
Tandem NonStopTM and NonStop n™ Systems

ENFORM™ User's Guide

ABSTRACT: This guide provides a task-oriented view of ENFORM for
both programmers and nonprogrammers.

PRODUCT VERSION: ENFORM C12

OPERATING SYSTEM VERSION: GUARDIAN AOa (NonStop IT System)
GUARDIAN E07 (NonStop System)

Throughout this document, all references to NonStop II systems indi
cate the software that runs on Tandem NonStop IT processors and/or
NonStop TXP processors.

Manual: Part No. 82349 BOO
Update: Part No. 82195

Tandem Computers Incorporated
19333 Vallco Parkway

Cupertino, California 95014-2599

December 1983 I
Printed In U.S.A.

Edition

JI'irst Edition
Second Edition

I Update 1

DOCUMENT HISTORY

Part
Number

82349AOO
82349 BOO
82195

Operating
System Version

GUARDIAN A04/E05
GUARDIAN A05/E06
GUARDIAN A06/E07

Date

October 1982
April 1983
December 1983

New editions incorporate all updates issued since the previous edition. Update packages, which are
issued between editions, contain additional and replacement pages that you should merge into the most
recent edition of the manual.

Copyright ~ 1983 by Tandem Computers Incorporated.

All rights reserved. No part of this document may be reproduced in any form, including photocopying or translation to another
language, without the prior written consent of Tandem Computers Incorporated.

The following are trademarks or servicemarks of Tandem Computers Incorporated:

AXCESS
BINDER
CROSSREF
DDL
DYNABUS
EDIT
ENABLE

ENCOMPASS
ENCORE
ENFORM
ENSCRIBE
ENTRY
ENTRY520
ENVOY

EXCHANGE
EXPAND
FOX
GUARDIAN
INSPECT
NonStop
NonStop 1+

NonStopil
NonStopTXP
PATHWAY
PERUSE
SNAX
Tandem
TAL

INFOSAT is a trademark in which both Tandem and American Satellite have rights.

HYPERchannel is a trademark of Network Systems Corporation.

IBM is a registered trademark of International Business Machines Corporation.

TGAL
THL
TIL
TMF
TRANSFER
XRAY
XREF'

NEW AND CHANGED INFORMATION

This update to the ENFORM User's Guide provides information about the following changes to the
ENFORM product:

• ENFORM now allows you to specify more than one LINK OPTIONAL statement in your query speci
fications. Section 3 contains several examples of query specifications that contain more than one
LINK OPTIONAL statement or that combine the LINK OPTIONAL statement with a LINK state
ment or a WHERE clause.

• Additions to Appendix B and Section 6 describe new ENFORM error messages.

• Miscellaneous technical and editorial changes have been made.

All changes from the last edition are marked with a revision bar in the margin. Each page containing a
change has the "December 1983" date at the bottom of the page.

December 1983

iii

CONTENTS

PREFACE ... xi

SYNTAX CONVENTIONS IN THIS MANUAL ... xiii

SECTION 1. INTRODUCTION .. 1-1
Using ENFORM - Overview ... 1-2
ENFORM Processing Environment .. 1-3

The Dictionary .. 1-4
The Data Base ... 1-4
A Query Specification .. 1-4
The Query Compiler/Report Writer .. 1-5
The Query Processor ... 1-5
Host Language Interface ... 1-6
ENFORM Server .. 1-7

ENFORM Terminology ... 1-8

SECTION 2. DEVELOPING THE DATA BASE .. 2-1
What is a Data Base? ... 2-1

Fields .. 2-1
Records .. 2-2
Record Occurrences : ... 2-3
Key Fields .. 2-4

Tasks Involved in Developing Your Data Base .. 2-4
N ormalizin·g the ~Data .. 2-4
Describing the Data Base ... 2-6

Data Definition Language ... 2-6
Data Dictionary ... 2-7
Using COBOL, FORTRAN, and TAL Data Declaration Source Code 2-8

Creating Data Base Files ... 2-8
Loading Data Base Files .. 2-8

SECTION 3. DEVELOPING AN ENFORM QUERY 3-1
Establishing the Query Environment ... 3-2

Identifying the Dictionary .. 3-2
Identifying Record Descriptions ... 3-3
Assigning Record Descriptions to Different Physical Files 3-4
Defining User Elements .. 3-6
Setting Option Variables .. 3-6

December 1983

v

Contents

Connecting Record Descriptions to Form New Relationships 3-7
Making Session-Wide Links ... 3-8

Using the LINK Statement ... 3-8
Using the LINK OPTIONAL Statement ... 3-10
Session-Wide Links and the WHERE Clause .. 3-13
Clearing Unnecessary Session-Wide Links ... 3-15
Examining Session-Wide Links ... 3-15

Establishing Links for the Current Query .. 3-15
Combining Links ~ ~ 3-16

Selecting Information ... 3-17
Producing a Report ... 3-17
Creating a New Physical File ... 3-19

Restricting Selected Information ... 3-22
Sorting and Grouping Selected Information .. 3-23
Specifying Computations for a Report ... 3-25

Calculating a Subtotal ... 3-26
Calculating a Total ... 3-27
Calculating Percentages ~ 3-28
Generating a Running Total ... 3-31

Formatting a Report .. 3-32
Printing Information Within a Report ... 3-33

Adding Information Within the Body of the Report 3-36
Printing Information at the Beginning or End of a Report 3-38
Printing Information at the Bottom of Every Report Page 3-39
Printing Information at the Top of Each Report Page 3-40

Defining the Layout of the Report ... 3-41
Centering One Element or All Elements of a Iteport 3-42
Paginating a Report ... 3-43
Suppressing the Printing of a Column Heading 3-44
Suppressing the Printing of Both the Column Heading and the Element 3-44
Indicating a New Line ... 3-45
Changing the Default Spacing .. 3-45
Setting a Tab for a Report ... ' 3-46

Formatting the Appearance of Selected Information 3-46
Temporarily Changing the Default Display Format of an Element 3-4"
Printing a Date Value on a Report ... 3-48
Printing a Time Value on a Report .. 3-50

U sing the ?HELP Command ~ 3-51

SECTION 4. COMPILING AND EXECUTING A QUERY 4-1
Using ENFORM in Noninteractive Mode .. 4-1
Using ENFORM in Interactive Mode ... 4-3

Entering Source Code Directly .. 4-3
Entering Source Code Indirectly ... 4-4

SECTION 5. USING ENFORM EFFICIENTLY .. 5-1
Using ENFORM Search Statistics ... 5-1

The FILE NAME Column .. ' 5-2
The LEVEL READ Column .. ' 5-2
The RECORDS READ Column ' 5-3
The POSITIONS Column .. ' 5-3
The Identification Line ... ~ ~ ' 5-4
The STRATEGY COST Line ... ' 5-4

December 1983

. vi

Contents

Improving Performance .. 5-5
Changing the Data (Disc) Environment ... 5-5

Remove Levels of Indexing in Key-Sequenced Files 5-5
Add or Remove Alternate Keys .. 5-7
Avoid Sorting an Already Sorted File ... 5-8
Specify Where EN FORM Builds Temporary Work Files 5-9
Spread Input/Output Demands Among Discs .. 5-9
Alter Cache Size ... 5-9
Control the Size of the Target File ... 5-9

Changing the Nondisc Environment ... 5-10
Process Placement .. 5-10
Share Query Processors ... 5-10
Reduce Network Traffic ... 5-11

Changing the Wording of the Query Itself .. 5-11
Add a WHERE Clause .. 5-11
Change the Qualification of Field Names in a WHERE clause 5-12
Determine if FIND Files Can Be Shared ... 5-12

SECTION 6. HOST LANGUAGE INTERFACE .. 6-1
Interface Procedures ... 6-1

ENFORMSTART Procedure .. 6-3
ENFORMSTART Error Messages ... 6-6

ENFORMRECEIVE Procedure .. 6-8
ENFORMRECEIVE Error Messages .. 6-9
Additional Information for ENFORMRECEIVE Error Messages 6-9

ENFORMFINISH Procedure ... 6-11
Examples .. 6-11

SECTION 7. ENFORM Servers .. 7-1
Why Use ENFORM Servers ... 7-2
Writing EN FORM Servers .. 7-3

EN FORM Server and Query Processor Dialogue 7-3
Interprocess Communication .. 7-4
Message Protocol and Descriptions ... 7-5
Message Components .. 7-6

DDL Message Header Description ... 7-7
EN FORM Server and Query Processor Messages 7-8

INITIATE-INPUT-REQUEST Message ... 7-9
INITIATE-INPUT-REPLY Message ... 7-10
RECORD-INPUT-REQUEST Message .. 7-11
RECORD-INPUT-REPLY Message ... 7-13
TERMINATE-INPUT-REQUEST Message .. 71.5
TERMINATE-INPUT-REPLY Message ... 7-16

EN FORM Server Operation -Restrictions and Conditions 7-17
Using an ENFORM Server ... 7-18

Restrictions Related to Using ENFORM Servers 7-18
EN FORM Server Performance Considerations 7-19

ENFORM Server Context ... 7-19
Variable-Length Data ... 7-19
Server Location .. 7-19

EN FORM Server Example ... 7-19

December 1983

vii

Contents

APPENDIX A. SYNTAX SUMMARY .. A-I
Language Elements ... A-I
Statements ... A-2
Clauses .. A-5
ENFORM Procedures .. A-II

APPENDIX B. ERROR MESSAGES " .. B-1
EN FORM Initialization Messages ... B-2
!!!ERROR and WARNING Type Messages .. B-3
***FILE ERROR Type Messages ... B-12
ENFORM Trap Error Messages .. B-13
BUILDMK Error Messages .. B-14

APPENDIX C. SAMPLE DATA BASE ... C-1

APPENDIX D. EXAMPLE EN FORM PROGRAMS D-l

APPENDIX E. CHANGING THE MESSAGE TABLE TEXT E-l
How to Change the Message Table ... E-l

Guidelines for Creating a Message Table for the Current Session E-2
Guidelines for Replacing the Default Message Table E-4
Required Format of the Edit File .. E-6

APPENDIX G. GLOSSARy ... G-l

INDEX ... Index-l

FIGURES

1-1 Overview of Tasks Involved in Using ENFORM 1-2
1-2 ENFORM Processing Environment .. 1-4
1-3 Host Language Program in the EN FORM Processing Environment 1-6
1-4 ENFORM Server in the ENFORM Processing Environment 1-7
2-1 Sample Records ... 2-2
2-2 Sample Record Occurrences .. 2-3
2-3 Record Occurrences With Unnormalized Data ... 2-5
2-4 Record Occurrences With Normalized Data ... 2-5
2-5 Sample DDL Record Description .. 2-6
3-1 Effect of an OPEN Statement ... 3-3
3-2 Record Description For OPEN AS COpy OF .. 3-3
3-3 Effect of an ?ASSIGN Command .. 3-5
3-4 The Process of Finding Matching Values .. 3-9
3-5 Logical Records Built When a Matching Value is Missing 3-10
3-6 Diagram of LINK OPTIONAL Where Region is Linked to Employee 3-11
3-7 Diagram of LINK OPTIONAL Where Employee is Linked to Region 3-12
3-8 Report Produced When Both LINK OPTIONAL and WHERE Clause Specified 3-14
3-9 EN FORM Query and Report ... 3-18
3-10 DDL Record Description, ENFORM Query, and FIND file 3-20
3-11 Sample ENFORM Query and FIND File Diagram 3-24
3-12 ENFORM Report Format ... 3-35
4-1 ENFORM in Noninteractive Mode ... 4-2
4-2 Entering Statements Directly in Interactive Mode 4-3

December 1983

viii

Contents

5-1 Simple ENFORM Query and Associated Search Statistics 5-1
5-2 Search Statistics Where LEVEL READ = 1 .. 5-2
5-3 Diagram of Key-Sequenced File with 1024-Byte

Block Size .. 5-6
5-4 Key-Sequenced File With Increased Block Size .. 5-6
6-1 EN FORM Interface With Host Program ... 6-2
6-2 DDL Description of Record Passed to COBOL Progam 6-11
6-3 Query Used to Pass Records to COBOL Program 6-12
6-4 COBOL Host Language Program ... 6-13
6-5 DDL Description of Records Passed to TAL Program 6-15
6-6 An ENFORM Query for Host Language Interface 6-16
6-7 A TAL-Host Application Program Interfacing with ENFORM 6-16
7 -1 ENFORM Server Process .. 7-1
7-2 Query Processor and ENFORM Server Communication 7-4
7-3 Message Format and DDL Description for the INITIATE-INPUT-REQUEST Message 7-9
7-4 Message Format and DDL Description for the INITIATE-INPUT-REPLY Message 7-10
7-5 Message Format and DDL Description for the RECORD-INPUT-REQUEST Message 7-11
7-6 Message Format and DDL Description for the RECORD-INPUT-REPLY Message 7-13
7-7 Message Format and DDL Description for the TERMINATE-INPUT-REQUEST Message . 7-15
7-8 Message Format and DDL Description for the TERMINATE-INPUT-REPLY Message 7-16
C-1 Diagram of Sample Relational Data Base ... C-1
C-2 Dictionary Source Listing of Sample Relational Data Base C-3
C-3 Listing of Records in Sample Relational Data Base C-6
E-1 Creating a Message Table for the Current Session E-3
E-2 Replacing the Default Message Table .. E-5
E-3 Diagram of the ?VOCABULARY Section ... E-7
E-4 Diagram of the ?MESSAGES Section .. E-8
E-5 Diagram of the ?HELP Section ... E-9

TABLES

3-1 Statements and Commands Used to Establish the Query Environment 3-2
3-2 Establishing and Clearing Relationships ... 3-8
3-3 ENFORM Statements Used to Select Information 3-17
3-4 Clauses Used to Group and Sort Information ... 3-23
3-5 Clauses Used to Specify Computations .. 3-25
3-6 Statements and Clauses Used to Add Information to Reports 3-34
3-7 Clauses That Define Report Layout ... 3-41
3-8 Clauses Used to Format Selected Information .. 3-46
6-1 ENFORMSTART Error Messages ... 6-7
6-2 ENFORMRECEIVE Error Messages .. 6-9
6-3 Additional ENFORMRECEIVE Error Messages 6-10
7 -1 ENFORM Server Session .. 7-5
E-1 ENFORM Reserved Words ... E-2

December 1983

ix

PREFACE

This guide is one of three volumes that describe ENFORM. This guide provides guidelines to follow
when you:

• develop a data base from which you want to produce ENFORM reports

• write EN FORM queries

• attempt to improve the performance of your ENFORM queries

• use the Host Language interface

• write an ENFORM server.

The intended audience for this guide is any person who is familiar with a Tandem system. For more
information about ENFORM and related products, refer to the publications listed below.

Data Definition Language (DDL) Programming Manual

EDIT Manual

ENFORM Reference Manual

ENSCRIBE Programming Manual

GUARDIAN Operating System Command Language and Utilities Manual

GUARDIAN Operating System Programming Manual

Introduction to EN FORM

December 1983

xi

-------------.---.--------

SYNTAX CONVENTIONS IN THIS MANUAL

This table describes the characters and symbols used in this manual's syntax notation. For distinc
tion, syntactical elements appear in a typeface different from that of ordinary text.

Notation

UPPERCASE
LETTERS

lowercase
letters

Brackets

Braces

Ellipsis

Punctuation

Meaning

All keywords and reserved words appear in capital letters. If a keyword can be
abbreviated, the part that can be omitted is enclosed in brackets.

All variable entries supplied by the user are shown in lower-case characters.

Square brackets ([]) enclose all optional syntax elements. A vertically-aligned
group of elements enclosed in brackets represents a list of selections from which
to choose one or none.

A vertically-aligned group of syntax elements enclosed in braces ({ }) represents
a list of selections from which exactly one must be chosen.

When an ellipsis (. ..) immediately follows a pair of brackets or a pair of braces, the
enclosed syntax can be repeated any number of times.

Parentheses, commas, and other punctuation or symbols not described above
must be entered precisely as shown. If any of the punctuation above appears
enclosed in quotation marks, that character is not a syntax descriptor but a
required character, and must actually be entered.

xiii

SECTION 1

INTRODUCTION

ENFORM, a product that is part of the ENCOMPASS Distributed Data Base Management System,
enables you to simply and efficiently:

• Retrieve data from a data base.

• Perform calculations (such as addition, subtraction, multiplication, and division) upon the
retrieved data.

• Sort and group the retrieved data.

• Perform cumulative operations (such as counting, totaling, and averaging) upon the retrieved
data.

• Format and print a report containing the retrieved data.

• Create a new physical file containing the retrieved data.

The EN FORM language consists of statements, clauses, and commands that you use to provide
ENFORM with a detailed description (called a query specification) of: the data to be retrieved from
the data base, the operations to be performed on that data, and the form in which the data is to be
returned to you.

This guide discusses the use of ENFORM language elements but does not discuss the syntax that
you use to specify these elements. To obtain a brief summary of the syntax enter the ENFORM
?HELP command or refer to Appendix A. For detailed syntax information, refer to the ENFORM
Reference Manual.

1-1

Introduction

USING ENFORM-OVERVIEW

Before ENFORM can retrieve any data, you must perform tasks that provide ENFOHM with the
environment and information it needs to retrieve the data. Figure 1-1 shows these tasks.

1-2

1. Design]
the

Data Base

L...-.---..r---

Describe the Data Base]

'""------r--

4. Load the J
Data

L.......-----.---

L..-.---.r---J

':::::~atlon
Source Code ----

Figure 1-1. Overview of Tasks Involved in Using ENFORIVI

Introduction

The following paragraphs provide a brief overview of the tasks shown in Figure 1-1 (refer to Sec
tions 2, 3, and 4 for detailed information). The tasks are organized into steps as follows:

1. Design the data base. This guide does not describe a process for data base design. Section 2
does, however, discuss some basic guidelines for developing or producing a data base to be used
with ENFORM.

2. Use the Data Definition Language (DDL) to describe the data. Submit the DDL source code to
the DDL compiler, which produces source code for the File Utility program (FUP) and the data
declaration sections of COBOL, FORTRAN, and TAL programs. The DDL compiler also pro
duces a dictionary that provides a description of the data to all the applications using the data
base.

3. Use FUP to process the source code from the previous step and to create the physical
GUARDIAN/EN SCRIBE files that store the data.

4. Choose a method of loading the data. In Figure 1-1, an ENABLE-generated application is used.
EN ABLE accesses the dictionary to extract record descriptions of the data; the application it
creates allows you to load the data into the data base. Alternatively, you could use the data
declaration source code created by the DDL compiler to produce a high level language program
that loads the data.

5. Use the ENFORM language elements to write requests, called queries, that retrieve data from
the data base and format the retrieved data into a report.

ENFORM PROCESSING ENVIRONMENT

The environment in which ENFORM processes data consists of several components. These com
ponents can be divided into three categories:

1. The required user-supplied components: a dictionary, a data base, and a query specification. To
supply these components, complete the tasks described earlier in this secmon.

2. The ENFORM processes: the query compiler/report writer and the query processor. Tandem
supplies these processes with ENFORM.

3. The optional user-supplied components: a host language program and an ENFORM server. (A
host language program allows you to use ENFORM to access data through the host language
interface. An ENFORM server allows you to use ENFORM to access data that ENFORM would
normally find unusable.)

The following paragraphs briefly describe these components and the role that each plays in the
ENFORM processing environment.

Figure 1-2 shows the ENFORM processes and the required user-supplied components of the
ENFORM processing environment.

1-3

'il

Introduction

The Dictionary

Report

Figure 1-2. ENFORM Processing Environment

~
~

The dictionary is a collection of seven files that define the contents of a data base. rrhe dictionary
provides ENFORM with a complete description of the structure of each record in the data base.
Before retrieving any data, ENFORM accesses the dictionary, obtains information about the record
descriptions, and stores this information in the internal table of the query compiler/report writer.
Refer to Section 2 for more information about the dictionary.

The Data Base

'fhe data base consists of the physical files that contain the actual data. By using the information
obtained from the dictionary, ENFORM searches the data base to find the data you want. After
finding the data, EN FORM returns the data to the query processor. Refer to Section 2 for more
information about the components of a data base.

A Query Specification

A query specification (which consists of ENFORM statements, clauses, or commands) is a detailed
description of the information you want to retrieve from the data base. ENFOHM uses the informa
tion provided by the query specification to determine the query environment, the data to be
retrieved, and the form in which this data is to be returned to you.

Refer to Section 3 for more information about using the ENFORM statements, clauses, and com
mands to write a query specification.

1-4

-

Introduction

The Query Compiler/Report Writer

The query compiler/report writer has two logical functions or phases: (1) compiling the query and
(2) formatting and writing a report.

During the first phase, the query compiler checks the query specifications for syntactical correct
ness. If the query compiler detects errors at this time, query processing is stopped and a syntax
error message is issued.

If the query specifications are correct, the query compiler compiles· the query specifications into a
form (called a compiled representation of the query) that can be understood by the query processor.
The compiled representation of the query includes information from the dictionary about the
records and fields from which data is to be retrieved. It also contains information about qualifica
tions in the query specifications that limit the number of records read from the data base and writ
ten to the target records (the temporary records built by the query processor from which your
ENFORM output is produced). The query compiler sends the compiled query representation to the
query processor as an interprocess message.

During the first (or compilation) phase, the query compiler also builds an internal report specifica
tion that is used by the report writer during the second (or report-writing) phase.

The second phase occurs only if the query specifications contain a request for a report (the presence
of a LIST statement within the query specifications requests a report). During this phase, the
report writer reads each target record returned by the query processor, formats it using informa
tion from the internal report specification built during the first phase, and produces the report.

The Query Processor

The query processor is a server process that receives query specifications and record description
information from the query compiler. After receiving this information, the query processor
retrieves data from the data base. The query processor exists in one of the following forms:

1. As a dedicated server process that is created for and provides services to an individual query
compiler/report writer process,. This dedicated server process is created each time an EN
FORM session is initiated. One dedicated query processor executes all the EN FORM queries
within the session.

2. As a named server process that can be shared (sequentially) by several ENFORM queries. This
type of process exists until it stops or times out, has a backup process, and handles queries one
at a time.

The query processor automatically chooses a strategy for accessing your data base by using infor
mation from the dictionary and the file system. It uses its own search algorithms to reduce the
number of data base accesses needed to produce the specified data. The query processor produces
target records containing all the data requested in the query specifications. The query processor
places the target records in a temporary work file called a target file.

After producing the target records, the query processor does one of the following:

• Returns the target records to the compiler/report writer if the query specifications contained a
LIST statement. The query processor returns the target records as a unit in the target file if
they required sorting or if more than one data base record was accessed. If the target records do
not require sorting and only one data base record is accessed, the query processor returns the
target records directly.

• Renames the target file as a FIND file (with an unstructured file type) when the query specifica
tions include a FIND statement. The dictionary must contain a description of the FIND file.

• Transmits the target records one by one to a host language program.

1-5

Introduction

Host Language Interface

F~igure 1-3 shows the role of a host language program in the ENFORM processing environment.

Executing~
Host Language

Program

~--~

Figure 1-3. Host Language Program in the ENFORM Processing Enviroment

A host language program allows you to use ENFORM to retrieve data from a data base and then
perform operations on the data that are not possible when ENFORM is used alone. Before a host
language program executes, the query compiler must compile and save your query specifications
(containing a FIND statement) in a compiled query file. By including a series of ENFORM pro
cedures, the host language program supplies the query processor with the name of the compiled
query file and the value of any included parameters. The query processor retrieves the information
specified and returns the information to the host language program, one target record at a time.

Refer to Section 6 for more information about the host language interface.

1-6

Introduction

ENFORM Server

Figure 1-4 shows the role of an ENFORM server (process file) in the ENFORM processing environ
ment.

Report

Figure 1-4. ENFORM Server in the ENFORM Processing Environment

An EN FORM server is a user-written process file that extends the query capability of EN FORM by
allowing the query processor to use data that might otherwise be unusable. An ENFORM server ap
pears to the query processor as a data file. When an ENFORM server receives a request from the
query processor for a data record, the server replies by either returning the data record to the
query processor or by indicating there are no more records. An ENFORM server terminates when a
pair of messages pass between it and the query processor stating that no more requests exist.

Refer to Section 7 for more information about an ENFORM server.

1-7

III

Introduction

ENFORM TERMINOLOGY

This guide uses the following terms to discuss the ENFORM language and the output produced by
ENFORM:

• Query specifications

the language elements (statements, clauses, commands, .. J that you specify to provide ENFORM
with the information it needs to retrieve data and to establish the query environment.

• Query

one complete LIST or FIND statement. Both the LIST and the FIND statements specify the infor
mation to be retrieved.

• Target-list

a part of the query; a target-list is separated into target-items and by-items.

Target-items

any record names, field names, variable names, aggregate names, literals, or expressions,
including by-items, whose values you want to appear as output from your query.

By-items

field names modified by a BY or BY DESC clause. The values of the fields are used to sort
and group the query output.

• Request-qualification

a condition or conditions that a data base element must meet before it is seleeted to contribute to
your query output. A request-qualification begins with a WHERE clause followed by a logical ex
pression.

• Target-records

1-8

the temporary records built by the query processor from which your ENFORN.[output is produced.
The query processor returns the target-records to the query compiler/report writer when the out
put is to be formatted and written as a report.

SECTION 2

DEVELOPING THE DATA BASE

ENFORM enables you to retrieve data from a data base. This section discusses some of the tasks
involved in developing or producing a data base. It does not recommend a method of data base
design. Data base design is a complex task, one that is beyond the scope of this guide.

Before performing the tasks described in this section, it is important to understand the
characteristics of the data that comprise a data base.

WHAT IS A DATA BASE?

A data base is a collection of data that is stored and used for multiple purposes. Usually many dif
ferent kinds of applications access a data base that contains many different types of data. Thus, a
data base serves as a repository for the data needed to perform certain functions in a commercial,
scientific, or business enterprise.

Fields

The smallest named unit of data in a data base is a field. Each field has a name and occupies a
specific location in relation to other fields.

Fields can contain data that belongs to one of two data categories: either alphanumeric or numeric.
Alphanumeric fields contain data composed of letters of the alphabet, spaces, digits, and special
symbols like the hyphen. Numeric fields contain digits, minus or plus signs, and decimal points.

The characters that are stored in a field are called the field value. When more than one value is
associated with a field, the field is said to contain repeating field values. The field itself is called a
repeating group.

2-1

Developing the Data Base

Records

A record (sometimes called a record-type) is a collection of associated fields. Each record has a
name. Consider Figure 2-1 which shows the records named parts and odetail.

parts

partnum partname inventory location price]
odetail

ordernum partnum quan~

Figure 2-1. Sample Records

The record parts consists of the fields: partnum, partname, inventory, location, and price. The
record ode tail consists of the fields ordernum, partnum, and quantity.

No field values are associated with a record; instead a record acts as a framework into which
specific field values can be fitted. Usually many different types of records exist within a data base,
with each different type of record having its own set of record occurrences.

2-2

Developing the Data Base

Record Occurrences

A record occurrence contains the actual data which is retrieved by an application program. For
example, consider Figure 2-2 which shows some record occurrences for both parts and odetail.

R dO ecor ccurrences for Parts

partnum partname inventory location price

--+- 212 System 192KB Core 7 J87 92000.00

--+- 244 System 192KB Semi 3 B78 87000.00

-----. 1403 Proc 96KB Semi 21 A21 22000.00

-----. 2001 Decimal Arith -100 X10 1500.00

...

R ecor dO ccurrences or o detail

ordernum partnum quantity

~ 21 244 1

~ 21 2001 2

~ 28 1403 3

~ 30 212 1

...

Figure 2-2. Sample Record Occurrences

Each parts record occurrence contains the field values that concern a specific part. Each odetail
record occurrence contains the field values that concern a specific order.

Notice that both parts and odetail contain the same field values for partnum. When the same field
values occur in different sets of record occurrences, you can easily establish a connecting relation
ship between the record occurrences (even if the fields have different names). When you establish
such a connecting relationship, the process is called linking. Refer to Section 3 for more information
about linking.

2-3

Developing the Data Base

Key Fields

A key field is a field whose value an application can use to identify a specific record occurrence.
Sometimes more than one field is needed to identify a record. When two or more contiguous fields
are used to identify a record occurrence, the combined fields are called composite key fields. The
two categories of key fields are primary key fields and alternate key fields.

A primary key field is a field whose value an application uses to uniquely identify a particular
record occurrence. Only one primary key field can exist for a record. A likely primary key field for
parts is partnum because this field uniquely identifies each record occurrence of parts. Odetail re
quires a composite key composed of both ordernum and partnum because the same part number
could occur in many orders and the same order number could contain many part numbers.

An alternate key field is a field whose value an application uses to identify aU record occurrences
with a certain property. A record can have more than one alternate key. When an alternate key is
specified for a record, an alternate search path exists that can be used to retrieve data. The
presence of alternate keys affects any application that uses the data base. Refer to Section 5 for
more information about alternate key fields.

TASKS INVOLVED IN DEVELOPING YOUR DATA BASE

The following discussion describes the tasks involved in developing your data base. The tasks are:

• Normalizing the data.

• Describing the data base.

• Creating the physical files that store the data.

• Loading the data.

Normalizing the Data

ENFORM (and most other applications that access the data base) will retrieve data most efficiently
when record occurrences do not contain repeating groups. Remember, a repeating group is a field
that stores more than one value.

Use the process of normalization to remove the repeating groups from your data. Consider Figure
2-3 which shows the record occurrences of oldorder. In oldorder both partnurn and quantity are
repeating groups.

2-4

,,:_-------------------------

Developing the Data Base

~--~

Oldorder Record Occurrences

ordernum partnum ordate deldate quantity custnum

21 244 011078 041078 1 1234
2001 2
2403 2
4103 2

25 244 012378 061578 1 7777
5103 2
6301 1
6402 10

....

Figure 2-3. Record Occurrences With Unnormalized Data

The process of normalization removes the repeating groups. Four levels of normalization exist. This
guide discusses only the first level of normalization: first normal form. First normal form exists
when the following condition is satisfied:

For every field in a record occurrence there exists precisely one value, never a group of
values.

Figure 2-4 shows the record occurrences that result when oldorder is normalized in first normal
form. The new record is named neworder.

~---

Neworder Record Occurrences

ordernum partnum ordate deldate quantity custnum

21 244 011078 041078 1 1234

21 2001 011078 041078 2 1234

21 2403 011078 041078 2 1234

21 4103 011078 041078 2 1234

25 244 012378 061578 1 7777

25 5103 012378 061578 2 7777

25 6301 012378 061578 1 7777

25 6402 012378 061578 10 7777

.

Figure 2-4. Record Occurrences With Normalized Data

2-5

Developing the Data Base

First normal form is a sufficient level of normalization for use with ENFORM; however, further nor
malization might be desirable for other applications using the data base. For example, neworder
could be split into two records, order and odetai~ as shown in Appendix C.

Although normalization requires that some data values appear in more than one record occurrence,
normalization results in a considerable simplification of the data structure. This simplification of
the data structure allows ENFORM to operate efficiently on the data base. It also makes the forma
tion of ENFORM queries much simplier.

Describing the Data Base

Before using ENFORM to retrieve data, you must describe the data base fields, records, and files.
This description provides ENFORM with information about:

• the name and length of each record.

• the names, locations, lengths, and data categories (either alphanumeric or numeric) of fields
within each record.

• the file structure and location of the physical file associated with each record.

• the primary and alternate keys (if any) of each record.

DATA DEFINITION LANGUAGE. Use the Data Definition Language (DDL) to create and manage
data descriptions. Using DDL allows you to describe the file, record, and data structures of a data
base. DDL creates the dictionary used by ENFORM to obtain information about your data base.
DDL also optionally produces file creation source commands for use with the File Utility Program
(FUP) and data declaration source code for use with COBOL, FORTRAN, and TAL programs. This
guide describes DDL briefly; refer to the Data Definition Language (DDL) Programming Manual
for detailed information.

DDL statements establish the definitions of data elements in a data base. A DDL RgCORD state
ment defines each record name and includes a DDL FILE IS clause that identifies the Tandem disc
file containing the actual data. The RECORD statement also describes the record structure in
cluding field names, data categories, and optionally a heading and display format for each field. If a
record has key fields, the RECORD statement defines the fields that are primary and alternate key
fields.

Figure 2-5 shows an example RECORD statement which describes the record named parts. The
FILE IS clause identifies the file storing the data as $mkt.sample.parts and indicates that the file
type is key-sequenced. The RECORD statement identifies the fields named partnum, inventory,
location, and price. All of these fields are numeric with the exception of partname and location. (A
numeric field is described as PIC 9 ... ; an alphanumeric field is described as PIC X .. J The record
description describes the primary key as partnum and the alternate key as partname.

2-6

RECORD parts.
FILE IS $mkt.sample.parts

02 partnum
02 partname
02 inventory
02 location
02 price

KEY IS partnum.
KEY "pn" IS part name.
END

KEY-SEQUENCED.
PIC 9(4).
PIC X(18).
PIC 999S.
PIC XXX.
PIC 999999V99.

Figure 2-5. Sample DOL Record Description

"0 __ _

Developing the Data Base

When you use DDL to describe data, remember the following:

• Associate only one record with each physical file with one exception: unstructured FIND files
can be associated with more than one record.

• Describe only associated information in each record.

• A void repeating groups in record descriptions. A record description with an OCCURS clause
causes a repeating group. If necessary, divide the file into two or more files.

• Use the SEQUENCE IS clause for non-key-sequenced files if the records are already sorted
according to the value of a field. When the field is modifed by a BY or ASCD clause, ENFORM
reads the SEQUENCE IS clause and suppresses its own sort process thus reducing processing
time.

• Specify the actual file type of the physical file (or files) associated with the record descriPtion.,
ENFORM obtains the file type from the dictionary. If the file type of a physical file is not the
same as the file type specified in the dictionary, your query might return unexpected results.

DATA DICTIONARY. The data dictionary produced by the DDL compiler is a set of files that form a
permanent record of your data base organization. The dictionary provides ENFORM with informa
tion about each record in the data base. If you write an ENFORM query, any records specified in the
query must be described with a DDL RECORD statement and the RECORD statement must be
compiled into a data dictionary.

Use the ?SHOW Command to Examine a Record Description. If you have forgotten the name of a
field or its data category, use the ?SHOW command from within the ENFORM process to examine
the dictionary record description. First, issue the ENFORM OPEN statement which causes
ENFORM to read a copy of the record description into its internal table. Next issue the ?SHOW
record command which causes ENFORM to display the record description. For example:

OPEN parts;
?SHOW parts

causes ENFORM to display:

01 A 0:37
02 N 0:4
02 A 4:18
02 N 22:4
02 A 26:3
02 N 29:8

PARTS: $MKT.SAMPLE.PARTS.
,P-KEY PARTNUM.
,A-KEY PARTNAME.

INVENTORY.
LOCATION.
PRICE.

Use ENFORM to Create Dictionary Reports. Use ENFORM to produce reports about the dic
tionary that provide:

• Data base documentation for the individuals using the data base.

• Data base analysis information that can be helpful when modifications or additions to the dic
tionary are considered.

To produce dictionary reports, use an ENFORM source file that resides in the file
$SYSTEM.SYSTEM.DDQUERYS. The ENFORM source file can be modified to produce reports
tailored to answer specific questions. The ENFORM source file consists of twelve queries that pro
duce twelve different reports. Each query is a separate section of the source file; therefore, the
queries can be run either individually or in combination.

December 1983

2-7

Developing the Data Base

To obtain the reports, a dictionary describing the file structure of the seven DDL dictionary files
must reside on $SYSTEM.DDL. Entering the following lines produces all twelve reports:

:VOLUME $yourvol.yoursubv !establish the default volume
:ENFORM/IN $system.system.ddquerys,OUT $s/

Examples of these reports can be found in the Data Definition Language (DDL) Reference ManuaL

USING COBOL, FORTRAN, AND TAL DATA DECLARATION SOURCE CODE. DDL optionally pro"
duces data declaration source code for the COBOL, FORTRAN, and TAL programming languages.
Including this source code in an application program used to maintain or alter th,e data base reduces
programming effort and enforces consistency of data handling.

Creating Data Base Files

Use the File Utility Program (FUP) to create the actual physical files that store the data for your
data base. If you use a FUP file creation source file produced by DDL, consider editing the file
before using it. Edit the file to:

• Increase the block size. Unless you have specified the DDL FUPBLOCKSIZE command, the
default block size DDL writes to the FUP source file is 512 bytes. This block size might be ade
quate for lightly used files; however, providing a larger block size avoids a level of indexing that
might slow processing for heavily used large files.

• Adding a SET EXTENT command to increase the extent sizes. The FUP default extent sizes of
one page for the primary extent and one page for the secondary extent might not be large
enough.

Refer to the GUARDIAN Operating System Command Language and Utilities Manual for more
information about FUP.

Loading Data Base Files

Choose a method of loading the data into the physical files. Use either an application program or the
EN ABLE subsystem.

Using an application program is most advantageous when the data already exists in some machine
readable form (such as on a disc file or a tape), but some data conversion operation must be per
formed before the data is loaded. When an application program is used, include the data declaration
source code optionally produced by DDL to insure that the data is handled in a consist'ent manner"

Using the ENABLE subsystem is most advantageous when the data is to be entered from a ter
minal. ENABLE accesses the dictionary record description of the data being loaded, generates an
interactive application under PATHWAY, and provides a screen for terminal access to a single
record type. The terminal display screen consists of field names and values in columnar format and
contains appropriate annotations to assist the operator in entering data. For more information
about ENABLE, refer to the ENABLE Users Guide.

Occasionally FUP is used to either load or reload data. For example, FUP could be used if the data
already exists in a machine readable form and data conversion is not needed. If I~UP is used,
remember to load alternate key files. If an alternate key file exists, but is empty, EN FORM
retrieves no data when that alternate key path" is chosen as its search strategy.

December 1983

2-8

SECTION 3

DEVELOPING AN EN FORM QUERY

The primary aim of entering a query is to retrieve the information you want from the data base.
Depending on your needs, ENFORM provides the information in one of the following forms: as a
report, as a new physical file, or as records transmitted to a host language program. This section
discusses the steps needed to produce a report or a new physical file. (Refer to Section 6 for infor
mation about transmitting records to a host language program). The steps are:

1. Establishing the environment to be used for the query by using statements and commands such
as ?DICTIONARY, OPEN, ?ASSIGN, DECLARE, and SET.

2. Establishing relationships between record descriptions by using the LINK statement or the
WHERE clause.

3. Specifying the information selected by using the LIST or FIND statement.

4. Restricting the information selected by using the WHERE clause.

5. Specifying the sorting and grouping of selected information by using the BY, BY DESC, ASCD,
or DESC clauses.

6. Specifying computations for selected information by using the SUBTOTAL, TOTAL, PCT, or
CUM clauses.

7. Formatting a report by using clauses and statements such as TITLE, HEADING, AT END, AS,
SPACE, or TAB.

The first five steps apply to any ENFORM query that produces a report or creates a new physcial
file. The last two steps apply only to a query that produces a report. The following paragraphs
discuss these steps and offer a brief overview of the various operations you can perform during an
ENFORM session (the period of time that begins when you enter the ENFORM command and ends
when you exit the ENFORM subsystem).

3-1

Developing an ENFORM Query

ESTABLISHING THE QUERY ENVIRONMENT

Establishing the query environment is the first step in developing a query. Table 3-1 shows the EN
FORM statements and commands that establish the query environment. If your dictionary resides
on your current volume and subvolume, the OPEN statement is the only sta.tement or command
that is required. If your dictionary resides on a different volume or subvolume, either the DIC
TIONARY statement or the ?DICTIONARY command is also required.

Table 3·1. Statements and Commands Used to Establish the Query Environment

Statement Command Function

DICTIONARY ?DICTIONARY Ifhich Identifies the volume and subvolume on v
the dictionary resides.

OPEN Identifies the record descriptions used in the query.

?ASSIGN Assigns a record description to a differen t physical file.

DECLARE Defines user elements.

SET Initializes user elements and resets
operational variables.

Identifying the Dictionary

To identify the volume and subvolume on which your dictionary resides, use one of the following:

• The dictionary parameter in the EN FORM command.

• The DICTIONARY statement.

• The ?DICTIONARY command.

If the dictionary is not identified, EN FORM assumes it resides on your current volume and sub
volume.

If the dictionary is identified in the ENFORM command and you want to change dictionaries, use
either the DICTIONARY statement or the ?DICTIONARY command. For example, 'the following
DICTIONARY statement indicates to ENFORM that you want change dictionaries from the one
residing on $mkt.sample to the one residing on $data. test:

:ENFORM $mkt.sampLe

>DICTIONARY $data.test;

3-2

#,:11_. ___________________________ , _______ _

Developing an EN FORM Query

Identifying Record Descriptions

Use the OPEN statement to identify the record descriptions used in your query. When the OPEN
statement is issued, the query compiler obtains the record description of the identified record from
the dictionary and stores this information in its internal table. Figure 3-1 shows the effect of an
OPEN statement that identifies the parts record description.

r-I;-e;altabl;-l
~--.... parts record I

..... -------4 I description I L _____ _

:ENFORM

> OPEN parts;

Figure 3-1. Effect of an OPEN statement

Note that the OPEN statement does not actually open the physical file in which the parts record oc
currences are stored.

Use OPEN AS COpy OF when a record description is designed so that record occurrences stored in
a physical file relate to other record occurrences stored in the same physical file. OPEN AS COpy
OF allows you to use either a LINK statement or a linking WHERE clause (both are described later
in this section) to establish a linking relationship between the record occurrences. Establishing
such a linking relationship is impossible without using OPEN AS COpy OF because ENFORM re
quires that a LINK statement or a linking WHERE clause specify two different record names.

Consider the record description shown in Figure 3-2.

RECORD employ.
FILE IS

02 empl-no
02 emp-name
02 dept.

05 reg-num
05 branch-num

02 salary
02 mgr-id
KEY IS empl-no.

$mkt.sample.employ
PIC 9(4).
PIC X(18).

PIC
PIC
PIC
PIC

99.
99.
999999.
9(4).

KEY "en" IS empl-name.
KEY "dp" IS dept.

END

KEY SEQUENCED.

'--------------------------------------- -- --------

Figure 3-2. Record Description For OPEN AS COpy OF

3-3

Developing an ENFORM Query

The following OPEN AS COpy OF statement logically makes a duplicate copy of employ arid names
it empdup. Notice that the OPEN statement for the record description being duplicated must
precede the OPEN AS COPY OF statement.

OPEN empLoy;
OPEN empdup AS COpy OF empLoy;
LINK empLoy.mgr-id TO empdup.empL-no;

Specification of the OPEN AS COPY OF and LINK statements allows the names of all employees
and their managers to be listed.

Assigning Record Descriptions To Different Physical Files

Use the? ASSIGN command when the record occurrences you want to retrieve are not stored in t.he
physical file specified in the DDL FILE IS clause. (Refer to the discussion of the Data Definition
Language (DDL) in Section 2 for more information about the FILE IS clause.) When you specify t.he
? ASSIGN command, the query compiler stores the new physical file name in the internal table and
passes this information to the query processor when you issue either a LIST or FIND statement.
Remember, an OPEN statement for the record description must also be issued.

Figure 3-3 shows the effect of an ? ASSIGN command.

