NonStop™ Systems
NonStop 1+™ System

¥

TRANSFER™ Delivery System
Programming Guide

Data Management Library

825625

NOTICE

Effective with the BOO/E08 software release, Tandem introduced a more formal nomenclature for its software
and systems.

The term “NonStop 1+™ system” refers to the combination of NonStop 1+ processors with all software that
runs on them.

The term “NonStop™ systems” refers to the combination of NonStop I'™ processors, NonStop TXP™ processors,
or a mixture of the two, with all software that runs on them.

Some software manuals pertain to the NonStop 1+ system only, others pertain to the NonStop systems only,
and still others pertain both to the NonStop 1+ system and to the NonStop systems.

The cover and title page of each manual clearly indicate the system (or systems) to which the contents of the
manual pertain.

NonStop™ Systems
NonStop 1™ System

TRANSFER™ Delivery System
Programming Guide

Abstract

This manual provides reference material and guidelines for application
programmers who are writing programs that use the TRANSFER Delivery
System.

Product Version
TRANSFER B00O

Operating System Version
GUARDIAN AO05 or later (NonStop Systems)
GUARDIAN EO06 or later (NonStop 1+ System)

Part No. 82525 A00

¥

March 1985

Tandem Computers Incorporated
19333 Vallco Parkway
Cupertino, CA 95014-2599

DOCUMENT HISTORY

Operating
Part System
Edition Number Version Date
First Edition 82325 A0O0 GUARDIAN AQ4/EOS5 April 1983
Second Edition 82325 BOO GUARDIAN A04/E05 December 1983
Third Edition 82525 A00 GUARDIAN A05/E06 March 1985

New editions incorporate all updates issued since the previous
edition. Update packages, which are issued between editions,
contain additional and replacement pages that you should merge
into the most recent edition of the manual.

Copyright @© 1983 by Tandem Computers Incorporated.
Printed in U.S.A.

All rights reserved. No part of this document may be reproduced
in any form, including photocopying or translation to another
language, without the prior written consent of Tandem Computers
Incorporated.

The following are trademarks or servicemarks of Tandem Computers
Incorporated:

AXCESS BINDER CROSSREF DDL DYNABUS
DYNAMITE EDIT ENABLE ENCOMPASS ENCORE
ENFORM ENSCRIBE ENTRY ENTRY520 ENVOY
EXCHANGE EXPAND FOX GUARDIAN INSPECT
NonStop NonStop 1+ NonStop II NonStop TXP PATHWAY
PCFORMAT PERUSE SNAX Tandem TAL

TGAL THL TIL TMF TRANSFER
T-TEXT XRAY XREF

INFOSAT is a trademark in which both Tandem and American
Satellite have rights.

HYPERchannel is a trademark of Network Systems Corporation.

IBM is a registered trademark of International Business Machines
Corporation.

CONTENTS

PREFACE ® 9 0 0 & 0 9 0 4 0 B 0 e N0e et e 0o

SECTION 1.
TRANSFER Applications
The Advantages ...ceecececess

A PROGRAMMER'S VIEW OF

TRANSFER

The LimitationNS v.veeeeecocsoossse

The TRANSFER Environment

Types of Application Processes

TRANSFER Objects ..civeeuenennans

Correspondentseveeeess

Packagescceienencssnsans
Depots ® @& & & & & 4 " 0 0 B S 0000 e 0

Distribution Lists
Profiles ...e.eeeeeeonoces
Folders ...eeeieeeeeceeens

SECTION 2.

..

.

ClientsS teveeeeeecooooscssessscacnceses
AgentsS . .iiieeeesersesccsasensasnssenosns
Specialized SErversS ...iiececssssssens
TRANSFER Interactive Server (TISERV)

TRANSFER Asynchronous Processes
Schedulercc00eeven.

TRANSFER Asynchronous Requesters (TAREQ

* 92 0 0 s 0

Interprocess Communication

TRANSFER SeSSiOoNS vueeeroeensen
TRANSFER Object Management

Resolving Object Names
Correspondent Registration
Session Establishment

Requests on Behalf of a Correspondent

Package Delivery

Moving Packages Between Depots

Inter-object Relationships

s 6 0 0 o 0 0

e 0 03 0

Identifying Packages and Items

TRANSFER APPLICATION COMPONENTS

s)

Depot SeCurity ..iieeieevecacens

“9 82525 A0O 3/85

¢« e o o

. LR " e 0 0
s 0 0 e s 0 0
s o 0 2 005 0 0 0o
e s s 0 o 0 o o o
e o o 00 00 0 .
s e 0 6 0 0 0 0 0 o

ooooo o o o .
. ® e v v e
. o e e s 0 0 o o
e o 0o o * 0 0 00
LR Y ¢ o o 0 o0
¢ o o 0 0 0 LY
@ o 0 e s 0 0 5 0 0
. . * s 8 0 0
® 6 0 0 e 0 00

® o 8 6 0 0 0 0 00
e o . .
L] . . .
------- . .
* o 0 0 o o

. LI N) L) 3
@ o 0 06 0 0 0 0 0 »
o o 0 e o o

e & & @

,_J.
»

| [
HEHEOUWUONOOTWR

o

1

w

L N S e O
I

i
e e
G a1 e

1

|
R OOONNOOTO e W

=

[

| T B T
[uuy

NN NN
|

i
N el
RE NN

2-13
2-14
2—-14
2-16
2-17

iii

Contents

WWWWWwWwWwww
I
HHEHEFEWONOIN H

SECTION 3. TRANSFER NAMING CONVENTIONS ...veecessscoscnnsns
Correspondent NamMeS ..cceoseeeessscosssscssassasssssnsosscs
Folder NAGmMeS ..veeesecosossssosessseasssscoassssonssssossnsoesns
Distribution List NAGMES ..eceescecsosossosscccssssoosssss
Wildcard Names and PatternNsS ...eeeeecesecosoesenosscenssas
Node DesignatioOn .s..eseesacessessosaosscssosansasnasnsacs
Name Length ReStrictioOnN ..eeeeecessecesocosscccossonnssns
TRANSFER Name DireCtOry .eeeceeceeccescssosssscsssseasssescs
Name SearChing ..i.ieeeeesessceescersacsserseosccrsccnccnscses

I

SECTION 4. INTERFACING WITH TRANSFER .¢ccceocesoscensncsss 4-1
Starting a TISERV ProCeSS .ieeeeescsscsscsscocssnssnssosse 4-1
TISERV Interface ...ceecesceocescecescsscoessscosssessssenes 4-5

Request and Reply Headersceeceseeccccccncsnssonss 4-7
UOW OperatioOnsS cuieeessncsscoscsossossssssssscoscssenssess 41
Session CONtrol ..eeeeeecoseosccsosssessossososssansess 4-1
Item Handling ...ceeveceeesecosscsccasscsssssssssoncees 4-14
Whole Item OperationNs ...eeececcsescoscososessoseses 4-15
Record Handling OperationsS ..eeeeeececcscsccsocescnes 4-16
Item Tree OperationsS ...eeecesccssoscecssosssscascas 4-17
Package Handling ..eeeeessocsccsaossossossosssssassee 4-18
Submittal Preparationeceeeccecsscscscscnssseass 4-18
Recipient List Definition ...veeeesescescscsasscass 4-20
Package DeliVerY seeseeescescosscsssssssssssaossess 4-21
Package ReCeiVINGg ...eeeeccessossessssscosaosensaess 4-22
Folder Manipulation ..ceceeceocscecccscssssanssaseess 422
TRANSFER Configuration INQUIrY .eeeeeecceccccocesecces 422
Administration ...eecesscessessssssssossnssnssassecess 4—23
Session Management ..eesecececcsososcssscscascncess 423
Depot Managementccecccesosssassscsoccconssnsoce 4-23
Distribution List Managementceeceseecesccnsses 4-24
Name Managementcceceeceesesncsssssscscccnssnssss 4-24
UOW Summary Table ...cieeeecesecssccsssocssnscsnssoncess 4-25
TAREQ Interface ...ccceeeceecencecssccccsncsnacssnssnsess 4-33
Agent SelectiOn .eeeeseceeorsoecerscccossscosascosnssnecess 4-33
Agent Notification MeSSage ...csieeesccscoscnsacssnnseos 4-34
TAREQ Event PackagesS ...eeeececesssssssssccccscsnssnsaas 4-37
DelivVery ErFOrS tuiveeeeeesssocoosossssssossoscscnsnnesas
Precautions about Using AgentsSceeeesesscscnccncsns

TS
I

QTS

—

SECTION 5. UOW DESCRIPTIONS ...cceeevccccsnsscascconcscssscs
UOW Header and Return Code ...eeeesssssssasossccncnssoscese
Software Provided with the TRANSFER Delivery System
UOW DefinitiONsS ceeeeecoeossscososssosscsocsssosasnscossss

ACK-RECEIPT t.teecsoocecsossssoscoosscscsscsossscsscnscsonsoes
ADD-ITEM-REC ...0cscececosccsossvsoscsscsscscscsssosncssccscscscos
ADD-MEMBER . c.coceeocoscossossccoscssossosssosssosssonscsasse
ADD-RECIP .. veevooccccsssosooccessssasssassosssscosssnsscsoas
ALTER-AGENT~SELECT (.2t ocecscososossscsesssssssscsossosses
ALTER-FOLDER-ORDER .t et veocsescocscosscscsscessscscnssonsesse D-21
ALTER-ITEM-DESCR (i cescvescececcscscscescscncccncancnscscssses D-26
ALTER-PROFILE~ELEM . ¢ceecesovesvoscsconssncscscscscvessssss D33
ATTACH-COMPNT=A0]l ..cseeeeeccsoccccacssnsesssssnsscssss D—37
CANCEL-PRG .t ¢eevecescsossscsossscssscscsscscssscsssssscsscscsse D40

1 |
HHESO®WN

mmmmclnmmmm

iv “4 82525 A00 3/85

Contents

COPY-ITEM ..ttt eeeneeessnnnssccssnsscoscnsssccnsssncss
CREATE-DEPOT ..cccveececsoeossscssssssossnsscssancssnscss
CREATE-DLIST 4.t eeeecececsccecscnsosnssaosossassssscasscss
CREATE-FOLDER ... ceoecocsccssoscscoossossssssosnssnssassass
CREATE-FOLDER-BOO ...cveeeeececcnoccocenoscnsonnnosnoans
CREATE-ITEM ...uceteeeeeoeosossecscscscssssssssccosccscos
DELETE-DEPOT ..ttt eeeeooosososcsoscsssccsssssssccscscnscss
DELETE-DLIST t.vceeeeeecessoososscssssosssssosssssscsscsocccss
DELETE-FOLDERcteeveseeccceccncossncnscsssccnssncons
DELETE-ITEM-REC ...ccceecocecescesscsncscssssssssososcccss
DELETE-MEMBER ...cccceetoscoccscccsscssscscssssscsnsnscas
DELETE-PROFILE-REC ..cccteeececoceccesscccsssscscccccoss
DELETE-RECIP ...cccteeceescenccscncsssscsnssssconsosocnsos
DETACH-COMPNT .. ceeeceeosoooosccoscoososasscsssssssasocsos
END-SESSION .. .uceeceeccecescsesscssssssssososcosccscocossos
GET-AGENT-SELECT .cceeeceeceocccacssoscsosssssssssscssccsnse
GET-CONFIG-NAME . ..cccoeevcecccccocsccscscsscsssssocssccscs
GET-FOLDER-ORDER . ¢t ccotessccoosssocssssosososssssnosscss
GET-ITEM-COMPNT-A0]lieeceeecccesccncccsancnscnncas
GET-ITEM-DESCR et ececooecscoosssscossssosocsscocsocsosss
GET-ITEM-REC ...cccceecceececcsccsososncsssnsosncsnsacnossosnss
GET-NEXT-SESSION .cccceeeecscescososscssssscssscsssscscscse
GET-PROFILE-ELEMccccteececccssososssocoossscssnssosnss
GET-RECIP-REC ..cceeccosossoooostsosossoscsssscssssccssccscse
00) T T T T e
READ-NEXT-MEMBER ...ccoecececesccccecsscsssssssssccsonsosoes
READ-NEXT-NAME ..ccccecececcsscessccsssscssasnscscssnsssnsne
READ-PROFILE-REC .ccecceececceccscccscscsssssssscscssccscsss
READ-PROF-REC-AD2 ...eveenseccsccoccosonsscoscnsoosocss
SAVE-ITEM ..ccetececescesscsssoccscscoaoscncsosssssssscssscssssscs
SAVE-ITEM-BOO0 ...eieeceecccsnssccosossosanossnssssosnsases
SAVE-ITEM-BY-KEY ...ccceevevecccosscsccosrsoscscosososscscsns
SCAN-FOLDER s ccoeseeccssssssscscsssscsoscssnsscsosscsas
SCAN-FOLDER-BO0 +eveeeesecseccccocecsosossscasssnscoscsos
SCAN-FOLDER-BY-KEY ..iccceesecccccccccsosssosnssccscasssans
START-SESSION ..cceeccccssssscsssccscnsossosoossssscssssss
SUBMIT-PKG ..ceveeececssssssscscscososcossoossssssscssssss
UNSAVE-ITEM .cceecooccoosnssssnssosssssscssssssssscnscccss
WHERE-SAVED .:icccvcecccoceroososotsoosossosscsscssssssssocssncons
WRITE-PROFILE-REC ...cicceecccccccsosccsscosossssoccsscss

SECTION 6. DEVELOPING TRANSFER APPLICATIONS .,.cecccecocoonse
Application Development StePS cieesscccessessscssscssosscs
Designing and Writing a Client ...cecececcesosccocscocsns

Grouping UOWS in IPCS teteescosccoccsscnsscnscosscssnss
Communicating with TISERVveeeecoccscssasscasssoses
Using Correspondent Names for Distribution Lists
TMF GUidelinesS .uceeseossossssssesscssssssossssssssssoss
Network GuidelinesS ..seeeessescscsscscssosossssssssonsse
SCREEN COBOL Coding GuidelinesS ...ceseececcscosssncsnncs
Debugging TechniQues ...iceeeeeeecscsscscscossssosscsnsnse
Designing and Writing an Agentceeeecceccsevscccscnnsans
Assigning Names tO AgentsS ..eeseessscseoscscosscasscsnasns

“4 82525 A00 3/85

5-42
5-44
5-46
5-48
5-50
5-54
5-56
5-58
5-60
5-63
5-65
5-68
5-70
5-72
5-74
5-75
5-79
5-82

Contents

Establishing Sessions for Agents ...eeecececeescssseses 626
TAREQ Interface ...iieeeeececsocecssscssssccssssscssses 6-26
Selecting a Programming LanNgUAgE .ccecececccsssscesees 6-27
Debugging an Agenteeeecescssscososcoccscscnsnses 6-28
Configuring or Deleting an Agent ...cecesececcescnsees 6-28
Invoking the Programseeeeececescoscessosesoases 6-29
Calling the Configuration or Delete Program 6-29
User-Supplied Profile Records and Modulesceeceeeeses 6-33
User-Supplied System Control ModulesSceeeececasesses 6-34
TMF Transaction Processing Guidelineseeeeeeeeceeses 6-34
Item and Package Design Alternativeseeecececceccesss 6-36
TISERV GUidelinesS ..ieeeeeecesssescossosssseococssosnsnses 6-36
TAREQ GUidelinesS ..eveveesscssscsssscssscscacansocnseses 637
Addition of Records to Package Header ItemsSc.o.... 6-38
Network GuidelineS ..ceveceseosesosesanssosescossnssosnsess 638

SECTION 7. SAMPLE CLIENT ® ® ¢ 5 0 & 5 2 0 0 6 O O SO SO OO S S B OO L SN0 e 71
Functional Description of the Sample Client ...c.ececeeees 7-1
Running the Sample Clientieceeesnsscscscscscancnnas 71-7

SECTION 8. SAMPLE AGENT ® ® & 0 5 & 0 O 5 5P B " OSSP OO S O e s O G S ss seo

SECTION 9. QUEUE MANAGEMENT ..coceevceossssscscscccsssncscsss
Queue ManNager ..ciecscssrsesascssasossssansssscsssssssscscsscs
Dequeue (DEQ) FUNCLION teveeereocencoasacsossnsccacecans
Enqueue (ENQ) FUNCLION tuiivevrecseesonecesoscscnccsnnssoe
Read (READQ) FUNCEION teveeeereeeoecocanccoansonsnsnsoes
Wait (WAITQ) FUNCLION teveeeesoesoccconooccsnsoesenceses
Using the Queue MaNAgereeeocesescocccssesancancnscss
Server Interface .i.ceceeeeesseesosscsocccoscsossonnssscssess
Request and Reply HeadersS ...seeecceccccesoossssonscacns
IPC Header FOrmat ..eceesseesccesceosccscccesssscscssssccss
UOW Header and RetUrn COAE ..iceevecessccossccccnscssossos
Software Provided with Queue Managementceceesseeseess
UOW DefinitionNsS .eieeeeeesossoseseososesessoscosnssossacas

DEQ .non.oo.o.o.o..'oo.0Q.ooll0.0.'.c.ocoon.ot.'o.t....l 9—17

|
HHEOOO_DBdWNHE [t

VOWOVOVWOVOVOLOVOOOOO @
1

ENQ LI I B R AL 2 R I B B N B BN Y K I B B I B I I I I I I R I B I Y I Y I T I I I Y I 9—21

READQ .tcceeeecccecossoncsssasscsnsoscnnssasssssscsnsscssssnces 9-24
WAITQ seeessrsovecnocssssosscsecnsssssassnccsssssesccscsssss 9—29
Starting the Server ProCeSSEeS .uesieececcsssssscsscscsecses 9-32
Logical File ASSIgNMENtS .eeenvecscscescsvssssscsssacsecs 9-36
Server Program FileS ...ceeeecsccscesccsscnscsssccscces 9-37
Queue Management Initialization Error MesSSageS ..eeesee.. 9-37

APPENDIX A, ERROR CODES .:.ccceccencsccoscocccsocscsossscocssse A-l
Error Code FieldS ..eeeeseecsccnsccccooocscosansssssonses A=l
PW-REPLY-CODE ErXrOIr'S «.cccecocaccsocsscscsssssonsscsssecs A—1
IPC-RETN-CODE ErrOrS .eeeeseeecsesscesssccssssessaccncce A—2
IPC-RETN-CODE-DETAIL EITOIL'S «eccoscsossscccssososscssscss A-2
RETN-CODE EIrOIrS .eeceecescecsoscccsssccsscocscsccccscscscccses A—2

vi “9 82525 ACO 3/85

RETN-CODE-DETAIL Errors

MBR-RETN-CODE Errors

ELEM-RETN-CODE Errors .

DELIV-ERR Errors ..eceeceee.
GUARDIAN File Codes ...¢...

Summary of Error Codes

APPENDIX B.

* & o

Invoking Application Software from T/MAIL .

Building Packages that T/MAIL Can Read

Application ID0...
Item TypesS ..eeeeeeoanns
Packages and Items
Record TYPES seeessoaene
Recipients ..eeeececses
Component TYyPeS ..eaees
Acknowledging Receipt .
Copy Mail Function

® o 0 0 2

Examples of Standard Packages .

APPENDIX C.

APPENDIX D.

APPENDIX E. GLOSSARY

INDEX ...iceiiieienennncanas

| [I T T I T |
G WNRWNNRPEeRWNDRPRONOVO W R

Elements of a Session
Item in Three Folders

|

Text Portion Formats

ggooogdedsscNONDNNONRPRERRPRPRRERRRERRE
|

9 82525 A00 3/85

A Package within a Package
A Depot t.iieesesecsosans .
Processes in a TRANSFER Applicationceoo.. e
Package Delivery to a Remote Node

Adding a Record to an Item
Package Delivery Time Milestones
Attaching a New Component to a Parent Item

L]

.

PROCESSES RUNNING OUTSIDE PATHWAY

.o

. e

e o o o o

3

.

® 6 86 ¢ 8 0 0 080 0 00 s

® o 0 0 6 0 06 % 0 00 0090

TRANSFER Requests and Replies
Overall TAREQ Event Package Format

Information Delivery with TRANSFER ..
End-to-End Communication
Extended (Nowait) Transaction Processing
Correspondentseeca.
Items ..iiieiineeeeecennsoonenns
A Package .eeicecencncncess

3

Contents

INTERFACING APPLICATIONS WITH TRANSFER/MAIL ...
Invoking T/MAIL from Your Application ...eeeeecccss

TAREQ AGENT SELECTOR VALUES FOR TAREQ-
GENERATED PACKAGES

1
G D W

1

?3’>ITS’?

| | I I |
WO IINOUTTANAWWN P

(@] wu:mtnmtﬁwtnmtnmtnw

|
[y

7
-

E-1

eeses. Index-1

FIGURES

aaaaaaa ® o 0 0 5 00 00
© 6 8 9 % 0 0 0 0 0 0 0 08 20 00 00 08 00 s e o o
o e 0 0 . ¢ o 0
© 8 06 02 060 0 006 800 00 00 e« o s o 0 o o 0
s 3 8 06 0 08 0 0 0 0 e e o » e« o s 0 o

0o 0 e ¢ 600 080 e e ® @ @ o 0 0 0 0 0 o
@ @ 0o e 6 8 80 00 0 0 0 0 e 68 s 0 8 0 0 e .

® 6 e ¢ ¢ 6 0 0 0 0 2 % 0 0 e e P e e s s s e s .
® 8 o 0 0 % 0 0 0 0 s s e e s . .
4 @ 8 2 0 0 0 ¢ 2 0 @ 0 0 4 8 0 8 s 0 0 0 e e s e oo .
€ ® & 5 8 0 6 0 0 0 0 0 6 0 008 000 08 0 0 000 0o ¢ o o
® @ 0 @ 0 5 0 ¢ 9 0 e e e e e s e s e e e)
®e ® o 9 0 8 ¢ 0 LY * o 0 v 0
ooooooo ® © ¢ % 8 2 9 0 2 0 0 02 0 0 5 0 6 0 s e e 0 8 o
ooooooooo 8 8 0 0 06 0 0 8 o 8 0 e 0 0 0 0
ooooooooooooooooo . o 0
..........

oooooooooooooo e e

Record Retrieval by GET-ITEM-REC ..
Record Key UsS€ .(ieeievecsss

| TR TR T T B

WO

| I T B |
oOw NO

|
O WA R FEON PR RJ e N

1
w
-

QUOUIUTER R IBENNNNNR R PR R R
i {
w
@

t
Vo]
[e)]

5-98

vii

Contents

om
1
(o)

Storage Layout for GET-PROFILE-ELEM and ALTER-

PROFILE-ELEM ...vecesvosooasosscsosesnssosassasssosssoss
SCAN-FOLDER-BY-KEY UOW EXample ..ceccecsosssscsoscscccscs
Complete Transactions Involving Extended

ProcCesSSing teeeeeeeeneseenseosssenssescsosscosancsssnss
Application Input/OUutput SCreeneeceeessccsccscss
Avoiding a Nesting Problemcceeveceeeenceanscncnns
Ways in Which Errors Are Reportedeecececesescnce
An Agent Monitors Package Delivery ..eeeeeececcsssess
Component CyCleeeieeeenecccccsaoccaonsanssnsnssss
Client's LOQON SCLEEN ..ceenovsssssssessosseascssssosns
Client's Function Menu SCreencecessecesescscocns
Client's Mail PosSting SCreenecececscsceccccocsnans
Client's Mail Display SCreeNneeeecescossssccssscss
SCREEN COBOL Code for Client ...eeeeececsccscecsccsacs
SCREEN COBOL Code for Agent ...ceecececcccoscsssossocsns
Interaction Between TRANSFER Clients ..c.eeeeeececcccs
Queue Management InNteraction ...iceesececesccccscsccss
Standard Send and Reply PackagesS ...cccececcccccscccs
Application with Processes Outside PATHWAY ..cceveesee

11
-

I 1o
o
0o
a3

[
[
NN

11 1
HHENMHFEHFHFOBDWNDFOOOE® WN
1

I
NOONWOLUAPRWNWHEEF OO

[@ N RVsRVele o JERIERILRIES NN o W o W W0 W o,
|

(@R - AVeAVo N JERIENIEN NN No RWorW e We) We W0 (62 &)
I

TABLES

TISERV Parameters at Startup Time ..ecceeecoccecscees 4-2
TISERV UOW SUMMATLY seeeessscssssssssssssssssssssassss 4—25
TAREQ EVENES .viecceecccccccasosocsssassnnsscsssssses 4—-38
Depot Profile File Elements and Access Privileges ... 5-111
DDL Data Definitions for Profile Data Elements
with GET-PROFILE-ELEM Return CodeS ...ccceeeceeeseeses 5-116
ALTER-PROFILE-ELEM Return COde€S .ceeeececcsscnsssesss 5-139
Queue Management UOW SUMMALY .occoceeoscvcssssssssess 3—16
Queue Manager Server Parameters at Startup Time 9-32
Queue Manager ASSIGN Command Parameters at Startup
TiME tevsesesssococsssscsssssososassossscscsesccsesecs 9-36
Queue Management Initialization Error Messages 9-38
GUARDIAN File COAES tutveesvssocsossossoccscssosososes A
Error CodeS .eeseeeessescossnsssnsssessssssossssssssee A=6
Alphabetic Listing of Error CodesS ...eeeseesecsscssss A-59
B-4
D-1

I 1
NHWN -

Effect of WORKSPACE-ITEM and COMPONENT-ITEM Settings.
TAREQ Events ® & 5 & 0 5 0 0 0 08 B S SO0 S S 00T E 09 e PO e e 0 0

ODw>»>»>»uv gu?\gcn O D DD

!
HEWND K WN W

viii 4 82525 K00 3/85

PREFACE

This manual is a quide to writing application programs that use
the TRANSFER delivery system for the Tandem NonStop 1+ System and
NonStop Systems. Such programs cooperate with TRANSFER in moving
information throughout a single computer system or a network of
distributed systems. The programs typically run under the
PATHWAY transaction processing system and use the services of the
Transaction Monitoring Facility (TMF) to ensure transaction
consistency.

This manual is intended for application programmers. The manual
presents the concepts, gqguidelines, and detailed reference
information needed to support application program interaction
with TRANSFER; and also includes a description of the tools that
provide access to the features and capabilities of TRANSFER.

The following manuals contain more detailed information about the
Tandem NonStop 1+ System and NonStop Systems and the software
products used with TRANSFER:

e Introduction to Tandem Computer Systems provides an overview
of the NonStop 1+ System and NonStop Systems hardware and
software.

e DPATHWAY SCREEN COBOL Reference Manual describes the SCREEN
COBOL programming language that 1s used in the development and
control of online transaction processing applications.

The following manuals contain detailed information for programs
that are written in a lanquage other than SCREEN COBOL or that
interface with programs written in other languages:

e COBOL Reference Manual, FORTRAN Reference Manual, and
Transaction Application Language (TAL) Reference Manual
describe these languages.

“4) 82525 A0O 3/85 1X

e GUARDIAN Operating System Programming Manual, Volumes 1 and 2
provide information about interfacing programs with the
GUARDIAN operating system and accessing the hardware and
software resources of the system.

This manual is a member of the TRANSFER Delivery System Manual
Library. Other manuals in this library include:

e Introduction to TRANSFER Delivery System is an overview of
TRANSFER.,

e TRANSFER Delivery System Management and Administration Guide
1s a gulde to managing and administering the TRANSFER Delivery

System,

e TRANSFER/MAIL Users Guide is a guide to using the
TRANSFER/MAIL application supplied by Tandem.

“4 82525 A0C 3/85

SECTION 1

A PROGRAMMER'S VIEW OF TRANSFER

The TRANSFER delivery system is a high-level software product
that reliably supports communications between people,
input/output devices, and processes. The product is especially
useful in situations where system resources are widely
distributed or intermittently available, or both.

In addition to providing a standard electronic mail application,
TRANSFER/MAIL (T/MAIL), TRANSFER supports a wide spectrum of
user-written applications. These are typically business
applications that link interactive environments and involve such
features as:

e transmittal of data to multiple destinations, such as routing
survey questionnaires and newsletters, or updating
distributed, replicated data bases

e communication among applications with different missions, or
among components of a distributed application, such as a
manufacturing system transmitting data to a purchasing system

e scheduling of transactions for future occurrence, or
transactions of long duration, such as generating a report.

Figure 1-1 illustrates information delivery with TRANSFER.

TRANSFER appears as a group of processes that your programs (also
running as processes) can call upon to build, maintain, and route
collections of information called packages throughout your
computer system or network. TRANSFER maintains a data base that
describes TRANSFER users and provides them with holding areas for
packages and parts of packages. All interactions between your
application processes and TRANSFER take place through
interprocess messages.

) 82525 K00 3/85 1-1

A Programmer's View of TRANSFER

ToUSERB
To

USER A Line Printer

To Manufacturing

Application \ ~?../'
’f
Manufacturlngd
~ 7@ Application

\'N—__—-‘

Line Printer

S$5039-001

Figure 1-1. Information Delivery with TRANSFER

TRANSFER is independent of package content. Any application
program can request the services of TRANSFER to create, build,
request transmittal of (post), store, and access packages. Your
programs make these requests via the TRANSFER programmatic
interface.

An application can have interactive communication with users, or
can have one process interact with another process with no human
intervention. An application can contain programs written in
various languages, all using TRANSFER in one way or another; for
example, a PATHWAY requester written in the SCREEN COBOL language
could use TRANSFER to transmit data to a statistical application
written in FORTRAN.

1-2 “9 82525 A00 3/85

A Programmer's View of TRANSFER

TRANSFER APPLICATIONS

TRANSFER is suitable for many different kinds of applications
that involve information transmittal. TRANSFER is particularly
valuable for dealing with two basic characteristics commonly
found in business transactions: end-to-end communication and
extended transaction processing.

® In end-to-end communication, a correspondent, which can be a
person, input/output device, or process, sends a package to
one or more other correspondents. Although the sending and
receiving correspondents might all exist at the same network
node, the interaction often takes place between nodes and
involves distributed resources. TRANSFER can send a package
to multiple destinations anywhere in the network.

As shown in Figure 1-2, a simple instance of end-to-end
communication occurs when an operator at a terminal composes a
memo and then sends it to a person at another terminal. A
more sophisticated example might involve a manufacturing
application running at one site and interacting with a
purchasing application at another. 1If you were developing
this type of application without benefit of TRANSFER, you
would have to write software to take care of several
contingencies--for example, what to do if a package is sent to
a node that is unavailable, or to a correspondent who is
either unavailable or not ready to receive the package. That
software would have to monitor network availability, queue
packages, and manage timing considerations; but with TRANSFER,
these functions are managed for you by software supplied by
Tandem.

e In extended transaction processing, a sender initiates one
transaction and then proceeds immediately to a new one without
waiting for work on the original transaction to be completed.
Figure 1-3 illustrates extended transaction processing. This
is frequently called nowait transaction processing because
the application continues with another transaction without
waiting for the first one to be completed.

4y 82525 A00 3/85 1-3

A Programmer's View of TRANSFER

Send Message

RECEIVER’S NODE
Receive

Message (and
perhaps reply)

$5039-002

Figure 1-2, End-to-End Communication

For an example of extended transaction processing, consider an
application that:

a. allows an operator to request the system to build an
inventory report from various items in a data base and to
print the report on a local printer that will not be free
until 4:30 p.m. that afternoon

b. then, permits the operator to send memos to interactive
users, announcing the pending availability of the report,
while the system is gathering the data for it.

This kind of transaction processing distributes work over both
time and geography. It promotes great efficiency, allowing
operators and applications to move on to other work while
TRANSFER completes the work they originally started.

