
Nonstop™ Systems

GUARDIAN™ Operating
System User's Guide

Operating System Library

82396

-----·---··---NOTICE

Effective with the BOO/E08 software release, Tandem introduced a more formal nomenclature for its software
and systems.

The term "Nonstop 1+™ system" refers to the combination of Nonstop 1+ processors with all software that
runs on them.

The term "Nonstop™ systems" refers to the combination of Nonstop II™ processors, Nonstop TXP™ processors,
or a mixture of the two, with all software that runs on them.

Some software manuals pertain to the Nonstop 1+ system only, others pertain to tile Nonstop systems only,
and still others pertain both to the Nonstop 1+ system and to the Nonstop systems.

The cover and title page of each manual clearly indicate the system (or systems) to which the contents of the
manual pertain.

Nonstop™ Systems

GUARDIAN™ Operating
System User's Guide

Abstract
This manual describes the basic operating-system tasks that all users
perform. Task-oriented instructions are presented for these utilities:
COM INT, FUP, BACKUP, RESTORE, PERUSE, SPOOLCOM, and the spooler.
This user's guide is for all users of Tandem Nonstop systems.

Product Version
GUARDIAN BOO

Operating System Version
GUARDIAN BOO (Nonstop Systems)

Part No. 82396 AOO

March 1985

Tandem Computers Incorporated
19333 Vallco Parkway
Cupertino, CA 95014-2599

DOCUMENT HISTORY

Edition

First Edition

Part
Number

82396 AOO

Operating System
Version

GUARDIAN BOO

Date

March 1985

New editions incorporate all updates issued since the previous edition. Update packages, which
are issued between editions, contain additional and replacement pages that you should merge
into the most recent edition of the manual.

Copyright© 1985 by Tandem Computers Incorporated.
Printed in U.S.A.

All rights reserved. No part of this document may be reproduced in any form, including photocopying or translation to
another language, without the prior written consent of Tandem Computers Incorporated.

The following are trademarks or service marks of Tandem Computers Incorporated:

AXCESS ENABLE ENVOY Nonstop 1+ Tandem TRANSFER
BINDER ENCOMPASS EXCHANGE Nonstop n TAL XRAY
CROSS REF ENCORE EXPAND Nonstop TXP T-TEXT XREF
DDL EN FORM FOX PATHWAY TGAL
DYNA BUS ENSCRIBE GUARDIAN PCFORMAT THL
DYNAMITE ENTRY INSPECT PERUSE TIL
EDIT ENTRY520 Nonstop SNAX TMF

INFOSAT is a trademark in which both Tandem and American Satellite have rights.

HYPERchannel is a trademark of Network Systems Corporation.

IBM is a registered trademark of International Business Machines Corporation.

NEW AND CHANGED INFORMATION

With the BOO software release, the material in the old GUARDIAN
O~eratin~ System Command Language and Utilities Manual has been
divided into four new manuals. The material was divided
according to software system and according to purpose. That is,
information for Nonstop systems is now separate from that for the
Nonstop l+ system, and task-oriented material is now separate
from general reference material. As a result, each software
system now has both a reference manual and a user's guide for the
GUARDIAN operating system.

Your new manuals are:

• GUARDIAN Operating System User's Guide for Nonstop systems
(Part No. 82396 AOO)

• GUARDIAN Operating System Utilities Reference Manual for
Nonstop systems (Part No. 82403 AOO)

Manuals for users of the Nonstop 1+ system are:

• GUARDIAN Operating System User's Guide for the Nonstop 1+
system (Part No. 82395 AOO)

• GUARDIAN Operating System Utilities Reference Manual for the
Nonstop 1+ system (Part No. 82402 AOO)

This GUARDIAN Operating System User's Guide contains basic
task-oriented material for new users. The material that was
printed on blue paper in the final edition of the Command
Language and Utilities Manual (Sections 1, 2, 3, 5, 6, 7, 9, and
10) is now contained in the user's guide.

~ 82396 AOO 3/85 iii

GUARDIAN OPERATING SYSTEM USER'S GUIDE
New and Changed Information

The GUARDIAN Operating Sfstem yti~it_ies Reference Manual
contains reference material for all users. This reference
material includes complete syntax descriptions for the commands
of each operating system utility described in this manual.
Syntax is also given for several other utilities, including the
Peripheral Utility Program (PUP), the Disc Space Analysis and
Disc Space Compression utilities (DSAP and DCOM), DELAY, DIVER,
ERROR, PEEK, and SPOOL.

System error and warning messages, which appeared in appendixes
in the earlier manuals, now appear in the System Messages Manual
for the Nonstop 1+ system (Part No. 82408) and the System
Messages Manual for Nonstop systems (Part No. 82409).

SECTIONS 1 THROUGH 3, COMINT

Nine COMINT commands that perform privileged functions have been
converted into separate programs. In most cases, each program
retains the same name and uses the same syntax as the previously
used command. The programs also perform the same functions as
the commands that they replace.

For example, the new ADDUSER program now replaces the ADDUSER
command in COMINT. To start an ADDUSER process, you can enter an
ADDUSER command using the original command syntax.

Four of the new programs appear in this user's guide. They are:

ADDUSER
PASSWORD

DEFAULT
USERS

The programs that do not appear in this manual are BUSCMD,
DELUSER, RCVDUMP, RELOAD, and RPASSWRD. For information about
all nine new COMINT programs, see the GUARDIAN Operating System
Utilities Reference Manual.

In addition, minor manual revisions, including reor~Janization of
some material, have been made in these sections. Many examples
have been expanded, and new examples have been added.

SECTIONS 4 THROUGH 6, FUP

Subsections containing introductory information on files, file
names, and types of disc files have been added.

iv ~ 82396 AOO 3/85

GUARDIAN OPERATING SYSTEM USER'S GUIDE
New and Changed Information

SECTIONS 7 AND 8, BACKUP AND RESTORE

Only minor changes have been made to these two sections.
Two new utilities, BACKUP2 and RESTORE2, are available to work
with files in the format of the new optional disc process (DP2).
Full documentation of their function and command syntax is in the
GUARDIAN Operating System Utilities Reference Manual.

SECTION 9, Spooler

There is a new spooler option for the header message that is
specially designed for batch processing.

SECTION 10, PERUSE

You can now enter multiple PERUSE commands on the same line,
separated by semicolons. The maximum length of the command line
is 132 characters.

~ The description of PERUSE operations with TGAL has been expanded
to include procedures for finding TGAL errors and for printing
out portions of a job.

SECTION 11, SPOOLCOM

This section has been expanded to include SPOOLCOM tasks that all
users can perform: obtaining the status of spooler components,
changing the attributes of your own job, and bringing a device
back online that is not ready or is out of paper.

~ 82396 AOO 3/85 v

GUARDIAN OPERATING SYSTEM USER'S GUIDE
New and Changed Information

SUMMARY OF CHANGES TO SPOOLER DOCUMENTATION

With the BOO software release, the information formerly in the
two spooler manuals has been subdivided by audience !(general
users, system operators and managers, and application
programmers) as well as by purpose (task-oriented information or
reference information).

For spooler information specific to your system, see the
following new or revised manuals:

Manual

9UARDIAN Operating System
User's Guide
{Part. No. 82396)

GUARDIAN Operating System
Utilities Reference Manual
-(Part No. 82403)

System Operator's Guide
l(Part No. 82401)

~ystem Procedure Calls
Reference Manual
\Part No. 82359)

Spooler Programmer's Guide
-(Part No. 82394)

Vl

Information

Introduction to the spooler.
How to use SPOOLCOM and PERUSE.

SPOOLCOM and PERUSE syntax,
considerations, examples

Information that system operators
and managers need to start, stop,
and control the spooler

Complete syntax and considera
tions for spooler interface,
utility, and print procedures

Information to help programmers
control the spooler from
application programs

...,. 82396 AOO 3/85

CONTENTS

PREFACE ..•.•.....•.••••••••••.•••.....••••.••••••.•.•.••... Xl 11

SYNTAX CONVENTIONS USED IN THIS MANUAL..................... xv

SECTION 1. INTRODUCTION TO COMINT•.••••••••..•••••• 1-1
Who uses COM I NT? • . . . • • • . • • . • • • . • • • 1-1
How Does COMINT Start? • • • • • • • • • • . . . • • • • • • • • . . . • 1-2
How Is COMINT Used? ••••..••••.•.....•..•......•.•..••..•• 1-2

SECTION 2. BASIC USES OF COMINT • • • . • • • 2-1
How to Enter COMINT Commands • . . • • . . . • . . . • . • . . • 2-2
Getting Started • • • • • • . • • . • • • • • • • • . . • . • • . • . • • • 2-2

Logging On (LOGON Command) ••........................... 2-2
Using the Blind Password and Blind Logon Features 2-3
Using User IDs ••..•..••••........ ~................... 2-4

Changing Your Password (PASSWORD Program) 2-4
Logging Off (LOGOFF Command) •..•....•....•...••..•..•.. 2-5

Using Fi 1 e Names • • . . • . . • . . • • • 2-6
Setting Default Volumes for Disc Files•.......... 2-7

Setting Your Logan Defaults (DEFAULT Program)•.•..• 2-8
Changing Your Current Defaults (VOLUME and

SYSTEM Commands) • • • 2- 9
Getting Information about Users (WHO Command and

USERS Program) .. 2-10
Controlling Processes•••..........•..••.••.•....•..• 2-12

Starting a Process (RUN Command)•........•........ 2-12
Getting Information about Processes (STATUS Command) ... 2-13
Stopping a Process (STOP and PAUSE Commands and

BREAK Key) ••.•••••.•••••..••••••..•••.•••.•.••....••• 2-15
D i s c F i 1 e Ope rat i on s . 2 - 16

Creating Files (CREATE Command) 2-16
Displaying File Names (FILES Command)• 2-17
Renaming Files (RENAME Command)•............• 2-17
Purging Files (PURGE Command)••.....•.. 2-18

Executing Commands from a File (OBEY Command) ...•........ 2-18
Correcting Command Errors (FC Command) 2-19

~ 82396 AOO 3/85 vii

GUARDIAN OPERATING SYSTEM USER'S GUIDE
Contents

SECTION 3. ADVANCED USES OF COMINT••..........••...•.. 3-1
Starting a Remote COMINT Process•.....••..•. 3-1
Restarting a COMINT Process ...•......•.........••.....•.. 3-3

SECTION 4. INTRODUCTION TO FUP••........ 4-1
Who Uses FUP? • • • • • • • • • • . • • . • • . • • • • . . • • . • • • . • • • • • . • • • • • • • • 4-2
How Is FUP Used? • • • • • • . • • . . • . . . • • . . • • • • . . . • . . . 4-2

SECTION 5. BASIC USES OF FUP ...••••.•.•.••••.•••..••.••••• 5-1
Files and File Names • . • • • • • • . • . • . • • • • • • . . • • • • • • . • • . 5-2
Types 0 f D i s c F i 1 es . . . • . . • . . • . . • • • • • • • • • • 5 - 2
How to Enter FUP Commands • . . • . • . • . . . • • . . . • . • . • . • . . 5- 3

Entering FUP Commands through COMINT•.•.•......•.• 5-4
Entering FUP Commands Interactively through FUP•.. 5-4
Entering FUP Commands from a Command File•.•.. 5-5

Sending Input to FUP from a Command File ...•.....••.. 5-5
Sending Output from FUP to a File•............... 5-6

Getting Help from FUP (HELP Command) .•..•...•..•..••.••.. 5-7
Controlling FUP . • • • • • . • • • • . . . • . . . • . • . . . • • • • . . 5-8

Using the BREAK Key . • • • . • . . • • • . • . . • • • 5-8
Changing System and Volume Defaults (SYSTEM and

VOLUME Commands) • • • • . . . • • • • . . • • • • • . . • • . 5- 9
Getting Information about Subvolumes and Files .•••.•••••. 5-10

Getting Information about Subvolumes (SUBVOLS and
FI LES Commands) . . . • • • • . • • • . . . • . • . . • • • • • . • 5-10

Getting Information about Single Files (INFO Command) .• 5-11
Getting Information about File Sets (INFO Command) ..••. 5-12

Performing Common File Operations ••••......•••••••...•... 5-13
Duplicating Files (DUPLICATE Command)••.•••. 5-14
Renaming Files (RENAME Command)•..•.....•.•. 5-15
Changing a File's Security (SECURE Command) 5-16
Giving Files to Other Users (GIVE Command) ...•......•.. 5-17
Deleting Files from the System (PURGE Command)••. 5-17

SECTION 6. ADVANCED USES OF FUP•..
Creating Files .•................•..............•.........

Using the SET, SHOW, and CREATE Commands•..
Using the RESET Command•......

File-Creation Examples•..•...•.•
Maintaining Files•.........•..............•..•...•.•

Loading Data into Files•.....•..•..••••
Purging Data from Files•...•....•
Renaming and Moving Files with Alternate Keys•..
Moving Files to a Backup Volume .•..................••..
Adding Alternate Keys to Files•...•....•...
Modifying Partitioned Files•.....

SECTION 7. INTRODUCTION TO BACKUP AND RESTORE
Why Use BACKUP and RESTORE? ·····················~········
Who Uses BACKUP and RESTORE? ···············•••••fl••••••••

6-1
6-1
6-4
6-6
6-7

6-18
6-18
6-19
6-20
6-21
6-21
6-23

7--1
7-1
7--2

v 111 ~ 82396 AOO 3/85

GUARDIAN OPERATING SYSTEM USER'S GUIDE
Contents

SECTION 8. USING BACKUP AND RESTORE
Entering BACKUP Commands
Specifying a File-Set List for BACKUP
USING BACKUP Command Options•.

Using the DENSITY and BLOCKSIZE Options
Using the LISTALL Option
Using the NOT Option
Using the PARTIAL Option ..•....•••.•..

Entering RESTORE Commands
Using RESTORE Command Options

Using the LISTALL Option
Using the KEEP Option
Using the TAPEDATE and MYID Options•
Using the NOT Option
Using the VOL Option .•.........

9. INTRODUCTION TO THE SPOOLER SECTION
What is
Why Use

the Spooler? .•.•.......
the Spooler?

Spooler Components
SPOOLCOM or PERUSE--Which Should You Use?
Spooler Jobs and Job Attributes•.•••

Job Priority
Job Copies
Job Report Name
Job Form Name
Job State

Devices and Device Attributes
Device Form Name
Device Header Message
Device States
Selection Algorithm

Routing Structure .•.•.
Broadcast and Nonbroadcast Groups
Default Routing •.........
Implicit Route Creation

How to Use the Spooler

10. HOW TO USE PERUSE SECTION
What is
How to

PERUSE?
Enter PERUSE

Entering PERUSE Commands
Declaring the Current Job
Displaying a Job
The BREAK Key

Command Summary
Example of PERUSE Operation with TGAL

Examining a Job
Finding TGAL Errors
Finding a Key Phrase in a Job
Altering Job Attributes
Printing Out a Portion of a Job

"1 82396 AOO 3/85

8-1
8-1
8-3
8-4
8-5
8-6
8-8
8-8
8-8
8-9

8-10
8-10
8-10
8-11
8-11

9-1
9-1
9-2
9-2
9-4
9-5
9-6
9-6
9-6
9-6
9-7
9-9
9-9
9-9

9-11
9-11
9-12
9-12
9-13
9-13
9-15

10-1
10-1
10-2
10-3
10-3
10-4
10-4
10-4
10-6
10-6
10-6
10-7
10-7
10-8

lX

GUARDIAN OPERATING SYSTEM USER'S GUIDE
Contents

Checking the Status of a Print Device 10-8
Example of PERUSE Operation with TAL 10-9

Monitoring Changes in Job Status 10-9
Finding Errors in a TAL Listing•.•...•.. ,, 10-10

SECTION 11. HOW TO USE SPOOLCOM•....•..•.•. ,, ..•..••• 11-1
How to Enter SPOOLCOM Commands•.••..•.• ,, ••.•..•. 11-1
Entering SPOOLCOM Commands through COMINT •••••.•..•..••.•• 11-2
Interactive Use of SPOOLCOM ••...•....••••••••..•..•••••••• 11-2
Entering SPOOLCOM Commands from Another Source ••••••••••• 11-3
SPOOLCOM Security . . . • • • • • • . . . • . • • • . • 11--4
SPOOLCOM Commands . • • • . • . • . • . . . • . . . • . • . • • . • . • • • • • .. • • .. • • • • . 11-4
Command Summary • • . • • • • . • • • • • • • • . . . • . . • . . • • • . . • . • • • • .. • • • • • 11-5
Tasks for All Users 11--8

How to Obtain the Status of Spooler Components 11-8
How to Change Your Job ••.....••.•...••.•.•••.....••.•• 11-10
How to Restart a Device 11-10

SECTION 12. SECURITY FEATURES OF TANDEM SYSTEMS 12·-1
Interface to the Security System 12-2

Command Interpreter rnterface .••••.•.••••.••••••••••••• 12·-2
FUP Interface ..•.•••..•..••• ,, • • . • • • • . • • • • . • • • • • • • • • • • • • 12 ·- 2
Programmatic Interface 12-3

System Users .. 12-3
Identifying Users 12·-5
Adding New Users and Groups 12·-5

Logging On • • . . . • . . • . • . . • • . . • . • • . • • • • . . • • . • • 12-6
Passwords •..••..••.••....... ,,•.•..•••••.•.••••• 12·-6

File Security and Access 12-7
Setting File Security 12-7
Allowed File Access ...•................•.............•• 12-8

Process Security .•...••• ~•.....••....• 12-10
Process and Creator Accessor IDs•.....••.••...• 12-10
Adopting a Program File's Owner ID•..•...• 12-12
Controlled Access with Program File Adoption• 12-13
Licensing Programs ••••••••...••......•.......••..•...• 12-14

Network Sec u r i t y . • • . . • • • • • . • . . • . . • • . • . . • . . . • 12 -15
Global Knowledge of User IDs 12-15
Establishing Remote Passwords•.•.........•.•.• 12-16
Process Access ..•.•••.•...•..........•.•..•..........• 12-18
Using a Remote COMINT Process to Gain Local Access ••.• 12-18
Global Passwords ..•..•••.••..••........••.•..••...•••• 12-19
Subnetworks .. 12-20
Capabilities of a Remote Super ID User ..•...•.•..•...• 12-20

APPENDIX A. COMINT COMMAND SYNTX SUMMARY A-1

APPENDIX B. FUP COMMAND SYNTAX SUMMARY ..••....•.••...•.•••• B-1

x ..., 82396 AOO 3/8:i

GUARDIAN OPERATING SYSTEM USER'S GUIDE
Contents

APPENDIX C. BACKUP AND RESTORE COMMAND SYNTAX SUMMARY ...••. C-1

APPENDIX D. PERUSE SYNTAX SUMMARY ...•.....•••..••••.•....•. D-1

APPENDIX E. SPOOLCOM SYNTAX SUMMARY •.....•••...•.•..•.••••. E-1

INDEX .••.............•..................•.•.......••.•.• Index-1

6-1.
6-2.
6-3.
6-4.
6-5.

9-1.
9-2.
9-3.
9-4.

FIGURES

Steps for Creating a File with FUP••.•••.•.••••
Structure of an Entry-Sequenced File .••••..••••••••••
Structure of a Relative File •..••.•.•••••..••••••.•••
Structure of a Key-Sequenced File .•.•.••••.••••••••••
Structure of a Partitioned File•••...•••••••..••

Spooler Components•..•••........•••.•..••....••••
The Life Cycle of a Job ••....••...•.•......•.••.•••••
Sample Header Page ..•.••............•.•.........•.•.•
The Routing Structure ..••....••.....•••.••.••••••....

6-2
6-8

6-10
6-11
6-15

9-3
9-8

9-10
9-14

12-1. Passing of Accessor IDs ••.........•.•••....•••••.••• 12-11
12-2. Effect of Adopting a Program File's Owner ID ••.••.•. 12-12
12-3. Controlled Access to a Data File•.•..•...•••... 12-14

TABLES

6-1. Options for the FUP SET Command•.•...•....•.... 6-3

10-1. PERUSE Command Summary •.............•................ 10-5
11-1. Command Summary for All Users • • • • • . . • • . . 11-6
11-2. Command Summary for Super-Group Users ••••..•..•••••.. 11-7
11-3. Common Device Errors That All Users Can Correct .•..• 11-11

12-1. Levels of Security•..........•..... 12-8
12-2. Allowed File Accesses ...•...•......•••.••...•.•.•••.. 12-9

~ 82396 AOO 3/85 xi

PREFACE

This first edition of the GUARDIAN Operating System User's
Guide presents task-oriented material for the principal utilities
associated with the GUARDIAN operating system. As an
introductory manual, this guide gets you started on the Tandem
system and demonstrates basic operating system functions that
every user needs to know. You are shown here all the most
commonly used tasks, such as logging on to the system through
COMINT, using FUP to duplicate or move files, using PERUSE to
check the status of jobs you have sent to the spooler, and using
BACKUP to make backups of files.

Because Tandem has two software systems that will now be
documented separately, two versions of this user's guide are
available. You have Part No. 82396 for your Nonstop system.
Users of the Nonstop 1+ system should use Part No. 82395.

Before reading this user's guide, you should read the following
manual as background:

Introduction to Tandem Computer Systems (Part No. 82503)

This user's guide is intended for all system users, including
system operators, system and group managers, and application
programmers. Each section of the manual presents tasks you can
perform with a particular utility. You can read the sections in
any order and skip sections that do not contain information you
need. However, when you read a section, you should read or skim
the entire section from beginning to end. Many examples use
files or a set of conditions created earlier in the section.
You will learn more if you have performed the earlier tasks.

..., 82396 AOO 3/85 xiii

GUARDIAN Operating System User's Guide
Pref ace

This guide contains much of the task-oriented material from its
predecessor, the GUARDIAN Operating System Command Lan~ua~ and
Utilities Manual. Drawn from this source are the sections on
COMINT, FUP, and BACKUP/RESTORE, as well as the section on
security features of Tandem systems.

Also added is task-oriented material on the spooler and PERUSE as
well as SPOOLCOM for ordinary users from the former ~>ystem
Operations Manual. Task-oriented material on SPOOLCOM for system
operators, however, is in the new System Operator's Guide (Part
No. 82401). This new guide, which replaces the SystE~m Operations
Manual, contains system information and descriptions of tasks
that system operators normally perform.

Complete syntax information for all the programs and commands
described in this user's guide can be found in the GUARDIAN
Operating System Utilities Reference Ma~ual (Part No .. 82403).

Programming considerations are discussed in the following
manuals:

GUARDIAN Operating System Programmer.' s Guide (Part No. 82357)

System Procedure Calls Reference Manual (Part No. 82359)

Spooler Programmer's Guide (Part No. 82394)

With this release, the GUARDIAN Operating System Command Language
and Utilities Manual (Part No. a2073) becomes obsolete.

xiv Af' 82396 AOO 3/85

SYNTAX CONVENTIONS USED IN THIS MANUAL

The following list defines the conventions for syntax notation
used in the syntax summaries that comprise the appendixes for
this manual.

Notation

UPPERCASE
LETTERS

<lowercase
letters>

Brackets []

Braces {}

Vertical
bar I

Ellipsis

Percent
Sign %

Spaces

Punctuation
(),;!.

RETURN

~ 82396 AOO 3/85

Meaning

Represent keywords and reserved words; you must
enter these items exactly as shown.

Angle brackets around lowercase letters represent
variables that you must supply.

Enclose optional syntax items. A vertically aligned
group of items enclosed in brackets represents a
list of selections from which you may choose one or
none.

Enclose required syntax items. A vertically aligned
group of items enclosed in braces represents a list
of selections from which you must choose only one.

Separates selections that appear on one line. A
horizontally aligned group of items separated by
vertical bars and enclosed by brackets or braces
represents a list of optional or required syntax
items from which you choose one item.

Immediately following a pair of brackets or braces
indicates that you can repeat the enclosed syntax
items any number of times.

Precedes a number in octal notation.

May be required or optional: If two syntax items
are separated by a space, that space is required
between the items. If one of the items is a
punctuation symbol, such as a parenthesis or a
comma, spaces are optional.

Symbols or punctuation not described above must be
entered precisely as shown. Any punctuation inside
quotation marks must be entered as shown.

Indicates pressing the RETURN key.

xv

I

SECTION 1

INTRODUCTION TO COMINT

COMINT, the command interpreter for the GUARDIAN operating
system, is the primary user interface to Tandem computer systems.
Through COMINT, you can:

• Gain access to the system

• Use system utilities

• Start processes (that is, run programs)

WHO USES COMINT?

COMINT is used by everyone who needs direct access to the
. GUARDIAN operating system and its capabilities. These users

include:

• Application programmers

• System progranuners

• System managers

• System operators

To prevent unauthorized access to the system, COMINT is normally
made inaccessible to users of application programs.

...., 82396 AOO 3/85 1-1

INTRODUCTION TO COMINT
How Does COMINT Start?

HOW DOES COMINT START?

COMINT is the name of a program file in the system subvolume
($SYSTEM.SYSTEM or $SYSTEM.SYS<nn>, where <nn> is an octal
integer). From that file, many individual COMINT processes can
be started. At system generation, the system manager or operator
can start a COMINT process (or "run a COMINT program") for each
terminal in the system. Then the user or users assigned to each
terminal have only to log on to the COMINT process in order to
access the system.

HOW IS COMINT USED?

COMINT is most often used interactively. In this case, a COMINT
process controls a terminal connected to the system. After you
log on, you can enter commands at the terminal keyboard. COMINT
then performs the actions you request or invokes the program you
name in your command. If you work on a network, you can start a
COMINT process on another system, as described in Section 3.

Besides this interactive mode, COMINT can accept corrunands from a
c·ommand file or an input file. You can use command files (or
OBEY files) as described in Section 2; you can also use other
devices for input files, as described in the COMINT command
syntax description in the GUARDIAN Operating System Utilities
Reference Manual.

Application programs can also use COMINT. See the GUARDIAN
Operating System Programmer's Guide for more information.

1-2 '1 82396 AOO 3/85

SECTION 2

BASIC USES OF COMINT

This section contains information for new users of COMINT, the
GUARDIAN operating system conunand interpreter. It describes how
to:

• Enter COMINT conunands

• Start and end a session with COMINT

• Set default values for volumes and file security

• Set and change your password

• Control processes

• Perform simple disc file operations

• Execute COMINT conunands from a file

• Correct conunand errors

Selected COMINT conunands are described in this section. For
complete syntax and reference information on all COMINT conunands
and programs, see the GUARDIAN Operating System Utilities
Reference Manual.

~ 82396 AOO 3/85 2-1

BASIC USES OF COMINT
How to Enter COMINT Commands

HOW TO ENTER COMINT COMMANDS

You can enter interactive COMINT commands only when a colon
prompt (:) appears on the terminal screen. The colon prompt
indicates that the COMINT process is ready to accept a command.
Type your command after the prompt, then press the RETURN key:

:WHO <RETURN>

You must end every command by pressing the RETURN key. In
examples in this manual, a RETURN is assumed at the end of each
command line.

A COMINT command can contain up to 132 characters on one line.
You can enter longer commands (up to 528 characters) by ending
each line of the command with an ampersand character (&).
COMINT then redisplays its colon prompt, and you can enter the
rest of your command. For example, these two commands are
equivalent:

:TAL I IN $MANUF.MYSUB.MYSRCE, OUT $LP I $MANUF.MYSUB.MYOBJ

:TAL I IN $MANUF.MYSUB.MYSRCE, OUT $LP I $MAN&
:UF.MYSUB.MYOBJ

GgTTING STARTED

To get started as a new user, you need to know how to start a
session with COMINT, how to select or change your logon password,
and how to end a session with COMINT. The next three subsections
describe these procedures.

Logging On (LOGON Command)

To gain access to the system, you must "log on." To do this, you
must have a user name and user identification, which are normally
assigned by a system manager.

User names have two parts. The first part of your user name is
the name of your group: the second part is the name assigned to
you within that group. Group and user names are separated by a
period. For example, this is the user name assigned to Fred in
the manufacturing group:

MANUF.FRED

2--2 .., 82396 AOO 3/85

I

BASIC USES OF COMINT
Logging On

In addition to a user name, each user can have a logon password.
Your logon password is a string of characters that you must enter
in order to gain access to the system. On most systems, you can
select and change your own password, as described in the
subsection "Changing Your Password."

Suppose MGBGT is Fred's password. To log on, Fred enters:

:LOGON MANUF.FRED, MGBGT

A comma must separate the user name and the password. COMINT
ignores any spaces that occur immediately before or after the
comma.
If FRED does not have a password, he can log on by typing LOGON
followed by his user name, like this:

:LOGON MANUF.FRED

Using the Blind Password and Blind Logan Features

For security reasons, you might not want your user name or your
password to appear on the terminal screen when you log on. Using
the "blind password" and "blind logon" features, you can log on
without displaying your password (blind password) or your user
name and password (blind logon).

To log on using blind password, enter LOGON, your user name, and
a comma, like this:

:LOGON MANUF.FRED,

This prompt appears:

PASSWORD:

Type your password. The characters you type are read by the
operating system, but they are not visible on the terminal
screen. Press the RETURN key, and your logon is complete.

If you make a mistake typing your user name or your password,
this message appears:

INCORRECT PASSWORD OR USER NAME NOT FOUND

If you get this message, retype your password and press RETURN.

~ 82396 AOO 3/85 2-3

BASIC USES OF COMINT
Changing Your Password

To log on using blind logon, enter LOGON and a RETURN:

:LOGON

A question mark prompt appears:

?

Now you can enter your user name and password (if you have one).
The characters you enter after the question mark do not appear on
the terminal screen.

Using User IDs

Like your user name, your user identification (or user ID) also
has two parts:

• Your <group-id>, a number between 1 and 255 that uniquely
identifies your group

• Your <user-id>, a number between 1 and 255 that uniquely
identifies each user within a group

The angle brackets (< >) around these two terms indicate that
these are syntax variables that you can use in commands (as
described in the GUARDIAN Operating System Utilities Reference
Manual). This form is used in this manual so that you can become
accustomed to reading syntax terms.

If the <group-id> for the manufacturing group is 8, and Fred's
<user-id> is 44, Fred's user ID is:

8,44

You use user IDs with the USERS and STATUS commands, as shown
later in this section. User IDs are used by the GUARDIAN
operating system for several types of authorization checking.
See Section 12 for more information about user IDs.

Changing Your Password (PASSWORD Program)

You can select or change your password by entering a PASSWORD
command containing your new password. A password can contain
from one to eight letters, numbers, or other characters, with no
blanks.

2-4 Af' 82396 AOO 3/85

l ,

BASIC USES OF COMINT
Logging Off

For example, after Fred logs on, he can change his password with
the PASSWORD program:

:LOGON MANUF.FRED, MGBGT
:PASSWORD mozart

Now "mozart" (all lowercase) is Fred's new password. Note that
COMINT distinguishes uppercase letters from lowercase letters in
passwords. Therefore, each time Fred logs on, he must enter his
password exactly as he did in his PASSWORD command.

To delete your password, enter a PASSWORD command without
including a new password:

:PASSWORD

CAUTION

If you do not have a password, anyone can log on to your
system by entering LOGON with your user name. Using a
password can prevent unauthorized access to your files.

Logging Off (LOGOFF Command)

To end your session with COMINT, enter the LOGOFF command:

:LOGOFF

While you are logged on, you can log on again with the same or a
different user name without logging off first. Simply enter a
new LOGON command. Of course, in order to log on as another
user, you must know the correct password for the other user name.

For example, while Fred is logged on as MANUF.FRED, he can log
on as MANUF.MABEL (whose password is "brahms"), like this:

:LOGON MANUF.MABEL, brahms

Logging on again in this manner logs off the original user
name. In this example, MANUF.FRED is logged off when Fred
logs on as MANUF.MABEL.

..,. 82396 AOO 3/85 2-5

.t:SA~lL U~.t!i~ vr· LVM!NT

Using File Names

USING FILE NAMES

A complete disc file name in a Tandem system has three parts:

• A volume name, the name of the disc volume where the file
resides

• A subvolume name, the set of related files in the same disc
volume

• A file name, the name of the individual file

A volume name always begins with a dollar sign ($) and can
contain from one to seven alphanumeric characters. Both the
subvolume name and the file name are strings of one to eight
alphanumeric characters that must begin with a lettE!r. You can
give names of your choice to your files and subvolumes, but each
volume name must be the name of an actual disc volume.

You can think of the thr~e parts of a file name as the parts of a
file cabinet. A volume in the system is like the cabinet itself,
a subvolume is like a drawer in the cabinet, and a file is like
an individual folder in the drawer.

A complete file name is one that has all three parts: volume,
subvolume, and file name. A complete file name is also known as
a fully qualified file name. A 2._artial file name is one that
omits at least one part. Separate the parts of a file name with
periods.