3-4

Developing an ENFORM Query

r-------,
L ~!!!r~l!a~~.J
II Assign: II

~~~~--- . :ENFORM parts 
> ?ASSIGN parts TO test L--.--------....... ~~--_+ll $mkt.sample.test I 

---.. > OPEN parts; I I 
> LIST parts; r - - - - - - -, 

I Record Description: I 
parts I 

I $mkt.sa~~le.parts I 
L. ______ ~ 

Report 

r---------, 

'---------------------------------------- --

Figure 3-3. The Effect of an ?ASSIGN Command 

Using the ?ASSIGN command is useful when you want to test a query that would normally retrieve 
a large amount of data. Instead, copy a small portion of the record occurrences to be retrieved to a 
new physical file, specify that file name in an ?ASSIGN command, and then test the query. 

Using the ?ASSIGN command also makes maintenance easier. If the ?ASSIGN command is 
specified and the data file is moved or renamed, simply change the? ASSIGN statement instead of 
recompiling the dictionary. 

3-5 



Developing an ENFORM Query 

Defining User Elements 

Use the DECLARE statement to define any user elements to be used in the query. The DECLARE 
statement defines user variables, user tables, and user aggre'gates. The DECLARE statement also 
optionally establishes the internal format, the default display format, and the default heading of 
user variables or tables. 

When the DECLARE statement is issued, the query compiler stores the information specified in 
the internal table. This information remains in the internal table until a CLOSE statement for the 
user element is issued, a ?DICTIONARY command or DICTIONARY statement is issued, or the 
ENFORM session terminates. 

Issue another DECLARE statement specifying the same user variable or table name to change the 
internal format, the default display format, or the default heading. If you issue another DECLARE 
statement that specifies the name of a previously defined user aggregate, ENFORM issues an error 
message. 

Use the SET statement to provide an initial value for a user variable or user table. 

Setting Option Variables 

The option variables store values that ENFORM uses when performing certain operations. Each 
option variable has a default value that you can reset by using the SET statement. When the value 
of an option variable is reset, the new value remains in effect for the duration of the current 
ENFORM session. By using the SET statement to reset the default value of an option variable, you 
can: 

• Establish a new report format 

• Affect the processing strategy thatENFORM uses during the current session 

• Control the size of the target file that ENFORM produces when processing a LIST or FIND 
statement 

• Generate statistics that you can use to improve processing efficiency 

• Control the amount and kind of information that ENFORM displays at your terminal. 

For example, if you have a terminal that does not have a scrolling mechanism, you might want to 
control the number of lines of information that ENFORM displays on your terminal at anyone time. 
To do this, set the value of the @DISPLAY-COUNT option variable to 24: 

SET @OISPLAY-COUNT TO 24; 

When you set @DISPLAY-COUNT to 24, ENFORM displays a maximum of 24 lines of information. 
To indicate that you are ready for the next 24 lines of information, press the terminal RETURN key. 

As another example, consider resetting the left-hand margin that ENFORM uses when producing a 
report. To do this, set the value of the @MARGIN option variable to the column in which you want 
the report to begin printing. If you want ENFORM to begin printing in column 5, set @MARGIN 
to 5: 

SET @MARGIN TO 5; 

Refer to Section 5 for other examples that demonstrate the advantages of resetting the option 
variables. 

3-6 



Developing an ENFORM Query 

CONNECTING RECORD DESCRIPTIONS TO FORM NEW RELATIONSHIPS 

ENFORM allows you to connect two or more record descriptions in a relationship that establishes 
a new logical record description. The process of establishing a connecting relationship is called 
linking. During the linking process, ENFORM links the dictionary record descriptions of the 
records and builds logical record occurrences composed of record occurrences from both record 
descriptions. 

The number of target records (the data base information retrieved by the query processor) 
resulting from a query where record descriptions are linked depends on the data values in the link
ing fields. The number of target records ranges from a minimum value of zero to a maximum value 
that is the product of the number of record occurrences associated with each record description. 

The minimum number of resulting target records occurs when no data value of the linking field in 
the first record description is found in the linking field of the second record description. 

The maximum number of resulting target records occurs when the linking field has the same value 
in every record occurrence for both record descriptions. In some cases, specifying a link that 
returns the maximum number of target records causes unexpected results. For example, suppose 
that 1000 record occurrences are associated with a-ree and 3000 record occurrences are associated 
with b-ree. Suppose also that the linking field (link-field) in all the record occurrences contains the 
value SAME STRING. If the following query is issued: 

OPEN a-rec,b-rec; 
LINK a-rec TO b-rec VIA link-field; 
LIST a-rec,b-rec; 

The number of resulting target records is 3 million, the product of the number of record occur
rences associated with a-ree and the number of record occurrences associated with b-ree. If your 
query returns an unexpectedly large number of target records, examine the links specified. 

Use the following guidelines for links: 

• Link fields that belong to the same data category (either both numeric or both alphanumeric). 
Fields that belong to different data categories cannot be linked. 

• Link on a full key or the left portion of a composite key; if the right portion of a composite key 
(described in Section 2) is used, be sure it is necessary. Such a link requires more processing 
time and might cause unexpected results. 

• Link fields that contain the same field values. Linking fields that do not contain the same field 
values results in increased processing time and possibly unwanted results. 

• Define only the links that your query needs. Defining more links than your query needs can 
unnecessarily restrict the information returned. If necessary, clear unwanted links. 

• Use efficient links. The most efficient links are usually between fields that are primary keys, 
alternate keys, or fields that are described with a SEQUENCE IS clause in the DDL record 
description. 

The ENFORM statements, clauses, and commands used to connect, clear, and display links are 
shown in Table 3-2. 

December 1983 

3-7 



I 
I 

Developing an ENFORM Query 

Table 3-2. Establishing and Clearing Relationships 

Statement 

LINK 
LINK OPTIONAL 

DICTIONARY 
DELINK 
DELINK OPTIONAL 
CLOSE 

Clause 

WHERE 

Making Session·Wlde Links 

Command 

?SHOW LINK 

?DICTIONARY 

Function 

Creates a session-wide link; used to 
link record descriptiom} for a query. 

Creates a temporary link for the 
associated LIST or FIND statement. 

Displays session-wide links currently 
in effect. 

Clears links from the internal table. 

ENFORM provides you with two statements that make session-wide links. These statements are 
the LINK statement and the LINK OPTIONAL statement. While both statements establish links, 
the link established by a LINK statement differs from the link established by a LINK OPTIONAL 
statement. The following paragraphs discuss both statements and describe their differences. 

USING THE LINK STATEMENT. When you enter the LINK statement, ENFOFtM treats the linked 
record descriptions as one logical record description. ENFORM builds record occurrences for the 
new logical record description by selecting matching records from the data files associated with the 
linked record descriptions. Records match when both contain the same data v:alue in their linking 
fields. For example, consider the following: 

OPEN employee,regioni 
LINK region.manager TO employee.empnumi 

Figure 3-4 shows the logical record occurrences created by the preceding LINK statement. To build 
the logical record occurrences, ENFORM obtains the value of the manager field from the first 
region record. ENFORM then searches the employee records looking for a matching data value in 
the empnum field. If ENFORM finds a matching value, it builds a logical record occurrence for the 
matching region and employee record occurrences. 

December 1983 

3-8 



Region File 

regname 

HEADQUARTERS 

EAST 
000 

CANADA 

regname 

HEADQUARTERS 

EAST 
000 

CANADA 

Developing an ENFORM Query 

Employee File 

manager empnum empname 

1 

29 
000 

343 

... 
". '" .. 
' .. . 

'" 

... 
'" 

'" 

LIN pears 
to ate 

K ap 
ere 
new 

Logical Records 

1 

23 
29 

00_ 

343 

-manager empnum 

1 1 

29 29 
0_0 000 

343 343 

--
ROGER GREEN 

JERRY HOWARD 

JACK RAYMOND --.. " 

ALAN TERRY 

empname 

ROGER GREEN 

JACK RAYMOND 
000 

ALAN TERRY 

Figure 3-4. The Process of Finding Matching Values 

In Figure 3-4, each data value in the manager field matches a data value in the empnum field. I 
Figure 3-5 shows a diagram of the new logical record occurrences built when a matching value 
(empnum = 29) is missing and the same LINK statement is issued. 

December 1983 

3-9 



Developing an EN FORM Query 

Region File 

regname 

HEADQUARTERS 

EAST 
GERMANY 
... 
CANADA 

regname 

HEADQUARTERS 

GERMANY 
... 
CANADA 

manager 

1 

29 
43 
. .. 

343 

. . . . . 
. 

• 

• • • 

• • 

. . . 

empnum 

• 1 

23 
32 
. .. 

• 43 . 343 

/ LINK 
creates 

new logical 
records 

manager empnum 

1 1 

43 43 
... . .. 
343 343 

Employee File 

ernpname 

ROGER GREEN 

JERRY HOWARD 
THOMAS RUDLOFF 
. .. 
PAUL VVINTER 

ALAN TERRY 

empname 

ROGER GREEN 

PAUL WINTER 
. .. 
ALAN TEFtRY 

Figure 3-5. Logical Records Built When a Matching Value is Missing 

USING THE LINK OPTIONAL STATEMENT. The major difference between a link established by a 
LINK statement and a link established by a LINK OPTIONAL statement is the way that ENFORM 
builds the logical record occurrences for the new logical record description. W'hen you specify the 
LINK statement, EN FORM builds the logical record occurrences by selecting matching records 
from the data files associated with the linked record descriptions. When you specify the LINK 
OPTION AL statement, EN FORM builds a set of logical records as follows: 

• ENFORM builds one logical record occurrence for each set of matching record occurrences. 
Each of these logical record occurrences contains data values from both matching record 
occurrences. 

• If any record occurrence associated with the record description on the left side of the LINK 
OPTIONAL statement does not appear in the set of logical record occurrences, EN FORM builds 
a logical record occurrence for that record. In each of these logical record occurrences, 
ENFORM supplies null values (blanks) for the fields that correspond to the record description 
specified on the right side of the LINK OPTIONAL statement. 

For example, consider the following: 

OPEN region,employeei 
LINK region.manager TO OPTIONAL employee.empnumi 

December 1983 

3-10 



Developing an ENFORM Query 

Figure 3-6 shows the record occurrences associated with both the region and the employee record 
descriptions. This figure also shows the logical record occurrences built for the LINK OPTIONAL 
statement. Notice that some of the logical record occurrences contain blanks for the fields from the 
employee records. These fields are blank because no employee record matches the particular region 
record. For example, EN FORM includes the region record occurrence where manager has a value of 
29 even though there is no matching record occurrence in employee. 

Region Record Occurrences Employee Record Occurrences 

regname 

HEADQUARTERS 

EAST 
GERMANY 
... 
CANADA 

regname 

HEADQUARTERS 

EAST 

GERMANY 
. . . 
CANADA 

manager empnum empname 

1 

29 
43 
. .. 
343 

LINK IONAl 
ap s to 

OPT 
pear 
ate ere new 

Logical Records 

1 

23 
32 
43 
... 
343 

manager empnum 

1 1 

29 
43 43 
... ... 

343 343 

ROGER GREEN 

JERRY HOWARD 
THOMAS RUDLOFF 
PAUL WINTER 
. .. 
ALAN TERRY 

empname 

ROGER GREEN 

PAUL WINTER ... 
ALAN TERRY 

Figure 3-6. Diagram of LINK OPTIONAL Where Region is Linked to Employee 

If the order of the record descriptions in the preceding LINK OPTIONAL statement is reversed: 

LINK employee.empnum TO OPTIONAL region.manager; 

the resulting logical record occurrences are very different. As Figure 3-7 shows, ENFORM includes I 
all the employee records in the logical record occurrences even though a matching region record • 
does not exist; however, ENFORM does not include any region record that does not match an ' 
employee record. 

December 1983 

3-11 



Developing an ENFORM Query 

Employee Record Occurrences Region Record OcclUrrences 

empname empnum manager regname 

ROGER GREEN 1 1 HEADQUARTERS 

JERRY HOWARD 23 29 EAST 

THOMAS RUDLOF 32 43 GERMANY 

PAUL WINTER 43 
... . .. 343 CANADA 

ALAN TERRY 343 

LINK 
app 
crea 

Logical Records 

empname empnum manager regname 

ROGER GREEN 1 1 HEADQUARTERS 

JERRY HOWARD 23 
THOMAS RUDLOF 32 
PAUL WINTER 43 43 GERMANY . .. . . . ... . .. 
ALAN TERRY 343 343 CANADA 

Figure 3-7. Diagram of LINK OPTIONAL Where Employee is Linked to Region 

December 1983 

3-12 



Developing an EN FORM Query 

SESSION·WIDE LINKS AND THE WHERE CLAUSE. When your query specifications contain a 
WHERE clause, ENFORM uses any request qualifications specified in the WHERE clause to pro
duce the target records (the records from which your EN FORM output is produced). ENFORM 
takes the logical expressions specified in your WHERE clause and converts them into conjunctive 
normal form. This means that ENFORM converts the logical expressions into one or more "terms". 
These "terms" consist of logical expressions that are connected to other logical expressions by the 
boolean operator AND. Each "term" can have "subterms" that are connected by the boolean 
operator OR. Note that what appears as a "term" in your WHERE clause might not be the same as a 
"term" in the converted WHERE clause. Refer to Appendix D of the ENFORM Reference Manual 
for more information about the "terms" of a WHERE clause. 

Normally, ENFORM produces target records by evaluating all of the "terms" in the WHERE clause 
and selecting only those logical record occurrences that satisfy all the "terms". If your query 
specifications contain both a WHERE clause and LINK OPTIONAL statements, ENFORM might 
not use every "term" in a converted WHERE clause to evaluate every given logical record occur
rence. Before ENFORM uses a "term" to evaluate a given logical record occurrence, ENFORM 
examines both the "term" and the logical record occurrence. ENFORM determines whether the 
"term" references a record description that is "non-contributing" for the given logical record occur
rence. For a given logical record occurrence, a record description is "non-contributing" if the logical 
record occurrence does not contain any data values from the data file associated with the record 
description. (Refer to the ENFORM Reference Manual for more information about "non
contributing" record descriptions.) ENFORM evaluates logical record occurrences by using the 
"terms" in the converted WHERE clause as follows: 

• If all of the record descriptions referenced in a "term" contribute to a given logical record occur
rence, ENFORM uses the "term" to evaluate the logical record occurrence. 

• If some of the record descriptions referenced in a "term" are "non-contributing" for a given 
logical record occurrence, ENFORM does not use the "term" to evaluate the logical record 
occurrence. 

For example, suppose you issue the following LINK OPTIONAL statement: -., 

LINK employee TO OPTIONAL region VIA regnum; 

If you then enter the following query: 

LIST empname, regname, WHERE empnum < 100 AND 
regname = "GERMANY"; 

ENFORM builds the logical record occurrences from the record occurrences shown in Figure 3-8. 
ENFORM then produces the target records also shown in that figure. 

December 1983 

3-13 



Developing an ENFORM Query 

Employee Record Occurrences Region Record Occurrences 

empnum empname regnum regnum regname 

1 ROGER GREEN 99 1 EAST 

23 JERRY HOWARD 2 2 CENTRAL 

32 THOMAS RUDLOFF 5 3 WEST --
43 PAUL WINTER 5 4 CANADA 

49 MARK MONTEMORRA 7 5 GERMANY 

65 SUSAN HEN DERSON 6 6 ENGLAND 

104 DAVID STRAND 2 99 HEADQUARTERS 
... ... ... 

343 ALAN TERRY 4 

Logical Record Occurrences Built for the Link 

empnum empname regnum regnum re!Jname 

1 ROGER GREEN 99 99 H EADGlUARTERS 

23 JERRY HOWARD 2 2 CENTFlAL 
32 THOMAS RUDLOFF 5 5 GERMANY 
43 PAUL WINTER 5 5 GERMANY 

49 MARK MONTEMORRA 7 
65 SUSAN HENDERSON 6 6 ENGU~ND 

104 DAVID STRAND 2 2 CENTHAL ... . .. . . . . . . . .. 
343 ALAN TERRY 4 4 CANADA -

Target Records 

empname regname 

THOMAS RUDLOFF GERMANY 

PAUL WINTER GERMANY 

MARK MONTEMORRA 

~-----------------------------------------.----------------------------~ 

Figure 3-8. Report produced when both LINK OPTIONAL and WHERE Clause Specified 

ENFORM converts the preceding WHERE clause into two "terms": 

empnum < 100 AND ---.... ~ ... > fi rst term 

regname = "GERMANY" ---.... ~ ... > second term 

Notice that ENFORM produces a target record from the logical record occurrence whose empnum 
value is 49. EN FORM does not use the second "term" (regname = "GERMANY") to evalute this 
logical record occurrence because the region record description is "non-contributing" for this 
logical record occurrence. (This record description is "non-contributing" because the regnum value 
(7) in the contributing employee record occurrence does not match a regnum value in the region 
record occurrences.) 

December 1988 

3-14 



Developing an ENFORM Query 

CLEARING UNNECESSARY SESSION·WIDE LINKS. You can clear unnecessary session-wide links 
Oinks created by either the LINK statement or the LINK OPTIONAL statement} by using one of 
the following: 

• A CLOSE statement which clears all links referencing the record descriptions being closed. 

• A DELINK statement which clears the specified link. 

• Either a DICTIONARY statement or a ?DICTIONARY command that clears the entire internal 
table. 

Unnecessary links take up memory space, produce undesirable results in subsequent queries, and 
might lengthen processing time. After clearing unnecessary links, you can use the ?SHOW link com
mand to verify the removal of the links. 

EXAMINING SESSION·WIDE LINKS. You use the ?SHOW link command to examine session-wide I 
links. For example, if you enter: 

LINK parts TO fromsup VIA partnumi 
LINK employee TO OPTIONAL region VIA regnumi 

and later enter a ?SHOW LINK command, ENFORM displays: 

PARTS.PARTNUM is linked to FROMSUP.PARTNUM 
EMPLOYEE.REGNUM is linked optional to REGION.REGNUM 

Establishing Links For the Current Query 

You can establish a link that applies only to the current query by including a WHERE clause in 
either a LIST or FIND statement. If you want to establish a link with a WHERE clause, at least one 
of the terms of the WHERE clause must reference two record descriptions. {Refer to the ENFORM 
Reference Manual for an explanation of the terms of a WHERE clause}. When you establish such a 
link, the link applies only to the query of which it is a part. For example, in the following query the 
WHERE clause links parts to fromsup: 

OPEN parts, fromsuPi 
LIST parts.partnum, 

partname, 
suppnum, 

WHERE parts.partnum EQ fromsup.partnumi 

Report: 

Part 
Number PARTNAME SUPPNUM 

212 SYSTEM 192KB CORE 1 
244 SYSTEM 192KB SEMI 1 

1403 PROC 96KB SEMI 1 

6603 TERM HARD COPY 2 
7102 CABINET LARGE 10 
7301 POWER MODULE 1 

December 1983 

3-15 



Developing an EN.FORM Query 

If you issue another query later in the same session, the link established by the WHERE clause is 
no longer in effect. Suppose, for example, after entering the preceding query, you enter: 

LIST parts.partnum, partname, fromsup.suppnumi 

Since the link established by the WHERE clause in the preceding query no lonl~er exists, ENFORM 
displays an error message stating that at least one record has no link relating it. to any other record. 

You can use a WHERE clause to link more than one record description. For example, in the follow
ing query, the WHERE clause temporarily links parts, fromsup, and supplier: 

OPEN parts, fromsup, suppLieri 
LIST parts.partnum, partname, fromsup.suppnum, suppname, 

WHERE parts.partnum EQ fromsup.partnum 
AND fromsup.suppnum EQ suppLier.suppnumi 

Report: 

Part 
Number PARTNAME 

212 SYSTEM 192KB CORE 
244 SYSTEM 192KB SEMI 

1403 PROC 96KB SEMI 

7102 CABINET LARGE 
7301 POWER MODULE 

SUPPNUM SUPPNAME 

1 TANDEM COMPUTERS 
1 TANDEM COMPUTERS 
1 TANDEM COMPUTERS 

10 STEELWORK INC 
1 TANDEM COMPUTERS 

Using a WHERE clause to link record descriptions with conditional operators other than EQUAL is 
also possible. 

Combining Links 

ENFORM allows you to combine links initiated by LINK statements with links initiated by LINK 
OPTIONAL statements or links initiated by a WHERE clause. If you include LINK OPTIONAL 
statements in your query specifications, however, you must follow the rules described in the 
ENFORM Reference Manual. 

The following paragraphs show examples of queries for which multiple links ar'e necessary. Many of 
these examples also show sketches of the links, where: 

() ~ represents a Link initiated by a LINK OPTIONAL statement. 

---~) represents aLi nk i ni t i ated by a LINK statement or a WHERE: cLause. 

A sketch of the links that affect a query can often help you find: 

• "silly" or unnecessary links. If, for example, your query returns unexpected! results, you can use 
the ?SHOW LINK command to determine which session-wide links affect your query. If you 
then sketch all the links (including any links initiated by a WHERE clause), you might discover 
the reason that you have obtained the unexpected result. (For example, you might have 
specified a link that unnecessarily restricts the target records returned for the query.) 

• a link that violates one of the rules specified for the LINK OPTIONAL statement. If ENFORM 
returns an error message that indicates you have specified an illegal link, a sketc:h of the links 
often helps you find the illegal link. 

December 1983 

3-16 



Developing an ENFORM Query 

You might specify a combination of links if you want to obtain information from the data files 
associated with more than two record descriptions. For example, suppose that you want to produce 
a report that lists the orders taken by your company, the price that your company can charge for 
each ordered part, and the price that your company must pay for each ordered part. To produce 
such a report, ENFORM must obtain information from five record descriptions: order, parts, 
odetai~ Jromsup, and supplier. As the following query specifications show, you could initiate these 
links with LINK statements and a WHERE clause: 

OPEN order, parts, odetail, fromsup, supplier; 
LINK order TO odetail VIA ordernum; 
LINK odetail TO parts VIA partnum; 
LINK parts TO fromsup VIA partnum; 
LIST BY order.ordernum HEADING "No.", 

BY partname HEADING "Part", 
SUM «quantity * price) OVER partname) HEADING "Our/Price", 
suppname HEADING "Supp li er", 
(quantity * partcost) HEADING "Our/Cost" 

WHERE fromsup.suppnum = supplier.suppnum; 

A sketch of the links in the preceding query appears as follows: 

order ~ odetail ~ parts ~ fromsup ~ supplier 

Because you have linked the record descriptions, ENFORM can build a set of logical record occur
rences from which it produces the target records for the following report (note: this report has been 
edited so that it will fit on the manual page): 

Our Our 
No. Part Price Suppl i er Cost 

------------------ ----------- ------------------ ---------

21 DECIMAL ARITH 3000.00 TANDEM COMPUTERS 2700.00 
DISC 160MB 147000.00 INFORMATION STORAGE 40000.00 

MAGNETICS CORP 38600.00 
DATADRIVE 39000.00 

MEM MOD 96K MOS 19200.00 TANDEM COMPUTERS 18900.00 
SYSTEM 192KB SEMI 87000.00 TANDEM COMPUTERS 85000.00 

25 ASYNC CONTROLLER 5800.00 TANDEM COMPUTERS 5500.00 
MAG TAPE DR 8/16 16000.00 MAGNETICS CORP 6200.00 

DATADRIVE 6250.00 
SYSTEM 192KB SEMI 87000.00 TANDEM COMPUTERS 83000.00 
TERM CRT PAGE 30000.00 DATA TERMINAL 11000.00 

DISPLAY INC 26000.00 

If you need to see all of the data stored for a particular record description, you can specify that 
record description on the left side of a LINK OPTIONAL statement. For example, suppose that you 
want a report that lists all of the orders for your company, all the employees who took the orders, 
and the region to which those employees belong. The specifications for this query might appear as 
follows: 

OPEN order, employee, region; 
LINK order.salesman TO OPTIONAL employee.empnum; 
LINK employee TO OPTIONAL region VIA regnumi 
LIST ordernum, empname, regname; 

December 1983 

3-16.1 



Developing an ENFORM Query 

A sketch of the links in the preceding query appears as follows: 

order o ) employee o ) region 

The report produced by this query is: 

ORDERNUM EMPNAME REGNAME 

21 GEORGE FORSTER EAST 
25 JONATHAN MITCHEL WEST 
30 MARTIN SCHAEFER GERMANY 
32 TOM HALL EAST 

122 OTTO SCHNABL GERMANY 
149 

Notice that the report entry for order number 149 contains neither a salesman name nor a region 
name. This type of entry often provides a clue that the data stored within your data base is inconsis
tent. For example, the entry in the preceding report could be caused by a data entry error in either 
the data file associated with the order record description or the data file associated with the 
employee record description. 

To check the consistency of data within your data base, you can produce an exception report. Such a 
report discovers inconsistencies between the data stored for two or more record descriptions. For 
example, suppose that you want to check the validity of the region numbers entered in the 
employee record occurrences. Since you are verifying the region numbers in employee, you must 
link employee to region with a LINK OPTIONAL statement. By specifying a VV'HERE clause, you 
can request a report that lists only those employees whose region numbers are invalid. The 
specifications for this query might appear as follows: 

OPEN employee, region; 
LINK employee TO OPTIONAL region VIA regnum; 
LIST empname, employee.regnum, 

WHERE employee.regnum <> region.regnum; 

A sketch of the links in the preceding query appears as follows: 

employee o ) region 
( ) 

Since employee is optionally linked to region, the logical record occurrences built for the linked 
record descriptions contain all of the employee records. The WHERE clause tells ENFORM that 
you are interested only in those logical record occurrences that do not have data values in the fields 
that correspond to the region record descriptions. (Note that the link established by the WHERE 
clause is not illegal because it references the same record descriptions as those referenced in the 
LINK OPTIONAL statement.) ENFORM, therefore, produces the following report: 

EMPNAME 

ALDEN SPROWLES 
JOAN ZIMMERMAN 
BOB CHAPIN 
LIZ CHAMBERS 

3-16.2 

REGNUM 

67 
11 
17 
59 

December 1983 



Developing an ENFORM Query 

If you want to produce an exception report that lists all the employees with invalid region numbers 
and invalid branch numbers, you could use LINK OPTIONAL statements to link employee to both 
region and branch. In this case, you could use a SUPPRESS clause to specify that the report is to 
contain only the names of those employees who have invalid region or branch numbers. (You cannot 
use a WHERE clause because such a clause would establish a link that violates the rules for the 
LINK OPTIONAL statement.) The specifications for this query might appear as follows: 

OPEN employee, branch, region; 
LINK employee TO OPTIONAL region VIA regnum; 
LINK employee.dept TO OPTIONAL branch.primkey; 
LIST empname, employee.regnum, employee.branchnum 

SUPPRESS WHERE employee.regnum = region.regnum 
AND employee.dept = branch.primkey; 

A sketch of these links appears as follows: 

employee o ) region 

t 
branch 

Since employee is linked optionally to both region and branch, the logical record occurrences built 
for the linked record descriptions contain all of the employee records. The SUPPRESS WHERE 
clause tells ENFORM that you are interested only in those logical record occurrences that do not 
have data values in the fields that correspond to the region and branch records. ENFORM, 
therefore, produces the following report: 

EMPNAME REGNUM BRANCHNUM 
------------------ ---------
ALDEN SPROWLES 67 2 
JOAN ZIMMERMAN 11 3 
BOB CHAPIN 17 99 
CHARLES WONG 9 0 
LI Z CHAMBERS 59 1 

By specifying multiple links, you can use EN FORM to produce a report that lists an item and its 
component items. Suppose, for example, that your data base contains the files described in the 
following record descriptions: 

RECORD newpart. 
FILE IS newpart 
02 p-no 
02 p-name 
02 p-price 
KEY 0 IS p-no. 

KEY-SEQUENCED. 
PIC 9(4). 
PIC X(20)' 
PIC 9(4)V99. 

KEY "nm" IS p-name. 
END 

RECORD component. 
FILE IS compon RELATIVE. 
02 component-key. 

04 part-no PIC 9(4). 
04 compon-no PIC 9(4). 

KEY "pn" IS part-no. 
KEY "cn" IS compon-no. 
END 

December 1983 

3-16.3 



Developing an ENFORM Query 

You could produce a report that lists each part and its main components by opening copies of these 
record descriptions and linking them appropriately. For example, you could: 

1. Open the original record descriptions (newpart and component) and a copy of newpart 
(npart-l). The copy of newpart will be used to supply the name of the component part. 

OPEN newpart, component; 
OPEN npart-1 AS COpy OF newpart; 

2. Establish the appropriate links between the record descriptions. The LINK OPTIONAL state·
ment ensures that all part names (even those that do not have components) appear on the 
report. The LINK statement links the component number to the copy of newpart, thus allowing 
access to the name of the component. 

LINK newpart.p-no TO OPTIONAL component.part-no; 
LINK component.compon-no TO npart-1.p-no; 

3. LIST the part name and the names of its main components. 

LIST BY newpart.p-name HEADING "PART", 
BY npart-1.p-name HEADING "MAIN COMPONENTS"; 

A sketch of the links in the preceding query appears as: 

newpart --IO~~) comrent 

npart-1 

The report produced is as follows: 

PART 

16 INCH WORK CENTER 

3 AMP UNIVER MOTOR 
BAND SAW 

BAND SAW BLADE 
BRACES 
CASTERS 
MITRE GAUGE 
PORTABLE WORK BENCH 

3-16.4 

MAIN COMPONENTS 

PORTABLE WORK TABLE 
VISE 

3 AMP UNIVER MOTOR 
BAND SAW BLADE 
ROUTER AND SHAPER GO 

BRACES 
CASTERS 
PORTABLE WORK TABLE 

December 1983 



Developing an ENFORM Query 

If you are familiar with the data stored in your data base, you can request a report that lists both 
the main components of a part and its secondary components (the components of the main com
ponents). In fact, this detailing can continue until the report breaks each part down to its most 
elementary component. The preceding query could be modified to produce such a report as follows: 

1. Open the original record descriptions. Use the OPEN AS COpy OF statement to make two 
copies of newpart and a single copy of component. (The first copy of newpart, npart-l, will sup
ply the name of the main components. The second copy of newpart, npart-2, will supply the 
name of the secondary components. The copy of component, cp-l, will supply the secondary 
components). 

OPEN newpart,component; 
OPEN cp-1 AS COpy OF component; 
OPEN npart-1 AS COPY OF newpart; 
OPEN npart-2 AS COPY OF newpart; 

2. Link the record descriptions and their copies. The first LINK OPTIONAL statement ensures 
that the name of a part appears in the report even if it has no components. The second LINK 
OPTIONAL statement ensures that the name of a main component appears in the report even if 
it has no secondary components. 

LINK newpart.p-no TO OPTIONAL component.part-noi 
LINK component.compon-no TO OPTIONAL cp-1.part-no; 
LINK component.compon-no TO npart-1.p-noi 
LINK cp-1.compon-no TO npart-2.p-no; 

3. List the part name, the names of its main components, and the names of its secondary 
components. 

LIST BY newpart.p-name HEADING "PART", 
BY npart-1.p-name HEADING "MAIN/COMPONENTS", 

npart-2.p-name HEADING "SECONDARY/COMPONENTS"; 

A sketch of the links in this query appears as: 

newpart o .) component o ) cp-1 

I 
npart-1 npart-2 

December 1983 

3-16.5 



Developing an ENFORM Query 

The report produced is: 

MAIN SECONDARY 
PART COMPONENTS COMPONENTS 

-------------------- -------------------- --------------------
16 INCH WORK CENTER PORTABLE WORK TABLE CASTERS 

BRACES 

3 AMP UNIVER MOTOR 
BAND SAW 

BAND SAW BLADE 

RADIAL SAW BLADE 
RADIAL SAW CENTER 

3-16.6 

VISE 

3 AMP UNIVER MOTOR 
BAND SAW BLADE 
ROUTER AND SHAPER GO 

RADIAL SAW 

SAW LEG STAND 

RADIAL BLADE GUARD 
3 AMP UNIVER MOTOR 
RADIAL SAW BLADE 
CASTERS 
BRACES 

December 1983 



Developing an ENFORM Query 

SELECTING INFORMATION 

The information selected for a report or a new physical file is called the target list. The target list 
defines the elements that appear in the target records produced by the query processor. Table 3-3 
shows the statements that both identify the target list and tell ENFORM whether to produce a 
report or a new physical file. 

Table 3-3. EN FORM Statements Used to Select Information 

Statement Function 

LIST Selects information to be printed in a report. 

FIND Selects information to be placed in a new physical file called a FIND file. 

Producing a Report 

Use the LIST statement when you want to select information for a report. The LIST statement 
selects the data base elements that contribute to the report, the data base elements that are 
printed in the report, and the ordering of the report lines. 

Remember to establish the query environment before issuing the LIST statement and to link any 
necessary record descriptions either with a LINK statement or by including a WHERE clause in 
the LIST statement. 

Permissible target list elements for a LIST statement are: field names, literals, arithmetic expres
sions, IF/THEN/ELSE expressions, user variables, user tables, system variables, parameters, user 
aggregates, or predefined aggregates. Figure 3-9 shows an ENFORM query, indicates the target 
list elements, and shows the report generated by the query. 

3-17 



Developing an ENFORM Query 

---------------------

EN FORM Query: 

OPEN parts, fromsup; }--
DECLARE u-var INTERNAL F3.2; Establish Query 
SET u-var TO 0.10; Environment 

LIST parts.partnum,---------+-field name 

",---------....... literal 

partname, ]>-_____ _ 
suppnum, ---+-- field names 

(IF inventory GT 0 THEN inventory ELSE zero) .. IF/THEN/ELSE expression 
heading "Stock", 

((price + (price * u-var)) - partcost)· .. Arithmetic expression 
heading "New Profit" 

AVG(inventory OVER ALL) , • Aggregate 
heading "AVG/Stock", 

WHERE parts.partnum EQ fromsup.partnum; III Links parts 
to fromsup 

Report: 

Part Supplier AVG 
Number PARTNAME Number Stock New Profit Stock 
------ ------------------ ---_ .. _--- ----------- ---.. _--

212 SYSTEM 192KB CORE 1 7 9200.00 22 
244 SYSTEM 192KB SEMI 1 3 8700.00 

1403 PROC 96KB SEM I 1 21 2200.00 
2001 DECIMAL ARITH 1 0 150.00 
2002 ENSCRIBE MICRO 1 200 100.00 

Figure 3-9. EN FORM Query and Report 

Notice that the value produced by the aggregate AVG only appears on the first line of the report. 

In Figure 3-9 the value of the user variable u-var remains constant for each target record. A user 
variable specified as part of a target list does not always maintain a constant value. Consider the 
following query where assignment syntax is used to assign a value to the user variable user-var: 

OPEN order; 
DECLARE user-var; 
SET user-var TO 10; 
LIST ordernum, 

3-18 

user-var := (ordernum + user-var), 
user-var := (ordernum + user-var)i 



Developing an ENFORM Query 

ENFORM determines the value of user-var in this query as follows: 

1. EN FORM determines the value of the first arithmetic expression in the target-list. Within the 
arithmetic expression, user-var has a value of 10 (the initial value defined in the SET statement) 
and the value of the arithmetic expression is ordernum + 10. 

2. ENFORM assigns the value of the arithmetic expression to the first instance of user-var. 

3. EN FORM determines the value of the second arithmetic expression in the target-list. Within 
the second expression user-var has the value (ordernum + 10); therefore the value of the sec
ond arithmetic expression is ordernum + (ordernum + 10). 

4. ENFORM assigns the value of the second arithmetic expression to the second instance of 
user-var. 

ENFORM continues the process of re-evaluating the value of user-var until it encounters the end of 
the target-list. ENFORM repeats the process (beginning with the initial value defined in the SET 
statement) for every target-record. 

Creating a New Physical File 

Use the FIND statement to select data base elements and store them in an unstructured disc file 
called a FIND file. A FIND file is useful as an intermediate file for a multi-step query (one in which a 
LIST statement subsequently retrieves the data stored in the FIND file). 

Before executing the FIND statement: 

• Add a description of the record type to be created to the data dictionary. 

• Establish the necessary query environment. 

• Establish the necessary linking relationships either with a LINK statement or by specifying a 
WHERE clause in the FIND statement. 

The FIND statement selects the target list elements to contribute to the FIND file. Permissible 
target-list elements for the input records of the FIND statement are: field names, literals, 
arithmetic expressions, IF/THEN/ELSE expressions, user variables, user aggregates, or prede
fined aggregates. 

Figure 3-10 shows the DDL record description of a FIND file named profit, the ENFORM query con
taining the FIND statement, and a logical diagram of the resulting FIND file. 

3-19 



Developing an ENFORM Query 

DDL Record Description: 

Record profit. 
file is "profit". 
02 partnum 
02 suppnum 
02 partname 
02 stock 
02 new-prof 
02 avg-stock 

end 

EN FORM Query: 

PIC 9(4). 
PIC 9(3). 
PIC X(18). 
PIC 9(4). 
PIC 999999V99. 
PIC 9(4). 

OPEN parts,fromsup,profit; 
DECLARE u-var INTERNAL F3.2; 
SET u-var TO 0.10; 

FIND profit 
( parts.partnum, 

parts.partname, 
fromsup.suppnum, 

stock: = (IF inventory GT 0 THEN inventory ELSE zero), 

new-prof: = ((price + (price * u-var)) - partcost), 

avg-stock : = AVG(inventory OVER ALL),) 

WH ERE parts.partnum EQ fromsup.partnum; 

Logical Diagram of FIND File: 

partnum suppnum partname stock new-prof 

0212 001 SYSTEM 192KB CORE 0007 00920000 
0244 001 SYSTEM 192KB SEM I 0003 00870000 
1403 001 PROC 96KB SEMI 0021 00220000 
2001 001 DECIMAL ARITH 0000 00015000 
2002 001 ENSCRIBE MICRO 0200 00010000 

000 000 .... 000 .... 

'------------------,-----

avg-stock 
--

0022 

Figure 3-10. DDL Record Description, ENFORM Query, and FIND File 

Notice in Figure 3-10, avg-stock is blank except in the first record. 

3-20 

""I11III1 __________________________________ • ___________ , 



Developing an ENFORM Query 

Using a FIND file as an intermediate file is useful when your data base contains unnormalized data. 
For example, suppose the following record description describes record occurrences stored in your 
data base: 

RECORD ali as . 
FILE IS "$mkt.sample.alias" RELATIVE. 

02 name PIC X(20). 
02 synonym PIC X(10) OCCURS 3 TIMES. 

END 

The OCCURS clause causes the data stored for this record description to be unnormalized. When 
subscripts (synonym [1], synonym [2], ... ) are used, ENFORM obtains the data and prints it in three 
columns. If you want the data to appear in one column, include a FIND file record description that 
associates one instance of the nonrepeating field (in this case: name) with each instance of the 
repeating group (in this case: synonym). For example: 

RECORD interim. 
FILE IS "$mkt.sample.normal" UNSTRUCTURED. 

02 name1 PIC X(20). 
02 synonym1 PIC X(10). 
02 name2 PIC X(20). 
02 synonym2 PIC X(10) . 
02 name3 PIC X (20) . 
02 synonym3 PIC X (1 0>-

END 

After including the record description in the dictionary, issue a FIND statement to store the data in 
the FIND file. For example: 

FIND interim 
(name1:= name, 
synonym1 := synonym [1J, 
name2 := name, 
synonym2 := synonym [2J, 
name3 := name, 
synonym3 := synonym [3J ); 

Once the FIND statement is issued, add another record description to the dictionary that in effect 
breaks down each record in the FIND file so that the data appears normalized. For example: 

RECORD normal. 
FILE IS "$mkt.sample.normal" UNSTRUCTURED. 

02 name PIC X(20). 
02 synonym PIC X(10). 

END 

Notice that the same physical file is specified for both interim and normal. Specifying more than one 
record description for the same physical file allows a different view of the data. Associating more 
than one record description with the same physical file is only possible for unstructured file types. 

3-21 



Developing an EN FORM Query 

RESTRICTING SELECTED INFORMATION 

Restrict the information selected for the report or the FIND file by using the ~iVHERI~ clause. The 
WHERE clause allows you to define a condition or a set of conditions that a da.ta base record must 
meet before it is selected to contribute to the output record. The WHERE clause in the following 
query causes ENFORM to select only those record occurrences from employee whose salary field 
contains a value greater than 35000: 

OPEN employee; 
LIST empname, job, salary 

WHERE salary GREATER THAN 35000; 

Report: 

EMPNAME 

ROGER GREEN 
JERRY HOWARD 
JACK RAYMOND 
THOMAS RUDLOFF 

JOB 

MANAGER 
MANAGER 
MANAGER 
MANAGER 

SALARY 

39500 
37000 
36000 
38000 

When a user variable is used in a WHERE clause to restrict the record occurrences retrieved, the 
query processor always uses either the initial value (defined in a SET statement) or the default 
value of zero (if no SET statement exists for the user variable) for the value of the user variable. 
For example, consider the following query: 

OPEN order; 
DECLARE user-var; 
SET user-var TO 10; 
LIST ordernum, 

user-var :=(ordernum + user-var) 
WHERE user-var > 10; 

This query always returns zero target records even though in every target record the value of user
var (ordernum + 10 ) is greater than 10. ENFORM does not return any target records because it 
uses the initial value (to) of user-var for the WHERE clause; therefore user-var is always equal to 
10. If the WHERE clause contains: 

WHERE user-var = 10 

all the records in order are returned because the value of user-var in the WHERE clause is always 
equal to 10. 

3-22 



Developing an ENFORM Query 

SORTING AND GROUPING SELECTED INFORMATION 

Sorting the information selected for a report makes the report easier to read. Grouping the sorted 
information improves the appearance of the report and more clearly defines important data. 

Sorting the information selected for a FIND file eliminates the need for sorting the records when 
the FIND file is used in a subsequent query. (Remember, the SEQUENCE IS clause must be used in 
the DDL record description of the FIND file.) 

Table 3-4 shows the ENFORM clauses used to group and sort information. 

Table 3-4. Clauses Used To Group and Sort Information 

Clause Function 

BY Groups and sorts target-records in ascending order 
according to the value of a field. 

BY DESC Groups and sorts target-records in descending 
order according to the value of a field. 

ASCD Sorts target-records in ascending order according 
to the val ue of a field. 

DESC Sorts target-records in descending order according 
to the value of a field. 

Use the BY and BY DESC clauses to group and sort field values. Field names grouped and sorted by 
BY and BY DESC clauses are called by-items. If a BY or BY DESC clause is specified in a LIST 
statement, the printing of all duplicate values is suppressed. For example, consider the following 
query and report: 

OPEN odetaili 
LIST BY ordernum, 

partnumi 

Report: 

Part 
ORDERNUM Number 

21 244 
2001 
2403 
4103 

25 244 
5103 
6301 
6402 

30 244 
2001 

Notice that only the first instance of a value for ordernum appears in the report. 

3-23 



Developing an ENFORM Query 

If a BY or BY DESC clause is specified in a FIND statement, duplicate values are included in the 
FIND file. For instance, consider the query and the diagram of a FIND file shown in F'igure 3-11. 

EN FORM Query: 

OPEN odetail,orderup; 
FIND orderup 

(BY odetail.ordernum, 
odetail.partnum ); 

FIND File Diagram: 

Ordernum Partnum 

0021 0244 
002"1 2001 
002"1 2403 
002"1 4103 
0025 0244 

... . .. 

Figure 3-11. Sample ENFORM Query and FIND File Diagram 

Notice that all the values of ordernum appear in the FIND file. 

When multiple BY, BY DESC, ASCD, and DESC clauses appear in the same query, ENFORM 
establishes a major to minor sort sequence. The first field name modified by a BY, BY DESC, ASCD, 
or DESC clause has first priority, the second next priority, and so on, down to the last. In the follow
ing example, regnum is sorted and grouped first, branchnum is sorted next, and job is sorted and 
grouped last: 

OPEN employee; 
LIST BY OESC regnum, 
BY OESC branchnum, 
BY job; 

Report: 

REGNUM BRANCHNUM JOB 
--------- -------

99 1 MANAGER 
5 3 MANAGER 
2 1 MANAGER 

SALESMAN 
1 2 SALESMAN 

1 MANAGER 

3-24 

M,"." ____________________________________ . __________ _ 



Developing an EN FORM Query 

SPECIFYING COMPUTATIONS FOR A REPORT 

To prepare a complete report, arithmetic operations are often necessary. Besides arithmetic 
expressions and aggregates (refer to the ENFORM Reference Manual for information about these 
language elements), ENFORM also provides clauses that allow you to: 

• Calculate a total or subtotal value for numeric elements. 