1-4 “} 82525 A00 3/85

A Programmer's View of TRANSFER

Start Transaction 1

P

Return Control to .
Sender R

Working on transaction 1
Start Transaction 2

[——

Return Control to
Sender

=

Working on transactions 1 and 2

S=0 E=P =P =0

$5039-003

Figure 1-3. Extended (Nowait) Transaction Processing

The Advantages

TRANSFER relieves application programs of several tasks that they
would otherwise have to perform. Among these are:

e delivering packages composed of multiple components
e monitoring the computer network for availability

e managing the routing of packages to multiple recipients
throughout the network

e ensuring reliable package delivery, even in the event of
failures, while preventing duplicate deliveries

e providing temporary storage of items and packages.

4 82525 A00 3/85 1-5

A Programmer's View of TRANSFER

An application can specify the earliest and latest times at which
a package can be delivered. If the package cannot be delivered
within that time window, TRANSFER returns it to the sender. An
application also can specify priorities for packages so that if
many packages are posted within a short time, those with the
highest priorities are processed first.

Recipients of packages need not be available to receive them. 1If
a network node is unavailable when TRANSFER attempts to deliver a
package, delivery takes place as soon as the node does become
available. If the recipients are unavailable, TRANSFER stores
packages for those recipients, who can collect them at their own
convenience.

When an application requests TRANSFER to deliver a package, that
package will reach its destination exactly once. In the event of
a hardware failure, TRANSFER ensures that a package is neither
lost nor delivered twice to any recipient. An application also
can define certification criteria by specifying, for example,
that a sender is always notified in some way when all recipients
have received packages that were posted.

The Limitations

Although TRANSFER is a powerful application tool, it does have
some limitations:

® TRANSFER cannot ensure that any package will be delivered at a
specific time, and cannot predict how much time a package will
spend in transit.

» TRANSFER does not attempt to deliver packages in the same
order that they are sent; your application program, however,
could arrange to process packages, upon receipt, in the order
in which they were transmitted.

® Although TRANSFER allows a package to contain any kind of
data, TRANSFER does not interpret or process the data in the
packages. That is the responsibility of your application
program.

As an application programmer, you must determine:

o what constitutes a transaction and what signifies its
completion

o what kinds of information a package contains, and in what
arrangement

® who receives the packages

1-6 ﬂ“ 82525 A00 3/85

A Programmer's View of TRANSFER

e how recipients process and respond to packages

e how correspondents are related to one another, and how
packages are interrelated.

An important relationship to consider is that between two common
application requirements:

the need for packages to be delivered within a narrow
timeframe

the need for a certain percentage of packages to be delivered
successfully.

The narrower the timeframe, the greater the chance that external
factors might prevent package delivery. If an application
requires both a narrow timeframe and a high percentage of
delivery, you should carefully consider the overall capabilities
of TRANSFER when deciding whether to use this product.

A final limitation is the fact that an application cannot control
traffic on network lines. Although an application can defer
delivery of packages, it cannot defer transport of those posted
for remote nodes. The only way to defer transport of a package
is to either avoid posting it or shut down the network. For
example, if you want to defer transport until after normal
working hours, you could have an operator post a triggering
package for nighttime delivery, and then have an application
process post the real package when it receives the trigger.

THE TRANSFER ENVIRONMENT

An application can run under the PATHWAY transaction processing
system, taking advantage of the requester/server model on which
all PATHWAY applications are based. In the PATHWAY environment,
the application programs are reguesters written in the SCREEN
COBOL programming language and are used to control terminal
input/output. In general, requesters for a TRANSFER application
fit into the operating environment in the same way as requesters
for other PATHWAY applications.

Outside the PATHWAY environment, application programs can be
modules coded in COBOL, FORTRAN, or the Transaction Application
Language (TAL).

TRANSFER uses the Transaction Monitoring Facility (TMF) to ensure
the consistency of any files that are changed during the delivery
process. If a failure occurs while a package is in transit, the
delivery operation is backed out and started over again. In the.
event of a system failure, TMF allows you to reconstruct the
files.

) 82525 A00 3/85 1-7

A Programmer's View of TRANSFER

Types of Application Processes

A TRANSFER application consists of a set of processes that
communicate with each other and with TRANSFER; they work together
to perform a common task. These processes might run on different
CPUs or even at different nodes in a network. The entire
application includes:

¢ TRANSFER processes--processes that are furnished as part of
TRANSFER, and processes that are provided by PATHWAY and
operate in conjunction with TRANSFER

e TUser processes—--processes for which you, the application
programmer, write the code.

Basically, you are concerned with writing programs for two
general kinds of user processes: clients and agents. Each type
is defined by the task it performs.

e C(Clients are requester programs that provide the interface
between correspondents and TRANSFER. Clients allow the user
to build, alter, and post packages for delivery, and receive
and respond to incoming packages. They also allow the user to
request various administrative functions. In terms of the
PATHWAY requester/server model, clients are those requesters
that make requests of servers furnished as part of TRANSFER.
Clients can also communicate with any number of user-defined
servers.

Most clients are written as SCREEN COBOL programs that execute
in PATHWAY Terminal Control Processes (TCPs). Others are
programs written in COBOL, FORTRAN, or TAL; these processes,
however, cannot take advantage of PATHWAY features such as
load-balancing operations, ease of coding interprocess
communications and TMF requests, and resource management
capabilities.

e Agents allow applications to participate in the delivery
process. Agents are programs that are automatically invoked
to handle packages received at a depot. A depot is that
portion of the TRANSFER data base associated with a particular
correspondent. When a package arrives at the depot, the agent
is notified by TRANSFER. In response to this notification,
the agent usually takes some kind of action, such as filing a
package for later retrieval, initiating a transaction, or
replying to the sender. Basically, the agent eliminates the
necessity for polling to see if packages have arrived. The
agent provides a facility for automatically processing
incoming packages without the need for human intervention.

1-8 “4 82525 A00 3/85

A Programmer's View of TRANSFER

Agents can be written as PATHWAY requesters in SCREEN COBOL,
or as server processes in COBOL, FORTRAN, or TAL. In the role
of a requester of TRANSFER services, an agent can in fact be
regarded as a kind of specialized client.

Clients and agents sometimes perform many of the same functions,
and they are not always totally distinct. They are treated
separately in this manual because they usually involve different
design and coding considerations. The most fundamental
distinction between these two types of processes is:

e Clients take their control information either from user
processes or from other processes that are not part of
TRANSFER., They direct most of their output to TRANSFER.

e Agents take their control information from TRANSFER and the
received packages that trigger them. They direct output to

processes or devices external to TRANSFER, or back into
TRANSFER itself.

TRANSFER Objects

A TRANSFER application involves the following objects:
e correspondents that send and receive packages

e the packages themselves

e depots where packages are delivered

e distribution lists that allow packages to be sent to multiple
destinations

e profiles that describe the correspondent

e folders where packages are stored.

CORRESPONDENTS. A correspondent can be a person, a process, or a
device as 1llustrated in Figure 1-4. Each correspondent is
assigned a unique name that explicitly identifies both the node
where the correspondent receives packages and the specific
identity of the correspondent. TRANSFER keeps track of all
correspondent names in its own data base.

“ 82525 A00 3/85 1-9

A Programmer's View of TRANSFER

‘»,/ -
BVAN -
™~
Ry application

- S5
5
P
Q»T?‘.y
7E§i?w

person device

S5039-004

Figure 1-4. Correspondents

PACKAGES. A package is a collection of information that can be
sent from one correspondent to another correspondent. A
person-to-person package could be interoffice mail. A
process-to-process package could be data and transaction codes
needed to update a data base.

Packages are made up of discrete collections of data known as
items. Each item always includes an item descriptor, which is
composed of one or more records that describe the attributes and
composition of the item. In addition, the item can include one
cr more data records. Examples of items are shown in Figure 1-5.

1-10 “9 82525 A00 3/85

A Programmer's View of TRANSFER

ltem

Memo To Mtanm
From A WRNIN:

In response 1o
your letter of
July 19, 1982 . - -

Text

$5039-005

Figure 1-5. Items

An item usually contains only one kind of data whether that data
is text, ASCII data, digital facsimile data, or some other type
defined by your application. Each item is identified by its own
unique item ID. Items can range in size from a few to many

thousands of bytes and can also contain other (component) items.

Any process representing the correspondent who created an item
can add, delete, examine, or change the contents of the item
until it becomes part of a submitted package. For example, a
process can retrieve a data record, insert records, and change
their order. Similarly, a process can modify components in any
list of component items that is part of the item. A process
cannot, however, delete or change an item if the item is part of
a package that is already posted.

In order for TRANSFER to deliver items from one correspondent to

another, the items must be assembled as packages as shown in
Figure 1-6.

“4 82525 A00 3/85 1-11

A Programmer's View of TRANSFER

Package Header

Subject Text Record

Note Record

| |
| |
|
I |
| |
| |
[I v
i ; ; Component
I item IDI item ID| item ID i p | recipient
I ist I
I .

: l recipient Recipient =
| I correspondent or

recipient distribution list
| ltem y Iltem g
: ltem | recipient
b .

Recipient

List

S$5039-006

Figure 1-6. A Package

Each package includes a package header item, perhaps one or more
records or component items, and a list of recipients. The
package header item is like the label on an actual mail

package; it indicates who is sending the package, and to whonm,
when the package was posted, and what its delivery priority is.
The package header might also indicate the timeframe in which the
package should either be delivered or expire; it also might
include a components list that contains the IDs of all items in
the package. If an item in a package contains other items, those
second-level items are not listed in the package header.

An application builds a package by creating the package header
item and making separate requests to add recipients, component
items, and delivery parameters. The package itself might be
composed of different kinds of items in any arrangement. For
example, a package could contain a formatted ASCII item and a
digital facsimile data item, along with other package header
items. If the components list of a package includes another
package header item, the result is a package nested in another
package, as shown in Figure 1-7. A package that contains another
package is just a specific instance of the general rule that an
item can contain other items.

1-12 4y 82525 A00 3/85

A Programmer's View of TRANSFER

r—F """ " T T T T T A
| |
|
| Package Header :
| item ID| item ID | item ID | item ID| item ID I
| |
: |
Item Item I
: ltem Item |
|
} e Wi 0|
Package Header		
item	item	item
I ID ID ID ID :		
'	I	
	I I	
	(I	
: I Item Item : [
I		
I Item item : I		
L ! '		
___________________ - I		
e e e e e e e e e e e e -
$5039-007

Figure 1-7. A Package within a Package

DEPOTS. A depot is that portion of a TRANSFER data base
associlated with a particular correspondent. The depot is
established when an application registers the correspondent with
TRANSFER. Every correspondent has precisely one depot and that
depot has a network-unique identity, which an application
references implicitly through the correspondent name. A depot
principally contains distribution lists, profiles, and folders,
as shown in Figure 1-8.

4y 82525 A00 3/85 1-13

A Programmer's View of TRANSFER

[item |

Package |
Iltem

Profile

L

O .
QéWﬂ
(/‘WSOO

g
3

il

|
|

o
3

$5039-008

Figure 1-8. A Depot

DISTRIBUTION LISTS. A distribution list simplifies the delivery
of a package to multiple correspondents. The list can contain
the names of both individual correspondents as well as the names
of other distribution lists. This allows an application to send
packages to multiple destinations, while referencing those
destinations by only one common name. As long as a correspondent
knows a particular distribution list name, that correspondent can
remain totally unaware of the specific names on the list.

Before a package can be delivered to the correspondents on a
distribution list, that list must be expanded. To accomplish
this expansion, TRANSFER replaces the referenced distribution
list name with the actual names of the correspondents on the
list. These correspondents are known as the members of the
distribution list.

1-14 “§ 82525 A00 3/85

A Programmer's View of TRANSFER

PROFILES. A profile is a set of one or more records that
describe the correspondent who owns the depot. These records
reside in a profile file, which contains the profiles for all
correspondents registered at the node. These records are managed
by TRANSFER.

A correspondent profile contains identifying data, such as the
password of the correspondent and operational parameters
applicable to the correspondent. The profile also indicates
privileges of the correspondent and the default values for
package delivery parameters, such as delivery priority and
expiration time.

An agent profile specifies the agent or agents that should be
invoked when a package arrives at the depot. The profile
indicates the name of the agent; selection criteria for invoking
the agent; and other information, such as whether the agent is a
SCREEN COBOL requester program or a server.

TRANSFER also manages other profile records for each depot.
These include profile records for T/MAIL and any other
applications requiring storage of data applicable to the depot.

Through requests to TRANSFER, an application can examine the
profile records for the correspondent that it is representing,
and can alter certain fields within these records. An
application that represents someone with system administrator
capability can examine and change certain fields in the profile
records of other correspondents at the node. A system
administrator is a person who is responsible for managing the
objects that TRANSFER uses in the delivery process.

FOLDERS. A folder is an area where related items and packages
are stored. As an example, a correspondent might keep separate
folders for packages received from different sources, separate
folders for text and facsimile data, or a separate folder for
packages that are to be sent in response to earlier packages.
The same item or package can belong to more than one folder.

An application process can create and delete folders, add items
and packages to them in a predefined ordering sequence, and
examine their contents. In addition to folders created and
maintained by application processes, TRANSFER maintains the
following special folders:

® INBOX Folder. When a package arrives at a depot, TRANSFER
saves it in a folder named INBOX. Packages remain in this
folder until they are explicitly removed or until they expire,
whichever event occurs first. Once TRANSFER places a package
in a recipient's INBOX folder and invokes the appropriate
agents, delivery of the package to that recipient is
considered complete. Clients can explicitly remove packages

“4) 82525 A00 3/85 1-15

A

=
1

Programmer's View of TRANSFER

from the INBOX. 1If a client never acknowledges receipt of a
package, TRANSFER removes it from the INBOX and returns it to
the sender when the package expiration time occurs. An
application can retrieve any items from this special folder.

WASTEBASKET Folder. A process that intends to delete an item
at the end of a session can save the item in a folder named
WASTEBASKET. A session is defined as the period of time
during which a correspondent can submit requests to TRANSFER.
When the process ends the session, the item is automatically .
purged from this folder. An application might use WASTEBASKET
so that an operator who mistakenly deletes an item during a
session can retrieve the item before the end of that session.
An application can retrieve any items from this special
folder.

OUTBOX folder. This folder is not currently used by TRANSFER,
but is reserved for future use. At present, it is illegal for
any process to save a package in the OUTBOX.

16 “) 82525 A00 3/85

SECTION 2

TRANSFER APPLICATION COMPONENTS

The primary processes in a TRANSFER application are:

When these processes run under
system, they take advantage of

clients

agents

specialized servers required

by clients and agents

TRANSFER interactive server
TRANSFER asynchronous processes
processes that communicate and

operate in conjunction with
TRANSFER

|

written by the
application programmer

supplied by TRANSFER

supplied by PATHWAY

the PATHWAY transaction processing
the requester/server model on

which all PATHWAY applications are based. These processes and

the way in which they interact

are illustrated in Figure 2-1.

@ 82525 A00 3/85

within the framework of PATHWAY

TRANSFER Application Components

Creates and dissolves

links between TCPs
and servers r—————————- 1

SPECIALIZED
USER
SERVERS

CLIENT
REQUESTERS
(assemble
packages)

NAME
DATA
BASE

TCPs are supplied by PATHWAY.
SCREEN COBOL program code
for clients is supplied by the

application programmer. TRANSFER

DATA

SCREEN COBOL BASE
AGENTS
(handle packages
at a depot) This connection not known
|_ ——————————— 'I to PATHWAY.
| | —3
| i
I |]
l |
I I L ————————— 4 S—— omm—
L= — —\——— All threed
TCPs are provided by r————————= 1 b ree tar:a
PATHWAY. SCREEN :;Zi‘ggEﬂe
COBOL program code

- - TRANSFER data base
for agents is supplied

e ASYNCHRONOUS
by the application REQUESTERS
programmer.
Shading indicates processes supplied by TRANSFER.
Dashed lines indicate processes that are part of the TRANSFER system.

$5039-009

Figure 2-1. Processes in a TRANSFER Application

2-2 7 82525 A00 3/85
[}

TRANSFER Application Components

CLIENTS

Clients are requester programs that provide the interface between

correspondents and TRANSFER. They allow correspondents to

communicate and interact with TRANSFER. A client, for example,

enables a correspondent to create new items, assemble them into

packages, post these packages, retrieve incoming packages, and

request various administrative services. For every TRANSFER

application, you must code one or more clients.

A client typically performs the following functions:

e establishes and terminates communication with TRANSFER

e manages the terminal interface on the basis of the screens you
design and the code you write to accept and display data on
those screens

e composes items and packages at the depot

e assigns delivery parameters, such as package priority and
delivery timeframe, and posts packages for delivery

® takes certain actions based upon receipt of packages, such as
presenting a message to a user at a terminal or starting
another transaction

e detects and reacts to certain error conditions.

A client can represent any number of correspondents; TRANSFER

recognizes a correspondent as a name with an associated depot in

the TRANSFER data base.

Examples of clients in TRANSFER applications are:

- ® SCREEN COBOL programs operating under a PATHWAY terminal
control process (TCP), where the SCREEN COBOL programs

- represent each operator as a correspondent
- represent each terminal as a correspondent

- represent all terminals and operators as a single
correspondent

- represent other servers or devices handled by those servers
as correspondents,

e any GUARDIAN process that makes requests of TRANSFER servers
on behalf of correspondents.

4 82525 A00 3/85 2-3

TRANSFER Application Components

Most clients are written as SCREEN COBOL programs that execute

within PATHWAY TCPs. Clients can be written as FORTRAN, COBOL,
or TAL programs, but they cannot take advantage of the resource
management capabilities of PATHWAY.

AGENTS

Agents are SCREEN COBOL requester programs or PATHWAY server
classes that are automatically invoked to handle packages
received at a depot. Agents are invoked by TRANSFER asynchronous
requesters (TAREQs), which are responsible for actual package
delivery. An arriving package might have been sent by another
correspondent. An arriving package also might have been sent by
TRANSFER itself; for example, an incoming package from TRANSFER
could be certifying delivery of an earlier package, or could be
telling the correspondent that a package delivery time expired
before a remote node became available,

The capability of defining agents is an important feature of
TRANSFER. Without an agent, a correspondent must check to
determine whether packages have arrived at the depot; with an
agent, the package arrival can automatically trigger some action.
For example, an agent can react to a package delivery by:

e informing the correspondent of the delivery

e saving the package automatically in a folder at the depot

e initiating a transaction, perhaps in response to a triggering
package

® creating a new package from the package received, adding items
to that package, and forwarding it to another correspondent

e arranging for packages to arrive in a certain order

e sorting packages according to type before presenting them to
the receiving correspondent

» filing packages from different applications separately, with
the client then allowing the correspondent to retrieve the
packages selectively

®» replying automatically to the sender

» displaying the package on a device

» deleting packages that are not meaningful to the receiver.

An agent is selected for execution by criteria supplied in the
agent profile associated with the depot. The criteria can be

2-4 /1| 82525 A00 3/85

TRANSFER Application Components

established either by a client or by an operator using the ADMIN
application. ADMIN is a TRANSFER application, supplied by
Tandem, that provides a user interface to the administrative
functions of TRANSFER.

A single agent can be associated with several depots. A single
depot can have many agents, each with different selection
criteria, so different types of packages and applications can be
handled by different agents.

An agent can be a requester or a PATHWAY server. In general:

e An agent that makes requests of TRANSFER server classes to
retrieve, save, or post packages should be a requester written
in SCREEN COBOL.

e An agent that accesses an input/output device, or that
performs string handling, complex computations, or tasks of
long duration should be a server written in COBOL, FORTRAN, or
TAL.

e An agent that handles both kinds of work should be written in
SCREEN COBOL and should direct its requests to a special
application-defined server class.

Agents are invoked by TAREQs according to information in the
incoming package and in the recipient's profile. SCREEN COBOL
agents run in the same TCPs as the TAREQs that invoke them.
Communication between TAREQ and agent is program unit to program
unit, not TCP to TCP.

SPECIALIZED SERVERS

Your clients and agents might require the support of specialized
servers, You can write these servers in COBOL, FORTRAN, or TAL.
You can also write servers in the Massachusetts General Hospital
Utility Multi-Programming System (MUMPS) provided the servers
require no input/output audited by the Transaction Monitoring
Facility (TMF).

TRANSFER INTERACTIVE SERVER (TISERV)

Any TRANSFER application always has a TRANSFER interactive server
class defined at each node. This server class is called
interactive because its primary job is to receive and reply to
requests from your clients. The server is usually named TISERV.

“§ 82525 AOO 3/85 2-5

TRANSFER Application Components

TISERV furnishes the interface between TRANSFER and your clients.
This server performs the following:

o handles all the work involved in accessing the TRANSFER data
base on behalf of your clients

o contacts the TRANSFER asynchronous processes when a client has
posted a package for delivery.

Any application can include servers in addition to those supplied
by TRANSFER, and can include its own data base as well.

TISERV receives requests from requesters, performs the services
requested, and replies. These requesters include the clients and
agents you write for your application, applications provided by
Tandem, and the TRANSFER asynchronous processes provided by
TRANSFER.

TISERV handles requests to:
© create new packages, items, and folders

© add, delete, and retrieve information from packages, items,
and folders

® post packages

¢ change profiles and distribution lists
® add or delete correspondents

e perform administrative tasks.

TRANSFER servers are context free; thus, requests on behalf of a
particular correspondent need not all go to the same server
process. You indicate in the code for your requester what server
class should receive the request, and PATHWAY selects a specific
server process from that class. A server locks every record it
updates during a transaction; still, it is possible for several
server processes to perform parts of the same transaction. Every
process that does work for one particular transaction uses the
same TMF transaction identifier (TRANSID); thus, a lock set by
one server does not prevent access to the record by another
server.

TRANSFER ASYNCHRONOUS PROCESSES
TRANSFER asynchronous processes handle package delivery. They

schedule packages for delivery, locate their recipients, and
accomplish their transmittal. They ensure that a package is

2-6 “4 82525 AQ0 3/85

TRANSFER Application Components

delivered within the timeframe specified by the sender; if a
network node is unavailable, they ensure packages destined for
the node are transported as soon as the node becomes available.
They also cancel packages and arrange for their expiration.

TRANSFER provides two kinds of asynchronous processes: a
scheduler and the TRANSFER asynchronous requesters (TAREQs).

User-written client requesters do not communicate directly with
the asynchronous processes. To post a package, a client sends
its request to TISERV; TISERV, in turn, contacts the scheduler.

The only case in which asynchronous processes communicate
directly with user-written software is when TAREQs invoke agents.

Scheduler

Every node has a scheduler that runs as a fault-tolerant process
pair. The scheduler, of which only one copy exists, maintains
queues on disc to keep track of the following:

e packages that are ready for delivery, expiration, or
cancellation

e packages that cannot be acted upon because their timestamps
call for deferred action

e packages waiting for delivery, expiration, or cancellation at
unavailable nodes. :

Packages move to the ready queue when all conditions for delivery
are met. When a network node is available, all packages that
have recipients at that node are placed in the ready queue. If
some recipients are at available nodes and other recipients are
at unavailable nodes, only transport to the unavailable nodes is
deferred; the package is considered ready for transport to all
available nodes.

When a package is transported to a node, distribution lists local
to that node are expanded. TRANSFER replaces the distribution
list name with the actual names of the correspondents; this
action might also result in transport of the package to other
nodes when they are available.

TRANSFER Asynchronous Requesters (TAREQs)

A TAREQ is a collection of SCREEN COBOL programs that handle the
actual delivery of a package to a depot. These programs are
supplied by Tandem and run within a standard PATHWAY TCP. Every
node has at least one TAREQ.

“§ 82525 A00 3/85 2-7

TRANSFER Application Components

TAREQs request work assignments from the scheduler, one
assignment at a time for each TAREQ. TAREQs communicate with the
scheduler as though the scheduler were a group of conversational
terminals; the scheduler, in other words, acts as a terminal
simulator. No real terminals are associated with TAREQs.

The TAREQs locate the recipients of packages and deliver the
packages to local depots by issuing requests to TISERV., They
also arrange for remote deliveries by issuing requests to copies
of TISERV at other nodes as shown in Figure 2-2,.

Local Node Remote Node

Queues

$5032-010

Figure 2-2. Package Delivery to a Remote Node

INTERPROCESS COMMUNICATION

Clients and agents communicate with TRANSFER processes through
interprocess messages.

© A client written in SCREEN COBOL issues SEND statements to

TRANSFER server classes. The same SCREEN COBOL program can
communicate with other server classes also.

2-8 ’/'l 82525 A00 3/85

TRANSFER Application Components

e A client written in COBOL, FORTRAN, or TAL makes requests by
opening a TRANSFER server and issuing WRITEREAD requests to
that server through the GUARDIAN operating system.

e An agent defined as a PATHWAY server class is invoked by
TAREQs issuing SEND statements to the class.

e An agent defined as a requester and written in SCREEN COBOL is
invoked by TAREQs issuing SCREEN COBOL CALL statements to the
requester,

Agents, like clients, can issue requests to TRANSFER. Agents
written in SCREEN COBOL issue requests through SEND statements;
agents written in COBOL, FORTRAN, or TAL issue requests with
WRITEREAD calls. The format of requests issued by your program
is the same, whether the request is issued in a SEND statement or
a WRITEREAD call.

To issue requests to TRANSFER, clients and agents must first
initiate communication with TRANSFER by establishing a session.

TRANSFER SESSIONS

Before a requester process can access a correspondent depot to
build, post, or receive packages, or do other tasks for that
correspondent, the requester process must establish a session
between the correspondent and TRANSFER.

To establish a session, the requester process sends a request to
TISERV, supplying the name and password of the correspondent that
the requester represents. TISERV must be running at the node
where the correspondent is registered.

A session takes place between a correspondent and TRANSFER. As
illustrated in Figure 2-3, the session includes transactions to
post a package for delivery, but does not include the routing and
delivery of packages to depots. Because of the TRANSFER nowait
feature, neither the sender nor any recipient of a package needs
to have a session in progress while the package is in transit or
when it arrives at a depot. A correspondent terminates the
session when services are no longer required for the depot.

When a requester initiates a session, TISERV returns a session ID
to the requester. This ID, which is unique throughout the
network, must occur in every later request that the requester
makes for the correspondent. Eventually the process terminates
the session, perhaps because the correspondent logged off, and
relinquishes the session ID.

4y 82525 A00 3/85 2-9

TRANSFER Application Components

The session includes work done
\ by these entities.

The session does
not include message
delivery.

Asynchronous
Processes

The recipient may or
may not have a session
in progress.

$5039-011

Figure 2-3. Elements of a Session

An agent requiring access to a correspondent depot must establish
a session just like any other requester, or be granted one by a
TAREQ. You can set up a correspondent profile so that an agent
is automatically granted a session whenever it is invoked, in
which case the agent does not need to furnish the depot password.

2-10 ‘ “4) 82525 A00 3/85

TRANSFER Application Components

Because session IDs are unique at the node and TRANSFER servers
are context free, the following relationships can exist among
requesters, servers, correspondents, and sessions:

® One requester can maintain sessions in progress for several
correspondents. Requests for each correspondent carry that
correspondent's session ID.

¢ The same requester can have more than one session for the same
correspondent, with different session IDs. The same
correspondent, for example, might be a user logged on at two
terminals controlled by the same TCP.

e Multiple requesters can maintain sessions in progress for the
same correspondent at the same time. Each requester has its
own session ID for the correspondent.

e The requests issued during a session need not all go to the
same server, nor even to the same server class. The session
ID accompanies every TRANSFER request, and any TRANSFER server
at the node can interpret it correctly.

TRANSFER OBJECT MANAGEMENT

The various elements that TRANSFER maintains and manages during
package creation and transmittal are known as objects. These
objects are: correspondents, packages, depots, distribution
lists, profiles, and folders.

The following paragraphs describe how TRANSFER manages these
objects.

Identifying Packages and Items

Every package or item is assigned an identifier (ID) that is
unique throughout the network. This ID always consists of:

e a system number that defines the network node where the
package or item is created and ensures unigueness among IDs on
different systems

e a local ID that distinguishes among different objects created
at a particular node.

Through this ID, your application can fully identify and access

any package or item anywhere in the network without any chance
of ambiguity.

44 82525 A00 3/85 2-11

TRANSFER Application Components

Resolving Object Names

Just as packages and items must be uniquely identifiable, so must
correspondents, distribution lists, and folders. TRANSFER
accomplishes this identification through the assignment of names
for correspondents, distribution lists, and folders. When a
process references one of these objects, TRANSFER must ensure
that the process supplied a valid object name even though that
name might be an abbreviation for some other name. Name
resolution is performed as follows:

1. TRANSFER transforms the given name into one or more fully
qualified names, using the name searching method described in
Section 3. A fully qualified name is a name that includes
the complete name of the correspondent and the network node.

2, TRANSFER validates the fully qualified name by checking the
TRANSFER name directory to verify that the name is registered
there and that it designates the correct object type (such as
correspondent or distribution list). When a new name is
registered, the validation operation ensures that the name is
unique within the directory before it is added.

Name resolution takes place when:

® a user process registers (adds) a new correspondent to your
application

® a user process tries to initiate communication between a
correspondent and TRANSFER (called beginning a session)

® a user process supplies one or more names in a reguest on
behalf of a correspondent

e TRANSFER expands a recipient list to deliver a package to one
or more recipients.

CORRESPONDENT REGISTRATION. An application must register any new
correspondent at the same node as the TISERV process through
which the application requests this registration. Registration
is requested by a process running on behalf of the system
administrator for the node. When an application requests this
registration, TRANSFER places the name of the correspondent in
the name directory.

2-12 4 82525 A00 3/85

TRANSFER Application Components

SESSION ESTABLISHMENT. To represent a correspondent, a client
must first initiate a session for that correspondent; this
establishes communication between the correspondent and TRANSFER.
The client directs its request for a session to a TISERV server
at the node where the correspondent is registered. TRANSFER
checks to ensure that the correspondent name is properly
registered. TRANSFER then starts the session at that node. The
session cannot be passed to servers at any other node.

Agents, like clients, can initiate sessions. Agents can be
configured so that when they are invoked, they are automatically
granted preestablished sessions. The sessions allow them to make
requests to TISERV on behalf of correspondents.

REQUESTS ON BEHALF OF A CORRESPONDENT. When a process supplies a
correspondent name as an input parameter to a request, the name
is resolved immediately if it is a local name. When a process
supplies a correspondent name defined at a remote node, the
process must include the name of the node in its request to
TISERV; if the remote names are syntactically correct, resolution
of the names is postponed if the request specifies deferred
resolution,

When a process adds a name to a recipient list or a distribution
list, the process can specify whether the name should be resolved
immediately or later. The following rules apply:

e If a process requests immediate resolution of a recipient or
distribution list member name, that process waits while
TRANSFER performs this resolution. If a remote node is
required but inaccessible, a resolution error occurs.

o If a process requests deferred resolution of a recipient or
distribution list member name, TRANSFER accepts the name
without further processing and resolves it later. In most
cases, a process only requests deferred resolution when
referencing a name defined at a remote node. For remote
deferred resolution, TRANSFER still ensures that the name
supplied is syntactically correct when it is entered.

If a supplied name is that of a distribution list, the names of

individual members are never resolved immediately. 1Instead, the
distribution list is expanded and the member names are resolved

during package delivery at each node.

When resolving a name, TRANSFER consults internal directories.
TRANSFER first determines whether the name is that of an object
belonging to the correspondent represented by the requesting
process. If not, TRANSFER then checks to verify that there is a
correspondent with that name.

44 82525 A00 3/85 2-13

TRANSFER Application Components

Consider a request on behalf of a correspondent named SIMMS-JASON
in which the object name MANAGER appears. The object name
MANAGER is resolved as follows:

1., 1Is there an object named MANAGER that belongs to
correspondent SIMMS-JASON? MANAGER could be the name of a
folder or a distribution list.

2., If not, is there a correspondent named MANAGER at this node?

3. If not, the object named MANAGER does not exist and is an
illegal reference.

A programmer might find it difficult to tell at a glance whether
an object name is really a correspondent name, folder name, or
distribution list name. TRANSFER, however, can readily identify
the object type because names are always associated with
particular types in the TRANSFER name directory.

