value to a bit field

• Bit shift--Shifts a bit field to the left or right

For information on the precedence of bit operations, see Table 13-4
in Section 13, "Expressions."

-'182581 AOO 3/85
14-1

BIT OPERATIONS
Bit Extraction

BIT EXTRACTION

Bit extraction lets you access individual bits or groups of bits.

The syntax for the bit extraction form is:

<primary> . "/" <left-bit> [<right-bit>] ">"

<primary>

is as described in Section 13 under "Arithmetic Expressions,"
except that it must be a STRING or INT value. Bit extraction
does not alter <primary>.

<left-bit>

is an INT constant specifying the left bit of the bit field.

If <primary> is type STRING, bit <8> is the leftmost bit you
can extract, because the system right justifies STRING values
as if they were 16-bit quantities.

<right-bit>

is an INT constant specifying the right bit of the bit field.
<right-bit> must be equal to or greater than <left-bit>.

Examples of Bit Extractions

1. The followi~g example shows an assignment where the bits are
extracted from an array element:

14-2

LITERAL len = 8;
INT vary;
INT array[O:len - 1]

vary := array[8].<8:15>;

_.,.'f 82581 AOO 3/85

BIT OPERATIONS
Bit Extraction

2. The following example shows an assignment where bits are extracted
from an arithmetic expression. Two numbers are added together,
and bits <4> through <7> of the total are assigned to "result".

INT result;
INT numl := 51;
INT num2 := 28;

result := (numl + num2).<4:7>;

3. The following example shows bit extraction used in a conditional
expression. It checks bits <O> through <7> for "A":

INT word;

IF word.<0:7> = "A" THEN

4. The following example shows bit extraction used in a conditional
expression. It checks bit <15> for a nonzero value:

STRING var;

IF var.<15> THEN ...

"'f 82581 AOO 3/85 14-3

BIT OPERATIONS
Bit Deposit

BIT DEPOSIT

Bit deposit lets you assign a value to an individual bit or a group of
bits using an assignment statement.

The syntax for the bit deposit form is:

<variable> . "<" <left-bit> [<right-bit>] ">"

:= <expression>

<variable>

is a STRING or INT variable.

<left-bit>

is an INT constant specifying the left bit of the bit field.
For STRING variables, the leftmost bit you can specify is <8>.

<right-bit>

is an INT constant specifying the right bit of the bit field.
<right-bit> must be equal to or greater than <left-bit>.

<expression>

is an INT arithmetic or conditional expression.

The bit deposit field is on the left side of the assignment operator
(:=). The bit deposit operation changes only the bit deposit field.
If the value on the right side has more bits than the bit deposit
field, the system ignores the excess high-order bits when making the
assignment.

14-4 Ap82581 AOO 3/85

BIT OPERATIONS
Bit Deposit

Examples of Bit Deposit

1. The following example replaces bits <10> and <11> with zeros:

INT old := -1: !"old" = 1111111111111111

old.<10:11> := O: !"old" = 1111111111001111

2. This example sets bit <8>, the leftmost bit of "strng", to 0:

STRING strng:

strng.<8> := O:

3. In this example, the value %577 is too large to fit in bits <7:12>
of "vary". The system truncates %577 to %77 before performing the
bit deposit:

INT vary := %125252: !"vary" = 1010101010101010

vary.<7:12> := %577: !%577 = 0000000101111111

I I
!"vary" = 1010101111111010

4. This example replaces bits <7:8> of "new" with bits <8:9> of
"old":

INT new := -1:
INT old := O:

new.<7:8> := old.<8:9>:

AJ182581 AOO 3/85

!"new" = 1111111111111111
!"old" = 0000000000000000

II
!"new" = 1111111001111111

14-5

lBIT OPERATIONS
JBit Shift

BIT SHIFT

The bit-shift operation shifts a bit field a specified number of
positions to the left or right.

The syntax for the bit-shift form is:

<primary> <shift-operator> <positions>

<primary>

is as described in Section 13 under "Arithmetic Expressions,"
except that it must be type STRING, INT, or INT(32). The
system treats STRING variables as 16-bit quantities. For types
STRING and INT, the shift occurs on one word; for type INT(32),
the shift occurs on two words. Shifts do not alter <primary>.

<shift-operator>

is an operator shown in Table 14-1.

<positions>

is an INT <primary> indicating the number of bit positions to
shift the bit field. The system uses <positions> mod %400.

The following usage considerations apply:

• The bit shift operation sets the condition code indicator.

•• To multiply by powers of two, shift the field one position to the
left for each power of 2.

• To divide by powers of two, shift the field one positio~ to the
right for each power of 2.

• To convert a word address to a byte address, use an unsigned shift
operator.

14-6 1J 82581 AOO 3/85

Table 14-1. Bit-Shift Operators

BIT OPERATIONS
Bit Shift

Operator Function Result

'<<' Unsigned left shift
through bit <O>

Zeros fill vacated bits from the
right

'>>' Unsigned right shift Zeros fill vacated bits from the left

<< Signed left shift
through bit <1>

>> Signed right shift

Sign bit (bit <0>) unchanged; zeros
fill vacated bits from the right

Sign bit (bit <0>) unchanged; sign
bit fills vacated bits from the left

Examples of Bit Shifts

1. This example of an unsigned left shift shows how zeros fill the
vacated bits from the right:

Initial value = 0 010 111 010 101 000

I I
'<<' 2 = 1 011 101 010 100 000

2. This example of an unsigned right shift shows how zeros fill the
vacated bits from the left:

Initial value 1 111 111 010 101 000

\ \
'>>' 2 = 0 011 111 110 101 010

3. This example of a signed left shift shows how zeros fill the
vacated bits from the right, while the sign bit remains the same:

Initial value = 1 011 101 010 100 000
I I

<< 1 1 111 010 101 000 000

4. This example of a signed right shift shows how the sign bit fills
the vacated bits from the left:

Initial value = 1 111 010 101 000 000

\\ \
>> 3 = 1 111 111 010 101 000

"f 82581 AOO 3/85 14-7

BIT OPERATIONS
Bit Shift

5. This example shows multiplication and division by powers of two:

a := b << 1 • '
Multiply by 2

a := b << 2.
'

Multiply by 4
a := b >> 3: Divide by 8
a := b >> 4.

' Divide by 16
a := b << 5: Multiply by 32
a := b >> 6: Divide by 64

6. This example uses an unsigned bit shift to convert the word
address of an INT array to a byte address and loads the byte
address in a STRING pointer. This allows byte access to the
INT array.

INT a[0:5]:
STRING . p : = @a [0] ' < < ' 1 :

p[3] := O:

!Declares INT array
!Declares and initializes STRING
! pointer with array byte address
! resulting from the bit shift
!Assigns 0 to fourth byte of "a"

7. This example shifts the right byte of a word into the left byte
position and sets the right byte to zero:

INT b: !Declares variable

b := b '<<' 8: !Shifts right byte intc left byte

8. This example declares and initializes an extended pointer with the
lowest address in an extended segment (see also Appendix A):

STRING .EXT esp := 4D '<<' 17;

9. This example declares an extended pointer and assigns to it an
extended address in the current user code segment (see also
the $DBLL function in Section 17):

INT .EXT p; !Declares extended pointer

@p : = ($DBLL (2 '7)) I<< I 1: !Assigns address in code segment

14-8 1'82581 AOO 3/85

SECTION 15

STATEMENTS

This section describes executable statements, which control program
execution by accessing and modifying the program's data.

This section contains:

• A summary of statements, organized by functional category

• Rules for forming statements

• Syntax for each statement, listed in alphabetic order

SUMMARY OF STATEMENTS BY FUNCTION

Statements are summarized within the following categories:

• Program Control--Directs the flow of program execution

• Data Transfer--Stores or transfers data within a program

• Data Scan--Searches scan area for a test character

• Machine Instruction--Relates to machine instructions

-'f 82581 AOO 3/85 15-1

S1TATEMENTS
Summary of Statements by Function

Program Control

ASSERT

CALL

CASE

DO-UNTIL

FOR-DO

GOTO

IF-THEN
ELSE

RETURN

WHILE-DO

Data Transfer

conditionally invokes error-handling procedure.

invokes procedure or subprocedure.

executes statement based on an index value.

executes posttest loop until true condition occurs.

executes pretest loop for <n> times.

unconditionally branches to label within procedure or
subprocedure.

executes THEN or ELSE statement based on true or false
state.

returns from procedure or subprocedure to caller. For
functions, also can specify returned value.

executes pretest loop during true condition.

Assignment stores a value in a variable.

Move moves group of items from one location to another.

STACK loads value on register stack.

STORE stores register stack element into variable.

Data Scan

RS CAN searches scan area, right to left, for test character.

SCAN searches scan area, left to right, for test character.

15-2 ..,, 132581 AOO 3/85

STATEMENTS
Rules for Forming Statements

Machine Instruction

CODE specifies machine codes for inclusion in object code.

DROP frees index register or removes label from symbol table.

USE reserves index register for user manipulation.

RULES FOR FORMING STATEMENTS

An executable statement can be a single statement or a compound
statement. A compound statement is a BEGIN-END construct that groups
statements to form a single logical statement.

The syntax for a compound statement is:

BEGIN
[<statement>

END [;]

BEGIN

indicates the start of the compound statement.

<statement>

is an executable statement.

END

indicates the end of the compound statement.

(semicolon)

is a statement separator.

4't 82581 AOO 3/85 15-3

STATEMENTS
Rules for Forming Statements

You can use compound statements anywhere you can use a single
statement. You can nest them to any level in statements such as IF,
DO, FOR, WHILE, or CASE to control execution of multiple operations.

The following example shows a null compound statement:

BEGIN
END;

The following example shows a compound statement that contains
multiple statements:

BEGIN
a := b + c;
d := %B101;
f := d - e;

END;

Separating Statements

Rules for using semicolons as separators are:

• A semicolon must separate each pair of statements.

• A semicolon is optional before the reserved word END, if END
terminates a compound statement.

• A semicolon must not precede an ELSE or UNTIL keyword.

15-4 -'f 82581 AOO 3/85

STATEMENTS
ASSERT Statement

ASSERT STATEMENT

The ASSERT statement conditionally invokes the procedure named in an
ASSERTION compiler control directive.

The syntax for the ASSERT statement is:

ASSERT <assert-level> <expression>

<assert-level>

is an integer in the range 0 through 32767 that is higher
than the <assertion-level> specified in an ASSERTION
directive. If the <assert-level> is lower than the
<assertion-level>, the ASSERT statement has no effect.

<expression>

is a conditional expression that tests a program condition and
evaluates to a true or false result.

The ASSERT statement is a debugging or error-handling tool. You use
it with the ASSERTION directive as follows:

• Place an ASSERTION directive in the source code, naming an
error-handling procedure and specifying an <assertion-level>.

• Place an ASSERT statement wherever you want to invoke the error
handl ing procedure if an error occurs, specifying an <assert-level>
higher than the <assertion-level> of the ASSERTION directive.

• When the error occurs, the ASSERTION directive invokes the
procedure.

• After you debug the program, you can nullify the ASSERT statement
by raising the <assertion-level> of the ASSERTION directive higher
than the <assert-level> of the ASSERT statements.

If ASSERT statements that specify the same condition have the same
<assert-level>, you can nullify certain levels of ASSERT statements.

For more information on the ASSERTION directive, see Section 20,
"Compiler Operation."

~ 82581 AOO 3/85
15-5

STATEMENTS
ASSERT Statement

Example

This example invokes the operating system DEBUG procedure whenever a
$CARRY or $OVERFLOW condition occurs:

?ASSERTION = 5, DEBUG !Effective for all ASSERT
! statements .

?SOURCE $SYSTEM.SYSTEM.EXTDECS (DEBUG)
SCAN array WHILE " " -> @pointer;
ASSERT 10 $CARRY;

ASSERT 10 $CARRY;

ASSERT 20 : $OVERFLOW;

T.AL generates instructions that check the condition code indicators
and invoke DEBUG.

In this example, changing <assertion-level> to 15 nullifies the $CARRY
condition. Changing it to 30 nullifies all of the ASSERT statements.

15-6 "'1 fl2581 AOO 3/85

ASSIGNMENT STATEMENT

STATEMENTS
Assignment Statement

The assignment statement assigns a value to a previously declared
variable.

The syntax for the assignment statement is:

<variable> := <expression>

<variable>

is the identifier of a variable (simple variable, array
element, pointer, or structure data item), with or without a
bit deposit field and/or index. If <variable> is a pointer,
you can use the @ symbol to update its contents as described
in Section 10.

<expression>

is an arithmetic or conditional expression of the same type
as <variable>, except as noted under "Mixing Types." It can
be a bit extraction value, but not a constant list.

For information on assignments to pointers, see Section 10; for
assignments to structures and structure pointers, see Section 11.

Mixing Types

STATEMENTS
Assignment Statement

~· ASSIGNMENT STATEMENT

The assignment statement assigns a value to a previously declared
variable.

The syntax for the assignment statement is:

<variable> := <expression>

<variable>

is the identifier of a variable (simple variable, array
element, pointer, or structure data item), with or without a
bit deposit field and/or index. If <variable> is a pointer,
you can use the @ symbol to update its contents as described
in Section 10.

<expression>

is an arithmetic or conditional expression of the same type
as <variable>, except as noted under "Mixing Types." It can
be a bit extraction value, but not a constant list.

For information on assignments to pointers, see Section 10; for
assignments to structures and structure pointers, see Section 11.

Mixing Types

The data type of the value and the variable must match except in the
case of INT and STRING types.

If you assign an INT value to a STRING variable, the system left
justifies the right byte of the INT value. It discards the left byte
of the value.

If you assign a byte character string to an INT variable, the system
stores the value in the right byte of the word, with a 0 in the left
byte. (To store a character in the left side, assign the character
and a space, as in "A").

-'1' 82581 AOO 3/85 15-7

STATEMENTS
Assignment Statement

To mix types other than INT and STRING, use a type-transfer standard
function, described in Section 17.

FIXED Variables

When you assign a value to a FIXED variable, the system scales the
value up or down to match the <fpoint> value. If the system scales
the value down, you lose some precision depending on the amount of
scaling. The following example attempts to assign a value with three
decimal places to a FIXED(2) variable:

FIXED(2) a;
a := 2.348F !System scales value to 2.34F

If the ROUND directive is on, the system scales the value as needed,
then rounds it up or down. For example, if you assign the value
2.3456 to a FIXED(2) variable, the system scales the value by one
digit, then rounds it to 2.35.

EK,mples of Assignment Statements

1. This example shows various assignment statements:

STRING a;
INT b;
REAL c;
FIXED d;

a := 255;
b := a + 10;
c := 36.6E-3:
d := $FIX (c) :

!Declarations

!Assignment statements

!Type-transfer function returns
! FIXED value from REAL value

2. In this example, the declaration is equivalent to the three
assignment statements below it:

15-8

INT .b[0:2] := ["ABCDEF"}:

b [0] : = "AB" ;
b [1] : = "CD" :
b[2] : = "EF":

!Declaration with constant list

!Assignment statements
! cannot use constant lists

~ 82581 AOO 3/85

STATEMENTS
Assignment Statement

~ 3. This example shows what happens when you assign an INT value to a
STRING variable:

STRING bytel;

bytel := "AB";
I "B" I ? !"A" is lost; right half

! retains old value

4. This example shows that a character assigned to an INT variable
is right justified unless you also assign a space:

INT int!;

int! := "A";
intl := "A ";

0

"A"

"A" !"A"

!"A"

5. In this example, the multiple assignment statement is equivalent
to the three separate assignments below it:

INT intl;
INT int2;
INT int3;
INT vary := 16; !Declarations

intl := int2 := int3 := vary; !Multiple assignment

intl := vary; !Separate assignments
int2 := vary;
int3 := vary;

'1J 82581 AOO 3/85 15-9

STATEMENTS
CALL Statement

CALL STATEMENT

The CALL statement invokes a procedure, subprocedure, or entry point,
and optionally passes parameters to it.

The syntax for the CALL statement is:

_____ ,, _________________ _

CALL <identifier> [(<param> [, <param>] •.•)]

<identifier>

is the name of a previously declared procedure, subprocedure,
or entry point.

<par am>

is a variable or an expression that defines an actual
parameter to pass to <identifier>.

You invoke procedures and suprocedures using the CALL statement,
whereas you invoke functions by using their names in expressions. A
CALL statement can also invoke a function. In this case, the caller
ignores the returned value of the function.

Actual parameters are value or reference parameters and are optional
or required depending on the procedure or subprocedure declaration,
as described in Section 16.

If you omit any optional parameters, use a place-holding comma for
each omitted parameter except the rightmost ones. TAL does not check
for optional parameters~

When you invoke a procedure, the operating system saves the
environment of the calling procedure or subprocedure and executes the
called procedure. When you invoke a subprocedure, the operating
system saves only the location to which control is to return after the
subprocedure completes execution.

After the called procedure or suprocedure completes execution, the
program returns to the statement following the CALL statement, as
shown in Figure 15-1.

15-10 'f 82581 AOO 3/85

~··

STATEMENTS
CALL Statement

CALL tax"proc (item, rate., result); --------------------.1
next <statement> ; ------. f

Execute "tax"proc"

.....__ ______ Return -------

S5013-008

Figure 15-1. CALL Statement Execution

Examples

1. This example invokes a procedure that has no parameters:

CALL errorAhandler;

2. This example shows all parameters included:

CALL computeAtax (item, rate, result);

3. This example shows place-holding commas for omitted optional
parameters:

CALL FILEINFO (filenum, error, , devAnum, , , eof)

4. This example uses place-holding commas and comments in place of
omitted parameters:

CALL FILEINFO (filenum, error, !filename! , devAnum,
! d ev At yp e ! , ! ext"' s i z e ! , eo f) ;

~ 82581 AOO 3/85 15-11

STATEMENTS
CASE Statement

CASE STATEMENT

The CASE statement executes one of a choice of statements, based on an
index value.

The syntax for the CASE statement is:

CASE <index> OF
BEGIN

END

[<statement>
[<statement>

!For <index> 0
!For <index> = 1

[<statement>] ; ! For <index> = <n>
[OTHERWISE [<statement>] ;]

<index>

is an INT arithmetic expression that selects the statement to .~
execute.

<statement>

is any executable statement, including a compound or CASE
statement.

OTHERWISE

indicates the statement to execute for any case outside the
<index> range. If you omit the OTHERWISE clause and an
out-of-range case occurs, execution is unpredictable.

The CASE statement lets you make multiple branch decisions in
applications where selection is based on a range of index values.

15-12 ..-, 82581 AOO 3/85

~ The following rules apply:

STATEMENTS
CASE Statement

• If a case in the <index> range has no action, you must specify
either a null statement (a semicolon with no <statement>) or a null
compound statement.

• If a <statement> consists of more than one statement, you must use
a compound statement.

• If the same <statement> applies to multiple <index> values, you
only need to code the <statement>, preceded by a label, for one
<~ndex> value. Then you can use GOTO statements to the label for
the other <index> values to which the <statement> applies.

Figure 15-2 shows how the CASE statement works.

~ 82581 AOO 3/85

CASE <index> OF

BEGIN

1-----------1~- ! <index> = !
1-----------1~- !O! <statement>; ---------
1----------1 ... -.. ! 1 ! <statement>; ----------1
i---------~-!2! <statement>; ---------
1--------~-!3! <statement>;---------

-------~-OTHERWISE <statement>; ------

END;

next <statement>;

85013-009

Figure 15-2. CASE Statement Execution

15-13

STATEMENTS
CASE Statement

Examples

1. In this example, if "vary" is 0, the first statement executes;
if "vary" is 1, the second statement executes. For any other
case, the third statement executes.

INT vary;
INT varyO;
INT varyl;

CASE vary OF
BEGIN

varyO := O;
varyl := 1;
OTHERWISE

CALL errorAhandler;
END;

!First statement
!Second statement

!Third statement

2. This example selectively moves one of several messages into an
array:

15-14

PROC msgAhandler (index);
INT index; !Index value
BEGIN

LITERAL len = 80;
STRING .aAarray[O:len - 1];

!Length of array
!Destination array

CASE index OF
BEGIN

!O! aAarray
!1! aAarray
!2! aAarray
!3! aAarray
OTHERWISE

aAarray
END;

END;

t • - I . -
' : ='
t : : I

t • - I . -
I • - I .-

!Move Statements
"Training Program";
"End of Program";
"Input Error";
"Home Terminal Now Open";

"Bad Message Number";
!End of CASE statement

!End of procedure

-'f 82581 AOO 3/85

STATEMENTS
CODE Statement

,....,, CODE STATEMENT

The CODE statement lets you specify machine-level instructions to
compile into the object program.

The syntax for the CODE statement is:

CODE (<instruction> [<instruction>] .•.)

<instruction>

is a machine instruction in one of six forms:

No.

1
2
3
4

Form

<mnemonic>
<mnemonic>
<mnemonic>
<mnemonic>

[• I @] <identifier>
<constant>
<index-register>

5 <mnemonic> [• I @] <identifier> [, <index-register>
6 <mnemonic> <constant> [, <index-register>]

<mnemonic>

is an instruction code (described in the System
Description Manual for your system).

<identifier>

is the name of a previously declared object. For a PCAL,
XCAL, or SCAL instruction, it is a procedure name. For a
branch instruction, it is a label. (The procedure name
must be resolvable by the time the executable object file
is created.)

An indirect <identifier> specified without @ generates
instructions for an indirect reference through <identifier>.

<constant>

is an INT constant of the same size as the instruction
field.

"182581 AOO 3/85 15-15

STATEMENTS
CODE Statement

<index-register>

is an INT constant specifying either:

• the number of an index register in the range 5 through 7

• an identifier associated with an index register in an
USE statement

If you omit <index-register>, no indexing occurs.

The form of the CODE statement correlates to the requirements of each
instruction code as described in the System Description Manual for
your system. You must include all required operands for each machine
instruction.

TAL inserts indirect branches around instructions emitted in a CODE
statement, if needed. Normally, TAL emits these values after the
first unconditional branch instruction occurs. ~

Pseudocodes

In addition to the instruction codes described in the System
Description Manual, TAL recognizes the following pseudocodes as part
of the <mnemonic> set:

• CON--This code is a form 3 instruction that emits inline simple or
character string constants and indirect branch locations.

• FULL--This code is a form 1 instruction that signals TAL when the
register stack is full and sets the TAL RP counter to 7. TAL emits
no code for this mnemonic.

Examples

1. The following example turns off traps:

CODE (RDE; ANRI %577; SETE); !Turn off traps

15--16 ~ 82581 AOO 3/85

STATEMENTS
CODE Statement

~ 2. The following example scans from a code-relative address to the
test character 0, then saves the next address:

STRING • ptr;
STACK @ptr, O;
CODE (SBU %640);
STORE @ptr;

3. The following are examples of the six instruction forms:

CODE ZERO; !ADD) : !Form 1
CODE LADR a; STOR .b) : !Form 2
CODE LDI 21; ADDI -4) : !Form 3
CODE STAR 7; STRP 2) : !Form 4
CODE LDX a,7; LDB .stg, x) : !Form 5
CODE LDXI -15,5) : !Form 6

4. This example emits %125 in the next instruction location:

CODE (CON %125);

5. This example emits 14 words of constant information starting in
the next instruction location:

CODE (CON "the con pseudo operator code");

6. This example emits a code-relative pointer to "labelid" in the
~· next instruction location:

CODE (CON @labelid);

.,. 82581 AOO 3/85 15-17

STATEMENTS
DO Statement

DO STATEMENT

The DO statement is a posttest loop that executes a statement until a
specified condition becomes true.

The syntax for the DO statement is:

DO [<statement>] UNTIL <expression>

<statement>

is any executable statement (including compound, null, and
nested DO statements).

<expression>

is an arithmetic or conditional expression.

If <expression> is always false, infinite looping occurs unless some
event in the DO loop causes an exit (such as a RETURN statement).

Figure 15-3 shows the action of the DO statement.

! !
DO <statement> UNTIL ---t.c

next <statement>;

$5013-010

Figure 15-3. DO Statement Execution

15-18 '""182581 AOO 3/85

~ Examples

STATEMENTS
DO Statement

1. This example loops until it clears each array element with a 0:

STRING .array[0:49];
DO array [index := index + 1] := 0 UNTIL index = limit;

2. This example tests each array element until it finds a character:

DO index := index+ 1 UNTIL $ALPHA (array[index]);

3. This example shows a multiline DO statement:

DO
BEGIN

i := i + 1;
CALL checkAerror (error);

END
UNTIL i > 15 OR error = true;

._, 82581 AOO 3/85

!No semicolon here

15-19

STATEMENTS
DROP Statement

DROP STATEMENT

The DROP statement disassociates an identifier from either (1) a label
or (2) an index register that you reserved in a previous USE
statement.

The syntax for the DROP statement is:

DROP <name>

<name>

is the identifier of a label or of an index register
that you reserved in a previous USE statement.

Dropping Labels

• You can drop a label only if you have either declared it in a label
declaration or used it in a statement.

• Before you drop a label, be sure there are no further references
to the label. If a GOTO appears after the drop, an error occurs.

Dropping Registers

• The name must be associated in a USE statement.

• If you reserve an index register for a FOR loop, do not drop the
register within the scope of the FOR loop.

• Once you drop a name, you need a new USE statement to reference it.

15-20 ~ 82581 AOO 3/85

.~ ,.-······;~

,._,,, Ex amp 1 es

STATEMENTS
DROP Statement

1. This example uses and drops a label within a DEFINE declaration:

DEFINE loop =
lab:

IF a = b
THEN

GOTO lab;
DROP lab; #;

!Uses label name

!Branches to label
!Frees label name for reuse

2. This example reserves, uses, and drops an index register:

LITERAL limit = 100;
INT array[O:limit-1]; !Declarations

USE x; !Reserves index register; names it "x"
FOR x := 0 TO limit - 1 DO
array[x] := O; !Uses index register to clear array
DROP x; !Drops index register

-'182581 AOO 3/85 15-21

STATEMENTS
FOR Statement

FOR STATEMENT

The FOR statement is a pretest loop that repeatedly executes a
statement while incrementing or decrementing a variable until
the variable is greater than or less than a given limit.

The syntax for the FOR statement is:

FOR <variable> := <initial> { TO } <limit> [BY <step>] DO
{ DOWNTO }

[<statement>

<variable>

is the identifier of an INT variable (simple variable, array
element, pointer, or structure data item).

<initial>

TO

is an INT arithmetic expression that defines the beginning
value of <variable>.

specifies that <step> is added to <variable> each time through
the loop until <variable> exceeds <limit>.

DOWNTO

specifies that <step> is subtracted from <variable> each time
through the loop until <variable> is less than <limit>.

<limit>

15-22

is an INT arithmetic expression. Looping stops when
<variable> passes <limit>.

"if 82581 AOO 3/85

~
I

STATEMENTS
FOR Statement

<step>

is an INT arithmetic expression to add to or subtract from
<variable> each time <statement> executes. The default is 1.

<statement>

is any executable statement, including a compound or null
statement or a nested FOR statement.

Because the FOR statement tests <variable> before looping, if
<variable> passes <limit> on the first test, the loop never executes.

You must enter a FOR statement only at the beginning, not at the
<statement>. You can nest FOR loops to any level.

Figure 15-4 shows the action of the FOR statement.

'~ Optimizing FOR Loops

TAL emits more efficient machine code (using the BOX instruction) if
you use~ reserved index register for <variable> in the FOR statement,
as follows:

1. Specify a USE statement to reserve and assign a name to an index
register.

2. In the FOR statement:

--Speci'fy the name of the index register for <variable>.

--Specify a 1 (the default) for <step>.

--Specify the TO clause, not the DOWNTO clause.

3. Do not modify the register stack unless you save and restore it
before the end of the loop.

4. Do not drop the reserved index register (using the DROP statement)
until after the FOR statement completes executing.

-'182581 AOO 3/85
15-23

STATEMENTS
FOR Statement

5. If you include procedure calls in the FOR loop, TAL does not emit
more efficient code with the USE statement. Instead, TAL must
emit code to save and restore the registers associated with the
BOX instruction before and after the CALL statement.

i
FOR <variable>:= <initial>

i
Calculate <limit> and <step> ---..... ·<

(if not constants) TRUE

FALSE

DO <statement>

+
Increment or decrement
<variable> BY <step>

i
next <statement>;

S5013-011

Figure 15-4. FOR Statement Execution

Examples

1. This FOR loop clears each array element:

LITERAL !en = 100:
STRING .array[O:len - 1];
INT index: !Declarations

15-24

FOR index := 0 TO !en - 1 DO
array[index] : = " ":

!Uses default <step> of 1

..,.. 82581 AOO 3/85

.. ..-

STATEMENTS
FOR Statement

~ 2. This example optimizes the FOR loop shown in Example 1:

LITERAL len = 100;
STRING .array[O:len - l];

USE x;
For x := 0 TO len - 1 DO

array[x] := " ";
DROP x;

!Declarations

!Reserve index register

!Release index register

3. This example uses the DOWNTO clause and a compound statement:

LITERAL len = 200;
INT .array[O:len - l];
INT index;
INT answer; !Declarations

FOR index := len - 1 DOWNTO 0 BY 5 DO
BEGIN !Begin compound statement

answer := answer + index;
array[index] := answer + index;

END; !End compound statement

4. This nested FOR statement treats "multiples" as a two-dimensional
array. It fills the first row with multiples of 1, the next row
with multiples of 2, and so on:

'~ I NT . mu 1 t i p 1 es [0 : 10 * 10 -1] ;
INT row;
INT column;

FOR row := 0 TO 9 DO
FOR column := 0 TO 9 DO

multiples [row* 10 +column] :=column* (row+ 1);

-1' 82581 AOO 3/85 15-25

STATEMENTS
GOTO Statement

GOTO STATEMENT

The GOTO statement unconditionally transfers program control to a
labeled statement.

The syntax of the GOTO statement is:

GOTO <label-name>

<label-name>

is a label you previously associated with a statement. It
cannot be an entry point.

A GOTO statement in a procedure can branch only to a label in the same
procedure; it cannot branch to a label in a subprocedure. A GOTO
statement in a subprocedure can branch within the same subprocedure or ~
from the subprocedure to the calling procedure but not to another
subprocedure.

Figure 15-5 shows the action of the GOTO statement.

15-26

L
-GOT~ <label-name>;

<label-name> :
..,.. <statement>;

85013-012

Figure 15-5. GOTO Statement Execution

~ 82581 AOO 3/85

,.._,,. Example

STATEMENTS
GOTO Statement

1. In this example, the GOTO statement transfers program execution to
the statement labeled "calcAa":

INT a;
INT b := 5;

calc"'a a := b * 2;

GOTO calcAa;

4' 82581 AOO 3/85 15-27

STATEMENTS
IF-THEN-ELSE Statement

IF-THEN-ELSE STATEMENT

The IF-THEN-ELSE statement executes one of a pair of statements based
on whether a condition is true or false.

The syntax for the IF statement is:

IF <conditional-expression>
THEN

[<statement>
[ELSE

[<statement>

<conditional-expression>

is a conditional expression.

THEN <statement>

specifies the statement to execute if <conditional-express ion> ,~
is true. <statement> can be any executable statement,
including a compound or IF statement. If you omit
<statement>, no action occurs for the THEN clause.

ELSE <statement>

specifies the statement to execute if <conditional-expression>
is false. <statement> can be any executable statement,
including a compound or IF statement. If you specify ELSE
with no <statement>, no action occurs for the ELSE clause.

TAL sets no limit on nested IF conditions.

15-28
"'82581 AOO 3/85

STATEMENTS
IF-THEN-ELSE Statement

~ The IF-THEN form executes as shown in Figure 15-6. The IF-THEN-ELSE
form executes as shown in Figure 15-7 .

....-----------------------------------·- ·- ·-·---,-·

!
IF

next <statement>;

S5013-013

Figure 15-6. IF-THEN Form Execution

!
">---..,..THEN <statement>

TRUE

...__ _____ • ELSE <statement>

next <statement>;

S5013-014

Figure 15-7. IF-THEN-ELSE Form Execution

AiJ 82581 AOO 3/85 15-29

STATEMENTS
IF-THEN-ELSE Statement

THEN-ELSE Pairing

The innermost THEN clause pairs with the closest ELSE clause, and
pairing proceeds outward. In the following examples, the ELSE clause
belongs to the second THEN clause (IF "condition2"). The
statements shown are equivalent, but the THEN-ELSE pairing is clearer
in the example on the left:

Recommended Format

IF condition!
THEN

IF condition2
THEN

stmtl
ELSE

stmt2;

Ambiguous Format

IF condition! THEN
IF condition2 THEN

stmtl
ELSE

stmt2;

To override the THEN-ELSE pairing, you can use the BEGIN or END
keyword in a compound statement. Using the same example, if you
insert a BEGIN-END pair as shown below, the ELSE clause belongs to the
first THEN clause (IF "condition!"):

IF condition!
THEN

BEGIN
IF condition2
THEN

stmtl

!Begin compound statement

END
ELSE

!End compound statement (no semicolon here)

stmt2;

Examples

1. This example checks a variable for a nonzero value:

15-30

INT var"item;

IF var"item <> 0
THEN

CALL error"handler;

-'182581 AOO 3/85

STATEMENTS
IF-THEN-ELSE Statement

·~ 2. This example checks the hardware condition code setting and calls
a message-printing procedure when an error occurs:

CALL READ (filenum, ••.);
IF <
THEN

BEGIN

!Sets condition code on error
!Checks the condition code

CALL printAerror;
CALL STOP;

!Call message-printing procedure

END;

3. This example of the IF-THEN-ELSE form compares two arrays:

IF newAarray oldAarray FOR 10
THEN

itemAok := 1
ELSE

itemAok := O;

4. This nested IF statement illustrates THEN-ELSE pairings:

IF a = b
THEN

IF c = d
THEN

,.......,/ IF e = f
THEN

IF g <= h
THEN

BEGIN
IF (NOT g > 1) OR (m n)

[
THEN

result := 0
ELSE

result := 1
END

ELSE !No statement
ELSE

result := 2
ELSE

result := 3;
!No corresponding ELSE clause

-'182581 AOO 3/85 15-31

STATEMENTS
Move Statement

MOVE STATEMENT

The left or right move statement transfers contiguous bytes, words, or
elements from one location to another.

The syntax of the move statement is:

<destination> {
{

' . - ' .-
' =: '

} { <source> FOR <count> } [-> <next-addr>]
} { <constant> }

<destination>

is the name of the variable, with or without an index, to
which the move begins. It can be a simple variable, array,
pointer, structure, substructure, structure data item, or
structure pointer, but not a read-only array.

' . - ' .-
indicates a left-to-right sequential move.

' - . ' -.
indicates a right-to-left sequential move.

<source>

15-32

is the name of the variable, with or without an index, from
which the move begins. It can be a simple variable, array,
read-only array, pointer, structure, substructure, structure
item, or structure pointer.

~ 82581 AOO 3/85

STATEMENTS
Move Statement

<count>

is a positive INT arithmetic expression that defines the
number of bytes, words, or elements in <source> to move, as
follows. If omitted, TAL assumes a <count> of 1 and issues a
warning.

Simple variable = elements
Array = elements
Structure = words
Substructure = bytes
Structure pointer = bytes if STRING, words if INT
Pointer = elements

<constant>

is a LITERAL, numeric or character string constant, or
constant list to move.

<next-addr>

is a variable to contain the location in <destination> that
follows the last item moved. <next-addr> is:

• a 32-bit byte address if either <source> or <destination>
has an extended address

• a 16-bit byte address if both <source> and <destination>
have standard byte addresses

• a 16-bit word address if both <source> and <destination>
have standard word addresses

/'f 82581 AOO 3/85 15-33

STATEMENTS
Move Statement

Element Moves

If either <source> or <destination> is extended, the data in either
location can be any type (STRING, INT, INT(32), FIXED, REAL, or
REAL(64)).

If <source> and <destination> have standard addresses, the data in
both locations must be byte addressed, or they must both be word
addressed. If both are word addressed, their data types need not
match and can be INT, INT(32), FIXED, REAL, or REAL(64).

After an element move, <next-addr> might not point to an element
boundary in <destination>.

A concatenated move lets you move more than one <source> or constant
list, each separated by an ampersand(&).

Examples

Examples of structure moves follow examples of element moves.

Examples of Element Moves

1. This example shows a left-to-right move from one array to another:

LITERAL length = 12;
INT .outAarray[O:length - l];
INT .inAarray[O:length - l];

outAarray[O] ':=' inAarray[O] FOR length;

2. This is a right-to-left quadword element shift by one within an
array. It frees element [0] for new data:

LITERAL upper = 11;
FIXED .inAarray[O:upper];

!Upper bound (same as length - 1)
!Source and destination array

inAarray[upper] '=:' inAarray[upper - l] FOR upper;

3. This example moves a constant list:

LITERAL len = 10;
STRING .pAarray[O:len - l];

p"'array[O] ':=' len * ["-"]; !Moves hyphen into each element

15-34
~ 82581 AOO 3/85

STATEMENTS
Move Statement

'-"'. 4. This example moves spaces into the first five elements, then uses
<next-addr> as <destination> to move dashes into the next five
elements:

·~

LITERAL len = 20;
LITERAL num = 5;
STRING .array[O:len - 1];
STRING .nextAaddr;

!Length of array
!Number of elements
!Destination array
!Pointer for next address

array[O] ':=' num * [" "] -> @nextAaddr;
nextAaddr ':=' num * ["-"];

5. This concatenated move is a fast way to clear an array:

LITERAL length = 100;
INT .array[O:length - 1];

!Length of array
!Destination array

array[O] ':=' " " & array[O] FOR length - 1; !Clears array

6. This concatenates and moves three arrays and some constants:

LITERAL lineAlen = 68; !Length of destination array
LITERAL dateAlen = 11; !Length of source array 1
LITERAL id Alen = 11; !Length of source array 2
LITERAL dpAlen = 3; !Length of source array 3

STRING .lineAarray[O:lineAlen - 1] ;
STRING .dateAarray[O:dateAlen - 1] := "Feb 1, 1985";
STRING .idAnumber[O:idAlen - 1] := "854-70-1950";
STRING .dpAnum[O:dpAlen - 1] := "107";

lineAarray ':=' " DATE: " & dateAarray FOR dateAlen
IDENTIFICATION: " & idAnumber FOR idAlen
DEPARTMENT: " & dpAnum FOR dpAlen;

& "
& "

After execution, "lineAarray" contains the following:

DATE: Feb 1, 1985 IDENTIFICATION: 854-70-1950 DEPARTMENT: 107

-''f' 82581 AOO 3/85
15-35

STATEMENTS
Move Statement

Examples of Structure Moves

1. This example moves three occurrences of the source structure
to the destination structure:

LITERAL copies = 3;

STRUCT .s[O:copies - 1]:
BEGIN

INT a;
INT b;
INT c;

END;

STRUCT .d (s) [O:copies - l];

PROC p;
BEGIN

!Number of occurrences

!Source structure

!Destination structure

d '. - ' .- s FOR copies* (($LEN(s) + 1) '>>' 1);
END; !Word move for structures;

moves three occurrences

2. This right-to-left move makes room for a new occurrence at the
beginning of a structure:

15-36

LITERAL last = 9;

STRUCT t(*);
BEGIN

INT i;
INT j;
INT k;
INT l;

END;

STRUCT . s (t) [0 : 1 as t] ;

PROC p;
BEGIN

!Last occurrence

!Template structure

!Source and destination structure

s[last] '=:' s[last-1] FOR last* (($LEN(s) + 1) '>>' 1);
END;

~ 82581 AOO 3/85

STATEMENTS
Move Statement

~· 3. This example moves three occurrences of a substructure:

LITERAL copies = 3;

STRUCT .s;
BEGIN

STRUCT sAsub[O:copies - 1];
BEGIN
INT a;
INT b;
END;

END;

STRUCT .d (s);

PROC p;
BEGIN

!Number of occurrences

!Source substructure

!Destination substructure
! is within structure "d"

d.sAsub ':='
END;

s.sAsub FOR copies* $LEN(s.sAsub);
!Byte move for substructures;
! moves three occurrences

4. This code moves structure occurrences using structure pointers:

STRUCT t (*);
BEGIN

INT a;
STRING b;

END;

!Template structure

INT .EXT ptrO(t) := %200000D; !Structure pointer to
! upper 32K

STRING .EXT ptrl(t) := %2000000D; !Structure pointer to start
! of extended segment

PROC p;
BEGIN

ptrl ':=' ptrO FOR (($LEN(t)

ptrO ':=' ptrl FOR $LEN(t);
END;

-'f 82581 AOO 3/85

+ 1) '>>' 1); !Word move
! from upper 32K to start
! of extended segment
!Byte move from extended
! segment to upper 32K

15-37

STATEMENTS
RETURN Statement

RETURN STATEMENT

The RETURN statement provides exit points from an invoked procedure or
subprocedure body back to the caller. If the invoked procedure or
subprocedure is a function, it can return a value.

The syntax for the RETURN statement is:

RETURN

RETURN <expression>

<expression>

!Untyped procedure

!Function (typed procedure)

is an arithmetic or conditional expression of the same type
as the encompassing procedure or subprocedure. <expression>
is the value to return to the caller. Specify <expression>
only when returning from functions.

A procedure or subprocedure returns to the caller when:

• A RETURN statement occurs.

• The invoked procedure or subprocedure finishes execution by
reaching the last END.

In a procedure designated MAIN, a RETURN statement stops execution of
the procedure and passes control to the operating system.

If a function does not contain a RETURN or if the TAL RP counter
setting is 7 (empty register stack), TAL emits a warning. If a
function contains a RETURN, you must specify <expression>. The value
of <expression> goes on the register stack.

For untyped procedures and subprocedures, a RETURN statement is
optional. If you do use a RETURN statement, you cannot include an
<expression> with it.

15-38 -1' 82581 AOO 3/85

~ Examples

STATEMENTS
RETURN Statement

1. This example shows RETURN statements in a function:

INT PROC other (nuff, more);
INT nuff;
INT more;

BEGIN
IF nuf f < more
THEN

RETURN nuf f * more
ELSE

RETURN O;
END;

!Function returns a value

2. This example show an untyped procedure with a RETURN statement:

PROC another;
BEGIN

INT a,
b;

IF a < b THEN RETURN;

END;

~ 82581 AOO 3/85

!Returns no value

15-39

STATEMENTS
Scan Statements

SCAN STATEMENTS

The SCAN or RSCAN statement searches a scan area for a test character
from left to right or from right to left~ respectively.

The syntax for the SCAN and RSCAN statements is:

{ SCAN } <variable> { WHILE } <test-char> [-> <next-addr>]
{ RSCAN } { UNTIL }

SCAN

indicates a left-to-right search.

RS CAN

indicates a right-to-left search.

<variable>

is the name of a variable, with or without an index, at
which to start the scan. It can be a simple variable, array,
standard pointer, structure, substructure, structure data
item, or standard structure pointer. The data must be in
the lower 32K area.

WHILE

specifies that the scan continues until a character other than
<test-char> occurs. A scan stopped by a 0 sets the hardware
CARRY bit.

UNTIL

15-40

specifies that the scan continues until <test-char> or a 0
occurs. A scan stopped by a 0 sets the hardware CARRY bit.

"'f' 82581 AOO 3/85

.:~

<test-char>

STATEMENTS
Scan Statements

is an INT arithmetic expression that evaluates to a maximum of
eight significant bits. If the value is larger than eight
significant bits, execution errors might result.

<next-addr>

is a 16-bit variable to contain the 16-bit byte address of
the character that stopped the scan, regardless of what type
<variable> is.

If the test character or a 0 does not occur during a SCAN UNTIL
operation, the scan might continue to the 32K boundary. Before doing
any scans, you can delimit the scan area as follows:

INT .buffer[-1:20] := [O," John James Jones ",O];

t___ scan delimiters ___J
A scan that stops on a 0 sets the hardware CARRY bit, which means the
test character did not occur. To check the CARRY bit, use the $CARRY
function before doing any arithmetic operations, as follows:

IF $CARRY
THEN ... ;

!If test character not found .••

IF NOT $CARRY
THEN ..• ;

!If test character found ...

Examples

The following declarations apply to the examples:

INT .buffer[-1:18] := [O," Smith, Maurice ",O];
STRING .sptr := @buffer '<<' 1;

STRING .firstl, .first2, .lastl, .last2, .comma;
INT offset, length;

Aft 82581 AOO 3/85

! INT buffer
!STRING pointer
! to INT buff er
!Pointers
!Variables

15-41

STATEMENTS
Scan Statements

In the diagrams, a circumflex (A) denotes the character that stopped
the scan. Declarations are on the previous page.