• Calculate a percentage value for numeric elements. 

• Calculate a running total for the values of a numeric element based either on all values or the 
grouped values of the element. 

Table 3-5 shows the ENFORM clauses that can be used only with the LIST statement to specify 
arithmetic operations for a report. 

Table 3-5. Clauses Used to Specify Computations 

Clause Function 

SUBTOTAL Generates a subtotal for an element. 

TOTAL Generates a total for an element. 

PCT Generates a percentage of the total for an element. 

CUM Generates a running total for an element. 

When specifying any of the clauses shown in Table 3-5, consider the number of digits you expect to 
be returned. If that number exceeds the number of digits defined in the dictionary for the field over 
which the calculation is performed, an overflow condition results. When an overflow condition 
occurs, overflow characters (asterisks by default) appear on the report instead of the figure you 
expect. To avoid this situation, use an AS clause (described later in this section) to modify the ele
ment. The AS clause can increase the number of digits displayed. 

When a reference to a user variable is modified by any of these clauses, an overflow condition does 
not result in the printing of overflow characters. 

3-25 



Developing an ENFORM Query 

Calculating a Subtotal 

Use the SUBTOTAL clause to generate a subtotal for the values of a numeric element within one or 
more by-items. When the value of a by-item changes, ENFORM prints the subtotal on the report 
under the column of the element being subtotaled. ENFORM marks the subtotal with a subtotal 
string (the default is an asterisk *) in the by-item column to which the subtotal relates. 

Write the SUBTOTAL clause after the element whose values are to be subtotaled. Unless you 
specifically indicate otherwise, ENFORM computes the subtotal over all the by-items in the report. 
The following example illustrates subtotals for the values of salary within the by-items regnum and 
branchnum: 

OPEN employee; 
LI ST BY regnum, 

BY branchnum, 
job, 
sa lary AS 19 SUBTOTAL; 

Report: 

REGNUM BRANCHNUM JOB 

1 MANAGER 
MANAGER 
SALESMAN 
SYS .-ANAL. 
SECRETARY 
SALESMAN 

* 

2 MANAGER 
SALESMAN 

* 

* 

SALARY 

36000 
32000 
19000 
25000 
12000 
26000 

---------
150000 

37000 
30000 

._--------
67000 

---------
217000 

When you include the OVER syntax with the SUBTOTAL clause, ENFORM calculates a subtotal 
over a named by-item. In the following example, the SUBTOTAL clause generates a subtotal for the 
values of quantity over the by-item ordernum: 

OPEN odetail; 
LIST BY ordernum, 

partnum, 
quantity SUBTOTAL OVER ordernum; 

3-26 



Report: 

Part 
ORDERNUM Number QUANTITY 

21 

* 

244 
2001 
2403 
4103 

Calculating a Total 

1 
2 
2 
2 

7 

Developing an ENFORM Query 

Use the TOTAL clause to generate a grand total for the values of a numeric element. The following 
example generates a grand total for the values of quantity: 

OPEN odetaili 
LIST BY ordernum, 

partnum 
quantity TOTAL, 

WHERE ordernum LE 21i 

Report: 

Part 
ORDERNUM Number QUANTITY 

21 244 
2001 
2403 
4103 

1 
2 
2 
2 

7 

3-27 



Developing an ENFORM Query 

Calculating Percentages 

Use the peT clause to calculate percentages for numeric elements. The element for which the 
percentage is being calculated need not appear in the report. The following example shows the peT 
clause modifying quantity. EN FORM assumes that the percentage is to be calculated OVER ALL 
even though the OVER ALL syntax is omitted. 

OPEN odetaili 
LIST BY ordernum, 

partnum, 
quantity, 
quant ity peT AS F5. 2 i 

Report: 

Part peT 
ORDERNUM Number QUANTITY QUANTITY 

21 

25 

244 
2001 
2403 
4103 

244 
5103 
6301 
6402 

1 
2 
2 
2 
1 
1 
2 

10 

4.76 
9.52 
9.52 
9.52 
4.76 
4.76 
9.52 

47.62 

When the OVER ALL syntax is specified or assumed, EN FORM calculates percentage values by 
performing the following: 

1. EN FORM adds all of the values of the element modified by the peT clause together to obtain a 
total. In the preceding example these values are: 1, 2, 2, 2, 1, 1, 2, and 10" The total of these 
values is 21. 

2. ENFORM then divides the value for each line of the report by the total to obtain the percentage 
value. In the preceding example, the quantity value appearing on the first line of the report is 1. 
Dividing 1 by 21 ( the total obtained in step 1) results in a percentage value of 4.76. 

The following example shows the peT clause with the OVER syntax. 

OPEN odetail; 
LIST BY ordernum, 

partnum, 
quantity, 

3-28 

quantity peT OVER ordernum, 
WHERE ordernum LE 25; 



Developing an ENFORM Query 

Report: 

Part PCT 
ORDERNUM Number QUANTITY QUANTITY 

21 244 1 14.29 
2001 2 28.57 
2403 2 28.57 Percent of order 21 
4103 2 28.57 

25 244 1 7.14 
5103 1 7.14 Percent of order 25 
6301 2 14.29 
6402 10 71.43 

When the OVER syntax is specified, ENFORM calculates grouped percentage values by perform
ing the following: 

1. ENFORM adds together the grouped values of the element modified by the PCT clause to 
obtain a total grouped value. {Remember an element is grouped when a preceding element in 
the query is modified by a BY or BY DESC clause.} In the preceding example, the first grouped 
quantity values are: 1,2,2, and 2 resulting in a total grouped value of 7. ENFORM calculates the 
total grouped value of each group in the report. 

2. EN FORM then divides the individual values for each group by the total grouped value to obtain 
the group percentage values. In the preceding example, the first quantity value of the first 
grouped value is 1. ENFORM divides 1 by the total grouped value 7 (obtained in the first step) 
resulting in a grouped percentage value of 14.29. 

Combine the SUBTOTAL and TOTAL clauses with the PCT clause to obtain the subtotal and total 
of the percentage values. The PCT values do not total exactly one hundred per cent since precision 
is lost due to truncation during division. In the following example, the SUBTOTAL and TOTAL 
clauses are used with the PCT clause to modify quantity: 

OPEN odetaiL; 
LIST BY ordernum, 

partnum, 
quantity, 
quantity PCT AS F5.2, 
SUBTOTAL OVER ordernum, 
TOTAL, 

WHERE ordernum LT 30; 

8-29 



Developing an EN FORM Query 

Report: 

Part peT 
ORDERNUM Number QUANTITY QUANTITY 
-------- -------- --------

21 244 1 4.76 
2001 2 9.52 
2403 2 9.52 
4103 2 9.52 

* --------
33.32 

25 244 1 4.76 
5103 1 4.76 
6301 2 9.52 
6402 10 47.62 

--------

* 66.66 

--------
--------

99.98 

3-30 



Developing an ENFORM Query 

Generating a Running Total 

Use the CUM clause to generate a running total for the values of the numeric element it modifies 
based either on all instances of the element or on the instances of the element grouped within a by
item. The following query generates a running total based on all the instances of quantity: 

OPEN odetaiL; 
LIST BY ordernum, 

partnum, 
quantity, 

Report: 

quantity CUM AS 17, 
WHERE ordernum LE 25; 

Part CUM 
ORDERNUM Number QUANTITY QUANTITY 

21 

25 

244 
2001 
2403 
4103 

244 
5103 
6301 
6402 

1 
2 
2 
2 
1 
1 
2 

10 

1 
3 
5 
7 
8 
9 

11 
21 

The following query generates a running total for quantity within the by-item ordernum: 

OPEN odetaiL; 
LIST BY ordernum, 

partnum, 
quantity, 
quantity CUM OVER ordernum AS 17, 
WHERE ordernum LE 25; 

Report: 

Part CUM 
ORDERNUM Number QUANTITY QUANTITY 

21 244 1 1 
2001 2 3 
2403 2 5 
4103 2 7 

25 244 1 1 
5103 1 2 
6301 2 4 
6402 10 14 

Running total begins anew 
at each new order. 

3-31 



Developing an EN FORM Query 

FORMATTING A REPORT 

If you specify a LIST statement in your query, ENFORM selects information from your data base, 
formats the information, and directs the information to the spooler, a physical file, or your terminal 
screen. If you write a query that consists of only an OPEN statement, a DECLARE statement, and a 
LIST statement with nothing but field names, arithmetic expressions, IF/THEN/ELSE expres
sions, user variables, user tables, user aggregates, or predefined aggregates (no by-items, no 
clauses, no options set), ENFORM writes the selected information according to the following 
defaults: 

• Target List Elements 

ENFORM prints the first target list element specified in the LIST statement in the leftmost 
report column, the second in the next column, and so on. If all the needed columns do not fit on a 
line, ENFORM folds the line including the heading. 

• Data order 

ENFORM determines the order in which data values are printed within a column by the order in 
which the data values are read from the data base. EN FORM does not sort the data values. 

• Column width 

EN FORM determines the width of a column by whichever is larger: the length of an element in 
characters (as described in the data dictionary or the DECLARE statement) or the length of the 
element's heading in characters. 

• Horizontal spacing 

ENFORM skips two spaces between columns. 

• Vertical spacing 

EN FORM uses single spacing between report lines. 

• Margins 

ENFORM prints the first column in line column 1. ENFORM determines the location of the right 
margin by calculating the total number of characters in each column plus the two spaces 
between each column. 

• Line length 

ENFORM uses a maximum line length of 132 characters for a printer; it uses a maximum line 
length of 80 characters for a terminal. 

• Page length 

ENFORM prints sixty lines on a page beginning at top-of-form. 

• Page numbers 

ENFORM does not print page numbers. 

• Titles 

EN FORM does not print any titles. 

3-32 



Developing an ENFORM Query 

• Headings 

If a heading is defined for the element in either the data dictionary or the DECLARE statement, 
ENFORM prints that heading. If not, ENFORM prints the name of the element as the heading. 
If neither applies (the element is a predefined or user aggregate), ENFORM creates a heading. 
ENFORM prints the values of arithmetic expressions without headings. 

• Data justification 

ENFORM prints numeric data as right-justified within the column; it prints alphanumeric data 
as left-justified within the column. 

• Display format 

ENFORM determines the display format for fields by the record description entry in the dic
tionary. ENFORM displ(,lys user variables, user table elements, user aggregates, and predefined 
aggregates as 14 character integers. ENFORM displays the result of arithmetic expressions in 
14 character fields, as either integer or fixed. ENFORM determines the default display format 
for IF/THEN/ELSE expressions by the elements in the expressions. 

The ENFORM defaults might be satisfactory for some of your reports, but other reports might 
require particular arrangements of the report data. The way your report looks can be affected by 
the addition of ENFORM statements or EN FORM clauses that: 

• Add information to a report. 

• Define the actual layout of the report. 

• Define the display format of the elements in the report. 

Printing Information Within a Report 

Adding information such as titles, subtitles, and footings to a report improves the appearance of the 
report and provides documentation as to the time, date, and reason for the report. EN FORM pro
vides statements and clauses that allow you to add information: 

• A t the beginning or end of a report. 

• Within the body of a report. 

• At the end of every report page. 

• At the beginning of every report page. 

3-33 



Developing an ENFORM Query 

Table 3-6 shows the ENFORM statements and clauses that can be used to add information to a 
report. 

Table 3-6. Statements and Clauses Used To Add Information to Reports 
,-------------------_.-----

Statement Clause 

AFTER CHANGE 

AT END AT END PRINT 

AT START AT START PRINT 

BEFORE CHANGE 

FOOTING FOOTING 

SUBFOOTING SUBFOOTING 

SUBTITLE SUBTITLE 

TITLE TITLE 

Function 

Prints information preceding the records for each 
by-item. 

Prints information at the end of a report. 

Prints information at the beginning of a report. 

Prints information following the records for each 
by-item. 

Prints a footing at the bottom of eacln page. 

Prints a subfooting at the bottom of the page 
preceding the footing. 

Prints a subtitle at the top of the page following the 
title. 

Prints a title at the top of a report page. 

The statements and clauses used to add information to reports obtain this information from a print 
list you supply. The query compiler stores the print list information in its internal table. The inter
nal table contains an entry for each element that exists in the print list. If the internal table 
overflows, remove all session-wide declarations overridden in the current report by issuing a 
session-wide statement (for example AT START or TITLE) without the print list parameter. 

To conserve space in the internal table, use TAB instead of SPACE in the print list to obtain the 
necessary report format. The query compiler does not allocate table space for a TAB clause whereas 
it does allocate table space for a SPACE clause. Judicious use of string literals also saves table 
space. For example: "PHONE: "is equivalent to "PHONE:", SPACE 3, but the former causes only 
one table entry while the latter causes two table entries. 

3-34 



Developing an ENFORM Query 

Figure 3-12 shows where the information supplied by these statements and clauses prints in a 
report. 

TITLE information 
SUBTITLE information 

AT START PRINT information 

HEADING HEADING HEADING 

AFTER CHANGE information for group (a) 

(a) 

SUBTOTAL SUBTOTAL 

HEADING 

SUBTOTAL 

BEFORE CHANGE information for group (a) 
AFTER CHANGE information for group (b) 

(b) 

SUBTOTAL SUBTOTAL 

BEFORE CHANGE information for group (b) 

repeat for groups c through I 

AFTER CHANGE information for group (m) 

(m) 

SUBTOTAL SUBTOTAL 

TOTAL TOTAL 

BEFORE CHANGE information for group (m) 

SUBFOOTING information 
FOOTING information 

SUBTOTAL 

SUBTOTAL 

TOTAL 

Figure 3-12. ENFORM Report Format 

3-35 



Developing an ENFORM Query 

TITLE information 
SUBTITLE information 

HEADING HEADING HEADING 

AFTER CHANGE information for group (n) 

(n) 

SUBTOTAL SUBTOTAL 

BEFORE CHANGE information for group (n) 

repeat for groups 0 through y 

AFTER CHANGE information 'for group (z) 

(z) 

SUBTOTAL 
TOTAL 

SUBTOTAL 
TOTAL 

BEFORE CHANGE information for group (z) 

AT END PRINT information 

SUBFOOTING Information 
FOOTING Information 

HEADING 

SUBTOTAL 

SUBTOTAL 
TOTAL 

Figure 3-12. ENFORM Report Format (Continued) 

ADDING INFORMATION WITHIN THE BODY OF THE REPORT. Use either the BEFORE 
CHANGE or AFTER CHANGE clause to specify printing of information between the end of print
ing of one set of grouped values and the start of the next set of grouped values. {Remember values 
are grouped when a field name is modified by a BY or BY DESC clause,} 

The BEFORE or AFTER keywords of these clauses refer to the values printed, not to the location 
of the printed information: 

• The BEFORE CHANGE clause obtains values to print from the last set of grouped values 
printed; that is, the last value of the element before the by-item value changes. 

• The AFTER CHANGE clause obtains values to print from the next set of grouped values to be 
printed; that is, the first value of the element after the by-item value changes. 

3-36 



Developing an ENFORM Query 

The following example shows the use of both the AFTER CHANGE and BEFORE CHANGE 
clauses: 

DECLARE order-sum AS M<ZZZ,ZZZ,ZZ9.99>; 
OPEN odetail,parts; 
LINK odetail TO parts VIA partnum; 
LIST BY ordernum, odetail.partnum, 

(price * quantity) AS M<ZZZ,ZZZ,ZZ9.99>, 
order-sum := SUM(price * quantity) OVER ordernum), 

NOPRINT, 
WHERE ordernum LE 25, 
BEFORE CHANGE ON ordernum PRINT 

"Before change on order " ordernum 
" total order revenue is " order-sum, 

AFTER CHANGE ON ordernum PRINT 
"After Change on order " ordernum 
" total order revenue is " order-sum; 

Report: 

Part 
ORDERNUM Number 

After Change on order 21 total order revenue is 
21 244 87,000.00 

2001 3,000.00 
2403 19,200.00 
4103 49,000.00 

Before change on order 21 total order revenue is 
After change on order 25 total order revenue is 

25 244 87,000.00 
5103 8,000.00 
6301 5,800.00 
6402 15,000.00 

Before change on order 25 total order revenue is 

158,200.00 

158,200.00 
115,800.00 

115,800.00 

3-37 



Developing an ENFORM Query 

PRINTING INFORMATION AT THE BEGINNING OR END OF A REPORT. Specify AT START or 
AT END to print one or more lines of user-defined information at the beginning (AT START) or at 
the end (AT END) of a report. The session-wide AT START statement prints information directly 
after the title (if any) on the first page of every report in the current ENFORM session unless 
cancelled, reset, or overridden. The AT END statement prints information on the last page of every 
report in the current ENFORM session unless cancelled, reset, or overridden. Refer to the 
ENFORM Reference Manual for information about cancelling or resetting these statements. The 
AT START and AT END clauses temporarily override the AT START and AT END statements 
respectively. Consider the following queries: 

AT START PRINT "Confidential Report"; 
AT END PRINT "End of Confidential Report"; 
OPEN employee; 
LIST empname, salary; 
CLOSE employee; 
OPEN parts; 
LIST partnum,partname,price, 

AT START PRINT "Parts Report", 
AT END PRINT "End of Parts Report"; 

Report generated by first query: 

Confidential Report 

EMPNAME 

ROGER GREEN 
JERRY HOWARD 
JACK RAYMOND 

SALARY 

39500 
37000 
36000 

End of Confidential Report 

Report generated by second query: 

Parts Report 

Part 
Number PARTNAME PRICE 

212 SYSTEM 192KB CORE 92000.00 
244 SYSTEM 192KB SEMI 87000.00 

1403 PROC 96KB SEMI 22000.00 

7301 POWER MODULE 2400.06 

End of Parts Report 

3-38 

~JII ___________________________ • _________________ _ 



Developing an ENFORM Query 

PRINTING INFORMATION AT THE BOTTOM OF EVERY REPORT PAGE. Use either SUB
FOOTING or FOOTING to specify printing of information at the bottom of each page of a report. If 
both are specified, the information specified for FOOTING is printed below the information 
specified for SUBFOOTING. 

The FOOTING and SUBFOOTING statements are session-wide; they apply to all reports generated 
during the current EN FORM session unless they are cancelled, reset, or overridden. The SUB
FOOTING and FOOTING clauses temporarily override the SUBFOOTING and FOOTING 
statements for the report generated by the associated LIST statement. 

The following query contains both a FOOTING and SUBFOOTING statement. 

TITLE" Order Summary"; 
SUBFOOTING "Summary of"; 
FOOTING "Orders For " ordernum; 
OPEN order,odetail,parts; 
LINK order TO odetail VIA ordernum; 
LINK parts TO odetail VIA, partnum; 
LIST BY order.ordernum, FORM, 

Report: 

custnum, parts.partnum, 
quantity,price; 

Order Summary 

Part 
ORDERNUM CUSTNUM Number QUANTITY PRICE 

21 1234 244 87000.00 
2001 2 1500.00 

Summary of 
Orders For 21 

Order Summary 

Part 
ORDERNUM CUSTNUM Number QUANTITY PRICE 
-------- ------- -------- ---------

25 7777 244 1 87000.00 
6301 2 2900.00 
6402 10 1500.00 

Summary of 
Orders For 25 

3-39 



Developing an ENFORM Query 

PRINTING INFORMATION AT THE TOP OF EACH REPORT PAGE. Use the SUBTITLE and 
TITLE statements or clauses to specify printing of one or more text lines at the top of each report 
page. The difference between SUBTITLE and TITLE is that the user-supplied text specified in a 
TITLE statement or clause prints before the user-supplied text specified in a SUBTITLE state
ment or clause. The text supplied in a SUBTITL:E statement or clause prints whether or not a 
TITLE statement or clause is specified. 

A SUBTITLE or TITLE statement is in effect session-wide; that is, it applies to all the reports 
generated during the current EN FORM session unless cancelled, reset, or overridden. A SUB
TITLE or TITLE clause overrides the SUBTITLE or TITLE statement respectively. 

In the following queries, titles are printed for two reports: 

OPEN parts; 
TITLE "DaiLy Inventory Report for" @DATE AS DATE *; 
SUBTITLE "Location" Location" onLy"; 
LIST BY partnum, partname,inventory, 

WHERE Location is "L98"; 
CLOSE parts; 
OPEN empLoyee; 
LIST BY regnum, By branchnum, saLary, 

AS M<ZZZ,ZZZ,ZZ9.99>, 
WHERE regnum IS 1 AND branchnum IS 2, 
TITLE TAB 4 "*** CONFIDENTIAL REPORT 

SKIP2, 
***" , 

SUBTITLE "Region SaLary Report as of " 
@DATE AS DATE *, SKIP 1, 
"For Region" regnum CENTER; 

Report generated by the first LIST statement: 

Daily Inventory Report for OS/24/82 

Part 
Number 

Location L98 onLy 

PARTNAME INVENTORY 

5103 MAG TAPE DR 8/16 8 

Report generated by the second LIST statement: 

*** CONFIDENTIAL REPORT *** 

RegionaL SaLary Report as of OS/24/82 
For Region 

REGNUM BRANCHNUM SALARY 

1 

3-40 

2 37,000.00 
30,000.00 

CENTER, 



Developing an ENFORM Query 

Defining the Layout of the Report 

Defining the layout of the report improves its appearance and readability. EN FORM provides 
clauses that allow you to: 

• Center one or all of the elements within the report. 

• Paginate the report. 

• Change the default column headings of the report. 

• Suppress the printing of a column heading within the report. 

• Suppress the printing of both the column heading and an element within the report. 

• Tell ENFORM to begin a new report line. 

• Set a tab for the report. 

Table 3-7 shows the clauses that allow you to define the report layout. 

Table 3-7. Clauses that Define Report Layout 

Clause Function 
1----------------------------------.---.-.. -- -----

CENTER 

FORM 

HEADING 

NOHEAD 

NOPRINT 

SKIP 

SPACE 

TAB 

Centers an object within its context. 

Controls when to skip to a new page. 

Overrides a default column heading. 

Suppresses printing of a column heading. 

Suppresses printing of an element and its heading. 

Specifies vertical spacing. 

Specifies horizontal spacing. 

Specifies the column in report to begin printing. 
----- ._- ---------' 

3-41 



Developing an ENFORM Query 

CENTERING ONE ELEMENT OR ALL ELEMENTS OF A REPORT. Use the CENTER clause to 
center either an element under its column heading or a column heading over the associated element. 
The object centered depends on which is longer: the element or the heading. Specify the CENTER 
clause after the element you want centered. In the following example, the CENTER clause centers 
inventory: 

OPEN parts; 
LIST partnum, partname, location CENTER; 

Report: 

Part 
Number PARTNAME LOCATION 

212 SYSTEM 192KB CORE J87 
244 SYSTEM 192KB SEMI B78 

1403 PROC 96KB SEMI A21 
2001 DECIMAL ARITH X10 
2002 ENSCRIBE MICRO X11 

If all the elements in a LIST statement are to be centered, use the CENTER clause after the last 
target list element and specify CENTER ALL: 

OPEN parts; 
LIST partnum,partname,inventory, 

location, CENTER ALL; 

Report: 

Part 
Number PARTNAME INVENTORY LOCATION 

212 SYSTEM 192KB CORE 
244 SYSTEM 192KB SEMI 

1403 PROC 96KB SEMI 
2001 DECIMAL ARITH 
2002 ENSCRIBE MICRO 

7 
3 

21 
100 
200 

J87 
B78 
A21 
X10 
X11 

The elements in the preceding example are centered although they might not appear so to the 
casual viewer. EN FORM supports only fixed length strings. Consider partname. The dictionary 
record description of partname is PIC X(18). When ENFORM centers the values of partname, it 
uses the fixed length of 18 characters. EN FORM left-justifies the values within this 18-character 
field. ENFORM uses the default heading PARTNAME since no heading is specified in the query. 
Because the heading is only 8 characters long, ENFORM centers the heading. 

3-42 



Developing an EN FORM Query 

PAGINATING A REPORT. Use the FORM clause to determine report pagination. The FORM clause 
can either modify a by-item or stand alone as a target list element. 

When a digit is included with a FORM clause modifying a by-item, ENFORM generates a page 
break if the number of lines indicated by the digit is not available when the new by-item begins. A 
page break is not generated from each by-item change. In the following example, a page break is 
generated only if fewer than 4 lines remain on the page when a new custnum is to be printed: 

OPEN custnum; 
LIST BY custnum FORM 4, ... ; 

If the FORM clause modifies a by-item and the digit is omitted from the clause, a page break occurs 
every time the by-item changes value. The following example causes ENFORM to print each 
distinct custnum on a separate page. 

OPEN customer; 
LIST BY custnum FORM, ... ; 

When a FORM clause appears as part of the target list, a page break occurs when FORM is 
encountered. A number following FORM has no meaning in this case: 

OPEN customer; 
LIST FORM, custnum, ... ; 

CHANGING THE DEFAULT COLUMN HEADING. Use the HEADING clause to temporarily 
change the default column heading. The following example changes the default column heading for 
ordernum: 

OPEN order; 
LIST ordernum,HEADING "ORDER NUMBER", 

saLesman 
WHERE ordernum LE 30; 

Report: 

ORDER NUMBER SALESMAN 

21 205 
25 212 
30 222 

Create multiple line headings by using a slash (f) within the heading string. The following example 
changes the default column heading for ordernum and splits the heading into two lines: 

OPEN order; 
LIST ordernum HEADING "ORDER/NUMBER" 

saLesman, 
WHERE ordernum LE 30; 

Report: 

ORDER 
NUMBER SALESMAN 

21 205 
25 212 
30 222 

3-43 



Developing an ENFORM Query 

SUPPRESSING THE PRINTING OF A COLUMN HEADING. Use the NOHEAD clause to suppress 
the printing of a column heading. Suppressing a column heading is useful when you want to fold a 
line into two lines. The following example prints state under city and suppress€~s the printing of the 
column heading for state: 

OPEN customer; 
LIST custnum, custname, 

city HEADING "CITY/STATE"/ 
TAB 31 state, NOHEAD; 

Heport: 

CITY 
CUSTNUM CUSTNAME STATE 

21 CENTRAL UNIVERSITY PHIL.ADELPHIA 
PENN 

123 BROWN MEDICAL CO SAN FRANCISCO 
CALIFORNIA 

143 STEVENS SUPPLY DENVER 
COLORADO 

324 PREMIER INSURANCE LUBBOCK 
TEXAS 

543 FRESNO STATE BANK FRESNO 
CALI FORNIA 

SUPPRESSING THE PRINTING OF BOTH THE COLUMN HEADING AND THE ELEMENT. Use 
the NOPRINT clause to suppress the printing of both the column heading and the element. The ele
ment modified by a NOPRINT clause still contributes to any calculations of which it is a part. 

The following example generates a report containing a list of employees with the highest salaries. 
Since salary is not for public consumption, the NOPRINT clause is used to suppress the printing of 
this element: 

OPEN empLoyee; 
LIST empnum, empname, 

DESC saLary NOPRINT, 
job, 
WHERE saLary GT 22000; 

Report: 

EMPNUM EMPNAME 

3-44 

1 ROGER GREEN 
32 THOMAS RUDLOFF 
23 JERRY HOWARD 

JOB 

MANAGER 
MANAGER 
MANAGER 

,,'j,------------------------, 



Developing an ENFORM Query 

INDICATING A NEW LINE. Use the SKIP clause to specify that the elements following the SKIP 
clause are to be printed on a new line. If a digit is included as part of the SKIP clause, ENFORM 
skips the number of lines indicated by the digit before printing the elements. When the digit is omit
ted, only one line is skipped unless the option variable @VSPACE is set. 

In the following example, the SKIP clause causes ENFORM to print state on the next line: 

OPEN customer; 
LIST custnum,custname, 

Report: 

city HEADING "CITY/STATE", 
SKIP 1,TAB 31,state, NOHEAD; 

CITY 
CUSTNUM CUSTNAME STATE 

21 CENTRAL UNIVERSITY PHILADELPHIA 
PENN 

The SKIP clause can be affected by the option variable @VSPACE described in the ENFORM 
Reference Manual. Refer to this manual for more information. 

CHANGING THE DEFAULT SPACING. Use the SPACE clause to temporarily change the default 
spacing between two report columns. Specification of a digit after the SPACE keyword indicates 
the number of spaces you want between columns. If no digit is present, ENFORM skips one space. 
Default spacing resumes after ENFORM prints the element associated with the SPACE clause. The 
following example changes the default spacing between custname and city: 

OPEN customer; 
LIST custnum, custname, 

SPACE 7, city; 

Report: 

CUSTNUM CUSTNAME 

21 CENTRAL UNIVERSITY 
123 BROWN MEDICAL CO 
143 STEVENS SUPPLY 
324 PREM~ER INSURANCE 
543 FRESNO STATE BANK 

CITY 

PHILADELPHIA 
SAN FRANCISCO 
DENVER 
LUBBOCK 
FRESNO 

8-45 



Developing an ENFORM Query 

SETTING A TAB FOR A REPORT. Use the TAB clause to define where the next element is to be 
printed in a report line. The default column spacing resumes after the element is printed. A digit 
following the keyword TAB indicates the column number in which the element is printed. 
Remember that the digit specified in a TAB clause is always relative to the left margin setting and 
always on the current line even if EN FORM must backspace to reach the specified column. If no 
digit is specified in a TAB clause, column 1 is assumed. 

In the following example, the TAB clause causes ENFORM to print city in column 50: 

OPEN customer; 
LIST custnum, custname,TAB 50, city; 

Report: 

CUSTNUM CUSTNAME 

21 CENTRAL UNIVERSITY 
123 BROWN MEDICAL CO 
143 STEVENS SUPPLY 

CITY 

PHILADELPHIA 
SAN FRANCISCO 
DENVER 

Formatting The Appearance Of Selected Information 

F'ormatting the information you select for your report makes the report both useful and visually 
pleasing. ENFORM provides clauses that allow you to: 

• Temporarily change the display format of an element. 

• Print a time value on a report. 

• Print a data value on a report. 

Table 3-8 shows these clauses. 

Table 3-8. Clauses Used To Format Selected Information 

Clause 

AS 

AS DATE 

AS TIME 

3-46 

Function 

Temporarily overrides the display format 
for printing the value of a element. 

Temporarily converts a date from internal 
format to a display format for printing. 

Temporarily converts a time from internal 
format to a display format for printing. 



Developing an ENFORM Query 

TEMPORARILY CHANGING THE DEFAULT DISPLAY FORMAT OF AN ELEMENT. Use the AS 
clause to temporarily override the default display format (described earlier in this section) used for 
printing the value of an element. Within the AS clause, indicate the new display format by specify
ing edit descriptors, modifiers, and decorations. 

Edit descriptors specify the display format as alphanumeric, fixed, or integer. A special edit 
descriptor describes the display format according to a template. Edit descriptors also specify the 
display format width. The following query indicates the display format for price is fixed with 5 
digits to the left of the decimal place and 2 digits to the right of the decimal place: 

OPEN parts; 
LIST partnum, 

partname, 
price AS F7.2, 

WHERE partnum LT 1000; 

Report: 

Part 
Number PARTNAME 

212 SYSTEM 192KB CORE 
244 SYSTEM 192KB SEMI 

PRICE 

97000.00 
87000.00 

Edit modifiers indicate field blanking, character insertion, fill character specification, scale factor 
specification, left and right justification, overflow character specification, and symbol substitution. 
The following query indicates partname is to be printed on the report right-justified (left-justified is 
the default for alphanumeric data) in a column 20 characters wide: 

OPEN parts; 
LIST partnum, 

partname AS I/[RJJA201/, 
price, 

WHERE partnum LT 1000; 

Report: 

Part 
Number 

212 
244 

PARTNAME 

SYSTEM 192KB CORE 
SYSTEM 192KB SEMI 

PRICE 

97000.00 
87000.00 

Decorations specify a character string that can be added to a column on the report, the conditions 
under which the string is to be added, the location of the string, and whether it is to be added either 
before or after the other formatting is done. The following query specifies that when the value of 
price is negative, zero, or positive, a dollar sign ($) is to be inserted in the first position immediately 
to the left of the value: 

OPEN parts; 
LIST partnum, 

partname, 
price AS I/[MZPF '$'JF8.11/, 

WHERE partnum LT 1000; 

3-47 



Developing an EN FORM Query 

Report: 

Part 
Number PARTNAME PRICE 

212 SYSTEM 192KB CORE $97000.0 
244 SYSTEM 192KB SEMI $87000.0 

Refer to the description of the AS clause in the ENFORM Reference Manual :for more information 
about display formatting. 

PRINTING A DATE VALUE ON A REPORT. Use the AS DATE clause to specilfy printing of a date 
that is stored in internal format. If dates are not stored in internal format, use the JULIAN-DATE 
clause to convert them to internal format. 

In the following example, the AS DATE clause prints the current date using by the default date for
mat to modify the system variable @DA TE: 

OPEN orders; 
LI ST 0 rde rnum, 

TITLE "ORDER NUMBERS" SPACE 10, 
@DATE AS DATE *, SKIP 2; 

Report: 

ORDER NUMBERS 

ORDERNUM 

21 
25 

05/07/82 

To print a date that is not stored in internal format, use the AS DATE c:lause to modify the 
JULIAN-DATE clause: 

OPEN order; 
LIST ordernum, 

JUlIAN-DATE(oyear,omonth,oday) AS DATE *; 

Report: 

ORDERNUM 

3-48 

21 01/10/78 
25 01/23/78 



Developing an ENFORM Query 

Temporarily change the display format used for a date by using the AS DATE clause. The following 
example changes the display format of the current date obtained by the system variable @DA TE: 

OPEN order; 
LIST ordernum, 

salesman, 
TITLE "ORDERS" SPACE 20, 
@DATE AS DATE "MA DB2,Y4" SKIP 2; 

Report: 

ORDERS MAY 7, 1982 

ORDERNUM SALESMAN 

21 205 
25 212 
30 222 

Change the display format of a date value that is not stored in internal format by including the 
JULIAN-DATE clause as follows: 

OPEN order; 
LIST ordernum, 

Report: 

JULIAN-DATE«1900 + oyear),omonth,oday) 
AS DATE "DA - MA DB2,Y4", 
HEADING" DAY AND DATE ORDERED"; 

ORDERNUM DAY AND DATE ORDERED 

21 TUESDAY - JANUARY 10,1978 
25 MONDAY - JANUARY 23,1978 
30 MONDAY - FEBRUARY 6,1978 
32 FRIDAY - MARCH 17,1978 

3-49 



Developing an ENFORM Query 

PRINTING A TIME VALUE ON A REPORT. Use the AS TIME clause to specify printing of a time 
value in internal format on a report. The AS TIME clause prints the time value by using the default 
time format or a user-created time format. 

Use the AS TIME clause to modify the system variable @TIME which returns the current time. 
The following example prints the time value with the default time format: 

OPEN order; 
LIST ordernum, 

JULIAN-DATE«1900 + oyear),omonth,oday) 
AS DATE "DA - MA DB2,Y4), 
HEADING" DAY AND DATE ORDERED", 
TITLE "OLD ORDERS" SPACE 10, 
@TIME AS TIME *; 

Report: 

OLD ORDERS 
OROERNUM 

21 
25 
30 
32 

09:51:32 AM 

Use the AS TIME clause to print the time with a user created format as in the following example: 

OPEN order; 
LI ST 0 rde rnum , 

TITLE "OLD ORDERS" SPACE 10, 
@TIME AS TIME "HPB2:M2"; 

Report: 

OLD ORDERS 

ORDERNUM 

3-50 

21 
25 

9: 51 AM 



Developing an ENFORM Query 

USING THE HELP COMMAND 

ENFORM displays the syntax of statements, clauses, and commands when you enter the ?HELP 
command. Using the ?HELP command is particularly useful during an interactive session when you 
want to refresh your memory about how to specify a particular ENFORM language element. To use 
the ?HELP command, simply enter U?HELP." ENFORM responds by displaying a list of the 
elements for which help is available. 

To obtain the syntax of a particular element on this list, enter the ?HELP command followed by the 
element name. For example, suppose you have forgotten the syntax used to specify the FIND state
ment. If you enter: 

>?HELP FIND 

ENFORM displays the following: 

The FIND statement has the foLLowing form: 

FIND [ UNIQUE ] <output-record-name> 

( [<output-fieLd-name>: =] <target item> { :~ ~~~~L~f~:~~> name>} 

WHERE <LogicaL expression> ; 

ASCO <target item> 
OESC <target item> 

, . .. ) 

Help is also available for TARGET ITEM and LOGICAL EXPRESSION 

3-51 



ii' II II 



SECTION 4 

COMPILING AND EXECUTING A QUERY 

Before returning the information you want, EN FORM must compile and execute your query. 
ENFORM compiles and executes a query during a session (the period of time that begins when you 
enter the ENFORM command and ends when ENFORM terminates). 

During a session, you can use ENFORM either in noninteractive mode or in interactive mode. The 
following paragraphs describe the use of ENFORM in both noninteractive and interactive mode. 

USING ENFORM IN NONINTERACTIVE MODE 

You can use ENFORM in noninteractive mode by specifying the EN FORM command with the IN 
option. For example: 

:ENFORM/IN test1,OUT $s/ 

When you enter the ENFORM command in this form, ENFORM compiles (if necessary) and exe
cutes your program immediately. For the input file, you can specify either an Edit file containing 
ENFORM source code or a compiled query file (created previously by the ?COMPILE command). 
The input file must contain all the statements, clauses, and commands needed for the query. 

4-1 



Compiling and Executing a Query 

Figure 4-1 shows a sample of the output produced when ENFORM is used in noninteractive mode. 

ENFORM - T9102C09 - (02APR82) DATE - TIME 
SOURCE FILE NAME IS $MKT.SAMPLE.TEST1 

1 * ?SOURCE addfile1 
2 * SET @display-count to 24; 
3 * OPEN employee; 
4 * LIST empnum, empname, job; 

Employee 
Number EMPNAME JOB 

1 ROGER GREEN 
23 JERRY HOWARD 
29 JACK RAYMOND 

4 * CLOSE employee; 

MANAGER 
MANAGER 
MANAGER 

5 * OPEN parts,odetail,order; 
6 * LINK parts TO odetail VIA partnum; 
7 * LINK odetail TO order VIA ordernum; 
8 * LIST partnameudeldate,quantity; 

PARTNAME DELDATE QUANTITY 

SYSTEM 192KB SEMI 
DECIMAL ARITH 

04/10/78 1 
04/10/78 2 

** END-OF-ENFORM-RUN ** 

8/17/82 - 15:31:32 

Figure 4-1. ENFORM in Noninteractive Mode 

If you specify the name of an Edit file for the IN option of the ENFORM command, EN FORM com
piles and executes all the statements and commands in the Edit file with the following exception: 
EN FORM ignores a ?RUN command in the Edit file. 

If you specify the name of a compiled query file for the IN option of the ENFORM command, 
:ENFORM executes all the statements and clauses in the compiled query file and any ?ASSIGN, 
?DICTIONARY, or ?EXIT commands. Using a compiled query file as the input file is particularly 
useful because you can pass a parameter value to a compiled query file. For example, suppose you 
frequently issue the same query for different branches of your business. You could store several 
queries in Edit files with the only difference between the queries being the branch number. Alter
natively, you could use the ?COMPILE command to compile the query and pass the branch number 
as a parameter before executing the compiled query file. For example, the following example shows 
the contents of the compiled query file reportb: 

PARAM bnum 12; 
TITLE "Employee Names and Salaries for Branch" (bnum); 
OPEN employee; 
LIST BY branchnum, 

empname, 
salary, 

WHERE branchnum = bnum; 



Compiling and Executing a Query 

To obtain a report for each branch, simply change the value you specify in the Command Inter
preter PARAM command before you issue ENFORM command. For example: 

:PARAM bnum 1 
:ENFORMI IN reportb, OUT $sl 
:PARAM bnum 2 
:ENFORMI IN reportb, OUT $sl 

When you use EN FORM in noninteractive mode, the session terminates as soon as an end-of-file is 
encountered on the input file. 

USING ENFORM IN INTERACTIVE MODE 

Use ENFORM in interactive mode by specifying the ENFORM command without the IN option. For 
example: 

:ENFORM 

ENFORM responds by displaying the ENFORM prompt (». You can enter source code either 
directly or indirectly. 

Entering Source Code Directly 

Enter source code directly by typing ENFORM statements, clauses, and commands in response to 
the ENFORM prompt. End each statement with a semicolon so that ENFORM displays any error 
occurring during statement execution immediately. ENFORM compiles and executes your program 
as soon as it encounters the terminating semicolon of a LIST or FIND statement. For example, con
sider Figure 4-2. 

:ENFORM 

ENFORM - T9102C08 - (02APR82) DATE - TIME: 5/26/82 - 13:43:11 

>OPEN parts; 
>LIST parts; 

Part 
Number PARTNAME 

212 SYSTEM 192KB CORE 
244 SYSTEM 192KB SEMI 

INVENTORY LOCATION 

7 J87 
3 B78 

PRICE 

92000.00 
87000.00 

Figure 4-2. Entering Statements Directly in Interactive Mode 

4-3 



Compiling and Executing a Query 

If an error occurs during statement execution, use the FC command (a featurrB of all Tandem sub
systems) to correct the last line entered or to reissue the previous command or statement. The FC 
command has three subcommands of its own: 

insert one or more characters. 

r replace one or more characters. 

d delete one or more characters. 

Cancel the FC command by typing two right slashes (If) in columns 1 and 2, by pressing the CTRL 
and Y terminal keys simultaneously, or by pressing the terminal BREAK key. Cancelling the FIC 
command cancels the previous statement or command and returns you to the E~NFOR:M prompt. 

Refer to the GUARDIAN Operating System Command Language and Utilities Manual for more 
information about the FC command. 

When entering source code directly, terminate the ENFORM session by issuing the EXIT state
ment or ?EXIT command, or by pressing the CTRL and Y terminallteys simultaneously. 

Entering Source Code Indirectly 

Enter source code indirectly by first placing it on an Edit file. Place any query that is longer than 
three or four lines or that is issued repeatedly on an Edit file. 

Enter the EDIT Text Editor from the ENFORM subsystem by using the ?EDIT command. For ex
ample: 

:ENFORM 

ENFORM - T9102C09 - (02APR82) DATE - TIME: 5/26/82 - 13:45:09 

>?EDIT test1 
TEXT EDITOR - T9601C08 - (01APR82) 
CURRENT FILE IS $DATA.TEST.TEST1 
*ADD 1 

1 OPEN parts; 
2 

Once you enter the Editor, all of its features are available. 

Entering the ?EDIT command sets the default Edit file for subsequent ?RUN or ?EDIT commands. 
When you set the default Edit file, you need not include an Edit file name with a subsequent ?RUN 
or ?EDIT command when the same Edit file is to be used. 

4-4 

IE. 



Compiling and Executing a Query 

If you want to place more than one query on the same Edit file, you can identify a particular collec
tion of statements or commands by using the ?SECTION command in the Edit file. For example: 

:ENFORM 

ENFORM - T9102C09 - (02AOR82) DATE - TIME: 5/26/82 - 13:49:16 

>?EDIT test2 
TEXT EDITOR - T9601C08 - (01APR82) 
CURRENT FILE IS $DATA.TEST.TEST2 
*ADD 1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

?SECTION testa 
OPEN parts; 

?SECTION testb 
OPEN employee; 

Use the ?RUN command to compile and execute the source code contained on the Edit file. For 
example: 

:ENFORM 

ENFORM - T9102C09 - (02AOR82) DATE - TIME: 5/26/82 - 13:50:23 

>?EDIT test3 
TEXT EDITOR - T9601C08 - (01APR82) 
CURRENT FILE IS $DATA.TEST.TEST3 
*ADD 1 

1 OPEN parts; 

* EXIT 
>?RUN 

Notice that including an Edit file name with the ?RUN command is not necessary because the 
?EDIT command sets the default Edit file. 

4-5 



Compiling and Executing a Query 

Include a section name with the ?RUN command if you want to compile and execute only the source 
code in that section. For example: 

:ENFORM 

EN FORM - T9102C09 - (02APR82) DATE - TIME: 5/26/82 - 14:30:15 

>?EDIT test4 
TEXT EDITOR - T9601C08 - (01APR82) 
CURRENT FILE IS $DATA.TEST.TEST4 
*ADD 1 

1 ?SECTION rpt1 

45 ?SECTION rpt2 

*EXIT 
>?RUN test4 (rpt2) 

Specifying only the Edit file name in the ?RUN command causes EN FORM to (!ompile and execute 
all the statements and commands in the Edit file even if ?SECTION commands are included. 

If you frequently use the same statements and commands, place them in an Edit file and use the 
?SOURCE command to read them into your ENFORM programs. For example: 

:ENFORM 

ENFORM - T9102C08 - (01DEC81) DATE - TIME: 5/26/82 - 13:52:45 

>?EDIT test5 
TEXT EDITOR - T9601C08 - (01APR82) 
CURRENT FILE IS $DATA.TEST.TEST5 
*ADD 3 

1 ?SOURCE addfile 
2 OPEN parts; 
3 LIST parts; 

*EXIT 
>?RUN 

If you use the ?SOURCE command to read an Edit file containing a LIST or FIND statement, 
ENFORM compiles and executes the associated query as soon as the LIST or FIND statement is 
encountered. 

4-6 

-



Compiling and Executing a Query 

Use the ?COMPILE command to compile a source program without executing it. The ?COMPILE 
command compiles the source code and saves the compiled query in a physical file. The ?COMPILE 
command compiles source code containing either LIST or FIND statements; however, only one 
LIST or FIND statement can be compiled in a source program. If more than one LIST or FIND 
statement exists in a source program, ENFORM compiles up to the first statement encountered and 
then executes any subsequent statements. You should compile source programs that: are called 
from a host language program, are passed parameters, or that you want to protect from inadvertent 
changes. In the following example the source program is created on reportl and compiled and saved 
on the compiled query file comprpt: 

:ENFORM 

ENFORM - T9102C09 - (02APR82) DATE - TIME: 5/26/82 - 13:59:05 

>?EDIT report1 
TEXT EDITOR - T9601C08 - (01APR82) 
CURRENT FILE IS $DATA.TEST.REPORT1 

* ... 
*EXIT 
>?COMPILE report1 TO comprpt 

You can pass a value to a parameter in a compiled query file when you are using ENFORM in inter
active mode. To pass a parameter value, issue the Command Interpreter PARAM command before 
entering the ENFORM command. For example: 

:PARAM rptnum 3 
:ENFORM 

ENFORM - T9102C09 - (02APR82) DATE - TIME: 5/26/82 - 13:59:05 

You can then use the ?EXECUTE command to execute the stored compiled query file. 

When entering source code indirectly, terminate an ENFORM session by entering either the EXIT 
statement or ?EXIT command or by pressing the CTRL and Y terminal keys simultaneously. 

4-7 



= 



SECTION 5 

USING EN FORM EFFICIENTLY 

After you develop a successful ENFORM query, consider optimizing the efficiency of the query. 
This section provides information about using the ENFORM statistics to examine the efficiency of 
your query and about changes that you can make to improve query performance. 

USING ENFORM SEARCH STATISTICS 

When you set the Option Variable @STATS to ON, EN FORM produces search statistics. An 