Here is an example of a comp;ete file name:

$DISC1.MYSUB.NEWFILE

$DISC1 is the volume name, MYSUB is the subvolume name, and
NEWFILE is the name of the file.

Here are three examples of different types of partial file names:

NEWFILE MYSUB.NEWFILE $DISC1.NEWFILE

11 he first example (NEWFILE) contains only the name of the file,
without the volume or subvolume names. The second example
contains only the subvolume (MYSUB) and file names. The last
example gives the volume name ($DISC1) and the file name but
omits the name of the subvolume. (When you give a partial file
name, the operating system assumes that the omitted parts are
the "current defaults," as described in the next subsection).

2-6 Af' 82396 AOO 3/85

BASIC USES OF COMINT
Setting Default Volumes for Disc Files

In addition, in systems that have a name, including all systems
~ that are part of a network, a file name can include the name of

the system in which it resides. Names of systems always begin
with a backslash(\). If a file resides in the current default
system, you can omit the system name.

I

Here is an example of a complete file name in system \NY:

\NY.$DISC1.MYSUB.NEWFILE

SETTING DEFAULT VOLUMES FOR DISC FILES

For each user, GUARDIAN maintains two separate sets of default
values: logon defaults and current defaults. Each set of
defaults includes a value for:

• System (initially, the system where you log on)

• Disc volume

• Subvolume

• File security (described in the chapter on security features)

Your logon defaults are in effect when you log on. These
initial default values are your starting point in the system;
they are your first current defaults. You can change your logon
defaults with the DEFAULT program, as described in the next
subsection.

Your current default values always define your "location" or
frame of reference in the system. During a session with COMINT,
you can "relocate" yourself or change your frame of reference by
changing your current defaults. To do this, you use the VOLUME
or SYSTEM command, as described in the subsection "Changing Your
Current Defaults."

Your current defaults serve an important function. When you give
a partial file name in a command, the operating system uses the
current default values for the missing parts of the file name.
This process of adding parts to.file names is known as file-name
expansion.

File-name expansion works like this: When you specify a file
name in a command, you can omit the volume and subvolume
names if the file resides in your current default subvolume
and volume. You must include the volume and subvolume if they
are not your current defaults. Similarly, if the file resides
the current default volume but in another subvolurne, you must

~ 82396 AOO 3/85

on

2-7

on~i~ u~~~ vr ~vMi~i
Setting Your Logan Defaults

include the subvolume name with the file name, but you can omit
the volume name because it is the current default. The operating
system inserts your current defaults for any parts of the file
name that you omit.

For example, suppose that your current default volume is $GROOVE,
and your default subvolume is SUBSAND. To purge the file
$GROOVE.SUBSAND.SOURCE, you can enter:

:PURGE SOURCE

Because of file-name expansion, the operating system assumes that
the complete file name is $GROOVE.SUBSAND.SOURCE.

Setting Your Logan Defaults (DEFAULT Program)

You use the DEFAULT program to set the default volume and
subvolume that are in effect when you log on. DEFAULT can also
be used to specify your logon default security for files you
create. (For a complete discussion of file security, see
Section 12.)

For example, you can change your logon default volume to $SPIN
and your logon default subvolume to FRED by entering:

:DEFAULT $SPIN.FRED

After you enter a DEFAULT command, the old logon default settings
remain in effect until the next time you do either of these: Log
on, or enter the VOLUME command without specifying a volume or
subvolume, as described in the following subsection. Then the
logon defaults you specify in your DEFAULT command will be in
effect each time you log on.

When you log on, the default system name is always the name of
the system where you are logged on.

2-8 .., 82396 AOO 3/85

BASIC USES OF COMINT
Changing Your Current Defaults

Changing Your Current Defaults (VOLUME and SYSTEM Commands)

The operating system uses your current defaults for volume,
subvolume, and system when performing file-name expansion on
partial file names. During a session with COMINT, you can change
your current defaults as often as you like. Use the VOLUME
command to change your current default volume, subvolume, or file
security. Use the SYSTEM command to change your current default
system.

For example, you can change your current default disc volume to
$DISC2 by entering:

:VOLUME $DISC2

To change your current default subvolume to ANOTHER, enter:

:VOLUME ANOTHER

To change both at once, enter:

:VOLUME $DISC2.ANOTHER

After you enter this command, any file name you enter without a
volume and subvolume name is assumed to be:

$DISC2.ANOTHER.<file-name>

Entering VOLUME alone restores your logon default settings (or
the settings you set with the DEFAULT program if you have used
DEFAULT in this session):

:VOLUME

You can check your current defaults with the WHO command, as
described in the next subsection.

The SYSTEM command changes your current default system name.
Just enter SYSTEM followed by the name of the system that you
want to use as your default. For example, this command sets the
system \SANFRAN as the current default:

:SYSTEM \SANFRAN

After you enter this command, any file name you specify without a
system name is assumed to reside in system \SANFRAN. (Note,
however, that the SYSTEM command does not log you onto the
\SANFRAN system. To log on to a remote system, you must first
start a COMINT process in that system, as described in Section
3 •)

"1 82396 AOO 3/85 2-9

BASIC USES OF COMINT
Getting Information about Users

To reset the current default system name to be the system where
you logged on (or the system you named in a DEFAULT command in
this session), enter the SYSTEM command alone:

:SYSTEM

NOTE

Length limits affect your ability to specify default system
and volume names with the SYSTEM and VOLUME commands and
with the DEFAULT program. You cannot specify a new default
system name if the current default volume name contains
seven characters after the dollar sign ($). Also, you
cannot specify a new default volume name if the current
default system name contains seven characters aftE~r the
backslash(\).

GgTTING INFORMATION ABOUT USERS (WHO COMMAND AND USEHS PROGRAM)

You can get information about your status as a user and about the
status of other users. Use the WHO command to display your
current defaults, and use the USERS program to display
information about any user in the system.

The WHO command tells you:

• The name of your home terminal (such as $FRED)

• The name of your COMINT process (such as $C106)

• Your current default volume and subvolume (such as
$GROOVE.SUBSAND)

• The CPU number of the processor where your COMINT process is
running (such as 05), and the number of the CPU where your
backup COMINT process, if any, is running

• Your user ID (such as 8,44)

• Your user name (such as MANUF.FRED)

• Your current default file security (such as "NUNU") (discussed
further in Section 12)

2-·10 .., 82396 AOO 3/85

BASIC USES OF COMINT
Getting Information about Users

For example, if you were Fred, entering the WHO command would
give you this display:

:WHO

HOME TERMINAL: $FRED
COMMAND INTERPRETER: \TS.$C106 PRIMARY CPU: 05 BACKUP CPU: 04
CURRENT VOLUME: $GROOVE.SUBSAND
USERID: 008,044 USERNAME: MANUF.FRED SECURITY: NUNU

The USERS program can give you information about a single user or
a group of users on your system. For information about a single
user, enter USERS followed by either the user name or the user ID
of a given user.

For example, you can get information about Fred in the
manufacturing group by entering either of these commands:

:USERS MANUF.FRED

:USERS 8,44

COMINT then displays information such as this:

GROUP • USER I.D. # SECURITY DEFAULT VOLUMEID

MANUF.FRED 008,044 NUNU $GROOVE.SUBSAND

This display tells you the following:

• GROUP . USER lists the user name of the user whose user ID you
entered

• I.D. # lists the <group-id> and <user-id> of that user

• SECURITY gives the logon default file security setting for
that user

• DEFAULT VOLUMEID lists the logon default volume and subvolume
for that user

You can also get information on all users in a group by entering
the name of the group followed by an asterisk (*) as the user
name:

:USERS MANUF.*

.., 82396 AOO 3/85 2-11

BASIC USES OF COMINT
Controlling Processes

For information on all users in your own group, enter USERS
followed by only an asterisk:

:USERS *

CONTROLLING PROCESSES

Processes are programs that are running. COMINT allows you to
start, stop, and get information about processes. These
operations are described in the next three subsections.

Starting a Process (RUN Command)

Starting a process is the same as running a program. You can
start processes with the RUN command of COMINT. Enter RUN
followed by the name of the file in which the object program
resides.

For example, you can run the object program contained in the file
MYPROG in your current default volume and subvolume by entering:

:RUN MYPROG

Many important system programs reside in the system subvolume
($SYSTEM.SYSTEM or $SYSTEM.SYS<nn>, where <nn> is a two-digit
octal integer; SYS<nn> is the subvolume containing the GUARDIAN
operating system image currently in use.) You can start system
processes by simply entering the program name. COMINT searches
the system subvolume for the program file with that name and
starts up a new process from that file. As an example, you can
run the text editor program by entering:

:EDIT

You can control the execution of a program by including one or
more options in the RUN command. With different options, you can
specify:

• The name of a file containing input for the program (the IN
<file-name> option)

• The name of a file where the program directs its output
(the OUT <list-file> option)

2-12 Af' 82396 AOO 3/85

BASIC USES OF COMINT
Getting Information about Processes

• The name to be given to the process (NAME $<process-name>)

• The execution priority of the process (PRI <prio~ity>)

• The processor where the process executes (CPU <cpu-number>)

The syntax description of the RUN command in the GUARDIAN
O eratin S stern Utilities Reference Manual gives a complete list
of these options <run-option> . In a RUN command, the run
options follow the name of the program file; you separate them
from each other by commas. The group of run options must begin
and end with slashes (/).

For example, you can run the program $SOFT.DATA.TEST and specify
a file containing input (DATAl) and a file to store the results
of the program (LISTINGl) by entering:

:RUN $SOFT.APPS.TEST / IN DATAl, OUT LISTINGl I

One useful run option is NOWAIT, which allows you to continue
entering COMINT commands while the new process runs. If you do
not include the NOWAIT option, you cannot enter more COMINT
commands until the process you started has finished.

For example, to start a TGAL process that formats the text in the
file $INFO.INSTRX.CHAP1 and sends its output to the spooler
without making you wait for the process to complete, enter:

:TGAL / IN $INFO.INSTRX.CHAP1, OUT $S.#SPOOL, NOWAIT/

Getting Information about Processes (STATUS Command)

You can get information about processes with the STATUS command.
To get information about the last process started from your
terminal (excluding the original COMINT), enter the STATUS
command with no parameters. If the process is still executing,
you receive information about the process.

.., 82396 AOO 3/85 2-13

BASIC USES OF COMINT
Getting Information about Processes

For example, suppose that the last process you started was the
text editor. Here is an example of the information displayed by
the STATUS command:

:STATUS

SYSTEM \TS
PIO PR! PFR %WT USERID MYTERM PROGRAM FILE NAME

07,034 148 000 008,044 $FRED $SYSTEM .SYSTEM .EDIT

In this example:

• PID is the process
operating system.
where the process
in that CPU. The
as <cpu>,<pin>.)

ID assigned to the EDIT process by the
(The process ID consists of the CPU number

is executing and the number of the process
process ID, or PIO, is represented in syntax

• PRI is the execution priority of the process. (The priority
can be any whole number between 1 and 199; processes with
higher-numbered priorities are executed first.)

• MYTERM is the name of the terminal where the procE~ss was
started. (Terminal names, like process names, always start
with a dollar sign.)

• PROGRAM FILE NAME is the name of the file containing the
program being run.

For a complete description of the STATUS command display, see the
GUARDIAN Operating System Utilities Reference Manualo

You can display information about all processes that were started
from your terminal by including the asterisk and the TERM option:

:STATUS *, TERM

You can also get information about processes that were started
from another terminal or processes started by another user. For
example, you can get information about all the processes started
from terminal $KLEAN by entering:

:STATUS *, TERM $KLEAN

With the USER option, you can display information about all
processes that you as a user started from any terminal in the
system:

:STATUS *, USER

2--14 "'82396 AOO 3/85

I

BASIC USES OF COMINT
Stopping a Process

You can get information about processes started by the user with
user ID 1,4 by entering:

:STATUS *, USER 1,4

Stopping a Process (STOP and PAUSE Commands and BREAK Key)

A process can execute in one processor or simultaneously in two
processors as a Nonstop process pair. If a process you started
is executing in only one processor, you can stop it by entering
the STOP command followed by the process ID number.

For example, you can stop the EDIT process shown in the previous
example of the STATUS command by entering:

:STOP 7,34

To stop a Nonstop process pair, enter STOP followed by the name
of the process. (A process executing as a Nonstop process pair
has both a process name and a process ID; you can display the
name of a process with the PPD command, which is described in the
GUARDIAN Operating System Utilities Reference Manual.) Also see
the description of the STOP command in that manual for more
information about stopping Nonstop process pairs.

The BREAK key on terminals can also play a role in process
control. For most programs supplied by Tandem, pressing the
BREAK key has the following effect:

• If the program is waiting for a command, pressing BREAK allows
COMINT to regain control of the terminal. The COMINT colon
prompt (:) then reappears on the terminal screen. The other
program continues to run even after COMINT regains control.

• If the program is executing a command, pressing BREAK halts
the execution of the command. The program then waits for a
new command.

The function of the BREAK key is defined by each program, and it
can vary from program to program. You should consult the
documentation for each program to find out exactly how the BREAK
key is used. In all cases, however, if COMINT regains control of
the terminal after BREAK is pressed, you can return control of
the terminal to the system program by entering the PAUSE command:

:PAUSE

..., 82396 AOO 3/85 2-15

BASIC USES OF COMINT
Disc File Operations

DISC FILE OPERATIONS

You can create, rename, and purge disc files with COMINT. All
the operations described here, and more complex operations, can
also be performed with the File Utility Program (FUP). See
Sections 4, 5, and 6 for more inform~tion.

Creating Files (CREATE Command)

When you run a program, the files needed by that program must
already exist. For example, if you want to send the output from
a program to a disc file, rather than to your terminal, the disc
file must already exist.

You can use the CREATE command in COMINT to create unstructured
disc files. (To create other types of files, see the sections on
FUP in this manual. For a complete description of the different
types of files in Tandem systems, see the ENSCRIBE Programming
Manual.)

For example, suppose you want to send the output from the
STATUS *, USER command to a disc file. You first create an
unstructured file named STAT in your current default subvolume by
entering:

:CREATE STAT

Now you can send the output of the STATUS command to the file
STAT, instead of to your terminal, by entering:

:STATUS I OUT STAT I *, USER

If you want to read an unstructured file such as STAT with EDIT,
the Tandem ~ext editor, the file must be in the file format of
the EDIT program. An EDIT file is a special type of unstructured
file. You can create EDIT files directly with the EDIT program
(see the EDIT Manual for more information). You can also convert
unstructured files into EDIT files with this command:

:EDIT <unstruct> PUT <edit-file>

<unstruct> is the name of the unstructured file to be converted,
and <edit-file> is the name of the new EDIT file to be created.

2-16 ..-, 82396 AOO 3/85

i

BASIC USES OF COMINT
Renaming Files

As an example, to convert the file STAT created in the previous
example to an EDIT file, enter:

:EDIT STAT PUT STATS

STATS is the name of the EDIT file created by the text editor.

Note that the default size of files you create with the CREATE
command might not be large enough for some applications. For
information about how to create larger files, see the
descriptions of the CREATE command and the FUP CREATE command
in the GUARDIAN Operating System Utilities Reference Manual.

Displaying File Names (FILES Command)

To display the names of the files in your current default volume
and subvolume, enter the FILES command, like this:

:FILES

You can get a list of all files in a specific subvolume by
entering the FILES command followed by the name of the subvolume.
For example, suppose you want to get the names of all files in
subvolume $GROOVE.SUBSAND. Enter:

:FILES $GROOVE.SUBSAND

COMINT then displays a list of the files in subvolume
$GROOVE.SUBSAND, in alphabetical order:

$GROOVE.SUBSAND

ACRONYMS ARCHIVE CALCSRC CLS DAYl ENCRYPT FLYBOY GRAPHS
HUMOR L LOOSELF LORALORA MAIL NONO OTHELLO PLM
RECIPES RELEASE REQUEST Sl SINEWAVLl STYLE TALREAD TELCON
TESTPROC TMAIL TNAME TOOLS TOWORLD WHAT WHO

Renaming Files (RENAME Command)

You can rename files with the RENAME command. With this command,
you can specify a new subvolume, a new file name, or both. Enter
RENAME followed by the old file name, a comma, and the new file
name.

_,.1 82396 AOO 3/85 2-17

BA.SIC USES OF COMINT
Purging Files

For example, you can change the name of the file MAIL in your
current default volume to PROJECT.IDEAS by entering:

:RENAME MAIL, PROJECT.IDEAS

After you enter this command, the file MAIL no longer exists in
your current default subvolume. Instead, MAIL has become the
file IDEAS in subvolume PROJECT.

You cannot change the volume name of a file with this command.
RENAME can change the file name or the subvolume of a file but
not the physical volume location of a file. To give a new volume
name to a file, you must make a copy of the file in the new disc
volume using the FUP DUPLICATE command. The FUP sections in this
manual give information about duplicating files.

Purging Files (PURGE Command)

You can purge or delete files from the system by entE~ring PURGE
followed by the name of the file to be purged.

Suppose you want to purge the file OLDFILE in subvolume
$DATA.COMMENTS. Enter:

:PURGE $DATA.COMMENTS.OLDFILE
$DATA.COMMENTS.OLDFILE PURGED

If OLDFILE resides in your current default subvolume and volume,
you can purge it by entering:

:PURGE OLDFILE
$YRVOL.YRSVOL.OLDFILE PURGED

EXECUTING COMMANDS FROM A FILE (OBEY COMMAND)

If you are going to enter a long list of commands or if you
frequently enter a single lengthy command, you may save time and
energy by using a command file for entering the commands. Files
that contain COMINT commands are known as command files. You can
put one or more COM INT commands in a file and executE~ them using
the OBEY command. To execute the commands in a command file,
enter OBEY or O followed by the name of the file.

For example, suppose you want a daily listing of the processes
you started in three different systems. Use the following
procedure to create an EDIT file named ALLSTATS that contains

2--18 ..,, 82396 AOO 3/85

,:

BASIC USES OF COMINT
Correcting Command Errors

this series of SYSTEM and STATUS commands.
one command to a line in a command file.)

(You can place only

:EDIT ALLSTATS!
*a
1 SYSTEM \LONDON
2 STATUS * , USER
3 SYSTEM \PARIS
4 STATUS * , USER
5 SYSTEM \ROME
6 STATUS * , USER
7 SYSTEM
8 II
*e

Whenever you want to execute these commands, enter:

:OBEY ALLSTATS

or

:O ALLSTATS

(This OBEY command assumes that ALLSTATS is in the current
default subvolume. If the file is in another subvolume, include
the subvolume name; if the file is in another volume and
subvolume, you must fully qualify the file name.)

COMINT displays each command from the command file and then
executes the command.

CORRECTING COMMAND ERRORS (FC COMMAND)

You can use the "fix command," FC, to change the last command
that you entered. With it, you can insert, delete, or replace
characters in the command. FC allows you to correct errors in
commands, to reexecute commands, and to execute a series of
similar commands.

After you enter the FC command, the previous command you entered
is redisplayed. On the line below the command, a period appears
as a prompt, followed by the cursor. The line that starts with
the period prompt is a "correction line." Here you fix the
previous command: you can type a character string that replaces
the characters in the command you are fixing, or you can type
subcommands to signal the beginning of a string that will replace
characters in the command or be inserted into it.

Af' 82396 AOO 3/85 2-19

.l:::SA::SlL U::SJ:!,;::S ur· LUMlNT

Correcting Command Errors

For example, suppose you misspell a subvolume name in a FILES
command and want to correct it:

:FILES $DATA.TABLE
FILE SYSTEM ERROR 014
:FC
:FILES $DATA.TABLE

Insertion (The I Subcommand)

You can insert characters by typing the I (or i) subcommand at
the position in the line where the insertion should begin. Then
type the characters you want to insert. Press RETURN when you
finish making your insertion. The characters are then inserted
before the character above the "I" or "i," like this:

:FC
:FILES $DATA.TABLE

iXA
:FILES $DATA.TAXABLE

A new period and correction line then appear. Each time you
press RETURN after making changes on a correction line, the
edited version of the command is redisplayed with a new period
prompt. You have a chance to make additional changes. If the
redisplayed line is correct, enter RETURN to execute the command.

Deletion (The D Subcommand)

To delete characters, type the D (or d) subcommand under the
characters to be deleted:

:FC
:FILES $DATA.TAXABLE

ddd
:FILES $DATA.TALE

2-20 .-, 82396 AOO 3/85

BASIC USES OF COMINT
Correcting Command Errors

Replacement (The R Subcommand)

To replace characters, use either of these two methods:

• Type the R (or r) subcommand below the first character to be
replaced. The next characters you type replace the characters
in the original command, starting with the character above the
"R" or "r"~ for example:

:FC
:FILES $DATA.TALE

rRECORDS
:FILES $DATA.RECORDS

• If the new characters do not begin with an uppercase or
lowercase I, D, or R, you can simply type them under the
characters to be replaced:

:FC
:FILES $DATA.RECORDS

MONTHLY
:FILES $DATA.MONTHLY

Multiple Corrections

With one exception, if you want to perform more than one
operation at the same time, you must separate the commands with
two slashes (//). Here is an example of an FC command that makes
multiple corrections:

:FC
:TGAL I IN $DATA.TABLE.OCT, OUT $S.#SPOOL/

NOV// i, NOWAIT
:TGAL / IN $DATA.TABLE.NOV, OUT $S.#SPOOL, NOWAIT/

'1J 82396 AOO 3/85 2-21

Dr\O .1. '- UO.LJO V.L' \-V1"1.1. .L'I .L

Correcting Command Errors

The one exception occurs when any number of uppercase or
lowercase D's begin a command. Another command can follow the
D's without the intervening slashes(//). The following example
illustrates how you can use this feature to replace character
strings with another string of any length within a command:

:FC
:TGAL I IN $DATA.TABLE.NOV, OUT $S.#SPOOL, NOWAIT/

dddddiRECS
:TGAL I IN $DATA.RECS.NOV, OUT $S.#SPOOL, NOWAIT/

Reentering Commands with FC

You can also use the fix command to reenter commands. Enter the
FC command. When the period appears, do not make any changes.
Simply press RETURN:

:FC
:FILES $DATA.TABLE
.<RETURN>

'I'he command is then reexecuted. r,or a series of long commands
that differ only slightly, you can use FC rather than retype
each command; for example:

:TGAL I IN $ZDISC.MYGROUP.FILE1, OUT $S.#LP1, NOWAIT I
:FC
:TGAL I IN $ZDISC.MYGROUP..FILE1, OUT $S.#LP1, NOWAIT I
.<RETURN> 2
:TGAL I IN $ZDISC.MYGROUP.FILE2, OUT $S.#LP1, NOWAIT I
.<RETURN>
:FC
:TGAL I IN $ZDISC.MYGROUP.FILE2, OUT $S.#LP1, NOWAIT I
.<RETURN> 3
:TGAL I IN $ZDISC.MYGROUP.FILE3, OUT $S.#LP1, NOWAIT I
.<RETURN>

If, after you enter the FC command, you decide you don't want to
reenter the previous command or a new version of it JI simply press
the BREAK key before entering the final RETURN. Execution of the
fix command stops, and COMINT's colon prompt (:) reappears.

2-22 ~ 82396 AOO 3/85

SECTION 3

ADVANCED USES OF COMINT

This section is intended for users who are already familiar with
the basic uses of COMINT. It describes how to:

• Start a remote COMINT process

• Restart a COMINT process

You can find complete information about starting COMINT processes
in the GUARDIAN Operating System Utilities Reference Manual. For

~ information about using COMINT in application programs, see the
GUARDIAN Operating System Programmer's Guide.

STARTING A REMOTE COMINT PROCESS

When Tandem systems are linked together to form a network, access
to a file can be restricted to either of these general groups:

• Users on the system where the file resides

• Users on any system in the network (for systems that are part
of a network)

If a file is available only to users on the system where it
resides, you must be logged onto the system in order to gain
access to it. To log onto a system other than the one where your
current COMINT process is running, you first start a remote
COMINT process in that system.

Before you can start a COMINT process on any remote system, you
must be established as a user on that system and have remote
passwords set up between your own system and the remote system.

Af' 82396 AOO 3/85 3-1

Starting a Remote COMINT Process

Remote passwords and other system security features are discussed
in Section 12.

To start a COMINT process in another system, you ent1~r a COMINT
command that specifies the name of the system followed by the
COMINT program name. (Complete information about starting COMINT
processes, including the syntax of the COMINT command and
descriptions of available options, can be found in the GUARDIAN
Operating System Utilities Reference Manual.)

For example, if your local system is part of a network that
includes the \VIENNA system, you can start a COMINT process on
the \VIENNA system by entering:

:\VIENNA.COMINT

A new remote COMINT process such as the one on \VIENNA does not
have a backup process. If you want the remote COMIN~r to run as a
Nonstop process pair, you must do the following:

• Give the COMINT process a name by including the NAME
<run-option> in your command to start the remote COMINT.
If you include the NAME option but do not specify a name, the
operating system assigns a name to the new process. See the
description of the COMINT program in the GUARDIAN oeerating
System Utilities Reference Manual for more information about
the NAME option.

• Specify the processors where the primary and backup COMINT
processes are to execute. You specify the processor for the
primary process with the CPU option. See the GUARDIAN
Operating System Ut i 1 it ies Reference. Manual for a description
of the CPU option. You specify the processor where the backup
process is to execute by including the CPU number of the
processor after the slash character (/) following the last
<run-option> in your command to start the COMINT process.

For example, you can start a remote COMINT process in the \BUDA
system that runs as a Nonstop process pair by giving a name for
the COMINT process ($PEST), the processor where the primary
process will execute (4), and the processor where the backup
process will execute (5). The following command does all this:

:\BUDA.COMINT I CPU 4, NAME $PEST I 5

When the remote COMINT process begins executing, the COMINT colon
prompt reappears on the screen. You can then log on to the
remote system using the procedure you use on your local system.

3--2 ~ 82396 AOO 3/85

ADVANCED USES OF COMINT
Restarting a COMINT Process

To stop a remote COMINT process, enter:

• LOGOFF if you are logged on to the remote system

• EXIT (followed by "y" or "yes") if you did not log on

You then return to your home system.

RESTARTING A COMINT PROCESS

If a command interpreter that controls a terminal stops, you can
restart it by running the COMINT program. Complete syntax of the
command to start a COMINT process can be found in the GUARDIAN
Operating System Utilities Reference Manual.

When you restart a COMINT process, you can maintain the same
distribution of system resources by specifying the same options
for the new COMINT process as for the previous one. You need the
following information to restart the COMINT process for a
particular terminal:

• The name of the COMINT process that controls the terminal
(such as $C007)

• The name of the terminal the COMINT process controls
(such as $TERM2)

• The CPU numbers of the processors that are running the primary
and backup COMINT processes (such as 03 and 05}

You can obtain this information while the COMINT process is
running by entering the WHO command at any terminal controlled by
a COMINT process. If the COMINT process is not running and you
need this information, see your system manager.

Your command to restart an interactive command interpreter must
specify:

• As both the IN and OUT options, the name of the terminal where
you want the COMINT process to run

• As the NAME option, the name of the COMINT process

• As the CPU option, the CPU number of the processor to run the
primary process

• After the final slash (/) around the run options, the CPU
number of the processor that will run the backup process

~ 82396 AOO 3/85 3-3

AJJVANCJ:!iU U:St!i:S Ul'' CUM! NT
Restarting a COMINT Process

For example, suppose that you receive the following information
for a terminal:

:WHO

HOME TERMINAL: $MABEL
COMMAND INTERPRETER: \CAL.$C186 PRIMARY CPU: 02 BACKUP CPU: 03
CURRENT VOLUME: $DRUM2.PLANNING
USERID: 008,027 USERNAME: MANUF.MABEL SECURITY: NUNU

If this COMINT process is halted, you can restart it by entering:

:COMlNT I IN $MABEL, OUT $MABEL, NAME $C186, CPU 2, NOWAIT I 3

3--4 -'1 82396 AOO 3/85

SECTION 4

INTRODUCTION TO FUP

The File Utility Program (FUP) is a program you can use to create
and manage disc files. With FUP, you can:

• Create new files

• Assign or preset file characteristics

• Display, print, or store information about files

• Duplicate files

• Rename files

• Set file security

• Load data into files

• Display the contents of a file

• Purge (delete) files

.., 82396 AOO 3/85 4-1

INTRODUCTION TO FUP
How Is FUP Used?

WHO USES FUP?

Anyone with access to COMINT (the GUARDIAN operating system
command interpreter) can use FUP. These users include:

• Application programmers

• System programmers

• System managers

• System operators

Although most FUP commands are available to all users, the system
enforces security requirements for accessing or altering
files. For example, you cannot PURGE a file with FUP unless you
have purge access to that file, and you cannot LICENSE a program
file that contains privilege code unless you are logged on with
the super ID. For more information about security rE~quirements,
see Section 12 and see the FUP section in the GUARDIAN Operating
~stem Utilities Reference Manual.

HOW IS FUP USED?

You can enter FUP commands in any of three ways: through COMINT,
interactively through FUP itself, or through a command file.
Section 5 describes each method of entering FUP commands.

In addition, the Tandem Data Definition Language (DDL) compiler
gemerates FUP commands for creating new data base files. See the
Data Definition Language (DDL) Reference Manual for more
information.

4--2 ..., 132396 AOO 3/85

,,

SECTION 5

BASIC USES OF FUP

This section contains information for new users of the File
Utility Program, FUP. The first two subsections present a short
summary of background information about the file system. The
rest of this section describes the basic tasks that you can
perform with FUP, including how to:

• Enter FUP commands

• Control FUP execution

• Get information about files

• Duplicate, rename, and purge files

• Change the security of files

• Give files to another user

Before reading this section, you should be familiar with the
basic tasks you can perform with the GUARDIAN command interpreter
(COMINT), as described in Section 2, "Basic Uses of COMINT."

If you want to see complete, detailed reference information and
command syntax for FUP or COMINT, see the GUARDIAN Operating
System Utilities Reference Manual.

.., 82396 AOO 3/85 5-1

BASIC USES OF FUP
Files and File Names

FILES AND FILE NAMES

Before you use FUP to create or manage disc files, you should be
familiar with the file system of the GUARDIAN operating system.
This subsection summarizes the definition of a file and a file
name.

In the GUARDIAN system, "files" include:

• Disc files (containing data, code, or text)

• Nondisc devices (such as terminals, printers, or tape drives)

• Processes (programs that are running)

You refer to a file by its fJle name. For disc files, the person
or process who creates the file gives it a name. Nondisc devices
have assigned names in the system. Processes can be named by
their creator or can be assigned a name by the operating system.

An example of a disc file name is $VOL.SUBVOL.FILENAME. The
parts of this file name are:

• $VOL is the name of the volume where the disc file resides.
The volume name must begin with a dollar sign ($) followed by
an alphabetic character; volume names cannot be longer than
seven characters.

• SUBVOL is the name of the subvolume containing the disc file.
(Subvolume names are not usually assigned to nondisc devices.)
A subvolume name must begin with an alphabetic character; it
can contain up to eight letters and/or numbers, but no
punctuation or special characters (such as !, ?, or&).

• FILENAME is the name of the file itself. Like subvolume
names, file names must begin with an alphabetic character, and
can contain a maximum of eight letters and/or numbers, but
cannot contain punctuation or special characters.

TYPES OF DISC FILES

You can create disc files to store data bases, coded programs,
or text. For most uses, you should selectively create a specific
type of file that best fulfills your purpose. Also, even if you
do not create files of your own, you may work with various types
of files.

5-2 ..,, 82396 AOO 3/85

BASIC USES OF FUP
How to Enter FUP Commands

ENSCRIBE, the Tandem data-base record manager, supports these
four types of disc files:

• Unstructured files

• Key-sequenced files

• Entry-sequenced files

• Relative files

The first file type--unstructured--is an array of bytes of data.
The organization of an unstructured file is determined by the
creator, not by the file structure. Unstructured files often
contain program code or text. Although it is possible to
organize the contents of an unstructured file as a data base, the
operating system cannot access the data as it does with
structured files.

The last three file types are all structured files. A structured
file is designed to contain a data base. The data base itself is
made up of logical records (individual sets of data about
separate items or people). Each type of structured file has a
different organization for data records. See the ENSCRIBE
Programming Manual for a full description of the three types of
structured files.

When you create a file, you can use FUP to specify the structure
of the file. You select the file's structure to match the type
of data you want to store in the file. Section 6 of this manual
demonstrates how to select file characteristics and create
both structured and unstructured files with FUP.

HOW TO ENTER FUP COMMANDS

You can enter FUP commands in any of these ways:

• By entering complete FUP commands at the COMINT prompt

• By starting a FUP process and entering commands interactively
at the FUP prompt

• By starting a FUP process that takes as its input a command
file containing FUP commands

The following three subsections describe these three methods.