PACKAGE DELIVERY. During delivery of a package, TRANSFER
processes at the sending node expand local distribution lists and
resolve the names of local and remote members. If a package has
recipients at remote nodes, a copy of the package is transported
to each of those nodes; distribution lists are then expanded and
the member names resolved by processes at those nodes as well.

Moving Packages Between Depots

Tc move items from one depot to another, your application must

bind the items into packages. Each package includes a package

header item, zero or more component items, zero or more item data

records, and a list of recipients.

The package header item specifies:

e the network-unique item ID of the package

e the name of the correspondent sending the package

® timestamps to indicate when the package was posted by the
sender, when it should be delivered, what the time zone
difference is between the sending node and the receiving node,
and when the package should expire

e other package delivery parameters, such as delivery priority
and agent selection criteria.

2-14 “4) 82525 A00 3/85

TRANSFER Application Components

During package delivery, a copy of the package goes to every node
where a recipient for that package has a depot.

The term recipient list should not be confused with distribution
list.

A recipient list contains the names of correspondents and
distribution lists that are to receive the package. The list
is an attribute of the package and applies only to the package
for which the recipient list is created. The list, which has
no name of its own, ceases to exist when the package is
deleted.

A distribution list is a predefined list of recipient names;
the list provides a simple method for a correspondent to send
a package to multiple destinations. A member of a
distribution list can be a correspondent or another
distribution list. The distribution list belongs to the depot
owner and exists independently of any packages.

Initially, the recipient list for a package has one entry for
each name supplied by the application. As names are resolved and
distribution lists expanded, new names are added to the list and
control information is updated.

Once a package is created, only a process that represents the
creator of that package can change its contents. Once the
package is posted, the application process cannot alter its
contents. After the package is posted, local names on the
recipient list are validated, local distribution lists are
expanded into member names, and duplicate names are eliminated.
This process is repeated until all local names are resolved or
found to be in error.

For local recipients, TRANSFER delivers the package by placing an
entry in the INBOX folder of each recipient and notifying any
appropriate agents. For remote recipients, TRANSFER moves a copy
of the package to the appropriate remote nodes, and name
resolution takes place again at those nodes.

TRANSFER ensures that a package is never moved to a node more
than once. Even if a distribution list at a remote node adds new
recipients located at the local node, TRANSFER provides delivery
to the new local recipients by using the copy of the package that
already exists at the local node.

“4) 82525 A00 3/85 2-15

TRANSFER Application Components

INTER-OBJECT RELATIONSHIPS. The use of network-unique IDs for
TRANSFER objects provides for important logical relationships
among them and efficient use of disc storage . space.

e When a user process sends a package to a local correspondent,
TRANSFER does not make a copy of the package; instead,
TRANSFER makes the INBOX folder of that correspondent point to
the package.

e The profiles of all correspondents defined at a particular
node are stored in the Profile file.

e The contents of folders are described in the Folder file.

e Records that describe packages and items, called item
descriptors, are stored in the Item Descriptor file. The
relation between an item (possibly a package) and its
component items is specified in the item descriptor.

®¢ The data records for the items are stored in the Item Data
file.

e A depot itself is simply a network-unique ID that appears in
records of various kinds, distributed over several TRANSFER
files.,

When an item is saved in multiple folders or even at multiple
depots, pointers are also used to avoid duplication of data.
This kind of relationship is illustrated in Figure 2-4.

According to this arrangement, several packages can include the
same item. Also, several folders can include the item without
necessarily including any package of which the item is a part.
Finally, the folders that include the item need not all belong to
the same depot.

Because each depot and item ID includes the system number of the
node where the ID was assigned, it is vital for the system
manager at the installation to observe the following:

CAUTION

If you change the system number of a node where TRANSFER
has been running, all system IDs stored in the TRANSFER
data base must be converted--otherwise, depot and item IDs
will point to the wrong depots and items.

2-16 “4 82525 A00 3/85

TRANSFER Application Components

T TN T -~ o T~ . T T
" Sender’s Depot N / " Recipient’s Depot - N

[\ / \

Folder

Folder

Item

$§5039-012

Figure 2-4, Item in Three Folders

DEPOT SECURITY. TRANSFER provides different levels of security
for different correspondents to prevent unauthorized access to
the information maintained by an application:

e Privileges of depot owners. The owner of a depot is,
effectively, any person or process who knows the correspondent
name and password for logon purposes. Depot owners can:

- <create new folders, distribution lists, items, and packages

- make additions or changes to any of those objects that they
create

- change many elements of their own profiles.

Depot owners are the only ones who can examine or modify the
contents of folders belonging to their depot. Depot owners

4 82525 A00 3/85 2-17

TRANSFER Application Components

cannot change packages or any component items of packages that
are received from other depots or that are posted for
delivery. A user process, however, could create a new item
that is a copy of the package or item and then change that new
item.

e Privileges of system administrators. System adminstrators can
register new correspondents at their node or remove them from
the node. Registering a correspondent automatically creates a
depot for that correspondent, and removing a correspondent
deletes that depot. System administrators can also act on
behalf of other correspondents. They can, for example, change
the profile of another correspondent (except for selected
elements that remain under TRANSFER control); create and
delete folders; and create, read, modify, and delete
distribution lists at any depot at their node.

e Privileges of other correspondents. Correspondents, including
system administrators at other nodes, have very limited access
to depots of other correspondents. A process that knows the
name of a correspondent can see whether that correspondent has
a depot at the node; any process can get a list of all
correspondents at the node. Any correspondent can get the
names of distribution lists belonging to other correspondents
and use the names of the lists; however, a correspondent at
one node cannot examine the members of a distribution list at
another node.

Correspondent A can use Correspondent B's mailing list without
Correspondent B's knowledge; Correspondent A, however, cannot
change or delete that mailing list. Correspondent A can
examine the contents of Correspondent B's mailing list only if
the processes used by both correspondents are running at the
same node.

2-18) 82525 A0O0 3/85

SECTION 3

TRANSFER NAMING CONVENTIONS

Programs written for a TRANSFER application reference various
TRANSFER objects. These objects include: correspondents,
depots, distribution lists, folders, items, packages, and
profiles. Three of these objects are named:

correspondents
folders
distribution lists

Correspondents, folders, and distribution lists are identified by
TRANSFER simple names, either alone or in combination with each
other. A simple name can have a maximum of 32 characters, and
can include any of the following:

e hyphen (-) and underscore (_) (usually used as
separators within names)

o Jletters A through Z (uppercase and lowercase
are equivalent)

e digits 0 through 9

No other characters are permitted in a TRANSFER simple name.
Embedded blanks and periods, which are regarded as delimiters,
are not allowed.

Correspondents request a TRANSFER service through a request
unit-of-work (UOW). Correspondents supply required names within
80-byte or 120-byte fields. These fields can contain leading
blanks, but no character in a name can occupy the last byte; the
last byte must contain a null (binary zero) character or a blank.
A process can terminate a name at any point in the field by
entering a null character after the last character in the name,
in which case TRANSFER pads the trailing portion of the field
with blanks.

“4 82525 A0O 3/85 3-1

TRANSFER Naming Conventions

TRANSFER returns a name to a process in a response UOW. The name
is returned in an 80-byte or 120-byte field that is padded on the
right with blanks.

As TRANSFER simple names enter the system, they are converted to
an internal format that is used by the system software to resolve
these names and manage the objects they represent.

Examples of TRANSFER simple names are:

BROWN

BROWN_JOE The underscore or hyphen character can be used;
the two characters, however, are not treated as
equivalent. The underscore might be preferable
when names contain hyphens. The character

BROWN-JOE selected should be used consistently.

MYPROC-2

123-5

CORRESPONDENT NAMES

A process makes a correspondent known to the system by supplying
the name of the correspondent in a CREATE-DEPOT UOW to the
TRANSFER interactive server, TISERV. This action is known as
registration. A correspondent is registered at the node where
the TISERV that services the registration request is running.

Once a correspondent is registered, any process can send a
package to or act on behalf of that correspondent by supplying
the correspondent name with the request for the desired task.

You can reference a correspondent anywhere in your program by
entering the correspondent name in the following format:

correspondent-name [@ [node]]
where
correspondent-name

is a simple name that identifies the correspondent. A
suggested format for naming correspondents is:

lastname-firstname-middleinitial

3-2 “4 82525 A00 3/85

TRANSFER Naming Conventions

indicates that correspondent-name is a fully qualified
name. JOE @, for example, is recognized immediately as
representing the correspondent named JOE at the local
node.

Embedded blanks are allowed between correspondent-name and
@O

If @ is omitted, TRANSFER must use a search list and scan
internal directories to fully resolve the correspondent
name. A standard search list is built for each depot when
the depot is created.

node

is the name of the network node where the correspondent is
registered. Only alphanumeric characters can be used in
the node name. You must omit the backslash (\) with which
the name begins in GUARDIAN/EXPAND format. The node
identified as \NY, for example, would be referenced as
simply NY in your application program.

Embedded blanks are allowed between @ and node.

If node is omitted, TRANSFER assumes the local node.

When a process refers to a correspondent who is registered at the
same node as the node at which the process is running, the node
specification can be omitted. A process running on the system
named \TM, for example, could address a correspondernt named
Parker-Jonathan @ TM simply by referencing Parker-Jonathan in the
appropriate UOW.

Examples of correspondent names are:

BRADLEY-ANNE a person at the local node

CAMERON-ROBERT @ a person at the local node with the
name fully qualified

PROCESS-A @ TM a process at node \TM

INVENTORY @ CORPR an application at node \CORPR

SALES-MGR @ CORPR a person at node \CORPR

2 82525 A00 3/85 3-3
/

TRANSFER Naming Conventions

A process can address by name any correspondent in the network.
A process, however, is subject to the following restrictions:

e A process can read or update only those profile records
associated with the correspondent that the process presently
represents.

® A process can create distribution lists or folders only for
the correspondent that the process presently represents.

e A process can handle profile records for other correspondents
at a node only if the process represents a correspondent with
system administrator capability at that same node.

A process that adds recipients to a package or distribution list
uses an extended form of correspondent name called a recipient
name.

The recipient name can include a suffix enclosed in parentheses.
TRANSFER carries the suffix within packages for use by agents or
other subsystems in your application. The primary purpose of the
suffix is to pass additional addressing information between
Tandem networks and other networks.

The suffix is not considered part of the correspondent name and
is not used in name resolution. The suffix does, however,
determine whether a name is a duplicate; two names that differ
only in their suffixes refer to the same depot, but are carried
in packages as distinct names. If a package is addressed to
GREEN (6634) and GREEN (6635), for example, both names are
carried in the recipient list but the package is delivered only
once; the package is delivered to the INBOX at the GREEN depot.
Calls to agents at that depot, however, would take place once for
each suffix,

A process supplies a recipient name in a 120-byte field. Leading
blanks are permitted within this field. Characters in a name or
suffix cannot extend beyond the 119th byte; the 120th byte must
contain a null character (binary zero) or a blank. With the
exception of the field length and suffix, the rules for recipient
names are the same as those for other types of names.

Commas, single or double quotation marks, and nested parentheses
are not allowed within the bounding parentheses of the suffix.
The suffix can be separated from the correspondent name by one or
more blanks. A character string must not follow the suffix.
TRANSFER stores a name containing a suffix as follows:

e converts all lowercase letters to uppercase

e removes all blanks immediately following the left parenthesis
and immediately preceding the right parenthesis

3-4 “4) 82525 A00 3/85

TRANSFER Naming Conventions
e converts all other occurrences of multiple blanks into a
single blank.
For example:
GREEN (a suffix) is stored as GREEN (A SUFFIX)

Examples of recipient names are:

CONNERS-ADAM (ADMIN)

OTHER-MAIL @ CORPR (FINANCE)

OTHER-MAIL @ CORPR (ACC-RECEIVABLE)

FOLDER NAMES

In addition to the special folders INBOX, OUTBOX, and WASTEBASKET
maintained by TRANSFER, a process can define other folders for a
depot. Folders can be used only by the depot owner. A process
can do the following for the correspondent that the process
represents:

e create or delete folders at the depot

e save items and packages in folders at the depot

e establish ordering criteria for folders so items and packages
can be stored and retrieved in a specific sequence

e remove items and packages from folders at the depot

e request a list of folders belonging to the depot

e examine the contents of folders belonging to the depot.
Only a correspondent with system administrator capability at a
node can create folders, delete folders, or obtain a list of

folders that belong to another correspondent at that same node.

A process can reference an existing folder by entering the folder
name in the following format.

4 82525 A00 3/85 3-5

TRANSFER Naming Conventions

[correspondent-name.]folder-name [@ [node]]
where

correspondent—-name

is a simple name that identifies the correspondent. If
the correspondent name is omitted, TRANSFER searches for
the folder at the depot of the correspondent that the

process is representing.

folder-name
is a simple name that identifies the folder.

You cannot assign a folder the same name as a distribution
list belonging to the same depot because folders and
distribution list names are entered in the same format.

indicates that correspondent-name.folder-name is a fully
qualified name and requires no resolution by TRANSFER.

If @ is specified, the correspondent name is required and
must be included. 1If @ is omitted, TRANSFER is required
to fully resolve the name.

node

is the name of the network node where the correspondent is
registered. Only alphanumeric characters can be used in
the node name. You must omit the backslash (\) with which
the name begins in GUARDIAN/EXPAND format.

Embedded blanks are allowed between @ and node.

If node is omitted, TRANSFER assumes the local node.

Examples of folder names are:

LETTERS a folder with the name LETTERS
in the depot of the
correspondent

3-6 4 82525 A00 3/85

TRANSFER Naming Conventions

WINKLER-FRANCIS-D.REPLIES @ a folder named REPLIES in the
depot belonging to Francis D
Winkler; a fully qualified
folder name

TRACY-BILL.NEWSLETTER @ TSY a folder named NEWSLETTER in
the depot belonging to Bill
Tracy at the node named \TSY;
a fully qualified folder name.

DISTRIBUTION LIST NAMES

A process can define distribution lists for the correspondent
that the process presently represents, and can add and delete
members from those lists. A process representing a correspondent
with system administrator capability can perform these operations
with any lists at any depot at that correspondent's node.

A correspondent registered at a node can reference and display
the contents of any distribution list at that same node. A
system administrator registered at a node can create, read,
alter, or delete any distribution list at that same node.

You can reference an existing distribution list in your program
by entering the distribution list name in the following format:

[correspondent-name.]Jdistribution-list-name [@ [node]]
where
correspondent-name

is a simple name that identifies the correspondent who
owns the list.

If the correspondent name is omitted, TRANSFER assumes the
name of the correspondent currently represented by your
process.

distribution-list-name
is a simple name that identifies the list.
You cannot assign a distribution list the same name as a

folder belonging to the same depot because folders and
distribution list names are entered in the same format.

4 82525 A00 3/85 3-7

TRANSFER Naming Conventions

indicates that correspondent-name.distribution-list—-name
is a fully qualified name that requires no resolution by
TRANSFER.

If @ is specified, the correspondent name is required and
must be included. If @ is omitted, TRANSFER is required
to fully resolve the name.

node
is the name of the network node where the list is defined.
Only alphanumeric characters can be used in the node name.

You must omit the backslash (\) with which the name begins
in GUARDIAN/EXPAND format.

Embedded blanks are allowed between €@ and node.

If node is omitted, TRANSFER assumes the local node.

Examples of distribution list names are:
MY-LIST a list with the simple name MY-LIST

SMITH-BOB.SALES a list containing the correspondent
names of all local salespeople
originated by a correspondent identified
as SMITH-BOB

JAMES-DON,SALES @ NY a list containing the correspondent
names of all salespeople working in the
New York office

RAND-MARY.SALES @ CHI a list containing the correspondent

names of all salespeople working in the
Chicago office

3-8 “f 82525 A0O 3/85

TRANSFER Naming Conventions

JAMES-DON.SALES @ CHI a list containing the following
distribution list names:

SALES-MANAGER @ NY
JAMES-DON,SALES @ NY
RAND-MARY,SALES @ CHI

The first name is the name of an
individual correspondent. The last
two names are names of distribution
lists, illustrating the concept of
nested lists. All names are fully
qualified.

Any correspondent who knows the name of a list can use that list.
Notice that the members of a list need not all be located at the
same node. If a list contains the names of other lists, as in
the previous example, those lists need not have been created by
the same correspondent.

You can use a distribution list to associate a function with a
person. For example, you could establish a distribution list
named LIST.MANAGER-ACCOUNTING that had exactly one member named
SMITH-BOB. In this case, MANAGER-ACCOUNTING would be easier for
people to remember if they knew the function, but had little or
no contact with Bob Smith.

WILDCARD NAMES AND PATTERNS

In any context except the initial definition of a name, a process
can place an asterisk anywhere in a simple name to indicate that
any character or characters can appear. The simple name can be a
correspondent name, distribution list name, or folder name as
long as the abbreviated name identifies only one correspondent,
distribution list, or folder. This capability is known as using
wildcard characters in TRANSFER names. For example, *-Robert
identifies a correspondent whose first name is Robert.

If you place an asterisk at the end of a name, the process needs
to supply only enough characters to uniquely identify the name.
If Benson-Jill and Benson-Jonathan are both defined, Benson-Ji*
is sufficient to identify Benson-Jill unless another name also
begins with Benson-Ji.

You cannot use the asterisk if the resulting expression
identifies more than one name at the node; the name specified
must be unique. If, for example, two correspondents are defined
at the node with the last name Smith, the entry Smith-* is
ambiguous and results in a resolution error.

4 82525 A00 3/85 3-9

TRANSFER Naming Conventions

Using an asterisk as the first part of a name results in
significant performance penalties. For example, resolving the
name *-MARY is more costly than resolving the name SMITH-*,

A process can request a list of correspondent names, distribution
list names, or folder names by entering a pattern for the
listing. A pattern is similar to a wildcard name; asterisks are
used to indicate that any character or characters (zero or more)
can appear in that position of the name. A pattern, however,
does not have to identify a unigque name.

A process requesting a list of all correspondents at the node
named CHIC with the last name of Jones can use the pattern

JONES-* @ CHIC

NODE DESIGNATION

I1f a correspondent at a node references a TRANSFER name defined
at that same node, the correspondent need not enter the node
designator. Specific ramifications of this rule are as follows:

e A new correspondent must be registered at the same node as the
correspondent who requests the registration; therefore, a
process can omit the node designation from the new
correspondent name in the CREATE-DEPOT UOW. For example,
LOUIS-JAMES @ TS can register BAKER-JON @ TS simply as
BAKER-JON.

e A correspondent must initiate a session at the node where that
correspondent name is registered; therefore, a process can
omit the node designation from the correspondent name in any
request to establish a session.

e During package delivery, TRANSFER processes at each recipient
node resolve names and expand distribution lists that were
defined at that node; therefore, a user process adding a name
to a distribution list can omit the node designation if the
name is defined at the same node as the distribution list.
Note, however, that the user process must include the node
designation if the name is defined at a different node.

NAME LENGTH RESTRICTION

TRANSFER converts the external format of object names into an
internal format to resolve the names and manage the objects that
they represent. The internal format includes the name of the
node where the object is defined, the name of the TRANSFER name
directory that contains the definition, and all other simple

3-10 “4 82525 A00 3/85

TRANSFER Naming Conventions

names needed to uniquely identify the object. As an example, a
folder identified externally as

USER.FOLDER @NODE
would be identified internally as
%\NODE . $T.CORR.USER.FOLDER
where S$T.CORR indicates the name directory.
The internally expanded name must not exceed 79 characters.

To avoid having a simple name rejected because of a name length
conflict, your application and its users should avoid excessively
long names.

TRANSFER NAME DIRECTORY

The names of all correspondents, folders, and distribution lists
in a TRANSFER application are defined in the TRANSFER name
directory. This directory exists at each node, and identifies
all named objects defined at the node. At node \NY, for example,
the directory contains the names of all correspondents defined at
the New York node.

The recommended name for identifying the name directory is
ST.CORR, which is also the default name supplied by Tandem. This
same name must be used for the name directory at each node in the
network. Differing names would imply more than one directory,
but a TRANSFER system cannot communicate across directories.

For application development, you can establish and use an
additional TRANSFER system with a different name directory and
PATHWAY control file. This additional system could run in
parallel with your production TRANSFER system; its name directory
would be assigned a name other than $T.CORR through the methods
noted in the TRANSFER System Management and Administration Guide.
Notice, however, that a TRANSFER system using one name directory
name cannot send packages to, or otherwise communicate with,
another TRANSFER system using a different name directory name.

“4) 82525 A00 3/85 3-11

TRANSFER Naming Conventions

NAME SEARCHING

Two levels of objects are defined in the TRANSFER name directory.
Correspondents are at the higher level. Folders and distribution
lists are at the lower level.

This structure means that folders and distribution lists,
effectively, exist only within depots. Within a depot, names
must be unique; thus, a folder and a distribution list within the
same depot cannot have the same name.

During name resolution, the list of objects at the lower level is
searched before the list of objects at the higher level. During
this search, an object name might match entries defined at both
levels in the name directory. For example, a correspondent named
ANNIE can have a distribution list named JOHN while a
correspondent named JOHN also exists in the system. If ANNIE
sends a message to JOHN, the distribution list name will be used
because it is the first exact match found.

This searching algorithm is bypassed if a name is fully
qualified. An address of JOHN @SYS immediately selects the
correspondent and not the distribution list. Alternatively, an
address of ANNIE.JOHN @SYS selects the distribution list; an
address of ANNIE.JOHN also selects the distribution list because
this name is resolved only at the lower level.

The presence of the @ character specifies that a name is fully
qualified; by definition, the name is unique within the system.
In the previous example, no other name exists anywhere that is
exactly and entirely JOHN; the name ANNIE.JOHN is a name entirely
different from JOHN, and represents an entirely different object.

If a wildcard character (*) occurs in the name, TRANSFER checks
to determine if the name is ambiguous. Ambiguity exists if more
than one possible candidate will resolve the name during the
search at a particular level. When ambiguity between names
exists at different levels, the candidate at the lower level is
selected. When ambiguity exists at the same level and a unique
entity is required, an error occurs. Using the previous example,
TRANSFER would interpret the address JO* as the distribution list
JOHN, assuming no other distribution list began with the
characters JO. The fact that the next entry in the search, the
correspondent JOHN, also matched JO* would be irrelevant.

3-12 “4 82525 A00 3/85

SECTION 4

INTERFACING WITH TRANSFER

Processes interface with TRANSFER by issuing requests to and
receiving responses from the TRANSFER interactive server, TISERV.

TISERV handles requests one at a time, even when there are
multiple openers, and performs the following functions:

e starts and terminates sessions

e services item and package handling requests, including those
for creating, changing, and deleting items; composing,
posting, and canceling packages; creating recipient lists for
packages; and creating, scanning, and deleting folders

® handles administrative requests, such as those for creating
and deleting depots; altering correspondent profiles and agent
selection criteria for depots; and creating, altering, and
deleting distribution lists.

Processes also interface with TRANSFER asynchronous reguesters,
TAREQs. When a package arrives at a depot, a TAREQ transmits a
standard message to selected agents defined at the depot. The
appropriate agents, in turn, can perform additional processing
required by the application.

STARTING A TISERV PROCESS

Although most clients are written as SCREEN COBOL programs that

execute within PATHWAY TCPs, clients can be written in FORTRAN,

COBOL, or TAL. If you are writing a client in a language other

than SCREEN COBOL, you can start a TISERV process for use by the
client. You must observe the following rules.

“4 82525 A0 3/85 4-1

Interfacing with TRANSFER

e TISERV must run under the same GUARDIAN user ID that was used
to initialize the TRANSFER data base. If your client runs
under a different user ID, create a copy of the TISERV program
file owned by the TRANSFER user ID with the PROGID bit set in
its label.

® Before starting a TISERV process, the name server process must
be running.

®» Before the TISERV process can do many kinds of useful work,
the TRANSFER scheduler process must be running.

» When calling the GUARDIAN procedure NEWPROCESS, you should
either omit the memory pages parameter or specify a value of
zero. This causes the TISERV process to be created with its
default virtual memory size.

TISERV interprets the startup message as follows:

default subvolume - ignored
IN file name - ignored
OUT file name - used to write serious error messages;

these messages usually indicate a
problem in the data base or the
operational environment, not in the
client

parameter string - ignored

Table 4-1 lists the parameters that TISERV accepts at startup
time; none of the parameters are required.

Table 4-1. TISERV Parameters at Startup Time

Default Recommended
|Parameter Name Value Value Description

DEBUGLOGFORMAT FALSE As desired I1f FALSE: the debug-
ging log will contain
binary characters
suitable for writing
to an entry-
sequenced disc file.

4-2 /1| 82525 A00 3/85

Interfacing with TRANSFER

Table 4-1. TISERV Parameters at Startup Time (Continued)

Default Recommended

Parameter Name Value Value Description
DEBUGLOGFORMAT If TRUE: the debug-
(cont'd) ging log will be

formatted in ASCII
characters suitable
for writing to a
terminal or printer.

DEBUGLOGLEVEL 3 As desired If the PW-REPLY-CODE
field of any response
is greater than or
equal to this value,
the message and reply
will be written to
the debugging log.
Specifying a value of
zero causes all
messages and replies
to be logged.

DEBUGLOGRECSPEROPEN 20 As desired After this many IPCs
and their replies are
written to the debug
log, the log is
closed and reopened.

HANGAROUND FALSE FALSE I1f FALSE: TISERV
stops after all
requesters have
closed it.

If TRUE: TISERV
never stops
automatically.

CAUTION

When requesters and servers are both running in the PATHWAY
environment, the HANGAROUND parameter for the PATHWAY server
must be set to FALSE.

When a requester is running outside the PATHWAY environment
and accessing a PATHWAY server, that PATHWAY server must be
in its own server class so the HANGAROUND parameter can be
set to TRUE; with the TRUE setting, the server remains
available after it has been closed by the last opener.

“)) 82525 A0O 3/85 4-3

Interfacing with TRANSFER

Table 4-1. TISERV Parameters at Startup Time (Continued)

Default Recommended
Parameter Name Value Value Description

IDLESESSIONDELAY 24 24 Longest time, in
hours, a session can
be unused before
TRANSFER automati-
cally terminates it.

IOTIMEOUT 20 20 Longest time, in
seconds, to wait for
TRANSFER data base
I1/0 requests that
are blocked due to
other transactions.

ITEMIDCACHE 20 20 Number of ITEM IDs
TISERV allocates at
one time.,

MAXLINKS 8 1 Number of simulta-

neous openers TISERV
can support.

MAXREPLY 3000 As needed Size of largest reply
TISERV can generate.

MAXREQUEST 2400 As needed Size of largest re-
quest TISERV can
accept.

NAMESPACE ST.CORR As needed Name of correspon-

dent directory;
value must be the
same as was speci-
fied when TRANSFER
was initialized.

TISERV accepts the DEBUGLOG parameter on the ASSIGN command at
initialization time. The parameter has no default value. This
parameter specifies the file to which a debugging log is written.
The log contains a copy of some or all of the messages received
and replied to by TISERV. The filename supplied via ASSIGN
DEBUGLOG must be fully qualified; the system does not supply
default values.

4-4 “9 82525 A00 3/85

Interfacing with TRANSFER

If this parameter is omitted, no debugging log is written.

If this parameter refers to a disc file that does not exist, an
entry-sequenced file will be created.

This parameter cannot refer to an EDIT file.

If the HANGAROUND parameter is FALSE, TISERV terminates normally
after it is closed by all processes that opened it.

If TISERV encounters a fatal error, it attempts to write one or
more messages to the OUT file (or the home terminal if the OUT
file cannot be opened), and then ABENDs,.

TISERV INTERFACE

Processes interface with TISERV through units-of-work (UOWs)
issued within requests to TISERV. The format of requests issued
by your program is the same, whether the request is issued by a
SEND statement or by a WRITEREAD call. The data buffer for each
request consists of the following:

® A request header that denotes the session on whose behalf the
request is being made and that provides space for reply and
return codes.

® One or more UOWs, each of which specifies a code for an
operation plus any necessary parameters. For example, the
operation ADD-RECIP would include the name of the recipient to
be added.

The TISERV reply, which is written in the same format as the
request to which it responds, consists of the following:

e A reply header, with reply and return codes supplied by
TISERV,

® One or more response UOWs that return requested data to the
correspondent. For example, the response to a CREATE-ITEM UOW
request would include the item ID for the new item.

For each UOW in the request there is a corresponding response UOW
in the overall reply. TISERV processes UOWs in the order in
which they appear in the request. Thus, the response UOWs are
returned in the same order as the corresponding UOWs in the
request as illustrated in Figure 4-1.

For certain errors, however, no response UOWs are included. The

number of UOWs in the reply is indicated by a field in the reply
header.

“4 82525 A00 3/85 4-5

Interfacing with TRANSFER

Request

Request Header | Unit of Work 1 | Unit of Work 2 | Unit of Work 3 | Unit of Work 4

/ \

operation | parameters for example CREATEAITEM item type

creates an item

Reply

Reply Header Reply to UOW 1 | Reply to UOW 2 | Reply to UOW 3 Reply to UOW 4

/N

operation return code | return data

for example

CREATEAITEM | okay | item id

returns the id of the new item

S$5039-013

Figure 4-1. TRANSFER Requests and Replies

Each UOW has a standard header that identifies the operation
requested. Each response UOW has a return code that identifies
the action taken in response to the corresponding request UOW.

A single SEND statement or WRITEREAD call can request multiple
services as long as all of those services are for the same
session. There is only one request header to identify the
session. Refer to Section 6 for guidelines on the number of UOWs
to include in an IPC and the number of IPCs to include in a TMF
transaction.

Complete Data Definition Language (DDL) definitions of fields and
structures used in TRANSFER interprocess messages are supplied as
part of the standard software. Examples of their use appear in
Sections 7 and 8.

4-6 “4 82525 A00 3/85

Request and Reply Headers

The format for request and reply headers is the same for all
Within an application program, these
headers are defined together as the interprocess communication
Your application must establish values for the IPC

requests and replies.

(IPC) header.

Interfacing with TRANSFER

header fields that are transmitted in the request.

The format of the IPC header is shown by the following DDL
definition:

02

02

02
02

02

DEF ipc-hdr.

request-code

88 stop-on-warning
88 stop-on-err

88 do-all-uows
pw-reply-code

88 all-uows-ok
88 uows-with-warning
88 uows-with-err
88 rgst-err
filler
version-code.

letter

rev-number
ipc-retn-code
88 ipc-ok
88 invalid-version-code
88 invalid-session-id
88 service-denied
88 invalid-uow-header
88 rgst-too-long
88 reply-too-long
88 rgst-too-short
88 invalid-request-code
88 e-bad-transaction
88 e-err-profile-file
88 e-err-session-file
88 e-err-itemdesc-file
88 e-err-itemdata-file
88 e-err-recip-file
88 e-err-folder-file
88 e-err-dlist-file
88 e-err-ready-file
88 e-err-time-file
88 e-err-net-file
88 e-err-inv-folder-file
88 e-err-queue-file
88 e-io-timeout

TYPE BINARY
VALUE -1.
VALUE -2,
VALUE -3,
TYPE BINARY

REDEFINES
VALUE 0.
VALUE 1.
VALUE 2,
VALUE 3.
PIC X.

PIC A.

PIC 99,
TYPE BINARY
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE 7.
VALUE 8.
VALUE 4010.
VALUE 4902.
VALUE 4904.
VALUE 4906.
VALUE 4908.
VALUE 4910.
VALUE 4912.
VALUE 4914.
VALUE 4916.
VALUE 4918.
VALUE 4920.
VALUE 4922,
VALUE 4924,
VALUE 4990.

NO O WNHFO

16.

16

REQUEST-CODE.

lé VALUE 0.

4,1 82525 A00 3/85

Int

erfacing with TRANSFER

88 e-waitmanager-unavail VALUE 6006
02 1ipc-retn-code-detail TYPE BINARY 16 VALUE 0.
02 session-id.
03 dummy PIC x(18).
02 uows-to-process TYPE BINARY 16 UNSIGNED.
02 nuows-returned TYPE BINARY 16 UNSIGNED
VALUE 0.
02 log-this-ipc TYPE BOOLEAN.,
02 filler PIC X.
END.