1. This example scans from element [OJ for spaces, checks the CARRY
bit, and calls a string-handling procedure if a character occurs:

SCAN s pt r[0] WHILE 11 11
-- > @ f i rs t 1 ;

IF NOT $CARRY THEN
CALL stringAhandler;

Smith, Maurice J
2. This example scans from the first character of the last name for a

comma (,), checks the CARRY bit, and calls an error-printing
procedure if a comma does not occur:

SCAN firstl UNTIL","-> @comma;
IF $CARRY THEN
CALL invalidAinput;

Smith, Maurice J
3. This example scans for spaces right to left from the location

preceding the comma. In this case, the scan starts and stops at
the same location:

RSCAN comma(-1] WHILE " " -> @lastl; Smith, Maurice J
4. This example uses <next-addr> to compute the offset of the last

name from the beginning of the array:

SCAN comma[+l] WHILE " " -> @first2;
offset := @first2 '-' @sptr;

Smith, Maurice J
I

sptr[0]
I

f irst2

5. This example uses <next-addr> to compute the length of the
character string stored in the array:

1.5-42

SCAN first2 UNTIL " " -> @last2;
length := @first! ' ' @last2;

Smith, Maurice J
I

f irstl
I

last2

4°' 82581 AOO 3/85

STATEMENTS
STACK Statement

'
0-.,l STACK STATEMENT

The STACK statement loads a value onto the register stack.

The syntax for the STACK statement is:

STACK <expression> [, <expression>] ...

<expression>

is a value to load onto the register stack. If you list
multiple values, STACK loads them from left to right. The
number of registers needed by an <expression> depends on its
data type.

You can use the register stack for temporary storage and for
optimizing critical code sections.

TAL loads values on the register stack starting at the current setting
of the RP + 1. As TAL loads each value, it increments RP by the
number of words required by the type of the value. For example, for
an INT(32) value, it increments RP by 2; for a quadword value, it
increments RP by 4.

TAL keeps track of the size and type of values being stacked and emits
appropriate machine instructions. TAL right justifies byte values;
that is, it loads them on the register stack in bits <8:15>.

If the number of registers needed exceeds the number of free
registers, TAL transfers the contents of registers R[O] through RP to
the data stack, then loads the registers starting at RP[O] with values
specified in the STACK statement.

.-,. 82581 AOO 3/85 15-43

STATEMENTS
STACK Statement

Examples

1. This example loads values of various types onto the register
stack:

STRING
INT
INT(32)

.b[0:2] := (1,2,3]
wrd : == 3;
dwrd := OD;

STACK b[2], wrd * 4, 300, dwrd;

1
12

300

1-- 0

3

-

R[O]

R[l]

R[2]

R[3]

R[4] ..,_ RP

Register Stack

2. This example shows two versions of a switch operation commonly
used in sorting. The first version needs six memory references;
the second needs only four memory references, uses the register
stack, and is faster:

INT temp;
INT x· ,
INT y;

temp := x· ,
x := y;
y := temp; !Switch operation version 1

STACK x,y;
STORE x,y; !Switch operation version 2

15-44 ..,., 82581 AOO 3/85

STATEMENTS
STORE Statement

1~ STORE STATEMENT

The STORE statement removes values from the register stack and stores
them into variables.

The syntax for the STORE statement is:

STORE <variable> [, <variable>] .••

<variable>

is the name of a variable (simple variable, array element,
pointer, or structure data item), with or without a bit
deposit field and/or index. If <variable> is a pointer,
you can use the @ symbol to update its contents as
described in Section 10.

l.......,. If the STORE statement specifies multiple variables, storage begins
with the leftmost variable.

The data type of each variable specified dictates the number of
registers to unload, starting at the current RP. If the RP setting is
too small to satisfy the variable type, TAL removes the required
number of items from the data stack, places them on the register
stack, and stores them in the variable.

Examples

1. The following example stores register contents into variables of
various types:

LITERAL len = 100;
STRING .byte[O:len - 1];
INT word;
INT(32) twowords;

STORE byte[3], word, twowords;

-''f 82581 AOO 3/85 15-45

STATEMENTS
STORE Statement

2. The following example stacks two variables, then stores them back
into the same variables:

STACK x, y;

STORE y, x;

3. The following example switches the values of two variables:

15-46

STACK x, y;
STORE x, y;

""182581 AOO 3/85

~, USE STATEMENT

STATEMENTS
USE Statement

The USE statement associates an identifier with an index register and
reserves it for your use.

The syntax for the USE statement is:

USE <name>

<name>

is an identifier to associate with an index register.

TAL associates each identifier with an index register, starting with
R[7] down to R[5]. You can then reference the identifier in
statements. For example, you can use a reserved index register to
optimize a FOR loop, as described under the FOR statement.

The following rules apply:

• You cannot reserve more than three registers at a time.

• Evaluation of certain expressions might overwrite the value in a
reserved register, such as multiplication of two FIXED values.

• If the compiler needs an index register and none is available, a
compilation error results.

• You can issue a DROP statement to release a register. (When TAL
reaches the END reserved word of a procedure or subprocedure body,
all registers are automatically dropped.)

• After you drop an index register, you cannot use its name without a
new USE statement.

"182581 AOO 3/85 15-47

STATEMENTS
USE Statement

Examples

1. This example reserves two index registers:

USE a" index; t 1 USE b''' index;

"i /'

b"index

a" index

Register Stack

R[O]

.
R[6]

R[7]

2. This example reserves an index register, then drops it:

USE x; !Reserve register

DROP x; !Free register

3. This example shows two versions of a FOR loop, the second of which r"'
uses a reserved register and runs faster (if no procedure or
function calls occur within the loop):

15-48

LITERAL len = 100;
INT .array [O:len - l];
INT i;

FOR i := 0 TO len - 1 DO
array[i] : = array[i] +

USE x;
FOR x := 0 to len - 1 DO

array[x] := array[x] +
DROP x· I

5;

5;

!Version 1

!Version 2 is faster

"''f 82581 AOO 3/85

STATEMENTS
WHILE Statement

"-'1 WHILE STATEMENT

The WHILE statement is a pretest loop that repeatedly executes a
statement while a specified condition is true.

The syntax for the WHILE statement is:

WHILE <conditional-expression> DO [<statement>]

<conditional-expression>

is a conditional expression.

<statement>

is any executable statement (including compound, null, and
WHILE statements).

The WHILE statement is useful when the number of loops needed is
unknown. It evaluates and tests <conditional-expression> before
looping; if <conditional-expression> is false after the first test,
<statement> never executes.

If <conditional-expression> is always true, <statement> executes
indefinitely unless some event in the WHILE loop causes an exit, such
as a RETURN statement.

Figure 15-8 shows the action of the WHILE statement.

"182581 AOO 3/85 15-49

STATEMENTS
WHILE Statement

next <statement>;

DO <statement>; J

85013-015

Figure 15-8. WHILE Statement Execution

Examples

1. This loop continues while "item" is not equal to zero:

LITERAL len = 100;
INT .array[O:len - 1];
INT item := 1;
INT i : = 0;

WHILE item <> 0 DO
BEGIN

item := array[i];
i := i + 1;

END;

2. This WHILE statement increments "index" until a nonalphabetic
character occurs:

15-50

LITERAL len = 255;
STRING .array[O:len - l];
INT index := -1;

WHILE (index< len - 1) AND ($ALPHA(array[index := index+ 1]))
DO • • •

-'182581 AOO 3/85

SECTION 16

PROCEDURES AND SUBPROCEDURES

Procedures and subprocedures are the executable portions of a TAL
program. They compose the block structure of the program. They
allow you to segment the program into discrete blocks or subroutines
that perform a task.

An executable program contains at least one procedure. Furthermore,
one procedure has the attribute MAIN, which identifies it as the first
procedure to execute when you run the program. A procedure can
contain subprocedures, which execute at various points within that

"'-""'. procedure.

The maximum possible size of a single procedure is 32K words minus
either the Procedure Entry Point (PEP) Table in the lower 32K area or
the External Entry Point (XEP) Table in the upper 32K area. For
information on the PEP or XEP table, see the System Description Manual
for your system.

This section describes:

• Characteristics of procedures and subprocedures

• Procedure and subprocedure declarations

• Parameters and parameter passing

• Entry-point declarations

"'82581 AOO 3/85 16-1

PROCEDURES AND SUBPROCEDURES
Characteristics of Procedures and Subprocedures

CHARACTERISTICS OF PROCEDURES AND SUBPROCEDURES

Procedures and subprocedures share the following characteristics:

• Procedures and subprocedures are parameterized. The same procedure
or subprocedure can process different sets of variables.

• Procedures and subprocedures allow all items that have global
scope (except procedures) to have local scope (in a procedure) or
sublocal scope (in a subprocedure).

• Procedures and subprocedures can be functions and return a value to
the caller. You can use the name of a function in an expression as
if it were a variable name.

• The system allocates and initializes a private data area for each
activation of a procedure or subprocedure. After each activation
completes execution, the system deallocates its data area.

• Procedures and subprocedures can receive variables, constant
expressions, and procedure names passed as parameters. (The MAIN
procedure does not receive parameters.)

....
·I

• FORWARD declarations let you reference procedures and subprocedures
before their bodies occur in the source code. Thus, you can
declare their bodies in any order. ~

• Procedures and subprocedures can call themselves; that is, they can
be recursive.

Procedures and subprocedures differ as follows:

• Procedures have global scope; you use procedures for operations
needed throughout the program. Subprocedures have local scope; you
use subprocedures for operations needed within a procedure.

• Procedures can contain subprocedures; subprocedures cannot contain
subprocedures.

• Unlike subproc~dures, procedures can be referenced as external
procedures by procedures declared in other compilations.

• A procedure has a 127-word primary storage area and a larger
secondary area. A subprocedure has a 31-word primary area and no
secondary area.

• The system invokes subprocedures more rapidly than procedures. For
subprocedures, it uses the BSUB instruction; for procedures, it
uses the PCAL instruction. These instructions are described in the
System Description Manual for your system.

16-2
~ 82581 AOO 3/85

PROCEDURES AND SUBPROCEDURES
Characteristics of Procedures and Subprocedures

~ • When you invoke a procedure, the operating system saves the
environment of the calling procedure or subprocedure. It restores
the environment when the invoked procedure completes execution.

When you invoke a subprocedure, the operating system saves only the
location to which control is to return when the invoked
subprocedure completes execution.

• Within procedures, initializations and statements can refer to
global variables or to local variables declared in that procedure.

Within subprocedures, initializations and statements can refer to
global variables, to local variables declared in the encompassing
procedure, or to sublocal variables declared in that subprocedure.

• Subprocedures can have the following attribute~only:

VARIABLE Subprocedure parameters are optional.

Procedures can have the following attributes:

MAIN This procedure executes first when you run the
program.

RESIDENT Procedure's instruction codes are not swapped in and
out of main memory when you run the program.

CALLABLE Procedure executes in privileged mode, but
nonprivileged procedures can call it.

PRIV Procedure executes in privileged mode, and only
privileged procedures can call it.

INTERRUPT Only operating system interrupt handlers can use
this attribute. When returning to its caller, the
procedure executes an IXIT (rather than an EXIT)
instruction.

VARIABLE Procedure parameters are optional.

EXTENSIBLE You can add new parameters to the procedure without
recompiling the caller.

-'f 82581 AOO 3/85
16-3

PROCEDURES AND SUBPROCEDURES
Procedure and Subprocedure Declarations

PROCEDURE AND SUBPROCEDURE DECLARATIONS

The syntax of a procedure or subprocedure declaration is:

<type>] { PROC } <identifier>
{ SUBPROC }

[<formal-param-name> [, <formal-param-name>] .••)]

[<attribute> [, <attribute] . . .] ;

[<formal-param-specif ication>

[, <formal-param-specification>] •••

{ <body> }
} { FORWARD

{ EXTERNAL } !For procedures only

<type>

specifies that the procedure or subprocedure is a function
that returns a value and indicates the data type of the
returned value. <type> is one of:

STRING
INT
INT(32)
FIXED [<fpoint>)]
REAL
REAL(64)

<identifier>

is the name of the procedure or subprocedure.

<formal-param-name>

16-4

is the name of a formal parameter. The number of formal
parameters you can declare is limited by space available in
the parameter area. See "Parameter Area" in this section.

~ 82581 AOO 3/85

PROCEDURES AND SUBPROCEDURES
Procedure and Subprocedure Declarations

<attribute>

For a subprocedure, <attribute> can be VARIABLE only.

For a procedure, <attribute> can be one or more of the
following, as defined under "Attributes" in this section:

MAIN I INTERRUPT
RESIDENT
CALLABLE
PRIV
VARIABLE I EXTENSIBLE

<formal-param-specif ication>

specifies the data type of a formal parameter and whether
it is a value or reference parameter. See "Formal Parameter
Specifications" in this section.

<body>

is a BEGIN-END construct that contains declarations and
statements. See "Procedure and Subprocedure Bodies" in this
section.

FORWARD

means the declaration for the body occurs later in the source
file (procedures) or later in this procedure (subprocedures).

EXTERNAL

applies to procedures only and means the procedure body is
declared in another compilation such as a part of the
operating system or a user library.

Operating system external declarations are contained in a
system file that you can specify in a SOURCE directive.
The system file is $SYSTEM.SYSTEM.EXTDECS[<n>], where:

EXTDECSO
EXTDECSl
EXTDECS

Af' 82581 AOO 3/85

= current release version
= current release version minus one
= current release version minus two

16-5

PROCEDURES AND SUBPROCEDURES
Formal Parameter Specifications

Formal Parameter Specifications

A formal parameter specification defines the parameter type of a
formal parameter and whether it is a value or a reference parameter.

The syntax for the formal parameter specification is:

<param-type> [. <formal-param-name> [(<referral>)]
[.EXT

[, [] <formal-param-name> [(<referral>)]]
[. EXT]

<pa ram-type>

is the parameter type of the formal parameter:

STRING
INT
INT(32)
F I XED [(< f po i n t >)]
FIXED(*)
REAL
REAL(64)
STRUCT
[<type>] PROC

. (period)

denotes a standard pointer and a reference parameter.
The absence of "." or ".EXT" denotes a value parameter .

. EXT

denotes an extended pointer and a reference parameter.
The absence of "." or ".EXT" denotes a value parameter.

<formal-param-name>

16-6

is the identifier of a formal parameter, as defined in
"Parameters" in this section.

---···-- ·---------------------'

..., 82581 AOO 3/85

PROCEDURES AND SUBPROCEDURES
Procedure and Subprocedure Bodies

<referral>

is the name of a previously declared structure or structure
pointer. <referral> is required only if <formal-param-name>
is a structure pointer.

Procedure and Subprocedure Bodies

Procedure and subprocedure bodies contain declarations and statements.

Procedure bodies and subprocedure bodies are described separately on
the following pages.

Af' 82581 AOO 3/85 16-7

PROCEDURES AND SUBPROCEDURES
Procedure Body

Procedure Body

The syntax for the procedure body is:

BEGIN

<local-declaration>

[<subprocedure-declaration>

[<statement>

END

<local-declaration>

is a declaration for one of:

Simple variable
Array (direct or indirect)
Structure (direct or indirect)
Equivalenced variable
Pointer
Structure pointer
LITERAL
DEFINE
Label
Entry point
FORWARD subprocedure

<subprocedure-declaration>

is as previously described under "Procedure and Subprocedure
Declarations" in this section.

<statement>

is any executable statement described in Section 15.

16-8 Af' 82581 AOO 3/85

....,,- Subprocedure Body

The syntax for the subprocedure body is:

BEGIN

<sublocal-declaration>

[<statement>

END

<sublocal-declaration>

is a declaration for one of:

Simple variable
Array (direct only)
Structure (direct only)
Equivalenced variable
Pointer
Structure pointer
LITERAL
DEFINE
Label
Entry point

<statement>

PROCEDURES AND SUBPROCEDURES
Subprocedure Body

is any executable statement described in Section 15.

Sublocal Variables

Data variables declared in subprocedures must be directly addressed,
because the sublocal area has no secondary storage. (See "Primary and
Secondary Storage" in Section 5.) If you declare a sublocal indirect
array, TAL converts it to a direct array and emits a warning.

""82581 AOO 3/85 16-9

PROCEDURES AND SUBPROCEDURES
Invoking Procedures, Subprocedures, and Functions

Invoking Procedures, Subprocedur~s, and Functions

You invoke procedures or subprocedures by using their names in CALL
statements. You can call a procedure from anywhere in the program.
You can call a subprocedure from within the encompassing procedure.

You invoke functions (typed procedures or subprocedures) by using
their names in expressions.

Statements in the invoked procedure or subprocedure body execute until
the last statement or a RETURN statement executes. Program execution
then returns to the point following the invocation of the procedure or
subprocedure.

The scope of items declared within a procedure or subprocedure is
limited to the same procedure or subprocedure. Thus, a local or
sublocal item can have the same name as a global item without
conflict. In this case, however, you cannot reference the global
i tern.

Examples

1. The following example shows two procedures, the second of which ·~
calls the first:

16--10

INT c;

PROC first;
BEGIN

INT a,
b;

!Some code
IF a < b THEN

RETURN;
c := a - b;

END;

PROC second;
BEGIN

!Lots of code
CALL first;
!More code

END;

!Procedure body

!Calls first procedure

/-j 82581 AOO 3/85

PROCEDURES AND SUBPROCEDURES
Invoking Procedures, Subprocedures, and Functions

·~ 2. The following example shows (1) a function that has two formal
value parameters and (2) a procedure that invokes the function
and passes actual parameters to it:

INT PROC mult (varl, var2):
INT varl,

var2:
BEGIN

RETURN varl * var2:
END;

PROC myproc;
BEGIN

INT numl := 5,
num2 : = 3,
answer;

answer := mult (numl, num2);
END;

!Formal specifications
! for value parameters

!Invokes function

3. The following example shows a FORWARD declaration for "procb", a
procedure that calls "procb" before its body is declared, and
the declaration for the body of "procb":

INT g2;

PROC procb (paraml);
INT paraml;

FORWARD;

PROC proca;
BEGIN

INT i 1 : = 2;
CALL procb (il);

END;

PROC procb (paraml);
INT paraml;

BEGIN
g2 := g2 + paraml:

END;

PROC mymain MAIN:
BEGIN

g2 := 314:
CALL proca;

END:

~ 82581 AOO 3/85

!FORWARD declaration
! for "procb"

!Declares "proca"

!Calls "procb"

!Declares body for "procb"

!Calls "proca"

16-11

PROCEDURES AND SUBPROCEDURES
Invoking Procedures, Subprocedures, and Functions

4. The following example shows how to include and invoke external
operating system procedures:

?SOURCE $SYSTEM.SYSTEM.EXTDECS (DEBUG, STOP, ...)

PROC a MAIN;
BEGIN

INT x, y, z;

!Code for manipulating x, y, and z

If x = 5 THEN CALL STOP; !Calls external procedure
CALL DEBUG;

END;

5. The following example declares a procedure and a subprocedure that
contain local and sublocal items with the same names:

16-12

PROC main2 MAIN;
BEGIN

INT a := 4;
INT b := 1;
INT c;

SUBPROC sub2 (param2);
INT param2;
BEGIN

INT a : = 5;
INT b := 2;

c := a + b + param2;
END;

a := a + b;
CALL sub2 (a);

END;

!Declares procedure

!Declares local items

!Declares subprocedure

!Declares sublocal items

!Sublocal "a" and "b"
!End of subprocedure

!Local "a" and "b"

!End of procedure

~ 82581 AOO 3/85

PROCEDURES AND SUBPROCEDURES
Attributes

~ ATTRIBUTES

.,...

Subprocedures can have only the VARIABLE attribute.

Procedures can have the following attributes:

MAIN I INTERRUPT
RESIDENT
CALLABLE
PRIV
VARIABLE I EXTENSIBLE

MAIN Attribute

This attribute causes the procedure to execute first when you run the
program. When the MAIN procedure completes execution, control passes
to the operating system STOP procedure.

If more than one procedure in a compilation has the MAIN attribute,
TAL emits a warning and puts the MAIN attribute with the first MAIN
procedure it sees. In the following example, "x" and "y" have the
MAIN attribute in the source code, but only "x" has the MAIN attribute
in the object file:

PROC x MAIN;
BEGIN

CALL this"proc;
CALL that"proc;

END;

PROC y MAIN;
BEGIN

CALL some"'proc;
END;

INTERRUPT Attribute

!This procedure is MAIN in object file

!Second MAIN procedure is not MAIN in
! object file

This attribute is used only by operating system interrupt handlers.
It causes TAL to generate an IXIT (interrupt exit) instruction instead
of an EXIT instruction at the end of execution. An example is:

PROC int"handler INTERRUPT;
BEGIN

!Do some work
END:

.., 82581 AOO 3/85 16-13

PROCEDURES AND SUBPROCEDURES
Attributes

RESIDENT Attribute

This attribute causes procedure code to remain in main memory for the
duration of program execution. The operating system does not swap
pages of this code. BINDER allocates storage for resident procedures
as the first procedures in the code space. An example is:

PROC proca RESIDENT;
BEGIN

!Do some work
END;

CALLABLE Attribute

CALLABLE means the procedure can execute privileged instructions, and
a nonprivileged procedure can call it. It is the only way a
nonprivileged program can become privileged. For information on
privileged mode, see the System Description Manual. The fallowing
callable procedure calls a privileged procedure (described next):

PROC proc2 CALLABLE;
BEGIN

CALL priv"proc;
END;

PRIV Attribute

PRIV means the procedure can execute privileged instructions, and only
other privileged procedures can call it. PRIV protects the operating
system from unauthorized calls to its internal procedures, as follows:

Nonprivileged CALLABLE PRIV
Procedures ~~-~· Procedures ~----1•• Procedures

{Application) {Operating System)

The following privileged procedure is called by the callable procedure
declared above:

PROC priv"proc PRIV;
BEGIN

!Privileged instructions
END;

16-14 4J 82581 AOO 3/85

PROCEDURES AND SUBPROCEDURES
Attributes

. ._..,., VARIABLE At tribute

This attribute means some or all of the procedure or subprocedure
parameters are optional. TAL considers all the parameters to be
optional, even if some are required by your code. The following
example declares a VARIABLE procedure:

PROC v (a, b) VARIABLE;
INT a, b;

BEGIN
!Lots of code

END;

When a call to a VARIABLE procedure or subprocedure occurs, TAL
allocates space in the parameter area for all the parameters and
generates a parameter mask, which indicates those actually passed.
The called procedure or subprocedure can use the $PARAM function to
check for receipt of each parameter.

VARIABLE Parameter Mask

The parameter mask for a VARIABLE procedure or subprocedure has the
following characteristics:

• Each formal parameter corresponds to one bit.
parameters, TAL generates a single-word mask.
parameters, TAL generates a doubleword mask.

For 16 or fewer
For more than 16

• The mask is right justified. For a single-word mask, bit <15>
corresponds to the last parameter. For a doubleword mask, bit <15>
of the low-order word corresponds to the last parameter.

• For each passed parameter, TAL sets the corresponding bit to 1.
For each omitted parameter, TAL sets the corresponding bit to O.

For procedures, a single-word mask resides in location L[-3]; a
doubleword mask resides in location L[-4:-3]. For subprocedures,
either single-word or doubleword mask resides between the last
parameter and the caller's return address.

Figure 16-1 shows an example of a single-word parameter mask for a
VARIABLE procedure "zz", whose formal parameters correspond to mask
bits <10:15>. The mask indicates which parameters are passed by
procedure "aa".

-'i' 82581 AOO 3/85
16-15

PROCEDURES AND SUBPROCEDURES
Attributes

PROC zz (pl,p2,p3,p4,p5,p6) VARIABLE;
INT pl,p2,p3,p4,p5,p6;

BEGIN

....
END;

__.. --
...
··~

__..
p

pl

p2

p3

p4 lrp5
p6

0

<10>

PROC aa MAIN;
BEGIN

INT a, b, c;

1 1

CALL zz (,a,b,,c);
END;

0 1 0

<15>

Local Data
for "aa"

Omitted L[-11]

a

b

Omitted

c

Omitted

%000032 L[-3]
)' y
/ /

~ L[1]

Local data
for "zz"

Figure 16-1. VARIABLE Single-Word Parameter Mask

Figure 16-2 shows a doubleword mask for the following example, in
which a VARIABLE procedure declares 18 formal parameters, and another
procedure passes five actual parameters to it.

I NT aa, dd, ee, ff, j j ;

PROC mask (a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r)
INT a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r;

BEGIN
!Do more processing

END;

PROC caller;
BEGIN

!Do processing
CALL mask (aa,,,dd,ee,ff,,,,jj);

END;

16-16

VARIABLE;

~ 82581 AOO 3/85

~

I......,,'

PROCEDURES AND SUBPROCEDURES
Attributes

Bit Numbers: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L (-4]: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
aa

L [-3]: 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0
dd ee ff jj

Figure 16-2. VARIABLE Doubleword Parameter Mask

Parameter Checking

The following example shows a VARIABLE procedure that contains
parameter-checking statements:

PROC errmsg (msg, count, errnum) VARIABLE;
INT .msg; !Required parameter
INT count; !Required parameter
INT errnum; !Optional parameter

BEGIN
IF NOT $PARAM (msg) OR

NOT $PARAM (count) THEN

0

0

RETURN; !If required parameters missing
IF NOT $PARAM (errnum) THEN
errnum := O; !Default for optional parameter
!Process the error .•.

END;

EXTENSIBLE Attribute

EXTENSIBLE means you can later add new parameters to the procedure
without recompiling the caller. An example declaration is:

PROC x (a, b) EXTENSIBLE;
INT a, b;

BEGIN
!Do some work

END;

!Declares EXTENSIBLE procedure

TAL considers all parameters of an EXTENSIBLE procedure to be
optional, even if some are required by your code. When a call to an
EXTENSIBLE procedure occurs, TAL allocates space in the parameter area
for all the parameters and generates a parameter mask, which indicates

-'182581 AOO 3/85
16-17

PROCEDURES AND SUBPROCEDURES
Attributes

those actually passed. The called procedure can use the $PARAM
function to check for a passed parameter, as was described for
VARIABLE procedures.

A new procedure with or without parameters can be extensible. An
existing procedure that has no parameters cannot become extensible.
An existing VARIABLE procedure can become extensible as follows.

Converting Procedures From VARIABLE to EXTENSIBLE

A VARIABLE procedure can become extensible only if:

• It has 15 or fewer parameters.

• It has 16 or fewer words of parameters.

• All parameters, except the last parameter, are one word long.

When converting a VARIABLE procedure, the required form for the
EXTENSIBLE attribute is:

EXTENSIBLE { <param-count>

<param-count>

an INT arithmetic expression in the range 1 through 15 that
defines the number of parameters declared when the procedure
was VARIABLE.

The following example converts an existing VARIABLE procedure to an
ENTENSIBLE procedure:

PROC errmsg {msg, count,
INT .msg;
INT count;
INT errnum;
INT new"param;

BEGIN
!Do something

END;

16-18

errnum, new"param) EXTENSIBLE {3);
!Required parameter
!Required parameter
!Optional parameter
!New optional parameter

"'182581 AOO 3/85

'~ EXTENSIBLE Parameter Mask

PROCEDURES AND SUBPROCEDURES
Attributes

The format for EXTENSIBLE parameter masks differs from that of
VARIABLE procedure masks, as follows:

• Each formal parameter corresponds to one or more bits, depending
on the size of the parameter. Each bit represents one word of a
parameter.

• The mask is left justified. For a single-word mask, bit <O>
corresponds to the first parameter if it is a single word. For a
doubleword mask, bit <O> of the low-order word corresponds to the
first parameter.

• For each passed parameter, TAL sets all the bits for that parameter
to 1. For each omitted parameter, TAL sets the corresponding bits
to O. The $PARAM function checks only the high-order bit that
corresponds to a parameter. (Word parameters have only one
corresponding bit.)

Figure 16-3 shows a single-word mask for the following example in
which an EXTENSIBLE procedure declares INT, INT(32), and FIXED
formal parameters. The seven formal parameters occupy 12 parameter
words. Another procedure passes four actual parameters to it.

INT aa, ff, gg;
...._.,, FIXED cc;

PROC baz (a,b,c,d,e,f ,g) EXTENSIBLE;
INT a,d,f ,g;
INT(32) b,e;
FIXED c;

BEGIN
!Code for processing

END;

PROC maz;
BEGIN

!Code for processing
CALL baz (aa,,cc,,,ff,gg);

END;

-'182581 AOO 3/85
16-19

PROCEDURES AND SUBPROCEDURES
Attributes

Bit Numbers: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L [-3]: 1 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0
aa (cc) ff gg

Figure 16-3. EXTENSIBLE Single-Word Parameter Mask

Figure 16-4 shows a doubleword mask for the following example in
which an EXTENSIBLE procedure declares INT, INT(32), and FIXED
formal parameters. The 12 formal parameters occupy 20 parameter
words. Another procedure passes five actual parameters to it.

INT aa, ff, gg;
FIXED cc;
INT(32) jj;

PROC baz (a,b,c,d,e,f ,g,h,i,j,k,l) EXTENSIBLE;
INT a,d,f ,g,k,l;
INT(32) b,e,h,i,j;
FIXED c;

BEGIN
!Do more work

END;

PROC maz;
BEGIN

!Do some work
CALL baz (aa,,cc,,,ff,gg,,,jj);

END;

Bit Numbers: 0 1 2 3 4 5

L [-4]: 1 0 0 1 1 1
aa (cc

L [-3]: 1 1 0 0 0 0
(j j)

6 7 8 9 10 11

1 0 0 0 1 1
) ff gg

0 0 0 0 0 0

12 13 14 15

0 0 0 0

0 0 0 0

Figure 16-4. EXTENSIBLE Doubleword Parameter Mask

16-20
~ 82581 AOO 3/85

~

PROCEDURES AND SUBPROCEDURES
Attributes

~.._.,,i Number of Parameter Words Passed

In addition to the parameter mask, TAL generates a one-word value that
represents the number of parameter words passed to the EXTENSIBLE
procedure. TAL stores the negative form of that value in the
parameter area immediately preceding the three-word stack marker. For
example, if four parameter words are passed, TAL stores -4.

Procedure Entry Sequence

On entry to an EXTENSIBLE procedure, the system loads the following
values on the register stack:

• For a converted VARIABLE procedure:

--R[O] = Number of parameters when the procedure was VARIABLE

--R[l] = Number of parameter words when it was VARIABLE

--R[2] = Number of parameter words now expected

RP must be 2.

~· • For a procedure that was EXTENSIBLE to begin with:

--R[O] = Number of parameter words expected

RP must be O.

The system then executes the ESE instruction, which uses the RP
setting to tell the cases apart. ESE sets RP to 7 but does not save
the values in RO through R7.

For a converted VARIABLE procedure, ESE converts the mask format to
the EXTENSIBLE format. It adds the needed bits and words and
initializes them to O. It does not initialize any extra words on the
register stack caused by the stack movement.

Af' 82581 AOO 3/85 16-21

PROCEDURES AND SUBPROCEDURES
Parameters

PARAMETERS

Each parameter requires a formal parameter name and a formal parameter
specification.

Formal parameter names provide identifiers that have local scope if
declared in a procedure body or sublocal scope if declared in a
subprocedure body. When a...call occurs, each formal parameter assumes
the. value of the corresponding passed parameter.

A formal parameter specification defines the parameter type of a
formal parameter and whether it is a value or reference parameter.

Parameter Area

The calling procedure enters the actual parameter values in the
parameter area before transferring control to the called
procedure or subprocedure.

For procedures, the parameter area limit is 29 words, less storage
required for a single-word or doubleword parameter mask, if present.
For EXTENSIBLE procedures, a word value representing the number of
parameter words passed also resides in the parameter area. Thus, f.._
the space available for the parameters of a procedure is:

VARIABLE procedure with single-word mask
VARIABLE procedure with doubleword mask
EXTENSIBLE procedure with single-word mask
EXTENSIBLE procedure with doubleword mask
Any other procedure

Parameter Words

28
27
27
26
29

For subprocedures, the parameter area limit is 30 words, less storage
required for sublocal variables and for a single-word or doubleword
VARIABLE parameter mask, if any.

16-22 4J 82581 AOO 3/85

PROCEDURES AND SUBPROCEDURES
Parameters

-~ Figure 16-5 shows an example of parameter storage.

INT .buffer[0:20];

PROC b (parml, parm2);
INT parml, parm2;

BEGIN
INT bAlocalAarray[0:12];

buffer[O] := parml + parm2;
buffer[l] := parml - parm2;
buffer[2] := parml * parm2;

END; !End of "b"

PROC a MAIN;
BEGIN

INT first,
second,
aAlocalAarray[0:2];

CALL b (first, second);
END; !End of "a"

Figure 16-5.

Value Parameters

parml

parm2

Global data

Local data
for MAIN
procedure

first

second

p

E

L

Local data
for "b"

Parameter Storage

L[-4]

L[-3]

L[O]

S[O]

If a procedure or subprocedure specifies a formal parameter without an
indirection symbol ("."or ".EXT"), you pass a value parameter.
(Structures and arrays must be reference parameters.)

Statements in the called procedure body access the passed value
parameter directly in the parameter area. They can use a value
parameter as working space within the procedure without affecting the
actual variables used to generate the value for that parameter.

A passed value parameter can be any arithmetic expression. The formal
parameter specification of the called procedure defines the data type
and storage allocation for the passed parameter (one word for INT and
STRING, two words for INT(32) and REAL, and four words for REAL(64)
and FIXED).

1' 82581 AOO 3/85 16-23

PROCEDURES AND SUBPROCEDURES
Parameters

The system right justifies STRING value parameters in the parameter
area as if they were I.NT expressions. If you want to left justify a
STRING parameter in bits <0:7> of the word, shift the value 8 bits to
the left when you call the procedure; for example:

CALL procl (byte '<<' 8)

FIXED Value Parameters

The system scales FIXED value parameters up or down to match the
<fpoint> in the parameter specification. If the <fpoint> of the
passed parameter is greater than the <fpoint> in the parameter
specification, precision is lost according to the amount of scaling
required.

To prevent scaling of the <fpoint> of the passed parameter, you
can use a parameter type of FIXED (*). The called procedure treats
the parameter as having an <fpoint> of 0.

Procedures as Value Parameters

A procedure can declare a procedure as a formal parameter. TAL treats
the identifier associated with a parameter type PROC as a procedure
name within the procedure body. TAL allocates one word in the
parameter area for the PEP number of the procedure to be passed.

If the passed procedure itself has parameters, you must make certain
that all parameters are supplied. TAL cannot perform this check.
If the passed procedure is VARIABLE or EXTENSIBLE, you must supply
the correct parameter mask. TAL treats any missing parameters in
the CALL statement as type INT value parameters.

If the passed procedure has reference parameters, each must be
preceded by an @ symbol in the call.

16-24
~ 82581 AOO 3/85

PROCEDURES AND SUBPROCEDURES
Parameters

,......,, The following example shows a procedure passed as a value parameter:

PROC a(t);
STRING .t;

BEGIN

!Declares procedure to be passed

t ':=' "NO MAN IS AN ISLAND.";
END;

PROC p(q);
PROC q;

BEGIN
STRING .s[0:20];
CALL q(@s);

END;

PROC m MAIN;
BEGIN

CALL p(a);
END;

Reference Parameters

!Declares procedure to be called
!Formal PROC parameter specification

!Calls "q" and passes address of array "s";
! "s" gets "NO MAN IS AN ISLAND."

!Calls "p" and passes procedure "a" as a
! parameter

If a procedure specifies a formal parameter with an indirection symbol
(. or .EXT), you pass a reference parameter. TAL allocates storage in
the parameter area for the address of the variable (one word for a
standard pointer and two words for an extended pointer). If required
by the procedure, TAL converts standard addresses to extended
addresses. Converting extended addresses to standard addresses,
however, is an error since the segment information in the extended
pointer is lost.

To pass a parameter by reference, place the name of the variable in
the CALL statement. TAL generates the address of the variable and
places it in the parameter area. Statements within the called
procedure access the actual variable indirectly through the parameter
location. The called procedure can store values in reference
parameters and modify the actual variables.

Aj 82581 AOO 3/85
16-25

PROCEDURES AND SUBPROCEDURES
Parameters

The caller can change the contents of a pointer by prefixing the
pointer name with an @ symbol and passing it by reference. The
following example shows how this is done:

PROC p (ptr);
INT .ptr;

BEGIN
ptr := %100000;

END;

PROC q;
BEGIN

INT .upper32k;
CALL p (@upper32K);

END;

Arrays and structures must be reference parameters. The previous
example in "Procedures as Value Parameters" specifies array "s" as a
formal reference parameter.

FIXED Reference Parameters

For FIXED reference parameters, the <fpoint> of the passed parameter
must match the <fpoint> in the parameter specification. If they do ,......
not match, TAL does not perform scaling and issues a warning. The
statements in the called procedure then apply the <fpoint> in the
formal parameter specification to the passed parameter.

Mixing Data Types of Formal and Actual Parameters

You can pass a non-STRING parameter to a formal reference parameter
that has a standard byte address. TAL converts the word address of
the actual parameter to a byte address.

You can pass a STRING variable to formal reference parameter that has
a word address. However, when TAL converts the byte address of the
actual parameter to a word address by right shifting, the byte number
is lost. If the actual variable is aligned on an even-byte boundary,
this is no problem, but if it is aligned on an odd-byte boundary, you
access a byte outside the variable. TAL issues a warning message that
right shifting occurred.

16-26 /182581 AOO 3/85

PROCEDURES AND SUBPROCEDURES
Entry-Point Declaration

1~ ENTRY-POINT DECLARATION

The entry-point declaration associates a name with a secondary
location in a procedure or subprocedure where execution can start.

The syntax for the entry-point declaration is:

ENTRY <entry-point-name> [, <entry-point-name>] ..•

<entry-point-name>

is the name of an entry point in the procedure or subprocedure
body. It is an alternate name to use when invoking the
procedure or subprocedure.

Procedure and subprocedure entry points are discussed separately
below.

Procedure Entry Points

The following rules apply:

1. Declare all entry-point names for a procedure within the
procedure.

2. Place each entry-point name and a colon (:) at a point in the
procedure at which execution is to start.

3. To invoke an entry point, reference its name in a CALL statement
located in any procedure or subprocedure. Include any actual
parameters as if you were calling the procedure~name. (~ee
Example 1.)

4. A GOTO statement to an entry point is not allowed.

5. You can declare FORWARD or EXTERNAL procedure entry points. The
syntax is the same as for a FORWARD or EXTERNAL procedure
declaration, except that you specify the name of the entry point.
The declaration must include all formal parameters and parameter
specifications declared for the procedure. (See Example 2.)

~ 82581 AOO 3/85 16-27

PROCEDURES AND SUBPROCEDURES
Entry-Point Declaration

Each time you invoke a procedure entry point, all local variables
receive their initial values.

For a procedure entry point, the reference @<entry-point-name> yields
the PEP number of the entry point.

Subprocedure Entry Points

The following rules apply:

1. Declare all entry-point names for a subprocedure within the
subprocedure.

2. Place each entry-point name and a colon (:) at a point in the
subprocedure at which execution is to start.

3. To invoke an entry point, reference its name in a CALL statement
located anywhere in the encompassing procedure, such as in another
subprocedure in the same scope. Include any actual parameters as
if you were calling the subprocedure name.

4. A GOTO statement to an entry point is not allowed.

5. You can declare FORWARD subprocedure entry points. The syntax
is the same as for a FORWARD subprocedure declaration except
that you specify the name of the entry point. The declaration
must include all formal parameters and parameter specifications
declared for the subprocedure.

Each time a you invoke a subprocedure entry point, all sublocal
variables receive their initial values.

For a subprocedure entry point, the reference @<entry-point-name>
yields the code address of the entry point.

16-28 -'1' 82581 AOO 3/85

.~
t

"-".. Examples

PROCEDURES AND SUBPROCEDURES
Entry-Point Declaration

1. This example illustrates use of entry points:

INT toAthis := 314;

PROC addA3 (g2);
INT .g2;

BEGIN

addA2
addAl
END;

ENTRY addA2, addAl;
INT m2 := 1;
g2 := g2 + m2;
g2 := g2 + m2;
g2 := g2 + m2;

PROC mymain MAIN;
BEGIN

CALL addAl (toAthis);
END;

!Global data declaration

!Declares entry points

!Entry-point location
!Entry-point location

!Main procedure

!Calls entry point

2. This example shows FORWARD declarations for entry points:

INT toAthis := 314;

PROC addAl (g2);
INT .g2;

FORWARD;

PROC addA2 (g2);
INT .g2;

FORWARD;

PROC addA3 (g2);
INT .g2;

FORWARD;

PROC mymain MAIN;
BEGIN

CALL addAl (toAthis);
END;

PROC addA3 (g2);
INT .g2;

BEGIN

~ 82581 AOO 3/85

ENTRY addA2, addAl;
INT m2 := 1;
g2 := g2 + m2;
g2 := g2 + m2;
g2 := g2 + m2;

!Declares a FORWARD entry point

!Declares a FORWARD entry point

!Declares a FORWARD procedure

!Main procedure

!Calls entry point

!Body for FORWARD procedure

!Declares entry points

!Entry-point location
!Entry-point location

16-29

SECTION 17

STANDARD FUNCTIONS

TAL provides a variety of standard functions that perform frequently
used operations.

This section contains:

• A summary of standard functions, organized by operational group

• The syntax of each function, listed in alphabetic order, and the
need for optional microcode, if any

STANDARD FUNCTIONS BY OPERATIONAL GROUP

Functions are summarized within the following groups:

• Type Transfer

• Address Conversion

• Character Test

• Minimum-Maximum

• Carry and Overflow Test

• Fixed-Point Value and Scale

• Structure

• Parameter-Checking and Register Pointer

• Miscellaneous

.., 82581 AOO 3/85 17-1

STANDARD FUNCTIONS
Standard Functions by Operational Group

Type Transfer

The type-transfer functions convert a variable of one data type into a
variable of another data type. As indicated, some functions apply
rounding to the result. This means if the least significant digit is
less than 5, it is truncated; otherwise, the result is rounded up.

$DBL returns a signed INT(32) value from an INT, FIXED(O), REAL,
or REAL(64) expression.

$DBLL returns an INT(32) value from two INT values.

$DBLR returns a signed INT(32) value from an INT, FIXED(O), REAL,
or REAL(64) expression and applies rounding to the result.

$DFIX returns a 64-bit integer from a signed doubleword integer
(the equivalent of a signed right shift of 32 positions).

$EFLT returns a REAL(64) value from an INT, INT(32), FIXED, or
REAL expression.

$EFLTR returns a REAL(64) value from an INT, INT(32), FIXED, or
REAL expression and applies rounding to the result.

$FIX

$FIXD

$FIXI

$FIXL

$FIXR

$FLT

$FLTR

$HIGH

$!FIX

$INT

17-2

returns a FIXED(O) value from an INT, INT(32), REAL, or
REAL(64) expression and applies rounding to the value.

returns the INT(32) equivalent of a FIXED expression
treated as a 64-bit integer.

returns the signed INT equivalent of a FIXED expression
treated as a 64-bit integer.

returns the unsigned INT equivalent of a FIXED expression
treated as a 64-bit integer.

returns a FIXED(O) value from an INT, INT(32), REAL, or
REAL(64) expression and applies rounding to the result.

returns a REAL value from an INT, INT(32), FIXED, or
REAL(64) expression.

returns a REAL value from an INT, INT(32), FIXED, or
REAL(64) expression and applies rounding to the result.

returns an INT value from the left half of an INT(32)
expression.

returns a 64-bit integer from a signed INT expression (the
equivalent of a signed right shift of 48 positions).

returns an INT value from INT(32), FIXED(O), REAL, or
REAL(64) expression.

.,, 82581 AOO 3/85

~

$INTR

$LFIX

$UDBL

STANDARD FUNCTIONS
Standard Functions by Operational Group

returns an INT value from an INT(32), FIXED(O), REAL, or
REAL(64) expression and applies rounding to the result.

returns a 64-bit integer from an unsigned INT expression.

returns an INT(32) value from an unsigned INT expression.

Table 17-1 cross-references the type-transfer functions according to
data type:

Table 17-1. Type-Transfer Functions by Data Type

TO

FROM INT INT(32) FIXED REAL REAL(64)

INT $DBL $IFIX $FLT $EFLT
$UDBL $LFIX $FLTR $EFLTR

INT(32) $INT $DFIX $FLT $EFLT
$HIGH $FLTR $EFLTR

FIXED $FIX! $FIXD $FLT $EFLT
$FIXL $FLTR $EFLTR

REAL $INT $DBL $FIX $EFLT
$INTR $DBLR $FIXR $EFLTR

REAL(64) $INT $DBL $FIX $FLT
$INTR $DBLR $FIXR $FLTR

Address Conversion

These functions convert standard addresses to extended addresses or
extended addresses to standard addresses.

$XADR

$LADR

converts a standard address to an extended address.

converts an extended address to a standard address.