""1 82396 AOO 3/85 5-3

BASIC USES OF FUP
Entering FUP Commands through COMINT

Entering FUP Commands through COMINT

You can enter single FUP commands at COMINT's colon prompt (:).
Type FUP followed by the name of the FUP command. After FUP
executes the command, control of the terminal returns to COMINT.

For example, you can enter the FUP HELP command by typing:

:FUP HELP

FUP performs the HELP command by listing the syntax of the FUP
HELP command on the screen. Then the COMINT prompt reappears.

When you enter FUP commands through COMINT, you can enter only
one command at a time. A new FUP process starts (and completes)
for each command you enter. For this reason, when you have a
series of FUP commands to enter, you might want to use a faster
method. You can use either of the methods described in the next
two subsections.

Entering FUP Commands Interactively th~ough FUP

If you start a FUP process, you can enter FUP commands
interactively at the FUP prompt. To start a FUP process, enter
FUP alone (with no command name or other options). The File
Utility Program then displays a banner message and its prompt, a
hyphen (-):

:FUP
GUARDIAN FILE UTILITY PROGRAM - T9074BOO - (18MAR85)

A FUP process now controls the terminal. The hyphen indicates
that the FUP' process is ready to accept a command. You can enter
a FUP command interactively by typing it after the hyphen, like
this:

-HELP ALL

The FUP process performs the HELP ALL command (listing all the
FUP commands) and then redisplays its prompt. FUP continues to
accept and execute commands until you enter the EXIT command:

-EXIT

After you enter EXIT, the FUP process returns control of the
terminal to the command interpreter. Another way to stop a FUP
process is to enter a CTRL/Y character. CTRL/Y is a control

5--4 ..-, 82396 AOO 3/85

BASIC USES OF FUP
Entering FUP Commands from a Command File

character used to mark the end of a file (EOF). When FUP reads
CTRL/Y from its input file (in this case, your terminal), it
stops execution. You can enter CTRL/Y at a terminal by pressing
the CTRL and Y keys simultaneously.

The examples in this manual, except for the next subsection, use
the interactive method of entering commands through FUP itself.

Entering FUP Commands from a Command File

A command file is an unstructured disc file that contains a
series of commands (or a single command). Different command
files can contain commands for different programs. For example,
you might create one command file that contains a series of FUP
commands, and another command file that contains COMINT commands.
Command files are often useful when you must enter a series of
commands or enter a long command more than once.

Every time you start a FUP process, your command can include any
<run-option> available with the RUN command in COMINT (see
Section). For example, two common run options are IN <file-name>
(for naming input files) and OUT <list-file> (for naming output
files). To execute a series of commands contained in a
particular FUP command file, you specify the name of the command
file as the IN option for the FUP process, as described below.

Sending Input to FUP from a Command File

If you specify a command file as the input file (the IN
<file-name>) when you start a FUP process, the FUP process
executes the commands contained in that file.

For example, suppose that you used the EDIT program to create a
command file that gives you a list of the subvolumes in three
different disc volumes--$DISC1, $DISC2, and $DISC3. The file is
named ALLSUBS and contains these FUP commands:

SUBVOLS $DISC1
SUBVOLS $DISC2
SUBVOLS $DISC3

To execute these commands, enter a FUP command naming ALLSUBS as
the IN option:

:FUP I IN ALLSUBS I

~ 82396 AOO 3/85 5-5

BASIC USES OF FUP
Entering FUP Commands from a Command File

Control of the terminal returns to COMINT after FUP executes
the last command in the ALLSUBS file.

You can add comment lines within a command file to identify the
file and to explain the operations being performed. FUP comment
lines must begin with a less-than symbol (<). Any characters on
the line following the < are ignored by FUP. Here is the ALLSUBS
command file with comment lines added:

< FUP Commands for Obtaining a List of
< All Subvolumes in $DISC1, $DISC2, and
< $DISC3
<
< Last Modified 1/17/85 13:24
<
SUBVOLS $DISC1
SUBVOLS $DISC2
SUBVOLS $DISC3

< Contains manufacturing files
< Contains administrative files
< Contains all other files

Sending Output from FUP to a File

When you start a FUP process, you can use the OUT option to send
the process output to a file. An output file or list file can be
either a disc file or a peripheral device such as a printer. If
you do not specify an output file, FUP sends its output by
default to your terminal.

Suppose that you want to save the output from a FUP operation
in a disc file. If the outpµt file doesn't already exist, you
must begin by creating one. You can create an unstructured file
with the CREATE command in COMINT (see Section 2), and you can
create structured or unstructured files with the FUP CREATE
command (see Section 6). Next, you start a FUP process.

In your command to start a FUP process, specify the command file
(if you are using one) as the IN option, and the output file as
the OUT option. For example, if ALLSUBS is a command file, and
SUBINFO is a file you are using for the output, you can enter:

:FUP I IN ALLSUBS, OUT SUBINFO I

You can also send output to a printer. Specify the name of the
printer with the OUT option in your FUP command, like this:

:FUP I IN ALLSUBS, OUT $LP I

5-6 ~ 82396 AOO 3/85

BASIC USES OF FUP
Getting Help from FUP

Just as you can use an output file in a command to start a FUP
process, you can include an output file with several individual
FUP commands. The OUT file you specify in an individual FUP
command overrides any OUT file you specified when you invoked
FUP.

For example, you can send the results of three SUBVOLS commands
to different output files by entering:

-SUBVOLS I OUT INFO! I $DISC1
-SUBVOLS I OUT INF02 I $DISC2
-SUBVOLS I OUT INF03 I $DISC3

After these three commands are executed, the subvolumes in $DISCJ
are listed in the file INFOl, and the subvolumes in $DISC2 are
listed in INF02, and the subvolumes in $DISC3 are listed in
INF03. Of course, these files must already exist before you can
send command output to them.

GETTING HELP FROM FUP (HELP COMMAND)

If you are familiar with a FUP command but have forgotten its
syntax, or if you want a list of available commands, the FUP HELP
command provides a way to quickly get the information you need.

Entering HELP ALL lists all the FUP commands. This example
demonstrates how to enter the command and shows the information
that you receive:

-HELP ALL
ALLOCATE
COPY
FILES
LISTOPENS
RENAME
SHOW

ALLOW
CREATE
GIVE
LOAD
RESET
SUBVOLS

ALTER
DEALLOCATE
HELP
LOADALTFILE
REVOKE
SYSTEM

BUILDKEYRECORDS
DUP
INFO
PURGE
SECURE
VOLUME

CHECKSUM
EXIT
LICENSE
PURGEDATA
SET

To display the syntax of a particular FUP command, enter HELP
followed by the name of a command, like this:

-HELP GIVE
GIVE <f ileset list> , <group id> ' <user id> [' PARTONLY]

~ 82396 AOO 3/85 5-7

BASIC USES OF FUP
Controlling FUP

CONTROLLING FUP

You can control the execution of a FUP process in several ways.
These methods are described in the following two subsections.

Using the BREAK Key

When a FUP process controls a terminal, the BREAK key does
the following:

• It allows COMINT to regain control of the terminal if FUP is
waiting for a command. When this happens, the COMINT colon
prompt reappears on the terminal screen. The FUP process,
however, continues to execute even after COMINT regains
control (see the following comment).

• It halts the execution of a FUP command that provides infor
mation. This includes the COPY, FILES, INFO, LISTOPENS, SHOW,
and SUBVOLS commands. FUP then redisplays its hyphen prompt
and waits for a new command. If, however, FUP is executing
any other command, it continues to execute the command but
returns control of the terminal to COMINT. The COMINT colon
prompt then reappears on the terminal screen.

If COMINT regains control of the terminal after you press BREAK,
you can return control of the terminal to FUP by entering the
PAUSE command in COMINT:

:PAUSE

If you want to stop the FUP process rather than return control of
your terminal to FUP, enter the STOP command in COMINT. For
example, if FUP is the last process you started, you can stop it
by entering:

:STOP

For more information about stopping processes, see Section 2.

5-8 "'1 82396 AOO 3/85

I

BASIC USES OF FUP
Changing System and Volume Defaults

Changing System and Volume Defaults (SYSTEM and VOLUME Commands)

Each FUP process maintains default values for volume and
subvolume, as well as a default system in systems that are part
of a network. The default system and volume for FUP are separate
from the default values kept by the command interpreter.

Like COMINT, FUP expands file names by adding the current default
value for any part of a file name that you omit. Thus, when you
enter a file name as part of a FUP command, you need to include
only those parts of the name that are different from the current
default values kept by FUP.

Initially, the default values for a FUP process are the same as
the current COMINT default values that are in effect when you
start the FUP process. You can change these values with the FUP
SYSTEM and VOLUME commands, as shown in the following examples.

To change the current default system, enter SYSTEM followed by
the name of the system:

-SYSTEM \VENICE

You can return to the initial default system by entering SYSTEM
without a system name:

-SYSTEM

You can change the default volume, the default subvolume, or both
with the FUP VOLUME command. To change only the default volume,
enter VOLUME followed by the name of the new default volume:

-VOLUME $DISC99

To change the default subvolume, enter VOLUME followed by the
name of the new default subvolume:

-VOLUME MAYFLY

To change both the default volume and subvolume at once, enter
VOLUME followed by the volume name, a period, and the subvolume
name. For example, the changes made by the commands in the last
two examples can be made at one.time by entering:

-VOLUME $DISC99.MAYFLY

You can restore the initial default system, volume, and subvolume
values by entering VOLUME alone:

-VOLUME

..,., 82396 AOO 3/85 5-9

oA~lL u~~~ u~ ru~

Getting Information about Subvolumes and Files

GETTING INFORMATION ABOUT SUBVOLUMES AND FILES

FUP commands can give you:

• A list of the subvolumes in a disc volume (SUBVOLS command)

• A list of the files in a subvolume (FILES command)

• Information about an individual file or set of files
(INFO command)

Getting Information about Subvolumes (SUBVOLS and FILES Commands)

To get a list of the subvolumes in a given disc volume, enter
the SUBVOLS command followed by the name of the volume:

-SUBVOLS $DISC78

In systems that are part of a network, you can specify a
volume in another system, like this:

-SUBVOLS \DETROIT.$DISC45

If you enter the SUBVOLS command alone, you receive a list of the
subvolumes in the current default system and volume:

-SUBVOLS
$DISC33

MICK JANIS JIMIT

You can use the FILES command to get a list of the files in a
subvolume. Enter the FILES command followed by the name of the
subvolume, like this:

-FILES \NY.$APPLE.JACK

With the FUP FILES command, as with the FILES command in COMINT,
you need to include the systeJ name, volume name, or subvolume
name only if it differs from the current default value. For
example·, you can get a list of the files in the subvolume SUBTLE
in the current default system and volume by entering:

-FILES SUBTLE

5-10 Af' 82396 AOO 3/85

BASIC USES OF FUP
Getting Information about Single Files

In addition to a list of the files in one subvolume, you can get
~ a list of the files in all the subvolumes on a disc volume.

Enter the FILES command with an asterisk (*) in place of the
subvolume name:

-FILES $SYSTEM.*

Getting Information about Single Files (INFO Command)

The INFO command is one of the most useful FUP commands. You can
use INFO to find out many of the characteristics of a file or a
set of files. Some common uses of the INFO command are described
in this subsection. For additional information, see Section 6
and the description of the FUP INFO command in the GUARDIAN
Operating System Utilities Reference Manual.

To get information about a single file, enter the INFO command
followed by the name of the file. Remember that FUP expands file
names using its own current default values. The next example
illustrates how to get information on a file (here, the file
DICTALT) in the current default system, volume, and subvolume:

-INFO DICTALT
CODE

$JUMBO.PATHWAY
DICTALT 201

EOF

2048

LAST MODIF OWNER RWEP TYPE REC BLOCK

17AUG84 12:22 8,44 NUNU K 38 1024

In this example, the first line consists of listing headers or
labels that identify the information displayed below that line.
Under the listing headers is the name of the subvolume containing
the listed file ($JUMBO.PATHWAY).

The headers in the FUP INFO listing indicate the following:

• CODE is the file code. Codes 100-999 are reserved by Tandem
Computers Incorporated for use as system codes. For example,
code 100 is assigned to all program files, and code 101 is
assigned to files in the format used by the EDIT program. You
can assign file codes other than 100-999 when you create
files.

• EOF shows the current length of the file in bytes.

• LAST MODIF is the date and time when the file was last
modified. If the file was last modified on the day you enter
the INFO command, only the time is displayed.

"f' 82396 AOO 3/85 5-11

BASIC USES OF FUP
Getting Information about File Sets

• OWNER shows the user ID of the owner of the file. Each file
is owned by only one user on the system. When a file is
created, it is owned by the user who created it.

• RWEP stands for Read/Write/Execute/Purge. It shows the
current security settings for the file. The security of a
file is set by its owner. For information about file
security, see Section 12.

• TYPE, REC, and BLOCK show information about structured files.
See the description of the FUP INFO command in the GUARDIAN
Operating System Utilities Referenc~ Manual for details.

GE:?tting Information about File Sets (INFO Command)

You can get information about more than one file with a single
FUP INFO command. Like several other FUP commands, INFO allows
you to specify:

• A <f ileset> (a set of one or more files)

• A <fileset-list> (a list that includes one or more <fileset>s)

The specification for a file set is much like a single file name,
except that a file set can be more than one file. A file set can
be a list of file names separated by commas and enclosed in
parentheses. A file set can also be a single file name.

You can specify the name of a system, volume, or subvolume where
a file set resides, just as you would for the name of a single
file. If any of these are omitted, FUP expands the file name or
names using the current default values. With a file set,
however, you can also include an asterisk (*) in place of a
volume or subvolume name, with the following results:

• As the subvolume name, the asterisk applies the command to all
the subvolumes in the volume you specify.

• As the file name, the asterisk applies the command to all
files in the subvolume or subvolumes you specify. When you
use an asterisk in place of the subvolume name, you must use
an asterisk in place of the file name as well.

For example, you can get information about all the files in the
current default subvolume by entering:

-INFO *

5-12 "' 82396 AOO 3/85

BASIC USES OF FUP
Performing Common File Operations

You can get information about all the files in the volume $MANUF
~ by entering:

-INFO $MANUF.*.*

A file-set list can be a single file set, or a list that includes
more than one file set. To include more than one file set in a
file-set list, you must do the following:

• Enclose the <fileset-list> within parentheses.

• Include a comma after each <fileset> except the last.

For example, you can get information about the files in both the
current default subvolume and in the volume $MANUF with this INFO
command:

-INFO (*, $MANUF.*.*)

For a complete description of <fileset> and <fileset-list>, see
the FUP command syntax summary in the GUARDIAN Operating
System Utilities Reference Manual.

You can also use the INFO command to get information about files
owned by a particular user on the system. Enter the INFO command
followed by a <fileset> or a <fileset-list>, a comma, and a user
name or user ID, as in the following examples:

-INFO(*.*, $SYSTEM.PROG1.*), USER MANUF.MABEL

-INFO *, USER 8,44

FUP then displays information about the files in each file-set
list that are owned by the specified user.

PERFORMING COMMON FILE OPERATIONS

This section describes these common tasks that are performed with
FUP:

• Duplicating files

• Renaming files

• Changing the security of files

• Giving ownership of files to other users

• Deleting files from the system

~ 82396 AOO 3/85 5-13

BASIC USES OF FUP
Duplicating Files

Duplicating Files (DUPLICATE Command)

You can duplicate a single file or a set of files with the
DUPLICATE command. To duplicate a single file, enter DUPLICATE
(or the abbreviated form DUP) followed by the name of the file to
be copied, a comma, and the name of the new file. If you omit
the volume, subvolume, or system name, FUP expands the file name
by inserting the current default names.

For example, suppose that you want to duplicate the file BAKE in
your current default subvolume. You want the name of the new
file also to be BAKE, but you want it to reside in the subvolume
$PISMO.CLAM. Enter:

-DUP BAKE, $PISMO.CLAM.BAKE

If the file $PISMO.CLAM.BAKE already exists, FUP stops execution
of the command and responds with an error message. If you want
to overwrite an existing file with DUP, you must include the
PURGE option, which is described in the GUARDIAN Operating System
Utilities Reference Manual. -

To duplicate more than one file with a single command, enter DUP
followed by a <fileset> or <fileset-list> to be copie~d, a comma,
and a destination.

To specify a destination, you must do the following:

• Include a system or volume name if either one differs from
the current default value.

• Specify either of these:

--A single subvolume name, if you want all the new files to
reside in that subvolume

--An asterisk (*) in place of the subvolume name, which
specifies that the subvolume name of each new file is to be
the same as the subvolume name of the file from which it was
copied

• Include an asterisk (*) in place of a file name. The names of
the new files will be the same as those of the old files.

5-·14 ~ 82396 AOO 3/85

BASIC USES OF FUP
Renaming Files

As an example, suppose that you display the files in the
~· subvolumes $ALPHA.SOUP and $COUNT.DOWN:

-FILES $ALPHA.SOUP
$ALPHA.SOUP

A B
-FILES $COUNT.DOWN
$COUNT.DOWN

BLASTOFF

To duplicate the files in both $ALPHA.SOUP and $COUNT.DOWN to
the subvolume $COUNT.UP, enter:

-DUP ($ALPHA.SOUP.*, $COUNT.DOWN.*), $COUNT.UP.*

Next display the contents of subvolume $COUNT.UP:

-FILES $COUNT.UP
$COUNT.UP

A B BLASTOFF

To duplicate the same files to volume $DUKE and retain the
original subvolume names, enter:

-DUP ($ALPHA.SOUP.*, $COUNT.DOWN.*), $DUKE.*.*

Now volume $DUKE has a SOUP and a DOWN subvolume, each containing
the files copied from $ALPHA.SOUP and $COUNT.DOWN:

-FILES $DUKE.SOUP
$DUKE.SOUP

A B
-FILES $DUKE.DOWN
$DUKE.DOWN

BLASTOFF

Renaming Files (RENAME Command)

You can rename a file or a set of files by using the RENAME
command. To rename a single file, enter RENAME followed by the
current file name, a comma, and the new file name: for example:

-RENAME FRED.INFO, MABEL.ARCHIVE

In this example, MABEL.ARCHIVE is the new name of the file. You
can change the file's subvolume name and its file name, but not
its volume name, with the RENAME command. A file that is renamed

"" 82396 AOO 3/85 5-15

BASIC USES OF FUP
Changing a File's Security

remains in the same disc volume. To duplicate a file to another
disc volume, use the FUP DUPLICATE command.

To rename a set of files, you specify a file set with RENAME just
as you do with the DUPLICATE command. When you RENAME a file
set, however, all the file names must remain the same; only the
subvolume name can change. Enter RENAME followed by a file set
or file-set list to be renamed, a comma, and a destination. For
the destination you must specify the following:

• A subvolume name different from the subvolume names in the
file set or file-set list to be renamed; the renamed files
will reside in this different subvolume

• An asterisk (*) in place of the file name; the names of the
~enamed files will be the same as those of the original files

Suppose you want to rename the files in subvolumes $BIG.DOCUMNTS
and $BIG.PROGDOCS. The renamed files must still reside in volume
$BIG, but you would like to put all of them in the subvolume
ALLDOCS. Enter:

-RENAME ($BIG.DOCUMNTS.*, $BIG.PROGDOCS.*), $BIG.ALLDOCS.*

If you omit system names or volume names in the file set or
file-set list, FUP assumes the current default values. Also,
remember that you cannot change the volume names of files with
the RENAME command. This means that if you include a system or
volume name in the file set or file-set list to be renamed, the
same system or volume name must appear in the destination.

Changing a File's Security (SECURE Command)

If you own a file, you can change its security with the SECURE
command. To do this, you assign a new security string to the
file. A security string is a string of four charactE~rs that
specify, respectively, who can read, write, execute, and purge a
file. For information about file security and security strings,
see Section 12.

Enter SECURE followed by the name of a file, a file set or a
file-set list, a comma, and a security string. The security
string is then assigned to all of the files you specify. As an
example, suppose you want to assign the security string "NONO"
to all the files in the subvolumes $FIDO.SPOT and $FIDO.ROVER.
Enter:

-SECURE ($FIDO-SPOT.*, $FIDO.ROVER.*), "NONO"

5--16 ~ 82396 AOO 3/85

BASIC USES OF FUP
Deleting Files from the System

Giving Files to Other Users (GIVE Command)

Only one user can own a file. If you own a file, you can give
ownership of the file to another user with the GIVE command.
Enter GIVE followed by the name of a file, a file set, or a
file-set list, a comma, and the user ID of the new owner.

As an example, suppose you want to give the files in the
subvolume FORTLIB to user RESRCH.JACK, whose user ID is 3,12.
Enter:

-GIVE FORTLIB.*, 3,12

When you give a file to another user, you can get it back only
if the new owner or a user with super ID uses the GIVE command to
give it back to you.

Deleting Files from the System (PURGE Command)

You can delete individual files or sets of files with the PURGE
command. Enter PURGE followed by a file name or a file set, as
in the following example:

-PURGE IDEAS.*

After you enter the command, the screen displays information
about each file and a prompt; for example:

-PURGE IDEAS.*
CODE EOF LAST MODIF OWNER RWEP TYPE REC BLOCK

$CORP.IDEAS
BAD 101 998732 14:32 8,44 cucu

PURGE?

If you want to purge the file shown ($CORP.IDEAS.BAD), enter "Y"
or "y" after the PURGE? prompt:

CODE EOF LAST MOD IF OWNER RWEP TYPE REC BLOCK
$CORP.IDEAS

BAD 101 48732 14:32 8,44 cu cu
PURGE? y

GOOD 101 2048 18MAY84 10:10 8,44 cu cu
PURGE?n

INDIFF 101 998129 03MAR85 13:46 8,44 cu cu
PURGE?

..,. 82396 AOO 3/85 5-17

BASIC USES OF FUP
Deleting Files from the System

FUP does not prompt you for permission to purge files if you
place an exclamation point (!) at the end of your PURGE command.
In this way, you can purge an entire subvolume of files with one
command~ for example:

-PURGE IDEAS.*!
3 FILES PURGED

CAUTION

Be careful when you include the exclamation point (!) in
a command. The exclamation point means that the change you
request will be made without further prompting. The
results may be irreversible.

You can specify more than one file or a file set in a PURGE
command. If you do, you must separate the elements with
commas, like this:

-PURGE IDEAS.*, NOVELS.*

5-18 _,.1 82396 AOO 3/85

SECTION 6

ADVANCED USES OF FUP

This section contains information for users who are familiar with
both the basic uses of the File Utility Program (FUP, described
in Section 5) and with ENSCRIBE, the Tandem data-base record
manager. This section describes how to:

• Set and display file-creation parameters

• Create different types of disc files

• Maintain disc files with FUP

For more information about file structures in Tandem systems, see
the ENSCRIBE Programming Manual.

CREATING FILES

You can create both structured and unstructured disc files with
FUP. However, using FUP is only one of several ways to create
files. You can create unstructured files with the CREATE command
in COMINT as well as with FUP. You can also create files with a
program by calling the file-system CREATE procedure. For
information about file-system procedures, see the ENSCRIBE
Programming Manual. For information about the CREATE command in
COMINT, see Section 2 of this manual and Section 2 of the
GUARDIAN Operating System Utilities Reference Manual.

"1J 82396 AOO 3/85 6-1

AUVANL.l:!iU U~.l:!i~ ur· tt"U.I:"'

Creating Files

To create files with FUP, perform these four steps:

1.. Assign values to file-creation parameters with the SET
command. FUP maintains a table of current file-creation
parameters. The values of these parameters can determine the
attributes of any file you create with FUP. (You can also
override the current settings by specifying different values
in your CREATE command.)

2.. Check the values of file-creation parameters with the SHOW
command. The SHOW command allows you to check the current
values of file-creation parameters, to ensure that the values
are correct, before creating a new file.

3.. Create the file with the CREATE command. When you enter the
CREATE command, FUP consults its table of file-creation
parameters and, if the current values will result in a legal
file, creates a file whose attributes are based on these
values.

4.. Restore one or more file-creation parameters to their
original values with the RESET command. You are now ready
to create another new file.

Figure 6-1 shows the four steps for creating a file with FUP.

TYPE K

EXT 5 PAGES
2 PAGES

REC 120

BLOCK 1024

-SET TYPE K 1024 - SHOW

TYPE K
EXT (5 PAGES, 2 PAGES)
REC 120
BLOCK 1024
113LOCK 1024
KIEYLEN 9
KIEYOFF 0

-SET EXT CS, 2)
I BLOCK

MAXEXTENTS 16
-SET REC 120 KEY LEN 9
-SET KEYLEN 9 KEYOFF 0

MAXEXTENTS 16

TYPE u

EXT
1 PAGE
1 PAGE

MAXEXTENTS 16
BUFFERSIZE 4096

~ a ¢~REA._T_E _ ___,
- RESET - CREATE MYFILE

85055-001

Figure 6--1. Steps for Creating a File with FUP

6-2 Af' 82396 AOO 3/85

ADVANCED USES OF FUP
Creating Files

Table 6-1 lists and defines the options that you can
control with the SET command: these are the file-creation
parameters that determine the default characteristics of the file
you create. The same parameters can be included in your CREATE
command to override the current value displayed by the SHOW
command. The examples in this section demonstrate the use of
many of the file-creation parameters, and all of the parameters
are fully described in the GUARDIAN Operating System Utilities
Reference Manual.

Table 6-1. Options for the FUP SET Command

OPTION

TYPE
CODE
EXT
LIKE
REFRESH
AUDIT
REC
BLOCK
I BLOCK
COMPRESS
DCOMPRESS
I COMPRESS
KEYL EN
KEYOFF
ALTKEY
ALTFILE
ALTCREATE
PART
PARTONLY
ODDUNSTR
MAXEXiENTS
BUFFERED
BUFFERSIZE

AUDITCOMPRESS
VERIFIEDWRITES
SER I ALWRITES

SETS

File type (key-sequenced, relative, etc.)
File code (to identify files)
Primary and secondary extent sizes
Parameters to match an existing file
Automatic file-label refreshment
File auditing by TMF
Record length
Data-block length
Index-block length
Data and index compression
Data compression
Index compression
Primary-key length
Primary-key offset
Alternate-key specifications
File name of an alternate-key file
Automatic creation of alternate-key files
Secondary-partition specifications
Creation of individual partitions
Reading and writing of odd-numbered bytes
(DP2 files) Maximum number of file extents
(DP2 files) Mode of handling write requests
(DP2 files) Size of internal buffer for

unstructured files
(DP2 files) Mode of auditing by TMF
(DP2 files) Mode for disc writes
(DP2 files) Selection of serial or parallel

mirror writes

You can also create structured files with the aid of the Tandem
Data Definition Language (DDL). DDL is a data-management tool
for describing large data bases. You first describe the files in
a DDL source schema, then compile the schema with the DDL
compiler to produce both a data-base dictionary and a file
containing FUP file-creation commands. To create the files, you
run FUP, specifying as an IN file the command file created by
DDL. For more information about DDL, see the Data Definition
Language (DDL) Reference Manual.

.., 82396 AOO 3/85 6-3

ADVANCED USES OF FUP
Using the SET, SHOW, and CREATE Commands

Using the SET, SHOW, and CREATE Comma~ds

When you start a FUP process, the default file-creation
parameters are in effect. You can display these initial default
values by entering the SHOW command just after you start FUP:

:FUP
-SHOW

TYPE U
EXT (1 PAGES, 1 PAGES)
MAXEXTENTS 16
BUFFERSIZE 4096

The TYPE parameter determines the file type of a file. Here, it
has a value of U (for "Unstructured"). The two parts of the EXT
parameter determine the sizes of primary and secondary file
extents, respectively. Both extent sizes are set to "1 PAGE" (a
unit of 2048 bytes). MAXEXTENTS and BUFFERSIZE are attributes
that appear for DP2 files only. MAXEXTENTS controls the maximum
number of extents that can be allocated to a file. BUFFERSIZE
sets the size in bytes of the buffer used for unstructured files.
{For information about DP2 file attributes, see the FUP section
of the GUARDIAN Operating System Util~ties Reference Manual.)

If you enter the CREATE command now, you will create an
unstructured file whose primary and secondary extent sizes· are
one page each:

-CREATE FILE!
CREATED - $MANUF.FREDFILE.FILE1

You can see the attributes df the newly created file by entering
the INFO command with the DETAIL option:

6-4

-INFO FILE!, DETAIL
$MANUF.FREDFILE.FILE1

TYPE U
EXT (1 PAGES, 1 PAGES
MAXEXTENTS 16
BUFFERSIZE 4096
OWNER 8,44
SECURITY (RWEP): NUNU
MODIF: 10/23/84 20:21
EOF 0 (090% USED)
EXTENTS ALLOCATED: 0

10/23/84 20:23

Af' 82396 AOO 3/85

ADVANCED USES OF FUP
Using the SET, SHOW, and CREATE Commands

Suppose, however, that you want to create a key-sequenced file.
To do this, you must specify the file type and the length of the
primary key with SET commands:

-SET TYPE K
-SET KEYLEN 9

Now if you enter the SHOW command, this information is displayed:

-SHOW
TYPE K
EXT (1 PAGES, 1 PAGES)
REC 80
BLOCK 1024
!BLOCK 1024
KEYLEN 9
KEYOFF 0
MAXEXTENTS 16

Note that this SHOW display lists more attributes than those you
assigned with your SET command. These values are additional
defaults that apply to structured files (including key-sequenced
files, files with alternate keys, and partitioned files). For a
complete description of file-creation parameters, see the syntax
of the SET command in the GUARDIAN Operating System Utilities
Reference Manual.

Before you create a file, you should use SHOW to check that the
values of the parameters shown in the SHOW display are the ones
you want. If they are, and if they will result in a legal file,
you can create a new file.

"'P 82396 AOO 3/85 6-5

AUV ANC.1:!,;U U::S.1:!,;::S ur· .tt"Ut'

Using the RESET Command

Using the RESET Command

After you create each file (and before you create others), you
might want to restore some or all of the parameters to their
default values. To do this, enter the RESET command followed by
the parameters to reset. You can reset more than one parameter
with a single RESET command by separating the parameters with
commas, like this:

-SHOW < displays the current values before you enter RESET
TYPE K
EXT (5 PAGES, 5 PAGES)
REC 80
BLOCK 1024
!BLOCK 1024
KEYLEN 9
KEYOFF 0
DCOMPRESS, !COMPRESS
MAXEXTENTS 16

-RESET EXT, COMPRESS
-SHOW < displays the new parameter values after RESET

TYPE K
EXT (1 PAGES, 1 PAGES)
REC 80
BLOCK 1024
!BLOCK 1024
KEYLEN 9
KEYOFF 0
MAXEXTENTS 16

You can reset all file-creation parameters at once by entering
RESET with no parameters. This restores the parameter values
that were in effect when you started the FUP process:

6-6

-RESET
-SHOW

TYPE U
EXT (1 PAGES, 1
MAXEXTENTS 16
BUFFERSIZE 4096

PAGES)

Af' 82396 AOO 3/85

File-Creation Examples

ADVANCED USES OF FUP
File-Creation Examples

The following examples demonstrate the creation of all the types
of files: unstructured, entry-sequenced, relative, and
key-sequenced files. Examples are also given for creating files
with alternate keys, partitioned files, and files that match the
attributes of an existing file. Each example shows the series of
commands needed to create a particular type of file. The logon
default file-creation attributes are in effect at the start of
each example.

Creating an Unstructured File. Unstructured files are
essentially arrays of bytes. They are normally used to store
object programs and text input with EDIT, the Tandem text editor.
If you do not change the logon default file-creation attributes,
or if you create a file with the CREATE command in COMINT, the
new file is an unstructured file.

To create an unstructured file named $MY.LIL.UN whose primary
extent size is 10 pages (20,480 bytes), whose secondary extent
size is 2 pages (4096 bytes), and whose file code is 999, enter:

-SET EXT (10,2) < You can specify extent sizes in pages,
< bytes, records, and megabytes. If you
< do not specify a unit, FUP assumes that
< the unit is pages.

-SET CODE 999

-SHOW
TYPE U
CODE 999

< Set the file code (used to identify
<the file).
< Show the current parameter values.

EXT (10 PAGES, 2 PAGES)
MAXEXTENTS 16 < Appears only for DP2 files.
BUFFERSIZE 4096 < Appears only for DP2 files.

-CREATE $MY.LIL.UN < Create the file.
CREATED - $MY.LIL.UN

~ 82396 AOO 3/85 6-7

File-Creation Examples

Creating an Entry-Sequenced File. For an entry-sequenced file,
the following is true:

• New records are added to the end of the file.

• Records are searched sequentially from the beginning of the
file.

• Records added to the file can vary in length, but once a new
record is added, its length cannot change.

• Records in the file can be updated but not deleted.

Figure 6-2 shows the structure of an entry-sequenced file.

6--8

Entry-Sequenced File

Primary access is
in the sequence
in which records
are stored in
the file.
Example:

READ (READS FIRST)
READ (READS SECOND)
READ (READS THIRD)

Figure 6-2.

