
Nonstop™ Systems 

GUARDIAN™ Operating 
System Programmer's Guide 

Operating System Library 

82357 



NOTICE 

Effective with the BOO/E08 software release, Tandem introduced a more formal nomenclature for its software 
and systems. 

The term "Nonstop 1+™ system" refers to the combination of Nonstop 1+ processors with all software that 
runs on them. 

The term "Nonstop™ systems" refers to the combination of Nonstop II™ processors, Nonstop TXP™ processors, 
or a mixture of the two, with all software that runs on them. 

Some software manuals pertain to the Nonstop 1+ system only, others pertain to the Nonstop systems only, 
and still others pertain both to the Non.Stop 1+ system and to the Nonstop systems. 

The cover and title page of each manual clearly indicate the system (or systems) to which the contents of the 
manual pertain. 



Nonstop™ Systems 

GUARDIAN™ Operating System 
Programmer's Guide 

Abstract 
This manual describes the interface between user programs and the 
GUARDIAN Operating System on the Nonstop systems. 

Product Version 
GUARDIAN BOO 

Operating System Version 
GUARDIAN BOO (Nonstop Systems) 

Part No. 82357 AOO 

March 1985 

Tandem Computers Incorporated 
19333 Vallco Parkway 
Cupertino, CA 95014-2599 



DOCUMENT HISTORY 

Edition Part Number Operating System Date 

First Edition 82357 AOO GUARDIAN BOO March 1985 

Copyright @ 1985 by Tandem Computers Incorporated. 
Printed in U.S.A. 

All rights reserved. No part of this document may be reproduced 
in any form, including photocopying or translation to another 
language, without the prior written consent of Tandem Computers 
Incorporated. 

The following are trademarks or service marks of Tandem 
Incorporated: 

AXCESS BINDER CROSS REF DDL 
DYNAMITE EDIT ENABLE ENCOMPASS 
ENFORM ENSCRIBE ENTRY ENTRY520 
EXCHANGE EXPAND FOX GUARDIAN 
Nonstop Nonstop l+ Nonstop II Nonstop TXP 
PCFORMAT PERUSE SNAX Tandem 
TGAL THL TIL TMF 
T-TEXT XRAY XREF 

INFOSAT is a trademark in which both Tandem and American 
Satellite have rights. 

Computers 

DYNABUS 
ENCORE 
ENVOY 
INSPECT 
PATHWAY 
TAL 
TRANSFER 

HYPERchannel is a trademark of Network Systems Corporation. 

IBM is a registered trademark of International Business Machines 
Corporation. 



NEW AND CHANGED INFORMATION 

This is a new publication for the Nonstop system. The existing 
two-volume GUARDIAN Operating System Programming Manual 
(part numbers 82336/82337 with updates 82189/82192) is replaced 
by two separate manuals for the BOO release of the GUARDIAN 
operating system: this GUARDIAN Operating System Programmer's 
Guide and the System Procedure Calls Reference Manual 
(part number 82359). 

All of the procedure call syntax information is now contained 
in the System Procedure Calls Reference Manual. 

Note that the scope of the System Procedure Calls Reference 
Manual has been enlarged beyond that of the existing GUARDIAN 
Operating System Programming Manual to include other products. 
The scope of the GUARDIAN Operating System Programmer's Guide has 
not been enlarged. It explains only how to use those features in 
the existing GUARDIAN Operating System Programming Manual. 
"How-to" information on procedure calls that are part of other 
products, such as the spooler, ENFORM, and SORT/MERGE, continues 
to reside in the manuals for those products. 

For the BOO release, the following new features were added to 
this manual: 

• The time services provided for the GUARDIAN operating system 
have been redesigned. The main features include: 

--Four-word, microsecond resolution 
--Julian Date based (GMT) timestamps 
--CPU clock rate averaging 
--Clock rate adjustment 
--Automatic daylight savings time adjustments 
--Julian date conversion routines 
--Callable procedure to set system clocks 

These features are described in Section 16. 

~, 82357 AOO 3/85 iii 



• Software support for the new 5530 serial printer is described 
in Section 7. 

• New $CMON functions are described in Section 5. 

• LOCKMEMORY and UNLOCKMEMORY were removed because they are 
privileged procedures. 

• Operator console information in Section 10 has been updated 
to reflect the latest changes. 

• The Trap Handling description in Section 13 has been 
rewritten. 

• A number of minor corrections and clarifications have been 
made to the manual. 

• The entire publication has been reorganized and reformatted. 

1 V 1J 82357 AOO 3/85 



CONTENTS 

PREFACE ............. ,, ............................ . xv 

SYNTAX CONVENTIONS 

SECTION 1. INTRODUCTION 
The File System ••••• 
Procedures ••••• 
Processes ••••••••••• 

TO THE 

Process Structure .•.•••••• 
Process Pairs ••... 
Process Control Functions 

System Messages •••••••••••.• 

GUARDIAN OPERATING SYSTEM 

Checkpointing Facility (Fault-Tolerant Programming) 
Transaction Monitoring Facility (TMF) 
Utility Procedures .••••••••••••••••• 
Using the Command Interpreter 
External Declarations for Operating System Procedures 
Securing Your Files 
Traps and Trap Handling 
Debug Facility •••••• 
INSPECT ••••••• 
BINDER •••••••• 
DIVER and DELAY 

SECTION 2. BASIC CONCEPTS: 
Files 

Disc Files 
Nondisc Devices 

FILES AND FILE 

Processes (Interprocess Communication) 
Operator Console 

File Names •.••••• 
Disc File Names 

Volume Name 
Subvolume Name 
File Name ••••. 

Disc File Name Expansion (External File 
Temporary File Name 
Device Names •••••••••••• 
$0 .•••••• 
$RECEIVE 

~ 82357 AOO 3/85 

.... 

NAMES 

Name) 

xix 

1-1 
1-4 
1-6 
1-8 

1-10 
1-12 
1-12 
1-14 
1-14 
1-16 
1-17 
1-17 
1-18 
1-19 
1-20 
1-20 
1-21 
1-21 
1-21 

2-1 
2-1 
2-1 
2-3 
2-4 
2-7 
2-8 
2-8 
2-8 
2-8 
2-8 
2-9 
2-9 

2-10 
2-10 
2-10 

v 



CONTENTS 

Internal File Names 
External File Names 

•••••••••••••• 0 ••••••••••••••• .............................. 
Correspondence of External to Internal 

Network File Names ..••.•••.... 
Internal Network File Names 
External Network File Names 

Default System •..••.••.••• 
Expansion of Network File Names 

Correspondence of Internal to External 
Nan1e s •.•.••••••••••........ 

Logical Device Numbers ....•.. 
Process IDs and Process Names 

Process ID 
of Process 

Timestamp Form of 
Process-Name Form 
Network Form of Process 
Process Names 

How to Access Files 
Disc Files ....• 
Terminals 
Processes 

ID 
ID 

Coordinating Multiple File Accessors 
Wait I/O and Nowait I/O 
How the File System Works 

Hardware I/O Structure 
Software (File System) 
Executing System Procedures ..••••. 
Opening Files 
File Transfers 
Buffering •••••• 
Closing Files 

Error Indication ..••. 
Error Recovery 

File Names 

Network File 

Automatic Communication-Path Error Recovery for Disc 
Files •••••.••... 
Mirrored Volumes 

SECTION 3. MANAGING PROCESSES 
Process States ..•.•....•. 

Process Creation 
Process Execution ..... . 
Process Deletion 

Process ID ..•.••..• 
Obtaining a Process ID 
Creator .••••.•.. 
Process Pairs 
Named Processes 

Operation of the PPD 
Ancestor Process 
Reserved Process Names 
Example Operation of the 
Procedures 

Home Terminal 

PPD 

2-11 
2-12 
2-13 
2-14 
2-15 
2-16 
2-16 
2-17 

2-17 
2-18 
2-18 
2-18 
2-18 
2-19 
2-20 
2-21 
2-22 
2-24 
2-24 
2-25 
2-26 
2-30 
2-30 
2-31 
2-33 
2-36 
2-38 
2-40 
2-41 
2-42 
2-42 

2-44 
2-50 

3-1 
3-4 
3-4 
3-5 
3-7 
3-7 
3-9 
3-9 

3-11 
3-12 
3-13 
3-14 
3-16 
3-17 
3-18 
3-19 

v:i -1' 82357 AOO 3/85 



CONTENTS 

Process Timing •••••••••••.••••••••••••••••••• 
Creating and Communicating With a New Process 
Execution Priority ••.•••••••••••••• 

Suggested Priority Values •••••••••• 

SECTION 4. COMMUNICATING WITH OTHER PROCESSES ••••••••• 
General Characteristics of Interprocess Communication 
Summary of Applicable Procedures ••••••••••••• 
Types of Communication Between Processes 

Synchronization ••••••••••••• 
$RECEIVE File 

Nowait I/O 
System Messages .••••• 
Communication Type ..•••••••• 

Process Files •••••••••• • •••• 
Sync ID for Duplicate Request Detection •••••• 
Interprocess Communication Example 
Error Recovery ••••••.••••••••••••• 

SECTION 5. INTERFACING TO THE GUARDIAN COMMAND INTERPRETER 
General Characteristics of the Command Interpreter ••••.• 
Passing Run-Time Parameter Information to an Application 
Process . . • .. • • • • • • . ...•.•..••••••••••• 

Startup Message •.••• 
Assign Message ••••• 
Param Message 
Reading All Parameter Messages ••••••• • •••• 

Application Process to Command Interpreter Interprocess 
Messages •••••••.• 

Wakeup Message 
Display Message 

User-Supplied CI Monitor Process ($CMON) 
Communication Between Command Interpreters and $CMON 
$CMON Messages ••••••••••••••••••••••••••••••••••••••• 

SECTION 6. INTERFACING TO TERMINALS 
General Characteristics of Terminals 
Summary of Applicable Procedures 
Accessing Terminals ..••.•..•.•.• 

Transfer Termination when Reading •••••••• 
Transfer Modes • • • . • . • • . . • • • • • • • • • • • • • ••••• 

Normal Page Mode versus Pseudopolled Page Mode 
Conversational Mode •••••••••••••••••••••••• 

Line-Termination Character ••••••••••••••• 
Conversational Mode Interrupt Characters 
Forms Control .••.•••••••••• 

Page Mode •••••••••••••••.••• 
Page-Termination Character 
Page Mode Interrupt Characters 
Pseudopolled Terminals .••.• 
Simulation of Pseudopolling 

"'f 82357 AOO 3/85 

3-20 
3-22 
3-24 
3-24 

4-1 
4-2 
4-4 
4-5 
4-6 
4-7 
4-8 
4-9 

4-10 
4-10 
4-12 
4-19 
4-26 

5-1 
5-1 

5-2 
5-3 
5-6 
5-8 
5-9 

5-11 
5-11 
5-12 
5-13 
5-14 
5-14 

6-1 
6-2 
6-4 
6-5 
6-6 
6-7 
6-8 

6-10 
6-10 
6-12 
6-17 
6-19 
6-19 
6-20 
6-23 
6-24 

vii 



CONTENTS 

Transparency Mode (Interrupt Character Checking Disabled) 
Checksum Processing (Read Termination on ETX Character) 
Echo . . •••••• ft •••••••••• 

Timeouts • • • • • • • • • • • . • ••••• 
Modems ••••••••••••••••••. 
BREAK Feature ••••••••••• 
BREAK System Message •••••• • .••. 

Using BREAK (Single Process per Terminal) ••••• 
Using BREAK (More than One Process per Terminal) 
Break Mode • • • • • • • • • • • • • • • • . • . . • • • • • • • • . •••. 

Error Recovery .•.••••••••••..••. 
Operation Timed Out (Error 40) 
BREAK (Errors 110 and 111) 
Preempted by Operator Message (Error 112) 
Modem Error (Error 140) ··········~······· 
Path Error (Errors 200-255) 

Summary of Terminal CONTROL and SETMODE Operations. 

SECTION 7. INTERFACING TO LINE PRINTERS 
General Characteristics of Line Printers 
Summary of Applicable Procedures ···~······· .••••• 
Accessing Line Printers ...•..•••• • •••.....• 
Forms Control • • • • . • . . • • . • . • • . • • • • . •••. 
Programming Considerations for the Model 5508 Printer 
Programming Considerations for the Model 5520 Printer 

Programmatic Differences Between the Model 5520 and 
Model 5508 •.....•• 
Using the DAVFU 
Loading the DAVFU 
Underline Capability 
Condensed and Expanded Print 
Error Conditions for the Model 5520 
Data Parity Error Recovery ·······~··· 
DEVICE POWER ON Error ••••••••••••&• 

Programming Considerations for the Model 5530 Printer 
Using a Model 5508, 5520, or 5530 Printer Over a Telephone 
Line . . . . . . . . . . . . ....... . 
ERROR RECOVERY 

Not Ready 
Path Errors ...•..•••• 

Summary of Printer CONTROL, CONTROLBUF, and SETMODE 
Ope rat i on s • . . . . • • . • • • • . . . . • • . • • • • • • .. . . .. • . • . . . . . • • . • • • • • • • 

SECTION 8. INTERFACING TO MAGNETIC TAPES •••.... 
General Characteristics of Magnetic Tape Files 
Summary of Applicable Procedures 
Accessing Tape Units ..••. 
Magnetic Tape Concepts ..•.. 

BOT and EOT Markers ••••........••••• 
Files .•..•••. 
Records 

6-26 
6-26 
6-27 
6-27 
6-28 
6-29 
6-31 
6-31 
6-33 
6-35 
6-40 
6-40 
6-40 
6-41 
6-41 
6-42 
6-43 

7-1 
7-1 
7-2 
7-3 
7-4 
7-6 
7-7 

7-7 
7-7 
7-9 

7-11 
7-12 
7-13 
7-14 
7-15 
7-15 

7-16 
7-17 
7-17 
7-18 

7-19 

8-1 
8-1 
8-3 
8-5 
8-6 
8-6 
8-6 
8-8 

viii ~ 82357 AOO 3/85 



CONTENTS 

Programming Considerations for the Tri-Density Tape 
Subsystem ••••••••••••••••••• 

Downloading the Microcode 
Selecting Tape Density ••••. 
Controller Self-Test Failure 

Error Recovery ••••••••.••••••••• 
Path Errors .••••••••••••••.• 

Summary of Magnetic Tape CONTROL Operations 
Seven-Track Magnetic Tape Conversion Modes 

BINARY3T04 
BINARY2T03 
BINARYlTOl 
Selecting the Conversion Mode 

Selecting Short Write Mode ••••• 

SECTION 9. INTERFACING TO CARD READERS 
General Characteristics of Card Readers 
Summary of Applicable Procedures 
Read Modes •••.••.••••.•. 
Accessing a Card Reader ••• 
Error Recovery 

Not Ready 
Motion Check 
Read Check 
Invalid Hollerith 
Path Errors .••.•• 

... 

SECTION 10. INTERFACING TO THE OPERATOR CONSOLE 
General Characteristics of the Operator Console 
Summary of Applicable Procedures 
Writing a Message •.•••.••. 
Console Message Format ..•• 
Error Recovery . • • • • • . • • •••.•.•••••••••. 
Console Logging to an Application Process 

. ... ....... 

........ 

SECTION 11. PROVIDING FAULT TOLERANCE WITH THE TRANSACTION 
MONITORING FACILITY (TMF) 

Programming for TMF .••.•••••••••••••••••. 
Applications That Can Use TMF 
Defining the Transaction Identifier 

TAL Programming .•••..•...•••.••••.•• 
Programming Considerations ••.•.•••• 

Accessing Audited Data Base Files ••. 
Record Locking ••.•••••..••••••• 

Repeatable Reads .•.•.•.•••••••••••• 
Opening Audited Files--Errors 
Reading Deleted Records 
Batch Updates 

Coding Servers 
Avoiding Deadlock 
Using the Transaction Pseudof ile (TFILE) 

Opening the TFILE •.•..••.•••.•••.•.•• 

-'1 82357 AOO 3/85 

....... 

... 

8-13 
8-13 
8-13 
8-14 
8-15 
8-17 
8-18 
8-19 
8-22 
8-23 
8-24 
8-24 
8-25 

9-1 
9-1 
9-2 
9-2 
9-5 
9-6 
9-6 
9-7 
9-7 
9-7 
9-8 

10-1 
10-2 
10-2 
10-3 
10-4 
10-4 
10-5 

11-1 
11-2 
11-2 
11-3 
11-4 
11-4 
11-5 
11-6 
11-8 
11-9 
11-9 

11-10 
11-10 
11-13 
11-17 
11-18 

lX 



CONTENTS 

Using AWAITIO to Complete ENDTRANSACTION Calls •••••• 11-18 
Synchronizing the TFILE ACBs ......................... 11-19 
Using the TFILE for Checkpointed Operations .......... 11-19 

Handling TMF Backout Anomalies ......................... 11-20 
Advanced Usage of TMF .................................. 11-21 

SECTION 12. WRITING FAULT-TOLERANT PROGRAMS ................ 12-1 
Checkpointing Procedures .................................. 12-2 
What Information Is Checkpointed? ......................... 12-3 

Data Stack ............................................... 12-4 
Da ta Bu f f e r s • • . • . • • • • • .. • • • . • • . • • • • . . . . • • • • • • . . • .. • • . . • . . 12 - 4 
Sync Blocks ............................................. 12-4 
Information Not Checkpointed ............................ 12-5 

Overview of Fault-Tolerant Transaction Processing ......... 12-6 
Fault-Tolerant Program Structure ......................... 12-10 

Main Processing Loop ................................... 12-10 
Process Startup for Named Process Pairs .•••••••..•••••• 12-10 
Process Startup for Nonnamed Process Pairs •••••..•••••• 12-19 

F i 1 e Open • • • • • . • . • • • • . • . • • • • . • • • • . • • • • • • • • • • . • • • • ,, • . • • • • 12 - 2 3 
Checkpointing ••.••••••.•••.•.••••••••••••••••••••..•..••• 12-24 

Guidelines for Checkpointing ........................... 12-25 
Example of Where Checkpoints Should Occur ............... 12-26 
Checkpointing Multiple Disc Updates •.•••.•..•.•..••.••• 12-30 
Considerations for Nowait I/O .......................... 12-30 
Action for CHECKPOINT Failure ••.•••••••.•••••.•..•••.•• 12-31 

System Messages •.••••••••••••••••••••••••••••••••..••••.• 12-31 
Recommended Action •.•.••••..•••••••••••••.•••••••.•.. 12-33 

Takeover by Backup ........................................ 12-35 
Opening a File During Processing ......................... 12-37 
Creating a Descendent Process or Process Pair .•••...•.•• 12-38 
Advanced Checkpointing .•••••.•••••••.••••••••••••..••••. 12-39 

Backup Open ............................................ 12-39 
File Synchronization Information ••.•••.••••.•••.•••.•. 12-40 
Advanced Usage of Checkpointing With TMF ............... 12-41 

SECTION 13. TRAPS AND TRAP HANDLING••••••••••••••••••••••• 13-1 
Trap Conditions ........................................... 13-1 

Traps While Executing System Code ••••••••••••••••••.•.• 13-3 
Default Trap Handler ...................................... 13-4 
User-Defined Trap Handler .•...•.•.••••..•.••••••••••••••. 13-4 
Example ........................ II ••••••••••••••••••••••••• 13-5 

SECTION 14. USING EXTENDED MEMORY SEGMENTS ••••.•.•••••.•.• 14-1 
Extended Memory ........................................... 14-2 
Dynamic Memory Allocation •••..•...•••••••.•••••••.•.••••• 14-3 

Pool Management Methods ••••••.•••••••••••••••••••••••.• 14-3 

SECTION 15. ADVANCED USES OF MEMORY ••••••••••••••••••••••• 15-1 
Reserved Link Control Blocks .•..•.••••••••••••.••••••••.• 15-1 

SECTION 16. MISCELLANEOUS UTILITY PROCEDURES ••.•.•.•.....• 16-1 
Procedures Overview ••••••....•..••.•..••.•••••...•••••..• 16-1 

x "1' 82357 AOO 3/85 



CONTENTS 

to Time Procedures Related 
Clock Setting 
Clock Averaging 

........... ........ 
Terms •••••••••• . .. 
JULIANTIMESTAMP Procedure 
COMPUTETIMESTAMP, CONVERTTIMESTAMP, and 
INTERPRETTIMESTAMP ..................................... 
COMPUTEJULIANDAYNO and INTERPRETJULIANDAYNO Procedures 
SETSYSTEMCLOCK Procedure 
TIME Procedure ••••• 
CONTIME Procedure 
TIMESTAMP Procedure 

................ 
Procedures for String and Number Manipulation 

SHIFTSTRING Procedure •••••• 
FIXSTRING Procedure 
NUMIN and NUMOUT Procedures ••••• 
HEAPSORT Procedure 

Other Procedures 
INITIALIZER Procedure ••• 
LASTADDR Procedure 
SYSTEMENTRYPOINTLABEL Procedure 
TOSVERSION and REMOTETOSVERSION Procedure 

SECTION 17. SEQUENTIAL INPUT/OUTPUT PROCEDURES 
FCB Structure ......................... ·• ..... . 

Initializing the File FCB Without INITIALIZER 
Interface With INITIALIZER and ASSIGN Messages 
INITIALIZER-Related Defines 

Considerations 
Usage Examples ..••• 

Example 1 
Summary ••• 
Example 2 
Summary •.• 
Practice Example 

Usage Example Without INITIALIZER Procedure 
Source Files •••••••••• 

SIO Considerations 
$RECEIVE Handling 
Nowait I/O .••••.• 

SECTION 18. FORMATTER ••••••• 
Format-Directed Formatting ••••• 

Format Characteristics 
Example ••••••••••••••• 

Edit Descriptors •..••••• 
Summary of Nonrepeatable Edit Descriptors 
Summary of Repeatable Edit Descriptors •.••••• 
Summary of Modifiers 
Summary of Decorations 

"1 82357 AOO 3/85 

16-3 
16-3 
16-4 
16-4 
16-5 

16-5 
16-6 
16-6. 
16-7 
16-7 
16-7 
16-7 
16-8 
16-8 

16-11 
16-13 
16-13 
16-14 
16-16 
16-16 
16-17 

17-1 
17-4 
17-5 
17-9 

17-10 
17-12 
17-14 
17-14 
17-17 
17-17 
17-20 
17-21 
17-23 
17-25 
17-25 
17-27 
17-28 

18-1 
18-2 
18-2 
18-5 
18-8 
18-8 
18-9 

18-10 
18-10 

xi 



CONTENTS 

Nonrepeatable Edit Descriptors 
Tabulation Descriptors 
Literal Descriptors ••••• 
Scale-Factor Descriptor (P) 
Optional Plus Descriptors (S, 
Blank Descriptors (BN, BZ) 
Buffer Control Descriptors (/, 

Repeatable Edit Descriptors 
The A Edit Descriptor 
The D Edit Descriptor 
The E Edit Descriptor 
The F Edit Descriptor 
The G Edit Descriptor 
The I Edit Descriptor 
The L Edit Descriptor 
The M Edit Descriptor 

Modifiers •••..••.•••••• 

SP, 

BZ) Field-Blanking Modifiers (BN, 
Fill-Character Modifier (FL) 
Overflow-Character Modifier 
Justification Modifiers (LJ, 
Symbol-Substitution Modifier 

(OC) 
RJ) 
(SS) 

Decorations 
Conditions ••••. 
Locations 
Processing 

List-Directed Formatting 
List-Directed Input 
List-Directed Output 

APPENDIX A. PROCEDURE SYNTAX SUMMARY 

..... 
SS) 

APPENDIX B. FAULT-TOLERANT PROGRAMMING EXAMPLE 

APPENDIX C. SOURCE FOR $SYSTEM.SYSTEM.GPLDEFS 

APPENDIX D. SEQUENT! AL I /0 FI LE CONTROL BLOCK FORMA~~ 

18-11 
18-11 
18-12 
18-13 
18-14 
18-15 
18-16 
18-18 
18-18 
18-20 
18-20 
18-23 
18-24 
18-26 
18-27 
18-29 
18-32 
18-32 
18-32 
18-33 
18-34 
18-34 
18-37 
18-38 
18-38 
18-39 
18-40 
18-41 
18-42 

A-1 

B-1 

C-1 

D-1 

INDEX .•.••.••••••.••.•....•.•.....•.•.••.••.•..••••..•... . Index-1 

xii "'1 82357 AOO 3/85 



1-1. 
1-2. 
1-3. 

2-1. 
2-2. 
2-3. 
2-4. 
2-5. 
2-6. 
2-7. 
2-8. 
2-9. 
2-10. 
2-11. 
2-12. 
2-13. 
2-14. 
2-15. 
2-16. 
2-17. 
2-18. 
2-19. 

3-1. 
3-2. 
3-3. 
3-4. 
3-5. 

6-1. 
6-2. 
6-3. 
6-4. 
6-5. 
6-6. 

9-1. 
9-2. 

11-1. 

11-2. 
11-3. 
11-4. 
11-5. 
11-6. 
11-7. 

CONTENTS 

FIGURES 

Files ................................................ . 
Checkpointing ••••••••••••••••••••••••••.••••••••••.•. 
Files Open by a Primary/Backup Process Pair .••••••••• 

1-5 
1-15 
1-16 

Disc File Organization .••••••••••••••••••••••••••••••• 2-2 
Communication With a Process by Process ID .•••••.••••. 2-5 
Communication With a Process Pair by Process Name ..... 2-6 
$ REC E I VE F i 1 e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 6 
Internal Form of a File Name •••••••••••••••••.••••• 2-11 
External Form of a File Name .•••••••••••••••••••••••• 2-13 
Correspondence of External to Internal File Names 2-14 
Internal Form of a Network File Name ••••.•••••••.•••• 2-15 
External Form of a Network File Name •.•••••..•••••••. 2-16 
Internal Process File Names Form ••••••••••••••••••••• 2-20 
Wait I/O Compared With Nowait I/O Operation •••••••••• 2-28 
Nowait I/O (Multiple Concurrent Operations) .••••••.•• 2-29 
Hardware I/O Structure ••••••••••••••••••.••..•••••.•• 2-32 
Primary and Alternate Communication Paths •.•.•••••••. 2-34 
System Procedure Execution ••••••••••••••••••••••••.•• 2-35 
Opening a Fi 1 e • • • • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • . • . • • 2- 3 7 
File Transfer •••••..•••••••••••.•••••••••••.••••••••• 2-39 
Buffering •••••••••••••••••••••••••••••••.••.••••••••• 2-40 
Mirrored Volume ••••.•••••.••••••••.••.•..•••.••.••••• 2-51 

Program Versus Process •••••••.•••••••..•••...••••••..• 
A Process ••••••••••••••••••••••••••••••••••••••••••••• 
Process Pairs •.•.••••..•••••••.•••••••••••••••••••••• 
Home Terminal ••••.•••••••••••••••••••••••••..•.•••••. 
Execution Priority Example •••••••.••••••••••••••.•••• 

Transfer Modes for Terminals ••••••••••••••••.•••••.••• 
Conversational Mode Interrupt Characters •••.•••••..•• 
Page Mode Interrupt Characters ..••••••.•••••.•••••••. 
Break: Single Process per Terminal •••••.•••••••••••• 
Break Mode •...•.••••••.••.••••.•••••••.•••.•••••••.•. 
Exclusive Access Using BREAK •..•.•..•••......••••..•. 

Column-Binary Read Mode for Cards 
Packed-Binary Read Mode for Cards 

Accessing and Changing Audited as Opposed to 

3-2 
3-3 

3-11 
3-19 
3-26 

6-9 
6-14 
6-21 
6-33 
6-38 
6-39 

9-3 
9-4 

Nonaudited Files ..•••••••.•••••.••••••••..••••••••••. 11-5 
Record Locking for TMF •••...•••••.•.•••••••.••••••••. 11-7 
Record Locking by Transaction Identifier ••••••••••••• 11-8 
Nonqueuing Server .•...••••••••••••••••••••••.••••••• 11-11 
$RECEIVE queuing •••.••••••••••••••••••••••.••.•••••• 11-12 
Deadlock Caused by Deleting a Record .•.••••.•..••••• i1~13 
Deadlock Caused by Inserting a Record .••.•...•••••.. 11-14 

~ 82357 AOO 3/85 xiii 



CONTENTS 

11-8. Deadlock Caused by a Process Switching Transaction 
Identifiers •.........•......•.••............•...•... 11-14 

11-9. Deadlock Caused by Multiple SENDs .........•.•..•.... 11-15 
11-10.Avoiding Deadlock ..........•........................ 11-16 

12-1. Sample Startup Sequence for a Process Pair ..•........ 12-6 
12-2. Fault-Tolerant Transaction Processing ................ 12-7 
12-3. Checkpoints and Restart Points .....•.............•.. 12-24 
12-4. Backup Open by Backup Process ....................... 12-39 

15-1. Link Control Blocks ........................•......... 15-2 

16-1 • Last Address . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . 16- 16 

Table 8-1. 
Table 8-2. 

xiv 

TABLES 

Magnetic Tape CONTROL Operations ....•••........ 8-18 
ASCII Equivalents to BCD Character Set ..•...... 8-20 

~ 82357 AOO 3/85 



PREFACE 

This manual describes the interface between user programs and 
the GUARDIAN operating system on Tandem Nonstop systems. 

Specifically, this manual discusses: 

• Managing files, managing processes, and checkpointing data 
using the procedures provided by the GUARDIAN operating system 

• Interfacing between application programs and the GUARDIAN 
command interpreter (COMINT) 

• Performing input/output using the sequential I/O procedures 
and the INITIALIZER procedure 

• Formatting input and output using the formatter 

• Using a trap handler 

• Managing extended data segments 

AUDIENCE 

This manual is for systems and application programmers with 
special needs to call operating system procedures from their 
programs. The audience level is assumed to be intermediate
to advanced-level programmers not familiar with the GUARDIAN 
operating system. Familiarity with the Tandem Transaction 
Application Language (TAL) or some other programming language, 
such as FORTRAN or COBOL, is required • 

..-, 82357 ADO 3/85 xv 



PREFACE 

SUGGESTED READING 

Prerequisite reading includes: 

• Introduction to Tandem Computer Systems (Part No. 82503) for 
a general overview of the system 

• GUARDIAN Operating System User's Guide (Part No. 82396), 
Sections 1, 2, and 3, for informatiori about logging on to the 
system and running programs in general 

Required reference manuals are~ 

• System Procedure Calls Reference Man.ual (Part No. 82359) for 
all procedure call syntax and considerations 

• GUARDIAN Operating System Utilities Reference Manual 
(Part No. 82403) for information not covered in the above 
manuals 

For more information regarding the Tandem Nonstop systems, 
refer to the manuals listed below. 

• 
• 
• 
• 
• 

• 

• 

• 
• 
• 

xvi 

System Description Manual (Part No. 82507) 

System Operator's Guide (Part No. 82401) 

System Management Manual (Part No. 82569) 

System Messages Manual (Part Noo 82409) 

Transaction Application Language (TAL) Reference Manual 
(Part No. 82581) 

Transaction Monitoring Facility_ (TMF) Reference Manual 
(Part No. 82341) 

Transaction Monitoring Facility (TMF) System Management and 
Operations Guide (Part No. 82543) · 

ENSCRIBE Programming Manual (Part No. 82583) 

EXPAND Reference Manual (Part No. 82370) 

EXPAND Network Design Guide (Part No. 82371) 

/1J 82357 AOO 3/85 



PREFACE 

• ENVOY Byte-Oriented Protocols Reference Manual 
(Part No. 82582) 

• ENVOYACP Bit-Oriented Protocols Reference Manual 
(Part No. 82588) 

• SORT/MERGE User's Guide (Part No. 82091) 

• Spooler Programmer's Guide (Part No. 82394) 

• BINDER Manual (Part No. 82514) 

• CROSSREF Manual (Part No. 82516) 

• INSPECT Interactive Symbolic Debugger User's Guide 
(Part No. 82315) 

• DEBUG Manual (Part No. 82598) 

• Communications Utilit (CUP) Reference Manual 
Part No. 82430 

• X.25 Access Method--(X25AM) (Part No. 82431) 

• Device-Specific Access Methods--(AM3270/TR3271) 
(Part No. 82432) 

• Device-Specific Access Method--(AM6520) 
(Part No. 82433) 

You will want to ref er to other reference and programming 
manuals, especially for communications products you are using. 
For a complete list of Tandem software technical manuals and 
their part numbers, refer to the following publication: 

• Guide to Software Manuals (82552) 

For a combined index to subjects covered in Tandem software 
technical manuals, identifying the manual and the page number 
for each reference, refer to the following publication: 

• Master Index (82586) 

"''f 82357 AOO 3/85 xvii 





SYNTAX CONVENTIONS IN THIS MANUAL 

The following list summarizes the conventions for syntax notation 
in this manual. 

Notation 

UPPERCASE 
LETTERS 

<lowercase 
letters> 

Brackets [] 

Braces {} 

Meaning 

Uppercase letters represent keywords and reserved 
words; you must enter these items exactly as shown. 

Lowercase letters within angle brackets represent 
variables that you must supply. 

Brackets enclose optional syntax items. A 
vertically aligned group of items enclosed in 
brackets represents a list of selections from which 
you may choose one or none. 

Braces enclose required syntax items. A vertically 
aligned group of items enclosed in braces represents 
a list of selections from which you must choose only 
one. 

Ellipsis ••• An ellipsis immediately following a pair of brackets 
or braces indicates that you can repeat the enclosed 
syntax items any number of times. 

Percent Precedes a number in octal notation. 
Sign % 

"182357 AOO 3/85 xix 





SECTION 1 

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM 

The basic design philosophy of the Tandem Nonstop system is 
that no single module failure will stop or contaminate the 
system. This capability is called fault-tolerant operation. 

Redundant hardware, backup power supplies, alternate data paths 
and bus paths, redundant controllers, and mirrored discs all 
contribute to the fault-tolerance of the Nonstop system. The 
Introduction to Tandem Computer Systems describes these features. 

There is more to a fault-tolerant system than just hardware. 
Fault tolerance requires that all programs, operating system as 
well as individual application programs, contribute to the 
reliability and recoverability of a process in the case of a 
failure. Therefore, fault tolerance should be considered from 
both the hardware and the software perspectives. 

Fault-tolerant software at the application level is achieved by 
the use of process pairs; a primary process performs the appli
cation, while a secondary (backup) process in another CPU remains 
ready to take over if the primary fails. If the primary fails, 
the backup process resumes work at the point of the last valid 
checkpoint. The use of checkpoints is explained in Section 12. 

One of the most effective safeguards against loss of data is 
the use of mirrored disc volumes. Mirrored volumes allow you 
to maintain copies of data on two physically independent disc 
drives that are accessed as a single device and managed by the 
same I/O process. All data written to one disc is written to the 
other as well. All data read from one disc could be read as well 
from the other because the data is identical. A mirrored volume 
safeguards your data against single disc failures; if one disc 
drive fails, the other should still be operational. The odds 
against both disc drives of a mirrored pair failing at the same 
time are quite great. 

/'f 82357 AOO 3/85 1-1 



INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM 

After a disc is replaced or a drive is repaired, all data is 
copied back onto it while transaction processing continues. 
Mirrored-pair operation resumes as this transfer of data occurs. 

The GUARDIAN operating system provides both multiprocessing 
(parallel processing in separate processor modules) and multi
programming (interleaved processing in one processor module). 

In a typical Nonstop system, master copies of the GUARDIAN 
operating system, configured for the specific application, are 
kept in a "system" area. Critical and frequently used parts 
of the GUARDIAN operating system are always present in each 
processor module memory. As such, the system capabilities are 
maintained even if a processor module, I/O channel, or disc 
drive fails. Noncritical or less frequently used parts of the 
GUARDIAN operating system are brought into a processor module's 
memory from disc only when needed. 

Maintenance of the system area and operation of mirrored volumes 
is entirely transparent to both applicatlon programs and system 
users. Several other functions of the GUARDIAN operating system 
are also transparent to application programs. These include: 

• Scheduling processor module time among multiple processes 
according to their application-assigned priorities 
(a process is an executing program) 

• Enabling processes to communicate with each other regardless 
of the processor module where they are executing 

• Providing the virtual memory function by automatically 
bringing absent memory pages in from disc when needed 

• Preparing a program for execution in virtual memory when a 
request is made to run a program. 

The GUARDIAN operating system provides an extremely important 
additional function. Concurrent with application program 
execution, the operating system continually checks the integrity 
of the system. Each processor module transmits "I'm alive" 
messages to every other processor module at a predefined interval 
(typically once per second). Following this transmission, each 
processor module checks for receipt of an "I'm alive" message 
from every other processor module. If the operating system in 
one processor module finds that the "I'm alive" message has not 
been received from another processor module, it first verifies 
that it can transmit a message to its own processor module. If 
it can, it assumes that the nontransmitting processor module is 
inoperative~ if it cannot, it takes action to ensure that its own 
module does not impair the operation of other processor modules. 
In either case, the operating system then informs system 
processes and interested application processes of the failure. 

1-2 /'f 82357 AOO 3/85 



INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM 

In addition to the safeguards offered by the GUARDIAN operating 
system, application programs must also contribute to their own 
fault tolerance. Each application program must ensure that it 
has a backup process. 

An application program "sees" operating system services as a set 
of callable library procedures. The library procedures have 
names such as READ, WRITE, OPEN, and so on. For example, to 
request the operating system service for input, a call to the 
operating system READ procedure is written in the application 
program. (The operating system library procedures exist in the 
system code area and therefore are shared by all processes.) 

Operating system services that can be requested programmatically 
or that affect application program design are categorized as 
follows (overviews of these services are given in the remainder 
of this section): 

• File system--how to perform the input and output operations is 
discussed in Section 2. 

• Process control--how to run, suspend, and stop programs is 
described in Section 3. 

• System messages--how to communicate information from the 
GUARDIAN operating system to application processes is 
described in Section 4. 

• Command interpreter program--how to communicate run-time 
information to an application process is described in 
Section 5. 

• Terminals--how they relate to the operating system, as well 
as an overview of terminology, access, connection, and error 
recovery is presented for the TERMPROCESS interface in 
Section 6. 

• Line printers--the interfaces between line printers and the 
operating system, along with the use of SETMODE and CONTROL 
operations in setting up and using printers, is discussed in 
Section 7. 

• Magnetic tape--the characteristics and procedures used to 
control tape usage are presented. Concepts, programming 
considerations, and CONTROL operations are described. 
BCD/ASCII character sets and available conversion modes are 
also presented in Section 8. 

• Card readers--applicable procedures are described in 
Section 9. 

~ 82357 AOO 3/85 1-3 



INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM 
The File System 

• Operator console--its use as a logging device for system 
errors, statistical information, or application-supplied 
information is described in Section 10. 

• Fault-tolerant programming--use of the Transaction Monitoring 
Facility (TMF) and its interface with the GUARDIAN operating 
system is discussed in Section 11. 

• Checkpointing facility--for writing fault-tolerant (Nonstop) 
programs is described in Section 12. 

• Traps and trap handling--how to programmatically handle 
trapped programs and identify critical error conditions is 
described in Section 13. 

• Extended memory management--how to allocate and use extended 
memory segments and pools is described in Section 14. 

• Memory management techniques--how to influence the efficiency 
of a process is presented in Section 15. 

• Utility procedures--procedures for time functions, timestamp 
translation, string and number manipulation, number 
translation, and other services, such as the INITIALIZER, 
are described in Section 16. 

• Sequential I/O--an alternate, standardized set of procedures 
for performing common input-output operations only for 
sequential files is described in Section 17. 

• Formatting--the formatting of output data and conversion of 
input data is discussed in Section 18. 

THE FILE SYSTEM 

A file (Figure 1-1) is the symbolic representation of: 

• an input-output device, 

• a process, or 

• the operator console, 

for purposes of performing input-output operations in a simple, 
efficient, and uniform manner. Typical file names are shown. 

1-4 "' 82357 AOO 3/85 



..., 82357 AOO 3/85 

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM 
The File System 

F 
I 
L 

I 

FILES ------, 

"$TERM1" 

E .....,.-----t~ 

Ml--_... s 
y 
s 
T 
E 
M 

"$LP" 

"$TAPE1" 

$RECEIVE 
Process ID 

----or 

"$0" 

Figure 1-1. Files 

NON-DISC DEVICES 

INTERPROCESS Fl LES 

OPERATOR CONSOLE 

S5004-001 

1-5 



INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM 
Procedures 

Each file, device, process (and even the console) in the system 
is identified by a unique file name. Devices that are normally 
dedicated to a single process or a related set of processes while 
in use, such as terminals or line printers, are represented by a 
single file name. In the case of disc devices, because they are 
capable of storing massive amounts of data and must be accessed 
by several processes concurrently, a file name represents a 
portion of the total storage area on a designated disc. In 
short, all nondisc devices, all disc files, and all processes 
are treated as files. 

PROCEDURES 

There is a unique procedure defined for each operating system 
operation. Each procedure has a name such as READ, WRITE, OPEN, 
CLOSE, and so on. 

Because there are so many GUARDIAN operating system procedures, 
they are divided into groups by function for presentation in this 
guide. Each group has a descriptive name. For example, those 
procedures that perform file operations are called the file 
system procedures. The procedures that control running programs, 
or processes, are called process control procedures. The 
procedures provided to perform utility operations are called 
utility procedures. 

All GUARDIAN procedure syntax is presented alphabetically in the 
.§.y_stem Procedure Calls Reference Manual. 

GUARDIAN operating system functions can be accessed in two ways: 
through the command interface provided by the GUARDIAN command 
interpreter (see the GUARDIAN Operating System User's Guide), 
or through the programmatic interface d~scribed in this guide. 

An alternate set of procedures, named the Sequential Input/Output 
Procedures (or SIO procedures), is also available for use under 
certain conditions. See Section 17. 

File operations are performed by making calls to GUARDIAN file 
system procedures. All files are accessed through this same set 
of procedures, thereby providing a single, uniform access method. 
Additionally, the file-system procedures are designed to 
eliminate the operating peculiarities of various devices. The 
file-system procedures include: 

CREATE defines a new file on a disc volume 

OPEN provides access to a file 

1-6 ·1' 82357 AOO 3/8!) 



INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM 
Procedures 

READ transfers data from a file to an application process 
data area 

WRITE transfers data to a file from an application process 
data area 

WRITEREAD writes data to a file, then waits for data to be 
returned (read) from the file 

READUPDATE reads data from a file in anticipation of updating a 
record in the case of disc files or replying to a 
request message in the case of processes (the disc 
update is made by using WRITEUPDATE; the message 
reply is made by using REPLY) 

REPLY is used to send a reply message in response to 
reading a request message by using READUPDATE 

WRITEUPDATE writes an updated record to a disc 

CLOSE terminates access to a file 

PURGE deletes a disc file 

In order to access a file, it must first be opened. This is 
done by using a call to the file-system OPEN procedure: 

CALL OPEN(filename,filenum); 

<Filename> is an array in the program data area containing the 
symbolic name of the file. <Filenum> is a value returned by OPEN 
to identify the file in subsequent file-system calls. 

Then to write (output) to the file, the file-system WRITE 
procedure can be called in the following manner: 

CALL WRITE(filenum,buffer,write-count); 

<Buffer> is an array in the program's data area containing the 
information to be written. <Write-count> is the number of bytes 
to be written. 

To read (input) from the same file, use: 

CALL READ(filenum,buffer,read-count,count-read); 

Several other procedures are provided for performing device
dependent operations. 

~ 82357 AOO 3/85 1-7 



INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM 
Processes 

PROCESSES 

A process is the execution of a program under control of the 
GUARDIAN operating system. It is the basic executable unit known 
to the operating system. Specifically, the term "program" 
indicates a static group of instruction codes and initialized 
data--the output of a compiler; the term "process" denotes the 
dynamically changing states of an executing program. The same 
program file can be executing concurrently a number of times; 
each execution is a separate process. 

The executing environment of a given process is a single 
processor module (the processor module where a process executes 
is specified at run time). A process environment consists of a 
code area, containing instruction codes and program constants, 
and a separate data area, containing variables and hardware 
environment information. A given code area is shared by all 
processes that are executing the same program file. This is 
permissible because information within the code area cannot be 
modified. Each process, however, has its own separate, private 
data area. 

The following terms referring to processes are used throughout 
this manual (for more complete information, refer to Section 3): 

• Process creation 

The term "process creation" refers to the action performed by 
a special system process called the System Monitor which 
initially prepares a program for execution. Process creation 
can be initiated by application programs or by the GUARDIAN 
command interpreter (COMINT) through the process control 
NEWPROCESS and NEWPROCESSNOWAIT procedures. 

When the command interpreter is used to run a program, a 
"startup" interprocess message is sent to the newly created 
process. This message contains default disc volume and 
subvolume names, input and output file names, and any 
application-dependent parameters specified through the RUN 
command. The startup message can be read by the new process 
through use of the standard GUARDIAN file-system procedures, 
or it can be obtained by using the INITIALIZER procedure 
(see "Communicating With Other Processes" in Section 4). 

• Creator 

1-8 

Another term, "creator", refers to the process that initiated 
a process creation (by calling the NEWPROCESS procedure). 
For example, the command interpreter is the creator of 
processes it starts when the RUN command is given. 

Af' 82357 AOO 3/85 



INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM 
Processes 

Certain attributes are associated with being a creator: 

--A creator receives a notification if a process it has 
created is deleted. 

--A creator has the right to delete (stop) processes it 
has created. 

• Process deletion 

Process deletion is the act, by the operating system, of 
stopping further process execution. 

There are two types of process deletion: normal and abnormal. 
Normal deletion is initiated by a call to the process control 
STOP procedure. Abnormal deletion is initiated by a call to 
the process control ABEND procedure or by the occurrence of a 
trap when certain other conditions are present (see "Traps" in 
Section 13). 

Process deletion can be initiated by a process itself, by 
another process (under some circustances) or, if an abnormal 
deletion, by the operating system. 

• Process ID 

A process is uniquely identified throughout the system by its 
process ID. There are two forms of the process ID. The first 
is the timestamp form. This form of process ID is assigned to 
a process at process creation time by the operating system and 
contains a timestamp of when the process was created. The 
other form of process ID is the process name form, which is 
commonly used when a pair of processes must be identified by a 
common name. Process names are application-defined and are 
assigned to processes at process creation time. Either form 
of process ID can be used to identify processes for the 
purpose of interprocess communication. (Interprocess 
communication is the sending of messages between processes. 
It is performed through use of the file system.) The use of 
the process name, moreover, has the advantage that a process 
can be known throughout the system by a predefined identifier. 

• Destination Control Table (DCT) 

Named processes are known throughout the system by means of 
entries in the destination control table. Parts of this table 
were known in earlier Tandem systems as the process-pair 
directory (PPD). (A device table was combined with the PPD of 
the Nonstop l+ system to form the DCT in Nonstop systems.) 
The DCT is the table that contains the names of all named 
processes in the system. PPD is the name used in this manual 

~ 82357 AOO 3/85 1-9 



INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM 
Processes 

to describe just the named processes in the DCT. A process 
name is entered into the DCT when a process having a name is 
created. A given process name is deleted from the DCT when 
the last process having that name is deleted. (See ~Process 
Pair".) 

• Home terminal 

Associated with each process is a home terminal. The home 
terminal is the terminal from which the command interpreter 
RUN command is given to run the process. This terminal is 
used by the system to communicate with the programmer during 
the debugging phase of program development (see "DEBUG 
Facility") and to display process-related error messages. 
Additionally, the home terminal can be used by the application 
program to communicate interactively with the person who runs 
the program. 

Process Structure 

The process structure provided by the GUARDIAN operating system 
allows a program to be written as though it could run on a 
processor of its own. This abstraction is possible because: 

• Each process executes independently of and without 
interference from all other processes 

• Each process environment is private from all other processes 

The process structure allows program functions (whether they are 
operating system or application functions) to be modularized. 
Modules can be written and tested independently of other modules. 
If a module is known to execute correctly when run by itself, it 
should execute correctly when run concurrently with other 
modules. 

The GUARDIAN operating system is essentially a collection of 
processes, each process performing a specific function. For 
example, a memory manager process provides the virtual memory 
function for its processor; an I/O process (of which there are 
many) controls one or more similar I/O devices. 

Processes communicate information between one another using 
messages. 

(Pl) MESSAGE (P2) 

(P) = process 

1-10 ""1 82357 AOO 3/85 



INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM 
Processes 

For example, a GUARDIAN memory manager process may request that a 
GUARDIAN disc I/O process bring an absent memory page in from 
disc. The request is sent in the form of an interprocess 
message: 

(MMP) BRING IN PAGE N -------. (DISCP) 

Applications are structured in much the same way as the operating 
system. That is, specific functions are performed by independent 
processes that communicate with each other by way of interprocess 
messages. 

A common structure for applications is the requester-server 
relationship. With this structure, requester processes make 
requests of a common server process (an application may consist 
of several of these requester-server relationships). A request 
is made in the form of an interprocess message (sent through the 
file system). The server replies to the message through the file 
system (the reply usually consists of the requested data). 

------~-- REQUEST 
(RP) (SP) 

REPLY 

(RP) = requester process (SP) = server process 

For example, in a simple data base query application, each user 
terminal is controlled by a separate requester process. The 
function of the requester process is to accept and interpret 
commands entered at the terminal, then send a request for a data 
base record to the common server process. The function of the 
server process is to accept a request from a requester, then 
return the requested record to that requester. 

{TERM! NAL A} ____.. ( RPl) 
{TERM! NAL B} ____.. ( RP2) 

. 
{TERMINAL Z} ___..(RP26)~--~~ 

The obvious benefits of this structure are: 

(SP) ----. {DB} 

• The application is modularized by function: terminal device 
control and data base control. 

• The requester program is written to control a single 
terminal. (To control multiple terminals, the program is run 
multiple times concurrently; each time, a different terminal 
is specified as the device to be controlled). 

"1 82357 AOO 3/85 1-11 



INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM 
Processes 

The requester-server process relationship is discussed in detail 
in Section 4, "Communicating With Other Processes" and examples 
are presented in Appendix B. 

Process Pairs 

It is possible for a properly coded application process to 
recover from any type of hardware failure except one--a failure 
of the processor module where it is executing. Because of this, 
much use is made of Nonstop process pairs. This is a method of 
increasing fault tolerance. For each pair of processes, the 
primary process executes in one processor module, and the backup 
process executes in another. 

A process pair is usually two executions of the same program. 
Logic in the program determines whether the process is executing 
in the primary mode to perform the designated work, or in the 
backup mode to monitor the operability of the primary. 

With this primary and backup structure, the backup process is 
continually aware of the executing state of the primary process 
by the use of checkpointing messages periodically sent from the 
primary process to the backup process. When the backup is 
informed its primary has failed (by the receipt of a process or 
processor failure system message), the backup switches into the 
primary mode and continues with the application's work. 

A process pair is typically identified by a single process name. 
A process pair's process name is entered into the PPD part of the 
DCT when the first process of the pair is created. At this time, 
the identity of the ancestor process is also entered into the 
DCT. (An ancestor process is the process responsible for 
creating the first member of a process pair). The DCT provides 
capabilities that are useful for fault-tolerant pro~Jramming. For 
example, one member of a process pair is notified if the other 
member stops executing: the ancestor process is notified when the 
process name is deleted from the DCT (the latter occurs when the 
last process associated with a process name stops or fails). 
Other important fault-tolerant considerations when communicating 
with named process pairs are described in Section 2~ 

Process Control Functions 

Process control operations are performed by calling the GUARDIAN 
process control procedures. These procedures are described in 
Section 3. Examples of process control procedures include: 

1-12 '11 82357 AOO 3/85 



INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM 
Processes 

NEWPROCESS and 
NEWPROCESSNOWAIT 

creates a process (runs a program) and, 
optionally, gives it a name (if a name is 
given, the name is entered into the DCT) 

MY TERM provides the file name of the home terminal for the 
process 

DELAY 

PRIORITY 

STOP 

ABEND 

suspends the calling process 

changes the calling process execution priority 

deletes a process with a normal indication 

deletes a process with an abnormal indication 

For example, to create a process (run a program), the process 
control NEWPROCESS procedure might be called as follows: 

CALL NEWPROCESS (progname,pri,mem,cpu,processAid,error,name): 

<progname> is an array in the calling program data area 
containing the file name of the program to be run. <pri> is the 
execution priority to be assigned to the new process. <mem> is 
the number of data pages to be allowed for the new process, and 
<cpu> is the processor module number where the new process is to 
be created. <processAid> is a value returned by NEWPROCESS to 
identify the newly created process, and <error> is a value 
returned to indicate whether or not the process creation was 
successful. <name> is the process name to be assigned to the new 
process. The creator process can then pass the <processAid> to 
the file-system OPEN procedure as a file name, and then use calls 
to WRITE or WRITEREAD to send startup information to the new 
process. 

Or to have a process delete itself, the STOP procedure is called: 

CALL STOP: 

The calling process is deleted, all the files it had opened are 
closed and its creator receives a STOP system message. 

To suspend a process for some designated period of time, the 
DELAY procedure can be called in the following manner: 

CALL DELAY(lOOOD): 

This delays the caller for ten seconds. ("D" indicates that the 
number represents a 32-bit integer value.) 

-"''f 82357 AOO 3/85 1-13 



INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM 
System Messages 

SYSTEM MESSAGES 

The operating system sends messages directly to application 
processes to inform the application of certain system conditions. 
These are referred to as "system messages". System messages are 
read using the GUARDIAN file-system procedures. Examples of 
system messages that can be sent to processes are: 

CPU Down 
STOP 
ABEND 

CPU Up 

--Processor module failed. 
--Process stopped executing. 
--Process stopped executing because of abnormal 

condition. 
--Processor module reloaded. 

The system messages are presented in the System Messages Manual. 

CHECKPOINTING FACILITY (FAULT-TOLERANT.PROGRAMMING) 

The checkpointing facility provides the capability for writing 
application programs that can recover from a processor module 
failure. To use the checkpointing facility, an application 
program must be executing as a process pair. 

As shown in Figure 1-2, the checkpointing facility is used by the 
primary process of a process pair to checkpoint pertinent data to 
its backup process. It is used by the backup process to receive 
the checkpoint data and to monitor the status of the primary 
process. (The checkpoint data is sent from the primary process 
to its backup process in the form of an interprocess message.) 
If the backup process is notified of the failure of its primary 
process, the checkpointing facility causes the backup process to 
begin executing at the point indicated by the latest checkpoint 
message. (The notification to the backup that the primary has 
failed is in the form of a CPU Down, STOP, or ABEND system 
message.) 

You must use the following two procedures to checkpoint a process 
environment. Their use is explained in Section 12; their syntax 
is given in the System Procedure Calls.Reference Manual. 

1. CHECKPOINT is called by a primary process to checkpoint its 
current state to its backup process. 

2. CHECKMONITOR is called by a backup process to monitor its 
primary and take appropriate action in the event of a 
failure of the primary process. 

1-14 ~ 82357 AOO 3/85 



INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM 
Checkpointing Facility 

PRIMARY 
PROCESS 

~ I 
READ Entry From Terminal 

I 
READ Record From Disc 

I 
Update Record in Memory 

I 
CHECKPOINT 

I 
WRITE Updated Record to Disc 

J 

BACKUP 
PROCESS 

CHECKMONITOR -. 
..... . . 
READ ... 

READ .. 

Update ... 

CHECKPOINT ... 

WRITE ... 

The backup stays in CHECKMONITOR while the primary is operational. If the primary fails, the backup 
leaves CHECKMONITOR and begins executing at the point indicated by the last call to CHECKPOINT 
by the primary. 

S5004-002 

Figure 1-2. Checkpointing 

When the checkpointing facility is used, each process in a 
process pair has the same set of files open, as shown in Figure 
1-3. This ensures that the backup process has immediate access 
to the files in the event of the primary's failure. 

Use the following two procedures when opening or closing files in 
a fault-tolerant environment: 

1. CHECKOPEN is called by a primary process to open a file in 
its backup process. 

2. CHECKCLOSE is called by a primary process to close a file in 
its backup process. 

A complete fault-tolerant programming example is presented in 
Appendix B. 

/1 82357 AOO 3/85 1-15 



INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM 
Transaction Monitoring Facility (TMF) 

PRIMARY 
PROCESS 

(A) 

Files 

(1) ---,. ---
(2) --,. 

~ 

_,,,, (3) ---,. .....-. . . . 
I ~ (N) --r -,. -

BACKUP 
PROCESS 

(A') 

. 
• 

-I 

85004-003 

Figure 1-3. Files Open by a Primary/Backup Process Pair 

TRANSACTION MONITORING FACILITY (TMF) 

If the Transaction Monitoring Facility (TMF) is available on your 
system, the need to checkpoint programs is practically removed. 
Checkpointing is usually not necessary when TMF is used because 
TMF does essentially everything that can be achieved with the 
Nonstop process pairs typically used when checkpointing. 

TMF uses audit trails, online dumps, and backout, rollforward, 
and autorollback facilities to ensure data base consistency even 
through a total system failure. If a transaction is aborted, all 
effects of that transaction are removed from the data base. 
If a system should fail, TMF can remove all effects of any 
transaction that was interrupted. The other major service of TMF 
is transaction concurrency control. 

The GUARDIAN interface to TMF is described in Section 11. 

l·-16 ~ 82357 AOO 3/85 



INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM 
Utility Procedures 

UTILITY PROCEDURES 

Among the various utility procedures are those that pertain to 
time, system clocks, real time, process time, and so on. 
Procedures are available to automatically convert Julian day 
numbers to the Gregorian calendar date and time of day. Time of 
day at different locations can be based on Greenwich Mean Time, 
local standard time or, in the United States, on daylight saving 
time. Procedures are available for setting and converting dates 
and time of day. 

Other utility procedures are presented together because they 
share an ability to manipulate strings, arrays, or numbers. 
Among these are procedures used to edit strings of characters, 
sort arrays of equal-size elements in place, or convert the 
ASCII representation of a number into its binary equivalent. 

The remaining utility procedures include those that do not fit 
into categories. Among these procedures are included very 
important procedures such as the INITIALIZER that can reduce the 
amount of code you need to write to start a program, and make the 
coding much easier and more consistent. 

Use of these utility procedures is described in Section 16: their 
syntax is given in the System Procedure Calls Reference Manual. 

USING THE COMMAND INTERPRETER 

The GUARDIAN command interpreter (COMINT) is an interactive 
program used to run programs, check system status, create and 
delete disc files, and alter system hardware states. An 
important feature of the command interpreter is its ability to 
pass user-specified parameter information to a process at run 
time. The parameter information is delivered to the process in 
the form of interprocess messages. The programmatic interface 
to the GUARDIAN command interpreter is covered in Section 5. 
The user interface is described in the GUARDIAN Operating System 
User's Guide. Complete syntax of all COMINT commands is given 
in the GUARDIAN Operating System Utilities Reference Manual. 

-'1 82357 AOO 3/85 1-17 



INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM 
External Declarations 

EXTERNAL DECLARATIONS FOR OPERATING SYSTEM PROCEDURES 

Like all other procedures in an application program, the 
operating system library procedures must be declared before they 
can be called. These procedures are declared as "external" to 
the application program. Declarations for these procedures are 
provided in a system file designated "$SYSTEM.SYSTEM.EXTDECSO". 
You should include a SOURCE compiler command specifying this file 
in the source program following the global declarations but 
preceding the first call to one of these procedures: 

<global-declarations> 

?SOURCE $SYSTEM.SYSTEM.EXTDECSn ( <ext-proc-name> , ••• ) 

<procedure-declarations> 

Each external procedure that is re:Eerenced in the program should 
be specified in the SOURCE command. 

For example: 

?SOURCE $SYSTEM.SYSTEM.EXTDECSO 
? 

OPEN, READ, WRITE, CLOSE, 
NEWPROCESS, ABEND, STOP, 
MYTERM ) ? 

compiles only the external declarations for the OPEN, READ, 
WRITE, CLOSE, NEWPROCESS, ABEND, STOP, and MYTERM procedures 
for the current release. 

Multiple versions of EXTDECS are available. To specify the 
current version, use EXTDECSO. To specify other versions, use 
one of the following: 

EXTDECSO 
EXTDECSl 
EXTDECS2 
EXTDECS 

--current operating system release version 
--current release, minus 1 
--current release, minus 2 
--current release, minus 2 

Because the version is specified by a relative value, there is 
no need to constantly update the level of EXTDECS used in your 
programs. If you specify the level as EXTDECSO, your programs 
will always use the current release level of EXTDECS. 

1-18 "' 82357 AOO 3/85 



INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM 
Securing Your Files 

SECURING YOUR FILES 

The GUARDIAN operating system security capability is designed 
to fulfill four objectives: 

• To prevent inadvertent destruction of files through purging 
or overwriting 

• To prevent unauthorized access to sensitive data files by 
programmers or operations personnel 

• To prevent unauthorized interference with running programs 
(processes) 

• To provide a means of controlling intersystem accesses between 
network nodes 

Security is enforced by assigning a group name, a user name, and 
(optionally) a password to individuals who are to access the 
system. 

For each file, file access at each level may be restricted to 
reading, writing, executing, or purging. 

To provide control over system security, a system has a single 
user designated the super ID. The super ID is responsible for 
creating new groups in the system. Each group has a si~gle user 
who is designated the group manager; the group manager is 
responsible for creating new users in its group. The super ID 
may also create new users in any group and has full access to any 
file in the system. 

Additional system security is provided by licensing. Programs 
that are to execute in privileged mode must be licensed by the 
super ID or be run by the super ID. An attempt by a user other 
than the super ID to run an unlicensed privileged program is 
rejected. Processes can be stopped or debugged only by their 
creator or by the super ID. Privileged processes can be debugged 
only by the super ID. For more information regarding security, 
see the GUARDIAN Operating System User's Guide. 

~ 82357 AOO 3/85 1-19 



INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM 
Traps and Trap Handling 

TRAPS AND TRAP HANDLING 

Certain critical error conditions occurring during process 
execution prevent the normal execution of a process. These 
errors, which are for the most part unrecoverable, cause traps 
to operating system trap handlers. The conditions are: 

• Illegal address reference 

• Instruction failure 

• Arithmetic overflow 

• Stack overflow 

• Process-loop-timer timeout 

• Memory manager disc read error 

• No memory available 

• Uncorrectable memory error 

Generally, the first five trap conditions are caused by coding 
errors in the application program. The last three errors 
indicate a hardware failure or, in the case of "no memory 
available", a configuration problem. These are beyond control 
of the application program. 

The default trap handler is DEBUG (or INSPECT, if specified for 
the process). If you do not specify a trap handler, the default 
is used. 

If you prefer to write the code to handle your own traps, you can 
call the system procedure ARMTRAP. Your trap handler is notified 
of the particular trap condition. ARMTRAP is described further 
in Section 13. 

DEBUG FACILITY 

The GUARDIAN debug facility provides a tool for interactively 
debugging a running process at the process's home terminal. 
DEBUG is the default trap handler for all processes as described 
in Section 13. For a description of the debug facility and 
instructions for using it, see the DEBUG Reference Manual for 
your system. 

1-20 /1 82357 AOO 3/85 



INSPECT 

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM 
Related Products 

INSPECT is an interactive symbolic debugging tool used to isolate 
errors in programs. It offers two modes of operation: low-level 
INSPECT and high-level INSPECT. Low-level operation is very 
similar to DEBUG. High-level mode INSPECT is much more inform
ative, but it also requires much more memory and table space than 
DEBUG. Because high-level INSPECT allows the use of symbols 
instead of address expressions, it is easier to use than DEBUG. 
Refer to the INSPECT Interactive Symbolic Debugger User's Guide 
for more information. 

If INSPECT is available on your system, it can be specified for 
use in debugging. If INSPECT is specified for use but is not 
available, DEBUG is used. 

BINDER 

BINDER is yet another development tool. If you wish to use high
level INSPECT for a program, the program must have been created 
with BINDER, or with a compiler that interfaces with BINDER. 
BINDER builds the tables that go into the object file used by 
INSPECT. If the symbol table is not appended to the object code, 
INSPECT can still be run but will have to be used in low-level 
mode. See the BINDER User's Manual for a complete description 
of BINDER. There is no relationship between DEBUG and BINDER. 

DIVER AND DELAY 

The DIVER and DELAY programs are used to facilitate testing of 
user application programs that are run as Nonstop process pairs. 
DIVER causes a processor to fail and then makes the processor 
ready for a reload. It is typically used in conjunction with 
the command interpreter and the DELAY program to automatically 
cause repeated failures and reloads of processors in a system for 
test purposes. Fault-tolerant application processes should 
continue running even while processors are halted and reloaded. 

The DIVER and DELAY programs are now documented in the 
GUARDIAN Operating System Utilities Reference Manual. 

~ 82357 AOO 3/85 1-21 





SECTION 2 

BASIC CONCEPTS: FILES AND FILE NAMES 

In a Tandem system, most entities are treated as files. Each 
disc file, nondisc device, process, and even the operator 
console is identified by a unique file name. 

FILES 

Input-output operations are performed by transmitting blocks of 
data between processes and files. A file can be all or a portion 
of a disc, or a device such as a terminal or line printer, or a 
process (any running program), or the operator console. A file 
is referenced by the symbolic file name that is assigned when the 
file is created. 

Disc Files 

The ENSCRIBE data base record manager, an integral part of the 
GUARDIAN operating system, provides access to and operations on 
disc files. The ENSCRIBE software supports four file types: 

• Key-Sequenced f iles--Records are placed in a file in 
ascending sequence according to the value of a key field 
in the record. 

• Relative f iles--Records are stored relative to the beginning 
of the file. 

• Entry-Sequenced f iles--Rec9rds are appended to a file in 
the order they are presented to the system. 

~ 82357 AOO 3/85 2-1 



BASIC CONCEPTS: FILES AND FILE NAMES 
Files 

• Unstructured f iles--Records are defined by the application 
process; records are written to and read from a file on the 
basis of relative byte addresses within the file. 

For more information on the ENSCRIBE data base record manager, 
refer to the ENSCRIBE Programming Manual. 

The symbolic name that identifies an individual disc file in 
the system consists of three parts as shown in Figure 2-1: 
(1) a volume name to identify a particular disc pack in the 
system, (2) a subvolume name to identify the disc file as a 
member of a related set of files on the volume (as defined by 
the application), and (3) a disc file name to identify the 
file within the subvolume. 

Volume Name 

$VOL1 

Disc File Names 

(1) -----FILEA 

FILEB 

Subvolume Names 

SVOL2 ------ ACCT1---.$ 

(2) ----- ----FILEA INFILE 

MY FILE OUT FILE 

(1) Full Filename = "$VOL 1.SVOL1.FILEA" 
(2) Full Filename = "$VOL 1.SVOL2.FILEA" 
(3) Full Filename= "$VOL1.ACCT1.INFILE" 

(3) 

85004-004 

Figure 2-1. Disc File Organization 

A disc file must be created before it can be accessed. A file is 
created by calling the file-system CREATE procedure or by using 
the CREATE command of the command interpreter. All file-system 
procedure call syntax is presented in the System Procedure Calls 
Reference Manual. The GUARDIAN command interpreter commands are 
presented in the GUARDIAN Operating Sys~em User's Guide. 

A file can be designated as permanent or temporary. (A permanent 
file remains in the system when access is terminated: a temporary 
file is deleted.) 

2-2 "182357 AOO 3/85 



BASIC CONCEPTS: FILES AND FILE NAMES 
Files 

When you create a disc file, you must specify the maximum amount 
of physical disc space to be allocated for storing information. 
Physical space is allocated to files in the form of file extents 
that need not be contiguous. A file extent is a contiguous block 
of storage that can range in size from 2048 bytes to an entire 
volume. A file can have up to 16 extents (unless changed by 
SETMODE function 92--see the System Procedure· Calls Reference 
Manual). The first extent is called the primary extent, and its 
size may be different from the other 15 secondary extents. File 
extents are allocated automatically by the file system as the 
need for space arises. Space not physically in use by one file 
can be used by other files. 

Also specifiable at disc file creation is an optional file code. 
This is an integer whose meaning is entirely application 
dependent (except that codes 100 through 999 are reserved for use 
by Tandem Computers Incorporated.) 

A disc drive having a removable pack can be designated at SYSGEN 
(system generation) time to have a logically removable volume. 
(A disc drive may, in fact, have a physically removable volume 
that will never be removed.) To mount a new volume in place of a 
currently mounted volume, the operator uses the RENAME command of 
the Peripheral Utility Program (PUP). Logical interlocks exist 
in the file system to ensure that an in-use volume cannot be 
demounted (this interlock can be overridden by the operator), and 
that once the command is given to mount a new volume, further 
accesses to the mounted volume are prohibited. 

Operations with disc files are described in detail in the 
ENSCRIBE Programming Manual. 

Nondisc Devices 

Nondisc devices are items such as terminals (both conversational 
and page mode), line printers, magnetic tape units, card readers, 
and data communications lines. A file representing a nondisc 
device is referenced by a symbolic device name or a logical 
device number. Device names and their corresponding logical 
device numbers are assigned at SYSGEN time. See your System 
Management Manual for details. 

What constitutes an input-output transfer with nondisc devices is 
dependent on the characteristics of the particular device. On a 
conversational-mode terminal, for example, a transfer is one line 
of information: on a page-mode terminal, a transfer is one page 
of information: on a line printer, a transfer is one line of 
print: on a magnetic tape unit, a transfer is one physical record 
on tape. 

..,.. 82357 AOO 3/85 2-3 



BASIC CONCEPTS: FILES AND FILE NAMES 
Files 

Operations with nondisc devices are described in detail in 
sections 6 through 9. 

Processes (Interprocess Communication) 

A process (running program) can communicate with other processes 
through standard file-system data transfers. A communication can 
consist of a simple one-way transfer from the originating process 
to the destination process, or a two-way transfer where the 
originating process waits for a reply from the destination 
process. The information transferred because of interprocess 
communication appears identical to that of other files; there is 
no implicit or special data format. 

A process is identified by its process ID as the destination of 
an interprocess communication. A process receives messages 
from other processes and from the operating system through a file 
identified by the name "$RECEIVE". 

A process ID uniquely identifies a process. There are two 
mutually exclusive forms of the process ID: the timestamp form 
and the process-name form. Their formats are presented in 
Section 3. Process IDs are sometimes referred to as CRTPIDs. 

A process identified by the timestamp form of the process ID is 
not known throughout the system. Rather, the process is known 
only by its creator and its immediate descendants (if any). 
Communication with processes identified by the timestamp form of 
process ID typically occurs only between processes having this 
creator-descendant relationship. This form of process ID is 
assigned to a process by the operating system when the new 
process is created. It consists of a timestamp of the time when 
the process was created, the number of the processor module where 
the process is executing, and a processor-local process number. 

A two-way message in this environment is defined as the sending 
of a message from the originator (requester) to the server and 
the resultant reply by the server back to the originator, as 
shown in Figure 2-2. 

2-4 "' 82357 AOO 3/85 



One-Way Message: 

Originator 

(A) 

Two-Way Message: 

Originator 

(A) 

BASIC CONCEPTS: FILES AND FILE NAMES 
Files 

Destination 

Messages (8) 

Server 

Request 
(8) 

Reply 

85004-005 

Figure 2-2. Communication With a Process by Process ID 

The process-name form of the process ID uniquely identifies a 
process or a process pair in the system. Process names can be 
predefined so that processes can be known throughout the system 
in the same manner as other device types (such as a line printer) 
are known throughout the system. If a process or process pair is 
to be identified by the process-name form of the process ID, its 
process name (which can be either application-defined or system 
generated) is assigned before the new process is created. A 
process name consists of a dollar sign ($) followed by one to 
five alphanumeric characters (the first must be alphabetic), 
optionally followed by one or two qualification names (see 
"File Names"). 

As shown in Figure 2-3, there are certain fault-tolerant aspects 
involved when communicating with a process pair. The primary 
process of the pair, while it is operable, receives and replies 
to all communications. If the primary process or its processor 
module fails, the backup process becomes the primary process and 
receives and replies to communications. The switch from the 
primary process to the backup process as the destination of a 
communication is performed automatically by the file system and 
is invisible to the originator of the message. 

-'1' 82357 AOO 3/85 2-5 



BASIC CONCEPTS: FILES AND FILE NAMES 
Files 

If the Server Primary is Executing: 

Requester 
(Originator) Server ($SERVE) 

(A) 
(One- Or Two-Way) 

(B) Primary Messages 

I 
(B') Backup 

If the Server Primary Has Failed: 

Requester Server 

(A) 
(One- Or Two-Way) xxx Messages 

(B') Backup 

S5004-006 

Figure 2-3. Communication With a Process Pair by Process Name 

To receive and reply to communications from other processes 
and to receive messages from the operating system, a process 
references a file having the name "$RECEIVE" (there is only 
one $RECEIVE file per process). Communication with $RECEIVE 
is illustrated in Figure 2-4. 

------ Messages From Other Processes ---~• 

--- Messages From GUARDIAN Operating System _....,...,. $RECEIVE 

..,.. ______ Replies to Other Processes------

S5004-007 

Figure 2-4. $RECEIVE File 

2-6 .., 82357 AOO 3/85 



BASIC CONCEPTS: FILES AND FILE NAMES 
Files 

Unlike disc files and nondisc devices, reading from the $RECEIVE 
file does not solicit input. Reading from $RECEIVE only checks 
or waits for an incoming message. 

Several interprocess messages can be read and queued by the 
appli~ation process before a reply need be made. If one or more 
messages are to be queued, the maximum number of messages that 
the application process expects to queue must be specified. To 
identify each incoming message and direct a reply back to the 
originator of the message, a message tag must be obtained in a 
call to a file-system procedure. When a reply is sent for a 
particular message, it is identified by passing the message's 
associated message tag back to the system. Communication between 
processes is described in greater detail in Section 4. 

Communication between system processes and user processes occurs 
in a manner similar to that described above. System messages are 
simply interprocess messages sent from the operating system to 
the user process. These system messages should be read from 
$RECEIVE when a file-system error 6 (SYSTEM MESSAGE RECEIVED) is 
encountered. 

Operator Console 

A process may log messages on the operator console through the 
operator process referenced by the file name $0. The operator 
console is a write-only file. The current date and time and the 
ID of the process that logged the message are added as a pref ix 
to console messages by the operating system. There is no special 
format imposed for logging messages on the operator console. 
Operations involving the operator console are described in 
Section 10. 

/'f 82357 AOO 3/85 2-7 



BASIC CONCEPTS: FILES AND FILE NAMES 
File Names 

FILE NAMES 

File names are used to access devices, disc files, processes, and 
the operator console through the file-system OPEN procedure. A 
file name can be that of a disc device, nondisc device, or named 
process. File names are also used when creating new disc files, 
purging old disc files, and renaming disc files. 

Disc File Names 

Disc file names are stored internally in the form: 

word: [0:3] 
$<volume-name> 

Volume Name 

[4:7] [8:11] 
<subvolume-name> <disc-filename> 

Volume names identify disc packs (each pack in the system has a 
volume name). Volume names are assigned at system generation 
time and when new disc packs are introduced into the system. 
Their names are usually assigned by the system manager. A volume 
name must be preceded by a dollar sign ($). It consists of a 
maximum of seven alphanumeric characters; the first must be a 
letter. Alphanumeric means only A through Z and 0 through 9. 

Subvolume Name 

This name identifies a subvolume, which is a subset of the disc 
files on a volume (disc pack). Subvolume names are assigned 
programmatically when disc files are created. Anyone can create 
a new subvolume name or create new files within an existing 
subvolume. A subvolume name consists of a maximum o:E eight 
alphanumeric characters; the first character must be a letter. 

File Name 

Disc file names are assigned programmatically when disc files 
are created. A disc file name consists of a maximum of eight 
alphanumeric characters; the first character must be a letter. 

2-8 ~ 82357 AOO 3/85 



BASIC CONCEPTS: FILES AND FILE NAMES 
File Names 

Disc File Name Expansion (External File Name) 

As an operating convenience, the GUARDIAN command interpreter 
accepts, where a file name is a parameter to a command, disc file 
names in partially-qualified form. As a minimum, a partial file 
name must consist of a <disc-file-name>. Partial file names are 
expanded to full file names according to the following rules: 

1. If the <volume-name> is omitted from the external file name, 
the <default-volume-name> is used in its place. 

2. If the <subvolume-name> is omitted from the external file 
name, the <default-subvolume-name> is used in its place. 

A complete description of default file names appears in the 
GUARDIAN Operating System User's Guide. 

Temporary File Name 

This name identifies a temporary disc file. Temporary file names 
are assigned by the file-system CREATE procedure when temporary 
files are created. If you pass only a volume name followed by 
blanks to CREATE, it will create a temporary file name. A 
temporary file name consists of a number sign (#) followed by 
four numeric characters: for example: 

Permanent disc file: 

INT .FNAME[O:ll] := "$STORE1 ACCTl MYFILE 

Temporary disc file: 

INT .FNAME[O:ll] := ["$STORE1 ", 8 * [" "]]: 

" . , 

only the volume name is supplied. The temporary file name, 
such as "$STORE1 #0931 ", is returned from the call to 
CREATE. -

CALL CREATE(FNAME): 

""1 82357 AOO 3/85 2-9 



BASIC CONCEPTS: FILES AND FILE NAMES 
File Names 

Device Names 

Device names identify particular input-output devices in the 
system~ They are assigned to the logical devices at system 
generation time. A device name must be preceded by a dollar sign 
·($) and consists of a maximum of seven alphanumeric characters; 
the first character must be a letter. For example: 

INT .FNAME[O:ll] := ["$TERM1", 9 * [" "]]; 

$0 (dollar-zero) is a special file name used to write messages on 
the operator console; for example: 

INT .FNAME[O:ll] := ["$0", 11 * [" "]]; 

The use of $0 is discussed more fully in Section 10, "Interfacing 
to the Operator Console". 

iRECEIVE 

$RECEIVE is a special file name used to receive and reply to 
messages from other processes; for example: 

INT .FNAME[O:ll] := ["$RECEIVE", 8 * [" "]]; 

2-10 ~ 82357 AOO 3/85 



Internal File Names 

BASIC CONCEPTS: FILES AND FILE NAMES 
File Names 

There are two forms of file names--external and internal. The 
internal form is used within the system when passing file names 
between application processes and the operating system. 

The internal form of a file name is shown in Figure 2-5. 

<filename> 12 words, blank filled. 

to access permanent disc files, use 

<filename>[0:3] = 
<filename>[4:7] = 
<filename>[8:11] = 

$<volume-name> <blank-fill> 
<subvolume-name> <blank-fill> 
<disc-filename> <blank-fill> 

to access temporary disc files, use 

<filename>[0:3] = 
<filename>[4:11] = 

$<volume-name> <blank-fill> 
the <temporary-filename> returned 
by CREATE (which is blank-filled) 

to access nondisc devices, use 

<filename>[O:ll] = $<device-name> <blank-fill> or 
$<logical-device-number> <blank

f i 11> 

to communicate with other processes, use 

<filename>[O:ll] = $RECEIVE <blank-fill> 

to perform READ, READUPDATE, and REPLY operations, 

<filename>[O:ll] = <process-id> <blank-fill> 

to perform WRITE and WRITEREAD operations 

to write on the operator console, use 

<filename>[O:ll] = $0 <blank-fill> 

Figure 2-5. Internal Form of a File Name 

~ 82357 AOO 3/85 2-11 



BASIC CONCEPTS: FILES AND FILE NAMES 
File Names 

External File Names 

File names must be alphanumeric. This means they are made up 
of only the letters A through z and the digits 0 through 9. 
Lowercase letters used to enter file names are converted to 
uppercase. The first character of a file name must be a letter. 

File names can be preceded by a special character, such as a 
dollar sign ($) or a back slash (\). 

File names are limited in length depending upon their use. 

The file name of a nondisc device is represented to the command 
interpreter in the same form as the file system's internal 
representation; that is, as the device name or logical device 
number preceded by a dollar sign ($). These are presented in 
this manual in the form: 

$<device-name> 

or 

$<ldev-number> 

The external form of the file name is used when entering file 
names into the system from the outside world (for example, by a 
user to specify a file name to the command interpreter). 

The external form of a file name is shown in Figure 2-6. 

The various forms of external file names are discussed in the 
GUARDIAN Operating System User's Guide. 

Like the internal representation of a disc file name,. the form 
accepted by the command interpreter for a disc file consists of 
three parts: a volume name, a subvolume name, and a disc file 
name. However, unlike the fixed-field representation of the 
internal form (where each part of a file name must begin in a 
specific position), disc file names are represented to the 
command interpreter (as well as to all other Tandem software 
programs) with the three parts separated by periods and 
concatenated into a contiguous string: 

$<volume-name>.<subvolume-name>.<disc-filename> 

The following example illustrates a disc file name: 

$STORE1.ACCTRCV.SORTFILE 

2-12 "'1J 82357 AOO 3/85 



BASIC CONCEPTS: FILES AND FILE NAMES 
File Names 

<external-filename> up to 26 bytes. 

to access permanent disc files, use 

[$<volume-name>.] [<subvolume-name>.] 
<disc-filename> <delim> 

to access nondisc devices, use 

$<device-name> <delim> or 

$<ldev-number> <delim> 

to specify a process, use 

$<process-name> <delim> 

<delim> is a delimiter; it can be any character that is not 
valid as part of an external file name, such as a blank. 

Figure 2-6. External Form of a File Name 

The conversion of file names from external form to internal form 
is performed automatically by the command interpreter for the 
IN and OUT file parameters of the RUN command (refer to the 
GUARDIAN Operating System User's Guide. 

For general conversion of file names from the external to the 
internal form, the FNAMEEXPAND procedure is provided. Conversion 
of file names from the internal to the external form is done 
using the FNAMECOLLAPSE procedure. These procedures are 
described in the System Procedure Calls Reference Manual. 

Correspondence of External to Internal File Names 

The correspondence of the external form of file names to the 
internal form is shown in Figure 2-7. 

Af' 82357 AOO 3/85 2-13 



BASIC CONCEPTS: FILES AND FILE NAMES 
Network File Names 

Possible 
External 
Forms 

word 

Possible 
Internal 
Forms 

[O] 

$name1 
$name1 
$name1 
$name1 

$name1 

$name1 [.[#name2] [.name3]] 

[$name1 .] [name2.]name3 

$name1 .#name2 

[4] 

#name2 
#name2 
name2 

[8] 

name3 
name3 

Device 

Process 

Disc 

Temp Disc 

Device/Process 

Process/Temp Disc 
Process 
Disc 

$5004-010 

Figure 2-7. Correspondence of External to Internal File Names 

When the external form of a file name is entered as a parameter 
to a command (for example, the IN parameter of the command 
interpreter RUN command), it is converted to the internal form 
as shown in Figure 2-7. For example, in the case of the IN 
parameter <filename>, the <filename> is converted from the 
external form to the internal form (and expanded if necessary) 
and sent to the application process in an interprocess startup 
message. 

NETWORK FILE NAMES 

File names can optionally include a system number that identifies 
a file as belonging to a particular system on a network. 
(A fuller description of file names appears in the GUARDIAN 
Q.Qerating System User's Guide. Information regardin9 networks of 
Tandem systems is presented in the EXPAND Reference Manual.) 

In this context, a file name beginning with a dollar sign ($) is 
said to be in local form, to distinguish it from a file name 
beginning with a backslash (\), which is the network form. 

2-14 ~ 82357 AOO 3/85 



BASIC CONCEPTS: FILES AND FILE NAMES 
Network File Names 

Internal Network File Names 

The internal form of a network file name is shown in Figure 2-8. 

<network-filename> 12 words, blank filled 

word [0].<0:7> = "\" (ASCII backslash) 
word [0].<8:15> = <system-number>, in octal 
word [1:3] = <volume-name>, <device-name>, or 

<process-id> 
word [4:11] = same as local file name 

<system-number> 

is an integer between 0 and 254 that designates a 
particular system. The assignment of system numbers 
is made during SYSGEN. 

<volume-name> 

consists of at most six alphanumeric characters, the 
first of which must be alphabetic. 

<device-name> 

consists of at most six alphanumeric characters, the 
first of which must be alphabetic. 

<process-id> 

is in either the timestamp form or the process-name 
form, described earlier in this section. 

Figure 2-8. Internal Form of a Network File Name 

Names of disc volumes and other devices, when embedded within a 
network file name, are limited to having six characters, and do 
not begin with a dollar sign. Similar restrictions apply to the 
network form of the process ID, as mentioned in Figure 2-8. 

Af' 82357 AOO 3/85 2-15 



BASIC CONCEPTS: FILES AND FILE NAMES 
Network File Names 

External Network File Names 

For the purpose of providing access to files on remote systems in 
a network, any file name can be qualified by a system name. 
(System names, and networks in general, are discussed in the 
GUARDIAN Operating System User's Guide. Additional information 
on network file names appears in the EXPAND Reference Manual). 

A system name consists of a backslash (\) followed by up to seven 
alphanumeric characters, the first of which must be alphabetic. 
Any file name can be preceded by a system name. 

The external form of a network file name is shown in Figure 2-9. 

\<system-name>.<external-filename> 

<external-filename> 

is the external form of any legal file name. The 
length of a device or process name used with a system 
name contains one character less than usual: device 
names have at most six letters and/or digits, and 
process names have at most four letters and/or digits. 
For example: 

\NEWYORK.$SYSTEM.SYSTEM.MYFILE fully qualified 
disc file name 

\REMOTE.$WXYZ ! process 

\DETROIT.$SYSTEM.#1234 temporary disc file name 

Figure 2-9. External Form of a Network File Name 

Default System 

Each command interpreter running on a system in a network has 
associated with it a default system that is used in file name 
expansion. When you log on, your default system is always the 
system on which your command interpreter is running. The default 
system can be changed with the SYSTEM command. See the GUARDIAN 
Q2erating System User's Guide for details. 

2-16 -1' 82357 AOO 3/85 



BASIC CONCEPTS: FILES AND FILE NAMES 
Network File Names 

Expansion of Network File Names 

File names presented in external form to a command interpreter 
(or any other Tandem subsystem, such as EDIT or FUP) running on 
a system in a network are expanded using the default volume, 
subvolume, and system names. For example, assume that your 
current defaults are as follows: 

default volume: 
default subvolume: 
default system: 

If you enter 
this file name, 

$MYVOL 
MYSUBVOL 
\CALIF 

it is expanded to this form. 

MYFILE 
\NEWYORK.MYFILE 
$PROC 

\CALIF.$MYVOL.MYSUBVOL.MYFILE 
\NEWYORK.$MYVOL.MYSUBVOL.MYFILE 
\CALIF.$PROC 

Correspondence of Internal to External Network File Names 

When transforming an external file name to an internal one, the 
system replaces the system name with the corresponding system 
number. External network file names supplied as IN or OUT files 
in a RUN command are converted to internal form by the command 
interpreter before being passed to the new process. Thus an 
application process that reads its startup message and opens its 
IN file need not do anything different when remote files are 
involved. 

NOTE 

When used across a network, the length of a device or 
process name used with a system name must be one 
character shorter than usual to allow for the embedded 
backslash prefix (\): device names allow at most six 
alphanumeric characters, and process names allow at most 
four alphanumeric characters. 

~ 82357 AOO 3/85 2-17 



BASIC CONCEPTS: FILES AND FILE NAMES 
Logical Device Numbers 

LOGICAL DEVICE NUMBERS 

Logical device numbers identify entries in an internal operating 
system table which, in turn, identify particular input-output 
devices in the system. Logical device numbers are assigned to 
physical I/O devices at system generation. A logical device 
number must be preceded by a dollar sign ($). It must consist of 
a maximum of four numeric characters; the maximum logical device 
number is 4095. 

PROCESS IDs AND PROCESS NAMES 

A process is uniquely identified by its process ID. There are 
three equivalent forms of the process ID: the timestamp form, 
the process-name form, and the network form. Process names are 
known throughout the system by means of the destination control 
table ( DCT) • 

Timestamp Form of Process ID 

For the timestamp form, the GUARDIAN operating system assigns the 
process ID when the process is created. The form of this type of 
process ID is: 

<process-id> [0].<0:1> 
<process-id> [0].<2:7> 
<process-id> [0].<8:15> 
<process-id> [ 1: 2] 

<process-id> [3].<0:3> 
<process-id> [3].<4:7> 
<process-id> [3].<8:15> 

= 
= 
= 
= 

= 
= 
= 

2 
unused 
<system number> is 0 through 254 
low-order 32 bits of creation 
time stamp 
unused 
<cpu> where process is executing 
<pin> assigned by operating system 
to identify the process in the CPU 

Process-Name Form of Process ID 

For this form, the process ID contains an application-defined 
<process-name>. The process name is specified before process 
creation time, then entered into the DCT at process creation 
time. 

2-18 -'1J 82357 AOO 3/85 



BASIC CONCEPTS: FILES AND FILE NAMES 
Process IDs and Process Names 

The general form of this type of process ID is: 

<process-id>[0:2] = $<process-name> 
<process-id>[3] = <(two blanks)> or <cpu,pin> 

<process-name> must be preceded by a dollar sign ($) and consist 
of a maximum of five alphanumeric characters; the first character 
must be a letter. The <cpu,pin> may be included but is ignored. 
However, if it is included, it must be valid. 

If a process name represents a process pair and the process 
accessing the pair is not a member of the pair, then the process 
name references the pair as a single entity. Communication 
occurs with the primary process of the pair while it is operable. 
If it becomes inoperable, communication is redirected to the 
backup process (in a manner invisible to processes outside of the 
pair). 

If a process name represents a process pair and the process 
accessing the pair is a member of the pair, then the process name 
references the opposite member of the pair. 

Network Form of Process ID 

The network form of the process ID is: 

<process-id>[0].<0:7> 
<process-id>[0].<8:15> 
<process-id>[l:2] 
<process-id>[3].<0:7> 
<process-id>[3].<8:15> 

= "\" (ASCII backslash) 
= <system-number> (in octal) 
= <process-name> 
= <cpu> 
= <pin> 

Note that the process name in words 1 and 2 can contain at most 
four alphanumeric characters (the first one must be a letter, as 
usual) and does not include the initial dollar sign ($). 

The application program rarely, if ever, concerns itself with 
octal system numbers in network file names. Usually, the 
application passes the external form of the file name (which 
contains a system name, rather than a number) to the procedure 
FNAMEEXPAND, which converts the system name into the 
corresponding number. 

The external form of network file names is described later in 
this section. Information and examples regarding the use of 
network file names in operating and programming Tandem systems 
can be found in the EXPAND Reference Manual. Conversion between 
internal and external forms of network file names is accomplished 
by the procedures FNAMEEXPAND and FNAMECOLLAPSE. 

~ 82357 AOO 3/85 2-19 



BASIC CONCEPTS: FILES AND FILE NAMES 
Process IDs and Process Names 

The following process control procedures relate to process IDs: 

• MYPID provides a process with its own <cpu,pin>. 

• GETCRTPID provides the process ID associated with a <cpu,pin>. 

• GETREMOTECRTPID provides the process ID assoc iatE~d with a 
<cpu,pin> in a remote system. 

Process Names 

The process-name form of a process ID can be further qualified at 
file open time by the addition of one or two optional qualifier 
names. This provides for internal process file names of the 
form shown in Figure 2-10. 

word: 
[0:3] 
$<process-name> 

[4:7] [8:11] 
[#<ist-qualif-name> [<2nd-qualif-name>]] 

#<lst-qualif-name> 

consists of a number sign (#) followed by one to seven 
alphanumeric characters, the first of which must be 
alphabetic. 

<2nd-qualif-name> 

consists of one to eight alphanumeric characters, the 
first of which must be alphabetic. 

Figure 2-10. Internal Process File Names Form 

Only the process name has meaning to the file system (it indi
cates the particular process or process pair being opened). The 
qualifier names have no particular meaning to the file system. 
They are, however, checked for proper format. Instead, their 
meaning must be interpreted by the process being opened, which 
receives the qualifier names as part of the OPEN system messageu 

2-20 "if 82357 AOO 3/85 



BASIC CONCEPTS: FILES AND FILE NAMES 
How to Access Files 

HOW TO ACCESS FILES 

Communication between an application process and a file is 
established through the file-system OPEN procedure. An array 
in the application process data area, containing the internal
form symbolic file name of the file to be accessed, is passed as 
a parameter to the OPEN procedure. In return, OPEN provides a 
process-unique file number that is used to identify the file when 
accessing it through subsequent system procedure calls. 

For example, to establish communication (open a file) with a 
terminal referenced by the device name "$TERM1", you can use the 
following in an application program: 

INT .FILENAME [0:11] := ["$TERM1",9 * [" "]], 

.FILENUM, 

.NUMXFERRED, 

.BUFFER [0:35]; 

data 
declarations 

Communication is established using the OPEN procedure: 

CALL OPEN(FILENAME,FILENUM); 

This OPEN establishes communication with the terminal identified 
by $TERM1. A process-unique file number is returned in FILENUM. 

To write (output) to a file, the file number returned from OPEN 
is passed as a parameter to the WRITE procedure: 

loop: . 
CALL WRITE(FILENUM,BUFFER,72); 

This WRITE causes 72 bytes of the array BUFFER to be printed on 
the terminal. 

To read (input) from a file, the file number returned from OPEN 
is passed as a parameter to the file-system READ procedure: 

CALL READ(FILENUM,BUFFER,72,NUMXFERRED); 

Af' 82357 AOO 3/85 2-21 



BASIC CONCEPTS: FILES AND FILE NAMES 
How to Access Files 

This READ permits up to 72 bytes to be input from the terminal 
into the array BUFFER. A count of the number actually input is 
returned in NUMXFERRED. 

GOTO loop; 

The communication link with a file is terminated through use of 
the file-system CLOSE procedure: 

. 
CALL CLOSE(FILENUM); 

The file representing the terminal is closed. 

Disc Files 

Disc files must be created before access is possible. Creation 
is accomplished by calling the file-system CREATE procedure: 

INT .DISC ..... FNAME[O:ll] := "$VOL1 

CALL CREATE(DISC ..... FNAME); 

MYFILES FILEA " . , 

This creates a disc file with the subvolume name "MYFILES" and 
the disc file name "FILEA" on the disc volume identified as 
"$VOL1". A primary and secondary extent size of 2048 bytes and a 
file code of "O" is implied. 

CALL OPEN (DISC ..... FNAME,FILENUM); 

This opens the disc file referenced by the file name DISC ..... FNAME. 

Associated with each open disc file are three pointers: a 
current-record pointer, a next-record pointer, and an end-of
file pointer. Upon opening a file, the current-record and 
next-record pointers are set to point to the first byte in the 
file. A read or write operation always begins at the byte 
pointed to by the next-record pointer. The next-record pointer 
is advanced with each read or write operation by the number of 
bytes transferred; this provides automatic sequential access to 
a file. Following a read or write operation, the current-record 
pointer is set to point to the first byte affected by the 
operation. The next-record and current-record pointers can be 
set to an explicit byte address in a file, thereby providing 

2-22 °1' 82357 AOO 3/85 



BASIC CONCEPTS: FILES AND FILE NAMES 
How to Access Files 

random access. The end-of-file pointer contains the relative 
byte address of the last byte in a file plus one. The 
end-of-file pointer is automatically advanced by the number of 
bytes written when appending to the end of a file. 

Sequential access to an unstructured disc file is implied. A 
data transfer operation with an unstructured disc file always 
starts at the location pointed to by the current setting of the 
next-record pointer: 

. 
CALL READ(FILENUM,BUFFER,512,NUMXFERRED); 

This transfers 512 bytes from the disc file starting at relative 
byte zero into BUFFER. The next-record pointer is incremented 
by 512; the current-record pointer points to relative byte zero. 

CALL READ(FILENUM,BUFFER,512,NUMXFERRED); 

This transfers 512 bytes from the disc file, starting at file 
byte 512, into BUFFER. The next-record pointer is incremented 
by 512 and now points to relative byte 1024; the current-record 
pointer points to relative byte 512. 

Random access to a disc file is provided by the file-system 
POSITION procedure. This procedure is used to set the 
current-record and next-record pointers: 

. 
CALL POSITION(FILENUM,40960); 

This positions the file pointers to point at relative byte 4096 • 

. 
CALL READ(FILENUM,BUFFER,512,NUMXFERRED); 

This transfers 512 bytes from the disc file starting at relative 
byte 4096 into BUFFER. The next-record pointer is incremented by 
512 so that further sequential access is automatic. The current
record pointer now points at relative byte 4096. 

Data can be written at the position indicated by the current
record pointer through use of the WRITEUPDATE procedure. Using 
the position of the preceding example, the call 

CALL WRITEUPDATE (FILENUM, BUFFER, 512); 

This writes 512 bytes of the array BUFFER starting at relative 
byte 4096. 

-'1 82357 AOO 3/85 2-23 



BASIC CONCEPTS: FILES AND FILE NAMES 
How to Access Files 

Terminals 

Operations with terminals tend to be of the form "write, then 
read". The WRITEREAD procedure combines these two operations. 
A special hardware feature incorporated in the asynchronous 
multiplexer controller ensures that the computer system is 
immediately ready for input following the write of the prompt. 

For example, assume that FILENUM contains a file number 
representing a terminal: 

BUFFER ':=' "PLEASE INPUT ACCOUNT NUMBER"; 
CALL WRITEREAD(FILENUM, BUFFER,27,72,NUMXFERRED); 

This writes 27 bytes of the array BUFFER as a prompt, then 
prepares for reading up to 72 bytes from the terminal back into 
BUFFER. A count of the number of bytes input is returned in 
NUMXFERRED. 

Processes 

A process can write messages to another process by opening a file 
that references the process by its process ID (the process ID can 
be of the process-name form or the timestamp form). A process 
reads messages from other processes by opening a file~ designated 
$RECEIVE. (System messages from the operating system can be also 
be read in this manner if the proper OPEN flags parameter bit is 
set.) 

A one-way message can be sent to a process identified by the 
timestamp form of process ID and received by that process as 
follows: 

ORIGINATOR (A) 

CALL OPEN (PIDB,BFNUM); 

"PIDB" contains B's process ID 

DESTINATION (B) 

rname ':=' "$RECEIVE"; 
CALL OPEN (RNAME,RFNUM); 

. 
CALL WRITE(BFNUM, •• ); __,...MESSAGE ----.CALL READ(RFNUM, •.. ); 

A sends a message to B by way of B's process ID. B reads the 
message by use of its $RECEIVE file. 

2-24 4J 82357 AOO 3/85 



BASIC CONCEPTS: FILES AND FILE NAMES 
Coordinating Multiple File Accessors 

A two-way message can occur with a process identified by the 
process-name form of process ID as follows: 

ORIGINATOR (A) 

sname ':=' "$SERVE"; 
CALL OPEN (SNAME,SNUM); 

SERVER ($SERVE) 

rname ':=' "$RECEIVE"; 
CALL OPEN (RNAME,RNUM,,l); 

r-----~~ REQUEST MESSAGE ----.CALL READUPDATE (RNUM, .• ); 

CALL WRITEREAD (SNUM, •• ); 
. 

the message is processed by 
the server and a reply is 
generated 

t .____ _____ REPLY MESSAGE~ CALL REPLY ( •. ) ; 

A sends a request to $SERVE and waits for a reply in the call to 
WRITEREAD. $SERVE reads the message from its $RECEIVE file by a 
call to READUPDATE. When the reply is ready, it is sent back to 
A by a call to REPLY. When A receives the reply, WRITEREAD 
completes, and A resumes processing. 

COORDINATING MULTIPLE FILE ACCESSORS 

A file can be accessed by several different processes at the same 
time. To coordinate such simultaneous access, each process must 
indicate (when opening the file) how it intends to use the file. 
Both an access mode and an exclusion mode must be specified. 

The access mode specifies the operations to be performed by an 
accessor. The access mode is specified as either read-write 
(default access mode), read-only, or write-only. 

The exclusion mode specifies how much access other processes will 
be allowed. It can provide shared, exclusive, or protected 
access. 

• Shared access, the default exclusion mode, indicates that the 
opening process can allow simultaneous read and/or write 
access by other processes to the file. 

• Exclusive access indicates that the opening process cannot 
allow any simultaneous access of any kind to the file. 
Therefore, any further attempts to open the file, while the 
file is open, are rejected. Likewise, if a file is already 
open, any attempt to open the file with exclusive access is 
rejected. 

/1J 82357 AOO 3/85 2-25 



BASIC CONCEPTS: FILES AND FILE NAMES 
Wait and Nowait I/O 

• Protected access indicates that the opening process can allow 
simultaneous read access to the file but cannot allow 
simultaneous write access to the file. Therefore, while the 
file is opened with protected access, any further attempts to 
open the file with read-write or write-only access mode are 
rejected. Likewise, if the file is already open with 
read-write or write-only access mode, any attempt to open it 
with protected access is rejected. However, simultaneous 
accessors can open a file with read-only access mode. 

An additional method of access coordination is provided for disc 
files through the LOCKFILE and UNLOCKFILE procedures. Multiple 
processes accessing the same disc file call LOCKFILE before 
performing a critical sequence of operations to that file. If 
the file is not currently locked, it becomes locked, and the 
process continues executing. This prevents other accesses to the 
file until it is unlocked through a call to UNLOCKFILE. If the 
file is locked, a caller of LOCKFILE is suspended until the file 
is unlocked. If a process attempts to write to a locked file, 
the access is rejected with a "file is locked" error indication; 
if a process attempts to read from a locked file, it is suspended 
until the file is unlocked. 

An alternate mode for file locking is provided. Instead of 
suspending the caller to LOCKFILE if the requested file is 
locked, the lock request is rejected, and the call to LOCKFILE 
completes immediately with a "file is locked" error indication. 
Moreover, if a process attempts to read from a locked file, the 
read is immediately rejected. The alternate locking mode is 
specified by a call to the SETMODE procedure. 

File locking is described in the ENSCRIBE Programming Manual. 

WAIT I/O AND NOWAIT I/O 

The file system can allow an application process to execute 
concurrently with its file operations when you specify "nowait" 
I/O. 

The default is "wait" I/O; when designated file operations are 
performed (using system procedure calls), the application process 
is suspended, waiting for the operation to complete. 

Nowait I/O means that, when designated file operations are 
performed, the application process is not suspended. Rather, 
the application process executes concurrently with the file 
operation. The application process waits for an I/O completion 
in a separate system procedure call. 

2-26 ./1 82357 AOO 3/85 



BASIC CONCEPTS: FILES AND FILE NAMES 
Wait and Nowait I/O 

Each time a file is opened, the opener specifies whether wait or 
nowait I/O is to be in effect when designated file operations are 
performed. If nowait I/O is specified, then the maximum number 
of concurrent operations to be permitted must also be specified 
when the file is opened. Disc files are limited to one 
concurrent operation (one outstanding nowait call) per 
file-opening. 

For example, to open a file so that one concurrent file operation 
is permitted (a "nowait" file), this call could be included in an 
application program (assume that file identifies a valid file): 

CALL OPEN (FILE, FILEANUMBERAl, 1): 

The third parameter, "l", specifies that one concurrent operation 
is permitted. (This parameter is also used for other purposes: 
see the description of the OPEN procedure in the System Procedure 
Calls Reference Manual.) 