-'182581 AOO 3/85 17-3

STANDARD FUNCTIONS
Standard Functions by Operational Group

Character Test

These functions test for an alphabetic, a numeric, or a special
(nonalphanumeric) ASCII character. They return a true value if the
character passes the test or a false value if the character fails.
You typically use these functions in conditional expressions to direct
the flow of program execution.

$ALPHA tests an expression for an alphabetic character.

$NUMERIC tests an expression for a numeric character.

$SPECIAL tests an expression for a special character.

Minimum-Maximum

These functions return the maximum or the minimum of two expressions.

$LMAX

$LMIN

$MAX

$MIN

returns the maximum of two unsigned INT expressions.

returns the minimum of two unsigned INT expressions.

returns the maximum of two signed INT, INT(32), FIXED,
REAL, or REAL(64) expressions of the same type.

returns the minimum of two signed INT, INT(32), FIXED,
REAL, or REAL(64) expressions of the same type.

Carry and Overflow Test

These functions check the state of the carry or overflow indicator in
the ENV register. They return a true value if the indicator is on or
a false value if it is off. Typically, you use these functions in
conditional expressions to direct the flow of program execution.

$CARRY tests the state of the carry indicator.

$OVERFLOW tests the state of the overflow indicator.

17-4
~ 82581 AOO 3/85

STANDARD FUNCTIONS
Standard Functions by Operational Group

~, Fixed-Point Value and Scale

These functions assist you in manipulating FIXED expressions.

$POINT returns the <fpoint> value, in integer form, associated
with a FIXED expression.

$SCALE moves the position of the implied decimal point by
adjusting the internal representation of the expression.

Structure

These functions return information about previously defined data
structures.

$LEN returns the unit length in bytes of a variable.

$OCCURS returns the number of occurrences of a STRUCT item.

$OFFSET returns the offset in bytes of a structure item from the
structure base.

$TYPE returns a value indicating the type of a variable.

Parameter-Checking and Register Pointer

These functions check for the presence or absence of a parameter in a
procedure or subprocedure call or return the current setting of the
TAL register pointer.

$PARAM checks for the presence or absence of a parameter in a
procedure or subprocedure call.

$RP returns the current setting of the TAL register pointer.

Miscellaneous

These functions return the absolute value or the one's complement of
an expression.

$ABS

$COMP

returns the absolute value of an expression.

returns the one's complement of an INT expression.

AJ182581 AOO 3/85 17-5

STANDARD FUNCTIONS
$ABS Function

$ABS FUNCTION

The $ABS function returns the absolute value of an expression.
returned value has the same data type as the expression.

The syntax for the $ABS function is:

$ABS (<expression>

<expression>

is an expression of any type as defined in Section 13 of
this manual.

The

$ABS sets the overflow indicator if the absolute value of a negative
number cannot be represented in two's complement or real format
(depending on the type of the expression). For example, $ABS (-32768)
causes an arithmetic overflow.

Example

This example assigns the absolute value of "i2" to "j2". Since "i2"
is equal to -5, "j2" receives the absolute value of (-5), which is 5.

INT i 2 : = -5,
INT j2;
j 2 : = $ABS (i 2) ;

17-6

!Sets "j2" equal to absolute value of (-5)

.-, 82581 AOO 3/85

STANDARD FUNCTIONS
$ALPHA Function

,._...., $ALPHA FUNCTION

The $ALPHA function tests the right half of an INT value for the
presence of an alphabetic character.

The syntax for the $ALPHA function is:

$ALPHA (<int-expression>

<int-expression>

is an INT expression. $ALPHA inspects bits <8:15> of
<expression> and ignores bits <0:7>.

It tests for an alphabetic character according to the
following criteria:

<int-expression> >= "A" AND <int-expression> <= "Z" OR
<int-expression> >= "a" AND <int-expression> <= "z"

$ALPHA sets the condition code indicator to "=" if an alphabetic
character occurs. If you plan to check the condition code, you must
do so before an arithmetic operation or assignment occurs.

If the character passes the test, $ALPHA returns a -1 (true);
otherwise, it returns a 0 (false).

Example

This example tests for an alphabetic character in expression
"some"'char":

STRING some"'char:
IF $ALPHA (some"'char) THEN ...

~ 82581 AOO 3/85 17-7

STANDARD FUNCTIONS
$CARRY Function

$CARRY FUNCTION

The $CARRY function checks the state of the carry bit in the ENV
register.

The syntax for the $CARRY function is:

$CARRY

If the carry bit is on, $CARRY returns a -1 (true); otherwise, it
returns a 0 (false).

Example

This example tests the state of the carry bit:

IF $CARRY THEN . . . ;

For additional examples, see the SCAN statement in Section 15.

17-8
"'82581 AOO 3/85

STANDARD FUNCTIONS
$COMP Function

The $COMP function obtains the one's complement of an INT expression.

The syntax for the $COMP function is:

$COMP (<int-expression>

<int-expression>

is an INT expression.

Example

This example assigns "someAint" a value equal to the one's complement
,.__,.. of 10:

INT someAint;

someAint := $COMP (10);

~ 82581 AOO 3/85 17-9

STANDARD FUNCTIONS
$DBL Function

$DBL FUNCTION

The $DBL function returns a signed INT(32) value from an INT,
FIXED(O), REAL, or REAL(64) expression.

The syntax for the $DBL function is:

$DBL (<expression>

<expression>

is an INT, FIXED(O), REAL, or REAL(64) expression.

$DBL sets the overflow indicator if the expression is too large in
magnitude to be represented by a 32-bit two's complement integer.

This function needs the following optional microcode:

System

Nonstop l+

Nonstop

Example

FIXED

QLD
CQD

CQD

REAL

CFD

CFD

REAL(64)

QLD
CED

CED

This example converts the INT variable "i2" into a signed INT(32)
value and assigns the result to the INT(32) variable "b32":

INT i2 := %177775;
INT(32) b32;
b3 2 : = $DBL (i 2) ;

17-10 -1182581 AOO 3/85

STANDARD FUNCTIONS
$DBLL Function

~: $DBLL FUNCTION

The $DBLL function returns an INT(32) value from two INT values.

The syntax for the $DBLL function is:

$DBLL (<int-expression> , <int-expression>)

<int-expression>

is an INT expression.

To form the INT(32) value, $DBLL places the first INT value in the
upper 16 bits and the second INT value in the lower 16 bits.

1~ Examples

1. This example returns the INT(32) value formed from "firstAint" and
"secondAint":

INT firstAint, secondAint;
INT(32) someAdouble;

!Declares variables

someAdouble := $DBLL (firstAint, secondAint);

2. This example returns an extended (32-bit) address in the current
user code segment:

INT .EXT p; !Declares extended pointer

@p := ($DBLL (2, 7)) '<<' 1; !Assigns address in code segment

"'f 82581 AOO 3/85 17-11

STANDARD FUNCTIONS
$DBLR Function

$DBLR FUNCTION

The $DBLR function returns a signed INT(32) value from an INT,
FIXED(O), REAL, or REAL(64) expression and applies rounding to the
result.

The syntax for the $DBLR function is:

$DBLR (<expression>

<expression>

is an INT, FIXED(O), REAL, or REAL(64) expression.

$DBLR sets the overflow indicator if the expression is too large in
magnitude to be represented by a 32-bit two's complement integer.

This function needs the following optional microcode:

System FIXED REAL REAL(64)

Nonstop 1+ QLD CFDR QLD
CQD CEDR

Nonstop CQD CFDR CEDR

17-12 ..,., 82581 AOO 3/85

~
I

STANDARD FUNCTIONS
$DFIX Function

~· $DFIX FUNCTION

The $DFIX function returns a 64-bit integer from a signed INT(32)
expression.

The syntax for the $DFIX function is:

$DFIX (<dbl-expression> , <fpoint>)

<dbl-expression>

is a signed INT(32) arithmetic expression.

<fpoint>

is a value in the range -19 through +19 that specifies the
position of the implied decimal point, as described in
Section 8 under "Simple Variable Declaration."

$DFIX converts a signed INT(32) expression to a 64-bit integer by
performing the equivalent of a signed right shift of 32 positions.

This function needs the following optional microcode:

System

Nonstop l+

Nonstop

-'182581 AOO 3/85

INT(32)

CDQ

CDQ

FIXED

QUP
QDWN

17-13

STANDARD FUNCTIONS
$EFLT Function

$EFLT FUNCTION

The $EFLT function returns a R~AL(64) value from an INT, INT(32),
FIXED, or REAL expression.

The syntax for the $EFLT function is:

$EFLT (<expression>

<expression>

is an INT, INT(32), FIXED, or REAL expression.

This function needs the following optional microcode:

System INT INT(32) FIXED REAL REAL(64)

Nonstop 1+ CIE CDE QLD CFE QLD
CQE

Nonstop CIE CDE CQE CFE

17-·14 4J 82581 AOO 3/85

~
l

'-"''

$EFLTR FUNCTION

STANDARD FUNCTIONS
$EFLTR Function

The $EFLTR function returns a REAL(64) value from an INT, INT(32),
FIXED, or REAL expression and applies rounding to the result.

The syntax for the $EFLTR function is:

$EFLTR <expression>

<expression>

is an INT, INT(32), FIXED, or REAL expression.

This function needs the following optional microcode:

System INT INT(32) FIXED REAL REAL(64)

Nonstop 1+ CIE COE QLD CFE QLD
CQER

Nonstop CIE COE CQER CFE

~ 82581 AOO 3/85 17-15

STANDARD FUNCTIONS
$FIX Function

$FIX FUNCTION

The $FIX function returns a FIXED(O) value from an INT, INT(32),
REAL, or REAL(64) expression.

The syntax for the $FIX function is:

$FIX (<expression>

<expression>

is an INT, INT(32), FIXED, REAL or REAL(64) expression.

$FIX sets the overflow indicator if the expression is too large in
magnitude to be represented by a 64-bit two's complement integer.

This function needs the following optional microcode:

System INT INT(32 ~ FIXED REAL REAL(64)

Nonstop 1+ CIQ CDQ QLD CFQ QLD
CEQ

Nonstop CIQ CDQ CFQ CEQ

Example

This example initializes a FIXED variable with the value that the $FIX
function returns from an INT value:

INT locall;
FIXED local := $FIX(locall);

17-16 -'182581 AOO 3/85

~

"-"' $FI XD FUNCTION

STANDARD FUNCTIONS
$FIXD Function

The $FIXD function returns an INT(32) value from a FIXED expression.

The syntax for the FIXD function is:

$FIXD (<fixed-expression>

<fixed-expression>

is a FIXED expression, which $FIXD treats as a 64-bit integer
ignoring any implied decimal point.

$FIXD sets the overflow indicator if the result cannot be represented
in a signed doubleword.

This function needs the following optional microcode:

System

Nonstop 1+

Nonstop

~ 82581 AOO 3/85

FIXED

QLD
CQD

CQD

17-17

STANDARD FUNCTIONS
$FIXI Function

$FIXI FUNCTION

The $FIXI function returns the signed INT equivalent of a FIXED
expression.

The syntax for the $FIX! function is:

$FIXI (<fixed-expression>

<fixed-expression>

is a FIXED expression, whi~h $FIXI treats as a 64-bit integer,
ignoring any implied decimal point.

$FIXI sets the overflow indicator if the result cannot be represented
in a signed 16-bit integer.

This function needs the following optional microcode:

System

Nonstop 1+

Nonstop

17-18

FIXED

QLD
CQI

CQI

~ 82581 AOO 3/85

STANDARD FUNCTIONS
$FIXL Function

$FIXL FUNCTION

The $FIXL function returns the unsigned INT equivalent of a FIXED
expression.

The syntax for the $FIXL function is:

$FIXL (<fixed-expression>

<fixed-expression>

is a FIXED expression, which $FIXL treats as a 64-bit integer,
ignoring any implied decimal point.

$FIXL sets the overflow indicator if the result cannot be represented
in an unsigned 16-bit integer.

This function needs the following optional microcode:

System

Nonstop 1+

Nonstop

~ 82581 AOO 3/85

FIXED

QLD
CQL

CQL

17-19

STANDARD FUNCTIONS
$FIXR Function

$FIXR FUNCTION

The $FIXR function returns a FIXED(O) value from an INT, INT(32),
REAL, or REAL(64) expression and applies rounding to the result.

The syntax for the $FIXR function is:

$FIXR (<expression>

<expression>

is an INT, INT(32), REAL, or REAL(64) expression.

$FIXR sets the overflow indicator if <expression> is too large in
magnitude to be represented by a 64-bit two's complement integer.

This function needs the following optional microcode:

System INT INT(32) FIXED REAL REAL(64)

Nonstop 1+ CIQ CDQ QLD CFQR QLD
CEQR

Nonstop CIQ CDQ CFQR CEQR

17-20
""82581 AOO 3/85

~

STANDARD FUNCTIONS
$FLT Function

~· $FLT FUNCTION

~·

The $FLT function returns a REAL value from an INT, INT(32), FIXED,
or REAL(64) expression.

The syntax for the $FLT function is:

$FLT (<expression>

<expression>

is an INT, INT(32), FIXED, or REAL(64) expression.

This function needs the following optional microcode:

System INT INT(32) FIXED REAL(64)

Nonstop 1+ CIF CDF QLD QLD
CQF CEF

Nonstop CIF CDF CQF CEF

Aft 82581 AOO 3/85 17-21

STANDARD FUNCTIONS
$FLTR Function

$FLTR FUNCTION

The $FLTR function returns a REAL value from an INT, INT(32), FIXED,
or REAL(64) expression and applies rounding to the result.

The syntax for the $FLTR function is:

$FLTR (<expression>

<expression>

is an INT, INT(32), REAL, or REAL(64) expression.

This function needs the following optional microcode:

Slstem INT INT(32) FIXED REAL(64)

Nonstop 1+ CIF CDFR QLD QLD
CQFR CEFR

Nonstop CIF' CDFR CQFR CEFR

17-22 Af' 82581 AOO 3/85

~

STANDARD FUNCTIONS
$HIGH Function

~· $HIGH FUNCTION

The $HIGH function returns an INT value from the left half of
an INT(32) expression.

The syntax for the $HIGH function is:

$HIGH (<dbl-expression>

<dbl-expression>

is an INT(32) expression.

Example

~ This example assigns the high-order word of "a32" to "num":

INT num:
INT(32) a32 := 65538D:

num :=$HIGH (a32):

"1J 82581 AOO 3/85 17-23

STANDARD FUNCTIONS
$IFIX Function

$IFIX FUNCTION

The $!FIX function returns a FIXED value from a signed INT expression.

The syntax for the $IFIX function is:

$IFIX (<int-expression> , <fpoint>)

<int-expression>

is a signed INT expression.

<fpoint>

is a value in the range -19 through +19 that specifies the
position of the implied decimal point, as described in
Section 8 under "Simple Variable Declaration."

When $!FIX converts the signed INT expression to a FIXED value, it
performs the equivalent of a right shift of 48 positions.

This function needs the following optional microcode:

System INT

Nonstop l+ CIQ

Nonstop CIQ

17-24
"'82581 AOO 3/85

STANDARD FUNCTIONS
$INT Function

._..,., $I NT FUNCTION

The $INT function returns an INT value from an INT(32), FIXED(O),
REAL, or REAL(64) expression.

The syntax for the $INT function is:

$INT (<expression>

<expression>

is an INT(32), FIXED(O), REAL, or REAL(64) expression.

If <expression> is type INT(32), $INT returns the low-order (least
significant) 16 bits, and no overflow occurs.

If <expression> is not type INT(32), $INT sets the overflow indicator
if <expression> is too large in magnitude to be represented by a
16-bit two's complement integer.

This function needs the following optional microcode:

System

Nonstop 1+

Nonstop

Example

FIXED

QLD
CQI

CQI

REAL

CFI

CFI

REAL(64)

QLD
CEI

CEI

The following example assigns the low-order word of "a32" to "lnum":

INT lnum;
INT(32) a32 := 655380;

lnum := $INT (a32);

~ 82581 AOO 3/85 17-25

STANDARD FUNCTIONS
$INTR Function

$INTR FUNCTION

The $INTR function returns an INT value from an INT(32), FIXED(O),
REAL, or REAL(64) expression and applies rounding to the result.

The syntax for the $INTR function is:

$INTR (<expression>

<expression>

is an INT(32), FIXED(O), REAL, or REAL(64) expression.

If <expression> is type INT(32), $INT returns the low-order (least
significant) 16 bits, and no overflow occurs.

If <expression> is not type INT(32), $INT sets the overflow indicator ~
if <expression> is too large in magnitude to be represented by a
16-bit two's complement integer.

The following optional mircrocode is required:

System FIXED REAL REAL(64) --
Nonstop 1+ QLD CFIR QLD

CQI CEIR

Nonstop CQI CFIR CEIR

17-26 -'1J 82581 AOO 3/85

"-"'. $LADR FUNCTION

STANDARD FUNCTIONS
$LADR Function

The $LADR function obtains the standard address of a variable that is
accessed through an extended pointer.

The syntax for the $LADR function is:

$LADR (<variable>)

<variable>

is a variable accessed through an extended pointer. If
<variable> is type STRING or a substructure, the standard
address is a byte address; otherwise, it is a word address.

When $LADR converts the extended address to a standard address, it
loses the segment number in the extended address. For a description

·~ of the extended address format, see Appendix A.

Example

This example initializes a standard pointer with the standard address
$LADR returns from the extended address:

STRING .EXT eptr := %100000D;
STRING .sptr := $LADR (eptr);

~ 82581 AOO 3/85

!Declares extended pointer
!Declares standard pointer and
! initializes it with converted
! standard address

17-27

STANDARD FUNCTIONS
$LEN Function

$LEN FUNCTION

The $LEN function returns the unit length (in bytes) of a variable.

The syntax for the $LEN function is:

$LEN (<variable>)

<variable>

is the name of a STRUCT item (a structure, substructure, or
STRUCT data item), as defined in Section 11.

For a structure or substructure, $LEN returns a unit length that is
the sum of the lengths of its subordinate items. Because $LEN always
returns a constant value, you can use it in LITERAL expressions.

For a non-STRUCT item, $LEN returns the number of bytes in the item~

Example

This example returns the length of one occurrence of a structure:

INT s""len;

STRUCT .s[0:3];
BEGIN
STRING arrayl[0:49];
INT(32) array2[0:199];
END;

s""len := $LEN (s[O]);

!Declares four occurrences of a
! structure

!Returns length of first occurrence

For other examples, see "Structure Functions" in Section 11 and
"Move Statement" in Section 15.

17-28 ~ 82581 AOO 3/85

I~

STANDARD FUNCTIONS
$LFIX Function

$LFIX FUNCTION

The $LFIX function returns a 64-bit integer from an unsigned INT
expression.

The syntax for the $LFIX function is:

$LFIX (<int-expression> , <fpoint>)

<int-expression>

is an unsigned INT expression.

<fpoint>

is a value in the range -19 through +19 that specifies the
position of the implied decimal point, as described in
Section 8 under "Simple Pointer Declaration."

$LFIX places the INT value in the least significant word of the
quadword and sets the three most significant words to 0.

This function needs the following optional microcode:

System INT

Nonstop l+ CLQ

Nonstop CLQ

"it 82581 AOO 3/85
17-29

STANDARD FUNCTIONS
$LMAX Function

$LMAX FUNCTION

The $LMAX function returns the maximum of two unsigned INT
expressions.

The syntax for the $LMAX function is:

$LMAX (<int-expression> , <int-expression>)

<int-expression>

is an unsigned INT arithmetic expression.

Example

This example returns the maximum of "integerl" and "integer2" and
assigns that value to "max":

INT max:
INT integerl := 68 '+' 125 '-' 43;
INT integer2 := 279 '-' 131; !Data declarations

max := $LMAX(integerl, integer2); !Returns maximum value

17-30 -1' 82581 AOO 3/85

....
f

STANDARD FUNCTIONS
$LMIN Function

$LMIN FUNCTION

The $LMIN function returns the minimum of two unsigned INT
expressions.

The syntax for the $LMIN function is:

$LMIN (<int-expression> , <int-expression>)

<int-expression>

is an unsigned INT arithmetic expression.

Example

This example returns the minimum of "integerl" and "integer2" and
assigns that value to "min":

INT min:
INT integerl := 99 I _,

23:
INT integer2 := 41 I+ I 19: !Data declarations

min := $LMIN(integerl, integer2): !Returns minimum value

"f 82581 AOO 3/85
17-31

STANDARD FUNCTIONS
$MAX Function

$MAX FUNCTION

The $MAX function returns the maximum of two signed INT, INT(32),
FIXED, REAL, or REAL(64) expressions.

The syntax for the $MAX function is:

$MAX (<expression> , <expression>

<expression>

is a signed INT, INT(32), FIXED, REAL, or REAL(64)
expression. Both expressions must be the same type.

Example

This example returns the maximum of "expl" and "exp2" and assigns that
value to "max":

REAL max;
REAL expl := 8.3E-1;
REAL exp2 := 8.2E5;

max := $MAX(expl, exp2);

17-32

!Data declarations

!Returns maximum value

~ 82581 AOO 3/85

STANDARD FUNCTIONS
$MIN Function

"~ $MIN FUNCTION

The $MIN function returns the minimum of two INT, INT(32), FIXED,
REAL, or REAL(64) expressibns.

The syntax for the $MIN function is:

$MIN (<expression> , <expression>

<expression>

is an INT, INT(32), FIXED, REAL, or REAL(64) expression.
Both expressions must be of the same type.

Example

This example returns the minimum of "expl" and "exp2" and assigns that
value to "min":

FIXED(3) min;
FIXED(3) expl := 129.653F;
FIXED(3) exp2 := 873.381F;

min := $MIN(expl, exp2);

.., 82581 AOO 3/85

!Data declarations

!Returns minimum value

17-33

STANDARD FUNCTIONS
$NUMERIC Function

$NUMERIC FUNCTION

The $NUMERIC function tests the right half of an INT value for an
ASCII numeric character.

The syntax for the $NUMERIC function is:

$NUMERIC (<int-expression>

<int-expression>

is an INT expression. $NUMERIC inspects bits <8:15> of the
expression and ignores bits <0:7>.

It tests for a numeric character according to the criterion:

<int-expression> >= "O" AND <int-expression> <= "9"

$NUMERIC sets the condition code to "<" if a numeric character occurs.
If you plan to test the condition code, you must do so before an
arithmetic operation or assignment occurs.

If the character passes the test, $NUMERIC returns a -1 (true);
otherwise, it returns a 0 (false).

This example tests for a numeric character in the expression "char":

STRING char;

IF $NUMERIC (char) THEN ...

17-34
~ 82581 AOO 3/85

STANDARD FUNCTIONS
$OCCURS Function

$OCCURS FUNCTION

The $OCCURS function returns the number of occurrences of a variable.

The syntax for the $OCCURS function is:

$OCCURS (<variable>

<variable>

is the name of a STRUCT item (a structure, substructure, or
STRUCT data item), as defined in Section 11.

For structures and substructures, $OCCURS returns the number of
occurrences. For example, for a bounds specification of [0:3],
$OCCURS returns the value 4.

$OCCURS always returns a constant value. You can use $OCCURS in
LITERAL expressions.

<variable> can also be a non-STRUCT item, but this has little meaning.
For any non-STRUCT item, $OCCURS returns a 1.

Example

This example returns the number of occurrences of "jobAdata":

INT index;

STRUCT .jobAdata[0:5];
BEGIN
INT il;
STRING sl;
END;

!Declare structure

For index := 0 to $OCCURS (jobAdata) - 1 DO ...

~ 82581 AOO 3/85
17-35

STANDARD FUNCTIONS
$OFFSET Function

$OFFSET FUNCTION

The $OFFSET function returns the number of bytes from the base of the
structure to a variable within the structure.

The syntax for the $OFFSET function is:

$OFFSET (<variable>

<variable>

is the name of a STRUCT item (a substructure or STRUCT data
item), as defined in Section 11.

The base of a structure has an offset of O.

When you qualify the name of a STRUCT item, you can use constant
indexes but not variable indexes; for example:

$OFFSET (structl.subst[l].item)

$OFFSET always returns a constant value. You can use $OFFSET in
LITERAL expressions.

For non-STRUCT items, $OFFSET returns a 0.

17-36 '1J 82581 AOO 3/85

...... r·· .. """"'!!
I

~, Example

STANDARD FUNCTIONS
$OFFSET Function

This example assigns to "c" the offset of the third occurrence of
a substructure:

STRUCT a;
BEGIN
INT array[0:40];
STRUCT ab[0:9];

BEGIN

END;
END;

INT c;

c := $OFFSET (a.ab[2]);

~ 82581 AOO 3/85

!Declares structure

!Declares substructure "ab"
! with ten occurrences

!Returns offset of third
! occurrence of "ab"

17-37

STANDARD FUNCTIONS
$OVERFLOW Function

$OVERFLOW FUNCTION

The $OVERFLOW function tests for an arithmetic overflow condition.

The syntax for the $OVERFLOW function is:

$OVERFLOW

To enable arithmetic overflow testing, you must clear the arithmetic
overflow trap bit (bit 8) in the ENV register. If an arithmetic
overflow occurs while this bit is set, a trap results.

If the overflow bit is on, $OVERFLOW returns a -1 (true); otherwise,
it returns a 0 (false).

Example

This example tests the condition of the overflow indicator:

IF NOT $OVERFLOW THEN . . • ;

17-38 "f 82581 AOO 3/85

STANDARD FUNCTIONS
$PARAM Function

~ $PARAM FUNCTION

The $PARAM function checks for the presence or absence of a parameter
in the call that invoked the current procedure or subprocedure.

The syntax for the $PARAM function is:

$PARAM (<formal-param>

<formal-param>

is the name of a formal parameter as specified in the procedure
or subprocedure declaration (described in Section 16).

If the parameter is present, $PARAM returns a 1. If the parameter is
absent, $PARAM returns a 0.

~._..,... You can only use $PARAM in a VARIABLE procedure or subprocedure or in
an EXTENSIBLE procedure. The called procedure must check for the
presence or absence of each required parameter in CALL statements.
It can check for optional parameters in the same way.

Example

This example checks for the absence of each required parameter and for
the presence of the optional parameter:

PROC varAproc (buffer,length,key) VARIABLE; !Procedure declaration
INT .buffer, length, !Required parameters

key; !Optional parameter
BEGIN

!Some code here
IF NOT $PARAM (buffer) AND NOT $PARAM (length) THEN RETURN;

!Returns 1 or 0 for each required parameter;
! AND results in true or false value

IF $PARAM (key) THEN . . . !Returns 1 if optional
END; ! parameter is present

Af' 82581 AOO 3/85 17-39

STANDARD FUNCTIONS
$POINT Function

$POINT FUNCTION

The $POINT function returns the <fpoint> value, in integer form,
associated with a FIXED expression.

The syntax for the $POINT function is:

$POINT (<fixed-expression>

<fixed-expression>

is a FIXED expression.

TAL emits no instructions when evaluating <fixed-expression>.
Therefore, you cannot use <fixed-expression> to invoke a function or
assign ·a value to a variable.

Example

This example retains precision automatically when performing fixed
point division. $POINT returns the <fpoint> value of "b" to $SCALE,
which then scales "a" by that factor:

FIXED(3) result;
FIXED(3) a~
FIXED(3) b; !Data declarations

result := $SCALE (a, $POINT (b)) I b;

17-40 /1J 82581 AOO 3/85

~._.,, $RP FUN CT I ON

STANDARD FUNCTIONS
$RP Function

The $RP function returns the current setting of the TAL RP counter.

The syntax for the $RP function is:

$RP

Example

This example assigns the current RP setting to "index":

INT index; !Data declaration

index := $RP !Returns RP setting

~ 82581 AOO 3/85 17-41

STANDARD FUNCTIONS
$SCALE Function

$SCALE FUNCTION

The $SCALE function moves the position of the implied decimal point
by adjusting the internal representation of a FIXED expression.

The syntax for the $SCALE function is:

$SCALE (<fixed-expression> , <scale>)

<fixed-expression>

is a FIXED expression.

<scale>

is an INT constant in the range -19 to +19 that defines the
number of positions to move the implied decimal point to the
left (<scale> > 0) or to the right (<scale> <= 0) of the
least significant digit.

$SCALE sets the overflow indicator if the result of the scale exceeds
the range of a 64-bit integer. $SCALE adjusts the implied decimal
point by multiplying or dividing by 10 to the <scale> power. If it
scales the operand down, some precision is lost.

This function needs the following optional microcode:

System

Nonstop 1+

Example

FIXED

QLD
QUP

This example scales the value of "a" by +3, making "a" a FIXED(6)
value. The result of the divide operation is a FIXED(3) value:

FIXED(3) result, a, b;
result := $SCALE(a, 3) I b;

17-42

!Data declarations

4l 82581 AOO 3/85

STANDARD FUNCTIONS
$SPECIAL Function

"-"'' $SPECIAL FUNCTION

The $SPECIAL function tests the right half of an INT value for an
ASCII special (nonalphanumeric) character.

The syntax for the $SPECIAL function is:

$SPECIAL <int-expression>

<int-expression>

is an INT expression. $SPECIAL inspects bits <8:15> of
<expression> and ignores bits <0:7>.

It checks for a special character according to the following
criterion:

<int-expression> <> alphabetic AND <int-expression> <> numeric

$SPECIAL sets the condition code to ">" if it finds a special
character. If you plan to check the condition code, you must do so
before an arithmetic operation or a variable assignment occurs.

If the character passes the test, $SPECIAL returns a -1 (true);
otherwise, it returns a 0 (false).

Example

This example tests the expression "char" for the presence of a special
character:

STRING char;

IF $SPECIAL (char) THEN ...

"'182581 AOO 3/85 17-43

STANDARD FUNCTIONS
$TYPE Function

$TYPE FUNCTION

The $TYPE function returns a value that indicates the type of a
variable.

The syntax for the $TYPE function is:

$TYPE (<variable>

<variable>

is any identifier that has an associated data type or is
a structure or substructure.

$TYPE returns a value that has a meaning as follows:

Value Meaning Value Meaning

0 Undefined 5 REAL
1 STRING 6 REAL(64)
2 INT 7 Substructure
3 INT(32) 8 Structure
4 FIXED

$TYPE always returns a constant value. You can use $TYPE in LITERAL
expressions.

Example

This example assigns the value returned by $TYPE to "typel":

REAL(64) varl;
INT typel:

typel := $TYPE (varl);

17-44

!Data declarations

!Returns a 6

Af' 82581 AOO 3/85

STANDARD FUNCTIONS
$UDBL Function

~ $UDBL FUNCTION

The $UDBL function returns an INT(32) value from an unsigned INT
expression.

The syntax for the $UDBL function is:

$UDBL (<int-expression>

<int-expression>

is an unsigned INT expression.

$UDBL places the INT value in the right half of an INT(32) variable
and sets the left half to O.

Example

This example returns the INT(32) value of "a16" and assigns it to
"b32":

INT a16 := %177775;
INT(32) b32;

b32 := $UDBL (a16);

/182581 AOO 3/85 17-45

STANDARD FUNCTIONS
$XADR Function

$XADR FUNCTION

The $XADR function returns an extended address for a variable that
has a standard address.

The syntax for the $XADR function is:

$XADR (<variable>)

<variable>

is a variable that has a standard address.

For a pointer variable, $XADR returns the extended address of the data
to which the pointer points, not the address of the pointer itself.

~xamples

1. This example initializes an extended pointer with the extended
address of an array:

PROC p;
BEGIN

INT .array[0:49];
STRING .EXT ptr := $XADR (array);

END;

!Declares array
!Declares and initializes
! extended pointer

2. This example returns an extended address for an INT variable to
which a standard pointer points, then assigns the extended address
to an extended pointer:

17-46

INT .stdAptr := %1000;
INT .EXT extAptr;

!Declares standard pointer
!Declares extended pointer

!Assigns extended address

~ 82581 AOO 3/85

SECTION 18

PRIVILEGED PROCEDURES

This section tells how to access the system global data area using
system global pointers, 'SG' equivalencing, and standard functions
for privileged operations.

You can access system globals only within procedures that operate in
privileged mode. Such procedures can access system data space, call
other privileged procedures, and execute certain privileged
instructions. Privileged procedures must be specially licensed to
operate, since they might (if improperly written) adversely affect

·~· the status of the processor in which they are running.

You can use system global pointers and 'SG' equivalencing:

• To access system tables and the system data area

• To initiate certain input/output transfers

• To move and compare data between the user data area and the
system data area

• To scan data in the system data area

• To perform privileged operations through calls to operating system
procedures

• To execute privileged instructions that affect other programs or
the operating system

An extended pointer can also point to system data as described in
Appendix A.

~ 82581 AOO 3/85
18-1

PRIVILEGED PROCEDURES
System Global Pointer Declaration

SYSTEM GLOBAL POINTER DECLARATION

The system global pointer declaration associates an identifier with a
variable that contains the address of a variable located in the system
global data area.

The syntax of the system global pointer declaration is:

<type> .SG <identifier> [:= <preset-address>]

[, .SG <identifier> [:=<preset-address>]] ...

<type>

.SG

is one of the following data types and specifies the type
of value to which the pointer points:

STRING
INT
INT(32)
FIXED
REAL
REAL(64)

is the indirection symbol for system global addressing. At
least one space must precede the .SG symbol; the period in
the symbol must not appear in column 1.

<identifier>

is the name of the pointer.

<preset-address>

is the address of a variable in the system global data area
determined by you or the system during system generation.

TAL allocates one word of local primary storage for the pointer in the
current user data segment. ~

18-2 .,, 82581 AOO 3/85

PRIVILEGED PROCEDURES
System Global Pointer Declaration

·~ For information about system tables, see the System Descriptioh Manual
for your system.

Example

The following example declares an INT system global pointer named
"newname":

INT .SG .newname;

"'82581 AOO 3/85 18-3

PRIVILEGED PROCEDURES
'SG'-Equivalenced Variable Declaration

'SG'-EQUIVALENCED VARIABLE DECLARATION

'SG' equivalencing associates a global, local, or sublocal identifier
with a location relative to the base address of the system global
area.

Equivalenced variables (simple variables, pointers, and structure
pointers) are described first, followed by equivalenced structures.

The syntax for the 'SG'-equivalenced variable declaration is:

{ { .EXT } { <structure-pointer> (<referral>) } }
{ { • } { <pointer> } }

<type> { }
{ <simple-variable> }

'SG' ["[" <index> "]"
[{+I-} <offset>

{ { .EXT } { <structure-pointer> (<referral>) } }
{ { • } { <pointer> } }

[, { }
{ <simple-variable> }

= 'SG' [" [" <index> "]"
[{+I-} <offset>] ...

<type>

For <structure-pointer>, <type> must be STRING or INT.
For <simple-variable> or <pointer>, <type> is any data type.

. (period)

is the indirection symbol for standard addressing .

. EXT

is the indirection symbol for extended addressing.

18-4
~ 82581 AOO 3/85

' , ,. .. ·--·~~

'"'-"''

PRIVILEGED PROCEDURES
'SG'-Equivalenced Variable Declaration

<structure-pointer>

is the identifier of a structure pointer to be made
equivalent to 'SG'.

<pointer>

is the identifier of a pointer to be made equivalent to 'SG'.

<simple-variable>

is the identifier of a simple variable to be made equivalent
to 'SG'.

<referral>

is the identifier of a previously declared structure or
structure pointer.

'SG'

is the address base of the system global data area and stands
for system global addressing; the identifier is addressed
relative to SG[O].

<index> and <offset>

are equivalent INT values in the range 0 through 63.

Example

This example makes "iteml" equivalent to the location 'SG' + 15:

INT iteml = 'SG' + 15;

'1J 82581 AOO 3/85 18-5

PRIVILEGED PROCEDURES
'SG'-Equivalenced Variable Declaration

The syntax for the 'SG'-equivalenced structure declaration is:

STRUCT [.] <structure> [(<referral>)]

= 'SG' ["[" <index> "]"
[{+I-} <offset>

[<structure~body>]

• (period)

is the indirection symbol for standard addressing.

<structure>

is the identifier of a definition or referral structure to be
made equivalent to 'SG'.

<referral>

is the identifier of a previously declared structure or
structure pointer$ Its presence means <structure> is a
referral structure and <structure-body> cannot be specified.

'SG'

is the address base of the system global data area:
<structure> is addressed relative to SG[O].

<index> and <offset>

are equivalent INT values in the range 0 through 63.

<structure-body>

18-6

is a BEGIN-END construct that contains declarations as
described in Section 11. Its presence means <structure> is a
definition structure and <referral> cannot be specified.

1' 82581 AOO 3/85

PRIVILEGED PROCEDURES
Functions for Privileged Operations

·~ FUNCTIONS FOR PRIVILEGED OPERATIONS

TAL provides four functions for performing certain operations that are
restricted to programs running in privileged mode:

• $AXADR--Converts a standard address or a relative extended address
to an absolute extended address

• $BOUNDS--Checks the locations of parameters passed to system
procedures

• $PSEM--Accesses a counting semaphone for awaiting completion of an
operation external to the calling procedure or subprocedure

• $SWITCHES--Returns the current setting of the SWITCH register

These functions are described on the following pages.

'1' 82581 AOO 3/85 18-7

PRIVILEGED PROCEDURES
$AXADR Function

$AXADR Function

The $AXADR function returns an absolute extended address.

The syntax for the $AXADR function is:

$AXADR (<variable>)

<variable>

is a variable with a standard or relative extended address to
convert to an absolute extended address. If <variable> is a
pointer, the absolute extended address of the item it points
to is returned, not the pointer's address.

Example

This example converts the standard address of "intr" to an absolute
extended address:

STRING .EXT str;
INT intr;

@str := $AXADR (intr);

END;

18-8 Af' 82581 AOO 3/85

PRIVILEGED PROCEDURES
$BOUNDS Function

"~; $BOUNDS Function

The $BOUNDS function checks the location of a parameter passed to a
system procedure to prevent an incorrect address pointer from
overlaying a system procedure stack register with data.

The syntax for the $BOUNDS function is:

$BOUNDS (<param> , <count>)

<pa ram>

is a parameter of the procedure from which the $BOUNDS
function is callable. It must not be a subprocedure
parameter.

<count>

is a value of the same data type as <param>.

$BOUNDS returns an INT result as follows: 0 for false (no bounds
error occurred) or 1 for true (bounds error occurred).

Example

This example checks the location of the parameter "buf":

PROC example (buf, z);

.
IF $BOUNDS (buf, count)
THEN

CALL error;

END;

~ 82581 AOO 3/85

!Checks for any part of "buf"
! in the procedure's stack
lif true, generates an error

18-9

PRIVILEGED PROCEDURES
$PSEM Function

$PSEM Function

The $PSEM function requests a semaphore on behalf of the caller,
allowing the caller to await completion of an external process that
uses the system resource represented by the semaphore. When the
semaphore becomes available, the caller can continue.

The syntax for the $PSEM function is:

$PSEM (<semaphore-addr> , <interval>)

<semaphore-addr>

is the address of the semaphore desired.

<interval>

is an INT(32) value that defines the maximum duration
the procedure waits for the semaphore before continuing,
specified in 10-millisecond intervals.

For further information about semaphores, see the System Description
Manual for your system.

18--10 -'iJ 82581 AOO 3/85

PRIVILEGED PROCEDURES
$SWITCHES Function

.._,,. $SWITCHES Function

The $SWITCHES function returns the current setting of the SWITCH
register to the caller.

The syntax for the $SWITCHES function is:

....------------------------------· ---~~· ---·~--

$SWITCHES

Example

The following example stores the current contents of the SWITCH
register into "n":

n := $SWITCHES;

"182581 AOO 3/85 18-11

SECTION 19

SAMPLE PROCEDURE

To illustrate some of the coding techniques used in TAL, the source
text for a simple procedure appears in Figure 19-1. This procedure
performs a conversion function typical of many algorithms in TAL.

The procedure converts a binary INT value to an ASCII (base 10) value
with a maximum length of six characters including the sign, then
returns the converted character string and its length to the calling
procedure.

Significant items in this procedure are keyed to the following
discussion:

Item

! 1!

! 2 !

! 3 !

Discussion

Comments preceding the procedure declaration describe the
purpose of the procedure. For complex procedures, you can
also summarize the input/output characteristics and the main
features of the algorithm.

The formal parameter specifications define the parameters of
the procedure. Input parameters "v" and "rjust" are value
parameters, and output parameter "stg" is a reference
parameter.

This local declaration reserves six bytes of memory for the
buffer in which the number is converted. The declaration
also initializes the first five bytes in the buffer to
blanks (using a repetition factor of 5) and sets the last
byte to an ASCII O. Thus, an input of 0 results in an
output of five blanks and a 0, rather than six blank
characters.

Aft 82581 AOO 3/85
19-1

SAMPLE PROCEDURE

! 4 !

! 5 !

! 6!

! 7 !

! 8 !

! 9 !

19-2

This IF-THEN statement deals with any negative number passed
as a parameter. When it encounters a negative number, it
sets the negative value flag to 1 and takes the absolute
value of the number passed.

This WHILE loop performs the conversion, character by
character, writing each byte to the buffer from right to
left.

This assignment statement does the actual conversion. It
illustrates an arithmetic expression that uses the standard
function $UDBL. The statement performs a residue modulo 10
operation, then biases the value of each byte up into the
numeric range by adding an ASCII 0.

This IF-NOT-THEN statement uses the assignment form of an
arithmetic expression as the condition.

This IF-THEN-ELSE statement moves the resulting character
string from the buffer into the user's target string.

The RETURN statement returns to the calling procedure the
number of characters moved.

~ 82581 AOO 3/85

SAMPLE PROCEDURE

!1! !INT PROC ASCII converts a binary INT value to an ASCII

! 2 !

! 3 !

! 4 !

! 5 !

! 6 !

! (base 10) value with a maximum length of six characters
! (including the sign), then returns the converted character
! string and its length to the calling procedure.

INT PROC
INT
INT
STRING

Ascii(v,rjust,stg);
v;
rjust;

.stg;

!INT value to convert
!Right justify result flag
!Target string

BEGIN
STRING
INT
INT
INT

.b[0:5] := [5*[" "],"O"];

IF v < 0
THEN

n;
sgn := O;
k : = 5;

BEGIN
sgn := 1;
v := -v;
END;

WHILE v
DO

BEGIN
b[k] : = $UDBL (v) '\' 10 + "0";
v := v I 10;
k := k - 1;
END;

IF sgn
THEN

BEGIN
b[k] := "-". ,
k := k - 1;
END;

!Number of digits converted
!Nonzero if 'v' is negative
!Index for converted digit

!Value is negative

!Set negative value flag
!Take absolute value

!While a value is left

!Convert a character
!Compute remainder
!Count converted character

!Number is negative

!Insert the sign
!Count it as a character

Figure 19-1. Sample Procedure (Continued on Next Page)

-''f 82581 AOO 3/85
19-3

SAMPLE PROCEDURE

!7! IF NOT {n:=5-k)
THEN

n : = 1;

!Check for an overflow

!Return 1 character in that case

!8! IF rjust !Move the resultant string to the
THEN ! user's target

stg[n-1] '=:' b[5] FOR n !Reverse move if right justified
ELSE

stg ':=' b[6-n] FOR n; !Otherwise forward move

!9! RETURN n; !Return the string's length
END ! as c i i ! ;

Figure 19-1--{Continued)

19-4
-''j 82581 AOO 3/85

SECTION 20

COMPILER OPERATION

This section describes:

• The compilation process

• The COMINT PARAM commands that TAL accepts

• The TAL run command

• TAL compiler directives

COMPILATION PROCESS

The input for a single run of the TAL compiler is a compilation unit.
A compilation unit consists of one or more source files that contain
declarations, statements, and compiler directives. Each compilation
unit compiles into an object file that consists of relocatable code
and data blocks.

You can bind an object file with other object files to build a new
object file called the target file. For a description of object
files, see the BINDER Manual.

The TAL compiler is integrated with two other processes, BINSERV
and SYMSERV. Compiler directives govern all three processes.

TAL Compiler Process

TAL compiles source code, processes compiler directives, and starts
BINSERV and SYMSERV for additional processing. TAL produces any
listings that result from the three processes.

..,. 82581 AOO 3/85 20-1

COMPILER OPERATION
Compilation Process

Compiler directives select compilation options and provide the
compile-time interface to the BINDER, CROSSREF, and INSPECT program
development tools. For example, the SYNTAX directive provides a
syntax check without object-code generation, and the SEARCH directive
lets you specify object files for BINSERV or BINDER to use for
resolving external references.

BINSERV Process

BINSERV is the compile-time binder process. If the compilation is
successful, BINSERV constructs the target file, resolving external
references by binding code and data blocks from object files into the
target file.

If the SYNTAX directive is not in effect, BINSERV is present
throughout the compilation until TAL detects an error in a source
file. Thus, the first error prevents construction of an object file.
If BINSERV is present, the output listing contains binder statistics.

You can do further binding by using BINSERV or the standalone BINDER,
described in the BINDER Manual.