1st

2nd

3rd

4th

5th

6th

7th

8th
rt ..

Record

,

Latest T _____ , ______ f

Entry-Sequenced
File

Records are stored in the order in which they are
presented to the system (i.e., in chronological order).

85055-002 ------
Structure of an Entry-Sequenced File

.., 82396 AOO 3/85

ADVANCED USES OF FUP
File-Creation Examples

You can create an entry-sequenced file named $MY.EN.SEQ whose
~ primary extent and secondary extent sizes are four pages each,

and whose data-block length is 2048 bytes by entering:

-SET TYPE E < Set file type to entry-sequenced.
-SET EXT 4

-SET BLOCK 2048

< You can specify extent sizes in pages,
< bytes, records, and megabytes. If you
< do not give a unit, FUP assumes pages.
< Set the data-block length.

-SHOW < Show the current parameter values.
TYPE E
EXT (4 PAGES, 4 PAGES
REC 80
BLOCK 2048
MAXEXTENTS 16 < Appears only for DP2 files.

-CREATE $MY.EN.SEQ < Create the file.
CREATED - $MY.EN.SEQ

Creating a Relative File. For a relative file, the following is
true:

• All physical records are the same length.

• Records are stored by record number. Record numbers give the
position of a record relative to the first record in the file.

• You can retrieve records randomly using record numbers.

Figure 6-3 shows the structure of a relative file.

..., 82396 AOO 3/85 6-9

ADVANCED USES OF FUP
File-Creation Examples

Relative File:

Record
Number Record

~
_l

0th

Primary access is via
record number.

1st

2nd
Example: 3rd

5th

FIND6thL 4th

6th Relative File

7th
,.It,. • • • •
I • -----

nth

t
T

Records are stored according to a record number
supplied by the application program.

85055-003

Figure 6-3. Structure of a Relative File

You can create a relative file named $MY.OLD.REL whose primary
extent size is 5 pages, whose secondary extent size is 2 pages,
and whose record length is 120 bytes by entering:

-SET TYPE R
-SET EXT (5,2)

-SET REC 120
-SHOW

TYPE R

< Set file type to relative.
< You can specify extent sizes in pages,
< bytes, records, and megabytes. If you
< do not give a unit, FUP assumes pages.
< Set the record length to 120 bytes.
< Show the current parameter values.

EXT (5 PAGES, 2 PAGES
REC 120
BLOCK 1024
MAXEXTENTS 16 < Appears only for DP2 files.

-CREATE $MY.OLD.REL < Create the file.
CREATED - $MY.OLD.REL

6--10 Af' 82396 AOO 3/85

ADVANCED USES OF FUP
File-Creation Examples

Creating a Key-Sequenced File. In a key-sequenced file, records
are stored by the values of their primary keys. A primary key is
a field within a record that uniquely identifies the record.
Figure 6-4 shows the structure of a key-sequenced file.

Key-Sequenced File

Primary access is by
a value in the primary
key field.
Example:

/

Primary
Key

I

ADAMS

BROWN

COLLINS

Record

I

I
I

I
FIND "KING" ___

7
_

...

FISH I

JACKSON I

KING
I

MASTERS
I

.l
OBRIEN l
RYAN l

-<l, .. L,.

l._ __ ;A_A_,~-~~-N _ _.....__ _____ l
t

Records are stored in ascending order
of "primary key" field value.

Key-Sequenced
File

55055-004 ---

Figure 6-4. Structure of a Key-Sequenced File

Here is a possible format for a record in a key-sequenced file:

Byte Offset

[O] [34]

.., 82396 AOO 3/85

name address

Primary
Key

[1341 [142] [150]

phone affll]

85055-005

6-11

ADVANCED USES OF FUP
File-Creation Examples

You can create a file for records in the preceding format by
entering the following FUP commands in a disc file and then
starting a FUP process that takes input from this file:

VOLUME $VOL1.SVOL < Set the default volume and

SET TYPE K
SET CODE 1000

SET EXT (16, 1)

SET REC 150
SET BLOCK 2048
SET COMPRESS

SET KEYL EN 34

SET I BLOCK 2048

< subvolurne to the desired values.
< For file type, specify key-sequenced8
< You may optionally specify a file
< code to identify the file.
< Set appropriate primary and secondary
< extent sizes for the application.
< Set the record length and block size.

< If desired, you may specify data and
< index compression.
< You must specify a primary-key length
< for key-sequenced files.
< You can also specify the size of
< index blocks.

SHOW < Display the current parameter valuesD
TYPE K
CODE 1000
EXT (16 PAGES, 1 PAGES)
REC 150
BLOCK 2048
!BLOCK 2048
KEYLEN 34
KEYOFF 0
DCOMPRESS, !COMPRESS
MAXEXTENTS 16 < Appears only for DP2 files.

CREATE MYFILE < Create the file.

6-12 Af' 82396 AOO 3/85

,1

ADVANCED USES OF FUP
File-Creation Examples

Creating a Key-Sequenced File with Alternate Keys. Besides
having a primary key, a key-sequenced file can have one or more
alternate keys. Here is a possible format for a record in a key
sequenced file with alternate keys:

Byte Offset

[O]

part no

I
Primary

Key

[2]

descr

[32) [40)

price avail""qty

I
Alternate
Key "AO"

[42)

loc

I
Alternate
Key "LO"

[46) [54]

vendor

I
Alternate
Key "VN"

85055-006

To create a file to contain data in this record format, first
enter the following FUP commands in a file. Then run FUP,
specifying the command file as the input file with the IN option:

VOLUME $VOL1.SVOL

SET TYPE K
SET CODE 1001

SET EXT (32,8)

SET REC 54

SET BLOCK 4096
SET IBLOCK 1024

SET KEYLEN 2

< Set the default volume and
< subvolume to the desired values.
< Set the file type to key-sequenced.
< You can specify a file code to
< identify the file, if desired.
< Set appropriate primary and
< secondary extent sizes for the
< application.
< Set the record length and block
< size.

< You can also specify the size of
< index blocks.
< You must specify a primary-key
< length for key-sequenced files.

SET ALTKEY ("A.Q", KEYOFF 40, KEYLEN 2)
SET ALTKEY ("LO", KEYOFF 42, KEYLEN 4)
SET ALTKEY ("VN", KEYOFF 46, KEYLEN 8)
SET ALTFILE (0, INVALT)

< Specify the alternate
< keys and the name and
< number of the SET
< alternate-key file.

...,, 82396 AOO 3/85

< If the FILE parameter
< is not specified in
< the SET ALTKEY
< command, the
< alternate-key file
< number is set to the
< default value of 0.

6-13

ADVANCED USES OF FUP
File-Creation Examples

SHOW < Show the current parameter values.
TYPE K
CODE 1001
EXT (32 PAGES, 8 PAGES)
REC 54
BLOCK 4096
!BLOCK 1024
KEYLEN 2
KEYOFF 0
ALTKEY ("AQ", FILE 0, KEYOFF 40, KEYLEN 2
ALTKEY ("LO", FILE 0, KEYOFF 42, KEYLEN 4
ALTKEY ("VN", FILE 0, KEYOFF 46, KEYLEN 8
ALTFILE (0, $SVOL1.SVOL.INVALT)
ALTCREATE
MAXEXTENTS 16 < Appears only for DP2 files.

CREATE INV < Create the file.

6-14 /1 82396 AOO 3/85

ADVANCED USES OF FUP
File-Creation Examples

Creating a Key-Sequenced Partitioned File. You do not need to
keep all the data in a disc file on the same disc volume. By
partitioning a file, you can store data in a file on as many as
16 different disc volumes. Partitioning allows you to create
files that can be larger than those which reside on only one
disc. Also, because the disc heads for each disc can be
repositioned at the same time, access to data can be faster.
Figure 6-5 shows the structure of a partitioned file .

.--------------------------------··---·--------·

$VOL1 $VOL2 $VOL3

PART Fl LE. PART PART Fl LE. PART PARTFILE.PART

ALLEN, A. HAN,A. QUINCY, P.
BAKER, R. KELLEY,S. ROX,G.
DAVIS,J. LOTHAR, K. VARIO,J.

EDWARDS,S. NYQUIST,G. WEST, T.
GOMEZ,G. PARIS, P. ZIP, M .

.._ ________ $VOL1.PARTFILE.PART --------..

85055-007

"--------------------------------·------------~

Figure 6-5. Structure of a Partitioned File

Suppose you want to create a partitioned file whose primary
partition resides in the disc volume $VOL1. You want the name of
the file to be $VOL1.PARTFILE.PART You want the primary
partition to contain the first record and all subsequent records
up to, but not including, records whose primary key begins with
"HA".

You also want to create secondary partitions for the file. The
first will reside on $VOL2, while the second will reside on
$VOL3. The first secondary partition, on $VOL2, contains records
whose primary key begins with "HA" and subsequent records up to,
but not including, records whose primary keys begin with "QU".

~ 82396 AOO 3/85 6-15

ADVANCED USES OF FUP
File-Creation Examples

Creating a Key-Sequenced Partitioned File. You do not need to
1 keep all the data in a disc file on the same disc volume. By

partitioning a file, you can store data in a file on as many as
16 different disc volumes. Partitioning allows you to create
files that can be larger than those which reside on only one
disc. Also, because the disc heads for each disc can be
repositioned at the same time, access to data can be faster.
Figure 6-5 shows the structure of a partitioned file.

$VOL1 $VOL2 $VOL3

PARTFILE.PART PART Fl LE.. PART PARTFILE.PART

ALLEN, A. HAN,A. QUINCY, P.
BAKER, R. KELLEY, S. ROX,G.
DAVIS, J. LOTHAR, K. VARIO, J.

EDWARDS,S. NYQUIST,G. WEST, T.
GOMEZ,G. PARIS, P. ZIP, M .

.._ ________ $VOL1.PARTFILE.PART --------..

85055-007

Figure 6-5. Structure of a Partitioned File

Suppose you want to create a partitioned file whose primary
partition resides in the disc volume $VOL1. You want the name of
the file to be $VOL1.PARTFILE.PART You want the primary
partition to contain the first record and all subsequent records
up to, but not including, records whose primary key begins with
"HA".

You also want to create secondary partitions for the file. The
first will reside on $VOL2, while the second will reside on
$VOL3. The first secondary partition, on $VOL2, contains records
whose primary key begins with "HA" and subsequent records up to,
but not including, records whose primary keys begin with "QU".

~ 82396 AOO 3/85 6-15

ADVANCED USES OF FUP
File-Creation Examples

All other records (that is, those records whose primary keys
begin with "QU" and all subsequent records) will reside in the
second secondary partition on $VOL3.

These FUP conunands create a key-sequenced partitioned file named
$VOL1.PARTFILE.PART:

VOLUME $VOL1.PARTFILE

SET TYPE K

SET CODE 409

SET EXT (64,8)

SET REC 128
SET KEYLEN 20

SET PART
SET PART

SHOW
'I1YPE K

1, $VOL2, 64, 8,
2, $VOL3, 64, 8,

EXT (64 PAGES, 8 PAGES
REC 128
BLOCK 1024
!BLOCK 1024
KEYLEN 20
KEYOFF 0

< Set the default volume and
< subvolume to the desired values.
< Set the file type to
< key-sequenced.
< You may optionally specify a
< file code to identify the file.
< Set appropriate primary and
< secondary extent sizes for the
< application.
< Set the record length.
< Specifying the primary-key
< length is required for
< key-sequenced files.
"HA") < Specify the partitions,
"QU") < their volumes, primary

< and secondary extent
< sizes, and the partial
< key values.

< Show the current parameter
< values.

PART (1, $VOL2, 64, 8, "HA")
PART (2, $VOL3, 64, 8, "QU")
MAXEXTENTS 16 < This attribute appears only for DP2 files.

CREATE PART < Create the file.

6-16 ~ 82396 AOO 3/85

ADVANCED USES OF FUP
File-Creation Examples

Creating a File with the Attributes of an Existing File. If a
~ file already exists with all or most of the attributes you want a

new file to have, you can use the LIKE option of the SET command
to duplicate these attributes.

You can display the attributes of a file by entering the INFO
command and specifying the DETAIL option, as shown in the
following example:

-INFO $CLEAN.BERKELEY.AIR, DETAIL
$CLEAN.BERKELEY.AIR

TYPE K
EXT (5 PAGES, 5 PAGES
REC 80
BLOCK 1024
IBLOCK 1024
KEYLEN 9
KEYOFF 0
DCOMPRESS, !COMPRESS
MAXEXTENTS 16
OWNER 8,44
SECURITY (RWEP): NUNU
MODIF: 8/24/84 0:29
EOF 0 (0.0 % USED)
EXTENTS ALLOCATED: 0
FREE BLOCKS 0
INDEX LEVELS: 0

8/24/84 0:31

Make sure the parameters for the existing file have the values
you want for the new file. Then enter the SET command with the
LIKE option. FUP then sets its current file-creation charac
teristics to match those of the file you specify. New files you
create will have the same attributes:

-SET LIKE $CLEAN.BERKELEY.AIR
-SHOW

TYPE K
EXT (5 PAGES, 5 PAGES)
REC 80
BLOCK 1024
!BLOCK 1024
KEYLEN 9
KEYOFF 0
DCOMPRESS, !COMPRESS
MAXEXTENTS 16

-CREATE $CLEAN.SANJOSE.AIR
CREATED - $CLEAN.SANJOSE.AIR

,,...1 82396 AOO 3/85 6-17

ADVANCED USES OF FUP
Maintaining Files

MAINTAINING FILES

Besides creating files with FUP, you can use FUP to:

• Load data into files

• Purge data from files

• Rename and move files with alternate keys

• Move files to a backup volume

• Add alternate keys to files

• Modify partitioned files

These operations are described in the next subsections.

Loading Data into Files

FUP can move data between files in three different ways. First,
the DUP conunand duplicates an entire file at a time. With DUP,
both your original file and the copy must be disc files.

Second, the COPY conunand moves data one record at a time (see the
description of COPY in the GUARDIAN Operating System Utilities
Reference Manual). Unlike the DUP command, COPY allows you to
copy part of a file. It also allows you to copy records to and
from media other than discs, including tape volumes and
terminals.

Finally, the LOAD command moves data into a structured file.
With the LOAD command, data is transferred one record at a time
from the source file and moved a block at a time into the
destination file.

There are two advantages to the LOAD conunand:

• Loading files does not affect alternate-key values.

• Data can be written a block at a time. LOAD is faster than
COPY.

To load a file, enter LOAD followed by the name of the file that
contains the data, a comma, and the name of the file to be
loaded.

6-18 '1' 82396 AOO 3/85

ADVANCED USES OF FUP
Purging Data from Files

The next example illustrates how you can load a file with data
stored on tape. The name of the file to be loaded is:

$VOL1.SVOL.PART

PART is a key-sequenced file with three partitions. The
secondary partitions are on volumes $VOL2 and $VOL3.

The first secondary partition, on $VOL2, contains records whose
primary key begins with "HA" and subsequent records up to, but
not including, records whose primary keys begin with "QU". All
other records (that is, those records whose primary keys begin
with "QU" and all subsequent records) will reside in the second
secondary partition on $VOL3.

The records to be loaded into this file are 128 bytes in length
and are on magnetic tape in unsorted order. There is one record
for each block on the tape.

To load the file, enter:

-VOLUME $VOL1.PARTFILE.PART
-LOAD $TAPE, PART

When the LOAD command is executed, the records from tape are
first read, then sorted by primary key. After the records are
sorted, FUP loads them into the partitions using the key
specifications contained in the file label of PART.

The LOAD command also allows you to specify a number of useful
options. See the description of the LOAD command in the GUARDIAN
Operating System Utilities Reference Manual for more information.

Purging Data from Files

With the PURGEDATA command, you can purge data from a file
without deleting the file. When you enter the PURGEDATA command,
the end-of-file (EOF) pointer is set to 0, and other file-label
values indicating the size of the file are reset to indicate that
the file is empty. PURGEDATA does not, however, change the
attributes of the file.

Enter PURGEDATA followed by the name of the file, a <fileset>,
or a <fileset-list>, as in this example:

-PURGEDATA ($VOL1.XDATA.FILE0, $VOL2.XDATA.FILE1)

Data is purged from all files you specify.

~ 82396 AOO 3/85 6-19

ADVANCED USES OF FUP
Renaming and Moving Files with Alternate Keys

Renaming and Moving Files with Alternate Keys

Renaming or moving a file with alternate keys is complicated by
the fact that the names of alternate-key files are attributes of
the primary-key file. The following examples show how to modify
files to reflect the new names.

Renaming a File and Its Alternate-Key File

In this example, assume that you want to rename a structured file
named $VOL1.SVOL.PRIFILE. You want the file to be named
OLDSVOL.PRIFILE. The file has one alternate-key file named
$VOL1.SVOL.AFILE, which you want to rename OLDSVOL.AFILE.

To change the names of the two files, enter:

-VOLUME $VOL1.0LDSVOL
-RENAME SVOL.PRIFILE,PRIFILE
-RENAME SVOL.AFILE,AFILE

Now you must alter the file label of PRIFILE so that it includes
the new name of the alternate-key file. You do this with the
ALTER command:

-ALTER PRIFILE, ALTFILE (0, AFILE)

Moving a File with Alternate Keys to a New Volume

In this example, assume that you have a structured file named
$VOL1.SVOL.PRIFILE. It has one alternate-key file named
$VOL1.SVOL.AFILE. You want to move the files to a new volume,
$NEW, without changing the file names. To move them, enter:

-VOLUME $VOL1.SVOL
-DUP (PRIFILE, AFILE), $NEW.*.*
-VOLUME $NEW
-ALTER PRIFILE, ALTFILE (0, AFILE

T'he ALTER command changes the name of the al ternate-·key file in
the file label of PRIFlLE from $VOL1.SVOL.AFILE to
$NEW.SVOL.AFILE.

6-20 ~ 82396 AOO 3/85

Moving Files to a Backup Volume

ADVANCED USES OF FUP
Adding Alternate Keys to Files

When you want quick access to backup files, you can back up disc
files onto another disc volume. Use disc backups in addition to,
not in place of, using BACKUP and RESTORE to back up files onto
magnetic tape. This subsection shows how you can use FUP to
perform a disc-to-disc backup operation.

Assume that you want to duplicate all the files in disc volume
$VOL1. You want the copies to reside in disc volume $BACKUP. To
copy the files, enter:

-DUP $VOL1.*.*, $BACKUP.*.*, PARTONLY, SAVEALL

After FUP executes this command, a duplicate (backup) copy of
each file on $VOL1 exists on $BACKUP. Each backup file has the
same file name and subvolume name as the corresponding original
file. Because you include the PARTONLY option, only primary or
secondary partitions residing on $VOL1 are duplicated, while
partitions on other volumes are not. The SAVEALL option
preserves the user ID, timestamp, and security setting for each
file.

Adding Alternate Keys to Files

As your data bases grow and change, you may need to add new keys
to existing files. The steps for adding an alternate key to a
file that already has alternate keys, and to a file that does
not have alternate keys, are shown in the following examples.

Adding an Alternate Key in an Existing Alternate-Key File

For this example, suppose that you have a file named
$VOL1.SVOL.PRIFILE. This file has an alternate-key file named
$VOL1.SVOL.AFILE. You want to add the alternate-key records for
the new key field to this file.

The key specifier for the new key is "NM", the key offset in the
record is 4, and the key length is 20.

br-21 -1f 82396 AOO 3/85

ADVANCED USES U~ ~UP
Adding Alternate Keys to Files

To add the new alternate key, enter.:

-VOLUME $VOL1.SVOL
-ALTER PRIFILE, ALTKEY ("NM", KEYOFF 4, KEYLEN 20)
-LOADALTFILE 0, PRIFILE, !SLACK 10

The LOADALTFILE command loads the alternate-key records for key
specifier "NM" and any other alternate keys into the
alternate-key file. To allow for future growth of the file, you
can reserve empty space in index blocks by specifying a
percentage of slack space with the LOADALTFILE !SLACK option.

Note, however, that when you add a new alternate key, the length
of the key cannot be longer than the longest key already in the
alternate-key file unless you:

• Use the SET LIKE command to duplicate the attributes
of the old alternate-key file

• Specify the new alternate key with the ALTER command

• Specify a new record and key length for the alternate-key file
that is:

2 + length of the primary key
+ length of the longest alternate key

For example, suppose that the file PRIFILE in the previous
example has one alternate key that is 15 bytes long. The
primary-key length is 40 bytes. The name of the alternate-key
file is $VOL1.SVOL.ALTFILE. You can add a new alternate key,
"NM", with a length of 20 bytes by entering:

-VOLUME $VOL1.SVOL
-ALTER PRIFILE, ALTKEY ("NM" , KEYOFF 15 , KEYLEN 20)
-SET LIKE ALTFILE
-PURGE ALTFILE!
-SET REC 62
-SET KEYLEN 62
-CREATE ALTFILE
-LOADALTFILE 0, PRIFILE

Here, the new record and key lengths must be 62 bytes (2 for the
key specifier, plus 20 for the longest alternate key, plus 40 for
the primary key).

6-22 "1 82396 AOO 3/85

ADVANCED USES OF FUP
Modifying Partitioned Files

Adding an Alternate Key in a New Alternate-Key File

For this example, assume that you have an entry-sequenced file
named $VOL1.SVOL.FILEA. This file does not have an alternate-key
file. To add an alternate key to the file, you need to create a
new alternate-key file; this new file is to be named
$VOL1.SVOL.FILEB.

The key specifier for the new key is "XY", the key offset in the
record is 0, and the key length is 10.

To add the new alternate key, enter:

-VOLUME $VOL1.SVOL
-CREATE FILEB, TYPE K, REC 16, KEYLEN 16
-ALTER FILEA, ALTFILE (0, FILEB), ALTKEY ("XY", KEYLEN 10)
-LOADALTFILE 0, FILEA

You use the CREATE command to create the alternate-key file
$VOL1.SVOL.FILEB. For non-unique alternate keys, the record
length and key length are 16 bytes (2 for key specifier, plus 10
for the alternate-key field lengths, plus 4 for the primary key
length). For unique alternate keys (specified by including the
UNIQUE option in the SET ALTKEY command), the key length is 12
bytes (2 for key specifier, plus 10 for alternate-key field
lengths), and the record length is 16.

Next, use the ALTER command to change the file label for FILEA so
that it specifies FILEB as the alternate-key file and contains
the key specifier "XY".

Finally, use the LOADALTFILE command to load the alternate-key
records into the alternate-key file. Note that an index-block
slack percentage of 0 is the default value.

Modifying Partitioned Files

Changing partitioned files involves making changes to specific
partitions, then modifying the attribute of the file to reflect
these changes. The examples that follow illustrate how to:

• Add new partitions

• Move partitions

• Reload partitions

• Increase the extent sizes of existing partitions

-''1 82396 AOO 3/85 6-23

nuvn~~~u uo~o vr rur
Modifying Partitioned Files

Moving a Partition to a New Volume

For this example, assume you have a partitioned file~ named
$VOL1.SVOL.PARTFILE. Secondary partitions of this file reside on
volumes $VOL2 and $VOL3. You want to move the secondary
partition on $VOL2 to the volume $NEW.

To move the partition, enter:

-VOLUME $VOL1.SVOL
-DUP $VOL2.PARTFILE, $NEW.*, PARTONLY
-ALTER PARTFILE, PART (1, $NEW)
-PURGE $VOL2.PARTFILE

The DUP command creates a new copy of the secondary partition
named $NEW.SVOL.PARTFILE. You can copy a secondary partition
only if you include the PARTONLY option in your DUPI,ICATE
command.

You use the ALTER command to change the file label of the primary
partition. After the ALTER command is executed, the~ file label
indicates that the secondary partition resides in the file
$NEW.SVOL.PARTFILE.

Loading a Partition of an Alternate-Key File

For this example, suppose you have a key-sequenced, partitioned
file named $VOL1.SVOL.PRIFILE. The file has alternate keys. The
length of its primary-key field is 10. It has three
alternate-key fields with key specifiers "Fl", "F2", and "F3".
The length of each alternate-key field is 10 bytes.

All the alternate-key records are contained in one alternate-key
file that is partitioned over three volumes. (To create such an
alternate-key file, you must enter the SET NO ALTCRE:ATE command
to prevent automatic creation of an alternate-key file, and then
create the partitioned alternate-key file separately.) Each
volume contains the alternate-key records for one alternate-key
field. This is possible because the key specifier for each
alternate-key field is also the partial-key value for the
secondary partitions.

The primary partition of the partitioned, alternate-key file is
$VOL1.SVOL.AFILE. It contains the alternate-key records for the
key specifier "Fl".

6-24
~ 82396 AOO 3/85

ADVANCED USES OF FUP
Modifying Partitioned Files

Partitions of the alternate-key file AFILE also reside in volumes
$VOL2 and $VOL3. $VOL2.SVOL.AFILE contains the alternate-key
records for the key specifier "F2". $VOL3.SVOL.AFILE contains
the alternate-key records for the key specifier "F3".

To load the alternate-key records for the key specifier "F2" into
the file $VOL2.SVOL.AFILE, enter:

:FUP
-VOLUME $VOL1.SVOL
-CREATE TEMP, EXT 30
-BUILDKEYRECORDS PRIFILE, TEMP, "F2", RECOUT 22, BLOCKOUT 2200
-LOAD TEMP, $VOL2.AFILE, PARTOF $VOL1, RECIN 22, BLOCKIN 2200
-PURGE ! TEMP

The CREATE command creates the disc file to be used for output
from the BUILDKEYRECORDS command. Next, BUILDKEYRECORDS
generates alternate-key records which can then be loaded into the
new file. The BUI~DKEYRECORDS BLOCKOUT option specifies record
blocking to improve the efficiency of disc write operations.

You finish by using the LOAD command to load the secondary
partition $VOL2.SVOL.AFILE. Because you did not include the
SORTED option, records are first sorted before they are loaded.
When loading the file, you must use the RECIN option to specify
the same record blocking you specified with the RECOUT option of
the BUILDKEYRECORDS command.

Increasing the Extent Size of a Partition

This example uses a key-sequenced partitioned file
($VOL1.PARTFILE.PART) with secondary partitions in volumes $VOL2
and $VOL3.

To increase the extent size of the partition in $VOL2, enter:

-VOLUME $VOL1.PARTFILE
-ALTER PART, PART (1, $VOL2, 120, 12)
-RENAME $VOL2.PART, $VOL2.TEMP, PARTONLY
-SET LIKE $VOL2.TEMP
-SET EXT (120, 12)
-CREATE $VOL2.PART
-DUP $VOL2.TEMP, $VOL2.PART, OLD, PARTONLY
-PURGE $VOL2.TEMP

The ALTER command changes the file label of the primary partition
so that it includes the new extent size of the secondary
partition in $VOL2.

/f' 82396 AOO 3/85 6-25

ADVANCED USES OF FUP
Modifying Partitioned Files

Next, the RENAME conunand keeps the data from the secondary
partition in a temporary file.

The SET LIKE conunand recreates the file-creation parameters of
the original secondary partition. Then you change the extent
size with a SET EXT conunand. Your CREATE conunand recreates the
secondary partition with a larger extent size.

Finally, you move the data from the temporary file to the newly
created partition with the DUP command.

Note that while you can rename a file with the RENAME command if
it is open for read-write or write-only access, you cannot
duplicate the file with the DUPLICATE conunand. Thus, you must
ensure that the partition is not being written to if the
preceding sequence of operations is to succeed. (File-access
modes are discussed in the ENSCRIBE Prqgranuning Manual.)

Adding Partitions

You can add partitions to relative and entry-sequenced files that
do not already have them, but not to key-sequenced files. For
this example, you have a nonpartitioned relative file named
$VOL1.SVOL.RELFILE. To add a partition to this file, enter:

-VOLUME $VOL1.SVOL
-SET LIKE RELFILE
-SET PARTONLY
-CREATE $VOL2.RELFILE
-SHOW EXT

EXT (100 PAGES, 10 PAGES)
-ALTER RELFILE, PART (1, $VOL2 , 100, 10)

First, enter a SET LIKE command to set the creation parameters· to
those of the original file, $VOL1.SVOL.RELFILE. Enter SET
PARTONLY to specify that any file you create is to be a secondary
partition. The new partition is created ~n volume $VOL2.

You enter SHOW EXT to display the extent sizes of the original
file. Use the ALTER command to change the file label of
$VOL1.SVOL.RELFILE to show that it is the primary partition of a
partitioned file with a secondary partition in the volume $VOL2.

If you now want to add a third partition to the file that will
reside in the volume $VOL3, enter:

-CREATE $VOL3.RELFILE
-ALTER RELFILE, PART (2, $VOL3, 100, 10)

6-26 ~ 82396 AOO 3/85

SECTION 7

INTRODUCTION TO BACKUP AND RESTORE

BACKUP is a utility program that copies disc files onto magnetic
tape. The RESTORE utility program returns files stored with
BACKUP from tape to disc. There are also two new utilities,
BACKUP2 and RESTORE2, that work with files recognized by the
existing disc process (DPl) and also files recognized only by the
optional new disc process (DP2). The complete syntax for all
these utilities is in the GUARDIAN Operating System Utilities
Reference Manual.

Also refer to the DP1-DP2 File Conversion Manual for information
on how to use BACKUP2 and RESTORE2 to convert files from DPl
format to DP2 format and vice versa.

WHY USE BACKUP AND RESTORE?

Together, BACKUP and RESTORE allow you to:

• Safeguard important information stored in disc volumes

(If the original files are damaged or destroyed in a major
system malfunction or castastrophe, you can replace them with
the tape copies made with BACKUP.)

• Save disc space

(You can use BACKUP to save files that are not being used and
to preserve seldom-used information in tape archives. You can
also use BACKUP and RESTORE for compacting data on discs.)

,., 82396 AOO 3/85 7-1

INTRODUCTION TO BACKUP AND RESTORE
Who Uses BACKUP and RESTORE?

WHO USES BACKUP AND RESTORE?

The BACKUP and RESTORE programs are used by anyone who needs to
keep data in archives or who needs to transfer data between
systems that are not part of a network~ BACKUP and RESTORE are
also commonly used by system operators as part of routine
preventive maintenance. For information about the use of BACKUP
and RESTORE in system operations, see the System Ope~rations
Manual for your system.

7-2 ~ 82'396 AOO 3/85

SECTION 8

USING BACKUP AND RESTORE

This section contains information for new users of the BACKUP and
RESTORE programs. It describes:

• How to enter BACKUP and RESTORE commands

• When to use BACKUP and RESTORE command options

You should be familiar with the information in Section 2, "Basic
Uses of COMINT," before reading this section. For detailed
reference information on BACKUP and RESTORE as well as on BACKUP2
and RESTORE2, see the GUARDIAN Operating System Utilities
Reference Manual.

ENTERING BACKUP COMMANDS

You enter the BACKUP command through COMINT, the GUARDIAN
operating system command interpreter. To run the BACKUP program,
enter BACKUP followed by the name of the magnetic tape drive you
want to use, a comma, and a list of the files you want to copy.

Here is an example of a BACKUP command:

:BACKUP $TAPE1, $DATA.YOURBABY.*

This command backs up all the files in the subvolume
$DATA.YOURBABY onto tape, using the tape drive $TAPE1.

The syntax term for the files you list in a BACKUP or RESTORE
command is <fileset-list>. You can use <fileset-list> with many
other utilities and COMINT commands. This section discusses
in detail the syntax rules for specifying a file-set list.

~ 82396 AOO 3/85 8-1

USING BACKUP AND RESTORE
Entering BACKUP Commands

Your BACKUP command can also include any <run-option> listed in
the description of the RUN command in COM INT (see se~ct ion 2 of
this manual and Section 2 of the GUARD~AN Operatin~ System
Utilities Reference Manual). Among these options is the OUT
<list-file> option, which sends listings from the BACKUP program
to an existing disc file or printer.

For example, if you enter this BACKUP command, the listing from
BACKUP is sent to the file LISTFILE in the current default
subvolume:

:BACKUP I OUT LISTFILE I $TAPE2, $DATA.OURBABY.*

You can also include command options that are specific to the
BACKUP and RESTORE programs. These options are fully described
in the Section 4 of the GUARDIAN Operating System Utilities
Reference Manual. Several of the options are also described
later in this section. For example, to generate a list of the
files you are backing up, you include the LISTALL option of the
BACKUP program:

:BACKUP I OUT LFILE2 I $TAPE, $DATA.FLYBABY.*, LISTALL

A COMINT command can contain at most 132 characters on a single
command line or at most 528 characters if the command continues
beyond one command line. For this reason, it may not be possible
to include all the files that you want to back up in a BACKUP
command. In this case, you may want to use an input file to
enter your BACKUP command parameters (the parts of the BACKUP
command that follow the run option list enclosed within slash
characters). Instead of typing the parameters (such as a very
long file-set list) when you enter your BACKUP command, you can
store the parameters in a file and name the file as an IN option
when you type the BACKUP command.