Any input-output operation involves initiation and completion. 
With wait files, initiation and completion are both performed 
in the same system procedure call. For example, on a wait file, 
the call 

CALL READ (FILEANUMBERAO, BUFFER, •• ): 

initiates the I/O operation, then the application process is 
suspended, waiting for its completion. 

With nowait files, the initiation is performed in one call: 

CALL READ (FILEANUMBERAl, BUFFER, •• ): 

After this call initiates the I/O operation, process execution 
continues concurrently with the I/O transfer. Later, the 
operation is completed by another call: 

If the I/O operation is not complete when AWAITIO is called, the 
process is suspended until completion occurs or an application
def ined timeout expires. 

Multiple operations (with multiple files) can be in progress 
simultaneously. Concurrent operations associated with separate 
file-openings are completed as they finish. Concurrent 
operations associated with a particular file-opening also are 
completed as they finish, unless SETMODE 30 is used (refer to 
the AWAITIO procedure considerations in the System Procedure 
Calls Reference Manual. 

-'1' 82357 AOO 3/85 2-27 



BASIC CONCEPTS: FILES AND FILE NAMES 
Wait and Nowait I/O 

When a record is inserted into a file having an alternate key, 
the whole operation is wait I/O, even if you specify nowait I/O. 
This is because (1) only the last I/O can be nowait, (2) the 
primary-file insertion is always done first, and (3) alternate
key-file insertions are always wait I/O. For deletions and 
updates, on the other hand, the alternate-key file is always 
modified first, so the primary-file modification can be nowait 
I/O. 

The difference between wait and nowait I/O is illustrated in 
Figure 2-11. The action of nowait I/O during multiple concurrent 
operations is shown in Figure 2-12. 

r-------------------------------------------------~------·---------------

WAIT 1/0 Opened As a "WAIT" File 

} CALL READ (11, ... ); 
Initiate 

Complete 

NOWAIT 1/0 Opened As a "NOWAIT" File 

Initiate CALL READ (f2, ... ); 

·-·--·-Concurrent 
Execution 

Complete CALL AWAITIO (f2, ... ); 

55004-014 

Figure 2-11. Wait I/O Compared With Nowait I/O Operation 

2-28 "182357 AOO 3/85 



BASIC CONCEPTS: FILES AND FILE NAMES 
Wait and Nowait I/O 

Multiple Concurrent Operations 
One File: 

f = file number 

Completed 
in the Order 
as Initiated 

Initiate 1 CALL WRITE (f3, ... ); 

Initiate 2 CALL WRITE (f3, ... ); 

Complete 1 CALL AWAITIO (f3, ... ); 

Complete 2 CALL AWAI TIO (f3, ... ); 

Two Files, One Current Operation With 
Two Files, One Concurrent One, Two Concurrent Operations With 
Operation Each (that is, Two Total): the Other (that is, Three Total): 

Initiate f4 

Initiate f5 

CALL READ (f4, ... ); 

CALL READ (f5, ... ); / 

I 
I 

I 
I 

l- -Completed in the 

anyfile: = -1; 
Same Order As 
Initiated 

Complete 
First Done 

Complete 
Second Done 

CALL AWAITIO 
(anyf i le, ... ); 

CALL AWAITIO 
(anyf i le, ... ); 

I 
I 

I 
I 

I 

First Done of 
"f6 1" or "f7" 

Initiate f6 1 CALL WRITE (f6, ... ); 

Initiate f7 CALL READ (f7, ... ); 

Initiate f6 2 CALL WRITE (f6, ... ); 

anyfile: = -1 

Complete CALL AWAITIO(anyf i le, ... ); 

Complete CALL AWAITIO(anyf i le, ... ); 

Complete CALL AWAITIO(anyfile, ... ); 

85004-015 

Figure 2-12. Nowait I/O (Multiple Concurrent Operations) 

""' 82357 AOO 3/85 2-29 



BASIC CONCEPTS: FILES AND FILE NAMES 
How the File System Works 

HOW THE FILE SYSTEM WORKS 

This description introduces the internal operation of the file 
system. In particular, every programmer should have a thorough 
understanding of the action that the file system takes when a 
communication-path failure occurs and the corresponding action 
that the application program must take to recover. This 
discussion includes: 

• Hardware I/O structure 

• Software file system 

• Opening files 

• File transfer 

• Closing files 

• Automatic path error recovery for disc files 

• Mirrored volumes 

Hardware I/O Structure 

The hardware structure of Tandem systems is designed so that two 
physically independent communication paths exist between any 
application process and any I/O device. 

The hardware communication path associated with an I/O operation 
includes: 

• The interprocessor buses 

• The processor module controlling the device 

• The I/O channel to which the device is connected 

• The I/O controller 

Interprocessor buses carry data and control information between 
processor modules. The interprocessor bus is not part of the 
communication path if the processor module controlling the device 
is the same one where the application process requesting an I/O 
operation is running. 

2-·30 ~ 82357 AOO 3/85 



BASIC CONCEPTS: FILES AND FILE NAMES 
How the File System Works 

The processor module controlling a device executes I/O 
instructions to command the device to perform designated I/O 
functions, contains the main memory where the I/O transfer takes 
place, and receives the completion status from the hardware 
controller. 

The I/O channel carries the control and data signals between a 
processor module and I/O controllers. (As many as 32 controllers 
can be connected to a single channel.) 

The I/O controller provides the electrical interface between an 
I/O device and the I/O channel. I/O controllers are generally 
capable of controlling multiple devices. 

The existence of two physically independent communication paths 
is achieved as follows: 

• The two interprocessor buses provide two independent 
communication paths between processor modules. If either 
bus fails, the other is still available. 

• I/O controllers have two interface ports and are connected 
to the I/O channels of two processor modules. Thus, if one 
channel fails, control of the I/O controller is assumed by 
the I/O channel connected to the other processor module. 

The hardware I/O structure is depicted in Figure 2-13. The 
System Description Manual for your system contains more detailed 
information. 

Software (File System) 

If at any time during a file operation any part of a 
communication path fails, the file operation can still be 
completed successfully. 

The file system is an integral part of the GUARDIAN operating 
system. A copy of the operating system resides in each processor 
module in the system. Each copy contains only what is necessary 
to control the input-output devices connected to its particular 
processor module. 

System control of I/O devices is accomplished by means of system 
I/0 processes. The action of an I/O process is to accept a 
request from the file system (the request initially comes from an 
application process), perform the requested action (read or 
write), return the completion status of the operation (and also 
data if a read operation) to the file system, then wait for 
another request. 

"'1' 82357 AOO 3/85 2-31 



BASIC CONCEPTS: FILES AND FILE NAMES 
How the File System Works 

Interprocessor Buses 

0 

1/0 Channel p p 1/0 Channel 

-----40 Dual-Port 01-----
R Controller R 

} ~ 

Figure 2-13. Hardware I/O Structure 

l 

2 

$5004-016 

There are two system I/O processes for each device (or set of 
devices in the case of terminals or data communication lines), 
one in each of the two processors that are physically connected 
to a given device. One process is designated the primary I/O 
process; the other is designated the backup I/O process. (This 
primary or backup designation is made during system generation.) 
Either I/O process is capable of controlling the device. 
However, they do not control the device simultaneously. 
Instead, the primary I/O process controls the device exclusively 
and, at the same time, keeps the backup I/O process informed 
(with checkpoint messages) of the activity on the device. 

The communication path (processor module, I/O channel, and 
controller port) through a primary I/O process to the device that 
it controls is called the primary path; the path through a 
backup I/O process is called the alternate path. If the file 

2-32 ~ 82357 AOO 3/85 



BASIC CONCEPTS: FILES AND FILE NAMES 
How the File System Works 

system (or the operating system on behalf of the file system) 
detects a failure in the primary path, it shuts down the primary 
path and automatically reroutes subsequent communication to the 
device across the alternate path. The backup I/O process takes 
control of the device and, in fact, becomes the primary I/O 
process for the device. 

In the case of disc files, error recovery following a failure 
of the primary path is automatic, and this type of failure is 
completely invisible to the application program (see "Automatic 
Communication-Path Error Recovery for Disc Files" later in this 
section). In the case of nondisc devices, a path error 
indication is returned to any application processes that were 
performing I/O with the device when the failure occurred. The 
application program then has the responsibility of retrying the 
file operation following this type of failure {see "Error 
Recovery" in this section). 

Figure 2-14 depicts the primary and alternate communication paths 
to a device. While the primary path is operable, all I/O 
transfers occur along that path. Only when a failure of the 
primary path is detected does the alternate path come into use. 
Once an alternate path is brought into use, it becomes the 
primary path and is used exclusively. 

When the original primary path is restored to system operation, 
it becomes the current backup path. The original primary path 
is restored to primary operation only when: the system is cold 
loaded, a failure occurs in the current primary path, a PUP 
PRIMARY command is executed to switch control of the device, or 
RETURN TO CONFIGURED PRIMARY is configured for the device and 
the original primary processor module is reloaded. (See your 
System Management Manual for an explanation of "cold load" and 
"reload".) 

Executing System Procedures 

System procedures reside in operating system code but execute in 
the application process's environment. When a file-system 
procedure (or any system procedure for that matter) is called by 
an application process, the system procedure's local storage is 
allocated in the application process's data stack, as shown in 
Figure 2-15. The maximum amount of local storage required by a 
call to a system procedure is approximately 400 words. 

"°1 82357 AOO 3/85 2-33 



BASIC CONCEPTS: FILES AND FILE NAMES 
How the File System Works 

Primary Path 

Alternate Path 

@ = Primary System 1/0 Process 

@ =Backup System 1/0 Process 

@ =Application Process 

85004-017 

Figure 2-14. Primary and Alternate Communication Paths 

2-34 ~ 82357 AOO 3/85 



A 
p 
p 
L 
I 
c 
A 
T 
I 
0 
N 

p 
R 
0 
c 
E 
s 
s 

0 
p 

E 
R 
A 
T 
I 
N 
G 

s 
y 
s 
T 
E 
M 

BASIC CONCEPTS: FILES AND FILE NAMES 
How the File System Works 

User Code 

;:::~~~~i 
i mt .: 

System Code 

The READ procedure, executing 
on behalf of the application, 
accesses both the system and 
the application data areas 

==~ (applications access only their 
::::::::::::~.:.::.::::.::;.01 own data). 

The READ procedure causes 
the system process controlling 
the 1/0 device to execute. The 
1/0 process controls the transfer 
of data from the physical device 
to the system buffer area. The 
READ procedure transfers the 
data from the system to the 
application's buffer. 

D 
A 
T 
A. 

{ 

User Data 

Bs .. ·.·.-.·:-:· 
Local :::::;:::::: 
Data .. :?\\ 

(): L~~al ( ... 
· ···· Data .· 

} 

D 
A 
T 
A 

READs } 

.... 
__ L_o_c_a_i _ _, ~~rds Data 

1/0 Pool Space 

System 
Buffers } 

85005-001 

Figure 2-15. System Procedure Execution 

-'1 82357 AOO 3/85 2-35 



BASIC CONCEPTS: FILES AND FILE NAMES 
How the File System Works 

Opening Files 

The OPEN procedure establishes a communication path to a file. 
The symbolic file name that identifies a file is used to search a 
table, a copy of which resides in each processor module. This 
table contains an entry for each device connected to the system. 
Each entry contains a device name or, in the case of disc files, 
a volume name, the process ID of the primary system I/O process 
that controls the device or volume, and the process ID of the 
backup system I/O process that controls the device or volume. 

In Figure 2-16, the destination control table is searched for an 
entry corresponding to the volume name "$VOLUME". 'J1he entry is 
associated with logical device 4, and a path is estatblished to 
the primary I/O process controlling the device. 

Next, in the case of disc files, the I/O process searches a 
directory on the disc volume for the subvolume name and the disc 
file name that was supplied in the OPEN procedure. The entry 
associated with a subvolume and disc file name is a file label 
that contains information describing the state of the file, 
inc 1 uding the location of allocated extents, end-of-· file 
location, file type, and so on. 

In Figure 2-16, the file label is searched for a subvolume 
designated "MYFILES" and a disc file named "FILEA". 

Once the file is located, whether it is a disc file, nondisc 
device, process, or the operator console, an access control block 
(ACB) is created for that file in the memory of the processor 
where the caller to OPEN is running. The ACB is used by other 
file system functions when referencing the file. It contains 
information such as the logical device number of the device where 
the file resides and, for disc files, information local to the 
particular open of the file, such as the current-record pointer 
and the next-record pointer. 

If the open is to a disc file and the file is not currently open, 
one file control block (FCB) is created in the memory of each of 
the two processor modules that contain the system I/O processes 
that control the volume containing the file. The FCB contains 
information that is global to all accessors of the file. This 
includes a copy of the information from the file label, such as 
allocated extents and end-of-file location, along with dynamic 
control information such as which process has the file locked and 
which processes, if any, are waiting to lock the file. 

There is a single FCB for each open disc file in the system (in 
each of the two processor modules controlling the associated 
device), whereas an ACB is created every time a file is opened. 
Thus each opening of a given file provides a logically separate 

2·-36 ~ 82357 AOO 3/85 



~ 
OJ 
l'V 
w 
<..n 
-...J 

>-
0 
0 

w 
'-... 
OJ 
<..n 

N 
I 

w 
......J 

l'2j ..... 
lO 
c:: 
t'1 
C'D 

N 
I 

........ 

°' 
0 

tQ 
C'D 
::J ..... 
::J 

lO 

OJ 

l'2j ..... 
........ 
C'D 

Destination 
Control Table 

l 
I 
I I LDEV 3 

LDEV 4 

I 

I 

1-----

Application Process I I 
I LDEV 5 

LDEV 6 ,------, 
I '"f"'""m<[OnJ~$~ I I 

I \ '""'r i I 
1

1 1

1 

\ \. \.. 

1 ; \

1

, ---;) -----=e-IT 
I Label 

I CALL OPEN (file"name, filenum,.); / / I 
L 

1 
__/ / ~~~~r~~ I 

-- -- -- Block 

____ __/ LDEV 4 

I FILENAME 
File CUR-REC PTR I 0 ""'' / r NEXrnEC ''" I 

, AC• ADDeESs _) I 
1 l I I . 6. . . . . J Mai~ Memory Resident Operating System in Aopl•ca+1on 

~ess's Processor Mod~ --- --- --- --- ---

DIRECTORY 

\ 

\ 

§ 

$5005-002 

b:j 

> 
Ul 
H 
(') 

(') 
0 z 
(') 
t:EJ 
'1:J 

::r: t-3 
0 Ul 
~ .. 
rt 
::T l'2j 
(I) H 

L' 
l'2j t:EJ 
..... Ul 
......, 
(I)> z 
UlO 
"< 
Ul l'2j 
rt H 
(I) L' 
3 t:EJ 

~z 
o> 
t'1 x 
;;it;" t:EJ 
Ul Ul 



BASIC CONCEPTS: FILES AND FILE NAMES 
How the File System Works 

access to that file (separate current-record and next-record 
pointers), yet the end-of-file location (maintained in the FCB) 
has the same setting for all accessors of the file. 

In Figure 2-16, the ACB indicates that logical device 4 is 
associated with the disc file indicated by "$VOL1". 

When OPEN completes, it returns a file number to the application 
process. The file number is an index into a table that contains 
an address pointer to the associated ACB. 

File Transfers 

As previously mentioned, the file number returned from OPEN is 
used by system procedures to access an open file. The file 
number can be thought of as a pointer to an access control block 
(ACB). When performing an I/O operation, the file number is used 
to locate an ACB, which in turn provides a logical device number 
that is then used as an index into the DCT. The corresponding 
entry in the destination control table provides the process ID 
associated with the primary path to the physical I/O device. 

In Figure 2-17, the ACB indicates that the device is logical 
device 4. 

For disc files, the information in the ACB (such as the current
record and next-record pointers) and the information in the FCB 
(such as the end-of-file pointer and addresses of allocated 
extents) is updated with the execution of each I/O operation. 

As file accesses requiring changes to the FCB are made, the 
system process currently responsible for controlling the disc 
ensures that the copy of the FCB in the other processor that can 
access the disc is updated. Thus, if the primary processor 
fails, the backup has all the information necessary for a smooth 
transition (invisible to the user). In addition, when a new 
extent is allocated or the file is renamed, the file label on the 
disc is updated to reflect this change. This ensures that no 
disc space is lost, even in the event of a total system failure. 
However, when the end-of-file (EOF) pointer is changed or the 
file is written into, which requires updating the last 
modification timestamp, only the main-memory copies are updated. 
(Updating the file label each time the file is writteb into would 
be an unnecessary amount of additional overhead because the 
current EOF and last modification timestamp would be lost only if 
a total system failure occurs. The user who is concerned about 
the EOF being updated on disc can force this to happen with the 
CONTROL request to set the EOF, or by using the FUP command to 
set REFRESH on for the file.) 

2-38 Afj 82357 AOO 3/85 



BASIC CONCEPTS: FILES AND FILE NAMES 
How the File System Works 

w 
iii 
::i 

••• 0 
X'. 
(.) 

g 

Figure 2-17. File Transfer 

C') 

g 
I 

LO 

~ en 

/1 82357 AOO 3/85 2-39 



BASIC CONCEPTS: FILES AND FILE NAMES 
How the File System Works 

Buf feriflg 

Two operating system buffers and an application buffer are 
involved in an I/O transfer. The operating system buffers 
(a file-system buffer and an I/O buffer) are shown in 
Figure 2-18. 

In GUARDIAN Data Area 

Buffer in Data File Data 1/0 Data 
Application -- - System .. -- • - - - Buffer 

Program Buffer 

In Same Processor Module In Same Processor Module 

Same or Different Processor Module 

85004-021 

Figure 2-18. Buffering 

When an I/O transfer is initiated (in this example a call to READ 
from a disc file) the file system first secures resident file 
system buffer space in the processor module where the application 
process is executing. The amount of file-system buffer space 
secured is dependent on the transfer count specified in the file 
system procedure call. Next, the I/0 process in the primary 
processor module controlling the disc is instructed (in this 
example) to read a block of data from the disc. 

The I/O process first secures resident I/O buffer space in its 
processor module (the amount of I/O buffer space secured is 
dependent on the transfer count specified in the file-system 
procedure call), then initiates the I/O transfer. When the I/O 
transfer with the device is completed, the data is moved from the 

2-40 J' 82357 AOO 3/85 



BASIC CONCEPTS: FILES AND FILE NAMES 
How the File System Works 

I/O buffer in the device's processor module to the file-system 
buffer in the application's processor module. If these are 
different processor modules, this is accomplished by an 
interprocessor bus transfer. At this point, the file system 
(executing on behalf of the application process) moves the data 
from the resident file-system buffer to an array in the 
application process (virtual) data area. 

On Nonstop systems, file-system buffers are obtained from the 
process's process file segment (PFS). I/O buffers are obtained 
from the I/O segments as needed by the I/O process. Processes 
that require dedicated buffers obtain buffer space during 
initialization. Once a process has obtained dedicated buffer 
space, it keeps that space until it terminates execution. 

Closing Files 

When a file is closed, the communication path to the file is 
broken. The ACB is deleted, and the space that it used is 
returned for use as another ACB. With disc files, if no other 
opens are outstanding for the file, then the FCB is also 
released, and information such as the end-of-file pointer and 
addresses of allocated extents is updated on the physical disc 
from the information that was maintained in the FCB. 

~' 82357 AOO 3/85 2-41 



BASIC CONCEPTS: FILES AND FILE NAMES 
Error Indication 

ERROR INDICATION 

For all devices, each file-system procedure sets the hardware 
condition code to indicate the outcome of an operation. The 
condition code settings have the following meanings: 

< (CCL) indicates that an error occurred 

= (CCE) indicates that the operation was successful 

> (CCG) indicates a warning 

The condition code should be checked immediately following each 
call to a file-system procedure. Typically this is done using 
an IF statement to detect if an error occurred and a call to 
the file-system procedure FILEINFO to obtain the error number 
associated with that error, as shown below: 

CALL READ(FILENUM,BUFFER,72,NUMXFERRED); 
IF<> THEN •.• 

if the not equal condition is detected, an error or 
warning condition has occurred. 

BEGIN 
CALL FILEINFO(FILENUM,ERROR); 

END; 
returns, in ERROR, the error number associated with 
the last operation with the file represented by FILENUM. 

The specific cause of an error or warning condition code is 
described by an error number. Some error numbers that tend to 
be observed more frequently than others are mentioned below. 

A complete listing of all file-system errors and messages 
appears in the System Messages Manual. 

ERROR RECOVERY 

In general, errors can be categorized as follows: 

• No error (error number 0, CCE, or operation successful) 

• Inf-0rmational (error numbers 1 through 9, or warnings) 

• Soft (recoverable) 

• Hard (not recoverable) 

2-42 .,, 82357 AOO 3/8~) 



BASIC CONCEPTS: FILES AND FILE NAMES 
Error Recovery 

• Communication-path errors (recoverable) 

Informational errors are those classified as warnings. 
For example, these include: 

1 logical end-of-file encountered 
6 system message received 

Soft errors are those for which programmatic recovery is 
possible or the error condition can be expected to go away. 
These include errors such as: 

11 file not in directory or record not in file 
40 operation timed out 
73 file or record locked 

100 device not ready 
101 no write ring (magnetic tape) 
102 paper out or bail not closed (line printer) 
110 only BREAK request allowed to terminal 
111 terminal operation aborted because BREAK key typed 

Errors 100 through 102 require operator intervention to 
correct the error condition. 

Hard errors are those for which programmatic recovery is 
not possible. These include: 

12 file in use 
14 device does not exist 
43 unable to obtain disc space for extent 
45 file is full 
48 security violation, illegal or no remote password 
49 access violation 

150 end of tape detected 

Communication-path errors are indicated by error numbers in 
the range of 200 through 229. A path error is indicated when 
a failure occurs in the primary path to a device while an I/O 
operation is in progress. An application process recovers from 
a path failure by reexecuting the operation (the file system 
automatically reroutes the I/O request across the alternate 
path). 

Specific file-system errors and error recovery procedures are 
described in the applicable sections of this manual. A complete 
listing of all errors appears in the System Messages Manual. 

Error message numbers 300 through 511 are reserved for customer 
use. 

..,, 82357 AOO 3/85 2-43 



BASIC CONCEPTS: FILES AND FILE NAMES 
Error Recovery 

Automatic Communication-Path Error Recovery for Disc Files 

Operations with disc files are classified as either retryable or 
nonretryable. Retryable operations are those that can be retried 
indefinitely, without the possibility of loss or duplication of 
data. The retryable operations are reading and full·-sector 
writing. Nonretryable operations are those that, if retried, 
could cause a loss or duplication of data. The nonretryable 
operations are partial-sector writing and appending to the end 
of a file. 

A sync ID and a requester ID are associated with each distinct 
file operation and are kept in the file's ACB. The sync ID 
identifies a single operation in a series of operations: the 
requester ID identifies the process requesting an I/O operation: 
together they identify a particular operation requested by a 
particular process: Also, each disc I/O process maintains a list 
of completed operations, each operation being identified by a 
sync ID and a requester ID: these are kept in the FCB. 

When an application program calls a file-system proc~edure to 
write to disc, the file system initiates an I/O operation by 
sending an I/O request message to the primary I/O process for 
that file. The I/O request message contains the data to be 
written, along with a sync ID, the requester ID, and the address 
where the data is to be written. 

The primary I/O process, upon receipt of the request, stores the 
information contained in the message and begins processing the 
request. 

If the request involves a nonretryable operation, special action 
is taken. The primary I/O process first reads the sector to be 
changed and updates the sector image in memory (when writing a 
partial sector). The primary I/O process then sends the new or 
updated sector image in a checkpoint message to its backup I/O 
process along with the disc address of where it is to be written, 
the sync ID, and the requester ID. Next, the primary I/O process 
performs the physical I/O operation to the disc. Upon completion 
of the I/O operation, the primary I/O process informs the file 
system (which, in turn, notifies the application process) of the 
completion. 

If the request involves a retryable operation, the information 
kept by the file system (that contained in an I/O request 
message) is enough to reinitiate the operation. Therefore, in 
writing full sectors, no checkpointing occurs between the primary 
and backup I/O processes. 

If a failure of the primary I/O process's processor module 
occurs, the file system and the backup I/O process are notified. 

2--44 "if 82357 AOO 3/85 



BASIC CONCEPTS: FILES AND FILE NAMES 
Error Recovery 

The backup I/O process, when notified of the primary's failure, 
takes over the primary's duties. The first action that the 
backup process performs is to execute the I/O operation indicated 
by the latest checkpoint message received from the primary I/O 
process. This occurs regardless of whether the operation had 
been completed by the primary process. 

When the file system receives notification of the primary 
process's processor failure, after an operation has been 
requested but before the file system has been notified by the I/O 
process of a successful completion, it reinitiates the operation. 
This time, the file system sends the I/O request message 
(containing the data, sync ID, requester ID, and disc address) 
to the backup I/O process. 

After taking over from its primary process, the backup I/O 
process checks the sync ID and requester ID in the I/O request 
message for a match in the list of completed operations. If 
there is a match, the requested operation has already completed, 
and the backup I/O process returns the associated completion 
status to the file system: no other action is taken. If there is 
no match, the backup I/O process has not performed the operation. 
The operation is performed in its entirety, and the operation s 
completion status is returned to the file system. 

This automatic communication-path error recovery can occur only 
if the file was opened with an explicit <sync-depth> parameter 
greater than zero. The default <sync-depth> is zero. For more 
information, refer to the OPEN procedure explanation in the 
System Procedure Calls Reference Manual. 

EXAMPLE 1: Compare this example of a routine I/O operation, 
performed without incident, with example 2, in which 
a processor fails. 

CALL WRITE(FILEANUMBER, .•• ): 

1. The file system sends an I/O request message to the primary 
disc I/O process. 

(A) = Application process 

-I o Sync ID in ACB 

1/0 request message (Data, Sync ID, requester ID) 

I 
1/0 = Primary BACKUP = (1/0') 

1-1 0 I Sync ID in FCB 

85004-023 

~ 82357 AOO 3/85 2-45 



BASIC CONCEPTS: FILES AND FILE NAMES 
Error Recovery 

2. In the primary I/O process: 

• *The sector to be updated is read from disc. 
• The sector image in memory is updated. 
• The next sync ID (1) is saved. 

(1/0) (1/0') 

I I 
c1 Sync ID in FCB Sync ID in FCB r:::2:] 

$5004-024 

*3. The state of the operation about to be performed is 
checkpointed to backup I/O process. The checkpoint message 
contains the requester ID, the updated sector image, and the 
next sync ID. 

(1/0) ----------Checkpoint Message-------·----!• (110') 

I m Sync ID in FCB 

I 
Sync llD in FCB m 

$5004-025 

The backup I/O process saves the 
updated sector image and saves 
the next sync ID as 1. 

4. The primary I/O process then writes the updated sector image 
to disc. 

(1/0) (1/0') 

\ I 
I 1 Sync ID in FCB Sync ID in FCB m 

Disc 

$5004-026 

* performed only if a partial sector is to be written 

2-46 ..-, 82357 AOO 3/85 



BASIC CONCEPTS: FILES AND FILE NAMES 
Error Recovery 

5. The primary I/O process indicates to the application process 
(through the file system) that the operation is completed. 

(A) 

- m Sync ID in ACB 

1/0 Request Message (Completion Part) 

I 
(1/0) 

I 
(1/0') 

I 
I 1 Sync ID in FCB Sync ID in FCB D:J 

6. The file system increments the sync ID in the ACB. 

(A) 

1-m Sync ID in ACB (Incremented) 

85004-028 

EXAMPLE 2: This example shows an I/O operation in which a 
processor fails. 

CALL WRITE (FILEANUMBER, •.• ); 

85004-027 

1. The file system sends an I/O request message to the primary 
disc I/O process. 

(A) 

-I 1 Sync ID in ACB 

(1/0) Request Message (Data, Sync ID, Requester ID) 

I 
(1/0) (110') 

85004-029 

~ 82357 AOO 3/85 2-47 



BASIC CONCEPTS: FILES AND FILE NAMES 
Error Recovery 

2. In the primary I/O process: 

• *The sector to be updated is read from disc. 
• The sector image in memory is updated. 
• The next sync ID (0) is saved. 

(1/0) (110') 

I I 
0 Sync ID in FCB Sync llD in FCB IT] 

85004-030 

*3. The state of the operation about to be performed is check
pointed to the backup I/O process. The checkpoint contains 
the requester ID, the updated sector image, and the next 
sync ID. 

(110) Checkpoint Message-------·---.i•.... (110') 

I I 
[ O I Sync ID in FCB Sync ID in FCB 0 

85004-031 

The backup I/O process saves the 
updated sector image and saves 
the next sync ID as 0. 

4. The primary's processor module fails and the backup I/O 
process is notified of the failure. (*)The backup I/O 
process, using the latest checkpoint from the primary, 
performs the I/O operation to the disc. 

(XXX) 

Sync ID in FCB 

Disc 

85004-032 

* performed only if a partial sector is to be written 

2-48 4J 82357 AOO 3/85 



BASIC CONCEPTS: FILES AND FILE NAMES 
Error Recovery 

5. The file system, on behalf of the application process, 
reinitiates the request: this time it sends the request 
to the backup process. 
(A) 

- I Sync ID in ACB 

110 Request Message (Data, Sync ID, Requester ID) 

I 
(1/0') 

I 
Sync ID in FCB 0 

85004--033 

6. The backup I/O process compares the requester ID and sync ID 
in the I/O request message with those of operations that 
have already been performed. (*) The backup recognizes that 
this is a request to perform an operation it has already 
completed. Therefore, the operation is not performed. 
Rather, the completion status from the completed operation 
is returned to the file system. 
(A) 

-CIJ SynclDinACB 

1/0 Request Message (Completion Part) 

I 

(1/0') 

I 
Sync ID in FCB I 0 I 

7. The file system increments the sync ID in the ACB. 

(A) 

l-1 0 Sync ID in ACB ! Incremented 

85004-035 

* performed only if a partial sector is to be written 

~ 82357 AOO 3/85 

85004-034 

2-49 



BASIC CONCEPTS: FILES AND FILE NAMES 
Mirrored Volumes 

Mirrored Volumes 

A mirrored volume is a pair of physically independent disc 
devices that are configured and accessed as a single volume. 
One is the primary volume and the other is the mirror volume. 
Each device is usually controlled through two independent disc 
controllers. Each mirrored volume is controlled by a separate 
I/O process pair. The mirroring designation for a volume is 
selected during system generation. The hardware configuration 
of a mirrored volume is shown in Figure 2-19. 

When writing data to a mirrored volume, the primary I/O process 
automatically writes the data on both disc devices comprising the 
volume. As long as both devices are operable, either one can be 
used by the I/O process for reading because the content of both 
discs is the same. If one of the devices becomes inoperable, the 
I/O process performs all subsequent reading from the operable 
device. 

When an inoperable disc device is repaired, the information on 
the previously inoperable pack is brought up to date by a PUP 
REVIVE command issued by the operator. REVIVE copies the 
information from the operable pack onto the previously inoperable 
pack in groups of one or more tracks. This copying operation is 
carried out concurrently with requests to read or update data in 
files on this volume. (An optional parameter to the REVIVE 
command can be used to specify a time interval between copying 
g~oups of tracks. This permits the revive operation to take 
place without significant degradation of system performance.) 

Four options are provided to optimize mirrored volum~ performance 
when both devices of a mirrored volume are operable. The reading 
options, specified at system generation, are SLAVESEEKS or 
SPLITSEEKS. SPLITSEEKS is the default setting. 

• SLAVESEEKS specifies that, when reading, both devices of a 
mirrored volume are to seek (position the head) together. 

• SPLITSEEKS specifies that the device with its head positioned 
closest to the desired cylinder is the device to be used for 
reading. The alternate device's head is not repositioned. 

The writing options, SERIALWRITES or PARALLELWRITES, are selected 
by the driver--if the controller is shared, SERIALWHITES is used: 
if not, PARALLELWRITES is used. To obtain the added reliability 
of SERIALWRITES (one write at a time), SETMODE function 57 can be 
specified for use by one file. 

2-50 "'ft 82357 AOO 3/85 



BASIC CONCEPTS: FILES AND FILE NAMES 
Mirrored Volumes 

• SERIALWRITES specifies that the actual data transfer completes 
on one device before beginning on the other. 

• PARALLELWRITES specifies that data transfers to both devices 
occur concurrently. This option is allowed only if each 
device is controlled by a separate hardware controller. 

0 

"'1J 82357 AOO 3/85 

p p 
0 0 
R Dual-Port R 
T Controller T 

A B 
p 
R 
I 
M 
A 
R 
y Mirrored Volume 

p 
A 
T 
H 

p p 
0 

R Dual-Port R 
T Controller T 

A B 

@ = Primary 1/0 Process for Mirrored Volume 

@ = Backup 1/0 Process for Mirrored Volume 

85004-022 

Figure 2-19. Mirrored Volume 

2-51 





SECTION 3 

MANAGING PROCESSES 

When any program runs on the system, it is called a process. A 
process is the basic work unit of the GUARDIAN operating system. 

The term "program" indicates a static group of instruction codes 
and initialized data (like the output of a compiler), whereas the 
term "process" identifies the dynamically changing states of an 
executing program. 

The same program (whether an application or system program) can 
be executing concurrently a number of times in the same processor 
or in different processors: each execution is considered a 
separate process. This difference is illustrated in Figure 3-1. 

A process consists of: 

• A code area in virtual memory that contains the instruction 
codes to be executed (this is shared by all processes in that 
processor executing the same program file). A process's 
virtual code area is the code part of the program file on 
disc. 

• A data area in virtual memory that contains the program 
variables and temporary storage (the memory stack) that is 
private to the process. (Even if other processes use the same 
code area, each has its own private data area.) The virtual 
data area is obtained from the volume where the program file 
resides. 

• A process control block (PCB), identified by a process number, 
that is used by the operating system to control process 
execution. The PCB contains pointers to the process code 
and data areas (real and virtual), retains the current state 
of the process when the process is suspended, and contains 
pointers to files opened by the process. 

"'1 82357 AOO 3/85 3-1 



MANAGING PROCESSES 

• A process ID that is assigned by the operating system when a 
program is first called for execution. A process ID consists 
of three parts: 

1. if a nonnamed process, a timestamp of when the process was 
created or, if a named process, its symbolic process name, 

2. the number of the processor module where the process is 
executing, and 

3. the number of the process in that processor. 

PROG1 PROG2 

~ ~ e 

I \ 
\ 

e 

I ' I \ \ 
\ I \ 

I 
; 

© 

\ 
\ 
1 

© 

These two processes 
execute the same 
code area if they are 
in the same processor 
module. 

} Program Fil<as 
On Disc 

Processes Executing 
in Virtual Memory 

85004-036 

Figure 3-1. Program Versus Process 

Figure 3-2 illustrates a process. 

3-·2 AfJ 82357 AOO 3/85 



MANAGING PROCESSES 

The same program executing as a process 
in (virtual) memory 

Calls to 

Operating .. -----·---.......... 
System 

Procedures 
~ 

Executing/ 
User 
Code 

I Process 
Control 

I Block 
(In System 

Data Space) 

I Process ID ---1--1~ Ready List 
Link 

An Object Program 
File on Disc 

I __.. ____ I 
Changing } 

User 
Data Memory Stack 

I 
I I 
L--....1 

-----::771 
GUARDIAN I 

I 
Data PTR I -- -- -- --Process File Segment 1 I 
Code PTR 

1 Suspend Ffi~~ ~~~~e _j ~c0~et~~ __. , 1 

I 
State p 
PFS 1 __ ro_c_e_s_s.... Block I 

D . t' ----.! File 0 F1'les 
escrip ion Access I 

I File 1 --- 0 f 

I 
Control ..__. pen or I 

File 2 L_ Block This 

I Fi le 3 Process I 
I 

Access I 
Control - _J 

L ___ - - - _L ----=-~~--=- ~ 
85005-004 

Figure 3-2. A Process 

~ 82357 AOO 3/85 3-3 



MANAGING PROCESSES 
Process States 

PROCESS STATES 

During its existence, a process goes through the following 
states: 

CREATION ~ EXECUTION ~ DELETION 

Process Creation 

The term "process creation" refers to the action performed by a 
system process called the system monitor when a program is 
initially prepared for execution. During process creation, the 
system monitor performs a number of operations. Some of these 
are: 

• Locating the program file on disc 

• Assigning a process ID 

• Allocating and initializing a PCB and other control blocks 

• Determining if the code is being executed by another 
process (for code sharing) 

• Allocating space for copies of the data and (if not sharing 
code) code aegments 

• Allocating virtual memory space (For code, the program file 
is used as the virtual area: for data, space on the same 
volume as the program file is used as the virtual area.) 

• If the process is named, an entry is made for the process in 
the destination control table (DCT). (See "Named Processes" 
later in this section.) 

Process creation is initiated by use of the process control 
procedures NEWPROCESS or NEWPROCESSNOWAIT--either interactively 
through the GUARDIAN c-0mmand interpreter RUN command or 
programmatically by application programs. The processor module 
where the program is to execute is specified (any module is 
permitted) along with its execution priority and the maximum 
number of data pages permitted. (See the System Procedure Calls 
Reference Manual for syntax details.) 

3-4 ""1 82357 AOO 3/85 



MANAGING PROCESSES 
Process States 

Process Execution 

A process has four executing states: 

1. Active--currently executing instructions 

2. Waiting--not executing instructions. Instead, the process is 
suspended, waiting for some external event such as an I/O 
operation to complete. 

3. Ready--executable but not executing instructions. The 
awaited external event has completed, but another, higher
priority process is currently executing. A process is also 
in the ready state while waiting for an absent memory page. 

4. Suspended--not executing instructions. The process has been 
removed from the active or ready state and is not waiting. 
A process is entered into the suspended state when it is the 
object of a call to the SUSPENDPROCESS procedure. A process 
is returned to the ready or active state from the suspended 
state when it is the object of a call to the ACTIVATEPROCESS 
procedure. 

Processes are scheduled for execution according to an 
·application-defined priority assigned when created. The 
execution priority is determined by a numerical value ranging 
from 1 (lowest priority) to 255 (highest priority). Processes 
execute according to their relative priority as follows: 

• The ready process with the highest priority executes 
exclusively until suspended. Process suspension occurs while 
"wait" input-output operations take place, while waiting for a 
needed system resource to become available, when a call to the 
process control DELAY procedure is made, or when the process 
is the object of a call to the process control SUSPENDPROCESS 
procedure. 

• When more than one process has the same priority, they are 
executed as follows: the first ready process executes until 
suspended, then the next ready process executes until 
suspended, and so on. No preemption occurs among processes 
having the same priority. 

• Ready processes having a lower priority execute only while 
higher-priority processes are suspended. A higher-priority 
process becoming ready preempts all lower-priority processes. 

Processor time is allocated to processes by an operating system 
function called the dispatcher. When the operating system 
determines that a process is ready to execute, the process is 
placed on the ready list according to the process priority 

~ 82357 AOO 3/85 3-5 



MANAGING PROCESSES 
Process States 

number. The ready list consists of the PCBs of all ready 
processes linked together according to their relative priority 
numbers. When the currently executing process completes or is 
suspended (for example, while its I/O occurs), or a higher
priority process becomes ready, the dispatcher gives control 
of the processor to the highest-priority process ready for 
execution. 

To protect the system against excessive loss of throughput due 
to a process that (often due to program errors) is extremely 
CPU-bound, the GUARDIAN operating system includes a floating 
priority feature. If a single process retains uninterrupted 
control of a CPU for a given period, and other processes of 
equal or lower priority are thus prevented from running, the 
operating system will automatically reduce the priority of that 
process so that other processes may run. Each time the process 
runs uninterrupted for more than 2 seconds, its priority is 
reduced by one and timing begins again, reducing the process 
priority in a stepwise manner. The PRIORITY procedure can be 
used to check if reduction of priority has occurred. 

The following process control procedures are related to process 
execution: 

ACTIVATEPROCESS returns a process from the suspended 
state to the ready state. 

ALTERPRIORITY 

DELAY 

PRIORITY 

SETLOOPTIMER 

alters the execution priority of another process. 

permits a process to suspend itself for a timed 
interval. 

permits a process to dynamically change its own 
execution priority. 

detects a looping process. SETLOOPTIMER permits 
a process to set a limit on the total amount of 
processor time it is allowed. If the time limit 
is reached, a process-loop-timer timeout trap 
occurs. 

SUSPENDPROCESS puts another process into the suspended state. 

3--6 "'f' 82357 AOO 3/85 



MANAGING PROCESSES 
Process ID 

Process Deletion 

Process deletion is the act, by the operating system, of stopping 
further process execution. The deleted process is removed from 
its current execution state (active, ready, or suspended), files 
it has opened are closed, its associated resources (PCB, memory 
stack space, code space if not shared). are returned to the 
system, and the deleted process's creator is notified of the 
deletion by a system message. 

There are two types of proces~ deletion, normal and abnormal: 

• Normal deletion is initiated by a call to the process control 
STOP procedure. 

• Abnormal deletion is initiated by the call to the process 
control ABEND procedure or by a trap occurring and certain 
other conditions being present (see Section 13). 

Process deletion can be initiated by a process itself, by another 
process, or, if a trap occurs, by the operating system. 

The following process control procedures relate to process 
deletion: 

STOP stops a process 

ABEND aborts a process 

SETS TOP controls whether a process can be deleted by any 
process but itself or its creator (see "Creator" later 
in this section). 

PROCESS ID 

A process is uniquely identified by its process ID. There are 
two equivalent forms of process ID: the timestamp form for 
nonnamed processes and the process name form for named processes. 
These forms are the same as those presented in Section 2 under 
"Process IDs and Process Names". 

• Timestamp form 

For nonnamed processes, the GUARDIAN operating system assigns 
the process ID when the process is created. The general form 
of this type of process ID is: 

~ 82357 AOO 3/85 3-7 



MANAGING PROCESSES 
Process ID 

= 2 <process-id>[0].<0:1> 
<process-id>[0].<2:7> =unused 
<process-id>[0].<8:15> =<system-number> is 0 through 254 
<process-id>[l:2] = low-order 32 bits of creation 

<process-id>[3].<0:3> 
<process-id>[3].<4:7> 

<process-id>[3].<8:15> 

• Process-Name form (Local) 

timestamp 
= unused 
= <cpu> where the process is 

executing 
= <pin> assigned by operating 

system to identify the process 
in the CPU 

For named processes, the <process-id> contains an application
defined process name. The local process-name form is: 

<process-id>[0:2] 
<process-id>[3] 

where 

= $<process-name> 
= <cpu,pin> 

<process-name> must be preceded by a dollar sign "$" and 
consist of a maximum of five alphanumeric characters; the 
first character must be alphabetic. 

• Process-Name form (Network) 

For named processes in a network, the form of a process ID is: 

<process-id>[0].<0:7> 
<process-id>[0].<8:15> 
<process-id>[l:2] 
<process-id>[3].<0:7> 
<process-id>[3].<8:15> 

= "\" (ASCII backslash) 
= system number (in octal) 
= <process-name> 
= <cpu> 
= <pin> 

NOTE 

<process-name> in words 1 and 2 does not include the 
initial dollar sign "$". 

The following process control procedures relate to process IDs: 

MYPID provides a process with its own <cpu,pin>. 

GETCRTPID provides the process ID associated with a 
<cpu,pin>. 

GETREMOTECRTPID provides the process ID associated with a 
<cpu,pin> in a remote system. 

3-8 ..., 82357 AOO 3/85 



MANAGING PROCESSES 
Obtaining a Process ID 

OBTAINING A PROCESS ID 

A process ID can be obtained from a number of sources: 

• When the process control NEWPROCESS procedure is called to 
create a new process, the process ID of the newly created 
process is returned. 

• A process can obtain the process ID of its creator by calling 
the process control MOM procedure. 

• The process ID of the originator of the last message received 
can be obtained by calling the file-system LASTRECEIVE 
procedure. 

• A process name can· be predefined and hard coded into the 
program. 

• A process name can be received in a PARAM message from a 
command interpreter. 

• A process can obtain its own <cpu,pin> by calling the process 
control MYPID procedure. 

• A process can obtain the process ID associated with a 
<cpu,pin> through the process control GETCRTPID or 
GETREMOTECRTPID procedure. 

• A process name can be obtained by a call to CREATEPROCESSNAME, 
or CREATEREMOTENAME, or PROCESSINFO. 

• A process ID is also contained in certain system messages. 

The following example illustrates a process ID returned from the 
process control MOM procedure: 

INT .FNAME[O:ll] := 12 * [" "]; 
CALL MOM(FNAME); 

CREATOR 

The term "creator" refers to the relationship that exists between 
a process that initiated a process creation (that is, the caller 
to NEWPROCESS) and the process that was created. 

For example, the command interpreter is the creator of the 
process created when a RUN command is given: 

~ 82357 AOO 3/85 3-9 



MANAGING PROCESSES 
Creator 

:RUN MYPROG 

command is given to run a program. 

(CI) creator, command interpreter 

1 
(A) process created due to RUN command 

The purpose of the creator relationship is to designate the 
process to be notified when a process is deleted (notification 
is in the form of a Process STOP or Process ABEND system 
message): 

(CI) 

1 xxx 

the command interpreter is notified when (A) 
is deleted. 

This notification is in the form of a system message. Either of 
two messages may be sent. The messages and their formats, in 
word elements, are: 

• Process normal deletion (STOP) message: 

<sysmsg> 
<sysmsg>[l] FOR 4 

= - 5 
= process ID of deleted process 

This message is received by a deleted process's creator when 
the deletion is due to a call to the process control STOP 
procedure. 

• Process abnormal deletion (ABEND) message: 

<sysmsg> 
<sysmsg>[l] FOR 4 

= - 6 
= process ID of deleted process 

This message is received by a deleted process's creator when 
the deletion is due to a call to the process control ABEND 
procedure, or because the deleted process encountered a trap 
condition and was aborted by the operating system. 

The system messages are presented in the System Messages Manual. 

3-10 ~ 82357 AOO 3/85 



MANAGING PROCESSES 
Process Pairs 

The process ID of a process's creator is kept in its PCB. 

The following procedures are related to a process's creator: 

MOM 

SETS TOP 

STEPMOM 

provides a process with the process ID of its creator. 

protects a process from being deleted by any process 
but itself or its creator. 

permits a process to assume the role of creator of an 
already created process and, therefore, receive its 
process deletion messages. 

PROCESS PAIRS 

For the purpose of implementing fault-tolerant applications, 
the concept of the process pair is used. Typically, but not 
necessarily, a process pair is two related executions of the 
same program code in separate processor modules for the purpose 
of providing fault-tolerant operation. (See Figure 3-3.) 

0 

PROG1 

~ 
~ 
I '-
/ " 
I " 
I " 

I 

PROG2 

~ 
~ 

I \ 
I \ 

I \ 

\ 
~ 

} 

Program Files 
on Disc 

Process Pai rs 
Executing in 
Virtual Memory 

85004-038 

Figure 3-3. Process Pairs 

One process of the pair is designated the primary; the other is 
designated the backup. Logic in the program indicates whether 

Af' 82357 AOO 3/85 3-11 



MANAGING PROCESSES 
Named Processes 

the process is executing in the primary mode or the backup mode. 

(A) (A' ) 

PRIMARY BACKUP 

During a process pair's existence, it passes through the 
following process execution states: 

PRIMARY 

CREATION ~ EXECUTION ~ DELETION OR FAILURE 

JBACKUP 

BACKUP 

primary creates backup 

CREATION ~ EXECUTION ____.,.. DELETION OR FAILURE 

if primary fails, backup becomes 
primary and creates a new backup 

CREATION---+-- .•..• etc. 

For a complete explanation of the individual duties of each 
member of a pair, refer to Section 12. 

NAMED PROCESSES 

Named processes provide four major benefits: 

1. A pair of processes is treated as a single entity. 

2. Each member of a pair is related to the other so that one 
member is notified when the other is deleted. 

3. A process or process pair is related to a process, called an 
"ancestor process", to be notified when the pair (as an 
entity) no longer exists. 

4. A process or process pair can be known by a predefined 
symbolic file name, so that other processes can easily 
communicate with the pair by that name. 

A process pair is identified by its process name in a directory 
called the PPD. One or two processes may be associated with a 
given name. The PPD is a part of the destination control table. 

3·-12 -'1J 82357 AOO 3/85 



MANAGING PROCESSES 
Named Processes 

(To view the PPD, enter the letters "PPD" in response to a COMINT 
prompt.) 

Operation of the PPD 

Each entry in the PPD, in words, is of the form: 

word 
[0:2] [3] [4] [5:8] 

entry# 
[O] $<process-name><cpu,pinl><cpu,pin2><ancestor-process-id> 
[l] 

. 
[n-1] 

Each entry consists of a process name, the <cpu,pin>s of the two 
processes that make up the pair, and the process ID of the 
process or process pair responsible for creation of the primary. 

A process name is entered into the PPD (part of the DCT) at 
process creation time when the <name> parameter is included in 
a call to the NEWPROCESS or NEWPROCESSNOWAIT procedure. Any 
process may create a process and assign it an unused process 
name. Only a primary process, however, may create the second 
(backup) process associated with its name. A process can have 
the system generate, by a call to the CREATEPROCESSNAME 
procedure, a previously undefined, and unique, process name. 
The system-generated process name is used when a process pair 
need not be known to other processes besides the creator, but the 
fault-tolerant aspects of named processes are desired. (A 
process name, either predefined or system-generated, can be 
assigned by the GUARDIAN command interpreter RUN command; see the 
GUARDIAN Operating System User's Guide.) 

When two processes are associated with a name, the two processes 
become each other's creator. One process is notified of the 
other's deletion; each process can stop the other. 

($N: cpul,pinl) ($N: cpu2, pin2) 
EACH OTHER'S CREATOR 

($N = process name of a named process pair) 

When a process represented in the PPD by a given name is deleted 
or its processor module fails, the reference to the particular 
process (<cpu,pin>) is zeroed in the PPD, and the other process 

_.,.1 82357 AOO 3/85 3-13 



MANAGING PROCESSES 
Named Processes 

(if any) becomes the primary. When the new primary creates a new 
process having that name, the new process's <cpu,pin> is entered 
into the PPD. 

When the last process associated with a given name is deleted, 
the process name is deleted, and the ancestor of the process pair 
(if alive) is notified. The deleted process name can then be 
reused. 

Ancestor Process 

The ancestor relationship can exist between the following: 

• A nonnamed process and a named process pair 

(TS: cpr, pinl) 

($N) 

ANCESTOR 

where the single nonnamed process (TS: cpul, pinl) is notified 
when the last process having the name ($N) is deleted. 
(TS = timestamp of a single nonnamed process) 

• Two named process pairs 

( $N: cpul, pi nl) ($N: cpu2, pin2) ANCESTOR 

( $M) 

where both members of the named process pair ($N) are notified 
when the last process having the name ($M) is deleted. 

The notification to the ancestor process is in the form of a 
system message such as processor failure, process STOP, or 
process ABEND. 

3--14 '1't 82357 AOO 3/85 



MANAGING PROCESSES 
Named Processes 

• CPU down message: 

<sysmsg> 
<sysmsg>[l] FOR 3 
<sysmsg>[4] 

= -2 
= $<process-name> 
= -1 

This message is received by an ancestor process when the 
indicated process name is deleted from the PPD because of a 
processor module failure. This means that the named process 
or process pair no longer exists. 

• Process normal deletion (STOP) message: 

= -5 <sysmsg> 
<sysmsg>[l] FOR 3 = $<process-name> of deleted process 

or process pair 
<sysmsg>[4] = -1 

This message is received if a process deletion is due to a 
call to the process control STOP procedure. It is received 
by a process pair's ancestor when the process name is deleted 
from the PPD. This indicates that neither member of the 
process pair exists. 

• Process abnormal deletion (ABEND) message: 

= -6 <sysmsg> 
<sysmsg>[l] FOR 3 = $<process-name> of deleted process 

or process pair 
<sysmsg>[4] = -1 

This message is received if the deletion is due to a call to 
the process control ABEND procedure or because the deleted 
process encountered a trap condition and was aborted by the 
operating system. It is received by a process pair's ancestor 
when the process name is deleted from the PPD. This indicates 
that neither member of the process pair exists. 

The system messages are presented in the System Messages Manual. 

NOTE 

If the ancestor process responsible for the original 
primary's creation is a member of a process pair, 
the ancestor process pair receives this notification 
regardless of whether or not the actual creating 
process still exists. 

/1 82357 AOO 3/85 3-15 



MANAGING PROCESSES 
Reserved Process Names 

Reserved Process Names 

The following names should be avoided when choosing process 
names. The names listed here are used by Tandem software to 
refer to specific system processes or devices. Use these names 
only to refer to the appropriate processes or devices. 

$AOPR 
$CMON 
$CMP 
$C9341 
$DM<nn> 
$!MON 
$!PB 
$MLOK 
$NCP 
$NULL 
$0SP 
$PM 
$S 
$SPLS 
$SSCP 
$T 
$TICS 
$TMP 
$X<nam> 
$Y<nam> 
$Z<nam> 

<nn> is any two digits (00 through 99) 
<nam> is any combination of 1 through 3 letters or digits 

(A through Z, 0 through 9) 

The following names are not reserved but should be used with 
caution because they are commonly used for a specific purpose: 

$DISC 
$LP 
$SPLP 
$TAPE 

3-16 °1' 82357 AOO 3/85 



Example Operation of the PPD 

PROCESSES 

1. The process (x) exists: 

(X) 

MANAGING PROCESSES 
Named Processes 

PPD 

2. (x) initiates creation of a named process pair $A: 

name ' : = ' "$A " : 
CALL NEWPROCESS( ••• ,name): 

(X) ANCESTOR 

. . . . . . . . . . . . . . . . I . . . . . . . . . . . . . . . . 
• • 
• 
• 
• 
• 
• 

($A 2, 10) 
(MOM= 0) 

-+- CR EA TOR IS 
UNDEFINED 

• 
• 
• 
• 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

3. ($A 2,10) creates its backup: 

4. 

name ' : =' "$A " : 
CALL NEWPROCESS( ••• ,name): 

(X) ANCESTOR 

. . . . . . . . . . . . . . . . I . . . . . . . . . . . . . . . . 
• • 
• 
• 
• 
• 
• 

($A 2, 10) 
(MOM = $A3,8) . 

($A 3,8) 
(MOM = $A2, 10) 

• 
• 
• 
• 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

($A 2,10) ABENDs: 

(X) ANCESTOR 

. . . . . . . . . . . . . . . . I . . . . . . . . . . . . . . . . 
• • 
• 
• 
• 
• 

ABEND MSG __...... ($A 3,8) 
(MOM = $A2,10) 

• 
• 
• 
• 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

~ 82357 AOO 3/85 

NAME C,P 1 C,P 2 ANC 

$A 2,10 0 x 

$A 2,10 3,8 x 

EACH OTHER'S CREATOR 

$A 3,8 0 x 

3-17 



MANAGING PROCESSES 
Named Processes 

5. ($A 3,8) creates its backup: 

name ' : = ' "$A " ; 
CALL NEWPROCESS( ••• ,name): 

(X) ANCESTOR 

. . . . . . . . . . . . . . . . I . . . . . . . . . . . . . ~ . . 
• • 
• 
• 
• 
• 

($A 2, 15) 
(MOM = $A3,8) 

($A 3,8) 
(MOM = $A2, 15) 

• 
• 
• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ . . 

6. ($A 3,8) stops: 

(X) ANCESTOR 

. . . . . . . . . . . . . . . . I . . . . . . . . . . . . . 0 • • 

• 
• 
• ($A 2, 15) 
: (MOM = $A3,8) 

STOP MSG 
• 
• 
• 
• 

• • 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 0 • • 

7. ($A 2,15) stops: 

(X) ANCESTOR 

I 
STOP MESSAGE 

Procedures 

$A 3,8 2,15 

EACH OTHER'S CREt\TOR 

$A 2, 15 0 

DE LE.TED 

The following procedures are used for performing operations 
involving named processes or process pairs: 

x 

I x 

CREATEPROCESSNAME generates a process name suitable for passing 
to the NEWPROCESS or NEWPROCESSNOWAIT 
procedure. 

LOOKUPPROCESSNAME returns the PPD entry associated with a 
process name. 

NEWPROCESS creates a new process and, optionally, enters 
its application-defined symbolic process name 
into the PPD. 

3-18 Af' 82357 AOO 3/85 



NEWPROCESSNOWAIT 

STOP 

HOME TERMINAL 

MANAGING PROCESSES 
Home Terminal 

creates a new process in a nowait manner and, 
optionally, enters its application-defined 
symbolic process name into the PPD. 

deletes a named process or process pair. 

Associated with each process is its home terminal (figure 3-4). 
A new process's home terminal may be specified by the optional 
TERM parameter of the command interpreter RUN command. If the 
TERM parameter is omitted, which is the usual case, the command 
interpreter's home terminal is used for the new process's home 
terminal. The home terminal designation is passed on to 
descendent processes at process creation time. 

Each of these processes 
has the same home terminal. 

(A)--(A') 

I \ . 
(8) 

• 

(C) (D) 

I\ 
• 

85004-039 

Figure 3-4. Home Terminal 

-'1 82357 AOO 3/85 3-19 



MANAGING PROCESSES 
Process Timing 

The following procedures are related to a process's home 
terminal: 

MYTERM returns the file name of a process's home terminal. 

SETMYTERM specifies a new home terminal device. 

PROCESS TIMING 

The Nonstop system allows a process to set timers that count 
actual elapsed (real) time or process time (CPU time used only 
by the process). When the time interval for a timer has expired, 
the user process receives the timeout as a system message 
(file-system error 6, CCG). 

The following procedures are related to process timing: 

SIGNALTIMEOUT sets a timer for a given period of real time. 

CANCELTIMEOUT cancels a timer previously set by SIGNALTIMEOUT. 

SIGNALPROCESSTIMEOUT sets a timer for a given period of time: 
similar to SIGNALTIMEOUT but based on 
process time instead of real time. 

CANCELPROCESSTIMEOUT cancels a timer set by a call to 
SIGNALPROCESSTIMEOUT. 

CPUTIMES returns the time spent since coldload in: CPU process 
busy, CPU interrupt, and CPU idle. 

The following procedures pertain to process time as opposed to 
real (wall-clock) time. They are important in gathering 
statistics about the CPU execution time a process requires. 
Process time is defined as the CPU busy time needed to execute 
the process. It excludes the CPU time to execute software that 
processes any interrupts that occur while the process executes. 

MYPROCESSTIME returns, in microseconds, the process execution 
time of the calling process. 

PROCESSTIME returns, in microseconds, the process time 
of any process in the network. 

CONVERTPROCESSTIME converts the time from microseconds to 
hours, minutes, seconds, milliseconds and 
microseconds. 

3-20 . ., 82357 AOO 3/85 



MANAGING PROCESSES 
Process Timing 

NOTE 

The process time returned by any procedure reporting the 
time required to execute a process can vary a small amount 
due to external influences. The differences in process 
time can be attributed to time spent by the microcode in 
processing interrupts. 

The syntax and considerations for using these procedures is 
presented in the System Procedure Calls Reference Manual. 

/1 82357 AOO 3/85 3-21 



MANAGING PROCESSES 
Creating and Communicating With a New Process 

CREATING AND COMMUNICATING WITH A NEW PROCESS 

The following example shows the use of the NEWPROCESS procedure 
to run a program and the use of file-system procedures to send 
and receive a startup message. The example shows the creation 
of a single nonnamed process. For an example of how to create 
a named process pair and the action taken by each member of the 
pair, see Section 12. See Appendix B for a lengthy example. 

In this example, an application process creates a new process in 
its own processor module. Following creation of the new process, 
the creator sends it a startup message: 

(a) 
creator 

startup message --~i- (b) 
new process 

The following is written in the creator application program: 

creator 

INT .PFILENAME[O:ll] := "$VOL1 
.PID[O:ll] := 12 * [" "], 
ERROR, 
FNUM, 
.BUFFER[0:71]; 

SVOL3 MYPROG " 

NEWPROCESS is called to run "$VOL1 SVOL3 
same processor module as the creator: 

MYPROG " in the 

. 
CALL NEWPROCESS ( PFILENAME,,,, PID, ERROR); 
IF ERROR.<0:7> > 1 THEN ..•. ; ! check ERROR. 

If the process is created successfully, the new process's 
process ID is returned in PID, and zero or one is 
returned in ERROR.<0:7>. 

A file is then opened to the new process using the file-system 
OPEN procedure: 

CALL OPEN ( PID, FNUM ); 
IF < THEN .•.. ; ! open failed. 

Then a message is sent to the new process: 

BUFFER ':=' "GET TO WORK"; 
CALL WRITE ( FNUM, BUFFER, 19 ); 

3·-22 "if 82357 AOO 3/85 



MANAGING PROCESSES 
Creating and Communicating With a New Process 

The new process picks up this message by opening, then reading, 
its $RECEIVE file. Additionally, the new process ensures that 
the message is from its creator by comparing the process ID 
returned from the MOM procedure with that returned from the 
LASTRECEIVE procedure. If the two process IDs do not match, 
the message is ignored, and the new process reads the $RECEIVE 
file again: 

new process 

INT .RECEIVE[O:ll] := ["$RECEIVE", 8 * [" "]]; 
.PID[0:3], .lastApid[0:3], 
RECVAFNUM, .BUFFER[0:99], NUMAREAD; 

First, obtains the process ID of the creator • . 
CALL MOM ( PID ); 

Then the new process opens and reads $RECEIVE: 

CALL OPEN ( RECEIVE, RECVAFNUM ); 
IF < THEN CALL ABEND; ! open failed. 

CALL READ ( RECVAFNUM, BUFFER, 100, NUMAREAD ); 
IF< THEN ••• ; ! error occurred. 

If the read was successful and the message was from the creator, 
"GET TO WORK" is returned in BUFFER and 19 is returned in 
NUMAREAD. 

The new process verifies that the message is, in fact, from its 
creator: 

. 
CALL LASTRECEIVE ( LASTAPID ); 
IF< THEN ••. ; ! error occurred • . 
IF LASTAPID <> PID FOR 4 THEN GOTO reAread; ! ignore message. 

The following process control procedures are useful when creating 
or communicating with new processes: 

~ 82357 AOO 3/85 3-23 



MANAGING PROCESSES 
Execution Priority 

CONVERTPROCESSNAME converts a process name from local to network 
form. 

CREATEREMOTENAME generates a process name for a rE~mote system. 

GETPPDENTRY returns the PPD entry in a remote system 
associated with an entry number (a number 
specifying an ordinal position in the PPD). 

MYSYSTEMNUMBER provides a process with the system number 
(if any) of the system in which it is 
running. 

PROCESSINFO returns requested information regarding a 
process's status. 

PROGRAMFILENAME provides a process with the name of its 
program file. 

EXECUTION PRIORITY 

System processes, such as a process controllirig a disc, are 
subject to the same priority structure as application processes. 
Therefore, it is important that priorities be assigned in a 
manner that permits necessary system operations to take place 
when needed. 

For example, suppose a system process controlling a disc is 
assigned a priority of 150, and an application process in the 
same processor module that uses the disc is assigned a priority 
of 200. Initiating a nowait operation with the disc does not 
provide the intended result because the disc process, having a 
lower priority, never gets a chance to execute. Only when the 
application process is suspended because of a call to the 
AWAITIO procedure does the disc process finally execute and 
complete the I/O operation. 

Suggested Priority Values 

The following is an overview of suggested priority values for 
system and user processes. System priorities are set at system 
generation. 

3-24 ..-, 82357 AOO 3/85 



MANAGING PROCESSES 
Execution Priority 

System Processes 

Disc I/O 
processes 

Memory Manager, 
Operator Process, 
$NCP, etc. 

System Monitor 
Nondisc I/O 

processes 

Priority 

220 

210 
210 

200 
199 

User Processes 

only processes that do not 
use virtual memory 

command interpreters used to 
run application processes 

application processes 

150 command interpreters used for 
program development 

149 editors used for program 
development (this priority 
is assigned automatically by 
command interpreters running 
at priority 150) 

145 spoolers used for program 
development 

140 compilers and background 
batch processing 

The example in Figure 3-5 shows how processor time is divided 
among three processes executing in the same processor module. 
Two of the processes are scheduled with an execution priority 
of 199; the other has a lower priority of 150. 

Notice that processor time alternates between the two processes 
executing with a priority of 199. When one process is suspended 
for I/O, the other process runs. 

The only time that the process with a priority of 150 executes 
is when both the other processes are suspended. Additionally, 
the lower-priority process is immediately suspended when a 
higher-priority process becomes ready. 

This example does not account for the effects of system 
processes; nor does it illustrate floating priorities, which 
apply only when a process becomes excessively CPU-bound. 

~ 82357 AOO 3/85 3-25 



MANAGING PROCESSES 
Execution Priority 

CPU 
Time 

Assigned 
by 

Dispatcher 

c 

INT .PROG1 [0:11]: = "$SYSTEM SYSTEM SORT 
. PROG2 [O: 11 ]: = "$VOL 1 SVO L LOG 

LITERAL PRl200=200, PRl150= 150, CPUI = 1; 
INT PID1, PID2, PID3, ERROR; 

CALL NEWPROCESS (PROG1, PRl200, 3, CPU1, PID1, ERROR); 
! (1,7 returned in <PID1 >) 

CALL NEWPROCESS (PROG1, PRl200, 2, CPU1, PID2, ERROR); 
! (1,8 returned in < PID2>) 

CALL NEWPROCESS (PROG2, PRl150, 4, CPU1, PID3, ERROR); 
! (1,9 returned in < PID3 >) 

l 
Process9 

!;;-1 : ~ 
~ I~ 

I 

i ~i-~~=~-1 / i i / \ 

i Bson' : Gr1 : a~g3~· G I Code I~ , 
I I I . 

\ : : 
---\ ) I 

,r-+ 
j (Pnonty-=200) I I {Priority - 200) j I (Priority= 150) 

:-~Ready----:-- r----f•dYi _ - - 1 ______ 1Ready i-
i ~ I 1

1 
I I 1 

I I 
T I I I 

I I I I I I : I I 
I ~ I I : I I I I 

: - Lspendeld -----.~I I 
1

1 1' 

1

1 I I 10,110 

I I I I I 
I I I I I ~ I 

I I I I 1 I I 
I Ready ....__ 110 Completes ~ J I 
I I i i ; E I I 
I I I I I I I 

I rnl ~----T --- - I I - Su~g,~7g• 1, I 
I ~ I I I I I I 

I
: ~ - Lp.J ____ LJ ________ L_J _____ _.rn: ~v~: 

1 I 10,110 I I I 
I I I I I I I I 
I I I I I I I I 

I 
I I I J I I- llOComple~es 
I I I ' I I I 

I I I I I A I I I I 
I I I I I ~ I I I I I Ready - llOComplefes 1 I I 

I I i I ~ I I I I 
I I 
I I 

A I I I I J lmllO I I I 
~ I 1 I : 1 I I I 

~ I I j l 
E l J. J. l l J 

I 
I 

I 

I 
I 
I 
I 
I 

.1 

S5004-040 

Figure 3-5. Execution Priority Example 

3-·26 ~ 82357 AOO 3/85 



SECTION 4 

COMMUNICATING WITH OTHER PROCESSES 

This section describes the system capability to pass information 
(such as messages of completion) from one process to another. 
When more than one process exists, it is often important that a 
degree of communication can be established between them. The 
types of communication available, the procedures used to set it 
up, and the controls needed to avoid potential error are 
described here. 

The file system provides for data transfers between application 
processes in blocks of 0 to slightly more than 32,000 characters. 
Interprocess communication is accomplished by standard file 
system procedure calls. 

The programming described in this section requires that the 
processes exist; and to exist they must first be created. For 
the definition of a process and a description of how processes 
are created and controlled, see Section 3. 

The example given with "Creating and Communicating with a New 
Process" near the end of Section 3 shows how to use the 
NEWPROCESS procedure to run a program and how to use the file 
system procedures to send and receive a startup message. The 
startup message is explained in Section 5. 

A simplified method of starting a process is available to users 
of sequential files through use of the INITIALIZER. It is 
described in the System Procedure Calls Reference Manual. 
Examples of the INITIALIZER procedure are presented in 
Section 17, "Sequential I/O Procedures". 

/'f 82357 AOO 3/85 4-1 



COMMUNICATING WITH OTHER PROCESSES 
Interprocess Communication 

GENERAL CHARACTERISTICS OF INTERPROCESS COMMUNICATION 

A file is opened to receive and, optionally, reply to messages 
from all other processes, using: 

$RECEIVE 

The device type for $RECEIVE is 2. 

A file is opened to send messages to a process and, optionally, 
wait for a reply, using a process ID. If the open is to a 
process or a process pair whose name is in the proc~ss-pair 
directory (PPD), the process ID consists of a symbolic: 

$<process-name> or \<sysnum><process-name> 

If a network ID is used, <sysnum> is the system number. 

The process-name form of the process ID can be further qualified 
at file open time by adding one or two optional qualifier names. 
This provides for process file names of the form: 

Words: 

[0:3] 
[4:7] 
[8:11] 

Content: 

$<process-name> or \<sysnum><process-name> 
#<lst-qualif-name> 
<2nd-qualif-name> 

The device type for a file representing a process is 0. 

The successful completion of a write to another process means 
that the process is running and has read the messag1e through its 
$RECEIVE file. 

The WRITE or WRITEREAD <count-written> parameter, when writing to 
another process, indicates the number of bytes read by the 
destination process. The <count-read> parameter, when WRITEREAD 
is called to communicate with another process, indicates the 
number of bytes returned from the process. 

The file system automatically tries all paths when writing to 
another process if the process was opened with a sync depth 
greater than zero. An error return of a path error in this 
case then indicates that the process is no longer accessible. 

A "sync ID" scheme is provided that allows a process reading 
$RECEIVE to detect duplicate requests from requester processes 
(such duplicate requests are caused by a backup requester process 
reexecuting the latest request of a failed primary requester 
process, or by the file system resending the latest request from 
a requester process because the primary server process failed). 

4.-2 /'ft 82357 AOO 3/85 



COMMUNICATING WITH OTHER PROCESSES 
Interprocess Communication 

A sync ID is a double-word, unsigned integer whose value is sent 
along with each interprocess message. Each opener of the process 
has its own sync ID. Sync IDs are not part of the message data; 
rather, the sync ID value associated with a particular message is 
obtained by the receiver of a message by calling the RECEIVEINFO 
procedure. 

For a process reading the $RECEIVE file, information about the 
latest message read from the file can be obtained by calling the 
LASTRECEIVE or RECEIVEINFO procedure. This information includes: 

• The process ID of the process that sent the message: This 
parameter is returned by both LASTRECEIVE and RECEIVEINFO. 

• The message tag of the message (see "Types of Communication 
between Processes" in this section): This parameter is 
returned by both LASTRECEIVE and RECEIVEINFO. 

• The sync ID of the message (see "Sync ID for Duplicate Request 
Detection" in this section): This parameter is returned by 
RECEIVEINFO. 

• The file number of the sender's file that sent the message: 
The file number parameter allows the receiver to identify 
separate opens by the same sender. The value returned in 
<f ilenum> is the same as the file number used by the sender to 
send the message. This parameter is returned by RECEIVEINFO. 

• The number of reply bytes expected by the sender (<read
count> value): The <read-count> parameter allows the receiver 
process to identify the type of request being made by the 
sender. If <read-count> equals 0, a WRITE request or 
WRITEREAD request with a read count of 0 was made; if 
<read-count> is ~reater than 0, then the requester performed a 
WRITEREAD request of <read-count> bytes. This information can 
be used to determine if the sender is simply sending data (if 
<read-count>= 0, then sender is listing); or expects a reply 
(if <read-count>> 0, then sender is prompting). This 
parameter is returned by RECEIVEINFO. 

Messages from the command interpreter (such as the startup 
parameter message) are read through the $RECEIVE file. 

System messages are read through the $RECEIVE file. The receipt 
of a system message causes a condition code of CCG to be returned 
when the read on $RECEIVE completes. Note that messages from the 
command interpreter are not system messages, and therefore do not 
cause a CCG indication. 

/1 82357 AOO 3/85 4-3 



COMMUNICATING WITH OTHER PROCESSES 
Summary of Applicable Procedures 

A process specifies at file open time whether or not it wishes to 
receive OPEN, CLOSE, CONTROL, SETMODE, RESETSYNC, and CONTROLBUF 
system messages: 

• The OPEN and CLOSE system messages are received by a process 
when it is opened or closed. 

• The CONTROL, SETMODE or SETMODENOWAIT, and CONTROLBUF 
procedures can be called for files representing processes. 
The process referenced by the call is sent a system message 
containing the CONTROL, SETMODE, or CONTROLBUF parameters. 

• For an explanation of the RESETSYNC procedure, see Section 12. 

If. a process is coded to receive these messages, the process ID 
of the application process that called OPEN, CLOSE, CONTROL, 
sgTMODE, SETMODENOWAIT, RESETSYNC, or CONTROLBUF is obtained by 
calling the LASTRECEIVE or RECEIVEINFO procedure. 

SUMMARY OF APPLICABLE PROCEDURES 

U!3e the following procedures to perform input-output operations 
with other processes: 

DEVICEINFO provides the device type and record length for an 
interprocess file. 

OPEN establishes communication with a file. 

READ reads information from the $RECEIVE file. 

READUPDATE reads a message from $RECEIVE in anticipation of 
replying to the originator of the message in a 
subsequent call to REPLY. 

LASTRECEIVE returns the process ID and/or the message tag 
associated with the last message taken from the 
$RECEIVE file. 

RECEIVEINFO returns process ID, message tag, error recovery 
(sync ID) and/or request-related (file number and 
read count) information associated with the last 
message read from the $RECEIVE file. 

REPLY replies, by way of the $RECEIVE file, to the 
originator of a message that was previously received 
in a call to READUPDATE. Optionally, REPLY uses the 
message tag returned from LASTRECEIVE to designate 
which message is to be replied to. 

4·-4 Af' 82357 AOO 3/85 



WRITE 

WRITEREAD 

CONTROL 

CONTROLBUF 

AWAI TIO 

CANCELREQ 

FILEINFO 

SETMODE 

COMMUNICATING WITH OTHER PROCESSES 
Types of Communication Between Processes 

sends a message to a designated process referenced 
by a process ID. 

sends a message to a designated process referenced 
by a process ID, then wait for a reply message back 
from that process. 

issues CONTROL operations to a process. 

issues CONTROLBUF operations to a 
process. 

waits for completion of an outstanding I/O 
operation pending on an open file. 

cancels the oldest outstanding operation, 
optionally identified by a tag, on an open file. 

provides error information and characteristics 
about an open file. 

issues SETMODE functions to a process. 

SETMODENOWAIT performs the same functions as SETMODE, except in a 
nowait manner on an open file. 

CLOSE stops access to an open file. 

TYPES OF COMMUNICATION BETWEEN PROCESSES 

There are two types of communication possible between processes: 

• One-way communication (destination calls READ) 

ORIGINATOR DESTINATION 

(A) ---~------~--MESSAGE (B) 

CALL WRITE; CALL READ; 

The destination picks up a message by calling the READ 
procedure. The originator's WRITE completes when the 
destination's READ completes. If the originator sends a 
message by a call to the WRITEREAD procedure, the WRITEREAD 
completes when the destination's READ completes. No data is 
returned to the originator. 

"'1 82357 AOO 3/85 4-5 



COMMUNICATING WITH OTHER PROCESSES 
Types of Communication Between Processes 

• Two-way communication (destination calls READUPDATE and REPLY) 

REQUESTER (ORIGINATOR) SERVER 

(A) (B) 
REPLY "'4---·~~~---

CALL WRITEREAD; CALL READUPDATE; 

process the request 

CALL REPLY; 

The server process picks up a message by calling the 
READUPDATE procedure then, subsequently, replies to the 
message in a call to the REPLY procedure. The requester 
process sends the message and waits for the reply by calling 
the WRITEREAD procedure. The WRITEREAD completes when the 
server's REPLY completes. If the requester sends a message 
by calling the WRITE procedure, the WRITE completc~s when the 
destination's REPLY completes. No data is returned to the 
requester. 

~nchronization 

It is important to note that, while a message transfer is in 
progress, whether it is a one-way or two-way message, the two 
processes involved in the transfer are synchronized. 
For example, if there are two processes communicatinq-
processes A and B: 

REQUESTER SERVE:R 

(A) (B) 

• If process B reads a message by using the READ procedure, 
the process A call to WRITE or WRITEREAD does not complete 
(and therefore A may become suspended) until the process B 
call to READ completes. 

• If process B reads a message using the READUPDATE procedure, 
the process A call to WRITE or WRITEREAD does not complete 
(and therefore A may become suspended) until the process B 
call to REPLY completes. 

4--6 

It is also possible for the server to queue requests before 
replying: 

~ 82357 AOO 3/85 



(A) 
(C) 

( n) 

(A) 
( c) 

( n) 

CALL WRITEREAD; 

COMMUNICATING WITH OTHER PROCESSES 
Types of Communication Between Processes 

REQUEST 
REQUEST 

REQUEST 

REPLY 
REPLY 

REPLY 

} 
} 
} QUEUED BY (B) 
} 
} 
} 

THE REQUESTS ARE 
PROCESSED 

} 
} REPLIES BY 
} (B) (NOT 
} NECESSARILY 
} IN THE ORDER 
} RECEIVED) 

CALL READUPDATE; 
CALL LASTRECEIVE(,n); 

fill the request . 
CALL REPLY(,,,n); 

The maximum number of messages that the server process expects 
to queue is specified when it opens its $RECEIVE file. To 
identify each incoming message and direct a reply back to the 
requester, a message tag is obtained by calling the 
LASTRECEIVE or RECEIVEINFO procedure immediately following 
each call to READUPDATE. To indicate which message a response 
is being made for, the message tag associated with the 
particular message is passed back to the system when the REPLY 
procedure is called to make the response. (The message tag is 
shown as parameter "n" in the above example.) 

$RECEIVE File 

The $RECEIVE file is used by a process to read and optionally 
reply to messages from other processes and to read messages from 
the operating system. 

Like any other file, the $RECEIVE file must be opened to be 
accessed. Unlike other input files, however, reading $RECEIVE 
does not solicit information from some input device. Instead, 
reading $RECEIVE reads unsolicited messages that have been sent 
to a process by way of its process ID or process name. 

"1 82357 AOO 3/85 
4-7 



COMMUNICATING WITH OTHER PROCESSES 
Types of Communication Between Processes 

The following should be taken into consideration when opening the 
$RECEIVE file: 

1. Is nowait I/O desired? 

2. Are OPEN, CLOSE, CONTROL, SETMODE, RESETSYNC, and CONTROLBUF 
system messages desired? 

3. Is two-way communication to be performed and, if so, is the 
opener going to perform message queueing and what is the 
maximum number to be queued? 

Nowait I/O 

If only the startup message is to be read or if it is permissible 
to have the process suspended while waiting for an incoming 
message, then the $RECEIVE file should be opened with wait I/O 
(the default) specified. 

However, if the process must execute concurrently with the 
receipt of messages, the $RECEIVE file must be opened with nowait 
I/O specified. If nowait I/O is specified, a read is issued to 
the $RECEIVE file, and the AWAITIO procedure is called 
periodically to check for an incoming message. This technique is 
quite useful for two reasons: 

• Process execution continues with a minimum amount of time 
wasted waiting for messages that may not be present. 

• If AWAITIO is called for any file (for example, by setting 
<filenum> = -1), then an incoming message can be received 
while waiting for some other nowait I/O operation to complete. 

The following illustrates these principles of nowait I/O: 

INT .RECVAFNAME(O:ll] := ("$RECEIVE", 8 * (" "]]; 
CALL OPEN ( RECVAFNAME, RECVAFNUM, 1 ); nowait I/O 

CALL READ ( RECVAFNUM, RECVABUFFER, COUNT ); 

At some later point in the program, an operation is initiated for 
some other file: 

CALL WRITE ( DISCAFNUM, BUFFERl, ••• ); 

4--8 ~· 82357 AOO 3/85 



COMMUNICATING WITH OTHER PROCESSES 
Types of Communication Between Processes 

Then a call to AWAITIO is made to complete the operation (and 
also check for incoming messages): 

WAIT: 
FNUM := -1: ! wait on any file 
CALL AWAITIO ( FNUM, BUFFER, NUMAREAD,, -lD ): 

When AWAITIO completes, the file number returned is compared with 
the file number of the $RECEIVE file: 

IF FNUM = RECVAFNUM THEN ••••• 

If the file numbers match, a message was received in the $RECEIVE 
file. The message is processed and, so that another incoming 
message can be received, another read on $RECEIVE is initiated. 
Because the call to AWAITIO was actually made to wait on another 
I/O operation, the program calls AWAITIO again. 

CALL READ ( RECVAFNUM, RECVABUFFER, COUNT ): 
GOTO wait: 

the program then returns to the call to AWAITIO to wait 
for the operation to DISCAFNUM to complete (or for another 
message to show up on $RECEIVE). 

The first message (or series of messages) that a process created 
by a command interpreter should expect is the startup message. 
This message, depending on the particular application, may 
contain various parameters to be used by the application process. 
The first word of the message contains a value of -1. See 
Section 5, "Interface to the GUARDIAN Command Interpreter" for 
the message format. 

System Messages 

If the <flags>.<l> parameter of OPEN is a 1, then a process can 
receive OPEN, CLOSE, CONTROL, SETMODE, RESETSYNC, and CONTROLBUF 
system messages through the $RECEIVE file. 

These messages are usually desired only if the receiving process 
is serving several processes or the process is simulating an I/O 
device. The OPEN and CLOSE system messages permit a process to 
keep track of its accessors. The CONTROL, SETMODE, and 
CONTROLBUF system messages permit a process to act as though it 
were an I/O device. The RESETSYNC system message (see RESETSYNC 
procedure in Section 12) informs a process when a file's sync ID 
has been reset. 

~ 82357 AOO 3/85 4-9 



COMMUNICATING WITH OTHER PROCESSES 
Process Files 

Communication Type 

The value of the <receive-depth> parameter of the OPEN call 
determines whether or not a process is to perform two-way 
communication through the $RECEIVE file. 

If <receive-depth> is 0, one-way communication is indicated. 
The receiver can only accept incoming messages~ replies cannot be 
issued. Incoming messages must be read by calls to the READ 
procedure. Calls to READUPDATE and REPLY are not permitted. 

If <receive-depth> is 1 or more, two-way communication is 
indicated. The receiver can accept and reply to incoming 
messages. Messages are read by either the READUPDATE or the READ 
procedure. Messages read by READUPDATE must be replied to by the 
REPLY procedure~ messages read by READ are not replied to. 

If <receive-depth> is more than 1, message queueing is indicated. 
The maximum number of m~ssages that the application process 
expects to have queued at any given moment must be specified in 
the <receive-depth> parameter. If message queueing is performed, 
then a message tag must be obtained in a call to the LASTRECEIVE 
procedure immediately following each call to READUPDATE and 
passed to the REPLY procedure when replying to the message. 

PROCESS FILES 

A process ID is used to open a file and to send messages to a 
designated process and, optionally, to wait for a reply. 

A process ID has two forms: 

If it references a process not in the PPD, it consists of: 

<process-id>[0:2] = <creation-timestamp> 
<process-id>[3] = <cpu,pin> 

which is assigned by the GUARDIAN operating system at process 
creation time. If this form of. process ID is used to open a 
file, the file references that process explicitly: 

(A) 

A opens Busing B's process ID. Communication occurs 
explicitly with B. If B stops or if the processor module 
where B is executing fails, communication can no longer occur. 

4-10 "'1 82357 AOO 3/85 



COMMUNICATING WITH OTHER PROCESSES 
Process Files 

If the process ID references a process or a pair of processes 
whose name is in the PPD, it consists of: 

<process-id>[0:2] = $<process-name> 
<process-id>[3] = " " (two blanks) or <cpu,pin> 

which is application-defined and entered into the PPD by the 
operating system at process creation time. A process name 
consists of a dollar sign ($) followed by up to five alphanumeric 
characters, the first of which must be alphabetic. A <cpu,pin> 
is allowed in this form of process ID so that a file can be 
opened using a process ID returned from NEWPROCESS, MOM, or 
LASTRECEIVE. The <cpu,pin> is ignored as far as determining the 
process to be opened. However, if it is included, it must 
contain a valid CPU number. 

If the process name form of process ID is used to open a file, 
the file references the process pair. If the process opening the 
pair is not a member of the pair, the process name references the 
pair as a single entity. In this situation, the opener must 
specify, by using the <sync-depth> parameter to OPEN, whether or 
not the file system is to automatically redirect communication to 
the backup process in the event that the primary process fails. 

If the <sync-depth> parameter is 1 or more, communication occurs 
with the primary process of the pair while it is operable. If it 
becomes inoperable, subsequent communication is redirected to the 
backup process (if any). This redirection of communication 
occurs in a manner invisible to processes outside of the pair. 
If the backup process does not exist and the primary process is 
inoperable, an error 201 is returned to the originator of a 
message. 

If the <sync-depth> parameter is 0, an error indication is 
returned at the first attempt to communicate with the process 
pair after a failure of the primary process. A subsequent retry 
by the application process causes the file system to redirect the 
retry and all further communication to the backup process. 

For example, a process pair named "$SERVE" is opened with a sync 
depth of 1 (auto-retry by the file system): 

INT .FNAME[O:ll] := ["$SERVE", 9 *[" "]]: 

CALL OPEN ( FNAME, FNUM,, 1 ); 

Process Pair "$SERVE" 

(A) 

\ ·-·-·-·-·-·-·-,... 
(C) 

( c' ) 

Primary Process 

Backup Process 

~ 82357 AOO 3/85 4-11 



COMMUNICATING WITH OTHER PROCESSES 
Sync ID 

A opens the pair using the process name $SERVE. 
Communication occurs implicitly with the primary process C 
while it is operable. If C stops or if C's processor module 
fails, communication is redirected to C'. The failure of C 
and the redirection of communication to C' is invisible to A. 

Process Pair "$SgRVE" 

(A) XXX Failed Primary 

'---------'~ ( c' ) New Primary Process 

If the process accessing the pair is a member of the pair, then 
the process name references the opposite member of the pair. The 
<sync-depth> parameter is ignored in this case. 

For example, each member of the process pair "$SERVE 1
'' opens a 

file using the process name "$SERVE": 

INT .FNAME[O:ll] := ["$SERVE", 9 *[" " ]]; 

CALL OPEN ( FNAME, FNUM ); 

Process Pair "$SERVE" 

( c) ___ ,,,_ (C') 

(C) .... ~--- ( c' ) 

C opens the pair using the process name $SERVE. C 
communicates with its backup process C'. Likewise, C' 
opens the pair using the process name $SERVE. C' then 
communicates with its primary process C. 

SYNC ID FOR DUPLICATE REQUEST DETECTION 

The sync ID scheme allows a server process (the process reading 
$RECEIVE) to detect duplicate requests from requester processes. 
Such duplicate requests are caused for two reasons: 

1. By a backup requester process reexecuting the latest request 
of a failed primary requester process: 

4-·12 ~ 82357 AOO 3/85 



COMMUNICATING WITH OTHER PROCESSES 
Sync ID 

Normal: 

REQUESTER 

(R) REQUEST 1 
I 

(CKPT) = CHECKPOINT OF REQUEST 
I 

(R' ) 

Failure of primary: 

REQUESTER 

( R' ) 

__ -.JI,,_.-... ,. REQUEST 1 xxx 

SERVER 

(S) 

SERVER 

(S) 

This results in the identical request being sent to the 
server. The server must recognize the request as a 
duplicate and return the latest reply for the requester. 

2. By the file system reexecuting the latest request from a 
requester process because the primary server process failed: 

Normal: 

REQUESTER SERVER 

(R) REQUEST 1 (S) 
I 

CHECKPOINT OF REQUEST = (CKPT) 
I 

( s' ) 

Failure of primary server (causing the file system to 
reexecute the request to S' on behalf of A): 

( R) REQUEST 1 ---- xxx 
\ _____ ,.._ ( s' ) 

The backup server S' may have executed the request on 
its takeover from S. If so, the backup server must 
identify the request as being one it has already executed 
and return the appropriate reply to the requester. 

Each process file that is open has its own sync ID. A sync ID is 
a double-word, unsigned integer that is kept in a process file's 
access control block (ACB). Sync IDs are not part of the message 
data; rather, the sync ID value associated with a particular 

~ 82357 AOO 3/85 4-13 



COMMUNICATING WITH OTHER PROCESSES 
Sync ID 

message is obtained by the receiver of a message by calling the 
RECEIVEINFO procedure. (The receiver must keep the sync ID value 
associated with a message in its data area). 

A file's sync ID is set to zero at file open and when the 
RESETSYNC procedure is called for that file. (RESETSYNC can be 
called directly and is called indirectly by the CHECKMONITOR 
procedure; see Section 12). When RESETSYNC is called for a 
process file, a RESETSYNC system message is ~ent to that process 
file. The receipt of the message allows the process to clear its 
copy of the sync ID value. 

When a request is sent to a process (such as sending a CONTROL, 
CONTROLBUF, CLOSE, OPEN, SETMODE, WRITE, or WRITEREAD to a 
process file) the requester's sync ID is incremented by one just 
prior to the request being sent. (Therefore, a process's first 
sync ID subsequent to an open will have a value of zero.) 

Note that neither a CANCEL or AWAITIO timeout completion has 
any effect on the sync ID. It will be an ever-increasing value. 

Note also that the sync ID is independent of the <sync-depth> 
parameter to OPEN. 

To understand the sync ID mechanism, you must consider the four 
possible processes involved in a request-reply transaction. You 
must also be familiar with checkpointing as described in Section 
12. The following examples illustrate the four processes: 

REQUESTER SERVER 

(R) PRIMARY (S) PRIMARY 

I 
(R') BACKUP 

I 
( S' ) :BACKUP 

Following an open of the server by the requester, the sync ID 
values in all four processes are synchronized at 0: 

lo The primary requester process R calls OPEN to establish 
communication with the server. This call to OPEN sets the 
sync ID value in the process file's ACB to O. 

2o The call to OPEN by the requester primary causes an OPEN 
system message to be sent to the primary server process S. 
The server calls RECEIVEINFO to obtain the sync ID value 
(whi~h is 0). The server stores this value in a variable in 
its data area. 

3~ The primary server then checkpoints the sync ID and other 
information regarding the open to its backup S'; the backup 
server now has the sync ID value. 

4-·14 Af' 82357 AOO 3/85 



COMMUNICATING WITH OTHER PROCESSES 
Sync ID 

4. The primary requester process R calls CHECKOPEN to open a 
file in the backup requester process to the server. This 
call to OPEN sets the sync ID value in the process file's ACB 
in the backup server process to O. (Note that this open also 
results in an OPEN system message being sent to the server.) 

REQUESTER SERVER 

( 1) (R) ( 2 ) ( s) [O] = SYNC ID VALUE 

I 
[O] = SYNC ID VALUE 

I 
IN DATA AREA 

IN ACB 
(CKPT) (CKPT) 
I I 

( 4) ( R' ) ( 3 ) ( s' ) [O] = SYNC ID VALUE 
[ 0] = SYNC ID VALUE IN DATA AREA 

IN ACB 

The following illustrates the completion of a successful 
transaction: 

1. The transaction begins. The requester builds the request 
message, then checkpoints the request message and current 
sync ID value (now 0) to the backup requester. 

2. The requester sends the request message to the server. At 
this time the file system increments the sync ID value by 1. 

3. The server picks up the request from $RECEIVE, then calls 
RECEIVEINFO to obtain the sync ID value (now 1). 

4. The server examines the sync ID value for the requester to 
determine if it matches a request it has already received. 
Since it does not, the server checkpoints the request and the 
sync ID value to· the backup server S', executes the request, 
and saves the reply value for the request. 

If the request's sync ID had matched, the sync ID saved by 
the server would have been returned to the requester. 

5. The server then returns the reply value to the requester by 
a call to REPLY as shown below. 

-'1J 82357 AOO 3/85 4-15 



COMMUNICATING WITH OTHER PROCESSES 
Sync ID 

REQUESTER 

( 2) REQUEST 
( R) 

REPLY 
[l] = SYNC ID VALUE 

IN ACB 
(CKPT) 

( l ) 
I 

(R' ) 
[O] = SYNC ID VALUE 

IN ACB 

SERVER 

~ 

( 3, 5) ( s) [l] = SYNC ID VALUE 

I 
IN DATA AREA 

(CKPT) 

( 4) 
I 

( s' ) [ 1] = SYNC ID VALUE 
IN DATA AREA 

The following illustrates a transaction with failure of requester 
primary (sync ID= 1): 

60 Transaction begins. The requester builds the request 
message, then checkpoints the request message and current 
sync ID value (now 1) to the backup requester. 

7o The requester sends the request message to the server. At 
this time, the file system increments the sync ID value by 1. 
The sync ID value of the primary is now 2. 

So The server picks up the request from $RECEIVE, then calls 
RECEIVEINFO to obtain the sync ID value (now 2). 

9o The server examines the sync ID value for the requester to 
determine if it matches a request it has already received. 
Since it does not, the server checkpoints the request and the 
sync ID value to the backup server S', executes the 
request, and saves the reply value for the request. 

10. The server then returns the reply value to the requester by 
a call to REPLY. 

11. The primary requester fails. (Note that this example is 
valid no matter when the primary requester may fail). 

12. The backup requester takes over and becomes the primary 
requester. It sends the latest request message that was 
checkpointed by the failed primary to the server~ At this 
time the file system increments the sync ID value by 1. The 
sync ID value of the backup is now 2. 

13. The server picks up the request from $RECEIVE, then calls 
RECEIVEINFO to obtain the sync ID value (now 2). 

14. The server examines the sync ID value for the requester to 
determine if it matches a request it has already received. 
Because the sync ID does match the sync ID for a request from 
this requester, the server knows that it has already executed 

4-·16 ~ 82357 AOO 3/85 



this operation. Therefore, 

COMMUNICATING WITH OTHER PROCESSES 
Sync ID 

it returns the appropriate saved 
reply value for this request. 

REQUESTER 

( 7 ) REQUEST 
( R) 

REPLY 11( 

[2] = SYNC ID VALUE 
IN ACB 

(CKPT) 

( 6 ) 
I 

( R, ) 
[ 1] = SYNC ID VALUE 

IN ACB 

(DUPLICATE) 

(11) xxx 

(12) (R') 

~ REQUEST 

REPLY 

[2] = SYNC ID VALUE 
IN ACB 

(8,10) 

( 9) 

(13,14) 

SERVER 

(S) [ 2] = SYNC ID VALUE 

I 
IN DATA AREA 

(CKPT) 
I 

( s' ) [ 2] = SYNC ID VALUE 
in data area 

(S) [ 2] = SYNC ID VALUE 
IN DATA AREA 

(S') [2] =SYNC ID VALUE 
IN DATA AREA 

The following illustrates a transaction with failure of server 
primary (sync ID= 1): 

6. Transaction begins. The requester builds the request 
message, then checkpoints the request message and current 
sync ID value (now 1) to the backup requester. 

7. The requester sends the request message to the server. At 
this time, the file system increments the sync ID value by 1. 
The sync ID value is now 2. 

8. The server picks up the request from $RECEIVE, then calls 
RECEIVEINFO to obtain the sync ID value. 

9. The server checkpoints the request and the sync ID value to 
the backup server S', executes the request, and saves the 
reply value for the request. 

10. The server primary fails. (Note that this example is valid 
no matter when the primary server may fail). 

11. The backup server takes over and becomes the primary server. 
It executes the latest request that was checkpointed by the 

~ 82357 AOO 3/85 4-17 



COMMUNICATING WITH OTHER PROCESSES 
Sync ID 

failed primary. The new primary server then attempts to 
reply to the request, but because there is no actual request 
pending for this process, the reply fails and the failure is 
ignored. 

12. The file system, on behalf of the requester process, retries 
the current request, sending it to the new primary server. 

13. The server picks up the request from $RECEIVE, then calls 
RECEIVEINFO to obtain the sync ID value. 

14. The server examines the sync ID value for the requester to 
determine if it matches a request it has already received. 
Because the sync ID does match the sync ID for a request from 
this requester, the server knows that it has already executed 
this operation. Therefore, it returns the appropriate saved 
reply value for this request. 

REQUESTER 

( 7) 
( R) 

[2] = 

(CKPT) 

( 6) 
I 

( R' ) 
[l] = 

( R) 

[ 2] = 

(CKPT) 
I 

( R' ) 
[ 1] = 

REQUEST 

SYNC ID VALUE 
IN ACB 

SYNC ID VALUE 
IN ACB 

(12) REQUEST 

REPLY 
SYNC ID VALUE 
IN ACB 

SYNC ID VALUE 
IN ACB 

SERVER 
, __ ,_... 

( 8) ( S) [ 2] = SYNC ID VALUE 
IN DATA AREA 

(CKPT) 
I 

( 9) ( S' ) [ 2] = SYNC ID VALUE 
IN DATA AREA 

(10) xxx 

._______.,...( 13 ) 
( 11 ) ( S' ) [ 2] = SYNC ID VALUE 

------(14) IN DATA AREA 

4-18 /182357 AOO 3/85 



COMMUNICATING WITH OTHER PROCESSES 
Interprocess Communication Example 

Example code in requester and server: 

Requester Server 

CALL OPEN(FNl,Fl, ••• ); 
CALL CHECKOPEN(FNl,Fl, •.. ); 
WHILE 1 DO WHILE 1 DO 

BEGIN . 
! build request. 

BEGIN 
CALL READUPDATE(R,REQ); 
CALL RECEIVEINFO(PID,,SID); 
IF SID = LASTASID THEN 

CALL 
CALL 

END; 

CHECKPOINT(STK,,Fl,REQ, ••• ); ! duplicate request. 
WRITEREAD(Fl, REQ, .•• ); CALL REPLY ( LASTAREPLY) 

ELSE 
BEGIN 

CALL CHECKPOINT(STK,REQ,); 

! process request . . 
LASTAREPLY := NEWAREPLY; 
LASTASID := SID; 
CALL REPLY ( NEWAREPLY ); 

END; 
END; 

Additional information on checkpointing and fault-tolerant 
programming appears in Section 12. 

INTERPROCESS COMMUNICATION EXAMPLE 

The following is an example of a two-way transmission between a 
requester process and a server process. The server accepts OPEN 
and CLOSE system messages but treats CONTROL, SETMODE, and 
CONTROLBUF system messages as invalid operations. No message 
queueing is performed. Only one open is permitted for each 
requester process. 

The following depicts the call in the requester process to open 
the server process: 

INT .SFNAME[O:ll] := ["$SERVE",9 * [" "]]; 

CALL OPEN ( SFNAME, SFNUM,, 1 ); 

! opens a file to the server process. 
! recovery is specified (sync depth = 

Automatic path error 
1 ) . 

The following depicts the calls in the server process to 
initialize the $RECEIVE file: 

/'1 82357 AOO 3/85 4-19 



COMMUNICATING WITH OTHER PROCESSES 
Interprocess Communication Example 

INT .RECVAFNAME[O:ll] := ["$RECEIVE",8 * [" "]]; 

LITERAL FLAGS = %40001, ! enable OPEN, CONTROL, etc. system 
! messages, nowait I/O. 

RECVADEPTH = l; ! reply used; no me£sage queueing. 

CALL OPEN ( RECVAFNAME, RECVAFNUM, FLAGS, RECVADEPTH ); 

! opens the $RECEIVE file in the server process. 

The server also calls the MONITORCPUS procedure. This is done so 
that it will be informed if failure occurs in a processor module 
of any process it is serving (see Section 12 for a description of 
MONITORCPUS): 

CALL MONITORCPUS ( -1 ); 

! monitors all processor modules in the system. 

The following depicts the action of the server process when 
reading the $RECEIVE file: 

INT .RECVABUF[0:255], 
RECVACNT, 

receive buffer. 
receive count . 
requester <process-id>. 
state flag. 

• PID[0:3], 
SYSTEM"MESSAGE; 

INT(32) SYNC"ID, request sync ID value. 

WHILE 1 DO ! loop on requests. 
BEGIN 

CALL READUPDATE ( RECV"FNUM, RECV"BUF, 512 ); $RECEIVE. 
CALL AWAITIO ( RECV"FNUM,, RECV"CNT ); 
IF >= THEN ! read a message. 

BEGIN 
SYSTEM .... MESSAGE := >; ! save system message condition. 
CALL RECEIVEINFO ( PID vr SYNC"ID ); 
IF SYSTEM"MESSAGE THEN 

CALL PROCESS"SYSTEM"MESSAGE (RECV .... BUF,RECV"CNT,PID) 
ELSE 

END; 
END; 

CALL PROCESS .... USER .... REQUEST (RECV"BUF,RECV .... CNT, PID , 
SYNC .... ID ); 

! read a message. 
! loop on requests. 

The following depicts the action in the server process when it 
receives system messages: 

PROC PROCESS .... SYSTEM .... MESSAGE 

4-20 

INT .RECV .... BUF, 
RECVACNT, 

.PID; 

RECV"BUF, RECV"CNT, PID ); 

~ 82357 AOO 3/85 



BEGIN 

COMMUNICATING WITH OTHER PROCESSES 
Interprocess Communication Example 

INT REPLYAERRORACODE := 0, 
REQUESTER; 

CASE $ABS ( RECVABUF ) - 30 OF 
BEGIN 

-30 ! OPEN system message. 
! check for nowait I/O depth > 1. 

IF RECVABUF[l].<12:15> > 1 THEN REPLYAERRORACODE := 28 

! An attempt to open this process with the maximum 
! number of concurrent operations > 1 is rejected with 
! an error 28 indication. 

ELSE 
! try to add opener to server's directory. 
IF NOT ADDPID ( PID ) THEN REPLYAERRORACODE := 12; 

The ADDPID procedure is used to add a new requester 
to the local directory. If the requester's process 
ID is entered successfully (there is room in the 
directory), ADDPID returns a true value, and a 
successful open indication is returned to the 
opener. Otherwise, ADDPID returns a false value, 
and a FILE IN USE error is returned to the opener 
(the open fails). 

-31 ! CLOSE system message. 
CALL DELPID ( PID ); 

! The DELPID procedure is used to delete an entry 
! in the local directory. 

-32 ! CONTROL system message. 
REPLYAERRORACODE := 2; ! invalid operation. 

-33 ! SETMODE system message. 
REPLYAERRORACODE := 2; ! invalid operation. 

-34 ! RESETSYNC system message. 
BEGIN 

REQUESTER := LOOKUPPID ( PID ); 

The LOOKUPPID procedure is used to look up a requester process' 
sync ID in the local directory. If the PID exists, the entry 
number in the directory is returned. If not, a zero is returned. 
(If the requester is not found, you should supply error handling 
at this point.) 