SYMSERV Process

SYMSERV produces symbol tables for the object file. If the CROSSREF
directive is in effect, SYMSERV also generates source-level cross
reference information. SYMSERV is present throughout the compilation.

PARAM COMMANDS

TAL accepts three COMINT PARAM commands (SAMECPU, SWAPVOL, and
SPOOLOUT). These are summarized here and described further in the
GUARDIAN Operating System Utili~~es Reference Manual. To take effect,
these commands must precede the TAL run command.

PARAM SAMECPU Command

The PARAM SAMECPU command specifies that TAL, BINSERV, and SYMSERV all
run in the same CPU. Specify a nonzero value with this command, as
in the following example:

PARAM SAMECPU 1

20-2 Af' 82581 AOO 3/85

PARAM SWAPVOL Command

COMPILER OPERATION
PARAM Conunands

The PARAM SWAPVOL specifies the volume that TAL, BINSERV, and SYMSERV
use for temporary files. The form of this command is:

PARAM SWAPVOL [\<system>.] $<volume>

If you do not specify a volume, TAL uses the default volume; BINSERV
and SYMSERV use the volume specified to receive the target file, which
might be the default volume. Use the PARAM SWAPVOL conunand when:

• The volumes normally used for temporary files might not have
sufficient space.

• The default volume or the volume to receive the object file is on a
different system from the compiler.

On a Nonstop system, if the PARAM SWAPVOL conunand specifies another
system, TAL ignores the conunand and allocates temporary files on
the volume on which it resides.

PARAM SPOOLOUT Command

The PARAM SPOOLOUT command causes significant decreases in elapsed
time for compilations with listings, because TAL can use the Level 3
interface to the Spooler. The command form is:

PARAM SPOOLOUT 1

""1' 82581 AOO 3/85 20-3

COMPILER OPERATION
TAL Run Command

TAL RUN COMMAND

The command to run the TAL compiler is:

TAL [I [IN <source-file>] [, OUT [<list-file>]

<comint-option-list>] I] [<target-file-name>]

[; <directive> [, <directive>] •••]

<source-file>

is the name of a file (an edit-format disc file, terminal,
magnetic tape unit, or process) containing TAL declarations,
statements, and compiler directives. It is read as 132-byte
records. The default value is the COMINT <command-file>; if
COMINT is in interactive mode, this is the home terminal.

<list-file>

is the name of a file (terminal, line printer, magnetic tape
unit, process, or disc file) to receive compiler output. In
an unstructured disc file, each record has 132 characters;
partial lines are blank-filled through column 132.

If you specify OUT with no <list-file>, TAL suppresses output.
If you omit OUT, the OUT file is that of the parent process;
if you started the process under a COMINT, this is typically
the home terminal.

<comint-option-list>

20-4

is one of the RUN command options documented in the GUARDIAN
Operating System Utilities Reference Manual, such as:

NAME [<process-name>
CPU <cpu-num>
PRI <priority>
NOWAIT

The MEM option is valid but has no effect; TAL always uses
64 pages.

..,. 82581 AOO 3/85

COMPILER OPERATION
TAL Run Command

<target-file-name>

is the name of the current target file in the form:

[\<sysname>.][$<volname>.][<subvolname>.]<discfile-name>

If you omit <target-file-name>, the default value is:

\<default-system>.$<default-volume>.<default-subvol>.OBJECT

<default-system> is the system specified in the current
SYSTEM command, if you entered the command, or is the
current system you are running on.

BINSERV constructs the object file in a temporary file. If
<target-file-name> cannot be purged, BINSERV renames the
existing target file with a name in the form ZZBI<nnnn>
(where <nnnn> is a random number). BINSERV then assigns the
specified name to the current target file.

<directive>

is any compiler directive described in "Compiler Directives"
in this section, except ASSERTION, DECS, DUMPCONS, ENDIF,
IF, IFNOT, PAGE, RP, SECTION, and SOURCE.

Do not use "?" on the command line.

Examples

1. This example sets PARAM commands, then starts compilation of the
source file "mysource". It directs the listing to $SPOOL (a
spooler collector), names "myprog" as the target file, suppresses
the symbol map, and requests code mnemonics and cross-reference
listings:

PARAM SAMECPU 1
PARAM SWAPVOL $junk
PARAM SPOOLOUT 1
TAL /IN mysource, OUT $SPOOL/myprog;NOMAP,ICODE,CROSSREF

~ 82581 AOO 3/85
20-5

COMPILER OPERATION
Compiler Directives

2. This example starts compilation of the source file "talprg",
suppresses output by giving a null list file, and sets a
compilation toggle to control inclusion or exclusion of parts
of the source text:

TAL /IN talprg,OUT I SETTOG 3

COMPILER DIRECTIVES

Compiler directives specify additional input source code and options
for listings, code generation, and building of the object file.

Directive Line

A directive line in the source text begins with "?" in column 1. TAL
interprets and processes each directive at the point of occurrence.

The general form of a directive line is:

? <directive> [, <directive>] ••.

?

indicates a directive line; "?" must be in column 1.

<directive>

is a compiler directive described in this section.

The following rules apply to directive lines:

• The "?" is not part of the directive name; it appears only in
column 1.

• A directive and its arguments must be on a single line unless
otherwise noted under the directive description.

• Each continuation line for a list of directives begins with "?".

20-6 .,, 82581 AOO 3/85

COMPILER OPERATION
Summary of Compiler Directives

• Each continuation line for a single directive begins with "?".
(SOURCE and SEARCH are examples of directives that can continue on
multiple lines.)

Summary of Compiler Directives

This summary groups the directives by function and briefly describes
each. The functional groups are:

• Input control

• Listing control

• Diagnostic output control

• Code generation control

• Toggle control

• Internal control

• Object file control

In the functional groups that follow, the default is underlined for
directives that have a positive and a negative form.

Input Control

SECTION names part of a source file.

SOURCE specifies source to read from another input
file.

Listing Control

ABSLIST NOABSLIST lists C-relative addresses.

CODE NOCODE lists instructions in octal for procedures.

CROSSREF NOCROSSREF cross references source identifier classes.

DEFEXPAND NODEFEXPAND lists invoked DEFIN:Es.

GMAP NOGMAP prints global map.

"'1' 82581 AOO 3/85 20-7

COMPILER OPERATION
Summary of Compiler Directives

!CODE NOICODE lists mnemonics after each procedure.

INNERLIST NOINNERLIST lists mnemonics after each source statement.

T"'INES

NOLI ST

LMAP NOLMAP

MAP NO MAP

PAGE

PRINTSYM NOPRINTSYM

SUPPRESS NOS UPP RESS

Diagnostic Output Control

ERRORS

RELOCATE

WARN NOWARN

Code Generation Control

ASSERTION

CPU

DUMPCONS

specifies maximum number of lines per page.

lists source and enables other listings.

selects BINSERV load maps.

lists identifier map.

causes page eject; specifies a header.

selectively lists symbols.

suppresses all but header, diagnostics,
and trailer text.

sets number of error messages to terminate
TAL

issues warnings for nonrelocatable globals
(see "Object-File Control" directives).

Selectively enables warnings.

generates debugging aids.

specifies Nonstop or Nonstop 1+ system.

dumps constant table to code.

INHIBITXX NOINHIBITXX inhibits extended, indexed instruction
emission.

ROUND NO ROUND specifies scalar rounding.

SYNTAX checks syntax only; generates no code.

20-8 Aj 82581 AOO 3/85

Toggle Control

ENDIF

IF

IFNOT

RESETTOG

SETTOG

Internal Control

DECS

RP

Object-File Control

ABORT NOABORT

COMPACT NOCOMPACT

DAT AP AGES

EXTENDSTACK

INSPECT NO INSPECT

LIBRARY

PEP

RELOCATE

COMPILER OPERATION
Summar~{ of Compiler Directives

marks end of conditional source.

allows conditional compilation.

suppresses compilation.

turns toggles off.

turns toggles on.

decrements S-register value of TAL.

sets internal RP counter of TAL.

terminates compilation if TAL cannot open
source file.

fills 32K gap in code area.

defines size of data area.

defines number of pages to add to existing
stack size.

selects default debugger (INSPECT or DEBUG).

specifies Nonstop system user library for
resolving run-time external reference.

specifies PEP table size for BINSERV.

issues messages if reference made to
nonrelocatable global data.

SAVEABEND NOSAVEABEND directs INSPECT to create save file that
contains process state if program ends
abnormally.

"1' 82581 AOO 3/85 20-9

COMPILER OPERATION
Summary of Compiler Directives

SEARCH

STACK

SYMBOLS NOSYMBOLS

DIRECTIVE DESCRIPTIONS

names object files from which to resolve
external references; SEARCH with no file
name negates search list.

sets new stack size.

generates INSPECT symbol table for symbolic
debugging.

The remaining pages of this section give descriptions of directives
in alphabetic order. Unless otherwise noted, each directive applies
to all Tandem systems.

20-10 /"f 82581 AOO 3/85

ABORT Directive

COMPILER OPERATION
ABORT Directive

The ABORT directive terminates compilation if TAL cannot open the file
you specified in a SOURCE directive; it issues an error message to the
out file, stating the name of the file that cannot be opened.

The default is ABORT.

The syntax for the ABORT directive is:

[NO]ABORT

The ABORT directive is not a feature of the NcmStop 1+ software.

NOABORT causes TAL to attempt to prompt the home terminal when the
file cannot be opened.

Aft 82581 AOO 3/85
20-11

COMPILER OPERATION
ABSLIST Directive

ABSLIST Directive

The ABSLIST directive specifies that TAL lists instruction locations
relative to the base of the code area, location C[O]. {LIST must be
enabled.)

The default is NOABSLIST {that is, TAL lists addresses relative to the
base of the procedure).

The syntax for the ABSLIST directive is:

[NO]ABSLIST

To use ABSLIST, you must define the size of the PEP table to TAL
before it encounters procedure statements in the source program. You
can either:

• Include a PEP directive at the beginning of the source program

• Declare each internal procedure FORWARD or EXTERNAL before the
first procedure body

Limitations

ABSLIST attempts to maintain an overall code address: however, at
least some addresses are invalid if the file:

• Has more than 32K of code

• Has resident procedures after nonresident procedures

• Does not supply enough PEP table space in the PEP directive
or does not declare all procedures FORWARD

If the 64K limit is reached, TAL disables ABSLIST, starts printing
offsets from the procedure base, and emits a warning.

Because of these limitations, Tandem does not recommend the use of the
ABSLIST as a general practice.

20-12 Af' 82581 AOO 3/85

COMPILER OPERATION
ASSERTION Directive

ASSERTION Directive

The ASSERTION directive is a program debugging aid; it conditionally
invokes a procedure when an event defined in an ASSERT statement
occurs.

The syntax for the ASSERTION directive is:

ASSERTION [=] <assertion-level> , <procedure-name>

<assertion-level>

is an integer in the range 0 through 32767 that defines a
numeric relationship to an ASSERT statement <assert-level>.

<procedure-name>

is the name of the procedure to invoke if the event defined
in a ASSERT statement occurs and <assertion-level> is not
greater than <assert-level>. The named procedure must not
have parameters.

The corresponding ASSERT statements have the form:

ASSERT <assert-level> : <expression>;

<expression> is a conditional expression that tests a program
condition.

For an example of the ASSERTION directive, see the ASSERT statement
in Section 15.

-'182581 AOO 3/85 20-13

COMPILER OPERATION
CODE Directive

CODE Directive

The CODE directive lists instruction codes in octal if LIST is also
enabled.

NOCODE suppresses the octal code listing. The default is CODE.

The syntax for the CODE directive is:

[NO]CODE

The CODE listing for each procedure follows it in the out file.

The CODE listing might not show final G-plus addresses for global
variables. If a global variable is within a named data block, the
G-plus address shown is relative to the start of the data block. At
the end of the compilation, BINSERV creates the final G-plus address.
To display the final addresses, use BINDER and INSPECT conunands.

Other code locations affected by BINSERV are:

• Fix-up cells to global read-only arrays

• PCAL instructions

20-14
~ 82581 AOO 3/85

COMPACT Directive

COMPILER OPERATION
COMPACT Directive

The COMPACT directive directs BINSERV to move procedures if they fit
into any gap below the 32K boundary of the code area.

The default is COMPACT.

The syntax for the COMPACT directive is:

[NO]COMPACT

You can use this directive any number of times: the last use of the
directive sets the option for the compilation unit.

-'182581 AOO 3/85 20-15

COMPILER OPERATION
CPU Directive

CPU Directive

The CPU directive specifies whether the object code is to run on a
Nonstop or a Nonstop 1+ system.

The syntax for the CPU directive is:

CPU { TNS }

TNS

{ TNS/II }

indicates the object code is to run on a Nonstop 1+ system.
Nonprivileged programs compiled in this mode can also run
on a Nonstop system.

TNS/II

indicates the object code is to run on a Nonstop system.

If you do not use CPU, the default system type is the system on which
you compile the code. Guidelines for using this directive are:

• Specify the CPU directive either on the TAL run command line or in
the source code before the first declaration.

• Nonprivileged code containing Nonstop software features such as
extended addressing can compile on .either system if you specify
CPU TNS/II. Sections of code that use such features run correctly
on a Nonstop system only. The remaining code runs correctly on
either system. To determine system type, see the TOSVERSION
procedure in the System Procedure Calls Reference Manual.

• For nonprivileged code that can compile and run on either system,
specify CPU TNS as documentation.

The CPU directive also influences BINDER behavior, as described in
the BINDER Manual.

20-16 .., 82581 AOO 3/85

COMPILER OPERATION
CROSSREF Directive

CROSSREF Directive

The CROSSREF directive specifies that TAL lists source-level
cross-reference information produced during compilation and
specifies the identifier classes to process.

The default is NOCROSSREF.

The syntax for the CROSSREF directive is:

[NO]CROSSREF [<class>
[(<class> [, <class>] •..)

<class>

is one of:

BLOCKS
CONSTANTS
DEFINES
LABELS
LITERALS
PROCEDURES
PROCPARAMS
SUBPROCS
TEMPLATES
UNREF
VARIABLES

named and private data blocks
unnamed constants
named text
names for use with GOTO statements
named constants

procedures that are formal parameters

STRUCT (*) names
unreferenced identifiers

The default class list includes all classes except CONSTANTS
and UNREF. TAL does not support cross references for the
CONSTANTS class.

Generating Cross References

To start generation of cross references for the default class list,
specify CROSSREF with no parameters. To stop the generation, specify
NOCROSSREF with no parameters.

You can use CROSSREF or NOCROSSREF with no parameters for individual
procedures or data blocks. These directives take effect at the
beginning of the next procedure or data block.

"1' 82581 AOO 3/85 20-17

COMPILER OPERATION
CROSSREF Directive

[NO]CROSSREF without parameters is effective for the entire program or
until you respecify the directive. Entering [NO]CROSSREF to select a
class list has no effect on starting or stopping cross-reference
generation.

Selecting Classes

The CROSSREF directive entered to select a class list is effective for
the entire program. Although you can respecify the class list,
SYMSERV uses only the class list in effect at the end of compilation.

To add classes to the previous list, specify:

?CROSSREF, CROSSREF <add-list>

To delete classes from the previous list, specify:

?CROSSREF, NOCROSSREF <delete-list>

CROSSREF Listing

The compilation results in a single cross-reference list that follows
the global map and precedes the load maps.

CROSSREF causes cross references to be collected even if NOLIST is in
effect for all or part of the compilation. To include the collected
cross references in the listings, a LIST directive is required at the
end of the source. (This is true only for LIST and CROSSREF.)

The SUPPRESS directive turns off the cross-reference listing.

It is recommended that you use the CROSSREF directive only for simple
cross-reference listings. For other CROSSREF options, use the
standalone command-driven CROSSREF process. See the CROSSREF Manual.

Examples

1. This example adds unreferenced names to the class lists in the
printed output:

?CROSSREF , CROSSREF UNREF

20-18 .,, 82581 AOO 3/85

COMPILER OPERATION
CROSSREF Directive

2. This example deletes LITERALS from the class list and prints the
output:

?CROSSREF , NOCROSSREF LITERALS

3. This example suppresses part of the listing:

?CROSSREF
PROC p;

BEGIN

END;

?SUPPRESS
PROC q;

BEGIN

!Turn on SUPPRESS to suppress CROSSREF output

END;
?NOSUPPRESS !Turn off SUPPRESS to get CROSSREF output

4. This example selectively collects cross references:

?CROSSREF, CROSSREF UNREF, NOCROSSREF VARIABLES
NAME test;

INT i;

?NOCROSSREF
BLOCK PRIVATE;

INT j;

!No cross references collected for BLOCK

END BLOCK;

?CROSSREF, CROSSREF VARIABLES

PROC p MAIN;
BEGIN

END;

-'182581 AOO 3/85

!Variables shown; prior directive superseded

20-19

COMPILER OPERATION
DATAPAGES Directive

DATAPAGES Directive

The DATAPAGES directive overrides the default number of data pages
that BINSERV assigns for the object program.

The syntax for the DATAPAGES directive is:

DATAPAGES [=] <integer>

<integer>

is an integer in the range 0 through 64; if you specify an
out-of-range value, BINSERV sets DATAPAGES to 64.

If you omit DATAPAGES, BINSERV allocates sufficient pages for global
data and enough stack space for procedure locals twice over. If you
specify an insufficient amount, BINSERV uses the default algorithm.

You can set DATAPAGES after compilation using the BINDER SET command
options (DATA, STACK, or EXTENDSTACK).

You can increase data pages at run time using the RUN command MEM
parameter or the memory-pages parameter of the NEWPROCESS procedure.

20-20 '1' 82581 AOO 3/85

COMPILER OPERATION
DECS Directive

DECS Directive

The DECS directive decrements the TAL internal S-Register counter.

The syntax for the DECS directive is:

DECS [=] <sdec-value>

<sdec-value>

is an unsigned integer to subtract from the TAL S-Register
counter.

Use DECS when the source code manipulates the data stack.

Example

This example places the parameters for "procAname" on the data stack
using a PUSH instruction (rather than a CALL statement). ?DECS 3
decrements the TAL internal S-Register setting by 3.

SUBPROC sp;
BEGIN

STACK paraml, param2, param3;

CODE(PUSH %722);

CODE(PCAL procAname);
?DECS 3

END;

~ 82581 AOO 3/85

!Loads parameters onto
! register stack
!Pushes parameters onto
! memory stack
!Calls the procedure

20-21

COMPILER OPERATION
DEFEXPAND Directive

DEFEXPAND Directive

The DEFEXPAND directive causes the text of a DEFINE to appear in
the listing when TAL translates the DEFINE.

The default is NODEFEXPAND.

The syntax for the DEFEXPAND directive is:

[NO]DEFEXPAND

When you specify DEFEXPAND, the text of the DEFINE appears in the
listing on the lines following the name of the DEFINE. The text in
the listing differs from the text in the DEFINE declaration as
follows:

• It contains no comments, line boundaries, or extra blanks.

• Parameters to the DEFINE appear as $<number>, where <number> is
the sequence number of the parameter, starting at 1.

• Lowercase letters appear as uppercase.

The DEFINE nesting level (starting at 1) appears in the left margin.

20-22 4J 82581 AOO 3/85

COMPILER OPERATION
DUMPCONS Directives

DUMPCONS Directive

The DUMPCONS directive causes TAL to dump immediately all constants
currently in the TAL constant table into the object code.

The syntax for the DUMPCONS directive is:

DUMPCONS

TAL generates an unconditional branch around the dumped constants.
DUMPCONS can be useful prior to writing CODE statements, since range
requirements can force TAL to dump the constants within inline code.
DUMPCONS can also avoid overflow of the TAL internal constant table.

If you do not specify DUMPCONS, TAL inserts constants into the
generated code after unconditional branches and at the end of
procedures, if possible.

/182581 AOO 3/85 20-23

COMPILER OPERATION
ENDIF Directive

ENDIF Directive

The ENDIF directive terminates the range of the IF or IFNOT directive.
ENDIF is useful with toggles and CPU type. Refer also to the IF
toggle directive.

The syntax for the ENDIF directive is:

ENDIF { <toggle-number> }
{ <cpu-type> }

<toggle-number>

is an integer from 1 through 15, as specified by a SETTOG or
RESETTOG directive.

<cpu-type>

is one of the following, as specified in the CPU directive:

TNS The code executes on the Nonstop 1+ system.

TNS/II The code executes on the Nonstop system.

If other directives appear on the same line, the ENDIF directive
must be last on the line.

For an example, see the IF directive.

20-24 "'P 82581 AOO 3/85

COMPILER OPERATION
ERRORS Directive

ERRORS Directive

The ERRORS directive sets the number of error messages at which to
terminate the compilation.

The syntax for the ERRORS directive is:

ERRORS [=] <nnnnn>

<nnnnn>

is an integer in the range 0 through 32767 that specifies
the number of error messages at which to terminate the
compilation.

TAL counts the number of error messages; a single error can cause many
messages. If the count exceeds the maximum you specify, TAL
terminates the compilation. (Warning messages do not affect the
count.)

If you do not specify ERRORS, TAL does not terminate the compilation
because of the number of errors.

Aft 82581 AOO 3/85
20-25

COMPILER OPERATION
EXTENDSTACK Directive

EXTENDSTACK Directive

The EXTENDSTACK directive specifies the number of pages to add to the
BINDER's estimate of the stack size.

The syntax for the EXTENDSTACK directive is:

EXTENDSTACK <value>

<value>

is the number of pages to add to the stack size.

If you omit this directive, the default is the stack size estimated by
BINDER.

Example

This example extends the stack size by 20 pages.

?EXTENDSTACK 20

20-26 -'182581 AOO 3/85

COMPILER OPERATION
GMAP Directive

GMAP Directive

The GMAP directive instructs TAL to print a global map at the end of
the compilation listing.

NOGMAP suppresses the global map. The default is GMAP.

The syntax for the GMAP directive is:

[NO]GMAP

The GMAP directive is a not a feature of the Nonstop 1+ software.

GMAP is not effective unless the MAP directive is set. GMAP has no
effect when the NOMAP option is in effect. However, if MAP is active
you can suppress the global map by entering "?NOGMAP".

Examples

1. This example specifies that the global map is printed:

?GMAP

2. This example disables printing of the global map:

?NOGMAP

4't 82581 AOO 3/85
20-27

COMPILER OPERATION
ICODE Directive

!CODE Directive

The !CODE directive causes listing of instruction code mnemonics if
LIST is enabled.

The default is NOICODE.

The syntax for the !CODE directive is:

[NO]ICODE

The !CODE listing might not show final G-plus addresses for global
variables. If a global variable is within a named data block, the
G-plus address shown is relative to the start of the data block. At
the end of the compilation, BINSERV creates the final Ci-plus address.
To display the final addresses, use BINDER and INSPECT commands.

Other code locations affected by BINSERV are:

• Fix-up cells to global read-only arrays

• PCAL instructions

20-28
~ !32581 AOO 3/85

COMPILER OPERATION
IF Directive

IF Directive

The IF and IFNOT toggle directives specify selective compilation
depending on the indicated condition.

The syntax for the IF directive is:

IF[NOT] { <toggle-number> }
{ <cpu-type> }

<toggle-number>

is an integer from 1 through 15, as specified in a SETTOG or
RESETTOG directive.

<cpu type>

is specified by a CPU directive as one of the following:

TNS The code executes on the Nonstop 1+ system.

TNS/II The code executes on the Nonstop system.

If other directives appear on the same line, the IF[NOT] directive
must be last in the line.

"IF <toggle-number>" directs TAL to ignore subsequent text unless the
software toggle switch indicated by <toggle-number> is set by a SETTOG
directive.

"IFNOT <toggle-number>" directs TAL to ignore the text unless the
toggle is not set by a SETTOG directive.

Once skipping begins, it continues to the matching ENDIF directive.
Thus, in the following fragment, TAL skips both parts if <n> is reset:

?IF n
!Statements

?IFNOT n
!Statements

?ENDIF n

-'182581 AOO 3/85

for true condition

for false condition

20-29

COMPILER OPERATION
IF Directive

If you insert another ENDIF directive into this fragment, TAL skips
only the first part if <n> is reset:

?IF n
!Statements for true condition

?ENDIF n
?IFNOT n

!Statements for false condition
?ENDIF n

Examples

1. If CPU TNS/II is in effect, TAL compiles the code between IF
TNS/II and ENDIF TNS/II and ignores the code between IFNOT and
ENDIF:

?IF TNS/II

.
CALL WRITE (term, buff , 67);

?ENDIF TNS/II
?IFNOT TNS/II

.
CALL WRITE (term, buff2, 78);

?ENDIF TNS/II

!If the Nonstop system is the
! execution system • . •

!If the Nonstop system is not
! the execution system

2. This example tests the toggle number, finds it is ON (set by
SETTOG), and causes TAL to include the procedure:

20-30

?SETTOG 1

?IF 1
PROC some"'proc;
BEGIN

END;
?ENDIF 1

!Turns toggle number 1 ON

!Tests toggle number 1
!Toggle 1 is ON; executes
! procedure

'1J 82581 AOO 3/85

INHIBITXX Directive

COMPILER OPERATION
INHIBITXX Directive

The INHIBITXX directive suppresses generation of the extended, indexed
('XX') instructions (LWXX, SWXX, LBXX, and SBXX) for extended pointers
relocated beyond the first 64 words of primary global data.

The default is NOINHIBITXX.

The syntax for the INHIBITXX directive is:

[NO]INHIBITXX

You should specify [NO]INHIBITXX before the global declarations occur.

The 'XX' instructions assume that the extended pointer is located
between G[O] and G[63] of the primary global data area. The 'XX'
instructions are described in the System Description Manual for the
Nonstop system.

.., 82581 AOO 3/85
20-31

COMPILER OPERATION
INNERLIST Directive

INNERLIST Directive

The INNERLIST directive lists the instruction code mnemonics generated
by TAL after each statement if LIST is enabled. It also shows the TAL
RP setting.

The default is NOINNERLIST.

The syntax for the INNERLIST directive is:

[NO]INNERLIST

The INNERLIST listing is less complete than the !CODE listing. Since
TAL is a one-pass compiler, many instructions appear with skeleton or
space-holder images that TAL or BINSERV modifies later.

20-32 Aj 82581 AOO 3/85

INSPECT Directive

COMPILER OPERATION
INSPECT Directive

The INSPECT directive specifies that INSPECT is the default debugger
for the object file.

The default is NOINSPECT.

The syntax for the INSPECT directive is:

[NO] INSPECT

The last [NO]INSPECT directive in a compilation unit takes effect for
the object file.

You can also set the default debugger after compilation using:

• The SET INSPECT command of the BINDER

• The COMINT SET INSPECT and RUN commands

You cannot override INSPECT at run time.

The INSPECT, SAVEABEND and SYMBOLS directives are interrelated.
BINSERV and BIND automatically set INSPECT ON if the SAVEABEND
directive specifies creation of a save file. The NOINSPECT directive
causes BINSERV and BIND to set SAVEABEND OFF.

To use the full symbolic debugging features of INSPECT, specify the
SYMBOLS directive to generate the symbol table in the object file.
You can turn the SYMBOLS directive on and off on a procedure-by
procedure or block-by-block basis. (Even if you do not specify
SYMBOLS, INSPECT still recognizes procedure names in code locations.)

49 82581 AOO 3/85 20-33

COMPILER OPERATION
INSPECT Directive

Example

This example requests INSPECT and SAVEABEND for the entire object
file and SYMBOLS for part of the code:

? INSPECT, SYMBOLS, SAVEABEND
PROC a ;

END;
? NOSYMBOLS
PROC b ;

END;

20-34 "f B2581 AOO 3/85

LIBRARY Directive

COMPILER OPERATION
LIBRARY Directive

The LIBRARY directive specifies the name of the Nonstop software user
library to be associated with the object file at run time.

The syntax for the LIBRARY directive is:

LIBRARY <file-name>

<file-name>

specifies a user library to search before the system library
for satisfying external references.

You can also change the library name either in a BIND session or by
using the LIB parameter of the COMINT RUN command.

-''f 82581 AOO 3/85 20-35

COMPILER OPERATION
LINES Directive

LINES Directive

The LINES directive sets the maximum number of output lines per page.

The syntax for the LINES directive is:

LINES <value>

<value>

is a decimal number in the range 10 through 32767. The
default value is 60 lines per page.

The LINES directive is not a feature of the Nonstop 1+ software.

Example

This example sets the maximum number of lines per page of output
listing at 66 lines per page:

?LINES 66

20--36 ~ 82581 AOO 3/85

COMPILER OPERATION
LIST Directive

LIST Directive

The LIST directive specifies that each source image is written to the
list file and enables other list options.

The default is NOLIST.

The syntax for the LIST directive is:

[NO]LIST

You can specify the LIST directive anywhere in the source text.

The ABSLIST, CODE, !CODE, INNERLIST, MAP, LMAP, GMAP, and PAGE
directives require the LIST directive.

The SUPPRESS directive overrides LIST.

-'182581 AOO 3/85 20-37

COMPILER OPERATION
I.MAP Directive

LMAP Directive

The LMAP directive specifies the types of load-map and cross-reference
information requested from BINSERV.

NOLMAP cancels LMAP. The default is LMAP ALPHA.

The syntax for the LMAP directive is:

{ <!map-option> }
[NO]LMAP { (<!map-option> [, <!map-option>] ...) }

{ * }

<!map-option>

*

specifies the type of map: it is one of:

ALPHA

LOC

specifies load maps of procedures and data blocks
sorted by name.

specifies load maps of procedures and data blocks
sorted by starting address.

XREF

specifies an entry point and data block cross reference
for the object file. This differs from source-level
cross references produced by the CROSSREF directive.

specifies ALPHA and LOC maps and the cross-reference
listings. LMAP* is equivalent to LMAP *

NOLMAP with options specifies that, if LMAP is in effect, the stated
options are turned off. NOLMAP without options suppresses the map
entirely.

In releases before TAL EOl, LMAP (ALPHA, LOC) is equivalent to LMAP *
Now LMAP * means the output listings contain the ALPHA and LOC maps

20-38 Aj 82581 AOO 3/85

COMPILER OPERATION
LMAP Directive

and the cross-reference data that BINSERV collects. The XREF
information listed includes an entry-point cross reference and a
common data-block cross reference.

Example

This example illustrates the LMAP directive:

?LMAP (LOC, XREF) !Adds LOC and XREF to ALPHA default

.
?NOLMAP (XREF) !Deletes only XREF from the listing

"182581 AOO 3/85 20-39

COMPILER OPERATION
MAP Directive

MAP Directive

The MAP directive controls the display of identifier maps in the
listing, if LIST is enabled.

NOMAP cancels MAP. The default is MAP.

The syntax for the MAP directive is:

[NO]MAP

MAP displays sublocal identifiers following each subprocedure, local
identifiers following each procedure, and global identifiers following
the last procedure in the source program.

The MAP directive requires the LIST directive.
requires the MAP directive.

20--40

The GMAP directive

-'f 82581 AOO 3/85

COMPILER OPERATION
PAGE Directive

PAGE Directive

The PAGE directive causes a page eject on the listing file after the
first PAGE directive, prints the optional heading, then skips two
lines before listing continues.

The syntax for the PAGE directive is:

PAGE [" <heading-string> "]

<heading-string>

is a character string that contains a maximum of 61 characters
on a single line, enclosed in quotation marks.

PAGE is effective only if you specify the LIST directive.

The first PAGE directive in a source program does not cause a page
eject. Rather, it specifies an initial heading string.

A subsequent <heading-string> replaces the previous header.

The quotation marks are required delimiters; they are not printed.
If the string is too long, TAL truncates the extra characters.

If the list file is not a line printer or a process, TAL ignores
the PAGE directive.

'1'f 82581 AOO 3/85 20-41

COMPILER OPERATION
PEP Directive

PEP Directive

The PEP directive specifies the anticipated size, in words, of the
PEP table.

The syntax for the PEP directive is:

PEP [=] <pep-table-size>

<pep-table-size>

is an integer in the range 3 through 512 to use as the size of
the PEP table.

The <pep-table-size> must be at least large enough to contain the PEP,
that is, one word per entry point that is not external. It can be a
larger value.

You can respecify the PEP size at any time (without causing a warning
from TAL), or it can be insufficient for the program: in either case,
the ABSLIST addresses produced are invalid.

You should use the PEP directive if you use the ABSLIST directive so
that TAL knows how much space BINSERV allocates for the PEP. (ABSLIST
means TAL lists code-relative addresses for instruction locations).

Example

The following example illustrates the PEP directive:

?PEP 60

20-42 4' 82581 AOO 3/85

COMPILER OPERATION
PRINTSYM Directive

PRINTSYM Directive

The PRINTSYM directive enables the printing of a symbol or group of
symbols as part of the output listing.

The default is PRINTSYM. NOPRINTSYM disables PRINTSYM.

The syntax for the PRINTSYM directive is:

[NO]PRINTSYM

The PRINTSYM directive is not a feature of the Nonstop 1+ software.

You can use the PRINTSYM directive for global, local, or sublocal
declarations.

Example

This example suppresses printing in the global map of variables "i"
and "j", which are declared between the NOPRINTSYM directive and the
PRINTSYM directive:

?NOPRINTSYM
INT i;
INT j;

?PRINTSYM
INT k;

4J 82581 AOO 3/85
20-43

COMPILER OPERATION
RELOCATE Directive

RELOCATE Directive

The RELOCATE directive directs TAL to list BINSERV warnings for
declarations that depend on absolute addresses in the primary global
data area.

The syntax for the RELOCATE directive is:

RELOCATE

The binder process issues warnings for references to nonrelocatable
data during the target-file build (whether at compile time or in
command-driven mode.)

TAL checks for nonrelocatable data only if RELOCATE appears.

Since RELOCATE is only effective for the source code that follows
it, be sure to specify it at the beginning of the compilation.

Use the RELOCATE directive when the primary global data area (the area
below word 256) is relocatable. If you are using the separate
compilation features of TAL or binding TAL code with code written
in other languages, the primary global data must be relocatable.

An example of a nonrelocatable data declaration is:

INT i = 'G' + 22;

References to "i" produce a warning when RELOCATE is in effect.

20-44 ..,, 82581 AOO 3/85

COMPILER OPERATION
RESETTOG Directive

RESETTOG Directive

The RESETTOG directive turns the specified toggles to OFF.

The syntax for the RESETTOG directive is:

RESETTOG [<toggle-number> [, <toggle-number>] ..•]

<toggle-number>

is an integer from 1 through 15. If you do not specify a
<toggle-number>, TAL resets all toggles to OFF.

If other directives appear on the same line, RESETTOG must be the
last directive on the line.

The IF, ENDIF, IFNOT, and SETTOG directives also control the toggles.
For more information, refer to the SETTOG directive.

Example

This example tests the toggle, finds it is reset, and causes TAL to
skip over the source text between "IF 1" and "?ENDIF 1":

?RESETTOG 1

?If 1

PROC some"'proc:
BEGIN

END;

?ENDIF 1

4" 82581 AOO 3/85

!Turns toggle number 1 OFF

!Tests toggle, finds it turned OFF

!TAL skips procedure

20-45

COMPILER OPERATION
ROUND Directive

ROUND Directive

The ROUND directive specifies that rounding occurs when a FIXED value
is assigned to a FIXED variable with a smaller <fpoint> value.

The default is NOROUND.

The syntax for the ROUND directive is:

[NO]ROUND

ROUND scales the value of the operand, if necessary, to match the
<fpoint> of the assignment variable. If the <fpoint> of the operand
is greater than that of the variable, the operand is first scaled, if
necessary, so that its <fpoint> is one greater than the variable. The
sca~ed operand is rounded as shown below:

(IF operand < 0 THEN operand - 5 ELSE operand + 5) I 10

That is, if the operand is negative, 5 is subtracted: if positive,
5 is added. Then, an integer divide by 10 rounds the operand and
scales it down by a factor of 10. Therefore, if the absolute value of
the least significant digit of the operand after initial scaling is 5
or more, one is added to the absolute value of the final least
significant digit.

NOROUND specifies that rounding does not occur when a FIXED value is
assigned to a FIXED variable with a smaller <fpoint> value. The value
of the operand assigned to the variable is scaled, if necessary, to
match the <fpoint> value of the variable. If the <fpoint> value of
the operand is greater than that of the variable, the operand is
scaled down and some precision is lost.

20-46 '1f 82581 AOO 3/85

RP Directive

COMPILER OPERATION
RP Directive

The RP directive sets the register stack RP count that TAL uses as the
current value.

The syntax for the RP directive is:

RP [=] <register-number>

<register-number>

specifies the number to which TAL sets its internal RP count.
If you specify 7, TAL considers the register stack to be empty.

The RP value is that of the top element in the register stack. Use it
to manipulate the register stack within the source text. Refer to the
System Description Manual for register stack information.

You can use the RP directive only within a procedure.

Following each high-level statement (not CODE, STACK, or STORE), the
TAL internal RP setting is always 7.

Example

This example informs TAL that five elements are loaded and, therefore,
the current RP setting is 4:

FOR i := 0 TO 4 DO STACK(i);
?RP = 4

~ 82581 AOO 3/85
20-47

COMPILER OPERATION
SAVEABEND Directive

SAVEABEND Directive

The SAVEABEND directive causes INSPECT to generate a save file if the
process abnormally terminates during execution.

The default is NOSAVEABEND.

The syntax for the SAVEABEND directive is:

[NO]SAVEABEND

For this option to be effective at run time, INSPECT must be available
on the system that runs the process.

This directive can appear anywhere in the source program. BINSERV
uses the last specification when building the object file.

If you use SAVEABEND, BINSERV automatically sets the INSPECT directive
ON. {NOSAVEABEND does not affect the INSPECT directive.)

The save file contains data area and file-status information at the
time of failure. You can examine the save file during an INSPECT
session. INSPECT assigns the save file a name of the form ZZSA<nnnn>,
where <nnnn> is an integer. The defaults for volume and subvolume are
the object program's volume and subvolume. {You can specify a name
for the save file using INSPECT.) Refer to the INSPECT Interactive
Symbolic Debugger User's Manual for information on the save file.

You can respecify the SAVEABEND option for a process using either
the BINDER or RUN options.

20-48
.., 82581 AOO 3/85

COMPILER OPERATION
SEARCH Directive

SEARCH Directive

The SEARCH directive directs TAL to construct a list of object files
from which BINSERV can resolve unsatisfied external references and
validate parameter lists at the end of compilation.

The default is SEARCH with no file-name list, which means BINSERV does
not attempt to satisfy remaining external references: no search
occurs.

The syntax for the SEARCH directive is:

SEARCH <object-file-name>]
(<object-file-name> [, <object-file-name>] .••)]

<object-file-name>

is a valid file name for an object file: TAL provides
automatic file name expansion. Specify the names in the
order you want the search to take place.

A SEARCH directive can extend to continuation lines, each beginning
with "?" in column 1. SEARCH directives can appear anywhere in the
source code.

The search list is an ordered list that BINSERV uses to retrieve
object code at bind time for inclusion in the object file.

If multiple SEARCH directives with file names occur, BINSERV appends
the file names to the search list in the order specified. The order
is important if more than one file contains a procedure or entry-point
name that resolves an external reference. BINSERV includes the first
occurrence and ignores any subsequent occurrences.

A SEARCH directive with no file names clears the search list. BINSERV
can only satisfy external references using files that remain on the
search list at the end of compilation.

~ 82581 AOO 3/85 20-49

COMPILER OPERATION
SECTION Directive

SECTION Directive

The SECTION directive gives a name to a section of a source file for
use in a SOURCE directive.

The syntax for the SECTION directive is:

SECTION <text-name>

<text-name>

is a valid TAL identifier to associate with all source text
that follows the SECTION directive until another SECTION
directive or the end of the source file occurs.

The SECTION directive must be the only directive on the directive
line.

Example

This example gives a section name to each procedure in a source
library:

!File name "appllib"
?SECTION sortAproc
PROC sortAonAkey(keyl, key2, key3, length);

INT . keyl, • key2, . key3, length~
BEGIN

END;
?SECTION next~procedure

Another source file includes the previous file name and a section name
in a SOURCE directive:

?SOURCE appllib (sortAproc)

20-50 "'82581 AOO 3/85

COMPILER OPERATION
SETTOG Directive

SETTOG Directive

The SETTOG directive turns on all specified toggles.

The syntax for the SETTOG directive is:

SETTOG [<toggle-number> [, <toggle-number>] ..•]

<-toggle-number>

is an integer from 1 to 15; if you omit <toggle-number>, all
toggles are turned on.

If other directives appear on the same line, SETTOG must be the
last directive on the line.

The IF, ENDIF, IFNOT, and RESETTOG directives also control the
toggles.

Example

This example tests the toggle, finds it is set, and causes TAL to
compile the source text between "IF 1" and "?ENDIF 1":

?SETTOG 1

?If 1
PROC some"'proc;
BEGIN

END;
?ENDIF 1

4J 82581 AOO 3/85

!Turns toggle number 1 ON

!Tests toggle, finds it turned ON
!TAL compiles procedure

20-51

COMPILER OPERATION
SOURCE Directive

SOURCE Directive

'I'he SOURCE directive specifies a file and optional section from which
to read source statements.

The syntax for the SOURCE directive is:

SOURCE <file-name> [(<section-name>

[, <sect ion-name>] . • .)]

<file-name>

specifies the name of the disc file from which TAL reads
source statements.

<section-name>

is a name specified in a SECTION directive within the source
file <file-name>. If TAL does not find <section-name> in the
specified file, it issues a warning.

TAL processes the source file until an end of file occurs (or until
TAL reads all the sections in the section list). TAL then begins
reading at the line following the SOURCE directive. The maximum
number of source files you can have open at a time (nested SOURCE
directives) is four.

If you include other directives on the same line, the SOURCE directive
must be last in the line. The list of section names can extend to
continuation lines, each of which must begin with a "?" in column 1.

Example

This example of the SOURCE directive includes an entire file:

?SOURCE $src.current.routines

20-52 4J 82581 AOO 3/85

COMPILER OPERATION
STACK Directive

STACK Directive

The STACK directive specifies the number of pages you want as the
stack size instead of the estimated size.

The syntax for the STACK directive is:

STACK <value>

<value>

is the data stack size in pages.

If you omit this directive, the default is the space estimated by
BINSERV for local storage.

The total number of data pages is equal to the number of pages
specified plus the space required for global data blocks.

Example

This example sets the stack size to 20 pages:

?STACK 20

"'82581 AOO 3/85 20-53

COMPILER OPERATION
SUPPRESS Directive

SUPPRESS Directive

The SUPPRESS directive is a master override of the listing directives.

The default is NOSUPPRESS.

The syntax for the SUPPRESS directive is:

[NO]SUPPRESS

SUPPRESS overrides the CODE, CROSSREF, GMAP, !CODE, INNERLIST, LIST,
LMAP, MAP, and PAGE directives.

It suppresses all compilation listing output except the compiler
leader text, diagnostic messages, and the trailer text. That is, TAL
and BINSERV produce diagnostic and trailer text, but BINSERV does not
produce the load maps.

Specifying SUPPRESS on the TAL run command line suppresses the listing
without altering the source text.

Both SUPPRESS and NOSUPPRESS can appear in the source text.

20-54 -''f 132581 AOO 3/85

SYMBOLS Directive

COMPILER OPERATION
SYMBOLS Directive

The SYMBOLS directive directs TAL to include a symbol table {for
INSPECT symbolic debugging) in the object file.

The default is NOSYMBOLS.

The syntax for the SYMBOLS directive is:

[NO]SYMBOLS

You can specify the SYMBOLS directive on a procedure-by-procedure or a
block-by-block basis. For symbols in a procedure, specify SYMBOLS
before the PROC declaration. For symbols i~ a global data block,
specify SYMBOLS before the BLOCK declaration or the first global
declaration in an implicit block.

After debugging the program, you can delete symbol tables from the
object file by using the BINDER. BINDER provides two methods:

1. This method creates a new object file without symbols and copies
it to the target file. The old object file remains intact.

ADD * FROM oldobj
SET SYMBOLS OFF
BUILD newobj

2. This method deletes both symbol and BINDER tables from the old
object file and does not copy it to the target file. You can no
longer use a binder process to examine or modify the file. Before
deleting the tables, you can save the file by using the BACKUP
program described in the GUARDIAN Operating System User's Guide.

STRIP oldobj

Refer to the BINDER Manual for more information.

-'f 82581 AOO 3/85 20-55

COMPILER OPERATION
SYMBOLS Directive

E:xample

This example includes symbols in a procedure and a global data
block:

NAME the"unit;
?SYMBOLS

INT a;
STRING b;

?NOSYMBOLS

BLOCK global"data;
FIXED c;
STRING d;

END BLOCK;

?SYMBOLS
PROC uxb;
BEGIN

END;

20-56

!Include symbols in implicit block

!Stop symbols

!Include symbols in procedure

Af' 82581 AOO 3/85

SYNTAX Directive

COMPILER OPERATION
SYNTAX Directive

The SYNTAX directive requests a syntax check of the source text
without object code generation.