understanding of these statistics is useful when you are attempting to improve the performance of 
your ENFORM queries. 

Figure 5-1 shows a sample query and the resulting statistics. The following paragraphs explain 
these statistics. 

SET @STATS TO ON; 
OPEN parts,odetail,order; 
LINK parts TO odetail VIA partnum; 
LINK order TO odetail VIA ordernum; 
LIST BY partname,BY order.ordernum.quantity; 

FILE NAME LEVEL READ 
$MKT.SAMPLE.parts 3 
$M KT.SAM PLE.order 2 
MKT.SAMPLE.odetaii 1 
003,08,052 BEGIN(8/16/82 - 09:03:02:41) 

STRATEGY COST = 2 

RECORDS READ POSITIONS 
3 3 
3 127 

127 1 
END( 8/16/82 - 09:03:14:78) 

Figure 5-1. Simple ENFORM Query and Associated Search Statistics 

5-1 



Using EN FORM Efficiently 

The FILE NAME Column 

'rhe first column, headed FILE NAME, provides the names of the different physical files that the 
query processor reads to obtain the retrieved data. In Figure 5-1, the query processor read the 
physical files named $mkt.sample.parts, $mkt.sample.order, and $mkt.sample.odetaiL 

The LEVEL READ Column 

The second column, headed LEVEL READ, provides a number that identifies the sequence in which 
the query processor read the physical files. The first file read has a value of 1, the second file read 
has a value of 2, and so on. In Figure 5-1, the first physical file read is $mkt.sarnple.odetail, the sec
ond physical file read is $mkt.sample.order, and the third physical file read is $mkt.sample.parts. 

Figure 5-2 shows sample search statistics where both $mkt.sample.region and 
$mkt.sample.employee indicate LEVEL READ as 1. 

SET @STATS TO ON; 
OPEN region,employee; 
LINK region TO employee VIA regnum; 
LIST BY regname,empname; 

FILE NAME LEVEL READ RECORDS READ POSITIONS 

$mkt.sample.region 
$mkt.sample.employee 1 
003,06,022 BEGIN( 8/31/82 - 15:17:15:57) 

STRATEGY COST = 3 

7 1 
55 1 

END ( 8/31/82 - 15:1"1:27:33) 

Figure 5-2. Search Statistics where LEVEL READ = 1 

The search statistics shown in Figure 5-2 occur because the query processor sets up a special join 
strategy (a means of associating data from the two files) to search the two files at the lowest level. 
In order for the query processor to set up a join strategy, the two files must be sorted by the value 
of the linking fields. To retrieve the records requested in the query shown in Figure 5-2, the query 
processor reads the first record from $mkt.sample.region. The query processor then reads the first 
record from $mkt.sample.employee. If this record matches the record from $mkt:.sample.region, the 
query processor builds a target record from the matching pair. The query processor continues 
reading records in $mkt. sample. employee until the value of the linking field in 
.~mkt.sample.employee exceeds the value of the linking field in $mkt.sample.regi:on. 

The query processor then reads the next record from $mkt. sample. region. If the linking field in 
$mkt.sample.region is the same for the newly read record as for the previously read record, the 
query processor rereads the records from $mkt.sample.employee for which the linking fields match. 
For the query shown in Figure 5-2, no duplicate values exist for the linking field in 
$mkt.sample. region because the linking field is the primary key of that file. The query processor, 
therefore, reads $mkt.sample.employee until the value of the linking field exceeds the value of the 
linking field in the current record from $mkt.sample.region. 

The query processor continues reading the two files in parallel until both files have been read com
pletely. A query that causes the query processor to use the join strategy is desirable because each 
file is read only once. 

{>-2 

,,1_1 ________________ • ________________ _ 



Using ENFORM Efficiently 

The RECORDS READ Column 

The third column, headed RECORDS READ, provides a number that indicates the number of 
records that the query processor read in each physical file. The number indicates logical reads. 
Logical reads (as opposed to physical reads) count the requests for records but ignore reads of alter
nate key data files and index blocks. Logical reads also ignore the effect of buffering, which might 
reduce physical reads. For example in the query shown in Figure 5-1, the query processor logically 
read a record from mkt. sample. ode tail 127 times. Normally, several times that number of physical 
reads occur. 

The presence of keys can affect the number of reads performed. If the file read second has an alter
nate or primary key field by which it is linked to the file read first, the query processor positions on 
that key and then reads only the appropriate subset of records. If a linking key field does not exist 
in the file read second, the query processor must read the entire file for each record selected in the 
file read first. 

The POSITIONS Column 

The fourth column, headed POSITIONS, provides a number that indicates the total number of posi
tions that the query processor performs on each physical file. Note the relationship between the 
number of records read in the first file and the number of positions performed on the second and 
third files. The statistics in Figure 5-1 indicate that to retrieve the information request in the query 
the query processor: 

1. Positioned $mkt. sample. ode tail to beginning of information. 

2. Read from $mkt. sample. ode tail. 

3. Positioned $mkt. sample. order according to the primary key ordernum. 

4. Read from $mkt.sample.order. 

5. Positioned $mkt.sample.parts according to the primary key partnum. 

6. Read from $mkt. sample. parts. 

The query processor repeated steps 2 through 6 until it retrieved the requested information. The 
query processor retrieved the information in this manner because both ordernum and partnum are 
the primary key of their respective files. 

The Identification Line 

The line below the four columns of reported statistics identifies the ENFORM process (network 
node number, CPU number, and process number), the date and time the query was initiated, and the 
date and time the query terminated. 

5-3 



IIIU • 

Using ENFORM Efficiently 

The STRATEGY COST Line 

The final line of the statistics contains the value of STRATEGY COST .. Possible values of 
STRATEGY COST for successfully executed queries range from 1 to 8. In Figure 5-1, the strategy 
cost is 2. The significance of the strategy cost values is as follows: 

• STRATEGY COST = 1 

The query processor used keyed access on all files. A strategy cost of 1 might occur when a 
single file is involved in a query with a request qualification (in a WHERE clause) that compares 
the primary key of the file to a constant. This type of query forces the query processor to access 
the records by the primary key. 

• STRATEGY COST = 2 

The query processor might have to read one file completely. A strategy cost of 2 might occur 
when a single file is involved in a query with a request qualification that specifies a nonkey field, 
compares a key field to a constant using the NOT EQUAL operator, or compares a key field to 
another field in the same record. 

• STRATEGY COST = 3 

The query processor might have to read more than one file completely. A strategy cost of 3 
might occur when two files are involved in the query and the query processor uses the join 
strategy described previously in this section. 

• STRATEGY COST = 4 

The query processor must sort one file once for a join strategy. A strategy eost of 4 might occur 
when two files are involved in a query and one of the fields used to link record descriptions is 
either a nonkey field or a partial key field. 

• STRATEGY COST = 5 

The query processor must sort more than one file once for a join strategy. A strategy cost of 5 
might occur when two files are involved in a query and both of the fields used to link record 
descriptions are either nonkey fields or partial key fields. 

• STRATEGY COST = 6 

The query processor might have to sort one file more than once for a link. A strategy cost of 6 
might occur when: 

A query involves at least three files. 

The query processor uses a join strategy on the last two files read. 

The query contains a request qualification that compares fields from one of the files 
involved in the join strategy with fields from a nonjoin file. 

The query processor must sort one of the files involved in the join strategy. 

• STRATEGY COST = 7 

5-4 

-

The query processor might have to sort two files more than once for a link. A strategy cost of 7 
might occur when: 

A query involves at least three files. 

The query processor uses a join strategy on the last two files read. 

The query contains a request qualification that compares fields from both of the files 
involved in the join strategy with fields from a nonjoin file. 

The query processor must sort both files involved in the join strategy. 



Using ENFORM Efficiently 

• STRATEGY COST = 8 

The query processor reads more than one file completely at least once with no convenient 
strategy for linking the record descriptions. A strategy cost of 8 might occur when two or more 
files are linked with non-equality comparisons in a request qualification. A strategy cost of 8 fre
quently occurs when a query links two or more FIND files in which the data is stored in the 
default unstructured file type. 

IMPROVING PERFORMANCE 

The following paragraphs suggest changes that improve the performance of ENFORM queries. 
Consider making changes in three areas: 

• The data (disc) environment 

• The nondisc environment 

• The wording of the query itself 

Only make changes that: are easy to implement, generate significant reduction in query response 
time, and increase transaction rate (the updating and retrieval of data) while reducing response 
time. 

Several of the suggested changes are helpful in all circumstances. Others are helpful only for par
ticular cases. Use your knowledge of your own environment to determine the changes most helpful 
to you. 

Changing the Data (Disc) Environment 

The most desirable changes to the disc environment both decrease response time and increase the 
transaction rate. These changes involve reducing the number of physical file accesses by: 

• Removing. levels of indexing in key-sequenced files. 

• Adding or removing alternate keys. 

• A voiding sorting of an already sorted file. 

• Specifying where ENFORM builds temporary work files. 

• Spreading input/output demands among discs. 

• Altering cache size. 

• Controlling the size of the target file. 

REMOVE LEVELS OF INDEXING IN KEY·SEQUENCED FILES. Reducing levels of indexing in key
sequenced files decreases the number of disc input-output (i/o) operations needed. Note that any 
alternate key file is a key-sequenced file. 

To remove levels of indexing, increase the index block size (allowing enough slack for anticipated 
growth) and reload the data. Increasing the index block size might reduce the number of index 
levels and therefore, both reduce the number of physical accesses to the disc and improve response 
time. 

Key-sequenced files with small block sizes usually have more levels of index blocks because small 
blocks fill faster than large blocks. In particular, key-sequenced files created by the FUP output of 
the Data Definition Language (DDL) have small blocks because they use the l024-byte block size 
provided by DDL. Consider Figure 5-3 which shows a diagram of a key-sequenced file with a 
l024-byte block size. 

5-5 



Using EN FORM Efficiently 

Alternate key fi Ie Data file 
Level 1 index block Level 1 index blo 

Alternate key fi Ie Data file 
Level 2 index blocks Level 2 index blo 

Alternate key file Data file 
Data blocks Level 3 index blo 

Data file 
Data blocks ] 

~--------------------------------------------------------

Figure 5-3. Diagram of Key-Sequenced File with 1024-Byte Block Size 

In Figure 5-3, the alternate key file has two levels of index blocks plus the data block. The data file 
has three levels of index blocks plus the data block. When using the alternate key search path to 
retrieve a record from this file, the query processor must access seven blocks: three alternate key 
blocks and four data file blocks. Even if the query processor has accessed the files recently so that 
both level 1 index blocks are in cache, it must still access five blocks: a level 2 alternate key file 
index block, an alternate key file data block, a level 2 and a level 3 data file index block, and a data 
file data block. 

Figure 5-4 shows the same key-sequenced file after the block size is increased to 4096 bytes. 

Alternate key file Data file 
Level 1 index block Level 1 index blo( 

Alternate key fi Ie Data file 
Data blocks Level 2 index bloc 

Data file 
Data blocks ] 

Figure 5-4. Key-Sequenced File with Increased Block Size 

5-6 

' ..... 1 •. 1.11 ....... 1 .............................................. 1 ........ _____________ • ______________ , ____ ___ 



Using ENFORM Efficiently 

Increasing the block size eliminates one index block for both the alternate key file and the data file. 
After the data is reloaded, the query processor must access only five blocks to retrieve the required 
record: two blocks in the alternate key file and three blocks in the data file. If both level 1 index 
blocks are in cache, the query processor must access only three blocks: an alternate key data block, 
a level 2 data file index block, and a data file data block. 

For the file in Figure 5-4 increasing the block size has decreased the number of physical file accesses 
from 7 to 5. This reduction in physical file accesses generates a significant improvement in query 
performance. 

Note that the effect of increasing the block size is not apparent in the ENFORM statistics. 
EN FORM reports one logical data access in its statistics no matter how many physical accesses 
occur. 

ADD OR REMOVE ALTERNATE KEYS. Adding or removing alternate keys improves performance 
if a reduction in the number of physical file accesses results. The conditions under which adding or 
removing alternate keys affect performance are: 

• When the alternate key field is used to select a small subset of records, adding an alternate key 
reduces the number of physical file accesses. 

• When the alternate key field is used to select a large subset of records, removing the alternate 
key reduces the number of physical file accesses. It is more efficient for the query processor to 
sort the file or simply access it sequentially when the number of records retrieved is large. 

Note that the addition or removal of alternate keys affects other transactions that access the 
physical file. For example, PATHWAY often uses alternate keys to access a tiny subset of the data 
base. Thus, removal of an alternate key might improve the performance of EN FORM but have a 
disastrous effect on a PATHWAY application. Consider the cost of record insertions as a conse
quence of adding alternate keys. The cost of record insertions is an important consideration when 
determining whether to add an alternate key since it could significantly slow application response 
time and transaction rate. 

Adding Alternate Keys. To observe the effect of adding an alternate key that is used to select a 
small subset of records, consider $mkt.sample.employee, the physical file that stores the records 
for employee (described in Appendix C). Assume that no alternate key exists for employee and that 
$mkt. sample. employee: 

• Stores one hundred records. 

• Has ten data blocks each containing ten records. 

• Has one index block. 

When the following query is issued: 

OPEN empLoyee; 
LIST empnum, empname, saLary, 

WHERE empname = "TOM HALL"; 

the query processor must access the index block and all ten data blocks of $mkt.sample.employee to 
retrieve the required record, resulting in a total of eleven physical file accesses. 

5-7 



Using ENFORM Efficiently 

Consider the effect of making empname an alternate key for employee, such t.hat the alternate key 
file: 

• Stores one hundred records (one for each data record). 

• Has ten data blocks each containing ten records. 

• Has one index block. 

If the preceding query is now issued, the query processor must access the alternate key file index 
block, one alternate key file data block, one $mkt.sample.employee index bloc:k, and one $mkt.sam
ple.employee data block, resulting in a total of four physical file accesses. 

The reduction in physical file accesses is over 60 0/0. The principles described in this example apply 
to files of any size. For very large files, the resulting reduction in physical file accesses is very 
significant. 

Removing Alternate Keys. To observe the effect of removing an alternate key that is used to select 
a large subset of records, assume that $mkt.sample.employee has an alternate key field called job, 
and the alternate key file: 

• Stores one hundred records (one for each data record). 

• Has ten data blocks each with ten records. 

• Has one index block. 

Assume also that seventy records in $mkt.sample.employee contain the value SALESMAN for the 
job field. When the following query is issued: 

OPEN employee; 
LIST empnum, empname, job, 

WHERE job EQ "SALESMAN"; 

the query processor must access the alternate key index block, one alternate key data block, the 
$mkt.sample.employee index block, and the $mkt.sample.employee data block to obtain the first 
record. Assume that both index blocks remain in cache. The query processor must access approx
imately 8 of the alternate key data blocks. For each of the remaining 69 records, it is unlikely that 
the necessary data file data block is in cache so the query processor must access the 
$mkt.sample.employee data blocks 69 different times to obtain the remaining records. In this case 
the presence of an alternate key results in a total of 80 physical file accesses. 

If job is removed as an alternate key and the preceding query is issued, the query processor reads 
$mkt.sample.employee sequentially, accessing only its index block and 10 da.ta blocks. Removing 
the alternate key results in a total of 11 physical file accesses. 

The physical file accesses decrease by 880/0 when the alternate key is removed. The reduction in 
physical file accesses will be proportionally similar when a file with a large number of records is in
volved. 

AVOID SORTING AN ALREADY SORTED FILE. Avoid the processing time ENFORM spends sort
ing an already sorted file by including the SEQUENCE IS clause in the dictionary record descrip
tion. Of course, the processing time is eliminated only when your query specifies a sorting order 
that matches the order specified in the SEQUENCE IS clause. The time eliminated depends on your 
query and the size of the file. 

5-8 

• 



Using ENFORM Efficiently 

SPECIFY WHERE ENFORM BUILDS TEMPORARY WORK FILES. During an ENFORM session 
the query processor and the SORT process build temporary work files while processing a FIND or 
LIST statement. Use generic files to specify where these temporary files are built. Directing the 
query processor temporary work files to a scratch disc is particularly useful. For example: 

:ASSIGN QUERY-WORK-AREA, $SLOW 

Place temporary files built by the SORT process on less used volumes. For example: 

?ASSIGN QUERY-SORT-AREA, $QUIET 

SPREAD INPUT/OUTPUT DEMANDS AMONG DISCS. Distribute data among different disc 
volumes to reduce the demands on anyone disc process. Distribute data by: 

• Partitioning files. especially those that are large and heavily used. 

• Moving data files to less used volumes. 

• Placing alternate key files on a different volume than the associated data file. 

The improvement shown depends upon the organization of your system. 

ALTER CACHE SIZE. The value of cache size is very application dependent. If main memory space 
is not needed for other purposes. it can be valuable to make cache large enough to hold every top 
level index block of each heavily accessed file. with a little space left over. In practice. a reasonable 
starting allotment for cache is 30 pages per CPU containing disc processes or 10 pages per disc pro
cess on a Tandem Nonstop II system. 

Remember that cache uses main memory. The memory used for cache is not available for other pro
cesses. When too much memory is used for cache. page faults result. As cache size increases. the 
time needed to manage cache also increases. In a system where files compete for cache (even very 
large cache). increasing cache size might not improve performance. 

CONTROL THE SIZE OF THE TARGET FILE. Control the primary and secondary extent sizes for 
the target file. If extents are too large. disc space is wasted and the query might fail because an ex
tent cannot be allocated. If extents are too small. the target file might overflow the allocated space. 
When the target file overflows. the query processor creates a new larger target file and copies the 
old target file into the new one. This process of creating a new target file and copying the old one 
degrades query performance. especially if the query processor must do it more than once. 

By default. the approximate extent sizes are determined as follows: 

• For the primary extent size of the target file. ENFORM uses whichever is larger: 

the size (in bytes) of the largest input file divided by 2048 

the largest primary extent size of all the input files. 

• For the secondary extent size of the target file. ENFORM uses whichever is larger: 

the largest secondary extent size of all the input files 

the size determined for the primary extent of the target file 

The default extent sizes used by ENFORM are satisfactory in many cases. In other cases. however. 
especially if the target file or one of the input files is very large. the default extent sizes are either 
too small or too large. 

5-9 



Using ENFORM Efficiently 

Fortunately, you can control the extent sizes. One way to control the extent sizes is to estimate 
the number of target records and set the @TARGET-RECORDS Option Variable clause to that 
number. ENFORM, then, uses the number specified to determine the primary and secondary extent 
sizes for the target file. When @TARGET-RECORDS is specified, ENFORIV1 uses the following 
formula to determine the size of both the primary and secondary extents: 

{number of target records * target-record-Iength)/20480 

The most accurate way to control the primary and secondary extent sizes of the target file is to 
set both the @PRIMARY-EXTENT-SIZE and @SECONDARY-EXTENT-SIZE Option Variable 
clauses appropriately. 

Changing the Nondisc Environment 

Desirable changes to the nondisc environment reduce the number of processes competing for a 
CPU, the number of processes competing for a system, and the number of processes competing for a 
network. Possible changes are: 

• Placing the compiler/report writer process and a server query processor in different CPUs. 

• Sharing query processors. 

• Reducing network traffic. 

PROCESS PLACEMENT. To reduce the number of processes competing for a CPU, start a server 
query processor in a different CPU than the one that contains the disc process for the files to be 
accessed. If possible start the compiler/report writer process in a different CPU than the one con
taining either the server query processor or the disc process. 

Starting a server query processor in a different CPU than the one containing: the compiler/report 
writer is useful in reducing problems with short pool (an area of shared memory) on the Tandem 
NonStop System. 

Remember to use the ?ATTACH command to identify the server query processor. 

SHARE QUERY PROCESSORS. To reduce the number of processes competing for a system, create 
one or more shareable server query processors. The major advantages of a shareable server query 
processor are: 

• Generally fewer processes exist within the system which results in reduced use of system 
resources such as memory paging and disc arm movement. 

• The number of open operations is reduced because the Command Interpreter ASSIGN com
mand can be issued to hold files open for the life of the server query processor . 

. Each shared server query processor can have a different purpose. For example, create different 
shared server query processors for: 

• Short queries where a response is expected in a few seconds. 

• More lengthy queries that require more processing time. 

• Limited access files. In this case the logon default of the person creating the query processor 
determines who has access to the files. 

• General access for those who need it. 

5-10 



Using ENFORM Efficiently 

REDUCE NETWORK TRAFFIC. When your process searches data on a remote system, reduce com
peting processes by starting ENFORM on that system and using the spooler to transfer the data. 
Using spooler-to-spooler communication takes maximum advantage of the network bandwidth. An 
additional advantage is that you can hold the records retrieved in the spooler for later printing or 
for printing if the network link terminates. 

Alternatively, either start a server query processor on the remote system or use a server query 
processor that already exists on that system to obtain the data. In this case, the server query pro
cessor transmits the data to a query compiler/report writer process on your system. 

Changing the Wording of the Query Itself 

Changing the wording of a query often leads to performance improvement because of the way in 
which ENFORM determines its search strategy. ENFORM analyzes each query to determine the 
optimal search strategy. ENFORM attempts to minimize the number of physical file accesses need
ed by defining the sequence in which the physical files are accessed and by defining how each 
physical file is accessed (for example, by key value). ENFORM defines its file access sequence on 
the basis of information obtained from the dictionary record description and any qualifications for 
record selection specified in the query. This information is often incomplete. 

To identify where possible changes in query wording might be helpful, examine the ENFORM 
statistics (described in this section). Determine the sequence in which the files are searched, the 
number of reads performed, and the number of positionings needed. 

Some changes to query wording that might reduce physical file accesses are: 

• Reduce the number of records selected by adding request qualifications (a WHERE clause) to 
the query. 

• Experiment by changing the way field names are qualified in a WHERE clause. 

• Determine if queries can share FIND files. 

ADD A WHERE CLAUSE. Take advantage of information that is known to you but not known to the 
query processor and add a WHERE clause to your query. Adding a WHERE clause might force the 
query processor to search the data base in a more efficient manner by reducing the number of 
logical reads needed. Use the ENFORM statistics described earlier in this section to see if you are 
reducing the number of logical reads. 

An understanding of the method that the query processor uses to examine the logical expression of 
a WHERE clause is useful. When the query processor determines its search strategy, it looks at the 
compiled query representation for the clause that most restricts the records in a particular file. The 
query processor searches the clauses looking for a logical expression where a primary key is equal 
to a constant. Failing to find such an expression, the query processor looks for a logical expression 
where an alternate key is equal to a constant. If neither exists, the query processor looks for a 
logical expression where a primary key is compared to a constant by a conditional operator such as 
less than or greater than. Finally the query processor looks for a logical expression where an alter
nate key is compared to a constant by a conditional operator. 

5-11 



Using EN FORM Efficiently 

For example, to force the query processor to search the region records first without restricting the 
number of target records returned, add a request qualification such as: 

WHERE region.regnum GT 0; 

When comparing a key to a constant, avoid specifying the key in an arithmetilc expression such as: 

WHERE key - 1 = x 

Instead, specify the key alone on one side of the conditional operator and perform any arithmetic 
operations on the field or constant to which the key is compared: 

WHERE key = x + 1 

CHANGE THE QUALIFICATION OF FIELD NAMES IN A WHERE CLAUSE. Experiment with the 
way you qualify a field name in a WHERE clause if that same field has been specified in a LINK 
statement. When a linking field name is specified in a WHERE clause in the same query, qualify the 
field name with the record name that corresponds to the smallest number of records. The result 
remains the same no matter which record name is used to qualify the field name; however, qualify
ing a field name with the record name associated with the fewest records often results in a more 
efficient search strategy. 

DETERMINE IF FIND FILES CAN BE SHARED. Analyze the queries made to determine whether 
they are sufficiently similar to share the same FIND (intermediate) files. Sharing FIND files 
improves performance because the query processor must select the data used for many reports only 
once. Sharing FIND files is particularly useful when the STRATEGY COST (see "Using the 
EN FORM Statistics" in this section) of the query is high and the intermediate file is small relative 
to the size of the orginal files. 

Consider using FUP to load frequently used FIND file data into a structured file to also improve 
performance. 

5-12 

,;;1_1 ________________________________________________ --



SECTION 6 

HOST LANGUAGE INTERFACE 

The ENFORM interface procedures provide you with the ability to use a host programming 
language as a high-level access facility to a relational data base. The ENFORM interface procedures 
communicate with the query processor. 

By interfacing with ENFORM through the host programming language input/output interfaces, a 
host language program retrieves records at a fraction of the programming effort required by direct 
access. In addition if the file types, access keys, and logical design of the data base change, the host 
language program does not need modification because ENFORM obtains this information from the 
data dictionary. 

When you write a host program in Tandem COBOL, FORTRAN, or TAL (Transaction Application 
Language), the host program interfaces with the query processor through a precompiled query. The 
compiled query must contain one and only one FIND statement. The record description for the new 
output file must be added to the dictionary before the query is compiled. These steps are shown in 
(1) and (2) of Figure 6-1. 

The host language interface works as shown in (3) of Figure 6-1. In the host program you specify 
parameters and the name of the compiled query file to the query processor. The query processor 
retrieves the information you specified in the compiled query and returns records to the host pro
gram, one at a time. 

INTERFACE PROCEDURES 

A host language program interfaces with ENFORM by calling the three procedures: ENFORM
START, ENFORMRECEIVE, and ENFORMFINISH. ENFORMSTART initiates the query pro
cessor, ENFORMRECEIVE provides records to the host program one at a time, and ENFORM
FINISH terminates the query processor. 

Each host application program interfacing with ENFORM must use: ENFORMSTART once for 
each compiled query; ENFORMRECEIVE once for each record to be provided to the host program 
(this is usually inside a loop); ENFORMFINISH once for each time you complete processing with a 
particular query processor; and the necessary global and local declarations. 

A detailed description of each of the ENFORM procedures follows. 

6-1 



Host Language Interface 

(1 ) 

(2) 

(3) 

DOL 
Commands 

One 
ENFORM 

FIND 
Statement 

Dictionary 

Compiled 
Query 

-

Dictionary 

Compiled 
Query 

-

Data Base 

----------------,--' 

Figure 6-1. ENFORM Interface With Host Program 

6-2 

1"11111 _____ ... __________________________________________ _ 



Host Language Interface 

EN FORMSTART Procedure 

The ENFORMSTART procedure initiates the interface of a host program with ENFORM. The syn
tax of the ENFORMSTART procedure is: 

COBOL: 

ENTER ENFORMSTART USING ctlblock 

FORTRAN: 

, compiled-physical-filename 
, buffer-length 
, error-number 

[ restart-flag 
param-list ] 
assign-list] 

[ process-name ] 
, [ cpu ] 
, [ priority] 
, [ timeout ] 

[ reserved-for-expansion 

CAll ENFORMSTART <ctlblock 
,compiled-physical-filename 
,\buffer-length\ ,error-number 
,[ \restart-flag\] 

TAL: 

CAll ENFORMSTART 

, [ param-list ] 

, [ assign-list ] 

, [ process-name ] 

, [ \cpu\ ] 

, [ \priority\ ] 

, [ \timeout\ ] 

,[ reserved-for-expansion 
,\maskword\ ) 

ctlblock 
, compiled-physical-filename 
, buffer-length 
, error-number 
, [ restart-flag 
, [ param-list ] 
, [ assign-list 
, [ process-name 
, [ cpu ] 

, [ priority ] 

, [ timeout ] 

] 

] 

, [ reserved-for-expansion ]) 

6-3 



Host Language Interface 

where 

ctlblock 

INT:ref, is an I8-word integer array control block which must be supplied for global 
storage across the ENFORM procedure calls. This same storage is used in ENFORM
RECEIVE and ENFORMFINISH, and any subsequent calls to ENFORMS'rART. The 
host application program must not change this control block between calls to ENFORM. 

compiled-physicaL-filename 

INT:ref, is a I2-word array that specifies the physical file containing the compiled query. 
The file name must be specified as 24 characters in length with the: 

$volume name 
subvolume name 
disc file name 

specified as 8 characters (blank filled if necessary) 
specified as 8 characters (blank filled if necessary) 
specified as 8 characters (blank filled if necessary) 

Refer to the Guardian Operating System Programming Manual for the exact form of a 
Tandem internal filename. 

buffer-length 

INT:value, is the length, in bytes, of the buffer that the process will use to receive 
records via ENFORMRECEIVE. Buffer-length must be at least 6. If information in addi
tion to the error number is desired, buffer-length must be at least 30. See Table 6-3 later 
in this section. 

error-number 

INT:ref, is assigned an error number if an error condition occurs in ENFORMSTART or 
ENFORMRECEIVE. It is initialized to zero. Error-number should be declared global to 
the EN FORM procedures so that it can be checked after the EN]~ORMSTART or 
ENFORMRECEIVE procedures return. The error messages are described later in this 
section. 

restart-flag 

INT:value, is used when there is more than one query to be run by the host application 
program. A nonzero value causes the existing query processor to begin the next query 
with a new parameter and assign list, which is more economical than creating a new 
query processor for each query. When the existing query processor is used to begin the 
next query, the parameter values for ctlblock, process-name, cpu, and priority for the 
ENFORMSTART procedure must be identical to those for the initial call to the 
ENFORMSTART procedure or they must not be used. 

A zero value for restart-flag causes a new query processor to be created. It is more 
expensive to start up a new query processor for each query run. -+-



Host Language Interface 

param-list 

INT:ref, is a pointer to the parameter (name:value) list in a form equivalent to the 
PARAM message generated by the Command Interpreter. See the GUARDIAN 
Operating System Command Language and Utilities Manual for the correct format. 

assign-list 

INT:ref, is a pointer to a sequence of one or more ASSIGN messages, each formatted as 
an ASSIGN message by the Command Interpreter. See the GUARDIAN Operating 
System Command Language and Utilities Manual for the correct format. These 
messages are preceded by a one-word header that contains a number equal to the total 
messages (31 or fewer messages) in the list. 

Assig'Tlrlist is used to override the physical filename or names for input files to the query. 
Any physical filename not expanded in the ASSIGN message will use the default volume 
and subvolume. If that is undesirable, the host language program must fill in the correct 
volume or subvolume after receiving ASSIGN messages from the Command Interpreter 
and before passing assign-list to ENFORMSTART. When assign-list is not used, the 
Tandem physical filename compiled into the query is used. 

Assig'Tlrlist can contain generic file names. Refer to the ENFORM Reference Manual for 
information about generic files. If the generic file QUERY-QPSTATUS-MESSAGE is 
specified from a host language program, ENFORM uses the message text from 
$SYSTEM.SYSTEM.ENFORMMK. There is no way to specify a new message table from 
a host language program. 

The physical filename and its exclusion specification (Shared, Protected, or Exclusive) 
can be overridden. When not overridden, the query processor always opens the physical 
input files with shared mode. 

process-name 

INT:ref, is a four-word array that, if present, specifies the process name of a server query 
processor to use. If a query processor by that name does not exist, or if it cannot accept 
the query because the query processor is busy or the query exceeded its processing 
limits, an error results. If this parameter is omitted, a dedicated query processor for the 
query is created by ENFORMSTART and deleted by ENFORMFINISH. Refer to the 
ENFORM Reference Manual for information about a server query processor. 

cpu 

INT:value, selects the CPU in which to run a dedicated query processor. If omitted, the 
query processor runs in the same CPU as the host application program. When process
name is given, this parameter is ignored. 

priority 

INT:value, assigns a priority for a dedicated query processor. The default is the priority 
assigned the host application program. When process-name is given, this parameter is 
ignored. ~ 

6-5 



Host Language Interface 

timeout 

INT(32):value, if present, indicates the maximum time (in .01 second units) that the appli
cation process is willing to wait (i.e. be suspended) for the query processor to begin pro
cessing the query. 

Timeout is most meaningful to use in the case of a request to a server query processor 
named with process-name that might be busy processing another query at the time 
ENFORMSTART is called. If ENFORMSTART returns an error 22, indicating that time
out has occurred, the application process could revert to a dedicated query processor by 
calling ENFORMSTART again without the process-name parameter. 

If timeout is omitted, then the application process waits indefinitely for the query pro
cessor to begin the query. 

reserved-for-expansion 

INT:ref, reserved for expansion. 

mask-word 

INT:value, is a parameter that must be included when FORTRAN is used to call 
ENFORMSTART. Refer to the FORTRAN 77 Reference .Manual for more information 
about this parameter. 

Condition code settings: 

< (CCL) means there is a problem. An error number representing the reason will be 
found in error-number. 

= (CCE) means the query processor has been successfully initialized. 

FORTRAN programs must contain special code in order to examine the condition code 
settings. 

ENFORMSTART ERROR MESSAGES. If an error occurs during the execution of the ENFORM
START Procedure, the number of the error is returned to error-number. Any of these error condi
tions terminate the query processor. If the query processor is dedicated, it is deleted. Table 6-1 lists 
the error message for each of the possible error numbers. 

6-6 



Host Interface Language 

Table 6-1. ENFORMSTART Error Messages 

Number Message 

3 An error occurred in trying to read the compiled-physical-filename. 

8 An error occurred in trying to open the compiled-physical-filename. 

15 A required ENFORMSTART parameter is missing. 

16 Some failure occurred in creating or communicating with a query processor. 

17 Either the param-list or assign-list is not in the correct format. 

18 The value specified for buffer-length is less than 6. 

19 A restart (restart-flag not equal to zero) call made to ENFORMSTART was done 
under the following invalid conditions: 

• No previous successful call to ENFORMSTART 

• ENFORMFINISH called before this ENFORMSTART 

• Last ENFORMRECEIVE did not end in end-of-file or error status 

20 The file named by compiled-physical-filename cannot be executed. Either the 
physical file has an invalid file code for a compiled query, or the compiled query 
contains a LIST statement rather than a FIND statement. 

21 The file named by compiled-physical-filename has an outdated version number. 

22 The amount of time specified by the timeout parameter has elapsed with no 
response from the query processor. 

23 Ctlblock was modified by the host application program since the last call to 
ENFORM procedures. 

24 The amount of stack space needed to build the message to be sent to the query 
processor is not available. 

6-7 



Host Language Interface 

ENFORMRECEIVE Procedure 

The ENFORMRECEIVE procedure provides records to the host application program, one at a time. 
The syntax of the ENFORMRECEIVE procedure is: 

COBOL: 

ENTER ENFORMRECEIVE USING ctlblock, buffer [ GIVING count] 

FORTRAN: 

count ENFORMRECEIVE ( ctlblock, buffer) 

TAL: 

[ count := ] ENFORMRECEIVE ( ctlblock , buffer) 

where 

count 

returns a byte count for the length of the record retrieved (all FIND output records are 
the same length). A zero value means that all records have been returned. 

ctlblock 

INT:ref, is the same 18-word integer array control block that was supplied to ENFORM
START for global storage among all ENFORM procedure calls. The host application pro
gram must not change the control block between calls to ENFORM. 

buffer 

INT:ref, is a pointer to the receiving buffer in the host application program for an output 
record. It must be at least as long as the value given for buffer-length in ENFORM
START. The parameter buffer should be declared as FORTRAN record type if you want 
to access character information in a FORTRAN program. 

Condition code settings: 

> (CCG) indicates that no more target records exist. 

= (CCE) indicates successful receipt of a target record. 

< (CCL) indicates a query processor error occurred; buffer contains additional error 
information, and error-number (passed to ENFORMSTART) eontains an error 
number greater than zero. 

FORTRAN programs must contain special code in order to examine the condition code 
settings. 

ENFORMRECEIVE sends the records to the host language program, one at a time. Hence, 
ENFORMRECEIVE is repeatedly called until an end-of-file condition occurs, gNFORMFINISH is 
called, or an error condition occurs. 

6-8 

,_ 31 



Host Interface Language 

ENFORMRECEIVE Error Messages. If an error occurs during the execution of the ENFORM
RECEIVE Procedure, the number of the error is returned in error-number. Any of these error con
ditions terminate the ENFORM program. If the query processor is dedicated, it is deleted. Table 6-2 
lists the error message for each of the possible error numbers. Error numbers with asterisks can 
have additional information returned for them in the buffer and are included in Table 6-3. 

Table 6-2. ENFORMRECEIVE Error Messages 

Number Messages 

Query processor received a message out of sequence. 

3 * Erroroccurred during file system READ. 

4 * Error occurred during file system WRITE. 

5 * Error occurred during file system POSITION or KEYPOSITION. 

6 Error occurred during file system CONTRO~. 

7 * Error occurred during SORT. 

8 * Error occurred during file system OPEN. 

9 Error occurred during file CREATE. 

10 * Strategy exceeded the value of the @COST-TOLERANCE option variable. 

11 An attempt was made to divide by zero. 

12 * Query contains an illegal combination of links. 

14 Read limit exceeded value of the @READS option variable. 

23 Ctlblock was modified by the host application program since last call to 
ENFORM. 

25 * There was a failure related to the use of an ENFORM server (process file). 

Additional Information for EN FORM Error Messages. Some of the ENFORMRECEIVE errors 
(those indicated by an asterisk in Table 6-2) have additional information written to the receiving 
buffer specified by the buffer parameter. The buffer-length parameter for ENFORMSTART 
specifies the number of bytes of error information written to buffer. The additional error message 
has a maximum length of 30 bytes. If buffer-length is less than 30 bytes, the error information is 
truncated to whatever length was specified in buffer-length. The additional error messages are 
described in Table 6-3. 

December 1983 

6-9 



Host Language Interface 

6-10 

Table 6-3. Additional ENFORMRECEIVE Error Messages 

Numbers Additional Message 

3-6,8 File System number: high-order byte of second word in binary format 

File Name (internal format): next 12 words contain the name of tine physical file, in 
internal format, associated with the error 

7 SORT error number: high-order byte of second word in binary format 

File Name (internal format): next 12 words contain the name of tlhe physical file, in 
internal format, associated with the error 

File Error Code: next word in binary format 

10 Actual ENFORM Strategy Cost for the query (number 1-8): high-orrder byte of second 
word in binary format 

12 Error type: high order byte of second word in binary format. 

o At least one record has no LINK or WHERE clause relating it to any other 
record. Query will not be processed because a cross-prodw~t will result. See 
ERROR [92] in Appendix 8 for more information. 

1 The record on the right side of a link optional is linked back to the record on 
the left side. See ERROR [178] in Appendix 8 for more information. 

2 A record appears on the right side of more than one link optional. See ERROR 
[179] in Apopendix 8 for more information. 

Refer to the description of the LINK OPTIONAL statement in the EN FORM Reference 
Manual for a complete explanation of error types 2 and 3. 

25 Error type: high-order byte of second word in binary format. 

o Error returned from server. 