Individual fields in the IPC header can contain the following

inf

4-8

ormation:
REQUEST-CODE

In a request to TRANSFER, your application sets this field to
indicate request processing conditions. In the request, this
field always contains a value less than zero, as follows:

STOP-ON-WARNING (-1) stops the processing if a UOW warning
indication is encountered. Warnings imply successful
completion of the UOW in which they occur.

STOP-ON-ERR (-2) stops the processing if a UOW error occurs.
Errors imply that the UOW was not processed successfully.

DO-ALL-UOWS (-3) requests processing of all UOWs in the
request. Processing halts only if a request error, as
defined by the RQST-ERR value, or a system error external to
TRANSFER occurs.

PW-REPLY-CODE

In a reply from TRANSFER, the REQUEST-CODE field is redefined
as the PW-REPLY-CODE field. This field contains a value that
indicates request processing results. In the reply, this

field always contains a value of zero or greater, as follows:

ALL-UOWS-OK (0) indicates that all UOWs in the request were
processed successfully.

UOWS-WITH-WARNING (1) indicates that TRANSFER encountered
warning indications in one or more UOWs., If STOP-ON-WARNING
was not specified in the REQUEST-CODE field, all UOWs in the
request have a corresponding response UOW in the reply. 1If
STOP-ON-WARNING was specified, only those UOWs preceding and
including the first with a warning indication have
corresponding response UOWs.

4 82525 A00 3/85

Interfacing with TRANSFER

UOWS-WITH-ERR (2) indicates that TRANSFER detected errors in
one or more UOWs. If neither STOP-ON-ERR nor
STOP-ON-WARNING was specified in the REQUEST-CODE field, all
UOWs in the request have a corresponding response UOW. 1If
STOP-ON-ERR or STOP-ON-WARNING was specified, only those
UOWs preceding and including the first with an error have
corresponding response UOWs. If STOP-ON-ERR is specified in
the request, the UOWs preceding the first with an error
might return warning indications.

RQST-ERR (3) indicates that a request error occurred. This
type of error typically indicates that something was wrong
with the data in the IPC header and that the error is not
specific to any particular UOW. 1In certain cases, the error
might involve an individual UOW--for example, one with an
invalid UOW header. When this error occurs, the number of
response UOWs might be less than the number of UOWs in the
request. For further information, your application should
examine the IPC-RETN-CODE field.

CAUTION

If your application receives a value of 2 or 3 in this
field, the transaction should be aborted, causing
transaction backout. If the transaction is not backed
out, consistency in the TRANSFER data base cannot be
guaranteed.

e VERSION-CODE

In both a request to and a reply from TRANSFER, this field
designates the version code for the IPC structure used. The
version code is defined by Tandem and consists of a letter
followed by a two-digit revision number.

The first release of TRANSFER was version code AQl; new
features were introduced in versions A02 and B00. If you use
these new features, your application cannot run with previous
versions of TRANSFER. You should set the version code in your
IPC headers to the newest version of TRANSFER from which you
used new features., TRANSFER will then return an INVALID-
VERSION-CODE error in the IPC-RETN-CODE if you attempt to use
your application with a version of TRANSFER that does not
support all the new features you use.

IPCs established under the current version of TRANSFER will
also be supported by subsequent versions of this product.

You would not need to alter the IPCs used by your client when
running under new versions of TRANSFER,

“4 82525 A00 3/85 4-9

Interfacing with TRANSFER

IPC-RETN-CODE

In a request to TRANSFER, this field is ignored. In a reply
from TRANSFER, one of the following values appears:

IPC-OK (0) indicates that TRANSFER detected no errors in the
IPC header. Warning indications or errors, however, might
have been present in the individual UOWs in the request.

INVALID-VERSION-CODE (1) indicates that the request
contained an IPC version code that could not be recognized
by TRANSFER.

INVALID-SESSION-ID (2) indicates that the request contained
a session ID that could not be recognized by TRANSFER.

For example, the IPC might have referenced a session that no
longer exists.

SERVICE-DENIED (3) is reserved for use by Tandem.

INVALID-UOW-HDR (4) indicates that an invalid UOW header
appeared in your request. This could occur if the previous
UOW specified the wrong size or if you omitted the value UW
from the UOW header.

RQST-TOO-LONG (5) indicates that the request was too long;
that is, the request contained more UOWs than the number
specified in the UOWS-TO-PROCESS field, or contained more
data than the TRANSFER buffer allowed.

REPLY-TOO-LONG (6) indicates that the reply was too long;
the buffer space allotted for the reply was insufficient.

RQST-TOO-SHORT (7) indicates that the request was too short;
that is, the request contained fewer UOWs than the number
specified in the UOWS-TO-PROCESS field, or fewer bytes were
sent than were expected.

INVALID-REQUEST-CODE (8) indicates that the REQUEST-CODE
field contained an invalid entry.

E-BAD-TRANSACTION (4010) indicates that the request did not
have a TMF transaction and attempted to perform an operation
that required one, or that the transaction associated with
the request is unusable, probably due to the failure of some
component of the system or network. IPC-RETN-CODE-DETAIL
contains the actual GUARDIAN file error code.

“4 82525 A00 3/85

Interfacing with TRANSFER

E-ERR-PROFILE-FILE (4902) through E-ERR-INV-FOLDER-FILE
(4922) indicate that an unexpected GUARDIAN file error
occurred on one of the TRANSFER data base files.
IPC-RETN-CODE-DETAIL contains the actual GUARDIAN file error
code. If you receive one of these errors and the request
was issued under a TMF transaction, you must abort the TMF
transaction.

E-ERR-QUEUE-FILE (4924) indicates an error occurred on the
Queue file. IPC-RETN-CODE-DETAIL contains the file code of
the file on which the error occurred. 1If you receive this
error and the request was issued under a TMF transaction,
you must abort the TMF transaction; you should then retry
the request under a new transaction.

E-IO-TIMEOUT (4990) indicates that a timeout occurred on I1/0
to the TRANSFER data base. This usually indicates a
deadlock with another process. IPC-RETN-CODE-DETAIL
contains the file code of the TRANSFER file on which the
error occurred. If you receive this error and the request
was issued under a TMF transaction, you must abort the TMF
transaction; you should then retry the request under a new
transaction.

E-WAITMANAGER-UNAVAIL (6006) indicates an error occurred
when the Entry Manager was communicating with the Wait
Manager.

e IPC-RETN-CODE-DETAIL

In a request to TRANSFER, this field is ignored. 1In a reply
from TRANSFER, the meaning of this field depends on the value
of IPC-RETN-CODE.

® SESSION-ID

In a request to TRANSFER, this field identifies the session of
the correspondent on whose behalf the request is issued. 1In a
reply from TRANSFER, this field shows the session ID that
TRANSFER has assigned to the current session. When your ap-
plication requests session initiation, this field must be set
to binary zeros in the request; in subsequent requests, you
must move the session ID returned by TRANSFER to this field.

® UOWS-TO-PROCESS
In a request, this field indicates the number of UOWs

transmitted with the request. In a reply, TRANSFER echoes the
value in the request.

44 82525 A00 3/85 4-11

Interfacing with TRANSFER

® UOWS-RETURNED

In a request, this field is ignored. 1In a reply, TRANSFER
indicates the number of response UOWs returned to your
application.

® LOG-THIS-IPC

In a request, this field specifies whether the request and its
reply are logged (Y) or not logged (N). If the field is set
to N, the depot criteria or the TRANSFER software might
override your request and log the IPC in some cases.

UOW Operations

Processes communicate with TISERV by issuing requests that
contain UOWs. UOWs are organized into the following functional
areas:

® session control

e item handling (including whole item, record handling, and item
tree operations)

e package handling (including submittal preparation, recipient
list definition, package delivery, and package receipt)

e folder manipulation
e TRANSFER configuration inquiry

e administration (including session, depot, distribution list,
and name management)

This section presents DDL definitions that are common to various
functional areas; for example, the discussion of record handling
functions includes the DDL definitions for significant fields
shared among the UOWs that are common to that area.

For programs that are written in languages other than COBOL and
SCREEN COBOL, fields defined as PIC 9(4) COMP are limited to
values in the range of 0 through 9999. 1In TAL, for example, this
field would have a type of INT, but entering a value outside the
range would return an error.

Two DDL definitions are shared among several functional areas:
BOOLEAN and UPDATE-CONTROL.

4-12 49 82525 A00 3/85

Interfacing with TRANSFER

¢ BOOLEAN - This definition is used to assign a data type of
BOOLEAN to fields containing data that is either logically
true (yes, represented by Y or y) or false (no, represented by
N or n).

The DDL definition for BOOLEAN is:
DEF boolean PIC A.

When UOWs have OPTIONS fields defined as BOOLEAN, the BOOLEAN
fields are checked for validity before any other fields in the
UOW. Input UOW fields are not necessarily checked sequen-
tially for validity. For example: if invalid values were
entered in both the ORDERING-DISCIPLINE and ALLOW-DUPLICATES
fields in the CREATE-FOLDER-B00 UOW, the error 4051 (E-MUST-
BE-YN) for the ALLOW-DUPLICATES would be returned.

e UPDATE-CONTROL - This definition applies to a field used in
UOWs that update records maintained under TRANSFER, such as
those records comprising item descriptions. This definition
is used to ensure that updating is accomplished in an orderly
way.

The DDL definition for UPDATE-CONTROL is:
DEF update-control PIC S9(4) COMP.

When your process gains access to a record prior to updating
it, you need some guarantee that another process will not
modify that record before your process completes its own
updating operations. To serve multiple users, TRANSFER cannot
keep a record locked to prevent a multiple update; instead,
TRANSFER must release the record locks as soon as it returns
the record to your process. To resolve this conflict between
its own needs and those of your process, TRANSFER uses the
UPDATE-CONTROL field as follows.

1. Each time TISERV completes a record update, it increments
the value of an update control count in that record.

2. When your process requests access to a record, TISERV
returns the current update control count in the response
UOW.

3. When your process modifies a record and subsequently
requests update to that record, TISERV checks the value in
the UPDATE-CONTROL field against the current update
control count of the record. If these two values match,
the update is allowed to proceed. If the values do not
match, this indicates that another update took place while
your process was accessing the record, and TISERV returns
an error indication to your process; your process should
retry the access and update operations in this case.

“4 82525 A00 3/85 4-13

Interfacing with TRANSFER

SESSION CONTROL. Before a process can transmit requests, the

process must establish communication with TISERV by initiating a
session with the START-SESSION UOW. When interaction with TISERV
is no longer required, the process terminates this communication
by issuing an END-SESSION UOW.

These UOWs involve three fields of particular significance:
SESSION-ID, CORR-NAME, and PASSWORD.

SESSION-ID - When you issue the START-SESSION UOW, set the
SESSION-ID field in the IPC header to binary zero; when TISERV
responds with the response UOW, it returns in this field a
session ID that uniquely identifies your session at the node.
This session ID must appear in the IPC header of every
subsequent request that the process makes for this session.
When the process ends the session, it relinquishes the session
ID.

The DDL definition for SESSION-ID is:
DEF session-id.
02 dummy PIC X(18).
END.

SESSION-ID will contain unprintable characters. Any attempt
to display the session ID will have unpredictable results.

CORR-NAME - The CORR-NAME field identifies the name of the
correspondent that the process represents. The field contains
either a fully qualified or partially qualified correspondent
name.
The DDL definition for CORR-NAME is:

DEF corr-name PIC X(80).

PASSWORD - The PASSWORD field contains the password that the
correspondent must supply in order to initiate a session.

The DDL definition for PASSWORD is:

DEF password PIC X(16).

ITEM HANDLING. Item handling involves three general types of

operations:

defining individual items (whole item operations)

appending records to and deleting records from items (record
handling operations)

4-14 “4 82525 A0O 3/85

Interfacing with TRANSFER

attaching and detaching items as components of other items
(item tree operations).

Whole Item Operations. Each item is made up of an item
descriptor and one or more data records. These data records can
contain text or other kinds of application data.

The item descriptor contains:

- a network-unique ID of the item

- a count of the number of component items pointed to by the
first item; if the number is zero, a list of component items
does not exist

- a list of item IDs for the component items

- various fields indicating the current status of the given
item

- the current update control count for the item, the creation
date, and the name of the correspondent who created the item

- an item type, which is a numeric value defined by the
application; the item type should not be confused with the
record type, as used in record handling operations.

If the item is a package, the item descriptor also contains:

the date that the package was submitted for delivery

the earliest and latest delivery dates that define the
delivery window

the optional expiration date for the package
- the package priority and delivery control information.

A complete listing of all information in the item descriptor
appears in the discussion of the GET-ITEM-DESCR UOW in Section 5.

A process creates an item by issuing a CREATE-ITEM UOW. 1In
response, TISERV assigns the item ID and records the creation
date and the correspondent name, item type, and other information
related specifically to this item in the item descriptor.

4y 82525 A0 3/85 4-15

Interfacing with TRANSFER

A process accesses all information in the item descriptor by
issuing a GET-ITEM-DESCR UOW. A process can make a duplicate
copy of the item, with its own unique item ID, by issuing a
COPY-ITEM UOW. You might want to do this to add records to an
item where the original item is unalterable.

The item ID and item type are passed to and from TISERV in the
ITEM-ID and ITEM-TYPE fields.

e ITEM-ID - The ITEM-ID field identifies an item.
The DDL definition for ITEM-ID is:
DEF item-id.
02 dummy PIC X(12).
END.

ITEM-ID will contain unprintable characters. Any attempt to
display the item ID will have unpredictable results.

e ITEM-TYPE - The ITEM-TYPE field categorizes an item,
The DDL definition for ITEM-TYPE is:
DEF item-type PIC 9(4) COMP.
ITEM-TYPE is a field that can be used by the application to
categorize items by type. This field can have a value from
1000 through 9999. The values 100 through 999 are assigned

for use by Tandem. Refer to Appendix B for additional
information.

Record Handling Operations. A process can perform the following
record handling operations:

define and add records of various types to an item
(ADD-ITEM-REC UOW)

access existing records in an item (GET-ITEM-REC UOW)

delete records (DELETE-ITEM-REC UOW),
In these UOWs, the ITEM-KEY field is vitally significant. When a
process accesses records in sequence, the ITEM-KEY field

determines the starting point for retrieval.

® ITEM-KEY - The ITEM-KEY field identifies the item to which the
record belongs or will belong, and the specific record itself.

4-16 “4 82525 A00 3/85

Interfacing with TRANSFER

The DDL definition for ITEM-KEY is:

DEF item-key.
02 item-id.

03 dummy PIC X(12).
02 rec-type PIC 9(4) COMP.
02 rec-seg-num PIC 9(4) COMP.
END.

ITEM-ID - The ITEM-ID field specifies the item to be accessed.

REC-TYPE - The REC-TYPE field describes what kind of record is
being accessed; this allows you to access records by category.
This field can have a value from 0 through 9999,

The values 100 through 999 are assigned for use by Tandem
application packages, such as T/MAIL. You can use these
values in the REC-TYPE field, but they should have the same
meaning for your application as they do for such software.
These record types include subject text, forward and response
text, and unformatted ASCII text; refer to Appendix B for
values used in the REC-TYPE field. An item can contain
records of many different types and multiple records of the
same type.

REC-SEQ-NUM - The REC-SEQ-NUM field indicates the specific
record to be accessed. The field provides unique key values
for multiple records having the same item ID and record type.

Item Tree Operations. A process can attach one item to another
in a parent-component relationship. 1In fact, a process can
arrange for a component item to have components, each of which in
turn can have components; this allows an entire tree of items to
be created. The number of levels of nesting, however, can affect
the performance of your application.

A process can perform the following item tree operations:
- attach one item to another (ATTACH-COMPNT-A(0l UOW)

- obtain the item IDs of component items belonging to a parent
(GET-ITEM-COMPNT-AQl UOW)

- detach a component from a parent (DETACH-COMPNT UOW).

4 82525 A00 3/85 4-17

Interfacing with TRANSFER

The ATTACH-COMPNT-AQl UOW includes a COMPNT-TYPE field that is
returned with the component by the GET-ITEM-COMPNT-AQl UOW.

e COMPNT-TYPE - The COMPNT-TYPE field is a numeric value that
TRANSFER saves with a component but does not interpret.

The DDL definition for COMPNT-TYPE is:
DEF compnt-type PIC 9(4) COMP.

The COMPNT-TYPE field can be used by the application as a code
to indicate why the component was attached. The field can
have a value from 0 through 9999; values 100 through 999 are
reserved for Tandem. Refer to Appendix B for additional
information.

PACKAGE HANDLING. Package handling involves the following
activities:

submittal preparation
recipient list definition
package delivery

package receiving operations

Submittal Preparation. Before items can be delivered from one
correspondent to another, they must be assembled as packages.
Each package includes a package header item, which consists of
zero or more records or components items, and a list of
recipients.

The package header is a special kind of item, designated by the
IS-PKG-HDR field of a CREATE-ITEM UOW. The item descriptor of a
package header item indicates who is sending the package, who is
receiving the package, and when the package was posted. Since a
package can only be altered or submitted by its creator, the
sender of a package is always the creator.

The package header can contain text records and item IDs of

components. If the components list includes another package
header item, the result is a package nested in another package.

4-18 4 82525 A00 3/85

Interfacing with TRANSFER

The item descriptor of a package header also contains the
following information that your application can supply:
timestamps, priority, agent selector, and certification.

The simplest package is a package header with no components. A
package header item, like any other item, can contain data
records. For example, the package header might include a data
record that contains a package sequence number.

A process builds a package by creating the package header item
and making separate requests to add recipients, component items,
and delivery parameters.

A process can perform the following operations:

- access information in the item descriptor (GET-ITEM-DESCR
UOW)

- update fields in the item descriptor (ALTER-ITEM-DESCR UOW).

Four fields of principal interest are: AGENT-SELECTOR, APPLIC-ID,
PRIORITY, and DATE-TIME.

e AGENT-SELECTOR and APPLIC-ID - The AGENT-SELECTOR and
APPLIC-ID fields are used as a basis for agent selection, and
their contents and meaning are defined by your application.
After delivering a package, TRANSFER examines these two fields
to determine what agent to invoke. An agent, in fact, can be
configured to react to several AGENT-SELECTOR and APPLIC-ID
values.

The definitions for AGENT-SELECTOR and APPLIC-ID are:

DEF agent-selector PIC 9(4) COMP.
DEF applic-id PIC 9(4) COMP.

The following APPLIC-ID values are reserved for Tandem use:

100-499 Tandem clients; ID 100 indicates a TAREQ, and
ID 111 is T/Mail.

500-999 Tandem agents; ID 500 is the VACATION agent.

“} 82525 A0O0 3/85 4-19

Interfacing with TRANSFER

e PRIORITY - The PRIORITY field determines the priority at which
the package will be sent, allowing you to classify a package
according to its urgency. The field contains an unsigned
value ranging from 0 (lowest priority) through 199 (highest
priority). Packages are sent in decreasing order of numeric
priority; when two or more packages are assigned the same
numeric priority, the packages are sent in order of submittal
date.

Priority overrules submission time in determining when a
package is sent; a high-priority package goes before a package
of low priority, even if the low-priority package was
submitted earlier. Assigning a high priority to new packages

might prevent older packages from being delivered within the
requested timeframe.

The DDL definition for PRIORITY is:
DEF priority PIC 9(3) COMP.

¢ DATE-TIME - The DATE-TIME field governs the format of various
dates and times that appear in the package header item.

The DDL definition for DATE-TIME is:

DEF date-time.

02 year PIC 9(4).

02 month PIC 9(2).

02 day-of-month PIC 9(2),.

02 hour PIC 9(2).

02 minute PIC 9(2).

02 second PIC 9(2).
END.

The DATE-TIME field can have values in the following ranges:

YEAR 1975 through 2099
MONTH 1 through 12
DAY-OF-MONTH 1 through 31
HOUR 0 through 23
MINUTE and SECOND 0 through 59

In a reply, TRANSFER returns a DATE-TIME of all zeros for a
time that has not been established; for example, the
submission time of a package that has not been submitted.

Recipient List Definition. The recipient list contains the names
of correspondents and distribution lists that are to receive the
package. A process can perform the following operations for
these lists:

- add names to a recipient list (ADD-RECIP UOW)

4-20 “ 82525 A00 3/85

Interfacing with TRANSFER

- obtain the names of currently defined recipients (GET-RECIP-REC
UOW)

- delete recipients from a distribution list (DELETE-RECIP UOW).

The ADD-RECIP and DELETE-RECIP UOWs both transmit the RECIP-NAME
field and the contents of the RECIP-TYPE field. The
GET-RECIP-REC UOW transmits a RECIP-KEY field.

e RECIP-NAME - The RECIP-NAME field identifies the recipient to
be added or deleted. Names of correspondents in this field
can include suffixes. The resolution of names and the
expansion of distribution lists appearing in this field are
described under the ADD-RECIP UOW in Section 5.

The DDL definition for RECIP-NAME is:
DEF recip-name PIC X(120).

e RECIP-TYPE - THE RECIP-TYPE field is used to categorize
various kinds of recipients. This field, essentially,
explains why a recipient is receiving the package.

The DDL definition for RECIP-TYPE is:
DEF recip-type PIC 9(4) COMP,

The RECIP-TYPE field can have a value from 0 through 9999.
Values 100 through 999, however, are assigned for use by
Tandem and might assume particular meanings when interfacing
with software, such as T/MAIL, that is supplied by Tandem.

e RECIP-KEY - The RECIP-KEY field is used as a key in selecting
the recipient names returned by the GET-RECIP-REC UOW. The
field references both the package item and the name of one of
the recipients.

The DDL definition for RECIP-KEY is:

DEF recip-key.
02 item-id.
03 dummy PIC X(12).
02 recip-name PIX X(120).
END.

Package Delivery. A process posts a package for delivery by
issuing a SUBMIT-PKG UOW. A process cancels the delivery of a
package by issuing a CANCEL-PKG UOW.

“4 82525 A00 3/85 4-21

Interfacing with TRANSFER

Package Receiving. A process acknowledges receipt of a package
by issuing an ACK-RECEIPT UOW. This operation is recommended
whenever a client retrieves a package from the INBOX folder.

FOLDER MANIPULATION. Folder manipulation involves the following
operations:

- save items in folders according to the ordering criteria
established for the folder (SAVE-ITEM, SAVE-ITEM-B00, and
SAVE-ITEM-BY-KEY UOWs)

- modify the ordering criteria for a folder (ALTER-FOLDER-ORDER
UOW)

- scan the contents of a folder (SCAN-FOLDER, SCAN-FOLDER-BO0O,
and SCAN-FOLDER-BY-KEY UOWs)

- remove an item from a folder (UNSAVE-ITEM UOW)

- determine the folders in which a particular item is saved
(WHERE-SAVED UOW)

- determine the ordering criteria for a folder (GET-FOLDER-ORDER
UOW) .

A folder can contain both packages and individual items.
Conversely, the same item or package can reside in more than one
folder. An item cannot be stored in one folder more than once.

Folder manipulation UOWs either transmit or return the contents
of the FOLDER-NAME field.

e FOLDER-NAME - The FOLDER-NAME field is the name of a folder.
The DDL definition for FOLDER-NAME is:
DEF folder-name PIC X(80).
On input, you can use a partially qualified name, including

wildcard characters. In the response, the fully qualified
name is returned.

TRANSFER CONFIGURATION INQUIRY. A process obtains information
from The TRANSFER name configuration directory by issuing a
GET-CONFIG-NAME UOW.

4-22 /ﬂ 82525 A00 3/85

Interfacing with TRANSFER

ADMINISTRATION. A process requests various administrative
operations, such as the management of depots, distribution lists,
or TRANSFER names, by issuing administrative UOWs. Some of these
UOWs can only be issued by processes representing correspondents
with system administrator capability.

Many administrative UOWs include one or more fields that contain
a correspondent name. These fields identify the correspondent
that the calling process represents. In cases where the DDL for
these fields includes a VALUE SPACES clause, only system
administrators can enter correspondent names other than their
own; users who are not system administrators must enter their own
names or leave the field blank.

Session Management. A process can obtain the names of
correspondents with currently active sessions by issuing a
GET-NEXT-SESSION UOW. If you are writing your own administrative
client, you can use this UOW in connection with terminating
sessions, shutting down TRANSFER, and monitoring the load on the
TRANSFER system. This UOW requires the system administrator
capability.

Depot Management. A correspondent depot is established when that
correspondent name is registered with TRANSFER. Every
correspondent has precisely one depot and that depot has a
network-unique identity. The depot contains profiles, folders,
and distribution lists. Agents are also associated with depots.

A process creates a depot, and consequently registers a
correspondent who owns that depot, by issuing a CREATE-DEPOT UOW.
A process deletes a depot by issuing a DELETE-DEPOT UOW. Both
of these UOWs require the system administrator capability.

Several UOWs pertain to the management of profiles. A process
can do the following:

- obtain one or more data elements from a depot profile
(GET-PROFILE-ELEM UOW)

- change data elements in a profile (ALTER-PROFILE-ELEM UOW)
- read user-maintained profile records (READ-PROFILE-REC UOW)
- write user-maintained profile records (WRITE-PROFILE-REC UOW)

- delete profile records (DELETE-PROFILE-REC UOW).

4y 82525 A00 3/85 4-23

Interfacing with TRANSFER

Two UOWs are involved in managing folders: the CREATE-FOLDER UOW
that creates a folder, and the DELETE-FOLDER UOW that deletes a
folder. A folder must be created before an item or package can
be saved in it.

In the area of agents defined at a depot, the GET-AGENT-SELECT
UOW returns to a process the current selection criteria for a
particular agent. The ALTER-AGENT-SELECT UOW defines, alters, or
deletes this criteria.

Distribution List Managment. Five UOWs are concerned with the
management of distribution lists. A process can do the
following:

- create a distribution list (CREATE-DLIST UOW)

- delete the distribution list (DELETE-DLIST UOW)

- add a new member to a distribution list (ADD-MEMBER UOW)
- delete a member (DELETE-MEMBER UOW)

- read a distribution list (READ-NEXT-MEMBER UOW).

A distribution list must be created before members can be added
to it.

Name Management. The READ-NEXT-NAME UOW selectively reads the
contents of the TRANSFER name directory, which defines all names
known to TRANSFER. The READ-NEXT-NAME UOW can be used, for
example, to read all folder names defined.

4-24 4 82525 A00 3/85

UOW Summary Table

Interfacing with TRANSFER

All TISERV UOWs and the functions they perform are summarized in

Table 4-2,

Table 4-2.

TISERV UOW Summary

of sessions.

UOW

END-SESSION

START-SESSION

Session Control UOWs

These UOWs are concerned with the initiation and termination

UOW
Code

102

101

Operation

End a session in progress on
behalf of a correspondent.

Begin a session on behalf of a
correspondent.

Uow

COPY-ITEM

CREATE-ITEM

GET-ITEM-DESCR

- Whole Item UOWs

Item Handling UOWs

The item handling UOWs are used for creating and manipulating
items and their components.

These UOWs are used for defining individual items.

UOwW
Code

107

103
122

Operation

Make a duplicate copy of an
item,

Create an item,

Return descriptor fields for
an item,

/{| 82525 A0O0 3/85

Interfacing with TRANSFER

Table 4-2. TISERV UOW Summary (Continued)

- Record Handling UOWs

UOW

ADD-ITEM-REC

DELETE-ITEM-REC

GET-ITEM-REC

- Item Tree UOWs

UOW

ATTACH-COMPNT-AQOl

DETACH-COMPNT

GET-ITEM-COMPNT-AOQl

These UOWs are used for appending records to items or
deleting them from items.

UOwW
Code
104

105

125

These UOWs are involved in attaching items as components to
other items, and detaching these components as well.

UOW
Code

136

113
137

Operation

Add a data record to an
item.

Delete a data record from an
item.

Retrieve data records from
an item.,

Operation

Attach one item as a
component of another.

Detach one item from another.
Return a list of component

items within an item to your
application.

Package Handling UOWs

The UOWs that handle packages are divided into four
categories: submittal preparation, recipient list
definition, package delivery, and package receipt UOWs.

“4 82525 A00 3/85

Interfacing with TRANSFER

Table 4-2, TISERV UOW Summary (Continued)

- Submittal Preparation UOW

This UOW is concerned with operations that prepare packages
for submittal (exclusive of the recipient list).

Uow
UOW Code Operation
ALTER-ITEM-DESCR 116 Update application-controlled

fields in an item descriptor.

- Recipient List Definition UOWs

These UOWs are concerned with defining and verifying
recipients for packages.

UOW
UOW Code Operation
ADD-RECIP 114 Add a new recipient to the
recipient list for a package.
DELETE-RECIP 115 Delete a recipient from the
recipient list for a package.
GET-RECIP-REC 126 Retrieve recipient records
from a package recipient
list.

- Package Delivery UOWs

. These UOWs are concerned directly with the delivery of

packages.
Uow
Uow Code Operation
CANCEL-PKG 118 Cancel delivery of a package.
SUBMIT-PKG 117 Submit (post) a package for

delivery.

4 82525 A00 3/85 4-27

Interfacing with TRANSFER

Table 4-2. TISERV UOW Summary (Continued)

- Package Receipt UOW

This UOW is concerned directly with the receipt of
packages.

Uow
UOW Code Operation
ACK-RECEIPT 131 Acknowledge receipt of a

package.

Folder Manipulating UOWs

These UOWs are used for the maintenance of folders.

UOW

UOW Code Operation

SAVE-ITEM 110 Save an item in a folder.

SAVE-ITEM-B00 141 Save an item in a folder that
has any ordering discipline
except APPLIC-DEFINED with an
option to include an unsave
time.

SAVE-ITEM-BY-KEY 139 Save an item in a folder that
has an ordering discipline of
APPLIC-DEFINED.

SCAN-FOLDER 120 Return the ID of items in a
particular folder.

SCAN-FOLDER-BO0O 142 Return the ID and unsave time
of items in a particular
folder.

4-28 “) 82525 A00 3/85

Interfacing with TRANSFER

Table 4-2. TISERV UOW Summary (Continued)

Folder Manipulating UOWs (continued)

Uuow

UOW Code Operation

SCAN-FOLDER-BY-KEY 140 Return the ID, item type,
unsave time, and the corre-
sponding ordering key and key
length of items saved in
folders with APPLIC-DEFINED
ordering.

UNSAVE-ITEM 111 Remove an item from a folder.

WHERE-SAVED 121 Return the names of folders in

which a given item is saved.

TRANSFER Configuration Inquiry UOW

This UOW returns information from the TRANSFER name
configuration directory.

UOW
UOW Code Operation
GET-CONFIG-NAME 132 Return the configured name for

the TRANSFER file, process, or
other special entity, as
recorded in the TRANSFER name
directory.

Administrative UOWs

The administrative UOWs are typically used by processes to
perform various administrative functions. These UOWs are
divided into the following categories: session management,
depot management, distribution list management, and name
management UOWs. UOWs that can only be issued by processes
representing users with system administrator capability are
noted.

) 82525 A00 3/85 4-29

Interfacing with TRANSFER

Table 4-2.

TISERV UOW Summary (Continued)

- Session Management UOW

Uow

GET-NEXT-SESSION

- Depot Management UOWs

Depot UOWs

UOW

CREATE-DEPOT

DELETE-DEPOT

This UOW is used in connection with forcefully terminating
sessions, shutting down TRANSFER, and monitoring the load
on the TRANSFER system.,

UOW
Code

200

These UOWs are concerned with the management of depots and
the objects defined as essential components of depots:
profiles, folders, and agents.

These UOWs are concerned with depots themselves.

UOW
Code

201

202

Qperation

Return the names of
correspondents with active
sessions to your applica-
tion. (Requires system
administrator capability.)

Operation

Create a depot. (Requires
system administrator
capability.)