SYNCACOUNT [REQUESTER] := OD; 
END; 

-'1 82357 AOO 3/85 4-21 



COMMUNICATING WITH OTHER PROCESSES 
Interprocess Communication Example 

-35 ! CONTROLBUF system message. 
REPLYAERRORACODE := 2; ! invalid operation. 

OTHERWISE ! other system message. 
BEGIN 

! check for CPU Down message. 
IF RECVABUF = -2 THEN CALL DELALLPIDS (RECVABUF[l]) 

The DELALLPIDS procedure is used to delete all processes 
associated with the failing processor module from the local 
directory. 

ELSE 

END; 
END; ! system message case. 

! reply to system message. 
CALL REPLY (,,,, REPLYAERRORACODE); 

END; ! processAsystemAmessage. 

The following depicts the action of the requester process to send 
a request and wait for a reply from the server process. 

WHILE 1 DO 
BEGIN 

A request is generated by the occurrence of an 
external event. 

! format and send request message to server. 
SENDABUFFER ':=' REQUEST FOR REQUESTALEN; 
CALL WRITEREAD ( SFNUM, SENDABUFFER, REQUESTALEN, 

REPLYACOUNT ); 
IF< THEN ... ; ! fatal error. 

END; 

And the corresponding receipt of the request in the server 
process: 

! global variables 
LITERAL 

MAXAREQSTRS = 16, 

REPLYASIZE = 256; 

INT(32) 

maximum number of requesters 
allowed. 
reply message size. 

! sync count for duplicate request detectiono 
.SYNCACOUNT [l : MAXAREQSTRS] := MAXAREQSTRS '~ [OD]; 

4-22 .., 82357 AOO 3/85 



COMMUNICATING WITH OTHER PROCESSES 
Interprocess Communication Example 

! reply for each requester. 
INT .REPLYABUF [REPLYASIZE : 

MAXAREQSTRS * REPLYASIZE + REPLYASIZE - l], 
! reply error code for each requester • 

• REPLYAERRORACODE [l : MAXAREQSTRS], 
! reply length for each requester • 

• REPLYALEN [l : MAXAREQSTRS]: 

PROC PROCESSAUSERAREQUEST (RECVABUF,RECVACNT,PID ' SYNCAID ): 
INT .RECVABUF, 

RECVACNT, 
.PID, ! PID of requester. 

INT(32) SYNCAID: ! sync ID of request. 
BEGIN 

INT REQUESTER: 

REQUESTER := LOOKUPPID ( PID ): 

The LOOKUPPID procedure is used to look up a requester process 
sync in a local directory. If the PID exists, the entry number 
in the directory is returned. If not, a zero is returned. 
(If the requester is not found, you should supply error handling 
at this point.) 

! check for duplicate request. 
IF SYNCAID <> SYNCACOUNT [REQUESTER] THEN ! new request 

BEGIN 
! save sync count of current requester. 
SYNCACOUNT [REQUESTER] := SYNCAID: 

The request is processed. 

! save the reply. 
REPLYABUF [REQUESTER * REPLYASIZE] ':=' 

RESULT FOR RESULTALEN: 
REPLYALEN [REQUESTER] := RESULTALEN: 
REPLYAERRORACODE [REQUESTER] := RESULTAERROR: 

END: 

! return the reply to the requester. 
CALL REPLY ( REPLYABUF [REQUESTER* REPLYASIZE], 

REPLYALEN [REQUESTER], 

' REPLYAERRORACODE [REQUESTER] ); 

If this is a duplicate request, the last reply is 
returned to the requester. 

-'1 82357 AOO 3/85 4-23 



COMMUNICATING WITH OTHER PROCESSES 
Interprocess Communication Example 

The following are the procedures in the server process that 
maintain the local directory of process IDs. The directory is 
of the form 

INT .PIDS[5:MAX""REQSTRS*5 + 5] := (MAX""REQSTRS "f 5) * [O]; 

[O] [3] [4] 

entry #1 

entry #2 

entry #3 

• 

entry #MAX AREQSTRS 

entry [0:2] = process name OR creation time stamp 
entry [3] = cpu,pin OF PRIMARY PROCESS 
entry [4] = cpu,pin OF BACKUP PROCESS,IF ANY, OR ZERO 

55004-041 

INT PROC LOOKUPPID(PID); 
INT .PID; 

4-24 

return values: 
0 = PID not in directory. 

>O = entry no. of PID in directory. 

BEGIN 
INT ENTRYNO := 0, ! entry no. in local PID directory. 

COMP .... LEN; ! compare length for PID matching. 

COMP""LEN := IF PID.<0:7> = "$"THEN!process name! 3 ELSE 4; 
WHILE (ENTRYNO := ENTRYNO + 1) <= MAX""REQSTRS DO 

IF PID = PIDS[ENTRYNO * 5] FOR COMP .... LEN THEN ! found it. 
RETURN ENTRYNO; 

RETURN O; ! not found. 
END; ! lookuppid. 

""'f 82357 AOO 3/85 



COMMUNICATING WITH OTHER PROCESSES 
Interprocess Communication Example 

INT PROC ADDPID(PID); 
INT .PID; 

return values. 
0 = PID not added to directory. 

>O = entry no. of PID in directory. 

BEGIN 
INT ENTRYNO, !entry in local PID directory. 

ZER0[0:3] := [0,0,0,0]; ! for lookup of empty 
! directory slot 

IF (ENTRYNO := LOOKUPPID(PID)) THEN !already 
BEGIN 

! check for duplicate open. 
IF PIDS[ENTRYNO * 5 + 3] <> PID[3] AND 

PIDS[ENTRYNO * 5 + 4] <> PID[3] THEN 
PIDS[ENTRYNO * 5 + 4] := PID[3]; 

END 
ELSE ! not in directory. First open by PID 

BEGIN 

in directory. 

!first open 
!by backup. 

IF (ENTRYNO := LOOKUPPID(ZERO)) THEN ! look for empty 
slot. 

BEGIN 
PIDS[ENTRYNO * 5] ':=' PID FOR 4; 
SYNCACOUNT[ENTRYNO] := -lD; ! init req. syncAcount 

END; 
END; 

RETURN ENTRYNO; returns zero if no room in directory. 
END; ! ADDPID. 

PROC DELPID(PID); 
INT .PID; ! PID to be deleted. 

BEGIN 
INT ENTRYNO; ! entry number in local PID directory. 

IF (ENTRYNO := LOOKUPPID(PID)) THEN ! delete it. 
IF PIDS[ENTRYNO * 5 + 4] THEN !was open by process pair. 

BEGIN 
IF PIDS[ENTRYNO * 5 + 3] = PID[3] THEN ! close by 

! primary 
! replace primary entry with backup. 
PIDS[ENTRYNO * 5 + 3] := PIDS[ENTRYNO * 5 + 4]; 

! clear backup entry. 
PIDS[ENTRYNO * 5 + 4] := 0; 

END 
ELSE ! was open by one process. 

PI DS [ ENTRYNO * 5] ' : =' [ 0, 0, 0, 0] ; 
END; ! DELP ID. 

~ 82357 AOO 3/85 4-25 



COMMUNICATING WITH OTHER PROCESSES 
Error Recovery 

PROC DELALLPIDS(CPU); 
INT CPU; ! processor module number of PIDs to be deleted. 

BEGIN 
INT ENTRYNO := 0, ! entry in local PID directory. 

temp; 

WHILE (ENTRYNO := ENTRYNO + 1) <= MAXAREQSTRS DO 
BEGIN ! check each entry. 

! check for match with entry's primary CPU. 
IF PIDS[ENTRYNO * 5 + 3] AND 

PIDS[ENTRYNO * 5 + 3].<0:7> =CPU THEN primary 
! down 

! delete primary process and maybe the entire entry. 
CALL DELPID ( PIDS [ENTRYNO * 5] ) 

ELSE 
! check for match with entry's backup CPU. 
IF PIDS[ENTRYNO * 5 + 4] AND 

PIDS[ENTRYNO * 5 + 4].<0:7> =CPU THEN 

! clear the backup entry. 
PIDS[ENTRYNO * 5 + 4] := O; 

END; 
END; ! DELALLPIDS. 

backup 
down. 

ERROR RECOVERY 

For the $RECEIVE file, there are no error conditions for which 
error recovery should be attempted, except error 40 (timeout). 

For a process file opened with a sync depth greater than zero, 
there are no error conditions for which error recovery should 
be retried, except error 40. 

For a process file opened with a sync depth of zero, an operation 
that returns error 201 (PATH DOWN) should be retried once if the 
process file is a process pair. An occurrence of error 201 means 
that the primary process failed. A reexecution of the call that 
returned the error causes communication to occur with the backup 
process, if any. If no backup process exists, a second error 201 
is returned on the reexecution of the call. At this point, the 
error can be considered fatal. 

4-26 "1' 82357 AOO 3/85 



SECTION 5 

INTERFACING TO THE GUARDIAN COMMAND INTERPRETER 

This section describes the interface to the GUARDIAN operating 
system through the GUARDIAN command interpreter (COMINT). 

GENERAL CHARACTERISTICS OF THE COMMAND INTERPRETER 

The GUARDIAN command interpreter provides a direct interface 
between system users and the GUARDIAN operating system. Users 
at on-line terminals interact with the command interpreter by 
typing in commands. If a command is given to run a program, 
then the program begins executing. Such a program may be either 
a user-written program or a utility program supplied by Tandem, 
such as FUP, PUP, BACKUP, RESTORE, SPOOLCOM, and so on. 

If a command is given to perform some specific operation, the 
necessary system functions are executed. After completing the 
command, the command interpreter then asks the user for another 
command (by displaying a colon ":"on the terminal). 

Some functions that the command interpreter performs are: 

• List disc file names 

• Create, rename, and purge disc files 

• Set default disc volume/subvolume names and default security 

• Run and pass parameters to processes 

• Put a process into the debug state 

• Stop process execution 

Af' 82357 AOO 3/85 5-1 



COMMAND INTERPRETER INTERFACE 
Passing Parameter Information to an Application 

Most of these functions do not directly affect the design of your 
application program. You must, however, be aware of how the 
command interpreter passes parameters to your application 
processes and how the default volume and subvolume names are 
used. (For a description of the command interpreter functions, 
see the GUARDIAN Operating System User~s Guide). 

An additional consideration is that the command interpreter makes 
use of the BREAK feature on the home terminal. Beca1use of this, 
any application process that is run with the command interpreter 
and also uses BREAK on the home terminal, must do so in a proper 
manner. See "Using BREAK (Multiple Processes per Terminal)" in 
Section 6. 

PASSING RUN-TIME PARAMETER INFORMATION TO AN APPLICA.TION PROCESS 

Application-dependent parameter information can be specified 
prior to and at the same time as the command is given to run a 
program. This information is sent to the new process in the form 
of one or more interprocess messages. 

There are six command interpreter commands that can affect the 
parameter information to be sent: 

1. The VOLUME command specifies the default volume and subvolume 
names to be passed to the new process. Network volume names 
cannot exceed six characters, excluding the dollar sign "$". 

2. The RUN command specifies the IN and OUT files and optional 
parameter string to be passed to the new process. 

The default volume and subvolume names, the IN and OUT file 
names, and the optional parameter string are passed to your 
application process in the startup message. If the network 
form of the object file is given, the network form of the 
volume IN and OUT file names indicating the node number of 
the current default node, will be in the startup message. 

3.. The ASSIGN command is used to make logical file assignments 
for programs written in such languages as COBOL or FORTRAN. 
A logical file assignment equates a Tandem file name with a 
logical file of a program and, optionally, assigns file char
acteristics to that file. For each ASSIGN in effect when a 
program is run, one assign message containing the assignment 
parameters is sent at the option of the new process. This 
follows the transmission of the startup message. 

4. The PARAM command is used to associate an ASCII value with a 
parameter name. This command is typically used by languages 

5-2 -1f 82357 AOO 3/85 



COMMAND INTERPRETER INTERFACE 
Passing Parameter Information to an Application 

such as COBOL or FORTRAN to give initial values to program 
variables. If any PARAMs are in effect when a program is 
run, a single param message containing the parameter names 
and values is sent at the option of the new process. This 
follows the transmission of any assign messages (if 
requested). 

5. The CLEAR command is used to clear ASSIGN and PARAM settings. 

6. The SYSTEM command, used with a nonblank system name, 
implicitly causes remote programs to be run and the network 
form of the volume IN and OUT file names to be passed in the 
startup message. 

NOTE 

If your process opens the $RECEIVE file and specifies 
that it wishes to receive OPEN, CONTROL, SETMODE, and 
CLOSE system messages, the first message it receives 
will be an OPEN message. This is followed by the 
startup message and then by any assign messages and/or 
a param message. The final message is a CLOSE message 
(the OPEN and CLOSE messages are caused by the command 
interpreter opening and closing the new process). 

The VOLUME, RUN, ASSIGN, PARAM, CLEAR, and SYSTEM commands are 
documented in the GUARDIAN Operating System Utilities Reference 
Manual. 

The startup, assign, and param messages associated with the above 
commands are of particular importance to users of both FORTRAN 
and COBOL. The routines in the Saved Message Utility can be used 
to check for the existence of initial process creation messages 
and to retrieve, replace, or delete portions of them. Then by 
using the CREATEPROCESS routine, you can create a new process 
with its own set of assign, param, and startup messages. Refer 
to the Saved Message Utility in the FORTRAN or COBOL reference 
manual. 

Startup Message 

The open and startup messages are sent to the new process 
immediately following the successful creation of the new process. 
The open and startup messages are read by the process from its 
$RECEIVE file. 

"" 82357 AOO 3/85 5-3 



COMMAND INTERPRETER INTERFACE 
Startup Message 

The form of the startup parameter message is: 

STRUCT CIASTARTUP; 
BEGIN 

INT MSGCODE; 
STRUCT DEFAULT; 

BEGIN 
INT VOLUME [0:3], 

SUBVOL [0:3]; 
END; 

STRUCT INFILE; 
BEGIN 

INT VOLUME 
SUB VOL 
DNAME 

END; 
STRUCT OUTFILE; 

BEGIN 

[ 0 : 3 ] ' 
[ 0 : 3 ] ' 
[0:3]; 

INT VOLUME [0:3], 
SUBVOL [0:3], 
DNAME [0:3]; 

END; 
STRING PARAM [O:n-1]; 

END; ! CIASTARTUPAMSG. 

word 
[O] ·-1. 

[l] $<default-volume-name>. 
<default-subvol-name>. 

[9] IN parameter <filename> 
of RUN command. 

[21] OUT parameter <filename> 
of RUN command. 

[33] <parameter-string> (if any) 
of RUN command. This is in 
either of the following 
forms: 

or 

<parameter-string> 
<null>[<null>] 

<null><null> 

<n> = ( <count read> - 66 

The maximum length possible for a startup message is 596 bytes 
(including the trailing null characters). The parameter message 
length is always an even number. If necessary, the command 
interpreter pads the <parameter-string> with an additional null. 

The following is an example showing an application process 
reading its startup message. 

First, the following VOLUME command is entered: 

:VOLUME $STORE1.ACCTRCV 

Then the following RUN command is given: 

:RUN XNSTP/IN INFILE, OUT OUTFILE, NAME/ 1,10,BYTE,DESCENDING 

5--4 "1J 82357 AOO 3/85 



COMMAND INTERPRETER INTERFACE 
Startup Message 

The parameter NAME without a corresponding <process-name> causes 
the system to create a name for the new process. The name is 
entered into the PPD if the process is created successfully. 

The command interpreter first attempts to run the program 
indicated by the expanded form of XNSTP--$STORE1.ACCTRCV.XNSTP. 
If the new process is created, the command interpreter forms a 
message to be sent to the new process from the current default 
volume and subvolume names, the IN parameter information, the OUT 
parameter information, and the application-dependent parameter 
string. The message contains the following information: 

word[O] = - 1 means start-up message. 
word[l] = "$STORE1 " $<default-volume-name>. 
word[5] = "ACCTRCV " <default-subvol-name>. 
word[9] = "$STORE1 ACCTRCV INFILE " IN param <filename>. 
word[21] = "$STORE1 ACCTRCV OUTFILE " OUT param <filename>. 
word[33] = "1,10,BYTE,DESCENDING" <parameter-string>. 
word[43] = <null><null> null terminators. 

One of the first actions the XNSTP program must perform is to 
open and read the $RECEIVE file: 

INT .RECEIVE[O:ll] := ["$RECEIVE", 8 * [" "]], data 
RECVAFNUM, declarations 
INAFNUM, 
OUTAFNUM, 
NUM, 

.BUFFER[0:99], 
NUMAREAD, 

.CREATOR[0:3], 

.LASTPID[0:3]; 
LITERAL 

RCVAFLAGS = %40000, 
RCVADEPTH = l; 

STRING .PARMS[0:39], .SBUFFER := @BUFFER '<<' l; 

CALL OPEN(RECEIVE, RECVAFNUM, RCVAFLAGS, RCVADEPTH); 

CALL READUPDATE(RECVAFNUM, BUFFER, 200, NUMAREAD); . 
The application program assumes that the first message is the 
open message: 

CALL REPLY "" 0); 

The application program then reads the startup message: 

CALL READUPDATE(RECVAFNUM, BUFFER, 200, NUMAREAD); 

-'1 82357 AOO 3/85 5-5 



COMMAND INTERPRETER INTERFACE 
}\ssign Message 

The application program then ensures that the incoming message is 
the startup message: 

IF BUFFER <> -1 THEN CALL ABEND: 

The application process opens its input and output files using 
the information passed in the parameter message: 

CALL OPEN(BUFFER[9],inAfnum); 

opens "$STORE1 ACCTRCV INFILE" 

CALL OPEN(BUFFER[21], OUTAFNUM); 

opens "$STORE1 ACCTRCV OUTFILE" 

then saves the <parameter-string> information: 

. 
NUM := NUM""READ - 66; ! length of parameter string in bytes. 
IF NUM <= 40 THEN ! parameter string will fit, move it in. 

PARMS ':=' SBUFFER[66] FOR NUM 
ELSE ! parameter string too long. 

~ssign Message 

One assign message is optionally sent to the new process for each 
assignment in effect at the time of the creation of the new 
process. Assign messages are sent immediately following the 
startup message if the process does either one of the following: 

• The process replies to the startup message with an error 
return value of REPLY= 70 (CONTINUE). The command 
interpreter then sends both assign and param messages. 

• The process replies to the startup message with an error 
return value of 0, but with a reply of one to four bytes, and 
bit 0 of the first byte of the reply is set to 1. The command 
interpreter also sends param messages if bit 1 of the first 
byte of the reply is set to 1. 

5-6 -'1 82357 AOO 3/85 



The form of the assign message is: 

COMMAND INTERPRETER INTERFACE 
Assign Message 

STRUCT CIAASSIGN; assign message. 
BEGIN 

INT MSGACODE; [O] -2 

STRUCT LOGICALUNIT; 
BEGIN 

STRING PROGNAMELEN, 
PROGNAME[0:30], 
FILENAMELEN, 
FILENAME[0:30]; 

END; 

INT(32) FIELDMASK; 

STRUCT TANDEMFILENAME; 
BEGIN 

INT VOLUME [0:3], 
SUBVOL [0:3], 
DFILE [0:3]; 

END; 
CREATESPEC 

INT PRIMARYEXTENT, 
SECONDARYEXTENT, 
FILECODE, 
EXCLUSIONSPEC, 

END; 

ACCESSSPEC, 

RECORDSIZE, 
BLOCKSIZE; 

PARAMETERS TO ASSIGN COMMAND. 

[l] name length, 0:31 bytes 
<program-unit> I * } <blanks> 

[17] name length, 0:31 bytes 
<logical-f ile><blanks> 

[33] bit mask to indicate 
which of the following fields 
were supplied (1 =supplied): 

.<O> = <Tandem-filename> 

.<l> = <pri-extent-size> 

.<2> = <sec-extent-size> 

.<3> = <file-code> 

.<4> = <exclusion-size> 

.<5> = <access-spec> 

.<6> = <record-size> 

.<7> = <block-size> 

[35] <Tandem-filename> 

[47] <pri-extent-size>. 
[48] <sec-extent-size>. 
[49] <file-code>. 
[50] %00 if SHARED, } 

%20 if EXCLUSIVE, } 
%60 if PROTECTED. } 

[51] %0000 if I-0, } 
%2000 if INPUT, } 
%4000 if OUTPUT. } 

[50-51] corresponds to } 
flag param of OPEN. } 

[52] <record-size>. 
[53] <block-size>. 

The length of this message is 108 bytes. 

~ 82357 AOO 3/85 5-7 



COMMAND INTERPRETER INTERFACE 
Param Message 

Param Message 

A param message is optionally sent to the new process if any 
parameters are in effect at the time of the creation of the new 
process. The param message is sent immediately following any 
assign messages if the process does either one of the following: 

• The process replies to the startup message with an error 
return value of REPLY= 70 (CONTINUE). The command 
interpreter then sends both assign and param messages. 

• The process replies to the startup message with an error 
return value of 0, but with a reply of one to four bytes, 
and bit 1 of the first byte of the reply is set to l~ 
The command interpreter also sends assign messages if 
bit 0 of the first byte of the reply is set to 1. 

The form of the param message is: 

STRUCT CI"'PARAM; 
BEGIN 

INT MSG"'CODE, 
NUMPARAMS; 

STRING PARAMETERS [0:1023]; 
END; 

pa ram message .. 

[ 0] -3 
[l] number of parameters 
included in this message~ 
[2] beginning parameters~ 

The field PARAMETERS in the above message format is comprised 
of NUMPARAMS records of the form (offsets are given in bytes): 

<PARAM>[O] = "n", length in bytes of <parameter-name> 
<PARAM>[l] FOR n = <parameter-name> 
<PARAM>[n+l] = "v", length in bytes of <parameter-value> 
<PARAM>[n+2] FOR v = <parameter-value> 

The maximum length of this message is 1028 bytes. 

5-8 -"1 82357 AOO 3/85 



COMMAND INTERPRETER INTERFACE 
Reading All Parameter Messages 

Reading All Parameter Messages 

If you want to read all of the parameter messages, you must 
consider the following: 

1. To indicate to the command interpreter that all current 
parameter information is desired, the application process 
must reply to the startup message. Therefore, the startup 
message must be read by a call to READUPDATE so that a 
subsequent reply can be made. This means that the $RECEIVE 
file must be opened with: 

OPEN <receive-depth> >= 1 

2. The command interpreter indicates the end of the series of 
parameter messages by closing its file to the application 
process. Therefore, the application process must open the 
$RECEIVE file with: 

OPEN <flags>.<l> = 1 

so that it will receive OPEN and CLOSE system messages. 

Your application process receives the following sequence of 
messages when reading all parameter messages: 

1. OPEN system message (message code = -30) 

2. Startup message (message code = -1) 

Your process must reply with REPLY <error-return> = 70, (or with 
a buffer at least one byte long, with bits <O> and <l> both set 
to 1). 

3. Zero or more assign messages (message code = -2) 

4. Zero or one param message (message code = -3) 

5. CLOSE system message (message code = -31) 

The general sequence to read the parameter messages is shown in 
the following example: 

-'if 82357 AOO 3/85 5-9 



COMMAND INTERPRETER INTERFACE 
Reading All Parameter Messages 

PROC READAPARAMETERAMESSAGES; 
BEGIN 

5-·10 

INT .RCVAFNAME [0:11] := ["$RECEIVE", 8 * [" "]], 
RCVAFNUM, 

.RCVABUF [0:514] 
CNT,..READ, 
REPLYACODE := O; 

LITERAL 
RCV""FLAGS 
RCVADEPTH 
RCVACNT 
CLOSE,..MSG 

= %40000, 
= 1, 
= 1030, 
= -31; 

OPEN-CLOSE messages. 
READUPDATE-REPLY. 

CLOSE message code. 

! open $RECEIVE. 
CALL OPEN ( RCV,..FNAME, FCV""FNUM, RCV,..FLAGS, RCV""DEPTH ); 
IF<> THEN ••• ; 
! read open message. 
CALL READUPDATE ( RCV,..FNUM, RCV""BUF, RCV,..CNT, CNT,..READ ); 
WHILE RCV,..BUF <> CLOSE,..MSG DO 

BEGIN 
CASE $ABS RCV,..BUF ) OF 

BEGIN 
0 ! 

-1 ! BEGIN ! startup message • . 
REPLY""CODE := 70; 

process startup message. 

END; 
-2 BEGIN ! assign message • . 

REPLY,..CODE := O; 
process assign message. 

END; 
-3 BEGIN ! param message • . 

REPLY,..CODE := O; 
process param message. 

END; 
OTHERWISE; 

END; 
CALL REPLY ( ,,,, REPLYACODE ); 
CALL READUPDATE ( RCV,..FNUM,RCV,..BUF,RCV,..CNT,CNT,..READ ); 

END; ! while not CLOSEAMSG. 
close $RECEIVE. 

CALL REPLY (,,,,0); ! reply to close,..msg. 
CALL CLOSE ( RCVAFNUM ); 

END; ! read,..parameter,..messages. 

~ 82357 AOO 3/85 



COMMAND INTERPRETER INTERFACE 
Application Process to CI Interprocess Messages 

APPLICATION PROCESS TO COMMAND INTERPRETER INTERPROCESS MESSAGES 

There are two messages that the command interpreter accepts 
from application processes: 

• The wakeup message (message code = -20) 

• The display message (message code = -21) 

An interprocess message is sent to a particular command 
interpreter by opening the CRTPID of that command interpreter 
and then writing the message using the WRITE procedure (see 
"Processes (Interprocess Communication)" in Section 2). 

Wakeup Message 

The wakeup message, when received by a command interpreter, 
causes that command interpreter, if it is currently in the paused 
state, to return from the paused state to the command input mode 
(to "wake up"). 

If the command interpreter is not in the paused state (if it is 
prompting for a command or executing a command other than RUN), a 
wakeup message is ignored. 

The form of the wakeup message is: 

STRUCT WAKEUPAMSG; 
BEGIN 

INT MSGCODE; -20 
END; 

The length of this message is two bytes. 

The intended use of this message is to allow a process that is 
a descendant of a command interpreter to wake up that command 
interpreter. A typical case is with a nonnamed process pair: the 
backup process calls STEPMOM with the primary process the object 
of the call (so that the backup will know if the primary fails); 
the call to STEPMOM cancels the primary process's relationship 
with the command interpreter. The primary process, just prior 
to stopping, sends a wakeup message to the command interpreter, 
since the stop message will be sent to the backup. 

/1 82357 AOO 3/85 5-11 



COMMAND INTERPRETER INTERFACE 
Application Process to CI Interprocess Messages 

Display Message 

The display message, when received by a command inte!rpreter, 
causes the command interpreter to display the text contained in 
the message. The text is displayed just prior to the next time 
the command interpreter prompts for a command with a ":". 

A command interpreter has the capability of storing up to eight 
132-byte display messages until it is able to display the message 
text. If this buffer is full when another display message is 
sent to it, the incoming display message is rejected with an 
error 45 (FILE IS FULL). 

The form of the display message is: 

STRUCT DISPLAYAMSG; 
BEGIN 

INT MSGCODE; 
STRING TEXT [O:n-1]; 

END; 

-21 
n <= 132~ 

The length of this message is (2 + display text length) bytes. 
The length of the text portion is implied in the write count used 
to send this message. 

5-12 /'f 82357 AOO 3/85 



COMMAND INTERPRETER INTERFACE 
User-Supplied $CMON 

USER-SUPPLIED CI MONITOR PROCESS ($CMON) 

The purpose of a user-supplied command interpreter monitor 
process is to allow users to control and monitor: 

• Logons and logof fs 

• Adding or deleting users 

• Changing user passwords 

• Altering run-time priorities 

• Illegal logon attempts 

To provide these capabilities, the command interpreter opens a 
process named $CMON. The command interpreter notifies the $CMON 
process (by interprocess message) each time one of the following 
commmands is given: ADDUSER, ALTPRI, DELUSER, LOGOFF, LOGON, 
PASSWORD, REMOTEPASSWORD, or implicit or explicit RUN commands. 

The relationship between all command interpreters in the system 
and the $CMON process is that of requesters and server, 
respectively. (See Section 4.) 

(Cil) (CI2) (CI3) ••• (Cin) 

~i 
COMMAND INTERPRETERS 

(REQUESTERS) 

($CMON) CI MONITOR PROCESS (SERVER) 

The $CMON process reads the notification messages from its 
$RECEIVE file. The $CMON process must then reply to each message 
by rejecting the command (in which case the command is not 
executed); accepting the command (the command will be executed 
as is); or in the case of the RUN command, modifying the 
command by specifying a different program file, a different 
processor module for execution, or a different execution 
priority. 

This control is implemented by several interprocess messages to 
the $CMON process and several possible replies that the $CMON 
process may make to the requesting command interpreter in 
response. The $CMON process must call the REPLY procedure to 
make its responses. Therefore, its $RECEIVE file must be open 
with a receive depth >= 1, and the notification messages must be 
read by making calls to READUPDATE. 

~ 82357 AOO 3/85 5-13 



COMMAND INTERPRETER INTERFACE 
User-Supplied $CMON 

Communication Between Command Interpreters and $CMON 

The interprocess messages from a command interpreter to the $CMON 
process include: 

• Logon message 

• Logof f message 

• Process creation message (such as the RUN command) 

• Illegal logon attempts message 

• Add user message 

• Delete user message 

• Alter run-time priorities message 

• Change user passwords message 

All messages are sent to $CMON by command interpreters on a 
nowait basis. If a message cannot be sent or if $CMON does not 
reply, the command interpreter closes the open sent to $CMON and 
proceeds to execute the command as if the $CMON process did not 
exist. 

If the BREAK key is pressed while a message is outstanding to 
$CMON and the owner of BREAK is not a super-ID user, the message 
is cancelled and the command is aborted. If the BREAK key is 
pressed while a message is outstanding, and the owner of BREAK is 
the super ID user, the message is cancelled and the command is 
executed. 

If the command interpreter encounters an I/O error when 
communicating with $CMON, it closes its open to $CMON and no 
longer attempts communication. The command interpreter tries to 
reopen $CMON (and attempts communication) when the next monitored 
command is issued. 

~MON Messages 

The logon message is sent every time COMINT attempts to log on. 
The $CMON reply indicates whether the user is allowed to log on, 
and contains an optional display message. If the $CMON process 
is not running, then no $CMON logon restrictions will be in 
effect: all valid users may log on. 

5-14 /'f' 82357 AOO 3/85 



The form of the logon message is: 

STRUCT 
BEGIN 
INT 
INT 
INT 
INT 
INT 
END; 

msgcode; 
user id; 
cipri; 
ciinfile[O:ll]; 
cioutfile[O:ll]; 

COMMAND INTERPRETER INTERFACE 
User-Supplied $CMON 

[O] -50 
[l] user ID of user logging on. 
[2] initial priority of CI. 
[3] name of CI's command file. 
[15] name of CI's list file. 

The form of the reply to the logon message is: 

STRUCT logonAreply; 
BEGIN 
INT replycode; 

STRING replytext[O:n]; 

END; 

[O] O=allow LOGON, 
l=disallow LOGON. 

[l] optional message to be 
printed. Maximum of 132 
bytes. 

The logoff message is sent every time a user logs off. A 
separate logoff message is also sent when a user logs on without 
first logging off (implicit logoff). The $CMON reply contains an 
optional display message. If the $CMON process is not running, 
then COMINT does not attempt to write the logoff message. 

The form of the logoff message is: 

STRUCT 
BEGIN 
INT 
INT 
INT 
INT 
INT 
END; 

logof fAmsg; 

msgcode; 
user id; 
cipri; 
ciinfile[O:ll]; 
cioutfile[O:ll]; 

[O] -51 
[l] user ID of user logging off. 
[2] initial priority of CI. 
[3] name of CI's command file. 
[15] name of CI's list file. 

The form of the reply to the logoff message is: 

STRUCT 
BEGIN 
INT 
STRING 

END; 

logof f""reply; 

replycode; 
replytext[O:n]; 

~ 82357 AOO 3/85 

[O] ignored by CI. 
[l] optional message to be 

printed. Maximum of 132 
bytes. 

5-15 



COMMAND INTERPRETER INTERFACE 
User-Supplied $CMON 

The process creation message is sent to $CMON whenever the user 
attempts to start a process, either explicitly (:RUN <prog-file>) 
or implicitly (:<prog-file>). Two forms of the $CMON reply 
message are recognized. The first is approval to run the 
process, and contains the <priority> and <cpu> in which to run. 
The second message aborts the new process c~eation attempt and 
displays an optional error message. If the $CMON process is not 
running, the user process will be started in the same CPU as 
COMINT's primary process and with a priority of 1 less than the 
current COMINT. 

The run parameters IN <file>, OUT <file>, LIB <file> and SWAP 
<file> are included in the process creation message sent to 
$CMON. 

The form of the process creation message is: 

STRUCT processcreationAmsg; 
BEGIN 
INT msgcode; [O] -52 
INT user id; [l] user ID of user logged on. 
INT cipri; [2] initial priority of CI. 
INT ciinfile[O:ll]; [3] name of Cl's command file. 
INT cioutfile[O:ll]; [15] name of CI's list file. 
INT progname[O:ll]; [27] expanded program file 

name. 
INT priority; [39] the value of the PR! run 

parameter if supplied; 
otherwise -1. 

INT processor; [40] the value of the CPU run 
parameter if supplied; 
otherwise -1. 

INT proginfile[O:ll]; [41] the expanded IN file run 
parameter if supplied; 
otherwise the default IN 
file. 

INT progoutfile[O:ll]; [53] the expanded OUT file run 
parameter if supplied; 
otherwise the default OUT 
file. 

INT proglibfile[O:ll]; [65] the expanded LIB file run 
parameter if supplied; 
otherwise blanks. 

INT progswapfile[O:ll]; [77] the expanded SWAP file run 
parameter if supplied; 
otherwise blanks. 

END; 

5-16 ~ 82357 AOO 3/85 



COMMAND INTERPRETER INTERFACE 
User-Supplied $CMON 

The forms of the reply to the process creation message are: 

or 

STRUCT 
BEGIN 
INT 
INT 

INT 

INT 

END; 

processcreationAreply; 
I 

replycode; 
progname[O:ll]; 

priority; 

processor; 

STRUCT processcreationAreply; 
BEGIN 
INT replycode; 

STRING replytext[O:n]; 

END; 

[O] O=create the process. 
[l] expanded name of program 

file to be run. 
[13] execution priority of new 

process or -1. If -1, 
then one less than the 
current Cl's priority is 
used. 

[14] processor where new 
process is to run or -1. 
If -1, then the current 
Cl's primary processor is 
used. 

[O] l=disallow process 
creation. 

[l] optional message to be 
printed. Maximum of 132 
bytes. 

The illegal logon message is sent on each failed attempt 
following two consecutive failed LOGON attempts. The $CMON reply 
message contains an optional display message. If the $CMON 
proce~s is not running, no illegal logon message is sent. 

The form of the illegal logon message is: 

STRUCT 
BEGIN 
INT 
INT 

INT 
INT 
INT 
STRING 

END; 

~ 82357 AOO 3/85 

msgcode; 
user id; 

cipri; 
ciinfile[O:ll]; 
cioutfile[O:ll]; 
logonstring[O:n]; 

[O] -53 
[l] user ID of user trying to 

LOGON. 
[2] initial priority of CI. 
[3] name of Cl's command file. 
[15] name of Cl's list file. 
[27] the attempted LOGON 

command string. Maximum 
of 132 bytes. 

5-17 



COMMAND INTERPRETER INTERFACE 
User-Supplied $CMON 

The form of the reply to the illegal logon message is: 

STRUCT 
BEGIN 
INT 
STRING 

END; 

replycode; 
replytext[O:n]; 

[O] ignored by CI. 
[l] optional message to be 

printed. Maximum of 132 
bytes. 

The add user message is sent whenever the user attempts to add a 
user to the system. The $CMON reply indicates whether the user 
can be added, and contains an optional display messa.ge. If $CMON 
is not running, then no $CMON add user restrictions will be in 
effect. Any user can be added to the group if the current user 
is the group manager. Note that a super ID can add any user. 

The form of the add user message is: 

STRUCT 
BEGIN 
INT 
INT 

INT 
INT 
INT 
INT 

INT 

INT 

INT 

END; 

msgcode; 
user id; 

cipri; 
ciinfile[O:ll]; 
cioutfile[O:ll]; 
groupname[0:3]; 

username[0:3]; 

' [O] -54 
[l] user ID of user adding the 

user. 
[2] initial priority of CI. 
[3] name of CI's command file. 
[15] name of CI's list file. 
[27] the group na.me of the 

user being a.dded. 
[31] the user name of the user 

being added. 
[35] the group number of the 

user being a.dded. 
[36] the user number of the 

user being added. 

The form of the reply to the add user message is: 

STRUCT adduserAreply; 
BEGIN 
INT replycode; 

STRING replytext[O:n]; 

END; 

5·-18 

[O] O=allow addition of user, 
l=disallow addition of 

user. 
[l] optional message to be 

printed. Maximum of 132 
bytes. 

Af' 82357 AOO 3/85 



COMMAND INTERPRETER INTERFACE 
User-Supplied $CMON 

The delete user message is sent whenever the user attempts to 
delete a user from the system. The $CMON reply indicates whether 
the user should be deleted, and contains an optional display 
message. If the $CMON process is not running, then no $CMON 
delete user restrictions will be in effect. Any user can be 
deleted from the group if the current user is the group manager. 
Note that a super ID can delete any user. 

The form of the delete user message is: 

STRUCT 
BEGIN 
INT 
INT 

INT 
INT 
INT 
INT 

INT 

END; 

msgcode; 
user id; 

cipri; 
ciinfile[O:ll]; 
cioutfile[O:ll]; 
groupname[0:3]; 

username[0:3]; 

[O] -55 
[l] user ID of user deleting 

the user. 
[2] initial priority of CI. 
[3] name of CI's command file. 
[15] name of CI's list file. 
[27] the group name of the 

user being deleted. 
[31] the user name of the user 

being deleted. 

The form of the reply to the delete user message is: 

STRUCT deluserAreply; 
BEGIN 
INT replycode; 

STRING replytext[O:n]; 

END; 

[O] O=allow deletion of user, 
!=disallow deletion of 

user. 
[l] optional message to be 

printed. Maximum of 132 
bytes. 

The alter priority message is sent whenever the user attempts to 
alter the priority of a process. The $CMON reply indicates . 
whether the process' priority should be changed and contains an 
optional display message. If the $CMON process is not running, 
then there are no $CMON alter priority restrictions. The 
priority of any process which has the same process access ID as 
the user can be changed. Note that the super ID can change the 
priority of any process. 

~ 82357 AOO 3/85 5-19 



COMMAND INTERPRETER INTERFACE 
User-Supplied $CMON 

The form of the alter priority message is: 

STRUCT 
BEGIN 
INT 
INT 

INT 
INT 
INT 
INT 

INT 

INT 

END; 

altpri""msg; 

msgcode; 
user id; 

cipri; 
ciinfile[O:ll]; 
cioutfile[O:ll]; 
crtpid[0:3]; 

progname[O:ll]; 

priority; 

' [O] -56 
[l] user ID of user altering 

priorities. 
[2] initial priority of CI. 
[3] name of Cl's command file. 
[15] name of Cl's list file. 
[27] process ID of the process 

whose priority is to be 
altered. 

[31] expanded program file 
name of the process whose 
priority is to be altered. 

[43] the new priority. 

The form of the reply to the alter priority message is: 

STRUCT altpri""reply; 
BEGIN 
INT replycode; 

STRING replytext[O:n]; 

END; 

[O] O=allow priority to be 
altered, 
l=disallow priority to be 

altered. 
[l] optional message to be 

printed. Maximum of 132 
bytes. 

The password message is sent whenever the user attempts to change 
his or her password. The $CMON reply indicates whether the 
user's password can be changed, and contains an optional display 
message. If the $CMON process is not running, then there are no 
$CMON password restrictions. The user is allowed to change 
his or her password at any time. 

The form of the password message is: 

STRUCT 
BEGIN 
INT 
INT 

5-20 

INT 
INT 
INT 
END; 

password""msg; 

msgcode; 
user id; 

cipri; 
ciinfile[O:ll]; 
cioutfile[O:ll]; 

[O] -57 
[l] user ID of user changing 

the password. 
[2] initial priority of CI. 
[3] name of CI's command file. 
[15] name of Cl's list file. 

"1 82357 AOO 3/85 



COMMAND INTERPRETER INTERFACE 
User-Supplied $CMON 

The form of the reply to the password message is: 

STRUCT passwordAreply; 
BEGIN 
INT replycode; 

STRING replytext[O:n]; 

END; 

[O] O=allow password to be 
changed, 
l=disallow password to be 

changed. 
[l] optional message to be 

printed. Maximum of 132 
bytes. 

The remote password message is sent whenever the user attempts 
to change his or her remote password. The $CMON reply indicates 
whether the user's remote password can be changed, and contains 
an optional display message. If the $CMON process is not 
running, then there are no $CMON remote password restrictions. 
The user is allowed to change his or her remote password at any 
time. 

The form of the remote password message is: 

STRUCT 
BEGIN 
INT 
INT 

INT 
INT 
INT 
INT 

END; 

remotepasswordAmsg; 

msgcode; 
user id; 

cipri; 
ciinfile[O:ll]; 
cioutfile[O:ll]; 
sysname[0:3]; 

[O] -58 
[l] user ID of user changing 

remotepasswords. 
[2] initial priority of CI. 
[3] name of CI's command file. 
[15] name of CI's list file. 
[27] change the remotepassword 

for this system. "*" 
indicates all systems. 

The form of the reply to the remote password message is.: 

STRUCT remotepasswordAreply; 
BEGIN 
INT replycode; 

STRING replytext[O:n]; 

END; 

"if 82357 AOO 3/85 

[O] O=allow the remotepassword 
to be changed. 
l=disallow the 

remotepassword to be 
changed. 

[l] optional message to be 
printed. Maximum of 132 
bytes. 

5-21 





SECTION 6 

INTERFACING TO TERMINALS 

The GUARDIAN file system can communicate with virtually any 
conversational-mode or page-mode terminal whose characteristics 
can be defined through the system generation program (SYSGEN). 
Refer to your System Management Manual. 

The file system provides for data transfers between application 
processes and terminals in blocks of 0 to 4,095 bytes. Page mode 
(also called block mode) limits the size of a block to 256 bytes, 
excluding certain control characters. 

NOTE 

This section provides an overview of the terminal process, 
known as TERMPROCESS, from the operating system point of 
view. It should not be construed as the final authority 
on any terminal interface. Refer to the applicable terminal 
manuals for detailed information on their use. See the 
list of related publications in the front of this manual, 
and refer to the Guide to Software Manuals for a complete 
list of all current Tandem software publications. 

One manual particularly recommended for your perusal is the 
653X Multi-Page Terminal Programmer's Guide. 

/if 82357 AOO 3/85 6-1 



INTERFACING TO TERMINALS 
General Characteristics 

GENERAL CHARACTERISTICS OF TERMINALS 

Terminals are accessed either by their $<device-name> or 
$<logical-device-number>. 

Multiple concurrent opens are permitted for a given terminal. 

The device name of the home terminal where an application process 
was created can be obtained through the MYTERM utility procedure. 

The terminal device type is 6 for both conversational-mode and 
page-mode terminals. 

The asynchronous terminal multiplexer hardware has the capability 
to examine each character received from a terminal and compare 
the characters with four programmable interrupt characters. 
These characters are called interrupt characters because the 
receipt of one of these characters by the terminal multiplexer 
causes a hardware I/O interrupt to occur (the interrupt is 
invisible to application processes). The interrupt results in 
the system I/O process controlling the terminal being notified of 
the character's reception. Action appropriate for the particular 
interrupt character is then taken (in some cases this means 
notifying the application process). 

There are four system-defined interrupt characters: 

Backspace, %10 
Line cancel, %30 
End of file (CTRL Y), %31 
Carriage return, %15 

Backspace and line cancel are not seen by application processes. 
End of file and carriage return are seen by application 
processes. They are indicated to application processes by the 
completion of a read to a terminal. 

Application processes can programmatically specify nonsystem
def ined interrupt characters by using the SETMODE procedure. 
Receipt of an application-defined interrupt character is 
always indicated to the application process. The SETMODE 
functions relevant to this section are presented at the end 
o:E this section. The SETMODE procedure is documented in the 
System Procedure Calls Reference Manual_. 

• Transparency mode: Whether or not the asynchronous 
multiplexer hardware is to check for the interrupt characters 
is configured at system generation time. The configured mode 
can be overridden through a call to SETMODE. 

6-2 "f' 82357 AOO 3/85 



INTERFACING TO TERMINALS 
General Characteristics 

• Echo mode: Whether or not the asynchronous multiplexer 
hardware is to echo incoming characters back to the terminal 
is configured at system generation time. The configured mode 
can be overridden through a call to SETMODE. The no-echo mode 
can be useful for entering user-defined security passwords at 
a terminal. 

Default transfer mode (conversational mode or page mode) for a 
device is configured at system generation time, but can be 
overridden through a call to the SETMODE procedure. 

Parity generation mode (odd, even, or none) for a terminal can 
be set at SYSGEN and, if necessary, modified later by SETMODE. 
Parity checking can also be enabled or disabled through use of a 
SETMODE function. 

BREAK (or ATTENTION) signalling from terminals can be handled 
through special SETMODE functions. 

Application checksum processing: a terminal can be configured 
so that either one or two characters following a terminating ETX 
character are sent to the application program. 

Device-dependent functions are configured at system generation 
time--refer to the System Management Manual. The following 
selections must be determined by the SYSGEN: 

Baud rate 
Character size 
Terminal and system parity generation 
Connection type (hard-wired, modem, echo) 
Enable or disable checking for interrupt characters 
(transparency) 
Half-duplex modem turnaround characters 
Read Completion on ETX (for checksum processing) 
Default transfer mode (conversational or page) 
Conversational-mode line-termination character 
Conversational-mode backspace type 
Conversational-mode CR/LF delay 
Conversational-mode forms control delay 
Page-mode page termination character 
Page-mode pseudo-polling trigger character 

Tandem software programs using terminals open them with share 
access. 

Default file-system spacing mode is postspace (space after 
printing). The spacing mode can be set to prespace (space 
before printing) by a SETMODE function. 

/1 82357 AOO 3/85 6-3 



INTERFACING TO TERMINALS 
Applicable Procedures 

SUMMARY OF APPLICABLE PROCEDURES 

The following procedures are used to perform input-output 
operations with terminals: 

DEVICEINFO 

OPEN 

READ 

WHITE 

WHITEREAD 

CONTROL 

AWAI TIO 

CANCELREQ 

FILEINFO 

SE~TMODE 

provides device type and configured record length. 

establishes communication with a file. 

reads information from an open file. 

writes information to an open file. 

writes, then waits for data to be read back from 
an open terminal. 

is used for forms control and modem connect and 
disconnect. 

waits for completion of an outstanding I/O 
operation pending on an open file. 

cancels the oldest outstanding operation 
identified by a tag on an open file. 

provides error information and characteristics 
about an open file. 

sets and clears the following functions: 

single spacing 
conversational/page mode 
parity checking 
access mode 
read termination on 

interrupt character 
baud rate 
system parity generation 
reset to default values 

auto line feed 
interrupt characters 
break ownership 
read termination on ETX 
echo 
character size 
spacing mode 

(prespacinq and 
postspacing) 

SETMODENOWAIT is used in the same way as SETMODE except in a 
nowait manner in an open file. 

CLOSE stops access to an open file. 

SETPARAM See the appropriate Data Communication Manual 
for information on SETPARAM and "BREAK Handling". 

6-4 "1 82357 AOO 3/85 



INTERFACING TO TERMINALS 
Accessing Terminals 

ACCESSING TERMINALS 

As with any other file, you should access a terminal through the 
OPEN procedure. For example, to access the home terminal 
associated with the running of an application process, you can 
include the following in your program: 

INT .HOMEATERM [0:11], 
HOMEATERMANUM, 

.TERMABUFFER[0:35]: 

CALL MYTERM ( HOMEATERM >: 

data declarations. 

MYTERM is a process control procedure that returns the 
file name of the home terminal. 

OPEN returns a file number for use in calls to other 
file-system procedures to access the terminal. 

Then to write on the terminal: 

72 characters of TERMABUFFER are written on the terminal: 
the value 72 is returned in NUMAWRITTEN. 

To read from a terminal: 

CALL READ 

In this case, assuming I/O with wait, the application process 
is suspended until a line is input on the terminal--an 
indefinite period of time. The maximum number of characters 
permitted is 72. The actual number of characters read is 
returned in NUMAREAD. 

The WRITEREAD procedure is provided to ensure that the computer 
system is ready to receive data from a terminal immediately after 
a message is written to a terminal. This is quite useful when 
conversationally prompting a terminal user for input. 

For example, to prompt a terminal user with a colon (:) and then 
wait for input, you can use the following in your application 
program (note that only one buffer, TERMABUFFER, is specified: 
the data is returned there): 

"" 82357 AOO 3/85 6-5 



INTERFACING TO TERMINALS 
Accessing Terminals 

. 
TERM""BUFFER := "· "· . , ! prompt. 

CALL WRITEREAD (HOME""TERM""NUM, TERM .... BUFFER, 1, 72, NUM .... READ); 

Writes a colon (:) on the terminal, then waits for input. 

Note that WRITEREAD does not issue a carriage return/line feed 
character sequence to the terminal after the write phase of the 
write-read sequence. 

The WRITEREAD procedure is also useful for issuing control 
commands to a terminal. For example, to read a seven-character 
cursor address from a terminal that requires a control character 
sequence of "ESC, a, DCl" (escape character followed by lowercase 
letter "a", followed by a device-control-1 character), you could 
include the following in an application program: 

. 
TERM .... BUFFER ':=' [%015541, % 010400]; ! "ESC a DCl". 

CALL WRITEREAD ( HOME .... TERMANUM, TERMABUFFER, 3, 7, NUM .... READ ); 

After the WRITEREAD completes, TERM""BUFFER contains the 
cursor address and seven is returned to NUM .... READ. 

Transfer Termination When Reading 

A READ or WRITEREAD from a terminal is terminated when any of the 
following conditions is encountered: 

• Interrupt character checking is enabled and a line-termination 
character is input from a conversational-mode terminal 
(see "Line-Termination Character" later in this section). On 
return from READ or WRITEREAD, <buffer> contains <count-read> 
characters, and the condition code indicator is set to CCE. 
The receipt of the line-termination character is not reflected 
in the <count-read> value. 

• Interrupt character checking is enabled and an EOF character 
is input from a conversational-mode terminal. On return from 
READ or WRITEREAD, nothing is transferred into <buffer>, 
<count-read> = 0, and the condition code indicator is set to 
CCG. 

• Interrupt character checking is enabled and an application
def ined interrupt character is input. If the application-

6·-6 /182357 AOO 3/85 



INTERFACING TO TERMINALS 
Transfer Modes 

defined character differs from the system-defined interrupt 
characters, then on the return from READ or WRITEREAD, 
<buffer> contains <count-read> characters, the last character 
being the interrupt character, and the condition code 
indicator is set to CCE. 

• Interrupt character checking is enabled and a page termination 
character is input from a page-mode terminal (see "Page 
Termination Character" later in this section). On return from 
READ or WRITEREAD, <buffer> contains <count-read> characters, 
and the condition code indicator is set to CCE. The receipt 
of the page termination character is not reflected in the 
<count-read> value. 

• <read-count> characters are input (regardless of interrupt 
character checking or transfer mode). On the return from READ 
or WRITEREAD, <buffer> contains <read-count> characters, 
<count-read> = <read-count>, and the condition code indicator 
is set to CCE. 

• The BREAK key is pressed and break is enabled for the terminal 
(regardless of interrupt character checking or transfer mode). 
On the return from READ or WRITEREAD, nothing is transferred 
into <buffer>, <count-read> = 0, and the condition code is set 
to CCL. 

• "Read termination on ETX" is enabled and an ETX character 
followed by the designated number of checksum characters 
(one or two) is input. On the return from READ or WRITEREAD, 
<buffer> contains <count-read> characters, the last two or 
three characters being the ETX character and the one or two 
checksum characters, and the condition code indicator is set 
to CCE. 

TRANSFER MODES 

The file system supports transfers from both conversational-mode 
and page-mode (normal and pseudopolled) terminals. 

NOTE 

The principal difference between conversational mode and 
page mode, as far as the file system is concerned, is the 
action that the file system takes when a read terminates: 
for conversational mode, a character sequence (dependent 
on what terminates the read) may be sent to the terminal 
to control line spacing; for page mode, no such character 
sequence is sent. 

~ 82357 AOO 3/85 6-7 



INTERFACING TO TERMINALS 
Transfer Modes 

Terminals operating in conversational mode transfer each 
character, as typed, to the computer system. A file transfer 
is terminated when a line-termination character (typically a 
carriage return character) is received by the computer system. 

Terminals operating in page mode store each character, as typed, 
in an internal buffer. The entire block of characters is 
transferred to the computer system in one continuous stream. 
The transfer is usually initiated when the terminal operator 
presses the ENTER (or SEND or TRANSMIT) key. A file transfer 
is terminated when a page termination character (typically a 
carriage return or ETX character) is received by the computer 
system. 

Figure 6-1 illustrates the operation of transfer and page modes. 

Normal Page Mode Versus Pseudopolled Page Mode 

Terminals operating in normal page mode transfer their block of 
information immediately after the terminal operator presses the 
ENTER (or similar) key. 

Terminals operating in pseudopolled page mode transfe!r a control 
character to the computer when the terminal operator presses the 
ENTER (or similar) key. This character informs the computer that 
the terminal is ready to send a block of information. The 
computer responds by sending a "trigger" character back to the 
terminal. The terminal responds to the trigger by sending the 
block of information to the computer. 

6-8 ~ 82357 AOO 3/85 



Conversational Mode 

Tandem 
Processor 

Buffer i.--

Page Mode 

Tandem 
Processor 

_ Read Until Line Termination -

Read Until Block 

Page Mode (Pseudopol led) 

Tandem 
Processor 

Buffer ~---
' I 
I 
I 

I 
\ 

Read of 1 Character 
(Wait for XMIT) 

INTERFACING TO TERMINALS 
Transfer Modes 

-

Terminal 

Each 
Character 

Sent as 
Typed 

Terminal 

Buffer Fills 
With 

Characters 
as Typed 

Block Sent 
WhenXMIT 

Typed 

Terminal 

Buffer Fills 
With 

Characters 
as Typed 

t 
Control 

Characters 
Sent When 
XMITtyped 

' Block Sent 
When Trigger 

Received 

" 

______ ....,._ - - -

85004-042 

Figure 6-1. Transfer Modes for Terminals 

~ 82357 AOO 3/85 6-9 



INTERFACING TO TERMINALS 
Conversational Mode 

Conversational Mode 

Some characteristics of conversational-mode terminals are: 

• A line-termination character (typically a carriage return) is 
configured for each device at system generation time. 

• Initially, all four conversational-mode interrupt characters 
are set to system-defined values (one is the line-termination 
character). Application-dependent interrupt characters can be 
specified through the SETMODE procedure. 

• The EOF indication is CTRL Y (%031). 

• Procedures are available for controlling forms (or cursor) 
movement: 

--Vertical tab, form feed (CONTROL operation) 

--Single space (file system appends CR/LF when writing to a 
terminal) or no-space (SETMODE) 

--Enable or disable automatic line feed after carriage return 
line-termination received from terminal (SETMODE:) 

• The file system automatically appends a CR/LF sequence when 
writing to a terminal (unless no-space has been enabled 
through the SETMODE procedure). 

• A write of zero characters results in a blank line if single 
spacing is enabled. 

• If necessary, the file system defers subsequent access to the 
same terminal after issuing an automatic CR/LF sequence or 
when performing forms control through the CONTROL procedure. 
The period for each type of delay is configured at system 
generation time. 

Line-Termination Character 

The line-termination character, when received from a terminal, 
signals the computer system that the current line transfer is 
completed. Line-termination characters for each conversational
mode terminal connected to the system are specified (configured) 
at system generation time. 

6-10 ""' 82357 AOO 3/85 



INTERFACING TO TERMINALS 
Conversational Mode 

There are special characteristics associated with receiving the 
line-termination character: 

• It is not counted in the <count-read> returned from the READ 
or WRITEREAD procedures, although it is transferred into the 
application's buffer if an odd-byte-count read is executed. 

• If carriage return (%015) is the configured line-termination 
character, another device configuration parameter specifies 
whether or not the file system should provide automatic line 
spacing on the terminal. This is done by automatically 
issuing a line feed character (%012) to the terminal after 
receiving the carriage return character. (Typically, the line 
feed character is issued if the terminal does not provide its 
own line feed.) 

Automatic issuance of the line feed character can be changed 
programmatically through SETMODE function 7. 

• If any character other than carriage return is the configured 
line-termination character, the file system always issues a 
CR/LF sequence to the terminal. 

• The line is terminated automatically when the number of 
characters specified in the <read-count> parameter is input. 
If termination on <read-count> occurs, the file system does 
not issue a CR/LF sequence to the terminal. 

The following examples illustrate these special characteristics: 

CR is the configured line-termination character, and a read of 
72 characters is issued to a terminal: 

. 
CALL READ ( HOMEATERMANUM, BUFFER, 72, NUMAREAD ): 

Then the terminal operator types in the following information: 

NOW IS THE TIME<cr> 

t - (initial cursor position) 

"NOW IS THE TIME" is returned in BUFFER, 15 is returned 
in NUMAREAD, and the file system issues a line feed to 
HOMEATERMANUM. 

~ 82357 AOO 3/85 6-11 



INTERFACING TO TERMINALS 
Conversational Mode 

If, instead, the operator only presses RETURN: 

<er> 

t - (initial cursor position) 

the contents of BUFFER remain unchanged, zero is returned 
in NUMAREAD, and the system issues a line feed to the 
terminal. 

To terminate a line by using <read-count>: 

CALL READ ( HOMEATERMANUM, BUFFER, 10, NUMAREAD ); 

When the terminal operator types in the 10 characters: 

t

NOW IS THE 

- (initial cursor position) 

"NOW IS THE" is returned in BUFFER and 10 is returned in 
NUMAREAD. 

NOW IS THEt -

(final cursor position) 

Conversational-Mode Interrupt Characters 

Four system-defined characters cause special file-system action 
when encountered as interrupt characters: backspace, line cancel, 
end of file, and the configured line termination character. 
These characters are also the initial settings for interrupt 
characters. 

NOTE 

The default interrupt characters apply to a terminal 
when first opened (if configured as a conversational
mode terminal) and are restored to the initial values 
when dynamically changing from page to conversational
mode (specifed by SETMODE function 9--see the summary 
at the end of this section). 

6--12 -'1 82357 AOO 3/85 



INTERFACING TO TERMINALS 
Conversational Mode 

The file-system action that occurs when the line-termination 
character is encountered is described above. The action that 
occurs for the three other system-defined characters is as 
follows: 

• Backspace (CTRL H, %010): The purpose of backspace is to 
permit a terminal operator to back up, then reenter one or 
more mistyped characters. The specific action involved 
depends on the particular terminal. Typically, on video 
terminals the cursor is backspaced one position for each 
backspace received. On hard-copy devices that backspace, 
a line feed and a backspace are issued for the first backspace 
received, and a single backspace is issued for each subsequent 
backspace received. On hard-copy devices that do not back
space, a backslash "\" is printed for each backspace entered. 
This operation is invisible to the application program. 

• Line Cancel (CTRL X, %030): The purpose of line cancel is to 
permit a terminal operator to cancel out, then reenter, the 
current line. When line cancel is received, the file system 
writes a "@<cr><lf>" character sequence on the terminal. This 
action is invisible to the application program. 

• End of File (CTRL Y, %031): The purpose of EOF is to permit 
a terminal operator to signal an application process that no 
more data will be entered. When the EOF character is 
received, the current file operation is considered complete; 
no data is transferred into the application program's buffer 
area, <count-read> is returned as 0, and the condition code 
indicator is set to CCG. The file system writes a 
"EOF!<cr><lf>" character sequence on the terminal. 

Figure 6-2 illustrates the conversational-mode interrupt 
characters. 

""1 82357 AOO 3/85 6-13 



INTERFACING TO TERMINALS 
Conversational Mode 

Predefined Functions 
for Conversational Mode Configured 

~---------· ____ _j __ 

Backspace EOF 

Default 
Setting .. % 10 %3oI: %31 Configured J 

Conversational-Mode Interrupt Characters 

Action of predefined functions and line termination: 

• Backspace: Delete last character 
(Backspace cursor) 

• Line cancel: Delete line 
(@CR LF on terminal) 

} 
Invisible to Application 
Program 

• End of File: CCG, error = 1, and count read = O 
(EOF CR LF ON TERMINAL) 
- Completes Transfer 

• Line Termination: - Completes transfer 

To Application 

- Line termination character is not transferred into applications buffer 
- CR LF on terminal if line termination not carriage return (%15) 
- LF on terminal if line termination is carriage return and auto line feed is on 

To Change Interrupt Characters 
CALL SET MODE (FILE"NUMBER, FUNCTION, PARAMETER 1, PARAMETER 2, LAST"FUNCTION); 

FUNCTION= 9 
PARAMETER 1, PARAMETER 1, 

"' bits 0-7 / "-- bits 8-15 _/ 
I I 

PARAMETER 2, PARAMETER 2, 
" bits 0-7 / "-- bits 8-15 _./ 
'---·1 -r--

Application _.. 
Defined 

.~ ) ~-------__ =c __ ~ 
Conversational-Mode Interrupt Characters 

Action when not predefined or line termination: 
• Completes transfer 
• Interrupt character is transferred into buffer 

85004-043 

Figure 6-2. Conversational-Mode Interrupt Characters 

6-14 "182357 AOO 3/85 



INTERFACING TO TERMINALS 
Conversational Mode 

You can change the interrupt characters for special applications 
by using SETMODE function 9. The file-system action when 
receiving any interrupt character that is not one of the system
def ined values is always the same: 

• The file transfer is considered complete. 

• No line feed (or carriage return) is sent to the terminal: 
the next transfer to the terminal physically begins at the 
character following the interrupt character. 

• The interrupt character is transferred into the application 
program's buffer along with the line image (if any). 

• The <count-read> parameter includes the interrupt character. 

Note that special application-dependent interrupt characters can 
be mixed with the system-defined characters. 

For example, assume that a tab function is desired on a 
conversational-mode terminal. The end-of-file character is not 
required, so it is replaced by the horizontal tab character: the 
other system-defined characters are retained, including the line
termination character (which is configured as carriage return). 

LITERAL SETASIG = 9, 
SETASPACE = 6, 
SPACE = 1, 
NOASPACE = O: 

STRING INTCHARS[0:3] := [%010, 
%031, 
%011, 
%015]: 

INT IINTCHARS = INTCHARS: 

setmode, set int. characters. 
setmode, set spacing mode. 
spacing mode = single space. 
spacing mode = no space. 

backspace. 
line cancel. 
horizontal tab. 
carriage return (line 
termination). 
equivalence INT to STRING. 

First a call to SETMODE sets the new interrupt characters: 

CALL SETMODE (HOMEATERMANUM, SETASIG, IINTCHARS, IINTCHARS[l]): 

Then a read is issued to the terminal: 

. 
CALL READ ( HOMEATERMANUM, BUFFER, 72, NUMAREAD ): 

The terminal operator enters the following information: 

/'f 82357 AOO 3/85 6-15 



INTERFACING TO TERMINALS 
Conversational Mode 

TODAY IS THE DAY<CTRL I> 

t - (initial cursor position) 

<CTRL I> is the 
horizontal tab 
character. 

"TODAY IS THE DAY<CTRL I>" is returned in <BUFFER>, 17 
is returned in <NUMAREAD>. No line feed occurs on the 
terminal. 

Next, the application checks the last character received to 
determine if, in fact, a <CTRL I> was entered: 

. 
IF BUFFER[NUMAREAD - l] = %011 THEN •. ! horizontal tab. 

Assuming that the application needed to move the cursor 
(indicating tabulation had occurred) to column 30, a call to 
SETMODE is issued to turn off single spacing, then a call to 
WRITE is issued to write blanks (%040) to the terminal: 

CALL SETMODE ( HOMEATERMANUM, SETASPACE, NOASPACE ); 
! no spacing. 

CALL WRITE ( HOME"TERMANUM, BLANKS, 30-NUMAREAD, NUMAWRITTEN); 

After the write, the information on the terminal appears as: 

TODAY IS THE DAY -------
t -- (cursor position) 

Then another read is issued to the terminal. This time the 
operator enters: 

FOR BEGINNING<cr> 

t - (cursor position) 

"FOR BEGINNING" is returned in BUFFER (writing over the 
previous contents) and 13 is returned in NUMAREAD. 
<er> is not transferred into BUFFER or reflected in 
NUMAREAD, because it is the line-termination character. 

After the second read, information on the terminal appears as: 

TODAY IS THE DAY FOR BEGINNING t - (cursor posi_t_i_o_n_) _______ _ 

6--16 ~ 82357 AOO 3/85 



INTERFACING TO TERMINALS 
Conversational Mode 

At this point, the application process sets the terminal spacing 
mode to single space: 

CALL SETMODE ( HOMEATERMAFNUM, SETASPACE, SPACE ); 

Forms Control 

The file-system SETMODE and CONTROL procedures provide you with 
the capability to explicitly control forms movement. 

SETMODE function 6 can programmatically change between single 
spacing (where the file system appends CR/LF) and no spacing when 
writing. 

For example, to place a terminal in a mode so that no line 
spacing occurs after writing (position the cursor following the 
last character written), make the following call to SETMODE: 

LITERAL SETASPACE = 6, 
SPACE = 1, 
NOASPACE = O; 

! setmode, set spacing mode. 
! spacing mode = single space. 
! spacing mode = no space. 

CALL SETMODE ( HOMEATERMANUM, SETASPACE, NOASPACE ); 
! no-spacing. 

An example of using no-spacing is shown in the example for 
implementing a tabulation scheme following Figure 6-2. 
Specifically, no-spacing is used when the application 
tabs (writes blanks) to column 30. 

Another reason for using no-spacing would be if overprinting was 
desired on a hard-copy terminal. In this case, the application 
program must append a carriage return character to the data to be 
written: 

STRING .BUFFER[0:71] := ["WHAT EVER HAPPENED T0",%015]; 

CALL WRITE ( HOMEATERMANUM, BUFFER, 22, NUMAWRITTEN ); 

After the write, the information on the terminal appears as: 

~ 82357 AOO 3/85 6-17 



INTERFACING TO TERMINALS 
Conversational Mode 

WHAT EVER HAPPENED TO 

t - (initial and final cursor position) 

Because the application program, rather than the file system, is 
supplying the carriage return character, a delay (dependent on 
the particular terminal involved) may be needed to give the 
terminal ample time to perform the ~arriage return operation. 
This can be accomplished by writing a number of null characters 
to the terminal or calling the DELAY utility procedure (if nowait 
I/O is used, the null character method must be used)~ 

CONTROL operation 1 can be used to cause a form feed or vertical 
tabulation to occur on a terminal (provided, of course, that the 
terminal has the capability). The CONTROL <parameter> values for 
these operations are 

0 = form feed 
1 or greater = vertical tab 

For example, to cause a top-of-form advance on a hard-copy 
terminal, place the following call to CONTROL in the application 
program: 

LITERAL FORMSACONT = 1, 
FORMAFEED = O; 

CALL CONTROL < HOMEATERMANUM, FORMSACONT, FORM""FEim ) ; 

The file system automatically delays subsequent access to the 
same terminal for a configured period of time after performing 
forms control through the CONTROL procedure. 

If the configured delay is not suitable, the application program 
can issue a form feed (%014) or vertical tabulation (%013) 
character through a WRITE procedure. However, in this case, you 
must include a delay in the application program to permit the 
actual forms movement to complete: 

. 
DEFINE TWO""SECONDS = 200D#; 
INT FORMAFEED := %014 '<<' 8; 

CALL WRITE 
CALL DELAY 

6-·18 

HOME""TERM""NUM, FORM""FEED, 1, NUM""WRI~rTEN ) ; 
TWO"'SECONDS ) ; 

Af' 82357 AOO 3/85 



INTERFACING TO TERMINALS 
Page Mode 

The application process is suspended for two seconds after 
the form feed character is issued to the terminal. 

Page Mode 

Some characteristics of page-mode terminals: 

• A page termination character (such as CR, ETX, or EOT) is 
configured for each page-mode terminal at system generation 
time. 

• Initially, all four page-mode interrupt characters are the 
same as the configured page termination character. You can 
specify application-dependent interrupt characters by using 
the SETMODE procedure. 

• Normal and pseudopolled page mode transfers are supported 
(configured). 

Page-Termination Character 

The page-termination character, when received from a terminal, 
signals the computer system that the current page transfer is 
completed. Page-termination characters for each page-mode 
terminal connected to the system are specified (configured) at 
system generation time. 

There are special characteristics associated with receiving the 
page-termination character: 

• It is not counted in the <count-read> returned from the READ 
or WRITEREAD procedures, although it is transferred into the 
application's buffer if an odd-byte-count read is executed. 

• The line is terminated automatically when the number of 
characters specified in the <read-count> parameter are input. 

NOTE 

The file system does not issue a carriage return/line feed 
sequence after receiving the page-termination character. 

"'1 82357 AOO 3/85 6-19 



INTERFACING TO TERMINALS 
Page Mode 

Page-Mode Interrupt Characters 

Initially, all four page-mode interrupt characters are set to the 
configured page-termination character. 

NOTE 

The initial page-mode interrupt characters apply to a 
terminal when first opened (if configured as a page-mode 
terminal) and are restored to the initial setting when 
dynamically changing from conversational mode to page mode 
(by using the SETMODE procedure). 

You can change the page-mode interrupt characters to other values 
by using SETMODE function 9. The file-system action when 
receiving an interrupt character that is not the page-termination 
character is: 

• The file transfer is considered complete. 

• The interrupt character is transferred into the application 
program's buffer along with the page image (if any). 

• The <count-read> parameter includes the interrupt character. 

Note that special application-dependent interrupt characters can 
be mixed with the page termination character. 

Figure 6-3 illustrates the page-mode interrupt characters. 

6--20 ~ 82357 AOO 3/85 



Default 
Setting 

Action of block termination: 
• Completes transfer 
• Not transferred into buffer 

To change signal characters: 

INTERFACING TO TERMINALS 
Page Mode 

Configured 
~_._I_~ 

/ "' 
Block 

Termination 

Configured Configured Configured 

Page Mode Signal Characters 

CALL SET MODE (FILE"NUMBER, FUNCTION, PARAMETER 1, PARAMETER 2, LAST"FUNCTION); 

FUNCTION= 9 
PARAMETER 1, bits 0-7 

~··r- __ _/ 

Application 
Defined 

PARAMETER 1, bits 8-15 

""------ __/ 

PARAMETER 2, bits 0-7 

""" _ _/ 

Page Mode Signal Characters 

Action when not block termination 
• Completes transfer 
• Signal character is transferred into buffer 

PARAMETER 2, bits 8-15 

""'----- - ·-1-~~--/ 

85004-044 

Figure 6-3. Page-Mode Interrupt Characters 

_,.1 82357 AOO 3/85 6-21 



INTERFACING TO TERMINALS 
Page Mode 

The following example shows the action of the interrupt 
characters when dynamically changing from conversational mode to 
page mode, then back to conversational mode. The configured 
line-termination character is carriage return; the configured 
page-termination character is also carriage return. The terminal 
is configured as a conversational-mode terminal: 

LITERAL CHANGEAMODE = 8, ! 
CONVAMODE = 0, 
PAGEAMODE = 1, 
SETAINTCHARS = 9, 
BSACAN = %004030, 
HTACR = %004415, 
ETXAEOT = %001404; 

The terminal is opened: 

for SETMODE. 

backspace, line cancel. 
horizontal tab, carriage return. 
end of text, end of transmission. 

At this point, the interrupt characters are set to their 
initial conversational mode values: backspace, line cancel, 
end of file, and carriage return (line-termination). 

Then a call to SETMODE changes the interrupt characters: 

At this point the interrupt characters are set to: 
backspace, line cancel, horizontal tab, and carriage 
return. 

The file-system transfer mode is set to page mode for the 
terminal: 

At this point all four interrupt characters are 
end-of-text characters. 

Then new page-mode interrupt characters are set: 

6-22 ~ 82357 AOO 3/85 



INTERFACING TO TERMINALS 
Page Mode 

After the call to SETMODE, the interrupt characters are 
end of text and end of transmission. 

The file-system transfer mode for the terminal then returns 
to conversational mode: 

CALL SETMODE 

When returning to conversational mode, the interrupt 
characters are restored by the file system to their initial 
values: backspace, line cancel, end of file, and carriage 
return. 

NOTE 

When changing the interrupt characters through SETMODE, all 
four characters must be specified. Therefore, if fewer 
than four are needed, some characters must be duplicated. 

Pseudopolled Terminals 

During system generation, each pseudopolled terminal is 
configured as to whether or not the file system automatically 
issues the trigger character when reading. To indicate automatic 
triggering, the actual trigger character is specified. To 
indicate that the application program will handle triggering, 
specify a trigger character with a value of zero (null): 

The advantage of having the file system handle the triggering, 
of course, is that the operation is invisible to the application 
program. The automatic triggering only applies, however, when 
issuing a READ (not a WRITEREAD) to the terminal. WRITEREAD can 
still be used for such things as cursor sensing. 

The advantage of having the application program handle the 
triggering is that practically no system buffer space (just one 
word) is used while the terminal operator is actually typing in 
information. The buffer space is allocated after the operator 
presses the ENTER (or equivalent) key. (Terminals operating in 
normal page mode require that the entire system buffer space be 
allocated while waiting for a transfer to take place.) 

Here's how it works: 

Your application program issues a read of one character to the 
pseudopolled terminal (this read waits for the ready character): 

~ 82357 AOO 3/85 6-23 



INTERFACING TO TERMINALS 
Page Mode 

CALL READ ( HOME .... TERM .... NUM, BUFFER, 1, NUM .... READ ); 

Reading one byte causes one word of system buffer space to 
be allocated. 

The terminal operator types in the page of text, then presses the 
ENTER key. Pressing ENTER causes a ready character (for example, 
device-control-2) to be sent to the computer system (causing the 
READ to complete)~ 

The application then issues the trigger character (for example, 
device-control-1) to the terminal and issues a read of 600 
characters (to ensure that the computer is ready to start reading 
when the terminal starts transmitting, both operations must be 
combined into one using WRITEREAD): 

BUFFER := %010400; ! device-control-1 • . 
CALL WRITEREAD ( HOME .... TERM .... NUM, BUFFER, 1, 600, NUM .... READ ); 

Calling WRITEREAD causes 300 words (600 bytes) of system 
buffer space to be allocated. The device-control-1 
character is sent to the terminal, causing it to send a 
page of information back to the computer system. The page 
is returned to the application process in BUFFER, and the 
actual number of bytes read is returned in NUM"READ. 
(As with any file-system operation, the system buffer space 
is deallocated after the read completes.) 

Simulation of Pseudopolling 

Terminals without pseudopolling (such as P/N. 6511 and P/N 6512), 
can simulate this feature by having the terminal operator signal 
that data is being sent by pressing a function key (rather than 
the SEND PAGE key). Upon receipt of the characters transmitted 
because of the function key, your application program issues a 
SEND PAGE command to the terminal to have the data returned 
(through a call to the file-system WRITEREAD procedure). 

The following is an example of simulated psuedopolling coding 
with the 6511 or 6512 terminal. 

In this example, terminal operation is controlled by sending a 
series of escape-sequence functions to the terminal (for 
definition of the escape-sequence functions for 6511 and 6512 
terminals, refer to the Lear-Siegler AD~-2 Operator's Handbook). 

6-24 ~ 82357 AOO 3/85 



INTERFACING TO TERMINALS 
Page Mode 

INT .BUFFER[0:1023], 
• CONTROLABUF[O:l], 

COUNTAREAD: 

screen input buffer • 
for sending control sequences to 
terminal. 
number of bytes read. 

STRING 
.SBUFFER := @BUFFER '<<' 1, redefine as byte 

array. 
aSCONTROLABUF := @CONTROLABUF '<<' 1: 

LITERAL 
READCOUNT = 2048, read count for full screen. 
ESC = 
CLEARASPACES = 
TBLOCKAMODE = 
TCONVAMODE = 

%33, 
" . " , , 
"B" , 
"C", 

ASCII ESC character. 
"esc,clearAspaces"= clear screen. 
"esc,tblockAmode"= set tblock mode. 
"esc,tconvAmode" = set tconv. mode. 

SENDALL = "5", "esc,sendall" = send page 
unprotected, to cursor. 

CHANGEAMODE = 
CONVAMODE = 

8, 
0, 

set mode, set transfer mode function •. 
set mode param 1, set conv. mode. 

PAGEAMODE = 1: set mode param 1, set page mode. 

put the file into page mode. 
CALL SETMODE ( TERMANUM, CHANGEAMODE, PAGEAMODE >: 
IF< THEN ••• : ! error. 

sets the file-system transfer mode for the terminal to 
page mode. 

! clear the screen, put the terminal into block mode, then 
! wait for function key pressed. 
SCONTROLABUF ':=' [ESC, CLEARASPACES, ESC, TBLOCKAMODE]: 
CALL WRITEREAD ( TERMANUM, CONTROLABUF, 4, 2 ): 
IF = THEN ! function key pressed. 

BEGIN 

You can examine the returned data in the buffer to 
determine which function key was pressed. 

END 
ELSE 
IF< THEN ••• : ! error. 

This call to WRITEREAD clears the terminal screen and puts 
the terminal into block mode (ESC ":", ESC "B"). The call 
to WRITEREAD completes when a function key is pressed. 

! read the screen. 
SBUFFER ':=' [ESC, SENDALL]: 
CALL WRITEREAD (TERMANUM, BUFFER, 2, READCOUNT , COUNTAREAD): 
IF< THEN .•• : ! error. 

~ 82357 AOO 3/85 6-25 



INTERFACING TO TERMINALS 
Page Mode 

This call to WRITEREAD transfers a "send page unprotected" 
escape sequence to the terminal. The terminal responds by 
sending the screen from the home position to the previous 
cursor position. The WRITEREAD completes with the screen 
data (and field- and line-separator control characters) in 
BUFFER and COUNTAREAD containing a count of all characters 
returned by the terminal. 

! put the file back into conversational mode. 
CALL SETMODE ( TERMANUM, CHANGEAMODE, CONVAMODE ); 
IF< THEN ••• ; ! error. 

sets the file-system transfer mode for the terminal to 
conversational mode. 

! put the terminal into conversational mode. 
SCONTROLABUF ':=' [ESC, TCONVAMODE]; 
CALL WRITE ( TERMANUM, CONTROLABUF, 2 ); 
IF< THEN ..• : ! error. 

This WRITE is issued to the terminal to put the terminal 
into conversational mode (ESC "C"). 

TRANSPARENCY MODE (INTERRUPT-CHARACTER CHECKING DISABLED) 

You can disable the interrupt character checking for a terminal 
through a call to SETMODE function 14. If interrupt character 
checking is disabled, a READ or WRITEREAD terminates only when 
_the number of bytes specified by the <read-count> parameter have 
been read or, if break is enabled for the terminal, when the 
BREAK key is pressed. 

CHECKSUM PROCESSING (READ TERMINATION ON ETX CHARACTER) 

To permit an application to perform checksum processing, use a 
terminal READ or WRITEREAD to terminate on either the first or 
second character following an ETX (end of text) character. Use 
SETMODE function 13. 

If you specify read termination on ETX, the ETX character and the 
next one or two (checksum) characters are returned in <buffer> 
and reflected in the <count-read> value of the call to READ or 
WRITEREAD. 

6-26 ~ 82357 AOO 3/85 



INTERFACING TO TERMINALS 
Echo 

NOTE 

Interrupt character checking is not affected by the read 
termination on ETX character mode. 

ECHO 

The file-system terminal echo mode is configured for each 
terminal at system generation time. If echo is specified 
and the file-system terminal-transfer mode is conversational, 
each character as received from the terminal is sent back to 
the terminal, where it is displayed (if the physical terminal 
is in full-duplex mode). 

The configured echo mode can be changed programatically using 
SETMODE function 20. The <parameter-1> values for this function 
are: 

0 = system does not echo 
1 = system echoes 

You can use the no-echo mode when entering an application-
def ined password at a terminal. If the terminal is in 
full-duplex mode and the file-system terminal echo mode is 
"system does not echo", then a password will not be displayed. 
Following entry of the password, the echo mode would be set to 
"system echoes". 

TIMEOUTS 

Operations with terminals require human response and therefore 
can take an indefinite period of time. The <time-limit> 
parameter of the AWAITIO procedure can be used to ensure that a 
terminal operator performs an operation within a given period of 
time. (The terminal must have been opened so as to permit nowait 
I/O.) 

For example, an application program prompts a terminal operator 
for an account number. If no entry is made within five minutes, 
the application program reminds the terminal operator by 
reprompting for the account number. To reprompt, include code 
similar to the following in your application program: 

-'1 82357 AOO 3/85 6-27 



INTERFACING TO TERMINALS 
Modems 

DEFINE FIVEAMINUTES = 30000D#: 
LITERAL TIMEOUT = 40: 
INT ERROR, .BUFFER[0:599]: 

REPROMPT: 

BUFFER ' : =' "PLEASE ENTER ACCOUN'r NUMBER" ; 
CALL WRITEREAD ( TERMANUM, BUFFER, 27, 400, NUMAREAD >: 
IF< THEN ... ! checks if WRITEREAD was successful 
CALL AWAITIO (TERMANUM,BUFFER,NUMAREAD,TAG, FIVEAMINUTES): 
IF < THEN ! error occurred 

BEGIN 
CALL FILEINFO ( TERMANUM, ERROR ); 
IF ERROR = TIMEOUT THEN GOTO REPROMPT 
ELSE ..... ; 

END; 

The message "PLEASE ENTER ACCOUNT NUMBER" is issued 
every 5 minutes until the operator responds. 

If the call to AWAITIO had been for any file (for example, 
<filenum> = -1) and a timeout occurred, the operation pending 
on the terminal would have to be cancelled before the WRITEREAD 
could be reinitiated. 

MODEMS 

Using terminals connected to the system through modems is, for 
the most part, invisible to your application program. However, 
you must be aware, when opening a terminal connected though a 
modem, that the OPEN procedure does not ensure that a 
communication link has been established. 

You can use a CONTROL operation to signal your application 
process that a communication link (signalled by an incoming call) 
is established. Selected CONTROL operations are included in the 
table at the end of this section. All of the CONTROL operations 
are described in the System Procedure Galls Reference Manual. 

For example,· an application process wants to accept an incoming 
call from a modem designated "$LINE1". However, the process must 
continue with other processing functions. You could use the 
following: 

6·-28 ~ 82357 AOO 3/85 



INTERFACING TO TERMINALS 
BREAK Feature 

LITERAL NOAWAIT = 1, WAITAONACALL = 11, ! data declarations. 
TIMEOUT = 40; 

INT .LINEl[O:ll] := ["$LINE1", 9 * [" "]]; 
INT LINElAFNUM, CALLARECEIVED := O; 

Then the modem is opened, allowing one concurrent I/O operation: 

CALL OPEN LINEl, LINElAFNUM, NOWAIT ); 

The file system enables the modem for an incoming call. 
Your application process continues executing. 

Then a call to CONTROL that specifies "wait for modem connect" is 
made. 

Periodically, a "check for completion" call to the AWAITIO 
procedure is made to· determine if a call has been received: 

LOOP: 
IF NOT CALLARECEIVED THEN 

BEGIN 
CALL AWAITIO ( LINElAFNUM, ••.• , OD); 
IF = THEN CALLARECEIVED := 1 
ELSE 

BEGIN 
CALL FILEINFO ( LINElAFNUM, ERROR ); 
IF ERROR<> TIMEOUT THEN ••• ; ! trouble. 

END; 
END; 

CONTROL operation 12 allows the modem to be disconnected without 
having to close the associated file. 

BREAK FEATURE 

The file system includes special features that permit a terminal 
operator to signal a process by pressing the BREAK key. An 
example of BREAK usage is when running an application program 
through the command interpreter process; pressing BREAK while the 

-'1 82357 AOO 3/85 6-29 



INTERFACING TO TERMINALS 
BREAK Feature 

application is running returns the command interpreter to the 
command input mode. Because BREAK (if enabled) is constantly 
monitored by the file system (actually the terminal controller), 
it is not necessary for the application process to periodically 
check a terminal for input. 

Some characteristics associated with the break feature are: 

• BREAK is initially enabled for a process by using a SETMODE 
function (the process that has BREAK enabled is referred to 
as the "owner" of BREAK). 

• You can enable BREAK for only one process at a time. 

• If the terminal is opened by the backup process of a process 
pair (for example by using CHECKOPEN by primary or backup open 
by backup), the backup process automatically becomes the owner 
of BREAK if its primary failed while owning BREAK. Refer to 
Section 12 for more information on checkpointing. 

• When BREAK is pressed at a terminal, a system message (-20) is 
sent to the process (if any) that enabled BREAK. The message 
is read through the $RECEIVE file and contains the logical 
device number in binary form of the terminal where BREAK was 
pressed. 

• The terminal where BREAK was pressed can be set into an access 
mode (called break mode) so that only operations that have 
been associated with BREAK (through a call to SETMODE) are 
allowed. 

• Once BREAK is pressed, it is disabled, and further breaks on 
that terminal are ignored. BREAK is automatically reenabled 
for the owner when a READ or WRITEREAD procedure :is executed 
to the terminal. 

• After pressing BREAK, an application not wishing to issue a 
READ or WRITEREAD to a terminal reenables BREAK using another 
SETMODE call. 

• Any process using the same terminal as the command 
interpreter, or any other process using BREAK, must perform 
error recovery for the two errors associated with BREAK: 
error 111 and error 112. 

• If BREAK is pressed but not enabled, it is ignored. 

• If a process owning BREAK is deleted or fails, BREAK ownership 
is lost. That is, no process will be informed if the BREAK 
key is pressed. 

6-30 /1 82357 AOO 3/85 



INTERFACING TO TERMINALS 
Using BREAK (Single Process per Terminal) 

BREAK System Message 

The form of the BREAK system message is: 

= -20 <sysmsg> 
<sysmsg>[l] = logical device number, in binary, 

of device where BREAK was pressed. 
<sysmsg>[2] = system number, in binary, of device 

where BREAK was pressed. 

This message is received by a process through its $RECEIVE file 
if break monitoring is specified (through a call to SETMODE) and 
BREAK is pressed on a terminal being monitored. 

Using BREAK (Single Process per Terminal) 

To use the break feature, you must indicate in your application 
process the terminals to be monitored for a BREAK signal and the 
process ID of the process to receive the system BREAK message. 

The SETMODE fun~tion to enable this type of break monitoring is: 

<function> = 11, set BREAK ownership and terminal access 
mode after break 

<parameter-1> = <cpu,pin>, enable BREAK for process <cpu,pin> 

<parameter-2> = 0 

The SETMODE function to disable this type of break monitoring is: 

<function> = 11, set BREAK ownership 

<parameter-I> = 0, disable BREAK 

<parameter-2> = 0 

For example, to arm BREAK, you could place the following in your 
application program: 

LITERAL SETABREAKAOWNER = 11, 
NORMALAMODE = O; 

INT BREAKARECEIVED := 0, 
.RECVABUF[0:66]; 

.,, 82357 AOO 3/85 6-31 



INTERFACING TO TERMINALS 
Using BREAK {Single Process per Terminal) 

Then BREAK is enabled by calling sgTMODE function 11 and 
passing the file number of the terminal where BREAK is to be 
enabled and the <cpu,pin> of the owner: 

CALL SETMODE 

MYPID is a process control procedure that returns the 
<cpu,pin> of the caller. Following this call to SETMODE, the 
file system monitors "termAnum" for a break signal. If BREAK 
is pressed, a system BREAK message is sent to this process. 

A read is issued to the $RECEIVE file {open as a nowait file): 

CALL READ { RECVAFNUM, RECVABUF, 132 ); 

Then, periodically, $RECEIVE is checked: 

ERROR : = 0; 
CALL AWAITIO { RECVAFNUM,, NUMAREAD,, OD ) ; 
IF = THEN user msg received 
ELSE 
IF > THEN ! system msg received. 

BEGIN 
IF RECVABUF = -20 THEN ! BREAK message. 

BREAKARECEIVED := 1 

flags the fact that BREAK was pressed. The break 
is processed in some other part of the program. 

ELSE 
IF RECVABUF = ••• THEN some other system message. 

END 
ELSE error 

CALL FILEINFO { RECVAFNUM, ERROR ); 

if read on $RECEIVE completed, issue another. 
IF ERROR <> 40 ! timeout ! THEN 

CALL READ { RECVAFNUM, RECVABUF, 132 ); 

If a process has BREAK armed on more than one terminal, it should 
check the logical device number returned in the system BREAK 
message to identify the source of the break. 

Figure 6-4 illustrates the break sequence when a terminal is 
controlled by a single process. 

6--32 .-,. 82357 AOO 3/85 



INTERFACING TO TERMINALS 
Using BREAK (Multiple Processes per Terminal) 

Terminal Operator 
Types BREAK 

i 
BREAK Enabled --1 

Disabled - I 
BREAK key is ignored 

.. ii typed 

I 
Application process 

enables BREAK through 
a call to SETMODE 

(function 11) 

BREAK disabled 
process receives 

BREAK message (-20) 
in $RECEIVE file 

Application process 
reenables BREAK by 
performing a READ 
or WRITEREAD or 

by another cal I 
to SETMODE 

85004-045 

Figure 6-4. Break: Single Process per Terminal 

Using BREAK (Multiple Processes per Terminal) 

Keep in mind that when more than one process is accessing the 
same terminal, only the last process to arm BREAK receives the 
BREAK system message. Therefore, it is important that each 
process in such an environment keep track of the previous process 
that enabled BREAK and restore BREAK to that process when 
finished. 

The SETMODE function to perform this type of break monitoring is: 

<function> = 11, set BREAK ownership. 

<parameter-1> = <cpu,pin>, enable BREAK for process <cpu,pin>. 

<parameter-2> = 0. 

<last-params> = last owner and last terminal access mode on 
return from SETMODE. 

The SETMODE function to return ownership to previous BREAK owner 
is: 

<function> = 11, set BREAK ownership. 

"1 82357 AOO 3/85 6-33 



INTERFACING TO TERMINALS 
Using BREAK (Multiple Processes per Terminal) 

<parameter-I> = last owner. 

<parameter-2> = last terminal access mode. 

<last-params> = last owner and last terminal access mode on 
return from SETMODEe 

For example, when an application wanting to use the break feature 
is to be run through the command interpreter program (which also 
uses BREAK), the application should get the <cpu,pin> and break 
mode of the current owner when enabling BREAK for itself: 

INT LASTAOWNER[O:l], 
LASTAMODE = LAST"'"OWNER [l]: 

CALL SETMODE ( HOMEATERM""'NUM, SET"'BHEAKAOWNER, MYPID, 
NORMALAMODE, LAST""'OWNER ): 

An internally defined integer designating the last owner of 
BREAK is returned in LAST"'OWNER, and the mode associated with 
the last owner is returned in L.AST""'OWNER[l] (= LASTAMODE). 
If no process previously had BREAK enabled, 0 is returned to 
LASTAOWNER. BREAK is now enabled for this process (that is, 
the process will receive the BREAK message if the BREAK key is 
pressed). 

NOTE 

The number returned in LASTAOWNER is not the <cpu,pin> of the 
last owner of BREAK. 

When the application no longer wants to receive the BREAK 
message, it reenables BREAK for the last owner (the command 
interpreter in this example): 

CALL SETMODE ( HOME"'TERM"'NUM, SET"'BREAK"'OWNER, LAST"'OWNER, 
LAST"'MODE ) : 

At this point, if BREAK is pressed, the command interpreter 
receives the BREAK message. 

If each process using BREAK keeps track of the previous owner, 
BREAK ownership can be passed between any number of processes in 
an orderly fashion. 

6·-34 '1'J 82357 AOO 3/85 



INTERFACING TO TERMINALS 
Break Mode 

Break Mode 

By using break mode, a number of processes can access the same 
terminal, but one process can take exclusive access to that 
terminal when BREAK is pressed. 

This is done in three steps: 

1. First, when BREAK is enabled, break mode is specified. This 
means that, after the BREAK key is pressed, the terminal is 
put in break mode, and only file operations having break 
access are permitted with the terminal. 

The SETMODE function to perform this type of break monitoring 
is: 

<function> = 11, set BREAK ownership and terminal access 
mode after break. 

<parameter-1> = <cpu,pin>, enable BREAK for process 
<cpu,pin>. 

<parameter-2> = 1, terminal access mode after break = break 
mode. 

<last-params> = last owner and last terminal access mode on 
return from SETMODE. 

2. After a BREAK message has been received, the application 
process, through a call to SETMODE, specifies that subsequent 
file operations to the terminal have break access. The 
application process can then communicate with the terminal in 
the usual manner. (Attempts by other processes with normal 
access will be rejected with an error indication.} 

The SETMODE function to specify the file access mode for this 
type of break handling is: 

<function> = 12, set file access type. 

<parameter-I> is omitted. 

<parameter-2> = 1, file access mode = break access. 

3. When finished processing the break, the application process, 
through another call to SETMODE, returns the file access type 
to normal access and the terminal access mode to normal mode 
(permitting any type access to the terminal). 

The SETMODE function to restore the terminal access mode to 
normal mode, and file access type to normal access, is: 

"1 82357 AOO 3/85 6-35 



INTERFACING TO TERMINALS 
Break Mode 

<function> = 12, set 
access 

terminal access mode and file 
type. 

<parameter-I> = 0, terminal access mode = normal mode. 

<parameter-2> = 0, file access mode = normal access. 

Steps 2 and 3 are repeated for each BREAK message received. 

4o When the process finishes monitoring BREAK, BREAK is returned 
to the previous owner by means of SETMODE function 11, as 
described above in "Using BREAK (Multiple Processes per 
Terminal)". Note that the previous owner is characterized by 
an internal number, rather than by the owner's <cpu, pin>. 

If the terminal access mode is "break mode" when the owner of 
break closes the file and the owner has break access specified, 
the terminal access mode is returned to normal mode. This 
applies if the close is because of a call to the file-system 
CLOSE procedure or the process control STOP procedure. 

Unless more than one process is accessing a terminal, normal 
access (<parameter-2> = 0) should be specified. For example: 

LITERAL SETA ACCESS = 12, 
BREAKAMODE = 1, 
NORMAL"MODE = 0, 
BREAK A ACCESS = 1, 
NORMAL"ACCESS = O; 

BREAK is enabled and break mode is specified: 

CALL SETMODE ( HOME""TERM""NUM, SET""BREAK""OWNER, MYPID, 
BREAK""MODE, LASTAOWNER ); 

Then $RECEIVE is periodically checked for a BREAK message: 

6--36 

CALL READ ( RECV"FNUM, RECV"FNUM, 132 ); 

error := O; 
CALL AWAITIO 
IF = THEN 
ELSE 

RECV"FNUM,, NUM""READ,, OD); 

IF > THEN 
BEGIN 

IF BUFFER = -20 THEN 
BEGIN 

! user message received. 

system message received. 

break message. 

"1 82357 AOO 3/85 



Break access is specified: 

INTERFACING TO TERMINALS 
Break Mode 

CALL SETMODE HOMEATERMANUM, SETAACCESS,, 
BREAKAACCESS ); 

At this point, any nonbreak operations to the terminal 
indicated by HOMEATERMANUM are rejected. 

However, this process, because break access was specified, 
can access the terminal. 

When finished processing the break, the application process 
permits normal access to the terminal: 

CALL SETMODE ( HOMEATERMANUM, ·sETAAccEss, 
NORMALAMODE, NORMALAACCESS ); 

END 
ELSE 
IF BUFFER= •.• THEN 

END 
ELSE • • • : 

some other system message. 

error 

Figure 6-5 illustrates the action of break mode. 

SETMODE function 12 can also be used to gain exclusive access to 
a terminal even though break has not been typed. This is done by 
specifying "terminal access mode = break mode" and "file access 
type = break access". 

The SETMODE function to gain exclusive access to a terminal is: 

<function> = 12, set terminal access mode and file access 
type. 

<parameter-1> = 1, terminal access mode = break mode. 

<parameter-2> = 1, file access mode = break access. 

~ 82357 AOO 3/85 6-37 



INTERFACING TO TERMINALS 
Break Mode 

Terminal Operator 
Types BREAK 

Terminal-Access Mode: i 
Only BREAK 
Access Permitted I 

Any Access ____ _._ 

Permitted i 
BREAK Message 

in $RECEIVE 
-+1 Terr:ninal f.-

Application-Access Type: inacc~ssible 

L_ 

BREAK Access -------- ------.------.. -] 
Application process has~ 

Normal Access --------- sole access to terminal 

r 
Application process 

finds BREAK message 
in $RECEIVE file, then 

calls SETMODE specifying 
BREAK access 

t 
Application process calls 

SETMODE, sp13cifying 
normal access and 

normal mode 

S5004-046 

Figure 6-5. Break Mode 

The SETMODE function to relinquish exclusive access to a terminal 
is: 

<function> = 12, set terminal access mode and file access 
type. 

<parameter-I> = 0, terminal access mode = normal mode. 

<parameter-2> = 0, file access mode = normal access. 

NOTE 

An application program should use this feature only if 
it has ownership of BREAK. If a process that does not 
own BREAK is deleted, break mode is not cleared. Other 
processes accessing the terminal with normal access are 
then prevented from accessing the terminal. 

6-38 -1' 82357 AOO 3/85 



INTERFACING TO TERMINALS 
Break Mode 

For example, a process needs temporary exclusive access to a 
terminal. The following call to SETMODE is made: 

CALL SETMODE ( HOMEATERMANUM, SETAACCESS, BREAKAMODE, 
BREAKAACCESS ); 

At this point, any other operations flagged as "normal access" 
to the terminal are rejected. 

When the process no longer requires exclusive access to the 
terminal, it permits normal access through the following call to 
SETMODE: 

CALL SETMODE ( HOMEATERMANUM, SETAACCESS, NORMALAMODE, 
NORMALAACCESS ); 

Exclusive access using BREAK is illustrated in Figure 6-6. 

Terminal Access Mode: 
BREAK Mode 
(Only BREAK 

access permitted) 

Normal Mode 
(Any access 
permitted) 

Application Access Type: 
BREAK Access -----

_ Application has sole access to terminal _.. 

Normal Access ------

Application process 
calls SETMODE, 

specifying BREAK access 
and BREAK mode 

Application process 
calls SETMODE, 

specifying normal access 
and normal mode 

85004-047 

Figure 6-6. Exclusive Access Using BREAK 

"1 82357 AOO 3/85 6-39 



INTERFACING TO TERMINALS 
Error Recovery 

ERROR RECOVERY 

Error recovery for terminals, in most cases, simply consists of 
retrying the current operation. Certain errors, involving timed 
reads and the break feature, require consideration. You can 
obtain a brief description of most errors by enterin~J the COMINT 
command ERROR with the error number. All errors are fully 
described in the System Messages Manual. 

Qperation Timed Out (Error 40) 

This error indicates that the terminal operator did not complete 
a data entry within the time allotted by a call to AWAITIO. Any 
data entered before the timeout occurred is lost. Therefore, a 
message should be sent telling the terminal operator to reenter 
the last data. 

BREAK (Errors 110 and lll) 

Pressing BREAK on a terminal where BREAK is enabled can cause an 
application process to receive either of two errors: 

Error 110 (only break operations permitted) 

Error 111 (operation aborted because of BREAK). 

The action taken for these errors depends on whether the process 
receiving the error is the one with BREAK enabled (the process 
that receives the BREAK message). 

Error 110 indicates that BREAK was pressed and that break mode 
was specified when BREAK was enabled (see SETMODE, function 11). 
The terminal is inaccessible (unless this process uses SETMODE to 
signal its operations as break access) until the process 
processing the break calls SETMODE (function 12) to allow normal 
access to the terminal. 

If the process receiving error 110 is not the one that enabled 
BREAK, then the operation should be retried periodically. If the 
process has break enabled, then $RECEIVE should be checked for 
the system BREAK message, and appropriate action should be taken. 

Error 110 implies that no data was transferred. 

6-40 ~ 82357 AOO 3/85 



INTERFACING TO TERMINALS 
Error Recovery 

Error 111 indicates that BREAK was pressed while the current file 
operation was taking place. The nature of this error indicates 
that data may have been lost. 

If the process receiving error 111 is not the one that enabled 
BREAK, then the operation should be retried. If a write 
operation was being performed, then the write can simply be 
retried. If a read operation was being performed, then a message 
should be sent, telling the terminal operator to retype the last 
entry, before retrying the read. 

Keep in mind, however, that if more than one process is accessing 
a terminal and the break feature is used, only break access 
should be allowed after BREAK is pressed. Therefore, subsequent 
retries are rejected with error 110 until normal access is 
permitted. 

If either of these errors is received by a process not having 
BREAK enabled, the process should suspend itself for some short 
period (like ten seconds) before retrying the operation. This 
can be accomplished by calling the process control procedure 
DELAY. 

If the process has BREAK enabled, then $RECEIVE should be checked 
for the system BREAK message, and appropriate action should be 
taken. 

Preempted by Operator Message (Error 112) 

This error can occur only when an application process is using 
the same terminal as the active operator console device. If the 
application process is reading from the terminal (using either 
READ or WRITEREAD) and a message is sent to the operator, the 
application process's file operation is aborted and the operator 
message is written. (This is necessary so that operator messages 
are not inadvertently deferred while some read is occurring on 
the terminal). Any data entered when the preemption takes place 
is lost. Therefore, a message should be sent telling the 
terminal operator to retype the last entry before retrying the 
read. 

Modem Error (Error 140) 

This error occurs if the carrier signal to the modem was lost. 
The carrier loss may be a permanent or just a momentary loss. 
In either case, it must be assumed that data was lost. The first 

~ 82357 AOO 3/85 6-41 



INTERFACING TO TERMINALS 
Error Recovery 

time error 140 occurs, a retry message should be sent to the 
terminal operator (if reading) before retrying the operation. 
If error 140 occurs on the retry, then the connection with the 
remote terminal is lost. Typical action when the second error 
occurs is to call the CONTROL procedure to "disconnect the modem" 
and follow that by a call to CONTROL to "wait for modem connect". 

Path Error (Errors 200-255) 

The application program should keep track of the number of 
times any of the path errors from 201 through 229 occurs on a 
particular file. The occurrence of one of these errors indicates 
that one path to the associated device is down. A second 
consecutive occurrence of one of these errors indicates that both 
paths to the device are down and that the device is no longer 
accessible. Alternatively, the process may have created another 
backup (because of a CPU reload or an action by the application 
program). 

If an error 210 through 231 occurs, the operation failed at some 
indeterminate point. If reading, a retry message should be sent 
to the terminal operator before retrying the read. 