For example, you can start a BACKUP process using as parameters
the options contained in the file FRED~FLIST by entering:

:BACKUP / IN FRED.FLIST I

For more information about BACKUP and RESTORE input files, see
th~ description of the IN option in the syntax description for
BACKUP in the GUARDIAN Operating System Utilities Reference
Manual.

8-2 4J 82396 AOO 3/85

USING BACKUP AND RESTORE
Specifying a File-Set List for BACKUP

SPECIFYING A FILE-SET LIST FOR BACKUP

You can back up any files to which you have read access. (See
Section 12 for a discussion of file-access modes.) To list the
files you want to copy, you specify a file-set list in your
BACKUP command. A file-set list is a list of one or more file
sets. Both terms are defined and discussed in this ·Subsection.

A file set is a set of one or more files. A specification for a
file set is very much like a file name. You can specify the name
of a system, volume, or subvolume where the file set resides,
just as you would for a single file. As in expanding a partial
file name, if any of these are omitted, BACKUP assumes the
current default values. However, you can also include the
following:

• An asterisk (*) in place of a volume name or a subvolume name

If you use an asterisk for a volume name, BACKUP copies all
files from all disc volumes in the system. If you include an
asterisk in place of a subvolume name, BACKUP copies files
from all subvolumes in the volume or volumes you specify.

Note that if you use an asterisk for the volume name, you must
also use an asterisk for the subvolume name.

• An asterisk (*) in place of the file name

BACKUP then copies all files in the volumes or subvolumes you
specify in the file set.

Note that if you use an asterisk for the subvolume name, you
must use an asterisk for the file name as well.

For example, you can copy all the files in your current default
subvolume by entering:

:BACKUP $TAPE, *

Because no volume or subvolume name is given in this example,
BACKUP uses the current default values for volume and subvolume.

You can copy all the files in the volume $MANUF by entering:

:BACKUP $TAPE, $MANUF.*.*

You can copy all the files in the system by entering:

:BACKUP $TAPE, * * *

.., 82396 AOO 3/85 8-3

USING BACKUP AND RESTORE
Using BACKUP Command Options

A file-set list can be a single file set or several file sets.
To include more than one file set in a file-set list, do the
following:

• Enclose the file-set list within parentheses.

• Separate the file sets in the file-set list with commas.

For example, you can copy the files in your current default
subvolume and all the files in the volume $MANUF by entering:

:BACKUP $TAPE, (*, $MANUF.*.*)

When you refer to the syntax descriptions in the GUA.RDIAN
Operating System Utilities Reference M~nual, remember that a
<f ileset> or a <f ileset-list> can be the name of a single file.
You can copy a single file or a set of files using BACKUP.

USING BACKUP COMMAND OPTIONS

You can tailor the BACKUP program by specifying one or more
BACKUP command options. Some of the more commonly used options
are described in this subsection. In addition to these options,
other BACKUP options allow you to do the following:

• Back up open files and request a prompt when BACKUP encounters
an open file (OPEN and MSGONLOCK options)

• Give new volume and subvolume names to the files backed up on
tape (VOL option)

• Ignore any data errors encountered (IGNORE option)

• For partitioned files, back up only those partitions defined
in the file-set list you specify (PARTONLY option)

• Back up files that are audited by the Transaction Monitoring
Facility (TMF) (AUDITED option)

• Select a starting point in the file-set list where the backup
is to begin (START option)

• Verify the checksums for the tape files (VERIFYTA.PE option)

For more information about BACKUP command options, see Section 4
of the GUARDIAN Operating System Ut i 1 it ies Reference· Manual.

8·-4 .., 82396 AOO 3/85

USING BACKUP AND RESTORE
Using the DENSITY and BLOCKSIZE Options

Using the DENSITY and BLOCKSIZE Options

If you use a Tandem Model 5106 tape drive when backing up files,
you can specify one of three recording densities:

• 6250 bpi (bytes per inch)

• 1600 bpi

• 800 bpi

To specify a recording density, include the DENSITY option with a
density setting in the BACKUP command, as in this example:

:BACKUP $TAPE1, $RIVER.RUN.*, DENSITY 1600

The tape drive then produces a tape with the recording density
you specify. If you do not specify a density with the DENSITY
option, the current density setting of the tape drive determines
the recording density.

You can also specify the size of the blocks written to tape with
the BLOCKSIZE option. For the Nonstop system, the default block
size is 8. However, for the Nonstop l+ system, the block size is
always 2, regardless of the size specified with the BLOCKSIZE
option. If you want to back up files with a Nonstop system and
restore them to a Nonstop 1+ system, you must specify a block
size of 2. Because of the difference in block sizes, you cannot
use BACKUP and RESTORE to transfer files from a Nonstop l+ system
to a Nonstop system.

For example, to back up all the files on the $SYSTEM volume, and
to specify a block size of 2, enter:

:BACKUP $TAPE, $SYSTEM.*.*, BLOCKSIZE 2

"'1 82396 AOO 3/85 8-5

USING BACKUP AND RESTORE
Using the LISTALL Option

Using the LISTALL Option

The BACKUP utility produces a listing or display that includes
the names of files being backed up. By default, the BACKUP
listing includes only those files which have generated error or
warning messages. You can, however, get a list of all the files
that have been backed up, as well as any error messages which
occur, by including the LISTALL option in a BACKUP command.

BACKUP displays its listing at the OUT file you name~ in your
command; if you omit the OUT option, BACKUP uses your terminal.
Regardless of the listing device you specify, messages (including
errors and instructions) are also sent to the terminal where you
entered the BACKUP command.

This example shows a listing given by the BACKUP program without
the LISTALL option:

:BACKUP $TAPE, *

GUARDIAN FILE BACKUP PROGRAM - T9024BOO - (18MAR85) SYSTEM \ZOO
VOLNAME SVOLNAME FILENAME REEL ERROR ADDRESS 28 AUG 83 17:37

$SYSTEM
$SYSTEM
$SYSTEM

SYSTEM
SYSTEM
SYSTEM

FILES DUMPED=00014

COPY
GPLIB
PRIVDECS

01
01
01

120
012
120

FILES NOT DUMPED=00003

*** NOT DUMPED
*** NOT DUMPED
*** NOT DUMPED

Here, three attempts to copy files result in errors. The ERROR
column shows code numbers that identify file-system errors.

BACKUP with the LISTALL option gives you a complete listing of
the files backed up and the files that generate errors or
warnings.

8-6 -'1 82396 AOO 3/85

USING BACKUP AND RESTORE
Using the LISTALL Option

The following example illustrates the output from BACKUP when you
specify the LISTALL option:

:VOLUME $SYSTEM.SYSTEM
:BACKUP $TAPE, *, LISTALL

GUARDIAN FILE BACKUP PROGRAM - T9024BOO - (18MAR85) SYSTEM \ZOO
VOLNAME SVOLNAME FILENAME REEL ERROR ADDRESS 28 AUG 84 17:22

$SYSTEM SYSTEM COPY 01 120 *** NOT DUMPED
$SYSTEM SYSTEM DUMP 01
$SYSTEM SYSTEM EEDIT 01
$SYSTEM SYSTEM FLYFILE 01
$SYSTEM SYSTEM GPLIB 01 012 *** NOT DUMPED
$SYSTEM SYSTEM GPLIBDEC 01
"$SYSTEM SYSTEM LITE 01
$SYSTEM SYSTEM OLDEDIT 01
$SYSTEM SYSTEM OTAL 01
$SYSTEM SYSTEM PRIVDECS 01 120 *** NOT DUMPED
MOUNT NEXT REEL <er>
$SYSTEM SYSTEM PUP 02
$SYSTEM SYSTEM TAL 02

FILES DUMPED=00009 FILES NOT DUMPED=00003

In this example, the BACKUP operation required two reels. The
"MOUNT NEXT REEL" prompt appeared when the .-first reel of tape was
full. After mounting another tape, the user pressed RETURN to
restart the BACKUP process. The file $SYSTEM.SYSTEM.PRIVDECS was
listed twice because part of it was copied onto the first reel,
while the rest was copied onto the second.

With the LISTALL option, you can create a permanent record of the
files that were copied. To do this, specify both the LISTALL
option and an OUT file in your BACKUP command. You can then
print a copy of the output file and use it to label the backup
tape.

Aft 82396 AOO 3/85 8-7

USING BACKUP AND RESTORE
Using the NOT Option

Using the NOT Option

If there are files in the file-set list for your BACKUP command
that you do not want to copy, you can specify them with the NOT
option. You use the same form to specify files to ignore that
you use for specifying the file-set list you want to back up.

As an example, suppose you want to back up all the files in
subvolume SCAFFE.MED except MITSLAG and MOKA. Enter:

:BACKUP STAPEl, SCAFFE.MED.*, NOT (MITSLAG, MOKA)

Using the PARTIAL Option

BACKUP with the PARTIAL option selectively backs up files. You
can back up those files which were modified after a specified
date and time by including the PARTIAL option. Enter PARTIAL
followed by the date (the first three letters of the month, the
day of the month, and the year, with spaces separating them), a
comma, and the time (using a 24-hour clock).

Suppose that today is May 25, 1985. You can back up all files in
the system that were modified after 6 p.m. yesterday by entering:

:BACKUP STAPEl, *.*.*, PARTIAL MAY 24 1985, 18:00

ENTERING RESTORE COMMANDS

You enter RESTORE commands, like BACKUP commands, through COMINT.
~~he form of the RESTORE command is nearly identical to that of
the BACKUP command. Enter RESTORE followed by the name of the
magnetic tape drive you want to use, a comma, and a file-set list
that names the files you want to restore. Note that you must
have write access to a file currently on disc if you want to
restore a file with the same namee

You can include RESTORE options in your command, as described in
the syntax description in the .§0._RDIAN. Operating System Ut i 1 it ies
Reference Manual. You can also include any run option for
the RUN command in COMINT; and a RESTORE command, like a BACKUP
command, can name an IN file that contains the command
parameters.

8-8 ~ 82396 AOO 3/85

USING BACKUP AND RESTORE
Using RESTORE Command Options

Here is an example of a RESTORE command:

:RESTORE/ OUT LIST I $TAPE1, (*, $DATA.BIGBABY.*), LISTALL

Here, you use the tape drive $TAPE1 to restore to disc all files
with your current default subvolume name and files with the
subvolume name $DATA.BIGBABY. A listing of all the files that
are backed up and any errors which occur is sent to the file LIST
on your current default subvolume.

USING RESTORE COMMAND OPTIONS

This section describes some of the commonly used RESTORE command
options. Besides the options discussed here, other RESTORE
options allow you to:

• Select the starting point in the file-set list where the
restoration is to begin (START option)

• Restore the latest versions of the files on the first backup
tape in a set of tapes (REBUILD option)

• Verify the restored data (VERIFY option)

• Ignore any data errors encountered (IGNORE option)

• Restore files that were open at backup (OPEN option)

• For partitioned files, restore only those partitions that are
defined in the file-set list (PARTONLY option)

• For partitioned files, restore only those partitions whose
primary partitions reside on a specific volume (PARTOF option)

• Rewind the tape and leave it online at the end of the
restoration (NOUNLOAD option)

• Restore files that were audited by the Transaction Auditing
Facility (TMF) (AUDITED option) and restore audited files as
nonaudited files (TURNOFFAUDIT option)

For descriptions of all RESTORE command options, see Section 4
of the GUARDIAN Operating System Utilities Reference Manual.

"' 82396 AOO 3/85 8-9

USING BACKUP AND RESTORE
Using the LISTALL Option

Using the LISTALL Option

The RESTORE program listing, like that of BACKUP, lists only
those files for which errors or warnings are generated. You can
get a listing of all the files restored to disc by including the
LISTALL option in the RESTORE command. In addition, if you
include the LISTALL option but do not specify a file-set list to
be backed up, RESTORE lists all the files on the tape without
restoring any files.

For example, to place a list of the files on $TAPE! in the file
L5 without restoring the files, enter:

:RESTORE/ OUT LS I $TAPE1,,LISTALL

Using the KEEP Option

The KEEP option allows you to preserve files that are currently
on disc when you restore files with the same name. Using KEEP
means that if a disc file has the same name as a file which is
being restored, the file already on disc is preserved. If you do
not include the KEEP option, such a disc file is replaced by the
file on the tape.

Using the TAPEDATE and MYID Option~

If you include the TAPEDATE option, the timestamp of a file
restored to disc is the timestamp in effect when the file was
backed up. If you omit TAPEDATE, the timestamp of restored files
is the time when the RESTORE was performed.

The MYID option allows you (the user who runs the RESTORE
program) to become the owner of the files that are restored. If
you do not include the MYID option, each file that is restored
belongs to the user who owned it when it was backed up.

8-10 "1 82396 AOO 3/85

USING BACKUP AND RESTORE
Using the VOL Option

Using the NOT Option

If there are files in the file-set list that you do not want to
restore, specify them with the NOT option in the same way you
specify the file-set list to be backed up or restored.

For example, the next command does the following:

• Restores all the files in volume $ECLAIR except the files in
subvolumes LINZER and PETIT4

• Keeps any files currently on disc that have the same name as
files in the RESTORE command file-set list

• Retains the backup-timestamp of the files being restored

• Gives you ownership of the restored files

:RESTORE $TAPE1, $ECLAIR.*.*, NOT (LINZER.*, PETIT4.*),&
:KEEP, TAPEDATE, MYID

Using the VOL Option

By default, the RESTORE program restores files to the volume and
subvolume where they resided when they were backed up. You can,
however, restore files to a new volume, a new subvolume, or both
by including the VOL option. Any files you restore will reside
in the volume or subvolume you specify in the VOL option. For
files that are restored, any parts of the file name you do not
specify with the VOL option remain the same.

Suppose you want to restore this file-set list to disc:

($TOLSTOY.NOVELS.*, $PROUST.*o*)

You want the files you restore to reside in the subvolume
$QUICK.READING. Enter:

:RESTORE $TAPE, ($TOLSTOY.NOVELS.*, $PROUST.*.*), VOL &
:$QUICK.READING

If, by using the VOL option, more than one file to be restored
has the same file name, only the last file with the same name is
restored. As an example, consic!er the following file-set list:

($TOLSTOY.NOVELS.BIG1, $PROUST.RTP.BIG1)

~ 82396 AOO 3/85 8-11

USING BACKUP AND RESTORE
Using the VOL Option

Suppose you attempt to restore both of the files in this file-set
list to the subvolume $GIANT.NOVELS by entering:

:RESTORE $TAPE, ($TOLSTOY.NOVELS.BIG1, $PROUST.RTP.BIG1)&
:, VOL $GIANT.NOVELS

Only one file named $GIANT.NOVELS.BIG1 is restored--the file
originally named $PROUST.RTP.BIG1.

8-12 .., 82396 AOO 3/85

SECTION 9

INTRODUCTION TO THE SPOOLER

WHAT IS THE SPOOLER?

The Tandem spooler is a set of programs that act as an interface
between the users and their applications (programs), and the
print devices of a system.

The spooler receives output from an application and stores it on
disc. This output can be material in EDIT format, such as memos
or reports, or object code from a compiled program. When the
designated print device becomes available, the output is printed.

Features of the Tandem spooler include:

• Continuous operation--the spooler keeps working even in the
event of processor failure.

• A flexible routing structure--you can change the destination
of a job after it enters the spooler.

• No programming necessary--you can send your output to the
spooler simply by specifying the spooler as your OUT file.

• Interactive control--using the PERUSE program, you can inspect
or alter the status of your job, examine the data you have
sent to the spooler, and change the destination of your
output.

• Operator control--the SPOOLCOM program permits operators to
initialize and modify all of the spooler components.

~ 82396 AOO 3/85 9-1

INTRODUCTION TO THE SPOOLER
Why Use the Spooler?

WHY USE THE SPOOLER?

The spooler, because it offers a consistent interface to all
devices in the system, is simple and easy to use. Application
programs can write data to the spooler as easily as th~y write to
a disc file. Tandem programs (for example, TAL, TGAL, COBOL)
can have their output directed to the spooler with the OUT
<listf ile> option of the RUN command.

The spooler ensures maximum efficient use of the print devices in
the system, while insulating the application from device
dependent considerations. Many programs print only a few pages
over their entire execution. It would not be very wise to allow
those programs to have exclusive access to a line printer, while
other applications wait their turns. Similarly, if that
particular printer is unavailable, the program would have to
redirect its output to a different device and handle all of the
device-dependent protocols.

The spooler allows many different programs to send their data to
the same printer at the same time. It keeps the data separate
and prints the output of each program in an orderly manner.

There are alternatives to using the Tandem spooler, and for some
special applications they may be more efficient. For most users,
however, the spooler is the best solution to the problem of
producing hard-copy output.

SPOOLER COMPONENTS

The Tandem spooler consists of the following programs that
interact in order to perform all of the operations of the
spooler. They are illustrated below in Figure 9-1.

• Supervisor--monitors and conununicates with the other programs
and decides when and where to print jobs. There is only one
supervisor in each spooler.

• Collectors--accept output from applications and store the
output on disc. There can be any number of collectors
associated with a given spooler.

• Print processes--retrieve the output stored on disc by the
collector and print it on a device. Each print device in the
spooler system has a print process associated with it.

9-2 ..., 82396 AOO 3/85

Disc

INTRODUCTION TO THE SPOOLER
Spooler Components

-0--

Printer

Dotted lines represent interprocess messages. Solid lines represent the path
taken by spooled data.

1. Application sends its output to the collector process.
2. Collector writes data to disc, and informs the supervisor that it has accepted

a job.
3. Supervisor informs the print process where the job can be found on the disc.
4. Print process reads the job from disc, and writes the job to the printer.
5. PERUSE obtains job information from the supervisor, or lets you examine

data on the disc.
6. SPOOLCOM enables system operators to modify the status of spooler

components.

85055-008

Figure 9-1. Spooler Components

~ 82396 AOO 3/85 9-3

INTRODUCTION TO THE SPOOLER
SPOOLCOM or PERUSE--Which Should You Use?

• SPOOLCOM--is your interface to the spooler system.

You can use SPOOLCOM interactively to get the status of all
spooler components, start offline devices, and cause a device
to skip pages when printing their jobs. Appendix E contains a
brief syntax of the SPOOLCOM commands that can bE:! executed by
any user. A complete description of SPOOLCOM syntax,
considerations, and examples is contained in the GUARDIAN
Operating System Utilities Reference Manual. ~~~~

System operators use SPOOLCOM to create and initialize the
components of the spooler system.

• PERUSE--allows you to control and monitor your job.

You run PERUSE interactively from a terminal, and it accesses
the spooler to translate your commands into messages to the
supervisor, which then carries out your instructions.
Appendix F contains a brief syntax of the PERUSE commands. A
complete description of PERUSE syntax, considerations, and
ex~m~l~s is contained in the GUARDIAN Operating Syste~
Ut1l1t1es Reference Manual.

SPOOLCOM OR PERUSE--WHICH SHOULD YOU USE?

Many commands in SPOOLCOM and PERUSE are equivalent to each
other. For example, both DEV commands display the status of
devices: many of the PERUSE commands seem to be portions of the
SPOOLCOM JOB command {COPIES, DEL, FORM, HOLDAFTER, OWNER, PRI).
So the beginning user may wonder which one to use. Is one better
than the other, depending on the application? The following are
only suggestions: you will develop your own preferences and rules
of thumb.

PERUSE offets more flexibility for monitoring and changing your
own jobs. When you enter it, you immediately see what jobs you
have in the spooler system, identified by their number and
accompanied by other important information. You can examine your
job page by page or line by line, and you can use the LIST
command to locate specific word strings. With fewer keystrokes
than SPOOLCOM, you can change a job attribute and send your job
to a device to print, or you can delete it.

SPOOLCOM is meant primarily as a tool for system opE~rators to
monitor and control the spooler system, and for programmers to
move their programs through the spooler system in the manner they
desire. Its primary use for other users is to provide status
information on the spooler components.

9-4 ._, 82396 AOO 3/85

INTRODUCTION TO THE SPOOLER
Spooler Jobs and Job Attributes

SPOOLCOM DEV is useful when you want to know device status or
queue length. It is quicker to noninteractively use SPOOLCOM
DEV on a specified device than it is to enter PERUSE and do a DEV
there, because you don't have to wait to enter PERUSE and display
its startup message. For example, in SPOOLCOM the sequence is:

:SPOOLCOM DEV $HT1
DEVICE STATE FLAGS PROC FORM
$HT1 JOB 1732 T $SPLA

JOB LOCATION DEVICE SEQ COPY PAGE
1732 #LPL LPl $LP1 PRINT 1 10
1845 #LPL LPl $LP1 2 1 30

After entering PERUSE, you must wait for it to display its
startup message before executing the DEV command and exiting:

:PERUSE
PERUSE - T9101C12 - (18MAR85) SYSTEM \TS

JOB STATE PAGES COPIES PR! HOLD LOCATION
1732 READY 1 1 4 #LPl

DEV $LP1

DEV STATE: PRINTING

-. . E

JOB
1732
1845

OWNER
033,019
021,080

PAGES
10
30

FORM:

WAIT
00:01:58
00:03:45

FORM

REPORT
ACCTG JANE

Note, however, that PERUSE DEV supplies two pieces of information
that SPOOLCOM DEV does not: the owner of each job and the
estimated waiting time for that job to finish printing.

SPOOLER JOBS AND JOB ATTRIBUTES

When you request the spooler to print some information at a print
device, the request is called a job. The spooler assigns each
job a job number in the range of 1 to 4095. In addition to a
number, jobs have six primary attributes: priority, copies,
report name, form name, state, and location. A description of
these attributes follows: location is described below under
"Routing Structure."

-''fl 82396 AOO 3/85 9-5

INTRODUCTION TO THE SPOOLER
Job Priority

Job Priority

Job priority determines when a job will print in relation to
other jobs queued for the same device. The spooler maintains a
device queue for all print devices. Higher-priority jobs are
placed near the front of the queue, while lower-priority jobs are
placed near the end of the queue.

Job Copies

Job copies specifies the number of copies of the job that the
spooler should print.

Job Report __ !'Jame

The job report name is the name the Tandem print process prints
in banner-head letters in the header message of the job. The
header message is described below under "Devices and Device
Attributes."

Job Form Name

The form name of a job allows you to guarantee that your job is
printed only on a device that has the same form nam~~. Form name
can be used to ensure that jobs requiring special handling
print on devices that are appropriately equipped.

For example, an application program may produce a job that fills
out W-2 forms. To be useful, the job must be printed on a device
loaded with special W-2 form paper. If the job has a form name
of "W2," it will only print on a device with the same form name.

The form name "W2" is assigned to that device at the time special
paper is loaded. This allows the "W2" job to print and prevents
jobs with a different form name from printing on that device.

9-6 ..,. 82396 AOO 3/85

INTRODUCTION TO THE SPOOLER
Job State

Job State

Job status is described by the job state. A job is always in one
of four states: OPEN, READY, PRINT, or HOLD. These states are
illustrated in Figure 9-2.

During the OPEN state, a job is being added to the spooler. For
example, if you send the output from a TGAL execution to the
spooler, the job is in the OPEN state until TGAL completes
execution.

In the READY state, a job is ready to print, but it has not yet
begun to print, usually because another job is printing.

A job is in the PRINT state while it is being printed. This is
usually the last state before the job is deleted from the
spooler. Using PERUSE to set the hold-after-printing flag
prevents the spooler from deleting a job after printing.

You can put a job in the HOLD state by using a PERUSE request.
The job will not be printed while HOLD is in effect. A job on
HOLD will remain in the spooler indefinitely until you delete it
or remove the HOLD.

You can put a job on hold at any time. If the job is in the
READY or PRINT states, it is placed on hold immediately. If
it is still OPEN, it is placed on hold after the job has been
completely spooled.

The life cycle of a job starts at the OPEN state while the
application is writing the data to the collector. The collector
stores the data in a disc file. When the application is done
sending data, the job is in the READY state. Finally, the job
enters the PRINT state. When it has finished printing, the
spooler deletes it, unless the hold-after-printing flag is on.

.., 82396 AOO 3/85 9-7

INTRODUCTION TO THE SPOOLER
The Life Cycle of a Job

9-8

Create

85055-009

Create: You create a job when your application opens a file to a collector and performs a write; for
example:

TGAL /IN <filename>, OUT $s. <device> I

Open: The job is open while the application is writing to the collector, which in turn writes the data
to a disc file.

Ready: The job enters the READY state when the application closes the file to the collector.

Hold: You can place a job on hold only when it is in the ready or print state. This removes it from the
device queue.

Print: The job waits in the device queue until it is ready to print. While in the PRINT state, the job is
printing on the output device. If you place the job on hold, it immediately stops printing.

Delete: If the hold-after-printing flag is not on, the job leaves the spooler after it has finished printing.
You can also delete a job from the spooler using a specific request. If the job is printing when you
make that request, the job immediately stops printing and leaves the spooler.

Figure 9-2. The Life Cycle of a Job

...,.. 82396 AOO 3/85

DEVICES AND DEVICE ATTRIBUTES

INTRODUCTION TO THE SPOOLER
Device Header Message

A device is a print device that produces a hard-copy listing of
your job. Every device is controlled by a print process.
Devices (and print processes) have four attributes that you
should be aware of: form name, header message, device state, and
selection algorithm.

Device Form Name

The form name of a device defines the type of job that can
be printed on it. Only jobs whose form name is the same as that
of a given device can be printed on the device. An example of
how form name might be used is shown above under "Spooler Jobs
and Job Attributes."

Device Header Message

The header message of the Tandem print process includes each job
report name, location, job number, form name, and date and time
of printing. The header message for a device can be turned on or
off by the operator. When the header message is turned on, it
prints on the first page of the job. The report name and
location are printed in big banner-head letters, as shown in
Figure 9-3.

If the system operator specifies a batch header, the job
information prints out on two of the three trailer pages as well
as on the first two pages of each job. The trailer pages have
printing over the page folds, enabling jobs printed on
accordion-fold paper to be separated easily. The two-page. header
message always appears on the top page, regardless of how the job
is folded.

If the header message is turned off, jobs print consecutively
with only a new page to indicate the beginning of the next job.

The actual header message produced depends on the print process
controlling the device. The headers described above are produced
by the Tandem print process. If a device is controlled by a
user-written print process, it can produce almost any kind of a
header or none at all.

..-, 82396 AOO 3/85 9-9

INTRODUCTION TO THE SPOOLER
Header Page

@@@
@@@ @@@

@@@ @@@
(g@@ @@@
@@@@@@@@@@@
@@@@@@@@@@@
@@@ @@@
@@@ @@@
@@@ @@@
@@@ @@@

@@@@@@@@
@@@@@@@@@
@@@ @@@
@@@ @@@
@@@@@@@@
@@@@@@@@@
@@@ @@@
@@@ @@@
@@@@@@@@@@
@@@@@@@@@

@@@ @@@
@@@ @@@

@@@@@@@@@@@
@@@@@@@@@@@

@@@ @@@
@@@ @@@

@@@@@@@@@@@
@@@@@@@@@@@

@@@ @@@
@@@ @@@

@@@ @@@
@@@ @@@
@@@ @@@
@@@ @@@
@@@@@@@@@@@
@@@@@@@@@@@
@@@ @@@
@@@ @@@
@@@ @@@
@@@ @@@

@@@@@@@@@@
@@@@@@@@@@@
@@1,g @@@
@@@ @@@
@@@ @@@
@@@ ~@@
@@@ @@@
@@@@@@@@@@@
@@@@@@@@@@@
@@@@@@@@@@

@@@
@@@
@@@
@@@
@@@
@@@
@@@
@@@
@@@
@@@

@@@ @@@
@@@ @@@
@@@ @@@
@@@ @@@
@@@@@@@@@@@
@@@@@@@@@@@
@@@ @@@
@@@ @@@
@@@ @@@
@@@ @@@

@@@@@@@@@@@
@@@@@@@@@@@

@@@
@@@
@@@
@@@
@@@
@@@
@@@
@@@

DATE: 06 DEC 84, 16:36:17

n@ '.9@@
,9@@@ 9'g@@
~@@@@ g@:E<g@
~@@@@@@@@@@
@@@ ,g@@ @@@
'.9@@ ·] 8@@
,g@@ E@@

9@@ @@@
'.9@@ .~@@

8@@ @@@

@@@
@@@
@@@
@@@
@@@
@@@
@@@
@@@
@@@@@@@@@@@
@@@@@@@@@@@

@@@@@@@@@@@
@@@@@@@@@@@

@@@
·9@@
@@@
:8@@
@@@
:'g@@
18@@
~g@@

ig@@@@@@@@@
~@@@@@:9(g@i9,,g@

~@@ 9@@
@@@ '9(9@

~@@@@
,91§@@@

@@@ ',~@@

@@@ '9@@

@@@@@@@@@@@@
@@@@@@@@@@

@@@
@@@
@@@
@@@
@@@
@@@
@@@
@@@
@@@
@@@

@@@
@@@
@@@
@@@
@@@
@@@
@@@
@@@
@@@@@@@@@@
@@@@@@@@@@

@@@@@@@@@@
@@@@@@@@@@@@
@@@ @@@
@@@ @@@

@@@@@
@@@@@

@@@ @@@
@@@ @@@
@@@@@@@@@@@@

@@@@@@@@@@

JOB: 1534

Figure 9-3. Sample Header Page

@@@ 9@@

@@@@ g@@
@G~@@@ E@@

@@@@@@ g@@
@@@ @@@ @@@
@@@ @@lg@@@
@@@ @(g@@@
@G~@ ,g@@@
IEGl@ @@@
@@@ @@@

li'QRM:

9-10 ~ 82396 AOO 3/85

INTRODUCTION TO THE SPOOLER
Device States

Device States

The device state describes the status of the device. There
are six possible device states:

Printing

Waiting

The device is currently printing a job.

The device is idle and waiting for a job to
print.

Offline The device is not available for printing.

Suspended The device is in the process of printing a job
but has been suspended by the operator for some
reason (for example, to change ribbons).

Deverror The device has produced a file-system error while
printing. Operator intervention is required.

Procerror The supervisor has determined that the print
process for that device is not working correctly.
Operator intervention is required.

Selection Algorithm

The spooler maintains a queue for each device which contains
entries for each job that is to be printed on that device. The
next job to be printed on a given device is the one at the head
of that device queue.

As a rule, higher-priority jobs print sooner than those with a
lower priority. However, the selection algorithm affects the
order in which jobs print within the same priority level. If the
selection algorithm is FIFO ON, jobs are placed at the end of the
queue and wait their turn to be printed. If the selection
algorithm is FIFO OFF, the spooler also allows for short jobs to
print before longer jobs of the same priority.

For a complete description of the spooler job-selection
algorithm, refer to "Queue Ordering" in the System Operator's
Guide.

""1 82396 AOO 3/85 9-11

INTRODUCTION TO THE SPOOLER
Routing Structure

ROUTING STRUCTURE

The function of the routing structure is to direct jobs to print
devices. The routing structure consists of a set of locations
and print devices. Figure 9-4 illustrates the association of
locations with print devices.

A location is the logical destination of a job: a print device is
its physical destination. This distinction permits great
flexibility when routing jobs. The spooler assigns each job a
location at the time it enters the spooler system, and the job
eventually prints on the device associated with that location.

Location names have two parts: a <group-name> and a
<destination-name>. The group name is always preceded by a
crosshatch symbol (#). Examples of location names are:

#LP.LPEAST
#LP.LPWEST

#LP is the name of a group, while LPWEST and LPEAST are names of
destinations in #LP.

Broadcast and Nonbroadcast Grou2s .

If you specify only the group name #LP as the location, the
spooler supplies the destination. If the group is a nonbroadcast
gro1Jp, then the spooler routes the job to the destination that
can print the job soonest. If the group is a broadcast group,
then the job is routed to all of the destinations in the group
and prints on all the devices associated with the group.

For example, assume that #LP.LPEAST is associated with a line
printer on the east side of the machine room, and #LP.LPWEST is
associated with a line printer on the west side of the machine
room. If #LP is a broadcast group, then a job routed to #LP
prints at both line printers, and two copies of the job are
printed. If #LP is a non-broadcast group, then the first
available line printer prints the job, and only one copy of the
job is-printed.

In either case, a job routed to #LP.LPWEST will print once at the
line printer at the west end of the machine room. Your system
operator should be able to tell you which locations are available
to you, which print devices are associated with those locations,
and which groups are broadcast groups.

9-12 /1 82396 AOO 3/85

INTRODUCTION TO THE SPOOLER
Routing Structure

Default Routing

The spooler has a special location, #DEFAULT. This is the
location used when you do not specify a location for a job. For
example, TGAL I IN DAYREPRT, OUT $S/ (which is equivalent to
TGAL I IN DAYREPRT, OUT $S.#DEFAULT /) causes the spooler to send
the output to #DEFAULT.