The syntax for the SYNTAX directive is:

SYNTAX

Specifying SYNTAX does not affect the CROSSREF directive. TAL can
generate a cross-reference listing even if it produces no object
file.

TAL automatically starts BINSERV, which is not needed if TAL produces
no object file. To prevent TAL from starting BINSERV, specify SYNTAX
on the command line, or to stop BINSERV, specify SYNTAX early in the
source text.

~ 82581 AOO 3/85
20-57

COMPILER OPERATION
WARN Directive

WARN Directive

For Nonstop software, the WARN directive prints a selected warning
or all warnings. For Nonstop 1+ software, it prints on all warnings.

NOWARN prevents printing of warnings. The default is WARN.

The syntax for the WARN directive is:

[NO]WARN [<value>]

<value>

is the number of a warning message; <value> applies only to
Nonstop software.

Even if NOWARN is in effect, the total count of warninqs that appears
in the trailer includes all warnings, whether printed or not.

Using NOWARN to suppress a warning is useful when your compilation
produces a warning and you have determined that no real problem
exists. Precede the source line that produces the message with NOWARN
and the number of the warning message you want suppressed.

To print selected warnings, you must first specify WARN. If you
enter NOWARN first, any subsequent WARN <value> diectives have no
effect.

Example

1. This example disables the printing of all warning messages:

?NOWARN

2. This example, which applies only to Nonstop software, disables the
printing of warning message 12:

?NOWARN 12

20-58 .-,. 82581 AOO 3/85

SECTION 21

COMPILER LISTING

This section describes the TAL listing and gives brief samples of
the information. A TAL listing can consist of:

• Header

• Banner

• Compiler Messages

• Source Listing

• Local or Sublocal Map

• CODE Listing

• ICODE Listing

• Global Map

• Cross-Reference Listings

• LMAP Listings

• Compilation Statistics

-'1' 82581 AOO 3/85
21-1

COMPILER LISTING
Header

HEADER

The header for each page consists of:

• The listing page number

• The name of the current source file

• The sequence number for the current source file

• The date and time of compilation in the form mm/dd/yy hh:mm:ss
(not shown in the examples that follow) in the right-hand corner of
all pages after the first

• An optional page heading caused by the PAGE directive or by TAL

In a listing for multiple source files, the pages containing load
maps, cross references, and statistics show the name and number of the
first file. The sample headers in Figure 21-1 show the case of a
multisource file listing.

page num source file name num optional heading

PAGE 1 $VOL.PROG1.SOURCE1S [1]
PAGE 2 $VOL.PROG1.SOURCE2S [2] MY ROOT SOURCE FILE
PAGE 3 $VOL.PROG1.SOURCE2S [2] MY ROOT SOURCE FILE
PAGE 4 $SHR.MSGXX.IMSGSHRS [3] INTERPROCESS MESSAGES
PAGE 59 $VOL.PROG1.SOURCE1S [1] GLOBAL MAP
PAGE 66 $VOL.PROG1.SOURCE1S [1] LOAD MAPS
PAGE 70 $VOL.PROG1.SOURCE1S [1] BINDER AND COMPILER STATISTICS

Figure 21-1. Page Headers

21-2 "'f 8~~581 AOO 3/85

COMPILER LISTING
Banner

BANNER

The first page of the listing contains a banner with the heading:

• Compiler version

• Date and time at the start of this compilation

• Language and target machine

• Default options

Figure 21-2 shows a two-line sample banner that is folded only for
illustration.

TAL - T9250BOO - 28JAN85 SOURCE LANGUAGE: TAL -
TARGET MACHINE: TANDEM NONSTOP II SYSTEM

DATE - TIME : 2/11/85 - 13:47:47
DEFAULT OPTIONS: ON (LIST,CODE,MAP, WARN,LMAP) -

OFF (ICODE,INNERLIST)

Figure 21-2. Banner

COMPILER MESSAGES

When TAL detects unusual conditions, it issues diagnostic messages
conditions interleaved with source statements. (See Appendix C for
compiler error and warning messages.)

BINSERV diagnostic messages appear during and after the source
listing. (See the BINDER Manual for BINSERV messages.)

4l 82581 AOO 3/85
21-3

COMPILER LISTING
Source Listing

SOURCE LISTING

If the LIST directive is in effect (the default), the source text for
each procedure is listed line by line. Each line consists of:

• The edit-file line number

• The off set from the procedure base of the generated code

• Lexical (nesting) level of source text

• BEGIN-END pair counter

• Text line from source file

Edit-File Line Number

An edit-file line number precedes each line of source text.
Directives entered in the command line appear before the contents of
the edit file without line numbers. For text read in response to a
SOURCE directive, the edit-file line numbers correspond to the file
named in the SOURCE directive.

Code-Address Field

The code address is a six-digit octal number. Depending on the line
of source text, it represents an instruction offset or a secondary
global count.

For a line of data declarations, the code-address value is a
cumulative count of the amount of secondary global storage allocated
for the program. The count is relative to the beginning of the
secondary global storage. The beginning address is one greater than
the last address assigned to primary global storage.

For a line of instructions, the code-address value is the address of
the first instruction generated from the TAL source statement on the
line. Normally, the octal value is the offset from the base of the
current procedure: the instruction at the base has an offset of zero.
Adding the offset to the procedure base address yields the
code-relative address of the instruction. The procedure base address
is listed in the entry-point load map (described later in this
sect ion) .

21-4 "1' 82581 AOO 3/85

COMPILER LISTING
Source Listing

If the ABSLIST directive is in effect, TAL attempts to list the
address for each line relative to location C[O]. The limitations on
the use of ABSLIST are given in the description of the directive in
Section 20.

If a procedure or subprocedure has initialized data declarations, TAL
emits code to initialize the data at the start of the procedure or
subprocedure. The offset or address listed for the first instruction
is greater than one to allow for the initialization code.

Lexical-Level Counter

The lexical-level counter is a single-digit number. It represents the
compiler's interpretation of the current' source line, as follows:

Value

0
1
2

BEGIN-END Pair Counter

Lexical Level

Global level
Procedure level
Subprocedure level

The BEGIN-END pair counter indicates nesting of procedures and
subprocedures.

TAL counts BEGIN keywords and matches each BEGIN with an END keyword
in STRUCT declarations and in instruction-generating code by
incrementing the counter for each BEGIN and decrementing it for each
END. TAL displays the value of the counter for each line of source
text.

Figure 21-3 is a sample listing page in which TAL reads text from
another file (see SOURCE directive in line 4).

49 82581 AOO 3/85 21-5

COMPILER LISTING
Source Listing

2. 000000
3. 000000
4. 000000
1. 000000
2. 000000
3. 000000
4. 000000
5. 000000
6. 000000
7. 000000
5. 000000

.
24. 000000
25. 000000
26. 000000
27. 000004
28. 000004

.
31. 000021
32. 000023
33. 000032

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0 0
1 0
1 1
1 1
1 1

1 1
1 2
1 2

?!CODE, SYMBOLS, SAVEABEND, INSPECT

NAME outAf ileAhandler:

?SOURCE outd
!Out file size declarations

BLOCK out"'data:
LITERAL

outblklen = 1024,
out"'rec"'len == 256:

END BLOCK; >

PROC outAfileAinit:
BEGIN

STRING ext"'name [0: 7] := [llf TPR "] :
INT internal"'name [0:11];
INT length, error:

IF length THEN BEGIN
CALL OPEN {internalAname, out"'file):
IF < THEN BEGIN

34. 000033 1 3 CALL FILEOPEN {out"'file, error);

37.
38.
39.

21-6

.
000051
000051
000051

1 3 END:
1 2 END
1 1 ELSE BEGIN

Lt__ BEGIN-END Pair Counter

Lexical-Level Counter

Code Address Field

Line Number From Edit File

Figure 21-3. Source Listing

4182581 AOO 3/85

COMPILER LISTING
Local or Sublocal Map

LOCAL OR SUBLOCAL MAP

If the MAP directive in effect (the default), the map of local or
sublocal identifiers follows the corresponding source listing. This
map gives the following information:

• Class--VARIABLE, SUBPROC, ENTRY, LABEL, DEFINE, or LITERAL

For STRUCT variables, it is "VARIABLE,<n>" (where <n> is an
octal value giving the length in bytes).

• Type--The contents of this field depend on the identifier class:

--For the VARIABLE class~ the type is STRING, INT, INT(32), REAL,
REAL(64), FIXED, STRUCT, STRUCT-I, SUBSTRUCT, or TEMPLATE (bytes
in octal). STRUCT-I means an INT structure pointer.

--For the SUBPROC, LABEL, ENTRY, and DEFINE classes, this field is
blank.

• The next field is one of:

--Address Mode (DIRECT or INDIRECT)

--Offset of SUBPROC, ENTRY, or LABEL in the form "%nnnnnn"

The offset is relative to the base of the mapped PROC or SUBPROC.
For nested subprocedures, the base corresponds to the current
map.

--Value declared for a LITERAL or DEFINE

TAL prints DEFINE values to the end of the listing line, then
truncates the rest.

• Relative Address--For data, it consists of the base (L+, L-, P+, or
X) and the offset from the base in octal:

--L+<nnn> for local variables

--L-<nnn> for parameters

--P+<nnn> for read-only (P-relative) arrays

--X OO<n> for index registers

...,. 82581 AOO 3/85 21-7

COMPILER LISTING
CODE Listing

Figure 21-4 shows a local map corresponding to the following function
procedure:

INT PROC
INT
INT(32)

BEGIN
INT
INT
USE
USE

computeAhash (name, tableAlength);
.name;
tableAlength;

intAtableAlength := $INT(tableAlength);
hashAval := O;
name"' index;
nameA limit:

nameAlimit := name.<8:14>;
FOR nameAindex := 0 TO nameAlimit DO

hashAval := ((hashAval '<<' 3) LOR hashAval.<0:2>)
XOR name[nameAindex];

RETURN $UDBL($INT (hashAval '*' 23971)) '\' intAtable"'length;
END; !computeAhash

Identifer Name Class Type Address Relative
Mode Address

HASW'VAL VARIABLE INT DIRECT L+002
INTATABLE"'LENGTH VARIABLE INT DIRECT L+OOl
NAME VARIABLE INT INDIRECT L-005
NAME"' INDEX VARIABLE INT DIRECT x 007
NAME"' LIMIT VARIABLE INT DIRECT x 006
TABLE A LENGTH VARIABLE INT(32) DIRECT L-004

Figure 21-4. Local Map

CODE LISTING

If CODE (the default) and LIST are in effect, TAL produces an octal
code listing following the local map if one exists.

I~igure 21-5 shows a sample CODE listing corresponding to the previous
hash procedure. The octal address in the left-hand column is the
dffset from the procedure base. (If ABSLIST is in effect, TAL
attempts to list code-relative addresses.) Each octal address is
followed by eight words of instructions to the end of the procedure.

21-8 .,. 82581 AOO 3/85

Address Octal Instruction Words

COMPILER LISTING
ICODE Listing

00000 060704 000110 100000 024711 140705 030101 006177 000116
00010 103777 000136 010410 040402 030003 040402 030115 000011

00020 143705 000012 044402 013767 100000 040402 005135 004243
00030 000202 000111 040401 000203 000100 125006

Figure 21-5. CODE Listing

ICODE LISTING

If !CODE and LIST are in effect, TAL produces a instruction mnemonic
listing. Figure 21-6 shows a sample !CODE listing that is equivalent
to the CODE sample.

Address Instruction Mnemonics

000000 1 LDD L-004 0 STAR 0 1 LDI +000
7 PUSH 711 0 LOAD L-005,I 0 LRS 01

000006 0 ANRI +177 7 STAR 6 7 LDXI -001,7
0 LDRA 6 0 BUN +010 1 LOAD L+002

000014 1 LLS 03 2 LOAD L+002 2 LRS 15
1 LOR 2 LOAD L-005,I,7 1 XOR

000022 0 STOR L+002 7 BOX -011,7 0 LDI +000
1 LOAD L+002 2 LDLI +135 2 ORRI 243

000030 2 LMPY 1 STAR 1 2 LOAD L+OOl
1 LDIV 0 STRP 0 0 EXIT 06

Figure 21-6. ICODE Listing

._, 82581 AOO 3/85 21-9

COMPILER LISTING
Global Map

GLOBAL MAP

If MAP is in effect, the global map lists all identifiers in the
compilation unit. For Nonstop software, GMAP must also be in effect.
NOMAP specified at the end of the source file suppresses the global
map but not the local maps. Figure 21-7 shows sample E~ntries of a
global map.

Identifier

ABEND
ABENDPARAM
AB"OPENERR
ACCESSAJNK
ACCESS"' INFO

1 INCLALEN
1 AC

ACAINFO"'DEF
ADDA
ALLAFCB
AP"'BLOCK
APAFILE"OK
BLIST"'CTL
CODAPTR
COMP RS
DIMEN"'INFO

1 NUM
1 DOUCE
1 DIM"T

2 LOWAC
2 UP"'C
2 LOW"'B
2 UPAB

FILE INFO
FNAMECOLLAPSE

21-10

Class

PROC
DEFINE
DEFINE
DEFINE
VARIABLE

DEFINE
LITERAL
DEFINE
BLOCK

0,2
2,2

PROC
VARIABLE,4
VARIABLE
VARIABLE
VARIABLE

PROC
PROC

0,2
2,2
4,12
4,1
5,1
6,4

12,4

Type Class-Specific Information

EXTERNAL
OPTIONS.<10:10>
%B00000000001D
ASSIGN.OPTIONl.<05:05>

TEMPLATE,402
INT
INT

BEGIN INT INCL"LEN; INT AC[O:
INT %000021

INT.$l[O:FSIZE-l]:=[FSIZE,%000

INT EXTERNAL
STRUCT INDIRECT
INT(32) DIRECT
INT DIRECT
TEMPLATE,16
INT
INT
SUBSTRUCT
STRING
STRING
INT"(32)
INTA(32)

EXTERNAL
EXTERNAL

BLST"P=OOl
AP"BLOCK+002
AP"BLOCK+Oll

Figure 21-7. Global Map

Af' 82581 AOO 3/85

COMPILER LISTING
Cross-Reference Listings

CROSS-REFERENCE LISTINGS

If CROSSREF and LIST are in effect, the cross-reference listings
follow the global map. These listings are:

• Source-file cross-reference listing (the first page)

• Identifier cross-reference listing (subsequent pages)

Source-File Cross References

Figure 21-8 shows the source-file cross-reference listing. It gives
the following information for each source file in the compilation:

• File sequence number in the compilation

• File name from either the IN <source-file> of the TAL run command
or from a SOURCE directive

• Name of the source file that contained the SOURCE directive, if one
appears

• Edit-file line number of the SOURCE directive, if one appears

CROSSREF - CROSS-REFERENCE PROGRAM - T9622A00 - (010CT82)

FILE NO.
[1]
[2]
[3]
[4]
[5]

FILENAME.
$VOL.PROG1.SOURCE1S
$VOL.PROG1.SOURCE2S
$SYSTEM.SYSTEM.GPLDEFS
$VOL.PROG1.SOURCE4S
$SYSTEM.SYSTEM.EXTDECS

SOURCElS[l]
SOURCE2S[2]
SOURCElS[l]
SOURCElS[l]

Figure 21-8. Source-File Cross-Reference Listing

/182581 AOO 3/85

0.1
2
7
8

21-11

COMPILER LISTING
Cross-Reference Listings

Identifier Cross References

The identifier cross-reference listing gives the following information
about each specified identifier class:

• Identifier qualifiers

• Compiler attributes

• Declaring source file

• Reference lines

Identifier Qualifiers

An item declared within a STRUCT, SUBPROC, or PROC can have from none
to three levels of qualifiers (listed immediately following the
identifier name). The general form shows the ordering of qualifier
levels:

OF <struct-name> [OF <subproc-name>] OF <proc-name>

The qualifier field varies according to the following rules:

• If an identifier has no qualifier, it is a global item.

• If an identifier has one qualifier, it is declared in a global
STRUCT or a PROC.

• If an identifier has two qualifiers, it is declared in either
a STRUCT or a SUBPROC within a PROC

• If an identifier has three qualifiers, it is declared in a STRUCT
within a SUBPROC within a PROC.

Examples of identifiers are:

1 ff GLOBAL"'X

2. ITEM"'A

3. ITEM"'B OF PROC""P

4. ITEM"'C OF SUBLOC"'STRUCT

21-12 4J 82581 AOO 3/85

Compiler Attributes

COMPILER LISTING
Cross-Reference Listings

Compiler attributes are class (as specified in the CROSSREF directive)
and type modifiers:

Class

BLOCK
DEFINE
ENTRY
LABEL
LITERAL
PROC
SUBPROC
TEMPLATE
VARIABLE
UNDEFINED

Modifiers

none
none
type
none
type
type, EXTERNAL
type
none
type, DIRECT or INDIRECT
none

Types that apply to the ENTRY, PROC, SUBPROC, and LITERAL classes are
STRING, INT, INT(32), REAL, REAL(64), and FIXED. Type FIXED includes
the scale if it is nonzero.

Types for the VARIABLE class are those listed above plus STRUCT,
SUBSTRUCT, STRUCT-I, and STRUCT-S.

Declaring Source File

The abbreviated edit-file name of the declaring source file appears
on the same line as the identifier name. The sequence number assigned
to the source file appears in brackets. The line number where the
declaration starts accompanies the file name. An example is:

SOURCE1S[23] 137

Reference Lines

Reference lines include an entry for each reference in the
compilation. Except for read references, an alphabetic code indicates
the type of reference. Codes are D (definition), I (invocation), P
(parameter), W (write), and M (other). Refer to the CROSSREF Manual
for additional information.

.-,. 82581 AOO 3/85 21-13

COMPILER LISTING
LMAP Listings

Identifier Cross-Reference Example

The identifier cross-reference pages begin with the format shown in
Figure 21-9. The header line (only on the first page of references)
lists the total number of symbols referenced and the total number of
references.

152 TOTAL SYMBOLS COLLECTED WITH 61 TOTAL REFERENCES COLLECTED

ALLOCATE"CBS DEFINE GPLDEF'S [3] 15
GPLDEFS[3] 198

ALLOCATE"FCB DEFINE GPLDEF'S[3] 27
SOURCE2S[2] 5

ASSIGN"BLOCKLENGTH INT LITERAL GPLDEF'S[3] 81
GPLDEFS[3] 81.1 135

DEFAULT"VOL INT DIRECT VARIABLE SOURCE4S[4] 2
SOURCElS[l] 14 w

MESSAGE OF STARTUP INT INDIRECT VARIABLE SOURCElS[l] 12
SOURCElS[l] 11 D 14

MSG"'CLOSE EXTERNAL PROC SOURCE4S[4] 10
SOURCElS[l] 28 I

RUCB INT INDIRECT VARIABLE SOURCE2S[2] 5
SOURCElS[l] 18 p

Figure 21-9. Identifier Cross-Reference Listing

LMAP LISTINGS

By default, BINSERV produces an alphabetic load map for entry points
and another for data blocks, both ordered by name. If LMAP LOC is in
effect, BINSERV produces load maps ordered by location in place of the
alphabetic maps. For LMAP*, it produces load maps ordered by name and
by location and cross-reference listings.

The load maps are different on the Nonstop and the Nonstop 1+ system.
The sample listings shown in the remainder of this section are for the
Nonstop system. For sample listings produced on another system type
or those showing multiple code segments, see the BINDER Manual.

21-14
~ 82581 AOO 3/85

COMPILER LISTING
LMAP Listings

Entry-Point Load Map

Figure 21-10 shows a sample entry-point load map by name. The
fields shown for each entry point are:

SP Code segment (space) number of the entry point

PEP Sequence number of the entry point in the PEP table

BASE Base address of the procedure defining the entry point

LIMIT End address of the procedure defining the entry point

ENTRY Address of executable code for the entry point

ATTRS Attributes of the entry point: C (CALLABLE),
E (EXTENSIBLE), I (INTERRUPT), M (MAIN),
P (PRIVILEGED), R (RESIDENT), V (VARIABLE)

NAME Entry-point name

DATE Date of compilation

TIME Timestamp of the compilation

LANGUAGE Source language of the procedure

SOURCE FILE File name of the source code for the procedure

ENTRY POINT MAP BY NAME

SP PEP BASE LIMIT ENTRY ATTRS NAME
DATE TIME LANGUAGE SOURCE FILE

00 031 010345 043630 0010420 APROC
2/11/85 18:13 TAL $JNK.PRG1.SRCE1S

00 073 032224 032636 032224 v APROC"VAR"PARAM
2/11/85 10:29 TAL $JNK.PRG1.SRCE2S

00 020 000736 001072 000736 M MAIN"PROC
2/11/85 13:38 TAL $JNK.PRG1.MAINS

00 367 131432 131441 131432 E SORT"PROC
2/11/85 18:14 TAL $JNK.PRG1.SORTS

Figure 21-10. Entry-Point Load Map by Name

-'1J 82581 AOO 3/85
21-15

COMPILER LISTING
I~MAP Listings

pata-Block Load Maps

On the Nonstop system, BINSERV produces a data-block map and a
read-only data-block map for primary and secondary global blocks.
These maps include information from NAME and BLOCK declarations
described in Section 22, "Separate Compilation."

The data-block map lists the following kinds of data blocks:

• Named BLOCK constructs, listed by the declared name

• BLOCK PRIVATE constructs, listed by the name TAL derives from the
NAME declaration prefixed with #

• #GLOBAL and .#GLOBAL (compiler-assigned names for global data
declared outside the above blocks)

The read-only data-block map lists global read-only arrays, listed by
the declared name.

Both maps give the following information for each data block:

BASE

LIMIT

TYPE

MODE

NAME

DATE

TIME

LANGUAGE

SOURCE FILE

21-16

Base address of the block

End address of the block (blank if block is empty)

BINDER data-block type (own, common, or special);
for TAL code, ony common blocks can occur

Word or byte addressing

Data-block name (see above)

Date of compilation in the form mm/dd/yy

Timestamp for the compilation in the form hh:mm

Source language of the block

Edit-file name of the source file containing the
declaration of the block

~ 82581 AOO 3/85

COMPILER LISTING
LMAP Listings

Figure 21-11 illustrates a data-block map by location. Figure 21-12
shows the corresponding read-only data-block map: it includes the "SP"
column, which gives the code segment number specifier for each
read-only array.

DATA BLOCK MAP BY LOCATION

BASE LIMIT TYPE MODE NAME
DATE TIME LANGUAGE SOURCE FILE

000000 000014 COMMON WORD GLOBAL"'
2/11/85 13:38 TAL $VOL.PRG.GLBS

000015 000015 COMMON WORD LISW'PUB

Figure 21-11. Data-Block Load Map by Location

READ-ONLY DATA BLOCK MAP BY LOCATION
CODE SPACE 00

SP BASE LIMIT TYPE MODE
DATE TIME

00 000025 000417 COMMON WORD
2/11/85 10:48

00 000055 000442 COMMON WORD
2/11/85 10:48

NAME
LANGUAGE SOURCE FILE

HASH
TAL $VOL.PRG.SRC1S

FIND"'TAB
TAL $VOL.PRG.SRC1S

Figure 21-12. Read-Only Data-Block Load Map by Location

""f 82581 AOO 3/85
21-17

COMPILER LISTING
Compilation Statistics

COMPILATION STATISTICS

TAL prints compilation statistics at the end of each compilation. If
SYNTAX is in effect or if source errors occur, TAL does not print any
other statistics. Figure 21-13 shows the statistics emitted when
source errors stop the compilation.

PAGE 3 $TRMNL [0] BINDER AND COMPILER S1~ATISTICS

Number of compiler errors = 5
Last compiler error on page # 2 IN PROC C
Number of compiler warnings = 1
Last compiler warning on page # 1
Maximum symbol table space used was =
Number of source lines= 22
Elapsed time - 00:02:58

562 bytes

Figure 21-13. Compiler Statistics

Object-File Statistics

If an object file results from the compilation, TAL prints the
following BINSERV statistics preceding the compiler statistics:

• Name of the constructed object file

• Number of binder error messages issued

• Number of binder warning messages issued

• Number of words of primary data area

• Number of words of secondary data area

• Number of resident pages required for total code space allocation

• Minimum number of pages required for data space allocation

• Number of code spaces (segments)

21-18
~ 82581 AOO 3/85

COMPILER LISTING
Compilation Statistics

Figure 21-14 shows sample BINSERV statistics:

PAGE 91 \SYS.$VOL.SUBV.SRC [1] BINDER AND COMPILER STATISTICS

BINDER - OBJECT FILE BINDER - T9621BOO - (28JAN85) SYSTEM \XXX
Object file name is $XVOL.XSUBVOL.OFILE
Number of Binder errors = 0
Number of Binder warnings = 1
Primary data = 184 words
Secondary data = 10026 words
Code area size = 45 pages
Resident code size = 0 pages
Data area size = 64 pages
Number of code spaces = 1 space

The object file will run on a TNS/II, but may not run on a TNS
Number of compiler errors = 0
Number of compiler warnings = 0
Maximum symbol table space used was = 128338 bytes
Number of source lines = 6467
Elapsed time - 00:07:47

Figure 21-14. Object-File Statistics

Since the compilation unit includes SEARCH directives that cause
previously compiled object code to be bound with the source code, the
number of source lines is small compared to the generated code.

If a compilation ends due to a BINSERV error, TAL prints statistics
including the BINSERV banner and the number of BINSERV errors and
warnings.

-'1J 82581 AOO 3/85
21-19

SECTION 22

SEPARATE COMPILATION

TAL supports modular programming with separate compilation and
relocatable global data blocks. You can compile any module consisting
of one or more procedures as a separate compilation unit. You can
then bind the separately compiled object files into an executable
object file called the target file by using BINSERV (compile-time
binder process) or BINDER (stand-alone binder).

This section describes the features that support separate compilation
and the data-space image that results. It describes:

• The NAME declaration for naming a compilation unit

• The BLOCK declaration for declaring relocatable global data blocks

• Binding compilation units

• Data-space image

• Sample modules

"1' 82581 AOO 3/85 22-1

SEPARATE COMPILATION
NAME Declaration

NAME DECLARATION

The NAME declaration assigns a name to a compilation unit and to its
private data block if it has one.

The syntax for the NAME declaration is:

NAME <identifier>

<identifier>

is the name of the compilation unit. If it has a private
data block, no other compilation unit in the target file can
use the same name at the global level. If this compilation
unit has no private block, the name is global within this
unit only.

If a compilation unit has a BLOCK declaration, the NAME declaration
must be the first declaration in the compilation unit. NAME is a
reserved word only in the first declaration; you can use "name"
elsewhere as an identifier.

A compilation unit that has a NAME declaration as its first
declaration is called a named compilation unit.

Example

The following example names a compilation unit:

NAME calc"mod;

22-2 Af' 82581 AOO 3/85

SEPARATE COMPILATION
BLOCK Declaration

BLOCK DECLARATION

The BLOCK declaration lets you group global data declarations into a
named or private relocatable global data block.

The syntax for the BLOCK declaration is:

BLOCK { <identifier> }
{ PRIVATE }

<data-declaration>] ...
END BLOCK~

<identifier>

is the name of the data block. The name must be unique
among all BLOCK and NAME declarations in the target file.
A named data block is accessible to other compilation units.

PRIVATE

indicates a private global data block that is accessible only
to this compilation unit.

<data-declaration>

is a global data declaration of any variable described in
Sections 8 through 12.

If you use the BLOCK declaration, the first declaration in the
compilation unit must be the NAME declaration. In a named compilation
unit, BLOCK and PRIVATE are reserved words.

You can declare only one private block in a compilation unit. TAL
gives the private block the name you specify in the NAME declaration
for this compilation unit.

You can declare any number of named data blocks in a compilation unit.

-'f 82581 AOO 3/85 22-3

SEPARATE COMPILATION
Rules for Coding Data Blocks

Examples

1. This example declares a private global data block:

BLOCK PRIVATE;
INT term"num;
LITERAL msg"buf = 79;

END BLOCK;

2. This example declares a named global data block:

BLOCK default"vol;
INT .vol"array [0:7],

.out"array [0:34];
END BLOCK;

Rules for Coding Data Blocks

• The correct order of global declarations is:

--NAME declaration

--Unblocked global data declarations

--Named blocks and the private block

--PROC declaration

• All unblocked global declarations (those not contained in BLOCK
declarations) must appear before the first BLOCK declaration. TAL
treats the unblocked declarations as an implicit data block and
gives it the name #GLOBAL. A compilation unit can have only one
implicit block.

If more than one compilation unit in a binding session has an
implicit block, binding does not combine the implicit blocks.
BINSERV binds in only the implicit block in the source code, not
those in search lists. You can use BINDER commands to replace the
implicit block in the target file.

• The sum of the primary global blocks in the target file must not
exceed 256 words.

• All variables referenced in a data block must be declared in the
same block. For example, the following declarations must appear in
the same block:

INT .var;
INT .ptr := @var;

22-4 '4P 82581 AOO 3/85

SEPARATE COMPILATION
Sharing Data Blocks

• The length of any shared data block must match in all compilation
units; use a separate source file for each block.

Sharing Data Blocks

The SECTION and SOURCE directives allows sharing of global data blocks
among compilation units. In the compilation unit that declares the
data block, use the SECTION directive to give the block a section
name. In compilation units that need to include the data block,
specify the section name in a SOURCE directive.

If you change any data block declaration, you must recompile all
compilation units that use the changed data block.

The following example shows a compilation unit that declares global
data blocks and a second compilation unit that specifies the blocks:

!Source file name "calcAsrc"
NAME calcAunit;

?SECTION unblockedAglobals
LITERAL true = -1,

false = O:
STRING readAonlyAarray = 'P' :=

?SECTION default
BLOCK defaultAvol:

INT .volAarray (0:7],
.outAarray (0:34];

END BLOCK;

?SECTION msglits
BLOCK msgAliterals;

LITERAL
msgAeof
msgAopen
msg"'read

END BLOCK:
?SECTION dummy

0'
1,
2'

!First compilation unit

!Name of first section
!Implicit data block

" ","COBOL", "FORTRAN",
"MUMPS", "TAL"]:

!Name of second section
!Declares named block

!Name of third section
!Declares named block

!Ends msglits section

!--!

NAME inputAf ile;

?SOURCE calcAsrc(unblockedAglobals)
?SOURCE calcAsrc(default)

~ 82581 AOO 3/85

!Second compilation unit

!Specifies implicit block
!Specifies a named block

22-5

SEPARATE COMPILATION
Binding Compilation Units

BINDING COMPILATION UNITS

You can bind compilation units:

• In a compilation session

• After compilation using BINDER commands

• At run time (library binding)

Compile-Time Binding

After a successful compilation, BINSERV binds the new object file with
external procedures from the search list that resolve external
references. If the external procedure also contains references to
other external procedures or to data blocks, BINSERV tries to resolve
those from the search list. (A compilation unit must declare all data
in that unit.) The object files produced by BINSERV can serve as
input to further binding operations by BINSERV, BINDER, or the
operating system.

SEARCH directives must list file names in the order in which BINSERV
is to search them. Source files that contain additional SEARCH
directives can alter the apparent order. The order might be
significant if a procedure or entry-point name occurs in more than one
search file. BINSERV binds only the first occurrence.

The following example shows SEARCH directives for a search in the
order "filelo," "file2o," "file3o," and "file4o":

?SEARCH (filelo, file2o)
?SEARCH (file3o, file4o)

The following example shows SEARCH directives for external procedures:

?SEARCH partxo
PROC proC'"X;
EXTERNAL;

?SEARCH partyo
PROC proc"y;
EXTERNAL;

PROC procAz;
BEGIN

CALL procAx;
CALL proc"y;

END;

22-6

!Object file containing proc"x

!Object file containing procAy

..,. 82581 AOO 3/85

SEPARATE COMPILATION
Data-Space Image

Interactive Binding

After compilation, you can bind object files independently of the
compiler by using the BINDER. The BINDER Manual describes
interactive binding and lists the commands you can use.

For example, you can use the BINDER to build a target file from
separate object files, display object-file contents, reorder
target-file code blocks, produce optional load maps and
cross-reference listings, specify a user run-time library (Nonstop
systems only), and modify the contents of named global data and code
blocks in the target file.

Run-Time Library Binding

On Nonstop systems, you can build a run-time library of procedures to
share among applications or to extend a single application's code
space. Do not bind the procedures in a run-time library with the
program file. Instead, store them in a separate file, then associate
them with the program file by using any of the following methods:

• A LIBRARY directive in the source file

• A BINDER command

• The COMINT RUN command

The operating system performs run-time binding of a library file to
the program file. The BINDER Manual describes user libraries.

DATA-SPACE IMAGE

TAL constructs relocatable blocks of code and data that are bound into
the object file. A procedure is the smallest relocatable code block.
A global data block is the smallest relocatable unit of data.

Relocatable Global Data Blocks

Data blocks in separate compilations and in mixed-language programs
must be relocatable. TAL allocates 'G' relative offsets to
relocatable data blocks and places read-only arrays in the user code
segment in which you reference them. The primary global space
occupies the first 256 words of the data space.

"'P 82581 AOO 3/85
22-7

SEPARATE COMPILATION
Data-Space Image

TAL creates the following relocatable blocks, as needed:

Unnamed Compilation Unit

rmplicit primary global data
rmplicit secondary global data

Named Compilation Unit

Implicit primary global data
Implicit secondary global data
Explicit primary global data
Explicit secondary global data

For primary data, TAL names the implicit block #GLOBAL and gives the
private block the name used in the NAME declaration. F'or secondary
data, TAL uses names made up of the primary block names plus a period
symbol, as in .#GLOBAL.

Data-Space Image Example

Figure 22-1 shows the data-space image resulting from binding two
separately compiled units, "unitAl" and "unitA2".

The compilation units contain global declarations for an implicit data
block, five named data blocks, and two private data blocks. The
figure assumes that G[O] is available for compiled global data.

22-8 "1" 82581 AOO 3/85

#GLOBAL

block"'l

Primary Area ~
. .

block"'5

unit"l

unit"2

.#GLOBAL

Secondary Area .block"l

.unit"l

~

SEPARATE COMPILATION
Data-Space Image

~Implicit Block

Named Blocks

Private Blocks

Figure 22-1. Global Data-Space Allocation

Address Assignments

During compilation, TAL assigns each direct variable and pointer an
offset from the beginning of each relocatable block. TAL allocates
storage according to the type and size of the individual data
declarations in each block.

When you bind the object code, the BINDER uses the address of the data
block and the offset within the block to construct addresses for
indirect data in the secondary data space.

"182581 AOO 3/85
22-9

SEPARATE COMPILATION
Separate Compilation Sample Program

Directives for Relocatable Data

The RELOCATE and INHIBITXX compiler directives help you manage
relocatable data:

• RELOCATE--This directive causes TAL warnings if declarations
depend on 'G' relative addresses (such declarations might not give
the correct results if data relocation occurs); it also causes
BINSERV warnings if references to nonrelocatable global data occur.

• INHIBITXX--This directive prevents TAL from generating indexed
extended instructions for extended pointers, since relocation of
the data blocks can result in an extended pointer outside the first
64 words of primary global space.

For more information on these directives, see Section 20.

SEPARATE COMPILATION SAMPLE PROGRAM

This example is a utility program that converts records in the input
file to a different format and length by reordering fields and adding
fields to records. The example includes:

• A brief description of program characteristics

• Partial listings of module code

• Load maps for the program file

• Compilation statistics (compile and bind) for the program file

Selected listings show the handling of data and program structure.
BLOCK contents appear only in the module that declares them~ In
modules that reference the blocks, NOLIST directives prevent listing
of block contents.

Compilation maps and statistics are not shown for each module. Load
maps show entries for blocks that do not exist after compilation such
as LITERALS. The mainline load map does not refer to these blocks.

Program Structure

The program consists of five modules, each of which performs a single
operation. The structure of the modules and their procedures allows
changes to one operation without the need to recompile the others.

22-10
~ 82581 AOO 3/85

SEPARATE COMPILATION
Separate Compilation Sample Program

Information is accessible across modules on an as-needed basis. They
share named global data blocks and pass information as parameters and
local data such as a pointer to the locally declared record buffer.
The named global data block "defaultAvol" contains shared run-time
data. Other named blocks declare structure templates for record
definitions and LITERAL declarations, which use no memory.

Procedures within a module share global data in private blocks.

Table 22-1 summarizes the blocks used by each module. In the table,
the symbol (P) means a private block.

Table 22-1. Data Blocks by Module

Module Name Blocks Defined Blocks Referenced

tprAconvert

initializationAmodule

message"'module

inAf ile"'handler

outAf ile"'handler

File Naming Conventions

recordAdef s

defaultAvol

msg"'li terals
messageAmodule (P)

inAdata
in"'f ileAhandler (P)

out"'data
outAf ileAhandler (P)

msgAliterals

none

default"'vol

msg"'literals
def aul t-Avol

defaultAvol
msg"'literals

The example uses the following file naming conventions:

• Source file names end with the character "s".

• Object file names correspond to source file names and end with
"o". For instance, the object file built from the source file
"ins" is named "ino".

• Data file names end in "d" if they belong to a specific module.
For instance, "ind" is the source file that contains LITERAL
declarations for "ins".

• File names ending with "p" contain EXTERNAL declarations of the
procedures in the module with the corresponding name. A module
that calls an external procedure includes a SOURCE directive for

~ 82581 AOO 3/85
22-11

SEPARATE COMPILATION
Separate Compilation Sample Program

the "p" file. For instance, the source for "messageAmodule" is
file "msgs", and source file "msgp" declares each EXTERNAL PROC in
"msgs". The modules that call "messageAmodule" specify "rnsgp" in
a SOURCE directive.

If any external declarations change, you must recompile both the "p"
file and any module that calls a changed external procedure. The "p"
file enables compile-time consistency checking between procedure
declarations and the corresponding external declarations.

A module also uses a "p" file for its external procedure declarations.
Module "xxxAs" uses a SOURCE directive to specify "xxxAp", which
contains EXTERNAL declarations for its procedures. (Otherwise,
the consistency check is possible only during a later binding.)

Mainline Module

Although the mainline module was compiled last because it contains a
search list for the other modules, it is listed first to illustrate
the overall logic.

The record-definition STRUCTs are not listed because they are
translations of the Data Definition Language (DDL) source code into
TAL.

NAME tprAconvert:

BLOCK recordAdefs;
?NOLIST, SOURCE inrec
?NOLIST, SOURCE outrec
END BLOCK:

?NOLIST, SOURCE msglit

?NOLIST,SOURCE inp
?NOLIST,SOURCE outp
?NOLIST,SOURCE msgp
?NOLIST,SOURCE initp

?SEARCH ino
?SEARCH auto
?SEARCH msgo
?SEARCH inito

!STRUCT (*) "inArecAdef"
!STRUCT (*) "outArecAdef"

!BLOCK "msgAliterals"

!EXTERNAL PROC declarations:
"inAfileAhandler"
"outAf ileAhandler"
"messageAmodule"
"initializationAmodule"

!Search file list:
"inAfileAhandler"
"outAf ileAhandler"
"messageAmodule"
"initializationAmodule"

PROC outAinit (outArec); !Initializes output record
STRUCT .outArec (outArecAdef);

BEGIN
?NOLI ST
END;

22-12 "''f 82581 AOO 3/85

SEPARATE COMPILATION
Separate Compilation Sample Program

PROC recordAconvert (inArec, outArec);
STRUCT .inArec (inArecAdef); !Converts between two records
STRUCT .outArec (outArecAdef);

BEGIN
?NOLI ST
END;

PROC convert;
BEGIN

INT recordAcount := O;
STRUCT .inAbuffer (inArecAdef);
STRUCT .outAbuffer (outArecAdef);

WHILE (readAin (inAbuffer)) <> 1 DO
BEGIN !Reads record, returns EOF

CALL outAinit (outAbuffer); !Initializes output
CALL recordAconvert (inAbuffer, outAbuffer);
CALL writeAout (outAbuffer);
recordAcount := recordAcount + 1;

END; !Of WHILE loop
!EOF
CALL msg (msgAEof, recordAcount);

END; !Of "convert"

PROC tprconv MAIN;
BEGIN

CALL fileAinit;
CALL fileAinit;
CALL convert;
CALL closeAall;

END;
?NOMAP

Initialization Module

!In "initializationAmodule"

This module defines a primary global data block, defaultAvol. The
block is accessible to all procedures in the modules that declare the
block for reference.

NAME initializationAmodule;

?SECTION default
BLOCK defaultAvol;

INT defaultAvolAsubvol [0:7];
END BLOCK;

!Default volume, subvolurne

?NOLIST,SOURCE $SYSTEM.SYSTEM.EXTDECS (INITIALIZER)

?NOLIST,SOURCE outp
?NOLIST,SOURCE inp
?NOLIST,SOURCE msgp

-'f 82581 AOO 3/85

!EXTERNAL PROC declarations:
"outAfileAhandler"
"inAfileAhandler"
"messageAmodule"

22-13

SEPARATE COMPILATION
Separate Compilation Sample Program

?NOLIST,SOURCE initp "initializationAmodule"
(for consistency checks)

PROC startup (rucb, passthru, message, meslen, match) VARIABLE;
INT .rucb, .passthru, .message, meslen, match;
BEGIN

defaultAvolAsubvol ':=' message[!] FOR 8;
END;

PROC fileAinit;
BEGIN

CALL INITIALIZER (,,startup);
CALL msgAinit;
CALL inAf ileAinit;
CALL outAfileAinit;

END;

PROC closeAall;
BEGIN

CALL inAclose;
CALL outAclose;
CALL msgAclose;

END;
?NOMAP

Input File Module

The input file handler contains all procedures that manipulate that
file. Therefore, if I/0 changes are required, only this module needs
to be recompiled. The initialization module, for example, calls a
procedure in this module.

This module declares a private block that is accessible! only to the
procedures in this module. It is allocated in primary global storage.

?SECTION ind
BLOCK inAdata;

LITERAL
inblklen
inArecAlen

END BLOCK;

= 1536,
= 555;

?NOLIST, SOURCE default
?NOLIST, SOURCE msglit

BLOCK PRIVATE;
INT inAf ile;

END BLOCK;

22-14

!In-file declarations

!Input file number

Af' 82581 AOO 3/85

SEPARATE COMPILATION
Separate Compilation Sample Program

?NOLIST,SOURCE
?NOLIST,SOURCE

$SYSTEM.SYSTEM.EXTDECS (ABEND, CLOSE, FILEINFO)
$SYSTEM.SYSTEM.EXTDECS (FNAMEEXPAND, OPEN, READ)

?NOLIST,SOURCE msgp
?NOLIST,SOURCE inp

PROC in"'file"'init;
BEGIN

!EXTERNAL PROC declarations:
"message"'module"

! "in"'file"'handler"
! (consistency checks)

STRING ext"'name [0:7] := ["OLDTPR "]:
INT int"'name [0:11];
INT length, error;

length := FNAMEEXPAND (ext"'name, int"'name, default"'vol"'subvol);
IF length THEN

BEGIN
CALL OPEN (int"'name, in"'file);
IF < THEN

BEGIN
CALL FILEINFO (in"'file, error);
CALL msg (msg"'in"'open, error);
CALL ABEND;

END
ELSE

END;
!Of THEN clause

BEGIN
CALL msg (msg"'in"'name,
CALL ABEND

END; !Of ELSE clause
END; !Of "f ile"'init"

INT PROC read"'in (rec);
INT .rec;

BEGIN
INT error;

0) ;

CALL READ (in"'file, rec, in"'rec"'len);
IF < THEN

BEGIN
CALL FILEINFO (in"'file, error);
CALL msg (msg"'read, error);

END;
RETURN IF > THEN 1

ELSE O;
END; !Of "read"'in"

PROC in"'close;
BEGIN

CALL CLOSE (in"'file);
END;
?NOMAP

~ 82581 AOO 3/85 22-15

SEPARATE COMPILATION
Separate Compilation Sample Program

Output File Module

The private block declared in this module is allocated in primary
global storage and is accessible only to procedures in this module.
Some of the parallel code to the input file handler is not listed.

NAME out"'f ile"'handler;

?SECTION outd
BLOCK out"'data;

LITERAL
outblklen = 1024,
out"'rec"'len = 256;

END BLOCK;
?NOLIST, SOURCE default
?NOLIST, SOURCE msglit

BLOCK PRIVATE;
INT out"'f ile;

END BLOCK;
?NOLI ST

PROC out"'f ile"'init;
BEGIN

!Out-file declarations

!BLOCK "default"'vol"
!BLOCK "msg"'literals"

STRING ext"'name [0: 7] : = ["CURR "] ;
INT int"'name [0:11];
INT length,error;

?NOLI ST
END;

PROC write"'out (rec);
INT .rec;

BEGIN
INT error;
CALL WRITE (out"'file, rec, outArec"'len);
IF < THEN

BEGIN
CALL FILEINFO (out"'file, error);
CALL msg (msg"'write, error);

END;
END; !Of "write"'out"

PROC out"'close;
BEGIN

CALL CLOSE (out"'file);
END;
?NOMAP

22-16
·" 82581 AOO 3/85

SEPARATE COMPILATION
Separate Compilation Sample Program

Message Module

The terminal number in the private block is allocated in primary
global storage and is accessible only to procedures in this module.