Delete a depot. (Requires
system administrator
capability.)

4-30

/{i 82525 A00 3/85

Table 4-2.

Interfacing with TRANSFER

TISERV UOW Summary (Continued)

Profile UOWs

Uow

ALTER-PROFILE-ELEM

DELETE-PROFILE-REC

GET-PROFILE-ELEM

READ-PROFILE-REC

READ-PROF-REC-A02

WRITE-PROFILE-REC

Folder UOWs

Uow

ALTER-FOLDER-ORDER

CREATE-FOLDER

CREATE-FOLDER-B00

DELETE-FOLDER

GET-FOLDER-ORDER

These UOWs are concerned with profiles.

UOowW
Code
204
214
203
212

231

213

These UOWs are concerned with

UowW
Code

234

227
232

230
233

Operation

Modify one or more data
elements in a profile.

Delete a record in a depot
profile.

Return one or more data
elements from a profile.

Read a record from a depot
profile.

Read one or more records
from a depot profile.

Write or update a record
in a depot profile.

folder management.

Operation

Modify the ordering
criteria for an existing
folder.

Create a folder.
Create a folder with a
specified ordering
criteria.

Delete a folder.

Retrieve the ordering
criteria for a folder.

/1' 82525 A00 3/85

Interfacing with TRANSFER

Table 4-2,

TISERV UOW Summary (Continued)

Agent UOWs

UOwW

ALTER-AGENT-SELECT

GET-AGENT-SELECT

UOowW

ADD-MEMBER

CREATE-DLIST

DELETE-DLIST

DELETE-MEMBER

READ-NEXT-MEMBER

These UOWs are concerned with agents.

Uow
Code

208

207

- Distribution List Management UOWs

These UOWs are concerned with creation, deletion, and
maintenance of distribution lists.

UOoOwW
Code
220
217
218

221

219

Operation

Create, alter, or delete
the selection criteria for
an agent,

Return the selection
criteria for an agent to
your application.

Operation

Add a new member to a
distribution list.

Create a distribution
list.

Delete a distribution
list.

Delete a member from a
distribution list.

Return the names of
members of a distribution
list.

4~-32

/"I 82525 A00 3/85

Interfacing with TRANSFER

Table 4-2. TISERV UOW Summary (Continued)

- Name Management UOW

This UOW is concerned with management of names for depots,
distribution lists, and correspondents.

UOwW
UOW Code Operation
READ-NEXT-NAME 224 Read the contents of the

TRANSFER name directory.

TAREQ INTERFACE

The actual delivery of a package to a depot is handled by any of
several TRANSFER asynchronous requesters (TAREQs). As part of
the delivery operation, the TAREQ can optionally invoke one or
more user-written agents that perform additional processing
related to the delivery. TAREQs are composed of SCREEN COBOL
programs and, therefore, they interface with agents that are
implemented either as SCREEN COBOL regquester programs or as
PATHWAY servers.

Agent Selection

Upon package delivery, the responsible TAREQ can select agents
for execution by matching delivery parameters that accompany the
package against agent selection criteria defined in profile
records at the recipient depot. The TAREQ passes the delivery
parameters as part of an agent notification message. Your
application establishes the agent selection criteria through the
ALTER-AGENT-SELECT UOW or the TRANSFER/ADMIN client.

When the package arrives at the depot, the TAREQ selects the
appropriate agents as described in the ALTER-AGENT-SELECT UOW in
Section 5.

In selecting agents, the TAREQ sequentially searches the agent
selection criteria in the profiles for the depot. During this
search, the TAREQ invokes, in sequence, each agent whose
selection criteria is satisfied by the delivery parameters in the
notification message. The TAREQ continues this process until no
further qualified agents are encountered or until an agent
requests the TAREQ to discontinue agent selection.

“4) 82525 A0O 3/85 4-33

Interfacing with TRANSFER

If an agent selection record for a selected agent specifies that
a session should be started when the agent is invoked, the TAREQ
starts a session and obtains a session ID from TISERV. The TAREQ
includes the session ID in the agent notification message; this
allows an agent that can be invoked by more than one depot to
access depots for which it is configured without knowing the
password for the depot.

When more than one agent requiring a session is selected, the
TAREQ assigns each agent an individual session. As each agent
returns control, the TAREQ ends the session on the behalf of the
agent. When two agents are involved, for example, the TAREQ
might begin by starting a session for Agent A, and then invoking
Agent A, When Agent A completes its operations and terminates,
the TAREQ would terminate the session for Agent A, start a
session for Agent B, and invoke Agent B.

Agent Notification Message

The TAREQ formats the agent notification message in accordance
with the following data definition:

DEF agent-link.
02 session-id.

03 dummy PIC X(18).
02 sender-info.

03 sender-name PIC X(120).

03 sender-applic-id PIC 9(4) COMP.
02 recipient-info.

03 recip-name PIC X(120).

02 package-info.
03 package-id.

04 dummy PIC X(12).

03 agent-selector PIC 9(4) COMP.

03 package-flags.
04 certified TYPE BOOLEAN.
04 Dbyte REDEFINES CERTIFIED PIC X.
04 reserved-l TYPE BOOLEAN VALUE "N".
04 reserved-2 TYPE BOOLEAN VALUE "N".
04 reserved-3 TYPE BOOLEAN VALUE "N".
04 reserved-4 TYPE BOOLEAN VALUE "N".
04 reserved-5 TYPE BOOLEAN VALUE "N",.
04 reserved-6 TYPE BOOLEAN VALUE "N".
04 reserved-7 TYPE BOOLEAN VALUE "N",

03 subject-string TYPE CHARACTER 140.

02 depot-info.
03 agent-data TYPE CHARACTER 80.

END,

4-34 “4 82525 A00 3/85

Interfacing with TRANSFER

In this definition, fields have the following meanings:

® SESSION-ID is the ID of the session required by the agent if
the depot profile indicates that a session should be started
on behalf of the agent. If no session is required, this field
contains binary zeros.

e SENDER-NAME is the name of the correspondent who sent the
package.

e SENDER-APPLIC-ID is the numeric application ID that identifies
the client who transmitted the package with TISERV. This
value is matched against the agent selection range established
by APPLIC-ID-LOW and APPLIC-ID-HIGH in the depot profile
records.

e RECIP-NAME is the name of the recipient to whom the package is
sent.

® PACKAGE-ID is the ID of the header item for the package.

® AGENT-SELECTOR is the numeric value to be matched against the
agent selection range established by AGENT-SEL-LOW and
AGENT-SEL-HIGH in the depot profile records. The value used
by the Tandem T/MAIL client is 0 (for DEFAULT-PKG).

® PACKAGE-FLAGS specifies the delivery control flags described
as DELIV-CONTROL-FLAGS in the ALTER-ITEM-DESCR UOW in
Section 5,

e SUBJECT-STRING is a data string that typically describes the
contents of the package. (The MAIL client generates this
string as its SUBJECT field.) 1If more than 140 characters are
entered in this field, the additional characters are
truncated.

® AGENT-DATA is an array containing data to be passed to the
agent for use by the agent. This data is obtained from the
Profile file. Your application establishes the data in that
file through the ALTER-AGENT-SELECT UOW.

Upon receiving the notification message, the agent must respond
by sending a reply to the TAREQ in accordance with the following
format:

DEF agent-link-reply.
02 error-info.
03 error-return PIC S9999 COMP.
03 error-msg TYPE CHARACTER 80.
END.

“9 82525 AOO 3/85 4-35

Interfacing with TRANSFER

In this definition, fields have the following meanings:

®» ERROR-RETURN notifies the TAREQ of any action it should take
at this point. This field is required and must contain one of

the following values:

Interpretation Value
GO-TO-NEXT-AGENT 0
100

DON'T-GO-TO-NEXT-AGENT 1

101
AGENT-ERROR 2
102
AGENT-RESTART 3

TAREQ Action

Go to the next agent in the
sequence. If TAREQ started
the session for this agent,
TAREQ ends the session.

Go to the next agent in the
sequence. If TAREQ started
the session for this agent,
TAREQ does not end the
session,

Discontinue the search.
If TAREQ started the

session for this agent,
TAREQ ends the session.

Discontinue the search. 1If
TAREQ started the session
for this agent, TAREQ does
not end the session.

Log the error detected by
the agent and invoke the
next agent. If TAREQ
started the session for
this agent, TAREQ ends the
session.,

Log the error detected by
the agent. If TAREQ
started the session for
this agent, TAREQ does not
end the session.

Log the error detected by
the agent and restart the
current transaction.

“4 82525 A00 3/85

Interfacing with TRANSFER

WARNING

To avoid degrading system performance, AGENT-RESTART (3)
should be returned only for a transient problem, such as a
file lock. Returning the AGENT-RESTART for a problem such

as record-not-found is not useful because the problem will
not go away. AGENT-RESTART might cause previously successful
deliveries to be backed out and then performed again.

For additional ramifications of TMF restart, refer to TAREQ
Interface in Section 6.

e ERROR-MSG contains ASCII text that describes any error
encountered. This field is optional. The text is written to
the scheduler process log file if logging to this file is
enabled.

The TAREQ calls a SCREEN COBOL agent with a CALL statement
written in the following format:

CALL agent-name USING AGENT-LINK, AGENT-LINK-REPLY.

The LINKAGE SECTION of the user-supplied SCREEN COBOL program
unit must correspond to this CALL statement.

The TAREQ sends to a server class agent with a SEND statement
written in the following format:

SEND AGENT-LINK
TO agent-name
REPLY CODE 0,1,2 YIELDS AGENT-LINK-REPLY,

The user-supplied server must structure its definitions to agree
with this SEND statement.

TAREQ Event Packages

When certain events occur, the TAREQ generates TAREQ event
packages in accordance with certain predefined formats. 1In these
packages, the application ID is always TAREQ (100). The agent
selector value indicates the event that triggered the package.
The events are listed in Table 4-3.

“f 82525 AOO 3/85 4-37

Interfacing with TRANSFER

Table 4-3. TAREQ Events

Agent-
Selector
Value Event

1 TRANSFER SYSTEM ERROR

2 RECIPIENT HAS EXAMINED CERTIFIED PACKAGE

3 PACKAGE HAS INVALID RECIPIENT

4 PACKAGE HAS DISTRIBUTION LIST WITH INVALID RECIPIENT
5 PACKAGE HAS RECIPIENT WITH INVALID AGENT

6 PACKAGE COULD NOT BE DELIVERED TO RECIPIENT IN TIME
7 RECIPIENT DID NOT EXAMINE PACKAGE BEFORE IT EXPIRED
8 RECIPIENT HAS ALREADY EXAMINED CANCELED PACKAGE

9 SENDER CANCELED PACKAGE AFTER YOU EXAMINED IT

10 PACKAGE CANNOT BE TRANSPORTED TO RECIPIENT'S SYSTEM
11 AGENT IS MISBEHAVING

12 AGENT HAS LOGGED AN ERROR

The overall package format is illustrated in Figqure 4-2. The
format of the text item within this package depends on the agent
selector value (event), as indicated in Figure 4-3.

For those TAREQ events that reflect an error, the TAREQ might not
generate an event package, depending on the ERR-PKG-SUPPRESS-
FLAGS field of the sender-submitted package. These flags are set
by the sender.

4-38 “4 82525 A00 3/85

Interfacing with TRANSFER

Package
APPLIC-ID = TAREQ (100)
AGENT-SELECTOR = <nn> /REC-TYPE
/— RECORD-SEQ-NUM

/— Text up to 140 bytes long,
relating to agent selection

\

/- T/MAIL recipient record up to

115 70 bytes long
(Subject Text) 1 Text /
(To R?;i(i)pient) 1 T/MAIL Recipient Record

Text Records

See Figure 4-3 for
REC-TYPE = 120 Cf f
(Unformatted Text) ormat of text records

7

Package _ Top of package that
triggered agent

MM/’\/—\‘

§5039-014

Figure 4-2. Overall TAREQ Event Package Format

4 82525 ACO 3/85 4-39

Interfacing with TRANSFER

Each format has four 120-byte text records
REC-SEQ-NUM
FORMAT 1: 1 (blank)
AGENT-SELECTOR = (Iiveznts 2 Recipient: @
6: 7: g 3 <recipient name >
d
(To sender) or 10) 4 (blank)
REC-SEQ-NUM
1 (blank)
FORMAT 2:
AGENT-SELECTOR = Event 2 Sender: O,
©
(To recipient) 3 < sender name >
4 (blank)
REC-SEQ-NUM
1 Distribution List: ©)
FORMAT 3: e
AGENT-SELECTOR = Event 2 <distribution list name >
(4) - .
(To sender) 3 Recipient List: @
4 <recipient list name >
REC-SEQ-NUM
1 Agent:
FORMAT 4:
AGENT-SELECTOR = Event 2 <agent name >
- ®,11,12) 3 Sender:
(To recipient)
4 < sender name >
Record is intended only for output to users and need not be read by
your application processes.
$5039-015

Figure 4-3. Text Portion Formats

4-40 4y 82525 A00 3/85

Interfacing with TRANSFER

Delivery Errors

TAREQs write delivery error indications to the recipient records
involved. These error indications have the data type
UOW-RETN-CODE; they can reflect almost any value returned in the
RETN-CODE field by TISERV UOWs or they can reflect special
delivery errors detected by TAREQs, whose values range from 4600
through 4699. A code of zero indicates that the TAREQ detected
no error.

The following errors are detected by TAREQs; error explanations
appear in Appendix A:

4600 W-NOT-PROCESSED-HERE 4605 E-CANCELED-UNEXAMINED
4601 W-XPORTED 4607 E-EXPIRED-UNEXAMINED
4602 E-XPORT-FAILED 4608 E-TOO-LATE-TO-DELIV

4603 E-TOO-LATE-TO-XPORT 4609 E-INCONSISTENT-RECIP

4604 W-FULLY-EXPANDED-DLIST

Precautions about Using Agents

The use of agents can provide many advantages to your TRANSFER
application. 1In designing your application, however, you should
consider the following:

1. The amount of time that TRANSFER waits for agents can
severely impact the TAREQ ability to perform other tasks.
The TAREQ must wait for the agent to complete its activities,
and thus cannot provide other services in the meantime.
When the agent is a server rather than a SCREEN COBOL
requester, you can specify time limits that the TAREQ must
wait on the agent server class before aborting the
transaction.

2. Multiple agents for a single recipient all operate within the
same TMF transaction.

3. An agent required by a delivery is invoked only if that
delivery is successful.

4 82525 A00 3/85 4-41

SECTION 5

UOW DESCRIPTIONS

This section describes the available TISERV units-of-work (UOWs).
The description of each UOW includes the following elements:

e the DDL format and syntax of the request UOW and its
corresponding response UOW; the letters rsp at the beginning
of each response UOW stand for response

e the content, function, and constraints of the individual
fields transmitted within, or returned by, the UOW

e the operations performed by TISERV in response to the UOW.

Information transmitted to TISERV by a UOW is moved into the
individual fields of the UOW by your program. Information
returned in a UOW response is entered in the individual fields of
the response by TISERV.

FILLER fields appear in the DDL format for certain UOWs. These
fields provide for the alignment of fields on word boundaries in
memory or allow space for the expansion of data in a field.

You can modify array limits in standard DDL definitions that
contain variable length arrays. You can have multiple
definitions with different array limits for the same UOW as long
as the symbolic names for the UOW are unique.

It is recommended that IPCs be issued within the framework of TMF
transactions. Some UOWs, however, do not change the TRANSFER
data base and do not require a TMF transaction to be in effect.
You do not need to start a TMF transaction before issuing the IPC
if your IPC consists solely of one or more of the following UOWs:

GET-AGENT-SELECT GET-PROFILE-ELEM READ-PROF-REC-A02

GET-CONFIG-NAME GET-RECIP-REC SCAN-FOLDER
GET-FOLDER-ORDER NOOP SCAN-FOLDER-BO00
GET-ITEM-DESCR READ-NEXT-MEMBER SCAN-FOLDER-BY-KEY
GET-ITEM-REC READ-NEXT-NAME WHERE-SAVED

GET-NEXT-SESSION READ-PROFILE-REC

4 82525 A00 3/85 5-1

UOW Descriptions

UOW HEADER AND RETURN CODE

Each UOW transmitted to TISERV begins with a UOW header. The DDL
definition for this header is:

DEF uow-hdr.

02 self-ident PIC AA VALUE "UW",
02 wuow-code TYPE BINARY 16 UNSIGNED.,
END.

Individual fields in the UOW header contain the following
information:

e SELF-IDENT always contains the characters UW to identify the
header as a UOW header.

® UOW-CODE is a code value that identifies the specific UOW
request being made. For example, an ADD-ITEM-REC UOW that
adds a record to an item has a UOW-CODE field that contains
the value 104.

Each response UOW returned from TISERV begins with the same
header as the request, followed by two fields dealing with return
codes. The DDL definition for this response is:

DEF uow-hdr.

02 self-ident PIC AA VALUE "UW".

02 wuow-code TYPE BINARY 16 UNSIGNED.
DEF uow-retn-code TYPE BINARY 16.
DEF retn-code-detail TYPE BINARY 1l6.
END.

Individual fields in the response UOW header contain the
following additional information:

e UOW-RETN-CODE is the return code.
- 1If no errors were encountered, this field is set to 0.

- 1If an error occurred, this field contains a positive value
ranging from 4000 through 5999; these values indicate the
UOW was not processed.

- If a warning was indicated, the field contains a negative
value ranging from -5999 through -4000; these values
indicate the UOW was successfully processed.

In the RETN-CODE field for each UOW, entries that begin with E
denote errors returned to your process by TISERV, and entries
that begin with W denote warnings. All possible entries are
listed for each UOW. These errors are listed and described in
Appendix A.

5-2 “9 82525 AQ0 3/85

UOW Descriptions

e RETN-CODE-DETAIL is a code that primarily identifies an error
detected by a subsystem other than TRANSFER, such as the
GUARDIAN operating system or the EXPAND network software, and
for which TRANSFER provides no standard handling. These
errors are discussed further in Appendix A.

All request and response UOWs must be aligned on word boundaries.

SOFTWARE PROVIDED WITH THE TRANSFER DELIVERY SYSTEM

The TRANSFER software release provides three files for inter-
facing with TRANSFER: GCOB, GLNK, and GDDL. These files contain
source code for commonly used TRANSFER elements whose field and
structure definitions appear in this manual. Typical TRANSFER
elements are the interprocess communication (IPC) header that
initiates a request, and the unit-of-work (UOW) definitions that
describe operations to be performed.

This code can be copied into a SCREEN COBOL or COBOL source
program by coding the record level and then using the COPY
statement

COPY copy-text OF "filename"
where

copy-text is the unique name for the definition
in the named file. You determine the correct
copy-text name by searching the files.

GCOB - This file contains COBOL source code for Working-Storage
Section definitions.

GLNK - This file contains the same code as the GCOB file, but
without the INITIAL-VALUE clauses. The GLNK file is used
for Linkage Section definitions.

GCOB and GLNK have information in addition to the information
produced by DDL when generating COBOL. The primary additions are
prefixes for all field names, and many level 88 declarations for
fields.

GDDL - This file contains DDL code that is used to create

definitions for use when programming in a language other
than SCREEN COBOL or COBOL,

) 82525 A00 3/85 5-3

UOW Descriptions

GDDL code does not exactly match the DDL syntax shown in this
manual, but it should be immediately obvious how to interpret any
differences.

UOW DEFINITIONS

The remainder of this section presents the available UOWs in
alphabetic order. Each definition begins with the DDL format for
the UOW request and corresponding response, followed by a
description of the fields and the operations performed.

For programs that are written in languages other than COBOL and
SCREEN COBOL, fields defined as PIC 9(4) COMP are limited to
values in the range of 0 through 9999. 1In TAL, for example,
these fields would have a type of INT, but entering a value
outside the range would return an error.

Every UOW can return the following errors:

4010 E-BAD-TRANSACTION
4990 E-IO-TIMEOUT

Most UOWs can return some of the following errors:

4902 E-ERR-PROFILE-FILE 4910 E-ERR-RECIP-FILE
4904 E-ERR-SESSION-FILE 4912 E-ERR-FOLDER-FILE
4906 E-ERR-ITEMDESC-FILE 4914 E-ERR-DLIST-FILE
4508 E-ERR-ITEMDATA-FILE 4922 E-ERR-INV-FOLDER-FILE

In all of these cases you will receive a RQST-ERR, and the
IPC-RETN-CODE and IPC-RETN-CODE-DETAIL will contain copies of the
UOW RETN-CODE and RETN-CODE-DETAIL.

5-4 “} 82525 A00 3/85

UOW Descriptions
ACK-RECEIPT

ACK-RECEIPT (UOW Code 131)

ACK-RECEIPT acknowledges the receipt of a package. This
operation is recommended whenever a client retrieves a package

£
t

rom the INBOX folder; for example, whenever the client displays
he contents of a package on behalf of a correspondent.

DEF ack-receipt-uow.

02 hdr.
03 self-ident PIC AA VALUE "UW".
03 uow-code TYPE BINARY 16 UNSIGNED VALUE 131.
02 item-id.
03 dummy PIC X(12).
END.

DEF ack-receipt-rsp.

02 hdr.
03 self-ident PIC AA VALUE "UW".
03 uow-code TYPE BINARY 16 UNSIGNED VALUE 131.
02 retn-code TYPE BINARY 16.
02 retn-code-detail TYPE BINARY 16.
END.

ACK-RECEIPT FIELDS. The fields defined in this UOW are:

HDR is the UOW header. The UOW-CODE value is 131.

ITEM-ID is the item ID of the package header for the package
that was received.

RETN-CODE is the return code. TISERV returns a code in this
field to indicate one of the following entries:

0 OK
4010 E-BAD-TRANSACTION 4080 E-PKG-NOT-RECEIVED
4035 E-ITEM-NOT-FOUND 4084 E-PKG-NOT-SUBMITTED
4042 E-ITEM-NOT-PKG-HDR 4094 E-PKG-CANCELED
4045 E-TSCHED-UNAVAIL 4095 E-PKG-EXPIRED

RETN-CODE-DETAIL is an error number returned by a subsystem
other than TRANSFER or is a further qualification of an error
detected by TRANSFER.

4 82525 A00 3/85 5-5

UOW Descriptions
ACK-RECEIPT

ACK-RECEIPT OPERATION. ACK-RECEIPT sets the EXAMINED flag in the
correspondent’'s recipient record of the package identified by
ITEM-ID. This has the following effect:

o If the package was flagged by the sender for certification and
the ACK-RECEIPT UOW is issued against this package for the
first time by this recipient, TRANSFER transmits an
acknowledgement package to the sender. Refer to the
ALTER-ITEM-DESCR UOW for package certification details.

o When the expiration date is reached, TRANSFER checks the
EXAMINED flag:

- If this flag is set, TRANSFER performs no action.
- If this flag is not set, TRANSFER removes the package from

the INBOX if the package is still there, and notifies the
sender that the package was not examined by the recipient.

5-6 4y 82525 A00 3/85

UOW Descriptions
ADD-ITEM-REC

ADD-ITEM-REC (UOW Code 104)

ADD-ITEM-REC adds a data record to an item.

DEF add-item-rec-uow.

02 hdr.
03 self-ident PIC AA VALUE "UW".
03 uow-code TYPE BINARY 16 UNSIGNED VALUE 104.

02 item-key.
03 item-id.

04 dummy PIC X(12).
03 rec-type PIC 9(4) COMP.
03 rec-seg-num PIC 9(4) COMP.
02 data-byte-count TYPE BINARY 16 UNSIGNED.
02 client-data.
03 element PIC X OCCURS 0 TO 2000

TIMES DEPENDING ON
data-byte-count.
END.

DEF add-item-rec-rsp.

02 hdr.
03 self-ident PIC AA VALUE "UW".
03 uow-code TYPE BINARY 16 UNSIGNED VALUE 104.
02 retn-code TYPE BINARY 16.
02 retn-code-detail TYPE BINARY 16.
02 rec-seg-num PIC 9(4) COMP.
END.

ADD-ITEM-REC FIELDS. The fields defined in this UOW are:

e HDR is the UOW header. The UOW-CODE value is 104.

e ITEM-KEY identifies the item to which the record will be
added.

e ITEM-ID is the item ID of the item to which the record will be
added.

e REC-TYPE is the type assigned to the record by your applica-
tion.

Values 100 through 999 - reserved for use by Tandem

Values 1000 through 9999 - available for customer use

“4 82525 A0O0 3/85 5-7

UOW Descriptions
ADD-ITEM-REC

REC-TYPE is not interpreted by TRANSFER, but is stored with
the item record and is returned by the GET-ITEM-REC UOW.
Records are stored first in increasing order by REC-TYPE, and
within each REC-TYPE, in increasing order by REC-SEQ-NUM.

®» REC-SEQ-NUM is the sequence number to be assigned to the
record. The number can range from 1 through 9999; the value 0
is invalid for this field.

To assign the next highest unused sequence number within the
record type specified, set REC-SEQ-NUM to -1. 1In the
response, the sequence number that TISERV assigned to the
record is returned. If the item contains no records, TISERV
assigns the sequence number 1 to the new record.

® DATA-BYTE-COUNT is the length, in bytes, of the record to be
added. This must be a value ranging from 0 through 2000.

® CLIENT-DATA is the data record to be added. The length of
this data must be consistent with DATA-BYTE-COUNT.

NOTE

UOWs must start on word boundaries. If DATA-BYTE-COUNT
contains an odd value and other UOWs follow this one in
the request, you must append a one-byte FILLER to
CLIENT-DATA.

® RETN-CODE is the return code. TISERV returns a code in this
field to indicate one of the following entries:

0 OK 4046 E-INVALID-REC-TYPE
4010 E-BAD-TRANSACTION 4049 E-REC-ALREADY-EXISTS
4035 E-ITEM-NOT-FOUND 4058 E-INVALID-REC-SEQ-NUM
4041 E-ITEM-UNALTERABLE 4085 E-DATA-TOO-LONG

o RETN-CODE-DETAIL is an error number returned by a subsystem
other than TRANSFER or is a further qualification of an error
detected by TRANSFER.

ADD-ITEM-REC OPERATION. ADD-ITEM-REC adds the data record
identified by DATA-BYTE-COUNT and CLIENT-DATA to the item
identified by ITEM-KEY. TISERV assigns the sequence number
indicated by REC-SEQ-NUM to this record. If you set REC-SEQ-NUM
to -1, TISERV assigns the next highest unused sequence number
within the record type specified.

“4 82525 A0O 3/85

(41]
|
[s ¢}

UOW Descriptions
ADD-ITEM-REC

Adding a record to an item is illustrated in Figure 5-1.

P Old Data
, [Records
ADD-ITEM-REC uo‘w} CLIENT-DATA } g:(\;vo%ata
RECORD-SEQ-NUM ~ v -
DATA-BYTE-COUNT
8§5039-016

Figure 5-1. Adding a Record to an Item

44 82525 A00 3/85 5-9

UOW Descriptions
ADD-MEMBER

ADD-MEMBER (UOW Code 220)

ADD-MEMBER adds one or more members to a distribution list.
These members can be correspondents, distribution lists, or both.

DEF add-member-uow.

02 hdr.
03 self-ident
03 uow-code

02 corr-name

02 dlist-name

02 num-wanted

02 member-name

END.

PIC AA VALUE "UW".
TYPE BINARY 16 UNSIGNED VALUE 220.
PIC X(80) VALUE SPACES.
PIC X(80).
TYPE BINARY 16 UNSIGNED VALUE 1.
PIC X(120)

OCCURS 0 TO 5 TIMES

DEPENDING ON num-wanted.

DEF add-member-rsp.
02 hdr.
03 self-ident
03 uow-code
02 retn-code
02 retn-code-detail
02 corr-name
02 dlist-name
02 num-returned
02 mbr-retn-code

END.

PIC AA VALUE "UW".
TYPE BINARY 16 UNSIGNED VALUE 220.
TYPE BINARY 1l6.
TYPE BINARY 16.
PIC X(80).
PIC X(80).
TYPE BINARY 16 UNSIGNED.
OCCURS 0 TO 5 TIMES
DEPENDING ON num-returned
TYPE BINARY 16.

ADD-MEMBER FIELDS. The fields defined in this UOW are:

®» HDR is the UOW header.

The UOW-CODE value is 220.

®» CORR-NAME is the name of the correspondent represented by the
calling process. Only system administrators can enter
correspondent names other than their own in this field;
correspondents without system administrator privileges must
enter their own names or leave the field blank. On input, you
can use a partially qualified name, including wildcard
characters. In the response, the fully qualified name is

returned.

5-10

“49 82525 ADO 3/85

UOW Descriptions
ADD-MEMBER

e DLIST-NAME is the name of the distribution list to which the
new member is added. This can be a partially qualified name,
including wildcard characters. In the response, the fully
qualified name is returned.

e NUM-WANTED is the number of members to be added to the
distribution list. You can specify any number of members,
restricted only by the length of the entire IPC that contains
this UOW. The maximum IPC length is defined during TRANSFER
system configuration.

e MEMBER-NAME is the name of the correspondent or distribution
list to be added to the list identified by DLIST-NAME. This
can be a partially qualified name provided local name
resolution is not deferred in the depot profile. The name can
include wildcard characters and a suffix. In the OCCURS
DEPENDING ON clause, the value 5 is an arbitrary value
suitable for most applications; you can reset it to any other
value. You can have as many member names as specified by
NUM-WANTED, which must be consistent with your DDL definition.

e RETN-CODE is the return code. TISERV returns a code in this
field to indicate one of the following entries.

To indicate successful addition of all members:
0 OK

To indicate problems with the correspondent name:

5600 E-CORR-NSRV-ERR 5607 E-CORR-NSRV-DOWN
5601 E-CORR-NOT-FOUND 5611 E-CORR-NET-DOWN
5602 E-CORR-BAD-NAME 5622 E-CORR-NOT-SAME-NODE

5604 E-CORR-NO-SUCH-NODE 5623 E-CORR-AMBIGUOUS-NAME
5606 E-CORR-NSRV-NOT-FOUND :

To indicate problems with the distribution list name:

5625 E-DLIST-NSRV-ERR 5632 E-DLIST-NSRV-DOWN
5626 E-DLIST~-NOT-FOUND 5636 E-DLIST-NET-DOWN
5627 E-DLIST-BAD-NAME 5647 E-DLIST-NOT-SAME-NODE

5629 E-DLIST-NO-SUCH-NODE 5648 E-DLIST-AMBIGUOUS-NAME
5631 E-DLIST-NSRV-NOT-FOUND

To indicate at least one of the members was not added:
4227 W-ERR-ON-MEMBER

To indicate other problems:
4010 E-BAD-TRANSACTION 4902 E-ERR-PROFILE-FILE

4093 E-SECURITY-VIOLATION 4914 E-ERR-DLIST-FILE
4201 E-CONTEXT-ERR

4 82525 A00 3/85 5-11

UOW Descriptions
ADD-MEMBER

e RETN-CODE-DETAIL is an error number returned by a subsystem
other than TRANSFER or is a further qualification of an error
detected by TRANSFER.

e NUM-RETURNED is the number of members added to the list.
There will be a member return code for each member that you
attempted to add.

e MBR-RETURN-CODE is a code that indicates the status of each
member the UOW attempted to add. The message OK indicates
that the member was successfully added.

0 OK
4067 W-REMOTE-NAME-ACCEPTED 5656 E-MBR-NSRV-NOT-FOUND
4069 W-NODE-NAME-UNKNOWN 5657 E-MBR-NSRV-DOWN
5650 E-MBR-NSRV-ERR 5661 E-MBR-NET-DOWN
5651 E~-MBR-NOT-FOUND 5662 E-MBR-ALREADY-EXISTS
5652 E-MBR-BAD-NAME 5673 E-MBR-AMBIGUOUS-NAME
5654 E-MBR-NO-SUCH-NODE 5674 E-MBR-BAD-SUFFIX

ADD-MEMBER OPERATION. ADD-MEMBER adds the new members identified
by MEMBER-NAME to the distribution list identified by DLIST-NAME,.
You can specify any number of new members even though the DDL
format shows only 5, restricted only by the limit specified in
the OCCURS clause and the length of the entire IPC that contains
this UOW. The maximum IPC length is defined during TRANSFER
system configuration.