6-42 ~ 82357 AOO 3/85 



INTERFACING TO TERMINALS 
CONTROL and SETMODE Operations 

SUMMARY OF TERMINAL CONTROL AND SETMODE OPERATIONS 

Terminal CONTROL Operations 

<operation> 

1 = forms control: 

<parameter> for terminal 

0 = form feed (send %014) 
> 0 = vertical tab (send %013) 

11 = wait for modem connect: 

<parameter> = none 

12 =disconnect the modem (hang up): 

<parameter> = none 

Terminal SETMODE Operations 

<function> 

6 = set system spacing control: 

<parameter-1>.<15> = 0, no space 
= 1, single space (default setting) 

<parameter-2> is not used. 

7 = set system auto line feed after receipt of carriage 
return line-termination (default mode is configured): 

<parameter-1>.<15> = 0 LFTERM line feed from terminal 
or network (default) 

= 1 LFSYS system provides line feed 
after line-termination by CR 

<parameter-2> is not used. 

..,, 82357 AOO 3/85 6-43 



INTERFACING TO TERMINALS 
CONTROL and SETMODE Operations 

8 =set system transfer mode (default mode is configured): 

<parameter-1>.<15> = 0, conversational mode 
= 1, page mode 

<parameter-2> sets the number of retries of I/O 
operations; <parameter-2> is used with 6520 terminals 
only. 

9 = set interrupt characters: 

10 = 

11 = 

<parameter-1>.<0:7> 
.<8:15> = 

<parameter-2>.<0:7> 
.<8:15> = 

= character 1 
character 2 

= character 3 
character 4 

(Default for conversational mode is: backspace, line 
cancel, end-of-file, and line-termination. Default 
for page mode is page termination.) 

set parity checking by system (default is configured): 

<parameter-1>.<15> = 0' no checking 
= 1' checking 

<parameter-2> is not used. 

set break ownership: 

<parameter-1> = 0, means break disabled (default 
setting) 

= <cpu,pin>, means enable break 

and terminal access mode AFTER break is pressed: 

<parameter-2> = 0, normal mode (any type file access is 
permitted) 

= 1, break mode (only break-type file 
access is permitted) 

6-44 "''f 82357 AOO 3/85 



INTERFACING TO TERMINALS 
CONTROL and SETMODE Operations 

12 = set terminal access mode: 

<parameter-1>.<15> = 0, normal mode (any type file 
access is permitted) 

= 1, break mode (only break-type 
file access is permitted) 

and file access type: 

<parameter-2> = 0, normal access to terminal 
= 1, break access to terminal 

13 = set system read termination on ETX character (default is 
configured): 

<parameter-1> = 0, no termination on ETX 
= 1, termination on first character after 

ETX 
= 3' termination on second character 

ETX 

<parameter-2> is not used. 

14 = set system read termination on interrupt characters 
(default is configured): 

<parameter-1> = 0, no termination on interrupt 
characters (transparency mode) 

= 1, termination on any interrupt 
character input 

<parameter-2> is not used. 

20 =set system echo mode (default is configured). 

after 

<parameter-1>.<15> = 0, system does not echo characters 
as read 

= 1, system echoes characters as read 

<parameter-2> is not used. 

/11 82357 AOO 3/85 6-45 



INTERFACING TO TERMINALS 
CONTROL and SETMODE Operations 

22 = set baud rate: 

<parameter-1> = 0, baud rate 
1, baud rate 
2, baud rate 
3, baud rate 
4, baud rate 
5, baud rate 
6, baud rate 
7, baud rate 
8, baud rate 
9, baud rate 

10, baud rate 
11, baud rate 
12, baud rate 
13, baud rate 
14, baud rate 
15, baud rate 
16, baud rate 

<parameter-2> is not used. 

23 = set character size: 

<parameter-1> = 0, character 
1, character 
2, character 
3, character 

<parameter-2> is not used. 

= 50 
= 75 
= 110 
= 134.5 
= 150 
= 300 
= 600 
= 1200 
= 1800 
= 2000 
= 2400 
= 3600 
= 4800 
= 7200 
= 9600 
= 19200 
= 200 

size = 
size = 
size = 
size = 

24 = set parity generation by system: 

<parameter-1> = 0, parity = odd 
1, parity = even 
2, parity = none 

<parameter-2> is not used. 

27 = set system spacing mode: 

5 bits 
6 bits 
7 bits 
8 bits 

<parameter-1>.<15> = 0, post space (default 
= 1, pre space 

<parameter-2> is not used. 

6-46 

setting) 

.-, 82357 AOO 3/85 



INTERFACING TO TERMINALS 
CONTROL and SETMODE Operations 

28 = reset to configured values: 

<parameter-I> = 0, 
<parameter-2> is not used. 

38 = terminal, set special line-termination mode and 
character: 

<parameter-I> = 0, set special line-termination mode 
<parameter-2> is the new line
termination character. The line
termination character is not counted 
in the length of a read. No carriage 
return or line feed is issued (the 
cursor does not move) at the end of 
a read. 

= I, set special line-termination mode 
<parameter-2> is the the new line
termination interrupt character. The 
line-termination character is counted 
in the length of a read. No carriage 
return or line feed is issued (the 
cursor does not move) at the end of a 
read. 

= 2, reset special line-termination mode 
The line-termination interrupt 
character is restored to its 
configured value. <parameter-2> must 
be present, but is not used. 

<parameter-2> = the new line-termination interrupt 
character if <parameter-I> = 0 or I. 

<last-params>, if present, returns the current mode in 
<last-params>[O] and the current line
termination interrupt character in 
<last-params>[I]. 

"1 82357 AOO 3/85 6-47 



INTERFACING TO TERMINALS 
CONTROL and SETMODE Operations 

67 = AUTODCONNECT for full duplex modems: Monitor carrier 
detect, or data set ready 

<parameter-1> = 0, disable AUTODCONNECT (default setting) 
1, enable AUTODCONNECT 

<parameter-2> is not used. 

110 = Set SISO mode (Shift in, shift out) 

<parameter-1> = 0, disable SISO 
1, enable SISO 

<parameter-2> is not used. 

113 = Set screen size 

<parameter-!> = screen width (40, 66, 80, or 132) 

<parameter-2> = screen depth (25 or 28) 

Only the following four screen formats are supported 
for 654x terminals (width x depth): 

40 x 25 80 x 25 66 x 28 132 x 28 

<last-params>, if present, returns the previous setting 
of <parameter-!> and <parameter-2>. The 
format is: 

<last-params>[O] = old <parameter-!> 
<last-params>[l] = old <parameter-2> 

6·-48 ~ 82357 AOO 3/85 



SECTION 7 

INTERFACING TO LINE PRINTERS 

This section describes the interfaces to line printers, including 
the use of SETMODE and CONTROL functions for controlling line 
printers. Device-specific information on the 5508, 5520, and 
5530 printers is included. 

The file system provides for data transfers from application 
processes to line printers in blocks of 0 characters (blank line) 
to the maximum number of characters permitted in one line of 
print. 

GENERAL CHARACTERISTICS OF LINE PRINTERS 

Line printers can be accessed by either $<device-name> or 
$<logical-device-number>. 

Default file-system spacing mode is postspace (space after 
printing). The spacing mode can be set to prespace (space 
before printing) by use of a SETMODE function. 

The procedures available for explicitly controlling forms 
movement are: 

CONTROL Skip to VFU channel or skip a number of lines. 

CONTROLBUF 

SETMODE and 
SETMODENOWAIT 

"1 82357 AOO 3/85 

Load programmable VFU or direct-access vertical 
format unit (DAVFU) for the model 5520 printer. 

No-space or single-space after printing. 
Disable or enable automatic perforation skip. 

7-1 



LINE PRINTERS 
Applicable Procedures 

The file system does not provide automatic top-of-form on OPEN or 
CLOSE; if this is desired, it must be handled by an application 
process using a call to the CONTROL procedure. 

A standard vertical format unit (VFU) tape is supplied with 
some line printers (see summary at the end of this section). 

It is the responsibility of application processes to handle 
"paper out" and "not ready" conditions. 

All programs supplied with the software release, when accessing 
a line printer, open the printer with exclusive access such as 
(OPEN, <flags>.<9:11> = 1). 

Line printer device type is 5. 

SUMMARY OF APPLICABLE PROCEDURES 

The following procedures are used to perform input-output 
operations with line printers: 

DEVICE INFO 

OPEN 

WRITE 

CONTROL 

CONTROLBUF 

AWAI TIO 

CANCELREQ 

FILEINFO 

SETMODE 

provides the device type and configured record 
length for a designated line printer. 

establishes communication with a file. 

prints a line on the line printer. 

is used for forms control. 

loads the DAVFU for the model 5520 printer. 

waits for completion of an outstanding I/O 
operation pending on an open file. 

cancels the oldest outstanding operation, 
optionally identified by a tag, on an open file. 

provides error information and characteristics 
about an open file. 

sets and clears the auto perforation skip and 
single-spacing functions. 

SETMODENOWAIT is used the same as SETMODE except in a nowait 
manner on an open file. 

Cl,OSE stops access to an open file. 

7-2 ~ 82357 AOO 3/85 



LINE PRINTERS 
Accessing Line Printers 

ACCESSING LINE PRINTERS 

Like any other file, a printer is accessed through the OPEN 
procedure. For example, to access a printer referenced by the 
device name "$LP1", the following is written in the application 
program: 

INT .PTR [0:11] := ["$LP1", 10 * [" "]]; 
FILEANUM, 

.PTRABUFFER[0:65]; 

LITERAL EXCLAACC = %20; 

CALL OPEN ( PTR, FILEANUM, EXCLAACC ); 

Then, to print a line of print: 

CALL WRITE ( FILEANUM, PTRABUFFER, 132 ); 

exclusive access. 

prints 132 characters of PTRABUFFER on the line printer. 

If the printer has a configured line width of 132 characters and 
the following call is made: 

CALL WRITE ( FILEANUM, PTRABUFFER, 200 ); 
IF<> THEN ••• ; 

an error occurs. The first 132 characters of PTRABUFFER 
are printed. On the return from WRITE, the condition code 
indicator is set to CCL. A subsequent call to FILEINFO 
would return error 21 (illegal count specified). 

If the printer has a configured line width of 132 characters and 
the following call is made: 

CALL WRITE ( FILEANUM, PTRABUFFER, 40 ); 
IF<> THEN ••• : 

40 characters of PTRABUFFER are printed starting at 
column l; columns 41 through 132 are left blank. 

If the <count-written> parameter is present in the call to WRITE, 
a count of the number of characters actually printed is returned. 

'1J 82357 AOO 3/85 7-3 



LINE PRINTERS 
Forms Control 

FORMS CONTROL 

The file-system CONTROL and SETMODE procedures provide the 
capability of controlling forms movement. 

The only automatic forms movement provided by the file system is 
the perforation skip and single space paper movement. You can 
disable both of these movements using the SETMODE procedure. 
Any automatic forms movement always takes place after a line is 
printed. 

The CONTROL procedure is used to advance forms by means of a 
format tape (VFU) installed in the printer, by means of a 
programmable format unit (DAVFU) or by advancing forms a 
specified number of lines as required. The operations performed 
by CONTROL depend upon the type of printer (device subtype); see 
the summary at the end of this section. 

The file system does not automatically set the printer form to a 
top-of-form position at file open time. This is desirable 
because it may be necessary for the operator to manually install 
and align a special form. However, the application can cause the 
paper to be positioned at top of form at open time as follows: 

LITERAL FORMSACONT = 1, 
TOF = 0, 
SKIPAONEAHALF = 5; 

CALL OPEN ( PTRAFNAME, FILEANUM, EXCLAACC ); 
IF < THEN • . . ; 
CALL CONTROL ( FILEANUM, FORMSACONT, TOF ); 

positions the form to the top-of-form position. 

You can use the CONTROL procedure to advance paper to specific 
locations. For example, to skip to the next one-half page using 
the standard VFU tape, make the following call to CONTROL: 

advances the form one-half page. 

If at some point you wish to advance the paper a specific number 
of lines, you can use the CONTROL procedure. For example, to 
advance 30 lines on a belt-type printer, use the following call 
to CONTROL: 

7--4 ~ 82357 AOO 3/85 



LINE PRINTERS 
Forms Control 

LITERAL A30ALINES = 30 + 16; ! data declaration. 

advances the form by 30 lines. 

To perform single spacing with automatic perforation skip 
(default modes), the file system skips on channel 2 of the 
printer's format tape. Therefore, if single-spacing and 
automatic page eject are desired, the VFU tape should be punched 
in channel 2 for each of lines 1 through 60. The file system 
does not use the VFU tape when single spacing without automatic 
perforation skip. 

Overprinting can be accomplished with SETMODE function 6. For 
example, to overprint a single line of print, use the following 
calls to SETMODE and WRITE: 

LITERAL SETASPACE = 6, 
NOASPACE = 0, 
SPACE = l; 

turns off single spacing. 

CALL WRITE ( FILEANUM, BUFFERl, .•• ); 

prints the contents of BUFFERl. The form does not advance • 

. 
CALL SETMODE ( FILEANUM, SETASPACE, SPACE ); 

turns on single spacing . 

. 
CALL WRITE ( FILEANUM, BUFFER2, ); 

prints the contents of BUFFER2 over the line just printed 
(which was the contents of BUFFERl). The form advances to 
the next line. 

.-, 82357 AOO 3/85 7-5 



LINE PRINTERS 
5508 Printer Considerations 

NOTE 

Application programs should use CONTROL and SETMODE to 
accomplish forms control rather than attempting to embed 
forms control characters in the print line. The line 
printer does not recognize the unprintable characters, 
and therefore an error 218 (interrupt timeout) occurs. 

PROGRAMMING CONSIDERATIONS FOR THE MODEL 5508 PRINTER 

The subtype for the model 5508 line printer is 3. 

The model 5508 line printer has an electronically programmable 
form length and vertical tabulation stops. 

The number of lines in the form is specified by SETMODE function 
25 as an integer within the range of 0:126. The default for 
this setting is 66 lines. 

A vertical tab is set with SETMODE function 26 by spe!cifying the 
line where the tab stop is to occur. By default, a vertical tab 
is set for each line from 1 through 59 (causing single spacing to 
be the default case for vertical tabulation). All vertical tabs, 
with the exception of the tab at line 1, are cleared when you 
specify a line value of -1 with SETMODE function 26. The 
vertical tab at line 1 cannot be cleared. 

To change the vertical tab stops, the following procedure must 
be followed exactly: 

1. Set the form length (SETMODE function 25). 

2. Clear all vertical tabs (SETMODE function 26, 
<parameter-I>= -1). 

3. Set each desired vertical tab using a separate call to 
SETMODE (function 26, <parameter-I> = (line number minus 1) 
where the vertical tab is to be set). 

4. Issue a top of form (CONTROL operation 1, <parameter>= 0). 
This forces all tab stops to be set after the form feed is 
executed. If a subsequent power failure occurs, the tab 
stops are restored automatically by the system. 

5. If necessary, perform operator intervention to align the 
form. 

7-6 ~ 82357 AOO 3/85 



LINE PRINTERS 
5520 Printer Considerations 

PROGRAMMING CONSIDERATIONS FOR THE MODEL 5520 PRINTER 

The subtype for the model 5520 line printer is 4. 

Programmatic Differences Between the Model 5520 and Model 5508 

The GUARDIAN software external interface to the model 5520 serial 
printer is not fully compatible with the interface to the model 
5508 serial printer. The major difference between these two 
printers is the way in which forms control is handled. 

The model 5508 printer provides programmable forms length and 
vertical tab stops, whereas the model 5520 printer provides a 
12-channel DAVFU internal buffer whose contents may be changed by 
the user program. The model 5508 printer allows the user program 
to specify forms length and vertical tab stops by means of 
SETMODE functions; for the model 5520, the user program specifies 
the contents of the DAVFU (if values other than the defaults are 
desired) by calling the CONTROLBUF procedure. 

User applications that currently run with the model 5508 printer 
must be modified to run on the model 5520 if they are affected by 
any of the following differences: 

• SETMODE 25 (forms length) is not supported on the model 5520. 

• SETMODE 26 (set and clear vertical tab stops) is not supported 
on the model 5520. 

• CONTROL 1 (forms control) is used differently, in some cases, 
on the two printers. 

• The vertical tab (VT) character is not supported on the model 
5520. 

• Control characters (%00-%37) should not be included in user 
data sent to the model 5520, since they disable parity error 
recovery. 

Using the DAVFU 

In the following discussion, it is assumed that line numbers 
range from 1 to 254, character locations range from 1 to 218, and 
VFU channels range from 0 to 11. 

~ 82357 AOO 3/85 7-7 



LINE PRINTERS 
Using the DAVFU 

The DAVFU specifies forms length and the functions performed by 
CONTROL operation 1 (forms control). The 5520 default DAVFU is 
initialized as follows: 

VFU channel 0 (top-of-form: line 1) 
VFU channel 1 (bottom-of-form: linie.60) 
VFU channel 2 (single space: lines 1-60, 

top-of-form eject) 
VFU channel 3 (next odd-numbered line) 
VFU channel 4 (next third line: 1,4,7,10, etc.) 
VFU channel 5 (next one-half page) 
VFU channel 6 (next one-fourth page) 
VFU channel 7 (next one-sixth page) 
VFU channel 8 (line 1.) 
VFU channel 9 (line 1) 
VFU channel 10 (line 1.) 
VFU channel 11 (bottom of paper: line 63) 

The default form length is 66 lines with automatic perforation 
skip mode enabled (first 60 lines printed per page). 

You can request that the printer skip to the next stop of a 
particular channel by calling CONTROL operation 1, <parameter> = 
channel number. The channel number specified must be in the 
range 0-11; for example: 

! Skip to channel 0 (top-of-form) 
CALL CONTROL (FILENUM, 1, 0); 

! Skip to channel 5 (next one-half page) 
CALL CONTROL (FILENUM, 1, 5); 

The 5520 powers on with default DAVFU values. An application 
program may programmatically change the contents of the DAVFU by 
calling CONTROLBUF. 

The I/O software reinitializes the DAVFU with default values if 
a CONTROL 1, <parameter> = 0 (skip to top of form) is issued 
immediately after the file is opened or immediately after a call 
to SETMODE 28 (reset to configured values). In this manner, the 
I/O software ensures that the printer is at top of form before 
loading the default DAVFU. (Loading the DAVFU causes the top of 
form to be reset to the current line.) 

If the previous forms length is different from the default forms 
length, then the approach just described is not sufficient since 
the requested top of form will advance the paper the wrong number 
of lines. For this reason, when loading the printer with 
standard 66-line (11-inch) paper a:Eter nonstandard size paper 
has been used, it is recommended that the printer be powered off 
and back on to force the forms length to the default setting . 

7--8 ..-, 82357 AOO 3/85 



LINE PRINTERS 
Loading the DAVFU 

When using nonstandard size paper, it is recommended that the 
program require manual intervention to align the paper properly 
after the DAVFU is loaded. 

Loading the DAVFU 

You can programmatically load the DAVFU by calling CONTROLBUF 
operation 1. Any previous lines of text will be printed first, 
before the DAVFU is loaded. 

Loading the DAVFU causes the top of form to be reset to the 
current line. 

The <buffer> passed to CONTROLBUF should contain one word for 
each line on the page. Bits 0 through 11 of each word represent 
channels 0 through 11, respectively, for that line. A "l" in any 
of these bits indicates a channel stop in the corresponding 
channel. Bits 12 through 15 are unused and must be zeros. 

The format of each word in the DAVFU buffer is as follows: 

Channel 0 
Channel 1 
Channel 2 
Channel3 
Channel 4 
Channel 5 

1 1 1 1 1 1 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 

0 0 0 0 

L___ Channel 1 
Channel 1 
Channel 9 
Channel 8 
Channel 7 
Channel 6 

1 
0 

85004-048 

For example, %37400 (default for line 31) indicates that channel 
stops are to be set for channels 2, 3, 4, 5, 6, and 7. 

There must be exactly one channel 0 (top of form) stop defined in 
the VFU buffer and at least one stop defined for each of the 
other VFU channels. File-system error 105 (VFU ERROR) is 
returned on an attempt to load the DAVFU if the VFU buffer is not 
valid. 

The forms length is determined by the number of words in the VFU 
buffer. The maximum forms length allowed is 254 lines (508 bytes 
in buffer). If the byte count specified in a DAVFU load exceeds 

~ 82357 AOO 3/85 7-9 



LINE PRINTERS 
Loading the DAVFU 

this maximum, or if it is not an even number, file-system error 
21 (ILLEGAL COUNT) is returned. 

Use channel 0 to indicate which line the printer should skip to 
if CONTROL operation 1, <parameter> = 0 is issued, or if the 
operator presses the TOP OF FORM button on the print«~r. Use 
channel 2 for line termination when spacing and perforation skip 
are enabled (default). Use channel 11 to indicate which line the 
printer should skip to if CONTROL operation 1, <parameter> = 11 
is issued, and also to indicate when "paper out" should be 
reported. 

11: single spacing and automatic perforation skip are desired, the 
DAVFU should contain a channel stop in channel 2 for lines 1 
through 60. The I/O software does not use the DAVFU when single 
spacing without automatic perforation skip. 

Upon detecting a paper out condition, the printer waits until the 
line defined as "bottom of paper" has been printed or passed 
over. This feature makes it possible to complete printing of an 
entire page before the paper out condition is reported to the 
application program. 

When using the default DAVFU, line 63 is defined as bottom of 
paper. If the paper is properly aligned in the printer, line 63 
is the last line before the perforation and lines 64, 65, and 66 
are the first three lines on the new page. Line 1 (top of form) 
immediately follows as the fourth line on the page. 

The recommended procedure for using nonstandard size paper is as 
follows: 

l~ Call CONTROLBUF to load the DAVFU. 

2~ Request manual intervention to load the printer with the 
desired paper and align it properly. 

3~ Start writing to the printer. 

When reloading the printer with standard 66-line paper after 
nonstandard size paper has been loaded, the printer should be 
powered off and back on to reset the forms length to the default 
setting. 

The following example illustrates program code to load the DAVFU. 
The channel stops specified in the example are the same as those 
in the 5520 default DAVFU. 

7-10 /1 82357 AOO 3/85 



LINE PRINTERS 
Loading the DAVFU 

INT .VFUBUF[0:65] := 
[%137740, %020000, %030000, %024000, %030000, %020000, 
%034000, %020000, %030000, %024000, %030400, %020000, 
%034000, %020000, %030000, %025000, %030000, %020000, 
%034000, %020000, %030400, %024000, %030000, %020000, 
%034000, %020000, %030000, %024000, %030000, %020000, 
%037400, %020000, %030000, %024000, %030000, %020000, 
%034000, %020000, %030000, %024000, %030400, %020000, 
%034000, %020000, %030000, %025000, %030000, %020000, 
%034000, %020000, %030400, %024000, %030000, %020000, 
%034000, %020000, %030000, %024000, %030000, %060000, 
%000000, %000000, %000020, %000000, %000000, %000000]; 

CALL CONTROLBUF (FILENUM, 1, VFUBUF, 132); 

Underline Capability 

The model 5520 printer has the ability to automatically do a 
partial line feed before underlining. This feature is desirable 
so that the underscore characters do not overlap the bottom parts 
of the characters being underlined. A partial line feed is 
performed following a carriage return (%15) only if the next line 
contains only underscore (%137) and space (%40) characters. 

You can create an application program to use this underlining 
capability, accomplished by overprinting, as follows: 

1. Turn off spacing using SETMODE function 6, <parameter-1> = 0. 

2. Write the desired text. 

3. Turn spacing back on by calling SETMODE function 6, 
<parameter-1> = 1. 

4. Write a buffer, consisting only of underscore and space 
characters, to underline the desired parts of the text 
written in step 2. 

This procedure must be followed exactly for the partial line feed 
to occur. If, for example, the application's second write buffer 
includes other text on the same line with the underscore and 
space characters, the line is still overprinted, but the partial 
line feed is not performed. 

The following example illustrates use of the partial line feed 
for underlining. 

-'1 82357 AOO 3/85 7-11 



LINE PRINTERS 
5520 Printer Considerations 

INT .DATABUFl[O:ll] := ["THIS WILL BE UNDERLINED~"], 
.DATABUF2[0:11] := [" "]; 

! Turn off spacing 
CALL SETMODE (FILENUM, 6, 0); 

! Write the text 
CALL WRITE (FILENUM, DATABUFl, 24); 

! Turn spacing back on 
CALL SETMODE (FILENUM, 6, l); 

! Underline the text 
CALL WRITE (FILENUM, DATABUF2, 24); 

Condensed and Expanded Print 

The model 5520 printer provides condensed and expanded print 
capabilities in addition to the standard spacing of 10 characters 
per inch. 

The condensed print option allows the 5520 to print with a 
horizontal pitch of 16.7 characters per inch. Condensed print 
is selected by calling SETMODE function 68, <parameter-1> = 1. 

The expanded print option (double width) provides a horizontal 
pitch of 5 characters per inch. Your application program 
can select expanded print by calling SETMODE function 68, 
<parameter-1> = 2. 

Reenable normal printing by calling SETMODE function 68, 
<parameter-1> = O; for example: 

! Select condensed print 
CALL SETMODE (FILENUM, 68, l); 

! Write the text 
CALL WRITE (FILENUM, DATABUFFER, COUNT); 

! Select expanded print 
CALL SETMODE (FILENUM, 68, 2); 

! Write the text 
CALL WRITE (FILENUM, DATABUFFER, COUNT); 

! Go back to normal print 
CALL SETMODE (FILENUM, 68, 0); 

7-12 /1 82357 AOO 3/85 



LINE PRINTERS 
5520 Printer Considerations 

The I/O software adjusts the maximum buffer size according to 
whether expanded, condensed, or normal print is enabled. This 
maximum is computed as follows: 

• Normal Print Mode--the configured record size 

• Expanded Print Mode--one-half the configured record size 

• Condensed Print Mode--1.67 times the configured record size 
(rounded down, maximum 218 bytes) 

For example, if you configure the device with a record size of 
132 bytes, the maximum buffer size allowed in condensed print 
mode is 218 bytes. The same configuration allows only 66 bytes 
for writes to the printer in expanded print mode. Furthermore, 
if the device is configured with a record size of 80 bytes, the 
maximum buffer size allowed in condensed print mode is 133 bytes. 
The same configuration allows only 40 bytes for writes to the 
printer in expanded print mode. 

Error Conditions for the Model 5520 

The following paragraphs summarize and explain the meaning of 
some of the file-system errors when they occur with a model 5520 
printer. 

Error 21 (ILLEGAL COUNT) occurs when the byte count for a write 
is greater than the configured record size for normal print mode, 
one-half the configured record size for expanded print mode, or 
1.67 times the configured record size (rounded down, maximum 218 
bytes) for condensed print mode. This error also occurs when the 
byte count specified for a DAVFU load is not an even number or is 
greater than 508 bytes (254 lines). 

Error 100 (DEVICE NOT READY) generally means that the device is 
offline, and the ON LINE button must be pressed. 

Error 102 (PAPER OUT) on this printer means either the printer is 
out of paper or the bail has not been closed; the operator must 
correct the problem. 

Error 104 (NO RESPONSE FROM DEVICE) means the printer did not 
return the requested status; either the printer power is off, or 
there is a hardware problem (for example, a parity error occurred 
on each request for status until the retry count was exhausted). 

Error 105 (VFU ERROR) indicates that the VFU buffer is invalid. 
This can occur for the following reasons: 

-'1 82357 AOO 3/85 7-13 



LINE PRINTERS 
5520 Printer Considerations 

1. More than one stop was defined for channel 0 (top of form) 

2. No stops were defined for one or more channels 

3. Bits 12 through 15 of each word were not zeros 

Error 120 (DATA PARITY ERROR) indicates a nonrecoverable data 
parity error. For details, see "Data Parity Error Recovery" 
following this section. 

Error 121 (DATA OVERRUN) means that the buffer overflowed while 
data was being sent to the printer. This indicates a hardware or 
microcode problem. 

Error 190 (DEVICE ERROR) occurs for one of the following reasons: 

1. Invalid status returned from printer 

2. "Buffer full" status lasted too long 

3. No shuttle motion 

4. Character generator absent 

5. VFU fault which is not recoverable 

6. VFU channel error 

Error 191 (DEVICE POWER ON) indicates that the printer powered on 
while the file was open. See "DEVICE POWER ON Error" below. 

Data Parity Error Recovery 

Automatic parity error recovery is supported for the 5520 
printer. If a parity error is detected, the I/O software will 
attempt to recover unless one of the following conditions exists: 

• A parity error persisted after the retry count was exhausted. 

• A parity error occurred while the device was in an of fline 
state (not ready or paper out). 

• A parity error occurred on a request for status immediately 
following a write of data (a parity error may also have 
occurred in the data). 

• A parity error occurred during a write of data that contained 
embedded control characters. 

7-14 ,.., 82357 AOO 3/85 



LINE PRINTERS 
5530 Printer Considerations 

Control characters 00 through 37 octal (%00-%37) should not be 
included in data sent to the 5520 printer since they disable 
parity error recovery. The I/O software provides the appropriate 
line termination and all escape sequences. The 5520 recognizes 
the following control characters: (%12) line feed, (%14) form 
feed, (%15) carriage return, and (%33) escape. Any other control 
characters are printed as a space. Escape is used as the first 
character in all escape sequences. Any unrecognized escape 
sequence sent to the printer is assumed to be a five-character 
sequence and results in the printing of a nonstandard character 
(%206), followed by paper movement equivalent to one line feed. 

DEVICE POWER ON Error 

If the printer power fails and then powers up again, the previous 
contents of the DAVFU and all data in the printer's internal 
buffers (approximately lK bytes) are lost. The printer powers on 
in an offline state, and the DAVFU is reloaded with default 
values. 

File-system error 100 (DEVICE NOT READY) will first be returned 
to the application. If the power on occurred while the file was 
open, error 191 (DEVICE POWER ON) is returned after the printer 
has been placed online. 

If recovery is to be attempted from a POWER ON condition, 
CONTROLBUF should be called, if necessary, to reload the DAVFU 
with user values. Manual intervention should then be requested 
in order to align the paper properly and to visually guarantee a 
good restart point. 

If the printer is powered on without paper loaded, error 100 
(DEVICE NOT READY) is first returned. If the ON LINE button is 
pressed at this time without paper loaded, then error 102 (PAPER 
OUT) is returned. Once the Paper Out condition is cleared and 
the ALARM/CLEAR button is pressed, the printer again becomes Not 
Ready. The ON LINE button must be pressed. At this point, error 
191 (DEVICE POWER ON) is returned if the power on occurred while 
the file was open. 

PROGRAMMING CONSIDERATIONS FOR THE MODEL 5530 PRINTER 

The subtype for the model 5530 line printer is 6. 

The 5530 printer is available only on Nonstop systems. 

/1'f 82357 AOO 3/85 7-15 



LINE PRINTERS 
Using a Printer Over a Telephone Line 

The 5530 printer powers on in full status mode; partial status 
mode is not supported on the 5530, and status is returned to the 
host only when requested. 

The 5530 printer does not support a format control tape or a 
programmable VFU (vertical format unit); forms control operations 
are simulated by the I/O software. CONTROL operation 1 allows 
forms control and line skipping. 

The baud rate for use with the 5530 printer can be SE~t by SETMODE 
function 22 to one of the following: 75, 150, 300, 600, 1200, 
2400, 4800, or 9600. (No other line speeds are supported for the 
5530.) Default is the SYSGEN-configured baud rate or 9600 baud 
if not specified on the SYSGEN. 

A cut sheet paper feeder option is available for the 5530. 

USING A MODEL 5508, 5520, OR 5530 PRINTER OVER A TELJ~PHONE LINE 

A model 5508, 5520, or 5530 line printer can be used over a 
phone line using a Bell System 103, 113, or 212 modem at 300 
or 1200 BAUD. Two answering modes are available: AUTOANSWER 
(the default) and CTRLANSWER. 

In AUTOANSWER mode, DATA TERMINAL READY is raised by the I/O 
software, allowing incoming calls from the printer to be answered 
at any time. Once the telephone has been answered, an 
application can write to the printer without any special modem 
control code, provided the connection is still good. This allows 
any program that can access the printer locally to access it 
remotely over a modem as well. For example: 

:FILES /OUT $LPMODEM/ 
:FUP COPY <filename>, $LPMODEM 

In AUTOANSWER mode, the communication line is not disconnected 
when the file is closed. 

CTRLANSWER mode gives the user full control of answering and 
hanging up the phone. DATA TERMINAL READY is not raised until 
the user process does a CONTROL operation 11 (answer the phone), 
which waits for the modem to connect with the printer. When the 
file is closed or the user process does a CONTROL operation 12 
(hang up the phone), DATA TERMINAL READY is dropped and the line 
is hung up; for example: 

CALL CONTROL (FILENUM, 11); answer the telephone 

7-16 .., 82357 AOO 3/85 



LINE PRINTERS 
Line Printer Error Recovery 

CALL CONTROL (FILENUM, 12): ! hang up the telephone 

AUTOANSWER or CTRLANSWER mode can be specified as configuration 
parameters in SYSGEN (see the System Management Manual) or by 
using SETMODE function 29: 

CALL SETMODE (FILENUM, 29, O): ! CTRLANSWER mode 

CALL SETMODE (FILENUM, 29, 1): AUTOANSWER mode 

Unlike the other SETMODE functions, this one remains in effect 
even after the file is closed. 

The following configuration parameters are needed in order to use 
a modem with the model 5508, 5520, or 5530 printer: 

BAUD300 AUTOANSWER 
LP55nnM MODEM EIA or or 

BAUD1200 CTRLANSWER 

Further information on system configuration for these devices can 
be found in the SYSGEN section of the System Management Manual. 

ERROR RECOVERY 

The following errors require special consideration for all line 
printers: 

100 device not ready 
200-255 path errors 

Consideration is also necessary when using nowait I/O and 
permitting more than one concurrent I/O operation. It is 
possible, when initiating a number of operations, that some 
can fail whi.le subsequent operations do not. In that case, 
lines may be missing and, if reprinted, would be out of order. 

Not Ready 

It is the responsibility of the application process to handle 
"not ready" and/or "paper out" conditions. With some printers, 
either condition causes a "not ready" indication (see the 
operating manual for the specific printer). Typically, if either 
of these conditions occurs, a message indicating the condition 
should be displayed on the home terminal (the logical device 

"'1 82357 AOO 3/85 7-17 



LINE PRINTERS 
Line Printer Error Recovery 

number of the home terminal can be obtained using the MYTERM 
process control procedure). See the System Procedure Calls 
Reference Manual for the syntax of the MYTERM procedure. Your 
application process should then wait for the terminal operator 
to respond, indicating that the printer is ready. For example: 

LITERAL NOTAREADY = 100, 
PAPERAOUT = 102; 

RETRY: 
CALL WRITE ( PRINTER, BUFFER, 132 ); 
IF < THEN ! error occurred. 

BEGIN 
CALL FILEINFO ( PRINTER, ERROR ); 
IF ERROR = NOTAREADY OR ERROR = PAPERAOUT THEN 

BEGIN 
BUFFER':=' "**PRINTER NOT READY"; 
CALL WRITEREAD ( HOMEATERM, BUFFER, 20, 1, NUMAREAD ); 

The application program informs the terminal 
operator then waits for a reply 

GOTO RETRY; 
END 

ELSE ••.•• ; ! trouble. 
END; 

Path Errors 

Path error recovery on a printer requires some special 
considerations because of paper movement. 

If a path error is detected and is either error 200 or 201, the 
operation never got started. These errors can simply be retried. 

If a path error is detected and is one of errors 210 through 231, 
the operation failed at some indeterminate point, and paper 
movement may have occurred. Depending on the application, 
different approaches to error recovery are necessary. If the 
operation is a critical one, such as the printing of payroll 
checks, the check should probably be cancelled and a message 
sent to the operator. However, if the information being printed 
is not considered critical, the line can be reprinted (and may 
thus be duplicated). 

7-18 /1 82357 AOO 3/85 



LINE PRINTERS 
CONTROL, CONTROLBUF, and SETMODE Operations 

SUMMARY OF PRINTER CONTROL, CONTROLBUF, AND SETMODE OPERATIONS 

Printer CONTROL Operations 

1 = forms control: 

<parameter> for printer (subtype 0, 2, or 3) 

0 = skip to VFU channel 0 (top of form) 
1 - 15 = skip to VFU channel 2 (single space) 

16 - 79 = skip <parameter> - 16 lines 

<parameter> for printer (subtype 1 or 5) 

0 = skip to VFU channel 0 (top of form) 
1 = skip to VFU channel 1 (bottom of form) 
2 = skip to VFU channel 2 (single space, top of 

form eject) 
3 = skip to VFU channel 3 (next odd-numbered line) 
4 = skip to VFU channel 4 (next third line: 1, 

4, 7, 10, etc.) 
5 = skip to VFU channel 5 (next one-half page) 
6 = skip to VFU channel 6 (next one-fourth page) 
7 = skip to VFU channel 7 (next one-sixth page) 
8 = skip to VFU channel 8 (user defined) 
9 = skip to VFU channel 9 (user defined) 

10 = skip to VFU channel 10 (user defined) 
11 = skip to VFU channel 11 (user defined) 

16 - 31 = skip <parameter> - 16 lines 

<parameter> for printer (subtype 4) (default DAVFU) 

0 = skip to VFU channel 0 
1 = skip to VFU channel 1 
2 = skip to VFU channel 2 

(top of form/line 1) 
(bottom of form/line 60) 
(single space/lines 1-60, 

3 = skip to VFU channel 3 
4 = skip to VFU channel 4 

5 = skip to VFU channel 5 
6 = skip to VFU channel 6 
7 = skip to VFU channel 7 
8 = skip to VFU channel 8 

Afj 82357 AOO 3/85 

top of form eject) 
(next odd-numbered line) 
(next third line: 1, 4, 
7, 10, etc.) 

(next one-half page) 
(next one-fourth page) 
(next one-sixth page) 
(line 1) 

7-19 



LINE PRINTERS 
CONTROL, CONTROLBUF, and SETMODE Operations 

9 
10 

= 
= 

skip to VFU channel 9 (line 1) 
skip to VFU channel 10 (line 1) 

11 
16 - 31 

= 
= 

skip to VFU channel 11 (bottom of paper/line 63) 
skip <parameter> - 16 lines 

11 =line printer (subtype 3 or 4), wait for modem connect: 

<parameter> = none 

12 =line printer (subtype 3 or 4), disconnect the modem: 

<parameter> = none 

Line Printer CONTROLBUF Operations 

1 =line printer (subtype 4), load DAVFU: 

<buffer> = VFU buffer to be loaded 

<count> = number of bytes contained in <buffer> 

Line Printer SETMODE Operations 

<function> 

5 = set system automatic perforation skip mode (assumes 
standard VFU function in channel 2): 

<parameter-!> = 0, off - 66 lines per page 
= 1, on - 60 lines per page (default) 

<parameter-2> is not used. 

6 = set system spacing control: 

<parameter-I> = 0, no space 
= 1, single space (default setting) 

<parameter-2> is not used. 

7-20 ~, 82357 AOO 3/85 



LINE PRINTERS 
CONTROL, CONTROLBUF, and SETMODE Operations 

<function> 

22 = line printer (subtype 3 or 4) I set baud rate: 

<parameter-1> = 0, baud rate = 50 
1, baud rate = 75 
2 I baud rate = 110 
3 I baud rate = 134.5 
4 I baud rate = 150 
5, baud rate = 300 
6, baud rate = 600 
7, baud rate = 1200 
8 I baud rate = 1800 
9, baud rate = 2000 

10, baud rate = 2400 
11, baud rate = 3600 
12, baud rate = 4800 
13, baud rate = 7200 
14, baud rate = 9600 
15, baud rate = 19200 
16, baud rate = 200 

<parameter-2> is not used. 

25 = line printer (subtype 3) I set form length: 

<parameter-1> = length of form in lines 

<parameter-2> is not used. 

26 = line printer (subtype 3) I set or clear vertical tabs: 

<parameter-1> >= 0, (line#-1) of where tab is to be set 
= -1, clear all tabs (except line 1) 

Note: A vertical tab stop always exists at line 1 
(top of form). 

<parameter-2> is not used. 

27 = set system spacing mode: 

<parameter-1>.<15> = 0, postspace (default setting) 
= 1, prespace 

<parameter-2> is not used. 

..-, 82357 AOO 3/85 7-21 



LINE PRINTERS 
CONTROL, CONTROLBUF, and SETMODE Operations 

<function> 

28 = reset to configured values: 

<parameter-1> = 0 

<parameter-2> is not used. 

29 =line printer (subtype 3 or 4), set automatic answer 
mode or control answer mode: 

<parameter-1>.<15> = 0, CTRLANSWER 
= 1, AUTOANSWER (default) 

<parameter-2> is not used. 

37 =line printer (subtype 1, 4, or 5), get device status: 

7-22 

<parameter-1> is not used. 

<parameter-2> is not used. 

<last-params> = status of device. Status values are: 

<last-params> for printer (subtype 1 or 5) 
(only <last-params>[O] is used) 

.<5> = DOV, data overrun } 0 = no overrun 
} 1 = overrun occurred 

.<7> = CLO, connector loop open } 0 = not open 
} 1 = open (device 
} unplugged) 

.<8> = CID, cable ident } 0 = old cable 
} 1 = new cable 

.<10> = PMO, paper motion } 0 = not moving 
** RESERVED FOR LATER USE ** } 1 = paper moving 

.<11> = BOF, bottom-of-form } 0 = not at BOF 
} 1 = at bottom 

.<12> = TOF, top-of-form } 0 = not at top 
} 1 = at top 

Af' 82357 AOO 3/85 



LINE PRINTERS 
CONTROL, CONTROLBUF, and SETMODE Operations 

<function> 

37 =line printer (subtype 1, 4, or 5), get device status 
(cont'd): 

<last-params>[O] for printer (subtype 1 or 5) (cont'd) 

.<13> = DPE, device parity error } 0 = parity OK 
} 1 = parity error 

.<14> = NOL, not on line } 0 = on line 
} 1 = not on line 

.<15> = NRY, Not ready } 0 = ready 
} 1 = not ready 

All other bits are undefined. 

Note that Ownership, Interrupt Pending, Controller 
Busy, and Channel Parity errors are not returned in 
<last-params>: your application program "sees" them as 
normal file errors. Also note that CID must be checked 
when PMO, BOF, and TOF are tested, since the old cable 
version does not return any of these states. 

<last-params> for printer (subtype 4) 

<last-params>[O] = primary status returned from printer: 

.<9:11> = full } 0 = partial status 
status } 1 = full status 
field } 2 = full status/VFU fault 

} 3 = reserved for future use 
} 4 = full status/data parity error 
} 5 = full status/buffer overflow 
} 6 = full status/bail open 
} 7 = full status/ 

auxiliary status available 

.<12> = buffer full } 0 = not full 
} 1 = full 

.<13> = paper out } 0 = OK 
} 1 = paper out 

.<14> = device power on } 0 = OK 
} 1 = POWER ON error 

"'f' 82357 AOO 3/85 7-23 



LINE PRINTERS 
CONTROL, CONTROLBUF, and SETMODE Operations 

<function> 

37 =line printer (subtype 1, 4, or 5), get device status 
(cont'd): 

<last-params>[O] for printer (subtype 4) (cont'd) 

.<15> = device not ready } 0 = ready 
} 1 = not ready 

All other bits are undefined. 

<last-params>[l] = auxiliary status word if 
<last-params>[0].<9:11> = 7~ otherwise O. 
Auxiliary status word is as follows: 

.<9:13> = auxiliary 
status 

.<14:15> 

} 0 = no errors this field 
} 1 = no shuttle motion 
} 2 = character generator absent 
} 3 = VFU channel error 
} 4-31 = reserved for future use 

} always 3 

All other bits are undefined. 

68 =line printer (subtype 4), set horizontal pitch: 

<parameter-I> = 0, normal print (default) 

7-24 

= 1, condensed print 
= 2, expanded print 

<parameter-2> is not used. 

NOTE 

SETMODE 29 (Set Auto Answer or Control Answer Mode) is 
the only SETMODE function not affected by a SE~rMODE 28 
or a RESET on OPEN. 

~ 82357 AOO 3/85 



SECTION 8 

INTERFACING TO MAGNETIC TAPES 

This section describes the characteristics of magnetic tape as 
a storage medium for files and the procedures used to control 
tape usage. Concepts, programming considerations, and CONTROL 
operations for use with magnetic tape drives are described. 
BCD/ASCII character set equivalents are shown; available 
conversion modes are also illustrated. 

The file system provides for data transfers between magnetic tape 
files and application processes in records of 24 to 32767·bytes. 

GENERAL CHARACTERISTICS OF MAGNETIC TAPE FILES 

Individual files on magnetic tape are not accessed explicitly; 
instead, the magnetic tape unit itself is accessed either by 
$<device-name> or $<logical-device-number>. 

Procedures are provided that permit the application to write, 
locate, and read any number of files desired. 

It is the responsibility of the application program to delimit 
a file on tape by explicitly writing an end-of-file mark (EOF) 
(note that closing a magnetic tape file following a write to 
tape does not write an EOF mark). 

The CONTROL operations and the CLOSE procedures each provide 
four options for rewinding tape. The CONTROL options are 
explained in Table 8-1. The CLOSE procedure is explained in 
the System Procedure Calls Reference Manual. 

"i' 82357 AOO 3/85 8-1 



~~GNETIC TAPES 
General Characteristics 

To ensure the integrity of the data written on tape, the file 
system pads write operations of less than 24 bytes with null (0) 
characters. The number of pad bytes is 24 minus <write-count>, 
so that the minimum physical record ever written on tape is 24 
bytes (a <write-count> of 0 causes a record containing 24 null 
bytes to be written on tape). 

The file system permits reads and WRITEUPDATEs of as few as two 
bytes (this permits tapes written on systems other than Tandem to 
be read or edited). WRITEUPDATEs are not allowed on the 5106 
Tri-Density Tape Drive and on the 5107 Tape Drive. To ensure the 
integrity of data read from tape, however, the minimum read 
operation should be for at least 24 bytes. 

Multireel files, if desired, must be implemented by the 
application program. 

The device type for a magnetic tape unit is 4. 

All programs supplied with the release, when accessing a 
magnetic tape unit, open it with exclusive access such as 
(OPEN, <flags>.<9:11> = l)~ 

The maximum number of bytes permitted in a single-file system 
transfer to a tape file depends on the system type and the 
model of the controller to which the tape is connected: 

Controller Model Maximum Transfer Length 

P/N 3201 
P/N 3202 
P/N 3206 
P/N 3207 

32767 bytes 
32767 bytes 
32767 bytes 
32767 bytes 

NOTE 

An anomaly exists when using the model 3202 controller. 
If a read of 4096 bytes is requested and the tape contains 
exactly 4095 bytes, a <read-count> of 4096 is returned. 
In all other cases, the <read-count> is correct. 

The recommended maximum tape record block sizes using the 
BACKUP program are as follows: 

8-2 

Density (bpi) 

NRZI 
PE 
GCR 

800 
1600 
6250 

Block Size 

4096 bytes 
8192 bytes 

30720 bytes 

"if 82357 AOO 3/85 



MAGNETIC TAPES 
Applicable Procedures 

Maximum record block size on Nonstop systems actually is 32767 
bytes for application programs but 30720 bytes for disc BACKUP 
and RESTORE. 

The maximum recommended tape record sizes for application 
programs are as follows: 

Density (bpi) Record Size 

NRZI 
PE 
GCR 

800 
1600 
6250 

4096 bytes 
8192 bytes 

32767 bytes 

NOTE 

The default record length specified in SYSGEN is totally 
ignored by the I/O software for magnetic tapes. 

SUMMARY OF APPLICABLE PROCEDURES 

The following procedures are used to perform input-output 
operations with magnetic tapes: 

DEVICE INFO 

OPEN 

READ 

WRITE 

WRITEUPDATE 

CONTROL 

provides the device type and configured record 
length for a designated magnetic tape unit. 

establishes communication with a file. 

reads information from an open file. 

writes information to an open file. 

is used to replace an existing record (not 
supported on a 5106 or. 5107 tape drive). 

executes the following operations to a magnetic 
tape: 

• write end-of-file mark 

• rewind (load or unload, online or offline, 
wait or don't wait) 

• record spacing (forward and backward) 

• file spacing (forward and backward) 

"1 82357 AOO 3/85 8-3 



MAGNETIC TAPES 
Applicable Procedures 

AWAI TIO 

CANCELREQ 

FILEINFO 

SETMODE 

waits for completion of an outstanding I/O 
operation pending on an open file. 

cancels the oldest outstanding operation, 
optionally identified by a tag, on an open file. 

provides error information and characteristics 
about an open file. 

sets and clears the translation technique option 
(7-track tape only) and the short-write treatment 
option. Selects tape density for 5106 Tri-Density 
Tape Drive. 

SETMODENOWAIT is used the same as SETMODE except in a nowait 
manner on an open file. 

CLOSE 

8-4 

stops access to an open file and, optionally, 
rewinds the tape. 

'4J 82357 AOO 3/85 



MAGNETIC TAPES 
Accessing Tape Units 

ACCESSING TAPE UNITS 

Like any other file, a magnetic tape unit is accessed through 
the OPEN procedure. For example, to access a magnetic tape unit 
that is assigned the device name "$TAPE1", the following could be 
written in an application program: 

INT .TAPEANAME[O:ll] := ["$TAPE1", 9 * [" "]]; 
TAPEAFNUM, 

.TAPEABUF [0:1023], 
NUMAWRITTEN, 
NUMA READ; 

CALL OPEN ( TAPEANAME, TAPEAFNUM, • ); 
IF < THEN ; ! error occurred. 

Then, to write a record on tape: 

CALL WRITE ( TAPEAFNUM, TAPEABUF, 2048, NUMAWRITTEN ); 

2048 bytes of TAPEABUF are written on tape, the value 
2048 is returned in NUMAWRITTEN 

To terminate access to a magnetic tape unit, call the CLOSE 
procedure. Closing the tape also causes the tape to be rewound 
and the tape unit to be placed offline. Options to CLOSE permit 
the magnetic tape unit to be left online, for no rewind to occur, 
for tape to be unloaded (and the unit taken offline), and 
wait or don't wait for completion. 

For example, to CLOSE a magnetic tape unit and cause tape to be 
rewound and unloaded, the following is written in an 
application program: 

LITERAL REWAUNLOAD = O; 

. 
CALL CLOSE ( TAPEAFNUM, REWAUNLOAD ); . 
The rewind and unload operation is initiated. CLOSE returns 
immediately to the application program and the rewind 
operation is performed concurrently with application program 
execution. (If the magnetic tape is again opened, any read, 
write, or control operation results in an error indication. 
A subsequent call to FILEINFO returns error 100 (device not 
ready)). 

-'1'J 82357 AOO 3/85 8-5 



MAGNETIC TAPES 
Magnetic Tape Concepts 

MAGNETIC TAPE CONCEPTS 

Associated with operations involving magnetic tapes are: 

• Beginning-of-Tape (BOT) and End-of-Tape (EQT) markers 

• Files 

• Records 

BOT and EOT Markers 

The BOT and EQT markers delimit the useful area on tape. When a 
tape is loaded and initially made ready, the tape is positioned 
with the read-write heads located slightly past the BOT marker. 

If a backspace files (CONTROL operation 8) or a backspace records 
(CONTROL operation 10) is being executed and the BOT marker is 
encountered, tape motion stops and a beginning-of-tape indication 
(FILEINFO error 154) is returned to the application process. 

Crossing the EOT marker in either direction never stops tape 
motion and never terminates an I/O operation. However, once 
the EOT marker is passed when writing in the forward direction, 
the application receives an indication (CCL, FILEINFO error 150) 
at the completion of each write operation. This indication is 
returned with each write operation until the EOT marker is passed 
in the reverse direction. 

NOTE 

Because the relationship of the read-write head to the 
transducer that detects the EQT marker varies from tape 
unit to tape unit, the EOT indication is not returned when 
reading. A convention (such as writing two consecutive EOF 
marks) should be established for the computer site to 
designate the physical end of tape. 

Files 

By convention, a file on magnetic tape consists of a number of 
records followed by an EOF mark. The programmer must ensure that 
the application program explicitly writes an EOF mark on tape 
(using CONTROL, operation 2) to terminate a file. 

8-6 ~ 82357 AOO 3/85 



MAGNETIC TAPES 
Magnetic Tape Concepts 

The application program must also provide a means of detecting 
the last file on tape. Typically, this is done by writing two 
consecutive EOF marks. Naturally, any other programs reading 
the tape must be aware of such a convention. 

The file system provides (as a parameter to the CONTROL 
procedure) the ability to space forward and backward a specified 
number of files (identified by EOF marks). 

There are two considerations when spacing files: 

• Forward space files stops only after the specified number of 
EOF marks have been encountered. 

• Backward space files stops only after the specified number of 
EOF marks have been encountered or the BOT marker is detected. 

The following examples show how tape is positioned in relation to 
the read-write heads after performing various file spacing 
operations. 

Example 1 illustrates the space forward (CONTROL operation 7) of 
three files: 

CALL CONTROL ( TAPEAFILE, 7, 3 ); 

start finish 

S5004-049 

Example 2 illustrates a space backward of one file from the 
finish point in the preceding example: 

CALL CONTROL ( TAPEAFILE, 8, 1 ); 

finish start 

S5004-050 

/1 82357 AOO 3/85 8-7 



MAGNETIC TAPES 
Magnetic Tape Concepts 

Example 3 illustrates a space backward of 10 files from the 
finish point in the preceding example: 

CALL CONTROL ( TAPEAFILE, 8, 10 ); 

~~ ~ FILE -~ ~ I FILE I I EOF I I EOF 1-l ---- ------·-r-----------~ i 
finish start 

85004-051 

Backward spacing of files stops at BOT. 

Records 

Data is stored on magnetic tape in records containing from 24 
to 32767 data bytes (plus associated hardware-generated check 
information). The file system does not provide access to 
individual elements within a record. 

Data is written to tape using the file-system WRITE or 
WRITEUPDATE procedure. The WRITE procedure is typically used 
when sequentially appending information on the tape. The 
WRITEUPDATE procedure is used when changing an individual record 
on tape. 

WRITEUPDATE operations are not allowed on the 5106 or 5107. 

It is important to note that the new record written by the 
WRITEUPDATE procedure must be exactly the same size as the 
being replaced; otherwise, a subsequent error will occur. 
there is a practical limit of five on the number of times 
WRITEUPDATE should be performed on the same record. 

record 
Also, 

Data is read from tape using the file-system READ procedure. Any 
time a read is executed from the tape (even if 0 bytes is 
specified), the tape spaces one full record. Any one read from a 
tape is limited to one rec-0rd on tape. 

Consider the following example of tape movement when reading: 
A file on tape consists of three records, and each record 
contains 1024 bytes. Repeated reads of 2048 bytes are executed, 
as follows: 

8-8 ~ 82357 AOO 3/85 



MAGNETIC TAPES 
Magnetic Tape Concepts 

LITERAL EOF = 1: 

LOOP: 

CALL READ ( TAPEANUM, BUFFER, 2048, NUMAREAD ): 
IF = THEN GOTO LOOP 
ELSE 

BEGIN 
CALL FILEINFO ( TAPEANUM, ERROR ): 
IF ERROR= EOF THEN •••• ! end-of-file encountered. 
ELSE •••• ; ! trouble. 

END: 

The first, second, and third READs each transfer 1024 bytes into 
BUFFER, return 1024 in NUMAREAD, and set the condition code to 
CCE. READ four encounters an EOF mark. Nothing is transferred 
into BUFFER, 0 is returned to NUMAREAD, and the condition code is 
set to CCG. 

IBOT I 1.RECORD I I RECORD I 

i 
start 2 3 4 

eof 

S5004-052 

If the value passed in the <read-count> parameter is not 
sufficient to read an entire record, an error indication is 
returned to the application. For example, a record on tape 
contains 1024 data bytes and a read of 256 bytes is executed: 

CALL READ ( TAPEANUM, BUFFER, 256, NUMAREAD ): 
IF < THEN ••• : ! error occurred. 

256 bytes are transferred into BUFFER, 256 is returned to 
NUMAREAD, and the condition code indicator is set to CCL. 
A subsequent call to FILEINFO would return ERROR = 21 (illegal 
count specified). After the read, the tape is positioned with 
the read head preceding the next record on tape. 

~ 82357 AOO 3/85 8-9 



MAGNETIC TAPES 
Magnetic Tape Concepts 

Individual records on tape can be edited by using the READ and 
WRITEUPDATE procedures. (WRITEUPDATE is not allowed on the 5106 
or 5107 tape drives.) For example, a record to be edited is 
read from tape: 

CALL READ ( TAPEAFNUM, TAPEABUF, 2048, NUMAREAD )~ 

NUMAREAD characters are read from tape and transferred 
into TAPEABUF. 

The application makes the necessary changes to the record in 
TAPEABUF, then edits the tape by calling the WRITEUPDATE 
procedure (except on the 5106 and 5107). 

CALL WRITEUPDATE (TAPEAFNUM, TAPEABUF, NUMAREAD, NUMAWRITTEN); 

The tape is backspaced over the record just read, then updated 
by writing the new record in its place. NUM""READ, from the 
preceding read, specifies the number of bytes to be written 
(ensuring that exactly the same number is written that were 
previously read). 

The file system provides (as a parameter to the CONTROL 
procedure) the ability to space forward and backward a specified 
number of records. 

There are a number of considerations when spacing records: 

• Forward space records always stops when an EOF mark is read 
(the tape is positioned with the read-write head past the EOF 
mark). An indication (CCG, FILEINFO error 1) is returned to 
the application program. 

• Backward space records always stops when an EOF mark is read 
(the tape is positioned with the read-write head preceding the 
EOF mark). An indication (CCG, FILEINFO error 1) is returned 
to the application program. 

• Backward space records always stops when the BOT marker is 
detected (the tape is positioned with the read head preceding 
the first record on tape). An indication (CCL, FILEINFO error 
154) is returned to the application program. 

The following examples show how the tape is positioned in 
relation to the read-write heads following various record spacing 
operations. 

8-10 "1 82357 AOO 3/85 



MAGNETIC TAPES 
Magnetic Tape Concepts 

Example 1 illustrates repeated space forwards (CONTROL operation 
9) of two records (tape is positioned at BOT): 

loop: CALL CONTROL ( TAPEAFILE, 9, 2 ); 
GOTO loop; 

lsoTI I RECORD! I RECORD I I EOF I I RECORD I I EOF I I EOFI 

t tape runaway 
start 2 3 4 5 

eof eof eof 

85004-053 

Example 2 illustrates a space forward of 10 records (tape is 
positioned at BOT): 

CALL CONTROL ( TAPEAFILE, 9, 10 ); 

__ l_e_oT_l__,..._I R_Ec_o_R_o_I _I R_E_co_R_o_l __ I E_o_F_l _~l_R_Ec_o_R_o _I _I _Eo_F_l_I EOF I = I EDF I f 
t 

start finish 
(eof) 

85004-054 

The operation stops when an EOF mark is read. 

Example 3 illustrates repeated backward space records (CONTROL 
operation 10) (tape is positioned past the last EOF mark): 

LOOP: CALL CONTROL ( TAPEAFILE, 10, 2 ); 
GOTO LOOP; 

5 4 
(bot With 5 

'1J 82357 AOO 3/85 

3 
(eof) 

2 
(eof) 

1 
(eof) 

start 

85004-055 

8-11 



MAGNETIC TAPES 
Magnetic Tape Concepts 

Example 4 illustrates a backward space records of 10 records 
(tape is positioned as shown): 

CALL CONTROL ( TAPEAFILE, 10, 10 ); 

finish 
(eof) 

start 

85004-056 

Example 5 illustrates the same operation as the prec~ding example 
(space backward 10 records) but with the tape positioned just 
past an EOF mark: 

'RECORD I IRecoRoj 

t t 
finish start 
(eof) 

85004-057 

The backspace stops when an EOF mark is encountered. 

8-12 ~ 82357 AOO 3/85 



MAGNETIC TAPES 
5106 Tape Subsystem 

PROGRAMMING CONSIDERATIONS FOR THE TRI-DENSITY TAPE SUBSYSTEM 

The subtype for the 5106 Tri-Density Tape Subsystem is 2. The 
5106 Tape Subsystem provides 800 bpi NRZI, 1600 bpi PE, and 6250 
bpi GCR recording modes. The correct density is automatically 
determined during read operations, and the recording density may 
be set either programmatically or through hardware switches on 
its operator panel. 

Downloading the Microcode 

The Model 3206 Tape Controller (required for the 5106 Tape 
Subsystem) is downloadable. In other words, the microcode that 
drives the controller can be loaded from a file on the system 
disc to the controller over the input-output channel. Whenever 
the processor that contains the primary I/O process is loaded, 
or after a controller power failure, the GUARDIAN operating 
system automatically downloads microcode from the system disc. 
Then the controller executes commands using the down-loaded 
microcode. An explicit request to download the controller 
microcode can be made by the operator using the PUP LOADMICROCODE 
command. Refer to your System Operations Manual. 

Selecting Tape Density 

On the Model 5106 Tape Drive, READ density is determined 
automatically by the tape drive formatter when it reads the 
ID burst at the beginning of the tape. The default WRITE 
density is read from the density switches on the operator panel. 
Programs, however, may override this default WRITE density by 
calling the SETMODE procedure, with a <function> value of 66 
and <parameter-I> set to indicate the density as follows: 

<parameter-I> 

0 
1 
2 
3 

Density (bpi) 

800 (NRZI) 
1600 (PE) 
6250 (GCR) 
As indicated by switches 
on the tape drive 

Immediately after a tape is first opened, the tape driver sets 
the WRITE density to switch control. A subsequent call to 
SETMODE 66, before the tape has moved, causes the driver to pass 
the new density selection to the controller. The new density 

~ 82357 AOO 3/85 8-13 



MAGNETIC TAPES 
5106 Tape Subsystem 

takes effect with the first write operation after the tape is 
positioned at the BOT marker. 

Following a controller power failure, the density selection is 
passed to the controller when the controller microcode is 
reloaded. 

Controller Self-Test Failure 

While the 3206 controller is otherwise idle, it periodically 
initiates several tests against its own hardware. If any test 
determines that a fatal controller error has occurred, the 
controller enters hard-failure mode. When this mode is in 
effect, the system rejects all user requests except the PUP 
STATUS CONTROLLER command, transmits the FATAL CONTROLLER ERROR 
message to the operator console, and returns file-system error 
224 (controller error) to the application program. 'ro clear the 
controller error counters and cause it to return to normal 
operation, a PUP LOADMICROCODE command, a controller power-on, 
or a processor reset is necessary. 

8-14 ~ 82357 AOO 3/85 



ERROR RECOVERY 

MAGNETIC TAPES 
Error Recovery 

Most error recovery is attempted automatically by the file 
system. However, because of tape movement, there are special 
considerations when an error occurs with a magnetic tape unit. 

If a tape unit's power fails, file-system error 100 (not ready), 
error 212 (EIO instruction failure) or error 218 (interrupt 
timeout) is returned to the application program when any read, 
write, or control operation is attempted. After power is 
restored and the tape unit is again accessed, a subsequent call 
to FILEINFO returns error 153 (tape drive power on). It is the 
application's responsibility to ensure that the correct tape is 
loaded following a power failure. 

Tape units, if a tape is loaded, are automatically put back into 
an operating (ready) state when power is restored. (See error 153 
below for the 5106 Tape Subsystem.) On the 5103 and 5104 tape 
drives, if two units are set to the same unit number when power 
is restored, an arbitrary decision is made as to which one is 
subsequently placed online. The implication is that it may not 
be the desired unit. Therefore, it is recommended that when an 
application program finishes with a tape unit, a rewind and 
unload operation be performed. Then, only previously active 
units return to a ready state. 

The following list includes the most commonly encountered tape 
errors. A complete list of file-system errors appears in the 
System Messages Manual. 

• Error 100 (Device Not Ready) 

This error indicates that the device is not online. Error 100 
is always returned if the drive is accessed while rewinding; 
wait until the rewind completes. This error may also indicate 
a possible tape drive, formatter, or controller power failure. 
(See error 153.) 

• Error 120 (Nonrecoverable Data Parity Error) 

For the 5106 Tape Subsystem, if the controller detects a data 
error during a read or write operation, it automatically retries 
the operation--up to 50 times for read requests and up to 40 
times for write requests. If the retry operation succeeds, the 
application program does not receive an error indication. If, 
however, the retry does not succeed, the tape is positioned after 
the invalid record, an error message appears at the operator 
console, and file-system error 120 (data parity error) is 

Af' 82357 AOO 3/85 8-15 



MAGNETIC TAPES 
Error Recovery 

returned to the application program. For the other tape drives, 
reads and writes are retried 40 times. 

• Error 153 (Drive Power On) 

When power is restored after a drive power failure, the operating 
system automatically places the tape drive online again (with the 
tape at the BOT marker for the 5106 Tape Subsystem) and returns 
file-system error 153 to the application program. For other tape 
drives, the tape is left positioned where it stopped~ Now the 
application program must either restart the entire tape or 
reposition to the proper file and record (using counters that it 
has maintained). 

If the application program receives error 100, 212, or 218 
immediately after recovery from a drive power failure error, 
either the tape drive has again lost power or the tape was 
removed from the drive during the power failure. The error 
indicates the point at which power ~as lost. 

• Error 193 (Invalid or Missing Microcode Files) 

This error applies only to the 5106 and 5107 tape drives. If 
the operating system cannot locate either of the controller 
microcode files, cannot read either file because of disc file 
errors, or cannot download from them because they are not 
formatted properly, the MICROCODE LOADING FAILURE message appears 
at the console and the application program receives file-system 
error 193. (The message appears once for the primary file and 
once for the backup.) 

• Error 212 (EIO Instruction Failure) 

A controller failure has occurred (path error). The file 
operation stopped at some indeterminate point, and the tape may 
have moved. · This error may also indicate a possible controller 
power failure. (See file-system error 153.) 

• Error 218 (Interrupt Timeout) 

A controller failure or channel failure has occurred. This error 
may also indicate a possible controller power failure (See file
system error 153). 

8-16 "1J 82357 AOO 3/85 



MAGNETIC TAPES 
Error Recovery 

• Error 224 (Controller Error) 

This error applies only to the 5106 and 5107 tape drives. 
Certain errors cause the controller to respond with the same 
error indication until the controller is reset by a PUP 
LOADMICROCODE command, by processor reset, or by power failure, 
returning file-system error 224 (controller error) to the 
application program. See "Controller Self-Test Failure" 
immediately preceding this discussion. 

Path Errors 

If a path error ·is detected and is either error 200 or 201, the 
operation never got started (the tape did not move). 

If a path error is detected and is one of the errors 210 through 
231, the operation failed at some indeterminate point. 
Therefore, tape motion may have occurred. There are a number of 
ways to handle this type of error: 

• If a path error occurs while writing, backspace and reread the 
last record. If a parity error occurs, backspace again and 
rewrite the last record. 

• Keep track of the number of records read or written on tape. 
Then if an error of this type occurs, rewind the tape and 
space forward the appropriate number of records, and 
reinitiate the operation. 

• If writing, write a sequence number as part of each record 
written. If one of these errors occurs, retry the operation 
and continue. Then when reading the tape, discard all but the 
last record containing duplicate sequence numbers. 

• If reading, and sequence numbers were written on tape, keep 
track of the sequence number of the current record. Then if 
a path error occurs, retry the operation. If the expected 
sequence number is not read, meaning that a record was skipped 
over when the path error occurred, backspace the tape two 
records. 

Additional considerations are necessary if nowait I/O is used. 
Refer to the appropriate procedure description in the System 
Procedure Calls Reference Manual for details. 

/1 82357 AOO 3/85 8-17 



MAGNETIC TAPES 
CONTROL Operations 

SUMMARY OF MAGNETIC TAPE CONTROL OPERATIONS 

Table 8-1. Magnetic Tape CONTROL Operations 

<operation> 

2 = write end of file: 

<parameter> = none 

3 = rewind and unload, don't wait for completion: 

<parameter> = none 

4 = rewind, take offline, don't wait for completion: 
(This option is not available on the 5106 Tape Drive) 

<parameter> = none 

5 = rewind, leave online, don't wait for completion: 

<parameter> = none 

6 = rewind, leave online, wait for completion: 

<parameter> = none 

7 = space forward files: 

<parameter> = number of files {0:255} 

8 = space backward files: 

<parameter> = number of files {0:255} 

9 = space forward records: 

<parameter> = number of records {0:255} 

10 = space backward records: 

<parameter> = number of records {0:255} 

8-18 ~ 82357 AOO 3/85 



SEVEN-TRACK MAGNETIC TAPE CONVERSION MODES 

MAGNETIC TAPES 
Conversion Modes 

The 7-track tape drive supports four data-conversion modes: 

• ASCIIBCD 

• BINARY3T04 

• BINARY2T03 

• BINARYlTOl 

These conversion modes determine how the data is translated while 
writing to or reading from tape. Any one of the four may be 
selected in the system configuration or using the SETMODE 
procedure. 

ASCIIBCD translates between 8-bit memory ASCII characters and 
6-bit tape BCD characters. The translation is the same for both 
uppercase and lowercase letters. Table 8-2 illustrates the BCD 
character set and the equivalent ASCII characters. Any ASCII 
characters other than those shown in table 8-2 are translated to 
a BCD space character, which is %20 on tape. Although the Tandem 
system does not support BCD memory characters, the character set 
is included in table 8-2 as a reference. 

~ 82357 AOO 3/85 8-19 



MAGNETIC TAPES 
Conversion Modes 

Table 8-2. ASCII Equivalents to BCD Character Set 
(Continued on next page) 

BCD TAPE BCD MEMORY CHARACTER ASCII 
(OCTAL) (OCTAL) (OCTAL) 

0 Not Used Not Used Not Used 
1 1 1 61 
2 2 2 62 
3 3 3 63 
4 4 4 64 
5 5 5 65 
6 6 6 66 
7 7 7 67 

10 10 8 70 
11 11 9 71 
12 0 0 60 
13 13 # 43 
14 14 @ 100 
15 15 '(apostrophe) 47 
16 16 = 75 
17 17 " 42 
20 60 space 40 
21 61 I 57 
22 62 s 123 
23 63 T 124 
24 64 u 125 
25 65 v 126 
26 66 w 127 
27 67 x 130 
30 70 y 131 
31 71 z 132 
32 72 \ 134 
33 73 , (comma) 54 
34 74 % 45 
35 75 (underscore) 137 
36 76 > 76 
37 77 ? 77 
40 40 -·(minus) 55 
41 41 J 112 
42 42 K 113 
43 43 L 114 
44 44 M 115 

8·-20 ~ 82357 AOO 3/85 



MAGNETIC TAPES 
Conversion Modes 

Table 8-2. ASCII Equivalents to BCD Character Set 
(continued) 

BCD TAPE BCD MEMORY CHARACTER ASCII 
(OCTAL) (OCTAL) {OCTAL) 

45 45 N 116 
46 46 0 117 
47 47 p 120 
50 50 Q 121 
51 51 R 122 
52 52 ] 135 
53 53 $ 44 
54 54 * 52 
55 55 51 
56 56 . 73 

' 57 57 A 136 
60 20 & 46 
61 21 A 101 
62 22 B 102 
63 23 c 103 
64 24 D 104 
65 25 E 105 
66 26 F 106 
67 27 G 107 
70 30 H 110 
71 31 I 111 
72 32 [ 133 
73 33 56 
74 34 < 74 
75 35 ( 50 
76 36 + 53 
77 37 41 

The maximum record size in the ASCIIBCD conversion mode is 32767 
bytes: the parity is even. 

AJt 82357 AOO 3/85 8-21 



MAGNETIC TAPES 
Conversion Modes 

BINARY3T04 

BINARY3T04 converts each block of three 8-bit memory bytes to 
four 6-bit tape characters. 

The following example illustrates the use of this conversion 
mode. 

AO:A7, BO:B7, and CO:C7 represent three 8-bit memory bytes. 
These three bytes become four 6-bit tape characters when 
writing to tape. 

AO Al A2 A3 A4 AS A6 A7 
BO Bl B2 B3 B4 BS B6 B7 
CO Cl C2 C3 C4 cs C6 C7 

becomes 

AO Al A2 A3 A4 AS 
A6 A7 BO Bl B2 B3 
B4 BS B6 B7 co Cl 
C2 C3 C4 cs C6 C7 

When reading from tape, four 6-bit tape characters become 
three 8-bit bytes. 

AO Al A2 A3 A4 AS 
BO Bl B2 B3 B4 BS 
co Cl C2 C3 C4 C5 
DO Dl D2 D3 D4 DS 

becomes 

AO Al A2 A3 A4 A5 BO Bl 
B2 B3 B4 B5 co Cl C2 C3 
C4 C5 DO Dl D2 D3 D4 DS 

The maximum record size using the BINARY3T04 conversion mode 
is 24576 bytes; parity is odd. Use the number of 8-bit memory 
bytes to specify a byte count in a read or write. 

8-:22 1J 82357 AOO 3/85 



MAGNETIC TAPES 
Conversion Modes 

BINARY2T03 

BINARY2T03 converts each block of two 8-bit bytes to three 6-bit 
tape characters. This conversion mode results in two bits being 
unused on tape for every three tape characters. 

The following example illustrates the use of this conversion 
mode~ 

AO:A7 and BO:B7 represent two 8-bit memory bytes. 

AO Al A2 A3 A4 A5 A6 A7 
BO Bl B2 B3 B4 B5 B6 B7 

When writing to tape, these two bytes become 

00 00 AO Al A2 A3 
A4 A5 A6 A7 BO Bl 
B2 B3 B4 B5 B6 B7 

When reading from tape, these bytes 

00 00 AO Al A2 A3 
A4 A5 A6 A7 BO Bl 
B2 B3 B4 B5 B6 B7 

become 

AO Al A2 A3 A4 A5 A6 A7 
BO Bl B2 B3 B4 B5 B6 B7 

The maximum record size in the BINARY2T03 conversion mode 
is 21845 bytes; the parity is odd. Use the number of 8-bit 
memory bytes to specify a byte count in a read or write. 

/1 82357 AOO 3/85 8-23 



MAGNETIC TAPES 
Conversion Modes 

BINARYlTOl 

BINARYlTOl converts each 8-bit memory byte to one 6-·bit tape 
character. This mode causes the first two bits of every memory 
byte to be lost when writing to tape. 

For example, when writing to tape, the memory byte 

AO Al A2 A3 A4 A5 A6 A7 

becomes 

A2 A3 A4 A5 A6 A7 

When reading from tape, the first two bits are always zero. 
For example, 

AO Al A2 A3 A4 A5 

becomes 

00 00 AO Al A2 A3 A4 A5 

The maximum record size in the BINARYlTOl conversion mode is 
32767 bytes; parity is odd. 

Selecting the Conversion Mode 

Function 33 of the SETMODE procedure selects the conversion 
mode for 7-track only. The values that specify the conversion 
modes are: 

<parameter-1> = 0, ASCIIBCD 
1, BINARY3T04 
2, BINARY2T03 
3, BINARYlTOl 

<parameter-2> is not used. 

See the System Procedure Calls Reference Manual for a discussion 
of the SETMODE procedure. 

Information on system configuration and selection of the default 
conversion mode for the seven-track tape drive is available in 
your System Management Manual. 

8-24 -'1J 82357 AOO 3/85 



MAGNETIC TAPES 
Short Write Mode 

SELECTING SHORT WRITE MODE 

Function 52 of the SETMODE procedure selects the short write 
mode. The values that specify the short write modes are: 

<parameter-I> = 0, allows writes shorter than 24 bytes 
(default). 

1, does not allow writes shorter than 
24 bytes. 

<parameter-2> is not used. 

NOTE 

When short writes are disallowed, an attempt to WRITE or 
WRITEUPDATE a record that is shorter than 24 bytes causes 
error 21 (bad count) to be issued. 

See the System Procedure Calls Reference Manual for a discussion 
of the SETMODE procedure. 

~ 82357 AOO 3/85 8-25 





SECTION 9 

INTERFACING TO CARD READERS 

Card readers are not often used in transaction processing. 
The interface to card reader capability is available to retain 
compatibility with other, older systems. A general overview of 
card reader usage is presented here to provide an understanding 
of the process. 

The file system provides for transfers of data from card readers 
to application processes in blocks of 0 characters (skip card) 
to the maximum number of characters required to read a card. 

GENERAL CHARACTERISTICS OF CARD READERS 

Card readers can be accessed either by $<device-name> or 
$<logical-device-number>. 

There are three read modes: ASCII, column-binary, and packed
binary. 

End-of-file indication is available only in ASCII read mode. 
It is "EOF!" in columns 1-4, followed by 76 blank columns. 
End-of-file is not defined for other read modes. 

Application processes must handle the "not ready" condition. 

All Tandem software programs, when accessing a card reader, 
open it with exclusive access (OPEN, <flags>.<9:11> = 1). 

The card reader device type is 8. 

~ 82357 AOO 3/85 9-1 



CARD READERS 
Applicable Procedures 

SUMMARY OF APPLICABLE PROCEDURES 

The following procedures are used when performing input 
operations with a card reader: 

DEVICE INFO returns the device type and record length. 

OPEN establishes communication with a file. 

SETMODE is used to set the card reader read mode. 

SETMODENOWAIT is used the same as SETMODE except in a nowait 
manner on an open file. 

READ 

AWAI TIO 

CANCELREQ 

FILEINFO 

CLOSE 

READ MODES 

is used to read a card. 

waits for completion of an outstanding I/O operation 
pending on an open file. 

cancels the oldest outstanding operation, optionally 
identified by a tag, on an open file. 

provides error information and characteristics about 
an open file. 

stops access to an open file. 

Data can be transferred from the card reader to the application 
process in one of three read modes: ASCII, column-binary, or 
packed-binary. 

ASCII is the default mode when a card reader is first opened. 
In ASCII mode, the card is assumed to have been encoded using 
Hollerith code. Each column is converted into its ASCII 
equivalent (one byte per column). The conversion conforms to 
the "Hollerith Punched Card Code" described in the ANSI document 
ANSI X3.26-1970. 

If the Hollerith equivalent to EOF! followed by 76 blanks is 
read, an end-of-file indication is returned to the application 
process~ This indication is returned regardless of the number 
of bytes requested in the call to READ. Note that the "!" 
character of the end-of-file indication can be represented by 
either the Hollerith code 11,8,2 ("!"on the IBM 029 keyboard) 
or the Hollerith code 12,8,7 ("I" on the IBM 029 keyboard). 

9-2 /1 82357 AOO 3/85 



CARD READERS 
Read Modes 

In the ASCII mode, a <read-count> of 80 is required to fully read 
an 80-column card. 

When using an IBM 029 keypunch, you must make a keyboard 
translation to enter certain ASCII characters. These ASCII 
characters and their corresponding 029 keys are: 

ASCII Character 029 Key 

[ (%133) ¢ 
\ (%134) 0.8.2 
] (%135) 

(%136) -, (logical NOT) 
(%041) I 

Column-binary mode is set through use of SETMODE function 21, 
<parameter l> = 1. In the column-binary mode, each column image 
is returned right justified in one word (two adjacent bytes). 
Word.<0:3> is O; the top row of the card is returned in word.<4>. 
In the column-binary mode, a <read-count> of 160 is required to 
fully read an 80-column card. 

Column-binary read mode is illustrated in Figure 9-1. 

x 
x 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 r---

1 1 1 1 1 1 
word 0 1 2 3 4 5 6 7 8 9 O 1 2 3 4 5 

85004-058 

Figure 9-1. Column-Binary Read Mode for Cards 

..., 82357 AOO 3/85 9-3 



CARD READERS 
Read Modes 

Packed-binary mode is set through use of SETMODE function 21, 
<parameter l> = 2. In the packed-binary mode, the card image 
is returned to the application process's buffer as a contiguous 
stream of bits (each column returns twelve bits). The top row 
of the card has the greatest numerical significance. 

In the packed-binary mode, a <read-count> of 120 is required to 
fully read an BO-column card. If the specified <read-count> is 
such that the last column read does not fill the last word 
returned to the application process's buffer, the unfilled part 
of the last returned word is zeroed. 

Packed-binary read mode is illustrated in Figure 9-2. 

x x x x 
x x x x 
0 0 0 0 

1 1 

2 2 2 2 
3 3 3 3 
4 4 4 4 
5 5 5 5 
6 6 6 6 
7 7 7 7 
8 8 8 8 
9 9 9 9 

~I ir==i. 
XX0123456789XX01 2 34 5 6 7 8 9 x x 0 1 2 3 4 5 6789XX0123456789 

111111 111111 111111 
word [0] .0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 [1].0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 [2].0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 

S5004-059 

Figure 9-2. Packed-Binary Read Mode for Cards 

9-4 -'iJ 82357 AOO 3/85 



CARD READERS 
Accessing a Card Reader 

ACCESSING A CARD READER 

First, like any other file, the card reader must be opened: 

INT .CARDAFNAME[O:ll] := ["$CARDRDR", 
8 * [" "]], 

!data 
!declarations. 

CARDAFNUM, 
CARDABUFFER[0:39]; 

LITERAL EXCLAACC = %20; 

CALL OPEN ( CARDAFNAME, CARDAFNUM, EXCLAACC ); 
IF<> THEN ... ; ! error. 

Then, to read a card, call the READ procedure: 

CALL READ ( CARDAFNUM, CARDABUFFER, 80 ); 
IF > THEN ; ! end-of-file. 
IF < THEN ; ! error. 

returns 80 bytes of ASCII data to CARDABUFFER. 

To change the read mode to packed-binary, make the following call 
to SETMODE: 

LITERAL SETAREADAMODE = 
PACKEDABINARY = 

21, 
l; 

CALL SETMODE ( CARDAFNUM, SETAREADAMODE, PACKEDABINARY ); 
IF< THEN ••. ; ! error. 

further reads of $CARDRDR return the card image in 
packed-binary format. 

To close the card reader, call the CLOSE procedure: 

CALL CLOSE ( CARDAFNUM ); 

-'1J 82357 AOO 3/85 9-5 



CARD READERS 
Error Recovery 

ERROR RECOVERY 

The following errors require special consideration: 

100 Not ready 
145 Motion check 
146 Read check error 
147 Invalid Hollerith 
200-255 Path errors 

Not Ready 

The NOT READY error indicates Power Off or Hopper Empty. 

It is the responsibility of the application process to handle 
the NOT READY condition. Typically, if this condition occurs, 
a message indicating the not ready condition, should be 
displayed on the home terminal (the device name of the home 
terminal is obtainable with the MYTERM process control 
procedure). The application process should then wait for the 
terminal operator to respond, indicating that the card reader is 
ready; for example: 

LITERAL NOTAREADY = 100; 

RETRY: 
CALL READ ( CARDAFNUM, CARDABUFFER, 80 ); 
IF > THEN ! end-of-file. 
ELSE 
IF < THEN error occurred. 

BEGIN 
CALL FILEINFO ( CARDAFNUM, ERROR ); 
IF ERROR = NOTAREADY THEN 

BEGIN 
BUFFER ':=' "** CARD READER NOT READY"; 
CALL WRITEREAD ( HOMEATERM, BUFFER, 24, l, NUMAREAD ); 

The application process informs the terminal operator, then waits 
for a reply. 

9-6 

GOTO RETRY; 
END 

ELSE ••••• ; ! trouble. 
END; 

-'1 82357 AOO 3/85 



CARD READERS 
Error Recovery 

Motion Check 

The motion check error indicates that the card reader hardware 
has signalled a motion check. One cause of this condition is a 
momentary loss of power to the card reader while the card is 
being transported through the read station. 

The recovery procedure for this error is to stop reading cards, 
instruct the operator to take the last card through the read 
station and place it in the input hopper so that it will be the 
next card read, then resume reading. 

If the error persists, consider the error to be fatal. 

Read Check 

The read check error indicates that the card reader hardware has 
signalled a read check. A possible cause of this condition is a 
card read hardware malfunction. 

The recovery procedure for this error is to stop reading cards, 
instruct the operator to take the last card through the read 
station and place it in the input hopper so that it will be the 
next card read, then resume reading. 

If the error persists, consider the error to be fatal. 

Invalid Hollerith 

This error can occur in ASCII read mode only. It indicates that 
a column was read that did not contain a valid Hollerith card 
code. Specffically, rows one through seven (1 through 7) contain 
more than one punch. If the read was for less than a full card, 
only the first <read-count> columns are checked for valid 
Hollerith codes. 

There is no recovery procedure for this error except to stop 
reading cards, and instruct the operator that the last card 
through the read station has an invalid Hollerith code. 

~ 82357 AOO 3/85 9-7 



CARD READERS 
Error Recovery 

Path Errors 

If a path error is detected and is either error 200 or 201, the 
operation never got started (card did not feed). These errors 
can simply be retried. 

If a path error is detected and is an error 210 through 231, the 
operation failed at some indeterminate point. Theref:ore, a card 
may have been fed. The simplest way to recover from these errors 
is to restart the card read operation from the beginning. 

9-8 ~ 82357 AOO 3/85 



SECTION 10 

INTERFACING TO THE OPERATOR CONSOLE 

The operator console is used to log the occurrence of system 
error conditions, to log system statistical information, and 
to log application-supplied information. This information is 
handled by the operator process, which is always running. The 
operator process automatically sends log information to all 
devices enabled to receive console messages. Any process 
can send messages to the operator console through the use of 
standard file-system procedures. 

There are three places where console messages may be directed: 

1. A console terminal device 

For Nonstop systems, this may be a hard-copy device or it 
may be the Operations and Service Processor (OSP). Console 
message logging can be redirected to other devices, and may 
be disabled. (See "Using Console Messages" in your System 
Operations Manual). 

2. A disc log file designated $SYSTEM.SYSTEM.OPRLOG 

All messages are logged in ASCII and may be displayed with 
the FUP COPY command. (See "Using Console Messages" in the 
System Operations Manual for your system. 

3. An application process named $AOPR 

If an application process named $AOPR exists, all console 
messages are automatically logged to it. They are sent by 
means of an interprocess message (message -7). Messages sent 
to $AOPR contain the exact image of the console message. 
(See "Console Logging to an Application Process" in this 
section.) 

"''f 82357 AOO 3/85 10-1 



OPERATOR CONSOLE 
General Characteristics 

Unlike user processes, the operator process does not open 
$AOPR prior to sending messages to it. 

GENERAL CHARACTERISTICS OF THE OPERATOR CONSOLE 

The operator console is accessed by $0 (dollar zero). The name 
of the operator console device is "$0 " 
(dollar sign, zero, followed by 22 blanks). It is opened like 
any other file (nowait opens are allowed). 

Operator messages preempt terminal reads on the operator console. 
The operator console is considered by the operator process to be 
a write-only device. 

Maximum message length for Nonstop systems is 102 characters. 
This text is appended to the 29-character timestamp, for a total 
of 132 bytes. If the text exceeds 102 characters, any excess is 
lost. $0 reads a maximum of 102 characters, appends this data to 
the timestamp, and writes it to the console device and to OPRLOG 
and $AOPR (if enabled). The text is "folded" if the console 
device record length is less than (29 +text length), in which 
case the second line is indented 29 bytes. 

The operator console device type is 1. 

The file system automatically tries all available paths to the 
operator process: therefore, no path error recovery in the 
application program is required. 

The size of the message queue for the operator process can be 
increased by BINDER. The default size of the message queue is 
unchanged from previous releases. 

SUMMARY OF APPLICABLE PROCEDURES 

The following procedures are used to write messages on the 
operator console: 

DEVICEINFO 

OPEN 

WRITE 

10-2 

provides the device type and record length for 
the operator console. 

establishes communication with the operator process. 

is used to write a message on the operator console. 

-'1 82357 AOO 3/85 



OPERATOR CONSOLE 
Applicable Procedures 

AWAI TIO 

CANCELREQ 

FILEINFO 

CLOSE 

waits for completion of an outstanding I/O 
operation pending to the operator process. 

cancels the oldest outstanding operation, 
optionally identified by a tag, to the operator 
process. 

provides error information and characteristics 
about the operator process. 

stops access to the operator process. 

WRITING A MESSAGE 

First the $0 file must be opened to provide access to the 
operator console: 

INT .OPERATOR [0:11] := ["$0", 11 * [" "]], 
OP"'FILE"'NUM, 

data 
declarations. 

MESSAGE[0:14]: 

STRING 
.SMESSAGE := @MESSAGE '<<' 1, 
• s: 

CALL OPEN ( OPERATOR, OP"'FILE"'NUM ): 

Then to send a message, use the WRITE procedure: . 
SMESSAGE ':=' "LOAD TAPE NO. 12345 ON UNIT 2" -> @S: 
CALL WRITE ( OP"'FILE"'NUM, MESSAGE, @S '-' @SMESSAGE ): 

The message appears on the console as follows: 

16:30 07SEP84 FROM 4,24 LOAD TAPE NO. 12345 ON UNIT 2 

To terminate access to the operator console, use the CLOSE 
procedure: 

~ 82357 AOO 3/85 10-3 



OPERATOR CONSOLE 
Console Message Format 

CONSOLE MESSAGE FORMAT 

The general form of console messages is: 

<timestamp> FROM <cpu>,<pin> <message> 

<timestamp> is the current date and time of day. 

<cpu> is the number of the CPU where the process that 
sent the message is executing. 

<pin> is the process information number associated with 
the execution. 

<message> was transmitted to the operator from an 
application program and begins in column 31 
on the console device . 

.__ _____ ~-~--~--------------~-----~------ .. --~----------

ERROR RECOVERY 

The file system automatically retries path errors to the operator 
console (those errors numbered 200 or greater); there~fore, the 
application program can consider these to be permanent errors. 

The application program, however, should take care of errors 
associated with device operation; these are errors such as 
NOT READY or PAPER OUT. 

10-4 ~ 82357 AOO 3/85 



OPERATOR CONSOLE 
Console Logging to an Application Process 

CONSOLE LOGGING TO AN APPLICATION PROCESS 

All console messages (both system generated and application 
generated) are logged to an application process named $AOPR if 
the process exists. Console message logging starts automatically 
upon detection of $AOPR. If console message logging is 
interrupted by the loss of $AOPR, it is restarted once $AOPR is 
reestablished. 

The message is sent by the operator process as an interprocess 
message. The application process reads the message from its 
$RECEIVE file (see Section 4). 

The operator process allows $AOPR 30 seconds to read this 
message. If it is not read, then an error message is logged on 
the console and to the disc log file. 

The integer form of the console message to $AOPR is: 

<opmsg> 
<opmsg>[l] FOR n 

= -7 
= ASCII text exactly as written to the 

console (including BEL character on 
some messages) 

n = the number of bytes in the console terminal form of 
the message. 

NOTE 

This is a user message, not a system message; a condition 
code of CCE is returned upon completion of the read. 

Af' 82357 AOO 3/85 10-5 





SECTION 11 

PROVIDING FAULT TOLERANCE WITH THE 
TRANSACTION MONITORING FACILITY (TMF) 

The Transaction Monitoring Facility (TMF) is a software product 
that makes it easier for application programmers to protect the 
integrity of their data base in the face of hardware failure, 
software failure, and other complications. It performs failure
recovery operations that otherwise would have to be built into 
the application software. 

Tandem systems are designed to minimize the problem of system 
failure in an online transaction-processing environment. It is a 
multiple-processor system, designed so that no single component 
failure can stop the processing. 

Application processes typically run in pairs in separate 
processors so that the backup process can take over should the 
primary process's processor fail. Programming the backup 
processes and handling the checkpointing required to ensure that 
the backup processes are ready at all times, however, can be 
quite complicated. TMF does all this and more. 

TMF uses audit trails, online dumps, and backout, rollforward, 
and autorollback facilities to ensure data base consistency even 
through a total system failure. If a transaction is aborted, 
all effects of that transaction are removed from the data base. 
After a system failure, TMF can remove all effects of any 
transaction that was interrupted. The other major service of 
TMF is transaction concurrency control. When you use TMF, the 
task of maintaining data consistency for a distributed data base 
that is being updated by concurrent transactions is simplified. 

All the features of TMF are fully described in the Transaction 
Monitoring Facility (TMF) Reference Manual and the Transaction 
Monitoring Facility (TMF) System Management and Operations Guide. 

~ 82357 AOO 3/85 11-1 



Providing Fault Tolerance with TMF 
Programming for TMF 

PROGRAMMING FOR TMF 

The general environment for applications using TMF is a 
requester-server environment where the requester accepts input 
from an operator and transforms it into a request for data base 
services from servers. The servers, in turn, satisfy the request 
by reading, locking, and changing (or adding or deleting) records 
in audited data base files. The requester can be written in 
SCREEN COBOL, TAL, FORTRAN, or COBOL. The server can be written 
in TAL, FORTRAN, or COBOL, and it must follow the record locking 
rules imposed by TMF. Only TAL applications are considered here~ 

~plications That Can Use TMF 

Applications you intend to use with TMF should have the following 
characteristics: 

• One process (the requester generally) coordinates all of the 
work required to do a single transaction. This process 
identifies the beginning and ending points of each TMF 
transaction. If the server replies to a request message by 
indicating that it failed to complete all of its changes, this 
process can decide to abort the transaction and abandon it, or 
abort the transaction and retry it. 

• Communication between requesters and servers is by standard 
interprocess I/O. The requester does the WRITEREAD, and the 
server does the READUPDATE $RECEIVE and REPLY. Each request 
message and its reply is for a single transactiono 

• Any disc I/O request is for a single transaction. TMF appends 
the process's current-transaction identifier to each 
disc-request message so the audit trails can include the 
identity of the transaction responsible for each data base 
change. This means that servers should not defer or 
anticipate an I/O call, and that a single I/O call should not 
combine work for more than one transaction. 

• Any concurrency control is done by using the ENSCHIBE record 
locking facilities, and all servers should follow the record 
locking rules imposed by TMF. ENSCRIBE record locking gives 
TMF the control it requires to ensure that transactions are 
presented with a consistent view of the data baseo 

• Servers do not reply to request messages until all work for 
the request has been completed; the contents of the reply 
message should indicate whether the work for the request was 
completed successfully or abandoned in a partial state. This 

11-2 ~ 82357 AOO 3/85 



Providing Fault Tolerance with TMF 
Programming for TMF 

characteristic lets the requester decide if the transaction 
should be committed (completed) or aborted. 

• Servers should not employ checkpointing: this is unnecessary 
overhead with TMF and requires additional programming effort. 

• Servers always perform all of their I/O for the request 
message most recently read from $RECEIVE and always reply to 
that message before reading another message: therefore, 
servers generally should not do $RECEIVE queuing. However, 
TMF does not forbid this practice: you can use $RECEIVE 
queuing, although it is considerably more difficult. 

Defining the Transaction Identifier 

In a Tandem system with TMF, each transaction is a uniquely 
identified entity. Each transaction is distinguished from other 
transactions by a four-word transaction identifier, which is 
created by a successful call to the BEGINTRANSACTION procedure. 

The form of the transaction identifier is: 

transid[0].<0:7> contains 1 plus the EXPAND system number of 
the system in which BEGINTRANSACTION was 
called. It is 1 in the nonnetwork case. 
The system number identifies the home node 
of the transaction. 

transid[0].<8:15> contains the number of the processor in 
which BEGINTRANSACTION was called. 

transid[l:2] contains a doubleword sequence number that 
identifies the transaction. 

transid[3] contains a crash count indicating the 
number of times the home node (of the 
transaction) has had a total system failure 
since the last time the TMFCOM command 
INITIALIZE TMF was issued on the home node. 

Because processes do the work for a transaction, the process 
control block (PCB) includes space for the identity of the 
transaction that is currently active for the process. The 
process's current-transaction identifier uniquely identifies 
the active transaction for a process. The phrase "restores to 
currency," as used in the rest of this section, means that a 
transaction identifier becomes the current-transaction identifier 
for a process. 

~ 82357 AOO 3/85 11-3 



Programming for TMF 
TAL Programming 

TAL PROGRAMMING 

You can use TMF with TAL applications by using these callable 
procedures: 

• ABORTTRANSACTION aborts a transaction. 

• ACTIVATERECEIVETRANSID is used to program $RECEIVE queuing 
servers; it restores the transaction identifier associated 
with a queued message request (for which REPLY has not been 
executed) that was previously acquired by reading $RECEIVE. 

• BEGINTRANSACTION causes TMF to create a new transaction 
identifier. 

• ENDTRANSACTION causes the data base changes associated with 
a transaction identifier to be committed. 

• GETTMPNAME obtains the dummy device name of the transaction 
monitor process (TMP). (See "Using the Transaction 
Pseudofile (TFILE)" later in this section.) 

• GETTRANSID obtains the transaction identifier of the calling 
process. 

• RESUMETRANSACTION is used to program checkpointed requester 
processes or requester processes that have multiple concurrent 
active transactions; it restores a transaction identifier 
associated with a previous call to BEGINTRANSACTION. 

PROGRAMMING CONSIDERATIONS 

The following general considerations are related to programming 
for use with TMF: 

• Accessing audited data base files 

• Record locking 

• Coding servers 

• Avoiding deadlock 

• Using the transaction pseudof ile (TFILE) 

• Handling TMF backout anomalies 

11-4 -''f 82357 AOO 3/85 



Accessing Audited Data Base Files 

TMF PROGRAMMING CONSIDERATIONS 
Programming Considerations 

TMF guarantees the consistency of data through the use of audited 
files. Audited files are files that have been so designated by 
the use of FUP or the CREATE procedure. Audit trails are written 
to disc before a transaction commits its changes. Before-images 
and after-images of all changes to audited files are written to 
the audit trails. After-images are used by rollforward and 
autorollback to redo changes made by committed transactions. 
Before-images are used by rollforward, backout, and autorollback 
to udo changes made by aborted or incomplete transactions. 

Figure 11-1 illustrates the differences between processes that 
change audited files and those that can change only nonaudited 
files. 

No 
Trans id 

LOCK 
READ 
CHANGE 

READ 

LOCK 
READ 
CHANGE 

Must Follow TMF 
Record-Locking 

Rules 

Files Opened 
"read only" 

85004-060 

Figure 11-1. Accessing and Changing Audited as Opposed to 
Nonaudited Files 

"1 82357 AOO 3/85 11-5 



TMF PROGRAMMING CONSIDERATIONS 
Record Locking 

In a Tandem system with TMF, each transaction must have a 
transaction identifier. A process without a transaction 
identifier can read records in audited files, but it cannot 
lock or change them. 

A transaction identifier is created when a requester calls 
BE:GINTRANSACTION. A server automatically acquires a transaction 
identifier when it reads $RECEIVE to pick up a request message 
sent by a requester that has a current transaction identifier. 
If a server has a transaction identifier, it can read, lock, 
insert, delete, and change records in audited files. 

A process generally acquires the transaction identifier when the 
server reads $RECEIVE. However, when a process initiates a 
transaction (the requester calls BEGINTRANSACTION) and thus 
acquires a current-transaction identifier, the identifier 
associated with the requester is not replaced by one associated 
with the $RECEIVE message. 

Record Locking 

For all changes to audited files, TMF enforces the following 
record locking protocol: 

• An existing record must be locked by a transaction before it 
can be changed or deleted by a transaction. 

• TMF locks all records inserted by a transaction. 

• TMF locks the primary keys of all records deleted by a 
transaction. This ensures that the record can be reinserted 
if the transaction aborts. 

• TMF will not release the locks for any record changed, 
inserted, or deleted by a transaction until the transaction 
either is committed or aborts and is backed out. 

Locks can be acquired individually on a record-by-record basis or 
a lock can be acquired for an entire file by using the GUARDIAN 
LOCKFILE procedure. Figure 11-2 illustrates (1) how processes 
can acquire locks and update audited files and (2) when TMF will 
release the locks. 

If the whole set of current active transactions tries to acquire 
more than 2000 key locks or 3000 record locks per file, 
sufficient extended segment space might not be availctble. 

11-6 Af' 82357 AOO 3/85 



TMF PROGRAMMING CONSIDERATIONS 
Record Locking 

LOCK RECORD 1 
CHANGE RECORD 1 

...,___.M UNLOCK RECORD 1 

LOCK RECORD 2 
DELETE RECORD 2 

LOCKFILE 
CHANGE RECORD 1 

CHANGE RECORD 2 
UNLOCKFILE 

LOCK RECORD 1 
CHANGE RECORD 1 

~---M LOCK RECORD 2 
NO CHANGE TO 
RECORD2 

UNLOCKFILE 

Locks for records 
1 & 2 w ii I be he Id 

until transaction A 
commits or is aborted 

and backed out. 

File lock will be held 
until transaction A 

commits or is aborted 
and backed out. 

Lock for record 1 
will be held until 

transaction A commits 
or aborted and backed 

out. 

Lock for record 2 
will be released at 

UNLOCKFILE. 

85004-061 

Figure 11-2. Record Locking for TMF 

The file lock or record locks are owned by the current
transaction identifier of the process that issued the lock 
request. In PATHWAY, for example, a single transaction can send 
requests to several servers or multiple requests to the same 
server class. In this situation, where several processes share a 
common transaction identifier and the locks are held by the same 
transaction identifier, the locks do not cause conflict among the 
processes participating in the transaction (see Figure 11-3). 

Figure 11-3 illustrates the following principles: 

• The terminal control process (TCP), which functions as a 
multithreaded requester, interprets BEGINTRANSACTION and 
obtains the transaction identifier before requesting data 
base activity from the servers. 

• The transaction identifier is transmitted to the servers in 
the request message, and any disc activity performed by the 
servers is associated with the transaction identifier. 

/1 82357 AOO 3/85 11-7 



TMF PROGRAMMING CONSIDERATIONS 
Record Locking 

• The transaction identifier owns the locks: all servers that 
acquired the same transaction identifier can read, lock, add, 
delete, and change records in the audited files. For example, 
server A can read and lock a record, and server B can read or 
change the same record if both servers A and B have the same 
transaction identifier. 

/ ' / ' Trans id 
/ ' / .......... 

BEGIN-TRANSACTION 

"transaction mode" 

END-TRANSACTION 

Transid 

J 
Trans id 

Al I locks and 
changes to audited 
file am associated 

with transaction 
identifier (trans id). 

85004-062 

Figure 11-3. Record Locking by Transaction Identifier 

Repeatable Reads 

Generally, a transaction should lock any data it reads and uses 
in producing its output, regardless of whether it modifies the 
data. Following this rule guarantees that all of a transaction's 
reading operations are repeatable and that data on which the 
transaction depends does not change before the transaction is 
committed. 

11-8 ~ 82357 AOO 3/85 



TMF PROGRAMMING CONSIDERATIONS 
Record Locking 

Opening Audited Files--Errors 

Because locks are owned by the transaction identifier instead of 
the process identifier or the identifier of the file opener, they 
can persist longer than the opener process. This means that even 
if a file has been closed by all its openers, the disc process 
keeps it effectively open until all transactions owning locks in 
the file have ended or have been aborted and backed out. 