NAME messageAmodule:

?SECTION msglit
BLOCK msgAliterals:

LITERAL
msgAEof =
msgAinAopen =
msgAinAname
msg"read
msg"out"open =
msg"out"name
msgAwrite

END BLOCK:

BLOCK PRIVATE:

0,
1,
2,
3,
4'
5'
6:

INT term"f ileAnumber:
LITERAL' msg"bufAend = 79;

END BLOCK:

tDefines BLOCK "msgAliterals"

?NOLIST,SOURCE $SYSTEM.SYSTEM.EXTDECS (CLOSE, MYTERM, OPEN)
?NOLIST,SOURCE $SYSTEM.SYSTEM.EXTDECS (NUMOUT,WRITE)

PROC msgAinit:
BEGIN

INT .termAname (0:11]:

CALL MYTERM (term"name):
CALL OPEN (term"name, term"file"number):

END;

PROC msg (mnumber, altnum);
INT mnumber, altnum;

BEGIN
STRING .buffer [O:msg"buf"end];
INT .ibuffer :=@buffer '>>' 1;
STRING .bufptr;

-'f 82581 AOO 3/85 22-17

SEPARATE COMPILATION
Separate Compilation Sample Program

CASE mnumber OF
BEGIN

!msg"eof !
buffer ':='
!msg"in"open!
buffer ': ='
!msg"in"name!
buffer ':='
!msg"read!
buffer ':='

"

"
II

II

!msg"out"open!

End of l.,i le

In file open

Bad in file

Read error fl

" -> @bufptr;

failed II -> @bufptr;

name II -> @bufptr;

-> @bufptr;

buffer':=' "***Out file open failed"-> @bufptr;
!msg"out"name!
buffer ':=' 11 ***Bad out file name 11

!msg"'write!
buffer I:=' II *** Write error n

OTHERWISE;
END;

IF altnum <> 0 THEN
BEGIN

CALL NUMOUT (bufptr, altnum, 10, 5);
@bufptr := @bufptr + 5;

END;

-> @bufptr;

-> @bufptr;

CALL WRITE (term"'file"'number, ibuffer, @bufptr - @buffer);
END; !Of 11 msg"

PROC msg"'close;
BEGIN

CALL CLOSE (term"file"number);
END;
?NOMAP

22-18 ~ 82581 AOO 3/85

SEPARATE COMPILATION
Separate Compilation Sample Program

Compilation Maps and Statistics

Figures 22-2, 22-3, and 22-4 show the entry-point load map, data-block
load map, and statistics for the mainline compilation.

ENTRY POINT MAP BY NAME

SP PEP BASE LIMIT ENTRY ATTRS NAME
DATE TIME LANGUAGE SOURCE FILE

00 012 000737 000742 000737 CLOSE"' ALL
2/11/85 13:5 TAL $VOL.PRG.INITS

00 004 000266 000331 000266 CONVERT
2/11/85 13:5 TAL $VOL.PRG.CONVERTS

00 011 000721 000736 000721 FILE"'INIT
2/11/85 13:5 TAL $VOL.PRG.INITS

00 017 001133 001140 001133 IN"'CLOSE
2/11/85 12:5 TAL $VOL.PRG.INS

00 015 000767 001050 000773 IN"'FILE"'INIT
2/11/85 12:5 TAL $VOL. PRG. INS

00 010 000421 000720 000421 MSG
2/11/85 12:5 TAL $VOL.PRG.MSGS

00 021 001147 001154 001147 MSG"' CLOSE
2/11/85 12:5 TAL $VOL.PRG.MSGS

00 014 000751 000766 000751 MSG"' I NIT
2/11/85 12:5 TAL $VOL.PRG.MSGS

00 020 001141 001146 001141 OUT"'CLOSE
2/11/85 12:5 TAL $VOL.PRG.OUTS

00 016 001051 001132 001055 OUT"'FILE"'INIT
2/11/85 12:59 TAL $VOL.PRG.OUTS

00 002 000022 000111 000022 OUT"'INIT
2/11/85 13:54 TAL $VOL.PRG.CONVERTS

00 006 000340 000372 000340 READ"' IN
2/11/85 12:59 TAL $VOL. PRG. INS

00 003 000122 000265 000122 RECORD"'CONVERT
2/11/85 13:54 TAL $VOL.PRG.CONVERTS

00 013 000743 000750 000743 v STARTUP
2/11/85 13:52 TAL $VOL.PRG.INITS

00 005 000332 000337 000332 M TPRCONV
2/11/85 13:54 TAL $VOL.PRG.CONVERTS

00 007 000373 000420 000373 WRITE"'OUT
2/11/85 12:59 TAL $VOL.PRG.OUTS

=-~---- __ , -----

Figure 22-2. Entry-Point Load Map of Mainline Compilation

"f 82581 AOO 3/85 22-19

SEPARATE COMPILATION
Separate Compilation Sample Program

DATA BLOCK MAP BY NAME

BASE LIMIT TYPE MODE NAME
DATE TIME LANGUAGE SOURCE FILE

000003 000012 COMMON WORD DEFAULT
2/11/85 12:59 TAL ~;voL. PRG. INS

000000 000000 COMMON WORD IN"'FI LE"'HANDLER
2/11/85 12:59 TAL $VOL.PRG.INS

000002 000002 COMMON WORD MESSAGE"'MODUL,E
2/11/85 12:58 TAL $VOL.PRG.MSGS

000000 COMMON WORD MESSAGE"' LITERALS
2/11/85 12:58 TAL $VOL.PRG.MSGS

000001 000001 COMMON WORD OUT"'FILE"'HANDLER
2/11/85 12:59 TAL ~:voL. PRG. OUTS

000000 000000 COMMON WORD IN"'FILE"'HANDLER
2/11/85 12:59 TAL $VOL.PRG.INS

Figure 22-3. Data-Block Load Map

BINDER - OBJECT FILE BINDER - T9621BOO - (28JAN85) SYSTEM \XX
Object file name is $VOL.PRG.CONVO
Number of Binder errors = 0
Number of Binder warnings = 0
Primary data = 11 words
Code area size = 1 pages
Resident code size = 0 pages
Data area size = 2 pages
Number of code spaces = 1 space

The object file will run on a TNS/II, but may not run on a TNS
Number of compiler errors = 0
Number of compiler warnings = 0
Maximum symbol table space used was 9938 bytes
Number of source lines= 221
Elapsed time - 00:01:24

Figure 22-4. Compilation Statistics

22-20 .., 82581 AOO 3/85

SEPARATE COMPILATION
Procedure Replacement Sample Program

PROCEDURE REPLACEMENT SAMPLE PROGRAM

This example uses directives to refer to procedures in other files.
You need recompile only the main procedure with the source for the
replacement procedure. The existing program file is a search file.
The compilation unit contains:

• SEARCH directive for file "objlo"

• SOURCE directive for a file of external declarations (for
compile-time consistency checks, also provides for FORWARD
requirement)

• SOURCE directive for the new procedure "procAc"

• SOURCE directive for the main procedure "procAmAmain", which
contains external references (calls) to the other procedures

TAL passes the search list and the compiled main and replacement
procedures to BINSERV, which binds procedures from the search file to
resolve the external references from the main procedure.

?SEARCH objlo

?SOURCE externp
PROC procAa;
EXTERNAL;

PROC procAb;
EXTERNAL;

PROC procAc;
EXTERNAL;

PROC procAmAmain MAIN;
EXTERNAL;
?NOLIST, SOURCE proc2cs

?SOURCE mainproc
PROC procAmAmain;
BEGIN

CALL procAa;
CALL procAb;
CALL procAc;

END;

~ 82581 AOO 3/85

!BINDER uses this file to
! resolve external references

!"externp" contains only EXTERNALS

!Source file containing replacement
! code for "procAc"

22-21

APPENDIX A

MACHINE DEPENDENCIES

To transport object programs between the Nonstop 1+ and other system
types, you must modify your program to accommodate certain machine
differences. This appendix summarizes the machine differences. These
capabilities are not available on the Nonstop l+ system unless
otherwise noted.

GENERAL DIFFERENCES

General differences include extended addressing, multiple code
segments, absolute addressing, additional machine instructions,
system global quadword data, and additional compiler directives.

Extended Addressing

Extended addressing is a nonprivileged feature that allows byte access
to any logical segment (current user data segment, user code segment,
system data segment, or extended data segment). Two standard
functions support this feature. $XADR converts a 16-bit address to a
32-bit address; $LADR converts a 32-bit address to a 16-bit address.

Additional Code Segments

Version BOO of the GUARDIAN operating system allows multiple user code
segments, which are described in the System Description Manual for the
Nonstop system. During the compilation session, BINSERV automatically
creates additional code segments as needed. For examples of multiple
code-segment listings, see the BINDER Manual.

~ 82581 AOO 3/85
A-1

MACHINE DEPENDENCIES
General Differences

Absolute Addressing

This is a privileged feature that lets you access absolute extended
byte addresses in any segment in virtual memory as described in the
System Description Manual for the Nonstop system. Two standard
lunctions support this feature. $AXADR converts a 16-bit address to
an absolute extended address: $BOUNDS performs a privileged bounds
check operation.

Machine Instructions

Many privileged machine instructions, though similar in function, are
modified in minor ways to accommodate the Nonstop system architecture.
For example, the formats of the ENV and Interrupt registers differ
from the Nonstop 1+ system.

Privileged code included in your source code using the CODE statement
executes properly only on the expected host system. Before moving
user-written interrupt handlers from one system type to another,
examine the instructions and registers used. See the System
Description Manual for your system for instruction cod~ lists and
definitions and for register formats.

System Global Quadword Data

On the Nonstop 1+ system, system global pointers cannot access
REAL(64) and FIXED items because no instructions are available for
quadword load or store operations from SG data space--even with
optional microcode present.

On the Nonstop system, system global pointers can access data of any
type. This is a privileged feature.

Compiler Directives

The CPU directive generates object code for a system type:

A-2

?CPU TNS
?CPU TNS/II

!Object code to execute on a Nonstop 1+ system
!Object code to execute on a Nonstop system

'i' 82581 AOO 3/85

MACHINE DEPENDENCIES
Extended Pointers

The IF, IFNOT, and ENDIF directives allow selective compilation based
on the current compilation mode, whether set by the compiler or by a
CPU directive. For example:

?IF TNS/II

?ENDIF TNS/II

!Compiles intervening code only if the
! TNS/II mode is in effect

The following directives are not features of Nonstop 1+ software:

ABORT
LINES
GMAP
PRINTSYM

terminates compilation if TAL cannot open a source file.
specifies maximum number of lines for each page.
prints the global map if MAP is also on.
includes identifier declarations.

EXTENDED POINTERS

This subsection describes the format of extended pointers, address
conversions, parameters with extended addresses, indexing, and data
operations with extended pointers.

Format of Extended Pointers

The 32-bit format of the extended pointer is:

Bit Meaning

<O>

<1>
<2:14>

<15:20>
<21:30>
<31>

Absolute Mode (A) specifier.
Nonprivileged use = 0
Privileged use = 1

Reserved; always 0
Segment specifier

Relative extended address =
Absolute extended address

Page specifier 0:63
Word specifier = 0:1023
Byte specifier = 0:1

0:1027
0:8191

Figure A-1 shows the format for extended pointers.

~82581 AOO 3/85 A-3

MACHINE DEPENDENCIES
Extended Pointers

High-Order
Address Word

I I I

Low-Order
Address Word

I I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

I I I I I I I I I I I I I I I I I I IJ I I I I I I ITIII 11

Segment Page Word ~te
$5013-016

Figure A-1. Format of Extended Pointer

You can use an extended pointer to access any of the four standard
(logical) segments. You must use an extended pointer to access an
extended data segment. Specify the segment to access in the segment
field of the pointer, as follows:

0 User data segment
1 System data segment
2 Current segment (user or system)
3 Currently mapped user code segment (read access only)
4-n Base address for the current extended data segment

An extended pointer, having 32 bits, can access byte addresses
anywhere in a segment. (The page, word, and byte fields together
require 17 address bits.) All extended addresses are byte addresses.
Word-aligned data items must have even byte addresses.

A standard pointer, having 16 bits, can access byte addresses in only
the lower 32K of a segment. To access byte addresses in the upper 32K
words of a segment, you must use an extended pointer.

Address Conversions

If a called procedure expects an extended address and the caller
passes a nonextended parameter, TAL generates an implicit $XADR
function and converts the standard address to extended.

If the caller passes an extended parameter to a nonexte~nded formal
parameter, TAL generates an implicit $LADR function and emits a

A-4
4182581 AOO 3/85

MACHINE DEPENDENCIES
Extended Pointers

warning. (The segment information is lost and the resultant address
(to segment 0) might not be the desired location.)

When converting addresses, TAL assumes the type of the address in a
pointer matches the type of the item to which it points. For example,
TAL assumes a STRING pointer contains a byte address and an INT(32)
pointer a word address. When converting the extended address of a
word-aligned item to a nonextended address, the system ignores the
byte specifier.

Parameters With Extended Addresses

A formal reference parameter can have an extended address. If you use
TNS mode to compile a procedure that declares parameters with extended
addresses, TAL flags those as errors.

When a caller passes a reference parameter with an extended address,
TAL places a 32-bit pointer to the variable in the called procedure's
parameter area. Statements in the procedure access the variable
through the extended pointer.

The following example declares formal parameters with extended
addresses:

PROC newAproc (extAparam, strAparam);
INT .EXT extAparam; !Extended reference parameter
STRING .EXT strAparam; !Extended reference parameter

You get a warning if you pass a STRING reference parameter with an
extended address to a word-aligned formal parameter. You must ensure
that the variable is word-aligned.

Indexing With Extended Addresses

You can assign to an extended pointer the address of an indexed
element. In the following example, the pointer "name" is assigned the
address of "a" minus 5 elements, assuming "a" has an extended address:

INT .EXT name := @a[-5];

Data Operations With Extended Addresses

In move or group comparison operations, data can have extended
addresses. In scan operations, data cannot be extended.

-'1J 82581 AOO 3/85
A--5

MACHINE DEPENDENCIES
Extended Data Segments

These operations optionally return a <next-addr> value. For a move
operation, <next-addr> points to the next word or byte in the
destination following the last item moved. For scan and comparison
operations, it points to the first word or byte that does not match.

After a move or compare operation, <next-addr> contains an extended
byte address if any item has an extended address. If no item is
extended, <next-addr> contains a byte address if the location to which
the items are moved or compared has a byte address. Otherwise,
<next-addr> contains a standard word address.

After a scan operation, <next-addr> contains a standard byte address.

If a standard byte address results for multibyte elements, divide by
the number of bytes per element to obtain the number of elements
processed, using unsigned arithmetic. (The same is true for multiword
data types with word addresses).

After a comparison of multiword items such as FIXED el1~ments,
<next-addr> might point into the middle of an element since the
comparison is on a word or byte basis, not on an element basis. Round
the number of words or bytes up before dividing by the number of
elements per word (or byte).

EXTENDED DATA SEGMENTS

You can allocate extended data segments of up to 268 megabytes in
size. The extended segments share the same address space, but only
one extended segment can be in use at one time.

To create and use extended segments, you must:

1.

2.

3.

A-6

Declare an extended pointer to an extended segment base address.

Allocate an extended segment by invoking the ALLOCATESEGMENT
system procedure.

Make an extended segment the current extended segment by invoking
the USESEGMENT system procedure.

~ B2581 AOO 3/85

MACHINE DEPENDENCIES
Extended Data Segments

Extended Segment Base Address

The extended segment base address defines the first storage location
of any extended segment. The first segment base address you can use
is 4. To specify the base address, shift 4 (40) left 17 places to
move 1 from bit 29 to bit 12, as follows:

STRING .EXT ptr := 40 '<<' 17~ !Resulting address = %20000000

The initial byte address in the extended segment is 0. You can access
specific locations by indexing from the base or using the base in an
arithmetic expression.

Figure A-2 shows the format of the base address.

%2 o I
I I I

0 0 0 0 0

J
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

I 1· 1 I I I I I I I I I 11 I I I I I I I I I I I I I l.J ... l 1111 I
t '<<'17 T

Segment (%4) Page Word

55013-017

Figure A-2. Format of Extended Segment Base Address

~ 82581 AOO 3/85 A-7

MACHINE DEPENDENCIES
Allocating and Using Extended Segments

~!locating and Using an Extended Segmen~

'rhe following example allocates and uses extended segments:

INT .EXT px := 4D '<<' 17;

INT s;

!Declares and initializes
! extended pointer to beginning
! of extended data segment

s := ALLOCATESEGMENT (0,4096D); !Allocates extended segment 0 and
! returns status value to "s";

IF s <> 0 THEN error;

CALL USESEGMENT (0);

px := 5;

! requests 2 pages (4K bytes) of
! extended memory

!Indicates allocation of
! extended segment by returning
! O; otherwise, returns error

!Makes extended segment 0
! the current extended segment

!Stores a 5 in first word of
! extended segment 0

s := ALLOCATESEGMENT (l,4096D); !Allocates extended segment 1 and
returns status value to "s";

IF s <> 0 THEN error;

CALL USESEGMENT (1);

px := 2;

! requests 2 pages (4K bytes) of
! extended memory

!Indicates allocation of
! extended segment by returning
! O; otherwise, returns error

!Makes extended segment 1
! the current extended segment

!Stores a 2 in first word of
! extended segment 1

When you no longer need an extended segment, you can delete the
storage area by invoking the DEALLOCATESEGMENT system procedure.

A-8 ._, 82581 AOO 3/85

MACHINE DEPENDENCIES
Extended Segment Management

Extended Segment Management

TAL does not allocate storage for any extended data segment. You must
manage the additional data space. When accessing free space in an
extended data segment, you must remember the last storage space
assigned to an extended pointer. An extended data segment begins at
the byte address %2000000D. All data items in an extended data
segment are byte addressed.

The following example shows how to manage extended pointers:

INT .EXT x;
INT .EXT y;
INT .EXT z;

BEGIN
@ x := %2000000D;

@ y := @ x + 870D;

@ z := @ y + 2000D;

END;

!Extended pointer declarations
!Assume a 435-word array
!Assume a 1000-word array
!Assume a 94-word array

!Assigns pointer "x" to the
! beginning of extended segment

!Assigns pointer "y" to the
! first free space after "x"

!Assigns pointer "z" to the
! first free space after "y"

The DEFINEPOOL, GETPOOL and PUTPOOL procedures can help you manage
large blocks of memory and build proper addresses:

LITERAL headAsize = 19D;
INT .EXT poolhead := 200000D;
INT .EXT pool := 200000D + headAsize;
INT .EXT block;

!Pool header
!Points into upper 32K

status := DEFINEPOOL (poolhead, pool, headAsize);
@block := GETPOOL (poolhead, 1024D);

. !Do processing
CALL PUTPOOL (poolhead, block);

The DEFINEPOOL, GETPOOL, and USESEGMENT procedures return both a
condition code and a value. If you assign a returned value to a
variable, the condition code setting is lost. For more information
on system procedures, see the System Procedure Calls Reference Manual
and the GUARDIAN Operating System Programmer's Reference Manual.

Aft 82581 AOO 3/85 A-9

MACHINE DEPENDENCIES
Extended Linked-List Example

Extended Linked-List Example

The following example illustrates a linked list:

INT .EXT poolAhead := %2000000D;

STRUCT templ (*);
BEGIN
I NT (3 2) 1 i n k ;
STRING name[0:30];
STRING address[0:20];
END;

PROC fillAnewAelement (d);
INT(32) d; FORWARD;

PROC getAbuffer (currentAelement);
STRING .EXT currentAelement (temp!);

BEGIN
currentAelement.link :=

GETPOOL (poolAhead, $UDBL($LEN(templ));
CALL fillAnewAelement (currentAelement.link);

END;

PROC fillAnewAelement (d);
INT(32) d;

BEGIN
STRING .EXT newAelement := d;

newAelement.name
newAelement.address

.
newAelement.link :=

END;

A-10

' . - ' . -
' . - ' .-

OD;

.
• • • I

"'P 82581 AOO 3/85

MACHINE DEPENDENCIES
Extended Addressing Example Program

Extended Addressing Example Program

The following source code is an example of a complete program that
allocates and uses extended segments:

?INSPECT, SYMBOLS
?NOCODE
?PAGE "dummy page directive"

LITERAL deallocAflags = 1;

LITERAL segAidAzero = O;
LITERAL segAidAtwo = 2;

LITERAL segAidAzeroAlen
LITERAL segAidAtwoAlen

2048D;
4096D;

INT .EXT wordAptr :=
STRING .EXT byteAptr :=

OD;
OD;

INT .EXT poolAhead := %2000000D;

INT .EXT poolAptr := %2000046D;
INT .EXT blockAptrl := OD;
INT .EXT blockAptr2 := OD;
STRING .byteAarray(-1:100];

STRING .EXT baAptr := OD;

STRING .offsetAptr := -1;
INT offsetAx := O;

LITERAL strAlen = 47;
LITERAL arrayAlen = 102;

INT status := 1000;

?NOLI ST

!For DEALLOCATESEGMENT later

!User extended data segment
!IDs need not be contiguous

!Beginning of 19-word· pool
! header in extended segment

!First byte after pool header
!Pool block general pointer
!Pool block general pointer
!Byte array for local scan

!Extended pointer to byte arra~
! needed for extended move

!Length of string to move
!Length of byte array

!Beyond maximum error range

!Not a valid user extended
! data segment ID

?SOURCE $system.system.extdecs(ABEND, DEBUG,
? ALLOCATESEGMENT, USESEGMENT, DEALLOCATESEGMENT,
? DEFINEPOOL, GETPOOL, PUTPOOL)
?LIST

-'f 82581 AOO 3/85 A-11

MACHINE DEPENDENCIES
gxtended Addressing Example Program

?PAGE "Extended Addressing Example Program"

PROC extAaddrAexample MAIN;
BEGIN

A-12

status := ALLOCATESEGMENT(segAidAzero, segAidAzeroAlen);
IF status <> 0 THEN CALL DEBUG;

status := ALLOCATESEGMENT(segAidAtwo, segAidAtwoAlen);
IF status <> 0 THEN CALL DEBUG;

oldAsegAnum ~= USESEGMENT
IF <> THEN CALL DEBUG;

seg"'idAzero);

@byteAptr := %2000000D;
!Set extended pointer to
! first byte of current
! extended segment

!Put character string into

byteAptr ' . - ' .-
! current extended segment

"This is a sample string to be scanned for an X.";

@baAptr := $XADR(byteAarray[O]);

baAptr ':=' byteAptr FOR str"'len;

byte"'array[-1] := O;
byte"'array[lOO] := O;

!Convert 16-bit address
! of byte array to 32-bit
! extended pointer "baAptr"

!Extended move of string
! to user stack

!Set these to 0 to stop
! any scans in the array

SCAN byte"'array[O] UNTIL "X" ->
IF $CARRY THEN CALL DEBUG;

@offset"'ptr; !Scan on stack
! if scan stopped by 0,
! call DEBUG

offsetAx := @offsetAptr I - I @byteAarray[O];

-'f 82581 AOO 3/85

MACHINE DEPENDENCIES
Extended Addressing Example Program

USE new extended data segment for more example manipulations

oldAsegAnum := USESEGMENT (segAidAtwo);
IF <> THEN CALL DEBUG;

status := DEFINEPOOL (poolAhead, poolAptr, 4000D);
IF status <> 0 THEN CALL DEBUG;

@blockAptrl := GETPOOL (poolAhead ' 101D);
IF <> THEN CALL DEBUG;

!For contents
! of "byteAarray"

!Move "byteAarray" to
! first pool in

blockAptrl
?PAGE

' . - ' . - ! extended segment
baAptr[-lD] FOR arrayAlen;

!Get a second pool in
! current extended
! segment for contents
! of "wordAarray"

@blockAptr2 := GETPOOL (poolAhead' lOOOD);
IF <> THEN CALL DEBUG;

@wordAptr := @blockAptr2; !Copy extended pointer

!Move a constant list
! into this pool in
! extended segment

word Apt r ' : = ' [8 , 16 , 3 2 , 4 O , 4 8 , 5 6 , 6 4 , 12 8] ;

CALL PUTPOOL (poolAhead, blockAptrl);
IF <> THEN CALL DEBUG;

CALL PUTPOOL (poolAhead, blockAptr2);
IF <> THEN CALL DEBUG;

CALL DEALLOCATESEGMENT

CALL DEALLOCATESEGMENT

END;

~ 82581 AOO 3/85

!Give first pool back

!Give second pool back

A--13

APPENDIX B

OPTIMAL PERFORMANCE CONSIDERATIONS

Although TAL is a one-pass compiler and is subject to certain
limitations inherent in this characteristic, it generates efficient
object code for the target computer. However, if optimum run-time
speed is important, you can maximize efficiency by following the
guidelines given in this appendix.

GENERAL GUIDELINES

The following guidelines describe general practices for achieving
efficient code:

• Code programs as cleanly and clearly as possible. Provide
structured source code and adequate documentation in the source
listing.

• Debug the programs to ensure that they work properly.

• Analyze the programs using performance analysis tools such as XRAY
to determine where inefficiencies occur.

• Based on the analysis, change procedures that require modification.
Provide comments that describe the changes and why you made them.

~ 82581 AOO 3/85
8-1

OPTIMAL PERFORMANCE CONSIDERATIONS
Addressing

SPECIFIC GUIDELINES

The following guidelines apply to addressing, indexing, and arithmetic
operations.

~ddressing

Although direct addressing is limited in the amount of memory it can
reference, it is more efficient than indirect addressing. Thus, you
should use direct addressing whenever possible.

For example, suppose a procedure receives a reference parameter that
is used heavily in calculations within that procedure before it
receives a value to return to the caller. When the procedure begins
execution, move the value in the indirectly addressed parameter to a
local directly addressed storage area, then use that copy in the
calculations. At the end of the procedure, store the :result in the
original parameter, which is returned. Indirect addressing is
used only twice (once in parameter passing and once in returning the
value). All other references use direct addressing, which enhances
the object-code speed.

Indirect arrays and pointers provide equivalent operation. The
advantage of indirect arrays is that TAL provides a pointer for the
array, allocates the array data, and initializes the pointer to the
base of the array. To use pointers, you must declare and initialize
the pointer.

TAL emits shorter instruction sequences if it can placf~ INT and STRING
extended pointers in locations G[O] through G[63] or L[l] through
L[63]. Thus, you should declare these pointers before other global
and local declarations.

STACK and STORE statements do not improve the efficiency of access to
data items. These statements are provided primarily for moving
operands to and from the register stack when working with the CODE
statement.

B--2 Af' 82581 AOO 3/85

OPTIMAL PERFORMANCE CONSIDERATIONS
Indexing

Indexing

TAL saves index values in index registers so you can refer to them in
later statements. For instance, for the operation X[i] := 5, TAL
saves the value of "i" in an index register. You can then use it in a
reference such as Y[i].

Multiple references to the same index value (using the same data type)
promotes efficiency.

For indexed items in structures, TAL optimizes references only to
adjacent items within the same substructure.

An index on a 16-bit variable is always a signed INT expression. For
a STRING variable, access ranges from 32K bytes below the base to 32K
bytes above the base. For a non-STRING variable, access ranges from
32K words below the base to 32K words above the base.

Indexing indirect references is no less efficient than not indexing
indirect references, because the hardware requires no extra time to
add indexes to address values.

For an INT or STRING extended pointer located below G[63] or L[63]
(decimal), a 16-bit index is more efficient than a 32-bit index. A
16-bit index results in a shorter instruction sequence using the LWXX,
SWXX, LBXX, and SBXX instructions. (These instructions are described
in the System Management Manual for Nonstop systems.)

For all other extended pointers, a 32-bit index is more efficient.
However, for extended structure pointers, 32-bit indexes are not
allowed.

Using a USE register for the 16-bit index of an extended pointer does
not provide further efficiency. TAL must still load the index value
from the USE register into register "A" for use with the LWXX, SWXX,
LBXX, and SBXX instructions. For the less efficient extended access,
TAL loads the 16-bit index from the USE register into register "A",
then converts it to a 32-bit index.

Aft 82581 AOO 3/85
8-3

OPTIMAL PERFORMANCE CONSIDERATIONS
Arithmetic Expressions

~rithmetic Expressions

A complex arithmetic expression might cause more memory references
than if you make the complex expression into several smaller
expressions.

The excessive memory references are triggered by register stack
overflow, which is especially likely if indexes are involved. Use of
an index might cause part of the computation to be pushed on the stack
and later popped off. Doubleword or quadword operands fill the
register stack quickly.

For quadword operations, do not nest index calculations in larger
arithmetic expressions because register stack overflow is likely to
result. Use a separate statement for the index calculations, saving
the results in a temporary area. The expression can then reference
this area.

The IF-THEN-ELSE and CASE forms of arithmetic expressions do not
generate efficient machine code, especially when used to test complex
conditions. To evaluate a complex condition, include separate
IF-THEN-ELSE or CASE statements that perform proper assignments in all
possible branches of the condition.

B·-4 Af' 82581 AOO 3/85

APPENDIX C

ERROR MESSAGES

This appendix describes:

• TAL Error Messages

• TAL Warning Messages

TAL MESSAGES

TAL scans the source code line by line and notifies you of an error or
potential error by displaying one of two types of messages:

• Error message--Indicates an error that must be corrected before TAL
can successfully compile the source code

• Warning message--Alerts you to a potential error condition and
indicates that you should check an area of the source code

In the source listing, TAL prints a circumflex symbol (A) to indicate
the location of the error or potential error. The circumflex appears
under the first character position following the detection of the
error. (However, if the error involves the relationship of the
current source line with a previous line, the circumflex does not
always point to the actual error.)

On the next line, TAL displays a message describing the nature of the
error. The form of the message is:

**** { ERROR }
{ WARNING }

**** <message-number> -- <message-text>

Occasionally, TAL adds a third line for supplemental information, such
as "IN PROC <proc-name>" when reference to an earlier procedure is

...,. 82581 AOO 3/85 C-1

ERROR MESSAGES
Compiler Error Messages

necessary or "PREVIOUS ON PAGE #<page-num>", which refers you to a
previous page with an error.

Error messages are described on the following pages in ascending
numeric order. Although TAL prints each message on a single line,
some messages here are continued on a second line because of line
limitations.

Messages no longer in use are not shown in the list. Thus, a few
numbers are omitted from the numeri~ sequence.

Compiler Error Messages

'The following diagnostic messages identify source errors that prevent
correct compilation. No object file is produced for the compilation.

**** ERROR **** 0 -- Compiler error

This error appears only when TAL detects a logic error within its
operation. The number following the message is for use by Tandem
development personnel. Please report this occurrence to Tandem
Computers Incorporated and include a copy of the complete
compilation listing (and source, if possible).

**** ERROR **** 1 -- Parameter mismatch

The parameter type of a parameter passed to a procedure does not
agree with the parameter type expected by that procedure.

:k*** ERROR **** 2 -- Identifier declared more than once

A declaration contains an identifier that is already declared
within this scope.

**** ERROR **** 3 -- Recursive DEFINE invocation

A DEFINE declaration calls itself or is defined in terms of itself.
An example is "DEFINE a = b#, b = a#;". When "a" is expanded, it
in turn expands "b", which in turn expands "a", TAL checks for
this situation and issues the message when it expands the DEFINE.

**** ERROR **** 4 -- Illegal MOVE statement

TAL detects a malformed move for which it cannot generate code.

**** ERROR **** 5 -- INT overflow

C:-2

A numeric constant represents a value that is too large for its
data type, or an overflow occurs while TAL scales a quadword
constant up or down.

~ 82581 AOO 3/85

**** ERROR **** 6 -- Illegal digit

ERROR MESSAGES
Compiler Error Messages

A numeric constant contains a digit that is illegal in the stated
base of the constant. For example, an octal constant contains the
digit "9".

**** ERROR **** 7 -- String overflow

A character string contains more than 128 characters or does not
terminate in the line in which it begins.

****ERROR**** 8 -- Not defined for INT(32), FIXED, or REAL

An arithmetic operation occurs that is not permissible for the
declared data types.

**** ERROR **** 9 -- The compiler does not allocate space for .EXT
or .SG STRUCTs

You cannot declare a structure using the .EXT or .SG addressing
symbol. You can declare a structure using the standard addressing
symbol (.), then declare an extended structure pointer (Section 11)
or a system global pointer (Section 18) that refers to the
structure.

**** ERROR **** 10 -- Address range violation

This message indicates one of the following conditions:

1. A declaration specifies addresses beyond the allowable range
(for example: INT i = 'G' + 300). Only 256 words are directly
addressable relative to 'G'.

2. A PROC produces more than 32K of code and causes a code-segment
overflow.

3. The total of primary and secondary globals exceeds 32K words.

**** ERROR **** 11 -- Illegal reference

A variable appears in a context where a constant is expected, or an
expression appears where a variable is expected.

**** ERROR **** 12 -- Nested routine declaration(s)

One or more PROC declarations are present within the body of
another procedure. Procedures can contain SUBPROCs only; no other
nesting is permitted.

**** ERROR **** 13 -- Only 16-bit INT value(s) allowed

You specified a STRING, FIXED, REAL, or other data type where only
INT values are permitted.

Af'82581 AOO 3/85 C-3

ERROR MESSAGES
Compiler Error Messages

**** ERROR **** 14 -- Only initialization with constant value(s)
is allowed

A global data initialization includes variables. Global
initializations can include constants only. You can only use
variables to initialize identifiers you declare within a PROC or
SUBPROC.

**** ERROR **** 15 -- Initialization is illegal with reference
specification

You cannot use the same statement to declare an identifier as a
reference to another item and to initialize the other item (for
example: INT .a= b :=<value>). Use separate declarations.

k*** ERROR **** 16 -- Item already has an extended address

A parameter to the standard function $XADR is an item that already
has an extended address.

**** ERROR **** 17 -- Formal parameter type specification is missing

A declaration for a formal parameter is missing in the PROC or
SUBPROC header, and TAL detects a BEGIN.

**** ERROR **** 18 -- Illegal array bounds specification

The upper and lower bounds in an array declaration must be
constants or constant expressions. Also, the lower bound must be
less than or equal to the upper bound (except when the array is
declared within a STRUCT).

This message might also appear if an equivalenced variable is
also declared as an array (for example, INT a[0:5] = b). In this
case, TAL ignores the bounds specification.

~t*** ERROR **** 19 -- Global or nested SUBPROC declaration

A SUBPROC declaration appears either outside a procedure or within
another subprocedure. You cannot declare global subprocedures or
nest them inside another subprocedure.

**** ERROR **** 20 -- Illegal bit field designator

The ending position of a bit field designator must be greater than
or equal to the starting position, and both must be INT constants.

**** ERROR **** 21 Label declared more than once

C-·4

This message means an identifier followed by a colon is identical
to another label name used in the same procedure. Each label must
be unique within a procedure.

-"f 82581 AOO 3/85

ERROR MESSAGES
Compiler Error Messages

**** ERROR **** 22 -- Only standard indirect variables are allowed

You must refer to variables in extended segments by using the
extended indirection symbol (.EXT).

**** ERROR **** 23 -- Variable size error

The size field of a data type is invalid, for example, "INT(12)".

**** ERROR **** 24 -- Data declaration(s) must precede PROC
declaration(s)

A global data declaration appears after a procedure declaration.

**** ERROR **** 25 -- Item does not have an extended address

The argument to the standard function $LADR does not have an
extended address.

**** ERROR **** 26 -- Routine declared forward more than once

More than one forward declaration for the given procedure or
subprocedure is present. You can declare a given procedure FORWARD
only once.

**** ERROR **** 27 -- Illegal syntax

A statement contains one or more syntax errors. This message can
also appear as a result of an error in the previous line.

**** ERROR **** 28 -- Illegal use of code relative variable

You cannot use a read-only array in the present context.

**** ERROR **** 29 -- Illegal use of identifier

The named identifier appears in a PROC or SUBPROC declaration as a
formal parameter specification but is not included in the formal
parameter list.

**** ERROR **** 30 -- Only label or USE variable allowed

A DROP statement refers to a variable that is not a label or a USE
statement variable.

**** ERROR **** 31 -- Only PROC or SUBPROC identifier allowed

A CALL statement can only ref er to a PROC, SUBPROC, or ENTRY
identifier.

~ 82581 AOO 3/85 C-5

gRROR MESSAGES
Compiler Error Messages

**** ERROR **** 32 -- Type incompatibility

This message indicates one of the following conditions:

1. An expression with identifiers of different types occurs. Use
type-transfer standard functions.

2. A procedure without a return type occurs on the right side of an
assignment statement.

3. In a comparison operation, the destination and source variables
have standard addressing, but both are not either byte or word
addressed.

**** ERROR **** 33 -- Illegal global declaration(s)

A declaration occurs for an identifier (such as a label) that
cannot exist as a global item.

**** ERROR **** 34 -- Missing variable

A required variable is missing from the current statement.

**** ERROR **** 36 -- Illegal range

A specified value exceeds the allowable range for a given
operation.

**** ERROR **** 37 -- Missing identifier

A required identifer is missing from the current statement.

**** ERROR **** 38 -- Illegal index-register specification

You reserved more than three registers for use as index registers.
Use a DROP statement to reduce the number of reservE~d registers.

**** ERROR **** 39 -- ?ABORT active and open failed on <file-name>

The ABORT directive causes TAL to terminate when it cannot open the
file you specified in a SOURCE directive.

**** ERROR **** 40 -- Only allowed with a variable

C--6

You specified an operation or expression that is valid only when
used with a variable (for example, "(a+b).<2:5> := O:").

-'f 82581 AOO 3/85

ERROR MESSAGES
Compiler Error Messages

**** ERROR **** 42 -- Table overflow

Your source program fills one of the fixed-size tables of TAL. No
recovery from this condition is possible. You must modify the
source program. The one-digit number identifies the affected
table:

0 = Constant Table--Before the overflow occurs, you can place a
DUMPCONS in the code to force the constant table to be dumped.
Termination does not occur if a block move of a large constant
list caused the overflow.

1 = Tree Table--Simplify the expression.

2 Pseudo-Label Table--You might have too many nested IF
statements. Simplify the IF statements.

3 = Parametric DEFINE Table--The DEFINE being expanded has
parameters that are too long. Shorten the parameters.

4 = Section Table (for SOURCE directives)--You are accessing too
many sections at one time. Break the sections into two or more
groups.

**** ERROR **** 43 -- Illegal symbol

The current source line contains an invalid character or a
character that is invalid in the current context.

**** ERROR **** 44 -- Illegal instruction

The specified mnemonic does not match those for the Nonstop 1+ or
Nonstop system as specified in the CPU directive. Use the CPU
directive to define the instruction set TAL is to use.

**** ERROR **** 45 -- Only INT(32) value(s) allowed

You used a non-INT(32) value in a context where only an INT(32)
value is legal.

**** ERROR **** 46 -- Illegal indirection specification

The period symbol (.) is used on a variable that is already
indirect. Only one level of indirection is legal.

**** ERROR **** 47 -- Illegal for 16-bit INT

The unsigned divide('/') and unsigned modulo divide('\')
operations require an INT(32) dividend and an INT divisor. You
specified an INT value for the INT(32) value.

**** ERROR **** 48 Missing <item-specification>

The source code is missing the item specified.

..-, 82581 AOO 3/85 C-7

ERROR MESSAGES
Compiler Error Messages

**** ERROR **** 49 -- Undeclared identifier

You made a reference to a data item that is not declared.

**** ERROR **** 50 -- Cannot drop this Label

You specified a DROP statement for a label you did not declare or
use. You can drop a label only after you declare it and TAL reads
all references to it. You drop labels to save symbol table space
or to allow its reuse (as in a DEFINE).

**** ERROR **** 51 -- Index-register allocation failed

The compiler is unable to allocate an index register. You might
have indexed multiple arrays in a single statement and reserved the
limit of index registers using USE statements.

**** ERROR **** 52 -- Missing initialization for code relative array

Initialization is missing from a read-only array declaration.
You must initialize read-only arrays when you declare them.

**** ERROR **** 53 -- Edit file has invalid format or sequence <n>

TAL detects an unrecoverable error in the source file;·<n> is a
negative number that identifies the type of error:

-3 = Text file format error

-4 Sequence error (the line number of the current source line
is less than that of the preceding line)

**** ERROR **** 54 -- Illegal reference parameter

You declared a STRUCT as a formal parameter without specifying
indirection. You must declare STRUCT formal parameters as
reference parameters.

**** ERROR **** 55 -- Illegal SUBPROC attribute

A SUBPROC declaration contains an EXTERNAL attribute specification.
This is not a valid attribute for a subprocedure.

**** ERROR **** 56 -- Illegal use of USE variable

You cannot perform the specified operation on a register. For
instance, a USE variable cannot be the target of a move statement.

**** ERROR **** 57 -- Symbol table overflow

c--8

The usual cause for this message is lack of space on the disc. TAL
issues additional messages for the specific case. An example is:

ALLOCATESEGMENT ERROR 43

-'f 82581 AOO 3/85

ERROR MESSAGES
Compiler Error Messages

**** ERROR **** 58 -- Illegal branch

If a FOR statement has a USE register as its counter, branching
into the FOR loop is not permitted.

**** ERROR **** 59 -- Division by zero

TAL detects an attempt to divide by O.

**** ERROR **** 60 -- Only a data variable may be indexed

An index is appended to an identifier that does not represent a
data variable (such as a label or entry point).

**** ERROR **** 61 -- Actual/formal parameter count mismatch

A call to a procedure or subprocedure supplies more (or fewer)
parameters than you defined in the PROC or SUBPROC declaration.

**** ERROR **** 62 -- Forward/external parameter count mismatch

A discrepancy exists between the number of parameters specified in
a FORWARD or EXTERNAL declaration and the number you specified in
the procedure body declaration.

**** ERROR **** 63 -- Illegal drop of USE variable in context of FOR
loop

You specified a USE variable as the index of a FOR loop and then
dropped the variable within the scope of that FOR loop. The FOR
loop can function correctly only if the register remains reserved.
Remove the DROP statement from within the FOR loop.

**** ERROR **** 64 -- Scale point must be a constant

The <fpoint> declaration for a FIXED variable and the <scale>
parameter of the $SCALE function must be INT constants in the range
-19 through +19. The current source line contains a scale point
that is not a constant.

**** ERROR **** 65 -- Illegal parameter or routine not variable

The <formal--param> supplied to the $PARAM function is not in the
formal parameter list for the procedure, or the $PARAM function
appears in a procedure that is not VARIABLE or EXTENSIBLE. Use the
$PARAM function only in VARIABLE procedures and subprocedures and
in EXTENSIBLE procedures.

**** ERROR **** 66 -- Unable to process remaining text

This message is usually the result of a poorly structured program,
when numerous errors are compounded and concatenated to the point
where the compiler is unable to proceed with the analysis of the
remaining source lines.

/1J82581 AOO 3/85 C-9

ERROR MESSAGES
Compiler Error Messages

**** ERROR **** 67 -- Source commands nested too deeply

Source coding invoked by the SOURCE directive might contain a
SOURCE directive to call in other coding, which, in turn, calls
still other coding. The maximum limit for such nesting is four
levels; that limit is exceeded.

**** ERROR **** 68 -- This identifier cannot be indexed

A directly addressable identifier was indexed and used in a
memory-referencing instruction in a CODE statement.

**** ERROR **** 69 -- Invalid template access

A template structure has meaning only when ref erred to in
subsequent structure declarations; the compiler allocates no
storage space for it. The current source line attempts to access
a template structure as if it is a normal data i tern ..

**** ERROR **** 70 -- Only items subordinate to a structure may be
qualified

A qualified reference of the form <name>.<subname>.<itemname>
applies only to data items within a structure. You entered a
qualified reference to a data item that is not part of a
structure.

**** ERROR **** 71 -- Only INT or STRING STRUCT pointers are allowed

You declared a structure pointer of a data type other than INT or
STRING; these are the only acceptable types.

**** ERROR **** 72 -- Indirection must be supplied

In the structure pointer declaration, the indirection symbol (.)
must precede the identifier that represents the pointer; the
indirection symbol is missing.

**** ERROR **** 73 -- Only structure identifiers may be used as a
referral

In a referral structure declaration, the <referral> identifier must
be the name of a previously declared definition structure, template
structure, or structure pointer.