The names of the new distribution list members are fully resolved
as specified by flags in the depot profile. If remote name
resolution is specified in the profile and you add many names to
one or more remote systems, the resulting network traffic might
slow your application appreciably.

If the depot profile specifies that local name resolution is
deferred, the new member names must be fully qualified and
syntactically correct.

If the depot profile specifies that remote resolution is
deferred, a new member name that specifies a remote node will be
added with a warning error:

W-REMOTE-NAME-ACCEPTED if the node name is recognized

W-NODE-NAME-UNKNOWN if the node name is not currently
known to EXPAND

A member name can include a suffix. If the name is resolved to
be that of another distribution list or that of a correspondent
whose depot profile indicates the depot currently does not accept
suffixes, the suffix is discarded without notice.

5-12 “4) 82525 A00 3/85

ADD-RECIP (UOW Code 114)

UOW Descriptions
ADD-RECIP

ADD-RECIP adds a recipient to a package recipient list.

DEF add-recipient-uow.
02 hdr.
03 self-ident
03 uow-code

02 item-id.
03 dummy

02 recip-name

02 recip-type

02 options.
03 wuse-depot-resol-flags
03 defer-local-resolution
03 defer-remote-resolution
03 derived-from-dlist
03 reserved-4
03 reserved-5
03 reserved-6
03 reserved-7

END,

PIC AA VALUE "UW",.
TYPE BINARY 16 UNSIGNED
VALUE 114.

PIC X(12).
PIC X(120).
PIC 9(4) COMP,

TYPE BOOLEAN.
TYPE BOOLEAN.
TYPE BOOLEAN.
TYPE BOOLEAN.
TYPE BOOLEAN VALUE "N",
TYPE BOOLEAN VALUE "N".
TYPE BOOLEAN VALUE "N",
TYPE BOOLEAN VALUE "N".

DEF add-recipient-rsp.
02 hdr.
03 self-ident
03 uow-code

02 retn-code

02 retn-code-detail

02 accepted-name
END,

PIC AA VALUE "UW".

TYPE BINARY 16 UNSIGNED
VALUE 114.

TYPE BINARY 16.

TYPE BINARY 16.

PIC X(120).

ADD-RECIP FIELDS.

e HDR is the UOW header.

The fields defined in this UOW are:

The UOW-CODE value is 114.

e ITEM-ID identifies the package whose recipient list is to be

modified.

Ifj 82525 A00 3/85

This is the item ID of the header for that package.

UOW Descriptions
ADD-RECIP

RECIP-NAME is the name of the recipient to be added to the
recipient list. The name can identify either a correspondent
or a distribution list. This can be a partially qualified
name provided local and remote name resolution is not deferred
in the depot profile. The name can include wildcard
characters and a suffix.

If the name is resolved to be that of a distribution list or
that of a correspondent whose depot profile indicates the
depot currently does not accept suffixes, the suffix is
discarded without notice.

RECIP-TYPE is the recipient type by which your application
categorizes the recipients of packages, as described in
Appendix B. This field is not interpreted by TRANSFER, but is
returned by the GET-RECIP-REC UOW.

OPTIONS includes the following fields:

USE-DEPOT-RESOL-FLAGS

Y TRANSFER resolves the recipient name by using the
depot service flags pertaining to name resolution and
defined at the depot with the ALTER-PROFILE-ELEMENT
UOW, and ignores the DEFER-LOCAL-RESOLUTION and

DEFER-REMOTE-RESOLUTION fields.

Z
n

TRANSFER ignores those depot service flags and uses
the DEFER-LOCAL-RESOLUTION and DEFER-REMOTE-RESOLUTION
fields as name resolving criteria.

DEFER-LOCAL-RESOLUTION

Y = TRANSFER defers the resolution of locally defined
names.
N = TRANSFER immediately resolves these names.

DEFER-REMOTE-RESOLUTION

Y = TRANSFER defers the resolution of remotely defined
names.
N = TRANSFER immediately resolves these names.

DERIVED-FROM-DLIST is used only by TAREQs; this field must
be set to N.

RESERVED-4 through RESERVED-7 are reserved for use by
Tandem; these fields must be set to N.

5-14 “4 82525 A00 3/85

UOW Descriptions
ADD-RECIP

e RETN-CODE is the return code. TISERV returns a code in this
field to indicate one of the following entries.

To indicate successful addition of the recipient:
0 OK

To indicate problems with the recipient name:

5750 E-RECIP-NSRV-ERR 5756 E-RECIP-NSRV-NOT-FOUND
5751 E-RECIP-NOT-FOUND 5757 E-RECIP-NSRV-DOWN

5752 E-RECIP-BAD-NAME 5761 E-RECIP-NET-DOWN

5754 E-RECIP-NO-SUCH-NODE 5773 E-RECIP-AMBIGUOUS-NAME
5755 E-RECIP-SECURITY 5774 E-RECIP-BAD-SUFFIX

To indicate other problems:

4010 E-BAD-TRANSACTION 4051 E-MUST-BE-YN

4035 E-ITEM-NOT-FOUND 4052 E-RESERVED-MUST-BE-N
4041 E-ITEM-UNALTERABLE 4065 E-INVALID-RECIP-TYPE
4042 E-ITEM-NOT-PKG-HDR 4067 W-REMOTE-NAME-ACCEPTED
4049 W-REC-ALREADY-EXISTS 4069 W-NODE-NAME-UNKNOWN

e RETN-CODE-DETAIL is an error number returned by a subsystem
other than TRANSFER or is a further qualification of an error
detected by TRANSFER.

e ACCEPTED-NAME is the recipient name returned by TRANSFER,
resolved as fully as possible at this time.

ADD-RECIP OPERATION. ADD-RECIP adds the name identified by
RECIP-NAME to the recipient list for the package identified by
ITEM-1D.

You can request TRANSFER to defer resolution of local or remote
recipient names with the DEFER-LOCAL-RESOLUTION or DEFER-
REMOTE-RESOLUTION fields, respectively. If resolution deferral
is requested for either a local or remote name, that name must be
supplied as a fully qualified name in the RECIPIENT-NAME field;
in this case, the name will be interactively checked for correct
syntax only.

Distribution list names are always expanded asynchronously.

44 82525 A00 3/85 5-15

UOW Descriptions
ALTER-AGENT-SELECT

ALTER-AGENT-SELECT (UOW Code 208)

ALTER-AGENT-SELECT changes agent selection criteria for a depot.
Typically, this UOW is issued after a GET-AGENT-SELECT UOW.

DEF alter-agent-select-uow.
02 hdr.
03 self-ident
03 uow-code

02 filler
02 corr-name

02 filler

02 action

02 agent-rec-num

02 agent-name

02 agent-type

02 agent-flag

02 applic-id-for-logon

02 applic-id-low

02 applic-id-high

02 agent-sel-low

02 agent-sel-high

02 agent-data
END.

PIC AA VALUE "UW".

TYPE BINARY 16 UNSIGNED
VALUE 208.

TYPE CHARACTER 4.

PIC X(80)
VALUE SPACES.

TYPE CHARACTER 1.

TYPE CHARACTER 1.

TYPE BINARY 16 UNSIGNED.

TYPE CHARACTER 80.

TYPE CHARACTER 1.

TYPE CHARACTER 1.

PIC 9(4) COMP.

PIC 9(4) COMP.

PIC 9(4) COMP.

PIC 9(4) COMP.

PIC 9(4) COMP,

TYPE CHARACTER 80.

DEF alter-agent-select-rsp.
02 hdr.
03 self-ident
03 uow-code

02 retn-code
02 retn-code-detail
02 agent-rec-num
02 corr-name
END.

PIC AA VALUE "UW".

TYPE BINARY 16 UNSIGNED
VALUE 208.

TYPE BINARY 16.

TYPE BINARY 16.

TYPE BINARY 16 UNSIGNED,

PIC X(80).

ALTER-AGENT-SELECT FIELDS.

The fields defined in this UOW are:

e HDR is the UOW header. The UOW-CODE value is 208.

5-16

lii 82525 A00 3/85

UOW Descriptions
ALTER-AGENT-SELECT

e CORR-NAME is the name of the correspondent represented by the
calling process. Only system administrators can enter
correspondent names other than their own in this field;
correspondents without system administrator privileges must
enter their own names or leave the field blank. On input, you
can use a partially qualified name, including wildcard
characters. In the response, the fully qualified name is
returned.

e ACTION specifies the type of updating to be performed, as
follows:

Entry Meaning

INSERT-AFTER-REC (I) 1Insert the selection criteria defined
by UOW fields AGENT-NAME through
AGENT-DATA. Place this criteria in
the agent list after the record
identified by AGENT-REC-NUM. To
insert the record at the beginning of
the list, set AGENT-REC-NUM to 0.

REWRITE-REC (W) Update the agent specified by
AGENT-REC-NUM.

DELETE-REC (D) Delete the agent specified by
AGENT-REC~-NUM.

® AGENT-REC-NUM is the position of the record that defines the
agent in the agent list for the depot. To get the position
number, you can issue a GET-AGENT-SELECT UOW and perform a
read-after with AGENT-REC-NUM set to 0.

In the response, TISERV sets this field as follows:

- For insert (I action), the field is set to the record
number where the selection criteria was inserted.

- For update (W action), the field is set to the same record
number entered on input.

- For delete (D action), the field is set to 0 if no agent
exists after the one just deleted; or the field is set to
the number of the next remaining agent, which is a value
equal to that provided in the delete request.

® AGENT-NAME is the name of the SCREEN COBOL program or server
class that operates as the agent. You determine whether this
name identifies a SCREEN COBOL program or a server class with
the AGENT-TYPE field.

4 82525 A00 3/85 5-17

UOW Descriptions
ALTER-AGENT-SELECT

AGENT-TYPE determines whether the program denoted by
AGENT-NAME is a SCREEN COBOL program or a server class name.

Y SCREEN COBOL program

N = server class name

AGENT-FLAG determines whether the agent requires the
associated TAREQ to begin a session on its behalf before the
agent can run. If the agent issues UOWs to a TRANSFER
process, a session must be started for the agent before the
agent can execute.

Y initiate session

N do not initiate session

APPLIC-ID-FOR-LOGON is the application ID to be used in the
START-SESSION UOW when the AGENT-FLAG field is set to Y,
meaning that a session will be started before invoking the
agent.

APPLIC-ID-LOW, APPLIC-ID-HIGH, AGENT-SEL-LOW, and
AGENT-SEL-HIGH define numeric ranges used to select the agent.
These fields can contain values ranging from 0 through 9999.
Agent selection is as follows:

1. TAREQ examines the list of agents for a depot and
compares the APPLIC-ID submitted with the package
against the range defined by APPLIC-ID-LOW and
APPLIC-ID-HIGH in the agent selection criteria. If the
submitted APPLIC-ID falls within this range, TAREQ
continues to Step 2; otherwise, the agent is not
selected for execution.

In these fields, the values 100 through 999 are reserved
for Tandem,

2. If the APPLIC-ID submitted with the package falls within
the range defined by APPLIC-ID-LOW and APPLIC-ID-HIGH,
TAREQ compares the AGENT-SEL field submitted with the
package against the range defined by AGENT-SEL-LOW and
AGENT-SEL-HIGH. If the submitted AGENT-SEL falls within
this range, TAREQ invokes the agent.

AGENT-DATA is data that your application passes to the agent;
its use is defined by the agent itself.

5-18 “f 82525 A00 3/85

UOW Descriptions
ALTER-AGENT~-SELECT

NOTE

The default agent configuration screen allows for
viewing and modifying only the first 78 characters of
the 80-character AGENT-DATA field. 1If you are pro-
viding an agent that requires 79 or 80 characters of
agent data, you must also provide a SCREEN COBOL
program for configuring such agents.

e RETN-CODE is the return code. TISERV returns a code in this
field to indicate one of the following entries.

To indicate successful alteration of the agent selection
criteria:

0 OK

To indicate problems with the correspondent name:

5600 E-CORR-NSRV-ERR 5607 E-CORR-NSRV-DOWN
5601 E-CORR-NOT-FOUND 5611 E-CORR-NET-DOWN
5602 E-CORR-BAD-NAME 5622 E-CORR-NOT-SAME-NODE
5604 E-CORR-NO-SUCH-NODE 5623 E-CORR-AMBIGUOUS-NAME

5606 E-CORR-NSRV-NOT-FOUND

To indicate other problems:

4010 E-BAD-TRANSACTION 4201 E-CONTEXT-ERR
4047 E-REC-NOT-FOUND 4214 FE-INVALID-AGENT-NAME
4054 E-INVALID-AGENT-SEL 4230 E-MUST-BE-IWD
4055 E-INVALID-APPLIC-ID 4231 E-INVALID-AGENT-FLAG

4058 E-INVALID-REC-SEQ-NUM 4232 E-INVALID-AGENT-TYPE
4093 E-SECURITY-VIOLATION 4902 E-ERR-PROFILE-FILE

e RETN-CODE-DETAIL is an error number returned by a subsystem
other than TRANSFER or is a further qualification of an error
detected by TRANSFER.

ALTER-AGENT-SELECT OPERATION. ALTER-AGENT-SELECT creates,
deletes, or updates the requested agent selection entry recorded
in the depot profile file. The agent is identified by
AGENT-REC-NUM. The selection entry is contained in fields
AGENT-NAME through AGENT-DATA.

The list of agents for a depot is ordered by agent record number
(AGENT-REC-NUM field). Existing agents can have AGENT-REC-NUM
values in the range of 1 through 500.

44 82525 A00 3/85 5-19

UOW Descriptions
ALTER-AGENT-SELECT

The AGENT-REC-NUM values are numbered consecutively. Deleting an
agent causes the AGENT-REC-NUM of all subsequent agents to
decrease by one. Inserting an agent causes the AGENT-REC-NUM of
all later agents to increase by one.

To insert a new agent after an existing agent, set the ACTION
field to I and the AGENT-REC-NUM field to the record number of
the existing agent.

To insert an agent at the beginning of the agent list, set the
ACTION field to I and the AGENT-REC-NUM field to 0.

A write operation returns the AGENT-REC-NUM of the agent just
written. Thus, an insert operation returns the record number of
the agent just inserted; the number is one greater than the
number you provided in the insert request. To add the next agent
to the end of the list, you should use this record number in a
subsequent ALTER-AGENT-SELECT UOW.

A delete operation returns either of the following:
e zero if no agent exists after the one just deleted

e the number of the next remaining agent, which is a value equal
to that provided in the delete request.

5-20 “4 82525 A00 3/85

ALTER-FOLDER-ORDER (UOW Code 234)

UOW Descriptions
ALTER-FOLDER-ORDER

ALTER-FOLDER-ORDER modifies the ordering criteria for an existing

folder.

The folder must be empty.

DEF alter-folder-order-uow.
02 hdr.
03 self-ident PIC AA VALUE "UW".
03 wuow-code TYPE BINARY 16 UNSIGNED
VALUE 234.
02 corr-name PIC X(80) VALUE SPACES.
02 folder-name PIC X(80).
02 ordering-discipline TYPE CHARACTER 1.
88 time-saved VALUE "T",.
88 creator-name VALUE "C".
88 earliest-deliv-date VALUE "E".
88 applic-defined VALUE "A",
02 filler PIC X(1) VALUE SPACES.
02 applic-order-type PIC 9(4) COMP.
02 options.
03 ascending-sequence TYPE BOOLEAN.
03 allow-duplicates TYPE BOOLEAN,
03 reserved-2 TYPE BOOLEAN VALUE "N".
03 reserved-3 TYPE BOOLEAN VALUE "N",.
03 reserved-4 TYPE BOOLEAN VALUE "N",
03 reserved-5 TYPE BOOLEAN VALUE "N",
03 reserved-6 TYPE BOOLEAN VALUE "N",.
03 reserved-7 TYPE BOOLEAN VALUE "N".
END.

DEF alter-folder-order-rsp.

02 hdr.
03 self-ident
03 uow-code
02 retn-code
02 retn-code-detail
02 corr-name
02 folder—-name
END.

PIC AA VALUE "UW".

TYPE BINARY 16 UNSIGNED
VALUE 234.

TYPE BINARY 16.

TYPE BINARY 16.

PIC X(80).

PIC X(80).

ALTER-FOLDER-ORDER FIELDS.

e HDR is the UOW header. T

4 82525 A00 3/85

The fields defined in this UOW

he UOW-CODE value is 234.

are:

UOW Descriptions
ALTER-FOLDER-ORDER

o

CORR-NAME is the name of the correspondent represented by the
calling process. Only system administrators can enter
correspondent names other than their own in this field;
correspondents without system administrator privileges must
enter their own names or leave the field blank. On input, you
can use a partially qualified name, including wild card
characters. 1In the response, the fully qualified
correspondent name is returned.

FOLDER-NAME is the name of an existing folder that is empty.

Special folder names INBOX and WASTEBASKET can be entered
provided the special folders are empty.

- These special folders cannot have APPLIC-DEFINED (A)
ordering discipline. An attempt to use APPLIC-DEFINED
ordering for these folders returns the error E-SPECIAL-FLD.

- These special folders must allow duplicates. An attempt to
set the ALLOW-DUPLICATES option to N for these folders
returns the error E-SPECIAL-FLD.

ORDERING-DISCIPLINE specifies what information TISERV should
use as the ordering key when saving items in the folder as
follows:

Entry Meaning

TIME-SAVED (T) Save items in chronological order of the
time a SAVE-ITEM UOW is executed for the
items.

TRANSFER A0l1/A02 uses the TIME-SAVED
ordering discipline exclusively.

Folders created by either TRANSFER A0l
or AO02 are ordered in ascending sequence
by time saved unless the ordering
criteria is subsequently altered.

CREATOR-NAME (C) Save items in alphabetic order by
creator name.

EARLIEST-DELIV- Save items that are package headers and

DATE (E) are unalterable by earliest delivery

date; save items that are not package
headers or are package headers and are
alterable by creation date.

=22 4y 82525 A00 3/85

UOW Descriptions
ALTER-FOLDER-ORDER

APPLIC-DEFINED (A) Save items in order of the ordering key
specified by the application in the
SAVE-ITEM-BY-KEY UOW.

An application can specify the same
ordering key for multiple items if
duplicates are allowed; if duplicates
are not allowed, the application is
responsible for ensuring the uniqueness
of the key.

If this field contains a character other than T, C, E, or A,
TISERV returns the error E-INVALID-ORD-DISCIPLN.

e APPLIC-ORDER-TYPE is meaningful only if ORDERING-DISCIPLINE is
APPLIC-DEFINED (A). 1If ORDERING-DISCIPLINE is not APPLIC-
DEFINED, the field is ignored.

This field is not interpreted by TRANSFER, but is stored as
part of the folder's ordering criteria and is returned by the
GET-FOLDER-ORDER UOW. This enables a TRANSFER application to
have several types of APPLIC-DEFINED ordering; the APPLIC-
ORDER-TYPE can be used to distinguish between types.

The field can have a value from 0 through 9999; values 100
through 999 are reserved for Tandem. If a number outside this
range is specified, TISERV returns the error E-INVALID-APP-
ORD-TYPE.

® OPTIONS provides additional criteria for saving items. Two
options are provided.

ASCENDING-SEQUENCE determines whether items are saved within
the folder in ascending or descending key order.

Y

Save items in ascending key order.

N

Save items in descending key order.

Variable length APPLIC-DEFINED keys that are used with
descending key order will not collate in the correct order
unless the application pads the key with enough bytes to
make it a constant length for all entries in the folder.

“§ 82525 A00 3/85 5-23

UOW Descriptions
ALTER-FOLDER-ORDER

A folder ordered by CREATOR-NAME in descending sequence is
an example of a field that is variable length and is auto-
matically padded to be 120 bytes. For a folder ordered by
CREATOR-NAME in ascending sequence, the amount of disc space
used corresponds directly to the length of creator names and
the number of items saved in a folder. Considering creator
names of a maximum of 20 characters, the cost of descending
sequence over ascending sequence in terms of disc space is
approximately 100 bytes per item saved in a folder ordered
by CREATOR-NAME,

ALLOW-DUPLICATES determines whether or not multiple items
with the same ordering key can be saved in a folder.

Y = Duplicate ordering keys are allowed.

N

Duplicate ordering keys are not allowed. This field
has no effect if the ORDERING-DISCIPLINE is TIME-SAVED
(T); TIME-SAVED ordering already ensures a unigque key.
This option is illegal for special folders INBOX and
WASTEBASKET.

RESERVED-2 through RESERVED-7 are reserved for use by
Tandem; these fields must be set to N,

e RETN-CODE is the return code. TISERV returns a code in this
field to indicate one of the following entries.

To indicate successful ordering of the folder:
0 OK

To indicate problems with the correspondent name:

5600 E-CORR-NSVR-ERR 5607 E-CORR-NSRV-DOWN

5601 E-CORR-NOT-FOUND 5611 E-CORR-NET-DOWN

5602 E-CORR-BAD-NAME 5622 E-CORR-NOT-SAME-NODE
5604 E-CORR-NO SUCH NODE 5623 E-CORR-AMBIGUOUS-NAME

5606 E-CORR-NSRV-NOT-FOUND

To indicate problems with the folder name:

5675 E-FLD-NSRV-ERR 5682 E-FLD-NSRV-DOWN
5676 E-FLD-NOT-FOUND 5683 E-FLD-NO-PARENT
5677 E-FLD-BAD-NAME 5686 E-FLD-NET-DOWN
5679 E-FLD-NO-SUCH-NODE 5697 E-FLD-NOT-SAME-NODE

5681 E-FLD-NSRV-NOT-FOUND 5698 E-FLD-AMBIGUOUS-NAME

5-24 “4 82525 A0O 3/85

UOW Descriptions
ALTER-FOLDER-ORDER

To indicate other problems:

4010 E-BAD-TRANSACTION 4265 E-INVALID-ORD-DISCIPLN
4051 E-MUST-BE-YN 4266 E-INVALID-APP-ORD-TYPE
4052 E-RESERVED-MUST-BE-N 4267 E-ITEMS-IN-FLD

4093 E-SECURITY-VIOLATION 4968 E-SPECIAL-FLD

4105 E-CONCURRNT-FLD-UPDATE 4902 E-ERR-PROFILE-FILE
4201 E-CONTEXT-ERR 4912 E-ERR-FOLDER-FILE

e RETN-CODE-DETAIL is an error number returned by a subsystem
other than TRANSFER or is a further qualification of an error
detected by TRANSFER.,

ALTER-FOLDER-ORDER OPERATION. ALTER-FOLDER-ORDER updates the
ordering criteria for the specified folder. Field values in this
UOW indicate the new ordering criteria.

Folder order affects the sequence in which items are saved and
subsequently referenced. Each item saved in a folder has an
associated ordering key. The ordering key can be information
associated with the item, such as the name of the item's creator,
or information provided by the TRANSFER application. Every
folder is ordered by the value of the ordering key associated
with each item stored in the folder.

SCAN-FOLDER, SCAN-FOLDER-B00, and SCAN-FOLDER-BY-KEY UOWs
retrieve item IDs in ordering key sequence. The SCAN-FOLDER-
BY-KEY UOW, however, is restricted to folders with an
APPLIC-DEFINED ordering discipline.

A folder must be empty before the ordering criteria can be

altered., If an ALTER-FOLDER-ORDER UOW is issued for a folder
that contains items, TISERV returns the error E-ITEMS-IN-FLD.

“4) 82525 A00 3/85 5-25

UOW Descriptions
ALTER-ITEM-DESCR

ALTER-ITEM-DESCR (UOW Code 116)

ALTER-ITEM-DESCR updates fields in an item descriptor.

The

descriptor can apply to either a package or a non-package item.
This UOW is used primarily to set a number of attributes for a
package prior to submission of that package for delivery.

Typically, this UOW is issued after a GET-ITEM-DESCR UOW.

DEF alter-item—-descr-uow.
02 hdr.
03 self-ident
03 uow-code

02 item-id.
03 dummy
02 wupdate-control
02 fields-to-alter.
03 item-type
03 earliest-deliv-date
03 latest-deliv-date
03 expiration-date
03 priority
03 agent-selector
03 reserved-6
03 reserved-7
03 deliv-control-flags.
04 certified
04 Dbyte
04 reserved-l
04 reserved-2
04 reserved-3
04 reserved-4
04 reserved-5
04 reserved-6
04 reserved-7
03 err-pkg-suppress-flags.
04 invalid-recip
04 byte
04 invalid-dlist
04 reserved-2
04 too-late-to-deliver
04 expired-unexamined
04 reserved-5
04 reserved-6
04 reserved-7

PIC AA VALUE "UW",
TYPE BINARY 16 UNSIGNED
VALUE 116.

PIC X(12).
PIC S9(4) COMP.

TYPE BOOLEAN.
TYPE BOOLEAN.
TYPE BOOLEAN.
TYPE BOOLEAN.
TYPE BOOLEAN.
TYPE BOOLEAN.
TYPE BOOLEAN VALUE
TYPE BOOLEAN VALUE

"N" .
"N" .

TYPE BOOLEAN.
REDEFINES CERTIFIED PIC X.

TYPE BOOLEAN VALUE "N".

TYPE BOOLEAN VALUE "N",

TYPE BOOLEAN VALUE "N".

TYPE BOOLEAN VALUE "N".

TYPE BOOLEAN VALUE "N",

TYPE BOOLEAN VALUE "N".

TYPE BOOLEAN VALUE "N".

TYPE BOOLEAN,

REDEFINES INVALID-RECIP PIC X,
TYPE BOOLEAN.

TYPE BOOLEAN VALUE "N",

TYPE BOOLEAN.

TYPE BOOLEAN.

TYPE BOOLEAN VALUE "N",

TYPE BOOLEAN VALUE "N".

TYPE BOOLEAN VALUE "N".

o

5-26

4 82525 A00 3/85

UOW Descriptions
ALTER-ITEM-DESCR

02 alterable-fields.
03 item-type
03 rel-date-earliest
03 rel-date-latest
03 rel-date-expiration
03 reserved-3
03 earliest-deliv-date.
04 date-time.

05 year

05 month

05 day-of-month
05 hour

05 minute
05 second
04 delta-time
05 quantity
05 wunits
05 filler
03 latest-deliv-date.
04 date-time.

05 year

05 month

05 day-of-month
05 hour

05 minute
05 second
04 delta-time
05 Quantity
05 units
05 filler
03 expiration-date.
04 date-time.

05 year

05 month

05 day-of-month
05 hour

05 minute
05 second
04 delta-time
05 quantity
05 wunits
05 filler
03 priority
03 agent-selector
03 deliv-control-flags.
04 certified
04 byte

PIC 9(4) COMP.
TYPE BOOLEAN,
TYPE BOOLEAN.,
TYPE BOOLEAN.,
TYPE BOOLEAN VALUE "N",.

PIC 9(4).

PIC 9(2).

PIC 9(2).

PIC 9(2).

PIC 9(2).

PIC 9(2).

REDEFINES DATE-TIME.
PIC 9(4) COMP.

PIC A.

PIC X.

PIC 9(4).

PIC 9(2).

PIC 9(2).

PIC 9(2).

PIC 9(2).

PIC 9(2).

REDEFINES DATE-TIME.
PIC 9(4) COMP.

PIC A.

PIC X.

PIC 9(4).

PIC 9(2).

PIC 9(2).

PIC 9(2).

PIC 9(2).

PIC 9(2).
REDEFINES DATE-TIME.
PIC 9(4) COMP.
PIC A.

PIC X.

PIC 9(3) COMP.
PIC 9(4) COMP.

TYPE BOOLEAN.
REDEFINES CERTIFIED PIC X.

//'| 82525 A00 3/85

5-27

UOW Descriptions
ALTER-ITEM-DESCR

END.

04 reserved-l TYPE BOOLEAN VALUE "N".
04 reserved-2 TYPE BOOLEAN VALUE "N".
04 reserved-3 TYPE BOOLEAN VALUE "N".
04 reserved-4 TYPE BOOLEAN VALUE "N".
04 reserved-5 TYPE BOOLEAN VALUE "N",.
04 reserved-6 TYPE BOOLEAN VALUE "N",.
04 reserved-7 TYPE BOOLEAN VALUE "N",
03 err-pkg-suppress-flags.

04 1invalid-recip TYPE BOOLEAN.

04 Dbyte REDEFINES INVALID-RECIP PIC X.
04 invalid-dlist TYPE BOOLEAN.

04 reserved-2 TYPE BOOLEAN VALUE "N",
04 too-late-to-deliver TYPE BOOLEAN.

04 expired-unexamined TYPE BOOLEAN.

04 reserved-5 TYPE BOOLEAN VALUE "N".
04 reserved-6 TYPE BOOLEAN VALUE "N".
04 reserved-7 TYPE BOOLEAN VALUE "N".

DEF alter-item-descr-rsp.

END.

02 hdr.
03 self-ident PIC AA VALUE "UW".
03 uow-code TYPE BINARY 16 UNSIGNED
VALUE 116.
02 retn-code TYPE BINARY 16.
02 retn-code-detail TYPE BINARY 16.

ALTER-ITEM-DESCR FIELDS. The fields defined in this UOW are:

HDR is the UOW header. The UOW-CODE value is 116.

ITEM-ID identifies the item whose descriptor record is to be
changed.

UPDATE-CONTROL is the counter used to control concurrent
update operations.

Enter the value returned by the GET-ITEM-DESCR UOW. If the
UPDATE-CONTROL field is greater than 0, it must match the
update control value stored in the data base for the update to
succeed. If you set the UPDATE-CONTROL field to -1, TRANSFER
does not check this field against the value stored in the data
base. UPDATE-CONTROL values of 0 or less than -1 are invalid.

5-28 4 82525 A0 3/85

UOW Descriptions
ALTER-ITEM-DESCR

e FIELDS-TO-ALTER lets you select the fields to be altered
within the item descriptor.

Y Select the field for alteration.

N Disable the field from alteration.

The meaning of each item descriptor field that can be accessed
by your process is discussed under ALTERABLE-FIELDS. All of
these fields can be retrieved through the GET-ITEM-DESCR UOW.

RESERVED-6 and RESERVED-7 are reserved for use by Tandem;
these fields must be set to N.

The alterable fields do not require system administrator
capability for alteration; if the item is alterable, the
fields can be modified by any correspondent who has access to
the item.

e DELIV-CONTROL-FLAGS specifies whether or not the package is
certified. Fields within DELIV-CONTROL-FLAGS are as follows:

CERTIFIED specifies whether the package is certified; that
is, whether a certification package is returned to the
sender whenever a recipient acknowledges receipt of a
package via the ACK-RECEIPT UOW.

Y

Flag the package for certification.

N Do not flag the package for certification.
RESERVED-1 through RESERVED-7 are reserved for use by
Tandem; these fields must be set to N.

e ERR-PKG-SUPPRESS-FLAGS lets you suppress the effects of
specific asynchronous errors. Fields within ERR-PKG-
SUPPRESS-FLAGS are as follows:

The flags INVALID-RECIP through EXPIRED-UNEXAMINED denote
asynchronous errors detected by TRANSFER. If one of these
errors occurs and error reporting is not suppressed,
TRANSFER transmits a package reporting the error to the
sender.

Y

Suppress the error-reporting package.

N Do not suppress the error-reporting package.

The fields RESERVED-2 and RESERVED-5 through RESERVED-7 are
reserved for use by Tandem; these fields must be set to N.

4 82525 A00 3/85 5-29

UOW Descriptions
ALTER-ITEM-DESCR

e ALTERABLE-FIELDS lets you indicate what updating should be
done to the fields for which Y was specified under FIELDS-
TO-ALTER. These fields and their allowable entries are
defined as follows:

5-30

ITEM-TYPE indicates the type of the item, as defined by the
application.