For files with pending transaction locks, these types of errors 
are possible: 

• Attempting to open an audited file with exclusive access fails 
with file-system error 12 (file in use), regardless of whether 
openers of the file exist. 

• FUP operations requiring exclusive access such as PURGE and 
PURGEDATA fail. PURGE fails with file-system error 12 and 
PURGEDATA fails with file-system error 80. 

Additionally, file-system error 80 (invalid operation on audited 
file) is returned for these OPEN situations: 

• Attempting to open an audited file having an automatically 
updated alternate key file that cannot be opened or is not 
audited 

• Attempting to open a structured audited file with unstructured 
access 

• Attempting to open an audited, partitioned file having a 
nonaudited secondary partition. 

Reading Deleted Records 

If transaction Tl deletes a record, and another transaction T2 
attempts to read the same record while Tl is still active, two 
possible errors could result: 

• If the read request is the GUARDIAN procedure READ after exact 
positioning, then file-system error 1 (end of file) is 
returned. 

• If the read request is the GUARDIAN procedure READUPDATE, then 
file-system error 73 (file/record locked) is returned in 
alternate locking mode, and the request waits for Tl to 
complete in default locking mode. 

/1 82357 AOO 3/85 11-9 



TMF PROGRAMMING CONSIDERATIONS 
Coding Servers 

Batch Updates 

When programming for batch updating of audited files, you should 
either have the transaction lock an entire file at a time by 
using the LOCKFILE procedure or carefully keep track of the 
number of locks held. If you do not use LOCKFILE, TMF sets these 
implicit locks: 

• When a new record is inserted in an audited file, TMF 
implicitly locks that record. 

• When a record is deleted from an audited file, TMF implicitly 
locks the key of that record. 

These locks are not released until the transaction is committed 
or is aborted and backed out. This means that transactions doing 
batch updates to audited files, if they involve deleting or 
inserting a large number of records, can obtain too many locks. 
(The maximum number of locks that can be acquired for each file 
is approximately 2000 key locks and 3000 record locks.) 

If a transaction calls LOCKFILE for a primary-key file, LOCKFILE 
is also applied to any associated alternate-key files. This 
prevents primary-file updates from causing the alternate-key 
files to obtain record locks (for insertions) or key locks (for 
deletions). 

Coding Servers 

Figure 11-4 illustrates the typical sequence of actions performed 
by a single-threaded (not $RECEIVE queuing) server. 

When you write servers of the type illustrated in Figure 11-4, 
consider the following: 

• When the server reads $RECEIVE to pick up its request message, 
it automatically acquires the transaction identifier of the 
process that sent it the message. All data base operations 
performed from the point of the read on $RECEIVE until the 
server replies are associated with the transaction identifier. 

11-10 ~ 82357 AOO 3/85 



TMF PROGRAMMING CONSIDERATIONS 
Coding Servers 

• Existing servers that (1) are not checkpointed, (2) do not do 
$RECEIVE queuing, and (3) lock all records before changing 
them generally do not have to be modified for TMF. 

• The server must follow the record locking rules imposed by 
TMF. This means it must lock all records that it deletes or 
changes. In addition, if it requires repeatable reads, it 
should lock records that it reads and uses in producing its 
output, even if it does not modify the records. 

Trans id 

L_ 
/ 

/ 
/ 

/ ' 

Initialize 

READUPDATE 
$RECEIVE 

' 

---

' ' 

READ RECORD1 WITH 
LOCK 

REWRITE RECORD1 
READ RECORD2 WITH 
LOCK 
DELETE RECORD2 
WRITE RECORD3 

REPLY -. 

__...,,, 

Acquires 
Trans id 

Ends 
Trans id 

Processing 

85004-063 

Figure 11-4. Nonqueuing Server 

Figure 11-5 illustrates a typical sequence of actions performed 
by a $RECEIVE queuing server. 

~ 82357 AOO 3/85 11-11 



TMF PROGRAMMING CONSIDERATIONS 
Coding Servers 

,.._ 
(A) ... Request -
(C) ..... Request -

(n) -- Request ~ -
,..._ 

(C) -- Reply --._ -
(A) - Reply --- -

(n) -- Reply --- ---
CALL WRITEREAD; 

..... Queued by (8) -

The requests are processed. 

Replies by (8) (not nesessarily 
in the order received). 

CALL READUPDATE; 
CALL LASTRECEIVE (,n); 
CALL ACTIVATERECEIVETRANSID(,n) 

fill the request 

CALL REPLY(,,,n); 

85004-064 

~---------------------------~--------------·---------------------------· 

Figure 11-5. $RECEIVE Queuing 

A server of the type illustrated in Figure 11-5 identifies the 
requester a~sociated with the message by obtaining its message 
tag through a call to the GUARDIAN procedure LASTRECEIVE or 
RECEIVEINFO. It can then indicate which message it is responding 
to by specifying the message tag as a parameter in REPLY. Since 
a $RECEIVE queuing server does several READUPATEs on $RECEIVE 
before issuing REPLYs, it needs to acquire the current trans
action identifier dynamically. That is, whenever it does some 
operations for a request message, it must assume its transaction 
identifier for the duration of the operations and then acquire 
the transaction identifier of the next message it is to work on. 
A call to ACTIVATERECEIVETRANSID with the message tag returned by 
an earlier call to LASTRECEIVE or RECEIVEINFO lets the server 
specify that the transaction identifier of the message associated 
with the message tag should become current for the process. 

11-12 ~ 82357 AOO 3/85 



Avoiding Deadlock 

TMF PROGRAMMING CONSIDERATIONS 
Avoiding Deadlock 

The following example of a sequence of record locking operations 
results in a deadlock situation: 

1. Transaction 1 locks record A. 

2. Transaction 2 locks record B. 

3. Transaction 1 attempts to lock record B and has to wait. 

4. Transaction 2 attempts to lock record A and has to wait. 

Neither transaction can proceed, and the situation is a deadlock. 

Some deadlock situations that can occur because of the record 
locking protocol of TMF are: 

• Deleting a record implicitly locks the key of the record and 
can cause the deadlock situation illustrated in Figure 11-6. 

Lock Held Until 
Transaction 

Commits 

Transaction 1 

READ RECORD A WITH 
LOCK 
DELETE RECORD A 

READ RECORD B WITH 

Owns Lock on 
Record A 

LOCK G) 

REWRITE RECORD B 

Waits for 
Lock on 
Record B 

Owns Lock on 
Record B 

Waits for 
Lock on 

Record A 

Transaction 2 

READ RECORD B WITH 
LOCK 

READ RECORD A 

85004-065 

Figure 11-6. Deadlock Caused by Deleting a Record 

• A record inserted by a transaction is automatically locked and 
can cause the deadlock situation illustrated in Figure 11-7. 

...., 82357 AOO 3/85 11-13 



TMF PROGRAMMING CONSIDERATIONS 
Avoiding Deadlock 

WRITE RECORD A 
!implicit lock! 

Owns Lock on 
Record A 

READ RECORD 8 WITH 
LOCK @) 

Waits for 
Lock on 
Record B 

lo:"ns Lock on 
L_:ecord 8 

Waits for 
Lock on 

Record A 

READ RECORD 8 WITH 
LOCK 

READ RECOIRD A WITH 
LOCK 

85004-066 

Figure 11-7. Deadlock Caused by Inserting a Record 

• A process can deadlock itself, as illustrated in Figure 11-8, 
if it acquires different current-transaction identifiers. 

Process 

READ $RECEIVE 

}· Operatin 
LOCK RECORD A With TRAN: 

Deadlock! READ $RECEIVE 

} Waits for Lock 
on Record A. t------i LOCK RECORD A -- Operatin - With TRAN 

REPLY Will not 
be Executed REPLY 

8!5004-067 

Figure 11-8. Deadlock Caused by a Process Switching 
Transaction Identifiers 

11-14 ~ 82357 AOO 3/85 



TMF PROGRAMMING CONSIDERATIONS 
Avoiding Deadlock 

Multiple SENDs to one PATHWAY server, if they cause it to 
access the same record under a different transaction identifier, 
can cause the server to participate in a deadlock (Figure 11-9). 
This situation occurs only if different terminal control 
processes (TCPs) are involved in the SENDs. 

TCP1 TERMINAL1 Server TCP2 TERMINAL2 

BEGIN-TRANSACTION CD BEGIN-TRANSACTION 
ACCEPT 

ACCEPT Work on 
Record A 

SEND _., Reads Message -
Locks Record A 

® -- Replies Work on -
Record A 

Reads Message .,. SEND 

® 
SEND -- Request Waits for 

2 
~-

Lock on Record A 
END-TRANSACTION to be Released END-TRANSACTION 

Deadlock! 

Lock on record A cannot be 
released until SEND completes 

and END-TRANSACTION executes 
or transaction is aborted. 

85004-068 

Figure 11-9. Deadlock Caused by Multiple SENDs 

There is no way to detect if a transaction becomes involved in 
a deadlock. However, the following situations can be detected: 

• A transaction is attempting to read or lock a record that is 
is already locked. 

• A transaction read or lock request is waiting too long 
before completion. 

Each of these situations is explained below and illustrated in 
Figure 11-10. In either situation, it is safe to assume (though 
it may not be true) that the transaction is in a deadlock and to 
program the transaction to abort or restart. The locks held for 
the transaction are released, avoiding the possibility of it 
participating in or prolonging a deadlock. For PATHWAY, the 
server can return a message to the requester that indicates the 
deadlock possibility, and the requester can respond, for example, 
with the COBOL ABORT-TRANSACTION or RESTART-TRANSACTION verb. 

~ 82357 AOO 3/85 11-15 



TMF PROGRAMMING CONSIDERATIONS 
Avoiding Deadlock 

1/0 
Request 

COBOL 

With 
Time Limits 

FORTRAN 

Timeout 

TAL 

Default 
Locking Mode 

TAL 

Alternate 
Locking Mode 

Figure 11-10. Avoiding Deadlock 

Requestl 
Timed 

Out 

Abort 
or Retry 

_j 
85004-069 

TAL programmers can determine if a record is already locked by 
using the GUARDIAN SETMODE procedure to select alternate locking 
mode. In this mode, file-system error 73 is returned to the 
request when it attempts to access a locked record. 

In default locking mode, TAL programmers can determine if an I/O 
request has waited too long before completion. In this mode, a 
process will be suspended when it attempts to access a locked 
record. To avoid deadlock, open the file using nowa:it I/O and 
specify a nonzero time limit in the call to AWAITIO. If AWAITIO 
returns file-system error 40 (indicating timeout), the 
transaction may be in a deadlock situation. 

COBOL programmers can open files using the WITH TIME LIMITS 
parameter. WITH TIME LIMITS indicates that further I/O requests 
will be timed by specifying a value in the TIME LIMIT parameter 
of the request. If the I/O request times out, file-system error 
40 is returned to the request. 

11-16 ~ 82357 AOO 3/85 



TMF PROGRAMMING CONSIDERATIONS 
Using the Transaction Pseudof ile (TFILE) 

FORTRAN programmers can open files with the TIMED specifier and 
use the TIMEOUT specifier in their I/O requests to specify a 
timeout value. If the I/O request times out, file-system error 
40 is returned to the request. 

Using the Transaction Pseudof ile (TFILE) 

The transaction pseudof ile (TFILE) is not a physical I/O device 
file; it is never the target of actual I/O operations. Instead, 
it provides control block space (an ACB) for these types of 
processes: 

• A checkpointed process that executes BEGINTRANSACTION where 
the backup does transaction recovery on takeover 

• A process that requires nowait calls on ENDTRANSACTION 
because it executes multiple BEGINTRANSACTION calls without 
intervening ABORTTRANSACTION or ENDTRANSACTION calls 

• A process which, after calling BEGINTRANSACTION, interrupts 
the transaction to work on a different transaction, then calls 
RESUMETRANSACTION to continue working on the first one 

The TFILE is necessary because these processes can begin multiple 
transactions; the TFILE ACB provides space to store the history 
of each transaction's completion status (aborted or ended) until 
the transaction is completed and individual transaction results 
have been returned to the process. 

When a process opens the TFILE with nonzero sync depth, 
ENDTRANSACTION is always executed on a nowait basis and must be 
completed with a call to the AWAITIO procedure. However, if the 
TFILE is opened with depth zero, ENDTRANSACTION is a waited 
operation and AWAITIO is unnecessary. If the process does not 
open a TFILE, its BEGINTRANSACTION call opens one for it (with a 
depth of zero) and the TFILE remains open until the process 
stops. 

Whenever a process executes BEGINTRANSACTION successfully, a new 
transaction request entry is placed in the TFILE for the calling 
process (primary process only in a checkpointed process pair). 
The TFILE transaction request entry is deleted when 
ENDTRANSACTION is called, and the completion status of the 
transaction has been returned from AWAITIO or when 
ABORTTRANSACTION is called. 

For a transaction whose completion status is "ended", the 
transaction is considered complete upon the return from AWAITIO 
on the TFILE for the associated transaction identifier tag. 

Af' 82357 AOO 3/85 11-17 



TMF PROGRAMMING CONSIDERATIONS 
Using the Transaction Pseudof ile (TFILE) 

For a transaction that is voluntarily aborted, its completion 
is signalled by the return of the ABORTTRANSACTION call. 

Opening the TFILE 

The TFILE is opened using the symbolic name of the TMP's logical 
device name. You should obtain this name programmatically by 
calling the GETTMPNAME procedure: the name is normally $TMP. 

GETTMPNAME returns a zero if it succeeds, or one of these 
file-system error numbers: 

• 22--Parameter is out of bounds. 

• 84--TMF is not configured. 

A process can open the TFILE only once: attempts to open multiple 
instances of the TFILE or to open the TFILE after 
BEGINTRANSACTION has once been called, fail with file-system 
error 12. 

The OPEN parameters required to open the TFILE are <filename>, 
<filenum>, and <flags>. The <flags> parameter specifies the 
maximum number of transactions that the process can have 
concurrently active, and it must be between 1 and 100, inclusive. 
If <flags> is greater than 100, the attempt to open the TFILE 
will fail with file-system error 28. Using <flags> is analogous 
to using the nowait depth for a standard file, except that its 
maximum value is 100 rather than 15. 

Using AWAITIO to Complete ENDTRANSACTION Calls 

When using the TFILE, ENDTRANSACTION calls are treated as nowait 
operations and must be completed with calls to AWAITIO. A 
checkpointed process that executes BEGINTRANSACTION and does 
transaction recovery on takeover must complete its ENDTRANSACTION 
call by calling AWAITIO, even if it never has more than one 
transaction in process at any one time. 

AWAITIO tests for, or waits for completion of, an ENDTRANSACTION 
call. AWAITIO is used for the TFILE in the same manner as it is 
for standard files. The <f ilenum> parameter means the same 
thing. However, the BEGINTRANSACTION tag of the ended 
transaction is returned through the tag parameter of AWAITIO: 
this is the same tag that is used in RESUMETRANSACTION. 

11-18 "1 82357 AOO 3/85 



TMF PROGRAMMING CONSIDERATIONS 
Using the Transaction Pseudof ile (TFILE) 

Synchronizing the TFILE ACBs 

The TFILE ACBs of checkpointed process pairs must be synchronized 
by using checkpoints to allow correct transaction recovery during 
takeover. The TFILE should be checkpointed after the situations 
described below; it performs different functions in each of the 
situations. 

In the first situation, the last precheckpoint operation 
performed by the primary process is either BEGINTRANSACTION or 
RESUMETRANSACTION. Checkpointing the TFILE adds (or verifies the 
presence of) a transaction request in the backup process's TFILE 
ACB that corresponds to the primary process's current-transaction 
identifier at the time of the checkpoint. 

In the second situation, the last precheckpoint operation 
performed by the primary process is either TFILE AWAITIO or 
ABORTTRANSACTION. Checkpointing the TFILE deletes the 
transaction request from the backup process's TFILE ACB that 
corresponds to (1) the transaction identifier for the completion 
status that was most recently returned by AWAITIO on the TFILE, 
or (2) the transaction identifier for which ABORTTRANSACTION was 
called. 

Using the TFILE for Checkpointed Operations 

For BEGINTRANSACTION processes that use the TFILE, creating and 
bringing up a backup process requires that the primary process: 

• CHECKOPEN the TFILE 

• Call RESUMETRANSACTION for each transaction identifier tag 
that corresponds to a transaction that the backup process 
must recover in the event of a takeover. 

If you have created a backup process, do not checkpoint the TFILE 
to it while any transactions are ending (that is, when 
ENDTRANSACTION has been called, but the corresponding AWAITIO has 
not yet completed successfully). 

.Lf' 82357 AOO 3/85 11-19 



TMF PROGRAMMING CONSIDERATIONS 
Handling TMF Backout Anomalies 

Handling TMF Backout Anomalies 

When a transaction aborts, TMF backs it out as follows: 

• Records updated by the transaction are backed out by a 
WRITEUPDATE of the before-images for each of the updated 
records. 

• Records deleted by the transaction are backed out by a WRITE 
(insert) of the before-images for each of the deleted records. 

• Records inserted by the transaction are backed out by a write
count zero WRITEUPDATE (delete). 

The following anomalies can occur during backout: 

• Insertions at end of file (EOF) to an unstructured file cannot 
be backed out. This means that EOF will not be restored to 
its previous value, because another transaction may have 
written to EOF after the insert but before the backout. 

• If a record is inserted at EOF in an entry-sequenced file, the 
record is backed out by rewriting it with a length of zero 
bytes: that is, making it an empty record (even if at EOF). 
A READ at that record's address then will return a null record 
with a length of zero bytes. 

• An EOF (-lD POSITION) insertion to a relative file will be 
backed out by deleting the record. However, EOF will not be 
resto~ed to some previous value because another transaction 
may have written to EOF after the insert but before the 
backout. 

• Backout can fail for a transaction that deletes records from a 
key-sequenced file that is near a "file full" condition. This 
occurs if other transactions, concurrently with the trans
action that deleted the record, insert enough records to fill 
the file. If the file is full, the transaction that deleted 
the records cannot be backed out because there is insufficient 
space to insert the records that it deleted. If this happens, 
the console will get a message similar to the following: 

rrMF Bae kout 
TMF Backout 
TMF Backout 

error 45 at location <loc> - undoAerror 
file involved in above error - <filename> 
transid involved in above error - <transid> 

and the transaction to delete the record will remain in an 
aborting state. Note that the message reflects f:ile-system 
error 45, "file is full." If your application programs 
maintain a log to tie the transaction identifier to the 
user-entered transaction, you may be able to correct the 

11-20 "1J 82357 AOO 3/85 



TMF PROGRAMMING CONSIDERATIONS 
Advanced Usage of TMF 

problem manually. It may also be possible to run a separate 
transaction to delete one or more unneeded records, then ask 
the operator to use the TMFCOM ABORT TRANSACTION command to 
complete the previously unsuccessful backout. (A better 
solution for this problem is to use the FUP INFO command 
periodically and make sure your files never get that full.) 

Advanced Usage of TMF 

Analysts and system programmers who wish to obtain further infor
mation on the use of TMF in conjunction with checkpointing, can 
refer to the Tandem Journal, Volume 1, Number 1, Fall 1983. 
It contains an article entitled "TMF and the Multi-Threaded 
Requester." 

Checkpointing can be useful in conjunction with TMF. TMF can do 
everything that checkpointing can do, with one exception: TMF 
cannot reinitiate failed transactions. 

Checkpointing can be used to make processes that perform TMF 
transact ions ''persistent". Persistent process pairs can survive 
single failures while continuing to perform transactions. 

A persistent process can use a simple recovery strategy. If the 
pri11ary process fails while processing a transaction, the backup 
process can rely on TMF to backout the incomplete transaction. 
The backup may either resubmit the failed transaction or go on to 
the Aext transaction. This is both simpler and more efficient 
than keepin~ the backup process constantly apprised of the 
transaction's state as it is being performed. 

~ 82357 AOO 3/85 11-21 





SECTION 12 

WRITING FAULT-TOLERANT PROGRAMS 

The term "fault tolerant" means that a single hardware component 
failure will not cause processing to stop; moreover, in most 
cases, a software problem will not cause processing to stop. 

From the hardware side, fault tolerance is not difficult to 
achieve on a Tandem system. Sufficient redundant hardware 
and duplication of paths allow Tandem systems to tolerate a 
single-component failure. In many cases, multiple-component 
failures can also be tolerated as long as they do not share 
common paths. Moreover, the redundant paths are not duplicate 
backups; that is, all available resources are used for 
processing--none are held in reserve for use as spare backups. 
The hardware concepts employed to achieve this fault tolerance 
are explained in the Introduction to Tandem Computer Systems. 

Tandem software is also fault tolerant. Many software problems 
are not repeatable; that is, the problem can occur only when a 
combination of events creates a given environment. Most other 
computer systems cannot deal with problems of this nature because 
their backup systems encounter the same bug and fail in the same 
manner as their primary system because the backup system shares 
the same environment. On a Tandem system, such software bugs 
usually do not halt processing because the combination of events 
that led to the failure is not repeated in the backup process. 

There are several methods you can use to reduce the time required 
for recovery should your program fail. Of these methods, check
pointing is one of the most important. It provides a method of 
saving information at a given point in processing so that a 
process can be restarted at that point rather than having to 
return to the beginning of its execution. 

Checkpointing is an integral part of the GUARDIAN operating 
system. It is commonly used in combination with other tools to 
support fault-tolerant processing. 

"1' 82357 AOO 3/85 12-1 



FAULT-TOLERANT PROGRAMS 
Checkpointing Procedures 

Checkpointing is done to ensure that a backup process can take 
over from the primary process at the correct point. The primary 
process and the backup process together form an entity known as a 
Nonstop process pair. The purpose of the checkpoint information 
is to enable the backup process to recover from a failure of the 
primary process in an orderly manner. 

Checkpoints do not occur automatically. As a programmer, you 
must determine where you want to place the checkpoints within 
your program, and what information you want sent at each check
point. The placement of checkpoints in transaction processing is 
critical. Especially in the final phases of coding your program, 
you must constantly be alert to the possibility that errors can 
result if you fail to checkpoint all data that has been modified. 

NOTE 

If the Transaction Monitoring Facility (TMF) is available 
on your system, you can use TMF to avoid using checkpoints 
in many applications. TMF is described in Section 11. 

CHECKPOINTING PROCEDURES 

The checkpointing facility consists of a set of procedures that 
are used: 

• To assume control in the backup process in case of failure 
of the primary process or its processor module: 

CHECKMONITOR (backup-process) 

• To open and close a process pair's files: 

OPEN and CLOSE (primary process) 
CHECKOPEN and CHECKCLOSE (primary process) 
CHECKMONITOR (backup process) 

• To checkpoint the execution state of a primary process to its 
backup process: 

CHECKPOINT or CHECKPOINTMANY (primary process) 
CHECKMONITOR (backup process) 

• To transfer control to the backup process so that the system 
load is redistributed, and for testing fault tolerance: 

12-2 

CHECKSWITCH (primary process) 
CHECKMONITOR (backup process) 

"1J 82357 AOO 3/85 



FAULT-TOLERANT PROGRAMS 
What Information Is Checkpointed? 

• To request notification of a change in the operational state 
of one or more processor modules: 

MONITORCPUS (primary and backup processes) 

• To obtain the count and operational states of processor 
modules: 

PROCESSORSTATUS 

• To obtain the processor type of a specified system and CPU: 

PROCESSORTYPE 

See the System Procedure Calls Reference Manual for details. 

WHAT INFORMATION IS CHECKPOINTED? 

The following types of information can be checkpointed: 

• The process's data stack 

The data stack, in this context, is considered to be the area 
from an address specified in the call to CHECKPOINT (usually 
the address of the last global variable) through the current 
top-of-stack location (the word pointed to by the current 
setting of the S register). This area contains the local data 
storage for all currently active procedures and their stack 
markers. 

• Individual blocks of data in the data area 

These are usually file buffers, but may be any data desired. 

• Disc file "sync blocks" 

A sync block contains control information about the current 
state of a disc file (such as the current value of the file 
pointers). 

When a call to CHECKPOINT is made by the primary process, a 
message containing the information to be checkpointed is 
formatted and sent to the backup process in the form of an 
interprocess message. The message is received and processed by 
the CHECKMONITOR procedure in the backup process. 

~ 82357 AOO 3/85 12-3 



FAULT-TOLERANT PROGRAMS 
What Information Is Checkpointed? 

Data Stack 

The purposes of checkpointing the data stack are to provide a 
restart point for the backup process and to preserve the values 
of the process' variables at the time of the checkpoint. This is 
possible because the stack markers in the data stack define the 
executing environment of the primary process at the time of the 
call to CHECKPOINT, and because the primary's data stack is 
duplicated in the backup. If the primary process fails, 
CHECKMONITOR simply returns through the stack marker for the 
latest call to CHECKPOINT. In this manner, the backup begins 
executing following the latest call to CHECKPOINT. 

Data Buffers 

The purpose of checkpointing data buffers is to preserve the 
state of the process so that the backup can continue processing. 
Typically, data buffer checkpointing occurs just before writing 
to a disc file; the data about to be written is checkpointed. 
Careful selection of which data buffers (and corresponding file 
sync information, discussed in the following paragraphs) to 
checkpoint can increase the efficiency of a fault-tolerant 
program. An example of data buffer checkpointing is an entry 
received from a terminal; the data buffer is checkpointed to 
minimize the possibility that the operator would have to reenter 
data. Data buffers residing in the data stack are checkpointed 
when the stack is checkpointed . 

.§_ync Blocks 

The purpose of checkpointing the sync block is twofold: 

1. To ensure that no write operation is duplicated when a backup 
takes over from its primary 

2. To pass the current values of file pointers to the file 
system on the backup side 

When a checkpoint of the sync block occurs, the information in 
the sync block is passed to the file system by CHECKMONITOR. 

The need to prevent duplicate operations is illustrated in the 
following sequence: 

12-4 ~ 82357 AOO 3/85 



FAULT-TOLERANT PROGRAMS 
What Information Is Checkpointed? 

A primary completes the following write operation successfully 
but fails before a subsequent checkpoint to its backup: 

RESTART POINT •(C) CHECKPOINT POSITION AND DATA 
I 
x POSITION(Fl,-lD): ! position to eof 
x WRITE(Fl,FlABUFFER): 
I 

*** FAILURE OF PRIMARY *** 

On the takeover from the primary, the backup reexecutes the 
operations just completed by the primary. If the WRITE were 
performed as requested, it would duplicate the record, but at 
the new end-of-file location. 

To prevent a write operation already performed by the primary 
from being duplicated by the backup process, the <sync-depth> 
parameter of OPEN must be specified as a value greater than zero 
when opening the file. For a file opened in this manner, a sync 
ID in the sync block is used by the file system to identify the 
operation about to be performed by the backup in the event of a 
primary process failure. If the backup requests an operation 
already completed by the primary, the file system, through use of 
the sync ID, recognizes this condition. Then, instead of 
performing the requested operation, the file system returns the 
completion status of the operation to the backup (the completion 
status was saved by the file system when the primary performed 
the operation). However, if the requested operation has not been 
performed, it is performed and the completion status is returned 
to the backup. The course of action that is taken by the file 
system is completely invisible to the backup process. 

The file system has the capability to save the completion status 
of the latest operations against a file and to relate those 
completions to operations requested by a backup process upon 
takeover from a failed primary process. The maximum number of 
completion statuses that the file system is to save is specified 
in the <sync-depth> parameter to OPEN. The <sync-depth> value is 
typically the same as the maximum number of write operations to a 
file without an intervening checkpoint of the file's sync block. 
In most cases, the <sync-depth> value is 1: it cannot exceed 15. 

Information Not Checkpointed 

Operations that are "retryable" usually are not checkpointed: 
they can be retried until the operation succeeds. Retryable 
operations are those that do not alter the data base, and can 
be reexecuted indefinitely with the same results, without 

"1J 82357 AOO 3/85 12-5 



FAULT-TOLERANT PROGRAMS 
Transaction Processing Overview 

duplication or loss of data. Those operations which are not 
retryable should be checkpointed. 

Operations that are not retryable cannot be repeated.. Therefore, 
each request message contains a sync ID that is used to detect 
and negate duplicate requests for nonretryable operations. Refer 
to "File Synchronization Information" near the end of this 
section for more information. 

OVERVIEW OF FAULT-TOLERANT TRANSACTION PROCESSING 

Process pairs form the basis for fault-tolerant processing. The 
primary process and the backup process execute the same program 
file as illustrated in Figure 12-1. 

Save stack base address: 

CALL GETCRTPID (MYPID, PPDENTRY); 

CALL LOOKUPPROCESSNAME (PPDENTRY); 
IF < THEN CALL ABEND; 

IF PPDENTRY [4] THEN 
BEGIN 
CALL MONITORCPUS (PRIMARYACPU); 
CALL CHECKMONITOR; 
CALL ABEND; 
END; 

CALL MONITORCPUS (BACKUPACPU); 

read startup message 

OPEN file£ 

create backup . 
CHECKOPEN files 

find out if this is the 
primary or backup 

no name 

this is the backup 

this is the primary 

Figure 12-1. Sample Startup Sequence for a Process Pair 

The actions of the primary and backup processes are shown in 
Figure 12-2. 

12-6 ..,, 82357 AOO 3/85 



PRIMARY 
PROCESS 

READ "STARTUP" Message 

I 
OPEN files 

I 
Create Backup Process 

I 
CHECKOPEN Files 

READ Entry From Terminal 

I 
READ Record From Disc 

I 
Update Record in Memory 

I 
CHECKPOINT 

I 
WRITE Updated Record to Disc 

I 

FAULT-TOLERANT PROGRAMS 
Transaction Processing Overview 

--

BACKUP 
PROCESS 

CHECKMONITOR ~ 

-. 
• 

READ ... 
• 

READ ... 

• 
Update ... 

• 
CHECKPOINT ... 

--• ...... 

WRITE ... 

The backup stays in CHECKMONITOR while the primary is operational. If the primary 
fails, the backup leaves CHECKMONITOR and begins executing at the point indicated 
by the last call to CHECKPOINT by the primary. 

85004-071 

Figure 12-2. Fault-Tolerant Transaction Processing 

Basically, the following actions take place when a program runs, 
as illustrated in Figure 12-2. 

1. First, the program is given a process name at run time. This 
permits the new process (and eventually its backup) to run as 
a named process pair. (An alternate, though more complicated 
method of setting up a process pair is to use two nonnamed 
processes and have each call the STEPMOM procedure to "adopt" 
the other. This method is described in more detail later in 
this section.) 

2. The new process determines that it is the primary process, 
and reads the startup message from its creator (for example, 
a command interpreter). 

..,.., 82357 AOO 3/85 12-7 



FAULT-TOLERANT PROGRAMS 
Transaction Processing Overview 

3. The primary process opens any files required for its 
execution. 

4. The primary process then creates the backup procE~ss in 
another processor module. The backup process is given the 
same process name as the primary. 

5. The backup process, at the beginning of its execution, 
determines that it is the backup process, and calls the 
CHECKMONITOR procedure. This is as far as the backup 
executes unless a failure of the primary process occurs. 

6. The primary process opens the same files for the backup 
process by calls to CHECKOPEN. This permits files to be 
open by the pair in a manner that permits both members of 
the pair to have a file open while retaining the ability to 
exclude other processes from accessing a file. Por disc 
files open in this manner, a record or file lock by the 
primary is also an equivalent lock by the backup. 

7. The primary process then begins executing its main processing 
loop. At critical points through the execution loop, 
typically before writes to disc files, the primary calls 
CHECKPOINT to send part of its environment and pertinent file 
control information to the backup process. Typically, a 
program contains several calls to CHECKPOINT; each call 
checkpoints only a portion of the primary process's 
environment. Calls to CHECKPOINT that checkpoint the data 
stack define restart points for the backup process. 

8. If the primary process fails, the backup begins executin9 at 
the restart point indicated by the latest call to CHECKPOINT 
that checkpointed the data stack. The backup process is now 
considered to be the primary process. 

9m If the reason for the primary process failure was a processor 
module failure (CPU down), the new primary process creates a 
backup process when the failed processor module is repaired 
and brought back online. This new backup process is then 
ready to take over if the primary process fails. This is the 
normally recommended procedure; an alternative action is to 
create a backup process immediately in another CPU. A 
critical application usually requires an immediate backup. 

The following summarizes the specific action of CHECKMONITOR for 
an action by the primary process. Refer to the System Procedure 
Calls Reference Manual for additional information. 

12-8 '1J 82357 AOO 3/85 



FAULT-TOLERANT PROGRAMS 
Transaction Processing Overview 

Primary Backup (CHECKMONITOR) 

r--------------------------------------··-··--··--

No action At the beginning of CHECKMONITOR execution, the current 
state of CPU monitoring for the caller is saved (that is, 
the current MONITORCPUS <cpu-mask>), then MONITORCPUS is 
called, specifying only the primary's processor module. 

CHECKOPEN OPEN is called for the designated file. 

CHECKPOINT If all or a portion of the primary's data stack was check
pointed, the data is moved into the corresponding location 
in the backup's data stack. If a local data buffer was 
checkpointed by name, the data is moved into the 
appropriate location in the backup's data area. If file 
synchronization information was checkpointed, SETSYNCINFO 
is called for the designated file. 

CHECKCLOSE CLOSE is called for the designated file. 

CHECKSWITCH First CHECKMONITOR calls RESETSYNC for any file whose 
synchronization information was not checkpointed by the 
primary in its preceding call to CHECKPOINT. CPU 
monitoring is returned to the state that was in effect 
before CHECKMONITOR was called. Control is then returned 
to the point in the backup process indicated by the latest 
call to CHECKPOINT in the primary process. If the primary 
has not previously checkpointed its stack in a call to 
CHECKPOINT, control is returned to the instruction 
following the call to CHECKMONITOR. 

Process (STOP or ABEND system message received for primary.) First 
Failure CHECKMONITOR calls RESETSYNC for any file whose synchro

nization information was not checkpointed by the primary 
in its preceding call to CHECKPOINT. CPU monitoring is 
returned to the state that was in effect before 
CHECKMONITOR was called. Control is then returned to the 
point in the backup process indicated by the latest call to 
CHECKPOINT in the primary process. If the primary has not 
previously checkpointed its stack in a call to CHECKPOINT, 
control is returned to the instruction following the call 
to CHECKMONITOR. 

Processor (Processor Failure system message received for primary's 
Failure processor module.) First CHECKMONITOR calls RESETSYNC for 

any file whose synchronization information was not 
checkpointed by the primary in its preceding call to 
CHECKPOINT. CPU monitoring is returned to the state that 
was in effect before CHECKMONITOR was called. Control is 
returned to the point in the backup process indicated by 
the latest call to CHECKPOINT in the primary process. If 
the primary has not previously checkpointed its stack in a 
call to CHECKPOINT, control is returned to the instruction 
following the call to CHECKMONITOR . 

...,., 82357 AOO 3/85 12-9 



FAULT-TOLERANT PROGRAMS 
Fault-Tolerant Program Structure 

FAULT-TOLERANT PROGRAM STRUCTURE 

The general structure of a typical fault-tolerant program is: 

• A main processing loop 

• A process startup (beginning of program) phase 

Please keep in mind that many of the examples in this section are 
incomplete; each segment illustrates only the point described. 
A complete example of a fault-tolerant program is given in 
Appendix B. 

Main Processing Loop 

In addition to normal transaction processing, the main processing 
loop for both a named and a nonnamed process pair must: 

1. Checkpoint at appropriate points 

2. Check the $RECEIVE file for system messages 

3. Perform special action when taking over from the primary 

Process Startup for Named Process Pairs 

The use of named process pairs for fault-tolerant programming 
is considered to be the usual case. Nonnamed process pairs are 
used only in special cases. 

The process startup code is executed by both the primary and 
backup processes following their creation. 

In the following presentation, process startup for named process 
pairs is described before process startup for nonnamed process 
pairs. The same step sequence numbering is used for both. The 
following overview presents these individual steps concisely: 

1. 

2. 

3. 

12-10 

Save the stack base address for checkpointing. 

Call ARMTRAP so the process will abend if trap occurs. 
(ARMTRAP can also be used to process traps; see Section 13.) 

Determine if the process is the primary or the backup. 

""1 82357 AOO 3/85 



FAULT-TOLERANT PROGRAMS 
Process Startup for Named Process Pairs 

If primary then: 
4. Open $RECEIVE (nowait) and, optionally, read the startup 

message 
5. Open files 

6. Monitor the backup CPU 

7. Create backup process: 
if created then 

a. open files in backup process 

9. use AWAITIO to complete nowait opens in backup process 

10. checkpoint environment to backup 

11. Else ! this is backup ! monitor the primary. 

12. Initiate a read on $RECEIVE to check for backup stopped, or 
processor up or processor down messages. 

After performing these steps, execute the main processing loop. 

1. SAVE THE STACK BASE ADDRESS: This is necessary for 
subsequent checkpo1nting of the data stack. The stack base 
address should be kept in a global variable. The stack base 
address is that of the first local variable of the main 
procedure: 

INT .STACKBASE: ! global pointer variable. 

PROC M MAIN: 
BEGIN 

INT .PPDENTRY [0:8], first local variable in MAIN. 

BASE = 'L' + 1: address equivalence. 

@STACKBASE := @BASE: saves the address. 

2. CALL ARMTRAP: The ARMTRAP procedure should be called to 
handle any trap that may occur. The simplest method of using 
ARMTRAP is 

CALL ARMTRAP ( 0, -1 ): 

This causes the process to abend if a trap occurs. 

During the program debug phase, it is usually desirable to omit 
the call to ARMTRAP. Then, if a trap occurs, DEBUG (or INSPECT) 
is called. If you want the process to analyze the reason for the 
trap, see the information given in Section 13. 

"'1 82357 AOO 3/85 12-11 



FAULT-TOLERANT PROGRAMS 
Process Startup for Named Process Pairs 

3. DETERMINE IF PRIMARY OR BACKUP: One way to determine if a 
process is a primary or its backup is to look at its entry in the 
process-pair directory (PPD): 

INT .PPDENTRY [0:8]; 

CALL GETCRTPID ( MYPID, PPDENTRY ); 
CALL LOOKUPPROCESSNAME ( PPDENTRY ); 
IF < THEN CALL ABEND; ! no entry. 

This returns the PPD entry for this process. If 
LOOKUPPROCESSNAME fails, either the process does not have a name 
or the system cannot access the PPD. In either case, a serious 
problem exists. 

IF NOT PPDENTRY [4] THEN 
BEGIN 

i'm the primary 

The fact that PPDENTRY [4] (<cpu2,pin2>) = 0 indicates that no 
backup process exists. Therefore, this process must be the 
primary. 

The following actions are taken by the primary process: 

4. OPEN RECEIVE: The $RECEIVE file should be opened with 
nowa1t I O specified. Nowait I/O is specified so that a read on 
$RECEIVE can be continually outstanding. This is desirable so 
that the "check for completion" form of AWAITIO (such as, <time
limit> = OD) can be used to check for system messages or so that 
system messages can be read when waiting for completions on other 
files. 

INT .RECEIVE[O:ll] := ["$RECEIVE", 8 * [" "]], 
RFNUM, 

CALL OPEN ( RECEIVE, RFNUM, 1 ); 
IF < THEN CALL ABEND; 

global 
variables 

Next, if a startup message is expected (such as a command 
interpreter parameter message), it should be read: 

CALL READ ( RFNUM, BUF, COUNT ); 
IF <> THEN CALL ABEND; 
CALL AWAITIO ( RFNUM,, COUNTREAD ); 
IF <> THEN CALL ABEND; 

At this point, a check should be made to determine iJE the message 
is a valid startup message (that is, if the first word of the 
message= -1). 

12-12 /1 82357 AOO 3/85 



FAULT-TOLERANT PROGRAMS 
Process Startup for Named Process Pairs 

5. OPEN PRIMARY'S FILES: The files to be referenced by the 
process should be opened by the primary (see "File Open"). 

LITERAL 
= FLAGSl 

SYNCADEPTHl = 
= FLAGS2 

SYNCADEPTH2 = 

= FLAG SN 
SYNCADEPTHN = 

INT .FNAMEl [0:11], 
FNUMl, 

.FNAME2 [0:11], 
FNUM2, 

.FNUMN [0:11], 
FNUMN: 

... ' ... ' ... ' ... ' 

... ' . . . . ' 

global data 
declarations. 

CALL OPEN FNAMEl, FNUMl, FLAGSl, SYNCADEPTHl ): 
IF< THEN •••• ! see note. 
CALL OPEN ( FNAME2, FNUM2, FLAGS2, SYNCADEPTH2 ): 
IF< THEN .••• ! see note. 

CALL OPEN ( FNAMEN, FNUMN, FLAGSN, SYNCADEPTHN ): 
IF< THEN •••• ! see note. 

NOTE 

The action that should be taken if a file open fails 
(IF ERROR <> 0) is application-dependent. For example, 
the primary could abort itself. Or, if an invalid file 
name was received by the process, the terminal operator 
could be queried for a valid file name. 

6. MONITOR THE BACKUP CPU: The MONITORCPUS procedure should be 
called for the backup process's processor module. This allows 
the processor module failure and reload system messages to be 
sent to the primary process (through the $RECEIVE file). 

INT BACKUPACPU: ! backup CPU no. 

monitor the backup CPU. 
CALL MONITORCPUS ( %100000 '>>' BACKUPACPU >: 

""'f 82357 AOO 3/85 12-13 



FAULT-TOLERANT PROGRAMS 
Process Startup for Named Process Pairs 

7. CREATE THE BACKUP PROCESS: Backup process creation is best 
accomplished by writing a procedure that performs the following 
functions: 

• Creating the process 

• Opening the files on behalf of the backup 

• Checkpointing the primary's environment 

The reason for including these functions in a procedure is that 
backup process creation may be necessary at several points during 
process execution. These are: during process startup, after a 
takeover by a backup following a failure of its primary, failure 
of backup (ABEND), or reload of the backup's processor module. 

The following is an example of backup process creation: 

PROC CREATEBACKUP; 
BEGIN 

Create the process: 

INT .PFILE [0:11], 
PNAME [0:3], 
BACKUPAPID [0:3], 
ERROR; 

CALL PROGRAMFILENAME ( PFILE ); 

Returns the file name of the primary's program fileo 

CALL GETCRTPID ( MYPID, PNAME ); 

Returns the process pair's name. 

CALL NEWPROCESS ( PFILE,, (LASTADDR'>>'lO) '+' 1, 
BACKUPACPU, BACKUPAPID, ERROR, PNAME ); 

Creates the process. (For an explanation of the LASTADDR 
procedure, see the System Procedure Calls Reference Manual.) 

Open the files in the backup process (see "File Open" for 
considerations): 

IF BACKUPAPID THEN ! it was created. 
BEGIN 

BACKUPAUP := l; ! global variable. 

! $RECEIVE file. 
CALL CHECKOPEN (RECEIVE, RFNUM, 1,,,, ERROR); 

12-14 -1' 82357 AOO 3/85 



FAULT-TOLERANT PROGRAMS 
Process Startup for Named Process Pairs 

IF<> THEN ••• ! see note. 
CALL CHECKOPEN(FNAMEl,FNUMl,FLAGSl,SYNCADEPTHl,,,ERROR); 
IF<> THEN ••• ! see note. 
CALL CHECKOPEN(FNAME2,FNUM2,FLAGS2,SYNCADEPTH2,,,ERROR); 
IF<> THEN ••• ! see note • 

. 
CALL CHECKOPEN(FNAMEN,FNUMN,FLAGSN,SYNCADEPTHN,,,ERROR); 
IF<> THEN ••• ! see following paragraphs. 

NOTE 

The action that a primary should take if a file open in its 
backup fails (if error <> 0) is application-dependent. For 
example, the primary could stop the backup, then abort 
itself. Or, the primary could stop the backup but continue 
processing without a backup. If the latter course of action 
is taken, however, the primary will receive a process STOP 
system message for the backup. Therefore, the primary should 
contain logic so that it does not recreate its backup if this 
happens. 

When a server is opened in a nowait manner by a process 
pair, the OPEN and the CHECKOPEN must both have been 
completed without error by AWAITIO before the sync block 
is checkpointed. If this restriction is not obeyed, the 
CHECKOPEN is rejected with an error, and a takeover occurs, 
then the server may not recognize the backup as a valid 
opener. In this case, pending requests may be rejected 
with an error if retried without the backup process first 
opening the file on its own. When using nowait opens, the 
primary process of a pair should create the backup in the 
following manner to ensure a valid takeover: 

1. Create backup using the NEWPROCESS procedure. 

2. CHECKOPEN all files. 

3. Complete all nowait CHECKOPENs by calls to AWAITIO. 

4. Checkpoint the stack and sync blocks. 

If the primary process dies, the backup is now ready to 
continue processing. Normal processing can continue in 
parallel with step 3, which may take a while if one or 
more servers responds slowly. 

Checkpoint the primary's data area to the backup process (this 
includes any startup message): 

~ 82357 AOO 3/85 12-15 



FAULT-TOLERANT PROGRAMS 
Process Startup for Named Process Pairs 

CALL CHECKPOINT (, ADDR, COUNT, ••• ); 

Checkpoint all files' sync information and the data stack in the 
same call: 

! set restart point. 
IF (STATUS := CHECKPOINT(STACKBASE,, FNUMl,, FNUM2,, 

,, FNUMN )) THEN 

CALL ANALYZEACHECKPOINTASTATUS ( STATUS ); 

ANALYZEACHECKPOINTASTATUS is a procedure that takes 
appropriate action for a checkpoint failure or takeover by 
backup. See "Takeover by Backup" for a description of the 
ANALYZEACHECKPOINTASTATUS procedure. 

If multiple calls to CHECKPOINT are necessary, the data stack 
should be checkpointed last. This checkpoint is then a restart 
point if the primary should subsequently fail. 

END; ! open files 
END; ! of createbackup 

11. MONITOR THE PRIMARY: This is the action taken by the 
process if it is the backup. First, MONITORCPUS is called for 
the primary's processor module (this is done so that the 
primary's processor module will continue to be monitored if and 
when the backup takes over). The actual monitoring of the 
primary is accomplished by calling the CHECKMONITOR procedure: 

! save the primary's CPU number. 
BACKUPACPU := PPDENTRY [3].<0:7>; 
! monitor the primary CPU. 
CALL MONITORCPUS ( %100000 '>>' BACKUPACPU ); 
CALL CHECKMONITOR; 
CALL ABEND; 

The backup process only returns from the call to 
CHECKMONITOR if the primary has not checkpointed its data 
stack. The primary checkpoints its stack for the first 
time at the end of creation of the backup process. 

12. READ $RECEIVE: The primary should keep a read outstanding 
on $RECEIVE at all times. This is desirable so that process 
deletion, and processor failure and reload system messages can 
be received. 

CALL READ ( RFNUM, RBUF, COUNT ); 

12-16 ~ 82357 AOO 3/85 



FAULT-TOLERANT PROGRAMS 
Process Startup for Named Process Pairs 

EXAMPLE: The following code is an example of process startup 
for named process pairs: 

INT BACKUPACPU, 
.STACKBASE, ! global pointer variable • 
• RECEIVE[O:ll] := ["$RECEIVE", 8 * [" "]], 
RFNUM, 
STOPA.COUNT := 0, 
BACKUPAUP := O; 

LITERAL 
FLAGSl = 
SYNCADEPTHl = 
FLAGS2 = 
SYNCADEPTH2 = 

= FLAG SN 
SYNCADEPTHN = 

INT .FNAMEl [0:11], 
FNUMl, 

.FNAME2 [0:11], 
FNUM2, 

. 
• FNUMN[O:ll], 
FNUMN; 

PROC M MAIN; 
BEGIN 

... , ... , ... , ... , 

... , . . . . , 

global data 
declarations$ 

INT .PPDENTRY [0:8], ! first local variable in MAIN . 

. 
BASE = 'L' + l; address equivalence. 

@STACKBASE := @BASE; save the address. 

! abort the process if a trap occurs. 
CALL ARMTRAP ( 0, -1 ); 

CALL GETCRTPID ( MYPID, PPDENTRY); 
CALL LOOKUPPROCESSNAME ( PPDENTRY ); 
IF < THEN CALL ABEND; ! no entry. 

IF NOT PPDENTRY [4] THEN ! i'm the primary 
BEGIN 

! OPEN $RECEIVE. 
CALL OPEN ( RECEIVE, RFNUM, 1 ); 
IF < THEN CALL ABEND; 

! read the startup message. 

""82357 AOO 3/85 12-17 



FAULT-TOLERANT PROGRAMS 
Process Startup for Named Process Pairs 

CALL READ ( RFNUM, BUF, COUNT ); 
IF <> THEN CALL ABEND; 
CALL AWAITIO ( RFNUM,, COUNTREAD ); 
IF <> THEN CALL ABEND; 

! open the primary's files. 
CALL OPEN ( FNAMEl, FNUMl, FLAGSl, SYNCADEPTHl ); 
IF< THEN ..•. ! error. 
CALL OPEN ( FNAME2, FNUM2, FLAGS2, SYNCADEPTH2 ); 
IF< THEN ...• ! error. 

CALL OPEN ( FNAMEN, FNUMN, FLAGSN, SYNCADEPTHN ); 
IF< THEN ..•. ! error. 

! monitor the backup CPU. 
CALL MONITORCPUS ( %100000 '>>' BACKUPACPU ); 

! create the backup process. 
CALL CREATEBACKUP ( BACKUPACPU ); 

END 
ELSE ! i'm the backup 

BEGIN 
! save the primary's CPU num. 

BACKUPACPU := PPDENTRY [3].<0:7>; 
! monitor the primary CPU. 

CALL MONITORCPUS ( %100000 '>>' BACKUPACPU ); 
CALL CHECKMONITOR; 
CALL ABEND; 

END; 

! read $RECEIVE. 
CALL READ ( RFNUM, RBUF, COUNT ); 

! execute the main program loop. 
CALL MAINALOOP; 

END; 

The following is the example code in the CREATEBACKUP procedure: 

PROC CREATEBACKUP (BACKUPACPU 
INT BACKUPACPU; 

BEGIN 
INT .PFILE [0:11], 

PNAME [0:3], 
BACKUPAPID [0:3], 
ERROR; 

CALL PROGRAMFILENAME ( PFILE ); 

CALL GETCRTPID ( MYPID, PNAME ); 

12-18 "'82357 AOO 3/85 



FAULT-TOLERANT PROGRAMS 
Process Startup for Nonnamed Process Pairs 

CALL NEWPROCESS (PFILE, , (LASTADDR'>>'lO)'+'l, BACKUPACPU, 
BACKUPAPID, ERROR, PNAME); 

IF BACKUPAPID THEN ! it was created. 
BEGIN 

BACKUPAUP := l; 
CALL CHECKOPEN(RECEIVE,RFNUM,l,,,,ERROR) ! $RECEIVE file. 
IF<> THEN ••• ! error. 
CALL CHECKOPEN(FNAMEl,FNUMl,FLAGSl,SYNCADEPTHl,,,ERROR); 
IF<> THEN .•• ! error. 
CALL CHECKOPEN(FNAME2,FNUM2,FLAGS2,SYNCADEPTH2,,,ERROR); 
IF<> THEN ••• ! error . 

. 
CALL CHECKOPEN(FNAMEN,FNUMN,FLAGSN,SYNCADEPTHN,,,ERROR); 
IF<> THEN ••• ! error. 

CALL CHECKPOINT (,, FNUMl,, FNUM2,, •••••. ,, FNUMN ); 
CALL CHECKPOINT (, ADDR, COUNT, ••• ); 

. 
IF (STATUS := CHECKPOINT(STACKBASE)) THEN ! restart point 

CALL ANALYZEACHECKPOINTASTATUS ( STATUS ); 
END; ! open files 

END; ! of createbackup 

Process Startup for Nonnamed Process Pairs 

The startup for nonnamed process pairs is nearly identical to 
that for named process pairs, except for the following items: 

• The determination of primary or backup designation is not 
based on a PPD entry. 

• The primary must send a startup message to the backup. 

• The backup must call the STEPMOM procedure for the primary. 
This is necessary because the checkpointing facility uses the 
creator process ID in the primary's process control block 
(PCB) to determine the destination of checkpoint messages. 

• The startup message must be read by using the READUPDATE 
procedure (and, therefore, replied to by using the REPLY 
procedure). This is done so that the primary process is 
suspended (and therefore prevented from checkpointing) 
until the backup calls the STEPMOM procedure. 

Af' 82357 AOO 3/85 12-19 



FAULT-TOLERANT PROGRAMS 
Process Startup for Nonnamed Process Pairs 

NOTE 

There is no "ancestor" relationship between a nonnamed 
process pair and the process initially responsible for 
their creation. 

In the following list of the general steps involved in process 
startup for nonnamed processes, the differences from the startup 
process for named process pairs are indicated by lettered steps, 
described in detail below: 

1. Save the stack base address for checkpointing. 

2. Call ARMTRAP, so process will abend if trap occurs. 
(ARMTRAP can also be used to process traps, see Section 13.) 

A. Open $RECEIVE (nowait, receive depth = 1) and, read the 
startup message by using READUPDATE. 

B. Determine if the process is the primary or backup -

If primary then 
begin 

C. reply to startup message 

5. Open files 

6. Monitor the backup CPU 

7. Create backup process: 
if created then 

begin 
D. send nonstandard startup message to backup 

8. open files in backup process 

9. checkpoint environment to backup 
end 

end 
E. else ! backup monitor the primary. 

12. Initiate a read on $RECEIVE to check for backup stopped, or 
processor up or down messages. 

After performing these steps, execute the main program loop. 

A. READ STARTUP MESSAGE: The $RECEIVE file should be ope~ed 
with nowait I/O and <receive-depth> >= 1 specified. <rece1ve
depth> >= 1 is specified so that the startup message can be read 
by a call to READUPDATE, then later replied to by a call to 
REPLY. This is necessary so that the backup process, after it 

12-20 "1l 82357 AOO 3/85 



FAULT-TOLERANT PROGRAMS 
Process Startup for Nonnamed Process Pairs 

reads its startup message, can cause the primary process to be 
suspended until it has a chance to call the STEPMOM procedure on 
the primary process. 

INT .RECEIVE [0:11] := ["$RECEIVE", 8 * [" "]], 
RFNUM, 

global 
variables. 

CALL OPEN ( RECEIVE, RFNUM, 1, 1 ); 
IF < THEN CALL ABEND; 

Next, the startup message (such as the command interpreter param 
message) is read: 

CALL READUPDATE ( RFNUM, BUF, COUNT ); 
IF <> THEN CALL ABEND; 
CALL AWAITIO ( RFNUM,, COUNTREAD ); 
IF <> THEN CALL ABEND; 

The call to READUPDATE causes the sender of the startup message 
to be suspended until the message is replied to. At this point, 
a check should be made to determine if the message is a valid 
startup message (if the first word of the message= -1). 

B. DETERMINE IF PRIMARY OR BACKUP: A recommended way to 
designate whether a nonnamed process is a primary or its backup, 
is to have the primary process send a nonstandard startup 
message to the backup after the backup's creation. Then, if 
the new process reads a standard startup message, it knows that 
it is the primary; otherwise, it knows that it is the backup. 
A recommended form for a nonstandard startup message is: 

<startup-message> [O] = -1 
<startup-message> [l] = -2 

The first word of the startup is the same as the command 
interpreter's startup message (this allows the program logic for 
checking for a valid startup message to be the same for both the 
primary and the backup). The designation of primary or backup is 
made by checking word[l] of the startup message: 

IF BUF [l] <> -2 THEN ! i'm the primary 
BEGIN 

A startup message from the command interpreter contains the 
"default volume/subvolume" names starting in word [l]. 
Therefore, word [l].<0:7> = "$" for a standard command 
interpreter startup message. 

'1' 82357 AOO 3/85 12-21 



FAULT-TOLERANT PROGRAMS 
Process Startup for Nonnamed Process Pairs 

C. REPLY TO STARTUP MESSAGE: The primary process must reply to 
the startup message by a call to the REPLY procedure: 

CALL REPLY; 

permits the command interpreter to continue executing. 

D. SEND NONSTANDARD STARTUP MESSAGE TO BACKUP: A nonstandard 
startup message is sent to the backup following the backup's 
creation. The nonstandard startup message provides the 
primary or secondary designation for the process pair: 

IF BACKUPAPID THEN ! it was created. 
BEGIN 

! open a file to the backup process. 
CALL OPEN ( BACKUPAPID, FNUM ); 
IF<> THEN ••• ! couldn't open backup. Bad news. 

! build nonstandard startup message. 
BUF [ 0 ] : = -1 ; 
BUF [ 1 ] : = - 2 ; 

! send the startup message. 
CALL WRITE ( FNUM, BUF, 4 ); 
IF<> THEN .•• ! couldn't write to backup. Bad news. 

The primary process is suspended at this point until 
the backup process replies to the startup message. 

! close the file to the backup process 
CALL CLOSE ( FNUM ); 

BACKUPAUP := l; 

! open files for backup process. 
CALL CHECKOPEN(FNAMEl,FNUMl,FLAGSl,SYNCADEPTHl,,,ERROR); 
IF<> THEN ..• ! error. 

E. MONITOR THE PRIMARY: This is the action taken by the process 
if it is the backup. First, MOM is called to get the process ID 
of the primary process. Second, STEPMOM is called for the 
primary process (this is necessary so that the backup process 
will receive the checkpoint messages sent when the primary calls 
CHECKPOINT). Next, REPLY is called to reply to the startup 
message (this allows the primary to resume execution and make its 
first call to CHECKPOINT). Then, MONITORCPUS is called for the 
primary's processor module (this is done so that the primary's 
processor module will continue to be monitored if and when the 
backup takes over). The actual monitoring of the primary is 
accomplished by calling the CHECKMONITOR procedure: 

12-22 Af' 82357 AOO 3/85 



FAULT-TOLERANT PROGRAMS 
File Open 

CALL MOM ( BACKUPAPID ); 
CALL STEPMOM ( BACKUPAPID ); 
IF < THEN CALL ABEND; 
CALL REPLY; 

! save the primary's CPU number. 
BACKUPACPU := BACKUPAPID [3].<0:7>; 

! monitor the primary CPU. 
CALL MONITORCPUS ( %100000 '>>' BACKUPACPU ); 
CALL CHECKMONITOR; 
CALL ABEND; 

The backup process only returns from the call to CHECKMONITOR 
if the primary has not checkpointed its data stack. The 
primary checkpoints its stack for the first time at the end 
of creation of the backup process. 

FILE OPEN 

Files are opened in a primary process by calls to the OPEN 
procedure. 

For disc files, when automatic path error recovery is desired, 
the number of write operations whose outcome the system is to 
remember is specified in the <sync-depth> parameter to OPEN. 

Files are opened for a backup process by its primary process 
through calls to the CHECKOPEN procedure. 

The use of CHECKOPEN permits both members of a process pair to 
have a file open, while retaining the ability to exclude other 
processes from accessing a file. For disc files open in this 
manner, a record or file lock by the primary is also an 
equivalent lock by the backup. 

Note that the same parameter values that are passed to OPEN are 
also passed to CHECKOPEN; both files must be open with the same 
<filenum>, <flags> value, and <sync-depth> value: for example, 
in the primary process: 

LITERAL FLAGSl = ••• , 
SYNCADEPTHl = •.• : 

INT .FNAMEl [0:11], 
FNUMl, 
ERROR; 

! open the file for the primary. 
CALL OPEN ( FNAMEl, FNUMl, FLAGSl, SYNCADEPTHl ); 

~ 82357 AOO 3/85 12-23 



FAULT-TOLERANT PROGRAMS 
Checkpointing 

IF<> THEN ••• ! error occurred . . 
! open the file for the backup. 

CALL CHECKOPEN (FNAMEl, FNUMl, FLAGSl, SYNCADEPTHl,,, ERROR); 
IF<> THEN ••. ! error occurred. 

CHECKPOINTING 

Checkpoints are used to preserve transaction data and to identify 
a restart point in the event of a failure. For each checkpoint 
in a primary process, there is a corresponding restart point in 
its backup process, as shown in Figure 12-3. 

PRIMARY PROCESS BACKUP PROCESS 

_.. _.. 
I I 

(1) (Checkpoint) (1) (Restart Point) 

I I 
x WRITEREAD Terminal x WRITEFIEAD Terminal 

I I 
(2) (Checkpoint) (2) (Restart Point) 

I I 
x READ Disc x READ Disc 

I I 
(3) (Checkpoint) (3) (Restart Point) 

I I 
x WRITE Disc x WRITE Disc 

I I 
x WRITE Terminal x WRITE Terminal 
I I 

....-- ...,._ 
85004-072 

,__, ___ . ___________________ _ 
Figure 12-3. Checkpoints and Restart Points 

Enough checkpoints must be provided, and each must contain enough 
information, so that in the event of a failure in the primary 
process, the backup process can take over the process pair's 
duties while maintaining the integrity of any data involved in 
the current transaction. 

The amount of checkpointing that you must provide depends on the 
degree of recoverability you must have. As an extreme example, a 

12·-24 ~ 82357 AOO 3/85 



FAULT-TOLERANT PROGRAMS 
Checkpointing 

primary process could, after execution of each program statement, 
send its entire data area and its current program counter 
setting. A program of this type would be recoverable after each 
statement. Because of the amount of system resources needed, 
this type of checkpointing would be extremely time consuming and 
inefficient. 

Processes typically checkpoint only elements that have changed 
since the last call to CHECKPOINT was made. This minimizes the 
checkpoint message length and message-handling overhead. 

From a practical standpoint, checkpointing internal calculations 
is not necessary, as they can be performed with virtually no loss 
of system throughput. Checkpointing is necessary only when data 
is being transferred between the internal program environment and 
a file. For example, the primary process may checkpoint the data 
just read from a terminal so that if a failure occurs, the 
terminal operator will not have to reenter the data. 

Guidelines for Checkpointing 

As a general rule, a call to CHECKPOINT should immediately 
precede: 

• Any write to a file (including a WRITEREAD to a terminal) 

• A call to CONTROL or SETMODE for a file 

To provide a greater degree of recoverability, a call to 
CHECKPOINT may immediately follow: 

• A read from a terminal 

x READ a record 
I 
x update it in memory 
I 

(c) CHECKPOINT(stackbase,buffer,count,,fnum); 
I 
x WRITE a record 

~ 

Af' 82357 AOO 3/85 12-25 



FAULT-TOLERANT PROGRAMS 
Checkpointing 

The call to CHECKPOINT should checkpoint the following: 

• A value or set of values indicating the program state. This 
is usually accomplished by checkpointing the process's data 
stack. 

• If the checkpoint precedes a write to disc file, the file's 
sync block. 

• The file's data buffer. If the data buffer is within the 
memory stack area (actually, from the application-defined 
stack base through the address indicated by the current S 
register setting), the data buffer will be checkpointed when 
the stack is checkpointed. 

Adherence to the above guidelines will assure that an application 
program can recover from disc file operations and, in most cases, 
terminal operations. 

You should strive to keep to a minimum the number of checkpoints 
in a processing loop and the amount of data checkpointed in a 
given call to CHECKPOINT. One approach is to checkpoint only a 
portion of the program state (for example, some data buffers 
and/or the data stack) at one time. You must take care that any 
checkpoint which is also a restart point (includes the data 
stack) yields a valid program state. 

You must also take care when checkpointing a data buffer without 
checkpointing the data stack, that the preceding restart point is 
still valid (does not use the new value of the data buffer). 
Proper checkpointing can be achieved only by careful analysis of 
the operation being performed and of the intended checkpoints and 
their contents. 

Note that I/O to nondisc and nonterminal devices involves very 
application-dependent recovery procedures. For example, a report 
to a line printer may have to be restarted from the last page, or 
a magnetic tape may have to be repositioned. 

Example of Where Checkpoints Should Oc~ur 

The following is an example of a simple transaction cycle to 
update a record. 

The record: 

acctno - I curAbal 

12-26 ~ 82357 AOO 3/85 



FAULT-TOLERANT PROGRAMS 
Checkpointing 

The transaction cycle (without checkpoints): 

I 
x 

I 
x 

I 
x 

I 
x 

I 
x 

I 
x 

I 
x 

.J 

WRITEREAD(terminal,bufl,.); ! returns <acctno> 
! and <amount>. 

POSITION (acctfile, acctno); 

READUPDATE (acctfile,buf2, •• ); 

IF (x := curAbal + amount) > creditAlimit THEN 
abortAtransaction; 

curAbal := x; 

WRITEUPDATE(acctfile, buf2, .. ); 

WRITE (terminal, bufl, •• ); ! result 

The transaction cycle with insufficient checkpoints: 

I 
RESTART POINT ( 1) 

I 
x 
I 

RESTART POINT ( 2) 

I 
x 
I 
x 

I 
x 

I 
x 

I 
x 

I 
x 

.J 

CHECKPOINT(stk); ! idle state checkpoint. 

WRITEREAD(terminal,bufl,.); 

CHECKPOINT(stk,bufl,cnt); 

returns <acctno> 
and <amount>. 
terminal data 
checkpoint. 

POSITION (acctfile, acctno); 

READUPDATE (acctfile, buf2, •• ); 

IF (x := curAbal + amount) > creditAlimit THEN 
abortAtransaction; 

curAbal := x; 

WRITEUPDATE(acctfile, buf2, •• ); 

WRITE (terminal, bufl, •• ); ! result 

In this last example, the first checkpoint identifies the program 
state as being idle (or waiting from input from the terminal). 
The actual checkpoint message consists only of the primary 
process's data stack. 

~ 82357 AOO 3/85 12-27 



FAULT-TOLERANT PROGRAMS 
Checkpointing 

The second checkpoint identifies the program state as "terminal 
entry just read". The checkpoint message consists of two parts: 

1. The primary's data stack 

2. The data read from the terminal 

Here the assumption is that, because the transaction is driven by 
the data read from the terminal, this data is ample for the 
backup to perform the identical operation. This assumption is 
incorrect, however. A problem occurs if a failure occurs just 
following the WRITEUPDATE of the "acctfile". This is illustrated 
in the following transaction: 

WRITEREAD(terminal, bufl, •. ): returns: "acctno" = "12345", 
"amount" = "$10" 

(2) checkpoint "12345, $10" 

POSITION (acctfile, 12345D): 

READ (acctfile,buf2, .. ): 

returns: "acctno" 

12 3 4 5 ____..J ...... __ S_4 8_5_~_ 
IF (x := $485 + $10) > $500 THEN •.. 

cur""bal : = x: 

WRITEUPDATE (acctfile,buf2, .. ): 

s._5_o_o __ ] 

writes: "acctno" "cur""bal" "credit""limit" 

12345 - I $495 r-~~--1 
****** FAILURE HERE ****** 

Backup's restart with latest checkpoint data: "12345, $10" 

POSITION (acctfile, 12345D): 

READ (acctfile,buf2, .. ): 

returns: "acctno" "credit""limit" 

12 34 5 - ~-____.___ 
IF (x := $495 + $10) > $500 THEN ... 

12-28 

S5o_o __ J 

-'1 82357 AOO 3/85 



FAULT-TOLERANT PROGRAMS 
Checkpointing 

Here the test fails because the update to the disc completed 
successfully and the "curAbal" has already been updated. The 
terminal operator is given an indication that "acctno" 12345 has 
attempted to exceed its credit limit; therefore, the purchase is 
refused. However, account 12345's balance reflects that a 
purchase was made. 

The transaction cycle with sufficient checkpointing: 

I 
RESTART POINT ( 1) 

I x 
I 

RESTART POINT ( 2 ) 

I 
x 
I 
x 
I 
x 

I 
x 
I 

RESTART POINT ( 3 ) 

I 
x 
I 
x 

.J 

CHECKPOINT(stk); ! idle state checkpoint 

WRITEREAD(terminal,bufl,.); 

CHECKPOINT(stk,bufl,cnt); 

returns <acctno> 
and <amount>. 
terminal data 
checkpoint. 

POSITION (acctfile, acctno); 

READUPDATE (acctfile, buf2, •. ); 

IF (x := curAbal + amount) > creditAlimit THEN 
abortAtransaction; 

cur""'bal := x: 

CHECKPOINT(stk,buf2,cnt,,acctfile); 
! updated record 
! checkpoint. 

WRITEUPDATE (acctfile, buf2, •• ); 

WRITE (terminal, bufl, •• ); ! result. 

The additional third checkpoint, (3), identifies the program 
state as "preparing to write an updated disc record to the disc". 
The checkpoint consists of three parts: 

1. The primary process's stack 

2. The disc file's sync information 

3. The updated record 

If the primary process fails between checkpoints 1 and 2, the 
backup process reissues the WRITEREAD to the terminal. If the 
primary process fails between checkpoints 2 and 3, the backup 
uses the terminal entry and continues the processing of the 
transaction. If the primary process fails subsequent to 

"1 82357 AOO 3/85 12-29 



FAULT-TOLERANT PROGRAMS 
Checkpointing 

checkpoint 3, the backup uses the latest checkpointing 
information to reexecute the write to disc. 

Note that checkpoint (2) and its associated restart point could 
be omitted. If this were done, a failure between checkpoints (2) 
and (3) would require the operator to reenter the transaction. 

Checkpointing Multiple Disc Updates 

When performing a series of updates to one or more disc files, 
the checkpoint for those updates can be performed at one point in 
the program. The result is less system usage than that required 
for several checkpoints. 

The program should be structured so that the series of writes 
needed to update a file are performed in a group. For each file 
to be checkpointed in this manner, the <sync-depth> parameter 
value of OPEN is specified as the maximum number of calls to 
WRITE for the file that are made between checkpoints for the 
file. Then, when a file is about to be updated by performing 
<sync-depth> writes to the file, the file's sync block and the 
data buffers about to be written to the file are checkpointed. 
In any case, care must be taken to ensure the integrity of any 
data referenced. 

Considerations for Nowait I/O 

When taking over from a failure of the primary, any nowait 
operations initiated, but not completed, by the primary before 
its failure, must be reinitiated by the backup; for example: 

CALL READ ( RFNUM, RBUFFER, COUNT ) ; nowait. 

CALL WRITE ( FNUMl, BUFFER, COUNT ) ; nowait. 

CALL CHECKPOINT STACKBASE ) ; 

FNUM ·-.- -1; 
CALL AWAI TIO ( FNUM, .. ) ; ! wait on any completion. 

If a failure occurs, the backup begins executing following the 
call to CHECKPOINT. However, there will be no outstanding I/O 
operations. 

12-30 Af' 82357 AOO 3/85 



FAULT-TOLERANT PROGRAMS 
System Messages 

A solution might be to checkpoint before the I/O operations are 
initiated. However, in the case of $RECEIVE, because the process 
could need have a read continually outstanding, this may not be 
possible. For $RECEIVE, the read can be reinitiated when the 
backup takes over. 

Action for CHECKPOINT Failure 

If an UNABLE TO COMMUNICATE WITH BACKUP error occurs when 
checkpointing (CHECKPOINT.<0:7> = 1 on return), the primary 
process should stop the backup process. The primary process 
should then create a new backup process when the STOP system 
message (system message -5) is received. If the checkpoint 
failure persists, the failure should be noted accordingly, 
and the primary should stop the creation attempts. (See the 
ANALYZEACHECKPOINTASTATUS example procedure under the heading 
"Takeover by Backup" in this section.) 

NOTE 

A checkpoint failure of this type normally indicates a 
system resource problem caused by application process 
checkpoints that are too large. 

SYSTEM MESSAGES 

The following system messages are related to recovery from 
process and processor module failures. Their formats, in word 
elements, are 

• CPU Down Message. There are two forms of CPU Down message: 

and 

<sysmsg> 
<sysmsg>[l] 

= -2 
= <cpu> 

This form is received if a failure occurs with a 
processor module being monitored. Monitoring for 
specific processor modules is requested by a call to 
the process control MONITORCPUS procedure. 

<sysmsg> 
<sysmsg>[l] FOR 3 
<sysmsg>[4] 

= -2 
= $<process-name> 
= -1 

/1 82357 AOO 3/85 12-31 



FAULT-TOLERANT PROGRAMS 
System Messages 

This form is received by an ancestor process when the 
indicated process name is deleted from the PPD because 
of a processor module failure. This means that the 
named process or process pair no longer exists. 

NOTE 

Following a takeover by a backup process because of a 
processor module failure, the backup process, if it is 
an ancestor process, can expect to receive the second 
form of the CPU Down message. This message is received 
when a descendant process or process pair of the backup 
no longer exists because of the failure. One of these 
messages is received for each descendant process or 
process pair of the backup that disappears because of 
the processor module failure. 

• CPU Up Message 

<sysmsg> 
<sysmsg>[l] 

= -3 
= <cpu> 

This message is received if a reload occurs with a processor 
module being monitored. 

• Process Normal Deletion (STOP) Message 

This message is received if a process deletion is due to a 
call to the process control STOP procedure. 

There are two forms of the STOP message: 

12-32 

<sysmsg> 
<sysmsg>[l] FOR 4 

= -5 
= process ID of deleted process, 

This form is received by a deleted process's creator if 
the deleted process was not named, or by one member of a 
process pair when the other member is deleted. 

<sysmsg> 
<sysmsg>[l] FOR 3 
<sysmsg>[4] 

= -5 
= $<process-name> of deleted process 
= -1 

This form is received by a process pair's ancestor when 
the process name is deleted from the PPD. 1This 
indicates that neither member of the process pair 
exists. 

~ 82357 AOO 3/85 



FAULT-TOLERANT PROGRAMS 
System Messages 

• Process Abnormal Deletion (ABEND) Message 

This message is received if the deletion is due to a call to 
the process control ABEND procedure, or because the deleted 
process encountered a trap condition and was aborted by the 
operating system. 

There are two forms of the ABEND message: 

<sysmsg> 
<sysmsg>[l] FOR 4 

= -6 
= process ID of deleted process 

This form is received by a deleted process's creator if 
the deleted process was not named, or by one member of a 
process pair when the other member is deleted. 

= -6 <sysmsg> 
<sysmsg>[l] FOR 3 
<sysmsg>[4] 

= $<process-name> of deleted process 
= -1 

This form is received by a process pair's ancestor when 
the process name is deleted from the PPD. This indicates 
that neither member of the process pair exists. 

Recommended Action 

The following is the recommended action when the above messages 
are received: 

Message Number Action by Primary 

-2, CPU down: Ignore it. An exception to this is if 
the second form of the CPU down message 
is received~ the "ancestor" process may 
desire to recreate the failed process 
or process pair. 

-3, CPU up: Create the backup, and so on. 

-5, backup stopped: This shouldn't happen, but if it does, 
create the backup. 

-6, backup abended: Create the backup, etc. 

other messages: Take application-dependent action. 

For system messages -5 and -6, the program should assure that the 
primary process does not loop continuously because of continually 
failing backup process. 

.-, 82357 AOO 3/85 12-33 



FAULT-TOLERANT PROGRAMS 
System Messages 

Following a read of a system message, a read on the $RECEIVE file 
should be initiated. 

The following is an example procedure that analyzes system 
messages and takes appropriate action: 

PROC ANALYZEASYSTEMAMESSAGE; 

12-34 

BEGIN 
CASE $ABS 

BEGIN 
RBUF ) OF First word of $RECEIVE buffer 

o. 
1. 

BEGIN ! 2 = CPU down. 
BACKUPAUP := O; 

END; 
BEGIN ! 3 = CPU up. 

STOPACOUNT := O; ! this must be checkpointed. 
CALL CREATEABACKUP ( BACKUPACPU ); 

END; ! 3. 
; ! 4. 
BEGIN ! 5 = backup stopped. 

BACKUPAUP := O; 
STOPACOUNT := STOPACOUNT + l; 
CALL CREATEABACKUP ( BACKUPACPU ); 

END; ! 5. 
BEGIN ! 6 = backup abended. 

BACKUPAUP := O; 
STOPACOUNT := STOPACOUNT + l; 
CALL CREATEABACKUP ( BACKUPACPU ); 

END; ! 6. 
OTHERWISE ! other system message. 

BEGIN 

END; 
END; ! case of system message. 
issue a read to $RECEIVE. 

CALL READ ( RFNUM, RBUF, COUNT ); 
END; ! analyzeAsystemAmessage. 

/1 82357 AOO 3/85 



FAULT-TOLERANT PROGRAMS 
Takeover by Backup 

The STOPACOUNT variable is used to detect repeated backup 
process failures that are not due to processor module 
failures. This variable is cleared when a CPU Up message is 
received. Fault-tolerant programs should include such a 
variable to ensure that the primary process does not loop, 
continually recreating its backup. If STOPACOUNT reaches a 
count of 10, then the problem should be noted (a console 
message should be logged), and no further attempt at creation 
should occur until the problem is corrected. 

TAKEOVER BY BACKUP 

The following is the recommended action by the backup when it 
takes over from the primary. The action taken is dependent on 
the reason for the takeover: 

• If return is from CHECKMONITOR, call ABEND (primary's stack 
has not been checkpointed). 

• If return is from CHECKPOINT, then: 

Reason (CHECKPOINT.<8:15>) 

0, primary stopped 

1, primary abended 

2, primary CPU down 

3, primary called CHECKSWITCH 

Any except 0 

Action 

Call STOP. 

Create backup, open its 
files, etc. 

None (this will be taken care 
of when a subsequent CPU Up 
system message is received). 

None. 

Issue a read on $RECEIVE. 

The example procedure on the next page analyzes the value 
returned from CHECKPOINT and takes appropriate action. 

..., 82357 AOO 3/85 12-35 



FAULT-TOLERANT PROGRAMS 
Takeover by Backup 

PROC ANALYZEACHECKPOINTASTATUS ( STATUS ); 
INT STATUS; ! return value of CHECKPOINT. 

BEGIN 
INT .BACKUPAPID [0:3]; 

IF BACKUPAUP THEN ! analyze it. 
CASE STATUS.<0:7> OF 

BEGIN 
; ! 0 = good checkpoint. 
BEGIN ! 1 = checkpoint failure. 

! find out if backup is still running. 
CALL MOM ( BACKUPAPID ); 
CALL GETCRTPID ( BACKUPAPID [3], BACKUPAPID ); 
IF = THEN ! backup still running. 

BEGIN 
! stop the backup. 
CALL STOP ( BACKUPAPID ); 
BACKUPAUP := O; 

END; 
END; ! 1. 
BEGIN ! 2 = takeover from primary. 

CASE STATUS.<8:15> OF 
BEGIN 

! 0 = primary stopped. 
CALL STOP; 
! 1 = primary abended. 
BEGIN 

BACKUPAUP := O; 
STOPACOUNT := STOPACOUNT + l; 
CALL CREATEABACKUP ( BACKUPACPU ); 

END; 
! 2 = CPU down. 
BACKUP""UP := O; 
! 3 = primary called CHECKSWITCH • . , 

END; ! case of STATUS.<8:15>. 
! issue a read to $RECEIVE. 
CALL READ ( RFNUM, RBUF, COUNT ); 

END; ! 2. 
BEGIN ! 3 = bad parameter to CHECKPOINT 

CALL DEBUG; ! for testing checkpoint code. 
END; ! 3. 

END; ! case of STATUS.<0:7>. 
END; ! ANALYZEACHECKPOINTASTATUS. 

See the ANALYZEASYSTEM""MESSAGE procedure on the previous 
page for an explanation of the STOP""COUNT variable. 

L2-36 -""'1 82357 AOO 3/85 



FAULT-TOLERANT PROGRAMS 
Opening a File During Processing 

OPENING A FILE DURING PROCESSING 

When files are opened after process startup, the possibility 
exists that a failure could occur during the file open. This 
can result in the backup process opening the same file twice. 
The following is a recommended procedure for opening a file 
during processing: 

INT PROC FILEOPEN (FILENAME, FNUM, FLAGS, SYNCDEPTH); 
INT .FILENAME, .FNUM, FLAGS, SYNCDEPTH; 

BEGIN 
INT ERROR := l; 

WHILE ERROR DO 
BEGIN 

CALL OPEN ( FILENAME, FNUM, FLAGS, SYNCDEPTH ); 
IF <> THEN 

BEGIN 
CALL FILEINFO ( FNUM, ERROR ); 
RETURN ERROR; 

END; 

At this point, the file is open in the primary. 

IF ( STATUS := CHECKPOINT (STACKBASE, FNUM, 1) ) THEN 
CALL ANALYZEACHECKPOINTAERROR ( STATUS ); 

CALL FILEINFO ( FNUM, ERROR ); 

If this is executed because of a takeover from the 
primary, file-system error 16 (FILE NUMBER HAS NOT BEEN 
OPENED) is returned from the call to FILEINFO. This 
will result in the "WHILE ERROR" loop being reexecuted. 

END; 

IF BACKUPAUP THEN 
BEGIN ! open the file in the backup. 

CALL CHECKOPEN(FILENAME,FNUM,FLAGS,SYNCDEPTH,,,ERROR); 
IF < THEN 

BEGIN ! backup exists, but could not open the file. 

END; 

CALL CLOSE ( FNUM ); 
RETURN ERROR; 

END; 

RETURN O; ! successful open by primary and backup if it 
! exists. 

END; ! file open. 

~ 82357 AOO 3/85 12-37 



FAULT-TOLERANT PROGRAMS 
Creating a Descendent Process 

CREATING A DESCENDENT PROCESS OR PROCESS PAIR 

As with opening files during processing, the possibility exists 
during creation of a descendant process or process pair that a 
failure can occur. This can result in the backup process 
creating a process already created by the primary. The following 
is a recommended method for descendant process creation: 

CALL CREATEPROCESSNAME ( PNAME ); 

The system generates a unique process name. 

IF ( STATUS := CHECKPOINT(STACKBASE,PNAME,4) ) THEN 
CALL ANALYZEACHECKPOINTASTATUS ( STATUS ); 

CALL NEWPROCESS ( PROGFILE,,, CPU, DESCAPID, ERROR, PNAME ); 
IF ERROR > 1 THEN 

IF ERROR.<0:7> <> 8 ! process name error. 
AND ERROR.<8:15> <> 10 ! can't communicate with sys mon 
THEN BEGIN ! unable to create the process due to 

! resource problem or coding error. 

END; 
ELSE 

The following is necessary only if the backup needs the actual 
<cpu,pin> of the descendant process: 

12-38 

BEGIN ! duplicate name error, caused by takeover by 
! backup. 

PPDENTRY ':=' PNAME FOR 3; 
CALL LOOKUPPROCESSNAME (PPDENTRY) 
IF< THEN ... ! process no longer exists. 

! save descendant's process ID. 
DESCAPID ':=' PNAME FOR 4; 

! determine actual <cpu,pin> of descendant. 
IF PPDENTRY[3].<0:7> <>CPU THEN 

IF PPDENTRY[4].<0:7> =CPU AND PPDENTRY[4] <> 0 THEN 
DESCAPID[3] := PPDENTRY[4] 

ELSE ••• ! the process no longer exists in the CPU. 
END; 

~ 82357 AOO 3/85 



ADVANCED CHECKPOINTING 

FAULT-TOLERANT PROGRAMS 
Advanced Checkpointing 

The following information is intended for application programmers 
who do not wish to use the checkpointing facility, but prefer 
instead to write their own checkpointing routines. 

Backup Open 

"Backup open" is a form of file open that permits a file to be 
open concurrently by both the primary and backup of a process 
pair regardless of the exclusion mode set by the primary process 
(except that access and exclusion modes must be the same for both 
the primary and the backup process, and file security is still 
enforced). This is accomplished by passing two parameters to 
OPEN: the process ID of the primary process which already has the 
file open, and the file number that was returned to the primary 
when it opened the file. After this form of OPEN, the primary 
and backup share access to the file such that in the case of disc 
files, when one process locks the file, the file becomes locked 
on behalf of both. (See Figure 12-4.) 

PRIMARY PROCESS 

CALL OPEN (FNAME,PRl"FNUM) 
• 
• 

CREATE"BACKUP 
• 
• 
• 

BACKUP PROCESS 

CALL MOM (PRl"PID) 
• 

SEND"MSG (FNAME,PRl"FNUM)-.. READ"MSG (FNAME,PRl"FNUM) 
• 
• 
• 
• 
• 
• 
• 

• 
• 

CALL OPEN (FNAME,BACK"FNUM, .. , 
• PRl"FNUM,PRl"PID) 

• 
• 

NOTE: CREATE"BACKUP is a dummy function to simulate creation of a backup proc
ess by the primary process. MOM is a process control procedure that returns 
the <process-ID> of a process's creator. SEND"MSG and READ"MSG are 
dummy functions to simulate sending and receiving interprocess messages. 

85004-073 

Figure 12-4. Backup Open by Backup Process 

~ 82357 AOO 3/85 12-39 



FAULT-TOLERANT PROGRAMS 
Advanced Checkpointing 

File Synchronization Information 

File synchronization (sync) information is used by the system to 
determine if an operation by a backup process after a failure of 
its primary process is a new operation or a retry of an operation 
just performed by the primary. 

The use of the sync information is accomplished in three parts: 

1. Sync Depth 

The number of nonretryable operations that the file system is 
to "remember" is specified in the <sync-depth> parameter to 
the OPEN procedure. This normally is the number of write 
operations that a primary process performs to a file between 
checkpoint messages to its backup. 

The following is an example of opening a file and specifying 
a <sync-depth> of one: 

CALL OPEN (filename, filenum, ,l); 

If opened by the backup process of a process pair, the 
primary file number and process ID must also be specified. 

2. GETSYNCINFO Procedure 

When a primary application process is about to update a file 
by performing "sync depth" writes to the file, it first calls 
the GETSYNCINFO procedure, which returns "sync information" 
for the file. This information (which, incidentally, is 
never explicitly referenced by the application process) is 
then passed, along with the data to be written, in a 
checkpoint message to the backup application process. The 
primary process then performs the write operations, and upon 
completion informs its backup. 

3. SETSYNCINFO Procedure 

If the primary application process fails, the backup process 
is notified by the operating system. Before atte~mpting error 
recovery, the backup calls SETSYNCINFO with the sync 
information received in the latest checkpoint message. This 
synchronizes the retry operations that the backup is about to 
perform with any writes that the primary was able to complete 
before it failed. The backup then retries each write in the 
series (in the same order as the primary). If any operation 
is completed successfully by the primary, it is not performed 
by the file system; instead, just the completion status is 
returned to the backup process. 

12-40 ~ 82357 AOO 3/85 



FAULT-TOLERANT PROGRAMS 
Advanced Checkpointing 

For example, in the following sequence of file-system operations, 
a call to GETSYNCINFO precedes the file operations, and a call to 
SETSYNCINFO precedes the restart point: 

TAKEOVER 
BY BACKUP 

x SETSYNCINFO (fl, sync); x 

L I 
(c) 

RESTART POINT ~1 

x 
I x 
I 

*** FAILURE OF 
I 

(c) 

GETSYNCINFO(fl,sync); 

checkpoint sync block, 
position, and data. 

POSITION(fl,-lD); ! position 
! to eof. 

WRITE(fl,flAbuffer,count); 

PRIMARY *** 
completion checkpoint 

In this case, the write by the primary completed successfully, 
and the write by the backup when it takes over is ignored. The 
backup receives the completion status that the primary received 
prior to the primary's failure. 

Another procedure, RESETSYNC, is provided for cases where, after 
a failure, the backup process wishes to execute its error 
recovery by performing different operations than those of the 
primary, or where the backup process does not have a current 
sync block and the operations performed by the primary are not 
known. In either case, it is undesirable to have the file system 
mistakenly relate an operation performed by the backup to a 
different operation which was performed by the primary. By 
calling RESETSYNC after taking over for the failed primary 
process, the backup process ensures that this does not occur. 

A call to RESETSYNC causes a RESETSYNC system message (system 
message -34) to be sent to the paired-access process file 
referenced in the call, indicating that the sync ID for that file 
has been reset to O. Upon receipt of this message (receipt of 
RESETSYNC messages must be enabled by setting OPEN <flags>.<l> = 
1 when opening the file), a server process using the sync ID 
mechanism should clear its local copy of the sync ID value. 

Advanced Usage of Checkpointing With TMF 

Analysts and system programmers who wish to obtain further 
information on the use of TMF in conjunction with checkpointing, 
refer to the Tandem Journal, Volume 1, Number 1, Fall 1983. 

~ 82357 AOO 3/85 12-41 





SECTION 13 

TRAPS AND TRAP HANDLING 

During program execution, all error and exception conditions not 
related to input or output are handled by the trap mechanism. 
Conditions that are trapped typically are caused by coding errors 
in an application program or by a shortage of resources. For 
example, errors such as "arithmetic overflow" might be traceable 
back to user code, whereas an error such as "no memory available" 
might originate from the memory manager. 

The default trap handler is DEBUG (or INSPECT, if specified for 
the process). In other words, if you do nothing, all traps 
result in control being passed to either DEBUG or INSPECT. 
(If INSPECT is specified for the process but is not available, 
DEBUG is used.) 

If you choose to handle your own traps, the system procedure 
ARMTRAP is provided so you can specify the procedure that will 
handle the trap. When a trap occurs, control will be passed to 
your trap handler rather than to DEBUG or INSPECT. Your trap 
handler is notified of the particular trap condition. ARMTRAP 
is described in the System Procedure Calls Reference Manual. 

The following pages describe the various trap conditions and 
include an example of how to write your own trap handler. 

TRAP CONDITIONS 

Certain critical error conditions occurring during process 
execution prevent the normal execution of a process. These 
errors, which are for the most part unrecoverable, cause traps 
to operating system trap handlers. The conditions are: 

"1' 82357 AOO 3/85 13-1 



TRAPS AND TRAP HANDLING 
Trap Conditions 

Trap no. 

0 
1 
2 
3 
4 

11 (%13) 
12 (%14) 
13 (%15) 

Description 

Illegal address reference 
Instruction failure 
Arithmetic overflow 
Stack overflow 
Process loop-timer timeout 
Memory manager read error 
No memory available 
Uncorrectable memory error 

• Illegal Address Reference--An address was specified that was 
not within either the virtual code area or the virtual data 
area allocated to the process. Virtual code area allocation 
is determined by the size of the program's code area. By 
default, virtual data area allocation is determined by the TAL 
compiler to be equal to the number of memory pages needed for 
the program's global storage plus one memory page for the 
program's data stack. The size of the virtual data area can 
be increased with the ?DATAPAGES command of the TAL compiler, 
the MEM parameter of the command interpreter RUN command, or 
the <memory pages> parameter of the NEWPROCESS procedure. 

• Instruction Failure--An attempt was made to execute a code 
word that is not an instruction: an attempt was made by a 
nonprivileged process to execute a privileged instruction: 
or an illegal extended address reference was made. 

• Arithmetic Overflow--The environment register overflow bit, 
ENV.<10>, is a 1 and the environment register traps enabled 
bit, ENV.<8>, is a 1. The overflow bit is set to 1 by the 
hardware if the result of a signed arithmetic operation could 
not be represented with the number of bits available for the 
particular data type. Arithmetic overflow also occurs if a 
divide with a divisor of zero is attempted. Note that the 
overflow bit in the ENV register is not automatically cleared. 
If the application process is to recover from the overflow 
condition, it must specifically clear the ENV register 
overflow bit (otherwise, another overflow trap will occur). 

The traps enabled bit of the ENV register is set to 1, by 
default, when a new process is created. A process can ignore 
a trap condition upon detection. See the example trap handler 
procedure. 

• Stack Overf low--An attempt was made to execute a procedure 
or subprocedure whose (sub)local data area extends into the 
upper 32K of the data area. When calling an operating system 
procedure, stack overflow also occurs if there is not enough 
remaining virtual data space for the procedure to execute (the 
procedure does not execute). The amount of virtual data space 
available is the lesser of 'G'[32767] and the upper bound of 

13-2 "1 82357 AOO 3/85 



TRAPS AND TRAP HANDLING 
Trap Conditions 

the process's virtual data area (the number of data pages 
specified when the process was created or run). Operating 
system procedures require approximately 350 words of user data 
stack space to execute. 

• Process Loop-Timer Timeout--This occurs only if the process 
has enabled process loop timing by making a call to the 
SETLOOPTIMER process control procedure. This trap indicates 
that the new time limit specified in the latest call to 
SETLOOPTIMER has expired. 

• Memory Manager Disc Read Error--This error indicates that a 
hard (unrecoverable) read error occurred while attempting to 
bring a page in from virtual memory. 

• No Memory Available--This indicates that a page fault 
occurred, but no physical memory page is available for 
overlay. 

• Uncorrectable Memory Error--This error indicates that an 
uncorrectable memory error was detected. 

• If a trap has occurred and another trap occurs before the 
process can rearm its private trap handler with a call to 
ARMTRAP, the process is deleted and the creator of the process 
receives a process ABEND message. 

• If a process uses the default trap handler DEBUG (or INSPECT), 
only the first trap will go to the trap handler. If the 
RESUME command is specified in DEBUG (or INSPECT) and a second 
trap occurs, the process is deleted and the creator of the 
process receives a process ABEND message. 

Traps While Executing System Code 

If a trap occurs while a process is executing in system code, the 
trap is deferred until the system procedure exits the system code 
and returns to the user environment. When control is passed to 
the trap handler, the location of the trap passed to the trap 
handler is the location of the call to the system procedure and 
the S register at the trap is -1 to signify that a deferred trap 
occurred while in system code. It is unlikely that a process can 
resume execution following a trap in system code because the 
correct S value is lost. 

One exception is the process-loop-timer trap. If a process loop 
timer times out and causes a trap while in system code, the trap 
is deferred until the process returns to the user environment, 
but the value of S at this trap is not -1; in this case it is the 

"1 82357 AOO 3/85 13-3 



TRAPS AND TRAP HANDLING 
Default Trap Handler 

correct S value, which allows the process to easily resume 
execution following a loop-timer timeout. 

DEFAULT TRAP HANDLER 

If no trap handler is specified (ARMTRAP is not called), then 
DEBUG or INSPECT will be the default trap handler. 

USER-DEFINED TRAP HANDLER 

The ARMTRAP procedure is used to specify an entry point into the 
application program where execution is to begin if a trap occurs. 
The syntax for the ARMTRAP procedure and considerations for its 
use are presented in the System Procedure Calls Reference Manual .• 

13-4 ~ 82357 AOO 3/85 



EXAMPLE 

TRAPS AND TRAP HANDLING 
Trap Handler Example 

The following is an example of an application procedure that 
displays the current value of the P register when an arithmetic 
overflow trap occurs. Following an arithmetic overflow trap, the 
trap mechanism is rearmed, and the application process continues 
processing. If any other trap occurs, the procedure calls the 
DEBUG procedure. 

The example trap handler procedure is: 

PROC OVERFLOWTRAP; 
BEGIN 

RO-R7 saved here. 
buffer for terminal I/O. 

INT REGS = 'L'+l, 
WBUF = 'L'+9, 
PREG = 'L'-2, 
EREG = 'L'-1 
TRAPNUM = 'L'-4; 
SPACEID = 'L'-5; 

P register at time of trap. 
ENV register at time of trap. 
trap number. 

DEFINE OVERFLOW = <10>#; 
STRING SBUF = WBUF; 
LITERAL LOCALS = 15; 

spaceid of trap location. 
overflow bit in ENV register. 
string overlay for I/O buffer 
# of words of local storage. 

! arm the trap. 
CALL ARMTRAP( @TRAP, $LMIN ( LASTADDR, %77777 ) - 500 ); 
RETURN; 

enter here on a trap, 
save RO-R7 and allocate local storage. 

TRAP: 
CODE ( PUSH %777; ADDS LOCALS ); 

! call DEBUG if the trap is not an overflow condition. 

IF TRAPNUM <> 2 THEN CALL DEBUG; 

! format and print the message on the home terminal. 

SBUF ':=' "ARITHMETIC OVERFLOW AT%"; 
CALL NUMOUT( SBUF[24], PREG, 8, 6 ); 
CALL WRITE( HOMEATERM, WBUF, 30 ); 
IF <> THEN ..• 

the overflow bit must be cleared before the old values 
of the registers are restored. 

EREG.OVERFLOW := O; ! clear overflow. 
CALL ARMTRAP ( 0, $LMIN ( LASTADDR, %77777 ) -500 ); 

END; 

"1 82357 AOO 3/85 13-5 



TRAPS AND TRAP HANDLING 
Trap Handler Example 

At the beginning of the program, the procedure is called: 

CALL OVERFLOWTRAP; 

From this point on, any arithmetic overflows are logged on the 
home terminal. For example, the following statement would cause 
the trap handler to be entered: 

I := I/J; 

if the current value of J were zero. 

13-6 Af' 82357 AOO 3/85 



SECTION 14 

USING EXTENDED MEMORY SEGMENTS 

The extended addressing and memory management capabilities of 
the Tandem system are accessible through the GUARDIAN operating 
system procedures discussed in this section. These procedures 
allow a process to allocate, use, and deallocate extended data 
segments and to define and use memory pools in either the data 
stack or in extended data segments. 

The procedures for using extended data segments are as follows: 

ALLOCATESEGMENT allocates an extended data segment for use by 
the calling process. 

DEALLOCATESEGMENT deallocates an extended data segment. 

USESEGMENT selects a particular extended data segment for 
use. 

DEFINEPOOL designates a portion of a user's stack or an 
extended data segment for use as a pool. 

GETPOOL obtains a block of memory from a pool. 

PUTPOOL returns a block of memory to a pool. 

These procedures cannot be used on the Tandem Nonstop l+ system. 

These procedures are described in detail in the System Procedure 
Calls Reference Manual. 

~ 82357 AOO 3/85 14-1 



USING EXTENDED MEMORY SEGMENTS 
Extended Memory 

EXTENDED MEMORY 

The space normally available to a process for data is the 
process's user data, or stack, segment. The GUARDIAN operating 
system automatically allocates this segment at the time the 
process is created. It consists of up to 64K (65,536) words, or 
128K bytes, of memory and can be accessed using either 16-bit 
addresses or 32-bit extended addresses. 

To obtain larger areas of memory for data, a process can use a 
set of GUARDIAN procedures to explicitly allocate, use, and 
deallocate memory in the form of extended data segments. These 
segments can be as large as 128 megabytes (134,217,728 bytes). 
Extended data segments are discussed more fully in the System 
Description Manual. 

To request allocation of an extended data segment, a process 
calls the ALLOCATESEGMENT procedure. Once the segment has 
been allocated successfully, it must be put in use by a call 
to the USESEGMENT procedure before it can be accessed. When 
the segment is no longer needed, it can be freed by calling the 
DEALLOCATESEGMENT procedure. 

Extended data segments are accessed by means of 32-bit extended 
addresses (extended pointers), as described in the Transaction 
~plication Language (TAL) Reference Ma~ual. Extended data 
segments may also be used in COBOL or BASIC, which invoke the 
GUARDIAN procedures and access the extended memory automatically: 
ref er to the COBOL Programming Manual or the Tandem EXTENDED 
BASIC Reference Manual when using extended memory in these 
languages. 

A user process can have several extended data segments, each 
referred to by a different segment ID number supplied by the 
process when it requests allocation of the segment. However, 
a process can have only one extended data segment in use at a 
time. 

Processes in the same CPU may share extended data segments. 
An extended data segment is first allocated by one process by 
calling ALLOCATESEGMENT without the <pin> parameter. Subsequent 
calls to ALLOCATESEGMENT by other processes should specify both 
the <pin> of the process that owns the segment and the same 
<segment-id> for the segment. The sharing process must have 
access rights as described with the ALLOCATESEGMENT procedure 
syntax in the System Procedure Calls Reference Manua~. 
Once a segment is shared by two or more processes, the segment 
will not be deallocated until all owning processes have 
deallocated the segment or stopped. 

14-2 "1' 82357 AOO 3/85 



DYNAMIC MEMORY ALLOCATION 

USING EXTENDED MEMORY SEGMENTS 
Dynamic Memory Allocation 

Three GUARDIAN procedures, DEFINEPOOL, GETPOOL, and PUTPOOL, 
support the creation of memory pools and dynamic allocation of 
variable-sized blocks from the pool. The calling program 
provides the memory area to be used as the pool and then calls 
the DEFINEPOOL procedure to initialize a 19-word array, called 
the pool header, which is used to manage the pool. The pool and 
the pool header can reside in the user data stack or in extended 
memory. The pool routines accept and return extended addresses 
that apply to both the stack and extended memory. 

Once the pool is defined, the process can reserve blocks of 
various sizes from the pool by calling the GETPOOL procedure and 
release blocks by calling the PUTPOOL procedure. The program 
must release one entire block using PUTPOOL; it may not return 
part of a block or multiple blocks in one PUTPOOL call. 

If the process uses anything other than the currently reserved 
blocks of the pool, the pool structure will be corrupted and 
unpredictable results will occur. If multiple pools are defined, 
reserved blocks must be returned to the right pool. For 
debugging purposes, a special call to GETPOOL is provided that 
checks for pool consistency. 

Pool Management Methods 

The following information is supplied for use in evaluating the 
appropriateness of using GUARDIAN'S pool routines in user 
application programs and to determine the proper size of a pool. 
Application programs should not depend on the pool data 
structures since they are subject to change, but should use only 
the three pool procedural interfaces described above. 

These procedures are described in detail in the System Procedure 
Calls Reference Manual. 

The requested block size is rounded up to a multiple of 4 bytes 
and to a minimum of 28 bytes. This reduces pool fragmentation, 
but wastes memory space when the program is allocating small 
blocks. 

Two extra words are allocated for tags at the beginning and end 
of each block; thus, the minimum pool block size is 32 bytes. 
These tags serve three purposes: (1) they contain the size of 
each block so that the program need not specify the length of the 
block when releasing it, (2) they serve as a check that the 
program has not erroneously used more memory than the block 

"' 82357 AOO 3/85 14-3 



USING EXTENDED MEMORY SEGMENTS 
Dynamic Memory Allocation 

contains, and (3) they provide for very efficient coalescing of 
adjacent free blocks. 

In GETPOOL, the free block list is searched for the first block 
sufficiently large to satisfy the request. If the free block is 
at least 32 bytes longer than the required size, it is split into 
a reserved block and a new free block. Otherwise, the entire 
free block is reserved for the request. 

In summary, the pool space overhead on each block can be 
substantial if very small blocks are being allocated. An exact 
formula is: 

BYTESAALLOCATED := ( $MAX ( REQUEST + 7, 32 ) I 4) * 4 

where REQUEST is the original request size in bytes. 

Although they can also be used to manage the allocation of a 
collection of equal-size blocks, these procedures are not 
recommended for that purpose because they will consume more CPU 
time and pool memory than routines designed for that specific 
task. 

14-4 ""f' 82357 AOO 3/85 



SECTION 15 

ADVANCED USES OF MEMORY 

This section describes memory management techniques that can 
affect the efficiency of a process. Incorrect use of these 
techniques could result in degradation of system performance. 

RESERVED LINK CONTROL BLOCKS 

A link control block (LCB) is a system resource that is used when 
a message is sent from one process to another (figure 15-1). 
An LCB contains control information about the message. Before a 
message transfer can take place, an LCB must be secured on the 
sender's side (a send LCB) and another LCB (a receive LCB) must 
be secured on the receiver's side. This means that a pair of 
LCBs is required for each message transfer that is in progress at 
any given moment. Additionally, a call to most file-system and 
process control procedures results in a message being transferred 
between the calling application process and a system process. 