Server error name and server error number contain a file name and an error 
number supplied by the server. 

1-5 Error returned from Query Processor 

Server error name contains the file name of the server that caused! the error. 
Server error number is not set. 

1 Illegal dictionary description (see ERROR [ 112 ] in Appendix 8) 

2 Illegal use of KEY item (see ERROR [58] in Appendix 8) 

3 Illegal LINK field (see ERROR [68] in Appendix 8) 

4 Insufficient memory for buffer (see ERROR [ 50 ] in Appendix 8) 

5 Incorrect reply length (see ERROR [ 114] in Appendix 8) 

Server error name: next 12 words contain a file name, in internal format, associated 
with the server. 

Server error number: next word in binary format. 

December 1983 



Host Interface Language 

ENFORMFINISH Procedure 

ENFORMFINISH is called once to terminate the interface to ENFORM. The syntax of the 
ENFORMFINISH procedure is: 

COBOL: 

ENTER ENFORMFINISH USING ( ctLbLock ) 

FORTRAN: 

CALL ENFORMFINISH ( ctLbLock ) 

TAL: 

CALL ENFORMFINISH ( ctLbLock ) 

where 

ctLbLock 

INT:ref, is the same 18-word integer array control block that was supplied to ENFORM
START for global storage among all ENFORM procedure calls. The host language pro
gram must not change the control block between calls to ENFORM. 

Examples 

In the first example, a list of all the employees in a given region is required. A query containing one 
FIND statement is compiled. The query passes the required records to a COBOL program. 

Before the COBOL program can execute, a description of the records being passed must be added to 
the data dictionary and the file containing the FIND statement must be compiled. 

The record description of the record being passed is defined in the data dictionary as shown in 
Figure 6-2. The record description contains a field for the region number (regnum), the branch 
number (branchnum), and the employee name (empname). For complete instructions about dic
tionary definition, refer to the Data Definition Language (DDL) Reference Manual. 

Record findfil. 
file is "findfil". 
02 regnum 
02 branchnum 
02 empname 

end 

type *. 
type *. 
pic x(18). 

Figure 6-2. DDL Description of Record Passed to COBOL Program 

6-11 



Host Language Interface 

The ENFORM query shown in Figure 6-3 contains only one FIND statement. The host language pro
gram builds a PARAM message containing the region number. Refer to the Guardian Operating 
System Command Language and Utilities Manual for the Command Interpreter PARAM message 
format. 

OPEN employee; 
OPEN branch; 
OPEN findfil; 
PARAM region-num; 
LINK branch.primkey TO employee.dept; 
FIND findfil 

(BY branch.regnum, 
BY branch.branchnum, 

employee.empname), 
WHERE branch.regnum EQUAL region-num; 

Figure 6-3. Query Used to Pass Records to COBOL Program 

The source query is in the Edit file, qfind. The following ?COMPILE command is used to compile the 
query and place it on the physical file, findfile. 

?COMPILE qfind TO findfile 

The COBOL host language program is shown in Figure 6-4. This program displays the target record 
as it is received from the query processor, unformatted. 

6-12 



Host Interface Language 

IDENTIFICATION DIVISION. 
PROGRAM-ID. ENFORM-TEST. 
AUTHOR. E. TESTER. 
INSTALLATION. 
DATE-WRITTEN. JUNE 1982. 
DATE-COMPILED. JUNE 1982. 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. TANDEM/16. 
OBJECT-COMPUTER. TANDEM/16. 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 END-FLAG PIC 9 VALUE O. 

88 CLOSE-FROM-ENFORM VALUE 1. 
01 NO-ENTRY PIC 9 VALUE O. 

88 MORE-RECORDS-NEEDED VALUE O. 
88 NO-MORE-RECORDS-NEEDED VALUE 1. 

01 TEMP-BINARY PIC S9999 COMPo 
01 TEMP-BINARY-BYTES REDEFINES TEMP-BINARY. 

02 TEMP-N1 PIC X. 
02 TEMP-N2 PIC X. 

*ONE OF THE MOST USEFUL FEATURES OF A COBOL PROGRAM STARTING A 
*COMPILED ENFORM QUERY IS THE ABILITY TO PASS PARAM VALUES. 
*SEE ALSO THE A-INIT PARAGRAPH BELOW. 

01 PARAM-L1ST. 
02 MESSAGE-TYPE PIC S9(4) COMP VALUE-3. 
02 NUM-PARAMS PIC S9(4) COMP VALUE 1. 
02 LENGTH-NAME PIC X. 
02 FILLER PIC X(10) VALUE "REGION-NUM". 
02 LENGTH-PARAM PIC X. 
02 REGION-NO PIC 9(4). 
02 LOW-NUMBER PIC S9(4) COMP VALUE O. 

01 EN FORM-START. 
02 CTLBLOCK. 

04 CTLBLOCK-WORD PIC XX OCCURS 18 TIMES. 
02 PHYSICAL-FILENAME PIC X(24) 

VALUE "$MKT SAMPLE FINDFILE". I 
02 BUFFER-LENGTH PIC 99 VALUE 80. 
02 ERROR-NUMBER PIC S9(4) COMP VALUE O. 
02 RESTART-FLAG PIC S9(4) COMP VALUE O. 

01 EN FORM-RECEIVE. 
02 DATA-COUNT PIC 9999 COMP VALUE O. 
02 RECEIVED-DATA PIC X(80). 

PROCEDURE DIVISION. 
MAIN SECTION. 

BEGIN-COBOL-SERVER. 

Figure 6-4. COBOL Host Language Program 

December 1983 

6-13 



Host Language Interface 

6-14 

PERFORM A-INIT. 
*THIS PROGRAM CALLS ENFORMSTART MULTIPLE TIMES UNTIL "9999" 
* IS ENTERED. 

PERFORM B-TRANS UNTIL NO-MORE-RECORDS-NEEDED. 
PERFORM C-EOJ. 
STOP RUN. 

A-INIT. 
* A PARAM MESSAGE TO A PROCESS REQUIRES TWO LENGTH BYTES; ONE FOR 
*THE LENGTH OF THE PARAM NAME, AND ONE FOR THE LENGTH OF THE PARAM 
*VALUE. 

MOVE 10 TO TEMP-BINARY. 
MOVE TEMP-N2 TO LENGTH-NAME. 
MOVE 4 TO TEMP-BINARY. 
MOVE TEMP-N2 TO LENGTH-PARAM. 

B-TRANS. 
PERFORM B-START-ENFORM. 
IF MORE-RECORDS-NEEDED 

MOVE 1 TO RESTART-FLAG 
MOVE 0 TO END-FLAG 
PERFORM B-GET-RECORDS UNTIL CLOSE-FROM-ENFORM. 

B-START-EN FORM. 
DISPLAY "PARAM VALUE = ". 
ACCEPT REGION-NO. 
IF REGION-NO EQUAL 9999 

MOVE 1 TO NO-ENTRY 
ELSE 

ENTER "ENFORMSTART" USING CTLBLOCK, 
PHYSICAL-FI LENAM E, 
BUFFER-LENGTH, 
ERROR-NUMBER, 
RESTART-FLAG, 
PARAM-L1ST 

IF ERROR-NUMBER NOT EQUAL ZERO 
DISPLAY "ENFORMSTART ERROR: " ERROR-NUMBER 
MOVE 1 TO NO-ENTRY. 

B-GET-RECORDS. 
ENTER "ENFORMRECEIVE" USING CTLBLOCK, RECEIVED-DATA 

GIVING DATA-COUNT 
*NOTICE THAT ERROR-NUMBER CAN BE CHECKED AFTER ENFORMRECEIVE EVEN 
*THOUGH ERROR-NUMBER ITSELF IS NOT A PARAMETER TO ENFORMRECEIVE. 
*THIS IS BECAUSE ENFORMSTART STORES THE ADDRESS OF ERROF~-NUMBER 
*IN CTLBLOCK. 

IF ERROR-NUMBER NOT EQUAL ZERO 
DISPLAY "ENFORMRECEIVE ERROR: " ERROR-NUMBER 
MOVE 1 TO EN D-FLAG 

Figure 6-4. COBOL Host Language Program (Continued) 

December 1983 

-'.'M ____ i_i.' _________________________ 1 _________ _ 



Host Interface Language 

ELSE 
IF DATA-COUNT EQUAL ZERO 

MOVE 1 TO END-FLAG 
ELSE 

DISPLAY RECEIVED-DATA. 

C-EOJ. 
DISPLAY "END OF RUN". 
MOVE 0 TO ERROR-NUMBER. 
ENTER "ENFORMFINISH" USING CTLBLOCK. 

IF ERROR-NUMBER NOT EQUAL ZERO 
DISPLAY "ENFORMFINISH ERROR: " ERROR-NUMBER. 

Figure 6-4. COBOL Host Language Program (Continued) 

In the second example, there i's a need to do 'something with customers' orders for parts. Given a 
customer name and an order date, the part number and order number are returned for each part 
ordered by the customer on that date. 

A TAL host language program is written to process those records. The ENFORM interface locates 
the desired records with considerably fewer lines of code than required by the host language. 

Data is used from the customer, order, and odetail files of the sample relational data base. Refer to 
Appendix C. 

The record description defined in the dictionary for the information returned to the host language 
program contains a field for the order number (ordernum) and part number (partnum). The DDL 
RECORD statement is shown in Figure 6-5. 

RECORD order-process. 
05 ordernum 
05 partnum 

END 

PIC 999. 
PIC 9(4). 

Figure 6-5. DDL Description of Records Passed to TAL Program 

6-15 



Host Language Interface 

The ENFORM query in Figure 6-6 contains one FIND statement and uses parameters specified by 
the user in Command Interpreter PARAM command (the PARAM command is passed to the TAL 
program in the Command Interpreter PARAM message). to communicate to the query processor 
the specific customer name and order date for the records to be processed. Refer to the 
GUARDIAN Operating System Command Language and Utilities Manual for the Command Inter
preter PARAM message format. For each part number and order number returned via ENFORM
RECEIVE, some operation is performed. This portion of the example is left to your discretion. 

OPEN customer, ! Given a customer name and an 
order, ! order date, return one record 
odetail, !for each part ordered 
order-process; !containing the order number 

LINK customer TO order VIA custnum; land the part number. 
LINK odetail TO order VIA ordernum; 
PARAM passed-custname INTERNAL A18; 
PARAM passed-orderdate INTERNAL A6; 
FIND order-process 

(odetai I.ordernum, 
odetail.partnum) 

WHERE custname 
orderdate 

passed-custname AN 0 
passed-orderdate; 

Figure 6-6. An ENFORM Query for Host Language Interface 

The source query, which resides in the Edit file, tfind, is compiled and placed in the physical file, 
qryobj, when the following is entered: 

?COMPILE tfind TO qryobj 

The TAL host application program that interfaces with ENFORM and processes the desired 
records is shown in Figure 6-7. 

6-16 

LITERAL true = -1, false = 0; 
!filenames 

INT .queryAfilename [0:11]: = "$MKT SAMPLE QRYOBJ ". , 

!global variables 
INT .cntl Ablock [0:17], 

.paramAlist [0:80]; 
!flag 

INT recAprocessed; 

!variables 
INT error, 

count; 

! EN FORM control block, 18 words 
!param list buffer 

Figure 6-7. A TAL-Host Application Program Interfacing with ENFORM 



Host Language Interface 

! SCHEMA produced date - time: 4/21/82 12:15:59 
! RECORD order-process created on 04/21/82 at 12:15 
STRUCT orderAprocessAdef (*); 

BEGIN 
STRUCT odetailAkey; 

END; 

BEGIN 
STRUCT ordernum; 

BEGIN STRING BYTE [1:3]; END; 
STRUCT partnum; 

BEGIN STRING BYTE [1 :4]; END; 
END; 

!DDL TAL output 

STRUCT .0rderA process A rec (orderA process Adef); ! structure allocated here 

?NOLIST 
?SOURCE $system.system.extdecs (ENFORMSTART, ENFORMRECEIVE, 
? ENFORMFINISH, STOP); 
?LlST 

PROC getAparams (paramAmessage); 
I NT .param A message; 

BEGIN 
!This procedure obtains the Command Interpreter PARAM 
! message of the form provided by the Command 
! Interpreter. It will verify that exactly two parameters 
!have been supplied and those two parameters supply values for 
! passed-custname and passed-orderdate. 
! It also adds the REQUESTORS parameter required by the 
!query processor. 

END; lend of procedure getAparams 

PROC mainAproc MAIN; 
BEGIN 

CALL getAparams (paramAlist); ! get parameters 
!start the ENFORM query 

CALL ENFORMSTART (cntlAblock !control block 
,queryAfilename !compiled query 
,$Ien (orderAprocessArec), ! buffer length 
,error !error number 
, ! restart flag 
,paramAlist); !parameter list 

DO BEGIN !process all odetail records belonging to the order 
count: = ENFORMRECEIVE (cntlAblock !control block 

,0rderAprocessArec); ! buffer 
IF error < > 0 THEN 

CALL STOP; 
IF count THEN 

BEGIN 
recAprocessed : = true; 
!process the information here 

END; 
END UNTIL count = 0; 

CALL ENFORMFINISH (cntIAblock); 
END; lend of main procedure 

! report error to user 

! if a record was received 

!received some information 

!finished with this record 
!until no more odetail 
!records 
! control block 

Figure 6-7. A TAL-Host Application Program Interfacing with ENFORM (Continued) 

6-17 



it,;,III" ________________________________ • _______________________ _ 



SECTION 7 

EN FORM SERVERS 

This section describes how to write and use ENFORM servers - processes that can supply data to 
the query processor as an alternative to the data being supplied directly from a disc file (Figure 7-1). 
ENFORM servers extend ENFORM's query capability by enabling you to use data that might 
otherwise be unusable by the query processor. 

Figure 7-1. ENFORM Server Process. 

An EN FORM server can reside on the same or on a different system from the query processor and 
can retrieve records from one or more data bases. However, query performance might be enhanced 
if the server resides on the same system as the data files the server reads. 

7-1 



ENFORM Servers 

An ENFORM server communicates through a series of interprocess messages with the query pro
cessor and appears to the query processor as a data file. 

The query processor's access to an ENFORM server as a data file is limited to sequential access 
only; that is, one record at a time, starting with the first record, then the next and so on until the 
data is exhausted, or the query is satisfied. The query processor must be able to open the server 
more than once and must be able to to access the first and next records from the server repeatedly. 
There is no keyed or relative access defined for ENFORM servers. 

Why Use ENFORM Servers 

The following is a list of the types of data that create problems in query processing and the solution 
to the problems using EN FORM servers: 

• Non-Relational Data 

Non-relational data refers to files containing data that is not normalized and, therefore, cannot 
be processed by ENFORM. An example of unnormalized data is an employee record containing a 
field representing an employee's dependents where the field occurs a variable number of times 
depending on another field in the record. For ENFORM to process the employee record, the 
dependents should be separated from the employee record and placed- in a dependents file with 
either the employee's number or name specified as a key to identify the dependents. 

An ENFORM server can act as the dependents file by reading the records from a disc file, strip
ping the variable number of dependent records from each employee record, and then sending 
each dependent record to the query processor. This process can be repeated for each employee 
record until no more data is needed. 

• Dirty Data 

Dirty data refers to data entered directly from a terminal. The data can contain blanks, control, 
and other characters that prevent ENFORM from making proper comparisons for data selec
tion. An ENFORM server can act as a filter for a corresponding disc file by taking out the unat:
ceptable characters and presenting clean records to the query processor. 

• Concatenated Files 

For the purpose of reporting, you may want individual files with the same logical structure, 
which reside on one or more systems, to appear as one file to ENFORM. An EN FORM server 
can be written to access multiple files and return one record at a time to the Query Processor. 
The data supplied by the ENFORM server appears (to the query processor) to be coming from 
one file. 

• Data Encryption 

An EN FORM server can be written to read a file containing encrypted data and to supply the 
data, in a decoded form, to the Query Processor. 

• Data Compression 

An ENFORM server can be written to supply decompressed data from a c:ompressed file and 
send the data to the query processor. 

• Edit Files 

7-2 

An ENFORM server can be written to read data from an edit file and send the data to the query 
processor. 



ENFORM Servers 

• MUMPS 

MUMPS data stored in variable-length records cannot be directly processed by ENFORM. An 
ENFORM server can be written to read the variable-length records, restructure the data into 
fixed-field records, and then send the records to the query processor to be used with other data. 
Using an ENFORM server in this manner combines the convenience and compactness MUMPS 
provides for data storage with the querying and report writing facilities of ENFORM. 

Some additional potential uses for an ENFORM server are: to convert data from one format to 
another and to provide some level of data independence by insulating applications from changes to 
the data base. 

WRITING ENFORM SERVERS 

EN FORM servers are process files. The rules for naming and identifying process files are described 
in the sections on file names and process files in the GUARDIAN Operating System Programming 
Manual Volume 1 and Volume 2. 

The query processor identifies a specific ENFORM server through the server's process name. An 
ENFORM server is identified as a process by calling the process control procedure LOOKUP-. 
PROCESSN AME with the file name. If the server is not a running named process, the call to 
LOOKUPROCESSNAME will be unsuccessful. 

Servers are created by issuing the Command Interpreter RUN command or by a call to the 
NEWPROCESS procedure from a host language. The environment of a server is determined by the 
NEWPROCESS parameters and by information specified in the startup sequence. The 
NEWPROCESS parameters are used to assign the process name, to specify the execution priority 
and the cpu where the new process (an ENFORM server) executes. In addition, the startup 
sequence contains the default volume and subvolume names, and any ASSIGN and PARAM 
messages regarding the ENFORM server. (For more information on process control, refer to the 
GUARDIAN Operating System Programming Manual Volume 1.) 

ENFORM Server and Query Processor Dialogue 

Once an ENFORM server is identified and its environment is established, the server interacts with 
the query processor through a message dialogue to perform the following operations: 

• Read the $RECEIVE file 

• Interpret startup, open, initiate input, request input, terminate input, and close messages 

• Identify and read records from one or more files 

• Return reply messages and records to the query processor 

The preceding dialogue takes place within an ENFORM server session. A session is one query exe
cution or the period of time an ENFORM server is held open by a server query processor. (The 
EN FORM server can be designated as a file to be held open when the server query processor is 
started.) 

An ENFORM server that is held open by a server query processor can be read many times for one 
request or many requests. An ENFORM server opened by either a dedicated or server query pro
cessor to process one query can also be read many times. In other words, once an ENFORM server 
is opened the data must be able to be read multiple times whether for one query or many queries. 

7-3 



ENFORM Servers 

Interprocess Communication 

Communication between the query processor and an ENFORM server is based on a 
requester/server dialogue that enables a single round-trip message transfer. A message is trans
ferred by the requester through a call to the GUARDIAN File Management procedure, 
WRITEREAD, against the file number of the server. A message is transf€~rred by the server 
through a pair of calls to READUPDATE and REPLY (or their COBOL or FOHTRAN equivalents) 
against $RECEIVE. One-way communcation - a READ instead of a READUPDA TE call, will cause 
an error. Figure 7-2 illustrates two-way communication consisting of request and reply messages. 

Query 
Processor EN FO'~M 
(requester) Server 

·0 READUPDATE 

I 
request [ 

WRITE READ ....... I--________ r_e_p_'y ______ ---t_ REPLY 

Figure 7-2. Query Processor and ENFORM Server Communication 

'rhe preceding discussion of interprocess communication assumes that you write ENFORM servers 
as "non-queuing servers", that is, servers that always reply to a request read from $RECEIY.E 
before they read another request. Although they are potentially more complicated, you could, 
however, write "queuing servers"; that is, servers that sometimes will read a request from 
$RECEIVE before replying to the request previously read from $RECEIVE. 

For more information on interprocess communication and queuing servers, refer to the 
GUARDIAN Operating System Programming Manual. 

The interprocess messages used by the Command Interpreter (CI), the query processor (QP), and an 
ENFORM server are shown in Table 7-1. The effect of a message on an ENFOR1Vl server is reflected 
by a change in the condition of the server; that is. the message prepares the server for the next 
operation. 

7-4 

il_I ________________________ • _______________ • _______ _ 



ENFORM Servers 

Table 7-1. ENFORM Server Session 

Message Transfer Server Condition 

User Call 
Process ------~.~ NEWPROCESS 
CI Startup RUN 

Server Session Begins 

ENFORM 
Server 

OPEN ENFORM 
QP -------~.~ Server 

Server Application Code Begins 

INITIATE-INPUT-REQUEST 

• QP ------------~ 
INITIATE-INPUT-REPLY 

III 

RECORD-I N PUT-REQU EST 
~ QP ------------.... 

RECORD-IN PUT-REPLY 
III 

TERMINATE-INPUT-REQUEST 

• QP ------------.... 
TERM I NATE-I N PUT-REPLY 

III 

Server Application Code Ends 

CLOSE ENFORM 
QP ----------i~~ Server 

ENFORM 
Server 

ENFORM 
Server 

ENFORM 
Server 

Not Created 

Created 
Receives startup message. 
Dormant 
Waits for an OPEN. 

Opened 
Checks for message on 
$RECEIVE. 

Initializing 
QP identifies a server. 
Server reads request and 
replies. 

Active 
QP requests a record. 
Server returns a record. 
These messages can be 
repeated many times. 

Terminating 
QP has no more requests . 
Server returns to opened 
condition and can receive 
next INITIATE-INPUT-REQUEST. 

Dormant 
Returns to dormant 
condition. 
Waits for an OPEN message. 

L-____________________ . __________ . _________ ---' 

Each of the messages in Table 7-1 is explained in the following section. 

Message Protocol and Descriptions 

The dialogue between processes is structured by a protocol that includes a startup message, an 
OPEN message, request and reply messages, and a CLOSE message. The messages transferred 
between processes to create, use, and terminate an ENFORM server are described below in the 
sequence of the protocol. 

7-5 



EN FORM Servers 

• Startup Message - The Command Interpreter startup message is sent to a process (an 
ENFORM server) when the process is successfully created. The startup message is used to 
define ENFORM server characteristics such as: the number of simultaneous requesters per 
server and the time period the ENFORM server waits before terminating, if there is no 
requester. One startup message is sent per ENFORM server creation. (For more information, 
refer to the GUARDIAN Operating System Progamming Manual Volume 2, Command 
Interpreter/Application Interface section.) 

• OPEN Message - The OPEN message is a File Management Procedure used to establish a com
munication path between two processes; that is, the query processor and an ENFORM server. 
One OPEN message is sent per ENFORM server session. If you specify an exclusion mode via an 
ASSIGN command, that exclusion mode is passed in the OPEN message. 

• Initialize Message - The initialize sequence is a pair (a request and a reply) of messages between 
the query processor and an ENFORM server. The initialize messages associate a query pro
cessor with an ENFORM server and describe the environment in which the ENFORM server 
performs. The query processor sends one initiaHze message sequence for each set of requests to 
an ENFORM server. More than one initialize message can be sent per ENFORM server OPEN 
message. 

• Request Message - The query processor sends a request message to an EN FORM server to ask 
for a data record and the server replies with the record or an indication that there are no more 
records. The request message can contain data, end-of-file or error information. The query pro
cessor can send many request messages per ENFORM server session. 

• Terminate Message - The terminate sequence is a pair (a request and a reply) of messages 
between the query processor and a server. The terminate message indicates there are no more 
requests for an ENFORM server. The query processor sends one terminate message per set of 
requests. More than one terminate message can be sent per ENFORM server OPEN message. 

• CLOSE Message - The CLOSE message is a File Management Procedure used to terminate 
access to an ENFORM server. The CLOSE defines the end of use by the query processor and the 
end of an ENFORM server session. The query processor sends one CLOSE message per OPEN 
message. 

'fhe entire sequence of messages from OPEN through CLOSE can be performed for an EN FORM 
server more than once per query execution. 

Message Components 

The messages to and from the query processor and an EN FORM server consist of two components, 
a message header and the message data. The message header is a fixed length for all messages. The 
message data is a fixed length for all messages except RECORD-INPUT-REQUEST and RECORD-
INPUT-REPLY; the lengths are determined during initialization. 

7-6 



ENFORM Servers 

DOL MESSAGE HEADER DESCRIPTION. The following DDL definition shows the message header 
format. 

DEF pw-header-def. 

END 

05 reply-code TYPE BINARY 16 . 
= 1, indicates error, including end-of-file 
= 0, everything's OK 

05 application-code PIC XX . 
= "S1", indicating sequential file simulation 

05 function-code PIC XX . 
= "DA" for data input 

05 trans-code PIC XX . 
= "SR", initiate-input-request or -reply 
= "RR", record-input-request or -reply 
= "TR", terminate-input-request or -reply 

05 term-id PIC X(15) . 
not used 

05 log-request 
not used 

PIC X . 

DEF ENFORM-error-header-def . 
05 error-code TYPE BINARY 16 . 

END 

= 0, no error 
= 1, server EOF 
= 29, invalid message or any other server detected error 

05 error-file-name PIC X(24) . 
Must be blank unless error-code is non-zero. 
If supplied, this filename will be printed in the error 
message instead of the server's name. Must be in the 
form of a Tandem filename. 

05 file-error TYPE BINARY 16 . 
Must be zero unless error-code is non-zero. 
If supplied, this error number will be printed in the error 
message instead of a file system error. 

DEF ENFORM-server-header-def . 
05 pw-header-def TYPE * 

TYPE * 05 ENFORM-error-header-def 
END 

The message header is used to pass the following information between the query processor and an 
EN FORM server: 

• Reply code 

• Application code 

o indicates successful operation and 1 indicates an error. 

S1 indicates simple sequential file simulation. 

NOTE 

The application code, S1, identifies the message formats and protocol for the 
query processor and ENFORM server communication. This application code is 
passed in the header of every message to and from the query processor and a 
server. A new value for this field will be added when the protocol or message 
format changes to allow ENFORM to support multiple protocols. 

7-7 



EN FORM Servers 

• Function code 

• Transaction code 

• Error code 

• Filename 

• File error 

DA indicates data input. 

SR indicates an initiate input request or reply. RR indicates a record input 
request or reply. TR indicates a terminate input request or reply. 

Indicates one of the following internal error messages is returned from an 
ENFORM server to the query processor: 

o no error 

1 end-of-file (only for RECORD-INPUT-REPLY message) 

29 missing parameter or invalid message format or any other server 
detected error (can be returned by any reply message) 

If an error code is other than zero and this field is not all blanks, this file 
name is printed in the error message instead of the server's name. 

If supplied, an error number is printed in the error message instead of the 
GUARDIAN file error number. If filename is supplied, the file error must 
also be supplied. If filename is not supplied, this field is ignored. 

NOTE 

The DDL source file named ENFORMSV is supplied with the ENFORM pro
duct and can be used to generate message definitions for COBOL, FORTRAN, 
or TAL programs. The DDL source contains all of the message definitions 
necessary for a dialogue between the query processor and your EN FORM 
server. 

ENFORM Server and Query Processor Messages 

This section presents the message format and the DDL description for the following messages: 

INITIATE-INPUT-REQUEST 

INITIATE-INPUT-REPLY 

RECORD-INPUT -REQUEST 

RECORD-INPUT-REPLY 

TERMINATE-INPUT-REQUEST 

TERMIN ATE-INPUT -REPL Y 

rl-8 



ENFORM Servers 

INITIATE·INPUT·REQUEST MESSAGE. The query processor sends this message to an ENFORM 
server before a request or set of requests for data. The message format and DDL description for the 
INITIATE-INPUT-REQUEST message are shown in Figure 7-3. 

0: 

1 : 

2: 

3: 

4-11 : 

12: 

13-24: 

25: 

26: 

/ / 
REPLY-CODE V 

APPLICATION-CODE 

~ FUNCTION-CODE 

TRANS-CODE / 
TERM-ID,LOG-REQUEST (unused) / 

ERROR-CODE j FILE-NAME 

FILE-ERROR 

~ DATA-RECORD-BZ 

DEF initiate-input-request-def. 

END 

05 EN FORM-server-header-def 
05 data-record-bz 

TYPE * . 

TYPE BINARY 16 . 
data-record buffer size that wi II be sent on 
record-input-request message and must remain 
the same on record-input-reply messages. Size 
is given in bytes and must be an even number. 

Figure 7-3. Message Format and DDL Description 
for the INITIATE-INPUT-REQUEST Message 

HEADER 

7-9 



ENFORM Servers 

INITIATE·INPUT·REPLY MESSAGE. The ENFORM server returns this message to the query pro
cessor after reading an INITIATE-INPUT-REQUEST message. The message format and DDL 
description for the INITIATE-INPUT-REPLY message are shown in Figure 7-4. 

0: 

1 : 

2: 

3: 

4-11 : 

12: 

13-24: 

25: 

26-27: 

28: 

/ 
REPLY-CODE ~ 

APPLICATION-CODE / 
FUNCTION-CODE 

~ TRANS-CODE 

TERM-ID,LOG-REOUEST (unused) 

~ ERROR-CODE 

FILE-NAME V 
FILE-ERROR V 

MAX-RECORDS-I N-FI LE V 
CONTROL-BLOCK-WZ V 

DEF initiate-input-reply-def. 

END 

05 EN FORM-server-header-def 
05 max-records-in-file 

TYPE * . 
TYPE BINARY 32 . 

This number is used by the OP when it has to make decisions 
based upon the size of a file. It should be the max # of 
records that may be sent by the process. 
05 control-block-wz TYPE BINARY 16 . 
# of words that will be allocated for control block on 
record-input-request and -reply messages. If < = 0, no space 
wi II be allocated. 

L--___________________ _ 

7-10 

Figure 7-4. Message Format and DOL Description for the 
INITIATE-INPUT-REPLY Message 

HEADER 



EN FORM Servers 

RECORD·INPUT·REQUEST MESSAGE. The query processor sends this message to the ENFORM 
server to ask for a data record. The message format and DDL description for the RECORD-INPUT
REQUEST message are shown in Figur,e 7-5. 

0: 

1 : 

2: 

3: 

4-11 : 

12: 

13-24: 

25: 

26-27: 

28: 

29: 

30-?: 

?-?: 

L / 
REPLY-CODE j APPLICATION-CODE 

FUNCTION-CODE j TRANS-CODE 

TERM-ID,LOG-REQUEST (unused) j ERROR-CODE 

FILE-NAME 

~ FILE-ERROR 

POSITION-CODE 

~ ACTUAL-DATA-BZ 

HEADER 

DATA-RECORD-BZ 

~ DATA-RECORD 

CONTROL-BLOCK (optional) V 
DEF record-input-request-def. 

END 

05 ENFORM-server-header-def TYPE * . 
05 position-code PIC X(4) . 

= "FRST", first record = "NEXT", next record 
05 actual-data-bz TYPE BINARY 16 . 

= 1 to (MAX-DATA-WZ * 2) # bytes of actual data in the 
DATA-RECORD field. 

05 data-record-bz TYPE BINARY 16 . 
data-record field size which is fixed for the 
duration of a session. Size is given in bytes and must 
be an even number. 

05 data-record PIC X(MAX-DATA-WZ * 2) . 
05 data-record PIC X(4096). 

data-record field size is declared as the maximum data record 
size. You can change it to be whatever your application 
needs. This field contains whatever was sent over by a 
previous record-input-reply or all zeroes if the first 
request. 

05 control-block PIC X(MAX-CB-WZ * 2) . 
05 control-block PIC X(4036). 

ENFORM server context data or zeroes if first time 
MAX-CB-WZ is the maximum control-block word size. You can 
change it to be whatever your application needs. 

Figure 7-5. Message Format and DOL Description for the 
RECORD-INPUT-REQUEST Message 

7-11 



ENFORM Servers 

The RECORD-INPUT-REQUEST message is bound by the following word size restrictions: 

MAX-MSG-WZ 

MAX-DATA-WZ 

MAX-MSG-HEADER-WZ 

MAX-CB-WZ 

7-12 

4096 words 
This is maximum size for RECORD-INPUT-REQUEST and 
RECORD-INPUT-REPLY messages. 

2048 words 
This is the maximum key-sequenced ENSCHIBE record size. 

26 words 
This is ENFORM header word size. 

( 4096-2048-26-4 ) 2018 words 
This is the maximum user control block size. 



ENFORM Servers 

RECORD·INPUT·REPLY MESSAGE. The ENFORM server returns this message to the query pro
cessor after reading a RECORD-INPUT-REQUEST message. The message format and DDL 
description for the RECORD-INPUT-REPLY message are shown in Figure 7-6. 

0: 

1 : 

2: 

3: 

4-11 : 

12: 

13-24: 

25: 

26-27: 

28: 

29: 

30-?: 

?-?: 

/ 7 
REPLY-CODE 

~ APPLICATION-CODE 

FUNCTION-CODE 

~ TRANS-CODE 

TERM-ID,LOG-REQUEST (unused) 

~ ERROR-CODE 

FILE-NAME 

~ FILE-ERROR 

POSITION-CODE 

~ ACTUAL-DATA-BZ 

HEADER 

DATA-RECORD-BZ 

~ DATA-RECORD 

CONTROL-BLOCK (optional) V 
DEF record-input-reply-def. 

END 

05 EN FORM-server-header-def TYPE * . 
05 position-code PIC X(4) . 

= "FRST", first record = "NEXT", next record 
05 actual-data-bz TYPE BINARY 16 . 

= 1 to (MAX-DATA-WZ * 2) # bytes of actual data in the 
DATA-RECORD field. 

05 data-record-bz TYPE BINARY 16 . 
data-record field size which is fixed for the 
duration of a session. Size is given in bytes. 

05 data-record PIC X(MAX-DATA-WZ * 2) . 
05 data-record PIC X(4096). 

data-record field size is declared as the maximum data record 
size. You can change it to be whatever your application 
needs. This field contains the data record requested, either 
the first or the next of the process file. 

05 control-block PIC X(MAX-CB-WZ * 2) . 
05 control-block PIC X(4036). 

ENFORM server context data. This field is optional. 
MAX-CB-WZ is the maximum control-block word size. You can 
change it to be whatever your application needs. 

Figure 7-6. Message Format and DOL Description for the 
RECORD-INPUT-REPLY Message 

7-13 



ENFORM Servers 

The RECORD-INPUT-REPLY message is bound by the following word size restrictions: 

MAX-MSG-WZ 

MAX-DATA-WZ 

MAX-MSG-HEADER-WZ 

MAX-CB-WZ 

7-14 

4096 words 
This is maximum size for RECORD-INPUT-REQUEST and 
RECORD-INPUT-REPLY messages. 

2048 words 
This is the maximum key-sequenced ENSCHIBE record size. 

26 words 
This is ENFORM header word size. 

( 4096-2048-26-4 ) 2018 words 
This is the maximum user control block size. 



ENFORM Servers 

TERMINATE·INPUT·REQUEST MESSAGE. The query processor sends this message to an 
ENFORM server to indicate there are no more requests. The message format and DDL description 
for the TERMINATE-INPUT-REQUEST message are shown in Figure 7-7. 

/ / 

1 : 

REPLY-CODE 

~ APPLICATION-CODE 

FUNCTION-CODE 

~ TRANS-CODE 

TERM-ID,LOG-REQUEST (unused) 

~ ERROR-CODE 

0: 

2: 

3: 

4-11 : 

12: 

13-24: FILE-NAME / 
25: FILE-ERROR / 

DEF terminate-input-request-def. 
05 EN FORM-server-header-def TYPE * . 

END 

Figure 7-7. Message Format and DDL Description 
for the TERMINATE-INPUT-REQUEST Message 

7-15 



ENFORM Servers 

TERMINATE·INPUT·REPLY MESSAGE. The ENFORM server returns this message to the query 
processor after reading a TERMINATE-INPUT-REQUEST message. The message format and DDL 
description for the TERMINA'rE-INPUT-REPLY message are shown in Figure 7-8. 

/ / 

1 : 

REPLY-CODE 

~ APPLICATION-CODE 

FUNCTION-CODE 

~ TRANS-CODE 

TERM-ID,LOG-REQUEST (unused) 

~ ERROR-CODE 

FILE-NAME :~ FILE-ERROR 
I 

0: 

2: 

3: 

4-11 : 

12: 

13-24: 

25: 

DEF terminate-input-reply-def. 
05 EN FORM-server-header-def TYPE * 

END 

~-------------------------------------------------------

Figure 7-8. Message Format and DDL Description 
for the TERMINATE-INPUT-REPLY Message 

7-16 



}~NFORM Servers 

ENFORM Server Operation-Restrictions and Conditions 

When you write the server, consider the following: 

• ENFORM servers can be used only for input to the query processor. 

Note that a process can be used for output data produced by ENFORM, but the protocol is dif
ferent from and should not be confused with the EN FORM server protocol. For information on 
data produced by ENFORM, see the ENFORM Reference Manual. 

• Access to an ENFORM server as data (a relation) by the query processor is limited to sequential 
access only. 

It might be necessary for the query processor to read a file more than once; for example, to pro
cess a LINK statement or when a NonStop query processor restarts a query. In this case, the 
ENFORM server must be able to send the query processor the first record, more than once, at 
any point during a series of request messages. 

• An ENFORM server session consists of one query execution or the period of time an ENFORM 
server is held open by an active server query processor. An ENFORM server can be opened by 
multiple query processors at the same time. The ENFORM server can be designated as a file to 
be held open by the server query processor when the query processor is started. 

An ENFORM server can wait for a request without being opened by the query processor 
(requester ). 

• The message header is reinitialized and verified on every request and reply. The message data 
record area is not modified. The query processor initializes the control block to all zeros only on 
the first input request. 

• If an EN FORM server returns an exception condition, or ENFORM encounters an exception 
condition while trying to communicate with an ENFORM server, the query processor attempts 
to CLOSE the ENFORM server. 

• If a primary process failure occurs causing a server query processor to restart a query, the 
query begins by requesting the first record in the file. This operation is transparent to the 
ENFORM server, since an ENFORM server must be able to repeatedly supply records in a 
sequential manner. 

• If an ASSIGN command is used to specify an exclusion mode for an ENFORM server, that exclu
sion mode is included in the OPEN message flags word sysmsg[lJ. Otherwise, the Query 
Processor provides the SHARED (0) exclusion mode. (For more information, refer to the 
GUARDIAN Operating System Programming Manual Volume 1.) 

December 1983 

7-17 



EN FORM Servers 

USING AN ENFORM SERVER 

This section describes some general restrictions and performance considerations involved in using 
ENFORM servers. 

Restrictions Related to Using EN FORM Servers 

The following restrictions apply to the interaction of an ENFORM server with the query processor: 

1. The ENFORM server must be running before the query processor issues an OPEN message. 
After receiving a Command Interpreter startup message, an ENFORM server can be opened by 
the query processor. It is your responsibility to start the ENFORM server before executing the 
ENFORM query that will use the server. 

2. Document the order, in which the records are presented to the query processor, in the 
SEQUENCE IS clause of the related DDL description. This can prevent tbe query processor 
from having to read the ENFORM server file many times or perform an unnecessary sort 
operation. 

3. A primary key or record key has no meaning for an EN FORM server. Using references such as 
KEY OF employee ... or employee.KEY is not allowed for records from an ENFORM server. 
Referring to a key in an ENFORM server file causes the query processor to issue an error 
message (Error 58). 

4. The ENFORM server process name associated with a logical record name (a relation) can be 
specified in the FILE IS clause of the DDL record description, with a Command Interpreter 
ASSIGN command, or with an ENFORM ?ASSIGN command. The physical fHe name is used in 
the call to LOOKUPPROCESSNAME to determine whether or not the file its a process at the 
time a query is run. 

5. The file type specified for an ENFORM server in the DDL description must be either 
UNSTRUCTURED or the file type must not be specified at all. If no file type is specified, the 
UNSTRUCTURED default is used. The query processor checks the file type at run time and 
returns an error message (Error 112) if a file type other than UNSTRUCTURED is indicated. 

f>' The query processor tries to allocate a message buffer for each ENFORM server relevant to a 
query. If memory space for the message buffer is not available, the query processor returns an 
error message (Error 50). 

'T. If an ENFORM server fails while being held open by a server query processor, the server query 
processor should be stopped and restarted. Since the query processor cannot determine from 
the system whether a process was stopped and restarted, merely restarting the ENFORM 
server does not ensure that the messages received by the server are in the proper sequence. 

December 1983 



ENFORM Servers 

ENFORM Server Performance Considerations 

The following are performance considerations related to using an ENFORM server. 

QUALIFICATION. If there is a qualification (a WHERE clause) in a query and an ENFORM server 
represents the data for an item in the qualification, implement the qualification in the ENFORM 
server. In other words, the ENFORM server should send only the qualifying data to the query pro
cessor. A simple example is: 

LIST empLoyee.name WHERE empLoyee. age > 65 

where the ENFORM server supplies the employee records. 

The ENFORM server can be written to supply the employee data such that only records containing 
employee names older than 65 are sent to the query processor. In this case, the query processor 
receives only records qualifying for the query instead of all the records. 

ENFORM SERVER CONTEXT. ENFORM servers can be written as context-free or context
sensitive servers. The optional control block in the message format can be used to store context 
information. A data record received by the query processor in a request is returned in the next 
request and is available to the ENFORM server, as is the optional control block data. A control 
block contains all zeros the first time it is passed in a message to an ENFORM server. 

VARIABLE·LENGTH DATA. The maximum size of the data is given to ENFORM by the dictionary. 
At initialization the query processor sends the maximum size (in bytes, rounded up to an even 
number) of the data buffer to the ENFORM server. This size remains fixed throughout the 
ENFORM server session. 

The query processor is aware of records shorter than the length of the data buffer because the 
actual data size (in bytes) is returned from the ENFORM server with the data. A good practice is to 
have the ENFORM server blank or zero out unused space in the data buffer so the server does not 
confuse unused space with data. 

If data records returned to the query processor are an odd byte length, the actual size of the data is 
smaller than the data buffer by at least one byte. 

SERVER LOCATION. Query performance might be enhanced if the server resides on the same 
system as the data files the server reads. 

EN FORM Server Example 

The following example illustrates the general programming concepts associated with a simple 
ENFORM server program written in COBOL. 

This ENFORM server accesses a file that contains information about parts and parts suppliers. The 
records are structured such that the part namber is the primary key and each part can have up to 5 
suppliers. This data is not in first normal form. The server returns records to the query processor 
one at a time in first normal form. Each record returned to the query processor contains the part 
number, one and ONLY one supplier number, and the cost of the part from that supplier. 

7-19 



ENFORM Servers 

Specific characteristics of the example ENFORM server include the following: 

• The server is context free-the context information (the last part number and supplier number 
that was sent to the query processor) is returned in RECORD-DATA by the query processor. 
The optional control block area is used to save the occurrence number of the last supplier sent to 
the query processor. 

• The server accepts up to 5 requesters - each of which should be checked for the sequence of its 
messages. 

• The server does not check that each query processor sends messages in the correct sequence 
which is an initiate request, a record request, and then a terminate request. 

7-20 



IDENTIFICATION DIVISION. 

PROGRAM-ID. ENFSERV. 
AUTHOR. ANON. 

ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 
SOURCE-COMPUTER. TANDEM T/16. 
OBJECT-COMPUTER. TANDEM T/16. 

INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT PARTSUP-FILE 
ASSIGN TO PRTS 
ORGANIZATION IS INDEXED 
ACCESS MODE IS DYNAMIC 
RECORD KEY IS PRIMKEY OF FROM-SUP 
FILE STATUS IS FILE-STAT. 

SELECT MESSAGE-IN 
ASSIGN TO $RECEIVE 
FILE STATUS IS RECEIVE-FILE-STATUS. 

SELECT MESSAGE-OUT 
ASSIGN TO $RECEIVE 
FILE STATUS IS RECEIVE-FILE-STATUS. 

RECEIVE-CONTROL. 
TABLE OCCURS 5 TIMES 
SYNCDEPTH LIMIT IS 1 
REPLY CONTAINS MESSAGE-OUT RECORD. 

DATA DIVISION. 

FI LE SECTION. 
FD PARTSUP-FILE 

LABEL RECORDS ARE OMITTED. 
* Record FROM-SUP created on 03/05/82 at 09:43 

01 FROM-SUP. 
02 FRMSUP. 

03 PRIMKEY. 
04 PARTNUM 

03 NUM-SUPS 
03 SUP-DATA 

04 SUPPNUM 
04 PARTCOST 

FD MESSAGE-IN 
LABEL RECORDS ARE OMITTED 

PIC 9(4). 
PIC 9. 
OCCURS 5 TIMES. 
PIC 999. 
PIC 999999V99. 

RECORD CONTAINS 52 TO 78 CHARACTERS. 

ENFORM Servers 

7-21 



ENFORM Servers 

01 MSG-INIT. 
* Record INITIATE-INPUT-REQUEST created on 03/05/82 at 09:44 

05 INITIATE-INPUT-REQUEST. 
10 INITIATE-INPUT-REQUEST-DEF. 

15 ENFORM-SERVER-HEADER-DEF. 
20 PW-HEADER-DEF. 

25 REPLY-CODE PIC S9(4) 
25 APPLICATION-CODE PIC XX. 
25 FUNCTION-CODE PIC XX. 
25 TRANS-CODE PIC XX. 
88 INIT-INPUT Value is "SR". 
88 RECORD-INPUT Value is "RR". 
88 TERMINATE-INPUT Value is "TR". 
25 TERM-ID PIC X(15). 
25 LOG-REQUEST PIC X. 

20 ENFORM-ERROR-HEADER-DEF. 
25 ERROR-CODE 
25 ERROR-FILE-NAME 
25 FILE-ERROR 

15 DATA-RECORD-BZ 

01 MSG-RCD 

PIC S9(4) 
PIC X(24). 
PIC S9(4) 
PIC S9(4) 

COMPo 

COMPo 

COMPo 
COMPo 

* Record RECORD-INPUT-REQUEST created on 03/05/82 at 09:44 
05 RECORD-INPUT-REQUEST. 

7-22 

10 RECORD-INPUT-REQUEST-DEF. 
15 ENFORM-SERVER-HEADER-DEF. 

20 PW-HEADER-DEF. 
25 REPLY-CODE PIC S9(4) 
25 APPLICATION-CODE PIC XX. 
25 FUNCTION-CODE PIC XX. 
25 TRANS-CODE PIC XX. 
88 INIT-INPUT Value is "SR". 
88 RECORD-INPUT Value is "RR". 
88 TERMINATE-INPUT Value is "TR". 
25 TERM-ID PIC X(15). 
25 LOG-REQUEST PIC X. 

20 ENFORM-ERROR-HEADER-DEF. 
25 ERROR-CODE 
25 ERROR-FILE-NAME 
25 FILE-ERROR 

15 POSITION-CODE 
88 FIRST-RCD Value is "FRST". 
88 NEXT-RCD Value is "NEXT". 
15 ACTUAL-DATA-BZ 
15 DATA-RECORD~BZ 
15 DATA-RECORD. 

20 FROMSUP. 
25 PRIMKEY. 

30 PARTNUM 
25 SUPPNUM 
25 PARTCOST 
25 FI LLER 

15 CONTROL-BLOCK 

PIC S9(4) 
PIC X(24). 
PIC S9(4) 
PIC X(4). 

PIC S9(4) 
PIC S9(4) 

PIC 9(4). 
PIC 999. 
PIC 999999V99. 
PIC X. 
PIC X(2). 

15 CB-INT REDEFINES CONTROL-BLOCK PIC 99. 

COMPo 

COMPo 

COMPo 

COMPo 
COMPo 

i.II .................. ----------------------------------------------------·------------



01 MSG-END 
* Record TERMINATE-INPUT-REQUEST created on 03/05/82 at 09:44 

05 TERMINATE-INPUT-REQUEST. 