REL-DATE-EARLIEST, REL-DATE-LATEST, and REL-DATE-EXPIRATION
determine whether the entries you specify in the EARLIEST-
DELIV-DATE, LATEST-DELIV-DATE, and EXPIRATION-DATE fields
are relative to the dates with respect to particular
delivery milestones, or absolute calendar dates.

Y = relative dates

N absolute dates

RESERVED-3 is reserved for use by Tandem; this field must be
set to N.

EARLIEST-DELIV-DATE is the earliest date at which the
package can be delivered, specified either as an absolute
calendar date or as a number of time units from submission
time. An absolute or relative date is indicated by the
REL-DATE-EARLIEST field.

EARLIEST-DELIV-DATE and LATEST-DELIV-DATE together define
the delivery window within which TRANSFER must deliver the
package, as illustrated in Figure 5-2. 1If TRANSFER is
unable to deliver the package to one or more recipients
during the delivery window, it returns the package to the
sender with an explanation and discontinues further delivery
attempts. Under no circumstances is a package delivered
sooner than its EARLIEST-DELIV-DATE. You can regard the
EARLIEST-DELIV-DATE as the effective submission date of the
package--in other words, as the postmark.

In DELTA-TIME, UNITS is the unit of time denoted in
QUANTITY. UNITS can be set to D (for days), H (for hours),
and M (for minutes). To specify one day, for example, set
QUANTITY to 1 and UNITS to D.

LATEST-DELIV-DATE is the latest date at which TRANSFER can
deliver the package, specified either as an absolute
calendar date or as a number of time units from EARLIEST-
DELIVERY-DATE. An absolute or relative date is indicated by
the REL-DATE-LATEST field.

’{l 82525 A00 3/85

UOW Descriptions
ALTER-ITEM-DESCR

delivery expiration
time time
window window

T T b T

submitted earliest actual latest expiration
date delivery delivery delivery date
date date date

TIME —»

$5039-017

Figure 5-2. Package Delivery Time Milestones

EXPIRATION-DATE is the date on which the package expires.

On this date, the package is automatically removed from the
INBOX of any recipient who has not already acknowledged its
receipt through the ACK-RECEIPT UOW. Packages that either
are acknowledged or are in other folders are not affected by
expiration. Any copy of the package kept by the sender must
be explicitly discarded by the sender. A relative date of
value 0 M means no expiration.

If a package expires and the recipient has not acknowledged

its receipt, TRANSFER removes the package from the INBOX and
notifies the sender. Packages that are acknowledged by the

recipient are never removed from the INBOX by TRANSFER; they
must be explicitly removed by the recipient.

By initial system default, TRANSFER packages do not expire.
You can specify that a given package should eventually
expire by including a nonzero absolute or relative
expiration date/time in the package header. You can change
the default for your depot by specifying a nonzero relative
expiration time in your correspondent profile. This value
must be within the maximum lifespan as indicated by a
TRANSFER system control parameter; each package submitted
with a nonzero expiration field will have that field
increased, as necessary, so that it exceeds the system
minimum,

“4) 82525 A00 3/85 5-31

UOW Descriptions
ALTER-ITEM-DESCR

The interval between the LATEST-DELIV-DATE and EXPIRATION-
DATE is the package expiration time window. You can specify
the EXPIRATION-DATE as an absolute calendar date or a number
of time units from LATEST-DELIV-DATE. An absolute or
relative date is indicated by the REL-DATE-EXPIRATION field.

PRIORITY is the package priority. The field can have a
value from 0 (lowest priority) to 199 (highest priority).

AGENT-SELECTOR is the agent selector criteria, as created by
the ALTER-AGENT-SELECT UOW. This is a number that is stored
with the package to determine which agents are invoked when
the package is delivered. Refer to the ALTER-AGENT-SELECT
UOW.

e RETN-CODE is the return code. TISERV returns a code in this
field to indicate one of the following entries:

0 OK
4010 E-BAD-TRANSACTION 4056 E-INVALID-ITEM-TYPE
4035 E-ITEM-NOT-FOUND 4072 E-UNITS-MUST-BE-DHM
4041 E-ITEM-UNALTERABLE 4073 E-INVALID-DATE-TIME
4042 E-ITEM-NOT-PKG-HDR 4074 E-INVALID-REL-TIME-QTY
4050 E-UPDATE-MISMATCH 4078 E-INVALID-PRIORITY
4051 E-MUST-BE-YN 4906 E-ERR-ITEMDESC-FILE

4052 E-RESERVED-MUST-BE-N 4912 E-ERR-FOLDER-FILE
4054 E-INVALID-AGENT-SEL 4922 E-ERR-INV-FOLDER-FILE

e RETN-CODE-DETAIL is an error number returned by a subsystem
other than TRANSFER or is a further qualification of an error
detected by TRANSFER.

ALTER-ITEM-DESCR OPERATION. ALTER-ITEM-DESCR alters the fields
in an item descriptor. This UOW selects for alteration those
fields chosen in FIELDS-TO-ALTER, and modifies them in accordance
with the information supplied in ALTERABLE-FIELDS.

If you do not issue this UOW for a package, the package will be
delivered by TRANSFER in accordance with default values assumed
at package creation.

If the item descriptor is not a package header item, ITEM-TYPE is
the only field that can be altered.

If the UOW requests updates of multiple fields and one of the

alterations is illegal and fails, none of the requested fields
are updated.

5-32 “4 82525 A00 3/85

ALTER-PROFILE-ELEM (UOW Code 204)

UOW Descriptions
ALTER-PROFILE-ELEM

ALTER-PROFILE-ELEM alters data elements in a depot profile

record.

UOW.

Typically, this UOW is issued after a GET-PROFILE-ELEM

Definition I (a DDL skeleton format to which definitions can be
; for general applications use):

added

DEF
02

alter-profile-elem-usk.
hdr.

03 self-ident

03 wuow-code

PIC AA VALUE "UW".
TYPE BINARY 16 UNSIGNED
VALUE 204.

02

hdr.
03 self-ident
03 uow-code

retn-code
retn-code-detail
corr-name
num-returned

02 filler TYPE CHARACTER 4.
02 corr-name PIC X(80) VALUE SPACES.
02 num-returned TYPE BINARY 16 UNSIGNED.
END.
DEF alter-profile-elem-rsk.

PIC AA VALUE "UW".

TYPE BINARY 16 UNSIGNED
VALUE 204.

TYPE BINARY 16.

TYPE BINARY 16.

PIC X(80).

TYPE BINARY 16.

Definition II (for TAL programs):

4 82525 A00 3/85

DEF alter-profile-elem-uow.
02 hdr.
03 self-ident PIC AA VALUE "UW",
03 uow-code TYPE BINARY 16 UNSIGNED
VALUE 204,
02 filler TYPE CHARACTER 4.
02 corr-name PIC X(80) VALUE SPACES.
02 num-returned TYPE BINARY 16 UNSIGNED.
02 elem-data-block TYPE PROFILE-ELEM-SHORT
OCCURS 0 TO 10 TIMES
DEPENDING ON num-returned.
END.
—
See GET-PROFILE-ELEM for Operational Details
5-33

UOW Descriptions
ALTER-PROFILE-ELEM

DEF alter-profile-elem-rsp.
02 hdr.
03 self-ident PIC AA VALUE "UW".
03 uow-code TYPE BINARY 16 UNSIGNED
VALUE 204.
02 retn-code TYPE BINARY 1l6.
02 retn-code-detail TYPE BINARY 16.
02 corr-name PIC X(80).
02 num-returned TYPE BINARY 16 UNSIGNED.
02 elem-retn-code TYPE BINARY 16
OCCURS 0 TO 10 TIMES
DEPENDING ON num-returned.
END.

ALTER-PROFILE-ELEM FIELDS. The fields defined in this UOW are:

¢ HDR is the UOW header. The UOW-CODE value is 204.

® CORR-NAME is the name of the correspondent whose depot profile
will be altered. This is also the correspondent represented
by the calling process. Only system administrators can enter
correspondent names other than their own in this field;
correspondents without system administrator privileges must
enter their own names or leave the field blank. On input, you
can use a partially qualified name, including wildcard
characters. In the response, the fully qualified name is
returned.

e NUM-RETURNED is the number of data elements that you will
alter. You can specify any number of elements, restricted
only by the length of the entire IPC that contains this UOW.
In the response, this field contains:

- the number actually altered if no serious errors are
detected

- zero if serious errors are detected

e ELEM-DATA-BLOCK (used in Definition II only) represents
specific fields to be altered, and is either 36 or 84 bytes
long. The format of the ELEM-DATA-BLOCK field is the same as
the format in which this field is returned by the GET-PROFILE-
ELEM UOW. Refer to the discussion of the GET-PROFILE-ELEM UOW
for details.

See GET-PROFILE-ELEM for Operational Details
5-34 “ 82525 A00 3/85

UOW Descriptions
ALTER-PROFILE-ELEM

You can specify several element blocks in one ALTER-PROFILE-
ELEM UOW. Long and short element blocks can, in fact, be
mixed; TISERV accepts a mixture of block lengths in one
occurrence of this UOW.

For general applications (Definition I), you typically
construct an ALTER-PROFILE-ELEM UOW by specifying all fields
up to and including NUM-RETURNED, and then specifying separate
definitions for each particular element. Alternatively, you
can define the element block as a DEPENDING ON construction,
using either PROFILE-ELEMENT-SHORT or PROFILE-ELEMENT-LONG;
notice, however, that this type of construction does not
permit mixing both long and short blocks. An example of an
element block construction is:

DEF my-special-request TYPE ALTER-PROFILE-ELEMENT-UOW.
02 data-depot-priorities TYPE *,
02 data-depot-mail-flags TYPE *,
02 data-depot-mail-filename TYPE *,

END.

For this example, NUM-RETURNED would be set to 3.

e RETN-CODE is the return code. TISERV returns a code in this
field to indicate one of the following entries.

To indicate successful record alteration:
0 OK

To indicate problems with the correspondent name:

5600 E-CORR-NSRV-ERR 5607 E-CORR-NSRV~-DOWN
5601 E-CORR-NOT-FOUND 5611 E-CORR-NET-DOWN
5602 E-CORR-BAD-NAME 5622 E-CORR-NOT-SAME-NODE
5604 E-CORR-NO-SUCH-NODE 5623 E-CORR-AMBIGUOUS-NAME

5606 E-CORR-NSRV-NOT-FOUND
To indicate other problems:

4010 E-BAD-TRANSACTION 4210 W-IDENTIFIER-ERRS
4093 E-SECURITY-VIOLATION 4902 E-ERR-PROFILE-FILE
4201 E-CONTEXT-ERR

e RETN-CODE-DETAIL is an error number returned by a subsystem
other than TRANSFER or is a further qualification of an error
detected by TRANSFER.

e ELEM-RETN-CODE (used in Definition II only) supplies return
codes for specific data elements. The response contains the
same number of return codes as the number of elements for
which alteration was requested.

See GET-PROFILE-ELEM for Operational Details
4 82525 A00 3/85 5-35

UOW Descriptions
ALTER-PROFILE-ELEM

To indicate successful alteration of the element:
0 OK

To indicate errors encountered with the element, see the
discussion of the GET-PROFILE-ELEM UOW.

ALTER-PROFILE-ELEM OPERATION., The ALTER-PROFILE-ELEM UOW and the
GET-PROFILE-ELEM UOW complement each other. Because these two
UOWs are closely involved with one another and because they share
common field definitions, the details of their operation are
discussed in a common area of this manual, under the description
of the GET-PROFILE-ELEM UOW. Refer to that description for
further information about the ALTER-PROFILE-ELEM UOW.

The GET-PROFILE-ELEM response has exactly the same format as the
ALTER-PROFILE-ELEM request. To use the same definition for both
UOWs, you only need to change the UOW code value.

See GET-PROFILE-ELEM for Operational Details
5-36 “) 82525 A00 3/85

UOW Descriptions
ATTACH-COMPNT~AQl

ATTACH-COMPNT-AQ0l (UOW Code 136)

ATTACH-COMPNT-AQOl attaches a component item to a parent.

DEF

END.

attach-compnt-a0l-uow,
02 hdr.

03 self-ident

03 uow-code

02 parent-item-id.

03 dummy
02 compnt-id.
03 dummy

02 rel-position
02 compnt-type

PIC AA VALUE "UW",
TYPE BINARY 16 UNSIGNED
VALUE 136.

PIC X(12).
PIC X(12).

TYPE BINARY 16.
PIC 9(4) COMP.

DEF

attach-compnt-a0l-rsp.

END.

02 hdr.
03 self-ident
03 uow-code

PIC AA VALUE "UW",

TYPE BINARY 16 UNSIGNED
VALUE 136.

TYPE BINARY 16.

TYPE BINARY 16.

TYPE BINARY 16.

02 retn-code
02 retn-code-detail
02 inserted-position

ATTACH-COMPNT-AQOl FIELDS.

The fields defined in this UOW are:

/7’| 82525 A00 3/85

HDR is the UOW header. The UOW-CODE value is 136.

PARENT-ITEM-ID is the parent item.
COMPNT-ID is the component item,

REL-POSITION is the position that the component item will
occupy in the parent item component list. Unless this is the
last position, the entry previously occupying this position
and all entries following it are shifted to the next higher
position. The first component item occupies relative position
1. The value 0 is illegal in this field.

5-37

UOW Descriptions
ATTACH-COMPNT-AQl

If the relative position of the last component is unknown, you
can reference this position by setting the REL-POSITION field
to -1. The value -1 means the last position of the list.
Suppose, for example, that the list contained 30 components.
If you issued the ATTACH-COMPNT-AQ0l UOW to attach a new
component to the item and used the value -1 in REL-POSITION,
that new component would occupy the 31st position in the list,
as illustrated in Figure 5-3,.

Component 1

Component 2

Component 3

W\/
{ Existing
List

—

Component 28

Component 29

Component 30

New Component Added

Component 31 by ATTACH-COMPNT-A01 UOW

$5039-018

Figure 5-3. Attaching a New Component to a Parent Item

o COMPNT-TYPE is a numeric value that TRANSFER will save with
the component. The value can range from 0 through 9999;
values 100 through 999 are reserved for Tandem. You can use
this field to indicate why the component was attached. This
field is returned with the component by the GET-ITEM-COMPNT-
A0l UOW. The field is not interpreted by TRANSFER.

5-38) 82525 A00 3/85

UOW Descriptions
ATTACH-COMPNT-A(1l

¢ RETN-CODE is the return code. TISERV returns a code in this
field to indicate one of the following entries:

0 OK 4039 E-COMPNT-NOT-FOUND
4010 E-BAD-TRANSACTION 4040 E-BAD-ITEM-DESCR
4036 E-ITEM-TOO-COMPLEX 4041 E-ITEM-UNALTERABLE
4037 E-PARENT-NOT-FOUND 4057 E-INVALID-REL-POSITION
4038 E-COMPNT-CYCLE 4096 E-INVALID-COMPNT-TYPE

e RETN-CODE-DETAIL is an error number returned by a subsystem
other than TRANSFER or is a further qualification of an error
detected by TRANSFER.

e INSERTED-POSITION is the position actually occupied by the new
item after insertion into the components list.

ATTACH-COMPNT-AQl OPERATION. ATTACH-COMPNT-AQl attaches one item
as a component of another. TISERV records the item IDs of
components in components list records that are treated as part of
the parent item. If this operation is successful, the component
count in the parent item descriptor, and the parent count in the
component item descriptor are both incremented by 1.

A component item can contain its own components, each of which
can also have components; thus, you can create an entire tree of
items. The parent item cannot itself be in its own tree of
components; this is known as a component cycle as described in
Section 6.

4 82525 AQO 3/85 5-39

UOW Descriptions
CANCEL-PKG

CANCEL-PKG (UOW Code 118)

CANCEL-PKG cancels a package. A package can only be canceled by
its sender.

DEF cancel-pkg-uow.

02 hdr.
03 self-ident PIC AA VALUE "UW",
03 uow-code TYPE BINARY 16 UNSIGNED
VALUE 118.

02 item-id.
03 dummy PIC X(12).
END.

DEF cancel-pkg-rsp.

02 hdr.
03 self-ident PIC AA VALUE "UW".
03 uow-code TYPE BINARY 16 UNSIGNED
VALUE 118.
02 retn-code TYPE BINARY 16.
02 retn-code-detail TYPE BINARY 16.
END.

CANCEL-PKG FIELDS. The fields defined in this UOW are:

®» HDR is the UOW header. The UOW-CODE value is 118,

® ITEM-ID is the item ID of the package header for the package
to be canceled.

®» RETN-CODE is the return code. TISERV returns a code in this
field to indicate one of the following entries:

0 OK
4010 E-BAD-TRANSACTION 4045 E-TSCHED-UNAVAIL
4035 E-ITEM-NOT-FOUND 4081 W-DELIV-IN-PROGRESS
4042 E-ITEM-NOT-PKG-HDR 4083 E-NOT-CREATED-BY-YOU
4044 E-PREVIOUSLY-CANCELED 4084 E-PKG-NOT-SUBMITTED

®» RETN-CODE-DETAIL is an error number returned by a subsystem
other than TRANSFER or is a further qualification of an error
detected by TRANSFER.

-40 “4 82525 A00 3/85

Gi

UOW Descriptions
CANCEL-PKG

CANCEL-PKG OPERATION. CANCEL-PKG cancels delivery of the package
indicated by ITEM-ID. TRANSFER removes this package from the
INBOX folder of those recipients that have not acknowledged
receipt. The CANCEL-PKG UOW also prevents any future deliveries
of the package.

TRANSFER sends a cancellation notification package to any
recipients who have already examined the package with the
ACK-RECEIPT UOW. In addition, TRANSFER notifies the sender of
any recipient who has examined the canceled package.

NOTE

Cancellation of packages after their delivery has been
initiated might create inconsistencies at the application
level, and might not fully eliminate all traces of the
package in the system or network.

“9 82525 A0O0 3/85 5-41

UOW Descriptions
COPY-ITEM

COPY-ITEM (UOW Code 107)

COPY-ITEM makes a copy of an existing item.

DEF copy-item-uow.
02 hdr.
03 self-ident
03 wuwow-code

02 item-id.
03 dummy

02 options.
03 copy-data
03 copy-recips
03 copy-compnts
03 reserved-3

END.

PIC AA VALUE "UW",
TYPE BINARY 16 UNSIGNED
VALUE 107.

PIC X(12).

TYPE BOOLEAN.
TYPE BOOLEAN.
TYPE BOOLEAN.
TYPE BOOLEAN VALUE "N",

DEF copy-item-rsp.
02 hdr.
03 self-ident
03 uow-code

02 retn-code
02 retn-code-detail
02 new-item-id.
03 dummy
END.

PIC AA VALUE "UW".

TYPE BINARY 16 UNSIGNED
VALUE 107.

TYPE BINARY 16.

TYPE BINARY 1l6.

PIC X(12).

COPY-ITEM FIELDS. The fields defined in this UOW are:

®» HDR is the UOW header.

The UOW-CODE value is 107.

® ITEM-ID is the item to be copied (the source item).

® OPTIONS allow you to specify what is included in the copying

operation by entering Y (for yes) or N (for no):

COPY-DATA - copy all data records associated with the item.

COPY-RECIPS - copy all recipients associated with the item

if the item is a package header item.

5-42

’{l 82525 A00 3/85

UOW Descriptions
COPY-ITEM

COPY-COMPNTS - attach all components of the original item to
the new copy of the item.

RESERVED-3 - reserved for use by Tandem; this field must be
set to N.

e RETN-CODE is the return code. TISERV returns a code in this
field to indicate one of the following entries:

0 OK
4010 E-BAD-TRANSACTION 4051 E-MUST-BE-YN
4035 E-ITEM-NOT-FOUND 4052 E-RESERVED-MUST-BE-N

e RETN-CODE-DETAIL is an error number returned by a subsystem
other than TRANSFER or is a further qualification of an error
detected by TRANSFER.

e NEW-ITEM-ID is the ID of the new item created by the copy
operation.

COPY-ITEM OPERATION. COPY-ITEM makes a copy of an existing item.
This creates a new i1tem. If the COPY-DATA field is set to ¥, the
new item contains the same client data as the item specified by
ITEM-ID. This operation is equivalent to issuing a CREATE-ITEM
request, followed by one ADD-ITEM-REC request for each client
record in the original item. The new item is identified by the
ID returned in NEW-ITEM-ID.

If the item is a package header, TRANSFER copies into the new
item descriptor those fields that can be modified by your client;
these are the fields that can be specified in the ALTER-ITEM-
DESCR UOW. All other descriptor fields in the copy operation
contain default values assigned by TRANSFER.

If COPY-RECIPS

Y TRANSFER copies all recipients associated
with the item if the item is a package
header item.

If COPY-COMPNTS

L}
]

TRANSFER attaches all components of the
original item to the copied item, and
increments the parent count of each
component by 1.

If you must retain access to the new item beyond the end of the
current session, you must either save that item in a folder or
attach the item to another item., The new item is saved in an
internal temporary folder upon creation and is removed from that
folder when the session is terminated.

4 82525 A00 3/85 5-43

UOW Descriptions
CREATE-DEPOT

CREATE-DEPOT (UOW Code 201)
CREATE-DEPOT creates a new correspondent and depot. This UOW can

be issued only by correspondents with system administrator
capability.

DEF create-depot-uow.
02 hdr.
03 self-ident PIC AA VALUE "UW".
03 wuow-code TYPE BINARY 16 UNSIGNED
VALUE 201.
02 new-corr PIC X(80).
02 model-name PIC X(80) VALUE SPACES.
END.
DEF create-depot-rsp.
02 hdr.
03 self-ident PIC AA VALUE "UW".
03 wuow-code TYPE BINARY 16 UNSIGNED
VALUE 201.
02 retn-code TYPE BINARY 1l6.
02 retn-code-detail TYPE BINARY 16.
END.

CREATE-DEPOT FIELDS. The fields defined in this UOW are:

e HDR is the UOW header. The UOW-CODE value is 201.
¢ NEW-CORR is the name of the new correspondent.

e MODEL-NAME is the name of an existing correspondent whose
depot will be used as a model depot. The profile and the
special folders for the model depot are used as a model to
construct the profile and the special folders for the new
depot. TRANSFER copies the attributes (all profile records
and special folder ordering criteria) of the model depot into
the depot for the new correspondent. If you do not specify a
model name in this field, TRANSFER uses the default model
depot.

¢ RETN-CODE is the return code. TISERV returns a code in this
field to indicate one of the following entries.

5-44 “4 82525 A0 3/85

UOW Descriptions
CREATE-DEPOT

To indicate successful creation of the new correspondent and
depot:

0 OK

To indicate problems with the new correspondent name:

4208 E-CORR-BLANK 5607 E-CORR-NSRV-DOWN
5600 E-CORR-NSRV-ERR 5612 E-CORR-ALREADY-EXISTS
5602 E-CORR-BAD-NAME 5622 E-CORR-NOT-SAME-NODE

5606 E-CORR-NSRV-NOT-FOUND
To indicate problems with the model name:

4205 E-MODEL-DEPOT-ABSENT 5731 E-MODEL-NSRV-NOT-FOUND

5725 E-MODEL-NSRV-ERR 5732 E-MODEL-NSRV-DOWN
5726 E-MODEL-NOT-FOUND 5736 E-MODEL-NET-DOWN
5727 E-MODEL-BAD-NAME 5747 E-MODEL-NOT-SAME-NODE

5729 E-MODEL-NO-SUCH-NODE 5748 E-MODEL-AMBIGUOUS-NAME
To indicate other problems:

4010 E-BAD-TRANSACTION 4201 E-CONTEXT-ERR
4093 E-SECURITY-VIOLATION 4902 E-ERR-PROFILE-FILE

e RETN-CODE-DETAIL is an error number returned by a subsystem
other than TRANSFER or is a further qualification of an error
detected by TRANSFER.

CREATE-DEPOT OPERATION. The CREATE-DEPOT UOW adds a new
correspondent to the system by entering the correspondent name in
the TRANSFER name directory, and creates a depot for that
correspondent. The depot is created on the same node as the copy
of TISERV accessed by this UOW.

If a depot already exists for the correspondent identified by
NEW-CORR or if certain other errors occur, TRANSFER does not
create the depot.

If you specify a model depot in the MODEL-NAME field, TRANSFER
copies all profiles, including any agents, from the model depot
to the new depot profile. TRANSFER uses the ordering criteria
that was specified for the special folders in the model depot for
the special folders in the new depot. If you do not specify a
model depot, TRANSFER uses the default model depot.

44y 82525 A00 3/85 5-45

UOW Descriptions
CREATE~-DLIST

CREATE-DLIST (UOW Code 217)

CREATE-DLIST creates a distribution list,

DEF create-dlist-uow,
02 hdr.
03 self-ident PIC AA VALUE "UW".
03 uow-code TYPE BINARY 16 UNSIGNED
VALUE 217.
02 corr-name PIC X(80) VALUE SPACES.
02 dlist-name PIC X(80).
END,
DEF create-dlist-rsp.
02 hdr.
03 self-ident PIC AA VALUE "UW".
03 uow-code TYPE BINARY 16 UNSIGNED
VALUE 217.
02 retn-code TYPE BINARY 16.
02 retn-code-detail TYPE BINARY 16.
02 corr-name PIC X(80).
END.

CREATE-DLIST FIELDS. The fields defined in this UOW are:

e HDR is the UOW header. The UOW-CODE value is 217.

® CORR-NAME is the name of the correspondent represented by the
calling process. Only system administrators can enter
correspondent names other than their own in this field;
correspondents without system administrator privileges must
enter their own names or leave the field blank. On input, you
can use a partially qualified name, including wildcard
characters. In the response, the fully qualified name is
returned.

e DLIST-NAME is the name to be assigned to the new distribution
list. The name must be either a TRANSFER simple name or a
fully qualified name.

e RETN-CODE is the return code. TISERV returns a code in this
field to indicate one of the following entries.

To indicate successful creation of the distribution list:

0 OK

5-46 “§ 82525 A0O 3/85

To indicate problems with the

5600
5601
5602
5604
5606

E-CORR-NSRV-ERR
E-CORR-NOT-FOUND
E-CORR-BAD-NAME
E-CORR-NO-SUCH-NODE
E-CORR-NSRV-NOT-FOUND

UOW Descriptions
CREATE-DLIST

correspondent name:

5607
5611
5622
5623

E-CORR-NSRV-DOWN
E-CORR-NET-DOWN
E-CORR-NOT-SAME-NODE
E-CORR-AMBIGUOUS-NAME

To indicate problems with the distribution list name:

5625
5627
5629
5631
5632

E-DLIST-NSRV-ERR
E-DLIST-BAD-NAME
E-DLIST-NO-SUCH-NODE
E-DLIST-NSRV-NOT-FOUND
E-DLIST-NSRV-DOWN

To indicate other problems:

4010
4093

E-BAD-TRANSACTION
E-SECURITY-VIOLATION

5633
5636
5637
5647
5648

4201
4902

E-DLIST-NO-PARENT
E-DLIST-NET-DOWN
E-DLIST-ALREADY-EXISTS
E-DLIST-NOT-SAME-NODE
E-DLIST-AMBIGUOUS-NAME

E-CONTEXT-ERR
E-ERR-PROFILE-FILE

e RETN-CODE-DETAIL is an error number returned by a subsystem
other than TRANSFER or is a further qualification of an error
detected by TRANSFER.,

CREATE-DLIST

OPERATION,

4 82525 A00 3/85

CREATE-DLIST creates a new distribution
list with the name assigned in DLIST-NAME.

5-47

UOW Descriptions
CREATE-FOLDER

CREATE-FOLDER (UOW Code 227)

CREATE-FOLDER creates a new folder. This UOW is maintained for
version compatibility only. CREATE-FOLDER-B0OO is the recommended

UOW.
DEF create-folder-uow.
02 hdr.
03 self-ident PIC AA VALUE "UW".
03 uow-code TYPE BINARY 16 UNSIGNED
VALUE 227.
02 corr-name PIC X(80) VALUE SPACES.
02 folder-name PIC X(80).
END.
DEF create-folder-rsp.
02 hdr.
03 self-ident PIC AA VALUE "UW",.
03 uow-code TYPE BINARY 16 UNSIGNED
VALUE 227.
02 retn-code TYPE BINARY 16.
02 retn-code-detail TYPE BINARY 16.
02 corr-name PIC X(80).
END.

CREATE-FOLDER FIELDS. The fields defined in this UOW are:

HDR is the UOW header. The UOW-CODE value 1is 227.

CORR-NAME is the name of the correspondent represented by the
calling process. Only system administrators can enter
correspondent names other than their own in this field;
correspondents without system administrator privileges must
enter their own names or leave the field blank. On input, you
can use a partially qualified name, including wildcard
characters. In the response, the fully qualified
correspondent name is returned.

FOLDER-NAME is the name to be assigned to the new folder. The
name must be either a TRANSFER simple name or a fully
qualified name.

RETN-CODE is the return code. TISERV returns a code in this
field to indicate one of the following entries.

5-48 “4 82525 A00 3/85

UOW Descriptions
CREATE-FOLDER

To indicate successful creation of the folder:

0

OK

To indicate problems with the correspondent name:

5600
5601
5602
5604
5606

E-CORR-NSRV-ERR
E-CORR-NOT-FOUND
E-CORR-BAD-NAME
E-CORR-NO-SUCH-NODE
E-CORR-NSRV-NOT-FOUND

5607
5611
5622
5623

E-CORR-NSRV-DOWN
E-CORR-NET-DOWN
E-CORR-NOT-SAME-NODE
E-CORR-AMBIGUOUS-NAME

To indicate problems with the folder name:

5675
5677
5679
5681
5682

E-FLD-NSRV-ERR
E-FLD-BAD-NAME
E-FLD-NO-SUCH-NODE
E-FLD-NSRV-NOT-FOUND
E-FLD-NSRV-DOWN

To indicate other problems:

4010
4093

E-BAD-TRANSACTION
E-SECURITY-VIOLATION

5683
5686
5687
5697
5698

4201
4802

E-FLD-NO-PARENT
E-FLD-NET-DOWN
E-FLD-ALREADY-EXISTS
E-FLD-NOT-SAME-NODE
E-FLD-AMBIGUOUS-NAME

E-CONTEXT-ERR
E-ERR-PROFILE-FILE

e RETN-CODE-DETAIL is an error number returned by a subsystem
other than TRANSFER or is a further qualification of an error
detected by TRANSFER.

CREATE-FOLDER OPERATION.

the name assigned in FOLDER-NAME.
ascending sequence by time saved, which is the ordering criteria
used by TRANSFER A01/A02.

4 82525 AQ00 3/85

CREATE-FOLDER creates a new folder with
The folder is created in

UOW Descriptions
CREATE-FOLDER-BO0O

CREATE-FOLDER-B00 (UOW Code 232)

CREATE-FOLDER-B00 creates a new folder and establishes the
ordering criteria by which items will be stored in the folder.

DEF create-folder-b00-uow.
02 hdr.
03 self-ident
03 uow-code

PIC AA VALUE "UW".
TYPE BINARY 16 UNSIGNED
VALUE 232,

02 corr-name PIC X(80) VALUE SPACES.

02 folder-name PIC X(80).
02 ordering-discipline TYPE CHARACTER 1.
88 time-saved VALUE "T".
88 creator-name VALUE "C".
88 earliest-deliv-date VALUE "E".
88 applic-defined VALUE "A".
02 filler PIC X(1) VALUE SPACES.

02 applic-order-type PIC 9(4) COMP.

02 options.

03 ascending-sequence TYPE BOOLEAN.

03 allow-duplicates TYPE BOOLEAN.

03 reserved-2 TYPE BOOLEAN VALUE "N".
03 reserved-3 TYPE BOOLEAN VALUE "N".
03 reserved-4 TYPE BOOLEAN VALUE "N".
03 reserved-5 TYPE BOOLEAN VALUE "N".
03 reserved-6 TYPE BOOLEAN VALUE "N".
03 reserved-7 TYPE BOOLEAN VALUE "N".