The reserved LCBs feature is used so that an application process 
will not be suspended while waiting for an LCB to be allocated. 

The application process can reserve LCBs by calling the 
RESERVELCBS procedure. This requires specifying the number 
of LCBs to be reserved for receiving messages (receive LCBs) 
and the number to be reserved for sending messages (send LCBs): 

-''f 82357 AOO 3/85 15-1 



ADVANCED USES OF MEMORY 
Reserved Link Control Blocks 

• Receive LCBs 

On the receiving side of a message transfer, one receive LCB 
is used for each incoming message that is queued on an 
application process's $RECEIVE filee When the $RECEIVE file 
is opened with a nonzero receive depth, an LCB is also 
required for each message that the application process has 
read using READUPDATE but has not replied to. 

The receiving application process can guarantee that it will 
never miss any messages by reserving one LCB for each possible 
incoming message that can be queuede 

• Send LCBs 

On the sending side of a message transfer, one send LCB is 
used for each outgoing message. If no send LCB is available 
or no receive LCB is available when a process wishes to send a 
message, the process will be suspended until LCBs become 
available or a timeout occurs. If a timeout occurs, then 
file-system error 30 is returned, and an operator message 
is logged on the console. 

The sending application process can guarantee that it will 
never be suspended for a send LCB allocation by reserving one 
send LCB for each outgoing message that can be outstanding at 
any given moment. One message is outstanding for each 
outstanding nowait I/O operation, plus one message can be 
outstanding for a wait I/O operation or call to a process 
control procedure. 

Sender Receiver 

(P1) -----------Message----------~ (P2) 

P =Process 

85004-074 

~---------------------------~--~~---~----------------~-------------·~ 

Figure 15-1. Link Control Blocks 

15- 2 -'1 8 2 3 5 7 AO 0 3 I 8 5 



SECTION 16 

MISCELLANEOUS UTILITY PROCEDURES 

The procedures included in this section fall into categories not 
clearly defined in other sections of this manual. Procedures 
are grouped together here in terms of time, string and number 
manipulation, and other utility procedures. 

PROCEDURES OVERVIEW 

The following utility procedures relate to time and the system 
clock: 

JULIANTIMESTAMP returns a four-word, GMT, Julian-date based 
timestamp. 

COMPUTETIMESTAMP converts a Gregorian date and time of day into 
a 64-bit timestamp. 

INTERPRETTIMESTAMP converts a 64-bit Julian timestamp into a 
Gregorian date and time of day, and into a 
Julian day number. 

CONVERTTIMESTAMP converts a Greenwich mean time (GMT) to or from 
a local timestamp within any accessible node 
(at GUARDIAN level BOO or greater) in the 
network. 

COMPUTEJULIANDAYNO converts a Gregorian calendar date to a 
Julian day number. 

INTERPRETJULIANDAYNO converts a Julian day number to the 
Gregorian calendar year, month, and day. 

Ajl 82357 AOO 3/85 16-1 



UTILITY PROCEDURES 
Procedures Overview 

SETSYSTEMCLOCK allows you to change the system clock time if 
you are the super ID (255.*). 

'I'IME 

CONTI ME 

'I'IMESTAMP 

provides the current date and time in integer formD 

takes 48 bits of a timestamp and provides a date and 
time in integer form. 

provides the current value of the processor clock 
where this application is running. 

In addition, procedures are provided for the timing of processes. 
They are described under "Process Timing" in Section 3. 

The following utility procedures pertain to string and number 
manipulation: 

SHIFTSTRING upshifts or downshifts alphabetic characters in a 
string. 

FIXSTRING edits a string of characters based on information 
supplied in an editing template. 

NUMIN converts the ASCII representation of a number into 
its internal machine (binary) equivalent. 

NUMOUT converts the internal machine representation of a 
number to its ASCII equivalent. 

HEAPSORT sorts an array of equal-sized elements in place. 

The following utility procedures are also available: 

INITIALIZER reads the startup message and, optionally, the 
assign and param messages to prepare global tables 
and initialize file control blocks (FCBs). 

LASTADDR provides the global ('G'[O] relative) address of 
the last word in the caller's data area. 

TOSVERSION provides the identifying letter and number 
indicating which GUARDIAN operating system version 
is running in this systeme 

REMOTETOSVERSION supplies the identifying letter and number 
indicating which GUARDIAN operating system 
version is running in a particular system of 
the network. 

16-2 ~ 82357 AOO 3/85 



UTILITY PROCEDURES 
Time Procedures 

SYSTEMENTRYPOINTLABEL returns either the procedure label of the 
named entry point, or zero if the entry 
point is not found. 

The syntax and considerations for using these procedures are 
presented in the System Procedure Calls Reference Manual. 

PROCEDURES RELATED TO TIME 

It is extremely important to coordinate the activities of the 
various processors in a system based on time. Originally, 
this coordination was achieved by advancing the time of other 
processor clocks to match that of the fastest clock in the 
system. As a result, system time typically ran faster than 
wall-clock time by a few seconds each day. Accumulated gains 
in time accrued under this method were then discarded by the 
operator (using the SETTIME procedure) at convenient junctures 
such as cold loads, weekend time resets, and so on. 

The need for exact system time clocks increased with network 
usage and the opportunities to reset all system clocks 
diminished. It was not always acceptable to run all clocks at 
the speed of the fastest processor clock in the system, nor was 
it acceptable to have the system clock move backwards. 

The time procedures provide four-word, microsecond-resolution 
timestamps, Julian date based timestamps; CPU clock-rate 
averaging; clock-rate adjustment; automatic daylight savings 
time adjustments; Julian date conversion routines; and a 
callable procedure to set the system clock programmatically. 
These procedures affect: 

• how clocks are set 
• how clocks are synchronized 
• how the user obtains and interprets timestamps 
• how processes can obtain clock adjustment information. 

Clock Setting 

Originally, the GUARDIAN command interpreter command SETTIME was 
the only tool available to the system operator (group ID = 255) 
to correct system clocks. The SETTIME command still exists. 

A callable procedure, SETSYSTEMCLOCK, now allows any system 
operator or super ID to set the system clock. 

/1 82357 AOO 3/85 16-3 



UTILITY PROCEDURES 
Time Procedures 

Clock Averaging 

Clocks in a given system are now averaged instead of synchronized 
with the fastest clock in the system. This scheme greatly 
diminishes the cumulative effects of keeping up with the fastest 
clock. Small adjustments to system clock time are performed by 
software clock rate adjustment. 

Terms ---

Greenwich mean 
time (GMT) 

Local standard 
time (LST) 

Local civil 
time (LCT) 

Daylight savings 
time (DST) 

Julian day 
number (JDN) 

Gregorian 
calendar 

16-4 

Popular basis for calculating time throughout 
the world. Based on mean solar time for the 
meridian at Greenwich, England. Also known as 
Coordinated Universal Time. 

Does not include daylight savings time. 

Includes daylight savings time. 

Extends the amount of daylight by changing 
local civil time. In the United States, DST 
advances all clocks one hour at 02:00 hours LST 
on the last Sunday in April and reverts to 
standard time at 02:00 hours LST on the last 
Sunday in October. 

The integral number of days since January 1, 
4713 B.C. 

The common civil calendar. The Gregorian 
calendar was sponsored by Pope Gregory XIII. 
It has been adopted by most countries of the 
world. 

-'1 82357 AOO 3/85 



UTILITY PROCEDURES 
JULIANTIMESTAMP Procedure 

JULIANTIMESTAMP Procedure 

The JULIANTIMESTAMP procedure retµrns a four-word, microsecond 
resolution, GMT, Julian date base~ timestamp. The returned value 
represents the number of microsec~nds since noon of January 1, 
4713 B.C. , 

NOT$ 

The RCLK instruction should not be used in applications 
requiring time of day. All so~tware that performs RCLK 
instructions for the purpose o~ obtaining a timestamp 
should be changed to use the JULIANTIMESTAMP procedure. 
Elapsed-time measurements can still safely use the RCLK 
instruction. 

COMPUTETIMESTAMP, CONVERTTIMESTAMP, and INTERPRETTIMESTAMP 

The COMPUTETIMESTAMP procedure converts a Gregorian date and time 
of day into a 64-bit timestamp. The COMPUTETIMESTAMP array is an 
array containing a date and the time of day. This 8-word array 
has the following form and bounds: 

<date-n-time> [ 0] = the Gregorian year, such as 1985 
[l] = the Gregorian month 
[2] = the Gregorian day of month 
[3] = the hour of the day 
[4] = the minute of the hour 
[5] = the second of the minute 
[6] = the millisecond of the second 
[7] = the microsecond of the millisecond 

To obtain a timestamp, you might use: 

TS := COMPUTETIMESTAMP (DATEANATIME, ERRORMASK): 

If the ERRORMASK parameter is supplied, each element of 
DATEANATIME is checked for validity. A bit value of 1 
indicates that the element is valid. 

(1-4000) 
(1-12) 
(1-31) 
(1-23) 
(0-59) 
(0-59) 
(0-999) 
(0-999) 

The INTERPRETTIMESTAMP procedure converts a 64-bit Julian 
timestamp into a Gregorian (common civil calendar) date and time 
of day. It also returns (as its value) the 32-bit Julian day 
number. No checking for the range of the Julian timestamp is 

Af' 82357 AOO 3/85 16-5 



UTILITY PROCEDURES 
COMPUTETIMESTAMP Procedure 

performed. The caller must ensure that the Julian timestamp 
corresponds to time in the range of 01 January 0001 00:00 to 
31 December 4000 23:59:59.999999 

The CONVERTTIMESTAMP procedure converts a GMT timestamp 
to or from a local timestamp within any accessible node in 
the network. 

COMPUTEJULIANDAYNO and INTERPRETJULIANDAYNO Procedures 

The COMPUTEJULIANDAYNO procedure computes the Julian day number 
from a Gregorian calendar date on or after January 1, 0001. 
The Gregorian calendar date must be valid. 

The Gregorian calendar date is written as year, month, and day. 
For example, to find the Julian day number for the Gregorian 
calendar date January 9, 1985, you might use the following: 

JDN := COMPUTEJULIANDAYNO (1985, 01, 09, ERROR); 

The INTERPRETJULIANDAYNO procedure converts a Julian day number 
to the Gregorian calendar year, month, and day. The Julian day 
number to be converted must be equal to or greater than 1,721,426 
(which is the same as 0001 January 01, Gregorian). 

SETSYSTEMCLOCK Procedure 

The SETSYSTEMCLOCK procedure allows the super ID (privileged) 
caller to change the system clock time by means of a callable 
procedure. 

NOTE 

The following three procedures: TIME, CONTIME, and TIMESTAMP, 
are retained for compatibility with previous systems. 

16-6 /1J 82357 AOO 3/85 



UTILITY PROCEDURES 
TIME Procedure 

TIME Procedure 

The TIME procedure provides the current date and time in integer 
form. Use the TIME procedure to determine the effects of the 
SETTIME command or the SETSYSTEMCLOCK procedure. 

CONTIME Procedure 

The CONTIME procedure converts a 48-bit timestamp to a date and 
time in integer form. 

Use CONTIME to return an array of the date and time in seven 
separate segments, from calendar year to .01 seconds. 

To use CONTIME to convert the <last-mod-time> timestamp into a 
readable form, you can use: 

INT LASTAT[0:2], DATEATIME[0:6]; 

Then the last modification time is obtained through a call to the 
FILEINFO procedure: 

CALL FILEINFO( FNUM,,,,,,,,LASTAT); 

Then CONTIME is used to convert the three words in <LASTAT> to a 
date and time: 

Seven words of date and time are returned in <DATEATIME>. 

TIMESTAMP Procedure 

The TIMESTAMP procedure provides the current value of the 
processor clock where this application is running. 

PROCEDURES FOR STRING AND NUMBER MANIPULATION 

A number of procedures can be considered primarily of use in 
manipulating strings, numbers, and arrays. 

~ 82357 AOO 3/85 16-7 



UTILITY PROCEDURES 
SHIFTSTRING Procedure 

SHIFTSTRING Procedure 

The SHIFTSTRING procedure upshifts or downshifts all alphabetic 
characters in a string. Non-alphabetic characters remain 
unchanged. See the SHIFTSTRING procedure in the System Procedure 
Calls Reference Manual. 

Typically, commands entered interactively from a terminal are 
upshifted to ensure that they parse properly and compare easily. 
The SHIFTSTRING procedure is used to upshift all lowercase 
alphabetic characters to uppercase. The <casebit> parameter of 
the SHIFTSTRING procedure indicates whether to upshift or 
downshift the string. If bit 15 is 0, all alphabetic characters 
are upshifted: if bit 15 is 1, they are downshifted. For 
example, the following line upshifts all alphabetic characters 
in a 32-byte string whether they were originally in uppercase, 
lowercase, or any combination thereof: 

CALL SHIFTSTRING ( STRINGB, 32, 0 ) 

FIXSTRING Procedure 

The FIXSTRING procedure is used to edit a string based on 
subcommands provided in a template. The FIXSTRING procedure 
is commonly used to implement an FC command in an interactive 
process. Use of the FC or "Fix" command (to correct typing 
errors in interactive commands) is fully explained in the 
GUARDIAN User's Guide. 

See the FIXSTRING procedure in the System Procedure Calls 
Reference Manual for an explanation of its syntax. 

FIXSTRING was used to implement the FC command in the DEBUG 
facility and in the GUARDIAN command interpreter. 

If you wish to implement your own FC command, the following 
example illustrates how it can be implemented in an interactive 
command interpreter: 

INT ~command[-1:3] := "< " 
~lastAcommand[0:3], 
num, 

command length <= 8 characters 
save previous command 
length of current command 
string 
length of last command string 

STRING .scommand := @command '<<' l: command addressed as 
string 

16-8 ~ 82357 AOO 3/85 



UTILITY PROCEDURES 
FIXSTRING Procedure 

INT PROC fc; FORWARD; 

PROC commandAinterpreter; 
BEGIN 

INT repeat := O; a flag used to determine whether 
commandAinterpreter should attempt 
to execute a command upon return 
from "fc" 

WHILE 1 DO the main loop of commandAinterpreter 
executes until an "exit" command is 
encountered. 

BEGIN 

IF NOT repeat THEN 
BEGIN 

command ':=' "< "; ! assume "<" is the prompt 
! character 

CALL WRITEREAD(term, command, 1, 8, num); 

Displays the prompt character and reads a 
command, assuming "term" is the device number 
of the terminal. 

END; 

IF command = "FC" THEN repeat := fc 
ELSE 

BEGIN identify and execute command, 
or print an "illegal command" message. 

repeat := O; 
END; 

IF num THEN 
BEGIN 

END; 
END; 

""' 82357 AOO 3/85 

saveAnum := num; 
lastAcommand ':=' command FOR (saveAnum+l)/2; 

Saves last command and its length in case next 
command is "FC". 

END; 
main loop 
commandAinterpreter 

16-9 



UTILITY PROCEDURES 
FIXSTRING Procedure 

INT PROC fc: 

16-10 

BEGIN 
INT .tempAarray[0:35], ! array to hold modification 

! template 
tempAlen: ! length of template 

:= @tempAarray '<<' l: STRING .sAtempAarray 
! tempAarray addressed as string 

command[-1] := "< ": 
num := saveAnum: 
command':=' lastAcommand FOR (num+l)/2: 

DO 
BEGIN 

CALL WRITE(term, command[-1], num + 2 ): 
! display "<" followed by the last command. 

tempAarray := " .": ! template prompt 
CALL WRITEREAD ( term, tempAarray, 2, 72, tempAlen >: 

! display prompt and read template. 
IF > OR tempAlen = 2 AND tempAarray = "//" THEN 

BEGIN ! restore command 
num := saveAnum: 
command':=' lastAcommand FOR (num+l)/2: 
RETURN O: 

END: 

An EOF or a template consisting of "//" causes "fc" 
to return 0, indicating that "commandAinterpreter" 
should not execute the command, but should prompt 
for a new command instead. If the new command is 
"FC", then the string to be fixed is the command 
that was originally being modified on the previous 
call to "fc". 

CALL FIXSTRING (sAtempAarray,tempAlen,scommand, num): 

END 

"scommand" now contains the modified command, and 
"num" is its length. If "tempAlen" > 0, the loop 
executes again, displaying the modified command and 
expecting a new template. If "tempAlen" = 0, then 
a <er> was input instead of a templateo In this 
case, FIXSTRING leaves the command unchanged and 
returns a value of 1, indicating that the command 
interpreter should attempt to identify and execute 
the command. 

UNTIL NOT tempAlen: loop executes until "tempAlen" = 0, 
indicating a <er> 

~ 82357 AOO 3/85 



UTILITY PROCEDURES 
NUMIN and NUMOUT Procedures 

RETURN l; indicates to the calling procedure that 
the command came from "fc" and should be 
identified and executed. 

END; ! fc 

NUMIN and NUMOUT Procedures 

The NUMIN function procedure converts ASCII representations of 
numbers, from base 2 through base 10, to signed integer values. 
The NUMOUT procedure converts unsigned integer values to their 
ASCII equivalents using any number base from 2 through 10. The 
result is returned right-justified in an array, filled with 
leading zeros. Refer to the NUMIN and NUMOUT procedures in the 
System Procedure Calls Reference Manual. 

If you want to convert a binary, octal, or decimal number to an 
INT value, consider using the NUMIN procedure. 

Examples: 

The value of NUMIN can be used to determine the number of 
characters converted: 

STRING number [0:9] := "12345 
INT result, status, .nextAchar 

Then NUMIN is invoked: 

" . , 

@nextAchar := NUMIN( number , result , 10 , status ); 

After NUMIN executes, the pointer variable "nextAchar" 
contains the address of "number[5]" (the sixth element). 

Then subtracting 

numAconverted := @nextAchar '-' @number; 

provides the number of characters used in the conversion 
(in this example, five). 

An alternate way of doing the same: 

numAconverted := NUMIN(number,result,10,status) ' - ' @number; 

Another example, this time showing a string containing an ASCII 
number greater than the base being converted: 

STRING number[0:5] := "%19234"; 

..., 82357 AOO 3/85 16-11 



UTILITY PROCEDURES 
NUMIN and NUMOUT Procedures 

Then NUMIN is invoked: 

@nextAchar := NUMIN(number, result, 8, status); 

The only character converted to its octal representation 
is "l". At completion, the pointer variable "nextAchar" 
points to the character "9". 

The NUMOUT procedure can be used to reverse the process. For 
example, if you want to convert an INT value to its base-10 ASCII 
equivalent, use the following: 

STRING array[0:5]; 
INT variable := 2768; 
LITERAL base = 10, width = 6; 

. 
CALL NUMOUT(array, variable, base, width); 

After NUMOUT executes, ARRAY contains: 

"002768" 

Another example, using the same number but converting to base 8: 

CALL NUMOUT(array, variable, 8, width); 

After NUMOUT executes, ARRAY contains: 

"005320" 

A final example, using the same number and converting to base 10 
but with a "width" of 3: 

CALL NUMOUT( array, variable, 10, 3); 

A:Eter NUMOUT executes, "array" contains: 

"768" 

The result is truncated to three characters; the three 
leftmost characters are lost. 

16-12 -'1 82357 AOO 3/85 



UTILITY PROCEDURES 
HEAPSORT Procedure 

HEAPSORT Procedure 

The HEAPSORT procedure is used to sort an array of equal-sized 
elements in memory. It is only used to sort memory arrays. 
It cannot be used with extended addresses. 

You can use HEAPSORT to sort variable-size strings by sorting 
an array of pointers to the variable-size strings and using a 
suitably clever comparison procedure. If the strings won't all 
fit in memory, you must put them in a file and use the SORT 
program. 

See the SORT/MERGE User's Guide for the more common methods of 
sorting, such as sorting files. 

Refer to the HEAPSORT procedure in the System Procedure Calls 
Reference Manual for an explanation of its syntax. 

The following example illustrates the use of HEAPSORT. 

LITERAL elementAsize = 12; 

INT .array[O:ll9], ! array to be sorted. 
numAelements; 

Elements of twelve words each are to be sorted in ascending 
order. Therefore, the compare procedure can be written: 

INT PROC ascending (a,b); 
INT .a, .b; 

BEGIN 
RETURN IF a < b FOR 12 THEN 1 ELSE 0; 

END; 

Then HEAPSORT is called to sort ARRAY: 

. 
numAelements := 10; 
CALL HEAPSORT(array,numAelements,elementAsize,ascending); 

sorts the ten elements in ARRAY in ascending order. 

OTHER PROCEDURES 

The following procedures, especially the INITIALIZER procedure, 
are quite useful, but are not related to other procedures. 

-"1J 82357 AOO 3/85 16-13 



UTILITY PROCEDURES 
INITIALIZER Procedure 

INITIALIZER Procedure 

The INITIALIZER procedure provides a way to receive startup, 
assign, and param messages and yet allows you to ignore the 
details of $RECEIVE protocol. (The INITIALIZER obtains messages 
from $RECEIVE and calls the user-supplied procedure, passing the 
messages as a parameter to the procedure.) See the description 
of the INITIALIZER procedure in the .§ystem Procedure Calls 
Reference Manual. 

Also, if you supply the <RUCB> parameter, the INITIALIZER will 
store data into FCBs based on the information supplied by the 
startup and assign messages. These FCBs are in the form expected 
by the sequential I/O procedures, and may be used with the 
sequential I/O procedures without change. If your application 
does not use the sequential I/O procedures to access the files, 
the information recovered from the assign messages can be 
obtained from the FCBs by using the SETAFILE procedure. See 
Section 17, "Using the Sequential I/O Procedures". 

The INITIALIZER reads the startup message, then optionally 
requests assign and param messages. For each assign message the 
FCBs (if <RUCB> is passed) are searched for a logical file name 
matching the logical file name contained in the assign message. 
If a match is found, the information from the assign message is 
put into the file's FCBs, and the match count is incremented. 
For proper matching of names, the "progname" and "filename" 
fields of the assign message must be blank filled. 

The INITIALIZER is useful in program startup. It does the 
following: 

In the primary process (<status>= 0): 

1. Inspects <flags>.<13:15>, and calls the appropriate 
procedures, if any. 

2. Opens $RECEIVE. 

3. Reads the startup sequence from MOM: 

a. Stores startup and assign information in <RUCB> if an 
array was passed. 

b. Calls procedures if any are passed (optionally, assign 
and params messages). 

c. Calls ABEND if the messages read from $RECEIVE are not 
in the correct order. The correct order is open, 
startup message, param and/or assign messages (in any 
order), and close. If the creator does not send a 
CLOSE, INITIALIZER waits 60 seconds and calls ABEND. 

J.6-14 "182357 AOO 3/85 



UTILITY PROCEDURES 
INITIALIZER Procedure 

d. Rejects messages from anyone other than MOM with reply 
code 100 (OPEN messages) or 60 (all others). 

NOTE 

If bit <11> of the flags word = 1, INITIALIZER is not to 
request assign and param messages from the parent process. 
In this case, it replies to the startup message with error 
return of zero and no data. If bit <11> is 0, INITIALIZER 
requests assign and param messages, depending on how the 
startup message was sent. If the parent sent the startup 
message with a WRITE, INITIALIZER replies with error 70 
and no data. If the parent sent a startup message with 
WRITEREAD and nonzero <read-count>, INITIALIZER replies with 
error return zero and four bytes (32 bits) of data in which 
only the first two bits can be set. Bit 0 indicates assign 
messages; bit 1 indicates param messages. See Section 5, 
"Interfacing to the GUARDIAN command interpreter", for more 
information on the assign and param messages. 

4. Closes $RECEIVE. 

5. Performs the following: 

a. Substitutes the FCBs actual file names for default 
physical file names. 

b. Expands partial file names in the FCBs. 
c. Places information into the <RUCB> if used. 
d. Replaces system names with system numbers. 

6. Returns 0, indicating primary process. 

In the backup process (<status>= -1): 

1. Inspects <flags>.<13:15> and calls the appropriate 
procedures, if any. 

2. Calls CHECKMONITOR. If CHECKMONITOR returns, this indicates 
that the primary process failed before it made a stack 
checkpoint. 

In this case, if <flags>.<12> = 0, the INITIALIZER calls 
ABEND; if <flags>.<12> = 1, the INITIALIZER returns -1, 
indicating the CHECKMONITOR failed. 

CHECKMONITOR does not normally return. For an overview of the 
checkpointing process, refer to Section 12. 

~ 82357 AOO 3/85 16-15 



UTILITY PROCEDURES 
LASTADDR Procedure 

LASTADDR Procedure 

The LASTADDR (last address) function procedure returns the 'G'[O] 
relative address of the last word in the application process's 
data area. See the LASTADDR procedure in the System Procedure 
Calls Reference Manual. 

The LASTADDR function can be used to determine the number of 
memory pages allocated to a running application program: 

numApages := LASTADDR.<0:5> + 1: 

A bit extraction is performed on the six high-order address bits 
returned from LASTADDR: one is added to that value (figure 16-1) • 

DATA 
AREA 

......... ~..._ G[O] 

-!-+·- G[LASTADDR] 

85004-076 

Figure 16-1. Last Address 

SYSTEMENTRYPOINTLABEL Procedure 

The SYSTEMENTRYPOINTLABEL procedure returns the procedure label 
of the named entry point. If the entry point is not found, a 
zero is returned. 

16-16 ..-, 82357 AOO 3/85 



UTILITY PROCEDURES 
TOSVERSION and REMOTETOSVERSION 

TOSVERSION and REMOTETOSVERSION Procedure 

The TOSVERSION procedure provides an identifying letter and 
number indicating which version of the GUARDIAN operating system 
is running. 

If you want your application program to check the version of the 
GUARDIAN operating system currently running, use the TOSVERSION 
procedure call. The system level (the ASCII letter) and revision 
level (in binary) are returned. 

The REMOTETOSVERSION procedure obtains the identifying letter and 
number indicating which version of the GUARDIAN operating system 
is running in a particular system of the network. Details of its 
use appear in the System Procedure Calls Reference Manual. 

"'1 82357 AOO 3/85 16-17 





SECTION 17 

SEQUENTIAL INPUT/OUTPUT PROCEDURES 

The sequential I/O procedures were created to provide TAL 
programmers with a small, standardized set of procedures for 
reading and writing sequential files. These procedures were 
created as an addition to the GUARDIAN operating system 
procedures. They are described separately in the System 
Procedure Calls Reference ManualD 

The primary benefit of these procedures is that programs using 
them can treat different file types in a consistent and 
predictable manner. The sequential I/O procedures (or SIO 
procedures, as they are commonly called) are recommended for 
most programs requiring sequential access to files. The SIO 
procedures are not difficult to learn to use, especially if you 
follow the examples provided later in this section. 

If you need to write to files in EDIT format, the SIO procedures 
provide the only programmatic method to do so. 

NOTE 

If you have not used the SIO procedures before, it is 
recommended that you follow the examples given in this 
section before studying the SIO procedure syntax. If you 
are already familiar with the use of the SIO procedures, 
you can work directly from the System Procedure Calls 
Reference Manual for your system. 

Do not intermix GUARDIAN procedures with the SIO procedures on 
the same file. Though the procedure names appear compatible, 
in most cases they are not, and cause processes to ABEND. 

AJ' 82357 AOO 3/85 17-1 



SEQUENTIAL I/O PROCEDURES 
Introduction 

The SIO procedures are especially useful because: 

• They are essentially device-independent. 

• They use accepted defaults for all operations. 

• They can perform all common input and output opersttions. 

• They can handle BREAK from a terminal. 

• They can provide blocked I/O. 

• They provide simplified error handling. 

• They provide uniform sequential access to all types of files, 
including files in EDIT format. 

If you want to write programs with the greatest ease and fewest 
problems, consider using the SIO procedures in combination with 
the INITIALIZER. INITIALIZER reads startup messagesv assign 
messages, and param messages, and initializes in and out files 
in a Tandem standard manner. 

Characteristics of the SIO procedures include: 

• All file types are accessed in a uniform manner. File access 
characteristics, such as access mode, exclusion modes, and 
record size, are selected according to device type and 
intended access. The SIO procedures' default characteristics 
are set to facilitate their most common uses. 

• Error recovery is automatic. Each fatal error causes a 
comprehensive error message to be displayed, all files to be 
closed, and the process to abort. Both the automatic error 
handling and the display of error messages can be turned off 
so your program can do the error handling. 

• The SIO procedures can be used with the INITIALIZER procedure 
to make run-time changes by using the ASSIGN command. File 
transfer characteristics, such as record length, can be 
changed using the ASSIGN command. You can also assign a 
physical file name to a logical file. (See "Interface with 
INITIALIZER and ASSIGN Messages" later in this section.) 

• The SIO procedures retain information about the f :iles in file 
control blocks (FCBs). There is one FCB for each open file, 
plus one common FCB that is linked to the other FCBs. 

• The SIO OPENAFILE procedure lets an application alter certain 
access characteristics when a file is opened. These 
characteristics determine the nature of subsequent SIO 

17-2 "if 82357 AOO 3/85 



SEQUENTIAL I/O PROCEDURES 
Introduction 

operations on the opened file. The SETAFILE procedure allows 
similar alterations either before or after the file is opened. 

• SIO opens all files with a sync depth of 1. 

Some features of the SIO procedures include: 

• Individualized BREAK handling routines 

• Error handling routines that allow retryable errors 

• Interprocess I/O 

• Automatic file creation 

• Trimming trailing blanks 

• Truncating lines 

• Automatic top-of-form control 

• Carriage return (CR) or line feed (LF) on BREAK 

The SIO I/O procedures and their functions are: 

checks whether the BREAK key was pressed. 

retrieves file characteristics. 

closes a file. 

disables BREAK processing by the process. 

allows manual handling of error messages. 

opens a file for access by the SIO procedures. 

reads from a file. 

sets or alters file characteristics. 

enables BREAK processing by the process. 

waits for the completion of an outstanding I/O 
operation. 

All of the SIO procedures and their parameters, default values, 
and flag settings, are described in the System Procedure Calls 
Reference Manual. Examples using these SIO procedures appear 
later in this section. 

~ 82357 AOO 3/85 17-3 



SEQUENTIAL I/O PROCEDURES 
FCB Structure 

FCB STRUCTURE 

File characteristics and procedure call information are kept in 
file control blocks (FCBs) within the user data spacE~. The SIO 
FCBs must be created by you--they are maintained in addition to 
the system FCBs created and maintained by the operating system. 

There are two types of SIO FCBs you must set that arE~ required 
by the SIO procedures: 

• File FCB: One file FCB is associated with each opened file, 
and is passed to each SIO procedure to identify that file: 

--Each file FCB should be declared in the global declaration 
section of the program. 

--All file FCBs should be initialized prior to calling the 
OPENAFILE by using the SETAFILE operation INITAFILEFCB. 

• Common FCB: One common FCB is created for all files. The 
common FCB contains information common to all f il~~s such as a 
pointer to the error reporting file. 

--The common FCB is usually declared in the global declaration 
section of the program. 

--The common FCB is automatically initialized during the first 
call to OPENAFILE following process creation. OPENAFILE 
detects an uninitialized FCB by the fact that its first word 
(normally the size of the FCB) is zero. 

--If you use the INITIALIZER procedure, the common FCB is 
declared using define ALLOCATEACBS and is set to zero 
automatically. 

--If you do not use the INITIALIZER procedure, you must 
declare. the common FCB and set it to zero before the first 
call to OPENAFILE. 

--Do not use the SETAFILE operation INITAFILEFCB on the 
common FCB. 

You must, as a minimum, put the name of the file to be opened 
into the FCB by using ASSIGNAFILENAME if you do not use the 
INITIALIZER procedure and the ALLOCATEAFCB define. Other 
attributes may have to be set before the file is opened, as 
shown in the following examples. 

17-4 ~ 82357 AOO 3/85 



SEQUENTIAL I/O PROCEDURES 
Initializing the File FCB 

Initializing the File FCB Without INITIALIZER 

The file FCB must be allocated and initialized before the 
OPENAFILE procedure is called to open a file. Use the SETAFILE 
procedure to do this as explained in the following items. 

The following steps illustrate how to initialize the file FCBs 
without using the INITIALIZER procedure. If you use the 
INITIALIZER procedure, all of the following are automatically 
set. When you use the INITIALIZER procedure, all but the first 
items listed--FCBSIZE, INITAFILEFCB, and ASSIGNAFILENAME--can 
be specified. 

Dotted underlines show the minimum required syntax: refer to the 
System Procedure Calls Reference Manual for more information. 

1. The size in words of an FCB is provided as a literal, 

FCBSIZE (currently 60) 

For example, 

INT .INFILE [O:FCBSIZE-1]: 

2. Initialize the FCB using the SETAFILE procedure. This step 
is required: 

<FILE-FCB> ' INITAFILEFCB 

For example, 

CALL SETAFILE ( INFILE ' INITAFILEFCB ) 

3. Specify the name of the file to open. This step is required: 

CALL SETAFILE (<FILE-FCB>, ASSIGNAFILENAME, <FILENAME-ADDR>) 

For example, 

INFILE, ASSIGNAFILENAME ' @INFILENAME ): 

4. Specify the access mode for this open. This step is 
optional: 

<FILE-FCB>, ASSIGNAOPENACCESS, <OPEN-ACCESS>) 

"' 82357 AOO 3/85 17-5 



SEQUENTIAL I/O PROCEDURES 
Initializing the File FCB 

The following literals are provided for <OPEN-ACCESS> 

READWRITEAACCESS (0) 
READAACCESS (1) 
WRITEAACCESS (2) 

If omitted, the access mode for the device being opened 
defaults to the following: 

Device 

Operator Process 
Process 
$RECEIVE 
Disc 
Terminal 
Printer 
Magnetic Tape 
Card Reader 

For example, 

Access 

Write 
Read-Write 
Read-Write 
Read-Write 
Read-Write 
Write 
Read-Write 
Read 

CALL SETAFILE ( INFILE ' ASSIGNAOPENACCESS ' READAACCESS ): 

5~ Specify exclusion for this open. This step is optional: 

17-6 

CALL SETAFILE <FILEFCB> ' ASSIGNAOPENEXCLUSION , 

<OPEN-EXCLUSION> ) 

The following literals are provided for <OPEN-EXCLUSION> 

SHARE ( 0) 
EXCLUSIVE (1) 
PROTECTED (3) 

If omitted, the exclusion mode applied to the open defaults 
to the following: 

Access 

Read 
Write 
Read-Write 

For example, 

Exclusion Mode 

If terminal then share, else protected 
If terminal then share, else exclusive 
If terminal then share, else exclusive 

CALL SETAFILE ( INFILE , ASSIGNAOPENEXCLUSION , EXCLUSIVE ): 

~ 82357 AOO 3/85 



SEQUENTIAL I/O PROCEDURES 
Initializing the File FCB 

6. Specify the logical record length. This step is optional: 

CALL SET"'FILE <FILE-FCB> , ASSIGN"'RECORDLENGTH , 

<RECORD-LENGTH> 

The <RECORD-LENGTH> is given in bytes. 

If omitted, <RECORD-LENGTH> defaults according to the device 
as follows: 

Device 

Operator Process 
Process 
$RECEIVE 
Unstructured Disc 
Structured Disc 
Terminal 
Printer 
Magnetic Tape 
Card Reader 

Logical Record Length 

132 bytes 
132 bytes 
132 bytes 
132 bytes 
Record length defined at creation 
132 bytes 
132 bytes 
132 bytes 
132 bytes 

7. Set the file code. This step is optional and has two 
meanings: (1) If AUTO"'CREATE is on (default), the file code 
specifies the type of file to be created (see SIO OPEN"'FILE 
procedure in the System Procedure Calls Reference Manual), 
and (2) It implies the file code must match the file code 
specified for the open to succeed: 

CALL SET"'FILE <FILE-FCB> , ASSIGN"'FILECODE , <FILE-CODE> 

8. Set the primary extent size. This step is optional, and has 
meaning only if AUTO"'CREATE is on: 

CALL SET"'FILE <FILE-FCB> , ASSIGN"'PRIMARYEXTENTSIZE , 

<PRIMARY-EXTENT-SIZE> 

<PRIMARY-EXTENT-SIZE> is given in pages (2048-byte units). 

""'1 82357 AOO 3/85 17-7 



SEQUENTIAL I/O PROCEDURES 
Initializing the File FCB 

9. Set the secondary extent size. This step is optional, and 
has meaning only if AUTOACREATE is on: 

CALL SETAFILE <FILE-FCB> , ASSIGNASECONDARYEXTENTSIZE , 

<SECONDARY-EXTENT-SIZE> 

<SECONDARY-EXTENT-SIZE> is given in pages (2048-byte units). 

10. Set the file's physical block length. This step is optional. 

17-8 

The physical block length is the number of bytes transferred 
between the file and the process in a single I/O operation. 
If <BLOCK-LENGTH> is specified, blocking is implied. A 
physical block is composed of <BLOCK-LENGTH> divided by 
<RECORD-LENGTH> logical records. When <BLOCK-LENGTH> is not 
exactly divisible by <RECORD-LENGTH>, the portion of that 
block following the last logical record is filled with 
blanks. 

Note that the specified form of blocking differs from the 
type of blocking performed when no <BLOCK-LENGTH> is 
specified. In the unspecified form, there is no indication 
of a physical block size; the records are contiguous on the 
medium: 

<FILE-FCB> , ASSIGNABLOCKLENGTH , <BLOCK-

LENGTH> ) 

<BLOCK-LENGTH> is given in bytes. 

If <BLOCK-LENGTH> is not specified, no blocking is performed. 
Note that <BLOCK-LENGTH> must be specified if files in EDIT 
format are to be processed. 

"1 82357 AOO 3/85 



SEQUENTIAL I/O PROCEDURES 
Interface with INITIALIZER and Assign Messages 

INTERFACE WITH INITIALIZER AND ASSIGN MESSAGES 

The SIO procedures and the INITIALIZER procedure can be used 
separately or together. It is to your advantage to use the 
INITIALIZER because it takes care of the entire application 
startup protocol. 

The INITIALIZER procedure provides a way of receiving startup, 
assign, and param messages without concern for details of the 
$RECEIVE protocol. The INITIALIZER obtains messages from 
$RECEIVE and calls the optional user-supplied procedures, passing 
the messages as parameters to these procedures. Refer to the 
INITIALIZER procedure in the System Procedure Calls Reference 
Manual. 

The INITIALIZER procedure can prepare global tables of a 
predefined structure and properly initialize FCBs with the 
information read from the startup and assign messages. File 
transfer characteristics such as record length, and even file 
names, can be altered at run time using by command interpreter 
ASSIGN commands. Refer to the GUARDIAN Operating System User's 
Guide. 

When using the INITIALIZER with the SIO procedures, you must 
declare an array called a run-unit control block (RUCB). Each 
FCB to be prepared by the INITIALIZER must be initialized with 
a default physical file name and, optionally, with a logical 
file name before invoking the INITIALIZER. 

The INITIALIZER reads the startup message, then requests the 
assign messages. For each assign message, the FCBs are searched 
for a logical file name that matches the logical file name 
contained in the assign message. If a match is found, the 
information from the assign message is put into the FCB. The 
assign message is described in Section 5; the ASSIGN command is 
described in the System Procedure Calls Reference Manual. 

The INITIALIZER also substitutes the real file names for default 
physical file names in the FCBs. Partial file names in the FCBs 
are expanded using the default volume and subvolume from the 
startup message. This function provides the capability to define 
the IN and OUT files of the startup message as physical files and 
to define the home terminal as a physical file. 

After invoking the INITIALIZER, the user program must call the 
OPENAFILE procedure once for each file to be opened. 

-'1 82357 AOO 3/85 17-9 



SEQUENTIAL I/O PROCEDURES 
INITIALIZER-Related Defines 

INITIALIZER-RELATED DEFINES 

Two defines are provided for allocating run-unit control block 
space (CBS) and for allocating FCB space. These defines are: 

1. Allocate run-unit control block and common FCB (data 
declaration). 

ALLOCATEACBS ( <rucb> , <common-fcb> , <numfiles> ); 

<rucb> 

is the name to be given to the run-unit control block; 
this name is passed to the INITIALIZER procedure. 

<common-fcb> 

is the name to be given to the common FCB; this name is 
passed to the OPENAFILE procedure. 

<numf iles> 

is the number of FCBs to be prepared by the INITIALIZER 
procedure. The INITIALIZER begins with the first FCB 
following ALLOCATEACBS. 

For example, 

ALLOCATEACBS ( RUCB , COMMFCB , 2 ); 

2. Allocate FCB (data declaration). 

NOTE 

The FCB allocation defines must immediately follow 
the ALLOCATEACBS define. No intervening variables 
are allowed. 

ALLOCATEAFCB ( <f ile-fcb> , <default-physical-filename> ) 

<f ile-fcb> 

is the name to be given to the FCB. The name references 
the file in other sequential I/O procedure calls. 

17-10 "1J 82357 AOO 3/85 



SEQUENTIAL I/O PROCEDURES 
INITIALIZER-Related Defines 

<default-physical-filename>, literal STRING, 

is the name of the file to be opened. This can be an 
internal form of a file name or one of the following, and 
must be in uppercase as shown: 

byte numbers 

[ 0] [ 8] [16] [24] 

" #IN " 

Means substitute the INFILE name of the startup message 
for this name. 

" #OUT " 

Means substitute the OUTFILE name of the startup message for 
this name. 

" #TERM " 

Means substitute the home terminal name for this name. 

" #TEMP " 

Means substitute a name appropriate for creating a temporary 
file for this name. 

" " 

All blanks means substitute a name appropriate for creating a 
temporary file for this name. 

If the $<volume-name> or <subvolume-name> is omitted, the 
corresponding default name from the startup message is 
substituted for the omitted part of the disc file name; 
for example: 

ALLOCATEAFCB 
ALLOCATEAFCB 

/1 82357 AOO 3/85 

" INF ILE 
OUTFILE , " 

#IN 
#OUT 

" ) ; 
" ) ; 

17-11 



SEQUENTIAL I/O PROCEDURES 
INITIALIZER-Related Defines 

The following SETAFILE operation, ASSIGNALOGICALFILENAME, is 
used with the INITIALIZER. The logical file name is the means 
by which the INITIALIZER matches an assign message to a physical 
file: 

CALL SETAFILE <f ile-fcb> , ASSIGNALOGICALFILENAME , 

@<logical-filename> ) 

<file-fcb>, INT:ref, 

references the file to be assigned a logical file name. 

@<logical-filename>, INT:value, 

is the word address of an array containing the logical 
file name. A logical file name consists of a maximum of 
seven letters and digits, the first of which must be a 
letter. 

<logical-filename> must be encoded as follows: 

byte numbers 

[O] [l] [8] 
<len><logical-f ilename> 

<len> is the length, in bytes, of the logical file name. 

By convention, the logical file name of the input file of 
the startup message should be named "INPUT": the logical 
file name of the output file of the startup message should 
be named "OUTPUT": for example: 

I NT • BUF [ 0 : 11 ] : 
STRING .SBUF := @BUF '<<' 1: 
sbuf ':=' [5, "INPUT"]: 
CALL SETAFILE ( INFILE , ASSIGNALOGICALFILENAME , @BUF ): 
sbuf ':=' [6, "OUTPUT"]: 
CALL SETAFILE ( OUTFILE , ASSIGNALOGICALFILENAME , @BUF ): 

Considerations 

• If run-time changes to file transfer characteristics using 
the ASSIGN command are not allowed, then do not assign a 
logical file name to the file. 

17-12 .-op 82357 AOO 3/85 



SEQUENTIAL I/O PROCEDURES 
INITIALIZER-Related Defines 

• File characteristics can be set by the INITIALIZER, with the 
ASSIGN command, or with programmatic calls to the SETAFILE 
procedure. Calls to SETAFILE preceding a call to INITIALIZER 
are overridden by ASSIGN commands. Calls to SETAFILE 
following a call to INITIALIZER override ASSIGN commands. 

• If you do not want the INITIALIZER to assign a physical 
file name for the <default-physical-file-name> (for example, 
you want to restrict all files created by this process to a 
specific volume, overriding any assign messages), use the 
following sequence. First declare the FCB: 

INT .FILEAFCB [O:FCBSIZE - l]; 

In the executable part of the program, before calling the 
INITIALIZER, initialize the FCB: 

Assign a logical file name, and any other open attributes 
desired, before calling the INITIALIZER: 

CALL SETAFILE ( FILEAFCB, ASSIGNALOGICALFILENAME, @NAME ); 

CALL I NI TI ALI ZER ( • • ) ; 

If you neglect to ASSIGN a physical file to the logical file, 
open fails with an error number 513, SIOERRAMISSINGFILENAME, 
"file name not supplied". 

-'1 82357 AOO 3/85 17-13 



SEQUENTIAL I/O PROCEDURES 
Usage Examples 

USAGE EXAMPLES 

The following example shows the use of the INITIALIZER and SIO 
procedures for opening the IN and OUT files of a typical Tandem 
subsystem program. If the IN and OUT files are the same file and 
either is a terminal or a process, only the IN file is opened for 
use as both the input and output filesg The address of the 
INFILE FCB is put into the pointer to the OUTFILE FCB so that 
both pointers refer to the same FCB. 

The open access is assigned after the INITIALIZER is called. 
This overrides the open access specified in an ASSIGN command. 

Note that you can assign file names by default, as shown below, 
or specify them as shown on the next page. If you follow this 
example, you will have specified file names twice. This is 
permitted; the last file name specified is used. 

Example 1: 

?NOLIST, SOURCE $SYSTEM.SYSTEM.GPLDEFS 
! (The GPLDEFS are listed in Appendix C.) 
?LIST 

Set up the control blocks for the INITIALIZER with supplied 
Defines. Initialize Run Unit Control Block and common FCB. 

RUCB - Array holding Run Unit Control Block. 
COMMFCB - Array for the common File Control Block. 

ALLOCATEACBS ( RUCB, COMMFCB, 2 ); 

Initialize in file FCB. 
INFILE - Array for FCB of the in file. 

ALLOCATEAFCB ( INFILE, " #IN " ) ; 

Initialize out file FCB. 
OUTFILE - Array for FCB of the out file. 

ALLOCATEAFCB ( OUTFILE, " 

LITERAL 
process = 0, 
terminal = 6, 
inblklen = 4096, 

outblklen = 4096, 

= 255; 

17-14 

#OUT " ) ; 

Process device type. 
Terminal device type. 
Length of block buffer 
for in file. 
Length of block buffer 
for out file. 
Maximum record length 

~ 82357 AOO 3/85 



INT • INBLKBUF [O:INBLKLEN/2 -
.OUTBLKBUF [O:OUTBLKLEN/2 
• INFNAME, 
• OUTFNAME, 
DEVICE"TYPE, 

PHYS"REC"LEN, 

INTERACTIVE; 

1], 
- 1], 

SEQUENTIAL I/O PROCEDURES 
Usage Examples 

to read or write • 

In buffer for blocking. 
Out buffer for blocking. 
In file's file name • 
Out file's file name • 
Device type (refer to 
DEVICEINFO procedure. 
Physical record length of 
device. 
Indicates if in and out 
files are interactive, 
implying use of read-write 
access. 

I NT • BUF [ 0: 11] : Holds logical file names. 
STRING 

.SBUF := @BUF '<<' 1: String corresponding to 
buffer. 

?NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS ( •.. ) 
?LIST 

PROC MAIN"PROC MAIN; 
BEGIN 

INT .BUFFER [0: (REC"LEN/2) - l], Buffer for I/O with a 
single record. 
Number of bytes read 
in or written out. 

Beginning of program execution. 

Set up in and out files using startup message from RUN 
command. 

SBUF ' : =' [ 5, "INPUT"] : 
CALL SET"FILE( INFILE, ASSIGN"LOGICALFILENAME, @BUF ): 
SBUF ' : =' [ 6, "OUTPUT"]: 
CALL SET"FILE( OUTFILE, ASSIGN"LOGICALFILENAME, @BUF ): 
CALL INITIALIZER( RUCB ); 

get physical file names for in and out files. 

@INFNAME := CHECK"FILE( INFILE, FILE .... FILENAME .... ADDR ); 
@OUTFNAME := CHECK .... FILE( OUTFILE, FILE .... FILENAME .... ADDR ); 

Determine type of access for in file. 

CALL DEVICEINFO ( INFNAME, DEVICE .... TYPE, PHYS .... REC .... LEN ); 
INTERACTIVE := 

IF ( DEVICE .... TYPE.<4:9> = TERMINAL OR 

/'f 82357 AOO 3/85 

DEVICE .... TYPE.<4:9> = PROCESS ) 
AND NOT FNAMECOMPARE ( INFNAME, OUTFNAME 
THEN -1 ELSE O: 

17-15 



SEQUENTIAL I/O PROCEDURES 
Usage Examples 

CALL SETAFILE( INFILE, ASSIGNAOPENACCESS, 
IF INTERACTIVE THEN READWRITEAACCESS 

ELSE READAACCESS ); 
Open in file, with proper blocking length, sending errors 
to the out file. 

CALL OPENAFILE( COMMFCB, INFILE, INBLKBUF 
,INBLKLEN,,,,, OUTFILE ); 

IF INTERACTIVE THEN Make in and out files the same; 
no need to 

@OUTFILE := @INFILE open out file. 
ELSE 

BEGIN 
Open out file. 

CALL SETAFILE(OUTFILE, ASSIGNAOPENACCESS, WRITEAACCESS); 
CALL OPENAFILE(COMMFCB, OUTFILE, OUTBLKBUF, OUTBLKLEN ); 

noninteractive use, so echo reads to out file. 

CALL SETAFILE( INFILE, SETADUPFILE, @OUTFILE ); 
END; 

Main processing loop. 

WHILE not EOF process the record. 

WHILE ( READAFILE( INFILE, BUFFER, COUNT) = 0 ) DO 
BEGIN 

Process record read in, and format a record for output • 

. 
CALL WRITEAFILE( OUTFILE, BUFFER, COUNT ); 

END; 

CALL CLOSEAFILE( COMMFCB ); close all files 

END; 

To change the record length of the input file, you can enter the 
following ASSIGN command before the program is run: 

ASSIGN INPUT,,REC 80 

To change the file code of the output file, you can E~nter the 
following ASSIGN command before the program is run: 

ASSIGN OUTPUT,,CODE 9876 

17-16 '1J 82357 AOO 3/85 



SEQUENTIAL I/O PROCEDURES 
Usage Examples 

Summary 

The following are the steps involved to use the INITIALIZER with 
the SIO procedures: 

• Allocate the CBS and FCB, and assign the default physical 
file names using ALLOCATEACBS and ALLOCATEAFCBs. 

• Assign a logical file name using the SETAFILE operation, 
ASSIGNALOGICALFILENAME. 

• If ASSIGN command characteristics are to override program 
calls to SETAFILE, invoke assignment defines. 

• Invoke the INITIALIZER to read the startup, assign, and param 
messages and prepare the file FCBs. 

• If programmatic calls to SETAFILE are to override ASSIGN 
command characteristics, invoke assignment defines. 

• Open the files with calls to OPENAFILE. 

Example 2: 

The following program example copies an IN file to an OUT file. 
It also illustrates how to copy an unstructured file into a file 
in EDIT format and how to read from $RECEIVE into a file in EDIT 
format. 

?PAGE "SIODEMO: Global Space Declaration and Allocation" 
NAME SIODEMO; 
BLOCK PRIVATE; 

DEFINE 
WADDR( x ) = (@x '>>' 1)#, get word addr of str object 
SADDR( x ) = (@x '<<' 1)#, get str addr of word object 
TOABSZ( x ) = ((x) * 2)#, compute strlen from wordlen 
TOAWSZ( x ) = (((x) + 1) I 2)#, compute wordlen from strlen 
LENABSZ( x ) = ($LEN(x))#, ! get string length of object 
LENAWSZ( x ) = (TOAWSZ($LEN(x)))#; ! get word length of object 

LITERAL 
IOBLKABSZ = 4096, I/O buffer block byte size 
IOBLKAWSZ = TOAWSZ(IOBLKABSZ), I/O buffer block word size 
MSGABSZ = 255, max data bytes in a message 
MSGAWSZ = TOAWSZ(MSGABSZ); max data words in a message 

~ 82357 AOO 3/85 17-17 



SEQUENTIAL I/O PROCEDURES 
Usage Examples 

STRUCT STARTUPAMSGADEF -- template for a startup message 
(refer to Section 5) 

STRUCT STARTUPAMSGADEF(*); 
BEGIN 
INT 
INT 
INT 
INT 
STRING 
END; 

MSGID; 
DEFAULT[0:7]; 
IN[O:ll]; 
OUT[O:ll]; 
TXT[0:527]; 

?NOLIST,SOURCE GPLDEFS 
?LIST 

(See Appendix C.) 

Initialize Run Unit Control Block and Common FCB 
RUCB Array holding Run Unit Control Block 
CFCB -- Array holding Common File Control Block 
3 -- Initialize three FCBs 

! 
ALLOCATEACBS(RUCB, CFCB, 3); 

! allocate the FCB for the IN file 
ALLOCATEAFCB(INFCB, " #IN 

! allocate the FCB for the OUT file 
ALLOCATEAFCB(OUTFCB, " #OUT 

! allocate the FCB for the ERROR file 
ALLOCATEAFCB(ERRORFCB, " #TERM 

INT 
uinbuf[O:IOBLKAWSZ-1], 
uOutbuf[O:IOBLKAWSZ-1]; 

END BLOCK; 
?NOLIST,SOURCE 
? 
? 
? 
? 
? 
? 
?LIST 

extdecs( 
CLOSEAFILE, 
INITIALIZER, 
OPEN"'FILE, 
READAFILE, 
SETAFILE, 
WRITEAFILE 

?PAGE "SIODEMO: PROC startup""message" 

" ) ; 

" ) ; 

" ) ; 

block buffer for input 
block buffer for output 

PROC STARTUP""MESSAGE--handle startup message provided by the 
! I NI TI ALI ZER 

17-18 -1" 82357 AOO 3/85 



SEQUENTIAL I/O PROCEDURES 
Usage Examples 

This routine is presumably called by the INITIALIZER to handle 
the startup message. It assumes that the PASSTHRU parameter 
is really for a buffer big enough to contain a maximum size 
startup message. This routine will ensure that there is a 
trailing null byte in the parameter text field. 

PROC STARTUPAMESSAGE ( RUCB, PASSTHRU, MESSAGE, MESSLEN, MATCH ) 
VARIABLE; 

INT • RUCB; 
INT .PASSTHRU; 
INT .MESSAGE; 
INT MESSLEN; 
INT MATCH; 

BEGIN 
STRING 

.SP; 

PASSTHRU ':=' MESSAGE FOR TOAWSZ( MESSLEN ); 
@SP := SADDR( MESSAGE ); 
SP[MESSLEN] := 0; ! null terminate 

END; ! PROC startupAmessage 

?PAGE "SIODEMO PROC siodemo MAIN" 

! PROC SIODEMO -- simple demonstration of SIO usage 

PROC SIODEMOA30MAY84 MAIN; 
BEGIN 
INT 

.LINEBUF[O:MSGAWSZ-1], 
LINECNT; 

STRING 
.SLINEBUF := SADDR(LINEBUF); 

STRUCT 
.STMSG( STARTUPAMSGADEF ); 

! get my startup message 
SL! NEBUF ' : =' [ 5, "INPUT"]; 

input line buffer 
size of input line 

string ptr to buf 

my startup message 

CALL SETAFILE(INFCB, ASSIGNALOGICALFILENAME, @LINEBUF); 
SLINEBUF ':=' [6, "OUTPUT"]; 
CALL SETAFILE(OUTFCB, ASSIGNALOGICALFILENAME, @LINEBUF); 
SLINEBUF ' : =' [ 5, "ERROR"]; 
CALL SETAFILE(ERRORFCB, ASSIGNALOGICALFILENAME, @LINEBUF); 
CALL INITIALIZER(RUCB, STMSG, STARTUPAMESSAGE); 

! open ERROR ! 
CALL SETAFILE(ERRORFCB, ASSIGNAOPENACCESS, WRITEAACCESS); 
CALL OPENAFILE(CFCB, ERRORFCB, !blkbuf!, !blkbuflen!, 

! f 1 a gs ! , ! f 1 a gma s k ! , 
!maxreclen!, !prompt!, ERRORFCB); 

~ 82357 AOO 3/85 17-19 



SEQUENTIAL I/O PROCEDURES 
Usage Examples 

! open IN ! 
CALL SETAFILE(INFCB, ASSIGNAOPENACCESS, READAACCESS); 
CALL OPENAFILE(CFCB, INFCB, INBUF, IOBLKABSZ); 

! open OUT 
CALL SETAFILE(OUTFCB, ASSIGNAOPENACCESS, WRITEAACCESS); 
CALL OPENAFILE(CFCB, OUTFCB, OUTBUF, IOBLKABSZ); 

! process the file 
WHILE ( READAFILE ( INFCB, LINEBUF, LINECNT, !promptcnt!, 

MSGABSZ) = 0) DO 
BEGIN 
CALL WRITEAFILE(OUTFCB, LINEBUF, LINECNT); 
END; 

finish up ! 
CALL CLOSEAFILE(CFCB); 

END; PROC SIODEMO MAIN 

This program example also presents a less obvious method of 
converting files. Some programmers typically use the~ following 
lines to convert a file to EDIT format: 

CREATE x 
FUP/ OUT x/ INFO * 
EDIT x PUT <edit file> 

Such code requires roughly three times as many disc accesses as 
the following code, using the above SIODEMO example: 

: RUN SIODEMO /IN $RECEIVE, OUT<edit file>, NAME $SIO, NOWAIT/ 
: FUP / OUT $SIO / INFO * 

Summary 

The following operations should be performed in your application 
code for the SIO functions to work correctly: 

1. Call the INITIALIZER to handle the startup messa9e and set up 
the required FCBs (or use another method to accomplish these 
tasks; use of the INITIALIZER is recommended). 

2. Call OPENAFILE for each file to be opened for use with the 
SIO procedures. 

3. Call other SIO procedures as required to accomplish the 
desired tasks. 

17-20 ~ 82357 AOO 3/85 



SEQUENTIAL I/O PROCEDURES 
Usage Examples 

4. Call CLOSEAFILE when done to close files and flush buffers. 

Practice Example 

The following example presents a skeleton file copy program 
using both the INITIALIZER and the SIO procedures. If you want 
to practice coding variations from a standard skeleton, this 
example provides a good start. 

Example SIO file copy program--
Copies standard input to standard output 

! 
! Get the SIO literals and defines 
?NOLIST, SOURCE $SYSTEM.SYSTEM.GPLDEFS 
?LIST 

! Define the INITIALIZER'S Run Unit Control Block (RUCB) and 
! SIO's common FCB and specify that 2 more FCBs will follow 

ALLOCATEACBS ( RUCB, COMMONAFCB, 2 ); 

! Define FCBs for the IN and OUT files 
ALLOCATEAFCB ( INAFCB, 4 * [" "] ',' "#IN" 
ALLOCATEAFCB ( OUTAFCB, 4 * [" "] ',' "#OUT" 

' ' ' ' ' ' 
6 * [" 
6 * [" 

" ] ) ; 
" ] ) ; 

! Get the SIO procedures 
?NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS 
? 
? 
?LIST 

PROC COPY MAIN; 
BEGIN 

! Define the local variables 

! I/O buffer 
STRUCT .BUFFER; 
BEGIN 

I NT i [ 0 : 6 5 ] ; 
STRING S [0:131] = i; 

END; 

! Blocking Buffer definitions 

LITERAL BLOCKINGABUFFERALENGTH = 1024; 

STRUCT BLOCKINGABUFFER (*); 
BEGIN 

"'1J 82357 AOO 3/85 

CLOSEAFILE, INITIALIZER, 
OPENAFILE, READAFILE, 
SETAFILE, WRITEAFILE ) 

!length in bytes 

17-21 



SEQUENTIAL I/O PROCEDURES 
Usage Examples 

INT I [O : ((BLOCKINGABUFFERALENGTH + 1) I 2) - l]; 
STRING s [O : BLOCKINGABUFFERALENGTH - l] = i; 

END; 

! Output blocking buffer 
STRUCT .OUTABLOCKINGABUFFER ( BLOCKINGABUFFER ); 
! Input blocking buffer 
STRUCT .INABLOCKINGABUFFER ( BLOCKINGABUFFER ); 
INT EOF, 

LENGTH; 

! Read the startup, param, and assign messages. Apply any 
! assigns for the logical files IN and OUT to INAFCB and 
! OUTAFCB. 
CALL INITIALIZER ( RUCB ); 

! Set the IN file for read-only access and the OUT file 
! for write-only access 
CALL SETAFILE( INAFCB, ASSIGNAOPENACCESS, READAACCESS ); 
CALL SETAFILE( OUTAFCB, ASSIGNAOPENACCESS, WRITEAACCESS ); 

! Open the IN file. ABEND if open fails. 
CALL OPENAFILE( COMMONAFCB, 

INAFCB, 
INABLOCKINGABUFFER.I, 
$LEN( INABLOCKINGABUFFER ); 

! Open the OUT file. Abend if open fails. 
CALL OPENAFILE( COMMONAFCB, 

OUTAFCB, 
OUTABLOCKINGABUFFER.I, 
$LEN( OUTABLOCKINGABUFFER ); 

Copy loop - Since the defaults are abort on error, disable 
break, and ignore system messages, the only 
error READAFILE can encounter is end-of-file on 
the input file. 

WHILE NOT READAFILE( INAFCB, BUFFER.I, LENGTH ) DO 
CALL WRITEAFILE( OUTAFCB, BUFFER.I, LENGTH ); 

! Close the IN and OUT files. This must be done to ensure that 
any data left in the blocking buffers will be flushed. 

CALL CLOSEAFILE( COMMONAFCB ); 

END; ! copy ! 

17-22 "'"f' 82357 AOO 3/85 



SEQUENTIAL I/0 PROCEDURES 
Usage Example Without INITIALIZER Procedure 

USAGE EXAMPLE WITHOUT INITIALIZER PROCEDURE 

The following example shows the use of the SIO procedures for the 
IN and OUT files of a typical Tandem subsystem program when the 
INITIALIZER procedure is not used. 

?SOURCE $SYSTEM.SYSTEM.GPLDEFS ( 
INT INTERACTIVE, 

ERROR, 
.COMMONAFCB [O:FCBSIZE-1] := 0, 
.RCVAFILE [O:FCBSIZE-1], 
.INFILE [O:FCBSIZE-1], 
.OUTFILE [O:FCBSIZE-1], 
.BUFFER [0:99], 
MOMPID [0:3], 
DEVTYPE, 
LENGTH, 
JUNK; 

LITERAL 
PROCESS = 
TERMINAL = 
INABLKBUFLEN = 
OUTABLKBUFLEN = 

0, 
6, 

1024, 
1024; 

INT .INABLKBUF [O:INABLKBUFLEN/2 - l], 
.OUTABLKBUF [O:OUTABLKBUFLEN/2 - l]; 

?SOURCE $SYSTEM.SYSTEM.EXTDECS ( •.. 
! 

read the startup message. 

! - open $RECEIVE. 
! 
CALL SETAFILE ( RCVAFILE ' INITAFILEFCB ); 
BUFFER ':=' "$RECEIVE " & BUFFER [4] FOR 7; 
! file name. 
CALL SETAFILE ( RCVAFILE ' ASSIGNAFILENAME ' @BUFFER ); 
! number of bytes to read. 
CALL SETAFILE ( RCVAFILE ' ASSIGNARECORDLENGTH ' 132 ); 
CALL OPENAFILE ( COMMONAFCB ' RCVAFILE ''' NOWAIT ' NOWAIT ); 

- get mom's process ID. 

! - first, see if I'm named. 
! 
CALL GETCRTPID ( MYPID , BUFFER ); 
IF BUFFER.<0:1> = 2 THEN 

! not named. 
CALL MOM ( MOMPID ); 

ELSE 

~ 82357 AOO 3/85 17-23 



SEQUENTIAL I/O PROCEDURES 
Usage Example Without INITIALIZER Procedure 

BEGIN 
! named. 
CALL LOOKUPPROCESSNAME ( BUFFER ); 
MOMPID ':=' BUFFER [5] FOR 4; 

END; 
! - allow startup message from MOM only. 
CALL SETAFILE ( RCVAFILE ' SETAOPENERSPID ' @MOMPID ); 

DO 
BEGIN 

CALL READAFILE ( RCVAFILE ' BUFFER'''' 1 ); 
DO ERROR := WAITAFILE ( RCVAFILE ' LENGTH ' 3000D 
UNTIL ERROR <> SIOERRAIORESTARTED; 

END 
UNTIL BUFFER = -1; ! startup message read. 

! - close $RECEIVE. 
CALL CLOSEAFILE ( RCVAFILE ); 
! 
! see if program is being run interactively. 
! 
CALL DEVICEINFO ( BUFFER [9] , DEVTYPE , JUNK ); 
INTERACTIVE := 

IF ( DEVTYPE.<4:9> = TERMINAL OR 
DEVTYPE.<4:9> = PROCESS ) AND 
NOT FNAMECOMPARE (BUFFER[9], BUFFER [21] ) THEN l 

ELSE O; 

CALL SETAFILE 
CALL SETAFILE 
CALL SETAFILE 

INFILE ' INITAFILEFCB ); 
INFILE ' ASSIGNAFILENAME ' @BUFFER [9] ); 
INFILE , ASSIGNAOPENACCESS , 
IF INTERACTIVE THEN READWRITEAACCESS 

ELSE READAACCESS ); 
( COMMONAFCB, INFILE, INABLKBUF, INABLKBUFLEN 

,,,,, OUTFILE ); 

IF INTERACTIVE THEN 
! use in file as out file. 
@OUTFILE := @INFILE 

ELSE 

17-24 

BEGIN 
CALL SETAFILE (OUTFILE ' INITAFILEFCB ); 
CALL SETAFILE (OUTFILE, ASSIGNAF1 ILENAME, @BUFFER[21] ); 
CALL SETAFILE (OUTFILE, ASSIGNAOPENACCESS, WRITEAACCESS); 
CALL OPENAFILE ( COMMONAFCB ' OUTFILE ' OUTABLKBUF , 

OUTABLKBUFLEN ); 
! set duplicative file. 
CALL SETAFILE ( INFILE ' SETADUPFILE ' @OUTFILE ); 

END; 

./'f 82357 AOO 3/85 



SOURCE FILES 

SEQUENTIAL I/O PROCEDURES 
Source Files 

The source file named $SYSTEM.SYSTEM.GPLDEFS must be used with 
the SIO procedures. It provides the TAL defines and literals for 
allocating control block space, assigning open characteristics to 
a file, and for altering and checking file transfer 
characteristics. The TAL literals for the SIO procedures' error 
numbers are also included. This file must be referenced in the 
program's global area before any internal or external procedure 
declarations or within a procedure before any subprocedure 
declarations. 

SIO Considerations 

Trying to do I/O to a file that is not open results in ABEND. 

If a file is not open, SIO guarantees that the file number in the 
initialized FCB is -1. This can be verified by using the 
CHECKAFILE operation FILEAFNUMAADDR. 

All errors print only to the last error file specified. (Default 
is the home terminal.) 

SIO takes advantage of the assign message mechanism to set up 
logical file names; file names of up to 7 characters are allowed. 

SIO allows read or write access for files in EDIT format and 
access for blocked f iles--read-write access is not permitted. 

The SIO blocking buffers you specify for files in EDIT format 
must be of sufficient size. If the block size specified is too 
small, error 518, SIOERRABUFTOOSMALL, is returned. Minimum 
buffer block and buffer size requirements are noted under the 
OPENAFILE procedure later in this section. The buffer you pass 
to OPENAFILE for use with files in EDIT format must be large 
enough to contain the compressed text images and the page frame 
directory for the EDIT file. 

SIO has the capability to wait for a line printer or other device 
that is not ready. This can be important, for example, if you 
run a system without a Spooler. (SIO reacts, as does FUP, with a 
notice to the home terminal when a device is not ready.) 

SIO can write to all device types correctly--including writing to 
tape and appending the appropriate EOF marks. SIO CLOSEAFILE 
closes all files correctly and flushes the associated buffers. 
Failure to call CLOSEAFILE can lead to corrupted files. 

"''f 82357 AOO 3/85 17-25 



SEQUENTIAL I/O PROCEDURES 
SIO Considerations 

It is easier to rely on the BREAK handling capabilities of the 
SIO procedures than to do your own BREAK handling: in any case, 
do not mix your own BREAK handling procedures with those of SIO. 

If a checksum error occurs, you should assume that your FCB is 
ruined. This is usually caused by coding errors in your program. 
You should carefully check your program before starting over. 

If you want to write to a file in EDIT format, use the following 
specifications: 

CALL SETAFILE( OUTFILE, ASSIGNAOPENACCESS, WRITE~'ACCESS ): 
CALL OPENAFILE: !with block buffer length of 1024 or greater 

If you want to read a file in EDIT format, use: 

CALL SETAFILE( INFILE, ASSIGNAOPENACCESS, READAACCESS ): 
CALL OPENAFILE: !with block buffer length of 144 or greater 

For increased performance with files in EDIT format 1, use larger 
block sizes. If error 518 (SIOERRABUFTOOSMALL) occurs, it is 
recommended that you double the previously used buffer size 
before proceeding. Do not specify more than 16K bytes 
(including the directory). 

17-26 "1J 82357 AOO 3/85 



$RECEIVE HANDLING 

SEQUENTIAL I/O PROCEDURES 
$RECEIVE Handling 

Within the environment of the SIO procedures, the $RECEIVE file 
has two functions: 

• To check for break messages 

• To transfer data between processes 

Within the SIO procedures, these functions can be performed 
concurrently. It may be desirable to manage the $RECEIVE file 
independently of the SIO procedures, and to monitor BREAK using 
the SIO procedures. Therefore, the SETAFILE operation 
SETABREAKHIT enables the user's $RECEIVE handler to pass the 
BREAK information into the SIO procedure environment. 

The interaction between SIO procedures, $RECEIVE, and BREAK is 
limited by the following considerations: 

• SIO procedures assume that if you have opened $RECEIVE, you 
will read from it. BREAK messages are ignored if you do not 
read from $RECEIVE after opening it. 

• Although GUARDIAN allows a process to own BREAK on an 
arbitrary number of terminals, SIO supports BREAK ownership 
for only one terminal at a time. 

• SIO does not support BREAK access. In other words, it 
always issues SETMODE 11 with parameter 2 = 0. SETMODE 11 
is described at the end of Section 6; the BREAK feature is 
also discussed in Section 6. 

• If a process launches an offspring process that takes BREAK 
ownership, and the parent then calls CHECKABREAK, SIO will 
take BREAK ownership back. 

For more information on $RECEIVE, refer to Section 4. 

"i• 82357 AOO 3/85 17-27 



sgQUENTIAL I/O PROCEDURES 
Nowait I/O 

NOWAIT I/O 

If NOWAIT is specified at open time, the file is opened with a 
nowait I/O depth of one. Whether an individual operation is to 
be waited for is determined on a call-by-call basis. Nowait 
operations are completed by a call to WAIT""FILE. 

If it is desirable to wait for any file (as opposed to a 
particular file), you can call AWAITIO before calling WAIT""FILE. 
Depending on whether blocking is performed, a physical I/O 
operation may not always take place with a logical I/O operation. 
You can use the CHECK""FILE operation FILE""PHYSIOOUT to determine 
if a physical I/O operation is outstanding. The SET""FILE 
operations SET""PHYSIOOUT, SET""ERROR, and SET""COUNTXFERRED are 
provided to modify the FCB if the I/O is completed. The user 
must call WAIT""FILE following the call to AWAITIO for the file 
state information to be updated; for example, 

INT • IN""FNUM; 

@IN ..... FNUM := CHECK""FILE ( INFILE , FILE""FNUM""ADDR ); 
ERROR := O; 
WHILE 1 DO 

17-28 

BEGIN 
IF ERROR <> SIOERR""IORESTARTED THEN 

CALL READ""FILE ( INFILE , BUFFER , , , 1 ); no wait. 

FNUM := -1; 
CALL AWAITIO ( FNUM ,, COUNTREAD ,, 3000D ); 
IF FNUM = IN""FNUM THEN 

BEGIN 
CALL FILEINFO ( IN""FNUM , EHROR ); 
! set I/O done. 
CALL SET""FILE ( INFILE , SET""PHYSIOOUT , 0 ); 
! set count read. 
CALL SET""FILE (INFILE , SETACOUNTXFERRED, COUNTREAD); 
! set error code. 
CALL SET""FILE ( INFILE , SET""ERROR , ERROR ); 
IF ( ERROR := 

END 
ELSE 

WAIT""FILE ( INFILE , INFILE""COUNTREAD ) <> 
SIOERR""IORESTARTED THEN 

BEGIN ! completed. 
! 
! process read. 
! 

END; 

1l 82357 AOO 3/85 



SECTION 18 

FORMATTER 

The GUARDIAN operating system formatter provides you with the 
capability to format data while it is output and to convert 
data already input with a minimum of programming effort. The 
formatter consists of two procedures that can be called from 
user programs. 

The formatter procedures are: 

FORMATCONVERT converts an external format to internal form 
for presentation to the FORMATDATA procedure. 

FORMATDATA performs conversion between internal and 
external representation of data as specified by 
a format, or performs conversion of data using 
the list-directed rules. 

These two procedures are fully described in the System Procedure 
Calls Reference Manual. You will need to refer to that manual to 
use the parameters illustrated in the examples presented here. 

NOTE 

The decimal arithmetic package is required to use the 
formatter. 

The floating-point arithmetic package is needed when 
using the D, E, and G edit descriptors for output, 
or when floating-point variables are used. 

"'ft 82357 AOO 3/85 18-1 



FORMATTER 
Format-Directed Formatting 

FORMAT-DIRECTED FORMATTING 

The principal parameters to the formatter are a list of data 
elements, an array of buffers, and a format. 

The format is a list of edit descriptors, separated by commas, 
that are translated into internal form by FORMATCONV:E::RT for 
presentation to FORMATDATA. Edit descriptors may opt·ionally be 
preceded by one or more modifiers and/or decorations, enclosed 
in brackets ([]), specifying additional field formatting. The 
FORMATCONVERT procedure converts the external data into an 
internal form for presentation to the FORMATDATA procedure. 

The FORMATDATA procedure matches each data element with its 
associated edit descriptor, which specifies how it is to be 
displayed for output or how the buffer contents are to be 
interpreted for input. FORMATDATA proceeds through the list of 
edit descriptors, from left to right, in the order in which they 
were presented. If an edit descriptor is a nonrepeatable item, 
FORMATDATA processes it directly; if an edit descriptor is a 
repeatable i tern, FORMATDATA obtains the next data eliement from 
the data list and performs the data conversion specified by the 
edit descriptor. This processing continues until the data list 
is exhausted. 

Exceptions to the left-to-right processing are the repeat factor 
and format loopback. Any edit descriptor, or groups of edit 
descriptors enclosed in parentheses, can be applied repeatedly 
to a number of data values by a positive-integer repeat factor 
preceding the descriptor or group. If the end of the format is 
reached with unprocessed data elements remaining, format loopback 
selects the portion of the format to be interpreted again. 

The <variablelist> defines a sequence of variables or arrays 
that are to be processed by the FORMATDATA procedure. Each 
variable or element of an array in the <variablelist> is 
referred to as a data element. 

Format Characteristics 

A format directs the operation of the FORMATDATA procedure 
editing between the internal and external representation of data. 

18-2 .,, 82357 AOO 3/85 



FORMATTER 
Format Characteristics 

The form of a format is: 

{ fmt-item } [ separator fmt-item 
format: { } [ 

{ b-separator } [ [separator] b-separator 

{ nonrepeatable-edit-descriptor } 
fmt-item: { } 

{ field-group } 

field-group: [repeat] [mods] { group-spec } 

group-spec: 

repeat: 

mods: 

separator: 

{ repeatable-edit-descriptor } 
{ } 
{ "(" format ")" } 

an unsigned, nonzero integer 

" [ " 

{ , 

{ modifier 
{ 
{ decoration 

I : } 

} 
} , . . . 
} 

"]" 

b-separa tor: { I } 

repeatable 

] 
] 
] 

nonrepeatable 
edit descriptors edit descriptors modifiers decorations 

BN SP A G BN OC { p } 
BZ SS D I BZ RJ { M } { A 
H T E L FL SS { z }. .. { F 
string TL F M LJ { N } { p 
P TR { 0 } 
s x 

Some sample formats: 

I5,Fl0.2 

" NAME EXTENSION",//,(A20,3X,I4) 

3(" ITEM ACTIVITY",10X),//,3(M<99-9999>, 
5X,[BZ]I6,1X,10X) 

} 
} 
} 

Af' 82357 AOO 3/85 18-3 



FORMATTER 
Format Characteristics 

FORMATDATA matches each data element with its associated edit 
descriptor, which specifies how it is to be displayed for output 
or how the buffer contents are to be interpreted for input. 
FORMATDATA proceeds through your list (from left to iright) of 
edit descriptors in the order in which they are presented: 

1., If an edit descriptor is a repeatable item, FORMATDATA 
obtains the next data element from the data list and 
performs the data conversion specified by the edit 
descriptor. 

2., If an edit descriptor is a nonrepeatable item, 
FORMATDATA processes it directly. 

This processing continues until the data list is exhausted. 
If there are any data list items, you must include at least one 
repeatable edit descriptor in the format. 

The interpretation of the format terminates if any of these 
conditions are met: 

1.. FORMATDATA encounters a repeatable edit descriptc::>r in the 
format and there are no remaining data elements. 

2" FORMATDATA reaches the end of the format and there are no 
remaining data elements. 

3.. FORMATDATA encounters a colon edit descriptor in the 
format and there are no remaining data elements. 

A format is interpreted from left to right with the :following 
exceptions: 

1., If a field group contains a repeat factor, then the group 
specifications are processed the number of times indicated 
by the repeat factor before continuing with the following 
specifications. 

2" If FORMATDATA reaches the end of the format and data 
elements remain, format loopback occurs. Format loopback 
performs the following steps: 

18-4 

--The current buffer is terminated. 

--A new buffer is obtained. 

--The format is examined backwards (from right to left). 
If a right parenthesis that is not part of a string 
or Hollerith descriptor is encountered, the matching 
left parenthesis is found, and the format 
interpretation resumes at the left parenthesis. 
If a repeat factor precedes this left parenthesis, 

-'1 82357 AOO 3/85 



FORMATTER 
Format Characteristics 

processing resumes at the repeat factor. If the 
beginning of the format is reached and no right 
parenthesis is found, the format interpretation 
resumes at the beginning. 

--Reverse examination of the format position has no 
effect on the scale factor (set by P), the sign 
control (set by S, SP, or SS), or the blank control 
(set by BN or BZ). The condition in effect at the end 
of the format continues until altered by one of the 
controlling edit descriptors. 

Example 

This example shows how to use the formatter procedures for some 
simple output editing. It illustrates the setup for the variable 
list and the use of the <length> values returned from FORMATDATA. 

PROC EXAMPLE MAIN; 
BEGIN 

This structure defines the four-word form of variable list 
entry (the one without the null value pointer field). 

STRUCT VLEAREF (*); 
BEGIN 
INT ELEAPTR ; 
STRING ELEASCALE, ELEATYPE 
INT ELEALEN, ELEAOCCURS 
END ; 

This DEFINE provides one way to initialize the fields of a 
variable list entry. The SCALE, TYPE, LENGTH, and OCCURS 
values must be constants to use it. 

DEFINE VLEAINIT (ENT, V, SCALE, TYPE, LEN, OCCURS) = 
BEGIN 
ENT ':=' [0,SCALE '<<' 8 '+' TYPE, LEN, OCCURS] 
ENT.ELEAPTR := @V 
END #; 

This structure defines a buffer to make it easier to create 
an array of buffers. 

LITERAL BUFALEN = 100 
STRUCT BUFAREF (*) ; 

BEGIN 
STRING BYTES [O:BUFALEN-1] 
END ; 

"1J 82357 AOO 3/85 18-5 



FORMATTER 
Example 

The example format in external (ASCII) form. 

LITERAL EFORMATLEN = 60 ; 
STRING .EFORMAT [O:EFORMATLEN] := 

"20X,'SAMPLE OUTPUT' // I5,2X,Fl0.3,5(2X,I2),5X,A" 

Storage for the internal form of the format. 

LITERAL IFORMATLEN = 200 ; 
INT .WFORMAT [O:IFORMATLEN/2] ; 
STRING .!FORMAT := @WFORMAT '<<' 1 

Array of buffers and the length used in each. 

LITERAL NUMABUFS = 5 ; 
STRUCT .BUFFERS ( BUFAREF ) [O:NUMABUFS-1] 
INT .BUFALENS [O:NUMABUFS-1] 

Variable list array. 

STRUCT .VLIST ( VLEAREF ) [0:3] 

Data for the example. 

INT INTA16 := 7 
FIXED(2) QUAD := -437.57F ; 
INT(32) .INTA32AARRAY [0:4] := [lD, lD, 2D, 3D, 5D] 
STRING .CHARS [0:10] := "DEMO STRING" ; 

Miscellaneous data. 

INT .FILENAME [0:11] 
INT FILENO ; 
INT SCALES, ERROR, I ; 

Initialization. 

CALL MYTERM ( FILENAME ) ; 
CALL OPEN ( FILENAME, FILENO ) ; 

Convert the format to internal form. 
Note the way to ignore the SCALE information. 

SCALES := 0 ; 
ERROR := FORMATCONVERT ( !FORMAT, IFORMATLEN, EFOHMAT, 

EFORMATLEN, SCALES, SCALES, 1 ) 
IF ERROR <= 0 THEN BEGIN 

18-6 

! here if error in FORMAT 
END ; 

~ 82357 AOO 3/85 



FORMATTER 
Example 

Set up the variable list entries, both by using the DEFINE 
and by separate stores into the ITEM fields. 

VLE""INIT VLIST[O], INT""l6, 0, 2' 2, 1 ) . 
' ! SCALE 0, TYPE 2, LEN 2 BYTES, 1 OCCURRENCE 

VLE""INIT VLIST[l], QUAD, 2, 6, 8' 1 ) . 
' ! SCALE 2, TYPE 6, LEN 8 BYTES, 1 OCCURRENCE 

VLIST[2].ELE""PTR . -.- @INT""32""ARRAY ! VARIABLE ADDRESS 
VLIST[2].ELE""SCALE . - 0 ! SCALE 0 .-
VLIST[2].ELE""TYPE . - 4 TYPE 4 .-
VLIST[2].ELE"'"LEN . - 4 LENGTH 4 BYTES .-
VLIST[2].ELE""OCCURS ·-.- 5 5 OCCURRENCES 

VLE""INIT ( VLIST[3], CHARS, 0, 0, 11, 1 ) ; 
! SCALE 0, TYPE 0, LEN 11 BYTES, 1 OCCURRENCE 

Edit the data into the buffers. 

ERROR := FORMATDATA ( BUFFERS, BUF""LEN, NUM""BUFS, BUF""LENS, 
WFORMAT, VLIST, 4, 0 ) ; 

IF ERROR <> 0 THEN BEGIN 
! here if error in data conversion 

END ; 

Write the buffers used to the terminal. 

I : = 0 
WHILE I <= NUM""BUFS 

CALL WRITE 
I := I + 1 
END ; 

AND BUF""LENS[I] >= 0 DO BEGIN 
FILENO, BUFFERS[!], BUF""LENS[I] 

The output produced is the three lines shown below. 
The "I" character is used to show the buffer limits indicated 
in the BUF""LENS array: 

SAMPLE OUTPUT! 

7 -437.570 1 1 2 3 5 DEMO STRING! 

CALL STOP 

END ; EXAMPLE 

4J 82357 AOO 3/85 18-7 



FORMATTER 
Edit Descriptors 

EDIT DESCRIPTORS 

Edit descriptors are of two types: those that specify the 
conversion of data values (repeatable) and those that do not 
(nonrepeatable). The effect of repeatable edit descriptors can 
be altered through the use of modifiers or decorations, which are 
enclosed in brackets ([]) preceding the edit descriptors to which 
they refer. Within a format, all edit descriptors except buffer 
control descriptors must be separated by commas. Buffer control 
descriptors have the dual function of edit descriptors and format 
separators, and need not be set off by commas. 

All the descriptors, modifiers, and decorations are summarized 
here and fully explained following this summary. 

Summary of Nonrepeatable Edit Descript~rs 

The edit descriptors that are not associated with data items are 
of: six subtypes: 

• Tabulation 

• 

1. Tn --Tab absolute to nth character position 

2. TRn --Tab right 

3. TLn --Tab left 

4. nx --Tab right (same as TR) 

Literals 

1. Alphanumeric string enclosed in apostrophes('} or 
quotation marks (") 

2. Hollerith descriptor (nH followed by n characters) 

• Scale factor specification 

1. P --Implied decimal point in a number 

18-8 .., 82357 AOO 3/85 



FORMATTER 
Edit Descriptors 

• Optional plus control 

• 

These descriptors provide control of the appearance of an 
optional plus sign for output formatting. They have no 
effect on input. 

1. s --Do not supply a plus 

2. SP --Supply a plus 

3. SS --Do not supply a plus 

Blank interpretation control 

1. BN --Blanks ignored (unless entire field is blank) 

2. BZ --Blanks treated as zeros 

• Buffer control 

1. I --Terminate the current buffer, and then obtain a new one 

2. --Terminate formatting if no data elements remain 

Summary of Repeatable Edit Descriptors 

Repeatable edit descriptors direct the formatter to obtain the 
next data list element and perform a conversion between internal 
and external representation. They may be preceded by modifiers 
or decorations that alter the interpretation of the basic edit 
descriptor. Modifiers and decorations apply only to output 
conversion. They are allowed but ignored for input. 

The repeatable edit descriptors are: 

1. A --Alphanumeric (ASCII) 

2. D,E --Exponential form 

3. F --Fixed form 

4. G --General (E or F format depending on magnitude of data) 

5. I --Integer 

6. L --Logical 

7. M --Mask formatting 

~ 82357 AOO 3/85 18-9 



FORMATTER 
Edit Descriptors 

Summary of Modifiers 

Modifiers are codes that are used to alter the results of the 
formatting prescribed by the edit descriptors to which they are 
attached. They are: 

1. BN, BZ --Field blanking (if null, or zero) 

2. FL --Fill-character specification 

3. LJ, RJ --Left and right justification 

4. oc --Overflow-character modifier 

5. SS --Symbol substitution 

Summary of Decoratiohs 

Decorations specify alphanumeric strings that can be added to a 
field either before basic formatting is begun or after it is 
finished. A decoration consists of one or more codes that 
specify the conditions under which the string is to be added 
(based on the value of the data element or the occurrence 
overflow of the external field): 

1. M --Minus 

2. N --Null 

3. 0 --Overflow 

4. p --Plus 

5. z --Zero 

followed by a code that describes the position of the special 
editing: 

1. A (absolute) --at a specific character position within the 
field 

2. F (floating) --at the position the basic formatting finished 

3. p (prior) --at the position the basic formatting would 
have started 

followed by the character string that is to be included in the 
field if the stated conditions are met. 

18-10 Aft 82357 AOO 3/85 



FORMATTER 
Nonrepeatable Edit Descriptors 

NONREPEATABLE EDIT DESCRIPTORS 

The following descriptions show the form, function, and 
requirements for each of the nonrepeatable edit descriptors. 

Tabulation Descriptors 

The tabulation descriptors specify the position at which the next 
character is transmitted to or from the buffer. This allows 
portions of a buffer to be processed in an order other than 
strictly left to right, and permits processing of the same 
portion of a buffer more than once. 

The forms of the tabulation descriptors are as follows (n is an 
unsigned integer constant): 

Tn TLn TRn nX 

• Tn --indicates that the transmission of the next character to 
or from a buffer is to occur at the nth character position. 
The first character of the buffer is numbered 1. 

• TLn --indicates that the transmission of the next character to 
or from the buffer is to occur n positions to the left of the 
current position. 

• TRn --indicates that the transmission of the next character to 
or from the buffer is to occur n positions to the right of 
the current position. 

• nX --is exactly identical to TRn above. 

Each of these edit descriptors alters the current position but 
has no other effect. 

The current position may be moved beyond the limits of the 
current buffer (that is, become less than or equal to zero, or 
greater than <bufferlen>) without an error resulting, provided 
that no attempt is made by a subsequent edit descriptor to 
transmit data to or from a position outside the current buffer. 

Aft 82357 AOO 3/85 18-11 



FORMATTER 
Nonrepeatable Edit Descriptors 

Tab descriptors may not be used to advance to later buffers or 
to return to previous ones. The following examples illustrate 
tabulation descriptors: 

Data List Values 

100 
1000.49F 
"HELLO" 

Format 

No tabs I3,El2.4,A5 

x I3,El2.4,1X,A5 

TL I3,El2.4,TL3,A5 

TR I3,El2.4,TR5,A5 

T I3,El2.4,T3,A5 

100 
/\ /\ 

100 
/\ /\ 

100 
/\ /\ 

100 
/\ /\ 

Results 

0.1000E+04HELLO 
/\ /\ 

0.1000E+04 HELLO 
/\ /\ 

O.lOOOEHELLO 
/\ /\ 

0.1000E+04 HELLO 
/\ /\ 

10HELL01000E+04 
/\ /\ /\ /\ 

The "/\" marker denotes the boundaries of the output field. 

Literal Descriptors 

Literal descriptors are alphanumeric strings in either form: 

de c c 
1 2 3 

c d 
n 

OR nHc c c 
1 2 3 

c 
n 

d =either an apostrophe(') or a quotation mark("); 
the same character must be used for both the opening 
and closing delimiters. 

c = any ASCII character. 

n = an unsigned nonzero integer constant specif~ring the 
number of characters in the string; n cannot exceed 2558 

18-12 "1J 82357 AOO 3/85 



FORMATTER 
Nonrepeatable Edit Descriptors 

On input, a literal descriptor is treated as nx. 

A literal edit descriptor causes the specified character string 
to be inserted in the current buffer beginning at the current 
position. It advances the current position n characters. 

In a quoted literal form, if the character string to be 
represented contains the same character that is used as the 
delimiter, two consecutive characters are used to distinguish 
the data character from the delimiter; for example, 

To represent: Use: 

can't 'can' 't' or "can't" 

"can't" '"can' 't"' or """can't""" 

In the Hollerith constant form, the number of characters in the 
string (including blanks) must be exactly equal to the number 
preceding the letter H. There are no delimiter characters, so 
the characters are supplied exactly as they should appear in the 
buffer; for example, 

To represent: Use: 

can't 5Hcan't 

Scale-Factor Descriptor (P) 

The form of a scale-factor descriptor is: 

nP 

n = optionally signed integer in the range of -128 to 127. 

The value of the scale factor is zero at the beginning of 
execution of the FORMATDATA procedure. Any scale-factor 
specification remains in effect until a subsequent scale 
specification is processed. The scale factor applies to 
the D, E, F, and G edit descriptors, affecting them 
in the following manner: 

-'1J 82357 AOO 3/85 18-13 



FORMATTER 
Nonrepeatable Edit Descriptors 

1. On input, with D, E, F, and G edit descriptors (provided no 
exponent exists in the external field), the scale-factor 
effect is that the externally represented number equals the 
internally represented number multiplied by lO**n. 

2. On input, with D, E, F, and G edit descriptors, the scale 
factor has no effect if there is an exponent in the external 
field. 

3. On output, with D and E edit descriptors, the mantissa of 
the quantity to be produced is multiplied by lO**n, and the 
exponent is reduced by n. 

4. On output, with the F edit descriptor, the scale-factor 
effect is that the externally represented number equals the 
internally represented number multiplied by lO**n. 

5. On output, with the G edit descriptor, the effect of the 
scale factor is suspended unless the magnitude of the data to 
be processed is outside the range that permits the use of an 
F edit descriptor. If the use of the E edit descriptor 
is required, the scale factor has the same effect as with the 
E output processing. 

Optional Plus Descriptors (S, SP, SS) 

Optional plus descriptors may be used to control whether optional 
plus characters appear in numeric output fields. In the absence 
of explicit control, the formatter does not produce any optional 
plus characters. 

The forms of the optional plus descriptors are: 

[ s SP SS _] 
These descriptors have no effect upon input. 

If the S descriptor is encountered in the format, the formatter 
does not produce a plus in any subsequent position that normally 
contains an optional plus. 

18-14 .., 82357 AOO 3/85 



FORMATTER 
Nonrepeatable Edit Descriptors 

If the SP descriptor is encountered in the format, the 
formatter produces a plus in any subsequent position that 
normally contains an optional plus. 

The SS descriptor is the same as S (above). 

An optional plus is any plus except those appearing in an 
exponent. 

Blank Descriptors (BN, BZ) 

The blank descriptors have the following form: 

BN BZ 

These descriptors have no effect on output. 

The BN and BZ descriptors may be used to specify the 
interpretation of blanks, other than leading blanks, in numeric 
input fields. At the beginning of execution of the FORMATDATA 
procedure, nonleading blank characters are ignored. 

If a BZ descriptor is encountered in a format, all nonleading 
blank characters in succeeding numeric input fields are treated 
as zeros. 

If a BN descriptor is encountered in a format, all blank 
characters in succeeding numeric input fields are ignored. The 
effect of ignoring blanks is to treat the input field as if all 
blanks had been removed, the remaining portion of the field 
right-justified, and the blanks reinserted as leading blanks. 
However, a field of all blanks has the value zero. 

The BN and BZ descriptors affect the D, E, F, G, and I edit 
descriptors only. 

/1 82357 AOO 3/85 18-15 



FORMATTER 
Nonrepeatable Edit Descriptors 

Buffer Control Descriptors (/, :) 

There are two edit descriptors used for buffer control: 

I indicates the end of data list item transfer on the 
current buffer and obtains the next buffer. 'rhe 
current position is moved to 1 in preparation for 
processing the next buffer. 

indicates termination of the formatting provided 
there are no remaining data elements. 

• To clarify, the operation of the slash (/) is as follows for 
any positive integer n: 

--If n consecutive slashes appear at the end of a format, 
this causes n buffers to be skipped. 

--If n consecutive slashes appear within the format, this 
causes n-1 buffers to be skipped. 

• The colon (:) is used to conditionally terminate the 
formatting. If there are additional data list items, the 
colon has no effect. The colon can be of use when data items 
are preceded by labels, as in the following example: 

10(' NUMBER ',Il,:/) 

This group of edit descriptors is preceded by a repeat factor 
that specifies the formatting of ten data items, each one to be 
preceded by the label NUMBER. If there are fewer than ten data 
items in the data list, formatting terminates immediately after 
the last value is processed. If the colon is not present, 
formatting continues until the I edit descriptor is encountered 
for the fourth time. This means the fourth label is added before 
the formatting is terminated. 

18-16 .-, 82357 AOO 3/85 



FORMATTER 
Nonrepeatable Edit Descriptors 

The following example illustrates this usage: 

Data Items: 

1 
2 
3 

Format: 

With colon 

lO('NUMBER ',Il,:/) 

Results: 

NUMBER 1 
NUMBER 2 
NUMBER 3 

Without colon 

lO('NUMBER ',Il,/) 

NUMBER 1 
NUMBER 2 
NUMBER 3 
NUMBER I 

The "I" character is used to denote the boundaries of the output 
field. 

"'i' 82357 AOO 3/85 18-17 



FORMATTER 
Repeatable Edit Descriptors 

REPEATABLE EDIT DESCRIPTORS 

The following descriptions give the form, function, and 
requirements for each of the edit descriptors that specify 
formatting of data fields. The following edit descriptors can 
be preceded by an unsigned integer repeat factor to specify 
identical formatting for a number of values in the data list. 

The following descriptions of the operation of repeatable edit 
descriptors apply when no decorations or modifiers are present. 

The A Edit Descriptor 

The A edit descriptor is used to move characters between the 
buffer and the data element without conversion. This is normally 
used with ASCII data. 

The A edit descriptor has one of the following forms: 

Aw OR A 

w = an unsigned integer constant that specifies the width, 
in characters, of the field and may not exceed 255. 
The field processed is the next w characters 
starting at the current position. 

If w is not present, the field width is equal to the 
actual number of bytes in the associated data element, 
but cannot exceed 255. Values over 255 are reduced to 
255. 

After the field is processed, the current position 
is advanced by w characters. 

On output, the operation of the A edit descriptor is as follows: 

l~ The number of characters specified by w, or the number of 
characters in the data element, whichever is less, is moved to 
the external field. The transfer starts at the left character 
of both the data element and the external field unless an RJ 
modifier is affecting the descriptor, in which case the trans
ferring of characters begins with the right character of each. 

18-18 ~ 82357 AOO 3/85 



FORMATTER 
Repeatable Edit Descriptors 

2. If w is less than the number of characters in the data 
element, the field overflow condition is set. 

3. If w is greater than the number of characters in the data 
element, the remaining characters in the external field are 
filled with spaces (unless another fill character is specified 
by the FL modifier). 

It is not mandatory that the data element be of type character. 
For example, an INTEGER(l6) element containing the octal value 
%015536 corresponds to the ASCII characters "ESC" and "A", which 
can be output to an ADM-2 terminal using an A2 descriptor to 
control a blinking field on the screen; for example, 

Format Data Value External Field 

A 'WORD' WORDI 
A4 'WORD' WORD 
A3 'WORD' WORI (overflow set) 

[RJ]A3 'WORD' ORD (overflow set) 
A5 'WORD' WORD I 

[RJ]A5 'WORD' WORD 
A %044111 HII 

In the last example, the data value was stored in a 2-byte 
INTEGER. 

The "I" character is used to denote the boundaries of the 
output field. 

On input, the operation of the Aw edit descriptor is as 
follows: 

1. The number of characters specified by w, or the number of 
characters contained in the data element specified by n, 
whichever is less, is moved from the external field to the 
data element. The transfer begins at the left character of 
both the data element and the external field. 

2. If w is less n, the data element is filled with (n-w) blanks 
on the right. 

3. If w is greater than n, the leftmost n characters of the 
field are stored in the data element. 

"'1' 82357 AOO 3/85 18-19 



FORMATTER 
Repeatable Edit Descriptors 

The following examples illustrate these considerations: 

External Field Format Data Item Length Data Element Value 

HELLO I A5 5 characters 'HELLO' 
HELLO A3 3 characters 'HEL' 
HELLO I A6 6 characters 'HELLO ' 
HELLO I A5 6 characters 'HELLO ' 
HELLO A5 3 characters 'HEL' 

The " I " character is used to denote the boundaries of the input 
f :ield. 

The D Edit Descriptor 

The exponential edit descriptor is used to display or interpret 
data in floating-point form, usually used when data values have 
extremely large or extremely small magnitude. 

The D edit descriptor is of the form: 

Dw.d 

This descriptor is identical to the Ew.d descriptor. 

This edit descriptor is used in the same manner as the E edit 
descriptor (below). 

NOTE 

To use the D edit descriptor for output, floating-point 
firmware is required. 

The E Edit Descriptor 

The exponential edit descriptor is used to display or interpret 
data in floating-point form. It is usually used when data values 
have extremely large or extremely small magnitude. 

lB-20 "'1' 82357 AOO 3/85 



FORMATTER 
Repeatable Edit Descriptors 

The E edit descriptor has one of the following forms: 

Ew.d OR Ew.dEe 

w = an unsigned integer constant that defines the total 
field width (including the exponent) and can not 
exceed 255. The field processed is the w characters 
starting at the current position. After the field is 
processed, the current position is advanced by w 
characters. 

d = an unsigned integer constant that defines the number 
of digits that are to appear to the right of the 
decimal point in the external field. 

e = an unsigned integer constant that defines the number 
of digits in the exponent. If Ew.d is used, e takes 
the value 2. 

The input field consists of an optional sign, followed by a 
string of digits optionally containing a decimal point. A 
decimal point appearing in the input field overrides the portion 
of the descriptor that specifies the decimal point location. 
However, if you omit the decimal point, the rightmost d digits of 
the string, with leading zeros assumed if necessary, are 
interpreted as the fractional part of the value represented. The 
string of digits may be of any length. Those beyond the limit of 
precision of the internal representation are ignored. The basic 
form may be followed by an exponent in one of the following 
forms: 

1. Signed integer constant. 

2. E followed by zero or more blanks, followed by an optionally 
signed integer constant. 

3. D followed by zero or more blanks, followed by an optionally 
signed integer constant. 

An exponent containing a D is processed identically to an 
exponent containing an E. 

~ 82357 AOO 3/85 18-21 



FORMATTER 
Repeatable Edit Descriptors 

On output, the field (for a scale factor of zero) appears in the 
following form: 

{[+]} [O].n n ••• n E {+} e e ••• e 
{-} 1 2 e { - } 1 2 d 

{[+]} 
{ - } 

n n ... 
1 2 

E 

{+} 
{-} 

e e 
1 2 

n 
d 

e 
e 

indicates an optional plus or a minus. 

are the d most significant digits of the 
value of the data after rounding. 

signals the start of the decimal exponent. 

indicates that a plus or minus is required. 

are the e most significant digits of the 
exponent. 

The sign in the exponent is always displayed. If the exponent is 
zero, a plus sign is used. 

If the data is negative, the minus sign is always displayed. If 
the data is positive (or zero), the display of the plus sign is 
dependent on the last optional plus descriptor processed. 

The zero preceding the decimal point is normally displayed, but 
may be omitted to prevent field overflow. 

Decimal normalization is controlled by the scale factor 
established by the most recently interpreted nP edit 
descriptor. If -d < n ~ 0, the output value has lnl leading 
zeros, and (d-lnl) significant digits follow the decimal point; 
if 0 < n < d+2, the output value has n significant digits to the 
left of the decimal point and d-n+l digits to the right. If the 
number of characters produced exceeds the field width or if an 
exponent exceeds its specified length using the Ew.dEe field 
descriptor, the entire field of width w is filled with asterisks. 
However, if the field width is not exceeded when optional 
characters are omitted, the field is displayed without the 
optional characters. 

Because all characters in the output field are included in the 
field width, w must be large enough to accommodate the exponent, 
the decimal point, and all digits and the algebraic sign of the 
base number. 

18-22 ~ 82357 AOO 3/85 



FORMATTER 
Repeatable Edit Descriptors 

The following examples illustrate output: 

Format 

El2.3 
El2.3 
El2.3 
El2.6El 

Data Value 

8.76543 x 10 
-0.55555 
123.4567 

3.14159 

Result 

0.877E-05 
-0.556E+OO 

0.123E+03 
0.314159E+l 

The "I" character is used to denote the boundaries of the output 
field. 

NOTE 

To use the E edit descriptor for output, floating-point 
firmware is required. 

The following examples illustrate input: 

External Field 

0.100E+03 
100.05 

12345 

Format 

El2.3 
El2.5 
El2.3 

Data Element Value 

100 
100.05 

12.345 

The "I" character is used to denote the boundaries of the output 
field. 

The F Edit Descriptor 

The fixed-format edit descriptor is used to display or interpret 
data in fixed point form. 