You should consult your system manager to find out which physical
device or devices are associated with #DEFAULT.

Implicit Route Creation

When jobs are routed to nonexistent locations or groups, the
spooler implicitly creates routes according to the following
rules:

• When a job is routed to #X.1, where either the group #X
doesn't exist or #X exists but #X.1 doesn't exist, the spooler
creates the location #X.1.

• A job routed to a nonexistent group, #X, results in the
creation of location #X.DEFAULT.

Many users choose the group #HOLD as a holding location so that
they can examine their jobs with PERUSE before printing. You can
use #HOLD or any nonexistent location for this purpose. However,
if you want to print the job, you must change the location.

Af' 82396 AOO 3/85 9-13

IN'rRODUCTION TO THE SPOOLER
The Routing Structure

Groups: #X, #Y, #Z
Locations: #X.A, #X.B, #X.C, #Y.D, #Y.3, #Z.F

Group #X

A -----------------·--

B ---

c

Group #Y

D

E

(BROADCAST)

Group #Z

Devices: LP1, LP2,
LP3, LP4

~
~
~
~

55055-010

Note that a printer can be connected to several locations, but that each location is
connected to at most one printer.

Jobs routed to #X print on one of LP1, LP2, or LP3.
Jobs routed to #X.B print on LP2.
Jobs routed to #Y print on both LP3 and LP4.
Jobs routed to #Z stay in the spooling system indefinitely. They can be printed by
changing the location.

Connections are established or changed by the system operator.

Figure 9-4. The Routing Structure

9-14
·" 82396 AOO 3/85

INTRODUCTION TO THE SPOOLER
How to Use the Spooler

HOW TO USE THE SPOOLER

The easiest way to spool a job is to designate a collector and a
location as the OUT file when you run a program. For example,
the following command line spools the output from a TGAL
execution:

:TGAL /IN MYFILE, OUT $S.#LP.LPWEST/

Assuming that the collector $S exists, it creates the job,
assigns a job number, and stores the data corning from TGAL in a
disc file. When TGAL is finished, the spooler puts the job in
the READY state. If there is a print device associated with
#LP.LPWEST, then the job is printed when that device is free.
(If there is no print device at that location, then the job
sits in the spooler until you delete it or send it to an output
device.)

As mentioned above, you do not have to specify the entire
location name. The following example would also work:

:TGAL /IN MYFILE, OUT $S.#LP/

Assuming #LP is a nonbroadcast group, the job is printed on the
first available print device associated with the group. In some
systems, each group has only one print device associated with it,
so the full location name is unnecessary.

The example below shows the TGAL command when the location is not
specified:

:TGAL /IN MYFILE, OUT $S/

The job is sent to #DEFAULT and printed on one of the devices
associated with that group.

~ 82396 AOO 3/85 9-15

SECTION 10

HOW TO USE PERUSE

WHAT IS PERUSE?

PERUSE is an interactive program that allows you to examine and
change the attributes of a spooled job, as well as examine your
job while it is in the spooler system. With PERUSE you can:

• Examine a job (for example, a lengthy compiler listing) before
deciding whether to print it

• Display a job while it is being spooled

• Monitor changes in the status of a job

• Alter the attributes, such as location, number of copies, or
report name of a job

• Print out specified pages rather than the entire file of a job
that has been spooled

To perform these functions, PERUSE communicates with the spooler
supervisor process and accesses the spooler disc files.

.., 82396 AOO 3/85 10-1

PERUSE
How to Enter Peruse

HOW TO ENTER PERUSE

To start a PERUSE process, enter "PERUSE" alone. PERUSE then
displays a banner message:

:PERUSE
PERUSE T9101BOO (18MAR85) SYSTEM \EAST

T9101BOO is the version of PERUSE.

(18MAR95) is the release date for this version of PERUSE.

\EAST is the system it is running on.

If you have any jobs in the spooler system when PERUSE begins
execution, it lists them using the format shown in the example
below:

JOB STATE PAGES COPIES PRI HOLD LOCATION REPORT
456 PRINT 16 1 4 #LPP ACCOUNT BARB
555 OPEN 1 4 B #DEFAULT ACCOUNT BARB
1435 READY 30 1 4 A #LPRMT3 ACCOUNT BARB

Each line in the display stands for a different job. The
meanings for each column are:

JOB

STATE

PAGES

COPIES

PRI

HOLD

10-2

shows the job number of each job, as assigned by the
supervisor.

shows the status of each job:

OPEN Job is still being collected by the spooler.
READY Spooler has finished collecting; job is

queued and waiting to print.
HOLD Job has been placed on hold with the HOLD

command.
PRINT Job is currently printing.

shows the number of pages in each job (OPEN jobs are
still being collected, so the number of pages is not
known).

shows the number of copies to be made of the job.

shows the priority of the job. When a job is first
sent to the spooler, its default priority is 4. The
range is 0-7, with 0 being the lowest.

shows the hold status of the job:

.., 82396 AOO 3/85

PERUSE
Declaring the Current Job

A Hold-after-printing flag is on.
B Hold flag is on, but the job cannot

be placed in HOLD (the job is OPEN).
X For some reason the job is in error (for

example, TGAL abended while spooling the job).

LOCATION shows the location the job, which can be either real
(a printing device) or not real (held in the spooler
for PERUSE examination before sending to a printing
device).

REPORT shows the report name that is printed in the job
header message.

The display described above can be produced at any time during a
PERUSE session with the JOB command.

Entering PERUSE Commands

After PERUSE displays your jobs, it issues a prompt character ()
to signal that it is ready to execute your commands. You can
enter commands one to a line or several on the same line,
separated by semicolons. The maximum length of the PERUSE
command line is 132 characters. Each line is terminated with a
carriage return: for example:

J 123
-DEL
-EXIT

is the same as

J 123: DEL: EXIT

Declaring the Current Job

Most PERUSE commands explicitly affect the current job, but at
the beginning of a PERUSE session, there is no current job.
You can declare a current job in three ways:

• Press the RETURN key or any of the function keys to set the
most recently spooled job to the current job.

• Set the current job with the JOB command.

• Specify the current job implicitly: If at the time you enter
PERUSE you issue a command that affects the current job,

"1 82396 AOO 3/85 10-3

PERUSE
Displaying a Job

PERUSE makes the job most recently spooled the current job.
For example, if you give PERUSE a LIST command before you set
the current job, then PERUSE makes the most recently spooled
job the current job and lists data from that job.

The only exception to this rule is the DEL conunand. For
safety reasons, PERUSE requires that you specifically set the
current job prior to deleting it.

Displaying a Job

There are three ways to display a job. These are described more
fully in the GUARDIAN Operating System Utilities Reference
Manual. Briefly they are:

• Use the LIST command of PERUSE to list a page at a time.

• Press the RETURN key, which causes your job to scroll up until
you release the key.

• Use the function keys to list lines from the job: the higher
the number of the function key, the more lines that are listed
to the screen.

The BREAK Key

Typing the BREAK key while PERUSE is listing lines from a job or
producing a status display causes it to stop what it is doing and
return the PERUSE prompt (). Typing the BREAK key while PERUSE
is waiting for a command causes the GUARDIAN command interpreter
to wake and prompt for a command (:). Subsequently issuing a
GUARDIAN command interpreter PAUSE command restarts PERUSE.

COMMAND SUMMARY

Table 10-1 is a PERUSE command summary. Appendix D contains a
syntax summary of all PERUSE commands. Refer to the GUARDIAN
Qperating System Utilities Reference Manual for the complete
syntax, examples, and considerations of all PERUSE commands.

Following Table 10-1 are two detailed examples of how PERUSE can
help TGAL and TAL users view and get a hard copy of a file.

10-4 ...,, 82396 AOO 3/85

PERUSE
Command Summary

Table 10-1. PERUSE Command Summary

COPIES alters the number of copies for the current job.

DEL deletes the current job.

DEV displays the status of a device.

EXIT terminates the PERUSE session.

FC allows you to fix and resubmit a PERUSE command.

FIND finds an occurrence of a string in the current job.

FORM changes the form name of the current job.

HELP displays the syntax and meaning of PERUSE commands.

HOLD sets the hold flag for the current job.

HOLDAFTER sets hold-after-printing flag for the current job.

JOB displays job information and sets the current job.

LIST lists pages from the current job to the screen or
to an output device.

LOC changes the routing location of the current job.

NUMCOL sets the number of columns displayed by LIST.

OPEN specifies a new spooler supervisor.

OWNER changes the owner of the current job.

PAGE changes and displays the page position of the
current job.

PR! changes the printing priority of the current job.

REPORT changes the report name of the current job.

STARTCOL sets the first column to be displayed by LIST.

STATUS monitors and displays the status of spooled jobs.

------------------------------"·-------"-

"' 82396 AOO 3/85 10-5

PERUSE
gxample of PERUSE Operation With TGAL

gxAMPLE OF PERUSE OPERATION WITH TGAL

This example shows how a TGAL user might take advantage of some
of the capabilities of PERUSE when using the spooler.

!:xamining a Job

In this TGAL exercise, you specify the temporary holding file
#HOLD as the <listfile>.

You can choose any name for a temporary holding file as long as
it is a legal spooler location name (as described in the SPOOLCOM
LOC command in the GUARDIAN Operating System Utilities Reference
Manual) and not already connected to a device. For--rri"stance, you
~an use your initials:

:TGAL /IN MEMO, OUT $S.#JLS/

Using a temporary holding file allows you to examine the job,
using any of the three ways discussed earlier under "Displaying a
Job." You can also modify the job attributes before changing its
location to one that has a device associated with it.

When you enter PERUSE, there is only this one job in the spooler:

:TGAL /IN MEMO, OUT $S.#HOLD/
:PERUSE
PERUSE T910C12 (18MAR85) SYSTEM \SYSNAME

JOB STATE PAGES COPIES PR! HOLD LOCATION REPORT
534 READY 20 1 4 #HOLD USER YOU

Finding TGAL Errors

The simplest way to find TGAL errors in your document is to page
through the spooled file by holding down the RETURN key.

However, it you have a large document and you have sequentially
numbered your pages with the TGAL SEC'I1 command, you may wish to
try this more efficient way to find TGAL errors. When the job is
in the READY state in PERUSE, enter a LIST LAST command and read
the page number that scrolls up. Then enter a LIST
<that-page-num>. If the same page scrolls up again, you have no

10-6 "1 82396 AOO 3/85

PERUSE
Example of PERUSE Operation With TGAL

TGAL errors in your document. If an earlier page appears, then
TGAL error pages account for the difference.

Return to the beginning of your file, and LIST pages in
increasing numbers until you get one whose page number is less
than your LIST page number. Use LIST to isolate the TGAL error
page, and make a written note of the TGAL error and the line
number. Continue in the file, remembering to mentally add a page
for each TGAL error page, and writing down the line number of
each TGAL error. When finished, delete the file, exit PERUSE,
enter EDIT, and search to the line numbers of the TGAL errors to
make your corrections.

This can be a fast and effective way of generating an error-free
(as far as TGAL is concerned, that is) document.

Finding a Key Phrase in a Job

You want to send to another printer a page containing your most
recent correction to the file. You can use the FIND and PAGE
commands to determine the exact page number to request from the
spooler. If you know there is only one occurrence in this report
of the string "16", you can use the FIND command to locate it
and the PAGE command to tell you what page it is on:

F /16. I
16. Raw Material Resources

p
PAGE: 14 LINE: 12

Altering Job Attributes

Now you perform several changes: you increase the number of
copies to be printed and change the location from the holding
file. You also change the report name so that the header
message will stand out.

_COPIES 10; LOC #HT09; REPORT MEMO

The JOB command shows that the changes have been made to the job:

JOB
JOB

J 534
STATE PAGES COPIES PRI HOLD LOCATION REPORT
READY 20 10 4 #HT09 MEMO

~ 82396 AOO 3/85 10-7

PERUSE
Example of PERUSE Operation With TGAL

Printing Out a Portion of a Job

You also want to send the first eight pages of the report to be
printed out on the same printer. Without exiting PERUSE, you
can LIST these pages out to that printer, including the parameter
"C" so that the printer will obey any TGAL OV commands you may
have in your EDIT file. The JOB command shows this newly spooled
job and the location you have specified:

LIST /OUT $S.#LP3/ 1/8, 14 C
-JOB

JOB STATE PAGES COPIES PRI
J 534 READY 20 10 4

560 OPEN 1 4

Checking the Status of a Print Device

HOLD LOCATION
#HT09
#LP3

REPORT
MEMO
MEMO

Next you want to see how long the job will take to print out on a
specific printer. The DEV command shows the device status: $HT09
refers to the print process that controls the device~ associated
with the location #HT09. Notice that the queue is very long and
that the your twenty-one-page job has been placed at the end of
the queue:

DEV $HT09 - DEV STATE: PRINTING FORM:

JOB OWNER PAGES WAIT FORM
123 008,005 41 00:05:11

1113 001,013 8 00:06:36
1112 011,011 10 00:07:21

10 017,002 21 00:09:56
576 008,001 22 00:11:07

1324 001,013 40 00:15:32
344 006,012 21 00:17:07
534 001,001 21 00:19:42

You need to get your job printed in less time than 19 minutes, so
you decide to alter its priority. Changing the priority to 7
moves the job to the head of the queue. Note that job 123 is
currently printing and will not be stopped by a job of higher
priority:

10-8 ~ 82396 AOO 3/85

PERUSE
Example of PERUSE Operation with TAL

PRI 7;DEV $HT09 - DEV STATE: PRINTING FORM:

JOB OWNER PAGES WAIT FORM
123 008,005 41 00:04:01
534 001,001 21 00:07:36

1113 001,013 8 00:08:26
1112 011,011 10 00:09:06

10 017,002 21 00:11:46
576 008,001 22 00:13:57

1324 001,013 40 00:17:22
344 006,012 21 00:19:57

EXAMPLE OF PERUSE OPERATION WITH TAL

This example PERUSE session shows some of the features that
programmers can take advantage of.

The TAL execution includes the NOWAIT option so that the TAL
compilation runs concurrently with this PERUSE session. When the
status of your job is displayed, the job created by the TAL
execution is OPEN--that is, not yet completed spooling:

:TAL /IN PROG, OUT $S.#LP, NOWAIT/
:PERUSE

PERUSE T910Cl2 (18MAR85) SYSTEM \SYSNAME

JOB STATE PAGES COPIES PRI HOLD LOCATION REPORT
135 OPEN 1 4 #LP TAL USER

Monitoring Changes in Job Status

If you want to know when your job has finished compiling, you can
use the STATUS command, which displays a constantly updated list
of your jobs and notifies you with a beep when the compilation is
finished. Then, to return control to PERUSE, you press the BREAK
key:

~ 82396 AOO 3/85 10-9

PERUSE
Example of PERUSE Operation with TAL

STATUS -
JOB STATE PAGES COPIES PRI HOLD LOCATION REPORT

J 135 OPEN 1 4 B #LP TAL USER
(BEEP!)
JOB STATE PAGES COPIES PRI HOLD LOCATION REPORT

JC135 READY 129 1 4 #LP TAL USER
(BREAK key)

Finding Errors in a TAL Listing

However, instead of waiting for the compilation to finish, you
decide to search for errors. Since all TAL compilation errors
begin with the string"**** E", you can use the FIND, PAGE, and
LIST commands to find any errors in your program:

F /**** E/
**** ERROR 27 **** Illegal syntax

Since you have found an error in the program, you won't want a
hard copy. Set the hold flag so that you can continue searching
for errors:

HOLD:J
- JOB STATE PAGES COPIES PRI HOLD LOCATIOM REPORT
J 135 HOLD 1 4 B #LP TAL USER

10-10 AJ' 82396 AOO 3/85

PERUSE
Example of PERUSE Operation with TAL

Continue using the FIND command to search for the same string of
words. If you don't specify a new string, FIND continues to
search for the next occurrence of the most recently specified
string. When an error appears on your screen, you can determine
which page it is on by using the PAGE command. You can also
examine the context in which the error occurred by using the LIST
command to list the entire page on which the error is located:

F

**** ERROR 54 **** Illegal reference parameter
p *

PAGE: 8
L *

LINE: 12

Continue using the FIND command, searching for the same string
until there are no more occurrences of it in the program:

F
**** ERROR 72 **** Indirection must be supplied

F

After finding all the errors in the program, you are through with
this TAL listing, so you can delete the job and exit PERUSE:

_DEL;E . .
Then enter EDIT, correct the errors in your source listing, and
execute TAL again.

In this next compilation, you are a little more conservative and
use #LOOK as the location. Because you did not specify NOWAIT,
the job is READY when you enter PERUSE:

:TAL /IN PROG, OUT $S.#LOOK/
:PERUSE

PERUSE T910C12 (18MAR85) SYSTEM \SYSNAME

JOB STATE PAGES COPIES PR! HOLD LOCATION REPORT
136 READY 129 1 4 #HOLD TAL USER

Using the LIST command to display the last page of the TAL
compilation shows the trailer message, which indicates that there
were no warning or error messages generated during the
compilation:

"" 82396 AOO 3/85 10-11

PERUSE
Example of PERUSE Operation with TAL

J *• LIST L - ,
Object file name is $VOL1.ADMIN.BILL
This object file will run on either a TNS or a TNS/II system
Number of errors = 0
Number of warnings = 0
Primary global storage = 44
Secondary global storage = 1120
Code size = 1888
Data area size = 40 pages
Code area size = 2 pages
Maximum symbol table space available = 24892, used = 4064
Maximum extended symbol table space available = 0, used = O
Number of source lines = 3224
Elapsed time - 00:11:05

Since no errors were found, you can route the program to the
location that can print you a hard copy:

_LOC #LP:J

JOB
136

E

10-12

STATE PAGES COPIES PRI HOLD LOCATION REPORT
PRINT 129 1 4 #LP TAL USER

Af' 82396 AOO 3/85

SECTION 11

HOW TO USE SPOOLCOM

SPOOLCOM provides both interactive and noninteractive control of
the spooler, allowing you:

• To display the status of collectors, devices, jobs, print
processes, routing structure, and the spooler itself

• To change the location, state, or any attribute of a job
belong to you or to delete it from the spooler system

• To restart a device that has has gone offline with a device
error

Other SPOOLCOM commands have great impact on the entire spooler
system. For this reason, only system operators and members of
the super group (user ID: 255,nnn) can perform these tasks, which
are described in the System Operator's Guide.

HOW TO ENTER SPOOLCOM COMMANDS

You can enter SPOOLCOM commands in any of these ways:

• By entering complete SPOOLCOM commands at the COMINT prompt

• By starting a SPOOLCOM process and entering commands
interactively at the SPOOLCOM prompt

• By starting a SPOOLCOM process that takes as its input another
source

The following three subsections describe these three methods.

.., 82396 AOO 3/85 11-1

SPOOLCOM
Entering SPOOLCOM Commands through COMINT

Entering SPOOLCOM Commands through COMINT

You can run SPOOLCOM noninteractively by specifying a command
when you run SPOOLCOM. SPOOLCOM executes the command (or
commands if you specify more than one) and terminates,
returning you to the command interpreter; for example?:

:SPOOLCOM DEV $LP1, STATUS

DEVICE
$LP1

STATE
WAITING

FLAGS
T

PROC
$SPLA

The above command causes SPOOLCOM to display the status of
the device $LP1 and then to return your COMINT prompt.

Interactive Use of SPOOLCOM

FORM

You can run SPOOLCOM interactively by not specifying the "IN" or
"OUT" run options (or by specifying the same terminal for both),
and by omitting any <command-list> commands.

SPOOLCOM responds by sending its startup message to the
OUT terminal and a close parenthesis ")" as a prompt character:

:SPOOLCOM
SPOOLCOM - T9101BOO - (18MAR85)
)

SYSTEM \EAST

T9101BOO is the version of the spooler.

(18MAR85) is the release date for this version of SPOOLCOM.

\EAST is the system it is running on.

You can then enter a command line and SPOOLCOM executes the
command (or displays an error if the command is ille~1al or cannot
be executed). After executing the command or displaying the
error message, SPOOLCOM sends a prompt and waits for another
command. This interactive "command cycle" repeats until you
terminate SPOOLCOM with the EXIT command.

11-2 ~ 82396 AOO 3/85

SPOOLCOM
Entering SPOOLCOM Commands from Another Source

Entering SPOOLCOM Commands from Another Source

SPOOLCOM accepts commands from a process, an unstructured disc
file, a command file (also known as an OBEY file), or a file in
EDIT format.

When reading commands from a process, SPOOLCOM performs a
WRITEREAD operation on the process at the ")" prompt, and
expects a command line to be returned. The process should
perform a READUPDATE to its $RECEIVE file to get the prompt
(which may be ignored) and should reply with a command line.
Interprocess communication is fully explained in the
GUARDIAN Operating System Programmer's Guide and is discussed
with special regard to the spooler in the Spooler Programmer's
Guide.

When the command file is a disc file, SPOOLCOM considers each
record to be a command line. The records are read one at a time
until an EXIT command is found or an end-of-file condition
occurs.

If you specify a command file (described earlier in Section 5) as
the input file, the SPOOLCOM process executes the commands
contained in that file. For example, suppose that you use the
EDIT program to create a command file thst gives you a list of
the collectors, printers, and devices that define a spooler. The
file is named $SYSTEM.SYSTEM.SPLCONF and contains these SPOOLCOM
commands:

COLLECT $SPOOL, FILE $SYSTEM.SYSTEM.CSPOOL, &
DATA $MKT.SPOL.DATAFILE, UNIT 4, CPU 1, BACKUP 0, PRI 146

PRINT $USERP, FILE $USER.USER.USER,PRI 145, CPU 2
DEV $FAST, PROCESS $STAND, SPEED 900

To execute these commands, enter a SPOOLCOM command naming
SPLCONF as the IN option:

:SPOOLCOM I IN $SYSTEM.SYSTEM.SPLCONF I

Control of the terminal returns to COMINT after SPOOLCOM executes
the last command in the SPLCONF file.

You can add comment lines within a command file to identify the
file and to explain the operations being performed. SPOOLCOM
comment lines must begin with the COMMENT command. Any
characters on the line following COMMENT are ignored by SPOOLCOM.
Below are some comment lines from the SPLCONF file:

..,, 82396 AOO 3/85 11-3

SPOOLCOM
SPOOLCOM Security

COMMENT THIS IS $SYSTEM.SYSTEM.SPLCONF

COMMENT
COMMENT
COMMENT

THIS CONTROL FILE USES SPOOLCOM TO CONFIGURE THE
SYSTEM TO BE COLD STARTED, AND PASSES THIS
INFORMATION TO THE SUPERVISOR.

The complete example of this command file can be found in the
System Operator's Guide under the task, "Cold Starting the
Spooler."

SPOOLCOM SECURITY

SPOOLCOM has complete control of the spooler. To protect the
spooler from damage at the hands of inexperienced or malicious
users, it has a security system.

Any user can use SPOOLCOM to find the status of the spooler
components: jobs, devices, collectors, print processes, routing
structures, and the spooler itself. You can also alter the state
and attributes of your own jobs. However, any command that
would affect the jobs of other users or the character of the
spooler system is reserved for system operators. The spooler
does not execute certain SPOOLCOM commands unless they are
submitted by a system operator {group ID= 255), who can
execute any command or subcommand.

SPOOLCOM COMMANDS

Whether command lines are entered from a terminal or read from a
disc file, the maximum length is 132 characters. You can enter
two or more SPOOLCOM commands on the same line if you separate
them with semicolons: for example, the following command
obtains the status of job number 43, then exits from SPOOLCOM:

)JOB 43, STATUS; EXIT

SPOOLCOM commands consist of a command word possibly accompanied
by a parameter, followed by zero or more subcommands. The
command and its parameter are separated from the subcommands by
commas. Subcommands are also separated from each other by
commas.

For example, to specify the report name TAL COMPILE for job
number 35, the user enters this SPOOLCOM command:

11-4 "' 82396 AOO 3/85

SPOOLCOM
Command Summary

)JOB 1635, HOLD, REPORT TAL COMPILE, START

JOB is the command, and the parameter 1635 indicates that job
number 1635 is being referenced. In order to change a job report
name, you must put the job in the HOLD state. Use the subcommand
REPORT to specify the report name TAL COMPILE for the job.
(The spooler converts all keyed input to uppercase.) After
changing the report name, use the subcommand START to put the job
back in the device queue. (In the comparable statement in
PERUSE, the HOLD and START of a job are invisible to the user.)

SPOOLCOM allows you to enter commands affecting a job, a
collector, or any other spooler component on a single line or
separate lines. However, each command line must be complete.
For example, to enter the above subcommands on three separate
lines, you must repeat the command JOB and the parameter 1635
on each line:

)JOB 1635, HOLD
)JOB 1635, REPORT TAL COMPILE
)JOB 1635, START

These three commands have the same effect as the single command
line shown above. In fact, each subcommand can be viewed as a
separate command. Each subcommand is processed left to right,
with each being completely processed before the next subcommand
is executed. The only exception to this is DRAIN, since it can
take some time for a component to completely drain. SPOOLCOM
puts the component in the drain state but does not wait for the
drain to complete.

COMMAND SUMMARY

A summary of commands available to all users is given in Table
11-1, followed by a summary in Table 11-2 of all SPOOLCOM
commands including those available only to super-group users
(user ID: 255,nnn). Note the differing functions of these
commands, depending on the qualification of the user.
Appendix E contains syntax summaries of SPOOLCOM commands.

You can find the complete syntax, considerations, and examples of
SPOOLCOM, for both super-group users and others, in the GUARDIAN
Operating System Utilities Reference Manual.

...,,,...., 82396 AOO 3/85 11-5

SPOOLCOM
Command Summary for All Users

Command

COLLECT

COMMENT

DEV

EXIT

FC

HELP

JOB

LOC

OPEN

PRINT

SPOOLER

11-6

Table 11-1. Command Summary for All User:s

Function

obtains the status of the spooler
collectors.

designates a comment to be ignor,ed by
SPOOLCOM.

controls and obtains the status of devices
in the spooler system. While a device is
printing a job, the owner of that job can
issue a SKIP and SKIPTO subcommand on that
device. Anyone can start an offline device
that has not been put offline by a DRAIN
command issued by the operator.

terminates a SPOOLCOM session.

allows edit and reexecution of a command
line (same as the FC command in the
GUARDIAN command interpreter).

displays the syntax of SPOOLCOM commands
for user reference.

alters attributes and changes the state of
your own jobs; also obtains the status of
any job in the spooler system.

displays the status of the spooler
routing structure.

specifies the particular spooler system to
which the other SPOOLCOM commands refer.

obtains the status of the spooler print
processes.

obtains the status of the spooler.

~ 82396 AOO 3/85

SPOOLCOM
Command Summary for Super-Group Users

Table 11-2. Command Summary for Super-Group Users

Command Function

COLLECT specifies attributes, obtains status, and
changes the state of collectors.

COMMENT designates a comment to be ignored by
SPOOLCOM.

DEV specifies attributes, obtains status, and
changes the state of devices.

EXIT terminates a SPOOLCOM session.

FC allows edit and reexecution of a command
line (same as FC command in the GUARDIAN
command interpreter).

HELP displays the syntax of SPOOLCOM commands
for user reference.

JOB specifies attributes, obtains status, and
changes the state of a job.

LOC defines and modifies the spooler routing
structure.

OPEN specifies the particular spooler system to
which the other SPOOLCOM commands refer.

PRINT

SPOOLER

..., 82396 AOO 3/85

specifies attributes, obtains status, and
changes the state of print processes.

starts, stops, and obtains the status of
the spooler.

11-7

SPOOLCOM
Tasks for All Users

TASKS FOR ALL USERS

Briefly, SPOOLCOM allows all users to perform the following
operations, which are more fully described below:

• Obtain status of

• Change attributes of

• Restart (bring back online)

your job
collector
device
print process
routing structure
spooler

your job

device

How to Obtain the Status of Spooler Components

From the description of the spooler in Section 9, "Introduction
to the Spooler", you know that the important spooler components
are its collectors, devices, jobs, print processes, and routing
structure: the supervisor that controls commun_icaticm: and the
SPOOLCOM and PERUSE programs that allow you to interface with the
supervisor.

SPOOLCOM enables you to find the status of collectors, devices,
print processes, the spooler routing structure, and the spooler
itself, as well as the statQ,S of any job you own. gach of these
components is controlled by a SPOOLCOM command:

Spooler Component

Collector
Device
Job
Print Process
Routing Structure
Spooler

SPOOLCOM Command

COLLECT
DEV
JOB
PRINT
LOC
SPOOLER

You can execute any one of these commands without any qualifying
subcommands or parameters:

11-8 ~ 82396 AOO 3/85

SPOOLCOM
How to Obtain the Status of Spooler Components

:SPOOLCOM <SPOOLCOM-command> [, STATUS]

This command displays on your screen information about all the
collectors, devices, and so on that exist on your spooler
system. Then, because this is noninteractive access to
SPOOLCOM, it returns your COMINT prompt (:).

Since your spooler system probably has many devices, jobs, and
related routing structures, the STATUS subcommand may return
a lot of information. You may want to specify the particular
entity you are interested in, such as a job of a specific
number, or a device or location of a specific name. You can use
PERUSE to tell you which jobs you own that are currently in the
spooler system, as well as the location, and then use SPOOLCOM
LOC to associate the location with the device that is to print
your job.

For example, after spooling your job and entering PERUSE, you see
that your job is numbered 566 at location #HT4:

JOB
566

STATE PAGES COPIES PRI HOLD LOCATION REPORT
MKTG BOB OPEN 1 4 #HT4

Exit PERUSE, and execute the LOC command to find both the
location that is connected to that device and the jobs in the
device queue:

:SPOOLCOM LOC #HT4

LOCATION
#HT4.DEFAULT

FLAGS DEVICE
$HT4

JOB
364
513
566

LOCATION
#HT4.DEFAULT
#HT4.DEFAULT
#HT4.DEFAULT

DEVICE
$HT4
$HT4
$HT4

SEQ COPY
PRINT 1

PAGE
6

2 1 6
3 1 4

Be careful that you use "#" with the LOC, not "$", or else you
get an error message:

:SPOOLCOM LOC $HT4
OPEN $SPLS LOC $HT4

INVALID COMMAND PARAMETER

~ 82396 AOO 3/85 11-9

SPOOLCOM
How to Obtain the Status of Spooler Components

How to Change Your Job

SPOOLCOM lets you handle your job in the same way as PERUSE. In
addition to finding the status of your job, you can alter the
number of copies, the form name, the owner name, the location,
and the printing priority. You can also put your job on hold and
remove it from hold, and delete it from the spooler system.
Refer to the GUARDIAN Operating System.Utilities Reference
Manual.

How to Restart a Device

If a device has gone offline due to a device error, you can see
this with both PERUSE and SPOOLCOM.

SPOOLCOM tells you both the GUARDIAN file-system error number (in
this case it is error 100, NOT READY) and the job numbers in the
device queue:

:SPOOLCOM DEV $LP1

DEVICE STATE FLAGS PROC FORM
$LP1 DEV ERROR 100 T $SPLP

JOB LOCATION DEVICE SEQ COPY PAGE
571 #LPl.DEFAULT $LP1 1 1 40
596 #LPl.DEFAULT $LP1 2 1 43

" By way of comparison, PERUSE also identifies the error number,
plus the owner ID and the printing times for the jobs queued up
to print. The "+" following these times indicates that the
device must come back online before these print times have any
meaning:

_DEV $LP1

DEV STATE: ERROR 100

E

JOB
571
596

OWNER
008,013
008,013

PAGES
40
43

FORM:

WAIT
00:02:32+
00:03:39+

SPOOLCOM allows users to restart a device that has gone off line
due to a device error. Some of the more common device errors you
can encounter and correct are shown in Table 11-3.

1.1-10 4' 82396 AOO 3/85

SPOOLCOM
How to Restart a Device

Table 11-3. Common Device Errors That All Users Can Correct

DEV ERROR

14

100

102

Meaning

DEVICE DOES
NOT EXIST

NOT READY

PAPER OUT

Recovery

Check if it exists. Do
:FILES /OUT <device-name>/.
If COMINT lists the device
name, then it exists and
you should restart it. If
COMINT does not list the
device name, then the
device does not exist.

Press the READY button on
the device or otherwise
make it ready.

Reload with paper, and make
the device ready.

To restart a device that has gone offline, correct the device
error, and issue the command:

:SPOOLCOM DEV $<dev-name>, START

"1 82396 AOO 3/85 11-11

SECTION 12

SECURITY FEATURES OF TANDEM SYSTEMS

This section describes the security features of the GUARDIAN
operating system as they are specified through COMINT and FUP
commands.

Security as it is controlled programmatically is detailed in the
GUARDIAN Operating System Programmer's Guide.

Some of the detail in this section is useful primarily to system
managers. It is presented here so that other interested users
can gain a reasonably full comprehension of the security system,
including an understanding of items that appear in the output
from some FUP and COMINT commands.