10 TERMINATE-INPUT-REQUEST-DEF. 

15 ENFORM-SERVER-HEADER-DEF. 
20 PW-HEADER-DEF. 

25 REPLY-CODE PIC S9(4) 
25 APPLICATION-CODE PIC XX. 
25 FUNCTION-CODE PIC XX. 
25 TRANS-CODE PIC XX. 
88 INIT-INPUT Value is "SR". 
88 RECORD-INPUT Value ;s "RR". 
88 TERMINATE-INPUT Value ;s "TR". 
25 TERM-ID PIC X(15). 
25 LOG-REQUEST PIC X. 

20 ENFORM-ERROR-HEADER-DEF. 
25 ERROR-CODE 
25 ERROR-FILE-NAME 
25 FILE-ERROR 

FD MESSAGE-OUT 
LABEL RECORDS ARE OMITTED 

PIC S9(4) 
PIC X(24). 
PIC S9(4) 

RECORD CONTAINS 52 TO 78 CHARACTERS. 

01 REPLY-INIT. 

COMPo 

COMPo 

COMPo 

* Record INITIATE-INPUT-REPLY created on 03/05/82 at 09:44 
05 INITIATE-INPUT-REPLY. 

10 INITIATE-INPUT-REPLY-DEF. 
15 ENFORM-SERVER-HEADER-DEF. 

20 PW-HEADER-DEF. 
25 REPLY-CODE PIC S9(4) COMPo 
25 APPLICATION-CODE PIC XX. 
25 FUNCTION-CODE PIC XX. 
25 TRANS-CODE PIC XX. 
88 INIT-INPUT Value ;s "SR". 
88 RECORD-INPUT Value ;s "RR". 
88 TERMINATE-INPUT Value 
25 TERM-ID 

;s "TR". 

25 LOG-REQUEST 
20 ENFORM-ERROR-HEADER-DEF. 

25 ERROR-CODE 
25 ERROR-FILE-NAME 
25 FILE-ERROR 

15 MAX-RECORDS-IN-FILE 
15 CONTROL-BLOCK-WZ 

PIC 
PIC 

PIC 
PIC 
PIC 
PIC 
PIC 

X(15) . 
X. 

S9(4) 
X (24)-
S9(4) 
S9(9) 
S9(4) 

COMPo 

COMPo 
COMPo 
COMPo 

ENFORM Servers 

7-23 



ll' 

ENFORM Servers 

01 REPLY-RCD 
* Record RECORD-INPUT-REPLY created on 03/05/82 at 09:44 

05 RECORD-INPUT-REPLY. 
10 RECORD-INPUT-REPLY-DEF. 

15 ENFORM-SERVER-HEADER-DEF. 
20 PW-HEADER-DEF. 

25 REPLY-CODE PIC S9(4) COMPo 
25 APPLICATION-CODE PIC XX. 
25 FUNCTION-CODE PIC XX. 
25 TRANS-CODE PIC XX. 
88 INIT-INPUT Value is "SR". 
88 RECORD-INPUT Value is 
88 TERMINATE-INPUT Value 
25 TERM-ID 
25 LOG-REQUEST 

20 ENFORM-ERROR-HEADER-DEF. 

"RR". 
is "TR". 

PIC X(15). 
PIC X. 

25 ERROR-CODE COMPo PIC S9(4) 
25 ERROR-FILE-NAME PIC X(24). 
25 FILE-ERROR COMPo PIC S9(4) 

15 POSITION-CODE 
88 FIRST-RCD Value is "FRST". 
88 NEXT-RCD Value is "NEXT". 

PIC X(4). 

15 ACTUAL-DATA-BZ COMPo PIC S9(4) 
15 DATA-RECORD-BZ COMPo PIC S9(4) 
15 DATA-RECORD. 

20 FROMSUP. 
25 PRIMKEY. 

30 PARTNUM PIC 9(4). 
25 SUPPNUM PIC 999. 
25 PARTCOST PIC 999999V99. 
25 FILLER PIC X. 

15 CONTROL-BLOCK PIC X(2). 
15 CB-INT REDEFINES CONTROL-BLOCK PIC 99. 

01 REPLY-END 
* Record TERMINATE-INPUT-REPLY created on 03/05/82 at 09:44 

05 TERMINATE-INPUT-REPLY. 

7-24 

10 TERMINATE-INPUT-REPLY-DEF. 
15 ENFORM-SERVER-HEADER-DEF. 

20 PW-HEADER-DEF. 
25 REPLY-CODE PIC S9(4) 
25 APPLICATION-CODE PIC XX. 
25 FUNCTION-CODE PIC XX. 
25 TRANS-CODE PIC XX. 
88 INIT-INPUT Value is "SR". 
88 RECORD-INPUT Value is "RR". 
88 TERMINATE-INPUT Value is "TR". 
25 TERM-ID PIC X(15). 
25 LOG-REQUEST PIC X. 

20 ENFORM-ERROR-HEADER-DEF. 
25 ERROR-CODE 
25 ERROR-FILE-NAME 
25 FILE-ERROR 

PIC S9(4) 
PIC X(24). 
PIC S9(4) 

COMPo 

COMPo 

COMPo 



WORKING-STORAGE SECTION. 

77 I 
77 FOUND-IT 
77 ERROR-FN 

01 REPLY-CODE-SET. 
05 OK-REPLY 
05 BAD-REPLY 

01 ERROR-CODE-SET. 
05 ERR-NONE 
05 ERR-EOF 
05 ERR-INV 

01 GUARD-FILE-ERRORS. 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 
05 FILLER 

01 GUARD-FILE-ERROR-TABLE 

PIC S9(4) COMP VALUE o. 
PIC S9(4) COMP VALUE o. 
PIC X(24) 

VALUE "$DATA AASERV PRTS II 

PIC S9(4) COMP VALUE o. 
PIC S9(4) COMP VALUE 1 . 

PIC S9(4) COMP VALUE O. 
PIC S9(4) COMP VALUE 1. 
PIC S9(4) COMP VALUE 29. 

PIC S9(4) COMP VALUE O. 
PIC S9(4) COMP VALUE 1. 

PIC S9(4) COMP VALUE 59. 
PIC S9(4) COMP VALUE 46. 
PIC S9(4) COMP VALUE 10. 
PIC S9(4) COMP VALUE 11. 
PIC S9(4) COMP VALUE 45. 
PIC S9(4) COMP VALUE 45. 

REDEFINES GUARD-FILE-ERRORS. 
05 GUARD-FILE-ERR PIC S9(4) COMP OCCURS 8 TIMES. 

01 FILE-DATA. 
05 ERR-INDEX PIC S9(4) COMPo 
05 FILE-ERROR-NO PIC S9(4) COMPo 

88 END-OF-FILE VALUE 1. 
88 FILE-IS-BAD VALUE 59. 
88 INVALID-KEY VALUE 46. 
88 DUPLI CATE-KEY VALUE 10. 
88 NO-EXISTING-RECORD VALUE 11. 
88 FILE-IS-FULL VALUE 45. 

05 RECEIVE-FILE-STATUS. 
10 STAT-1 PIC 9. 

88 CLOSE-FROM-REQUESTOR VALUE 1 THRU 3. 
10 STAT-2 PIC 9. 

05 FI LE-STAT. 
10 STAT-KEY1 PIC 9. 

88 NO-ERROR VALUE o. 
88 FILE-ERROR VALUES ARE 1 THRU 3. 

10 STAT-KEY2 PIC 9. 
05 LOG-FILE-STATUS. 

10 S-KEY1 PIC 9. 
10 S-KEY2 PIC 9. 

ENFORM Servers 

7-25 



ENFORM Servers 

PROCEDURE DIVISION. 

DECLARATIVES. 

UA-PARTSUP-FILE SECTION. 
USE AFTER STANDARD ERROR PROCEDURE ON PARTSUP-FILE. 

UA-PARTSUP-FILE-PROC. 

* FILE STATUS ALGORITHM. 
*==================================================================:== 
* STAT-KEY1 + STAT-KEY2 = ERR- ERROR CONDITIml 
* INDEX 
* 0 + 0 .+ 1 = 1 SUCCESSFUL COMPLETION 
* 1 + 0 + 1 = 2 END OF FILE 
* 3 + 0 + 0 = 3 PERMANENT ERROR 
* 2 + 1 + 1 = 4 SEQUENCE ERROR 
* 2 + 2 + 1 = 5 DUPLICATE KEY 
* 2 + 3 + 1 = 6 NO EXISTING RECORD 
* 2 + 4 + 1 = 7 PAST INDEXED EOF 
* 3 + 4 + 1 = 8 PAST SEQUENTIAL EOF 
*===================================================================== 

IF STAT-KEY1 = 3 AND STAT-KEY2 = 0 
COMPUTE ERR-INDEX = STAT-KEY1 + STAT-KEY2 

ELSE 
COMPUTE ERR-INDEX = STAT-KEY1 + STAT-KEY2 + 1. 

*==================================================================== 
* If there is a file error, send the error number and the 
* filename in the reply buffer. Also, set the reply code to 
* 1 to indicate that an error occurred. If the error was 
* an end of file (stat-key = 1) then set the error-code to 1; 
* otherwise set the error code to invalid. 
*==================================================================== 

MOVE GUARD-FILE-ERR (ERR-INDEX) TO FILE-ERROR OF REPLY-RCD. 
MOVE ERROR-FN TO ERROR-FILE-NAME OF REPLY-RCD. 
MOVE BAD-REPLY TO REPLY-CODE OF REPLY-RCD. 
IF STAT-KEY1 = 1 

MOVE ERR-EOF TO ERROR-CODE OF REPLY-RCD 
ELSE MOVE ERR-INV TO ERROR-CODE OF REPLY-RCD. 

UA-MESSAGE-IN SECTION. 
USE AFTER STANDARD ERROR PROCEDURE ON MESSAGE-IN. 

UA-MESSAGE-IN-PROC. 
IF STAT-1 IS NOT EQUAL 1 

DISPLAY "$RECEIVE FILE ERROR STATUS = ", RECEIVE-FILE-STATUS. 

UA-MESSAGE-OUT SECTION. 
USE AFTER STANDARD ERROR PROCEDURE ON MESSAGE-OUT. 

UA-MESSAGE-OUT-PROC. 
IF STAT-1 IS NOT EQUAL 1 

DISPLAY "$RECEIVE FILE ERROR STATUS = ", RECEIVE-FILE-STATUS. 

END DECLARATIVES. 

BEGIN-THE-PROGRAM. 

7-26 

PERFORM START-YOUR-ENGINES. 
PERFORM READ-MAILBOX 

UNTIL CLOSE-FROM-REQUESTOR. 
PERFORM GARBAGE-COLLECTION. 
STOP RUN. 



START-YOUR-ENGINES. 
OPEN INPUT MESSAGE-IN. 
OPEN OUTPUT MESSAGE-OUT. 
OPEN INPUT PARTSUP-FILE EXCLUSIVE. 

GARBAGE-COLLECTION. 
CLOSE MESSAGE-IN. 
CLOSE MESSAGE-OUT. 
CLOSE PARTSUP-FILE. 

READ-MAILBOX. 
*============================================================= 
* Initialize the message and reply buffers, read $receive to 
* get the next message, and process the message. 
*============================================================= 

* 

* 

* 

* 

MOVE SPACES TO MSG-RCD, REPLY-RCD. 
MOVE ZERO TO FILE-STAT. 
PERFORM 90-GET-MESSAGE. 
IF NOT CLOSE-FROM-REQUESTOR 

PERFORM TRANS-CODE-CASE. 

TRANS-CODE-CASE. 

IF INIT-INPUT OF MSG-INIT 
****** initiate request ************ 
PERFORM TRANS-CODE-SR 

ELSE IF RECORD-INPUT OF MSG-RCD 
********* record request ************* 
PERFORM TRANS-CODE-RR 

ELSE IF TERMINATE-INPUT OF MSG-END 
******* terminate request ********* 

PERFORM TRANS-CODE-TR 

ELSE 

TRANS-CODE-SR. 

******** error ************* 
MOVE ENFORM-SERVER-HEADER-DEF OF MSG-INIT TO 

ENFORM-SERVER-HEADER-DEF OF REPLY-INIT 
PERFORM 9-INVALID-MSG 
PERFORM 90-SEND-END-REPLY. 

*======================================================= 
* Initialize the header of the reply buffer. 
* The max number of records in the file = 100. 
* The size (in words) of the control block is 1. 
* Write the init reply. 
*======================================================= 

MOVE ENFORM-SERVER-HEADER-DEF OF MSG-INIT TO 
ENFORM-SERVER-HEADER-DEF OF REPLY-INIT. 

MOVE 100 TO MAX-RECORDS-IN-FILE OF REPLY-INIT. 
MOVE 1 TO CONTROL-BLOCK-WZ. 
PERFORM 90-SEND-INIT-REPLY. 

ENFORM Servers 

7-27 



ENFORM Servers 

TRANS-CODE-RR. 
*=============================================================== 
* Ini~ialize the header of the reply buffer. 
* Initialize the position code, actual data size and data 
* .. record size and the data record in the reply buffer. 
* Process the request for the record and send the reply. 
*=============================================================== 

MOVE ENFORM-SERVER-HEADER-DEF OF MSG-RCD TO 
ENFORM-SERVER-HEADER-DEF OF REPLY-RCD. 

MOVE POSITION-CODE OF MSG-RCD TO POSITION-CODE OF REPLY-RCD. 
MOVE ACTUAL-DATA-BZ OF MSG-RCD TO ACTUAL-DATA-BZ OF REPLY-RCD. 
MOVE DATA-RECORD-BZ OF MSG-RCD TO DATA-RECORD-BZ OF REPLY-RCD. 
MOVE SPACES TO DATA-RECORD OF REPLY-ReO. 
PERFORM 1-PROCESS-REQUEST. 
PERFORM 90-SEND-RCD-REPLY. 

TRANS-CODE-TR. 
*======================================================== 
* Initialize the header of the reply buffer and 
* send the terminate reply. 
*======================================================== 

MOVE ENFORM-SERVER-HEADER-DEF OF MSG-END TO 
ENFORM-SERVER-HEADER-DEF OF REPLY-END. 

PERFORM 90-SEND-END-REPLY. 

1-PROCESS-REQUEST. 
*================================================================== 
* Based on the value of the position code in the message buffer 
* get the first (or the next) record to return to the QP. 
*================================================================== 

IF FIRST-RCD OF MSG-RCD 
PERFORM 2-GET-FIRST-RECORD 

ELSE IF NEXT-RCD OF MSG-RCD 
PERFORM 2-GET-NEXT-RECORD 
ELSE PERFORM 9-INVALID-MSG. 

2-GET-FIRST-RECORD. 
*===================================================================::= 
* Read the first record in the file and return the part number 
* and the first occurrence of supplier and cost in that record. 
*===================================================================::= 

7-28 

MOVE ZEROES TO PARTNUM OF FRMSUP. 
PERFORM 90-FIRST-POSITION. 
IF NO-ERROR 

PERFORM 90-READ-PARTSUP 
IF NO-ERROR 

MOVE 1 TO I 
PERFORM 9-FORMAT-REPLY. 

i' _________________________________________ _ 



ENFORM Servers 

2-GET-NEXT-RECORD. 
*===================================================================== 
* The QP returns the data that it was sent in the previous reply. 
* Use that partnum to position the file and read that record. Then 
* compare the occurrence number of the last supplier sent (CB-INT) 
* to the number of suppliers in the record. If = then read the next 
* record in the file and return the new part number and the first 
* occurrence of supplier in that record; otherwise, return the next 
* supplier in the same record. Any end of file indications are 
* handled by the declarative procedure. 
*===================================================================== 

PERFORM 90-NEXT-POSITION. 
IF NO-ERROR 

PERFORM 90-READ-PARTSUP 
IF NO-ERROR 

IF CB-INT OF MSG-RCD lESS THAN NUM-SUPS 
COMPUTE I = CB-INT OF MSG-RCD + 1 
PERFORM 9-FORMAT-REPlY 

ELSE 
PERFORM 90-READ-PARTSUP 
IF NO-ERROR 

MOVE 1 TO I 
PERFORM 9-FORMAT-REPlY. 

9-FORMAT-REPlY. 
*===================================================================== 
* Return the part number, the supplier number, and the part 
* cost. Return the occurrence number of suppnum in the control 
* block. Also, set the number of bytes actually read to the 
* number of bytes in the record. 
*===================================================================== 

MOVE PARTNUM OF FROM-SUP TO PARTNUM OF REPlY-RCD. 
MOVE SUPPNUM OF SUP-DATA(I) TO SUPPNUM OF REPlY-RCD. 
MOVE PART COST OF SUP-DATA(I) TO PARTCOST OF REPlY-RCD. 
MOVE I TO CB-INT OF REPlY-RCD. 
MOVE DATA-RECORD-BZ OF REPlY-RCD 

TO ACTUAl-DATA-BZ OF REPlY-RCD. 

9-INVAlID-MSG. 

MOVE BAD-REPLY TO REPLY-CODE OF REPlY-RCD. 
MOVE ERR-INV TO ERROR-CODE OF REPlY-RCD. 

*==================================================================== 
* 
* SERVER 1/0 ROUTINES 

* *==================================================================== 
90-GET-MESSAGE. 

READ MESSAGE-IN. 

90-FIRST-POSITION. 
START PARTSUP-FllE KEY NOT lESS THAN PARTNUM OF FRMSUP. 

7-29 



ENFORM Servers 

90-NEXT-POSITION. 
START PARTSUP-FILE KEY = PARTNUM OF FROM-SUP. 

90-READ-PARTSUP. 
READ PARTSUP-FILE NEXT RECORD. 

90-SEND-INIT-REPLY. 
WRITE REPLY-INIT. 

90-SEND-RCD-REPLY. 
WRITE REPLY-RCD. 

90-SEND-END-REPLY. 
WRITE REPLY-END. 

7-30 



APPENDIX A 

SYNTAX SUMMARY 

ENFORM syntax is summarized in this appendix. For specific details of syntax, refer to the 
language elements, statement, clause and command sections. 

LANGUAGE ELEMENTS 

Aggregates: 

AVG 
COUNT 
MAX 
MIN 
SUM 
user-aggregate 

AVG 
COUNT 
MAX 
MIN 
SUM 
user-aggregate 

Arithmetic operators: 

+ 

* 
I 

f fi eld-name I [OVER ALL ] 
( lexpression OVER over-item 

[ WHERE logical expression] >, 

[UNIQUE] field-name [OVER ALL 
[ WHERE logical expression] >, 

A-l 



Syntax Summary 
Language Elements 

IF/THEN/ELSE expression: 

(IF LogicaL expression THEN vaLue-1 ELSE vaLue-2) 

Logical Expression: 

[NOTl condition [{ ~=D I [NOT] condition ••• J 
where condition has one of the following forms: 

fieLd-name 

{

BEGINS WITH } 
I] 1 

CONTAINS 
1>1 

condi tiona L operator 

[NOT] EQUAL 
EQ 
IS 
= 
NE 
<> 

st r i ng-L i tera L 

{
vaLue-range ) 
"["pattern-match"]" 

{ ~~:I~~~;me } [NOT] condi tiona L operator {~~:t~~~;me } 
expreSSlon expreSSlon 

STATEMENTS 

AT END [ PRINT print-list [ CENTER] ] [ 

AT START [ PRINT print-List [ CENTER] ] [ 

user-variabLe-name 

{

record-name } 

CLOSE user-aggregate-name , 
user-tabLe-name 
param-name 

A-2 

... [ 



DECLARE 

DELINK 

user-variabLe-name 

user-tabLe-name "[" max-subscripts "]" 

user-aggregate-name (formaL-argument) 
= ( step-expression [ , [ end-expression] 

[ , initiaLize-constant] ] ) 

[ INTERNAL internaL-format 
[ AS dispLay-format] 
[ HEADING "heading-string" ] , ... [ ; ] 

Syntax Summary 
Statements 

{ 

record-name1 TO [OPTIONAL record-name2 VIA fi e Ld-name } 

quaLified-fieLd-name1 TO [ OPTIONAL] quaLified-fieLd-name2 , ..• [;] 

DICTIONARY [ dict-subvoL-name ] [ 

EXIT [ 

FIND [ UNIQUE ] output-record-name 

( [ output-fieLd-name := 
] {BY by-i tem } BY DESC by-item 

target-item 
ASCD target-item 
DESC target-item 

[ WHERE LogicaL-expression] 

FOOTING [ print-List [ CENTER] ] [ 

, ... ) 

{ 

record-name1 TO [OPTIONAL record-name2 VIA fi e Ld-name } 
LINK 

quaLified-fieLd-name1 TO [ OPTIONAL] quaLified-fieLd-name2 , ... , 

A-3 



Syntax Summary 
Statements 

LIST [ UNIQUE BY by-item 

A-4 

BY DESC by-item 
target-item 
ASCD target-item 
DESC target-item 
user-var-name := target-item 

CUM [ OVER ALL ] 
CUM OVER by-item 
PCT [ OVER ALL ] 
PCT OVER by-item 
TOTAL 
SUBTOTAL 
SUBTOTAL OVER by-item 
NOHEAD 
NOPRINT 
CENTER 
HEADING "heading-string" 
AS display-format 
AS DATE display-format 
AS TIME display-format 

[

FORM [ n ] ] 
SKIP [ n ] 
SPACE [ n ] 
TAB [ n ] , 

[ WHERE logical-expression 

[ NOHEAD ALL ] 
[ NOPRINT ALL ] 
[ CENTER ALL ] 

[ SUPPRESS [ WHERE] logical expression] 

, ... 

[ BEFORE CHANGE [ ON ] by-item PRINT print-list 
[ AFTER CHANGE [ ON ] by-item PRINT print-list 
[ AT START PRINT print-list 
[ AT END PRINT print-list 
[ TITLE print-list 
[ SUBTITLE print-list 
[ FOOTING print-list 
[ SUBFOOTING print-list 

, ... 

[ CENTER ] ] 
[ CENTER ] ] 
[ CENTER ] ] 
[ CENTER ] ] 
[ CENTER ] ] 
[ CENTER ] ] 
[ CENTER ] ] 
[ CENTER ] ] 

*i., .............. __________________________________________________________________ __ 



{

record-name } 
OPEN 

record-name2 [ AS ] COpy [ OF ] record-name1 , ••• [ 

PARAM { param-name [ INTERNAL internaL-format] } , ••• [ 

{ 

user-variabLe-name } {string-LiteraL} 
SET user-tabLe-name"["subscript"]" TO number 

param-name 

option-variabLe-name TO ON 
OFF 
number 
"character" 
string-L iteraL 
dispLay-format 

SUBFOOTING [ print-List [ CENTER] ] [ 

SUBTITLE [ print-List [ CENTER] ] [ ] 

TITLE [ print-List [ CENTER] ] [ 

CLAUSES 

AFTER CHANGE [ ON ] by-item PRINT print-List [ CENTER] 

{ 
ASCO } 

fieLd-name 
OESC 

, . .. [ 

Syntax Summary 
Statements 

report-item AS [nonrepeatabLe-edit-descriptors] repeatabLe-edit-descriptors 

report-item AS 

report-item AS 

II "[" [decorations, ••• ] [ modifiers, ••• ] 1t]1t 

repeatabLe-edit-descriptors II 

II 1t[1t [ decorations, ••• ] [ modifiers, ..• ] II]1t 

( nonrepeatabLe-edit-descriptors 
repeatabLe-edit-descriptors) It 

A-5 



Syntax Summary 
Clauses 

where 

A-6 

report-item 

is either a by-item or an target-item. 

nonrepeatable-edit-descriptors 

specify some general ways report-items are to be printed. Nonrepeatble-edit-descriptors 
should not be specified without a repeatable-edit descriptor. Nonrepeatable-edit
descriptors are: 

P multiplies value by lO**n, n is an integer. 

S, SP, SS for control of plus ( + ) sign printing. 

repeatable-edit-descriptors 

specify data conversion to the GUARDIAN Formatter for printing the report-item 
values. Valid values for repeatable-edit-descriptors are: 

A [ w ] 

Iw [ .m 

for alphanumeric values. 

for integer values. 

Fw.d .m for fixed point values. 

M mask for a template to combine literals and values. 

where 

w specifies the width of the report-item. 

m specifies the number of digits that appear to the left of the decimali for fixed 
point values and the minimum number of digits for integer values. 

d specifies the number of digits to the right of the decimal. 

mask combination of the characters 9, Z, V, .(period) and literals. The combination 
must be enclosed within apostrophes (' ') or greater than and less than sym
bols « ». 

"["decorations"]" 

specify character strings that can be added to a report-item depending' on a condition. 
The syntax is: 

conditions location char-string 

where 

conditions 

are one or more of the following: 

M add char-string if value is negative. 

N add char-string if value is null. 

P add char-string if value is positive. 

Z add char-string if value is zero. 

o add char-string if overflow condition occurs. 



location 

is where the character string is to be printed: 

Syntax Summary 
Clauses 

An indicates char-string is to be printed at absolute position n. 

F indicates char-string is to be inserted after the value is formatted. If 
condition is satisfied, char-string is printed immediately to the left of 
the item value. 

P indicates char-string is inserted before the value is formatted. If condi
tion is satisfied, char-string is prints to the right of the value. 

char-string 

is one or more alphanumeric characters enclosed within apostrophes (' '). 

"["modifiers"]" 

alter the effect of the edit descriptors as follows: 

BN, BZ prints blanks for null or zero values respectively 

FL char specifies a substitute fill character 

OC c ha r respecifies the overflow character 

LJ, RJ specifies right or left justification 

SS pr-of-symbo ls allows substitution of symbols 

where: 

char 

is an ASCII character enclosed in apostrophes. 

pr-of-symbols 

is a special mask symbol (see repeatable edit-descriptors) and a substitution 
character. 

date-in-internal-format AS DATE I * } 
display-format 

time-in-internal-format AS TIME I * } 
display-format 

AT END PRINT print-list [ CENTER] 

AT START PRINT print-list [ CENTER] 

BEFORE CHANGE [ ON ] by-item PRINT print-list [ CENTER] 

l BY } field-name 
BY DESC 

A-7 



Syntax Summary 
Clauses 

I 
{ tar~et-i tem} CENTER I 

bY-ltem 

CENTER ALL 

target-i tem CUM [OVER ALL ] 
OVER by-item 

FOOTING print-list [ CENTER] 

FORM [ number ] 

{ 
target-i tem} HEADING "headi ng-st ri ng" 
by-item 

INTERNAL internal-format 

JULIAN-DATE ( year, month, day) 

I{ tar~et-i tem} NOHEAD I 
bY-ltem, 

NOHEAD ALL 

I{ tar~et-i tem} NOPRINT I 
bY-ltem 

NOPRINT ALL 

The Option Variables and their legal values are: 

A-8 

@BLANK-WHEN-ZERO 
@BREAK-KEY 
@CENTER-PAGE 
@HEADING 
@STATS 
@SUMMARY-ONLY 
@WARN 

@COPIES 
@COST-TOLERANCE 
@DISPLAY-COUNT 
@LINES 
@MARGIN 
@PAGES 

TO {ON } 
OFF 

@PRIMARY-EXTENT-SIZE TO number 
@SECONDARY-EXTENT-SIZE 
@READS 
@SPACE 
@TARGET-RECORDS 
@VSPACE 
@WIDTH 

'f<.1 ____________________________________ ' ________ • __ _ 



{

@DECIMAL } 
@NEWLINE TO "character" 
@NONPRINT-REPLACE 
@OVERFLOW 
@UNDERLINE 

@SUBTOTAL-LABEL TO "char-string" 

I @DATE-FORMAT I TO di splay-format 
@TIME-FORMAT 

target-item PCT [OVER ALL ] 
OVER by-item 

SKIP [ number ] 

SPACE [ number ] 

SUBFOOTING print-list [ CENTER] 

SUBTITLE print-list [ CENTER] 

target-item SUBTOTAL [OVER bY-item] 
OVER ALL 

SUPPRESS [ WHERE] logical-expression 

System Variables: 

@DATE 
@TIME 
@LINENO 
@PAGENO 

TAB [ number ] 

TIMESTAMP-DATE ( field-name) 

TIMESTAMP-TIME ( field-name) 

Syntax Summary 
Clauses 

A-9 



Syntax Summary 
Clauses 

TITLE print-list [ CENTER 

( 
tar~et-i tem TOTAL I 
bY-ltem 

WHERE logical-expression 

COMMANDS 

?ASSIGN [ ( ~:~~ ~~~~~~~ e-name I [ TO ] 

{. create-open spec} ••• J 
physical-filename 

?ASSIGN record-name, { , create-open spec} •.• 

?ATTACH [ process-name 

?COMPILE edit-filename [ ( section-name, .•• ) ] TO compiled-physical-filename 

?DICTIONARY [dict-subvol-name] 

?EDIT [ edit-filename] 

?EXECUTE compiled-physical-filename 

?EXIT 

?HELP [ help-element ] 

?OUT [ physical-filename 

?RUN [ edit-filename [ ( section-name, •.• ) ] 

?SECTION section-name 

OPEN 
LINK 
CONTROL 

?SHOW LIMITS 
ASSIGN [ record-name 
user-variable-name 
record-name 
param-name 

?SOURCE edit-filename [ ( section-name, ••• ) ] 

A-tO 

lIa, ___________________ ' ________ _ 



Syntax Summary 
ENFORM Procedures 

ENFORM PROCEDURES 

COBOL: 

ENTER ENFORMSTART USING ctLbLock 
, compiLed-physicaL-fiLename 
, buffer-Length 

INT:ref 
INT:ref 
INT:vaLue 
INT:ref 
INT:vaLue 
INT:ref 
INT:ref 
INT:ref 
INT:vaLue 
INT:vaLue 
INT:32:vaLue 
INT:ref 

, error-number 
[ , restart-fLag 
[ , param-List ] 
[ , assign-List] 
[ , process-name ] 
[ , cpu ] 
[ , priority] 
[ , timeout ] 
[ , reserved-for-expansion 

ENTER ENFORMRECEIVE USING ctLbLock, buffer [ GIVING count] 
!INT:ref INT:ref INT:function! 

ENTER ENFORMFINISH USING < ctLbLock 

FORTRAN: 

CALL ENFORMSTART <ctLbLock 
,compiLed-physicaL-fiLename 
,\buffer-Length\ 
,error-number 
[, \restart-fLag\] 
[, param-List ] 
[, assign-List] 
[, process-name] 
[, \cpu\ ] 
[, \priority\ ] 
[, \timeout\ ] 
[, reserved-for-expansion 
,\maskword\ ) 

count ENFORMRECEIVE < ctLbLock, buffer) 
!INT:function INT:ref INT:ref 

CALL ENFORMFINISH ctLbLock) 

!INT:ref 

INT:ref 
INT:ref 
INT:vaLue 
INT:ref 
INT:vaLue 
INT:ref 
INT:ref 
INT:ref 
INT:value 
INT:vaLue 
INT:32:vaLue 
INT:ref 
INT:vaLue 

!INT:ref 

A-II 



Syntax Summary 
ENFORM Procedures 

TAL: 

CALL ENFORMSTART ctlblock 
, compiled-physical-filename 
, buffer-length 
, error-number 
[ , restart-flag 
[ , pa r a m- lis t ] 
[ , assign-list] 
[ , process-name ] 
[ , cpu ] 
[ , priority] 
[ , timeout ] 
[ , reserved-for-expansion ]) 

[ count := ] ENFORMRECEIVE ctlblock, buffer 
!INT:function INT:ref INT:ref 

!INT:ref 
!INT:ref 
INT:value 
INT:ref 
INT:value 
INT:ref 
INT:ref 
INT:ref 
INT:value 

.INT:value 
!INT:32:value 
!INT:ref 

ENFORMFINISH ( ctlblock ) !INT:ref 

A-12 

,.:: ---------------------------------------------------



APPENDIX B 

ERROR MESSAGES 

This appendix documents the following types of messages: 

• I!! ERROR error-number types: mean a serious error has occurred. Statement execution ter
minates. If this type of error occurs for a LIST or FIND statement, the query terminates. 

• *** WARNING warning-number types: point out an error that could change the expected 
results. The error does not abort the query although it could lead to more serious error 
conditions. 

• *** FILE ERROR ... types: mean a serious error has occurred within the file system. If there is a 
file error with the run-time IN input file, the dictionary file, or the vocabulary file, then the 
entire ENFORM session is terminated. 

• *** ... types: occur during ENFORM initialization. If this type of error occurs, ENFORM ter
minates abnormally. 

• ENFORM {QP] TRAP means a that either a hardware failure or an unexpected software error 
has occurred. Please save the information produced by this message and report the error to 
Tandem. 

• *** ERROR types: means an error has occurred during execution of the BUILDMK utility. 
BUILDMK terminates abnormally. Correct the problem and rerun BUILDMK or you cannot use 
the key-sequenced version of the message table with ENFORM. 

Error message are listed in the following order within this appendix: 

1. ENFORM initialization errors are listed in alphabetical order. 

2. I!! ERROR and *** WARNING type errors are listed together in numeric order with the error 
message text and additional comments. 

3. *** FILE ERROR type errors are described in alphabetical order. 

4. ENFORM TRAP messages are listed in alphabetical order. 

5. BUILDMK error messages are listed. These messages consist of the following types of 
messages: !!!ERROR and FILE ERROR messages. 

B-1 



Error Messages 

ENFORM INITIALIZATION MESSAGES 

*** Current reserved word cannot be used to redefine ~nother reserved word 

A reserved word redefinition in the ?VOCABULARY section of the message table contains an 
old reserved word where a new word is expected. (The key-sequenced message table file was 
not built by the BUILDMK utility or the file has been modified since it "was built). 

*** Invalid DICTIONARY file name 

The dictionary file name specified on the ENFORM command line is not a valid GUARDIAN 
file name. 

*** Invalid MESSAGE TABLE file name 

The message table file name specified on the ENFORM command line is not a valid 
GUARDIAN file name. 

*** Message table does not contain a version number record. Rebuild key-sequenced file 

Either the key-sequenced message table file was not built by the BUILD~dK utility or the file 
has been modified since it was built. 

*** Message table must be a disk file 

Self-explanatory. Use the BUILDMK utility to build the key-sequenced mElssage table file. 

*** Message table must be a key-sequenced file 

Self-explanatory. Use the BUILDMK utility to build the key-sequenced message table file. 

*** Message table must contain both ?MESSAGES and ?HELP sections 

Self-explanatory. Use the BUILDMK utility to build the key-sequenced message table file. 

*** Message table version number is not correct 

The version number in the message table does not match the version number expected by 
ENFORM. Rebuild the key-sequenced message table file using the appropriate version of 
BUILDMK. 

*** Primary key for message table file must be offset at 0 and have length 34 

Self-explanatory. Use the BUILDMK utility to build the key-sequenced message table file. 

*** Sorry, you're not allowed to run EN FORM on this processor 

This processor does not have the required ENFORM microcode. 

B-2 



Error Messages 

!I! ERROR AND *** WARNING TYPE MESSAGES 

!!! ERROR [26] Invalid use of range item 

A subscript range may only be used as a target-item (but cannot be used when modified by a 
BY, BY DESC, ASCD, or DESC clause) in a LIST or FIND statement. Its use is invalid in all 
other circumstances. 

!!! ERROR [27] Unknown ENFORM directive or syntactically incorrect 

A command name has been misspelled or attempt has been made to execute a command from a 
different subsystem. 

! !! ERROR [28] The boolean operators AND and OR cannot be used in a TITLE or PRINT 
statement expression 

Only a simple logical expression may be used in a IF/THEN/ELSE expression within an 
AFTER CHANGE, AT END, AT START, BEFORE CHANGE, FOOTING, SUBFOOTING, 
SUBTITLE, or TITLE statement or clause. 

!!! ERROR [29] Reference has been attempted to an undefined or illegal item in PRINT 
statement 

An item has been used in a Print List clause that does not appear in the LIST statement. 

*** WARNING [30] Name too long. Truncated to 31 characters 

The variable or aggregate name must be less than 31 characters. 

! !! ERROR [31] Inva lid fi le name 

The file name printed with this error message is not a valid Tandem physical file name. 

!!! ERROR [32] Invalid SET-variable specification 

The '@' symbol is not followed by a legal string for an option variable name. 

! !! ERROR [33] Name not found 

A field name has been misspelled or the wrong dictionary is being used. 

!!! ERROR [34] Name not sufficiently qualified to avoid ambiguity 

Field name appears in more than one opened record description. Use more qualification. 

!!! ERROR [35] Record description not found in dictionary 

The record name has been misspelled or the wrong dictionary is being used. 

! !! ERROR [36] Symbol table overflow 

The maximum available space for file descriptions, user defined variables, etc., has been 
exceeded. All tables are cleared. 

!!! ERROR [37] Overflow encountered on input conversion of numeric-literal 

Numeric literal exceeds 32767. 

!!! ERROR [38] ?SOURCE file nesting> 4 

Must have four or fewer levels of nested ?SOURCE commands. 

B-3 



Error Messages 

! !! ERROR [39] Too many references to user aggregates 

Total number of references to user aggregates exceeds 32. 

! !! ERROR [40] Multiply defined name 

The name already exists as a record name, user-defined item, or parameter name. 

'" ERROR [41] The maximum target length of 2000 bytes was exceeded. 
Unable to process query 

The maximum length of a LIST or FIND statement requiring sorting exeeeded 2000 bytes, or 
the maximum length of a LIST or FIND statement without sorting requirements exceeded 
4095 bytes. 

, !, ERROR [42] Expression too large to process 

Expression must contain fewer than 512 items. 

'" ERROR [43] The specified relation is invalid in the above context 

CONTAINS, BEGINS WITH, and pattern match conditions require st:ring arguments. The 
pattern match operation allows only EQ and NE operators. 

,!! ERROR [44] Too many actual file assignments 

Table of assignments exceeds eight entries. Clear the table by entering? ASSIGN without a 
physical file name. 

!!! ERROR [45] An integer literal is required in the above context 

A number with decimal places is not allowed. Must be an integer. 

! !, ERROR [46] Too many LINKs 

Number of links exceeds 32. Clear some with a DELINK statement. 

*** WARNING [47] Source line was truncated 

Line must be 255 characters or less. 

!" ERROR [48] Only field names may appear in a qualification 

The item name in the WHERE or SUPPRESS clause has not been defined or is misspelled. 
This is usually due to an internal error. 

!!, ERROR [49] User variable assignments are illegal in the scope of a FIND statement 

User-defined variable or table is not an acceptable output field name in a :FIND statement. 

!!! ERROR [50] Insufficient memory available for data buffer (SERVER-'related failure 
on name) 

B-4 

An ENFORM server (process file) cannot be opened because there is no space for a message 
buffer. 

Jii., ___________________________________ _ 



Error Messages 

*** WARNING [51] Null target list 

LIST or FIND statement is not processed. 

!!! ERROR [52] Not currently supported 

The indicated feature or operation may not be used. 

!!! ERROR [53] Invalid subscript range specification 

The subscript range specified ([x:y]) for an item is wrong. Subscripts must be numeric literals. 
The first number (x) must be smaller than the second number (y). 

! !! ERROR [54] Inva lid AS format desc ri pt i on 

The display format for AS, AS DATE, or AS TIME is invalid or the INTERNAL format is 
invalid. 

! !! ERROR [55] A user aggregate may not be used in a user aggregate end-expression 

Self-explana tory. 

! !! ERROR [56] An aggregate may not be used as the argument to another aggregate 

Self-explanatory. 

! !! ERROR [57] Item type incompatible with use 

Expecting a field or user defined variable to subscript or illegal use of a condition in an 
Arithmetic Expression clause. Similar to a type mismatch. 

!!! ERROR [58] Illegal use of KEY item <SERVER-related failure on name) 

Record-name.KEY or KEY OF record-name is not allowed when the data for record-name is 
from an ENFORM server (process file). 

! !! ERROR [59] Maximum read count exceeded 

ENFORM has read the limit number of records specified by the @READS Option Variable 
clause. 

!!! ERROR [60] A user aggregate declaration may not reference the value of another 
user aggregate 

Self-explanatory. 

!!! ERROR [61] Initialization expression must be numeric 

Attempted to initialize a user-defined aggregate with something other than a number or using 
JULIAN-DATE clause within a SET statement that does not evaluate to a literal. 

! !! ERROR [62] Too many target items 

Number of items or output fields within LIST or FIND statement exceeds 400. 

December 1983 

B-5 



Brror Messages 

! !! ERROR [63] Too many PRINT statements 

N umber of items in Print List clauses exceeds 172. Processing of the ENFORM program is 
stopped and the contents of the internal table is reset to the values held at start of processing 
the statement which produced the error. . 

! !! ERROR [64] By-item not found 

Either the grouped item was not defined in a BY or BY DESC clause or the item was mis
spelled. 

!!! ERROR [65] An aggregate may not be used in a print-List cLause. 

Self-explanatory. 

!!! ERROR [67] FieLd type incompatibiLity 

Data types being compared must both be numeric or alphabetic. 

!!! ERROR [68] ILLegaL LINK fieLd 

Misspelled qualified field name or attempted to use a subscripted field where not allowed. 

!!! ERROR [68] ILLegaL LINK fieLd <SERVER-reLated faiLure on name) 

Attempted to use an ENFORM server (process file) improperly in a LINK OPTIONAL state
ment. For example, LINK A TO OPTIONAL B ... , A cannot be an ENFORlVl server because of 
an implementation restriction. 

! !! ERROR [69] Inva Lid range 

Incorrectly defined a range for a comparison pattern or THRU within a Logical Expression 
clause. 

!!! ERROR [70] Nonnumeric item in arithmetic expression 

Used alphanumeric item in an Arithmetic Expression clause. 

!!! ERROR [71] The tabLe containing LiteraLs, AS formats and headings Ihas overfLowed 

The literal table overflowed its maximum size of 5,915 words. 

!!! ERROR [72] InvaLid occurrence number 

Attempted to subscript past the end of a table. 

! !! ERROR [73] Too many or too few parameters 

Wrong number of parameters for JULIAN-DATE, TIMESTAMP-TIME, or TIMESTAMP
DA TE clauses. 

! !! ERROR [74] Too many PARAM decLarations 

N umber of parameters for the current ENFORM session exceeds 32. Clear some with the 
CLOSE statement. 

!!! ERROR [75] InvaLid occurrence specification. Not in range [1,64] 

User-defined table cannot contain more than 64 elements. 

December 1983 

B-6 



Error Messages 

! !! ERROR [76]' Vari ab le subsc ri pt i llega lin thi s context 

Subscript used must be an explicit numeric literal, not a field name. 

!!! ERROR [77] A destination name must be specified 

An item in a FIND statement needs to be assigned to an output field name, because the name
correspondence rules are insufficient here. 

! !! ERROR [78] The attribute UNIQUE may not be used with an OVER clause 

UNIQUE may n~t be used with aggregates computed OVER a grouped-item. 

! !! ERROR [79] TAB 0, SKIP 0 or FORM 0 not defined 

Number must be greater than zero. 

*** WARNING [80] Section name not found 

Misspelled or nonexistent section in the Edit file. 

!!! ERROR [81] The preceding text contains a syntactically incorrect element 

Check the preceding line. If OK, check the next few preceding lines. 

*** WARNING [82] Value is being truncated to one character 

The value for the Option Variable must be a single ASCII zliaracter. 

!!! ERROR [83] The type of the argument in the SET clause is invalid 

Assigning a string to a numeric or vice versa or assigning a non-integer numeric literal. 

! !! ERROR [84] Too many OVER clauses 

Number of AFTER CHANGE, BEFORE CHANGE, TOTAL, SUBTOTAL, CUM, or PCT 
clauses in the LIST statement exceeds 64. 

!!! ERROR [85] More than one PCT or CUM modifies list item 

Only one PCT or CUM clause allowed per item. 

!!! ERROR [86] Server QP process has failed repeatedly 

Either the primary or the backup process for the ENFORM query processor has failed more 
than 10 times. The QP terminates abnormally when this condition occurs and must be 
restarted (preferably in another CPU). 

*** WARNING [87] No RUN file has been named 

Specify the Edit file name. No Edit file name has been specified in this session by a previous 
?RUN or ?EDIT command. 

!!! ERROR [88] ILLegaL CHECKPOINT parameter 

The primary process for the ENFORM query processor executed a bad checkpoint call; prob
ably an internal error. The QP terminates abnormally when this condition occurs and must be 
restarted. 

December 1983 

B-7 



Error Messages 

!!! ERROR [89] Too many expressions in target list 

A LIST or FIND statement contains too many Arithmetic Expression or Logical Expression 
clauses. 

!!! ERROR [90] All field names referenced in a qualification 
aggregate must belong to the same record 

All fields in the expression being aggregated, the over-item, and the embedded WHERE 
clause must belong to the same record. 

*** WARNING [91] No report will be listed. The target list is composed of literals 
only 

An ENFORM report will not print alphanumeric and/or numeric literals only. Include at least 
one field name from an opened file description. 

! !! ERROR [92] At least one record has no LINK or a WHERE clause relating it to any 
other record 

You have entered query specifications that reference two or more record! descriptions. At 
least one of these record descriptions has no relationship (link) to any other record description 
in the query. ENFORM will not execute the query because a cross-product could result. Check 
your query specifications and add the necessary LINK statements or a WHERE clause. 

! !! ERROR [93] A user aggregate having an end-expression may not be used in this 
context 

A user aggregate declared with an end-expression cannot be used as a qualification aggregate 
OVER a grouped-item. 

! !! ERROR [94] Your dictionary is bad 

Refer to the Data Definition Language (DDL) Programming Manual. 

! !! ERROR [95] Missing dictionary 

Wrong subvolume or dictionary does not exist. 

!!! ERROR [96] Invalid dictionary subvolume name 

Internal error. 

!!! ERROR [98] Insufficient memory available to OPEN record description 

Internal error. 

!!! ERROR [99] Multiply defined SECTION name 

Section name may appear only once in a ?COMPILE, ?RUN, or ?SOURCE command. 

! !! ERROR [100] Undefined SET variable 

User-defined item or parameter used in a SET statement has not been defined yet. 

*** WARNING [101] The param table would overflow if updated to the SET value 

B-8 

Parameter table is full and the last value has not been added. Use the CLOSE statement to 
clear parameter values not needed. 

December 1983 



Error Messages 

!!! ERROR [102] FieLd referenced in TITLE statement not found in target List 

Usually an internal error with some unsupported item within a AFTER CHANGE, AT END, 
AT START, BEFORE CHANGE, FOOTING, SUBFOOTING, SUBTITLE, or TITLE state
ment or clause. 

!!! ERROR [103] InvaLid ENFORM version. RecompiLe to execute 

The compiled physical file was compiled by a version of ENFORM which is not compatible 
with the current EN FORM version. Compile it again. 

!!! ERROR [104] Output Line wouLd exceed buffer space. 

Divide the output line in the LIST statement using SKIP or FORM clauses. 

!!! ERROR [105] SUBTOTAL, TOTAL, CUM, and PCT onLy modify numericitems. 

Cannot use alphanumeric string items. Numeric strings are allowed. 

!!! ERROR [106] FieLd or expression must be numeric. 

Self-explanatory. 

!!! ERROR [107] Insufficient memory to buiLd query processor representation of your 
query 

Reduce the size of the requested ENFORM query. 

!!! ERROR [108] An aggregate may not be used in a SUPPRESS cLause 

Self-explanatory. 

!!! ERROR [109] An aggregate may not be used as a parameter to a function 

Self-explanatory. 

!!! ERROR [110] Insufficient memory avaiLabLe to produce the report. 

Try running ENFORM with the MEM option greater than 52. (Refer to the GUARDIAN 
Operating System Programming Manual.) 

!!! ERROR [112] ILLegaL dictionary description (SERVER-reLated faiLure on name). 

The dictionary description for an ENFORM server (process file) must specify a file type of 
UNSTRUCTURED or no file type at all. 

! !! ERROR [113] An aggregate may not be used in this context with PCT 

Only the aggregates SUM and COUNT can be used with PCT and they must be used alone (not in 
an expression). 

!!! ERROR [114] Incorrect repLy Length (SERVER-reLated faiLure on name) 

ENFORM server (process file) returned a reply with an unexpected length to the query pro
cessor. One way to get this error is to specify an odd data record byte size. 

!!! ERROR [115] Dictionary is outdated. RecompiLe with 000 DOL or Later 

As of release T9102C10, EN FORM accepts only dictionaries compiled with DDL Version DOO or 
later. Current dictionary has an old version number; recompile it with a new version of DDL. 

December 1983 

B-9 



Error Messages 

!!! ERROR [133] Invalid dictionary specification 

The dictionary name specified in either a DICTIONARY statement or a ?DICTIONARY com
mand is not a valid file name. 

! !! ERROR [136] Page count exceeded 

Your report has produced more pages than the number specified in the @PAGES option. 

!!! ERROR [137] Invalid date specified 

The data being formatted with an AS DATE clause is not a valid date. 

!!! ERROR [138] Invalid time specified 

The data being formatted with an AS TIME clause is not a valid time. 

~!! ERROR [143] Data type not supported 

The data type of a field in the DDL record description is not supported by ]~NFORM. (For ex
ample, ENFORM does not support COMPLEX, BINARY, or LOGICAL data types.) 

! !! ERROR [166] String literal must be terminated with a quotation mark 

Closing quotation mark is missing. Remember that a string literal cannot be continued from 
one source line to the next. 

!!! ERROR [167] String literal cannot contain more than 127 characters 

Self-explanatory. 

!!! ERROR [168] TOTAL may not be specified OVER a BY item 

TOTAL can only be specified OVER ALL. If you wish to compute a total over a BY item, 
specify SUBTOTAL instead. 

! !! ERROR [169] ?RUN command is ignored unless entered interactively 

The ?RUN command must be typed in at the terminal. 

!!! ERROR [170] Illegal value for this option variable 

Check the syntax of the Option Variable clauses in the ENFORM Reference Manual for the 
values allowed. 

! !! ERROR [172] Item on left side of assign operator must be a field in the FIND record 

The output-field-name in a FIND statement cannot be a field from an input record or the name 
of the FIND record itself. 

! !! ERROR [173] Value must be a single ASCII character, not IIAII or "_" 

This is a restriction on the value for the Option Variable @NEWLINE. 

! !! ERROR [174] Value is being truncated to 15 characters 

The value for this Option Variable must be a string literal containing 15 characters or less. 

!!! ERROR [175] A subscript range cannot be used in a field in a FIND statement 

Specify each item in the range individually. 

December 1983 

B-I0 



Error Messages 

! !! ERROR [176] Help item phrase must be less than 32 characters long. 

The phrase following the ?HELP keyword must be less than 32 characters long, including 
embedded blanks and the initial question mark (if present). 

!!! ERROR [177] Parameter is treated like a literal here. Its value cannot be changed. 

In certain cases, ENFORM treats a parameter exactly like a numeric literal. This means that 
you cannot change the value of the parameter at execution time, either with a Command Inter
preter PARAM command or an ENFORM SET statement. Refer to the PARAM statement in 
the ENFORM Reference Manual for more details. 

!!! ERROR [178] Record on right of link optional is linked back to record on left 

Within your query specifications, a link exists that illegally links the record description 
specified on the right side of a LINK OPTIONAL statement back to the record description 
specified on the left side of the LINK OPTIONAL statement. Refer to the ENFORM 
Reference Manual for more information about the rules involving the LINK' OPTIONAL 
statement. 

!!! ERROR [179] Record appears on the right side of more than one link optional 

Your query specifications contain one or more illegal links that violate rule 2 for the LINK OP
TIONAL statement. (Rule 2 states that a record description can appear only once on the right 
side of a LINK OPTIONAL statement. Refer to the ENFORM Reference Manual for informa
tion about the rules involving the LINK OPTIONAL statement. 

! !! ERROR (Attempt to divide by zero) 

An error occurred because an attempt was made to divide by a field containing a data value of 
zero. 

!!! ERROR (Cost tolerance exceeded): required cost = n 

,The strategy that the query processor will need to use to execute your query is greater than 
the value (n) you specified for the @COST-TOLERANCE optional variable. 

! !, ERROR (Messages not in expected order) 

The query processor received an unexpected message from the query compiler/report writer. 
If the query processor is running as a server in NonStop mode, this message indicates a 
failure in the primary process. Otherwise, this message indicates an error in the EN FORM 
software. 

!!! ERROR (SORT failure) sort-error-number [ *** FILE ERROR file-error-number ] 
[ on name ] 

An error occurred in the SORT process. For an explanation of the sort-error-number, refer to 
the Sort/Merge User's Guide 

Invalid response from the Query Processor 

The query compiler/report writer process has received an invalid response from the query 
processor. This message usually indicates an error in the EN FORM software. Report this 
message to your system manager. 

December 1983 

B-11 



Error Messages 

*** FILE ERROR TYPE MESSAGES 

File management errors are reported through ENFORM with ••• FILE ERROR ... messages. In the 
messages below, #/ile-error-number is a GUARDIAN file system error number. name is the 
physical file name. 

*** FILE ERROR (Abnormal termination of Query Processor) 

Self-explanatory. 

*** FILE ERROR (Communication with Query Processor failed) #file-errolr-number on name 

EN FORM lost communication with the query processor. 

*** FILE ERROR (CONTROL failure) #file-error-number on name 

A control failure occurred on the physical file named. 

*** FILE ERROR (CREATE failure) #file-error-number on name 

There was a problem creating the physical file. 