The F edit descriptor has the following.forms: 

Fw.d OR Fw.d.m 

w = an unsigned integer constant that defines the total 
field width and cannot exceed 255. The field 
processed is the w characters starting at the 
current position. After the field is processed, 
the current position is advanced by w characters. 

-1" 82357 AOO 3/85 18-23 



FORMATTER 
Repeatable Edit Descriptors 

d = an unsigned integer constant that defines the number 
of digits that are to appear to the right of the 
decimal point in the external field. 

m = an unsigned integer constant that defines the number 
of digits that must be present to the left of the 
decimal point on output. 

On input, the Fw.d edit descriptor is the same as the Ew.d 
edit descriptor. 

The output field consists of blanks if necessary, followed by a 
minus if the internal value is negative or an optional plus 
otherwise. This is followed by a string of digits that contains 
a decimal point and represents the magnitude of the internal 
value, as modified by the established scale factor and rounded to 
the d fractional digits. If the magnitude of the value in the 
output field is less than one, there are no leading ~~eros except 
for an optional zero immediately to the left of the decimal 
point. The optional zero must appear if there would otherwise be 
no digits in the output field. If the Fw.d.m form is used, 
leading zeros are supplied if needed to satisfy the requirement 
of m digits to the left of the decimal point~ for example, 

Format 

Fl0.4 
Fl0.4 

Fl0.4.3 

Data Value 

123.4567 
0.000123 

-4.56789 

Result 

123.4567 
0.0001 

-004.5679 

The "I" character is used to denote the boundaries of the output 
field. 

The G Edit Descriptor 

The general format edit descriptor can be used in place of either 
the E or the F edit descriptor, since it has a combination of 
the capabilities of both. 

18-24 ~ 82357 AOO 3/85 



FORMATTER 
Repeatable Edit Descriptors 

The G edit descriptor has either of the forms: 

Gw.d OR Gw.dEe 

w = an unsigned integer constant that defines the total 
field width and may not exceed 255. The field 
processed is the w characters starting at the 
current position. After the field is processed, 
the current position is advanced by w characters. 

d = an unsigned integer constant that defines the number 
of significant digits that are to appear in the 
external field. 

e = an unsigned integer constant that defines the number 
of digits in the exponent, if one is present. 

On input, the G edit descriptor is the same as the E edit 
descriptor. 

The method of representation in the output field depends on the 
magnitude of the data being processed, as follows: 

Magnitude 

Not Less Than 

0.1 
1.0 

10.0 

. 
10 ** (d-2) 
10 ** (d-1) 

10 ** d 

of Data 

Less Than 

0.1 
1.0 

10.0 
100.0 

10 ** (d-1) 
10 ** d 

Equivalent Conversion 
Effected 

Ew.d or Ew.dE~ 
F(w-n).d,n(' ' ) 
F(w-n). (d-1) ,n(' 
F(w-n). (d-2) ,n(' 

. 
F(w-n) .l,n(' ') 
F(w-n) .O,n(' ') 

Ew.d or Ew.dEe 

' ) 
' ) 

The value of n is 4 for Gw.d format and (e+2) for Gw.dEe format. 
Then(' ')used in the above example indicates nth number of 
blanks. If the F form is chosen, then the scale factor is 
ignored. The following comparison between F formatting and 
G formatting is given by way of illustration: 

"1J 82357 AOO 3/85 18-25 



FORMATTER 
Repeatable Edit Descriptors 

Value 

.01234567 

.12345678 
1.23456789 

12.34567890 
123.45678900 

1234.56789000 
12345.67890000 

123456.78900000 
1234567.89000000 

F 
Fl3.6 Conversion 

0.012346 
0.123457 
1.234568 

12.345679 
123.456789 

1234.567890 
12345.678900 

123456.789000 
************* 

G 
Gl3.6 Conversion 

0.123457E-Ol 
0.123457 
1.23457 
12.3457 
123.457 
1234.57 
12345.7 
123457. 

0.123457E+07 

When an overflow condition occurs in a numeric field, the field 
is filled with asterisks (in the absence of any specification to 
the contrary by an overflow decoration), as shown above. 

The "I" character is used to denote the boundaries of the output 
field. 

NOTE 

To use the G edit descriptor for output, floating-point 
firmware is required. 

The I Edit Descriptor 

The integer edit descriptor is used to display or interpret 
data values in an integer form. 

The I edit descriptor has the following forms: 

Iw OR Iw.m 

w = an unsigned integer constant that defines the total 
width of the field and cannot exceed 255. The field 
processed is the w characters starting at the 
current position. After the field is processed, 
the current position is advanced by w characters. 

m = an unsigned integer constant that defines the number 
of digits that must be present in the field on 
output. 

18-26 ~ 82357 AOO 3/85 



FORMATTER 
Repeatable Edit Descriptors 

On output, the external field consists of zero or more leading 
blanks (followed by a minus if the value of the internal data 
is negative, or an optional plus otherwise), followed by the 
magnitude of the internal value in the form of an unsigned 
integer constant without leading zeros. An integer constant 
always consists of at least one digit. The output from an Iw.m 
edit descriptor is the same as the above, except that the 
unsigned integer constant consists of at least m digits and, if 
necessary, has leading zeros. The value of m must not exceed the 
value of w. If m is zero and the internal data is zero, the 
output field consists only of blank characters, regardless of the 
sign control in effect; for example, 

Format 

I7 
I7.2 
I7.6 
I7.6 

Data Value 

100 
-1 

100 
-1 

Result 

100 
-01 

000100 
-000001 

The "I" character is used to denote the boundaries of the output 
field. 

On input, an Iw.m edit descriptor is treated identically to an 
Iw edit descriptor. The edit descriptors Iw and Iw.m indicate 
that the field to be edited occupies w positions. In the input 
field, the character string must be in the form of an optionally 
signed integer constant, except for the interpretation of blanks. 
Leading blanks on input are not significant, and the 
interpretation of any other blanks is determined by blank control 
descriptors (BN and BZ); for example, 

External Field Format Data Element Value 

100 I7 100 
-01 I7 -1 

1 I7 1 
1 BZ, I 7 1000 

1 2 BZ, I 7 10200 
1 2 BN, I 7 12 

The "I" character is used to denote the boundaries of the output 
field. 

The L Edit Descriptor 

The logical edit descriptor is used to display or interpret data 
in logical form. The L edit descriptor has the form: 

"1l 82357 AOO 3/85 18-27 



FORMATTER 
Repeatable Edit Descriptors 

Lw 

w = an unsigned integer constant that defines the width 
of the field and cannot exceed 255. The field 
processed is the w characters starting at the 
current position. After the field is processed, 
the current position is advanced by w characters. 

On output, the L edit descriptor causes the associated data 
element to be evaluated in a logical context, and a single 
character is inserted right-justified in the output field. If 
the data value is null, the character is blank. If the data 
value is zero, the character is F: for all other cases, the 
character is T: for example, 

Format 

L2 
L2 
L2 

Data Value 

-1 
15769 

0 

Result 

T 
T 
F 

The "I" character is used to denote the boundaries of the output 
field. 

The input field consists of optional blanks, optionally followed 
by a decimal point, followed by an uppercase T for true 
(logical value -1) or an uppercase F for false (logical value 0). 
The T or F may be followed by additional characters in the field. 
The logical constants .TRUE. and .FALSE. are acceptatble input 
forms: for example, 

External Field Format Data Element Value 

T L7 -1 
F L7 0 

.TRUE. L7 -1 
.FALSE. L7 0 
TUGBOAT L7 -1 
FARLEY L7 0 

The " I " character is used to denote the boundaries of the output 
field. 

18-28 Af' 82357 AOO 3/85 



FORMATTER 
Repeatable Edit Descriptors 

The M Edit Descriptor 

The mask formatting edit descriptor edits either alphanumeric or 
numeric data according to an editing pattern or mask. Special 
characters within the mask indicate where digits in the data are 
to be displayed; other characters are duplicated in the output 
field as they appear in the mask. 

The M edit descriptor has the form: 

M<mask> 

<mask> = a character string enclosed in a pair of 
apostrophes('), a pair of quotation marks("), 
or less-than and greater-than symbols (<>). The 
string supplied must not exceed 255 characters. 

The M edit descriptor is not allowed for input. 

Characters in a mask that have special functions are: 

Z --Digit selector 

9 --Digit selector 

V --Decimal alignment character 

. --Decimal alignment character 

The field width w is determined by the number of characters, 
including spaces but excluding Vs, between the mask delimiters. 
The field processed is w characters starting at the current 
position. After the field is processed, the current position is 
advanced by w characters. Except for the decimal point alignment 
character, V, each character in the mask either defines a char
acter position in the field or is directly inserted in the field. 

The M edit descriptor causes numeric data elements to be 
rounded to the number of positions specified by the mask. String 
data elements are processed directly. Each digit or character of 
a data element is transferred to the result field in the next 
available character position that corresponds to a digit selector 
in the mask. If the digit selector is a 9, it causes the 
corresponding data digit to be transferred to the output field. 
The digit selector z causes a nonzero, or embedded zero, digit 

/1 82357 AOO 3/85 18-29 



FORMATTER 
Repeatable Edit Descriptors 

to be transferred to the field, but inserts blanks in place of 
leading or trailing zeros. Character positions must be 
allocated, by z digit selectors, within the mask to provide for 
the inclusion of any minus signs or decoration character strings. 

A decimal point in the mask can be used for decimal point 
alignment of the external field. The letter V can atlso be used 
for this purpose. If a V is present in the mask, the decimal 
point is located at the V, and the position occupied by the V 
is deleted. If no V is present, the decimal point is located 
at the rightmost occurrence of the decimal point character 
(usually"."). If neither a V nor a decimal point character is 
present, the decimal point is assumed to be to the right of the 
rightmost character of the entire mask. 

Although leading and trailing text in a mask is always 
transferred to the result field, text embedded between digit 
selectors is transferred only if the corresponding digits to the 
right and left are transferred. 

For example, a value that is intended to represent a date can be 
formatted with an M field descriptor as follows: 

Format Data Value Result 

M"99/99/99" 103179 110/31/791 

The following is a comparison of the effects of using the 9 and 
z as digit selectors. The minus sign in the preceding examples 
is the symbol that is automatically displayed for negative values 
in the absence of any specification to the contrary by a 
decoration. As shown in the preceding examples, a decimal point 
in the mask can be used for radix point alignment of the external 
field. Additional examples follow here: 

Format Data Values Result ----
3M<Z99.99> -27.40, 12, 0 -27.40 12 .. 00 00.00 

/\ /\ /\ 

3M<ZZ9.99> -27.40, 12, 0 -27.40 12 .. 00 0.00 
/\ /\ /\ 

3M<ZZZ.99> -27.40, 12, 0 -27.40 12 .. 00 00 
/\ /\ /\ 

The "/\" marker is used to denote the boundaries of the output 
field. 

18-30 Af' 82357 AOO 3/85 



FORMATTER 
Repeatable Edit Descriptors 

In the example below, a comma specified as mask text is not 
displayed. 

Format Data Value Result 

M'Z,ZZ9.99' 32.009 32.0ll 

The "!"character is used to denote the boundaries of the output 
field. 

Compare the different treatment of the embedded commas in the 
following examples: 

Data Values: 298738472, 389487.987, 666, 0.35 

Format One: M<$ ZZZ,ZZZ,ZZ9 AND NO CENTS> 

Format Two: M<$ 999,999,999 AND NO CENTS> 

Format One Format Two 

$ 298,738,472 AND NO CENTS 
$ 389,488 AND NO CENTS 
$ 666 AND NO CENTS 
$ 0 AND NO CENTS 

$ 298,738,472 AND NO CENTS 
$ 000,389,488 AND NO CENTS 
$ 000,000,666 AND NO CENTS 
$ 000,000,000 AND NO CENTS 

The M edit descriptor can be useful in producing visually 
effective reports, by formatting values into patterns that are 
meaningful in terms of the data they represent. For example, 
assume that four arrays contain the following data: 

Amount 
Date 
District 
Telephone 

:= 9758 21573 15532 
:= 031777 091779 090579 
:= 'WEST' ,'MIDWEST' ,'SOUTH' 
:= 2135296800,2162296270,4047298400 

The following format can then be used to output the data as a 
table whose entries are in familiar forms. Assuming the elements 
are presented to the formatter in the order: the first elements 
of each array, followed by the second elements of each array, 
and so on, using this format: 

M<$ZZ,ZZ9>,M< Z9/Z9/99>,3X,A8,M< 

the result would be: 

$ 9,758 
$21,573 
$15,532 

/iJ 82357 AOO 3/85 

3/17/77 
9/17/79 
9/ 5/79 

WEST 
MIDWEST 
SOUTH 

(999) 999-9999> 

(213) 529-6800 
(216) 229-6270 
(404) 729-8400 

18-31 



FORMATTER 
Modifiers 

MODIFIERS 

Modifiers alter the normal effect of edit descriptors. Modifiers 
immediately precede the edit descriptor to which they apply. If 
modifiers immediately precede the left parenthesis of a group, 
the modifiers apply to each repeatable edit descriptor within the 
group. They are enclosed in brackets, and if more than one is 
present, they are separated by commas. 

NOTE 

Modifiers are effective only on output. If they are 
supplied for input, they have no effect. 

Field-Blanking Modifiers (BN, BZ) 

There are two modifiers for blanking fields: 

BN = blank field if null. 

BZ = blank field if equal to zero. 

Although most edit descriptors cause a m1n1mum number of 
characters to be output, a field-blanking modifier causes the 
entire field to be filled with spaces if the specified condition 
is met. The null value is the value addressed by the <nullptr> 
in the <variablelist> entry for the current data element. 

Fill-Character Modifier (FL) 

When an alphanumeric data element contains fewer characters than 
the field width specified by an Aw edit descriptor, when leading 
or trailing zero suppression is performed, or when embedded text 
in an M edit descriptor is not output because its neighboring 
digits are not output, a fill character is inserted in each 
appropriate character position in the output field. The fill 
character is normally a space, but the fill-character modifier 
can be used to specify any other character for this purpose. 

18-32 ~ 82357 AOO 3/85 



The fill-character modifier has the form: 

FL <char> 

FORMATTER 
Modifiers 

<char> = any single character, enclosed in quotation marks 
or apostrophes. 

The following are examples of fill-character replacement: 

Format 

[FL'.' ]AlO 
[RJ,FL">"]AlO 

[FL"*"]M<$ZZ,ZZ9.99> 

Data Value 

'THEN' 
'HERE' 
127.39 

Result 

THEN •.•.•• 
>>>>>>HERE 
$***127.39 

The "I" character is used to denote the boundaries of the output 
field. 

Overflow-Character Modifier (OC) 

The overflow condition occurs if there are more characters to be 
placed into a field than there are positions provided by the edit 
descriptors. In the absence of any modifier or decoration to the 
contrary, if an overflow condition occurs in a numeric field, the 
field is filled with asterisks (*). This applies to the D, E, F, 
G, I, and M edit descriptors. The OC modifier can be used to 
substitute any other character for the asterisk as the overflow 
indicator character. 

The OC modifier has the form: 

OC <char> 

<char> = any single character, enclosed in quotation 
marks or apostrophes. 

/1 82357 AOO 3/85 18-33 



FORMATTER 
Me>dif iers 

For example, the modifier [OC '!']causes the output field to 
be filled with exclamation marks, instead of asterisks, if an 
overflow occurs: 

Format Data Value Results 

[OC' ! ']I 2 100 

The ~I" character is used to denote the boundaries of the output 
field. 

Justification Modifiers (LJ, RJ~ 

The A edit descriptor normally displays the data left justified 
in its field. 

The justification modifiers are: 

LJ - Left justify (normal) 

RJ - Right justify (data is displayed right justified) 

The RJ and LJ modifiers are used with the A edit descriptor only. 

Symbol-Substitution Modifier (SS) 

The symbol-substitution modifier permits the user to replace 
certain standard symbols used by the formatter with other 
symbols. It can be used with the M edit descriptor to free the 
special characters 9, V, ".", and Z for use as text characters 
in the mask. It can also be used with the D, E, F, and G edit 
descriptors to alter the standard characters they insert in the 
result field. 

The symbol substitution modifier has the form: 

18-34 /1 82357 AOO 3/85 



FORMATTER 
Modifiers 

SS <symprs> 

<symprs> = one or more pairs of symbols enclosed in 
quotation marks or apostrophes. The first 
symbol in each pair is one of those in the 
following table; the second is the symbol 
that is to replace it temporarily. 

The following formatting symbols can be altered by the SS 
modifier: 

Symbol 

9 

z 

v 

Function 

Digit selector (M format) 

Digit selector, zero suppression (M format) 

Decimal alignment character (M format) 

Decimal point (D, E, F, G, and M format) 

The following examples show how the SS modifier can be used to 
permit decimal values to be displayed as clock times, to follow 
European conventions (where a comma is used as the decimal point 
and periods are used as digit group separators), or to alter the 
function of the digit selectors in the M edit descriptor. When 
using the symbol substitution with a mask format, to obtain the 
function of one special character which is being altered by the 
symbol substitution, use the new character of the pair. With all 
other formats, use the old character of the pair; for example: 

Data Value Format Result 

12.45 [SS".:"]F6.2 12:451 

12.45 [SS".:"]M<ZZZ:99> 12:451 

12345.67 [SS'.,']Fl0.2 12345,671 

103179 [SS<9X>]M<XX/XX/19XX> 110/31/19791 

The "I" character is used to denote the boundaries of the output 
field. 

~ 82357 AOO 3/85 18-35 



FORMATTER 
Modifiers 

The following table indicates which modifiers may be used with 
which edit descriptors (Y stands for yes, the combination is 
permitted). 

EDIT DESCRIPTORS 

A E,D F G I L M 

----

BZ,BN y y y y y y y 

-t-- r--

M LJ,RJ y 
0 
D 

-~~~~.~ ··-·-···--- I---

I oc y y y y y y 
F 
I 

--- -·-·- t--

E FL y y y y y y 
R 
s 

SS y y y y 

-

18-36 "'1J 82357 AOO 3/85 



FORMATTER 
Decorations 

DECORATIONS 

A decoration specifies a character string that may be added to 
the result field, the conditions under which the string is to be 
added, the location at which the string is to be added, and 
whether it is to be added before normal formatting is done or 
after it is completed. 

You can use multiple decorations, separated by commas, with the 
same edit descriptor. Decorations are enclosed in brackets 
(together with any modifiers) and immediately precede the edit 
descriptor to which they apply. If modifiers immediately precede 
the left parenthesis of a group, the modifiers apply to each 
repeatable edit descriptor within the group. 

When a field is processed, the floating decorations appear in the 
same order, left to right. If an edit descriptor within a group 
already has some decorations, the decorations that are applied to 
the group function as if they were placed to the right of the 
decorations already present. A decoration has the form: 

{ M } { M } 
{ N } { F } <string> OR { N } 
{ p } { p } { p } ... An <string> 
{ z } { z } 

{ 0 } 

Character 1 = Field condition specifier: M - Minus 
N - Null 
0 - Overflow 
p - Plus 
z - Zero 

Character 2 = String location specifier: A - Absolute 
F - Floating 
P - Prior 

n = an unsigned nonzero integer constant that 
specifies the actual character position 
within the field at which the string is to 
begin. 

<string> = any character string enclosed in quotation 
marks or apostrophes. 

~ 82357 AOO 3/85 18-37 



FORMATTER 
Decorations 

NOTE 

Only location type An can be used in combination with 
the O condition. 

Conditions 

The condition specifier states that the string is to be added to 
the field if its value is minus, zero, positive, or null, or if a 
field overflow has occurred. A null condition takes precedence 
over negative, positive, and zero conditions: the overflow test 
is done after those for the other conditions, and therefore 
precedence is not significant. Alphanumeric data ele~ments are 
considered to be positive or null only. 

A decoration may have more than one condition specifier. If 
multiple condition specifiers are entered, an "or" condition is 
understood. For example, "ZPA2'+' " specifies that the string is 
to be inserted in the field if the data value is equal to or 
greater than zero. 

Locations 

The location specifier indicates where the string is to be 
added to the field. 

The A specifier states that the string is to begin in absolute 
position n within the field. The leftmost position of the 
field is position 1. 

The F specifier states that, once the number of data characters 
in the field has been established, the string is to occupy the 
position or positions (for right-justified fields) immediately to 
the left of the leftmost data character. This is reversed for 
left-justified elements. 

The P specifier states that, prior to normal formatting, the 
string is to be inserted in the rightmost (for right-·justified 
fields) end of the field: data characters are shifted to the left 
an appropriate number of positions. This is reversed for 
left-justified fields. 

18-38 ~ 82357 AOO 3/85 



Processing 

Decoration processing is as follows: 

FORMATTER 
Decorations 

1. The data element is determined to have a negative, positive, 
zero, or null value; a null condition takes precedence over 
the other attributes. 

2. If a P location decoration is specified and its condition is 
satisfied, its string is inserted in the field. 

3. Normal formatting is performed. 

4. If A or F decorations are specified and their conditions met, 
they are applied. 

5. If an attempt is made to transfer more characters to the 
field than can be accommodated (in step 2, 3, or 4), the 
overflow condition is set. If an overflow decoration has 
been specified, it is applied. 

NOTE 

Only location type An can be used with the O condition. 

The following examples illustrate these considerations: 

Format 

[MF ' < ' , MP ' > ' , Z PP ' ' ] F 12 . 2 
[MF ' < ' , MP ' > ' , Z PP ' ' ] F 12 . 2 

[MAl'CR' ,MPF'$']Fl2.2 
[MAl'CR' ,MPF'$']Fl2.2 

[0Al<**OVERFLOW**>]Fl2.2 
[0Al<**OVERFLOW**>]Fl2.2 

Data Value 

1000.00 
-1000.00 

1000.00 
-100.00 

1000000.00 
10000000.00 

Result 

1,000.00 
<1,000.00> 

$1,000.00 
CR $100.00 
1,000,000.00 
**OVERFLOW** 

The "I" character is used to denote the boundaries of the output 
field. 

NOTE 

The following decorations are automatically applied to any 
numeric edit descriptor (D, E, F, G, I, or M) for which no 
decoration has been specified: 

MF'-' 
OAl'*** 

"" 82357 AOO 3/85 

*' (The number of asterisks is equal to the 
number of characters in the field width.) 

18-39 



FORMATTER 
List-Directed Formatting 

However, if any decoration with a condition code relating 
to the sign of the data is specified, the automatic 
"MF'-'" decoration no longer applies; if negative·-value 
indication is desired, you must supply the appropriate 
decoration. If any decoration with a condition code 
relating to overflow is specified, the automatic 
"OAl'***···*'" decoration no longer applies. 

As an example of how decorations apply to a group of edit 
descriptors, the following formats give the same results: 

Format 

[MF' - ' ] { F 10. 2 , [ MZF' * * ' ] F 10. 2) 

[ MF ' - ' ] F 1 0 • 2 , [ M Z F ' * * ' , MF ' - ' ] F 1 0 . 2 

Using the format above: 

Data Values 

0,0 
/\ 

1,1 
/\ 

-1,-1 
/\ 

Results 

o.oo 
/\ 

1.00 
/\ 

**0.00 
/\ 

1.00 
/\ 

-1.00 
/\ 

**-1.00 
/\ 

The "/\" marker is used to denote the boundaries of the output 
field. 

LIST-DIRECTED FORMATTING 

List-directed formatting provides the data conversion 
capabilities of the formatter without requiring the specification 
of a format. The FORMATDATA procedure determines the details of 
the data conversion, based on the types of the data elements. 
This is particularly convenient for input because the 
list-directed formatting rules provide for free-format input of 
data values rather than requiring data to be supplied in fixed 
fields. There are fewer advantages to using list-directed 
formatting for output because the output data is not necessarily 
arranged in a convenient readable form. 

The characters in one or more list-directed buffers constitute a 
sequence of data-list items and value separators. Each value is 
either a constant, a null value, or one of the following forms: 

18-40 .-, 82357 AOO 3/85 



FORMATTER 
List-Directed Formatting 

r*c r* 

r is an unsigned, nonzero, integer constant. 

r*c form is equivalent to r successive appearances of 
the constant c. 

r* form is equivalent to r successive null values. 

Neither of these forms may contain embedded blanks, 
except where permitted with the constant c. 

List-Directed Input 

All input forms that are acceptable to FORMATDATA when directed 
by a format are acceptable for list-directed input, with the 
following exceptions: 

1. When the data element is a complex variable, the input form 
consists of a left parenthesis followed by an ordered pair of 
numeric input fields separated by a comma and followed by a 
right parenthesis. 

2. When the data element is a logical variable, the input form 
must not include either slashes or commas among the optional 
characters for the L editing. 

3. When the data element is a character variable, the input form 
consists of a string of characters enclosed in apostrophes. 
The blank, comma, and slash may appear in the string of 
characters. 

4. A null value is specified by having no characters other than 
blanks between successive value separators, no characters 
preceding the first value separator in the first buffer, or 
the r* form. A null value has no effect on the value of the 
corresponding data element. The input list item retains its 
previous value. A single null value must represent an entire 
complex constant (not just part of it). 

If a slash value separator is encountered during the processing 
of a buffer, data conversion is terminated. If there are 
additional elements in the data list, the effect is as if null 
values had been supplied for them. 

~ 82357 AOO 3/85 18-41 



FORMATTER 
List-Directed Formatting 

On input, a value separator is one of the following: 

1. A comma or slash optionally preceded or optionally followed 
by one or more contiguous blanks (except within a character 
constant). 

2. One or more contiguous blanks between two constants or 
following the last constant (except embedded blanks 
surrounding the real or imaginary part of a complex 
constant). 

3. The end of the buffer (except within a character constant). 

List-Directed Output 

Output forms that are produced by list-directed output are the 
same as that required for input with the following exceptions: 

1. The end of a buffer may occur between the comma and the 
imaginary part of a complex constant only if the entire 
constant is as long as, or longer than, an entire buffer. 
The only embedded blanks permitted within a complex constant 
are between the comma and the end of a buffer, and one blank 
at the beginning of the next buffer. 

2. Character values are displayed without apostrophes. 

3. If two or more successive values in an output record produced 
have identical values, the FORMATDATA procedure produces a 
repeated constant of the form r*c instead of the sequence 
of identical values. 

4~ Slashes, as value separators, and null values are not 
produced by list-directed output. 

For output, the value separator is a single blank. A value 
separator is not produced between or adjacent to character 
values. 

18-42 -'1 82357 AOO 3/85 



APPENDIX A 

PROCEDURE SYNTAX SUMMARY 

The list on the following pages gives the abbreviated form of 
the calling syntax for the GUARDIAN operating system procedures 
and related Tandem software procedures callable by user programs. 
The full syntax for each of these procedures appears in the 
System Procedure Calls Reference Manual. 

In the following procedure syntax overview, input parameters 
(those that pass data from the calling program to the called 
procedure) are followed by an "i" which indicates input. Output 
parameters (those that return data from the called procedure to 
the calling program) are followed by an "o" which indicates 
output. When a parameter can be both input and output, it is 
followed by "i, o". 

CALL ABEND; 

<status> := ABORTTRANSACTION; 

CALL ACTIVATEPROCESS ( <process-id> ); 

CALL ACTIVATERECEIVETRANSID ( <message-tag> ); 

CALL ADDDSTTRANSITION ( <low-gmt> 
,<high-gmt> 
,<offset> ); 

~ 82357 AOO 3/85 

i 

i 

i 
i 
i 

A-1 



APPENDIX A: SYSTEM PROCEDURE CALLS SYNTAX SUMMARY 

<status> := ALLOCATESEGMENT ( <segment-id> 
,[ <segment-size> ] 
, [ <file name> ] 
,[<pin> ] ); 

CALL ALTERPRIORITY ( <process-id> 
, <priority> ) ; 

CALL ARMTRAP ( <traphandlr-addr> 
,<trapstack-addr> ); 

CALL AWAITIO ( <f ilenum> 
,[ <buffer-addr> ] 
,[ <count-transferred> ] 
,[ <tag> ] 
,[ <timelimit> ] ); 

<status> := BEGINTRANSACTION ( <trans-begin-tag> 

<contrl-chars> := BLINKASCREEN ( @<screen-name> 
,SCREEN 
,<buffer> 
,<field-name> 
,<blink> ); 

CALL CANCEL ( <filenum> ); 

CALL CANCELPROCESSTIMEOUT ( <tag> ); 

CALL CANCELREQ ( <f ilenum> 
, [ <tag> ] ) ; 

CALL CANCELTIMEOUT ( <tag> ); 

CALL CHANGELIST ( <f ilenum> 
,<function> 
,<parameter> ); 

CALL CHECKCLOSE ( <f ilenum> 
,[ <tape-disposition> 

A-·2 

) ; 

i 
i 
i 
i 

i 
i 

i 
i 

i , 0 

0 

! 0 

0 

i 

!o 

i 
0 
i 
i 
i 

i 

i 

i 
i 

i 

i 
i 
i 

i 
i 

~ 82357 AOO 3/85 



APPENDIX A: SYSTEM PROCEDURE CALLS SYNTAX SUMMARY 

{ <status> 
{ CALL 

:= } CHECKMONITOR; 
} 

CALL CHECKOPEN <filename> 
,<f ilenum> 
,[ <flags> ] 
,[ <sync or receive-depth> ] 
,[ <sequential-block-buffer> ] 
,[ <buffer-length> ] 
,<backerror> ); 

{ <status> := } CHECKPOINT 
{ CALL } 

i 
i, 0 
i 
i 
i 
i 
0 

( [ <stack-base> [, [ <buffer-1> ] 
[, [ <buf fer-2> ] 

<count-1> 
<count-2> 

] 
] 

i , i , i 
i , i 

{ <status> 
{ CALL 

. . 
[, [ <buffer-13>] , [ <count-13>] ] ); 

:= } CHECKPOINTMANY ( [ <stack-base> ] 
} ,[ <descriptors> ] ); 

<error> := CHECKASCREEN ( @<screen-name 
,SCREEN 

{ <status> 
{ CALL 

,<buffer> 
,<check-procedure> 
, <count> ) ; 

:= } CHECKSWITCH; 
} 

CALL CLOSE ( <f ilenum> 
,[ <tape-disposition> ) ; 

! 

i , 

i 
i 

i 
0 

i 
0 

0 

i 
i 

<jul-day-num> := COMPUTEJULIANDAYNO ( <year> i 
, <month> i 
, <day> i 
, [ <error-mask> ] ) ; o 

<ret-timestamp> := COMPUTETIMESTAMP ( <date-n-time> 
,[ <errormask> ) ; 

i 
0 

..,.., 82357 AOO 3/85 

i 

A-3 



APPENDIX A: SYSTEM PROCEDURE CALLS SYNTAX SUMMARY 

CALL CONTIME ( <date-and-time> 
,<tO> 
,<tl> 
,<t2> ); 

CALL CONTROL ( <f ilenum> 
,<operation> 
,<param> 
, [ <tag> ] ) ; 

CALL CONTROLBUF ( <f ilenum> 
,<operation> 
,<buffer> 
,<count> 
,[ <count-transferred> ] 
, [ <tag> ] ) ; 

CALL CONVERTPROCESSNAME <process-name> ); 

CALL CONVERTPROCESSTIME ( <process-time> 
,[ <hours> ] 
,[ <minutes> ] 
,[ <seconds> ] 
,[milliseconds> ] 
,[ <microseconds> ] ); 

<ret-time> := CONVERTTIMESTAMP ( <julian-timestamp> 
,[ <direction> ] 
,[ <node> ] 
,[ <error> ] ); 

CALL CPUTIMES ( [ <cpu> ] 
,[ <sysid> ] 

A-4 

,[ <total-time> ] 
,[ <cpu-process-busy> 
,[ <cpu-interrupt> ] 
,[ <cpu-idle> ] ); 

0 
i 
i 
i 

i 
i 
i 
i 

i 
i 
i 
i 
0 

i 

i' 0 

i 
0 

0 

0 
0 
0 

i 
i 
i 
0 

i 
i 
0 

! 0 
! 0 
! 0 

~ 82357 AOO 3/85 



APPENDIX A: SYSTEM PROCEDURE CALLS SYNTAX SUMMARY 

CALL CREATE ( <filename> 
,[ <primary-extentsize> ] 
,[ <file-code> ] 
,[ <secondary-extentsize> ] 
,[ <file-type> ] 
,[ <recordlen> ] 
,[ <data-blocklen> ] 
,[ <key-sequenced-params> ] 
,[ <alternate-key-params> ] 
,[ <partition-params> ] 
,[ <maximum-extents> ] 
,[ <unstructured-buffer-size 
,[ <open-defaults ] ); 

CALL CREATEPROCESSNAME ( <process-name> ); 

CALL CREATEREMOTENAME ( <name> 
,<sysnum> ); 

<accessor-id> := CREATORACCESSID; 

] 

{ <stack-env> 
{ CALL 

:= } CURRENTSPACE [ ( <ascii-space-id> ); ] 
} 

CALL DEALLOCATESEGMENT ( <segment-id> 
,[ <flags> ] ); 

CALL DEBUG; 

CALL DEBUGPROCESS <process-id> 
,<error> 
,[ <term> ] 
, [ <now> ] ) ; 

CALL DEFINELIST ( <f ilenum> 
,<address-list> 
,<address-size> 
,<num-entries> 
,<polling-count> 
,<polling-type> ); 

~ 82357 AOO 3/85 

i ' 0 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 

! 0 

0 
i 

! 0 

i 
0 

i 
0 

i' 0 

i' 0 

i 
i 
i 
i 
i 
i 

A-5 



APPENDIX A: SYSTEM PROCEDURE CALLS SYNTAX SUMMARY 

<status> := DEFINEPOOL ( <pool-head> 
,<pool> 
,<pool-size> ); 

CALL DELAY ( <time-period> ); 

CALL DEVICEINFO ( <filename> 
,<devtype> 
,<physical-recordlen> ); 

CALL DEVICEINF02 ( <filename> 
,<devtype> 
,<physical-recordlen> 
,<discprocess-version> ); 

<status> := EDITREAD ( <edit-controlblk> 
,<buffer> 
,<bufferlen> 
,<sequence-num> ); 

<status> := EDITREADINIT ( <edit-controlblk> 
,<f ilenum> 
,<bufferlen> ); 

<status> := ENDTRANSACTION; 

CALL ENFORMFINISH ( ctlblock ); 

{ <count> 
{ CALL 

:= } ENFORMRECEIVE ( <ctlblock> 
} ,<buffer> ); 

CALL ENFORMSTART ( <ctlblock> 
,<compiled-physical-filename> 
,<buffer-length> 
,<error-number> 

A-6 

,[ <restart-flag> ] 
,[ <param-list> ] 
,[ <assign-list> ] 
,[ <qp-name> ] 
,[ <cpu> ] 
,[ <priority> ] 
,[ <timeout> ] 
,[ <reserved-for-expansion> ] ); 

i, 0 

i 
i 

i 

i 
0 

! 0 

i 
0 

! 0 
! 0 

i 
0 
i 
0 

i 
i 
i 

i 

i 
i, 0 

0 
i 
i 
0 
i 
i 
i 
i 
i 
i 
i 
i 

~ 82357 AOO 3/85 



APPENDIX A: SYSTEM PROCEDURE CALLS SYNTAX SUMMARY 

<num-bytes> := EXPANDASCREEN ( @<screen-name> 
, SCREEN 
, <buffer> 

<rewrite-form> ); 

<status> := FILEERROR ( <filenum> ); 

CALL FILEINFO ( [ <f ilenum> ] 
,[ <error> ] 
,[ <filename> ] 
,[ <ldevnum> ] 
,[ <devtype> ] 
,[ <extent-size> ] 
,[ <eof-location> ] 
,[ <next-record-pointer> 
,[ <last-modtime> ] 
,[ <filecode> ] 
,[ <secondary-extent-size> ] 
,[ <current-record-pointer> ] 
,[ <open-flags> ] 
,[ <subdev> ] 
,[ <owner> ] 
,[ <security> ] 
,[ <num-extents-allocated> ] 
,[ <max-file-size> ] 
,[ <partition-size> ] 
,[ <num-partitions> ] 
,[ <file-type> ] 
,[ <maximum-extents> ] 
,[ <unstructured-buffer-size> 
,[ <open-flags2> ] 
,[ <sync-depth> ] 
,[ <next-open-fnum> ); 

CALL FILERECINFO ( [ <f ilenum> ] 

...,. 82357 AOO 3/85 

,[ <current-keyspecifier> ] 
,[ <current-keyvalue> ] 
,[ <current-keylen> ] 
,[ <current-primary-keyvalue> ] 
,[ <current-primary-keylen> ] 
,[ <partition-in-error> ] 
,[ <specifier-of-key-in-error> ] 
,[ <file-type> ] 
,[ <logical-recordlen> ] 
,[ <blocklen> ] 
,[ <key-sequenced-parameters> 
,[ <alternate-key-parameters> 
,[ <partition-parameters> ] 
,[ <filename> ] ); 

i 
0 

! 0 
! i 

i 

i 
0 

0 

0 

0 

0 
0 

0 
0 

0 

0 

0 

0 
0 
i 

i 
0 
i, 0 

0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

0 
0 

0 

0 

0 

0 

0 

0 

0 
0 

A-7 



APPENDIX A: SYSTEM PROCEDURE CALLS SYNTAX SUMMARY 

CALL FIXSTRING ( <template> 
,<template-len> 
,<data> 
,<data-len> 
,[ <maximum-data-len> ] 
,[ <modification-status> ] >: 

<length> := FLASCREEN ( <field-name> ): 

{ <length> 
{ CALL 

{ <status> 
{ CALL 

{ <length> 
{ CALL 

:= } FNAMECOLLAPSE ( <internal-name> 
} ,<external-name> ): 

:= } FNAMECOMPARE ( <f ilenamel> 
} ,<filename2> ): 

:= } FNAMEEXPAND ( <external-filename> 
} ,<internal-filename> 

,<default-names> >: 

{ <status> := 
{ CALL 

} FORMATCONVERT 
} 

( <iformat> 
,<iformatlen> 
,<eformat> 
,<eformatlen> 
,<scales> 
,<scale-count> 
,<conversion> ): 

{ <error> 
{ CALL 

:= } FORMATDATA 
} 

( <buffer> 
,<bufferlen> 
,<buffer-occurs> 
,<length> 
,<iforma.t> 
,<variable-list> 
,<variable-list-len> 
,<flags> ) : 

CALL GETCPCBINFO ( <request-id> 
,<cpcb-info> 
,<out-length> 
,<out-length> 
, <error> ) : 

CALL GETCRTPID ( <cpu,pin> 
,<process-id> ): 

A-8 

i 
i 
i , 0 
i , 0 
i 
0 

i 

i 
0 

i 
i 

i 
0 
i 

i 
i 
0 

! 0 

! 0 
o, i 
i 

i , 0 
i 
0 

! 0 

! 0 

! 0 

! 0 
i 

i 
0 
i 
0 

! 0 

i 
0 

,_, 82357 AOO 3/85 



APPENDIX A: SYSTEM PROCEDURE CALLS SYNTAX SUMMARY 

<status> := GETDEVNAME ( <ldevnum> 
,<devname> 
,[ <sysnum> ] ); 

<address> := GETPOOL ( <ppd-head> 
,<block-size> ); 

CALL GETPPDENTRY ( <index> 
,<sysnum> 
,<ppd> 

CALL GETREMOTECRTPID ( <pid> 
,<process-id> 
,<sysnum> ); 

CALL GETSYNCINFO ( <f ilenum> 
,<sync-block> 
,[ <sync-block-size> ] ); 

{ <ldev> 
{ CALL 

:= } GETSYSTEMNAME ( <sysnum> 
} ,<sysname> ); 

<status> := GETTMPNAME ( <devname> ); 

<status> := GETTRANSID ( <transid> ); 

CALL HALTPOLL <filenum> ); 

CALL HEAPSORT ( <array> 
,<num-elements> 
,<size-of-element> 
,<compare-proc> ); 

{ <status> 
{ CALL 

:= } 
} 

"' 82357 AOO 3/85 

INITIALIZER ( [ <rucb> ] 
,[ <passthru> 
,[ <startupproc> ] 
,[ <paramsproc> ] 
,[ <assignproc> ] 
,[ <flags> ] ); 

i, 0 

0 
i 

i, 0 

i 

i 
i 
0 

i 
0 

i 

i 
0 

0 

i, 0 

0 

! 0 

i 

i 

i, 0 
i 
i 
i 

i 
0 
i 
i 
i 
i 

A-9 



APPENDIX A: SYSTEM PROCEDURE CALLS SYNTAX SUMMARY 

CALL INTERPRETJULIANDAYNO ( <julian-day-num> 
,<year> 
,<month> 
, <day> ) : 

<ret-date-time> := INTERPRETTIMESTAMP 

<retval> := JULIANTIMESTAMP ( [ <type> ] 

<julian-timestamp> 
<date-n-time> ); 

,[ <tuid> ] >: 

CALL KEYPOSITION ( <f ilenum> 
,<key-value> 
,[ <key-specifier> ] 
,[ <length-word> ] 
,[ <positioning-mode> ] ): 

<last-addr> := LASTADDR: 

CALL LASTRECEIVE ( [ <process-id> ] 

{ <ldev> 
{ CALL 

,[ <message-tag> ] ); 

:= } LOCATESYSTEM ( <sysnum> 
} ,[ <sysname>] >: 

CALL LOCKFILE ( <f ilenum> 
,[ <tag> ] >: 

CALL LOCKREC ( <f ilenum> 
,[ <tag> ] ): 

CALL LOOKUPPROCESSNAME ( <ppd> ): 

CALL MOM ( <process-id> ): 

CALL MONITORCPUS ( <cpu-mask> ): 

CALL MONITORNET <enable> ): 

CALL MONITORNEW ( <enable> >: 

i 
0 

0 
! 0 

i 
0 

i 
i 
i 
i 
i 

! 0 
! 0 

i 
0 

i, 0 
i 

i 
0 

i 
i 

i, 0 

! 0 

i 

i 

i 

A--10 ..., 82357 AOO 3/85 



APPENDIX A: SYSTEM PROCEDURE CALLS SYNTAX SUMMARY 

<cpu,pin> := MYPID; 

<process-time> := MYPROCESSTIME; 

<sysnum> := MYSYSTEMNUMBER; 

CALL MYTERM ( <filename> ); 

CALL NEWPROCESS ( <filenames> 
,[ <priority> ] 
,[ <memory-pages> ] 
,[ <processor> ] 
,[ <process-id> ] 
,[ <error> ] 
,[ <name> ] 
,[ <hometerm> ] 
,[ <inspect-flag> ] 

CALL NEWPROCESSNOWAIT ( <filenames> 
,[ <priority> ] 

) ; 

,[ <memory-pages> ] 
,[ <processor> ] 
,[ <process-id> ] 
,[ <error> ] 
,[ <name> ] 
,[ <hometerm> ] 
,[ <inspect-flags> 

<error> := NEXTFILENAME ( <filename> ); 

{ <next-addr> 
{ CALL 

:= } NUMIN ( <asc11-num> 
} ,<signed-result> 

,<base> 
,<status> ); 

CALL NUMOUT ( <ascii-result> 
,<unsigned-integer> 
,<base> 
,<width> ); 

~ 82357 AOO 3/85 

) ; 

! 0 

i 
i 
i 
i 
0 

0 
i 
i 
i 

i 
i 
i 
i 
unused 
0 

i 
i 
i 

i, 0 

i 
0 

i 
0 

! 0 
i 
i 
i 

A-11 



APPENDIX A: SYSTEM PROCEDURE CALLS SYNTAX SUMMARY 

CALL OPEN ( <filename> 
,<f ilenum> 
,[ <flags> ] 
,[ <sync-or-receive-depth> ] 
,[ <primary-filenum> ] 
,[ <primary-process-id> ] 
,[ <seq-block-buffer> ] 
,[ <buffer-length ] ); 

CALL POSITION ( <f ilenum> 
,<record-specifier> ); 

<num-chars> := POSITIONASCREEN ( @<screen-name> 
SCREEN 
<buffer> 
<field-name> ); 

i 
0 
i 
i 
0 

0 
i unused 
i 

i 
i 

i 
0 
0 
i 

<error-code> := PRINTCOMPLETE ( <f ilenum-to-supervisor> i 
,<print-control-buffer> ); o 

<error-code> . -.- PRINTINFO ( <job-buffer> i 
, [ <copies-remaining> ] 0 
, [ <current ·-page> ] 0 
, [ <current·-! ine> ] 0 
, [ <lines-printed> ] ) ; ! 0 

<error-code> := PRINTINIT ( <f ilenum-to-supervisor> i 
,<print-control-buffer> ) ,, 

jl i , 0 

<error-code> . -.- PRINTREAD ( <job-buffer> i, 0 
,<data-·line> 0 
,<read-count> i 
, [ <count-read> ] 0 
, [ <pagenum> ] ) i 

A'-12 ..,, 82357 AOO 3/85 



APPENDIX A: SYSTEM PROCEDURE CALLS SYNTAX SUMMARY 

<error-code> := PRINTREADCOMMAND ( <print-control-buffer> i 
,[ <controlnum> ] o 
,[ <device> ] o 
,[ <devflags> ] o 
,[ <devparam> ] o 
,[ <devwidth> ] o 
,[ <skipnum> ] o 
,[ <data-file> ] o 
,[ <jobnum> ] o 
,[ <location> ] . o 
,[ <form-name> ] ! o 
,[ <report-name> ] ! o 
,[ <pagesize> ] ); ! o 

<error-code> := PRINTSTART ( <job-buffer> 
,<print-control-buffer> 
,<data-filenum> ); 

0 
i 
i 

<error-code> := PRINTSTATUS ( <filenum-to-supervisor> i 

{ <old-priority> := 
{ CALL 

,<print-control-buffer> i 
,<msg-type> i 
,<device> i 
,[ <error> ] i 
,[ <num-copies> ] i 
,[ <page> ] i 
,[ <line> ] i 
,[ <lines-printed> ] ); i 

} PRIORITY 
} 

[ <new-priority> ] 
,[ <init-priority> ] ); 

i 
0 

<accessor-id> := PROCESSACCESSID; 

<old-security> := PROCESSFILESECURITY ( <security> ); i 

~ 82357 AOO 3/85 A-13 



APPENDIX A: SYSTEM PROCEDURE CALLS SYNTAX SUMMARY 

{ <error> . -.- } PROCESS INFO ( <cpu,pin> 
{ CALL } ' [ <process-id> ] 

' [ <creator-accessor-id> 
' [ <process-accessor-id> 
' [ <priority> ] 
' [ <program-filename> 
' [ <home-terminal> ] 

' [ <sysnum> ] 
' [ <search-mode> ] 

' [ <p:riv-only> ] 

' [ <processtime> ] 
' [ <waitstate> ] 

' [ <process-state> ] 
' [ <library-filename> 
' [ <swap-filename> 

<processor-status> := PROCESSORSTATUS; 

<type> := PROCESSORTYPE ( [ <cpu> ] 
, [ <sys id> ] ) ; 

<process-time> := PROCESSTIME ( [ <cpu,pin> ] 
' [ <sys id> ] ) ; 

CALL PROGRAMFILENAME ( <program-file> ); 

CALL PURGE ( <filename> ); 

CALL PUTPOOL ( <pool-head> 
,<pool-block> ); 

CALL READ ( <f ilenum> 
,<buffer> 
,<read-count> 
,[ <count-read> 
,[ <tag> ] ); 

CALL READLOCK ( <f ilenum> 
,<buffer> 
,<read-count> 
,[ <count-read> 
, [ <tag> ] ) : 

A--14 

] 

] 

] 
) ; 

] 
] 

i 
i ' 
i' 
i ' 
i' 
i ' 
i ' 
i 
i 
i 
0 
0 

0 
0 
0 

i 
i 

i 
i 

! 0 

i 

0 
0 

0 

0 
0 

0 

i' 0 
i 

i 
0 
i 
0 

i 

i 
0 
i 
i 
i 

-1' 82357 AOO 3/85 



APPENDIX A: SYSTEM PROCEDURE CALLS SYNTAX SUMMARY 

<num-chars> := READASCREEN ( @<screen-name> 
, <buffer> ); 

CALL READUPDATE ( <f ilenum> 
,<buffer> 
,<read-count> 
,[ <count-read> 
,[ <tag> ] ); 

CALL READUPDATELOCK ( <f ilenum> 
,<buffer> 
,<read-count> 
,[ <count-read> 
, [ <tag> ] ) ; 

CALL RECEIVEINFO ( [ <process-id> ] 
,[ <message-tag> ] 
,[ <sync-id> ] 
,[ <filenum> ] 
, [ <read-count> ] ) ; 

{ <error> 
{ CALL 

:= } REFRESH 
} 

[ <volname> ] 
, [ <a 11 > ] ) ; 

<status> := REMOTEPROCESSORSTATUS <sysnum> ); 

<tos-version> := REMOTETOSVERSION ( [ <sysid> ] ); 

CALL RENAME ( <f ilenum> 
,<new-name> ); 

CALL REPLY ( [ <buffer> ] 
,[ <write-count> ] 
,[ <count-written> 
,[ <message-tag> ] 
,[ <error-return> ] ); 

CALL REPOSITION ( <f ilenum> 
,<positioning-block> ); 

CALL RESERVELCBS ( <no-receive-lcbs> 
,<no-send-lcbs> ); 

/1 82357 AOO 3/85 

i 
0 

i 
0 
i 
0 
i 

i 
0 

i 
0 

i 

! 0 
! 0 

0 

0 
! 0 

i 
i 

i 

i 

i 
i 

i 
i 
0 

i 
i 

i 
i 

l 

i 

A-15 



APPENDIX A: SYSTEM PROCEDURE CALLS SYNTAX SUMMARY 

CALL RESETSYNC ( <filenum> ): 

<status> := RESUMETRANSACTION ( <trans-begin-tag> ): 

CALL SAVEPOSITION ( <f ilenum> 
,<positioning-block> 
,[ <positioning-blksize> ] ): 

CALL SETLOOPTIMER ( <new-time-limit> 
,[ <old-time-limit> ] ): 

CALL SETMODE ( <f ilenum> 
,<function> 
,[ <paraml> ] 
,[ <param2> ] 
, [ <last-params> ] ) : 

CALL SETMODENOWAIT ( <filenum> 
,<function> 
,[ <paraml> ] 
,[ <param2> ] 
,[ <last-params> 
,[ <tag>] ): 

CALL SETMYTERM ( <terminal-name> ): 

CALL SETPARAM ( <f ilenum> 
,<function> 
,[ <param-array> ] 
,[ <param-count> ] 
,[ <last-param-array> 
,[ <last-param-count> ) : 

{ <last-stop-mode> 
{ CALL 

:= } SETSTOP ( <stop-mode> ): 
} 

CALL SETSYNCINFO ( <f ilenum> 
,<sync-block> ): 

CALL SETSYSTEMCLOCK ( <julian-gmt> 
, <mode> 
,[ <tuid>] ): 

A-16 

i 

i 

i 
0 

! 0 

i 
0 

i 
i 
i 
i 
0 

i 
i 
i 
i 
0 
i 

i 

i 
i 
i 
i 

! 0 
! 0 

i 

i 
0 

i 
i 
i 

"1 82357 AOO 3/85 



APPENDIX A: SYSTEM PROCEDURE CALLS SYNTAX SUMMARY 

CALL SHIFTSTRING ( <string> i ' 0 
,<count> i 
,<casebit> ) ; i 

CALL SIGNALPROCESSTIMEOUT ( <timeout-value> i 
' [ <paraml> ] i 
' [ <param2> ] i 
' [ <tag> ] ) ; 0 

CALL SIGNALTIMEOUT ( <timeout-value> i 
' [ <paraml> ] i 
' [ <param2> ] i 
' [ <tag> ] ) ; 0 

{ <status> := } SORTERROR ( <ctlblock> i 
{ CALL } ,<buffer> ) ; i 

{ <status> := } SORTERRORDETAIL ( <ctlblock> ) ; i 
{ CALL } 

{ <status> . -.- } SORTMERGEFINISH ( <ctlblock> i ' 0 
{ CALL } ' [ <abort> ] i 

' [ <sparel> ] error if used. 
' [ <spare2> ] ) ; error if used. 

{ <status> := } SORTMERGERECEIVE ( <ctlblock> i 
{ CALL } ,<buffer> i 

,<length> 0 

' [ <spa rel> ] error if used. 
' [ <spare2> ] ) ; error if used. 

{ <status> := } SORTMERGESEND ( <ctlblock> i 
{ CALL } ,<buffer> i 

,<length> i 
' [ <stream id> ] i 
' [ <spa rel> ] error if used. 
' [ <spare2> ] ) ; error if used. 

"182357 AOO 3/85 A-17 



APPENDIX A: SYSTEM PROCEDURE CALLS SYNTAX SUMMARY 

{ <status> 
{ CALL 

:= } SORTMERGESTART 
} 

( <ctlblock> 
,<key-block> 
,[ <num-merge-files> ] 
,[ <num-sort-files> ] 
,[ <in-filename> ] 
,[ <in-file-exclusion-mode> ] 
,[ <in-file-count> ] 
,[ <in-file-length> ] 
,[ <format> ] 
,[ <out-filename> ] 
,[ <out-file-exclusion-mode> ] 
,[ <out-file-type> ] 
,[ <flags> ] 
,[ <errnum> ] 
,[ <errproc> ] 
,[ <scratch-filename> ] 
,[ <scratch-block> ] 
,[ <process-start> ] 
,[ <max-record-length> ] 
,[ <collate-sequence-table> ] 
,[ <sparel> ] 
,[ <spare2> ] 

i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
0 
i 
i 
i 
i 
i 
i 
i 
i 
i ,[ <spare3> ] 

,[ <spare4> ] 
,[ <spare5> ] ); 

error if used 
error if used 

{ <status> := } 
{ CALL } 

SORTMERGESTATISTICS ( <ctlblock> 
,<length> 
,<statistics> 
,[ <sparel> ] 
,[ <spare2 ] ): 

i 
! i, 0 

! 0 
do not use 
do not use 

<error-code> := SPOOLCONTROL ( <level-3-buff> i, o 
,<operation> i 
,<param> ! i 
,[ <bytes-written-to-buff> ] );! o 

<error-code> := SPOOLCONTROLBUF ( <level-3-buff> i, o 
,<operation> i 
,<buffer> i 
,<count> ! i 

,[ <bytes-written-to-buff> ] ); ! o 

<error-code> := SPOOLEND ( <level-3-buff> 
,[ <flags> ] ); 

i 
i 

A·-18 ""' 82357 AOO 3/85 



APPENDIX A: SYSTEM PROCEDURE CALLS SYNTAX SUMMARY 

<error-code> := SPOOLERCOMMAND ( <f ilenum-to-supervisor> 
,<command-code> 
,[ <command-param> ] 
,<subcommand-code> 
,[ <subcommand-param> ] 

<error-code> := SPOOLEREQUEST ( <supervisor-f ilenum> 
,<job-num> 
,<print-control-buffer> ); 

<error-code> := SPOOLERSTATUS ( <supervisor-f ilenum> 
,<command-code> 
,<scan-type> 
,<status-buffer> ); 

<error-code> := SPOOLJOBNUM ( <filenum-to-collector> 
,<job-num> ); 

<error-code> := SPOOLSETMODE ( <level-3-buff> 
,<function> 
,[ <paraml> ] 
,[ <param2> ] 
,[ <bytes-written-to-buff> 

<error-code> := SPOOLSTART ( <f ilenum-to-collector> 
,[ <level-3-buff> ] 
,[ <location> ] 
,[ <form-name> ] 
,[ <report-name> ] 
,[ <num-of-copies> 
,[ <page-size> ] 
,[ <flags> ] 
,[ <owner> ] ); 

<error-code> := SPOOLWRITE ( <level-3-buff> 
,<print-line> 
,<write-count> 
,[ <bytes-written-to-buff> 

CALL STEPMOM ( <process-id> ); 

CALL STOP [ ( <process-id> 
, [ <stop-backup> ] ) ; 

""'"1 82357 AOO 3/85 

i 
i 
i 

I . 
• 1 

) ; ! i 

i 
i 
0 

i 
i 
i 
i' 0 

i 
0 

i' 0 
i 
i 
i 

] ) ; ! 0 

i 
0 
i 
i 
i 
i 
i 
i 
i 

i' 0 
i 

! i 
) ; ! 0 

i 

i 
i 

A-19 



APPENDIX A: SYSTEM PROCEDURE CALLS SYNTAX SUMMARY 

CALL SUSPENDPROCESS ( <process-id> ); 

<label> := SYSTEMENTRYPOINTLABEL ( <name> 
,<len> ) ; 

CALL TIME ( <date-and-time> ); 

CALL TIMESTAMP ( <interval-clock> ); 

<version> := TOSVERSION; 

CALL UNLOCKFILE ( <f ilenum> 
,[ <tag> ] ); 

CALL UNLOCKREC ( <f ilenum> 
, [ <tag> ] ) ; 

CALL USERIDTOUSERNAME <id-name> ); 

CALL USERNAMETOUSERID ( <name-id> ); 

<old-segment-id> := USESEGMENT ( <segment-id> ); 

CALL VERIFYUSER ( <user-name-or-id> 
,[ <logon> ] 
,[ <default> , <default-len> ); 

CALL WRITE ( <f ilenum> 
,<buffer> 
,<write-count> 
,[ <count-written> ] 
,[ <tag> ] ); 

CALL WRITEREAD ( <f ilenum> 
,<buffer> 
,<write-count> 
,<read-count> 

A-20 

,[ <count-read> ] 
, [ <tag> ] ) ; 

i 

i 
i 

! 0 

! 0 

i 
i 

i 
i 

i ' 

i ' 

i 

i 
i 
o, 

i 
i 
i 
0 
i 

i 
i '0 
i 
i 
0 
i 

0 

0 

i 

~ 82357 AOO 3/85 



APPENDIX A: SYSTEM PROCEDURE CALLS SYNTAX SUMMARY 
SIO Syntax Summary 

CALL WRITEUPDATE { <f ilenum> 
,<buffer> 
,<write-count> 
,[ <count-written> 
,[ <tag> ] ); 

CALL WRITEUPDATEUNLOCK { <f ilenum> 
,<buffer> 
,<write-count> 
,[ <count-written> ] 
,[ <tag> ] ); 

SIO Procedures Syntax 

<state> := CHECK"'BREAK 

<retval> := CHECK"'FILE 

,<operation> ) ; 

{ <error> := } CLOSE"'FILE 
{ CALL } 

[, <tape-disposition> ] 

{ <error> := } GIVE"'BREAK 
{ CALL } 

{ <common-FCB> } ); 
{ <f ile-FCB> } 

{ <common-FCB> } 
{ <fi le-FCB> } 

{ { <common-FCB> 
{ <f ile-FCB> 

) ; 

{ { <common-FCB> 
{ <f ile-FCB> 

} 
} 

} 
} 

{ <no-retry> 
{ CALL 

:= } NO"'ERROR { <state> 
} ,<file-fcb> 

) ; 

,<good-error-list> 
, < ret ryable> ) ; 

{ <error> 
{ CALL 

:= } OPEN""FILE { 
} 

"1 82357 AOO 3/85 

<common-fcb> 
,<f ile-fcb> 
,[ <block-buffer> ] 
,[ <block-bufferlen> ] 
,[ <flags> ] 
,[ <flags-mask> ] 
,[ <max-recordlen> ] 
,[ <prompt-char> ] 
,[ <error-file-fcb> ] ) ; 

i 
i 

i 
i 

i 

i 
i 

i 

i 
i 

i 
i 
i 
i 

i 
i 
i 
i 
i 
i 
i 
i 
i 

i 
i 
i 
0 
i 

i 
i 
i 
0 
i 

A-21 



APPENDIX A: SYSTEM PROCEDURE CALLS SYNTAX SUMMARY 
SIO Syntax Summary 

{ <error> . -.- J READ""FILE ( <fi le-fcb> 
{ CALL J ,<buffer> 

' [ <count-read> ] 

' [ <prompt-count> ] 

' [ <max-read-count> ] 
' [ <nowait> ] ) ; 

{ <error> := J TAKE""BREAK ( < fi le--f cb> ) ; 
{ CALL J 

{ <error> ·- J WAIT""FILE ( <f ile-fcb> .-
' [ <count-read> ] 

' [ <time-limit> ] ) ; 

{ <error> := J WRITE""FILE ( <f i le--f cb> 
{ CALL J ,<buffer> 

,<write-count> 
' [ <reply-error-code> ] 

' [ <forms-control-code> 
' [ <nowait> ] ) ; 

A-22 

i 
0 

0 

i 
i 
i 

i 

i 
0 

i 

i 
i 
i 
i 

] i 
i 

~ 82357 AOO 3/85 



APPENDIX B 

FAULT-TOLERANT PROGRAMMING EXAMPLE 

This section presents an example of programming technique 
involving the use of Nonstop process pairs. The example program 
is a Nonstop server process. 

A "server" process is an application process that accepts a 
request from a "requester" process, fulfills the request, then 
returns a reply (usually consisting of a data message or an error 
indication) to the requester: 

(REQUESTER) (SERVER) 

Typically, a server process can accept requests from multiple 
requester processes: 

(Rl) 

(R2) 

(RN) 

Server processes are used in instances where 

• it is desired to modularize the application by function. 

• several application programs need to execute complex, but 
similar functions. In this case, a server process can perform 
these functions on behalf of the requester processes. This 
eliminates the need for each program to contain large amounts 
of similar coding. 

~ 82357 AOO 3/85 B-1 



APPENDIX B: FAULT-TOLERANT PROGRAMMING EXAMPLE 
Introduction 

• it is desired that each terminal in an application be 
controlled by a separate process, and several processes must 
access the same set of disc files, but it is undesirable for 
each process to have the disc files open. In this case, a 
server process performs all the disc operations, and therefore 
is the only process with the disc files open. The terminal 
requester processes perform disc operations by sending 
requests to the server process using interprocess 
communication methods. This method of disc file handling can 
also be used to reduce or eliminate the need for file locking. 

• a custom interface to a nonstandard I/O device is needed. In 
this case, the server process translates normal file system 
WRITE or WRITEREAD requests into the specific file~ system 
requests needed to control the device. An example of this is 
a server process that interfaces, via ENVOY protocols, to a 
data communications line; requests are made to the server as 
though communicating with a conversational mode te!rminal 
(through WRITEREAD), and the server translates the! request 
into the WRITES, READS, and CONTROLS needed to control the 
line. 

The example presented here is a server process that accesses a 
data base on behalf of several requester processes. As such, the 
example program is a culmination of the programming techniques 
discussed in Section 4, "Communicating With Other Processes", and 
Section 12, "Writing Fault-Tolerant Programs". 

EXAMPLE PROGRAM 

The example program (Figure B-1) is called "serveobj", and its 
source program is called "servesrc". It executes as a process 
pair in two processor modules. One process of the pair is the 
primary process; it performs the requested operations. The other 
process of the pair is the backup process; it monitors the 
operational state of the primary. If the primary server process 
becomes inoperable, the backup process takes over and performs 
the server function. 

When the "servesrc" program is initially run (by a command 
interpreter RUN command), it is given the process name "$SERVE" 
(requester processes access the server by this name). The first 
process created assumes the role of the primary process. The 
primary process, after successfully opening its files, creates 
the backup process, then opens the backup's files. The backup 
process, as soon as it determines that it is the backup, begins 
monitoring the primary process. 

B-:2 -1' 82357 AOO 3/85 



APPENDIX B: FAULT-TOLERANT PROGRAMMING EXAMPLE 
Example Program 

PROCESSOR 
MODULE 

ACTION OF PRIMARY 

r A request message 
is read from a 
requester 

j If request is 
"nonretryable," the 
current state is 
checkpointed 

T 
The requested 
disc operation is 
performed 

4 The request is 
replied to (data 
may be returned to 
requester) 

Figure B-1. 

DATA BASE 
FILE 

ON DISC 

"Serveobj" Program 

85004-077 

The function of the primary process is to read a request message, 
perform the action indicated by the request, then return the 
outcome of the request--an error code and/or data--in a reply 
message to the requester. The requests that the server processes 
are 

• insert: 
• delete: 

Insert the supplied record into the data base. 
Delete the supplied record from the data base. 

"1" 82357 AOO 3/85 B-3 



APPENDIX B: FAULT-TOLERANT PROGRAMMING EXAMPLE 
Example Program 

• query: Return the record from the data base as indicated by 
the supplied key value. 

• next: Return the next record from the data base as 
indicated by the supplied key value. 

Example Program Structure 

The example program consists of the following procedures: 

• "serve" 

This is the main procedure. It is where the primary/backup 
determination is made. If the process is the primary, the 
startup message is read, the data base file is opened, the 
backup is created, and the main processing loop is called. 
If the process is the backup, the CHECKMONITOR procedure is 
called. 

• "execute" 

B-4 

This is the execution loop of the server process. It waits on 
the $RECEIVE file for incoming messages. If a user request 
message is received, the "processAuserArequest" procedure is 
called. If a system message is received, the 
"analyzeAsystemAmessage" procedure is called. 

This procedure interprets the user request, checks for 
duplicate requests, checkpoints in some cases, calls the 
appropriate "primitive" to process the user request, and saves 
the outcome of the operation for the requester. The user 
request primitives are 

--"queryArequest": get the record from the data base as 
indicated by the supplied key value. 

--"insertArequest": insert the supplied record into the data 
base. 

--"deleteArequest": delete the record from the data base as 
indicated by the supplied key value. 

--"nextArecordArequest": get the next record from the data 
base as indicated by the supplied key value. 

~ 82357 AOO 3/85 



APPENDIX B: FAULT-TOLERANT PROGRAMMING EXAMPLE 
Example Program 

This procedure interprets system messages and takes 
appropriate action. This involves creating a backup process 
in some cases, and adding and deleting requesters from the 
"requester process directory". 

The "requester process directory" is a table of all processes 
(and their backups) currently accessing the server. This is 
maintained so that the server can ensure that the proper reply 
is made to a requester in the event of a requester or server 
failure (see "Request Integrity"). There are four 
"primitives" used to perform directory operations: 

--"lookuppid": look up a requester in the directory (called 
when a user request message is received). 

--"addpid": add a requester to the directory (called when an 
OPEN system message is received). 

--"delpid": delete a requester from the directory (called 
when a CLOSE system message is received). 

--"delallpids": delete all requesters from the directory that 
are associated with a given CPU (called if a CPU failure 
occurs). 

• "analyzeAcheckpointAstatus" 

This procedure is called when a nonzero return is made from 
the CHECKPOINT procedure. This usually occurs only when the 
backup takes over. This procedure analyzes the reason for the 
takeover and takes appropriate action. 

• "createAbackup" 

This procedure performs the backup process creation function. 
It is called at the start of primary execution, called when 
the primary detects a failure of the backup and the backup 
processor module is operable, and called on a takeover by the 
backup when the primary process failed because of an ABEND 
condition. Following a successful creation of the backup 
process, the files are opened for the backup, and the current 
state of the primary process is checkpointed. 

These two procedures perform the file open functions for the 
primary process and the backup process, respectively. 

"i' 82357 AOO 3/85 B-5 



APPENDIX B: FAULT-TOLERANT PROGRAMMING EXAMPLE 
Example Program 

This procedure is called at the beginning of the primary 
process's execution to open the $RECEIVE file, read the 
startup message, and save the file name of the data base disc 
file. 

Reguest Integrity 

For the purpose of preventing erroneous results being returned to 
a requester if a failure of a requester or the server occurs, 
requests are classified by the server as being either retryable 
or nonretryable. The "retryable" requests are those which do not 
alter the data base, and therefore can be reexecuted indefinitely 
with the same results. The retryable requests are "query" and 
"next". The "nonretryable" requests, conversely, alter the data 
base and would return different results if reexecuted (for 
example, the first insert of a given record is successful, but 
the second insert of the same record results in a "record already 
exists" error). The nonretryable requests are "insert" and 
"delete". 

Each request message contains a sync ID. The sync ID is used by 
the server process to detect duplicate requests for nonretryable 
operations (such as "insert" or "delete") from a given requester 
process (duplicate requests are caused by a failure of a 
requester process). The value of the sync ID is incremented by 
the requester with each request. When a new request is received, 
and the request is nonretryable, the server saves the value of 
the sync ID (these are saved for each given requester). If the 
sync ID in a request does not match the saved sync ID for the 
requester, then the request is a new request. In this case, the 
requested operation is performed, the results are returned to the 
requester, and the error code which was returned to the requester 
(to indicate the outcome of the operation) is saved by the server 
process for the requester. (Note that, because the server only 
saves the sync ID's associated with nonretryable requests, the 
sync ID associated with a retryable request will always indicate 
a new request. Therefore, duplicate retryable requests will be 
reexecuted by the server). If the sync ID in a request message 
matches the saved sync ID, then the request is a duplicate 
request for a nonretryable operation. The server does not 
reexecute the operation. Rather, it returns the completion 
status that it saved for that requester. 

B-6 -'1 82357 AOO 3/85 



APPENDIX B: FAULT-TOLERANT PROGRAMMING EXAMPLE 
Checkpoints 

Checkpoints 

There are three types of checkpoints in the example program: 

• initial checkpoint 
• request checkpoint 
• process requester directory checkpoint 

INITIAL CHECKPOINT: The initial checkpoint is made to the backup 
process, in the "createAbackup" procedure", following the 
successful creation of the backup and the opening of its files. 
The checkpoint includes the entire data area from 'G'[5] through 
the top-of-stack location, and includes the "sync block" for the 
data base file (the variable "backupAcpu" is not checkpointed). 
At this point, the backup process's data area is an exact copy of 
the primary process's data area. 

REQUEST CHECKPOINT (Figure B-2): Each time through its main 
processing loop in the "processAuserArequest" procedure, if the 
current request is nonretryable, the primary checkpoints the 
outcome of the preceding nonretryable request and the state of 
the current request to the backup. This is accomplished via a 
call to the CHECKPOINT procedure. The purpose of the checkpoint 
is to keep the backup informed as to the current state of the 
primary and to define a restart point for the backup in the event 
that the primary fails. 

In the example program, the goal was to keep the number of 
checkpoints and the amount of data checkpointed to a minimum. 
It is important to note that the checkpoint is made only if the 
current request is nonretryable, and that this one checkpoint per 
processing loop is ample for all failure recovery. The data 
checkpointed is: 

• the data stack. This is kept small by the use of global data 
buffers. 

• the data base file sync block 
• the sync ID, by requester, of the current request 
• the data record 
• the error return value, by requester, of the preceding 

nonretryable request 

Any time a failure of the server primary occurs, the backup takes 
over from the latest checkpoint (which is for the latest 
nonretryable operation) and reexecutes the latest nonretryable 
operation. (Note that this generates the result value for the 
latest nonretryable operation. The backup now has the correct 
values for any nonretryable operation which had been performed by 
the primary.) If the failure occurs between the call to 

""1 82357 AOO 3/85 B-7 



APPENDIX B: FAULT-TOLERANT PROGRAMMING EXAMPLE 
Checkpoints 

READUPDATE and the call to CHECKPOINT, the backup is reexecuting 
an operation already replied to. If the failure occurs between 
the call to CHECKPOINT and the call to REPLY, the backup 
completes the operation associated with the current request. In 
either case, the use of the "sync block" by the file system 
ensures that the request is not duplicated. Note also that the 
backup executes the call to REPLY at the end of the processing 
loop. This call is rejected, because there is no outstanding 
request on the backup side at this time (the rejection is 
ignored). 

If the primary server process was in the midst of processing a 
request when a failure occurred, the backup server process 
receives the same request when it takes over. If the primary had 
not reached the checkpoint for the current operation, then the 
backup has the value of the preceding nonretryable sync ID. The 
backup sees the request as a new request and processes it. If 
the primary was processing a nonretryable request and had reached 
the checkpoint for the current operation, then the current sync 
ID was checkpointed (and, in fact, the backup completed the 
operation on its takeover). The backup sees this request as a 
duplicate request and returns the saved error code for the 
completed operation. 

pROCESS REQUESTER DIRECTORY CHECKPOINT: This checkpoint is made, 
following the processing of a system message, in the 
"analyzeAsystemAmessage" procedure. It checkpoints the entire 
requester process directory and the entire sync count table. 
This point was chosen for the directory checkpoint because 
directory changes may occur when system messages arE~ received. 
(A directory change is also made in the "analyzeAcheckpointA 
status" procedure if the takeover occurred because of a processor 
module failure. However, a checkpoint at this point would be 
useless.) 

B-8 Aft 82357 AOO 3/85 



0 

© 

APPENDIX B: FAULT-TOLERANT PROGRAMMING EXAMPLE 
Checkpoints 

REQUEST CHECKPOINT 

Any failure will result in 
a duplicate request 

A failure in this area 
results in the backup 
reexecuting the 
preceding nonretryable 
request 

A failure in this area 
results in the backup 
reexecuting the current 
nonretryable request 

READUPDATE: A request 

Is this a duplicate, nonretryable request? 

y N 

~-~~--..,.--~~~~~~~~~~~-1 ~ 
Insert or delete Query or next-record 
request request 
(nonretryable) (retryable) 

Checkpoint 
- Sync ID and data 

for current request 
- sync block for 

data base file 
- last reply to 

preceding non
retryable request 

I 

Insert (WRITE) or 
delete (WRITEUPDATE) 
record 

Read requested 
record 

Reply to request 
- for all request types, an error code is returned. 
- for query and next-record requests. A data record is returned. 

The first time this reply is executed 
following a server primary failure, it will 
fail. Following this, a duplicate request 
will be received, the reply will be made, 
and it will succeed. 

85004-078 

Figure B-2. Request Checkpoint 

/1 82357 AOO 3/85 B-9 



tJj 
; 

I-' 
0 

~ 
co 
rv 
w 
U1 
-..J 

;:r:.. 
0 
0 

w 
........ 
OJ 
U1 

PAGE 1 $BOOKS1.M096B01.SERVESRC [l] 

TAL - T9200o03 - (01JUL81) Source language: TAL - Target machine: Tandem Nonstop System 
Default options: On (LIST,CODE,MAP,WARN,LMAP) - Off (ICODE,INNERLIST) Date - Time : 2/23/82 - 13:43:07 

1. 
2. 
3. 
4. 
5. 
6. 
7. 

10. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 
40. 
41. 
42. 
43. 
44. 
45. 
46. 
47. 
48. 
49. 
50. 
51. 
52. 
53. 
54. 
55. 
56. 

000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 

Nonstop Programming Example 
for GUARDIAN 

! Server Program 

?NOLI ST 

?LMAP* 

This program is run by the following RUN command: 

RUN serveobj / IN <data base file> , NAME $SERVE / 

where 

<data base file> is the file name of the disc file to ba accessed. 

$SERVE is the name used by requestors to access this process. 

process Nonstop state. 
INT backupAcpu, 

backupApid [0: 3], 
stopAcount := 0, 
backupAup := 0, 

.stack Abase; 

files 
INT recvAfnum, 

dbAfnum, 
dbAfname[O:ll]; 

LITERAL openAmsgs 
protected 
no Await 
recvAflags 
recvAsyncAdepth 
db A flags 
dbAsync"depth 

! data base format. 

backup cpu number. ** NOT CHECKPOINTED. 
process id of backup process. ** NOT CHECKPOINTED. 
to detect looping backup delete-creates 
true if backup is running. 
beginning of data stack for checkpointing. 

$RECEIVE file number. 
data base file number. 
data base file name. 

%40000, 
%40, 
1, 
openAmsgs + no"wait, 
1, 
protected, 
1; 

LITERAL db"rec"len = 256, 
dbArec"key"off = 0, 
dbArecAkeyAlen = 24; 

request message format. 

word 
[0] [l] [2:message"size-3] 
[ sync l [ request type ] [ -------------------- record -------------------- ] 

t:i:J> x :-0 
DJ '1:J 
9 t:i:J 

'O z 
I-' t::1 
Cl) H 

t>c: 
'1:J 
t'1 tJj 
0 

lO 
t'1 
DJ l"%J 
S> 

c n t"' 
0 t-3 
0.. I 
..... t-3 
::J 0 

lO t"' 
t:i:J :u 
> z 
t-3 

'1:J :u 
0 
G') 
:u 
> 
~ 
H 

z 
G') 

t:i:J 
t>c: 
> x 
'1:J 
t"' 
t:i:J 



~ 
00 
!\..) 

w 
U1 
-...J 

:> 
0 
0 

w 
........ 
():> 

U1 

IJ:j 

I 
~ 
~ 

PAGE 2 

57. 
58. 
59. 
60. 
61. 
62. 
63. 
64. 
65. 
66. 
67. 
68. 
69. 
70. 
71. 
72. 
73. 
74. 
75. 
76. 
77. 
78. 
79. 
80. 
81. 
82. 
83. 
84. 
85. 
86. 
87. 
88. 
89. 
90. 
91. 
92. 
93. 
94. 
95. 
96. 
97. 
98. 
99. 

100. 
101. 
102. 
103. 
104. 
105. 
106. 
107. 
108. 
109. 
llO. 
lll. 
ll2. 
ll3. 

$BOOKS1.M096B01.SERVESRC [l] Nonstop Example Server Process 

000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000203 0 0 
000203 0 0 
000404 0 0 
000404 0 0 
000404 0 0 
000404 0 0 
000404 0 0 
000404 0 0 
000404 0 0 
000404 0 0 
000404 0 0 
000424 0 0 
000424 0 0 
000444 0 0 
000444 0 0 
000646 0 0 
000646 0 0 
000646 0 0 
000767 0 0 
000767 0 0 
000767 0 0 
000767 0 0 
000767 0 0 
000767 0 0 
000767 0 0 
00076-7 0 0 
000767 0 0 
000767 0 0 
000767 0 0 
000767 0 0 
000767 0 0 
000767 0 0 
000767 0 0 

sync = sync id ( incremented by requester on each request ) . 
used to detect duplicate nonretryable requests. 

request type. 

0 
1 
2 
3 

record. 

insert request 
delete request. 
query request. 
next record request. 

(nonretryable) 
(nonretryable) 
(retryable) 
( retryable) 

on request = record to be inserted, deleted, or obtained. 
on return for query or next = record from data base. 

LITERAL 
sync 
requestAtype 
record 
message Alen 
messageAsize 

0, 
1, 
2, 
dbArecAlen + 4, 
messageAlen / 2; 

global buffers. 
INT .recvAbuf[ 0 : messageAsize ] , 

recvAcnt, 
receive buffer. 
receive count • 
scratch buffer. . buf [ 0 : dbArecAlen / 2 ] ; 

LITERAL 

INT 

maxAreqstrs = 16; maximum number of requestors allowed. 

! directory entry no. of previous requestor of nonretryable operation. 
oldArequestor, 
! sync id for latest requestor of nonretryable operation. 

.syncAcount [ 1 : maxAreqstrs ] := maxAreqstrs * [ 0 l, 
! reply error code for each requestor. 

.replyAerror [ 1 : maxAreqstrs ] , 
! reply for current request • 

. replyAbuf [ 0 : messageAsize - 1 l; 

requestor process directory. 
INT .pids[5:maxAreqstrs * 5 + 5] (maxAreqstrs * 5) * [ 0 ] ; 

[O] [ 3] [ 4] 

F-------- --- --

!~~~~~~~~~~ ~~~ ~~~ 

entry #1 

entry #2 

entry #3 

entry #maxAreqstrs. 

entryAno[0:2] 
entryAno[3] 

<process name> or <creation time stamp> 
<cpu,pin> of primary process 

2/23/82 13: 

> 
ttJ 
ttJ 
t:t.1 
z 
t:J 
H 

>: 
tD 

t'%j 

> c::: 
L' 
8 
I 

8 
0 
L' 
t:t.1 
::t:J 
> 

t:t.lZ 
>< 8 
DJ 
3 ttJ 
ttj ::t:J 
~o 
CD G') 

::t:J 
ttJ > 
6~ 

lQ H 
r; z 
DJ G') 
3 

t:t.1 
(") >: 
o> 
0.. 3: 
...... ttJ 
:J L' 

lO t:t.1 



bj 
I 

....... 
N 

~ 
CX> 
I'\.) 

w 
(Jl 

-...J 

:;i:.. 
0 
0 

w 

' CX> 
(Jl 

PAGE 3 

114. 
115. 
116. 

$BOOKS1.M096B01. SERVES RC [ l] Non Stop Example Server Process 

000767 0 0 ! entryAno[4] 
000767 0 0 
000767 0 0 ?NOLIST 

= <cpu,pin> of backup process, if any, or zero 

2/23/82 13: 
t%J > 
?< "O 
PJ '1:J s t%J 

'U z 
....... t:J 
(I) H 

t>-= 
'1:J 
f"1 bj 
0 

'° f"1 
PJ t'%.] 
S> 

c::: 
(') t-t 
0 t-3 
0.. I 
..... t-3 
~o 

'° t-t t%J 
::t1 
> z 
t-3 

'1:J 
::t1 
0 
G) 
::t1 
> 
~ 
H 

z 
G) 

t%J 
t>-= 
> :s:: 
'1:J 
t-t 
t%J 



~ 
CXl 
rv 
w 
(J1 

-'1 

>' 
0 
0 

w 
-...... 
CXl 
(J1 

tI1 
I 
~ 
w 

PAGE 4 $BOOKS1.M096B01.SERVESRC [l] SERVE: readAstartAupAmessage Procedure 2/23/82 13: 

177. 000000 0 
178. 000000 0 
179. 000000 0 
180. 000000 0 
181. 000000 0 
182. 000000 0 
183. 000000 0 
184. 000000 0 
185. 000000 0 
186. 000000 1 
187. 000000 1 
188. 000000 1 
189. 000000 1 
190. 000000 1 
191. 000000 1 
192. 000011 1 
193. 000023 1 
194. 000027 1 
195. 000027 1 
196. 000027 1 
197. 000037 1 
198. 000050 1 
199. 000057 1 
200. 000057 1 
201. 000057 1 
202. 000067 1 
203. 000100 1 
204. 000107 1 
205. 000107 1 
206. 000107 1 
207. 000114 1 
208. 000114 1 
209. 000114 1 
210. 000124 1 
211. 000135 1 
212. 000144 1 

RECVABUF 

00000 
00020 
00040 
00060 
00100 
00120 
00140 
00160 

070402 024700 
100360 024700 
024700 002003 
170401 100102 
015003 140401 
002003 100034 
012003 000002 
020040 020040 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

this procedure opens the $RECEIVE file for the primary process and reads 
the start-up message. Note that the receipt of the start-up message 
involves reading three interprocess messages: 

1. OPEN "system" message. 
2. CI start-up message (not a "system" message) 
3. CLOSE "system" message. 

PROC readAstartAupAmessage; 

BEGIN 
INT .recvAbuf[0:33]; 

! open $RECEIVE. 
recvAbuf ':=' ["$RECEIVE", 8 * [" "]]; 
CALL OPEN ( recvAbuf, recvAfnum, recvAflags, recvAsyncAdepth ) ; 
IF <> THEN CALL ABEND; 

! read open message. 
CALL READ ( recvAfnum, recvAbuf, 14 ) ; 
CALL AWAITIO ( recvAfnum,,,, 3000D ) ; 
IF <= OR recvAbuf <> -30 THEN CALL ABEND; 

! read startAup message. 
CALL READ ( recvAfnum, recvAbuf, 66 ) ; 
CALL AWAITIO ( recvAfnum,,,, 3000D); 
IF <> OR recvAbuf <> -1 THEN CALL ABEND; 

! save dataAbase file name. 
dbAfname ':=' recvAbuf[9] FOR 12; 

! read close message. 
CALL READ ( recvAfnum, recvAbuf, 14 ) ; 
CALL AWAITIO ( recvAfnum,,,, 3000D ) ; 
IF <= OR recvAbuf <> -31 THEN CALL ABEND; 

END; ! readAstartAupAmessage. 

Variable INT L+OOl 

002042 170401 000025 020137 000200 100014 
027000 012003 000002 024711 027000 040010 
100000 005013 004270 100021 024722 027000 
024722 002003 100034 024700 027000 070010 
001777 012003 000002 024711 027000 070012 
024700 027000 070010 024700 002003 100000 
024711 027000 125003 000141 022122 042503 

Indirect 

00010 026047 170401 070010 005100 004001 100001 024733 002 
00030 170401 1000~6 024722 002003 100034 024700 027000 070 
00050 016003 140401 001742 012003 000002 024711 027000 040 
00070 024700 002003 100000 005013 004270 100021 024722 027 
00110 103011 173401 100014 026007 040010 170401 100016 024 
00130 005013 004270 100021 024722 027000 016003 140401 001 
00150 042511 053105 020040 020040 020040 020040 020040 020 

> 
ttJ 
ttJ 
L'.E.l z 
0 
H 

>: 
tJj 

l"%j 

> c:: 
t1 
t-3 
I 

t-3 
0 
t1 
L'.E.l 
:::0 
> 

L'.E.lZ 
>: t-3 
DJ 
9 ttJ 

tO :::0 ...... o 
CD G) 

:::0 
ttJ > 
cii 
lQ H 
l'1 z 
DJ G) 
9 

L'.E.l 
(") >: 
o> 
~3: 
..... ttJ 
:s t1 

lO L'.E.l 



tJj 
I 

f--1 
~ 

~ 
CD 
!\..) 

w 
(.)1 

-....J 

:i>-
0 
0 

w 

" CD 
(.)1 

PAGE 5 

214. 
215. 
216. 
217. 
218. 
219. 
220. 
221. 
222. 
223. 

00000 

224. 
225. 
226. 
227. 
228. 
229. 
230. 
231. 
232. 
233. 
234. 
235. 
236. 
237. 
238. 
239. 
240. 
241. 
242. 
243. 

$BOOKS1.M096B01.SERVESRC [l] SERVE: File Open Procedures 2/23/82 

000000 0 0 ! this procedure opens the data base file for the primary process. 
000000 0 0 
000000 0 0 PROC openAprirnarysAfiles; 
000000 1 0 
000000 1 0 BEGIN 
000000 1 1 
000000 1 1 ! open data base file. 
000000 1 1 CALL OPEN ( dbAfnarne, dbAfnurn, dbAflags, dbAsyncAdepth ) ; 
000011 1 1 IF <> THEN CALL ABEND; 
000015 1 1 END; ! openAprirnarysAfiles. 

070012 070011 100040 100001 024733 002004 100360 024700 00010 027000 012003 000002 024711 027000 125003 

000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 1 0 
000000 1 0 
000000 1 1 
000000 1 1 
000000 1 1 
000000 1 1 
000000 1 l 
000011 1 1 
000011 1 ]_ 

000024 1 1 
000031 1 1 
000031 1 1 
000031 1 l 
000031 1 1 
000043 1 1 
000050 1 1 

! this procedure opens the $RECEIVE and data base files for the backup 
! process. 

PROC openAbackupsAfiles; 

BEGIN 
INT . buf [ 0: 11] , 

backAerror; 

! open $RECEIVE. 
buf ':=' ["$RECEIVE", 8 * [" "]]; 
CALL CHECKOPEN ( buf, recvAfnurn, recvAflags, recvAsyncAdepth,,, 

back"error ) ; 
IF <> THEN CALL STOP ( backupApid ) ; 

! open data base file. 
CALL CHECKOPEN ( dbAfnarne, dbAfnurn, dbAflags, dbAsyncAdepth,,, 

backAerror ) ; 
IF <> THEN CALL STOP ( backupApid ) ; 

END; ! openAbackupsAfiles. 

13: 

BACK A ERROR Variable 
Variable 

INT 
INT 

L+002 
L+OOl 

Direct 
Indirect BUF 

00000 
00020 
00040 

070403 024700 002015 170401 000025 020043 000200 100014 
024766 100171 024700 027000 012004 070001 100001 024711 
100171 024700 027000 012004 070001 100001 024711 027000 

00060 020040 020040 020040 020040 020040 020040 

00010 026047 170401 040010 005100 004001 100001 000002 070 
00030 027000 070012 040011 100040 100001 000002 070402 024 
00050 125003 000045 022122 042503 042511 053105 020040 020 

t:i:J> 
>c: "'O 
PJ "'O 
3 t:i:J 

'U z 
....... t:J 
Cl) H 

~ 
"'O 
l"1 t:1' 
0 

lO 
l"1 
PJ t'%j 
3> 

c:: 
() 1:-1 
0 t-3 
0., I 
..... i-3 
:J 0 

lO 1:-1 
t:i:J 
:::0 
> z 
i-3 

"'O 
:::0 
0 
G) 
:::0 
> 
~ 
H 

z 
G) 

t:i:J 
~ 
> 
3: 
"'O 
1:-1 
t:i:J 



~ 
CX> 
rv 
w 
(.Jl 
-...] 

)" 
0 
0 

w 
........ 
CX> 
(.Jl 

tJj 
I 

I-' 
U1 

PAGE 6 

245. 
246. 
247. 
248. 
249. 
250. 
251. 
252. 
253. 
254. 
255. 
256. 
257. 
258. 
259. 
260. 
261. 
262. 
263. 
264. 
265. 
266. 
267. 
268. 
269. 
270. 
271. 
272. 
273. 
274. 
275. 
276. 
277. 
278. 
279. 
280. 

$BOOKS1.M096B01.SERVESRC [l] SERVE: createAbackup Procedure 2/23/82 

000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 1 0 
000000 1 0 
000000 1 0 
000000 1 1 
000000 1 1 
000000 1 1 
000000 1 1 
000000 1 1 
000000 1 1 
000000 1 1 
000000 1 1 
000000 1 1 
000012 1 1 
000012 1 1 
000012 1 1 
000015 1 1 
000015 1 1 
000021 1 1 
000021 1 1 
000033 1 1 
000035 1 1 
000035 1 2 
000037 1 2 
000040 1 2 
000040 1 2 
000040 1 2 
000053 1 2 
000056 1 2 
000056 1 1 

this procedure creates the backup process. The steps involved are: 

- create backup. 
- open its files. 
- checkpoint current state. 

PROC createAbackup ( backupAcpu ); 
INT backupAcpu; 

BEGIN 
INT .pfile [0: 11], 

pname[0:3], 
error, 
status, 

.globals := 5; ! base for initial checkpoint = 'G' [5]. "backupAcpu" 
! and "backupApid" not checkpointed. 

check for looping creates. 
IF stopAcount > 5 THEN CALL DEBUG; 

! get program's file name. 
CALL PROGRAMFILENAME ( pfile ) ; 
! get process's name. 
CALL GETCRTPID ( MYPID, pname ) ; 
! create the backup process. 
CALL NEWPROCESS ( pfile,,, backupAcpu, backupApid, error, pname ) ; 
IF backupApid THEN ! it was created. 

BEGIN 
backupAup := l; 
CALL openAbackupsAfiles; 

! checkpoint global area through top-of-stack and sync block. 
IF ( status := CHECKPOINT ( globals, ,dbAfnum ) ) THEN 

CALL analyzeAcheckpointAstatus ( status ) ; 
END; 

END; ! of createAbackup 

*** CHECKPOINT *** 

13: 

BACKUPACPU Variable INT L-003 Direct 
Direct 
Indirect 
Indirect 
Direct 
Direct 

ERROR 
GLOBALS 
PFILE 
PNAME 
STATUS 

00000 
00020 
00040 

Variable INT L+006 
Variable INT L+OlO 
Variable INT L+OOl 
Variable INT L+002 
Variable INT L+007 

070411 024700 002006 100005 024700 002014 040005 001005 
027000 170401 000002 040703 070001 070406 024755 070402 
170410 100000 040011 024722 002030 005005 100000 024711 

00010 016001 027000 170401 024700 027000 027000 070402 024 
00030 100117 024711 027000 040001 014421 100001 044006 027 
00050 027000 034407 014403 040407 024700 027000 125004 

> 
tO 
tO 
t%J 
z 
0 
H 

~ 

tJ:j 

t'%j 

> c:: 
t"1 
t-3 
I 

t-3 
0 
t"1 
t%J 
::0 
> 

t%J z 
>: t-3 
DJ 
3 tO 

tQ ::0 
1-'0 
(l) G') 

::0 
tO > 
6~ 

lQ H 
'"1 z 
PJ G') 
3 

t%J 
()~ 
o> 
Q,3; 
...... tO 
::J t"1 

lO t%J 



td 
I 

........ 
CJ'\ 

~ 
CXl 
!'0 
w 
(J1 

-..J 

)>o 
o 
0 

w 
......... 
CXl 
U1 

PAGE 7 

282. 
283. 
284. 
285. 
286. 
287. 
288. 
289. 
290. 
291. 
292. 
293. 
294. 
295. 
296. 
297. 
298. 
299. 
300. 
301. 
302. 
303. 
304. 
305. 
306. 
307. 
308. 
309. 
310. 
311. 
312. 
313. 
314. 
315. 
316. 
317. 
318. 
319. 
320. 
321. 
322. 
323. 
324. 
325. 
326. 
327. 
328. 
329. 
330. 
331. 
332. 
333. 
334 • 
335. 

STATUS 

$BOOKS1.M096B01.SERVESRC [l] SERVE: analyzeAcheckpointAstatus Procedure 

000000 0 
000000 0 
000000 0 
000000 0 
000000 1 
000000 1 
000000 1 
000000 1 
000000 1 
000002 1 
000005 1 
000005 1 
000005 1 
000005 1 
000005 1 
000005 1 
000011 1 
000012 1 
000012 1 
000012 l 
000016 1 
000020 1 
000020 1 
000021 1 
000021 1 
000021 1 
000024 l 
000024 1 
000024 1 
000024 1 
000027 l 
000030 1 
000030 1 
000030 1 
000032 1 
000034 1 
000037 1 
000040 1 
000040 1 
000040 1 
000042 1 
000045 1 
000046 l 
000046 1 
000046 1 
000046 1 
000053 1 
000054 1 
000054 1 
000054 1 
000055 1 
000056 1 
000056 1 
000063 1 

0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
2 
2 
2 
3 
3 
3 
3 
4 
4 
4 
4 
3 
2 
2 
3 
3 
4 
4 
5 
5 
4 
4 
5 
5 
5 
5 
4 
4 
5 
5 
5 
4 
4 
4 
4 
3 
2 
2 
3 
3 
2 
2 
1 

! this procedure is used to analyze and take appropriate action for a 
! non-zero return from the CHECKPOINT procedure. 

PROC analyzeAcheckpointAstatus ( status ) ; 
INT status; ! return value of CHECKPOINT. 

BEGIN 

IF backupAup THEN ! analyzeAit. 
CASE status.<0:7> OF 

BEGIN 
0 ! : ! good checkpoint. 

1 ! BEGIN ! checkpoint failure. 
! find out if backup is still running. 
CALL GETCRTPID ( backupApid[3], backupApid ) ; 
IF= THEN ! backup still running. 

BEGIN 
! stop the backup. 
CALL STOP ( backupApid ) ; 
backupAup := O; 

END; 
END; ! l. 

2 ! BEGIN ! takeover from primary. 
CASE status.<8:15> OF 

BEGIN 

2-0 ! BEGIN ! primary stopped, so stop myself. 

2-1 

'2-2 

2-3 

CALL STOP; 
END; 

BEGIN ! primary abended, so create a backup for me. 
back~pAup := O; A 
stop count := stop count + l; 
CALL createAbackup ( backupAcpu ) ; 

END; 

BEGIN ! primary cpu down, note it. 
backupAup := O; 
CALL delallpids ( backupAcpu ) ; 

END; 

! primary called CHECKSWITCH. 
I 

END; ! case of status.<8:15>. 
END; ! 2. 

3 ! BEGIN ! bad parameter to CHECKPOINT 
CALL DEBUG; 

END; ! 3. 

END; ! case of status.<0:7>. 
END; ! analyzeAcheckpointAstatus. 

Variable INT L-003 Direct 

2/23/82 13: 

t:tJ> 
>= "'O 
DJ "'O 
!3 t:tJ 
ta z 
1--' t:J 
Cl) H 

t>c: 
"'O 
l'1 td 
0 

lQ 
l'1 
DJ t"J:j 
!3 > c 
() t"1 
0 "'"3 
Q, I 
..... "'"3 
:l 0 

lQ t"1 
t:tJ 
~ 
> z 
"'"3 

"'O 
~ 
0 
G1 
:::c:J 
> 
~ 
H 

z 
Gl 

t:tJ 
~ 
> 
3: 
"'O 
t"1 
t:tJ 



~ 
CD 
l\.) 

w 
U1 
--.J 

> 
0 
0 

w 
........ 
CD 
Ul 

t:D 
I 

.......... 

.....J 

PAGE 8 

00000 
00020 
00040 
00060 

$BOOKSl.M096BOl.SEaVESRC [l] SERVE: analyzeAcheckpointAstatus Procedure 2/23/82 13: 

040006 014461 040703 030110 010451 040004 070001 024711 
010442 040703 006377 010422 000002 024711 027000 010423 
100000 044006 040000 024700 027000 010405 000030 177755 
177725 177740 177772 125004 

00010 027000 015006 070001 100001 024711 027000 100000 044 
00030 100000 044006 100001 074005 040000 024700 027000 010 
00050 177760 177767 000001 010407 027000 010405 000030 000 

> 
'1:J 
'1:J 
t:rJ z 
0 
H 

~ 

t:D .. 
l"%j 

> c 
t1 
8 
I 

8 
0 
t1 
t:rJ 
::tJ 
> 

t:i:JZ 
>: 8 
DJ 
3 '1:J 

t'tj ::tJ 
....... o 
(1) G) 

::tJ 
'1:J > 
8~ 

lQ H 
l"1 z 
DJ G) 
3 

t:rJ 
n~ 
o> o..x 
~·'1:J 
::J t1 

lQ t:rJ 



tJj 
I 

j--i 

CX> 

~ 
CD 
[\..) 

w 
U1 
-..J 

:i>o 
0 
0 

w 

' CD 
U1 

PAGE 9 

337. 
338. 
339. 
340. 
341. 
342. 
343. 
344. 
345. 
346. 
347. 
348. 
349. 
350. 
351. 
352. 
353. 
354. 
355. 
356. 
357. 

COMPALEN 
ENTRY ANO 
PID 

$BOOKS1.M096B01.SERVESRC [l] SERVE: lookuppid Procedure 

000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 1 0 
000000 1 0 
000000 1 0 
000000 1 1 
000000 1 1 
000000 1 1 
000000 1 1 
000013 1 1 
000020 1 1 
000031 1 1 
000034 1 1 
000034 1 1 
000036 1 1 

This procedure searches the requester process directory by a process id 
for an entry number. 

return values: 
0 = pid not in directory. 

>O = entry no of pid in directory. 

INT PROC lookuppid(pid); 
INT .pid; 

BEGIN 
INT entryAno := 0, ! entryAno in local pid directory. 

compAlen; ! compare length for pid matching. 

compAlen := IF pid.<0:7> = "$" THEN ! process name ! 3 ELSE 4; 
WHILE (entryAno := entryAno + 1) <= maxAreqstrs DO 

IF pid = pids[entryAno * 5] FOR compAlen THEN ! found it. 
RETURN entryAno; 

RETURN 0; ! not found. 
END; ! lookuppid. 

Variable 
Variable 
Variable 

INT 
INT 
INT 

L+002 
L+OOl 
L-003 

Direct 
Direct 
Indirect 

2/23/82 13: 

00000 
00020 

100000 024700 002001 140703 030110 001044 015002 100003 
170703 040401 100005 000212 000117 173035 040402 026207 

00010 010401 100004 044402 040401 104001 034401 001020 011 
00030 015002 040401 125004 010757 100000 125004 

t%J > 
:><: tO 
PJ '1::J 
3 t%J 

tO z 
1-10 
CD H 

::< 
'1::J 
t'1 t::IJ 
0 

lO 
t'1 
PJ "%j 
3> 

c:: n t"1 
0 t-3 
Q, I 
...... t-3 
::J 0 

lO t"1 
t%J 
~ 
> z 
t-3 

'1::J 
~ 
0 
G) 
~ 
> 
~ 
H 

z 
G) 

t%J 
::< 
> 
3: 
'tJ 
t"1 
t%J 



~ 
CXl 
rv 
w 
Ul 
-.J 

>' 
0 
0 

w 
........ 
CXl 
Ul 

t;Jj 
I 

I-' 
\D 

PAGE 10 

359. 
360. 
361. 
362 . 
363. 
364. 
365. 
366. 
367. 
368. 
369. 
370. 
371. 
372. 
373. 
374. 
375. 
376. 
377. 
378. 
379. 
380. 
381. 
382. 
383. 
384. 
385. 
386. 
387. 
388. 

$BOOKS1.M096B01.SERYESRC [l] SERVE: addpid Procedure 

000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 1 0 
000000 1 0 
000000 1 0 
000000 1 1 
000000 1 1 
000004 1 1 
000004 1 1 
000017 1 1 
000017 1 2 
000017 1 2 
000017 1 2 
000042 1 2 
000044 1 2 
000044 1 1 
000045 1 1 
000045 1 2 
000052 1 2 
000052 1 3 
000062 1 3 
000065 1 3 
000065 1 2 
000065 1 1 
000067 1 1 

This procedure adds a process id to the requestor process directory. 

return values. 
0 =directory full, "pid" not added to directory. 

>0 = "pid" added, entry no of "pid" in directory. 

INT PROC addpid(pid); 
INT .pid; 

BEGIN 
INT entry"no, ! entry"no in local pid directory. 

zero[0:3] := [ 4 * [ 0 ]]; ! for lookup of empty directory slot. 

IF (entry"no := lookuppid(pid)) THEN ! already in directory. 
BEGIN 

! check for duplicate open. 
IF pids[ entry"no * 5 + 3 ] <> p d [ 3 1 AND 

pids[ entry"no * 5 + 4 ] <>pd[ 3 ] THEN ! first open by 
pids[ entry"no * 5 + 4 ] :=pd[ 3 ] ; ! backup. 

END 
ELSE ! not in directory. First open by "pid" 

BEGIN 
IF (entry"no := lookuppid(zero)) THEN ! look for empty slot. 

BEGIN 
pids [entry"no * 5] ': =' pid FOR 4; 
sync"count[entry"no] := -1; ! initialize requester id"count. 

END; 
END; 

RETURN entry"no; ! this returns zero if no room in directory. 
END; ! addpid. 

2/23/82 13: 

ENTRY"NO Variable 
Variable 
Variable 

INT 
INT 
INT 

L+OOl 
L-003 
L+002 

Direct 
Indirect 
Direct 

PID 
ZERO 

00000 
00020 
00040 
00060 

000000 000000 000000 000000 002005 070402 000025 003771 
100005 000212 104003 000117 143035 102003 142703 000215 
000215 012002 142703 145035 010420 070402 024700 027000 
100004 026007 032401 100777 146032 040401 125004 

00010 100004 026047 170703 024700 027000 034401 014426 040 
00030 012013 040401 100005 000212 104004 000115 141035 142 
00050 034401 014413 040401 100005 000212 000117 173035 170 

> 
tU 
tU 
t%J z 
t1 
H 

:< 
tD 

l"%J 
> c:: 
t"" 
i-3 
I 

i-3 
0 
t"" 
t%J 
::0 
> 

t%J z 
>< i-3 
OJ 
3 tU 

tO ::0 
I-' 0 
Cl> G) 

::0 
tU > 
6~ 

lQ H 
l"'1 z °' G) 3 

t%J 
n:< 
o> o..x 
..... tU 
~ t"" 

lO t%J 



tD 
I 

N 
0 

~ 
co 
rv 
w 
(Jl 

-..! 