The GUARDIAN operating system provides security for both local
and network environments in the following areas:

• Logon security to prevent unauthorized access to systems

• Disc file security to prevent unauthorized access to disc
files

• Process security to prevent interference with running
processes

The security system is designed so that it will not interfere
with application design in systems where security is not desired.

Additional security may be provided by the application programs.

.., 82396 AOO 3/85 12-1

SECURITY FEATURES OF TANDEM SYSTEMS
Interface to the Security System

INTERFACE TO THE SECURITY SYSTEM

User interface to the security features of the operating system
can be established through any of these:

• The COMINT process

• The File Utility Program (FUP)

• System procedure calls in user programs

Command Interpreter Interface

The following COMINT commands and programs provide the user
interface to the security system:

ADDUSER program
DEFAULT program
DELUSER program
LOGOFF command
LOGON command

PASSWORD program
REMOTEPASSWORD command
RPASSWRD program
USERS program
VOLUME command
WHO command

These commands and programs are fully described in the GUARDIAN
Q2erating System Utilities Reference Manual.

FUP Interface

The following FUP commands provide the user interface to the
security system:

GIVE command
INFO command
LICENSE command

REVOKE command
SECURE command

These commands are described in the GUARDIAN Operating System
Utilities Reference Manual.

12-2 ~ 82396 AOO 3/85

SECURITY FEATURES OF TANDEM SYSTEMS
System Users

Programmatic Interface

The procedures that provide the interface between user programs
and the security system are listed and described in the GUARDIAN
Operating System Programmer's Guide.

SYSTEM USERS

There are four classes of system users: (1) standard users,
(2) group managers, (3) system operators, and (4) users with
super ID.

• Standard users can do the following:

--Establish communication with the GUARDIAN command
interpreter by logging on to the system

--Display system status

--Assign themselves a logon password

--Set default volume and subvolume names

--Set file security for files they own

--List names of disc files

--Create, rename, and purge disc files

--Run, debug, and stop their own processes

--Start a backup process for their COMINT process

--Switch primary control of their COMINT process to the backup
process

--List all groups and the users in them

--Set remote passwords

--Log off the system

"" 82396 AOO 3/85 12-3

SE:CURITY FEATURES OF TANDEM SYSTEMS
System Users

• Group managers can do the following:

--Perform all functions that standard users can perform

--Add new users to their own group

--Delete users from their own group

--Log on as any user in their group without knowing that
user's password (which means that the group manager also
has access to the user's files)

• System operators can do the following:

--Perform all functions that standard users can pe~rform

--Monitor processor usage

--Reload processor modules

--Set the current date and time of day for the system

--Alter bus availability states (hardware paths)

• A super ID user can:

--Perform all functions that standard users, group managers,
and system operators can perform

--Add new groups to the system

--Delete groups from the system

--Add new users to the system in any group

--Delete users from the system

--Debug and stop any user's processes

--Debug privileged programs

--Log on as any user in any group without knowing that
user's password

Note that the preceding lists deal only with functions that
group managers, system operators, and super ID users can perform
using FUP and COMINT. Other utilities (not discussed in this
section) add to the capabilities of these users--notably, the
PE~ripheral Ut~lity Program (PUP), discussed in the System
Qperator's Guide for your system.

12-4 ~ 82396 AOO 3/85

Identifying Users

SECURITY FEATURES OF TANDEM SYSTEMS
Adding New Users and Groups

Each user has a unique user name and a corresponding unique user
ID. A user name has the form <group-name>.<user-name>, where
<group-name> is the name of the group to which the user belongs,
and <user-name> is a name identifying the individual user within
the group. Similiarly, a user ID is a pair of integers in the
form <group-id>,<user-id>, where <group-id> identifies the user's
group and <user-id> identifies the user within the group. The
two integers in a user ID must be between 0 and 255, inclusive.

The user names and user IDs for all users on the system are kept
in a system file. During a logon, the system checks that the
user name supplied in the LOGON command is valid, and that the
correct password, if any, is supplied (see "Logging On" in this
section for an explanation of passwords).

The classes of special users (users who have capabilities beyond
those of a standard user) and their corresponding user IDs are:

User Class

Super ID user
System operator
Group manager

Typical User Name

SUPER.SUPER
SUPER.OPERATOR
groupname.MANAGER

User ID

255,255
255,n

n,255

where n is a nonnegative integer less than 255, and <group-name>
is the name of a user group known to the system.

Adding New Users and Groups

When a new system is initialized, only two users exist: a user
with super ID and the null user. The null user is a standard
user having the user name NULL.NULL and the user ID 0,0.

The super ID user uses the ADDUSER program to create new groups
and to add new users to existing groups. A group manager can
also add new users to a particular group with the ADDUSER
program. For each new user, a user name and corresponding user
ID must be specified.

For example, assume that a new system was just initialized for
the administration department. The system manager (who is the
super ID user) now wants to create a user group called ADMIN,
with group ID 6.

.., 82396 AOO 3/85 12-5

SECURITY FEATURES OF TANDEM SYSTEMS
Logging On

With the ADDUSER program, the system manager first creates a
group manager:

:ADDUSER ADMIN.MANAGER, 6,255

Once the super ID user creates a group manager for a new group,
both the super ID and the group manager can add new users to that
group. For example, after the super ID user creates the
ADMIN.MANAGER user, ADMIN.MANAGER can enter the following ADDUSER
commands to add other users to the group:

:ADDUSER ADMIN.JOAN, 6,11
:ADDUSER ADMIN.CHRIS, 6,12
:ADDUSER ADMIN.JOHN, 6,13
:ADDUSER ADMIN.NADINE, 6,14
:ADDUSER ADMIN.MIKE, 6,15

As many as 256 groups, with up to 256 users each, can be created
for each system.

LOGGING ON

Before a user can gain access to the system, that user must log
on. Logging on is done by entering the previously defined user
name in the LOGON command of COMINT (see Section 2).

Passwords

Each user name can be protected by a password to prevent
unauthorized individuals from accessing the system. When a new
user is created with the ADDUSER program, that user has no
password. users can define their own password with the PASSWORD
program. Passwords are stored in a system file along with the
user names. During subsequent logons, COMINT consults this file
to determine whether a password is established and then to verify
the password. Users can change or remove their passwords by
issuing a new PASSWORD command.

12-6 ~ 82396 AOO 3/85

SECURITY FEATURES OF TANDEM SYSTEMS
Setting File Security

FILE SECURITY AND ACCESS

Each file has an owner (initially the user who created the file)
and a file security. The owner is identified by a user ID, which
is initially the same as the creator's user ID. The owner of a
file can transfer ownership to another user by means of the FUP
GIVE command.

Each user has a logon default security string that is
automatically assigned to any files created during that session,
unless the user specifies a different security. During a
session, the user can change the default security string as
outlined in the next subsection.

Setting File Security

Four types of access are allowed for a file: read, write,
execute, and purge (R,W,E,P). These accesses are defined as
follows:

• Read--the ability to examine or copy the file's contents, and
the ability to execute a command file using the OBEY command
in COMINT

• Write--the ability to modify the contents of the file

• Execute--the ability to execute the file as a process using
the RUN command in COMINT (applies to program code files)

• Purge--the ability to delete the file, rename it, or alter its
definition

The file's owner can specify one of seven levels of security for
each of the four types of access.

You can set file security with the FUP SECURE command -0r, in a
program, you can use the file system's SETMODE or SETMODENOWAIT
procedure (see the GUARDIAN Operating System Programmer's Guide).

Table 12-1 shows the seven levels of security. You use
alphabetic code to specify security with the DEFAULT program and
the VOLUME command in COMINT and the FUP SECURE command (however,
the hyphen(-) can be specified only with FUP SECURE). You use
the corresponding numeric values when you specify security in a
program (you can also specify numeric values with the FUP SECURE
command). "Local" refers to access within a single system:
"remote" refers to access between systems (nodes) in a network
(see "Allowed File Access" in this section for details).

"1 82396 AOO 3/85 12-7

SECURITY FEATURES OF TANDEM SYSTEMS
Allowed File Access

FUP
Code

u

c

N

0
G
A

Table 12-1. Levels of Security

Program
Values

Access

7 Local super ID only

6

5

4

2
1
0

Owner (local or remote), that is, any user
with owner's user ID

Member of owner's group (local or remote)
that is, any member of owner's community

Any user (local or remote)

Owner only (local)
Member of owner's group (local)
Any user (local)

Allowed File Access

Accessors, or openers, of a file are classified as either local
or remote with respect to that file. A local user is one who is
logged on to the system where the file resides; a remote user is
one who is logged on to a different system. The security level
of the opener of a file is determined by two things:

• The ID of the opener--that is, whether the opener is the owner
of the file, a member of the owner's group, or a member of
another group

• The location of the opener--that is, whether the opener is
local or remote with respect to the file

When a user or program attempts to open a file, the opener's
security level is determined and checked against the file's
security level, as defined in Table 12-1, for the requested

12-8 ~ 82396 AOO 3/85

SECURITY FEATURES OF TANDEM SYSTEMS
Allowed File Access

access mode (read, write, execute, or purge). Table 12-2 lists
the accesses that are allowed for files based on these two
security levels.

In the top row of Table 12-2, find the file's security level for
the type of access you are considering (read, write, execute, or
purge). Then read down that column and find the Y or hyphen that
corresponds to the opener's security level. A Y means the access
is allowed: a hyphen means the access is not allowed.

Table 12-2. Allowed File Accesses

Accessor's Security Level

Owner or
owner's

Member of

Super ID user, local access
Super ID user, remote access

group manager, remote access
owner's group, remote access

Any other user, remote access

Owner or
owner's group manager, local access

Member of owner's group, local access
Any other user, local access

File Security Level

y

UC N

y y y
y y y

y y y
- y y
- - y

y y y
- y y
- - y

0 GA

y y y

- - -
- - -
- - -

y y y
- y y
- - y

Note that the ID of the opener of the file is actually determined
by comparing the opener's process accessor ID (generally the same
as the opener's user ID or the user ID of the owner of a process
making the access) with the user ID of the owner of the file.
Process accessor IDs are explained further under "Process
Security" later in this section.

For example, assume that a file owned by ADMIN.BILL was secured
by the FUP SECURE command as follows:

-SECURE BILLFILE, "AGNU"

Af' 82396 AOO 3/85 12-9

SECURITY FEATURES OF TANDEM SYSTEMS
Process Security

This security means that any local user can read from the file,
only local members of the ADMIN group can write to the file, any
network user can execute the file, and only the owner (whether
logged on locally or remotely) can purge it.

If user ADMIN.ANN were operating on a network from a remote
system, she could do nothing more than execute the file, but if
she were logged on locally, she would also have read and write
access.

PROCESS SECURITY

This subsection defines and describes the use of security system
features that protect and restrict access to running processes.
These features include process accessor IDs and creator accessor
IDs and describes their use in the security system. Also
described are procedures for licensing programs and for adopting
the user ID of a program file's owner as that program's process
accessor ID.

Process and Creator Accessor IDs

Two identifications are associated with a process: the creator
accessor ID and the process accessor ID. The creator accessor ID
identifies the user who initiated the creation of the process.
The process accessor ID (whi~h is normally the same as the
creator accessor ID) identifies the process and is used to
determine if the process has the authority to make requests to
the system, for example, to open a file, stop another process,
and so on.

Figure 12-1 illustrates a chain of process creations in which the
process accessor ID of the original process is passed to other
generations of processes. In this figure, CI is a COMINT
process, pl and p2 are processes created by CI, and p3 is a
process created by p2.

12-10 '1' 82396 AOO 3/85

SECURITY FEATURES OF TANDEM SYSTEMS
Process Security

(CI) Process Accessor ID = 8,10
I \

I \
I \

I \
I (pl) Creator Accessor ID = 8,10

I Process Accessor ID = 8,10
I

(p2) Creator Accessor ID = 8,10
I Process Accessor ID = 8,10
I
I

(p3) Creator Accessor ID = 8,10
Process Accessor ID = 8,10

Figure 12-1. Passing of Accessor IDs

A process can find out its creator accessor ID and process
accessor ID using the CREATORACCESSID and PROCESSACCESSID
procedures, respectively (see the GUARDIAN Operating System
Programmer's Guide).

The process accessor ID is used by the security system to
determine if file access should be allowed (see "File Security
and Access"). In addition, the process accessor ID is used to
determine whether certain security-restricted operations, such as
STOP and DEBUG, can be performed if the requester is not the
process's creator or does not have a super ID.

Security-restricted operations can be performed by:

• The super ID user

• A process with a process accessor ID equal to the group
manager's

• A process with a process accessor ID which is the same as that
of the target process's creator

• A process with a process accessor ID equal to the target
process's accessor ID

When a process is created, the operating system passes the
appropriate process accessor ID to the descendant process.
ID becomes the creator accessor ID of the new process. The

"1 82396 AOO 3/85

This

12-11

SECURITY FEATURES OF TANDEM SYSTEMS
Adopting a Program File's Owner ID

process accessor ID of the new process can come from either of
two sources: the process accessor ID of its creator (this is the
usual case), or the owner ID of a process's program file (if file
adoption was specified with the FUP SECURE PROGID attribute).

Adopting a Program File's Owner ID

Program file owner ID adoption allows the owner of a program file
(or the super ID) to specify that the process accessor ID of any
process created by running that program file is to be the same as
the program file's owner ID rather than the creating process's
process accessor ID. This option allows the program file's owner
to control the files that the new process can access and to
control the operations that can be performed on or by the
process. Program file ID adoption is specified with the FUP
sgcuRE command (PROGID option) or the SETMODE or SE'I'MODENOWAIT
procedure.

Figure 12-2 shows several generations of processes and
demonstrates how creator accessor and process accessor IDs can
change when the PROGID attribute is set on. CI is a COMINT
process with process accessor ID 8,10. Pl is a process created
by CI, and p2 is a process created by pl.

(CI) Process Accessor ID = 8,10
,. I

I
------------------ I

Program File I
for Process pl: ------->(pl) Creator Accessor ID = 8,10
Owner ID = 1,112 I Process Accessor ID = 1,112

------------------ I
This program file's security I
has been set to "use owner I
ID as process accessor ID. " I

(p2) Creator Accessor ID = 1,112
Process Accessor ID = 1,112

Figure 12-2. Effect of Adopting a Program File's Owner ID

12-12 ~ 82396 AOO 3/85

SECURITY FEATURES OF TANDEM SYSTEMS
Controlled Access with Program File Adoption

Controlled Access with Program File ID Adoption

In any application, there might be data files that require a
controlled type of access--such as allowing many users access to
certain records, while denying the same users access to some
records that are considered sensitive. For example, an employee
file might contain such data as employees' identification
numbers, names and addresses, and some sensitive information such
as the employees' salaries. This information might be in a
record format such as this:

I emp # I ernp name I address I benefits I salary I ••••• etc. I

The following example shows how a user can control the access to
such a data file and also control any future file accesses or
program functions.

An employee data file is owned by user 1,112 and is secured for
local owner access only ("0000"). This means that only the file
owner (or the local super ID) has direct access to the file.
However, a controlled form of file access is allowed using a
query program that has been written to return only nonsensitive
information. The program file is owned by user 1,112 and is
secured so that any local user can execute the process ("OOAO").
Additionally, program file ID adoption has been specified (use
owner ID as process accessor ID).

As shown in Figure 12-3, user 8,10 (process accessor ID of 8,10)
executes the query program, which returns "limited data views"
only. The query process adopts the owner ID of the program file
(1,112), which becomes its process accessor ID. (If the query
program were to create another process, that process would
inherit 1,112 as both its creator accessor ID and its process
accessor ID.)

~ 82396 AOO 3/85 12-13

SECURITY FEATURES OF TANDEM SYSTEMS
Licensing Programs

c)
I- I

I User Running I
I the Program I

------->
<-------

I Query \
I Program I
I I

--------> I Employee I
<-------- I Data Filel

Process
Accessor
ID = 8,10

\ (Pl) I

Owner ID = 1,112
Security = "OOAO"
PROGID option on

I I
\-·---------/

Owner ID = 1,112
Security = "0000"

Figure 12-3. Controlled Access to a Data File

Licensing Programs

If a program contains privileged procedures (procedures having
the CALLABLE or PRIV attribute), it must be licensed before it
can be run by any user other than the super ID. Only a super ID
user can license a file: licensing is performed with the FUP
LICENSE command.

Programs running in the privileged mode have total freedom to
access operating system tables and to execute privileged
instructions and procedures, so it is possible for such programs
to circumvent the file security checks and thereby gain access to
any file. However, some privileged programs are needed in the
system (for example, the command interpreter is a privileged
program). Through licensing, the installation can run privileged
programs that it has authorized, but users may not run
unauthorized privileged programs.

Note that if a licensed file is opened with write access or
read-write access, the file becomes unlicensed.

For example, a privileged program called PRIVPROG exists in a
software development group. PRIVPROG is owned and licensed by
the super ID so that all members of the group can execute it. A
programmer in the group has developed a revision to the PRIVPROG
program and wants to replace the object program with the
revision.

12-14 "1 82396 AOO 3/85

SECURITY FEATURES OF TANDEM SYSTEMS
Global Knowledge of User IDs

Provided that the super ID user also gives the programmer write
access to the program file, the following TAL compilation
replaces the program with the revision and causes the program to
become unlicensed:

RUN TAL /IN source/ PRIVPROG

This means that no users except super ID users (excluding even
the programmer who replaced the program) are allowed to execute
the program. When PRIVPROG is debugged and ready for use, the
super ID can license it so that others in the group can run it.

NETWORK SECURITY

A user at system \X who wants to access a file (disc file,
device, or process) on system \Y must satisfy these three
requirements:

• The user on system \X must also be established as a user on
system \Y.

• The user must have matching remote passwords set up at both
system \X and system \Y.

• The user on system \X must have the authority to access the
particular file on system \Y as a remote accessor, if it is a
disc file.

Global Knowledge of User IDs

Each user is known to the local system by a user name and a user
ID, for example, ADMIN.BILL and 6,14 (respectively). A user can
access files on a remote system only if that person's user name
and user ID are also known to that specific system. If
ADMIN.BILL wants to access a file on a remote system, that system
must also have a user identified as ADMIN.BILL with a user ID of
6,14.

...-, 82396 AOO 3/85 12-15

SECURITY FEATURES OF TANDEM SYSTEMS
Establishing Remote Passwords

Establishing Remote Passwords

Once the user IDs of network users are added to relevant nodes of
the network, a system of remote passwords is used to specify
whether remote access is permitted. Remote passwords are
specified with the REMOTEPASSWORD command in COMINT or the
RPASSWRD program.

For example, consider two systems in a network named \A and \B.
A user identified as ADMIN.BILL, with a user ID of 6,14, was
defined at both systems.

At system \A, the following commands are entered to establish an
allow-access remote password to system \A:

:LOGON ADMIN.BILL
:REMOTEPASSWORD \A, SHAZAM

ADMIN.BILL's allow-access password for \A from all other systems
is SHAZAM.

At system \B, the following is entered:

:LOGON ADMIN.BILL
:REMOTEPASSWORD \A, SHAZAM

The user at system \B entered the matching password and now has
remote access to system \A as ADMIN.BILL.

ADMIN.BILL, logged on at system \B, does not have quite the same
status at \A as the ADMIN.BILL at \A. Since ADMIN.BILL at \B is
a remote accessor of \A, he cannot access disc files on \A that
are secured for local access only. Also, if ADMIN.BILL on \B
creates a process on \A that attempts to access the home terminal
on \B, the attempt will fail because remote passwords to allow
access from \A to \B were not established.

For ADMIN.BILL to gain access to \B from \A, an allow-access
password must be defined for ADMIN.BILL at \B, matched by a
request-access password at \A. For example, the following is
entered first at \B and then at \A:

:LOGON ADMIN.BILL
:REMOTEPASSWORD \B, AARDVARK

Now users logged on as ADMIN.BILL at either system \A or system
\B have access to both systems.

12·-16 -''f 82396 AOO 3/85

SECURITY FEATURES OF TANDEM SYSTEMS
Establishing Remote Passwords

The following considerations apply to remote passwords:

• Once matching remote passwords are established at both
systems, users do not need to specify the remote password to
gain access to the remote system. Furthermore, the super IDs
for the various nodes in a network can set up the appropriate
allow-access and request-access passwords for all users so
that the users themselves need not be concerned with
REMOTEPASSWORD commands. Once the appropriate passwords are
set up for a given user, that user can automatically access
files remotely without having to be aware of the network
passwords.

• As shown previously, the absence of an allow-access password
prevents remote access by anyone acting as that user. Thus,
if MARKETNG.SUE does not supply an allow-access password, no
remote user with the same user ID can access MARKETNG.SUE's
home system as MARKETNG.SUE.

• A remote password, once defined, remains in effect until
modified by a subsequent REMOTEPASSWORD command. This command
removes any previously designated remote password for the
corresponding \system-name:

REMOTEPASSWORD \system-name

This command removes all of the user's remote passwords:

REMOTEPASSWORD

• Request-access passwords and allow-access passwords can be
specified at any time. Remote access is permitted as soon as
both remote passwords are defined (provided they match).

• Remote passwords are independent of local passwords. In the
preceding example, ADMIN.BILL could prevent unauthorized
persons from logging on as ADMIN.BILL by entering this command
at either system:

PASSWORD local-password

..,. 82396 AOO 3/85 12-17

SECURITY FEATURES OF TANDEM SYSTEMS
Process Access

Process Access

Several security considerations relate to remote processes:

• With respect to a given system, each process in the network
either "local" or "remote." The following rules apply:

--A process is remote if it is running on a remote system.

--A process is remote if its creator is on a remotie system.

--A process is remote if its creator is remote.

is

By the last two rules, even a process that is running in a
given system can be remote with respect to that system. These
rules prevent a remote process from creating another process
to access a file whose security specifies local access only.

• A remote process cannot suspend or activate a local process.
A remote process cannot stop a local process, unless the stop
mode of th~ local process is 0 (anyone may stop it).

• A remote process cannot put a local process into a debug
state.

Using a Remote COMINT Process to Gain Local Access

Openers of a file are classified as either local or remote with
respect to that file. A local user is one who is logged on to
the system on which the file resides. A remote user is one who
is logged on to a different system in the same network.

A remote accessor of a system can become a local accessor by
running a COMINT process in the remote system and logging on.
For example, if remote passwords have been established so that
user ADMIN.BILL at \A can access system \B, he can issue the
following commands:

:\B.COMINT
:LOGON ADMIN.BILL

User ADMIN.BILL is now logged on as the local ADMIN.BILL on
system \B. Therefore, he can access disc files on \B owned by
ADMIN.BILL even if they are secured "O" (local owner), as well as
other files that are only accessable locally.

12·-18 "'f' 82396 AOO 3/85

SECURITY FEATURES OF TANDEM SYSTEMS
Using a Remote COMINT Process to Gain Local Access

This remote session can be terminated with either an EXIT or a
LOGOFF command. If ADMIN.BILL terminates the COMINT process on
system \B with an EXIT command, COMINT asks:

"ARE YOU SURE YOU WANT TO STOP YOUR process-name CI?"

process-name is either the process name or the process ID of the
remote COMINT process, including the system name. Reply YES or Y
to stop the remote COMINT process.

If ADMIN.BILL enters a LOGOFF command, COMINT terminates and
displays this message:

"EXITING FROM CI ON SYSTEM \B"

Remote users can be prevented from becoming local users in a
number of ways. One method is for the local super ID to specify
"A" (any local user) as the execute security for the COMINT
program file, thereby preventing anyone in any remote system from
running a COMINT program in system \B.

Also, a user who has the same user name as a user in another
system cannot log on to that system unless he knows the local
password for that user name. For example, ADMIN.BILL on system
\A cannot log onto system \B if ADMIN.BILL at \B has a local
password that is unknown to ADMIN.BILL at \A.

Global Passwords

In a large network, it is sometimes not desirable for all users
to have access to the network, but it is desirable to allow
network access to certain users without forcing them to type or
even know all of the required REMOTEPASSWORD commands.

At each node, a user called NET.ACCESS can be established, and
the following commands issued:

:LOGON NET.ACCESS
:PASSWORD local-password
:REMOTEPASSWORD \A, global-password
:REMOTEPASSWORD \B, global-password
:REMOTEPASSWORD \C, global-password

:REMOTEPASSWORD \n, global-password

For this example, the global remote password is the same for all
systems and is known only to the system managers. The local
password is different for each system and is given to those users
who are allowed to access the network.

~ 82396 AOO 3/85 12-19

SECURITY FEATURES OF TANDEM SYSTEMS
Subnetworks

Only those users who know the local password can log on as
NET.ACCESS. While logged on as NET.ACCESS, these users can
access remote files. For example, the following command allows
the users to access remote files secured so that NET.ACCESS
(remote) can get to them:

:LOGON NET.ACCESS, local-password

Subnetworks

In a large network, it is sometimes desirable to allow users to
access some nodes but not others. For example, users on system
\SANFRAN may be allowed to access systems \LA, \SEAT~~LE, and
\CUPRTNO, but not the \NEWYORK and \CHICAGO systems.

In this case, the ideas used in the preceding examples can be
extended to allow access to any number of subnetworks (any
collection of individual nodes). A user such as NET~WEST is
established at each node of the subnetwork, and a password scheme
like the one used in the previous example is used to allow
certain users to log on as NET.WEST.

Subnetworks implemented in this manner can be allowed to overlap
or include one another. \CHICAGO might be accessible from
\NEWYORK by logging on as NET.EAST, and from \PHOENIX by logging
on as NET.MIDWEST. Similarly, each node in the network might
have a user called NET.GLOBAL, who is allowed to accE~ss every
other node.

Capabilities of a Remote Super ID User

On a single system, a super ID user can access any file. On a
network, the powers of the super ID can be defined as local,
global, or somewhere in between.

To make SUPER.SUPER exclusively a local super ID user, do not
issue REMOTEPASSWORD conunands for SUPER.SUPER at any node.

To make SUPER.SUPER a global super ID, issue REMOTEPASSWORD
commands (as defined in the "Global Passwords" example) at every
node, and give every SUPER.SUPER the same password. In this
case, if a disc file is secured A, G, O, or -, a remote super ID
user can still gain access to the file by running a COMINT
process in that system and logging on as the local SUPER.SUPER.

12-20 ~ 82396 AOO 3/85

SECURITY FEATURES OF TANDEM SYSTEMS
Capabilities of a Remote Super ID User

To make SUPER.SUPER a super ID who is somewhere in between, issue
REMOTEPASSWORD commands (as defined in "Global Passwords") at
every node, but give each SUPER.SUPER a distinct password. This
way, any disc file can be protected from remote access by giving
it A, G, O, or - security. (The remote SUPER.SUPER can then
access files secured N, C, or U.) A remote SUPER.SUPER cannot
log on as a local super ID user because the local super ID's
password is unknown.

-"'1 82396 AOO 3/85 12-21

APPENDIX A

COMINT COMMAND SYNTAX SUMMARY

This appendix gives the complete syntax for all the COMINT
commands. Explanations for the special terms and punctuation
used here can be found in "Syntax Conventions Used in This
Manual." For complete definitions of all the syntax terms, see
the command descriptions in the GUARDIAN Operating System
Utilities Reference Manual.

[\<system-name>.]COMINT
[I <run-option> [, <run-option>] ... I]
[<backup-cpu-number>]

For <run-option> see the RUN command.

ACTIVATE [[\<system-name>.]($<process~name>)]
<cpu>,<p1n>

ADDDSTTRANSITION <start-date-time> , <stop-date-time> , <offset>

ADDUSER <group-name>.<user-name> , <group-id> , <user-id>

ALTPRI [[\<system-name>.]j$<process~name>)J , <priority>
<cpu>,<p1n>

.., 82396 AOO 3/85 A-1

COMINT COMMAND SYNTAX SUMMARY

ASSIGN
[

<logical-unit> [, <actual-file-name>]]
[, <create-open-spec>] .••

<logical-unit> is either of these two:

* .<logical-file>
<program-unit> .<logical-file>

<create-open-spec> is any one of these six:

<extent-spec>
CODE <file-code>
<exclusion-spec>
<access-spec>
REC <record-size>
BLOCK <block-size>

<extent-spec> is either of these two:

EXT [(] <pri-extent-size> [)]
EXT ([<pri-extent-size>] , <sec-extent-size>

<exclusion-spec> is any one of these three:

EXCLUSIVE
SHARED
PROTECTED

<access-spec> is any one of these three:

I-0
INPUT
OUTPUT

BACKUPCPU [<cpu-number>]

BUSCMD { X I Y } , { DOWN I UP } , <from-cpu> , <to-cpu>

CLEAR

{

ALL [{ ASSIGN I PARAM }] }
ASSIGN <logical-unit>
PARAM <parameter-name>

COMMENT [<comment-text>

CREATE <file-name> [, <extent-size>

A-2 ..-, 8:2396 AOO 3/85

COMINT COMMAND SYNTAX SUMMARY

DEBUG [<process>] [, TERM [\<system-name>.]<terminal-name>]

See the PPD command for <process>.

DEFAULT /<default-names> [, "<default-file-security>"]}
\, "<default-file-security>"

See the VOLUME command for <default-names>.

DELUSER <group-name>.<user-name>

EXIT

FC

FILES [I OUT <list-file> I] [<subvol-set>]

HELP [I OUT <list-file> I] [<command-name>]
ALL

INITTERM

LIGHTS

[

ON
OFF
SMOOTH

[, <sys-option>
[, ALL]

. • •] [, BEAT]

<sys-option> is any one of these three:

LOGO FF

DISPATCHES
SYSPROCS
PAGING

LOGON [<group-name>.<user-name> [, <password>]]

O[BEY] <command-file>

PARAM [<param-name> <param-value>
[, <param-name> <param-value>] .••]

~ 82396 AOO 3/85 A-3

COMINT COMMAND SYNTAX SUMMARY

PASSWORD [<new-password>]

PAUSE ~\<system-name>.]($<process~name>}] L <cpu>,<p1n>

PMSG { ON OFF }

PPD [I OUT <list-file> I] [<process>

<process> is either of these two:

[\<system-name>.]$<process-name>
[\<system-name>.]<cpu>,<pin>

PURGE <file-name> [, <file-name>] ...

RCVDUMP <dump-file> , <cpu> , { X I Y }

RECEIVEDUMP I OUT <dump-file> I <cpu> , <bus>

RELOAD [<cpu-set>
[HELP

<cpu-set> ...

<cpu-set> is any one of these three:
,.

{ <cpu-range> } [
'

<option>
{ (<cpu-range>

'
... } [

'
<option>

{ * } [<option>

<cpu-range> is either of these two:

<cpu-num>
<cpu-num>-<cpu-num>

<option> is any one of these three:

$<vol>[.SYS<nn>.OSIMAGE]
<bus>
NOSWITCH

[
' [
' [
'

•• 4t

REMOTEPASSWORD [\<system-name> [, <password>]]

A-4

]]
]]
]]

..,. 82396 AOO 3/85

COMINT COMMAND SYNTAX SUMMARY

RENAME <old-file-name> , <new-file-name>

RPASSWRD [\<system-name> [, <password>]]

[RUN[D]] <program-file>
[I <run-option> [, <run-option>] ••• I] [<param-string>]

<run-option> is any one of these eleven:

INSPECT

{
OFF }

~~VEABEND
IN [<file-name>]
OUT [<file-name>]
NAME [$<process-name>]
CPU <cpu-number>
PRI <priority>
MEM <num-pages>
NOWAIT
TERM $<terminal-name>
LIB [<file-name>]
SWAP [<file-name>]

SET <attribute> { ON I OFF SAVEABEND }

<attribute> is INSPECT.

SETT I ME
{

<month-name> <day>)
<day> <month-name>

[LCT I LST I GMT]

SHOW [I OUT <list-file> I]

<year>, <hour>:<minute>

[<attribute> [, <attribute>] . . •]

<attribute> is any attribute controlled by the SET command.

~ 82396 AOO 3/85 A-5

COMINT COMMAND SYNTAX SUMMARY

STATUS [I OUT <list-file> I] [<range>] [, <condition>] •••

<range> is any one of these four:

[\<system-name>.]<cpu>,<pin>
[\<system-name>.]<cpu-number>
[\<system-name>.]$<process-name>
[\<system-name>.]*

<condition> is any one of these five:

TERM [$<terminal-name>]
PRI [<priority>]
USER [<user>]
PROG <program-file-name>
DETAIL

S'l'OP
[

[\<system-name>.lj$<process~name>}J
<cpu>,<p1n>

SUSPEND

SWITCH

[
[\<system-name>.]j$<process~name>}]

<cpu>,<p1n>

SYSTEM [\<system-name>]

SYSTIMES

TIME

USERS [I OUT <list-file> I] [<range>]

A-6

<range> is any one of these six:

(blank)
<group-id>,<user-id>
<group-id>,*
<groupname>.<username>
[<groupname>.]*
*.*or *,*

~ 82396 AOO 3/85

COMINT COMMAND SYNTAX SUMMARY

VOLUME [<default-names>] [, "<default-file-security>"]

<default-names> is any of these three:

<subvol-name>
$<volume-name>
$<volume-name>.<subvol-name>

WAKEUP { ON I OFF }

WHO [I OUT <list-file> I]

{XIY}BUSDOWN <from-cpu> , <to-cpu>

{XIY}BUSUP <from-cpu> , <to-cpu>

~ 82396 AOO 3/85 A-7

APPENDIX B

FUP COMMAND SYNTAX SUMMARY

This appendix gives the complete syntax for all the File Utility
Program (FUP) commands. Special terms and punctuation used here
are explained in "Syntax Conventions Used in This Manual." All
the FUP command parameters are fully defined in the descriptions
in the GUARDIAN Operating System Utilities Reference Manual.