**** ERROR **** 74 -- Word addressable items may not bE! accessed
through a STRING structure pointer

Although an INT structure pointer can access items of any data
type, a STRING structure pointer can only access STRING data items.
This restriction does not apply for extended structure pointers
on a Nonstop system.

c--10
~ 82581 AOO 3/85

ERROR MESSAGES
Compiler Error Messages

**** ERROR **** 76 -- Illegal STRUCT or SUBSTRUCT reference

A structure or substructure reference can appear only in a move,
scan, or group comparison operation, or as an actual parameter
passed by reference, or as @<primary> in an expression. The
current source line violates this restriction.

**** ERROR **** 78 -- Invalid number form

A floating-point constant is entered incorrectly. A REAL constant
must be written in the following form:

[<sign>]<integer>.<fraction> E [<sign>]<exponent>

A REAL(64) constant must be entered in the following form:

[<sign>]<integer>.<fraction> L [<sign>]<exponent>

**** ERROR **** 79 -- REAL underflow or overflow

Underflow or overflow occurred during input conversion of a REAL or
REAL(64) number. Floating-point numbers must be in the following
approximate range:

-78
+8.62 * 10

77
through +1.16 * 10

**** ERROR **** 81 -- Invoked forward PROC converted to external

The current declaration attempts to redefine as external a PROC
that was already called as an internal procedure.

**** ERROR **** 82 -- Not defined for this cpu type - ignored

FIXED or REAL operations involving SG pointers and declarations
using extended addressing are not defined for the Nonstop system.
You must include a CPU TNS/II directive before these operations are
accepted.

**** ERROR **** 83 -- CPU type must be set initially

If it is present, the CPU directive must precede any data or
procedure declarations.

**** ERROR **** 84 -- There is no SCAN instruction for extended memory

Extended items cannot be the object of a SCAN or RSCAN operation
since there is no hardware support for them. Move the array into a
temporary location in the normal user data space and perform the
operations there.

~ 82581 AOO 3/85
C-11

gRROR MESSAGES
Compiler Error Messages

**** ERROR **** 85 -- Bounds illegal on .SG or .EXT items

Data declarations with .SG or .EXT identifiers define pointers but
not data storage. Specifying bounds in these declarations is NOT
permitted.

**** ERROR **** 86 -- Constant expected and not found

The compiler expected a constant but found a variable reference.

**** ERROR **** 87 -- Illegal constant format

You specified a constant that does not have a legal form.

**** ERROR **** 88 -- Expression too complex. Please simplify

The current expression is too complex~ The compile1~'s stack
overflowed and the compilation terminated.

**** ERROR **** 90 -- Invalid object file name

The name supplied for the target file is not a disc file name.

**** ERROR **** 91 -- Invalid default volume or subvolume

The default volume or subvolume in the startup message was
incorrect.

**** ERROR **** 92 -- Branch to entry point not allowed

An entry point cannot be the target of a GOTO statement. In the
source code, add a label following the entry point. Use the
label as the target of the GOTO statement.

**** ERROR **** 93 -- Previous data block not ended

A BLOCK or PROC declaration appears before an END BLOCK statement
for a previous BLOCK declaration. This message occurs only if the
compilation begins with a NAME declaration.

**** ERROR **** 94 -- Declaration must be in a data block

An unblocked global data declaration appears after a BLOCK
declaration. Either place all unblocked global declarations inside
BLOCK declarations or place them before the first BLOCK declaration
or SOURCE directive that includes a BLOCK. This message occurs
only if the compilation begins with a NAME declaration.

**** ERROR **** 95 -- Error reading instruction file

TAL could not open or read the TALINSTR file. This file must be
on the same volume and subvolume as the TAL compiler.

C-12 ·'1' 82581 AOO 3/85

ERROR MESSAGES
Compiler Error Messages

**** ERROR **** 96 -- Address references between global data
blocks not allowed

In a compilation unit that begins with the NAME declaration, a
variable in a global data block cannot be initialized with the
address of a variable in another global data block. Because global
data blocks are relocatable, such an initialization is invalid.

**** ERROR **** 97 -- Equivalences between global data blocks
not allowed

An equivalence declaration in a global data block uses a variable
declared in another global data block. Place the equivalence and
variable declarations in the same block. This message occurs only
if the compilation unit begins with the NAME declaration.

**** ERROR **** 99 Initialization list exceeds space allocated

A constant list contains values that exceed the space allocated by
the data declaration.

**** ERROR **** 100 -- Nested parametric DEFINE definition encountered
during expansion

An invalid nesting was attempted in a DEFINE declaration.

**** ERROR **** 101 -- Illegal conversion to EXTENSIBLE

To be convertible, a VARIABLE procedure must have 15 or fewer
parameters, 16 or fewer words of parameters, and all one-word
parameters except the last one. You must also specify the
number of parameters the procedure had when it was VARIABLE.

**** ERROR **** 103 -- Indirection mode specified not allowed for
P-relative variable

A read-only array must be directly addressed.

**** ERROR **** 104 -- This procedure has missing label - <label-name>

A procedure references a label that does not exist within the
procedure.

**** ERROR **** 105 -- A declared secondary entry point is missing -
<entry-point-name>

The specified entry-point name was declared but not used in the
procedure.

**** ERROR **** 106 -- A referenced subprocedure declared FORWARD
is missing - <subproc-name>

You declared a FORWARD subprocedure and referenced it but did not
declare the subprocedure body.

/182581 AOO 3/85 C-13

ERROR MESSAGES
Compiler Warning Messages

**** ERROR **** 107 -- This compiler must be run on a Tandem Nonstop
II or TXP processor.

Version BOO of the compiler must be run on a Nonstop system.
Version E08 of the compiler must be run on a Nonstop 1+ system.

Compiler Warning Messages

The following messages indicate conditions that might affect program
compilation or execution. Recheck the code carefully to determine
whether a correction is necessary.

**** WARNING **** 0 -- All index registers are reserved

Three index registers are reserved by USE statements. An attempt
to reserve another index register will result in an error message.

-11.:*** WARNING **** 1 -- Identifier exceeds 31 characters in length

An identifier in the current source line is longer than 31
characters, the maximum allowed for an identifier. TAL ignores all
excess characters.

**** WARNING **** 2 -- Illegal option syntax

A compiler directive option is entered incorrectly. TAL ignores
the option. (This might or might not affect the program itself,
depending on the function of the option.)

**** WARNING **** 3 -- Initialization list exceeds space allocated

An initialization list contains more values or characters than can
be contained by the variable being initialized. TAL ignores the
excess items.

**** WARNING **** 4 -- P-relative array passed as reference parameter

You passed the address of a read-only array to a procedure. This
might result in incorrect execution unless the procedure takes
explicit action to use the address properly.

**** WARNING **** 5 -- PEP size estimate was too small

Your PEP estimate (from the PEP directive) is not large enough to
contain all the entries required. BINSERV has allocated
appropriate additional space.

C-14
"182581 AOO 3/85

ERROR MESSAGES
Compiler Warning Messages

**** WARNING **** 6 -- Invalid ABSLIST addresses may have been
generated

ABSLIST addresses might be invalid if you use the ABSLIST directive
and have any of the following conditions:

1. Insufficient space for all PEP entries (see warning 5)

2. All procedures not declared FORWARD (and no PEP directive)

3. One or more RESIDENT procedures

Since TAL is a single-pass compiler and cannot adjust addresses for
the above conditions, it produces a partially unusable listing.
If the program has more than 32K words of code space or if you use
the standalone BINDER, do not use ABSLIST.

**** WARNING **** 7 -- Multiply defined SECTION name

The same section name appears more than once in the same SOURCE
directive. TAL ignores all occurrences but the first.

**** WARNING **** 8 -- SECTION name not found

A section name listed on a SOURCE directive is not in the specified
file.

**** WARNING **** 9 -- RP register mismatch

An operation contains conflicting instructions for the register
pointer that cannot be resolved at compilation; for example:

IF a
THEN

STACK 1
ELSE

STACK lD;

This message can also occur following a large number of errors that
result in an RP conflict.

**** WARNING **** 10 -- RP register overflow or underflow

A calculation produced an index register number that is greater
than 7 or less than O.

**** WARNING **** 11 -- Parameter type conflict possible

You are passing a byte-aligned (STRING) extended item as an actual
parameter to a procedure that expects a word-aligned (INT,
INT(32) ...) item's address. If the item's address is not on a word
boundary, the hardware ignores the odd-byte number and accesses
the entire word.

/f 82581 AOO 3/85
C-15

ERROR MESSAGES
Compiler Warning Messages

**** WARNING **** 12 -- Undefined option

You entered a compiler directive option that does not exist. TAL
ignores the erroneous directive.

"'*** WARNING **** 13 -- Value out of range

A value exceeds the permissible range for its context (for example,
a shift count is greater than the number of existing bits).

-J.~*** WARNING **** 14 -- Index was truncated

This warning occurs when you try to either make a STRING or INT
item equivalent to an odd-byte address or make a direct variable
equivalent to an indirect variable with an index. TAL truncates
the index (for example, INT .s[0:4]~ INT sl = s[l], resulting in
INT sl = s).

**** WARNING **** 15 -- Right shift emitted

A byte address is passed as a parameter when a word address is
expected. TAL converted the byte address to a word address. If
the STRING item begins on an odd-byte boundary, the word-aligned
item also includes the even-byte part of the word.

**** WARNING **** 16 -- Value passed as reference parameter

A parameter is passed by value to a procedure or subprocedure that
expects a reference parameter. If this is your intent, and if the
value can be interpreted as a 16-·bit address, no error is involved.

****WARNING **** 17 -- Initialization value too complE~x

An initialization expression is too complicated to evaluate in the
current context.

**** WARNING **** 18 S register mismatch

A statement contains conflicting instructions for the setting of
the S-register. For example, if a subprocedure contains the
statement IF A THEN CODE(ADDS 1) ELSE CODE(ADDS 2), the setting of
the S-register depends on the evaluation of A, which cannot be
resolved at compilation time.

**** WARNING **** 19 -- PROC not declared FORWARD with ABSLIST option
on

A PEP directive or a FORWARD declaration is missing.. When you use
the ABSLIST directive, TAL must know the size of the PEP table
before the procedure occurs in the source program. Enter either a
PEP directive at the beginning of the program or a FORWARD
declaration for the procedure. This warning also results in a
WARNING 6 at the end of the compilation.

C-16
~ B2581 AOO 3/85

ERROR MESSAGES
Compiler Warning Messages

**** WARNING **** 20 -- Source line truncated

A source line extends beyond 132 characters. TAL ignores the
excess characters.

**** WARNING **** 21 Attribute mismatch

The attributes in a FORWARD declaration do not match those in the
procedure body declaration. Change the incorrect set of
attributes.

**** WARNING **** 22 -- Illegal command list format

The format of the list of parameters supplied to a compiler
directive is incorrect. TAL ignores the directive.

**** WARNING **** 23 -- The list length has been used for the
compare count

A FOR <count> clause and a constant list both appear in a group
comparison expression. TAL obtains the count of items from the
length of the constant list. Remove the FOR <count> clause from
the group comparison expression.

**** WARNING **** 24 A USE register has been overwritten

The evaluation of an expression caused the value in a USE register
to be overwritten. Multiplication of two FIXED values, for
example, can cause this to occur.

**** WARNING **** 25 -- FIXED point scaling mismatch

The scale factor of a FIXED value passed as a parameter does not
match that of the formal parameter.

**** WARNING **** 27 -- ABS (FPOINT) >(19)

The <fpoint> in a FIXED declaration or the <scale> parameter of the
$SCALE function is less than -19 or greater than +19. TAL sets the
fixed-point value to the maximum limit, either -19 or +19.

**** WARNING **** 28 More than one MAIN specified. MAIN is still
<name>

Although more than one procedure can have the MAIN attribute in the
source code, only the first MAIN procedure TAL sees retains the
MAIN attribute in the object code.

If the program contains any COBOL program units, the main procedure
must be written in COBOL. Refer to the COBOL Reference Manual.

"1' 82581 AOO 3/85 C-17

ERROR MESSAGES
Compiler Warning Messages

1~*** WARNING **** 29 -- One or more illegal attributes

The only attribute permitted for a subprocedure is VARIABLE. A
SUBPROC declaration with other attributes occurs. TAL ignores
all attributes but VARIABLE.

**** WARNING **** 31 -- Missing FOR part

The FOR <count> specification is missing from a move statement.
TAL assumes the number of items to move is 1.

**** WARNING **** 32 -- RETURN not encountered in typed PROC or
SUBPROC

Although a procedure or subprocedure automatically returns control
to the calling routine when the last END statement is reached, a
typed procedure or subprocedure (function) is expected to return a
value. To do so, it must contain at least one RETURN statement
with an identifier.

**** WARNING **** 33 Redefinition size conflict

When redefining a substructure or structure data item, the
redefined item must be of sufficient size to contain the new item.

**** WARNING **** 34 -- Redefinition offset conflict

In the redefinition of a structure data item or substructure, the
original item is a STRING item beginning at an odd-byte address,
but the redefined item requires word-boundary alignment.

**** WARNING **** 35 -- Segment number information lost

A procedure call passes an actual parameter with an extended
address to a procedure that does not expect one. When TAL converts
the address, the segment number is lost. If the extended address
points into a segment other than the current user data segment, the
address that results is invalid.

**** WARNING **** 36 -- Expression passed as reference parameter

A procedure call passes an expression of the form "@<variable>" to
a procedure or subprocedure that expects a parameter that is an
extended pointer. If the intent is to pass the address of the
pointer rather than what it points to, no error is involved.

**** WARNING **** 37 -- Array access changed from indirect to direct

TAL changed an indirect array declared inside a subprocedure
to a direct array. All sublocal data must be directly addressed
because the sublocal area has no secondary storage for indirect
data.

C-18 "1'82581 AOO 3/85

ERROR MESSAGES
Compiler Warning Messages

**** WARNING **** 40 -- A procedure declared FORWARD is missing -
<proc-name>

A FORWARD declaration occurs, but the procedure body declaration is
missing. TAL converts all references to this procedure into
EXTERNAL references to the same name.

**** WARNING **** 42 -- Specified bit extract/deposit may be invalid
for strings

Bit extraction or deposit operations on STRING items use bit
numbers 8 through 15 only. You specified bit numbers in the range
0 through 7, which have no effect on the operation.

**** WARNING **** 43 -- A default OCCURS count of 1 is returned

An $OCCURS function used on a non-STRUCT item returns the default
value of 1.

**** WARNING **** 44 -- A subprocedure declared FORWARD is missing -
<subproc-name>

The named SUBPROC is declared FORWARD, but is not referenced and
its body is not declared.

**** WARNING **** 45 -- Variable attribute ignored - no parameters

The VARIABLE attribute appears for a procedure or subprocedure that
has no parameters. TAL ignores the VARIABLE attribute.

**** WARNING **** 46 -- Non-relocatable global reference

The RELOCATE directive is in effect, and all primary global data is
relocatable. However, a declaration that refers to a G-relative
location appears. This reference might not be valid if BINSERV
relocates the data blocks when it builds the object file. Either
change the declaration of the identifier or, if NAME (and BLOCK)
statements do not appear, delete the RELOCATE directive.

**** WARNING **** 47 -- Invalid file or subvolume specification

An invalid file or subvolume appears in a TAL directive. Respecify
the directive.

**** WARNING **** 48 -- This directive not allowed in this part
of program

A directive occurs in an inappropriate place. For instance, an IF
directive is not effective on the command line.

**** WARNING **** 49 -- Address of entry point used in an expression

The value of the construct @entry-point-name for a subprocedure
is the address of the first word of code executed after a call

~82581 AOO 3/85 C-19

ERROR MESSAGES
Compiler Warning Messages

to the entry point. If code written for releases prior to TAL EOl
contains the expression @ep-1 to calculate the entry-point
location, change it to @ep for correct execution.

·k*** WARNING **** 50 -- Literal initialized with address reference

Using the address of a global variable as the value of a LITERAL
is invalid since global data is now relocatable.

·k*** WARNING **** 51 -- Instruction will be deleted in the near future

This message gives advance notice that the instruction indicated is
to be removed from the TAL instruction set in the near future .

'.k*** WARNING **** 52 . or @ in move or array comparison may be
invalid

When you specify the source or destination variable in a move
statement or group comparison expression, you can use the period
symbol (.) only with INT direct variables located in the current
user data segment. Do not use the @ symbol in a move or group
comparison operation.

**** WARNING **** 53 -- This statement has caused an optional
instruction to be generated

A statement occurs that requires optional microcode such as the
fixed-point and floating-point optional microcode. ~or operations
that require optional microcode, see Section 4. For standard
functions that require optional microcode, see Section 17.

**** WARNING **** 54 -- The structure item rather than the define will
be referenced

A DEFINE and a structure data item have the same identifier. When a
reference to the qualified identifier occurs, TAL looks for the
structure item first. If the structure item does not exist, TAL
expands the DEFINE. To ensure proper references, use unique
identifiers for all declarations.

~'<*** WARNING **** 55 -- The length of this structure exceeds 32767
bytes at item ** <item-name>

A structure occurrence must not exceed 32767 bytes in length. The
message flags the item that caused the structure to exceed the legal
length: the next item is the one TAL cannot access. Reduce the
length of the structure.

C-20
.-, 82581 AOO 3/85

ERROR MESSAGES
Compiler Warning Messages

**** WARNING **** 56 -- Format of ENV register on data stack has
changed as of GUARDIAN Release BOO

You have made a variable equivalent to L '-' 1, which the operating
system now uses for saving the current code segment number when a
procedure is invoked. Your program might be in error. For more
information on the ENV register, see the System Description Manual
for the Nonstop system.

**** WARNING **** 58 -- Code space exceeds 64k, ABSLIST has been
disabled

TAL version BOO and later supports up to 16 * 64K words of source
code. When the code exceeds 64K words, TAL disables ABSLIST for the
remainder of the listing.

"'f 82581 AOO 3/85 C-21

ERROR MESSAGES
Other Error Messages

OTHER ERROR MESSAGES

~rhe following message might appear during compilation:

*** INSPCI ERROR AT: P = %<nnnnn>, <nnnn>,,<nnnnn>

This error appears only when TAL detects a logic error within its
operation. The number following the message is for use by Tandem
development personnel. Please report this occurrence to Tandem
Computers Incorporated and include a copy of the complete
compilation listing (and source, if possible).

BINSERV MESSAGES

For BINSERV diagnostic messages, see the BINDER Manual.

C-22 ..,.82581 AOO 3/85

APPENDIX D

SYNTAX SUMMARY

This appendix provides a syntax summary for specifying:

• Constants

• Access Forms

• Bit Operations

• Declarations

• Expressions

• Statements

• Standard Functions

• Compiler Directives

Af' 82581 AOO 3/85
D-1

SYNTAX SUMMARY
Constants

CONSTANTS

Character String Constants (All Data Types)

"<string>"

STRING Numeric Constants

[<base>] <integer>

INT Numeric Constants

[+] [<base>] <integer>
[-]

INT(32) Numeric Constants

[+] [<base>] <integer> { D }
[-] { %D }

FIXED Numeric Constants

[+] [<base>] <integer> [.<fraction>] { F }
[-] { %F }

REAL and REAL(64) Numeric Constants

[+] <integer>.<fraction> { E } [+] <exponent>
[-] { L } [-]

Constant List

[<repetition-factor> *] "[" <constant-list> "]"

D--2 Af' 82581 AOO 3/85

ACCESS FORMS

Address of Nonpointer Item

@<item-name>

Contents of Pointer

@<pointer-name>

Indexing

<identifier> "[" <index> "]"

Temporary Pointer

.<direct-int-variable>

BIT OPERATIONS

Bit Deposit

<variable> . "<" <left-bit> [

Bit Extraction

<primary> "<" <left-bit> [

Bit Shift

SYNTAX SUMMARY
Access Forms, Bit Operations

<right-bit>] ">" := <expression>

<right-bit>] ">"

<primary> <shift-operator> <positions>

-'f 82581 AOO 3/85
D-3

SYNTAX SUMMARY
Declarations

DECLARATIONS

Array Declaration

<type> [.] <identifier> "[" <lower-bound> <upper-bound> "]"

:= <initialization>

[, [.] <identifier> "[" <lower-bound> <upper-bound> "]"

[:=<initialization>]] •.•

Array Declaration, Read-Only

<type <identifier> ["[" <lower-bound> <upper-bound> "]"]

= 'P' := <initialization>

[, <identifier> ["[" <lower-bound> : <upper-bound> "]"]

= 'P' := <initialization>]

Block Declaration

BLOCK { <identifier> J
{ PRIVATE J

[<data-declaration>] ...
END BLOCK;

DEFINE Declaration

DEFINE <identifier> [(<param> [, <param>] •..)] =<text>#

[, <identifier> [(<param> [, <param>] .•.)] =<text>#] •.•

Entry-Point Declaration

ENTRY <entry-point-name> [, <entry-point-name>] •o•

D·-4 -'182581 AOO 3/85

SYNTAX SUMMARY
Declarations

Equivalenced Variable Declaration
(Simple Variable, Pointer, or Structure Pointer to
Previous Variable, Base Address, or 'SG')

{ { . } { <structure-pointer> (<referral>
{ { .EXT } { <pointer>

<type> {
{ <simple variable>

{ <previous-identifier> } [" [" <index>
= { 'G' I 'L' I 'S' } [

"] "

{ 'SG' } [{+I-} <offset>

{ { . } { <structure-pointer> (<referral>)
{ { .EXT } { <pointer>

[, {
{ <simple-variable>

}
}

]
]
]

}
}

{ <previous-identifier>
= { 'G' I 'L' I 'S'

{ 'SG'

} ["[" <index> "]"]
} []
} [{+I-} <offset>]

Equivalenced Variable Declaration
(Structure to Previous Variable, Base Address, or 'SG')

STRUCT [•] { <structure> [(<referral>)

}
}
}
}

}
}
}
}

{ <previous-identifier> } ["[" <index> "]~]
= { 'G' I 'L' I 'S' } []

{ 'SG' } [{+I-} <offset>]

<structure-body>

Label Declaration

LABEL <identifier> [, <identifier>] •••

LITERAL Declaration

LITERAL <identifier> = <constant>

[, <identifier> <constant>] •.•

Name Declaration (Compilation Unit Name)

NAME <identifier> ;

Aft 82581 AOO 3/85 D-5

SYNTAX SUMMARY
Declarations

Pointer Declaration

<type> { } <identifier> [:= <initialization>
{ .EXT }

[, { } <identifier> [:= <initialization>]] . " .
{ .EXT }

Procedure or Subprocedure Declaration

[<type>] { PROC } <identifier>
{ SUBPROC }

[<formal-param-name> [, <forrnal-param-name>] .•.)]

[<attribute> [, <attribute>] • • •] ;

[<formal-param-specification>
[, <formal-param-specification>] •.. ;]

{ <body>
{ FORWARD
{ EXTERNAL

}
}
}

!Procedure or subprocedure
!Procedure or subprocedure
!Procedure only

Procedure Formal Parameter Specification

<param-type> [.] <formal-param-name> [(<referral>
[. EXT]

[, [.] <formal-param-name> <referral>)
[. EXT]

Procedure Body

BEGIN

[<local-declaration>] ..•

[<subprocedure-declaration>] .•.

[<statement>] •.•

END;

!Direct or indirect data

. ,

D-6 '1l 82581 AOO 3/85

Subprocedure Body

BEGIN

SYNTAX SUMMARY
Declarations

<sublocal-declaration>] ... !Direct data only

<statement>] .•.

END;

Simple Variable Declaration

<type> <identifier> [:= <initialization>]

[, <identifier> [:= <initialization>

Structure Declaration, Definition Form

STRUCT [•] <identifier>

"[" <lower-bound>

<structure-body>

Structure Declaration~ Referral Form

STRUCT [•] <identifier> (<referral>

["[" <lower-bound>

Structure Declaration, Template Form

STRUCT <identifier> (*) ;

<structure-body>

Structure Body FILLER

FILLER <constant-expression>

Structure Data Item Redefinition

] ...

<upper-bound> "]"]

<upper-bound "]"]

<type> <identifier> ["[" <lower-bound> <upper-bound> "]"]

= <previous-identifier>

-'182581 AOO 3/85 D-7

SYNTAX SUMMARY
Declarations

Structure Pointer Declaration

{ INT } {. } <identifier> (<referral>) [:= <initialization>
{ STRING } {.EXT}

[, {. } <identifier> (<referral>) [:=<initialization>]] ..•
{.EXT}

Substructure Redefinition

STRUCT <identifier> ["[" <lower-·bound> <upper-bound> "]"]

= <previous-identifier>

<structure-body>

System Global Pointer Declaration

<type> .SG <identifier> [:= <preset-address>

[, .SG <identifier> := <preset-address>] • 0 •

D-8 -'-f 82581 AOO 3/85

SYNTAX SUMMARY
Expressions

EXPRESSIONS

Assignment Form of Arithmetic Expression

<variable> := <expression>

CASE Form of Arithmetic Expression

CASE <index> OF
BEGIN

<expression>
<expression>

!For index = 0
!For index = 1

<expression> : !For index = <n>
[OTHERWISE <expression> ;]

END

General Form of Arithmetic Expression

[+] <primary> [[<arith-operator> <primary>] •••]
[-]

General Form of Conditional Expression

[NOT] <condition> [[{AND} [NOT] <condition>] ...]
{ OR }

Group Comparison Form of Conditional Expression

<varl> <rela-operator> { <var2> FOR <count> [-> <next-addr>] }
{ <constant> }

IF-THEN-ELSE Form of Arithmetic Expression

IF <conditional-expression> THEN <expression> ELSE <expression>

Af' 82581 AOO 3/85 D-9

SYNTAX SUMMARY
Statements

STATEMENTS

ASSERT--Conditionally invokes procedure named in ASSERTION directive

ASSERT <assert-level> : <expression>

Assignment--Assigns value to variable

<variable> := <expression>

Assignment (Pointer)--Assigns address to pointer or structure pointer

@<pointer-name> := <arithmetic-expression>

Assignment (Structure Item)--Assigns value to structure item

{ <struct-name>
{ <struct-ptr-name>

} [[.<substruct-name>] ...] .<item-name>
}

: == <express ion>

Compound Statement--Forms a single logical statement from multiple
statements

BEGIN
[<statement;] ...

END [;]

CALL--Invokes procedure, subprocedure, or entry point

CALL <identifier> [(<param> [, <param>] ...)]

CASE--Executes one of several statements based on index values

CASE <index> OF
BEGIN

<statement>
<statement>

!For index = 0
!For index 1

D-10

<statement> !For index
[OTHERWISE <statement> ;]

END

<n>

._, 82581 AOO 3/85

SYNTAX SUMMARY
Statements

CODE--Specif ies machine-level instructions

CODE (<instruction> [: <instruction>] ...)

DO--Executes statement until specified condition becomes true

DO [<statement>] UNTIL <expression>

DROP--Disassociates identifier from label or index register

DROP <name>

FOR--Executes statement until variable increments or decrements past
limit

FOR <variable> := <initial> { TO } <limit> [BY <step>] DO
{ DOWNTO }

[<statement>]

GOTO--Unconditionally transfers program control to labeled statement

GOTO <label-name>

IF-THEN-ELSE--Executes one of two statements based on true or false
condition

IF <conditional-expression>
THEN

[<statement>
ELSE

[<statement>

MOVE--Transfers contiguous bytes, words, or elements from one location
to another, left to right (':=')or right to left ('=:')

<destination> {
{

I : = f

' - . ' <source> FOR <count> }
<constant> }

[-> <next-addr>]
-.

RETURN--Returns from procedure or subprocedure to caller: for
functions also returns value

RETURN

RETURN <expression>

-'f 82581 AOO 3/85

!Untyped procedure

!Function (typed procedure)

D-11

SYNTAX SUMMARY
Statements

SCAN, RSCAN--Searches scan area for test character, left to right
(SCAN) or right to left (RSCAN)

{ SCAN } <variable> { WHILE } <test-char> [-> <next-addr>]
{ RSCAN } { UNTIL }

STACK--Loads values onto register stack

STACK <expression> [, <expression>]

STORE--Transfers values from register stack to variables

STORE <variable> [, <variable>] .•.

USE--Associates identifier with, and reserves, index register

USE <name>

WHILE--Executes statement while specified condition is true

WHILE <conditional-expression> DO [<statement>]

D-12
~82581 AOO 3/85

SYNTAX SUMMARY
Standard Functions

STANDARD FUNCTIONS

In the following summary, the symbol "(P)" denotes functions that
perform privileged operations.

$ABS--Returns absolute value of same type as expression

$ABS (<expression>

$ALPHA--Tests right half of INT value for alphabetic character

$ALPHA (<int-expression>

$AXADR (P)--Returns absolute extended address of variable

$AXADR (<variable>)

$BOUNDS (P)--Checks location of parameter passed to system procedure

$BOUNDS (<param> , <count>)

$CARRY--Checks carry bit in ENV register

$CARRY

$COMP--Returns one's complement of INT expression

$COMP (<int-expression>)

$DBL--Returns signed INT(32) value from any expression

$DBL (<expression>

$DBLL--Returns INT(32) value from two INT expressions

$DBLL (<int-expression> , <int-expression>)

$DBLR--Returns rounded signed INT(32) value from any expression

$DBLR (<expression>)

~ 82581 AOO 3/85
D-13

SYNTAX SUMMARY
Standard Functions

$DFIX--Returns 64-bit integer from signed INT(32) expression

$DFIX (<dbl-expression> , <fpoint>

$EFLT--Returns REAL(64) value from any expression

$EFLT (<expression>

$EFLTR--Returns rounded REAL(64) value from any expression

$EFLTR (<expression>)

$FIX--Returns FIXED(O) value from any expression

$FIX (<expression>

$FIXD--Returns INT(32) value from FIXED expression

$FIXD (<fixed-expression>)

$FIXI--Returns signed INT value from FIXED expression

$FIXI (<fixed-expression>)

$FIXL--Returns unsigned INT value from FIXED expression

$FIXL (<fixed-expression>)

$FIXR--Returns rounded FIXED(O) value from any expression

$FIXR (<expression>)

$FLT--Returns REAL value from any expression

$FLT (<expression>

$FLTR--Returns rounded REAL value from any expression

$FLTR (<expression>)

0-14 ~82581 AOO 3/85

SYNTAX SUMMARY
Standard Functions

$HIGH--Returns INT value from left half of INT(32) expression

$HIGH (<dbl-expression>)

$IFIX--Returns FIXED value from signed INT expression

$IFIX (<int-expression> , <fpoint>

$INT--Returns INT value from any expression

$INT (<expression>

$INTR--Returns rounded INT value from any expression

$INTR (<expression>

$LADR--Returns standard address of item accessed via extended pointer

$LADR (<variable>)

$LEN--Returns byte length of variable

$LEN (<variable>)

$LFIX--Returns 64-bit integer from unsigned INT expression

$LFIX (<int-expression> , <fpoint>

$LMAX--Returns maximum of two unsigned INT expressions

$LMAX (<int-expression> , <int-expression>

$LMIN--Returns minimum of two unsigned INT expressions

$LMIN (<int-expression> , <int-expression>

$MAX--Returns maximum of two signed expressions

$MAX (<expression> , <expression>)

-'f 82581 AOO 3/85 D-15

SYNTAX SUMMARY
Standard Functions

$MIN--Returns minimum of two signed expressions

$MIN (<expression> , <expression>)

$NUMERIC--Tests right half of INT value for ASCII numeric character

$NUMERIC (<int-expression>

$0CCURS--Returns number of occurrences of variable

$OCCURS (<variable>

$0FFSET--Returns byte offset of structure item from structure base

$OFFSET (<variable>)

$0VERFLOW--Tests for arithmetic overflow condition

$OVERFLOW

$PARAM--Checks for presence or absence of actual parameter

$PARAM (<formal-param>)

$POINT--Returns <fpoint>, in integer form, of FIXED expression

$POINT (<fixed-expression>

$PSEM (P)--Requests semaphore on behalf of caller

$PSEM (<semaphore-addr> , <interval>)

$RP--Returns current setting of TAL RP counter

$RP

$SCALE--Moves implied decimal point position in FIXED E~xpression

$SCALE (<fixed-expression> , <scale>)

D-16 -'182581 AOO 3/85

SYNTAX SUMMARY
Standard Functions

$SPECIAL--Tests right half of INT value for nonalphanurneric ASCII
character

$SPECIAL (int-expression)

$SWITCHES (P)--Returns current setting of SWITCH register

$SWITCHES

$TYPE--Returns value indicating data type of variable

$TYPE (<variable>)

$UDBL--Returns INT(32) value from unsigned INT expression

$UDBL (<int-expression>)

$XADR--Returns extended address from standard address of variable

$XADR (<variable>)

~ 82581 AOO 3/85
D-17

SYNTAX SUMMARY
Compiler Directives

COMPILER DIRECTIVES

A directive line begins with a "?" in the first column and has the
form:

? <directive> [, <directive>] ..•

In the following summary, a "*" following the directive name means the
directive is not a feature of Nonstop 1+ software.

ABORT*--Terminates compilation if TAL cannot open SOURCE file

[NO]ABORT

ABSLIST--Lists C-relative addresses

[NO]ABSLIST

ASSERTION--Generates debugging aids in conjunction with ASSERT
statement

ASSERTION [=] <assertion-level> , <procedure-name>

CODE--Lists instruction codes in octal if LIST is also enabled

[NO]CODE

COMPACT--Moves procedures into 32K gap in code area if they fit

[NO]COMPACT

CPU--Specif ies system type on which object code is to run

CPU { TNS }
{ TNS/II }

CROSSREF--Lists identifier cross references

[NO]CROSSREF <class>
(<class> [, <class>] ...)

D--18 AJ' 82581 AOO 3/85

SYNTAX SUMMARY
Compiler Directives

DATAPAGES--Sets size of data area for object program

DATAPAGES [=] <integer>

DECS--Decrements TAL S-register counter

DECS [= <sdec-value>

DEFEXPAND--Lists invoked DEFINE text

[NO]DEFEXPAND

DUMPCONS--Dumps constant table in object code

DUMPCONS

ENDIF--Terminates conditional compilation

ENDIF { <toggle-number> }
{ <cpu-type> }

ERRORS--Sets number of error messages at which to terminate TAL

ERRORS [=] <nnnnn>

EXTENDSTACK--Sets number of pages to add to existing stack size

EXTENDSTACK <value>

GMAP*--Lists global map if MAP is also enabled

[NO]GMAP

ICODE--Lists mnemonics after each procedure if LIST is enabled

[NO]ICODE

IF--Allows conditional compilation

IF[NOT] { <toggle-number> }
{ <cpu-type> }

~82581 AOO 3/85
D-19

SYNTAX SUMMARY
Compiler Directives

INHIBITXX--Inhibits emission of extended, indexed instruction

[NO]INHIBITXX

INNERLIST--Lists mnemonics after each source statement if LIST is
enabled

[NO]INNERLIST

INSPECT--Selects INSPECT or DEBUG as default debugger

[NO] INSPECT

LIBRARY--Specifies user library files for Nonstop software

LIBRARY <file-name>

LINES*--Sets maximum number of output lines per page

LINES <value>

LIST--Lists source and enables other listings

[NO]LIST

LMAP--Selects BINSERV load maps and cross references

{ <lmap-option> }
[NO]LMAP { (<!map-option> [, <lmap-option>] ... }

{ * }

MAP--Lists identifier map if LIST is also enabled

[NO]MAP

PAGE--Specif ies header and causes page ejects if LIST is enabled

PAGE [" <heading-string> "]

PEP--Sets word size of PEP table for BINSERV

PEP [=] <pep-table-size>

D-20
~~ 82581 AOO 3/85

SYNTAX SUMMARY
Compiler Directives

PRINTSYM*--Selectively lists symbols

[NO]PRINTSYM

RELOCATE--Emits BINSERV warnings if references to nonrelocatable
global data occur

RELOCATE

RESETTOG--Turns toggles off

RESETTOG [<toggle-number> [, <toggle-number>] •••]

ROUND--Specif ies scalar rounding for FIXED values

[NO]ROUND

RP--Sets internal RP counter of TAL

RP [=] <register-number>

SAVEABEND--Generates INSPECT save file if program ends abnormally

[NO]SAVEABEND

SEARCH--Specif ies object files from which to resolve external
references

SEARCH <object-file-name>
(<object-file-name>·[, <object-file-name>] ...)

SECTION--Gives name to part of source file for use with SOURCE
directive

SECTION <text-name>

SETTOG--Turns toggles on

SETTOG [<toggle-number> [, <toggle-number>] ...]

SOURCE--Specifies source to read from another input file

SOURCE <file-name> [(<section-name> [, <section-name>] ...)]

~ 82581 AOO 3/85
D-21

SYNTAX SUMMARY
Compiler Directives

STACK--Sets number of stack data pages

STACK <value>

SUPPRESS--Suppresses all but header, diagnostics, and trailer

[NO]SUPPRESS

SYMBOLS--Generates symbol table for use with INSPECT

[NO]SYMBOLS

SYNTAX--Checks source code syntax; does not generate object file

SYNTAX

WARN--Selectively turns on warnings; on Nonstop 1+ system, turns on
all warnings

[NO]WARN [<value>]

D--22 "1' 82581 AOO 3/85

APPENDIX E

ASCII CHARACTER SET

Char Left Right Hex Dec Meaning

NUL 000000 000000 00 0 Null
SOH 000400 000001 01 1 Start of heading
STX 001000 000002 02 2 Start of text
ETX 001400 000003 03 3 End of text
EOT 002000 000004 04 4 End of transmission
ENQ 002400 000005 05 5 Enquiry
ACK 003000 000006 06 6 Acknowledge
BEL 003400 000007 07 7 Bell
BS 004000 000010 08 8 Backspace
HT 004400 000011 09 9 Horizontal tabulation
LF 005000 000012 A 10 Line feed
VT 005400 000013 B 11 Vertical tabulation
FF 006000 000014 c 12 Form feed
CR 006400 000015 D 13 Carriage return
so 007000 000016 E 14 Shift out
SI 007400 000017 F 15 Shift in
DLE 010000 000020 10 16 Data link escape
DCl 010400 000021 11 17 Device control 1
DC2 011000 000022 12 18 Device control 2
DC3 011400 000023 13 19 Device control 3
DC4 012000 000024 14 20 Device control 4
NAK 012400 000025 15 21 Negative acknowledge
SYN 013000 000026 16 22 Synchronous idle
ETB 013400 000027 17 23 End of transmission block
CAN 014000 000030 18 24 Cancel
EM 014400 000031 19 25 End of medium
SUB 015000 000032 lA 26 Substitute
ESC 015400 000033 lB 27 Escape
FS 016000 000034 lC 28 File separator
GS 016400 000035 lD 29 Group separator
RS 017000 000036 lE 30 Record separator

-'182581 AOO 3/85
E-1

ASCII CHARACTER SET

Char Left Right Hex Dec Meaning

us 017400 000037 lF 31 Unit separator
SP 020000 000040 20 32 Space

! 020400 000041 21 33 Exclamation point
" 021000 000042 22 34 Quotation mark
021400 000043 23 35 Number sign
$ 022000 000044 24 36 Dollar sign
% 022400 000045 25 37 Percent s i~Jn
& 023000 000046 26 38 Ampersand

023400 000047 27 39 Apostrophe
024000 000050 28 40 Opening parenthesis
024400 000051 29 41 Closing parenthesis

* 025000 000052 2A 42 Asterisk
+ 025400 000053 2B 43 Plus

026000 000054 2C 44 Comma
026400 000055 2D 45 Hyphen (minus)

. 027000 000056 2E 46 Period (decimal point)
I 027400 000057 2F 47 Right slash

0 030000 000060 30 48 Zero
1 030400 000061 31 49 One
2 031000 000062 32 50 Two
3 031400 000063 33 51 Three
4 032000 000064 34 52 Four
5 032400 000065 35 53 Five
6 033000 000066 36 54 Six
7 033400 000067 37 55 Seven
8 034000 000070 38 56 Eight
9 034400 000071 39 57 Nine

035000 000072 3A 58 Colon
035400 000073 3B 59 Semicolon

< 036000 000074 3C 60 Less than
036400 000075 3D 61 Equals

> 037000 000076 3E 62 Greater than
? 037400 000077 3F 63 Question mark
@ 040000 000100 40 64 Commercial at sign

A 040400 000101 41 65 Uppercase A
B 041000 000102 42 66 Uppercase B
c 041400 000103 43 67 Uppercase c
D 042000 000104 44 68 Uppercase D
E 042400 000105 45 69 Uppercase E
F 043000 000106 46 70 Uppercase F'
G 043400 000107 47 71 Uppercase G
H 044000 000110 48 72 Uppercase H
I 044400 000111 49 73 Uppercase I
J 045000 000112 4A 74 Uppercase ~T

E-2 "f 82581 AOO 3/85

ASCII CHARACTER SET

Char Left Right Hex Dec Meaning

K 045400 000113 4B 75 Uppercase K
L 046000 000114 4C 76 Uppercase L
M 046400 000115 4D 77 Uppercase M
N 047000 000116 4E 78 Uppercase N
0 047400 000117 4F 79 Uppercase 0
p 050000 000120 50 80 Uppercase p

Q 050400 000121 51 81 Uppercase Q
R 051000 000122 52 82 Uppercase R
s 051400 000123 53 83 Uppercase s
T 052000 000124 54 84 Uppercase T
u 052400 000125 55 85 Uppercase u
v 053000 000126 56 86 Uppercase v
w 053400 000127 57 87 Uppercase w
x 054000 000130 58 88 Uppercase x
y 054400 000131 59 89 Uppercase y

z 055000 000132 5A 90 Uppercase z

[055400 000133 5B 91 Opening bracket
\ 056000 000134 5C 92 Back slash
] 056400 000135 50 93 Closing bracket
/\. 057000 000136 5E 94 Circumflex

057400 000137 5F 95 Underscore
-
\ 060000 000140 60 96 Grave accent

a 060400 000141 61 97 Lowercase a
b 061000 000142 62 98 Lowercase b
c 061400 000143 63 99 Lowercase c
d 062000 000144 64 100 Lowercase d
e 062400 000145 65 101 Lowercase e
f 063000 000146 66 102 Lowercase f
g 063400 000147 67 103 Lowercase g
h 064000 000150 68 104 Lowercase h
i 064400 000151 69 105 Lowercase 1

j 065000 000152 6A 106 Lowercase j
k 065400 000153 6B 107 Lowercase k
1 066000 000154 6C 108 Lowercase 1
m 066400 000155 6D 109 Lowercase m
n 067000 000156 6E 110 Lowercase n
0 067400 000157 6F 111 Lowercase 0

p 070000 000160 70 112 Lowercase p
q 070400 000161 71 113 Lowercase q
r 071000 000162 72 114 Lowercase r
s 071400 000163 73 115 Lowercase s
t 072000 000164 74 116 Lowercase t
u 072400 000165 75 117 Lowercase u
v 073000 000166 76 118 Lowercase v

-'1' 82581 AOO 3/85 E-3

ASCII CHARACTER SET

Char Left Right Hex Dec Meaning

w 073400 000167 77 119 Lowercase w
x 074000 000170 78 120 Lowercase x
y 074400 000171 79 121 Lowercase y
z 075000 000172 7A 122 Lowercase z

{ 075400 000173 7B 123 Opening brace
I 076000 000174 7C 124 Vertical line
} 076400 000175 70 125 Closing brace

077000 000176 7E 126 Tilde
DEL 077400 000177 7F 127 Delete

E-4 /'f 82581 AOO 3/85

APPENDIX F

DATA TYPE CORRESPONDENCE

Table F-1 provides a table of corresponding data types for Tandem
languages.

You will find this table useful if you are working with a particular
language and want to:

1. Pass parameters to another language

2. Use data from a file that was created by a program in another
language

If you are using the Data Definition Language (DDL) utility to
describe your files, you do not need this table. You can ask DDL to
produce equivalent data declarations in the language you specify.

All parameters being passed to a procedure written in a language other
than TAL must be passed by reference.