*** FILE ERROR (Dictionary file access failure) #file-error-number on name 

Refer to the Data Definition Language fDDL) Programming Manual. 

*** FILE ERROR (Illegal ENFORM execution file) on name 

The file must be a compiled query file created with the ?COMPILE comma.nd. 

*** FILE ERROR (Illegal list device) on name 

Listing device name is misspelled or does not exist. 

*** FILE ERROR (Illegal input device) on name 

The input file name or Edit file name is misspelled or does not exist. 

*** FILE ERROR (Not an Edit file) on name 

File named is not an Edit file. 

*** FILE ERROR (OPEN failure) #file-error-number on name 

There was a problem opening the physical file. 

*** FILE ERROR (POSITION failure) #file-error-number on name 

A position failure occurred on the physical file named. 

*** FILE ERROR (Process nonexistent, insufficient system resources or full queue) 
#file-error-number on name 

The server query processor named in the? ATT ACH command does not exist or cannot accept 
more users. 

*** FILE ERROR (PURGE failure) on name 

There was a problem purging the physical file. 

December 1983 

I B-12 



Error Messages 

*** FILE ERROR (READ faiLure> #fiLe-error-number on name 

EN FORM could not read the physical file named. 

*** FILE ERROR (RENAME faiLure> on name 

There was a problem renaming the physical file. 

*** FILE ERROR (SERVER-reLated faiLure> # number on name 

There was a failure related to the use of an ENFORM server (process file). The number and 
name are optional values supplied by the server instead of a standard GUARDIAN file error 
and file name. 

*** FILE ERROR (SETMODE faiLure> #fiLe-error-number on name 

A SETMODE error occurred on the physical file named. 

*** FILE ERROR (Specified ENFORM compiLe fiLe exists as edit or TAL object fiLe> 
on name 

The file must be a compiled query file created with an ENFORM ?COMPILE command. 

*** FILE ERROR (UnabLe to open ENFORM message tabLe #fiLe-error-number on name 

Self-explanatory. ENFORM terminates abnormally. Correct the problem with the message 
table and restart the session. 

*** FILE ERROR (UnabLe to position EN FORM message tabLe> #fiLe-error-number on name 

EN FORM is unable to use the message table file. The session continues but all messages con
tain "???" instead of text. 

*** FILE ERROR (UnabLe to read ENFORM message tabLe> #fiLe-error-number on name 

ENFORM is unable to use the message table file. The session continues but all messages con
tain "???" instead of text. 

*** FILE ERROR (WRITE faiLure> #fiLe-error-number on name 

A write error occurred on the physical file named. If error 45 appears on the target file (where 
name appears as #nnnn), the target file has overflowed at least twice. See Section 5 for infor
mation about controlling the size of the target file. 

ENFORM TRAP MESSAGES 

ENFORM TRAP: nnn S: xxxxxx P: xxxxxx E: xxxxxx L: xxxxxx 

The ENFORM Compiler/Report Writer process has failed. nnn is the trap number as 
described in the GUARDIAN Operating System Programming Manual. xxxxxx are values in 
the hardware registers. 

ENFORM QP TRAP: nnn S: xxxxxx P: xxxxxx E: xxxxxx L: xxxxxx 

The ENFORM Query Processor process has failed. nnn is the trap number as described in the 
GUARDIAN Operating System Programming Manual. xxxxxx are values in the hardware 
registers. 

December 1983 

B-13 



Error Messages 

BUILDMK ERROR MESSAGES 

*** ERROR A ? may only appear as the first char in the first word of a HELP phrase 

A question mark can only appear as the first character in the first word of the phase th~t iden
tifies a HELP section or subsection. 

*** ERROR Edit file contains ?HELP section but no ?MESSAGES section 

The Edit file version of the message table must contain a ?MESSAGES :section if a ?HELP 
section is included. 

*** ERROR Edit file name parameter is missing 

The Edit file name parameter of the BUILDMK command is missing. Re-issue the BUILDMK 
command and include the Edit file name parameter. 

*** ERROR Edit file contains ?MESSAGES section but no ?HELP section 

The Edit file version of the message table must contain a ?H:ELP section if a ?MESSAGES 
section is included. 

*** ERROR Edit file must not be empty 

The Edit file specified on the BUILDMK command is empty. Specify the correct Edit file and 
re-issue the BUILDMK command. 

*** ERROR First parameter in command line must be an edit file name 

The first parameter specified for the BUILDMK command must be the name of an Edit file 
containing the Edit version of the message table. 

*** ERROR Identifier contains an illegal character 

An identifier specified in the Edit file version of the message table contains an illegal 
character. 

*** ERROR Identifier must begin with an alphabetic character or A 

An identifier specified in the Edit file version of the message table must begin with either an 
alphabetic character or a circumflex. 

*** ERROR Identifier must contain less than 32 characters. 

Self-explanatory. 

*** ERROR Identifier must not end with a hyphen 

An identifer specified in the Edit file version of the message table must not end with a 
hyphen. 

*** ERROR In a reserved word redefinition, the new reserved word is missing 

Supply the new reserved word. 

*** ERROR In a reserved word redefinition, the old reserved word is missing 

Supply the old reserved word. 

December 1983 

I B-14 



Error Messages 

*** ERROR Invalid edit file name was specified 

An invalid Edit file name was specified in the BUILDMK command. Correct the Edit file name 
and reissue the BUILDMK command. 

*** ERROR Invalid key-sequenced file name was specified 

An invalid name was specified for the key-sequenced file parameter of the BUILDMK com
mand. Correct the key-sequenced file name and reissue the BUILDMK command. 

*** ERROR Key-sequenced file must be empty. 

The key-sequenced file that is to contain the message table must be empty before you run 
BUILDMK. 

*** ERROR Key-sequenced file name parameter is missing 

The name of the key-sequenced file is missing from the BUILDMK command. Reissue the 
BUILDMK command and include the name of the key-sequenced file. 

*** ERROR Primary key for key-sequenc ed file must be at offset 0 and have length 34 

Self-explanatory. 

*** ERROR Second parameter in command line must be a key-sequenced file name 

The second parameter of the BUILDMK command must be the name of a key-sequenced file. 

*** ERROR ?HELP must appear in columns 1-5 and all other columns must be blank 

The characters ?HELP must appear in columns 1 thru 5 of the first line of the ?HELP section. 
All other columns on this line must contain blanks. 

*** ERROR ?HELP subsection must contain at least one subsection 

Self-explanatory. 

*** ERROR ?MESSAGES must appear in columns 1-9 and all other columns must be blank 

The characters ?MESSAGES must appear in columns 1 thru 9 of the first line of the 
?MESSAGES section. All other columns on this line must contain blanks. 

*** ERROR ?MESSAGES section must contain at least one line of text 

Self-explanatory. 

*** ERROR ?VOCABULARY must appear in columns 1-11 a nd all other columns must be blank 

The characters ?VOCABULARY must appear in columns 1 thru 11 of the first line of the 
?VOCABULARY section. All other columns on this line must contain blanks. 

*** ERROR ?VOCABULARY section must redefine at least one reserved word 

Self-explanatory. 

*** FILE ERROR (EDITREAD read error) on name 

The indicated error occurred on the specified file during the execution of BUILDMK. 

*** FILE ERROR (EDITREAD sequence error) on name 

The indicated error occurred on the specified file during the execution of BUILDMK. 
December 1983 

B-15 I 



Error Messages 

*** FILE ERROR (EDITREAD text file format error) on name 

The indicated error occurred on the specified file during the execution of BUILDMK. 

*** FILE ERROR (EDITREADINIT I/O error) on name 

The indicated error occurred on the specified file during the execution of BUILDMK. 

*** FILE ERROR (OPEN failure) #file-error-number on name 

The indicated error occurred on the specified file during the execution of BUILDMK. 

*** FILE ERROR (POSITION failure) #file-error-number on name 

The indicated error occurred on the specified file during the execution of BUILDMK. 

*** FILE ERROR (READ failure) #file-error-number on name 

The indicated error occurred on the specified file during the execution of BUILDMK. 

*** FILE ERROR (WRITE failure) #file-error-number on name 

The indicated error occurred on the specified file during the execution of BUILDMK. 

December 1983 

I B-16 



APPENDIX C 

SAMPLE DATA BASE 

All of the examples in this guide use the sample relational data base in this appendix. Refer to the 
Data Definition Language (DDL) Programming Manual for a more complete description of the 
structure of a data base. This sample data base has two subsections: order entry records and 
employee records. The order entry records contain information on the parts in stock and orders for 
parts. The employee records contain information on the personnel and the organization of the 
company. 

The names of the sample data base records and their contents are as follows: 

• Order entry records 

order 
customer 
fromsup 
ode tail 
parts 
supplier 

• Employee records 

region 
branch 
employee 

invoice for parts 
customer information 
purchase orders for parts from supplier 
detailed invoice for parts 
inventory of parts in stock 
supplier information 

regional information 
branch information 
employee information 

Each file has designated key' fields on which different files may be linked. Figure C-1 indicates the 
relationships between the files by arrows. 

December 1983 

C-1 



Sample Data Base 

/ 

\.. 

ORDER ENTRY RECORDS 

ORDER 
RECORD 

----... ordernum 
orderdate 
del date 

~ salesman 
custnum ... 

ODETAIL 
RECORD 

----... ordernum 
partnum -
quantity 

EMPLOYEE RECORDS 
REGION 
RECORD 

regnum {.~ 
regname 
location 
manager 

/ \..,.. 

~ 

-.. 

. 

CUSTOMER 
RECORD 

custnum 
custname 
address 
city 
state 

PARTS 
RECORD 

partnum 
part name 
inventory 
location 
price 

EMPLOYEE 
RECORD 

empnum 
empname 
regnum 
branchnum 
job 
age 
salary 
vacation 

r--

.. 

--

FROMSUP 
RECOHD 

-'" partnum 
--... suppnum 

partcost 

SUPPLIER 
RECORD 

~, suppnum 
suppname 
address 
city 
state 

BRANCH 
RECORD 

re~lnum ~ 

branchnurn ... 
branchnarne 
manager 

Figure C-1. Diagram of Sample Relational Data Base 

December 1983 

C-2 

.1.1 .................... ________________________________________________ . _______ . _____________ __ 



Sample Data Base 

The dictionary for the sample data base describes the records. It serves as a template to ENFORM 
for retrieval of records. Figure C-2 is a source listing of the dictionary. 

?DICT ! 
?FUP ddlfup! 

DEF partnum PIC "9(4)" HEADING "Part/Number". 
DEF empnum PIC "9(4)". 
DEF custnum PIC "9(4)". 

*===================== order entry records ======================= 
RECORD order. 

FILE IS "$mkt.sample.order" KEY-SEQUENCED. 
02 ordernum; PIC "999". 
02 orderdate. 

05 omonth; PIC "99". 
05 oday; PIC "99". 
05 oyear; PIC "99". 

02 deldate. 
05 dmonth; PIC "99". 
05 dday; PIC "99". 
05 dyear; PIC "99". 

02 salesman; TYPE empnum. 
02 custnum, TYPE * 

KEY IS ordernum. 
KEY "sn" IS salesman. 
KEY "cn" IS custnum. 
END 

RECORD customer. 
FILE IS "$mtk.sample.customer" KEY-SEQUENCED. 

02 custnum; TYPE *. 
02 custname; PIC "X(18)". 
02 address; PIC "X(22)". 
02 city; PIC "X(14)". 
02 state; PIC "X(12)". 

KEY IS custnum. 
KEY "cn" IS custnum. 
END 

RECORD fromsup. 
FILE IS "$mkt.sample.fromsup" 

02 primkey. 
05 partnum; 
05 suppnum; 

02 partcost; 
KEY IS primkey. 
END 

TYPE *. 
PIC "999". 
PIC "999999V99"; 

KEY-SEQUENCED. 

DISPLAY "M<ZZZ,ZZ9.99>". 

Figure C-2. Dictionary Source Listing of Sample Relational Data Base 

C-3 



Sample Data Base 

RECORD odetail. 
FILE IS "$mkt.sample.odetail" 

02 primkey. 
05 ordernum; 
05 partnum; 

02 quantity; 
KEY IS primkey. 
END 

RECORD parts. 

PIC "999". 
TYPE *. 
PIC "999". 

FILE IS 
02 partnum; 
02 partname; 

"$mkt.sample.parts" 
TYPE *. 

02 inventory; 
02 location; 
02 price; 

KEY IS partnum. 
KEY "pn" IS partname. 
END 

RECORD supplier. 

PIC "X(18)". 
PIC "999S". 
PIC "XXX". 
PIC "999999V99". 

FILE IS "$mkt.sample.supplier" 
02 suppnum; PIC "999". 
02 suppname; PIC "X(18)". 
02 address; PIC "X(22)". 
02 city; PIC "X(14)". 
02 state; PIC "X(12)". 

KEY IS suppnum. 
KEY "su" IS suppname. 
END 

KEY-SEQUENCED. 

KEY-SEQUENCED. 

KEY-SEQUENCED. 

Figure C-2. Dictionary Source Listing of Sample Relational Data Base (Continued) 

C-4 

111>.1 ___________________________ 1 _________________________ _ 



*===================== employee records ========================== 
RECORD region. 

FILE IS "$mkt.sample.region" KEY-SEQUENCED. 
02 regnumi PIC "99". 
02 regname; PI C "X (12)". 
02 location; PIC "X(14)". 
02 manager; PIC "9999". 

KEY IS regnum. 
KEY "rn" IS regname. 
END 

RECORD branch. 
FILE IS "$mkt.sample.branch" KEY-SEQUENCED. 

02 primkey. 
05 regnum; PIC "99". 
05 branchnum; PIC "99". 

02 branchname; PIC "X(14)". 
02 manager; TYPE empnum. 

KEY IS primkey. 
END 

RECORD employee. 
FILE IS "$mkt.sample.emj:Hoyee" KEY-SEQUENCED. 

02 empnum; TYPE *. 
02 empname; PIC "X(18)". 
02 dept. 

05 regnum; 
05 branchnum; 

02 job; 
02 age; 
02 salary; 
02 vacation; 

KEY IS empnum. 
KEY "en" IS empname. 
KEY "dp" IS dept. 
END 

PIC "99". 
PIC "99". 
PIC "X(12)". 
PIC "99". 
PIC "999999". 
PIC "99". 

Sample Data Base 

Figure C-2. Dictionary Source Listing of Sample Relational Data Base (Continued) 

C-5 



Sample Data Base 

Figure C-3 shows the record occurrences associated with each of the record types. 

ORDER Records: 

ORDERNUM OMONTH ODAY OYEAR DMONTH DDAY DYEAR SALESMAN CUSTNUM 
-------- -------- ---------

21 1 10 78 4 10 78 205 1234 
25 1 23 78 6 15 78 212 7'777 
30 2 6 78 7 1 78 222 926 
32 2 17 78 7 20 78 204 21 
35 3 17 78 8 10 78 231 543 
38 3 19 78 8 20 78 218 123 
41 3 27 78 9 1 78 207 7'654 
45 4 20 78 9 15 78 212 324 
48 5 12 78 10 10 78 225 3,333 
51 6 1 78 10 20 78 210 143 
66 7 9 78 11 " 78 205 3,210 

122 7 21 78 12 15 78 221 5;635 

CUSTOMER Records: 

CUSTNUM CUSTNAME ADDRESS CITY STATE 
------- ------------------ ---------------------- --------------, ----,-----

21 CENTRAL UNIVERSITY UNIVERSITY WAY PHILADELPHIA PENN 
123 BROWN MEDICAL CO 100 CALIFORNIA STREET SAN FRANCISCO CALIFORNIA 
143 STEVENS SUPPLY 2020 HARRIS STREET DENVER COLORADO 
324 PREMIER INSURANCE 3300 WARBASH LUBBOCK TEXAS 
543 FRESNO STATE BANK 2300 BROWN BLVD FRESNO CALIFORNIA 
926 METTALL-AG. 12 WAGNERRING FRANKFURT GERMANY 

1234 DATASPEED 300 SAN GABRIEL WAY NEW YORK NEW YORK 
3210 BEST FOODS MARKET 3333 PLELPS STREET LINCOLN NEBRASKA 
3333 DEUTSCHE STAHL SIEMENS-STRASSE DUISBERG GERMANY 
5635 VEREINIGTE CHEMIE 45 FRANKENSTRASSE MUENCHEN GERMANY 
7654 MOTOR DISTRIBUTING 2345 FIRST STREET CHICAGO ILLINOIS 
7777 SLEEPWELL HOTELS 9000 PETERS AVENUE DALLAS TEXAS 

Figure C-3. Listing of Records in Sample Relational Data Base 

C-6 

li~IIII ____ --------------------·------_---'--------



FROMSUP Records: 

Part 
Number SUPPNUM 

-------

212 1 
244 1 

1403 1 
2001 1 
2002 1 

6401 2 
6401 3 
6402 2 
6402 3 
6603 2 
7102 10 
7301 1 

ODETAIL Records: 

ORDERNUM 
--------

21 
21 
21 
21 
25 
25 
25 
25 

122 
122 
122 
122 
122 
122 

Part 
Number 

244 
2001 
2403 
4103 

244 
5103 
6301 
6402 

3103 
3201 
4103 
5103 
7102 
7301 

PART COST 
---------

92000.00 
87000.00 
22000.00 
1500.00 
1000.00 

1200.00 
1100.00 
1100.00 
2600.00 
2600.00 
6000.00 
2400.00 

QUANTITY 
--------

1 
2 
2 
2 
1 
1 
2 

10 

20 
3 

40 
3 
7 
8 

Sample Data Base 

Figure C-3. Listing of Records in Sample Relational Data Base (Continued) 

C-7 



Sample Data Base 

PARTS Records: 

Part 
Number PARTNAME INVENTORY LOCATION PRICE 

------------------ --------- -------- ---------
212 SYSTEM 192KB CORE 7 J87 92000.00 
244 SYSTEM 192KB SEMI 3 B78 87000.00 

1403 PROC 96KB SEMI 21 A21 22000.00 
2001 DECIMAL ARITH -100 X10 1500.00 
2002 ENSCRIBE MICRO 200 X11 1000.00 

5502 LP 300 LPM 6 L98- 11500.00 
5504 LP 900 LPM -1 L88 21000.00 
5505 LP 1500 LPM 0 L78 42000.00 
6201 SYNC CONTROLLER -16 A34 5800.00 
6301 ASYNC CONTROLLER 21 A35 2900.00 
6302 ASYNC EXTENSION 34 A36 4300.00 
6401 TERM CRT CH AR 54 V67 1500.00 
6402 TERM CRT PAGE -32 V68 1500.00 
6603 TERM HARD COpy 40 V66 3200.00 
7102 CABINET LARGE; 20 F76 68000.05 
7301 POWER MODULE 32 H76 2400.06 

SUPPLIER Records: 

SUPPNUM SUPPNAME ADDRESS CITY STATE 
-------- ------------------ ---------------------- ------------_.- ---------

1 TANDEM COMPUTERS 19333 VALLCO PARKWAY CUPERTINO CALIFORNIA 
2 DATA TERMINAL 2000 BAKER STREET IRVINE CALIFORNIA 
3 DISPLAY INC 7600 EMERSON PALO ALTO CALIFORNIA 
6 INFOMATION STORAGE 1000 INDUSTRY DRIVE LEXINGTON MASS 
8 MAGNETICS CORP 7777 FOUNTAIN WAY SEATTLE WASHINGTON 

10 STEELWORK INC 6000 LINCOLN LANE SUNNYVALE CALI FORNIA 
15 DATADRIVE 100 MACARTHUR DALLAS TEXAS 

Figure C-3. Listing of Records in Sample Relational Data Base (Continued) 

C-8 



Sample Data Base 

REGION Records: 

REGNUM REGNAME LOCATION MANAGER 
------------ -------------- -------

1 EAST NEW YORK 29 
2 CENTRAL CHICAGO 104 
3 WEST DALLAS 72 
4 CANADA TORONTO 343 
5 GERMANY FRANKFURT 43 
6 ENGLAND LONDON 87 

99 HEADQUARTERS CUPERTINO 1 

BRANCH Records: 

REGNUM BRANCHNUM BRANCHNAME MANAGER 
--------- -------------- -------

1 1 NEW YORK 75 
1 2 NEW JERSEY 129 
2 1 CHICAGO 23 
2 2 HOUSTON 109 
2 3 ST.LOUIS 111 
3 1 DALLAS 321 
3 2 LOS ANGELES 337 
3 3 SAN FRANCISCO 89 
4 1 TORONTO 178 
4 2 VAN COVER 93 
5 1 FRANKFURT 180 
5 2 DUESSELDORF 39 
5 3 MUENCHEN 32 
6 1 LONDON 65 

99 1 CUPERTINO 88 

Figure C-3. Listing of Records in Sample Relational Data Base (Continued) 

e-9 



Sample Data Base 

EMPLOYEE Records: 

EMPNUM EMPNAME REGNUM BRANCHNUM JOB AGE SALARY VACATION 
----------------- --------- ------------- --------

1 ROGER GREEN 99 1 MANAGER 37 3i9500 2 
23 JERRY HOWARD 2 1 MANAGER 34 37000 10 
29 JACK RAYMOND 1 1 MANAGER 39 36000 1 
32 THOMAS RUDLOFF 5 3 MANAGER 43 38000 0 

201 JIM HERMAN 1 1 SALESMAN 27 19000 13 
202 LARRY CLARK 1 1 SYS .-ANAL. 30 25000 7 
203 KATHRYN DAY 1 1 SECRETARY 24 12000 12 
204 TOM HALL 1 1 SALESMAN 35 26000 0 
205 GEORGE FORSTER 1 2 SALESMAN 39 30000 4 
206 DAVE FISHER 2 1 SALESMAN 32 25000 7 
207 MARK FOLEY 2 1 SALESMAN 27 23000 10 

Figure C·3. Listing of Records in Sample Relational Data Base (Continued) 

C-IO 

Ji _____________________ _ 



APPENDIX D 

EXAMPLE ENFORM PROGRAMS 

This appendix contains complete programs illustrating various features of the ENFORM language. 
All of the programs use the sample relational data base shown in Appendix C. 

The following example illustrates two ways of specifying a linking relationship between record 
descriptions. The first program contains a LINK statement; the second program contains a 
WHERE clause. They produce identical reports. Notice that partnum requires qualification because 
it appears in both odetail and parts. 

The BY clause groups the records on ordernum first, then on partnum. 

The AS clause uses the mask format for inventory and price. The format for inventory uses the 
decorations feature to print OUT for out of stock and to pririt blanks for in stock. 

The WHERE clause restricts the report to records where ordernum is less than 30. 

?DICTIONARY $mkt.dictry 
OPEN odetail, parts; 
LINK odetail TO parts VIA partnum 
LIST BY ordernum, 

BY odetail.partnum, 
partname, 
inventory AS /I [MA1 'OUT ',PA1' 
price AS M<ZZZZZZ.>, 

WHERE ordernum LT 30; 

?DICTIONARY $mkt.dictry 
OPEN odetail, parts; 
LIST BY ordernum, 

BY parts.partnum, 
partname, 

'] M<ZZZZZ9>/1, 

inventory AS "[MA1' OUT " PA1' '] M<ZZZZZ9>/1, 
price AS M<ZZZZZZ.>, 

WHERE odetail.partnum EQUAL parts.partnum 
AND ordernum LT 30; 

D-l 



Example ENFORM Programs 

Report: 

Part 
ORDERNUM Number 

21 244 
2001 
2403 
4103 

25 244 
5103 
6301 
6402 

PARTNAME 

SYSTEM 192KB SEMI 
DECIMAL ARITH 
MEM MOD 96K MOS 
DISK 160MB 
SYSTEM 192KB SEMI 
MAG TAPE DR 8/16 
ASYNC CONTROLLER 
TERM CRT PAGE 

INVENTORY PRICE 

3 87000. 
OUT 100 1500. 

12 9600. 
7 24500. 
3 87000. 
8 8000. 

OUT 21 2900. 
OUT 32 1500. 

The following program uses the CENrrER clause to center ordernum. Notice that the formatted 
width "999", as specified in the dictionary, is used for centering instead of the value of a field for the 
report line. 

The AS clause formats orderdate, using the mask format and symbol substitution modifier to 
substitute X for the 9 symbol. 

?DICTIONARY $mkt.dictry 
OPEN order; 
LIST ordernum CENTER, 

orderdate AS "[SS'9X'] M<ZX XX, 19XX>"; 

Report: 

ORDERNUM ORDERDATE 

21 1 10, 1978 
25 1 23, 1978 
30 2 06, 1978 
32 2 17, 1978 
35 3 03, 1978 
38 3 19, 1978 
41 3 27, 1978 
45 4 20, 1978 
51 6 01, 1978 
66 7 09, 1978 

122 7 21, 1978 

rrhe following program resets the Option Variable @SUBTOTAL-LABEL. The new value appears 
in place of the default value asterisk (*). 

'rhree record descriptions are linked, creating new logical record occurrenees. The BY clause 
groups the records on the value of orde'rnum. Notice that ordernum requires qualification, because 
it appears in both parts and odetail. 

The HEADING clause overrides the default quantity heading, creating a narrower column width in 
the report. 

A new report item is created with the arithmetic expression (price * quantity). A subtotal is printed 
for the new item, assuming OVER order.ordernum. 

The CUM OVER clause prints the cumulative values of the arithmetic expression for each group. 

D-2 



Example ENFORM Programs 

The WHERE clause restricts the records that contribute to the report. 

?DICTIONARY $mkt.dictry 
SET @SUBTOTAL-LABEL TO "SUBTOTAL"; 
OPEN order, odetail, parts; 
LINK order TO odetail VIA ordernum, 

parts TO odetail VIA partnum; 
LIST BY order.ordernum, 

parts.partnum AS M<9 999>, 
quantity HEADING "QTY", 
price, 
(price * quantity) AS M<Z,ZZZ,999.> 

HEADING "PRICE * QTY", SUBTOTAL, TOTAL, 
(price * quantity) 

CUM OVER order.ordernum AS M<Z,ZZZ,999.> 
HEADING "ACCUMULATION/BY ORDER", 

WHERE order.ordernum > 60; 

Report: 

Part 
ORDERNUM Number QTY 

66 o 244 
1 403 
2 001 
2 403 
3 102 
3 302 
4 101 
4 102 
4 103 
5 101 
5 502 
5 504 
6 201 
6 301 
6 302 
6 401 
6 402 
7 102 
7 301 

SUBTOTAL 

122 1 403 
2 002 
2 403 
3 103 
3 201 
4 103 
5 103 
7 102 
7 301 

SUBTOTAL 

1 
3 
5 
8 
3 
3 
1 
6 
2 
1 
8 
3 
1 
4 
5 
6 

22 
1 
2 

10 
10 
30 
20 

3 
40 

3 
7 
8 

PRICE 

87000.00 
22000.00 
1500.00 
9600.00 
4800.00 
2800.00 
8000.00 

14500.00 
24500.00 
7400.00 

11500.00 
21000.00 

5800.00 
2900.00 
4300.00 
1500.00 
1500.00 

68000.05 
2400.06 

22000.00 
1000.00 
9600.00 

10500.00 
4800.00 

24500.00 
8000.00 

68000.05 
2400.06 

PRICE * QTY 

87,000. 
66,000. 
7,500. 

76,800. 
14,400. 
8,400. 
8,000. 

87,000. 
49,000. 
7,400. 

92,000. 
63,000. 

5,800. 
11,600. 
21,500. 
9,000. 

33,000. 
68,000. 
4,800. 

-----------
720,200. 

220,000. 
10,000. 

288,000. 
210,000. 
14,400. 

980,000. 
24,000. 

476,000. 
19,200. 

-----------
2,241,601 . 

-----------
-----------

2,961,801. 

ACCUMULATION 
BY ORDER 

87,000. 
153,000. 
160,500. 
237,300. 
251,700. 
260,100. 
268,100. 
355,100. 
404,100. 
411,500. 
503,500. 
566,500. 
572,300. 
583,900. 
605,400. 
614,400. 
647,400. 
715,400. 
720,200. 

220,000. 
230,000. 
518,000. 
728,000. 
742,400. 

1,722,400. 
1,746,400. 
2,222,400. 
2,241,601. 

D-3 



illl 

Example ENFORM Programs 

The following program shows different ways of formatting dates. Notice tha1~ the JULIAN-DATE 
clause is used to convert the date to internal format before using the AS DATg clause. Deldate uses 
the default heading; the dates converted by the JULIAN-DATE clause use the HEADING clause. 
The CENTER clause centers the day of the week. The WHERE clause restricts the records that 
contribute to the report. 

?DICTIONARY $mkt.dictry 
OPEN order; 
LIST custnum, 

deldate AS M<99/99/99>, 
JULIAN-DATE«1900 + dyear),dmonth,dday) AS DATE "DA3" 

HEADING "DAY OF WK" CENTER, 
JULIAN-DATE«1900 + dyear),dmonth,dday) 

AS DATE "MA DAO, Y4" 
HEADING "WRITTEN/DATE", 

WHERE custnum < 1000; 

Report: 

Customer WRITTEN 
Number DELDATE DAY OF WK DATE 

21 07/20/78 THU JULY TWENTIETH, 1978 
123 08/20/78 SUN AUGUST TWENTIETH, 1978 
143 10/20/78 FRI OCTOBER TWENTIETH, 1978 
324 09/15/78 FRI SEPTEMBER FIFTEENTH, 1978 
543 08/10/78 THU AUGUST TENTH, 1978 
926 07/01/78 SAT JULY FIRST, 1978 

The following program resets the Option Variable @SUBTOTAL-LABEL. The new value appears 
in place of the default value asterisk (*). 

Three record descriptions are linked together, creating a new logical record description. The BY 
clause groups the records on the value of ordernum. Notice that ordernum and partnum require 
qualification, because they appear in more than one record description. 

The AS clause uses the mask format to print partnum in two columns. The HE:ADING clause over
rides the default QUANTITY heading, creating a narrower column width in the report. 

A new report item is created with the arithmetic expression (price * quantity). A subtotal is 
printed for the new report item, assuming OVER order.ordernum. Notice that asterisks are printed 
for the second subtotal, because the calculated value 2,241,600.83 exceeds the field width in the 
mask format. The mask format should be increased at least one more digit. 

'fhe WHERE clause restricts the records that contribute to the report. 

D-4 



Example ENFORM Programs 

The TITLE and SUBTITLE clauses print information at the top of the report. The subtitle is 
centered within the report. The AT START PRINT, AT END PRINT, BEFORE CHANGE, and 
AFTER CHANGE clauses print information within the report. 

?DICTIONARY $mkt.dictry 
SET @SUBTOTAL-LABEL TO "SUBTOTAL"; 
OPEN order, odetaiL, parts; 
LINK order TO odetaiL VIA ordernum; 
LINK parts TO odetaiL VIA partnum; 
LIST BY order.ordernum, 

parts.partnum AS M<9 999>, 
quantity HEADING "QTY" , 
price, 
(price * quantity) AS M<ZZZ,999.99> 

HEADING "PRICE * QTY", SUBTOTAL, TOTAL, 
WHERE order.ordernum > 51, 
TITLE "SUMMARY OF ORDERS" TAB 34 @DATE AS DATE * SKIP 2, 
SUBTITLE "RUN AT - " @TIME AS TIME * CENTER, 
AT START PRINT "BEGIN =========", 
AT END PRINT "END =========", 
BEFORE CHANGE ON order.ordernum PRINT "=== BEFORE CHANGE ===", 
AFTER CHANGE ON order.ordernum PRINT "=== AFTER CHANGE ==="; 

D-5 



Example ENFORM Programs 

Report: 

SUMMARY OF ORDERS 12/05/79 

RUN AT - 02:33:15 PM 

BEGIN ========= 
Part 

ORDERNUM Number QTY PRICE PRICE * QTY 
-------- --------- ------------
--- AFTER CHANGE === 

66 o 244 1 87000.00 87,000.00 
1 403 3 22000.00 66,000.00 
2 001 5 1500.00 7,500.00 
2 403 8 9600.00 76,800.00 
3 102 3 4800.00 14,400.00 
3 302 3 2800.00 8,400.00 

6 402 22 1500.00 33,000.00 
7 102 1 68000.05 68,000.05 
7 301 2 2400.06 4,800.12 

-----------
SUBTOTAL 720,200.17 

=== BEFORE CHANGE === 
=== AFTER CHANGE ---

122 1 403 10 22000.00 220,000.00 
2 002 10 1000.00 10,000.00 
2 403 30 9600.00 288,000.00 
3 103 20 10500.00 210,000.00 
3 201 3 4800.00 14,400.00 
4 103 40 24500.00 980,000.00 
5 103 3 8000.00 24,000.00 
7 102 7 68000.05 476,000.35 
7 301 8 2400.06 19,200.48 

-----------
SUBTOTAL ********** 

=== BEFORE CHANGE ---
------------
------------
********** 

END ========= 
The following program creates two user variables, invcount and counter. These user variables are 
both assigned values in the LIST statement. 

Three record descriptions are linked together, creating new logical records. The BY dause groups 
the records on the value of ordernum. Notice that ordernum and partnum require qualification, 
because they appear in more than one record description. 

The AS clause uses the mask format to print partnum in two columns. The HEADING clause over
rides the default QUANTITY and INVENTORY headings, creating narrower column widths for 
those fields. 

D-6 

*.II ........................................ ________ i _________________________ • ___________________ -----



Example ENFORM Programs 

The NOPRINT clause suppresses the printing of invcount and counter. These user variables are 
calculated and used in the IF/THEN/ ELSE expression. The IF/THEN/ELSE expression deter
mines which value is be printed in the l~st column. The HEADING clause specifies the column title. 

The WHERE clause restricts the records that contribute to the report. 

?DICTIONARY $mkt.dictry 
DECLARE invcount INTERNAL 114; 
DECLARE counter INTERNAL 112; 
OPEN order, odetail, parts; 
LINK order TO odetail VIA ordernum, 

parts TO odetail VIA partnum; 
LIST BY order.ordernum, 

parts.partnum AS M<9 999>, 
quantity HEADING "QTY", 
inventory HEADING "INV", 
invcount := (inventory + quantity) NOPRINT, 
counter := (invcount + 1) NOPRINT, 
(IF counter> 0 THEN counter ELSE BLANK) TOTAL 

HEADING "INV + QTY + 1/(OMIT NEGATIVES)", 
WHERE order.ordernum > 60; 

Report: 

Part INV + QTY + 1 
ORDERNUM Number QTY INV (OMIT NEGATIVES) 
-------- ----------------

66 o 244 1 3 5 
1 403 3 21 25 
2 001 5 -100 
2 403 8 12 21 
3 102 3 12 16 

... .. . 
6 201 1 -16 
6 301 4 -21 
6 302 5 34 40 
6 401 6 54 61 
6 402 22 -32 
7 102 1 20 22 
7 301 2 32 35 

122 1 403 10 21 32 
2 002 10 200 211 
2 403 30 12 43 
3 103 20 -4 17 
3 201 3 6 10 
4 103 40 7 48 
5 103 3 8 12 
7 102 7 20 28 
7 301 8 32 41 

----------------
----------------

748 

D-7 



Example ENFORM Programs 

The following program uses the AS clause mask format for price and partnum. The CENTER clause 
centers inventory. Notice that the formatted width 999S, as specified in the dictionary, is used for 
centering the values of inventory instead of the specific v(llue of the field. The IF/THEN/ELSE 
clause determines which value is printed in the last column. The HEADING clause specifies the col
umn title. The TOTAL clause sums up the last two columns. 

The WHERE clause restricts records from contributing to the report when either of the conditions 
specified in its logical expression tests true. 

The SUPPRESS clause limits the printing of records for all items out of stock, but does not limit 
these records from contributing to the totals. In this example the inventory total is negative. 

?DICTIONARY $mkt.dictry 
OPEN parts; 
LIST location, 

price AS M<ZZZZZZ.> 
partnum AS M<9 999>, 
partname, 
inventory TOTAL CENTER, 
(IF inventory GE 0 THEN inventory ELSE BLANK) TOTAL 

HEADING "AVAIL/STOCK" AS M<ZZZ> CENTER, 
WHERE (partname BEGINS WITH "SY") 

OR (partname BEGINS WITH "LP"), 
SUPPRESS inventory EQUAL -999 THRU 0; 

Report: 

Part 
LOCATION PRICE Number 

J87 
B78 
L98 

92000. 
87000. 
11500. 

o 212 
o 244 
5 502 

PARTNAME 

SYSTEM 192KB CORE 
SYSTEM 192KB SEMI 
LP 300 LPM 

AVAIL 
INVENTORY STOCK 

7 
3 
6 

7 
3 
6 

-1 16 

The following program uses the HEADING clause to indicate the fourth column of the heading. The 
WHERE clause uses the pattern match logical expression to select only records with .a blank value 
in column four of branch. 

?DICTIONARY $mkt.dictry 
OPEN branch; 
LIST branchnum, 

branchname HEADING "BRANCH NAME/ ... * ........... ", 
WHERE (branchname EQUAL [ 3 /I " -])i 

Report: 

D-8 

BRANCH NAME 
BRANCHNUM ... * .......... . 

1 NEW YORK 
2 NEW JERSEY 
3 ST. LOUIS 
2 LOS ANGELES 
3 SAN FRANCISCO 

!H'.' __________________________ • __________ _ 



Example ENFORM Programs 

The following program resets the Option Variable @SUBTOTAL-LABEL. The new value appears in 
place of the default value asterisk (*). 

Three record descriptions are linked together, creating new logical records. The BY clause groups 
the records on the value of ordernum. Notice that ordernum and partnum require qualification, 
because they appear in more than one record description. 

The AS clause uses the mask format to print partnum with a hyphen. The HEADING clause over
rides the default QUANTITY heading, creating a narrower column width in the report. 

A new report item is created with the arithmetic expression (price * quantity). A subtotal is printed 
for the new item, assuming OVER order.ordernum. 

The MAX aggregate prints a single maximum value of the arithmetic expression for each group. 
The WHERE clause restricts the report to records where ordernum is between 50 and 70. 

?DICTIONARY $mkt.dictry 
SET @SUBTOTAL-LABEL TO ,"SUBTOTAL"; 
OPEN order, odetaiL, parts; 
LINK 'order TO odetaiL VIA ordernum, 

parts TO odetaiL VIA partnum; 
LIST BY order.ordernum, 

parts.partnum AS M<9-999>, 
quantity HEADING "QTY", 
price, 
(price * quantity) AS M<ZZ,ZZZ,999.> 

HEADING "PRICE * QTY", SUBTOTAL, TOTAL, 
MAX (price * quantity OVER order.ordernum) 

AS M<ZZZ,999.> 
HEADING "MAXIMUM/PRICE * QTY", 

WHERE order.ordernum EQUAL 50 THRU 70; 

D-9 



Example ENFORM Programs 

Report: 

Part MAXIMUM 
ORDERNUM Number QTY PRICE PRICE * QTY PRICE * QTY 
-------- --------- ----------- -----------

51 1-403 4 22000.00 88,000. 269,500. 
2-001 4 1500.00 6,000. 
2-002 4 1000.00 4,000. 
2-003 4 500.00 2,000. 
2-403 16 9600.00 153,600. 
3-103 5 10500.00 52,500. 
3-302 1 2800.00 2,800. 
4-103 11 24500.00 269,500. 
5-103 1 8000.00 8,000. 
5-505 1 42000.00 42,000. 
6-301 2 2900.00 5,800. 
6-302 2 4300.00 8,600. 
6-402 8 1500.00 12,000. 
7-102 1 68000.05 68,000. 

-----------
SUBTOTAL 722,800. 

66 0-244 1 87000.00 87,000. 92,000. 
1-403 3 22000.00 66,000. 
2-001 5 1500.00 7,500. 

7-301 2 2400.06 4,800. 
-----------

SUBTOTAL 720,200. 

------------

-----------
1 ,44:5,000. 

The following program resets the Option Variable @SUBTOTAL-LABEL. The new value appears 
in place of the default asterisk (*). 

Two user variables, sumval and cntval, are declared. They are both assigned values in the LIST 
statement. The sumval user variable uses a mask format in the DECLARE statement to assign a 
default display format. The cntval user variable uses an I format in the DECLARE statement to 
assign a default display format. 

Three record descriptions are linked together, creating new logical records. The BY clause groups 
the records on ordernum. Notice that ordernumand partnum require qualification, because they ap
pear in more than one record description. 

The AS clause uses the mask format to print partnum with a hyphen. The HEADING clause over
rides the default quantity heading, creating a narrower column width in the report. 

A new report item is created with the arithmetic expression, (price * quantity). A subtotal is 
printed for the new item, assuming OVER order.ordernum. 

The user variables, sumval and cntval, are assigned values. The NOPRINT clause suppresses the 
printing of these items. 

The WHERE clause restricts the report to records where ordernum is over 60. 

D-IO 



Example ENFORM Programs 

The AT END PRINT clause prints information at the end of the report. The SKIP clause indicates a 
new line. 

?DICTIONARY $mkt.dictry 
SET @SUBTOTAL-LABEL TO "SUBTOTAL"; 
OPEN order, odetaiL, parts; 
DECLARE sumvaL AS M<ZZZ,ZZZ,999.99>; 
DECLARE cntvaL AS 110; 
LINK order TO odetaiL VIA ordernum, 
LINK parts TO odetaiL VIA partnum; 
LIST BY order.ordernum, 

custnum, 
parts.partnum AS M<9-999>, 
quantity HEADING "QTY", 
price, 
(price * quantity) AS M<ZZ,ZZZ,999.> 

HEADING "PRICE * QTY", SUBTOTAL, TOTAL, 
sumvaL := SUM «price * quantity) OVER ALL) NOPRINT, 
cntvaL := COUNT (UNIQUE parts.partnum) NOPRINT, 

WHERE order.ordernum > 60, 
AT END PRINT TAB 30 "SUM OF ORDERS = " sumvaL SKIP 1, 

TAB 30 "NO OF DIFFERENT PARTS = " cntvaL; 

Report: 

Customer Part 
ORDERNUM Number Number QTY PRICE PRICE * QTY 
-------- -------- --------- -----------

66 3210 0-244, 1 87000.00 87,000. 
3210 1-403, 3 22000.00 66,000. 
3210 2-001, 5 1500.00 7,500. 
3210 2-403, 8 9600.00 76,800. 

... . .. 
3210 7-301, 2 2400.06 4,800. 

-----------
SUBTOTAL 720,200. 

122 5635 1-403, 10 22000.00 220,000. 
5635 2-002, 10 1000.00 10,000. 
5635 2-403, 30 9600.00 288,000. 

. . . ... 
5635 5-103, 3 8000.00 24,000. 
5635 7-102, 7 68000.05 476,000. 
5635 7-301, 8 2400.06 19,200. 

-----------
SUBTOTAL 2,241,601. 

-----------
-----------

2,961,801. 

SUM OF ORDERS = 2,961,801.00 
NO OF DIFFERENT PARTS = 23 

D-ll 



Example ENFORM Programs 

The following program uses a FIND statement to create a new output file with three fields. The 
fields are regnum, regname, and avgsal for all employees in each region. 

Two record descriptions are linked together, creating new logical records. The BY dause groups 
the records on the value of regnum. Notice that regnum requires qualification, because it appears in 
both region and employee. 

D-12 

?DICTIONARY $mkt.dictry 
OPEN, region, employee, region2i 
LINK region.manager TO empLoyee.empnumi 
FIND regi on2 

(BY region.regnum, 
region.regname, 

avgsaL := AVG(region.saLary OVER region.regnum»i 



APPENDIX E 

CHANGING THE MESSAGE TABLE TEXT 

EN FORM retrieves error message text, help message text, and reserved word redefinitions from a 
special key-sequenced file, called the ENFORM message table. Tandem supplies a default version of 
the message table in ENFORMMK, a key-sequenced file that contains the EN FORM message and 
help text. EN FORM allows you to modify the message table so that you can: 

• Redefine the ENFORM reserved words, system variable names, option variable names, and 
command names. For example, you can translate these words into a language other than English 
or create your own abbreviations. 

• Change the content of the EN FORM warning, error, and informational messages. For example, 
you can add information to these messages or translate the messages into a language other than 
English. 

• Modify the content of the help text by either changing the existing text or adding your own text. 
For example, you could add help text that describes the Data Definition Language (DDL). 

HOW TO CHANGE THE MESSAGE TABLE 

To change the message table, perform the following: 

1. Create an Edit file version of the message table. When you create the Edit file version, the con
tents of the Edit file must conform to a prescribed format (described in detail later in this sec
tion). Briefly, you must place any redefinitions in a section called ?VOCABULARY, any 
message text in section called ?MESSAGES, and any help text in a section called ?HELP. 

2 Convert the Edit file version of the message table into a key-sequenced version. 

To simplify the process of modifying the message table, Tandem supplies two files in addition to 
ENFORMMK. These files are: ENFORMMT, an Edit file version of the default message table and 
BUILDMK, a file containing object code that converts the Edit version of the message table into the 
special key-sequenced file required by ENFORM. Consult your system manager for the name of the 
volume and subvolume on which ENFORMMK, ENFORMMT, and BUILDMK reside. 

E-l 



Changing The Message Table Text 

ENFORM allows you to create a new message table for either of the following purposes: 

• To use as the new message table for the current ENFORM session. In this case, you identify the 
key-sequenced file containing the message table in the message-tabLe-filename option of the 
ENFORM command. 

• To replace the default message table. ENFORM uses the new message table for all ENFORM 
sessions. Note that replacing the default message table affects all individualls in the system who 
use EN FORM and do not specify their own message table. 

The following paragraphs provide guidelines to be followed when creating a message table for the 
current EN FORM session or when creating a message table to replace the default message table. 

Guidelines for Creating a Message Table for the Current Session 

When you create a new message table for the current ENFORM session, ENF'ORM allows you to 
include only a ?VOCABULARY section (ENFORM uses your reserved words with the standard 
messages and help text), only ?MESSAGES and ?HELP sections (ENFORM uses your messages 
and help text with the standard reserved words), or ?VOCABULARY, ?MESSAGES., and ?HELP 
sections (ENFORM uses your message table and ignores the standard message table). To create 
and use the new message table, perform the following tasks: 

1. Create a new Edit file version of the message table. Depending on your needs, you can either 
create an Edit file for your message text or use the File Utility Program' (FUP) DUP command 
to make a copy of ENFORMMT (the Edit version of the default message table) and make 
changes to the copy. In either case, the format and contents of the Edit file must be consistent 
with the rules described later in this appendix under 'Required Format of the Edit File'. 

2. Select a name for the key-sequenced version of the message table and use the Command Inter
preter PURGE command to purge any existing file with that name. 

3. Create the disc file for the key-sequenced version of the message table by issuing the following 
commands: 

:FUP 
-SET TYPE K 
-SET EXT (32,0) 
-SET REC 289 
-SET IBLOCK 4096 
-SET BLOCK 4096 
-SET KEYOFF ° 
-SET KEY LEN 34 
-CREATE key-sequenced-filename 

where key-sequenced-filename is the name you have chosen for the disc file. 

4. Convert the Edit file into a key-sequenced file by executing BUILDMK. To execute BUILDMK, 
enter: 

E-2 

BUILDMK edit-file-name, key-sequenced-filename 

where edit-fiLe-name is the name of the disc file for the Edit version and key-sequenced-filename 
is the name of the disc file for the key-sequenced version. 



Changing The Message Table Text 

Figure E-1 illustrates the preceding steps. In this example, a ?VOCABULARY section that 
translates the reserved words into German is created in an Edit file named newemt; FUP is used to 
create newemk, the key-sequenced version; and BUILDMK is used to convert newemt to newemk. 

1. Create an Edit file version of the message table that contains the desired text. 

:EDIT newemt ! 
*ADD 1 
* 1 
* 2 
* 3 
* 4 
* 

?VOCABULARY 
MITTELWERT=AVG, ORDNUNG=BY, ZEIGE=LIST, 
UEBER=OVER, WOBEI=WHERE, MITTIG=CENTER, 
ALLE=ALL, BIS=THRU, FORMAT=AS, EROEFFNE=OPEN 

2. Purge any existing file with the same name as the name you selected for the key
sequenced version. 

:PURGE newemk 

3. Use the FUP to create the disc file for the key-sequenced version of the message table by 
issuing the following commands: 

:FUP 
-SET TYPE K 
-SET EXT (32,0) 
-SET REC 289 
-SET IBLOCK 4096 
-SET BLOCK 4096 
-SET KEYOFF 0 
-SET KEY LEN 34 
-CREATE newemk 

4. Execute BUILDMK to convert the Edit file version to the key-sequenced version. 

:BUILDMK newemt, newemk 

Figure E-1. Creating a Message Table for the Current Session 

To use the message table created in Figure E-1, you must identify newemk on the ENFORM 
command: 

:ENFORM,newemk 

ENFORM then allows you to use the redefined words during the current session: 

>EROEFFNE employee; 
>ZEIGE ORDNUNG regnum, 

ORDNUNG branchnum, 
MITTELWERT (salary UEBER branchnum) FORMAT M<Z,ZZZ,999>, 
MITTELWERT (salary UEBER regnum) FORMAT M<Z,ZZZ,999>, 

WOBEI regnum = 1 BIS 2, 
MITTIG ALLE; 

December 1983 

E-3 



Changing The Message Table Text 

Guidelines For Replacing the Default Message Table 

You can change the message table for all ENFORM sessions by replacing the default message table, 
ENFORMMK. The new message table can either contain only ?MESSAGES and ?HELP sections 
(ENFORM uses the new messages and help text with the standard rf~served words) or 
?VOCABULARY, ?MESSAGES, and ?HELP sections (ENFORM uses the new reserved words, 
messages and help text). Remember that changes to the default message table affect the message 
text for all individuals in the system who use ENFORM and do not specify their own message table. 
To replace the default message table, perform the following tasks: 

1. Use the Command Interpreter VOLUME command to position yourself on the volume and sub
volume where the default message table, ENFORMMK, resides. If you do not know the name of 
this volume and subvolume, ask your system manager. 

2. Use the FUP DUP command to create a backup copy of ENFORMMT (the dlefault J4Jdit file ver
sion) and ENFORMMK (the default key-sequenced version). 

3. Edit ENFORMMT and make the desired changes. Any changes to this file must conform to the 
rules specified later in this appendix under 'Required Format of the Edit File'. 

4. Purge the current version of ENFORMMK. 

5. Use FUP to create the disc file for ENFORMMK by entering the following commands: 

:FUP 
-SET TYPE K 
-SET EXT (32, 0) 
-SET REC 289 
-SET IBLOCK 4096 
-SET BLOCK 4096 
-SET KEYOF F 0 
-SET KEY LEN 34 
-CREATE ENFORMMK 

6. Convert the Edit file version to the key-sequenced version by executing BUILDMK. To execute 
BUILDMK, enter: 

: BUI LDMK enformmt, emformmk 

December 1983 

E-4 

",_1 ___________________________________ 0 ___________ _ 



Changing The Message Table Text 

The example shown in Figure E-2 illustrates the preceding steps. 

1. Specify the volume and subvolume on which the default message table resides in the Com
mand Interpreter VOLUME command. 

:VOLUME mysyst.mysyst 

2. Make a Backup Copy of ENFORMMT and ENFORMMK. 

:FUP DUP ENFORMMT, backupmt 
:FUP DUP ENFORMMK, backupmk 

3. Edit ENFORMMT and make the desired changes to the message table text. 

:EDIT ENFORMMT 
* ADD 

2000 
2001 
2002 
2003 
2004 
2005 
2006 

2026 

?HELP DOL 
Before using EN FORM to retrieve data, you must use 
DOL to describe data base fields, records, and 
files. DOL creates the dictionary used by ENFORM 
to obtain information about your data base. 

The example below shows a DOL RECORD statement that 

?HELP Query Processor 

4. Purge ENFORMMK. 

:PURGE ENFORMMK 

5. Use FUP to create the disc file for the new key-sequenced version. 

:FUP 
-SET TYPE K 
-SET EXT (32,0) 
-SET REC 289 
-SET IBLOCK 4096 
-SET BLOCK 4096 
-SET KEYOFF 0 
-SET KEY LEN 34 
-CREATE enformmk 

6. Execute BUILDMK. 

:BUILDMK enformmt, emformmk 

Figure E-2. Replacing the Default Message Table 

When you run ENFORM, ENFORM uses the new version of the default message table. You need 
not specify the message-table-filename option of the ENFORM command because you have changed 
the system default. 

E-5 



Changing The Message Table Text 

Required Format of the Edit File 

When you create an Edit file version of the message table, the content of the file must conform to a 
prescribed format. You can create an Edit file that contains: 