END.

DEF create-folder-b00-rsp.
02 hdr.
03 self-ident
03 uow-code

PIC AA VALUE "UW".
TYPE BINARY 16 UNSIGNED
VALUE 232.

02 retn-code
02 retn-code-detail
02 corr-name

END.

TYPE BINARY 16.
TYPE BINARY 16.
PIC X(80).

CREATE-FOLDER-B00 FIELDS. The fields defined in this UOW are:

e HDR is the UOW header. The UOW-CODE value is 232,

5-50 “) 82525 A00 3/85

UOW Descriptions
CREATE~FOLDER-B0O

® CORR-NAME is the name of the correspondent represented by the
calling process. Only system administrators can enter
correspondent names other than their own in this field;
correspondents without system administrator privileges must
enter their own names or leave the field blank. On input, you
can use a partially qualified name, including wildcard
characters. In the response, the fully qualified
correspondent name is returned.

e FOLDER-NAME is the name to be assigned to the new folder. The
name must be either a TRANSFER simple name or a fully
qualified name.

® ORDERING-DISCIPLINE specifies what information TISERV should
use as the ordering key when saving items in the folder as

follows:

Entry Meaning

TIME-SAVED (T) Save items in chronological order of the
time a SAVE-ITEM UOW is executed for the
items.

CREATOR-NAME (C) Save items in alphabetic order by
creator name.

EARLIEST-DELIV- Save items that are package headers and

DATE (E) are unalterable by earliest delivery

date; save items that are not package
headers or are package headers and are
alterable by creation date.

APPLIC-DEFINED (A) Save items in order of the ordering key
specified by the application in the
SAVE-ITEM-BY-KEY UOW.

An application can specify the same
ordering key for multiple items if
duplicates are allowed; if duplicates
are not allowed, the application is
responsible for ensuring the uniqueness
of the key.

If this field contains a character other than T, C, E, or A,
TISERV returns the error E-INVALID-ORD-DISCIPLN.

4 82525 A00 3/85 5-51

UOW Descriptions
CREATE-FOLDER-BO0O0

APPLIC-ORDER-TYPE is meaningful only if ORDERING-DISCIPLINE is
APPLIC-DEFINED (A). If ORDERING-DISCIPLINE is not
APPLIC-DEFINED, the field is ignored.

This field is not interpreted by TRANSFER, but is stored as
part of the folder's ordering criteria and is returned by the
GET-FOLDER-ORDER UOW. This enables a TRANSFER application to
have several types of APPLIC-DEFINED ordering; the
APPLIC-ORDER-TYPE can be used to distinguish between types.

The field can have a value from 0 through 9999; values 100
through 999 are reserved for Tandem. If a number outside this
range is specified, TISERV returns the error E-INVALID-APP-
ORD-TYPE.

OPTIONS provides additional criteria for saving items. Two
options are provided.

ASCENDING-SEQUENCE determines whether items are saved
within the folder in ascending or descending key order.

Y

Save items in ascending key order.

N

Save items in descending key order.

Variable length APPLIC-DEFINED keys that are used with
descending key order will not collate in the correct order
unless the application pads the key with enough bytes to
make it a constant length for all entries in the folder.

A folder ordered by CREATOR-NAME in descending sequence is
an example of a field that is variable length and is auto-
matically padded to be 120 bytes. For a folder ordered by
CREATOR-NAME in ascending sequence, the amount of disc space
used corresponds directly to the length of creator names and
the number of items saved in a folder. Considering creator
names of a maximum of 20 characters, the cost of descending
sequence over ascending sequence in terms of disc space is
approximately 100 bytes per item saved in a folder ordered
by CREATOR-~NAME.

ALLOW-DUPLICATES determines whether or not multiple items
with the same ordering key can be saved in a folder.

Y

Duplicate ordering keys are allowed.

N = Duplicate ordering keys are not allowed. This field
has no effect if the ORDERING-DISCIPLINE is TIME-SAVED

(T); TIME-SAVED ordering already ensures a unique key.

5-52 “} 82525 A00 3/85

UOW Descriptions
CREATE-FOLDER-BO0O

RESERVED-2 through RESERVED-7 are reserved for use by
Tandem; these fields must be set to N,

e RETN-CODE is the return code. TISERV returns a code in this
field to indicate one of the following entries.

To indicate successful creation of the folder:
0 OK

To indicate problems with the correspondent name:

5600 E-CORR-NSRV-ERR 5607 E-CORR-NSRV-DOWN
5601 E-CORR-NOT-FOUND 5611 E-CORR-NET-DOWN
5602 E-CORR-BAD-NAME 5622 E-CORR-NOT-SAME-NODE
5604 E-CORR-NO-SUCH-NODE 5623 E-CORR-AMBIGUOUS-NAME

5606 E-CORR-NSRV-NOT-FOUND

To indicate problems with the folder name:

5675 E-FLD-NSRV-ERR 5683 E-FLD-NO-PARENT

5677 E-FLD-BAD-NAME 5686 E-FLD-NET-DOWN

5679 E-FLD-NO-SUCH-NODE 5687 E-FLD-ALREADY-EXISTS
5681 E-FLD-NSRV-NOT-FOUND 5697 E-FLD-NOT-SAME-NODE

5682 E-FLD-NSRV-DOWN 5698 E-FLD-AMBIGUOUS-NAME

To indicate other problems:

4010 E-BAD-TRANSACTION 4265 E-INVALID-ORD-DISCIPLN.
4051 E-MUST-BE-YN 4266 E-INVALID-APP-ORD-TYPE
4052 E-RESERVED-MUST-BE-N 4902 E-ERR-PROFILE-FILE
4093 E-SECURITY-VIOLATION 4904 E-ERR-SESSION-FILE
4201 E-CONTEXT-ERR

e RETN-CODE-DETAIL is an error number returned by a subsystem
other than TRANSFER or is a further qualification of an error
detected by TRANSFER.

CREATE-FOLDER-B0O0 OPERATION. CREATE-FOLDER-B0O0 creates a new
folder with the specified ordering criteria.

Folder order affects the order in which items are saved and
subsequently referenced. SCAN-FOLDER, SCAN-FOLDER-B0O0O, and
SCAN-FOLDER-BY-KEY UOWs return items according to the ordering
key by which items are saved in the folder.

) 82525 A0 3/85 5-53

UOW Descriptions
CREATE-ITEM

CREATE-ITEM (UOW Code 103)

CREATE-ITEM creates an item,

|DEF create-item-uow.
02 hdr.
03 self-ident PIC AA VALUE "UW".
03 uow-code TYPE BINARY 16 UNSIGNED
VALUE 103.
02 item-type PIC 9(4) COMP.
02 1is-pkg-hdr TYPE BOOLEAN,
02 reserved-l TYPE BOOLEAN VALUE "N".
END.
DEF create-item-rsp.
02 hdr TYPE UOW-HDR.
03 self-ident PIC AA VALUE "UW".
03 uow-code TYPE BINARY 16 UNSIGNED
VALUE 103.
02 retn-code TYPE BINARY 16.
02 retn-code-detail TYPE BINARY 16.
02 item-id.
03 dummy PIC X(12).
END.

CREATE-ITEM FIELDS. The fields defined in this UOW are:

© HDR is the UOW header. The UOW-CODE value is 103.

o ITEM-TYPE is a numeric value that lets you categorize items by
type. Its meaning is defined by your application. The value
must be in the range of 0-9999; values 100 through 999 are
reserved for use by Tandem.

NOTE
ITEM-TYPE should not be confused with RECORD-TYPE,

which has a totally different meaning.

© IS-PKG-HDR determines whether the new item is a package
header.

Y The item is a package header.

N

The item is not a package header.

5-54 4 82525 A00 3/85

UOW Descriptions
CREATE-ITEM

e RESERVED-1 is reserved for use by Tandem; this field must be
set to N.

e RETN-CODE is the return code. TISERV returns a code in this
field to indicate one of the following entries:

0 OK
4010 E-BAD-TRANSACTION 4052 E-RESERVED-MUST-BE-N
4051 E-MUST-BE-YN 4056 E-INVALID-ITEM-TYPE

e RETN-CODE-DETAIL is an error number returned by a subsystem
other than TRANSFER or is a further qualification of an error
detected by TRANSFER.

e ITEM-ID is the ID assigned to the new item and returned by
TRANSFER.

CREATE-ITEM OPERATION. CREATE-ITEM creates a new item and
returns the ID in the ITEM-ID field. 1If the item is to be a
package header, as specied in the IS-PKG-HDR field, TRANSFER
appends default package header information to the item
descriptor.

When the item is created, it is saved in an internal temporary
folder and is removed from that folder when the session is
terminated. If you must retain access to the new item beyond the
end of the current session, you must either save the item in a
folder or attach the item to another item.

“} 82525 A00 3/85 5-55

UOW Descriptions
DELETE-DEPOT

DELETE-DEPOT (UOW Code 202)
DELETE-DEPOT deletes a correspondent and depot. This UOW can be

issued only by correspondents with system administrator write
privileges.

DEF delete-depot-uow.
02 hdr.
03 self-ident PIC AA VALUE "UW".
03 uow-code TYPE BINARY 16 UNSIGNED
VALUE 202.
02 corr-name PIC X(80).
02 force-flag TYPE CHARACTER 1.
88 forced-deletion VALUE "Y".
88 do-not-force VALUE "N".
02 filler TYPE CHARACTER 1 VALUE SPACES.
END,
DEF delete-depot-rsp.
02 hdr TYPE UOW-HDR.
03 self-ident PIC AA VALUE "UW".
03 uow-code TYPE BINARY 16 UNSIGNED
VALUE 202.
02 retn-code TYPE BINARY 16.
02 retn-code-detail TYPE BINARY 16.
02 corr-name PIC X(80).
END.

DELETE-DEPOT FIELDS. The fields defined in this UOW are:

e HDR is the UOW header. The UOW-CODE value is 202.

e CORR-NAME is the name of the correspondent whose depot is to
be deleted. You can use a partially qualified name, including
wildcard characters. In the response, the fully qualified
name is returned.

e FORCE-FLAG determines whether TISERV forces deletion even if
the depot folders contain items or packages or if any
distribution lists defined for the depot contain members.

Y = Force deletion.

N

Do not force deletion. If the depot folders contain
items or packages or if any depot distribution lists
contain members, the depot is not deleted, an error
indication is returned, and you should abort the

5-56 “4 82525 A00 3/85

UOW Descriptions
DELETE-DEPOT

transaction. If distribution lists and folders are all
empty, TISERV deletes the depot.

e RETN-CODE is the return code. TISERV returns a code in this
field to indicate one of the following entries.

To indicate successful record alteration:
0 OK

To indicate problems with the correspondent name:

5600 E-CORR-NSRV-ERR 5607 E-CORR-NSRV-DOWN
5601 E-CORR-NOT-FOUND 5611 E-CORR-NET-DOWN
5602 E-CORR-BAD-NAME 5622 E-CORR-NOT-SAME-NODE
5604 E-CORR-NO-SUCH-NODE 5623 E-CORR-AMBIGUOUS-NAME

5606 E-CORR-NSRV-NOT-FOUND

NOTE

Objects belonging to correspondents are also deleted;
therefore, a similar set of error messages for folders
and distribution lists can be received. Messages for
folders begin with E-FLD- and messages for distribution
lists begin with E-DLIST-.

To indicate other problems:

4010 E-BAD-TRANSACTION 4219 E-SESSION-ACTIVE
4051 E-MUST-BE-YN 4225 E-MEMBERS-EXIST
4093 E-SECURITY-VIOLATION 4902 E-ERR-PROFILE-FILE
4201 E-CONTEXT-ERR 4912 E-ERR-FOLDER-FILE
4213 E-ITEMS-EXIST 4914 E-ERR-DLIST-FILE

e RETN-CODE-DETAIL is an error number returned by a subsystem
other than TRANSFER or is a further qualification of an error
detected by TRANSFER.

DELETE-DEPOT OPERATION. DELETE-DEPOT removes all profile records
relating to the correspondent identified by CORR-NAME, and also
removes the correspondent name from the TRANSFER name directory;
this effectively deletes the depot of the correspondent. 1In
addition, TRANSFER removes any distribution lists and folders
relating to the depot.

NOTE

Deletion does not occur if a session is active at the
depot when this UOW is issued.

“} 82525 A0O0 3/85 5-57

UOW Descriptions
DELETE-DLIST

DELETE-DLIST (UOW Code 218)

DELETE-DLIST deletes a distribution list.

DEF delete-dlist-uow.
02 hdr.
03 self-ident PIC AA VALUE "UW",.
03 uow-code TYPE BINARY 16 UNSIGNED
VALUE 218,
02 corr-name PIC X(80) VALUE SPACES.
02 dlist-name PIC X(80).
02 force-flag TYPE CHARACTER 1.
88 forced-deletion VALUE "Y".
88 do-not-force VALUE "N".
02 filler TYPE CHARACTER 1.
END.
DEF delete-dlist-rsp.
02 hdr TYPE UOW-HDR.,
03 self-ident PIC AA VALUE "UW".
03 wuow-code TYPE BINARY 16 UNSIGNED
VALUE 218,
02 retn-code TYPE BINARY 16.
02 retn-code-detail TYPE BINARY 16.
02 corr-name PIC X(80).
02 dlist-name PIC X(80).
END.

DELETE-DLIST FIELDS. The fields defined in this UOW are:

HDR is the UOW header. The UOW-CODE value is 218.

CORR-NAME is the name of the correspondent represented by the
calling process. Only system administrators can enter
correspondent names other than their own in this field;
correspondents without system administrator privileges must
enter their own names or leave the field blank. You can use a
partially qualified name, including wildcard characters. 1In
the response, the fully qualified name is returned.

DLIST-NAME is the name of the distribution list to be deleted.
This can be a partially qualified name, including wildcard
characters. In the response, the fully qualified name is
returned.

5-58 “9 82525 A00 3/85

UOW Descriptions
DELETE-DLIST

e FORCE-FLAG determines whether TISERV forces deletion even if

the
Y =

N

Do not force deletion.
contains members,

Force deletion.

distribution list contains members.

If the distribution list
the distribution list is not deleted;

an error indication is returned, and you should abort
the transaction.

e RETN-CODE is the return code.

TISERV returns a code in this

field to indicate one of the following entries.

To indicate successful deletion:

0

OK

To indicate problems with the correspondent name:

5600
5601
5602
5604
5606

E-CORR-NSRV-ERR
E-CORR-NOT-FOUND
E-CORR-BAD-NAME
E-CORR-NO-SUCH-NODE
E-CORR-NSRV-NOT-FOUND

5607
5611
5622
5623

E-CORR-NSRV-DOWN
E-CORR-NET-DOWN
E-CORR-NOT-SAME-NODE
E~-CORR-AMBIGUOUS—-NAME

To indicate problems with the distribution list name:

5625
5626
5627
5629
5631

E-DLIST-NSRV-ERR
E-DLIST-NOT-FOUND
E-DLIST-BAD-NAME
E-DLIST-NO-SUCH-NODE
E-DLIST-NSRV-NOT~-FOUND

To indicate other problems:

4010
4051
4093
4201

E-BAD-TRANSACTION
E-MUST-BE-YN
E-SECURITY-VIOLATION
E-CONTEXT-ERR

5632
5636
5647
5648

4225
4902
4914

E-DLIST-NSRV-DOWN
E-DLIST-NET-DOWN
E-DLIST-NOT-SAME-NODE
E-DLIST-AMBIGUOUS-NAME

E-MEMBERS-EXIST
E-ERR-PROFILE-FILE
E-ERR-DLIST-FILE

e RETN-CODE-DETAIL is an error number returned by a subsystem.
other than TRANSFER or is a further qualification of an error
detected by TRANSFER.

DELETE-DLIST OPERATION.

DELETE-DLIST deletes a distribution list

by first deleting all members from the list (if FORCE-FLAG is set
to Y), and then removing the list name from the TRANSFER name

directory.

Any pointers from existing lists to a deleted distribution list

remain in the system, but have no meaning.

To provide good

housekeeping, you should purge these pointers.

9 82525 A00 3/85

5-59

UOW Descriptions
DELETE-FOLDER

DELETE-FOLDER (UOW Code 230)

DELETE-FOLDER deletes a folder.

DEF delete-folder-uow.
02 hdr.
03 self-ident
03 uow-code

02 corr-name
02 folder-name
02 force-flag
88 forced-deletion
88 do-not-force
02 filler
END.

PIC AA VALUE "UW",
TYPE BINARY 16 UNSIGNED

VALUE 230,

PIC X(80) VALUE SPACES.

PIC X(80).
TYPE CHARACTER 1.
VALUE "Y".
VALUE "N",

TYPE CHARACTER 1 VALUE SPACES.

DEF delete-folder-rsp.
02 hdr.
03 self-ident
03 uow-code

02 retn-code
02 retn-code-detail
02 corr-name
02 folder-name
END.

PIC AA VALUE "UW",
TYPE BINARY 16 UNSIGNED

VALUE 230.
TYPE BINARY 16.
TYPE BINARY 16.
PIC X(80).

PIC X(80).

DELETE-FOLDER FIELDS.

The fields defined in this UOW are:

HDR is the UOW header. The UOW-CODE value is 230,

CORR-NAME is the name of the correspondent represented by the
calling process. Only system administrators can enter
correspondent names other than their own in this field;
correspondents without system administrator privileges must
enter their own names or leave the field blank.

can use a partially qualified name,

On input, you
including wildcard

characters. In the response, the fully qualified name is

returned.

FOLDER-NAME is the name of the folder to be deleted. This can
including wildcard characters.
In the response, the fully qualified name is returned.

be a partially qualified name,

/{i 82525 A00 3/85

UOW Descriptions
DELETE-FOLDER

e FORCE-FLAG determines whether TISERV forces the deletion even
if the folder contains packages or items.

Y = Force deletion.

N = Do not force deletion. If the folder contains packages
or items, the folder is not deleted; an error indication
is returned, and you should abort the transaction.

e RETN-CODE is the return code. TISERV returns a code in this
field to indicate one of the following entries.

To indicate successful deletion:
0 OK

To indicate problems with the correspondent name:

5600 E-CORR-NSRV-ERR 5607 E-CORR-NSRV-DOWN

5601 E-CORR-NOT-FOUND 5611 E-CORR-NET-DOWN

5602 E-CORR-BAD-NAME 5622 E-CORR-NOT-SAME-NODE
5604 E-CORR-NO-SUCH-NODE 5623 E-CORR-AMBIGUOUS-NAME

5606 E-CORR-NSRV-NOT-FOUND

To indicate problems with the folder name:

5675 E-FLD-NSRV-ERR 5682 E-FLD-NSRV-DOWN

5676 E-FLD-NOT-FOUND 5686 E-FLD-NET-DOWN

5677 E-FLD-BAD-NAME 5697 E-FLD-NOT-SAME-NODE
5679 E-FLD-NO-SUCH-NODE 5698 E-FLD-AMBIGUOUS-NAME

5681 E-FLD-NSRV-NOT-FOUND
To indicate other problems:

4010 E-BAD-TRANSACTION 4213 E-ITEMS-EXIST

4051 E-MUST-BE-YN 4218 W-CONTENTS-PURGED
4093 E-SECURITY-VIOLATION 4902 E-ERR-PROFILE-FILE
4105 E-CONCURRNT-FLD-UPDATE 4912 E-ERR-FOLDER-FILE
4201 E-CONTEXT-ERR 4922 E-ERR-INV-FOLDER-FILE

e RETN-CODE-DETAIL is an error number returned by a subsystem
other than TRANSFER or is a further qualification of an error
detected by TRANSFER.

DELETE-FOLDER OPERATION. DELETE-FOLDER deletes the folder
identified by FOLDER-NAME. TISERV removes all items saved in the
folder (if FORCE-FLAG is set to Y) and removes the folder name
from the TRANSFER name directory.

4 82525 A00 3/85 5-61

UOW Descriptions
DELETE-FOLDER

If your application requests deletion of the special folders
INBOX and WASTEBASKET, these folders are emptied but the folder
names remain in the system; the RETN-CODE field is set to
W-CONTENTS-PURGED. The contents of WASTEBASKET can be deleted
only by the logged-on correspondent.

5-62 “9 82525 ACO 3/85

UOW Descriptions
DELETE-ITEM-REC

DELETE-ITEM-REC (UOW Code 105)

DELETE-ITEM-REC deletes a data record from an item.

DEF delete-item-rec-uow.
02 hdr.
03 self-ident PIC AA VALUE "UW".
03 uow-code TYPE BINARY 16 UNSIGNED
VALUE 105.
02 item-key.
03 item-id.
04 dummy PIC X(12).
03 rec-type PIC 9(4) COMP,
03 rec-seg-num PIC 9(4) COMP.
END.
DEF delete-item-rec-rsp.
02 hdr.
03 self-ident PIC AA VALUE "UW".
03 uow-code TYPE BINARY 16 UNSIGNED
VALUE 105.
02 retn-code TYPE BINARY 16.
02 retn-code-detail TYPE BINARY 16.
END.

DELETE-ITEM-REC FIELDS. The fields defined in this UOW are:

e HDR is the UOW header. The UOW-CODE value is 105.
e ITEM-KEY identifies the item to be deleted.
ITEM-ID is the item ID of the record to be deleted.

REC-TYPE is the type assigned to the record by your
application.

REC-SEQ-NUM is the sequence number assigned to the record.

e RETN-CODE is the return code. TISERV returns a code in this
field to indicate one of the following entries:

0 OK
4010 E-BAD-TRANSACTION 4041 E-ITEM-UNALTERABLE
4035 E-ITEM-NOT-FOUND 4047 E-REC-NOT-FOUND

“4y 82525 A00 3/85 5-63

UOW Descriptions
DELETE-ITEM-REC

e RETN-CODE-DETAIL is an error number returned by a subsystem
other than TRANSFER or is a further qualification of an error
detected by TRANSFER.

DELETE-ITEM-REC OPERATION. DELETE-ITEM-REC deletes the record
identified by REC-TYPE and REC-SEQ-NUM from the item identified
by ITEM-ID.

5-64 “§ 82525 A00 3/85

UOW Descriptions
DELETE-MEMBER

DELETE-MEMBER (UOW Code 221)

DELETE-MEMBER deletes one or more members from a distribution
list. Members can be correspondents, distribution lists, or
both.

DEF delete—-member-uow.

END.

02 hdr.
03 self-ident PIC AA VALUE "UwW".
03 uow-code TYPE BINARY 16 UNSIGNED
VALUE 221.
02 corr-name PIC X(80) VALUE SPACES.
02 dlist-name PIC X(80).
02 num-wanted TYPE BINARY 16 UNSIGNED.
02 member—name OCCURS 0 TO 5 TIMES
DEPENDING ON num-wanted
TYPE RECIP-NAME.

DEF delete-member-rsp.

END.

02 hdr.
03 self-ident PIC AA VALUE "UW".
03 uow-code TYPE BINARY 16 UNSIGNED
VALUE 221.
02 retn-code TYPE BINARY 16.
02 retn-code-detail TYPE BINARY 16.
02 corr-name PIC X(80).
02 dlist-name PIC X(80).
02 num-returned TYPE BINARY 16 UNSIGNED.
02 mbr-retn-code OCCURS 0 TO 5 TIMES
DEPENDING ON num-returned
TYPE BINARY 16.

DELETE-MEMBER FIELDS. The fields defined in this UOW are:

HDR is the UOW header. The UOW-CODE value is 221.

CORR-NAME is the name of the correspondent represented by the
calling process. Only system administrators can enter
correspondent names other than their own in this field;
correspondents without system administrator privileges must
enter their own names or leave the field blank. On input, you
can use a partially qualified name, including wildcard
characters. In the response, the fully qualified name is
returned.

“4y 82525 A00 3/85 5-65

UOW Descriptions
DELETE-MEMBER

e DLIST-NAME is the name of the distribution list from which the
new member is deleted. This can be a partially qualified
name, including wildcard characters. In the response, the
fully qualified name is returned.

e NUM-WANTED is the number of members to be removed from the
distribution list. You can specify any number of members,
restricted only by the length of the entire IPC that contains
this UOW. The maximum IPC length is defined during TRANSFER
system configuration.

e MEMBER-NAME is the name of the correspondent or distribution
list to be deleted from the list identified by DLIST-NAME.
This must be a fully qualified name and must exactly match a
name in the distribution list, including the suffix. In the
OCCURS DEPENDING ON clause, the value 5 is an arbitrary value
suitable for most applications; you can reset it to any other
value. You can have as many member names as specified by
NUM-WANTED,

e RETN-CODE is the return code. TISERV returns a code in this
field to indicate one of the following entries.

To indicate successful deletion:
0 OK

To indicate problems with the correspondent name:

5600 E-CORR-NSRV-ERR 5607 E-CORR-NSRV-DOWN

5601 E-CORR-NOT-FOUND 5611 E-CORR-NET-DOWN

5602 E-CORR-BAD-NAME 5622 E-CORR-NOT-SAME-NODE
5604 E-CORR-NO-SUCH-NODE 5623 E-CORR-AMBIGUOUS-NAME

5606 E-CORR-NSRV-NOT-FOUND

To indicate problems with the distribution list name:

5625 E-DLIST-NSRV-ERR 5632 E-DLIST-NSRV-DOWN
5626 E-DLIST-NOT-FOUND 5636 E-DLIST-NET-DOWN
5627 E-DLIST-BAD-NAME 5647 E-DLIST-NOT-SAME-NODE
5629 E-DLIST-NO-SUCH-NODE 5648 E-DLIST-AMBIGUOUS-NAME

5631 E-DLIST-NSRV-NOT-FOUND

To indicate other problems:

4010 E-BAD-TRANSACTION 4227 W-ERR-ON-MEMBER
4093 E-SECURITY-VIOLATION 4902 E-ERR-PROFILE-FILE
4201 E-CONTEXT-ERR 4914 E-ERR-DLIST-FILE

e RETN-CODE-DETAIL is an error number returned by a subsystem
other than TRANSFER or is a further qualification of an error
detected by TRANSFER,

5-66 “4 82525 A00 3/85

UOW Descriptions
DELETE-MEMBER

e NUM-RETURNED is the number of members deleted from the list.
There will be a member return code for each member that you
attempted to delete.

e MBR-RETN-CODE is a code to indicate the status of each member
the UOW attempted to delete. The message OK indicates that
the member was successfully deleted.

0 OK 5652 E-MBR-BAD-NAME
5651 E-MBR-NOT-FOUND 5674 E-MBR-BAD-SUFFIX

DELETE-MEMBER OPERATION. The DELETE-MEMBER UOW deletes members
identified by MEMBER-NAME from the distribution list identified
by DLIST-NAME,

4 82525 A00 3/85 5-67

UOW Descriptions
DELETE-PROFILE-REC

DELETE-PROFILE-REC (UOW Code 214)

DELETE-PROFILE-REC deletes a profile record from a depot.

DEF delete-profile-rec-uow.
02 hdr.
03 self-ident PIC AA VALUE "UW".
03 uow-code TYPE BINARY 16 UNSIGNED
VALUE 214.
02 corr-name PIC X(80) VALUE SPACES.
02 rec-type PIC 9(4) COMP.
02 rec-seg-num PIC 9(4) COMP.
02 depot-flag TYPE BOOLEAN VALUE "Y".
02 filler TYPE CHARACTER 1.
END.
DEF delete-profile-rec-rsp.
02 hdr.
03 self-ident PIC AA VALUE "UW".
03 uow-code TYPE BINARY 16 UNSIGNED
VALUE 214.
02 retn-code TYPE BINARY 16.
02 retn-code-detail TYPE BINARY 16.
02 corr-name PIC X(80).
END.

DELETE-PROFILE-REC FIELDS. The fields defined in this UOW are:

HDR is the UOW header. The UOW-CODE value is 214.

CORR-NAME is the name of the correspondent for whom the depot
profile record will be deleted. This is also the
correspondent represented by the calling process. Only system
administrators can enter correspondent names other than their
own in this field; correspondents without system administrator
privileges must enter their own names or leave the field
blank. On input, you can use a partially qualified name,
including wildcard characters. In the response, the fully
qualified name is returned.

REC-TYPE is the type assigned to the record to be deleted, as
defined by your application.

REC-SEQ-NUM indicates the specific record to be deleted.

5-68 “4 82525 A00 3/85

UOW Descriptions
DELETE-PROFILE-REC

e DEPOT-FLAG determines whether the UOW references a depot
profile record or a system control record.

Y

a depot profile record, as indicated by CORR-NAME

N a system control record

e RETN-CODE is the return code. TISERV returns a code in this
field to indicate one of the following entries.

To indicate successful deletion:
0 OK

To indicate problems with the correspondent name:

5600 E-CORR-NSRV-ERR 5607 E-CORR-NSRV-DOWN
5601 E-CORR-NOT-FOUND 5611 E-CORR-NET-DOWN
5602 E-CORR-BAD-NAME 5622 E-CORR-NOT-SAME-NODE
5604 E-CORR-NO~-SUCH-NODE 5623 E-CORR-AMBIGUOUS-NAME

5606 E-CORR-NSRV-NOT-FOUND

To indicate other problems:

4010 E-BAD-TRANSACTION 4093 E-SECURITY-VIOLATION
4046 E-INVALID-REC-TYPE 4201 E-CONTEXT-ERR
4047 E-REC-NOT-FOUND 4902 E-ERR-PROFILE-FILE

4051 E-MUST-BE-YN

e RETN-CODE-DETAIL is an error number returned by a subsystem
other than TRANSFER or is a further qualification of an error
detected by TRANSFER.

DELETE-PROFILE-REC OPERATION., DELETE-PROFILE-REC deletes from
the depot Profile file the record indicated by REC-TYPE and
REC-SEQ-NUM.

4 82525 A00 3/85 5-69

UOW Descriptions
DELETE-RECIP

DELETE-RECIP (UOW Code 115)

DELETE-RECIP deletes a recipient from a package recipient list.

DEF delete-recipient-uow.
02 hdr.
03 self-ident PIC AA VALUE "UW".
03 uow-code TYPE BINARY 16 UNSIGNED
VALUE 115.
02 item-id.
03 dummy PIC X(12).
02 recip-name PIC X(120).
END.
DEF delete-recipient-name-rsp.
02 hdr.
03 self-ident PIC AA VALUE "UW".
03 uow-code TYPE BINARY 16 UNSIGNED
VALUE 115.
02 retn-code TYPE BINARY 16.
02 retn-code-detail TYPE BINARY 16.
END.

DELETE-RECIP FIELDS. The fields defined in this UOW are:

e HDR is the UOW header. The UOW-CODE value is 115.

¢ ITEM-ID identifies the package from whose recipient list the

recipient is to be deleted. This is the item ID of the header

for that package.

e RECIP-NAME is the name of the recipient to be deleted. This
field must match exactly the recipient name as stored in the
list,

If the name was added by the ADD-RECIP UOW with deferred
resolution, the stored name can contain wildcard characters:

in this case, you must specify exactly that pattern, including

wildcard characters. Wildcard characters in RECIP-NAME are
not expanded; instead, they are treated as any other

characters in determining whether RECIP-NAME matched a name in

the list.

5-70 4y 82525 A00 3/85

UOW Descriptions
DELETE-RECIP

e RETN-CODE is the return code. TISERV returns a code in this
field to indicate one of the following entries:

0 OK 4042 E-ITEM-NOT-PKG-HDR
4010 E-BAD-TRANSACTION 5751 E-RECIP-NOT-FOUND
4035 E-ITEM-NOT-FOUND 5752 E-RECIP-BAD-NAME
4041 E-ITEM-UNALTERABLE 5774 E-RECIP-BAD-SUFFIX

e RETN-CODE-DETAIL is an error number returned by a subsystem
other than TRANSFER or is a further qualification of an error
detected by TRANSFER.

DELETE-RECIP OPERATION. DELETE-RECIP deletes the name identified
by RECIP-NAME from the recipient list for the package identified
by ITEM-ID.

“4 82525 A00 3/85 5-