..-, 82581 ADO 3/85 F-1

DATA TYPE CORRESPONDENCE

Table F-1. Data Type Correspondence

Data

8-Bit
Integer

16-Bit
Integer

32-Bit
Integer

64-Bit
Integer

64-Bit
Fixed
Point

32-Bit
Floating
Point

64-Bit
Floating
Point

64-Bit
Complex

Character

Character
String

F-2

TAL

STRING

INT

INT(32)

FIXED(O)

FIXED(n)

REAL

REAL(64)

N/A

STRING

STRING
(array)

BASIC

STRING

INT
INT(l6)

INT(32)

INT(64)
FIXED(O)

FIXED(n)

REAL

REAL(64)

N/A

STRING

STRING

COBOL

Alphabetic
Numeric Display
Alphanumeric-Edited
Alphanumeric
Numeric-Edited

COMP 9(1)-COMP 9(4)
without P or V

Index Data Item
Index

COMP 9(5)-COMP 9(9)
without P or V

COMP 9(10)-COMP 9(1B)
without P or V

COMP 9(10)-COMP 9(1B)
with appropriate V

N/A

N/A

N/A

Alphabetic
Numeric Display
Alphanumeric-Edited
Alphanumeric
Numeric-Edited

Alphabetic
Numeric Display
Alphanumeric-Edited
Alphanumeric
Numeric-Edited

FORTRAN

N/A

INTEGER*2

INTEGER*4

INTEGER*8

N/A

REAL

DOUBLE
PRECISION

COMPLEX

CHARACTER

CHARACTER*n
or

CHARACTER
array

4J 82581 AOO 3/85

DATA TYPE CORRESPONDENCE

Table F-1. Parameter Correspondence (continued)

Data

Byte
Addressed
Structure

Word
Addressed
Structure

"182581 AOO 3/85

TAL

16-bit
STRING
structure
pointer

16-bit INT
structure
pointer or
structure
identifier

BASIC

N/A

MAP buffer

COBOL FORTRAN

N/A RECORD

01-level RECORD N/A

F-3

0
as scan area delimiter 15-41

32K boundary 5-3

ABORT directive
machine dependency A-3
syntax 20-11

ABSLIST directive 20-12
Absolute addresses

INDEX

enabling warning of (RELOCATE directive)
machine dependency A-2
obtaining (via $AXADR function) 18-8

Absolute value, obtaining
$ABS function 17-6

Access forms
syntax summary D-3

Activation
procedure or subprocedure 16-2

Actual parameter
checking for via $PARAM function 17-39
passing by reference 16-25
passing by value 16-23

Addition
signed 13-2
unsigned 13-3

Additional entry points
see Entry points

Address assignments
relocatable data blocks 22-9
see also Storage allocation

Address base symbols 3-9

Aj 82581 AOO 3/85

20-44

Index-1

INDEX

Address conversion
extended to standard

$LADR function 17-27
relative to absolute extended

$AXADR function (privileged) 18-8
standard to extended

$XADR function 17-46
standard/extended parameters A-4
word to byte (bit shift) 14-6

Address equivalencing
see Base address equivalencing

Addresses, obtaining
nonpointer items 10-11
pointer contents 10-3

Addressing
absolute extended A-2
extended A-1
modes

byte and word addressing 5-4
direct addressing 5-5
indexing 5-9/11
indirection 5-5

optimal performance guidelines B-2
ALLOCATESEGMENT system procedure A-6/8
Allocation. See Storage allocation.
Alpha character function ($ALPHA) 17-7
ALPHA option

LMAP directive 20-38
AND operator (boolean) 13-9, 13-18
Arithmetic expressions

forms of
assignment 13-14
CASE 13-15
general 13-12
IF-THEN-ELSE 13-17

primaries 13-13
using

as conditions in conditional expression
as primaries in arithmetic expressions

Arithmetic operators
associated operand types 13-5
logical (LOR, LAND, XOR) 13-4
precedence of 13-11
signed 13-2
unsigned 13-3

Index.:...2

13-18
13-13

4' 82581 AOO 3/85

Array 9-1
base 9-3
bounds 9-2
data access 9-8
declaration 9-2/4
direct vs indirect 9-3
implicit pointer 9-7
indexing 9-8
indirect 9-3
multidimensional. See Structures.
operations 9-8
read-only. See also Array, read-only. 9-10
storage allocation 9-5
word-to-byte address conversion 9-8

Array comparisons
see Group comparison expression

Array, read-only
binding 9-11
code segment 9-11
data access 9-11
declaration 9-10

ASCII character set E-1
ASSERT statement 15-5
ASSERTION directive 20-13
Assigning values to variables

in declarations
see Initializing variables

multiple-value assignments
move statement 15-32

single-value assignments
assignment statement 15-7

Assignment expression 13-14
Assignment operator (:=)

precedence of operation 13-11
see also :=.

Assignment statement 15-7
bit deposits 14-4
mixing data types 15-7
pointer assignments 10-7
structure pointer assignments 11-26
syntax 15-7

Asterisk. See *·
At sign. See @.

Banner 21-3
Base address equivalencing

to G, S, or L base 12-1
to SG base 18-1

Base address, extended data segment
BASIC data type correspondence F-1

""182581 AOO 3/85

A-7

INDEX

Index-3

INDEX

BEGIN-END construct
CASE expression 13-15
CASE statement 15-12
compound statement 15-3
IF-THEN-ELSE statement 15-30
procedure body 16-8
source listing counter 21-5
structure body 11-8
subprocedure body 16-9

Binary number base 4-7/16
BINDER 1-6
Binding

after compilation 22-7
at compile time 22-6
at run time 22-7

BINSERV
load maps 21-14
messages. See BINDER Manual.
process of compiler 20-2

Bit field notation 4-2
Bit operations 14-1

as primaries in arithmetic expressions
bit deposit 14-4
bit extraction 14-2
bit shift 14-6
precedence of 13-11
syntax summary D-3

Bit, least or most significant 4-2
BLOCK declaration 22-3

with SECTION and SOURCE directives 22-5
Block operations. See Group operations.
Block structure of programs 16-1
Boolean operators (NOT, OR, AND) 13-9
Bounds checking, arrays 9-8
BOX instruction 15-23
Brackets. See [].
Branching, unconditional

GOTO statement 15-26
BSUB instruction 16-2
Built-in functions

See Standard functions
BY phrase

FOR statement 15-22
Byte addressing 5-4
Byte unit 4-2

Index-4

13-13

~ 82581 AOO 3/85

CALL statement 15-10
CALLABLE procedure attribute 16-14
Carry function 17-8
Carry indicator, testing of

$CARRY function 17-8
after arithmetic operations 13-20
after scan statements 15-41

CASE expression
optimal performance guidelines B-4
syntax 13-15

CASE statement 15-12
CCE 13-20
CCG 13-20
CCL 13-20
Character set supported 3-2
Character strings (all data types) 4-6
Character test functions 17-4

$ALPHA 17-7
$NUMERIC 17-34
$SPECIAL 17-43

Circumflex (")
in identifiers 3-5

COBOL data type correspondence F-1
Code array. See Array, read-only.
CODE directive 20-14
Code generation control directives 20-8
Code listing format 21-8
Code segment. See User code segment.
Code segments, multiple A-1
Code space

address, building of 10-9
see also User code segment

Code space item
as primary in arithmetic expressions

CODE statement 15-15
Code-address field

in source listing 21-4
Colon. See :.
Comma. See ,.
Comments 3-2
COMPACT directive 20-15
Compaction, procedures

COMPACT directive 20-15
Comparisons

bytes
scan statements 15-40

bytes or words
group comparison expression 13-19

operands
relational operators 13-7

"f 82581 AOO 3/85

INDEX

13-13

Index-5

INDEX

Compilation
cycle 1-6

modular program 1-6/7
nonmodular program 1-6

process 20-1
separate 22-1
statistics 21-18

Compilation units 22-1
binding 22-6
naming 22-2
separately compiling 22-1

Compile-time binding 22-6
Compiler

directives
descriptions 20-11/58
machine dependency A-2
summary 20-7
syntax summary D-18

listings 21-1
messages

appearance in listings 21-3
descriptions of C-1

operation 20-1
optional microcode required 1-5
processes 20-1
running 20-4
versions 1-5

Components, program 3-3
Compound statement 15-3
CON pseudocode 15-16
Concatenated moves 15-35
Condition code, testing

after arithmetic operations 13-20
after IF-THEN-ELSE statement 15-31

Conditional expression
as condition in conditional expression
assigning to variable 13-20
conditions 13-19
directing program execution 13-7
forms

general 13-18
group comparison 13-21

hardware indicators, testing of i3-20
returning a value from 13-20

Conditional operators
boolean 13-9
precedence of 13-11
relational 13-7

Index-6

13-19

4J 82581 AOO 3/85

Constant lists
in array declarations 9-3
in group comparison expressions 13-22
in move statements 15-33
syntax 4-17

Constant table
dumping (DUMPCONS directive) 20-23

Constants
as primaries in arithmetic expressions
storage format

FIXED 4-13
INT 4-9
I NT (3 2) 4 -11
REAL 4-15
REAL(64) 4-15

syntax
character strings 4-6
constant list 4-17
FIXED 4-12
INT 4-8
INT(32) 4-10
REAL 4-14
REAL(64) 4-14
STRING 4-7

syntax summary D-2
Continuation lines

character string 4-6
constant list 4-17
directive line 20-6

Controlling execution
via compiler directives 20-7
via conditional expressions 13-7
via procedure/subprocedure invocation
via program control statements 15-1

Correspondence with other languages F-1
CPU directive

machine dependency A-2
syntax 20-16

Cross references
enabling listing via CROSSREF directive
listing format 21-11

CROSSREF directive 20-17
CROSSREF utility

program development tool 1-5
standalone vs compiler-driven 20-18

"f 82581 AOO 3/85

INDEX

13-13

16-10

20-17

Index-7

INDEX

D suffix
nonhexadecimal INT(32) numbers 4-10

Data
areas 5-3/8
kinds of 3-7
representation 4-1

Data access
arrays 9-8
equivalenced variables 12-8
pointers 10-9
simple variables 8-5
structure pointers 11-27
structures 11-19

Data block, global
address assignments 22-9
compiler directives 22-10
created by TAL 22-8
declaring (BLOCK declaration) 22-3
enabling listing (LMAP directive) 20-38
load map listing format 21-16
rules for coding 22-4
sharing 22-5

Data formats. See Data units.
Data operations. See Group operations.
Data segment. See User data segment.
Data space. See User data space.
Data stack

adding to size
EXTENDSTACK directive 20-26

organization of 5-3
specifying size

DATAPAGES directive 20-20
STACK directive (local storage) 20-53

Data types
correspondence with other languages F-1
obtaining via $TYPE function 17-44
of expressions 13-1
of operands 13-2/10
operations and functions 4-4
ranges 4-3
syntax 4-5/16

FIXED 4-12
INT 4-8
I NT (3 2) 4 -10
REAL 4-14
REAL(64) 4-14
STRING 4-7

Data units 4-1
Data-space image 22-7
DATAPAGES directive 20-20

Index-8
~ 82581 AOO 3/85

DEALLOCATESEGMENT system procedure A-8
DEBUG nonsymbolic debugger 1-6
Debuggers

nonsymbolic. See DEBUG.
symbolic. See INSPECT.

Debugging aid
ASSERT statement 15-5
ASSERTION directive 20-13

Decimal number base 4-7/16
Decimal point position

moving via $SCALE function 17-42
obtaining via $POINT function 17-40
see also FIXED data type
see also Fpoint
see also Scaling of FIXED values

Declarations
arrays 9-2
compilation unit names 22-2
DEFINES 6-4
entry points 16-27
equivalenced variables 12-2/5
FILLER 11-13
global data blocks 22-3
labels 7-1
LITERALS 6-2
pointers (standard and extended) 10-2
procedures and subprocedures 16-4
redefinitions in structures 11-14
simple variables 8-1/3
structure data items 11-8
structure pointers (standard/extended) 11-23
subprocedures 16-4
substructures 11-10
syntax summary D-4

Declarations, scope of
global 2-2
local 2-3, 16-8
procedures 2-2
sublocal 2-4
subprocedures 2-3

DECS directive 20-21
DEFEXPAND directive 20-22
DEFINE 6-1

accessing 6-5
declaration 6-4
enabling listing 20-22
listing format 21-7
passing parameters to 6-6
syntax 6-4

DEFINEPOOL system procedure
Definition structure 11-2

-'182581 AOO 3/85

A-9

INDEX

Index-9

INDEX

Delimiters 3-10
Deposit, bit. See Bit operations.
Diagnostic messages C-1
Diagnostic output control directives 20-8
Direct addressing 5-5
Directive line 20-6
Directives. See Compiler directives.
Division

modulo 13-3
remainder, obtaining 13-3
signed 13-2
unsigned 13-3

DO phrase
FOR statement 15-22
WHILE statement 15-49

DO statement 15-18
Doubleword units 4-2
DOWNTO phrase

FOR statement 15-22
DROP statement 15-20
DUMPCONS directive 20-23

E suffix
REAL numbers 4-14

EDIT 1-5
Edit-file number

in source listing 21-4
Element, array 9-2
ELSE clause

IF-THEN-ELSE expression 13-17
IF-THEN-ELSE statement 15-28

END BLOCK declaration 22-3
END. See BEGIN-END construct.
ENDIF directive 20-24
ENTRY declaration 16-27
Entry points

declaration 16-27
enabling listing (LMAP directive) 20-38
load map listing format 21-15

Environment
procedures and subprocedures 16-3
processes 5-1

Environment (ENV) register 5-2
Equal sign. See =.
Equivalencing

data access 12-8
declaration 12-2/5
declaration, structures 12-4
indexes vs off sets 12-6
see also Base address equivalencing
see also Redefinitions (in structures)

Index-10 ~ 82581 AOO 3/85

Error messages
descriptions C-1
limiting acceptable number of 20-25

ERRORS directive 20-25
ESE instruction 16-21
Example programs. See Program, examples
Exclamation point

comment delimiter 3-2
Exclusive OR. See XOR
Exiting procedures or subprocedures 15-38, 16-10
Explicit global block 22-3
Exponent 4-14
Expressions

arithmetic 13-12
conditional 13-18
overview 13-1
syntax summary D-9

EXTDECS[<n>] 16-5
Extended address

obtaining via $XADR function 17-46
Extended addressing

address mode 5-6
example program A-11/13
machine dependency A-1

Extended data segments
allocating A-8
management A-9
overview A-6
specifying base address A-7
using A-8

Extended floating-point
see REAL(64) data type

Extended indexed instructions
optimal performance considerations B-3
suppressing 20-31

Extended indirection 5-6
see also .EXT

Extended linked list A-10
Extended pointers

address conversions A-4
as parameters A-5
assignment 10-7
data access 10-9
data operations A-5
declaration 10-2
format of A-3
indexing A-5
optimal performance guidelines B-2
scope of 10-1
storage allocation 10-5
structure pointers

see Extended structure pointers

~ 82581 AOO 3/85

INDEX

Index-11

INDEX

Extended structure pointers 11-23
assignment 11-26
data access 11-27
storage allocation 11-25

EXTENDSTACK directive 20-26
EXTENSIBLE procedure

attribute 16-17
converting from VARIABLE 16-18
declaration 16-4
parameter mask 16-19
parameter words, number passed 16-21
parameter words, number possible 16-22

EXTERNAL
entry points 16-27
procedure declaration 16-4

External declarations
operating system procedures 16-5

External references
resolving

SEARCH directive 20-49
separate compilation 22-6

Extraction, bit
See Bit operations

F suffix
nonhexadecimal FIXED numbers 4-12

False state
of conditional expression 13-7, 13-19
value returned by 13-20

Features, TAL language 1-3
File, object. See Object file.
File, source. See Source file.
File, target. See Target file.
FILLER declaration 11-13
FIXED data type

<fpoint>, definition of 8-2
storage format 4-13
syntax

character strings 4-6
numbers 4-12

FIXED parameter type 16-6
FIXED(*)

in formal parameter specification 16-6
preventing scaling of value parameters 16-24

Fixed-point standard functions 17-5
$POINT 17-40
$SCALE 17-42

Fixed-point. See FIXED data type.
Floating-point

see REAL or REAL(64) data type

Index-12 ~82581 AOO 3/85

FOR phrase
group comparison expression 13-21
move statement 15-32

FOR statement 15-22
Formal parameter specification 16-6
Format, source code

BEGIN-END construct 3-2
comments 3-2
overview 3-1

FORTRAN data type correspondence F-1
FORWARD

entry points 16-27
procedure or subprocedure declaration 16-4

Fpoint
in extended data operations A-6
meaning of 8-2
obtaining value of (via $POINT) 17-40
of assignment variables 15-8
of operands in expressions 13-6
of reference parameters 16-26
of value parameters 16-24

Fraction
in FIXED numbers 4-12
in REAL and REAL(64) numbers 4-14

FULL pseudocode 15-16
Functions

as primaries in arithmetic expressions 13-13
declaring 16-4
exiting (RETURN statement) 15-38
invoking 16-10
returning a value from 15-38
see also Procedures and subprocedures
standard. See Standard functions. 17-1

G (base of global storage area) 5-2
General form

arithmetic expression 13-12
conditional expression 13-18

GETPOOL system procedure A-9
Global data block

see Data block, global
Global declarations

see Declarations, scope of
Global map

enabling listing (GMAP directive)
listing format 21-10

Global primary storage area 5-6
GMAP directive

machine dependency A-3
syntax 20-27

GOTO statement 15-26

-1' 82581 AOO 3/85

20-27

INDEX

Index-13

INDEX

Group comparison expression
as condition in conditional expression 13-19
condition code setting 13-22
syntax 13-21

Group operations
assignments via Move statement 15-32
group comparison expression 13-21
scan statements 15-40

GUARDIAN operating system 1-4

Hardware indicators, testing 13-20
Header. See Page header.
Hexadecimal number base 4-7/16

I register 5-1
ICODE directive

listing format 21-9
syntax 20-28

Identifier
classes 3-5/6
creating 3-5
cross references

enabling listing (CROSSREF directive)
listing format 21-12

maps
enabling listing (MAP directive) 20-40
listing format 21-7/9

rules for forming 3-5
IF directive

machine dependency A-3
syntax 20-29

IF statement
see IF-THEN-ELSE statement

IF-THEN-ELSE expression
optimal performance guidelines B-4
syntax 13-17

IF-THEN-ELSE statement
syntax 15-28
THEN-ELSE pairing 15-30

IFNOT directive 20-29
Implicit global block 22-4
IN file

TAL run command 20-4
Index registers

as part of register stack 5-2
dropping (DROP statement) 15-20
naming (USE statement) 15-47
optimal performance guidelines B-3
reserving (USE statement) 15-47

Index-14

20-17

~ 82581 AOO 3/85

Indexing
and data type 5-10
arrays 9-8
direct variables 5-10
equivalenced variables 12-6
pointers 5-11
simple variables 8-5
structure pointers 11-27
structures 11-19
syntax 5-9
with extended addresses A-5

Indirect addressing
address mode 5-5
arrays 9-2
equivalenced variables 12-2/12
extended 5-6
pointers 10-2
standard 5-5
structure pointers 11-23
structures 11-3/6

Indirection
precedence of operation 13-11
removing. See @.
symbols 3-9

INHIBITXX directive 20-31
Initializing variables

arrays 9-3
pointers 10-3
simple variables 8-2/3
structure pointers 11-24

INNERLIST directive 20-32
Input control directives 20-7
INSPCI ERROR AT: P = %<nnnnn>,<nnn> C-22
INSPECT directive 20-33
INSPECT symbolic debugger

as a program development tool 1-5
requesting save file

SAVEABEND directive 20-48
requesting symbol table for

SYMBOLS directive 20-55
specifying as default debugger

INSPECT directive 20-33
Instruction (I) register 5-1/2
Instruction codes

listing in octal (CODE directive) 20-14
listing locations (ABSLIST directive) 20-12
listing mnemonics

!CODE directive 20-28
INNERLIST directive 20-32

Aj 82581 AOO 3/85

INDEX

Index-15

INDEX

INT data type
definition of 4-3
storage format 4-9
syntax

character strings 4-6
numbers 4-8

INT parameter type 16-6
INT(32) data type

definition of 4-3
storage format 4-11
syntax

character strings 4-6
numbers 4-10

INT(32) parameter type 16-6
Integers 4-3
Interactive binding 22-7
Internal control directives 20-9
INTERRUPT procedure attribute 16-13
Invoking procedures and subprocedures

CALL statement 15-10
general discussion 16-10

Keywords. See Reserved words.

L
base of local storage area 5-3

L register 5-1
L suffix, REAL(64) numbers 4-14
L+<nnn> in listings 21-7
L-<nnn> in listings 21-7
LABEL declaration 7-1
Labels

branching to (GOTO statement) 15-26
declaration 7-1
dropping (DROP statement) 15-20
local scope 7-2
reason for declaring 7-1
referencing 7-2/3
sublocal scope 7-2
using without declaring 7-4

LAND (logical AND) 13-4
LBXX. See Extended indexed instructions
Least significant bit or byte 4-2
Lexical elements 3-1
Lexical-level counter

in source listing 21-5
LIBRARY directive 20-35
Licensed. See Privileged.

Index-16
~132581 AOO 3/85

LINES directive
machine dependency A-3
syntax 20-36

LIST directive 20-37
List file

TAL run command 20-4
Listing control directives 20-7
Listings

enabling 20-7
suppressing 20-54

LITERAL 6-1
accessing 6-2
declaration 6-2

LMAP directive 20-38
Load maps

enabling listing 20-38
listing format 21-14

Loading register stack
via STACK statement 15-43

LOC phrase
LMAP directive 20-38

Local (L) register 5-1/2
Local declarations

allowed in procedure body 16-8
scope of 2-3

Local map
enabling listing via MAP directive 20-40
listing format 21-7

Local primary storage area 5-6
Logical operators (LOR, LAND, XOR) 13-4
Looping

DO statement 15-18
FOR statement 15-22
WHILE statement 15-49

LOR (logical OR) 13-4
Lower 32K area

user code segment 9-11
user data segment 5-3

LWXX. See Extended indexed instructions

Machine dependencies A-1
Machine instructions

as machine dependency
MAIN

attribute 16-13
procedure 16-1

MAP directive 20-40
Messages C-1

AJ 82581 AOO 3/85

A-2

INDEX

Index-17

INDEX

Minimum-maximum functions 17-4
$LMAX 17-30
$LMIN 17-31
$MAX 17-32
$MIN 17-33

Modular program
advantages of 2-7
compilation cycle of 1-6/7
structure of 2-7
TAL support for 22-1

Modules~ See Compilation units.
Modulo division 13-3
Most significant bit or byte 4-2
Move statement 15-32
Multidimensional arrays. See Structures.
Multiple user code segments

as machine dependency A-1
Multiplication

signed 13-2
unsigned 13-3

NAME declaration 22-2
Ne~t address

extended addressing A-6
group comparison expression 13-21
move statement 15-32
scan statements 15-40

NOABORT directive 20-11
NOABSLIST directive 20-12
NOCODE directive 20-14
NOCOMPACT directive 20-15
NOCROSSREF directive 20-17
NODEFEXPAND directive 20-22
NOGMAP directive 20-27
NOICODE directive 20-28
NOINHIBITXX directive 20-31
NOINNERLIST directive 20-32
NOINSPECT directive 20-33
NOLIST directive 20-37
NOLMAP directive 20-38
NOMAP directive 20-40
NOPRINTSYM directive 20-43
NOROUND directive 20-46
NOSAVEABEND directive 20-48
NOSUPPRESS directive 20-54
NOSYMBOLS directive 20-55
NOT operator (boolean) 13-9, 13-18
NOWARN directive 20-58
Number bases 3-7
Number representation, data types 4-3

Index-18
.., 82581 AOO 3/85

Object code, modifying via BINDER 22-7
Object file

as output 1-6/7
control directives 20-9
statistics 21-18

Object listings. See Listings.
Octal code listing

enabling via CODE directive 20-14
format of 21-8

Octal number base syntax 4-7/16
OF phrase

CASE expression 13-15
CASE statement 15-12

One's complement
obtaining via $COMP function 17-9

Operand types 13-5/10
Operating system, GUARDIAN

interface to 1-4
Operators

arithmetic 13-2
assignment 15-7
bit shift 14-7
boolean 13-9
conditional 13-7
kinds of 3-11
logical 13-4
move 15-32
precedence of 13-11
relational 13-7

Optimal performance considerations B-1
general guidelines B-1
specific guidelines

addressing B-2
arithmetic expressions B-4
indexing B-3

Optional microcode required
arithmetic and logical operations 4-4
standard functions 17-1
system requirements 1-5

OR operator (boolean) 13-9, 13-18
Order of declarations and statements

in source code 2-5
OTHERWISE clause

CASE expression 13-15
CASE statement 15-12

OUT file
TAL run command 20-4

Overflow condition
signed 13-2
unsigned 13-3

~ 82581 AOO 3/85

INDEX

Index-19

INDEX

Overflow indicator, testing
$OVERFLOW function 17-38
after arithmetic operations 13-20

P+<nnn> in listings 21-7
P-relative array. See Array, read-only.
Pad byte 11-4
PAGE directive 20-41
Page eject

specifying via PAGE directive 20-41
Page header

listing format 21-2
specifying via PAGE directive 20-41

PARAM commands 20-2
SAMECPU 20-2
SPOOLOUT 20-3
SWAPVOL 20-3

Parameter area 16-22
Parameter mask

EXTENSIBLE procedure 16-19
VARIABLE procedure 16-15

Parameters
checking for (via $PARAM function} 17-39
extended addressing A-5
for EXTENSIBLE procedures 16-17/21
for VARIABLE procedures 16-15/17
formal specifications 16-6
number of parameter words allowed 16-22
optimal performance guidelines B-2
passing to another language F-1
reference 16-25
storage area 16-22
types of 16-6
value 16-23

Parameters, DEFINE declarations 6-4/7
Parentheses. See (}.
PCAL instruction 16-2
PEP directive 20-42
Period. See . (period}.
Pointers

data access 10-9
declaration, standard and extended 10-2/5
scope of 10-1
storage allocation 10-5
structures. See Structure pointers.
system global. see System global.
temporary 10-13
uninitialized 10-3

Pointers, structure 11-26
Pointers, system global 18-2
Posttest loop

DO statement 15-18
Precision, floating-point 4-3

Index-20
.., 82581 AOO 3/85

Pretest loop
FOR statement 15-22
WHILE statement 15-49

Primaries 13-13
Primary storage areas

in user data segment 5-6
sizes of 5-6
storage allocation 5-8

PRINTSYM directive
machine dependency A-3
syntax 20-43

PRIV procedure attribute 16-14
PRIVATE data block 22-3
Privileged

data access 18-1
SG equivalencing 18-4
standard functions 18-7/11

$AXADR 18-8
$BOUNDS 18-9
$PSEM 18-10
$SWITCHES 18-11

system global pointers 18-2
PROC declaration 16-4
PROC parameter type 16-6
Procedure entry points 16-26
Procedure entry sequence

EXTENSIBLE procedure 16-21
Procedures

attributes
CALLABLE 16-14
EXTENSIBLE 16-17
INTERRUPT 16-13
MAIN 16-13
PRIV 16-14
RESIDENT 16-14
VARIABLE 16-15

body 16-8
characteristics of 16-2
declaration 16-4
entry points 16-27
exiting 15-38, 16-10
EXTERNAL 16-4
formal parameter specification
FORWARD 16-4
invoking 15-15, 16-10
parameters

passing by reference 16-25
passing by value 16-23
storage area 16-22

~ 82581 AOO 3/85

INDEX

16-6

Index-21

INDEX

Procedures, privileged
declaring 16-1
using 18-1

Process
definition of 1-2
environment of 5-1/2

Processor
selecting for compiler processes 20-2

Program
compilation cycle 1-6
examples

binary-to-ASCII conversion 19-1
extended addressing A-11/13
procedure replacement 22-21
separate compilation 22-10
source code 1-7/8

modular. See Modular program.
structure 2-5

Program counter (P) register 5-1/2
Program development tools

BINDER 1-6
CROSSREF 1-5
DEBUG nonsymbolic debugger 1-6
EDIT 1-5
INSPECT symbolic debugger 1-5

Pseudocodes
in CODE statement 15-16

PUTPOOL system procedure A-9

Quadrupleword. See Quadword units.
Quadword operations

machine dependency A-2
optimal performance guidelines B-4

Quadword units 4-2

RO through R7. See Register stack.
Range, data types 4-3
Read-only array. See Array, read-only.
Read-only data-block load map 21-16
REAL data type

definition of 4-3
storage format 4-15
syntax

character strings 4-6
numbers 4-14

REAL parameter type 16-6

Index-22 Af' 82581 AOO 3/85

REAL(64) data type
definition of 4-3
precision 4-14
storage format 4-15
syntax

character strings 4-6
numbers 4-14

REAL(64) parameter type 16-6
Records. See Structures.
Recursion 1-3
Redefinitions

inside structures 11-14
outside structures. See Equivalencing.

Reference parameters 16-25
Referral

form of structure 11-6
reference to

formal parameter specification 16-6
G, L, and S equivalencing 12-10
SG equivalencing 18-4/6
structure pointers 11-23

Register pointer. See also RP. 5-2
Register stack 5-2

loading (STACK statement) 15-43
optimal performance guidelines B-4
unloading (STORE statement) 15-45

Relational
expressions 13-19
operators 13-7, 13-18

Relocatable global data blocks 22-7
see also Data blocks, global

RELOCATE directive 20-44
Remainder of division 13-3
Removing indirection

see Addresses, obtaining
Repetition factor 4-17
Reserved words 3-4
Reserving index registers

via USE statement 15-47
RESETTOG directive 20-45
RESIDENT procedure attribute 16-14
RETURN statement 15-38
ROUND directive 20-46
Rounding, scalar

via ROUND directive 20-46
RP (register pointer) 5-2
RP directive 20-47

"''f 82581 AOO 3/85

INDEX

Index-23

INDEX

RP setting
obtaining

via $RP function 17-41
via INNERLIST directive 20-32

specifying
via RP directive 20-47

RSCAN statement 15-40
Run-time binding 22-7
R[O] through R[7]. See Register stack.

s
base of sublocal storage area 5-3

S register
as part of process environment 5-1
decrementing via DECS directive 20-21

SAMECPU. See PARAM commands.
Sample programs. See Program, examples
Save file, INSPECT 20-48
SAVEABEND directive 20-48
SBXX. See Extended indexed instructions
Scaling of FIXED values

in assignment statements 15-8
in data declarations 8-2
in storage format 4-13
of operands in expressions 13-6
of reference parameters 16-26
of value parameters 16-24
via $SCALE function 17-42

SCAN statement 15-40
Scan statements 15-40
Scientific notation 4-15
SEARCH directive 20-49
Search list

compile-time binding 22-6
specifying via SEARCH directive 20-49

Search operation. See Scan statements.
Secondary entry points 16-27
Secondary storage areas

in user data segment 5-6
sizes of 5-6
storage allocation 5-8

SECTION directive 20-50
Segment, code. See User code segment.
Segment, data. See User data segment.
Selective compilation 20-29
Semaphore, requesting 18-10
Semicolon. See;.

Index-24 Af 82581 AOO 3/85

Separate compilation
compilation cycle 1-7
sample programs

procedure replacement 22-21
record format conversion 22-10

see also Compilation units
support for 22-1

Separators. See Delimiters.
SETTOG directive 20-51
SG equivalencing 18-1

declaration 18-4
declaration, structures 18-6

Shift, bit. See Bit operations.
Sign bit

in bit shifts 14-7
storage 4-15

Signed operators 13-2
Simple variables

accessing 8-5
declaration 8-1/2
indexing 8-5
initializing 8-3
storage allocation 8-4

Size limitations
parameter area 16-22
primary global storage in target file 22-4
primary storage areas in data segment 5-6/7
procedures 16-1
secondary storage areas in data segment 5-6
structure occurrence 11-3

Source code
components, primary 2-1/8
format of 3-1
optimal performance guidelines B-1
structure of 2-1/8

SOURCE directive
syntax 20-52
with BLOCK declaration 22-5

Source file
cross references

enabling listing (LIST directive) 20-37
listing format 21-11

Source listing format 21-4
Special character function 17-43
Spooler

enabling level 3 interface 20-3
SPOOLOUT. See PARAM commands.
Stack (S) register 5-1/2
STACK directive 20-53

Lf82581 AOO 3/85

INDEX

Index-25

INDEX

Stack markers 5-3
STACK statement

optimal performance considerations
syntax 15-43

Standard functions
descriptions of 17-6/46
privileged 18-7/11
summary of 17-1
syntax summary D-13

Standard indirection 5-5
Statements

compound 15-3
rules for forming 15-3
scope of

local 2-4
sublocal 2-4

separating 15-4
summary by function 15-1
syntax descriptions 15-5/50
syntax summary D-10

Storage allocation
areas in current user data segment
arrays 9-5
parameters 16-22
pointers 10-5
simple variables 8-4
structure data items 11-8
structure pointers 11-25
structures 11-4
substructures 11-12

STORE statement
optimal performance considerations
syntax 15-45

STRING data type
definition of 4-3
syntax

character strings 4-6
numbers 4-7

STRING parameter type 16-6
Strings. See Character strings.
STRUCT declaration 11-3
STRUCT parameter type 16-6
STRUCT-I (INT structure pointer) 21-7
Structure pointers

assignments 11-26
data access 11-27
declaration 11-23
indexing 11-27
qualified identifiers 11-27
storage allocation 11-25
uninitialized 11-24

Index-26

B-2

5-3

B-2

"'82581 AOO 3/85

Structures
body of

data declaration 11-8
data storage 11-8
FILLER declaration 11-13
redefinition, data item 11-14
redefinition, substructure 11-16
substructure declaration 11-10
substructure storage 11-12

data access 11-19
declarations

definition structure 11-3
referral structure 11-6
template structure 11-5

forms of 11-2
indexing 11-19
length of occurrence ($LEN) 17-28
moving (Move statement) 15-32/37
number of occurrences ($OCCURS) 17-35
occurrence offset ($OFFSET) 17-36
pointers. See Structure pointers
qualified identifier 11-19
standard functions 11-22
storage allocation 11-4
three-dimensional array 11-21
type of item ($TYPE) 17-44

Sublocal declarations
allowed in subprocedure body 16-9
scope of 2-4

Sublocal map
enabling listing via $MAP directive 20-40
listing format 21-7

Sublocal storage area 5-6
SUBPROC declaration 16-4
Subprocedures

attribute
VARIABLE 16-15

body 16-9
characteristics of 16-2
declaration 16-4
entry points 16-27
exiting 15-38, 16-10
formal parameter specification 16-6
FORWARD 16-4
invoking 15-15, 16-10
parameters

passing by reference 16-25
passing by value 16-23
storage area 16-22

-''f 82 581 AOO 3/8 5

INDEX

Index-27

INDEX

Subroutines. See Procedures.
Subscripts. See Indexing.
Substructures

body of 11-8
data access 11-19
declaration 11-3, 11-10
length of occurrence ($LEN) 17-28
moving (Move statement) 15-32/37
number of occurrences ($OCCURS) 17-35
occurrence offset ($OFFSET) 17-36
qualified identifier 11-19
redefinitions 11-16
storage allocation 11-12
type of item ($TYPE) 17-44

Subtraction
signed 13-2
unsigned 13-3

SUPPRESS directive 20-54
SWAPVOL. See PARAM commands.
Switch register setting, obtaining 18-11
SWXX. See Extended indexed instructions
Symbol table

generating 20-55
identifiers, classes of 3-5/6

Symbols
address base 3-9
data variables

kinds of 3-7
selective listing (PRINTSYM directive) 20-43

indirection 3-9
SYMBOLS directive 20-55
SYMSERV process 20-2
SYNTAX directive 20-57
Syntax summary D-1
System global equivalencing 18-1
System global pointer declaration 18-2
System global quadword data A-2
System requirements, TAL compiler 1-5
System tables, accessing 18-1
System type

machine dependency A-1
program execution considerations 20-16
specifying via CPU directive 20-16

TAL compiler. See Compiler.
TAL language

applications and uses of 1-1
example source program 1-7
interface with operating system
machine dependencies of 1-5
major features of 1-3
system requirements for 1-5

Index-28

1-4

..,. 82581 AOO 3/85

TAL run command 20-4
Target file

definition 1-6/7
in TAL run command 20-4

Template structures 11-5
Terminating compilation

setting maximum acceptable errors 20-25
THEN phrase

IF-THEN-ELSE expression 13-17
IF-THEN-ELSE statement 15-28

Three-dimensional array 11-21
TNS and TNS/II options

CPU directive 20-16
ENDIF directive 20-24
IF directive 20-29

TO phrase
FOR statement 15-22

Toggle
control directives 20-9
turning off 20-45
turning on 20-51

Transaction Application Language
see TAL language

True state
of conditional expression 13-7, 13-19
value returned by 13-20

Truth tables 13-4
Two's complement notation 4-9
Two-dimensional array 11-10, 15-25
Type-transfer functions 17-2

$DBL 17-10
$DBLL 17-11
$DBLR 17-12
$DFIX 17-13
$EFLT 17-14
$EFLTR 17-15
$FIX 17-16
$FIXD 17-17
$FIXI 17-18
$FIXL 17-19
$FIXR 17-20
$FLT 17-21
$FLTR 17-22
$HIGH 17-23
$IFIX 17-24
$INT 17-25
$INTR 17-26
$LFIX 17-29
$UDBL 17-45

Types. See Data types.

Aft 82581 AOO 3/85

INDEX

Index-29

INDEX

Unary operators
minus 13-12
plus 13-12

Unloading register stack
see STORE statement

Unsigned operators 13-3
UNTIL phrase

DO statement 15-18
scan statements 15-40

Untyped procedures. See Procedures.
Upper 32K area

user code segment 9-11
user data segment 5-3

USE statement 15-47
User code segment

as part of process environment 5-2
characteristics of 1-2
read-only arrays 9-11

User code space. See User code segment.
User data segment

as part of process environment 5-2
characteristics of 1-2
organization of 5-2/3

User data space 5-2
User library

binding 22-7
specifying via LIBRARY directive 20-35

Uses of TAL language 1-1
USESEGMENT system procedure A-7/8

Value parameters 16-23
VARIABLE procedure

converting to EXTENSIBLE 16-18
VARIABLE procedure or subprocedure

attribute 16-15/18
declaration 16-4
parameter mask 16-15
parameter words, number possible 16-22

Variables
as primaries in arithmetic expressions 13-13
kinds of 3-7

Volume
selecting for temporary files 20-3

WARN directive 20-58
Warning messages

descriptions C-14
selective listing 20-58

WHILE phrase, scan statements
WHILE statement 15-49
Word addressing 5-4
Word units 4-2

Index-30

15-40

/'f 82581 AOO 3/85

X OO<n> in listings 21-7
XOR (exclusive OR) 13-4
XREF option

in LMAP directive 20-38

ZZBI<nnnn>
BINSERV default target file name 20-5

ZZSA<nnnn>
INSPECT save file 20-48

comment delimiter 3-2

" "
character string delimiters 4-6

DEFINE text delimiter 6-4

#GLOBAL
TAL name for implicit global block 22-4

$ABS function 17-6
$ALPHA function 17-7
$AXADR function

as machine dependency
syntax 18-8

$BOUNDS function
as machine dependency
syntax 18-9

$CARRY function 17-8
$COMP function 17-9
$DBL function 17-10
$DBLL function 17-11
$DBLR function 17-12
$DFIX function 17-13
$EFLT function 17-14
$EFLTR function 17-15
$FIX function 17-16
$FIXD function 17-17
$FIX! function 17-18
$FIXL function 17-19
$FIXR function 17-20
$FLT function 17-21
$FLTR function 17-22
$HIGH function 17-23
$!FIX function 17-24
$INT function 17-25
$INTR function 17-26

-'182581 AOO 3/85

A-2

A-2

INDEX

Index-31

INDEX

$LADR function
as machine dependency A-1
implicitly generated A-4
syntax 17-27

$LEN function 17-28
$LFIX function 17-29
$LMAX function 17-30
$LMIN function 17-31
$MAX function 17-32
$MIN function 17-33
$NUMERIC function 17-34
$OCCURS function 17-35
$OFFSET function 17-36
$OVERFLOW function 17-38
$PARAM function

in EXTENSIBLE procedures 16-18
in VARIABLE procedures 16-17
syntax 17-39

$POINT function 17-40
$PSEM function 18-10
$RP function 17-41
$SCALE function

FIXED operands in expressions 13-6
syntax 17-42

$SPECIAL function 17-43
$SWITCHES function 18-11
$SYSTEM.SYSTEM.EXTDECS[<n>] 16-5

definition of 16-5
example of 16-12

$TYPE function 17-44
$UDBL function 17-45
$XADR function

%

%B

%D

as machine dependency A-1
syntax 17-46

pref ix
octal base 4-7/12
pref ix
binary base 4-7/12
suffix
hexadecimal INT(32) numbers 4-10

%F suffix
hexadecimal FIXED numbers 4-12

%H pref ix
hexadecimal base 4-7/12

&
move statement contatenation 15-34/35

Index-32 .,,, 82581 AOO 3/85

'*'

'+'

' ' ,
'_,

unsigned multiplication 13-3

unsigned addition 13-3

comma in DEFINE text 6-6

unsigned subtraction 13-3
'/'

unsigned division 13-3
': ='

move statement, left-to-right 15-32
'<'

unsigned less than 13-8
'<<'

unsigned left shift 14-7
'<='

unsigned less than or equal to 13-8
'<>'

unsigned not equal to 13-8
'='

unsigned equal to 13-8
'=:'

move statement, right-to-left 15-32
'>'

unsigned greater than 13-8
'>='

unsigned greater than or equal to
'>>'

unsigned right shift 14-7
'G'

global address base symbol 12-10
'L'

local address base symbol 12-10
'P'

P-register address symbol 9-10
'S'

sublocal address base symbol 12-10
'SG'

system global address base symbol
'\'

unsigned modulo division 13-3

~ 82581 AOO 3/85

13-8

18-4/6

INDEX

Index-33

INDEX

()

(*)

*

+

->

<fpoint> delimiters 8-2
<referral> delimiters

equivalenced variables 12-2/12
structure pointers 11-23
structures 11-6

directive option delimiters D-18
EXTENSIBLE parameter count delimiters 16-18
overriding precedence of operations 13-10
parameter delimiters

CALL statement 15-10
DEFINE 6-4
procedures 16-4

referral delimiters
procedures 16-6

standard function argument delimiters D-13
use inside DEFINE parameters 6-6

template structure declaration 11-5

constant list repetition factor 4-17
LMAP directive option 20-38
signed multiplication 13-2

signed addition 13-2
unary plus 13-12

field separators 3-10

signed subtraction 13-2
unary minus 13-12

group comparison expression
move statement 15-32
scan statements 15-40

13-21

Index-34 4} 82581 AOO 3/85

• (period)
bit field specification 14-2/5
qualified identifiers

structure 11-19
structure pointer 11-25

standard indirection symbol
array declaration 9-2
equivalencing 12-2/12
pointer declaration 10-2
reference parameter specification 16-6
structure declaration 11-3
structure pointer declaration 11-23
temporary pointer 10-13

.EXT

.SG

I

. -.-

<

<:>

<<

<=

<>

extended indirection symbol
equivalencing 12-2/12
pointer declaration 10-2
reference parameter specification 16-6
structure pointer declaration 11-23

system global indirection symbol 18-2

signed division 13-2

ASSERT statement 15-5
entry-point specification 16-27
label specification 7-2

assignment expression 13-14
assignment statement 15-7
declaration initialization 8-2
FOR statement 15-22

declaration terminator 6-2
statement separator 15-4

signed less than 13-8

bit field delimiter 4-2

signed left shift 14-7

signed less than or equal to

signed not equal to 13-8

13-8

~ 82581 AOO 3/85

INDEX

Index-35

INDEX

<fpoint>. See Fpoint.

=

>

>==

>>

?

@

DEFINE declaration 6-4
equivalencing 12-2/12
redefinitions inside structures 11-14/17
signed equal to 13-8

signed greater than 13-8

signed greater than or equal to 13-8

signed right shift 14-7

directive line specifier 20-6

address of items 10-11
changing content of pointer parameter 16-26
pointer assignment 10-7
pointer initialization 10-3
precedence of operation 13-11
procedures as reference parameters 16-24
structure pointer assignment 11-26

[0:-1]

[:]

[]

as array bounds inside structures 11-8
as substructure bounds 11-10

array bounds delimiters 9-2
structure bounds delimiters 11-3

array element delimiters 9-8
constant list delimiters 4-17
index delimiters 5-9

in identifiers 3-5

Index-36 AfJ 82581 AOO 3/85

READER COMMENT CARD

Tandem welcomes your comments on the quality and usefulness of its
software documentation. Does this manual serve your needs? If not, how
could we improve it? Your comments will be forwarded to the writer for review
and action, as appropriate.

If your answer to any of the questions below is "no," please supply detailed
information, including page numbers, under Comments. Use additional
sheets if necessary.

.... Is this manual technically accurate?

.... Is information missing?

.... Are the organization and content clear?

.... Are the format and packaging convenient?

Comments

Name

Company

Address

City/State

Transaction Application
Language (TAL™) Reference
Manual
Nonstop™ Systems
Nonstop 1+™ System

82581 AOO

Yes D No D

Yes D No D

Yes D No D

Yes D No [J

Date

Zip

111

BUSINESS R E P LY MA IL
FIRST CLASS PERMIT NO. 482 CUPERTINO, CA, U.S.A.

POSTAGE WILL BE PAID BY ADDRESSEE

Tandem Computers Incorporated
Attn: Manager-Software Publications
Location 01, Department 6350
19333 Val lco Parkway
Cupertino CA 95014-9990

TAPE

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

TAPE

Tandem Computers Incorporated
19333 Vallco Parkway
Cupertino, CA 95014-2599