::i>' 
0 
0 

w 
....... 
co 
(Jl 

PAGE 11 

390. 
391. 
392. 
393. 
394. 
395. 
396. 
397. 
398. 
399. 
400. 
401. 
402. 
403. 
404. 
405. 
406. 
407. 
408. 
409. 
410. 

$BOOKS1.M096B01.SERVESRC [l] SERVE: delpid Procedure 

000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 1 0 
000000 1 0 
000000 1 0 
000000 1 1 
000000 1 1 
000000 1 1 
000006 1 1 
000015 1 1 
000015 1 2 
000027 1 2 
000027 1 2 
000031 1 2 
000031 1 2 
000040 1 2 
000040 1 1 
000041 1 1 
000053 1 1 

! This procedure deletes a process id from the requestor process 
! directory. 

PROC delpid(pid); 
INT .pid; ! "pid" to be deleted. 

BEGIN 
INT entryAno; ! entryAno in local pid directory. 

IF (entryAno := lookuppid{pid)) THEN ! delete it. 
IF pids[entryAno * 5 + 4] THEN ! was open by process-pair. 

BEGIN 
IF pids[entryAno * 5 + 3] = pid[3] THEN ! close by primary. 

! replace primary entryAno with backup. 
pids[entryAno * 5 + 3] := pids[entryAno * 5 + 4]; 

! clear backup entryAno. 
pids [entryAno * 5 + 4] := O; 

END 
ELSE ! was open by one process. 

pids[entryAno * 5] ':=' [0,0,0,0]; 
END; ! delpid. 

2/23/82 13: 

ENTRYANO Variable 
Variable 

INT 
INT 

L+OOl 
L-003 

Direct 
Indirect PID 

00000 
00020 
00040 
00060 

002001 170703 024700 027000 034401 014445 040401 100005 
104003 000116 142035 101003 141703 000215 015002 143035 
010412 040401 100005 000212 000117 173035 000025 020004 
000000 

00010 000212 104004 000117 143035 014424 040401 100005 000 
00030 146035 040401 100005 000212 104004 000117 100000 147 
00050 000200 100004 026047 125004 000006 000000 000000 000 

t%J > 
::< t'O 
DJ '"O 
9 t%J 

tQ z 
......... 0 
CD H 

~ 
t'tJ 
l"1 tD 
0 

lO 
l"1 
DJ t'%j 
9> 

c::: 
() t-t 
0 t-3 
0.. I 
..... t-3 
:::J 0 

lO t-t 
t%J 
:::cl 
> z 
t-3 

t'tJ 
:::cl 
0 
G') 
:::cl 
> 
~ 
H 

z 
G') 

t%J 
~ 
> 
3: 
t'tJ 
t-t 
tz:l 



~ 
CD 
I\.) 

w 
(JI 

-..J 

;i:.o 
0 
0 

w 
........ 
CD 
(J1 

t:D 
I 

"' ~ 

PAGE 12 

412. 
413. 
414. 
415. 
416. 
417. 
418. 
419. 
420. 
421. 
422. 
423. 
424. 
425. 
426. 
427. 
428. 
429. 
430. 
431. 
432. 
433. 
434. 
435. 
436. 
437. 
438. 

CPU 

$BOOKS1.M096B01.SERIJESRC [l] SERVE: delallpids Procedure 

000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 1 0 
000000 1 0 
000000 1 0 
000000 1 1 
000000 1 1 
000000 1 1 
000000 1 1 
000010 1 1 
000010 1 2 
000010 1 2 
000010 1 2 
000010 1 2 
000024 1 2 
000024 1 2 
000030 1 2 
000031 1 2 
000031 1 2 
000031 1 2 
000045 1 2 
000045 1 2 
000047 1 2 
000050 1 1 

this procedure is called if a cpu failure message is received. It 
deletes all references in the requester process directory to the 
failed cpu. This may cause entire entries to be deleted. 

PROC delallpids(cpu); 
INT cpu; ! processor module number of pids to be deleted. 

BEGIN 
INT entry"no := 0, 

temp; 
! entry"no in local pid directory. 

WHILE (entry"no := entry"no + 1) <= max"reqstrs DO 
BEGIN ! check each entry"no. 

! check for match with entry"no's primary cpu. 
IF pids[ entry"no * 5 + 3 l AND 

pids[ entry"no * 5 + 3 ] .<0:7> = cpu THEN ! primary down 
! delete primary process and maybe the entire entry"no. 
CALL delpid ( pids [ entry"no * 5 ] ) 

ELSE 
! check for match with entry"no's 
IF pids[ entry"no * 5 + 4 ] AND 

pids[ entry"no * 5 + 4 ] .<0:7> 
! clear the backup entry"no. 
pids [ entry"no * 5 + 4 ] := O; 

END; 
END; ! delallpids. 

backup cpu. 

= cpu THEN ! backup down. 

2/23/82 13: 

ENTRY"NO 
Var able 
Var able 
Var able 

INT 
INT 
INT 

L-003 
L+OOl 
L+002 

Direct 
Direct 
Direct TEMP 

00000 
00020 
00040 

100000 024700 002001 040401 104001 034401 001020 011040 
030110 040703 000215 015005 107775 173035 024700 027000 
143035 030110 040703 000215 015002 100000 147035 010733 

00010 040401 100005 000212 104003 000117 143035 014412 143 
00030 010416 040401 100005 000212 104004 000117 143035 014 
00050 125004 

> 
"'O 
"'O 
t:i:J z 
t::J 
H 

~ 

tlj 

~ 
> c 
t-t 
t-3 
I 

t-3 
0 
t-t 
t:i:J 
:::0 
> 

t:i:JZ 
~ t-3 
DJ 
9 "'O 
tQ :::0 
t-JO 
ro G'l 

:::0 
"'O > 
6~ 
lQ H 
t1 z 
DJ G') 
9 

t:i:J 
(') ~ 
o> °' 3:: ..... "'O 
:> t-t 

lO t:i:J 



tJ:j 
; 

N 
N 

~ 
00 
f\..) 

w 
U1 
-...J 

:> 
0 
0 

w 
........ 
OJ 
U1 

PAGE 13 

440. 
441. 
442. 
443. 
444. 
445. 
446. 
447. 
448. 
449. 
450. 
451. 
452. 
453. 
454. 
455. 
456. 
457. 
458. 
459. 
460. 
461. 
462. 
463. 
464. 
465. 
466. 
467. 
468. 
469. 
470. 
471. 
472. 
473. 
474. 
475. 
476. 
477. 
478. 
479. 
480. 
481. 
482. 
483. 
484. 
485. 
486. 
487. 
488. 
489. 
490. 
491. 
492. 
493. 
494. 
495. 
496. 

$BOOKS1.M096B01.SERVESRC [l] SERVE: analyzeAsystemAmessage Procedure 

000000 0 0 
000000 0 0 
000000 0 0 
000000 1 0 
000000 1 0 
000000 1 0 
000000 1 0 
000000 1 0 
000000 1 1 
000000 1 1 
000000 1 1 
000000 1 1 
000007 1 1 
000007 1 2 
000007 1 2 
000007 1 2 
000007 1 2 
000007 1 3 
000007 1 3 
000007 1 3 
000013 1 3 
000022 1 3 
000023 1 2 
000023 1 2 
000023 1 3 
000030 1 3 
000030 1 4 
000030 1 4 
000032 l 4 
000035 1 4 
000035 1 3 
000036 1 2 
000036 l 2 
000036 1 2 
000036 1 2 
000036 1 3 
000040 1 3 
000042 1 3 
000045 1 3 
000046 1 2 
000046 1 2 
000046 1 3 
000050 1 3 
000052 1 3 
000055 1 3 
000056 1 2 
000056 1 2 
000056 1 2 
000056 1 2 
000056 1 3 
000056 1 3 
000063 1 3 
000063 1 3 
000066 1 3 
000066 1 3 
000072 1 3 
000074 1 3 

! this procedure analyzes and takes appropriate action for system messages. 

PROC analyzeAsystemAmessage 
INT .recvAbuf, 

recvAbuf, recvAcnt, pid ) ; 

recvAcnt, 
.pid; 

BEGIN 

0 
1 

INT replyAerror := 0, 
status; 

CASE $ABS ( recvAbuf ) OF 
BEGIN 

2 ! BEGIN ! cpu down. 

3 

4 

! delete any references in the requestor process 
! directory to the cpu that failed. 
CALL delallpids ( recvAbuf[l] ) ; 
IF recvAbuf[l] = backupAcpu THEN backupAup := O; 

END; 

BEGIN ! cpu up. 
IF recvAbuf(l] 

BEGIN 
backupAcpu THEN 

! clear stop count. 
stopAcount := O; 

backup cpu came up. 

CALL createAbackup ( backupAcpu ) ; 
END; 

END; 

5 ! BEGIN ! backup stopped. 
back~pAup := O; A 
stop count := stop count + l; 

6 

7-29! 

30 ! 

CALL createAbackup ( backupAcpu ) ; 
END; 

BEGIN ! backup abended. 
back~pAup := O; A 
stop count := stop count + l; 
CALL createAbackup ( backupAcpu ) ; 

END; 

. ..................... . 
f I If If I 1111 I I I I I fl I I 11 I 

BEGIN ! OPEN system message. 
! check for no-wait i/o depth > 1. 
IF recvAbuf[ l ] .<12:15> > l THEN 

replyAerror := 28 ! return illegal no-wait depth error. 
ELSE 
! try to add opener to directory. 
IF NOT addpid ( pid ) THEN 

replyAerror := 12; ! return file in use error. 
END; 

2/23/82 13: t:r:J> 
ii< "O 
DJ. t-0 
!3 t:r:J 

tQ z 
....... o 
Cl> ....... 
~ 

t-0 
t1 tJ:j 
0 

U) 
t1 
DJ t'%j 
!3 > c:: 
(') t1 
0 i-3 
0.. I 
...... i-3 
::l 0 

U) t1 
t:r:J 
~ 
> z 
i-3 

t-0 
~ 
0 
G') 
~ 
> 
~ 
....... 
z 
G) 

t:r:J 
~ 
> x 
t-0 
t1 
t:r:J 



~ 
CP 
I\.) 

w 
U'I 
....J 

> 
0 
0 

w 
........ 
CP 
U'I 

tII 
I 

I\.) 

w 

PAGE 14 

497. 
498. 
499. 
500. 
501. 
502. 
503. 
504. 
505. 
506. 
507. 
508. 
509. 
510. 
511. 
512. 
513. 
514. 
515. 
516. 

PID 

$BOOKS1.M096B01.SERVESRC [l] SERVE: analyzeAsystemAmessage Procedure 

000075 1 2 
000075 1 2 
000075 1 3 
000075 1 3 
000100 1 3 
000101 1 2 
000101 1 2 
000103 1 2 
000154 1 1 
000154 1 1 
000154 1 1 
000154 1 1 
000154 1 1 
000154 1 1 
000154 1 1 
000204 1 1 
000207 1 1 
000207 1 1 
000207 1 1 
000214 1 1 

31 BEGIN ! CLOSE system message. 
! delete closer from requestor process directory. 
CALL delpid ( pid ) ; 

END; 

OTHERWISE replyAerror := 2; 
END; ! system message case. 

! return invalid operation error. 

IF ( status := CHECKPOINT ( stackAbase, 
pids [ 5 ] , maxAreqstrs * 5 + 5, 
syncAcount [ 1 ] , maxAreqstrs, 
stopAcount, 1, 
replyAerror [ oldArequestor l, 1, 
,dbAfnum) ) THEN 

CALL analyzeAcheckpointAstatus (status ); 

reply to system message. 
CALL REPLY (,,,, replyAerror); 

END; ! analyzeAsystemAmessage. 

Variable INT L-003 Indirect 

2/23/82 13: 

*** CHECKPOINT *** 

RECVABUF Variable INT L-005 Indirect 
RECVACNT Variable INT L-004 Direct 
REPLYAERROR Variable INT L+OOl Direct 
STATUS Variable INT L+002 Direct 

00000 100000 024700 002001 140705 013001 000214 010475 103001 00010 143705 024700 027000 103001 143705 040000 000215 015 
00020 100000 044006 010531 103001 143705 040000 000215 015005 00030 100000 044005 040000 024700 027000 010516 100000 044 
00040 100001 074005 040000 024700 027000 010506 100000 044006 00050 100001 074005 040000 024700 027000 010476 103001 143 
00060 006017 001001 016003 100034 044401 010406 170703 024700 00070 027000 015402 100014 044401 010457 170703 024700 027 
00100 010453 100002 044401 010450 100037 000205 011002 000100 00110 010401 100040 000030 000041 000040 177672 177705 000 
00120 177716 177725 000032 000031 000030 000027 000026 000025 00130 000024 000023 000022 000021 000020 000017 000016 000 
00140 000014 000013 000012 000011 000010 000007 000006 000005 00150 000004 177705 177723 177726 170007 103005 173035 100 
00160 102001 172032 100020 070005 024755 100001 031031 071401 00170 100001 100000 040011 024744 002020 005007 004375 100 
00200 024711 027000 034402 014403 040402 024700 027000 002004 00210 040401 100001 024711 027000 125006 

> 
ttJ 
ttJ 
t:r:J z 
t;j 
H 

>1 
tJj 

t'%j 

> c 
t1 
8 
I 

8 
0 
t1 
t:r:J 
::0 
> 

t:r:JZ 
>< 8 
PJ 
3 ttJ 

tO ::0 
t-'O 
(1) G') 

::0 
ttJ > 
6~ 

lQ H 
t1 z 
PJ G') 
3 

t:r:J 
() >1 
o> 
°'x ...... ttJ 
:J t1 

lO t:r:J 



b:I 
I 

f\.) 

~ 

~ 
Cl) 

!\.) 

w 
Ul 
-....) 

>-' 
0 
0 

w 
.... , 
CD 
Ul 

PAGE 15 

518. 
519. 
520. 
521. 
522. 
523. 
524. 
525. 
526. 
527. 
528. 
529. 
530. 
531. 
532. 
533. 
534. 
535. 
536. 
537. 
538. 
539. 

ERROR 
REC 
RESULT 

$BOOKS1.M096B01.SERVESRC [l] SERVE: queryArequest Procedure 

000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 1 0 
000000 1 0 
000000 1 0 
000000 1 0 
000000 1 0 
000000 1 0 
000000 1 1 
000000 1 1 
000000 1 1 
000003 1 1 
000013 1 1 
000024 1 1 
000033 1 1 
000035 1 1 

this procedure searces the data base for the record associated with 
a key value. 

return values. 
0 =record found, record in "result". 

>0 = file management error. 

INT PROC queryArequest ( rec, result, result Alen ) ; 

INT .rec, 

BEGIN 

. result, 

.resultAlen; 

INT error; 

resultAlen := O; 

key value. 
record of key . 
length of record of key. 

CALL KEYPOSITION ( dbAfnum, rec,,,2 ) ; 
CALL READUPDATE ( dbAfnum, result, dbArecAlen, result Alen ) ; 
CALL FILEINFO ( dbAfnum, error ) ; 
RETURN error; 

END; ! queryArequest. 

RESULTALEN 

Variable 
Variable 
Variable 
Variable 

INT 
INT 
INT 
INT 

L+OOl 
L-005 
L-004 
L-003 

Direct 
Indirect 
Indirect 
Indirect 

00000 
00020 

002001 100000 144703 040011 170705 030001 000002 100002 
024755 100036 024700 027000 040011 070401 024711 002013 

00010 100031 024755 027000 040011 170704 
00030 005030 024700 027000 040401 125006 

2/23/82 

nncnn1 
UUJUU.l.. 170703 

13: 

("\ '"' uuu 

t:i:l> 
:>< "tj 
OJ "tj 
9 t:tJ 

tO z ...... o 
(I) H 

::< 
"tj 
t"1 tIJ 
0 
lQ 
t"1 
OJ t"J:j 
9 > 

c:::: n t-t 
08 °' I ......1-3 
:l 0 

lQ t-t 
t:tJ ::c 
> z 
8 

"tj 
::c 
0 
G) 
::c 
> 
~ 
H 

z 
G) 

t:tJ 
::< 
> 
3: 
"tj 
t-t 
t:tJ 



~ 
Q:) 

1'.l 
w 
U1 
-...) 

:i:--
0 
0 

w 
'-... 
Q:) 

U1 

tD 
I 

r--J 
U1 

PAGE 16 

541. 
542. 
543. 
544. 
545. 
546. 
547. 
548. 
549. 
550. 
551. 
552. 
553. 
554. 
555. 
556. 
557. 
558. 
559. 

ERROR 
REC 

$BOOKS1.M096B01.SERVESRC [l] SERVE: insertArequest Procedure 

000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 l 0 
000000 1 0 
000000 1 0 
000000 1 1 
000000 1 1 
000000 1 1 
000000 1 1 
000000 1 1 
000011 1 1 
000020 1 1 
000022 1 1 

this procedure adds a record to the data base. 

return values. 

0 = record "rec" added. 
>0 = file management error. 

INT PROC insertArequest ( rec ) ; 
INT .rec; ! record to be added. 

BEGIN 

INT error; 

! insert the record. 
CALL WRITE ( dbAfnum, rec, dbArecAlen ) ; 
CALL FILEINFO ( dbAfnum, error ) ; 
RETURN error; 

END;! insertArequest. 

Variable 
Variable 

INT 
INT 

L+OOl 
L-003 

Direct 
Indirect 

2/23/82 13: 

00000 002001 040011 170703 005001 024722 002003 100034 024700 
00020 040401 125004 

00010 027000 040011 070401 024711 002013 005030 024700 027 

> 
"tJ 
"tJ 
ttl z 
0 
....... 
t:< 
tJj 

t'%j 

> c:: 
L1 
8 
I 

8 
0 
L1 
ttl 
~ 
> 

ttl z 
>: 8 
DJ 
3 "tJ 

'O ~ ...... o 
Cl) G') 
~ 

"tJ > 
6~ 

lO ....... 
l"1 z 
DJ G') 
3 

ttl 
(") t:< 
o> a. 3: 
..... "tJ 
:::> L1 

lO ttl 



tD 
I 

rv 

°' 

~ 
CX> 
IV 
w 
(J1 

-...J 

> 
0 
0 

w 
........ 
OJ 
(J1 

PAGE 17 

561. 
562. 
563. 
564. 
565. 
566. 
567. 
568. 
569. 
570. 
571. 
572. 
573. 
574. 
575. 
576. 
577. 
578. 
579. 

ERROR 
REC 

00000 
00020 

$BOOKS1.M096B01.SERVESRC [l] SERVE: deleteArequest Procedure 

000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 1 0 
000000 1 0 
000000 1 0 
000000 1 1 
000000 1 1 
000000 1 1 
000000 1 1 
000011 1 1 
000021 1 1 
000030 1 1 
000032 1 1 

! this procedure deletes a record from the data base file. 
! 
! return values. 
! 
! 0 = record "rec" deleted. 
! >O =file management error. 

INT PROC deleteArequest ( rec ) ; 
INT .rec; ! key of record to be deleted. 

BEGIN 
INT error; 

! delete the record. 
CALL KEYPOSITION ( dbAfnum, rec ) ; 
CALL WRITEUPDATE ( dbAfnum, rec, 0 ) ; 
CALL FILEINFO ( dbAfnum, error ) ; 
RETURN error; 

END; ! deleteArequest. 

Variable 
Variable 

INT 
INT 

L+OOl 
L-003 

Direct 
Indirect 

2/23/82 13: 

002001 040011 170703 030001 024711 002003 100030 024700 
027000 040011 070401 024711 002013 005030 024700 027000 

00010 027000 040011 170703 100000 024722 002003 100034 024 
00030 040401 125004 

t%J > x ro 
(lJ "'O 
3 t%J 

'O z 
t-'O 
(1) H 

~ 
"'O 
t'1 tD 
0 

lO 
t'1 
(lJ t'%j 
3> 

c 
()L1 
0 i-3 
Qi I 
~- i-3 
::s 0 

lO L1 
t%J 
:::0 
> z 
i-3 

"'O 
:::0 
0 
G'l 
:::0 
> 
~ 
H 

z 
Q 

t%J 
~ 
> 
3: 
"'O 
L1 
t%J 



~ 
Q) 

r-..l 
w 
(J1 
-....] 

:t>o 
0 
0 

w 
........ 
Q) 
(.Jl 

t:D 
I 

I\.) 

-..J 

PAGE 18 

581. 
582. 
583. 
584. 
585. 
586. 
587. 
588. 
589. 
590. 
591. 
592. 
593. 
594. 
595. 
596. 
597. 
598. 
599. 
600. 
601. 
602. 
603. 
604. 
605. 
606. 
607. 
608. 
609. 
610. 
611. 
612 
613. 

ERROR 
REC 
RESULT 

$BOOKS1.M096B01.SERYESRC [l] SERVE: nextArecordArequest Procedure 

000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 1 0 
000000 1 0 
000000 1 0 
000000 1 0 
000000 1 0 
000000 1 1 
000000 1 1 
000000 1 1 
000000 1 1 
000000 1 1 
000000 1 1 
000000 1 1 
000000 1 1 
000004 1 1 
000010 1 1 
000010 1 1 
000020 1 1 
000031 1 1 
000040 , 1 
000042 1 1 

this procedure returns the next record in the data base file. 

calling values. 

rec = 0, return first record in file. 
rec = record, return next record in file. 

return values. 

0 =first/next record returned in "result". 
>0 = file management error. 

INT PROC nextArecordArequest ( rec, result, resultAlen ) ; 
INT .rec, ! key of record for positioning. 

.result, ! next record. 

.resultAlen; ! length of next record. 

BEGIN 

INT error; 

STRING 
.srec := @rec '<<' l; 

! increment key value past current value. 
srec [ dbArecAkeyAoff + dbArecAkeyAlen - 1 ] : = 

srec [ dbArecAkeyAoff + dbArecAkeyAlen - 1 ] '+' 1; 

CALL KEYPOSITION ( dbAfnum, rec ) ; 
CALL READ ( dbAfnum, result, dbArecAlen, result Alen ) ; 
CALL FILEINFO ( dbAfnum, error ) i 

RETURN error; 
END; ! nextArecordArequest. 

Variable INT L+OOl 
Variable INT L-005 
Variable INT L-004 

2/23/82 13: 

RESULT ALEN Variable INT L-003 

Direct 
Indirect 
Indirect 
Indirect 
Indirect SREC 

00000 
00020 
00040 

Variable STRING L+002 

002001 170705 030001 024700 103027 153402 003001 157402 
040011 170704 005001 170703 000002 024755 100036 024700 
040401 125006 

00010 040011 170705 030001 024711 002003 100030 024700 027 
00030 027000 040011 070401 024711 002013 005030 024700 027 

> 
tO 
tO 
l%J z 
0 
H 

~ 

t:D 

t'%J 
> c 
t1 
8 
I 

8 
0 
t1 
l%J 
::0 
> 

l%J z 
:>< 8 
DJ 
3 tO 
'O ::0 
1-'0 
Cl> G} 

::0 
tO > 
6~ 
l.QH 
t1 z 
DJ G} 
3 

l%J 
(") ~ 
o> o..x 
..... tO 
::::> t1 

l.Q l%J 



tD 
! 

!\.) 

00 

~ 
CD 
rv 
w 
(JI 

-.J 

:;i:.. 
0 
0 

w 
........ 
OJ 
(JI 

PAGE 19 

615. 
616. 
617. 
618. 
619. 
620. 
621. 
622. 
623. 
624. 
625. 
626. 
627. 
628. 
629. 
630. 
631. 
632. 
633. 
634. 
635. 
636. 
637. 
638. 
639. 
640. 
641. 
642. 
643. 
644. 
645. 
646. 
647. 
648. 
649. 
650. 
651. 
652. 
653. 
654. 
655. 
656. 
657. 
658. 
659~ 
660. 
661. 
662. 
663. 
664. 
665. 
666. 
667. 
668. 
669. 
670. 
671. 

$BOOKS1.M096B01.SERVESRC [l] SERVE~ processAuserArequest Procedure 

! this procedure is used to process a request. 

PROC processAuserArequest ( recvAbuf, recvAcnt, pid ) ; 
INT .recvAbuf, 

recvAcnt, 
.pid; ! process id of requester. 

BEGIN 
INT status, 

requester, 
replyAlen := O; 

directory entry no. of current requester. 
reply length for current request. 

get requester number of current requester. 
IF NOT ( requester := lookuppid ( pid ) ) THEN ! invalid requester. 

BEGIN 
CALL REPLY ( , , , , 60 ) ; ! return "device has been downed" error. 
RETURN; 

END; 

! check for duplicate request. 
IF recvAbuf [ sync ] <> syncAcount[ requester ] THEN ! not duplicate, nonretryable. 

BEGIN 

2/23/82 13: 

000000 0 0 
000000 0 0 
000000 0 0 
000000 1 0 
000000 1 0 
000000 1 0 
000000 1 0 
000000 1 0 
000000 1 1 
000000 1 1 
000000 1 1 
000000 1 1 
000000 1 1 
000000 1 1 
000010 1 1 
000010 1 2 
000015 1 2 
000016 1 2 
000016 1 1 
000016 1 1 
000016 1 1 
000023 1 1 
000023 1 2 
000023 1 2 
000027 1 2 
000027 1 3 
000027 1 3 
000031 1 3 
000031 1 3 
000031 1 3 
000031 1 3 
000031 1 3 
000031 1 3 
000060 1 3 
000063 1 3 
000063 1 3 
000063 1 3 
000065 1 3 
000065 1 2 
000065 1 2 
000065 1 2 
000071 1 2 
000071 1 2 
000071 1 2 
000074 l 2 
000074 1 3 
000074 1 3 
000074 1 3 
000103 1 3 
000103 1 3 
000103 1 3 
000112 1 3 
000112 1 3 
000112 1 3 
000112 1 3 
000123 1 3 
000123 1 3 

IF recvAbuf [ requestAtype ] <= 1 THEN ! nonretryable, so checkpoint current state to backup. 
BEGIN 

! save sync count of current requester. 
syncAcount [ requester ] := recvAbuf; 

IF ( status := CHECKPOINT ( stackAbase, ! *** CHECKPOINT *** 
,dbAfnum, 
syncAcount [ requester ] , 1, 
replyAerror [ oldArequestor ] , 1, 
recvAbuf, ( recvAcnt + l ) / 2 } } THEN 

CALL analyzeAcheckpointAstatus ( status ) ; 

! save requester number of current requester for a subsequent checkpoint. 
oldArequestor := requester; 

END; ! of checkpoint. 

! save requestAtype. 
replyAbuf ':=' recvAbuf FOR 2; 

! process the data base request. 
CASE recvAbuf [ requestAtype ] OF 

BEGIN 

! "insert" request. 
replyAerror [ requester insertArequest recvAbuf record ) i 

! "delete" request. 
replyAerror [ requester ·= deleteArequest ( recvAbuf [ record ] ) ; 

! "query" request. 
replyAerror [ requester ] := 

queryArequest ( recvAbuf [ record ] , replyAbuf [ record ] , replyAlen ) ; 

"next entry" request. 

t1l > 
::< "O 
tu 'tJ 
3 t1l 

tQ z 
~o 
(I) H 

>: 
'tJ 
t1 tD 
0 

lO 
t1 
tu t'%j 
3> 

c:: 
(') t-t 
Ot-3 
0... I 
..... t-3 
::l 0 

lO t-t 
t1l 
::ti 
> z 
t-3 

'tJ 
::0 
0 
G'l 
::0 
> 
~ 
H 

z 
G') 

t1l 
>: 
> 
~ 
'tJ 
t1 
t1l 



~ 
(X) 

f\.) 

w 
(J1 
-.....] 

:i:-
0 
0 

w 

" (X) 

(J1 

tD 
I 

I\.) 

U) 

PAGE 20 

672. 
673. 
674. 
675. 
676. 
677. 
678. 
679. 
680. 
681. 
682. 

PID 

$BOOKS1.M096B01.SERVESRC [l] SERVE: processAuserArequest Procedure 2/23/82 

000123 1 3 
000123 1 3 
000134 1 3 
000134 1 3 
000137 1 3 
000154 1 2 
000154 1 1 
000154 1 1 
000154 1 1 
000165 1 1 
000165 1 1 

END; 

replyAerror [ requestor ] := 
nextArecordArequest ( recvAbuf 

OTHERWISE replyAerror [ requestor 
END; 

return the reply to the requester. 

record ] , replyAbuf [ record ] , replyAlen ) ; 

29; ! bad param. 

CALL REPLY ( replyAbuf, replyAlen + 4, , , replyAerrer [ requester ] ) ; 

END; ! processAuserArequest. 

Variable INT L-003 Indirect 

13: 

RECVABUF Variable INT L-005 Indirect 
RECVACNT Variable INT L-004 Direct 
REPLYALEN Variable INT L+003 Direct 
REQUESTOR Variable INT L+002 Direct 
STATUS Variable INT L+OOl Direct 

00000 002002 100000 024700 170703 024700 027000 034402 015406 00010 002004 100074 100001 024711 027000 125006 140705 033 
00020 143032 000215 012131 102001 142705 001001 011036 140705 00030 147032 170007 100000 040011 173032 100001 024744 031 
00040 171033 100001 170705 040704 104001 100002 000213 024733 00050 002022 005005 004374 100000 024711 027000 034401 014 
00060 040401 024700 027000 040402 044031 170034 170705 100002 00070 026007 103001 143705 010444 103002 173705 024700 027 
00100 033402 147033 010451 103002 173705 024700 027000 033402 00110 147033 010442 103002 173705 173034 070403 024722 027 
00120 033402 147033 010431 103002 173705 173034 070403 024722 00130 027000 033402 147033 010420 033402 100035 147033 010 
00140 100003 000205 011002 000100 010401 100004 000030 177725 00150 177733 177741 177751 177761 170034 040403 104004 000 
00160 033402 143033 100031 024755 027000 125006 

> 
"'O 
"'O 
tJ:.l z 
tj 
H 

~ 

tJ:j 

t'%j 

> 
c:::: 
t-t 
8 
I 

8 
0 
t-t 
tJ:.l 
~ 
> 

tJ:JZ 
>< 8 
OJ 
9 "'O 

t-0 ~ ........ o 
(1) Ci) 
~ 

"'O > 
ci ~ 

l.Q H 
t"1 z 
OJ Ci) 
9 

tJ:.l 
()~ 
o> o..x 
...... "'O 
::J t-t 

lO tJ:.l 



b::J 
i 

w 
0 

~ 
co 
~ 
w 
U1 
--.J 

:i:-
0 
0 

w 

' co 
U1 

PAGE 21 

684. 
685. 
686. 
687. 
688. 
689. 
690. 
691. 
692. 
693. 
694. 
695. 
696. 
697. 
698. 
699. 
700. 
701. 
702. 
703. 
704. 
705. 
706. 
707. 
708. 
709. 
710. 

PIO 
STATUS 

$BOOKS1.M096B01.SERVESRC [l] SERVE: execute Procedure 

000000 0 0 
000000 0 0 
000000 0 0 
000000 0 0 
000000 1 0 
000000 1 1 
000000 1 1 
000000 1 1 
000000 1 1 
000000 1 1 
000000 1 1 
000003 1 1 
000003 1 2 
000003 1 2 
000003 1 2 
000014 1 2 
000024 1 2 
000025 1 2 
000025 1 3 
000032 1 3 
000037 1 3 
000041 1 3 
000046 1 3 
000047 1 3 
000054 1 3 
000054 l 2 
000055 1 1 

! this is the main execution loop of the server process. The server waits 
! for incoming requests or system messages. 

PROC execute; 
BEGIN 

INT . pi d [ o : 3 J , 
systemAmessage, 
status; 

requestor <process id>. 

WHILE 1 DO 
BEGIN 

loop on requests. 

! read $RECEIVE file. 
CALL READUPDATE ( recvAfnum, recvAbuf, messageAlen ) ; 
CALL AWAITIO ( recvAfnum,, recvAcnt ) ; 
IF >= THEN ! read a message. 

BEGIN 
systemAmessage := >; ! save system message condition. 
CALL LASTRECEIVE ( pid ) ; 
IF systemAmessage THEN 

CALL analyzeAsystemAmessage ( recvAbuf, recvAcnt, pid 
ELSE 

CALL processAuserArequest ( recvAbuf, recvAcnt, pid ) ; 
END; ! read a message. 

END; ! loop on requests. 
END; ! execute. 

2/23/82 13: 

SYSTEM AMES SAGE 

Var able 
Var able 
Var able 

INT 
INT 
INT 

L+OOl 
L+003 
L+002 

Indirect 
Direct 
Direct 

00000 
00020 
00040 

070404 024700 002006 040010 170026 005001 004004 024722 
002003 100024 024700 027000 014027 016002 100777 010401 
014406 170026 040027 170401 024722 027000 010405 170026 

00010 002003 100034 024700 027000 070010 100000 070027 024 
00030 100000 044402 170401 100000 100002 024722 027000 040 
00050 040027 170401 024722 027000 010726 125003 

t:i:J> 
>< "O 
DJ ttJ 
!3 t:i:J 

'U z 
...... tJ 
CD H 

~ 
ttJ 
t1 tD 
0 

lQ 
t1 
DJ l"Zj 
!3 > 

c::: 
()t1 
0 8 
0.. I 
..... 8 
=' 0 

lQ t1 
t:i:J 
~ 
> z 
8 

ttJ 
~ 
0 
G') 
~ 
> 
~ 
H 

z 
G) 

t:i:J 
~ 
> x 
ttJ 
t1 
t:i:J 



~ 
OJ 
~ 
w PAGE 22 $BOOKS1.M096B01.SERVESRC [l] SERVE: MAIN Procedure 2/23/82 13: 
U1 
-...J 

:t>' 712. 000000 0 0 ! this is the "main". This is where the primary/backup determination is 
0 713. 000000 0 0 ! made. 0 

714. 000000 0 0 
w 715. 000000 0 0 PROC serve MAIN; ........ 
OJ 716. 000000 1 0 
U1 717. 000000 1 0 BEGIN 

718. 000000 1 1 
719. 000000 1 1 INT base = 'L' + 1, 
720. 000000 1 1 .ppdentry[0:8]; 
721. 000000 1 1 
722. 000000 1 1 ! save stackAbase for checkpointing. 
723. 000000 1 1 @stackAbase := @base; > 
724. 000005 1 1 ttJ 
725. 000005 1 1 CALL ARMTRAP ( 0, -1 ) ; ttJ 
726. 000011 1 1 t%J 
727. 000011 1 1 ! get process name. z 
728. 000011 1 1 CALL GETCRTPID ( MYPID, ppdentry ) ; t1 

H 729. 000015 1 1 CALL LOOKUPPROCESSNAME ( ppdentry ) ; ~ 730. 000020 1 1 IF < THEN CALL ABEND; ! not named. 
731. 000024 1 1 ttl 
732. 000024 1 1 ! calculate backup cpu number. cpu's are paired 0-1, 2-3, 4-5, ... 
733. 000024 1 1 backupAcpu := MYPID.<0:7>; 
734. 000027 1 1 backupAcpu.<15> := NOT backupAcpu.<15>; 
735. 000040 1 1 t%j 
736. 000040 1 1 ! monitor all cpus. > 
737. 000040 1 1 CALL MONITORCPUS ( -1 ) ; c 
738. 000043 1 1 L' 
739. 000043 1 1 IF NOT ppdentry[4] THEN ! im the primary. 8 
740. 000046 1 1 BEGIN I 
741. 000046 1 2 CALL readAstartAupAmessage; 8 

0 742. 000047 1 2 CALL openAprimarysAfiles; L' 743. 000050 1 2 CALL createAbackup ( backupAcpu ) ; t%J 
744. 000053 1 2 CALL execute; ::0 
745. 000054 1 2 END > 
746. 000054 1 1 ELSE ! im the backup. t%J z 
747. 000055 1 1 BEGIN :>< 8 
748. 000055 1 2 ! wait for failure P> 
749. 000055 1 2 CALL CHECKMONITOR; 3 ttJ 
750. 000057 1 2 CALL ABEND; tQ ::0 
751. 000062 1 2 END; ~o 

CD G) 752. 000062 1 1 END; ! serve. ::0 
BASE Variable INT L+OOl Direct ttJ > 
PPDENTRY Variable INT L+OOl Indirect ~~ 

\Q H 
l'"1 z 

00000 070402 024700 002011 070401 044007 100000 100777 024711 00010 027000 027000 170401 024711 027000 170401 024700 027 P> G) 
00020 013003 000002 024711 027000 027000 030110 044000 040000 00030 006001 015402 100777 010401 100000 100001 070000 000 3 
00040 100777 024700 027000 103004 143401 015407 027000 027000 00050 040000 024700 027000 027000 010405 027000 000107 000 t%J 
00060 024711 027000 000002 024711 127000 ()~ 

l:tl o> 
I o,x 

w ~- ttJ 
I-' :l L' 

\Q t%J 



t:rJ 
PAGE 23 $BOOKS1.M096B01.SERVESRC t:rJ > I [l] GLOBAL MAP 2/23/82 13: I x "O w 

('..) DJ t'tJ 
3 t:rJ 

ABEND Proc 'O z 
ADDPID Proc INT 

........ tj 

ANALYZEACHECKPOINTASTATUS Proc 
Cl) H 

~ ANALYZEASYSTEMAMESSAGE Proc t'tJ 
ARM TRAP Proc '"1 t:rJ 
AWAI TIO Proc 0 
BACKUPACPU Variable INT G+OOO Direct lO 
BACKUPAPID Variable INT G+OOl Direct '"1 
BACKUP A UP Variable INT G+006 Direct DJ tJ:j 
BUF Variable INT G+030 Indirect 3 > 
CHECKMONITOR Proc INT c:: 
CHECK OPEN Proc (') L' 
CHECKPOINT Proc INT 0 i-3 
CREATE A BACKUP Proc a.. I 

DB A FLAGS Literal %000040 
..... i-3 
:::> 0 DB"FNAME Variable INT G+012 Direct lO L' 

DB"FNUM Variable INT G+Oll Direct t:rJ 
DB"REC"KEY"LEN Literal %000030 ::0 
DB"REC"KEY"OFF Literal %000000 > 
DB"REC"LEN Literal %000400 z 
DB"SYNC"DEPTH Literal %000001 i-3 
DEBUG Proc 
DELALLPIDS Proc t'tJ 
DELETE"REQUEST Proc INT ::0 
DELP ID Proc 0 
EXECUTE Proc 

G) 
::0 FILE INFO Proc > GETCRTPID Proc 

~ INSERT" REQUEST Proc INT 
KEYPOSITION Proc H 
LASTRECEIVE Proc z 
LOOKUPPID Proc INT G'l 
LOOKUPPROCESSNAME Proc 
MAX"REQSTRS Literal %000020 t:rJ 
MESSAGE"LEN Literal %000404 ~ 
MESSAGE" SIZE Literal %000202 > 
MOM Proc x 
MONITORCPUS Proc t'tJ 

L' MYPID Proc INT t:rJ 
NEWPROCESS Proc 
NEXT"RECORD"REQUEST Proc INT 
NO"WAIT Literal %000001 
OLD"REQUESTOR Variable INT G+031 Direct 
OPEN Proc 

~ OPEN"BACKUPS"FILES Proc 

()) 
OPEN"MSGS Literal %040000 

(\.) OPEN"PRIMARYS"FILES Proc 
w PIDS Variable INT G+035 Indirect 
(J1 

PROCESS"USERAREQUEST Proc -.....) 

PROGRAMFILENAME Proc 
:;i:.. PROTECTED Literal %000040 0 
0 QUERY"REQUEST Proc INT 

w READ Proc 
'-.. READUPDATE Proc 
()) READ"START"UP"MESSAGE Proc 
(J1 

RECORD Literal %000002 



~ 
CD 
N 
w 
(Jl 

-.-J 

)>' 
0 
0 

w 
'-... 
CD 
(Jl 

to 
I 

w 
w 

PAGE 24 $BOOKS1.M096B01.SERVESRC [l] 

RECV"BUF Variable 
RECV"CNT Variable 
RECV"FLAGS Literal 
RECV"FNUM Variable 
RECV"SYNC"DEPTH Literal 
REPLY Proc 
REPLY"BUF Variable 
REPLY"ERROR Variable 
REQUEST"TYPE Literal 
SERVE Proc 
STACK"BASE Variable 
STOP Proc 
STOP"COUNT Variable 
SYNC Literal 
SYNC"COUNT Variable 
WRITE Proc 
WRITEUPDATE Proc 

GLOBAL MAP 

INT G+026 Indirect 
INT G+027 Direct 

%040001 
INT G+OlO Direct 

%000001 

INT G+034 Indirect 
INT G+033 Indirect 

%000001 

INT G+007 Indirect 

INT G+OOS Direct 
%000000 

INT G+032 Indirect 

2/23/82 13: 

> 
tO 
tO 
t:tJ 
z 
tj 
H 

>: 
to 

i"XJ 
> c::: 
t1 
a-3 
I 

a-3 
0 
t1 
t:tJ 
~ 
> 

t:tJZ 
>: a-3 
QJ 
!3 tO 

'U ~ 
f-10 
<b G'> 
~ 

tO> 

6i 
lQ H 
t'1 z 
QJ G'> 
!3 

t:tJ 
(") >: 
o> 
Q,3: 
..... tO 
::J t1 

lO t:tJ 



tlj 
I 

w 
~ 

~ 
co 
I\.) 

w 
U1 
-i 

)oo 
0 
0 

w 
........ 
co 
U1 

PAGE 25 $BOOKS1.M096B01.SERVESRC [l] 

PEP BASE LIMIT ENTRY ATTRIBUTES 

002 000512 000600 000516 
003 000370 000453 000370 
004 000733 001147 000733 
005 000311 000367 000311 
006 000662 000732 000662 
007 001227 001260 001227 
010 000601 000661 000601 
011 001511 001566 001511 
012 001205 001226 001205 
013 000454 000511 000454 
014 001261 001322 001261 
015 000223 000310 000223 
016 000205 000222 000205 
017 001323 001510 001323 
020 001150 001204 001150 
021 000023 000204 000023 
022 001567 001653 001567 M 

LOAD MAP 

NAME 

ADDPID 
ANALYZEACHECKPOINTASTATUS 
ANALYZEASYSTEMAMESSAGE 
CREATE A BACKUP 
DELALLPIDS 
DELETE A REQUEST 
DELP ID 
EXECUTE 
INSERTAREQUEST 
LOOKUPPID 
NEXTARECORDAREQUEST 
OPENABACKUPSAFILES 
OPENAPRIMARYSAFILES 
PROCESSAUSERAREQUEST 
QUERYAREQUEST 
READASTARTAUPAMESSAGE 
SERVE 

2/23/82 13: 

l:J:l> 
>= "t1 
DJ "t1 
3 tJ:l 

tO z 
~tj 
CD H 

::< 
"t1 
t1 tlj 
0 

\Q 
t1 
DJ l"Zj 
3> c 
(') t-t 
0 t-3 
Cb I 
..... t-3 
::s 0 

\Q t-t 
tJ:l 
~ 
> z 
t-3 

"t1 
~ 
0 
G') 
~ 
> 
~ 
H 

z 
G') 

tJ:l 
~ 
> x 
"t1 
t-t 
tJ:l 



~ 
CXl 
!\.) 

w 
Ul 
-...J 

>' 
0 
0 

w 
......... 
CXl 
Ul 

tJ:J 
I 

w 
(]1 

PAGE 26 $BOOKS1.M096B01.SERVESRC [l] 

PEP BASE LIMIT ENTRY ATTRIBUTES 

021 000023 000204 000023 
016 000205 000222 000205 
015 000223 000310 000223 
005 000311 000367 000311 
003 000370 000453 000370 
013 000454 000511 000454 
002 000512 000600 000516 
010 000601 000661 000601 
006 000662 000732 000662 
004 000733 001147 000733 
020 001150 001204 001150 
012 001205 001226 001205 
007 001227 001260 001227 
014 001261 001322 001261 
017 001323 001510 001323 
011 001511 001566 001511 
022 001567 001653 001567 M 

LOAD MAP 

NAME 

READASTARTAUPAMESSAGE 
OPENAPRIMARYSAFILES 
OPENABACKUPSAFILES 
CREATE A BACKUP 
ANALYZEACHECKPOINTASTATUS 
LOOKUPPID 
ADDPID 
DELP ID 
DELALLPIDS 
ANALYZEASYSTEMAMESSAGE 
QUERYAREQUEST 
INSERTAREQUEST 
DELETE A REQUEST 
NEXTARECORDAREQUEST 
PROCESSAUSERAREQUEST 
EXECUTE 
SERVE 

2/23/82 13: 

> 
"'O 
"'O 
t%J 
z 
0 
H 

~ 

tJ:J 

t'rj 

> c:: 
t1 
t-3 
I 

t-3 
0 
t1 
t%J 
::0 
> 

t%J z 
>< t-3 
D> 
3 "'O 

tO ::0 
1-'0 
(1) G'> 

::0 
"'O > 
ci ~ 

lQ H 
l'1 z 
D> G'> 
3 

t%J 
(")~ 
o> a.x 
..... "'O 
:J t1 

lO t%J 



tD 
I 

w 

°' 

~ 
()) 
!\..) 

w 
CJ1 
-.J ,,. 
0 
0 

w 
........ 
OJ 
CJ1 

Object file name is $BOOKS1.M096B01.serveobj 
This object file will run on either a TNS or a TNS/II 
Number of errors = 0 
Number of warnings = 0 
Primary global storage=30 
Secondary global storage=503 
Code size=921 
Data area size=2 pages 
Code area size=l pages 
Maximum symbol table space available = 24892, used = 1298 
Maximum extended symbol table space available = 0, used 
Number of source lines=2142 
Elapsed time - 00:00:39 

0 

t%J > 
>: tO 
Cl> '1:1 
3 t%J 

'U z 
1--' 0 
CD H 

>: 
'1:1 
l"1 tD 
0 
lO 

l"1 
Cl> t'%j 
3> 

c 
() t1 
0 t-3 
~I 
..... t-3 
::J 0 

lO t1 
t%J 
~ 
> z 
t-3 

'1:1 
~ 
0 
G') 
~ 
> 
~ 
H 

z 
G') 

t%J 
>: 
> 
3: 
'1:1 
t1 
t%J 



APPENDIX C 

SOURCE FOR $SYSTEM.SYSTEM.GPLDEFS 

!?PAGE "T9600B00 - SIO PROCEDURES - DEFINITIONS" 
! 
! COPYRIGHT (C) 1985 TANDEM COMPUTERS INCORPORATED 
! Protected as an unpublished work. 
! 
?SECTION FCBADEFS 

! FCB SIZE IN WORDS. 

LITERAL 
FCBSIZE = 60; 

! DECLARE RUCB , PUCB, AND COMMON FCB. 

DEFINE 
ALLOCATEACBS ( RUCBANAME , COMMONAFCBANAME , NUMAFILES = 

INT .RUCBANAME [ 0:65 ] := 
! RUCB PART. 
[ 62 , 1 , 27 * [ 0 ] , 62 , 32 * [ 0 ] , 
! PUCB PART. 

4 ' NUMAFILES , 4 + FCBSIZE ]; 
INT .COMMONAFCBANAME [ O:FCBSIZE - 1 ] := 

[ FCBSIZE * [ 0 ] ]#; 

DECLARE FCB. 

DEFINE 
ALLOCATEAFCB ( FCBANAME ' PHYSAFILENAME ) = 

INT .FCBANAME [ O:FCBSIZE - 1 ] := 
[ FCBSIZE , %000061 ' -1 , %100000 ' 0 ' PHYSAFILENAME ' 

( FCBSIZE - 17 ) * [ 0 ] ]#; 
?SECTION OPENADEFS 

! OPEN ACCESS. 

~ 82357 AOO 3/85 C-1 



APPENDIX C: SOURCE FOR $SYSTEM.SYSTEM.GPLDEFS 

LITERAL 
READWRITEAACCESS = 0, 
READAACCESS = 1, 
WRITEAACCESS = 2: 

OPEN EXCLUSION. 

LITERAL 
SHARE = 0, 
EXCLUSIVE = 1, 
PROTECTED = 3; 

OPENAFILE FLAGS v 111111 
0123456789012345 

1111111111222222222233 
DEFINE !4567890123456789012345678901 

ABORTAOPENERR = %B0000000000000000000000000001D#, 
ABORTAXFERERR = %B0000000000000000000000000010D#, 
PRINTAERRAMSG = %B0000000000000000000000000100D#, 
AUTOACREATE = %B0000000000000000000000001000D#, 
MUSTBENEW = %B0000000000000000000000010000D#, 
PURGEADATA = %B0000000000000000000000100000D#, 
AUTOATOF = %B0000000000000000000001000000D#, 
NOWAIT = %B0000000000000000000010000000D#, 
BLOCKED = %B0000000000000000000100000000D#, 
VARAFORMAT = %B0000000000000000001000000000D#, 
READATRIM = %B0000000000000000010000000000D#, 
WRITEATRIM = %B0000000000000000100000000000D#, 
WRITEAFOLD = %B0000000000000001000000000000D#, 
WRITEAPAD = %B0000000000000010000000000000D#, 
CRLFABREAK = %B0000000000000100000000000000D#: 

?SECTION SETAFILEADEFS 
! 
! SETAFILE OPERATIONS. 

LITERAL 
INIT""FILEFCB = 

C·-2 

! 
ASSIGNAFILENAME = 
ASSIGNALOGICALFILENAME = 
ASSIGN""OPENACCESS = 
ASSIGNAOPENEXCLUSION = 
ASSIGNARECORDLENGTH = 
ASSIGNARECORDLEN = 
ASSIGNAFILECODE = 
ASSIGNAPRIMARYEXTENTSIZE = 
ASSIGN""PRIEXT = 
ASSIGN""SECONDARYEXTENTSIZE = 
ASSIGNASECEXT = 
ASSIGNABLOCKLENGTH = 
ASSIGNABLOCKBUFLEN = 

0, 

1, 
2, 
3, 
4, 
5, 
ASSIGNARECORDLENGTH, 
6, 
7, 
ASSIGNAPRIMARYEXTENTSIZE, 
8 r 

ASSIGNASECONDARYEXTENTSIZE, 
9 ,. 
ASSIGNABLOCKLENGTH, 

./1 82357 AOO 3/85 



APPENDIX C: SOURCE FOR $SYSTEM.SYSTEM.GPLDEFS 

! 
SET""DUPFILE = 10, 
SET""SYSTEMMESSAGES = 11, 
SET""OPENERSPID = 12, 
SET""RCVUSEROPENREPLY = 13, 
SET""RCVOPENCNT = 14, 
SET""RCVEOF = 15, 
SET""USERFLAG = 16, 
SET""ABORT""XFERERR = 17, 
SET""PRINT""ERR""MSG = 18, 
SET"" READ"" TRIM = 19, 
SET""WRITE""TRIM = 20, 
SET""WRITE""FOLD = 21, 
SET""WRITE""PAD = 22, 
SET""CRLF""BREAK = 23, 
SET"" PROMPT = 24, 
SET""ERRORFILE = 25, 
SET""PHYSIOOUT = 26, 
SET""LOGIOOUT = 27, 
SET""COUNTXFERRED = 28, 
SET"" ERROR = 29, 
SET""BREAKHIT = 30, 
SET"" TRACEBACK = 31, 
! 
SET""EDITREAD""REPOSITION = 32, 
! 
FILE""FILENAME""ADDR = 33, 
FILE""LOGICALFILENAME .... ADDR = 34, 
FILE""FNUM""ADDR = 35, 
FILE""ERROR .... ADDR = 36, 
FILE .... USERFLAG .... ADDR = 37, 
FILE .... SEQNUM .... ADDR = 38, 
FILE .... FILEINFO = 39, 
FILE""CREATED = 40, 
FILE .... FNUM = 41, 
FILE .... SEQNUM = 42, 
FILE""ASSIGNMASKl = 43, 
FILE .... ASSIGNMASK2 = 44, 
FILE .... FWDLINKFCB = 45, 
FILE .... BWDLINKFCB = 46, 
! 
SET .... CHECKSUM = 47, 
! 
FILE .... OPENERSPID .... ADDR = 48, 
! 
SET .... SYSTEMMESSAGESMANY = 49, 
! 
FILE .... FCB .... ADDR = 50, 
! 
MAX"" OPERATION = 50, 

"1 82 357 AOO 3/85 C-3 



APPENDIX C: SOURCE FOR $SYSTEM.SYSTEM.GPLDEFS 

FILE .... FILENAME 
FILE .... LOGICALFILENAME 
FILE .... OPENACCESS 
FILE .... OPENEXCLUSION 
FILE .... RECORDLEN 
FILE .... FILECODE 
FILE .... PRIEXT 
FILE .... SECEXT 
FILE .... BLOCKBUFLEN 
FILE .... DUPFILE 
FILE .... SYSTEMMESSAGES 
FILE .... OPENERSPID 
FILE .... RCVUSEROPENREPLY 
FILE .... RCVOPENCNT 
FILE .... RCVEOF 
FILE .... USERFLAG 
FILE .... ABORT .... XFERERR 
FILE""PRINT .... ERR .... MSG 
FILE .... READ .... TRIM 
FILE .... WRITE""TRIM 
FILE .... WRITE""FOLD 
FILE""WRITE .... PAD 
FILE .... CRLF .... BREAK 
FILE .... PROMPT 
FILE .... ERRORFILE 
FILE .... PHYSIOOUT 
FILE .... LOGIOOUT 
FILE .... COUNTXFERRED 
FILE .... ERROR 
FILE""BREAKHIT 
FILE .... TRACEBACK 
FILE"'"CHECKSUM 
FILE""SYSTEMMESSAGESMANY 

?SECTION ERROR .... DEFS 
! 
! sio procedure errors. 
! 
LITERAL 

C-4 

SIOERR .... INVALIDPARAM 
SIOERR"'"MISSINGFILENAME 
SIOERR"'"DEVNOTSUPPORTED 
SIOERR"'"INVALIDACCESS 

SIOERR"'"INVALIDBUFADDR 

SIOERR"'"INVALIDFILECODE 

SIOERR .... BUFTOOSMALL 

= ASSIGN .... FILENAME 
= ASSIGN .... LOGICALFILENAME 
= ASSIGN .... OPENACCESS 
= ASSIGN .... OPENEXCLUSION 
= ASSIGN .... RECORDLENGTH 
= ASSIGN .... FILECODE 
= ASSIGNAPRIMARYEXTENTSIZE 
= ASSIGNASECONDARYEXTENTSIZE 
= ASSIGNABLOCKLENGTH 
= SET"'"DUPFILE 
= SET .... SYSTEMMESSAGES 
= SET"'"OPENERSPID 
= SET"'"RCVUSEROPENREPLY 
= SET .... RCVOPENCNT 
= SET .... RCVEOF 
= SET"'"USERFLAG 
= SET .... ABORT"'"XFERERR 
= SET"'"PRINT"'"ERR"'"MSG 
= SE'r .... READ"'"TRIM 
= SET"'"WRITE"'"TRIM 
= SET .... WRITE .... FOLD 
= SET .... WRITE .... PAD 
= SET .... CRLF .... BREAK 
= SE'r .... PROMPT 
= SET .... ERRORFILE 
= SE'r .... PHYSIOOUT 
= SET .... LOGIOOUT 
= SET .... COUNTXFERRED 
= SET .... ERROR 
= SE'r"" BREAKHI T 
= SE'r""TRACEBACK 
= SET""CHECKSUM 
= SET .... SYSTEMMESSAGESMANY 

+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256: 

= 512, 
= 513, 
= 514, 
= 515, 

parameter is invalid. 
filename not supplied. 
device not supported. 
access mode incompatible 
with device. 

= 516, 

= 517, 

= 518, 

buffer address not in lower 
32k. 
file code of file does not 
match assigned file code. 
buffer to small for edit 
write (ie., less than 1024 
bytes) or buffer not 
sufficient for record 
length. 

~ 82357 AOO 3/85 



APPENDIX C: SOURCE FOR $SYSTEM.SYSTEM.GPLDEFS 

SIOERRAINVALIDBLKLENGTH = 519, 

SIOERRAINVALIDRECLENGTH = 520, 

SIOERRAINVALIDEDITFILE 
SIOERRAFILEALREADYOPEN 
already open. 
SIOERRAEDITREADERR 
SIOERRAFILENOTOPEN 
SIOERRAACCESSVIOLATION 

SIOERRANOSTACKSPACE 

SIOERRABLOCKINGREQD 

SIOERRAEDITDIROVERFLOW 

= 521, 
= 522, 

= 523, 
= 524, 
= 525, 

= 526, 

= 527, 

= 528, 

SIOERRAINVALIDEDITWRITE = 529, 

SIOERRAINVALIDRECVWRITE = 530, 

SIOERRACANTOPENRECV 

SIOERRAIORESTARTED 
SIOERRAINTERNAL 
SIOERRACHECKSUMCOMM 
SIOERRACHECKSUM 

~ 82357 AOO 3/85 

= 531, 

= 532, 
= 533, 
= 534, 
= 535; 

assign block length > block 
buffer length. 
record length = 0 or record 
length > maxrecordlength of 
OPENAFILE or record length 
for $RECEIVE file < 14 or 
record length > 254 and 
variable records specified 
edit file is invalid. 
OPENAFILE called for file 

edit read error. 
file not open. 
access not in effect for 
requested operation. 
insufficient stack space 
for temporary buffer 
allocation. 
block buffer required for 
nowait fold or pad. 
edit write directory 
overflow. 
write attempted after 
directory has been written. 
write to $RECEIVE does not 
follow read. 
can't open $RECEIVE for 
break monitoring. 
nowait io restarted. 
internal screwup. 
common FCB checksum error. 
file FCB checksum error. 

C-5 





APPENDIX D 

SEQUENTIAL I/O FILE CONTROL BLOCK FORMAT 

The following is the internal structure of the File Control Block 
(FCB) for the sequential I/O procedures described in Section 17. 

! 

NOTE 

The FCB is included as a debugging aid only. Tandem 
Computers Incorporated reserves the right to make changes 
to the FCB structure. Therefore, this information must not 
be used to make program references to elements within the 
File Control Block. 

File Control Block (FCB) Structure Template. 

STRUCT FCBATMPL ( * ); 
BEGIN 

INT SIZE, 
NAMEOFFSET, 
FNUM; 

create/open options group. 

INT OPTIONSl, 
OPTIONS2, 
FILENAME [ 0:11 ], 
! 
! create options. 

FCODE, 
PRIEXT, 

Af' 82357 AOO 3/85 

0) size of FCB in words. 
1) word offset to name. 
2) GUARDIAN file number, 

-1 = closed. 

3) assign options. 
4) assign options. 
5) Tandem file name. 

(17) file code. 
(18) primary extent size in 
pages. 

D-1 



APPENDIX D: SEQUENTIAL I/O FILE CONTROL BLOCK FORMAT 

D-2 

SECEXT, 
! 
RECLEN, 
BLKBUFLEN, 
! 

open options. 

OPENEXCLUSION, 
OPENACCESS; 

initializer group. 

INT PUCBAPOINTER, 

SAMEFILELINK; 

beginning of sio groups. 

INT FWDLINK, 
BWDLINK, 
ADDR, 
COMMONFCBADDR, 
ERROR; 

file FCB section. 

INT DEVINFO, 

OPENFLAGSl, 

OPENFLAGS2, 

XFERCNTLl, 

XFERCNTL2, 

DUPFCBADDR; 

INT(32) 
LINENO; 

(19) secondary extent size in 
pages. 

(20) logical record length. 
(21) block length from ASSIGN, 

block buffer length 
following OPENAFILE. 

(22) exclusion bits to OPEN. 
(23) access bits to OPEN. 

(24) not used by SIO 
procedures. 
(25) not used by SIO 
procedures. 

(26) forward link. 
(27) backward link. 
(28) address of this FCB. 
(29) address of common FCB. 
(30) last error. 

(31) file type, dev type, dev 
subtype. 

(32) access mode, flags 
parameters to OPENAF&ILE. 

' (33) flags parameters to 
OPENAFILE. 

(34) iotype, sysbuflen, 
interactive prompt. 

(35) physioout, logioout, 
write flush, retry count, 
edit write control. 

(36) FCB address of file where 
data read from this file 
is to be written. 

(37) line number from edit 
read or ordinal record 
count scaled by 1000. 

Data Transfer/Blocking Group. 

INT BLKBUFADDR, (39) word address of block 
buffer. 

~ 82357 AOO 3/85 



APPENDIX D: 

BLKXFERCNT, 

BLKREADCNT = 
BLKXFERCNT, 

BLKWRITECNT = 
BLKXFERCNT, 

BLKCNTXFERRED, 

BLKCNTREAD = 
BLKCNTXFERRED, 

BLKCNTWRITTEN = 
BLKCNTXFERRED, 

BLKNEXTREC, 

USRBUFADDR, 

USRWRCNT, 

USRRDCNT, 

TFOLDLEN, 

USRCNTRD = 
TFOLDLEN, 

PHYSXFERCNT, 

PHYSIOCNTXFERRED, 

PHYSIOCNTRD = 
PHYSIOCNTXFERRED, 

PHYSIOCNTWR = 
PHYSIOCNTXFERRED; 

INT USERFLAG = 
PUCB""POINTER; 

! 
! initializer group. 
! 

SEQUENTIAL I/O FILE CONTROL BLOCK FORMAT 

(40) number of bytes to be 
transferred between 
device and target buffer. 

(40) number of bytes to be 
read from device to 
target buffer. 

(40) number of bytes to be 
written from target 
buffer to device. 

(41) number of bytes 
transferred between 
device and target buffer. 

(41) number of bytes read into 
target buffer. 

(41) number of bytes written 
from target buffer. 

( 4 2) (byte address) While 
blocking/deblocking this 
is the address of the 
next record pointer in 
the block buffer. 

(43) byte address of user 
buffer. 

(44) <write count> parameter 
of WRITE""FILE, <prompt 
count> parameter of 
READ""FILE. 

(45) <max read count> 
parameter of READ,..FILE. 

(46) terminal write fold 
length (= physical record 
length) • 

(46) number of bytes read into 
user buffer. 

(47) transfer count value 
passed to file system in 
SIO""PIO. 

(48) count transferred value 
returned from file system 
procedure. 

(48) count read value returned 
from file system. 

(48) count written value 
returned from file system 

(24) flag word to be set by 
user. 

INT LOGICALFILENAME [ 0:3 ]; (49) logical file name of this 
file to INITIALIZER. 

~ 82357 AOO 3/85 D-3 



APPENDIX D: SEQUENTIAL I/O FILE CONTROL BLOCK FORMAT 

D-4 

common FCB section. 

! Break Group. 
! 

INT BRKFCBADDR = 
DEVINFO, 

BRKMSG = 
OPENFLAGSl, 

BRKCNTL = 
XFERCNTLl, 

BRKLASTOWNER = 
XFERCNTL2: 

$RECEIVE Group. 

(31) FCB of file owning BREAK. 

(32:33) BREAK message buffer. 

(34) break control. 

(35) BREAK last owner. 

DUPFCBADDR skipped: was system messages mask. 

INT RCVCNTL = 
LINENO, 

PRIMARYPID [-1:-1] 
LlNENO, 

BACKUPPID = 
BLKNEXTREC, 

REPLYCODE = 
TFOLDLEN: 

! Misc Group. 
! 

INT COMMCNTL = 
PHYSXFERCNT, 

OPRQSTFCBADDR = 
PHYSIOCNTXFERRED, 

OPRQSTCOUNT = 
LOGICALFILENAME, 

ERRFCBADDR [-1:-1] 
LOGICALFILENAME: 

INT PXCNT, 

PRCNT = PXCNT, 

PWCNT = PXCNT: 

= 

= 

(37) $RECEIVE control. 

(38:41) Primary opener's 
<process id>. 

(42:45) Backup opener's 
<process id>. 

(46) $RECEIVE reply error code 

(47) 

(48) FCB of file for which 
operator console messages 
are displayed. 
(see NOAERROR, prompt). 

(49) Count of number of 
operator messages 
displayed. (see 
NOAERROR, prompt). 

(50) FCB address of file where 
errors are to be reported 

(53) Length of partial record 
transferred between user 
buffer and block buffer. 
Partial read record 
length. 
Partial write record 
length. 

The SYSMSGS[l234] words are used ONLY in the common FCB. 

INT SYSMSGSl, 
SYSMSGS2, 

(54) System messages to be 
(55) passed back to caller. 

~ 82357 AOO 3/85 



APPENDIX D: SEQUENTIAL I/O FILE CONTROL BLOCK FORMAT 

SYSMSGS3, 
SYSMSGS4; 

INT SPAREl; 
INT EDITADIRAPAGE; 
INT EADIRASTATEAUB = 

SYSMSGS4; 

INT SPAREl; 
INT CHECKSUM; 
! 

END; ! FCBATMPL. 

(56) 
(57) 

(58) no-longer-unused FCB word 
(58) If edit-file directory is 
over a page, these two words 
show where it is in the file. 

(36) SIOWF. 

(58) Unused FCB word. 
(59) Checksum. If <> 0, check 

-- BIT FIELDS and ASSIGN BITS. 

DEFINE 

FILENAMESUPPLD = <O>#, 
FCBAFILENAMESUPPLD 

PRIEXTSUPPLD = <l>#, 
FCBAPRIEXTSUPPLD 

SECEXTSUPPLD = <2>#, 
FCBASECEXTSUPPLD 

FCODESUPPLD = <3>#, 
FCBAFCODESUPPLD 

EXCLUSIONSUPPLD = <4>#, 
FCBAEXCLUSIONSUPPLD 

ACCESSSUPPLD = <5>#, 
FCBAACCESSSUPPLD 

RRECLENSUPPLD = <6>#, 
FCBARRECLENSUPPLD 

BLOCKLENSUPPLD = <7>#, 
FCBABLOCKLENSUPPLD 

= FCB.OPTIONSl.FILENAMESUPPLD#, 

= FCB.OPTIONSl.PRIEXTSUPPLD#, 

= FCB.OPTIONSl.SECEXTSUPPLD#, 

= FCB.OPTIONSl.FCODESUPPLD#, 

= FCB.OPTIONSl.EXCLUSIONSUPPLD#, 

= FCB.OPTIONSl.ACCESSSUPPLD#, 

= FCB.OPTIONSl.RRECLENSUPPLD#, 

= FCB.OPTIONSl.BLOCKLENSUPPLD#; 

- OPEN EXCLUSION (FCBAOPENEXCLUSION) 

DEFINE 
EXCLUSIONFIELD = <9:11>#, 

FCBAEXCLUSIONFIELD = FCB.OPENEXCLUSION.EXCLUSIONFIELD#; 

- OPEN ACCESS (FCBAOPENACCESS) 

DEFINE 
ACCESSFIELD 

~ 82357 AOO 3/85 

= <3:5>#, 

D-5 



APPENDIX D: SEQUENTIAL I/O FILE CONTROL BLOCK FORMAT 

FCB"'ACCESSFIELD = FCB.OPENACCESS.ACCESSFIELD#; 

- DEVINFO. 

DEFINE 
FILETYPE = 

FCB"'FILETYPE 
LITERAL 

UNSTR 
ESEQ 
REL 
KSEQ 
EDIT 
ODDUNSTR 

DEFINE 

= 0, 
= 1, 
= 2, 
= 3, 
= 4, 
= 8; 

<0:3>#, 
= FCB.DEVINFO.FILETYPE#; 

STRUCTFILE = <2:3>#, 
FCB""STRUCTFILE 

! <>O means structured file. 
= FCB""DEVINFO.STRUCTFILE#; 

DEFINE 
DEVTYPE = 

FCB""DEVTYPE 
LITERAL 

PROCESS 
OPERATOR 
RECEIVE 
DISC 
MAGTAPE 
PRINTER 
TERMINAL 
DATACOMM 
CARDRDR 

DEFINE 

= 0, 
= 1, 
= 2, 
= 3, 
= 4, 
= 5, 
= 6, 
= 7, 
= 8; 

<4:9>#, 
= FCB.DEVINFO.DEVTYPE#; 

DEVSUBTYPE = <10:15>#, 
FCB""DEVSUBTYPE = FCB.DEVINFO.DEVSUBTYPE#; 

OPEN FLAGS. ( FCB.OPENFLAGSl 

DEFINE 
FILECREATED = <O>#, ! new file created. 

FCB""FILECREATED = FCB.OPENFLAGSl;FILECREATED#; 
DEFINE 

ACCESS = <1:3>#, ! access mode. 
FCB""ACCESS = FCB.OPENFLAGSl.ACCESS#; 

LITERAL 
READACCESS = 1, 
WRITEACCESS = 2, 
READWRITEACCESS = 3; 

allowable open flags 1 settings. 
! 111111 

LITERAL !0123456789012345 
ALLOWED"'OPENFLAGSl = %B0000111111111111; 

D-6 ~ 82357 AOO 3/85 



APPENDIX D: SEQUENTIAL I/O FILE CONTROL BLOCK FORMAT 

default open flags 1 settings. 
! 111111 

LITERAL !0123456789012345 
DEFAULTAOPENFLAGSl = %BOOOOOOOOOOOOOOOO; 

! 
! OPEN FLAGS. ( FCB.OPENFLAGS2 

DEFINE 
ABORTONOPENERROR = <15>#, abend on fatal error during open 

FCBAABORTONOPENERROR = FCB.OPENFLAGS2.ABORTONOPENERROR#; 
DEFINE 

ABORTONXFERERROR = <14>#, ! abend on fatal error during 
! data transfer. 

FCBAABORTONXFERERROR = FCB.OPENFLAGS2.ABORTONXFERERROR#; 
DEFINE 

PRINTERRMSG = <13>#,! print error message on fatal error 
FCBAPRINTERRMSG = FCB.OPENFLAGS2.PRINTERRMSG#; 

DEFINE 
AUTOCREATE = <12>#, ! create a file if write access. 

! 0 = don't. 
! 1 = do. 
FCBAAUTOCREATE = FCB.OPENFLAGS2.AUTOCREATE#; 

DEFINE 
FILEMUSTBENEW = <11>#, if autocreate = 1, no such file 

DEFINE 

! may currently exist. 
! 0 = old file is allowed. 
! 1 = file must be new. 
FCBAFILEMUSTBENEW = FCB.OPENFLAGS2.FILEMUSTBENEW#; 

WRITEPURGEDATA = <10>#, ! purge existing data. 
! 0 = APPEND. 
! 1 = PURGEDATA. 
FCBAWRITEPURGEDATA = FCB.OPENFLAGS2.WRITEPURGEDATA#; 

DEFINE 
AUTOTOF 

DEFINE 

! 0 = NO 
! 1 = YES 
FCB"'AUTOTOF 

= <9>#, auto page eject on open for 
printer/process. 

= FCB.OPENFLAGS2.AUTOTOF#; 

NOWAITIO = <8>#, ! open with nowait depth of 1. 
! 0 = WAIT. 
! 1 = NO-WAIT. 
FCBANOWAITIO = FCB.OPENFLAGS2.NOWAITIO#; 

DEFINE 
BLOCKEDIO = <7>#, ! blocked I/O. 

! 0 = NOT BLOCKED 
! 1 = BLOCKED 
FCB"'BLOCKEDIO = FCB.OPENFLAGS2.BLOCKEDIO#; 

DEFINE 
VARFORMAT 

"1J 82357 AOO 3/85 

= <6>#, ! variable length records. 

D-7 



APPENDIX D: SEQUENTIAL I/O FILE CONTROL BLOCK FORMAT 

! 0 = FIXED LENGTH 
! 1 = VARIABLE LENGTH 
FCB"'VARFORMAT = FCB. OPENFLAGS2. VARFORMA.T#; 

DEFINE 
READTRIM = <5>#, ! trim trailing blanks. 

! 0 = NOTRIM 
! 1 = TRIM 
FCB""READTRIM = FCB.OPENFLAGS2.READTRIM#; 

DEFINE 
WRITETRIM = <4>#, ! trim trailing blanks. 

! 0 = NOTRIM 
! 1 = TRIM 
FCB""WRITETRIM = FCB.OPENFLAGS2.WRITETRIM#; 

DEFINE 
WRITEFOLD = 

! 0 = TRUNCATE. 
! 1 = FOLD. 
FCB""WRITEFOLD 

<3>#, ! fold write transfers greater 
than write record length bytes 
into multiple records. 

= FCB.OPENFLAGS2.WRITEFOLD#; 
DEFINE 

WRITEPAD = 
FCB""WRITEPAD 

<2>#, ! pad record with trailing blanks 
= FCB.OPENFLAGS2.WRITEPAD#; 

DEFINE 
CRLFBREAK = <l>#, ! CR/LF on break. 

! 0 = NO CRLF ON BREAK. 
! 1 = CRLF ON BREAK. 
FCB""CRLFBREAK = FCB.OPENFLAGS2.CRLFBREAK#; 

allowable open flags 2 settings. 
! 111111 

LITERAL !0123456789012345 
ALLOWED""OPENFLAGS2 = %Bllllllllllllllll; 

! 
! default open flags 2 settings. 

! 111111 
LITERAL !0123456789012345 

DEFAULT .... OPENFLAGS2 = %B0101110001001111; 

! TRANSFER CONTROL FCB.XFERCNTLl 

DEFINE 
ERRORSET = <O>#, 

! ERROR SET INTO FCB VIA SET""FILE. 
FCB .... ERRORSET = FCB.XFERCNTLl.ERRORSET#; 

DEFINE 
READIOTYPE = <1:3>#, 

LITERAL 

D-8 

0 = READ 
1 = READUPDATE/REPLY 

! 2 = EDITREAD 
! 3 = WRITEREAD 
! 7 = INVALID 
FCB .... READIOTYPE = FCB.XFERCNTLl.READIOTYPE#; 

"'82357 AOO 3/85 



APPENDIX D: SEQUENTIAL I/O FILE CONTROL BLOCK FORMAT 

STANDARDTYPE = 0, 
RECEIVETYPE = 1, 
EDITTYPE = 2, 
INTERACTIVETYPE = 3, 
INVALIDTYPE = 7. , 

DEFINE 
WRITEIOTYPE = <4:6>#, 

! 0 = WRITE 
! 1 = READUPDATE/REPLY 
! 2 = EDITWRITE 
! 7 = INVALID 
FCBAWRITEIOTYPE = FCB.XFERCNTLl.WRITEIOTYPE#; 

DEFINE 
SYSBUFLEN = <7:8>#, ! system buffer length / 1024. 

FCBASYSBUFLEN = FCB.XFERCNTLl.SYSBUFLEN#; 
DEFINE 

PROMPT = <9:15>#, ! interactive prompt character. 
FCBAPROMPT = FCB.XFERCNTLl.PROMPT#; 

TRANSFER CONTROL FCB.XFERCNTL2 ) 

DEFINE 
PHYSIOOUT 

FCBAPHYSIOOUT 
READIOOUT 

FCBAREADIOOUT 
WRITEIOOUT 

FCBAWRITEIOOUT 
LOGIOOUT = 

FCBALOGIOOUT 
WRITEFLUSH = 

FCBAWRITEFLUSH 
RETRY COUNT = 

FCBARETRYCOUNT 
NOPARTIALREC = 

FCBANOPARTIALREC 

= <O>#, 

= 
= <l>#, 

= 
= <2>#, 

= 
<1:2>#, 

= 
<3>#, 

= 
<4:5>#, 

= 
<6>#, 

= 

! physical (read-write) I/O 
! outstanding. 
FCB.XFERCNTL2.PHYSIOOUT#, 
! logical read I/O outstanding. 
FCB.XFERCNTL2.READIOOUT#, 
! logical write I/O outstanding. 
FCB.XFERCNTL2.WRITEIOOUT#, 
! logical I/O outstanding. 
FCB.XFERCNTL2.LOGIOOUT#, 
! block buffer flush operation 
! in progress. 
FCB.XFERCNTL2.WRITEFLUSH#, 
! I/O retry counter. 
FCB.XFERCNTL2.RETRYCOUNT#, 
blocks contain only full records. 
FCB.XFERCNTL2.NOPARTIALREC#; 

TRANSFER CONTROL ( FCB.XFERCNTL2 

-- EDIT READ/WRITE CONTROL 

DEFINE 
EDDIRWIP 

FCBAEDDIRWIP 
EDHALFSECTCNT 

= 

= 

<7>#, ! directory write in progress. 
= FCB.XFERCNTL2.EDDIRWIP#, 

<8:11>#, ! number of half sectors written 
! in current data page after next 

FCBAEDHALFSECTCNT = 
! physical write. 
FCB.XFERCNTL2.EDHALFSECTCNT#, 

EDDATABUFLEN = <12:15>#, ! edit data buf size '>>' 
! EDDBUFSHIFT (8). 

/if 82357 AOO 3/85 D-9 



APPENDIX D: SEQUENTIAL I/O FILE CONTROL BLOCK FORMAT 

FCBAEDDATABUFLEN 
EDREPOSITION = 

FCBAEDREPOSITION 

= FCB.XFERCNTL2.EDDATABUFLEN#, 
<7>#, ! user is repositioning edit file 

! (read op) • 
= FCB.XFERCNTL2.EDREPOSITION#: 

WRITEAFILE CONTROL OPERATION IN PROGRESS ( FCB.PHYSXFERCNT 

DEFINE 
CNTLINPROGRESS = <O>#, 

FCBACNTLINPROGRESS = FCB.PHYSXFERCNT.CNTLINPROGRESS#, 
FORMSCNTLOP = <1:15>#, 

FCBAFORMSCNTLOP = FCB.PHYSXFERCNT.FORMSCNTLOP#: 

BREAK CONTROL ( COMMFCB.BRKCNTL 

DE:~INE 

BRKLASTMODE = <O>#, 
COMMFCBABRKLASTMODE 

BRKHIT = <l>#, 

COMMFCBABRKHIT 
BRKFLUSH = <2>#, 

COMMFCBABRKFLUSH 
BRKSTOLEN = <3>#, 

COMMFCBABRKSTOLEN 
BRKLDN = <8:15>#, 

COMMFCBABRKLDN 
COMMFCBABRKARMED = 

COMMFCBABRKFCBADDR#: 

! last break mode from SETMODE. 
= COMMFCB.BRKCNTL.BRKLASTMODE#, 

! BREAK key has been typed but 
! not tested. 

= COMMFCB.BRKCNTL.BRKHIT#, 
! flush $RECEIVE BREAK message. 

= COMMFCB.BRKCNTL.BRKFLUSH#, 
! BREAK stolen away by another 
! process. 

= COMMFCB.BRKCNTL.BRKSTOLEN#, 
! logical device number of terminal. 

= COMMFCB~BRKCNTL.BRKLDN#, 
! BREAK is armed. 

$RECEIVE CONTROL COMMFCB.RCVCNTL ) 

DEFINE 

D-10 

RCVDATAOPEN = <O>#, ! $RECEIVE has been opened for 
! data transfer. 

COMMFCBARCVDATAOPEN = COMMFCB o RCVCNTL. RCVDA.TAOPEN#, 
RCVBRKOPEN = <l>#, ! $RECEIVE has been opened for 

! BREAK message reception. 
COMMFCBARCVBRKOPEN = COMMFCB .. RCVCNTL.RCVB:RKOPEN#, 

RCVOPENCNT = <2:3>#, ! count of OPEN messages received 
COMMFCBARCVOPENCNT = COMMFCB .. RCVCNTL.RCVOPENCNT#, 

RCVSTATE = <4>#, 
~ 0 = NEED READUPDATE. 
! 1 = NEED REPLY. 
COMMFCBARCVSTATE = COMMFCB.RCVCNTL.RCVSTATE#, 

RCVUSEROPENREPLY = <5>#,! user will reply to OPEN messages. 
l 0 = SIO REPLIES. 
! 1 = USER REPLIES. 

COMMFCBARCVUSEROPENREPLY=COMMFCB.RCVCNTL.RCVUSEROPENREPLY#, 
RCVPSUEDOEOF = <6>#, ! pseudo-EOF. (N/A if user wants 

! CLOSE messages) 

"1 82357 AOO 3/85 



APPENDIX D: SEQUENTIAL I/O FILE CONTROL BLOCK FORMAT 

! 0 = EAT CLOSE MESSAGE. 
! 1 = TURN LAST CLOSE MESSAGE INTO EOF. 
COMMFCBARCVPSUEDOEOF = COMMFCB.RCVCNTL.RCVPSUEDOEOF#, 

MONCPUMSG = <2:3>#, ! user CPU Up/Down messages. 
COMMFCBAMONCPUMSG = COMMFCB.SYSMSGSl.MONCPUMSG#, 

OPENMSG = <14>#, ! user wants OPEN messages. 
COMMFCBAOPENMSG = COMMFCB.SYSMSGS2.0PENMSG#, 

CLOSEMSG = <15>#, ! user wants CLOSE messages. 
COMMFCBACLOSEMSG = COMMFCB.SYSMSGS2.CLOSEMSG#; 

COMMON CONTROL ( COMMFCB.COMMCNTL 

DEFINE 
CREATEINPROGRESS = <O>#, ! 1 during call to OPENAFILE 

! while creating. 
COMMFCBACREATEINPROGRESS=COMMFCB.COMMCNTL.CREATEINPROGRESS#, 
OPENINPROGRESS = <l>#, ! 1 during call to OPENAFILE. 

COMMFCBAOPENINPROGRESS = COMMFCB.COMMCNTL.OPENINPROGRESS#, 
OPTYPE = <0:1>#, ! operation type. 

COMMFCBAOPTYPE = COMMFCB.COMMCNTL.OPTYPE#, 
DEFAULTERRFILE = <2>#, ! defines default error reporting 

! file. 
! 0 = home terminal. 
! 1 =operator ($0). 
COMMFCBADEFAULTERRFILE = COMMFCB.COMMCNTL.DEFAULTERRFILE#, 

! 1 = trace back to caller's P TRACEBACK = <3>#, 

COMMFCBATRACEBACK 

"if 82357 AOO 3/85 

! when printing an error message. 
= COMMFCB.COMMCNTL.TRACEBACK#; 

D-11 





5508 printer 
5520 printer 
5530 printer 

7-6 
7-7 
7-15 

INDEX 

ACB. See Access Control Block 
Access Control Block (ACB) 2-36 
Access coordination 2-25 
Accessing card readers 9-5 
Accessing line printers 7-3 
Accessing tape units 8-5 
Accessing term~nals 6-5 

termination of READ or WRITEREAD 6-6 
Active state of a process 3-5 
Advanced checkpointing 12-39 
Advanced file system 15-1 
Advanced memory management 15-1 
Ancestor process 3-14 
AOPR. See $AOPR 
ARMTRAP procedure 13-1 
ASSIGN command 5-2 
ASSIGN message 5-6 
AUTOANSWER mode for printers 7-16 
Avoiding deadlock, TMF 11-13 

Backup process 
checkpointing 12-2, 12-8 
creation 3-13 
process ID 4-11 
process pairs 1-12 

BINDER 1-21 
Break feature 6-29 

break mode 6-35 
BREAK system message 6-31 
using BREAK (multiple processes) 6-33 
using BREAK (single process) 6-31 

Buffering 
I/O system 2-40 

~ 82357 AOO 3/85 Index-1 



Card readers 
accessing 9-5 
applicable procedures 9-2 
characteristics 9-2 
error recovery 9-6 
read modes 9-2 

ASCII 9-2 
column-binary 9-3 
packed-binary 9-4 

CCG, CCE, CCL 2-42 
CHECKMONITOR procedure actions 12-9 
Checkpointing 

action for CHECKPOINT failure 12-31 
advanced checkpointing 12-39 

backup open 12-39 
file synchronization information 12-40 

considerations for nowait I/O 12-30 
creating a descendent process (pair) 12-38 
guidelines for checkpointing 12-25 
multiple disc updates 12-30 
opening a file during processing 12-37 
system messages 12-31 
takeover by backup 12-35 

Checkpointing and TMF 11-21 
Checkpointing facility 1-14, 12-1 

data buffers 12-4 
data stack 12-4 
fault-tolerant processing overview 12-6 
sync blocks 12-3 
using the checkpointing facility 12-10 

file opening 12-23 
main processing loop 12-10 
startup for named process pairs 12-10 
startup for nonnamed process pairs 12-19 

Checkpointing procedures 12-2 
Checksum processing 6-26 
CI Monitor Process. See $CMON 
CLEAR command 

clear ASSIGN and PARAM settings 5-3 
clear run-time parameter settings 5-3 

Clock setting 16-3 
Closing a file 2-41 
CMON. See $CMON 
Command Interpreter 1-17, 5-1 
Command Interpreter/program interface 5-1 
Communicating with a new process 3-22 
Communicating with other processes 4-1 
Communication between processes 

$RECEIVE 4-7 
synchronization of messages 4-6 

Condition codes 2-42 

Index-2 "182357 AOO 3/85 



CONTROL operations 
for magnetic tape drives 8-18 
for printers 7-19 
for terminals 6-43 

CONTROLBUF for 5520 printer 7-9 
Conversational mode 6-7, 6-10 
Conversion modes, 7-track tape 

ASCIIBCD 8-19 
BINARYlTOl 8-24 
BINARY2T03 8-23 
BINARY3T04 8-22 
selecting the conversion mode 8-24 

Creating a new process 1-8, 3-4, 3-22 
Creator 1-8, 3-9 
CRTPID 2-4 
CTRLANSWER mode for printers 7-16 

DAVFU 7-7 
DCT. See Destination Control Table 
Deadlock, avoiding 11-13 
DEBUG 1-20, 13-1 
Debug facility 1-20 
Decorations, formatter 

condition specifiers 
M, minus 18-37 
N, null 18-37 
O, overflow 18-37 
P, plus 18-37 
Z, zero 18-37 

location specifiers 
A, absolute 18-37 
F, floating 18-37 
P, prior 18-37 

DELAY 1-21 
Deleting a process 1-9, 3-6 
Descriptors, formatter 

nonrepeatable edit descriptors 18-8 
repeatable edit descriptors 18-9, 18-18 

Destination Control Table (DCT) 1-9 
Device names 2-9 
Device numbers, logical 2-18 
Disc error recovery 

path errors 2-43 
Disc files 2-1 
disc-file-name 2-9 
Discs 

mirrored volumes 2-50 
Display message 5-12 
DIVER 1-21 
Dynamic memory allocation 14-3 

"'1 82357 AOO 3/85 Index-3 



Echo 6-27 
Edit descriptors, formatter 

"A", data transfer 18-18 
"D", data transfer 18-20 
"E", data transfer 18-20 
"F", data transfer 18-23 
"G", data transfer 18-24 
"I", data transfer 18-26 
"L", data transfer 18-27 
"M", data transfer 18-29 
("),quotation marks, literal 18-12 
('),apostrophes, literal 18-12 
/, buffer control 18-16 
:, buffer control 18-16 
BN, blank interpretation control 18-15 
BZ, blank interpretation control 18-15 
H, Hollerith 18-13 
P, implied decimal point 
S, optional plus control 
SP, optional plus control 
SS, optional plus control 
T, tab absolute 18-11 
TL, tab left 18-11 
TR, tab right 18-11 
X, tab right 18-11 

18-13 
18-14 

18-14 
18-14 

Edit descriptors. See Formatter 
EDIT files 

writing to 17-1 
EDIT format, files in 17-1 
Error conditions 

5520 7-13 
Card readers 9-6 
Magnetic tape 8-15 
Printers 7-17 
Terminals 6-40 

Error indicators 2-42 
Error recovery 2-42 
ETX character 6-3, 6-26, 6-45 
Example fault-tolerant program B-10 
Executing a process 3-5 
Execution priority, 

example 3-26 
function 3-6 
suggested values 3-25 

Expansion of network file names 2-17 
EXTDECS 1-18 
Extended memory segments 14-1 
External declarations 

EXTDECS 1-18 
sequential I/O C-1 

External file name 2-12 

Index-4 ·1J 82357 AOO 3/85 



Fault-tolerant processing 12-1 
overview 12-6 

Fault-tolerant programs 1-12 
File access 

disc files 2-22 
how to 2-21 
processes 2-24 
security 1-19 
terminals 2-24 

File Control Block (FCB) 
in file system 2-36 
in sequential I/O procedures 17-4, D-1 

File names 
$0 2-10 
$RECEIVE 2-10 
device names 2-9 
disc file names 2-8 
external form 2-12 
internal form 2-11 
local form 2-14 
logical device numbers 2-18 
network file names 2-14 
network form 2-14 
process ID 

network form 2-19 
obtaining a process ID 2-18 
process name form 2-18 
timestamp form 2-18 

File security 1-19 
File system 2-30 
File system implementation 

advanced 15-1 
automatic disc path error recovery 2-43 
buffering 2-40 
file and I/O system structure 2-30 
file closing 2-41 
file opening 2-36 
file system procedure execution 2-33 
file transfers 2-38 
mirrored disc volumes 2-50 

File system procedures 1-6 
Files 

buffering 2-40 
closing 2-41 
disc files 2-1 
how to access 2-21 
interprocess communication 2-4 
nondisc devices 2-3 
opening 2-36 
operator console 2-7 
transfers 2-38 

Floating process priorities 3-6 

..-, 82357 AOO 3/85 Index-5 



FORMATCONVERT procedure 18-1 
FORMATDATA procedure 18-1 
Formatter 18-1 

format characteristics 18-3 
"A" edit descriptor 18-18 
"D" edit descriptor 18-20 
"E" edit descriptor 18-20 
"F" edit descriptor 18-23 
"G" edit descriptor 18-24 
"I" edit descriptor 18-26 
"L" edit descriptor 18-27 
"M" edit descriptor 18-29 
blank descriptors 18-15 
buffer control descriptors 18-16 
decorations 18-37 
edit descriptors 18-8 
field-blanking modifiers 18-32 
fill-character modifier 18-32 
justification modifiers 18-34 
literal descriptors 18-12 
modifiers 18-32 
nonrepeatable edit descriptors 18-11 
optional plus descriptors 18-14 
overflow character modifier 18-33 
repeatable edit descriptors 18-18 
scale factor descriptor 18-13 
symbol substitution modifier 18-34 
tabulation descriptors 18-11 

introduction 18-1 
list-directed formatting 

input 18-40 
output 18-40 

GETSYNCINFO 12-40 
GPLDEFS C-1 

Hardware, I/O structure 2-30 
Home terminal 1-10, 3-19 

I/O structure 
hardware 2-30 
software 2-31 

INITIALIZER procedure 16-14, 17-9 
INSPECT 1-21, 13-1 
Interface with INITIALIZER and ASSIGNS 17-9 

considerations 17-12 
INITIALIZER-related defines 17-10 
usage examples 17-13 

Internal file name 2-11 
Interprocess communication 2-4, 16-1 

I ndex-6 ~ 82357 AOO 3/85 



$RECEIVE file 4-7 
communication type 4-10 
nowait I/O 4-8 
system message transfer 4-9 

applicable procedures 4-4 
communication synchronization 4-6 
error recovery 4-26 
example 4-19 
one-way communication 4-5 
two-way communication 4-6 

Introduction to GUARDIAN 1-1 

LCB. See Link Control Block 
Line printers 

accessing 7-3 
applicable procedures 7-2 
characteristics 7-1 
CONTROL operations 7-19 
CONTROLBUF operations 7-20 
error recovery 7-17 
forms control 7-4 
model 5508 programming considerations 7-6 
model 5520 condensed print 7-12 
model 5520 expanded print 7-12 
model 5520 programming considerations 7-7 
path error recovery 7-18 
SETMODE operations 7-20 
using model 5520 over phone lines 7-16 

Link Control Blocks (LCBs) 15-1 
Locking disc files 2-26 
Logical device numbers 2-18 
Loop detection, in a process 3-6 

Magnetic tapes 
accessing 8-5 
applicable procedures 8-3 
BOT marker 8-6 
characteristics 8-1 
concepts 8-6 
CONTROL operations 8-18 
EOT marker 8-6 
error recovery 8-15 
files 8-6 
records 8-8 
seven-track tape conversion 8-19 
short write mode 8-25 

Memory management procedures 14-1 
Memory management procedures, advanced 15-1 
Memory segments, extended 14-1 
Message Format 

operator console 10-4 
system messages 3-10 

~ 82357 AOO 3/85 Index-7 



Mirrored disc volumes 2-50 
Modems 

accessing line printers over 7-16 
using terminals 6-28 

Modifiers, formatter 
BN, blank null 18-32 
BZ, blank zero 18-32 
FL, fill character 18-32 
LJ, left justification 18-34 
OC, overflow character 18-33 
RJ, right justification i8-34 
SS, symbol substitution 18-34 

Named 
process pairs 12-10 
process startup for process pairs 12-10 

Named processes 
ancestor process 3-14 
backup process 3-13 
operation of the PPD 3-13 
primary process 3-13 

Network file name 
expansion of 2-17 
external form 2-16 
internal form 2-15 

Non named 
process pairs 12-10 
process startup for process pairs 12-19 
processes 3-7 

Nonretryable operations 2-44 
Nonstop process pair 12-2 
Nonstop program example B-10 
Nowait 

I/O 2-26 
OPEN I/O 2-27 
with sequential I/O procedures 17-28 

Opening a file 
explanation 2-36 
in a checkpointed program 12-23 

Operations and Service Processor (OSP) 10-1 
Operator console 

applicable procedures 10-2 
characteristics 10-2 
error recovery 10-4 
logging messages through $0 2-7 
logging to an application process 10-5 
message format 10-4 
writing a message 10-3 

OPRLOG 10-1 
OSP 10-1 

I ndex-8 ~ 82357 AOO 3/85 



Page mode 6-7, 6-19 
Paired opening of files 

by CHECKOPEN 12-23 
Nonstop process pair 12-2 
process ID 4-11 

PARAM command 5-2 
Param message 5-8 
Passing parameter information 5-2 
Path error recovery 

for card readers 9-8 
for line printers 7-18 
for magnetic tapes 8-17 
for operator console 10-4 
for process files 4-26 
for terminals 6-42 

PCB. See Process Control Block 
PID. See Process ID 
PPD 

example 3-17 
operation 3-13 

PPD. See Process-Pair Directory 
Primary process 

checkpointing 12-2, 12-10 
creates backup process 3-13 
process ID 4-11 
process pairs 1-12 

Printers 
accessing 7-3 
applicable procedures 7-2 
characteristics 7-1 
CONTROL operations 7-19 
CONTROLBUF operations 7-20 
error recovery 7-17 
forms control 7-4 
model 5508 programming considerations 7-6 
model 5520 programming considerations 7-7 
path error recovery 7-18 
SETMODE operations 7-20 
using model 5520 over phone lines 7-16 

Priorities 
execution 3-5, 3-24 
floating 3-6 

Procedures 
checkpointing 12-2 
file system 1-6 
formatter 18-1 
memory management 14-1 
sequential I/O 17-1 
syntax summary A-1 
trap handling 13-4 
utility 16-1 

~ 82357 AOO 3/85 Index-9 



Process 
control functions 1-12 
creation 1-8, 3-5, 3-9, 3-22 
deletion 1-9, 3-7 
execution 3-5 
startup for named process pairs 12-10 
startup for nonnamed process pairs 12-19 
states 3-4 
structure 1-10 

Process control 1-8 
Process Control Block (PCB) 3-1 
Process files 4-10 
Process ID 

defined 1-9 
forms of 3-7 
network form 2-19 
obtaining a 2-18 
process-name form 2-18 
source of 3-9 
timestamp form 2-18 

Process name form of process ID 
local 2-18, 3-8 
network 2-19, 3-8 

Process names 
reserved 3-16 

Process pairs 
defined 1-12 
fault-tolerant operation 3-11 
process startup for 12-10 

Process timing 3-20 
Process-Pair Directory (PPD) 1-9, 3-12 
Processor failure 

CPU Down message 3-15, 12-31 
process pairs defined 1-12 

Program 3-1 
Pseudo-polling 

for terminals 6-23 
simulation for terminals 6-24 

Reading parameter messages 5-9 
Ready list 3-5 
Ready state of a process 3-5 
receive-depth 4-10 
RECEIVE. See $RECEIVE 
Requester 

opens file to server process 4-19 
process defined B-1 
process structure 1-11 

Requester ID 2-44 
Reserved link control blocks 15-1 
Reserved process names 3-16 
RESERVELCBS procedure 15-1 

Index-10 ~, 82357 AOO 3/85 



RESETSYNC 12-41 
Retryable operations 2-44 
RUN command 5-2 

Security system 1-19 
Segments, extended memory 14-1 
Sequential I/O procedures 

description 17-1 
External Declarations C-1 
FCB structure 17-4, D-1 
initializing the file FCB 17-4 
interface with INITIALIZER and ASSIGNS 17-9 

considerations 17-12 
INITIALIZER-related defines 17-10 
summary 17-17 

usage examples 

Server 

with INITIALIZER and ASSIGN messages 17-13 
without INITIALIZER procedure 17-23 

open file to server process 4-19 
process defined B-1 
process structure 1-11 

SETMODE functions 
for printers 7-20 
for terminals 6-43 

SETSYNCINFO 12-40 
Seven-track tape conversion modes 

ASCIIBCD 8-19 
BINARYlTOl 8-24 
BINARY2T03 8-23 
BINARY3T04 8-22 
selecting the conversion mode 8-24 

Short write mode for magnetic tapes 8-25 
Software, file system 2-31 
Startup message 5-3 
STOPACOUNT variable 12-35 
subvolume-name 2-8 
Super ID 1-19 
Suspended state of a process 3-5 
Sync block 12-4 
Sync depth 4-11, 12-40 
Sync ID 

and $RECEIVE 4-2 
duplicate request detection 4-12, B-6 
usage 2-44 

Syntax summary of procedures A-1 
System messages 

BREAK 6-31 
description 1-14 
process deletion 3-10 
read through $RECEIVE 4-3 
related to checkpointing 12-31 

"1 82357 AOO 3/85 I ndex-11 



System name 2-16 
System number 2-15 
System procedures, executing 2-33 

Tapes 
accessing 8-5 
applicable procedures 8-3 
BOT marker 8-6 
characteristics 8-1 
concepts 8-6 
CONTROLBUF operations 8-19 
EOT marker 8-6 
error recovery 
files 8-6 
records 8-8 
seven-track tape 
short write mode 

Terminals 
accessing 6-5 

8-15 

conversion 
8-25 

applicable procedures 6-4 
characteristics 6-2 
checksum processing 6-26 
CONTROL operations 6-43 
conversational mode 

forms control 6-17 

8-19 

interrupt characters 6-12 
line-termination character 6-10 

echo 6-27 
error recovery 6-40 
how to access files 2-24 
modems 6-28 
page mode 

interrupt characters 6-20 
page termination character 6-19 
pseudo-polled terminals 6-23 
simulation of pseudo-polling 6-24 

SETMODE operations 6-43 
timeouts 6-27 
transfer modes 6-7 
transparency mode 6-26 

TE'ILE 11-17 
Time procedures 16-3 
Timeout 

elapsed time 3-20 
for nowait I/O 2-27 
for process suspension 3-6 
for terminals 6-27 
process execution time 3-6 

Timestamp form of process ID 
defined 1-9 
format 2-18, 3-7 

Timing, process 3-20 

Index-12 "it 82357 AOO 3/85 



TMF 
advanced usage 11-21 
and checkpointing 11-21 
backout anomalies 11-20 
deadlock avoidance 11-13 
programming considerations 11-4 
programming for 11-2 
record locking 11-6 
TAL applications 11-4 

TMF Procedures 11-1 
TMF. See Transaction Monitoring Facility 
Transaction identifier (transid) 11-3 
Transaction Monitoring Facility (TMF) 11-1, 11-16 
Transaction pseudofile (TFILE) 11-17 
transid 11-3 
Trap handling 1-20, 13-1 
Traps 1-20, 13-1 
Tri-Density Tape Subsystem 

Microcode 8-13 
Model 5106 8-13 

Utility procedures 1-17, 16-1 
COMPUTEJULIANDAYNO 16-6 
COMPUTETIMESTAMP 16-5 
CONTIME 16-7 
CONVERTTIMESTAMP 16-5 
FIXSTRING 16-8 
HEAPSORT 16-13 
INITIALIZER 16-14 
INTERPRETJULIANDAYNO 16-6 
INTERPRETTIMESTAMP 16-5 
JULIANTIMESTAMP 16-5 
LASTADDR 16-16 
NUMIN 16-11 
NUMOUT 16-11 
REMOTETOSVERSION 16-17 
SETSYSTEMCLOCK 16-3 
SETTIME 16-3 
SHIFTSTRING 16-8 
SYSTEMENTRYPOINTLABEL 16-16 
TIME 16-7 
TIMESTAMP 16-7 
TOSVERSION 16-17 

volume-name 2-8 
Volumes, mirrored disc 2-50 

Wait I/O and nowait I/O 2-26 
Waiting state of a process 3-5 
Wakeup message 5-11 

Afj 82357 AOO 3/85 Index-13 



$0 2-10/11, 10-2 
$<device-name> 2-12 
$<ldev-number> 2-12 
$<volume-name> 2-8 
$AOPR 10-1 
$CMON 

add user message 5-18 
alter priority 5-20 
delete user message 5-19 
illegal logon message 5-17 
logof f message 5-15 
logon message 5-15 
password message 5-20 
process creation message 5-16 
remote password message 5-21 

$CMON process 5-13 
$RECEIVE file 

communication type 4-10 
data transfer protocol 17-27 
handling by sequential I/O 17-27 
nowait I/O 4-8 
system message transfer 4-9 

$RECEIVE, reading 4-3/4 

\network-name 2-15 

Index-14 ~ 82357 AOO 3/85 



READER COMMENT CARD 

Tandem welcomes your comments on the quality and usefulness of its 
software documentation. Does this manual serve your needs? If not, how 
could we improve it? Your comments will be forwarded to the writer for review 
and action, as appropriate. 

If your answer to any of the questions below is "no," please supply detailed 
information, including page numbers, under Comments. Use additional 
sheets if necessary. 

..... Is this manual technically accurate? 

..... Is information missing? 

..... Are the organization and content clear? 

..... Are the format and packaging convenient? 

Comments 

Name 

Company 

Address 

City/State 

GUARDIAN™ Operating System 
Programmer's Guide 
Nonstop™ Systems 

82357 AOO 

Yes D No D 

Yes D No D 

Yes D No D 

Yes D No D 

Date 

Zip 



111111 

BUSINESS R E P LY MA IL 

FIRST CLASS PERMIT NO. 482 CUPERTINO, CA, U.S.A. 

POSTAGE WILL BE PAID BY ADDRESSEE 

Tandem Computers Incorporated 
Attn: Manager-Software Publications 
Location 01, Department 6350 
19333 Val lco Parkway 
Cupertino CA 95014-9990 

TAPE 

NO POSTAGE 
NECESSARY 

IF MAILED 
INTHE 

UNITED STATES 

TAPE 





Tandem Computers Incorporated 
19333 Vallco Parkway 
Cupertino, CA 95014-2599 