FUP [I <run-option> [, <run-option>] ... I] [<command>]

See the RUN command in Appendix A for <run-option>.

ALLOCATE <f ileset-list> , <num-extents> [, PARTONLY]

ALLOW <num> { ERRORS I WARNINGS }

.., 82396 AOO 3/85 B-1

FUP COMMAND SYNTAX SUMMARY

ALTER <file-name> { , <alter-option>} ...

<alter-option> is any one of these seventeen:

CODE <file-code> ! {0:65535}
[NO] REFRESH
DELALTKEY <key-specifier>
DELALTFILE <key-file-number>
ALTKEY (<key-specifier> { , <altkey-param> } ..•)
ALTFILE (<key-file-number>, <file-name>)
PART (<secondary-partition-num>

, [\<system-name>.]$<volume-name>
[, <pri-extent-size> [, <sec-extent-size>]])

[NO] AUDIT
ODDUNSTR
PARTONLY
MAXEXTENTS <maximum-extents>
BUFFERSIZE <unstructured-buffer-size>
[NO] BUFFERED
[NO] AUDITCOMPRESS
[NO] VERIFIEDWRITES
[NO] SERIALWRITES
RESETBROKEN

<altkey-param> is any one of these seven:

FILE <key-file-number>
KEYOFF <key-offset>
KEYLEN <key-length>
NULL <null-value>
NO NULL
[NO] UNIQUE
[NO] UPDATE

{0:255}
{0:2034}
{1:255}
{ "<c>" I {0:255} l

BUILDKEYRECORDS <primary-file-name> , <out-file-name>

B-:2

, <key-specifier-list> [, <out-option>] ...

<out-option> is any one of these seven:

RECOUT <out-record-length>
BLOCKOUT <out-block-length>
PAD "<pad-character>"
EBCDICOUT
[NO] UNLOADOUT
[NO] REWINDOUT
SKIPOUT <num-eof s>

..., 82396 AOO 3/85

FUP COMMAND SYNTAX SUMMARY

CHECKSUM <f ileset-list> [' PARTONLY]

See the INFO command for <f ileset-list>

COPY <in-file-name> [, [<out-file-name>]
[, <copy-option>] •••]

<copy-option> is any one of these seven:

FIRST {<ordinal-record-num> }
KEY { <record-spec> I <key-value> }
<key-specifier> ALTKEY <key-value>

COUNT <num-records>
UPSHIFT
UNSTRUCTURED
<in-option>
<out-option>
<display-option>

<in-option> is any one of these ten:

RECIN <in-record-length>
BLOCKIN <in-block-length>
TRIM "<trim-character>"
VARIN
EBCDICIN
SHARE
[NO] UNLOADIN
[NO] REWINDIN
SKIPIN <num-eof s>
REELS <num-reels>

<out-option> is any one of these nine:

RECOUT <out-record-length>
BLOCKOUT <out-block-length>
PAD "<pad-character>"
EBCDICOUT
VAROUT
FOLD
[NO] UNLOADOUT
[NO] REWINDOUT
SKIPOUT <num-eof s>

.., 82396 AOO 3/85 B-3

FUP COMMAND SYNTAX SUMMARY

<display-option> is any one of these six:

O[CTAL]
D[ECIMAL]
H[EX]
BYTE
A[SCII]
NO HEAD

CREATE <file-name> [, <create-param>] .••

See the SET command for <create-param>.

DEALLOCATE <f ileset-list> [, PARTONLY]

See the INFO command for <fileset-list>.

DUP[LICATE] <from-fileset-list>, <to-fileset>
[, <rename-option> .••]
[, <file-conversion-option> ...]

[

, NEW J [, PARTONLY] [, SAVEID]
, OLD , SOURCEDATE
, PURGE , SAVEALL
, KEEP

See the INFO command for <f ileset-list> and <fileset>.

<rename-option> can be either of these two:

PART (<sec-partition-number>
, [\<system-name>.]$<volurne-name>
[, <pri-extent-size> , [<sec-extent-size>]]

ALTFILE (<key-file-number> , <file-name>)

<file-conversion-option> can be any one of these four:

EXT /<extent-size>)
\(<pri-extent-size> , <sec-extent-size>)

SLACK <percentage>
DSLACK <percentage>
!SLACK <percentage>

EXIT

FC

B-4 ~ 82396 AOO 3/85

FUP COMMAND SYNTAX SUMMARY

FILES [I OUT <list-file> I] [<subvolset>

GIVE <fileset-list>, <group-id> , <user-id> [, PARTONLY]

See the INFO command for <f ileset-list>.

HELP [I OUT <list-file> I] [<command-name>]
ALL

INFO [I OUT <list-file> I] <f ileset-list>

[

' DETAIL] , STAT[ISTICS] [, PARTONLY]
, EXTENTS
, USER l<group-id>,<user-id>)

<group-name>.<user-name>

<fileset-list> can be either of these:

<f ileset>
(<fileset> [, <fileset>] ..•)

<f ileset> is any one of these three:

[\<system>.][$<volume>.][<subvol>.]<file-name>
[\<system>.][$<volume>.][<subvol>.]*
[\<system>.][$<volume>.]*.*

LICENSE <f ileset-list>

See the INFO command for <fileset-list>.

LISTOPENS I OUT <list-file> I] <f ileset-list>
, SCRATCH <scratch-file-name>]

LOAD <in-file-name> , <destination-file-name>
[, <load-option>] ...

<load-option> can be any one of these five:

SORTED
<in-option>
<key-seq-option>
PARTOF $<volume-name>
PAD "<pad-character>"

-'1 82396 AOO 3/85 B-5

FUP COMMAND SYNTAX SUMMARY

See the COPY command for <in-option>.

<key-seq-option> can be any one of these five~

MAX <num-records>
SCRATCH <scratch-file-name>
SLACK <percentage>
DSLACK <percentage>
!SLACK <percentage>

LOADALTFILE <key-file-number>, <primary-file-name>
[, <key-seq-option>] ...

See the LOAD command for <key-seq-option>.

PURGE [!] <fileset> [, <fileset>] ... []

See the INFO command for <fileset>.

PURGEDATA <f ileset-list> [' PARTONLY]

See the INFO command for <f ileset-list>.

RENAME <old-fileset-list>, <new-f ileset> [, PARTONLY]

See the INFO command for <fileset-list> and <f ileset>.

RESET [<create-spec> [, <create-spec>] ...]

B-6

<create-spec> is any one of these:

'TYPE
CODE
EXT
REC
REFRESH
AUDIT
BLOCK
I BLOCK
COMPRESS
DCOMPRESS
I COMPRESS
KEYL EN
KEY OFF

~ 82396 AOO 3/85

FUP COMMAND SYNTAX SUMMARY

ALTKEY [<key-specifier>]
ALTKEYS
ALTFILE [<key-file-number>]
ALTFILES
ALTCREATE
PART [<partition-num>
PARTS
PARTONLY
MAXEXTENTS
BUFFERSIZE
BUFFERED
AUDITCOMPRESS
VERIFIEDWRITES
SERIALWRITES
ODDUNSTR

REVOKE <fileset-list> [, <secure-option>] •••

See the INFO command for <f ileset-list>.

See the SECURE command for <secure-option>.

SECURE <f ileset-list> [, [<security>]
[, <secure-opt ion>] . . .]

See the INFO command for <f ileset-list>.

<security> is either of these:

<security-num>
"<security-string>"

<secure-option> is any one of these:

PROGID
PARTONLY
CLEARONPURGE

-'1 82396 AOO 3/85 B-7

FUP COMMAND SYNTAX SUMMARY

SET <create-param> [, <create-param>] .••

<create-param> is any one of these:

LIKE <file-name>
TYPE <file-type> { U I R I E I K I 0 I 1 I 2 I 3 }
CODE <file-code> ! {0:65535}
EXT {<extent-size> }

(<pri-extent-size>, <sec-extent-size>)
[NO] REFRESH
[NO] AUDIT
REC <record-length>
BLOCK <data-block-length>
!BLOCK <index-block-length>
[NO] COMPRESS
[NO] DCOMPRESS
[NO] !COMPRESS
KEYLEN <key-length>
KEYOFF <key-offset>
ALTKEY (<key-specifier> { ,
ALTFILE (<key-file-number>,
[NO] ALTCREATE

{1:4072}
{1:4096}
{1:4096}

! {1:255}
! {0:2034}

<altkey-pararn> } .••)
<file-name>)

PART (<secondary-partition-num>
, [\<system-name>.]$<volume-name>
[, <pri-extent-size> [, [<sec-extent-size>
[, <partial-key-value>]]])

[NO] PARTONLY
ODDUNSTR
MAXEXTENTS <maximum-extents>
BUFFERSIZE <unstructured-buffer-size>
[NO] BUFFERED
[NO] AUDITCOMPRESS
[NO] VERIFIEDWRITES
[NO] SERIALWRITES

See the ALTER command for <altkey-pararn>.

{1:4:096}

SHOW [I OUT <list-file> I]
[<create-spec> [, <create-spec>] ...

See the RESET command for <create-spec>.

SUBVOLS I OUT <list-file> I]
[\<systern-narne>.]$<volurne-name>]

B-8 ..., 82396 AOO 3/85

FUP COMMAND SYNTAX SUMMARY

SYSTEM [\<system-name>[.$<volume-name>][.<subvol-name>]]

VOLUME [[\<system-name>.]\<subvolume-name> J]
$<volume-name>[.<subvolume-name>]

Af' 82396 AOO 3/85 B-9

APPENDIX C

BACKUP AND RESTORE COMMAND SYNTAX SUMMARY

This appendix contains a summary of the syntax of the commands to
start BACKUP and RESTORE programs. The special symbols, terms,

and punctuation used here are defined in "Syntax Conventions Used
in this Manual." All BACKUP and RESTORE command parameters are
fully described in Section 4 of the GUARDIAN Operating System
Utilities Reference Manual.

BACKUP [I <run-option> [, <run-option>] ... I]
[<backup-parameters>]

<backup-parameters> are:

[\<system-name>.]$<tape-file> , <fileset-list>

, AUDITED
, BLOCKSIZE <data-record-size>
, DENSITY <density>
, IGNORE
, LISTALL
, MSGONLOCK
, NOT <not-f ileset-list>
, OLDFORMAT
, OPEN
, PARTIAL <partial-dump-date>
, PARTONLY
, START <f ileset-narne>

VERIFYTAPE
, VOL J[$<new-vol>.]<new-svol>)

l $<new-vol>

_,., 82396 AOO 3/85 C-1

BACKUP AND RESTORE COMMAND SYNTAX SUMMARY

C-2

$<tape-file> is either of these:

$<device-name>
$<logical-device-number>

<f ileset-list> is either of these:

<f ileset>
(<fileset> [, <fileset>] ...)

<f ileset> is any one of these four:

[$<volume>.][<subvol>.]<file-name>
[$<volume>.][<subvol>.]*
[$<volume>.]*.*
* * *

See the RUN command in COMINT for <run-option>.

.., 82396 AOO 3/85

BACKUP AND RESTORE COMMAND SYNTAX SUMMARY

Display Form of RESTORE:

RESTORE [\<system-name>.]$<tape-file> [, , VERIFYTAPE]

Restore Form of RESTORE:

RESTORE [I <run-option> [, <run-option>] ••• I]
[\<system-name>.]$<tape-file> [, <fileset-list>]

, AUDITED [, TURNOFFAUDIT]
, IGNORE
, KEEP
, LISTALL
, MYID
, NOT <not-f ileset-list>
, NOUNLOAD
, OPEN
, PARTOF $<volume-name>
, PARTONLY
, REBUILD
, START <f ileset-name>
, VOL I[$<new-vol>.]<new-svol>}

$<new-vol>
, TAPEDATE
, VERIFY

See the RUN command in COMINT for <run-option>.

See the BACKUP program for $<tape-file>.

See the BACKUP program for <f ileset-list>.

~ 82396 AOO 3/85 C-3

APPENDIX D

PERUSE SYNTAX SUMMARY

The following is a summary of the syntax for all PERUSE commands.

PERUSE [I <run-options> I] [<supervisor>]

COPIES <number-of-copies>

DEL

DEV $<device-name>

E[XIT]

FC

F[IND] B[OTH] [I <find-string> I]

FORM [<form-name>]

HELP [I <OUT listf ile> I] [<command-name> I ALL]

HOLD [ON I OFF]

HOLDAFTER [ON I OFF]

J[OB] [<job-num> I * I S[TATUS] I $<location-name>]

..,. 82396 AOO 3/85 D-1

PERUSE SYNTAX SUMMARY

L[IST] [I OUT <listfile> I]

<page-range> [, <page-range>] •••

<page-range> is A[LL] <page> [I <page>] [C] [O]

<page> is { F I L I * I <number> } [+ <number>]
[- <number>]

LOC [#<location-name>]

NUMCOL <number-of-columns>

OPEN $<supervisor-name>

OWNER { <group-name>.<user-name> }
{ <group-num> , <user-num> }

PAGE [<number> I F I L I *]
PRI <priority>

REPORT [<report-name>]

STARTCOL <starting-column>

S[TATUS] [<delay>]

D-2 "'1' 82396 AOO 3/85

APPENDIX E

SPOOLCOM SYNTAX SUMMARY

The following is a summary of the syntax of SPOOLCOM commands
that can be executed by members of the super group (user ID
255,nnn). For the complete syntax, considerations, and examples
of SPOOLCOM, refer to the GUARDIAN Operating System Utilities
Reference Manual.

SPOOLCOM [I <run-options> I] [<supervisor> [;]]

[<command>] [<command>] •••

where <command> is:

COLLECT [$<process-name>] [, <subcommand>] •••

where <subcommand> is one of:

BACKUP <backup-cpu>
CPU <cpu>
DATA <data-filename>
DELETE
DRAIN
FILE <program-filename>
PRI <process-priority>
START
STATUS [I OUT <filename I] [DETAIL]
UNIT <unit-size>

COMMENT <any-text>

""' 82396 AOO 3/85
E-'l

SPOOLCOM SYNTAX SUMMARY

DEV [$<dev-id>] [, <subcommand>] •••

E-2

where <subcommand> is one of:

EXIT

FC

ALIGN
CLEAR [DEL
DELETE
DRAIN
EXCLUSIVE [OFF [!]]
FIFO [OFF]
FORM [<form-name>]
HEADER [ON I OFF I BATCH]
JOB <job-num>
PARM <parameter>
PROCESS <process-name>
RESTART [OFF I <interval>]
RETRY <interval>
SKIP [-] <num-pages>
SKIPTO <page-num>
SPEED <lines-per-minute>
START
STATUS [I OUT <filename>/] [DETAIL]
SUSPEND
TIMEOUT <num-retries>
TRUNC [OFF]
WIDTH <device-width>
XREF [/OUT filename/]

HELP [I OUT <filename> I] [command I ALL]

..., 82396 AOO 3/85

SPOOLCOM SYNTAX SUMMARY

JOB [<job-num>] I (<qualifier> [, <qualifier>] •••)]

[, <subcommand>] •••

where <qualifier> is one of:

COLLECT <name>
DATE { FROM <time> [THRU <time>] }

{ THRU <time> }
FORM <name>
LOC <group>[.<destination>]
OWNER { <groupname>.<username> }

{ <group-#> , <user-#> }
PAGES { > I < } <pages>
REPORT <name>
STATE <job-state>

and <subcommand> is one of:

COPIES <nurn-copies>
DELETE [!]
FORM [<form-name>]
HOLD
HOLDAFTER [OFF]
LOC [#<location>]
OWNER { <groupname>.<username> }

{ <group-#> , <user-#> }
REPORT [<report-name>]
SELPRI <selection-priority>
START
STATUS [I OUT <filename> I] [DETAIL]

LOC #<group> , BROADCAST [OFF]

LOC [#<group>[.<dest>] , DELETE

LOC [#<group>.]<dest> , DEV [<device-name>]

LOC [#<group> I <dest> I #<group>.<dest>] ,

STATUS [I OUT <filename> I] [DETAIL]

LOC [#<group>[.<dest>]] , XREF [I OUT <filename> I]

OPEN $<spool>

Af' 82396 AOO 3/85 E-3

SPOOLCOM SYNTAX SUMMARY

E-4

PRINT [$<process-name>] [, <subcommand>] ...

where <subcommand> is one of:

BACKUP <backup-cpu>
CPU <cpu>
DEBUG [OFF]
DELETE
FILE <program-filename>
PARM <parameter>
PR! <execution-priority>
START
STATUS [I OUT <filename> I] [DETAIL
XREF [I OUT <listing-device> I]

SPOOLER [, <subcommand>] ...

where <subcommand> is one of:

DRAIN
ERRLOG <filename>
START
STATUS [I OUT <filename> I] [DETAIL]

._, 82396 AOO 3/85

INDEX

ALTER command (FUP) 6-20, 6-22/26
Alternate-key files

adding alternate keys 6-21/23
creating 6-13/14
moving 6-20
renaming 6-20

Backup process
CPU number displayed by WHO command 2-10/11
starting a Nonstop process pair

with COMINT command 3-2/4
stopping a Nonstop process pair 2-15

BACKUP program 8-1/7
command options listed and described 8-4
command options, examples

BLOCKSIZE option 8-5
DENSITY option 8-5
LISTALL option 8-5
NOT option 8-7
PARTIAL option 8-7

BACKUP2 program 7-1, 8-1
Batch header message 9-9
BREAK key, functions of

in COMINT 2-15
in FC command (COMINT) 2-22
in FUP 5-8
in PERUSE 10-4

Broadcast group 9-12
BUILDKEYRECORDS command (FUP) 6-25

Collectors, spooler 9-2/3
COMINT (GUARDIAN command interpreter)

blind logon feature 2-3
blind password feature 2-3
commands

COMINT 3-1/4

._, 82396 AOO 3/85 Index-1

GUARDIAN OPERATING SYSTEM USER'S GUIDE

CREATE 2-16
FC 2-19/22
FILES 2-17
LOGOFF 2-5
LOGON 2-2/4
OBEY 2-18/19
PAUSE 2-15
PURGE 2-18
RENAME 2-17/18
RUN 2-12/13
STATUS 2-13/15
STOP 2-15
SYSTEM 2-9/10
VOLUME 2-8/10
WHO 2-10

current defaults 2-7/10
file name rules 2-6/7
file operations. See File operations
how to enter commands 2-2
logging off 2-5
logging on 2-2
logon defaults 2-7/8
logon password 2-4/5
programs

DEFAULT 2-8
PASSWORD 2-4/5
USERS 2-10

restarting a COMINT process 3-3/4
running command files 2-18/19
starting a remote COMINT process 3-1/3
starting processes 2-12/13

Command file
used by SPOOLCOM 11-3/4
used with COMINT 2-18/19
used with FUP 5-5/7

Command line length 10-3, 2-2, 8-2
Comments in SPOOLCOM 11-3
COPY command. (FUP) 6-18
Copying (duplicating) files (FUP DUP) 5-14/15
Correcting command errors (FC command)" 2-19/22
CPU number listed by STATUS command in COMINT 2-14
CPU option

in COMINT command 3-2/3
in RUN command 2-13

CREATE command (COMINT) 2-16
CREATE command (FUP) 6-2/17, 6-22/26
Creating files. See Files, creating
Creator accessor ID 12-10/13
CTRL/Y

to indicate end of file 5-5
to stop a process 5-4

Index-2 ~ 82396 AOO 3/85

GUARDIAN OPERATING SYSTEM USER'S GUIDE

Current defaults (COMINT) 2-9/10
displaying with WHO command 2-10

DEFAULT program 2-8
Device, spooler

attributes 9-9/11
form name 9-9
header message 9-9/10
selection algorithm 9-11
states 9-11

checking the status of, with PERUSE 10-8
common errors that all users can correct 11-11
offline 11-10/11
queue 9-6, 9-11

DUPLICATE command (FUP) 5-14/15, 6-21, 6-24/25

EDIT program
creating files 2-16/17
running, example 2-12

Entry-sequenced files, creating 6-8/9
EOF (file length)

displayed by FUP INFO command 5-11
Errors

device, that all users can correct 11-11
in command line (FC command) 2-19/22
in TAL files, found by PERUSE 10-10/11
in TGAL files, found by PERUSE 10-6/7

EXIT command (FUP) 5-4

FC command (COMINT) 2-19/22
File

code, displayed by FUP INFO command 5-11
length (EOF), listed by FUP INFO command 5-11
names

fully qualified 2-6
partial 2-6

security
allowed file access 12-7/10
RWEP defined 5-12
setting with FUP SECURE command 5-16

to transfer ownership (FUP GIVE command) 5-17
File access 12-7/10
File operations

backing up to disc 6-21
copying (duplicating) with FUP 5-14/15
creating with CREATE command in COMINT 2-16/17
creating with FUP 6-1/17
listing with FILES command in COMINT 2-17
loading data with FUP 6-18/19
purging data with FUP PURGEDATA 6-19
purging with PURGE command in COMINT 2-18
renaming with RENAME command in COMINT 2-17/18

.._, 82396 AOO 3/85 Index-3

GUARDIAN OPERATING SYSTEM USER'S GUIDE

running command files (OBEY conunand) 2-18/19
See also specific file type, such as Relative

files, Key-sequenced files
File set, specifying a

in a BACKUP command 8-3/4
in a FUP DUP command 5-16
in a FUP INFO command 5-12/13

File Utility Program. See FUP (File
Utility Program)

File-name expansion 2-7/9
Files

creating
parameters for the FUP SET command 6-3
steps in the creation process 6-1/3
to match existing file 6-17

types of 5-2/3
See also specific types of files, such as

Alternate-key files
Entry-sequenced files
Key-sequenced files
Partitioned files
Relative files
Unstructured files

FILES command (COMINT) 2-17
FILES command (FUP) 6-10/11
Function key

to declare current job (PERUSE) 10-3
to display a job (PERUSE) 10-4

FUP (File Utility Program)
commands

ALTER 6-20, 6-22/26
BUILDKEYRECORDS 6-251
COPY 6-18
CREATE

used with SET and SHOW commands 6-2/17, 6-22/26
See also Files, creating

DUPLICATE 5-14/15, 6-21, 6-24/25
EXIT 5-4
FILES 5-10/11
GIVE 5-17
HELP 5-7
INFO 5-11/13
LOAD 6-18/19
LOADALTFILE 6-22/23
PURGE 5-17/18, 6-22, 6-24/25
PURGEDATA 6-19
RENAME 5-15/16, 6-20, 6-25
SECURE 5-16
SET

Index-4

file-creation parameters, defined 6-4/5
used with SHOW and CREATE commands 6-2/17
See also Files, creating

~ 82396 AOO 3/85

GUARDIAN OPERATING SYSTEM USER'S GUIDE

SHOW
used with SET and CREATE commands 6-2/17, 6-22/26
See also Files, creating

SUBVOLS 5-10
SYSTEM 5-9
VOLUME 5-9, 6-19

controlling current defaults 5-9
definition of a file 5-2
entering commands interactively 5-4/5
file-name rules 5-2
printing program output 5-6
specifying f ilesets in commands 5-12/13
starting a FUP process 5-4/7
types of files 5-2/3
using command files for input or output 5-5/7

GIVE command (FUP) 5-17
Global passwords in network security 12-19

Header message 9-6, 9-9/10
HELP command (FUP) 5-7

IN and OUT options
in BACKUP command 8-2
in COMINT command 3-3/4
in FUP command 5-5/7
in RESTORE command 8-8

INFO command (FUP) 5-11/13

Job
attributes 9-5/7, 9-12

copies 9-6
form name 9-6
location 9-12
priority 9-6
report name 9-6
state 9-7

copies of, in PERUSE 10-2
defined 9-5
hold status of, in PERUSE 10-2/3
life cycle 9-7/8
location, in PERUSE 10-3
number, in PERUSE 10-2
pages of, in PERUSE 10-2
PERUSE tasks

altering attributes of 10-7
checking device status of 10-8
declaring the current job 10-3/4
displaying a job 10-4
finding a word string in 10-7
monitoring changes in status 10-9/10
printing out a portion of 10-8

~ 82396 AOO 3/85
Index-5

GUARDIAN OPERATING SYSTEM USER'S GUIDE

priority, in PERUSE 10-2
report name, in PERUSE 10-3
states, in PERUSE 10-2

JOB command (PERUSE) 10-3

Key-sequenced files
creating 6-11/12

partitioned 6-15/16
with alternate keys

increasing extent size
loading 6-19, 6-24/25

LIST command (PERUSE) 10-4

6-13/14
6-25/26

LOAD command (FUP) 6-18/19, 6-25
LOADALTFILE command (FUP) 6-22/23
Logging off (LOGOFF command) 2-5
Logging on

blind logon feature 2-3
blind password feature 2-3
using the LOGON command 2-2/4
logon defaults 2-7/8
logon security discussed 12-6
using the PASSWORD program 2-4/5

Logon defaults (COMINT) 2-8
displaying with USERS program 2-11

Logon password 2-4/5, 12-6

NAME option
in COMINT command 3-3/4
in RUN command 2-13

Network security 12-15/21
Nonbroadcast group 9-12
Nonstop process pairs

restarting with COMINT command 3-3/4
starting with COMINT command 3-2
stopping with STOP command in COMINT 2-15

NOWAIT option
in COMINT command 3-4
in RUN command (COMINT) 2-13

Null user 12-5

OBEY command (COMINT) 2-18/19
OBEY file. See Command f i.le
OUT option. See IN and OUT options

Partitioned files
adding partitions 6-26
creating a key-sequenced file 6-15/16
increasing extent size 6-25/26
loading 6-19
loading an alternate-key file 6-24/25
moving 6-24

Index-6 ..-, 82396 AOO 3/85

GUARDIAN OPERATING SYSTEM USER'S GUIDE

PASSWORD program 2-4/5
Password. See Logon password
PAUSE command (COMINT) 2-15

used with BREAK key 5-8
PERUSE 10-1/12, 9-1, 9-3/4

command summary 10-4/5
compared to SPOOLCOM 9-4/5
example with TAL 10-9/12
example with TGAL 10-6/9
job status display 10-2/3
tasks. See Job, PERUSE tasks

PRI option of RUN command 2-13
Print device 9-12

See also Device, spooler
Print process 9-2/3, 9-9/11
Printer. See Device, spooler
Printing program output with FUP 5-6
Process

accessor ID, used in security 12-10/13
COM INT

restarting a 3-3/4
starting a remote 3-1/3

defined 2-12
FUP, starting a 5-3/7
IDs, displayed by STATUS command 2-14
security 12-10/15
starting a 2-12/13

Processes
execution priority of 2-14
getting information on 2-13/15

PURGE command (COMINT) 2-18
PURGE command (FUP) 5-17/18, 6-24/25
PURGEDATA command (FUP) 6-19

Queue. See Device queue

Relative files, creating 6-9/10
Remote passwords for network access 12-16/17
Remote processes

defined for network security 12-18
starting with COMINT command 3-1/3

RENAME command (COMINT) 2-17/18
RENAME command (FUP) 5-15/16, 6-20, 6-25
RESTORE program 8-8/11

command options listed and described 8-8/9
command options, examples

KEEP option 8-9
LISTALL option 8-9
MYID option 8-10
NOT option 8-10
TAPEDATE option 8-10
VOL option 8-10/11

~ 82396 AOO 3/85 Index-7

GUARDIAN OPERATING SYSTEM USER'S GUIDE

RESTORE2 program 7-1, 8-1
RETURN key

to declare current job (PERUSE) 10-3
to display a job (PERUSE) 10-4

Routing structure, spooler 9-12/14
default 9-13
example 9-14

RUN command (COMINT)
options 2-12/13

used with BACKUP and RESTORE 8-2/8
used with FUP 5-5

SECURE command (FUP) 5-16
Security. See File security, Process

security, or Network security
SET command (FUP)

file-creation parameters defined 6-4/5
used with SHOW and CREATE commands 6-2/17, 6-22/26
See also Files, creating

SHOW command (FUP)
used with SET and CREATE commands 6--2/17, 6-22/26
See also Files, creating

SPOOLCOM 11-1/11, 9-1, 9-3/4
command file 11-3/4
command lines 11-4/5
command summary 11-5/7
compared to PERUSE 9-4/5
interactive use of 11-2
noninteractive use of 11-2, 11-9
reading commands from a command file 11-3/4
reading commands from a process 11-3
reading commands from another source 11-3/4
security 11-4
tasks for all users 11-8/11

changing job attributes 11-10
obtaining status of spooler components 11-8/9
restarting a device 11-10/11

Spooler 9-1/15
broadcast and nonbroadcast groups 9-12
components 9-2/4

collectors 9-2/3
PERUSE 9-3/4
print processes 9-2/3
SPOOLCOM 9-3/4
supervisor 9-2/3

destination 9-12
how to use 9-15
jobs. See Job
locations 9-12/14
print devices 9-12/14
routing structure 9-12/14

Spooler supervisor 9-2/4

Index-8 ..., 82396 AOO 3/85

GUARDIAN OPERATING SYSTEM USER'S GUIDE

STATUS command (COMINT) 2-13/15
STOP command (COMINT) 2-15
Structured files

defined 5-3
See also specific type of file, such as

Entry-sequenced files, Key-sequenced files, and
Relative files.

Subnetworks 12-20
SUBVOLS command (FUP) 5-10
Subvolume name 2-6
Super ID user

adding new users 12-5/6
capabilities 12-4, 12-20/21

Supervisor, spooler.
See Spooler supervisor

SYSTEM command (COMINT) 2-9/10
SYSTEM command (FUP) 5-9
System name 2-7
System subvolume ($SYSTEM.SYS<nn>) 2-12

TAL
example of PERUSE operation with 10-9/12
finding errors in a TAL listing 10-10/11

TERM option of STATUS command (COMINT) 2-14
TGAL

example of PERUSE operation with 10-6/9
finding errors in a TGAL listing 10-6/7
OV command 10-8
used to spool a job 9-15

Unstructured files
creating 6-7
defined 5-3

User IDs 12-5/6, 2-4
displayed by FUP INFO command 5-12
known gloabally in a network 12-15

User names 12-5, 2-2/3
USER option of STATUS command (COMINT) 2-14
USERS program 2-10
Users

classes of 12-3/5
getting information on 2-10/12

VOLUME command (COMINT) 2-8/10
VOLUME command (FUP) 5-9, 6-19
Volume name 2-6

WHO command (COMINT) 2-10
displays info needed to restart COMINT

.., 82396 AOO 3/85

3-3/4

Index-9

GUARDIAN OPERATING SYSTEM USER'S GUIDE

to purge files without prompting (FUP) 5-18

as file name in FUP RENAME command 5-16
as subvolume or file name

in BACKUP command 8-3/4
in FUP DUP command 5-14
in FUP INFO command 5-12

+, in PERUSE DEV display 11-10

FUP prompt character 5-4

:, COMINT prompt character 2-2

Index-10 ~ 82396 AOO 3/85

READER COMMENT CARD

Tandem welcomes your comments on the quality and usefulness of its
software docLJmentation. Does this manual serve your needs? If not, how
could we improve it? Your comments will be forwarded to the writer for review
and action, as appropriate.

If your answer to any of the questions below is "no," please supply detailed
information, including page numbers, under Comments. Use additional
sheetsifnecessar~

~ Is this manual technically accurate?

~ Is information missing?

~ Are the organization and content clear?

~ Are the format and packaging convenient?

Comments

Name

Company

Address

City/State

GUARDIAN™ Operating
System User's Guide
Nonstop™ Systems

82396AOO

Yes D No D

Yes D No D

Yes D No D

Yes D No D

Date

Zip

111111

BUSINESS R E P LY MA IL
FIRST CLASS PERMIT NO. 482 CUPERTINO, CA, U.S.A.

POSTAGE WILL BE PAID BY ADDRESSEE

Tandem Computers Incorporated
Attn: Manager-Software Publications
Location 01, Department 6350
19333 Vallco Parkway
Cupertino CA 95014-9990

TAPE

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES -

Tandem Computers Incorporated
19333 Vallco Parkway
Cupertino, CA 95014-2599