• Only a ?VOCABULARY section. You cannot use the key-sequenced version of such an Edit tile 
to replace the default message table; however, you can use the key-sequenced version of this file 
as the message table for the current ENFORM session. In this case, ENFORM uses the reserved 
word redefinitions from your message table and obtains message and help text from the default 
message table. 

• Only ?MESSAGES and ?HELP sections. You can use the key-sequenced version of this file 
either as the message table for the current ENFORM session or to replace the default message 
table. In either case, ENFORM uses your message and help text with the standard reserved 
words, system variable names, option variable names, and command names. 

• ?VOCABULARY, ?MESSAGES, and ?HELP sections. You can use the key-sequenced version of 
this file either as the message table for the current ENFORM session or to replace the default 
message table. In this case, EN FORM obtains reserved word redefinitions, message text, and 
help text from your message table. 

The following paragraphs describe the required format and content of each section. 

?VOCABULARY SECTION. The ?VOCABULARY section allows you to redefine EN FORM 
reserved words, system variable names, option variable names, and command names. 

If you add a ?VOCABULARY section to an Edit file version of the message table, the format of this 
section must conform to the following rules: 

1. If you include a ?VOCABULARY section, this section must be the first section in the Edit file. 

2. You must enter the characters ?VOCABULARY in columns 1 through 11 of the first line of this 
section. 

3. You can enter definition pairs on all subsequent lines of this section. Definition pairs consist of 
the following: 

new-eLement-name [ = ] oLd-eLement-name 

where new-eLement-name is the new name for the reserved word, system variable, option 
variable, or command and old-eLement-name is the old name. 

4. When specifying definition pairs, you must enter only 7-bit ASCII characters for new-element
name. A new-eLement-name must conform to the naming rules specified in the ENFORM 
Reference Manual. 

5. You need enter only the definition pairs for the elements being redefined. glements that you do 
not redefine retain their default names. 

6. You can enter more than one definition pair on a line by using a comma as a separator. 

7. If you redefine the name of an option variable or a system variable, do not include the symbol @ 
as part of either new-eLement-name or old-eLement-name. When you specify the new name dur
ing an ENFORM session, you must include the symbol @. 

E-6 

!+,\_I _____________________________________ _ 



Changing The Message Table Text 

8. If you redefine the name of an ENFORM command, do not include the symbol? as part of either 
new-element-name or old-element-name. When you specify the new name during an ENFORM 
session, you must include the symbol ? 

9. If you redefine an ENFORM reserved word that applies to more than one category (statement, 
clause, command, aggregate, system variable, or option variable), EN FORM applies the new 
name to all categories. For example, if you redefine the reserved word SPACE both the SPACE 
clause and the @SPACE option variable are redefined. 

Figure E-3 shows a diagram of the vocabulary section. 

?VOCABULARY 
new-eLement-name = oLd-eLement-name 

new-eLement-name = oLd-eLement-name 

Figure E-3. Diagram of the Vocabulary Section. 

Refer to the ENFORM Reference Manual for the names of system variables, option variables, and 
commands. Table E-l shows the ENFORM reserved words. 

Table E-1. EN FORM Reserved Words 

ACROSS • DESC LINK SAVE WHERE 
AFTER DICTIONARY LIST SET WITH 
ALL ELSE LT SKIP WITHOUT 
AND END MAX SPACE ZERO 
AS EQ MIN START ZEROS 
ASCD EQUAL NE SUBFOOTING 

, 

AT EXIT NOHEAD SUBTITLE ( 

AVG FILE • NOPRINT SUBTOTAL ) 
BEFORE FIND NO SUM . 
BEGINS FOOTING NULL SUPPRESS + 
BLANK FORM OF TAB -
BLANKS GE OFF THAN 
BY GREATER ON THEN I 
CENTER GT OPEN THRU , 
CHANGE HELP • OPTION TIME < 
CLOSE HEADING OPTIONAL TIMESTAMP-DATE = 

CONTAINS IF OR TIMESTAMP-TIME > 
COpy INTERNAL OVER TITLE @ 

COUNT INVOKE· PARAM TO [ 
CUM IS PCT TOTAL ] 
DATE JULIAN-DATE PRINT UNIQUE 
DECLARE KEY RECORD USING • 
DEFINE • LE ROW-SUBTOTAL • VIA 
DELINK LESS ROW-TOTAL • WHEN • 

• These words are reserved for future extensions to ENFORM. 

E-7 



Changing The Message Table Text 

?MESSAGES SECTION. The ?MESSAGES section is essentially a table of text that EN FORM uses 
for printing error, warning, and informational messages. This message text is also used for 
messages that appear in the generic files QUERY-STATUS-MESSAGES and QUERY-QPSTATUS
MESSAGES. 

If you either create a new ?MESSAGES section or modify the ?MESSAGES section of the Edit file 
version of the default message table, the ?MESSAGES section must conform to the following rules: 

1. You must not include a ?MESSAGES section without including a ?HELP section. 

2. In the Edit file, enter the ?MESSAGES section after the ?VOCABULARY section (if present) 
and before the ?HELP section. 

3. You must enter the characters ?MESSAGES in columns 1 through 9 of the first line of this 
section. 

4. For the subsequent lines of the ?MESSAGES section, enter one line of text for each message. 
You must enter the text in the same order and with the same number of entries as are present 
in the current EN FORM message text. Include the text for each message even if you do not 
change the message itself. If you change the order of the messages, ENFORM could print an 
incorrect or garbled message when an error occurs. If you omit a message, ENFOHM prints 1?? 
in place of the message text. 

5. You can enter a maximum of 132 characters for the message text. The maximum length of the 
message depends upon where ENFORM uses the message. 

Figure E-4 shows a diagram of the ?MESSAGES section. 

?MESSAGES 
error-message-1 
error-message-2 
error-message-3 

error-message-last 

Figure E-4. Diagram of the ?MESSAGES Section 

You can obtain a current copy of the ENFORM ?MES,SAGES section by duplicating the 
?MESSAGES section of ENFORMMT, the Edit file version of the default message table. An 
asterisk that appears within the ?MESSAGES section of ENFORMMT represents a table entry 
reserved for future messages. To preserve the order of the message text, include any asterisks 
appearing in ENFORMMT in your new ?MESSAGES section. 

?HELP SECTION. The ?HELP section contains the text that ENFORM displays when the ?HELP 
command is issued. This required section is divided into several subsections with one subsection for 
each of the items for which help is available. Each subsection of the ?HELP section contains the 
lines which ENFORM displays when a specific form of the ?HELP command is entered. 

E-8 

eiii".1 _____________________________________ • ___ • ________ _ 



Changing The Message Table Text 

If you either create a new ?HELP section or modify the ?HELP section in the Edit file version of the 
default message table, the ?HELP section must conform to the following rules: 

1. You must not include a ?HELP section without including a ?MESSAGES section. 

2. In the Edit file, enter the ?HELP section after both the ?VOCABULARY section (if present) 
and the ?MESSAGES section. 

3. You must enter the characters ?HELP in columns 1 through 5 of the this section (which is also 
the first line of the first ?HELP subsection). 

4. Enter the list of all elements for which help is available in subsequent lines of the first subsec
tion. ENFORM displays this list when ?HELP is entered. 

5. If you add or delete subsequent subsections, add or delete the associated element from the list 
of elements in the first subsection. 

6. Enter the ?HELP hel'frelement in the first column of the first line of all subsequent subsections, 
where help-element is the name of the element for which help is available. When you enter hel'fr 
element, you must follow the naming rules described in the ENFORM Reference Manual with 
one exception: you can use a question mark (?) as the initial character when hel'frelement is a 
command. The length of hel'frelement cannot exceed 31 characters. 

7. Enter the help text for hel'frelement in the subsequent lines of the subsection. ENFORM 
displays this text when you enter ?HELP hel'frelement. 

8. ENFORM imposes no limit on the length of help text; however, avoid specifying help text that 
is longer than 23 lines. If you specify text that is longer than 23 lines, reading the text will be 
extremely difficult for individuals who request help from terminals that have no scrolling 
mechanism (for example, the Tandem 6510 terminal). 

9. ENFORM imposes no restrictions on the content of help text. You can add a ?HELP subsection 
for any topic. 

Figure E-5 shows a diagram of the ?HELP section. 

?HELP 
(text displayed when ?HELP is entered) 

?HELP AGGREGATE 
(text displayed when ?HELP AGGREGATE is entered) 

?HELP ARITHMETIC EXPRESSION 
(text displayed when ?HELP ARITHMETIC EXPRESSION is entered) 

?HELP 

Figure E-5. Diagram of the ?HELP Section 

You can obtain a copy of the current help text by duplicating ENFORMMT, the Edit file version of 
the default message table. 

E-9 



~'i ______________________________________ • _______ _ 



APPENDIX F 

GLOSSARY 

Aggregate-a cumulative operation on set(s) of numbers, producing a single value per set. See 
Predefined Aggregate and User Aggregate. 

By-item-the field name used to group and sort EN FORM output; always associated with a BY or 
BY DESC clause. A by-item is a special kind of target-item. 

Clause - component of an ENFORM statement. 

Command-a directive to the EN FORM compiler. 

Compiler/Report Writer-the ENFORM process that both compiles EN FORM queries and formats 
and writes ENFORM reports. 

Compiled Query File-the physical file containing a saved query that been compiled by the 
?COMPILE command. 

Composite Key-two or more contiguous fields that can be used to identify a record occurrence. 

Current Output Listing File-the file to which ENFORM directs output; this file can change during 
an ENFORM session. 

Data Base-a set of related files defined in a dictionary. 

Data Category-the type of data that can be stored in a field; either alphanumeric or numeric. 

Data Definition Language (DDL) - the language used to describe the record and file structure of a 
data base. 

Dictionary - a data base of file descriptions and record types created by the Data Definition 
Language (DDL); also called data dictionary. 

Default Output File-the file to which EN FORM directs output at the beginning of an ENFORM 
session. See also Current Output Listing File. 

Default Input File - the file from which the ENFORM source code is entered when the IN option of 
the ENFORM command is omitted; usually the home terminal. 

F-l 



111111 

Glossary 

Elementary Field - smallest named unit of a record. 

EN FORM Server-a user written process that can supply data to a query processor as an alternative 
to the data being supplied directly from a disc file. 

Field - either an elementary field or group field. 

Field Name-name given to a field in a DDL RECORD statement. 

Field Value - value of a specific field within a specific stored record. 

File - a collection of similarly structured records. 

File Name - the name of a physical file. 

File Type - identifies the organization of the physical file, such as key-sequenced, entry-sequenced, 
relative, or unstructured. 

Front End-the ENFORM process which compiles ENFORM programs, and prints reports. See Com
piler/Report Writer. 

Generic File - a file used to store some class of ENFORM output. 

Group Field-a collection of one or more fields that can be accessed with a single name. 

Group Name-name of one or more fields that can be accessed with a single name. 

Home Terminal-the terminal from which the ENFORM command is entered. 

Link - specifies a relationship between records in a relational data base to be used in an ENFORM 
query. 

Literal-one or more numeric or alphanumeric characters. See String Literal and Numeric Literal. 

Logical Expression - an expression that returns a true or false value. 

Normalized-data that has been described in such a manner that only one value exists for every field 
position in a record. 

Numeric Literal-composed of the digits 0 through 9. Numeric literals cannot be larger than 32765 
and must be enclosed in parentheses unless they appear in a logical expression or a TAB, SPACE, 
SKIP, or FORM clause. 

Option Variable-An ENFORM-supplied variable that defines certain operational values. 

OUT File-the physical device specified in the OUT option of the ENFORM command. 

Physical File Name-GUARDIAN file name in the form \system-name.volume-name.subvolr 
name·file-name. 

Predefined Aggregate-one of the ENFORM aggregates: AVG. COUNT, MAX, MIN, or SUM. 

Primary Key - the field or group of fields that uniquely identifies a record. 

F-2 

-



Glossary 

Program - a sequence of related ENFORM commands and statements. 

Qualification Aggregate - an aggregate that appears in a request-qualification. See also Aggregate. 

Qualified Field Name-a name that uniquely identifies a field as a component of a record description. 

Query-a complete ENFORM LIST or FIND statement specifying which fields and records to 
retrieve. 

Query Processor (QP)-the ENFORM process that opens the files and retrieves the records from a 
relational data base for a report or a new file. 

Record - a related set of field values. 

Record Description - description of a record in a data base, containing the record name, the file name 
and type, and key definitions. 

Record Name-name given a record description in a DDL RECORD statement. 

Record Occurrence - the actual stored values associated with a record. 

Record Type-a record's structure including field names and data types. 

Relational Data Base - a data base in which records are related through fields with common formats 
and comparable values. 

Repeating Group-a data base field that contains more than one data value. 

Report-the printed output of an EN FORM query using an ENFORM LIST statement. 

Request-qualification-the condition or conditions that a data base element must satisfy to contribute 
to the target-record; begins with a WHERE clause followed by a logical expression. 

Reserved words - keywords with specific meaning and reserved by ENFORM. 

Server Query Processor-specific query processor identified by an ?ATTACH command, initiated 
separately from the dedicated query processor started by the EN FORM compiler. 

Session - period of interaction with ENFORM. 

Source Code-the ENFORM statements, clauses, and commands that comprise the query specifica
tions. 

Source File-the Edit file that contains the source code. See also Source Code. 

Statement - main instruction of an ENFORM program. 

String Literal-one or more alphanumeric characters enclosed in quotation marks (" "). 

Subscript - a value used to select a particular element. 

System Variable-an EN FORM-supplied variable that returns the current time, date, line number, 
and page number. 

F-3 



Glossary 

Target Aggregate-an aggregate that appears as a part of the target-record. 

Target-file - the file produced by the Query Processor that contains records with all the information 
requested in the query specifications. 

Target-item - the record names, field names, expressions, variables, aggregates, and literals, in
cluding by-items, whose values appear in a target-record. 

Target-list-the record names, field names, expressions, variables, aggregates, and literals following 
the keywords LIST or FIND that contribute to the target-record. Target-lists consist of target
items some of which are by-items. See also By-items and Target-items. 

Target-record - the records generated by the Query Processor from which your ENFORM output is 
produced. 

Unnormalized-data that has been described such that more than one value exists for a field position 
in a record. 

User Aggregate - a user-declared aggregate; a user-defined function that returns a value. See Ag
gregate. 

User Variable-a user-declared element that can be used to store numeric or string literals, field 
values, or the results of arithmetic or aggregate calculations. 

?OUT File-the physical device specified in the ?OUT command. 

F-4 



Access to an ENFORM server 7-17 
AFTER CHANGE clause 

described 3-34 
example 3-37, D-5 
syntax A-5 
where values printed 3-36 

Aggregate 
example 3-18, D-9 
in a FIND file 3-20 
printed in a report 3-18 
syntax A-1 

Alphanumeric fields 2-1 
Altering cache size 5-9 
Alternate keys 

adding 5-7 
and search statistics 5-3 
described 2-4 
files 

loading 2-8 
removing levels of indexing 5-5 

removing 5-8 
search path 5-6 

Arithmetic expressions 
changing the default display format 3-46 
default display format 3-33 

Arithmetic operators A-1 
AS clause 

described 3-46 
examples 3-46, D-1 
syntax A-5 
used to modify result of arithmetic 

computations 3-25 
AS DATE clause 

described 3-46 
example 3-48 
syntax A-7 
with user created date format 3-49 

INDEX 

AS TIME clause 
described 3-46 
examples 3-50 
syntax A-7 
with user created time format 3-50 

ASCDclause 
described 3-23 
multiple 3-24 
syntax A-5 

Assigning record descriptions 3-4 
Assignment syntax 3-18 
AT END PRINT clause 

described 3-34 
example 3-38, D-5 
syntax A-7 
to override AT END statement 3-38 

AT END statement 
cancelling, resetting, or overriding 3-38 
described 3-34 
example 3-38 
syntax A-2 

AT START PRINT clause 
described 3-34 
example 3-38, D-5 
syntax A-7 
to override AT START statement 3-38 

AT START statement 
cancelling, resetting, or overriding 3-38 
described 3-34 
example 3-38 
syntax A-2 

Avoiding sorting an already sorted file 5-8 

BEFORE CHANGE clause 
described 3-34 
example 3-37, D-5 

December 1983 

Index-1 



Index 

syntax A-7 
where values printed 3-36 

Bill of Materials report 3-16.3 
Block size, increasing 5-5 
BUILDMK 

described E-1 
error messages B-1 

BY clause 
described 3-23 
examples 3-23, D-1 
multiple 3-24 
syntax A-7 

BY DESC clause 
described 3-23 
example 3-24 
multiple 3-24 
syntax A-7 

By-items 
and a CUM clause 3-31 
and subtotals 3-26 
and the AFTER CHANGE clause 3-36 
and the BEFORE CHANGE clause 3-36 
and the PCT clause 3-28 
creating 3-23 
defined 1-8 

Cache size 5-9 
Calculating 

percentage values 3-25 
running totals 3-25 
subtotals 3-25, 3-26 
totals 3-25, 3-27 

CENTER clause 
examples 3-42, D-2 
syntaxA-8 
to center all elements 3-42 

Centering elements of a report 3-42 
Changing 

the data environment 5-5 
the message table text E-1 
the nondisc environment 5-10 

Clauses 
AFTER CHANGE 3-34 
AS 3-25, 3-46 
AS DATE 3-46, 3-48 
AS TIME 3-46, 3-50 
ASCD3-23 
AT END PRINT 3-34, 3-38 
AT START PRINT 3-34, 3-38 
BEFORE CHANGE 3-34 
BY 3-23 
BYDESC3-23 
CENTER 3-41 
CUM 3-25, 3-31 

Index-2 

DESC 3-23 
FOOTING 3-34, 3-39 
FORM 3-41, 3-43 
HEADING 3-41, 3-43 
JULIAN-DATE CONVERSION 3-48 
NO HEAD 3-41, 3-44 
NOPRINT 3-41, 3-44 
PCT 3-25, 3-28 
SKIP 3-41, 3-45 
SPACE 3-41,3-45 
SUBFOOTING 3-34, 3-39 
SUBTITLE 3-34,3-40 
SUBTOTAL 3-25, 3-29 
TAB 3-41, 3-46 
TITLE 3-34, 3-40 
TOTAL 3-25, 3-27 
WHERE 3-8, 3-22, 5-11 

Clearing links 3-15 
CLOSE statement 

described 3-8 
for clearing links 3-15 
syntax A-2 

COBOL 
and the host language interface 6-1 
data definition source code 2-6, 2-8 
ENFORMFINISH procedure 6-11 
ENFORMRECEIVE procedure 6-4, 6-8 
ENFORMSTART procedure 6-3 
program example 6-13 

Column width 
default 3-32 
heading 3-43 

Combining links 3-16 
Command Interpreter 

ASSIGN command 5-9, 7-17 
ENFORM command 4-1 
:FC command 4-3 

Commands 
?ASSIGN 5-9 
?HELP 3-51 
Command Interpreter 

ASSIGN 5-9,5-10, 7-17 
EN FORM 4-1 
FC4-3 

EN FORM 
?ASSIGN 3-2,3-4 
?COMPILE 4-1,4-6 
?DICTIONARY 3-2, 3-8 
?EDIT 4-4 
?EXECUTE 4-6 
?EXIT 4-2, 4-6 
?RUN 4-2, 4-5 
?SECTION 4-5 
?SHOW 2-7, 3-8 
?SOURCE4-6 

December 1983 



Compiled query file 
and the ?COMPILE command 4-7 
and the host language 

interface 1-6,6-1,6-12,6-15 
in noninteractive mode 4-1 

Compiled representation of the query 1-5 
Compiling 

a source program without executing 4-7 
and executing in interactive mode 4-5 
and executing in noninteractive mode 4-1 
and the query compiler/report writer 1-5 

Composite key 
and linking 3-7 
described 2-4 

Compressed data 7-2 
Computations 

clauses used to specify 3-25 
result of 3-25 

Concatenated files 7-2 
Condition code settings 

ENFORMRECEIVE procedure 6-8 
ENFORMSTART procedure 6-6 

Conditional operators 
and linking 3-15 
and STRATEGY COST 5-4 
evaluation by query processor 5-11 

Conjunctive normal form 3-13 
Connecting relationship 

defined 3-7 
specifying 3-8, 3-15 

Conserving space in the internal table 3-34 
Controlling extent sizes of target file 5-9 
Converting a date to internal format 3-46 
Copying record descriptions 3-3 
Creating 

an ENFORM server 7-2 
data base files 2-8 

Ctlblock 6-4 
CUM clause 

described 3-25 
example 3-31, D-2 
syntax A-8 

Current 
date 3-48 
time 3-50 

Data base 
creating physical files 2-8 
defined 1-4,2-1 
defining data elements 2-6 
describing 2-6 
elements that contribute to a report 3-17 
field 2-1 
loading the data 2-8 
normalizing data 2-4 

records 2-2 
sample C-1 
tasks involved in developing 2-4 

Data categories 
and linking 3-7 
described 2-1, 2-6 

Data Definition Language 
and the data dictionary 2-7 

Index 

COBOL, FORTRAN, and TAL source code 2-8 
creating file creation source code 2-6 
default block size 5-5 
defining the data base 1-3, 2-6 
example 2-6, 3-20 
FILE IS clause 2-6, 3-4 
function 2-6 
guidelines for defining data 2-7 
message header format for an ENFORM 

server 7-7 
RECORD statement 2-6 
sample dictionary source code C-3 
SEQUENCE IS clause 2-7, 3-7, 5-8 
source file for the ENFORM server 7-8 

Data dictionary, see Dictionary 
Data justification 

default 3-33 
display format 3-47 

Date value 
converting to internal format 3-48 
printing on a report 3-46 

DDL, see Data Definition Language 
DECLARE statement 

described 3-2 
example D-10 
syntax A-3 
to define a user element 3-6 

Decorations 3-47 
Decreasing the number of input-output 

operations 5-5 
Default 

block size created by DDL 5-5 
column width 3-32 
data justification 3-33 
display format 3-33 
edit file 4-4 
extent size of target file 5-9 
headings 3-33 
horizontal spacing 3-32 
internal format of a user element 3-6 
margins 3-32 
overflow character 3-47 
page length 3-32 
page numbers 3-32 
report formats 3-32 
sorting order 3-32 

December 1983 

Index-3 



Index 

Defining data base elements 2-6 
Defining report layout 3-41 
Definition pairs E-7 
DELINK statement 

described 3-8 
for clearing links 3-15 
syntax A-3 

DESC clause 
described 3-23 
multiple 3-24 
syntax A-5 

Description (record), see Record 
description 

Determining extent sizes of target file 5-9 
Diagram 

FIND file 3-20 
LINK OPTIONAL 3-12 
linking process 3-9 

Dialogue between ENFORM server and the 
query processor 7-3 

Dictionary 
changing 3-2 
description 1-4, 2-7 
example C-3 
identifying 3-2 
producing 2-6 
reports 2-7 

DICTIONARY statement 
described 3-2, 3-8 
for clearing links 3-15 
syntax A-3 
to change dictionaries 3-2 

Dirty data 7-2 
Disc environment 

adding alternate keys 5-7 
altering cache size 5-9 
changing the location of work files 5-9 
controlling size of target file 5-9 
removing alternate keys 5-8 
removing levels of indexing 5-5 
sorting an already sorted file 5-8 
spreading input/output demands 5-9 

Display format 
changing 3-47 
default 3-33 

Double exception report 3-16.3 
Duplicating record descriptions 3-3 

Edit descriptors 3-47 
Edit file 

creating 4-4 
identifying statements within 4-4 
reading with EN FORM 7-2 
setting the default 4-4 

Edit file version of message table E-1 
Edit modifiers 3-47 
Editing a query 4-4 
Efficiency, improving 

disc environment 5-5 
nondisc environment 5-10 
query itself 5-11 

EN ABLE 1-3, 2-8 
Encrypted data 7-2 
EN FORM 

?HELP section E-1, E-8 
?MESSAGES section E-1, E-8 
?VOCABULARY section E-l, E-7 
clauses 

AFTER CHANGE 3-34 
AS 3-25, 3-46 
AS DATE 3-46, 3-48 
AS TIME 3-46, 3-50 
ASCD3-23 
AT END PRINT 3-34, 3-38 
AT START PRINT 3 .. 34, 3-38 
BEFORE CHANGE 3-34 
BY 3-23 
BYDESC3-23 
CENTER 3-41 
CUM 3-25, 3-31 
DESC 3-23 
FOOTING 3-34,3-39 
FORM 3-41, 3-43 
HEADING 3-41,3-43 
JULIAN -DATE CONVERSION 3-48 
NO HEAD 3-41, 3-44 
NOPRINT 3-41, 3-44 
PCT 3-25, 3-28 
SKIP 3-41, 3-45 
SPACE 3-41, 3-45 
SUBFOOTING 3-34, 3-39 
SUBTITLE 3-34, 3-40 
SUBTOTAL 3-25, 3-29 
TAB 3-41, 3-46 
TITLE 3-34, 3-40 
TOTAL 3-25, 3-27 
WHERE 3-22, 5-11 

commands 
?ASSIGN 3-2, 5-9 
?ATTACH 5-10 
?COMPILE 4-7,6-12,6-16 
?DICTIONARY 3-2, 3-8, 3-15 
?EDIT4-4 
?EXECUTE 4-7 
?EXIT 4-3, 4-7 
?HELP3-51 
?RUN 4-2, 4-5 
?SECTION 4-5 

December 1983 

Index-4 

11,;_, __________________________________________ · __ _ 



?SHOW 2-7, 3-8 
?SOURCE4-6 

definition 1-1 
entering source code directly 4-3 
entering source code indirectly 4-3 
example programs D-1 
features 1-1 
interactive mode 4-3 
message table E-1 
noninteractive mode 4-1 
procedures 1-6,6-1 
processing environment 1-3 
prompt 4-3 
query compiler/report writer 1-3 
query processor 1-5 
report format defaults 3-32 
search statistics 

and block size 5-7 
described 5-1 

search strategy 5-11 
server 1-7,7-1 
statements 

AT END 3-34, 3-38 
AT START 3-34, 3-38 
CLOSE 3-8, 3-15 
DECLARE 3-2, 3-6 
DELINK 3-8, 3-15 
DICTIONARY 3-2, 3-8, 3-15 
FIND 3-17, 3-19, 4-7 
FOOTING 3-34, 3-39 
LINK 3-3, 3-8 
LIST 3-17, 3-32 
OPEN 3-2 
OPEN AS COpy OF 3-3 
SET 3-2, 3-6 
SUBFOOTING 3-34, 3-39 
SUBTITLE 3-34, 3-40 
TITLE 3-34, 3-40 

subsystem 4-1 
terminology 1-8 
using efficiently 5-1 

EN FORM command 4-1, E-1 
ENFORM server 

communication 7-2 
context 7-19 
example 7-19 
in the ENFORM processing 

environment 1-7 
interprocess communication 7-4 
location 7-19 
message dialogue 7-2 
message header format 7-7 
performance considerations 7-19 
query processor messages 

INITIATE-INPUT-REPLY 7-10 
INITIATE-INPUT-REQUEST 7-9 

RECORD-INPUT-REPLY 7-13 
RECORD-INPUT-REQUEST 7-11 
TERMIN ATE-INPUT-REPLY 7-16 
TERMINATE-INPUT-REQUEST 7-15 

reasons for using 7-2 
restrictions and conditions 7-17 
starting 7-6 
STARTUP message 7-6 
termina ting 7-6 
using 7-18 
writing 7-2 

ENFORM [QP] TRAP error messages B-13 
ENFORMFINISH procedure 

described 6-11 
syntax 6-11, A-11 

ENFORMMK E-1 
ENFORMMT E-1 
ENFORMRECEIVE procedure 

described 6-8 
error messages 6-9 
syntax 6-8, A-11 

ENFORMSTART procedure 
described 6-3 
error messages 6-3 
syntax 6-6, A-11 

ENFORSV7-8 
Entering 

source code directly 4-3 
source code indirectly 4-4 

Index 

the editor from the ENFORM subsystem 4-4 
Error messages 

!!!ERROR and WARNING type B-3 
***FILE ERROR type B-12 
BUILDMK B-1, B-14 
changing the text E-1 
ENFORM [QP] TRAP B-1, B-13 
ENFORMRECEIVE 6-9 
ENFORMSTART 6-7 
initialization B-1 

Errors during statement execution 
reporting 4-3 

Establishing a link for current query 3-15 
Establishing the query environment 3-2 
Evaluation 

of a WHERE clause 3-13, 5-11 
of logical expressions 5-11 
of user variables in LIST statement 3-19 

Examining session-wide links 3-15 
Exception report 3-16.2 
Executing a query 

in interactive mode 4-3 
in noninteractive mode 4-1 
using the ?RUN command 4-5 
using the ?SOURCE command 4-6 

December 1983 

Index-5 



Index 

Executing ENFORM from the host language 
interface 6-1 

EXIT statement 4-4, 4-7, A-3 
Extent sizes of target file 5-9 

FCcommand 
cancelling 4-4 
subcommands 4-4 

Field 
data categories 2-1 
defined 2-1 
value 2-1 

Field values 
and linking 3-7 
defined 2-1 
repeating 2-1 

FILE NAME column 5-2 
File Utility Program 

and blocksize 2-8 
and extents 2-8 
creating data base files 1-3,2-8 
used to load data 2-8 

FIND file 
and STRATEGY COST 5-5 
and the host language 

interface 6-1, 6-12, 6-15 
and the query processor 1-5 
as an intermediate file 3-21 
described 3-19 
diagram with by-items 3-24 
restricting information selected 3-22 
sharing 5-12 
sorting and grouping information 3-23 

FIND statement 
and the ?COMPILE command 4-7 
described 3-17 
example 3-20, D-12 
in an edit file 4-7 
syntax A-3 
used to normalize data 3-21 

First normal form 2-5 
FOOTING clause 

described 3-34 
syntax A-8 
temporarily overriding FOOTING 

statement 3-39 
FOOTING statement 

described 3-34 
example 3-39 
syntax A-3 

FORM clause 
described 3-41 
examples 3-43 
syntax A-8 

Format, report 3-35 

Formatting a report 3-32 
FORTRAN 

and the host language interface 6-1 
data definition source code ~~-6 
ENFORMFINISH procedure 6-11 
ENFORMRECEIVE procedure 6-8 
ENFORMSTART procedur(~ 6-3 

FUP, see File Utility Program 

Generating a subtotal 3-26 
Generic files 5-9 
Getting help 3-51 
Grand total 3-27 
Grouped percentage values 3-~:9 
Grouping information 3-23 
Guidelines 

compiling source code 4-7 
defining data 2-7 
for changing the message table E-l 
linking 3-7 
query creation 3-1 
using FIND statement 3-19 
using FUP to create data base files 2-8 
using LIST statement 3-17 
writing an ENFORM server 7-3 

HEADING clause 
examples 3-43, D-2 
multiple line 3-43 
syntax A-8 

Headings 
centering 3-42 
default 3-33 
multiple line 3-43 
suppressing the printing of 3-44 
user-defined 3-43 

H(~lp text E-8 
Horizontal spacing 

default 3-32 
specifying 3-45, 3-46 

Host language interface 
and the EN FORM processin!~ environment 1-6 
COBOL example 6-11 
compiled query file 6-12, 6-16 
DDL record description 6-11,6-15 
described 6-1 
error messages 6-6 
procedures 6-1 

ENFORMFINISH 6-11 
ENFORMRECEIVE 6-8 
ENFORMSTART 6-1, 6-3 

TAL example 6-15 

December 1983 

Index-6 

-"'cia: _____________________________________ _ 



Identification line 5-3 
Identifying 

a collection of statements or commands 4-5 
record descriptions 3-3 
the dictionary 3-2 

IF/THEN/ELSE expression A-2, D-7 
Improving query performance 

adding or removing alternate keys 5-8 
altering cache size 5-9 
changing the disc environment 5-5 
changing the nondisc environment 5-10 
specifying where work files are built 5-9 

Including all values in a link 3-10 
Increasing index block size 5-5 
Increasing number of digits displayed 3-25 
Increasing transaction rate 5-5 
Index block size 5-5 
Indicating a new line 3-45 
Initialization error messages B-2 
INITIATE-INPUT-REPLY message 7-10 
INITIATE-INPUT-REQUEST message 7-9 
Initiating the host language interface 6-3 
Input file 4-1 
Interactive mode 

entering source code directly 4-3 
entering source code indirectly 4-4 
terminating 4-4,4-7 

Interface procedures 
described 6-1 
ENFORMFINISH 6-11 
ENFORMRECEIVE 6-8 
ENFORMSTART 6-3 

Intermediate file, see FIND file 
INTERNAL clause A-8 
Internal report specifications 1-5 
Internal table 

and print list information 3-34 
assigned record descriptions 3-4 
clearing links 3-15 
conserving space 3-34 
examining 2-7 
overflow 3-34 
user elements 3-6 

Interprocess communication 7-4 
Interprocess messages between EN FORM 

and an EN FORM server 7-4 

Join strategy 
and STRATEGY COST 5-4 
defined 5-2 

JULIAN-DATE CONVERSION clause 
and the AS DATE clause 3-48 
examples 3-48, D-4 
syntax A-8 

Key fields 
alternate 2-4 
and the number of reads performed 5-3 
composite 2-4 
defined 2-4 
primary 2-4 

Key-sequenced files 5-5 
Key-sequenced version of message table E-1 

LEVEL READ column 5-2 
Levels 

of indexing 5-5 
of normalization 2-6 
READ 5-2 

Line length default 3-32 
Link diagrams 3-16 
LINK statement 

and OPEN AS COpy OF 3-3 
and WHERE clause 3-13 
combining links 3-16 
described 3-8 
example 3-9, D-1 
function 3-8 
syntax A-3 
using 3-8, 3-10 

Link, multiple 3-16 
Linking 

and record occurrences 2-3 
and STRATEGY COST 5-4 
defined 3-7 
displaying links in effect 3-15 
for the current query 3-15 
key fields 5-3 
process described 3-8 
session-wide 3-8 

LIST statement 
and report formatting 3-32 
and the ?COMPILE command 4-7 
and the ?SOURCE command 4-6 
described 3-17 
example 3-18 
examples D-2 
in an edit file 4-6 
syntax A-4 

Loading data base files 2-8 
Logical expression 

evaluation process 5-11 
in a WHERE clause 3-22 
syntax A-2 

Logical reads 5-3 
Logical record description defined 3-7 

Index 

December 1983 

Index-7 



Index 

Major to minor sort sequence 3-24 
Margins, default 3-32 
Message header format 7-7 
Message protocol 7-5 
Message text E-1 
Messages passed to and from an ENFORM 

server 7-3 
Multiple links 3-16 
MUMPS files 7-2 

Network traffic, reducing 5-11 
NOHEAD clause 

described 3-41 
exam pIe 3-44 
syntax A-8 

N on-contributing record occurrences 3-13 
Nondisc environment 

process placement 5-10 
reducing network traffic 5-11 
sharing query processors 5-10 

Noninteractive mode 
and a compiled query file 4-1 
input file 4-1 
terminating 4-4 

Nonnormalized data 
and a FIND file 3-21 
and an ENFORM server 7-2 
normalizing 2-4 

NOPRINT clause 
described 3-41 
example 3-44, D-7 
syntax A-8 

Normalized data 
described 2-4 
levels of 2-6 

Normalizing data with a FIND file 3-21 
Numeric elements, calculating 

a percentage value 3-27 
a subtotal 3-26 
a total 3-27 

Numeric fields 2-1 

Obtaining the current date 3-48 
Obtaining the current time 3-50 
OPEN AS COpy OF statement 3-3 
OPEN statement 

described 3-2 
effect of 3-3 
syntax A-5 
to identify record descriptions 3-3 

Opening 
a record description 3-2 
an ENFORM server 7-3 

Optimizing the efficiency of a query 5-1 

Index-8 

Option Variables 
@DISPLAY-COUNT 3-6 
@MARGIN3-6 
@PRIMARY-EXTENT-SIZE, 5-10 
@SECONDARY-EXTENT-SIZE 5-10 
@STATS5-1 
@SUBTOTAL-LABEL D-2 
@TARGET-RECORDS 5-10 
setting 3-6 
syntax A-8 

Overflow character 3-25, 3-47 
Overflow condition 3-25 
Overview of EN FORM 1-2 

Page length 
changing 3-43 
default 3-32 

Page numbers, default 3-32 
Paginating a report 3-43 
PARAM statement 

and the host language interface 6-12 
in a compiled query file 4-2, 4··7 
syntax A-5 

Parameters, passing 4-2, 4-7 
Passing parameters 

to a host language program 6-15 
to compiled query files 4-2, 4-7 

PCT clause 
examples 3-28 
syntax A-9 
using 3-28 
with the SUBTOTAL clause 8-29 
with the TOTAL clause 3-29 

Percentages 
calculating 3-28 
obtaining subtotals 3-29 
obtaining totals 3-29 

Performance 
ENFORM server considerations 7-19 
query improvement 

disc environment 5-5 
nondisc environment 5-10 

Physical file accesses 
and alternate keys 5-7 
reducing the number of 5-7 

Physical files 
assigning a record description 3-4 
loading 2-8 
producing new 3-17 

Physical reads 5-3 
POSITIONS column 5-3 
Precompiled query 6-1 
Primary extent size of target file 5-9 

December 1983 



Primary key 
and search statistics 5-3 
and STRATEGY COST 5-4 
described 2-4 

Print list 3-34 
Process file, see EN FORM server 
Process placement 5-10 
Processing environment 1-3 
Producing a report 3-17 
Producing dictionary reports 2-7 
Producing search statistics 5-1 
Protecting a query from changes 4-7 
Providing documentation within a report 3-33 
Providing records to a host language 

program 6-8 

Qualification 5-12,7-19 
Query 

and the host language interface 6-1 
changing the wording to improve 

performance 5-11 
clearing links 3-8 
defined 1-8 
defining user elements for 3-6 
developing 3-1 
establishing links 3-7 
establishing the environment 3-2 
examining efficiency 5-1 
examining links 3-8 
example D-l 
executing 4-5, 4-7 
improving performance 5-1 
placing more than one on an Edit file 4-5 
protecting from changes 4-7 
reducing response time 5-5 
restricting information selected 3-22 
selecting information 3-17 
sorting and grouping information 3-23 

Query compiler/report writer 
and the ?ASSIGN command 3-4 
function 1-5 
in the EN FORM processing 

environment 1-3 
phases 1-5 
placement 5-10 

Query processor 
and an EN FORM server 7-1 
and the host language interface 6-1 
as a dedicated server process 1-5 
as a named server process 1-5 
forcing the search strategy 5-11 
in the ENFORM processing 

environment 1-3, 1-5 
logical reads 5-3 
placement 5-10 
reading files in parallel 5-2 

search statistics 5-1 
sequence in which files are read 5-2 
sharing 5-10 

Query specification 
defined 1-8 
description 1-4 

Reading an Edit file 
with ENFORM 7-2 
with the ?EDIT command 4-4 
with the ?SOURCE command 4-6 

Record description 
assigning to different physical file 3-4 
defining 2-6 
examining 2-7 
linking 3-7 
making a copy of 3-3 
of FIND file 3-20 
OPEN statement 3-3 
specifying more than one for same 

physical file 3-21 
the host language interface 6-1, 6-11, 6-15 

Record occurrences 
and linking 3-7 
containing unnormalized data 2-5 
defined 2-3 
in linked logical records 3-8 
normalizing 2-5 
sample C-6 

Record, defined 2-2 
RECORD-INPUT-REPLY message 7-13 
RECORD-INPUT-REQUEST message 7-11 
RECORDS READ column 5-3 
Reducing 

network traffic 5-11 
physical file accesses 

by adding alternate keys 5-7 
by removing alternate keys 5-8 

problems with shortpool 5-10 
query response time 5-5 

Repeating field values defined 2-1 
Repeating group 

defined 2-1 
eliminating 2-4 

Report 
calculating 

a subtotal 3-26 
a total 3-27 
percentage value 3-28 
running total 3-31 

centering elements of 3-42 
changing the default display format 3-46 
containing an aggregate 3-18 
default format 3-32 

December 1983 

Index 

Index-9 



· Index 

defining layout 3-41 
diagram of format 3-35 
examples 3-18, 3-24, D-2 
footing 3-39 
formatting 3-32 
generating a subtotal 3-25 
indicating a new line 3-45 
printing a date value 3-48 
printing information within 3-33 
restricting information selected 3-22 
sorting and grouping information 3-23 
specifying computations 3-25 
statements that identify 3-17 
subfooting 3-39 
subtitle 3-40 
title 3-40 

Reported statistics 5-1 
Request qualification 

and STRATEGY COST 5-4 
and the query compiler/report writer 1-5 
defined 1-8 
restricting the information for a report 3-22 
used to reduce physical file accesses 5-11 

Reserved words 
changing E-l 
list of E-7 

Running total 3-31 

Sample search statistics 5-1 
Search 

algorithms 1-5 
statistics 

example 5-1 
FILE NAME column 5-2 
Identification line 5-3 
LEVEL READ column 5-2 
obtaining 5-1 
POSITIONS column 5-3 
RECORDS READ column 5-3 
STRATEGY COST line 5-4 

strategy 1-5, 5-11 
Secondary extent size of target file 5-9 
Selecting information 3-17 
Server query processor 

advantages of sharing 5-10 
placement 5-10 

Server, ENFORM, see ENFORM server 
Session 

defined 4-1 
ENFORM server 7-3 
terminating 

entering source code directly 4-3 
entering source code indirectly 4-7 

Session-wide 
links 

and the WHERE clause 8-13 
clearing 3-15 
establishing 3-8 
examining 3-15 

removing declarations 3-34 
statements 

AT END 3-38 
AT START 3-38 
DECLARE 3-6 
DICTIONARY 3-2 
FOOTIN G 3-34, 3-39 
LINK 3-8 
SUBFOOTING 3-34, 3-39 
SUBTITLE 3-34,3-40 
TITLE 3-40 

SET statement 
described 3-2 
syntax A-5 
to set option variables 3-6 

Setting option variables 3-6 
Setting the default edit file 4-4, 
Sharing query processors 5-10 
Shortpool5-10 
Significance of STRATEGY COST vallues 5-4 
Simplifying the data structure: 2-4 
SKIP clause 

described 3-41 
example 3-45, D-ll 
syntax A-9 

Sorting 
avoiding sorting an already 80rted file 5-8 
default order 3-32 
information for a query 3-23 
sequence 3-24 

Source code 
compiling and executing 4-5 
entering directly 4-3 
entering indirectly 4-4 

SPACE clause 
described 3-41 
example 3-45 
syntax A-9 

Spacing 
horizontal 3-32, 3-45 
vertical 3-32, 3-45 

Specifying computations for a report 3-25 
Spooler 5-11 
Spreading input/output demands 5-9 
Statements 

AT END 3-34, 3-38 
AT START 3-34, 3-38 
CLOSE 3-8, 3-15 

December 1983 

Index-l0 

."., -----------------------------------



DECLARE 3-2, 3-6 
DELINK 3-8, 3-15 
DICTIONARY 3-2, 3-8, 3-15 
FIND 3-17, 3-19, 4-7 
FOOTING 3-34, 3-39 
LINK 3-3, 3-8 
LIST 3-17,3-32 
OPEN 3-2,3-3 
SET 3-2, 3-6 
SUBFOOTING 3-34, 3-39 
SUBTITLE 3-34, 3-40 
TITLE 3-34, 3-40 

Steps to create a query 3-1 
STRATEGY COST 

and FIND files 5-11 
described 5-4 

String literals 3-34 
SUBFOOTING clause 

described 3-34 
syntax A-9 
temporarily overriding SUBFOOTING 

statement 3-39 
SUBFOOTING statement 

described 3-34 
example 3-39 
syntax A-5 

SUBTITLE clause 
described 3-34 
example 3-40, D-5 
syntax A-9 

SUBTITLE statement 
described 3-34 
example 3-40 
syntax A-5 

SUBTOTAL clause 
and the PCT clause 3-29 
example 3-26 
OVER syntax 3-26 
syntax A-9 

Subtotal string 3-26 
SUPPRESS clause A-9, D-8 
Suppressing 

the printing of duplicate items 
in a report 3-23 

Suppressing a column heading 3-44 
System variables 

@DATE3-48 
@TIME3-50 

TAB clause 
described 3-41 
examples 3-46 
syntax A-9 

TAL 
and the host language interface 6-1 
data definition source code 2-6 
ENFORMFINISH procedure 6-11 
ENFORMRECEIVE procedure 6-8 
ENFORMSTART procedure 6-3 
program example 6-16 

Tandem text editor 4-4 
Target file 

controlling extent size 5-9 
described 1-5 
specifying where built 5-9 

Target item 
default display format 3-33 
default heading 3-33 
defined 1-8 
display format width 3-47 
suppressing the printing of 3-44 

Target list 
default report format 3-32 
defined 1-8 
permissible elements 3-17, 3-19 
statements that identify 3-17 

Target records 
and a host language program 1-6 
and the query compiler/report writer 1-5 
and the query processor 1-5 
defined 1-8 
linking 3-7 
returning zero 3-22 
unexpectedly large amount 3-7 

Index 

Temporary work files, see Target file 
TERMINATE-INPUT-REPLY message 7-16 
TERMINATE-INPUT-REQUEST message 7-15 
Termina ting 

ENFORMRECEIVE procedure 6-8 
host language interface 6-11 
session in interactive mode 

w hen entering source code directly 4-4 
when entering source code indirectly 4-7 

session in noninteractive mode 4-3 
statement 4-3 

Time value, printing on a report 3-46 
TIMESTAMP-DATE clause A-9 
TIMESTAMP-TIME clause A-9 
TITLE clause 

described 3-34 
example 3-40, D-5 
syntax A-10 

TITLE statement 
described 3-34 
example 3-40 
syntax A-5 

Titles, default 3-32 

December 1983 

Index-11 



Index 

TOTAL clause 
and the PCT clause 3-29 
example 3-27 
syntax A-10 

Total number of positions 5-3 
Transaction rate 

and alternate keys 5-7 
described 5-5 

User elements 
cancelling 3-6 
defining 3-6 
establishing 

the default heading 3-6 
the display format 3-6 
the internal format 3-6 

providing an initial value 3-6 
User tables 

defining 3-6 
providing an initial value 3-6 

User variable 
assigning result of arithmetic 

calculations 3-25 
default display format 3-33 
default heading 3-33 
default value 3-22 
defining 3-6 
examples D-6, D-10 
in a WHERE clause 3-22 
initial value 3-19, 3-22 
providing an initial value 3-6 

User variables 
examples 3-18 

User-written process file. see ENFORM 
server 

Using a new message table E-3, E-5 
Using an ENFORM server 7-2 
Using the ?HELP command 3-51 
Using the ENFORM statistics 5-1 

Variable-length data 7-3 
Variable-length data and an ENFORM 

server 7-19 
Vertical spacing 3-32, 3-45 

WHERE clause 
and LINK statement 3-13 
and OPEN AS COpy OF 3-3 
and STRATEGY COST 5-4 
conjunctive normal form 3-13 
converted 3-13 
described 3-8 
evaluation process 3-13, 5-11 
example 3-15, D-1 

Index-12 

non-contributing record occurrences 3-13 
syntax A-10 
terms 3-13 
to establish link for current query 3-15 
used to reduce physical file ;accesses 5-11 
used to restrict information selected 3-22 

Writing an ENFORM server 7-2 

!!! ERROR AND ***WARNING messages B-1, B-3 

***FILE ERROR type error messages B-11 

? ASSIGN command 
described 3-2 
effect 3-5 
syntax A-10 
to assign record descriptions 3-4 
to assign temporary work files 5-9 
uses 3-5 

?ATTACH command 5-10, A-10 
?COMPILE command 

examples 6-12, 6-16 
syntax A-10 
to compile source code without exeeuting 4-7 

?DICTIONARY command 
described 3-2, 3-8 
for clearing links 3-15 
syntax A-10 
to change dictionaries 3-2 

?EDIT command 
example 4-4 
syntax A-10 
when entering source code indirectly 4-4 

?EXECUTE command 
syntax A-10 
use 4-7 

?EXIT command 
syntax A-10 
uses 4-2, 4-7 

?HELP command 3-51, A-10 
?HELP section 

described E-1, E-8 
syntax E-9 

?MESSAG ES section 
described E-1, E-8 
syntax E-8 

?OUTcommand A-10 
?RUN command 

and the default edit file 4-5 
example 4-5 
in a compiled query file 4-2 
syntax A-10 
when entering source code indirectly 4-5 

December 1983 



?SECTION command 
and the ?RUN command 4-6 
examples 4-5, 4-6 
in an edit file 4-4 
omitting from the ?RUN command 4-6 
syntax A-I0 

?SHOW command 
described 3-8 
syntax A-I0 
to examine a record description 2-7 
to examine session-wide links 3-15 

?SOURCE command 
syntax A-I0 
when entering source code indirectly 4-6 

?VOCABULARY section 
described E-l, E-7 
syntax E~7 

@BLANK-WHEN-ZERO A-8 
@BREAK-KEY A-8 
@CENTER-PAGE A-8 
@COPIESA-8 
@COST-TOLERANCE A-8 
@DATEA-9 
@DATE system variable 3-48 

@DECIMAL A-9 
@DISPLAY-COUNT 3-6, A-8 
@HEADING A-8 
@LINENOA-9 
@LINESA-8 
@MARGIN 3-6, A-8 
@NEWLINE A-9 
@NONPRINT-REPLACE A-9 
@OVERFLOW A-9 
@PAGENOA-9 
@PAGESA-8 
@PRIMARY-EXTENT-SIZE 5-10, A-8 
@READSA-8 
@SECONDARY-EXTENT-SIZE 5-10, A-8 
@SPACEA-8 
@STATS 5-1, A-8 
@SUBTOTAL-LABEL D-2 
@SUMMARY-ONLY A-8 
@TARGET-RECORDS 5-10, A-8 
@TIMEA-9 
@TIME system variable 3-50 
@UNDERLINE A-9 
@VSPACE 3-45, A-8 
@WARN A-8 
@WIDTHA-8 

December 1983 

Index 

Index-13 





YOUR COMMENTS PLEASE 

Tandem NonStopTM & NonStop n™ Systems 
ENFORM™ User's Guide 

82195 (Update 1 to 82349 BOO) 

Tandem welcomes your comments on the quality and usefulness of its publications. Does this publication serve 
your needs? If not. how could we improve it? If you have specific comments, please give the page numbers with 
your suggestions. 

This comment sheet is not intended as an order form. Please order Tandem publications from your local 
Sales office. 

FROM: 

Name Date 

Company 

Address 

City/State Zip 



I11111 

FIRST CLA~~S ~~R~~~O~8; P Lc~p~~J;, CA, U.S.A] 

POSTAGE WILL BE PAID BY ADDRESSEE 

Tandem Computers Incorporated 
19333 Valleo Parkway 
Cupertino, CA 95014-9990 

Attn: Manager-Software Publications 

TAPE TAPE 
.',-,-------------------------------

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

.... 1 


